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Abstract

This thesis examines which environments foster or possibly constrain innovation, focusing
on three settings: the match between inventors and firm type, the regulatory environment
surrounding new platform technologies and its effects on local economic prosperity, and the
labor markets for inventive talent across countries.

The first chapter asks whether large-scale innovative environments—firms with high
patenting activity—are associated with higher individual inventor productivity. Using Ger-
man employer—employee data linked to European Patent Office records, I document sizable
inventor-level productivity premia at large-scale innovative firms. Exploiting geographic con-
straints faced by German apprentices, which generate quasi-random variation in access to
large-scale innovative employers, I show that improved access raises early-career patenting
by roughly 20%, consistent with a causal link between firm innovative scale and individual
productivity. The positive association extends to seasoned inventors. Evidence points to
co-worker spillovers and capital-labor complementarities as likely mechanisms.

The second chapter analyzes how regulation shapes the composition of local economic
activity around a prominent platform innovation: peer-to-peer short-term rental intermedi-
aries such as Airbnb and Vrbo. Using a staggered difference-in-differences design for U.S.
counties from 2010 to 2020, I find limited or no effects on housing prices or tax revenue. By
contrast, GDP and personal income per capita in accommodation and food services increase,
consistent with reallocation from informal hosting toward hotels. Despite the political contro-

versy surrounding STR platforms, current regulations appear to have only modest aggregate



economic consequences while shifting activity across closely related sectors.

The third chapter compares the labor-market environments for inventors in Germany
and the United States using comprehensive employer—-employee microdata. Both countries
exhibit aging inventor populations, low female participation, growing concentration of in-
ventors in larger and older firms, and declining job mobility. They differ, however, in their
ability to attract foreign-born inventors, in the strength of the earnings—productivity rela-
tionship, and in the types of firms where inventor output is highest. Taken together, these
findings shed light on the possible sources of slowing innovative performance in advanced

economies.
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Chapter 1

The Role of Firms’ Innovative Scale
in Inventor Productivity: Evidence

from Germany

Abstract

Do firms with large innovative output simply employ more inventors, or are their innovators
more productive? To address this question, I analyse German administrative employer-
employee data linked with European Patent Office records. First, I examine early-career
patent output. Inventors beginning their careers at firms in the 75th—95th percentile of
innovative scale, measured by total annual patent filings, are 40% more productive than
those starting at non-patenting firms. Productivity differentials rise to 60% and 90% for
those starting at firms in the 95th and 99th percentiles, respectively. Moreover, inventors
who, for their first patent, move from smaller- to larger-scale innovative firms achieve similar
productivity to those starting and staying at large-scale firms. Using geographic constraints
of German apprentices, which result in quasi-random variation in the access to large-scale

innovative firms, I show that better access to such firms results in 20% higher early-career
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patent output. Finally, I show that the positive relationship between firm innovation scale
and individual productivity extends to seasoned inventors, with those moving to larger-scale
firms creating more subsequent patents than those joining smaller-scale firms. I provide
suggestive evidence that these results are linked to superior co-worker complimentarities

and better access to financing at large-scale firms.
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1.1 Introduction

[...] education, research, and innovation, I believe we all agree, are essential for

sustainable growth, secure jobs, and our prosperity [...]
— Angela Merkel, Federal Chancellor of Germany, 15 April 2010

[...] The first step in winning the future is encouraging American innovation.
[-..] What we can do — what America does better than anyone — is spark the

creativity and imagination of our people.
— Barack Obama, 44th U.S. President, 25 January 2011

Innovation is a critical driver of economic growth (e.g., Romer 1990; Aghion and Howitt
1992). Extensive research has examined factors that influence innovation at various lev-
els—macro, firm, and, more recently, inventor. It is now widely recognized that factors such
as team-specific capital, mobility, geographic clusters, and financial incentives affect inven-
tors’ patent output. However, there remains limited understanding of the role firms play in
shaping the careers and productivity of innovators. Prior evidence shows that large incum-
bent firms can stifle innovation through poaching innovators from competitors, undertaking
“killer acquisitions” of rivals, or engaging in political lobbying.

In contrast, this paper provides evidence that large innovative firms may foster rather
than hinder the productivity of individual inventors. Using novel administrative data from
Germany that links inventors’ social security records with European Patent Office data, I
track inventors throughout their careers—from labour market entry to their first patenting
job and their subsequent development as experienced inventors.

I find that starting a career at firms with large innovative scale, measured by their
total yearly patent output!, is associated with significantly more future patent applications.

Leveraging the limited geographic mobility of school leavers choosing an apprenticeship, I

'In this study patent output refers to patent applications.
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show that this positive correlation between innovative scale and inventor productivity is not
solely due to assortative matching between firms and workers.

I then extend the analysis to examine whether this positive association between large
firms and patent output persists for seasoned inventors, employing the matched event study
design of Akcigit and Goldschlag (2023). Contrary to their findings, I observe that inventors
moving to large-scale innovative firms see an increase, not a decrease, in their patent output?.
I provide suggestive evidence that worse access to financing by low-scale firms may explain
this finding in the German context.

The strong positive correlation between inventor productivity and firms with high inno-
vation output is consistent with two non-mutually exclusive roles that firms may play: They
may select talent, or they may contribute to inventor productivity by providing training
and resources. Under the first hypothesis, inventors possess inherent, immutable qualities
that determine their productivity, regardless of the employer. More innovative firms simply
attract more productive inventors because, for example, of their greater ability to capitalize
on high-quality innovations. A firm like BMW is better positioned to utilize ideas for new
electric vehicle technology than is the local garage, and it can consequently offer a higher
wage.

Alternatively, firms may differ in their ability to support and enhance an inventor’s
productivity through training, collaborations, financial capital, equipment, or administrative
support. In this scenario, an inventor who produces few patents at a low-scale innovative
firm might generate significantly more at a larger-scale firm.

To examine the relationship between firms’ innovative scale and inventor output, I lever-
age German administrative employer-employee data from the Institute for Employment Re-
search (IAB) that links inventors, firms, and patents from 1980 to 2014 as well as regional

data on county-level socio-economic variable such as GDP per capita from the German

2 Akcigit and Goldschlag (2023) don’t categorize firms by innovative scale but by size (number of employ-
ees) and age. Using their exact classification, I still find that, post-hire, inventor productivity is larger at
incumbent firms (large and old) than at young firms, in contrast to their findings.
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Federal and State Statistical Offices. Unlike most of the prior literature, which observes
inventor—firm links only through patents (and thus only post—first patent), my data tracks
inventors’ firm ties even without patents, enabling analysis of early-career (pre-first patent)
trajectories.

I classify firms into seven groups. The first group includes all firms with zero patents
per year (excluding patents of the focal inventor) at the time the inventor joins. Firms with
non-negative patent output are then divided into quartile bins according to their patent
output in the year in which the inventor joined the firm. To capture potential nonlinear
effects, I further subdivide the fourth quartile: firms in the 75th—95th percentile bins are
labelled as Q4*-firms, those in the 95th-99th percentile bins as P95*-firms, and firms in the
top percentile bin as P100-firms or “star firms”.

The firm where an inventor begins her career is highly predictive of her patent productiv-
ity over the next 10 years. Inventors who start at Q4*-firms produce 63% more patents and
receive 73% more citations in the first 5 years, and 36% more patents and 30% more citations
in the first 10 years, than those who start their careers at non-patenting firms (QO-firms).
This productivity gap is even wider for inventors starting at P95*- or P100-firms: they file for
81% and 128% more patents, respectively, in their first 5 years, and 50% and 77% more over
10 years. There are similar differences in citations, with P95* and P100-starters generating
96% and 127% more in the first 5 years, and 50% and 83% more over 10 years, compared to
QO-starters.

The relationship between firms’ innovative scale and young inventors’ productivity is
convex. Inventors starting at Q1-firms (i.e., firms in the first quartile bin as defined above)
produce only 33% more patents and receive 12% more citations in their first 5 years than
QO-starters do, with the difference in citations being statistically insignificant. Over 10 years,
Q1-starters do not produce significantly more patents or citations than QO-starters do.

This evidence is consistent with both interpretations: firms with large innovative scale

may be particularly effective at selecting high-ability inventors, or they may provide an en-
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vironment that actively enhances innovation and boosts individual productivity. Regardless
of the underlying mechanism, the evidence suggests that innovation activities at large-scale
firms differ from those at small-scale firms.

To further explore the role of firms as either talent selectors or productivity enhancers,
I next examine the career paths of inventors who do not patent in their first job (“non-first
job inventors”).

More than 50% of inventors do not patent in their first job. On average, inventors have
held 2.5 jobs when applying for their first patent, which decreases to 1.9 jobs for those
starting at Q4*-firms. Regardless of their first firm, the majority of inventors move to firms
above the 75Hth percentile in innovative scale before filing for their first patent. Even among
those who begin at already quite innovative Q3-firms, 65% transition to firms above the 75th
percentile in innovative scale before their first patent, with over 38% of them joining firms
in the top 5% of innovative output.

Given the importance of early-career job moves, I analyse the early-career productivity
of non-first-job inventors as a function of the innovative scale of both their first employer
and the firm where they file for their first patent. To enhance tractability, I categorize firms
into three groups: (1) small- to medium-scale firms (“SM-firms”)3, (2) large-scale firms
(“L-firms”)?, and (3) mega firms (“XL-firms”), .

Inventors who transition to firms with greater innovative scale than that of their first
employer achieve significantly higher ten-year patent and citation outputs, whereas moves to
lower-scale firms predict lower productivity. An inventor who starts at a small- to medium-
scale firm and moves to a large-scale firm for her first patent filing has 30% greater ten-year
patent output and 40% more citations, compared to peers who transition to another low- to
medium-scale firm. Moving to a mega firm raises productivity even further, with 88% higher

patent output and 105% more citations.

3These are firms below the 75th percentile in yearly patent applications, i.e., the Q0-Q3 firms as described
above.

4These are firms positioned between the 75th and 95th percentiles, i.e., the Q4*-firms.

®The firms representing the top 5% in patent applications, i.e., the P95*- and P100-firms.
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Conversely, if an inventor who begins at a mega firm moves to a low- to medium-scale
firm, her patent output is not significantly higher than if she had started at a low- to medium-
scale firm. Additionally, among inventors joining mega firms, productivity differences based
on their first employer’s innovative scale are minimal.

On the one hand, these results are consistent with larger-scale innovative firms selecting
better talent: Non-first-job inventors moving to larger-scale firms may simply be inherently
more productive than those moving to smaller-scale firms, leading to a positive correlation
between firm scale and individual patent output.

However, the fact that over half of the inventors in the sample move to larger-scale
innovative firms for their first patent filing, coupled with minimal productivity differences
observed at these firms regardless of inventors’ initial employers, challenges a purely selection-
based view. While some high-ability inventors may initially be mismatched by starting at
small- to medium-scale firms, this alone does not account for why they do not produce any
patents at these firms. For instance, the most innovative subset of SM-firms is the Q3-firms,
representing those in the third quartile of actively patenting firms. The majority of inventors
who start at these Q3-firms do not produce their first patent until after transitioning to larger-
scale firms. Even more notably, over one-third of inventors who begin at L-firms—those in
the 75th to 95th percentile of actively patenting firms—move to XL-firms before filing their
first patent.

This pattern, however, supports the idea that large-scale innovative firms provide an
environment that fosters (first-time) innovation. One possibility is that young prospective
innovators lack necessary skills and that large-scale firms provide better training. Alterna-
tively, early-career inventors may benefit from co-worker and capital-labour complementari-
ties; smaller-scale firms may lack potential collaborators or specialized, costly equipment.

Consistent with superior co-worker complementarities at large-scale innovative firms,
inventors starting at Q3- or better firms have significantly more collaborators over the first

10 years of their careers than do those starting at QO0-firms: inventors who start at Q3-firms
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have 28% more collaborators, while those at top-percentile firms have 70% more.

While knowledge exchange within firms might be important for young inventors, I do
not find similar evidence for its importance across firms. Specifically, I investigate whether
inventors starting their careers in innovation clusters, defined as counties with at least two
firms in the top percentile in terms of patent output®, are more productive in the first ten
years of their careers. I find that, controlling for the innovative scale of their initial employer,
inventors in clusters are not more productive. Hence, just being close to large innovative
firms without being part of them is not associated with higher patent output.

This contrasts with prior U.S. evidence of positive effects of clusters on the patent output
of established inventors (e.g., Jaffe et al. 1993; Moretti 2021; Giroud et al. 2024). One reason
for the discrepancy could lie in the differing needs of prospective inventors at the start of their
career and established inventors in their mid-career. Young inventors might require more
training and, with their current level of knowledge, benefit less from free-floating high-level
ideas—in contrast to seasoned inventors.

To provide further evidence that the correlation between firms’ innovative scale and their
inventors’ productivity is at least in part causal, I leverage plausibly exogenous variation
in the geographic location of those who begin their careers as apprentices. In Germany,
instead of attending college or entering the workforce full-time, school graduates can opt
for a multi-year vocational training program that combines formal education with hands-on
work experience. These programs typically last three years and offer low wages. The vast
majority of trainees, a significant portion of whom are minors, are unwilling to move or to
even commute beyond 12.5 miles” from home. Given that their geographic location is likely
shaped by their parents’ preferences rather than by their innate ability to innovate, and due

to the strong reluctance to move outside the county, this creates a group of career starters

6The results are robust to broader definitions of innovation clusters. However, it has been argued that
a small number of very large firms often drive initial agglomeration and that it is these firms that shape a
cluster’s future viability and productivity (e.g., Moretti 2021).

"Up to 96% do not want to move and ca. 80% do not even want to commute more than 12.5 miles
(Bundesinstitut fiir Berufsbildung, 2018)
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who are quasi-exogenously assigned to a county.

Counties, however, vary significantly in their concentration of firms with high innovative
scale. Many counties have none of the firms most strongly associated with high inventor
productivity, i.e., firms in the top percentile in terms of patent output (“star firms”), while
others have several. Within each county, trainees and firms likely engage in positive as-
sortative matching. Nevertheless, even the most talented prospective inventor is limited to
matching with the best firm in her county, which often will not be a star firm. Thus, in
counties with star firms, the most capable individuals can match with top-tier employers,
while equally talented individuals in other counties must settle for lower-quality firms. If star
firms have a causal impact on inventor productivity, we would, on average, expect higher
patent output from trainees who begin their careers in counties where these firms are present
(“star counties”).

Consistent with this, I find that inventors starting their careers in star counties have a
21% higher patent output in the first 8 years and a 16% higher output over the first 10 years
of their career. Moreover, comparing the productivity of the ex post 200 most productive
inventors in star and non-star counties to get an idea of the effect on potential star inventors,
the productivity difference increases to 60% in favour of those starting in a star county.

Next, I explore potential threats to this identification strategy. It could be the case that
apprentices in different counties have different human capital due to differences in formal
education. However, in Germany the education system is very homogeneous, with over 95%
of students visiting public schools. Geographic differences in syllabi are minor and, if at all,
exist only at the state but not at the county level, so they should be controlled for by state
fixed effects.

I also address the concern that differences in the general socioeconomic environment
across counties could affect prospective inventors’ ability. For example, more prosperous
counties might have both star firms and better educated parents with higher ability children

who become higher ability apprentices. To alleviate this concern, I control for county GDP
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per capita.

Lastly, I run the same analysis but leave out small (in terms of area) counties to mitigate
the concern that some trainees might leave the county, which would be more cumbersome
the larger the county is. Reassuringly, none of these robustness tests change the outcome of
the analysis.

These results suggest that access to star firms at the start of an inventor’s career can
significantly boost innovative productivity. On the flip side, potentially promising future
inventors might see their productivity throttled by limited opportunities to join star firms
early in their career.

Finally, I turn my attention to established inventors—those with a proven patent track
record. At this stage in their careers, their needs may differ significantly from those of early-
career inventors. Seasoned inventors might have already received all the training and formed
the networks of co-inventors and colleagues necessary for high productivity, and they might
benefit from low bureaucracy in small firms. On the other hand, irrespective of one’s career
stage, productivity might be elevated by the resources offered by large-scale firms.

Hence, it is an open question whether the innovative output of seasoned inventors is
enhanced by the innovative scale of firms. Akcigit and Goldschlag (2023) show that the
patent output of experienced U.S. inventors moving to incumbent firms (defined as being
large and old) declines by 6 to 11 percent compared to those moving to young firms. They
argue that large incumbents poach promising inventors from young firms to avoid being
displaced by their disruptive ideas. Rather than implementing these ideas, which comes at
a cost, they bench the new inventors while continuing to exploit their incumbent market
position using their old technology.

To shed light on the productivity differences of seasoned inventors moving to firms with
different innovative scale, I employ a matched event study approach that closely follows
Akcigit and Goldschlag (2023). Specifically, I match inventors based on past patenting

history, age, and education. I then trace the difference in patent output between inventors
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who move to firms in the fourth quartile of innovative scale and those who move to firms
below this quartile.

I find that inventors who joined Q4-firms have 25% higher patent output than those
who joined lower quartile firms. However, since departures from firms and choices of new
employers are often endogenous, these results cannot be interpreted as causal.

The results do, however, contrast sharply with the lower patent output observed by Ak-
cigit and Goldschlag (2023) for inventors joining incumbent (large and old) firms, compared
to those joining young firms, in the U.S. context. As a robustness test, I apply the same firm
classifications used by Akcigit and Goldschlag (2023) and rerun the event study. Consistent
with my previous results, seasoned inventors who join incumbent firms, relative to those who
join young firms, have higher post-move innovation output.

There are many potential reasons why the effects of firm scale on inventor productivity
differ between Germany and the U.S., such as a different sectoral composition of the economy
or differential access to financing for young firms.

In the last part of my analysis, I focus on whether the post-move productivity differences
of inventors between large-scale and small-scale innovative firms might be due to differences
in the ability to finance R&D. Irrespective of firm size, funding R&D is often difficult because
most explorative scientific work is not attached to collateralizable assets that could be used
to obtain financing. Moreover, unlike the U.S., Germany does not have a well-developed
venture capital ecosystem financing high-risk startups. Without sufficient R&D funding, the
productivity of even high-ability inventors might be suppressed.

To explore this mechanism in more detail, I first rank industries by their ability to provide
collateral, proxied by the ratio of industry fixed assets to industry revenue. The assumption
is that small-scale firms that operate in industries that do not require a lot of fixed assets have
less collateral and thus an even harder time securing financing for R&D, while larger firms
have sufficient cash flow and credit history to fund innovation in these industries. Hence, if

financing constraints play a role, the productivity differences of inventors at large-scale and
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small-scale innovative firms should be even larger in low-collateral industries.

Running the same event study as before, but now adding level and interaction dummies
for whether inventors patent in low-collateral industries, I find an even more pronounced
productivity premium for seasoned inventors moving to large-scale firms.

This analysis cannot rule out other potential explanations, but it offers a rationale for
the post-move productivity differences across firm types in the German context, and for the
cross-country differences with the U.S., given the U.S.’s superior ability to fund startups

through their more sophisticated (venture) capital markets.

1.2 Related Literature

My findings contribute to several areas of research. First, they add to the literature on
innovation output by individual knowledge workers. While most studies in this field focus
on factors such as financial and tax incentives (Bell et al. 2019a), teamwork (Jaravel et al.
2018) innovation clusters (e.g. Jaffe et al. 1993; Moretti 2021; Giroud et al. 2024), early
exposure to innovation (Bell et al. 2019b) and project funding (Azoulay et al. 2019), the
role of firms in driving inventor productivity has received limited attention, with only a few
exceptions (e.g., Akcigit and Goldschlag 2023; Di Addario and Wu 2024). In the Italian
context, Di Addario and Wu (2024) show that young workers’ initial patent filings correlate
positively with average firm wages, though this association weakens for experienced inventors.
Akcigit and Goldschlag (2023) examine firm size and age, documenting a decline in patent
output for established inventors moving to larger, older firms relative to young firms.
Rather than classifying firms by wage, size, or age, this study focuses on firms’ innovative
scale as measured by patent output. Measuring innovation directly through patent output
provides a clearer view of a firm’s innovation environment and the potential impact on its
inventors than other characteristics do. While many high-paying, large firms are not inno-

vation hubs, highly patent-active firms are typically highly innovative. My results show that
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large-scale innovative firms are positively associated with inventor productivity across both
early-career and mid-career inventors. Unlike Akcigit and Goldschlag (2023) or Di Addario
and Wu (2024), I propose an empirical identification strategy to isolate the causal effect of
highly innovative firms on inventor productivity.

Second, my findings contribute to the literature examining how firms affect innovation
within the broader economy. Recent research suggests that large incumbent firms may
suppress innovation through practices such as acquiring rival companies (Cunningham et al.
2021), poaching skilled innovation workers (Akcigit and Goldschlag 2023), lobbying (Akcigit
et al. 2023), engaging in strategic patenting (e.g., Shapiro 2003; Jaffe and Lerner 2004; Blind
et al. 2009), and operating with inefficient organizational structures (Kerr 2016). In contrast,
my results highlight that firms with high innovative scale, which are often large incumbents,
are critical environments for nurturing early-career inventors and are correlated with high
productivity among established inventors.

Third, my paper speaks to the literature on innovation and labor mobility. Labor mobility
is central to innovative activity because it enables the reallocation of human capital and the
diffusion of knowledge—both from firms to workers (through learning and training) and from
workers to firms (through job-to-job moves).

A foundational insight is that jobs differ in their learning content. Rosen (1972) formal-
izes a competitive “market for learning,” in which workers accept lower wages early in their
careers in exchange for steeper subsequent wage growth as they acquire skills through on-
the-job experience. Whether these skills translate into mobility depends on their portability.
Becker (1962) distinguishes general training, which raises productivity across firms, from
firm-specific training, whose returns are lost upon separation and therefore dampen mobil-
ity. More recent work refines the notion of portability by emphasizing that skill transfer
depends on the composition of tasks and their overlap across jobs (e.g., Lazaer 2009; Gath-
mann and Schénberg 2010). In the German inventor context, this perspective is particularly

relevant: early-career inventors—especially those on the apprenticeship track—often accept
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relatively low contemporaneous pay while accumulating practical, task-relevant skills that
later facilitate moves to higher-paying and more innovation-intensive firms.

Where the previous literature highlights within-firm skill formation, another strand fo-
cuses on the worker-to-firm direction: job moves carry knowledge from one firm to another.
Almeida and Kogut (1999) show that spillovers do not arise mechanically from colocation;
they emerge when inventors actually move across firms. Subsequent studies similarly em-
phasize that the extent of knowledge transfer depends on characteristics of both the moving
inventor and the hiring firm (e.g., Song et al. 2003; Palomeras and Melero 2010).

Consistent with these ideas, I document a life-cycle pattern in which inventors initially
move—often repeatedly—toward more innovative firms, where they accumulate capabilities
and are more likely to produce their first patent. Later in their careers, inventors more
frequently transition to less innovative firms, consistent with a greater role for knowledge
diffusion through mobility.

Firms actively manage the trade-off between developing inventors and retaining them.
Ma et al. (2023) show that firms can shape the portability of inventor knowledge through
project choice—for example, by selecting R&D projects that build more general versus more
firm-specific capabilities—thereby mitigating the risk of inventor departures to competitors.

This line of research connects naturally to work on restrictive labor covenants, such as
non-compete agreements (NCAs). Early contributions—often contrasting weak enforcement
in California with stricter enforcement elsewhere—argue that limited enforceability can foster
labor mobility, knowledge spillovers, and the emergence of innovation clusters (e.g., Saxenian
1994; Gilson 1999; Marx et al. 2009).

More recent work emphasizes that mobility restrictions involve a trade-off between invest-
ment incentives and talent reallocation. On the one hand, restrictions that reduce mobility
can raise firms’ willingness to invest in physical capital and other assets that are productive
only when paired with key employees’ know-how—for example specialized equipment, labs,

or proprietary processes—by mitigating hold-up concerns when key personnel can credibly
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be retained (e.g., Jeffers 2024). Conversely, when restrictions bind, they can impede firms’
ability to hire and reallocate inventive talent across firm boundaries. Chen et al. (2021)
show that firms may respond by substituting toward alternative legal mechanisms—such as
M&A—to access and retain talent when job-to-job mobility is constrained. They further
document higher post-acquisition retention where NCA enforceability is stronger, which co-
incides with higher post-deal profitability.

Although my paper does not study NCAs directly—both because the institutional setting
differs and because post-employment restrictions are less central in my data—the implica-
tions of tighter mobility frictions in Germany are theoretically ambiguous. On the one hand,
greater retention may strengthen firms’ incentives to invest in training (including apprentice-
ship programs, which account for a large share of post-secondary pathways in Germany). On
the other hand, restricting early-career mobility could impede the progression to innovation-
intensive firms that, in my setting, appears to be a key pathway into first-time inventorship.

Fourth, this paper relates to the literature on firm-level wage and productivity effects
surveyed by Card et al. (2018). Although my paper focuses on patent output rather than
wages, the underlying question is similar: how much of inventor output reflects inventor type
versus firm type.

One part of this literature—often described as “rent sharing”—studies how shocks to
firm productivity translate into wages. These studies typically track workers who remain
with the same employer and relate their wage changes to within-firm changes in productivity
(or rents), and to use instruments for firm productivity to address measurement error and
simultaneity. Across settings, this work finds that improvements in firm productivity tend
to raise wages, though the implied pass-through is generally modest (e.g., Van Reenen 1996;
Guiso et al. 2005; Card et al. 2014).

Another line of work, following Abowd et al. (1999), estimates two-way fixed effects
(“AKM”) models using matched employer-employee data. Identification comes from wage

changes of movers, which allow the researcher to separate persistent worker components from
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persistent firm components in wages. A robust finding across settings is that firm effects
account for a meaningful share of wage dispersion, alongside sorting of high-wage workers
into high-wage firms (e.g., Abowd et al. 2003; Card et al. 2013, 2018).

In the same spirit, using matched employer—inventor administrative data, this paper doc-
uments that—holding the inventor constant—an inventor’s patent output is strongly related
to the innovativeness of the employer. I further provide evidence consistent with a causal
interpretation: conditional on apprentice inventor characteristics, access to more innovative
employers increases subsequent inventive output, suggesting that firm environments shape
inventor productivity beyond sorting alone.

Lastly, this paper contributes to the literature on the persistent effects of career starts,
which shows that where, when, and how individuals begin their careers can significantly
influence long-run career outcomes (e.g., Ryan 2001; Kletzer and Fairlie 2003; von Wachter
and Bender 2006). For example, graduating during a recession can have lasting effects on
future earnings, job mobility, and employer characteristics (e.g., Oreopoulos et al. 2012;
von Wachter 2020), while early-career layoffs from large establishments can similarly impact
long-term outcomes (von Wachter and Bender 2006). Moreover, the type of firm where indi-
viduals start their careers has significant long-term impacts. Using an instrumental-variable
approach, Arellano-Bover (2024) shows that starting at a larger firm significantly and persis-
tently increases lifetime income. My analysis shows that starting at highly innovative firms
(which are often large) is associated with higher long-term inventor output. By exploiting
the geographic constraints faced by German apprentices, I demonstrate that at least part of

this relationship appears to be causal.

1.3 Data

In this section, I first describe my data sources and sample selection. I then define key

variables and present summary statistics.
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1.3.1 Data Sources

My primary data source is the Linked Inventor Biography Data, developed by the Institute
of Employment Research (IAB) and the Max Planck Institute for Innovation and Competi-
tion. This dataset integrates inventor and patent information from patent registry data with
administrative labour market data on individuals and their employers®. The sampling frame
for the data includes all inventors residing in Germany who are covered by social security®
and who are listed in the PATSTAT data on patent applications filed with the European
Patent Office between 1999 and 2011. The patent and employment histories of these in-
ventors are tracked from 1980 to 2014. The data are anonymized, preventing the retrieval
of additional information on individual inventors, firms, or patents. However, the dataset
already provides extensive details, including patent-specific information such as filing dates,
co-inventors, technology fields, and forward citations. It also includes firm-level data on
industry classification, employee count, wage structure, and firm age, as well as county-level
location data. Inventor-specific information covers age, gender, and education.

The second data source is regional data from the German Federal and State Statistical
Offices, providing county-level metrics such as GDP, population, and area. Due to extensive
redistricting over the past 30 years, particularly following German reunification, county-level
information in the IAB data is aligned with district boundaries as of 2016. Accordingly, all
county-level data are sourced for that year to ensure consistency.

The third data source is industry-level revenue and investment data from the OECD Ana-
lytical Business Enterprise Research and Development (ANBERD) database, which includes
information on industry-wide revenue, investment, and R&D expenditures. Industries in this
dataset are classified according to the International Standard Industrial Classification of All

Economic Activities (ISIC), while the IAB data uses the German Classification of Economic

8Throughout this paper, I will use the terms establishments and firms interchangeably. Even though
for many applications these two entities are by no means the same, most innovative activities and R&D
takes place at the firms’ headquarters which provides a good enough approximation for those overall firm
characteristics that this paper aims to study.

9This group excludes students, self-employed persons, freelancers, and civil servants.
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Activities ("Klassifikation der Wirtschaftszweige”)!®. The appendix outlines the process of

matching and reconciling these two classification schemes.

1.3.2 Variable Definitions and Summary Statistics

General Firm Characteristics. Throughout the paper, I use firm age, firm size and the
average imputed and deflated firm wage as my main control variables. Firm Age is the
difference between the year the firm was first recorded in federal employment records and
the current period. Firm Size is the total number of employees, and Firm Wage is the
deflated mean imputed wage of all full-time employees in 2015 euros.

Apprentices/Trainees. 1 define ”apprentices” broadly to encompass a range of early-
career starters in Germany who may undergo similar forms of vocational training, even
if formal labour laws classify them differently. Individuals qualify as apprentices if they
meet one of two criteria: (1) they hold a school-leaving qualification that does not permit
university study (“Haupt-/Realschulabschluss”) and begin their first job at age 18 or younger,
or (2) they hold a qualification allowing university study (“Abitur”) and begin their career
by age 22 or younger (which would make it extremely unlikely that these students had
gone to university). These age thresholds are based on typical educational pathways in
Germany. Parents generally choose to start their child in school at either six or seven years
old. Students can complete either 10 years or 13 years of schooling, with an additional
possibility of repeating a grade, which is not uncommon in the German school system. For
example, a student who starts school at seven and repeats a grade would be 18 years old
after 10 years of schooling and 21 years old after 13 years. Moreover, during the period
covered by the sample, young men deemed medically fit were required to complete a year of
compulsory military service after school, which often delayed career starts.

Firm Patent Output. The variable Firm Patents measures the total number of distinct

annual patent filings generated by all inventors in a firm during each year from 1999 to 2011,

10Statistisches Bundesamt (2025)
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the defined sampling frame. The restriction to 1999-2011 ensures an unbiased representation
of firms’ patent output. Although patent records exist for earlier years, data coverage is
limited before 1999 because it only includes inventors who patent both before and during
the 1999-2011 period. This constraint means that for years prior to 1999, some firms’ patent
output is underrepresented, as it excludes inventors who patented only prior to this period
and did not continue patenting thereafter.

Innovative Scale of Firms. For each year, I classify firms into categories based on their
patent output in that year to define their innovative scale. Firms with zero patents are
grouped into Q0. Among firms with positive patent output, I first categorize them into
quartiles: Q1 represents firms in the first quartile of patenting firms, Q2 represents those
in the second quartile, and Q3 includes firms in the third quartile. To capture potential
nonlinear effects of innovative scale, I further subdivide the fourth quartile: firms inside the
75th to 95th percentile are classified as Q4*-firms, those inside the 95th and 99th percentile
as P95-firms, and firms in the top percentile as P100-firms.

As an additional robustness check, I also categorize firms based on (a) the sum of their
current patent output and that of the prior year, and (b) the sum of their current output
plus outputs from both one and two years prior. Neither approach materially affects the
results.

Summary Statistics. Table A.1 presents descriptive statistics for inventor characteristics.
The full sample consists of 11,169 inventors whose career start falls between 1999 and 2011.
The average number of patents for an inventor is 5.4 but the distribution is skewed—the
median is only 2. Inventors are, on average, in the sample for 12.8 years and have 3.3 jobs.

The sample includes a total of 26,885 firms. Table A.2 illustrates that, while yearly
patent output differences across firms in the lower quartiles are relatively modest, there is a
large disparity at the higher end, particularly among Q4* firms and above. Table A.3 further
reveals that even modest differences in patent output among lower quartiles are associated

with meaningful distinctions in firm characteristics such as size, age, and average wage. For
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instance, in 2001, firms in the Zero-Patent category are considerably smaller; the median
Zero-Patent firm is less than half the size of the median Q1-firm. Additionally, the median
Q2-firm is over 50% larger than the median Q1-firm. These size disparities highlight how
varying levels of patent activity correlate with substantial structural differences in firms,

even within the lower end of the innovative scale spectrum.

1.4 Inventor Career Starts

In this section, I first describe the types of firms inventors join when they enter the labour
market, where they begin patenting, and the firms they move to. I then show how inventors’
career characteristics differ based on the innovative scale of their first employer. Next, I
demonstrate that starting and/or moving to firms with higher innovative scale is positively
associated with early-career individual productivity. Using plausibly exogenous variation in
access to large-scale firms, I demonstrate that this relationship is at least partially causal.

Finally, I briefly explore potential mechanisms underlying this relationship.

1.4.1 Innovative Firms and Inventor Career Starts

Innovation in Germany is highly concentrated, mirroring patterns seen in countries like the
U.S. and Italy (Akcigit and Goldschlag 2023; Di Addario and Wu 2024). For instance,
Figure A.1 shows that the top one percent of firms by innovative scale (measured by total
yearly patent output) accounted for over one-third of all patent filings in 2001, while the top
5% produced over 55%. These patterns are similar for the years 2006 and 2011.

Table A.4 further shows that more than 22% of prospective inventors entering the labour
market in 2001 started at firms above the 95th percentile of patent output, and more than
40% began at firms above the 75th percentile. Conversely, around 44% of inventors joined
firms with no patent activity at their time of entry.

Finally, Table A.4 also shows that most inventors do not file for their first patent in their
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first job. Instead, many inventors transition to more innovative firms before their first filing.
While only 22% of inventors start at firms above the 95th percentile of innovative scale, 40%
of inventors apply for their first patent at such firms. Similarly, 40% of inventors start at
firms above the 75th percentile of innovative scale with 65% of inventors creating their first
patent at these firms. Table A.5 shows that even 60% of inventors who start at firms with
the lowest innovative scale eventually move to firms in the 75th percentile or above to file
for their first patent. By contrast, over 80% of those inventors who begin their careers at
firms above the 75th percentile in innovative scale remain there until their first patent filing.

Table A.6, however, shows that, once inventors start patenting a notable share eventually
transitions to firms with lower innovative scale. More than 40% of inventors who have filed
for their first patent at firms above the 95th percentile of innovative scale later move to firms
below the 75th percentile. These findings contrast with Akeigit and Goldschlag (2023), who
argue that in the U.S., large incumbent firms poach successful inventors from smaller, younger
firms. In Germany, however, large innovative firms primarily recruit prospective inventors
who have not yet patented. This suggests two interpretations of the role large firms play: in
the U.S., they may drain smaller firms of experienced innovative talent, whereas in Germany,

they may help develop innovative talent into inventors who later transition to smaller firms.

1.4.2 Inventor Careers by Innovative Scale of First Employer

Table A.7 shows that inventors’ career trajectories depend on the innovative scale of the firm
they start at. For instance, inventors who begin at Q0-firms (those with the lowest innovative
scale) average 3.3 jobs and 7.6 years before creating their first patent. In contrast, inventors
starting at P95*- or P100-firms (those in the 95th—99th and top percentiles of innovative
scale) take only 5.3 and 4.7 years, and 1.8 and 1.7 jobs, respectively, to achieve their first
patent.

Within the first decade of their careers, inventors who began at P95*- or P100-firms

typically hold around 2.6 jobs on average, while those starting at QO0-firms average almost
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4 jobs. This links back to the earlier observation that inventors from lower-scale firms often
transition before they apply for their first patent. Interestingly, once inventors reach the
firm where they file for their first patent, the time spent there before creating the patent is
similar across all groups. For example, those initially at QO-firms take about 2.2 years, while
those from P100-firms take around 2.1 years.

These results suggest two possible explanations: Inventors from QO-firms may have in-
herently lower productivity, resulting in them being selected by lower-scale firms that often
pay lower wages (see Table A.3) and them requiring more job transitions and more time to
reach their first patent. Alternatively, differences in productivity may be less about individ-
ual ability and more about the environment, where large-scale innovative firms may provide
a superior setting that fosters first-time inventors. Omnce in this conducive environment,
inventors take about the same time to produce their initial patent.

The innovative scale of an inventor’s first firm is strongly linked to their ten-year career
productivity. For example, inventors who start at QO-firms average about 3 patents within
their first decade, while those beginning at Q3-firms produce around 4.4 patents, and those
starting at P100-firms achieve 7.5 patents on average. The next subsection will delve deeper

into this productivity gap.

1.4.3 Innovation Output by Innovative Scale of First Employer

In this subsection I analyse the relationship between early—career patent output and the
innovativeness of an inventor’s first employer, measured by its total patent output in the
year in which the prospective inventor joins the firm. I estimate the following Poisson

regression of inventors’ n-year early—career patent or citation output:

6
E[yijtn | } = exp (5071 + Z 5(171 X thq + X;'tA + Z;t‘IJ + T’) . (11)

q=1

The n-year cumulative patent count of inventor ¢ starting her career at firm j in calendar
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year t is denoted by yijimn. Qjiq is a set of dummy variables for the firm’s innovative scale in
the hire year ¢. Specifically, Q;1-@ji3 are dummies that equal 1 if the firm falls within the
first, second, or third quartile of patent output (i.e., Q1-, Q2—, or Q3-firms). Qju4 equals 1 if
the firm is in the 75th-95th percentile (Q4*firm), while Qi and Q6 equal 1 if the firm is
in the 95th-99th percentile range or the top percentile (P95*— and P100-firms), respectively.
The dummy for non-patenting firms (Q0) is omitted.!'! The coefficients of interest, f,,, can
be interpreted as semi-elasticities: they give the percent change in the conditional mean
relative to QO for bin q.

Firm controls xj; include firm age, the natural logarithm of the number of employees,
and the natural logarithm of average firm wage. Inventor controls z; include inventor age
and level of education. Lastly, I include a set of fixed effects—hire-year, industry, and
state—collected in the vector 7.

These covariates control for much of the heterogeneity in early patenting. For instance,
ability differences between inventors may already be reflected in their educational choices,
while industry and state fixed effects account for regional productivity differences and vari-
ations in patenting across industries. Yet it is difficult to rule out the omission of other
confounding variables, and thus the resulting estimates should not be interpreted as causal.

Table A.8 shows the coefficients for Equation (1.1), revealing a strong and convex rela-
tionship between firm innovative scale and inventor productivity. Inventors who begin at
Q4*-firms produce 45% more patents in their first 8 years and 36% more in their first 10
years compared to those starting at QO0-firms. The effect is even larger for inventors at P95*-
and P100-firms, where productivity is 59% and 92% higher after 8 years, and 50% and 77%
higher after 10 years, respectively. In contrast, inventors starting at Q1- and Q2-firms do
not produce significantly more patents over 10 years than those starting at QO-firms.

Firm innovative scale correlates not only with the quantity but also with the quality of

individual output, as measured by 4-year citation counts. Inventors starting at Q4*-firms

HThese are conditional quartiles, i.e., the bins are formed conditional on firms with positive patent output.
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achieve 38% more citations in the first 8 years and 30% more in the first 10 years relative to
those at QO-firms. This quality difference is again larger for inventors at P95*- and P100-
firms, who have 57% and 90% more citations after 8 years, and 50% and 83% more after 10
years, respectively.

At this point, it is difficult to discern whether large-scale innovative firms primarily act
as talent selectors or productivity enhancers. However, given the strong correlation between
innovative scale and individual inventor productivity, the analysis indicates that these firms

are effective in fulfilling at least one of these roles.

1.4.4 Job Moves before the First Patent

To further explore the relationship between firms’ innovative scale and inventor productivity,
I expand the analysis beyond an inventor’s first employer to include their employment history
up to the firm where they file for their first patent. Specifically, the focus is on two milestones:
the inventor’s initial employer and the employer at which they apply for their first patent.
For tractability, I group firms into three categories: small- to medium-scale innovative
firms (SM: Q0-Q3), large-scale innovative firms (L: Q4*), and mega innovative firms (XL:
P95*, P100). Let © = {SM, L, XL}. Let S; € © denote the type of inventor i’s starting firm
(in hire year t), and let P; € © denote the type of the firm where inventor ¢ files the first

patent. Define the pair indicator
Digy =1{Si=qANP,=¢}, (q,4) € © x ©.
I estimate the following Poisson model for the n-year cumulative output:

E[yitn | -] = exp (50n + E Bug'n Digy + XA + 2,0 + n). (1.2)
(¢,4)€O%O
(g,4")#(SM,SM)

Here y;,, is the n-year cumulative patent count of inventor ¢ (from the hire year t). The
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vector x4 collects firm-type-by-year controls for the inventor’s starting type s = S; in year
t (e.g., firm age, log employees, log average wage), and z; contains inventor controls (e.g.,
age, education). The vector  bundles fixed effects (hire-year, industry, state) that absorb
broad time, sectoral, and regional heterogeneity. The baseline pair (SM, SM) is omitted, so
each 3,4, compares the conditional mean to SM—SM. As in the first-employer specification,
the S,y can be interpreted as semi-elasticities relative to the SM—SM baseline.

Table A.9 presents the regression coefficients for Equation (1.2). Regardless of the inno-
vative scale of an inventor’s first employer, moving to large-scale or mega firms (i.e., L- or
XL-firms) before applying for one’s first patent is associated with significantly higher subse-
quent productivity over 10 years. For instance, inventors who start at SM-firms but create
their first patent at L-firms have a 30% higher patent output and 40% higher citations than
those who start and patent at SM-firms. The difference is even larger for those who move
from SM- to XL-firms. These innovators have 88% higher patent output and 105% higher
citations over 10 years.

In contrast, inventors starting their careers at XL-firms but moving to SM-firms to create
their first patent do not have a higher productivity than those who began their careers and
created their first patent at SM-firms.

Interpreting these results causally is challenging because job moves are likely endogenous.
For instance, there may be initial mismatches. Some high-ability inventors may start at SM-
firms, while some lower-ability inventors may initially secure positions at XL-firms. Over
the first few career years, these inventors may switch jobs to better align with their abilities,
resulting in high-ability inventors working at XL-firms and lower-ability ones at SM-firms
by the time they file for their first patent.

However, this still raises the question: Why do most inventors move to at least large-scale
(L) firms to create their first patent? If high-ability inventors who begin at SM-firms are
indeed highly talented, why can’t they produce their first patent at SM-firms before moving

to larger firms? After all, many SM-firms are also patenting, albeit at a smaller scale.
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Before presenting causal evidence, I first briefly explore why and how innovative scale
could affect individual inventor productivity. I do so by focusing on a specific mechanism:

knowledge transfer.

1.4.5 Mechanism: Knowledge Transfer

This subsection examines two channels through which firm innovative scale may affect inno-
vation—collaboration and innovation clusters—both of which derive their value from knowl-
edge exchange between inventors.

While positive assortative matching between high-quality inventors and firms could me-
chanically explain the correlation between inventor output and firm quality, knowledge ex-
change—within firms or across firms in clusters—offers an alternative mechanism through
which firms may influence innovation production (e.g., Akcigit et al. 2018; Jaravel et al.

2018; Moretti 2021).

Collaboration. Let colabs;j, denote the total number of distinct collaborators inventor 4
works with during the first n years of her career, starting in hire year ¢ at firm 5. I estimate

the following Poisson model for the conditional mean number of collaborators:

6
E[colabs;jiy | -] = exp (ﬁOn + Z Ban Qjtq + X;tA +z, U+ 77) . (1.3)
g=1
Here Qji, are dummies for the firm’s innovative-scale bin in hire year ¢ (Q1-Q3, Q4*, P95*,
P100; QO omitted), x;; and z; are firm and inventor controls, and n collects fixed effects
(hire-year, industry, state). The §,, can be read as semi-elasticities relative to QO.

The categories for innovative scale and the control variables are defined as in Equa-
tion (1.1). Table A.10 shows that inventors who start at larger-scale innovative firms have
significantly more collaborators than those at the lowest-scale (QO) firms. For instance,
starting at a Q3-firm is associated with a 28% higher number of collaborators over 10 years

compared to starting at a QO-firm. This effect is even stronger at higher levels: inventors at
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Q5-firms have 42% more collaborators, while those at Q6-firms have 71% more.

While this correlation could stem from either firm-facilitated team formation or the nat-
ural tendency of high-ability inventors to work in teams (assortative matching), both mech-
anisms imply value creation. Even if firms simply serve as meeting points where high-skilled
inventors—who may have a greater preference for collaboration—can connect with minimal

friction, this alone could be useful.

Innovation Clusters. While firms may be the primary locus for idea exchange, innovation
clusters are arguably a close second. This raises the question of whether proximity to inno-
vation alone, rather than employment in a highly innovative firm, is associated with higher
productivity for young inventors.

To shed light on this question, I categorize German counties into innovation—cluster coun-
ties (“IC counties”) and non—innovation—cluster counties (“Non-IC counties”). IC counties
host at least two firms in the top percentile of patent output (“star firms”), while non-1C

counties do not. I then estimate the following Poisson regression:
Eyijen | ] = eXp(ﬁon + Bin 1C; + Pon SF + B3 (SE; x IC;) + X}tA + 25, ¥ + ”7) . (14)

As before, y;ji, denotes the n-year cumulative patent count of inventor i starting her
career at firm j in calendar year t. The dummy IC; equals 1 if inventor ¢ starts her career in
an innovation—cluster county, while the dummy SF} equals 1 if she starts at a “star firm.”
Inventor controls z;; and firm controls x;; are defined as in earlier specifications. Finally, n
collects fixed effects—hire-year, industry, and state—that absorb broad time, sectoral, and
regional heterogeneity.

Table A.11 presents the regression coefficients for Equation (1.4). Consistent with the
previous analysis, starting at a star firm is associated with approximately 36% higher patent
output in the first 10 years of an inventor’s career compared to those who do not start at

a star firm. In contrast, starting in an IC county without joining a star firm does not yield
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significantly different productivity outcomes compared to starting in a non-IC county.

This may appear counterintuitive, as prior studies (e.g., Jaffe et al. 1993; Moretti 2021;
Atkin et al. 2022; Giroud et al. 2024) suggest that innovation clusters boost inventor produc-
tivity. However, these studies do not consider career stages, and early-career inventors may,
for example, require structured training more than access to freely circulating ideas. The
latter is arguably more valuable to seasoned inventors. Moreover, if training is key, firms
within clusters but outside the star category may hesitate to invest in training for young
inventors, fearing poaching by star firms. In contrast, more productive star firms, with their
higher wages, can likely retain the talent they invest in, making human capital investments

for these firms more profitable.

1.4.6 Causal Evidence

This subsection moves toward a causal interpretation of the positive relationship between
firms with large innovative scale and early-career inventor output by focusing on geographi-
cally constrained career starters.

Ideally, inventors would be randomly assigned to firms,'? allowing us to observe if those
at highly innovative firms demonstrate higher patent output than those at less innovative
firms do, though this is infeasible.

Instead, I examine a group of career starters—trainees—who are quasi-randomly assigned
to counties and generally do not relocate. I use cross-county differences in the presence of
star firms (i.e., firms that are in the top percentile of patent output) as an exogenous source
of variation in the access to these firms. Within counties, I expect there to be endogenous
matching, with high-ability trainees more likely to join the best firms. However, not all
counties have star firms. In these counties, the top local firms do not reach the innovative
scale of star firms like Volkswagen or BASF, constraining the opportunity set of trainees.

Under the assumption that the presence of star firms is the only channel through which

12Technically, even this might have the issue that innovative scale might be correlated with other firm
unobservables. In fact, ideally, inventors and innovative scale should be randomly assigned to firms.
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star counties (i.e., counties with at least one star firm) enhance trainee productivity, a
positive relationship between such counties and trainee productivity would suggest a causal
effect of highly innovative firms.

Apprenticeship System in Germany. In Germany, high school graduates can choose be-
tween entering the labor market directly, attending university, or pursuing an apprenticeship
program. Students opting for apprenticeships are legally permitted to leave high school as
early as age 15, and many do so.

Apprenticeships constitute a cornerstone of the German education system. In fact, they
represent the most popular form of post-secondary education, with more than 50% of the
population having completed an apprenticeship!?.

The German apprenticeship system is often characterized as a ”dual system” because it
combines two core components over a multi-year period'#. First, apprentices receive hands-
on training and work experience within firms, typically 3-4 days per week. Second, they
attend classes at public vocational schools 1-2 days per week.

Both components—firm-based training and vocational schooling—are highly regulated.
Curricula and required skills for both settings are determined through consensus among
unions, employer associations, chambers of industry, works councils, and state ministries of
education. Additionally, training standards for over 400 professions are codified in law.

Not all firms are authorized to offer apprenticeship programs. To qualify, firms must meet
numerous standards and employ specially certified instructors known as Meister ("masters
of a trade”). These instructors themselves must complete additional multi-year training and
accumulate substantial work experience beyond their own apprenticeships before earning
the right to train apprentices. Compliance with these regulations is actively monitored and
enforced by both local chambers of commerce and state education ministries in firms and
vocational schools alike. The historical rationale for such stringent oversight was to ensure

that apprentices acquire broadly marketable skills applicable across many firms, rather than

13Destatis (2025)
4 The following discussion relies heavily on work by Franz and Soskice (1994).
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merely firm-specific competencies.

While the curriculum and standards are strictly prescribed, firms retain considerable
flexibility in how they implement the required training. Some provide primarily on-the-job
training, while others maintain dedicated training facilities focused exclusively on developing
apprentice skills. Thus, the delivery of training varies with firm heterogeneity:.

Finally, given firms’ substantial investment in apprentice education—with no guarantee
that apprentices will remain after program completion—apprentices receive only very modest
wages during their training period despite their often considerable labor contributions.

Apprentice Inventors. Apprenticeships are prevalent not only in the general population
but also among inventors in my sample. Table A.12 shows that 27% of all inventors and 9%
of star inventors have apprenticeship backgrounds. However, this share varies considerably
across technology fields: in Chemistry and Pharmaceuticals, 19% of all inventors and 4% of
star inventors completed apprenticeships, while in Civil Engineering and Mechanical Engi-
neering (a key driver of Germany’s automotive industry), over 30% of all inventors and up
to 16% of star inventors began as apprentices.

Selection into Apprenticeship Programmes. The current analysis is conditional on en-
tering an apprenticeship program. In a rational choice framework, the presence of highly
innovative star firms in a county may influence both the decision to enter an apprenticeship
and the choice of field among those who do. For instance, academically strong high school
students who might otherwise attend university could opt for apprenticeships instead, or
students already planning apprenticeships might choose technical fields (e.g., chemical or
mechanical engineering) over service fields (e.g., banking). Consequently, the effect T mea-
sure likely reflects a combination of two mechanisms: a pure training effect, where appren-
tices receive superior instruction conditional on program entry, and a selection effect, where
higher-ability individuals are attracted to apprenticeships in counties with star firms. Im-
portantly, even if selection plays a role, this still represents a causal impact of star firms on

regional innovation capacity.
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Location Constraints of Apprentices. Given their young age and low wages, it is perhaps
unsurprising that the vast majority of trainees remain in their county of high school gradu-
ation, often even staying in their parental homes. Surveys indicate that up to 96% of high
school graduates are unwilling to relocate, with over 80% unwilling to commute more than
12.5 miles,'® even within their county, for an apprenticeship.

Location and Apprentice Ability. The location of trainee career starters is likely to be
determined by the location preferences of their parents rather than by their innate abil-
ity. However, it remains possible that certain regions produce higher-quality human capi-
tal through, for instance, superior formal education—either via better secondary schools or
higher-quality public vocational training schools during apprenticeships. If true, any positive
correlation between star counties and inventor productivity could simply reflect knowledge
acquired outside the firm rather than within it.

This concern is mitigated by several institutional features of the German education sys-
tem. Unlike in the U.S., German secondary education is highly uniform: over 95% of students
attended public schools during the sample period, with minor curricular differences existing
only at the state level. These state-level variations are absorbed by state fixed effects in my
empirical specification.

Similarly, as discussed earlier, vocational schools must adhere to a strict, centrally man-
dated curriculum that is tightly supervised by state education ministries. While monitoring
intensity may vary across states, it is uniform within states. Again, any across-state variation
is captured by state fixed effects.

That said, overall apprenticeship quality may still vary by region because a substantial
portion of training occurs within firms, and firms retain flexibility in how they deliver the
mandated curriculum. Crucially, this variation need not threaten identification. If, for
example, certain counties that host star firms offer superior apprenticeships because the

firm-based component at these star firms is of higher quality, then this is precisely part of

15Bundesinstitut fiir Berufsbildung (2018).
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the treatment effect I aim to measure.

Star firms might also influence apprenticeship quality indirectly through spillover effects
on the local training ecosystem. For example, a star firm could donate resources to the local
public vocational school, or competing firms in the region might enhance their own appren-
ticeship programs to attract trainees who might otherwise join the star firm. While I find
no anecdotal evidence of direct subsidies to vocational schools, and data limitations prevent
me from testing for competitive upgrading effects, such mechanisms—if present—would still
constitute genuine treatment effects of star firms, albeit operating through channels beyond
the firm’s own training program.

Finally, and more broadly, local socioeconomic conditions might also influence inventor
ability. For instance, wealthier counties may attract high-ability individuals who then have
high-ability children, creating a potentially spurious positive relationship between inventor
output and star county status. To address this concern, I include the logarithm of county-
level GDP per capita as a control variable to account for wealth disparities across counties.

Mowers. Finally, it is important to acknowledge the possibility that some trainees may
leave their county of origin. A related concern is that those who move are precisely the
individuals who are likely to become inventors. While I cannot entirely dismiss this pos-
sibility, I conduct the same analysis excluding the 33% smallest counties. The rationale is
that in larger counties, the costs and challenges associated with relocating or commuting are
heightened due to the increased distance from parental resources. Consequently, trainees in
these larger counties are expected to be even less likely to move.

Empirical Strategy. 1 classify counties into star and non-star counties based on their
number of star firms as described above. I then investigate whether apprentices starting
their careers in star counties experience higher future patent productivity by estimating the

following Poisson regression:

E[yictn | ] - eXp(ﬁOn + ﬁlnSCc + Zflzt\Il + T’) (15)
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Here, y;.n denotes the n-year cumulative patent applications of inventor i starting her
career in county c in calendar year t. The dummy SC. equals 1 if inventor ¢ starts her career
in a star county. Inventor controls, along with state, industry, and hire-year fixed effects,
are defined as in previous specifications.

Table A.13 presents the regression coefficients for this specification. Trainees starting
in a star county have more than 20% higher patent output in the first eight years of their
careers and more than 15% higher output after ten years. Restricting the analysis to larger
counties to further reduce the likelihood of inventors switching counties yields even stronger
results: inventors starting in star counties experience a 30% higher patent output after 8
years and a 24% higher output after 10 years.

Importantly, these effects represent the productivity premium of star counties for the
average inventor. However, innovation and technological progress is often driven by only a
small set of individuals. Thus, to explore the productivity differences between high-ability
inventors in star and non-star counties, I rerun the analysis but restrict the sample to the
ex post 200 most productive inventors (“star inventors”) in star and non-star counties and
compare their patent output.

Table A.14 reports the results. They are consistent with prior patterns, though the
differences are more pronounced: star inventors in star counties exhibit 70% higher patent
output after eight years and 60% higher output after ten years than their counterparts in
non-star counties do.

These findings suggest that the relationship between the innovative scale of firms and
individual inventor productivity has a causal component. They also raise the question how
much innovative potential is lost by limited access to the right kind of firms early in an

inventor’s career.
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1.5 Mid-Career Inventor Productivity

This section examines whether the positive relationship between a firm’s innovative scale and
individual inventor productivity extends into an inventor’s later career by analysing job-to-
job transitions among experienced inventors. First, I show that inventors moving to larger-
scale innovative firms exhibit higher productivity than those transitioning to smaller-scale
firms. I then explore whether differential access to financing between large- and small-scale

firms could help explain this productivity gap.

1.5.1 Mid-Career Job Moves and Inventor Productivity

The conditions that foster productivity for early-career inventors may differ significantly
from those for seasoned inventors. FEarly in their careers, factors like technical training,
mentorship, and access to a broad network of collaborators may play a primary role in
driving productivity. Large-scale innovative firms, with their larger R&D teams and capacity
to distribute training costs (e.g., Lynch and Black 1998; Knott and Vieregger 2020), may
be better positioned to provide these resources. In contrast, established inventors are likely
to have already mastered essential skills and built extensive co-inventor networks, possibly
across multiple firms. For them, productivity may be hindered by the bureaucracy and
internal politics typical of larger-scale firms. Alternatively, large-scale innovative firms could
continue to enhance productivity at any career stage due to their superior ability to offer
access to costly equipment and other resources.

To estimate the difference in patent output between experienced inventors at large-scale
and small-scale innovative firms, I use the matched event-study framework proposed by
Akcigit and Goldschlag (2023) who, using U.S. data, study the productivity differences of
matched inventors after having been hired by either incumbent (i.e., a firm with a large
number of employees that is also old) or young firms.

Following their approach, for each year I identify hire events of inventors and differentiate
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between those moving to firms with an innovative scale in the fourth quartile and those
moving to firms below the fourth quartile. I then create an annual panel of these inventors’
patent output four years before and four years after the hire event. To identify close matches
between inventors moving to large-scale firms and those moving to small-scale firms, I create
patent tertiles for each year preceding the hire event. I then match inventor pairs based on
the closest patent output for each year in the pre-hire period, as well as on age, education,
industry, and hire-year.

To estimate the post-move difference in inventor productivity between those inventors
joining high-scale innovative firms and those joining small-scale ones, I estimate the following

equation of patent output, y;., for inventor 7, hire event e and hire year ¢:

4 4
Yite = Ot Z Aj D(7)ite+51 LargeScale;+ Z nj D(J)ite X LargeScale;,+0,;+vi+10i+Eite.
j=—4,j#-1 j=—4,j#-1
(1.6)
In this setup, LargeScale,, is an indicator variable equal to one if the inventor transitions
to a firm with innovative scale in the top quartile. D(j);. is a dummy representing relative
event time, while d;, v, and ¢; are industry, hire-year, and inventor fixed effects, respectively.
The coefficient of interest, n;, captures the post-move difference in patent output between
inventors hired by large-scale innovative firms and their counterparts hired by low-scale
innovative firms.
Figure A.2 presents the coefficient estimates for 7n;, showing that inventors who move
to firms with a high innovative scale demonstrate significantly higher productivity after the
hire event compared to those joining lower-scale firms. Specifically, each year post-move,
hires at large-scale firms produce nearly a quarter more patents than their counterparts at
smaller-scale firms. This absolute productivity delta is nearly twice as large as the difference
found by Akcigit and Goldschlag (2023), who compare inventors at incumbent firms (defined
as > 1000 employees, firm age > 20 years) to those at young firms (firm age < 5 years).

Furthermore, Akcigit and Goldschlag (2023) document a negative relationship between post-
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move productivity and employment at incumbent firms relative to young firms.

Although Akcigit and Goldschlag (2023) categorize firms by size and age rather than
innovative scale, as we have seen before (Table A.3), firms in the top innovative quartile also
tend to be larger and older on average. Given this overlap, it is somewhat surprising that
the productivity effects in my analysis run counter to theirs. To test this further, I rerun
the event study using Akcigit and Goldschlag’s exact firm categories. Figure A.3 shows
the resulting estimates for ;. This time, the magnitude of my coefficients closely matches
theirs; however, in my sample, inventor productivity following a move is higher, not lower,

at incumbent firms compared to young firms.

1.5.2 Event Study with Financial Constraints

There are potentially several factors that could explain why inventors are (1) more productive
at large (innovative) firms in Germany but (2) less productive at large firms in the U.S. One
such mechanism that would be consistent with both patterns is related to the ability of small-
scale innovative firms to finance R&D. R&D funding is inherently difficult to secure due to
the risky, non-collateralizable nature of research activities, and small firms with limited cash
flow often encounter additional barriers. However, small-scale innovative firms in the U.S.
may have better access to financing through more developed (venture) capital markets (Hege
et al. 2009), which could support their ability to foster inventor productivity.

To explore this further, I rank industries by their investment-to-revenue ratio, classify-
ing those above the median as high-collateral industries and those below as low-collateral
industries. Using the actual level of fixed assets would be preferable, but this data was
unavailable. However, in robustness tests focusing on a random subset of firms in these
industries and using hand-collected firm-level financial data, I find a strong correlation be-
tween wnvestment in fixed assets and levels of fixed assets, supporting the validity of this
proxy. The core assumption here is that firms with a higher fixed-asset-to-revenue ratio can

offer more collateral, making it easier for them to secure financing for R&D.
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I then adjust the previous event-study framework by including the dummy variable
LoCol;., which is set to 1 if the inventor is employed in a low-collateral industry and to
0 otherwise. Specifically, I now compare the productivity differential for inventors joining
large-scale innovative firms versus smaller-scale firms within low-collateral industries (rela-
tive to high-collateral industries) following a hire event by estimating the coefficient ¥, in

the following regression:

4
Yite = @+ Z ;i D(§)ite + P1 LargeScale;, + 2 LoCol;.
j=—4,j#-1

4
+ Z nj D(j)ite X LargeScale;,

4
+ Y 0;D(j)ie x LoCol

j=—4,j# 1

4
+ Z Y D(j)ite X LargeScale;, x LoCol;,

j=—4, j#—1
+ 05 4 Vi + Vi + e

Figure A.4 shows that, post-move, productivity differences at large-scale innovative firms
versus smaller-scale firms correspond to up to 0.085 additional patents per year in low-
collateral industries (relative to high-collateral industries). Rerunning the analysis with
post-move event dummies collapsed into a single coefficient confirms both the magnitude
and statistical significance of the effect.

As an additional robustness check, I examine whether the scale-productivity relationship
varies with industries’ dependence on external finance. Following Rajan and Zingales (1998),
I classify industries by their reliance on external financing to proxy for financial constraints'®.

The intuition is that smaller firms face greater difficulties accessing external capital mar-
kets, e.g., due to information asymmetries and higher fixed costs of financing (e.g., Altinkilig

and Hansen 2000; Hadlock and Pierce 2010). In industries with high external finance depen-

6 Following Rajan and Zingales (1998), I assume that technological differences in industries’ demand for
external finance, measured using U.S. data, persist across countries.
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dence, these frictions may be particularly binding, limiting smaller firms’ ability to make the
complementary investments in equipment, laboratories, and other research inputs necessary
for inventor productivity. By contrast, in industries that generate sufficient internal cash
flows, the financing advantage of larger firms should be less pronounced.

I rank industries by their external finance dependence—defined as the difference between
investments and cash flow from operations—and classify industries above the median as
having high external finance dependence (HiEztDep)'”. Equation (1.8) replaces LoCol;.

with HiExtDep;. while maintaining the same interaction structure as Equation (1.7):

4
Yite = QO + Z N D(7)ite + B1 LargeScale;, + 2 HiExtDep;,

j=—4,j# 1

+ Z nj D(J)ite X LargeScale;,

T Z 0; D(j)ite x HiExtDep;, (1.8)

+ Z ¥ D(j)ite % LargeScale;, x HiExtDep;,

+ 05 + Y+ Ui + Eite.

Figure A.5 summarises the results. The productivity differential between movers to large-
scale versus small-scale innovative firms is between 0.148 to 0.388 additional patents per year
larger in high external finance dependence industries relative to low dependence industries.
This effect is economically meaningful and, if anything, larger than the effects documented
using access to collateral.

Thus, in industries where smaller-scale firms face greater challenges in securing R&D
financing, the productivity advantage for inventors hired by large-scale firms over those
hired by small-scale firms is even more pronounced. While this evidence cannot rule out

alternative explanations, it is suggestive of financial constraints more strongly impacting

17T use a binary classification rather than the continuous measure due to data constraints in the confidential
TAB dataset, where incorporating non-binary external variables presents disclosure challenges.
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R&D at smaller-scale innovative firms.

1.6 Conclusion

Inventors are central to innovation and economic growth, yet little is known about how their
productivity relates to their allocation across firms. This paper examines the influence of
firms’ innovative scale on inventor productivity at different career stages.

Using novel German administrative employer-employee data linked with European Patent
Office records, I find that inventors beginning their careers at firms in the 75th-95th per-
centile of innovative scale are 40% more productive than those starting at non-patenting
firms. Productivity differentials rise to 60% and 90% for those starting at firms in the 95th
and 99th percentiles, respectively. Moreover, inventors moving from low-scale to high-scale
innovative firms increase their patent output by as much as 88% relative to those spending
their early careers in low-scale firms. Using geographic constraints of German apprentices
resulting in quasi-random variation in the access to large-scale innovative firms, I show that
better access to these firms results in 20% higher early-career patent output, suggesting
that large-scale innovative firms causally affect inventor productivity. I further find that
seasoned inventors moving to large-scale innovative firms produce more patents than those
joining lower-scale firms do, with evidence pointing to financing constraints as a potential
reason small firms struggle to fund R&D effectively.

These findings may have important policy implications. Large-scale innovative firms are
often scrutinized for using their size and market power to limit competition, which could
hinder innovation. As a result, policies like blocking mergers or breaking up large firms are
frequently debated. However, it may be this very scale that provides individual inventors
with access to resources that boost their productivity. Additionally, the findings suggest
that policies enhancing access to financing for smaller firms could support individual-level

innovation and, in turn, foster economic growth.
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Chapter 2

Taming the Sharing Economy:
Short-Term Rental Regulation and

Local Economic Prosperity

Abstract

This paper studies the economic effects of short-term rental (STR) regulations. Using a
staggered difference-in-differences framework, I compare U.S. counties introducing STR. re-
strictions to similar control counties between 2010 and 2020. I find limited or no effects
of the regulations on local housing prices or tax revenue. However, I do find suggestive
evidence of increased GDP and personal income per capita in the accommodation and food
sector, potentially driven by a reallocation of economic activity away from the informal host-
ing actvities towards the traditional hotel industry. These findings suggest that while STR
platforms are politically contentious, regulating them has only minor aggregate economic

consequences.
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2.1 Introduction

Technological innovation is a central engine of economic growth. New technologies, how-
ever, often present substantial trade-offs. They can expand consumer choice, lower costs,
and create income opportunities, but they may also impose concentrated harms—displacing
workers, straining communities, or, in extreme cases, posing existential risks. This tension
makes the regulation of emerging technologies increasingly urgent: how can policymakers
balance innovation’s promise against its potential social costs?

This paper contributes to this broader debate by analyzing the economic effects of regu-
latory responses to one prominent technological development: the rise of short-term rental
(STR) platforms such as Airbnb and HomeAway. Between 2010 and 2017, numerous U.S.
counties and municipalities adopted restrictions on STRs in response to a range of con-
cerns. Advocates of these platforms argue that they enhance consumer welfare by making
travel more flexible, affordable, and personalized, while providing homeowners with valu-
able supplementary income!. Critics, however, highlight reduced housing affordability from
increased investor demand, neighborhood disruption, safety and tax compliance issues, and
unfair competition with traditional lodging providers?.

Using a staggered difference-in-differences approach, I evaluate how STR restrictions
affect key local economic outcomes—housing prices, personal GDP per capita, income per
capita, employment, and county-level tax revenue per capita. I construct a sample that
matches treated counties to comparable control counties based on pre-treatment economic
characteristics.

I show that these regulations are associated with up to 13% higher GDP per capita in the
accommodation and food sector and 8% higher personal income per capita in food and drink
services. Simultaneously, the employment share in these sectors decreases by about 12.5%,

consistent with a shift from lower-productivity private lodging toward higher-productivity

1For example, see New York Times (2016).
2For example, see Wired (2019).
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professional hotels. I find no or only very limited statistically significant effects on GDP or
personal income in construction, real estate and leasing, or arts and entertainment, nor any
impact on housing prices relative to control counties.

Identifying causal effects of STR regulations is empirically challenging, as regulatory
adoption may correlate with underlying economic trajectories. The local political economy
shapes both the likelihood of regulation and economic outcomes: densely populated areas
face greater housing affordability pressures and more frequent complaints about noise, park-
ing, and safety issues from STRs, while wealthier communities may be more or less tolerant
of STR activity depending on whether residents primarily own investment properties that
generate STR income or live in owner-occupied homes affected by nearby rentals. Similarly,
local labor market conditions—particularly unemployment rates and educational compo-
sition—influence political coalitions that either support regulation to preserve traditional
hospitality employment or oppose it to maintain income diversification opportunities. These
selection dynamics potentially confound the relationship between regulation and economic
outcomes.

To mitigate these endogeneity concerns, I implement a matched difference-in-differences
design, using the recently developed staggered adoption estimator by Callaway and Sant’Anna
(2021), and pair treated counties with observationally similar controls within the same state.
The matching procedure uses personal income per capita, unemployment rates, population
density, and college graduation shares. Additionally, I also include these covariates as con-
trols. Event study specifications further validate the design by testing for pre-trends and by
revealing dynamic treatment effects. While this approach cannot eliminate all endogeneity,
it improves comparability and helps isolate regulatory effects under the assumption that
selection is primarily driven by observables.

The DiD results offer insight into how local economies evolve following STR regulation.
Before interpreting these effects, however, it is crucial to establish that regulation actually

constrained short-term rental supply in the counties I study. Although platforms such as
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Airbnb and Vrbo do not provide historical listings data, strong evidence—including aca-
demic research using proprietary data?, as well as newspaper coverage and local government
reports*—shows that regulations were enforced and that they significantly reduced STR
supply in these jurisdictions, often provoking litigation between platforms, hosts, and public
authorities.

I first analyse effects on the real estate market. Theoretically, the effect on house prices
is ambiguous. Restrictions may reduce the income-generating potential of residential prop-
erty—for example, by limiting the duration, frequency, or zoning of STR activity. Conversely,
in communities where STRs generate negative spillovers such as noise or overcrowding, reg-
ulations may improve neighborhood amenities and support property values. Consistent with
this ambiguity, I find no significant changes in housing prices following the restrictions across
most property types, though there is some suggestive evidence of a modest 5% decline for
two-bedroom homes that could reflect reduced investor demand for properties commonly
used as STRs. Overall, these results suggest either offsetting effects that cancel each other
out, or that STR penetration was insufficient to substantially influence house prices beyond
specific market segments.

Next, I analyse GDP, personal income and labor shares in sectors central to the STR
debate: accommodation and food services (hotels and restaurants), arts and entertainment
(theaters, amusement venues), construction, and real estate, rental, and leasing.

As a first-order effect, restricting STRs raises the cost of supplying short-term rentals,
which likely reduces private hosting activity. The net impact on the accommodation and
food sector is uncertain. Visitors may substitute toward traditional hotels, leaving aggregate
GDP per capita unchanged or even higher if hotels expand capacity, offer higher value-added
services or simply charge more. Alternatively, if travelers view hotels as poor substitutes

for STRs, they may divert to other destinations, lowering local activity and output. Labor

3For example, van Holm (2020); Yeon et al. (2020); Valentin (2021); Koster et al. (2021); Chen et al.
(2022); Bekkerman et al. (2023); Jin et al. (2024)
4For example, Bloomberg (2024); Miami Herald (2019); Tennessean (2019); CPR News (2017).
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market impacts are similarly ambiguous: reduced tourism would directly lower employment,
but even if hotels serve as effective substitutes, a shift toward more capital-intensive, higher-
productivity establishments could reduce labor demand while raising output per worker.

I show that GDP per capita in accommodation and food services increases by 13.3% in the
five years following regulation, while personal income per capita in food and drink services
rises by 8.1% in my preferred specification with detailed county-level controls. Meanwhile,
the accommodation and food services employment share declines by approximately 13%
relative to control counties.

This pattern of increased GDP and personal income per capita alongside declining em-
ployment shares in the accommodation sector—suggests a structural transformation in local
hospitality markets following STR regulation. Hotels emerge as effective substitutes for
STRs, capturing displaced demand while generating higher revenue per capita. This in-
crease could reflect two possible mechanisms: superior service provision that commands price
premiums, or market power resulting from the newly constrained accommodation market.
Personal income rises by 11% in the accommodation sector (though not statistically signif-
icant) and 8.1% in food services (statistically significant), consistent with visitor spending
shifting toward traditional hospitality clusters.

The concurrent decline in accommodation employment shares likely reflects composi-
tional changes rather than sector contraction. First, STR regulations particularly affected
full-time hosts who had purchased secondary properties for short-term rental purposes, as
many jurisdictions restricted hosting to primary residences. These formerly self-employed
accommodation sector workers® may have transitioned to long-term rental models, reclas-
sifying their employment from accommodation to real estate, or may have sought primary
employment elsewhere, no longer relying on property-based income as their main occupation.

Hotels, possibly operating with existing capacity slack, could have absorbed the redirected

°The BEA data, I use, is based on adjusted Bureau of Labor Statistics (BLS) data that captures both
payroll employees as well as the self-employed. In the BLS Household Survey (CPS) receiving income from

short-term renting as one’s main job would count as being self-employed in the accommodation industry,
BLS CPS (2025).
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demand without proportional employment expansion.

Second, the employment share metric captures relative rather than absolute changes. The
spatial concentration of hotels in commercial districts may generate spillover effects absent in
residential STR locations. As visitor spending shifts from dispersed residential areas to hotel
districts, complementary sectors®—particularly retail—could experience accelerated employ-
ment growth to meet increased demand. This reallocation effect, whereby STR regulation
stimulates employment in hotel-adjacent businesses more than in hotels themselves, would
mechanically reduce accommodation’s employment share even if the sector’s absolute em-
ployment remains stable or grows modestly. The result appears to be a more productive but
relatively smaller accommodation sector embedded within a broader hospitality ecosystem
that may be experiencing employment gains.

Turning to the real estate sector, limiting short-term rentals can shift existing housing
supply from visitors toward long-term residents, potentially influencing returns in the real
estate and leasing sector. On the other hand, such restrictions may also alter incentives to
build new housing stock, for example, they may discourage investment by reducing expected
rental yields.

The empirical evidence reveals no robust effects in either the real estate or the con-
struction sector. In construction, point estimates are positive and economically meaning-
ful—GDP per capita is about 25% higher and personal income about 8.3% higher in treated
counties—but the estimates are imprecise and not statistically significant. In the real estate
and leasing sector, impacts on both GDP and personal income are economically small and
statistically insignificant. Employment shares likewise show no systematic change in either
sector.

These results suggest that while construction activity may exhibit short-lived or localized
responses, restrictions do not generate consistent, measurable effects on broader real estate

or construction outcomes.

SBEA data suggests that the travel and tourism industry is a significant driver of local shopping activities,
BEA U.S. Travel and Tourism Sattelite Accounts (2025).

57


https://apps.bea.gov/scb/issues/2025/02-february/0225-travel-tourism-satellite-account.htm?utm_source=chatgpt.com

Other tourism-related industries, such as arts, entertainment, and recreation, could also
be affected if changes in lodging options influence local visitor flows. A decline in STR
activity might reduce demand for cultural and recreational services, whereas substitution
toward hotels could sustain or even increase such demand.

The estimates show large, statistically significant reductions in personal income in this
sector following STR regulations. However, pre-treatment personal income per capita grows
much faster in the regulated counties than in the control counties. This calls into question
the validity of the parallel trends assumption in the post-treatment period and suggests that
control counties might not be a credible counterfactual for treated counties in this sector.
Sectoral GDP and employment shares remain virtually unchanged.

On balance, the evidence does not support the conclusion that restrictions materially
affected the arts and entertainment sector. The apparent income reductions are more plau-
sibly explained by differential trends between treated and control counties rather than by
the regulations themselves.

Beyond output, income, and employment, regulatory interventions may also carry fiscal
consequences. Policymakers often worry that restrictions could erode county tax revenues,
particularly if they reduce property values and thus the property tax base.

Event-study estimates reveal sharp but short-lived effects on property tax revenues. Tax
revenue declines of about 23.4% and 18% appear in the first and second year after imple-
mentation, respectively, both weakly significant. If taken at face value, this pattern could
align with institutional features of property taxation in ”reset-on-sale” states like Califor-
nia, where tax assessments update only upon transaction. The initial decline may reflect
reduced property turnover as markets adjust to regulatory change—buyers and sellers pause
to understand new rules and price implications—while the subsequent recovery (with rev-
enues increasing 17-27% in years 4-5) captures both accumulated appreciation and resumed
transaction volumes at higher prices.

However, these results should be interpreted with extreme caution as borderline signif-
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icant pre-treatment effects indicate much faster growth of property tax revenue in treated
counties suggesting potential violations of parallel trends. The observed revenue declines
may simply be a reversal of a particularly profitable period rather than reflect true regula-
tory impacts. Over a five-year horizon, no statistically significant cumulative reduction in
revenues emerges relative to control counties.

These patterns suggest that while restrictions may create substantial fiscal pressures in
the immediate aftermath of adoption—whether due to actual market adjustments or rever-
sal of pre-existing trends—such effects do not persist, leaving longer-term county revenues
broadly comparable to those in non-regulated areas.

Related Literature. This paper contributes to two connected strands of the literature:
the economic evaluation of regulatory interventions, particularly in innovative industries,
and the local economic effects of peer-to-peer sharing platforms. The intersection of these
literatures is central for understanding how regulation of emerging technologies shapes local
economic outcomes.

The regulation and innovation literature shows that regulation can meaningfully affect
economic activity, dampening innovation intensity and inducing geographic sorting as firms
relocate to avoid regulatory burdens (Aghion et al. 2023; Lerner et al. 2024). However,
the main empirical difficulty is constructing credible counterfactuals: regulatory changes
are rarely randomized, and resulting estimates of costs and benefits depend strongly on
measurement and identification choices (Hazilla and Kopp 1990; Hahn and Hird 1991; Hahn
1998; Bombardini et al. 2025).

The regulation of P2P platforms is not exceptional in this regard: it raises the famil-
iar problem of separating regulatory effects from contemporaneous local shocks. What is
distinctive is the economic environment being regulated. By lowering entry barriers, P2P
platforms such as Airbnb and Uber enable flexible participation at a scale that traditional
intermediaries cannot match (Einav et al. 2016; Filippas et al. 2020). This flexibility benefits

a subset of consumers and asset providers, but it also allows resources to reallocate across
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interconnected markets, redistributing surplus in ways that can affect incumbent firms, work-
ers, and local neighborhoods. Specifically, because participation is tied to access to specific
assets (a dwelling for Airbnb, a car for Uber), these platforms broaden earning opportunities
for some while excluding those without such assets (Koustas 2019; Buchak 2024). Motivated
by these features, this paper employs a matched difference-in-differences design across mul-
tiple counties and outcomes to estimate both intended and unintended consequences of STR
regulation within a consistent empirical framework.

Short-term rental platforms represent a particularly salient case for studying regulatory
trade-offs in innovative markets. The rise of platforms like Airbnb has generated intense
debate about their local economic effects, particularly regarding housing affordability and
competition with traditional hospitality. A substantial literature documents how STRs re-
allocate housing from long-term residents to short-term visitors, with neighborhood-level
studies finding significant rent increases associated with STR expansion (Horn and Merante
2017; Barron et al. 2021; Calder-Wang 2021). Regulatory interventions produce mixed re-
sults: while restrictions can restore housing affordability by reducing STR supply by up to
50% and lowering rents by 2-4% (Koster et al. 2021; Chen et al. 2022), they also impose costs.
Bibler et al. (2022) document a 40% increase in foreclosures following STR enforcement as
income-dependent hosts lose a financial lifeline, while Valentin (2021) finds 30% property
value declines in regulated areas. Moreover, Bekkerman et al. (2023) show that STR re-
strictions reduce new residential construction permits by 9%, suggesting dynamic effects on
housing supply. In contrast to these studies focusing on extremely localized effects, I find no
significant association between STR regulations and housing prices at the county level. This
divergence may reflect both offsetting heterogeneous effects—reduced investor demand low-
ering prices in some areas while restored neighborhood quality (less noise, reduced turnover
of strangers, fewer parking conflicts) raises prices in others—and measurement differences,
as prior work leverages proprietary zip-code or neighborhood-level data capturing granular

variation that my county-level analysis aggregates.
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Beyond housing markets, STRs fundamentally alter competition in the hospitality sec-
tor. Evidence points to substantial substitution between STRs and hotels, particularly at the
lower end of the market. While this competition expands accommodation options and im-
proves affordability for visitors, existing evidence suggests it constrains hotels’ pricing power,
with estimated revenue reductions of 1.6-2.8% and budget hotels experiencing the largest
losses (Li and Srinivasan 2019; Yeon et al. 2020; Farronato and Fradkin 2022). Studies of
regulatory enforcement find that STR listing reductions (ranging from 16-30% in affected
areas) are associated with increased hotel revenues, especially in dense urban areas (Jin
et al. 2024). Yet STRs may also expand the market: Basuroy et al. (2022) find positive
spillovers to restaurants in residential neighborhoods, suggesting STRs create new tourism
demand rather than purely redistributing existing flows. My analysis reveals a previously
undocumented productivity dimension to this reallocation: STR regulations increase accom-
modation sector GDP per capita by 13% while reducing sectoral employment shares by 12%,
suggesting a shift from labor-intensive informal hosting to capital-intensive professional ho-
tels. This finding indicates that the competition between STRs and hotels involves not just
market share redistribution but fundamental differences in production technology.

While existing work has generated valuable evidence on particular channels of STR reg-
ulation, it is difficult to translate these findings into broader policy guidance. First, studies
use heterogeneous empirical designs and levels of aggregation—ranging from neighborhood
housing panels to city-level synthetic controls and single-jurisdiction datasets—so estimated
magnitudes are not straightforwardly comparable across outcomes. Second, many papers
focus on jurisdictions where a given outcome is most salient (e.g., high-pressure housing
markets or tourism-intensive cities), which is appropriate for identifying mechanisms but
leaves open how effects generalize to the broader set of places considering regulation. Third,
because outcomes are typically studied in separate samples using different methods, the liter-
ature provides limited evidence on how housing, hospitality, employment, and fiscal channels

trade off within the same policy setting.
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This paper addresses these gaps by estimating multiple sectoral outcomes in a common
set of U.S. counties using a unified difference-in-differences design with matched comparison
counties. Relative to prior work, the paper studies a markedly broader set of regulating coun-
ties, which helps move beyond single-city or highly selected samples. By tracking staggered
adoption of STR restrictions over a decade and applying the same specification across out-
comes, the analysis produces effect estimates that are directly comparable in magnitude and
timing. This framework also helps clarify the channels through which regulation operates:
rather than treating “local economic impact” as a single object, it allows housing-market re-
sponses, hospitality-sector activity, employment composition, and local public finance to be
evaluated side by side within the same treated sample. For example, estimating housing and
hospitality outcomes in the same counties and specifications makes it possible to compare
sectoral responses on a consistent basis; in my setting, housing prices are largely unchanged
while accommodation and food services activity increases, a contrast that is hard to infer

from studies that examine these channels separately in different places.

2.2 Data

The empirical analysis combines data on short-term rental (STR) regulations with county-
level economic outcomes and demographic characteristics for the United States between 2010

and 2020. This section describes the data sources and the construction of key variables.

Short-Term Rental Regulation

To identify counties that introduced STR restrictions, I manually compile data from pub-
licly available sources, including municipal code ordinances, local government websites, and
newspaper reports. I include all counties for which I could verify the implementation of an
STR regulation between 2010 and 2020 and that had available data for the outcome variables

of interest. Many counties contain several municipalities. I classify a county as regulated if
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STR restrictions apply countywide or to its largest municipality /municipalities. The starting
point of 2010 reflects the timing of Airbnb’s initial national expansion. Although Airbnb
was founded in 2008, the platform gained broader adoption and visibility only after 2010.
The sample period ends in 2020 to avoid confounding effects from the COVID-19 pandemic,
which disrupted the travel and accommodation sectors beginning in early 2020. Table B.1

lists the counties that adopted STR regulations and the year of introduction.

Housing Prices

Data on housing prices come from Zillow’s Home Value Index (ZHVTI), a county-level measure
of typical home values by bedroom count (Table B.2). The ZHVI reflects the estimated value
for homes in the 35th—65th percentile of the local price distribution, capturing broad market
trends while limiting the influence of outliers. I use separate ZHVI measures for two-, three-,
and five-bedroom homes to test whether STR regulations have heterogeneous effects across

property sizes.

County-Level GDP and Personal Income

Information on county-level gross domestic product (GDP) and personal income is sourced
from the U.S. Bureau of Economic Analysis (BEA) (Table B.2). The BEA reports both ag-
gregate and sector-specific economic activity on an annual basis. I use these data to construct
total GDP per capita and personal income per capita, as well as GDP and income measures
for the accommodation and food services, real estate and rental, arts and entertainment,

and construction sectors.

Sectoral Employment

I obtain annual employment data from the BEA, which includes employment by sector for all

U.S. counties (Table B.2). Sectoral employment share is defined as the number of employees
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in a given sector divided by total county employment. This variable is used to analyze

whether STR regulation affects the composition of local employment across industries.

Property Tax Revenue

Annual data on county-level property tax revenue are obtained from the U.S. Census Bureau
(Table B.2). These data are used to test whether STR regulation has short-term fiscal

consequences for local governments through effects on housing prices.

Socioeconomic Control Variables

Several demographic and economic control variables are used in the construction of the
matched sample and in the estimation of treatment effects (Table B.2). The share of the
county population with at least a bachelor’s degree is obtained from the USDA Economic
Research Service. County-level unemployment rates are sourced from the U.S. Bureau of
Labor Statistics. Population counts are taken from the BEA, and land area measures are
obtained from the U.S. Census Bureau. These variables are included to account for differences

in local economic conditions, education levels, and urban density.

2.3 Overview of STR Regulations

Short-term rental (STR) regulations have emerged as a common policy response to the rapid
growth of platforms such as Airbnb and HomeAway. These platforms enable homeowners
and tenants to rent out properties or individual rooms on a short-term basis, often operating
outside the scope of traditional hospitality, tax, and zoning regulations. In response, many lo-
cal governments have implemented laws intended to balance the perceived economic benefits
of STR activity—such as increased tourism and supplemental income for residents—against
its potential downsides, including housing market distortions, neighborhood disruption, and

uneven regulatory treatment relative to hotels.
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While the precise design of STR regulations varies across jurisdictions, a broadly consis-
tent set of regulatory features has emerged. Most commonly, localities impose licensing or
registration requirements for STR operators (e.g., San Francisco, Santa Monica, Multnomah,
Denver, Travis, Riverside), often paired with obligations related to safety compliance, tax
registration, or reporting standards (e.g., Orange, Clark, Davidson, Cook County). A num-
ber of jurisdictions further restrict STR activity to a host’s primary residence (e.g., Denver,
Multnomah, Colorado), seeking to distinguish casual home-sharing from commercial rental
activity.

Limits on the intensity or scope of STR use also appear frequently. These include annual
caps on rental days (e.g., San Francisco), density restrictions within geographic units such
as census tracts (e.g., Travis, Davidson), and zoning-based exclusions (e.g., Miami Beach,
Santa Barbara, Sonoma). In several counties, regulations target the structure of stays them-
selves, imposing minimum stay requirements (e.g., Orange, Teton), occupancy limits (e.g.,
Riverside, Sarasota), or prohibitions on certain rental formats such as entire-home rentals
(e.g., Santa Monica, King County).

Many jurisdictions have also sought to extend or adapt local tax regimes to STR activity,
either by applying existing hotel taxes (e.g., Colorado, Cook County) or imposing new per-
night surcharges (e.g., King County). In some cases, the regulatory process has included legal
or political challenges, particularly where the boundaries between residential and commercial
use have been contested (e.g., Santa Barbara).

Taken together, while STR laws differ in technical implementation, they share a common
policy logic: to integrate STR activity into existing legal and fiscal frameworks, mitigate its
externalities, and rebalance the terms of competition between private STR hosts and the

traditional lodging industry.
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2.4 Empirical Strategy

I estimate the effects of short-term rental regulations on local economic outcomes by com-
paring counties that introduce STR regulations with observationally similar control counties
that have not yet adopted (or never adopt) such regulations, using the staggered difference-
in-differences framework of Callaway and Sant’Anna (2021). This approach avoids the well-
documented biases that arise in two-way fixed effects estimators when treatment timing
varies and effects are heterogeneous across cohorts or time periods (de Chaisemartin and
D’Haultfeeuille 2020; Goodman-Bacon 2021). The estimator first computes group-time av-
erage treatment effects—the average effect for units treated in period g at time t—then
aggregates these into interpretable parameters. Results are shown in two ways: (i) an event
study that reports the full dynamic profile, including pre-treatment coefficients for parallel-
trends diagnostics; and (ii) period-aggregated effects that average impacts over the pre- and
post-treatment windows.

The identification of causal effects requires that the timing of STR regulation adoption
is unrelated to potential outcome trends. While recent literature treats STR regulation
as plausibly exogenous (Bekkerman et al. 2023), political economy considerations suggest
systematic selection into treatment. Counties with higher population density may face dif-
ferent political pressures regarding housing availability and neighborhood externalities from
STRs. Wealthier counties, as measured by per capita income, may have different tolerance
for STR-related disruptions and different compositions of property owners who benefit from
STR income. Counties with lower educational attainment and higher unemployment may
have larger shares of workers dependent on traditional hospitality employment, creating dis-
tinct political coalitions around STR regulation that could either favor restriction (to protect
hotel jobs) or expansion (to create alternative income opportunities).

To address these selection concerns, I condition the parallel trends assumption on four

county characteristics measured five years before treatment: population density, per capita
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personal income, college graduation rates, and unemployment rates. These pre-treatment
covariates capture fundamental county characteristics that drive both political economy de-
cisions and economic trajectories. Following Callaway and Sant’Anna (2021), measuring
these covariates before treatment avoids conditioning on outcomes potentially affected by
regulation or anticipation thereof.

This empirical approach has several advantages. First, it handles treatment timing appro-
priately. The staggered design explicitly accounts for treatment timing variation (2010-2020),
which can lead to biases in traditional two-way fixed effects estimators. The Callaway and
Sant’Anna (2021) estimator ensures that each treated cohort is compared only to appropri-
ate controls (not-yet-treated or never-treated), avoiding contamination from already-treated
units that would bias estimates in standard difference-in-differences specifications.

Second, the matching procedure systematically addresses selection on observables. By
matching on pre-treatment characteristics (population density, income, unemployment, ed-
ucation) and requiring that control counties fall within the same quintile of the outcome
variable distribution five years before treatment, I ensure that treated and control counties
are comparable on dimensions that drive both treatment adoption and economic outcomes.
The outcome quintile requirement is particularly important: it ensures that counties are
similar not just in their demographic and economic characteristics, but also in the baseline
level of the specific outcome being analyzed (e.g., housing prices, sectoral GDP). This dual
matching criterion—on covariates and outcome levels—substantially reduces model depen-
dence and ensures comparisons occur only within regions where treated and control counties
have overlapping distributions.

Third, it focuses on the policy-relevant margin. My design answers the question policy-
makers typically face: ”What happens when we introduce a binding STR regulation versus
not regulating?” This is arguably more policy-relevant than, for example, exploiting variation
in policy intensity across already-regulated jurisdictions, which conflates the extensive mar-

gin (whether to regulate) with the intensive margin (how strictly to regulate conditional on
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regulating). Notably, this approach avoids the difficulties of other popular empirical strate-
gies such as comparing contiguous counties or exploiting differences in regulation intensity
and scope.

Contiguous Counties. A natural alternative would be to match treated counties to their
geographic neighbors, exploiting the intuition that contiguous counties share similar eco-
nomic conditions and are subject to common shocks. However, this approach faces several
important challenges in my setting.

First, spillovers and contamination of controls. When a large, tourism-intensive county
tightens STR rules, nearby jurisdictions become a natural margin of adjustment for both
hosts and guests. STR activity and hotel demand can spill over into immediately neigh-
boring counties. Using contiguous counties as controls would thus likely violate the Stable
Unit Treatment Value Assumption (SUTVA), biasing treatment effects toward zero by con-
taminating the control group with treatment spillovers. By matching treated counties to
observationally similar controls within the same state but not necessarily on borders, I de-
liberately trade off geographic proximity for a lower risk of direct spillovers.

Second, comparability and external validity. For many treated counties in my sample,
contiguous counties are either (a) economically very different, or (b) themselves treated
around similar dates. Contiguous county comparisons rest on the assumption that geo-
graphic proximity ensures comparability. Yet U.S. counties are large administrative units

with substantial heterogeneity even across borders. Consider several illustrative examples:

e San Francisco County (regulated, 2015) and San Mateo County (unregulated): De-
spite sharing a border, San Francisco is an ultra-dense urban core (18,000+ people
per square mile) with a tourism-driven economy, while San Mateo includes substan-
tial suburban and semi-rural areas with fundamentally different housing markets and

economic structures.

e Miami-Dade County (regulated, 2010) and Broward County (unregulated until later):

Though contiguous, these counties differ markedly in tourism intensity, housing stock
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composition, and the role of STR platforms in their economies.

In contrast to settings where contiguous regions share common labor markets, infrastruc-
ture, or economic shocks (e.g., adjoining European regions or U.S. commuting zones), county
borders in the U.S. often demarcate meaningful economic and demographic discontinuities.
Restricting to contiguous pairs would therefore substantially shrink the sample and often
worsen pre-treatment covariate balance relative to my matching procedure.

Third, treatment contamination in the control group. Many contiguous counties adopted
their own STR regulations at similar times, making them invalid controls. A design requiring
untreated geographic neighbors would either severely restrict the sample or force the inclusion
of counties that themselves received treatment shortly after their neighbors, further biasing
estimates.

Differences in Regulatory Intensity. Another alternative would be to exploit cross-county

Y

variation in the ”stringency” of STR regulations—for instance, comparing counties with
strict day caps to those with lenient ones, or counties with primary-residence requirements
to those without. While such variation is potentially informative about intensive-margin
effects, this approach faces substantial challenges in my setting.

First, my main research question concerns the average effect of introducing a binding
STR regulation on local outcomes, rather than the effect of moving from a "weaker” to a
"stronger” regulatory regime. The binary treatment margin—whether to regulate or not—is
the fundamental policy decision most jurisdictions face. Understanding intensive-margin ef-
fects (how much to regulate, conditional on regulating) is an important downstream question,
but it is conceptually distinct from the extensive-margin question my design addresses.

Second, STR regulations are highly multidimensional. In my setting, regulations en-
compass registration requirements, primary-residence rules, night caps, zoning restrictions,
occupancy limits, tax provisions, and more (Section 2.3). There is no natural cardinal rank-

ing of "stringency” across these dimensions, and different combinations of provisions are

likely to matter differently in different markets. Any single intensity index would be neces-
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sarily ad hoc. Moreover, we lack comparable data on enforcement intensity over time, which
is an important dimension of regulatory bite. A design based on such a noisy intensity
measure would potentially introduce substantial measurement error.

Third, intensity and scope present additional endogeneity challenges beyond those al-
ready present in the binary adoption decision. While both the decision to regulate and
the stringency of regulation reflect underlying political economy forces, there is an impor-
tant distinction. The timing of initial regulation adoption is plausibly more predictable
from pre-treatment observables—population density, income, unemployment, and education
capture the fundamental county characteristics that make regulation politically salient and
economically consequential. In contrast, how strictly a jurisdiction regulates conditional on
deciding to regulate depends on additional, harder-to-observe factors: the specific coalition
of interest groups that prevailed in local debates, idiosyncratic features of the regulatory
process, enforcement capacity constraints, and negotiated compromises between competing
stakeholders.

For example, two counties with identical pre-treatment characteristics might both adopt
STR regulations, but one implements a 90-day annual cap while the other implements a 30-
day cap plus primary-residence requirements plus registration fees. These differences likely
reflect bargaining dynamics, the relative strength of hotel lobbies versus homeowner groups,
or administrative capacity—factors that are difficult to proxy with standard economic and
demographic controls.

Conditioning on observed covariates and treating variation in "how strict” a county
regulates as quasi-random therefore requires stronger assumptions than treating the timing
of first adoption as conditionally random. My matched staggered DiD approach focuses on
the margin where selection is most transparently related to observables, explicitly addressing
endogeneity through (i) matching treated counties to comparable controls within the same
state and pre-regulation outcome quintile, and (ii) conditioning parallel trends on population

density, income, unemployment, and education measured before treatment.
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2.4.1 FEconometric Framework

For my analysis and the notation in this section, I lean heavily on Callaway and Sant’Anna
(2021) and on Baker et al. (2025). Let ¢ index counties, ¢ years and ¢ the time STR regulations
are first introduced for a given county. Denote by Y;;(g) the (potential) outcome of interest
(e.g., log house prices, sectoral GDP, or employment shares). G; denotes a county’s treatment
date, with GG; = oo if it never adopts any STR regulations and G represents the set of
treatment times. Yj;(c0) is the outcome for county i at time ¢ if it were never regulated,
and Yj;(g) is the outcome if it first became regulated at time g. The relationship between

potential and observed outcome satisfies

Vi = 3 Valg) 1{G: = g}. (2.1)

geg

The parameter of interest and building block for my analysis, ATT(g,t), is the group-
time average treatment effect, at time ¢, of introducing STR regulations at period ¢ relative

to never introducing them, among counties that introduced regulations in period g, i.e,
ATT(g,t) = E[Yi(g) — Yie(o0) | Gi = g]. (2.2)

The challenge is that Yj;(co) is not observed. Under very strong strong assumptions (e.g.,
unconditional parallel trends, homogeneous treatment effects) simple two-way fixed effects
regressions can produce valid estimates for ATT(g,t). However, if these strong assumptions
are violated the resulting estimates become biased.

My analysis relies on significantly less demanding identifying conditions, which does
complicate estimation, however. Specifically, I require the following identifying assumptions
(see Baker et al. 2025):

(i) No Anticipation. For all counties ¢ that are eventually regulated and all pre-
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regulation periods ¢,

Yii(g) = Yii(o0). (2.3)

(ii) Conditional Parallel Trends. For every eventually regulated county group g,
not-yet-regulated group ¢’, time periods ¢ such that ¢t > g and ¢’ > t, and every covariate

value X,
]Ew[Yi,t(OO) - Y;,t—1(00) | Gi=g, Xi] = Ew[Yi,t(OO) - Y;',t—l(oo) | Gi= 9/7 Xi] . (2-4)

(iii) Strong Overlap. For every group g € G, the conditional (weighted) probability
of belonging to a regulation group g, given observed covariates X; that are determinants of
untreated potential outcome growth, is uniformly bounded away from zero and one. That

is, for some € > 0 and for every group g € G,
€ < Pw[Gi:g|Xi} < 1l-—e (2.5)

With these assumptions, Callaway and Sant’Anna (2021) show that the post-treatment

ATT(g,t) is identified by the doubly-robust estimand:

ATTdr(ga t) - E [(ww,G:g(Gi) - ww,g,t(Gh Xz)) ()/i,t - }/i,t:g—l - Ew[ifi,t - Y;,t:g—l | Xz'7 Gz > t])]’

(2.6)
where (ww’G:g(Gi) and w,, g,t(Gini)) are defined as

_ wl{G=g}
v @) S BRI G = g

_ wH{G > GG # g} pug(X) wH{G >t} H{G # g} pugi(X)
Bungel G, X) = L= paga(X) / R ’
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and

Pugt(X) = Eu[1{G; = g} | X, 1{G; >t} = 1]

denote the (weighted) probability of belonging to group g given covariates X and that the
county belongs either to group g—the regulated group for ATT(g,¢)—or to the not-yet-
regulated group G; > t (which includes never regulated counties)—the comparison group.

The doubly-robust method is used because we do not observe the counterfactual outcome,
Yit(00), in Equation (2.2) for treated counties. Callaway and Sant’Anna (2021) therefore
propose two methods, the regression adjustment (RA) approach and the inverse probability
weighted (IPW) approach to recover ATT(g,1).

The idea behind the regression adjustment approach is to use covariates to predict out-
come trends. Specifically, it runs a regression of the change in the outcome variable on
covariates only among untreated units. The resulting fitted model generates predicted val-
ues for all units in the sample, including treated units. These fitted values can then be used
to produce an estimate for the unobserved counterfactuals.

Alternatively, one can use covariates not to predict outcome trends but to predict the
conditional probability of being treated. This implies re-weighing observed changes in the
outcome variable for the non-treated groups to ensure that treated and non-treated groups
are similar on covariates. The doubly-robust method combines these two approaches and

leads to the following estimator:

ATTar(0,) = 3 (D625(G1) = (G, X)) (Vi = Viacg1 — o 60X (2.7
=1
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where,

~ 1{G =
T0-9(6) = —o DO
i Z Wil{Gi = 9}
=1
. Cw{G > UG # G Tugi(X) [ 1 wil{Gi > 31{G; # g} Tug4(Xi)
g (G, X) = 1 — Fuga(X) n Z_; 1 — o ga(X0) ‘

(2.8)

The term i, a g;>¢(X;) is an estimate of the counterfactual for regulated counties,
E,[Yi¢ — Yiieg—1 | Xi, Gi > t] , and is a function that relates average outcome trends
for unregulated counties to their covariates. Consistent with prior literature, I use a lin-
ear model i, A g,>t(X;) = X!fg,~+ with parameters that are derived from a regression of
(Yit — Yii—g—1) on X; using only the subset of unregulated counties. The fitted model,
Hw, A, Gi>t(X;), produces predicted values for the entire sample, which includes regulated
counties.

The IPW-weight, @, 4+(G, X ), depend on 7, 4,(X) which estimates p,, 4+(X), the weighted
probability of being part of the regulated counties, i.e. the propensity score of being treated.
The IPW-weights shift the weighted distributions of covariates of the control counties to
match the distribution of the regulated counties (see Rosenbaum and Rubin 1983; Baker
et al. 2025). Following Baker et al. (2025), I choose a logistic model for the propensity score
estimation and and use the logit coefficients to obtain fitted values for all observations, i.e,
to obtain 7, 4+(X).

Finally, once I estimate the ATTs for different treatment cohorts and years, I aggregate
them by relative event time to produce event study estimates. In a second step, as proposed
by Baker et al. (2025), I take a simple average of all available post-treatment event times
and report an overall ATT measure.

Specifically, the causal parameter summarising treatment effect dynamics in terms of
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event time can be written as:

ATTu(e) = B [ATT(G, G+e)|G+ec [LT],G<T|=> ws, ATT(g, g+e), (2.9)

g<oo

with wg®, giving the share of a group G = g among treated counties that have been exposed
to regulation for exactly e periods (the counties for which we observe event time e), and is

formally defined as
wi, =g +e<T}P,(G=g|G+e<T,G<T),

Thus, the ATTe(e) gives the average treatment effect among the counties that have been
exposed to regulation for exactly e periods, conditional on being observed having introduced
regulation. Estimating ATTe(e) merely requires replacing ATT(G, G + e) with the doubly

robust estimates from before, i.e.,

1 n
ﬁZwi 1{G; = g} 1{G; + e < T} 1{G; < T}

ATTeb Z W ATT (g9,9+e€), we

w,g,e_ n
1
g<oo — ; L{G; <TG, <T
nE wil{Gi +e <TG < T}

=1

(2.10)
Finally, as Callaway and Sant’Anna (2021) propose, one can generate an overall treatment
(and pre-treatment) effect parameter by averaging the ATTq(e) parameters. Specifically,
with Epost 1= {e €7 ‘ e>0and dg with g + e < T} and Tyost = |Epost|, the aggregated

treatment effect can be written as:

1
AT = — Y~ ATT.,(e), (2.11)
7—post e€Epost
and
_——_post 1 —
ATT.. = 3" ATT.(e) (2.12)
7_pos‘c eegpost
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where pre-treatment ”effects” can be summarized by

_——_pre

T S ATT.(e), (2.13)

-
PIe ccg e

with Eppe := {e ez ’ e<—2and dg with 1 < g+e < T} and Tpre := |Epre|. In other words,
ATT ze aggregates how the treated group changes over the pre-treatment period relative to

the period right before treatment compared to the estimated counterfactual.

2.4.2 Sample Construction and Matching

I construct a balanced panel from 2008 to 2020 comprising counties that adopted STR regu-
lations during this period (treated) and observationally similar counties that never adopted
regulations. To ensure common support and reduce model dependence, I implement a match-
ing procedure before estimation. While the Callaway and Sant’Anna (2021) doubly robust
estimator incorporates covariate adjustment, pre-matching ensures comparisons occur only
within regions of overlapping covariate distributions, reducing sensitivity to functional form
assumptions.

The matching protocol proceeds as follows. For each treated county, potential controls
must satisfy three criteria: (i) location within the same state to account for state-level reg-
ulatory environments and economic conditions; (ii) placement in the same quintile of the
outcome variable distribution five years before treatment, ensuring baseline similarity in
economic characteristics; and (iii) proximity in the four-dimensional covariate space. From
candidates meeting the first two criteria, I select the two counties minimizing the Maha-
lanobis distance in pre-treatment covariates.”

The matched never-treated counties provide credible counterfactuals for treated units.
However, following Callaway and Sant’Anna (2021), the estimation uses the broader set of

not-yet-treated counties as the comparison group, which includes both the matched never-

"The matching is performed separately for each outcome variable to ensure optimal balance for each
specific analysis.
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treated counties and counties that have not yet adopted regulation by time ¢. This approach
maximizes statistical power while maintaining comparison credibility through the initial

matching on observationally similar never-treated units.

2.5 Results

This section presents staggered difference-in-differences estimates of STR regulation effects
on local economic outcomes. I report three complementary sets of results: event-study
estimates that trace out the full dynamic path of treatment effects (see Equation (2.10)),
aggregated pre-treatment coefficients for parallel trends diagnostics (see Equation (2.13))
and aggregated post-treatment effects that summarize the overall effects of the STR laws
(see Equation (2.12)). The analysis examines regulatory impacts across six key outcomes:
house prices (Section 2.5.1), accommodation and food services employment (Section 2.5.2),
real estate activity (Section 2.5.3), construction (Section 2.5.4), arts and recreation (Section
2.5.5), and property tax revenues (Section 2.5.6).

To isolate plausibly causal effects, the specification includes state fixed effects and county-
level socioeconomic controls. State fixed effects account for time-invariant state-level factors
such as general regulatory environments, tax structures, and economic conditions that af-
fect both STR regulation adoption and economic outcomes. This is particularly important
given that STR regulations, while often adopted at the city or county level, exist within
broader state legal frameworks. The specification also incorporates county-level socioeco-
nomic controls—population density, per capita personal income, unemployment rate, and
college graduation share—measured five years before treatment. These controls implement
the conditional parallel trends assumption discussed in Section 2.4, addressing the political
economy considerations that drive both regulatory adoption and economic trajectories. By
controlling for both state-level heterogeneity and pre-treatment county characteristics, this

specification substantially reduces the influence of confounding factors that affect both treat-
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ment assignment and outcomes, though the possibility of remaining unobserved confounders

cannot be eliminated.

2.5.1 Housing Market Effects

I begin by examining the impact of STR regulations on residential house prices. The co-
variate balance statistics (Table B.3) indicate successful matching on most dimensions, with
normalized differences below 0.25 for income, education, and unemployment. Importantly,
the matching protocol already ensures baseline similarity by requiring control counties to
be within the same quintile of the outcome variable five years before treatment (see Section
2.4.2). Population density remains imperfectly balanced despite matching, reflecting the
inherent challenge that STR regulations predominantly occur in dense urban markets, for
which comparable control counties are scarce. This imbalance persists across all specifica-
tions but is addressed by controlling for it explicitly when estimating the ATTs.

Figure B.1 shows event-study estimates relative to the last pre-treatment period, and
Table B.8 collapses these into aggregated pre- (Pre_avg) and post-treatment (Post_avg) co-
efficients. Pre-treatment coefficients are statistically insignificant for aggregate house prices
and for each property-size category, indicating no evidence of differential pre-trends between
regulated and non-regulated counties and supporting the plausibility of parallel trends after
treatment.

Aggregate house prices show no significant response to STR regulation (Post_avg in Ta-
ble B.8). However, there is some heterogeneity across property types. For example, there
is suggestive evidence—even though not statistically significant— that the value of two-
bedroom homes decreased slightly in the years following STR introduction with two-bedroom
home prices experiencing an aggergate decline of 5% over the 5 years post-regulation, reach-
ing -8.7% by year four post-treatment (see Figure B.1). If taken at face value, this pattern
would be consistent with reduced investor demand for entry-level properties previously prof-

itable as short-term rentals, and potentially with decreased affordability for households who
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previously relied on STR income to finance mortgages. Conversely, larger homes show no
(economically or statisitically) significant effects (three-bedroom: 0.019; five-bedroom: -
0.022, both insignificant), suggesting the regulatory impact, if at all, concentrates in the

lower-tier housing market where STR yields relative to property values are highest.

2.5.2 Accommodation and Food Services Sector

Next, I examine whether STR regulations affected the sectoral GDP and personal income in
the accommodation and food services sector. Despite some covariate imbalance (see Tables
B.4-B.6)—treated counties have higher baseline income ($52,596 vs. $44,761)— differences
between outcome trends in the pre-treatment period are insignificant across specifications,
giving some credence to the parallel trends assumption for the post-treatment period (see
Pre_avg in Tables B.9-B.11).

The accommodation and food services sector exhibits substantial adjustments following
STR regulation. Sectoral GDP per capita increases by 13.3% following regulation (Ta-
ble B.9), with pronounced dynamic effects: negligible impacts initially (0.008 at t=0) but
rising to 32.2% by year five (Figure B.2). This temporal pattern likely reflects the gradual
implementation and enforcement of STR regulations. Initial compliance may be limited as
hosts wait to see if rules will be actively enforced, while enforcement agencies require time to
develop monitoring systems, issue warnings, and pursue violations. As enforcement intensi-
fies and non-compliant hosts face penalties or exit the market, demand progressively shifts
toward traditional accommodations.

Personal income also shows positive effects across subsectors, with the accommodation
sector experiencing an 11.0% increase (though not statistically significant) and food services
showing an 8.0% gain (Table B.10 and Figure B.3).

These income gains, together with the GDP increases, are consistent with several mech-
anisms. Hotels may command higher prices—because they provide superior services relative

to STRs or because they can exercise greater market power in a newly constrained accommo-
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dation market—and traditional hospitality districts may see more visitor traffic that spills
over to nearby food-service establishments.

The 12.5% aggregate decline in the sector’s employment share (Table B.11), which accel-
erates over time — from 10% at t=1 to 20% at t=>5 (Figure B.4) and which is measured as the
sector’s share of total county employment, reveals a more complex structural transformation
than simple substitution would suggest.

Several mechanisms likely operate simultaneously: First, STR regulations particularly
impact full-time hosts who purchased secondary properties for short-term rental purposes,
as many jurisdictions restrict hosting to primary residences. These formerly self-employed
accommodation workers may transition to long-term rental models, causing their employ-
ment to be reclassified from the accommodation sector to the real estate sector in official
statistics, or pursue traditional employment in other sectors.

Second, hotels appear to absorb redirected demand through existing capacity slack rather
than employment expansion. Where five separate STR properties might require five self-
employed hosts, a single hotel can accommodate the same number of guests using existing
staff with minimal or no additional hiring, leveraging economies of scale unavailable to
individual property operators.

Third, the employment share captures relative rather than absolute changes. The spatial
concentration of hotels in commercial districts may generate asymmetric spillover effects:
as visitors shift from dispersed and residential STR locations to hotel clusters, complemen-
tary sectors—particularly retail—could experience accelerated employment growth to meet
increased demand. This reallocation effect would mechanically reduce accommodation’s em-
ployment share even if absolute employment remains stable or grows modestly.

Collectively, the findings are consistent with a reallocation from fragmented, informal
hosting to more consolidated, professional operations. The sector becomes more productive
yet occupies a smaller share of local employment, with spillovers running through spatially

clustered hospitality establishments. The persistent and growing effects over five years in-
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dicate these changes represent structural shifts rather than temporary adjustments, with
traditional hospitality establishments not merely substituting for STRs but potentially cap-
turing value through service differentiation and operational efficiencies unavailable to infor-

mal hosts.

2.5.3 Real Estate, Rental, and Leasing Sector

In this section, I examine the effect of STRs on the real estate, rental and leasing sector
which is dominated by lessors and property management.

Covariate balance is strong (see Tables B.4-B.6), but Table B.10 reveals diverging trends
for personal income (-0.082) in the pre-regulation period. In particular, personal income
in the eventually regulated counties grows faster than in the control counties prior to the
introduction of STR regulations, potentially biasing results.

Nevertheless, the real estate sector, dominated by lessors and property management,
shows little response to STR regulation. Post-treatment effects are economically small and
statistically insignificant across all measures: GDP per capita (0.037, Table B.9 and Fig-
ure B.2), personal income per capita (-0.024, Table B.10 and Figure B.3), and the employ-
ment share (0.018, Table B.11 and Figure B.4) all appear to be unaffected. The absence of
positive effects contradicts the policy expectation that STR restrictions would substantially
redirect properties to long-term rental markets. This suggests either that STR properties
remain vacant or convert to owner-occupation, or that the scale of conversion is insufficient

to meaningfully impact sector-wide aggregates.

2.5.4 Construction Sector

Following the real estate and leasing sector, I analyse the potential effects of STR regula-
tions on the construction sector. Matching quality is somewhat weaker for this sector (see
Tables B.4-B.6), with larger differences in education and income levels, though the matching

requirement that treated and control counties fall within the same quintile of pre-treatment
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construction outcomes ensures basic comparability. Reassuringly, there are also no statis-
tically significant differences in pre-treatment trends between regulated and non-regulated
counties (see Tables B.9-B.11).

Construction activity shows no clear response to STR regulation, though estimates are
imprecise. While statistically insignificant, the point estimate for GDP per capita is econom-
ically large (25.0% increase, Table B.9, with effects growing over time (Figure B.2)). Personal
income and employment shares show negligible changes (Tables B.10-B.11 and Figures B.3—
B.4). The large but imprecise positive GDP effect may reflect hotel construction responding
to increased demand for formal accommodations, though the wide confidence intervals pre-
vent strong conclusions. Importantly, STR regulations do not appear to depress construction

activity, alleviating concerns about negative spillovers to this sector.

2.5.5 Arts, Entertainment, and Recreation Sector

Finally, I investigate whether STR regulations affected the arts, entertainment and recre-
ation sector. Although the matching between regulated counties and their non-regulated
controls yields reasonably close covariate balance, pre-treatment trends in GDP per capita
and personal income per capita differ markedly. Regulated counties exhibit substantially
faster pre-treatment growth in both outcomes, undermining the parallel-trends assumption
for the post-treatment period needed for causal interpretation (see Tables B.9 and B.10).
With this caveat in mind, the point estimates indicate no discernible effect of STR reg-
ulations on average sectoral GDP per capita or on the sectoral employment share over the
five years following adoption (Tables B.9 and B.11; Figures B.2 and B.4). By contrast, the
estimates for personal income per capita imply a 41% decline over the post-regulation pe-
riod (Table B.10 and Figure B.3); however, given the pronounced pre-treatment run-up in
personal income in the eventually regulated counties, this pattern likely reflects a reversal of

those pre-trends rather than a policy effect.
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2.5.6 Property Tax Revenues

Finally, I examine the effects of STR regulations on property tax revenues. Covariate balance
shows some disparities in income and education (Table B.7), and pre-treatment trends are
very close to being significant (Table B.12), warranting cautious interpretation.

Property tax revenues exhibit complex dynamics following STR regulation. The average
five-year effect is a modest 2.18% decline (Table B.12), but this masks substantial temporal
heterogeneity. Years 1-3 show significant revenue drops of up to 23%, followed by recovery
with 17-27% increases in years 4-5 (Figure B.5). On the one hand, this pattern aligns
with institutional features of property taxation in ”reset-on-sale” states (notably California’s
Proposition 13), where tax assessments update only upon transaction. The initial decline
may reflect reduced property turnover as the market adjusts to regulatory change, while
later increases capture both accumulated appreciation and resumed transaction volumes at
higher post-regulation prices.

On the other hand, the initial decrease could also represent a reversal of the borderline
significant pre-treatment effects, which show that eventually regulated counties experienced
faster pre-treatment revenue growth than their controls. This pre-existing trend, combined
with the complex dynamics of property markets and tax assessment systems, makes it diffi-

cult to isolate the causal impact of STR regulation on property tax revenues.

2.5.7 Economic Magnitudes of STR Regulations

To contextualize the overall economic impact of STR regulations on affected counties, I
conduct a back-of-the-envelope calculation focusing on county GDP per capita. GDP per
capita serves as a natural summary measure of economic impact because it captures the
total productive output of the local economy on a per-person basis, providing a compre-
hensive view of aggregate economic consequences. While my analysis examines multiple

outcomes—including house prices, employment, and property tax revenue—GDP per capita
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offers the most holistic assessment of the regulations’ overall economic impact. As my earlier
results demonstrate, the accommodation and food sector is the primary driver of this GDP
effect, with sector-specific GDP per capita increasing by 13.3% following regulation.

The economic importance of this 13.3% increase depends critically on each county’s re-
liance on the accommodation and food sector. Table B.13 presents the sector composition for
regulated counties, showing the share of GDP attributable to each analyzed sector (Accom-
modation & Food, Arts & Recreation, Construction, Real Estate). For the Accommodation
& Food sector, the median GDP share across treated counties is 3.53% [IQR: 3.07%-3.85%],
indicating that for most counties, this sector represents a modest portion of the local econ-
omy. However, substantial heterogeneity exists: tourism-dependent counties such as Clark
County, Nevada (Las Vegas) and Teton County, Wyoming (Jackson Hole) derive nearly
one-fifth of their GDP from accommodation and food services.

To translate the sector-specific effect into aggregate economic terms, I calculate each
county’s baseline accommodation and food sector share using the five-year pre-treatment
average. I then apply the estimated 13.3% treatment effect to this baseline share to approxi-
mate the implied contribution to total GDP growth, under two simplifying assumptions: (i)
treatment effects are relatively homogeneous across counties, and (ii) spillover effects to other
sectors are negligible, consistent with my finding of no significant effects on other economic
outcomes.

Table B.14 presents these calculations. The median effect across treated counties is a
0.47 percentage point increase in total GDP per capita relative to the counterfactual based
on control counties. In absolute terms, this translates to a median increase of $2,116 per
capita over the five-year post-treatment period (or approximately $423 per capita annually).
However, the effect varies considerably with sector dependence: tourism-intensive counties
like Clark and Teton experience substantially larger impacts of 2.28 and 2.51 percentage
points, respectively, corresponding to per capita GDP increases of $8,474 and $15,634.

These calculations suggest that for the typical regulated county in my sample—where
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accommodation and food services comprise a relatively small share of the economy—the
aggregate economic impact of STR regulation is modest, despite the statistically significant
sector-specific effect. However, for counties heavily reliant on tourism and hospitality, the
regulations generate substantially larger economic consequences. This heterogeneity under-
scores that while STR regulations may be politically contentious across diverse jurisdictions,
their economic implications vary considerably depending on local economic structure, with

meaningful effects concentrated in tourism-dependent communities.

2.6 Conclusion

This paper examines the economic consequences of short-term rental regulations imple-
mented across U.S. counties between 2010 and 2017. Using a staggered difference-in-differences
design with matched control counties, I estimate the effects of STR restrictions on housing
markets, sectoral economic activity, and local government revenues.

The results reveal that STR regulations seem to trigger sectoral reallocation without gen-
erating substantial aggregate economic disruption. In the accommodation and food services
sector, regulations are associated with a 13% increase in GDP per capita and an 8-11% rise
in personal income, alongside a 12.5% decline in the sector’s employment share. This pat-
tern indicates a shift from fragmented, informal hosting toward consolidated, capital-efficient
professional hotels. The formal hospitality sector appears capable of absorbing demand pre-
viously served by STRs.

Housing market impacts are limited and heterogeneous. While aggregate house prices
show no significant response, there is suggestive evidence that two-bedroom homes expe-
rience a minor decline, consistent with reduced investor demand for entry-level properties
that previously generated attractive STR yields. Larger homes remain unaffected, suggest-
ing regulatory impacts concentrate in specific market segments rather than transforming

broader housing dynamics. Notably, the real estate and rental sector shows no measur-
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able response, contradicting policy expectations that STR restrictions would substantially
redirect properties to long-term rental markets.

Fiscal impacts (if any) prove temporary. Property tax revenues decline by up to 23% in
the first two years following regulation but recover fully within five years. This V-shaped
pattern likely reflects institutional features of property taxation systems that reset assess-
ments upon sale, creating short-term revenue volatility as transaction volumes adjust to the
new regulatory environment.

These findings contribute to broader debates about regulating emerging technologies
and platform economies. The evidence suggests that STR restrictions neither devastate lo-
cal economies nor deliver transformative housing affordability improvements. Instead, they
primarily redistribute economic activity from informal to formal providers, with efficiency
implications that depend on one’s weighting of consumer surplus, producer welfare, and
externalities. While regulations successfully redirect accommodation provision toward tra-
ditional establishments, their limited impact on housing availability and prices suggests that
STR platforms may be less central to housing market dynamics than the political discourse
often suggests. For policymakers confronting similar platform economy disruptions, these
results highlight the importance of clearly defining regulatory objectives and recognizing
that market responses may concentrate in unexpected dimensions.

While this paper focuses on the arguably more immediate economic effects, several im-
portant dimensions of STR regulations remain unexplored. First, regulations may trigger
demographic shifts if they improve residential quality of life. Future research could examine
whether restrictions affect the number of kindergarten and primary school-aged children in
counties, capturing potential ” family flight” back to previously touristified neighborhoods or,
conversely, continued family departure if regulations prove insufficient to restore residential
character.

Second, the mental health consequences of STR activity and its regulation merit in-

vestigation. County-level measures of mental health outcomes—such as depression rates,
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anxiety disorders, or stress-related conditions—could reveal whether the noise, transience,
and disruption associated with STRs impose psychological costs on long-term residents, and
whether regulations mitigate these effects.

Third, anti-social behavior and crime at the county level represent another understudied
outcome. STR concentrations may correlate with property crime, public disturbances, or
violations of local ordinances. Examining whether regulations reduce such incidents would
illuminate the broader social costs and benefits of platform-mediated tourism.

Fourth, the economic welfare of local small businesses serving residents—particularly
services oriented toward neighborhood stability such as grocery stores, pharmacies, and local
restaurants catering to residents rather than tourists—deserves attention. If STR activity
displaces resident-serving businesses in favor of tourist-oriented establishments, regulations
might reverse this substitution, supporting employment among ”pink collar” workers and
preserving neighborhood commercial ecosystems.

Finally, two broader questions merit attention. First, school quality and educational
outcomes could respond to STR regulations if restrictions stabilize residential populations
and strengthen community investment in local institutions. Second, the distributional conse-
quences across income groups remain unclear: regulations may disproportionately benefit or
harm lower-income residents depending on whether they rely more heavily on STR income
opportunities or suffer more acutely from STR-induced displacement pressures. Understand-

ing these equity dimensions would inform more targeted policy design.
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Chapter 3

Inventor Demographics and
Employment Dynamics: Comparing

the U.S. and Germany

Abstract

Using comprehensive employer-employee administrative data covering nearly all German
inventors from 1999-2011, I analyze inventor characteristics and employment dynamics and
compare them to U.S. inventors. Both countries have aging inventor populations with low
female participation, increasing concentration at larger and older firms, and declining job
mobility. However, Germany’s inventors are overwhelmingly domestic-born, contrasting with
substantial foreign-born representation in the U.S., particularly in high-impact fields. While
inventors in both countries concentrate in top income groups, the earnings-productivity
relationship appears stronger in the U.S. Moreover, while German inventors tend to be more
productive in larger firms of any age, U.S. inventors are most productive in young, small
firms. These patterns could offer insights into the innovation slowdowns affecting advanced

economies.
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3.1 Introduction

Innovation drives long-term economic growth, yet three of the world’s five most patent-
intensive economies—the United States, Japan, and Germany—have experienced stagnating
or declining innovation rates for nearly a decade!. This raises fundamental questions about
the mechanisms of the innovation process and highlights the urgent need to understand
the factors constraining technological progress in advanced economies. Fine-grained inven-
tor data linked to firms remains scarce, limiting our understanding of the supply side of
innovation: the inventors themselves and the labor markets in which they operate.

This paper provides a comprehensive analysis of German inventor characteristics and
employment dynamics, enabling a cross-country comparison with the United States. These
two economies rank among the world’s most innovative, yet they differ substantially in
labor market institutions, demographics, and access to talent and capital. Using employer-
employee administrative data covering nearly the universe of German inventors from 1999
to 2011, I examine four key dimensions of the inventor labor market: demographics, em-
ployer characteristics, earnings, and employment dynamics. I closely follow Akcigit and
Goldschlag’s (2025) analysis of U.S. inventors, which allows a direct comparison between the
two countries and provides new evidence on how institutional and other differences affect
innovation.

The findings reveal both striking similarities and important differences between the Ger-
man and American inventor labor markets. Both countries have aging inventor populations
with persistently low female participation, and inventors in both nations increasingly concen-
trate at larger and older firms?, while becoming less mobile across jobs and regions. However,
Germany’s inventor workforce is overwhelmingly domestic-born, contrasting sharply with the

substantial foreign-born inventor population in the United States, particularly from China

!See Figure C.1 and, for comparison with China and South Korea, Figure C.2.

2The IAB data provides establishment-level information. However, in Germany, R&D activities are
predominantly concentrated at firms’ headquarters rather than distributed across multiple establishments
(Stifterverband 2016).
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and India—groups that are disproportionately represented in high-impact fields such as in-
formation technology. Moreover, while inventors in both countries are predominantly high
earners concentrated at the top of their respective income distributions, the relationship
between earnings and inventor productivity, measured by citations, appears stronger in the
United States. Another key difference is the relationship between firm age, firm size and in-
ventor productivity: U.S. inventors at young, small firms produce the highest-impact patents,
whereas in Germany the peak occurs at medium-to-large-sized, middle-aged firms.

These patterns offer potential insights into the innovation slowdown puzzle, suggesting
that both cross-country institutional differences and common trends in labor mobility, im-
migration policy, and firm dynamics may play crucial roles in shaping innovation outcomes.
The results have important implications for understanding how labor market institutions
affect the allocation of innovative talent and, ultimately, aggregate innovation performance.

An important determinant of innovative output is the utilization of inputs in the inno-
vation production function. Substantial evidence documents considerable historical misallo-
cation of creative talent (e.g., Alper 1993; Aghion et al. 2017; Bell et al. 2019b; Hsieh et al.
2019). Women are often underrepresented among inventors, and not all economies effectively
attract and integrate foreign-born workers into their innovation ecosystems, though those
that do often benefit substantially (Akcigit et al. 2017).

Examining the demographic composition of inventors in the U.S. and Germany reveals
patterns that illuminate potential sources of talent misallocation. Both Germany and the
United States exhibit significant underrepresentation of women among inventors, particularly
on a citation-weighted basis, with females accounting for less than 12% of inventors in both
nations. In the United States, however, female participation is gradually rising and tends
to be higher among young inventors, while Germany exhibits no such improvement—female
representation remains stagnant even among younger cohorts. Female inventors in both
countries also demonstrate distinct sectoral patterns, concentrating in Health Care and Social

Assistance in the U.S. and in Chemical/Pharmaceutical fields in Germany.
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The differences in foreign-born inventor representation are even more pronounced. Over
30% of U.S. inventors are foreign-born, with China and India becoming increasingly dom-
inant within this group—rising from 25% of foreign-born inventors in 2000 to 40% by
2016. Foreign-born inventors concentrate heavily in Information, Education, and Profes-
sional/Scientific Services—sectors that have become increasingly central to modern innova-
tion. Germany presents a stark contrast: only very few inventors are foreign-born—3.3% in
1999. While this share rose 63% between 1999 and 2009, it declined again from 2010 on-
wards. Moreover, most foreign-born inventors come from other EU countries. Crucially, Ger-
man foreign-born inventors cluster in Electrical Engineering and Chemical /Pharmaceutical
fields—areas representing Germany’s traditional technological strengths rather than the
high-growth sectors driving contemporary innovation.

Both countries face aging inventor populations with similar trajectories. Between 2000
and 2011, mean inventor age increased from 41 to 45 years in Germany and from 43 to 45
years in the United States. Similarly, the share of young inventors (< 35 years) declined
sharply—from 35% to 20% in Germany and from 20% to 14% in the United States. These
demographic trends suggest that, while both economies confront comparable challenges in
talent utilization, institutional and policy differences may explain why the United States
appears more successful at attracting diverse talent and channeling it toward emerging tech-
nological frontiers.

Another critical aspect of talent allocation and utilization is which types of firms employ
inventors. The rise of superstar firms and dominant incumbents have generated substantial
research interest, as these large firms present a complex picture: while typically demonstrat-
ing high productivity, they often engage in anti-competitive behaviors ranging from political
lobbying to poaching talent from smaller rivals, while inefficiently hoarding labor resources
(e.g., Segal and Whinston 2007; Gutiérrez and Philippon 2017; Acemoglu et al. 2018; Autor
et al. 2020; Akcigit and Goldschlag 2023; Akcigit et al. 2023).

The allocation of inventors across firm types reveals common trends in both countries
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that align with broader patterns of increasing market concentration. In both Germany and
the United States, inventors increasingly concentrate at older, larger firms, with over 60%
of inventors in both countries working at firms older than 20 years and at firms with at
least 1,000 employees. This concentration has intensified over time: in the U.S., the share
of inventors at incumbent? firms rose from 49% to 58% between 2000 and 2016, continuing
a trend that appears to extend back to the 1970s, while Germany followed a remarkably
similar path over the 2000-2016 period®.

The flight from young firms is potentially problematic for innovation dynamics. In both
countries, the share of inventors working at firms up to five years old fell by almost half
during the study period—from 15% to under 8% in the United States and by a similar
magnitude in Germany. However, the composition of this shift differs importantly between
the countries: in the U.S., the decline was most pronounced among superstar inventors with
the most impactful patents—this group became increasingly rare at young firms over time.
In Germany, by contrast, the decline was steepest among ordinary inventors, who became
less likely to work at young firms.

The relationship between firm characteristics and inventor productivity is markedly dif-
ferent for the two countries. In the United States, firm age dominates as a predictor of
patent impact: inventors at young firms (ages 0-10) consistently produce the highest-impact
patents across all size categories, with citations declining almost monotonically with firm
age. The sweet spot appears to be very young, small-to-medium-sized firms (0-5 years old,
21-250 employees). By contrast, inventors at the oldest firms (21 years and older) generate
patents with 30-50% fewer citations, regardless of firm size.

Germany, on the other hand, shows a fundamentally different pattern in which firm
size predicts individual inventor productivity much better than firm age. Across nearly

all age groups, medium- to large-sized firms (> 250 employees) employ the most productive

3 Akcigit and Goldschlag (2023) define incumbent firms as firms that are older than 20 years and that
have at least 1,000 employees.
4The IAB data does not allow me to reliably analyse the time period between 1970 and 1998.
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inventors. Moreover, within this size class inventor productivity peaks in the middle-aged (6-
20 years old) rather than in the youngest (5 years or younger) firms. Finally, in sharp contrast
to the U.S., large, old (1000+ employees, 21+ years old) firms employ more productive
inventors than very young, small firms.

One possible explanation for these differences lies in the well-documented financial mar-
ket constraints that smaller firms face in Europe compared to the U.S.> The United States’
mature venture capital ecosystem enables even unproven startups to secure funding for am-
bitious projects that would struggle to attract investment in Germany. Thus, even small (or
young) American firms may be able to pursue high-risk, high-reward innovation strategies,
while their German counterparts face binding capital constraints that force more conservative
approaches to R&D.

These divergent patterns reframe our understanding of the declining share of inventors
at young firms. In the United States, where superstar inventors became increasingly con-
centrated at established firms over time, this shift represents a reallocation of top talent
toward less productive environments, potentially dampening innovation. In Germany, how-
ever, where ordinary inventors became less likely to work at young firms, this population-level
shift may actually concentrate them in more productive settings—particularly medium-sized
and large established firms where patent impact remains high. This suggests that the inno-
vation consequences of young firms employing fewer inventors depend critically on national
innovation systems and which types of inventors are becoming scarce at young firms.

Innovation and entrepreneurial activity concentrate not only by firm type but also geo-
graphically. The dual forces of specialization and knowledge exchange drive the formation
of innovation clusters, where innovative firms and personnel in an industry agglomerate in
specific locations, generating knowledge spillovers that enhance individual inventor produc-
tivity (e.g., Audretsch and Feldman 1996; Jaffe et al. 2000; Thompson and Fox-Kean 2005;

Hoisl 2007; Kerr and Kominers 2015; Rosenthal and Strange 2020; Matray 2021; Moretti

®see European Investment Bank (2024)
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2021). However, when innovative activities concentrate in relatively few locations, talented
individuals must be both able and willing to relocate to participate effectively in the in-
novation process (Gischer 2025). Furthermore, successful clusters and innovation systems
depend critically on generating new ventures with fundamentally new ideas—a capacity that
appears to have weakened in recent years (e.g., Decker et al. 2014; Akcigit and Ates 2021).

The mobility patterns of inventors in both countries suggest a decline in the dynamism
that traditionally underpinned successful innovation ecosystems. While Germany maintains
higher absolute levels of inventor mobility across firms than the United States, both nations
experienced substantial declines: U.S. job mobility® fell from 7.5% to 6.5% by 2016, while
it dropped from 16% to 10% in Germany. This reduced labor market fluidity may impede
the knowledge transfer and recombination processes that drive innovation within and across
clusters.

The entrepreneurial dynamism that creates new ventures has similarly weakened. In
both countries, inventors have become significantly less likely to start” firms over time.
The United States shows a particularly stark pattern among superstar inventors, whose
probability of becoming entrepreneurs fell by 57%, while in Germany, the 70% decline in
entrepreneurial activity affected ordinary and superstar inventors equally. This reduction in
new firm formation may be especially problematic given the importance of young firms in
introducing disruptive innovations (Decker et al. 2017).

Geographic patterns reveal different trajectories that may reflect distinct institutional

contexts. In the United States, inventor concentration has intensified markedly, with the

6 Akcigit and Goldschlag (2025) report hire and separation rates rather than direct job-to-job transition
rates. While these measures capture all employment transitions—including movements to and from unem-
ployment or labor force exit—I use separation rates as a proxy for U.S. job mobility. For high-skilled workers
like inventors, separation rates provide a reasonable approximation because: (1) involuntary separations and
unemployment spells are relatively rare for this group, (2) the competitive market for innovation talent
means most voluntary separations involve immediate transitions to new positions rather than labor force
exits. Though this approach may overstate mobility by including some non-job-to-job separations, it likely
captures the broad patterns of inventor mobility across firms.

" Akcigit and Goldschlag (2025) employ a more restrictive definition of entrepreneurial activity, making
level comparisons less meaningful than trend comparisons across countries. See the Results section for
detailed methodological discussion.
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share of inventors working in the 20 largest counties by inventor count rising from 39%
to over 47% between 2000 and 2016. Germany, by contrast, maintained stable geographic
concentration—hovering between 38% and 42% throughout the period, with a temporary
dip in the late 2000s. However, both countries exhibit declining willingness or ability to
relocate for employment opportunities: the share of U.S. inventors switching employment
across state lines fell from a peak of 4.6% in 2006 to 2.6% in 2016, while German cross-state
mobility plummeted from 10% in 2000 to just 4% by 2011—a decline that, despite higher
initial levels, mirrors the reduced geographic dynamism observed in the United States.

These trends suggest that both innovation systems are becoming less dynamic, poten-
tially undermining the flexible talent allocation and entrepreneurial experimentation that
successful clusters require. The combination of reduced job mobility, declining entrepreneur-
ship, and limited geographic mobility may constrain the innovation process precisely when
technological and competitive pressures demand greater adaptability.

Finally, innovation output at the individual level may be driven by compensation incen-
tives. Research from the United States and Finland demonstrates that inventors respond
strongly to pecuniary incentives, including making location decisions based on tax rates
(Akeigit et al. 2016), and that successful invention, particularly high-impact work, receives
substantial financial rewards (e.g., Toivanen and Véénéanen 2012; Aghion et al. 2018; Kline
et al. 2019).

Inventors in both countries are highly compensated, though with notable differences in
the strength of performance-based rewards. In the United States, 63% of all inventors and
88% of superstar inventors are in the top 10% of the national income distribution, with almost
8% of all inventors and 19% of superstar inventors in the top 1%. Similarly, the majority
of German inventors are located in the highest available income bracket®, indicating that
inventor compensation is substantial in both countries.

However, the relationship between earnings and productivity reveals important cross-

8German administrative labor data censors wages, i.e., wages that are above the social security contribu-
tion limit are top-coded. The majority of German inventors fall within this earnings category.
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country differences in incentive structures. In the United States, this relationship is strong
and monotone: inventors in the top 10% of the inventor earnings distribution have average
citations per patent about 0.5 log points higher than those in the bottom 10%, and produc-
tivity and income moves in lockstep across the entire income distribution. Germany presents
a more complex pattern where inventor earnings are less strongly tied to productivity. While
the highest-earning German inventors are mildly more productive than those in the lowest
income brackets, this relationship does not hold universally across all income levels—for in-
stance, inventors in the second-highest income bracket are not more productive than those
in the lowest bracket.

These contrasting patterns may reflect different institutional approaches to inventor com-
pensation and career advancement. The stronger earnings-productivity relationship in the
United States suggests more market-driven compensation mechanisms, while the weaker
and inconsistent relationship in Germany may indicate compensation structures influenced
by factors beyond individual productivity, such as collective bargaining agreements, seniority
systems, or different organizational reward structures. Such differences in incentive alignment
could have implications for individual inventor effort and, ultimately, aggregate innovation

outcomes.

3.2 Data

3.2.1 TAB Dataset

This study uses the linked inventor biography dataset INV-BIO ADIAB 1980-2014, provided
by the Research Data Centre of the German Federal Employment Agency (IAB)°. The
data link inventor and patent information from the European Patent Office (EPO) and the
German Patent and Trademark Office (DPMA) to administrative labor market records from

Germany’s social security system. Using a record linkage and machine-learning procedure,

9For more information, see the associated data report FDZ IAB (2018).
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the dataset assigns pseudonymized social security identifiers to inventors listed on EPO
patent applications between 1999 and 2011, yielding a sample of 152,350 inventors whose
careers can be tracked from 1980 through 2014.

The dataset captures both inventive activity and detailed employment biographies. Patent
records include approximately 644,000 patent families contributed by the linked inventors,
with bibliographic details and technology field classifications that enable measures of in-
ventive output and quality. Labor market data, drawn from the Integrated Employment
Biographies (SIAB), provide spell-level information on employment, unemployment, and job
search episodes, along with wages'?, occupations, and demographics. Establishment identi-
fiers enable merging with firm-level data on industry, location, and structural characteristics
from the Establishment History Panel.

This comprehensive database tracks inventors’ longitudinal career trajectories—employer
transitions, wage dynamics, and inventive productivity changes. Coverage is limited to
inventors in dependent employment subject to social security contributions, excluding the
self-employed, freelancers, and civil servants who comprise approximately ten percent of
inventors according to survey evidence. Nevertheless, the sample represents about 71 percent
of all German patent families during 1999-2011.

To contextualize the German evidence, I compare my results with U.S. findings from Ak-
cigit and Goldschlag (2025), who construct a comparable database linking USPTO patent
records to Census Bureau microdata. Their dataset covers 4.5 million inventor records
from 2000 to 2016 and, like INV-BIO, combines patent information with administrative em-
ployer—employee records to generate longitudinal career histories. While the datasets differ
in specific features—U.S. wage data avoid the censoring issues present in German social
security registers, whereas German data provide richer establishment-level detail—these dif-

ferences are minor. The fundamental comparability of both datasets makes them well-suited

10Wages in the German social security data are top-coded at the social security contribution limit (Beitrags-
bemessungsgrenze), meaning all earnings above this threshold are recorded at the ceiling value rather than
the actual wage amount.
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for parallel analysis of inventor careers and systematic cross-national comparison.

3.2.2 Measuring Innovation Output

Patents

This analysis relies exclusively on patent data, which captures formally protected innovations
but might miss those safeguarded through other mechanisms such as trade secrecy (Cohen
et al. 2000; Moser 2013). Following Akcigit and Goldschlag (2025), I proxy inventor pro-
ductivity using forward citations accumulated within four years of the earliest publication
date at the German Patent and Trademark Office. This citation-based metric not only facili-
tates comparison with Akcigit and Goldschlag (2025) but also addresses the well-documented
heterogeneity in patent value (Trajtenberg 1990). Results prove robust to alternative specifi-
cations in the German data, including substituting patent counts for citation-based measures

or using fractional patents to account for collaborative invention.

Superstar Inventors

Building on Akcigit and Goldschlag (2025), I identify superstar inventors dynamically over
time using a rolling performance measure. For each inventor-year observation, I calculate
the cumulative citations received over the preceding four years for all same-aged inventors in
that year!!. This age-adjusted approach accounts for career-stage effects on productivity. I
classify inventors as superstars when they rank in the top 10% of this citation distribution.
The four-year window balances two concerns: minimizing end-of-sample censoring while

maintaining sufficient temporal coverage for meaningful measurement.

1 Akcigit and Goldschlag (2025) use a five-year window and quarterly time intervals. Due to a smaller
observation period and less reliable quarterly observations, I opt for a four-year citation period and yearly
intervals.
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3.3 Results

3.3.1 Demographics

Innovation output depends critically on the number and quality of researchers engaged in the
innovation process. Ideally, individuals’ selection into innovative professions should reflect

skill, talent, and inclination rather than demographic characteristics.

Female Inventors

Figure C.3 reveals persistently low female representation among German inventors from 1999
to 2011. Female inventors comprised approximately 5% of all active inventors and generated
3.6% of citations in 1999. Their share increased only marginally over the subsequent decade,
temporarily reaching 6% (accounting for 4.2% of citations) in 2009 before declining to 4%
(3.3% of citations) by 2011.

Among younger women (35 or under), who exhibit higher labor force participation than
older cohorts and were exposed to early interventions like Women in Science Days along-
side broader societal encouragement to pursue STEM, female representation doubles to 8%
and rises steadily to 12% by 2009 before dropping back to 8% in 2011. Crucially, female
inventors not only expand the inventor pool but also allocate differently across technological
domains. Figure C.4 demonstrates that over 50% of female patents are in the chemical and
pharmaceutical sectors, compared to just 17% for male inventors. Conversely, mechanical
engineering—including automotive—accounts for only 15% of female patents versus 37%
for males. This sectoral concentration extends to employment patterns: Figure C.5 shows
female inventors disproportionately working in chemical manufacturing while being under-
represented in transport equipment, optical equipment, and machinery manufacturing.

The United States exhibits higher female inventor participation with consistent growth.

Akcigit and Goldschlag (2025) document an increase from 8% in 2000 to over 11% by 2016,
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with young female inventors rising from 11% to 16%. These cross-country differences may
reflect Germany’s historically low female labor force participation or additional barriers
within German innovation markets. However, conditional on participation, German female
inventors face slightly less citation disadvantage than their American counterparts. The
citation gap for female inventors is larger in the United States—where women represent 10%
of inventors but generate only 7% of citations—than in Germany, where the corresponding
figures are 5.4% and 4%. Both countries show female inventors concentrating in healthcare

and social assistance sectors, suggesting field preferences that transcend national contexts.

Foreign Inventors

Attracting foreign-born innovators becomes increasingly crucial when domestic inventor
pipelines weaken. Figure C.6 shows that foreign-born inventors represent a small fraction
of Germany’s inventor population, starting at 3.3% in 1999 (with a 2.9% citation share),
peaking at 5.4% in 2009 (4.1% citation share), then declining to 3.9% by 2011 (3.3% citation
share). Notably, the citation gap'? widens as the foreign-born inventor share increases—from
a 12% deficit in 1999 to 24% in 2009-—suggesting that while Germany attracted more foreign
inventors during this period, it struggled to recruit the highest-impact talent.

Figure C.7 reveals that approximately 80% of Germany’s foreign-born inventors originate
from Europe in both 1999 and 2011. Austria, sharing Germany’s language, contributes
nearly a quarter of foreign inventors in 1999 and 15% by 2011. Strikingly, Asian inventors—
including those from China and India—comprise only 10%, despite these countries’ strength
in critical fields like information technology and electrical engineering. This pattern suggests
that language and cultural barriers substantially limit Germany’s ability to attract global
talent. Figure C.8 shows that while foreign-born inventors have greater representation in
chemical /pharmaceutical (26% versus 18% for natives) and electrical engineering (23% versus

19%), they remain underrepresented in mechanical engineering (29% versus 37%) and related

12D efined as ventor share—citation share.
inventor share
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industries (see Figure C.9).

The United States presents a stark contrast to Germany. Foreign-born inventors not
only represent a much larger share—24% in 2000 rising to 33% by 2016—Dbut consistently
outperform domestic inventors in citations (Akcigit and Goldschlag 2025). In 2000, foreign
inventors generated 1.25 citations for every 1.0 expected based on their population share; by
2013, this ratio had declined to 1.15. While still attracting above-average talent, the U.S.
appears to face diminishing returns as it expands its foreign inventor pool, suggesting the
most exceptional international talent may be increasingly difficult to recruit (or is perhaps

already there).

Inventor Age

Sustaining innovation requires either attracting foreign talent or developing domestic in-
ventors. Germany’s inventor age structure reveals concerning trends. Figure C.10 shows
mean inventor age rising sharply from 41 in 2000 to 45 by 2011, while young inventors
(35 or younger) plummet from 34% to 15%. Interestingly, Figure C.11 indicates minimal
technological divergence between age cohorts—with the only difference being young inven-
tors showing slightly stronger preferences for electrical engineering (21% versus 18%) over
mechanical engineering (33% versus 36%).

The United States experiences similar aging, with average inventor age rising from 43
to 46 between 2000 and 2016 and young inventors declining from 20% to 16% (Akcigit and
Goldschlag 2025). However, young U.S. inventors concentrate more heavily in emerging
technologies like IT, and the country’s superior ability to attract strong foreign inventor

talent may partially offset demographic headwinds—an option less available to Germany.

3.3.2 Employer Characteristics

Another crucial question is what types of firms employ inventors, and how firm characteristics

relate to inventor productivity. Do large, established firms or small, young startups better
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foster innovation?

Firm Age and Inventor Age

Table C.1 and Figure C.12 show that most inventors across all age groups work at established
firms—over half are employed by firms more than 20 years old, reaching 64% for some
inventor age cohorts. Young inventors (<25 years) have a slightly higher propensity to work
at young firms (15% at firms 0-5 years old) compared to older inventors (>56 years, 12%).
However, Figure C.13 documents declining relative employment at young firms: the share
of inventors at young firms fell from 16% in 1999 to 8% by 2011, with superstar inventors
showing similar declines (14% to 7%).

These patterns closely parallel U.S. trends. Akcigit and Goldschlag (2025) report 68% of
inventors at firms older than 20 years, with employment at young firms declining from 15%
to under 8% from 2000 to 2016. The United States shows even stronger age-based sorting,

with young inventors nearly twice as likely as older ones to work at young firms (15% versus

8%).

Firm Size and Inventor Age

Table C.2 and Figure C.14 show that 52% of inventors work at large firms (>1000 employees).
However, both young (<25) and older (>56) inventors are less concentrated in larger firms
(43% and 44%) than middle-aged inventors (53-56%). Young inventors have the highest
small-firm employment (11% at firms with <20 employees), substantially exceeding that of
older inventors (5%). Overall, however, small firms employ only 4% of all inventors.

U.S. patterns differ slightly. American inventors are more concentrated at both ends of
the firm-size distribution—64% work at large firms and 10% at small firms. Moreover, Akcigit
and Goldschlag (2025) find no pronounced age-based sorting by firm size, though middle-aged
inventors (26-55) remain most likely to work at large firms. The higher share of U.S. inventors

at large firms reflects broader structural differences: U.S. firms are generally larger than their
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European counterparts'®. Germany’s economy, by contrast, has historically centered on its
“Mittelstand” **—medium-sized firms that often dominate global niche markets as “hidden
champions”. This middle-market focus leaves less room for both small startup-like firms and
large multinationals. Indeed, Germany exhibits lower startup rates than the U.S. and even

many other European countries!®.

Inventor Productivity by Firm Age and Firm Size

Given the concentration of inventors in large, established firms, it is essential to understand
how firm characteristics map into individual productivity. Table C.3 shows that, in Germany,
inventors at “middle-aged” (6-20 years), medium-to-large (250-1,000 employees) firms ex-
hibit the highest average productivity, measured by four-year citations per patent, followed
by those at the oldest, largest firms. At the other end, inventors at small, old firms are least
productive. Among the oldest firms, productivity increases monotonically with firm size.
In the United States, by contrast, the most productive inventors are concentrated in
very young, small firms, followed by young, medium- to large-sized firms. Across nearly all
size classes, older firms employ less productive inventors. For instance, among very small
firms (<20 employees), inventors at the youngest firms are nearly 80% more productive
than those at the oldest firms; even among very large firms (> 1,000 employees), inventors
at the youngest firms outperform those at the oldest firms by more than 20%—the opposite
of the German pattern. Although U.S. patents receive roughly an order of magnitude more
citations than German patents (5.665 vs. 0.529 for comparable firms)!®, the relative patterns
align: in both countries, inventors at “top firms” have about 40% higher productivity than
those at “bottom firms.” What differs is which firms are “top” and “bottom”: in the United

States they are young (and often small), whereas in Germany they are larger and more

13see U.S. Bureau of Labor Statistics (2025) and Stenkula (2006)

Hgee IfM Bonn (2024)

5see OECD (2025)

16Part of this difference likely reflects the citation windows: Akcigit and Goldschlag (2025) use five-year
forward citations, whereas I use four years (because a slightly smaller sample period).
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established.
Financing constraints offer a plausible explanation for this discrepancy. Young, small
firms—especially those pursuing novel but riskier products—may face tighter financing con-

straints in Germany than in the United States!.

As a result, large, established German
firms with robust balance sheets and long banking relationships are more likely to provide
the complementary resources and stability that enable inventors to be highly productive.

By contrast, in the U.S., young and small innovative firms can more readily access venture

financing, allowing them to support—and elicit—high inventor productivity at earlier stages.

3.3.3 Inventor Earnings

While German data censoring limits the analysis compared to Akcigit and Goldschlag (2025),
we can still show patterns related to earnings levels and to the broad relationship between

earnings and productivity.

Position in the Income Distribution

German inventors earn substantially more than the average German worker. Table C.4
shows that 90% of inventors in 2000 and 97% in 2010 earned more than the average worker.
Figure C.15 shows that approximately 52% of inventors are in the top earnings decile in
2000, rising to 66% by 2011. Similarly, Akcigit and Goldschlag (2025) find that over 92% of

U.S. inventors are above the 60th earnings percentile, with 63% in the top decile.

Earnings and Productivity

To examine the relationship between inventor earnings and productivity in Germany and en-

able comparisons with the United States, I adopt Akcigit and Goldschlag’s (2025) regression

7see, for example, European Investment Bank (2024)
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framework of earnings on citations, i.e.,

5
ihs(Cites; ) = o+ Z N;jEarnGroup(jlis + X + €4 (3.1)

=2

I measure earnings using year-end wages in the patent application year'® and group them

into five categories'®:

the top category captures all top-coded wages (those at or above
the social security contribution limit), while the remaining wages are divided into quartiles
(representing the remaining four categories, with category 1 being the reference group).
Citations are measured over a 4-year window?® and inverse hyperbolic sine transformed.
Following Akcigit and Goldschlag (2025), I include fixed effects for inventor age, calendar
year, industry, firm age, and firm size.

Figure C.16 shows a week relationship between earnings and productivity. Top earners
generate patents with only 1% more citations than bottom earners, compared to 50% more
citations in the United States. Moreover, Germany’s fourth earnings group has no citation

advantage over the lowest group. Data limitations notwithstanding, these patterns suggest

a fundamentally weaker performance-pay link for German inventors.

3.3.4 Employment Dynamics

Employment dynamics are important determinants of economy-wide productivity and inno-
vation. Job mobility enables sorting between workers and firms while facilitating knowledge

spillovers and collaboration. New firm creation often catalyzes emerging technologies.

18 Akcigit and Goldschlag (2025) use averaged earnings from two quarters before and after the patent
application. I use year-end wages as they are more reliably recorded in the IAB data. Robustness checks
using their averaging approach yield virtually identical results.

19 Akcigit and Goldschlag (2025) group earnings into deciles. Given the top-coding in TAB wage data,
upper deciles would be indistinguishable, necessitating broader categories.

20 Akcigit and Goldschlag (2025) use a 5-year citation window. I employ 4 years to maximize sample size
given my shorter observation period. Results remain substantively unchanged when using five years.
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Job Mobility and Geographic Concentration

Figure C.17 documents steadily declining job mobility, defined by the share of inventors who
switch jobs in a given year, among German inventors, from 17% in 2000 to 10% in 2011. The
United States experienced similar declines from lower initial levels, with hire and separation
rates?! falling from 7% and 8% to 4% and 6%, respectively (Akcigit and Goldschlag 2025).

Interstate mobility shows even sharper declines. Figure C.18 shows that German inven-
tors” willingness to cross state lines plummeted from above 10% in 2000 to under 4% by
2011. While U.S. declines appear less dramatic (3.5% to 2.5% between 2002 and 2016), Ger-
many’s smaller size makes state changes arguably less burdensome, rendering the comparison
complex.

Beyond lower overall labor-market dynamism and a declining willingness of inventors
to relocate for better matches, reduced interstate job mobility may also reflect increasing
agglomeration which would necessitate inventors to stay inside a certain region even when
changing jobs. Figure C.19 shows that the top 20 German counties accounted for 38-43% of
inventors throughout 2000-2011. In the United States, concentration in the top 20 counties
was at a similar level early on but then climbed—from about 39% in 2011 to 47% by 2016
(Akcigit and Goldschlag 2025). The net effect of such concentration on overall innovation
levels is ambiguous—it could promote spillovers and economies of scale (Moretti 2021) while
potentially curtailing early-life exposure to science and innovation for those outside these

clusters, worsening the young inventor pipeline problem (Bell et al. 2019b).

Inventors and Entrepreneurship

New firm creation drives radical innovation (Acemoglu and Cao 2015; Decker et al. 2017;

Akcigit and Kerr 2018). To investigate the trajectory of entrepreneurial activity of inventors

21 Akcigit and Goldschlag (2025) do not report job-to-job mobility but job hire and separation rates. While
these do not allow me to recover true job mobility, they provide at least an upper bound of job mobility, i.e.,
0 < J < min{H, S} where J are job-to-job moves, N are hires from non-employment and L are separations
to non-employment.
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in Germany, I build on the approach suggested by Akcigit and Goldschlag (2025). Specifi-
cally, I run a regression of a dummy for entrepreneurial activity on year dummies (with 2000

being the reference period) and individual inventor fixed effects, i.e.,

2014

Entrep;; = o + Z BeDF + 1 + €it (3.2)
k=2001

I define entrepreneurial activity, Entrep;;, broadly as inventors working at firms that are
three years old or younger and that are in the top 25th percentile of the firms earning’s dis-
tribution. This definition slightly deviates from Akcigit and Goldschlag (2025) who classify
inventors as founders if they have positive earnings in the first quarter of a firm’s operation
and are among the top three workers in the firm’s first year. However, this potentially un-
dercounts entrepreneurial activity. First, founders often do not pay themselves top salaries

22 Sec-

in the first year; they prioritize hiring, and their main upside comes from equity.
ond, inventors who formally join one or two years after founding may receive sizable equity
grants that effectively make them co-entrepreneurs.?® Finally, non-compete agreements can
delay when de facto co-entrepreneurs join the new venture; some must observe a cooling-off
(“garden leave”) period before starting.?*

German entrepreneurial activity among inventors fell significantly between 2000 and 2011,
falling approximately 70% from 10% to 3% for both superstar and non-superstar inventors
(Figure C.20). The United States experienced a similar though less severe decline: Akcigit
and Goldschlag (2025) document drops of 41% for non-superstar inventors and 57% for su-
perstars over a comparable period. This convergence suggests that despite methodological

variations?®, both economies witnessed a genuine and substantial retreat from entrepreneur-

ship among their most innovative workers.

22Fast Company, Startup Founder Salary/CEO Report (2023); Pilot, Founder Salary Report (2023).
23Gilicon Valley Bank (2025).

24Gee Jeffers (2024) and Epstein Becker Green (2020).

25Reassuringly, when replicating my results using their classification, patterns are extremely similar.
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https://www.ebglaw.com/assets/htmldocuments/uploads/2020/05/Steinmeyer-Goldstein-Hiring-from-a-Competitor-Practical-Tips-to-Minimize-Litigation-Risk-6-566-2609.pdf

3.4 Conclusion

This paper provides a comprehensive analysis of German inventor demographics and employ-
ment dynamics using administrative data, enabling direct comparison with U.S. patterns.
The findings reveal that while both innovation systems face similar challenges—aging inven-
tor populations, persistent gender gaps, declining mobility, and concentration at incumbent
firms—institutional differences shape distinct patterns in talent allocation and productivity.

Three key differences emerge between the countries. First, Germany’s innovation system
operates with minimal foreign-born talent (under 5% of inventors), contrasting sharply with
the U.S. where foreign-born inventors comprise over 30% of the workforce and concentrate in
high-growth sectors. This difference appears increasingly consequential as China- and India-
born inventors drive U.S. innovation in frontier technologies while Germany’s limited foreign
talent clusters in traditional industrial strengths. Second, the relationship between firm
characteristics and inventor productivity differs fundamentally: U.S. inventors at young firms
consistently outperform those at established firms regardless of size, while German inventors’
productivity depends more on firm size than age, with medium-sized firms showing highest
productivity. Third, the earnings-productivity nexus is markedly stronger in the United
States, where citations increase monotonically with income, while Germany shows a weaker
and non-monotonic relationship, suggesting different incentive structures shape innovative
effort.

Common trends across both countries point to declining dynamism in innovation labor
markets. Job mobility fell by approximately 40% in both nations, entrepreneurial activity
collapsed—particularly dramatically in Germany where rates fell 70%—and geographic con-
centration increased while cross-regional mobility declined. The share of inventors working
at young firms halved in both countries, but the composition of this shift differs impor-
tantly: in the U.S., young firms saw their share of superstar inventors decline most sharply,

meaning top talent became increasingly scarce at these firms over time. In Germany, the
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decline was most pronounced among ordinary inventors. These different patterns of rep-
resentation at young firms carry distinct implications: the U.S. concentration of superstar
inventors at established firms suggests a potential misallocation of top talent toward less pro-
ductive environments, while in Germany, the increasing concentration of ordinary inventors
at medium-sized enterprises may actually place them in more productive settings.

These patterns suggest that innovation slowdowns in advanced economies stem from
both common structural trends and country-specific institutional factors. Policy responses
should therefore be tailored to national contexts: the U.S. might focus on reversing the
concentration of top talent at incumbent firms, while Germany faces the more fundamental
challenge of attracting and integrating foreign talent while strengthening its venture capital
ecosystem to support young firm innovation. Both countries should address declining labor
market dynamism that impedes the knowledge flows and entrepreneurial experimentation
essential for technological progress.

While this paper documents meaningful differences in inventor labor market charac-
teristics and dynamics between Germany and the United States, several important ques-
tions remain unexplored. First, future research could develop direct, structural measures
of wedges in inventor labor markets. Following Hsieh and Klenow (2009), one could esti-
mate differences between a benchmark marginal revenue product of labor for inventor labor
and expected total compensation across firm types, regions, and demographic groups, and
test whether these wedges are associated with inefficient sorting of inventor talent. Per-
sistent wedges—especially if they correlate with barriers to mobility or predicted realloca-
tion gains—would be consistent with distortions that reduce aggregate innovative efficiency.
Cross-country comparisons could then relate institutional differences to the dispersion of
wedges and the implied aggregate innovation losses under the maintained model.

Second, identifying the causes of any observed misallocation represents a crucial next step.
One promising avenue examines whether non-compete agreements (NCAs) contribute to

talent misallocation by restricting inventor mobility. Large incumbent firms may strategically
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deploy NCAs to prevent high-productivity inventors from joining or founding competing
ventures, effectively trapping talent in less productive environments. Exploiting state-level
variation in NCA enforcement—particularly natural experiments such as state supreme court
rulings or legislative reforms—could reveal whether stricter enforcement reduces mobility
from large to small firms and whether this coincides with declining innovation output at
young ventures.

Third, the mechanisms linking financial market development to innovative entrepreneur-
ship require deeper examination. Germany’s weaker venture capital ecosystem may explain
why inventor productivity peaks at medium-sized established firms rather than at young ven-
tures, but we lack direct evidence on how capital constraints shape inventor sorting across
firm types. Micro-level data linking inventor movements to financing events—such as venture
capital rounds, IPOs, or acquisitions—could illuminate whether financial frictions prevent
high-potential inventors from pursuing entrepreneurial opportunities or joining startups.

Finally, the role of immigration policy in shaping innovation outcomes deserves system-
atic study. Germany’s limited success attracting foreign-born inventors, particularly from
high-growth regions like China and India, may reflect restrictive visa policies, language bar-
riers, or inadequate integration support. Comparing inventor migration responses to policy
changes—such as Germany’s skilled immigration reforms or H-1B visa restrictions in the
United States—could identify which policy levers most effectively attract innovative talent

and whether such talent generates knowledge spillovers that benefit domestic inventors.
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A. Appendix to Chapter 1

A.1 Tables

Table A.1: Summary Statistics for Inventors

Mean Median S.D.

Patent Applications 5.42 2 9.19
Number of Jobs 3.29 3 1.85
Female Share 0.15 0 0.36
German Nationality  0.77 1 0.42
Years in Sample 12.82 14 3.48
Observations 11,169

Notes: This table shows basic summary statistics for inventors whose career start falls between 1999 and
2011. Patent Applications refer to the total number of patents an inventor files while in the sample. Number
of Jobs refers to the total number of jobs inventors held in the sample period.
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Table A.2: Yearly Firm Patents by Innovative Scale

Mean Yearly Min Yearly Max Yearly Observations

Firm Innovative Scale Groups Patents Patents Patents

Year 2001
QO 0 0 0 21,796
Q1 1 1 1 2,627
Q2 2 2 2 1,018
Q3 3.37 3 4 845
Q4" 8.99 5 20 928
P95* 36.45 21 74 212
P100 213.57 75 908 56

Year 2006
Q0 0 0 0 16,536
Q1 1 1 1 2,856
Q2 2 2 2 1,018
Q3 3.36 3 4 75
Q4" 9.05 5 20 1,040
P95* 39.24 21 88 234
P100 200.93 &9 654 60

Year 2011
QO 0 0 0 19,773
Q1 1 1 1 1,733
Q2 2 2 2 626
Q3 3.36 3 4 535
Q4" 9.37 5 22 697
P95* 41.77 23 98 150
P100 236.89 101 667 37

Notes: This table presents patent thresholds for firm innovative scale groups. QO includes all firms with
zero patents in a given year. For firms with positive patent output, quartiles are formed: Q1, Q2, and Q3
represent the first, second, and third quartiles, respectively. The fourth quartile is further divided into three
groups: Q4* (75th—95th percentile), P95* (95th—99th percentile), and P100 (top percentile).
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Table A.3: Firm Characteristics by Innovative Scale

Firm Size

2001 2006 2011
Innovative Scale Mean Median Mean Median Mean Median
QO 148 46 154 50 169 57
Q1 269 95 229 &9 313 113
Q2 362 146 331 121 408 169.5
Q3 478 227 375 177 590 275
Q4> 818 449 823 434 825 386.5
P95* 2145 1431 1874 1337 1809 1266
P100 053 4040 7630 3271 6859 3357

Average Deflated Imputed Firm Wage

2001 2006 2011
Innovative Scale Mean Median Mean Median Mean Median
QO 124 116 130 121 144 130
Q1 138 128 139 129 148 136
Q2 147 133 148 135 159 144
Q3 150 139 152 138 167 146
Q4* 157 143 162 148 172 155
P95* 184 163 180 167 189 179
P100 198 187 210 199 225 218

Firm Age

2001 2006 2011
Innovative Scale Mean Median Mean Median Mean Median
Q0 13.5 11 15.4 13 18.3 16
Q1 15.2 15 16.7 14 20.3 19
Q2 15.4 16 16.8 14 21.8 21
Q3 16.0 19 17.4 16 21.9 21
Q4* 16.3 22 19.8 26 23.1 23
P95* 19.5 26 21.4 30 26.1 36
P100 20.7 26 23.8 30 29.5 36

Notes: This table presents firm characteristics by firm innovative scale and year. QO includes all firms with
zero patents in a given year. For firms with positive patent output, quartiles are formed: Q1, Q2, and Q3
represent the first, second, and third quartiles, respectively. The fourth quartile is further divided into three
groups: Q4* (75th—95th percentile), P95* (95th—99th percentile), and P100 (top percentile). Firm Size is
measured by the number of employees a firm employs. Average Deflated Imputed Firm Wage is the average
deflated imputed wage the firm pays to all full-time employees (wages are censored and top-coded).
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Table A.4: Career Starts and First Invention by Innovative Scale of Firms

Share of 1* Employment Share of 1 Invention

QO 44% 0%
Q1 5% 17%
Q2 3% 8%
Q3 5% 9%
Q4* 20% 26%
P95* 12% 20%
P100 10% 20%

Notes: This table shows where inventors start their careers and where they create their first patent. QO
includes all firms with zero patents in a given year. For firms with positive patent output, quartiles are
formed: Q1, Q2, and Q3 represent the first, second, and third quartiles, respectively. The fourth quartile is
further divided into three groups: Q4* (75th—-95th percentile), P95* (95th-99th percentile), and P100 (top

percentile).

Table A.5: Transition Probabilities: First Employer to Employer of First Patent

Firm of 1" Patent
First Firm Q0 Q1 Q2 Q3 Q4* P95 P100

QO 0% 20% 9% 10% 25% 21% 14%
Q1 0% 30% 9% 12% 27% 13% 10%
Q2 0% 12% 20% 12% 35% 12% 9%
Q3 0% 8% 8% 20% 39% 12% 13%
Q4* 0% 7% 4% % 45% 22% 15%
P95* 0% 5% 3% 3% 18% 52% 19%
P100 0% 3% 2% 2% 8% 15% 69%

Notes: This table shows transition probabilities between inventors’ first employer and the firms of their first
patent application. QO includes all firms with zero patents in a given year. For firms with positive patent
output, quartiles are formed: Q1, Q2, and Q3 represent the first, second, and third quartiles, respectively.
The fourth quartile is further divided into three groups: Q4* (75th-95th percentile), P95* (95th-99th per-

centile), and P100 (top percentile).
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Table A.6: Transition Probabilities: Firm of First Patent to Firm post 1°° Patent

Firm post 15¢ Patent

Firmof I* Pat Q0 Q1 Q2 Q3 Q4* P95* P100
QO 0% 0% 0% 0% 0% 0% 0%
Q1 53% 9% 5% 6% 14% 7% 6%
Q2 47% 8% 6% 6% 19% 9% 5%
Q3 39% 9% % 7% 20% 11% 6%
Q4* 2% 9% % 8% 22% 13% 9%
P95* 26% 9% 4% % 22% 18% 15%
P100 16% 6% 2% 4% 14% 21% 38%

Notes: This table shows transition probabilities between the firm in which inventors file for their first
patent and the next firm they join. QO includes all firms with zero patents in a given year. For firms with
positive patent output, quartiles are formed: Q1, Q2, and Q3 represent the first, second, and third quartiles,
respectively. The fourth quartile is further divided into three groups: Q4* (75th—95th percentile), P95*
(95th—99th percentile), and P100 (top percentile).
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Table A.7: Inventor Career Characteristics by Innovative Scale of First Employer

Q0 Q1 Q2 Q3 Q4 P9* P100

Jobs until 1%t Patent
Mean 3.25 2.10 2.11 2.00 2.03 1.84 1.74

Median 3 2 2 2 2 2 1
S.D. 1.59 131 123 1.16 1.14 1.07 1.14
N 6,554 728 527 716 3,113 1,891 1,551

Years until 1%t Patent
Mean 7.60 5.17 5.69 547 5.72 527  4.69

Median 8 5 6 5 6 5 4
S.D. 271 3.16 294 282 280 274 2.86
N 6,054 728 527 716 3,113 1,891 1,551

Jobs in first 10 Years
Mean 3.95 322 295 293 292 262 264

Median 4 3 3 3 3 2 2
S.D. 1.72 152 148 140 136 134 1.49
N 5851 544 393 527 2,384 1,358 1,153

Tenure until 1°¢ Patent
Mean 215 192 221 2.23 2.17 2.23 2.12

Median 2 1 2 2 2 2 2
S.D. 1.94 204 213 206 2.00 2.00 194
N 6,554 728 527 716 3,113 1,891 1,551

Pats in first 10 Years
Mean 298 3.88 3.6 4.37 4.76 556 7.53

Median 1 2 2 2 2 3 4
S.D. 458 6.33 490 6.25 712 849 12.75
N 5,851 544 393 527 2,384 1,358 1,153

Notes: This table shows various early-career statistics of inventors by the innovative scale of their first
employer. QO includes all firms with zero patents in a given year. For firms with positive patent output,
quartiles are formed: Q1, Q2, and Q3 represent the first, second, and third quartiles, respectively. The fourth
quartile is further divided into three groups: Q4* (75th-95th percentile), P95* (95th-99th percentile), and
P100 (top percentile). Jobs until 15¢ Patent is the number of jobs an inventor holds until she files for her
first patent. Years until 15t Patent is the number of years from career start to the application for the first
patent. Jobs in first 10 Years is the number of jobs held in the first ten career years. Tenure until 15t Patent
is the number of years it takes to file the first patent conditional on being employed at the firm of the first
patent. Pats in first 10 Years is the number of patent applications an inventor creates in the first ten years
of her career.
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Table A.8: Innovation Output by Innovative Scale of First Employer

Years after Career Start 7 Years 8 Years 9 Years 10 Years
Patent Applications
Q1 0.2676***  0.1967** 0.1565* 0.1151
(0.087) (0.086) (0.087) (0.088)
Q2 0.1044 0.0705 0.0944 0.0811
(0.084) (0.087) (0.087) (0.087)
Q3 0.4256***  0.3973*** 0.3715%** (.2872%**
(0.087) (0.082) (0.082) (0.079)
Q4* 0.5129%**  0.4512*%** (0.4024*** (.3580***
(0.067) (0.063) (0.063) (0.061)
P95* 0.6515%**  (0.5877*** (.5522%** (.4963***
(0.075) (0.071) (0.071) (0.070)
P100 1.0392*%**  0.9187***  0.8779*** (.7714***
(0.106) (0.101) (0.104) (0.099)
Patent Citations
Q1 0.1484 0.1043 0.0824 0.0413
(0.125) (0.125) (0.123) (0.123)
Q2 0.3502** 0.2093 0.1635 0.1383
(0.157) (0.156) (0.148) (0.147)
Q3 0.4574%**  (0.3495%**  (.2829** 0.1729
(0.138) (0.131) (0.128) (0.129)
Q4% 0.4976***  0.3807*** (0.3125*** (.2973***
(0.100) (0.097) (0.092) (0.093)
P95* 0.7054**F*  0.5707***  0.5164*** (0.4970***
(0.118) (0.114) (0.109) (0.110)
P100 1.0047*F%  (0.8993*%**  (0.8592***  ().8292%**
(0.137) (0.136) (0.131) (0.131)
Inventor Controls Yes Yes Yes Yes
Firm Controls Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Hire-Year FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes
Observations 10,749 10,585 10,191 9,638

Notes: This table shows the Poisson regression estimates for Equation (1.1) examining the relationship
between the innovative scale, as measured by yearly patent output, of the firms at which inventors start
their careers and their subsequent patent and citation productivity. QO includes all firms with zero patents
in a given year. For firms with positive patent output, quartiles are formed: Q1, Q2, and Q3 represent the
first, second, and third quartiles, respectively. The fourth quartile is further divided into three groups: Q4*
(75th-95th percentile), P95* (95th-99th percentile), and P100 (top percentile). Inventor controls include
age and education. Firm controls include size (number of employees), deflated imputed average firm wage,
and firm age. Standard errors are in parentheses. Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.9: Inventor Innovation Output by First Employer and Firm of First Patent

Years after Career Start 7 Years 8 Years 9 Years 10 Years
Patent Applications
SM — L 0.2421*** 0.2606*** 0.2379%** 0.3033***
(0.063) (0.086) (0.059) (0.059)
SM — XL 0.7672%** 0.8061*** 0.8149%*** 0.877T***
(0.060) (0.057) (0.056) (0.057)
L — SM -0.0096 -0.0350 -0.0323 0.0581
(0.103) (0.095) (0.091) (0.093)
L—L 0.1683* 0.2310%** 0.2281*** 0.3157***
(0.087) (0.084) (0.085) (0.087)
L — XL 0.9285%** 0.9317%** 0.9155%** 0.9919%**
(0.082) (0.078) (0.077) (0.078)
XL — SM 0.0503 0.0778 0.0357 0.0838
(0.118) (0.122) (0.120) (0.121)
XL — L 0.3232%** 0.3653*** 0.3422%%* 0.4302%**
(0.104) (0.100) (0.100) (0.101)
XL — XL 0.8859%** 0.9236%** 0.9772%** 1.0757*%*
(0.099) (0.093) (0.094) (0.098)
Patent Citations
SM — L 0.2681** 0.3335%** 0.2974%** 0.3936%**
(0.114) (0.118) (0.114) (0.112)
SM — XL 0.8609*** 0.9267*** 0.9490%*** 1.049717%**
(0.107) (0.109) (0.105) (0.103)
L — SM -0.3026 -0.2515 -0.2137 -0.0602
(0.199) (0.194) (0.178) (0.184)
L—L 0.1086 0.2180 0.2108 0.3270%*
(0.172) (0.163) (0.159) (0.158)
L — XL 0.9833*** 0.9934*** 0.9929%*%** 1.1169%**
(0.140) (0.140) (0.135) (0.135)
XL — SM -0.0468 0.0899 0.1110 0.2996
(0.245) (0.223) (0.224) (0.212)
XL — L 0.4664*** 0.5590*** 0.6064*** 0.6837***
(0.179) (0.177) (0.174) (0.175)
XL — XL 0.9313*** 1.0144%** 1.0867*** 1.2277%**
(0.159) (0.157) (0.152) (0.149)
Inventor Controls Yes Yes Yes Yes
Firm Controls Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Hire-Year FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes
Observations 7,171 7,215 7,084 6,798
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Notes: This table shows the Poisson regression estimates for Equation (1.2) examining the relationship of
individual inventor productivity and employment history. Firms are categorized into three groups: (1) SM,
small- to medium-scale innovative firms including QO0, Q1, Q2, and Q3; (2) L, large-scale firms including
Q4*; and (3) XL, mega-scale firms including P95* and P100. QO includes all firms with zero patents in
a given year. For firms with positive patent output, quartiles are formed: Q1, Q2, and Q3 are the first,
second, and third quartiles. The fourth quartile is split into Q4* (75th—95th percentile), P95* (95th—99th
percentile), and P100 (top percentile). The analysis is restricted to inventors who do not patent in their first
job. The first firm group (left of the arrow) indicates the firm type where an inventor starts her career; the
second firm group indicates the firm type where she creates her first patent. Coeflicients are semi-elasticities
relative to starting one’s career at SM firms and creating one’s first patent there. Inventor controls include
age and education. Firm controls include size (number of employees), deflated imputed average firm wage,
and firm age. Standard errors are in parentheses. Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.10: Number of Co-inventors by Innovative Scale of First Employer

Years after Career Start 7 Years 8 Years 9 Years 10 Years
Collaborations
Q1 0.1122 0.1612 0.1589 0.1464
(0.112) (0.115) (0.114) (0.114)
Q2 -0.0075 0.0673 0.0771 0.1030
(0.104) (0.109) (0.110) (0.110)
Q3 0.3156™**  0.3031*** 0.3070*** (.2829***
(0.097) (0.093) (0.092) (0.094)
Q4* 0.3529%**  (0.3568%** (.3422%** (.3282%**
(0.078) (0.074) (0.075) (0.073)
P95* 0.3980%**  0.4296***  (0.4352***  (0.4169***
(0.094) (0.088) (0.087) (0.084)
P100 0.7961**%*  0.7900*** 0.7694*** (.7081***
(0.135) (0.130) (0.129) (0.121)
Inventor Controls Yes Yes Yes Yes
Firm Controls Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Hire-Year FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes
Observations 7,841 8,616 9,080 9,100

Notes: This table shows the Poisson regression estimates for Equation (1.3) examining the relationship
between the innovative scale, as measured by yearly patent output, of the firms at which inventors start
their careers and the total number of their co-inventors in the first years of their careers. QO includes all
firms with zero patents in a given year. For firms with positive patent output, quartiles are formed: Q1, Q2,
and Q3 represent the first, second, and third quartiles, respectively. The fourth quartile is further divided into
three groups: Q4* (75th—95th percentile), P95* (95th-99th percentile), and P100 (top percentile). Inventor
controls include age and education. Firm controls include size (number of employees), deflated imputed
average firm wage, and firm age. Standard errors are in parentheses. Significance: * p < 0.10, ** p < 0.05,

k) < 0.01.
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Table A.11: Inventor Productivity and Innovation Clusters

Years after Career Start 7 Years 8 Years 9 Years 10 Years

Patent Applications

SF 0.4166***  0.3649*%** (0.3682*** (.3579***
(0.093) (0.082) (0.079) (0.083)
IC 0.0195 0.0344 0.0184 0.0093
(0.046) (0.043) (0.041) (0.040)
SF x IC -0.1020 -0.0718 -0.0569 -0.0750
(0.104) (0.094) (0.091) (0.095)
Inventor Controls Yes Yes Yes Yes
Firm Controls Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Hire-Year FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes
Observations 10,749 10,585 10,191 9,638

Notes: This table shows the Poisson regression estimates for Equation (1.4) examining the relationship
between career starts in innovation clusters and the total number of patent applications in the first years of
an inventor’s career. IC is a dummy variable that equals 1 if the inventor starts her career in an innovation-
cluster county, defined as a county with at least two firms in the top percentile of innovative scale (measured
by total yearly patent output). SF' is a dummy that equals 1 if an inventor starts her career at a star firm. Star
firms are firms in the top percentile of innovative scale. Inventor controls include age and education. Firm
controls include size (number of employees), deflated imputed average firm wage, and firm age. Standard
errors are in parentheses. Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.12: Share of Trainee Inventors by Technology Class

Technology Share of trainee inventors  Share of trainee inventors
among all inventors among star inventors
Electrical Engineering 27% 10%
Instruments 24% 8%
Chemical/Pharma 19% 4%
Process Engineering/Spec. Equipment 27% 8%
Mechanical Engineering 30% 13%
Civil Engineering 32% 16%
Total 27% 9%

Notes: The table reports the share of trainee inventors within each technology class. Column (1) shows
the fraction of all inventors in the class who are classified as trainee inventors; Column (2) shows the
corresponding fraction among star inventors.
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Table A.13: Access to Innovative Firms and Inventor Productivity of Trainees

All Counties Only Larger Counties
Years after Career Start 7 Years 8 Years 9 Years 10 Years 7 Years 8 Years 9 Years 10 Years

Patent Applications

Star County 0.2203**  0.2148**  0.1927**  0.1582*  0.3126™**  0.3034***  0.3016***  0.2393**
(0.098) (0.086) (0.083) (0.086) (0.114) (0.101) (0.096) (0.097)
log(gdp/capita) -0.0493 -0.0250 -0.0651 -0.0509 -0.2501 -0.2066 -0.1892 -0.1103
(0.164) (0.143) (0.131) (0.128) (0.174) (0.156) (0.151) (0.146)
Inventor Controls Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes Yes Yes
Hire-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 2,718 2,801 2,781 2,674 1,839 1,883 1,813 1,745

Notes: This table shows the Poisson regression estimates for Equation (1.5) examining the relationship between apprentices’ access to star firms (i.e.,
firms in the top percentile of patent output) and early-career productivity. Star County equals 1 if the inventor starts her career in a county with at
least one star firm. log(gdp/capita) is the natural logarithm of counties’ GDP per capita. The first panel uses all counties; the second panel drops the
25% smallest counties to mitigate the risk of leavers. Inventor controls include age. Standard errors are in parentheses. Significance: * p < 0.10, **
p < 0.05, *** p < 0.01.



Table A.14: Access to Innovative Firms and Inventor Productivity of Trainees: Star Inventors

Years after Career Start 7 Years 8 Years 9 Years 10 Years

Patent Applications

Star County 0.7083***  0.7045%** 0.6706*** (0.5931***
(0.158) (0.125) (0.130) (0.128)
log(gdp/capita) 0.0040 -0.0293 -0.2468 -0.2825
(0.244) (0.230) (0.239) (0.231)
Inventor Controls Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Hire-Year FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes
Observations 400 400 400 400

Notes: This table shows the Poisson regression estimates for Equation (1.5) examining the relationship
between apprentices’ access to star firms (i.e., firms in the top percentile of patent output) and early-career
productivity. The analysis is restricted to star inventors, defined as the 200 most successful apprentices (by
7-10 year patent output) in each county type (“star” and “non-star” counties). Star County equals 1 if
the inventor starts her career in a county with at least one star firm. log(gdp/capita) denotes the natural
logarithm of counties” GDP per capita. Inventor controls include age. Standard errors are in parentheses.
Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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A.2 Figures

Figure A.1: Total Patent Output and Innovative Scale
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Notes: This figure shows the share in total patent output of firms with different levels
of innovative scale. QO includes all firms with zero patents in a given year and hence is
omitted. For firms with positive patent output, quartiles are formed: Q1, Q2, and Q3
represent the first, second, and third quartiles, respectively. The fourth quartile is further
divided into three groups: Q4* (75th-95th percentile), P95* (95th-99th percentile), and
P100 (top percentile)
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Figure A.2: Large-Scale vs. Small-Scale Innovative Firms — Inventor Productivity Differences
after Hire
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Notes: This figure shows event—study estimates for the differences in patent applications
between inventors joining large-scale innovative firms (firms in the 4% quartile of yearly
patent output) and low-scale ones (< 4'® quartile). Inventors are matched based on pre-hire
characteristics. The event-study design is based on Akcigit and Goldschlag (2023). The
figure shows estimates for 7; from Equation (1.6) with point estimates represented by circles
and 95%-confidence intervals by vertical lines.
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Figure A.3: Incumbent vs. Young Firms — Inventor Productivity Differences after Hire
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Notes: This figure shows event study estimates for the differences in patent applications
between inventors joining incumbent firms (firms with > 1000 employees and older 20 years)
and young firms (< 5 years old). Inventors are matched based on pre-hire characteristics.
The firm categories and event study design are based on Akcigit and Goldschlag (2023). The
figure shows estimates for n; for a regression similar to Equation (1.6) but now analysing
moves to incumbent firms rather than large-scale innovative firms. Point estimates are
represented by circles and 95%-confidence intervals by vertical lines.
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Figure A.4: Innovative Scale, Access to Financing (Collateral) and Inventor Productivity
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Notes: This figure shows event—study estimates for the differences in patent applications
between inventors joining large-scale innovative firms (firms in the 4" quartile of yearly
patent output) and low-scale ones (< 4 quartile) in high- vs. low-collateral industries.
Inventors are matched based on pre-hire characteristics. The event—study design follows
Akcigit and Goldschlag (2023). The figure shows estimates for ©J; from Equation (1.7).
Point estimates are represented by circles and 95%-confidence intervals by vertical lines.
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Figure A.5: Innovative Scale, Access to Financing (External Dependence) and Inventor
Productivity
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Notes: This figure shows event—study estimates for the differences in patent applications
between inventors joining large-scale innovative firms (firms in the 4 quartile of yearly
patent output) and low-scale ones (< 4™ quartile) in industries with high vs. low dependence
on external financing (see Rajan and Zingales (1998)). Inventors are matched based on pre-
hire characteristics. The event-study design follows Akcigit and Goldschlag (2023). The
figure shows estimates for ¢J; from Equation (1.8). Point estimates are represented by circles
and 95%-confidence intervals by vertical lines.
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B. Appendix to Chapter 2

B.1 Tables

Table B.1: List of Counties and STR Regulation Introduction Years

County State Year of Regulation
Los Angeles California 2015
Orange California 2014
Riverside California 2014
San Francisco California 2015
Sonoma California 2017
Boulder Colorado 2016
Denver Colorado 2017
Miami-Dade Florida 2010
Chatham Georgia 2015
Cook Illinois 2016
Clark Nevada 2010
Buncombe North Carolina 2015
Multnomah Oregon 2014
Davidson Tennessee 2015
Travis Texas 2012
King Washington 2017
Teton Wyoming 2015

Notes: The table reports U.S. counties that became subject to short-term rental (STR)
regulations, along with the year the rules were first enacted, sourced from local ordinances
and municipal records.
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Table B.2: Summary of Variables

Sector/Control Variables Description Source
Real Estate

Price of 2-Bedroom Homes Typical value for 2-bedroom homes in the 35th to 65th percentile range in Dollars ~ Zillow
Price of 3-Bedroom Homes Typical value for 3-bedroom homes in the 35th to 65th percentile range in Dollars  Zillow
Price of 5-Bedroom Homes Typical value for 5-bedroom homes in the 35th to 65th percentile range in Dollars  Zillow
Price of all Homes Typical value for all homes in the 35th to 65th percentile range in Dollars Zillow
GDP

Accommodation & Food Services ~ GDP per capita for accommodation and food services (in $1,000s) BEA
Arts, Entertainment & Recreation GDP per capita for arts, entertainment, and recreation (in $1,000s) BEA
Construction GDP per capita for construction sector (in $1,000s) BEA
Real Estate, Rental & Leasing GDP per capita for real estate, rental, and leasing (in $1,000s) BEA
Personal Income

Accommodation Personal income per capita in accommodation sector (in $1,000s) BEA
Food Services and Drinking Places Personal income per capita in food and drink establishments (in $1,000s) BEA
Arts, Entertainment & Recreation  Personal income per capita in arts, entertainment, and recreation (in $1,000s) BEA
Construction Personal income per capita in construction sector (in $1,000s) BEA
Real Estate, Rental and Leasing Personal income per capita in real estate, rental and leasing (in $1,000s) BEA

County Revenue
Property Tax Revenue

Job Share

Accommodation & Food Services
Arts, Entertainment & Recreation
Construction

Real Estate, Rental and Leasing

Control Variables

College Education (2000)
College Education (2008-2010)
Unemployment Rate

Aggregate Personal Income
Population
Population Density

Property tax revenue per capita of county (in $1,000s)

#People employed in Accomm. & Food divided by total employment

#People employed in Arts, Entertain. & Rec. divided by total employment
#People employed in Construction divided by total employment

#People employed in Real Estate, Rental & Leasing divided by total employment

Share of population with bachelor’s degree or higher (2000)
Share of population with bachelor’s degree or higher (2008-2012)
#People unemployed divided by the total labor force

Total (including all sectors) personal income per capita (in $1,000s)
County population
Population divided by county land area

U.S. Census Bureau

BEA
BEA
BEA
BEA

USDA ERS

USDA ERS

U.S. Bureau of Labor
Statistics

BEA

BEA

U.S. Census Bureau

Notes: This table lists all variables used in the analysis, organized by economic sector. Monetary
figures are in current dollars unless otherwise noted. All variable values are at the county level.
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Table B.3: Covariate Balance For House Price Regressions Across Home Types

All Homes 2-Bedroom 3-Bedroom 5-Bedroom
Variable Non-Ad. Adopt Norm. Diff. Non-Ad. Adopt Norm. Diff. Non-Ad. Adopt Norm. Diff. Non-Ad. Adopt Norm. Diff.
Personal Income per Capita 47231 53492 0.28 47639 53492 0.26 47394 53492 0.28 47981 53492 0.24
Bachelor’s Degree (2000) 0.32 0.33 0.06 0.32 0.33 0.03 0.32 0.33 0.04 0.30 0.33 0.22
Bachelor’s Degree (2008-2012)  0.36 0.38 0.24 0.36 0.38 0.18 0.36 0.38 0.15 0.35 0.38 0.30
Unemployment Rate 0.05 0.05 0.06 0.05 0.05 0.07 0.05 0.05 0.01 0.05 0.05 0.18
Population Density 686.25 2516.45 0.62 562.30 2516.45 0.66 702.39 2516.45 0.61 613.63 2516.45 0.64

Notes: The table compares pre-treatment covariates for counties that adopt short-term rental (STR) regulations (“Adopt”) and their
matched controls (“Non-Ad.”). Controls are chosen from the same state and must fall in the same quintile of the relevant outcome (home
price for All Homes, 2-Bedroom, etc.) measured five years prior to adoption. Normalized difference = (Meanadopt - MeanNon-adopt) /

\/ (Varadopt + Varnon-adopt)/2. Values > 0.25 in absolute value may indicate imbalance (Imbens and Rubin 2015).
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Table B.4: Covariate Balance For GDP Per Capita Regressions Across Sectors

Accom & Food Construction Real Estate Arts & Rec.
Variable Non-Ad. Adopt Norm. Diff. Non-Ad. Adopt Norm. Diff. Non-Ad. Adopt Norm. Diff. Non-Ad. Adopt Norm. Diff.
Personal Income per Capita 44761 52596 0.36 43410 53492 0.46 46990 52596 0.26 46440 52596 0.28
Bachelor’s Degree (2000) 0.29 0.32 0.22 0.27 0.33 0.67 0.31 0.32 0.08 0.30 0.32 0.11
Bachelor’s Degree (2008-2012)  0.33 0.37 0.40 0.30 0.38 0.83 0.35 0.37 0.20 0.34 0.37 0.24
Unemployment Rate 0.06 0.05 —0.04 0.06 0.05 —0.22 0.06 0.05 —0.01 0.06 0.05 —0.08
Population Density 523.57 2382.68 0.64 561.38 2516.45 0.66 593.97 2382.68 0.62 670.13 2382.68 0.59

Notes: The table compares pre-treatment covariates for counties that adopt short-term rental (STR) regulations (“Adopt”) and their
matched controls (“Non-Ad.”). Controls are chosen from the same state and must fall in the same quintile of the relevant outcome
(GDP per capita in Accom & Food, Construction, etc.) measured five years prior to adoption. Normalized difference = (Meanadopt -
Meannon-Adopt) / \/ (Varadopt + Varnon-adopt)/2. Values > 0.25 in absolute value may indicate imbalance (Imbens and Rubin 2015).
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Table B.5: Covariate Balance For Personal Income Per Capita Regressions Across Sectors

Accommodation Food Construction Real Estate Arts & Rec.
Variable Non-Ad. Adopt Norm. Diff. Non-Ad. Adopt Norm. Diff. Non-Ad. Adopt Norm. Diff. Non-Ad. Adopt Norm. Diff. Non-Ad. Adopt Norm. Diff.
Personal Income per Capita 42908 52596 0.46 45822 52596 0.31 42969 53492 0.49 46542 52596 0.27 44471 52596 0.37
Bachelor’s Degree (2000) 0.26 0.32 0.57 0.30 0.32 0.18 0.27 0.33 0.66 0.29 0.32 0.23 0.30 0.32 0.15
Bachelor’s Degree (2008-2012)  0.30 0.37 0.72 0.33 0.37 0.35 0.30 0.38 0.85 0.33 0.37 0.35 0.34 0.37 0.32
Unemployment Rate 0.06 0.05 —0.10 0.06 0.05 —0.10 0.06 0.05 —0.16 0.06 0.05 —0.18 0.06 0.05 —0.02
Population Density 485.60 2382.68 0.65 612.23 2382.68 0.61 408.99 2516.45 0.71 554.87 2382.68 0.63 558.95 2382.68 0.63

Notes: The table compares pre-treatment covariates for counties that adopt short-term rental (STR) regulations (“Adopt”) and their matched controls (“Non-
Ad.”). Controls are chosen from the same state and must fall in the same quintile of the relevant outcome (personal income per capita in Accom, Food,
Construction, etc.) measured five years prior to adoption. Normalized difference = (Meanadopt - Meannon-Adopt) / \/ (Varadopt + Varnon-adopt)/2. Values
> 0.25 in absolute value may indicate imbalance (Imbens and Rubin 2015).
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Table B.6: Covariate Balance For Employment Share Regressions Across Sectors

Accom & Food Construction Real Estate Arts & Rec.
Variable Non-Ad. Adopt Norm. Diff. Non-Ad. Adopt Norm. Diff. Non-Ad. Adopt Norm. Diff. Non-Ad. Adopt Norm. Diff.
Personal Income per Capita 41257 52596 0.55 42674 53492 0.46 46915 52596 0.26 45343 52596 0.33
Bachelor’s Degree (2000) 0.26 0.32 0.62 0.26 0.33 0.68 0.30 0.32 0.17 0.31 0.32 0.07
Bachelor’s Degree (2008-2012)  0.30 0.37 0.80 0.29 0.38 0.91 0.34 0.37 0.35 0.35 0.37 0.23
Unemployment Rate 0.06 0.05 —0.35 0.06 0.05 —0.41 0.06 0.05 —0.03 0.06 0.05 —0.13
Population Density 485.79 2382.68 0.66 464.40 2516.45 0.69 593.32 2382.68 0.62 574.31 2382.68 0.62

Notes: The table compares pre-treatment covariates for counties that adopt short-term rental (STR) regulations (“Adopt”) and
their matched controls (“Non-Ad.”). Controls are chosen from the same state and must fall in the same quintile of the relevant
outcome (employment share of Accom & Food, Construction, etc.) measured five years prior to adoption. Normalized difference

= (Meanadopt - Meannon-Adopt) / \/ (Varadopt + Varnon-adopt)/2. Values > 0.25 in absolute value may indicate imbalance (Imbens
and Rubin 2015).




Table B.7: Covariate balance for Property Tax Per Capita Regressions

Variable Non-Adopt Adopt Norm. Diff.
Personal Income per Capita 39448 51512 0.53
Bachelor’s Degree (2000) 0.23 0.30 0.78
Bachelor’s Degree (2008-2012) 0.27 0.36 0.88
Unemployment Rate 0.06 0.06 —0.54
Population Density 327.49 1327.61 0.88

Notes: The table compares pre-treatment covariates for counties that adopt short-term rental (STR) reg-
ulations (“Adopt”) and their matched controls (“Non-Ad.”). Controls are chosen from the same state and
must fall in the same quintile of the relevant outcome (i.e., property taxes per capita) measured five years
prior to adoption. Normalized difference = (Meanadop, — MeanNon-Adopt) / \/ (Varadopt + Varnon-adopt)/2-
Values > 0.25 in absolute value may indicate imbalance (Imbens and Rubin 2015).
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Table B.8: House Price Effects

All Homes 2-Bedroom 3-Bedroom 5-Bedroom

Pre_avg -0.0306 -0.0763 -0.0579 -0.0444
(-0.81) (-1.23) (-1.01) (-0.99)
Post_avg 0.00772 -0.0514 0.00678 -0.0271
(0.20) (-0.95) (0.09) (-0.38)
Observations 542 531 537 528
State FE Yes Yes Yes Yes
Economic Controls Yes Yes Yes Yes

Notes: This table presents pre- and post-treatment effects aggregated over the respective windows (see Equa-
tion (2.12) and Equation (2.13)), estimated via doubly robust DiD (Callaway and Sant’Anna 2021; Sant’Anna
and Zhao 2020). The outcome is the logarithm of the average home price (All Homes, 2-Bedroom, etc.),
using a sample trimmed to the interquartile range (below the 25th and above the 75th percentile excluded).
Covariates are measured at the county level and include the log of personal income per capita, the log of pop-
ulation density, the unemployment rate, and the share of residents with a bachelor’s degree. The comparison
group comprises not-yet-treated units and never-treated units. Standard errors are heteroskedasticity-robust
and computed via influence functions. T-statistics are in parentheses. Significance: * p < 0.10, ** p < 0.05,
K p < 0.01.
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Table B.9: Sectoral GDP Per Capita Effects

Accom & Food Construction Real Estate Arts & Rec.

Pre_avg —0.0772 —0.114 0.00514 —0.145*
(—0.98) (—0.89) (0.07) (—1.75)
Post_avg 0.133* 0.251 0.0424 —0.0253
(1.86) (1.03) (0.78) (—0.21)
Observations 645 596 611 612
State FE Yes Yes Yes Yes
Economic Controls Yes Yes Yes Yes

Notes: This table presents pre- and post-treatment effects aggregated over the respective windows (see
Equation (2.12) and Equation (2.13)), estimated via doubly robust DiD (Callaway and Sant’Anna 2021;
Sant’Anna and Zhao 2020). The outcome is the logarithm of sectoral county-level GDP per capita. Covariates
are measured at the county level and include the log of personal income per capita, the log of population
density, the unemployment rate, and the share of residents with a bachelor’s degree. The comparison group
comprises not-yet-treated units and never-treated units. Standard errors are heteroskedasticity-robust and
computed via influence functions. T-statistics are in parentheses. Significance: * p < 0.10, ** p < 0.05, ***
p < 0.01.
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Table B.10: Sectoral Personal Income per Capita Effects

Accomm. Food Construction Real Estate Arts & Rec.

Pre_avg 0.282 -0.0984 -0.0135 -0.348** -0.523***
(1.62) (-1.07) (-0.11) (-2.08) (-3.11)
Post_avg 0.110 0.0811** 0.0834 0.00773 -0.406*
(0.89) (2.18) (0.52) (0.04) (-1.67)
Observations 650 628 596 591 647
State FE Yes Yes Yes Yes Yes
Economic Controls Yes Yes Yes Yes Yes

Notes: This table presents pre- and post-treatment effects aggregated over the respective windows (see Equa-
tion (2.12) and Equation (2.13)), estimated via doubly robust DiD (Callaway and Sant’Anna 2021; Sant’Anna
and Zhao 2020). The outcome is the logarithm of sectoral county-level personal income per capita. Covari-
ates are measured at the county level and include the log of personal income per capita, the log of population
density, the unemployment rate, and the share of residents with a bachelor’s degree. The comparison group
comprises not-yet-treated units and never-treated units. Standard errors are heteroskedasticity-robust and
computed via influence functions. T-statistics are in parentheses. Significance: * p < 0.10, ** p < 0.05, ***
p < 0.01.
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Table B.11: Sectoral Employment Shares Effects

Accom & Food Construction

Real Estate Arts & Rec.

Pre_avg 0.0481 0.0104 0.0552 —0.0131
(1.64) (0.18) (0.71) (—0.36)
Post_avg —0.125*** 0.0246 —0.0203 0.0477
(—2.75) (0.33) (—0.39) (0.59)
Observations 628 579 650 611
State FE Yes Yes Yes Yes
Economic Controls Yes Yes Yes Yes

Notes: This table presents pre- and post-treatment effects aggregated over the respective windows (see Equa-
tion (2.12) and Equation (2.13)), estimated via doubly robust DiD (Callaway and Sant’Anna 2021; Sant’Anna
and Zhao 2020). The outcome is the logarithm of sectoral county-level employment shares. Covariates are
measured at the county level and include the log of personal income per capita, the log of population density,
the unemployment rate and the share of residents with a bachelor’s degree. The comparison group comprises
not-yet-treated units and never-treated units. Standard errors are heteroskedasticity-robust and computed
via influence functions. T-statistics are in parentheses. Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table B.12: Property Tax per Capita
Effects
Property Tax per Capita

Pre_avg —0.150

(—1.63)
Post_avg —0.0218

(—0.21)
Observations 458
State FE Yes
Economic Controls Yes

Notes: TThis table presents pre- and post-treatment effects aggregated over the respective windows (see
Equation (2.12) and Equation (2.13)), estimated via doubly robust DiD (Callaway and Sant’Anna 2021;
Sant’Anna and Zhao 2020). The outcome is the logarithm of county-level property tax revenue per capita.
Covariates are measured at the county level and include the log of personal income per capita, the log of pop-
ulation density, the unemployment rate, and the share of residents with a bachelor’s degree. The comparison
group comprises not-yet-treated units and never-treated units. Standard errors are heteroskedasticity-robust
and computed via influence functions. T-statistics are in parentheses. Significance: * p < 0.10, ** p < 0.05,

Rk ) < 0.01.
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Table B.13: Sectoral GDP per Capita Levels and Shares in Treated Counties (Pre-Treatment Averages)

Accommodation & Food Arts & Recreation Construction Real Estate Total GDP
County Absolute Share Absolute  Share  Absolute Share  Absolute Share Absolute
Los Angeles, CA 1,430.95 2.45% 1,782.96  3.05% 1,164.94 1.99% 8,943.85 15.35% 58,342.07
Orange, CA 1,875.28 3.07"% 807.14  1.32% 2,664.97 4.35% 10,849.46 17.74% 61,097.79
Riverside, CA 1,057.54 3.74% 258.87  0.92% 1,550.43 5.48%  6,095.04 21.60% 28,252.84
San Francisco, CA 5,077.60 3.84% 2,571.23 1.94% 2,856.69 2.13% 16,807.27 12.62% 133,187.50
Sonoma, CA 1,837.65 3.59% 596.43  1.17% 3,102.90 6.06%  9,029.95 17.77% 50,938.84
Boulder, CO 1,855.06 2.64% 612.04 0.87% 1,479.69 2.10% 9,498.32 13.57% 70,116.23
Denver, CO 3,255.74 3.46% 1,743.13 1.84% 2,950.79 3.11% 10,689.74 11.39% 93,894.71
Miami-Dade, FL 1,785.06 3.86% 509.99 1.10% 2,833.99 6.11%  7,104.85 15.34% 46,253.80
Chatham, GA 2,277.28 4.40% 352.83 0.68% 1,567.62 3.03% 6,475.54 12.55% 51,631.36
Cook, IL 2,147.79 3.26% 855.33  1.29% 1,779.47  2.69%  8,956.61 13.63% 65,683.42
Clark, NV 8,474.51 17.17%  1,549.48  3.13%  5,099.29 10.29%  7,954.33 16.14% 49,321.03
Multnomah, OR. 1,903.87 3.10% 797.71  1.30% 2,011.52 3.28%  7,396.06 12.08% 61,264.40
Davidson, TN 3,011.48 3.83% 4,151.88  5.28% 2,043.49 2.60% 7,107.06 9.04% 78,538.16
Travis, TX 2,083.67 3.06% 45254  0.66% 2,924.54 4.29%  6,980.98 10.24% 68,195.58
King, WA 2,844.84 2.63% 1,063.70 0.99% 3,170.31 2.92% 11,595.69 10.77%  107,659.72
Teton, WY 15,634.69 18.90% 3,871.06 4.67% 5,914.99 7.11% 13,552.45 16.38% 82,693.01

Notes: All entries are five-year pre-treatment averages for treated counties. “Absolute” columns report GDP per capita in U.S. dollars (USD per
capita). “Share” columns report each sector’s GDP per capita as a share of total county GDP per capita (percent). “Total GDP” reports total county
GDP per capita (USD per capita).



Table B.14: Economic Magnitudes of STR Regulation Effects

(1) (2) (3) (4)

County GDP/cap Growth GDP/cap Growth

(Abs.) (Abs.) (Share)  (Share)
Los Angeles, CA 1,430.95 190.32 2.45% 0.33%
Orange, CA 1,875.28 249.41 3.07% 0.41%
Riverside, CA 1,057.54 140.65 3.74% 0.50%
San Francisco, CA 5,077.60 675.32 3.84% 0.51%
Sonoma, CA 1,837.65 244.41 3.59%  0.48%
Boulder, CO 1,855.06 246.72 2.64% 0.35%
Denver, CO 3,255.74 433.01 3.46% 0.46%
Miami-Dade, FL 1,785.06 237.41 3.86% 0.51%
Chatham, GA 2,277.28 302.88 4.40% 0.59%
Cook, IL 2,147.79 285.66 3.26% 0.43%
Clark, NV 8,474.51 1,127.11 17.17%  2.28%
Multnomah, OR 1,903.87 253.21 3.10% 0.41%
Davidson, TN 3,011.48 400.53 3.83% 0.51%
Travis, TX 2,083.67 277.13 3.06% 0.41%
King, WA 2,844.84 378.36 2.63% 0.35%
Teton, WY 15,634.69 2,079.41 18.90% 2.51%

Notes: This table provides a back-of-the-envelope estimate of the economic magnitude of the STR regulation
effect. Column (1) reports the five-year pre-treatment mean of county GDP per capita in Accommodation and
Food Services among treated counties (USD per capita). Column (2) reports the implied treatment-induced
increase in sectoral GDP per capita (USD per capita), obtained by applying the estimated 13.3 percent
effect from Section 2.5.2 to the pre-treatment mean in Column (1). The calculation assumes homogeneous
treatment effects and abstracts from other general-equilibrium adjustments. Column (3) reports the pre-
treatment sector share of total county GDP per capita (percent). Column (4) reports the implied contribution
of Accommodation and Food Services to total GDP per capita growth (percent), computed as the pre-
treatment share in Column (3) multiplied by 13.3 percent.
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B.2 Figures

Figure B.1: Event-Study Estimates of House Price Effects
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Notes: This figure reports pre- and post-treatment event study estimates (see Equation (2.10)) with all
coefficients normalized relative to e = —1 (the period immediately preceding STR regulation). The esti-
mation procedure follows the doubly robust DiD approach proposed by Callaway and Sant’Anna (2021)
and Sant’Anna and Zhao (2020). The outcome is the logarithm of county-level house prices. Covariates are
measured at the county level and include the log of personal income per capita, the log of population density,
the unemployment rate and the share of residents with a bachelor’s degree. The comparison group comprises
not-yet-treated units and never-treated units. The shaded areas represent 95% confidence intervals based on
heteroskedasticity-robust standard errors computed via influence functions.
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Figure B.2: Event-Study Estimates of Sectoral GDP Effects

GDP of Accomm. and Food Sector in Logs — State FEs & Econ Controls
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Notes: This figure reports pre- and post-treatment event study estimates (see Equation (2.10)) with all
coefficients normalized relative to e = —1 (the period immediately preceding STR regulation). The estima-
tion procedure follows the doubly robust DiD approach proposed by Callaway and Sant’Anna (2021) and
Sant’Anna and Zhao (2020). The outcome is the logarithm of sectoral county-level GDP per capita. Covari-
ates are measured at the county level and include the log of personal income per capita, the log of population
density, the unemployment rate, and the share of residents with a bachelor’s degree. The comparison group
comprises not-yet-treated units and never-treated units. The shaded areas represent 95% confidence intervals
based on heteroskedasticity-robust standard errors computed via influence functions.
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Figure B.3: Event Study Estimates of Sectoral Personal Income Effects

Pers. Income of Accom. Sector in Logs — State FEs & Econ Controls
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Notes: This figure reports pre- and post-treatment event study estimates (see Equation (2.10)) with all
coefficients normalized relative to e = —1 (the period immediately preceding STR regulation). The estima-
tion procedure follows the doubly robust DiD approach proposed by Callaway and Sant’Anna (2021) and
Sant’Anna and Zhao (2020). The outcome is the logarithm of county-level sectoral personal income per
capita. Covariates are measured at the county level and include the log of personal income per capita, the

log of population density, the unemployment rate, &

he share of residents with a bachelor’s degree. The

comparison group comprises not-yet-treated units and never-treated units. The shaded areas represent 95%
confidence intervals based on heteroskedasticity-robust standard errors computed via influence functions.



Figure B.4: Event-Study Estimates of Sectoral Employment Shares

Job Share of Accommodation Sector in Logs — State FEs & Econ Controls
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Notes: This figure reports pre- and post-treatment event study estimates (see Equation (2.10)) with all
coefficients normalized relative to e = —1 (the period immediately preceding STR regulation). The esti-
mation procedure follows the doubly robust DiD approach proposed by Callaway and Sant’Anna (2021)
and Sant’Anna and Zhao (2020). The outcome is the logarithm of county-level sectoral employment shares.
Covariates are measured at the county level and include the log of personal income per capita, the log of pop-
ulation density, the unemployment rate and the share of residents with a bachelor’s degree. The comparison
group comprises not-yet-treated units and never-treated units. The shaded areas represent 95% confidence
intervals based on heteroskedasticity-robust standard errors computed via influence functions.
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Figure B.5: Event-Study Estimates of Property Tax Revenues

Property Tax per Capita in Logs — State FEs & Econ Controls
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Notes: This figure reports pre- and post-treatment event study estimates (see Equation (2.10)) with all
coefficients normalized relative to e = —1 (the period immediately preceding STR regulation). The esti-
mation procedure follows the doubly robust DiD approach proposed by Callaway and Sant’Anna (2021)
and Sant’Anna and Zhao (2020). The outcome is the logarithm of county-level property tax revenue per
capita. Covariates are measured at the county level and include the log of personal income per capita, the
log of population density, the unemployment rate, and the share of residents with a bachelor’s degree. The
comparison group comprises not-yet-treated units and never-treated units. The shaded areas represent 95%
confidence intervals based on heteroskedasticity-robust standard errors computed via influence functions.
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C. Appendix to Chapter 3

C.1 Tables

Table C.1: Inventor Share by Firm Age by Inventor Age

Inventor Age
Firm Age All <25 26-35 36-45 46-55 56+

0tod 13.7 152 157 137 124 121
6 to 10 11.1 11.8  11.1 11.3 105 11.5
11to 20 12.8 154 11.6 127 134 144
21+ 624 576 61.6 623 63.7 620

Source: FDZ IAB
Notes: This table shows the share of inventors (in percent) by firm age group (rows), conditional on inventor
age group (columns).

Table C.2: Inventor Share by Firm Size by Inventor Age

Inventor Age
Firm Size All <25 26-35 36-45 46-55 5H6+

1 to 20 3.7 106 4.1 3.3 3.2 0.1
21 to 100 8.3 13.1 8.4 8.1 7.9 9.7
101 to 250 10.8 11.1 9.7 10.6 112 128
251 to 500 11.7 10.6  10.1 11.7 124 13.6
501 to 1000 13.2 11.5 11.8 13.3 141 146
1000+ 52.3 43.0 558 529 51.1 443

Source: FDZ IAB
Notes: This table shows the shares of inventors (in percent) by firm size group (rows), conditional on inventor
age group (columns).
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Table C.3: Firm Age, Firm Size, and Cites per Grant

Firm Size
Firm Age 1to 20 21 to 100 101 to 250 251 to 500 501 to 1000 1000+ Total
0tob 0.567 0.576 0.549 0.604 0.516 0.547  0.559
6 to 10 0.493 0.550 0.545 0.647 0.649 0.533  0.562
11 to 20 0.529 0.514 0.584 0.646 0.652 0.592  0.594
21+ 0.474 0.465 0.530 0.553 0.586 0.602  0.585
Total 0.536 0.529 0.547 0.588 0.596 0.592  0.580

Source: FDZ IAB.
Notes: This table shows the average citations per patent, within the first 4 years of application, by firm age
and firm size.

Table C.4: Share of Inventors Above Earnings Thresholds

Yearly Earnings in EUR  Percent of Inventors Above in 2000 Percent of Inventors Above in 2010

65,000 54.6 72.3
60,000 61.4 82.8
55,000 71.9 87.4
50,000 78.2 91.1
45,000 82.5 93.6
40,000 85.6 95.3
35,000 87.6 96.3
30,000 89.1 97.1
25,000 91.6 97.8
20,000 92.7 98.2
15,000 93.5 98.5
10,000 95.6 98.7
0 100.0 100.0

Source: FDZ TAB.

Notes: This table reports the share of inventors whose annual earnings exceed each threshold, separately
for 2000 and 2010. All earnings and thresholds are expressed in constant 2015 euros (CPI, 2015=100).
For reference, average CPI-adjusted wages in Germany were €31,436 in 2000 and €30,436 in 2010 (Institut
Arbeit und Qualifikation der Universitét Duisburg-Essen 2023). In 2000, the TAB right-censored wages above
€66,063; in 2010, above €70,184. Roughly 10-13% of German full-time employees are above the censoring
threshold in a typical year (IAB Methodenreport 2023).
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C.2 Figures

Figure C.1: Patent Trends by Historically Innovative Countries
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Notes: This figure shows long-run patent trends of the most innovative and mature economies
from 1990 until 2020. Panel (a) shows data for the United States, (b) for Germany and (c)
for Japan.

Source: World Bank
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Figure C.2: Patent Trends by Emerging Innovative Countries
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Notes: This figure shows long-run patent trends of newly emerging innovative countries from
1990 until 2020. Panel (a) shows data for China, and (b) for South Korea.
Source: World Bank
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Figure C.3: Inventor Female Share
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Notes: This figure shows the share of female patent applicants per year. Young inventors
are 35 years old or younger. Female cite share is the female inventors’ share of total patent
citations. Classifications follow Akcigit and Goldschlag (2023).

Source: FDZ IAB
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Figure C.4: Technology Classes and Female Inventor Patents
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Notes: This figure shows the share of female inventor patents by patent technology class.
Source: FDZ IAB
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Figure C.5: Industry Sectors and Female Inventor Employment
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Notes: This figure shows the share of female inventor employment by industry.
Source: FDZ IAB
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Figure C.6: Inventor Foreign Born Share
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Notes: This figure shows the share of foreign born patent applicants per year. Young
inventors are 35 years old or younger. Foreign born cite share is the share of patent citations
of foreign born inventors. Classifications follow Akcigit and Goldschlag (2023).

Source: FDZ IAB
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Figure C.7: Nationalities of Foreign Born Inventors
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Notes: This figure shows the share of foreign born inventors by nationality /origin for the
years 1999 and 2011. Classifications follow Akcigit and Goldschlag (2023).
Source: FDZ IAB
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Figure C.8: Technology Classes and Foreign Born Inventor Share
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Notes: This figure shows the share of foreign born inventor patents by patent technology

class.
Source: FDZ IAB
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Figure C.9: Industry Sectors and Foreign Born Inventor Employment
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Notes: This figure shows the share of foreign born inventor employment by industry.
Source: FDZ IAB
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Figure C.10: Inventor Age
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Notes: This figure shows the mean age of all active inventors per year. Young inventors are
active inventors that are at most 35 years old.
Source: FDZ IAB
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Figure C.11: Technology Classes and Inventor Age
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Notes: This figure shows the share of young inventor patents by patent technology class.
Young inventors are active inventors that are at most 35 years old.

Source: FDZ IAB
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Figure C.12: Inventor Share by Firm Age Groups
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Notes: This figure shows the share of active inventors by firm age groups.
Source: FDZ IAB
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Figure C.13: Share of Inventors at Young Firms
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Notes: This figure shows the share of all inventors and superstar inventors employed at young
firms (< 5 years). Superstar inventors are defined as those with citation counts exceeding
the 90th percentile within their age cohort in a given year.

Source: FDZ IAB
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Figure C.14: Inventor Share by Firm Size Groups
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Notes: This figure shows the share of active inventors by firm size groups.
Source: FDZ IAB
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Figure C.15: Share of High-Earning Inventors
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Notes: This figure shows the share of high-earning inventors. These are inventors with earn-
ings above the social security contribution limit that determines eligibility for the maximum
state pension. Typically, 10-13% of the labor force exceed this threshold per year (FDZ IAB
Methodenreport).
Source: FDZ IAB
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Figure C.16: Earnings and Citations
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Notes: Following Akcigit and Goldschlag (2025), this figure shows estimates of \;, with j = 1
being the excluded group, from the following regression:

5
ihs(Cites; ;) = o+ Z NjEarnGroup(jlis + X + €4

Jj=2

where ihsClites is the ihs() transformed 4-year window cites of patents applied for in ¢.
EarnGroup divides inventors into five earnings categories (adjusted earnings “qunitiles”).
Group 5 comprises inventors with top-coded wages (above the social security contribution
limit). Groups 1-4 represent quartiles of the remaining wage distribution. X contains age
and age-squared, year FE, industry FE, firm age group FE, and firm size group FE. Standard
errors are clustered at the individual level. Point estimates are represented by circles and
95%-confidence intervals by vertical lines.

Source: FDZ IAB
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Figure C.17: Job Mobility
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Notes: This figure shows the share of inventors who change jobs, i.e., who move from one
firm to another, in a given year.
Source: FDZ IAB
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Figure C.18: State Movers
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Notes: This figure shows the share of inventors who relocated across state lines between

consecutive jobs.
Source: FDZ IAB
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Figure C.19: Inventor Share of Top20 Counties
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Notes: This figure shows the share of inventors in the twenty counties with the highest

number of inventors.
Source: FDZ [AB
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Figure C.20: Change in Inventor Entrepreneurship Rate
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Notes: Following Akcigit and Goldschlag (2025), this figure shows estimates of f;, from the

following regression:
2015

Entrep;; = o + Z B DF + 9, + €t
k=2001

where Entrep;,, representing entrepreneurial activity, is an indicator of whether, in year ¢,
an inventor 7 (1) works at a firm that is three years old or younger and (2) falls in the top
quartile of the firm’s earnings distribution. D¥ are year dummies, and v; are inventor fixed
effects. Point estimates are represented by circles and 95%-confidence intervals by vertical

lines.
Source: FDZ [AB
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