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Abstract

We propose new procedures for estimating the univariate quantities of interest
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truncation and right censoring. Our procedures are based on kernels and on
the idea of marginal integration. We provide a central limit theorem for our
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1 Introduction

Suppose that the conditional hazard function
1
(tZ:) = lim =P (T; < t+ €[ Ty > 1 (Z(s), 5 < 1)
€l0 €

for the survival time T; of an individual ¢ with the covariate or marker process Z; = (Z;(t)) has the
form

At Zi) = alt, Zi(t)), (1)
where « is an unknown function of time ¢ and the value of the covariate process of the individual at
time ¢ only. Inference for this general class of models was initiated by Beran (1981), and extended by
Ramlau-Hansen (1983), Dabrowska (1987), McKeague and Utikal (1990), Hjort (1994), and Nielsen
and Linton (1995), who established asymptotic normality and uniform convergence of their estima-
tors of «(t, z) in the case where one observes a sample of mutually independent individuals and their
covariate processes, subject perhaps to some (non-informative) censoring and truncation. Unfortu-
nately, the rate of convergence of estimators of a(t, z) increases rapidly with the number of covariates,
Stone (1980). Furthermore, it is hard to visualize the model in high dimensions.

This motivates the study of separable structures, and in particular additive and multiplicative
models. These models can be used in their own right or as an aid to further model specification.
They allow for the visual display of the components of high dimensional models and for a clean
interpretation of effects. Also, the optimal rate of convergence in additive and other separable
regression models has been shown to be better than in the unrestricted case, see Stone (1985,1986).
In this paper, we consider additive and multiplicative sub-models of (1). Multiplicative separability
of the baseline hazard from the covariate effect has played a central role in survival analysis as
is evident from the enormous literature inspired by Cox (1972); see Andersen, Borgan, Gill, and
Keiding (1992, Chapter 7) for a discussion of semiparametric and nonparametric hazard models,
and see Sasieni (1992), O’Sullivan (1993) , Lin and Yang (1995), Dabrowska (1997), Nielsen, Linton,
and Bickel (1998), and Huang (1999) for some recent extensions. Additive models are perhaps less
common, but have been studied in Aalen (1980) and McKeague and Utikal (1991). Our focus here
is on fully nonparametric models where we do not specify either the time or the covariate effects.

We propose a class of kernel-based marginal integration estimators for the components in additive

and multiplicative models. This methodology has been developed in Linton and Nielsen (1995) [see
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also Auestad and Tjgstheim (1991), Tjostheim and Auestad (1994) and Newey (1994)] for regression.
We extend this literature to counting process models, which allow for a wide range of censoring and
truncation. The estimation idea involves integrating out a high dimensional estimator that does not
impose the separable structure; in our setting this is provided by the Nielsen and Linton (1995) esti-
mator. The averaging (or integration) reduces variance and hence permits faster convergence rates.
We establish the pointwise and uniform consistency properties of our marginal integration estimators,
and give their limiting distributions. Mammen, Linton, and Nielsen (1999) show that it is possible
to improve the variance of marginal integration estimators in regression, and it is possible that this
result can be extended to the current situation although the nonlinear form of the appropriate es-
timating function makes a rigorous proof of the central limit theorem for this procedure somewhat
harder. Alternative estimation methods include the log-spline methods developed in Kooperberg,
Stone, and Truong (1995) and Huang, Kooperberg, Stone, and Truong (2000).

One major theoretical problem we encounter in deriving the asymptotic properties of our proce-
dures is the so-called predictability issue. We use the solution to this problem provided by Nielsen,
Linton and Bickel (1998) and improved in Nielsen (1999). We also provide a new result on uniform
convergence of kernel hazard estimators in the counting process framework. This result is funda-
mental to the proofs of limiting properties of many nonparametric and semiparametric procedures,
including our own. The result contained herein greatly improves and extends the result contained
in Nielsen and Linton (1995) and gives essentially the optimal rate. Our proof makes use of the re-
cently derived exponential inequality for martingales obtained in van de Geer (1995). The methods
developed in this paper have already been applied in Felipe, Guillen, and Nielsen (2000), a study of

longevity in different European countries over time.

For any vectors ¢ = (z1,...,2;) and a = (a1, ..., a;) of common length k, we let 2% = z{* - - - a7*
and |a| = Z?Zl a;. Finally, for any function g: R* — R, let

Hlal

Dg(z) = mg(f)-

Note that all integrals in the sequel are pathwise Riemann-Stieltjes because we have piecewise con-

tinuous integrators and continuous integrands.



2 The marker dependent hazard model

2.1 The Counting Process Formulation

We work with a sampling framework laid down in Aalen (1978) that is based on counting processes.
This framework is very general and can be shown to accommodate a wide variety of censoring
mechanisms; in the next section we describe one such data generation mechanism. Let N () =
(Ny(t), ..., Nyn(t)) be an-dimensional counting process with respect to an increasing, right-continuous,
complete filtration Ft(”), t € 10,7], ie., N®™ is adapted to the filtration and has components Nj,
which are right-continuous step-functions, zero at time zero, with jumps of size one such that no
two components jump simultaneously. Here, N;(t) records the number of observed failures for the
i’th individual during the time interval [0, ¢], and is defined over the whole period [taken to be [0, T,
where T is finite]. Suppose that N; has intensity

Ai(#) = Tim =P (Ni(t Fe)— Ni(t) = 1|;f§">) = alt, Z,(1))Yi(t), 2)

el0 €
where Y; is a predictable process taking values in {0, 1}, indicating (by the value 1) when the ‘"
individual is observed to be at risk, while Z; is a d-dimensional predictable covariate process with
support in some compact set Z C R¢. The function «(t, z) represents the failure rate for an individual
at risk at time ¢ with covariate Z;(t) = z.

We assume that the stochastic processes (N1, Z1, Y1), ..., (Ny, Z,,Y,) are independent and iden-
tically distributed (i.i.d.) for the n individuals. In the sequel we therefore drop the n superscript
for convenience. This simplifying assumption has been adopted in a number of leading papers in
this field, for example Andersen and Gill (1982, section 4), and McKeague and Utikal (1990, section
4). Let Fy; = o{Ni(u), Zi(u),Yi(u); w <t} and Fy = ., Fi;. With these definitions, )\; is pre-
dictable with respect to F;; and hence F;, and the processes M;(t) = N;(t) — A;(t), i = 1,...,n, with
compensators A;(t) = fot Ai(u)du, are square integrable local martingales with respect to F;; on the
time interval [0, 7]. Hence, A;(t) is the compensator of N;(t) with respect to both the filtration F; ;
and the filtration F;. This model formulation is adopted because it allows us to use the convenient
solution to the so-called predictability problem given in Nielsen (1999), see the discussion in the
appendix. In fact, rather than observing the whole covariate process Z;, it is sufficient to observe Z;
at times when the individual is at risk, i.e., when Y;(s) = 1. We shall not provide a complete model
of the evolution of the covariate process, but see Jewell and Nielsen (1993) for some discussions on
the



2.2 The Observable Data

The above counting process framework is general enough to include many models for survival data
including complicated left truncation and right censoring patterns given an appropriate choice of
(N, Z,Y), see Andersen, Borgan, Gill, and Keiding (1992, Chapter 3) for some discussions. In this
section, we just outline the leading case where the data are right-censored survival times.

Specifically, let T" be the survival time and let T = min{7,C'}, where C' is the censoring time.
Suppose that T" and C' are conditionally independent given the left-continuous covariate process Z,
and suppose that the conditional hazard of T" at time ¢ given {Z(s), s <t} is a(t, Z(t)). For each of
n independent copies (T}, C;, Z;), i = 1,...,n of (T,C, Z), we observe T;,6; = WT; < C;) and Z;(t)
for t < T;. Define also Y;(t) = 1(ﬁ < t), the indicator that the individual is observed to be at risk
at time ¢, and N;(t) = 1(T; < t,6; = 1). Then, N(t) = (Ny(¢), ..., Nu(t)) is a multivariate counting
process, and N; has intensity (2).

We can allow quite general covariate types including time invariant covariates, variables common
to all individuals, and both discrete and continuous variables [although our regularity conditions
given below rule out discrete variables, this is just for notational convenience. If the covariates are
discrete then better rates of convergence result, because one doesn’t need to smooth at all. However,
discrete variables are handled by different methods and combining them with continuous variables
makes for notationally complex proofs without significantly affecting the arguments].

It might be objected that full knowledge of the covariate process is possible only if it changes
deterministically between observed time points. This is the case for some but not all covariates.
Trivially it applies to time invariant covariates. A prominent example of a time-varying covariate to
which this applies would be when Z is the time since a certain event, such as onset of disability, which
arises in many actuarial applications. In other cases, one must interpolate or extrapolate between
the points in order to compute the required integrals in the estimation routines. The error in doing
this depends on the frequency of observation and on the variability of the covariate process between

observation points. See Nielsen (1999) for some discussion.

2.3 Separable Models and Estimands

For notational convenience we combine time and the covariates into one vector, i.e., we write x =
(t,2) and X,(t) = (¢, Z;(t)), and label the components of z as 0,1,...,d, with o = ¢. Let z_; =
(0, ..,%j_1,%j41,...,Tq) be the d x 1 vector of x excluding x; and likewise for X_j;(s).

The main object of interest is the hazard function «(-) and functionals computed from it. We
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consider the case that « is restricted to be separable either additively or multiplicatively. The

multiplicative model is that

d
a(z) = cu H hj(x;) (3)

for some constant cj; and functions hj;, 7 =0,1,...,d. The additive model is
d
a(r)=ca+ > gilz;) (4)
=0
for some constant c4 and functions g;, j = 0,1,...,d. The functions h;(.) and g¢;(.) and constants

c4 and cp; are not separately identified, and we need to make a further restriction in both cases to
obtain uniqueness.

Let @ be a given absolutely continuous c.d.f. and define the marginals
Qj(z;) = Q(o0,...,00,z;,00,...,00) and Q_;(z_;) = Q(zo, ..., Tj-1,00,Tj+1,...,24),J =0,1,...,d.
We identify the models (3) and (4) through these probability measures. Specifically, we suppose that
in the additive case [ g;(2;)dQ;(z;) = 0, while in the multiplicative case h;(x;) [ [T, he(2x)dQ—;(z—;) =
1 for each j = 0,...,d. These restrictions ensure that the model components (ca, go,- .., gq) and

(car, ho, - - -, hg) respectively are well-defined. Now consider the following contrasts:

aq_,(2) = [ al0)dQ_y(a-,) )
Jj = 0,...,d. In the additive model, aq_,(z;) = g;(z;) + ca, while in the multiplicative model,
aq_,(z;) = hj(z;)cy for some constants c4(Q) and cp/(Q) defined below. It follows that aq_,(-) is,
up to a constant factor, the univariate component of interest in both additive and multiplicative struc-
tures. Now define the constants c¢,; = [ a(z)dQ_;(z_;)dQ;(z;) and ¢; = [ a(z)dQo(zo) - - - dQa(z4).
In the additive case (4), ca = ¢t = Zj:o ¢yj/(d+1) and a(z) = Zj:o ag_,(x;) — dzg.lzo Cij/(d+1).
In the multiplicative case (3), ¢y = (H?:o C*j/CT> e and a(r) = H;l:o ag_;(x;)ct/ H?:o ¢yj. The

quantities

M=~

aslx) = aq_,(z;) —d-cq and ay(x) = Hanj(mj)/cM, (6)

=0
respectively, are both equal to «a(z) in the corresponding submodel. In the general model (2),
the constants c4 and ¢y and functions a4(z), ap(x) are not of much interest, but ag_;(.) can be
interpreted as an average of the higher dimensional surface with respect to ()_;; one can also interpret

aq_,(.) as a projection, albeit with respect to a product measure, see Nielsen and Linton (1998).
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The Cox model is a special case of (3) with h;(z;) = exp(8,z;) for some parameters 3;. Separable
nonparametric models have been investigated previously in regression by Hastie and Tibshirani (1990)

and in hazard estimation by Andersen, Borgan, Gill, and Keiding (1992).

3 Estimation

We first define a class of estimators of the unrestricted conditional hazard function a(x). Defining
the bandwidth parameter b and product kernel function Kj(uy,...,uq) = H?:o ky(uj), where k(-) is

a one-dimensional kernel with ky(u;) = b~k (u;/b), we let

alz) = %22;1 foT Ky(x — X;(s))dN;(s) _ o(x)
Ly T Ky(x — Xi(s)Yi(s)ds  €(x)

be our estimator of a(x), a ratio of local occurrence o(z) to local exposure e(z). The estimator a(z)

(7)

was introduced in Nielsen and Linton (1995) who gave some statistical properties of (7) for general
d. When the bandwidth sequence is chosen of order n~'/™+4+1)the random variable a(z) — a(z)

2r+d+1) wwhere r is an index of smoothness of

is asymptotically normal with rate of convergence n~"/(
a(x). This is the optimal rate for regression without the separability restrictions, see Stone (1980).
We shall be using a(z) as an input into our procedures and will refer to it as the ‘pilot’ estimator.
We now define a method of estimating the components in (3) and (4) based on the principle
of marginal integration. We estimate the contrast by replacing the unknown quantities in (5) by

estimators, thus,
o, (1) = [ A@)Q-y(a-) ®)

where a(z) is the unrestricted estimator (7). Here, Q is a probability measure that converges in
probability to the distribution (), while @\]‘ and Q\_]‘, 7 =0,...,d, are the corresponding marginals.
We assume that @ and its marginals are continuous except at a finite number of points, which

implies that the integral in (8) is well-defined because &(.) is continuous when K is. Finally, we take
¢y = [Gq_,(2;)dQ;(z;) and & = [ @(z)dQo(wo) - - - dQa(xa), and then let

d ~ ~
[Tj—oaq_;(z;)ct
sk .
szo Cxj

The quantities a4(z) and a(z) estimate aa(x) and ap(x), respectively, which are both equal to

d d

~ . d . ~

Q) = g ,(z)) - i1 > ey and an(x) = (9)
=0 j=0

a(x) in the corresponding submodel. For added flexibility, we suggest using a different bandwidth



sequence in the estimators ¢,;, ¢;, this is because we can expect to estimate the constants at rate
root-n because the target quantities are integrals over the entire covariate vector.

The distribution @ can essentially be arbitrary, although its support should be contained within
the support of the covariates. The most obvious choices of () seem to be Lebesgue measure on
some compact set I or an empirical measure similarly restricted. In this case, one would, for ex-
ample, compute Y ., a(t, Z;(t))Y;(t)/ > -, Yi(t), or some trimmed version thereof [note that this
is asymptotically equivalent to [ a(t, z) fi(z)dz]. There has been some investigation of the choice of
weighting in regression, see for example Linton and Nielsen (1995) and Fan, Mammen, and Hirdle
(1997). Finally, the marginal integration procedures we have proposed are based on high dimen-
sional smoothers, and can suffer some small sample problems if the dimensions are high. Sperlich,
Linton, and Hardle (1999) compared the performance of integration and backfitting estimators on
simulated data in regression and concluded that both methods suffered from some finite sample de-
terioration: the backfitting estimators performed better in estimating the total response in highly
correlated designs and in boundary regions, while the marginal integration method performed better

when estimating the individual effects and in less highly correlated designs.

4 Asymptotic Properties

We derive the asymptotic distribution of the marginal integration estimators agq_; at interior points
under the general sampling scheme (2), i.e., we do not assume either of the separable structures
holds. However, when either the additive or multiplicative submodels (3) or (4) are true, our results
are about the corresponding univariate components. We are assuming an i.i.d. set-up throughout.
We could weaken this along the lines of McKeague and Utikal (1990, condition A), but at the cost of
quite complicated notations. We shall assume that the support of Z;(s) does not depend on s, and is
rectangular. This is just to avoid a more complicated notation. We also assume that the estimation
region is a strict rectangular subset of the covariate support, and so ignore boundary effects.

For functions ¢ : R — R, define the Sobolev norm of order s,

oz = 3 / (D?g(2)Ydz.

a:lal<s

where 7 C R? is a compact set, and let Ga,s(T) be class of all functions with domain 7 with Sobolev
norm of order s bounded by some constant C. An important step in our argument is to replace @ by

(); we shall use empirical process arguments to show this. Define the stochastic process v,(-) by
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vn(g) = \/ﬁ{/ g(Z)d@—j(Z)—/ g(Z)dQ—j(Z)}

I_; I

for any g € Gas(I_;), where the set I_; is specified below. We make the following assumptions:

(A1) The covariate process is supported on the compact set X = [0,7] x Z, where Z = Z; x

- X Zg4.For each t € [0,T], define the conditional [given Y;(s) = 1] distribution function of the

observed covariate process Fy(z) = Pr(Z;(t) < z|Yi(t) = 1), and let f;(2) the corresponding density

with respect to Lebesgue measure. Let « = (¢, z) € I and define the exposure e(z) = f;(2)y(t), where
y(t) = E[Y;(t)]. The functions t — y(t) and ¢t — f;(z) are continuous on [0,7] for all z € Z.

(A2). The probability measure @ is absolutely continuous with respect to Lebesgue measure and
has density function q. It has support on the compact interval I = Iy x - -- X I, strictly contained in
Z. Define also the marginals );,Q)—; and their continuous densities ¢; and g_; whose supports are

I;, I_; respectively. Furthermore, 0 < inf, ¢y, q;j(7;),infs_jer ; q—j(z_;).

(A3) The functions a(-) and e(+) are r-times continuously differentiable on I and satisfy inf,c;e(z) >

0 and inf,e; a(x) > 0. The integer r satisfies (2r +1)/3 > (d + 1).

(A4) The kernel k has support [—1,1], is symmetric about zero, and is of order r, that is,
f_llk(u)ujdu =0,57=1,...,r—1 and f_ll k(u)u"du € (0,00), where r > 2 is an even integer.
The kernel is also r — 1 times continuously differentiable on [—1, 1] with Lipschitz remainder, i.e.,
there exists a finite constant ky; such that |kT~Y(u) — kC=Y(u)| < kyplu — |for all u,u'. Fi-
nally, k9)(£1) = 0 for j = 0,...,r — 1. Define the kernel moments: pu, (k) = fjl u"k(u)du and
K2 = [, kwPdu.

(A5) The probability measure Q has support on I and satisfies SUDger 1Q(z) — Q)| = O,(n=1/2).
Furthermore, for some s with r > s > d/2, the empirical process {v,(-) : n > 1} is stochastically

equicontinuous on Ggs(I_;) at go(-) = a(xj,-), i.e., for all €, > 0 there exists 6 > 0 such that

lim sup P* sup valg) = valgo)l > 1| <e. (10)

n—00 gegd,s(Lj)vﬂg—QOHd,S,Lj <é

where P* denotes outer probability.



The smoothness and boundedness conditions in A1-A4 are fairly standard in nonparametric
estimation. Our assumptions are strictly stronger than those of McKeague and Utikal (1990), and
indeed imply the conditions of their Proposition 1. In particular, we assume smoothness of e with
respect to all its arguments rather than just continuity. This is necessary for the arguments we use
to establish the limiting distribution of our estimator, although for consistency only continuity in ¢
would suffice, and perhaps for other estimators like local linear etc. we might require less smoothness.
In any case, this condition is likely to hold for a large class of covariate processes. Certainly, time
invariant covariates can be expected to satisfy this condition. When Z is the time since a certain
event, such as onset of disability, we can model the stochastic process Z;(t) as Z;(t) = t — Zy; for
some random variable Zj; that represents the age at which disability occurred. This is essentially
as in McKeague and Utikal (1990, Example 5, p 1180 especially), and under smoothness conditions
on their a;;, we obtain the smoothness of (in our notation) the corresponding exposure e(z). The
restriction on (r,d) is used to ensure that in the expansion of & — « the second order terms are small
in comparison with the leading terms; these terms are of order n='b=(4*D]logn + b*", so we must have
r > d. We require slightly stronger restrictions in order to deal with the passage from @ to Q. The
stochastic equicontinuity condition in A5 is satisfied under conditions on the entropy of the class of
functions, see van de Geer (2000).

We have

(@ —a)(z) = (@ - a™)(z) + (" — a)(z) = :
where the compensator a*(x) is

Yy Kol = Xi())a(Xils) Vi(s)ds
S T Ky (= Xi(s))Yi(s) ds

af(z) =

Y

while:

Valw) = 130 ) Koz — Xi(s)) dM;(s)

Bu(z) = 150 [T Ey(z — X(s)) [a(Xi(s) — alz)] Yi(s)ds.



Both B, (x) and €(z) are sums of independent variables and satisfy the conditions of the law of large
numbers. We can apply a martingale limit theorem to V,,(z) because the integrand is predictable.
This decomposition was used in Nielsen and Linton (1995) to establish the limiting behavior of
(& — ) () : they established pointwise asymptotic normality and also showed that

Sup [a(z) — a(z)] = Op(

~7agarays) + Op(). (11)

We improve on their rate in Lemma 3 in the appendix - we achieve the rate (logn)n_l/ 2p=(@d+D/2 L,

We now turn to the behavior of ag_ ;. It suffices to work with the stochastic integrator @_;

replaced by the deterministic )_;, since under our conditions

[a@dQyap) - [a@dQ ) = [a@dQ )~ [aliQ- )+ on

= Op(n~Y?). (13)

The proof of (12) is given in the appendix, while (13) follows directly from our assumptions about «

and @ By crude bounding we have

sup |aQ—j (:EJ) — Qg ($J)| = Ssup + OP(n_1/2>

z; €l z;el;

[ @)~ [ al@da ey

I I,

—J

< supla(z) —a(x)| x sup |g_j(z_;)| x Vol(I) + Op(n~1/?),
zel z_j€l_j
i.e., dg_,(z;) has no worse rate of uniform convergence than the multidimensional estimator a(z). We
are interested in obtaining the faster one-dimensional rate of convergence for a_,(z;), which requires

a more careful analysis. Defining the marginal compensators oz*ij(:Ej) = I a*(x)dQ_;(z_;), we

have
(o, —aq_,)(z;) = (Qg_, —ag_)(z;) + (ag_, —aq_,)(z;) = Vo_,(z;) + B, (x;), (14)
where
x5 _ 1 - ™ (2, s (s T;) = Bu(z) (z
Vo e =3 30 [ bt By )= [ Foae )



with

Ky(z — Xi(s))
I e(z)
The bias expression BQ,J- (z;) is really just the integrated bias of the pilot estimator, and it is of the
same magnitude in probability.

H™ (2;,5) = dQ—j(z—;).

We now outline the asymptotics of VQ,J. (x;). Let us start with the following naive heuristics. First,

it is verified that sup, ;. [e(z) —e(x)| = op(1), then this fact is used to obtain the approximation

1O ay,0) = [ FEZag ) = B (a0 (14 on(1).

where
IO . ‘;Q(S))dcgj@j).

It therefore seems reasonable to approximate V, (;) by ‘7Q7j (z;)=n"1>"", fOT H™ (3, )dM;(s),
which can be analyzed by standard martingale theory, since ﬁfn) is predictable with respect to the
chosen filtration. The last approximation is a bit tricky, because M; is a signed measure. The correct
proof requires an argument that takes into account the nature of signed measures (or martingales).
The solution to the predictability issue presented in Nielsen, Linton and Bickel (1998), and updated in
Nielsen (1999), provides us with such an argument. The asymptotic variance of ‘7Q,j (z;) is obtained
from a change of variable argument and dominated convergence.

We next state our main result, which follows from the above arguments and some more detailed
calculations presented in the appendix. Our main theorem gives the pointwise distribution of the
marginal integration estimator ag_,(z;) and the corresponding additive and multiplicative recon-
structions a4(x), ap(x). As discussed earlier, we do not maintain either separability hypothesis in
this theorem, and so the result is about the functionals of the underlying function a(z) defined in (6).
We first need some notation. For any function f(x) of a vector argument z, let f;r)(a:) = 8" f(x) /0]

and define for any integer r and j =0,...,d:

B0(@) = [(a-e)(z) — alz) - e (z)]Je() (15)
and 47 (z) = 329 6 (2).

THEOREM 1. Suppose that assumptions A1-A4 hold and that n*/® )b — ~ for some 0 < v <

o0o. Then,

11



W/ (@ — ag_)(x;) = N [my(x;), v;(z;)] (16)

where
) =B [ S 0waq ) ¢ e =t [ Mg
- 1= —j
Suppose also that ¢.;, ¢t are root-n consistent, then
(@, —aa)(z) = N[m(z),v(z) (18)
/@)@y — ay)(z) = N [m(z),v(z)], (19)

where m(x) = Zj:o m;(x;) and v(x) = Z?:o vj(x;), while Mm(x) = Z?:o m;(x;)sj(x_;) and v(z) =
S ovi(ay)s3(x_y), where sj(x_;) = [[1uy g (wx) /iy , Furthermore, j(x;) —p vj(x;), D(z) —p
v(x), and B(x) —, B(x), where D;(x;) =" 0| [T{H™ (2, 5)}2dN(s), while D(z) = Y0, ()

=0
and D(z) = 3°0_0;(x;)82(z_;) with $j(x_;) = [T, Qg () /2L -

The bandwidth rate b ~ n~'/"*1) gives an optimal [pointwise mean squared error] rate of con-
vergence for aig_, (z;), @a(x), and aps () [i.e., this is the same rate as the optimal rate of convergence
in one-dimensional kernel regression estimation, see Stone (1980)].

An earlier version of this paper was the starting point for a number of actuarial applications,
see for example Nielsen and Voldsgaard (1996). The working paper version of this paper, Linton,
Nielsen and van de Geer (1999), contains some numerical results and comparison with a backfitting

extension of our procedure.

5 Appendix

We first state and prove three preliminary results that are needed in the proof of our theorem.
Lemma 1 and Lemma 2 are used to establish the uniform convergence of the pilot estimator a and
the exposure ein Lemma 3. The uniform convergence of € is used throughout the proof of Theorem 1
to establish that the remainder terms in the expansion are of smaller order. The uniform convergence

of @ and its derivatives are needed to ensure that (12) is true.

12



We use the following convenient notation: for two random variables X,,,Y,,, we say that X,, ~ Y,
whenever X,, =Y, (14 0,(1)) as n — oc.

Preliminary Results

We first establish the following exponential inequality, which is a version of Bernstein’s inequality
for sums of independent martingales. This is used in establishing the uniform convergence of a,
which is the second result of this section.

Let (2, F, P) be a probability triple, and let {F;}:>o be a filtration satisfying the usual conditions.
Consider n independent martingales M, ..., M,. Let V5, be the predictable variation of M;, and let
Vini be the m™ order variation process of M;, i =1,...,n, m=3,4,....

LEMMA 1. Fix 0 < T < oo and suppose that for some Fr-measurable random variable R2(T')

and some constant 0 < K < oo, one has
. m!
> Vmi(T) < K" 2Ri(T). (20)
i=1

Then, for all a > 0, b > 0,

2

- 2 2 ¢
PROOF. Define for 0 < A < 1/K,i=1,...,n,
where S; is the compensator of
1 2 c c
Wi = 5 < M, M > +> (exp[AAM;(s)]] — 1 — A[AM;(s)]).
s<-
Then exp Z; is a supermartingale, i = 1,...,n [see the proof of Lemma 2.2 in van de Geer (1995)].

So EexpZ;(T) <1, i=1,...,n. But then also Eexp[) ., Z;(T)] < 1. One easily verifies that

- NR2(T)
;si(T) SR

So on the set

A= {iMZ(T) > cand R%(T) < d2}7

=1

13



one has

- Nd?
wId AT = e~ 5]
Therefore,
Nd?
Pr(A) < exp[—Ac+ 20— )\K)]’

The result follows by choosing
R
|

This result is formulated for fixed T', and K may depend on T and n. If the conditions of Lemma
1 hold for all T',n, then it can be extended to stopping times [see section 8.2 in van de Geer (2000)
for related results].

In the next lemma, we assume as in the main text that 7" is fixed and finite, and write | = fOT.
We also assume that the A?(¢) exist, and are bounded by a (nonrandom) constant A for all 1 <4 < n
and 0 <t <T.

LEMMA 2. Let © be a bounded subset of R, and for each § € ©, consider independent

predictable functions gy g, . .., gne. Suppose that for some constants L, K,, and p, > 1, we have
19i0(t) — g:5(t)| < Ln|0 — 0|, for all 0,0 € ©, and all i > 1 and t > 0, (22)
lgio(t)| < K, forall® €O, and all i > 1 and t > 0,
%Xn:/ |gi0()|?dt < p2, for all § € ©, and all n > 1,
i=1

L, <n"”, forall n>1, and some v < 00, (23)

K, < 1/Lpn, for all n > 1. (24)
logn

Then for some constant ¢y, we have for all C' > ¢y, and n > 1

- 1
Pr (supin! Z / gipd(N™ — A)| > Cp,\/log n) < ¢ exp[—C Ogn]-
=1

and

6cO Co

PrOOF. From Lemma 1, we know that for each # € ©, a > 0 and R > 0

1 n 1 - n
Pr (ﬁ| Z/gi,Gd(Ni(n) _ Al(n))| > g and - Z/gizﬁdA@(' ) < R2> (25)
i=1 =1

14



CL2

< 2exp|— .
| 2(aK,n"z +R2)]

Let € > 0 to be chosen later, and let {6y,...,0x} C O be such that for each § € O, there is a
j(0) €1,..., N, such that |§ — 6;)| < e. Then, by the Lipschitz condition (22), one has

1 n " -
THIY [ 10— i, JAO ~ AP < VL1 4 ),
=1

where A is an upper bound for A§”> t),1<i<n,n>1,t>0.
Now, in (25), take a = Cp,v/logn/2, and R? = p2 )\, with A an upper bound for )\( )( t),1<i<n,
n > 1,t > 0. Moreover, take € = a/(y/nL,(1 + A)). With these values, we find

(Sup 'Z/ giod(N ”—AE”’>|zopMog”>

0cO

<sup |Z/glgd (N — A > 2a>

0€®
(n) (n)
< — ; >
Pr (;Eﬁ% 7r Zﬁ_l [ s 5 )
02
< 2expllog N — —].

2aK,n"% + p2 A

Because © is a bounded, finite-dimensional set, we know that for some constant ¢y,
1
log N < ¢; log(—).
€

By our choice € = Cp,\/logn/(2y/nL(1+ A)), and using condition (23), we see that for C' > 1 (say)
and some constant co,

log N < ¢y logn.

Invoking moreover condition (24), we arrive at

(sup |Z [ siod(NO — ) > Opn\/lo_gn>

0cO

C?p% logn ]
8(Cp,/TognK,n"2 /2 + p2X)

15
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C?logn ]
8(C/2+ \)
Clogn

16 )

< 2expleglogn —

Clogn

] < 2exp[—

< 2explez logn —

where in the last two steps, we take C' > 2\, and C' > 16cs.
|
Note that by the continuity of (22) and the boundedness of ©, the statement of Lemma 2 does
not give rise to measurability problems. Note moreover that (22)-(24) imply that K,,p,, and L,
cannot be chosen in an arbitrary manner. Most important here is that the sup-norm should not grow
too fast as compared to the L, norm.
LEMMA 3. Suppose that the assumptions stated in Theorem 1 hold. Then, for any a = (ag, . .., aq)

with |a| < r —1, we have
= —la ogn 1/2
() super | D*e(x) — Doe(w)| = Op (1) + Op { (z#%58mr) " }

(b) sup,e; |Da(x) — D%(x)| = Op (b'719) + Op {(nbdli’flea‘)m} _

ProoF. We write D%(x) — D%(z) = D%(z) — ED%(x) + ED%(x) — eD*(z), a decomposition
into a ‘stochastic’ part D%(z) — ED%/(x) and a ‘bias’ part ED%(x) — D%(x). Nielsen and Linton
(1995, ) showed, for the case a = 0, that ED%(z) — D%(x) = O (b") for any interior point z. By

identical distribution we have
ED%(z / D*Ky(z — X;(s))Yi(s)ds = /D“Kb(m —2')e(z")dx’,

where the last integral is over X'. Integrating by parts [using the fact that £¢)(+1) = 0] and changing

variables ' — u = (2/ — z) /b, we have
ED"e(x / Ky — ') Dle(a')dx’ — / K (u)D%( + bu)du,
[—1,1)d+1

where the last equality follows for large enough n because x is an interior point and so eventually
the range of u contains the support of K. For notational simplicity we now suppose that a = 0. By

Taylor expansion

C

ot —e@) =Y Y Lurrew)+ ¥ L (el (w) - ety

7=1 {ec:lc| J} {clel=ry

16



where x*(u) = (25(u), ..., zj(u)) are intermediate values satisfying |} —z;| < bluy|, for j =0,...,d.

Therefore, we have

Fe(x) Z Z —DC /[1 o u K (u)du

J=1 {eile| J}

bC
z*(u)) — D(z)} K(u)u‘du,
{c c| n € /[“d“

: b . . V= Oe(z) (1,
Y D e<m)/[—1,1]d+1UK<u)duzﬁ; o /_sk(S)ds

=1 {c:lc|=5} J !

by assumption A4, while

where

S gD )~ D)} K

{ct|c|= 7"} L1jd+
< Y 5[ D) - De(w)] K(u)d
e |c|—r} =
= o(b"),
because of the continuity of D¢(x) for |c|] = r [we can apply dominated convergence because

| D (z*(u)) — D(z)| is bounded for all x, u|. In conclusion

= o(b"),

R r T are(m)/l
Fe(z) —e(x) — — R s"k(s)ds
()= ele) =30 Z [ H

and this result holds uniformly over x € I because D(.) is uniformly continuous over I. The bias
term for D is of order "1 because the partial integration claims some of the kernel moments.

We now turn to the stochastic part of e(x). We claim that

z€l zel | T Z/ [Ky(z — X;i(s))Yi(s) — E (Ki(z — Xi(s))Y;(s))] ds

_ op{(j;%ﬁ) /2}. (26

The pointwise result [without the logarithmic factor] is given in Nielsen and Linton (1995). The

sup |e(z) — Fe(z)| = sup|—

uniformity [at the cost of the logarithmic factor]| follows by standard arguments, the key com-

ponent of which is the application of an exponential inequality like that obtained in Lemma 2
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above. We write e(z) — Ee(z) = > i, ¢, (2), where ¢} ;(z) = (,;(x) — EC, (z) with ¢, ;(z) =
n-1 fOT Ky(r — Xi(s))Yi(s)ds. Note that (7 ;() are independent and mean zero random variables
with m, = sup,; [(};(z)| = e;n "6~ for some constant c;; thus m, is uniformly bounded be-
cause nb! — oo by assumption. Following Nielsen and Linton (1995), we have o72; = var[(}, ()] <
con~'b~ (@D for some constant cy. Let {B(xy,¢€r),...,B(zr, 1)} be a cover of I, where B(xy, €) is
the ball of radius € centered at x,. Hence, €, = ¢3/L for some constant c3. We have for some constant
Cy

n n

< max | C(w)| + max  sup Y |G (@) — G ()]

sup
I<USL | e <UL e B(ay,e) 5

zel

Zcm

n

c C4€L
< nax ZCm(xe) + p2d-+2
===

using the differentiability of k. Provided

/ n
€L W — 0, (27)

we have by the Bonferroni and Bernstein inequalities
logn
> A vy +o(1)

nbd+1 n L
_ <
Pr log 71 max ;Cm(a:g) >A] < ZPr
)\2 logn

=1
bt L

n

> G ilae)

i=1

L
< > exp
=1

1 c1 logn
2¢y haTT + nbd+1)\ hAtT

= Zexp( (log n /2‘32)).

By taking A large enough the latter probability goes to zero fast enough to kill L(n) = n* with
k=14+n+(3d+3)/(2r+1) for some n > 0, and this choice of L satisfies (27). The result for general
a follows the same pattern; differentiation to order a changes K to K® and adds an additional
bandwidth factor of order b2l

To establish (b) we first write a(z) = o(z)/e(x) and a(z) = o(x)/e(z), where o(x) = a(x)e(x).

Then by the chain rule we have

D%a(x) — Da(z) = Z Kea{DO(x) D% ! (x) — D(z) D%} (z)}

|cl+|d|=]al

18



= Y kealDO(a) — Droa)} e (x) +

|e|+|d|=|al

> ke D (z) — D% ()} Dfo(x) +
|el+|d|=]al

> kea{ D% (z) — D% (2)}{ DD(x) — Dfo(x)}
|el+|d|=]al

for vectors c, d and positive finite constants k. 4. By further application of the chain rule and, Lemma
3(a), and the assumption that e(z) is bounded away from zero on I, we see that the second term is

of the same magnitude as D(x) — D(x). Therefore,

1/2
sngI) |D*a(z) — D*a(z)| < K ||§| S;é}? |D%(x) — D°0(z)| + Op (b" ") + Op { (%) }
for some positive finite constant x, and it suffices to establish the result for the numerator statistic
D¢o(x) — D°(z) only. Again, we shall just work out the details for the case a = 0. The bias
calculation Eo(x) — o(x) is as for Ee(x) — e(x) discussed above. Therefore, it suffices to show that
Sup,e; [0(x) — Eo(x)| = sup,es |Va(z)| is the stated magnitude, where V,,(z) = n~1 3" fOT Ky(x —
Xi(s))d(N;(s) — Ai(s)). We now apply Lemma 2 with ¢, 4(t) = Ky(z — X;(t)), 0 =z, and © = 1.
Conditions (22)-(24) hold with probability tending to one for some constant v and: K, = -b~ (@1,
Ly, =702 "and p2 = ~ - b~ @ by the boundedness and differentiability of the kernel. It now

follows that for some constant ¢y we have for all C' > ¢y and n > 1

< coexp(—Clogn/co)

nbd+1
Pr |sup [Vo(2)| > C
xzel logn

as required. [ |

In the proof of Theorem 1 we have to deal with random variables of the form
n t
=Y [ H0wdna),
i=1 70

where M; is a martingale, but h§”> is not a predictable process according to the usual definition.
We must replace hg") by %g"), where the %l(.")’ s are predictable processes, and then to apply standard
martingale theory to >\, fot %En)(u)dMl(u) We use the solution provided by Nielsen, Linton and
Bickel (1998). We need the following definition
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DEFINITION A.l. The sequence of processes {h( n) i} 18 of the leave-k-out type if h . s

..........

predictable with respect to the filtration given by

We use below the facts that: h(")( t) is predictable with respect to F™ | that hgn) (t) — hﬁjj? (t) is
predictable with respect to F; (0:33 n), and that M; = N; — A; is a martingale with respect to both

filtrations. These are consequences of the i.i.d. set up we adopted.

LEMMA 4. Suppose that the processes {h§ (u)} and {h(n)( )}, 4,5 =1,...,n are cadlag and of
the leave-one-out and leave-two-out types respectively and that hi,j) = hl(n)

is independent of the o-field ]—"ﬁ? Then

EQTL) §3niE / t{h§">( R (u) Y2dA (u +ZE / B (w)2d A (u).

, and that the process hﬁf;.)

PROOF. See Nielsen, Linton, and Bickel (1998) and Nielsen (1999). |

Proof of Theorem 1. We first prove (12), i.e., v,(a(z;,.)) — va(a(z;,.)) - 0. We have for
allp,6 >0

Pr{lvn(@(z;,.)) = vn(alz;, )| > 1]

< Pr [|Vn( (x5,.) = valalz;, )| > n,a(z;,.) € Gas(Iy), [alz;, ) — alzy, g, <0
+Pra(z),.) € Gas(I5)] + Pr |[a(z;,.) — alz;, g, > 6
< P* sup Vn(9) — vnlgo)| > 1

gegd,s('[fj)vng_go||d,s,17j <é
+Prla(z;,.) & Gas(I)] + Pr |[alz;,.) — ale), ), > 6]

As a consequence of A5 it suffices to show that: (i) Pr(a(z;,.) € Gas(I-;)) — 1 and

(ii) [|a(zj, .) — alz;, )]l 4, I 2. 0. The second condition follows by the uniform convergence of D@
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on [ for |a] < s established in Lemma 3(b). The first condition follows provided the function class
Gas(I_;) is big enough. Note that for any a,z, |[D*a(z)| < |D%(x)| + |D*a(x) — D*a(z)| by the
triangle inequality. By assumption |D*a(x)| is bounded, while |D®@(z) — D*«(x)| is uniformly o,(1)
for any s < r by Lemma 3(b). Since r > d/2, the result follows.

The proof of (16) is divided into the proofs of the following two results:

"V, (a;) = N(0, vj(z))) (28)

—J

T/(2T+1)BQ,]- (m]) N anI(mj)7 (29)

which are given below.
Proof of (28). Define:

~(n)
W)= [ FEEi0 ) ¢ (””f’s):/, T ig e

n WTL'Z
R (2, 8 / Wail@, %) 4y (),

where €_;(z) =n"" ), fOT Ky(x — X;(5))Y;(s)ds is the leave one out exposure estimator, while

Wiz, s) = <9>1/2 Koz — Xi(s)).

n

Then write

(1) Vo () = 3 [ R o s)abE ()

The proof of (28) is given in a series of lemmas below. We approximate Vo, (x) by ‘7ij (x;) and then
apply a Martingale Central Limit theorem to this quantity. Lemma 5 gives the CLT for ‘7ij (x)),
while Lemmas 6 and 7 show that the remainder terms are of smaller order.

LEMMA 5.

(nb)*Vg_, (x;) = N(0,v'(xy)). (30)

PRrROOF. Since the ﬁfn) processes are predictable, asymptotic normality (30) follows by an appli-

cation of Rebolledo’s central limit theorem for martingales [see Proposition 4.2.1 of Ramlau-Hansen
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(1983)]. Specifically, we must show that for all € > 0 :

> / [h (s, )11 (1B @1, 9)] > €) d (M) (s) — 0 (31)

S [0 Pap e — ) (32

where (M) is the quadratic variation of a process M, in our case (M;) (s) = A;(s) = a(s, Z;(s))Yi(s).
We shall approximate E(”)(a:j, s) by

7(n)

1 zj — Xji(s)\ q-4(Xji(s))
7t , _ L (L j J J _
o (@9) Vnb < b )6(%in(8))
We have
7, h( n) 2| < h( h( n) E(n)
sup { i (xju )} { (‘Tﬁ )} 2 sup | (xju )| sup (‘Tﬁ ) i (.'13]',8)
0<s<T 0<s<T 0<s<T

2

Y

+ sup hi” (I’j,S) _hE )(ZL‘j,S>

0<s<T

where for some constant k&

7(n)
sup |h; “(z;, )| <
0<s<T

-
S

To analyze the term Eﬁ”)(:cj, s) — h (:E], s), we make the change of variables z_; +— (z_; —
X_ji(s))/b = u_j, which transforms the integration region I_; to some set that eventually (for n
large enough) contains [—1, 1]%, because z_; is an interior point of X_;. Therefore, for n large enough

we have

W (wj,5) = B

(n)
R

- () [ ARy - e L st

]
< 1 ]{j (.’13]' —Xﬂ(S))
- b

X Op(]'>a

by the dominated convergence theorem. This bound is uniform in s for 0 < s < T'. This implies that
~ [ [Gm (m)
n 2 T\n 2
S [ [0 w9~ (5 w300 d 08 () = 0.
i=1
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Also, we have

2

3] RUEEBZTIC I o (xﬂ“fﬁ“))63(—;](?(—3‘2(12)))@3,zi<s>>y,.<s>ds
[ ) S s

by the law of large numbers for independent random variables. The above expectation is approxi-

mately equal to UJI. (x), by an application of Fubini’s theorem, a change of variables and dominated

convergence. Specifically,

(l“j —in(3>> ¢ (X—ils)) a(S,Zi(S))Y;(S)dS}

1
E -
b b 62(1‘]‘,X_ji(8>>
_ l 2 (% ZE; q%j(xlfﬂ / / /
- [ (5 e e ele)da
= /kZ(u) T,(r)) oz + bu, a’ ;)e(x; + bu, 2’ ;)dudz’ ;
e2(55]}:5./_]’) J ) J
2 (1
~ /k (u)du/e2($j7x,_j)a(a:],mj)e(m],mj)da:j.

We now turn to the proof of (31). It suffices to show that for all € > 0

Leb {s : Z n{™ (x5, 5)| > e} = 0,(1).
i=1

This is true because sup;( 1y |ﬁ§n)(a:j, s)| < k/+/nb for some constant k < co.

|
To complete the proof of (28), we now must show that
(nb)"*{Vo_, () =V, _(2;)} —, 0. (33)

By the triangle inequality,

()" Vo, (25) =V, (x;)

Q—j

OT%%, Z / " (a5,5)AMi(s)
' (e, 8)dM Z / ™ (2, 5)dMi(s)|.
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Therefore, it suffices to show that each of these terms goes to zero in probability. This is shown in

Lemmas 6 and 7 below.

g/OTE&)(:cj, Z/ (2, 8)dMi(s) —, 0. (34)

PrOOF. By the Cauchy-Schwarz inequality

LEMMA 6.

éiz) — o)
[, Wt Sy 00

R 1/2
U, W90 i wy) - (i) — Bl Q- (o)
- 1Hf:rel| e(x)e fi($)| 7
where €_;(x) —e(z) =n~! fOT Ky{x — X;(t)}Yi(t)dt. Therefore, if for some € > 0:
inf [e(z)e_i(z)] > e+oy(l) (35)
W2 — Op(— 36
sw ] (,8)dQ—(z—5)| = Opr(—7) (36)
~ ~ 1
f eil=) —e(@) dQj(xy) = Op(—r ), (37)
then
n T’\(n) n T - (n) 1 1
21:/0 hi (i’fjas)dMi(S)—Zl:/o hi (25,8)dMi(s)| < n-Op(—amyn)  Op( g
= op(1), (38)

because nb* @) — oco. It remains to prove (35)-(37) for some € > 0.
The proof of (35) follows directly from the uniform convergence of the exposure estimator and

the triangle inequality. Specifically, by the triangle inequality and Lemma 4,

inf |e(x)e_;(x)] > mfe (z) — sup |[e(z)e_;(z) — *(x)| > inf () — 0,(1),

zel zel zel
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which establishes (35

) because e(x) is bounded strictly away from zero by assumption A3. Further-

more, by a change of variables and the boundedness of ¢_; and &, we have

b

/IWQmS @ileg) = 1 [ Kl = X)) Q- ()

n
-3

IN

q-j(z—;)]

:O(l

YA
nbd+1k <

P pd+1 )’

sup
z_j€l_j

S))/lu g{k ug)dug} -

which establishes (36). The proof of (37) is as follows. By the boundedness of k£ and e, and Fubini’s

theorem

Ele-i(r) ~o@)] = ~F

IN

= 0O(1/n)
for n large. Furthermore,

-~

sup [e(z) —e(z)| =

zel

Therefore, since

{e-i()

I

the result (37) is true. This concludes the proof of (34).

LEMMA 7.

/ "[Kofa - X0} Vi)t

/|Kb r—2')|dx -

— &)} dQ-j(z—) < sup [

‘ <+ [ 1Ko~ a)fe(a')ds’
nJx

1
sup e(z’) < —/ |K (u)| du - sup e(x')
z'eX n J—1,1)4+1

r'eX
T
— sup / [Kb{:c—Xi(t)}Yi(t)dt‘
N zer 0
T osup  |K(u)] ——
ue[,1,%d+1 nbd“ '
) - (@) / &) dQ_y(z-)
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n T () nooT
> /O e (as)dMi(s) — Y /O R (2, 5)AMi(s) —, 0. (39)

PrROOF. Writing

()
T; 3% ) l' ZE 3 6(1:) — ( )
hi ( 7 ) h’ ]7 [ Wnl 6(1')23\ ( ) dQ ( )

_ - (n)

we see that the left hand side of (39) is of the general form M, =>"" | fot h; (u)dM;(u), where the
()

M, process is a martingale, but s; (u) is not a predictable process according to the usual definition.

Furthermore, the random denominator e_;(z) can take negative values. We write

My =My +Mp+ Mgz = Z/{) {/I ‘ Whi(, s) elz) E(@i(m))dQ—j(x—j)} dM;(s) (40)
n T s E(e_i(x)) —e_i(x) (s (s
> / { / W, 5) =5 55200 n} dM(s)
=~ [T ‘ {e(z) —eLi(@)}” . (s
—l—;/o {/IJ Whi(z, s) e2(z)e_i(z) d@Q—;( —J>} dM;(s).

We first examine M. We have {E[e_;(z)] —e(x)}/e?(z) = b, (z) for some bounded continuous

function +,,. Then, by the change of variable used above we have

/Ij Wz, 5) 22 [gie(%)_e(m)dch(xj) S <2>1/2 /Ij”)’n(a:)Kb(m—Xi(s))de(a:j)

n

_ <xj — fji@) Tnl(2g; X—ji(8)).

For large n, vi(xj, X_ji(s)) = f[71 ya V(5 X—ji(8) 4 bu—;)q—;(X_ji(s) 4 bu—;)du_; is also bounded.

Therefore,

> { [t P e<m>de(xj)} aM(s)

T2 | ot st (2 oot

12

- Op(br)v
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which follows by the same arguments used in the proof of Theorem 1 of Nielsen and Linton (1995) be-
cause this term is like the normalized stochastic part of a one-dimensional kernel smoother multiplied
by b". Therefore, My = o,(1).

We now deal with the stochastic term M;,. Let

h" (u /1 Wi (z, 1) *"( )_E C-ilz )]dQ_J Z{aml — Eiapa(w)}, (41

l;éz

where E; denotes conditional expectation given X;(u), while

ani(u) = (nsb_l)l/Z/I -/0 Koz = Xi(w) Ko(w = XZ(S))Y}(s)dsdan(m,j).

e?(x)

Let also hﬁ? (u) = szl {ani(u) — Eiap;(u)}. From Lemma 4 we have
’ I#i,j

n T n T
E(My) <30 E / {1 (w) = B3 (W)Y dAi(u) + B / (W7 W)Pdni(w).  (42)
i=1 0 i=1 0
We now investigate each term in the bound (42). By the law of iterated expectations we have

E [{h" ()}?] = nE [Bi(a24(w)) — EX(ana(w))] < nE [Ei(a2y(u))] (43)

since ap;(u) and anp(u) are conditionally independent given X;(u). Therefore, we must calculate
E;a2,(u). Let (kxk)y(t) = (kxk)(t/b)/b, where (k*k)(s) = [k (t + s) k(t)dt. The convolution kernel

k x k is symmetric about zero and differentiable to the same degree as k. Then,

pL/2 T
anit = 57 ko(2j — in(u))/ ko(zj = Xju(s))Yi(8)Tnar(z;, 5)ds
0

where
Luteys) = [ It = st - Xals) o
_d o (o o 20008) = Xja(w) | g-5(Xju(s) +bvy) -
- mgk“)k(” ) e
1y (X ()

Tk R)u(X () = X i(w)

e('rj7 X*j’l(s)) j'#5
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by changing variables x_; — (z_; — X_;;(s))/b = v_; and using dominated convergence. For large

n, we have for some constants ¢, ¢/

Billaa(] < i (552 5,

/ (s — Xsa(s))Yi(s) T 06 k)o(Xyra(s) — Xjf,xu»ds]

0 3%

d x; — Xji(u) r
< 2 .
< () m

by the Cauchy-Schwarz inequality. After changing variables again 2’ +— ((x;, X _j:(u))—(z},2";))/b =

2

ko(x; — X;())Yils) [T (k  B)o(Xja(s) — Xpra(w))| ds,

J'#3

v, we obtain the bound

/

Eil{ana(w)}?] < ﬁ%k? (%_TXJ(“)) /[LWkZ(Uj)e(:cj,X_ji(w+bv_j>H(m@?(uj,)dv.

J'#J
— n2bdtlnd b
Therefore,
F1 z; — Xji(u)
B h(”) 2 < ¢ _EkZ J Je
(WY )] < oo e (2
and so

éE /O O Pda ) < #%i /O o <‘”]‘TXJ(“>> dA (1)

= O(n b ) = 0,(1),

because nb@Y) — co. Furthermore, h™ (u) — hgz) (1) = apij(u) — E;an;(u), so that similar arguments
show that

E / T{hgn)(U) — B () }2dAy(u) < O(n~3b~ (@),

In conclusion, we have established that E [Mi] = o(1), as required.

The term M3 in (40) is handled by direct methods using the uniform convergence of €_;(x). Thus

Wm'(&?, S) {6(.’13) B é\*l(x)} dej(xfj)

I, e?(z)ei(x)
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[ Wae,5)dQ_y ()} sup,cr le(a) — -i(a) P

J

inf,es |€2(z)e_;(x)|

| 1 )
= Or(—mpan) {OP(W) +Op(V? )} :

by the Cauchy-Schwarz inequality and Lemma 3(a). Therefore,

1

+ OP(n1/2b2rf(d+1)/2)'

- OP(n1/2b3(d+1)/2)

This concludes the proof of (39). |

Proof of (29). We have

Bn(z) () B, (r) (o . e(z) — e(x) (.
| a6 = [ i e+ [ B0 @),

—J

where

Sup, e, |Ba(2)] - sup,_iep, |€(2) — e(z)|

inf,_.er_, [e(x)e(x)]

= Op(br)Op (br) = Op (br)

by the uniform convergence result of Lemma 3(a). After a change of variables [x' — (2’ — ) /b] and

using the structure of B, (z), we have

Ba() o 3| E [ Ky(x — Xi(s)) [a(Xi(s)) — a(z)] Yi(s)ds .
E /Ij () 19 —g)] = /Ij o dQ_(z_;)
_ / / Ky(x — o) [o(') — aa)] e(@)da’
a Q—j(z—;)
;Jx e(x
- /1 /[1 1}d+1K(u) {a@ =bu) = alz)} 6(3;(13)%) Q—j(z—;)du,



where u = (ug, ..., uq). By Taylor expansion

(a-e)(z+bu) = Y Y ;uapa(a-e)<x)+ > %u”{Da(a-e)(a:*)—Da(a-e)(m)},

7=0 {a:|a|=5j} {a:|al=r}
- ba ana ba a a * a
e(r+bu) = Z Z U Dle(x) + Z U {D%(z*) — D%(x)},
7=0 {a:|a|=5} {a:|al=r}
where 77 (u) are intermediate values satisfying |27 (u) — ;| < blu;l, for j = 0,...,d. Using assumption

A4 and the fact that = is an interior point of X', we have

d
E /1 Bn(m)dQ—j(m—j)] - %NZ/I ﬂg‘r)(iﬁ)dQ—j(iﬂ—j){l+0(1)}’

|, e

by continuity and dominated convergence. Finally, we verify that the variance of the random variable
J(By(z)/e(x))dQ—;j(z_;) is of smaller order. We have

B (x) 1<
— 5 dQ—j(z—;) = = ) X,
| apeesea=ny
where X,,; are independent random variables of the form fOT gn(X;(s))Y;(s)ds with

n(Xi(s)) = Ky(x — Xi(s) {a(Xi(s)) — a(fv)}dQ_j(m_j)

I e()

By a change of variables x, — u, = (Xy(s) — z¢) /b, £ # j, we have for large n

|9 (Xi(5))]
e [ Ty k) {a(Xi(s) = aey Xis) £ busy)} a(Xoss) +buy)
= ]{Ib( j X]Z( )) 114 G(l'j,X—ji(S) +bu_]~) d —J
< ol = XNl [T ko)l [o(Xi(s)) = (s, Xjils) + buy)| du_y x sup q(:(ci) |
1y o zel e\r

Now we can apply expression (10) from Nielsen and Linton (1995, p 1728) to get

/ Bn(iﬂ)d@ﬁ(%j)

I e(z)

var
n

< L[ e eteasiutoyis| = o)
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by the same dominated convergence arguments used above. This concludes the proof of (16). [ |

Proof of (18) and (19). Recall that ¢,; and ¢ satisfy ¢ — ¢; = Op(n™Y/?) and C,; — c.j =
O,(n=%/2). Therefore, by Taylor expansion:

aa(z) —aa(r) =Y {aq_,(x;) — ag_,(x;)} + Op(n~'7?)

a(a) —anle) = = {dq, ()~ ag ()} [T o . (x) + Op(n )
Jj=0 k#j
+Op <Z ‘aQ (@) —ag ](x])‘ )

for some constant c. We next substitute in the expansions for ag_, (2;) —aq_,(x;), which were obtained
above. To show that aqg_,(7;) — ag_,(z;) and ag_, (zx) — aqg_, (zx) are uncorrelated it suffices to

show that the leading stochastic terms are so. We have

cov(3 /O R g, )M(5), D /O R (g, 5)AM(s) (44)

B ko (25 — w;) K (@), — we) [l o250 — W) o
- b/x [/1 ) e(z;, 2 ) 90-i1)
/ kp(2; — w;) k(g —< W) }_L;#J}k (2 — wm)dQ_k(m'_k) e(w)dwd {M;(s))
I e(zg, 2’

~ T — w)\kr(ze — w 4-5(w;) q_k(w_k)ewaw wds
= b [ by = g o — ) S S )

= (1),

which establishes the result. The first equality follows by the independence of the processes, while the
second equality replaces the integrals over I_; and I_; by their limits using the changes of variable
r_j— (r_; — X_j)/band x_; — (z_ — X_;)/b and dominated convergence. Note that this shows
that the covariance between the normalized component estimators is O(b) - and hence the covariance

between the unnormalized estimators would be O(1/n).
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Finally, the standard errors are consistent by the same reasoning as Nielsen and Linton (1995,
ppl741-1742).
|
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