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A Method of Finding All Solutions of a Linear Complementarity 

Problem 
 

H.P Williams 
 

Operational Research Group, 
Department of Management 
London School of Economics 

 
 
Abstract 
 
We define the Linear Complementarity Problem (LCP) and outline its applications 
including those to Linear Programming (LP), Quadratic Programming (QP), Two person 
Non-Zero Sum Games and Evolutionary Games. Then we briefly discuss previous 
methods of solution emphasising the problem of finding all solutions. A new algorithm is 
then presented, and illustrated by a numerical example, which finds all solutions. 
It works by successive transformations of variables in order to eliminate the equations in 
the model. 
 
Keywords: Linear Complementarity Problem, Linear Programming, Quadratic 
Programming, Non-Zero Sum Games, Evolutionary Games, Economic Equilibria. 
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1. Introduction 
 
This Linear Complementarity Problem (LCP) can be written as the problem of finding 
solutions x  and y  to: 
 
 y  + M x  = d          (1) 
 
 x, y  ≥  0           (2) 
 
 x. y = 0                       (3) 

 
where M is a square matrix. 
 
(Throughout this paper we will assume all matrices and vectors are of compatible 
dimension) i.e we wish to solve a set of linear equations involving variables x , y  which fall 
into two classes of equal size. 
 
The variables must all be non-negative and the two classes containing x  and y  
respectively orthogonal (satisfying (3)). This means that if an element of x  is non-zero the 
corresponding entry of y must be zero. 
 
Such problems arise in a number of contexts some of which we outline below. 
 
The LCP has general applications in Engineering and Economics. For example if two 
surfaces are able to press against each other then a positive pressure implies a zero gap 
between them but a positive gap implies a zero pressure. In economics if a resource has a 
positive marginal value it is scarce and has zero slack (surplus) but if it has positive slack it 
is not scarce and has zero marginal value. 
 
LCP problems and methods are also of interest since, for example, Linear Programming 
(LP) models, Quadratic Programming (QP) models and 2-person Non-Zero Sum Games 
can all be formulated as LCPs.  
 
We outline how this can be done. Good references to the LCP are Murty and Ya (4) and 
Cottle (2). 
 
Linear Programming 
 
Any LP can be written in the form 
 
  Maximise  ′c x         (4) 
 
  Subject to A  x    ≤  b        (5) 
 
    x    ≥  0        (6) 
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The dual LP model is 
 
  Minimise ′b y         (7) 
 
  Subject to ′A  y ≥ c        (8) 
         y ≥ 0        (9) 
 
 
A necessary and sufficient condition for optimality of both models is that the slack and 
surplus variables ( u  and v ) in (5) and (8) respectively are orthogonal to y  and x . 
 
i.e    . 0+ =y u x .v         (10) 
 
 
We can encompass all the conditions in (1), (2) and (3) by setting 
 
 

M  =  
 
 ′ 

A I

I -A
         (11) 

 
( x , u ) and (v , y ) are the orthogonal pairs of vectors. 
 

 
 
 

bbbbd =d =d =d =
- c- c- c- c           (12) 
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Quadratic Programming 
 
Any QP can be written in the form 
 

Maximise  
1

2
′′ + x Dxc x          (13) 

 
Subject to  A x ≤ b           (14) 
   
  x ≥ 0000           (15) 
 
A necessary and sufficient condition for a local optimum is that the Karush-Kuhn-Tucker 
conditions are satisfied (see (6)). 
  
We can encompass all these conditions by setting  
 
 

 =
 
 ′ 

A D
M

I A
          (16) 

 
 
 
where the variables and 

dddd
correspond to those in the LP case above. 
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2-Person Games 
 
The payoff matrixes for the players in a 2 person Non Zero Sum game can be represented 
by matrices A  and B . 
 
It can be shown (see Williams (12)) that we can associate the following polytopes with 
each of the players. 
 
                      0ij j A

j

a x z− ≤∑                  (17) 

AP : 1j
j

x =∑         (18) 

   0jx ≥                             (19) 

 
   
 
   0ij i B

i

b y z− ≤∑        (20) 

 

BP : 1i
i

y =∑         (21) 

          
   0iy ≥          (22) 
 
 
A major challenge is to find all equilibrium solutions for such games (see e.g (10)). Such 
solutions correspond to vertex solutions of  AP and BP which are orthogonal. We can 
therefore represent it as an LCP by setting 
 

  

 
 ′ ′
 =

′ 
 ′ ′ ′ ′ 

A -e I 0

e 0 0 0
M

I 0 B -e

0 0 e 0

       (23) 

 
e represents a vector of 1s 
 
If u  and v  are the slack variables in (16) and (20) respectively the orthogonal pairs of the 
variables are 
 
        ,, ,Az sx u    and  

 
 , , , Bt zv y     respectively 
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where s and t are artificial variables (constrained to be zero) appended to constraints (18) 
and (21) respectively. 
 

1

1

 
 
 
 
 
 

0000

d =d =d =d =
0000          (23) 

 
 
(Although the above polyhedral description of equilibrium solutions is presented in (12) it 
was subsequently realised that it had previously been discovered (in a slightly different 
form) by Kuhn (5)). 
 
 
 
Evolutionary Games 
 
This concept is due to Maynard Smith (8). Here a population is considered as ‘playing a 
game against itself’. Population mixes which emerge through evolution are said to be 
Evolutionarily Stable. The possible mixes of types in such a population are said to be 
Evolutionarily Stable States (ESSs). If the game is modelled by a payoff matrix it can be 
shown (e.g Williams (13)) that ESS solutions are a subset of Equilibrium solutions. 
 
If the payoff matrix is A  (a square matrix) then the ‘opponents’ matrix is A  (ie itself).  
Viewed as a non-zero sum game. =B AThis makes BP redundant and we can set  
 

M=
 
 ′ ′ 

A -e I 0
  

e 0 0 0
        (24) 

 
 
The orthogonal pairs of variables are 
 

( , ) ( , )Az and sx u
            

 
 

0

1

 
 
 

====dddd
         (25) 

 
 
Although this makes finding Equilibrium solutions of such games easier (smaller) finding 
the subset of ESS solutions is much more difficult. 
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2. Methods of Solving LCPs 
 
One of the earliest methods is due to Lemke (see Lemke and Howson (7)). It is analogous 
to the Simplex algorithm of LP. It starts with an orthogonal (feasible) solution by setting the  
x variables  to be zero and allowing the y  variables to be non-zero. Then, by a process of 
‘complementary pivoting’ new variables are introduced only if their complementary 
variables can be removed. 
 
Such methods (and their variants) will only find single solutions to LCPs. Although they 
can be used to find other solutions (by starting from a different initial solution) there is no 
guarantee that all solutions will be enumerated. 
 
The guarantee of knowing that one has all the solutions is important in certain applications 
e.g Engineering and Game Theory. 
 
A good survey of methods can be found in Ferris et al (3) 
 
A number of specialist methods exist for finding Equilibrium solutions of Non-Zero Sum 
Games. For 2x2 Games these are described by, for example, Thomas (9). One such well 
known method described there is the swastika method. A general method is described by 
Winkels (14). 
  
In principle it is always possible to find all solutions by complete enumeration ie taking 
each possible subset of variables, allowing these to be non-zero, setting their 
complements to zero, solving and seeing if the resultant solution is feasible. 
 
Another approach is to formulate the orthogonality condition (3) using Integer 
Programming (IP) and solving the resultant model by an IP method (eg Branch-and-
Bound). 
 
Neither of these last two methods (even with refinements) have proved viable given the 
exponential growth in computation involved. 
 
More recent methods are described by von Stengel (10). 
 
An important class of methods due to Avis and Fukuda (1) simultaneously pivot through 
the vertices of AP  and BP   searching for orthogonal vertices. 
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3. The Algorithm 
 
We consider the LCP given by (1), (2) and (3) 
 
1. We ‘homogenise’ this by putting it in the form:     
 

+ - z = 0y Mx d        (26)  
  1z =         (27) 

          
         
    

  , ≥ 0x y         (28) 
 
  . 0=x y         (29) 
 
 
2. We eliminate each homogenous constraint in turn, by a change of variables. 
 
Consider a general homogenous constraint where the variables are ,i ju v and the co- 

efficients , , ,i jp q i I j J∈ ∈  

 
 0i i j j

i j

p u q v− + =∑ ∑         (30) 

 
  , j v  0iu ≥                           (31) 

 
  , j q  0ip ≥          (32) 

 
 
We assume that it is not the case that I or J  (but not both) are empty, otherwise the LCP 
would be infeasible (If both were empty the constraint could be removed immediately). 
 
- i ip u  are negative quantities which must, in total, ‘balance’ with the positive quantities j jq v  

 
We can regard these quantities as the sources and sinks respectively in the following flow 
diagram. 
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ijw  are the new variables which we substitute into the model. 

 
1

 is replaced by i ij
ji

u w
p
∑         (33) 

 
 

1
 is replaced by j ij

ij

v w
q
∑         (34) 

 
 
Making these substitutions causes the first homogenous constraint to vanish. 
 
3. We repeat this process eliminating each homogenous constraint (in any order). 
 
4. Finally the system (26) (after, if necessary, scaling the variables) is reduced to a 
convexity constraint, resulting from (27), in some of the final set of (new) variables. Setting 
any of these variables to 1 corresponds to a basic solution of the system (26). The other 
variables (with zero entries in the convexity row) correspond to rays of the polytope of (26). 
 
5. However we need to restrict ourselves to a subset of the solutions which are (a) 
extreme (vertices or extreme rays) and (b) satisfy the orthogonality condition (29). These 
properties allow us to restrict the new variables created at both the final and intermediate 
stages of the constraint eliminations. 
 
The substitution of variables defined by figure 1 does not need to be carried out explicitly. 
It is implied by the matrix representing the elimination of a constraint from (26). 
 
(26) can be written 
 

  

z

 
 
 
  

y

A x  = 
1

 
 
 

0000
        (35) 

 
 
 
 
 

i ip u  

r rp u  

i iq v  

s sq v  

W11 

W12 

 Wr1 

 Wr2 

Figure 1 



 12 

where 
 

1

 
=  ′ ′ 0 0

- d- d- d- d
I M

A        (36) 

 
In order to eliminate a constraint from (26) we add together pairs of columns of the matrix , 
which have opposite sign in the constraint, in non negative multiples so as to create zeros. 
This procedure is best illustrated by a numerical example, given in the next section. The 
procedure is the dual of Fourier-Motzkin Elimination as described in Williams (11). 
 
At each stage in the process, after the constraints have been eliminated, the elimination to 
date can be represented as the postmultiplication of the matrix A by a matrix T  consisting 
of zeros and positive entries. Each column of T represents  the non negative multiples in 
which the columns of A  must be added to eliminate the rows to date. 
 
Although we are implicitly transforming to new variables after each elimination we need not 
explicitly state the new variables. 
 
It is shown in (11) that, after r rows have been eliminated, any column of T , consisting of 
more than r+1 non zero entries, is redundant and can be removed . This is efficiently 
implemented by, after every two extra constraints are eliminated, removing columns of the 
current matrix T  which depend on more than 3 of the columns of the matrix before last. 
 
The columns of the final transformation matrix T  represent extreme solutions (rays and 
vertices) of the polytope defined by (26)) 
 
However, since we want solutions to an LCP we can also remove non self-orthogonal 
columns of T i.e columns whose entries corresponding to y  are not orthogonal to those 
corresponding to x  . The columns of any intermediate transformation matrix T which are 
non self-orthogonal will give rise to non self-orthogonal columns in the final transformation 
matrix and may, therefore be removed at intermediate stages. 
 
Although we may still obtain a ‘combinatorial explosion’ in the number of columns of T  
(since an LCP can have an exponential number of basic solutions) we avoid an 
unnecessary explosion. 
 
The details of the procedure are best illustrated by a numerical example in the next 
section. 
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4.  A Numerical Example 
 

 d = 

1

1

1

 
 
 
  

 

 
 
Writing in homogenised form we have: 
 

1

2

3

1 1

2

3

y

y

y

x

x

x

z

 
 
 
 
 
 
 
 
 
 
 

A  = 

0

0

0

1

 
 
 
 
 
 

 

 
 

where  

1 0 0 2 3 1 1

0 1 0 1 2 0 1

0 0 1 1 1 1 1

0 0 0 0 0 0 1

− − 
 − − =
 −
 
 

1A  

 
 
 
The elimination of the first constraint is effected by successively carrying out elementary 
column operations 1A  
 
To do this pairs of columns of opposite sign are added in non-negative multiples so as to 
eliminate the first coefficient in the resultant column.  
 
In order to carry of this transformation we postmultiply 1A  by 
 

1T =

0 0 1 0 0 1 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 1 0

0 0 0 0 1 0 0 1

0 0 1 2 3 0 0 0

0 0 0 0 0 1 2 3

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
We have partitioned 1T in order to separate multipliers corresponding to ,  and zy x  
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Carrying out the post multiplication transforms the co-efficient matrix A to: 
 

  2A =

0 0 0 0 0 0 0 0

1 0 0 1 2 -1 -1 - 5

0 1 1 3 4 -1 -1 -2

0 0 0 0 0 1 2 3

 
 
 
 
 
 

-
 

 
Similarly in order to eliminate the second row of the above matrix we postmultiply by: 
 
 

2T =

0 0 2 0 1 0 1 0 5 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 2 0 1 0 1 0 5

0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1

 
 
 
 
 
 
 
 
 
 
 
  

 

 
 

Simultaneously we can update the transformation matrix to create ′
2T = 1 2T T  

This gives 
 

′
2T = 

0 1 0 0 1 1 0 0 0 0

0 0 0 0 1 0 1 0 5 0

1 0 2 0 0 0 0 0 0 0

0 0 0 2 0 1 1 2 0 5

0 0 1 1 0 0 0 0 1 1

0 1 3 7 0 2 0 2 0 2

0 0 0 0 1 1 2 2 3 3

 
 
 
 
 
 
 
 
 
 
 

 

 
  

It is shown in (11) that we can remove all columns from 2 ,′T  which contain more than 3 
non-zero entries, as being non-extreme. In general after r rows of the co-efficient matrix 
are eliminated we can discard any column of the transformation matrix which has more 
than 1r +  non zero entries. 
 
More generally we can discard any column where the index set of non-zero entries is a 
superset of the corresponding set for another column. If two columns have identical such 
sets both can be discarded. 
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In our example this enables us to remove columns 6 and 10 from ,′2T  (and the 

corresponding columns from 3A ). 
 
While this helps to reduce the explosive growth in columns of the transformation matrix it 
may still grow exponentially. It can be shown that the columns of the final transformation 
matrix correspond to all vertices and extreme rays of the polytope represented by the 
original system. 
 
However we need only concern ourselves with a subset of these columns. The columns of 
the final transformation matrix represent all solutions to the LCP so long as they are self-
orthogonal i.e the component corresponding to the y  variables is orthogonal to those 
corresponding the x  variables. In order for this to be the case the columns of the 
intermediate transformation matrixes, from which the final columns arise, must also be 
orthogonal. 
 

In the example this enables us also to discard columns 3 and 9 of ′
2T  (and the 

corresponding columns of 3A ) giving 
 

0 0 0 0 0 0

0 0 0 0 0 0

1 1 10 1 1 2

0 0 0 1 2 2

 
 
 ′ =
 − −
 
 

3A  

 
     

 

0 1 0 1 0 0

0 0 0 1 1 0

1 0 0 0 0 0

0 0 2 0 1 2

0 0 1 0 0 0

0 1 7 0 0 2

0 0 0 1 2 2

 
 
 
 
 ′′ =  
 
 
 
 
 

2T  

 
 

We can now eliminate the third row of ′
3A  by postmultiplying by the following 

transformation matrix. 
 

3

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

1 1 10 2 0 0 0 0

0 0 0 0 1 1 10 2

0 0 0 1 0 0 0 1

 
 
 
 

=  
 
 
 
 

T  
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The updated co-efficient and transformation matrices are: 
 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 10 4 2 2 20 6

 
 
 =
 
 
 

4A  

 
 

′
3T =

1 2 10 2 0 1 0 0

1 1 10 2 1 1 10 2

1 0 0 0 1 0 0 0

0 0 2 2 1 1 12 4

0 0 1 0 0 0 1 0

0 1 7 2 0 1 7 2

1 1 10 4 2 2 20 6

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Columns 3,4,6 and 7 of ′
3T  (and 4A ) can be discarded as depending on more than 4 of the 

original columns. The remaining columns are all self-orthogonal giving: 
 

0 0 0 0

0 0 0 0

0 0 0 0

1 1 2 6

 
 
 =
 
 
 

4A  

 
 
 
 

1 2 0 0

1 1 1 2

1 0 1 0

0 0 1 4

0 0 0 0

0 1 0 2

1 1 2 6

 
 
 
 
 ′′ =  
 
 
 
 
 

3T  

 
 
 
In order to satisfy the condition z=1 we scale the 3rd and 4th columns by 2 and 6 
respectively to give all the solutions to the original LCP. 
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1 2 3 1 2 3y 1,  =x 0y y x x= = = = =  
 

1 2 3 1 2 3y 2. 1, 0,  =x 0, 1y y x x= = = = =  
 

1 2 3 1 2 3

1 1
y 0,  y ,  = , 0

2 2
y x x x= = = = =  

 

1 2 3 1 2 3

1 2 1
y 0,  y , 0,  = , 0,

3 3 3
y x x x= = = = =  

 
Should convex combinations of self-orthogonal vertices, together with non-negative 
combinations of extreme ray solutions, be self orthogonal than they will also give solutions 
to the LCP. 
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