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A Method of Finding All Solutions of a Linear Complementarity
Problem

H.P Williams

Operational Research Group,
Department of Management
London School of Economics

Abstract

We define the Linear Complementarity Problem (LCP) and outline its applications
including those to Linear Programming (LP), Quadratic Programming (QP), Two person
Non-Zero Sum Games and Evolutionary Games. Then we briefly discuss previous
methods of solution emphasising the problem of finding all solutions. A new algorithm is
then presented, and illustrated by a numerical example, which finds all solutions.

It works by successive transformations of variables in order to eliminate the equations in
the model.

Keywords: Linear Complementarity Problem, Linear Programming, Quadratic
Programming, Non-Zero Sum Games, Evolutionary Games, Economic Equilibria.



1. Introduction

This Linear Complementarity Problem (LCP) can be written as the problem of finding
solutions x and vy to:

y+ Mx=d 1)
Xy =20 (2)
Xx.y=0 3)

where M is a square matrix.

(Throughout this paper we will assume all matrices and vectors are of compatible
dimension) i.e we wish to solve a set of linear equations involving variables x, y which fall

into two classes of equal size.

The variables must all be non-negative and the two classes containing x and y

respectively orthogonal (satisfying (3)). This means that if an element of x is non-zero the
corresponding entry of y must be zero.

Such problems arise in a number of contexts some of which we outline below.

The LCP has general applications in Engineering and Economics. For example if two
surfaces are able to press against each other then a positive pressure implies a zero gap
between them but a positive gap implies a zero pressure. In economics if a resource has a
positive marginal value it is scarce and has zero slack (surplus) but if it has positive slack it
is not scarce and has zero marginal value.

LCP problems and methods are also of interest since, for example, Linear Programming
(LP) models, Quadratic Programming (QP) models and 2-person Non-Zero Sum Games
can all be formulated as LCPs.

We outline how this can be done. Good references to the LCP are Murty and Ya (4) and
Cottle (2).

Linear Programming

Any LP can be written in the form

Maximise c'x

Subjectto A x <

\}

X

(4)
(5)
(6)



The dual LP model is

Minimise b'y (7
Subjectto A" y=>c (8)
yz0 9)

A necessary and sufficient condition for optimality of both models is that the slack and
surplus variables (u and v) in (5) and (8) respectively are orthogonal to y and x.

i.e y.u+ x.v=20 (20)
We can encompass all the conditions in (1), (2) and (3) by setting

m= A 11
_{I -A’} an

(x,u)and (v, y) are the orthogonal pairs of vectors.

1)



Quadratic Programming

Any QP can be written in the form

Maximise c'x +% x'Dx (13)
Subjectto A x<b (14)
x=0 (15)

A necessary and sufficient condition for a local optimum is that the Karush-Kuhn-Tucker
conditions are satisfied (see (6)).

We can encompass all these conditions by setting

A D
M—L Al (16)

where the variables and  correspond to those in the LP case above.



2-Person Games

The payoff matrixes for the players in a 2 person Non Zero Sum game can be represented
by matrices A and B.

It can be shown (see Williams (12)) that we can associate the following polytopes with
each of the players.

Y &% =2,<0 17)
P D %=1 (18)
X; 20 (19)
> by -2,<0 (20)
P, Z y, =1 (21)
y, 20 (22)

A major challenge is to find all equilibrium solutions for such games (see e.g (10)). Such
solutions correspond to vertex solutions of P,and P,which are orthogonal. We can

therefore represent it as an LCP by setting

A e | O
e 0 0 O
M = , (23)
I 0 B -e
O 0 € 0

erepresents a vector of 1s

If u and v are the slack variables in (16) and (20) respectively the orthogonal pairs of the
variables are

X,z,U,s and

v,t,y,z, respectively



where s and t are artificial variables (constrained to be zero) appended to constraints (18)
and (21) respectively.

(23)

(Although the above polyhedral description of equilibrium solutions is presented in (12) it
was subsequently realised that it had previously been discovered (in a slightly different
form) by Kuhn (5)).

Evolutionary Games

This concept is due to Maynard Smith (8). Here a population is considered as ‘playing a
game against itself’. Population mixes which emerge through evolution are said to be
Evolutionarily Stable. The possible mixes of types in such a population are said to be
Evolutionarily Stable States (ESSs). If the game is modelled by a payoff matrix it can be
shown (e.g Williams (13)) that ESS solutions are a subset of Equilibrium solutions.

If the payoff matrix is A (a square matrix) then the ‘opponents’ matrix is A (ie itself).
Viewed as a non-zero sum game. B=AThis makes F,redundant and we can set

A el O
M=| ", , (24)
e 00 O

The orthogonal pairs of variables are

(x,z,) and (u, s)

d
;

Although this makes finding Equilibrium solutions of such games easier (smaller) finding
the subset of ESS solutions is much more difficult.



2. Methods of Solving LCPs

One of the earliest methods is due to Lemke (see Lemke and Howson (7)). It is analogous
to the Simplex algorithm of LP. It starts with an orthogonal (feasible) solution by setting the
xvariables to be zero and allowing the y variables to be non-zero. Then, by a process of

‘complementary pivoting’ new variables are introduced only if their complementary
variables can be removed.

Such methods (and their variants) will only find single solutions to LCPs. Although they
can be used to find other solutions (by starting from a different initial solution) there is no
guarantee that all solutions will be enumerated.

The guarantee of knowing that one has all the solutions is important in certain applications
e.g Engineering and Game Theory.

A good survey of methods can be found in Ferris et al (3)

A number of specialist methods exist for finding Equilibrium solutions of Non-Zero Sum
Games. For 2x2 Games these are described by, for example, Thomas (9). One such well
known method described there is the swastika method. A general method is described by
Winkels (14).

In principle it is always possible to find all solutions by complete enumeration ie taking
each possible subset of variables, allowing these to be non-zero, setting their
complements to zero, solving and seeing if the resultant solution is feasible.

Another approach is to formulate the orthogonality condition (3) using Integer
Programming (IP) and solving the resultant model by an IP method (eg Branch-and-
Bound).

Neither of these last two methods (even with refinements) have proved viable given the
exponential growth in computation involved.

More recent methods are described by von Stengel (10).

An important class of methods due to Avis and Fukuda (1) simultaneously pivot through
the vertices of P, and B, searching for orthogonal vertices.



3. The Algorithm
We consider the LCP given by (1), (2) and (3)

1. We ‘homogenise’ this by putting it in the form:

y+ Mx-dz=0 (26)

z=1 (27)
X,y=0 (28)
X.y=0 (29)

2. We eliminate each homogenous constraint in turn, by a change of variables.

Consider a general homogenous constraint where the variables are u, v, and the co-
efficients p q;,i001,j0J

->, PU+) qVv, =0 (30)
i j

u v, 20 (31)

p g 20 (32)

We assume that it is not the case that |1 or J (but not both) are empty, otherwise the LCP
would be infeasible (If both were empty the constraint could be removed immediately).

- pu, are negative quantities which must, in total, ‘balance’ with the positive quantities q;v,

We can regard these quantities as the sources and sinks respectively in the following flow
diagram.

10
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w; are the new variables which we substitute into the model.

u, isreplaced by iz W, (33)

1
(I

v, isreplaced by iz W, (34)

1
joi

Making these substitutions causes the first homogenous constraint to vanish.
3. We repeat this process eliminating each homogenous constraint (in any order).

4. Finally the system (26) (after, if necessary, scaling the variables) is reduced to a
convexity constraint, resulting from (27), in some of the final set of (new) variables. Setting
any of these variables to 1 corresponds to a basic solution of the system (26). The other
variables (with zero entries in the convexity row) correspond to rays of the polytope of (26).

5. However we need to restrict ourselves to a subset of the solutions which are (a)
extreme (vertices or extreme rays) and (b) satisfy the orthogonality condition (29). These
properties allow us to restrict the new variables created at both the final and intermediate
stages of the constraint eliminations.

The substitution of variables defined by figure 1 does not need to be carried out explicitly.
It is implied by the matrix representing the elimination of a constraint from (26).

(26) can be written

y
Alx| = M (35)

4

11



where

Y 1
A{O' o 1} (36)

In order to eliminate a constraint from (26) we add together pairs of columns of the matrix ,
which have opposite sign in the constraint, in non negative multiples so as to create zeros.
This procedure is best illustrated by a numerical example, given in the next section. The
procedure is the dual of Fourier-Motzkin Elimination as described in Williams (11).

At each stage in the process, after the constraints have been eliminated, the elimination to
date can be represented as the postmultiplication of the matrix A by a matrix T consisting
of zeros and positive entries. Each column of T represents the non negative multiples in
which the columns of A must be added to eliminate the rows to date.

Although we are implicitly transforming to new variables after each elimination we need not
explicitly state the new variables.

It is shown in (11) that, after r rows have been eliminated, any column of T , consisting of
more than r+1 non zero entries, is redundant and can be removed . This is efficiently
implemented by, after every two extra constraints are eliminated, removing columns of the
current matrix T which depend on more than 3 of the columns of the matrix before last.

The columns of the final transformation matrix T represent extreme solutions (rays and
vertices) of the polytope defined by (26))

However, since we want solutions to an LCP we can also remove non self-orthogonal
columns of T i.e columns whose entries corresponding to y are not orthogonal to those

corresponding to x . The columns of any intermediate transformation matrix T which are

non self-orthogonal will give rise to non self-orthogonal columns in the final transformation
matrix and may, therefore be removed at intermediate stages.

Although we may still obtain a ‘combinatorial explosion’ in the number of columns of T
(since an LCP can have an exponential number of basic solutions) we avoid an
unnecessary explosion.

The details of the procedure are best illustrated by a numerical example in the next
section.

12



4. A Numerical Example

a
I
A

Writing in homogenised form we have:

Y

Y> 0

y3_0

Alx | =1,

% 1

%

_Z_
1002 3 -1 -1
0101 -2 0 -1

where A =
0011 1 1 -1
0000 O O 1

The elimination of the first constraint is effected by successively carrying out elementary
column operations A

To do this pairs of columns of opposite sign are added in non-negative multiples so as to
eliminate the first coefficient in the resultant column.

In order to carry of this transformation we postmultiply A by

00100100
10000000
01000000

T,=|0 0010010
00001001
00123000

0000012 3]

We have partitioned T,in order to separate multipliers corresponding to y, x and z

13



Carrying out the post multiplication transforms the co-efficient matrix A to:

000 0O0O0O0O
1001-2-1-1-5
A%011 34442

0000012 3

Similarly in order to eliminate the second row of the above matrix we postmultiply by:

O O O Fr OO0 OoONDN
O O O Fr N O O O
O O r OO O O B
o o O, O O O
O r OO0 O o O B
O r OO0 Frr O o O
R O O O O O O U
R O O O Uo1 O ©O O

O O O O O O+ O
o O O O O+ O O

Simultaneously we can update the transformation matrix to create T, =TT,
This gives

A

I
OO O O|Fr O O
OoO|r O 0O|O O
O|lw Fr O|N O O
olw~r N]|jO o O
RO © O |0 | Bk
I O PO O -
N o © |0 = O
N[N ©ODN|O o O
wl| ok OO0 0 o
WIN P Olo o O

It is shown in (11) that we can remove all columns from T,, which contain more than 3

non-zero entries, as being non-extreme. In general after r rows of the co-efficient matrix
are eliminated we can discard any column of the transformation matrix which has more
than r +1 non zero entries.

More generally we can discard any column where the index set of non-zero entries is a

superset of the corresponding set for another column. If two columns have identical such
sets both can be discarded.
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In our example this enables us to remove columns 6 and 10 from T, , (and the
corresponding columns from A,).

While this helps to reduce the explosive growth in columns of the transformation matrix it
may still grow exponentially. It can be shown that the columns of the final transformation
matrix correspond to all vertices and extreme rays of the polytope represented by the
original system.

However we need only concern ourselves with a subset of these columns. The columns of
the final transformation matrix represent all solutions to the LCP so long as they are self-
orthogonal i.e the component corresponding to the y variables is orthogonal to those
corresponding the x variables. In order for this to be the case the columns of the
intermediate transformation matrixes, from which the final columns arise, must also be
orthogonal.

In the example this enables us also to discard columns 3 and 9 of T, (and the
corresponding columns of A;) giving

000 0 0O
, loo o 0o 0o
A1 10 1 -1 2
000 1 2 2
01010 0]
000110
100000
T,=|0 02012
001000
01700 2
00012 2

We can now eliminate the third row of A, by postmultiplying by the following
transformation matrix.

100 01000
01 000100
T200100010
11110200 0 0
00 0 011102
00 0100 0 1]
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The updated co-efficient and transformation matrices are:

00 0 0O0O0OOTO
A=oooooooo
“100 0 00O0O0O

1110 4 2 2 20 6

(1 2 10 2 01 0 O]

1110 2 11102

10 0 01000
T,=|0 0 2 21 1124

001 00010

017 20172

1 110 4 2 2206

Columns 3,4,6 and 7 of T, (and A,) can be discarded as depending on more than 4 of the
original columns. The remaining columns are all self-orthogonal giving:

0000
A4=oooo
0000
1126
1 2 0 0]
1112
1010
T, =0 01 4
0 00O
0102
112 6]

In order to satisfy the condition z=1 we scale the 3™ and 4™ columns by 2 and 6
respectively to give all the solutions to the original LCP.
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Yi1=Y, =Y =L X=X, =% =0

y1:2.y2:11y3:O, X1:X2:O'X3 =1
1 1

yl:O, y2:y3:E’ )(1:5,)(2:)(3:0

1 2 1
=0, == v.=0, x=—,%X, =0,x, ==
Y1 Y2=3: % XT3 TR% T3

Should convex combinations of self-orthogonal vertices, together with non-negative
combinations of extreme ray solutions, be self orthogonal than they will also give solutions

to the LCP.
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