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Abstract

This paper provides a new approach for cross-evaluation in DEA. An examination of the link between
cross-evaluation and the DEA production possibility set reveals flaws in the current methodology for
cross-evaluation. This is compounded by problematic cases permitted by the existing approaches for
performing cross-evaluation without recourse to the full set of optimal weights for all DMUs. Our new
approach is based on information on all weighting schemes for all DMUs. We show how this overcomes
the existing problems. We also provide new tools for the identification of maverick DMUs that make
use of unrealisitic weighting schemes and introduce the concept of under-achieving DMUs.

keywords: Data Envelopment Analysis, Cross-Evaluation, Cross-Efficiency, Ranking, Maverick

DMUs, Under-achieving DMUs, Weight-Restrictions, Efficient frontier identification



1 Introduction

Data Envelopment Analysis (DEA) is a widespread technique that evaluates the efficiency of a set of
homogeneous production units, termed Decision Making Units (DMUs), that operate in a multiple input
and output environment. A part of what can perhaps be called the ‘standard’ methodology in DEA (first
enunciated by Farrell (1957) and then developed by Charnes et al (1978) (CCR) and extended by Banker
et al (1984) (BCCQC)), involves the use of a ratio of the form: weighted sum of outputs/ weighted sum
of inputs, to assign an efficiency score to every DMU. The weighted sums are obtained after assigning
multipliers, or weights, to the inputs and outputs. DEA allows each DMU to choose its own multipliers
such that its efficiency score is maximised (subject to some constraints). We will refer to the efficiency
scores calculated by this self-appraisal as simple efficiencies. Sexton et al (1986) proposed that the
optimal weights for each DMU can be used to appraise its peers, i.e. to calculate alternative efficiency
scores for every other DMU. We refer to the efficiency scores calculated in such a way as cross-efficiencies
and use the term cross-evaluation (Doyle & Green, 1995) for the process of evaluating a DMU’s cross-
efficiency scores. The use of Cross-evaluation has spread to a number of different areas. It can be
used in Multiple Criteria Decision Making (MCDM) to improve discrimination among alternatives (see
(Doyle, 1995),(Green & Doyle, 1995),(Sarkis, 2000),(Mavrotas & Trifillis, 2006)), in ranking candidates
in a preferential election (Green et al. , 1996), in the ranking and selection of projects and technologies
((Oral et al. , 1991),(Green et al. , 1996),(Shang & Shueyoshi, 1995)). Recently, Gregoriou et al
(2005) used cross-evaluation within a DEA methodology to evaluate the performance of hedge-fund
classifications. Other applications include (Sarkis & S.Talluri, 2004),(Chen, 2002),(Ertay & Ruan,
2005). In addition, this concept has real appeal for central organisations in charge of aspects of funding
DMUs. For example the UK government’s Department for Education and Skills (DfES) are considering
utilising cross evaluation as part of their performance measurement methodology for schools. It is
planned that such measures will subsequently be placed on a benchmarking website which will assist
the dissemination of best practice between schools. (DfES, 2005). Despite the many interesting uses of
cross-evaluation, its theoretical framework has been a relatively understudied concept. To the best of
our knowledge, apart from the initial theoretical contributions ((Sexton et al. , 1986), (Doyle & Green,
1994), (Doyle & Green, 1995)), the only recent development is by Anderson et al (2002) who examine

the characteristics of the special case of single output (input) models.



Recently the DEA literature has seen the publication of some very interesting research on methods
of explicitly identifying the DEA efficient frontier, or equivalently the set of all possible optimal input
and output weights (see e.g. (Raty, 2002), (Briec & Leleu, 2003), (Olesen & Petersen, 2003), (Appa &
Williams, 2006)).

In this paper we carry out a critical appraisal of both the theoretical framework and the computa-
tional tools used in the traditional approaches to cross evaluation. Our work reveals many flaws and
weaknesses. These are addressed by providing a novel approach to cross evaluation based on the explicit
identification of the efficient frontier. Working with the complete set of optimal weights we compute
cross-efficiency scores of each DMU at each possible optimal weighting scheme, leading to a more mean-
ingful ranking of all DMUs, new indicators for maverick weights and DMUs and the identification of
under-achieving DMUs.

The next section introduces cross-evaluation and defines the notation used in the rest of the paper.
In section three we show that for constant and variable returns-to-scale models (CRS and VRS) cross-
evaluation uses points outside the DEA production possibility set. Additionally, for the VRS case, it
is shown that there is a contradiction between the cross-evaluation methodology and the philosophy of
the VRS model. In section four we identify some of the conceptual and computational weaknesses of
the traditional approaches for cross-evaluation. Of necessity, the traditional analysis is incomplete and
the set of optimal weights and the scores obtained are not always consistent.

Section five gives our novel approach for cross-evaluation that addresses the problems identified in
earlier sections. This leads to consistent average cross-efficiency scores and ranking of DMUs. Addition-
ally, it enhances the accuracy of the traditional maverick index and leads to the introduction of a new
indicator that allows for the identification of DMUs using ‘unrealistic’ weighting schemes in a coherent
manner. When the new indicator takes negative values, we are alerted to a hitherto unnoticed phe-
nomenon of an under-achieving DMU which compares poorly with the average of cross-efficiency scores
of others at its favourite weighting scheme. We also show how information on all weighting schemes
can help when introducing weight restrictions. All the new concepts are illustrated and computational

aspects discussed before the final concluding section.



2 Cross-Efficiency

The notation we will use is as follows. Let J = {1,2,...,n} be a set of DMUs indexed by j. DMU
j uses the s-dimensional input vector x; to produce the m-dimensional output vector y;. We also
define the matrices X = [x{,...,x}] and Y = [y],...,y7]. Finally, let v € R and u € R} be the
vectors of weights that DMUs assign to their inputs and outputs respectively. To properly illustrate
cross-evaluation we will use the following non-linear programme by CCR (1978), which evaluates the

efficiency of DMU O € J:

max -2 (1a)
VX,
st. Y <1vjeg (1b)
VX,
u,v >0 (1c)

Note that for simplicity we use u, v instead of u”', vT". The optimal solution to (1), denoted (u*,v*),
provides a set of weights (or a weighting scheme) that maximises the ratio in the objective function, i.e.
the efficiency of DMUg. It is worth noting however that the model requires that these weights do not
yield efficiency scores greater than one when applied to any DMU. In other words, all cross-efficiencies

are constrained to be less than or equal to one. We can now formally define cross-efficiency:

Definition 1 Let (u},v}) denote a set of optimal weights for DMU k, obtained by solving model (1).
The cross-efficiency score of DMU j relative to DMU k, denoted hjy, is given by:
_uyj _ Ojk

hir — — Ik 2
Jk ’U;;Xj I] ( )

where O, (Ix) is the value of DMU j’s outputs (inputs) evaluated by applying weights u} (vy).

This directly implies that at the optimal solution for (1), z’“i’ - the value of the left hand side
kI

of every constraint in (1b), gives the cross-efficiency score for a DMU (including the simple efficiency
for DMUp). For simplicity, we will denote the simple efficiency of DMU j by h; instead of h;;. The

information given by all cross-evaluations can be most conveniently summarised in the n X n cross-



efficiency matrix given in Table 1. The entries of the leading diagonal are the simple efiiciencies. One
can average across rows to obtain the average appraisal of peers by DMU k (denoted Ag), or across
columns to obtain the average appraisal of DMU j by peers (denoted e;). We will focus on the second
measure, taken to be the arithmetic mean of cross-efficiency scores, and refer to it as average cross-
efficiency. Instead of the mean, one could also consider the median or variance of the cross-efficiency
scores (Doyle & Green, 1994). Averaging can be done with or without the leading diagonal, depending
on whether we want to include or exclude the self-appraisal in the average score. We choose to include

it and define e; as:

1 n
ej =~ hik (3)
k=1

An advantage of average cross-efficiency over simple efficiency is that the former can be used to
rank all DMUs (Doyle & Green, 1995). Traditional DEA does not provide a way to rank efficient units
since they all have equal efficiency scores. In cross-evaluation although an average crosss-efficiency
score of one (or 100%) is theoretically possible, in practice this is very unusual and would require a
strange data-set. In general, the possibility of ties is very low and a unique ranking of all DMUs can be
determined (for a review of ranking methods in DEA refer to Angulo-Meza and Lins (2002) and Adler
et al (2002)).

Another advantage of cross-evaluation is its ability to reduce the effect of unrealistic, or maverick,
weighting schemes used by some DMUs. DEA allows for complete weight flexibility, i.e. every DMU is
free to choose the weights with which its efficiency will be evaluated. This is an important advantage
of DEA to methods that rely on the expertise of the evaluator to identify weighting schemes with
which DMUs will be scored. It does however give rise to the following problem: some DMUs might
select weighting schemes that will be ‘unrealistic’ under some managerial criteria. A special case of
this behaviour appears when DMUs that make efficient use of only a subset of inputs and outputs
assign zero weights to all other inputs and outputs, thereby obtaining ‘unrealistic’ efficiency scores.
The case of zero weights is of special theoretical importance to DEA given its link with weak efficiency.
Olesen and Petersen (1996) examine the problems arising by the use of zero weights and point out the
importance of using weighting schemes with strictly positive weights for all inputs and outputs which

correspond to fully dimensional efficient facets (FDEFs). We would like to point out however that
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Table 1: Cross-Efficiency Matrix

fully dimensional weighting schemes could also be unrealistic. One way to prevent ‘maverick’ DMUs
from using unrealistic weighting schemes is imposing additional constraints on the input and output
weights (weight restrictions) (see e.g. (Thompson et al. , 1986)(Dyson & Thanassoulis, 1988)(Charnes
et al. , 1990)). However, this often requires a priori information and relies on the "expert knowledge
of the modeller to create these restrictions" (Anderson et al. , 2002)), and such constraints "also have
something of the arbitrariness (authoritarianism) that exponents of DEA may have wished to escape"
((Doyle & Green, 1994)). Cross-evaluation reduces the effect of unrealistic weighting schemes since
cross-efficiency values are a result of all available weighting schemes. "Rather than have an external
weight restriction applied by an expert, the data-set serves as the arbiter of good judgement by, in
essence, creating its own weight restrictions" (Anderson et al. , 2002).

Doyle and Green (1994) propose the use of the maverick index to identify DMUs that select un-
realistic weighting schemes. These are also called maverick DMUs. The maverick index measures the

relative increment when shifting from average cross-efficiency to simple efficiency and is defined as:

hj—ej

M; = (4)

€j

A relatively high value of M; suggests that DMU j is probably using unrealistic weighting schemes
for its self-appraisal. In addition, we can use M; to identify all-round performers. These will be the
DMUs with relatively low maverick indices (see (Chen, 2002) and (Ertay & Ruan, 2005) for applications

of the maverick index).



3 A critical appraisal of the theoretical framework for cross-
evaluation

To date, cross-evaluation approaches have not taken into account the attributes of the DEA production
possibility set. In this section we examine the link between these two concepts for both constant and
variable returns-to-scale models (CRS and VRS) and throw light on some serious problems in providing
a consistent theoretical framework to integrate them.

The production possibility set 7" includes all feasible input and output vectors. The CCR model

estimates Torg by the polyhedral empirical production possibility set Te defined as:
Te ={(z,y) €RT™| 2 >X\, y <Y\ A>0} (5)

Let £9C J be the set of CCR-efficient DMUs and Pg the polyhedral cone of feasible input-output

multipliers corresponding to T c:
P = {(u,—v)| uy; —vx; <0, j€E°, ve R, u € R, u,v # 0} (6)

We can now represent T in terms of Pg as follows (see (Olesen & Petersen, 1996)):

Te = {(z,y) € Rme(u, —v) € Po: uy —vx <0} (7)

In simple words, the polyhedral set T can be characterised by a finite collection of hyperplanes of
the form wuy—vx =0 (see e.g. (Ali & Seiford, 1993) and (Sueyoshi, 1999)).

We illustrate cross-evaluation with a CRS example given in Figure 1. The DEA production pos-
sibility set (input set) is the intersection of five halfspaces defined by the hyperplanes denoted f; (for
i = 1 to 5), each corresponding to a weighting scheme given by the normal to the hyperplane. The
cross-efficiencies of DMUs are calculated by radially projecting them onto the hyperplanes. For ex-
ample, the cross-efficiency of DMU E at weighting schemes 1 and 2 are the relative amounts of radial
reduction in the input levels of DMU E needed for E to meet hyperplanes f; and f> at points F; and

Ey OF,

or ™ o5

DMUs A, B, C and D are DEA efficient, each at two sets of weights. DMU F is not efficient

E5 respectively, so that their actual cross-efficiencies are given by the ratios



but also achieves its optimal efficiency score at two sets of weights. The existence of more than one
optimal weighting schemes for DMUs creates problems for cross-evaluation. We explore these in the
next section. We would like to stress here that reference points F;, Ey, F, and Fj lie outside the
production possibility set. In general, cross-evaluation implies the scoring of DMUs relevant to points
that lie outside the DEA production possibility set. In the DEA literature a similar situation arises in
methodologies that seek to avoid the use of non-fully-dimensional weighting schemes by controlling the
projection of DMUs on the frontier (see (Bessent et al. , 1988),(Lang et al. , 1995),(Olesen & Petersen,
1996)). For every ‘unacceptable’ projection of an inefficient DMU on a non-fully-dimensional facet these
approaches try to identify the closest ‘acceptable’ facet and use that to specify a new target for the
specific DMU. This new target is not a part of the original production possibility set but of an enlarged
one that was created by extrapolating existing facets. In our case, including all reference points for
cross-evaluations in the production possibility set would lead to a highly unrealistic enlargement. For
example, in figure (1) even when we only try to include reference points relevant for DMU E, this
results in a new production possibility set bounded from the left by hyperplane f5; alone. If we wanted
to include all reference points then it would not be possible to describe the new production possibility
set with the existing hyperplanes.

Having established that cross-evaluation methodology is based on a significant departure from fun-
damental assumptions of DEA, we now attempt to restore its credentials by reflecting further on what is
really at stake. Cross-evaluation was never intended for setting targets for DMUs, but rather with mea-
suring efficiency with the use of scoring ‘recipes’ used by peer DMUs. Therefore, reference points need
not necessarily be interpreted as targets and hence included in the production possibility set. We have
shown before that the efficient frontier can be identified by a collection of hyperplanes that are defined
by different sets of weights. Each hyperplane, when taken alone, corresponds to an alternative frontier
that can be used to evaluate efficiencies. Consequently, instead of measuring efficiency by establishing
a unique frontier, cross-evaluation measures efficiency relative to different frontiers and reports more
than one efficiency scores, subsequently combined into a unique score for each DMU. The information
included in the final score depends on the available information on individual weighting schemes.

There does remain, however, a fundamental weakness in cross evaluation methodology. Traditional
cross-evaluation approaches can only identify and include a single weighting scheme for each DMU and

thus are excluding a significant amount of information from the analysis, leading to inconsistent and



Figure 1: Cross-Evaluation and the DEA production possibility set

misleading interpretations. We illustrate these anomalies and present an alternative approach in later
sections .

We now look at the VRS DEA model (Banker et al. , 1984). In this case things are more prob-
lematic. Consider the example in Figure 2. The DEA efficient frontier is given by the piecewise linear
segment ABCD adjoined by the rays AA’ and DD’. Points E; and Ey correspond to input oriented
cross-evaluations of E while E3 and E4 correspond to output oriented cross evaluations (not all cross-
evaluations are plotted). As in the CRS case, Eo and Ey4 lie outside of the DEA production possibility
set, in fact they violate the convexity constraint of the VRS model. The additional problem concerns
input oriented cross-evaluations on some hyperplanes'. For example, point Eo has negative input data
which implies a negative value for the particular cross-efficiency score. Another problem is that by
allowing all cross-evaluations for a DMU we are evaluating it by using weights that are not always com-
patible with the returns-to-scale type exhibited by that DMU. This seems to contradict the motivation

behind the VRS model in which DMUs that exhibit increasing returns-to-scale are never compared to

n this model each hyperplane is of the form uy; —vx; = 8, where (u,v) is the normal to the hyperplane and 3
is the offset term. The additional problem concerns some input-oriented cross-evaluations on decreasing returns-to-scale
hyperplanes, i.e. the ones with a negative offset.
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Figure 2: Cross-Evaluations and the VRS production set

DMUs that exhibit decreasing returns-to-scale and vice-versa (Tone, 1996). These two problems reduce
the usefulness of cross-evaluation in VRS cases. Possible remedies could be to perform cross-evaluation
with different (non-radial and non-oriented) efficiency measures and to calculate the cross-efficiencies
of a DMU only with respect to DMUs that exhibit compatible types of returns-to-scale. These are left
as open questions for further research and for the purposes of this article we confine ourselves to the

CRS case.

4 A critical appraisal of traditional Cross-Evaluation Approaches

4.1 Implications of multiple optimal weighting schemes

It is very often the case that the solution of a DEA model is not unique, i.e. there exist multiple sets
of weighting schemes that yield the same efficiency score for a DMU. The existence of multiple optimal

weights has serious implications for cross-evaluation, the reason being that cross-efficiency scores are



entirely dependent on which of the multiple weighting schemes is chosen. In addition, because of the
nature of algorithms used to solve DEA models, in such cases only one of the multiple sets of weights
can be discovered. Thus, although the use of different weighting schemes will produce different cross-
efficiency scores, there is not even a way of being able to choose among some of the multiple optima.
Traditional cross-evaluation approaches tackle this problem by introducing a second criterion, in the
form of an objective function, in order to identify a unique set of weights for every DMU that either
minimises or maximises the average cross-efficiency of all other DMUs. Depending on the criterion, we
distinguish between aggressive and benevolent formulations. This section highlights some inadequacies
of these traditional approaches. We start by identifying problems that are specific to the models and

finish with some general remarks on the philosophy of these approaches.

4.2 Existing models

We will examine the aggressive formulations of four cross-evaluation approaches, taken from (Doyle
& Green, 1995). All four approaches are implemented by two-stage models. In the first stage simple
efficiency is maximised and in the second stage a secondary goal is introduced, which is to minimise the

cross-efficiencies of all other DMUs in some way, as summarised in (8).

Primary goal max hy (8a)

1 Ojk
n—1 Z m (8b)

i#k

Secondary goal min

In the above approach the secondary goal involves the minimisation of the average appraisal of peers by
DMU k. Even if we ignore the fact that this goal is non-linear, there are problems concerning the choice
among multiple optimal weights. Although this two stage approach has been suggested as a remedy
for multiple optima in the first stage, it may be the case that there are multiple optimal solutions
for the second stage, in which case the problem of having to choose one among many remains. As
mentioned earlier, such a choice has implications because each weighting scheme will produce different
cross-efficiency scores and therefore the average cross-efficiency scores will differ. Thus, the choice of

weights will have a knock-on effect on the ranking of DMUs.

10



The non-linear secondary goal makes model (8b) computationally intractable. To tackle this com-
putational difficulty, models (9) and (10), developed by Sexton et al (1986) and Doyle and Green (1994)

respectively, were suggested as surrogates for model (8).

max hyg (9a)
min Z(Ojk — Ijk) (9b)
ik
max hy, (10a)
., O;
min 7Zj7ék i (10b)
Zj;ék I

Doyle and Green also report that (10) is a better surrogate and that the secondary goal (10b) is
equivalent to minimising the cross-efficiency of a composite DMU which includes the ‘economy’ of all
DMUs except DMU k. We denote this composite DMU by C* and calculate its input-output bundle,

(x*,y"), as follows:

(x*5") = (2 %, X y;) (11)

J#k J#k

We now discuss two problematic cases for (10) wherein we illustrate how even when all optimal
weights are available, the surrogate model provides the wrong answer. Similar examples can be con-
structed for (9). In the first case we will be concerned with the ten DMUs given in table 2 and in
the second case with the eight DMUs in table 3. We take k = 1 and denote by C} = (9, 36, 29) and
Cl = (7, 28, 28), the composite DMUs for the first and the second case respectively.

By using Fourier-Motzkin (F-M) elimination to obtain the extreme rays of the homogeneous cone
of input-output weights as proposed in (Appa & Williams, 2006), we deduce that in both cases DMU
1 is efficient when using either of the two sets of weights given in Table 4, where A} is the average
cross-efficiency of all DMUs except DMU 1 at weight ¢ (for ¢t = 1, 2).

DMU 1 is an ‘aggressive’ DMU that wants to choose among its optimal weights in a way that
minimises its average appraisal of peers (A}). In the first case, if information on all weight sets were
available, DMU 1 would simply choose the set that minimises A} which would be weight set two.

However, by implementing surrogate model (10), DMU 1 will choose the weight set that minimises the

11



DMU  Output (O) Input 1 (I;) Input 2 (I)
1 1 2 2
2 1 1 4
3 1 4 1
4 1 3 2
5 1 4 6
6 1 ) 2
7 1 7 10
8 1 4 3
9 1 4 9
10 1 4 2

Table 2: Data for case 1

DMU Output (O) Input 1 (I}) Input 2 (Iy)
1 1 2 2
2 1 1 4
3 1 4 1
4 1 3 2
5 1 4 6
6 1 ) 2
7 1 7 10
8 1 4 3

Table 3: Data for case 2

cross-efficiency of composite DMU Ci, which is set one. Clearly this is the wrong choice.

Case two illustrates the possibility of multiple optimal weights in the second stage of the optimisation
procedure. By implementing (10), DMU 1 would arbitrarily choose between the two weight sets since
they both render the same efficiency score for composite DMU C} although the average appraisal of
peers is clearly minimised at weight set two. We mentioned earlier that the choice among multiple
optimal weights in (8b) can affect the ranking of DMUs. This example shows that this can be the case
for surrogate models as well, although, the problem in this case is worse since, as illustrated in case one,
the wrong choice can be made when selecting arbitrarily among multiple optimal weights for a DMU.

Next consider another model given by :

Weight Set (¢) for DMU 1~ Weights  Efficiencies

O I, L Cf Af (Case 1) C3 A] (Case 2)
1 6 1 2 047368 0.60116 0.45714  0.52708
2 6 2 1 0.48648 0.56596 0.45714  0.45485

Table 4: Weight Sets and Efficiencies

12



max hyg (12a)
min Oik Vk#j (12b)
Lk

This final model given in (Doyle & Green, 1995) does not necessarily force DMUs to appraise all of their
peers using the same weighting scheme. Instead, all DMUs are allowed to choose different weighting
schemes for different cross-evaluations, such that all cross-efficiencies are minimised. However, one can
argue that by allowing the use of different weights in different cross-evaluations DM Us are not consistent
in appraising their peers. This also seems to contradict a statement in an earlier article of the same
authors, where they stress that in an aggressive world "It is not enough to talk yourself up; you must
talk the others down too, but without being inconsistent" (Doyle & Green, 1994). Nevertheless, this
approach does not face any of the problems that the previous approaches do. This seems to suggest
that the greater number of weighting schemes is a desirable property for a cross-evaluation analysis

provided that the weights will be consistently applied when calculating cross-efficiencies

4.3 General problems

There are also some general problems with the philosophy of traditional cross-evaluation approaches.
A first point to be made is that aggressive formulations often result in the selection of maverick
weighting schemes by DMUs where possible. Recall that maverick weights are especially used by DMUs
that specialise in a subset of inputs and outputs and therefore it is very likely that such weights will
provide the most conservative appraisal of peer DMUs. Consider the example in figure (1). DMU D
is efficient at the weights associated with hyperplanes f; and f; and will choose the weight set that
minimises the appraisal of its peers which is the set associated with f;. However, fi is not a fully-
dimensional hyperplane but corresponds to a maverick weighting scheme which assigns a zero weight to
input 1. The same observation holds for DMU A which can choose between f; and f5. This behaviour
of certain DMUs contradicts the motivation of cross-evaluation for reducing the effect of unrealistic
weighting schemes. One could try to resolve this issue by introducing weight restrictions in the process
of calculating average cross-efficiencies, i.e. not include cross-evaluations of DMUs at maverick weights

in the averaging. This however does not come without further complications, as shown below.

13



In general, the limited available information on weighting schemes reduces usefulness of weight
restrictions within the traditional cross-evaluation framework because we still end up with unrealistic
scores for some DMUs. For example, it could be the case that some DMUs that are in reality efficient
appear to be inefficient in all cross evaluations. Consider again the example in figure (1). The standard
DEA procedure might end up having identified hyperplanes f1, fs and f5. If cross-evaluations on f; and
f5 are excluded from the cross-efficiency matrix, DMUs A and D are only scored against f3 and are
therefore found to be inefficient even though there exist possibly realistic weighting schemes for which

we have no information (fz and fy) that declare these DMUs efficient.

5 A New Approach for Cross-Evaluation

The previous section has presented a collection of problematic examples for traditional cross-evaluation
approaches. In all these, we have assumed that all possible weighting schemes were available. This
allowed us to check the validity of the results arrived at by the traditional approaches and, more
importantly, to identify correct or more appropriate solutions for some cases. It is therefore clear that
the availability of all weighting schemes would greatly enhance cross-evaluation analyses. We investigate

this here.

5.1 Including all weighting schemes

We have demonstrated how the information on all sets of weights can provide a solution for (8) and thus
eliminate the need for surrogate models. Motivated by the usefulness of complete frontier information we
propose a new approach for cross-evaluation based on the availability of this information. Traditional
cross-evaluation approaches are handicapped, in the sense that they assume the unavailability of all
weighting schemes. Instead, they introduce a secondary criterion in order to choose one weighting
scheme for each DMU. However, it could be the case that neither aggressive nor benevolent formulations
are suitable options, or even that the choice between these might not be easy. Green et al (1996)
report that in the case of ranking R&D projects, arguments can be made for the use of both options.
Additionally, although aggressive or benevolent formulations seem to provide some orientation to the
analysis, this disguises the fact that a choice between these has to be made if an analysis is to be carried

out at all.
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In particular, we have used the Fourier-Motzkin Method to obtain all hyperplanes that define the
CRS production possibility set, as described in (Appa & Williams, 2006). The availability of PORTA?
a public domain software based on the Fourier-Motzkin method makes it very easy to compute the
frontier for practical problems. A number of other approaches exist (see e.g. (Raty, 2002),(Olesen &
Petersen, 2003),(Briec & Leleu, 2003)) and, in theory, any of these can also be applied.

The standard definition of cross-efficiency (the efficiency of DMU j when using the weights selected
by DMU k) is not sufficient when all weighting schemes are available, simply because many DMUs are
efficient at more than one set of weights. In addition, some weights might be optimal for more than one
DMUs, which would result in many repeated entries in the cross-efficiency matrix. To overcome these
problems we build on Appa and Williams’ approach that evaluates DMUs across all weighting schemes
as part of a new framework for the solution of DEA models, and extend cross-evaluation to include all
these possible scoring combinations.

Formally, let I = {1,...,t} be an index set for the ¢ hyperplanes that explicitly characterise Tc.

The set of all possible pairs of input and output weights (weighting schemes) is:
F = {(ui,vi)| Viels : (ui, —’Ui) € Pc} (13)

Including all weights in the analysis gives rise to the following definition:

Definition 2 The cross-efficiency of DMU j € J relative to weighting scheme (u;,v;) € F, denoted

cji 18 given by:

Cji = J (14)

Calculating cj; for all combinations of ¢ and j results in a restructured, n x ¢ - dimensional, cross-
efficiency matrix like the one given in table 5. Standard cross-evaluation procedures only obtain informa-
tion on a small subset® of weighting schemes and thus can only construct an incomplete cross-efficiency

matrix. Our cross-efficiency matrix contains all possible scoring combinations. We can formally define

2code by Thomas Christof, Heidelberg University and Andreas Loebel, Konrad-Zuse-Zentrum fur Informatik (ZIB)
31n fact, as the problem size grows in dimensions the subset of weighting schemes obtained by standard cross-evaluation
becomes increasingly smaller compared to the complete set of weighting schemes.
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DMUs (j) Weight Set (i) Cj

1 2 3 .ot
1 C11 C12 C13 C1¢ C1
2 C21 Co2 (o3 ... Cot Co
3 C31 C32 (33 ... C3t C3
n Cnl Cp2 Cp3 ... Cpt Cp
fi h fo s fi

Table 5: The complete Cross-Efficiency Matrix

the average cross efficiency and the maverick index for DMU j as follows:

_ 1
C; = ; ZCji (15)
i

mj = — % (16)

This new approach is structurally very similar to previous approaches but fundamentally different
in its philosophy. Instead of averaging the efficiency appraisals by all peers we are now looking at the
average efficiency over all possible weights that peers could have used. We have demonstrated that
analyses that disregard some weighting schemes are intrinsically incomplete and unreliable. Including
all weighting schemes in a cross evaluation analysis has the following advantages over traditional cross-

evaluation approaches:

(1) Because cross-evaluation almost always achieves a unique ranking of DMUs through the averaging
of their cross-efficiency scores, the amount of information on weights included in the averaging
is of utmost importance. By including all weight information in the analysis we are no longer
restricted to establishing a unique weighting scheme for every DMU. Hence, we eliminate the need
for aggressive or benevolent formulations and overcome all the problematic cases discussed earlier.
We can therefore produce more meaningful average cross-efficiency scores, ranking of DMUs and

maverick indices.

(2) We are now able to introduce weight restrictions by a priori identification of unrealistic weighting
schemes which can be excluded from the analysis. Since all weighting schemes are available
we need not worry about unrealistically evaluating some DMUs because of limited information.

Hence, we can now practically eliminate the effect of unrealistic weighting schemes on the average
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cross-efficiency scores.

(3) Unlike all the models presented earlier, we are no longer restricted to input and output oriented
efficiency measures. With all the hyperplanes of the frontier available it is easy to perform cross-
evaluations with a variety of different efficiency measures for all DMUs. Briec and Leleu (2003)
consider the problem of an arbitrary norm projection on the efficient frontier. They introduce
the concept of the Holder distance function but also employ the directional distance function
((Chambers et al. , 1996),(Chambers et al. , 1998)), and provide the framework for calculating
these when all frontier hyperplanes have been identified. Such efficiency measures could be of
particular value in overcoming the serious technical drawbacks outlined in section (3) for cross-

evaluation under the VRS model.

5.2 Identifying maverick DMUs

We now describe how the new approach can help identify maverick DMUs more effectively. The maverick
index in (16) compares a DMU’s simple efficiency with its average cross-efficiency. The reasoning behind
this is that if DMUs are using unrealistic weighting schemes the difference between these two efficiency
measures will be high. This however does not take the behaviour of other DMUs into account. We
maintain that it would be unreasonable to establish a DMU’s behaviour as unrealistic without also
considering how its peers behave. Consider the 2-input, 1-output CRS example in figure (3) where
seventeen DMUs are plotted. By using m; in (16) we obtain a relatively high maverick index for DMUs
A and D, but in doing so we have failed to recognise that there is a large number of DMUs (those in
the cone spanned by OC and OD) that behave in a similar way to DMU D, i.e. they would all choose
one of D’s optimal weighing schemes. With this in mind, it would be dubious to designate D as a
maverick DMU or the specific weighting scheme as unrealistic. We propose a new indicator that takes
the behaviour of peer DMUs into account.

Let the set of optimal weighting schemes for DMU j be:

Fj = {(ui,vi) € F| ¢ji = max{cji}} (17)

Let the average efficiency on weighting scheme 4 be:
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Figure 3: Identification of mavericks and under-achievers

— 1
fi= EZ%‘ (18)

Now for every DMU j we define:

k= max{ fil(u, v;) € F} (19)

Finally we define the new indicator as:

i — ko
py= (20)
J

In trying to consider the behaviour of all DMUs we have based the new indicator on x;. The
rationale for this is that if a relatively high number of DMUs use the same weighting scheme as DMU
J, k; would have a high value and therefore that DMU j is not a maverick. Obviously a low x; value
relative to h; will lead to a high value for p;, pointing to maverick DMUs. For example in figure (3)

there is a high number of DMUs that achieve their maximum efficiency at weighting scheme fy; and
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hence we could not identify DMUs C and D that choose f2, as mavericks. DMU A on the other hand
chooses weighting schemes that provide particularly low appraisals. Therefore the value of p; would be
lower for DMUs C and D than for DMU A. As a note, we would like to say that there are alternative
ways to define x;. Instead of taking the maximum appraisal by DMU j’s optimal weighting schemes
one could take the minimum or even the average appraisal and define p; appropriately.

Both the conventional maverick index and the new indicator try to identify unrealistic behaviour
but they do so in fundamentally different ways. Essentially, m; is examining the efficiency scores of
a specific DMU on all weighting schemes and p; is examining the efficiency scores of all DMUs on a
specific weighting scheme. We could also use these indices in parallel in order to better identify maverick

DMUs.

5.3 Identifying under-achieving DMUs

Another feature of the new approach is its ability to identify under-achieving DMUs. It is important to
differentiate between a low-achiever and an under-achiever among DMUs. The former is simply a DMU
with a low simple efficiency score whereas the latter is a DMU with simple efficiency considerably lower
than that of many other DMUs evaluated at its optimal weighting schemes. Under-achievement is not
a characteristic of only very inefficient DMUs in the same way as maverickness is not a characteristic
of only efficient DMUs. In figure (3) both DMUs F and G are low achievers but unlike F, G is also an
under-achiever. Under-achieving DMUs can be identified by their p; values. Notice that this indicator
can also take negative values (when h; < k;) which is the case if the weighting scheme associated
with k;, chosen by DMU j, provides higher appraisals to other DMUs than DMU j on average. A
significantly low p; value translates to many DMUs achieving considerably higher efficiency scores than

DMU j at a weighting scheme of its choice, so that DMU j can be identified as an under-achiever.

5.4 Identifying maverick weighting schemes

The motivation behind our approach is also relevant when trying to identify maverick weighting schemes
and impose weight restrictions. There is a considerable amount of literature on weight restrictions in
DEA and a variety of methods for imposing these*. The focus in all these is in examining the values

of the input and output multipliers in each weighting scheme. The decision-maker usually has a view

4See Thanassoulis et al (2004) for a review of methods for imposing weight restrictions in DEA.
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of how the production process taking place in DMUs should be represented in the values of the weights
selected by DMUs. If, for a specific weighting scheme, these values are not in line with the views held
by the decision-maker then that weighting scheme is termed unrealistic. Clearly, obtaining weighting
schemes with realistic values for input and output weights is extremely important. However, in figure
(3) we illustrated why weight restriction analysis should be complemented with information about how
DMUs behave with respect to different weighting schemes, an issue that has been relatively unexplored.
We suggest that one way to do this is by considering the average efficiency for each weighting scheme.
Including such information can prove very useful in identifying unrealistic weighting schemes. For
example, in cases where merely considering the weight values cannot establish whether a weighting
scheme is unrealistic, we can get a better insight by considering how favourable this scheme is to
DMUs. Additionally, identifying weighting schemes that provide relatively high appraisals can give us
an insight on the ‘acceptable’ range of values for the input and output weights. For a central organisation
attempting to improve performance of branches the acceptability of weights used in making comparisons
is of critical importance. The f; measure has the potential as a tool for selecting a restricted set of

weights in an objective and acceptable manner. We leave this idea open for further research.

5.5 Illustrative example

We illustrate all the above points with a simple 2-input, 1-output example using the hypothetical data
for fifteen DMUs given in table (6). The production possibility set for this small example is given in
figure (4). It is perhaps easily observable that most DMUs make more efficient use of input 1 than
input 2. The efficient frontier is comprised of six facets of which the corresponding weighting schemes
are given in table (7)°.

Having identified all weighting schemes we can now consider whether some of them are unrealistic.
Two obvious candidates are weighting schemes 1 and 6 which include zero multipliers and hence corre-
spond to non fully-dimensional weighting schemes. Other possible candidates include weighting schemes
2 and 5 in which the weights for input 2 and input 1 respectively are very small. As suggested before
we will also consider the average efficiency appraisals of these weighting schemes (column f; in table 9).

Weighting scheme 2 has one of the highest average appraisals and weighting scheme 5 one of the lowest.

5Note that these can be scaled by any positive multiplier
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given the behaviour of DMUs in our dataset, namely the fact that most of them make more efficient
use of input 1, this comes as no surprise. Therefore identifying weighting scheme 2 as unrealistic would
be dubious but on the other hand we now have more evidence to suggest that weighting scheme 5 is
unrealistic. Once we have established which weighting schemes will be excluded we can proceed with
the calculation of the cross-efficiency matrix. The complete cross-efficiency matrix for this data-set is
given in the appendix. Here we will examine three cases. In case one we have included all weighting
schemes, in case two we have excluded weighting schemes 1 and 6 and in case three we have additionally
excluded weighting scheme 5. In table 8 we present the results on simple and average cross-efficiencies,
rankings, and the m; and p; values for all DMUs in the three cases.

It is of particular interest to compare the results for m; and p;. In case one DMUs 1 and 7 achieve
their simple efficiency score by using non fully-dimensional weighting schemes, so that it is no surprise
that they achieve the two highest m; values with m; slightly higher than my.This fails to grasp that
there are many other DMUs behaving similarly to DMU 1, in the sense that they achieve their simple
efficiency by assigning greater importance to input 1, but very few DMUs behave similarly to DMU 7.
This is reflected in the values of p; for DMUs 1 and 7 (calculated with use of weighting schemes 1 and
6 respectively) which still achieve the highest p; values but with the difference that p7 is much higher
than py, i.e. DMU 7 is more of a maverick than DMU 1. The same observation holds for DMUs 2 and
6 which achieve very similar m; values but very different p; values with pg being much higher than p,
(p2 is calculated with weighting scheme 2 and pg with weighting scheme 5).

In case two DMUs 1 and 7 are still the most maverick DMUs in the context of index m; but for
p; this is no longer the case. This is due to the different ways in which the exclusion of weighting
schemes affects the two indices in general. The values of m; change for all DMUs since this index is
affected by all available weighting schemes. On the other hand, for any DMU, p; is only affected by
one weighting scheme which explains why only p; and p; decrease (calculated with weighting schemes
2 and 5 respectively) and all other indices are unaffected. In the context of p; these two DMUs are
now using more realistic weighting schemes for their self appraisal so they now possess less maverick
characteristics. What is more, DMU 1 which has a big family of peers with similar behaviour achieves
a lower p; value than DMU 7 and DMU 6, two of the relatively few DMUs which make more efficient
use of input 2. This also explains why DMU 5 achieves a relatively low value in index m; but not in p;.

Finally, in case three the exclusion of weighting scheme 2 forces DMUs 6 and 7 to achieve their
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DMU Input 1 (I;) Input2 (Iz) Output (O)
1 3 17 1
2 3 15 1
3 4 11 1
4 6 6 1
5 10 4 1
6 14 3 1
7 16 3 1
8 4 16 1
9 ) 15 1
10 7 15 1
11 5 17 1
12 6 17 1
13 6 19 1
14 8 19 1
15 8 11 1

Table 6: Data for fifteen DMUs

Weighting Scheme (i)  Weights Efficient DMUs  f;
I I 0]

fi 0.3333 0 1 1,2 0.53869
f2 0.1481 0.0370 1 2,3 0.71478
f3 0.1190 0.0476 1 3,4 0.73164
fa 0.0556 0.1111 1 4,5 0.61701
fs 0.0385 0.1538 1 5,6 0.54137
fo 0 03333 1 6,7 0.36188

Table 7: Weighting Schemes for DMUs in table (6)

simple efficiency with use of weighting scheme 4. This means that their behaviour is moving closer to
the large family of DMUs that assign greater weights to input 1, so that their p; values decrease with

pe once again lower than p;.
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Figure 4: The production possibility set for DMUs in table (6)
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5.6 Computational considerations

Before concluding this article it would be appropriate to comment on the computational difficulty of
this approach. The problem of identifying all weighting schemes is equivalent to explicitly characterising
the DEA polyhedral production possibility set with a collection of hyperplanes. There are a number of
available algorithms that can do that but they all suffer from exponential growth as the dimension of
the problem (inputs, outputs and DMUs) grows. There is, however, a two-phase approach (see (Olesen
& Petersen, 2003) and (Appa & Williams, 2006)) that manages the problem of exponential growth well.
The essential idea is to solve at most one linear-programme for each DMU in phase one to identify the
set £ of all efficient DMUs. Since only efficient DMUs can span the rays of the convex cone of optimal
weights (or equivalently span facets of the DEA efficient frontier), in phase two the computationally
expensive algorithm for finding the convex cone is run on data for DMUs in set £ only. In practice we
have found that for problems with || < 50 and s + m < 10 PORTA was able to provide the complete
set of optimal weights in reasonable time. As part of a project to evaluate the efficiency of schools in
England we were able to solve this problem for more than 2500 schools using a model with six inputs
and two outputs. It would be an interesting direction for future research to identify algorithms and
approaches that can deliver the set of all weighting schemes fro larger problems take advantage of the

special characteristics of the DEA problems.

6 Conclusion

One can argue that cross-evaluation is a cross-breed between standard DEA and efficiency evaluation
by externally imposed criteria, and that by combining the two it inherits desirable attributes from both.
On the one hand, by not allowing total weight-flexibility, it tackles the problem of high simple efficiency
scores based on unrealistic weighting schemes. However, the weights are not arbitrarily invented and
imposed by some external agency but have been established through a detailed analysis of the dataset,
and as in the standard DEA, have been generated by the dataset. In this article we have identified
some flaws in the traditional approaches to cross-evaluation and suggested, at least for the CRS model,
a new approach based on computing and using the complete set of weights. The task of extending our
work to take account of returns to scale and of using cross-evaluation for non-radial models remains

undone. We hope, however, that we have provided the necessary tools for a growth in applications of

25



the technique in the real world.

Appendix
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