

European Children's Use and Understanding of Generative AI

EU Kids Online 2026

Elisabeth Staksrud, Giovanna Mascheroni, Tijana Milosevic, Niamh Ní Bhroin, Kjartan Ólafsson, Gülbín Şengül-İnal and Mariya Stoilova

TABLE OF CONTENTS

About this report	3
Research background.....	9
Methodology	12
WHO uses Generative AI?	17
HOW do European children use GenAI?	22
WHY Children use GenAI	27
Why some children and young people DO NOT use GenAI.....	42
Guidance, support, and regulation of GenAI	49
Children's hopes and worries for the future with GenAI	51
Children's hopes and recommendations for responsibilities and remedies	58
Conclusions.....	63
References.....	65
Figure 1. Children who engage in any type of GenAI activity by country	17
Figure 2. Children who engage in any type of AI activity by gender, age and SES	18
Figure 3. Average number of GenAI activities in the past month by country	24
Figure 4. Average number of GenAI activities by gender, age and SES.....	24
Figure 5. Using GenAI to save time by gender, age and SES	29
Figure 6. Using GenAI to see what AI can do by gender, age and SES	30
Figure 7. Using GenAI to get inspiration for my own creations by gender, age and SES	32
Figure 8. Using GenAI to get a better school grade by gender, age and SES	35
Figure 9. Using GenAI because they trust AI more than other sources by gender, age and SES	38
Figure 10. Reasons for not using GenAI: I am just not interested, by gender, age and SES	43
Figure 11: Parental restrictions as perceived by children on different AI-related activities.....	49
Figure 12: Do you think Gen AI will have a positive or negative impact on your life in the next 10 years by country.....	52
Figure 13: Children's views on future with GenAI by gender, age and SES	52
Figure 14: Children's worries about new technologies by country	54
Figure 15: Children's worries about new technologies by gender, age and SES	55
Table 1: List of variables used in this report.....	13
Table 2: Number of respondents by country, age groups and gender	14
Table 3: Number of respondents in the qualitative study by country, age groups and gender.....	16
Table 4: Gender, age, and subjective SES distribution of AI users across countries	19
Table 5: What children have used GenAI for during the past month by country.....	23
Table 6: Reasons that children give for using GenAI by country	27
Table 7: Reasons that children give for not using GenAI, by country (users past month).....	43

About this report

Over the past three decades, the internet and digital technologies have become deeply integrated in the everyday lives of children and young people across Europe. The EU Kids Online network (EUKO) has systematically studied these changes since 2006. This multidisciplinary research network was established to provide policymakers, educators, parents and other stakeholders with a robust evidence base on how children use digital technologies, the opportunities they encounter, and the risks they face. Through successive international surveys, most notably the 2010 and 2018 EUKO international comparative studies, EUKO has documented how emerging technologies, from personal computers to smartphones, from chatgroups to social networks, have become embedded in children's everyday lives.

In recent years, children's online environments have been reshaped by the rapid integration of AI-based tools into search engines, social media platforms, messaging services, creative applications, and educational technologies. These developments introduce new possibilities for learning, creativity and support, while also raising new concerns related to misinformation, synthetic content, privacy, automation, and manipulation. At the same time, regulatory frameworks such as the GDPR and the EU Artificial Intelligence Act seek to respond to these changes, underlining the need for timely, evidence-based knowledge about how children use and experience GenAI in their daily lives.

Responding to the growing need to understand if and how children use GenAI across Europe, and its potential implications for risks and opportunities, this EUKO report is a thematic publication based on data from the EUKO 2025 survey. It is the first international report released from the new dataset and is published in connection with Safer Internet Day 2026 under its theme: 'Smart tech, safe choices – Exploring the safe and responsible use of AI'.

The main aim of this report is to map children's access to, use of and experiences with GenAI across Europe, and to examine if and how GenAI is becoming part of their everyday digital lives.

The report draws on comparative data from 20 European countries: Austria, Belgium, Croatia, the Czech Republic, Estonia, Finland, Germany, Ireland, Italy, Latvia, Luxembourg, Malta, Norway, Poland, Portugal, Serbia, Slovakia, Spain, Switzerland, and the United Kingdom. This includes data from the EU Kids Online survey with **25,592 children aged 9 to 16 in 17 countries** and additional **qualitative interviews with 244 children aged 13 to 17 years in 15 countries**. The report identifies emerging patterns, differences between groups and countries, and key areas of opportunity and concern. In doing so, it provides an early and policy-relevant insight into how GenAI is reshaping childhood in Europe.

Suggested citation:¹

Staksrud, E., Mascheroni, G., Milosevic, T., Ní Bhroin, N., Ólafsson, K., Şengül-İnal, G., & Stoilova, M. (2026). *European children's use and understanding of Generative AI*. EU Kids Online V.

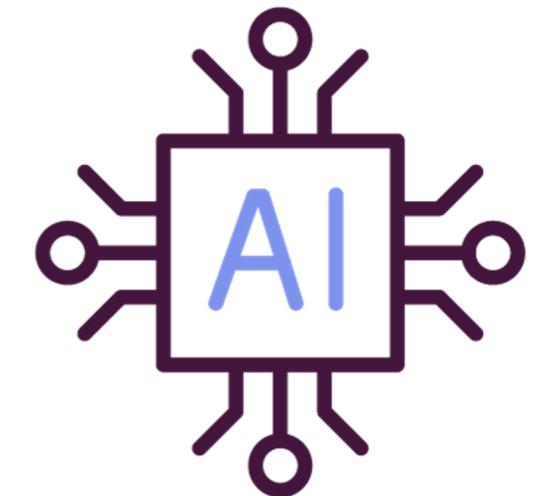
Image credits: In-text photos by Katerina Holmes, Max Fischer, Karolina Grabowska, Ron Lach, and Atlantic Ambience on Pexels.

¹ Note: The principal investigators for the quantitative and qualitative studies are listed first; all remaining contributors are listed in alphabetical order.

Executive Summary

- GenAI is rapidly becoming part of children's everyday digital environments, both through standalone tools like ChatGPT and through integration into platforms already widely used by children, such as My AI on Snapchat, raising urgent questions about how these technologies shape learning, communication, and social interaction.
- The extent to which GenAI is integrated in platforms that children already use predetermines how children engage with these technologies and limits their active decision-making and autonomy of choice, relying instead on children's existing interests and curiosity.
- Our findings and recommendations are based in the EUKO study on European children's use and understanding of GenAI, drawing on comparative data from 20 European countries: Austria, Belgium, Croatia, Czech Republic, Estonia, Finland, Germany, Ireland, Italy, Latvia, Luxembourg, Malta, Norway, Poland, Portugal, Serbia, Slovakia, Spain, Switzerland, and the United Kingdom. This includes data from the EU Kids Online survey with 25,592 children aged 9 to 16 in 17 countries and additional qualitative interviews with 244 children aged 13 to 17 years in 15 countries, collected in 2025.
- Our findings indicate that despite different country and cultural contexts, European children have similar usage patterns and experiences when it comes to the kinds of GenAI applications and services that they use, the extent to which they use the free versions of these services, and the devices they use to access them.
- Public debates about children and GenAI are often dominated by hype or moral and media panic, while empirical evidence remains limited. This study addresses that gap by examining children's practices, motivations and understanding of GenAI.
- Using comparative quantitative and qualitative data from the EUKO study across 20 countries, the report shows great diversity in children's engagement with GenAI, shaped by social, educational, and cultural contexts, which highlights the importance of evidence-based approaches to policy, education, and child-centred guidance.
- Overall, children report using GenAI for a relatively limited number of activities, but we find clear country differences. In countries like Portugal,

Serbia, Slovakia, the Czech Republic, Croatia, Austria, and Italy, children report using GenAI for a wider range of activities. In almost all countries, the range of activities increases clearly as children get older. Younger children (9–10 years) report using GenAI for very few activities, while older teenagers (15–16 years) are far more likely to use GenAI for different activities.


- Gender differences are small. On average, girls engage in slightly more types of GenAI activities than boys.
- Children value the use of GenAI as an academic resource and indicate that it can be positively used as a complementary support in educational contexts, also to speed up and automate repetitive tasks. While some children report entirely delegating their homework to GenAI, e.g., copying and pasting texts for submission, others note that it can be very useful and would prefer to have guidance on how to use it appropriately, rather than for it to be restricted or banned.
- Playful interactions with GenAI are motivated not just by curiosity (testing GenAI) or experimentation, but, more importantly, by the need to escape boredom and pass time. These interactions are integrated in everyday moments of idle time, where GenAI fills time, and enables light-hearted, often social, forms of play.
- Beyond instrumental or curiosity-driven uses, GenAI also emerges as a source of companionship for some children. Children describe turning to chatbots to fill gaps in their socio-emotional lives, particularly during periods marked by loneliness, worry, or emotional vulnerability.
- Children's non-use of GenAI is most often linked to limited interest, lack of perceived relevance, or a sense that GenAI is simply not needed for everyday tasks. Another reason for non-use includes lack of knowledge about GenAI. Among interviewees who had at least occasionally used GenAI, the main reasons for non-use, or limiting their use, are fear of deskilling and disempowerment, lack of trust in the reliability of outputs and ethical reasons (such as the sense that they are cheating).

Key findings

- The use of GenAI increases with age. Gender and SES differences are smaller but unevenly distributed across countries, suggesting that an **AI divide** may emerge in and across European countries.
- Children use GenAI mostly for **educational and practical reasons**, while creative and potentially risky uses, such as advice seeking, remain less common and unevenly distributed across countries.
- Making things **faster and easier** are the main reasons why children use GenAI in schoolwork, followed by scaffolding learning by making complex concepts simpler, and stimulating creativity or brainstorming ideas.
- GenAI has gradually changed how children use **Google** to search for information online, both for schoolwork and information-seeking more generally.
- GenAI is **not yet a dominant source of personal or emotional support** for most children: only 15% of respondents reported using GenAI to get advice on physical health and fitness, or to share their worries and get support.
- Our findings align with previous research about children's internet use, which shows that there is a "ladder of opportunity", and while most children engage in social and entertaining activities, fewer "climb up" to take advantage of activities that are creative or related to civic participation. This demonstrates that while children are early adopters of AI technologies, they need support and encouragement to take advantage of the full spectrum of available opportunities.
- Trust in AI** is often articulated through comparative reasoning, with GenAI positioned as more reliable than collaboratively produced sources such as Wikipedia. Such perceptions point to the persuasive power of opaque, fast, and highly personalised systems, whose seemingly tailored and immediate responses can be particularly convincing. This is especially evident among younger children or those with fewer digital and critical skills, who may be more inclined to trust the outputs of GenAI.
- More skilled children reported engaging in comparative and checking practices, cross-referencing AI-generated responses with other sources. These accounts point to a more cautious and **conditional form of trust**, shaped by

children's evaluative capacities and their ability to recognise the limits of AI-generated outputs.

- The role of GenAI tools in children's development is ambivalent, and their **opportunities (scaffolding learning)** can easily turn into **harmful consequences (deskilling and disempowerment)**.
- Preliminary quantitative analyses of the survey data from four countries (Estonia, Finland, Norway and Poland) show that about a fifth of children thought that the **impact of AI development on their lives in the next ten years** would be mostly positive; closer to a third (30%) thought that it would be **both positive and negative**, while less than 7% were of the opinion that the impact would be primarily negative. Importantly, 37% did not have an opinion on the issue or did not know what to think about it.
- Finally, the **languages children use when engaging with GenAI vary**. Some engage unproblematically with GenAI in their national language. However, others note that GenAI tools are not significantly developed in their language. This contributes to a landscape in which **English often becomes the default or more reliable option**, privileging children who are proficient in this language. This also highlights **broader structural inequalities in GenAI accessibility**, where children's linguistic background can shape their ability to fully benefit from generative technologies.

Key recommendations

- The differences between countries highlight (once more) the importance of considering national contexts when developing policy responses, educational strategies and child-focused guidance related to GenAI use.
- Consistent with our findings, most children engage in instrumental, social and entertaining activities, yet fewer “climb up” along the ladder of opportunities to take advantage of activities that are creative or related to civic participation. Therefore, children need support and encouragement to take advantage of the full spectrum of available opportunities that GenAI technologies afford.
- Bearing in mind that children from higher socioeconomic backgrounds are more likely to report using GenAI than those from lower SES groups, ensuring a **systematic and structured approach to education** that would ensure consistency across schools that cater to diverse children from different socio-economic backgrounds is important.
- More research is needed to understand the position of GenAI in children’s educational lives, including whether this use represents a helpful resource for learning, as well as questions about guidance, fairness, and the conditions under which GenAI can support learning without undermining educational autonomy.
- Considering the largely ad hoc adoption of these technologies by young people across different countries, as documented in this report, it is imperative for national educational systems to develop structured and systematic approaches to educating young people as well as educators (teachers and school staff) about AI and GenAI technologies.
- Such education should include **functional knowledge and skills** (how to use various tools to best support education, leisure, creativity and wellbeing while being mindful of design issues such as hallucinations, security and privacy concerns); and **critical knowledge** about the broader social implications of AI and GenAI development. Young people report limited knowledge and understanding of these issues (including the environmental and climate impacts of technological development, bias and discrimination, misinformation, inequality, copyright and privacy violations and psychological harm).
- As some countries are already partnering with large technology companies to embed AI and GenAI products into their school systems, it is imperative to consider these recommendations prior to such large-scale deployment. It is also important to ensure that young people understand these issues and can meaningfully exercise their right to be consulted as provided for by the UN Convention on the Rights of the Child.
- Providing educational support at the national and EU level to parents and caregivers about AI and GenAI development (functional and critical knowledge and skills) and social impacts is also important. Our qualitative findings indicate great differences among parents within and across different countries; while some have personal or professional interest in technology and can support their adolescents, others are largely unaware of the various ways in which their children use GenAI. This is particularly important in the context of young people’s use of GenAI for mental health support.
- Young people have identified various actors as responsible for regulating the negative impacts of GenAI development on their present and future lives. They spoke of regulatory, industry and individual responsibility, and some have even called for immediate action on what they perceived as precipitous and uncontrolled technological development. Since most young people in our quantitative study reported that they were not sure if AI development would have positive or negative implications for them in the future, it is imperative for regulators at the national and EU levels to consider very carefully what constitutes children’s best interests in the context of this technological development.

About EU Kids Online

EU Kids Online is a multinational, multidisciplinary research network that conducts research on children’s online opportunities, risks, and safety. The network uses multiple research methods to examine children’s and parents’ experiences of the internet and to support the development of knowledge relevant to policy and practice at national, European, and international levels. EU Kids Online adopts a children’s rights perspective, in line with the UN Convention on the Rights of the Child and General Comment No. 25 on children’s rights in relation to the digital environment. This involves a holistic approach to children’s digital lives that considers children’s participation, protection, privacy, provision, dignity, and voice.

Organization

EU Kids Online operates as an independent research collaboration without centralised core funding. Participation is based on contributions from national research teams, and participation in the EUKO survey and activities is contingent on available prioritisation, support and funding from national authorities.

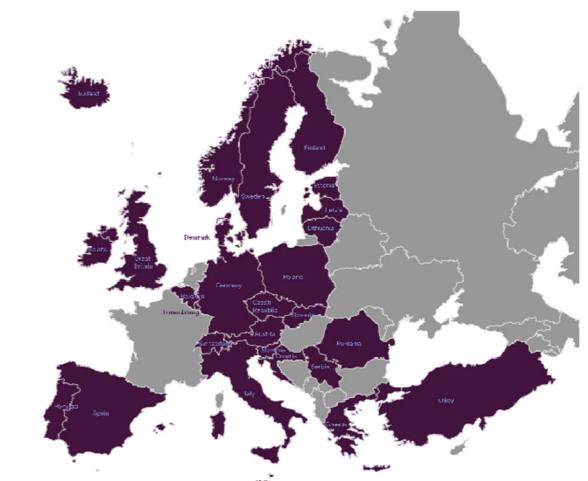
Each participating country in the EU Kids Online network is represented by a national research team, led by a designated national coordinator. National coordinators are responsible for coordinating data collection and research activities within their country, ensuring that common methodological standards are followed, and serving as the main point of contact between the national team and the international network.

In this context and responding to the growing need to understand both the opportunities and risks that children encounter in the evolving digital landscape, the EU Kids Online network (EUKO) continues to conduct large-scale, comparative and methodologically robust research on children’s digital lives. Building on more than two decades of international research, EUKO provides a unique evidence base to inform policy, regulation, education and child-centred interventions across Europe.

The network is currently coordinated by Professor Elisabeth Staksrud, Department of Media and Communication, University of Oslo, Norway, assisted by a management group.

Current phase and ongoing work

Building on nearly two decades of research activity, EU Kids Online is undertaking a new phase of work (EU Kids Online V). This phase includes a new representative survey building on the previous 2010 and 2018 surveys, designed to capture developments in children’s digital lives. New and emerging topics, such as generative artificial intelligence, are included alongside established areas such as online safety, digital skills, and wellbeing.


The EUKO network is also conducting thematic and comparative studies on selected topics, including children’s experiences with GenAI, parental mediation, digital inequalities, and children’s democratic engagement.

This report represents the first results from this survey and is published in relation to the international Safer Internet Day 2026, under its theme: 'Smart tech, safe choices – Exploring the safe and responsible use of AI'.

Previous phases

Earlier phases of EU Kids Online (EU Kids Online I–IV) focused on building comparative evidence on children’s internet use, risks, and safety across Europe. These phases included large-scale surveys, qualitative studies, and the development of shared research resources and databases. Findings from these phases have informed academic research and policy discussions on children’s digital lives.

For further information, see www.eukidsonline.net

Acknowledgements

This research was conducted within the EU Kids Online (EUKO) network, a multinational research network on European children's online opportunities, risks, and safety.

The report draws on the EU Kids Online V Children Comparative Dataset (2026), a collaborative effort of researchers in the EU Kids Online network. The questionnaire builds on previous EU Kids Online surveys, and was updated and designed by Elisabeth Staksrud, Ellen Helsper, Vilde Kalin, Sonia Livingstone, Bojana Lobe, Giovanna Mascheroni, Kjartan Olafsson and Mariya Stoilova, in collaboration with EU Kids Online national team members.

We thank the national research teams across Europe, and the children and parents who participated. For details, see www.eukidsonline.net.

Additionally, the report draws on the EU Kids Online "Children & AI" qualitative comparative research involving 13-to-17-year-olds across 15 European countries (Austria, Czech Republic, Estonia, Germany, Ireland, Italy, Latvia, Luxembourg, Malta, Norway, Poland, Portugal, Serbia, Spain and the UK).

This research was coordinated by Giovanna Mascheroni. The interview protocol and the coding scheme were designed by Giovanna Mascheroni, Veronika Kalmus, Sonia Livingstone, Signe Opermann, Andra Siibak and Mariya Stoilova in collaboration with the national research teams. We thank the national research teams across Europe and the children who participated. For details, see www.eukidsonline.net.

Editorial assistant: Vilde Sannerud Kalin

Questionnaire citation: Staksrud, E., Helsper, E., Kalin, V., Livingstone, S., Lobe, B., Mascheroni, G., Ólafsson K., Stoilova, M. (Eds.) - with members of EU Kids Online. (2025). *The EU Kids Online V Children's Questionnaire*. EU Kids Online.

Qualitative dataset citation: EU Kids Online Network. 2025. EU Kids Online V Qualitative Children & AI Dataset. EU Kids Online

Participating countries and national EUKO teams

EU Kids Online members acknowledge the support of institutions which enabled the survey to be carried out in 17 countries and the qualitative interviews in 15 countries. We also thank all the research agencies, teachers and school staff who helped to administer the survey and helped in the research process, as well as all the children and young people who participated. For more information about the national surveys and funders, see appendices 1 and 2.

EU Kids Online researchers work in accordance with the following principles:

- **High-quality science:** We conduct scientific research using rigorous and transparent methodologies appropriate to the research task, including enabling cross-country comparisons.
- **Ethical:** We follow the highest standard of ethical principles and practices in research with children and young people.
- **Balanced analysis:** We seek to be informed and balanced in our approach, and to critique overly optimistic, alarmist, moralistic or reductive accounts of technology's impacts on children.
- **Evidence-based policy:** We actively seek to expand and deepen academic, policymaker and public understanding of children's digital lives by promoting relevant and high-quality research, also noting research weaknesses and gaps as appropriate.
- **Open:** We disseminate our findings fairly and honestly, using open-access and/or peer-reviewed outlets wherever possible.
- **Independence and transparency:** We engage with multiple stakeholders, including government, policymakers, industry and civil society, sustaining an independent approach and avoiding conflicts of interest.
- **Integrity:** We conduct all our research and collaborations with integrity and are transparent about our sources of funding.

Research background

In this background chapter, we briefly describe how we can understand children's use of GenAI by situating current developments within broader technological, social, and historical contexts. We introduce what GenAI is, how it works, and why it has become a prominent part of public debate, while also tracing recurring narratives about children and new technologies. By bringing together critical perspectives on AI, media history, and existing research on children's digital practices, the chapter provides the conceptual foundation for our empirical analyses.

Since ChatGPT's release in November 2022, children have used GenAI tools for various activities, including schoolwork, information, entertainment, creative projects, companionship, advice on interpersonal relationships and mental health (Common Sense Media & Hopelab, 2024; Madden et al., 2024). For example, an emergent form of sociality called "AI individualism" (Brandtzæg et al., 2025, p. 3) has been theorised, "in which individuals form relational dependencies not just with networks of people" but also with chatbots offering informational, instrumental, or emotional support. AI-based social support can be understood as both a source of empowerment—i.e., enhancing users' autonomy, supporting learning and creativity; and disempowerment—increasing users' dependence on automated systems, exposing them to mis- and disinformation, compromising wellbeing, reducing critical thinking and lowering academic skills (Kosmyna et al., 2025; Zhai et al., 2024).

Besides documenting the main usage practices, early research conducted in the US also shed light on shared concerns or hopes around GenAI, such as the opportunity to free up time for more creative tasks at work, or, conversely, a concrete threat to users' creativity (Common Sense Media & Hopelab, 2024). Outside of the U.S., research is still sparse and mainly descriptive, leaving room for unsubstantiated public discourses that either reproduce the commercial hype around the revolutionary opportunities opened by GenAI; or, in an equally problematic fashion, replicate media panics around the harmful negative effects for children, connecting and attempting to explain persistent issues such as students' cheating in school, or children's mental health problems, and disinformation campaigns, with their use of GenAI.

What is Generative AI?

Generative AI (GenAI) refers to a subset of Artificial Intelligence (AI) systems that generate text, images, video, or audio based on user prompts. GenAI, as a new consumer product, became broadly known to the public with the launch of OpenAI's ChatGPT in late 2022. However, although we tend to associate it with standalone tools like Large Language Models (LLMs) or image generators, GenAI has also been rapidly and

silently integrated into a range of platforms and services already used by children, like Snapchat (My AI), Instagram, Roblox, and Duolingo.

While apparently new and disruptive, GenAI is built on decades of AI research, especially in machine learning and *deep learning*. In simple terms, these systems 'learn' by analysing and identifying patterns in very large amounts of data and then using those patterns to predict what comes next (Narayanan & Kapoor, 2024)—e.g. what words are usually combined in a sentence. Based on what the system has 'learned', GenAI creates novel content in response to user prompts. For this reason, GenAI has been defined as a stochastic parrot—i.e., "a system for haphazardly stitching together sequences of linguistic forms it has observed in its vast training data, according to probabilistic information about how they combine, but without any reference to meaning" (Bender et al., 2021, p. 617). This means that, while its outputs look or sound plausible and realistic, they are not necessarily correct. Therefore, even though GenAI systems are perfectly able to simulate human conversations and creativity, they are far from being genuinely intelligent or capable of understanding what they are doing.

Based on its visible and invisible operations, AI has been defined as "neither artificial nor intelligent" (Crawford, 2021). Not genuinely intelligent, as it relies on probabilistic information to calculate and combine text or images. Not artificial, because it is greedily dependent on natural resources, human labour and human data. Indeed, Kate Crawford defines AI as an "extractive industry" depending on "exploiting energy and mineral resources from the planet, cheap labour and data at scale" (2021, p. 15; see also Mejias & Couldry, 2024). In other words, without the datafication at scale enabled by the wide range data-extracting, intensely energy-consuming, and exploitative technologies and platforms that pervade everyday life, GenAI in its current form would not have been possible (Whittaker, 2024; Widder et al., 2024). On these grounds, scholars working in the sociology of media prefer to talk about artificial communication (Esposito, 2022; Hepp, 2020), to emphasise that AI systems do not aim to reproduce human intelligence, but, rather, to automate communication. Contrary to social and media discourses that foreground AI's capacity to match and even exceed human

intelligence, what the trajectory of AI history indicates is not “that the machine is able to think but that it is able to communicate” (Esposito, 2017, p. 250).

At the same time, anecdotal reports of changes in Higher Education, brought on by the spontaneous adoption of GenAI by students and the institutional pushing of GenAI-based technologies more broadly onto staff, suggest a substantial negative impact on educational quality that is unprecedented when compared with the adoption of previous technological developments. The pressure placed on staff to adopt GenAI technologies is connected to the need to capitalise on perceived benefits and ensure competitiveness (Purser, 2025). Governments, including Iceland, are already developing public-private partnerships with Big Tech firms to provide access to AI technologies to teachers in their school systems (Min, 2025). It is therefore imperative to critically assess the extent to which governments, schools and teachers may experience pressure to adopt these technologies, and how such pressure might relate to arguments about enhancing competitiveness and adapting to what is discursively positioned as innovation (see Crawford, 2021, p. 146 and p. 217).

Therefore, we aim to contribute to a deeper understanding of the social consequences of GenAI in children’s lives with robust survey and qualitative data collected in Europe that not only trace adoption and map usage practices but also illuminate the meaning-making practices that children engage with, identifying their expectations, concerns and excitement around GenAI.

Children, technology, and motivation in media history

Children and young people have consistently been considered early adopters of new technologies. Such an essentialist view, which ignores the diversity of children and the situated nature of their engagement with digital media, is usually articulated in two contrasting, yet complementary social and media discourses: firstly, the tech-savvy child, empowered by the use of technologies and naturally competent (as in the myth the digital native); secondly, and in contrast, the child victim, whose wellbeing and development is threatened by the latest digital media. The child-at-risk is the focus of recursive waves of “media panics” - i.e. “highly emotionally charged and morally polarised” (Drotner, 1999, p. 596) discourses which blame the media for the corruption of childhood, and as the source of the problems and challenges children face.

Both the tech-savvy child and the child-at-risk discourses build upon hyperbolic accounts of digital technologies as revolutionary and disruptive (Staksrud & Livingstone, 2009). In this respect, GenAI is just the latest in a series of media and technological innovations that have been socially constructed as able to revolutionise, for better or worse, children’s lives and their futures.

However, while technologies always have social consequences, these are not fully determined by their intrinsic properties: rather, technologies present affordances for use which are always socially negotiated and context dependent. The history of media has shown that, when the novelty effect fades, and the “systematic documentation of users and uses” (Wellman, 2004) begins, research and policy move beyond utopian or dystopian approaches to understanding technology. Against sweeping generalisations of supposed revolutionary impacts, as technologies enter everyday life and are ‘domesticated’ by users, it’s time to examine the diverse contexts of use, the various usage practices, different motivations for use, and the ways children make sense of AI in their lives. This is when variations and inequalities in the use of AI can be analysed, continuities with the domestication of other digital media can be documented, and a critical evaluation of its opportunities and risks beyond media panics can be achieved.

What makes Gen AI different?

GenAI’s role in children’s lives is being socially constructed along the same utopian and dystopian patterns (the tech-savvy child vs. the child-at-risk discourse) that have characterised the diffusion of previous digital media (including the internet, videogames, social media and smartphones). And yet commercial discourses insist on its novel and revolutionary nature. Despite the continuities in this deterministic and media-centric approach to AI, GenAI is in fact distinctive: as a technology designed to automate communication, GenAI challenges our understanding of media, communicative actors and communication (Peter & Kühne, 2018; see also Guzman & Lewis, 2020). Because GenAI is designed to enter a communicative relationship with its users, it is no longer a medium in the sense of a channel or interface that mediates communication between two or more humans. Rather, GenAI-based media become communicative partners. The very communication process, then, can now extend beyond human-to-human (mediated or face-to-face) interaction to include human-to-machine communication.

Taken together, the perspectives outlined in this chapter highlight the need to move beyond abstract debates, media hype, and moral panics toward a grounded understanding of how children engage with GenAI in their everyday lives. While existing

discussions often focus on assumed risks or transformative potential, there is still limited empirical evidence, particularly in European contexts, on children’s concrete practices, motivations, and meaning-making around AI use. In addition, and in line with the EU Kids Online overall research strategy, a comparative cross-national approach is essential for understanding how differences in educational systems, digital policies, and cultural contexts shape children’s engagement with GenAI, allowing patterns that are context-specific to be distinguished from those that are shared across countries and groups of children.

To address this gap, our EUKO study combines large-scale quantitative survey data with in-depth qualitative material to capture both the breadth and depth of children’s experiences with GenAI. In the next section, we outline the methodological approach of the EUKO study, detailing the data sources, samples, and analytical strategies used to systematically examine children’s GenAI use across countries and contexts, before we present the findings.

Methodology

This chapter describes the methodological approach used in the EUKO study to examine children's engagement with GenAI across Europe. It outlines the combination of quantitative survey data and qualitative methods, the sampling strategies, and the key sample characteristics. For further information, please also refer to the EUKO technical report.

Quantitative data

This report is partly based on survey data collected in 17 European countries in the period from April to November 2025 by members of the EU Kids Online network. The questionnaire was designed to be administered in a school-based sample and contained both questions that can be compared with previous EU Kids Online surveys (see for example, Šmahel, Machackova, Mascheroni, Dedkova, Staksrud, Ólafsson, Livingstone and Hasebrink, 2020; Livingstone, Haddon, Görzig and Ólafsson, 2011) and new questions that were intended to capture recent developments in children's use of digital technologies (such as GenAI).

Measurements

This thematic report is predominantly based on three core survey questions included in the EUKO international study that assessed children's use of generative artificial intelligence (GenAI). These questions were administered to children aged 9–16 across the surveyed countries in 2025 and form the empirical foundation for the analyses presented in this report.

Prior to answering the GenAI-related questions, all participating children were provided with the following standardised explanatory prompt to ensure a shared understanding of what was meant by artificial intelligence in the context of the survey:

Generative AI is a kind of artificial intelligence that can create new content when you ask it to (like write a text, chat with you, or create music or images). The results can seem to be made by a human being! It's also known as GenAI. For example, apps like ChatGPT, Gemini, DALL-E and Midjourney are GenAI.

Children were then asked about their recent use:

Which of the following purposes, if any, have you used artificial intelligence (GenAI) for during the last month?

Respondents who indicated use of GenAI for one or more activities were subsequently asked a follow-up question assessing their motivations for use, including reasons such as saving time or trusting GenAI more than other sources.

Children who reported no GenAI use in the past month were asked a parallel question regarding their reasons for non-use, with response options covering lack of knowledge, concerns about misinformation, school restrictions, and other perceived barriers.

All three questions employed binary response formats (yes/no), and children were allowed to select multiple applicable options. Respondents who selected "do not know," "do not want to answer," or did not respond were excluded from percentage calculations in this report.

In the following, responses to these questions are analysed in relation to a set of key background characteristics, including country, age, gender and perceived socioeconomic status. In addition to measures of use, the survey also included selected questions on children's attitudes towards GenAI and parental regulation of GenAI use, and a question assessing children's expectations of how GenAI may affect their lives over the next ten years. Together, these indicators provide further insight into how children perceive the longer-term significance of GenAI and the regulatory frameworks shaping its use in family contexts.

Table 1: List of variables used in this report

Survey Question	Question wording	Response Options	Source/Reference
Qc11 (a-i) - Use of Generative Artificial Intelligence *	Which of the following purposes, if any, have you used GenAI for during the PAST MONTH?	0 = Not marked 1 = Marked	New question in EUKO 2025 Survey. (Adapted from Common Sense Media & Hopelab, 2024).
Qo8 (a-l) - Reasons for using AI	Why did you decide to use GenAI for these activities in the past month? Select all that apply	0 = Not marked 1 = Marked	New question in EUKO 2025 Survey. (Adapted from Common Sense Media & Hopelab, 2024).
Qo9 (a-m) - Reasons for not using AI	Why haven't you used GenAI? Select all that apply	0 = Not marked 1 = Marked	New question in EUKO 2025 Survey. (Common Sense Media & Hopelab, 2024).
Qc40 (c) - How one feels about new technologies – part I	How much do you agree with the following statements about how you think or feel about new technologies (such as GenAI, Interactive toys, Robots)?	1= Strongly disagree 2= Tend to disagree 3= Neither agree nor disagree 4= Tend to agree 5= Strongly agree	Items created based on (a rephrasing of) EUKO 2018 Module 5 Internet of Things, and the answers to open-ended questions in Common Sense Media and Hopelab (2024).
Qo46 (e) - Restrictions from parents	Does your parent/carer allow you to do the following things on the internet and if so, do you need their permission to do them? Please tick one box on every line	1= I am not allowed to do this 2= I am allowed to do this only with permission or supervision 3= I am allowed to do this anytime	In EUKO2010, EUKO2018 (QI6, core/optional) & GKO2020. EUKO2010 & GKO2020: different wording. GKO2020: different scale. Changes from EUKO2018: Order of scale changed, and "I do not know if I am allowed to do this" removed for EUKO2025. Item 'e' added for EUKO2025. (Adapted from EU Kids Online, 2011).
Qo57 - Future technologies attitudes and dispositions *	Do you think GenAI will have a positive or negative impact on your life in the next 10 years?	1= Mostly positive 2= Both positive and negative 3= Mostly negative 4= Neither positive nor negative 5= I don't know or don't have an opinion	New question in EUKO2025. (Adapted from Common Sense Media & Hopelab, 2024).

Note: Survey questions are labelled as core (Qc) or optional (Qo) question. Optional questions were not necessarily asked in all participating countries. Response options coded as missing data (e.g., don't know, prefer not to say) were not presented in the table. * Children were given an additional prompt to explain what GenAI means.

Sample characteristics

The countries that participated in the survey collected at least 1,000 responses and designed the sample so that if data were collected through schools, there would be at least 50 primary sampling units on the school level. To meet the criteria for a minimum number of primary sampling units on the school level and to facilitate country-level analysis of the data (for example, by regions), several countries chose to collect more than the minimum number of individual respondents. The overall dataset thus consists of 27,956 children across 17 European countries. In some countries, the sample included children outside of the target group from 9 to 16 (mostly older children that were included in the survey to facilitate country-level analysis) and a few children outside of the targeted age range also responded to the survey as they were in classes that had been recruited for the survey.

For this report, the data has been restricted to those respondents who are between 9 and 16, in total 25,592 children.

Furthermore, not all countries were able to cover the whole age-range from 9 to 16, as data collection was restricted for children below a certain age. This was the case in Belgium and Finland. Several countries also encountered resistance from schools in providing

access to the youngest respondents, with school principals frequently raising concerns that the survey might result in a backlash from parents due to the nature of some of the questions. This is interesting given the fact that most of the questions have previously been used in both school-based surveys and in face-to-face interviews for the same age-groups in previous EU Kids Online surveys.

Table 2 shows the unweighted number of respondents for each country by age and gender. To adjust for the uneven number of respondents between countries, a population weight was added to the data so that each country would contribute equally to averages across countries. This weight adjusts the data so that the sample size in each country is 1,000 children, except in Malta, where the sample size was adjusted to 250 children.

Binary gender categories were evenly distributed in the overall sample and within each country. A small number of children did not identify themselves on the binary boy/girl categories and ticked "Other", "Don't know", "Prefer not to answer" or left the gender question unanswered, adding up to 650 respondents across all 17 countries. This group is not large enough to facilitate reliable statistical analysis and has therefore been excluded when data is analysed by gender.

Table 2: Number of respondents by country, age groups and gender

	Total	Boys	Girls	9-10 yrs	11-12 yrs	13-14 yrs	15-16 yrs
AT	1,670	735	894	35	334	635	666
BE	981	487	475	-	8	389	583
CH	1,371	686	656	256	386	421	308
CZ	2,344	1,198	1,102	502	603	669	570
EE	2,408	1,180	1,186	313	738	725	632
ES	2,596	1,298	1,212	348	767	720	761
FI	1,008	451	514	-	350	350	307
HR	1,024	487	543	32	317	314	361
IE	682	361	321	141	185	181	175
IT	2,170	1,109	1,030	351	776	500	543
LU	1,202	578	606	140	428	325	309
MT	232	114	109	111	49	32	40
NO	1,048	521	514	115	328	333	272
PL	1,502	667	750	43	480	490	489
PT	1,988	967	996	147	641	712	488
RS	1,675	800	844	41	487	435	712
SK	1,691	821	830	116	602	564	409
Total	25,592	12,460	12,582	2,693	7,479	7,795	7,625

The age distribution is relatively balanced across the four age groups. Children aged 11–12, 13–14 and 15–16 years each constitute approximately 30% of the valid sample, while the youngest group (9–10 years) is smaller and accounts for just over 10% of the sample. This distribution ensures robust representation of both younger and older children, while placing analytical weight on early and mid-adolescence, where GenAI use and digital autonomy are expected to increase most markedly.

Qualitative data

The qualitative strand of the study was conducted by EUKO in collaboration with the Digital Futures for Children centre (DFC) and it involved 244 13-to-17-year-old children from 15 European countries (Austria, Czech Republic, Estonia, Germany, Ireland, Italy, Latvia, Luxembourg, Malta, Norway, Poland, Portugal, Serbia, Spain and the UK). The selection of countries reflects the socio-economic, cultural and overall contextual diversity among children in Europe.

The qualitative research was designed as an independent methodological component, aimed at generating rich insights into children's use and understanding of GenAI, with the capacity to complement survey data if used alongside it. The interview protocol covered topics such as first use of GenAI; types of activities, tools and frequency of use; AI literacy (functional and critical knowledge as well as skills); mediation of GenAI use at home (by parents and guardians) and at school, including peer mediation; risks and opportunities; fears and hopes and projections for the future including perceptions of remedies and policy recommendation.

Each country aimed to conduct a minimum of 15 semi-structured in-depth interviews; the fieldwork took place between November 1st, 2024, and July 31st, 2025. The sampling criterion was at least occasional use of GenAI, and each national team ensured that diverse children were represented on grounds of gender, age, socio-economic status, level of urbanity and type of school (such as secondary schools vs. high schools).

The interviews lasted between 45 and 80 minutes, were transcribed in full and analysed based on a common coding scheme, developed after a few rounds of autonomous analysis by national teams. A combination of inductive and deductive coding was used (rounds of inductive coding resulted in a deductive coding scheme, which also included a set of additional codes based on 11 Child Rights by Design Principles (see Livingstone & Pothong (2023) for the

child rights principles and Stoilova et al. (2025) for the analysis methodology).

We conducted a total of 244 interviews in 15 countries (see Table 3 for details). Overall, we recruited a balanced sample with regard to gender, where 125 female and 119 male participants were interviewed. However, the gender balance varied within each country. In Austria, for example, more females participated in the study than males, similarly in Estonia, Ireland, Italy, Latvia and Norway; while in the Czech Republic, Malta, Poland, Portugal, Spain, and the UK, more male participants were recruited. Overall, the participants in the qualitative study represented a range of different age groups both at the national and international levels.

Ethical considerations and the processing of personal information

Ethical considerations and the handling of personal information were managed by the national research teams and carried out in accordance with national laws, regulations, and ethical guidelines in each participating country, as well as with the overall EUKO principles.

For the quantitative survey, each national team was responsible for obtaining any required approvals and ensuring that data collection complied with relevant standards for research involving children. Informed consent/assent was secured from all participants. Further details on ethical procedures can be found in national reports. For the purposes of international analysis, data from each country were shared in anonymised form and subsequently merged into a single international dataset, ensuring that no personally identifiable information was included.

For the qualitative interviews, written consent was obtained from both children and one of their parents/guardians. All documents were age-appropriate and preceded by a plain language statement that explained the research. Data processing and storage were compliant with the European General Data Protection Regulation (GDPR) and included the use of an AI tool for transcription. Some of the countries received ethical approval from their national institutions, whereas others underwent a joint review from the Ethics Committee at the London School of Economics (LSE), Ref. 439180.

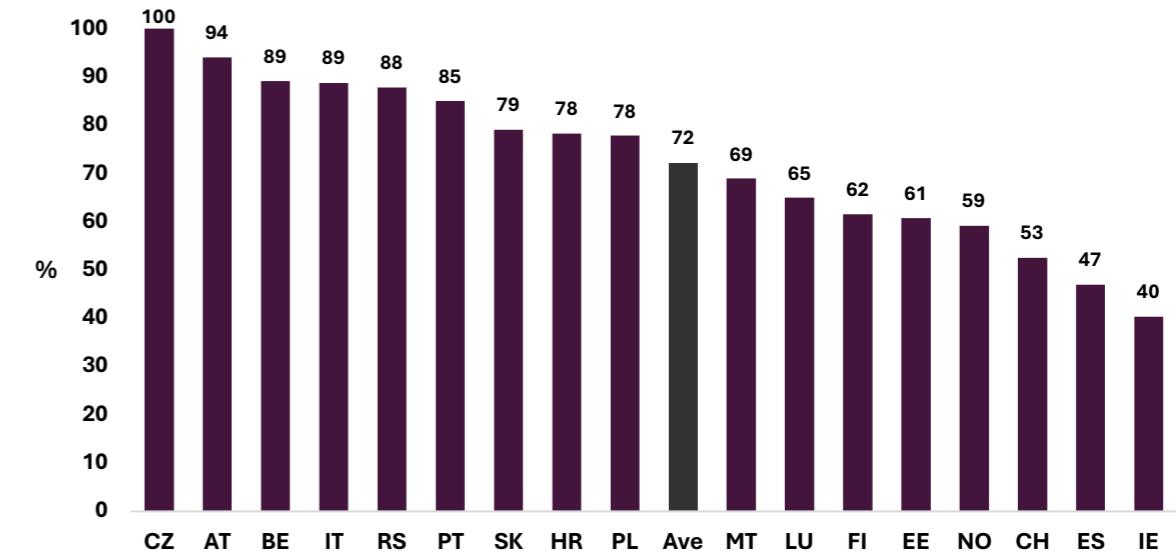
WHO uses Generative AI?

Table 3: Number of respondents in the qualitative study by country, age groups and gender

		13-14 yrs	15-16 yrs	17 yrs*	All
Austria	Girls	10	9	8	27
	Boys	7	4	4	15
Czechia	Girls	0	2	0	2
	Boys	10	0	0	10
Estonia	Girls	3	3	2	8
	Boys	2	5	1	8
Germany	Girls	5	1	1	7
	Boys	2	3	3	8
Ireland	Girls	2	5	4	11
	Boys	3	1	0	4
Italy	Girls	2	3	3	8
	Boys	3	3	1	7
Latvia	Girls	3	4	1	8
	Boys	2	2	3	7
Luxembourg	Girls	1	0	2	3
	Boys	0	1	1	2
Malta	Girls	1	0	2	3
	Boys	5	2	1	8
Norway	Girls	2	7	0	9
	Boys	1	5	0	6
Poland	Girls	4	4	1	9
	Boys	4	4	3	11
Portugal	Girls	3	3	1	7
	Boys	3	3	2	8
Serbia	Girls	3	4	1	8
	Boys	3	2	3	8
Spain	Girls	3	3	1	7
	Boys	3	3	2	8
UK	Girls	5	3	0	8
	Boys	4	5	0	9
Total	Girls	47	51	27	125
	Boys	52	43	24	119
	All	99	94	51	244

*One German interviewee turned 18 just before the interview.

How widespread is GenAI among children in Europe today? In this chapter, we provide an overview of how many children are already using GenAI across the surveyed countries, as well as whether and how the prevalence of use varies between national contexts. Using the sample average as a reference point, the section situates national patterns within a broader European perspective and highlights the uneven pace at which GenAI is becoming integrated in children's everyday digital lives.


GenAI usage across countries

Overall, 72% of children are classified as GenAI users, indicating that GenAI has already become a component of children's digital practices for the majority of children across Europe (see Figure 1 presenting the distribution of children who reported using GenAI across participating countries in the EUKO 2025 survey). Only 28% of children report no use of GenAI, underscoring the rapid diffusion of AI-based tools into children's everyday digital environments, but also the exclusion of some children from the potential opportunities AI could offer.

We also find substantial cross-national variation. The proportion of GenAI users ranges from a near-universal level in Austria (94%), and very high levels in Belgium and Italy (89%), Serbia (88%) Portugal (85%), and Croatia (79%), to markedly lower levels in Ireland (40%), Spain (47%), Switzerland (53%), and Norway (59%).

Based on experience with the introduction of previous "new" technologies, such variation likely reflects a combination of structural, cultural and institutional factors, including differences in national education systems, availability and promotion of AI-enabled services, public discourse on AI, parental mediation practices, and regulatory or school-level guidance regarding AI use.

Figure 1. Children who engage in any type of GenAI activity by country

QC11 Which of the following purposes, if any, have you used Gen AI for During the PAST MONTH. Looking at those who have engaged in at least one of eight activities.

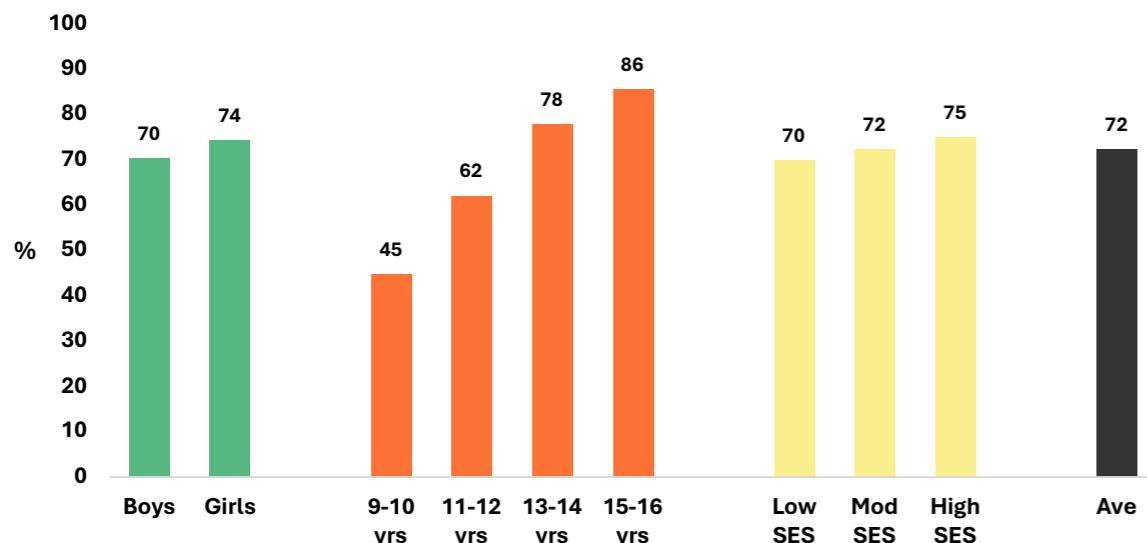
Base: All children aged 9-16 (N= 25,592 but see table2 for the number of respondents by country)

While we find that GenAI use is indeed widespread in all participating countries, the observed differences highlight that children's access to and engagement with GenAI are not uniform across Europe. For example, in Serbia, which exhibited high levels of digital and social media use in particular in the

previous round of the EUKO survey (Kuzmanovic et al., 2019), we could speculate that a relative lack of awareness and knowledge about GenAI among parents and caregivers, coupled with a lack of systematic policy approach in educational settings, contributed to a relatively high, unsupervised adoption of GenAI tools.

When it comes to the age, gender and socioeconomic background distribution across the surveyed countries, we see (Figure 2) how there are pronounced differences in children's engagement with GenAI.

Although girls are slightly more likely than boys to report using GenAI, the gender differences are small. However, when it comes to age differences, these are much more pronounced. GenAI engagement increases steadily as children grow older, from just over half of 9-10-year-olds to nearly nine in ten (87%) among 15-16-year-olds. This pattern likely reflects greater access to digital tools, increased independence, and the growing relevance of GenAI for schoolwork and everyday tasks as children get older.


And, while a substantial majority of children across all SES levels engage with GenAI, there is also a clear socioeconomic gradient. Children from higher

socioeconomic backgrounds are more likely to report using AI than those from lower SES groups.

Taken together, the figure shows that children's engagement with GenAI is shaped more strongly by age and socioeconomic factors than by gender. Such differences highlight the importance of considering inequalities in access and experience as AI becomes a more common part of children's everyday lives, and the potential negative effects of such inequalities.

The findings indicate that among European children, GenAI has moved rapidly from an emerging technology to an element of children's digital ecosystems, which is at least occasionally used. This points to a need for evidence-based policy responses, educational strategies and child-focused guidance related to GenAI.

Figure 2. Children who engage in any type of AI activity by gender, age and SES

QC11 Which of the following purposes, if any, have you used Gen AI for during the PAST MONTH? Looking at those who have engaged in at least one of the eight activities.

Base: All children aged 9-16 (N= 25,592 but see table2 for the number of respondents by country, gender, age and SES).

Overall age, gender and SES differences in the use of GenAI

Across countries, the AI users in the age group 9-16 are slightly more likely to be girls (74%) than boys (70%), though some countries show larger gaps. Most users are concentrated in the 11-16 age range, with relatively

few younger users (9-10). Age differences in AI use may reflect that older children are more likely to have their own online devices, which facilitates their engagement with AI tools. Older children are also more likely to have better digital skills and engage with an overall wider range of online activities, which now includes GenAI. Furthermore, most GenAI users report moderate to high subjective SES, while low-SES users are consistently underrepresented, indicating a SES differences in GenAI use that may reflect unequal access to digital devices with internet connection, diverse digital skills and differences in usage practices between lower-, and higher-SES households –

consistent with prior research showing that, despite almost universal internet use across Europe, children with higher SES backgrounds are more advantaged in the process of digital skills acquisition (Hietajärvi et al., 2024). These inequalities are also likely to be

reproduced in relation to AI literacies. In addition, differences in digital skills, parental support, and school resources may make students from higher socioeconomic backgrounds more likely to engage with and report using AI tools.

Table 4: Gender, age, and subjective SES distribution of AI users across countries

	% Boys	% Girls	% 9-10 yrs	% 11-12 yrs	% 13-14 yrs	% 15-16 yrs	% Low SES	% Mod SES	% High SES
AT	96	93	88	95	97	92	100	95	94
BE	85	93	n.a.	n.a.	86	92	n.a.	91	89
CH	50	55	21	44	67	80	55	53	56
CZ	100	100	100	100	100	100	100	100	100
EE	57	65	39	43	71	81	58	63	64
ES	45	49	25	30	50	71	52	49	51
FI	60	63	n.a.	54	61	72	85	65	60
HR	78	79	38	66	81	91	73	78	80
IE	38	43	9	24	57	65	50	47	38
IT	88	90	70	86	96	98	88	89	90
LU	64	66	29	54	73	88	80	66	68
MT	63	75	57	67	91	88	n.a.	64	74
NO	53	64	24	44	64	84	60	62	63
PL	77	79	100	70	80	82	92	78	79
PT	84	86	69	80	88	91	72	84	88
RS	89	88	76	80	92	91	82	90	88
SK	77	81	59	72	82	90	64	82	82
Ave	70	74	45	62	78	86	70	72	75

QC11 Which of the following purposes, if any, have you used Gen AI for during the PAST MONTH? Looking at those who have engaged in at least one of the eight activities.

Base: All children aged 9-16 (N= 25,592 but see table2 for the number of respondents by country, gender, age and SES).

Note that cells with absolute numbers of respondents below 10 are shown as n.a.

Looking at gender, age and SES differences in the overall use of AI across countries shows that, for the most part, there are similar patterns across countries. Gender differences are generally very small, but in countries where gender differences are observed, girls are more likely than boys to report using Gen AI. The same goes for overall use by SES, in that the overall pattern is similar across countries. Looking at age differences across countries reveals that the differences in overall use of Gen AI between countries are mostly due to differences in use for the younger respondents. For the youngest age group (9-10-year-olds), overall use is as low as 9% in Ireland, with several countries reporting overall use below 50% for this age group. For the oldest age group, all countries report overall use that is above two-thirds of children.

The qualitative study offered additional insights into issues related to access and cost, showing that most of the participants used the free versions of various Gen AI services. OpenAI's Chat GPT was by far the most used by the children we spoke to, with almost all participants having some experience with this application or at least having heard about it. Other commonly used applications included Gemini, Co-Pilot and MyAI, which is integrated in the Snapchat application. The participants also mentioned using a wide range of other services.

As most participants use the free versions of these applications, they are restricted regarding the kind of features and settings they can access and use, including the extent to which they can secure the data they provide when using these applications. Some

noted that they would like to have access to the features available in various subscription packages:

It's free, but maybe I'll agree with my family to pay one fee so we can all use it together. I like it a lot, especially that voice mode on ChatGPT, where ChatGPT behaves and talks to you as if you were a living person, in any language. But that's not possible in this free version. It's only possible 10 minutes a month. (Darko, M, 13, Serbia)

I think in the paid version you could ask more questions because after a few minutes it just says a pop-up coming up that saying you can't use this anymore till this time (Oliver, M, 13, UK)

Others noted that they did not consider it necessary or justified to pay for additional features:

Paying per month for an artificial intelligence seems to me to be too much, I don't think it's necessary (Gonzalo, M, 17, Spain)

I just use the free one, because I just use it for simple stuff at school. So even the free one, it gives you access to a lot of things to help. So I feel like using the... the paid version it wouldn't really change anything (Aisha, F, 16, UK)

Most of the participants in the qualitative study also reported using GenAI technologies on a range of devices, with a computer and a mobile phone being the most popular options.

Our findings indicate that despite different countries and cultural contexts, European children have similar user patterns and experiences when it comes to the kinds of GenAI applications and services that they use, the extent to which they use the free versions of these services, and the devices they use to access them.

How and where do children learn about GenAI?

In our qualitative interviews, children discussed the various ways in which they learned how to use GenAI. Some children in different countries found GenAI use to be self-explanatory, and they did not think they needed any particular instruction in prompt-engineering. Others talked about the ways in which they learned about GenAI from their peers or siblings, or how they discovered various tools on social media. Many of them also learned about GenAI through social media, particularly TikTok and YouTube. Some also encountered news about GenAI through traditional media such as television or online news sources. It

was less common for children to mention learning about GenAI from their parents or caregivers. They occasionally reported that their parents or caregivers knew less about GenAI than they did. Most participants learned about GenAI from their classmates or siblings, and in connection with schoolwork:

I discovered ChatGPT last year when I started high school, because all my friends were talking about this app that did your homework, and I didn't know about it, so I started using it. (Elena, F, 15, Italy)

It was right when I started eighth grade. We had exams for the first time, and I had no idea what that was about. I have older siblings, so I asked them to help me study for the exams. They didn't have time, so they handed me their computer. They just said, "Yeah, this is AI. Just ask it whatever you need, and it'll give you a quick answer." (Dana, F, 15, Norway)

Others heard about GenAI for the first time on social media, like TikTok, YouTube or Instagram:

I found out about it from TikTok, like, that something like this even exists, you know, from those other platforms, and then I just downloaded it on my phone. (Wiki, F, 16, Poland) I'd seen it in a YouTube video by Jakidale, I follow him to stay up to date with new tech.

At first, it really surprised me. But it was only later, after a friend recommended it, that I actually tried using it for school, like, really gave it a go. (Francesco, M, 17, Italy)

Some of the children felt that, at a certain point, everyone seemed to be talking about and using GenAI. They noted how quickly it had been integrated into daily life and had become normalised almost effortlessly. The arrival of MyAI on Snapchat even created some "hype" among the children. Those who did not have it or know about it began to feel that they were missing out, as Amelia (female, 13) from the UK explains:

Everyone was talking about it in school, so I obviously wanted to be part of the conversation to see what all of the hype was about and then when I just came home, I just googled it and I just did it. (Amelia, F, 13, UK)

Others noted their surprise when MyAI was integrated in Snapchat, as it was not something they had decided to add or use, it was just automatically installed:

I think the first time I used artificial intelligence was on Snapchat, because I didn't even have to install a special application; it was already possible. It was kind of weird. I don't know who I'm writing to. Someone's answering. [...] everyone had an update on the app. (Katarina, F, 15, Serbia)

Everyone was using it [MyAI on Snapchat] because it was like a new thing and they're like, oh, what is this? Why is it here? (Aisha, F, 16, UK)

The young participants were similarly surprised by Gemini appearing on top of Google searches and gradually taking over their information-seeking processes due to its rapid summaries:

Gemini started appearing because it'd be like a little loading thing and kind of analysing what I've asked for, and I feel like it was way more helpful than the top search box (Aisha, F, 16, UK)

As for teachers, there was a great variety of individual approaches—from teachers who did not know much about AI and GenAI, to teachers who actively encouraged GenAI use and provided guidance, examples and recommendations for specific tools.

A teacher did give us instructions about how to prompt AI best so that it wouldn't give us extra information. There are some teachers who tell us not to depend on it for homework, but for example the history teacher just gave us a task and told us that if we don't understand something we should use ChatGPT to help us out. (Benjamin, M, 15, Malta)

Once in Spanish language we were asked to make a love day letter with ChatGPT for our mother or whoever we wanted to make [it for]... Sometimes teachers tell us, you have to make a letter and you can use ChatGPT to give you some ideas... and sometimes I use it'. (Ian, M, 13, Spain)

Well, it depends on which subject. For example, I don't think that geography teacher uses it that much, but that other teachers use it. I don't know, the math teacher told me about this program. She told me that everyone uses it for tasks and explanations. Int: She even recommended that you use it, right? Boy: Yes. Aha. (Slobodan, M, 14, Serbia)

Yeah. And like, we also made this project when we were learning about the immune system. We were supposed to make a little play about it. And then he [teacher] said, 'Yeah, it's totally fine to use AI to find a script and stuff.' So everyone just used it to find their scripts, and then we showed them and, yeah. (Brita, F, 15, Norway)

HOW do European children use GenAI?

In this chapter, we explore how children across different countries use GenAI in their everyday lives and, importantly, what activities they use it for. In the EUKO survey, children were asked if they had used GenAI in the past month for different purposes, including learning, solving practical problems, being creative, or seeking support. This allows us to unpack how different forms of GenAI use may be associated with different learning opportunities, digital skills, and well-being. Uptake and use of new technologies depend not only on access, resources, parental involvement, and individual factors, but also on national contexts such as education systems, policy and regulation, and culture. By comparing countries, we can see common patterns and important cross-national differences in how GenAI is used by children.

GenAI-based activities

In our survey, we asked our participating children to report on the specific activities for which they had used GenAI in the past month. Their responses reveal a wide range of uses, including educational tasks, creative activities, practical and everyday support, and advice-seeking, as well as other uses. Differentiating between these activities highlights which forms of use are most prevalent, which remain less common, and how patterns of engagement with GenAI differ across countries. Table 6 shows the percentage of children who have used GenAI for each of the purposes mentioned in the survey, by country.

Overall, **school-related uses are the most common**. Across the total sample, around one-third of respondents reported using GenAI to write essays or stories (33%) and to summarise or explain longer texts (35%), pointing to educational support as a central driver of GenAI adoption among children. However, the prevalence varies considerably between countries. For example, Belgium, Portugal, Austria, and Slovakia report particularly high levels of educational use, while Ireland, Finland, and Malta report much lower levels. These countries also fall within the lower half in terms of overall GenAI use.

Our qualitative data are consistent with these findings and suggest that children primarily use GenAI to help with explanations, homework, and understanding difficult topics. Many participants described GenAI as a kind of personal tutor, often comparing tools such as ChatGPT to 'having your own teacher' or an 'anytime, anywhere teacher'. Interviewees explained that GenAI can supplement teachers' explanations when a teacher is not available or when textbooks are difficult to understand. The qualitative interviews further illustrate how educational motivations are closely intertwined with instrumental ones: GenAI supports learning because it is fast, helps simplify complex

concepts, and is accessible whenever and wherever it is needed.

Practical and everyday uses are also widespread. One quarter of the total sample (25%) reported using GenAI to get recommendations on what to do, watch, listen to, or buy, with especially high levels in Serbia, Croatia, Italy, and Portugal. This suggests that many children use GenAI as a general-purpose tool to navigate everyday decisions, not just to support schoolwork.

Creative uses, such as creating images or videos, are less common (16% overall), and **deepfake creation is rare** across all countries (4% overall). Although some countries report slightly higher levels of deepfake use, the consistently low percentages indicate that such practices are not widespread among children, contrasting with some public fears about extensive misuse of GenAI by children for such deceptive or harmful purposes.

Uses related to **advice on health, concerns, and personal matters** are reported by a smaller but still notable proportion of children. Around 15% report using GenAI to talk about physical health or fitness, and a similar proportion report talking to GenAI about worries or seeking advice. These uses are more common in countries such as Italy, Portugal, and Serbia, but remain relatively limited overall, suggesting that GenAI is not yet a dominant source of personal or emotional support for most children.

Finally, a substantial share of respondents selected '**something else**' (29% overall), with particularly high values in countries such as the Czech Republic, Poland, Austria, and Finland. This indicates that children are using GenAI in ways that go beyond those initially envisioned. GenAI's integration in services and platforms children use, such as Google searches and MyAI in Snapchat, has been widespread, which might be reflected by some of the answers in the large 'something else' category.

Table 5: What children have used GenAI for during the past month by country

	% Write essays or stories for schoolwork	% Summarise or explain a longer text	% Create images or videos	% Create about different things	% Create "deep fakes"	% Get recommendations on what to do, watch, or listen to or buy	% Talk to or get advice	% Talk to on my physical health or fitness	% Talk to about my physical health or fitness	% Worries and get advice	% Something else
AT	37	45	19	3	3	31	22	14	14	45	
BE	48	59	15	3	3	19	13	10	10	34	
CH	22	26	8	2	2	14	8	5	5	20	
CZ	39	32	22	5	5	26	18	19	19	54	
EE	29	34	13	3	3	26	9	11	11	25	
ES	23	29	10	3	3	15	9	9	9	12	
FI	14	15	11	2	2	13	10	8	8	39	
HR	42	36	21	9	9	35	15	14	14	19	
IE	17	18	7	0	0	11	6	3	3	6	
IT	26	44	19	5	5	34	20	24	24	28	
LU	28	35	17	3	3	22	17	12	12	25	
MT	15	16	6	2	2	10	4	4	4	12	
NO	35	25	10	1	1	17	9	7	7	19	
PL	23	26	15	4	4	16	13	16	16	43	
PT	47	48	24	4	4	30	23	23	23	23	
RS	43	30	21	6	6	40	20	23	23	38	
SK	45	41	23	6	6	30	17	17	17	28	
Total	33	35	16	4	4	25	15	15	15	29	

QC11 Which of the following purposes, if any, have you used GenAI for during the PAST MONTH?

Base: All children aged 9-16 (N= 25,592 but see table 2 for the number of respondents by country).

The comparative findings indicated that children's recent use of GenAI is primarily educational and practical, while creative or potentially risky uses, including advice-seeking, remain less common and unevenly distributed across countries.

Single or multipurpose use?

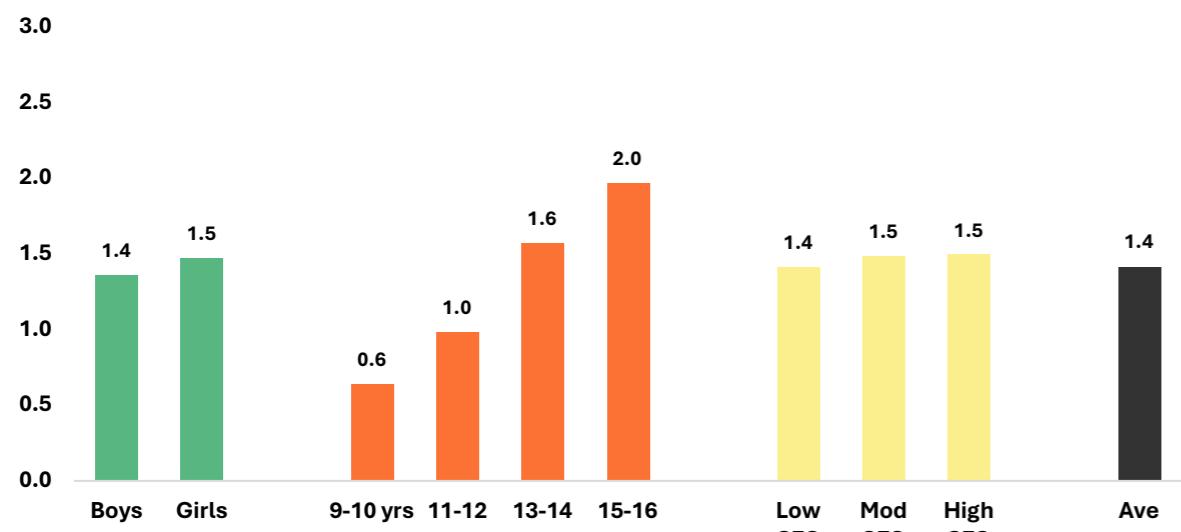
To better understand children's engagement with AI, it is important to consider not only what they use GenAI for, but also **how many different activities** they use it for. Rather than tracking frequency of use, Figure 3 shows whether children use GenAI for a single activity or across multiple activities across the survey

countries. This offers insight into how broadly GenAI is integrated into children's everyday activities, and whether its use is limited to specific tasks or spans a variety of situations.

Overall, children report using GenAI for a relatively limited number of activities, but we find clear country differences. In countries like Portugal, Serbia, Slovakia, the Czech Republic, Croatia, Austria, and Italy, children report using GenAI for a wider range of activities, to a larger degree than children in countries such as Finland, Ireland, Malta, Spain, and Norway. This may reflect differences in access to technology, school practices, or how common GenAI tools are in everyday life and merits further investigation.

Figure 4 shows how the average number of GenAI activities varies by gender, age, and socioeconomic status (SES) across the whole sample. Overall, children engage in a relatively small number of GenAI activities. As with the groups of users, differences

between girls and boys are modest, with girls reporting slightly more GenAI activities on average than boys.


Figure 3. Average number of GenAI activities in the past month by country

QC11 Which of the following purposes, if any, have you used Gen AI for during the PAST MONTH? Looking at those who have engaged in at least one of the eight activities.

Base: All children aged 9-16 (N= 25,592, but see table2 for the number of respondents by country).

Figure 4. Average number of GenAI activities by gender, age and SES

QC11 Which of the following purposes, if any, have you used Gen AI for during the PAST MONTH? Looking at those who have engaged in at least one of the eight activities.

Base: All children aged 9-16 (N= 25,592, but see table2 for the number of respondents by gender, age and SES).

The strongest pattern of differences relates to age. The average number of GenAI activities seems to increase steadily with age, from less than one activity among 10-year-olds to around two activities among 15-16-year-olds. Thus, even among the oldest children, who report the highest levels of engagement, using GenAI

for around two different activities on average still represents a relatively limited breadth of use. Rather, children seem so far to have an elective and incremental adoption of GenAI, integrating only a limited set of functions into their everyday practices rather than making broad or comprehensive use of all available features.

Finally, we see how differences by socioeconomic status are present but smaller than age differences. Children from low, moderate, and high SES backgrounds report a similar average number of GenAI activities, with only slight increases among those in moderate and high SES groups. This suggests that once children use GenAI, the range of activities they engage in is relatively similar across and regardless of socioeconomic groups.

Overall, children engage in a relatively small number of GenAI activities on average. Age is the strongest factor shaping how broadly children use GenAI, while gender and SES differences are comparatively small.

Language of use

AI tools are language models; hence, language choices shape how accessible, meaningful, and useful GenAI interactions are for children. They also reflect broader educational, cultural, and linguistic contexts.

The qualitative interviews demonstrate that most children in Europe tend to use GenAI in their respective national language, while some also preferred to use English to engage with GenAI. A smaller number of participants reported using GenAI tools in other languages – most often to practice a language they learned in school.

At the same time, the balance between national and English language use varied across countries. In some countries, like Austria, Italy and Poland, the participants reported using their national language more often and used English in addition, for example, when trying to learn it or for other purposes. Conversely, in Estonia, the Czech Republic, Latvia, Malta and Norway, the participants also used the respective national language, but in general reported using English more often.

The young people we spoke to reported that GenAI often produces errors in their national languages, which makes it difficult to use reliably. As a result, many switch to English when interacting with GenAI to get accurate responses. Children quickly learned which topics and situations GenAI handled better in different languages and used this knowledge strategically to achieve the best results.

For studying, I use Latvian because most things are in Latvian, so everything needs to be described in Latvian. But, for example, when it comes to photos, I prefer English because it understands that better. And for everyday, casual things, I ask in Russian. (SO16, F, 16 Latvia)

I usually start in Estonian, but if I don't get quite the answer I was expecting, if I want something more specific, then I ask in English. Usually, in English, they can give better answers, results. (Nils, M, 17, Estonia)

Normally in German, but if I want to ask something in math or physics, then in French, because I have everything in French there (Julie, F, 13, Luxembourg)

In some cases, GenAI tools did not even accept input in certain languages, effectively forcing children to use English. Small local dialects or regional languages were particularly poorly represented in large language models. At the same time, this gave an advantage to children from multilingual backgrounds or those with opportunities to learn foreign languages, as they could navigate between languages to get more accurate or useful GenAI outputs. In contrast, younger children and those without access to foreign language-learning faced limitations, often struggling to use GenAI effectively when it required English.

And on Canva, the worst thing is that sometimes it doesn't accept some things that are in Portuguese. I think there should be a version that accepts things in Portuguese and not just in English (Maria, F, 13, Portugal)

As we only use Basque in Basque Country, I don't think there are so many AIs adapted for Basque. (Oihane, F, 16, Spain)

I'm not very good at English yet, especially when it comes to vocabulary, so I mostly use Czech (Michal, M, 14, Czech Republic)

In addition, children's choices of language when using GenAI were strongly shaped by the predominance of English in digital environments. The default settings of devices and platforms in English further reinforced this, making English the more convenient or familiar option even when children spoke other languages at home.

My phone is in English, so I use it in English, and my computer is in Czech, so I use it in Czech there. It's kind of mixed for me. (David, M, 13, Czech Republic)

Some participants also noted that despite their attempts to use GenAI tools in a chosen language, the application would often switch back to English. The opposite could also occur, where GenAI tools switched from English to another language. This caused

frustration, as exemplified by the following quotes from Jakub and Amelia:

More in English, and also in Czech, or sometimes not at all. When it switches automatically, I don't switch it back, and honestly, English feels the most understandable to me. (Jakub, M, 13, Czech Republic)

But sometimes, which is also really annoying, I ask him, like, if [AI's given name] was talking too much in Bulgarian, and I asked him something in English, sometimes he'll just reply in Bulgarian. (Amelia, F, 13, UK)

Our interviews indicate that a range of factors influence the choices children make when deciding which language to use when engaging with GenAI. Some children engage unproblematically with GenAI in their national language. However, other young Europeans note that GenAI tools are not significantly developed in their language of choice, whether these are regional or minority languages like Basque, smaller languages like Estonian, or even major European and

international languages like German or Portuguese. Furthermore, the extent to which the children are used to using digital devices, and the languages in which these devices are set, also influence the language choices they make. Taken together, these factors create a landscape in which English often becomes the default or more reliable option, privileging children who are proficient in it. This dynamic also highlights broader structural inequalities in GenAI accessibility, where children's linguistic background and digital exposure can shape their ability to fully benefit from generative technologies.

Young people report that GenAI often produces errors in their national languages, which makes it difficult to use reliably. English often becomes the default or more reliable option, privileging children who are proficient in it. This dynamic highlights broader structural inequalities in GenAI accessibility.

WHY Children use GenAI

This section explores in greater depth the motivations behind children's use of GenAI, moving beyond patterns of use to examine the reasons that drive engagement. Drawing on both quantitative survey data and qualitative interviews, it focuses on motivations such as learning, efficiency, creativity, curiosity, and social influences which shape children's interactions with GenAI. By integrating these two types of data, the analysis highlights not only which motivations are most common but also how children themselves understand, explain, and make sense of their use of GenAI across different contexts and countries.

Motivations of use

Children in six countries (Switzerland, Estonia, Finland, Croatia, Italy, and Norway) were asked about their reasons for using GenAI during the past month. Our analysis shows that **children's use of GenAI is primarily motivated by convenience and efficiency**. The most common reasons relate to saving time, making tasks easier, and finding information or solutions that were not easily available elsewhere. Creative motivations also feature prominently, with many children using GenAI to gain inspiration for their own creations or to explore what the technology can do. Educational motivations, such as improving school performance, are present but less dominant, while more instrumental uses, such as having tasks done for them, are relatively less common. Leisure- and social-oriented motivations, including entertainment and using AI with friends or siblings, appear more marginal. Trust-based and social influence motivations, such as

relying on GenAI more than other sources or using it because 'everyone is using it', are reported least frequently.

As anticipated, instrumental motivations top the list of reasons to use GenAI for schoolwork and learning. More specifically, 40% of respondents – ranging from 62% in Estonia to 12% in Croatia – report using GenAI to save time. The second highest motivation for using GenAI is because it makes things easier – 36%, ranging from 59% in Estonia to 15% in Croatia. More than one in three respondents reported that they used GenAI because they could not find what they needed elsewhere – the same pattern can be observed, whereby the proportion is highest in Estonia (53%) and lowest in Croatia (9%). Less common, but still reported by one in five children overall, is the wish to delegate time-consuming and boring tasks. Getting things done for oneself ranges from 45% in Switzerland to 7% in Croatia.

Table 6: Reasons that children give for using GenAI by country

	CH	EE	FI	HR	IT	NO	Ave
To save time	45	62	39	12	45	48	43
To make things easier	29	59	41	15	28	49	36
Because I couldn't find what I needed elsewhere	11	53	28	9	43	40	34
To get inspiration for my own creations	23	30	24	9	30	36	26
To see what Gen AI can do	16	37	28	10	30	27	26
To get a better school grade	46	33	14	10	23	25	25
To get things done for me	45	23	16	7	12	23	19
Because it is a fun way to pass the time	24	15	20	8	20	12	17
To play around and entertain myself with friends/siblings	25	10	14	7	12	7	12
Because I trust Gen AI more than other sources	23	13	6	2	14	8	12
Because everyone is using it	9	11	13	4	11	13	10

Q08 Why did you decide to use Gen AI for these activities in the past month? Select all that apply.

Base: all children who have used GenAI in the past month (N= 5723)

How the motivation categories were defined

To further analyse and understand *why* children use GenAI, individual survey questions were grouped into broader motivation categories based on the types of reasons children reported, primarily for the quantitative analysis. Each category brings together closely related motivations, making it easier to identify overall patterns in children's use of GenAI while remaining grounded in their own responses.

Practical and instrumental motives

This category includes reasons related to saving time and getting things done more easily (e.g. to save time; to get things done for me; to make things easier; because I couldn't find what I needed elsewhere).

Play and curiosity motives

This category captures exploratory and playful uses of GenAI (e.g. because it is a fun way to pass the time; to see what GenAI can do; to play around and entertain myself with friends or siblings).

Creativity and self-expression motives

This category reflects creative reasons for using GenAI, such as seeking inspiration for personal projects (e.g. to get inspiration for my own creations, such as writing, images, or music).

Educational motives

This category focuses on school-related reasons for GenAI use (e.g. to get a better school grade).

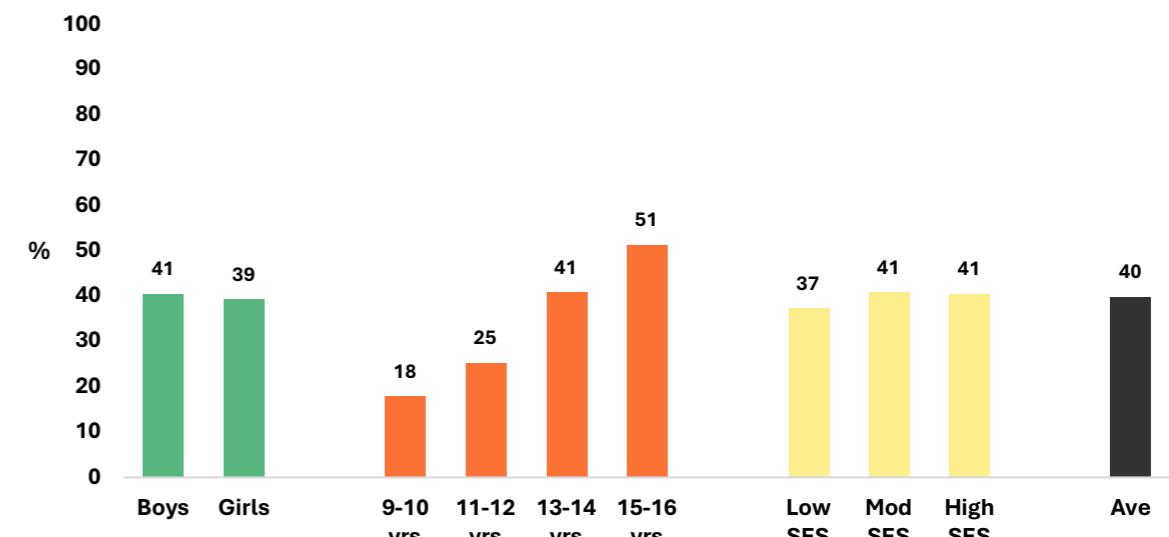
Trust, social, and norm-related motives

This category includes social and normative reasons for using GenAI (e.g. because I trust generative AI more than other sources, because everyone is using it).

The patterns presented so far, both in use and overall motivation, provide an overview of the main reasons children give for using GenAI, but they do not fully capture how these motivations are experienced, interpreted, or negotiated in everyday life.

In the following sections, we therefore explore these motivations in greater depth by drawing particularly on insights from the qualitative interviews. This allows us to further examine and understand how children talk about their reasons for using GenAI, how different motivations might overlap, and how they relate to specific situations, expectations, and concerns. This offers a more nuanced understanding beyond the survey results.

Practical and instrumental use


As presented in the table above, we find that across countries, the most common motivation is saving time (43% on average). This is a key aspect of practical and instrumental GenAI use. Looking closer at this (Figure 5), we find that gender differences are small, with boys (41%) and girls (39%) reporting similar levels of time-saving motivation. In contrast, age differences are pronounced: only 18% of 9–10-year-olds report using GenAI to save time, compared with 51% among 15–16-year-olds. Thus, as with broader GenAI use it seems increasingly relevant as children grow older and face greater academic and everyday demands.

Differences by socioeconomic status are modest. Children across low, moderate, and high SES groups report similar levels of time-saving motivation (37–41%), indicating that the instrumental value of GenAI is equally recognised across social backgrounds once children are using it. The qualitative interviews reveal further how speeding up tasks is closely associated with other instrumental motivations. Indeed, interviewees report using ChatGPT for schoolwork to save time:

I used it for the first time for a presentation, and I was able to get all the information listed much faster and in a structured way, and it was very helpful, because otherwise I would have had to visit five different websites and [...] compare all the information. (Maya, F, 17, Austria)

It saves a lot of time. Both for schoolwork and everything else (Francisco, M, 14, Portugal)

Figure 5. Using GenAI to save time by gender, age and SES

Base: children who have used GenAI in the past month in Switzerland, Estonia, Finland, Croatia, Italy, and Norway (N= 3510 by gender, N = 3603 by age and N=3300 by SES)

So, for example, on my computer—of course, I could look something up, but instead of going through all the articles and Wikipedia and stuff like that, I can just go straight to Copilot, and it already has what I searched for as a kind of text message, you know? And then it answers me right away about what I was wondering. So it's much faster (Mario, 16, M, Norway)

I didn't need to go into depth. And it helped a lot, because I didn't need to go through my book or type a lot, so it was quite time saving. (Zara, F, 13, UK)

What stands out from the qualitative data, then, is how GenAI has changed how young people use search engines: “It's basically my new Google now, to ask things in general,” as Serena, a 17-year-old Italian girl, put it. Indeed, when asked to define GenAI, many interviewees understand it as an improved version of Google, as Markus (M, 15, Norway) explained: “A digital tool that helps you produce text or find answers—kind of like Google, but almost even better.” In fact, compared to search engines, the participants considered asking ChatGPT to be more convenient because they no longer needed to compare and integrate different sources in their answers. Searching and retrieving information has been made faster and easier:

I find it really practical because you can access better information, somehow faster than if you had to Google and search a lot to get the information you need. [...] and then you get very good answers (Emilia, F, 16, Austria)

Compared to when you just normally search something through Google, there are many links and journals on specific topics you want. But the robot throws out exactly what you need and what you asked for very quickly. (PV, 15, M, Latvia)

I don't have to look for that information in books or use Google. I just type it in quickly, and everything is explained, so I don't waste unnecessary time. (TE, M, 15, Latvia)

Practical use appears to be strongly linked to GenAI's perceived usefulness and efficiency, and its equation with a search engine. Children often describe GenAI as a fast and convenient tool for everyday decision-making, reinforcing a pattern of instrumental engagement where GenAI is valued primarily for its ability to synthesise information, provide options and alternatives and make suggestions. Children we spoke with appreciated how GenAI gave them quick overviews of large amounts of information and analysed it to make suggestions about places to eat, music to listen to, shopping, and beauty advice:

Like, if I wanna listen to music, I ask it for recommendations, or even for new places to eat out, or... just stuff I'm curious about, like certain shows or films. (Serena, F, 17, Italy)

I really use it for everything. For example, when I was dyeing my hair, I wrote to it to help me choose a colour and things like that. When I can't decide about something, I write to it to summarise the pros and cons. (Eliška, F, 16, Czech Republic)

[I use it] to buy something. I find different stuff. For example, I'm buying, like, a phone and I find different models and different places have different reviews on that phone and it's really hard to read all of them and get a conclusion. And I give them the different models and say compare the RAM speed, the different storage, the memory and everything. And it gives a good conclusion. (Ben, M, 15, UK)

Children also use GenAI to support them in planning leisure activities—for example, when planning to travel or for holidays, as exemplified by the following quotes:

[If] we want to go to Pärnu, we want to stay at some campsite, so what's the price of the campsite, how's the transport, what activities do we have? And then we use AI, for example, to ask how it could all be, what we could do, and how we could divide the day into blocks. (Nils, M, 17, Estonia)

I'm flying from Stanstead Airport on the 9th of April to Toulouse to an extreme day trip to the Airbus factory in Toulouse. Can you plan a day out? And then it gives me everything I need and then I send this over... to my mom and she can organise it. (Sam, M, 14, UK)

An additional kind of information-seeking that the young participants discussed was using GenAI to support job seeking:

Yes. I've actually used it for job searching. (Markus, M, 15 Norway)

I'll be looking for a job soon, so like, I don't know, I ask stuff like—if I get an idea—how much someone earns or what kind of education you need for that kind of job, or like, what people do in that job, how much they make, what qualifications you need and all that. (Wiki, F, 16, Poland)

Play and curiosity

Besides instrumental motivations, children can also have a playful attitude towards GenAI: in fact, 26% of respondents (ranging from 37% of Estonian to 10% of Croatian children, see Table 6) report using GenAI to test its abilities (to “see what GenAI can do”). The proportion of those who report using GenAI “because it is a fun way to pass the time” is 17% overall, ranging from 24% in Switzerland to 8% in Croatia; whereas 12% of respondents mention “to play around and entertain myself with my friends or siblings” as a reason to use GenAI, again with higher rates in Switzerland (25%) and lowest in Croatia and Norway (both 7%).

Curiosity-driven use of GenAI, here captured in Figure 6 by the motivation “to see what GenAI can do”, also varies by gender, age, and socioeconomic status. Gender differences are modest, with boys (25%) slightly more likely than girls (23%) to report using GenAI out of curiosity. Age differences are present but less pronounced than for instrumental motivations: curiosity peaks among children aged 11–14 (around 27%) and declines somewhat among the oldest group (21% among 15–16-year-olds).

This suggests that exploratory use is particularly salient during early adolescence, while older teenagers may increasingly turn to GenAI for more goal-oriented purposes. Differences by socioeconomic status are minimal, with similar levels of curiosity-driven use across low, moderate, and high SES groups (around 24%).

Our qualitative interviews confirm how playful interactions with GenAI are motivated not just by curiosity (testing AI), but, more importantly, by the need to escape boredom and pass the time. Rather than being driven solely by experimentation, these interactions are embedded in everyday moments of idle time, where GenAI becomes a resource for alleviating boredom, filling time, and enabling light-hearted, often social, forms of play:

When I'm bored, I come and talk. [...] how are you today, write me a song. (Marta, F, 15, Serbia)

Actually, just for fun. [...] I was bored, so I asked Snapchat MyAI a few questions (Elvira, F, 16, Austria)

Sometimes I get bored—well, I've been bored before—and then I go on Character AI, find some character, and kind of create my own story there. (TB, M, 13, Latvia)

When you're bored one day in the house you can just ask it 'what to do on like rainy days' or something with your friends. And then it just comes up with all these different answers, and like it's really cool. (Maya, F, 13, UK)

At the outset, Snapchat's MyAI generated considerable curiosity, prompting users to engage with it in playful and exploratory ways:

When I got Snapchat, um, I saw that too. At first, I didn't know what it was until I, um, read through it. And then I asked it a few joke questions. (Liv, F, 14, Germany)

The first was the AI on Snapchat, where I just tried out what it wrote back, just for fun (Maya, F, 17, Austria)

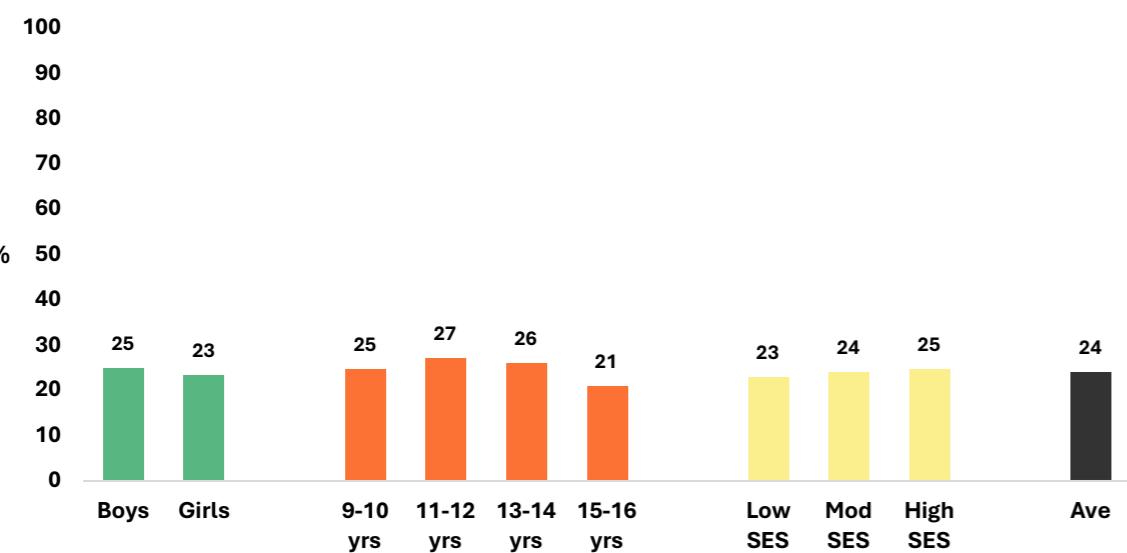
Some of the German, Italian and Norwegian participants also mentioned using GenAI together with friends for playing games and testing boundaries:

Well, not really ideas as such, but we did something like—not ‘truth or dare’ exactly, but like asking questions, something like that. And then it gave us a few questions. Yeah. (Mats, M, 13, Germany)

And I told it something, I mean, so it wasn't a riddle, it was a challenge, I got it wrong. And, like, I told it, 'you have to pick one emoji out of these three that I'm going to write down for you. And if we put the same one, we're, I mean, you're good.' (Robi, M, 13, Italy)

Other young people reported using GenAI for creative purposes, such as creating games in Roblox or finding help to use keyboard shortcuts or codes in games.

Creativity and self-expression


Earlier research on children's internet use more generally has often referred to the uptake and use of different services and technological affordances as a “ladder of opportunity”. While many children engage in social, entertaining, or exploratory activities, fewer move on to more demanding uses such as creative production or civic participation (Livingstone et al., 2019; Cino et al., 2023). In the case of GenAI, our findings indicate that creative use is relatively common, reported by around a quarter of children on average. However, this varies considerably between countries, from 36% in Norway and 9% in Croatia (see Table 6), and is overall less prevalent than strongly instrumental uses such as saving time or making tasks easier. Looking at the distribution (Figure 7), we see how use of GenAI as a source of inspiration for one's own creations is evenly distributed across age groups and SES, but with more girls (28%) citing this as a motivation than boys (21%).

Consistent with survey data, interviewees describe using GenAI to brainstorm ideas and get inspiration to stimulate their creativity. Contrary to writing summaries and reports, GenAI is integrated in creative activities as stimuli, rather than a substitute, for human creativity. It is also understood as a way to quickly overcome the “creative block”:

Ideas aren't that easy to think of quickly, but the robot comes up with ideas fast. Not even completely new ones—they've probably existed somewhere already—but it still comes up with some ideas. (PV, 15, M, Latvia)

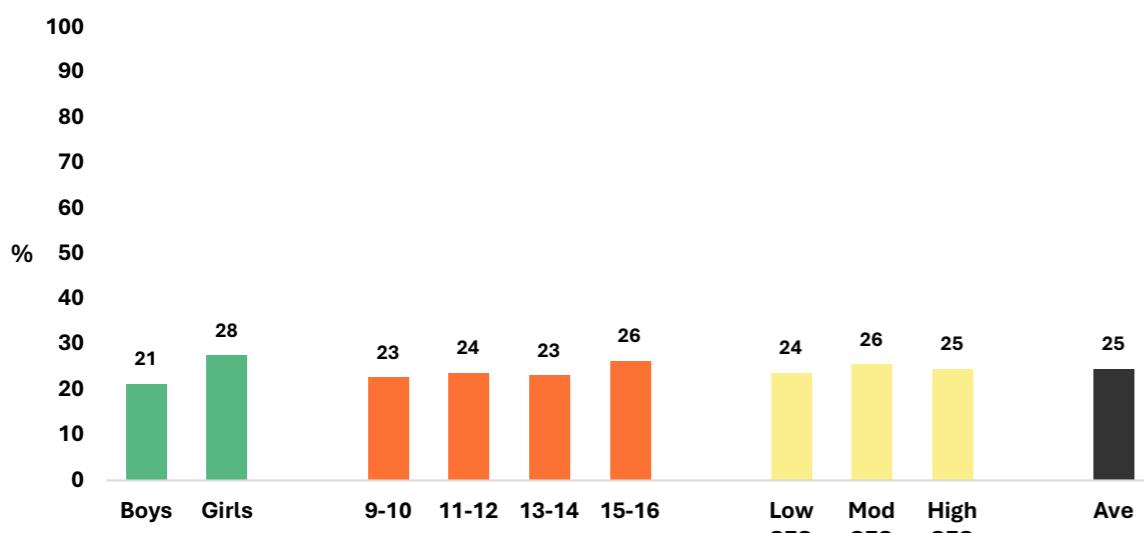

I study graphic design, so I work on creating digital products. For example, it happened with a poster we had to design. When I looked at it, something didn't quite convince me. I uploaded it, and ChatGPT suggested I change the colour of the text because it wasn't very visible something I hadn't even noticed (Valeria, F, 17, Italy)

Figure 6. Using GenAI to see what AI can do by gender, age and SES

Base: children who have used GenAI in the past month in Switzerland, Estonia, Finland, Croatia, Italy, and Norway (N=3510 by gender, N = 3603 by age and N=3300 by SES)

Figure 7. Using GenAI to get inspiration for my own creations by gender, age and SES

Base: children who have used GenAI in the past month in Switzerland, Estonia, Finland, Croatia, Italy, and Norway (N= 3510 by gender, N = 3603 by age and N=3300 by SES)

It can improve, it can increase your imagination and then you can come up with pictures yourself. It gives you new ideas (Milos, M, 14, Serbia)

Before, I didn't make many videos. I started using videos in assignments because of CapCut — that's what encouraged me (Diana, F, 16, Portugal)

Interviews with young people confirm that creative uses of GenAI are still marginal, and mainly limited to creating images, including for schoolwork:

I have created images using ChatGPT, but it's more like for homework I do it, like to enhance a PowerPoint maybe, like, oh, 'can you generate an image of an elephant flying on a carpet?' (Hannah, F, 16, UK)

I use Canva, and there's also that AI in Canva. I use it sometimes for graphic design or to expand or edit the text. I really love playing with it (David, M, 13, Czech Republic)

I had to include a map [...] So, I asked ChatGPT to create one for me based on the style of the presentation, so I could include it. (Sara, F, 13, Italy)

Other young participants described creating images with GenAI for fun, or as a hobby, or even to test its abilities:

Making images was just something I started doing for fun. Like, I could make pictures of anything — like, "Let's make an image of a dog flying." So I did that kind of stuff. And I got some funny results. I think they're still saved on my phone. (Aksel, 15, M, Norway)

I think if you were to do an image that would give you just a plain face instead of making it obvious it's a certain person. (Leo, 15, boy)

And then I tried to get a generated image for a Facebook event cover photo, but unfortunately the pictures weren't as accurate as I wanted, so in the end, I didn't end up using them. (Erik, M, 16, Estonia)

Interviewees suggested other creative uses of GenAI. In fact, some of the participants, in particular those from Austria, Latvia, Poland and Norway, reported using GenAI to create music. The Sono tool was mentioned in this context, as the following quotes show:

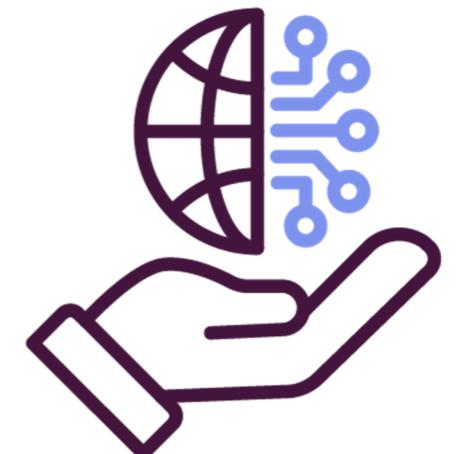
There's also this kind of AI tool—I have it myself—where you write song lyrics and it creates music for the song. It's called Sono. Yeah, I type in the lyrics there, and it generates the song with an AI voice. It's actually pretty good sometimes. [...] You set the style yourself, and it sings it for you. (ML14, F, 14, Latvia)

When I write songs like that, Sono. It's an AI that can write songs and find the lyrics, but mostly does the rhythm. (Malene, F, 13, Austria)

First, you type in the title of the song you want. Then you choose the voice — like female, male, low, high. So yeah, first you pick the voice. Then you pick the music genre, like techno, pop, hip hop, rap, and stuff like that. After that, you write the whole lyrics or just paste them in — either from the Internet or something generated by ChatGPT. Then you usually wait up to 20 minutes, and the song is ready. It always comes in two versions — one in the style you chose, and the other one is always a sad version. (Vika, F, 17, Poland)

On my composing homework, right, I ask it for, like, to give it, like, give me, like, a few... chord progressions, for example, to, like, Latin music, because I'm not, like, really familiar with, like, Latin American music. So I ask it, like, what other composers use so that I can, like, try to use their, like, idea and change it a bit, yeah, like, for, like, the chord. (Noah, M, 14, UK)

I've seen lots of [...] people using AI to recreate songs in different artists' voices [...] I've seen lots of like content of that on like social media as well so and it's and it's weird because it sounds exactly like the artist (Aisha, 16, girl, UK)


However, as already noted in relation to information-seeking practices, whether GenAI stimulates or detracts from creativity is debatable. Children's accounts point to a critical awareness of this tension, with concerns that over-reliance on GenAI tools may undermine independent thinking and creative effort. Rather than viewing GenAI as a substitute for creativity,

they emphasise the importance of maintaining personal input and control, suggesting an emphasis on human agency in creative processes:

On the one hand GenAI helps to develop my ideas faster, when it comes to graphic design or photos. On the other hand, I experienced, that it damages my creativity - it makes things less emotional. (Maxi, M, 16, Austria)

I feel like AI should be like minimised, rather, because I feel like once you start using it you really use, like, the uniqueness of your own ideas. And children are so creative, and have such amazing ideas, that using AI kind of strips away that creativity, and makes people so dependent on what AI can do for them rather than what they can do for themselves (Aisha, F, 16, UK)

Our interview data and survey findings show how GenAI technologies are understood as both a means of empowerment and disempowerment, and that similar patterns of engagement with GenAI are framed as an opportunity by many, while at the same time being recognised as a risk or a motivation for non-use, often by the same children.

CHATTING WITH CELEBRITIES

A novel practice, highlighted in interviews especially with Norwegian and Latvian children, is the use of chatbots to interact with impersonated celebrities. This activity combines the need for companionship with entertainment and creativity. Children are indeed aware that the celebrity is being impersonated by another user or by AI but nonetheless experiment and express positive feelings. The character itself may be fictional and/or artificial, but the feeling of reciprocity and being seen is authentic.

I've talked to celebrities, which I find interesting. One I remember was... Who did we have? Glen Powell. [...] He's also kind of my favourite actor, I think. And yeah, he's really like a dream – to meet him – and the chance to talk about him, even if it's artificial intelligence, it really helps, because I know I'll never meet him in real life (EL, 15, F, Latvia)

I've created my own characters there as well, and I talk with them. [...] For example, let's take someone like Elsa — I think a lot of people know who Elsa is. [...] So you can go in and talk with her. (Mario, M, 16, Norway)

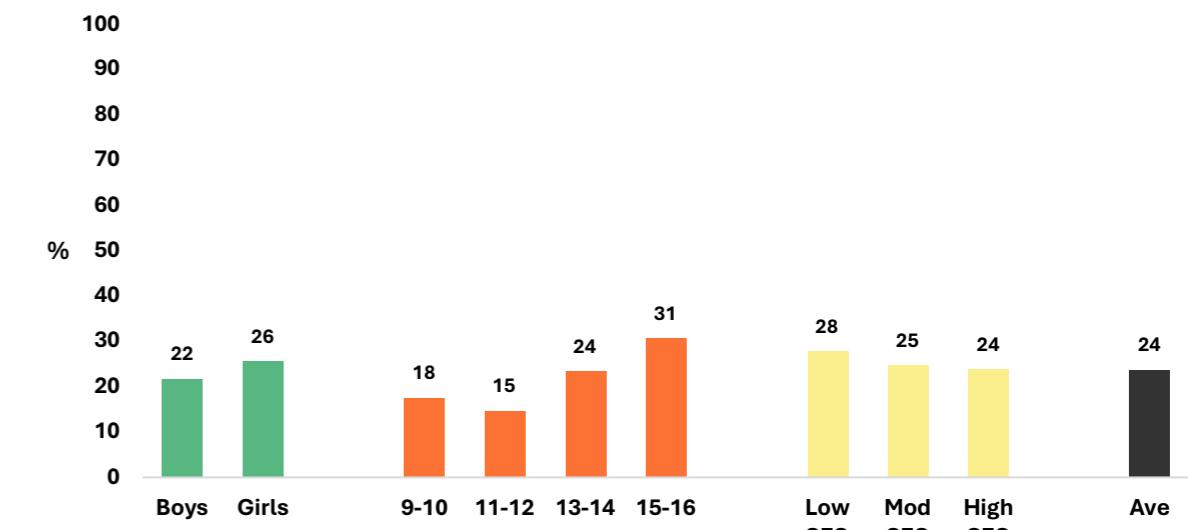
Similarly, two participants from Portugal and the UK also described using GenAI to create characters. These kinds of engagements had a creative and playful side to them, allowing children to expand their imagination:

If you really like a certain movie and you want to, let's say, play around with it, you go into a real character and you can choose a character or a story, and you start playing around with that story. As you write, the artificial intelligence responds to you and builds an entire story based on your dialogue. (Joana, F, 17, Portugal)

I've seen lots of [...] people using AI to recreate songs in different artists' voices [...] I've seen lots of like content of that on like social media as well so and it's and it's weird because it sounds exactly like the

artist [...] when I first started seeing videos like that, they were getting lots of attention because people would even make it as a character from a cartoon singing a song that's popular these days. And people are like, 'oh, that's so cool'. 'How do you do that?' And it's just mostly entertainment. (UK08, F, 16, UK)

Educational use of GenAI


Using GenAI with the explicit aim of getting a better school grade is an important but not overall dominant practice among children who have used GenAI in the past month. On average, one in four children report this motivation, see Figure 8.

Differences by gender are small, with girls slightly more likely than boys reporting using GenAI to improve school grades. Age differences, however, are significant. The use of GenAI for improving grades increases steadily with age, peaking among 15–16-year-olds. This is not surprising as we can expect academic pressures, expectations, and the perceived usefulness of GenAI for schoolwork to become more salient as children grow older.

Importantly, differences by socioeconomic status are limited, with similar proportions across low, moderate, and high SES groups. This suggests that, once children are using GenAI, its perceived value for school performance is relatively evenly distributed across social backgrounds. At the same time, as reported earlier, access to and breadth of GenAI use still varies by SES, indicating that equality at the level of motivation does not necessarily translate into equality of opportunity or outcomes. Here more research is needed to understand the position of GenAI in children's educational lives, including whether this use represents a helpful resource for learning, as well as questions about guidance, fairness, and the conditions under which GenAI can support learning without undermining educational autonomy.

Consistent with the motivations provided by respondents in six countries, the qualitative data indicate that children predominantly use GenAI to support learning, particularly for explanations, homework, and understanding difficult topics. Interviewees frequently frame GenAI as a form of personalised tutoring, "like having your own teacher", emphasising its availability beyond the classroom. GenAI is described as an "anytime, anywhere" resource that supplements teachers' explanations when support is unavailable or when textbooks are hard to follow or even not available.

Figure 8. Using GenAI to get a better school grade by gender, age and SES

Base: children who have used GenAI in the past month in Switzerland, Estonia, Finland, Croatia, Italy, and Norway (N=3510 by gender, N=3603 by age and N=3300 by SES)

I use it a bit as a teacher, let's say, to explain things to me a second time (Sara, F, 13, Italy)

It's often formulated so simply, like a teacher who always helps you and knows all the topics and, yes, has your answer in just a few seconds (Elisa, F, 14, Austria)

You don't always grasp everything from lessons, and sometimes, yes, you learn something from the teacher, and also something from the robot. Especially when you need something more specific that you don't know, and the teacher is busy. (PV, 15, M, Latvia)

We don't have a good textbook in health education. Hence I use AI for getting more and better information on that topic. (Katja, F, 16, Austria)

Importantly, the interviews show that educational motivations are closely intertwined with instrumental ones: children value GenAI not only as a learning support, but for its speed, its ability to translate complex concepts into accessible language, its constant accessibility, and for making things easier for them.

People use it because it's definitely an easier way to do something. (Katarina, F, 15, Serbia)

Above all, it's that learning is much easier for me because of it — I'm able to learn things much faster and more easily. (Wiki, F, 16, Poland)

But I have learned a lot from it really. It's an easier way of learning [...] you can decide at what 'level' you want it to explain to you. (Miryam, F, 15, Norway)

As our young participants describe, GenAI can be a useful resource when they encounter difficulties and require guidance or clarification, especially at home. It helps them clarify complex concepts, work through problems step by step, and make sense of material that might otherwise feel overwhelming. By providing explanations and guidance tailored to their questions, GenAI allows children to move forward in their learning rather than getting frustrated or giving up. In this way, it functions as an accessible support system for moments of confusion, helping them regain understanding and continue their schoolwork with greater confidence.

I got homework, I didn't know what, like, a question was, it was quite confusing and then I just asked AI and then it helped me. (Sophie, F, 13, UK)

I ask it, can you explain this concept that I did not understand in simple words? Or maybe I ask, can you elaborate on this topic? It makes me a text, I read it, integrate it with the textbook, my notes, and so on. (Sara, F, 13, Italy)

It will usually be, like, a maths question that I'm stuck on homework and it will, like, explain it. (Zara, F, 13, UK)

If we have some task at school and I just don't understand it—like in biology, for example—sometimes we're supposed to look something up on our phones, so I try artificial intelligence and it helps and does everything right away. (Petr, M, 13, Czech Republic)

There have been cases, for example, when I get a test and I don't understand anything, yeah. That actually happened recently in a literature test. And I didn't understand anything, I photographed both pages for it. I told it to solve them, and in the end, I got an eight on a test I didn't really understand. So that's how you can use it. (EB, M, 17, Latvia)

This personalised and always accessible source of educational support was particularly valuable for participants who had learning difficulties, as Andrea noted:

It means a lot. It helps me a lot at school. If I have trouble understanding—I have dyslexia—it really helps, for example, by phrasing things a bit more simply and shortening texts. So it's very helpful (Andrea, F, 15, Norway)

In addition to consulting GenAI for support and explanation regarding school assignments, some of our participants reported using GenAI to develop their skills, including to learn how to summarise texts, and to develop their studying techniques:

I actually learned how to summarise texts really well. For example, I can now summarise texts much better than before, because I've seen how he does it and how best to pick out the most important things from such a long text. (Emilia, F, 13, Austria)

I followed a program that taught you a good study method, and they said you should write down questions—ask yourself questions that would later help you during tests or oral exams. [...] If the book didn't explain it exactly how I wanted, I would ask ChatGPT how it was, and I would combine that with the textbook and then make all my notes. (Sara, F, 13, Italy)

Children's experiences suggest that GenAI tools can enhance the quality and completeness of their schoolwork. By synthesising information from multiple sources and presenting it in a clear, structured way, these tools help children develop a deeper understanding and approach problems more effectively. They can support children in consolidating knowledge, exploring ideas more fully, and achieving outcomes that might be difficult to reach on their own. In this way, GenAI acts as both a guide and a support system, helping children navigate challenging tasks, strengthen their reasoning, and improve the overall effectiveness of their learning. Some children rely so

much on GenAI that they think that they won't be able to do without it.

I would not be able to master school without it [ChatGPT] (Magdalene, F, 17, Austria)

ChatGPT does it quickly and analyses all the responses it receives, whereas a person might stop at the first or second link [...] ChatGPT analyses all of them, from the first to the last. (Giulia, F, 16, Italy)

I think it helped me improve my grades. (Sofi, F, 14, Poland)

The possibility of obtaining answers to queries quickly and independently of place and time is often highlighted in discussions about GenAI. However, this is not unique to GenAI itself. It is largely grounded in the broader affordances of mobile communication. Smartphones, tablets, and other connected devices allow children to access information whenever and wherever they need it, providing a continuous link to learning resources outside the classroom. This constant accessibility means that students can seek clarification about difficult concepts, revisit instructions, or explore new ideas at their own pace, making learning more flexible and responsive to their immediate needs. In this context, GenAI becomes particularly valuable because it builds on these mobile capabilities, offering tailored guidance and explanations that leverage the immediacy and convenience already afforded by connected devices.

[The best thing about AI is] That you can use it anywhere, anytime. (Michael, M, 15, Austria)

I can work in my bed without having to carry around a heavy book. [...] I can carry it with me all the time and don't have to lug a book around or take it to class, for example. It's definitely much, much easier. (Malek, M, 16, Germany)

The ability to speed up and make tasks easier informs another reason for resorting to ChatGPT and other GenAI tools in schoolwork and other activities, namely, delegating tasks.

I don't have to write all the texts myself or do the tasks myself anymore, because ChatGPT can do that anyway (Leon, M, 16, Austria)

It also helps us a lot to maybe do some reports, some things we don't even give much importance to. We ask ChatGPT and it does it for us (Tommaso, M, 16, Italy)

I don't know, it makes it easier, like... It takes less time. For example, when we need to write something for school, we just tell ChatGPT to do it for us, and that's it, we don't dedicate ourselves to it that much [...] and we can learn something. (Milena, F, 17, Serbia)

Well, I am a little bit lazy and use it for my homework. [...] I know it isn't allowed, but it works perfect and teachers do not detect it. It saves time. (Franz, M, 14, Austria)

No, it hasn't really changed what I'm capable of—maybe it just made the work a bit easier. I used to be pretty slow when it came to starting a project or coming up with an idea, and using this tool helps me speed up the process. In the end, I still reach the same result I would have without ChatGPT—but maybe with a few extra hours of work. (Valeria, F, 17, Italy)

However, children expressed differing views about the implications of using GenAI. Some raised concerns about becoming overly reliant on the technology and losing their independence, while others described its use as highly normalised and largely unproblematic, showing little critical reflection on its role in their everyday practices, as the following quotes illustrate:

It's so easy to just get the answers. It's kind of like cheating. And I feel like when you get the answers right away, you lose some of the motivation that makes you want to work. And then you can't be bothered to look for other sources. (Ahmad, 15, M, Norway)

It's sort of just so normalised now [...] nobody really cares about it. It's just another tool, it's like a pen you can use it to write things, it's just something, you can draw things, it's just another tool. (Sam, M, 14, UK)

Some of our participants had also observed how either they or their fellow pupils had used GenAI tools for different assignments. While some had been reprimanded or received poorer grades, others had not been penalised:

Because sometimes the teachers think that everything is written by AI. But it's not the case that I've taken all of my text from AI. It's just that I've like got some inspiration. (Myriam, F, 15, Norway)

I've also experienced that when I've written something with AI and submitted it—even when I haven't really rewritten it in my own words—the teacher still gives feedback like, "Yes, I can see you've written this in your own words," even though I haven't. (Markus, M, 15, Norway)

The children in our study considered this differential treatment to be unfair and asked for more guidelines about how they could use GenAI properly in an academic context. Still other participants reported more dubious practices, like copying text directly from GenAI into their assignments:

When I really didn't have time to finish a report, classmates sent me theirs, and I just wrote to the chat to rewrite it. I asked it to simply rewrite it so I could paste it into Word. And then I started doing it so that I created the Word document directly. I didn't change anything anymore and just sent it as it was. (Eliška, F, 16, Czech Republic)

In summary, the qualitative interviews show that children value the use of GenAI as an academic resource and indicate that it can be positively used as a complementary support in educational contexts, also to speed up and automate repetitive tasks. While some children report entirely delegating their homework to GenAI, e.g., copying and pasting texts for submission, others note that it can be very useful and they would prefer to have guidance on how to use it appropriately, rather than for it to be restricted or banned. The insight provided by our interviews raises questions about whether the normalisation of GenAI in children's activities could lead to its broader adoption, with more children learning to use it across a wider range of tasks or, at the same time, whether this could lead to a more experience-based, less hyperbolic understanding of GenAI.

Advice-seeking, trust and social conformity

Related to both educational and instrumental use is how some respondents report being motivated to use Gen AI because they trust it more than other sources (12%) or their wish to conform to what everyone else is seemingly doing (10%), see Table 6.

Both these motivations are differently distributed across countries, with Swiss (23%), Estonian (13%) and Italian (14%) respondents including trust in the reliability of AI outputs as a reason for using it, whereas Finnish (6%), Norwegian (8%) and in particular Croatian (2%) children are far less likely to report that they trust GenAI more than other sources. At the same time the Finnish (13%) and Norwegian (13%) children, are more likely to express social conformity as a motivation to use AI (because everyone is using it). Trust in GenAI more than other sources, vary little by gender and SES. As for age, 11-12 year olds are less likely to report this, and the older children (15-16 years) are most likely to report how they use GenAI because they trust it more than other sources of information (see Figure 9).

Trust in AI features only intermittently among the motivations shaping children's use of GenAI. When it does arise, it is often articulated through comparative reasoning, with GenAI positioned as more reliable than collaboratively produced sources such as Wikipedia. Such perceptions point to the persuasive power of opaque, fast, and highly personalised systems, whose

seemingly tailored and immediate responses can be particularly convincing. This is especially evident among younger children or those with fewer digital and critical skills, who may be more inclined to trust the outputs of GenAI.

I'd say that on the internet, like on Wikipedia or similar sites, you can't always trust the information because there's quite a lot of false content. But artificial intelligence tries to verify the information and give the correct answer. (EZ, F, 17, Latvia)

ChatGPT always provides correct answers. (Magdalena, F, 17, Austria)

So the advantages are that it gets everything right and it's smart. (Elsa, F, 14, Germany)

I kind of trust it because it gives like the right answer most of the time, but just like, a couple times it doesn't and then I work it out myself. (Emily, F, 13, UK)

Trust becomes visible primarily when it is disrupted - through contradictory, inaccurate, or implausible outputs - at which point it may operate as a reason to limit or withdraw use. In such moments, some more skilled children reported engaging in comparative and checking practices, cross-referencing AI-generated responses with other sources and adjusting their reliance accordingly. These accounts point not to uncritical acceptance, but to a more cautious and conditional form of trust, shaped by children's evaluative capacities and their ability to recognise the limits of AI-generated outputs. For most children, however, GenAI was generally perceived as trustworthy and reliable.

I did ask about medicine—like how many ibuprofens I can take in a day, something like that. It really helps, because I think I wouldn't find it that quickly by Googling. Az16, F, 16, Latvia)

Other interviewees, especially boys, as Markus' quote above suggests, report asking for more practical advice to manage schoolwork or sport training and fitness:

I also had a training plan made for me. I think about a week ago I wanted to train for sprinting, like for explosive strength[...]. I also asked about healthy foods because I wanted to eat better and I got a lot of good suggestions. So I have had a training plan and a meal plan made for me. (Mike, M, 17, Germany)

I ask AI about gym workout plans. For example, every now and then I change all those gym plans so they don't repeat and still stay interesting. (TE15, M, 15, Latvia)

I've been going to the gym for a while now and got interested in things like workouts and dietary supplements. I use it to learn about those topics — like which exercises are for specific muscle groups or what effects different supplements have. (Tym, M, 17, Poland)

The reasons why young people turn to GenAI for health advice are the same reasons that inform its educational and information-seeking usage, namely its efficiency, speed, 24/7 availability, and easy-to-understand outputs. Rather than merely serving as a substitute for conventional sources, GenAI is actively reshaping how young people access and understand health information, especially when professional guidance is inaccessible, insufficient or the topic is sensitive:

I had this thing where one of my eyes was blurry for a really long time, and I was worried. My mom thought I might go blind in one eye. So I kept writing to it, and it gave me suggestions—like what I could try, maybe some eye drops. [...] I think it helped me. (KA13, F, 13, Latvia)

When I'm not feeling well, it gives me a few possible reasons why that might be happening, where I could go to a doctor to check it, and what might be causing it. [...] the doctor told me they didn't know what it was from, and the chat actually gave me a more detailed explanation of what it could be. (Wiki, F, 16, Poland)

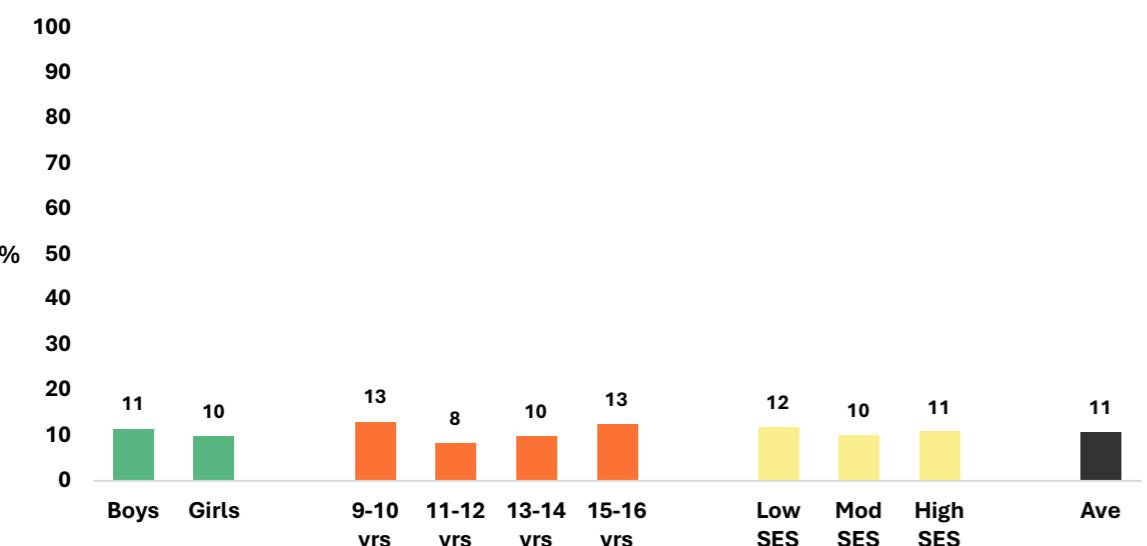
Health, if you go on, like, a menstrual app. It's quite helpful because you can, like, log your symptoms and it would tell you there's AI here (Ada, F, 16, UK)

When it comes to health, however, interviewees are divided in the degree of trust in GenAI's outputs. Some participants discussed the limitations of seeking health advice from GenAI and that it would be helpful

for some minor or mundane issues and as a first port of call, but when serious concerns arise GenAI would be insufficient. Some interviewees explicitly contrast medical advice provided by a chatbot, perceived as unreliable, with the expert advice of clinicians- "I'd trust the doctor more", as Nicola explained (M, 15, Italy).

When it comes to something that isn't serious such as advice for dealing with a cold or to check symptoms of Covid for example when that was a thing back then... but yes I don't think it should be use to diagnose you like a doctor does, just only to give you basic information. (Terrence, M, 13, Malta)

I'd use it for simple advice. [...] my first thing to try and help myself is to ask probably, like, an AI assistant, what's the best way to reduce acne and stuff? I see it's getting worse and what's being said online isn't helping. That's when I know maybe I should just go to my doctor (Aisha, F, 16, UK)


If I thought cancer or something I wouldn't really ask AI and then be like 'oh yeah, I have cancer.' Because then it's just like AI-diagnosing myself. But if it was like, I think I like sprained my finger or something, then I would. (Emily, F, 13, UK)

These findings suggest that while some children use GenAI as a source of advice or reassurance, this type of engagement is still limited and context-dependent. Our qualitative insights indicate that children may turn to GenAI for everyday, trivial questions or in situations when they need advice on sensitive topics, but do not generally view it as a substitute for human support, especially in situations of significant consequences, such as a serious health problem. Also, trust, privacy concerns, and emotional credibility can influence whether GenAI is seen as a relevant source for support.

Using GenAI for advice on interpersonal relationships

The young participants we spoke to also noted that they used GenAI to ask for advice about interpersonal relationships – in particular, where they were encountering problems in their relationships with friends or families, needed help to write letters to close relations, or to communicate with (potential) romantic partners.

Figure 9. Using GenAI because they trust AI more than other sources by gender, age and SES

Base: children who have used GenAI in the past month in Switzerland, Estonia, Finland, Croatia, Italy, and Norway (N= 3510 by gender, N = 3603 by age and N=3300 by SES)

Using GenAI for health advice

Participants from most countries reported using GenAI to seek health advice. Quite a broad range of topics were covered. Some children asked for advice relating to fitness, training or taking supplements, while others sent pictures of sprained ankles or rashes and asked when they should seek a doctor:

I used it recently a lot, because I was having pains and I started getting worried, you know. I pulled something on the left side of my chest. I asked it to reassure me (laughs/giggles). I said 'I am having pain, but I am only 17' and then it said 'you're going to be fine, nothing can happen'. (laughs again) (Kathy, F, 17, Malta)

I do some sports, and often there are questions like, if you've sprained your ankle badly—when should you seek medical help, and how long should you wait? If your ankle is swollen, should you wait hours, days, or weeks before seeing someone? It's about deciding whether to seek care. (Markus, M, 15, Norway)

I haven't asked it to write a love letter, but I have asked it to write some letters, like to teachers. I remember once I wrote an apology letter to my mom. I don't remember if I broke something. Then I sent her this long, long, long letter. I had ChatGPT make it.
(Sven, M, 15, Estonia)

For example, the other day my friend was over, and she wanted to text some guy but we didn't know how to say it — so I just typed it into ChatGPT, like 'how to write this,' and we used that in the conversation with him. (Vika, F, 17, Poland)

Young people resort to ChatGPT to get advice on how to manage friendships or romantic relationships for two main reasons: first and foremost, its perceived confidentiality, privacy and intimacy. As the following excerpts show, children trust AI for keeping their conversations private: a chatbot is not a real person, so, contrary to peers, it is unlikely to make judgments or gossip about the issue in question:

That's why it's easier for me to say things to something that's not alive rather than to a real person. And I'd honestly feel really bad if that ever got out — anywhere, anytime. (Marika, F, 16, Poland)

You even tell it the names of the people, so that you can have the clearer picture, and it just says "In my opinion this person feels this way because of this," and then it says, "In my opinion you could do this and that" [...] then it can't throw it back in your face, it can't, so it's just... (Sara, F, Italy)

A further reason for seeking advice on interpersonal relationships is the opportunity to examine the issue from a different perspective, as the quotes below illustrate. More specifically, ChatGPT's advice is sought to complement friends' advice with a 'more objective' point of view, or to help the user stand in the other person's shoes:

For example, if I had an argument with someone, then I would ask to see if my perspective is right or if I am seeing it the wrong way. Sometimes it can give more of a bystander perspective, like in the middle, both points of view. (Kathy, F, 17, Malta)

Sometimes ask [AI] for advice, but not only to ChatGPT, I ask it to real people too, because I don't know if it thinks a lot... Although the truth is that it does help a lot. Mainly, when I try to get an objective point of view. (Carol, F, 14, Spain)

Finally, the third reason for GenAI-based advice-seeking practices is its anywhere, anytime accessibility. As Elena's words below illustrate, the advice provided may not be tailored to the specific social context, nor particularly expert or resolute. However, it is always available.

Yes, if I wrote, I don't know, 'I have this problem with... I had a fight with a friend of mine, what do I do, what do I say to her?', it doesn't help me, but it certainly has an answer, and it's related to my problem. I mean, I know people who ask ChatGPT about their problems, because it disguises itself behind a rational person who prints you an answer to what you're looking for, then of course it's not a difficult thing, it's what you want, but it's as if, yes, there's a person who is always ready, 24/7, to give you a hand. (Elena, F, 15, Italy)

GenAI for companionship during hard times

GenAI also emerges as a source of companionship for some children. Children describe turning to chatbots to fill gaps in their socio-emotional lives, particularly during periods marked by loneliness, worry, or emotional vulnerability. They emphasise the sense of presence, attentiveness, and non-judgemental engagement that chatbots provide. For some, GenAI becomes a readily available conversational partner that can simulate care and offer reassurance. In this way, children's socio-emotional engagements with chatbots function less as a pastime and more as a compensatory relational resource, supporting them in managing emotional concerns and navigating moments of isolation or difficulty.

For mental health stuff, like when I was bored — I remember this summer, at night when I couldn't sleep, I'd say "come on, keep me company," and I'd start chatting with ChatGPT. (Nicola, M, 15, Italy)

You could tell it about your problems. And it might, maybe, calm you down if you're annoyed or upset. It could be like an online friend that you never get to meet. (UK01, F, 14, UK)

Like, if you need someone to talk to, you can write to it and have a nice chat. It listens to you and gives advice. (SK, F, 14, Latvia)

And then another day I texted it, "hi, how are you today?" "I'm fine, thank you. How are you?" "Good." "If you feel like having a chat," it said, "perfect, if you feel like chatting or having a laugh, I'm here." And I said, "yeah, sure," I wanted to chat too. (Robi, M, 13, Italy)

Sometimes, GenAI was used as a substitute for companionship and a replacement until friends became available.

This can be a good counterpart to being able to talk to your friends. Say all your friends are just suddenly on vacation. You can't talk to anyone, but you have an AI. You can talk to the AI, and it keeps you company until your friends get back from their holiday. (Ethan, M, 15, UK)

However, some children also acknowledged the limitations of GenAI's humanity and emotional capacity, recognising that chatbots are not designed to engage in genuinely reciprocal relationships. These children reflected on the artificial and programmed nature of GenAI, noting that while it can simulate empathy or care, it does not truly understand, feel, or relate in the way a person does.

We were testing the boundaries of its... humanness, in a way. Like we tried to see how far it would go. One thing we did was try to flirt with the AI, like compliment it, say stuff like 'Oh, you're so smart,' and stuff like that. And then we realized that if we asked it on a date, it wouldn't necessarily treat it like... like something romantic. So we figured out that romance is kind of where the boundary is for AI. And I think that's because the AI isn't supposed to be your boyfriend or girlfriend. (Tine, F, 13, Norway)

Artificial sociality (Depounti & Natale, 2025), where ChatGPT or other chatbots are used for companionship, is then a social practice situated at the intersection of entertainment and escapism, on one side, and the need for emotional support and advice on the other. We will elaborate further on advice seeking practices below, as they are premised on trust in GenAI's reliability.

Why some children and young people DO NOT use GenAI

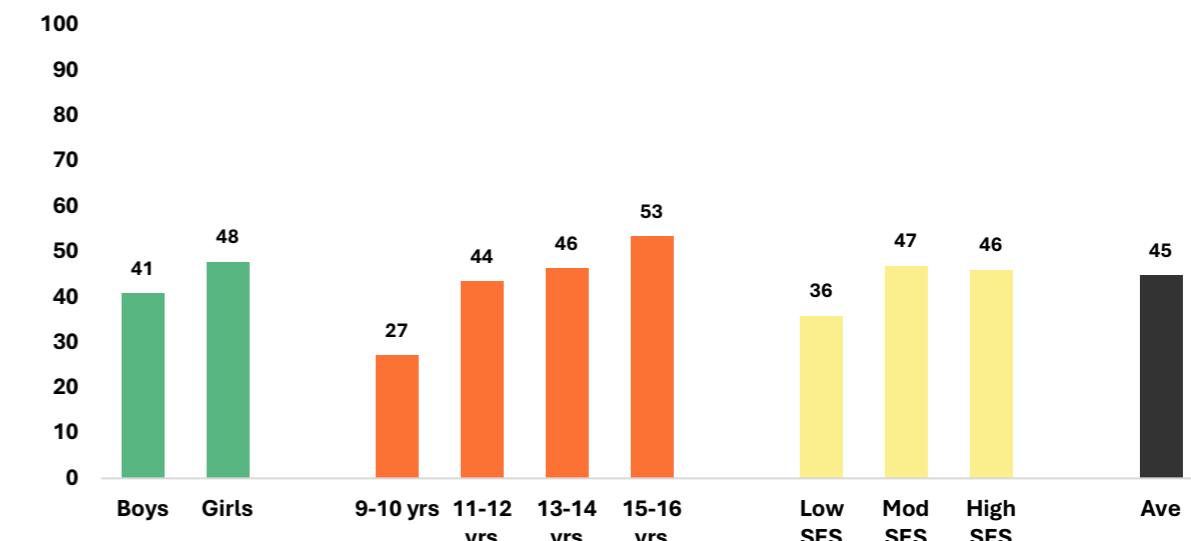
This chapter examines the reasons children give for not using GenAI, focusing specifically on those who report no GenAI use during the past month. While our findings so far have addressed who engages with GenAI and how and why they do so, it is equally important to understand non-use. This can shed light on barriers, reservations, and alternative patterns of digital engagement, as well as potential positive and negative consequences.

Using comparative survey data from Estonia, Finland, Croatia, Italy, and Norway, along with our qualitative interviews, this chapter explores whether non-use is primarily driven by a lack of interest or need, limited knowledge, ethical concerns, access restrictions, or parental and school rules. We aim to clarify whether non-use reflects active resistance, uncertainty, restraints on access, or simply a perceived lack of relevance in children's everyday lives.

Overall, the results show that non-use of GenAI is most often explained by lack of interest or perceived need, rather than by strong concerns about risk, access, or rules. Reasons related to limited knowledge, doubts about usefulness, or ethical concerns, such as cheating, are present but less common, while parental and school restrictions are reported by relatively few children. It might therefore seem that for most children, non-use is more often a passive choice rather than an active rejection of GenAI. In the sections that follow, these reasons are explored in more depth, drawing on qualitative data to better understand how children themselves explain and make sense of their non-use of GenAI.

Lack of interest and no need to use AI

Almost half of the respondents (45%) indicated a lack of interest as the main reason for not using GenAI. This increases to 53% of respondents in Finland and 47% in of their peers in Estonia, while it drops to one in three


Table 7: Reasons that children give for not using GenAI, by country (only those who have not used Gen AI in past month)

%	EE	FI	HR	IT	NO	Ave
I am just not interested in GenAI	47	53	40	40	35	45
I didn't need to use Gen AI	44	52	38	38	33	43
I don't know enough about Gen AI	22	33	27	39	19	28
I don't think Gen AI would be helpful to me	20	41	18	34	25	28
I think using Gen AI is like cheating or stealing the work of others	8	17	17	22	13	15
I think Gen AI provide made up or false information	14	13	13	15	11	13
I don't think Gen AI would be fun to use	8	17	16	16	6	13
I'm concerned about privacy and sharing information with Gen AI	7	10	17	19	4	11
I don't have access to Gen AI	7	14	7	16	7	10
My parents do not allow me to use Gen AI	5	5	7	16	3	7
My school does not allow us to use Gen AI	3	5	6	9	7	6
I'm afraid of interacting with Gen AI	4	3	2	18	1	5

Q9 Why haven't you used Gen AI? Select all that apply.

n = 1,438 (all), n = 393 (EE), n = 388 (FI), n = 226 (HR), n = 244 (IT), n = 187 (NO).

Figure 10. Reasons for not using GenAI: I am just not interested, by gender, age and SES

Base: children who have used GenAI in the past month in Switzerland, Estonia, Finland, Croatia, Italy, and Norway (n = 1,438)

After a lack of interest, respondents most often mention no need to use GenAI (43%). Similarly to the lack of interest, the proportion of children who include no need to use GenAI among the various motivations underpinning non-use is higher than average in Finland (52%) and Estonia (44%), while lower in Croatia (38%), Italy (38%), and Norway (33%).

This data finds partial correspondence in the interviews.² A lack of need is mentioned by some interviewees. However, this is not the primary barrier preventing young people from using GenAI. For others, confidence in their own ability to complete schoolwork or other tasks, e.g. programming, is considered important:

Well, [a barrier to using it is] the fact that I can do it myself. I have the [programming] skills, so I don't really need help with that. (TB, M, 13, Latvia)

I think, really, I'm not that big of a fan of it. I think we manage just fine without it (Ola, M, 13, Norway)

I did all the assignments without using ChatGPT, and in some cases I even got better results than them [my classmates]. (Mattia, M, 17, Spain)

Others say they rely on other digital practices, rather than their own competencies alone, to get schoolwork done. For example, while acknowledging it would take longer, they know that they could turn to Google to search for information:

But if there were a ban on AI, it wouldn't really be a big deal for me. It would just be like that, because then I would just use Google. With Google, you click on an article and read it there, and that's basically what AI does, just maybe taking twice as long (Mike, M, 17, Germany)

GenAI can contribute to cognitive deskilling and disempowerment

Nearly one in three children (28%), but 41% of Finnish respondents and 34% of Italian respondents, believe GenAI would not be helpful to them. Interviews shed further light on this perception. Although interviewees appreciate how GenAI can support learning, speeding up tasks and making schoolwork easier, they nonetheless express significant concern about the negative consequences of over-relying on GenAI for their cognitive wellbeing and development. Across countries, age groups and gender, interviewees lament that the greatest risk of GenAI is to replace them, hence making them lazier and unable to perform basic tasks like writing essays.

² Note: Only children with experience of using AI was recruited for the qualitative interviews.

I don't really use it for writing because I think it makes the, like, brain lazy, I can say. So maybe I would use it to find words or if I'm looking for a word that is similar to the thing I've used in the sentence and I want another idea, I'll give it to give me an idea for the word. (Ben, M, 15, UK)

When it makes summaries or helps with homework. For me, that's a downside, because it makes people, how can I say, use their brains less—and that contributes to making people dumber, since they stop using their minds and just rely on artificial intelligence. (Elisa, F, 13, Italy)

In a way, I've gotten a bit lazy because of it (Sofi, F, 14, Poland)

At the same time, I think it's bad because I stop using my own reasoning, stop improving my thinking or learning to do something on my own because of ChatGPT. [It's negative] in the sense that it doesn't help personal development as much — learning new things, developing better reasoning, things like that. (Joana, F, 17, Portugal)

That ChatGPT doesn't help you. ChatGPT does it for you... it's different. (Enrico, M, 13, Italy)

I don't think it helps. Because over time, you'll realise you didn't learn anything. You just kept asking. You might get by that day, but then, for example, the teacher might ask a question and you won't know what to say. (Joaquim, M, 14, Portugal)

You can just sit there, AI the answers and whatever, put it in, get good grades at your coursework or whatever. And on your results, you might get an A and a B, but it might not be any of your work. I mean, you might apply for a uni or whatever. I mean, you're stuck and you don't have any previous knowledge. (Callum, M, 16, UK)

The same downside is experienced and discussed in relation to creativity, which is both stimulated and decreased by GenAI:

I've used AI for images a few times, but very little. Because I don't really like it — you can usually tell that it's AI-generated. It's like... AI makes people less creative, you know? (Mario, M, 16, Norway)

In fact, I'd ban it, cause I'm well aware that all this AI and convenience actually does me harm. I'd definitely be way more stimulated without it. It's just that I'm tempted to use it out of convenience, even though I know it's not good for me. So yeah, I'm super aware that it kills my creativity and that I could easily do without it. (Alma, F, 17, Italy)

As a result of deskilling and disempowerment, interviewees fear that their academic performance may even deteriorate and that they will end up getting lower grades.

I thought, "If I do everything with ChatGPT, I'll end up with gaps, I'll get failing grades," and then those are hard to bring back up. Because if I always use AI, in the end I don't know anything—and I'm the one who has to take the tests. (Sara, F, 13, Italy)

That you become lazy, and your performance might even deteriorate. That even the teachers notice that we're using it, and you get worse marks as a result (Selina, F, 15, Austria)

In summary, as illustrated by Giulia's quote below, the reasons young people provide for using GenAI are also mobilised as reasons for not using it. In other words, the role of GenAI tools in children's lives and development is ambivalent, and its opportunities (scaffolding learning) can easily turn into harmful consequences (deskilling and disempowerment):

It changed my life in both a positive and negative sense, because, precisely, it can be a very useful tool for school, because when I don't understand something, I actually go and ask, just to try to understand it better [...] at the same time I always try to do the assignments that I am given because I recognize the negative side of it. That is, if ChatGPT does it for me, I don't learn and not only that, then when I'm in class I don't really know how to do it. (Giulia, F, 16, Italy)

In our survey data, the feeling that "I don't know enough about GenAI" is listed as the fourth barrier that prevents children from using GenAI – 28% overall, ranging from 39% of Italian respondents to 19% of their Norwegian peers. This finding contrasts with the motivations for not using GenAI provided by interviewees, who, by contrast, emphasise how no particular skills are required, at least for basic uses of GenAI. They agree, however, that they have learnt new skills over time, for example, in terms of developing more appropriate prompts for various tasks. They also admit that their overall knowledge of how GenAI systems work is limited. The apparent contradiction between quantitative and qualitative data could be related to the different recruitment criteria and, hence, the composition of both samples, with the sample of interviewees consisting of 13-to-17-year-olds who at least occasionally use GenAI.

Unreliable outputs and lack of trust

The same ambivalence observed in relation to the use of GenAI for scaffolding learning practices can also be observed in relation to trust. The belief that GenAI provides fabricated or misleading information is indicated by only 13% of the respondents, with less variation across countries, ranging from 11% in Norway to 14.5% in Italy. Conversely, lack of trust is one of the main motivations for not using GenAI, as raised in qualitative findings. In fact, interviewees, especially older teenagers, lament that ChatGPT provides unreliable or outdated information. To compensate for such inaccuracies, interviewees report double-checking information from other sources:

(ChatGPT) isn't perfect either. ... ChatGPT often gets facts wrong and doesn't give me information from the actual book — it just makes things up. (Tym, M, 17, Poland)

Usually I don't trust it that much. (Jovana, F, 16, Serbia)

I once got a truly wrong piece of information. (Julie, F, 17, Luxembourg)

We can't rely on the response because it may not understand fully what's our problem. and so if it gives a wrong description, then it can cause problems. (Ben, M, 15, UK)

Older teenagers have learnt how ChatGPT is particularly unreliable for mathematics and other STEM subjects:

I always check. I remember once I was studying for a math test and I couldn't figure out one of the exercises. So I asked ChatGPT if it could solve it for me. But the result was wrong. The reasoning was correct, but it got the calculations wrong. I remember it clearly... I told it, "Look, the answer should be something else." And it kept giving me the same solution, but with the same mistake. (Giulia, F, 16, Italy)

I had the saga with the maths thing, so that again puts me in a bit of doubt about, is it actually correct? That's why I always double-check it. But if you didn't have that little blip, then it's very easy to trust it. If I didn't have that, I probably would continue trusting it as I would have if I didn't have that little blip. (Sam, M, 14, UK)

Sure, some calculations may be correct [...]. But when it comes to calculating certain things, e.g. in the area of mechatronic drive technology or measurement technology, I don't trust it at all. So, I rather do it myself. (Maya, F, 17, Austria)

I tried it for a math assignment because I couldn't find anything suitable for my problem online. And then I tried it, and it gave the wrong result; it was calculated incorrectly. And so I said I'd rather do it on my own or get help from someone else instead of using artificial intelligence (Michael, M, 15, Austria)

As for Math, as far as I know, to this day, I don't know of any site that gives 100% correct answers, for example. (Samuel, M, 17, Portugal)

To compensate for GenAI's repeated errors, and their subsequent lack of trust, interviewees report double-checking ChatGPT's outputs or even bypassing it altogether, prioritising more reliable and trustworthy sources of information, including websites, classmates, news media and parents:

There are more credible sources of information. For instance I can ask my father who knows a lot about the given topic or simply read in the news. (Kacper, M, 13, Poland)

I never tried [to use it for ancient Greek or Latin] because I don't, I don't know how... actually because when I'm in need I ask the good classmates more... I don't know if I can trust it regarding ancient languages, it seems a bit too much of a step (Marco, M, 15, IT)

Because sometimes when I ask about something, about school or something, the information is sometimes not true. [...] For example when the Constitution was agreed, or when it says something wrong and something else is written on the internet [...] I go to a reliable website. And I take the information from there. (Miryam, F, 15, Norway)

Sometimes you have to fact check it, or if you skim through it and notice the one fact that you do know, they say it's wrong, then you have to re-do the whole thing. (Leo, M, 15, UK)

I always check it with other websites and it gives me different answers sometimes. (Callum, M, 16, UK)

Interviewees with higher critical skills and AI literacies provide explanations for the poor reliability of information provided by chatbots. For example, Francesco demonstrates a clear understanding of the relationship between trust in GenAI and chatbots' ability to simulate human conversation. As the following quote shows, Francesco is aware that ChatGPT's users are misled into believing that the information provided is true and accurate because the

chatbot has been programmed to adopt a highly persuasive tone and avoid contradicting its user:

The way it answers is super convincing, so even if it says something wrong, it'd be really hard to tell unless you go and double-check. Like one time, I asked it, [...] 'Why is the front brake on the right?', which it's not! And it told me, 'Because most people are right-handed, so it's more comfortable to have the stronger brake on your dominant hand.' And it gave me this whole explanation about why the front brake is on the right, even though it's not! [...] it never really pushes back, either, or very rarely. Only if you say something like '2 + 2 = 5' it'll correct you. But it won't say, 'Hey, you're wrong, the front brake is actually on the left.' So that's kind of a risk. (Francesco, M, 17, Italy)

Besides the persuasive simulation of human conversations and sycophancy – namely, chatbots' built-in tendency to avoid contradicting their users, thus generating a confirmation bias by design – interviewees also refer to the opaque mechanisms and business models behind the workings of GenAI as a further reason to mistrust it:

There are several AI companies that release AI tools and so we don't know who made them and who accessed the chats we've done, so I think we shouldn't give information to them. (Ben, M, 15, UK)

Seeing use of GenAI as cheating or stealing the work of others

Fifteen per cent of respondents report not using GenAI because "it is like cheating or stealing the work of others". The proportion of those who consider it unethical to use GenAI rises to 22% among Italian 13-to-17-year-olds but drops to 8% of their Estonian peers.

Qualitative data confirm that children across Europe share concerns regarding fair and ethical uses of GenAI. Besides compromising learning and decreasing their own cognitive abilities, interviewees feel that delegating homework to GenAI tools equates to cheating, and is unacceptable:

I don't want to get called a robot for mistakenly having something similar. At the same time, people who do use AI to plagiarise and copyright summaries, they should be... Like punished, I don't know what the punishment is, but they should be punished for it because it's not right, it's not their work, it's wrong, it's not it. (Hannah, F, 16, girl, UK)

Because then you don't do anything yourself anymore if you use it like that for assignments (Roxy, F, 13, Germany)

When I use it, I always have a bad feeling... because it feels, that I did not do the work myself. (Anna, F, 15, Austria)

Students need to learn, you shouldn't just use things like that. (Julie, F, 17, Luxembourg)

I mean, if you ask AI to give you answers to assignments, then you're basically cheating. (Mario, M, 16, Norway)

The reason why I don't use it is that I knock on my conscience, you know. And teachers also try to make it clear that you actually don't learn from it. (Lydia, F, 16, Estonia)

I heard that AI was bad for the environment. (Daiel, M, 16, UK)

Fear of getting caught cheating

Sometimes, the preoccupation that using GenAI is cheating is not grounded in ethical deliberation. Rather, the grounds on which cheating is considered inappropriate are instrumental, motivated by the fear of being caught by teachers and getting lower grades. Children shared various stories of classmates, if not themselves, who copied and pasted ChatGPT outputs for an assignment and were sanctioned with lower grades:

If I asked ChatGPT to do it on my behalf the teacher would understand it, because [ChatGPT] has a way of writing totally, I mean, it is exact, in the sense, it is correct. (Giulia, F, 16, Italy)

So, lately I've been using it very little because, like, I use ChatGPT, but I don't use it much because now there's that thing that shows if the text is humanised, or stuff like that. Anyway, I got caught, and since then I've stopped using it. (Enrico, M, 13, Italy)

That even the teachers notice that we're using it, and you get worse marks as a result (Selina, F, 15, Austria)

Yes. For example, once my math teacher said that someone had solved a test using AI and it was immediately obvious, because those were solution methods they had never learned in class. They got a failing grade for the test. (Katrín, F, 14, Estonia)

Yesterday, the Portuguese teacher uploaded an exercise to do, some classmates used AI to answer, the teacher found out and gave them a zero. (Luis, M, 15, Portugal)

Privacy concerns

One in ten respondents – but nearly two in ten in Italy – say they do not use GenAI because they are "concerned about privacy and sharing information with GenAI". Although this is not the main reason expressed by interviewees – disempowerment and unreliable outputs are by far the most common motivations for not using GenAI – privacy concerns are part of what informs their mistrust in GenAI, as the following quotes illustrate:

I'm the kind of person who doesn't like it when someone has information about me or a picture of me [...] or the voice. I don't use the voice function. (Elisa, F, 14, Austria)

That it's an assistant you can use to check things, and you can ask it questions — but maybe you shouldn't ask it everything, and you definitely shouldn't give it your passwords or share anything with it at all. (Filip, M, 14, Poland)

It's a computer, like all the data is stored. (Amelia, F, 14, UK)

It's your data that they're collecting and they might sell that off or use it to train. I think they use general consumer, like me or you, data and they train their model so they can sell it to other businesses for use. (Jack, M, 13, UK)

Not allowed at school or home

Both quantitative and qualitative data show that most schools do not yet have formal rules regarding the use of GenAI. In fact, only 6% of survey respondents – ranging from 9% of Italian respondents to 3% of Estonian children – report not using GenAI because it is not allowed in their schools. In the absence of formal rules, however, children can be discouraged from over-relying on GenAI both by negative sanctions applied to classmates caught cheating and by teachers' warnings about the risks of disempowerment and deskilling, as the following quotes show:

It's all blocked on the computers, which I think is good because nobody can cheat the exams just by Googling ChatGPT. (Sam, M, 14, UK)

If I'm stuck on a certain question in my homework I don't use it in class because we're not really allowed our phones. If there's homework I need help on then I can read what it says to do and then write the answer and stuff. (Emily, F, 13, UK)

But we're not allowed to copy and paste it word for word. We take little bits of it for advice and then evaluate that from there. (Callum, M, 16, UK)

This year, I've used Photomath much less, especially not at all during tests. Because there's always someone watching or we have an observer during tests who checks on us. So we don't use phones (ML, F, 14, Latvia)

Similarly, only 6% of survey respondents indicate parental restrictions as the reason for not using GenAI, ranging from 16% of Italians to 3% of Norwegians. In interview data, however, parents are not usually mentioned among the main motivations for avoiding the use of GenAI:

I don't use it for schoolwork (laughs), because my mom doesn't allow it. She sees it as cheating. So no, I don't use it. (TB, M, 13, Latvia)

Other reasons

Other barriers to the use of GenAI include the belief that using GenAI is not fun – 13% overall, with higher rates observed in Finland, Italy and Croatia; not having access to GenAI – 11%, but higher in Italy and Finland; “other reasons” - 11%, rising up to 20% in Estonia; being afraid of interacting with GenAI – 4% overall, but 17% of Italian children reporting this as a reason for non-usage.

Although not expressed in terms of fear, but rather in terms of trust and perceived support, interviewees also refer to preferring peers or parents as sources of more credible information (as seen above) or social support. The following quotes show how artificial sociality, at least for some interviews, cannot fully substitute for human interactions. As sociologist Allison Pugh argued in her latest book (2024), the “work of connecting” - i.e., the reciprocity of seeing others while being seen – cannot be automated.

[about Character AI] I think the idea was kind of okay, you know, normal. But when I went into the app, it all felt really weird to me, just strange overall. [...] I mean, maybe if you don't have friends in real life, then it could be useful, but for me, it just felt a bit odd. (ML, F, 14, Latvia)

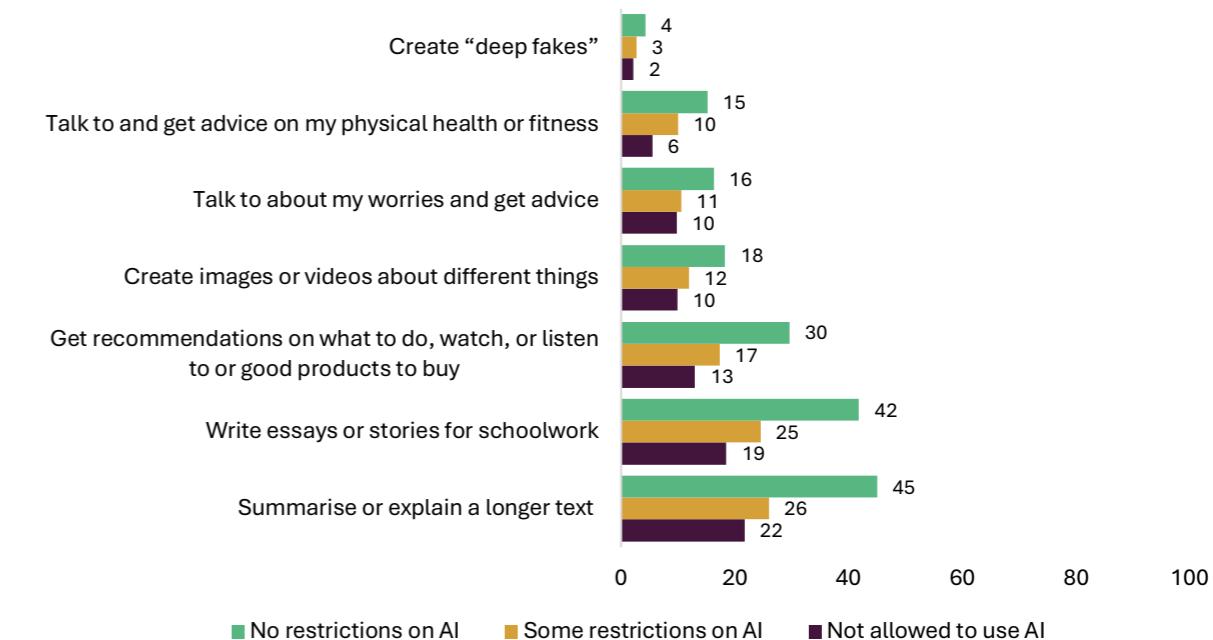
But if I just want to talk, that's kind of a downside — because sometimes I don't even understand half the words it uses. And I'd rather talk to someone who's more on my level, if I can put it that way. Like with my friend and so on. (Marika, F, 16, Poland)

Honestly, I wouldn't really write to AI about things that matter to me [...] I just don't think it's appropriate. I have people I care about. If I have a problem, I go to them. (Michał, M, 14, Poland)

In summary, the findings from this chapter show that children's non-use of GenAI is most often linked to limited interest, lack of perceived relevance, or a sense that GenAI is simply not needed for everyday tasks. Another reason for non-use includes lack of knowledge about using GenAI. Concerns about ethics, trust, privacy, or access play a role for some children, but are generally less central than practical considerations. Among interviewees who had at least occasionally used GenAI, the main reason for non-use, or limiting their use, is their fear of deskilling and disempowerment, and lack of trust in the reliability of outputs.

Both our survey and interview data showed that children's non-use is mostly driven by intrinsic factors, rather than external influences, such as parental or school restrictions, or structural barriers. Together, the quantitative and qualitative findings suggest that non-use is not necessarily a sign of exclusion or resistance but often reflects children's own assessments of usefulness and relevance, and sometimes also fear. Their concerns for the negative impact on learning and cognitive skills, however, raise important questions for children's rights. Understanding these perspectives is essential for developing balanced discussions, guidance, and policies around children's engagement with GenAI.

Guidance, support, and regulation of GenAI


Children's use of GenAI does not happen in a vacuum but is also dependent on access and negotiations within family and school settings. In this chapter, we briefly address children's understanding of permissions and restrictions.

Parental Involvement and Restrictions

Analyses from three countries; Estonia, Norway and Poland (n = 1,555) show that most children say they are allowed to use GenAI without any parental or caregiver restrictions.

Eighty-five percent of children in these countries say that their parents allow them to use GenAI at any time.

Figure 11: Parental restrictions as perceived by children on different AI-related activities

Base: children who have used GenAI in the past month in Estonia, Poland, and Norway (N= 1,259)

Very few of the children we interviewed discussed strict rules from parents or caregivers about GenAI use. While some said their parents outrightly prohibited GenAI use, others discussed their parents' concerns that they should not rely on it too much, to prevent deskilling, or because of ethical concerns about

One in ten children says that they can use Gen AI only with permission or supervision, and five per cent of children say that they are not allowed to use Gen AI at all.

Figure 11 shows how these restrictions then affect what these children do by comparing the activities of these three groups (no restrictions, some restrictions, and not allowed). It is worth noting that even if children say that their parents have put restrictions on them using Gen AI, this does not seem to prevent them from then going on and using it anyway.

their parents or caregivers because the latter were not aware of such tools or were not active users.

Yeah, you could say that sometimes, like when a friend or my mom or dad doesn't quite know how to use AI properly, then I've helped out and shown a bit how they could ask things. (Nils, M, 17, Estonia)

It was me and my dad who sat down and downloaded it. We were probably talking about something related to it, and then we ended up trying it out. (Aksel, M, 15, Norway)

She [mum] shows me how to type things in. And if I can't figure something out myself, she basically just says, 'Look it up on ChatGPT.' (Anette, F, 15 Norway)

No, no, no. In my family, no — nobody uses that, and we've never talked about it. (Mattia, M, 17, Spain)

Then maybe my mum sometimes says, "this time you shouldn't use it, not even as a starting point, because maybe it won't help you anyway" [...] But like, we don't really have rules at home about using AI. There are no set rules for that. (Robi, M, 13, Italy)

Rules at school

In our qualitative research, we explicitly asked children if they were aware of any rules at school about GenAI use. Not many children talked about official rules at school, and some explicitly said that there were no such rules. It seemed that decisions were largely left to individual teachers' discretion. While some teachers prohibited the use of GenAI, other children experienced various penalties when they were caught using these tools. Children also talked about

consciously transgressing the rules, knowing it would be difficult to get caught.

Each teacher has different rules (Zara, F, 13, UK)

I don't think they're banning us completely, but there's no rules about not using AI. But some people, they don't use it at all. (Amelia, F, 14, UK)

It depends on the teachers. Some don't tolerate it at all; others say it's okay as long as you don't do blind copy-paste. [...] Last year ... almost half the class got a zero-one because they did a copy-paste from ChatGPT. (Julie, F, 17, Luxembourg)

When teachers find students have used AI for their homework, they are given lower marks (Valentina, F, 14, Spain)

When they [teachers] say yes to use it, then we can use it, but when they say no to cheating, then everyone uses it nonetheless. Int: And they use it what for? Well, mostly for Serbian [language], for the composition, because it gives really good ones. (Marta, F, 15, Serbia)

I know that at a parent meeting, there was talk about using it too much or that it shouldn't be used, but I know that topic came up. [...] My parents don't really control whether I use it often or not. (ML, F, 14, Latvia)

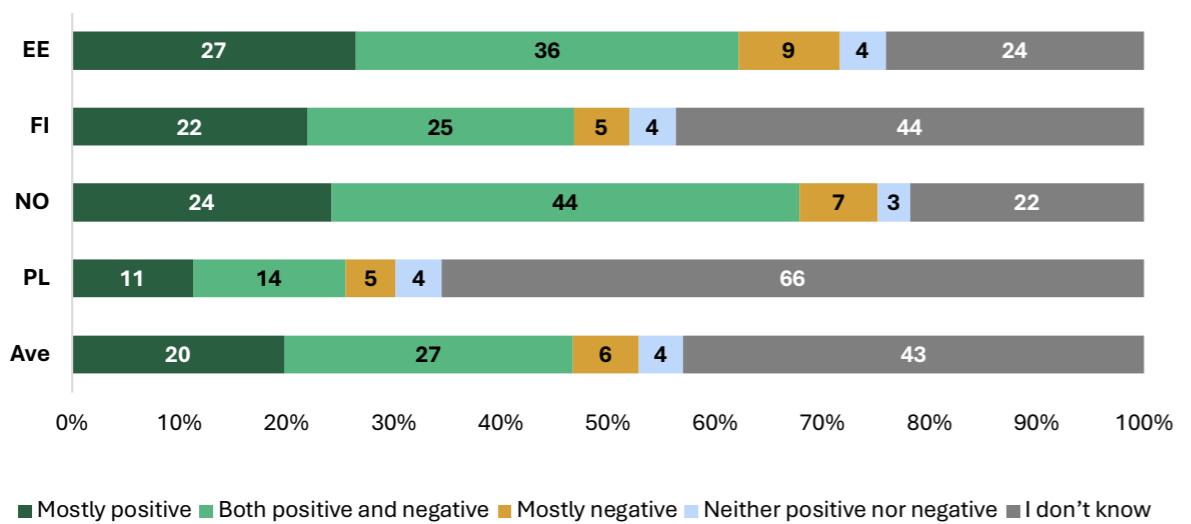
Some schools restricted access to specific applications to prevent unauthorised access to GenAI at school:

It's all blocked on the computers, which I think is good because nobody can cheat the exams just by Googling ChatGPT. (Sam, M, 14, UK)

Children's hopes and worries for the future with GenAI

In our final chapter, we go beyond the actual experiences children have with GenAI and explore how children imagine the role of GenAI in their future lives, and their expectations about the long-term impact it might have. Specifically, we explore whether children expect GenAI to have a positive or negative impact on their lives over the next ten years, and how these views vary across countries. We also address children's own recommendations for how their concerns should be addressed, and their expectations towards government, industry and users.

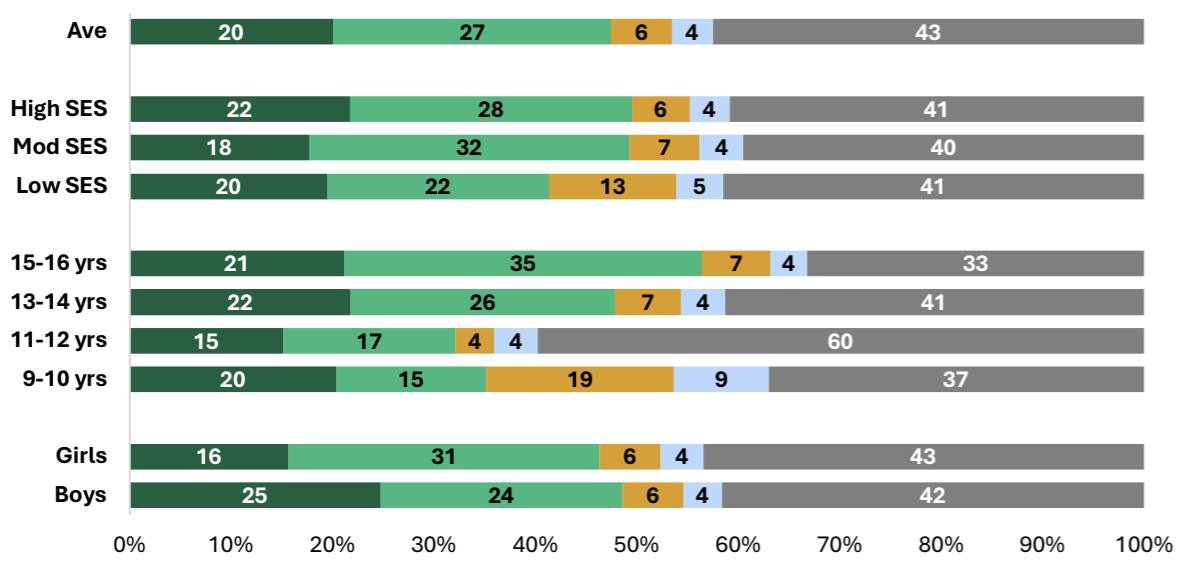
Understanding these hopes, worries and expectations helps shed light on how children make sense of GenAI as a developing technology and how public debates, personal experiences, and national contexts may shape their outlook on the future.


We asked children from four countries (Estonia, Finland, Norway and Poland) about their expectations for the future impact of GenAI (see Figure 12). Our findings show that these expectations are mixed rather than clearly optimistic or pessimistic, with notable differences across countries.

Preliminary quantitative analyses of the survey data from four countries (Estonia, Finland, Norway and Poland) show that about a fifth of children thought that the impact of AI development on their lives in the next ten years would be mostly positive; closer to a third (27%) thought that it would be both positive and negative, while 6% were of the opinion that the impact would be primarily negative. Importantly, 43% did not have an opinion on the issue or did not know what to think about it. As for gender and age differences (see Figure 13), boys were more likely than girls to see the future with AI as mostly positive (26% vs. 16%). Among older children (13-16), over a fifth (21%) thought the impact would be mostly positive, whereas amongst younger children (9-12), this was the case with 20% of respondents. Interestingly, 13% of children whose socio-economic status was reported as low saw the future impact as mostly negative compared to 6% of children of high socio-economic status.

Importantly, a substantial proportion of children—particularly in Poland and Finland—report simply that they *do not know* what impact GenAI will have on their lives. Among those, while Finland closely resembles the average pattern, Poland shows substantially higher uncertainty, standing out as the country with the highest proportion of children with *do not know* response. Across the four countries, just under half of children pick the *I don't know* option. Finally, across countries, only small proportions of children expect GenAI to have a mostly negative impact, while relatively few children, ranging between 3-5%, reported a neutral position.

In all countries shown, a minority of children expect GenAI to have a mostly positive impact on their lives. At the same time, strongly negative expectations are relatively rare. A larger share reports that they expect both positive and negative consequences, suggesting a nuanced and balanced view of GenAI's future role. Children in Estonia and Norway show comparatively higher levels of cautious optimism, with larger shares combining positive and negative expectations and fewer "don't know" responses.


Figure 12: Do you think Gen AI will have a positive or negative impact on your life in the next 10 years by country

Q057: Generative AI is a system, a website or an app (such as Chat GPT, Dall-e...) that creates something new such as a text, images, music, an answer to questions or advice, etc., after you have asked or prompted it with instructions to produce something for you. Do you think Gen AI will have a positive or negative impact on your life in the next 10 years?

Base: children who have used GenAI in the past month in Estonia, Finland, Norway, and Poland (N= 2,234)

Figure 13: Children's views on future with GenAI by gender, age and SES

Q057: Generative AI is a system, a website or an app (such as Chat GPT, Dall-e...) that creates something new such as a text, images, music, an answer to questions or advice, etc., after you have asked or prompted it with instructions to produce something for you. Do you think Gen AI will have a positive or negative impact on your life in the next 10 years?

Base: children who have used GenAI in the past month in Estonia, Finland, Norway, and Poland (N= 2,234)

Benefits

In the qualitative interviews, children saw many potential benefits of introducing AI and GenAI into their lives, including enhancing their quality of life. Children expressed hopes about how these technologies could make their lives easier and more comfortable. These included freeing up their time from repetitive tasks, the possibility of assisting with chores, as well as advancing improvements and innovation in the fields of medicine and industry. Some talked about the benefits for creativity (including for art or other forms of self-expression such as writing).

[AI] it's much more accurate. In surgeries or something like that, you'd say it's much more accurate and precise [...] At the construction site, you say, when things are measured and then, for example, improved with the help of ChatGPT. So, suggestions for improvement. [...] If I'm building a house and I don't yet know exactly how to set it up or something, then ChatGPT will also give the architects some guidance on how they can improve it. [...] [improvements in home automation] That everything at home is controlled by AI, that I don't have to do anything anymore, so to speak, that when I come home, all the lights turn on, and that it notices when something is moved, that... Simply everything is automated by AI. (Daniel, M, 13, Austria)

I think I'd install it in houses, like in cameras... Or well, some of that already exists, it controls the house's heating and so on. Like those things... Siri... 'lower the curtains' or something like that. I think there will be a lot more of these coming.

Interviewer: Would you like that?

Respondent: Yeah, I think so. Unless it starts saying stuff like, 'Yay, I'm creepy!' and turns into some kind of creepy thing. (Susan, F, 13, Estonia)

Health things, better diagnoses... a robot connected to ChatGPT to do operations... in traffic fewer accidents. (Marc, M, 17, Luxembourg)

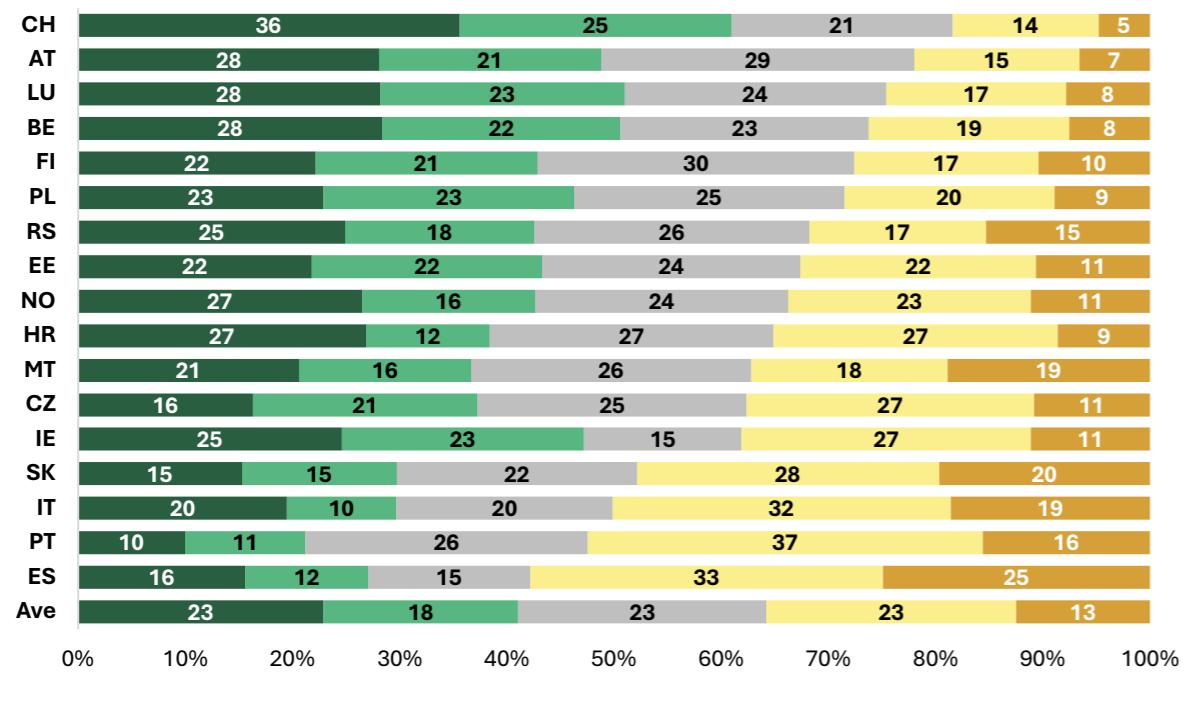
AI could help make the world a better place. [life will be] easier, much easier — more convenient, faster, and simpler [...] faster airport security checks [and even the ability to] communicate without speaking, just with thoughts. (Sofia, F, 14, Poland)

When it comes to risks that children have experienced or are concerned about, our participants mostly talked about mistakes that GenAI tools make when producing

content, such as factual inaccuracies or outright hallucinations. Some children, for example, were aware that they had to be careful when using GenAI outputs for schoolwork and homework. Others discussed their fears or experiences of being caught using GenAI. A portion of interviewees did not talk about or demonstrate awareness of any risks connected to GenAI use.

Yeah, I'm a bit contradictory, I'm kind of torn, to be honest, but probably more pessimistic than optimistic. There are loads of positive aspects, but in my opinion, the negative ones are just really, really risky — like, taking away jobs. Sure, maybe new ones will be created, but definitely not as many as the ones that get replaced. The whole privacy thing, the false information, all the stuff we've been talking about — I think those risks are too serious, too big compared to, like, bringing a historical figure to life in a history book.

I mean, studying a battle and seeing it like that — yeah, it's amazing — but it's something that only really applies to the student learning about it. And then you step outside the classroom and find yourself in a world where you're basically tracked everywhere and you can't even tell what's real and what's fake anymore — that, to me, is a much bigger issue than just being able to study with a generated image.

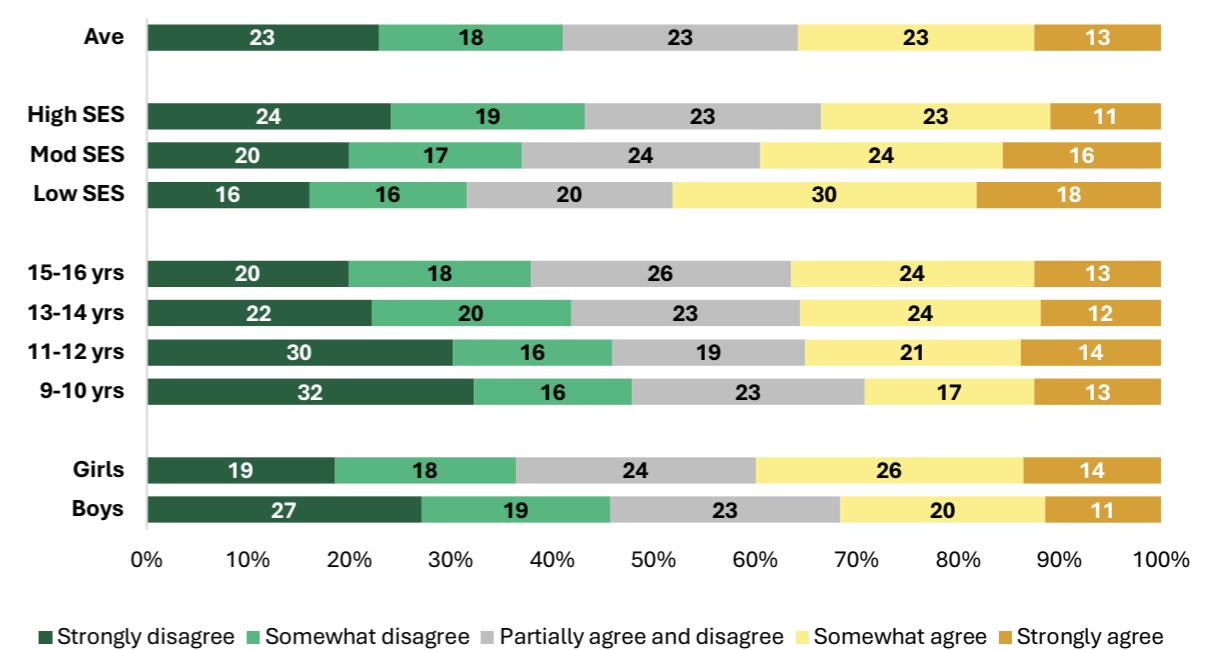

(Tommaso, M, 16, Italy)

Concerns

We asked children in all countries about their views on new technologies such as Generative AI, Interactive toys and Robots. One of these questions was if they were worried about fake pictures and untrue stories made using apps and online technologies and the problems they might cause, giving them as an example that it could cause cyberbullying or hate, misinformation, and polarisation. Figure 14 shows responses to this question by country and sorted from Switzerland, where children were least likely to agree that these are problems related to these technologies, to Spain and Portugal where children are most likely to agree that these are problems related to technology.

Analysing the data by gender, age and SES (Figure 15) we see that there are relatively small differences by gender though girls are more likely than boys to agree that new technologies are problematic in the way described. Younger children are also more likely to see new technologies as problematic in this way as are children with a lower self-reported SES.

Figure 14: Children's worries about new technologies by country



■ Strongly disagree ■ Somewhat disagree ■ Partially agree and disagree ■ Somewhat agree ■ Strongly agree

QC40c: How much do you agree with the following statements about how you think or feel about new technologies (such as Generative AI, Interactive toys, Robots)? I am worried about fake pictures and untrue stories made using apps and online technologies, and the problems they might cause (e.g. will cause cyberbullying, hate or misinformation, polarisation)

Base: All children aged 9-16 (N= 25,592, but see table 2 for the number of respondents by country).

Figure 15: Children's worries about new technologies by gender, age and SES

■ Strongly disagree ■ Somewhat disagree ■ Partially agree and disagree ■ Somewhat agree ■ Strongly agree

QC40c: How much do you agree with the following statements about how you think or feel about new technologies (such as Generative AI, Interactive toys, Robots)? I am worried about fake pictures and untrue stories made using apps and online technologies, and the problems they might cause (e.g. will cause cyberbullying, hate or misinformation, polarisation)

Base: All children aged 9-16 (N= 25,592 but see table 2 for the number of respondents by gender, age and SES).

In the qualitative interviews, children were mostly aware of problems with deepfakes, i.e. synthetic visuals or audio created by GenAI that can be used for manipulative purposes, including disinformation and the unintentional spread of misinformation. Several children said they had seen deepfakes on social media. Fewer children, however, talked about having witnessed instances of cyberbullying where deepfakes were leveraged to bully someone. While children reported awareness that GenAI could be used for such malicious purposes, for the most part, they had not experienced this problem.

And yeah, I know there are a lot of AIs that can do different things—some can change your voice to make it sound like a singer's, stuff like that. Sometimes when I'm scrolling through TikTok, I see videos that were generated using AI. For example, the other day I saw one where they brought famous people from the past "back to life," you know? So there were portraits, and the AI made them look alive. I think that kind of thing is really interesting—also a bit creepy—but still, interesting. (Tommaso, M, 16, Italy)

But I know that, yeah, it's a very real situation and it could happen, but personally it's never happened to me, not even at school—as far as I know. I know that, yeah, because there's also generative AI in things like Adobe Photoshop, and it can do that. You can upload something there, and then it can distort your classmate's photo. That can happen, yeah. (TB, M, 13, Latvia)

For cyberbullying it depends on the photo. I might laugh with them for a couple of minutes but then I'd tell them it's bad using AI that way and making fun of people. (Benjamin, M, 14, Malta)

Yes, I've come across that. It's already popular now, because it's the easiest way to use artificial intelligence to impersonate someone. (John, M, 15, Poland)

The students created an image of the new student in the class, but there was no AI formula in place to prevent them from making that image. (Samuel, M, 17, Portugal)

Some children also reported specific concerns about privacy. Many of them said they were aware that sharing private personal information with chatbots could be unsafe and that they were not clear as to how

the data could be processed and shared further. Many children mentioned they would not share private information with chatbots. A portion of children, however, did not seem to be aware of or concerned about such risks.

Well, I honestly wasn't afraid of that [that what you share is abused]. (Milena, F, 17, Serbia)

Interviewer: Okay. But you, when you think about the fact that ChatGPT does know exactly where you live.

Is that nice, or is that creepy, or...?

Respondent: It's definitely not nice if someone knows where you live.

Interviewer: What could it do with that information?

Respondent: I don't even know. (Tom, M, 13, Estonia)

Privacy concerns me a bit when it comes to AI, but not so much. The more we use it and the more people engage with it the more it will improve. The more money is invested into it the better AI will get, kids my age use AI more and more, and rely on it more than things such as Google. (Terrence, M, 13, Malta)

But then there are also a lot of people who upload pictures for it to look at. And that can be kind of scary.

But there are many who share more private and intimate things — like intimate problems. And there's a big difference between taking a picture of your foot and of, like, your genitals, kind of. (Markus, M, 15, Norway)

People who use it only for academic purposes, well, they can have that information, but I don't think anything is going to happen. But those people who do talk to the AIs, well, it is dangerous, I think. Because imagine a person who feels that he is alone or does not know what to do with his life, well, that information could end up in the hands of someone else (Oihane, F, 16, Spain)

What they fear

A fear expressed by children in many countries, which we have previously referred to, is that GenAI promotes deskilling, laziness or cognitive disempowerment, not only among children but also in adult populations. Children sometimes expressed concerns that in the future, professionals, such as doctors, lawyers or architects, may lose their ability to do their jobs well due to an overreliance on GenAI.

But what I think AI tools take away from you, more than creativity, is motivation. Like, an in-class essay is something I have to turn in and be graded on—but if I get a small essay as homework, I just start to lose... I mean, like most people my age probably do, I don't even feel like putting in the effort, you know? I don't feel like wasting a bunch of hours on it. (Tommaso, M, 16, Italy)

For example, a future doctor cheating on their medical exams will probably be a bad thing. (Sara, F, 13, Serbia)

Some children's thoughts on 'AI taking over control from humans' reflected scenarios in Sci-Fi movies. These concerns also appear in popular discourse, sometimes even coming from the founders of the field of Artificial Intelligence, such as Geoffrey Hinton, who warned about the possible inability to 'control' these technologies in the future (Milmo, 2024). Some experts do not find this potential lack of control plausible, or as pressing as more immediate consequences, including discrimination, systemic inequality and a rise in global precarity (Crawford, 2021; Whittaker, 2024). Children's awareness of these issues varied. Some held the belief that the development of GenAI can be 'switched off by pushing a button,' should humanity decide that the technology no longer serves it. Others showed ambivalence about the idea of robots entering education and replacing teachers, fearing the loss of human contact on the one hand, and seeing possible educational benefits and expressing a level of fascination on the other.

Well, I think in the next 5 to 10 years there's going to be a huge change. I've already seen that they've made cars that can basically drive themselves—so there's no human driving them. That kind of thing scares me a bit, because... I'm kind of afraid that robots might end up surpassing humans, like you see in a lot of movies and stuff. So yeah, I do have that fear—because after all, it's a robot, and you never really know. (Sara, F, 13, Italy)

I find it a bit scary, because really, the teaching profession could disappear. Yes, that would be a problem. But at the same time, it would be very fascinating, very interesting — that a teacher could possibly give all the information to artificial intelligence, and it would be capable of teaching everyone. But still, I would be afraid or worried that it could take over teaching in everyday life. I'm the kind of person who has seen a lot of movies and series about robots trying to take over the world. But also, yes, I think human contact is very important — to teach something, it has to be a human who teaches it. (AE, M, 17, Latvia)

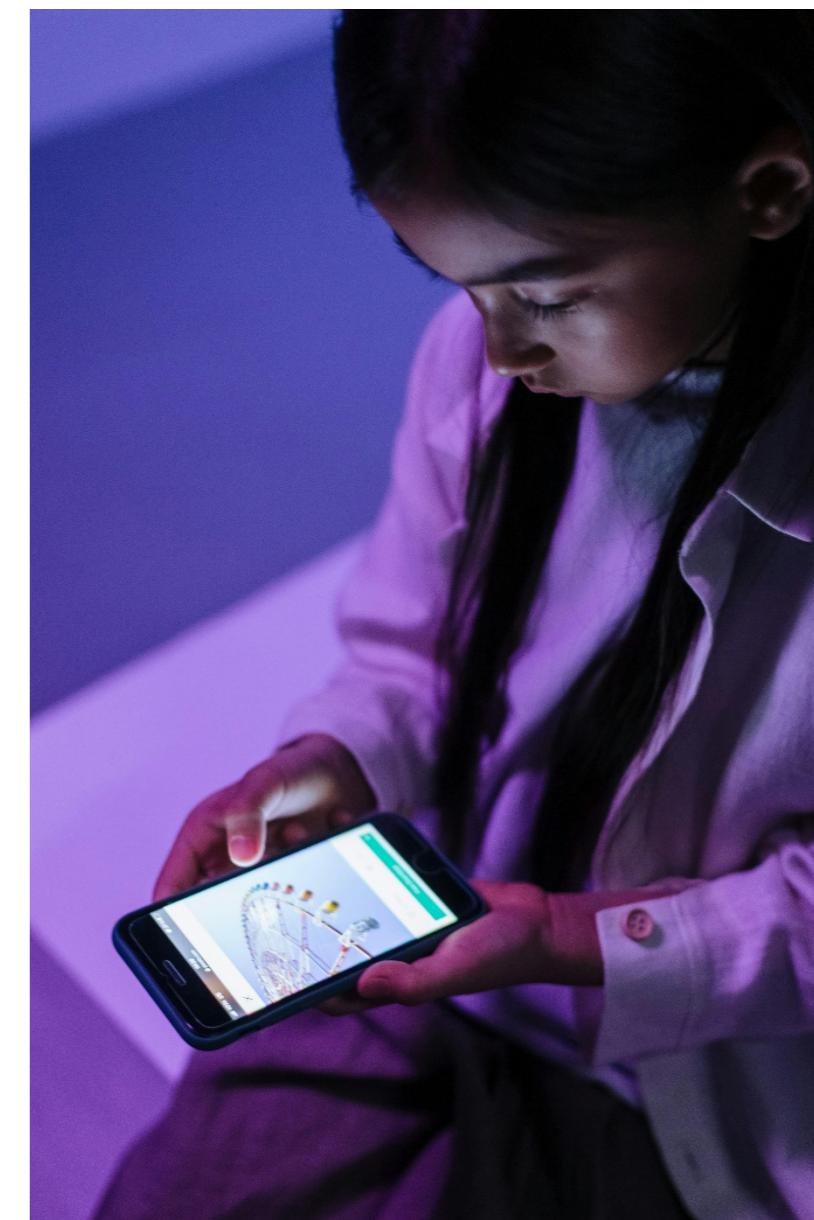
And I also believe that if we start using it in a bad way, it will go bad. But for now, as I see it, we use it in a good way, for good reasons. Maybe people use it for something bad, but I believe it will be fixed over time. For now, we just need to watch it grow, and later, for example, as we did with the Internet, to let it be for now. And if it turns out to be bad in the end, I don't know how, but I don't know what, maybe we'll turn it off, or we'll end it, or we'll reduce the utility. We want to be able to turn it off. We'll be able to, I mean, one button and that's it. (Ivan, M, 15, Serbia)

Several children expressed concerns about job losses and their prospects in the new technological environment. While some exhibited confidence that their jobs would not be taken away, they pointed out that some professions could disappear.

Well, the ones whose jobs it takes away, it ruins their lives. [...] This [career choice] is deliberately made so that AI can't take it over. So that I would still have a job in the end. (Erik, M, 16, Estonia)

Well because Elon Musk has already made some Tesla robots, and well, it won't be long before everything is taken over by robots. [...] I'm rather not waiting for it, because they take all the jobs away. For example, some for students... like working in a store. If a robot takes that away, then it's hard. (Tom, M, 13, Estonia)

I think that in 10 years, artificial intelligence will replace many of the jobs we have, and others will have to be created around it. So, I think it will greatly change the world we live in now. (Diana, F, 16, Portugal)


Other children expressed concerns that deepfake-related disinformation and misinformation could contribute to another worldwide conflict:

World War III could come because of AI. Because there are so many things it can do that seem so real, it could generate a fake conversation about important people. It could create a phrase from Donald Trump where he says that Putin is a bastard, and Putin believes it because it seems so real, and then he says, 'I'll bomb you.' And it could create the greatest misunderstandings in the world. (Gonzalo, M, 17, Spain)

Fewer children talked about risks such as the environmental cost behind the training of large language models, the possible negative impact on climate change; or the amplification of existing inequalities and stereotypes through so-called data biases.

I've never really thought about it [AI reinforcing discrimination], but I guess it could. Yeah, I think I saw a TikTok once where they asked AI to generate a Neapolitan person — and then asked for it to be 'more and more Neapolitan,' and with every scroll it became more of a caricature. (Alma, F, 17, Italy)

Otherwise, there's the issue of energy use... It consumes an extreme amount of power. I've also heard that it goes through huge amounts of water, and that it can dry out relatively large areas. That's definitely a challenge, especially in a world where there's already a lot of drought, and with climate change and all that. (Odin, M, 15, Norway)

Children's hopes and recommendations for responsibilities and remedies

1. Call for urgent action

When it comes to responsibilities and remedies for potential risks and negative consequences, some of the children we spoke to share a sense of urgency connected to an understanding that a turning point in the development of GenAI has been reached. For example, Tommaso (M, 16, Italy) said that: "There's constant development, and in two years we might already reach a point of no return. The way I see it, we're already close to that point." Based on this urgency, children identify multi-layered responsibilities and various solutions. Their words reflect how attributing causal and treatment responsibilities for risks related to GenAI is a complex issue. Sometimes they define GenAI risks as a social problem to be addressed by collective initiatives to protect rights (e.g. policies, regulation and co-regulation). However, they also attribute GenAI risks to individual users and see education as a potential solution to promote responsible use.

When considering GenAI as a social problem, the interviewees give voice to a sense of urgency and collective responsibility, as Kadi expresses:

Well, it concerns the whole world or some such. Because a child is still developing and if they only use ChatGPT for simple homework and stuff, then they are not developing their own brain's search and independent thinking skills. (Kadi, F, 17, Estonia)

In this context, children emphasise corporate responsibilities for GenAI's failures as risks:

I think it [ensuring AI benefits young people and society] all depends on the developers themselves. (Nenad, M, 17, Serbia)

I think people could really do anything [...] I think that that should be limited by the AI company but there's nothing stopping you from doing it in other ways really. (Jack, M, 13, UK)

They [AI companies] should have someone to try and watch over it so then it doesn't go too wrong. (Leo, M, 15, UK)

More often, interviewees advocate for a combination of design remedies, legal frameworks, education, and children's pro-active behaviour:

So, when it comes to the risks, like limiting certain functions, I think that should be up to the developers—the people who actually created AI. As for raising awareness, I think it should still come from those who created it, but maybe through schools (Giulia, F, 16, Italy)

I would usually... talk to the company that made it like there's a way to like give feedback or something. (Oliver, M, 13, UK)

I think there needs to be some sort of teaching in that. It's sort of everybody knows you shouldn't use it like overly a lot (Sam, M, 14, UK)

2. Call for safety by design

Interviewees call for safety by design to deal with the challenges they face, including unreliable content and disinformation; persuasive and manipulative content; and harmful content:

Yes, indeed [ChatGPT should compare more]. Because sometimes I feel like ChatGPT only has everything from, let's say, two sources. (Liv, F, 14, Germany)

I believe that if that programme were well designed, it wouldn't be able to create phrases accusing or insulting a person, and that's why it has its share of blame (Oihane, F, 16, Spain)

Maybe there should be some kind of stricter control over what you can talk to AI about, and a better anti-manipulation block, so you couldn't just do anything with AI. (Nils, M, 17, Estonia)

Say it says something like for example in an instance it says something inappropriate, then at that fault it'd probably be the company's fault because of course it was not there, it's their job to make sure it doesn't say anything bad. (Ethan, M, 15, UK)

Children's suggestions for safety by design include limiting the range of topics and questions that can be addressed to GenAI, as well as preventing the creation of deepfakes by restricting the possibility to upload photos:

You could make it so that, I don't know, maybe AI wouldn't allow real human photos to be uploaded. Like, you upload your photo, and then it creates something unpleasant—like something mean. For example, a photo of you smiling, and then it's like—my teeth look kind of yellow, you know? (KA, F, 13, Latvia)

Maybe it should remove the option to generate content from everything it finds, and only allow people to search for things on the web. (Serena, F, 17, Italy)

Rules, like I said, but from Character AI itself. Like, "Oh, we won't answer this type of question," or "We won't respond to that kind of thing." I think that really needs to exist (Joana, F, 17, Portugal)

3. Call for privacy

With respect to protecting users' data and children's rights to privacy, interviewees believe a combination of safety by design principles and regulation would be more effective.

First of all, companies should make their terms of service and privacy policies more transparent and easier for users to understand.

At least at the beginning [when using the app], it should say right away: 'Hey, do you want us to collect data and personalize results for you, or do you want to start over again and again [...] So that it's clear right from the start that when I press 'confirm', it's now collecting my data and creating personalized results for me. [...] It should explain it briefly in [...] five or six lines [...], because if you have to read for half an hour, very few people are interested in that; they just press 'confirm' and that's it. (Ella, F, 14, Austria)

Some interviewees would also like to be empowered by design choices that enable users to decide when and what information to disclose or keep private:

I've done that, and I know people who do it a lot—who open up to artificial intelligence. (...) But maybe if there were a way for the person... I don't know if it would be possible, it's just a thought. Maybe if there were a way for the person to say, for example, 'this is something personal, I don't want this to leave here,' for example. The person should be able to make it clear to the AI that they want to open up and that the text should stay there and no one else should have access. If there were a tool like that, it would be good (Samuel, M, 17, Portugal)

The need for national and transnational regulations has also been emphasised, especially by Austrian participants, who would welcome a law that bans AI companies from collecting any kind of user data:

There should be a law that the companies behind AI are not allowed to store personal data or the prompts of people. They should also not be allowed to share these data with third parties. (Leonie, F, 16, Austria)

It would be good to have a law by our government or better by the European Union, to stop Chat GPT from collecting and using our data (Gertrude, F, 16, Austria)

for those laws that are generally for the use of data, I think it is responsible the state or government, and to enforce that law, I think that the owners of these companies and programmers are responsible. (Marija, F, 14, Serbia)

However, some interviewees demonstrate awareness of how users' data are being monetised or used to train AI models. Consequently, they express a sense of resignation towards the perceived inevitability of datafication and view both governments and users as powerless:

I don't think they'll ever implement that, because they would simply lose so much money doing it, because so many people enter so much personal information [...] that's how they make money again (Elisa, F, 14, Austria)

Anyone who's afraid, anyone who's afraid their data is being stored, anyone who doesn't want it stored by AI, shouldn't use AI. And anyone who doesn't want data stored at all shouldn't use a phone either. (Jannick, M, 18, Germany)

About disclosing private information, it's a bit like on social media. So everything that we implicitly or accidentally release is used for profit. (Marco, M, 15, Italy)

4. Call for remedies to mitigate serious epistemic, social and political consequences of AI-fabricated content

Children express concern for the serious epistemic, social and political consequences of AI-fabricated content. Francesco (M, 17, Italy) expresses the perceived gravity when he claims that if we reached a point where you can't tell real videos from fake ones, that would basically be the death of the internet. Consistent with their understanding of corporate responsibility, the children we spoke to identified concrete design measures to prevent the problematic consequences of deepfakes, including labelling AI content. This is one of the most common remedies that children would like to see implemented by platforms:

I think they should have more like, just not like everything in the internet just goes into like the answers that it gives to us. (Noah, M, 14, UK)

There should be a mandatory identification of AI generated content (Laura, F, 17, Austria)

It should be mandatory to indicate that it is AI generated, in my opinion. Something that should already be mandatory on social media (Francesco, M, 17, Italy)

I would feel much better. [...] Yes, because then I would know that it's AI and I wouldn't have to be afraid, is this AI? Is this real? What should I write about it? But yes, just knowing that would give me a great sense of security. (Mats, M, 13, Germany)

If someone publishes, like, a sample song on a website, for example, or posts it somewhere—like on TikTok, when there's a video or a song—it should be clearly labelled, like "this content was generated by AI" or "this song was generated by AI." I think it really should be marked so that people can see and know it was created by artificial intelligence—so they don't get fooled (Kahu, M, 15, Poland)

To be transparent when it is used. When they [users, producers] used it. (Katarina, F, 15, Serbia)

Other measures suggested by interviewees include content moderation on platforms, to identify and remove deepfakes and fake profiles. To this end, they

believe that a combination of automatic detection and human moderation would be more effective:

There should be more interfaces to censor it better. It should really be people reading and censoring, not just... Because, for example, you can still write certain words. If you type a swear word with an 'A', you can replace it with an '@' and still send the word. (Isabel, F, 15, Portugal)

I think there should definitely be more awareness, but especially more control from the platforms themselves — because there are so many fake profiles, and Instagram or TikTok could easily identify them. (Valeria, F, 17, Italy)

Some interviewees, however, believe that the problem of deep fakes and disinformation should be addressed by governments through regulatory frameworks that impose content moderation on platforms:

Yeah, like deepfakes should be banned, especially those using inappropriate images. Yeah, there should be laws for that. (Nicola, M, 15, Italy)

In the future there should be a law that forbids fake news. [...] I am afraid of fake news. They should be detected and deleted (Lilli, F, 13, Austria)

5. Call for governments to regulate GenAI to ensure beneficial outcomes

Some interviewees wish to ensure that the perceived novelty and potentially disruptive impact of GenAI is harnessed by national and transnational governments for beneficial outcomes, including the reduction of inequalities and the prevention or mitigation of risks:

Yes, one hundred percent, new laws about artificial intelligence are needed. (Ivan, M, 15, Serbia)

I would definitely think it would be better if the rules for ChatGPT were made stricter or if new ones were introduced (Yunis, M, 15, Germany)

Others believe that governments should intervene to stop the evolution of GenAI beyond the current phase of development:

By stopping it from developing further. Just leaving it as it is right now, and not letting it evolve- others talk about (Elsa, F, 14, Germany)

So, what I'd probably ask her [the Italian PM] is, and I know it might sound a bit strange, to stop the development of this thing—or at least to stop the negative side of its development. Because yes, there are positive aspects, but in my opinion, the negative ones could end up being too serious in the long run. (Tommaso, M, 16, Italy)

Still others suggest concrete areas of policy intervention. These relate to expectations that government and transnational institutions develop legislation to regulate deepfakes and protect users' privacy, as already highlighted above. National governments and the EU are also identified as actors with responsibility regarding the limitation of GenAI use for good purposes and the prevention of harmful consequences. The quotes below express children's concerns about automation and algorithmic bias and call for human oversight to minimise health and safety risks, prevent discrimination and violations of human rights:

I think it would be hard to achieve, but ideally, artificial intelligence shouldn't be used in military or warfare-related activities (Pio, M, 17, Poland)

There should be EU regulations and law preventing racism and other discrimination in the results of GenAI. (Elisabeth, F, 17, Austria)

I would probably set some kind of limit. That it can't develop beyond a certain point. For example, it can't take political power into its own hands or do things that really always need a real person to do the job.

Governments are also held responsible for designing school curricula to equip teachers and children with adequate levels of AI literacy:

it's good if people learn about it [...] in school, if it's mandatory, and are informed about all the risks and problems. (Maja, F, 17, Austria)

Well, for example, I wouldn't want this to be brought too much into schoolwork or into the learning process, so that now all teachers would be forced to allow us to use it. I rather like that if you know how to use it, then it's allowed, but it's not like, "But now I want to get this information from the textbook instead!" (Rebeka, F, 15, Estonia)

As these quotes show, education is positioned between collective and individual responses to GenAI.

6. Call for individual responses to AI risks

Those who emphasise individual over collective responsibility, argue in favour of awareness-raising and education about responsible uses of AI:

Maybe we should rather teach how to behave correctly. (Lydia, F, 16, Estonia)

[if I had received education on AI] I would use it in a much more rational way, I would use it in a much more useful way for me because, now [...] I don't really know how and when it is reliable, what exactly to ask it, what not to ask it [...] responsible use is right and should be taught. (Elena, F, 15, Italy)

I think there should be education from all responsible adults. For example, starting to teach younger people the correct way to use technology so that it is not addictive or incorrect, which harms their lives and the lives of others (Ana, F, 14, Portugal)

The use of artificial intelligence is something personal, the person has free will to use it or not. Therefore, when using it, like anything else we do, they must be aware of the adverse issues that it can bring, the positive points and the negative points (Miguel, M, 17, Portugal)

Other individual responses to social problems triggered or amplified by GenAI use include stricter rules to regulate GenAI use at school and mitigate against a potential overdependence on GenAI. These include suggestions to enhance surveillance of GenAI use through detection tools for teachers:

Maybe give teachers some better AI detection tools, so that when there's an assignment where you're supposed to think on your own, some text or idea, they could better detect if it was written by AI. (Nils, M, 17, Estonia)

There's a problem with learning to limit usage. Because if you use it too much, you probably can't come up with anything independently – you can't think of anything on your own. I've had a case with a classmate who uses it so often that [...] he can't do anything without it [...] for students, it would be totally reasonable to have a limit. A limit on information, for example, a specific number of questions, or a time limit – like 30 minutes on the site. (PV, M, 15, Latvia)

Young people suggest that the burden of individual responsibility should also fall on parents, who are held responsible for monitoring how younger children use GenAI.

And I think parents should also keep a closer eye, especially with kids who are 10, 11, 12 and just starting out on social media. (Valeria, F, 17, Italy)

It would definitely be good if there was [...] parental supervision, that might not be a bad idea. [...] That your parents see what you're entering, or that you have to ask your parents for permission, whether you can enter it, or something like that. It would be a bit complicated, but maybe not a bad idea. (Elisa, F, 14, Austria)

For example, if you have a child, you make sure they don't use it. There are search engines like FragFinn, for example, which are made specifically for children. Weird stuff doesn't show up there. (Roxy, F, 13, Germany)

AGE RESTRICTIONS

Some children argue for age restrictions to ban children younger than 12 or 13 from using GenAI:

It would definitely be good if there was an age restriction (Elisa, F, 14, Austria)

Some emphasise the risks of de-skilling and disempowerment when children rely on GenAI at a younger age:

Well, maybe at a certain age it shouldn't be used. Then you might not understand it. [...]

12, something like that. If you get used to using only AI answers for questions, and then, if at some point you can't do that anymore, then you won't know how to do anything. (Sven, M, 15, Estonia)

There should be something like 13+ GPT eventually. And it is related to an age limit. I deem that until the given age using of ChatGPT should be limited so that children could acquire self-efficacy in learning and other matters (Olla, F, 16, Poland)

Others highlight how younger children are more vulnerable to privacy risks and/or manipulation, and suggest age verification to prevent them from engaging in conversation on harmful topics:

No, but there could be age limits, for example, if you were to make rules. Like, there could be questions that you wouldn't get an answer to — like, if you ask something related to that, then you'd get some kind of system, like a message, because you can, like, say how old you are. It might take a bit of time, but nothing more than that — just, like, you can't ask about this, or anything related to this, until you're a certain age (Ola, M, 13, Norway)

Definitely, small children shouldn't use it. You never know what a child might type in or what personal information they might share. (Filip, M, 14, Poland)

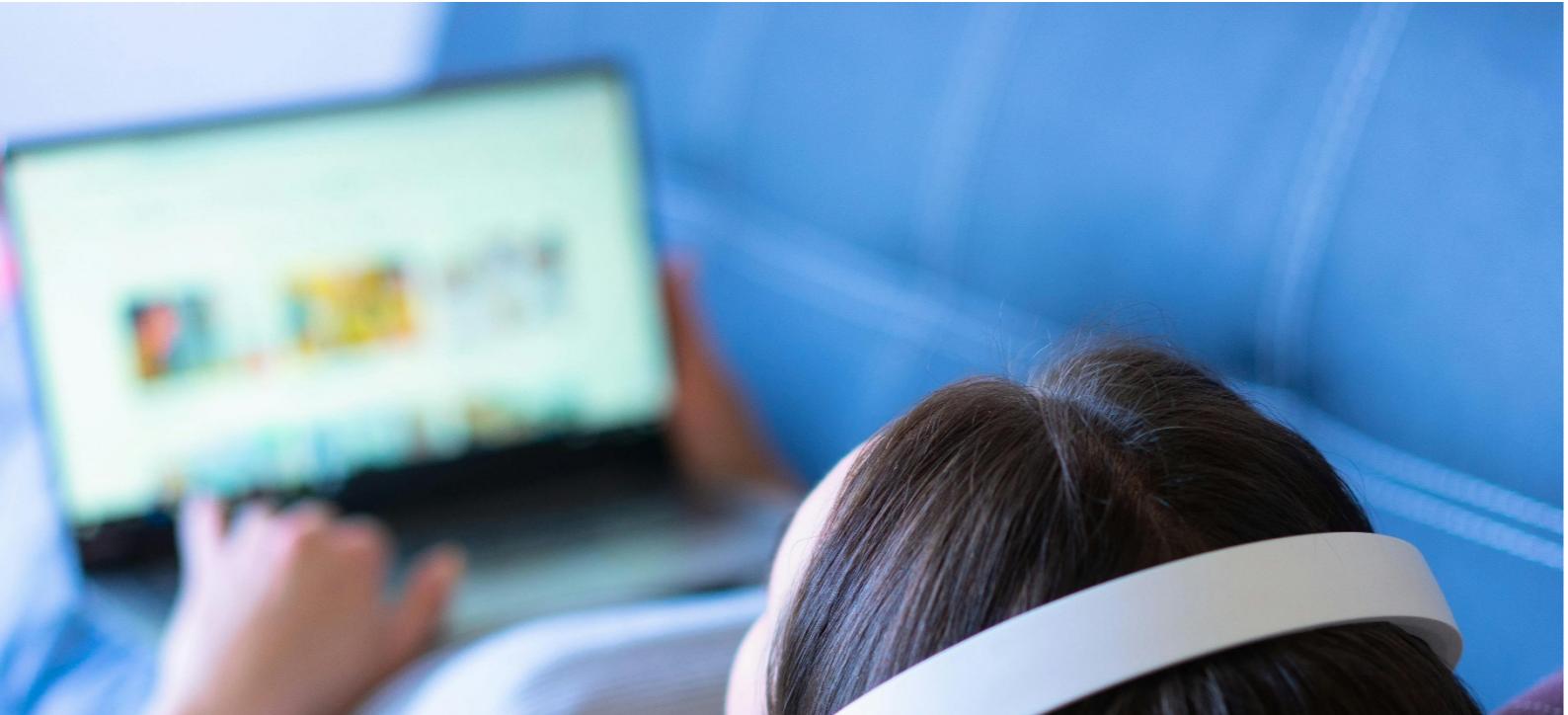
Conclusions

This EU Kids Online report shows how GenAI is being integrated in a range of European children's everyday practices, including learning, play and creativity, communication and sociality, information and advice-seeking. This integration is often not intentionally pursued by children but rather pushed by the market (when GenAI tools are incorporated in already popular platforms and services, or in Edtech) or shaped by peer pressure (when children learn about GenAI from their classmates or on social media). In this respect, the domestication of GenAI does not differ from the domestication of other new digital media, from the internet to smartphones and social media: it is shaped by the intersecting influences of families, peer cultures, school, the social and cultural context, political institutions and the market. Also, research on teachers' attitudes concerning GenAI impact on socialization and education mirrors this path, suggesting how a large proportion of teachers focus only on potential risks, such as cognitive disruptions or negative outcomes on human relations that they think may be associated with GenAI use by minors (Pyżalski, 2025). And, as with other media, the diffusion of GenAI has equally been accompanied by utopian and dystopian discourses about its disruptive consequences.

Therefore, it is not surprising to find that children share and indeed oscillate between opposed technological imaginaries, hoping that GenAI will support the progress of medicine, from diagnosis to cure, while at the same time fearing for dystopian futures where GenAI embedded in humanoid social robots will likely replace human jobs and surpass human intelligence.

Both our survey and interview data show that children endorse the idea that we have reached a turning point in technological development that will likely revolutionise how we learn, work, communicate, have fun, etc. This feeling of urgency contrasts with the mundane usage practices and the limitations of GenAI tools children have already experimented with and reflected upon: in fact GenAI is praised more for its automated nature – its efficiency, which helps them complete tasks more easily and faster – than for its simulation of human communication and intelligence: while some children are turning to GenAI for personal advice and chatting when bored, the majority continues to trust their friends, family and expert knowledge (doctors, scientists, textbooks) more.

These findings suggest that, as with other digital technologies before, GenAI will be normalised, and its presumed revolutionary impact downscaled as the novelty effect fades away. At the same time, however, our data signal how the domestication of GenAI is


taking place in social, cultural, political and economic contexts characterised by profound transformations and challenges for children's rights. AI is the first technology to be purposefully designed and marketed around a deception (Natale, 2021): the very idea of artificial intelligence constitutes the "original sin of the field" (Hao, 2025), and, simultaneously, a powerful marketing tool that informed, and still informs, the hype and perils surrounding the technology. Rebranding this technology as 'intelligent' helped developers and investors represent AI as the solution for each and every societal need (Narayanan & Kapoor, 2024). This has shaped its evolution in directions that are radically different from the internet and mobile communication: while the latter incorporated various bottom-up practices in its design and development, because of its opacity, GenAI's development is strictly in the hands of its developers. User practices matter only to the extent they are exploited for the training of algorithmic models (Crawford, 2021; Mejias & Couldry, 2024). Political institutions, educators and parents are seemingly lagging behind, unable to regulate the development and application of GenAI, or to provide guidance to children.

Amidst these uncertainties, though, children call for more guidance and protection, as this report shows. Whereas the fear for job losses and AI taking control of human futures reflects dystopian imaginaries popularised by sci-fi literature and movies – and reproduced by media discourses-, their concerns for unreliable yet persuasive outputs, the realistic fabrication of facts through deepfakes, as well as for cognitive deskilling, expose the absence of children's rights from the design of GenAI's tools. Children claim safety and privacy by design, transparency and tools that could actually support their development, learning, creativity and wellbeing. They call for urgent action from governments, industry, educators, and their parents and themselves.

Based on their expectations and future talk, we can outline the following recommendations:

1. **Industry should design age-appropriate, safe and private tools that respect children's rights.**
2. **National governments and transnational institutions like the EU should implement regulations to guarantee that companies comply with children's rights by design principles.**
3. **Teachers should provide clear rules around the use of GenAI in schoolwork and guide them through positive uses, supporting their acquisition of GenAI literacies.**
4. **Parents should accompany their children in the use of GenAI: although they may fear they lack the required skills, they can help reinforce their critical AI literacies, including checking the reliability of outputs or assessing the privacy of services.**
5. **Finally, the media have the responsibility to portray GenAI for what it actually does, as well as what it promises to deliver.**

References

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). *On the dangers of stochastic parrots: Can language models be too big?* Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT '21) (pp. 610–623). New York. <https://doi.org/10.1145/3442188.3445922>

Brandtzæg, P. B., Skjuve, M., & Følstad, A. (2025). AI Individualism: Transforming social structures in the age of social artificial intelligence. In P. Hacker (ed.), *Oxford Intersections: AI in Society*. Oxford Academic. <https://doi.org/10.1093/9780198945215.003.0099>

Cino, D., Lacko, D., Mascheroni, G., & Šmahel, D. (2023). Predictors of children's and young people's digital engagement in informational, communication, and entertainment activities: findings from ten European countries. *Journal of Children and Media*, 17(1), 37–54. <https://doi.org/10.1080/17482798.2022.2123013>

Common Sense Media & Hopelab. (2024). *Teen and young adult perspectives on Generative AI: Patterns of use, excitements, and concerns*. Common Sense Media. commonsensemedia.org/sites/default/files/research/report/teen-and-young-adult-perspectives-on-generative-ai.pdf

Crawford, K. (2021). *The atlas of AI: Power, politics, and the planetary costs of artificial intelligence*. Yale University Press.

Depoulti, I., & Natale, S. (2025). Decoding artificial sociality: Technologies, dynamics, implications. *New Media & Society*, 27(10), 5457–54. <https://doi.org/10.1177/14614448251359217>

Drotner, K. (1999). Dangerous media? Panic discourses and dilemmas of modernity. *Paedagogica Historica*, 35(3), 593–619. <https://doi.org/10.1080/0030923990350303>

Esposito, E. (2017). Artificial communication? The production of contingency by algorithms. *Zeitschrift für Soziologie*, 46(4), 249–265. <https://doi.org/10.1515/zfsoz-2017-1014>

Esposito, E. (2022). *Artificial communication: How algorithms produce social intelligence*. MIT Press.

Guzman, A. L., & Lewis, S. C. (2020). Artificial intelligence and communication: A human–machine communication research agenda. *New media & society*, 22(1), 70–86.

Hao, K. (2025). *Empire of AI: Dreams and nightmares in Sam Altman's OpenAI*. Penguin Group.

Hepp, A. (2020). Artificial companions, social bots and work bots: communicative robots as research objects of media and communication studies. *Media, Culture & Society*, 42(7–8), 1410–1426. <https://doi.org/10.1177/0163443720916412>

Hietajärvi, L., Mascheroni, G., Waechter, N., Järvinen, J., & Salmela-Aro, K. (2024). Latent profiles of adolescents' digital skills across six European countries. *New Media & Society*, 27(11), 5915–5937. <https://doi.org/10.1177/14614448241258704>

Kosmyna, N., Hauptmann, E., Yuan, Y., Situ, J., Liao, X.-H., Beresnitzky, A., Braunstein, I., & Maes, P. (2025). Your Brain on ChatGPT: Accumulation of Cognitive Debt when Using an AI Assistant for Essay Writing Task. <https://doi.org/10.48550/arXiv.2506.08872>

Kuzmanović, D., Pavlović, Z., Popadić, D., & Milosević, T. (2019). *Internet and digital technology use among children and youth in Serbia: EU Kids Online survey results, 2018*. Belgrade: Institute of Psychology, Faculty of Philosophy. <https://www.lse.ac.uk/media-and-communications/assets/documents/research/eu-kids-online/participant-countries/serbia/EU-Kids-Online-ENG-2019.pdf>

Livingstone, S., Haddon, L., Görzig, A., & Ólafsson, K. (2011). Risks and safety on the internet: the perspective of European children: full findings and policy implications from the EU Kids Online survey of 9–16 year olds and their parents in 25 countries. EU Kids Online, The London School of Economics and Political Science. <https://researchonline.lse.ac.uk/id/eprint/33731>

Livingstone, S., Kardefelt-Winther, D., Kanchev, P., Cabello, P., Claro, M., Burton, P., & Phyfer, J. (2019). Is there a ladder of children's online participation? Innocenti Research Briefs no. 2019-02. Florence: UNICEF Office of Research – Innocenti.

Livingstone, S., & Pothong, K. (2023). *Child Rights by Design: Guidance for innovators of digital products and services used by children*. Digital Futures Commission, 5Rights Foundation.

Madden, M., Calvin, A., & Hasse, A. (2024). The dawn of the AI era: Teens, parents, and the adoption of generative AI at home and school. Common Sense Media.

Mejias, U. A., & Couldry, N. (2024). *Data grab: The new colonialism of big tech and how to fight back*. University of Chicago Press.

Milmo, M. (2024, December 27). 'Godfather of AI' shortens odds of the technology wiping out humanity over next 30 years. *The Guardian*.

<https://www.theguardian.com/technology/2024/dec/27/godfather-of-ai-raises-odds-of-the-technology-wiping-out-humanity-over-next-30-years>

Min, R. (2025, November 5). Anthropic to Bring its AI to Hundreds of Teachers in Iceland to Help them Prepare School Lessons. *Euronews*. Retrieved from:

<https://www.euronews.com/next/2025/11/05/anthropic-to-bring-its-ai-to-hundreds-of-teachers-in-iceland-to-help-them-prepare-lessons>

Narayanan, A., & Kapoor, S. (2024). AI snake oil: What artificial intelligence can do, what it can't, and how to tell the difference. Princeton University Press.

Natale, S. (2021). Deceitful media: Artificial intelligence and social life after the Turing test. Oxford University Press.

Peter, J., & Kühne, R. (2018). The new frontier in communication research: Why we should study social robots. *Media and Communication*, 6(3), 73-76.

Pugh, A. J. (2024). The last human job: The work of connecting in a disconnected world. Princeton University Press

Purser, R. (2025, November). AI is Destroying the University and Learning itself. *Current Affairs*. Retrieved from

<https://www.currentaffairs.org/news/ai-is-destroying-the-university-and-learning-itself>

Pyżalski, J. (ed.) (2025). *GenAI in Polish school – Paving the way*. NASK – Państwowy Instytut Badawczy.

Staksrud, E., & Livingstone, S. (2009). Children and online risk: Powerless victims or resourceful participants? *Information, Communication & Society*, 12(3), 364-387.

<https://doi.org/10.1080/13691180802635455>

Smahel, D., Machackova, H., Mascheroni, G., Dedkova, L., Staksrud, E., Ólafsson, K., Livingstone, S., & Hasebrink, U. (2020). *EU Kids Online 2020: Survey results from 19 countries*. EU Kids Online.

Stoilova, M., Livingstone, S., & Ringmar Sylwander, K. (2025). *Researching children's experiences of generative artificial intelligence: a child rights approach*. Technical Report. Digital Futures for Children centre, 5Rights Foundation.

<https://researchonline.lse.ac.uk/id/eprint/129141/>

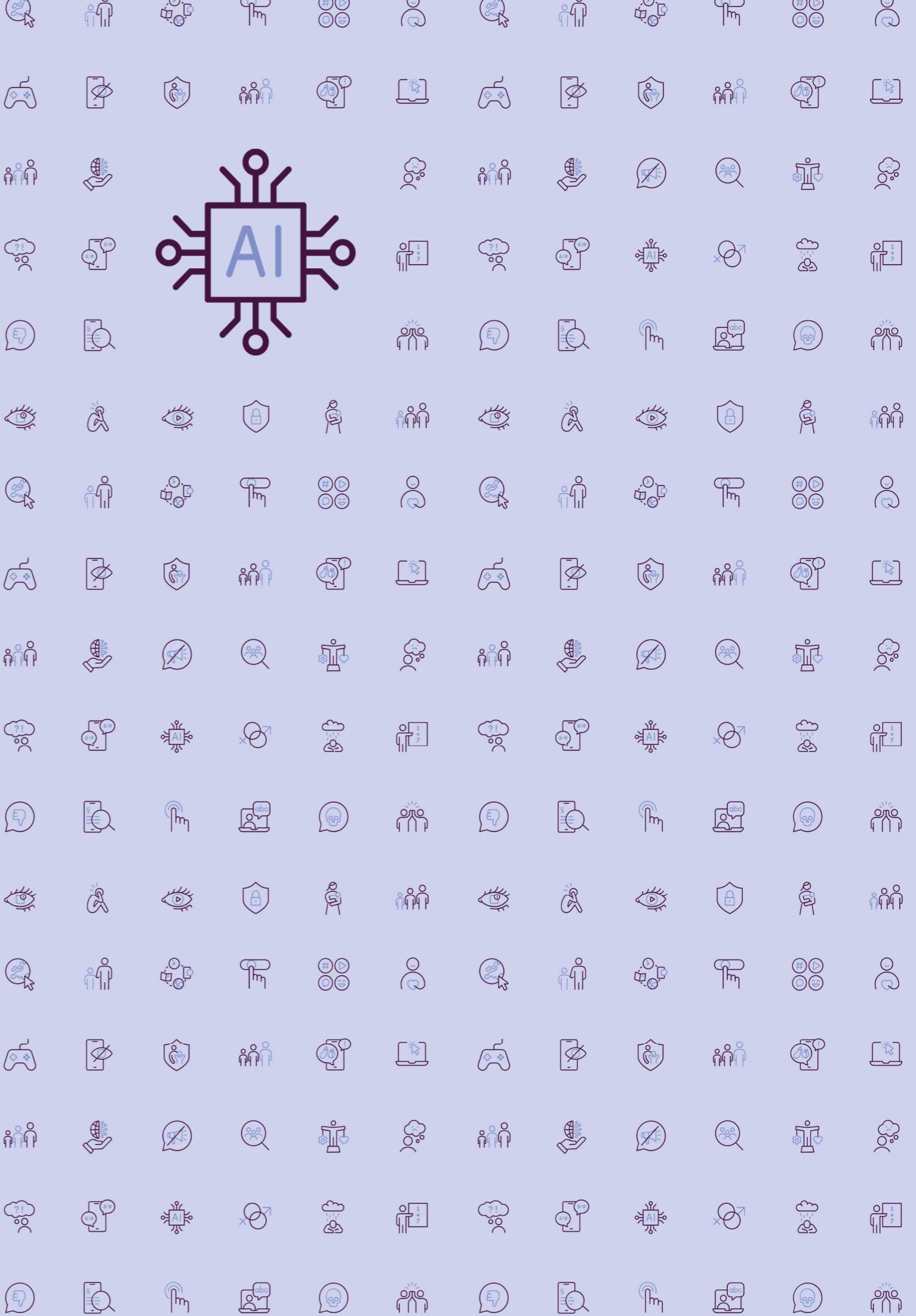
Wellman, B. (2004). The three ages of internet studies: Ten, five and zero years ago. *New Media and Society*, 6(1): 123-129.

Widder, D. G., Whittaker, M., & West, S. M. (2024). Why 'open'AI systems are actually closed, and why this matters. *Nature*, 635(8040), 827-833.

Whittaker, M. (2024, May 15). Inaugural Speech, Helmut Schmidt Prize. Retrieved from

<https://ainowinstitute.org/publications>

Zhai, C., Wibowo, S., & Li, L.D. (2024). The effects of over-reliance on AI dialogue systems on students' cognitive abilities: A systematic review. *Smart Learning Environments*, 11(28).


<https://doi.org/10.1186/s40561-024-00316-7>

National contact persons EU Kids Online: Quantitative Child Survey

Country	Main contact/national PI	Funder
Austria	Assoc. Prof. Sascha Trültzsch-Wijnen, Department of Communication, University of Salzburg, Prof. Christina Ortner, Department Communication and Knowledge Media, University of Applied Sciences Upper Austria and Prof. Christine Trültzsch-Wijnen, Salzburg University of Education Stefan Zweig	Own research funds
Belgium	Prof. Leen d'Haenens, Faculty of Social Sciences, Institute for Media Studies, KU Leuven	Own research funds
Croatia	Asst. Prof. Lana Ciboci Perša, Association for Communication and Media Culture, Catholic University of Croatia	Association for Communication and Media Culture (NGO organisation), Agency for Electronic Media
Czech Republic	Assoc. Prof. Hana Machackova, Interdisciplinary Research Team on Internet and Society, Masaryk University	Programme Johannes Amos Comenius under the Ministry of Education, Youth and Sports of the Czech Republic from the project "Research of Excellence on Digital Technologies and Wellbeing CZ.02.01.01/00/22_008/0004583", co-financed by the European Union.
Estonia	Prof. Veronika Kalmus, Institute of Social Studies, Faculty of Social Sciences, University of Tartu Dr. Iiris Tuvi, Institute of Psychology, Faculty of Social Sciences, University of Tartu	The Ministry of Social Affairs, and the Development Fund of the Faculty of Social Sciences, University of Tartu
Finland	Prof. Sirkku Kotilainen, Faculty of Information Technology and Communication Sciences, Tampere University	Media Industry Research Foundation of Finland
Ireland	Prof. Brian O'Neill, Technological University Dublin	Coimisiún na Meán
Italy	Prof. Giovanna Mascheroni, OssCom – Research Centre on Media and Communication, Università Cattolica del Sacro Cuore	Own research funds
Luxembourg	Prof. Claudine Kirsch, Faculty of Humanities, Education and Social Sciences, Department of Humanities	Own research funds
Malta	Prof. Mary Anne Lauri, Psychology, Faculty for Social Wellbeing, University of Malta	Own research funds
Norway	Prof. Elisabeth Staksrud, Department of Media and Communication, University of Oslo	Ministry of Children and Families, Ministry of Education and Research and Ministry of Culture and Equality
Poland	Prof. Jacek Pyżalski, Faculty of Educational Studies, Adam Mickiewicz University	Fundacja Orange
Portugal	Asst. Prof. Susana Batista, Sociology, NOVA FCSH	Gulbenkian, Associação Ponto PT e Fundação Millenium
Serbia	Asst. Prof. Tijana Milošević, Faculty of Philology, University of Belgrade	Organisation for Security and Cooperation in Europe (OSCE), OSCE Mission to Serbia [Media Reform Sector] and the United Nations Development Programme, Serbia (UNDP Serbia)
Slovakia	Assoc. Prof. Pavel Izrael, Department of Journalism, Faculty of Arts and Letters, Catholic University in Ružomberok	The Slovak Research and Development Agency (Ministry of Education, Science, Research and Sports of the Slovak Republic)
Spain	Dr. Maialen Garmendia Larrañaga, Faculty of Education, Philosophy, and Anthropology, University of the Basque Country (UPV/EHU)	Safer Internet Centre Spain, Call DIGITAL-2023- DEPLOY - 04 - NETWORK OF SICs
Switzerland	Prof. Martin Hermida, Schwyz University of Teacher Education	Federal Social Insurance Office – FSIO, Schweizerische Kriminalprävention and Action Innocence

National contact persons EU Kids Online: Qualitative AI study

Country	Main contact/national PI	Funder
Austria	Prof. Christina Ortner, Department Communication and Knowledge Media, University of Applied Sciences Upper Austria Prof. Christine Trützsch-Wijnen, Media and Digitalization Centre/ Education Innovation Studio, University of Education	Own research funds
Czech Republic	Dr. Iveta Jansová, Masaryk University	Department of Media Studies and Journalism, Masaryk University
Estonia	Prof. Veronika Kalmus, Institute of Social Studies, Faculty of Social Sciences, University of Tartu Dr. Iiris Tuvi, Institute of Psychology, Faculty of Social Sciences, University of Tartu	The Ministry of Social Affairs
Germany	Dr. Claudia Lampert, Leibniz Institute for Media Research, Hans-Bredow-Institut	The Leibniz-Institute for Media Research Hans-Bredow-Institut (HBI)
Ireland	Asst. Prof. Claudette Pretorius, School of Computer Science, University College Dublin	Own research funds
Italy	Prof. Giovanna Mascheroni, OssCom – Research Centre on Media and Communication, Università Cattolica del Sacro Cuore	Own research funds
Latvia	Dr. Līga Vinogradova, Latvian Academy of Culture	The Latvian Academy of Culture
Luxembourg	Prof. Claudine Kirsch, Faculty of Humanities, Education and Social Sciences, Department of Humanities	Own research funds
Malta	Dr. Lorleen Farrugia, University of Malta	Own research funds
Norway	Assoc. Prof. Niamh Ní Bhroin, Institute for Nordic and media studies, University of Agder.	Ministry of Children and Families, Ministry of Education and Research and Ministry of Culture and Equality
Poland	Prof. Jacek Pyżalski, Faculty of Educational Studies, Adam Mickiewicz University	Stowarzyszenie Cyfrowy Dialog
Portugal	Asst. Prof. Susana Batista, Sociology, NOVA FCSH	Fundação Calouste Gulbenkian
Serbia	Asst. Prof. Tijana Milošević, Faculty of Philology, University of Belgrade	Organisation for Security and Cooperation in Europe (OSCE), OSCE Mission to Serbia [Media Reform Sector].
Spain	Dr. Maialen Garmendia Larrañaga, Faculty of Education, Philosophy, and Anthropology, University of the Basque Country (UPV/EHU)	The University of the Basque Country, project no GIU 22/08
UK	Prof. Sonia Livingstone, Department of Media and Communications, London School of Economics and Political Science	Digital Futures for Children centre (DFC), London School of Economics and Political Science (LSE)

