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Devwudfw

Lq Jludlwlv/ Urelqvrq/ dqg Vdpdury +4<<:,/ zh kdyh vkrzq wkdw wkh rswlpdo udwh iru phpru|

sdudphwhu hvwlpdwruv lq vhplsdudphwulf orqj phpru| prghov zlwk ghjuhh ri *orfdo vprrwkqhvv* � lv

q�u+�,/ u+�, @ �@+5�.4,/ dqg wkdw d orj0shulrgrjudp uhjuhvvlrq hvwlpdwru +d prgl�hg Jhzhnh dqg

Sruwhu0Kxgdn +4<;6, hvwlpdwru, zlwk pd{lpxp iuhtxhqf| p @p+�, � q5u+�, lv udwh rswlpdo1 Wkh

txhvwlrq zklfk zh dgguhvv lq wklv sdshu lv zkdw lv wkh ehvw rewdlqdeoh udwh zkhq � lv xqnqrzq/ vr

wkdw hvwlpdwruv fdqqrw ghshqg rq �1 Zh rewdlq d orzhu erxqg iru wkh dv|pswrwlf txdgudwlf ulvn ri

dq| vxfk dgdswlyh hvwlpdwru/ zklfk wxuqv rxw wr eh odujhu wkdq wkh rswlpdo qrqdgdswlyh udwh q�u+�,

e| d orjdulwkplf idfwru1 Zh wkhq frqvlghu d prgl�hg orj0shulrgrjudp uhjuhvvlrq hvwlpdwru edvhg

rq wdshuhg gdwd dqg zlwk d gdwd0ghshqghqw pd{lpxp iuhtxhqf| p @ p+ a�,/ zklfk ghshqgv rq dq

dgdswlyho| fkrvhq hvwlpdwru a� ri �/ dqg vkrz/ xvlqj phwkrgv sursrvhg e| Ohsvnll +4<<3, lq dqrwkhu

frqwh{w/ wkdw wklv hvwlpdwru dwwdlqv wkh orzhu erxqg xs wr d orjdulwkplf idfwru1 Rq rqh kdqg/ wklv

phdqv wkdw wklv hvwlpdwru kdv qhduo| rswlpdo udwh dprqj doo dgdswlyh +iuhh iurp �, hvwlpdwruv/ dqg/

rq wkh rwkhu kdqg/ lw vkrzv qhdu rswlpdolw| ri rxu gdwd0ghshqghqw fkrlfh ri wkh udwh ri wkh pd{lpxp

iuhtxhqf| iru wkh prgl�hg orj0shulrgrjudp uhjuhvvlrq hvwlpdwru1 Wkh surriv frqwdlq uhvxowv zklfk

duh dovr ri lqghshqghqw lqwhuhvw= rqh uhvxow vkrzv wkdw gdwd wdshulqj jlyhv d vljql�fdqw lpsuryhphqw

lq dv|pswrwlf surshuwlhv ri fryduldqfhv ri glvfuhwh Irxulhu wudqvirupv ri orqj phpru| wlph vhulhv/

zkloh dqrwkhu jlyhv dq h{srqhqwldo lqhtxdolw| iru wkh prgl�hg orj0shulrgrjudp uhjuhvvlrq hvwlpdwru1

Nh|zrugv= Orqj udqjh ghshqghqfh> vhplsdudphwulf prgho> udwhv ri frqyhujhqfh>

dgdswlyh edqgzlgwk vhohfwlrq1

MHO fodvvl�fdwlrq qrv= F461

f� e| wkh dxwkruv1 Doo uljkwv uhvhuyhg1 Vkruw vhfwlrqv ri wh{w/ qrw wr h{fhhg wzr sdudjudskv/

pd| eh txrwhg zlwkrxw h{solflw shuplvvlrq surylghg wkdw ixoo fuhglw/ lqfoxglqj f� qrwlfh/

lv jlyhq wr wkh vrxufh1
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1 Introduction.

Suppose that we have n observations X1; : : : ; Xn from a stationary, Gaussian time series fXtg1t=�1
with mean � and spectral density

f(�) =
L(�)

j�j� ; � 2 [��; �]; � 2 (�1; 1); (1.1)

and L(�)! C, C 2 (0;1), as �! 0. The memory parameter � determines the behaviour of f near

zero and is just a re-expression of the self-similarity parameter H = (�+ 1)=2 and of the fractional

di�erencing parameter d = �=2. Xt is said to exhibit long range dependence when 0 < � < 1, short

range dependence when � = 0, and negative dependence when �1 < � < 0. There exist several

`semiparametric' estimators of �, with f speci�ed only near zero frequency, see, e.g., Geweke and

Porter-Hudak (1983), K}unsch (1986, 1987), Robinson (1995a,b).

Consider for � > 0 the class of spectral densities

F (�;C1; C2; �) = ff : f(�) = cj�j��(1 + �(�)); 0 < c � C1; (1.2)

�1 < � < 1� �; j�(�)j � C2j�j� ; � 2 [��; �]g;
where C1; C2 and � 2 (0; 1) are independent of �. Of central importance to this paper is the para-

meter �, whose interpretation we now discuss. It is closely related to the (local-to-zero) smoothness

� > 0 of L(�) in (1.1) which could be de�ned as follows. For 0 < � � 1; L(�) has smoothness � if it

satis�es a Lipschitz condition of degree � around � = 0. For � > 1, L(�) has smoothness � if L(�) is

s times di�erentiable around � = 0, where s = [�], its s-th derivative satisfying a Lipschitz condition

of degree �� s around � = 0. Then � = � for � � 2 (noting that f(�) is an even function), whereas

� � � for � > 2, with � = � if the �rst s derivatives of L(�) at � = 0 are all zero. In general,

therefore, for � > 2 we have � = 2 only. This is the case, for example, with fractionally integrated

autoregressive moving average processes.

The condition � > 0 in the de�nition of class F (�;C1; C2; �) is needed to ensure a �nite upper

bound for Var(Xt) =
R �
��

f(�)d�, uniformly in � < 1 � �. Note that if f(�) = cj�j��, Var(Xt) is

not thus upper-bounded if � < 1, but it is bounded by 2c�2=� if � 2 (�1; 1� �), 0 < � < 1.

Denote the maximum quadratic risk of an estimator ~� over F0(�) = F (�;C1; C2; 0) as

Rn(~�; F0(�)) = sup
f2F0(�)

Ef [~�� �(f)]2; (1.3)

where we write �(f) in place of � in (1.1). In Giraitis, Robinson, and Samarov (1997) (referred

to throughout this paper as GRS) we established the following results. First, we showed that, as

n!1,

inf
~�
Rn(~�; F0(�)) � n

�2r(�)
; (1.4)

where

r(�) =
�

2� + 1
; (1.5)

and the inf is taken over all possible estimators. Second, we showed that the optimal minimax rate

n
�2r(�) in (1.4) is attained by a modi�ed version of the estimator of Geweke and Porter-Hudak

(1983) (hereafter referred to as the GPH estimator).

The question which we address in this paper is what is the best obtainable rate when � is

unknown, so that estimators cannot depend on �? In Section 2 we obtain a lower bound for the
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asymptotic quadratic risk of any such adaptive estimator, which turns out to be slower than the

optimal nonadaptive rate n�r(�) by a logarithmic factor. We then consider a tapered version of the

log-periodogram regression estimator, in Section 3. This estimator was proposed by Velasco (1998a,

b), as a tapered version of the modi�ed log-periodogram regression estimator of Robinson (1995a).

Velasco (1998 a) showed that a data taper can improve estimates of variances and covariances of

discrete Fourier transforms given in Theorem 2 of Robinson (1995a). We prove (Lemma 3.1) a slight

improvement of Velasco's (1998a) result under somewhat weaker conditions, which allows us to

obtain an exponential inequality (Lemma 3.2) for our estimator, which turns out to be an important

tool in obtaining the adaptive rate of our estimator and may also be of independent interest. The

proofs of these lemmas are reserved for Section 5, following Section 4, which contains three minor

lemmas.

The key element in the construction of our estimator is a data-dependent selection of the max-

imum frequency used, m = m(�̂), which depends on an adaptively chosen �̂, obtained using a

modi�cation of the procedure proposed by Lepskii (1990) in a di�erent nonparametric setting. In-

formally, �̂ is de�ned as the largest � for which the log-periodogram regression estimator using

m = m(�) is not signi�cantly di�erent from all such estimators using m(
), 
 < �. The proce-

dure can be also interpreted by graphing the estimator versus a grid of values of � together with a

variable-width band around it: �̂ is chosen as the largest � on the grid for which the corresponding

estimator stays within the band for all 
 < �. See (3.6)-(3.8) below for the precise de�nition.

The memory parameter estimator considered in Section 3 achieves nearly optimal rate of conver-

gence in the class F (�;C1; C2; �). Clearly, F (�;C1; C2; �) includes all classes F (�
0
; C1; C2; �), �

0 � �.

Therefore if a particular density f belongs to F (�0; C1; C2; �)\F (�;C1; C2; �), the rate of convergence

of the estimator will be determined by �
0, and it will be better than in case of f 2 F (�;C1; C2; �)

such that f =2 F (�0; C1; C2; �) when �
0
> �. Summarising, in the case of a particular density f the

rate of convergence is determined by the largest � for which the inequality in (1.2) holds.

In Section 3 we show that our adaptive estimator attains the lower bound obtained in Section

2 up to a logarithmic factor. This means, on one hand, that this estimator is nearly rate - optimal

among all possible adaptive estimators, and, on the other hand, that our data-dependent choice of

m is also nearly optimal for the log-periodogram regression estimator. The technique of the proof,

the idea of which also comes from Lepskii (1990), requires one to assume that though unknown �

does not exceed a known �nite maximum value �� 2 (0;1).

2 Lower bound

This section is devoted to establishing the following lower bound.

Theorem 2.1 Uniformly in � � �
�, the sequence f�n(�) = (logn=n)r(�)g gives the lower bound to

the asymptotic minimax risk for the class F (�) = F (�;C1; C2; �), � � �
�, that is for some C > 0

lim inf
n!1

inf
~�

sup
����

�
�2
n
(�)Rn(~�; F (�)) � C: (2.1)

Proof of Theorem 2.1: Let 0 < �1 < �2 � �
�. As in GRS (see also Hall and Welsh (1984)),

let f0(�) = 1; � 2 [��; �], be the spectral density of white noise, and de�ne a sequence of 'perturbed'
spectral densities fn(�) exactly as in formulae (2.3)-(2.5) in GRS but with �n = (
 logn)=n)1=(2�1+1),

where 
 > 0 will be chosen later. We have �(f0) = 0 and

�(fn) = ��
�1
n = ��n(�1); (2.2)

3



with � = �

�1=(2�1+1), for some � > 0. Clearly, f0 2 F (�2; C1; C2).

The following two lemmas are proved exactly as in GRS.

Lemma 2.1 For all su�ciently large n,
(i) fn 2 F (�1; C1; C2) and
(ii)

R
�

��
(fn(�)� f0(�))

2
d� � K
 logn=n for some constant K > 0.

As in GRS, denote by Pn and P0 the probability measures on R
n generated by n observations

X = (X1; : : : ; Xn) of the Gaussian stationary sequence with the same mean � and spectral densities

fn and f0 respectively, denote byEn andE0 the corresponding expectations, and by �n = log dPn

dP0
(X)

the log likelihood ratio.

Lemma 2.2 There exist �nite positive constants K1 and K2 such that for all su�ciently large n
(i) mn := En�n � K1
 logn;

(ii) �
2
n
:= En(�n �mn)

2 � K2
 log n:

From Lemmas 2.1 and 2.2, we have, as in (2.6) in GRS, that for any event A and any a > 0

PnfAg � e
a
P0fAg+ M log2 n

a2
; (2.3)

with

M = (
K1)
2 + 
K2: (2.4)

Denoting Tn = �
�1
n
(�1)~�, we have, using (2.2), for any � > 0

sup
����

�
�2
n (�)Rn(~�; F (�)) � 1

2
fE0[�

�1
n (�2)(~�� �(f0))]

2 +En[�
�1
n (�1)(~�� �(fn))]

2g �

�
2

2
[��1n (�2)�n(�1)]

2
P0fjTnj � �g+ 1

2
En[(Tn � �)21fjTnj < �g]:

Using now (2.3) and choosing � < �=2 and

a = log([��1n (�2)�n(�1)]
2); (2.5)

we �nd that sup���� �
�2
n (�)Rn(~�; F (�)) is lower-bounded by

�
2

2
[��1
n
(�2)�n(�1)]

2 exp(�a)[PnfjTnj � �g � M log2 n

a2
] +

1

2
(� � �)2PnfjTnj < �g

� 1

2
minf�2; (� � �)2g � �

2

2

M log2 n

a2

� �
2

2
(1� M log2 n

a2
):

Using now (2.4) and the fact that a, as de�ned in (2.5), satis�es for all large enough n the inequality

a � D logn with D = �2��1

(2�1+1)(2�2+1)
, the last expression is lower-bounded by

�
2

2
(1� ((
K1)

2 + 
K2)

D2
) � �

2

4
;

on choosing 0 < 
 <
(K2

2+2K2
1D

2)1=2�K2

2K2
1

. 2
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3 Upper bound.

In this section we establish an upper bound for adaptive estimation, and present an estimator which

attains it. To de�ne our adaptive estimator we employ a further modi�cation of the GPH estimator

beyond that proposed in Robinson (1995a) and GRS, by using a tapered discrete Fourier transform

(DFT), as do Hurvich and Ray (1995), Velasco (1998a,b) in a similar context. Let

wh(�) = (2�

nX
t=1

h
2
t
)�1=2

nX
t=1

htXte
i�t
; (3.1)

where the sequence ht is given by the cosine-bell taper

ht =
1

2
(1� cos�t); t = 1; : : : ; n; (3.2)

for �t = 2�t=n. De�ne

�̂m = �
P

j2I(m) �j log Ih(�j)P
j2I(m) �

2
j

; (3.3)

where

�j = log j � 1

p

X
k2I(m)

log k;

Ih(�) = jwh(�)j2 and the sum
P

j2I(m) is taken over I(m) = fj : j = l + 3k; k = 1; : : : ; pg, where
p = [(m � l)=3], ([a] is the integer part of a). (In the expression (3.1) for the log-periodogram

regression estimator in our previous paper, GRS, the factors �j were erroneously omitted in the

numerator sum due to a typographical error.) Here m is a bandwidth number, indicating the

greatest frequency employed, and l < m is a trimming number, l + 2 being the number of low

frequencies discarded. Robinson (1995a) and GRS have used the estimator with the untapered

DFT,

w(�) = (
1

2�n
)1=2

nX
t=1

Xte
it�

in place of wh(�), so that ht � 1, and with the summation over all j 2 [l + 1;m] in (3.3). The

estimator (3.3), which tapers the modi�ed GPH estimator of Robinson (1995a), was proposed by

Velasco (1998a,b), for a di�erent purpose. The motivation for the trimming in (3.3) is to produce

su�ciently small autocorrelation between the wh(�j) and wh(�k), for j 6= k, (see Lemma 3.1) so as

to enable an exponential inequality for �̂m (see Lemma 3.2). The motivation for omitting about 2=3

of the frequencies �j between �l and �m is suggested by the identity

wh(�j) = � 1p
6
fw(�j�1)� 2w(�j) + w(�j+1)g; 2 � j � n� 2; (3.4)

indicating non-negligible correlation between wh(�j) and wh(�k), jj � kj � 2. The basic motivation

for an estimator of type (3.3), as in GPH, Robinson (1995a) and GRS, comes from approximating the

logarithm of (1.1), and least squares regression of log periodogram ordinates on log frequencies. This

works in the estimators of GPH, Robinson (1995a) and GRS due to the approximate independence

of the w(�j), but this property is only achieved for the wh(�j) by the omission of frequencies (though

of course (3.4) implies that in fact all the w(�j), j = 1; : : : ;m are used in (3.3)). A disadvantage of

this device is that, for given m, the variance of the estimate �̂m is approximately tripled. This could

be alleviated (but not completely corrected) by the pooling method employed in Robinson (1995a).
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One desirable feature which �̂m preserves is invariance to location-shift in the Xt, due to (3.4) and

the location-invariance of the w(�j ), 1 � j � n�1; thus no mean correction is required, irrespective

of whether or not � is known.

The notation �̂m stresses the importance of the choice of bandwidth m. For given � (such as

� = 2) it is possible, as in Hurvich, Deo and Brodsky (1997), and in common with many other

problems of nonparametric smoothing, to minimize the mean square error Eff�̂m � �g2 by (cf.

Lemma 4.3 below)

m = K(�; �)n2r(�); (3.5)

where K(�; �) depends not only on � and � but also, for integer �, on the �-th derivative of L(�) at

� = 0, and for noninteger � on an analogous quantity. For given � it may be possible to consistently

estimate K in (3.5) by some plug-in method or cross-validation. In this paper we wish to adapt to

unknown � > 0 so as to construct an estimate which is (as nearly as possible) adaptive rate-optimal.

The idea of the method we employ is due to Lepskii (1990) (see also Lepskii, et al., 1997) who

developed it in a di�erent context. Given that � in F (�) is unknown, let 
 � �
� be any admissible

value, and set

m(
) = n
2r(
)(logn)

2
2
+1 � n

2


2
+1 (log n)
2

2
+1 : (3.6)

Denote �̂(
) = �̂m(
), where �̂m is de�ned in (3.3). Let h = 1= logn and Bh be the h-net of the

interval [0; ��]

Bh = f
 � 0 : 
 = �
� � kh; k = 0; 1; 2; :::g:

De�ne

�̂ = supf
 2 Bh : j�̂(�0)� �̂(
)j � m
�1=2(�0)d(�0); for any �

0 � 
; �
0 2 Bhg; (3.7)

where

d(�0) =
4k0

(2�0 + 1)2
; (3.8)

and k
0 = (�� � �

0)=h, thereby de�ning �̂(�̂).

Our proofs of Theorem 3.1 and Lemmas 3.2 and 4.3 require an assumption that the parameter

� is bounded away from 0, i.e. that � � �� for some �� > 0. We also assume that the number of

low trimmed frequencies l satis�es the condition

l � l�; l = o(
m

(logm)3
); as m!1; (3.9)

where the constant l� = l�(��; �
�
; C1; C2; �) does not depend on n, but must be chosen su�ciently

large. Thus the proportion of trimmed frequencies on (0;m] is negligible. The mildness of (3.9) is

due to the particular taper (3.2) used; Theorem 3.1 could be established for tapers which entail less

smoothness at the end-points of the sequence fhtg and correspondingly a slower rate of decay of its

discrete Fourier transforms at cost of a stronger condition on l. Note that (3.9) is only a su�cient

condition. As is common when trimming numbers are introduced for technical reasons, there seems

no reasonably precise theoretical guide for the choice of l in practice.

Theorem 3.1 Under assumption (3.9), uniformly in � 2 [��; �
�], where �

�
> 0, the sequence

f��n(�) = (logn)2=n)r(�)g gives an upper bound to the asymptotic minimax risk for the class F (�) =

F (�;C1; C2; �), with the estimator �̂(�̂), de�ned following (3.6)-(3.8); that is, for some �C <1

lim sup
n!1

sup
����

�
��2
n
(�)Rn(�̂(�̂); F (�)) � C: (3.10)
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Theorem 3.1 shows that there exists an estimator with the rate of convergence (log2 n=n)�=(2�+1)

for all classes F (�), 0 < �� � � � �
�. If this rate were equal to the rate �n(�) in the lower bound

(2.1) for all �� � � � �
�, then this common sequence could have been called an optimal adaptive rate,

and �̂(�̂) could be referred to as an adaptive rate-optimal estimator. The present results show that

the the optimal attainable rate of convergence is between (logn=n)�=(2�+1) and (log2 n=n)�=(2�+1)
;

i.e. we have determined it up to logarithmical factor. The optimal attainable adaptive rate remains

to be determined.

Notice that Theorem 3.1 would continue to hold if an arbitrary positive factor K were inserted

in (3.6) (cf. (3.5)), and arbitrariness in K is then equivalent to arbitrariness in m. Thus m(�̂) is not

an optimal bandwidth with unknown � to the extent that (3.5) can be with known �, and we are

concerned here only with showing the existence of an estimator which almost achieves an optimal

adaptive rate of convergence, though this aspect is of uppermost importance for su�ciently large n.

Note that m in (3.5) increases more slowly than m(�) in (3.6), so that Ef (�̂(�)��)2 = O(n�2r(�))

decays faster than ��
n

2(�). Since ��
n
(�1) � �

�
n
(�2) for �1 < �2, it is the largest � such that f 2 F (�)

which determines the rate of convergence of �̂(�̂) for given f . The grid h is su�ciently �ne for our

purposes in that m(
) is insensitive, for large n, to O(1= logn) shifts in 
. Note that �̂, and thus

�̂(�̂), can be sensitive to the upper bound �� on the admissible set Bh. In view of our earlier remarks

following (1.2), a reasonable choice in many circumstances is �� = 2. Of course the outcome �̂ = �
�

could indicate that a larger �� should have been employed.

Since our goal is to show the existence of an estimator which achieves nearly optimal rate of

convergence, we restrict ourselves to the log - periodogram regression estimator (3.3). We expect

that Robinson's (1995b) narrow band Gaussian orWhittle estimator, also achieves the nearly optimal

rate of convergence; it has the same rate of convergence as the log -periodogram estimator for the

same bandwidth sequence. The investigation of this estimator is of interest, bearing in mind its

nice statistical properties and its multivariate extension developed by Lobato (1998). An interesting

open question is whether using data tapers as in Velasco (1998a, b), the memory parameter range

(-1, 1) can be extended to (-1,2), to cover some nonstationary processes.

The proof of Theorem 3.1 employs two lemmas, proofs of which are left to Section 5. The �rst

describes the covariance properties of the normalised tapered DFT

vh(�) =
wh(�)

(cj�j��)1=2 :

Lemma 3.1 For any j = jn; k = kn, such that l � k � j � 3 and j � n=2,
(a) Efvh(�j)vh(�j) = 1 +O(j j

n
j� + 1

j2
);

(b) Efvh(�j)vh(�j) = O( 1
j3
);

(c) Efvh(�j)vh(�k) = O(j j
n
j� 1
jj�kj2

+ 1
kjj�kj2

( j
k
)j�j=2);

(d) Efvh(�j)vh(�k) = O(j j
n
j� 1
jj�kj2

+ 1
kjj�kj2

( j
k
)j�j=2);

uniformly in f 2 F (�;C1; C2; �), 0 < � � �
�.

Remark 3.1 Theorems 2.1-3.1 and Lemmas 3.1-3.2,4.1-4.3 remain valid after replacing F (�) in

(1.2) with a class F �(�) with the following `localized' de�nition:

F
�(�) = F

�(�;C0; C1; C2; �; �0) = ff : f(�) = cj�j��(1 +�(�)); C0 < c � C1;

�1 < � < 1� �; j�(�)j � C2j�j� ; for j�j � �0)g;
where the constants 0 < C0; C1; C2 <1 and � 2 (0; 1) are independent of �, and �0 > 0. Class F �(�)

does not contain any restriction on spectral densities f 2 F
�(�) for `high' frequencies � 2 [�0; �].
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The only change in this case will be an additional assumption in Lemma 3.1 that the frequencies

�k; �j satisfy the condition l � k � j � 3 � m, m = o(n).

Let Am = �� I2p=2, where I2p is 2p� 2p identity matrix (p = [(m� l)=3]) and � is the covariance

matrix of real and imaginary parts of the vh(�j), j 2 I(m). Denote by jjX jj the Euclidean norm of

the matrix X , jjX jj = ftr(X 0
X)g1=2.

Lemma 3.2 Under (3.9), there exist c1; c2 2 (0;1) such that for all su�ciently large n, and m =

o(n)

Ef expf
p
mj�̂m � �(f)jg � c1 exp(c2jjAmjj2) (3.11)

uniformly in f 2 F (�;C1; C2; �), �� � � � �
� for any 0 < �� � �

�.

Proof of Theorem 3.1: The proof makes use of ideas of Lepskii (1990), Lepskii and Spokoiny

(1995). We decompose the quadratic risk of �̂(�̂) into two parts corresponding to the events f�̂ � �g
and f�̂ > �g:

Ef

�
�̂(�̂)� �(f)

�2
= Ef

��
�̂(�̂)� �(f)

�2
1f�̂ � �g�+Ef

��
�̂(�̂)� �(f)

�2
1f�̂ < �g�

=: R+
n +R

�

n ; say:

Now, (3.10) will follow if we show that uniformly in f 2 F (�); �� � � � �
�,

R
+
n = O(��n(�)

2) (3.12)

and

R
�

n
= O(��

n
(�)2): (3.13)

Note further that, since ��n(�1) � �
�
n(�2) when j�1 � �2j = O(1= logn), it is su�cient to establish

(3.12) and (3.13) uniformly over f 2 F (�); � 2 Bh \ [��; �
�].

Using the de�nition (3.7) of �̂ and the fact, established in Lemma 4.3, that for m = m(�) the

estimator �̂m has mean squared error O((m
n
)2� + 1

m
) in case f 2 F (�), we have

R
+
n � 2Ef

��
�̂(�̂)� �̂(�)

�2
1f�̂ � �g�+ 2Ef

��
�̂(�)� �(f)

�2�

� Ck
2
�

(2� + 1)4
m(�)�1Ef1f�̂ � �g+ C[(

m(�)

n
)2� +

1

m(�)
];

where k� = (�� � �)=h = (�� � �) logn and C here and below is a generic constant, not always the

same. This implies that

R
+
n
� C[

log2 n

m(�)
+ (

m(�)

n
)2� +

1

m(�)
)] = O(��

n
(�)2):

Turning now to (3.13), we have

R
�

n = Ef

X

<�;
2Bh

�
�̂(
)� �(f)

�2
1f�̂ = 
g

= R
�

n;1 +R
�

n;2;

8



where

R
�

n;i
=

X

<�;
2Ii

Ef

�
�̂(
)� �(f)

�2
1f�̂ = 
g i = 1; 2

and Ii denote subsets of Bh: I1 = f
 2 Bh : (
m(
)

n
)2�m(
) � 1g; I2 = f
 2 Bh : (

m(
)

n
)2�m(
) > 1g.

By Cauchy inequality,

R
�

n;1 �
X


<�;
2I1

�
Ef

�
�̂(
)� �(f)

�4�1=2
P
1=2

f
f�̂ = 
g: (3.14)

From Lemma 3.2, uniformly in F (�)

E(
p
m(
)(�̂(
)� �(f))4 � c1 exp(c2jjAm(
)jj2)

and thus

�
Ef

�
�̂(
)� �(f)

�4�1=2 � C exp(CjjAm(
)jj2)n�2r(
)(logn)�
2

2
+1

= C exp(CjjAm(
)jj2)n�2r(�)(logn)�
2

2
+1 exp(
2(k
 � k�)

(2
 + 1)(2� + 1)
);

where k
 = (�� � 
)=h = (�� � 
) logn.

Now we estimate Pff�̂ = 
g for 
 2 I1. By de�nition of �̂, if �̂ = 
, there exists �0 � 
; �
0 2 Bh,

such that

j�̂(
 + h)� �̂(�0)j > m(�0)�1=2d(�0):

Using this, we get from (3.8) for 
 2 I1

Pff�̂ = 
g �
X

�0�
;�02I1

Pf

�
j�̂(
 + h)� �̂(�0)j � m(�0)�1=2

4k0

(2�0 + 1)2

�

�
X

�0�
;�02I1

exp(� 4k0

(2�0 + 1)2
)Ef exp(

p
m(�0)j�̂(
 + h)� �̂(�0)j);

and since m(�0) � m(
), we have, by Lemma 3.2,

Pff�̂ = 
g � C exp(CjjAm(
+h)jj2)
X

�0�
;�02Bh

exp(� 4k0

(2�0 + 1)2
)

� C exp(CjjAm(
+h)jj2) exp(�
4k

(2
 + 1)2
): (3.15)

Note that Lemma 4.1 and the de�nition of I1 imply

jjAm(
+h)jj2 � C((
m(
 + h)

n
)2�m(
 + h) + 1) � C

uniformly in f 2 F (�), �� � � � �
�. Therefore, combining (3.14){(3.15), we get

R
�

n;1 � Cn
�2r(�)

X

<�;
2I1

exp(CjjAm(
+h)jj2)(logn)�
2

2
+1 exp(
2(k
 � k�)

(2
 + 1)(2� + 1)
� 2k


(2
 + 1)2
)

� Cn
�2r(�)

X

<�;
2I1

(logn)�
2

2
+1 exp(
2(k
 � k�)

(2
 + 1)(2� + 1)
� 2k


(2
 + 1)2
)

9



and, since 1=(2� + 1) � 1=(2
 + 1),

R
�

n;1 � Cn
�2r(�)

X

<�;
2I1

(logn)�
2

2�+1 exp(
�2k�

(2� + 1)2
)

� Cn
�2r(�) log n(logn)�

2
2�+1 � C�

�

n(�)
2
:

Now we estimate R�
n;2. By Lemma 4.3,

R
�

n;2 �
X


<�;
2I2

Ef (�̂(m(
))� �(f))2 � C

X

<�;
2I2

((
m(
)

n
)2� +

1

m(
)
)

� C

X

<�;
2I2

(
m(
)

n
)2� ;

by de�nition of I2. Note that 0 < �
�
n
(�) � n

�r(�)=2
< 1 for n large enough. For such n,

X

<�;
2I2

(
m(
)

n
)2� =

X

<�

�
�

n
(�)2(2�+1)=(2
+1) � �

�

n
(�)

2
X

<�

�
�

n
(�)4(��
)=(2
+1)

� �
�

n
(�)

2
1X
j=0

�
�

n
(�)

4j=((2�+1) logn) � �
�

n
(�)

2
1X
j=0

n
�2r(�)j=((2�+1) log n)

= �
�

n
(�)

2
1X
j=0

e
�2j�(2�+1)�2 � (1� e

�2��(2��+1)�2)�1��
n
(�)

2
:

2

4 Additional lemmas.

The following lemmas are also used, along with Lemmas 3.1 and 3.2, in the proof of Theorem 3.1.

Lemma 4.1 For any sequence m = o(n),

jjAmjj2 � C[(
m

n
)2�m+

1

l
] (4.1)

uniformly in f 2 F (�), 0 < � � �
�.

Proof of Lemma 4.1: Let ast denote the (s; t) -th element of Am. Consider the contribution

to jjAmjj2 of the ast corresponding to Ef (rjrk), Ef (rj ik), Ef (ijik), where rj = Re vh(�j), ij =

Im vh(�j) for jj�kj � 3. Routine manipulation of Lemma 3.1 (c,d) indicates that these expectations

are all O(p(j; k)), uniformly in f 2 F (�), where

p(j; k) = (j=n)�(j � k)�2 + k
�1(j � k)�2(j=k)j�j=2; l � k � j � 3:

Note that for l su�ciently large

p(j; k) = p(j; k)1(k � j=2) + p(j; k)1(k � j=2)

� (j=n)�(j � k)�2 + k
�1(j=2)�2(j=k)j�j=2 + 2k�1(j � k)�2

� (j=n)�(j � k)�2 + 2k�1(j � k)�3=2 =: p0(j; k): (4.2)
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The contribution of these ast to jjAmjj2 =
P

s;t
a
2
st
is

O(
X

l<k<j�m

p
0(j; k)2) � C

X
l�k<j�m

[(
j

n
)2�(j � k)�4 + k

�2(j � k)�3]

� C

X
l�j�m

[(
j

n
)2� + j

�2] � C((
m

n
)2�m+ l

�1)
(4.3)

uniformly in f 2 F (�), 0 < � � �
�
: It is easily seen from Lemma 3.1 (a,b) that the contribution of

the o(m) ast corresponding to Ef (r
2
j
), Ef (rjij), Ef (i

2
j
) is dominated by (4.3). 2

Denote by jjX jjsp the spectral norm of the matrix X , the square root of the largest eigenvalue

of X 0
X .

Lemma 4.2 For any sequence m = o(n),

jjAmjjsp � C((
m

n
)� +

1

l
)

uniformly in f 2 F (�), 0 < � � �
�.

Proof of Lemma 4.2: If xt is the t-th element of the 2p� 2p vector x, p = [(m� l)=3], then

jjAmjj2sp � 2 sup
jjxjj=1

X
s;t;u

xsastatuxu

� 2 sup
jjxjj=1

X
s;t;u

x
2
s
jastatuj � 2(max

s

X
t

jastj)2;

using Cauchy inequality in the second line. The contribution from the ast corresponding to Ef (rjrk),

Ef (rj ik), Ef (ijik), for j 6= k, is from (4.2),

max
j

X
k:l<k<j

jp0(j; k)j � max
j

n
(
j

n
)�
X
k<j

jj � kj�2 + 1

l

X
k<j

jj � kj�3=2
o

= O((
m

n
)� + l

�1)

uniformly in f 2 F (�); 0 < � � �
�
; while the contribution of the remaining ast is easily seen to

be dominated by this. 2.

Lemma 4.3 For m = o(n),

Ef (�̂(m)� �(f))2 = O((
m

n
)2� +

1

m
)

uniformly in f 2 F (�), 0 < �� � � � �
�
:

Proof of Lemma 4.3: The proof is similar to that of Theorem 2 of GRS, up to (3.9) of that

paper. We deviate from that proof by bounding

j exp(�1

2
z
T ��z)� 1j � jjzjj2jj��jj exp(jjzjj2jj��jj) (4.4)
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where �� is the 4 � 4 matrix whose 2 � 2 blocks on the main diagonal are zero, and whose other

elements correspond to those of the inverse of the covariance matrix of (rj ; ij ; rk ; ik), for some j 6= k.

From observations in the proofs of Lemmas 4.1 and (4.2), it follows that jj�jj � Cp
0(j; k) and thus

for any � > 0 jj�jj � � for l < k < j < m = o(n) and l and n large enough, so that (4.4) is

O(p0(j; k)jjzjj2exp(�jjzjj2)):
The remainder of the proof is straightforward, using also (a,b) of Lemma 3.1 and proceeding much

as in the proof of Theorem 2 of GRS. 2

5 Proofs of Lemmas 3.1 and 3.2.

Proof of Lemma 3.1: The most important results, so far as the proof of Lemma 3.2 and Theorem

3.1 are concerned, are (c) and (d), and we focus principally on these. Denote:

Ej;k(�) =
1

2�(3n=8)
D

(h)
n

(�j � �)D(h)
n

(�� �k);

where for ht given by (3.2)

D
(h)
n (�) =

nX
t=1

hte
i�t

and we have used
P

n

t=1 h
2
t = 3n=8: From the orthogonality relation

Z
�

��

Ej;k(�)d� = 0; 3 � jkj � j � 3; (5.1)

we have for such j; k

Efwh(�j)wh(�k) =

Z �

��

f(�)Ej;k(�)d� =

Z �

��

(f(�)� c�
��

j
)Ej;k(�)d� =:

3X
r=1

qr(j; k); (5.2)

where

qr(j; k) :=

Z
Wr(j;k)

(f(�)� c�
��

j
)Ej;k(�)d�; r = 1; 2; 3;

and

W1(j; k) = fj�j � �k=2g; W2(j; k) = f�k=2 < j�j � 3�j=2g; W3(j; k) = f3�j=2 � j�j � �g:
It is su�cient to show that

jqr(j; k)jc�1(�j�k)�=2 � C[(j � k)�2(j=n)� + k
�1(j � k)�2(j=k)j�j=2]; r = 1; 2; 3; (5.3)

uniformly in f 2 F (�), 0 < � � �
�.

We estimate �rst q1(j; k). By de�nition of F (�) we have that

jf(�)� c�
��

j
j � f(�) + c�

��

j
(5.4)

uniformly over f 2 F (�), 0 < � � �
�. Thus,

jq1(j; k)j �
Z
j�j�j�kj=2

(f(�) + c�
��

j
)jEj;k(�)jd�:
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Now note that

jD(h)
n

(�)j � Cn

(1 + nj�j)3 ; 0 < � � p0 < 2�; (5.5)

for any 0 < p0 < 2� as can be established by repeated use of summation by parts (see also Velasco,

1998a, Hannan, 1970, pp.265-7). From (5.5)

jEj;k(�)j � Cej;k(�); ej;k(�) := n(1 + nj�j � �j)�3(1 + nj�k � �)j)�3: (5.6)

Since j�j � �k=2 implies j�� �kj � �k=2 and j�� �j j � �j � �k , we can estimate

ej;k(�) � n(1 + n(�j � �k))
�3(1 + n�k=2)

�3 � Cn(j � k)�3k�3;

so that

jq1(j; k)j � Cn(j � k)�3k�3
Z
j�j��k=2

(f(�) + c�
��

j
)d�:

By de�nition of F (�), f � cCj�j�� with � 2 (�1; 1� �), and we get

jq1(j; k)j � cCn(j � k)�3k�3(���+1
k

+ �
��

j
�k):

Thus,

jq1(j; k)jc�1(�j�k)�=2 � C(j � k)�3k�1(j=k)j�j=2:

We have obtained (5.3) for r = 1.

We estimate now q2(j; k): Note that for � 2W2(j; k) we have

jf(�)� c�
��

j
j � jf(�)� cj�j��j+ jc(j�j�� � �

��

j
)j

� cC(�
��+�
j

+ �
��+�
k

+ �
���1
k

jj�j � �j j) (5.7)

from f 2 F (�) and the mean value theorem, which gives for j�j � �k=2

jj�j�� � �
��

j
j � sup

���k=2

jd�
��

d�
j jj�j � �j j � Cj�kj���1jj�j � �j j:

Note that the greatest distance between � and �j and �k equals at least 1
2
j�j � �kj. Using

(1 + a)�3(1 + b)�3 � (1 +max(a; b))�3(1 +min(a; b))�3

� max(a; b)�3[(1 + a)�3 + (1 + b)�3] (5.8)

for a; b > 0 we get

ej;k(�) � C(j � k)�3n[(1 + nj�j � �j)�3 + (1 + nj�k � �j)�3]: (5.9)

Similarly, by (5.6) and (5.8)

j�� �j jej;k(�) � C(1 + nj�j � �j)�2(1 + nj�k � �)j)�3
� C(j � k)�2[(1 + nj�k � �)j)�3 + (1 + nj�j � �)j)�3]:

(Note that (1 + a)�2(1 + b)�3 � max(a; b)�2[(1 + a)�3 + (1 + b)�3] for a; b > 0.) Hence, by (5.7),

c
�1jq2(j; k)j � C

Z
�k=2�j�j�3�j=2

(�
��+�
j

+ �
��+�
k

+ �
���1
k

j�� �j j)ej;k(�)d�

� C

n
(�
��+�
j

+ �
��+�
k

)(j � k)�3 + �
���1
k

n
�1(j � k)�2

o
Z �

��

n

h
(1 + nj�k � �j)�3 + (1 + nj�j � �j)�3

i
d�

� C(�
��+�
j

+ �
��+�
k

)(j � k)�3 + C�
��

k
k
�1(j � k)�2:
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Note that

Z
�

��

(1 + nj�� �j j)�3d� � 2

Z 2�

0

(1 + n�)�3d� � 2n�1
Z
1

0

(1 + x)�3dx = n
�1
:

Thus,

jq2(j; k)jc�1(�j�k)�=2 � C(j=k)j�j=2f(j � k)�3�
�

j
+ k

�1(j � k)�2g
� C((j � k)�2�

�

j
+ (j=k)j�j=2k�1(j � k)�2):

Here we used

j=(k(j � k)) = 1=k + 1=(j � k) � 2:

Thus (5.3) holds for r = 2. Note that j�j � 3�j=2 implies j� � �j j � j�j=3 and j� � �kj � j�j=3, so
we can estimate

ej;k(�) � Cn
�5j�j�6; j�j � 3�j=2: (5.10)

Thus, by (5.10), in view of f(�) � cCj�j��, j�j � � uniformly in f , we get

c
�1jq3(j; k)j � C

Z
3�j=2�j�j��

j�j��ej;k(�)d� � C

Z
3�j=2�j�j��

j�j��n�5j�j�6d�

= Cn
�5
�
���5
j

= Cj
�5
�
��

j
:

Therefore

jq3(j; k)jc�1(�j�k)�=2 � C(
j

k
)j�j=2j�5 � C(

j

k
)j�j=2k�1(j � k)�2;

so (5.3) holds for r = 3. This completes the proof of (c).

To prove (d), note that for l < k � j � 3 � n� 6,

Efwh(�j)wh(�k) =

Z �

��

f(�)Ej;�k(�)d� =

Z �

��

(f(�)� c�
��

j
)Ej;�k(�)d�:

Thus, similarly as in (c), from (5.6), it follows that

jEfwh(�j)wh(�k)j � C

Z
�

��

jf(�)� c�
��

j
j 1
n

n

(1 + nj�� �j j)3
n

(1 + nj�k + �j)3 d�:

Since f(�) = f(��) and

(1 + nj�� �j j)(1 + nj�+ �kj) � (1 + njj�j � �j j)(1 + njj�j � �k j)

we get:

jEfwh(�j)wh(�k)j � C

Z �

��

jf(�)� c�
��

j
jn(1 + nj�� �j j)�3(1 + nj�� �kj)�3d�:

This bound is the same as for the terms in (5.2), and therefore (d) holds by the same argument as

in (c).

To prove (a), we have

jEfwh(�j)wh(�j)� c�
��

j
j = j

Z �

��

(f(�)� c�
��

j
)

1

2�(3n=8)
jD(h)

n (�� �j)j2d�j
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� j
Z
j�j��j=2

[: : :]d�j+ j
Z
�j=2���3�j=2

[: : :]d�j+ j
Z
�3�j=2�����j=2

[: : :]d�j+ j
Z
3�j=2�j�j��

[: : :]d�j

=: C(t1 + t2 + t3 + t4):

It remains to show that

ti�
�

j � cC(�
�

j
+ j

�2); j = 1; 2; 3; 4:

We start with t1. Using (5.5) and (1+nj���j j)�3 � Cj
�3 for j�j � �j=2, we have n

�1jD(h)
n (�)j2 �

Cnj
�6, and

t1 � Cnj
�6

Z
j�j��j=2

(f(�) + c�
��

j
)d�:

Using the same argument as estimating q1(j; k) above we get t1�
�
j
� cCj

�2
: Next,

c
�1
t2 � c

�1j
Z
�j=2���3�j=2

[(f(�)� c�
��) + (cj�j�� � c�

��

j
)]Ej;jd�j

� C

Z
�j=2���3�j=2

j�j��+�n(1 + nj�� �j j)�6d�+ jDj

� C�
��+�
j

+ jDj;

where

D =

Z
�j=2���3�j=2

(��� � �
��

j
)

1

2�(3n=8)
jD(h)

n (�� �j)j2d�:

Using Taylor expansion, (5.5) and jD(h)
n (�)j = jD(h)

n (��)j,

D =

Z
��j=2����j=2

((�j � �)�� � �
��

j
)

1

2�(3n=8)
jD(h)

n (�)j2d�

=

Z
��j=2����j=2

(������1
j

�+O(�2����2
j

))
1

2�(3n=8)
jD(h)

n (�)j2d�

= O

�Z
��j=2����j=2

�
2
�
���2
j

n(1 + nj�j)�6d�
�

= O

�
�
���2
j

n
�2

Z 1

0

x
2(1 + x)�6dx

�
= O(���

j
j
�2):

Thus

t2c
�1
�
�

j � C(�
�

j
+ j

�2):

The term t3 is estimated similarly to t2.

We end the proof of item (a) by estimating t4. For � � j�j � 3�j=2 we have from (5.5)

1

2�(3n=8)
jD(h)

n (�� �j)j2d� � Cn
�5j�j�6;

so

t4 � C

Z
3�j=2�j�j��

(f(�) + c�
��

j
)n�5j�j�6d�:

Therefore, similarly to estimating q3(j; k) we get t4c
�1
�
�

j
� Cj

�2
:
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To prove (b) for 2 < j < n, we have:

jEwh(�j)wh(�j)j = j
Z �

��

f(�)Ej;�j(�)d�j = j
Z �

��

(f(�)� cj�j j��)Ej;�j(�)d�j

� C

Z
�

��

jf(�)� c�
��

j
jn(1 + nj�� �j j)�3(1 + nj�+ �j j)�3d�

= C(

Z
j�j��j=2

[: : :]d�+

Z
�j=2�j�j�3�j=2

[: : :]d�+

Z
3�j=2�j�j��

[: : :]d�)

=: s1(j) + s2(j) + s3(j):

Using the argument employed in estimating q1(j; k); q2(j; k); q3(j; k) in (c), we can show that si(j)c
�1
�
�

j
�

Cj
�3, i = 1; 2; 3 uniformly in f and j.

This completes the proof of (b) and Lemma 3.1. 2

Proof of Lemma 3.2: Put �j = �j
p
p=
P0

j
�
2
k
; where

P0

j
denotes the sum

P
j2I(m). BecauseP0

j
�j = 0 and

P0

j
�
2
j
� p as n!1 (cf Robinson (1995b)), it follows that

X0

j
�j = 0;

X0

j
�
2
j
! 1 m!1: (5.11)

From (3.3) p
m(�̂m � �(f)) = �

X0

j
�juj ;

where uj = log jvh(�j j2 + �, with � = 0:5772::: Euler's constant. To prove (3.11) we have to show

that for all su�ciently large n and m = o(n)

J := Ef exp(�
X0

j
�juj) = Ef

�Y0

j
jvh(�j)j�2�j

�
< c1 exp(c2jjAmjj2); (5.12)

uniformly in f 2 F (�), 0 < �� � � � �
�, where

Q0

j
=
Q

j2I(m) : The expectation in (5.12) is with

respect to the 2p-dimensional Gaussian distribution with covariance matrix � = I2p=2 + Am which

is nonsingular because jjAmjjsp < 1=2, as follows for large enough n from Lemma 4.2 and (3.9).

Denoting by xj ; j 2 I(m) the two-dimensional components of x,

J =
j�j�1=2
(2�)p

Z Y0

j
(xT

j
xj)

��j exp(�2�1xT��1x)dx

=
j�j�1=2
(2�)p

Z Y0

j
(xT

j
xj)

��j exp(�x
T
x

2
) exp(�1

2
x
T (��1 � I2p)x)dx

� J
1=2
0

Y0

j
J
1=2
j

; (5.13)

by Cauchy-Schwarz inequality, where

J0 =
j�j�1
(2�)p

Z
exp(�xT (��1 � I2p)x)dx; Jj =

1

2�

Z
(xT

j
xj)

�2�j exp(�xT
j
xj)dxj ; j > 0:

Now

J0 = j2�� 2�2j�1=2 = 2p
Y0

j
(1� 4�2

j
)�1=2
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where �j is the j-th eigenvalue of Am. From the inequality 1� x � e
�2x

; 0 < x < 1=2, and Lemma

4.2, for n large enough

J0 � 2p exp(4
X0

j
�
2
j
) = 2p exp(4jjAmjj2): (5.14)

On the other hand, after transformation to the polar coordinates, as �j ! 0 (which follows from

maxj2I(m) j�j j ! 0 as n!1)

Jj =

Z 1

0

r
�4�j+1 exp(�r2)dr = 1

2
�(1� 2�j) =

1

2
expf�2�j� +O(�2j )g

from the two-term mean value expansion for log �(1 + z). From (5.11),
Q
0

j
Jj � C2�p: Then (5.12)

follows from (5.13) and (5.14). 2
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