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Abstract

This paper provides a new approach for cross-evaluation in DEA. An examination of the link between

cross-evaluation and the DEA production possibility set reveals �aws in the current methodology for

cross-evaluation. This is compounded by problematic cases permitted by the existing approaches for

performing cross-evaluation without recourse to the full set of optimal weights for all DMUs. Our new

approach is based on information on all weighting schemes for all DMUs. We show how this overcomes

the existing problems. We also provide new tools for the identi�cation of maverick DMUs that make

use of unrealisitic weighting schemes and introduce the concept of under-achieving DMUs.

keywords: Data Envelopment Analysis, Cross-Evaluation, Cross-E¢ ciency, Ranking, Maverick

DMUs, Under-achieving DMUs, Weight-Restrictions, E¢ cient frontier identi�cation



1 Introduction

Data Envelopment Analysis (DEA) is a widespread technique that evaluates the e¢ ciency of a set of

homogeneous production units, termed Decision Making Units (DMUs), that operate in a multiple input

and output environment. A part of what can perhaps be called the �standard�methodology in DEA (�rst

enunciated by Farrell (1957) and then developed by Charnes et al (1978) (CCR) and extended by Banker

et al (1984) (BCC)), involves the use of a ratio of the form: weighted sum of outputs/ weighted sum

of inputs, to assign an e¢ ciency score to every DMU. The weighted sums are obtained after assigning

multipliers, or weights, to the inputs and outputs. DEA allows each DMU to choose its own multipliers

such that its e¢ ciency score is maximised (subject to some constraints). We will refer to the e¢ ciency

scores calculated by this self-appraisal as simple e¢ ciencies. Sexton et al (1986) proposed that the

optimal weights for each DMU can be used to appraise its peers, i.e. to calculate alternative e¢ ciency

scores for every other DMU. We refer to the e¢ ciency scores calculated in such a way as cross-e¢ ciencies

and use the term cross-evaluation (Doyle & Green, 1995) for the process of evaluating a DMU�s cross-

e¢ ciency scores. The use of Cross-evaluation has spread to a number of di¤erent areas. It can be

used in Multiple Criteria Decision Making (MCDM) to improve discrimination among alternatives (see

(Doyle, 1995),(Green & Doyle, 1995),(Sarkis, 2000),(Mavrotas & Tri�llis, 2006)), in ranking candidates

in a preferential election (Green et al. , 1996), in the ranking and selection of projects and technologies

((Oral et al. , 1991),(Green et al. , 1996),(Shang & Shueyoshi, 1995)). Recently, Gregoriou et al

(2005) used cross-evaluation within a DEA methodology to evaluate the performance of hedge-fund

classi�cations. Other applications include (Sarkis & S.Talluri, 2004),(Chen, 2002),(Ertay & Ruan,

2005). In addition, this concept has real appeal for central organisations in charge of aspects of funding

DMUs. For example the UK government�s Department for Education and Skills (DfES) are considering

utilising cross evaluation as part of their performance measurement methodology for schools. It is

planned that such measures will subsequently be placed on a benchmarking website which will assist

the dissemination of best practice between schools. (DfES, 2005). Despite the many interesting uses of

cross-evaluation, its theoretical framework has been a relatively understudied concept. To the best of

our knowledge, apart from the initial theoretical contributions ((Sexton et al. , 1986), (Doyle & Green,

1994), (Doyle & Green, 1995)), the only recent development is by Anderson et al (2002) who examine

the characteristics of the special case of single output (input) models.
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Recently the DEA literature has seen the publication of some very interesting research on methods

of explicitly identifying the DEA e¢ cient frontier, or equivalently the set of all possible optimal input

and output weights (see e.g. (Raty, 2002), (Briec & Leleu, 2003), (Olesen & Petersen, 2003), (Appa &

Williams, 2006)).

In this paper we carry out a critical appraisal of both the theoretical framework and the computa-

tional tools used in the traditional approaches to cross evaluation. Our work reveals many �aws and

weaknesses. These are addressed by providing a novel approach to cross evaluation based on the explicit

identi�cation of the e¢ cient frontier. Working with the complete set of optimal weights we compute

cross-e¢ ciency scores of each DMU at each possible optimal weighting scheme, leading to a more mean-

ingful ranking of all DMUs, new indicators for maverick weights and DMUs and the identi�cation of

under-achieving DMUs.

The next section introduces cross-evaluation and de�nes the notation used in the rest of the paper.

In section three we show that for constant and variable returns-to-scale models (CRS and VRS) cross-

evaluation uses points outside the DEA production possibility set. Additionally, for the VRS case, it

is shown that there is a contradiction between the cross-evaluation methodology and the philosophy of

the VRS model. In section four we identify some of the conceptual and computational weaknesses of

the traditional approaches for cross-evaluation. Of necessity, the traditional analysis is incomplete and

the set of optimal weights and the scores obtained are not always consistent.

Section �ve gives our novel approach for cross-evaluation that addresses the problems identi�ed in

earlier sections. This leads to consistent average cross-e¢ ciency scores and ranking of DMUs. Addition-

ally, it enhances the accuracy of the traditional maverick index and leads to the introduction of a new

indicator that allows for the identi�cation of DMUs using �unrealistic�weighting schemes in a coherent

manner. When the new indicator takes negative values, we are alerted to a hitherto unnoticed phe-

nomenon of an under-achieving DMU which compares poorly with the average of cross-e¢ ciency scores

of others at its favourite weighting scheme. We also show how information on all weighting schemes

can help when introducing weight restrictions. All the new concepts are illustrated and computational

aspects discussed before the �nal concluding section.
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2 Cross-E¢ ciency

The notation we will use is as follows. Let J = f1; 2; :::; ng be a set of DMUs indexed by j. DMU

j uses the s-dimensional input vector xj to produce the m-dimensional output vector yj . We also

de�ne the matrices X = [xT1 ; :::;x
T
n ] and Y = [yT1 ; :::;y

T
1 ]. Finally, let v 2 Rs+ and u 2 Rm+ be the

vectors of weights that DMUs assign to their inputs and outputs respectively. To properly illustrate

cross-evaluation we will use the following non-linear programme by CCR (1978), which evaluates the

e¢ ciency of DMU O 2 J :

max
uyo
vxo

(1a)

s:t:
uyj
vxj

� 1 8j 2 J (1b)

u; v � 0 (1c)

Note that for simplicity we use u, v instead of uT , vT : The optimal solution to (1), denoted (u�; v�),

provides a set of weights (or a weighting scheme) that maximises the ratio in the objective function, i.e.

the e¢ ciency of DMUO. It is worth noting however that the model requires that these weights do not

yield e¢ ciency scores greater than one when applied to any DMU. In other words, all cross-e¢ ciencies

are constrained to be less than or equal to one. We can now formally de�ne cross-e¢ ciency:

De�nition 1 Let (u�k; v
�
k) denote a set of optimal weights for DMU k, obtained by solving model (1).

The cross-e¢ ciency score of DMU j relative to DMU k, denoted hjk, is given by:

hjk =
u�kyj
v�kxj

=
Ojk
Ijk

(2)

where Ojk (Ijk) is the value of DMU j�s outputs (inputs) evaluated by applying weights u�k (v
�
k).

This directly implies that at the optimal solution for (1), u�kyj
v�kxj

- the value of the left hand side

of every constraint in (1b), gives the cross-e¢ ciency score for a DMU (including the simple e¢ ciency

for DMUO). For simplicity, we will denote the simple e¢ ciency of DMU j by hj instead of hjj . The

information given by all cross-evaluations can be most conveniently summarised in the n � n cross-
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e¢ ciency matrix given in Table 1. The entries of the leading diagonal are the simple e�iciencies. One

can average across rows to obtain the average appraisal of peers by DMU k (denoted Ak); or across

columns to obtain the average appraisal of DMU j by peers (denoted ej). We will focus on the second

measure, taken to be the arithmetic mean of cross-e¢ ciency scores, and refer to it as average cross-

e¢ ciency. Instead of the mean, one could also consider the median or variance of the cross-e¢ ciency

scores (Doyle & Green, 1994). Averaging can be done with or without the leading diagonal, depending

on whether we want to include or exclude the self-appraisal in the average score. We choose to include

it and de�ne ej as:

ej =
1

n

nX
k=1

hjk (3)

An advantage of average cross-e¢ ciency over simple e¢ ciency is that the former can be used to

rank all DMUs (Doyle & Green, 1995). Traditional DEA does not provide a way to rank e¢ cient units

since they all have equal e¢ ciency scores. In cross-evaluation although an average crosss-e¢ ciency

score of one (or 100%) is theoretically possible, in practice this is very unusual and would require a

strange data-set. In general, the possibility of ties is very low and a unique ranking of all DMUs can be

determined (for a review of ranking methods in DEA refer to Angulo-Meza and Lins (2002) and Adler

et al (2002)).

Another advantage of cross-evaluation is its ability to reduce the e¤ect of unrealistic, or maverick,

weighting schemes used by some DMUs. DEA allows for complete weight �exibility, i.e. every DMU is

free to choose the weights with which its e¢ ciency will be evaluated. This is an important advantage

of DEA to methods that rely on the expertise of the evaluator to identify weighting schemes with

which DMUs will be scored. It does however give rise to the following problem: some DMUs might

select weighting schemes that will be �unrealistic�under some managerial criteria. A special case of

this behaviour appears when DMUs that make e¢ cient use of only a subset of inputs and outputs

assign zero weights to all other inputs and outputs, thereby obtaining �unrealistic� e¢ ciency scores.

The case of zero weights is of special theoretical importance to DEA given its link with weak e¢ ciency.

Olesen and Petersen (1996) examine the problems arising by the use of zero weights and point out the

importance of using weighting schemes with strictly positive weights for all inputs and outputs which

correspond to fully dimensional e¢ cient facets (FDEFs). We would like to point out however that
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Rated DMUs Rating DMUs ej
1 2 3 ::: n

1 h11 h12 h13 ... h1n e1
2 h21 h22 h23 ... h2n e2
3 h31 h32 h33 ... h3n e3
::: ... .. ... ... ... ...
n hn1 hn2 hn3 ... hnn en
Ak A1 A2 A3 ::: An

Table 1: Cross-E¢ ciency Matrix

fully dimensional weighting schemes could also be unrealistic. One way to prevent �maverick�DMUs

from using unrealistic weighting schemes is imposing additional constraints on the input and output

weights (weight restrictions) (see e.g. (Thompson et al. , 1986)(Dyson & Thanassoulis, 1988)(Charnes

et al. , 1990)). However, this often requires a priori information and relies on the "expert knowledge

of the modeller to create these restrictions" (Anderson et al. , 2002)), and such constraints "also have

something of the arbitrariness (authoritarianism) that exponents of DEA may have wished to escape"

((Doyle & Green, 1994)). Cross-evaluation reduces the e¤ect of unrealistic weighting schemes since

cross-e¢ ciency values are a result of all available weighting schemes. "Rather than have an external

weight restriction applied by an expert, the data-set serves as the arbiter of good judgement by, in

essence, creating its own weight restrictions" (Anderson et al. , 2002).

Doyle and Green (1994) propose the use of the maverick index to identify DMUs that select un-

realistic weighting schemes. These are also called maverick DMUs. The maverick index measures the

relative increment when shifting from average cross-e¢ ciency to simple e¢ ciency and is de�ned as:

Mj =
hj � ej
ej

(4)

A relatively high value of Mj suggests that DMU j is probably using unrealistic weighting schemes

for its self-appraisal. In addition, we can use Mj to identify all-round performers. These will be the

DMUs with relatively low maverick indices (see (Chen, 2002) and (Ertay & Ruan, 2005) for applications

of the maverick index).
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3 A critical appraisal of the theoretical framework for cross-

evaluation

To date, cross-evaluation approaches have not taken into account the attributes of the DEA production

possibility set. In this section we examine the link between these two concepts for both constant and

variable returns-to-scale models (CRS and VRS) and throw light on some serious problems in providing

a consistent theoretical framework to integrate them.

The production possibility set T includes all feasible input and output vectors. The CCR model

estimates TCRS by the polyhedral empirical production possibility set T̂C de�ned as:

T̂C � f(x; y) 2 Rs+m+ j x � X�; y � Y�; � � 0g (5)

Let EC� J be the set of CCR-e¢ cient DMUs and PC the polyhedral cone of feasible input-output

multipliers corresponding to T̂C :

PC � f(u;�v)j uyj � vxj � 0; j 2 EC ; v 2 Rs+; u 2 Rm+ ; u; v 6= 0g (6)

We can now represent T̂C in terms of PC as follows (see (Olesen & Petersen, 1996)):

T̂C = f(x; y) 2 Rs+m+ j8(u;�v) 2 PC : uy � vx � 0g (7)

In simple words, the polyhedral set T̂C can be characterised by a �nite collection of hyperplanes of

the form uy�vx = 0 (see e.g. (Ali & Seiford, 1993) and (Sueyoshi, 1999)).

We illustrate cross-evaluation with a CRS example given in Figure 1. The DEA production pos-

sibility set (input set) is the intersection of �ve halfspaces de�ned by the hyperplanes denoted fi (for

i = 1 to 5), each corresponding to a weighting scheme given by the normal to the hyperplane. The

cross-e¢ ciencies of DMUs are calculated by radially projecting them onto the hyperplanes. For ex-

ample, the cross-e¢ ciency of DMU E at weighting schemes 1 and 2 are the relative amounts of radial

reduction in the input levels of DMU E needed for E to meet hyperplanes f1 and f2 at points E1 and

E2 respectively, so that their actual cross-e¢ ciencies are given by the ratios
OE1
OE

and
OE2
OE

.

DMUs A, B, C and D are DEA e¢ cient, each at two sets of weights. DMU F is not e¢ cient
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but also achieves its optimal e¢ ciency score at two sets of weights. The existence of more than one

optimal weighting schemes for DMUs creates problems for cross-evaluation. We explore these in the

next section. We would like to stress here that reference points E1, E2, E4 and E5 lie outside the

production possibility set. In general, cross-evaluation implies the scoring of DMUs relevant to points

that lie outside the DEA production possibility set. In the DEA literature a similar situation arises in

methodologies that seek to avoid the use of non-fully-dimensional weighting schemes by controlling the

projection of DMUs on the frontier (see (Bessent et al. , 1988),(Lang et al. , 1995),(Olesen & Petersen,

1996)). For every �unacceptable�projection of an ine¢ cient DMU on a non-fully-dimensional facet these

approaches try to identify the closest �acceptable� facet and use that to specify a new target for the

speci�c DMU. This new target is not a part of the original production possibility set but of an enlarged

one that was created by extrapolating existing facets. In our case, including all reference points for

cross-evaluations in the production possibility set would lead to a highly unrealistic enlargement. For

example, in �gure (1) even when we only try to include reference points relevant for DMU E, this

results in a new production possibility set bounded from the left by hyperplane f5 alone. If we wanted

to include all reference points then it would not be possible to describe the new production possibility

set with the existing hyperplanes.

Having established that cross-evaluation methodology is based on a signi�cant departure from fun-

damental assumptions of DEA, we now attempt to restore its credentials by re�ecting further on what is

really at stake. Cross-evaluation was never intended for setting targets for DMUs, but rather with mea-

suring e¢ ciency with the use of scoring �recipes�used by peer DMUs. Therefore, reference points need

not necessarily be interpreted as targets and hence included in the production possibility set. We have

shown before that the e¢ cient frontier can be identi�ed by a collection of hyperplanes that are de�ned

by di¤erent sets of weights. Each hyperplane, when taken alone, corresponds to an alternative frontier

that can be used to evaluate e¢ ciencies. Consequently, instead of measuring e¢ ciency by establishing

a unique frontier, cross-evaluation measures e¢ ciency relative to di¤erent frontiers and reports more

than one e¢ ciency scores, subsequently combined into a unique score for each DMU. The information

included in the �nal score depends on the available information on individual weighting schemes.

There does remain, however, a fundamental weakness in cross evaluation methodology. Traditional

cross-evaluation approaches can only identify and include a single weighting scheme for each DMU and

thus are excluding a signi�cant amount of information from the analysis, leading to inconsistent and
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Figure 1: Cross-Evaluation and the DEA production possibility set

misleading interpretations. We illustrate these anomalies and present an alternative approach in later

sections .

We now look at the VRS DEA model (Banker et al. , 1984). In this case things are more prob-

lematic. Consider the example in Figure 2. The DEA e¢ cient frontier is given by the piecewise linear

segment ABCD adjoined by the rays AA0 and DD0. Points E1 and E2 correspond to input oriented

cross-evaluations of E while E3 and E4 correspond to output oriented cross evaluations (not all cross-

evaluations are plotted). As in the CRS case, E2 and E4 lie outside of the DEA production possibility

set, in fact they violate the convexity constraint of the VRS model. The additional problem concerns

input oriented cross-evaluations on some hyperplanes1 . For example, point E2 has negative input data

which implies a negative value for the particular cross-e¢ ciency score. Another problem is that by

allowing all cross-evaluations for a DMU we are evaluating it by using weights that are not always com-

patible with the returns-to-scale type exhibited by that DMU. This seems to contradict the motivation

behind the VRS model in which DMUs that exhibit increasing returns-to-scale are never compared to

1 In this model each hyperplane is of the form uyj � vxj = �, where (u; v) is the normal to the hyperplane and �
is the o¤set term. The additional problem concerns some input-oriented cross-evaluations on decreasing returns-to-scale
hyperplanes, i.e. the ones with a negative o¤set.
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Figure 2: Cross-Evaluations and the VRS production set

DMUs that exhibit decreasing returns-to-scale and vice-versa (Tone, 1996). These two problems reduce

the usefulness of cross-evaluation in VRS cases. Possible remedies could be to perform cross-evaluation

with di¤erent (non-radial and non-oriented) e¢ ciency measures and to calculate the cross-e¢ ciencies

of a DMU only with respect to DMUs that exhibit compatible types of returns-to-scale. These are left

as open questions for further research and for the purposes of this article we con�ne ourselves to the

CRS case.

4 A critical appraisal of traditional Cross-Evaluation Approaches

4.1 Implications of multiple optimal weighting schemes

It is very often the case that the solution of a DEA model is not unique, i.e. there exist multiple sets

of weighting schemes that yield the same e¢ ciency score for a DMU. The existence of multiple optimal

weights has serious implications for cross-evaluation, the reason being that cross-e¢ ciency scores are
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entirely dependent on which of the multiple weighting schemes is chosen. In addition, because of the

nature of algorithms used to solve DEA models, in such cases only one of the multiple sets of weights

can be discovered. Thus, although the use of di¤erent weighting schemes will produce di¤erent cross-

e¢ ciency scores, there is not even a way of being able to choose among some of the multiple optima.

Traditional cross-evaluation approaches tackle this problem by introducing a second criterion, in the

form of an objective function, in order to identify a unique set of weights for every DMU that either

minimises or maximises the average cross-e¢ ciency of all other DMUs. Depending on the criterion, we

distinguish between aggressive and benevolent formulations. This section highlights some inadequacies

of these traditional approaches. We start by identifying problems that are speci�c to the models and

�nish with some general remarks on the philosophy of these approaches.

4.2 Existing models

We will examine the aggressive formulations of four cross-evaluation approaches, taken from (Doyle

& Green, 1995). All four approaches are implemented by two-stage models. In the �rst stage simple

e¢ ciency is maximised and in the second stage a secondary goal is introduced, which is to minimise the

cross-e¢ ciencies of all other DMUs in some way, as summarised in (8).

Primary goal max hk (8a)

Secondary goal min
1

n� 1
X
j 6=k

Ojk
Ijk

(8b)

In the above approach the secondary goal involves the minimisation of the average appraisal of peers by

DMU k. Even if we ignore the fact that this goal is non-linear, there are problems concerning the choice

among multiple optimal weights. Although this two stage approach has been suggested as a remedy

for multiple optima in the �rst stage, it may be the case that there are multiple optimal solutions

for the second stage, in which case the problem of having to choose one among many remains. As

mentioned earlier, such a choice has implications because each weighting scheme will produce di¤erent

cross-e¢ ciency scores and therefore the average cross-e¢ ciency scores will di¤er. Thus, the choice of

weights will have a knock-on e¤ect on the ranking of DMUs.
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The non-linear secondary goal makes model (8b) computationally intractable. To tackle this com-

putational di¢ culty, models (9) and (10), developed by Sexton et al (1986) and Doyle and Green (1994)

respectively, were suggested as surrogates for model (8).

max hk (9a)

min
X
j 6=k
(Ojk � Ijk) (9b)

max hk (10a)

min

P
j 6=k OjkP
j 6=k Ijk

(10b)

Doyle and Green also report that (10) is a better surrogate and that the secondary goal (10b) is

equivalent to minimising the cross-e¢ ciency of a composite DMU which includes the �economy�of all

DMUs except DMU k. We denote this composite DMU by Ck and calculate its input-output bundle,

(xk;yk), as follows:

(xk;yk) = (
P
j 6=k

xj ;
P
j 6=k

yj) (11)

We now discuss two problematic cases for (10) wherein we illustrate how even when all optimal

weights are available, the surrogate model provides the wrong answer. Similar examples can be con-

structed for (9). In the �rst case we will be concerned with the ten DMUs given in table 2 and in

the second case with the eight DMUs in table 3. We take k = 1 and denote by C11 = (9; 36; 29) and

C12 = (7; 28; 28), the composite DMUs for the �rst and the second case respectively.

By using Fourier-Motzkin (F-M) elimination to obtain the extreme rays of the homogeneous cone

of input-output weights as proposed in (Appa & Williams, 2006), we deduce that in both cases DMU

1 is e¢ cient when using either of the two sets of weights given in Table 4, where A1t is the average

cross-e¢ ciency of all DMUs except DMU 1 at weight t (for t = 1; 2).

DMU 1 is an �aggressive�DMU that wants to choose among its optimal weights in a way that

minimises its average appraisal of peers (A1t ). In the �rst case, if information on all weight sets were

available, DMU 1 would simply choose the set that minimises A1t which would be weight set two.

However, by implementing surrogate model (10), DMU 1 will choose the weight set that minimises the
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DMU Output (O) Input 1 (I1) Input 2 (I2)
1 1 2 2
2 1 1 4
3 1 4 1
4 1 3 2
5 1 4 6
6 1 5 2
7 1 7 10
8 1 4 3
9 1 4 9
10 1 4 2

Table 2: Data for case 1

DMU Output (O) Input 1 (I1) Input 2 (I2)
1 1 2 2
2 1 1 4
3 1 4 1
4 1 3 2
5 1 4 6
6 1 5 2
7 1 7 10
8 1 4 3

Table 3: Data for case 2

cross-e¢ ciency of composite DMU C11, which is set one. Clearly this is the wrong choice.

Case two illustrates the possibility of multiple optimal weights in the second stage of the optimisation

procedure. By implementing (10), DMU 1 would arbitrarily choose between the two weight sets since

they both render the same e¢ ciency score for composite DMU C12 although the average appraisal of

peers is clearly minimised at weight set two. We mentioned earlier that the choice among multiple

optimal weights in (8b) can a¤ect the ranking of DMUs. This example shows that this can be the case

for surrogate models as well, although, the problem in this case is worse since, as illustrated in case one,

the wrong choice can be made when selecting arbitrarily among multiple optimal weights for a DMU.

Next consider another model given by :

Weight Set (t) for DMU 1 Weights E¢ ciencies
O I1 I2 C11 A1t (Case 1) C12 A1t (Case 2)

1 6 1 2 0:47368 0:60116 0:45714 0:52708
2 6 2 1 0:48648 0:56596 0:45714 0:45485

Table 4: Weight Sets and E¢ ciencies
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max hkk (12a)

min
Ojk
Ijk

8 k 6= j (12b)

This �nal model given in (Doyle & Green, 1995) does not necessarily force DMUs to appraise all of their

peers using the same weighting scheme. Instead, all DMUs are allowed to choose di¤erent weighting

schemes for di¤erent cross-evaluations, such that all cross-e¢ ciencies are minimised. However, one can

argue that by allowing the use of di¤erent weights in di¤erent cross-evaluations DMUs are not consistent

in appraising their peers. This also seems to contradict a statement in an earlier article of the same

authors, where they stress that in an aggressive world "It is not enough to talk yourself up; you must

talk the others down too, but without being inconsistent" (Doyle & Green, 1994). Nevertheless, this

approach does not face any of the problems that the previous approaches do. This seems to suggest

that the greater number of weighting schemes is a desirable property for a cross-evaluation analysis

provided that the weights will be consistently applied when calculating cross-e¢ ciencies

4.3 General problems

There are also some general problems with the philosophy of traditional cross-evaluation approaches.

A �rst point to be made is that aggressive formulations often result in the selection of maverick

weighting schemes by DMUs where possible. Recall that maverick weights are especially used by DMUs

that specialise in a subset of inputs and outputs and therefore it is very likely that such weights will

provide the most conservative appraisal of peer DMUs. Consider the example in �gure (1). DMU D

is e¢ cient at the weights associated with hyperplanes f1 and f2 and will choose the weight set that

minimises the appraisal of its peers which is the set associated with f1. However, f1 is not a fully-

dimensional hyperplane but corresponds to a maverick weighting scheme which assigns a zero weight to

input 1. The same observation holds for DMU A which can choose between f4 and f5. This behaviour

of certain DMUs contradicts the motivation of cross-evaluation for reducing the e¤ect of unrealistic

weighting schemes. One could try to resolve this issue by introducing weight restrictions in the process

of calculating average cross-e¢ ciencies, i.e. not include cross-evaluations of DMUs at maverick weights

in the averaging. This however does not come without further complications, as shown below.
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In general, the limited available information on weighting schemes reduces usefulness of weight

restrictions within the traditional cross-evaluation framework because we still end up with unrealistic

scores for some DMUs. For example, it could be the case that some DMUs that are in reality e¢ cient

appear to be ine¢ cient in all cross evaluations. Consider again the example in �gure (1). The standard

DEA procedure might end up having identi�ed hyperplanes f1; f3 and f5. If cross-evaluations on f1 and

f5 are excluded from the cross-e¢ ciency matrix, DMUs A and D are only scored against f3 and are

therefore found to be ine¢ cient even though there exist possibly realistic weighting schemes for which

we have no information (f2 and f4) that declare these DMUs e¢ cient.

5 A New Approach for Cross-Evaluation

The previous section has presented a collection of problematic examples for traditional cross-evaluation

approaches. In all these, we have assumed that all possible weighting schemes were available. This

allowed us to check the validity of the results arrived at by the traditional approaches and, more

importantly, to identify correct or more appropriate solutions for some cases. It is therefore clear that

the availability of all weighting schemes would greatly enhance cross-evaluation analyses. We investigate

this here.

5.1 Including all weighting schemes

We have demonstrated how the information on all sets of weights can provide a solution for (8) and thus

eliminate the need for surrogate models. Motivated by the usefulness of complete frontier information we

propose a new approach for cross-evaluation based on the availability of this information. Traditional

cross-evaluation approaches are handicapped, in the sense that they assume the unavailability of all

weighting schemes. Instead, they introduce a secondary criterion in order to choose one weighting

scheme for each DMU. However, it could be the case that neither aggressive nor benevolent formulations

are suitable options, or even that the choice between these might not be easy. Green et al (1996)

report that in the case of ranking R&D projects, arguments can be made for the use of both options.

Additionally, although aggressive or benevolent formulations seem to provide some orientation to the

analysis, this disguises the fact that a choice between these has to be made if an analysis is to be carried

out at all.
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In particular, we have used the Fourier-Motzkin Method to obtain all hyperplanes that de�ne the

CRS production possibility set, as described in (Appa & Williams, 2006). The availability of PORTA2

a public domain software based on the Fourier-Motzkin method makes it very easy to compute the

frontier for practical problems. A number of other approaches exist (see e.g. (Raty, 2002),(Olesen &

Petersen, 2003),(Briec & Leleu, 2003)) and, in theory, any of these can also be applied.

The standard de�nition of cross-e¢ ciency (the e¢ ciency of DMU j when using the weights selected

by DMU k) is not su¢ cient when all weighting schemes are available, simply because many DMUs are

e¢ cient at more than one set of weights. In addition, some weights might be optimal for more than one

DMUs, which would result in many repeated entries in the cross-e¢ ciency matrix. To overcome these

problems we build on Appa and Williams�approach that evaluates DMUs across all weighting schemes

as part of a new framework for the solution of DEA models, and extend cross-evaluation to include all

these possible scoring combinations.

Formally, let IC = f1; :::; tg be an index set for the t hyperplanes that explicitly characterise T̂C .

The set of all possible pairs of input and output weights (weighting schemes) is:

F = f(ui; vi)j 8i 2 IC : (ui;�vi) 2 PCg (13)

Including all weights in the analysis gives rise to the following de�nition:

De�nition 2 The cross-e¢ ciency of DMU j 2 J relative to weighting scheme (ui; vi) 2 F , denoted

cji is given by:

cji =
uiyj
vixj

(14)

Calculating cji for all combinations of i and j results in a restructured, n � t - dimensional, cross-

e¢ ciency matrix like the one given in table 5. Standard cross-evaluation procedures only obtain informa-

tion on a small subset3 of weighting schemes and thus can only construct an incomplete cross-e¢ ciency

matrix. Our cross-e¢ ciency matrix contains all possible scoring combinations. We can formally de�ne

2 code by Thomas Christof, Heidelberg University and Andreas Loebel, Konrad-Zuse-Zentrum fur Informatik (ZIB)
3 In fact, as the problem size grows in dimensions the subset of weighting schemes obtained by standard cross-evaluation

becomes increasingly smaller compared to the complete set of weighting schemes.
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DMUs (j) Weight Set (i) �cj
1 2 3 ::: t

1 c11 c12 c13 ... c1t �c1
2 c21 c22 c23 ... c2t �c2
3 c31 c32 c33 ... c3t �c3
::: ... ... ... ... ... ...
n cn1 cn2 cn3 ... cnt �cn

�fi �f1 �f2 �f3 ::: �ft

Table 5: The complete Cross-E¢ ciency Matrix

the average cross e¢ ciency and the maverick index for DMU j as follows:

�cj =
1

t

X
i

cji (15)

mj =
hj � �cj
�cj

(16)

This new approach is structurally very similar to previous approaches but fundamentally di¤erent

in its philosophy. Instead of averaging the e¢ ciency appraisals by all peers we are now looking at the

average e¢ ciency over all possible weights that peers could have used. We have demonstrated that

analyses that disregard some weighting schemes are intrinsically incomplete and unreliable. Including

all weighting schemes in a cross evaluation analysis has the following advantages over traditional cross-

evaluation approaches:

(1) Because cross-evaluation almost always achieves a unique ranking of DMUs through the averaging

of their cross-e¢ ciency scores, the amount of information on weights included in the averaging

is of utmost importance. By including all weight information in the analysis we are no longer

restricted to establishing a unique weighting scheme for every DMU. Hence, we eliminate the need

for aggressive or benevolent formulations and overcome all the problematic cases discussed earlier.

We can therefore produce more meaningful average cross-e¢ ciency scores, ranking of DMUs and

maverick indices.

(2) We are now able to introduce weight restrictions by a priori identi�cation of unrealistic weighting

schemes which can be excluded from the analysis. Since all weighting schemes are available

we need not worry about unrealistically evaluating some DMUs because of limited information.

Hence, we can now practically eliminate the e¤ect of unrealistic weighting schemes on the average
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cross-e¢ ciency scores.

(3) Unlike all the models presented earlier, we are no longer restricted to input and output oriented

e¢ ciency measures. With all the hyperplanes of the frontier available it is easy to perform cross-

evaluations with a variety of di¤erent e¢ ciency measures for all DMUs. Briec and Leleu (2003)

consider the problem of an arbitrary norm projection on the e¢ cient frontier. They introduce

the concept of the Hölder distance function but also employ the directional distance function

((Chambers et al. , 1996),(Chambers et al. , 1998)), and provide the framework for calculating

these when all frontier hyperplanes have been identi�ed. Such e¢ ciency measures could be of

particular value in overcoming the serious technical drawbacks outlined in section (3) for cross-

evaluation under the VRS model.

5.2 Identifying maverick DMUs

We now describe how the new approach can help identify maverick DMUs more e¤ectively. The maverick

index in (16) compares a DMU�s simple e¢ ciency with its average cross-e¢ ciency. The reasoning behind

this is that if DMUs are using unrealistic weighting schemes the di¤erence between these two e¢ ciency

measures will be high. This however does not take the behaviour of other DMUs into account. We

maintain that it would be unreasonable to establish a DMU�s behaviour as unrealistic without also

considering how its peers behave. Consider the 2-input, 1-output CRS example in �gure (3) where

seventeen DMUs are plotted. By using mj in (16) we obtain a relatively high maverick index for DMUs

A and D, but in doing so we have failed to recognise that there is a large number of DMUs (those in

the cone spanned by OC and OD) that behave in a similar way to DMU D, i.e. they would all choose

one of D�s optimal weighing schemes. With this in mind, it would be dubious to designate D as a

maverick DMU or the speci�c weighting scheme as unrealistic. We propose a new indicator that takes

the behaviour of peer DMUs into account.

Let the set of optimal weighting schemes for DMU j be:

Fj = f(ui; vi) 2 F j cji = max
i
fcjigg (17)

Let the average e¢ ciency on weighting scheme i be:
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�fi =
1

n

X
j

cji (18)

Now for every DMU j we de�ne:

�j = maxf �fij(ui; vi) 2 Fjg (19)

Finally we de�ne the new indicator as:

pj =
hj � �j
�j

(20)

In trying to consider the behaviour of all DMUs we have based the new indicator on �j . The

rationale for this is that if a relatively high number of DMUs use the same weighting scheme as DMU

j, �j would have a high value and therefore that DMU j is not a maverick. Obviously a low �j value

relative to hj will lead to a high value for pj , pointing to maverick DMUs. For example in �gure (3)

there is a high number of DMUs that achieve their maximum e¢ ciency at weighting scheme f2 and
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hence we could not identify DMUs C and D that choose f2, as mavericks. DMU A on the other hand

chooses weighting schemes that provide particularly low appraisals. Therefore the value of pj would be

lower for DMUs C and D than for DMU A. As a note, we would like to say that there are alternative

ways to de�ne �j . Instead of taking the maximum appraisal by DMU j�s optimal weighting schemes

one could take the minimum or even the average appraisal and de�ne pj appropriately.

Both the conventional maverick index and the new indicator try to identify unrealistic behaviour

but they do so in fundamentally di¤erent ways. Essentially, mj is examining the e¢ ciency scores of

a speci�c DMU on all weighting schemes and pj is examining the e¢ ciency scores of all DMUs on a

speci�c weighting scheme. We could also use these indices in parallel in order to better identify maverick

DMUs.

5.3 Identifying under-achieving DMUs

Another feature of the new approach is its ability to identify under-achieving DMUs. It is important to

di¤erentiate between a low-achiever and an under-achiever among DMUs. The former is simply a DMU

with a low simple e¢ ciency score whereas the latter is a DMU with simple e¢ ciency considerably lower

than that of many other DMUs evaluated at its optimal weighting schemes. Under-achievement is not

a characteristic of only very ine¢ cient DMUs in the same way as maverickness is not a characteristic

of only e¢ cient DMUs. In �gure (3) both DMUs F and G are low achievers but unlike F, G is also an

under-achiever. Under-achieving DMUs can be identi�ed by their pj values. Notice that this indicator

can also take negative values (when hj < �j) which is the case if the weighting scheme associated

with �j , chosen by DMU j, provides higher appraisals to other DMUs than DMU j on average. A

signi�cantly low pj value translates to many DMUs achieving considerably higher e¢ ciency scores than

DMU j at a weighting scheme of its choice, so that DMU j can be identi�ed as an under-achiever.

5.4 Identifying maverick weighting schemes

The motivation behind our approach is also relevant when trying to identify maverick weighting schemes

and impose weight restrictions. There is a considerable amount of literature on weight restrictions in

DEA and a variety of methods for imposing these4 . The focus in all these is in examining the values

of the input and output multipliers in each weighting scheme. The decision-maker usually has a view

4See Thanassoulis et al (2004) for a review of methods for imposing weight restrictions in DEA.
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of how the production process taking place in DMUs should be represented in the values of the weights

selected by DMUs. If, for a speci�c weighting scheme, these values are not in line with the views held

by the decision-maker then that weighting scheme is termed unrealistic. Clearly, obtaining weighting

schemes with realistic values for input and output weights is extremely important. However, in �gure

(3) we illustrated why weight restriction analysis should be complemented with information about how

DMUs behave with respect to di¤erent weighting schemes, an issue that has been relatively unexplored.

We suggest that one way to do this is by considering the average e¢ ciency for each weighting scheme.

Including such information can prove very useful in identifying unrealistic weighting schemes. For

example, in cases where merely considering the weight values cannot establish whether a weighting

scheme is unrealistic, we can get a better insight by considering how favourable this scheme is to

DMUs. Additionally, identifying weighting schemes that provide relatively high appraisals can give us

an insight on the �acceptable�range of values for the input and output weights. For a central organisation

attempting to improve performance of branches the acceptability of weights used in making comparisons

is of critical importance. The �fi measure has the potential as a tool for selecting a restricted set of

weights in an objective and acceptable manner. We leave this idea open for further research.

5.5 Illustrative example

We illustrate all the above points with a simple 2-input, 1-output example using the hypothetical data

for �fteen DMUs given in table (6). The production possibility set for this small example is given in

�gure (4). It is perhaps easily observable that most DMUs make more e¢ cient use of input 1 than

input 2. The e¢ cient frontier is comprised of six facets of which the corresponding weighting schemes

are given in table (7)5 .

Having identi�ed all weighting schemes we can now consider whether some of them are unrealistic.

Two obvious candidates are weighting schemes 1 and 6 which include zero multipliers and hence corre-

spond to non fully-dimensional weighting schemes. Other possible candidates include weighting schemes

2 and 5 in which the weights for input 2 and input 1 respectively are very small. As suggested before

we will also consider the average e¢ ciency appraisals of these weighting schemes (column �fi in table 9).

Weighting scheme 2 has one of the highest average appraisals and weighting scheme 5 one of the lowest.

5Note that these can be scaled by any positive multiplier
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given the behaviour of DMUs in our dataset, namely the fact that most of them make more e¢ cient

use of input 1, this comes as no surprise. Therefore identifying weighting scheme 2 as unrealistic would

be dubious but on the other hand we now have more evidence to suggest that weighting scheme 5 is

unrealistic. Once we have established which weighting schemes will be excluded we can proceed with

the calculation of the cross-e¢ ciency matrix. The complete cross-e¢ ciency matrix for this data-set is

given in the appendix. Here we will examine three cases. In case one we have included all weighting

schemes, in case two we have excluded weighting schemes 1 and 6 and in case three we have additionally

excluded weighting scheme 5. In table 8 we present the results on simple and average cross-e¢ ciencies,

rankings, and the mj and pj values for all DMUs in the three cases.

It is of particular interest to compare the results for mj and pj . In case one DMUs 1 and 7 achieve

their simple e¢ ciency score by using non fully-dimensional weighting schemes, so that it is no surprise

that they achieve the two highest mj values with m1 slightly higher than m7:This fails to grasp that

there are many other DMUs behaving similarly to DMU 1, in the sense that they achieve their simple

e¢ ciency by assigning greater importance to input 1, but very few DMUs behave similarly to DMU 7.

This is re�ected in the values of pj for DMUs 1 and 7 (calculated with use of weighting schemes 1 and

6 respectively) which still achieve the highest pj values but with the di¤erence that p7 is much higher

than p1; i.e. DMU 7 is more of a maverick than DMU 1. The same observation holds for DMUs 2 and

6 which achieve very similar mj values but very di¤erent pj values with p6 being much higher than p2

(p2 is calculated with weighting scheme 2 and p6 with weighting scheme 5).

In case two DMUs 1 and 7 are still the most maverick DMUs in the context of index mj but for

pj this is no longer the case. This is due to the di¤erent ways in which the exclusion of weighting

schemes a¤ects the two indices in general. The values of mj change for all DMUs since this index is

a¤ected by all available weighting schemes. On the other hand, for any DMU, pj is only a¤ected by

one weighting scheme which explains why only p1 and p7 decrease (calculated with weighting schemes

2 and 5 respectively) and all other indices are una¤ected. In the context of pj these two DMUs are

now using more realistic weighting schemes for their self appraisal so they now possess less maverick

characteristics. What is more, DMU 1 which has a big family of peers with similar behaviour achieves

a lower pj value than DMU 7 and DMU 6, two of the relatively few DMUs which make more e¢ cient

use of input 2. This also explains why DMU 5 achieves a relatively low value in index mj but not in pj :

Finally, in case three the exclusion of weighting scheme 2 forces DMUs 6 and 7 to achieve their
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DMU Input 1 (I1) Input 2 (I2) Output (O)
1 3 17 1
2 3 15 1
3 4 11 1
4 6 6 1
5 10 4 1
6 14 3 1
7 16 3 1
8 4 16 1
9 5 15 1
10 7 15 1
11 5 17 1
12 6 17 1
13 6 19 1
14 8 19 1
15 8 11 1

Table 6: Data for �fteen DMUs

Weighting Scheme (i) Weights E¢ cient DMUs �fi
I1 I2 O

f1 0.3333 0 1 1, 2 0.53869
f2 0.1481 0.0370 1 2, 3 0.71478
f3 0.1190 0.0476 1 3, 4 0.73164
f4 0.0556 0.1111 1 4, 5 0.61701
f5 0.0385 0.1538 1 5, 6 0.54137
f6 0 0.3333 1 6, 7 0.36188

Table 7: Weighting Schemes for DMUs in table (6)

simple e¢ ciency with use of weighting scheme 4. This means that their behaviour is moving closer to

the large family of DMUs that assign greater weights to input 1, so that their pj values decrease with

p6 once again lower than p1.
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5.6 Computational considerations

Before concluding this article it would be appropriate to comment on the computational di¢ culty of

this approach. The problem of identifying all weighting schemes is equivalent to explicitly characterising

the DEA polyhedral production possibility set with a collection of hyperplanes. There are a number of

available algorithms that can do that but they all su¤er from exponential growth as the dimension of

the problem (inputs, outputs and DMUs) grows. There is, however, a two-phase approach (see (Olesen

& Petersen, 2003) and (Appa & Williams, 2006)) that manages the problem of exponential growth well.

The essential idea is to solve at most one linear-programme for each DMU in phase one to identify the

set E of all e¢ cient DMUs. Since only e¢ cient DMUs can span the rays of the convex cone of optimal

weights (or equivalently span facets of the DEA e¢ cient frontier), in phase two the computationally

expensive algorithm for �nding the convex cone is run on data for DMUs in set E only. In practice we

have found that for problems with jEj � 50 and s+m � 10 PORTA was able to provide the complete

set of optimal weights in reasonable time. As part of a project to evaluate the e¢ ciency of schools in

England we were able to solve this problem for more than 2500 schools using a model with six inputs

and two outputs. It would be an interesting direction for future research to identify algorithms and

approaches that can deliver the set of all weighting schemes fro larger problems take advantage of the

special characteristics of the DEA problems.

6 Conclusion

One can argue that cross-evaluation is a cross-breed between standard DEA and e¢ ciency evaluation

by externally imposed criteria, and that by combining the two it inherits desirable attributes from both.

On the one hand, by not allowing total weight-�exibility, it tackles the problem of high simple e¢ ciency

scores based on unrealistic weighting schemes. However, the weights are not arbitrarily invented and

imposed by some external agency but have been established through a detailed analysis of the dataset,

and as in the standard DEA, have been generated by the dataset. In this article we have identi�ed

some �aws in the traditional approaches to cross-evaluation and suggested, at least for the CRS model,

a new approach based on computing and using the complete set of weights. The task of extending our

work to take account of returns to scale and of using cross-evaluation for non-radial models remains

undone. We hope, however, that we have provided the necessary tools for a growth in applications of
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the technique in the real world.

Appendix
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