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Abstract 
 
 

We study how securities and trading mechanisms can be designed to optimally 
mitigate the adverse impact of market imperfections on liquidity. Asset owners seek 
to obtain liquidity by selling their claims on future cash-flows, on which they have 
private information. Our analysis encompasses both the cases of competitive and 
monopolistic liquidity supply. In the optimal trading mechanism associated to an 
arbitrary given security, issuers with low cash-flows sell their entire holdings of the 
security, while issuers with larger cash-flows are typically excluded from trade. By 
designing the security optimally, issuers can eshew exclusion altogether. The 
optimal security is debt. Because of its low informational sensitivity, debt mitigates 
the adverse selection problem. Furthermore, by pooling all issuers with high cash-
flows, debt also reduces the ability of a monopolistic liquidity supplier to exclude 
them from trade in order to better extract rents from issuers with low cash-flows. 
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1. Introduction

While corporate finance offers insights in the design of optimal securities (see, e.g.,
Townsend (1979), Gale and Hellwig (1985), Allen and Gale (1988), Harris and Raviv
(1989)), market microstructure analyzes how different trading mechanisms can offer
variable degrees of liquidity, emphasizing the consequences of adverse selection and
strategic behavior. We borrow from these two approaches to study the interaction be-
tween security design and market mechanisms. Our objective is to study how the design
of securities and markets can mitigate imperfections and thus enhance the liquidity and
efficiency of the issuance and trading processes.

To motivate our analysis, consider an entrepreneur who owns a project yielding
random cash-flows in the future. Because of impatience or liquidity needs, she would
like to sell today claims on these cash-flows. Brealey and Myers (2000, Chapter 15,
page 419) describe the issuance process as follows:

“Suppose that your company is likely to need up to $200 million of new
long term debt over the next year or so. It can file a shelf registration for
that amount. It then has prior approval [from the SEC] to issue up to $200
million of debt, but it isn’t obligated to issue a penny. [...] Now you can
sit back and issue debt as needed, in bits and pieces if you like. Suppose
Merrill Lynch comes across an insurance company with $10 million ready
to invest in corporate bonds. Your phone rings. It’s Merrill Lynch offering
to buy $10 million of your bonds, priced to yield, say, 8 1/2 percent. If
you think that’s a good price, you say ‘OK’ and the deal is done [...] Here
is another possible deal. Suppose that you see a window of opportunity in
which interest rates are temporarily low. You invite bids for $100 million
of bonds. Some bids may come from large investment banks acting alone;
others may come from ad hoc syndicates. But that’s not your problem; if
the price is right, you just take the best deal offered.”

This description underscores the process by which a security is designed and then
marketed. It points at the role of the buyers in posting price offers, which the issuer can
accept or not. The security can be purchased and priced by a single financial institution,
Merrill Lynch in the example, or it can be offered to several possible buyers, and
sold to the highest bidder. Our model reflects these stylized facts, and, in particular,
encompasses the case where the financial institution has market power.

As a matter of fact, the underwriting industry is highly concentrated. Brealey and
Myers (2000, Chapter 15, page 415) report that the six largest underwriters (Merrill
Lynch, Salomon Smith Barney, Morgan Stanley, Goldman Sachs, Lehman Brothers,
and JPMorgan) manage the majority of the securities issues. Along with the major role
of large banks, Benveniste, Busaba and Wilhelm (2002) point at the niche occupied by
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specialized financial institutions. For example, they report that, out of fifteen trucking-
industry IPOs completed between 1990 and 1994, nine were managed by one bank
(Alex. Brown). They further argue that issues are often priced by a single financial
intermediary. Empirically, the market power of financial intermediaries and market
makers has been evidenced in several contexts (see Christie and Schultz (1994), or Chen
and Ritter (2000)). Theoretically, it has been traced back to institutional constraints
and private information. Thus the banking literature emphasizes that market power
may arise because of capital adequacy requirements that limit entry, or because banks
with preexisting relationships with firms are in a privileged position to lend to them
(see Freixas and Rochet (1997)).

In addition to market power, a second imperfection is likely to hamper the effi-
ciency of the security issuance process: firms issuing securities are often likely to have
private information about their future cash-flows. As shown by Leland and Pyle (1977)
and Myers and Majluf (1984), this creates an adverse selection problem, reducing the
liquidity of the market and the gains from trade that could be reaped by the issuers.
The goal of the present paper is to analyse the security design and issuance process
in presence of market power and adverse selection. In particular, we endeavor to shed
light on the following issues:

(i) Through what channels does market power affect liquidity ? How does it exac-
erbate the lemons problem induced by adverse selection?

(ii) How do issuers react to the market power of financial intermediaries? How can
they mitigate the illiquidity it induces? Does this alter qualitatively the type of
security they issue?

Our analysis is in line with the insightful recent paper by DeMarzo and Duffie
(1999). In both papers, while the security is designed under homogeneous information,
it is then traded after the issuer has observed a private signal on the profitability of her
assets. The preferences and information sets in our paper are similar to theirs. There
are two major differences with their approach. First, we analyse the consequences
of the market power of financial intermediaries. In contrast, they study competitive
liquidity suppliers earning zero expected profits in a signaling game similar to Kyle’s
(1985). Second, we take a mechanism design approach to analyze the trading process.
Thus, in our analysis both the design of the security and the design of the issuance
mechanism are endogenous.

More precisely, in our model, liquidity suppliers offer trading mechanisms, to which
the issuer reacts. In this screening game, the liquidity suppliers place transfer schedules,
specifying the prices at which they are willing to buy variable quantities. The issuer
then selects from this menu of offers the trade size maximizing her expected utility. To
highlight the consequences of market power we analyse two extreme cases, namely the
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case of a single monopolistic liquidity supplier, and the case of competitive liquidity
suppliers. The set of trading mechanisms we analyze encompasses the simple case where
the financial intermediaries post a single price, as in the above quote from Brealey and
Myers. It is also consistent with the IPO process where investors place offers to buy
a variable number of shares at certain prices, either through indications of interest in
the book building process or through bids in IPO auctions.1

For a given security design, the outcome of the trading interaction between the issuer
and the liquidity suppliers has the following characteristics. The worse the private
signal of the issuer, the more she is eager to sell the security, and the greater her trade.
As in Akerlof (1970), the “good types”, i.e., the issuers with large future cash-flows, are
those who suffer the most from the adverse selection problem. Because of the linearity
of the problem, there is a “bang-bang” solution, reflecting partial market break-down.
Issuers with cash-flows above a certain threshold are entirely excluded from trade. In
contrast, issuers with cash-flows below this threshold sell 100% of their holdings of the
security. It follows that the optimal trading mechanism can be implemented in a very
simple way. Each financial intermediary offers to buy the security by posting a linear
price schedule. The issuer is then free to accept any of these offers. Note that this
exactly fits Brealey and Myers’ description of the issuance process as quoted above.

Reflecting the adverse selection problem, and the nature of the screening game we
analyse, the endogenous cost function of the liquidity suppliers takes the form of lower-
tail conditional expectations, as in Glosten (1994) and Biais, Martimort and Rochet
(2000). This implies that, as long as a non-empty set of issuers are excluded from the
market, the price at which the liquidity suppliers are willing to purchase any amount
of the security is strictly lower than the unconditional expectation of the value of the
security. This is analogous to the small trade spread arising in screening models of
market microstructure. While the qualitative features of the market outcome are the
same in the monopolistic and competitive cases, the spread, and correspondingly the
fraction of issuer types excluded from trade, are greater with a monopolistic liquidity
supplier. Very much in line with the classical IO paradigm, the monopolist prefers to
reduce the volume of trade by excluding more types, in order to extract greater rents
from the types who remain in the market.

Our results contrast with DeMarzo and Duffie (1999), where (i) infinitesimal trades
have an infinitesimal impact on prices, (ii) issuers sell a fraction of the security (which
is interpreted as collateralization or tranching), and (iii) the good types are not entirely
excluded from the market. The difference in results is due to the difference in trading
mechanisms. Note that the separating equilibrium allocation obtained by DeMarzo and

1Hanley and Wilhelm (1995) or Cornelli and Goldreich (1998) document empirically the placement
of orders in the book building process. Biais and Faugeron-Crouzet (2002) discuss IPO auctions.
Benveniste, Wilhelm and Yu (1999) present empirical evidence on the determination of quantities
sold by issuing firms after bids have been placed.
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Duffie (1999) is implementable in our mechanism. In the competitive case, however,
the ex-ante efficiency of the allocation we characterize is greater than that of any
equilibrium of their trading game. More generally, the competitive screening model
we analyze allows to characterize the upper bound on the gains of trade that can be
achieved given the agents’ preferences and information.

While, as discussed above, adverse selection and market power induce inefficiencies,
the issuer designs the security to mitigate these imperfections and increase the gains
from trade. In line with the stylized fact that debt is the major source of outside
financing (see, e.g., Grindblatt and Titman (1998, page 5)), we find that the optimal
security is a debt contract. This result reflects two phenomena. First, as in Myers and
Majluf (1984) and DeMarzo and Duffie (1999), debt mitigates the adverse selection
problem, by making the payoff of the security less sensitive to the high cash-flow real-
izations. Second, and this is a distinctive contribution of our analysis, debt mitigates
the adverse consequences of market power on the gains from trade. To maximize prof-
its, the monopolistic liquidity supplier seeks to reduce the rents earned by the agents
with low cash flows, by making it costly for them to mimick the good types. When the
payoff of the security increases smoothly with the cash-flow from the project (as with
equity), this is achieved by excluding the best types from trade. This partial market
break-down is avoided with debt, as long as the face value is not too high. Indeed,
with debt contracts, the payoff of the security is the same for all issuers with future
cash-flows above the debt service. Hence the liquidity supplier must either include
them all, or exclude them all from the market. Since the latter would be quite costly,
as it would imply loosing a large fraction of the most profitable customers, he prefers
to design his schedule so that all issuers participate to the market. Hence, the optimal
design of the security enables to entirely avoid exclusion from the market. In contrast
with the signaling model of DeMarzo and Duffie (1999), all issuers types sell 100% of
their security holdings. Correspondingly, there is no informational content of trades:
the expectation of the value of the security given a sale is equal to its unconditional
value. This low information content of the sale of debt securities in our model is in
line with the results of several empirical studies (see, e.g., Dann and Mikkelson (1984),
Eckbo (1986), and Mikkelson and Partch (1986)).

One could argue that there are three limitations to our analysis. First, we assume
that the issuer initially designs one security, and is then restricted to that security.2

Second, for technical reasons, we require that both the security payoff and the residual
claim of the agent be increasing in the final cash-flow generated by the asset. This rules
out mechanisms which have been shown to be optimal in other security design analyses,
such as the “live-or-die” contract obtained by Innes (1990) in a moral hazard context.

2This is in line with DeMarzo and Duffie (1999), but differs from Nachman and Noe (1994), where
the security is designed by the agent after she has observed her private information, and thus conveys
a signal of the profitability of her assets.
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Third, while we analyse the competitive case as an information-constrained Pareto
optimum, one might wonder if it could emerge from an actual trading game, where
liquidity suppliers would post competing schedules. We show that our analysis is robust
to these three limitations. First, we analyze, in the competitive case, the situation
where, instead of one security, the issuer initially designs a menu of securities, among
which she will be able to choose at the trading stage. We find that the equilibrium
allocations arising in this more general setting are exactly the same as those arising
in our basic model. Furthermore, no monotonicity assumption is needed to obtain
the optimality of debt. We also study the case where several liquidity suppliers post
non-exclusive competing transfer schedules. We show that the trades arising in the
competitive case are a Nash equilibrium of this oligopolistic liquidity supply game.

The paper is organized as follows. The model is described in Section 2. In Section
3, we analyse the design of the trading mechanism. In Section 4, we turn to the
security design problem. Extensions of our analysis are presented in Section 5. Section
6 concludes.

2. The Basic Model

Our model is in line with DeMarzo and Duffie’s (1999). We extend their paper along
two dimensions. First, we consider arbitrary trading mechanisms. Second, we allow
for market power on the part of the liquidity supplier.

2.1. The Extensive-Form of the Game

Agents. There are two agents, an issuer and a liquidity supplier. The issuer owns
assets that generate future cash-flows X drawn from an absolutely continuous c.d.f.
G with positive density g over a compact interval X = [x, x] ⊂ R++. Both agents
are risk-neutral and the market interest rate is normalized to zero. The issuer has an
incentive to raise cash by selling part of her assets. The reason for this is that she is
more impatient than the liquidity supplier. We accordingly denote by δ ∈ (0, 1) the
issuer’s discount factor, while the liquidity supplier’s is normalized to one. The ex-ante
private value of the assets to the issuer is thus lower than the value they have for the
liquidity supplier. There are therefore gains from trade from transferring the assets
from the issuer to the liquidity supplier.

Security Design. In order to raise cash, the issuer designs a limited-liability security
backed by her assets. In general, the payoff of this security may depend on any ex-post
contractible information. For simplicity, we assume that the payoff F of this security
can only be made contingent on the realized cash-flow X, i.e., there exists a measurable
mapping ϕ : X → R+ such that F = ϕ(X). As Harris and Raviv (1989) or Nachman
and Noe (1994), we shall in a first step restrict the set of admissible securities by
imposing the following limited liability and monotonicity conditions:
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(LL) ϕ(x) ∈ [0, x] for all x ∈ X ;
(M) ϕ is non-decreasing on X ;
(MR) IdX − ϕ is non-decreasing on X ,
where IdX is the identity function on X . Conditions (M)-(MR) require that both the
payments to the liquidity supplier and to the issuer be non-decreasing in the realized
cash-flow. Together with (LL), they imply that the set Φ of admissible securities
payments is a subset of Lipschitz functions on X . We denote by F = [f, f ] the interval
of feasible payments associated to an admissible security F .

Timing and Information Structure. There are two periods, and five stages. The se-
quence of events in the first period is as follows:

(i) First, the agent designs the security F ;

(ii) Next, a trading mechanism T : [0, 1]→ R is designed for the sale of any fraction
q ∈ [0, 1] of the securitized asset;

(iii) The issuer privately learns the realization of the cash-flows X;

(iv) If the issuer accepts the trading mechanism T , she trades a volume q of the
security, for which she obtains a transfer T (q).

Finally, in the second period,

(v) The valueX of the cash-flows is publicly revealed and any remaining consumption
takes place.

We shall return in more detail to the question of who designs the trading mechanism
at stage (ii). Meanwhile, two features of this extensive form are worth emphasizing.
First, the issuer has perfect advance knowledge of the cash-flows at the interim stage
(iii). This differs from DeMarzo and Duffie (1999), who allow for noisy private signals.
Second, the issuer designs her security before she learns the realization of the cash-
flows. Therefore, unlike in Nachman and Noe (1994), the choice of a security cannot
be used by the issuer as a signal of the profitability of her assets. The assumption that,
at stage (i), the issuer designs a single security, rather than a menu of securities, will
be relaxed in Section 5.

This extensive form of the game is in line with the description of the issuance process
offered by Brealey and Myers (2000) and quoted in our introduction. Anticipating that
it will need funds in the future, the firm designs the security and goes through the shelf-
registration process. This corresponds to stage (i) in our game. Once the security is
shelf-registered, it can be issued some time later, for example one year later. This
corresponds to stage (iv) in our game.
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Our model is also consistent with the case where the security is first designed and
sold to an intermediary at stage (i), and then resold by the intermediary at stage (iv).
Consider for instance a manufacturing firm that will generate cash-flows in the future,
and currently needs cash. It initially sells to a financier a security with payoff contin-
gent on these cash-flows (this corresponds to stage (i) in our game). The financier can
be a bank providing a loan, a supplier providing trade credit, or a venture capitalist
purchasing convertible bonds. After this initial exchange, the financier naturally re-
ceives information about the project (this corresponds to stage (iii) in our game). The
financier may be itself subject to a liquidity shock, and thus led to demand liquidity
from the market.3 To obtain liquidity, it sells the security it holds in its portfolio (this
corresponds to stage (iv) in our game). The price at which it initially purchases the
security from the manufacturing firm reflects its rational expectations about future
market liquidity. The security is initially designed to maximize market liquidity, and
correspondingly the initial sale price.

2.2. Comparison with DeMarzo and Duffie (1999)

The first main difference between our model and the setting considered by DeMarzo
and Duffie (1999) is that we take an alternative approach to modeling the trading game.
They consider a signaling game, whereby the issuer, after observing her signal, chooses
the size of her trade, and the liquidity suppliers react to this quantity by quoting prices.
In contrast, we take a mechanism design approach. The trading mechanism is a menu
of pairs {q, T (q)}q∈[0,1], from which the informed agent selects her optimal trade. This
menu of trades, designed before the private signal is observed, can be interpreted as a
screening mechanism. If the transfer schedule T is concave, it amounts to a sequence
of limit orders, as in Biais, Martimort and Rochet (2000). The allocation arising in
the separating equilibrium considered by DeMarzo and Duffie (1999) is implementable
in the trading mechanism. It is not the optimal allocation, however, as established in
the next section. This is because the screening mechanism yields more commitment
power, as the liquidity supplier can commit to a menu of trades before the quantity q
is observed.4

The second difference is that, while in the context of the signaling model, competi-
tive liquidity supply is warranted, we allow for strategic liquidity supply. We consider

3In the case of a bank, the need for liquidity can be due to prudential rules (see Dewatripont
and Tirole (1994)). In the case of a trade creditor it can stem from a transient cash-flow gap, or an
investment opportunity, combined with credit rationing constraints. In the case of a venture capitalist
it can reflect an opportunity to invest in new projects combined with constraints on raising new funds.

4This commitment power makes it possible to engineer cross-subsidization between the issuer’s
types. Indeed, in the equilibrium of our screening model, the liquidity supplier will earn profits when
trading with issuers whose cash-flows are high, while he will make losses when trading with issuers
whose cash-flows are low. This cross-subsidization of the bad types by the good types also takes place
in the screening games analyzed by Glosten (1994) and Biais, Martimort and Rochet (2000).
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two polar cases. In the monopolistic case, the trading mechanism is designed at stage
(ii) by the liquidity supplier, to maximize his expected profit, under the incentive and
participation constraints of the informed agent. The latter constraint requires that the
informed agent accepts to participate in the trading mechanism at stage (iv). In the
alternative case, referred to as the competitive case, the trading mechanism is designed
at stage (ii) by the issuer to maximize her expected utility, subject to the participa-
tion constraint of the liquidity suppliers. By comparing the allocations arising in the
monopolistic case and in the competitive case, we shed some light on the consequences
of market power for market liquidity.

2.3. Incentive Compatibility Conditions

Given a security design F , and a transfer schedule T , the issuer selects what fraction q
of the security to sell to the liquidity supplier, conditional on her private information
about future cash-flows. At this interim stage, since the issuer has perfect advance
knowledge of the cash-flows, and since the security’s payoff is only contingent on these,
she also perfectly knows the realization f = ϕ(x) of F . Her utility is T (q) + δ(x− fq),
while the profit of the liquidity supplier is qf − T (q). Thus, the type of the issuer is
entirely summarized by f , and the set of possible types is F .
The Lemons Problem. An issuer with type f ∈ F finds it attractive to trade q rather
than not to trade at all and consume δx if and only if:

f ≤ T (q)
δq

.

This condition holds if the security payoff f is low enough, the unit price T (q)
q
of the

security is high enough, and δ is low enough so that the issuer is sufficiently impatient.
Overall, the willingness to trade reveals a relatively low type. This underscores the
nature of the adverse selection problem arising in our model, which is very much in
line with Akerlof’s (1970) lemons problem.

Implementable Mechanisms. Under adverse selection, the trading mechanism must be
incentive compatible and satisfy the issuer’s individual rationality constraint for all
realizations of f . There is no loss of generality in applying the revelation principle
(Myerson (1979)). I.e., any implementable allocation achieved via a transfer schedule
T can also be achieved via a truthful direct mechanism (τ, q) : F → R × [0, 1] that
stipulates a transfer and a trading volume as a function of the issuer’s report of her
type f ∈ F . Incentive compatibility requires that:

f ∈ argmax
f̂∈F

τ(f̂)− δfq(f̂); f ∈ F . (1)
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We denote by UF the corresponding informational rent:

UF (f) = sup
f̂∈F

τ(f̂)− δfq(f̂). (2)

UF is analogous to the informational rent of a regulated firm with privately observed
marginal cost δf , as in Baron and Myerson (1982). We take the dual approach and
characterize the set of pairs (UF , q) that correspond to an incentive compatible mech-
anism. This set is characterized in the following lemma.

Lemma 1 A pair (UF , q) is implementable if and only if:

(i) UF is convex on F ;
(ii) For almost every f ∈ F , U̇F (f) = −δq(f).
Lemma 1 simply reflects the fact that UF is the upper enveloppe of a family of affine
and decreasing functions of f . Convexity of UF together with U̇F = −δq implies the
following important property.

Lemma 2 In any implementable allocation, the volume of trade q is non-increasing
in the security payoff f , and consequently in the cash-flow x.

The intuition is in the line of Akerlof (1970). As discussed above, issuers with relatively
large future cash-flows are relatively less eager to trade at a given price than issuers
with lower future cash-flows. That issuers with low cash-flows are always ready to
trade depresses the price, which makes issuers with high cash-flows even less eager to
trade. In the limit this can lead to a market break-down, where the issuers with the
largest cash-flows obtain zero gains from trade. Lemmas 1 and 2, and their intuition
are similar to Proposition 1 in DeMarzo and Duffie (1999).

Ex-Post Rationality Constraints. In addition to the above incentive compatibility con-
straint, a feasible trade mechanism must also satisfy the issuer’s ex-post participation
constraint. Specifically, since the issuer has always the option not to trade, and since in
this case she cannot be compelled to pay anything to the liquidity supplier, the issuer’s
informational rent UF must always be non-negative:

UF (f) ≥ 0; f ∈ F . (3)

Since UF is non-increasing by Lemma 1, this simplifies to:

UF (f) ≥ 0. (4)
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2.4. The Expected Utilities of the Agents

Given a security F and a schedule T , the expected profit of the liquidity supplier is:Z
F
(fq(f)− T (q(f)) dGϕ(f) (5)

whereGϕ is the c.d.f. of the random variable F = ϕ(X). Similarly, the ex-ante expected
informational rent of the issuer is :Z

F
(T (q(f))− δfq(f)) dGϕ(f). (6)

Adding the expected profits of the liquidity supplier and the expected rent of the issuer,
we obtain the total gains from trade:

(1− δ)

Z
F
fq(f) dGϕ(f). (7)

Thus, the gains from trade are an increasing function of the difference between the
discount rate of the liquidity suppliers and that of the issuer, and of the amount of
cash-flows transferred from the second period to the first.

2.5. Ex-Ante Efficiency

As a benchmark, we first consider the case where a benevolent social planner chooses
a trading mechanism so as to maximize social welfare. Following Holmström and
Myerson (1983), efficiency is defined at an ex-ante stage, i.e., before the issuer learns
the value of the future cash-flows. Thus an ex-ante optimal mechanism solves:

sup
(T,q)

Z
F
(T (q(f))− δfq(f)) dGϕ(f)

subject to the liquidity supplier’s participation constraint:Z
F
(fq(f)− T (q(f)) dGϕ(f) ≥ π

for some π ≥ 0. Solving this program is immediate. The participation constraint of
the liquidity supplier is binding, and the optimal trading volume is q = 1. It follows
then from (7) that an equity contract maximizes the expected gains from trade.

3. Liquidity Supply

In this section, we analyze the optimal price-quantity schedule for a given security
design F . We consider the two polar cases of competitive and monopolistic liquidity
supply. In the competitive case, the schedule T is designed by the issuer, who ex-
tends a take-it-or-leave it offer to the liquidity supplier; the situation is reversed in the
monopolistic case.
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The Competitive Case. We first consider the case where the issuer has all the bargain-
ing power. Given a security F , the issuer’s problem is to design the transfer schedule T
to maximize her expected rent (6), subject to her incentive compatibility condition (1),
her ex-post individual rationality condition (3), and the participation constraint of the
liquidity supplier, that his expected profit be non-negative. Recall that the expected
rent of the issuer is equal to the expected total gains from trade minus the expected
profit of the liquidity supplier:Z

F
(1− δ)fq(f) dGϕ(f)−

Z
F
(fq(f)− T (q(f))) dGϕ(f).

To maximize her rent, the issuer designs the schedule so as to saturate the participation
constraint of the liquidity supplier and set his expected profit to zero. The liquidity
supplier’s zero-profit condition simplifies the program of the issuer to the choice of a
trading volume q which maximizes the overall expected gains from trade (7) under her
incentive compatibility condition, characterized in Lemma 1, and her ex-post partic-
ipation constraint (4). The only difference between this problem and the design of
the ex-ante efficient allocation is the ex-post participation constraint, since the ex-ante
efficient trading profile is incentive compatible.

The Monopolistic Case. Now turn to the case where the liquidity supplier has all
the bargaining power. The liquidity supplier’s task is to choose a transfer schedule
T in order to maximize his expected profit (5), subject to the incentive compatibility
condition (1) and the ex-post individual rationality condition (3). Recall that the
expected profit of the liquidity supplier is equal to the expected total gains from trade
minus the expected informational rent of the issuer:Z

F
(1− δ)fq(f) dGϕ(f)−

Z
F
(T (q(f))− δfq(f)) dGϕ(f).

The relevant constraints are again the incentive compatibility conditions, characterized
in Lemma 1, and the ex-post participation contraint (4). Since the informational rent is
non-increasing, the participation constraint of the issuer must be binding at the upper
end of the support F .
The Optimal Trading Mechanism. The menus (τ c, qc) and (τm, qm) offered respectively
by the issuer and by the liquidity supplier are characterized in the following proposition.

Proposition 1 There exist f cF ≥ fmF and τ c0 ≥ τm0 = 0 such that, for all f ∈ F , and
for i ∈ {c,m},
(i) τ i(f) = τ i0 + δf iF whenever f ≤ f iF and τ i(f) = τ i0 otherwise;

(ii) qi(f) = 1 whenever f ≤ f iF and qi(f) = 0 otherwise.
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Moreover, τ c0 = 0 whenever f
c
F < f .

In both the competitive and the monopolistic cases, issuers with cash-flows below a
the threshold f iF sell 100% of the security, while issuers above this threshold do not
trade at all. Correspondingly, issuers with small future cash-flows obtain large gains
from trade, while issuers with large future cash-flows can face a market break-down,
and obtain no gains from trade. This “bang-bang” solution differs markedly from
the signaling equilibrium analyzed by DeMarzo and Duffie (1999), where the trade
smoothly decreases with the issuer’s type. As in the monopoly pricing model of Riley
and Zeckhauser (1983), it arises because of the combined effect of the linearity of the
preferences and the screening nature of the trading game.

In order to saturate the liquidity supplier’s break-even constraint in the competi-
tive case, it can be necessary to allow for a lump-sum transfer τ c0 given to the issuer
independently of her trade. This can however only arise when no type of the issuer is
excluded from trade. Indeed, when some types are excluded from trade, it is preferable
to increase the price of the security, in order to make trading more attractive for the
good types and thus minimize the extent of the market break-down, rather than giving
a lump-sum transfer.

As the threshold value of the cash-flow above which the issuer exits the market is
greater in the competitive than in the monopolistic case, more gains from trade are
achieved in the former than in the latter. This bears some analogy with credit rationing
models such as Bolton and Scharfstein (1990), or market microstructure models such
as Biais, Martimort and Rochet (2000). The intuition is that the monopolistic liquidity
supplier trades off the benefits of a high volume of trade against the incentive costs of
inducing the issuer to reveal truthfully low realizations of the cash-flows. This rent-
efficiency trade-off is less acute when the issuer designs the trading mechanism, since
the rent extraction motive is not present.

Implementation. The optimal transfer schedule can be implemented with a limit order
to buy, or bid price, posted by the liquidity supplier, at which he stands ready to buy
up to one unit of the security.5 Saturating the participation constraint of the liquidity
supplier and, for simplicity, neglecting the lump-sum tax τ i0, we obtain the price at
which the competitive liquidity supplier purchases the security:Z fcF

f

f dGϕ(f)

Gϕ(f cF )
= E(F |F ≤ f cF ).

5In line with the analogy drawn in the market microstructure literature between limit orders and
options (Copeland and Galai (1983)), we can also interpret this arrangement as the option, for the
issuer, to sell her securities at a predetermined price.
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This is reminiscent of the result obtained by Glosten (1994) in a screening model with
competitive market makers, where the bid is equal to the lower tail expectation of the
final value of the security. In the competitive case, the threshold f cF above which issuers
opt out from trading, and the bid price are pinned down by combining this lower tail
expectation and the ex-post rationality condition of the issuer:

δf cF = E(F |F ≤ f cF ).
In line with basic price theory, the valuation of the marginal issuer for the security is
equated with the security’s price.

The difference between the bid price and the unconditional expectation of the value
of the security is similar to the bid-ask spread. The greater the probability mass
corresponding to low cash-flow realizations, the lower the bid price, the wider the
spread, and, consequently, the greater the mass of high cash-flows issuers who are
deterred from trading. This is similar to the result obtained in screening models of
market microstructure (Glosten (1989, 1994), Biais, Martimort and Rochet (2000))
that the small trade spread maps into the set of investors’ types who are excluded
from trade.

4. Security Design

In both the competitive and the monopolistic environments, the issuer’s problem is
to choose a security F , or equivalently a function ϕ ∈ Φ, in order to maximize her
expected rent, anticipating the equilibrium price at which she will be able to sell the
securities. For simplicity we assume hereafter that:

d

dx

µ
G(x)

g(x)

¶
≥ 1− δ

δ
; x ∈ X . (8)

This condition is slightly stronger than the standard assumption of log-concavity of
the density g. It ensures that one may neglect the constraint that UF be convex when
solving for the optimal transfer schedule. In other terms, it enables us to focus on
the first-order conditions of the mechanism design problem, while warranting that the
second-order conditions hold.

4.1. Debt and Equity

To build some intuition about the security design problem, we first compare liquidity
supply with debt and with equity.

Equity. If the issuer designs a pure equity contract, i.e., ϕ = IdX , the optimal schedules
(τ cE, q

c
E) and (τ

m
E , q

m
E ) are as stated in the next proposition.

Proposition 2 If the issuer designs an equity contract, then:
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(i) In the competitive case, f cE = min{x, f c} where f c is the largest f such that:

δf =

Z f

x

φ g(φ) dφ

G(f)
.

(ii) In the monopolistic case, fmE = min{x, fm}, where fm is the largest f such that:
1− δ

δ
f − G(f)

g(f)
≥ 0.

When f cE or f
m
E is equal to x, all issuer types achieve gains from trade. Otherwise,

issuers with high cash-flows are excluded from the market. To determine if issuers
with type f should be excluded from the market, the monopolistic liquidity supplier
compares the gains from trade (1−δ)fg(f) that can be achieved with these agents, with
the rent δG(f) they must be left. This rent increases with the cumulative distribution
of types up to f , since, as incentive compatible rents are decreasing with types, rents
left to type f must be left to all types below f .

Debt. If the issuer designs a debt contract with face value d, i.e., ϕ = min{IdX , d},
the optimal schedules (τ cD, q

c
D) and (τ

m
D , q

m
D ) are as stated in the next proposition.

6

Proposition 3 If the issuer designs a debt contract with face value d, then:

(i) In the competitive case, f cD = d if d ≤ dc and f cD = f cE otherwise, where dc is the
largest d such that: Z d

x

fg(f) df + (1−G(d))d = δd.

(ii) In the monopolistic case, fmD = d if d ≤ dm and fmD = fmE otherwise, where dm is
the largest d such that:Z d

x

fg(f) df + (1−G(d))d− δd =

Z fmE

x

(f − δfmE ) g(f) df.

6In DeMarzo and Duffie (1999), the interpretation of min{IdX , d} as a standard debt contract
requires the assumption that the unsold fraction of the security is not held on the balance sheet of
the issuer at the time of default. This does not arise in our model, since, when the issuer trades, the
security is entirely transferred to the liquidity supplier.
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The intuition is the following. In the competitive case, dc is the largest face value such
that the liquidity supplier’s participation constraint and the issuer ex-post rationality
condition are consistent. If the face value of the debt is too high, d > dc, market
equilibrium then requires that the highest types, with cash-flow between f cE and d, be
excluded from the market. This effectively converts the debt contract into an equity
contract, since for all the issuers who participate to the market, ϕ(x) = x. On the other
hand, if d ≤ dc then the participation constraint of the liquidity supplier is consistent
with the ex-post rationality condition of all issuer types. In that case, all issuers sell
their security, and thus reap gains from trade.

Now turn to the monopolistic case. When the issuer designs a debt contract with
face value d, the liquidity supplier has the option to shut-down the upper tail of the
payoff distribution by setting the price at which the issuer can sell his security to
fmD < δd. If d is larger than dm, the highest face value of debt such that the liquidity
supplier obtains the same expected profit than under an equity contract, it is indeed
optimal for the monopolistic liquidity supplier to do so. The shut-down threshold is
then optimally set at fmE . Just as the issuer in the competitive case, the liquidity
supplier is effectively converting a debt contract into an equity one. On the other
hand, if d ≤ dm, then all issuer types find it preferable to sell their security.
Debt Versus Equity. Since by assumption the support X of the cash-flow distribution is
bounded, equity is just a particular case of debt with a face value equal to x. Hence the
optimal debt contract always weakly dominates a pure equity contract from the issuer’s
viewpoint. It is nevertheless interesting to determine exactly in which circumstances
debt strictly dominates equity.

The same argument applies for both the competitive and monopolistic cases, i ∈
{c,m}. We defined di as the maximum face value such that a debt contract with face
value d ∈ [f iE, di] can always be entirely traded between the two agents. Note that
a debt contract with d = f iE is equivalent, from the issuer’s point of view, to a pure
equity contract. With the former, all issuers entirely sell the security, but the rent of
issuers with cash-flows above d is 0. With the latter, only issuers with cash-flows up
to f iE sell the security. Moreover, d

i > f iE whenever f
i
E < x. Since the ex-ante utility

of the issuer is clearly increasing in d, we have the following result.

Proposition 4 For any i ∈ {c,m}, if f iE < x, then the issuer is always strictly better
off designing an optimal debt contract with face value di than an equity contract.

Technically, designing a debt contract is equivalent for the issuer to creating an atom
at d in the distribution of types. Since the liquidity supplier is making gains on the
high types, he will not restrict the volume of trades provided that d is not high enough
to jeopardize the issuer’s incentives. The latter is thus able to get a better price δd for
her shares and thereby to increase her level of utility.
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4.2. Debt as the Optimal Security

To begin with, we establish some useful properties of an optimal design that hold
independently of the considered environment. The optimality of debt then requires a
separate argument in the competitive and the monopolistic case.

Preliminaries. First, note that risk-free cash-flows are not subject to adverse selection
problems. Hence, in the line of Myers and Majluf (1984), it is always optimal to sell
these, in order to maximize trade and thus the gains from trade. Consequently, it is
optimal to design the security to yield at least the worst possible realization of the
cash-flow. This yields the following lemma.

Lemma 3 If F is an optimal security, then ϕ(x) = x.

Our next proposition is key to our results. The argument generalizes the result obtained
when comparing debt and equity. Let i ∈ {c,m}, and consider a security F with payoff
ϕ such that issuers above a certain threshold f iF do not trade. What this proposition
asserts is that the issuer could strictly gain by offering instead an alternative security,
with payoff capped at a level slightly above the shut-down level f iF . That alternative
security Fε would have payoff ϕε = min{ϕ, f iF + ε}, and would be such that all issuers
would trade. Rationally anticipating the participation of all issuer types, including
the better ones, the liquidity supplier would be ready to pay a slightly better price,
δ(f iF + ε), than for F , as long as ε is not high enough to make the issuer’s incentives
prohibitively expensive. At that price, issuers with high cash-flows would be willing to
sell the security, given that its payoff is capped just above f iF . The increase in price
implies that the security Fε strictly dominates the original security F from the issuer’s
point of view. Given our assumptions on F , this implies that it is not optimal for the
issuer to design a security involving shut-down for good types. Thus, we can state the
following proposition.

Proposition 5 The optimality of security F requires that all issuer types entirely sell
their holdings to the liquidity supplier.

This result, which obtains in the context of the optimal trading mechanism charac-
terized in the previous section, underscores its difference with the signaling models of
Leland and Pyle (1977) and DeMarzo and Duffie (1999). In these models, an informed
agent can credibly signal the quality of a project only by retaining part of the cash-
flows generated by this project. For an arbitrarily chosen security, the analogue of this
phenomenon in our screening model is the possibility of market break-down. From
the issuer’s point of view, this way of signaling the quality of her assets is however
very costly. Hence she is better off designing her security to avoid market break-down
altogether. As a consequence, the market for an optimal security will be very liquid.
For instance, in the competitive case, the price at which such a security will be traded
will just be equal to the unconditional expectation

R
F f dG

ϕ(f) of the value of this
security, thereby eliminating the bid-ask spread.
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The Competitive Case. The program of the issuer is to maximize the total gains from
trade, subject to her own incentive compatibility and ex-post participation constraints
at the trading stage, and to the zero-profit constraint of the liquidity suppliers. The
analysis of Section 3 implies that these constraints simplify to a bang-bang trading
structure, whereby issuers with types above a certain threshold do not trade, while
those below entirely sell their security at a price equal to a lower tail expectation.
Proposition 5 simplifies the situation further by mandating to concentrate only on
securities such that there is no shut-down. Thus we can restate the issuer’s problem of
choosing an optimal security as an infinite-dimensional linear programming problem:

sup
ϕ∈Φ

(1− δ)

Z
X
ϕ(x) g(x) dx

subject to the no shut-down condition:Z
X
ϕ(x) g(x) dx ≥ δϕ(x).

This inequality can alternatively be seen as an ex-post participation constraint for
the issuer, requiring that the price

R
X ϕ(x) g(x) dx of the security be greater than its

present value for all issuer types, even for the issuer with the greatest possible cash-
flow, i.e., δϕ(x). Note that in formulating the issuer’s problem, we have already taken
into account the liquidity supplier’s break-even constraint, which must be saturated at
the optimum. The issuer’s security design problem can then be analyzed as follows.
Let us form the Lagrangian:

L(ϕ,λ) = (1− δ)

Z
X
ϕ(x) g(x) dx+ λ

µZ
X
ϕ(x) g(x) dx− δϕ(x)

¶
,

where λ is the Lagrange multiplier of the issuer’s ex-post participation constraint. By
(LL)—(M)—(MR), any ϕ ∈ Φ is absolutely continuous, the derivative ϕ̇ is a.e. well-
defined with 0 ≤ ϕ̇ ≤ 1, and ϕ(x) =

R x
x
ϕ̇(ξ) dξ for all x ∈ X . Hence, integrating by

parts, we get:

L(ϕ,λ) = − (1 + λ− δ)

Z
X
ϕ̇(x)G(x) dx+ (1− δ)(1 + λ)ϕ(x).

The maximization of L(ϕ,λ) with respect to ϕ can thus be treated as a standard
optimal control problem. We then have the following result.

Proposition 6 Suppose that (8) holds. Then the debt contract with face value dc is
an optimal security from the issuer’s point of view.
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The intuition is that a debt contract trades-off in an optimal way two conflicting
objectives. On the one hand, it is efficient to transfer as much cash-flows from the
second period to the first. On the other hand, the lemons problem limits the extent
to which this can be done. By imposing a cap on the security payoff, a debt contract
minimizes this adverse selection cost, in support of Myers and Majluf’s (1984) pecking-
order hypothesis.

The Monopolistic Case. In the monopolistic case, the issuer designs the security to
maximize her expected gain from trade, anticipating the optimal response of the mo-
nopolistic liquidity supplier, and her own reaction, reflected in her incentive compat-
ibility and ex-post participation constraints. The issuer anticipates that the liquidity
supplier will design his schedule to maximize his expected profit. She designs the op-
timal security to mitigate the adverse consequences of this rent extraction strategy on
the gains from trade. From the previous section, we know that the transfer schedule
optimally designed by the monopolistic liquidity supplier is a simple take-it-or-leave-
it offer to buy all the security at a given price. In designing this offer the liquidity
supplier trades-off the benefit from a large market, from which no issuer would be ex-
cluded, with the benefits of a smaller market, excluding issuers with high cash-flows,
but extracting more rents from the others. Proposition 5 implies that with the optimal
security there is no shut-down. Thus we can re-state the issuer’s problem of choosing
an optimal security as an infinite-dimensional linear programming problem:

sup
ϕ∈Φ

δ

Z
X
(ϕ(x)− ϕ(x)) g(x) dx,

subject to the no shut-down condition:Z
X
(ϕ(x)− δϕ(x)) g(x) dx ≥

Z x̃

x

(ϕ(x)− δϕ(x̃)) g(x) dx; x̃ ∈ X .

This can be interpreted by comparing the security design problem to a principal-agent
problem with moral hazard. The principal is the issuer, who designs the security, while
the agent is the liquidity supplier, and the moral-hazard variable is the decision by the
agent to shut-down the market or not. The issuer’s security design problem can then
be analyzed as follows. Let us form the Lagrangian:

L(ϕ,Λ) = δ

Z
X
(ϕ(x)− ϕ(x)) g(x) dx

+

Z
X

µZ
X
(ϕ(x)− δϕ(x)) g(x) dx−

Z x̃

x

(ϕ(x)− δϕ(x̃)) g(x) dx

¶
dΛ(x̃),

where Λ is the Lagrange multiplier associated to the no shut-down condition. It is a
distribution function on X , i.e., a non-decreasing, right-continuous function such that
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Λ(x) = 0. The following lemma provides a sufficient condition for ϕ ∈ Φ to be an
optimal security (see, e.g., Luenberger (1969, §8.4, Theorem 1)).

Lemma 4 Let ϕ ∈ Φ, and Λ be a distribution function on X such that:Z
X

µZ
X
(ϕ(x)− δϕ(x)) g(x) dx−

Z x̃

x

(ϕ(x)− δϕ(x̃)) g(x) dx

¶
dΛ(x̃) = 0

and:
L(ϕ,Λ) ≥ L(ϕ̃,Λ); ϕ̃ ∈ Φ.

Then ϕ is an optimal security in Φ.

To prove the optimality of debt, we proceed as follows. Suppose that (8) holds. Then,
by Proposition 3, the optimal debt contract from the issuer’s viewpoint has face value
dm. Given this contract, the only point at which the liquidity supplier’s shut-down
constraint is binding is at the level fmE . This suggests taking as a Lagrange multiplier
Λ a point-mass at fmE , i.e., a mapping of the form Λλ(x) = λχ{x≥fmE } for some λ > 0.
For this choice of Λ, the Lagrangian can be re-written as:

L(ϕ,Λλ) = (1− λ) δ

Z
X
(ϕ(x)− ϕ(x)) g(x) dx

+ λ

Ã
δ

Z fmE

x

(ϕ(fmE )− ϕ(x)) g(x) dx+ (1− δ)

Z x

fmE

ϕ(x) g(x) dx

!
.

Proceeding as in the competitive case, this expression can be further simplified to:

L(ϕ,Λλ) = (1− λ) δ

Z
X
ϕ̇(x)G(x) dx

+ λ

Ã
δ

Z fmE

x

ϕ̇(x)G(x) dx+ (1− δ)

Z x

fmE

ϕ(x) g(x) dx

!
.

It is clear from this expression that the second term on the right-hand side is maximized
by setting ϕ = IdX . The same is true for the first term if λ ≤ 1. Overall, a pure equity
contract maximizes the Lagrangian if λ ≤ 1. But then, the no shut-down condition
would not be binding, and Lemma 4 would not apply. This means that, in order to
derive the optimality of debt, we must select λ > 1. Intuitively, the shadow cost of the
no shut-down condition must be high enough for debt to be an optimal security.

Lemma 5 There exists λ > 1 such that ϕ = min{IdX , dm} maximizes L(ϕ,Λλ) with
respect to ϕ ∈ Φ.
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Since for the debt contract ϕ = min{IdX , dm},Z
X
(ϕ(x)− δϕ(x)) g(x) dx−

Z fmE

x

(ϕ(x)− δϕ(fmE )) g(x) dx = 0,

the following result is an immediate consequence of Lemmas 4 and 5.

Proposition 7 Suppose that (8) holds. Then the debt contract with face value dm is
an optimal security from the issuer’s point of view.

Just as in the competitive case, a debt contract is optimal from the issuer’s point of
view. The fact that the face value of debt is smaller than in the competitive case
reflects the liquidity supplier’s market power. It is interesting to note that, in both
cases, the optimal security is risky debt. That this optimal security is informationally
sensitive, stands in stark contrast with the results of DeMarzo and Duffie (1999). In
their model, if the issuer observes a perfectly informative signal about the realization
of the cash-flows, there exists an optimal security whose payoff does not depend on
her private information and is identically equal to the lowest possible realization of
the cash-flows, ϕ = x. This difference between this result of and ours reflect both the
difference between our screening trading mechanism and their signaling game, and, in
the monopolistic case, the fact that the liquidity supplier would be able to extract all
the rent if the security was not informationally sensitive.

5. Robustness

We now investigate the robustness of our results to some of the assumptions underlying
our basic model.

5.1. Menus of Securities

So far, we have assumed that the choice of a security is made ex-ante. We now relax
this assumption, by allowing the issuer to design ex-ante a menu of securities, from
which she will select which to trade at the interim stage.7 A menu of securities is then
a mapping (x, x̂) 7→ ψ(x, x̂) such that ψ(x, x̂) ∈ [0, x] for all (x, x̂) ∈ X 2. For example,
this includes the case where, if x̂ is in a certain set, then the security is a debt contract,
while if x̂ is in the complementary set, then the security is an equity contract. Note
that we do not impose any monotonicity condition on the menu of securities.

By the revelation principle, there is no loss of generality in focusing on truthful
direct mechanisms (τ, q) : X → R × [0, 1] that stipulate a transfer and a trading

7Similar results would obtain if the menu of securities was designed instead by the financiers
supplying liquidity to the issuer.

20



volume as a function of the issuer’s report of her type x ∈ X . Incentive compatibility
requires that:

x ∈ argmax
x̂∈X

τ(x̂)− δψ(x, x̂)q(x̂); x ∈ X . (9)

We now characterize the second-best efficient menu of securities ψ and the associated
trading structure (τ, q), that maximize the expected gains from trade. It is the solution
to the following infinite-dimensional linear programming problem:

sup
τ,q,ψ

(1− δ)

Z
X
ψ(x, x) q(x) g(x)dx

subject to the incentive compatibility condition (9), the individual rationality con-
straint of the issuer:

τ(x)− δψ(x, x)q(x) ≥ 0; x ∈ X ,
and the break-even constraint of the liquidity supplier:Z

X
ψ(x, x) q(x) g(x) dx ≥

Z
X
τ(x) g(x) dx.

There is no loss of generality in setting ψ(x, x̂) = x for x̂ 6= x, as the only impact of such
a change is to relax the issuer’s incentive compatibility constraint. The intuition is that
it is optimal to trade equity out of the equilibrium path, as this represents the maximal
possible punishment that can be inflicted to the issuer. A similar reasoning implies
that there is no loss in generality in setting q(x̂) = 1 for all x̂ ∈ X . Indeed, one can
redefine the security ψ so that ψ̃(x, x) = ψ(x, x)q(x) and the incentive compatibility
constraint is again relaxed by trading the maximal possible volume. It remains only
to determine ϕ(x) = ψ(x, x) for each x ∈ X , as well as the optimal transfer τ . Let
τ = supx∈X τ(x). The functions ϕ and τ solve:

sup
τ,ϕ

(1− δ)

Z
X
ϕ(x) g(x)dx

subject to the incentive compatibility constraint:

τ(x)− δϕ(x) ≥ τ − δx; x ∈ X , (10)

the individual rationality constraint of the issuer:

τ(x)− δϕ(x) ≥ 0; x ∈ X , (11)

and the break-even constraint of the liquidity supplier:Z
X
ϕ(x) g(x) dx ≥

Z
X
τ(x) g(x) dx. (12)
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It is clear from (10)-(11) that for each x ∈ X , one at least of these constraints must
be binding. It is immediate to check that, for each x ∈ X , the incentive compatibility
constraint (10) is binding if and only if x ≤ τ

δ
, and that the individual rationality

constraint (11) is binding if and only if x ≥ τ
δ
. Moreover the only value of x ∈ X where

both constraints are binding is τ
δ
.

We now prove that the optimal ϕ corresponds to the debt contract with face value
dc. The argument proceeds by showing that any pair (τ,ϕ) that solves the above
problem is dominated by a debt contract with face value τ

δ
and a constant transfer τ .

The argument is twofold. Suppose first that ϕ(x) < x for a set of values of x ≤ τ
δ
of

positive measure, and consider an alternative design ϕ̃ that coincides with ϕ for x ≥ τ
δ
,

and that satisfies ϕ̃(x) = x for x ≤ τ
δ
. Modify correspondingly τ for x ≤ τ

δ
by setting

τ̃ = τ on this interval of values of x. If feasible, this new design clearly dominates ϕ.
It is immediate that constraints (10)-(11) are preserved. Consider now (12). Since it
is satisfied under the initial contract,Z

X
ϕ(x) g(x) dx ≥

Z
X
τ(x) g(x) dx

=

Z τ
δ

x

(τ − δx+ δϕ(x)) g(x) dx+

Z x

τ
δ

τ(x) dx,

where the equality follows from the fact that (10) is binding for x ≤ τ
δ
. So, in particular,

as x ≥ ϕ(x), we obtain that:Z
X
ϕ̃(x) g(x) dx =

Z τ
δ

x

x g(x) dx+

Z x

τ
δ

ϕ(x) g(x) dx

≥ (1− δ)

Z τ
δ

x

ϕ(x) g(x) dx+ δ

Z τ
δ

x

x g(x) dx+

Z x

τ
δ

ϕ(x) g(x) dx

≥ τ G

µ
τ

δ

¶
+

Z x

τ
δ

τ(x) g(x) dx

=

Z
X
τ̃(x) g(x) dx,

which implies that (12) holds under the new contract. Hence an optimal contract must
have ϕ(x) = x for all x ≤ τ

δ
. Consider now the values of x ≥ τ

δ
. We know that the

individual rationality constraint (11) is binding for such x. Therefore one must have
ϕ(x) ≤ τ

δ
by definition of τ . Suppose that ϕ(x) < τ

δ
for a set of values of x ≥ τ

δ

of positive measure. Consider an alternative design that coincides with ϕ for x ≤ τ
δ

and that satisfies ϕ̃(x) = τ
δ
otherwise. Modify correspondingly τ for x ≥ τ

δ
by setting
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τ̃ = τ on this interval of values of x. If feasible, this new design clearly dominates ϕ.
It is immediate that constraints (10)-(11) are preserved. Consider now (12). Since it
is satisfied under the initial contract, and since τ(x) = τ for all x ≤ τ

δ
,Z

X
ϕ(x) g(x) dx ≥

Z
X
τ(x) g(x) dx

= τ G

µ
τ

δ

¶
+ δ

Z x

τ
δ

ϕ(x) g(x) dx,

where the equality follows from the fact that (11) is binding for x ≥ τ
δ
. So, in particular,

as τ
δ
≥ ϕ(x) and ϕ(x) = x for x ≤ τ

δ
, we obtain that:Z

X
ϕ̃(x) g(x) dx =

Z τ
δ

x

x g(x) dx+

µ
1−G

µ
τ

δ

¶¶
τ

δ

≥
Z τ

δ

x

x g(x) dx+ (1− δ)

Z x

τ
δ

ϕ(x) g(x) dx+

µ
1−G

µ
τ

δ

¶¶
τ

≥ τ G

µ
τ

δ

¶
+

µ
1−G

µ
τ

δ

¶¶
τ

= τ ,

which implies that (12) holds under the new contract. Combining this with the earlier
result, we obtain that ϕ is a debt contract with face value τ

δ
. At an optimum, we must

have τ
δ
= dc by Proposition 6. Thus we can state the following proposition:

Proposition 8 If the issuer can design a menu of securities from which she selects
which security to trade at the interim stage, and the liquidity supplier is competitive,
the equilibrium allocations and the traded security are the same as in the basic model.

Furthermore, this shows that the monotonicity constraints (M)-(MR) are imposed with-
out loss of generality in the basic model. In particular, “live-or-die” contracts in the
spirit of Innes (1990) are never optimal.

5.2. Oligopolistic Screening

So far, we have focused on the case where the issuer designs the trading mechanism,
or where there is a single liquidity supplier who acts as a monopolist. We now turn
to the case where I > 1 liquidity suppliers offer simultaneously non-exclusive price-
quantity schedules {Ti}i∈I for the issuer’s securities. Consistently with previous models
of multiprincipal mechanism design (see, e.g., Stole (1990), Martimort (1992), or Biais,
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Martimort and Rochet (2000)), this can be seen as a situation of competition between
trading mechanisms in which each principal cannot contract on the quantitities that
are sold to his competitors. This corresponds to many situations observed in practice
in financial markets where individual trades cannot be made contingent on the quotes
or trades made by others.

The Trading Game. The timing is similar to that of the monopolistic trading game
described in Section 2. Formally, steps (ii) and (iv) are replaced by:

(ii’) The I liquidity suppliers simultaneously post trading mechanisms Ti : [0, 1]→ R,
i ∈ I, for the sale of any fraction qi ∈ [0, 1] of the securitized asset;

(iv’) If the issuer accepts the trading mechanisms {Tj}j∈J , J ⊂ I, she trades volumes
{qj}j∈J of the security,

P
j∈J qj ≤ 1, for which she obtains transfers {Tj(qj)}j∈J .

For a given security F , we focus on perfect Bayesian equilibria of this screening game.
In these equilibria, liquidity suppliers post transfer schedules that are best response to
the strategies of the other liquidity suppliers, given the behavior of the issuer in the
subsequent stages of the game.

A Decentralization Result. Instead of characterizing the outcome of the non-exclusive
trading game for an arbitrary security, we directly focus on the case where the issuer
designs a security F that involves no shut-down in the competitive case, and trade at a
price δf .8 An example of this situation is whenever the issuer designs the debt contract
that is optimal in the competitive case, i.e., ϕ = min{IdX , dc}. No attempt is made
to give a full characterization of the perfect Bayesian equilibria of the induced trading
game. Rather, for this particular security, our aim is to construct an equilibrium
that implements the same allocation and transfers than in the competitive case, i.e.,P

i∈I qi = 1 and
P

i∈I Ti = δf . To do so, let us introduce the following candidate
equilibrium strategies:

Ti(qi) = δfqi; qi ∈ [0, 1] (13)

for each i ∈ I. That is, each liquidity supplier offers the issuer to buy an arbitrary
volume of her securities at the competitive price δf . To check that these strategies form
an equilibrium, suppose that all liquidity suppliers i ∈ {2, . . . , I} offer this schedule,
while the first liquidity supplier offers an alternative schedule T̃1. Now consider an
issuer with type f ∈ F . Then, whatever the volume q1 of her securities that she sells
to the first liquidity supplier, she will sell the remaining fraction 1 − q1 to the other
liquidity suppliers, since the price δf at which she can sell to them is higher than her
retention cost δf . Hence, her problem can be written as:

UF (f) = sup
q1∈[0,1]

T̃1(q1) + δf(1− q1)− δf. (14)

8For simplicity, we neglect the case where a constant transfer τ c0 is needed to implement the
competitive allocation.
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The remarkable fact about (14) is that the set of its solutions does not depend on f .
This follows from the fact that all types of the issuer stands ready to sell their securities
at the competitive price. Therefore we can assume that, out of the equilibrium path,
the deviating liquidity supplier will face the same issuer distribution than the non-
deviating ones, and that all types of the issuer sell the same volume of securities q1 to
him. If this is so, then the only way that the deviating liquidity supplier can attract
the issuer is by offering a transfer T̃1(q1) ≥ δfq1, thereby obtaining a profit:ÃZ

F
f dGϕ(f)− T̃1(q1)

q1

!
q1,

which is less or equal than what he would get by offering the competitive schedule, i.e.,
zero. It follows that the candidate strategies form an equilibrium. In this equilibrium,
the issuer is able to sell all of her securities to the liquidity suppliers. Hence, we have
proved the following decentralization result.

Proposition 9 If the issuer designs a security that involves no shut-down in the com-
petitive case, there exists a perfect Bayesian equilibrium of the non-exclusive trading
game that implements the competitive allocation.

The basic logic of this result is that of Bertrand competition: competition among
liquidity suppliers allows to implement a constrained efficient allocation. We stress
that the non-exclusivity clause plays a crucial role in the above argument, in that it
ensures that no cream-skimming deviation is possible from the competitive schedule:
any deviation that would attract some type of the issuer would also attract the other
types. As a result, the transfer schedule (13) is entry-proof in the sense of Rothschild
and Stiglitz (1976): no liquidity supplier can deviate by offering an alternative schedule
without losing money. It should be noted that, in contrast with other models of
competition in trading mechanisms such as Biais, Martimort and Rochet (2000), this
result does not require a large number of liquidity suppliers. This intuitively follows
from the fact that, because of the linearity of preferences, the optimal mechanism can
be implemented through a fixed price schedule.

Exclusive Dealing. It is interesting to contrast the above decentralization result with
what happens if the issuer can deal with only one liquidity supplier at a time, so that
competition occurs only at the mechanism offering stage. Let us suppose that the
issuer designs the optimal competitive debt contract with face value dc, and, by way
of contradiction, that there is an equilibrium of the trading game that implements the
competitive allocation. Then in this candidate equilibrium, the issuer should sell 100%
of her securities to one of the liquidity suppliers for a price δdc, and each liquidity
supplier must receive zero profit. Now suppose that one of the liquidity suppliers
deviates by offering to buy a volume q < 1 of the securities against a transfer Tε =
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δdcq + ε, for some small ε > 0. This offer will only attract the types:

f > dc − ε

δ(1− q)
of the issuer, thus securing a profit:Z dc

dc− ε
δ(1−q)

((f − δdc)q − ε) g(f) df + ((1− δ)dcq − ε)(1−G(dc)),

which is strictly positive for ε small enough. Thus, we have the following result.

Proposition 10 If the issuer designs a debt contract with face value dc, there exists
no perfect Bayesian equilibrium of the exclusive trading game that implements the
competitive allocation.

Thus perfect pooling does not survive the possibility of offering exclusive contracts.
As the above argument makes clear, the difference with the non-exclusive case is that,
when other liquidity suppliers behave competitively, it is always possible to offer a
cream-skimming deviation that will attract only the good types of the issuer. This
type of deviation offers those types the opportunity to signal their high cash-flows by
voluntarily restricting their volume of trade and thus bearing some positive retention
cost, as in Leland and Pyle (1977) or DeMarzo and Duffie (1999).

6. Conclusion

This paper analyzes the links between the characteristics of securities and their liq-
uidity. Our theoretical analysis extends the insightful recent paper by DeMarzo and
Duffie (1999). A distinctive feature of our analysis is that we take a mechanism design
approach to characterize both the optimal security and the optimal trading mechanism.
This allows us to compare competitive and monopolistic liquidity supply in a unified
framework.

In line with Myers and Majluf (1984), we find that the optimal security is debt.
In the case where liquidity suppliers are competitive, the intuition is that debt is the
less information sensitive security, and thus minimizes the consequences of adverse se-
lection. Moreover, in the monopolistic case, debt optimally mitigates with the adverse
consequences of market power on the gains from trade. In contrast with the signaling
equilibrium analyzed by DeMarzo and Duffie (1999), the optimal debt contract is per-
fectly liquid: all issuer types sell 100% of their holdings of this security. Consequently,
debt issuance does not convey a negative signal to the market, and, correspondingly,
has no price impact. This is in line with the results of several empirical studies (see,
e.g., Dann and Mikkelson (1984), Eckbo (1986), and Mikkelson and Partch (1986)).
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Our main results are robust to relaxing two assumptions of our basic model, which
were also made in the earlier literature on security design under adverse selection
(Nachman and Noe (1994) or DeMarzo and Duffie (1999)). In the competitive case,
the optimal security and trades are unchanged if one allows the issuer to design a menu
of securities, instead of a single security. Furthermore, no monotonicity assumptions
need to be imposed. This points at the qualitative difference between our analysis of
the optimality of debt, which does not rely upon monotonicity restrictions, and the
moral hazard setting of Innes (1990) whereby, without these restrictions, the optimal
contract allocates all the cash-flows to the outside financier up to a given threshold,
and all the cash-flows to the inside manager above that threshold.

Finally, the constrained efficient allocation reached in the competitive liquidity
supply case, where the issuer designs the trading mechanism, can be decentralized
by allowing multiple liquidity suppliers to offer non-exclusive transfer schedules, as in
financial markets where liquidity suppliers compete in limit orders to buy, or bid prices.
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Appendix

Proof of Lemma 1. Part (i) follows from the fact that UF is the maximum of a family of affine functions,

as is easily seen from (2). As a convex function, UF is a.e. differentiable (see, e.g., Rockafellar (1970,

Theorem 25.5)). Part (ii) then immediately follows from the envelope theorem. ¥

Proof of Proposition 1. Fix a security F . Using the incentive constraint for types f, f̃ ∈ F of the

issuer, it is easy to check that:

−δ(f̃ − f)q(f) ≤ UF (f̃)− UF (f) ≤ −δ(f̃ − f)q(f̃); (f, f̃) ∈ F2.

Since q is bounded, this implies that UF is Lipschitzian, hence absolutely continuous on F . As

U̇ = −δq a.e. on F , this implies that for all f ∈ F , UF (f) = δ
R f
f
q(φ) dφ+UF (f). In the competitive

case, we may substitute this in the binding participation constraint of the liquidity supplier:

UF (f) =

Z
F

Ã
(1− δ)fq(f)− δ

Z f

f

q(φ) dφ

!
dGϕ(f).

Using the fact that Gϕ is a right-continuous function of bounded variation, we may integrate by parts

(see, e.g., Dellacherie and Meyer (1982, Theorem VI.90)) to obtain:Z
F

Z f

f

q(φ) dφ dGϕ(f) =

Z
F
Gϕ(f−)q(f) df,

where f 7→ Gϕ(f−) is the left-continuous regularization of Gϕ, which satisfies Gϕ(x−) = 0 by conven-
tion. Hence the issuer’s problem is to maximize:

(1− δ)

Z
F
fq(f) dGϕ(f)

with respect to q non-increasing and taking its values in [0, 1], and subject to:

(1− δ)

Z
F
fq(f) dGϕ(f)− δ

Z
F
Gϕ(f−)q(f) df ≥ 0.

The Lagrangian for this problem is:

(1 + λ)(1− δ)

Z
F
fq(f) dGϕ(f)− λδ

Z
F
Gϕ(f−)q(f) df =

Z
F
q(f) dHλ(f),

where, for any λ ≥ 0, Hλ : f 7→ (1 + λ)(1 − δ)
R f
f
φ dGϕ(φ) − λδ

R f
f
Gϕ(φ−) dφ is a right-continuous

function of bounded variation. It is immediate to see that an optimal q must be left-continuous.

Hence, we may integrate by parts to obtain:Z
F
q(f) dHλ(f) =

Z
F
(Hλ(f)−Hλ(f)) d(1− q)(f+),

where f 7→ q(f+) is the right-continuous regularization of q. For any fixed λ ≥ 0, the maximum of

the Lagrangian is obtained by putting all the weight of the measure with distribution f 7→ 1− q(f+)
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on the maxima of the function Hλ. Such a maximum exists because Hλ is by construction upper

semicontinuous. To determine the optimal schedule, let us introduce:

fcF = max

(
f ∈ F | (1− δ)

Z f

f

φ dGϕ(φ)− δ

Z f

f

Gϕ(φ−) dφ ≥ 0
)
.

That the max is attained follows from the fact that f 7→ (1−δ) R f
f
φ dGϕ(φ)−δ R f

f
Gϕ(φ−) dφ is upper

semicontinuous. It is immediate to verify that fcF is the solution to the problem of maximizing:

(1− δ)

Z f

f

φ dGϕ(φ)

subject to:

(1− δ)

Z f

f

φ dGϕ(φ)− δ

Z f

f

Gϕ(φ−) dφ ≥ 0.

The Lagrangian for this problem is precisely Hλ. Hence there exists λ such that f
c
F is the maximum

of Hλ. Since χ[f,fcF ] satisfies the constraint of the original problem, this implies that the optimal

quantity schedule qc has the required bang-bang property, and the optimal shut-down level is fcF . In

the monopolistic case, we have UF (f) = 0, and the liquidity supplier’s objective becomes:Z
F

Ã
(1− δ)fq(f)− δ

Z f

f

q(φ) dφ

!
dGϕ(f).

Along the same lines as above, we find that the liquidity supplier’s problem is to maximize:Z
F
(1− δ)fq(f) dGϕ(f)− δ

Z
F
Gϕ(f−)q(f) df

with respect to q non-increasing and taking its values in [0, 1]. The result follows immediately from

the linearity of this objective with respect to q and the constraint that q be non-increasing. That

fcF ≥ fmF follows from a direct comparison of the isssuer’s and the liquidity supplier’s objectives.

Finally, suppose that τ c0 > 0 while f
c
F < f . Then the liquidity supplier’s break-even constraint yields:

τ c0 =

Z fcF

f

(f − δfcF ) dG
ϕ(f),

while the issuer’s expected rent is given by:

(1− δ)

Z fcF

f

f dGϕ(f).

It is then clear that the issuer could strictly gain by decreasing slightly the lump-sum tax τ c0 and

increasing the threshold fcF while still preserving the break-even constraint, a contradiction. ¥

Proof of Proposition 2. Consider first the competitive case. We can assume w.l.o.g. that f cF < x. In

that case, we have τ c0 = 0 and the price at which equity is traded is δfcF . The result then follows
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from saturating the liquidity supplier’s break-even constraint. Consider next the monopolistic case.

Ignoring first the convexity constraint on UE, and proceeding as in the proof of Proposition 1, the

liquidity supplier’s objective can be expressed, after an integration by parts, as:Z
F

Ã
(1− δ)fq(f)− δ

Z x

f

q(φ) dφ

!
g(f) df =

Z
F

µ
(1− δ)f − δ

G(f)

g(f)

¶
q(f) g(f) df.

Pointwise maximization with respect to q implies that q = 1 on the set of f ∈ X such that 1−δδ f ≥ G(f)
g(f)

and q = 0 elsewhere. Condition (8) ensures that this set is an interval. Hence the associated rent

UE(f) = δ(fmE − f)χ{f≤fmE } is convex in f , which implies the result. ¥

Proof of Proposition 3. Consider first the competitive case. Suppose w.l.o.g. that fcE < x, so that an

equity contract would imply some shut-down on the part of issuer. If d < fcE, then the issuer does not

want to shut-down any type f ∈ [x, d], for otherwise she would like to lower the shut-down threshold
from fcE when she offers equity. Suppose now that d = fcE. By the above reasoning, if the issuer

shut-downs some types below fcE, she obtains at most:

(1− δ)

Z fcE

f

fg(f) df.

This is clearly less than what she obtains if she does not shut-down any type and saturate the liquidity

supplier’s break-even constraint, i.e.,

(1− δ)

ÃZ fcE

f

fg(f) df + (1−G(fcE))fcE
!
.

By continuity, it is clear that for any d ∈ [fcE, dc] , the issuer will not shut-down any type when
the traded contract is a standard debt contract with face value d, while still preserving the liquidity

supplier’s break-even constraint. Consider next the monopolistic case. Suppose w.l.o.g. that fmE < x,

so that an equity contract would imply some shut-down on the part of the liquidity supplier. If

d < fmE , then the liquidity supplier does not want to shut-down any type f ∈ [x, d], for otherwise
he would like to lower the shut-down threshold from fmE when the issuer offers an equity contract.

Suppose now that d = fmE . By the above reasoning, if the liquidity supplier shut-downs some types

below fmE , he obtains at most: Z fmE

x

fg(f) df − δfmE G(f
m
E )

since (8) holds. If fmE < x so that G(fmE ) < 1, then, since δ < 1, this is clearly less than what he

obtains if he does not shut-down any type, i.e.,Z fmE

x

fg(f) df + fmE (1−G(fmE ))− δfmE .

By continuity, it is clear that for any d ∈ [fmE , dm], the liquidity supplier will not shut-down any type
of the issuer when the traded contract is a standard debt contract with face value d. ¥
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Proof of Lemma 3. In the competitive case, this follows at once from the fact that the issuer maximizes

the gains from trade. In the monopolistic case, let us suppose that F is an optimal design such that

ϕ(x) < x. Then, given (MR), there exists ε > 0 such that ϕ(x) < x − ε for all x ∈ X . Consider
the design Fε defined by ϕε = ϕ+ ε. By Proposition 1, given this new design, the liquidity supplier

chooses a shut-down threshold f̃ so as to maximize his expected profit:Z f̃

f+ε

(f − δf̃) dGϕε(f) =

Z f̃−ε

f

(f − δ(f̃ − ε)) dGϕ(f) + (1− δ) εGϕ(f̃ − ε).

The first term on the right-hand side of this equation is maximized by setting f̃ = fmF + ε, where fmF
is the liquidity supplier’s optimal shut-down threshold for security F . Since the second term is non-

decreasing in f̃ , this implies that the optimal shut-down threshold fmFε for the new design is greater

or equal than fmF + ε. It is then easy to check that the issuer’s expected rent under the design Fε is

at least as large as under F . ¥

Proof of Proposition 5. Consider first the competitive case. Suppose that F is a security sold at a price

δfcF for which f
c
E < f . To show that this cannot be optimal, we show that there exists an alternative

security and transfer which Pareto dominates F . Consider the design F defined by ϕ = min{ϕ, fcF }
with price δfcF + ε for some ε > 0. By construction, issuers with ϕ(x) < fcF are still willing to trade.

Issuers with ϕ(x) = fcF are ready to trade since by doing so their informational rent is ε instead of

zero. Consider now the liquidity suppliers. Their expected profit under F is:Z fcF

f

(f − δfcF ) dG
ϕ(f),

while their expected profit under F is:Z fcF

f

(f − δfcF ) dG
ϕ(f) + (1− δ)(1−Gϕ(fcF ))− ε.

Since Gϕ(fcF ) < 1, they are strictly better off under the new design for ε small enough. Consider next

the monopolistic case. Suppose by way of contradiction that F is an optimal security such that the

liquidity supplier shut-downs the types above fmF < f , thereby obtaining a profit:Z fmF

f

(f − δfmF ) dG
ϕ(f).

Consider the design Fε defined by ϕε = min{ϕ, fF + ε} for ε > 0. Since fmF < f , ϕ is continuous,

and the density g is positive on X , one can choose ε such that Gϕ(fmF + ε−) < 1. If the liquidity

supplier decides to shut-down some types below fmF + ε given this new design, the optimal way to do

so is to set fmFε = f
m
F , for a profit equal to that which obtains under F . However, if he decides not to

shut-down any type, the liquidity supplier obtains:Z fmF +ε

f

(f − δ(fmF + ε)) dGϕε(f),
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which can be rewritten as:Z fmF

f

(f − δ(fmF + ε)) dGϕ(f) +

Z fmF +ε
−

fmF

(f − δ(fmF + ε)) dGϕ(f) + (1− δ)(fmF + ε)(1−Gϕ(fmF + ε−)).

The first term converges to
R fmF
f
(f − δfmF ) dG

ϕ(f) as ε goes to 0. Moreover, for ε small enough, the

second term in this expression is positive. Since the last term is positive and bounded away from zero

for ε small enough, the liquidity supplier obtains strictly more by not shutting down any type. It is

then immediate to check that the issuer’s expected rent under the design Fε,

δ

Z fmF +ε

f

(fmF + ε− f) dGϕε(f) = δ

Z fmF +ε
−

f

(fmF + ε− f) dGϕ(f),

is strictly larger than under F . Hence F cannot be an optimal security, which implies the result. ¥

Proof of Proposition 6. For any fixed λ > 0, we study the problem of maximizing L(ϕ,λ) with respect

to ϕ ∈ Φ. We treat this as an optimal control problem with state variable ϕ and control variable ϕ̇,

with the additional restriction that 0 ≤ ϕ̇ ≤ 1. The Hamiltonian can be written as:
H(x,ϕ(x), p(x), v) = −(1 + λ− δ)vG(x) + p(x)v

where v is the control variable and p the co-state variable. By Pontryagin’s maximum principle, a

necessary condition for (ϕ, v) to be optimal is that v maximizes pointwise the Hamiltonian for some

p that satisfies the Hamilton-Jacobi equation:

ṗ(x) = −∂H
∂ϕ
(x,ϕ(x), p(x), v(x)) = 0

at all points of continuity of v. Since the boundary x is free, the transversality condition yields

p(x) = (1− δ)(1+λ) so that p is constant and equal to (1− δ)(1+λ). Substituting this back into the

Hamiltonian, we find that an optimal control is:

v(x) = χ{−(1+λ−δ)G(x)+(1−δ)(1+λ)≥0}.

Since the Hamiltonian is linear in (ϕ, v), Mangasarian’s sufficiency conditions are satisfied, so v is

indeed optimal. Note that since the mapping x 7→ −(1+λ− δ)G(x)+ (1− δ)(1+λ) is decreasing, the

corresponding ϕ is a debt contract with face value d satisfying −(1+ λ− δ)G(d) + (1− δ)(1+ λ) = 0.

Thus provided that G(dc) > 1− δ, ϕ = min{IdX , dc} maximizes L(ϕ,λ) whenever:

λ =
(1− δ) (1−G(dc))
G(dc)− (1− δ)

.

It is easy to check that the optimal debt contract from the liquidity supplier’s point of view satisfies

G(d) = 1−δ. Hence G(dc) > 1−δ as required. Since for this contract we have RX ϕ(x) g(x) dx = δϕ(x),

the conclusion follows directly from Luenberger (1969, §8.3, Theorem 1). ¥

Proof of Lemma 4. Suppose by way of contradiction that ϕ̃ guarantees the issuer a higher payoff than

ϕ, i.e.,

δ

Z
X
(ϕ̃(x)− ϕ̃(x)) g(x) dx > δ

Z
X
(ϕ(x)− ϕ(x)) g(x) dx,
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while satisfying the no shut-down condition:Z
X
(ϕ̃(x)− δϕ̃(x)) g(x) dx ≥

Z x̃

x

(ϕ̃(x)− δϕ̃(x̃)) g(x) dx; x̃ ∈ X .

The no shut-down condition on ϕ̃, together with the fact that Λ defines a positive measure on X ,
implies: Z

X

ÃZ
X
(ϕ̃(x)− δϕ̃(x)) g(x) dx−

Z x̃

x

(ϕ̃(x)− δϕ̃(x̃)) g(x) dx

!
dΛ(x̃) ≥ 0.

But then, since:Z
X

ÃZ
X
(ϕ(x)− δϕ(x)) g(x) dx−

Z x̃

x

(ϕ(x)− δϕ(x̃)) g(x) dx

!
dΛ(x̃) = 0,

we would get that L(ϕ̃,Λ) > L(ϕ,Λ), a contradiction. ¥

Proof of Lemma 5. For any fixed λ > 1, we study the problem of maximizing L(ϕ,Λλ) with respect

to ϕ ∈ Φ. Re-arranging the expression of L(ϕ,Λλ), we obtain:

L(ϕ,Λλ) = δ

Z fmE

x

ϕ̇(x)G(x) dx+

Z x

fmE

((1− λ)δϕ̇(x)G(x) + λ(1− δ)ϕ(x)g(x)) dx.

Since λ > 0, it is clear that it is optimal to set ϕ(x) = x on [x, fmE ]. We are thus left with the problem

of maximizing: Z x

fmE

((1− λ)δϕ̇(x)G(x) + λ(1− δ)ϕ(x)g(x)) dx

with respect to functions ϕ on [fmE , x] satisfying (LL)—(M)—(MR). We treat this as an optimal control

problem with state variable ϕ and control variable ϕ̇, with the additional restriction that 0 ≤ ϕ̇ ≤ 1.
The Hamiltonian can be written as:

H(x,ϕ(x), p(x), v) = (1− λ)δvG(x) + λ(1− δ)ϕ(x)g(x) + p(x)v

where v is the control variable and p the co-state variable. By Pontryagin’s maximum principle, a

necessary condition for (ϕ, v) to be optimal is that v maximizes pointwise the Hamiltonian for some

p that satisfy the Hamilton-Jacobi equation:

ṗ(x) = −∂H
∂ϕ

(x,ϕ(x), p(x), v(x)) = −λ(1− δ)g(x)

at all points of continuity of v. Since the boundary x is free, the transversality condition yields

p(x) = 0, so that p = λ(1 − δ)(1 − G). Substituting this back into the Hamiltonian, we find that a
candidate optimal control is:

v(x) = χ{(δ−λ)G(x)+λ(1−δ)≥0}.

Since the Hamiltonian is linear in (ϕ, v), Mangasarian’s sufficiency conditions are satisfied, so v is

indeed optimal. Note that since the mapping x 7→ (δ − λ)G(x) + λ(1− δ) is decreasing as λ > 1 > δ,
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the corresponding ϕ is to a debt contract with face value d satisfying (δ − λ)G(d) + λ(1 − δ) = 0.

Thus, provided that G(dm) > 1− δ, ϕ = min{IdX , dm} maximizes L(ϕ,Λλ) whenever:

λ =
δG(dm)

G(dm)− (1− δ)
.

It is easy to check that the optimal debt contract from the liquidity supplier’s point of view satisfies

G(d) = 1− δ. Hence G(dm) > 1− δ, which concludes the proof as λ > 1 whenever dm < x. ¥
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et de Statistiques, 28, 1-38.

Mikkelson, W., and M. Partch (1986): “Valuation effects of security offerings and
the issuance process,” Journal of Financial Economics, 15, 31—60.

36



Myers, S., and N. Majluf (1984): “Corporate Financing and Investment Decisions
when Firms Have Information Investors Do not Have,” Journal of Financial
Economics, 13, 187-221.

Myerson, R. (1979): “Incentive Compatibility and the Bargaining Problem,” Econo-
metrica, 47, 61-73.

Nachman, D.C., and T.H. Noe (1994): “Optimal Design of Securities under Asym-
metric Information,” Review of Financial Studies, 7, 1-44.

Riley, J., and R. Zeckhauser (1983): “Optimal Selling Strategies: When to Haggle,
When to Hold Firm,” Quarterly Journal of Economics, 118, 267-289.

Rockafellar, R.T. (1970): Convex Analysis, Princeton, Princeton University Press.

Rothschild, M., and J. Stiglitz (1976): “Equilibrium in Competitive Insurance
Markets,” Quarterly Journal of Economics, 90, 629-649.

Stole, L. (1990): “Mechanism Design under Common Agency,” mimeo, University of
Chicago.

Townsend, R. (1979): “Optimal Contracts and Competitive Markets with Costly
State Verification,” Journal of Economic Theory, 21, 265-293.

37




