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Abstract 
 

 
The performance of two broad classes of mobility indices is examined when 

allowance is made for the possibility of data contamination. Single-stage indices – 

those that are applied directly to a sample from a multivariate income distribution – 

usually prove to be non-robust in the face of contamination. Two-stage models of 

mobility – where the distribution is first discretised and then a transition matrix or 

other tool is applied – may be robust if the first stage is appropriately specified. We 

illustrate results using a simple but flexible simulation. 
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1 Introduction

Reliable indicators of mobility are of continuing relevance for theoretical work and

policy applications in several important areas, for example, the study of poverty

transitions, the modelling of bequest dynamics, the characterisation of earnings

or income histories. Because the measurement of income mobility involves the

comparison of distributions of income pro¯les it may inherit some of the practical

problems associated with empirical income distributions. The problem of mea-

surement error has long been recognised (Bound et al. 1989, Bound and Krueger

1989), but other di±culties remain. Prominent among these is the problem of

contamination:1 even if one is reasonably con¯dent about a data source, it is

obviously inappropriate to assume that the data will automatically give a rea-

sonable picture of the \true" picture of mobility. A researcher may anticipate

that, because of miscoding and other types of mistake, some of the observations

will be incorrect, and this may have a serious impact upon mobility estimates

and comparisons. The purpose of this paper is to examine the performance of

some important classes of mobility measures in the presence of contamination.

The central question that we wish to address is whether the properties of mo-

bility indices in conjunction with the characteristics of panel data can give rise

to misleading conclusions about income-mobility patterns. Obviously if contam-

ination is in some sense \large" relative to the true data then we cannot expect

1The relationship between the two types of approach to imperfections in the data is discussed
in Cowell (1998).
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to get sensible estimates of mobility indices; but what if the contamination were

quite small? Could it be the case that isolated \blips" in the data or extreme

values could drive estimates of income mobility? We analyse this problem using

methods of robust analysis that have become established in other ¯elds.

There is a special di±culty associated with the problem of data contamina-

tion in the present context. Pragmatic approaches that are relatively easy to

implement in other income distribution problems may be impractical in applica-

tions to issues such as the measurement of mobility. For example, in the analysis

of income inequality, it may be appropriate to \trim" data by eye or by algo-

rithm, but the types of rule-of-thumb treatment of outliers that could work well

for a univariate problem are likely to be unwieldy in the case of multivariate

distributions.

This practical di±culty underlines the importance of understanding the gen-

eral properties of mobility indices when applied to contaminated data. Our ap-

proach is to establish these properties for two broadly-de¯ned types of index using

a simple model of data contamination. Section 2 sets out the basic ingredients

of the approach; sections 3 and 4 discuss the ¯rst of the two principal types of

mobility indices; section 6 discusses the second type of index; section 7 concludes.
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2 The Fundamentals

We suppose that an income history can be described by a T -dimensional random

variable X where T ¸ 2. The variate X may be thought of as a pro¯le of

income-events over T discrete periods from which one wishes to estimate income

mobility. We write the set of income pro¯les as X = [x; ¹x] £ [x; ¹x] £ ::: £ [x; ¹x]

where [x; ¹x] is an interval in <. Notice that for some approaches to the problem

of analysing economic mobility one may wish to restrict X to a strict subset of

T -dimensional space <T because, for example, one may wish to rule out zero or

negative incomes as irrelevant a priori; however, unless otherwise speci¯ed, we

assume that x = ¡1 and ¹x =1.

We will use the symbol `¢' to denote the vectorial product (inner product) of

two members of <T .

2.1 Distributions

Assume that the distribution of income pro¯les a particular dynamic economy is

given by some distribution function F : X ! [0; 1]. Let FT be the class of all

valid T -variate distribution functions. We will ¯nd useful a number of derived

distributions of linear combinations of the T -variates X. Given a parametric

weight vector w 2 <T , w ¢ 1 = 1 and any F 2 FT , these derived distributions
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can be expressed in the form of a functional ª(¢;F;w) : FT ! < where

ª(y;F;w) :=

Z
:::

Z

fx:w¢x�yg
dF (x) : (1)

For example the marginal distribution of income in the tth period is ª(¢;F; et)

where et is the tth unit vector (0; 0; :::; 0; 1; 0:; ::; 0), and the distribution of (un-

weighted) average income over the T periods is ª (¢; F; T¡11).

2.2 Mobility

A mobility index M is a real-valued functional de¯ned on the space of T -variate

random distributions M : FT ! <. There are several competing intellectual

approaches to the speci¯cation of such indices, which need not detain us here.

Speci¯c types of mobility indices are discussed in Sections 3 to 6 below; for

the moment note that the class of indices M be resolved into two important

subclasses:

² single-stage indices which attempt to make full use of information in F ,

² two-stage indices that are based on partial discretisation of the distribution

F a priori.

For a particular multivariate distribution F 2 FT we may express the mobility

index as the value of the functional M(F ). In many practical applications the

\true" distribution will not be known but must be estimated from some dataset.
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Let x := x1; : : : ;xn denote a sample of size n where each xi 2 X is a realisation of

X. An estimator of M(F ) is then obtained principally by one of two approaches.

1. For the non-parametric approach one replaces F with the empirical distri-

bution: F (n)(x) := 1
n

Pn
i=1¢xi(x) where ¢y is a point mass at y. Letting

the sample size n ! 1, by the Glivenko-Cantelli theorem the estimator can

be written as a functional of the distribution function F , i.e. asymptotically

the mobility index M(F (n)) becomes M(F ) (Victoria-Feser 1998).

2. In the parametric approach one assumes a priori that X » Fµ where Fµ is a

member of a family of distributions characterised by the parameter vector

µ. One then ¯nds µ̂ - an estimate of µ - from the sample x and estimates

mobility using Fµ̂ .

Here we will assume that a complete set of micro-data is available for the T

periods, and we focus upon non-parametric methods.

2.3 Data Contamination

Because in practice a mobility index is usually estimated using a sample one

should realistically expect that the data may be subject to contamination: for

example the misreporting of weekly as monthly income, or the presence in the

sample of data points that have been miscoded by the data transcriber (the

classic decimal-point error). If one had reason to suspect that this sort of error

were extensive in the data sets under consideration the problem of distributional
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comparison might have to be abandoned because of unreliability. However, it is

possible that there might be a fairly serious problem of comparison even if the

amount of contamination were fairly small, so that the data might be considered

\reasonably clean".

A standard model of this type of problem is as follows.2 Suppose that the

\true" multivariate distribution for which we wish to estimate mobility is F but,

because of the problem of data-contamination, we cannot assume that the data

actually observed have really been generated by F . What we actually observe

instead of F is a distribution that is in some neighbourhood of it, F" = (1¡")F+

"H where 0 < " < 1 and H is a perturbation distribution. For example, H could

be a distribution of discrete masses in X

dH(x) =

8
>>>>>><
>>>>>>:

®1 if x = z1

: : :

®m if x = zm

(2)

8i, ®i ¸ 0, and
P
®i = 1, z1; :::; zm 2 X. Then F" is the mixture model from

which an observation has probability (1 ¡ ") of being generated by F and a

probability "®j of being an arbitrary value zj. The distribution H represents a

simple form of data contamination at points z1; :::; zm; " indicates the importance

of the contamination; the convex combination F" is the observed distribution, and

2This approach is based upon the work of Hampel (1968, 1974), Hampel et al. (1986), Huber
(1986).
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F remains unobservable.3

Clearly if " in (3) were large we could not expect to get sensible estimates of

mobility indices; but what if the contamination were very small? To address this

question for any given mobility statisticM we can use an elementary version of (2)

where a mixture distribution is constructed by combining the \true" distribution

F with a single contamination point mass at income z 2 X:

F (z)" = [1¡ "]F + "H(z) (3)

where H(z) is a degenerate distribution de¯ned by:

dH(z)(x) =

8
>><
>>:

1 if x = z

0 otherwise

(4)

The appropriate tool for assessing the impact of an in¯nitesimal 4 amount of

contamination upon the mobility estimate is then given by the in°uence function:

IF(z;M;F ) := lim
"!0

2
4
M

³
F
(z)
"

´
¡M(F )
"

3
5 (5)

3Notice that in the multivariate approach of our model it is legitimate to assume that the
observations xi are iid; the dependence between the components of xi of course remains. This
is by contrast to the problems of robustness in the analysis of time-series data the observations
are not iid (KÄunsch 1984), (Hampel, Ronchetti, Rousseeuw, and Stahel 1986) pp 417®. How-
ever the assumption implies that issues of missing data and attrition in panel data have been
appropriatly dealt with.

4\In¯nitesimal" means here that the probability " that this contamination occurs tends to
zero.
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or, when the derivative exists, by @
@"
M

³
F
(z)
"

´¯̄
¯
"=0

:

The IF gives the in°uence on the estimator M of contamination at the point

z, and its value will depend upon the position of z with respect to the position

of the majority of the data. The expression (5) indicates whether an estimate

of mobility will be stable in the presence of a few \alien" observations in the

income pro¯le and, because the IF is the ¯rst-order term in the linear expansion

of the asymptotic bias of the estimator it will also provide information about the

bias of the mobility estimate. If, under the given model of data-contamination

(3) IF in (5) is bounded for all z 2 X, the mobility statistic M is robust. Of

course it is particularly interesting to know whether IF could in practice be un-

bounded. Typically, this problem of unboundedness can arise when components

of z approach extreme values such as 1, ¡1 or 0: in this case a single extreme

observation in the income pro¯le could drive the mobility estimate by itself.

Clearly it would be useful to know how the in°uence function will behave for

various types of data contamination for a wide class of mobility indices. So in

sections 3 to 6 we will examine the problem of characterising IF for certain key

types of statistics M .

3 Stability indices

The ¯rst subclass of single-stage indices builds upon an extension of inequality

analysis. The principal developments are attributable to Shorrocks (1978) and
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Maasoumi and Zandvakili (1986, 1990); they proposed a class of mobility mea-

sures based on the comparison of the inequality of (weighted) average income to

a weighted average of contemporaneous inequalities. Given an inequality index

I : F1 ! < and a set of weights w := [wt], a typical stability index is

MS(F ; I;w) := 1¡ I(Fw)PT
t=1wtI(Ft)

(6)

where Fw(¢) := ª(¢;F;w) and Ft(¢) := ª(¢;F; et) are the distribution of weighted

average income and the marginal distribution (see 2.1 above).

We assume that the true joint distribution function F is not directly ob-

servable, and that we have to work with the contaminated distribution function

speci¯ed in (3). This of course a®ects all the derived distributions. For example,

under this model of contamination, the observed distribution of weighted average

income becomes

ª
¡
y;F (z)" ;w

¢
= (1¡ ")ª(y;F;w) + "¶ (w ¢ z � y) (7)

where ¶(c) is an indicator function equal to 1 if condition c is met and 0 otherwise.

Furthermore, because the mobility index (6) is de¯ned as a function of the

values of an inequality statistic for several derived distributions of F , its in°uence

function will be a function of the in°uence function for the inequality index

implemented for these derived distributions. More precisely, using F
(z)
" in (6)
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and di®erentiating yields

IF(z;MS; F ) =
@

@"
MS

¡
F (z)" ; I;w

¢¯̄¯̄
"=0

(8)

= ¡ IF(z; I; Fw)PT
t=1wtI(Ft)

+
I(Fw)

PT
t=1wtIF(z; I; Ft)hPT
t=1wtI(Ft)

i2 (9)

Whether the in°uence function of the stability index MS is bounded depends on

whether IF(z; I; Fw) and IF(z; I; Ft) are bounded, and on whether the compo-

nent expressions (9) cancel out. If they do not cancel, IF(z;MS; F ) is typically

unbounded. A cancellation of terms certainly occurs in two trivial situations.

Assume that the weights wt are deterministic. In the ¯rst case, if the inequality

measure I(:) belongs to the class of scale-independent measures,5 a universal mul-

tiplication of incomes (including the contamination) between periodsXt = ±Xt¡1,

leaves all inequality measures una®ected. The stability measure (6) is therefore

a constant being una®ected by the contamination. Likewise, if I(:) belongs to

the class of translation-independent measures, the cancellation is induced by a

universal shift in incomes Xt = Xt¡1 + ±; other trivial cases could be found for

di®erent types of inequality-neutrality. However, the practical relevance of such

cross-sectional behaviour is probably rather slight. The only exception may be a

perfectly immobile society in which cross-sections are just replicated.

5For any F 2 F1 let F (+k) be the distribution derived by a translation k 2 <, where
F (+k)(x) = F (x ¡ k), and let F (£k) be the distribution derived from F by transforming
the income variable by a scalar multiple k 2 <+ where F (£k)(x) = F

¡
x
k

¢
, then scale-

independent measures have the property I
¡
F (£k)

¢
= I (F ) and for translation-independent

measures I
¡
F (+k)

¢
= I (F ). See Cowell (1998) for a discussion of these and related concepts.
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It appears that in practice one might expect the in°uence function of the

stability index to be unbounded. However two issues remain to be resolved.

The ¯rst is whether this will actually occur (outside trivial income pro¯les) for

standard implementations of stability measures given deterministic weights w:

not all inequality indices are inherently robust (Cowell and Victoria-Feser 1996).

The second is that we also need to consider cases where weights are stochastic

and themselves are subject to contamination: it is possible that reweighting

income within the concept of aggregated income w ¢X and reweighting average

inequality in the denominator of (6) may have a non-trivial impact upon the

robustness property of the stability index. These issues will now be examined for

two principal types of inequality index and their associated stability indices.

3.1 The generalised entropy index

A popular inequality index for use in the mobility measure (6) is the generalised

entropy index. For any G 2 F1 this is given by

IGE(®)(G) =
1

®2 ¡ ®

�
¹®(G)

¹(G)®
¡ 1

¸
(10)

where ¹® is the functional

¹®(G) =

Z
x®dG(x); (11)
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¹ is the mean ¹(G) := ¹1(G)and ® 2 < is the sensitivity parameter of the index.6

However the principal di±culty with (10) from the point of view of practical

application to the construction of a stability index is that the inequality index is

inherently non-robust. The primary reason for this lies in the behaviour of the

integral in (11): consider a one-dimensional version of (3) where there is point

contamination at x = ¹z; then for the mixture distribution G
(¹z)
" the integral in

(11) becomes
Z
x®dG(¹z)" (x) = (1¡ ")¹®(G) + "¹z® ; (12)

the last term in (12) can be arbitrarily large when su®ering from a large outlier if

® > 0 or an outlier near zero if ® < 0. For the second reason for the nonrobustness

of the GE index consider its in°uence function which is given by7

IF(¹z; IGE(®); G) = A+B¹z
® + C¹z (13)

6For ® large and positive the index is sensitive to changes at the top of the income distri-
bution, for ® negative the index is sensitive to changes at the bottom of the distribution. At
® = 0 and ® = 1 (10) adopts the form of the MLD and the Theil index respectively. (Cowell
1998)

7Using (10) the generalised entropy index for the contaminated income distribution is

IGE(®)(G
¹z
") =

1 ¡ "

®2 ¡ ®

�Z �
x

¹(G¹z
")

¸®

dG(x) ¡ 1

¸
+

"

®2 ¡ ®

��
¹z

¹(G¹z
")

¸®

¡ 1

¸

and so, di®erentiating with respect to " in the neighbourhood of " = 0, the in°uence function
is

1

®2 ¡ ®

��
¹z

¹(G)

¸®

¡
Z �

x

¹(G)

¸®

dG(x)

¸
¡ 1

® ¡ 1

Z �
x

¹(G)

¸®

dG(x)

�
¹z

¹(G)
¡ 1

¸

which gives (13).
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whereA := IGE(®)(G)[®¡1]+1=®, B := ¹(G)¡® [®2 ¡ ®]¡1, C := 1
¹(G)

£
®IGE(®)(G) +

1
®¡1

¤

are expressions independent of the contamination. Clearly, the function (13) is

unbounded for all values of ® for su±ciently large ¹z because of the last term

in parentheses which comes from the impact of contamination upon the mean

¹
³
G
(¹z)
"

´
(Cowell and Victoria-Feser 1996).

Then, by setting G = Ft and G = Fw, we can see that this behaviour of

the in°uence function will apply to all the component inequality indices in the

stability index (6): all the component inequality indices are nonrobust.8 To see

whether this implies nonrobustness of the associated mobility index the in°uence

functions for MS can now be derived for the generalised-entropy implementation.

Assume ¯rst that the set of weights w in (6) is deterministic. Then the function

(9) becomes

IF(z;MS; F ) =

PT
t=1wt

£
IGE(®)(Fw)IF(z; IGE(®); Ft)¡ IGE(®)(Ft)IF(z; IGE(®); Fw)

¤
hPT

t=1wtIGE(®)(Ft)
i2

(14)

Substituting from (13) into (14) we see that the terms involving the un-

bounded contamination terms zt and z
®
t vanish only if (a) true inequality IGE(®)(Ft)

in each cross-section t equals IGE(®)(Fw) and (b) zt is proportional to zt¡1 for all

t. This can only occur if every income pro¯le is a straight line with identical slope

and it follows from the fact that the generalised entropy index is a scale indepen-

8This can be seen from the above argument by for putting ¹z = w ¢ z for G = Fw and w = et

for G = Ft.
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dent inequality measure. Except for this trivial situation (14) is unbounded as

zt ! 1: the mobility index is not robust.

In the case where the set of weights wt is endogenous a conventional param-

eterisation is

wt =
¹(Ft)

¹( ¹F )
(15)

where ¹F (¢) = ª (¢; F; T¡11) is the distribution of T -period average income. This

modi¯cation is easily incorporated in the denominator of (10), leaving the subse-

quent derivation essentially unchanged: the mobility indexMS for the Generalised

Entropy class is not robust whether or not weights are exogenous.

3.2 The Gini coe±cient

For any G 2 F1 the Gini coe±cient can be written as the functional

IGini(G) = 1¡ 2
R 1
0
C(G; q)dq

¹(G)
(16)

where C(G; q) :=
R Q(G;q)
x

xdG(x) ; Q(G; q) := inffx : G(x) ¸ qg:C and Q are the

cumulative-income and quantile functionals respectively. Now from Cowell and

Victoria-Feser (1996) and Monti (1991) we may derive

IF(z; IGini; G) = [1¡ IGini(G)]
�
z

¹(G)
+ 1

¸

¡
�
¹(G)¡ z
¹(G)

(1¡G(¹(G)¡ z)) + ¹(G) + z
¹(G)

(1¡G(¹(G) + z))
¸
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¡ 1

¹(G)

"Z ¹(G)¡z

¡1
udG(u) +

Z ¹(G)+z

¡1
udG(u)

#
(17)

which may be shown to be unbounded as z ! §1. The in°uence functions for

Gini-inequality of aggregated income and of individual cross-sectional distribu-

tions are derived from application of (17).

With endogenous weights (15) the mobility index is found by using (15) and

IGini(G) in (6)

MS(F ; I;w) = 1¡ ¹( ¹F )¡
R 1
0
C( ¹F ; q)dq

PT
t=1

h
¹(Ft)¡

R 1
0
C(Ft; q)dq

i (18)

The in°uence function of the mobility index is then given as a special case of (8)

by applying (16); it is immediate from (17) that IF(z;MS; F ) is also unbounded

for the Gini index with endogenous weights.

4 \Distance" and related measures

A second principal subclass of single-stage indices interprets mobility in terms

of \distributional change" (Cowell 1985) and typically focuses upon measures

that incorporate a concept of distance between incomes. As far as the measures'

properties in the face of contaminated data are concerned they can be treated

in the same manner as the approach of section 3. The distributional-change

approach requires restriction to a two-period interpretation of mobility: we will
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label the two periods (t¡ 1; t) and x := (xt¡1; xt).

Theorem 1 of Cowell (1985) establishes that subgroup-decomposable contin-

uous measures of distributional change must take the form

MDist(F ) := Á

µZ
D(x) dF (x); ¹(F )

¶
(19)

where the function D : X £ X ! < embodies the concept of distance. A principal

example of (19) is derived in the case where the functionD is homothetic, in which

case the measure takes the form of a generalised conditional entropy index:

1

®2 ¡ ®

Z Z "�
xt¡1

¹ (Ft¡1)

¸1¡® �
xt

¹ (Ft)

¸®
¡ 1

#
dF (x) (20)

where ® is a sensitivity parameter (Cowell 1980). In the light of the argument in

subsection 3.1 it is immediate that (20) is nonrobust for all ®. However there are

other commonly-used indices that are either examples of (19) or that employ a

similar notion of aggregating the \distance" between individuals' incomes in the

two distributions.
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4.1 The Hart index

The Hart index incorporates the concept of distance that is implicit in the use of

the variance of logarithms:

MHart(F ) := 1¡ r(log xt¡1; log xt) (21)

where r(:) is the correlation coe±cient (Shorrocks 1993). It may be de¯ned

equivalently as

MHart(F ) := 1¡ A(F )

B(F )
(22)

where

A(F ) :=

Z Z
[log xt¡1] [log xt] dF ¡ ¹(F ¤t¡1)¹(F ¤t )

B(F ) :=
q£
¹2(F ¤t¡1)¡ ¹(F ¤t¡1)2

¤
[¹2(F ¤t )¡ ¹(F ¤t )2]

and log x » F ¤. The index (21) is thus composed entirely of linear functionals,

each of which is nonrobust; its in°uence function then is B(F ) IF(z;A;F ) ¡ A(F ) IF(z;B;F )
B(F )2

:

Moreover, the contaminations do not cancel out, leading us to conclude thatMHart

is not robust.9

9Examine for instance one term of B, such as ¹2(F
¤
t¡1) ¡ ¹(F ¤

t¡1)
2 . For the contaminated

distribution F
(z)
" this becomes

(1 ¡ ")¹2(F
¤
t¡1) + "z2

t¡1 + (1 ¡ ")2¹(F ¤
t¡1)

2 + "2z2
t¡1 ¡ 2(1 ¡ ")"¹(F ¤

t¡1)zt¡1:

The observation that no terms cancel out is then immediate.
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4.2 The Fields-Ok Index

Recently Fields and Ok (1997) have proposed a mobility index which can be seen

as a special case of (19) where the distance concept is based on the absolute

di®erences of logarithms:

MFO(F ) = c

Z Z
jlog xt¡1 ¡ log xtj dF (xt¡1; xt): (23)

In order to establish the properties of (23), since ja¡ bj ¸ (a¡ b), it is helpful

to examine the behaviour of the following functional:

m(F ) := c

Z Z
(log xt¡1 ¡ log xt) dF (xt¡1; xt): (24)

In the presence of the contamination given in equation (3), this becomes

m
¡
F (z)"

¢
= (1¡ ")m(F ) + "c(log zt¡1 ¡ log zt) (25)

The in°uence function is thus

IF(m;F; z) = ¡m(F ) + c [log zt¡1 ¡ log zt] (26)

As zt¡1 ! 1 it is clear that (26) is unbounded from above unless zt¡1 =

zt. Since MFO(F ) ¸ m(F ) this implies that the index (23) is also non-robust.

A similar argument applies if zt ! 0; so MFO is non-robust for this form of
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contamination. For the reverse contamination pro¯le, exchange xt¡1 and xt in

(24): we may conclude that the index MFO is generally non-robust.

4.3 The King Index

King's (1983) welfarist approach to the measurement of mobility di®ers in two

aspects from other measures incorporating a distance concept. Following Atkin-

son (1970), he derives axiomatically a social-welfare function consistent with the

proposed mobility measure. Second, he refers to social mobility as changing ranks

within distributions. The index can be expressed as

MKing(F ) = 1¡
"R R ¡

xte
°s(F;x)

¢k
dF (x)

¹k(Ft)

# 1
k

k � 1; k 6= 0; ° ¸ 0 (27)

where s(F ;x) := jxt¡Q(Ft;Ft¡1(xt¡1))j
¹(Ft)

is the \scaled order statistic" which captures

reranking.

To examine its robustness properties write (27) as 1¡ [A(F )=B(F )]1=k where

A(F ) :=

Z Z ¡
xte

°s(F;x)
¢k
dF (x) (28)

and B(F ) := ¹k(Ft). It su±ces to examine the expressions A(F ) and B(F )
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separately. With point mass contamination at z it follows that

@A(F")

@"

¯̄
¯̄
"=0

= ¡A(F )+
£
zte

°¶(s(F;(xt¡1;zt)))
¤k
+ IF(z; s; F )

Z Z
k

¡
xte

°s(F;x)
¢k
°dF (x)

(29)

where ¶(s) is an indicator equal to zero if s = 0 and O(zt) otherwise. Similarly

@B(F")

@"

¯̄
¯̄
"=0

= ¡B(F ) + zkt : (30)

The term zte
°¶(s) is unbounded for arbitrarily large contamination and so it is

clear that the (29) and (30) are unbounded if zt ! 1 in the case where k > 0;10

in the case where k < 0 the expressions are unbounded if zt ! 0. We may

conclude that the in°uence function of King's index is unbounded irrespective of

the mobility pattern (i.e. the value of s) and even if the mean is deterministic.

5 Simulation

We have seen that most of the single stage measures introduced in sections 3

and 4 are non-robust. In principle they might be extraordinarily sensitive in

that an in¯nitesimal amount of contamination in the wrong place could cause

the value of the index to be biased away from the value it would adopt for the

uncontaminated distribution. It remains to establish how important this issue is

10As zt ! 1 there are two possibilities for the term s (F; (xt¡1; zt)) in (29): either (i) it
diverges to in¯nity, or (ii) it vanishes in the case where Ft¡1(xt¡1) = 1 so that in the limit
Q(Ft;Ft¡1(xt¡1)) = zt. Given that ° ¸ 0, the result follows.

20



likely to be in practice.

To investigate this we could have taken a set of panel data and manipulated

some of the observations. However, there is always the danger that some results

may be speci¯c to the dataset chosen, and it would clearly be more illuminating

to be able to examine systematically the sensitivity of the simulation results to

changes in the characteristics of the underlying distribution. Given that our

purpose is to examine the behaviour of practical tools, rather than to discuss

case studies of particular examples of income mobility, it makes sense to use a

\dataset" over which one has some control @@

We therefore carried out a simulation on an arti¯cial distribution that has

characteristics similar to actual data. Our baseline distribution was a bivari-

ate lognormal with parameters that would be of the same order of magnitude as

empirical estimates for the Michigan Panel Study of Income Dynamics:11 this sug-

gested simulated data where marginal distributions were given by ¤(10:25; 0:5);12

a number of values for the correlation coe±cient on log-income were used in the

experiment

There are two main types of contamination that may then be modelled within

this bivariate framework. Type 1 is that of the \rogue pro¯le": both components

of the income pro¯le (xt¡1; xt) are simultaneously contaminated for particular

11The PSID income concept used was log annual, unequivalised, real, post-tax, post-bene¯t
income in 1989.

12We also calculated results for larger values of the scale parameter, but the qualitative results
remain intact.
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correlation=0.50 correlation=0.75
contam: 2.5% 5% 7.5% 10% 2.5% 5% 7.5% 10%
\Stability"indices
GE(-1) 0.9575 0.9344 0.9223 0.9133 0.9746 0.9615 0.9539 0.9488

(0.0131) (0.0117) (0.0108) (0.0096) (0.0093) (0.0081) (0.0073) (0.0068)

GE(0) 0.9328 0.9042 0.8908 0.8816 0.9614 0.9456 0.9377 0.9327
(0.0123) (0.0094) (0.0076) (0.0061) (0.0079) (0.0060) (0.0047) (0.0040)

GE(1) 0.9055 0.8811 0.8726 0.8677 0.9456 0.9326 0.9272 0.9245
(0.0156) (0.0109) (0.0089) (0.0075) (0.0100) (0.0073) (0.0058) (0.0052)

GE(2) 0.8954 0.8856 0.8846 0.8849 0.9374 0.9337 0.9315 0.9316
(0.0350) (0.0304) (0.0295) (0.0255) (0.0255) (0.0238) (0.0205) (0.0196)

Gini 0.9626 0.9437 0.9341 0.9275 0.9803 0.9706 0.9655 0.9622
(0.0072) (0.0054) (0.0042) (0.0033) (0.0042) (0.0031) (0.0024) (0.0020)

\Distance"-based indices
King 1.2146 1.2361 1.2383 1.2386 1.3805 1.4718 1.4843 1.4870

(0.0632) (0.0178) (0.0128) (0.0104) (0.1839) (0.0853) (0.0592) (0.0514)

Hart 0.8019 0.6655 0.5811 0.5112 0.7982 0.6643 0.5765 0.5106
(0.0552) (0.0478) (0.0425) (0.0360) (0.0642) (0.0542) (0.0457) (0.0414)

Fields-Ok 1.0017 0.9995 1.0008 1.0001 1.0005 0.9999 0.9999 1.0002
(0.0334) (0.0329) (0.0333) (0.0331) (0.0347) (0.0347) (0.0342) (0.0349)

Table 1: Bias in mobility indices resulting from type-1 contamination

observations in the data-set. Type-2 contamination may be thought of as the

\blip" problem: contamination may a²ict individual components of the pro¯le.

The experiment reported in Table 1 models \decimal-point contamination"13 of

the ¯rst type in a sample of size 500 where the contaminated observations range

from 2.5% to 10% of the sample.

shows the contaminated mobility estimate as a ratio of the true value (so an

unbiased entry would have the value 1.0000). The ¯gures in parentheses show

the standard errors of the estimate. As the top part of the table shows the

13This means that a proportion of the observations are recorded as being 10 times larger (in
our case) or smaller than they should be: it is one of several typical manual recording errors
found in practice.
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stability indices based on GE-measures or the Gini index can exhibit substantial

downward bias (4 to 13 percent) if the correlation coe±cient of the log-income

process is low; if the correlation is higher, the bias is reduced (the bias worsens

with a reduction in the lognormal dispersion parameter). The lower part of the

table shows that the bias for two of the distance-related measures can be very

large: the King index is biased upwards and the Hart index downwards. This

phenomenon persists even where the underlying log-income correlation is high.

The Fields and Ok index appears to perform extremely well in this case, but in

a \blip" experiment it performs as badly, or worse than, the King index - see Table

2. Inspection of (23) reveals why this is the case: simultaneous similarly-sized

perturbations of xt¡1 and xt will e®ectively cancel each other out, a phenomenon

that is absent from the \blip" model.

6 Transition matrices and related techniques

Income mobility is inherently a complex process, and the attempts at measuring

mobility usually involve some attempt at simplifying the underlying model of the

process; this a priori simpli¯cation then has consequences for the way in which

sample data are to be handled. The simpli¯cations usually involve discretisation

of the process, in one or both of two aspects - in state space and in terms of time.

The time discretisation is implicit in the discussion of Section 2.

Two-stage mobility indices involve discretisation of the state space. The tran-
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correlation=0.50 correlation=0.75
contam: 2.5% 5% 7.5% 10% 2.5% 5% 7.5% 10%
\Stability"indices
GE(-1) 0.9968 1.0090 1.0240 1.0402 1.0130 1.0402 1.0663 1.0929

(0.0140) (0.0136) (0.0140) (0.0137) (0.0109) (0.0118) (0.0133) (0.0130)

GE(0) 0.9919 0.9937 0.9978 1.0020 1.0155 1.0330 1.0463 1.0586
(0.0124) (0.0114) (0.0104) (0.0096) (0.0087) (0.0081) (0.0079) (0.0078)

GE(1) 1.0090 1.0063 1.0019 0.9960 1.0501 1.0640 1.0665 1.0662
(0.0144) (0.0150) (0.0149) (0.0146) (0.0109) (0.0123) (0.0131) (0.0131)

GE(2) 1.0795 1.0707 1.0543 1.0353 1.1592 1.1616 1.1468 1.1289
(0.0195) (0.0160) (0.0170) (0.0173) (0.0228) (0.0159) (0.0172) (0.0172)

Gini 0.9904 0.9833 0.9789 0.9745 1.0021 1.0037 1.0041 1.0045
(0.0090) (0.0091) (0.0088) (0.0082) (0.0063) (0.0069) (0.0068) (0.0070)

\Distance"-based indices
King 1.0718 1.0593 1.0658 1.0584 1.2522 1.2503 1.2458 1.2287

(0.1130) (0.1114) (0.1088) (0.1070) (0.1623) (0.1500) (0.1525) (0.1534)

Hart 1.1048 1.1864 1.2426 1.2821 1.3138 1.5533 1.7123 1.8551
(0.0716) (0.0750) (0.0780) (0.0785) (0.0965) (0.1059) (0.1161) (0.1232)

Fields-Ok 1.0750 1.1534 1.2289 1.3073 1.1159 1.2382 1.3525 1.4772
(0.0343) (0.0348) (0.0355) (0.0352) (0.0353) (0.0351) (0.0378) (0.0375)

Table 2: Bias in mobility indices resulting from type-2 contamination
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sition matrix approach is a standard example of the two-stage approach and

permits discussion of a richer pattern of income mobility than can be embodied

within a single class of stability or distance-based indices. It might be thought

that, as with the distance-based single-stage measures, the two-stage approach

makes sense only for cases where T = 2; but there is no reason a priori why this

should be so.14

The essential components of the approach are as follows. One speci¯es a set of

income classes (or \bins") into which observations from an empirical distribution

are sorted

Bi(F ) := [bi(F ); bi+1(F )); i = 1; :::; ¿

such that b1 = x, b¿+1 = ¹x. For simplicity we assume that the set of bins is

the same for both periods. The transition matrix is P(F ) := [pij(F )] where the

transition probabilities pij(F ) := Pr(xt 2 Bj(F ) j xt¡1 2 Bi(F )) may then be

expressed as 15

F (bi+1(F ); bj+1(F ))¡ F (bi(F ); bj(F ))
F (bi+1(F ); ¹x)¡ F (bi(F ); x)

: (31)

14One of the few authors who has attempted to deal with multiperiod generalisations of
the two-stage concept is Hills (1998). The modi¯cation of the approach to continuous time is
discussed in Geweke et al. (1986).

15The maximum likelihood estimator of (31) is: pij

¡
F (n)

¢
=

nij

n =
P

j
nij

n :
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The mobility index is then expressed as a function ­ of the transition matrix16

Mtrans(F ; ­) = ­ (P(F )) : (34)

The issues that concern us here fall roughly into two groups: the general charac-

teristics of the function ­ and the speci¯cation of the bins. This is easily seen if

we evaluate the in°uence function for this general class of measures. If we assume

that ­ in (34) is di®erentiable with bounded slope for all pij 2 [0; 1] then we have:

IF(z;Mtrans; F ) =
¿X

i;j=1

­ij(F )IF(z; pij ; F ) (35)

=
¿X

i;j=1

­ij(F )
@

@"
pij

¡
F (z)"

¢¯̄¯̄
"=0

(36)

where ­ij := @­(P(F )) =@pij .

Exogenous bins. We need to focus upon the di®erential in (36). Letting

bi(F ) = b
¤
i for all i = 1; :::; ¿ and assuming that zt 2 Bi(F ) and zt¡1 2 Bj(F ),17

16Two commonly-used examples of ­ are the Prais index, de¯ned as

Mtrans(F ; tr) =
n ¡ tr(P)

n ¡ 1
=

n ¡ P
i ¸i

n ¡ 1
(32)

where tr(P) is the trace of the n £ n transition matrix P, and ¸j its jth ordered eigenvalue.
The eigenvalue index is given by

n ¡ P
i j¸ij

n ¡ 1
(33)

which captures the speed of convergence of the underlying Markov process since all eigenvalues
of the stochastic matrix are bounded by one. The eigenvalue index equals the Prais index if
the eigenvalues of P are all real and non-negative.

17The other, easier cases can be derived immediately.
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we have

pij
¡
F (z)"

¢
=
[1¡ "]

£
F

¡
b¤i+1; b

¤
j+1

¢
¡ F

¡
b¤i ; b

¤
j

¢¤
+ "

[1¡ "]
£
F

¡
b¤i+1; ¹x

¢
¡ F (b¤i ; x)

¤
+ "

(37)

So we have

@

@"
pij

¡
F (z)"

¢¯̄¯̄
"=0

=
1¡ F

¡
b¤i+1; b

¤
j+1

¢
+ F

¡
b¤i ; b

¤
j

¢

F
¡
b¤i+1; ¹x

¢
¡ F (b¤i ; x)

(38)

¡
£
F

¡
b¤i+1; b

¤
j+1

¢
¡ F

¡
b¤i ; b

¤
j

¢¤ £
1¡ F

¡
b¤i+1; ¹x

¢
+ F (b¤i ; x)

¤
£
F

¡
b¤i+1; ¹x

¢
¡ F (b¤i ; x)

¤2

which is clearly bounded because it is independent of z.

Endogenous bins. It is quite common to link the bin boundaries bi to a

proportion of some statistic of the distribution, for example to a proportion of

the mean or to one of the quantiles. Clearly the expression (37) will now involve

additional terms of the form (1¡")F
³
bi+1(F

(z)
" ); bj+1(F

(z)
" )

´
. Di®erentiating this

term with respect to " in the neighbourhood of 0 gives

¡F (bi+1; bj+1) +
@F (bi+1; bj+1)

@bi+1(F )
IF(z; bi+1; F ) +

@F (bi+1; bj+1)

@bj+1(F )
IF(z; bj+1; F ) :

(39)

Thus, unless the bin boundaries are parametrised as robust statistics such as

functions of quantiles, the transition probabilities estimator su®ers from an un-

bounded in°uence function. However, the positive result is that transition ma-

trices computed on the basis of deciles or other quantiles are indeed robust.

The robust choice of income classes then implies robust estimates of the tran-
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sition probabilities. The choice of the mobility index from this class of indices

is irrelevant from the view point of robustness, and should be guided by other

considerations.

7 Concluding Remarks

We have seen that in the presence of data contamination commonly used \single-

stage" mobility measures usually behave rather di®erently from appropriately

designed two-stage models of mobility. Why do single-stage models go wrong?

These measures are typically expressible in the form

M(F ) = A (L1(F ); L2(F ); :::) (40)

where

Li(F ) :=

Z
Ei(x)Wi (F (x)) dF (x); i = 1; 2::: ; (41)

Ei : X ! < is an income evaluation function, Wi : F1 ! < is a linear or

constant weighting functional. The form (40) typically exhibits the following

characteristics:

² The linear functionals Li of the distribution are de¯ned over all of X.

² The integrand in (41) diverges to in¯nity for some x 2 X.

² A nonlinear aggregation function A.
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The problem with single-stage indices comes partly from integrating over the

whole domain, partly from the form of the sensitivity of the E or W that causes

the integrand to diverge, and partly from the fact the components of the impact of

contamination do not cancel because of nonlinearity of the aggregation function.

The two-stage approach deals with these things separately. In stage 1 we

process information: a non-linear function ¯lters out information from parts of

the domain X; in particular extreme values may be ¯ltered if the data \bins"

are function of robust statistics of the distribution. In stage 2 the evaluation

and weighting jobs performed by the functions E and W in (41) are achieved by

appropriate speci¯cation of the function ­ in (34).

The analysis of robustness has an important role to play in the speci¯cation

and selection of income-mobility indices. Unlike the case of inequality measures or

Social-Welfare Functions there is not really a good a priori case for one mobility

index rather than another or one class of indices rather than another. Instead,

most commonly-used mobility measures are essentially pragmatic. Robustness

properties can be one good guide to the choice of a pragmatic index.
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