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Abstract: Researchers have sought to quantify the extent of inequality that is inherited from
previous generations in multiple ways, including a large body of work on
intergenerational mobility and inequality of opportunity. Many of the most frequently
used approaches to measuring mobility or inequality of opportunity fit within a
general framework which involves, as a first step, an estimation of the extent to which
inherited personal characteristics can predict current incomes. We suggest a new
method, within that broad framework, which is sensitive to differences across the
entire conditional distributions of relevant population subgroups, rather than just in
their means — a feature that makes it particularly well-suited to measuring ex-post
inequality of opportunity. Sensitivity to differences in higher moments of the
conditional distributions allow for a more comprehensive assessment of inherited
inequality. We apply this approach to household income distributions in China, India,
South Africa, and the United States, to illustrate how the method performs in different
settings. We find that inherited inequality accounts for large shares of total inequality,
from 36% in the United States to 59% in China, 62% in India, and 81% in South Africa.
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1. Introduction

People’s educational and professional achievements, incomes, and wealth are generally not
independent of their background. Various attributes that are determined at or before birth or
during childhood — such as sex at birth; race, ethnicity, or caste; parental income and other
aspects of family background — are powerful predictors of a person’s own economic outcomes
later in life. Large bodies of work have sought to quantify the extent to which these inherited or
pre-determined characteristics shape people’s life outcomes, and to compare results across
societies or over time, including the literatures on intergenerational mobility, inequality of

opportunity (I0p), and sibling correlations.

This paper contributes to those literatures in two ways. First, we note that most of these
approaches rely on using observed inherited characteristics (often termed ‘circumstances’) to
predict future outcomes — hereafter incomes, for simplicity. We suggest a simple general
framework for the measurement of inherited inequality which relies on comparisons of
inequality in observed and predicted income distributions and show that a wide range of

measures in current use are special cases.

In this general framework, we define the hypothetical situation in which there is no inherited
inequality as one in which inherited circumstances are not predictive of outcomes later in life —
that is, current-generation income (y) is distributed independently from those circumstances (c):
F(y|c) = F(y),Vc. Although this independence condition requires that the full conditional
distributions of income be identical across groups of people that share the same circumstances,
most commonly used approaches require only a weaker condition on conditional means:
E(y|c) = E(y) for all c. This second condition is implied by — but does not imply — the stronger

independence condition.

Our second and main contribution is therefore to propose a new approach to measuring
inherited inequality that captures the extent to which circumstances predict full conditional
distributions — rather than just averages — for different population subgroups, and that does so
in a statistically efficient manner. Given the central role of prediction in the general framework,
we draw on new data-driven (supervised machine learning) techniques, which have been shown
to be more accurate predictors than many standard econometric approaches used historically
(see, e.g., Mullainathan and Spiess, 2017). Specifically, we propose to use transformation trees:

a variant of regression trees proposed by Hothorn and Zeileis (2021) which generates a data-



driven partition of the population into groups with homogeneous inherited characteristics, while

also predicting their conditional distribution functions.

This tool is ideally suited to estimating inequality of opportunity — especially what is known as
ex-post inequality of opportunity — a concept that draws on a rich theoretical tradition in
normative economics. In that approach, equal opportunity is defined as a situation in which all
individuals who exert the same degree of effort or responsibility achieve the same outcomes,
regardless of inherited circumstances (see, e.g., Roemer, 1993, 1998; Fleurbaey, 1994, 2008).
Under some assumptions, the theory suggests that the appropriate degree of effort, once
cleansed of the effects of circumstances, can be proxied by the relative position — the quantile
— of the individual in the income distribution of the group of people that have the same inherited

circumstances as she does — her “type”. (Please see Roemer, 1998, for details).

Although this perspective — same efforts, same rewards — has considerable theoretical appeal
(see, e.g., Fleurbaey and Peragine, 2013), it has hitherto faced serious empirical challenges
which have limited its use in practice. Group-specific conditional distributions were used to
detect inequality of opportunity by Lefranc, Pistolesi and Trannoy (2009), and empirical
estimates of ex-post inequality of opportunity were first computed by Checchi and Peragine
(2010). These pioneering approaches faced two main practical challenges: First, the partition of
the population into types — population subgroups sharing the same circumstances — was ad hoc
and therefore unlikely to adequately balance the model selection trade-off between
(downward) omitted circumstance biases and (upward) overfitting biases (see Section 3 below
for details). Second (and relatedly), predicting full conditional distribution functions for each
type in data-scarce settings — such as household surveys — requires considerable parsimony both

in defining types and in selecting quantiles, leading to coarseness in both contexts.

Our transformation tree-based approach can significantly alleviate both these challenges. The
algorithm is designed to select partitions optimally — in a well-defined statistical sense — given
the available data: it trades off the upward and downward biases so as to maximize a weighted
sum of log likelihood functions. (See Section 3 below.) In addition, by using Bernstein
polynomials to fit parametric estimates of type conditional distributions, the method uses data
more efficiently and leads to much finer quantile groupings than was possible in earlier
approaches. We argue that this combination makes this new approach the state-of-the-art

method to estimate ex-post inequality of opportunity.



That said, the attractiveness of the approach does not require adherence to the specific
normative views embodied in the theoretical literature on inequality of opportunity. Our choice
of method arises primarily from the objective of capturing departures from the strong statistical
independence condition described above - F(y|c) = F(y) - rather than from the weaker
condition on means. It is therefore suitable for any empirical exercise where the objective is to
identify the heterogeneity of conditional distributions across latent groups. Our results can also
be interpreted in the spirit of alternative inequality decompositions, in which the between-

groups term is not independent of within-group inequality.?

We apply this approach to four countries over many years: China (every two years between 2010
and 2018), India (2005 and 2012), South Africa (2008, 2012, 2015, and 2017), and the United
States (every two years between 1968 and 2018). These four countries include the world’s two
largest nations by population (India and China), as well as the world’s two largest economies by
GDP (US and China). South Africa is a significant developing country and arguably the world’s
most unequal nation. These are four large economies characterized by very different social
structures and territorial features. Using biological sex, parental education, parental occupation,
place of birth, and ethnicity/race/caste as circumstances, we construct transformation trees to
estimate the full conditional distributions of circumstance-homogeneous groups (types) for each
country and to compute summary measures of inherited inequality as ex-post inequality of
opportunity. We find a substantial amount of inequality of opportunity across the four countries,
ranging from 14 Gini points (or 36% of total inequality) in the United States to 50 points (or 81%
of the total) in South Africa. China and India display intermediate levels of IOp, but the structure
of the distribution of opportunities differs: China shows a more pronounced concentration of
opportunity at the very top of the distribution, while India has a large share of the population

with extremely limited access to opportunity.

The use of transformation trees also allows us to extend the analysis of inherited inequalities
beyond the estimation of a single summary index. For example, the final partition generated by
the tree — although primarily a means to estimating the share of inequality that is inherited —
can also be informative of the social structure in different countries. In addition, the estimates
of type-specific empirical cumulative distribution functions (ECDF) enable us to directly estimate
the social maximand proposed in John Roemer’s original theory (1993, 1998): the level of

(moneymetric) opportunity accessible to the lower envelope of types (see below). We find that

2 See Foster and Shneyerov (2000) and Ebert (2010) for discussions of why it might make sense to account
for differences in the full distributions within groups — rather than just the means — when defining the
between-group term of the decomposition.



this level of opportunity ranges from 30% to 70% of the average income in the population across
our four countries, with China performing much better than India and South Africa, and the
United States showing a significant catch-up of the worst-off groups relative to the country’s

average income over the last two decades.

Transformation trees can also be used to assess the relative importance of different
circumstances in shaping the income distribution. By aggregating (bagging) hundreds of trees,
we derive Shapley values that quantify the average relative importance of each ascriptive
characteristic. Our results indicate that all circumstances play a meaningful role, with race and
caste being especially influential in South Africa and India, respectively. Moreover, the “marginal
effects” of each category within each circumstance are obtained from the predicted conditional
distributions. These partial effects find high premia associated with being White in South Africa,
being born in specific regions of China (e.g., Shanghai and Zhejiang), and reporting higher
parental education in India. In the United States, the most negative marginal effect is associated

with identifying as Black.

The paper proceeds as follows. The next section briefly describes a general framework for the
estimation of inherited inequality, of which the most common approaches in the measurement
of mobility and inequality of opportunity are shown to be special cases. Section 3 discusses the
key model selection challenge faced by these methods and introduces our own approach to
estimating inherited inequality using transformation trees as another special case within the

same general framework.

Section 4 describes the data and Section 5 presents results. These results include not only
summary estimates of inherited inequality in the four selected countries, but also several
complementary statistical and visualization tools to help the reader understand the complexity
of the phenomenon: (i) a schematic description of the population partition that reveals the most
salient cleavages in each society (again, in a well-defined statistical sense); (ii) estimates of the
conditional cumulative distribution functions by type; (iii) a Shapley-Shorrocks decomposition of
the average predictive importance of individual circumstances in the overall decomposition; (iv)
a calculation of the marginal influence of each individual characteristic in predicting
opportunities; and (v) an estimate of the lower-envelope of the type quantile functions, which
corresponds to the maximand in Roemer’s (1998) original policy objective. This rich set of
byproducts of the headline estimates of inherited inequality is another advantage of our
proposed approach: taken together, this set of statistical tools enable a deeper understanding

of inherited inequality based on survey data. Section 6 concludes.



2. Inherited inequality: a simple general framework

Consider a population of N individuals, indexed by i € N ={1,..., N}, each of whom is
characterized by a current-generation outcome y;, y € R, and a set of inherited characteristics,
which we call circumstances (following Roemer, 1998). For individual i, these circumstances are
represented by a k-dimensional vector c;. Let y denote the N-dimensional outcome (or income)

vector with entries y;, i € IV, and C denote the N X k matrix with rows c;.

In general, many people may share the same vector of circumstances, so many of the rows of
the matrix C may be identical. Without loss of generality, let the number of distinct rows of C
be denoted by M, M < N. If a “type” is defined as a group of individuals who share identical
circumstances, this means that there are M types. The population can then be exhaustively
partitioned into a set of types, T = {tq, ..., Tpn, .., Ty}, Where T,,: = {Vi|¢c; = ¢n}. Let C =
{c1, ..., Cmy -, Ciy} denote the corresponding set of circumstance vectors, and ¢ denote the
generic random vector in C. Let T € T, which denotes the set of all possible partitions of the
set IV, and C € C, the corresponding set of all possible type circumstance vectors. Note that an

exhaustive partition implies that UY t,,, = N and N} 1,,, = .

That’s the basic setup. Let us now define the benchmark situation in which there is no inherited
inequality as one in which y and C are stochastically independent, in the sense that there are

no differences across the conditional income distributions of types:

Fiyle) = F(ylew), Ve, ¢ € C (1)

Given full stochastic independence, it is clear that if (1) holds, C has no predictive power over
y. Conversely, if (1) does not hold, then the associations between C and y across the population
imply that circumstances C have (some) predictive power over y. |.e., there exist non-constant

prediction functions,

y=f(ce),feF (2)

that outperform constant functions in predicting y out of sample. In (2), € denotes a random
variable that captures other influences on y and is the residual term in the prediction

model, and F: C — R denotes the set of possible prediction functions linking circumstances to

outcomes.



Since the benchmark situation of zero inherited inequality is characterized by C having no
predictive power over y, then it is natural to think of inherited inequality as the extent to which
circumstances do, in fact, predict the outcome y in a particular society. In other words, given a
prediction function f € F, absolute inherited inequality can be defined simply as I;{‘(y, c.f)=
1(9), where y = f(c). Absolute inherited inequality is simply inequality in the distribution of
predicted incomes, when incomes are predicted by circumstances. One can also define relative

measures of inherited inequality as IX(y,c, f) =%, where § = f(c). Relative inherited

inequality is the ratio — or potentially a monotonically increasing function of the ratio — of

inequality in predicted incomes to inequality in observed incomes.

Indeed, it turns out that most methods for estimating the intergenerational transmission of
advantage currently in use — including relative measures of intergenerational mobility and
inequality of opportunity — revolve around estimating prediction models of the general form
(2), using different functions in the set of possible functions F, and then computing objects

analogous to I4(y, ¢, f) or IR(y, ¢, ), often using different inequality indices /(.).?
Special cases

Suppose, for example, that the only inherited characteristic that really matters is parental
income, y,. Then the vector of circumstances reduces to a scalar: ¢ = y,. If, in addition, we

atflogyp+e \yhich can be

choose a prediction function f(c) =f(yp) of the form y =e
estimated through the standard Galtonian regression logy = a + flogy, + &, then we are
clearly in the world of intergenerational mobility measurement. See, e.g., Solon (1992) and

Chetty et al. (2014) for classic references.

In that standard formulation, predicted incomes are given by y = e@+hlogyp, Although ,[;’, an
estimate of the intergenerational elasticity of income, is a common measure of mobility,

another frequently used measure is the correlation coefficient between log y and log y,,, which

. 5 |varlo - . . . 1
can be written as 8 208 Byt this is precisely a monotonic function of 1®) when the
varlogy 1(y)

inequality index is the variance of logarithms.

Similarly, absolute and relative estimates of inequality of opportunity can also be written as

examples of I2 (v, ¢, f) or IR(y, ¢, f), but typically with circumstance vectors with k > 1. One

3 See Ferreira and Brunori (2024) for a more in-depth discussion of the concept of inherited inequality and
of the relationship between intergenerational mobility, inequality of opportunity, and this broader
concept.



1(JEa)

TR where 9ga = fga(c) = e®*7, estimated

frequently used (ex-ante) relative measure is

from an OLS regression of the form logy = a + Cy + €. (See, e.g., Ferreira and Gignoux, 2011,
or Niehues and Peichl (2014) for a fixed-effects specification for panel data.) A non-parametric
analogue proposed by Checchi and Peragine (2010) uses a prediction function that simply
computes type means for each cell in the partition T = {74, ..., Ty, ..., Tyy}. Its prediction

function is therefore:

1
Veam) = feam)(€) = J ydF (ylepm), vm (3)
0

Equation (3) simply yields the conditional means for all those who share the same vector of
circumstances c. So I(}AlEA(n)) is computed over the smoothed distribution where individual
incomes are replaced by the average incomes of individuals who share the same vector of
circumstances — that is, individuals in the same type.* It is analogous to the OLS regression-

based estimate, but without imposing a linearity assumption.

Ex-post measures of inequality of opportunity are also special cases of the inherited inequality
framework. Checchi and Peragine (2010), for instance, propose to estimate ex-post I0p by
aggregating income differences across the quantiles of the conditional distributions, while
abstracting from level differences between tranches.® Denoting the overall mean income, E (y),
by ¢ and the mean income for a given quantile g across types by ,uq,e their prediction function
is given by:

9ep = fep() =iF"1(q|c) (4)
Hq

Denote the income at quantile g of the conditional distribution on circumstances ¢, F~1(q|c),
by ¥4¢- Then their absolute I0p measure I(Jgp) = I(Mich) is simply I (y, ¢, fgp). Similarly,
q

I(JEp)
1(y)

the relative version is IR(y,c, fgp) = . In other words, Checchi and Peragine (2010)

compute inequality in predicted incomes by dividing the income of each observation y,. by the
average, across types, of all incomes occupying that same quantile g in their own conditional
distributions and then computing inequality across the resulting ratios. Relative 10p is, once

again, the ratio of inequality in predicted incomes to observed inequality.

4 See Foster and Shneyerov (2000) for a definition of the smoothed distribution.
5> A ‘tranche’ denotes those individuals exerting the same degree of relative effort. Under Roemer’s (1998)
identifying assumption, a tranche is therefore given by the set Y,: = {Vi|F (y;c|c) = q,Vc }.

1 _
6 Uq = EZ%:IF 1(Q|Cm)



3 Estimating 10p using Transformation Trees
The model selection problem

Empirical applications of all three variants of the prediction problem described above —
intergenerational mobility, ex-ante 10p, and ex-post I0p — may suffer from a variety of
challenges, including data availability, measurement error (particularly in variables such as
parental income or occupation), small sample sizes, etc. More fundamentally, though, they
suffer from a model selection problem in the presence of two competing biases. This is
particularly true in the 10p literature, where many inherited circumstance variables are typically

used in the analysis, often with multiple categories each.

The first bias arises from the partial observability of circumstances. It is rather common for data
sources that contain information about individual outcomes to also contain various variables
describing inherited circumstances such as sex, race, and socioeconomic background. But the
set of available information is almost certainly a strict subset of all background circumstances
which society does not wish to hold individuals responsible for. Omission of the unobserved
circumstances, or indeed of interactions between categories of variables one does observe,
tends to bias estimates of I0p downwards (Ferreira and Gignoux, 2011; Roemer and Trannoy,

2016).”

On the other hand, a second source of bias arises from the classic overfitting problem, whereby
saturating the model with a large number of independent variables and their multiple
interactions leads to an upward bias in the estimates of goodness of fit. This is a problem for
both parametric and non-parametric methods. In a non-parametric setting, the problem
manifests as exploding sampling variation around cell means as cell sizes decline below a certain
level. This problem introduces noise in the predictions. This noise has the effect of inflating the
estimation of explained variance, introducing an upward bias in the measurement of the
variation predicted by circumstances (Chakravarty and Eichhorn, 1994), that is 10p, and an
attenuation bias in the case in which predictions are used as regressors, that is when
circumstances are used to predict parental income to estimate intergenerational mobility

adopting a two-sample-two-stage approach (Bloise et al., 2021).%

7 This bias is also a concern for estimates of intergenerational mobility if they are to be interpreted as
measures of inherited inequality — except in the unlikely event that parental income is a sufficient statistic
for all circumstances.

& Note that these biases are connected to the bias-variance trade-off central to supervised machine
learning. Assuming that our objective is to estimate to what extent observable circumstances are



Although this problem was recognized from the outset, most of the early literature failed to
address the trade-off between the two kinds of bias in a systematic way.’ The early studies that
proposed either parametric or non-parametric methods to estimate 10p relied on ad-hoc
specifications, either of the regression model or of the type partition. Yet, changing the number

of regressors in such a model can substantially affect the final estimates of 10p.

Obtaining a meaningful estimate of I(9)/I(y) therefore depends crucially on selecting the
‘right’ model for the prediction function y = f(c, ). Of course, what the ‘right’ model is
depends on the nature and purpose of the exercise. If one is estimating a structural model,
guidance from the theory being tested is indispensable, and econometric methods suitable for
the estimation of structural parameters should be used. However, when the model is used for
prediction, as is the case here, it may very well be that machine-learning methods from data
science perform better. See Mullainathan and Spiess (2017) for an excellent discussion of the

role of machine learning in economics and its advantages in prediction problems.

Indeed, machine learning methods have recently been applied to the measurement of ex-ante
(but not ex-post) inequality of opportunity. In particular, Brunori, Hufe, and Mahler (2023) have
used conditional inference trees and random forests (CITF), introduced by Hothorn, Hornik, and
Zeileis (2006), to estimate inequality of opportunity in 31 European countries.'® CITF partition a
regressor space with the aim of predicting a dependent variable via the estimation of subgroup
means. This feature makes them ideally suited to choosing a type-partition in an ex-ante
framework, because each binary split is chosen by identifying the most significant difference
between means in the two resulting nodes. Since the ex-ante approach to I0p involves
computing inequality among type means, such an algorithm is a conceptually attractive

approach to selecting the partition and estimating Equation (3).

predictive of outcomes later in life: choosing a model that underfits the data, that is minimizing the
variance of the model but introducing a large bias, would result in an underestimate of inherited
inequality. Conversely, minimizing the bias by fitting a very complex model would result in a large variance
that, in expectation, will exaggerate the share of inequality that can be correctly predicted by observing
innate circumstances. Supervised machine learning methods can therefore be used to trade-off the two
sources of errors and to obtain the most accurate estimate of inherited inequality (Brunori, Peragine,
Serlenga, 2019).

% Ferreira and Gignoux (2011), for example, note that “As sampling variance is high for cells containing
few observations, estimated between-type inequality may become inflated, thereby inducing an
overestimation of inequality of opportunity.” (p.640). However, their proposed solution is to exercise
“considerable parsimony in the partitioning of the population...” (p.642). They selected categories
arbitrarily and restricted the number of types to a maximum of 108, but there was no sense in which that
particular number represented an optimal choice between the downward bias from omitting certain
interactions between the variables and categories, and the upward bias from including too many.

10 See also Li Donni, Rodriguez and Dias (2015) who use finite mixture models to define types.

10



But precisely because conditional inference trees focus on differences between means, they are
not well suited to assessing deviations from the stricter criterion of equal CDFs (Equation 1),
whether one interprets such equality as ex-post equality of opportunity or simply as the absence
of inherited inequality. An alternative data-driven approach is needed and, in what follows, we

propose the use of one such approach, namely transformation trees.
Transformation trees and ex-post 10p

As noted in Section 2, the ex-post approach to inequality of opportunity consists of measuring
inequality across the types’ conditional distributions functions at each quantile, and then
appropriately aggregating across quantiles. The key ingredient for the approach, therefore, is to
estimate the income level at quantile g in type 7,,, that is: the conditional quantile function
Vacm = F~1(qlc,y), for all m. When data on the joint distribution {y, C} is not observed for the
full population, estimating these conditional quantile — or their inverse, distribution — functions

from a sample notionally involves two steps.

First, an optimal type partition C € C needs to be selected, trading off the downward bias that
arises from combining sub-types into types against the upward bias from overfitting that arises
from an excessively fine partition, (i.e., by subdividing types into sub-types). See Brunori,
Peragine, and Serlenga (2019). Second, given a partition C € C, the conditional quantile
functions must be estimated, either parametrically or non-parametrically. Once that has been
done, the resulting estimates {J,.} can be used to compute quantile-specific inequality levels

(across types), which are then suitably aggregated across quantiles.

Previous attempts to compute ex-post 10p (e.g., Checchi and Peragine, 2010) have typically
suffered from two shortcomings. First, the partition C € C was chosen arbitrarily. Second,
quantiles were computed at a highly aggregated level, e.g., quartiles or deciles, so as to ensure
that there were sufficient observations in each quantile (or “tranche”) for a meaningful
computation of inequality across types to take place. Indeed, the fact that the ex-post approach
to 10p requires information on the entire conditional distribution F(chlc), rather than merely
the mean p, of that distribution for each type, makes it more data-intensive and has been one

of the reasons why the ex-ante approach has dominated empirical applications.

These combined requirements — to choose an optimal type-partition given the available dataset

and to estimate conditional distribution functions for each of those types in a data scarce

11



environment — make this problem well-suited to a new variety of tree-based estimator, recently
developed by Hothorn and Zeileis (2021). This estimator, known as a transformation tree (TrT),

was specifically designed to estimate conditional distributions for terminal nodes of trees.

TrT relies on the assumption that there exist “good enough” parametric approximations to

F(chlc). In the limit, they assume that there exist parameters 8 € 0 such that:

F(Yoele) = F (340, 6(c)), 6:C > © (5)

6(c) is known as the conditional parameter function, which maps from the space of all possible
circumstance vectors on to the space of possible distributional parameters. Under this
assumption, the problem of estimating conditional distribution functions for types in the optimal
partition, and hence {ch}, reduces to the problem of selecting the optimal parameter
estimates, 8, given the data {y, C}. TrT uses an adaptive local likelihood maximization approach
for that purpose. Specifically, it selects 8 as:

N (6)

6V(c) = argmaxgeo ) wi(c)2:(6)

i=1
where i € {1, ..., N} denotes each observation in the data set and #;(6) denotes the log-
likelihood contribution of i, when the parameters are given by 6. The recursive binary splitting

process that creates a transformation tree is implemented by choosing weights:

i (7)
w;i(c) = I(c € By, Ac; € Bp)
b=1

The indicator function takes the value 1 when observation i is sufficiently “close” to c, so the
weights in (7) simply count the number of observations in each bin B;,. At the terminal nodes,
B, corresponds to a type, so the maximization process in (6)-(7) allocates each observation to a
type and sums the local likelihood functions across types. The type partition and the parameter
vector 0 are chosen so as to maximize that weighted sum of likelihoods. That is, given the
available data {y, C} and the recursive splitting approach to weights, the likeliest set of types and

income distributions conditional on type is that given by F (ch, 9”(0)). So, our prediction

function under this method is given by:

o 2 uo ~ _ ~
r = fr(o) =H_ch where Yoc = F ! (q: HN(C)) (8)
q

12



The Transformation Tree estimate of absolute ex-post inequality of opportunity is then

IA(y, ¢, fr) = I($7), while the relative measure is analogously given by:

[(3r) (9)

Ir}l?(y'C'fT) = m

Details of how the likelihood maximization is implemented (using Bernstein polynomials to fit
the conditional distribution functions at each node) are given in Appendix 1A. In practice, the

process can be summarized by the following seven-step algorithm:

1. seta confidence level (1 — ) and a minimum size for final nodes (n,,in);

2. choose a polynomial order (M);

3. estimate the unconditional distribution function with a Bernstein polynomial of order
M;

4. test the null hypothesis of polynomial parameter stability for all possible partitions
based on each element of the circumstance vector ¢, and store p — values.

5. If, for all ¢ and each possible partition, either the Bonferroni-adjusted p — value > «
or ng < Nypin, exit the algorithm;

6. otherwise, choose the variable and the splitting value producing the smallest p — value
to obtain two subgroups.

7. Repeat step 4-6 for the resulting subgroups, until exiting everywhere.

In our application, we follow statistical convention and set a to 0.01 and n,,;, to 1% of the
sample size. Then, we choose M, the order of the Bernstein Polynomial. The selection of M is
not as simple as that of a, because how well a polynomial of a certain order interpolates the
distribution is intrinsically data dependent. An order too small might result in a poor
approximation of the distribution, while too high an order would translate into a loss of degrees

of freedom and high computational costs.!

To find an appropriate order, we tune the algorithm by estimating the out-of-sample log-
likelihood, after a 5-fold cross validation, for several order values of the Bernstein Polynomial

(ranging between 2 and 10). We select the lowest order for which the relative improvement of

1 The confidence level (1 — a) and the order of the polynomial (M) interact in determining the depth of
the tree, and thus the complexity of the final partition. For a given sample size, fixing a higher polynomial
order implies using more degrees of freedom in each test, leading to a lower probability of rejecting the
null hypothesis of equal distributions. Consequently, the resulting partition is more parsimonious.
Similarly, for a given polynomial order and confidence level, a larger sample size results in a more detailed
partition of types and likely a higher level of between-group inequality. In the empirical application, we
recommend verifying the sensitivity to sample size, as we do below, when drawing conclusions about
estimates.
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the log-likelihood that would be obtained by estimating an additional parameter is smaller than
0.1%.22 In step 3, an unconditional CDF for our sample is thus estimated with a Bernstein

polynomial of order 8.

The key step is then step 4, where the M-fluctuation test is performed to detect instability of
the parameters in the conditional distribution functions across potential types (see Appendix
1A). To intuitively illustrate this key test, Appendix 1B provides a simple example of the
procedure, using made-up data. Further details can be found in Hothorn and Zeileis (2021) and

Kopf, Augustin, and Strobl (2013).

After following steps 4-7 we obtain an estimated Transformation Tree and, from that tree, a
number of outputs that are described in Section 5. Before presenting those results, we briefly

describe our datasets in Section 4.
4. Data

We apply this method to four countries: China, India, the United States, and South Africa. These
countries were selected for their relative importance in different parts of the global economy
and because they represent substantial heterogeneity in both the structure of inequality and
the availability of data. For all countries, our samples comprise all adult individuals (aged over
18) observed in nationally representative surveys. The outcome of interest is equivalized
disposable household income, using the square root equivalence scale (Buhmann et al., 1988;
OECD, 2013). We also age-adjust the income to account, at least in part, for life-cycle dynamics.
The adjustment consists of regressing our income variable on age and age squared, and using
the sum of the constant and the individual residual from that regression as the adjusted variable

(see, e.g., Palomino et al., 2022).

We select a set of circumstance variables available in each survey to estimate inherited
inequality. Balancing the desirability both of including the most relevant circumstances, and to
preserve a certain degree of comparability across countries, we selected the following variables:

biological sex!®, place of birth, mother’s and father’s education, mother’s and father’s

12 Note that the order of the polynomial does not turn out to be a key determinant of the estimated level
of inequality of opportunity. Figure B1 in Appendix 2 shows, for the case of South Africa, the stability of
the ex-post IOp when the selected Bernstein polynomial order varies.

13 Given the choice of household income as the outcome of interest, the role of sex among the
circumstances will necessarily be limited, since intra-household inequalities are ignored. The relative
unimportance of sex in the analysis that follows should therefore be treated cautiously. It does not imply
that these countries provide equal opportunities to men and women in other dimensions. On the other
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occupation, and an “ethnicity” variable, which includes religion and a coarse caste classification
in India. Even for this relatively limited set of inherited characteristics, only two countries (China
and the US) contain information on all seven. Birthplace is missing in South Africa and mother’s
and father’s occupation are missing in India, and comparisons should be interpreted accordingly.

Detailed descriptive statistics for each country are available upon request.

For China, we use the China Family Panel Studies (CFPS), carried out by the Institute of Social
Science Survey (ISSS) of Peking University every two years from 2010 to 2018 with a sample size
of individuals with complete information ranging between 16,000 and 21,000 observations.
CFPS has been already used to study aspects of the intergenerational persistence of income and
inequality of opportunity in China (e.g. Fan, Yi, and Zhang, 2021; Emran et al, 2023). The dataset
contains data on important inherited characteristics. We include sex; ethnicity, classified into 11
categories ("Han", "Mongol", "Hui", "Tibetan", "Miao", "Yi", "Zhuang", "Bouyei", "Korean",
"Manchu", "Other"); 24 birth area categories!*; mother’s and father’s education in eight
categories’®; and mother’s and father’s occupation (10 ISCO categories plus one category for

unemployment).

For India, we use the India Human Development Survey (IHDS), conducted by researchers from
the University of Maryland and the National Council of Applied Economic Research (NCAER).
These are large representative samples of the 2005 and 2012 populations, each containing over
100,000 observations, resulting in analysis samples of 78,000 and 98,000 complete
observations, respectively. IHDS has previously been used to study intergenerational mobility
and inequality of opportunity in India (e.g. Asher, Novosad and Rafkin, 2024; Kundu and Lefranc,

2020). Circumstance variables included are: six castes/religions (“Forward caste”, “Other

hand, omitting sex as a circumstance variable would have caused us to miss some non-negligible
consequences of differences in household composition across countries.

14 Namely "Hebei", "Shanxi", "Liaoning", "Jilin", "Heilongjiang", "Shanghai", "Jiangsu", "Zhejiang", "Anhui",
"Fujian", "Jiangxi", "Shandong", "Henan", "Hubei", "Hunan", "Guangdong", "Guangxi Zhuang Autonomous
Region", "Sichuan", "Guizhou", "Yunnan", "Shaanxi", and "Gansu”, plus “not available” and “other”.

5 Namely "llliterate/Semi-literate", "Primary school", "Junior high school", "Senior high school/secondary
school/technical school/vocational senior school", "3-year college", "4-year college/Bachelor’s degree",

"Master’s degree", "Doctoral degree")
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Backward castes”, “Dalit”, “Adivasi”, “Muslim”, “Christian, Sikh, and Jain”); 23 birth areas®®; and

mother’s and father’s education in seven categories.’

For the United States, we employ the Panel Study of Income Dynamics (PSID), a well-known data
source for researchers interested in the intergenerational transmission of income and status, as
it is the longest-running longitudinal household survey in the world. The survey started in 1968
and is currently managed by the University of Michigan. It has been used in many studies of
intergenerational mobility and inequality of opportunity in the US (e.g. Mazumder, 2018;

Pistolesi, 2009). We use every other wave (even years) between 1968 and 2018.

The PSID includes data related to employment, income, wealth, expenditures, and a number of
other background characteristics that could be used as circumstance variables. However, to
preserve a modicum of comparability with the other three countries, we restrict inclusion to the
seven variables listed above. Ethnicity is described in six possible categories (“White”, “Black”,
“American Indian, Aleut, or Eskimo”, “Asian or Pacific Islander”, “Hispanic”, “Other”). The area
of birth is also classified into six categories (“Northeast”, “Northwest”, “South”, “West”, “Alaska
& Hawaii”, “foreign country”). Mother’s and father’s occupation are coded in a variable based
on ISCO codes (High: includes ISCO 1, 2, and 3; Medium: includes ISCO 4, 5, and 6; and Low: ISCO
7, 8,9, and 0).%® Finally, mother’s and father’s education are recoded in eight categories (“0-5
grades”, “6-8 grades”, “9-11 grades”, “high school”, “12 grades and non-academic training”,

”n u ”

“college, no degree”, “college degree”, “advanced college”).

For South Africa, we rely on the National Income Dynamics Study (NIDS 1-5) survey, carried out
by the Southern Africa Labour and Development Research Unit (SALDRU). NIDS is a longitudinal
survey, collected in 2008, 2010/11, 2012, 2014/5 and 2017. It is an interesting dataset for
studying the inheritance of inequality because it is a reliable and extensive source of information
about incomes and circumstances for arguably the world’s most unequal country. Inequality of
opportunity and mobility have already been analysed in South Africa using the NIDS, e.g. by
Piraino (2015) and Brunori, Ferreira, and Peragine (2021). The circumstance variables that we

4 “

include in the analysis are: ethnicity (“African”, “Asian or Indian”, “coloured”, and “white”),

16 Namely “Jammu and Kashmir”, “Himachal Pradesh”, “Punjab”, “Another State”, “Uttarakhand”,
“Haryana”, “Delhi”, “Rajasthan”, “Uttar Pradesh”, “Bihar”, “Overseas”, “Northeast”, “West Bengal”,
“Jharkhand”, “Orissa”, “Chhattisgarh”, “Madhya Pradesh”, “Gujarat”, “Maharashtra”, “Andhra Pradesh”,
“Karnataka”, “Kerala”, “Tamil Nadu”.

»ou »nou ”ou ”ou

7 Namely, “none”, “incomplete primary”, “complete primary”, “incomplete secondary”, “completed
secondary”, “higher secondary”, and “post-secondary or higher”.
18 1SCO codes are grouped in this way following Hufe et al. (2022). Results are very similar if each 1SCO

occupational classification is entered separately.
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fathers’ and mothers’ education (13 categories, ranging from "not educated" to "Grade 12 or
more") and fathers’ and mothers’ occupation (11 categories, 10 associated to the 1-Digit ISCO
and one extra including other categories, such as out of the labour force, deceased or other

unclassified occupations).®

In all four countries, the final sample used for our analysis includes only complete observations,
in the sense that information is not missing for any of the outcome or circumstance variables
described above. Of course, item non-response can be a serious issue in data containing
retrospective information on respondent’s parents. We are able to alleviate this problem
somewhat by matching individuals across waves and by filling some missing information with
answers reported by the same individual in other waves. Nonetheless, the process of dropping
observations with incomplete information does reduce our sample sizes, and may do so in a
selected way. While we cannot rule out sample selection, for each country and wave we
examined the pattern of missing information and calculated the difference between average
income and its inequality, both including and excluding observations with missing

circumstances. Results do not seem particularly alarming and are available upon request.

Table 1 shows some basic descriptive income statistics for the analysis samples of the most
recent survey used. The four countries differ both in their level of development and in the nature
of their inequality. The United States combines high income levels with a moderate level of
inequality (at least relative to this group of countries). In contrast, South Africa, despite mid-
level average incomes, is marked by high inequality, with a Gini coefficient exceeding 0.6. India
and China, while showing similar overall levels of inequality, differ in the structure of that
inequality. In China, income is more concentrated at the top: the top 1% accounts for 14% of
total income, compared to 12% in India. However, India faces a more pressing issue at the lower
end of the distribution. The bottom 40% of the population in India receives just 9% of total
income, a figure not only lower than China's 13%, but also below that of South Africa. Table Al

in Appendix 2 contains the same set of summary descriptive statistics for all earlier waves.

19 Note that the question refers to current (or last recorded) occupation of the parents. We exploit the
panel structure of NIDS and look at information about circumstances reported by the same individuals in
previous waves. Whenever a circumstance variable that is missing is available for the same individual in
previous waves, we use the oldest available value of the circumstance, on the ground that it was reported
closest to when the respondent was young.
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Table 1: Descriptive Income Statistics for the most recent waves

Country Year Mean Gini MLD Top1l% Top 10% B(:lt;;m
(1]

China 2018 9,998 0.497 0.459 0.137 0.400 0.129
India 2012 3,196 0.527 0.518 0.123 0.439 0.089

South Africa 2017 13,429 0.610 0.690 0.157 0.444 0.113
USA 2018 48,420 0.389 0.301 0.063 0.290 0.179

Note: Income units are in 2017 US dollars at PPP exchange rates. MLD stands for Mean Log Deviation. The three
columns on the left represent the share of income received by the Top 1%, the Top 10%, and the Bottom 40% in the
income distribution. Source: CFPS (2018), IHDS (2012), NIDS (2017), and PSID (2018).

5. Results: Inequality of Opportunity in China, India, South Africa and United States

Transformation trees and Type-specific Cumulative Distribution Functions

Applying the algorithm outlined in Section 3 to solve Equations 14-15, with the key stopping rule
parameters set to a = 0.01 and n,,;;, = 1% of the sample (as described), yields the transformation
trees shown as Figure B2 in Appendix 2. These stopping rules are quite conservative and the
nodes of those trees are used for our I0Op estimates described below. However, as the full trees
are fairly deep and complex, Figure 1 below shows the trees pruned to a maximum depth of four

levels, to make the output more readable.?

Consider first the pruned tree for the United States, in Figure 1a. The splitting process generated
by the algorithm should be read from left to right. The first split divides the population into a
group consisting of just under one-third of the sample, whose fathers had at least some college
education (Node 15), and the rest of the sample (Node 2). As we move to the right, other
circumstances further partition the population following the algorithm, until the final nodes —
types — are reached. An interesting symmetry emerges straight away: ethnicity appears as the
second splitting circumstance in both subtrees, producing identical splits (into nodes 16 and 19
for those with more educated parents, and 3 and 8 for the remainder). In both cases, the
categories 'Black' and 'American Indian, Aleut, Eskimo' cluster together in the poorer sub-
branch, while all other groups fall into the more affluent sub-branch. Subsequent splits are
determined by the father's education and occupation, the mother's education, birth area, and
sex. At level four, where the tree is trimmed, we find a partition into ten types, and the Figure

shows the parametrically estimated density function for each of them, as well as indicating the

20 This is implemented through an additional stopping rule that prevents any observation from being
involved in more than four splits.
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population share accounted for by each type and its mean income as a multiple or share of the

overall mean.?

In terms of the model selection challenge discussed in Section 3, the algorithm partitioned the
population into these ten groups (and fit CDFs to them) so as to maximize the likelihood of fitting
the data, under the restrictions f € F;, with F; being the class of recursive binary TrT estimators.
The partition can be thought of as the product (or interactions) of various dummy variables
defined over the circumstances. Type 10, for example, which is the poorest type in terms of
expected income (54% of the national average) and comprises 13% of the population, consists
of black or indigenous women whose fathers never went to college and whose mothers worked
in specific occupations, corresponding to the interaction of dummy variables x;q =
1race="black"or "American Indian,Aleut,Eskimo " X 1father education=below college X 1sex="female" X
10ther occupation="1sco categories 1 or 2" Type 18, which is the richest type and includes 20% of
the sample, consists of White, Hispanic and Asian people whose fathers are college graduates.

corresponding to the interaction X18 = Lrqce=white, Hispanic and Asian X

1father education=College gradueted or more- And so on.

21 Although we use income in levels to compute all our measures, we plot the density of log incomes for
ease of visualization.
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Figure 1a: Transformation Tree for the United States
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Figure 1b: Transformation Tree for China
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Figure 1c: Transformation Tree for India
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Figure 1d: Transform
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In China (Figure 1b), the four-level tree yields a thirteen-type partition, with incomes ranging
from 47% to 253% of the mean income. The birth area variable plays a critical role in the
transformation tree: it is the first splitting factor, and it also appears in five additional splitting
nodes, highlighting the importance of the geography of birth for the distribution of life chances
in China. For example, the two most advantaged types consist exclusively of individuals born in
Shanghai. Other influential variables include parental occupation, education, and, to a lesser

extent, ethnicity (the worst-off type contains only Mongol and Yi individuals). 2

In India (Figure 1c), the four-level tree yields fifteen types, with incomes ranging from 47% (Type
15) to 374% (Type 29) of the mean. Father’s education determines the first split in the
transformation tree, followed by the mother’s education. The structure of the tree indicates a
dominant role for the interaction between these two variables. The wealthiest group, whose
expected income is nearly four times the sample mean, is composed of individuals whose
parents are both at the top of the educational distribution. Additionally, birth area and ethnicity
(which here consists of caste and religious identities) also contribute substantially to predicting
the shape of the income distribution, which is heterogeneous not only in terms of its mean but
also in its higher-order moments. While the poorest types tend to follow a clearly log-normal
distribution, the richer types exhibit distributions skewed to the right, suggesting greater
variability, and possibly some downward risk (in the long left tails) for these higher-income
groups. These insights into the shape of each type’s distribution are one benefit of our approach

to measuring inequality of opportunity using transformation trees.

Finally, in South Africa (Figure 1d), the pruned tree has nine nodes or types. Unsurprisingly, its
structure is determined primarily by ethnicity. The white population, which is exclusively
concentrated in Types 16 and 17, displays an income distribution so markedly shifted to the right
that it appears as though it might have been drawn from a different country. Among the non-

white groups, those including Asian and Coloured individuals have a higher expected income

22 The split at Node 4 in the Chinese tree is worth a comment, as it groups parents with a Master’s degree
together with the least educated category, in Type 5. This illustrates a feature of the algorithm when there
are very few observations in a particular category. When the algorithm uses a certain circumstance to
divide the sample, it must place all individuals from the node that originates the split into either one
subgroup or the other. If there are very few respondents who have a specific value for the characteristic
in question — there are only four individuals in the entire sample reporting a father with Master’s degree
- the assignment to the group can be almost random. Naturally, because this happens only when the
number of individuals is very small, the consequences for summary /Op estimation are minimal.
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and tend to follow a log-normal distribution. In contrast, groups composed by African individuals

exhibit a distribution with a density mass skewed to the left.

Besides the parameterized density functions shown to the right of the trees in Figure 1, type
distributions can also be visualized as cumulative distribution functions. Figure 2 shows both the

empirical CDFs for each type (as solid coloured lines) and the corresponding predicted CDFs

(ECDFs: F (}7qc, éN(c))) generated by the Bernstein polynomials, as dashed lines.

Figure 2. ECDF of the type-partition (pruned trees) for the most recent waves

a) China b) India
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Note: here we present the ECDF of the types obtained from the pruned Transformation Trees displayed in
Figure 1a (USA), Figure 1b (China), Figure 1c (India), and Figure 1d (South Africa). Solid lines represent the
ECDF for each type and are coloured consistently with the corresponding types in the trees. Dashed lines
represent the corresponding CDF predicted with the Bernstein polynomial. Figures. Source: CFPS (2018),
IHDS (2012), NIDS (2017) and PSID (2018).

These CDF plots provide a striking visual depiction of the structure and extent of inequality of
opportunity in each country. Compared to the United States, type distributions are much further
apart in the three developing countries in our sample, particularly South Africa, where the two
White types stochastically dominate all others by a large margin. We can also observe interesting

crossings, such as that between types 5 and 24 in India. These two types have relatively similar
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means (122% and 141% of the overall average, respectively), but Type 24 has a more unequal
distribution, so the CDFs cross and the welfare of the two types cannot be unambiguously
ranked (in terms of first-order dominance). Similar crossings can be observed in all four
countries, revealing that types differ not only in terms of their first moments, but also in their

higher-order moments.
From the trees to Lorenz Curves and scalar measures of inherited inequality

As discussed, Figures 1 and 2 draw on four-level pruned trees. To compute I10p, we rely on the
full trees shown in Figure B2 in Appendix 2. Those trees generate finer types, with their own
income predictions, ¥,.. These are then adjusted for differences across tranche means as in
Equation (8) to yield the distribution of predicted incomes ¥, which is used for computing our
proposed absolute and relative measures of inherited inequality or ex-post inequality of
opportunity (Eq. 9). We can also define a Lorenz Curve of these predicted incomes, L(J7), to
which we refer as the Opportunity Lorenz Curve. Figure 3 displays both Opportunity Lorenz
curves and regular Lorenz curves, L(y), for the most recent surveys for each country. As
expected, the Opportunity Lorenz curve dominates that for income, and the area between
L(97) and the line of equality captures the extent of inequality of opportunity in each society.
The dashed lines indicate the shares of income and opportunities held by the bottom 40%, 90%,

and 99%, corresponding to the shares presented in Table 2 below.
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Figure 3 Income and Opportunity Lorenz Curves for China, India, South Africa and the US
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Note: The red line corresponds to the Lorenz curve of 1, while the blue line corresponds to the Lorenz curve of income.
The dashed lines correspond to the income (Table 1) and y (Table1) shares received by the Bottom 40%, Top 10% and
Top 1%. Source: CFPS (2018), IHDS (2012), NIDS (2017), and PSID (2018).

To go from the Lorenz Curves in Figure 3 to scalar measures of inequality, we choose two
different indices, namely the Gini coefficient and the mean log deviation (MLD). Values for
income inequality were presented in Table 1 above, and Table 2 (Panel A) presents the
corresponding inequality of opportunity measures, once again for the latest available survey
waves. Although we report both Ginis and MLDs in Table 2, we focus the subsequent discussion

on the Gini estimates.? For both indices, we report the absolute measure of inherited inequality,

I4(y,c, fr) = 1(Jr), as well as the relative, IR(y,c, fr) = II((JA;T)). In the tables, the latter is

23 As noted by Brunori, Palmisano, and Peragine (2019), the Gini coefficient is more sensitive to the central
parts of the distribution, where group means tend to cluster, rather than to the lower tail. In that sense,
the Gini is better suited to studying I0p than the MLD.
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denoted IORr. The last three columns of the Table also report predicted income (or opportunity)

shares for the top 1%, top 10%, and bottom 40%.

Table 2: Inequality of Opportunity results for the most recent waves

Panel A: Ex-post Inequality of Opportunity

Country Year  Gini (yy) {GOIﬁT) ?;I'T? (II\ﬁFDT) Top1% Top 10% B:t;;,m
China 2018 0292  588% 0172  37.5%  0.079 0.27 0.245
India 2012 0327  62.0% 0207  40.0% 0040 0278  0.168
i‘;r‘:zz 2017 0495  81.1% 0413  59.9% 0039 0313  0.209
USA 2018  0.141  363% 0052  17.3% 0017  0.148  0.372

Note: The three columns on the right represent the share of Y accruing to the Top 1%, the Top 10%, and the

Bottom 40% in the Y distribution. Source: CFPS (2018), IHDS (2012), NIDS (2017), and PSID (2018).

Panel B: Ex-ante Inequality of Opportunity

Gini IORg, MLD IORg, Bottom
Countr Year ~ . ~ Top1% Top 10%

y (YBHM) (Gini) (¥um)  (MLD) o p Ao 40%
China 2018 0.219 44.1% 0.076 16.6% 0.063 0.245 0.299
India 2012 0.279 52.9% 0.123 23.7% 0.048 0.269 0.184
Sogth 2017 0.468 76.7% 0.36 52.2% 0.041 0.292 0.219
Africa
USA 2018 0.154 39.6% 0.037 12.3% 0.014 0.149 0.34

Note: IORg, is the Brunori et al., (2023) estimate and Ygyy denotes the incomes received by types
obtained using that ex-ante method. Source: CFPS (2018), IHDS (2012), PSID (2018), and NIDS (2017).

For these years, the opportunity Gini coefficient ranges from 0.141 in the US to 0.495 in South
Africa. The latter is a remarkable number: the opportunity Gini for South Africa is higher than
the overall income Gini coefficient of the United States and almost as high as total inequality in
China. Indeed, inherited inequalities account for a remarkable 81% of the (very high) income
inequality in South Africa. India has the second-highest level of I0p, with a Gini of 0.33,
accounting for 62% of total inequality, with China not far behind. However, the shape of the
opportunity distribution differs between those two countries, mirroring what we have already
seen for the distribution of incomes. In India, the top 1% receives 4% of total opportunities, half
of the share in China, where the top 1% holds 8%. Yet, India's top 10% captures about the same
as in China, while the bottom 40% receives significantly less (17% compared to 25% in China),
even than in South Africa (21%). This suggests that, although India exhibits less concentration at
the very top of the distribution of opportunities compared to China, it has a much larger share

of the population that is extremely opportunity deprived. Figure B3 in the Appendix presents
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the time trends in ex-post |Op across all four countries this century, showing that I0p was largely
stable in the United States during the 2000 — 2018 period, while it rose both in India (between
2005-2012) and China (particularly since 2014). South Africa followed a U-shaped pattern, with

inequality of opportunity declining until 2015 and then rising again in 2017.

For comparison, Panel B of Table 2 contains benchmark estimates from applying an ex-ante
approach to our data. Specifically, we follow the approach of Brunori, Hufe and Mahler (BHF,
2023) to construct conditional inference trees and random forests. The resulting ex-ante |10p
estimates are typically lower than our ex-post results, both in absolute and relative terms: they
are lower in all four cases for the MLD, including by a factor of less than 0.5 for China. They are
also lower for the Gini in all countries except the United States. Top 10% shares are also lower
in the ex-ante estimates, except again for the US, where they are basically the same. The picture
is a little less clear for the top 1% share, where the ex-ante estimate is higher in both India and
South Africa. The overall pattern, though, is that even when comparing our approach to the
closest possible ex-ante alternative — another tree-based machine learning approach, but using
differences in means rather than full distributions to split types — overall IOp levels and shares

tend to be higher in the ex-post approach.

The difference is particularly marked in the case of China, where the ex-post Opportunity Gini
coefficient is 1.33 times the ex-ante. Such large differences between ex-ante and ex-post
estimates tend to arise whenever considering only the first moment of the conditional
distribution is not sufficient to understand the entire conditional distribution of types. To
provide an intuition for this, Figure 4 shows the ex-ante conditional inference tree (CIT) for China
in 2018, estimated with same four-level stopping rule as the transformation tree in Figure 1b.
Consider Type 5, which represents 7.5% of the sample. Individuals in this group have mothers
who are neither Agricultural, Forestry, and Fishery workers nor managers, and their fathers have
low levels of education. This type has an expected income close to the population mean.
However, when examining the ex-post types to which individuals from ex-ante Type 5 are

mapped, a clear divergence emerges.
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Figure 4: Conditional Inference Tree to evaluate ex-ante |Op in China
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Note: Splitting nodes show the p-value associated to the splitting. Circumstance categories are Gender (0
Female, 1 Male), Ethnicity (1 Han, 2 Mongol, 3 Hui, 4 Tibetan, 5 Miao, 7 Yi, 8 Zhuang, 9 Bouyei, 10 Korean,
11 Manchu, 99 Other), Birth Area (13 Hebei, 14 Shanxi, 21 Liaoning, 22 Jilin, 23 Heilongjiang, 31 Shanghai,
32 Jiangsu, 33 Zhejiang, 34 Anhui, 35 Fujian, 36 Jiangxi, 37 Shandong, 41 Henan, 42 Hubei, 43 Hunan, 44
Guangdong, 45 Guangxi Zhuang Autonomous Region, 51 Sichuan, 52 Guizhou, 53 Yunnan, 61 Shaanxi, 62
Gansu, 80 Not available, 90 Other), Parent’s education (1 llliterate/Semi-literate, 2 Primary school, 3 Junior
high school, 4 Senior high school/secondary school/technical school/vocational senior school, 5 3-year
college, 6 4-year college/Bachelor’s degree, 7 Master’s degree, 8 Doctoral degree), Parent’s occupation (0
Armed forces, 1 Managers, 2 Professionals, 3 Technicians and Associate professionals, 4 Clerks, 5 Services
and Sales workers, 6 Agricultural, Forestry and Fishery workers, 7 Craft and trade workers, 8 Plant and
machine operators and assemblers, 9 Elementary occupations, 10 Unemployed). The panels at the bottom
indicate the share of the population each type represents, and their average income relative to the overall
sample mean. Source: CFPS (2018).

The conditional inference tree in Figure 4 and the transformation tree in Figure 1b are estimated
in the exact same sample, so it is possible to map individuals to the types to which they belong
in each exercise. This is what the Sankey (or alluvial) plot in Figure 5 shows. The left margin
shows the ex-ante partition obtained using the CIT (as plotted in Figure 4), while the right margin
displays the partition derived from the TrT (Figure 1b). In both margins, types are ranked from
top to bottom in descending order of expected incomes. Ex-ante Type 5 is highlighted in light
orange to illustrate how individuals from this group are distributed across four different ex-post
types. These destination types differ significantly in terms of income. For instance, ex-post Type
5 has an average income that is 52% higher than the population average, whereas ex-post Type
8 has an average income that is less than half that: about 70% of the population mean. These
regroupings arise when there are meaningful differences in the higher moments of the

conditional distributions of potential types, so that the transformation tree and the CIT
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algorithm yield quite different partitions. This example illustrates how a substantial divergence

between ex-ante and ex-post partition can arise in practice.

Figure 5: An example of heterogeneity in ex-ante and ex-post partition in China

Exante Expost
Type

Note: The Sankey plot maps the same individuals according to two different type partitions. On the left-
hand side, the ex-ante partition (Figure 4), and on the right-hand side, the ex-post partition (Figure 1b).
We have highlighted Type 5 in the ex-ante partition, that splits into four very different types in the ex-post
partition. Source: CFPS (2018).

It is somewhat harder to compare our main results with previous studies, which have employed
various different statistical approaches and often used different samples and income definitions.
For example, in the case of the United States, Pistolesi (2009) report a similar level of 10p in
terms of MLD for the year 2000 to what we obtain. However, their analysis focuses on earnings
and is restricted to working males, which limits comparability. In most other cases, previous
estimates are generally based on ad-hoc ex-ante methods, and these tend to be lower — often
much lower — than ours. For India, Kundu and Lefranc (2020) estimate that ex-ante |0p in 2012
ranges from 8% to 39%, depending on the set of regressors used in a parametric model. Their
estimate using conditional inference regression trees is 32%, which compares to our ex-post Gini
share of 62%. For China, Wu (2018), using the same data source and inequality index (Gini) as

our study, reports relative 10p levels between 30% and 40% for the years 2010 and 2012,

31



whereas we observe relative |0p levels of 53% in 2010 and 42% in 2012. Finally, Piraino (2015)
employs an ex-ante approach and two econometric methods to estimate IOp in gross
employment earnings in South Africa, using up to 54 Roemerian types. Using data for male
workers in 2008 and 2012, he finds 10p shares ranging from 17% to 24% of total inequality, as
measured by MLD. These estimates compare to our MLD-based estimate of 57% in 2012. Once
again, although comparisons are hampered by differences in samples and/or income definitions,
most previous I0p estimates for our sample of countries tend to be of the ex-ante variety, and
considerably lower than ours, consistently with the broad pattern of the comparison between

Panels A and B of Table 2.

The role of individual circumstances

Because the prediction function in Equation (16) is highly non-linear in circumstances, any
assessment of the relative contribution of individual circumstances to inequality in predicted
incomes, I(y1), cannot rely on marginal effects. As in other cases in inequality analysis, the
decomposition method most suitable to our application is the Shapley-Shorrocks decomposition
(Shapley, 1953; Shorrocks, 2013). Intuitively, this decomposition computes the total
contribution of a particular circumstance variable ¢, to predicted inequality as the average
reduction in the latter when ¢, is omitted from the prediction, with the average taken across all
possible combinations of circumstances that originally include c,. (See Shorrocks, 2013). A
description of the algorithm used to compute the decomposition also helps clarify its logic:
A) Draw a subsample of the full sample;
B) Estimate IOp in this subsample, as described in Section 3, but settinga = 1; n,;;,, = 0
C) Further, estimate 10p in the subsample for all possible permutation sequences that
eliminate circumstance ¢ . This elimination is performed by replacing c; with a constant
vector 1;
D) Estimate a tree and IOp after each elimination sequence and store results;
E) Average |Op across all permutation sequences. The difference between overall IOp and
this average is the specific contribution of ¢y;
F) Repeat steps A-E z times, to account for different potential data-generating processes.
In our case, we set z=100;
G) Estimate the contribution of ¢, to I0p as the average contribution across these z

repetitions;

24 Following the convention often used in tree bagging procedures, we draw subsamples of 63.2% of the
original sample size (see Hothorn, Hornik, and Zeileis, 2006).

32



H) Repeat the algorithm for each ¢, k € {1, ..., K}.

This algorithm grows trees on subsamples of the initial population, permitting each tree to attain
significant depth. These two adjustments enable all circumstances with predictive power to
contribute to defining the partition of types, at least in some iterations, making the assessment
of the relative contribution of each circumstance more robust to the typical problem of the
variance of estimates based on a single tree. Table 3 presents the results of the Shapley-
Shorrocks decomposition for our four countries and the seven circumstance variables available
in the most recent wave. Results are presented as percentage shares of the ex-post opportunity

Gini coefficients reported in Table 2.

Table 3: Ex-post Shapley value decomposition (as %) for the most recent waves

Circumstances China India Soufth USA
Africa
Birth Area 15.41 20.87 - 14.25
Ethnicity 8.65 16.32 3241 15.24
Father Education 10.46 27.74 16.43 19.17
Father Occupation 16.32 - 13.78 15.42
Mother Education 17.26 27.89 16.07 16.5
orsptagfi;n 29.53 - 16.06 12.29
Sex 2.36 7.17 5.25 7.13

Note: Values in these tables represent the relative contribution (as %) of circumstances to the ex-post IOp
estimates reported in Table 2, Column Gini (y1). The sum of values within columns adds up 100%. Missing
values (-) correspond to circumstances that are not available in the data. Source: CFPS (2018), IHDS (2012),
NIDS (2017), and PSID (2018).

Notice that due to the unobservability of parental occupation in India and area of birth in South
Africa, results are only fully comparable for China and the United States.?® Looking across those
two countries, it is interesting that, despite the larger number of ethnic groups in China, the
Shapley value for race in the US is twice as large. While father’s occupation and mother’s

education have similar values in both countries, father’s education appears significantly more

%5 Even in this case, some might argue that comparability is limited by how the same circumstances are
coded across countries. For example, in the USA there are five racial categories, while in China there are
twelve ethnic groups. However, such classifications are linked to a country’s structure of opportunity. We
can and should not impose identical categories across countries, which differ in terms of their territories,
cultural diversity, and social structure. These aspects of a country’s social organization are part and parcel
of its opportunity distribution, and they should be reflected in the data used — without attempting to
make them uniform. It is for the learning algorithm to select the most salient binary splits across
categories in each case.
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important in the US, whereas mother’s occupation plays a larger role in China. The influence of

sex also appears to be much more pronounced in the US.

When including India and South Africa in the comparison, the dominant role of race emerges
clearly in South Africa: it is comparable to the combined effect of caste and area of birth in India.
Interestingly, the Shapley value for parents’ education in India is not too far from the sum of the
values for both occupation and education of the parent in South Africa, suggesting that the
presence of unobservable circumstances may inflate the Shapley value of observable and
correlated circumstances. Regarding the role of sex, it is important to recall that our analysis is
based on equivalized household income. Therefore, we expect sex to play a significant role only
in contexts where single-parent households are not uncommon and where income disparities
between male- and female-headed households are substantial. This is the case in India and the
United States. In contrast, the difference is smaller in our sample for China, where female-
headed households earn about 95% of what their male-headed counterparts earn. Naturally, it
should go without saying that, in keeping with the measurement-using-prediction spirit of our

analysis, these decompositions are purely descriptive.

Moreover, when commenting on the role of circumstances in predicting the conditional
distribution of income, we should consider that Shapley values measure the reduction in
predicted inequality when a specific circumstance is removed from the analysis. This value is
influenced by the distribution of the circumstance itself. For example, in a society where most
individuals are Black and only few are White, removing the race variable will not significantly
reduce the model's explanatory power. This is because, for the majority, the conditional
distribution closely aligns with the unconditional one, and only for a small subset does race
influence the income distribution. However, from the point of view of the minority, that
characteristic may matter a great deal. In other words: while the average contribution of
individual circumstances contains valuable information, so would an estimate of the marginal

importance of belonging to a specific circumstance category.

We therefore complement Shapley values by estimating the marginal effect (on predicted
incomes) of being affected by a specific characteristic, for example, being White in South Africa.
We do this by regressing individuals’ predicted incomes, y, on a set of dummy variables, each
representing a category of a given circumstance. This exercise is similar to the estimation of
Partial Dependence Plots (PDPs), which are frequently used in machine learning to complement
decomposition techniques such as Shapley values. Figure 6 presents the marginal effects in the

most recent wave for South Africa. Both the signs and magnitudes of the effects are broadly
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consistent with expectations. The substantial positive effect of being White is clearly visible in
the first panel: being White is associated with an opportunity premium of 350%. A substantial
“college premium” — more precisely, of completing or going beyond Grade 12 — can also be

observed for both fathers’ and mothers’ education (Category 12).

Figure 6: Marginal effect of circumstances on opportunities in the South Africa
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Note: Values on the y-axis represent the relative advantage or disadvantage associated with each
average income (category)

category, computed as 100 X . Circumstance categories are Gender (0 Female, 1 Male),

average income (sample)
Ethnicity (1 African, 2 Asian/Indian, 3 Coloured, 4 White), Parent’s Education (0 Zero, 1 Grade 1, 2 Grade
2, 3 Grade 3, 4 Grade 4, 5 Grade 5, 6 Grade 6, 7 Grade 7, 8 Grade 8, 9 Grade 9, 10 Grade 10, 11 Grade 11,
12 Grade 12), Parent’s Occupation (0 Military, 1 Managers, 2 Professionals, 3 Technicians and
Professionals, 4 Clerical Support, 5 Service and sales, 6 Farm, Forest, Fishery, 7 Craft, 8 Operators, 9
Elementary, 10 Others). Numbers in parentheses denote population shares in each category. We are not
showing categories populated by less than 0.5% of the sample size. Source: NIDS (2017).

Figures B4—B6 in Appendix 2 show analogous marginal effects for China, India, and the United
States. Noteworthy findings include the strong positive effect of being born in certain regions of
China—for instance, being born in Shanghai is estimated to contribute a marginal advantage of
more than 150% to predicted incomes. In both India and the U.S., having well-educated parents
is associated with significantly higher opportunities. In India, the premium is particularly high for

maternal education: for the small minority reporting a mother with education above the
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secondary level, the estimated marginal advantage exceeds 200%. In the U.S., the effect is higher
for father’s education. A sizable negative effect is observed for the large Black community in the

United States, with an estimated penalty of approximately 25%.
The lower envelope of quantile functions

As noted in the Introduction, another advantage of our conditional CDF-based approach is that
it enables us to compute estimates of the social objective function proposed in the original
theory of equal opportunity (Roemer, 1993, 1998). In proposing a normative objective function,
egalitarians must contend with the levelling-down objection: if the objective were simply to
eliminate inequality in predicted incomes, I(¥), and thus immobility or inequality of
opportunity, this might be achieved by setting all incomes to zero — or some other very low but
constant value. Policies might be arranged in such a way that there was no inherited inequality,

but everyone lived in abject poverty.

The standard normative response to this objection is Rawls’s proposal that inequalities should
be tolerated only insofar as they are to the benefit of the worst-off (Rawls, 1971). This gives rise
to the familiar Rawlsian maximin objective functions and, indeed, various versions of maximin
objectives have been proposed in the context of inequality of opportunity.?® A dominant early
version, due to Roemer (1998), is to arrange society and choose policies so as to maximize the
(average of the) lowest incomes at each quantile, across the conditional distribution functions
of all types. Recalling from the general framework in Section 2, that there are M types, t,,: =
{Vilc; = ¢}, whose conditional cumulative distribution functions are of the form F(y|c,,),

define the lower envelope of the joint distribution {y, c} as:

A(g) = min F(q, ¢m) (10)

And choose policies so as to:
1
11
Max f A(g)dq (11)
0
As Roemer and Trannoy (2016) put it: “We do not simply want to render the functions identical
at a low level, so we need to adopt some conception of ‘maxi-minning’ these functions. [...] A
natural approach is therefore to maximize the area under the lower envelope of the [quantile]

functions.” (p. 231).

%6 See, e.g., Van de Gaer (1993) and Bourguignon, Ferreira, and Walton (2007).
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Equation (10) defines the lower envelope of the set of quantile functions (inverse functions of
the distribution function). Graphically, the type quantile functions, shown in Figure 7 below for
South Africa, are obtained by inverting the conditional CDFs in Figure 2d. A(q) defines the lowest
points in the graph at each quantile. If the poorest type were first-order stochastically
dominated by all other types, then the lower envelope would simply be its quantile function,
and Equation (11) would mandate maximizing its average income, equal to the area under the
quantile function. When quantile functions cross at the bottom of the graph, Equation (11)

mandates maximizing the average income of the lower envelope of the quantile functions. If
there were no inequality of opportunity, all of society would be one type and fol A(gq)dq would
be its average income. Therefore, the value of the maximand in (11) is informative per se, as a
measure of the opportunity floor in a society, and is interesting also in relative terms, as a

J3 A(@)dq

measure of how close that floor is to the average income, Lenvg = m.
~“Hq)dq
0

Figure 7: Type quantile functions and the lower envelope for South Africa

Log Income
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ECDF

Note: Solid lines represent the ECDF for each type and are labelled consistently with the corresponding
types in the trees. Dashed lines represent the corresponding CDF predicted with the Bernstein
polynomial. Source: NIDS (2017).

37



In practice, a literal computation of fol A(q)dg (Lenv, hereafter) might be over-sensitive to small
types detected in a particular sample. We therefore propose a robust version of the lower
envelope which consists, in each quantile, of the average income across the worst-off types
adding up to at least 10% of the population. The heavier line in Figure 7 shows the robust lower

envelope for South Africa in 2017, against the full set of conditional quantile functions.

Figure 8 presents the evolution of Lenvy for the four countries, over the 2000-2018 period. A
striking result is the high value recorded for China, where the poorest types appear to have been
catching up with the average income until 2014 (75%), but then lost some ground thereafter. In
the most recent wave, China's Lenvg is comparable to that of the United States, at around 60%
of average income in our sample. In terms of trends, the United States shows a rising trajectory
in the first two decades of the century, whereas India exhibits a downward trend between 2005
and 2012, falling from 54% to 40%. The improvement in South Africa between 2008 and 2015 is

not sufficient to converge toward the other countries. Its Lenvg in 2017 is still around 35%.

Figure 8: Lenvg over time in China, India, South Africa and the US.
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Source: CFPS, IHDS, PSID, and NIDS.
Figure B7 in Appendix 2 shows an analogous graph for Lenv in absolute terms. The United States’

area under the lower envelope rises from approximately $22,000 in 2000 to about $30,000 in

2018. The other three countries exhibit significantly lower and more closely aligned levels. In
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India, Lenv declines from around $3,500 to $1,500 between 2005 and 2011. China and South

Africa, in contrast, display similar upward trajectories in the 2000s.

6. Conclusions

The extent to which economic advantage is inherited from previous generations and shaped by
pre-determined circumstances is a matter of both positive and normative interest. Many, if not
most, approaches to quantifying this phenomenon rely on prediction exercises, essentially
assessing how well incomes can be predicted by pre-determined circumstances such as parental
income, biological sex, race, or other indicators of family background. We showed that many
commonly used measures of intergenerational mobility and inequality of opportunity can be
written as functions of the ratio of inequality in these predicted incomes to inequality in

observed current-generation incomes.

We then proposed a new approach for measuring inherited inequality that is sensitive to
differences across the full conditional income distributions — rather than just the means — of
subpopulations that share the same inherited characteristics — “types” in the 10p literature. This
method, based on transformation trees (Hothorn and Zeileis, 2021), represents an improvement
over previous approaches to estimating inequality of opportunity because it is designed to
partition the population and estimate distribution functions optimatlly, given the trade-off
between a downward omitted-variable bias and an upward overfitting bias that is inherent to

the model selection problem in this literature.

We applied this method to thirty-six representative household surveys from four large and
systemically important countries, namely the United States (25 waves, between 1970 and 2018),
China (five waves, between 2010 and 2018), India (two waves, 2005 and 2012) and South Africa
(four waves, between 2008 and 2017). We found high absolute levels of inherited inequality,
measured as ex-post inequality of opportunity, with Opportunity Gini coefficients of 0.14 in the
US, 0.29 in China, 0.33 in India, and 0.50 in South Africa in the latest available years. These
correspond to substantial shares of total income inequality —36% for the US, 59% for China, 62%
for India, and 81% for South Africa — attesting to the heavy weight of inherited characteristics in

predicting current economic success in all four countries, but particularly the three poorer ones.

Comparing these estimates both to state-of-the-art ex-ante methods?” applied to the very same

data and using the same income and circumstance variables, as well as to earlier estimates in

27 Random forest estimates obtained using the approach of Brunori et al. (2023).
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the literature that use other income definitions and statistical approaches, we found our
estimates to be generally, and sometimes substantially, higher. For China, for example, we found
an ex-post inherited inequality share of 59%, whereas the ex-ante estimate on the exact same
sample was 44%. These differences reflect both differences in the type partitions generated by
the two algorithms, and the fact that the ex-post method aggregates horizontal differences for
all quantiles along the (adjusted) type cumulative distribution function, whereas the ex-ante
method relies on differences in means only. We illustrated the subtle partition differences that
can occur with a Sankey plot mapping Chinese individuals from their ex-ante to their ex-post

types.?®

We also estimated both average and marginal contributions of specific circumstances (and
categories, in the marginal case) to overall inherited inequality. The relative importance of these
circumstances varied substantially across countries, reflecting their different histories and socio-
economic structures. Race was unsurprisingly dominant in post-Apartheid South Africa, whereas
area of birth was important in both India and China, where being born in cities such as Shanghai
yields great advantage. But it was the occupation of one’s mother that seemed to be the most
descriptively important inherited characteristic in China, whereas the educational attainment of
one’s father played that role in the United States. Being Black in the US commands a significant

(25%) opportunity penalty.

Finally, the granular estimation of quantile functions for each type inherent in this approach also
allows us to investigate how the worst-off types — and the lower envelope of such types — are
performing over time. In absolute levels, the average income of this lower envelope rose in the
United States, China and Souh Africa, but fell in India. Relative to average incomes, this
opportunity floor was much higher in China and the United States (at around 60% in the latest

year), than in India and South Africa (35-40%).

Most of these insights into the extent and nature of the inheritance of inequality across
generations, and of the distribution of opportunities across these four very different countries,
were only possible through a comprehensive approach that incorporates many circumstance
variables and looks beyond averages when assessing how predictive they are of observed living

standards.

28 At the same time, it is important to note that these larger ex-post estimates are not mechanical. As
illustrated by the US case, it is possible that ex-ante partitions generate higher I0p estimates, for example
when the higher power of tests on mean differences allow for a finer partition.
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Appendix 1: Technical details of the transformation tree algorithm
1A. The likelihood maximization using Bernstein polynomials

In practice, implementation of the likelihood maximization is facilitated by using a monotonic
transformation function ofy, z = h(y), with h'(y) > 0,Vy. Monotonicity ensures that F(y) =
Fz(h(y)). We follow Hothorn and Zeileis (2021) in using Bernstein polynomials of order M to
construct the transformation function: h(y) = a(y)7 8. Note that a(y) is a polynomial of order

M in y. The choice of M implies the choice of the dimension of the parameter vector, P=M+1.
The higher that order, the greater the flexibility with which F (ch, 9(6)) can be modelled, and

the greater the degree to which differences in their higher moments affect the partition and the
estimation. Bernstein polynomials are a particular application of this transformation function, in

which:

(¢1,M+1()’); ) ¢M+1,1(3’))
M+1

au(y) = (A1)

where ¢, y denote the density of the Beta distribution with parameters m and M. Using this
particular vector for the polynomial in A(y) implies a simple log likelihood function that can be

used for the maximization implicit in (5):

2:(0) = log[f,(a(y)"0)] + log(a(y)"6) (A.2)

With this specific functional form for £;(6), all that is needed to solve Equations 14-15 (in the
main text) and thus have the parameter estimates to model the conditional income distributions
for all types in the tree terminal nodes is the algorithm to split the sample into types. This
proceeds sequentially. Start from the case when w;(c) = 1, Vi. This corresponds to no splits:
all observations are in a single bin, and have the same weight in the log likelihood maximization.
The parameter estimates obtained under that assumption are the simple maximum likelihood

estimates:

N
O4.(c) = argmaxpeo ) £:(0) (4.3)

i=1

To decide whether or not a split can improve prediction, test the null hypothesis:

HO:S(é\I\IXLly) 1C (A.4)
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where s(ély) denotes the gradient contribution of observation i. For continuous distributions,
the score contribution is simply the derivative of the log density with respect to 6. Differentiating

(A.2) we obtain:

f'z@’®) d
f(a()"0) a'()Te

s(Bly) = a(y) (A.5)
There are a number of methods to test (A.4), and we follow Hothorn and Zeileis (2021) in using
M-fluctuation tests. When these tests reject Hy, the algorithm implements a binary split in the
circumstance x (an element of the vector c) that has the most significant association with the P
x P score matrix, measured by the marginal multiplicity adjusted p-value (see Hothorn, Hornik,

and Zeileis. 2006).

The algorithm is then repeated by testing hypotheses analogous to (A.4) in each of the resulting
cells, and so on recursively, until Hy can no longer be rejected. At this point, the algorithm has
identified the optimal partition of the population into types: 3 = Up=4, g Bp. Over this final
partition, the likelihood function given by (A.2) and the weights given by (15) are used to solve

(14), yielding the final parameter vector 9”(0), which fully characterizes the conditional

distribution F (ch, G(C)) in each type (terminal node) B,,.

These parametric conditional distributions can then be inverted to yield the estimated type

quantile functions ;. = F~* (q, 9N(c)).
1B: An illustration of the M-fluctuation test using made-up data

The algorithm employs an M-fluctuation test of parameter stability to determine node splits.
Purely as an example, we show how the algorithm performs the type partition in a simplified
hypothetical case in which father’s occupation is the only circumstance and the logarithm of
income is the outcome of interest?° The objective is testing whether the parameters defining

the income distribution are significantly different when the population is split in two subgroups.

Following the steps described in the main text, we set a confidence level (& = 0.01) and, in order
to obtain a graphical intuition of the instability of the parameters, a lower order of the
polynomial (w = 3), hence using four parameters to estimate the log-income distribution. We

generate a mock dataset to split incomes according to father occupation, which takes 6

2 Qurs is a different version of a similar example proposed by Kopf, Augustin, and Strobl (2013).
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Values of the parameters

categories ordered from smaller associated expected income to higher associated expected

income.

In Figure B.1 below, we show the values of the parameters in the Bernstein polynomial
associated with each split. Beginning from the left-hand side in both plots, the first four points
represent the parameters associated with the nodes created when we split the population in
two groups: those whose father occupation is 1 (right-hand plot) and the rest, that is, those
whose father’s occupation is 2 to 6 (left-hand plot). As we move to the right through the X-axis,
we generate other splits, moving observations associated to categories in fathers’ occupation
from one node to the other, changing the resulting conditioned distributions. It is evident from
Figure A.1 that, when transitioning observations from one terminal node to another, parameters
undergo a change in magnitude. However, it is not immediately apparent which partition
exhibits the most statistically significant parameter instability. That is, which occupational

category should be selected as splitting point.

Figure A1. Values for the Parameters of the Bernstein Polynomial in each node
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That selection is guided by the M-fluctuation test. Figure A.2 shows the value of the statistics for
the tests described in step 4. The higher value (associated with a smaller p-value) is achieved
when the bottom node has categories 1 and 2. That is the splitting point, as confirmed in Figure
A.2. The population is thereby divided in two groups: those with father’s occupation equal to 2

or less, and the rest, generating the simple tree in Figure A.3.
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Figure A2. M-fluctuation quadratic test Statistics
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Figure A3. Transformation Tree (example)
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This partition into two types allows us, for instance, to graphically explore Roemer’s theory by
plotting the cumulative density functions (CDF) of the outcome of interest by types (Figure A4).
Here, the colored lines represent the empirical cumulative density functions (ECDF), while the
dashed lines represent the interpolation of the distribution predicted with the polynomial

approximation.
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Appendix 2: Additional tables and figures

A. Additional tables

Table Al: Descriptive Income Statistics for previous waves

Country Year Mean Gini MLD Top1% Top10% Bottom 40%
China 2010 4,878 0.496 0.475 0.109 0.397 0.119
China 2012 6,657 0.503 0.557 0.105 0.368 0.108
China 2014 6,168 0.483 0.526 0.154 0.410 0.101
China 2016 8,272 0.519 0.512 0.182 0.402 0.126
India 2005 5,903 0.499 0.457 0.104 0.414 0.092

South Africa 2008 11,383 0.647 0.839 0.067 0.376 0.118
South Africa 2012 10,974 0.617 0.711 0.075 0.330 0.131
South Africa 2015 10,764 0.574 0.6 0.087 0.331 0.137
USA 1974 35,535 0.299 0.155 0.037 0.205 0.268
USA 1976 36,104 0.293 0.152 0.031 0.192 0.276
USA 1978 36,230 0.294 0.152 0.037 0.196 0.273
USA 1980 34,390 0.328 0.192 0.064 0.222 0.251
USA 1982 32,762 0.317 0.179 0.037 0.207 0.253
USA 1984 36,046 0.345 0.214 0.057 0.227 0.245
USA 1986 36,627 0.345 0.210 0.047 0.220 0.248
USA 1988 41,626 0.389 0.270 0.085 0.267 0.221
USA 1990 39,470 0.365 0.236 0.058 0.249 0.227
USA 1992 40,078 0.376 0.259 0.076 0.269 0.216
USA 1994 39,161 0.379 0.269 0.073 0.272 0.215
USA 1996 39,837 0.367 0.256 0.065 0.284 0.197
USA 1998 42,838 0.392 0.296 0.084 0.286 0.195
USA 2000 44,494 0.384 0.268 0.069 0.287 0.195
USA 2002 45,158 0.395 0.297 0.095 0.302 0.190
USA 2004 46,249 0.406 0.308 0.077 0.284 0.194
USA 2006 45,494 0.431 0.369 0.082 0.299 0.184
USA 2008 45,110 0.403 0.305 0.070 0.276 0.197
USA 2010 43,192 0.393 0.296 0.065 0.268 0.197
USA 2012 44,111 0.386 0.286 0.057 0.254 0.203
USA 2014 45,608 0.395 0.290 0.052 0.250 0.200
USA 2016 48,057 0.393 0.315 0.054 0.271 0.180

Note: Income units are in 2017 US dollars at PPP exchange rates. MLD stands for Mean Log Deviation. The
three columns on the left represent the share of income received by the Top 1%, the Top 10%, and the
Bottom 40% in the income distribution. Source: CFPS, IHDS, NIDS, and PSID.
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Table A2: Ex-post 10p estimates for previous waves

Gini IOR MLD IOR To Bottom

Country  Year 1) (GiniT) 1) (MLDT) Top 1% 10;) 20%
China 2010  0.266  53.6%  0.133  28.0% 0.046 0292  0.247
China 2012 0218 433%  0.124  223% 0049 0237 0233
China 2014 0207 42.9%  0.104 19.8% 0058 0238  0.288
China 2016 0293  56.5% 0209  40.8% 0051 0287  0.246
India 2005 0306 61.3% 0178  39.0% 0046 0278  0.172
icf’r‘:iz 2008  0.533  82.4% 0534 63.6% 0037 0279  0.182
icf’r‘:iz 2012 0479  77.6% 0405  57.0% 0032 0237  0.231
icf’r‘:iz 2015 0385  67.1% 0248  413%  0.024  0.193  0.278
USA 1970 0137  457% 0032  20.1% 0013 0122  0.401
USA 1972 0139  457% 0034  205% 0014 0121  0.402
USA 1974 0125  41.8% 0027 17.4% 0011 0108  0.409
USA 1976 0117  39.9% 0024  158% 0013 0110  0.429
USA 1978 0117  39.8%  0.024 158% 0011 0109  0.428
USA 1980 0141  43.0% 0035 182% 0018 0122 0411
USA 1982 0130 41.0% 0030 16.8% 0013 0114 0418
USA 1984 0138  40.0% 0034 159% 0013 0116  0.414
USA 1986 0147  42.6% 0037 17.6% 0012 0115 0411
USA 1988  0.164  422% 0048  17.8% 0016 0126  0.393
USA 1990 0147  403% 0037 157% 0013 0121  0.397
USA 1992 0153  40.7% 0043  16.6% 0013 0113  0.383
USA 1994 0178  47.0% 0081  30.1% 0018 0130 0377
USA 1996 0162  44.1% 0051  19.9% 0017 0139 0342
USA 1998  0.195  49.7% 0086  29.1% 0025 0141  0.332
USA 2000 0158  41.1% 0046  17.2% 0018  0.142  0.348
USA 2002 0192  486% 0079  26.6% 0024  0.148  0.330
USA 2004 0200  493% 0090  292% 0018 0139 0331
USA 2006  0.192  445% 0108  293% 0027 0145  0.372
USA 2008 0180  447% 0076  249% 0018 0133 0371
USA 2010  0.168  42.7% 0057 193% 0018 0127  0.362
USA 2012 0180  46.6% 0113  39.5% 0025  0.141  0.378
USA 2014  0.165  41.8% 0054  186% 0013 0121  0.391
USA 2016  0.175  445% 0080  254% 0024 0151  0.339

Note: The three columns on the left represent the share of y received by the Top 1%, the Top 10%, and

the Bottom 40% in the y; distribution. Source: CFPS, IHDS, NIDS, and PSID.
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Table A3: Ex-ante IOp estimates for previous waves

Gini IOR MLD IOR To Bottom
Country  Year (o ) (Gind  (Gpme) M) TP% 10% 0%
China 2010 0227 458% 0082 17.3% 0033 0251  0.297
China 2012 0176  350% 0052  93% 0037 0220  0.308
China 2014  0.197 40.8% 0066 12.5%  0.100 0259  0.23
China 2016 0205 39.5% 0067 13.1% 0069 0248  0.308
India 2005 0267 53.5% 0111  243% 0045 0260  0.182
i‘;r‘:zz 2008  0.479  740% 0385  459% 0022 0254 0231
South
Ao 2012 0430 69.7% 0301  423% 0025 0205  0.257
South
Aeio 2015 0350  610% 0204  340% 004 0250  0.251
USA 1970  0.135  45.0% 0030 18.9%  0.014 0121  0.408
USA 1972 0139  457% 0032 193% 0015 0123  0.403
USA 1974 0131  43.8% 0028 18.1% 0014 0120  0.416
USA 1976  0.120  41.0% 0024  158%  0.013 0114  0.429
USA 1978  0.118  40.1% 0023  151% 0013 0113  0.437
USA 1980  0.132  402% 0029 151% 0017 0120  0.425
USA 1982  0.137  432% 0031 173% 0014 0116 0418
USA 1984  0.146  42.3% 0035 164% 0014 0117 0413
USA 1986  0.155  44.9% 0039  18.6% 0015 0123  0.409
USA 1988 0.173  445% 0051  18.9%  0.022 0136  0.387
USA 1990  0.159  43.6% 0042 17.8% 0015 0126  0.394
USA 1992  0.156  415% 0041  158% 0015 0128  0.387
USA 1994  0.161  425% 0043  160% 0015 0129  0.391
USA 1996  0.164 447% 0045 17.6% 0015 0139  0.342
USA 1998  0.170  43.4% 0050 169% 0021 0137  0.354
USA 2000 0170  443% 0047 175% 0016 0142  0.347
USA 2002 0189 47.8% 0059  19.9% 0026  0.158  0.335
USA 2004 0175 43.1% 0051  16.6% 0018 0136  0.366
USA 2006 0177 411% 0051  13.8% 0019 0141 0375
USA 2008  0.165 40.9% 0045 14.8% 0015 0128  0.386
USA 2010 0167 425% 0045  152% 0018 0133 0378
USA 2012 0170  44.0% 0047 164% 0017 0131  0.387
USA 2014 0164  415% 0044  152% 0014 0119  0.39
USA 2016 0159  40.5%  0.040 12.7% 0017 0133 0359

Note: IORg 4 is the Brunori, Hufe and Mabhler (2023) estimate, and yzx, denotes the incomes
predicted by circumstances using that ex-ante method. Source: CFPS, IHDS, PSID, and NIDS.
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B: Additional figures

Figure B1: Sensitivity of ex-post IOp to the Bernstein polynomial order in South Africa
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Note: The plot shows the log-likelihood value (blue line) associated with different
Bernstein polynomial order values. We also show absolute I0p (red line) and relative I0p
(green line) estimated with different Bernstein polynomial order values. Source: NIDS
(2017).
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Figure B2a: Full Transformation Tree for China (2018)
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Note: Splitting nodes show their sample size and the p-value associated to the splitting. Circumstance categories are
Gender (0 Female, 1 Male), Ethnicity (1 Han, 2 Mongol, 3 Hui, 4 Tibetan, 5 Miao, 7 Yi, 8 Zhuang, 9 Bouyei, 10 Korean,
11 Manchu, 99 Other), Birth Area (13 Hebei, 14 Shanxi, 21 Liaoning, 22 Jilin, 23 Heilongjiang, 31 Shanghai, 32 Jiangsu,
33 Zhejiang, 34 Anhui, 35 Fujian, 36 Jiangxi, 37 Shandong, 41 Henan, 42 Hubei, 43 Hunan, 44 Guangdong, 45 Guangxi
Zhuang Autonomous Region, 51 Sichuan, 52 Guizhou, 53 Yunnan, 61 Shaanxi, 62 Gansu, 80 Not available, 90 Other),
Parent’s education (1 llliterate/Semi-literate, 2 Primary school, 3 Junior high school, 4 Senior high school/secondary
school/technical school/vocational senior school, 5 3-year college, 6 4-year college/Bachelor’s degree, 7 Master’s
degree, 8 Doctoral degree), Parent’s occupation (0 Armed forces, 1 Managers, 2 Professionals, 3 Technicians and
Associate professionals, 4 Clerks, 5 Services and Sales workers, 6 Agricultural, Forestry and Fishery workers, 7 Craft
and trade workers, 8 Plant and machine operators and assemblers, 9 Elementary occupations, 10 Unemployed). The
panels on the right display the log-density of type-specific incomes. The labels indicate the share of the population
each type represents (Pop.) and their average income relative to the overall sample mean (y = 1), which is also depicted
as a vertical black line in the log-density plot. Source: CFPS (2018).
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Figure B2b: Full Transformation Tree for India (2012)
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Note: Splitting nodes show their sample size and the p-value associated to the splitting. Circumstance categories are
Gender (0 Female, 1 Male), Ethnicity (2 Forward caste, 3 Other Backward castes (OBC), 4 Dalit, 5 Adivasi, 6 Muslim, 7
Christian, Sikh, Jain), Parent’s Education (0 None, 1 Incomplete primary, 2 Complete primary, 3 Incomplete secondary,
4 Complete secondary, 5 Higher secondary, 6 Post-secondary or higher), Birth Area (1 Jammu & Kashmir, 2 Himachal
Pradesh, 3 Punjab, 4 Another State, 5 Uttarakhand, 6 Haryana, 7 Delhi, 8 Rajasthan, 9 Uttar Pradesh, 10 Bihar, 11
Overseas, 18 Northeast, 19 West Bengal, 20 Jharkhand, 21 Orissa, 22 Chhattisgarh, 23 Madhya Pradesh, 24 Gujarat,
27 Maharashtra, 28 Andhra Pradesh, 29 Karnataka, 32 Kerala, 33 Tamil Nadu). The panels on the right display the
log-density of type-specific incomes. The labels indicate the share of the population each type represents (Pop.) and
their average income relative to the overall sample mean (y = 1), which is also depicted as a vertical black line in the
log-density plot. Source: IHDS (2012).
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Figure B2c: Full Ex-post/Transformation Tree for USA (2018)
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Note: Splitting nodes show their sample size and the p-value associated to the splitting. Circumstance
categories are Gender (0 Male, 1 Female), Ethnicity (1 White, 2 Black, 3 American Indian/Aleut/Eskimo, 4
Asian/Pacific Islander, 5 Hispanic, 7 Other), Region of upbringing (1 Northeast, 2 North Central, 3 South, 4
West, 5 Alaska/Hawaii, 6 Foreign country), Parents’ education (1 0-5 Grades, 2 6—-8 Grades, 3 9-11 Grades,
4 High school, 5 12+ Grades + non-academic training, 6 Some college, 7 College degree, 8 Advanced college
degree), and Parents’ occupation (ISCO) (1 Basic, 2 Middle, 3 High). The panels on the right display the log-
density of type-specific incomes. The labels indicate the share of the population each type represents (Pop.)
and their average income relative to the overall sample mean (y = 1), which is also depicted as a vertical
black line in the log-density plot. Source: Own elaboration from the PSID (2018).
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Figure B2d: Full Ex-post/Transformation Tree for South Africa (2017)
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Note: Splitting nodes show their sample size and the p-value associated to the splitting. Circumstance categories are
Gender (0 Female, 1 Male), Ethnicity (1 African, 2 Asian/Indian, 3 Coloured, 4 White), Parent’s Education (0 Zero, 1
Grade 1, 2 Grade 2, 3 Grade 3, 4 Grade 4, 5 Grade 5, 6 Grade 6, 7 Grade 7, 8 Grade 8, 9 Grade 9, 10 Grade 10, 11
Grade 11, 12 Grade 12), Parent’s Occupation (0 Military, 1 Managers, 2 Professionals, 3 Technicians and Professionals,
4 Clerical Support, 5 Service and sales, 6 Farm, Forest, Fishery, 7 Craft, 8 Operators, 9 Elementary, 10 Others). The
panels on the right display the log-density of type-specific incomes. The labels indicate the share of the population
each type represents (Pop.) and their average income relative to the overall sample mean (y = 1), which is also depicted
as a vertical black line in the log-density plot. Source: NIDS (2017).
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Figure B3: Time Trends of Inequality of Opportunity (Ex-post, TrT)
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Source: CFPS, IHDS, PSID, and NIDS.
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Figure B4: Marginal effect of circumstances on opportunities: China
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Note: Values on the y-axis represent the relative advantage or disadvantage associated with each category, computed
as 100 x average income (category)‘
average income (sample)

Hui, 4 Tibetan, 5 Miao, 7 Yi, 8 Zhuang, 9 Bouyei, 10 Korean, 11 Manchu, 99 Other), Birth Area (13 Hebei, 14 Shanxi, 21
Liaoning, 22 Jilin, 23 Heilongjiang, 31 Shanghai, 32 Jiangsu, 33 Zhejiang, 34 Anhui, 35 Fujian, 36 Jiangxi, 37 Shandong,
41 Henan, 42 Hubei, 43 Hunan, 44 Guangdong, 45 Guangxi Zhuang Autonomous Region, 51 Sichuan, 52 Guizhou, 53
Yunnan, 61 Shaanxi, 62 Gansu, 80 Not available, 90 Other), Parent’s education (1 llliterate/Semi-literate, 2 Primary
school, 3 Junior high school, 4 Senior high school/secondary school/technical school/vocational senior school, 5 3-year
college, 6 4-year college/Bachelor’s degree, 7 Master’s degree, 8 Doctoral degree), Parent’s occupation (0 Armed
forces, 1 Managers, 2 Professionals, 3 Technicians and Associate professionals, 4 Clerks, 5 Services and Sales workers,
6 Agricultural, Forestry and Fishery workers, 7 Craft and trade workers, 8 Plant and machine operators and assemblers,
9 Elementary occupations, 10 Unemployed). Numbers in parentheses denote population shares in each category. We
are not showing categories populated by less than 0.5% of the sample size. Source: CFPS (2018).

Circumstance categories are Gender (0 Female, 1 Male), Ethnicity (1 Han, 2 Mongol, 3
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Figure B5: Marginal effect of circumstances on opportunities: India

Birth Area Ethnicity Father's Education
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Note: Values on the y-axis represent the relative advantage or disadvantage associated with each category, computed

as 100 x W. Circumstance categories are Gender (0 Female, 1 Male), Ethnicity (2 Forward caste, 3
average income (sample)

Other Backward castes (OBC), 4 Dalit, 5 Adivasi, 6 Muslim, 7 Christian, Sikh, Jain), Parent’s Education (0O None, 1
Incomplete primary, 2 Complete primary, 3 Incomplete secondary, 4 Complete secondary, 5 Higher secondary, 6 Post-
secondary or higher), Birth Area (1 Jammu & Kashmir, 2 Himachal Pradesh, 3 Punjab, 4 Another State, 5 Uttarakhand,
6 Haryana, 7 Delhi, 8 Rajasthan, 9 Uttar Pradesh, 10 Bihar, 11 Overseas, 18 Northeast, 19 West Bengal, 20 Jharkhand,
21 Orissa, 22 Chhattisgarh, 23 Madhya Pradesh, 24 Gujarat, 27 Maharashtra, 28 Andhra Pradesh, 29 Karnataka, 32
Kerala, 33 Tamil Nadu). Numbers in parentheses denote population shares in each category. We are not showing

categories populated by less than 0.5% of the sample size. Source: IHDS (2012).
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Figure B6: Marginal effect of circumstances on opportunities: United States
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Note: Values on the y-axis represent the relative advantage or disadvantage associated with each category, computed

as 100 x

average income (sample) *

average income (category)

Circumstance categories are Gender (0 Male, 1 Female), Ethnicity (1 White, 2 Black, 3

American Indian/Aleut/Eskimo, 5 Hispanic), Region of upbringing (1 Northeast, 2 North Central, 3 South, 4 West, 6
Foreign country), Parents’ education (1 0-5 Grades, 2 6-8 Grades, 3 9—11 Grades, 4 High school, 5 12+ Grades + non-
academic training, 6 Some college, 7 College degree, 8 Advanced college degree), and Parents’ occupation (ISCO) (1
Basic, 2 Middle, 3 High). Numbers in parentheses denote population shares in each category. We are not showing
categories populated by less than 0.5% of the sample size. Source: PSID (2018)

60



Lower envelope

30000

20000

10000

Figure B7: Lower envelope

-\/

————

2000 2005 2010 2015
Year

Country == China === India -e= South Africa =e= United States

Source: CFPS (2018), IHDS (2012), PSID (2018), and NIDS (2017). Monetary values in $2017.

61



	Inherited inequality and the distribution of opportunities in the United States, China, India, and South Africa
	JEL Codes: D31, D63, J62
	3  Estimating IOp using Transformation Trees
	The model selection problem
	Empirical applications of all three variants of the prediction problem described above – intergenerational mobility, ex-ante IOp, and ex-post IOp – may suffer from a variety of challenges, including data availability, measurement error (particularly i...
	The first bias arises from the partial observability of circumstances. It is rather common for data sources that contain information about individual outcomes to also contain various variables describing inherited circumstances such as sex, race, and ...
	4. Data
	Table 1: Descriptive Income Statistics for the most recent waves
	Figure 1a: Transformation Tree for the United States
	Note: Splitting nodes show their sample size and the p-value associated with the split. Circumstance categories are Gender (0 Male, 1 Female), Ethnicity (1 White, 2 Black, 3 American Indian/Aleut/Eskimo, 4 Asian/Pacific Islander, 5 Hispanic, 7 Other),...
	Figure 1b: Transformation Tree for China
	Table 2: Inequality of Opportunity results for the most recent waves
	It is somewhat harder to compare our main results with previous studies, which have employed various different statistical approaches and often used different samples and income definitions. For example, in the case of the United States, Pistolesi (20...
	The role of individual circumstances
	The lower envelope of quantile functions
	Figure 7: Type quantile functions and the lower envelope for South Africa
	Note: Solid lines represent the ECDF for each type and are labelled consistently with the corresponding types in the trees. Dashed lines represent the corresponding CDF predicted with the Bernstein polynomial. Source: NIDS (2017).
	References
	Appendix 1: Technical details of the transformation tree algorithm
	1A. The likelihood maximization using Bernstein polynomials
	,ℓ-𝑖.,𝜃.=,log-,,𝑓-𝑧.,,𝑎,𝑦.-𝑇.𝜃..+,log-,,𝑎,𝑦.-𝑇.𝜃.                                    ,A.2...
	Figure A1.  Values for the Parameters of the Bernstein Polynomial in each node
	Figure A2. M-fluctuation quadratic test Statistics
	Source: Own Elaboration on NIDS 5
	Source: Own Elaboration
	Table A1: Descriptive Income Statistics for previous waves
	Figure B1: Sensitivity of ex-post IOp to the Bernstein polynomial order in South Africa
	Figure B2a: Full Transformation Tree for China (2018)
	Note: Splitting nodes show their sample size and the p-value associated to the splitting. Circumstance categories are Gender (0 Male, 1 Female), Ethnicity (1 White, 2 Black, 3 American Indian/Aleut/Eskimo, 4 Asian/Pacific Islander, 5 Hispanic, 7 Other...

