Income Mobility: A Robust Approach

by

Frank Cowell
STICERD, London School of Economics and Political Science

and

Christian Schluter
University of Bristol

The Toyota Centre

Suntory and Toyota International Centres for
Economics and Related Disciplines

London School of Economics and Political Science

Discussion Paper Houghton Street
No.DARP/37 London WC2A 2AE
July 1998 Tel.: 020-7955 6678

Partially supported by the ESRC Centre for Analysis of Social Exclusion (CASE), and by
ESRC grant R5500XY8. We gratefully acknowledge helpful comments by Dirk Van de Gaer
and Maria-Pia Victori-Feser, and research assistance by Chris Soares and Hung Wong.



Abstract

The performance of two broad classes of mobility indices is examined when
allowance is made for the possibility of data contamination. Single-stage indices —
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usually prove to be non-robust in the face of contamination. Two-stage models of
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other tool is applied — may be robust if the first stage is appropriately specified. We

illustrate results using a simple but flexible simulation.
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1 Introduction

Reliable indicators of mobility are of continuing relevance for theoretical work and
policy applications in several important areas, for example, the study of poverty
transitions, the modelling of bequest dynamics, the characterisation of earnings
or income histories. Because the measurement of income mobility involves the
comparison of distributions of income profiles it may inherit some of the practical
problems associated with empirical income distributions. The problem of mea-
surement error has long been recognised (Bound et al. 1989, Bound and Krueger
1989), but other difficulties remain. Prominent among these is the problem of
contamination:! even if one is reasonably confident about a data source, it is
obviously inappropriate to assume that the data will automatically give a rea-
sonable picture of the “true” picture of mobility. A researcher may anticipate
that, because of miscoding and other types of mistake, some of the observations
will be incorrect, and this may have a serious impact upon mobility estimates
and comparisons. The purpose of this paper is to examine the performance of
some important classes of mobility measures in the presence of contamination.
The central question that we wish to address is whether the properties of mo-
bility indices in conjunction with the characteristics of panel data can give rise
to misleading conclusions about income-mobility patterns. Obviously if contam-

ination is in some sense “large” relative to the true data then we cannot expect

! The relationship between the two types of approach to imperfections in the data is discussed
in Cowell (1998).



to get sensible estimates of mobility indices; but what if the contamination were
quite small? Could it be the case that isolated “blips” in the data or extreme
values could drive estimates of income mobility? We analyse this problem using
methods of robust analysis that have become established in other fields.

There is a special difficulty associated with the problem of data contamina-
tion in the present context. Pragmatic approaches that are relatively easy to
implement in other income distribution problems may be impractical in applica-
tions to issues such as the measurement of mobility. For example, in the analysis
of income inequality, it may be appropriate to “trim” data by eye or by algo-
rithm, but the types of rule-of-thumb treatment of outliers that could work well
for a univariate problem are likely to be unwieldy in the case of multivariate
distributions.

This practical difficulty underlines the importance of understanding the gen-
eral properties of mobility indices when applied to contaminated data. Our ap-
proach is to establish these properties for two broadly-defined types of index using
a simple model of data contamination. Section 2 sets out the basic ingredients
of the approach; sections 3 and 4 discuss the first of the two principal types of

mobility indices; section 6 discusses the second type of index; section 7 concludes.



2 The Fundamentals

We suppose that an income history can be described by a T-dimensional random
variable X where 7' > 2. The variate X may be thought of as a profile of
income-events over T discrete periods from which one wishes to estimate income
mobility. We write the set of income profiles as X = [z,Z] x [z,Z] X ... X [z, 7]
where [z, Z] is an interval in . Notice that for some approaches to the problem
of analysing economic mobility one may wish to restrict X to a strict subset of
T-dimensional space R? because, for example, one may wish to rule out zero or
negative incomes as irrelevant a priori; however, unless otherwise specified, we
assume that £ = —oo and T = o0.

We will use the symbol ‘-’ to denote the vectorial product (inner product) of

two members of RT.

2.1 Distributions

Assume that the distribution of income profiles a particular dynamic economy is
given by some distribution function F' : X — [0,1]. Let §r be the class of all
valid T-variate distribution functions. We will find useful a number of derived
distributions of linear combinations of the T-variates X. Given a parametric

weight vector w € 27, w-1 = 1 and any F € §r, these derived distributions



can be expressed in the form of a functional ¥(-; F, w) : § — R where

~—

U(y; F,w) :—/.../{x:w.xy}dF(x). (1

For example the marginal distribution of income in the ¢th period is W(-; F, e;)
where e, is the tth unit vector (0,0, ...,0,1,0.,..,0), and the distribution of (un-

weighted) average income over the T periods is ¥ (-; F,T'1).

2.2 Mobility

A mobility index M is a real-valued functional defined on the space of T-variate
random distributions M : §Fr — R. There are several competing intellectual
approaches to the specification of such indices, which need not detain us here.
Specific types of mobility indices are discussed in Sections 3 to 6 below; for
the moment note that the class of indices M be resolved into two important

subclasses:

e single-stage indices which attempt to make full use of information in F,

e two-stage indices that are based on partial discretisation of the distribution

F' a priori.

For a particular multivariate distribution F' € §r we may express the mobility
index as the value of the functional M(F). In many practical applications the

“true” distribution will not be known but must be estimated from some dataset.



Let x := x4, ...,X, denote a sample of size n where each x; € X is a realisation of

X. An estimator of M(F) is then obtained principally by one of two approaches.

1. For the non-parametric approach one replaces F' with the empirical distri-
bution: F™(x) := 13" A, (x) where Ay is a point mass at y. Letting
the sample size n — o0, by the Glivenko-Cantelli theorem the estimator can
be written as a functional of the distribution function F, i.e. asymptotically

the mobility index M (F®™)) becomes M (F) (Victoria-Feser 1998).

2. In the parametric approach one assumes a priori that X ~ Fy where Fy is a
member of a family of distributions characterised by the parameter vector
0. One then finds 6 - an estimate of 8 - from the sample x and estimates

mobility using Fj.

Here we will assume that a complete set of micro-data is available for the T

periods, and we focus upon non-parametric methods.

2.3 Data Contamination

Because in practice a mobility index is usually estimated using a sample one
should realistically expect that the data may be subject to contamination: for
example the misreporting of weekly as monthly income, or the presence in the
sample of data points that have been miscoded by the data transcriber (the
classic decimal-point error). If one had reason to suspect that this sort of error

were extensive in the data sets under consideration the problem of distributional



comparison might have to be abandoned because of unreliability. However, it is
possible that there might be a fairly serious problem of comparison even if the
amount of contamination were fairly small, so that the data might be considered
“reasonably clean”.

A standard model of this type of problem is as follows.? Suppose that the
“true” multivariate distribution for which we wish to estimate mobility is F' but,
because of the problem of data-contamination, we cannot assume that the data
actually observed have really been generated by F. What we actually observe
instead of F' is a distribution that is in some neighbourhood of it, F. = (1—¢)F +
eH where 0 < € < 1 and H is a perturbation distribution. For example, H could

be a distribution of discrete masses in X

ap ifx=12

o, ifx=z,

\

Vi, a; > 0, and > «a; = 1, z1,...,2,, € X. Then F; is the mixture model from
which an observation has probability (1 — ¢) of being generated by F' and a
probability ea; of being an arbitrary value z;. The distribution H represents a
simple form of data contamination at points zq, ..., z,,; € indicates the importance

of the contamination; the convex combination F} is the observed distribution, and

2This approach is based upon the work of Hampel (1968, 1974), Hampel et al. (1986), Huber
(1986).



F remains unobservable.?

Clearly if € in (3) were large we could not expect to get sensible estimates of
mobility indices; but what if the contamination were very small? To address this
question for any given mobility statistic M we can use an elementary version of (2)
where a mixture distribution is constructed by combining the “true” distribution
F with a single contamination point mass at income z € X:

F# =[1—¢|F+ecH® (3)

€

where H® is a degenerate distribution defined by:

1l ifx=2z

dH® (x) = (4)

0 otherwise

The appropriate tool for assessing the impact of an infinitesimal * amount of

contamination upon the mobility estimate is then given by the influence function:

(5)

3Notice that in the multivariate approach of our model it is legitimate to assume that the
observations x; are iid; the dependence between the components of x; of course remains. This
is by contrast to the problems of robustness in the analysis of time-series data the observations
are not iid (Kiinsch 1984), (Hampel, Ronchetti, Rousseeuw, and Stahel 1986) pp 417ff. How-
ever the assumption implies that issues of missing data and attrition in panel data have been
appropriatly dealt with.

4“Infinitesimal” means here that the probability e that this contamination occurs tends to
Zero.



or, when the derivative exists, by &M (FE(Z))

e=0

The IF gives the influence on the estimator M of contamination at the point
z, and its value will depend upon the position of z with respect to the position
of the majority of the data. The expression (5) indicates whether an estimate
of mobility will be stable in the presence of a few “alien” observations in the
income profile and, because the IF is the first-order term in the linear expansion
of the asymptotic bias of the estimator it will also provide information about the
bias of the mobility estimate. If, under the given model of data-contamination
(3) IF in (5) is bounded for all z € X, the mobility statistic M is robust. Of
course it is particularly interesting to know whether IF could in practice be un-
bounded. Typically, this problem of unboundedness can arise when components
of z approach extreme values such as co, —oo or 0: in this case a single extreme
observation in the income profile could drive the mobility estimate by itself.

Clearly it would be useful to know how the influence function will behave for
various types of data contamination for a wide class of mobility indices. So in
sections 3 to 6 we will examine the problem of characterising IF for certain key

types of statistics M.

3 Stability indices

The first subclass of single-stage indices builds upon an extension of inequality

analysis. The principal developments are attributable to Shorrocks (1978) and



Maasoumi and Zandvakili (1986, 1990); they proposed a class of mobility mea-
sures based on the comparison of the inequality of (weighted) average income to
a weighted average of contemporaneous inequalities. Given an inequality index

I:3F1 — R and a set of weights w := [wy], a typical stability index is

I(Fy)

Ms(F;I,w):=1— ———"—
ZtT:1wt](Ft)

(6)

where Fy(+) := V(+; F,w) and Fy(-) := U(-; F, e;) are the distribution of weighted
average income and the marginal distribution (see 2.1 above).

We assume that the true joint distribution function F' is not directly ob-
servable, and that we have to work with the contaminated distribution function
specified in (3). This of course affects all the derived distributions. For example,
under this model of contamination, the observed distribution of weighted average

income becomes

U (y; FP w) = (1—e)¥(y; F,w) +et(w-z [0 y) (7)

where ¢(c) is an indicator function equal to 1 if condition ¢ is met and 0 otherwise.

Furthermore, because the mobility index (6) is defined as a function of the
values of an inequality statistic for several derived distributions of F’, its influence
function will be a function of the influence function for the inequality index

implemented for these derived distributions. More precisely, using F® in (6)



and differentiating yields

IF(z; Mg, F) = %Ms (F;1,w) (8)
e=0
 IF(z,F)  I(Fw) Y wlF(z; 1, F)
T + 2 (9)
> iy wil (F) [Zthl wy I (F})

Whether the influence function of the stability index Mg is bounded depends on
whether IF(z; I, Fy,) and IF(z; I, F}) are bounded, and on whether the compo-
nent expressions (9) cancel out. If they do not cancel, IF(z; Mg, F') is typically
unbounded. A cancellation of terms certainly occurs in two trivial situations.
Assume that the weights w; are deterministic. In the first case, if the inequality

5 a universal mul-

measure [(.) belongs to the class of scale-independent measures,
tiplication of incomes (including the contamination) between periods X; = 6.X;_1,
leaves all inequality measures unaffected. The stability measure (6) is therefore
a constant being unaffected by the contamination. Likewise, if I(.) belongs to
the class of translation-independent measures, the cancellation is induced by a
universal shift in incomes X; = X;_; + 9; other trivial cases could be found for
different types of inequality-neutrality. However, the practical relevance of such

cross-sectional behaviour is probably rather slight. The only exception may be a

perfectly immobile society in which cross-sections are just replicated.

SFor any F' € §1 let F(*%) be the distribution derived by a translation k € R, where
FOR)(z) = F(z — k), and let FO%) be the distribution derived from F by transforming
the income variable by a scalar multiple & € R, where F>*) () = F (%), then scale-

independent measures have the property I (F (Xk)) = I (F) and for translation-independent
measures [ (F(+F)) = I (F). See Cowell (1998) for a discussion of these and related concepts.

10



It appears that in practice one might expect the influence function of the
stability index to be unbounded. However two issues remain to be resolved.
The first is whether this will actually occur (outside trivial income profiles) for
standard implementations of stability measures given deterministic weights w:
not all inequality indices are inherently robust (Cowell and Victoria-Feser 1996).
The second is that we also need to consider cases where weights are stochastic
and themselves are subject to contamination: it is possible that reweighting
income within the concept of aggregated income w - X and reweighting average
inequality in the denominator of (6) may have a non-trivial impact upon the
robustness property of the stability index. These issues will now be examined for

two principal types of inequality index and their associated stability indices.

3.1 The generalised entropy index

A popular inequality index for use in the mobility measure (6) is the generalised

entropy index. For any G € § this is given by

1 (G
leria(G) = el (10)
where i, is the functional

/mm—/wmm, (11)

11



p is the mean pu(G) := py(G)and a € R is the sensitivity parameter of the index.®
However the principal difficulty with (10) from the point of view of practical
application to the construction of a stability index is that the inequality index is
inherently non-robust. The primary reason for this lies in the behaviour of the
integral in (11): consider a one-dimensional version of (3) where there is point
contamination at x = Z; then for the mixture distribution GY) the integral in

(11) becomes

/ 226D (2) = (1 — )1a(C) + £3° - (12)

the last term in (12) can be arbitrarily large when suffering from a large outlier if
a > 0 or an outlier near zero if & < 0. For the second reason for the nonrobustness

of the GE index consider its influence function which is given by’

IF(z; IGE(Q),G) =A+Bz*+Cz (13)

6For « large and positive the index is sensitive to changes at the top of the income distri-
bution, for o negative the index is sensitive to changes at the bottom of the distribution. At
a =0 and a = 1 (10) adopts the form of the MLD and the Theil index respectively. (Cowell
1998)

"Using (10) the generalised entropy index for the contaminated income distribution is

Tor(a)(G2) = a12__5a T/ ru(ég)rdG(x) N 1] - a;— a u(éé)r - 1}

and so, differentiating with respect to € in the neighbourhood of ¢ = 0, the influence function
is [ O O O

7 o) -/ ) 0] ) 90
which gives (13).

12



where A := Igp) (G)[a—1]+1/a, B = u(G)~*[a? — a] ', C := —L= [algn@)(G)
are expressions independent of the contamination. Clearly, the function (13) is
unbounded for all values of « for sufficiently large z because of the last term
in parentheses which comes from the impact of contamination upon the mean
1 (GS)) (Cowell and Victoria-Feser 1996).

Then, by setting G = F; and G = Fy, we can see that this behaviour of
the influence function will apply to all the component inequality indices in the
stability index (6): all the component inequality indices are nonrobust.® To see
whether this implies nonrobustness of the associated mobility index the influence
functions for Mg can now be derived for the generalised-entropy implementation.
Assume first that the set of weights w in (6) is deterministic. Then the function

(9) becomes

T
Ice(o)(Fw)IF(Z; IgE(a), 1) — IoE() (F)IF(Z; IcE(a), Fw
IF (z: Ms, F) — > iy W [ane) (Fw)IF(2; Iap(o), Fi) GE(Q)( DIF (z; Iag(a), Fw)]
Z;le wilc(e) (F)

(14)

Substituting from (13) into (14) we see that the terms involving the un-
bounded contamination terms z; and z;* vanish only if (a) true inequality Igg(a)(Ft)
in each cross-section ¢ equals Igg()(Fw) and (b) z is proportional to z_; for all
t. This can only occur if every income profile is a straight line with identical slope

and it follows from the fact that the generalised entropy index is a scale indepen-

8This can be seen from the above argument by for putting 2 = w -z for G = Fy, and w = e,
for G = F;.

13



dent inequality measure. Except for this trivial situation (14) is unbounded as
2y — o0: the mobility index is not robust.
In the case where the set of weights w; is endogenous a conventional param-

eterisation is

Wy = ——= (15)

where F(-) = W (; F,T~'1) is the distribution of T-period average income. This
modification is easily incorporated in the denominator of (10), leaving the subse-
quent derivation essentially unchanged: the mobility index Mg for the Generalised

Entropy class is not robust whether or not weights are exogenous.

3.2 The Gini coefficient

For any G € §; the Gini coeflicient can be written as the functional

' C(G;q)dg

Igini(G) =1 — 2f0 (G (16)

where C(G;q) := wa(G;q) zdG(z) ,Q(G;q) = inf{x : G(x) > ¢}.C and @ are the
cumulative-income and quantile functionals respectively. Now from Cowell and

Victoria-Feser (1996) and Monti (1991) we may derive

]
IF (2 Igmi, G) = [15-7(;1111(@)] m-Fl
G -z oL HME e B
D2 (1- @) - ) + L (1 66+ 2)

14



/M(G)Z udG(u) + /M(GHZ udG (u) (17)

—0o0 —00

which may be shown to be unbounded as z — 4o00. The influence functions for
Gini-inequality of aggregated income and of individual cross-sectional distribu-
tions are derived from application of (17).

With endogenous weights (15) the mobility index is found by using (15) and

IGini(G) n (6)

W(F) — [ C(F;q)dg

Ms(F;I,w)=1-— -
Zthl [N(Ft) - fo C(Fy; Q)dCJ}

(18)

The influence function of the mobility index is then given as a special case of (8)
by applying (16); it is immediate from (17) that IF(z; Ms, F') is also unbounded

for the Gini index with endogenous weights.

4 “Distance” and related measures

A second principal subclass of single-stage indices interprets mobility in terms
of “distributional change” (Cowell 1985) and typically focuses upon measures
that incorporate a concept of distance between incomes. As far as the measures’
properties in the face of contaminated data are concerned they can be treated
in the same manner as the approach of section 3. The distributional-change

approach requires restriction to a two-period interpretation of mobility: we will

15



label the two periods (¢ — 1,t) and x := (x_1, 7y).
Theorem 1 of Cowell (1985) establishes that subgroup-decomposable contin-

uous measures of distributional change must take the form

Mo (F) = 6 ( [ px) are), u(F)) (19)

where the function D : X x X — R embodies the concept of distance. A principal
example of (19) is derived in the case where the function D is homothetic, in which

case the measure takes the form of a generalised conditional entropy index:

=

where « is a sensitivity parameter (Cowell 1980). In the light of the argument in

[

Tl Ta t r—1 dF (x) (20)

p(Fip)

subsection 3.1 it is immediate that (20) is nonrobust for all . However there are
other commonly-used indices that are either examples of (19) or that employ a
similar notion of aggregating the “distance” between individuals’ incomes in the

two distributions.



4.1 The Hart index

The Hart index incorporates the concept of distance that is implicit in the use of

the variance of logarithms:

MHart(F) =1~ T(lOg xtfblogxt) (21)

where r(.) is the correlation coefficient (Shorrocks 1993). It may be defined

equivalently as

Migart(F) =1 — % (22)

p—

where

A(F) = / / log ] [log 2] dF — u(F} ()

B(F) =/ [pa(Fy ) — w(F7 1)) [pa(F) — ol Fy )

and logx ~ F*. The index (21) is thus composed entirely of linear functionals,

each of which is nonrobust; its influence function then is 2% IF(Z;A’FE); (;)’3 (F) IF(z,B.F)

Moreover, the contaminations do not cancel out, leading us to conclude that My,

is not robust.?

9Examine for instance one term of B, such as us(F; ;) — u(Fy 1)? . For the contaminated

distribution Fg(z) this becomes
(1- 5)H2(Ft*—1) + 52?—1 +(1 - E)QN(Ft*—l)Q + 522%—1 —2(1 - E)EM(Ft*—l)Zt—l'

The observation that no terms cancel out is then immediate.



4.2 The Fields-Ok Index

Recently Fields and Ok (1997) have proposed a mobility index which can be seen
as a special case of (19) where the distance concept is based on the absolute

differences of logarithms:

Mro(F) = C// |log w11 — log 24| dF'(z—1, 24). (23)

In order to establish the properties of (23), since |a — b| > (a — b), it is helpful

to examine the behaviour of the following functional:
m(F) := c/ / (logxy_1 — log ) dF (w1, zy). (24)
In the presence of the contamination given in equation (3), this becomes
m (FE(Z)) = (1 —e)m(F) + ec(log z;—1 — log z) (25)
The influence function is thus
IF(m; F,z) = —m(F) + c[log z;—1 — log 2] (26)

As z1 — o0 it is clear that (26) is unbounded from above unless z;_; =
2. Since Myo(F) > m(F) this implies that the index (23) is also non-robust.

A similar argument applies if z; — 0; so Mg is non-robust for this form of

18



contamination. For the reverse contamination profile, exchange x; ; and x; in

(24): we may conclude that the index Mpo is generally non-robust.

4.3 The King Index

King’s (1983) welfarist approach to the measurement of mobility differs in two
aspects from other measures incorporating a distance concept. Following Atkin-
son (1970), he derives axiomatically a social-welfare function consistent with the
proposed mobility measure. Second, he refers to social mobility as changing ranks

within distributions. The index can be expressed as

==

[ [ (xteVS(F’x))k dF(x)

Migina (F) = 1 — k1 k#£0,v>0 27
where s(F;x) := |xt_Q(F25§;)l(w“l))|is the “scaled order statistic” which captures
reranking.

To examine its robustness properties write (27) as 1 — [A(F)/B(F)]*’* where

A(F) iz//(xte“(F’x))de(x) (28)

and B(F) := pug(F;). It suffices to examine the expressions A(F) and B(F)



separately. With point mass contamination at z it follows that

OA(Fy)
Oe

A(F)—i—[ztew(s(F(“ 1,Zt)))] —|—IF Z s, F // efys(Fx ,de( )

e=0
(29)
where ¢(s) is an indicator equal to zero if s = 0 and O(z;) otherwise. Similarly

OB(F:)
Oe

= —B(F) + 2F. (30)

e=0

The term ze"® is unbounded for arbitrarily large contamination and so it is
clear that the (29) and (30) are unbounded if z; — oo in the case where &k > 0;'°
in the case where k£ < 0 the expressions are unbounded if z; — 0. We may
conclude that the influence function of King’s index is unbounded irrespective of

the mobility pattern (i.e. the value of s) and even if the mean is deterministic.

5 Simulation

We have seen that most of the single stage measures introduced in sections 3
and 4 are non-robust. In principle they might be extraordinarily sensitive in
that an infinitesimal amount of contamination in the wrong place could cause
the value of the index to be biased away from the value it would adopt for the

uncontaminated distribution. It remains to establish how important this issue is

10As 2, — oo there are two possibilities for the term s (F, (z;_1,2;)) in (29): either (i) it
diverges to infinity, or (ii) it vanishes in the case where F;_j(x4_1) = 1 so that in the limit
Q(Fy; Fi—1(x4—1)) = 2. Given that v > 0, the result follows.

20



likely to be in practice.

To investigate this we could have taken a set of panel data and manipulated
some of the observations. However, there is always the danger that some results
may be specific to the dataset chosen, and it would clearly be more illuminating
to be able to examine systematically the sensitivity of the simulation results to
changes in the characteristics of the underlying distribution. Given that our
purpose is to examine the behaviour of practical tools, rather than to discuss
case studies of particular examples of income mobility, it makes sense to use a
“dataset” over which one has some control @QQ

We therefore carried out a simulation on an artificial distribution that has
characteristics similar to actual data. Our baseline distribution was a bivari-
ate lognormal with parameters that would be of the same order of magnitude as
empirical estimates for the Michigan Panel Study of Income Dynamics:'! this sug-
gested simulated data where marginal distributions were given by A(10.25,0.5);2
a number of values for the correlation coefficient on log-income were used in the
experiment

There are two main types of contamination that may then be modelled within
this bivariate framework. Type 1 is that of the “rogue profile”: both components

of the income profile (z;_1,x;) are simultaneously contaminated for particular

1 The PSID income concept used was log annual, unequivalised, real, post-tax, post-benefit
income in 1989.

12We also calculated results for larger values of the scale parameter, but the qualitative results
remain intact.

21



correlation=0.50 correlation=0.75

contam: 2.5% 5% 7.5% 10% 2.5% 5% 7.5%
“Stability”indices
GE(-1) 09575 0.9344 0.9223 0.9133 0.9746  0.9615  0.9539

(0.0131) (0.0117) (0.0108) (0.0096)  (0.0093) (0.0081) (0.0073)

GE(0) 0.9328 0.9042 0.8908  0.8816 0.9614 0.9456  0.9377

(0.0123) (0.0094) (0.0076) (0.0061)  (0.0079) (0.0060) (0.0047)

GE(1) 0.9055  0.8811  0.8726  0.8677 0.9456  0.9326  0.9272

(0.0156)  (0.0109) (0.0089) (0.0075)  (0.0100) (0.0073) (0.0058)

GE(2) 0.8954  0.8856  0.8846  0.8849 0.9374  0.9337  0.9315

(0.0350)  (0.0304) (0.0295) (0.0255)  (0.0255) (0.0238) (0.0205)

Gini 0.9626  0.9437  0.9341  0.9275 0.9803  0.9706  0.9655

(0.0072) (0.0054) (0.0042) (0.0033)  (0.0042) (0.0031) (0.0024)

“Distance”-based indices
King 1.2146  1.2361 1.2383  1.2386 1.3805  1.4718  1.4843

(0.0632) (0.0178) (0.0128) (0.0104)  (0.1839) (0.0853) (0.0592)

Hart 0.8019  0.6655 0.5811  0.5112 0.7982  0.6643  0.5765

(0.0552) (0.0478) (0.0425) (0.0360)  (0.0642) (0.0542) (0.0457)

Fields-Ok 1.0017  0.9995 1.0008  1.0001 1.0005  0.9999  0.9999

(0.0334)  (0.0329) (0.0333) (0.0331)  (0.0347) (0.0347) (0.0342)

Table 1: Bias in mobility indices resulting from type-1 contamination

observations in the data-set. Type-2 contamination may be thought of as the
“blip” problem: contamination may afflict individual components of the profile.
The experiment reported in Table 1 models “decimal-point contamination”!? of
the first type in a sample of size 500 where the contaminated observations range
from 2.5% to 10% of the sample.

shows the contaminated mobility estimate as a ratio of the true value (so an
unbiased entry would have the value 1.0000). The figures in parentheses show

the standard errors of the estimate. As the top part of the table shows the

13This means that a proportion of the observations are recorded as being 10 times larger (in
our case) or smaller than they should be: it is one of several typical manual recording errors
found in practice.
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10%

0.9488
(0.0068)
0.9327
(0.0040)
0.9245
(0.0052)
0.9316
(0.0196)
0.9622
(0.0020)

1.4870
(0.0514)
0.5106
(0.0414)
1.0002
(0.0349)



stability indices based on GE-measures or the Gini index can exhibit substantial
downward bias (4 to 13 percent) if the correlation coefficient of the log-income
process is low; if the correlation is higher, the bias is reduced (the bias worsens
with a reduction in the lognormal dispersion parameter). The lower part of the
table shows that the bias for two of the distance-related measures can be very
large: the King index is biased upwards and the Hart index downwards. This
phenomenon persists even where the underlying log-income correlation is high.
The Fields and Ok index appears to perform extremely well in this case, but in
a “blip” experiment it performs as badly, or worse than, the King index - see Table
2. Inspection of (23) reveals why this is the case: simultaneous similarly-sized
perturbations of x;_; and x; will effectively cancel each other out, a phenomenon

that is absent from the “blip” model.

6 Transition matrices and related techniques

Income mobility is inherently a complex process, and the attempts at measuring
mobility usually involve some attempt at simplifying the underlying model of the
process; this a priori simplification then has consequences for the way in which
sample data are to be handled. The simplifications usually involve discretisation
of the process, in one or both of two aspects - in state space and in terms of time.
The time discretisation is implicit in the discussion of Section 2.

Two-stage mobility indices involve discretisation of the state space. The tran-
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correlation=0.50

correlation=0.75

contam: 2.5% 5%
“Stability”indices

GE(-1) 0.9968  1.0090
(0.0140)  (0.0136)
GE(0) 0.9919  0.9937
(0.0124) (0.0114)
GE(1) 1.0090  1.0063
(0.0144)  (0.0150)
GE(2) 1.0795  1.0707
(0.0195)  (0.0160)
Gini 0.9904 0.9833
(0.0090)  (0.0091)
“Distance”-based indices
King 1.0718  1.0593
(0.1130)  (0.1114)
Hart 1.1048 1.1864
(0.0716)  (0.0750)
Fields-Ok 1.0750 1.1534
(0.0343)  (0.0348)

7.5%

1.0240
(0.0140)
0.9978
(0.0104)
1.0019
(0.0149)
1.0543
(0.0170)
0.9789
(0.0088)

1.0658
(0.1088)
1.2426
(0.0780)
1.2289
(0.0355)

10%

1.0402
(0.0137)
1.0020
(0.0096)
0.9960
(0.0146)
1.0353
(0.0173)
0.9745
(0.0082)

1.0584
(0.1070)
1.2821
(0.0785)
1.3073
(0.0352)

2.5%

1.0130
(0.0109)
1.0155
(0.0087)
1.0501
(0.0109)
1.1592
(0.0228)
1.0021
(0.0063)

1.2522
(0.1623)
1.3138
(0.0965)
1.1159
(0.0353)

5%

1.0402
(0.0118)
1.0330
(0.0081)
1.0640
(0.0123)
1.1616
(0.0159)
1.0037
(0.0069)

1.2503
(0.1500)
1.5533
(0.1059)
1.2382
(0.0351)

7.5%

1.0663
(0.0133)
1.0463
(0.0079)
1.0665
(0.0131)
1.1468
(0.0172)
1.0041
(0.0068)

1.2458
(0.1525)
1.7123
(0.1161)
1.3525
(0.0378)

Table 2: Bias in mobility indices resulting from type-2 contamination

10%

1.0929
(0.0130)
1.0586
(0.0078)
1.0662
(0.0131)
1.1289
(0.0172)
1.0045
(0.0070)

1.2287
(0.1534)
1.8551
(0.1232)
1.4772
(0.0375)



sition matrix approach is a standard example of the two-stage approach and
permits discussion of a richer pattern of income mobility than can be embodied
within a single class of stability or distance-based indices. It might be thought
that, as with the distance-based single-stage measures, the two-stage approach
makes sense only for cases where T' = 2; but there is no reason a prior:i why this
should be so.'

The essential components of the approach are as follows. One specifies a set of
income classes (or “bins”) into which observations from an empirical distribution

are sorted

such that b; = z, b,11 = Z. For simplicity we assume that the set of bins is
the same for both periods. The transition matriz is P(F') := [p;;(¥)] where the
transition probabilities p;;(F) := Pr(x; € B;(F) | z1-1 € B;(F)) may then be

expressed as 19

F (b1 (F),bj1(F) = F (b:(F), b;(F))
F(bz-‘rl(F)wf) - F(bZ(F)7£)

(31)

40ne of the few authors who has attempted to deal with multiperiod generalisations of
the two-stage concept is Hills (1998). The modification of the approach to continuous time is
discussed in Geweke et al. (1986).

15The maximum likelihood estimator of (31) is: p;; (F(")) =2/ > o3



The mobility index is then expressed as a function € of the transition matrix!®

Mipans(F3 Q) = 2 (P(F)). (34)

The issues that concern us here fall roughly into two groups: the general charac-
teristics of the function €2 and the specification of the bins. This is easily seen if
we evaluate the influence function for this general class of measures. If we assume

that Q in (34) is differentiable with bounded slope for all p;; € [0, 1] then we have:

IF(2; Misans: F) = Y Q(F)IF(2; pyj, F) (35)
ij=1
- 9 (@)
= ) Q(F) 5P (F2) (36)
ij=1 € e=0

where Q;; := 0Q (P(F)) /0Opi;.
Ezogenous bins. We need to focus upon the differential in (36). Letting

bi(F) = b; for all i = 1,...,7 and assuming that z; € B;(F) and z_, € B;(F),"”

16Two commonly-used examples of 2 are the Prais index, defined as

n—tr(P) n—>,\
n—-1  n-1

Mtrans(F;tr) = (32)
where tr(P) is the trace of the n x n transition matrix P, and \; its jth ordered eigenvalue.
The eigenvalue index is given by

n =2\

33
= (33)
which captures the speed of convergence of the underlying Markov process since all eigenvalues
of the stochastic matrix are bounded by one. The eigenvalue index equals the Prais index if
the eigenvalues of P are all real and non-negative.

1"The other, easier cases can be derived immediately.
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we have

_ [1—¢] [F (bé‘+1>b§+1) — F(b,05)] +¢

» (2 — 57
10]( e ) [1_5] [F(bf_f_l,.f')_F(b;‘ka&)}—i_E ( )
So we have
0 1= F (b, b5) + F (b, 07)
9 pe _ e N
5P (F2”) » F (b7,7) — F (0, z) ”
CLF ) — F006)] 1= F (0,7) + F (0.2

[F (b, 7) — F (bF,2)]”

which is clearly bounded because it is independent of z.

Endogenous bins. It is quite common to link the bin boundaries b; to a
proportion of some statistic of the distribution, for example to a proportion of
the mean or to one of the quantiles. Clearly the expression (37) will now involve
additional terms of the form (1—¢)F (le(FE(Z)), bj+1(FE(Z))). Differentiating this
term with respect to € in the neighbourhood of 0 gives

OF (biy1,bj11)
Ob;1(F)

OF (biy1,bj11)
Obj 1 (F)

—F (bis1,bj41) + IF(z; b4, F) + IF(z;bj41, F) .
(39)
Thus, unless the bin boundaries are parametrised as robust statistics such as
functions of quantiles, the transition probabilities estimator suffers from an un-
bounded influence function. However, the positive result is that transition ma-

trices computed on the basis of deciles or other quantiles are indeed robust.

The robust choice of income classes then implies robust estimates of the tran-
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sition probabilities. The choice of the mobility index from this class of indices
is irrelevant from the view point of robustness, and should be guided by other

considerations.

7 Concluding Remarks

We have seen that in the presence of data contamination commonly used “single-
stage” mobility measures usually behave rather differently from appropriately
designed two-stage models of mobility. Why do single-stage models go wrong?

These measures are typically expressible in the form
M(F) = A(Ly(F), Ly(F), . (40)
where
Li(F) = /Ei(x)Wi (F(x))dF(x),i = 1,2... (41)

E; : X — R is an income evaluation function, W; : §; — R is a linear or
constant weighting functional. The form (40) typically exhibits the following

characteristics:

e The linear functionals L, of the distribution are defined over all of X.
e The integrand in (41) diverges to infinity for some x € X.

e A nonlinear aggregation function A.
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The problem with single-stage indices comes partly from integrating over the
whole domain, partly from the form of the sensitivity of the £ or W that causes
the integrand to diverge, and partly from the fact the components of the impact of
contamination do not cancel because of nonlinearity of the aggregation function.

The two-stage approach deals with these things separately. In stage 1 we
process information: a non-linear function filters out information from parts of
the domain X; in particular extreme values may be filtered if the data “bins”
are function of robust statistics of the distribution. In stage 2 the evaluation
and weighting jobs performed by the functions E and W in (41) are achieved by
appropriate specification of the function € in (34).

The analysis of robustness has an important role to play in the specification
and selection of income-mobility indices. Unlike the case of inequality measures or
Social-Welfare Functions there is not really a good a priori case for one mobility
index rather than another or one class of indices rather than another. Instead,
most commonly-used mobility measures are essentially pragmatic. Robustness

properties can be one good guide to the choice of a pragmatic index.
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