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Abstract

In Giraitis, Robinson, and Samarov (1997), we have shown that the optimal rate for memory
parameter estimators in semiparametric long memory models with degree of "local smoothness’ 3 is
n ") r(B) = 8/(26+1), and that a log-periodogram regression estimator (a modified Geweke and
Porter-Hudak (1983) estimator) with maximum frequency m = m(8) < n?"® is rate optimal. The
question which we address in this paper is what is the best obtainable rate when @ is unknown, so
that estimators cannot depend on 3. We obtain a lower bound for the asymptotic quadratic risk of
any such adaptive estimator, which turns out to be larger than the optimal nonadaptive rate n~"(?)
by a logarithmic factor. We then consider a modified log-periodogram regression estimator based
on tapered data and with a data-dependent maximum frequency m = m(B)7 which depends on an
adaptively chosen estimator B of 3, and show, using methods proposed by Lepskii (1990) in another
context, that this estimator attains the lower bound up to a logarithmic factor. On one hand, this
means that this estimator has nearly optimal rate among all adaptive (free from 3) estimators, and,
on the other hand, it shows near optimality of our data-dependent choice of the rate of the maximum
frequency for the modified log-periodogram regression estimator. The proofs contain results which
are also of independent interest: one result shows that data tapering gives a significant improvement
in asymptotic properties of covariances of discrete Fourier transforms of long memory time series,
while another gives an exponential inequality for the modified log-periodogram regression estimator.

Keywords: Long range dependence; semiparametric model; rates of convergence;
adaptive bandwidth selection.
JEL classification nos: C13.
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1 Introduction.

Suppose that we have n observations X7, ..., X,, from a stationary, Gaussian time series {X;}2
with mean p and spectral density

— 00

f) = %, A€ [-m, 7], a € (-1,1), (1.1)

and L(\) = C, C € (0,00), as A — 0. The memory parameter o determines the behaviour of f near
zero and is just a re-expression of the self-similarity parameter H = (a + 1)/2 and of the fractional
differencing parameter d = «/2. Xy is said to exhibit long range dependence when 0 < « < 1, short
range dependence when a = 0, and negative dependence when —1 < «a < 0. There exist several
‘semiparametric’ estimators of a, with f specified only near zero frequency, see, e.g., Geweke and
Porter-Hudak (1983), Kiinsch (1986, 1987), Robinson (1995a,b).

Consider for 8 > 0 the class of spectral densities

F(B,C1,C2,0) ={f: f(A) =]\ *(1+A)), 0 <e<Ch, (1.2)

“l<a<1=46, |AWN)| < CoN?, X € [—m, 7]},

where C;,Cy and ¢ € (0,1) are independent of 3. Of central importance to this paper is the para-
meter 3, whose interpretation we now discuss. It is closely related to the (local-to-zero) smoothness
o > 0of L(\) in (1.1) which could be defined as follows. For 0 < o < 1, L(\) has smoothness o if it
satisfies a Lipschitz condition of degree o around A = 0. For o > 1, L(\) has smoothness o if L(})) is
s times differentiable around A = 0, where s = [0], its s-th derivative satisfying a Lipschitz condition
of degree 0 —s around A = 0. Then 8 = o for ¢ < 2 (noting that f(A) is an even function), whereas
B < o for 0 > 2, with 8 = o if the first s derivatives of L(A) at A = 0 are all zero. In general,
therefore, for o > 2 we have § = 2 only. This is the case, for example, with fractionally integrated
autoregressive moving average processes.

The condition & > 0 in the definition of class F(3,C1,C>,0) is needed to ensure a finite upper
bound for Var(X;) = [ f(A\)d\, uniformly in a < 1 —4. Note that if f(A) = ¢[A|™®, Var(X,) is
not thus upper-bounded if a < 1, but it is bounded by 2¢7?/d if a € (=1,1-4),0 < § < 1.

Denote the maximum quadratic risk of an estimator & over Fy(3) = F(83,C4,C5,0) as

Ru(&,Fy(B)) = sup E¢[a—a(f)]?, (1.3)
FEFL(B)

where we write a(f) in place of a in (1.1). In Giraitis, Robinson, and Samarov (1997) (referred
to throughout this paper as GRS) we established the following results. First, we showed that, as
n — 0o,

inf Ry, (&, Fo(8)) =< n=>"?), (1.4)
where 5
r(B) = ma (1.5)

and the inf is taken over all possible estimators. Second, we showed that the optimal minimax rate
n~2(%) in (1.4) is attained by a modified version of the estimator of Geweke and Porter-Hudak
(1983) (hereafter referred to as the GPH estimator).

The question which we address in this paper is what is the best obtainable rate when (3 is
unknown, so that estimators cannot depend on 37 In Section 2 we obtain a lower bound for the



asymptotic quadratic risk of any such adaptive estimator, which turns out to be slower than the
optimal nonadaptive rate n="(?) by a logarithmic factor. We then consider a tapered version of the
log-periodogram regression estimator, in Section 3. This estimator was proposed by Velasco (1998a,
b), as a tapered version of the modified log-periodogram regression estimator of Robinson (1995a).
Velasco (1998 a) showed that a data taper can improve estimates of variances and covariances of
discrete Fourier transforms given in Theorem 2 of Robinson (1995a). We prove (Lemma 3.1) a slight
improvement of Velasco’s (1998a) result under somewhat weaker conditions, which allows us to
obtain an exponential inequality (Lemma 3.2) for our estimator, which turns out to be an important
tool in obtaining the adaptive rate of our estimator and may also be of independent interest. The
proofs of these lemmas are reserved for Section 5, following Section 4, which contains three minor
lemmas.

The key element in the construction of our estimator is a data-dependent selection of the max-
imum frequency used, m = m(83), which depends on an adaptively chosen [, obtained using a
modification of the procedure proposed by Lepskii (1990) in a different nonparametric setting. In-
formally, ﬁ is defined as the largest 8 for which the log-periodogram regression estimator using
m = m(B) is not significantly different from all such estimators using m(y), v < 8. The proce-
dure can be also interpreted by graphing the estimator versus a grid of values of 3 together with a
variable-width band around it: B is chosen as the largest 8 on the grid for which the corresponding
estimator stays within the band for all v < 3. See (3.6)-(3.8) below for the precise definition.

The memory parameter estimator considered in Section 3 achieves nearly optimal rate of conver-
gence in the class F(3,C1,Cs, ). Clearly, F(8,Cy,Cs, ) includes all classes F'(3',Cy,C,4), B > .
Therefore if a particular density f belongs to F/(3',C1,C2,0)NF(83,Cy,Cs,9), the rate of convergence
of the estimator will be determined by ', and it will be better than in case of f € F(3,C1,C>,0)
such that f ¢ F(8',Cy,Cs,0) when ' > 3. Summarising, in the case of a particular density f the
rate of convergence is determined by the largest 3 for which the inequality in (1.2) holds.

In Section 3 we show that our adaptive estimator attains the lower bound obtained in Section
2 up to a logarithmic factor. This means, on one hand, that this estimator is nearly rate - optimal
among all possible adaptive estimators, and, on the other hand, that our data-dependent choice of
m is also nearly optimal for the log-periodogram regression estimator. The technique of the proof,
the idea of which also comes from Lepskii (1990), requires one to assume that though unknown
does not exceed a known finite maximum value * € (0, 00).

2 Lower bound

This section is devoted to establishing the following lower bound.

Theorem 2.1 Uniformly in 3 < 3*, the sequence {¢,(8) = (logn/n)" ¥} gives the lower bound to
the asymptotic minimaz risk for the class F(3) = F(8,C1,Cs,0), B < B*, that is for some C > 0

liminfin sup ¢, 2(8)Ra(a, F(B)) > C. (2.1)

n—o0 « ﬁgﬁ*

PrOOF OF THEOREM 2.1: Let 0 < 81 < B2 < 8*. As in GRS (see also Hall and Welsh (1984)),
let fo(A) =1, A € [—m, 7], be the spectral density of white noise, and define a sequence of ’perturbed’
spectral densities f,,(\) exactly as in formulae (2.3)-(2.5) in GRS but with §,, = (ylogn)/n)/ (26141
where v > 0 will be chosen later. We have a(fo) =0 and

a(fa) = K" = T¢n(B1), (2.2)



with 7 = kyP1/2F1H+D) for some k > 0. Clearly, fo € F(B2,C1,C5).
The following two lemmas are proved exactly as in GRS.

Lemma 2.1 For all sufficiently large n,
(Z) fn EF(ﬂl,Cl,CQ) and
(ii) [T (fa(A) = fo(N)?dA < Kvlogn/n for some constant K > 0.

As in GRS, denote by P, and P, the probability measures on R™ generated by n observations
X = (X1,...,X,) of the Gaussian stationary sequence with the same mean p and spectral densities
fn and fy respectively, denote by E,, and Ej the corresponding expectations, and by A,, = log Zf;g (X)
the log likelihood ratio.

Lemma 2.2 There exist finite positive constants K1 and Ko such that for all sufficiently large n
(i) my = E,A, < K17vlogn;
(ii) 02 = En(A, — my)? < Kaylogn.

From Lemmas 2.1 and 2.2, we have, as in (2.6) in GRS, that for any event A and any a > 0

Mlog®n
a?

PufA} < " Py{A} + (2.3)

with
M = (yK)? + yKs. (2.4)

Denoting T), = ¢,,*(51)a, we have, using (2.2), for any € > 0

Sup. ¢n” (B)Ru(@, F(B)) > %{Eo[@:l(ﬁz)(d — a(fo))? + En[d, " (B1) (@ — a(fa))*} >

S (B)6aBOP PITa] 2 €} + 5 Bul(To — LTl < e},

Using now (2.3) and choosing € < 7/2 and

a = log([6" (B2)¢n (B1)]%), (2.5)
we find that sups<s- ¢, (8) Ry (&, F(8)) is lower-bounded by

2 M log® 1
S 167 (82)6n(B)I? exp(=a) [ Pa{|Tu] > ¢} = =3+ (1 = O Pa{|Tul < ¢}
2
> %min{ez, (r— )2} — %Ll;g 1
€ Mlog®n
25l -—2)

Using now (2.4) and the fact that a, as defined in (2.5), satisfies for all large enough n the inequality

a > Dlogn with D = #, the last expression is lower-bounded by

1
(282+1)

€2 1 (vK1)? +vK>) S €2
5( B T) -4’

22\1/2

S, =

2
on choosing 0 < v < (K, 12K



3 Upper bound.

In this section we establish an upper bound for adaptive estimation, and present an estimator which
attains it. To define our adaptive estimator we employ a further modification of the GPH estimator
beyond that proposed in Robinson (1995a) and GRS, by using a tapered discrete Fourier transform
(DFT), as do Hurvich and Ray (1995), Velasco (1998a,b) in a similar context. Let

n n
wp(A) = (QFZh%)_1/2thXt6Mt, (3.1)
t=1 t=1
where the sequence h; is given by the cosine-bell taper

1
htzi(l—cos)\t), t=1,...,n, (3.2)

for A = 2nt/n. Define
Zje[(m) vjlog In(A;)
Xierim i

: (3.3)

Qm = —

where

1
v; =logj— - Z log k,
keI(m)

I(A\) = |lwy(\)|? and the sum > jer(m) is taken over I(m) = {j : j =1+ 3k,k = 1,...,p}, where
p = [(m —1)/3], ([a] is the integer part of a). (In the expression (3.1) for the log-periodogram
regression estimator in our previous paper, GRS, the factors v; were erroneously omitted in the
numerator sum due to a typographical error.) Here m is a bandwidth number, indicating the
greatest frequency employed, and I < m is a trimming number, [ + 2 being the number of low
frequencies discarded. Robinson (1995a) and GRS have used the estimator with the untapered
DFT,
w()\) _ (L)1/2 zn:X eitA
- 21 p !

in place of wx(A), so that hy = 1, and with the summation over all j € [l + 1,m] in (3.3). The
estimator (3.3), which tapers the modified GPH estimator of Robinson (1995a), was proposed by
Velasco (1998a,b), for a different purpose. The motivation for the trimming in (3.3) is to produce
sufficiently small autocorrelation between the wy(A;) and wp(Ax), for j # k, (see Lemma 3.1) so as
to enable an exponential inequality for &, (see Lemma 3.2). The motivation for omitting about 2/3
of the frequencies A; between A\; and A, is suggested by the identity

L
R

indicating non-negligible correlation between wy,(A;) and wp(Ax), |j — k| < 2. The basic motivation
for an estimator of type (3.3), as in GPH, Robinson (1995a) and GRS, comes from approximating the
logarithm of (1.1), and least squares regression of log periodogram ordinates on log frequencies. This
works in the estimators of GPH, Robinson (1995a) and GRS due to the approximate independence
of the w(\;), but this property is only achieved for the wy(A;) by the omission of frequencies (though
of course (3.4) implies that in fact all the w(};), j =1,...,m are used in (3.3)). A disadvantage of
this device is that, for given m, the variance of the estimate &, is approximately tripled. This could
be alleviated (but not completely corrected) by the pooling method employed in Robinson (1995a).

wi(A5) {wj1) = 20(N) + wj)}, 2<j<n-=2, (3-4)



One desirable feature which &, preserves is invariance to location-shift in the X¢, due to (3.4) and
the location-invariance of the w(A;), 1 < j < n—1; thus no mean correction is required, irrespective
of whether or not p is known.
The notation &, stresses the importance of the choice of bandwidth m. For given § (such as
B = 2) it is possible, as in Hurvich, Deo and Brodsky (1997), and in common with many other
problems of nonparametric smoothing, to minimize the mean square error E;{&m, — a}? by (cf.
Lemma 4.3 below)
m = K(a, B)n* @, (3.5)

where K («, 3) depends not only on a and 3 but also, for integer 3, on the S-th derivative of L()) at
A = 0, and for noninteger  on an analogous quantity. For given 3 it may be possible to consistently
estimate K in (3.5) by some plug-in method or cross-validation. In this paper we wish to adapt to
unknown 3 > 0 so as to construct an estimate which is (as nearly as possible) adaptive rate-optimal.

The idea of the method we employ is due to Lepskii (1990) (see also Lepskii, et al., 1997) who
developed it in a different context. Given that § in F'(3) is unknown, let v < 8* be any admissible
value, and set

m(y) = n*>" ) (log n)ﬁ = n%(log n)ﬁ (3.6)

Denote G(y) = Gy (y), Where &, is defined in (3.3). Let h = 1/logn and By, be the h-net of the
interval [0, 3*]

By={y>0:y=p8"~kh, k=0,1,2,..}.

Define
B =sup{y € By : [a(8') —a(y)| <m *(8)d(8'), forany ' <7, 8'€ Bp},  (3.7)

where ,
d(f') = ﬁ, (3.8)

~

and k' = (8* — §')/h, thereby defining &(53).

Our proofs of Theorem 3.1 and Lemmas 3.2 and 4.3 require an assumption that the parameter
B is bounded away from 0, i.e. that 8 > B, for some (5, > 0. We also assume that the number of
low trimmed frequencies [ satisfies the condition

m

2h 1= olfegmye)

as m — 00, (3.9

where the constant I, = (8., 8*,C1,Cs,d) does not depend on n, but must be chosen sufficiently
large. Thus the proportion of trimmed frequencies on (0,m] is negligible. The mildness of (3.9) is
due to the particular taper (3.2) used; Theorem 3.1 could be established for tapers which entail less
smoothness at the end-points of the sequence {h:} and correspondingly a slower rate of decay of its
discrete Fourier transforms at cost of a stronger condition on I. Note that (3.9) is only a sufficient
condition. As is common when trimming numbers are introduced for technical reasons, there seems
no reasonably precise theoretical guide for the choice of [ in practice.

Theorem 3.1 Under assumption (3.9), uniformly in 8 € [B.,B*], where 8* > 0, the sequence
{6%(8) = (logn)?/n)" P} gives an upper bound to the asymptotic minimaz risk for the class F(3) =
F(B,C1,Cs,0), with the estimator &(f), defined following (3.6)-(3.8); that is, for some C' < oo

limsup sup ¢*,*(8)Rn(a(B), F(8)) < C. (3.10)
n—oo BB



Theorem 3.1 shows that there exists an estimator with the rate of convergence (log® n/n)?/(26+1)
for all classes F'(8), 0 < B. < B < B*. If this rate were equal to the rate ¢,(3) in the lower bound
(2.1) for all B, < B < B*, then this common sequence could have been called an optimal adaptive rate,
and @(B) could be referred to as an adaptive rate-optimal estimator. The present results show that
the the optimal attainable rate of convergence is between (logn/n)%/ (2841 and (log® n/n)?/(26+1),
i.e. we have determined it up to logarithmical factor. The optimal attainable adaptive rate remains
to be determined.

Notice that Theorem 3.1 would continue to hold if an arbitrary positive factor K were inserted
n (3.6) (cf. (3.5)), and arbitrariness in K is then equivalent to arbitrariness in m. Thus m(/3) is not
an optimal bandwidth with unknown § to the extent that (3.5) can be with known 3, and we are
concerned here only with showing the existence of an estimator which almost achieves an optimal
adaptive rate of convergence, though this aspect is of uppermost importance for sufficiently large n.
Note that m in (3.5) increases more slowly than m(8) in (3.6), so that E(&(8) — a)? = O(n=2"(9)
decays faster than ¢%2 (). Since ¢*(81) > ¢%(82) for 81 < s, it is the largest 3 such that f € F(3)
which determines the rate of convergence of d(ﬁ) for given f. The grid h is sufficiently fine for our
purposes in that m(y) is insensitive, for large n, to O(1/logn) shifts in 7. Note that 3, and thus
&(ﬁ), can be sensitive to the upper bound 3* on the admissible set By,. In view of our earlier remarks
following (1.2), a reasonable choice in many circumstances is §* = 2. Of course the outcome B =pg*
could indicate that a larger 8* should have been employed.

Since our goal is to show the existence of an estimator which achieves nearly optimal rate of
convergence, we restrict ourselves to the log - periodogram regression estimator (3.3). We expect
that Robinson’s (1995b) narrow band Gaussian or Whittle estimator, also achieves the nearly optimal
rate of convergence; it has the same rate of convergence as the log -periodogram estimator for the
same bandwidth sequence. The investigation of this estimator is of interest, bearing in mind its
nice statistical properties and its multivariate extension developed by Lobato (1998). An interesting
open question is whether using data tapers as in Velasco (1998a, b), the memory parameter range
(-1, 1) can be extended to (-1,2), to cover some nonstationary processes.

The proof of Theorem 3.1 employs two lemmas, proofs of which are left to Section 5. The first
describes the covariance properties of the normalised tapered DFT

wr,(\)

0= T

Lemma 3.1 For any j = jn, k = km such that | <k <j—3 and j <n/2,
(@) Epon(Aj)on(hy) =1+ 0417 + 55);
) Epon(A\)vn(Ag) = O(5);
(¢)  Epvn(Aj)on(Ae) = O(|%| Tk k|2 + 71 k\Z(%)la‘/z)i
(d) EfUhO\ )Uh(Ak) O(|%| \j_kp + k|j—k|2 (%‘)\04/2)’
uniformly in f € F(8,C1,C5,0), 0 < 8 < B*.

Remark 3.1 Theorems 2.1-3.1 and Lemmas 3.1-3.2,4.1-4.3 remain valid after replacing F(f) in
(1.2) with a class F*(3) with the following ‘localized’ definition:

F*(B) = F*(3,Co,C1,Cy,8,A0) ={f : f(A) =cA[T*(1+ A1), Co<c<Ch,

“l<a<1=46, |AN)| <Cy AP, for [\ < o)},

where the constants 0 < Cp, C1,Cy < oo and § € (0, 1) are independent of 3, and Ao > 0. Class F*(53)
does not contain any restriction on spectral densities f € F*(8) for ‘high’ frequencies A € [Ag, 7].



The only change in this case will be an additional assumption in Lemma 3.1 that the frequencies
Ak, A; satisfy the condition ! < k < j—3 <m, m = o(n).

Let A, = ¥ — I5,/2, where I, is 2p x 2p identity matrix (p = [(m —1)/3]) and ¥ is the covariance
matrix of real and imaginary parts of the vy ()\;), j € I(m). Denote by ||X|| the Euclidean norm of
the matrix X, || X|| = {tr(X'X)}!/2.

Lemma 3.2 Under (3.9), there exist c1,c2 € (0,00) such that for all sufficiently large n, and m =
o(n)
By exp{v/m|am — a(f)[} < c1exp(ez||An] ) (3.11)

uniformly in f € F(B8,C1,C2,0), B, < B < B* for any 0 < B, < f*.

PROOF OF THEOREM 3.1: The proof makes use of ideas of Lepskii (1990), Lepskii and Spokoiny
(1995). We decompose the quadratic risk of &(3) into two parts corresponding to the events {5 < 8}

and {3 > 3}
Er(a(B) — a(f))” = E;[(a(B) — a(f)) 1B > BY] + E;[(a(B) — a(f))*1{B < B}]

=: R} + R, ,say.
Now, (3.10) will follow if we show that uniformly in f € F(3), B« << g%,

R} = 0(¢,,(8)%) (3.12)
and

Ry = 0(5,(8)%). (3.13)

Note further that, since ¢ (81) < ¢} (82) when |81 — 82| = O(1/logn), it is sufficient to establish
(3.12) and (3.13) uniformly over f € F(58),0 € By, N [B«, 5*].

Using the definition (3.7) of 3 and the fact, established in Lemma 4.3, that for m = m(3) the
estimator &, has mean squared error O((22)*? + L) in case f € F(3), we have

Ry < 2E;[(a(B) - a(8) 18 > BY] +2E;[(a(8) — a(f))’]
< K s gy 4o PPy, 1
= @2+ 1)° = n m(B)”

where kg = (8* — 3)/h = (8* — ) logn and C here and below is a generic constant, not always the
same. This implies that

2

Ri < CEE 4 (PO 4 ] = 006,600

Turning now to (3.13), we have

R, = By > (a0 —a(N)'HB=1}
v<B,YyEBp
= R;,1+R7:,27



where 2. A
Ry,= Y Eialy)-alf) =9} i=1,2
v<B,v€lL
and I; denote subsets of By: I = {y € B, : (™ m{y ))QBm(fy) <1}, L={y€By: (mr(;’))wm('y) > 1}.
By Cauchy inequality,

R, < S (Er(a) —a(hN)) P23 =) (3.14)

y<B,v€h

From Lemma 3.2, uniformly in F'(3)

E(vm(y)(a(y) — a(f)* < erexplea|[Ame) )

C exp(C|| Ay |IIn 2D (logn) " =5

—~
&
-
=
2
|
2
~
~
=
)
N

_ 2y, ~2r(8) —a2r gy 2k — k)
Cexp(C”Am(’Y)” )TL (logn) 2yt exp( (2,7 + 1)(2ﬂ + 1)))
where ky, = (8" —v)/h :A(ﬁ* — ) logn. o
Now we estimate Py{8 = v} for v € I1. By definition of 3, if 5 = =, there exists 3’ <, ' € By,
such that
&y +h) = a(8")] > m(8)~2d(8").

Using this, we get from (3.8) for v € I3

Pf{B = '7} < Z Py (|6¢(7 + h) _ @(ﬂl)| > m(ﬂ’)_l/Q Y )

/ 2
B'<v,B'eh (26" +1)
4k
< DL ey Erexp(Vm(B)la(y + b) — &),
B'<y.p'eh

and since m(8') < m(v), we have, by Lemma 3.2,

« 4k
Pf{ﬁ = '7} < CeXp(C||Am(’Y+h)||2) Z exp(— (Qﬂl ¥ 1)2)
B'<v,B"€Bn

4k

< Cexp(CllAmeran ) exp(= 13

). (3.15)
Note that Lemma 4.1 and the definition of I; imply
m(y+h
el < O D200 4y 4 1) < 0

uniformly in f € F(3), 8« < 3 < 8*. Therefore, combining (3.14)—(3.15), we get
2(ky —kg) 2k

— < —2r(B) A 2 1 7T21
R, < Cn Z exp(C|| m(7+h)|| )(log )~ =777 exp( 27+ 1)(28+1) (27+1)2)
v<B,v€l
_ 2 2(ky — kp) 2k
< C 2r(3) ] T ol B _ ol
= o ngh(og”) gy D@s+ 1) @+ 1))



and, since 1/(28+1) < 1/(2y+ 1),

Rn,l

IN

Cn =20 Z (logn)_ﬁexp( —2ks )

2
y<B,vel (2ﬁ+ 1)

Cn 2 logn(logn) 7 < C¢ ()2

IN

Now we estimate R, ,. By Lemma 4.3,

R, < Y Eiam@)-a(p<c Y (e L
v<B,v€l2 v<B,v€l2 n m(’y)
< C )
v<B,vEl2

by definition of I;. Note that 0 < ¢%(8) <n~"(%)/2 < 1 for n large enough. For such n,

) (M yes 61 (BPED/ B < g (3)2 3 g ()18 /D)

Y<B,YEIl2 " v<B v<B
< QS:L(ﬁ)? Z ¢2(6)4j/((25+1) log 1) < ¢ ( 2 Z n—2r(8)i/((26+1)log n)
Jj=0 Jj=0
= g5(8)7 ) e MR < (1 - 2RI Ty (),
7j=0
O
4 Additional lemmas.
The following lemmas are also used, along with Lemmas 3.1 and 3.2, in the proof of Theorem 3.1.
Lemma 4.1 For any sequence m = o(n),
1
1 4ml> < CU=)m + ;] (4.1)

uniformly in f € F(8), 0 < 8 < B*.

PROOF OF LEMMA 4.1: Let ag denote the (s,t) -th element of A,,. Consider the contribution
to [|Am||* of the as corresponding to Ef(rjry), Ef(rjix), Ef(iji), where r; = Revp(N;), ij =
Im vy (A;) for |[j —k| > 3. Routine manipulation of Lemma 3.1 (c,d) indicates that these expectations
are all O( (4, k)), uniformly in f € F(8), where

PG, k) = (i/n)P G — k) 2+ kTG — k) T2/, 1<k <j-3.

Note that for [ sufficiently large

(i, k) = p(, k)KL j/2 )+p(J,k)1(ij/2)
< G/MPG—R)TEHETG/2) 72 /K) 2 2k (G — k)
< (G/m)PG-k)? +2k LG — k)T = (4, k). (4.2)

10



The contribution of these as; to ||An|[> =3, a3, is

o Y FGR) < 0 Y IPG-n kG -k

I<k<j<m l<k<j<m
< C =) 47 < C((=)Pm 417!
- 1<2<: I (( n ) ) (4.3)
<j<m
uniformly in f € F(8), 0 < 8 < 8*. It is easily seen from Lemma 3.1 (a,b) that the contribution of
the o(m) as corresponding to Ef(r?), Ef(rjij), Ef(i3) is dominated by (4.3). O

Denote by ||X||sp the spectral norm of the matrix X, the square root of the largest eigenvalue
of X'X.

Lemma 4.2 For any sequence m = o(n),
m
Al < C(2 4 D)

uniformly in f € F(8), 0 < 8 < B*.

PROOF OF LEMMA 4.2: If x; is the ¢-th element of the 2p x 2p vector x, p = [(m —1)/3], then

||Am||§p < 2 sup stastatuxu
Nzll=1 4570
< 2 sup Z S|astatu| <2 maxZ|ast|
Nzll=1 41y

using Cauchy inequality in the second line. The contribution from the ay; corresponding to E(r;ry),
E¢(rjix), Ef(ijiy), for j # k, is from (4.2),

max 3 GBI <max{(L)? 15— k24 73l K

kl<k<j k<j k<j
—OoM\8 -1
O(( n) +177)

uniformly in f € F(8), 0 < 3 < (3*, while the contribution of the remaining ay; is easily seen to
be dominated by this. a.

Lemma 4.3 For m = o(n),

Ey(a(m) — a(f))? = 0((Z)2 + =)

n m

uniformly in f € F(8), 0 < 8. < 8 < 8%

ProoF OoF LEMMA 4.3: The proof is similar to that of Theorem 2 of GRS, up to (3.9) of that
paper. We deviate from that proof by bounding

1 .. - -
Iexp(—§ZT<I>Z) = 1] < I2IP1®]] exp(]|2|[*]|]]) (4.4)

11



where @ is the 4 x 4 matrix whose 2 x 2 blocks on the main diagonal are zero, and whose other
elements correspond to those of the inverse of the covariance matrix of (r;,4;, rg, ix), for some j # k.
From observations in the proofs of Lemmas 4.1 and (4.2), it follows that ||®|| < Cp'(j, k) and thus
for any e > 0 ||®|| <eforl < k <j <m =o0(n) and | and n large enough, so that (4.4) is

O (7, b)l=]*eap(ell]]*).

The remainder of the proof is straightforward, using also (a,b) of Lemma 3.1 and proceeding much
as in the proof of Theorem 2 of GRS. O

5 Proofs of Lemmas 3.1 and 3.2.

PRrROOF OF LEMMA 3.1: The most important results, so far as the proof of Lemma 3.2 and Theorem
3.1 are concerned, are (c) and (d), and we focus principally on these. Denote:

1
; =——— DWW —NDW (X=X
E]yk(A) 27T(3TL/8)Dn (] ) n ( k))

where for h; given by (3.2)
D%h) (A) — Z htei)\t
t=1
and we have used )" , h{ = 3n/8. From the orthogonality relation

[ Baar=o, s<p<i-s, 6.1

we have for such j, k

Bt = [ iEan= [

—T

3
(f(N) = A7) Ej(NdA =2 qr (4, k), (5.2)
r=1
where
wlh) = [ W =B, T =123,
W’!‘(]Yk)
and
Wi, k) = {IA < Ae/2}, Wa(h,k) = {A/2 < |A <3X;/2}, Ws(h,k) = {3);/2 < [A| <7}

It is sufficient to show that

|0:(, B) e ()Y < ClG = k)26 /m)° + k71 G =R 72 G/R)P), r=1,2,3, (5.3)

uniformly in f € F(8), 0 < g < B*.
We estimate first ¢ (j, k). By definition of F'(3) we have that

[F(A) = AT < FA) +eAj (5.4)

uniformly over f € F(3), 0 < 8 < *. Thus,

0GB < / (FO) + €A ™) | Ej (V) |dA.
IM<[Ax]/2
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Now note that
Cn

(1 +nA)3’
for any 0 < pp < 27 as can be established by repeated use of summation by parts (see also Velasco,
1998a, Hannan, 1970, pp.265-7). From (5.5)

|EJ’k()\)| < Cej,k(/\), Ej’k()\) = TL(]. + n|/\] - )\|)73(1 + n|/\k - )\)|)73 (56)

DM (V)] < 0<A<py < 2m, (5.5)

Since |A| < Ax/2 implies |A — Ag| > Ax/2 and [A — Aj| > Aj — A, we can estimate
Ej’k(/\) < n(l + n(/\] - Ak))73(1 + n/\k/2)73 < Cn(] - k)73k73,

so that

(G, k)| < Cn(j — k) k> (F(A) + A7 )dA.
X< /2

By definition of F(8), f < cC|\|~® with « € (—1,1 — §), and we get
a1 (G, k)| < cOn(j — k)72 (0 + A7 % A).
Thus,
G, B)le™ ()2 < CG = k) =2k (/)12
We have obtained (5.3) for r = 1.
We estimate now ¢2(j, k). Note that for A € W5 (j, k) we have

[FQ) =A< [F Q) = e AT+ [e(IAT = A7)

J
< OO N AN = ) (5.7)

from f € F(f) and the mean value theorem, which gives for |A| > A;/2

_ _ dn=* o1
a P | < e .
(Al A | < P2|_d77 AL = A < O] [IAl = A

su

n>Ak/

Note that the greatest distance between X and A; and Ay equals at least 1|X; — A|. Using
(1+a)3(1+b)~2 < (1+max(a,b)) (1 + min(a,b))™?

< max(a,0) P[(1+a)7% + (14 5) 7] (5.8)
for a,b > 0 we get
eix(N) < CG = k) Pn[(1+nA; — AD™ + (1 +n|A, — A7) (5.9)
Similarly, by (5.6) and (5.8)
A= NlejrA) < CA+nlA — )21+ nhe — N3
< CU =R +nh =D+ @+ 0l =)D
(Note that (1 + a)™2(1 +b)~2 < max(a,b)2[(1 + a)™> + (1 + b)~3] for a,b > 0.) Hence, by (5.7),
Halhl < Cf O 2 AT A = Ayl (W)
Ak /2< N <3A; /2
< C{( j—a+[3 + )\;a-‘rﬁ)(j _ k‘)_3 + )\;a—ln—l(j _ k)_2}
/ n[(1+ A = AD™ + (L4 nlA; — A) A
< O NG - BT ONRT G - R) T
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Note that

T 2w o)
/ (L+nA=X]) dX < 2/ (14+nX)2dx <2n! / (1+2)3de=n"".
0 0

—T

Thus,

la2(j, k) e (\je) /2

IN

CG/R)V2{G— k)N + k(G — k) %)
C(( = k)N + (§/K)“1V2K 2 (G — k) 72).

IN

Here we used
J/(k(G—k) =1/k+1/(j — k) <2.

Thus (5.3) holds for » = 2. Note that |A\| > 3X;/2 implies |A — A;| > |A|/3 and |A — Ax| > |A|/3, so
we can estimate
ejr(X) < Cn > IAI7% A >3);/2. (5.10)

Thus, by (5.10), in view of f(A) < c¢C|A|7%, |A| < 7 uniformly in f, we get

IN

C A" %e;x(\dA < C A~ 3 A 5dA
83 /2<| A< 38X /2<| A<

Cn=°A7%7% = A7

¢ Has (4, k)|

Therefore . .
. _ o I\lal/2 — VINPS 1, _
g5 (G, ) e™ g ) < C () 12572 < IR G = k)2,

so (5.3) holds for r = 3. This completes the proof of (c).
To prove (d), note that for I <k <j—3<n—6,

Bron ) = [ FE;Wah = [ (FO) A7) E; e )ax

—T

Thus, similarly as in (c), from (5.6), it follows that

T

1 n n
. < —e\TY =

~dA.

Since f(A\) = f(—A) and
(L +n[A = XNDA +n[A+ X)) = (T+nl]A] = X1+ nl[A] = Ax])

we get:

|Epwn (A wr (M)l < C [ 1FN) = A7 (1 +nlx = )72 (1 + nfd = Ae)7dA.

—T

This bound is the same as for the terms in (5.2), and therefore (d) holds by the same argument as
in (c).
To prove (a), we have
— —a " —a 1 h 2
[Epwn(Aj)wn(Aj) =X =1 [ (FA) = e, )WlDé O IRCAY

-7
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< |/ [...]d>\|+|/ [...]d>\|+|/ [ JdA + | By
A< /2 Aj/2EA<3N; /2 3 /2<A<— ) /2 3); /2<IN <7

=: C(t1 +to +13 + t4).

It remains to show that
tiAY <cC(N] +577), j=1,2,34

We start with ¢1. Using (5.5) and (1+n|A—X;[)~3 < Cj3 for |A| < A;/2, we have n DM (V)2 <
Cnj~%, and

h< cnj—ﬁ/ (FN) + cAT)dA.
A< /2

Using the same argument as estimating ¢1(j, k) above we get t1\§ < cCj—2. Next,

iy < e / [(F(A) = A=) + (e A = eAs ) jd
X /2SA<3A; /2

< C A7 P01+ n|X = \;))%d\ + |D|
Aj/2<A<3BA; /2
< CX 74Dy,
where )
D= (AT = A7) ———= D (A = Xj)]%dA.

X /2<A<3A; /2 2m(3n/8)
Using Taylor expansion, (5.5) and |D7(1h)()\)| = |D£Lh)(—)\)|,

1

b= 27(3n/8)

(A =07 =A%)

h 2
i DI ()P dA

/—AJ‘/2S>\S>\J'/2

DU ()2

(0 A 00N )

/—AJ‘/2S>\S>\J'/2

O(/ A2AS (1 4 n|/\|)*6d/\)
“Aj/2SA<A; /2

= O(Aj_“‘%”/ x2(1+x)*6dx) =0\ ?).
0

J

Thus
tac™IAS < C(NY +572).

The term t3 is estimated similarly to %o.
We end the proof of item (a) by estimating t4. For 7 > |A| > 3A;/2 we have from (5.5)

1
L DM AN AN < O A6
SO
ty <C () + AT )n=> X 7dA.
8X;/2<| A<

Therefore, similarly to estimating g3(j, k) we get tac™'A3 < Cj 2.
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To prove (b) for 2 < j < n, we have:

Bun (s = | [ OV =1 [ GO) = ) B N

< O IF) = A7 n(L+n[d = A 72 (14 0| + X)) 2dA

—T

= [...]d>\+/ [...]dA+/ [...]d)\)
IAI<A; /2 A;/2<|N|<3);/2 8X;/2<|A <7

=: 51(J) + s52(J) + s3()).

Using the argument employed in estimating g (7, k), g2 (7, k), g3 (4, k) in (c), we can show that s;(j)c 1>\a <
Cj—3,i=1,2,3 uniformly in f and j.
This completes the proof of (b) and Lemma 3.1. O

PROOF OF LEMMA 3.2: Put u; = v;/p/ E; vy, where E; denotes the sum -, ,,). Because
E; v; =0 and E; v? ~pasn — oo (cf Robinson (1995b)), it follows that

! !
Zj i =0, Zj ,u? -1 m— oo (5.11)

From (3.3) :
Vin(am = a(f)) == 3 miuj,

where u; = log|vs(\j]? + 1, with n = 0.5772... Euler’s constant. To prove (3.11) we have to show
that for all sufficiently large n and m = o(n)

!
J = Efexp(:lzzjuju] =E; H lon (Aj)[E29] < 1 explea||Anml]?), (5.12)

uniformly in f € F(8), 0 < 8. < 3 < B*, where H; = H].E](m) . The expectation in (5.12) is with
respect to the 2p-dimensional Gaussian distribution with covariance matrix £ = I5,/2 + A,, which
is nonsingular because ||An||sp < 1/2, as follows for large enough n from Lemma 4.2 and (3.9).
Denoting by z;,j € I(m) the two-dimensional components of z,

J = =] /HI (2T ;) FHi exp(—2*1xTE*1:r)da:
(2m)p o
Dl 1
= @n) H :n]T:n +Hi exp(— 2 )exp(—imT(Z — Ip)z)dz
1277 41/2
< JY Hj 7, (5.13)
by Cauchy-Schwarz inequality, where
Jo = b2l exp(—zT (7! = Ly)z)de, J; = € (xTx;) 2 exp(— wT:n Ydzj, j>0
° 7 @2m)p P p T 9n j p i)exi, g > V.
Now

Jo =28 — 252|712 = QPH]( —dn?)~1/2
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where 7; is the j-th eigenvalue of A,,. From the inequality 1 — z > €72%,0 < z < 1/2, and Lemma
4.2, for n large enough

!
Jo < 2 exp(d )] ) = 2 exp(d]| A ). (5.14)

On the other hand, after transformation to the polar coordinates, as p; — 0 (which follows from
max;er(m) |1j] — 0 as n — 00)

© . 1 1
Jj = / P exp(—r®)dr = ST (14 2u5) = 5 exp{F2u;n + O(j)}
0

from the two-term mean value expansion for logI'(1 + z). From (5.11), H; J; < C27P. Then (5.12)
follows from (5.13) and (5.14). i
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