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Abstract: Researchers have sought to quantify the extent of inequality that is inherited from 
previous generations in multiple ways, including a large body of work on 
intergenerational mobility and inequality of opportunity. Many of the most frequently 
used approaches to measuring mobility or inequality of opportunity fit within a 
general framework which involves, as a first step, an estimation of the extent to which 
inherited personal characteristics can predict current incomes. We suggest a new 
method, within that broad framework, which is sensitive to differences across the 
entire conditional distributions of relevant population subgroups, rather than just in 
their means – a feature that makes it particularly well-suited to measuring ex-post 
inequality of opportunity. Sensitivity to differences in higher moments of the 
conditional distributions allow for a more comprehensive assessment of inherited 
inequality. We apply this approach to household income distributions in China, India, 
South Africa, and the United States, to illustrate how the method performs in different 
settings. We find that inherited inequality accounts for large shares of total inequality, 
from 36% in the United States to 59% in China, 62% in India, and 81% in South Africa. 
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1. Introduction 

 

People’s educational and professional achievements, incomes, and wealth are generally not 

independent of their background. Various attributes that are determined at or before birth or 

during childhood – such as sex at birth; race, ethnicity, or caste; parental income and other 

aspects of family background – are powerful predictors of a person’s own economic outcomes 

later in life. Large bodies of work have sought to quantify the extent to which these inherited or 

pre-determined characteristics shape people’s life outcomes, and to compare results across 

societies or over time, including the literatures on intergenerational mobility, inequality of 

opportunity (IOp), and sibling correlations.  

This paper contributes to those literatures in two ways. First, we note that most of these 

approaches rely on using observed inherited characteristics (often termed ‘circumstances’) to 

predict future outcomes – hereafter incomes, for simplicity. We suggest a simple general 

framework for the measurement of inherited inequality which relies on comparisons of 

inequality in observed and predicted income distributions and show that a wide range of 

measures in current use are special cases. 

In this general framework, we define the hypothetical situation in which there is no inherited 

inequality as one in which inherited circumstances are not predictive of outcomes later in life – 

that is, current-generation income (y) is distributed independently from those circumstances (c): 

𝐹𝐹(𝑦𝑦|𝒄𝒄) = 𝐹𝐹(𝑦𝑦),∀𝒄𝒄. Although this independence condition requires that the full conditional 

distributions of income be identical across groups of people that share the same circumstances, 

most commonly used approaches require only a weaker condition on conditional means: 

𝐸𝐸(𝑦𝑦|𝒄𝒄) = 𝐸𝐸(𝑦𝑦) for all c. This second condition is implied by – but does not imply – the stronger 

independence condition. 

Our second and main contribution is therefore to propose a new approach to measuring 

inherited inequality that captures the extent to which circumstances predict full conditional 

distributions – rather than just averages – for different population subgroups, and that does so 

in a statistically efficient manner.  Given the central role of prediction in the general framework, 

we draw on new data-driven (supervised machine learning) techniques, which have been shown 

to be more accurate predictors than many standard econometric approaches used historically 

(see, e.g., Mullainathan and Spiess, 2017). Specifically, we propose to use transformation trees: 

a variant of regression trees proposed by Hothorn and Zeileis (2021) which generates a data-
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driven partition of the population into groups with homogeneous inherited characteristics, while 

also predicting their conditional distribution functions. 

This tool is ideally suited to estimating inequality of opportunity – especially what is known as 

ex-post inequality of opportunity – a concept that draws on a rich theoretical tradition in 

normative economics. In that approach, equal opportunity is defined as a situation in which all 

individuals who exert the same degree of effort or responsibility achieve the same outcomes, 

regardless of inherited circumstances (see, e.g., Roemer, 1993, 1998; Fleurbaey, 1994, 2008). 

Under some assumptions, the theory suggests that the appropriate degree of effort, once 

cleansed of the effects of circumstances, can be proxied by the relative position – the quantile 

– of the individual in the income distribution of the group of people that have the same inherited 

circumstances as she does – her “type”. (Please see Roemer, 1998, for details). 

Although this perspective – same efforts, same rewards – has considerable theoretical appeal 

(see, e.g., Fleurbaey and Peragine, 2013), it has hitherto faced serious empirical challenges 

which have limited its use in practice. Group-specific conditional distributions were used to 

detect inequality of opportunity by Lefranc, Pistolesi and Trannoy (2009), and empirical 

estimates of ex-post inequality of opportunity were first computed by Checchi and Peragine 

(2010). These pioneering approaches faced two main practical challenges: First, the partition of 

the population into types – population subgroups sharing the same circumstances – was ad hoc 

and therefore unlikely to adequately balance the model selection trade-off between 

(downward) omitted circumstance biases and (upward) overfitting biases (see Section 3 below 

for details). Second (and relatedly), predicting full conditional distribution functions for each 

type in data-scarce settings – such as household surveys – requires considerable parsimony both 

in defining types and in selecting quantiles, leading to coarseness in both contexts.  

Our transformation tree-based approach can significantly alleviate both these challenges. The 

algorithm is designed to select partitions optimally – in a well-defined statistical sense – given 

the available data: it trades off the upward and downward biases so as to maximize a weighted 

sum of log likelihood functions. (See Section 3 below.) In addition, by using Bernstein 

polynomials to fit parametric estimates of type conditional distributions, the method uses data 

more efficiently and leads to much finer quantile groupings than was possible in earlier 

approaches. We argue that this combination makes this new approach the state-of-the-art 

method to estimate ex-post inequality of opportunity. 
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That said, the attractiveness of the approach does not require adherence to the specific 

normative views embodied in the theoretical literature on inequality of opportunity. Our choice 

of method arises primarily from the objective of capturing departures from the strong statistical 

independence condition described above - 𝐹𝐹(𝑦𝑦|𝒄𝒄) = 𝐹𝐹(𝑦𝑦) - rather than from the weaker 

condition on means. It is therefore suitable for any empirical exercise where the objective is to 

identify the heterogeneity of conditional distributions across latent groups. Our results can also 

be interpreted in the spirit of alternative inequality decompositions, in which the between-

groups term is not independent of within-group inequality.2  

We apply this approach to four countries over many years: China (every two years between 2010 

and 2018), India (2005 and 2012), South Africa (2008, 2012, 2015, and 2017), and the United 

States (every two years between 1968 and 2018). These four countries include the world’s two 

largest nations by population (India and China), as well as the world’s two largest economies by 

GDP (US and China). South Africa is a significant developing country and arguably the world’s 

most unequal nation. These are four large economies characterized by very different social 

structures and territorial features. Using biological sex, parental education, parental occupation, 

place of birth, and ethnicity/race/caste as circumstances, we construct transformation trees to 

estimate the full conditional distributions of circumstance-homogeneous groups (types) for each 

country and to compute summary measures of inherited inequality as ex-post inequality of 

opportunity. We find a substantial amount of inequality of opportunity across the four countries, 

ranging from 14 Gini points (or 36% of total inequality) in the United States to 50 points (or 81% 

of the total) in South Africa. China and India display intermediate levels of IOp, but the structure 

of the distribution of opportunities differs: China shows a more pronounced concentration of 

opportunity at the very top of the distribution, while India has a large share of the population 

with extremely limited access to opportunity. 

The use of transformation trees also allows us to extend the analysis of inherited inequalities 

beyond the estimation of a single summary index. For example, the final partition generated by 

the tree – although primarily a means to estimating the share of inequality that is inherited – 

can also be informative of the social structure in different countries. In addition, the estimates 

of type-specific empirical cumulative distribution functions (ECDF) enable us to directly estimate 

the social maximand proposed in John Roemer’s original theory (1993, 1998): the level of 

(moneymetric) opportunity accessible to the lower envelope of types (see below). We find that 

 
2 See Foster and Shneyerov (2000) and Ebert (2010) for discussions of why it might make sense to account 
for differences in the full distributions within groups – rather than just the means – when defining the 
between-group term of the decomposition. 
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this level of opportunity ranges from 30% to 70% of the average income in the population across 

our four countries, with China performing much better than India and South Africa, and the 

United States showing a significant catch-up of the worst-off groups relative to the country’s 

average income over the last two decades.  

Transformation trees can also be used to assess the relative importance of different 

circumstances in shaping the income distribution. By aggregating (bagging) hundreds of trees, 

we derive Shapley values that quantify the average relative importance of each ascriptive 

characteristic. Our results indicate that all circumstances play a meaningful role, with race and 

caste being especially influential in South Africa and India, respectively. Moreover, the “marginal 

effects” of each category within each circumstance are obtained from the predicted conditional 

distributions. These partial effects find high premia associated with being White in South Africa, 

being born in specific regions of China (e.g., Shanghai and Zhejiang), and reporting higher 

parental education in India. In the United States, the most negative marginal effect is associated 

with identifying as Black. 

The paper proceeds as follows. The next section briefly describes a general framework for the 

estimation of inherited inequality, of which the most common approaches in the measurement 

of mobility and inequality of opportunity are shown to be special cases. Section 3 discusses the 

key model selection challenge faced by these methods and introduces our own approach to 

estimating inherited inequality using transformation trees as another special case within the 

same general framework.  

Section 4 describes the data and Section 5 presents results. These results include not only 

summary estimates of inherited inequality in the four selected countries, but also several 

complementary statistical and visualization tools to help the reader understand the complexity 

of the phenomenon: (i) a schematic description of the population partition that reveals the most 

salient cleavages in each society (again, in a well-defined statistical sense); (ii) estimates of the 

conditional cumulative distribution functions by type; (iii) a Shapley-Shorrocks decomposition of 

the average predictive importance of individual circumstances in the overall decomposition; (iv) 

a calculation of the marginal influence of each individual characteristic in predicting 

opportunities; and (v) an estimate of the lower-envelope of the type quantile functions, which 

corresponds to the maximand in Roemer’s (1998) original policy objective. This rich set of 

byproducts of the headline estimates of inherited inequality is another advantage of our 

proposed approach: taken together, this set of statistical tools enable a deeper understanding 

of inherited inequality based on survey data. Section 6 concludes. 
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2. Inherited inequality: a simple general framework 

Consider a population of N individuals, indexed by 𝑖𝑖 ∈ 𝒩𝒩 = {1, … ,𝑁𝑁}, each of whom is 

characterized by a current-generation outcome 𝑦𝑦𝑖𝑖, 𝑦𝑦 ∈ ℝ, and a set of inherited characteristics, 

which we call circumstances (following Roemer, 1998). For individual i, these circumstances are 

represented by a k-dimensional vector 𝒄𝒄𝒊𝒊. Let y denote the N-dimensional outcome (or income) 

vector with entries 𝑦𝑦𝑖𝑖, 𝑖𝑖 ∈ 𝒩𝒩, and C denote the 𝑁𝑁 × 𝑘𝑘 matrix with rows 𝒄𝒄𝒊𝒊.  

In general, many people may share the same vector of circumstances, so many of the rows of 

the matrix C may be identical. Without loss of generality, let the number of distinct rows of C 

be denoted by 𝑀𝑀, 𝑀𝑀 ≤ 𝑁𝑁. If a “type” is defined as a group of individuals who share identical 

circumstances, this means that there are 𝑀𝑀 types. The population can then be exhaustively 

partitioned into a set of types, 𝑇𝑇 = {𝜏𝜏1, … , 𝜏𝜏𝑚𝑚, … , 𝜏𝜏𝑀𝑀}, where 𝜏𝜏𝑚𝑚: = {∀𝑖𝑖|𝒄𝒄𝒊𝒊 = 𝒄𝒄𝒎𝒎}. Let 𝐶𝐶 =

{𝑐𝑐1, … , 𝑐𝑐𝑚𝑚, … , 𝑐𝑐𝑀𝑀} denote the corresponding set of circumstance vectors, and c denote the 

generic random vector in 𝐶𝐶. Let 𝑇𝑇 ∈ 𝕋𝕋, which denotes the set of all possible partitions of the 

set 𝒩𝒩, and 𝐶𝐶 ∈ ℂ, the corresponding set of all possible type circumstance vectors. Note that an 

exhaustive partition implies that  ⋃ 𝜏𝜏𝑚𝑚𝑀𝑀
1 =  𝒩𝒩 and ⋂ 𝜏𝜏𝑚𝑚𝑀𝑀

1 = ∅.  

That’s the basic setup. Let us now define the benchmark situation in which there is no inherited 

inequality as one in which y and C are stochastically independent, in the sense that there are 

no differences across the conditional income distributions of types: 

𝐹𝐹(𝑦𝑦|𝒄𝒄𝒍𝒍) = 𝐹𝐹(𝑦𝑦|𝒄𝒄𝒎𝒎),∀𝒄𝒄𝒍𝒍, 𝒄𝒄𝒎𝒎  ∈  𝐶𝐶 (1) 

 

Given full stochastic independence, it is clear that if (1) holds, 𝐶𝐶 has no predictive power over 

y. Conversely, if (1) does not hold, then the associations between C and y across the population 

imply that circumstances 𝐶𝐶 have (some) predictive power over y. I.e., there exist non-constant 

prediction functions,  

𝑦𝑦 = 𝑓𝑓(𝒄𝒄, 𝜀𝜀),𝑓𝑓 ∈ ℱ (2) 

 

that outperform constant functions in predicting y out of sample. In (2), 𝜀𝜀 denotes a random 

variable that captures other influences on y and is the residual term in the prediction 

model, and ℱ:ℂ → ℝ denotes the set of possible prediction functions linking circumstances to 

outcomes.  
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Since the benchmark situation of zero inherited inequality is characterized by 𝐶𝐶 having no 

predictive power over y, then it is natural to think of inherited inequality as the extent to which 

circumstances do, in fact, predict the outcome y in a particular society. In other words, given a 

prediction function 𝑓𝑓 ∈ ℱ, absolute inherited inequality can be defined simply as 𝐼𝐼𝑛𝑛𝐴𝐴(𝑦𝑦, 𝒄𝒄,𝑓𝑓) =

𝐼𝐼(𝑦𝑦�), where 𝑦𝑦� = 𝑓𝑓(𝒄𝒄). Absolute inherited inequality is simply inequality in the distribution of 

predicted incomes, when incomes are predicted by circumstances. One can also define relative 

measures of inherited inequality as 𝐼𝐼𝑛𝑛𝑅𝑅(𝑦𝑦, 𝒄𝒄,𝑓𝑓) = 𝐼𝐼(𝑦𝑦�)
𝐼𝐼(𝑦𝑦), where 𝑦𝑦� = 𝑓𝑓(𝒄𝒄). Relative inherited 

inequality is the ratio – or potentially a monotonically increasing function of the ratio – of 

inequality in predicted incomes to inequality in observed incomes. 

Indeed, it turns out that most methods for estimating the intergenerational transmission of 

advantage currently in use – including relative measures of intergenerational mobility and 

inequality of opportunity – revolve around estimating prediction models of the general form 

(2), using different functions in the set of possible functions ℱ, and then computing objects 

analogous to  𝐼𝐼𝑛𝑛𝐴𝐴(𝑦𝑦, 𝒄𝒄,𝑓𝑓) or 𝐼𝐼𝑛𝑛𝑅𝑅(𝑦𝑦, 𝒄𝒄,𝑓𝑓), often using different inequality indices I(.).3  

Special cases 

Suppose, for example, that the only inherited characteristic that really matters is parental 

income, 𝑦𝑦𝑝𝑝. Then the vector of circumstances reduces to a scalar: 𝒄𝒄 = 𝑦𝑦𝑝𝑝. If, in addition, we 

choose a prediction function 𝑓𝑓(𝒄𝒄) = 𝑓𝑓�𝑦𝑦𝑝𝑝� of the form 𝑦𝑦 = 𝑒𝑒𝛼𝛼+𝛽𝛽 log𝑦𝑦𝑝𝑝+𝜀𝜀, which can be 

estimated through the standard Galtonian regression log𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽 log𝑦𝑦𝑝𝑝 + 𝜀𝜀, then we are 

clearly in the world of intergenerational mobility measurement.  See, e.g., Solon (1992) and 

Chetty et al. (2014) for classic references.  

In that standard formulation, predicted incomes are given by 𝑦𝑦� = 𝑒𝑒𝛼𝛼�+𝛽𝛽� log𝑦𝑦𝑝𝑝. Although 𝛽̂𝛽, an 

estimate of the intergenerational elasticity of income, is a common measure of mobility, 

another frequently used measure is the correlation coefficient between log𝑦𝑦 and log𝑦𝑦𝑝𝑝, which 

can be written as 𝛽̂𝛽�𝑣𝑣𝑣𝑣𝑣𝑣 log𝑦𝑦𝑝𝑝
𝑣𝑣𝑣𝑣𝑣𝑣 log𝑦𝑦

. But this is precisely a monotonic function of 𝐼𝐼(𝑦𝑦�)
𝐼𝐼(𝑦𝑦) when the 

inequality index is the variance of logarithms. 

Similarly, absolute and relative estimates of inequality of opportunity can also be written as 

examples of 𝐼𝐼𝑛𝑛𝐴𝐴(𝑦𝑦, 𝒄𝒄,𝑓𝑓) or 𝐼𝐼𝑛𝑛𝑅𝑅(𝑦𝑦, 𝒄𝒄, 𝑓𝑓), but typically with circumstance vectors with k > 1.  One 

 
3 See Ferreira and Brunori (2024) for a more in-depth discussion of the concept of inherited inequality and 
of the relationship between intergenerational mobility, inequality of opportunity, and this broader 
concept. 
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frequently used (ex-ante) relative measure is 𝐼𝐼(𝑦𝑦�𝐸𝐸𝐸𝐸)
𝐼𝐼(𝑦𝑦) , where 𝑦𝑦�𝐸𝐸𝐸𝐸 = 𝑓𝑓𝐸𝐸𝐸𝐸(𝑐𝑐) = 𝑒𝑒𝛼𝛼�+𝐶𝐶𝛾𝛾� , estimated 

from an OLS regression of the form log𝑦𝑦 = 𝛼𝛼 + 𝐶𝐶𝐶𝐶 + 𝜀𝜀. (See, e.g., Ferreira and Gignoux, 2011, 

or Niehues and Peichl (2014) for a fixed-effects specification for panel data.) A non-parametric 

analogue proposed by Checchi and Peragine (2010) uses a prediction function that simply 

computes type means for each cell in the partition 𝑇𝑇 = {𝜏𝜏1, … , 𝜏𝜏𝑚𝑚, … , 𝜏𝜏𝑀𝑀}. Its prediction 

function is therefore: 

𝑦𝑦�𝐸𝐸𝐸𝐸(𝑛𝑛) = 𝑓𝑓𝐸𝐸𝐸𝐸(𝑛𝑛)(𝑐𝑐) = � 𝑦𝑦𝑦𝑦𝑦𝑦(𝑦𝑦|𝒄𝒄𝒎𝒎),∀𝑚𝑚
1

0
 (3) 

Equation (3) simply yields the conditional means for all those who share the same vector of 

circumstances c. So 𝐼𝐼�𝑦𝑦�𝐸𝐸𝐸𝐸(𝑛𝑛)� is computed over the smoothed distribution where individual 

incomes are replaced by the average incomes of individuals who share the same vector of 

circumstances – that is, individuals in the same type.4 It is analogous to the OLS regression-

based estimate, but without imposing a linearity assumption. 

Ex-post measures of inequality of opportunity are also special cases of the inherited inequality 

framework. Checchi and Peragine (2010), for instance, propose to estimate ex-post IOp by 

aggregating income differences across the quantiles of the conditional distributions, while 

abstracting from level differences between tranches.5 Denoting the overall mean income, 𝐸𝐸(𝑦𝑦), 

by 𝜇𝜇 and the mean income for a given quantile q across types by 𝜇𝜇𝑞𝑞,6 their prediction function 

is given by: 

𝑦𝑦�𝐸𝐸𝐸𝐸 = 𝑓𝑓𝐸𝐸𝐸𝐸(𝒄𝒄) =
𝜇𝜇
𝜇𝜇𝑞𝑞
𝐹𝐹−1(𝑞𝑞|𝒄𝒄) (4) 

Denote the income at quantile q of the conditional distribution on circumstances c,  𝐹𝐹−1(𝑞𝑞|𝒄𝒄), 

by 𝑦𝑦𝑞𝑞𝑞𝑞. Then their absolute IOp measure 𝐼𝐼(𝑦𝑦�𝐸𝐸𝐸𝐸) = I � 𝜇𝜇
𝜇𝜇𝑞𝑞
𝑦𝑦𝑞𝑞𝑞𝑞� is simply 𝐼𝐼𝑛𝑛𝐴𝐴(𝑦𝑦, 𝒄𝒄,𝑓𝑓𝐸𝐸𝐸𝐸).  Similarly, 

the relative version is 𝐼𝐼𝑛𝑛𝑅𝑅(𝑦𝑦, 𝒄𝒄, 𝑓𝑓𝐸𝐸𝐸𝐸) = 𝐼𝐼(𝑦𝑦�𝐸𝐸𝐸𝐸)
𝐼𝐼(𝑦𝑦) . In other words, Checchi and Peragine (2010) 

compute inequality in predicted incomes by dividing the income of each observation 𝑦𝑦𝑞𝑞𝑞𝑞 by the 

average, across types, of all incomes occupying that same quantile q in their own conditional 

distributions and then computing inequality across the resulting ratios. Relative IOp is, once 

again, the ratio of inequality in predicted incomes to observed inequality.  

 
4 See Foster and Shneyerov (2000) for a definition of the smoothed distribution.  
5 A ‘tranche’ denotes those individuals exerting the same degree of relative effort. Under Roemer’s (1998) 
identifying assumption, a tranche is therefore given by the set Υ𝑞𝑞: = {∀𝑖𝑖|𝐹𝐹(𝑦𝑦𝑖𝑖𝑖𝑖|𝑐𝑐) = 𝑞𝑞,∀𝑐𝑐 }. 
6  𝜇𝜇𝑞𝑞 = 1

𝑀𝑀
∑ 𝐹𝐹−1(𝑞𝑞|𝒄𝒄𝒎𝒎)𝑀𝑀
𝑚𝑚=1  
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3  Estimating IOp using Transformation Trees  

The model selection problem 

Empirical applications of all three variants of the prediction problem described above – 

intergenerational mobility, ex-ante IOp, and ex-post IOp – may suffer from a variety of 

challenges, including data availability, measurement error (particularly in variables such as 

parental income or occupation), small sample sizes, etc. More fundamentally, though, they 

suffer from a model selection problem in the presence of two competing biases. This is 

particularly true in the IOp literature, where many inherited circumstance variables are typically 

used in the analysis, often with multiple categories each. 

The first bias arises from the partial observability of circumstances. It is rather common for data 

sources that contain information about individual outcomes to also contain various variables 

describing inherited circumstances such as sex, race, and socioeconomic background. But the 

set of available information is almost certainly a strict subset of all background circumstances 

which society does not wish to hold individuals responsible for. Omission of the unobserved 

circumstances, or indeed of interactions between categories of variables one does observe, 

tends to bias estimates of IOp downwards (Ferreira and Gignoux, 2011; Roemer and Trannoy, 

2016).7  

On the other hand, a second source of bias arises from the classic overfitting problem, whereby 

saturating the model with a large number of independent variables and their multiple 

interactions leads to an upward bias in the estimates of goodness of fit. This is a problem for 

both parametric and non-parametric methods. In a non-parametric setting, the problem 

manifests as exploding sampling variation around cell means as cell sizes decline below a certain 

level. This problem introduces noise in the predictions. This noise has the effect of inflating the 

estimation of explained variance, introducing an upward bias in the measurement of the 

variation predicted by circumstances (Chakravarty and Eichhorn, 1994), that is IOp, and an 

attenuation bias in the case in which predictions are used as regressors, that is when 

circumstances are used to predict parental income to estimate intergenerational mobility 

adopting a two-sample-two-stage approach (Bloise et al., 2021).8  

 
7 This bias is also a concern for estimates of intergenerational mobility if they are to be interpreted as 
measures of inherited inequality – except in the unlikely event that parental income is a sufficient statistic 
for all circumstances. 
8 Note that these biases are connected to the bias-variance trade-off central to supervised machine 
learning. Assuming that our objective is to estimate to what extent observable circumstances are 
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Although this problem was recognized from the outset, most of the early literature failed to 

address the trade-off between the two kinds of bias in a systematic way.9 The early studies that 

proposed either parametric or non-parametric methods to estimate IOp relied on ad-hoc 

specifications, either of the regression model or of the type partition. Yet, changing the number 

of regressors in such a model can substantially affect the final estimates of IOp.  

Obtaining a meaningful estimate of 𝐼𝐼(𝑦𝑦�) 𝐼𝐼(𝑦𝑦)⁄  therefore depends crucially on selecting the 

‘right’ model for the prediction function 𝑦𝑦 = 𝑓𝑓(𝒄𝒄, 𝜀𝜀). Of course, what the ‘right’ model is 

depends on the nature and purpose of the exercise. If one is estimating a structural model, 

guidance from the theory being tested is indispensable, and econometric methods suitable for 

the estimation of structural parameters should be used. However, when the model is used for 

prediction, as is the case here, it may very well be that machine-learning methods from data 

science perform better. See Mullainathan and Spiess (2017) for an excellent discussion of the 

role of machine learning in economics and its advantages in prediction problems. 

Indeed, machine learning methods have recently been applied to the measurement of ex-ante 

(but not ex-post) inequality of opportunity. In particular, Brunori, Hufe, and Mahler (2023) have 

used conditional inference trees and random forests (CITF), introduced by Hothorn, Hornik, and 

Zeileis (2006), to estimate inequality of opportunity in 31 European countries.10 CITF partition a 

regressor space with the aim of predicting a dependent variable via the estimation of subgroup 

means. This feature makes them ideally suited to choosing a type-partition in an ex-ante 

framework, because each binary split is chosen by identifying the most significant difference 

between means in the two resulting nodes. Since the ex-ante approach to IOp involves 

computing inequality among type means, such an algorithm is a conceptually attractive 

approach to selecting the partition and estimating Equation (3). 

 
predictive of outcomes later in life: choosing a model that underfits the data, that is minimizing the 
variance of the model but introducing a large bias, would result in an underestimate of inherited 
inequality. Conversely, minimizing the bias by fitting a very complex model would result in a large variance 
that, in expectation, will exaggerate the share of inequality that can be correctly predicted by observing 
innate circumstances. Supervised machine learning methods can therefore be used to trade-off the two 
sources of errors and to obtain the most accurate estimate of inherited inequality (Brunori, Peragine, 
Serlenga, 2019).  
9 Ferreira and Gignoux (2011), for example, note that “As sampling variance is high for cells containing 
few observations, estimated between-type inequality may become inflated, thereby inducing an 
overestimation of inequality of opportunity.” (p.640).  However, their proposed solution is to exercise 
“considerable parsimony in the partitioning of the population…” (p.642). They selected categories 
arbitrarily and restricted the number of types to a maximum of 108, but there was no sense in which that 
particular number represented an optimal choice between the downward bias from omitting certain 
interactions between the variables and categories, and the upward bias from including too many.  
10 See also Li Donni, Rodriguez and Dias (2015) who use finite mixture models to define types. 



11 
 

 

But precisely because conditional inference trees focus on differences between means, they are 

not well suited to assessing deviations from the stricter criterion of equal CDFs (Equation 1), 

whether one interprets such equality as ex-post equality of opportunity or simply as the absence 

of inherited inequality. An alternative data-driven approach is needed and, in what follows, we 

propose the use of one such approach, namely transformation trees.  

Transformation trees and ex-post IOp 

As noted in Section 2, the ex-post approach to inequality of opportunity consists of measuring 

inequality across the types’ conditional distributions functions at each quantile, and then 

appropriately aggregating across quantiles. The key ingredient for the approach, therefore, is to 

estimate the income level at quantile q in type 𝜏𝜏𝑚𝑚, that is: the conditional quantile function 

𝑦𝑦𝑞𝑞𝑐𝑐𝑚𝑚 = 𝐹𝐹−1(𝑞𝑞|𝒄𝒄𝒎𝒎), for all m.  When data on the joint distribution {y, C} is not observed for the 

full population, estimating these conditional quantile – or their inverse, distribution – functions 

from a sample notionally involves two steps. 

First, an optimal type partition 𝐶𝐶 ∈ ℂ needs to be selected, trading off the downward bias that 

arises from combining sub-types into types against the upward bias from overfitting that arises 

from an excessively fine partition, (i.e., by subdividing types into sub-types). See Brunori, 

Peragine, and Serlenga (2019). Second, given a partition 𝐶𝐶 ∈ ℂ, the conditional quantile 

functions must be estimated, either parametrically or non-parametrically. Once that has been 

done, the resulting estimates {𝑦𝑦�𝑞𝑞𝑞𝑞} can be used to compute quantile-specific inequality levels 

(across types), which are then suitably aggregated across quantiles.  

Previous attempts to compute ex-post IOp (e.g., Checchi and Peragine, 2010) have typically 

suffered from two shortcomings. First, the partition 𝐶𝐶 ∈ ℂ was chosen arbitrarily. Second, 

quantiles were computed at a highly aggregated level, e.g., quartiles or deciles, so as to ensure 

that there were sufficient observations in each quantile (or “tranche”) for a meaningful 

computation of inequality across types to take place. Indeed, the fact that the ex-post approach 

to IOp requires information on the entire conditional distribution 𝐹𝐹�𝑦𝑦𝑞𝑞𝑞𝑞|𝑐𝑐�, rather than merely 

the mean 𝜇𝜇𝑐𝑐 of that distribution for each type, makes it more data-intensive and has been one 

of the reasons why the ex-ante approach has dominated empirical applications.   

These combined requirements – to choose an optimal type-partition given the available dataset 

and to estimate conditional distribution functions for each of those types in a data scarce 
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environment – make this problem well-suited to a new variety of tree-based estimator, recently 

developed by Hothorn and Zeileis (2021). This estimator, known as a transformation tree (TrT), 

was specifically designed to estimate conditional distributions for terminal nodes of trees.  

TrT relies on the assumption that there exist “good enough” parametric approximations to 

𝐹𝐹�𝑦𝑦𝑞𝑞𝑞𝑞|𝑐𝑐�. In the limit, they assume that there exist parameters 𝜃𝜃 ∈ Θ such that:  

𝐹𝐹�𝑦𝑦𝑞𝑞𝑞𝑞|𝑐𝑐� ≅ 𝐹𝐹 �𝑦𝑦�𝑞𝑞𝑞𝑞 ,𝜃𝜃(𝑐𝑐)� , 𝜃𝜃:ℂ → Θ (5) 

 

𝜃𝜃(𝑐𝑐) is known as the conditional parameter function, which maps from the space of all possible 

circumstance vectors on to the space of possible distributional parameters. Under this 

assumption, the problem of estimating conditional distribution functions for types in the optimal 

partition, and hence {𝑦𝑦�𝑞𝑞𝑞𝑞}, reduces to the problem of selecting the optimal parameter 

estimates, 𝜃𝜃�, given the data {y, C}. TrT uses an adaptive local likelihood maximization approach 

for that purpose. Specifically, it selects 𝜃𝜃� as: 

𝜃𝜃�𝑁𝑁(𝑐𝑐) = arg max𝜃𝜃𝜃𝜃Θ�𝑤𝑤𝑖𝑖(𝑐𝑐)ℓ𝑖𝑖(𝜃𝜃)
𝑁𝑁

𝑖𝑖=1

 
(6) 

where 𝑖𝑖 ∈ {1, … ,𝑁𝑁} denotes each observation in the data set and ℓ𝑖𝑖(𝜃𝜃) denotes the log-

likelihood contribution of i, when the parameters are given by 𝜃𝜃. The recursive binary splitting 

process that creates a transformation tree is implemented by choosing weights: 

𝑤𝑤𝑖𝑖(𝑐𝑐) = �𝐼𝐼(𝑐𝑐 ∈ ℬ𝑏𝑏 ∧ 𝑐𝑐𝑖𝑖 ∈ ℬ𝑏𝑏)
𝐵𝐵

𝑏𝑏=1

 
(7) 

The indicator function takes the value 1 when observation i is sufficiently “close” to c, so the 

weights in (7) simply count the number of observations in each bin ℬ𝑏𝑏. At the terminal nodes, 

ℬ𝑏𝑏 corresponds to a type, so the maximization process in (6)-(7) allocates each observation to a 

type and sums the local likelihood functions across types. The type partition and the parameter 

vector 𝜃𝜃 are chosen so as to maximize that weighted sum of likelihoods. That is, given the 

available data {y, C} and the recursive splitting approach to weights, the likeliest set of types and 

income distributions conditional on type is that given by 𝐹𝐹 �𝑦𝑦�𝑞𝑞𝑞𝑞 ,𝜃𝜃�𝑁𝑁(𝑐𝑐)�. So, our prediction 

function under this method is given by: 

𝑦𝑦�𝑇𝑇 = 𝑓𝑓𝑇𝑇(𝑐𝑐) =
𝜇𝜇
𝜇𝜇𝑞𝑞
𝑦𝑦�𝑞𝑞𝑞𝑞      where       𝑦𝑦�𝑞𝑞𝑞𝑞 = 𝐹𝐹−1 �𝑞𝑞,𝜃𝜃�𝑁𝑁(𝑐𝑐)� 

 

(8) 

 



13 
 

The Transformation Tree estimate of absolute ex-post inequality of opportunity is then 

𝐼𝐼𝑛𝑛𝐴𝐴(𝑦𝑦, 𝒄𝒄,𝑓𝑓𝑇𝑇) = 𝐼𝐼(𝑦𝑦�𝑇𝑇), while the relative measure is analogously given by: 

𝐼𝐼𝑛𝑛𝑅𝑅(𝑦𝑦, 𝒄𝒄,𝑓𝑓𝑇𝑇) =
𝐼𝐼(𝑦𝑦�𝑇𝑇)
𝐼𝐼(𝑦𝑦)  

(9) 

 

Details of how the likelihood maximization is implemented (using Bernstein polynomials to fit 

the conditional distribution functions at each node) are given in Appendix 1A. In practice, the 

process can be summarized by the following seven-step algorithm: 

1. set a confidence level (1 − 𝛼𝛼) and a minimum size for final nodes (𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚); 

2. choose a polynomial order (𝑀𝑀); 

3. estimate the unconditional distribution function with a Bernstein polynomial of order 

𝑀𝑀; 

4. test the null hypothesis of polynomial parameter stability for all possible partitions 

based on each element of the circumstance vector c, and store 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. 

5. If, for all 𝒄𝒄 and each possible partition, either the Bonferroni-adjusted 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 > 𝛼𝛼 

or 𝑛𝑛𝑐𝑐 < 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚, exit the algorithm; 

6. otherwise, choose the variable and the splitting value producing the smallest 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

to obtain two subgroups. 

7. Repeat step 4-6 for the resulting subgroups, until exiting everywhere. 

In our application, we follow statistical convention and set 𝛼𝛼 to 0.01 and 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 to 1% of the 

sample size. Then, we choose 𝑀𝑀, the order of the Bernstein Polynomial. The selection of 𝑀𝑀 is 

not as simple as that of 𝛼𝛼, because how well a polynomial of a certain order interpolates the 

distribution is intrinsically data dependent. An order too small might result in a poor 

approximation of the distribution, while too high an order would translate into a loss of degrees 

of freedom and high computational costs.11  

To find an appropriate order, we tune the algorithm by estimating the out-of-sample log-

likelihood, after a 5-fold cross validation, for several order values of the Bernstein Polynomial 

(ranging between 2 and 10). We select the lowest order for which the relative improvement of 

 
11 The confidence level (1 − 𝛼𝛼) and the order of the polynomial (M) interact in determining the depth of 
the tree, and thus the complexity of the final partition. For a given sample size, fixing a higher polynomial 
order implies using more degrees of freedom in each test, leading to a lower probability of rejecting the 
null hypothesis of equal distributions. Consequently, the resulting partition is more parsimonious. 
Similarly, for a given polynomial order and confidence level, a larger sample size results in a more detailed 
partition of types and likely a higher level of between-group inequality. In the empirical application, we 
recommend verifying the sensitivity to sample size, as we do below, when drawing conclusions about 
estimates.  
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the log-likelihood that would be obtained by estimating an additional parameter is smaller than 

0.1%.12 In step 3, an unconditional CDF for our sample is thus estimated with a Bernstein 

polynomial of order 8.  

The key step is then step 4, where the M-fluctuation test is performed to detect instability of 

the parameters in the conditional distribution functions across potential types (see Appendix 

1A). To intuitively illustrate this key test, Appendix 1B provides a simple example of the 

procedure, using made-up data. Further details can be found in Hothorn and Zeileis (2021) and 

Kopf, Augustin, and Strobl (2013).  

After following steps 4-7 we obtain an estimated Transformation Tree and, from that tree, a 

number of outputs that are described in Section 5. Before presenting those results, we briefly 

describe our datasets in Section 4.  

4. Data 

We apply this method to four countries: China, India, the United States, and South Africa. These 

countries were selected for their relative importance in different parts of the global economy 

and because they represent substantial heterogeneity in both the structure of inequality and 

the availability of data. For all countries, our samples comprise all adult individuals (aged over 

18) observed in nationally representative surveys. The outcome of interest is equivalized 

disposable household income, using the square root equivalence scale (Buhmann et al., 1988; 

OECD, 2013). We also age-adjust the income to account, at least in part, for life-cycle dynamics. 

The adjustment consists of regressing our income variable on age and age squared, and using 

the sum of the constant and the individual residual from that regression as the adjusted variable 

(see, e.g., Palomino et al., 2022).  

We select a set of circumstance variables available in each survey to estimate inherited 

inequality. Balancing the desirability both of including the most relevant circumstances, and to 

preserve a certain degree of comparability across countries, we selected the following variables: 

biological sex13, place of birth, mother’s and father’s education, mother’s and father’s 

 
12 Note that the order of the polynomial does not turn out to be a key determinant of the estimated level 
of inequality of opportunity. Figure B1 in Appendix 2 shows, for the case of South Africa, the stability of 
the ex-post IOp when the selected Bernstein polynomial order varies.  
13 Given the choice of household income as the outcome of interest, the role of sex among the 
circumstances will necessarily be limited, since intra-household inequalities are ignored. The relative 
unimportance of sex in the analysis that follows should therefore be treated cautiously. It does not imply 
that these countries provide equal opportunities to men and women in other dimensions. On the other 
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occupation, and an “ethnicity” variable, which includes religion and a coarse caste classification 

in India. Even for this relatively limited set of inherited characteristics, only two countries (China 

and the US) contain information on all seven. Birthplace is missing in South Africa and mother’s 

and father’s occupation are missing in India, and comparisons should be interpreted accordingly. 

Detailed descriptive statistics for each country are available upon request.  

For China, we use the China Family Panel Studies (CFPS), carried out by the Institute of Social 

Science Survey (ISSS) of Peking University every two years from 2010 to 2018 with a sample size 

of individuals with complete information ranging between 16,000 and 21,000 observations. 

CFPS has been already used to study aspects of the intergenerational persistence of income and 

inequality of opportunity in China (e.g. Fan, Yi, and Zhang, 2021; Emran et al, 2023). The dataset 

contains data on important inherited characteristics. We include sex; ethnicity, classified into 11 

categories ("Han", "Mongol", "Hui", "Tibetan", "Miao", "Yi", "Zhuang", "Bouyei", "Korean", 

"Manchu", "Other"); 24 birth area categories14; mother’s and father’s education in eight 

categories15; and mother’s and father’s occupation (10 ISCO categories plus one category for 

unemployment).  

For India, we use the India Human Development Survey (IHDS), conducted by researchers from 

the University of Maryland and the National Council of Applied Economic Research (NCAER). 

These are large representative samples of the 2005 and 2012 populations, each containing over 

100,000 observations, resulting in analysis samples of 78,000 and 98,000 complete 

observations, respectively. IHDS has previously been used to study intergenerational mobility 

and inequality of opportunity in India (e.g. Asher, Novosad and Rafkin, 2024; Kundu and Lefranc, 

2020). Circumstance variables included are: six castes/religions (“Forward caste”, “Other 

 
hand, omitting sex as a circumstance variable would have caused us to miss some non-negligible 
consequences of differences in household composition across countries. 
14 Namely "Hebei", "Shanxi", "Liaoning", "Jilin", "Heilongjiang", "Shanghai", "Jiangsu", "Zhejiang", "Anhui", 
"Fujian", "Jiangxi", "Shandong", "Henan", "Hubei", "Hunan", "Guangdong", "Guangxi Zhuang Autonomous 
Region", "Sichuan", "Guizhou", "Yunnan", "Shaanxi", and "Gansu”, plus “not available” and “other”. 
15 Namely "Illiterate/Semi-literate", "Primary school", "Junior high school", "Senior high school/secondary 
school/technical school/vocational senior school", "3-year college", "4-year college/Bachelor’s degree", 
"Master’s degree", "Doctoral degree") 
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Backward castes”, “Dalit”, “Adivasi”, “Muslim”, “Christian, Sikh, and Jain”); 23 birth areas16; and 

mother’s and father’s education in seven categories.17 

For the United States, we employ the Panel Study of Income Dynamics (PSID), a well-known data 

source for researchers interested in the intergenerational transmission of income and status, as 

it is the longest-running longitudinal household survey in the world. The survey started in 1968 

and is currently managed by the University of Michigan. It has been used in many studies of 

intergenerational mobility and inequality of opportunity in the US (e.g. Mazumder, 2018; 

Pistolesi, 2009). We use every other wave (even years) between 1968 and 2018.  

The PSID includes data related to employment, income, wealth, expenditures, and a number of 

other background characteristics that could be used as circumstance variables. However, to 

preserve a modicum of comparability with the other three countries, we restrict inclusion to the 

seven variables listed above. Ethnicity is described in six possible categories (“White”, “Black”, 

“American Indian, Aleut, or Eskimo”, “Asian or Pacific Islander”, “Hispanic”, “Other”). The area 

of birth is also classified into six categories (“Northeast”, “Northwest”, “South”, “West”, “Alaska 

& Hawaii”, “foreign country”). Mother’s and father’s occupation are coded in a variable based 

on ISCO codes (High: includes ISCO 1, 2, and 3; Medium: includes ISCO 4, 5, and 6; and Low: ISCO 

7, 8, 9, and 0).18 Finally, mother’s and father’s education are recoded in eight categories (“0-5 

grades”, “6-8 grades”, “9-11 grades”, “high school”, “12 grades and non-academic training”, 

“college, no degree”, “college degree”, “advanced college”). 

For South Africa, we rely on the National Income Dynamics Study (NIDS 1-5) survey, carried out 

by the Southern Africa Labour and Development Research Unit (SALDRU). NIDS is a longitudinal 

survey, collected in 2008, 2010/11, 2012, 2014/5 and 2017. It is an interesting dataset for 

studying the inheritance of inequality because it is a reliable and extensive source of information 

about incomes and circumstances for arguably the world’s most unequal country. Inequality of 

opportunity and mobility have already been analysed in South Africa using the NIDS, e.g. by 

Piraino (2015) and Brunori, Ferreira, and Peragine (2021). The circumstance variables that we 

include in the analysis are: ethnicity (“African”, “Asian or Indian”, “coloured”, and “white”), 

 
16 Namely “Jammu and Kashmir”, “Himachal Pradesh”, “Punjab”, “Another State”, “Uttarakhand”, 
“Haryana”, “Delhi”, “Rajasthan”, “Uttar Pradesh”, “Bihar”, “Overseas”, “Northeast”, “West Bengal”, 
“Jharkhand”, “Orissa”, “Chhattisgarh”, “Madhya Pradesh”, “Gujarat”, “Maharashtra”, “Andhra Pradesh”, 
“Karnataka”, “Kerala”, “Tamil Nadu”. 
17 Namely, “none”, “incomplete primary”, “complete primary”, “incomplete secondary”, “completed 
secondary”, “higher secondary”, and “post-secondary or higher”. 
18 ISCO codes are grouped in this way following Hufe et al. (2022). Results are very similar if each ISCO 
occupational classification is entered separately. 
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fathers’ and mothers’ education (13 categories, ranging from "not educated" to "Grade 12 or 

more") and fathers’ and mothers’ occupation (11 categories, 10 associated to the 1-Digit ISCO 

and one extra including other categories, such as out of the labour force, deceased or other 

unclassified occupations).19 

In all four countries, the final sample used for our analysis includes only complete observations, 

in the sense that information is not missing for any of the outcome or circumstance variables 

described above. Of course, item non-response can be a serious issue in data containing 

retrospective information on respondent’s parents. We are able to alleviate this problem 

somewhat by matching individuals across waves and by filling some missing information with 

answers reported by the same individual in other waves. Nonetheless, the process of dropping 

observations with incomplete information does reduce our sample sizes, and may do so in a 

selected way. While we cannot rule out sample selection, for each country and wave we 

examined the pattern of missing information and calculated the difference between average 

income and its inequality, both including and excluding observations with missing 

circumstances. Results do not seem particularly alarming and are available upon request.   

Table 1 shows some basic descriptive income statistics for the analysis samples of the most 

recent survey used. The four countries differ both in their level of development and in the nature 

of their inequality. The United States combines high income levels with a moderate level of 

inequality (at least relative to this group of countries). In contrast, South Africa, despite mid-

level average incomes, is marked by high inequality, with a Gini coefficient exceeding 0.6. India 

and China, while showing similar overall levels of inequality, differ in the structure of that 

inequality. In China, income is more concentrated at the top: the top 1% accounts for 14% of 

total income, compared to 12% in India. However, India faces a more pressing issue at the lower 

end of the distribution. The bottom 40% of the population in India receives just 9% of total 

income, a figure not only lower than China's 13%, but also below that of South Africa. Table A1 

in Appendix 2 contains the same set of summary descriptive statistics for all earlier waves.   

 

 

 
19 Note that the question refers to current (or last recorded) occupation of the parents. We exploit the 
panel structure of NIDS and look at information about circumstances reported by the same individuals in 
previous waves. Whenever a circumstance variable that is missing is available for the same individual in 
previous waves, we use the oldest available value of the circumstance, on the ground that it was reported 
closest to when the respondent was young. 
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Table 1: Descriptive Income Statistics for the most recent waves 

Country Year Mean Gini MLD Top 1% Top 10% Bottom 
40% 

China 2018 9,998 0.497 0.459 0.137 0.400 0.129 

India 2012 3,196 0.527 0.518 0.123 0.439 0.089 

South Africa 2017 13,429 0.610 0.690 0.157 0.444 0.113 

USA 2018 48,420 0.389 0.301 0.063 0.290 0.179 
Note: Income units are in 2017 US dollars at PPP exchange rates. MLD stands for Mean Log Deviation. The three 
columns on the left represent the share of income received by the Top 1%, the Top 10%, and the Bottom 40% in the 
income distribution. Source: CFPS (2018), IHDS (2012), NIDS (2017), and PSID (2018).  

 

5.  Results: Inequality of Opportunity in China, India, South Africa and United States 

Transformation trees and Type-specific Cumulative Distribution Functions 

Applying the algorithm outlined in Section 3 to solve Equations 14-15, with the key stopping rule 

parameters set to 𝛼𝛼 = 0.01 and 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 1% of the sample (as described), yields the transformation 

trees shown as Figure B2 in Appendix 2. These stopping rules are quite conservative and the 

nodes of those trees are used for our IOp estimates described below. However, as the full trees 

are fairly deep and complex, Figure 1 below shows the trees pruned to a maximum depth of four 

levels, to make the output more readable.20  

Consider first the pruned tree for the United States, in Figure 1a. The splitting process generated 

by the algorithm should be read from left to right. The first split divides the population into a 

group consisting of just under one-third of the sample, whose fathers had at least some college 

education (Node 15), and the rest of the sample (Node 2). As we move to the right, other 

circumstances further partition the population following the algorithm, until the final nodes – 

types – are reached. An interesting symmetry emerges straight away: ethnicity appears as the 

second splitting circumstance in both subtrees, producing identical splits (into nodes 16 and 19 

for those with more educated parents, and 3 and 8 for the remainder). In both cases, the 

categories 'Black' and 'American Indian, Aleut, Eskimo' cluster together in the poorer sub-

branch, while all other groups fall into the more affluent sub-branch. Subsequent splits are 

determined by the father's education and occupation, the mother's education, birth area, and 

sex. At level four, where the tree is trimmed, we find a partition into ten types, and the Figure 

shows the parametrically estimated density function for each of them, as well as indicating the 

 
20 This is implemented through an additional stopping rule that prevents any observation from being 
involved in more than four splits. 
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population share accounted for by each type and its mean income as a multiple or share of the 

overall mean.21  

In terms of the model selection challenge discussed in Section 3, the algorithm partitioned the 

population into these ten groups (and fit CDFs to them) so as to maximize the likelihood of fitting 

the data, under the restrictions 𝑓𝑓 ∈ ℱ𝜏𝜏, with ℱ𝜏𝜏 being the class of recursive binary TrT estimators. 

The partition can be thought of as the product (or interactions) of various dummy variables 

defined over the circumstances. Type 10, for example, which is the poorest type in terms of 

expected income (54% of the national average) and comprises 13% of the population, consists 

of black or indigenous women whose fathers never went to college and whose mothers worked 

in specific occupations, corresponding to the interaction of dummy variables 𝑥𝑥10 =

𝟏𝟏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟="black"𝑜𝑜𝑜𝑜 "American Indian,Aleut,Eskimo " × 𝟏𝟏𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝟏𝟏𝑠𝑠𝑠𝑠𝑠𝑠="𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓"  ×

𝟏𝟏𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜="𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1 𝑜𝑜𝑜𝑜 2". Type 18, which is the richest type and includes 20% of 

the sample, consists of White, Hispanic and Asian people whose fathers are college graduates. 

corresponding to the interaction 𝑥𝑥18 = 𝟏𝟏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟=𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖,   𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ×

𝟏𝟏𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.  And so on.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
21 Although we use income in levels to compute all our measures, we plot the density of log incomes for 
ease of visualization. 
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Figure 1a: Transformation Tree for the United States 

 
 
Note: Splitting nodes show their sample size and the p-value associated with the split. Circumstance 
categories are Gender (0 Male, 1 Female), Ethnicity (1 White, 2 Black, 3 American Indian/Aleut/Eskimo, 4 
Asian/Pacific Islander, 5 Hispanic, 7 Other), Region of upbringing (1 Northeast, 2 North Central, 3 South, 4 
West, 5 Alaska/Hawaii, 6 Foreign country), Parents’ education (1 0–5 Grades, 2 6–8 Grades, 3 9–11 Grades, 
4 High school, 5 12+ Grades + non-academic training, 6 Some college, 7 College degree, 8 Advanced college 
degree), and Parents’ occupation (ISCO) (1 Basic, 2 Middle, 3 High). The panels on the right display the log-
density of type-specific incomes. The labels indicate the share of the population each type represents (Pop.) 
and their average income relative to the overall sample mean (y = 1), which is also depicted as a vertical 
black line in the log-density plot. Source: Own elaboration from the PSID (2018). 
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Figure 1b: Transformation Tree for China 

 

 

 
Note: Splitting nodes show their sample size and the p-value associated with the split. Circumstance categories are 
Gender (0 Female, 1 Male), Ethnicity (1 Han, 2 Mongol, 3 Hui, 4 Tibetan, 5 Miao, 7 Yi, 8 Zhuang, 9 Bouyei, 10 Korean, 
11 Manchu, 99 Other), Birth Area (13 Hebei, 14 Shanxi, 21 Liaoning, 22 Jilin, 23 Heilongjiang, 31 Shanghai, 32 Jiangsu, 
33 Zhejiang, 34 Anhui, 35 Fujian, 36 Jiangxi, 37 Shandong, 41 Henan, 42 Hubei, 43 Hunan, 44 Guangdong, 45 Guangxi 
Zhuang Autonomous Region, 51 Sichuan, 52 Guizhou, 53 Yunnan, 61 Shaanxi, 62 Gansu, 80 Not available, 90 Other), 
Parent’s education (1 Illiterate/Semi-literate, 2 Primary school, 3 Junior high school, 4 Senior high school/secondary 
school/technical school/vocational senior school, 5 3-year college, 6 4-year college/Bachelor’s degree, 7 Master’s 
degree, 8 Doctoral degree), Parent’s occupation (0 Armed forces, 1 Managers, 2 Professionals, 3 Technicians and 
Associate professionals, 4 Clerks, 5 Services and Sales workers, 6 Agricultural, Forestry and Fishery workers, 7 Craft 
and trade workers, 8 Plant and machine operators and assemblers, 9 Elementary occupations, 10 Unemployed). The 
panels on the right display the log-density of type-specific incomes. The labels indicate the share of the population 
each type represents (Pop.) and their average income relative to the overall sample mean (y = 1), which is also depicted 
as a vertical black line in the log-density plot. Source: CFPS (2018).  



22 
 

Figure 1c: Transformation Tree for India  
 

 
 
Note: Splitting nodes show their sample size and the p-value associated with the split. Circumstance 
categories are Gender (0 Female, 1 Male), Ethnicity (2 Forward caste, 3 Other Backward castes (OBC), 4 
Dalit, 5 Adivasi, 6 Muslim, 7 Christian, Sikh, Jain), Parent’s Education (0 None, 1 Incomplete primary, 2 
Complete primary, 3 Incomplete secondary, 4 Complete secondary, 5 Higher secondary, 6 Post-secondary 
or higher), Birth Area (1 Jammu & Kashmir, 2 Himachal Pradesh, 3 Punjab, 4 Another State, 5 Uttarakhand, 
6 Haryana, 7 Delhi, 8 Rajasthan, 9 Uttar Pradesh, 10 Bihar, 11 Overseas, 18 Northeast, 19 West Bengal, 
20 Jharkhand, 21 Orissa, 22 Chhattisgarh, 23 Madhya Pradesh, 24 Gujarat, 27 Maharashtra, 28 Andhra 
Pradesh, 29 Karnataka, 32 Kerala, 33 Tamil Nadu). The panels on the right display the log-density of type-
specific incomes. The labels indicate the share of the population each type represents (Pop.) and their 
average income relative to the overall sample mean (y = 1), which is also depicted as a vertical black line 
in the log-density plot. Source: IHDS (2012). 
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Figure 1d: Transformation Tree for South Africa  
 
 

 
 
Note: Splitting nodes show their sample size and the p-value associated with the split. Circumstance 
categories are Gender (0 Female, 1 Male), Ethnicity (1 African, 2 Asian/Indian, 3 Coloured, 4 White), 
Parent’s Education (0 Zero, 1 Grade 1, 2 Grade 2, 3 Grade 3, 4 Grade 4, 5 Grade 5, 6 Grade 6, 7 Grade 7, 8 
Grade 8, 9 Grade 9, 10 Grade 10, 11 Grade 11, 12 Grade 12), Parent’s Occupation (0 Military, 1 Managers, 
2 Professionals, 3 Technicians and Professionals, 4 Clerical Support, 5 Service and sales, 6 Farm, Forest, 
Fishery, 7 Craft, 8 Operators, 9 Elementary, 10 Others). The panels on the right display the log-density of 
type-specific incomes. The labels indicate the share of the population each type represents (Pop.) and their 
average income relative to the overall sample mean (y = 1), which is also depicted as a vertical black line 
in the log-density plot. Source: NIDS (2017). 
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In China (Figure 1b), the four-level tree yields a thirteen-type partition, with incomes ranging 

from 47% to 253% of the mean income. The birth area variable plays a critical role in the 

transformation tree: it is the first splitting factor, and it also appears in five additional splitting 

nodes, highlighting the importance of the geography of birth for the distribution of life chances 

in China. For example, the two most advantaged types consist exclusively of individuals born in 

Shanghai. Other influential variables include parental occupation, education, and, to a lesser 

extent, ethnicity (the worst-off type contains only Mongol and Yi individuals). 22   

In India (Figure 1c), the four-level tree yields fifteen types, with incomes ranging from 47% (Type 

15) to 374% (Type 29) of the mean. Father’s education determines the first split in the 

transformation tree, followed by the mother’s education. The structure of the tree indicates a 

dominant role for the interaction between these two variables. The wealthiest group, whose 

expected income is nearly four times the sample mean, is composed of individuals whose 

parents are both at the top of the educational distribution. Additionally, birth area and ethnicity 

(which here consists of caste and religious identities) also contribute substantially to predicting 

the shape of the income distribution, which is heterogeneous not only in terms of its mean but 

also in its higher-order moments. While the poorest types tend to follow a clearly log-normal 

distribution, the richer types exhibit distributions skewed to the right, suggesting greater 

variability, and possibly some downward risk (in the long left tails) for these higher-income 

groups. These insights into the shape of each type’s distribution are one benefit of our approach 

to measuring inequality of opportunity using transformation trees.  

Finally, in South Africa (Figure 1d), the pruned tree has nine nodes or types. Unsurprisingly, its 

structure is determined primarily by ethnicity. The white population, which is exclusively 

concentrated in Types 16 and 17, displays an income distribution so markedly shifted to the right 

that it appears as though it might have been drawn from a different country. Among the non-

white groups, those including Asian and Coloured individuals have a higher expected income 

 
22 The split at Node 4 in the Chinese tree is worth a comment, as it groups parents with a Master’s degree 
together with the least educated category, in Type 5. This illustrates a feature of the algorithm when there 
are very few observations in a particular category. When the algorithm uses a certain circumstance to 
divide the sample, it must place all individuals from the node that originates the split into either one 
subgroup or the other. If there are very few respondents who have a specific value for the characteristic 
in question – there are only four individuals in the entire sample reporting a father with Master’s degree 
- the assignment to the group can be almost random. Naturally, because this happens only when the 
number of individuals is very small, the consequences for summary IOp estimation are minimal. 
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and tend to follow a log-normal distribution. In contrast, groups composed by African individuals 

exhibit a distribution with a density mass skewed to the left.  

Besides the parameterized density functions shown to the right of the trees in Figure 1, type 

distributions can also be visualized as cumulative distribution functions. Figure 2 shows both the 

empirical CDFs for each type (as solid coloured lines) and the corresponding predicted CDFs 

(ECDFs: 𝐹𝐹 �𝑦𝑦�𝑞𝑞𝑞𝑞 ,𝜃𝜃�𝑁𝑁(𝑐𝑐)�) generated by the Bernstein polynomials, as dashed lines.  

Figure 2. ECDF of the type-partition (pruned trees) for the most recent waves 

 

Note: here we present the ECDF of the types obtained from the pruned Transformation Trees displayed in 
Figure 1a (USA), Figure 1b (China), Figure 1c (India), and Figure 1d (South Africa). Solid lines represent the 
ECDF for each type and are coloured consistently with the corresponding types in the trees. Dashed lines 
represent the corresponding CDF predicted with the Bernstein polynomial. Figures. Source: CFPS (2018), 
IHDS (2012), NIDS (2017) and PSID (2018).  

 

These CDF plots provide a striking visual depiction of the structure and extent of inequality of 

opportunity in each country. Compared to the United States, type distributions are much further 

apart in the three developing countries in our sample, particularly South Africa, where the two 

White types stochastically dominate all others by a large margin. We can also observe interesting 

crossings, such as that between types 5 and 24 in India. These two types have relatively similar 



26 
 

means (122% and 141% of the overall average, respectively), but Type 24 has a more unequal 

distribution, so the CDFs cross and the welfare of the two types cannot be unambiguously 

ranked (in terms of first-order dominance). Similar crossings can be observed in all four 

countries, revealing that types differ not only in terms of their first moments, but also in their 

higher-order moments. 

From the trees to Lorenz Curves and scalar measures of inherited inequality 

As discussed, Figures 1 and 2 draw on four-level pruned trees. To compute IOp, we rely on the 

full trees shown in Figure B2 in Appendix 2.  Those trees generate finer types, with their own 

income predictions, 𝑦𝑦�𝑞𝑞𝑞𝑞 . These are then adjusted for differences across tranche means as in 

Equation (8) to yield the distribution of predicted incomes 𝑦𝑦�𝑇𝑇, which is used for computing our 

proposed absolute and relative measures of inherited inequality or ex-post inequality of 

opportunity (Eq. 9). We can also define a Lorenz Curve of these predicted incomes, 𝐿𝐿(𝑦𝑦�𝑇𝑇), to 

which we refer as the Opportunity Lorenz Curve. Figure 3 displays both Opportunity Lorenz 

curves and regular Lorenz curves, 𝐿𝐿(𝑦𝑦), for the most recent surveys for each country. As 

expected, the Opportunity Lorenz curve dominates that for income, and the area between 

𝐿𝐿(𝑦𝑦�𝑇𝑇) and the line of equality captures the extent of inequality of opportunity in each society. 

The dashed lines indicate the shares of income and opportunities held by the bottom 40%, 90%, 

and 99%, corresponding to the shares presented in Table 2 below. 
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Figure 3 Income and Opportunity Lorenz Curves for China, India, South Africa and the US 

 
Note: The red line corresponds to the Lorenz curve of 𝑦𝑦�𝑇𝑇, while the blue line corresponds to the Lorenz curve of income. 
The dashed lines correspond to the income (Table 1) and 𝑦𝑦�𝑇𝑇 (Table1) shares received by the Bottom 40%, Top 10% and 
Top 1%. Source: CFPS (2018), IHDS (2012), NIDS (2017), and PSID (2018).  
 

To go from the Lorenz Curves in Figure 3 to scalar measures of inequality, we choose two 

different indices, namely the Gini coefficient and the mean log deviation (MLD). Values for 

income inequality were presented in Table 1 above, and Table 2 (Panel A) presents the 

corresponding inequality of opportunity measures, once again for the latest available survey 

waves.  Although we report both Ginis and MLDs in Table 2, we focus the subsequent discussion 

on the Gini estimates.23 For both indices, we report the absolute measure of inherited inequality, 

𝐼𝐼𝑛𝑛𝐴𝐴(𝑦𝑦, 𝒄𝒄,𝑓𝑓𝑇𝑇) = 𝐼𝐼(𝑦𝑦�𝑇𝑇), as well as the relative, 𝐼𝐼𝑛𝑛𝑅𝑅(𝑦𝑦, 𝒄𝒄,𝑓𝑓𝑇𝑇) = 𝐼𝐼(𝑦𝑦�𝑇𝑇)
𝐼𝐼(𝑦𝑦) . In the tables, the latter is 

 
23 As noted by Brunori, Palmisano, and Peragine (2019), the Gini coefficient is more sensitive to the central 
parts of the distribution, where group means tend to cluster, rather than to the lower tail. In that sense, 
the Gini is better suited to studying IOp than the MLD. 
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denoted IORT. The last three columns of the Table also report predicted income (or opportunity) 

shares for the top 1%, top 10%, and bottom 40%.  

Table 2: Inequality of Opportunity results for the most recent waves 

Panel A: Ex-post Inequality of Opportunity  

Country Year Gini (𝒚𝒚�𝑻𝑻) 𝑰𝑰𝑰𝑰𝑰𝑰𝑻𝑻  
(Gini) 

MLD 
(𝒚𝒚�𝑻𝑻) 

𝑰𝑰𝑰𝑰𝑰𝑰𝑻𝑻  
(MLD) Top 1% Top 10% Bottom 

40% 
China 2018 0.292 58.8% 0.172 37.5% 0.079 0.27 0.245 

India 2012 0.327 62.0% 0.207 40.0% 0.040 0.278 0.168 
South 
Africa 2017 0.495 81.1% 0.413 59.9% 0.039 0.313 0.209 

USA 2018 0.141 36.3% 0.052 17.3% 0.017 0.148 0.372 
Note: The three columns on the right represent the share of 𝑦𝑦�𝑇𝑇 accruing to the Top 1%, the Top 10%, and the 
Bottom 40% in the 𝑦𝑦�𝑇𝑇 distribution. Source: CFPS (2018), IHDS (2012), NIDS (2017), and PSID (2018).  

 
Panel B: Ex-ante Inequality of Opportunity  

Country Year Gini 
(𝒚𝒚�𝑩𝑩𝑩𝑩𝑩𝑩) 

𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬  
(Gini) 

MLD 
(𝒚𝒚�𝑩𝑩𝑩𝑩𝑩𝑩) 

𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬  
(MLD) Top 1% Top 10% Bottom 

40% 
China 2018 0.219 44.1% 0.076 16.6% 0.063 0.245 0.299 

India 2012 0.279 52.9% 0.123 23.7% 0.048 0.269 0.184 
South 
Africa 2017 0.468 76.7% 0.36 52.2% 0.041 0.292 0.219 

USA 2018 0.154 39.6% 0.037 12.3% 0.014 0.149 0.34 
Note: 𝐼𝐼𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸 is the Brunori et al., (2023) estimate and 𝒚𝒚�𝑩𝑩𝑩𝑩𝑩𝑩 denotes the incomes received by types 
obtained using that ex-ante method. Source: CFPS (2018), IHDS (2012), PSID (2018), and NIDS (2017). 
  

For these years, the opportunity Gini coefficient ranges from 0.141 in the US to 0.495 in South 

Africa. The latter is a remarkable number: the opportunity Gini for South Africa is higher than 

the overall income Gini coefficient of the United States and almost as high as total inequality in 

China. Indeed, inherited inequalities account for a remarkable 81% of the (very high) income 

inequality in South Africa. India has the second-highest level of IOp, with a Gini of 0.33, 

accounting for 62% of total inequality, with China not far behind. However, the shape of the 

opportunity distribution differs between those two countries, mirroring what we have already 

seen for the distribution of incomes. In India, the top 1% receives 4% of total opportunities, half 

of the share in China, where the top 1% holds 8%. Yet, India's top 10% captures about the same 

as in China, while the bottom 40% receives significantly less (17% compared to 25% in China), 

even than in South Africa (21%). This suggests that, although India exhibits less concentration at 

the very top of the distribution of opportunities compared to China, it has a much larger share 

of the population that is extremely opportunity deprived. Figure B3 in the Appendix presents 
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the time trends in ex-post IOp across all four countries this century, showing that IOp was largely 

stable in the United States during the 2000 – 2018 period, while it rose both in India (between 

2005-2012) and China (particularly since 2014). South Africa followed a U-shaped pattern, with 

inequality of opportunity declining until 2015 and then rising again in 2017. 

For comparison, Panel B of Table 2 contains benchmark estimates from applying an ex-ante 

approach to our data. Specifically, we follow the approach of Brunori, Hufe and Mahler (BHF, 

2023) to construct conditional inference trees and random forests. The resulting ex-ante IOp 

estimates are typically lower than our ex-post results, both in absolute and relative terms: they 

are lower in all four cases for the MLD, including by a factor of less than 0.5 for China. They are 

also lower for the Gini in all countries except the United States. Top 10% shares are also lower 

in the ex-ante estimates, except again for the US, where they are basically the same. The picture 

is a little less clear for the top 1% share, where the ex-ante estimate is higher in both India and 

South Africa. The overall pattern, though, is that even when comparing our approach to the 

closest possible ex-ante alternative – another tree-based machine learning approach, but using 

differences in means rather than full distributions to split types – overall IOp levels and shares 

tend to be higher in the ex-post approach.  

The difference is particularly marked in the case of China, where the ex-post Opportunity Gini 

coefficient is 1.33 times the ex-ante. Such large differences between ex-ante and ex-post 

estimates tend to arise whenever considering only the first moment of the conditional 

distribution is not sufficient to understand the entire conditional distribution of types. To 

provide an intuition for this, Figure 4 shows the ex-ante conditional inference tree (CIT) for China 

in 2018, estimated with same four-level stopping rule as the transformation tree in Figure 1b. 

Consider Type 5, which represents 7.5% of the sample. Individuals in this group have mothers 

who are neither Agricultural, Forestry, and Fishery workers nor managers, and their fathers have 

low levels of education. This type has an expected income close to the population mean. 

However, when examining the ex-post types to which individuals from ex-ante Type 5 are 

mapped, a clear divergence emerges. 
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Figure 4: Conditional Inference Tree to evaluate ex-ante IOp in China 

 

 

Note: Splitting nodes show the p-value associated to the splitting. Circumstance categories are Gender (0 
Female, 1 Male), Ethnicity (1 Han, 2 Mongol, 3 Hui, 4 Tibetan, 5 Miao, 7 Yi, 8 Zhuang, 9 Bouyei, 10 Korean, 
11 Manchu, 99 Other), Birth Area (13 Hebei, 14 Shanxi, 21 Liaoning, 22 Jilin, 23 Heilongjiang, 31 Shanghai, 
32 Jiangsu, 33 Zhejiang, 34 Anhui, 35 Fujian, 36 Jiangxi, 37 Shandong, 41 Henan, 42 Hubei, 43 Hunan, 44 
Guangdong, 45 Guangxi Zhuang Autonomous Region, 51 Sichuan, 52 Guizhou, 53 Yunnan, 61 Shaanxi, 62 
Gansu, 80 Not available, 90 Other), Parent’s education (1 Illiterate/Semi-literate, 2 Primary school, 3 Junior 
high school, 4 Senior high school/secondary school/technical school/vocational senior school, 5 3-year 
college, 6 4-year college/Bachelor’s degree, 7 Master’s degree, 8 Doctoral degree), Parent’s occupation (0 
Armed forces, 1 Managers, 2 Professionals, 3 Technicians and Associate professionals, 4 Clerks, 5 Services 
and Sales workers, 6 Agricultural, Forestry and Fishery workers, 7 Craft and trade workers, 8 Plant and 
machine operators and assemblers, 9 Elementary occupations, 10 Unemployed). The panels at the bottom 
indicate the share of the population each type represents, and their average income relative to the overall 
sample mean. Source: CFPS (2018).  

 

The conditional inference tree in Figure 4 and the transformation tree in Figure 1b are estimated 

in the exact same sample, so it is possible to map individuals to the types to which they belong 

in each exercise. This is what the Sankey (or alluvial) plot in Figure 5 shows. The left margin 

shows the ex-ante partition obtained using the CIT (as plotted in Figure 4), while the right margin 

displays the partition derived from the TrT (Figure 1b). In both margins, types are ranked from 

top to bottom in descending order of expected incomes. Ex-ante Type 5 is highlighted in light 

orange to illustrate how individuals from this group are distributed across four different ex-post 

types. These destination types differ significantly in terms of income. For instance, ex-post Type 

5 has an average income that is 52% higher than the population average, whereas ex-post Type 

8 has an average income that is less than half that: about 70% of the population mean. These 

regroupings arise when there are meaningful differences in the higher moments of the 

conditional distributions of potential types, so that the transformation tree and the CIT 
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algorithm yield quite different partitions. This example illustrates how a substantial divergence 

between ex-ante and ex-post partition can arise in practice. 

Figure 5: An example of heterogeneity in ex-ante and ex-post partition in China 

 
Note: The Sankey plot maps the same individuals according to two different type partitions. On the left-
hand side, the ex-ante partition (Figure 4), and on the right-hand side, the ex-post partition (Figure 1b). 
We have highlighted Type 5 in the ex-ante partition, that splits into four very different types in the ex-post 
partition. Source: CFPS (2018). 

 
 

It is somewhat harder to compare our main results with previous studies, which have employed 

various different statistical approaches and often used different samples and income definitions. 

For example, in the case of the United States, Pistolesi (2009) report a similar level of IOp in 

terms of MLD for the year 2000 to what we obtain. However, their analysis focuses on earnings 

and is restricted to working males, which limits comparability. In most other cases, previous 

estimates are generally based on ad-hoc ex-ante methods, and these tend to be lower – often 

much lower – than ours. For India, Kundu and Lefranc (2020) estimate that ex-ante IOp in 2012 

ranges from 8% to 39%, depending on the set of regressors used in a parametric model. Their 

estimate using conditional inference regression trees is 32%, which compares to our ex-post Gini 

share of 62%. For China, Wu (2018), using the same data source and inequality index (Gini) as 

our study, reports relative IOp levels between 30% and 40% for the years 2010 and 2012, 
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whereas we observe relative IOp levels of 53% in 2010 and 42% in 2012. Finally, Piraino (2015) 

employs an ex-ante approach and two econometric methods to estimate IOp in gross 

employment earnings in South Africa, using up to 54 Roemerian types. Using data for male 

workers in 2008 and 2012, he finds IOp shares ranging from 17% to 24% of total inequality, as 

measured by MLD. These estimates compare to our MLD-based estimate of 57% in 2012. Once 

again, although comparisons are hampered by differences in samples and/or income definitions, 

most previous IOp estimates for our sample of countries tend to be of the ex-ante variety, and 

considerably lower than ours, consistently with the broad pattern of the comparison between 

Panels A and B of Table 2.  

The role of individual circumstances  

Because the prediction function in Equation (16) is highly non-linear in circumstances, any 

assessment of the relative contribution of individual circumstances to inequality in predicted 

incomes, 𝐼𝐼(𝑦𝑦�𝑇𝑇), cannot rely on marginal effects. As in other cases in inequality analysis, the 

decomposition method most suitable to our application is the Shapley-Shorrocks decomposition 

(Shapley, 1953; Shorrocks, 2013). Intuitively, this decomposition computes the total 

contribution of a particular circumstance variable 𝑐𝑐𝑘𝑘 to predicted inequality as the average 

reduction in the latter when 𝑐𝑐𝑘𝑘 is omitted from the prediction, with the average taken across all 

possible combinations of circumstances that originally include 𝑐𝑐𝑘𝑘. (See Shorrocks, 2013). A 

description of the algorithm used to compute the decomposition also helps clarify its logic:  

A) Draw a subsample of the full sample;24 

B) Estimate IOp in this subsample, as described in Section 3, but setting 𝛼𝛼 = 1; 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 0 

C) Further, estimate IOp in the subsample for all possible permutation sequences that 

eliminate circumstance 𝑐𝑐𝑘𝑘. This elimination is performed by replacing 𝑐𝑐𝑘𝑘 with a constant 

vector 1; 

D) Estimate a tree and IOp after each elimination sequence and store results; 

E) Average IOp across all permutation sequences. The difference between overall IOp and 

this average is the specific contribution of 𝑐𝑐𝑘𝑘; 

F) Repeat steps A-E z times, to account for different potential data-generating processes. 

In our case, we set z = 100; 

G) Estimate the contribution of 𝑐𝑐𝑘𝑘 to IOp as the average contribution across these z 

repetitions; 

 
24 Following the convention often used in tree bagging procedures, we draw subsamples of 63.2% of the 
original sample size (see Hothorn, Hornik, and Zeileis, 2006).  
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H) Repeat the algorithm for each 𝑐𝑐𝑘𝑘, 𝑘𝑘 ∈ {1, … ,𝐾𝐾}. 

This algorithm grows trees on subsamples of the initial population, permitting each tree to attain 

significant depth. These two adjustments enable all circumstances with predictive power to 

contribute to defining the partition of types, at least in some iterations, making the assessment 

of the relative contribution of each circumstance more robust to the typical problem of the 

variance of estimates based on a single tree. Table 3 presents the results of the Shapley-

Shorrocks decomposition for our four countries and the seven circumstance variables available 

in the most recent wave. Results are presented as percentage shares of the ex-post opportunity 

Gini coefficients reported in Table 2. 

Table 3: Ex-post Shapley value decomposition (as %) for the most recent waves 

Circumstances China India South 
Africa USA 

Birth Area 15.41 20.87 - 14.25 
Ethnicity 8.65 16.32 32.41 15.24 

Father Education 10.46 27.74 16.43 19.17 
Father Occupation 16.32 - 13.78 15.42 
Mother Education 17.26 27.89 16.07 16.5 

Mother 
Occupation 29.53 - 16.06 12.29 

Sex 2.36 7.17 5.25 7.13 

Note: Values in these tables represent the relative contribution (as %) of circumstances to the ex-post IOp 
estimates reported in Table 2, Column Gini (𝑦𝑦�𝑇𝑇). The sum of values within columns adds up 100%. Missing 
values (-) correspond to circumstances that are not available in the data. Source: CFPS (2018), IHDS (2012), 
NIDS (2017), and PSID (2018).  

 

Notice that due to the unobservability of parental occupation in India and area of birth in South 

Africa, results are only fully comparable for China and the United States.25 Looking across those 

two countries, it is interesting that, despite the larger number of ethnic groups in China, the 

Shapley value for race in the US is twice as large. While father’s occupation and mother’s 

education have similar values in both countries, father’s education appears significantly more 

 
25 Even in this case, some might argue that comparability is limited by how the same circumstances are 
coded across countries. For example, in the USA there are five racial categories, while in China there are 
twelve ethnic groups. However, such classifications are linked to a country’s structure of opportunity. We 
can and should not impose identical categories across countries, which differ in terms of their territories, 
cultural diversity, and social structure. These aspects of a country’s social organization are part and parcel 
of its opportunity distribution, and they should be reflected in the data used — without attempting to 
make them uniform. It is for the learning algorithm to select the most salient binary splits across 
categories in each case. 
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important in the US, whereas mother’s occupation plays a larger role in China. The influence of 

sex also appears to be much more pronounced in the US.  

When including India and South Africa in the comparison, the dominant role of race emerges 

clearly in South Africa: it is comparable to the combined effect of caste and area of birth in India. 

Interestingly, the Shapley value for parents’ education in India is not too far from the sum of the 

values for both occupation and education of the parent in South Africa, suggesting that the 

presence of unobservable circumstances may inflate the Shapley value of observable and 

correlated circumstances. Regarding the role of sex, it is important to recall that our analysis is 

based on equivalized household income. Therefore, we expect sex to play a significant role only 

in contexts where single-parent households are not uncommon and where income disparities 

between male- and female-headed households are substantial. This is the case in India and the 

United States. In contrast, the difference is smaller in our sample for China, where female-

headed households earn about 95% of what their male-headed counterparts earn. Naturally, it 

should go without saying that, in keeping with the measurement-using-prediction spirit of our 

analysis, these decompositions are purely descriptive. 

Moreover, when commenting on the role of circumstances in predicting the conditional 

distribution of income, we should consider that Shapley values measure the reduction in 

predicted inequality when a specific circumstance is removed from the analysis. This value is 

influenced by the distribution of the circumstance itself. For example, in a society where most 

individuals are Black and only few are White, removing the race variable will not significantly 

reduce the model's explanatory power. This is because, for the majority, the conditional 

distribution closely aligns with the unconditional one, and only for a small subset does race 

influence the income distribution. However, from the point of view of the minority, that 

characteristic may matter a great deal. In other words: while the average contribution of 

individual circumstances contains valuable information, so would an estimate of the marginal 

importance of belonging to a specific circumstance category.   

We therefore complement Shapley values by estimating the marginal effect (on predicted 

incomes) of being affected by a specific characteristic, for example, being White in South Africa. 

We do this by regressing individuals’ predicted incomes, 𝑦𝑦�𝑇𝑇, on a set of dummy variables, each 

representing a category of a given circumstance. This exercise is similar to the estimation of 

Partial Dependence Plots (PDPs), which are frequently used in machine learning to complement 

decomposition techniques such as Shapley values. Figure 6 presents the marginal effects in the 

most recent wave for South Africa. Both the signs and magnitudes of the effects are broadly 
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consistent with expectations. The substantial positive effect of being White is clearly visible in 

the first panel: being White is associated with an opportunity premium of 350%. A substantial 

“college premium” – more precisely, of completing or going beyond Grade 12 – can also be 

observed for both fathers’ and mothers’ education (Category 12).  

Figure 6: Marginal effect of circumstances on opportunities in the South Africa 

 

Note: Values on the y-axis represent the relative advantage or disadvantage associated with each 
category, computed as 100 × average income (category)

average income (sample)
. Circumstance categories are Gender (0 Female, 1 Male), 

Ethnicity (1 African, 2 Asian/Indian, 3 Coloured, 4 White), Parent’s Education (0 Zero, 1 Grade 1, 2 Grade 
2, 3 Grade 3, 4 Grade 4, 5 Grade 5, 6 Grade 6, 7 Grade 7, 8 Grade 8, 9 Grade 9, 10 Grade 10, 11 Grade 11, 
12 Grade 12), Parent’s Occupation (0 Military, 1 Managers, 2 Professionals, 3 Technicians and 
Professionals, 4 Clerical Support, 5 Service and sales, 6 Farm, Forest, Fishery, 7 Craft, 8 Operators, 9 
Elementary, 10 Others).  Numbers in parentheses denote population shares in each category. We are not 
showing categories populated by less than 0.5% of the sample size. Source: NIDS (2017).  
 

Figures B4–B6 in Appendix 2 show analogous marginal effects for China, India, and the United 

States. Noteworthy findings include the strong positive effect of being born in certain regions of 

China—for instance, being born in Shanghai is estimated to contribute a marginal advantage of 

more than 150% to predicted incomes. In both India and the U.S., having well-educated parents 

is associated with significantly higher opportunities. In India, the premium is particularly high for 

maternal education: for the small minority reporting a mother with education above the 
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secondary level, the estimated marginal advantage exceeds 200%. In the U.S., the effect is higher 

for father’s education. A sizable negative effect is observed for the large Black community in the 

United States, with an estimated penalty of approximately 25%. 

The lower envelope of quantile functions 

As noted in the Introduction, another advantage of our conditional CDF-based approach is that 

it enables us to compute estimates of the social objective function proposed in the original 

theory of equal opportunity (Roemer, 1993, 1998). In proposing a normative objective function, 

egalitarians must contend with the levelling-down objection: if the objective were simply to 

eliminate inequality in predicted incomes, 𝐼𝐼(𝑦𝑦�), and thus immobility or inequality of 

opportunity, this might be achieved by setting all incomes to zero – or some other very low but 

constant value. Policies might be arranged in such a way that there was no inherited inequality, 

but everyone lived in abject poverty.  

The standard normative response to this objection is Rawls’s proposal that inequalities should 

be tolerated only insofar as they are to the benefit of the worst-off (Rawls, 1971). This gives rise 

to the familiar Rawlsian maximin objective functions and, indeed, various versions of maximin 

objectives have been proposed in the context of inequality of opportunity.26  A dominant early 

version, due to Roemer (1998), is to arrange society and choose policies so as to maximize the 

(average of the) lowest incomes at each quantile, across the conditional distribution functions 

of all types. Recalling from the general framework in Section 2, that there are M types, 𝜏𝜏𝑚𝑚: =

{∀𝑖𝑖|𝒄𝒄𝒊𝒊 = 𝒄𝒄𝒎𝒎}, whose conditional cumulative distribution functions are of the form 𝐹𝐹(𝑦𝑦|𝒄𝒄𝒎𝒎), 

define the lower envelope of the joint distribution {y, c} as: 

Λ(𝑞𝑞) = min
𝜏𝜏𝑚𝑚

𝐹𝐹−1(𝑞𝑞, 𝒄𝒄𝒎𝒎) (10) 

 

And choose policies so as to: 

𝑀𝑀𝑀𝑀𝑀𝑀 � Λ(𝑞𝑞)𝑑𝑑𝑑𝑑
1

0
 (11) 

 

As Roemer and Trannoy (2016) put it: “We do not simply want to render the functions identical 

at a low level, so we need to adopt some conception of ‘maxi-minning’ these functions. [...] A 

natural approach is therefore to maximize the area under the lower envelope of the [quantile] 

functions.” (p. 231).  

 
26 See, e.g., Van de Gaer (1993) and Bourguignon, Ferreira, and Walton (2007).  
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Equation (10) defines the lower envelope of the set of quantile functions (inverse functions of 

the distribution function). Graphically, the type quantile functions, shown in Figure 7 below for 

South Africa, are obtained by inverting the conditional CDFs in Figure 2d. Λ(𝑞𝑞) defines the lowest 

points in the graph at each quantile. If the poorest type were first-order stochastically 

dominated by all other types, then the lower envelope would simply be its quantile function, 

and Equation (11) would mandate maximizing its average income, equal to the area under the 

quantile function.  When quantile functions cross at the bottom of the graph, Equation (11) 

mandates maximizing the average income of the lower envelope of the quantile functions. If 

there were no inequality of opportunity, all of society would be one type and ∫ Λ(𝑞𝑞)𝑑𝑑𝑑𝑑1
0  would 

be its average income. Therefore, the value of the maximand in (11) is informative per se, as a 

measure of the opportunity floor in a society, and is interesting also in relative terms, as a 

measure of how close that floor is to the average income,  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅 = ∫ Λ(𝑞𝑞)𝑑𝑑𝑑𝑑1
0

∫ 𝐹𝐹−1(𝑞𝑞)𝑑𝑑𝑑𝑑1
0

. 

Figure 7: Type quantile functions and the lower envelope for South Africa 

 
Note: Solid lines represent the ECDF for each type and are labelled consistently with the corresponding 

types in the trees. Dashed lines represent the corresponding CDF predicted with the Bernstein 
polynomial. Source: NIDS (2017). 
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In practice, a literal computation of ∫ Λ(𝑞𝑞)𝑑𝑑𝑑𝑑1
0   (Lenv, hereafter) might be over-sensitive to small 

types detected in a particular sample. We therefore propose a robust version of the lower 

envelope which consists, in each quantile, of the average income across the worst-off types 

adding up to at least 10% of the population. The heavier line in Figure 7 shows the robust lower 

envelope for South Africa in 2017, against the full set of conditional quantile functions.  

 

Figure 8 presents the evolution of LenvR for the four countries, over the 2000-2018 period. A 

striking result is the high value recorded for China, where the poorest types appear to have been 

catching up with the average income until 2014 (75%), but then lost some ground thereafter. In 

the most recent wave, China's LenvR is comparable to that of the United States, at around 60% 

of average income in our sample. In terms of trends, the United States shows a rising trajectory 

in the first two decades of the century, whereas India exhibits a downward trend between 2005 

and 2012, falling from 54% to 40%. The improvement in South Africa between 2008 and 2015 is 

not sufficient to converge toward the other countries. Its LenvR in 2017 is still around 35%. 

 

Figure 8: Lenv𝑅𝑅  over time in China, India, South Africa and the US. 

 

Source: CFPS, IHDS, PSID, and NIDS. 

 

Figure B7 in Appendix 2 shows an analogous graph for Lenv in absolute terms. The United States’ 

area under the lower envelope rises from approximately $22,000 in 2000 to about $30,000 in 

2018. The other three countries exhibit significantly lower and more closely aligned levels. In 
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India, Lenv declines from around $3,500 to $1,500 between 2005 and 2011. China and South 

Africa, in contrast, display similar upward trajectories in the 2000s. 

 

6. Conclusions 

The  extent to which economic advantage is inherited from previous generations and shaped by 

pre-determined circumstances is a matter of both positive and normative interest. Many, if not 

most, approaches to quantifying this phenomenon rely on prediction exercises, essentially  

assessing how well incomes can be predicted by pre-determined circumstances such as parental 

income, biological sex, race, or other indicators of family background. We showed that many 

commonly used measures of intergenerational mobility and inequality of opportunity can be 

written as functions of the ratio of inequality in these predicted incomes to inequality in 

observed current-generation incomes.   

We then proposed a new approach for measuring inherited inequality that is sensitive to 

differences across the full conditional income distributions – rather than just the means – of 

subpopulations that share the same inherited characteristics – “types” in the IOp literature. This 

method, based on transformation trees (Hothorn and Zeileis, 2021), represents an improvement 

over previous approaches to estimating inequality of opportunity because it is designed to 

partition the population and estimate distribution functions optimatlly, given the trade-off 

between a downward omitted-variable bias and an upward overfitting bias that is inherent to 

the model selection problem in this literature.  

We applied this method to thirty-six representative household surveys from four large and 

systemically important countries, namely the United States (25 waves, between 1970 and 2018), 

China (five waves, between 2010 and 2018), India (two waves, 2005 and 2012) and South Africa 

(four waves, between 2008 and 2017). We found high absolute levels of inherited inequality, 

measured as ex-post inequality of opportunity, with Opportunity Gini coefficients of 0.14 in the 

US, 0.29 in China, 0.33 in India, and 0.50 in South Africa in the latest available years. These 

correspond to substantial shares of total income inequality – 36% for the US, 59% for China, 62% 

for India, and 81% for South Africa – attesting to the heavy weight of inherited characteristics in 

predicting current economic success in all four countries, but particularly the three poorer ones. 

Comparing these estimates both to state-of-the-art ex-ante methods27 applied to the very same 

data and using the same income and circumstance variables, as well as to earlier estimates in 

 
27 Random forest estimates obtained using the approach of Brunori et al. (2023). 
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the literature that use other income definitions and statistical approaches, we found our 

estimates to be generally, and sometimes substantially, higher. For China, for example, we found 

an ex-post inherited inequality share of 59%, whereas the ex-ante estimate on the exact same 

sample was 44%. These differences reflect both differences in the type partitions generated by 

the two algorithms, and the fact that the ex-post method aggregates horizontal differences for 

all quantiles along the (adjusted) type cumulative distribution function, whereas the ex-ante 

method relies on differences in means only. We illustrated the subtle partition differences that 

can occur with a Sankey plot mapping Chinese individuals from their ex-ante to their ex-post 

types.28  

We also estimated both average and marginal contributions of specific circumstances (and 

categories, in the marginal case) to overall inherited inequality. The relative importance of these 

circumstances varied substantially across countries, reflecting their different histories and socio-

economic structures. Race was unsurprisingly dominant in post-Apartheid South Africa, whereas 

area of birth was important in both India and China, where being born in cities such as Shanghai 

yields great advantage. But it was the occupation of one’s mother that seemed to be the most 

descriptively important inherited characteristic in China, whereas the educational attainment of 

one’s father played that role in the United States. Being Black in the US commands a significant 

(25%) opportunity penalty. 

 

Finally, the granular estimation of quantile functions for each type inherent in this approach also 

allows us to investigate how the worst-off types – and the lower envelope of such types – are 

performing over time. In absolute levels, the average income of this lower envelope rose in the 

United States, China and Souh Africa, but fell in India. Relative to average incomes, this 

opportunity floor was much higher in China and the United States (at around 60% in the latest 

year), than in India and South Africa (35-40%).  

 

Most of these insights into the extent and nature of the inheritance of inequality across 

generations, and of the distribution of opportunities across these four very different countries, 

were only possible through a comprehensive approach that incorporates many circumstance 

variables and looks beyond averages when assessing how predictive they are of observed living 

standards. 

 
28 At the same time, it is important to note that these larger ex-post estimates are not mechanical. As 
illustrated by the US case, it is possible that ex-ante partitions generate higher IOp estimates, for example 
when the higher power of tests on mean differences allow for a finer partition.  
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Appendix 1: Technical details of the transformation tree algorithm 

1A. The likelihood maximization using Bernstein polynomials 

In practice, implementation of the likelihood maximization is facilitated by using a monotonic 

transformation function of y, 𝑧𝑧 = ℎ(𝑦𝑦), with ℎ′(𝑦𝑦) > 0,∀𝑦𝑦.  Monotonicity ensures that 𝐹𝐹(𝑦𝑦) =

𝐹𝐹𝑧𝑧�ℎ(𝑦𝑦)�. We follow Hothorn and Zeileis (2021) in using Bernstein polynomials of order M to 

construct the transformation function: ℎ(𝑦𝑦) = 𝑎𝑎(𝑦𝑦)𝑇𝑇𝜃𝜃. Note that a(y) is a polynomial of order 

M in y. The choice of M implies the choice of the dimension of the parameter vector, P=M+1. 

The higher that order, the greater the flexibility with which 𝐹𝐹 �𝑦𝑦𝑞𝑞𝑞𝑞 ,𝜃𝜃(𝑐𝑐)� can be modelled, and 

the greater the degree to which differences in their higher moments affect the partition and the 

estimation. Bernstein polynomials are a particular application of this transformation function, in 

which: 

𝑎𝑎𝑀𝑀(𝑦𝑦) =
�𝜙𝜙1,𝑀𝑀+1(𝑦𝑦), … ,𝜙𝜙𝑀𝑀+1,1(𝑦𝑦)�

𝑀𝑀 + 1
                                           (A. 1) 

where 𝜙𝜙𝑚𝑚,𝑀𝑀 denote the density of the Beta distribution with parameters m and M. Using this 

particular vector for the polynomial in ℎ(𝑦𝑦) implies a simple log likelihood function that can be 

used for the maximization implicit in (5): 

ℓ𝑖𝑖(𝜃𝜃) = log[𝑓𝑓𝑧𝑧(𝑎𝑎(𝑦𝑦)𝑇𝑇𝜃𝜃)] + log(𝑎𝑎(𝑦𝑦)𝑇𝑇𝜃𝜃)                                    (A. 2) 

With this specific functional form for ℓ𝑖𝑖(𝜃𝜃), all that is needed to solve Equations 14-15 (in the 

main text) and thus have the parameter estimates to model the conditional income distributions 

for all types in the tree terminal nodes is the algorithm to split the sample into types.  This 

proceeds sequentially.  Start from the case when 𝑤𝑤𝑖𝑖(𝑐𝑐) = 1,∀𝑖𝑖. This corresponds to no splits: 

all observations are in a single bin, and have the same weight in the log likelihood maximization. 

The parameter estimates obtained under that assumption are the simple maximum likelihood 

estimates: 

𝜃𝜃�𝑀𝑀𝑀𝑀𝑁𝑁 (𝑐𝑐) = arg max𝜃𝜃𝜃𝜃Θ�ℓ𝑖𝑖(𝜃𝜃)                                                  (A. 3)
𝑁𝑁

𝑖𝑖=1

 

To decide whether or not a split can improve prediction, test the null hypothesis: 

𝐻𝐻0: 𝑠𝑠�𝜃𝜃�𝑀𝑀𝑀𝑀𝑁𝑁 |𝑦𝑦� ⊥ 𝐶𝐶                                                           (A. 4)               
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where 𝑠𝑠�𝜃𝜃�|𝑦𝑦� denotes the gradient contribution of observation i. For continuous distributions, 

the score contribution is simply the derivative of the log density with respect to 𝜃𝜃. Differentiating 

(A.2) we obtain: 

𝑠𝑠�𝜃𝜃�|𝑦𝑦� = a(𝑦𝑦)
𝑓𝑓′𝑧𝑧(𝑎𝑎(𝑦𝑦)𝑇𝑇𝜃𝜃)
𝑓𝑓𝑧𝑧(𝑎𝑎(𝑦𝑦)𝑇𝑇𝜃𝜃) +

𝑎𝑎′(𝑦𝑦)
𝑎𝑎′(𝑦𝑦)𝑇𝑇𝜃𝜃

                                    (A. 5)  

There are a number of methods to test (A.4), and we follow Hothorn and Zeileis (2021) in using 

M-fluctuation tests. When these tests reject 𝐻𝐻0, the algorithm implements a binary split in the 

circumstance x (an element of the vector c) that has the most significant association with the P 

x P score matrix, measured by the marginal multiplicity adjusted p-value (see Hothorn, Hornik, 

and Zeileis. 2006).  

The algorithm is then repeated by testing hypotheses analogous to (A.4) in each of the resulting 

cells, and so on recursively, until 𝐻𝐻0 can no longer be rejected.  At this point, the algorithm has 

identified the optimal partition of the population into types: ℑ = ⋃ ℬ𝑏𝑏𝑏𝑏=1,…𝐵𝐵 . Over this final 

partition, the likelihood function given by (A.2) and the weights given by (15) are used to solve 

(14), yielding the final parameter vector 𝜃𝜃�𝑁𝑁(𝑐𝑐), which fully characterizes the conditional 

distribution 𝐹𝐹 �𝑦𝑦𝑞𝑞𝑞𝑞 ,𝜃𝜃(𝑐𝑐)� in each type (terminal node) ℬ𝑏𝑏.   

These parametric conditional distributions can then be inverted to yield the estimated type 

quantile functions  𝑦𝑦�𝑞𝑞𝑞𝑞 = 𝐹𝐹−1 �𝑞𝑞, 𝜃𝜃�𝑁𝑁(𝑐𝑐)�. 

1B: An illustration of the M-fluctuation test using made-up data 

The algorithm employs an M-fluctuation test of parameter stability to determine node splits. 

Purely as an example, we show how the algorithm performs the type partition in a simplified 

hypothetical case in which father’s occupation is the only circumstance and the logarithm of 

income is the outcome of interest.29 The objective is testing whether the parameters defining 

the income distribution are significantly different when the population is split in two subgroups.  

Following the steps described in the main text, we set a confidence level (𝛼𝛼 = 0.01) and, in order 

to obtain a graphical intuition of the instability of the parameters, a lower order of the 

polynomial (𝜔𝜔 = 3), hence using four parameters to estimate the log-income distribution. We 

generate a mock dataset to split incomes according to father occupation, which takes 6 

 
29 Ours is a different version of a similar example proposed by Kopf, Augustin, and Strobl (2013). 



46 
 

categories ordered from smaller associated expected income to higher associated expected 

income.  

In Figure B.1 below, we show the values of the parameters in the Bernstein polynomial 

associated with each split. Beginning from the left-hand side in both plots, the first four points 

represent the parameters associated with the nodes created when we split the population in 

two groups: those whose father occupation is 1 (right-hand plot) and the rest, that is, those 

whose father’s occupation is 2 to 6 (left-hand plot). As we move to the right through the X-axis, 

we generate other splits, moving observations associated to categories in fathers’ occupation 

from one node to the other, changing the resulting conditioned distributions. It is evident from 

Figure A.1 that, when transitioning observations from one terminal node to another, parameters 

undergo a change in magnitude. However, it is not immediately apparent which partition 

exhibits the most statistically significant parameter instability. That is, which occupational 

category should be selected as splitting point.  

 
Figure A1.  Values for the Parameters of the Bernstein Polynomial in each node 

 

Source: Own Elaboration on NIDS 5 

 

That selection is guided by the M-fluctuation test. Figure A.2 shows the value of the statistics for 

the tests described in step 4. The higher value (associated with a smaller p-value) is achieved 

when the bottom node has categories 1 and 2. That is the splitting point, as confirmed in Figure 

A.2. The population is thereby divided in two groups: those with father’s occupation equal to 2 

or less, and the rest, generating the simple tree in Figure A.3.  
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Figure A2. M-fluctuation quadratic test Statistics 

 

Source: Own Elaboration on NIDS 5 

 

Figure A3. Transformation Tree (example)  

 
Source: Own Elaboration on NIDS 5 

 

This partition into two types allows us, for instance, to graphically explore Roemer’s theory by 

plotting the cumulative density functions (CDF) of the outcome of interest by types (Figure A4). 

Here, the colored lines represent the empirical cumulative density functions (ECDF), while the 

dashed lines represent the interpolation of the distribution predicted with the polynomial 

approximation. 
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Figure A4. ECDFs (example) 

 
Source: Own Elaboration 
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Appendix 2:  Additional tables and figures 
 
A.  Additional tables 
 
 

Table A1: Descriptive Income Statistics for previous waves 

Country Year Mean Gini MLD Top 1% Top 10% Bottom 40% 

China 2010 4,878 0.496 0.475 0.109 0.397 0.119 
China 2012 6,657 0.503 0.557 0.105 0.368 0.108 
China 2014 6,168 0.483 0.526 0.154 0.410 0.101 
China 2016 8,272 0.519 0.512 0.182 0.402 0.126 
India 2005 5,903 0.499 0.457 0.104 0.414 0.092 

South Africa 2008 11,383 0.647 0.839 0.067 0.376 0.118 
South Africa 2012 10,974 0.617 0.711 0.075 0.330 0.131 
South Africa 2015 10,764 0.574 0.6 0.087 0.331 0.137 

USA 1974 35,535 0.299 0.155 0.037 0.205 0.268 
USA 1976 36,104 0.293 0.152 0.031 0.192 0.276 
USA 1978 36,230 0.294 0.152 0.037 0.196 0.273 
USA 1980 34,390 0.328 0.192 0.064 0.222 0.251 
USA 1982 32,762 0.317 0.179 0.037 0.207 0.253 
USA 1984 36,046 0.345 0.214 0.057 0.227 0.245 
USA 1986 36,627 0.345 0.210 0.047 0.220 0.248 
USA 1988 41,626 0.389 0.270 0.085 0.267 0.221 
USA 1990 39,470 0.365 0.236 0.058 0.249 0.227 
USA 1992 40,078 0.376 0.259 0.076 0.269 0.216 
USA 1994 39,161 0.379 0.269 0.073 0.272 0.215 
USA 1996 39,837 0.367 0.256 0.065 0.284 0.197 
USA 1998 42,838 0.392 0.296 0.084 0.286 0.195 
USA 2000 44,494 0.384 0.268 0.069 0.287 0.195 
USA 2002 45,158 0.395 0.297 0.095 0.302 0.190 
USA 2004 46,249 0.406 0.308 0.077 0.284 0.194 
USA 2006 45,494 0.431 0.369 0.082 0.299 0.184 
USA 2008 45,110 0.403 0.305 0.070 0.276 0.197 
USA 2010 43,192 0.393 0.296 0.065 0.268 0.197 
USA 2012 44,111 0.386 0.286 0.057 0.254 0.203 
USA 2014 45,608 0.395 0.290 0.052 0.250 0.200 
USA 2016 48,057 0.393 0.315 0.054 0.271 0.180 

Note: Income units are in 2017 US dollars at PPP exchange rates. MLD stands for Mean Log Deviation. The 
three columns on the left represent the share of income received by the Top 1%, the Top 10%, and the 
Bottom 40% in the income distribution. Source: CFPS, IHDS, NIDS, and PSID.  
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Table A2: Ex-post IOp estimates for previous waves 
 

Country Year Gini 
(𝒚𝒚�𝑻𝑻) 

𝑰𝑰𝑰𝑰𝑰𝑰𝑻𝑻 
(Gini) 

MLD 
(𝒚𝒚�𝑻𝑻) 

𝑰𝑰𝑰𝑰𝑰𝑰𝑻𝑻 
(MLD) Top 1% Top 

10% 
Bottom 

40% 
China 2010 0.266 53.6% 0.133 28.0% 0.046 0.292 0.247 
China 2012 0.218 43.3% 0.124 22.3% 0.049 0.237 0.233 
China 2014 0.207 42.9% 0.104 19.8% 0.058 0.238 0.288 
China 2016 0.293 56.5% 0.209 40.8% 0.051 0.287 0.246 
India 2005 0.306 61.3% 0.178 39.0% 0.046 0.278 0.172 
South 
Africa 2008 0.533 82.4% 0.534 63.6% 0.037 0.279 0.182 

South 
Africa 2012 0.479 77.6% 0.405 57.0% 0.032 0.237 0.231 

South 
Africa 2015 0.385 67.1% 0.248 41.3% 0.024 0.193 0.278 

USA 1970 0.137 45.7% 0.032 20.1% 0.013 0.122 0.401 
USA 1972 0.139 45.7% 0.034 20.5% 0.014 0.121 0.402 
USA 1974 0.125 41.8% 0.027 17.4% 0.011 0.108 0.409 
USA 1976 0.117 39.9% 0.024 15.8% 0.013 0.110 0.429 
USA 1978 0.117 39.8% 0.024 15.8% 0.011 0.109 0.428 
USA 1980 0.141 43.0% 0.035 18.2% 0.018 0.122 0.411 
USA 1982 0.130 41.0% 0.030 16.8% 0.013 0.114 0.418 
USA 1984 0.138 40.0% 0.034 15.9% 0.013 0.116 0.414 
USA 1986 0.147 42.6% 0.037 17.6% 0.012 0.115 0.411 
USA 1988 0.164 42.2% 0.048 17.8% 0.016 0.126 0.393 
USA 1990 0.147 40.3% 0.037 15.7% 0.013 0.121 0.397 
USA 1992 0.153 40.7% 0.043 16.6% 0.013 0.113 0.383 
USA 1994 0.178 47.0% 0.081 30.1% 0.018 0.130 0.377 
USA 1996 0.162 44.1% 0.051 19.9% 0.017 0.139 0.342 
USA 1998 0.195 49.7% 0.086 29.1% 0.025 0.141 0.332 
USA 2000 0.158 41.1% 0.046 17.2% 0.018 0.142 0.348 
USA 2002 0.192 48.6% 0.079 26.6% 0.024 0.148 0.330 
USA 2004 0.200 49.3% 0.090 29.2% 0.018 0.139 0.331 
USA 2006 0.192 44.5% 0.108 29.3% 0.027 0.145 0.372 
USA 2008 0.180 44.7% 0.076 24.9% 0.018 0.133 0.371 
USA 2010 0.168 42.7% 0.057 19.3% 0.018 0.127 0.362 
USA 2012 0.180 46.6% 0.113 39.5% 0.025 0.141 0.378 
USA 2014 0.165 41.8% 0.054 18.6% 0.013 0.121 0.391 
USA 2016 0.175 44.5% 0.080 25.4% 0.024 0.151 0.339 

Note: The three columns on the left represent the share of 𝑦𝑦�𝑇𝑇 received by the Top 1%, the Top 10%, and 
the Bottom 40% in the 𝑦𝑦�𝑇𝑇 distribution. Source: CFPS, IHDS, NIDS, and PSID.  
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Table A3: Ex-ante IOp estimates for previous waves 
 

Country Year Gini 
(𝑦𝑦�𝐵𝐵𝐵𝐵𝐵𝐵 ) 

𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬 
(Gini) 

MLD 
(𝑦𝑦�𝐵𝐵𝐵𝐵𝐵𝐵 ) 

𝑰𝑰𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬 
(MLD) Top 1% Top 

10% 
Bottom 

40% 
China 2010 0.227 45.8% 0.082 17.3% 0.033 0.251 0.297 
China 2012 0.176 35.0% 0.052 9.3% 0.037 0.220 0.308 
China 2014 0.197 40.8% 0.066 12.5% 0.100 0.259 0.23 
China 2016 0.205 39.5% 0.067 13.1% 0.069 0.248 0.308 
India 2005 0.267 53.5% 0.111 24.3% 0.045 0.260 0.182 
South 
Africa 2008 0.479 74.0% 0.385 45.9% 0.022 0.254 0.231 

South 
Africa 2012 0.430 69.7% 0.301 42.3% 0.025 0.205 0.257 

South 
Africa 2015 0.350 61.0% 0.204 34.0% 0.04 0.250 0.251 

USA 1970 0.135 45.0% 0.030 18.9% 0.014 0.121 0.408 
USA 1972 0.139 45.7% 0.032 19.3% 0.015 0.123 0.403 
USA 1974 0.131 43.8% 0.028 18.1% 0.014 0.120 0.416 
USA 1976 0.120 41.0% 0.024 15.8% 0.013 0.114 0.429 
USA 1978 0.118 40.1% 0.023 15.1% 0.013 0.113 0.437 
USA 1980 0.132 40.2% 0.029 15.1% 0.017 0.120 0.425 
USA 1982 0.137 43.2% 0.031 17.3% 0.014 0.116 0.418 
USA 1984 0.146 42.3% 0.035 16.4% 0.014 0.117 0.413 
USA 1986 0.155 44.9% 0.039 18.6% 0.015 0.123 0.409 
USA 1988 0.173 44.5% 0.051 18.9% 0.022 0.136 0.387 
USA 1990 0.159 43.6% 0.042 17.8% 0.015 0.126 0.394 
USA 1992 0.156 41.5% 0.041 15.8% 0.015 0.128 0.387 
USA 1994 0.161 42.5% 0.043 16.0% 0.015 0.129 0.391 
USA 1996 0.164 44.7% 0.045 17.6% 0.015 0.139 0.342 
USA 1998 0.170 43.4% 0.050 16.9% 0.021 0.137 0.354 
USA 2000 0.170 44.3% 0.047 17.5% 0.016 0.142 0.347 
USA 2002 0.189 47.8% 0.059 19.9% 0.026 0.158 0.335 
USA 2004 0.175 43.1% 0.051 16.6% 0.018 0.136 0.366 
USA 2006 0.177 41.1% 0.051 13.8% 0.019 0.141 0.375 
USA 2008 0.165 40.9% 0.045 14.8% 0.015 0.128 0.386 
USA 2010 0.167 42.5% 0.045 15.2% 0.018 0.133 0.378 
USA 2012 0.170 44.0% 0.047 16.4% 0.017 0.131 0.387 
USA 2014 0.164 41.5% 0.044 15.2% 0.014 0.119 0.394 
USA 2016 0.159 40.5% 0.040 12.7% 0.017 0.133 0.359 

 
Note: 𝐼𝐼𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸 is the Brunori, Hufe and Mahler (2023) estimate, and 𝑦𝑦�𝐵𝐵𝐵𝐵𝐵𝐵 denotes the incomes 

predicted by circumstances using that ex-ante method. Source: CFPS, IHDS, PSID, and NIDS. 
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B:  Additional figures 
 
 

Figure B1: Sensitivity of ex-post IOp to the Bernstein polynomial order in South Africa 

 
 

Note: The plot shows the log-likelihood value (blue line) associated with different 
Bernstein polynomial order values. We also show absolute IOp (red line) and relative IOp 
(green line) estimated with different Bernstein polynomial order values. Source: NIDS 
(2017). 
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Figure B2a: Full Transformation Tree for China (2018) 

 

 
Note: Splitting nodes show their sample size and the p-value associated to the splitting. Circumstance categories are 
Gender (0 Female, 1 Male), Ethnicity (1 Han, 2 Mongol, 3 Hui, 4 Tibetan, 5 Miao, 7 Yi, 8 Zhuang, 9 Bouyei, 10 Korean, 
11 Manchu, 99 Other), Birth Area (13 Hebei, 14 Shanxi, 21 Liaoning, 22 Jilin, 23 Heilongjiang, 31 Shanghai, 32 Jiangsu, 
33 Zhejiang, 34 Anhui, 35 Fujian, 36 Jiangxi, 37 Shandong, 41 Henan, 42 Hubei, 43 Hunan, 44 Guangdong, 45 Guangxi 
Zhuang Autonomous Region, 51 Sichuan, 52 Guizhou, 53 Yunnan, 61 Shaanxi, 62 Gansu, 80 Not available, 90 Other), 
Parent’s education (1 Illiterate/Semi-literate, 2 Primary school, 3 Junior high school, 4 Senior high school/secondary 
school/technical school/vocational senior school, 5 3-year college, 6 4-year college/Bachelor’s degree, 7 Master’s 
degree, 8 Doctoral degree), Parent’s occupation (0 Armed forces, 1 Managers, 2 Professionals, 3 Technicians and 
Associate professionals, 4 Clerks, 5 Services and Sales workers, 6 Agricultural, Forestry and Fishery workers, 7 Craft 
and trade workers, 8 Plant and machine operators and assemblers, 9 Elementary occupations, 10 Unemployed). The 
panels on the right display the log-density of type-specific incomes. The labels indicate the share of the population 
each type represents (Pop.) and their average income relative to the overall sample mean (y = 1), which is also depicted 
as a vertical black line in the log-density plot. Source: CFPS (2018).  
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Figure B2b: Full Transformation Tree for India (2012)  
 
 

 
Note: Splitting nodes show their sample size and the p-value associated to the splitting. Circumstance categories are 
Gender (0 Female, 1 Male), Ethnicity (2 Forward caste, 3 Other Backward castes (OBC), 4 Dalit, 5 Adivasi, 6 Muslim, 7 
Christian, Sikh, Jain), Parent’s Education (0 None, 1 Incomplete primary, 2 Complete primary, 3 Incomplete secondary, 
4 Complete secondary, 5 Higher secondary, 6 Post-secondary or higher), Birth Area (1 Jammu & Kashmir, 2 Himachal 
Pradesh, 3 Punjab, 4 Another State, 5 Uttarakhand, 6 Haryana, 7 Delhi, 8 Rajasthan, 9 Uttar Pradesh, 10 Bihar, 11 
Overseas, 18 Northeast, 19 West Bengal, 20 Jharkhand, 21 Orissa, 22 Chhattisgarh, 23 Madhya Pradesh, 24 Gujarat, 
27 Maharashtra, 28 Andhra Pradesh, 29 Karnataka, 32 Kerala, 33 Tamil Nadu). The panels on the right display the 
log-density of type-specific incomes. The labels indicate the share of the population each type represents (Pop.) and 
their average income relative to the overall sample mean (y = 1), which is also depicted as a vertical black line in the 
log-density plot. Source: IHDS (2012). 
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Figure B2c: Full Ex-post/Transformation Tree for USA (2018) 

 
 
Note: Splitting nodes show their sample size and the p-value associated to the splitting. Circumstance 
categories are Gender (0 Male, 1 Female), Ethnicity (1 White, 2 Black, 3 American Indian/Aleut/Eskimo, 4 
Asian/Pacific Islander, 5 Hispanic, 7 Other), Region of upbringing (1 Northeast, 2 North Central, 3 South, 4 
West, 5 Alaska/Hawaii, 6 Foreign country), Parents’ education (1 0–5 Grades, 2 6–8 Grades, 3 9–11 Grades, 
4 High school, 5 12+ Grades + non-academic training, 6 Some college, 7 College degree, 8 Advanced college 
degree), and Parents’ occupation (ISCO) (1 Basic, 2 Middle, 3 High). The panels on the right display the log-
density of type-specific incomes. The labels indicate the share of the population each type represents (Pop.) 
and their average income relative to the overall sample mean (y = 1), which is also depicted as a vertical 
black line in the log-density plot. Source: Own elaboration from the PSID (2018). 
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Figure B2d: Full Ex-post/Transformation Tree for South Africa (2017) 
 
 

 
Note: Splitting nodes show their sample size and the p-value associated to the splitting. Circumstance categories are 
Gender (0 Female, 1 Male), Ethnicity (1 African, 2 Asian/Indian, 3 Coloured, 4 White), Parent’s Education (0 Zero, 1 
Grade 1, 2 Grade 2, 3 Grade 3, 4 Grade 4, 5 Grade 5, 6 Grade 6, 7 Grade 7, 8 Grade 8, 9 Grade 9, 10 Grade 10, 11 
Grade 11, 12 Grade 12), Parent’s Occupation (0 Military, 1 Managers, 2 Professionals, 3 Technicians and Professionals, 
4 Clerical Support, 5 Service and sales, 6 Farm, Forest, Fishery, 7 Craft, 8 Operators, 9 Elementary, 10 Others). The 
panels on the right display the log-density of type-specific incomes. The labels indicate the share of the population 
each type represents (Pop.) and their average income relative to the overall sample mean (y = 1), which is also depicted 
as a vertical black line in the log-density plot. Source: NIDS (2017). 
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Figure B3: Time Trends of Inequality of Opportunity (Ex-post, TrT) 

 

Source: CFPS, IHDS, PSID, and NIDS. 
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Figure B4: Marginal effect of circumstances on opportunities: China 

 
Note: Values on the y-axis represent the relative advantage or disadvantage associated with each category, computed 
as 100 × average income (category)

average income (sample)
. Circumstance categories are Gender (0 Female, 1 Male), Ethnicity (1 Han, 2 Mongol, 3 

Hui, 4 Tibetan, 5 Miao, 7 Yi, 8 Zhuang, 9 Bouyei, 10 Korean, 11 Manchu, 99 Other), Birth Area (13 Hebei, 14 Shanxi, 21 
Liaoning, 22 Jilin, 23 Heilongjiang, 31 Shanghai, 32 Jiangsu, 33 Zhejiang, 34 Anhui, 35 Fujian, 36 Jiangxi, 37 Shandong, 
41 Henan, 42 Hubei, 43 Hunan, 44 Guangdong, 45 Guangxi Zhuang Autonomous Region, 51 Sichuan, 52 Guizhou, 53 
Yunnan, 61 Shaanxi, 62 Gansu, 80 Not available, 90 Other), Parent’s education (1 Illiterate/Semi-literate, 2 Primary 
school, 3 Junior high school, 4 Senior high school/secondary school/technical school/vocational senior school, 5 3-year 
college, 6 4-year college/Bachelor’s degree, 7 Master’s degree, 8 Doctoral degree), Parent’s occupation (0 Armed 
forces, 1 Managers, 2 Professionals, 3 Technicians and Associate professionals, 4 Clerks, 5 Services and Sales workers, 
6 Agricultural, Forestry and Fishery workers, 7 Craft and trade workers, 8 Plant and machine operators and assemblers, 
9 Elementary occupations, 10 Unemployed). Numbers in parentheses denote population shares in each category. We 
are not showing categories populated by less than 0.5% of the sample size. Source: CFPS (2018). 
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Figure B5: Marginal effect of circumstances on opportunities: India 

 

Note: Values on the y-axis represent the relative advantage or disadvantage associated with each category, computed 
as 100 × average income (category)

average income (sample)
. Circumstance categories are Gender (0 Female, 1 Male), Ethnicity (2 Forward caste, 3 

Other Backward castes (OBC), 4 Dalit, 5 Adivasi, 6 Muslim, 7 Christian, Sikh, Jain), Parent’s Education (0 None, 1 
Incomplete primary, 2 Complete primary, 3 Incomplete secondary, 4 Complete secondary, 5 Higher secondary, 6 Post-
secondary or higher), Birth Area (1 Jammu & Kashmir, 2 Himachal Pradesh, 3 Punjab, 4 Another State, 5 Uttarakhand, 
6 Haryana, 7 Delhi, 8 Rajasthan, 9 Uttar Pradesh, 10 Bihar, 11 Overseas, 18 Northeast, 19 West Bengal, 20 Jharkhand, 
21 Orissa, 22 Chhattisgarh, 23 Madhya Pradesh, 24 Gujarat, 27 Maharashtra, 28 Andhra Pradesh, 29 Karnataka, 32 
Kerala, 33 Tamil Nadu). Numbers in parentheses denote population shares in each category. We are not showing 
categories populated by less than 0.5% of the sample size. Source: IHDS (2012). 
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Figure B6: Marginal effect of circumstances on opportunities: United States 

 
Note: Values on the y-axis represent the relative advantage or disadvantage associated with each category, computed 
as 100 × average income (category)

average income (sample)
. Circumstance categories are Gender (0 Male, 1 Female), Ethnicity (1 White, 2 Black, 3 

American Indian/Aleut/Eskimo, 5 Hispanic), Region of upbringing (1 Northeast, 2 North Central, 3 South, 4 West, 6 
Foreign country), Parents’ education (1 0–5 Grades, 2 6–8 Grades, 3 9–11 Grades, 4 High school, 5 12+ Grades + non-
academic training, 6 Some college, 7 College degree, 8 Advanced college degree), and Parents’ occupation (ISCO) (1 
Basic, 2 Middle, 3 High). Numbers in parentheses denote population shares in each category. We are not showing 
categories populated by less than 0.5% of the sample size. Source: PSID (2018) 
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Figure B7: Lower envelope 

 
 

Source: CFPS (2018), IHDS (2012), PSID (2018), and NIDS (2017). Monetary values in $2017. 
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