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1. INTRODUCTION

Let {&} be an independent and identically distributed (i.i.d.) sequence of random vari-

ables such that Ee; = 0, Ee? = 02 < oo; for 0 < d, < % consider the class of processes {u;}

satisfying
t
ut = Z ¢t—j€j7t:1727”'7¢021 ¢N£()du ! ]:1727 (1)
j=—00
where £(.), (like €gp(.), £,(.), £7,(.) to be introduced later) denotes a Lebesgue-measurable,

real-valued function varying slowly at infinity, defined on [0, 00), bounded on every com-
pact subset therein, and positive on [X, c0), for some X > 0, while “ ~ ” indicates that
the ratio of left- and right-hand sides tends to one; we term a sequence satisfying (1) long
range dependent, or fractionally integrated of order d,. Parametric, semiparametric and
nonparametric statistical inference under long range dependence has been extensively in-
vestigated in recent years, for instance by Giraitis and Koul (1997), Robinson (1995) and
Cs6rgo and Mielniczuk (1995), respectively; models that combine long range dependence
and infinite variance innovations have also been considered, for instance by Kokoszka and
Taqqu (1995,1996), and Kokoszka and Mikosch (1997).

For many statistical applications partial sums of long range dependent variables are of

interest. Denote by B(r) standard Brownian motion, i.e. a zero-mean Gaussian process on

R with independent increments and such that
B(0) = 0, as., (2)
EB(r1)B(re) = min(ry,ra), ri,m2 >0. (3)

For % <d< %, denote by B(r;d) fractional Brownian motion (cf. Samorodnitsky and

Taqqu (1994)), given by
B(r,d) = a.s., r=0,
Blrsd) = Cu(@o? [ [{(r =)} = {(=9))*] dB(s) . r e R

Ci(d) = {2d—1+_/0 [(EE dl?}zds} ,




where (t)4 = max(¢,0). Under (1) and higher moment conditions on &;, we have the
invariance principle

[nr]
(U(n)nt=1/%)~1 Zut = 0?B(r;d), 0<r<1 ,asn— oo, (4)
t=1

where d = d, + 1, = signifies weak convergence in a suitable metric space (Billingsley
(1968)), and [.] is integer part. The convergence (4) was established by Davydov (1970),
Taqqu (1975) and Gorodetskii (1977), and extended by Chan and Terrin (1995), Csérgo
and Mielniczuk (1995), and others.

Partial sum processes can be restrictive for applications and more general forms of de-
pendence may be considered, for instance nonstationary fractional integration. For t > 1

let

t
Zt:z@btfjnj ) ¢0:17 ’ijwé(j)jdilvj:laQa'“a t>1 ) (5)
j=1

where d > % and

e o]

oo
Ny = Z (Lt_jé‘j,0< Z \aj\<oo,t:1,2,...,

Jj=—o0 Jj=—o0
the latter inequality implying 7, has “short range dependence”, by contrast with (1). For
d =1 and ¢(.) = 1 we have partial sums of short range dependent innovations z; = Z;Zl ure
The sum in (5) has to be finite, because the 1; are not square-summable for d > %; it can
be verified that Var(Y_}", ) ~ em?* and Y7 | E22 ~ dm? as m — 00, 0 < ¢, < o0,
and hence z; is nonstationary long range dependent in the extended sense of Heyde and
Yang (1997).

The purpose of this paper is to study weak convergence for vector processes generalizing
(5). Vector stationary long range dependent processes have been studied by Robinson
(1995); a preliminary investigation for a class of nonstationary univariate processes related
to those we analyze here was considered by Akonom and Gourieroux (1987) and Silveira

(1991). Our main result, established in Section 2, specializes in the univariate case to
(ﬂ(n)nd_l/Q)_lz[m] = o%a(1)’W(r;d), 0<r<1,asn—o0, (6)
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with a(1) = 3°72_ a; and where the process W (r;d), itself denoted fractional Brownian
motion by Akonom and Gourieroux (1987), is defined formally for d > % as a Holmgren-

Riemann-Liouville fractional integral

W(0;d) = 0,as.,

W(r;d) = '/O.T(?" —5)YdB(s), r>0.

Like B(r;d), W (r;d) is Gaussian with almost surely continuous sample paths, and W(r,1) =
B(r), but W(r;d) and B(r;d) are different processes, in particular their autocovariances
differ, as discussed by Marinucci and Robinson (1998), where W (r;d) is labelled “type 11"
fractional Brownian motion.

The main ingredient for the proof of (6) is the representation

(g(n)nd_l/z)_lz[nr] = qn(r) +T7L(T) )
sup |ra(r)] = op(1) , (7)
r€(0,1]

where g,(r) = o02a(1)? Z?Zl]_l(r — L)d- Ly, for an i.i.d. sequence w; = N(0,1), “ ="
signifying equality in distribution. Weak convergence of g, (1) to W (r; d) entails convergence
of the finite dimensional distributions and tightness of ¢, (r). For (7) we extend results for
partial sums of i.i.d. vectors due to Einmahl (1989) to short range dependent vectors, by
employing a decomposition used in another context by Phillips and Solo (1992).

In the sequel, C' denotes a generic, positive constant, I;, the p-rowed identity matrix, and
||l.|| the Euclidean norm. Section 2 presents the main result of the paper, while technical

lemmas are collected in Section 3.

2. MAIN RESULT

Let us introduce the following assumptions.



ASSUMPTION A1 The p x 1 vector sequence {2} satisfies

t

=Y Uy, t=1,2, ..,
j=1

where ¥y = I, and for j > 1 ¥, has (a,b)-th element

1/’ab,j = gabgab(]’)jdail )

where d, > % , a,b=1,...,p, and

, , o)
— < —aas/
Oglggllfaa(wr@) law(j+1)] < C r s laa(j) >0,
. ) (g .
0 (5) — Laal)] < c—bj“, 1) > 0.

ASSUMPTION A2 The 7, in Assumption Al satisfy

e o] e o]

m= Y Aggis D4 D TP+ D 1A R[Pp <oo.

j=—o00 =0 | k=j+1 k=j+1

ASSUMPTION A3 The ¢; in Assumption A2 are i.i.d. with
Ee1 =0, Fe1ef =3, El|lei||? < oo, some g >2.
ASSUMPTION A4

rank(X) = rank(G) = rank( Z Aj)=p,

j=—00

where G = {gab}op » .0 =1,...,p.

(11)

(12)

We refer collectively to Assumptions A1-A4 as Assumption A. Condition (8) is a mild

smoothness restriction on £4(.), holding, for instance, for £g(.) = (log(.))¢, any real £. More

generally, £,(.) can be a normalised slowly varying function, (Bingham et al. (1989), p.15),

Eab(x):cexp{/ #du} ,c>0, e(u) > 0asu— oo,
Jo



with dla(z)/dx = e(z)lap(z) /2 = o(x 1) a.e. as x goes to infinity. This class coincides with
the Zygmund class I(.), such that x%l(z) is eventually increasing and x~¢I(z) is eventually
decreasing as © — oo for any & > 0 (Bingham et al. (1989), p.24). (9) is a homogeneity
condition for the coefficients on the a-th row of ¥; and it is satisfied by parametric models of
fractional integration, cf. Corollary 1. The stationary linear specification for 7, in (10)/(11)
entails a mild form of short range dependence condition, which is for instance implied by
> 21 Aj]l < oo (cf. Phillips and Solo (1992)). Condition (12) ensures that the
asymptotic limit process will have nondegenerate finite dimensional distributions.

The following lemma follows from Theorems 1, 2 and 4 in Einmahl (1989).

Lemma 1 (Einmahl (1989)) Let {e:} : S — RP be a sequence of i.i.d. vectors such that
Assumptions A3 holds. Then we can construct a probability space (Sp, o, Po) and two
sequences of i.i.d. vectors {&;}, {w;} with & =&, wy = N(0,%), n = 1,2, ..., such that, as

n — 00,
138 = > will = o(n"/9) , as. (13)
t=1 t=1

and

k k
max || Y & =Y wi| = 0p(n'/9) . (14)
t=1 t=1

1<k<n

We can now establish approximations for partial sums of multivariate linear sequences as

follows.

Lemma 2 Under Assumptions A2 and A3 we can construct a probability space (Sp, 3o, Po)
and two sequences of i.i.d. vectors {7, }, {w;} with 7, = n,, w; = N(0,%), n = 1,2, ... such

that as n — oo, for 2 < s < ¢

Sy =V = on'?), as., (15)



1S = Vil _
S T op(1) (16)

where S; = S_ 7, and V; = A(1) S20_ wy, A(x) = 20 Ajad.

j=—o00

Proof For |z| <1 we have

where
At (z) = ZA;'mj , A () = ZAJ-_a:j ,
§=0 §=0
Al = Z A, A7 = Z A .
k=j+1 k=j+1
Then

n

D e =A(1)) e +Eom
t=1

t=1

where gy, =4 —ey — &b +¢;,,ef = AT (L)et, e, = A7 (L)g;. Also

E|Eon||? < C{Elleg |1 + Elleg |11}

where
o /2
Bl < CE{Y 1AMl
j=0
o /2
+19 7)1
< O3 (BIAT I es17)
7=0
/2
<

(o)
CAY AP b Elleol? < o0
§=0

using Burkholder’s (1973) and Minkowski’s inequalities. In the same way Elle; || < oo.

Thus g, = o(n'/*) a.s. by Markov’s inequality and the Borel-Cantelli lemma. The proof of



(15) is completed by application of (13) to A(1)e; and the identification 7, = > 22 A&,

j=—00

for €. To establish (16) write

{;& Sl

and hence P(sup;<, [|S; — V;|| > )\nl/s) is bounded by

Psup | 4(1) E:Q

Also, the first component of (17) is bounded by

j j
P(sup ||( Z Z )| > eAnt/*)
t=1

ji<n =1

)\nl/s
2

) - (17)

(sup [|Zo4| >
i<n

for some 0 < ¢ < co. From (14) it follows that the w; can be chosen as i.i.d. N(0, %) such
that

sup ||( Zﬂ Zwt | = op(n'/*)

Jj<n

because A is arbitrary. The second component of (17) is bounded by

Anl/s < ESUPj§n||50j||q

P(sup||egil| =
upllens| > T3 < O
+|2 —1|q
o nBUl +ls )
(Ant/s)1
as n — 00, in view of the previous evaluation. U

Results from Silveira (1991) suggest that for ¢ < 3 and under moment conditions stronger
than Assumption A3, (15) can be extended to cover also forms of dependence that are
neither strictly stronger nor weaker than our linearity, such as absolute regularity (cf. Pham
and Tran, (1985)). The only part of Lemma 2 which is used in the sequel is (16), but we
have included (15) to mirror the derivation of analogous results by Einmahl (1989) and

others.

ASSUMPTION B For g defined by Assumption A3,

2
d, = min d, . (18)

) —
q>ma'x(72d*_1)7 1§a§p
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Herrndorf (1984) considered normalized partial sums of covariance stationary mixing se-
quences uy, the argument to establish weak convergence requiring tighter moment conditions
on u; the slower the mixing rate. On the other hand in (18) a larger amount of “persis-
tence”, i.e. a larger d,, entails weaker moment conditions, at least for d, < 1. A heuristic
explanation is as follows: while the mixing rate in classical central limit theorems does not
affect the \/n-normalization, in Theorem 1 a lower value of d, entails a smaller normaliza-
tion, and hence tighter bounds on the remainder terms are needed (cf. Davydov (1970) and
Gorodetskii (1977)). In view of Assumption A3, Assumption B is vacuous for d, > 1.

Define the normalizing matrix function D(n;d,), for d, = (di, ..., dp), as

D(n;d;) = diag { (ﬂll(n)ndl_yQ)*l e (ﬂpp(n)ndp—l/Q)l} |

and “type II” multivariate fractional Brownian motion for r > 0 as

W(r;d,,Q) = (0,..0), as.,r=0, (19)

W(r;d,,Q) = /(;T G(r,s)dB(r;Q2) , r >0, (20)

where Q@ = A(1)XA(1) is a p x p full rank matrix (by Assumption A4), B(.;€) is p x 1

scaled Brownian motion such that

B(ri) = (0,.0), as.,r=0,

EB(r:Q)B(ry;Q) = Qmin(ry,r),

and G(r,s) has (a,b)-th element gu(r — s)%~1 a,b = 1,...,p, for 0 < s < r, and zero
otherwise.

Define 2,(r) = D(n;d;)Z},,, for 0 < r < 1, and note that 2,(r) € D[0,1]?, the space
of RP-valued vector functions on [0, 1] whose components are continuous on the right and
with finite left limit, endowed with the product o-algebra DP. The latter is generated by
the open sets with respect to the metric that induces the Skorohod J; topology on the
component spaces; this makes D0, 1]P complete and separable, like D0, 1]. The proof of

weak convergence in D[0,1]P involves the same steps as for the univariate case (see e.g.



Csorgod and Mielniczuk (1995)), namely convergence of the finite dimensional distributions
and tightness of the components of z,(r).
Theorem 1 Under Assumptions A and B, for 0 <r <1

zn(r) = W(r;d,,Q) asn — oo,

where = signifies convergence in the Skorohod J; topology of D|0, 1]P.

Proof For S;, V; defined in Lemma 2 we can write

[nr]

zZn(r) = D(n;d,) Z\Ifm (Sk — Sk—1) ,

= an( ) + QQn( ) + Q3n(r) =+ Q4n(r) + Q5n(r) =+ Qﬁn(r) ’

with

[nr]—1

Qun(r) = Z G(r, k,n)n™ 2 Vi, = Vi) Lprysa(7)
[nr]—l

Qun(r) = Y D;de) Vi [(Sk = Sk-1) = (Vi = Vie1)] Lprg>2(r)
k=1
[nr]—1

Qun(r) = > (D3 de) Wy i = Gl k)2 Ve = Vie 1] Lpuppsar)
k=1

Q4n(r) = D(TL, dz) [S[nr] - S[n’r]—l] 1[nr]>2(T) >

Qfm('r) = (n dz)/z\[nr]l[n'r]<2(r) ’
[nr]—1

Qen(r) = Z H(r,k,n)n Y2 (S, — Sk_1] Ljpr»a(7)

where 14(.) is the indicator function of the set A, and G(r, k,n), H(r,k,n) have (a,b)-th

element




respectively, for a,b =1, ...,p. The Theorem will follow if, as n — oo,

Qin(r) = W(rd,,Q), re[0,1], (21)

sup [|Qin(r)| = 0p(1), i=2,..,6. (22)
0<r<1

Now (21) follows from Lemma 4, while (22) with ¢ = 2 follows from Lemma 5, with ¢ = 3

from Lemma 6, with ¢ = 4,5 from Lemma 7 and with ¢ = 6 from Lemma 8. O
We now focus on more specific models of fractional integration.

ASSUMPTION A’ For d, > %, a=1,...p, let Assumptions A2, A3, A4 hold, and let
z = AL)AL) {mleso(t)} , t=0,%1, ..., (23)

for

A(L) = diag {(1 D) (1 L)_dp} ML) = iAij ,
=0

where L is the lag operator and the coefficient Agx of LF in the expansion of (1 — L)% is

defined by

['(k +d,)

Apyg=———"—.,T = e Ay k=1,2,....
k F(da)F(k+1) 9 (Oé) /0 ez Z , ) 4y

ASSUMPTION C For A(L) defined by Assumption A’, Ag = I, and Ay j; the a,b-th

element of A;
Aapj|l <Cj e Ja,b=1,..,p,j=12,..,
where v, = max(4 — dq, dg).
Assumption A’ allows more generality than the class of vector autoregressive fractionally
integrated moving average processes, which are defined by the equations
a=AL) {nlo®)} 5 ne =2 (L)O(L)er, t=1,2, ..., (24)

11



with ®(s) and O(s) p X p matrix polynomials with real coefficients which satisfy
O(s) =1, —P1s— ... — Dy 5™, O(s) =1, —O15 — ... — Qg 5%,

where ¢; and ¢o are positive integers and we assume that ®(s) has no roots in the closed
disk {s:|s| <1}. The coefficients in the series expansion of ®~!(s)O(s) tend exponen-
tially to zero and therefore Assumption A2 is trivially satisfied after the identification
A(s) = & 1(s)O(s), whence (24) follows from (23) on picking A(L) = I,. Also, (24)
provides a natural generalization and more modelling flexibility than non-fractional vector
autoregressive integrated moving averages, which are highly popular among time series an-
alysts and correspond to (24) in the special case where di, ...,d, are positive integers. For
p = 1, the class considered by Akonom and Gourieroux (1987) is given by (23) with i.i.d.
n, (i.e. A(L) =1I,) and A(s) = ®71(s)O(s); this class does not cover (24), however.

From Assumption B we may write

t
2t = ZHt—jn] ) t= 1727 )
j=1

where II; has (a,b)-th element

J .
(i +d,) )
;= — A =1,2,... 25
Tab,j ;F(da)l“(z—f— 1) ab,j—i 5 J ) ( )
We need to approximate the 7q, ; by means of the following lemma, which extends Lemma

3.2 in Kokoszka and Taqqu (1995) allowing for d > % and for algebraically (rather than
exponentially) decaying coefficients A; (cf. Silveira (1991)).

Lemma 3 Let d > —% and set

4, d<0
Y=< 4—-d, 0<d<?2
2, 2<d

Let



where

=1, N <07 (26)
Then as 7 — oo
AL a1 42
§— — < 2

where \(1) = > 2% A;.

Proof Note first that from Abramowitz and Stegun (1970), formula 6.1.47,

|F(j +4d)
I'(j+1)

The left side of (27) is thus bounded by I'(d)~* {I + IT + III + IV} , where

—j < =12, (28)

(I) = |N|D(d), (ITT) Z|AJ i[9t — 597

(I1)

Lli+d) 4 d—1
— IV) = i )
¢ @) @ s
i=j+1
By (26), I < Cj™ < Cj472, and IV < Cj47 < Cj972. By (28) IT < CS7_ | |\j_i]i¢2.
For d > 2 this is O(j%2) by summability of {\;} implied by (26). For d < 2 it is bounded

by
[5/2]

ZP‘J ili* ™% + Z [Aj—ili®? = Z Al + 5t 2ZIAI

=[3/2] =[3/2]
and this is O(j973 + j4=2) = O(j%?%) by (26). For d > 2, by the mean value theorem
ITT < Cj*259_ Nl (j — i) < Cj9 2 by (26). For 0 <d < 2

5/2
I < O3 il (G —i) + ¢ 2 Z Aj—il (G — 1)
i=1 i=[j/2]

< OGP+t =20

For — <d <0

[7/2] J
ITT <) oG =G + 0542 > Nl — 1)
i=1 i=j/2]

13



The second term is O(j972)

Cji=tj=d Ziz[j/Q] i < Cj3. U

, whereas the first is, by the mean value theorem, less than

From Lemma 3 and Theorem 1 we derive the following result.

Corollary 1 Under Assumptions A’, Band C, for 0 <r <1
zp(r) = W(r;d,,Q) asn — oo,

where W (r; d,, ) is as defined in (19) /(20) with gop = {T'(da) " Aas(1)}, Aas(1) = > 720 Aab,j
a,b=1,..,p

Proof Under Assumption C, from a straightforward application of Lemma 3 to (25) we

have
Aav(1) 4,1 a2 ,
;= @ O(j% .
7Tab7] F(da) J + (] ) , as ] — oo
Hence Assumption Al is satisfied after the identification
. F(da) Tab,j 1 .
14 =1 = —1>=14+0
aw(j) =1+ {)\ab(l) ja-1 +0(j ), as j — 00,
and the result follows by appealing to Theorem 1. O

For d, > 1 a much simpler proof of Corollary 1 follows from Abel summation by parts and
the continuous mapping theorem (cf. Akonom and Gourieroux (1987)). Applications to
asymptotic inference on nonstationary time series are presented in Robinson and Marinucci
(1998).

The conditions on the moments of the innovation sequence {e;} can be relaxed (cf. Silveira
(1991)) if we focus on the smoothed multivariate series zp,,| = Z,[;Zl] zt, 0 < r <1, which

represents fluctuations of partial sums of {z}.

Corollary 2 Let Assumptions A hold. Then as n — oo, for 0 <r <1

14



where

- dy
D(n;df) = diag { <€11(;L)n
1

and df = (dy +1,....,d, + 1).

Proof For 0 <r <1, write

[ror]

f)(”; d;) Zzt =

t=1

) ()

[nr] ¢t

(n; dJr ZZ\I’t —iMj

t=1 j=1

[rer]

= nd+ Z\Ilnr —jiM5 s

where U = I,, and for j > 1, \Tfj = ZLO U; has (a,b)-th element

=1+ Gadb Zgab

the approximation following from the direct half of Karamata’s Theorem (Bingham et al.

da—l da

ab(j)j 9 asj—>oo,

~ Gab
¢ab ,J d =

a

(1989), p.26). Hence Assumption A is satisfied if z; is viewed as a nonstationary fractionally
integrated process of order d; because minj<g<p(dy + 1) > %, Assumption B holds and

(29) follows from Theorem 1. O
3. TECHNICAL LEMMAS

Lemma 4 Under Assumptions A and B, as n — oo

Qin(r) = W(rd,, Q) , r €[0,1] .

Proof Since Q1,(r) and W (r;d,2) are Gaussian, convergence of the finite dimensional

15



distributions follows if we establish asymptotic equivalence of their first two moments. The
fact that

lim EQi,(r) = (0,...,0) = EW(r;d.,Q) ,

n—oo

is obvious. Fix w.l.o.g. 79 > r1 and recall that, from Assumption A1l and Potter’s theorem
(Bingham et al., (1989), p.25) we have

| < C(r— 5)_5, a=1,.,p, k=1,..,[nr] -1, (30)

where 6 is any positive constant, which we shall hereafter choose such that d, — 6 > %
Hence the a, b-th component of G(r, k,n) can be bounded by a constant if d, > 1, and by

Gap(r — s)%~17% if d, < 1; by dominated convergence

[nri]—1
Jim EQun(m)Q,(r2) = lim — % G(r1,k,n)QG (ra, b, n)
k=1
[eri] =1 (k1) /n
= lim Z / G(r1,k,n)QG (ro, k,n)ds

o

N / G(r1, $)QG (r2, 5)ds
JO

= EW(Tl;dz, Q)W/(T%dza Q) >

so that convergence of the finite-dimensional distributions is established. Also, Akonom
and Gourieroux (1987), p.13 show that a tightness criterion for Gaussian series is given by,

fora=1,.,p,0<r <r<rs <1
a a 2 a a 2
E{Q ) - Qi) B{QL) ) - QL) < Clra =il (31)

for constants C,y > 0. To prove (31), define for 0 <r <1,a=1,...,p,

nr]—1

[
Run(r) =

= (B B (32)

k=1
where B(.) is univariate standard Brownian motion as introduced in(2)/(3); to simplify

notation, we shall use d; = d, — 6.

16



Consider first the case where 1 > 0. The inequality (31) is trivial for any fixed n (ng,
say); we can take ng = [%] and focus without loss of generality on n > ng , so that r; > 2
always holds. Denote by g/, the a-th row of G; we have

[nr]—1

I N O A C R Gt
1 aa
[nr]—1
= (@0a) Y (= Byl (5 - 5 ).
=1 aa
and therefore in view of (30)
2{Q00) - e} B{@m) - o)
< CE{Run(r) — Ran(rl)}Q E{Ran(r2) — Ran(T)}Q ) (33)

From (32) we obtain easily, for 0 < p; < py <1,

[np1]—1 9
E{Run(ps) ~ Bunlp)}? = + > [@2_%)@—1_@1_@)@_1}
k=1

n
[npo]—1 k B
b Y (e
k=1+[np,]

= Mi(py,pa) + Ma(py, p2) -

Now if d > 2, Mi(py,ps) < (d7 — 1)*(py — p1)? by the mean value theorem and easy
manipulations; if 1 < d; < 2, Mi(py,ps) < (py — py)?%@ 2 from the inequality |u + v|? <
|u\9 + \v\e, 1<6<2;ifd, =1, My = 0. Finally, if% < d, <1, we note that for p, > p;,
s € (=00, py)

f(s)=(py =)t = (pp —s)% 1

is non-decreasing, having derivative
(1=dg) {(pr =) 2 = (pp =) 2} > 0.

Therefore
P1

Mi(p1,p2) < /0 f(s)2ds

17



— P1 S _ S _ 2
2dg 2 dg 1 dg 1
:p—pa/{l—k a——a]ds
(p2 J Jo ( PQ—P1) (PQ—Pl)
2ds -1 [ dg 1 dy 172
< (pp—p1)™ /0 [(1+U) A dv

Clpy —py)*% 1,

IN

1 - _3
because for 5 <d, <3
00 B o
/ {(1+v)d“_1—vd“_1 dv < oo,
0

as discussed in Samorodnitsky and Taqqu (1994, p.321). It follows that Mi(p;,ps) <
C(py—py)? for v > 0. Let us now consider Ma(p;, py); we assume without loss of generality

[npg] > [np]. If d; > 1, we have

[np,] +1

]V[2(P1a/)2) < po— n

< (a—p) o (34

If instead § < d, < 1, we have that (r — s)?% ~2 is non-decreasing in s, for s < r. Hence

[rps]/m _
Ms(pq,p9) < /( (pg — )% 2ds

1+[np,])/n
P2 —
< [T R
!
_ 1 2d7 —1
= 2da—1(p2 p1) ) (35)

which, together with (34), gives
e 1
Ms(pq, ps) < C(py — pyp) —|——n , some £ >0,

for all d > % Now we identify py = 7, p; = r1 to bound the first element on the right hand
side of (33), and py, = 72 , p; = r to bound the second element on the right hand side of (33),
so we consider together M (ry,r), Ma(r1,r) and Mi(r,r2), Ma(r,r9). For ro —r < % implies
either M(r1,7) = 0 or Ma(r,r9) = 0; we assume My (ry,7) = 0. Hence for 75 —r; > 1 we

deduce from (34) and (35) that
E{Rqn(r) — Ran(rl)}Q E{Ran(r2) — Ran(r)}Q

18



= CMl(Tl,T‘) []V[l(r, TQ) + MQ(T, 7‘2)] < C(TQ — 7“1)7 R

some 7 > 0. Otherwise, when r9 —ry > %, we have

E{Ran(r) — Ran(rl)}Q E{Ran(r2) — Ran(r)}Q

1
< Cmax((r—r1)7, (ra—1r)7) + o
< Cmax((r—r)7, (rg = 7)) + (12 —11)?
< C(rg—r1)§ , some £ >0 .
The same bounds hold for 7 = 0, and the result then follows from (33). g

Lemma 5 Under Assumptions A and B, as n — oo

sup || Qan(r)|| = 0p(1) -
0<r<1

Proof By Abel summation by parts

[nr]—1

Qan(r) = D(n;dy) Z Wl —k [(Sk — Sk—1) — Vi — Vie—1]
=1
[nr]—2

= D(TL, dz) Z [\Il[n'r]—k - \I}[nr]—k—l] [Sk - Vk}
k=1

+D(n;d.) 1 [Spry-1 = Vinr-1] -
Define \Tfj =W; — W, 4, for j > 1; from (8) we have

[laa (7)™ = Laa(f = )G =)™
= 1 {taa(i)i" " = a6 = V"7 } + { laal)(G = V™! = laali = DG = D™}
C% 2 {{laa()| + Coa (1)}

IN

by the mean value theorem and (8). Hence we obtain

~ _ Eaa(j)‘ +€/ (]) cdg—2
D n; dz)\p S Cn1/2 dg ‘ aa a .
[1D( ill aa ()]
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Thus ||Q2r(r)]| is bounded by

[nr]—2

C ; ;nl/Q da |€aa([n7“] |€)a|a"(’—n§i|1a([n7“] — k) ([77,7“} o k)danHSk . Vk”

p
+C)[ 1> 0t %S 1 = Vw1l
a=1

and hence by Lemma 2, for some s > max(2, szl)’

S gaa + gaa k o -
wp (@] = oyt Y S Vol Rl 2B, gy sypraa

ooy 2.2 = am

P n-—2
— Op(l + nl/s Z Z(n _ k)da—2+6n1/2—da+6)
a=1 k=1

_ Op(]- + n1/5n267min(1/2,d*71/2)) — Op(]_) ,

because £, (t), lqq(t) < Ct°,§ > 0, and on picking § such that 0 < § < % {min(%,d* — %) — %} .
O

Lemma 6 Under Assumptions A and B, as n — oo

sup [|Q3n(r)[| = 0p(1) -

0<r<1

Proof We have

[nr]—1
1Qsn(M) < max||A(Lwg]| sup > [1D(n;d2) gy = G, k,n)n 2|
h k=1

_’r‘_

[nr]—1
_ —1/2
= max | A(L)u| sup ; IGIn =2 L(r, k,m) + R(r, k,m)| -

where L(.,.,.) and R(.,.,.) are diagonal matrices with a-th diagonal elements
1 laa([nr] — k) — Log(nr — k)
—k dq—1"*aa aa
(1nr] ~ 1 e,

baalnr = ) ( ([nr] = k)L = (ny — k)
faa(n < > I

nda—1
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respectively, for a = 1,...,p. Now

! ([nr] — nr] — k)da—2
HE(’F,]{Z,H)H — O(Z‘Eaa([ } k)‘([ ] k) >’ (36)

=" laa(n) nda—1
P nr — nr] — k)da—2

[R(r k)] = O(ZV“‘;( e ) , (37)
p— aa

where (36) follows from (8), and (37) from the mean value theorem. By (30), both (36)
and (37) are bounded by C > F_ |, n%=1%([nr] — k)%~2 any § > 0, and these bounds are

uniform over r; hence we obtain

p
5 —min(1/2,ds—1/2)
sup [Qun()| < Cve o 3"

0<r<1 a1

< Cn ¢ max|jwyl||, some & >0 ,
k<n

on picking ¢ < min(% —q,dg — % —¢q). Now denote by wg the a-th component of the vector

process wy, where wqr = N(0,02), for 02 the a-th element on the main diagonal of %; for

any A > 0,
P
£ - 3
P{n rI?SaT)L(HwkH > )\} = O(n;P{\waH > An })
= o(nZef()‘ng)/Q‘TQ) =o(1),
a=1

where the second step follows from the inequality [,° e 2du < §~e=9%/2 which holds

for 6 > 0. O

Lemma 7 Under Assumptions A and B, as n — oo

sup [|Qin(r)l| = 0p(1) , i =4,5..

0<r<1

Proof For any A >0

P(sup [|Qun(r)|| > ) < CP(max|[7j]| > An*~1?)
0<r<1 s
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< CnP(|[iyl = A1/
= O(n x n@1/274:)y = o(1) ;
likewise
S [Qsn(r)l| = max{||D(n;d:)n |, [[D(n;d.)(¥Y1n; + 1)}
= Op(1)7

because E||U17); + || = E||V1n; + sl < {||¥1]| + p} || E||n:1|| and under Assumption A

o0
Ellmll < Y I4j1Ele1—ll < oo

j=—00

Lemma 8 Under Assumptions A and B, as n — oo

sup || Qen(r)|| = 0p(1) -

0<r<1

Proof In view of Assumption Al, for d, > 1 we write
[nr]—1
sup || Z H(r, k,n)n —1/2 [Sk — Sk—1] ||

p —0
_ _ n
S C § { E gb(k)n 1/2+9k 1} |€ (77,)| I]ilélXH?]kH )
a=1 aa =r

k=1

where we pick % <0< %; now as n — oo, for a,b=1,....;p

n n—?
{Zfzb(k)n‘1/2+9k‘l}=0(1> o] 2 el = 0p(1)
k=1

in view of previous calculations. For d, < 1, assume w.l.o.g. that d, < 1 for a = 1,...,p*,

p* <pand d, > 1 otherwise; supy<,<1 [|@6, ()| is then bounded by

p* n 79
Cznl_da{z%(k)kda_g} P o+ €Y RO
a=1 k=1

a=p*+1

< CnY? " max ||n, || = 0p(1) as n — oo .
k<n

22



REFERENCES

Abramowitz, M. and Stegun, I. (1970) Handbook of Mathematical Functions, Dover,
New York

Akonom, J. and Gourieroux, C. (1987) “A Functional Central Limit Theorem for
Fractional Processes”, Discussion Paper #8801, CEPREMAP, Paris

Billingsley, P. (1968) Convergence of Probability Measures, Wiley, New York

Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1989) Regular Variation, 2nd
edition, Cambridge University Press, Cambridge

Burkholder, D.L. (1973) “Distribution Function Inequalities for Martingales”, Ann.Prob.
1, 19-42

Chan, N.H. and Terrin, N. (1995) “Inference for Unstable Long-Memory Processes
with Applications to Fractional Unit Root Autoregressions”, Ann.Statist., 23, 1662-1683

Csbérgo, S. and Mielniczuk, J. (1995) “Distant Long-Range Dependent Sums and
Regression Estimation”, Stoch. Proc. Applic., 59, 143-155

Davydov, Y. (1970) “The Invariance Principle for Stationary Processes”, Theory
Prob. Applic., 15, 487-498

Einmahl, U. (1989) “Extensions of Results of Komlos, Major and Tusnady to the
Multivariate Case”, J. Mult. Analysis 28, 20-68

Giraitis, L. and Koul, H. (1997) “Estimation of the Dependence Parameter in Linear
Regression with Long Range Dependent Errors”, Stoch.Proc.Applic., 71, 207-224

Gorodetskii, V.V. (1977) “On Convergence to Semi-Stable Gaussian Processes”, The-
ory Prob.Applic., 22, 498-508

Herrndorf, N. (1984) “A Functional Central Limit Theorem for Weakly Dependent
Sequences of Random Variables”, Ann.Prob., 12, 141-153

Heyde, C.C. and Yang, Y. (1997) “On Defining Long-Range Dependence”, J. Appl. Prob.,
34, 939-944

Kokoszka, P. and Mikosch, T. (1997) “The Integrated Periodogram for Long-

23



Memory Processes with Finite or Infinite Variance”, Stoch.Proc.Applic., 66, 55-78

Kokoszka, P. and Taqqu, M.S. (1995) “Fractional ARIMA with Stable Innovations”,
Stoch. Proc. Applic., 60, 19-47

Kokoszka, P. and Taqqu, M.S. (1996) “Parameter Estimation for Infinite Variance
Fractional ARIMA”, Ann.Statist., 24, 1880-1913

Marinucci, D. and Robinson, P.M. (1998) “Alternative Forms of Fractional Brow-
nian Motion”, revision with J.Statist. Plann.Inf..

Pham, T.D. and Tran, L.T. (1985) “Some Mixing Properties of Time Series Models”,
Stoch. Proc. Applic., 19, 297-303

Phillips, P.C.B. and Solo, V. (1992) “Asymptotics for Linear Processes”, Ann.Statist.,
20, 971-1001

Robinson, P.M. (1995) “Log-Periodogram Regression of Time Series with Long Range
Dependence”, Ann.Statist., 23, 1048-1072

Robinson, P.M. and Marinucci, D. (1998) “Semiparametric Frequency Domain
Analysis of Fractional Cointegration”, STICERD Discussion Paper #348, London School
of Economics.

Samorodnitsky, G. and Taqqu, M.S. (1994) Stable Non-Gaussian Random Pro-
cesses, Chapman and Hall, New York.

Silveira, G. (1991) Contributions to Strong Approzimations in Time Series with Appli-
cations in Nonparametric Statistics and Functional Central Limit Theorems, Ph.D. thesis,
University of London

Taqqu, M.S. (1975) “Weak Convergence to Fractional Brownian Motion and to the
Rosenblatt Process”, Z. Wahrscheinlichkeitstheorie Verw.Geb., 50, 53-83

24



