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London School of Economics
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Abstract

Decision making typically requires judgements about causal relations: we need
to know both the causal effects of our actions and the causal relevance of various
environmental factors. Judgements about the nature and strength of causal rela-
tions often differ, even among experts. How to handle such diversity is the topic
of this paper. First we consider the possibility of aggregating causal judgements
via the aggregation of probabilistic ones. The broadly negative outcome of this
investigation leads us to look at aggregating causal judgements independently of
probabilistic ones. We do so by transcribing causal claims into the judgement
aggregation framework and applying some recent results in this field. Finally we
look at the implications for probability aggregation when it is constrained by prior
aggregation of causal judgements.

1 Introduction

Decision making typically requires judgements about causal relations: home owners need
to know whether putting locks in their doors will make their houses more secure; jurors
need to know whether the accused is causally responsible for damages before they can
assess whether they are legally responsible; and aid agencies need to know what the effect
of spending money on different projects will be on the lives of those they are concerned
about. It is also often the case that opinions about the nature and strength of causal
relations differ, even among experts. How to handle such diversity of opinion is the topic
of this paper. We investigate the possibility of coherently aggregating different causal
judgements into a single one that may be applied to the decision problem at hand.
The basic set-up of this aggregation problem is as follows. Individuals hold diverse
judgements about both the nature of the causal relations between the variables in some
set V.= {V,W, ...} and the probabilities of these variables taking certain values, uncon-
ditionally or conditionally on the values of other variables. The task is to construct a
single aggregate judgement on the causal relations between the variables and the relevant



probabilities in a way that preserves, as much as possible, the information contained in
the individuals’ judgements. In doing so we assume that individuals’ judgements are co-
herent. More generally, one might allow that individuals do not make judgements about
all causal relations or all probabilities in question: their judgements could be restricted
to just certain variables relevant to the decision problem at hand, or further still, to just
some subset of them or just one type of judgement: causal or probabilistic.

The causal judgements of individuals could be represented in a number of different
ways but here we adopt the Bayesian network framework familiar from the work of Pearl
[11], Spirtes, Glymour and Scheines [12] and others in which they are represented by di-
rected acyclic graphs (DAGs) and associated conditional probabilities. We do not intend
thereby to take up a position on the nature of causal judgements, nor on the question of
whether they can ultimately be analysed probabilistically.! Anyone who holds the view
that causal judgements are just features of probability judgements — for instance that to
judge that X causes Y is to hold certain conditional probabilistic judgements including
that the conditional probability of X given Y exceeds its unconditional probability — is
free to regard the DAG representations of an individual’s causal judgement as adding
no information to his or her probability judgements. We also do not think that much
of what we claim depends on the DAG representation; we could just as well represent
causal judgements by, for instance, counterfactual beliefs of the right kind.

A DAG represents an individual’s qualitative judgement of causal relevance and
irrelevance between variables. Her quantitative judgement of causal dependence is re-
flected in the associated conditional probabilities for the values of variables, given the
values of any variables on which it is directly causally dependent. Then the individ-
ual’s unconditional probabilities for the values of the variables can be computed from
her unconditional probabilities for the parent variables plus these associated conditional
probabilities. Consider the following example, which we will use at various points in the
discussion.

Example: Predicting famine. An aid agency wishes to do some advance planning
for its famine relief operations and consults a number of experts in order to determine
the risk of famine in some particular region. All agree that the relevant variables are R:
rainfall, Y: crop yields, P: political conflict and, of course, F': famine. But they disagree
both on the causal relations between the four variables and on the probabilities of the
various values the variables may take. All consider rainfall to be main determinant of
crop yield but while expert 1 thinks that poor crop yield and disruptive political conflict
are the main causes of famine, expert 2 thinks that the causal influence of political
conflict on famine is indirect, via the effect of the disruption of agricultural production
on crop yields. Expert 3 considers the relationship between political conflict and famine
to be more complicated still, with political conflict both causing famine directly, by

LA probabilistic analysis may involve variables not included in the DAG we consider.
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disrupting food distribution, and indirectly, through the influence on crop yields. These
three opinions are represented in figure 1 by a set of DAGs.

The fact that individuals make both causal and probabilistic judgements raises the
question of whether aggregation of both kinds of judgements should be conducted all at
once or in two stages. In section 2, we focus on what we call one-stage aggregation, in
which only probability judgements are aggregated. Aggregation of this sort is motivated
mainly by the thought that the probability judgements of individuals reflect their causal
judgements in various ways and hence that our problem may be solved by constraining
probability aggregation so as to preserve the causal information contained in probability
judgements. Our verdict on this possibility is broadly negative, however. In sections
3 to 5, we therefore pursue an alternative two-stage approach, aggregating first the
causal judgements represented by the DAGs (section 3) and then the probabilistic ones
(sections 4 and 5), on the assumption that a consensus about the causal relations between
variables has been reached.

2 Aggregating Probability Judgements

The problem of aggregating causal judgements has not received much attention, at least
in the form presented here, but there is a vast literature on aggegrating expert opinion,
mainly in statistics, and especially on aggregating expert probabilities. In this section,
we draw on this literature to examine the possibility of reasonable one-stage aggregation



of individuals’ judgements. One-stage aggregation may be the only method available in
cases in which individuals either make no causal judgements or their causal judgements
are very incomplete. It is natural moreover for those holding a probabilistic view about
causation to rely only on this method. But one-stage aggregation may also be motivated
by the less controversial thought that the causal judgements of individuals are reflected in
(even if they are not reducible to) the relations between the individuals’ unconditional
and conditional probabilities for the relevant possibilities. If this is so, then even on
a non-reductionist view about causal judgements one may still hope that probability
aggregation could be constrained in a manner which preserved the causal judgements
implicit in probabilistic ones.

Broadly, the probability aggregation literature can be divided into three approaches
to the problem: linear pooling, geometric pooling and supra-Bayesian approaches. (A
very useful guide to this literature can be found in the survey paper of Genest and Zidek
[3]; here we draw only on salient aspects.) The last approach is directed at a slightly
different problem to ours — namely that of how an individual expert should modify his
judgements in the light of the expressed judgements of other experts — and so we can
set it aside. The other two approaches assume that the experts’ opinions have reached
an equilibrium state and that no further modification of their viewpoint will take place
before the relevant decision has to be made.

Consider an opinion aggregation problem of the following form. A set of events
is given (for instance the event “high political conflict” or “low political conflict and
famine”), and the task is to merge the probability judgements of individuals 1,...,n
(the "experts") on these events into an aggregate probability judgement on the events.?
So, we have to merge (individual) probability functions Pry, ..., Pr, into an (aggregate)
probability function Pr. Many aggregation rules are imaginable. Formally, a (probability)
aggregation rule is a function that assigns to any vector (Pry,...,Pr,) (also called a
profile) of individual probability functions an aggregate probability function Pr.

Of the various possible aggregation rules, linear pooling stands out for a variety of
formal and conceptual reasons (e.g., Lehrer and Wagner [5]). In particular, the following
axiomatic argument can be given. Let us require the aggregation rule to satisfy two
seemingly natural conditions:

ITA (Independence of Irrelevant Alternatives) The aggregate probability of any given
event X depends only on the individuals’ probabilities of X (regardless of the
individuals’ probabilities of other events V).

2Events can be identified with subsets of a given set of possible worlds. In many formal results, the
set of events considered (i.e., the domain of the individual probability functions Pry, ..., Pr, and the
aggregate probability function Pr) forms an algebra: the negation (complement) of any event is also an
event, and the disjunction (union) of two events is an event too.

3Formally, Pr(X) is a function of Pry(X), ..., Pr,,(X) (this function may be a different one for different
events X).



ZP (Zero Preservation) The aggregate probability of any given event X is zero whenever
all individuals give X zero probability.*

Applied to the event “famine”, for instance, Zero Preservation implies that famine
is assigned an aggregate probability of zero if all individuals assign a probability of zero
to it. Independence of Irrelevant Alternative implies that the aggregate probability of
famine depends only on the individuals’ beliefs about the probability of famine, not on
their beliefs about the probability of a certain level of crop yield, political conflict, etc.
(This is not to deny, of course, that individuals form their beliefs regarding famine in
the light of their judgements on crop yield, political conflict etc.)

Perhaps surprisingly, the only aggregation rules satisfying these two conditions are
linear pooling functions: the aggregate probability of any event X is a (possibly weighted)
arithmetic average of the individual probabilities of X, i.e.

Pr(X) = w Pry(X) + ... + w,,Pr,(X),

where the weights w;,...,w, > 0 add up to one and are the same for all events X.°

Examples of linear pooling functions are equal-weight averaging (v, = ... = w, = 1/n)
and dictatorial aggregation (some individual ¢ has weight w; = 1 and all others have
weight 0).

But do such linear pooling functions respect the causal knowledge of the individual
experts satisfactorily? An individual’s causal judgements will be reflected in certain (un-
conditional or conditional) independencies in her probability judgements. For instance,
if individual ¢ believes that events X and Y do not causally affect each other but have a
common cause, say event Z, then he or she will take X and Y to be probabilistically in-
dependent given Z,% because any probabilistic correlation between X and Y is “screened
off” by conditionalising on Z. A minimal condition of respecting causal judgements is
that at least unanimously held causal judgements be reflected in the aggregate prob-
ability function Pr: i.e., Pr should display at least those (conditional) independencies
required by unanimous causal judgements. For example, if all individuals take X and
Y to be causally independent with common cause Z, then that independence judge-
ment should be reflected in the aggregate probability function Pr. This motivates the
following condition on probability aggregation:

IP (Independence Preservation) For any given events XY, Z, if all individuals ¢ judge
X and Y to be probabilistically independent given 7, then this conditional inde-
pendence also holds under the aggregate probability function.”

4Formally, Pr(X) = 0 if Pry(X) = ... = Pr,,(X) = 0.

%See McConway [9], drawing on previous results. The result requires that the set of events considered
forms an algebra (see footnote 2) and contains at least three events apart from the contradiction (empty
set of worlds) and the tautology (set of all worlds).

SFormally, Pr;(XY|Z) = Pr;(X|Z) Pr;(Y|2).

"Formally, if, for all individuals i, Pr;(Z) > 0 and Pr;(XY|Z) = Pr;(X|Z)Pr;(Y|Z), then also
Pr(Z) > 0 and Pr(XY|Z) = Pr(X|2) Pr(Y|2).



Note that, by preserving all unanimous probabilistic independencies (conditional or
unconditional), we may also preserve ones that are not grounded in unanimous causal
judgements. For instance, it may be that all individuals judge X and Y to be inde-
pendent given Z, but some do so on the grounds of judging that X indirectly causes
Y through Z, others on the grounds of judging that Y indirectly causes X through
7, still others on the grounds of judging that X, Y and Z are entirely causally discon-
nected, etc. Even in this case of causal disagreement, Independence Preservation requires
the preservation of the probabilistic (conditional) independence. The purely probabilis-
tic informational basis of one-stage probability aggregation simply does not allow us to
distinguish between different motivations (causal or other) behind probabilistic indepen-
dencies. Without explicit causal information, we have to use Independence Preservation
to preserve unanimous causal judgements, although this requires us to preserve even
those conditional independencies that are not causally motivated.

It turns out, however, that Independence Preservation is violated by all linear pooling
functions (unless some individual i gets maximal weight w; = 1) and thus by all non-
dictatorial probability aggregation rules satisfying the above conditions of Independence
of Irrelevant Alternatives and Zero Preservation. This fact, proven in Genest and Wagner
[4], can be illustrated using our earlier example. Suppose the aid agency consults a couple
of experts in order to determine the risk of famine in a particular region and that both
experts agree that famine is caused by a combination of drought (the event of rainfall
R below some critical threshold) and political instability (the event of political conflict
P above some critical threshold), which undermines local solutions to poor crop yields.
Furthermore, they agree that these two factors are both causally and probabilistically
independent, at least in the short term. But they disagree on the probability of drought
and of political instability. Since neither speaks with greater authority than the other,
the aid agency calculates its probabilities for these events by taking the average of
the judgements of the two experts. Let D and I respectively denote the occurrence of
drought and political instability in the region and DI their concurrence. Pry, Pry, and Pr
are respectively the probability functions of expert 1, expert 2 and the aid agency. Since
pooling happens by averaging, the aid agency will assign the following probabilities:

PI‘(D) _ Prl(D) —; PI’Q(D>’ PI‘(I) _ PI’l(I) —g PI'Q(I)’
PI'l(DI) + PI'Q(DI) . PI‘1 (D) PI‘1 (I) + PI'Q(D) PI'Q(I)
2 2 ’

Pr(DI) =

where the last identity uses the experts’ judgements that D and [ are independent.
These independence judgements are preserved if and only if Pr(DI) = Pr(D) Pr(1), i.e.
if and only if

Pri(D) Pri(I) + Prao(D) Pro(1) _ Pri(D) + Pry(D) " Pri(I) + Pro(1)
2 2 2 '




By multiplying both sides of this equation by 4, developing the product on the right
hand side, and simplifying, it follows that

Pri(D) Pri(I) 4+ Pra(D) Pry
& Pry(D)(Pry(I) — Pry(I)) =
& (Pri(D) — Pry(D))(Pri (1) —

(1) = Pr1(D) Pro(I) + Pr2(D) Pri(1)
P2(D)( 1(—7) Pry(1))
Pry(1)) =

The latter can hold only if Pri(D) = Pry(D) or Pri(/) = Pry(l), i.e. if the experts
agree on the probability of drought or of political instability — which is not the case by
assumption. So equal-weight linear pooling violates Independence Preservation. Similar
violations can easily be constructed for non-equal weights (unless one individual i gets
maximal weight w; = 1).

While we have focussed on linear pooling as a way of aggregating probability judge-
ments, the difficulty with preserving causal insights at the aggregate level is a very
general one. Genest and Wagner [4] have shown that Independence Preservation is vio-
lated by many (linear or non-linear) probability aggregation rules, including geometric
averaging, the most prominent alternative to linear averaging. Thus the difficulty of
preserving causal knowledge is not an artifact of requiring Independence of Irrelevance
Alternatives (a condition violated for instance by geometric averaging).

Genest and Wagner [4] regard this finding as evidence that Independence Preserva-
tion is not a reasonable condition. We would not like to go so far. In our view, those
unanimous independence judgements that are grounded in unanimous causal judgements
about the world should not be overruled. We take Genest and Wagner’s impossibility
finding not as a reason to abandon the goal of preserving judgements of independence,
but as a reason to move to a two-stage approach that explicitly takes causal judge-
ments into account. Causal judgements are aggregated first, and probabilistic ones only
subsequently. Moreover the latter are aggregated in a way that differs from standard
probability aggregation, namely in a way that is constrained by the causal judgements
formed at the first stage. Our two-stage approach will satisfy a version of Independence
Preservation restricted to unanimously held causal independencies.

3 Aggregating causal judgements

As before, let V.= {V,W, ...} be a non-empty set of variables. In our example of the
aid agency above, V contains the variables R (rainfall), Y (crop yields), P (political
conflict) and F' (famine). How can we represent judgements on how the variables in 'V
are causally interrelated? Let us introduce a binary predicate symbol C' to represent a
causal relevance relation on V, where, for any two variables V' and W in V, we write
VCW to mean that V is causally relevant to . In the case of the aid agency, an expert
who thinks that rainfall is causally relevant to crop yield whereas political conflict isn’t



would hold that RC'Y but not that PCY. A causal relevance relation C' is called acyclic
if, for any finite sequence Vi, V5, ..., V} of variables in V, it is not the case that

‘/10‘/2, ‘/20‘/37 ceey Vk_lCVk and VkC‘GS

A causal relevance relation C' induces a directed graph, whose vertices are the variables in
V and where, for any two variables V, W in V| there is an edge from V' in the direction
of W if and only if VCW. This graph is a directed acyclic graph (DAG) if C is an
acyclic relation.

A Bayesian network is a DAG with associated conditional probabilities: each variable
in the graph is endowed with a conditional probability distribution given its parents in
the graph. In this section, however, we set this quantitative information aside and focus
on qualitative features of the DAG alone. In particular, we investigate how a group of
individuals can arrive at an aggregate judgement on what the causal relevance relation
C between the variables in V is.

Consider a group of n individuals, labelled 1, 2, ..., n, each of whom holds a particular
judgement on the nature of the causal relevance relation between the variables in V. We
write C; to denote the causal relevance relation according to individual i’s judgement. A
combination of causal relevance relations across the n indivdiuals is called a profile and
denoted (Cy,Cy, ..., C,). A causal judgement aggregation rule is a function that assigns
to each profile (Cy, Cy, ..., C,,) (in some domain of admissible profiles) a single aggregate
causal relevance relation C'.

To give some examples of causal judgement aggregation rules, consider the class of
threshold rules. A threshold rule, with threshold k (where 1 < k < n), assigns to each
profile (Cy,Cs, ..., C,,) the causal relevance relation C' defined as follows: for any two
variables V' and W in V,

VCW < at least k individuals have VC; V.

Examples of threshold rules are the majority rule (k = *51), the union rule (k = 1) and
the intersection (or unanimity) rule (k = n).

Are these satisfactory causal judgement aggregation rules? It is easy to see that
each of these three rules has a considerable defect. The majority and union rules fail to
ensure acyclicity of the aggregate causal relevance relation, even when all individuals hold
acyclic such relations. To see this, suppose the aid agency consults three experts, with the
following individual judgements. They all agree that rainfall is causally relevant to crop
yields, but they disagree on the causal relations between the other variables. The first
expert thinks that crop yields are causally relevant to famine, which is causally relevant
to political conflict; the second thinks that famine is causally relevant to political conflict,

8Note that our definition of acyclicity also rules out cycles of length k = 1, i.e., we cannot have VCV
for any variable V.



which is causally relevant to crop yields; and the third thinks that political conflict is
causally relevant to crop yields, which is causally relevant to famine. In consequence, the
causal relevance relation generated by the majority rule violates acyclicity: the relation
contains a cycle from crop yields to famines to political conflict to crop yields. It is
obvious that the union rule has the same defect. The intersection (or unanimity) rule, by
contrast, ensures acyclicity of the aggregate causal relevance relation, but may generate
a sparse or even empty such relation, with few variables deemed causally relevant to any
others, whenever there are disagreements between the experts.

Although threshold rules are particularly salient examples of causal judgement ag-
gregation rules, they are by no means the only ones. So let us once again adopt an
axiomatic approach and look for rules satisfying certain conditions.

UD (Universal Domain) The causal judgement aggregation rule accepts as admissible
any logically possible profile of acyclic causal relevance relations.

AC (Acyclicity) The aggregate causal relevance relation is always acyclic.

UB (Unbiasedness) For any two variables V' and W in V, the aggregate judgement on
whether V' is causally relevant to W depends only on individual judgements on
whether V' is causally relevant to W, and the aggregation rule is neutral between
whether or not this is the case.’

ND (Non-Dictatorship) There does not exist a fixed individual such that, for every ad-
missible profile of causal relevance relations, the aggregate causal relevance relation
is the one held by that individual.

Although these conditions may seem natural at first sight, they are mutually incon-
sistent.

Theorem 1 If V contains three or more variables, there exists no causal judgement
aggregation rule satisfying UD, AC, UB and ND.

We derive this result from a recent impossibility theorem by Dietrich and List [2] in
the emerging literature on judgement aggregation (e.g., List and Pettit [8], Pauly and
van Hees [10], Dietrich [1]).

What are the possible escape routes from this impossibility result?

9Formally, for any V and W in V and any admissible profiles (Cy, Cy, ..., C,,) and (Cf,C3, ..., C), if
[for all i, VC; W if and only if not VC}W] then [VCW if and only if not VC*W]. This formal statement
is slightly weaker than the informal one in the main text but implies the informal one together with
UD and AC.



The first route: relaxing universal domain. We may use a causal judgement
aggregation rule which accepts as admissible input not all logically possible profiles
of acyclic causal relevance relations, but only those profiles that meet an additional
structural condition — namely profiles that, informally speaking, reflect a certain amount
of cohesion — if not consensus — across different individuals’ causal judgements. The
additional structural condition on profiles might be such that the majority rule, or
perhaps some other threshold rule, never generates an aggregate causal relevance relation
violating acyclicity; in this case the majority rule or threshold rule in question could be
employed on this restricted domain of admissible profiles. We consider two structural
conditions of this kind.

Temporal order restriction. Suppose the individuals agree on the temporal order in
which the events captured by the variables in V occur. Suppose further they agree that
a variable V' can be causally relevant to another variable W only if V' strictly precedes
W in this temporal order. Call any profile of causal relevance relations that is consistent
with some such agreement temporal-order restricted. Formally, a profile is temporal-order
restricted if there exists some weak ordering of the variables in V (reflexive, transitive
and connected binary relation on V) such that, for every pair of variables V and W in V,
if some individual holds V' to be causally relevant to W (i.e., some i holds VC; W) then V/
strictly precedes W in that ordering. For any such profile, the causal relevance relation
generated by any threshold rule is acyclic, no matter how low or high the threshold is.
The temporal constraint on what causal relevance judgements are deemed admissible
guarantees the absence of any causal cycles at both the individual and aggregate levels.

Unidimensional alignment. Another structural condition on profiles that ensures
acyclical causal judgements at the aggregate level — here under the majority rule (or any
threshold rule with a higher threshold) — is unidimensional alignment (List [6]). A profile
of causal relevance relations is called unidimensionally aligned if the individuals can be
linearly ordered from left to right such that, for every pair of variables V' and W in V,
the individuals who hold that V' is causally relevant to W (i.e., the individuals i with
VC;W) lie either all to the left or all to the right of those who hold that V' is not causally
relevant to W (i.e., the individuals ¢ who do not have V C;WW). For any unidimensionally
aligned profile, the causal relevance relation generated by the majority rule is acyclic and
coincides with the causal relevance relation held by the median individual with respect
to the left-right ordering of the individuals (or, if the number of individuals is even, it
coincides with the intersection of the causal relevance relations held by the two median
individuals).

It is an empirical matter whether a group of experts — either before or after suitable
deliberation — exhibits sufficient agreement in their causal judgements to meet the con-
dition of temporal order restriction or that of unidimensional alignment. The kind of
temporal agreement required for temporal order restriction seems empirically plausible
at least in some situations.

10



The second route: relaxing acyclicity. A logically possible way to avoid the im-
possibility result of Theorem 1 is to give up the requirement that the aggregate causal
relevance relation be acyclic. This, however, would constitute a major departure from

the consensus on the nature of causal relations, which are widely held to be acyclic
(Pearl [11]).

The third route: relaxing unbiasedness. We may use a causal judgement aggre-
gation rule which violates the condition of unbiasedness. Such a violation may take one
of the following two forms.

A neutrality violation. There exist pairs of variables V' and W in V such that the
aggregation rule is not neutral between whether or not V' is causally relevant to WW.
Examples of causal judgement aggregation rules violating neutrality are threshold rules
with any threshold £ different from simple majority. It can be shown that a threshold rule
is guaranteed to generate an acyclic causal relevance relation if and only if the threshold
k exceeds mT_l, where m is the number of variables in V. If the set of variables V is
infinite, only the intersection (or unanimity) rule guarantees acyclicity at the aggregate
level, but if V is finite, then a supermajority rule with a suitably high threshold is
sufficient. A problem with this approach, as noted above, is that it may lead to sparse
or even empty aggregate causal relevance relations unless the disagreement between
experts is limited.

An independence violation. There exist pairs of variables V' and W in V such that
the aggregate judgement on whether V' is causally relevant to VW depends not only on
individual judgements on whether V' is causally relevant to W but also on individual
judgements involving other variables. Examples of causal judgement aggregation rules
violating independence are sequential priority rules (List [7]). Here the different possible
pairs of variables are considered one-by-one in a given order (which may be chosen, for
example, by some criterion of epistemic priority). On each pair of variables V, W the
aggregate judgement is then determined as follows. If the question of whether V' is
causally relevant to W is constrained by the aggregate judgements on pairs considered
earlier (together with acyclicity), then the aggregate judgement on this question is made
in accordance with those earlier constraints. But if it is not constrained in such a way,
then the aggregate judgement on V’s causal relevance to W is made by applying some
voting method, such as majority voting, to the individual judgements on V' vis-a-vis W.
This approach guarantees acyclicity of the aggregate causal relevance relation, but at
the expense of “path-dependence”: the order in which causal judgements are made on
different pairs of variables may determine what the causal relevance relation will look
like. An agenda setter on a committee of experts may strategically exploit this feature of
the causal judgement aggregation rule by proposing an order of priority among different
pairs of variables that is likely to give rise to aggregate causal judgements that the
agenda setter wants the committee to make.

11



The fourth route: relaxing non-dictatorship. A final way to avoid the impos-
sibility result of Theorem 1 is to allow the aggregate causal relevance relation to be
determined by an antecedently fixed individual: a “dictator”. But since we are inter-
ested in making use of the information contained in the causal judgements of more than
one individual, this is hardly an attractive solution to our aggregation problem. In some
cases, however, may think that it is an acceptable compromise to appoint a trusted
expert as the “dictator” for arriving at qualitative causal judgements — in the form of a
DAG — while continuing “democratically” when it comes to determining the associated
quantitative probability information at the second stage of our two-stage appraoch.

Which of the different possible escape routes from the impossibility result of Theorem
1 is compelling depends on details of the decision problem at hand, the nature of the
disagreements between the experts, the level of trust we place in them, and so on. In the
next section, we assume that through one of these routes — excluding that of relaxing
acyclicity — a “consensus” on a causal relevance relation and thereby on a DAG has been
achieved, and we turn to the question of how the associated conditional probabilities
can be determined.

4 Aggregate probability judgements compatible with
aggregate causal judgements

We have analysed how a group can arrive at an aggregate judgement on the causal
relations between variables. We now assume that such an aggregate causal judgement
has been reached through one of the routes just discussed and suppose that the group also
seeks to make an aggregate probability judgement (about the variables taking various
values), which is required to be compatible with that aggregate causal judgement.

In its most general form — ignoring for the moment the causal judgement — a proba-
bility judgement can be represented by a joint probability function over the variables in
V. We assume that each variable can take finitely, or countably infinitely, many possible
values. For example, we may distinguish between a particular number of possible levels
of conflict. Let us label the variables Vi, ..., V,,. A joint probability function Pr assigns a
probability Pr(vy, ..., v,,) > 0 to each combination (vy, ..., v,,) of values of these variables,
where the sum of the probabilities is 1.

The joint probability Pr(vy, ..., v,,) can be factorised into the product of conditional

12



probabilities:!?
Pr(vi,...,vn) = Pr(vy) Pr(vse|vy) Pr(vs|vg, v1) -« - Pr(vp|vm-_1, ..., v1)

= [ Prlvr, ;v5-0). (1)
Jj=1

In our famine example, where V, Vs, V3, V} are the levels of, respectively, rainfall, crop
yield, political conflict and famine, we have

P(vy,v9,v3,v4) = P(v1) P(v2|v1) P(vs|v1, ve) P(vg|v1, v2, v3).

When is the probability judgement expressed by Pr compatible with a given causal
judgement? Recall that a causal judgement takes the form of a particular directed acyclic
graph (DAG) over the variables Vi, ..., V,,, with an arrow from V; to V} just in case V;
is considered causally relevant to Vj, (V;CVy). For any variable V;, we write PA(V}) to
denote the list of V,’s parent variables in the graph, and we write pa(V;) to denote any
list of values of these parent variables.'!

For instance, suppose that, according to the consensus DAG in our famine example,
no variable is causally relevant to rainfall (V}); only rainfall (V7) is causally relevant to
crop yield (V2); only crop yield (V3) is causally relevant to political conflict (V3); but
both crop yield (V5) and political conflict (V3) are causally relevant to famine (V). Then
PA(V}) contains no variable, PA(V,) contains precisely V;, PA(V3) contains precisely
Vs, and PA(V,) contains both V5 and V3.

Without loss of generality, suppose the variables Vi, ..., V,, are labelled such that
those with no parent come first, those with a parent but no grandparent come next,
those with a grandparent but no great-grandparent come thereafter, and so on. If
the original labelling Vi, ..., V;, does not have this property, we can simply relabel the
variables appropriately and replace the factorisation (1) by one using the new labelling.
So the parents of any variable V; come before V;.'* But of course not all of V4, ..., V;_;
need to be causally relevant to V;. For instance, in our famine example V, but not
V1 is (directly) causally relevant to V3. As causally irrelevant variables should have no
effect on Vj, the conditional probability Pr(v;|vs,...,v;_1) should be insensitive to the

"0Tn this expression, the conditional probability Pr(v;|vi,...,vj_1) can be derived from the joint
Pr(vi,...,vj_1) are marginal probabilities derived from Pr), provided that Pr(vi,...,v;—1) # 0. If
Pr(vi,...,vj—1) = 0, Pr(vj|vi,...,vj_1) can be viewed either as undefined or as a primitive not de-
rived from the function Pr. Under both interpretations, the factorisation (1) is still possible even if
some Pr(vq,...,v,_1) is zero whatever value is substituted for Pr(v;|v1,...,vj-1) (because some other
factor on the right-hand side of (1) will be zero, as will be the left-hand side of (1)).

S0 pa(V;) is any instantiation of PA(V;).

PFormally, PA(V;) is a sublist of (Vi,..., Vj_1).

probability function Pr via the formula Pr(vj|vi,...,v—1) = (where Pr(vy,...,v;) and
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V3 Vs
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Figure 1: Aggregate causal judgements in the famine example

non-parental values among vy, ..., v;_1. In other words, it should be sensitive only to the
sublist pa(V;) of vy, ...,v;_;. Formally,

Pr(vjlvy, ..., v;-1) = Pr(vjlpa(V;)). (2)
We say that the probability judgement Pr is compatible with the given aggregate causal

judgement if identity (2) holds for every variable V; and every combination of values
v1, ..., v with Pr(vy, ...,v;_1) # 0.'® The joint probability (1) then reduces to

Pr(vy, ..., vp) = HPr(vj lpa(V;)). (3)

For instance, in our famine example,

P(v1,v9,v3,v4) = P(vy)P(ve|v1) P(vs|vy) P(vg|va, v3).

13There are different equivalent ways to define "compatibility" of Pr with the DAG. While we have
defined compatibility by the ordered Markov condition, an equivalent definition uses the parental Markov
condition: any variable is independent of its non-descendants given its parents. A third definition
(chosen by Pearl) is by the validity of the decomposition (4). For the equivalence of these definitions,
see Theorems 1.2.6 and 1.2.7 in Pearl [11].
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5 A two-stage approach to the aggregation of prob-
ability judgements

As we seek to reach an aggregate probability judgement that is compatible with the
aggregate causal judgement, the probability function Pr should satisfy the decomposition
(3). The standard approach of directly aggregating individual probability functions

Pri(vi, ..., n), o, Prp(v1, .oy ) (4)

into an aggregate probability function Pr(vy, ..., v,) usually violates this decomposition.
We propose to determine the aggregate probability function Pr by a two-stage approach.
First, the individual causal judgements are merged into an aggregate causal judgement
(the "consensus" DAG), as discussed above. Second, we consider the decomposition
(3) relative to that aggregate causal judgement and determine each factor Pr(v;[pa(V;))
through separate probability aggregation. The joint probability function Pr(vy, ..., v,,)
is then given by the product of these separately determined factors.

More formally, for every variable V; in V and every combination pa(V;) of parental
values, we merge the individual conditional probability functions

Pry(vjlpa(V5)), -, Pra(vjlpa(V;)) (5)

into an aggregate conditional probability function Pr(v;|pa(V;)). These separate aggre-
gation exercises can each be performed, for example, by linear or geometric pooling. In
our famine example, this involves

merging Prq(v1), .., Pr,(v1) into Pr(vy),
for any fixed vs, merging PI'1<U2’U1) Pr,(va|vr) into Pr(ve|vy), (6)
for any fixed vs, merging Prq(vs|vg), .., Pr,(vs|vs) into Pr(vs|vs),
for any fixed v, v3, merging Pry(vy4|va, v3), .., Pry(vg|ve, v3) into Pr(vs|va, vs).

This two-stage approach has several distinctive properties, to which we now turn.

Compatibility with causal judgements. The aggregate probability function Pr,
given by (3), is automatically compatible with the aggregate causal judgement, repre-
sented by the appropriate DAG. In particular, Pr respects the causal Markov condition:
any variable V; is probabilistically independent of all its causal non-descendants given
its causal parents (recall footnote 13). In our famine example, Pr makes political conflict
independent of rainfall conditional on crop yield,!* and famine independent of rainfall
conditional on crop yield and political conflict.!> The causally motivated conditional

HFormally, Pr(vy,vs|ve) = Pr(vy|ve) Pr(vs|vg).
PFormally, Pr(vi, valva, vs) = Pr(vi|vs, v3) Pr(valve, v3).

15



independencies are thus preserved, whereas other conditional independencies may or
may not arise. By contrast, standard one-stage probability aggregation does not gener-
ally produce an aggregate probability judgement that respects any judgements of causal
relevance.

Preservation of causal (conditional) independencies. What about the preserva-
tion of unanimously held independencies between variables (both conditional and un-
conditional ones)? Suppose, for example, that all individuals consider variables V; and
V}, probabilistically independent given V;.! Does the aggregate probability judgement
preserve this conditional independence? As we have seen, for standard probability pool-
ing functions the answer is usually negative. Under our approach, by contrast, causal
conditional independencies are preserved. To see why, suppose that all individuals judge
V; and V}, to be probabilistically independent given V; because of a unanimous agreement
that V;’s only causal parent is V; and that V}, is not a causal descendant of V;. Then the
aggregate probability judgement respects this independence: according to Pr, V; and V},
are also probabilistically independent given V;.!'" The reason is that the first stage of
our two-stage approach leads to an aggregate causal judgement that reflects the unani-
mous opinion on the causal relations between V;, Vi, V;,'® and the second stage leads to
a probability judgement that is compatible with this aggregate causal judgement.

Complexity reduction. Our two-stage approach subdivides an m-dimensional prob-
ability aggregation problem into several one-dimensional ones. Rather than aggregating
joint probability functions over the vector Vi, ..., V;, (of the form (4)), we aggregate con-
ditional probability functions of a single variable V; (of the form (5)). But we face several
such aggregation problems, namely one for each variable V; and each fixed combination
of parent values pa;(V;). This is less demanding on the side of individual inputs, as long
as the aggregate DAG is not too rich in causal connections. To illustrate this complexity
reduction, consider our famine example again, and suppose for simplicity that each vari-
able can take only two values, i.e., there are only two levels of rainfall, two levels of crop
yield, and so on. If we were to aggregate the joint probability functions Pr;(v, ve, v3, v4)
directly, each individual would have to submit 2* — 1 = 15 probability values (there are
24 possible combinations of values (vq,vs,v3,v4) but once the probabilities of 2¢ — 1 of
them are specified the remaining probability is given by one minus the sum of the rest).
Specifying any one of these 15 probabilities is hard in practice: what, for example, is the
probability of a combination of high rainfall and low crop yield and low political con-
flict and high famine? Under our approach, by contrast, each individual has to submit
only probabilities of single-value events (possibly conditional such probabilities), like the

Y Formally, Pr;(vj, vg|v)) = Pri(vj|vg) Pr;(vi|vp).
Formally, Pr(v;, vk |v) = Pr(vj|v) Pr(vg|vy).
18Provided a "reasonable" causal judgement aggregation rule is used.
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probability of high rainfall or the probability of high crop yield given low rainfall. The
number of required probabilities is smaller than 15 in our example. Using (6), we can
see that it equals

4
Z "number of possible values of V; minus 1"
j=1

x "number of possible parent values pa(V;)"
= 2-D)x1+@2-1)x2+(2-1)x2+(2-1) x2?
= 1+4242+4=0.

Type of informational input. Our approach not only reduces the complexity of the
aggregation problem; it also uses a different informational input from standard one-stage
probability aggregation. First, we use the additional information of individuals’ causal
judgements — the information aggregated at stage one. Second, an interesting question
arises about the nature of the probabilistic input used at stage two. Consider a variable
V; with parents PA(V;) in the aggregate DAG. As the aggregate DAG is the result of
the aggregation of individual causal judgements, it is possible that some individuals do
not agree that the variables listed in PA(V}) are the correct causal parents of V;. They
may think instead that not all of these variables are causally relevant to V; or that some
other variables are relevant although they are not included in PA(V;). In this case,
how should we interpret the conditional probability Pr;(v;|pa(V;)) submitted at stage
two by any such individual? In our famine example, what is an individual supposed to
answer to the question "how probable is high political conflict given low crop yield?"
if he or she actually thinks that famine rather than crop yield is causally relevant to
political conflict? Two interpretations are possible, leading to different interpretations
of our two-step approach. Either we interpret Pr;(v;|pa(V;)) simply as the standard
conditional probability that individual ¢ assigns to v; given pa(V;), as derived from his
or her own probability function Pr;. This conditional probability exists'® even when
pa(V;) does not contain the causally relevant values in 4’s judgement. Alternatively,
we may interpret Pr;(v;|pa(V;)) as the probability that individual i would assign to
v; under the supposition that the variables in PA(V;) are the causally relevant ones
(and take values pa(V})). Under this second interpretation, the individual entertains
the hypothesis that the aggregate causal judgement is correct and expresses conditional
probabilities based on this hypothesis. Here the probabilistic input used at the second
stage of our two-stage approach differs substantially from that of standard probability
aggregation.

YProvided that Pr;(pa(V;)) # 0. In the special case of Pr;(pa(V;) = 0, probabilities conditional on
pa(V;) cannot be derived from Pr; (see also footnote 10), and the further question arises as to what
Pr;(vj|pa(V;)) then represents.
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6 A challenge

The first stage of our two-stage approach restricts the second one by requiring the
aggregate probability judgement to display certain conditional independencies reflecting
the aggregate causal judgement. Roughly, the fewer causal links are accepted at the
first stage, the more probabilistic independencies are enforced at the second stage. In
the extreme case when no variable is deemed causally relevant to any other variable,
the second stage produces an aggregate probability judgement according to which every
variable is probabilistically independent of every other. Accepting few causal connections
has the advantage of reducing the complexity of the probability aggregation problem
at the second stage but the potential disadvantage of overrestricting the admissible
probability assignments. This restriction is problematic when the sparse set of accepted
causal links between variables is not a result of the individuals believing in sparse causal
links but a result of a causal judgement aggregation rule setting a high threshold for the
acceptance of causal links.

We are thus faced with a trade-off between the goal of reducing the complexity of
the probability aggregation problem (achieved via a high threshold for accepting causal
links between variables) and the goal of representing causal effects between variables
whenever there are such effects (achieved via a low threshold for accepting causal links).
We have argued that a high threshold for accepting causal links may help to prevent
a cyclical aggregate causal judgement; whereas in other situations, particularly if the
variables can be put into a temporal order, even a low threshold (perhaps lower than the
majority threshold) guarantees acyclicity. We leave it as a challenge for future research
to come up with causal judgement aggregation rules that perform well on both aspects
of this trade-off: being neither too permissive nor too restrictive in accepting causal links
while avoiding cyclical causal judgements.
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