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Abstract

In Giraitis, Robinson, and Samarov (1997), we have shown that the optimal rate for memory
parameter estimators in semiparametric long memory models with degree of "local smoothness’ 3 is
n ") r(B) = 8/(26+1), and that a log-periodogram regression estimator (a modified Geweke and
Porter-Hudak (1983) estimator) with maximum frequency m = m(8) < n?"® is rate optimal. The
question which we address in this paper is what is the best obtainable rate when @ is unknown, so
that estimators cannot depend on 3. We obtain a lower bound for the asymptotic quadratic risk of
any such adaptive estimator, which turns out to be larger than the optimal nonadaptive rate n~"(?)
by a logarithmic factor. We then consider a modified log-periodogram regression estimator based
on tapered data and with a data-dependent maximum frequency m = m(B)7 which depends on an
adaptively chosen estimator B of 3, and show, using methods proposed by Lepskii (1990) in another
context, that this estimator attains the lower bound up to a logarithmic factor. On one hand, this
means that this estimator has nearly optimal rate among all adaptive (free from 3) estimators, and,
on the other hand, it shows near optimality of our data-dependent choice of the rate of the maximum
frequency for the modified log-periodogram regression estimator. The proofs contain results which
are also of independent interest: one result shows that data tapering gives a significant improvement
in asymptotic properties of covariances of discrete Fourier transforms of long memory time series,
while another gives an exponential inequality for the modified log-periodogram regression estimator.

Keywords: Long range dependence; semiparametric model; rates of convergence;
adaptive bandwidth selection.
JEL classification nos: C13.

(© by the authors. All rights reserved. Short sections of text, not to exceed two paragraphs,
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1. Introduction.

A principle stylized fact emerging from the analysis of many financial time series (such
as asset returns and exchange rates) is the approximate uncorrelatedness of the 'return’
series r; (often a first difference of logarithms of the basic observed series) alongside
pronounced autocorrelation in certain instantaneous nonlinear functions of 7, such as r2.
Such behaviour is consistent with the property that the conditional mean is zero (almost

surely),

E(rG: 1) =0, (1.1)

where G; is the o- field of events generated by r,, s < ¢, whereas the conditional variance
O_t2 == Var(?"t’gt,l) (12)

1s stochastic.

The earliest models of this form assumed that
0§:a+ijT?7j, LeZ, (1.3)
j—1

for constants a > 0 and b; > 0 (to ensure that o7 > 0), where the b; also satisfy

some summability condition, easily achieved in both the ARCH(p) model of Engle (1982)
(wherein b; = 0,7 > p ) and its GARCH extension of Bollerslev (1986). However, these
latter models imply exponential decay in the autocorrelations of the r?, whereas em-
pirical evidence has frequently suggested a much greater degree of persistence, possibly
consistent with long memory in r?, where autocorrelations are not summable (see e.g.
Whistler, 1990, Ding, Granger and Engle, 1993). Such behaviour could arise from heavy
- tailedness or structural breaks (see e.g. Davis and Mikosch (1999), Lobato and Savin,
1998), but it might also be explained by (1.3), since considerable flexibility is possible
in the choice of the b;. Robinson (1991) referred to the possibility of b; in (1.3) that
correspond to long memory in 72 and developed tests for no - ARCH with optimal effi-
ciency against parametric alternatives in the class (1.3), while Granger and Ding (1995),
Ding and Granger (1996) have discussed such models further. On the other hand, the
sufficient conditions established by Giraitis, Kokoszka and Leipus (1998) for existence of

a covariance stationary solution in versions of (1.1), (1.2) given by
Tt = &40y, (14)

where £, is an independent and identically distributed (iid) sequence having suitable

moments, and oy is the positive square root of o7 in (1.3), rule out long memory autocor-

relation in r2, so that a full account of the long memory potential of (1.3) is lacking.



Fortunately it is easy to find alternative models for which conditions for stationary

long memory of squares and other instantaneous functions are available. In particular in
models of form (1.4) with

oy = f(ne), (1.5)

where 7, is a possibly vector-valued, possibly Gaussian, unobservable long memory pro-
cess, the memory properties of instantaneous functions such as r! for integer I > 2, or |r|®
for real o > 0, depend on the character of the function f. Models of this type with long
memory properties have already been discussed by, for example, Andersen and Bollerslev
(1997), Breidt, Crato and De Lima (1998), Harvey (1998), Robinson and Zaffaroni (1997,
1998).

Here we consider the long memory potential of an alternative class of models of form
(1.4) that is more similar to the ARCH form (1.3). We consider the model, which one
might call LARCH (”Linear ARCH”),

Ut:a—l—ijTt,j, LeZ. (1.6)
j=1
Thus with (1.4), we have a special case of the model consisting of (1.1) and
O_t2 = (a —I— ijTt,j)Q, t - Z, (17)
j=1

for the first and second conditional moments that was considered by Robinson (1991)
(equation (16)). Indeed (1.6) with (1.4) is also a special case of the general class of
bilinear models referred to by Granger and Andersen (1978) (equation (4.1)), though these
authors and the subsequent literature on bilinear time series models, focussed on forms
that specifically exclude the combination of (1.6) with (1.4). Robinson (1991) contrasted
the implications for third moment behaviour of 7, under (1.3) and (1.6). Notice also that
(1.6), unlike (1.3), is not constrained to be non-negative, so that o, is not a standard
deviation and lacks something of the usual volatility interpretation. However constraints
on a and b;, of the type needed for (1.3), are not thereby necessary, leading to some
convenience of theoretical analysis. Whereas Robinson (1991) considered weights b; of
long memory type in (1.7), this was in connection with testing for no-ARCH against
general parametric alternatives of form (1.2), including short memory ones. Short memory
versions of (1.6) (such as when b; = 0,7 > p) may deserve further study, but our results,
except for Theorem 2.1, focus on long memory type b;. Here, we examine the structure
of o (Theorem 2.1) and its possible long memory behaviour (Corollary 2.1), and give
conditions under which powers 7!, for integer / > 2, have long memory autocorrelation
(Theorem 2.2) and their normalised partial sums converge to fractional Brownian motion

(Theorem 2.3). These results and the relevant conditions are presented in the following
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section, which also gives the proofs of Theorem 2.1, Corollary 2.1 and Theorem 2.3, but
only the main steps of the proofs of Theorem 2.2, the remaining details appearing in the

following three sections of the paper.

2. Main results
We introduce first

Assumption 1 (i) (1.4) and (1.6) hold.

(ii) {e¢} is a sequence of iid random variables with zero mean and unit variance.
(iii) a # 0.

Assumption 2.

b={> v} <1
j=1
Let F; be the o- field of events generated by &, s < .

Theorem 2.1. Let Assumption 1 hold. Then a covariance stationary F; 1-measurable
solution oy, t € Z, of (1.4), (1.6) exists if and only if Assumption 2 holds, in which case,
fort € 7, we have the Volterra expansion

Oy — CLZ Z b]1 e bjkgtfjl S Ty D (21)

and

E(Ut) =a, (2.2)

Cov(0g, 0y) = 62 Zb byt (2.3)

Proof. If 0, is a covariance stationary F;_i-measurable solution of (1.4), (1.6) then
is also covariance stationary with E(rg) = 0, Cov(rg,7:) =0, a # 0. Thus F(o¢) = a and

E(0d) = a®> + b’ E(0}), (2.4)

to give the first statement of the theorem. We thus have, under Assumption 2,

E(rg) = E(05) = : 2.
(3) = Blod) = 2.5)
We also deduce from (1.6) and stationarity that

Cov(og,01) = B(rd Zb bt (2.6)



to give (2.3). Finally (2.1) is obtained by iteration of (1.4), (1.6) as in Nelson (1990),
Giraitis, Kokoszka and Leipus (1998), and is clearly also strictly stationary. |

The iid requirement can be relaxed to a martingale difference one, on the ¢, and £? — 1.
There is no loss of generality in fixing Var(gg) = 1. If Assumption 1(iii) does not hold, so
a = 0, we deduce from (2.4) that b = 1, so Assumption 2 cannot hold. Then, for example,
in case by = 1,b; = 0, 7 > 1, we have instead, subject to convergence, o, = H;il Et—js
which is a sequence of uncorrelated variables with zero mean and unit variance, as is 7;
trivially 7, = 0 = 0 is also a solution. Hence we discuss only the case a # 0. The Volterra
expansion (2.1) plays a basic role in the proofs of Theorems 2.2 and 2.3 below.

From (2.3), (2.5) we can also write

Corr(og, o) = ‘Ejlbgjbj_ﬂa
which we recognize as the usual formula for the autocorrelation function in terms of
Wold decomposition weights. We can thus control the memory of o, by choice of b;. We
introduce

Assumption 3. For

O<e<oo, 0<O<1, (2.7)

we have
by~ et U012 g5 1 — o0, (2.8)

where ' ~' indicates that the ratio of left and right sides tends to 1.

Corollary 2.1. Let Assumptions 1-3 hold. Then

Cov(og,00) ~cjt™?, as t— o0 (2.9)

where B 0)
= ac{#}l/? (2.10)
Proof. Standard from the long memory literature, using (2.8) and (2.3). [ |

An example of b, satisfying Assumption 3 is

I+ 452)
bt = CW, (211)

which is proportional to the moving average weights in a standard fractional

ARIMA(O, %(1 —0),0) model (see e.g. Adenstedt, 1974, Samorodnitsky and Taqqu, 1994,
p.381), so that (1.6) becomes o; = a + ((1 — L)~1/2 — 1)r,, L being the lag operator.
More general b, include the fractional ARIMA(p, %(1 — 0),q) weights. Notice that many
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of the latter models have b; that are not all non-negative, and so could not be used in
connection with (1.3).

It will be found that, for integer I > 2, rl has autocorrelations decaying at the same
rate as those of 0; when o; has long memory, and that the normalized partial sums
of r! (like those of 0;) converge to fractional Brownian motion. Notice that typically
0; 1s unobservable, whereas 7; is observable, so that its autocovariances can likely be
consistently estimated under suitable conditions. There is thus the possibility of drawing
inferences on the presence and extent of long memory in r!. The choice of [ likely to be of
most interest to empirical workers is I = 2, especially as finiteness of low order moments
of financial time series has frequently been questioned. However, subject to finiteness
of moments, the extent to which our approximation to Corr(r{, rl) depends of I may be
helpful in validating the model from real data.

To establish the properties of !, we impose also:

Assumption 4(I). s; has finite 2I"" moments such that

(4 — 20 — 1)py'v? < 1, (2.12)
where p1; = E(s)).

For given I, (2.12) is a tighter restriction on b than Assumption 2, that is, a tighter
restriction on ¢ in case (2.10), while (2.12) becomes more stringent as [ increases, since
(4" =20 —1) and u;l/l are increasing functions, so that (2.12) holds also for j < I. When
¢ 1s Gaussian pg = (20 — 1)(20 — 3)...3 - 1, though in this case is likely that the factor
(4" — 21 — 1) can be reduced, (2.12) being only a sufficient condition for the following
results.

Theorem 2.2. Lel Assumptions 1, 2, 8 and (1) hold. Then, for j=2,...,1
Cov(rj, 1) ~ A7 ast — oo, (2.13)

where .
1. ;
¢; = —jE(rp).

Proof. Tt suffices to take j = I. Write vy = (sl — )0, so

vl =clol = ol + vy, (2.14)

Since we may write
Cll
€= Mz;E (0)



and Assumptions 1 and 4(1) imply that Cov(vy;, vy) = Cov(a), vy) = 0 for ¢ > 0, it suffices
to show that

Cov(ah,al) ~ cldit™? (2.15)
where z
dy = LE(oy)
a
and that
Cov(voy, o) = o(t™?). (2.16)

To consider (2.15), introduce the ‘remainder’ term
Yu = 01 — dyoy. (2.17)
Then (2.15) will be a consequence of Corollary 2.1 and
Cov(yor, yu) = o(t™"), Cov(yo,00) = o(t™?), Cov(ag,yu) = o(t™").
These are easy consequences of
Cov(oy,al") ~ dpdiCov(og, o), 1<11" <1, (2.18)

and Corollary 2.1, noting that d;y = 1. To show (2.18) we introduce an ’intermediate’

term -

G =3Y. Y Gsgbas by e s, (2.19)
k=1 sp<..<s1<¢t
where
a; = aBlo} o+ D Gigbs, (2.20)
0<s<t

ths,j = Htfs,j - Ht*S*l,j; (221)
Hy sy = E(o] ' E(o:|F))), (2.22)

F,! being the o-algebra of events generated by ;, s > t. Then we prove (2.18) by showing
that
Cov(oh,af') ~ Cov(Gorr, Gin) (2.23)

and

Cov(Coir, Gtir) ~ dypdinCov(og, oy). (2.24)

We prove (2.23) in Lemma 5.1 and (2.24) in Corollary 4.3. Finally, (2.16) is proved in
Lemma 4.4.

The proof of Theorem 2.2 rests on the approximations
ol =< dioy, vl = mdoy, (2.25)
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<’ meaning that left and right sides have the same autocovariance function, at long
lags j to order o(j?). The typical dominance of the linear term in approximating the
autocovariance of stochastic volatility models also arose in Andersen and Bollerslev (1997),
Robinson and Zaffaroni (1997, 1998). On the other hand, Ding and Granger (1996) found
significant variation with « in sample autocorrelations of |r|* computed from stock returns
and exchange rates. To the extent that this phenomenon pertains to long lags, Theorem
2.2 can only explain it in respect of the asymptotic scale factor ¢ of Cov(r{,rl) which
varies with [), not in respect of the decay rate ¢t ¢ (which is constant with respect to 1).
Nevertheless the approximations (2.25) are quite remarkable and also provide the
leading term in the limit distribution of normalized partial sums of the rl. Let Wy(t),t > 0

be fractional Brownian motion, that is a zero-mean Gaussian process with covariance
1 B - _
EWy(Wo(t) = H(1s]7 + 2 — [t — )

(see Samorodnitsky and Taqqu (1994), Chapter 7). Let [-] denote integer part, and =

the convergence of finite dimensional distributions.

Theorem 2.3 Under Assumptions 1,2,3 and 4(1), for j =2,...,1, as N — o0

NO/21 Z(rg — E[rl]) = xoc;We(t), t>0, (2.26)

s=1

h
where 5

v lmae-g

Proof. Again we can take j =I. Considering again (2.14), from uncorrelatedness of vy,

Vaf(z vy) < puE(od )N = O(N) = o(N?7?),

E(03") being finite from Lemma 3.1 (replacing [ by 2I there and noting assumption 4(1)),

so we can replace 7} by p0l. Now employing again (2.17), Corollary 5.3 below implies

that Var(ziil yu) = o(N?7%), s0 it remains to show that

NN (o = a) = xoc1Wo(t). (2.27)

For K >0, (1.4) and (1.6) give

Oy — a = Z btfsgso_s — Z btfsgsE[O_S’f;;K:l + Z bt*SE’\S(O_S - E[O_Slf;;K:l)

s<t s<t s<t
. AT +
= 1z +z.



Thus,

[Ne] [Ne] [Nt]
Zn(t) == (o, Zz +Zz () + Zn (1)
s=1

We show first that the term 7}, := Z;&(l) is negligible. We have

N ?Var(Z) ={N"? > > by sb s} El(00 — Eloo F'])?] (2.28)

=1 s<t' At

where the factor in braces is, from Corollary 2.1,

e Z =91+ o(1)) — 2L /1(1—93)%;@;: GG (9.99)
=1 E(T()) 0 E(TO)

Thus (2.28) is O(6k), where
6k = E[(00 — Eloo] F1i])?] = 0 (K — o0).

Hence (2.21) follows from

N2 7 (1) = dgW(t), (2.30)
if d% :=limy o N7 2 Z” 1 Cov(z;, z; ) satisfies
I}lm dK = XoC1. (231)

To prove (2.31), using the fact that n, := &, F|oy|F,} |, € Z, are uncorrelated, we obtain

d2 = Fn?] J lim N2 Z > byabe s}

tt'=1s<t'At"

from (2.29), where
Elng) = Bleg|E|(Eloo| F'%])?] — Elog] = E(rg) = a®/(1 = b*) (K — o).

To prove the convergence (2.29), note that 2, is a of form z, = Y _, b, where
N, S € Zi is a stationary sequence of uncorrelated K-dependent random variables. Hence
the central limit theorem (2.29) follows using the same argument as in the case of an iid

sequence {75, s € Z} (see e.g. Davydov (1970), Giraitis and Surgailis (1991)). [ |

Sections 4 and 5 provide the proofs of the outstanding results (2.16), (2.23) and (2.24)
needed for the proof of Theorem 2.2. First, however, the following section establishes

finiteness of the moments of powers oy.



3. Moments and diagrams.

In this section we discuss diagram formalism for the moments Elol], I = 2,3,..., of
the Volterra series (2.1).
Let Egt denote the sum over all subsets S = {sy, 85 1,...,81} CZ, s < 81 < ... <
s1 < so=1k=0,1,.... With any such S we associate the function
k
b o= [ ] bososms = brosbay sy - - boy s
i=1

and the random variable

|

ses

oL =a i Zzt boe® (3.1)
k=0

B = <% .= 1. Then

and
AR DD DS D AN E
k1,....k1
— AP e (3.2)
(Sh
(k)
In (3.2), the sum Z(k)l is taken over all collections (k); = (ki,...,k;) € Z!|Z, :=
{0,1,...,}, EEZ))ll’t = let o le’t, (S); := (S1,...,5;) and we put b = p%1 . b5
= g5 % Then ®)
1t
Elo] = a ZZ(S) b sy, (3.3)
(k)
where

fiesy, = Bl = Bl5 .. ).

In a similar way, for any integers I',1” > 1

I 1" " (k )l’ t (k )l” 0 , "
Cotel. o) = o T Y TS O o, 00

(k/)l’ (k”)l//
where
B8, (8" i = Cov (e 8Ny,

for any collections (S"); = (57,...,50),(S") = (SY,...,S}) of subsets of Z. To study
the convergence and the asymptotics as ¢ — oo of the formal series (3.3-4), we introduce

below a diagram formalism. Observe, by the independence of ¢;,7 € Z,

M(S)l =0 unless A(S)l = Uizl(SZ\ Uj;,gi Sj) = @ (35)
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and
(S, (8) = 0 unless A(S/)y C UELISZ{/ and A(S”)y/ C Ui/:IS; (36)

Let (k); = (k1,..., ki) € Z, be given. Let I = I((k),) be the table consisting of ! rows
I = Li((k)) = {(k;,5),...,(1,5)} of length k; > 0,5 = 1,...,l. (Some of these rows
may be empty, too.) A diagram is an ordered partition v = (V4,...,V,) of the table I by
nonempty subsets (edges) V,,q=1,...,r, 7 =1,2,..., containing at most one element of
any row: [V, N <1, ¢g=1...,rj=1,...,L
Let f(s;;: (4,4) € I) be a function defined on (collections of) ordered integers:
Sk < Skyag < --<S1; <805, J=1,...,1 (3.7)

7

where (S0.1,--.,%0;) := (s0); € Z' is fixed. With any such f(s;; : (i,j) € I) and any

diagram v = (V4,...,V,) we associate the sum

S s ) € 1) = 2, JbuiGned (8

8i,j=8¢,(4,)EVg,q=1,...,7

over all integers s;;,i =1,...,k;,j =1,...,1 satisfying the inequalities (3.7) and
Si5 = Sy 41 1= §q, (i,j),(i/,j/) < V;J, g=1,...,r (39)

and
§1 < ... <&, (3.10)

In general, the inequalities (3.7) and (3.10) may be incompatible in which case the
sum (3.8) is zero by definition. It is convenient to picture edges of a diagram as 'ver-
tical sets’ connected by curve segments right, as well as to connect the vertices ly-
ing on the same row, thus making v a graph. The ’'vertical edges’ Vi,...,V, should
be placed horizontally in increasing order. For example, the graph in Fig. 1 corre-
sponds to (k); = (1,2,2,3) and v = (V4,...,V5), Vi = {(3,4)},Vh = {(2,4)}, V5 =
{(2,2),(2,3), (1,4}, Ve = {(1,3)}, V5 = {(1,1),(1,2)}. According to (3.8), a diagram
determines the choice of ’coinciding diagonals’ in the summation over integers (3.7).
For example, for v shown in Fig. 1 and (so)s = (0,0,¢,0), Zfrso)“ denotes the sum
over integers 517 < 0,895 < S12 < 0,823 < 813 < 1,834 < S94 < 814 < 0 satisfying

834 =: 81 < 894 =: S9 < 899 = 823 = S14 = 83 < 81,3 =:54 <811 =812 ="3S5.
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Graph of Example
Fig. 1

Write I'; for the class of all diagrams v = (V4,...,V,) over I = I((k);) such that
|V, > 1Vg=1,... r. Then from (3.3), (3.5) one obtains

CEIETD DD DI St (3.11)

(&) 7€T1((),)

where (t); := (¢,...,¢) and where
N’
l
Hory = I(3),

for (S); = (S1,...,5),S; = {8x;,5,---> 515}, J = 1,..., 1 satisfying (3.9-10), depends on ~y
only. Similarly, for any ;1" > 1,

' " IR £,0); 1 / 1"
Cov(al o) =a"! Z Z Z i, Zi W (8 (S (3.12)

(B (B ’YEFI((k/yk”)l/Ju)

In (3.12), I((K', k")) == 1 = I" U I" is the table having I’ + " rows and consisting of
w0 blocks 1= 1((K)o), 1" == 1)), (1,0} = (11,0, 0), and

v i
/jl/,y = /j(s/)l/’(s//)l” = COV(g(S/)l/,g(S”)l”) (313)

depends on 7y only. Property (3.6) of the last covariance translates to the diagram language
as follows. Call a diagram v = (V4,...,V,) € PI((k’yk”)z/,zH) block-connected if there is
an edge V, which has an nonempty intersection with both blocks I’ I” of the table I:
V,NnI"#0,V,nI1"#0. By (3.6), the last sum on the right hand side of (3.12) vanishes
for each diagram which is not block-connected so that (3.12) involves summation over

block-connected diagrams only.
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Lemma 3.1. Let Assumption 1 hold and
(2 — 1= 1)), < 1 (3.14)

where |p); = F(|ef}). Then the series (3.8) converges absolutely and defines a finite mo-
ment E[ol].

Proof. By Holder’s inequality,
sy | = (™ 23] < [yt (3.15)

where |u|; = E(|[}). Then the lemma follows from

Z( "B < plsitetis (3.16)

and Lemma 3.2 below. To show (3.16), consider a diagram v = (V4,...,V,) € I';, I =
I((k);). Then by the Cauchy - Schwarz inequality, V; being the leftmost edge of ~,

Z(t)l B < BV Z(t/)l B, (3.17)
v v

where 7' := (Va,...,V;), S := S\V1,|Sj| = kj,j = 1,...,l and v € T'p, I' := I((K'),),
(k") = (K|,... k). Indeed, let V4, |Vi| = m connect the first m rows S;,;1 < i < m,2 <

m < [. Then the summation over s;, ; = ... = 53, ,» =: 5 in the sum Eff)l contributes to
ZH]bsk sl < (Z gkl s )12 ZHbSk ) )< pm, (3.18)

§ =1 § =2
Thus, (3.16) follows by repeated use of (3.17). [ |

Lemma 3.2.
ITr| < (21— 1 — 1)Utath/2

Proof. According to (3.10), edges of a diagram v = (V4,...,V,) are ordered, and any edge
V,, 2 < |V,] <1 may be chosen in 22:2 (i) = 2! — 1 — 1 ways. The number r of edges does
not exceed (ky + ...+ k;)/2. This proves the lemma. [ |

Remark 3.1. If | = 2 and {s,} is a Gaussian sequence, then condition (3.14) of Lemma
3.1 can be replaced by
/,LQbQ <1

and Assumption 4 (2) by

Ty < 1.
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This easily follows, noting that Fgy = Ec} = 0 implies that

et £ 05 (o) + (Gt o

Write

Lig = Si—1,5 — Si,5, izl,...,l{fj, jzl,,l
for the differences of the arguments (3.7). Below, we need

Lemma 3.3. Assume that

supt(H@)/letl < 00, (5.19)
t>1

where 0 < 0 < 1. Let v= (V4,...,V,.) € I'1 be a diagram, and (i1, j1), (i, j2) be arbitrary
elements of the table I = I((k),), which do not belong to the same row or the same edge.
Then for any Ly, Ly > 0

(s0) o
ZW L (|, gy | > L, |i,,5] > o) < CHOILTOLY. (5.20)

In (8.20), the constant C' does not depend on (k) (so)1, 7y, and |(k))| := |I| = k1+...+k.

Proof. This follows that of (3.16), where we use the Cauchy-Schwarz inequality (3.17)
for any edge which contains (i1, j1) or (i, jo). Consider an edge {(i1,j1),(i,7)}, (i,7) #
(i9,42),7 # j1. Assume first s 1= s;_1; > $;,-14 = s1. Then the summation over

Si,.5; = 8i,; =: 5 contributes to
D by sbs sl1(ls1 = 3] > L)
< C Z u7(1+9)/2(u_ (81 . s)>7(1+9)/2 < CZ<U+ L1)7(1+9)/2U7(1+9)/2 < CLIG
u>1L1 v>0

For s < sy, a similar bound follows easily. By evaluating in a similar way the sum over
Siy.4,, ONE Obtains (3.20). [

4. The intermediate term (.

From (2.19), it follows that (.t € Z is strictly stationary, with zero mean and
(cross)autocovariance

l/l// o0

7[)2 aj’l/at+j’l//7 (41)

Cov(Geirs Com) = 1—

=1

13



determined by the last convolution. It turns out, that the weights a;; have similar asymp-

totic behaviour to b; under Assumption 3.
Lemma 4.1. Assume conditions (3.14) and (3.19). Then
|Gl < Ct 10 (4.2)
Furthermore, under Assumption 3,
at; = Elob]b; + o(by). (4.3)

Proof. Let us first prove (4.3). By (2.21), (4.2),

ZGS’Z = Hoo,l - HO,Z = E[O'Z] - CLE[ = 1].

Hence, (4.3) follows from (2.20),
> |Gl = o(1) (4.4)
§>1

and

> 1Gallbe = be ol = o(by). (4.5)

0<s<t

Here, (4.4) is obvious from (4.2). To show (4.5), write

Z ’Gs,let_btfs’ S Z ’Gs,let_btfs’_l_ Z ’Gs,l”btfs’_l_’bt’ Z ’Gs,l’

0<s<t 0<s<t/2 t/2<s<t t/2<s<t

= S+ Jo+ Js.

From (4.2) and (3.19), the estimates .J; = O(t~1+39)/2) = o(b,) i = 2,3 easily follow. Next,
= |by| Eo<s<t/2 |Gs.1|he(s), where hy(s) := |1—(b;_s/b;)| vanishes as t — oo for each fixed
Z 1, and h(s) is uniformly bounded for 0 < s < /2, implying Eo<s<t/2 |Gs1|he(s) =
o(1) by (4.2). This proves (4.5) and (4.3).

It remains to prove (4.2). Observe, that

+
Eloy|F] E E be 5055y -+ -Ds 5,51+ s

k=0 s<gp<...<<§1<¢t

has similar structure to 0. Therefore the expectation H; s; can be written similarly to

(3.11):
Hes=Y > u Z()l BNL(Sy C [s,1)).

(&) vET1((),)

14



Therefore 0
Gror=3 > mp . VIUABS) =s), (4:6)

(B)r vET1((),)
where A(S) = min{s : s € S}. With (3.14), (3.15) in mind, the bound (4.2) and the
lemma follow from (4.6) and Lemma 4.2 below. Lemma 4.1 is proved. |

Lemma 4.2. Let b;,1 > 1 satisfy the condition

supi(He)/leil <D, (4.7)

i>1

where D > 1. Then for any (k); € Z.. and any diagram v € Tray,),
)
D LS = 5) < DR[| s (4.8)

where k| = ki 4+ ... + k.
Proof. Write N, for the left hand side of (4.8). By homogeneity of both sides of (4.8)

with respect to b, it suffices to show the lemma for b = 1, in which case according to

(3.16)
Y Nys <L (4.9)

s<t
We prove (4.8) by induction in the number r of edges of v = (V4,...,V,). For r =1, it
Ml <p?2 < D2t — |70,
To show the induction step 7 — 1 — 7, let V<, 1 < ¢* < r be the edge which contains
the element (k1,1) (= the far left element of the first row of the table I = I((k);). There
are two possibilities: (1) ¢* > 1 and (2) ¢* = 1. In the case (1), use the Cauchy - Schwarz

follows easily; indeed, in this case, Ny; s = |bi_s

inequality as in (3.17), to obtain

_ () () _ () (), NN
Moo= 3 B30 = ) < SV BN UAS) = 5) = Ny
The diagram «' has ' = r — 1 < r edges and therefore satisfies the inductive assumption,
thereby proving the induction step.
Let now V« = V] be the far left edge of . Without loss of generality, assume |V;| =
m > 2 connects the first m rows [;,1 < i < m of the table I = I((k);). Then using the
notation of (3.17-18), one can rewrite the product ]bl(s)] in (4.8) as

BN = |ptS| H [bay, 1 i—s| = 156 | H ’bsk;,rsl' (4.10)
i=1 =1

15



Using the inequalities ]bsk, b, 2,5] < (1/2)(bgy st b? ), 1b;] < 1Vi, from (4.10)
1° 2 1>

Sk’Q,Q*S

one obtains

(®) ' y ~ y ~
2N,y <Y bﬁfszv, [BE (L(A(SY) = 3) + L(A(Sy) = 3))

§<8<t

23 b2 Ny s

§<8<t

IA

Put |K'| ==k, + ...+ k], then |k'| < |k| + 2 and

Nya< > BNt Y. BNy (4.11)

t/ |k |<u<t t—t/ k| <t—u<t

Here, b21(u > t/|K'|) < D?|u| " 1(u > ¢/|K'|) < D?|K'|"*?¢ 19 Similarly, by the

inductive assumption,

Ny W1t —u>t—t/|k]) DK Pl —u| 701t —u >t —t/|K])

<
< DYEPR/(K] = 1))

Substituting these inequalities into the right hand side of (4.11) and using (4.9) and b = 1,
we obtain

PHON e < DPRTE + DR PR/ (K= 0) < DR+ KPR/ (E] = 1)7).

In view of the inequality n? + n*(n/(n — 1))? < (n + 2)3, which is true for any integer
n > 2, this proves the induction step r — 1 — 7 and Lemma 4.2 also. |

From (4.1) and Lemma 4.1 we deduce:
Corollary 4.3. Under Assumptions 8 and 4(1), for any 1 <1')1" <1

Cov (G, Co) = U'I"E[o|Elol 1Cov(ay, 00)(1 + o(1)). (4.12)

Lemma 4.4. Under the assumptions of Theorem 2.2, relation (2.16) holds.
Proof. Note from (2.1) that for ¢ > 1 o, can be written as

o0
o = a E E N M -

k=0 s;<...<s51<¢
t—1

= a ") (BloFH = Elo Fia)) Eloa| F_1] + Elov| F_1),

s=0

16



where

Eloy|FH — Elod|F4 ] = Z Y g beyaEe S (4.13)

k=1 s=s8p<...<<81 <t

and

Elos|F-1] = a E E bs_sy - bs, 5.5, - Esp-

k=0 55, <...<51<0
Set gf 1= a N(Bloy|Ff] - Blog|FLi]),0< s <t —1,g/ :=1,9; := Elo|F4],0<s < L.

Then .
=> glg,.
s=0

Hence

Cov (v, Ui) = E[( Ego)go( Egt)]

t

= > Bl - B [Jelpob[Je) ()

81,...,8;=0:min g;=0

where we use the fact that 0,g,,0 < s < ¢ are F_;—measurable, and g}, 1 < s < ¢
are F,"—measurable. Note that FE(g;)* < Eo? = Fo2! < co by Assumption 4(l) and

Lemma 3.1, and therefore

1
Eloy [ [ 95
=1

is bounded uniformly in s;,1 < i < [. On the other hand, taking into account the
definition of g! and (4.13), the first expectation on the right hand side of (4.14) can be
written similarly to (3.12) and (3.13) with the help of diagrams, yielding

< oXu Y 3 s =0

(k) YeLr (1))

< Oty @ -1,
(k)

l
< (Bog)'* | [(Bl9,,)")™ < o' (4.15)

=1

t

2.

81,...,6;=0:min ;=0

l

Bl(eh - Bel) [T o]

=1

according to Lemmas 3.1 and 4.2. The last sum being finite under Assumption 4(1), this
completes by (4.14), (4.15) the proof of Lemma 4.4. [ |

5. The remainder term yy.

In this section we study the asymptotic behaviour of the autocovariances of the
difference ytz = ol —IE [Uo]Ut, to which end, we first study the (cross)autocovariances
Cov(ol,ab) for 1" =1,... 1.

17



Lemma 5.1. Under Assumptions 8 and 4(1), for any 1 <U')1" <1
Cov(o} 700”> Cov(Cers Gogr) + Ot =M, (5.1)
where A =0(1—0)/(140) > 0.

Proof. To prove the lemma, we write the covariances in terms of diagrams and per-
form cancellation in the corresponding expressions, leaving out terms which are of order
O(t9%).

We start by recalling the diagram formula (3.12) for the covariance Cov (ol , 0§ ), where
the summation is taken over block-connected diagrams. We compare this formula with
Cov (¢, Gogv) which we rewrite in a similar way, using a special type of diagram which
we call reqular. Roughly speaking, a regular diagram connects the two [—blocks ', I” of
the table I = I((k');, (k")) only by edges having two elements and all belonging to the
same pair of rows.

To give a formal definition, let Vy;» (1 < ¢ < I')1 < i < ") denote the class
of edges V.Cc I =1'UIl" such that |V| = 2 and VNI, # 0,V NIl # 0, where
15,1 <id <1 <i" <" denote rows of I' = I((K')r), " = I((k")), respectively.

Definition 5.2. A diagram v = (Vi,...,V,) € Ty will be said regular if it is block-
connected and there exist 1 < i <U')1 <" <1” such that, for any g = 1,...,r, either
Vg € Viin, or V, C I, or V, C I" hold, and, moreover, if V; € Vi for some 1 < g <r
then Vi € Vi for any 1 < ¢’ < q such that Vi N (1L, UIl) # 0.

The last property says that the edges V,, € Vy;» connecting the blocks I’, I" connect
pairwise consecutive elements of the corresponding rows [}, Il,, starting from the left.

A block-connected diagram v € ['; which is not regular will be called irreqular. Write

e, Pilrreg for the corresponding classes of diagrams. By definition,

T = UL, Ul TO8(i i) (5.4)

is the union of disjoint classes I';*(#',4") corresponding to given i',7” in Definition 5.2. In

general, given a table I, the class I'y®* may be empty as well.

Let us introduce one more class of diagrams. Namely, the class f‘}rreg - Pilneg consists
of irregular diagrams v = (V;,...,V,) which are obtained from a regular diagram ¥ =
(‘N/l, . ,‘N/;) e I, (1 < ¢ < U1 <id <U"),# > r as follows: any edge of v
either coincides with some edge of 7, or is a union of an edge of 4 which intersects both
blocks ', 1", and one or two other edges of 4 lying entirely in one or two different blocks,

respectively.

It is not hard to verify, using (2.19-2.22) and (4.6), that the covariance (4.1) can be

written as
(t,0);1 1 "
COV Ctl’ COZ” Z Z Z /’LW Z i b(s)/b(s )l” (55)

(k/)l/ (k”)l” ’YEFregUereg
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where fi, := [i, for v € I'[®, and, in the case when v € ™8 is obtained from a diagram

4 as described above, fi, := fi5. It follows from (3.15) that fi, and fi, satisfy a similar

inequality:

171 (D B D/
= gl O, (56)

max(]/lwl, ’/17’) < 2’#’ = 2’#’

(K| =k, +...4+ k) |(K")w| = k] + ...+ kJi, being the number of elements of the blocks
I, 1" respectively, and [ = I’ +1”. Then, by comparing (3.12) and (5.5), it is easily seen
that the relation (5.2) follows from

(t,0) 1t ", "o, 4
Y ¥ ’M"ZIWZW SRS = 0170, (5.7)

(B (K" VEFiIrreg
With Lemma 3.2 in mind, (5.7) follows from

Lemma 5.2. For any A > b, there is a constant C < oo such that, for any (K')y €
Ziu (l{;//>l” € Zi/ and any -~y € Pllrregul = ]((k/uk”)l’,l”>7

SO S| < AT, (5.8)

Y

PT’OOf. Let Y < (‘/1, ceey ‘/;,) € Pi]rreg7] =1 U]”,]/ = ]((k")y),]” = ]((l{f”)l//) be given. Put
¢ =max{g=1,...,r: VNI #0,V,NI" # (}. In other words, V,, is the first edge

from the right which connects I’, I”. There are two possibilities:
(1) [V =2
(c.2) |V,.| > 3.

Consider the case (c.1). Let

Voo = {00, 70), (0, 3) ), 84 i= sty = s o,

(i, 52) € I', (i, 4) € I"”. Choose L := 1(1-0)/(A+0) — o(t). Then

‘ B (tao)l’,l” (S/) , (S”) al (t,o)l/,l// (S/) , (S”) "
wy _ZW b b _E:ﬂ, b H L (s, < —L)
(#,0), 41 / "
+ ) b(S )l/b(s ) 1 S, > 1, 5.9
Zv (s, > —1L) (5.9)

e +
= .wt’L—I—wt’L.

Consider w;’“ .- Let
L=U_ V,={V, yulL Ul

=g«

where, by the definition of V,_,

. "o
]* O Uq:q*+1 ..... r:‘/(ZCI"/;]; ]* = Uq:qﬁ»l ..... T:VqCI”‘/Q'
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Then [} = I((k})u), I = I((K)i), where (k) = (k.- kL), (R = (K- K ,)
are the vectors of lengths of rows of the tables I, C I’ I/ C I”, respectively. Then, by
applying the Cauchy - Schwarz inequality as in (3.17), one obtains

th,FL < BN Z Z(t)z/ Z(O)w .

Sy >—L

—  RBINL Z Z Z [

sx>—L s, <8 <t 5,<5<0

)y (0),11 1"
XZ l!b(s) [ L(A(S] )ZS*)Z I LA(S ) = ),

b Bl ’ ’b(Si’)w’

8. il 140 Sx

(5.10)

! — 54

where (S,)r = (S, Su,), (S = (S, S0 ,), Siw =180y : (1,5) € I}, Si, =
{s:; : (i,j) € I} are the corresponding sub- collectlons of 1ntegers (3.9) determined by
the diagrams +, = (V, : V, C I}),v) = (V, : V, C I/). Applying Lemma 4.2 to (5.10), one
obtains

w, < cBN I Z Z Z |s) — 5, OH02) g — g, |- (102

—L<8.<0 5. <8, <t s.<sY/ <0

N e i (5.11)
Hence, by applying the inequality

Yol = sl TP = S < e — s T, (5.12)

(where ]t’;ﬁ = t| P A1,8>0,t €Z) and using |I'P|1"]> < |I]?, we get

wh < Cbm]]]i‘ Z ’s*’7(1+9)/2’t_S*’7(1+9)/2

t,L
—L<s.<0
L

< Cb\[\’]’3t7(1+9)/2287(14»9)/2 (513)

s=1

< Cbu"]’?)[/(l 9)/2t (1+9)/2 Cb‘["]’i’)t 60— )\

where A =6(1 —0)/(1+0).
Consider w, ;. As 7y is irregular, by definition it contains an edge Vj.., .« < g« which

either:

(c.1.1) connects the blocks I, I”, but does not belong to the same class V;; ;i as V, does;
or

(c.1.2) V4., belongs to the block I" and and contains an element from the line [}, , or V.,

belongs to the block /" and and contains an element from the line [7,.

2 -Vé** = {( **7]**) (:*7]**)}7

where j., = j., 77, # j! (the remaining cases can be treated similarly). Put s,, :=

Consider case (c.1.1). Assume for simplicity |V,,,| =
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= 8,1, o . As the common arguments (3.9) are ordered according to the ordering

;! ;!
TN

of edges, we have in the sum w, ; the inequalities
Ser < 8, < —L. (5.14)

As 8o = ¢, among the intervals @; j; = s; 15 — 85,1 =1,...,4, in the sum w, ;, there

exists at least one "large” interval x;; ;; of length
pag > D/ = 0] (G =11, (5.15)

In a similar way it follows from (5.14) that among the intervals x; ju = s;_1 1 — 8; i, i =

1

,...,1,, there is at least one "large” interval x;y ;» of length
LENETY

wyy e > L1 | > L1 (Fi] =1,...,4,). (5.16)

7**

Moreover, the two vertices (i, 7.), (i), j.,) do not belong to the same edge V, of our
diagram. (Indeed, as they belong to the different blocks, so such an edge, if it exists,
must be necessarily be either V, , or V,, , which is clearly impossible. Hence, by (5.15-16)

and Lemma 3.3,
w, , < CBY(t/\I') " (L/|I") % < CBNI*(Lt) % = CBY|I12 0, (5.17)

Relations (5.12), (5.17) prove the lemma in case (c.1.1).
Case (c.1.2). Assuming again for simplicity that |V,

I

‘/Q** = {(ka/*7u;</*)7( **7]**)} C ]”

where u, = j (the remaining cases can be treated similarly). Put s,, := s, .. = s
Again (5.14) holds, and (5.15-16) are valid. Therefore, we get (5.17) using the same

argument as above.

**7]**'

It remains case (c.2). Assume for simplicity V.

{42, (0, 32), (i3, 41.)}, where
11

the last two vertices belong to [”. Then similarly to (5.11) and three times using (5.12)

one obtains

we < OVIIPYS S0 3 s s Ol s O 0
5, <05, <8, <t s,<s!<0
S Cb‘["]’3t7(1+9)/2’
where (1460)/2 >0+ X (0 <6 <1). Lemma 5.2 is proved. [ |
Corollary 5.3. Under the conditions of Lemma 5.1,

Cov(ol, o) = d}Cov(ay, 7o) (1 + o(1))
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and
COV(ytl, yOZ) == O(tie).

Proof. The first relation follows from Lemma 5.1 and Corollary 4.3. To show the second
one, write

Cov(yy, yor) = Cov(oi, U(Z)) — dl(Cov(Ji, do) + Cov(oy, U(l))) + d?COV(O't, 7o),

and again apply Lemma 5.1 and Corollary 4.3. |
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