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We present numerical methods based on the fast Fourier transform (FFT) to solve convolution integral
equations on a semi-infinite interval (Wiener—Hopf equation) or on a finite interval (Fredholm equation).
We improve an FFT-based method for the Wiener—Hopf equation due to Henery by expressing it in
terms of the Hilbert transform and computing the latter in a more sophisticated way with a sinc function
expansion. We further enhance the error convergence using a spectral filter. We then generalize our method
to the Fredholm equation by reformulating it as two coupled Wiener—Hopf equations and solving them
iteratively. We provide numerical tests and open-source code.
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1. Introduction

We consider the linear integral equation of convolution type with constant limits of integration

b
A (x) —/ k(x —xX)f(X)dx = g(x), x € [a,b], (1.1)

where f(x) is the unknown function, k(x) is a given kernel and g(x) is a given so-called forcing function.
The domain of f(x) and g(x) is [a, b], the domain of k(x) is [a — b,b — a]; an endpoint is excluded
if it is infinite or a function is undefined there. If ¢ = —oo or b = 400 Equation (1.1) is called
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a Wiener—Hopf equation (Wiener & Hopf, 1931; Noble, 1958; Krein, 1962; Polyanin & Manzhirov,
1998; Lawrie & Abrahams, 2007); if both integration limits are finite, it is called a Fredholm equation
(Fredholm, 1903; Whittaker & Watson, 1927; Polyanin & Manzhirov, 1998). The latter case is also
called a Wiener—Hopf equation on a finite interval (Voronin, 2004) or, because of an application in
electrotechnics, a longitudinally modified Wiener—-Hopf equation (LMWHE), while the former case
is also called a classical Wiener—Hopf equation (CWHE) (Daniele & Zich, 2014). If A = 0 it is an
equation of the first kind; if A # O it is an equation of the second kind. In the latter case it can be
assumed that A = 1, dividing the kernel and the forcing function by values of this parameter different
from 1. Historically these equations arose in physics, e.g. to describe diffraction in the presence of
an impenetrable wedge or of planar waveguides (Daniele & Lombardi, 2007), and also for problems
in crystal growth, fracture mechanics, flow mechanics (Choi et al., 2005), geophysics and diffusion
(Lawrie & Abrahams, 2007). The connection of the Wiener—Hopf equation with probabilistic problems
was noticed by Spitzer (1957) and is discussed by Feller (1971) together with the application of Fourier
transform methods to stochastic processes. More recently these equations have become of interest in
finance for the pricing of discretely monitored path-dependent options like barrier, first-touch, lookback
(or hindsight), quantile and Bermudan options (Fusai et al., 2006; Green et al., 2010; Fusai et al., 2012;
Marazzina et al., 2012; Fusai et al., 2016; Phelan et al., 2018, 2019, 2020). The Wiener—Hopf method
is employed also to solve a large collection of mixed boundary value problems (Duffy, 2008).

2. Mathematical tools
2.1  Fourier transform and projection operators

We define the Fourier transform of a function f(x),

+00

?@ﬁaa%vmhz/ e (x) dx, 2.1)

—00

where i is the imaginary unit, and correspondingly the inverse transform of f(é),

~ 1 +00 .
mbf;mm=g/ T de. 2.2)

We choose this definition because it is the one normally used in major application fields of Equation (1.1),
i.e. probability, physics and finance, so that the Fourier transform of the probability density function
(PDF) fy (x) of a random variable X coincides with its characteristic function ¢y (§) := E (e'6%) =fx(§),
where E is the expectation. However, it would be better to define the Fourier transform in terms of
frequency v rather than angular frequency or pulsation £ = w = 27 v (in physics terminology if x is
interpreted as time): “We were raised on the w-convention, but we changed!” (Press et al., 2007, Section
12.0). With v, the transform is unitary, i.e. the inverse transform is the adjoint of the forward transform,
and norm-preserving (Plancherel & Leffler, 1910), the inverse transform lacks the factor 1/(27) making
it symmetric with respect to the forward transform and the Nyquist relation between grids in the normal
and Fourier spaces simplifies to AxAv = 1/N, where N is the number of grid steps, without a factor
27 on the right-hand side. Moreover, a minus sign in the exponent of the forward Fourier transform is
consistent with the definition of the Laplace transform. Indeed the Fourier kernel e 727¥* is the more
common choice in fast Fourier transform (FFT) libraries, including the FFTW (Frigo & Johnson, 2005)
used in MatLaB. Thus an inconvenience is that the Fourier transform .%# of Equation (2.1) with the
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Fourier kernel e6* translates into 1 £t () *N*Dx in the MaTLAB code that we give in the supplementary
material, and the inverse transform .% ~! into ££t () *Dxi/ (2 *pi).
The function space L, (R) is the set of functions f : R — C where [f|P has a finite Lebesgue integral

over R. The Fourier transformfnaturally exists if f € L; (R), i.e. if f is absolutely integrable. Necessary
conditions for f € L, (R) are that f vanishes at infinity faster than 1/|x| and tends to infinity slower than
1/(x — xp) at any pole x,. The PDF fy of a random variable X is in L; (R), and its non-unitary Fourier
transform given by Equation (2.1) is the charactenstlc function of X, <pX(E) =F (elsx ) = fX (&). It does
not necessarily follow from f € L, (R) that f € L;(R) too; the Riemann-I ebesgue lemma just states
that f € Cy(R), the space of continuous functions that vanish at infinity, which is a subset of L (R).
However, if f € L; (R) N L,(R), i.e. f is also square-integrable, the Plancherel & Leffler (1910) theorem
states thatf € L,(R)N L, (R) and the unitary Fourier transform is an isometry. The Fourier transform is
then extended to the closure of L; (R)N L, (R), which is the whole L, (R). Because .% : L; (R) — L, (R)
and .# : L,(R) — L,(R) are continuous linear maps, the Riesz—Thorin interpolation theorem further
extends the Fourier transform to .% : Lp(R) — Lq(R) with 1 < p < 2 (Hausdorff-Young inequality)
and 1/p + 1/q = 1 (p, q are Holder conjugates). Thus, f € L,(R) is a sufficient condition for both the
forward and the inverse Fourier transforms of f to exist.

Equation (1.1) is solved in Fourier space, requiring that the Fourier transform k of the kernel exists. In
his fundamental work on the Wiener—Hopf equation, i.e. Equation (1.1) with @ = 0 and b = +o0, Krein
(1962) proved that a sufficient condition for a solution f to exist is that forall £ € R, 7(5 )= )»—’I;(E ) # 0,
and that if and only if the winding number of T, called the index of the equation, is 0, for any forcing
function g € LP(R ), 1 =p < oo, there is a unique solution f € L,,(]R ) Similar results exist for
other values of a and b. However, to operatively ﬁndf requires 1 < p < 2, and to be sure that f can be
retrieved, a sufficient condition is p = 2. Actually, most solution methods assume k € L;(R) N L,(R),
and several methods require additional assumptions, e.g. that k(x) decays exponentially for |x| — ooc.
Like the seminal paper by Wiener and Hopf (Wiener & Hopf, 1931), our method assumes only that all
functions are in L,, although our numerical examples are in L; N L, like many practically relevant cases,
where often the unknown f is a PDF and the kernel & is a transition density, i.e. a conditional PDF. A
notable case in L, \ L, is the sinc function.

We define the projection of a function f(x) on the positive or negative real half-axis through the
multiplication with the indicator function of that set,

[0 =2, f0] = 1p, (Of ), 2.3)

fo) = Z_ [f0)] = 1g_0)f (). (2.4)

A function that, like f., (x), is 0 for x < 0 and non-zero for x > 0 is called ‘causal’ because it can be used
to describe the effect of something that happens at x = 0 and causes the function to become non-zero.
The two half-range Fourier transforms are

+00 |

F1&) =F . f @] = /0 e (x) dx, (2.5)
0 .

F@) =Z . lf @] / e (x) dx. (2.6)
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Notice that ﬁ(g) is the Fourier transform of a projected function, while J?+ (&) is the projection of a
Fourier-transformed function,

F1&) = Z [P, SN AL E) = Py [F, L [f@IL. 2.7)

In other words, f:(é) is the Fourier transform of a function f(x) that vanishes for negative arguments x,
but ﬁ;(é) does not vanish itself for negative arguments &, which instead happens with ;‘; (&); similarly
for the — case. The function ﬁ(é) is analytic (or holomorphic), i.e. locally given bX a convergent power
series, in an upper complex half-plane that includes the real line; the function f_ (&) is analytic in a
lower complex half-plane that includes the real line. The half-range Fourier transforms can be considered
special cases of the Laplace transform,

_ +00
7o) = L [fw)] = /O e dr, seC, 2.38)

where s = =i, while the Fourier transform can be considered a special case of the bilateral or two-
sided Laplace transform. Except possibly for x = 0, the indicator function 1 (x) coincides with the
Heaviside step function H(x), and 1 (x) with 1 — H(x); H(x) = 1ifx > Oand O if x < O, while
for x = 0 it can be assigned the value O (left-continuous choice), 1 (right-continuous choice), or 1/2
(symmetric choice). When integrating as in Equations (2.5) and (2.6), the value for x = 0 matters only
numerically and only if x = 0 is a grid point, as analytically the measure of a point is zero. Clearly the
sum of the two projections, Equations (2.3) and (2.4), is the full function,

fr () + 20 =f(x), 2.9)

and the sum of the two half-range Fourier transforms, Equations (2.5) and (2.6), is the full Fourier
transform,

fLE) +1-©) =1@). (2.10)

2.2 Gibbs phenomenon

As explained in the previous subsection, we numerically implement the forward and inverse Fourier
transform using the FFTW library in MatLAB. The ranges of x and £ cease to be infinite and continuous,
and are approximated with grids of size N. The other parameter that defines both grids, which we

centre around zero, is the truncation in the x domain x_,, . The step is Ax = 2x_,. /N and the x
grid is
N N N
= nAx, =——=,—=+1L..., -1 2.11
X, =nAx, n > > + > ( )

The step of the £ grid is given by the Nyquist relation, A = 27 /(NAx) = 7 /x the truncation in the

max;
& domainis &, = w/Ax and the & grid is

—1. (2.12)
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The discrete forward and inverse Fourier transforms are

N/2-1
FE AxN) = Ax > eminf(x,), (2.13)
n=—N/2
AS N/2—1 )
fO, A6N) =22 3 e ET(E,). (2.14)
m=—N/2

The truncation of the sums in Equations (2.13) and (2.14) causes the Gibbs phenomenon. For a detailed
explanation of its effect on the solution to Wiener—Hopf type equations see Phelan ez al. (2019). In this
case we must consider two main issues: firstly, if the function f(x) has a discontinuity, the truncation of
f(ém, Ax, N) causes oscillations in f(x,,, A&, N) close to the discontinuity; secondly, the error away from
that discontinuity will decay with the grid size N as |f(x,) — f(x,, A§,N)| = O(1/N).

There have been many different approaches to solve or mitigate the Gibbs phenomenon (Vandeven,
1991; Gottlieb & Shu, 1997; Tadmor & Tanner, 2005; Tadmor, 2007; Ruijter ef al., 2015). As in Phelan
etal. (2019), we apply a spectral filter in the Fourier domain, specifically the exponential filter of Gottlieb
& Shu (1997)

o(n) =e 7, (2.15)

where p € Nis even and n = &/£_,.. This function does not strictly meet the usual filter requirements
described, e.g. by Vandeven (1991), as it does not go exactly to zero when || = 1, nor do so its
derivatives. However, if we select ¥ > —loge,, where ¢, is the machine precision, then the filter
coefficients are within computational accuracy of the requirements. Advantages of the exponential filter
are its good performance, its simple form and the order of the filter being equal to the parameter p, which
is directly input into the filter equation.

We also investigated the use of the Planck taper described in McKechan ef al. (2010), which is defined

piecewise as

0, n=<n, nm =-1,
1 _ m=n mn=n _
W,Z(ﬂ)—ﬁ‘f‘ﬁ’ m<n<mn, np=c—1,
o(m:=11, N, <n<mn; m3=1—c¢, (2.16)
1 _ m—n 13— _
W,Z(ﬂ)—ﬁ‘f‘ﬁ’ Ny <n<mny =1,
0’ 772774'

Here, the value of € gives the proportion of the range of 1, which is used for the slope regions. In common
with the findings by Phelan et al. (2019), the Planck taper, while having interesting characteristics such as
a flat central section and a filter order of oo, when tested did not offer any advantage over the exponential
filter, so we did not pursue its use any further.
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2.3 Hilbert transform and Wiener—Hopf factorization

The Hilbert transform (Pang\ey, 1996; Vergara et al., 1999; King, 2009) off(f) is the Cauchy principal
value of the convolution of (&) with 1/(7&),

oy 1 o~ +o00
(6] = p.v.% xf(E) = / ;(gg)/
m LTI /+°° G )
=T d d&’). 2.17
ei%‘w(/_m e [ o

The principal value avoids that the improper integral evaluates to the indefinite form +oo0 — oo. The
Hilbert transform is well defined for]? S L,,(R), 1 < p < oo, and maps to the same space, ¢ :
L,(R) — L,(R). Because with the above definition the Hilbert transform often appears multiplied by
the imaginary unit (see the following equations), some authors such as Stenger (1973) define the Hilbert
transform as the principal value of the convolution with i/(&). The Hilbert transform is a functional
like the Fourier and Laplace transforms; as it maps to the same space, we just write J7; ﬁ‘\(s )] instead
of the more cumbersome %’g,_) £ [f(¢")]. For clarity we will keep the subscripts x — &, § — x and &
although they could be omitted when there is no misunderstanding about which variable the operators
Z,7 P +»Z_ and S act on, notably when the argument function depends on a single variable
which is always the case here, whereas in applications the argument functions often depend also on
time. The operator z}%@ is its own inverse,

() FE)] =F (&) (2.18)
equivalently, %ﬂ ! = —J%;. The convolution theorem
F L I+ E)] = F)8(), (2.19)

which maps the convolution to a product via a Fourier transform, together with the inverse Fourier
transform (Weisstein, 2025)

1
p.v. ﬂ’g__l)x [%] = —isgnx (2.20)
enables to express the Hilbert transform through an inverse and a forward Fourier transform,

i [f©)] = Folsgn(f @)1 2.21)

Thus a fast method to numerically compute the Hilbert transform consists simply in evaluating Equation
(2.21) through an inverse and a forward FFT. In the next subsection, we shall see more sophisticated
numerical methods.

Substituting sgnx = 1R+ (x) — Ig_(x) (this is true also for x = 0, while sgnx = 2H(x) — 1 is
fulfilled for x = O only if H(0) = 1/2), and applying the definitions of the half-range Fourier transforms,
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Equations (2.5) and (2.6), yields

&) —F &) =i [ @) (2.22)

This can be shown also by evaluating the integral in Equation (2.17) with contour integration methods
in the complex plane. Together, Equations (2.10) and (2.22) are known as Plemelj—Sokhotsky relations
(Pandey, 1996; Vergara et al., 1999; King, 2009). They can be rearranged as

-~ 1 —
fr® = {f©® +inFen}, (223)
~ 1 PN
F© = 3 {fe - iaien) (2.24)

or, with a different notation involving the Fourier-transform and projection operators, as
1 .
F el 2 SN = AT 0+ AT @11} (2.25)

1
F ol 0N = S 0] = i F [N} (2.26)

Substituting f(x) with & ' f(x) in Equation (2.25) and f (x) with Z_f(x) in Equation (2.26), and taking
into account that projection operators are idempotent, i.e. & Zf(x) = &?f(x), shows that the half-range
Fourier transforms are eigenfunctions of the Hilbert transform operator,

A= f©), 2.27)

i f_(E)] = —f_ (). (2.28)
This is evident also by substituting f(x) with f, (x) or with f (x) in Equation (2.21), or applying the
operator i.7Z; to both sides of Equations 2.23) and (2.24 and simplifying with Equation (2.18). Equations
(2.27) and (2.28) allow us to obtain Equation (2.22) by applying the operator iifg to both sides of
Equation (2.10); conversely, Equation (2.10) can be reobtained by applying i.7; to both sides of Equation
(2.22). Equations (2.23) and (2.24) are invariant with respect to an application of L%’g to both sides.

The key step in the Wiener—Hopf solution of Equation (1.1) described in the following section is the
decomposition of a function f, i.e. the reverse of Equation (2.10),

F®& =F& +1@). (2.29)
The factorization of a functionf(é)

7& =F . &F©), (2.30)

which is required too, can be reduced to a decomposition by taking logarithms,

logf (&) = logf, (€) + logf_(&). 2.31)
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This procedure is called logarithmic decomposition. The decomposition can be achieved by (Rino, 1970;
Henery, 1974; Bart et al., 2004)

F1&) = Z 2, LF7 FE, (232)

F® =2 2 71 FEN, (2.33)

as can also be seen from the definitions of the half-range Fourier transforms, Equations (2.5) and (2.6).
For the state of the art of the solution of convolution equations with projection methods in the early 1970s,
see also Gohberg & Fel’dman (1974). More in general, the Plemelj—Sokhotsky relations, Equations
(2.23) and (2.24), can be used (Stenger, 1973): Equations (2.32) and (2.33) are a special case of the
latter if the Hilbert transform is computed through Equation (2.21).

The definition of the two half-range Fourier transforms, Equations (2.5) and (2.6), can be generalized
by splitting the x-axis around a constant @ # 0. Feng & Linetsky (2008) showed how the shift theorem,

F L elf (x4 )] = e 1 (), (2.34)

can be exploited to generalize the Plemelj—Sokhotsky relations to

~ 1 . .
Fr® =S {f® +Cirg[e T ©) ]} (2.35)
—~ 1 . .
F® = 5 {f©) — i Fe)]} (2.36)

It might be a good idea to write Er\a and f/_\a on the left-hand side, but we will avoid it to not overburden
the notation, as it will be clear from the context with respect to which parameter a function is decomposed.
In the above formulas Equation (2.21) generalizes to

iy [eTEf ()] = 4 T [ sen()f (x + )] (2.37)
= F\_ e[ sen(x — a)f )] (2.38)
= Z e[ U ron) @ = 1oy W] (2.39)

Thus it is easy to show that

im i [T ©)] =7 (&) (2.40)
Jim i [T EFE)] = F &), (2.41)

and that lim,_, £, (§) = f(&), lim,_, o f, (€) = 0, lim,_, _ . f () =0, lim,_, o (¢) = F(&).
These limits are useful to retrieve the results for the classical Wiener—Hopf equation from those for the
Fredholm equation.

920z Aienuep gz uo Jasn SoILIOU02T JO [00Y9S Uopuo AQ 26/9928/0.E/7/06/311e/ewewl/wod dno-olwspese)/:sdiy woJj papeojumoq



378 G. GERMANO ET AL.

2.4 Fast Hilbert transform with sinc functions

Equation (2.21) provides a straightforward method to evaluate numerically the Hilbert transform. As it
is based on two FFTs, its computational cost is O(N log N), where N is the number of grid points, and
thus is called fast. We compared this method with the quadrature method described in equations (4.19)
and (4.20) of King (2009), where the summation is taken over every second point in order to avoid the
singularity, which results when x; — x; = 0. We tried various quadrature weights, including Simpson’s
rule and third- and fourth-order quadrature (Press et al., 2007, chapter 4). For our implementation, see
the MatLAB functions htq.m and weights.m in the supplementary material. All weights give the same
result and have polynomial convergence with N. Therefore, as with quadrature the computation speed is
O(N?), the FFT-based method is preferable because of its higher speed.

An alternative, but equally fast O(N log N) approach to compute numerically the Hilbert transform
is based on the sinc expansion approximation of analytical functions. Sinc functions were deeply studied
by Stenger (1993, 2011), who proved that a function f(z) € L,(C) analytical in the whole complex plane
and of exponential type with parameter 7 /A, i.e.

f@)| < ce™ M zec, (2.42)

can be reconstructed exactly from the knowledge of its values on an equispaced grid of step #. We
consider the latter constraint further down in this section. Defining the sinc functions

sin(ww (z — nh)/h)

ey VA (2.43)

S, (2, h) =

the function f admits the sinc expansion (Stenger, 1993, Theorem 1.10.1)

+00
f@= D fuh)S,@zh. (2.44)

n=—oo

Also its Fourier transform admits the sinc expansion

~+00
F& =h > fnhe™ if |g| < 7/h, (2.45)

n=—0oo

while it is zero if |£| > 7/h. Moreover, the integrals of f and |f|> over R can be written as sums of the
coefficients of the sinc expansion of f (Stenger, 1993, corollary 1.10.2),

+

—00

00 +0o0 +oo “+o0
fyde=h D" fnh), / F@Pde=h > |fh)?. (2.46)

n=—0oo
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The above results show that the trapezoidal quadrature rule with step size 4 is exact. Using the following
result on the Hilbert transform of the sinc functions (Feng & Linetsky, 2008, corollary 6.1):

1 — cos(mw(§ — nh)/h)

Hz (S, ] = 2 i jh (2.47)
also the Hilbert transform can be evaluated exactly,
_ = 1- — nh)/h
HF @1 =S foum = TE /I (2.48)

(& —nh)/h

n=—oo

The equality holds for a function f analytic in the whole complex plane. It becomes an approximation
for a function analytic only in a strip that includes the real axis; the proof and error bounds were
given by Stenger (1993), Chapter 3. Feng & Linetsky (2008) described this approximation for its
application in option pricing and gave details of the error for various classes of functions. The following
convergence result was proven: if a function is analytic in a suitable strip around the real axis, then the
discretization error of its numerical decomposition or factorization decays exponentially with respect to
the discretization step &, see Press et al. (2007), Section 4.5.5, Feng & Linetsky (2008), Section 6.3 and
Stenger (1993), Theorems 3.1.3, 3.2.1 and 3.1.4.

Now this approximation can be exploited to compute the Hilbert transform with an exponentially
decaying discretization error by combining an FFT with a sinc expansion (Feng & Linetsky, 2008,
Section 6.5). The idea is that to compute a discrete Hilbert transform it is necessary to do matrix-vector
multiplications involving Toeplitz matrices. These multiplications can be performed exploiting the FFT
once those matrices are embedded in a circulant matrix (Feng & Linetsky, 2008; Fusai et al., 2012,
Appendix B). Feng & Linetsky (2009), Theorem 3.3, concern the computation of the Hilbert transform;
Feng & Linetsky (2008), Theorem 6.5, and Feng & Linetsky (2009), Theorem 3.4, consider in particular
the calculation of the Plemelj—Sokhotsky relations Equations (2.23) and (2.24). An implementation of
both the O(N log N) methods presented above is available in the function ifht.m in the supplementary
material.

In addition to the discretization error, an error is caused also by the truncation of the infinite sum
in Equation (2.48) to the number of FFT grid points (Stenger, 1993). This truncation error depends on
the shape of the function under transform; its bounds have been explored further by Feng & Linetsky
(2008), Section 6.4.2, and Phelan et al. (2019), Section 3. For a function that decays exponentially for
€] — o0, the truncation error converges exponentially. For a function with a polynomial decay, the
convergence of the truncation error is only polynomial. In their paper on lookback options, Feng &
Linetsky (2009) report a result by Stenger, which proves the exponential convergence of the discrete
sinc-based fast Hilbert transform to the continuous Hilbert transform. They also examine the truncation
error, specifically observing in a footnote that this converges exponentially only under certain conditions,
notably f(x) < aexp(—b|x|°) for some a, b, c > 0. This algorithm can be obtained with an eigenfunction
expansion of 7 and is identical to the Kress and Martensen method, which was introduced with a proof
that its error converges exponentially (Kress & Martensen, 1970; Weideman, 1995).

We can also revisit the requirement that? € L,(R) to show that the approximation is valid for the
functions and methodology in this paper. The Fourier transform of a piecewise continuous function is
bounded and for |§| — oo decays at least as O(1/]&|) (Boyd, 2001) and so the functions used in our
experiments meet this requirement.
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3. The classical Wiener—-Hopf method for a convolution equation on a semi-infinite interval

Consider Equation (1.1) with b = +00. The lower integration limit a can be set to 0 shifting the x scale
horizontally by the constant a to a new scale x’ = x — a; the prime is dropped hereafter. The functions
f(x) and g(x), whose domain is [0, 4+00), are extended to the whole real axis defining f,(x) = 0 for
x <0, fy(x) = f(x) forx > 0 and gy(x) = 0 forx < 0, gy(x) = g(x) for x > 0. Define moreover the
auxiliary function

+00

[0 = /0 k(x —xX)f(x)dx' = / k(x —xfy(xHdx', x <0, 3.1

—00

and f}(x) := 0 forx > O, i.e.ﬁ = @A)_ As fy and g, are + functions and f| is a — function, it is
customary to denote these functions f. , g_, and f_ respectively. With them Equation (1.1) is extended
to

~+00
My (x) — / ke = XNf () d' +f_ () =g, (x), xeR, (3.2)

—00

or, with a more compact notation for the convolution,

M) = (kxf)) +f ) =g, &), xekR (3.3)

The extension of the integration domain to the whole real axis does not affect the equation and its solution
on the positive half-axis. Assuming that k,f. ,f_, §1 exist, we can now apply the convolution theorem,
Equation (2.19), and obtain the equation in Fourier space,

U E +F©) =855, E€R, (3.4)

where?(é )= A —’IE(E )il and ] are the functional derivatives of the equation with respect to the solution
in normal and Fourier space. Dropping the argument & for brevity, factorizing / = [_[, and dividing the
equation by /_ gives

L+ =L (3.5)
This is subject to the condition (Krein, 1962)7= A—k #0% fj;o k(x)dx < A. Defining
o=l""g; (3.6)
and decomposing it as ¢ = ¢ + ¢_ yields finally
LA+0 =g+ (3.7)
The + and — components are separated into

fo=LT (3.8)

fo=1¢c_ 3.9
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which allows to obtain the sought solution from

frow =720 L7 O, (3.10)

while f_(x) was introduced as an auxiliary function and is not of further interest.

The case with a = —oo0 is treated in a similar fashion. The upper integration limit b is set to 0
shifting the x scale horizontally by the constant b to a new scale X' = x — b; the prime is dropped
hereafter. The functions f(x) and g(x), whose domain is (—o00, 0], are extended to the whole real axis
defining f(x) = f(x) forx < 0, fy(x) = 0 for x > 0 and gy(x) = g(x) for x < 0, go(x) = 0 for x > 0.
Define moreover the auxiliary function

+00

0
fHx) = / k(x —xX)f(xX)dx' = / k(x = xX)fy(x)dx', x>0, (3.11)

—0o0 —0Q

and f5(x) = 0 for x <0, i.e.g = (l;f(;)+. Now f, and g, are — functions and f, is a + function, so it is
customary to denote these functions f_, g_ and f, , respectively. With them Equation (1.1) is extended to
equations identical to Equations (3.2)—(3.10), except that the + and — indices are swapped. In particular,
the sought solution is obtained from

w©) =L ®FT®), (3.12)
f® =7 [L ®a®) (3.13)

A more elegant alternative to shifting the x scale forth and back by the constant a or b is to modulate
the functions in Fourier space decomposing ¢ with respect to this constant by the generalized Plemelj—
Sokhotsky relations, Equations (2.35) and (2.36). The function 7 is always factorized with respect to 0,
while € is decomposed with respect to a when b = +o00 or to b when a = —oo. For details, see the
function whf_gmf_filt4.m in the supplementary material.

4. Generalization of the Wiener—Hopf method to a convolution equation on a finite interval: the
Fredholm equation

4.1 Theory

In the Fredholm equation both integration limits a and b are finite; either a or, less usually, b can be set
to O shifting the x scale, but, unlike with the classical Wiener—Hopf equation described in the previous
section, we prefer not to modify any of the two integration limits; instead, we will use the generalized
Plemelj—Sokhotsky relations. The functions f(x) and g(x), whose domain is [a, b], are extended to the
whole real axis defining fi,(x) = f(x) for x € [a,b], fy(x) = 0 for x ¢ [a,b] and gy(x) = g(x) for
x € [a,b], gy(x) = O for x ¢ [a, b]. The kernel k(x), whose domain is [a — b, b — a], is extended to the
whole real axis defining ky(x) = k(x) for x € [a — b, b — a] and ky(x) = O forx ¢ [a — b, b — a]. Define
moreover the two auxiliary functions

+00

b
fikx) = / k(x —xX)f(X)dx' = / ko(x = xXNfy(x)dx', x <a, 4.1)

—0o0

920z Aienuep gz uo Jasn SoILIOU02T JO [00Y9S Uopuo AQ 26/9928/0.E/7/06/311e/ewewl/wod dno-olwspese)/:sdiy woJj papeojumoq



382 G. GERMANO ET AL.
fix) =0forx > a,ie. f; = e (e 4kof)_ =1,

+0oo

b
Hx) = / k(x — X)f(X)dx' = / ko(x —xX)fy(X) dx', x> b, 4.2)

—00

and f,(x) = O forx < b, i.e.fz\ = el (e_ibE%)+ = f; Because ky(x) = O forx ¢ [a — b,b — al,
f_(x)=0alsoforx <a—(b—a)=2a—>bandf, (x) =0alsoforx > b — (a —b) = 2b — a. Thus
Equation (1.1) extends to

+00
Mo(x) — / ko (e = X)fp() dx’ + £ (1) +4 () = gy (x) (4.3)

—00

or, with a more compact notation for the convolution,
Mo(x) — (ko * fo) (x) +f_(x) + £ (x0) = go(x), (4.4)
and upon Fourier transformation, setting/l\(é )=A— E)(é),

TEE) + &) +11(E) =2(6). (4.5)

Equations (4.3)—(4.5) look similar to Equations (3.2)—(3.4), but now we have two auxiliary functions,
f: (&), which is — with respect to any ¢ > a, and f; (&), which is + with respect to any d < b, while both
the unknown functionfa(é‘ ) and the forcing function g, (&) are + with respect to @ (or any number < a)
and — with respect to b (or any number > b). Therefore the usual approach is to split Equation (4.5) into
two coupled Wiener—Hopf equations, one with the origin shifted to a, the other with the origin shifted
to b (Green et al., 2010). These functions typically involve the four redundant unknowns e’iagf(;(é),
e bk f:r(é) (which are + functions), e_i”éf(;(é) and e~ ﬁ (¢) (which are — functions). In the next
subsection, the functions f: (¢§) and ﬁ(é ) correspond to J_ and J, from Green ef al. (2010), Equation
(2.15), whilec; and ¢, correspond to P and Q from Equations (2.12) and (2.24) in that paper.

4.2 Iterative solution

We solved the system of integral equations described in Equations 4.1)—(4.3 iteratively observing that,
if we know ﬁ(é) and subtract it from both sides of Equation (4.5) with the origin of the x-axis shifted
to a, the result looks like Equation (3.4), so that we can use the method described in Section 3 to obtain
f: (&); similarly, if we know f: (&) and subtract it from both sides of Equation (4.5) with the origin of
the x axis shifted to b, we can use the method described in Section 3 to obtain ﬁ;(é). Thus, once again
dropping the argument £ for brevity of notation, our procedure is to write Equation (4.5) divided once
by l/:, as in Equation (3.5), and once by l:,

1/\

~~ ~_1~ ~— ~—1~
Lifo+1_ fo+1 fi=1_ "% (4.6)

A~~~ o~~~
Cho+ L +0 7 =0 % (4.7)
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start from the guess ﬁ; = 0 in Equation (4.6), set
~ ~-1
e =1_ @o —f+), (4.8)

decompose ¢; = ¢, + ¢,_ with respect to a and compute the approximations

~  ~—1
=L ey, (4.9)
f=re, (4.10)

as + and — functions with respect to a; then turn to Equation (4.7), set

&=0"G 1) 4.11)

decompose ¢, = ¢,, + ¢,_ with respect to b and compute the new approximations

h=C""g", 4.12)
fi =L, (4.13)

as + and — functions with respect to b; and so on until the difference between the values of f(; at an
iteration and the previous falls below a threshold. An equivalent result is obtained starting from the guess
f: = 0 in Equation (4.7) and the computation of ¢,. Notice that the iterations are performed looking for
a fixed point on the variables f: and f;, Whilef(; is a side product output at each step, but not used to
compute the next step. For details, see the function whf_gmf_filt4.m in the supplementary material.

4.3  Other iterative solutions

Henery (1977) proposed an iterative solution of the Fredholm equation, but presented only the theory
without a numerical validation. In our tests, its literal implementation does not work. The procedure can
be mapped to ours including a missing projection and an untold detail: the y, found in the residual
correction scheme are corrections to the solution and thus must be added together. Besides these
omissions, Henery (1977) did not express the algorithm in terms of the Hilbert transform and thus used
only the simple implementation with the sign function, not the more sophisticated with a sinc function
expansion as we did.

Margetis & Choi (2006) presented an iterative solution limited to algebraic kernel functions.
Moreover, in the example they implemented, which is based on a steady advection—diffusion problem
first suggested by Choi e al. (2005), they noted that ‘this choice of source function and kernel causes
fortuitous algebraic simplifications’. Therefore this method, while interesting as an iterative procedure,
cannot be considered to have a general validity.
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4.4 Noble’s matrix factorization approach

To avoid the iterations, we tried to solve the two simultaneous Wiener—Hopf equations cast in matrix form
according to the classic approach of Noble (1958) pp. 153—157; see also Daniele (1984) and Daniele &
Zich (2014), Section 1.5.2. We write Equation (4.5) multiplied once by e "% and once by e *¢ as

id-ag\ (e 1 f 0 ellc—@8Y /o—ibt7 0 1
((l; :i(db)é)( —idg:]’c?) + (" i(c—b)E ( —ICEJJ: ) T aila—b)E (e—it(l)éA ) ’ (4.14)
eTnfL [ ¢ l e 80
where a < c and d < b, as described in Section 4.1. Convenient choices of the parameters ¢ and d are
c=a,d=by,c=b,d=a,c=d=a;c=d=>b. Wechoose ¢c = a, d = b and write for short

Lf +Lf =L,g. (4.15)
Multiplying from the left with L};_l yields a matrix version of Equation (3.4),

Lf, +f =g, (4.16)

~ o~~~ _ella—b§ [ ellb—a)k _eila—b) 0
L=L, L, =I ( 7 oJ\o 1 = 7 JRIEY: 4.17)

is a triangular matrix. Swapping the elements of ﬂ and f_ permutes the elements of L. If we knew how

where

to factorize L = L_ I::_, multiplying Equation (4.16) from the left with L_ ~! would lead finally to

—_—~ o~ —~_1 ~ —_—~

| S
L+l =L g, (4.18)

which is a matrix version of Equation (3.5) and is solved in a similar fashion decomposing its right-hand
side. The same result is obtained multiplying Equation (4.15) from the left with L1 “or Equation (4.16)
from the left with L1, yielding

~

f,+0'f =L 'g,. (4.19)

where

~ | e~~~ g1 =&\ (0 1 _elb—a)§ 0
Lo=L L=l (0 7 T eila—bk | = R (4.20)

If we knew how to factorize L~! = I:__l L multiplying Equation (4.19) from the left with I:

would lead again to Equation (4.18).

The matrix L does not have a commutatlve factorization because L(S)L(E ) # L(S )L(é) this
condition is fulfilled by the elements Lll, L12, L22, but not by L21 A formula to factorize triangular
2 x 2 matrices due to Jones (1984), Equation (21), and Jones (1991), Equation (6), cannot be applied
because the oscillatory elements of L do not fulfil the required condition that + or — factors remain +
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or — when inverted: the inverse of the + function e®~% is the — function el 9% see also Daniele &
Zich (2014), Section 4.3, Example 2. Feldman et al. (2000) proposed a factorization of a matrix G that
coincides with our matrix L except for the sign of the element Zl 1> but it requires the factorization of
another matrix A built from the elements of G, which is not straightforward.

4.5 Voronin’s matrix factorization approach

Voronin (2004) proposed a different matrix form of the two simultaneous Wiener—Hopf equations. We
present it with slight modifications. Start from Equation (4.5) and decompose the kernel, kg = k_ + k.
(for simplicity, we drop the 0 subscript from k;,_, k, ), obtaining

A —k_ — kg +- +F1 =2 @.21)

Multiply by e 1% take the + part, thus eliminating f: , which is a — function with respect to a, and
multiply by e'%, yielding

(k= kg — € R fo), + 77 = Bo- (4.22)

Multiply by e 1% take the — part, thus eliminating Ji’ which is a + function with respect to b, and
multiply by e'®¢ | yielding

My — € (eTCk_f), — e (e Pk f)_ =2, (4.23)

Define &, = (k_+13%)f, and decompose it with respect to a, G = Pro 4@, define @, = (k. +132)f,
and decompose it w1th respect to b, ¢, = @, + ¢,_; this gives

o~

fo— @11 — - =% (4.24)

The two coupled Wiener—Hopf equations are now obtained multiplying once by k_e 1% and once by
];:efibé ,

1—k_ 0\ (e g | —elb-@E L femiak g e L
(_ei(u—b)élz; 1) (e—ibg‘@ + 0 1 ];‘; e_ibé(zét = lb%-k (425)
for short
— _1 o — —~
M_ ¢,+M, 0o _=¢ (4.26)

Here one can see that the parameter A has been inserted in the deﬁnition of @] and @, to avoid that it

appears in place of the numbers 1 in the diagonal elements of Dﬁr\ ~and Mr _» which would make these
matrices singular for A = 0. Multiplying from the left by M,_ yields

¢, +Mg- =M,_8, 4.27)
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where
M= MM,
1 1 0 1 —eib-adg—
I \dei 1 J\o 1k,
1 1 el
= (e“ab)éla ) (4.28)

An equivalent result is obtained multiplying Equation (4.26) from the left by M;__l . If we knew how to
factorize M = 1\71;1\711\_, multiplying Equation (4.27) from the left by 1\71-11_1 would lead finally to

s P Y
M, o,+M_o_ =M, M_g, (4.29)

which, like Equation (4.18), is a matrix version of Equation (3.5) and is solved in a similar fashion
decomposing its right-hand side.

Unfortunately we are stuck again: though formulas to convert left (+—) factorizations of 2 x 2
matrices into right (—+) ones and vice versa have been published by Jones (1991), Equations (8)—(11),
their application to obtain M, +1\7I-1\_ from M?_Mr . given by Equation (4.28) is not straightforward.

4.6 Iterative solution based on Voronin’s approach

An iterative solution is possible also with Voronin’s approach. Write Equation (4.24) multiplied once by
k_/(1 —k_) and once by k, /(1 — k,),

—_— —_—

7 L o b 2 (4.30)
Y1+ 1_];:901— 1_;:(”2—— 1_1280’ .
S D T T
I . S LS 431
JCRE T SR CL R G @3
in Equation (4.30) set
kR
| = — (8o + ¥2)» (4.32)
1 —k_
start from the guess @,_ = 0, decompose ¢; = ¢, + ¢;_ with respect to a, and compute the
approximations
P11 =11 (4.33)

g =(—k)&- (4.34)
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as + and — functions with respect to a, as well as

1 1
f—A @+ 7)) = =—— (3 + (1 —k)ED):; (4.35)
0 K+ T}L 1+ 1— K + T)L ( 1+ 1- )
then turn to Equation (4.31), set
.k _
&=—=@ — 1) (4.36)
1 -k,

decompose ¢, = ¢, + ¢,_ with respect to b and compute the new approximations

P =0, (4.37)

ooy = (1 =k (4.38)
as + and — functions with respect to b, as well as

—~ 1 1 —_—
0 k++1% 2 2+ k++1_TA(2 +2+)

This is repeated until the difference between the values offg at an iteration and the previous falls below
a threshold. An equivalent result is obtained starting from the guess ¢;, = 0 in Equation (4.31) and the
computation of ¢,. Slmllarly to Section 4 4.2, the iterations are performed looking for a fixed point on
the variables ¢, and @,, while fo is a side product output at each step, but not used to compute the next
step. For details, see the function whf_gmf v.m in the supplementary material.

Work on factorization has found methods for particular matrix classes, often approximate and
corresponding to specific applications. For example, after presenting an approximate solution of the
scalar Wiener—Hopf equation based on the approximation of the kernel with a rational function (Kisil,
2013), Kisil (2015) has developed and analysed an approximate factorization approach for Daniele—
Khrapkov matrices; although several matrix classes can be reduced to them, this is not a general solution
and does not include our case. Kisil also introduced an iterative Wiener—Hopf method for triangular
matrices with exponential factors (Kisil, 2018), but our aim would be a general direct (i.e. non-iterative)
numerical method. Rogosin & Mishuris (2016) and Kisil ef al. (2021) have reviewed constructive
analytical and numerical methods for the factorization of several specific classes of matrices. These
comprehensive reviews confirm that there is no general factorization approach that can be used for all
matrices, in particular no direct one.

5. Tests

As we present a general solution to the Fredholm equation, rather than one limited to a particular
application, we provide several test cases to solve for f Equation (1.1) with A = 1. Although the methods
developed herein can be applied to both Fredholm and Wiener—Hopf equations, for the numerical tests we
have chosen to concentrate on solving examples of the Fredholm equation as it is the more challenging
case and encompasses Wiener—Hopf as a special example when a — —oo or b — +-00.
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Solutions to Equation (1.1) with simple closed-form expressions for f(x), g(x) and k(x) are not
readily available. However, if for simplicity we limit the requirement to f(x) and k(x), then closed-
form expressions for g(x) in Equation (1.1) can be calculated. These g(x) and k(x) are used as inputs to
our numerical method, whose accuracy is measured by comparing the result with f(x). We selected
f(x) and k(x) to give closed-form expressions for g(x) and also to have Fourier transforms that are
easily calculable. We derived three solutions, where both f(x) and k(x) are 1. Gaussian (normal), 2.
Cauchy (Lorentz) and 3. Laplace (bilateral exponential). As discussed in Section 2.2, the decay of the
functions as x,£ — oo can influence the error performance of Fourier-based methods. The functions
were therefore selected to be exponentially decaying in both the state space and Fourier space (Gaussian),
to be polynomially decaying in the state space and exponentially decaying in the Fourier space (Cauchy)
and to be exponentially decaying in the state space and polynomially decaying in the Fourier space
(Laplace). The derivation of g(x) is described in the following sections.

5.1 Gaussian

We set f(x) = k(x) = \/%?e_"z. The expression for g(x) is then

1 1t
gx) = e - —/ e ey dy
T a

Jr
2 b
= Le_)‘2 - le_%/ e20-3) dy
N ™ a
L ! _%[QD(Zb Y —d(2 )] € [a, b] (5.1
=—e " - e —Xx) — a—x)|, xé€la,b], .
VT V2
where @ (-) is the standard normal cumulative distribution function.
5.2 Cauchy
We set f(x) = k(x) = m The first step in the calculation of g(x) is to solve the integral
W= ! L4 (52)
. X)) = — . .
glnt 7_[2 g y2+1(x—y)2+1 y

Using partial fractions,

@ 1/b e
. X) =—
VT eyt

( x 0 20—» n X )d
x(x 14 VAl T Fl ool T o2+ 1) @

[log(y + 1) + xarctan(y) — log[(x — y)2 + 1] + xarctan(y — x)]b

nzx(x2 +4)
1 [1 B*+D((@—x2%+1)
2+ d) | B @+ DG —02+ D)

+x [arctan(b) — arctan(a) + arctan(b — x) — arctan(a — x)]} . (5.3)
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This gives g(x) in closed form,

S S 1 B+ D(@—x*+1)
EV=T@+) 252+ | P @+ Db —02+ 1)
+x [arctan(b) — arctan(a) + arctan(b — x) — arctan(a — x)]}, x € [a,D]. (5.4)
5.3 Laplace

We set f(x) = k(x) = %e"“. In order to make the calculation of g(x) simpler, the values of a and b are
restricted so that 0 < a < b < 0o. Then the formula for g(x) in closed form is

LR Y A
glx) = Ee 2 e e Vdy
a

1 . 1 b (=) oy X
=—et—- /e y)e>dy+/e(x>’)e>dy

2 41/ a

b

= le_" - le" (/ e Pdy e /x dy)

2 4 x a

| RS B

=—e 4+ ge" [e y]x — ¢ Bl

1 1 1
= Ee_" + gex (e_zb - e_zx) - Ze_x(x —a)

3 1 1

= [g + ge_z(b_)‘) +a- x)] , x€labl. (5.5)

6. Results
We use the following methods to recover f(x) and produce the detailed results shown in this section:

1. Fourth-order Newton—Cotes quadrature (Press et al., 2007; King, 2009) with preconditioner (Fusai
etal., 2012); see the MaTLAB functions quadrature.m and weights.m in the supplementary material.

2. Wiener—Hopf method using the sinc-based fast Hilbert transform with no zero padding. In order
to counteract the oscillations on the recovered function, we used an exponential filter of order 8
on the final stage of the fixed-point algorithm. The maximum number of iterations of the fixed-
point algorithm is set to five. In fact, in most cases the final error level is achieved within three
iterations. We discuss the use of the sinc-based fast Hilbert transform and a spectral filter in
Subsection6.16.1.1 below.

3. Wiener—Hopf method using the symmetric sign function in the fast Hilbert transform, i.e. with
zeros placed at both § = Oand § = &, = —%AS , similar to the method introduced by Rino

(1970) and Henery (1974) and tested by Fusai ef al. (2016).
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4. Wiener—Hopf method with Voronin’s variant using the symmetrical sign function for the Hilbert
transform.

6.1  Results for the Gaussian test case

We first examine the performance of the different numerical methods with the Gaussian test case, with
particular emphasis on the method used to implement the Hilbert transform.

6.1.1 Sinc-based fast Hilbert transform and spectral filtering. In the financial pricing applications
described by Feng & Linetsky (2008) and Fusai et al. (2016), the sinc-based fast Hilbert transform has
shown excellent error convergence, especially when combined with a spectral filter as in Phelan et al.
(2019). However, when we consider its use for this application we must take account of several ways
in which the requirements differ from its general use for finding solutions to Wiener—Hopf or Fredholm
equations.

Firstly the pricing methods that were implemented using the Wiener—Hopf method in Fusai et al.
(2016), as devised by Green et al. (2010), use the analytic continuation of x, i.e. they give results for
values of x both inside and outside the barriers (the integration limits of Fredholm equation). This means
that for these applications there is no requirement to truncate the functions to the integration limits of
a and b in the state space, unlike the problems presented as examples in this paper. The requirement to
truncate the function means that there is a jump discontinuity introduced in the state space, meaning that,
as described by Boyd (2001), the function in the Fourier space decays as a first-order polynomial due to
the Gibbs phenomenon. As explained in Stenger (1993) this polynomial decay means that the sinc-based
fast Hilbert transform no longer obtains an error that is exponentially convergent with grid size but rather
converges polynomially. This is in contrast with the aforementioned finance-based papers from Green
et al. (2010) and Fusai et al. (2016), where the Fourier domain functions subject to the sinc-based fast
Hilbert transform are exponentially decaying (or polynomially so in the case of the VG process) and so
excellent error performance is achieved, especially in conjunction with a spectral filter to solve the issue
with the fixed-point algorithm.

In contrast, here we solve the Fredholm and Wiener—-Hopf equations as they were originally
formulated, i.e. the function is only defined for the range of the integration [a, b] and therefore the
functions g(x) and k(x) must be truncated to the ranges [a,b] and [a — b,b — a], respectively. This
truncation will introduce a jump in the functions, which means that their Fourier transforms now have
first-order polynomial decay. Therefore the truncation error from the Hilbert transform will have a
first-order polynomial convergence unless we can exploit some symmetry between the Fourier domain
functions for positive and negative £ as in Phelan et al. (2018), in which case we may achieve second-
order polynomial convergence.

Moreover, there is a second important distinction to be made between the general solution presented
here and the work in the above literature. In the finance literature the solutions to the Fredholm
equation are used to calculate the expectation of a further function, in this case the payoff function.
Therefore the exact errors in the function for individual values of x are not particularly important.
Rather, the finance literature is concerned with the average error, weighted according to the shape
of the payoff function. This also has particular importance when we are considering the use of the
sinc-based fast Hilbert transform described in Section 2 2.4, which was instrumental in achieving
exponential error convergence with the number of FFT grid points N in Feng & Linetsky (2008) and
Fusai et al. (2016).
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FiG. 1. Numerical and analytical f(x) using the sinc-based fast Hilbert transform with no filter.
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Fic. 2. Error in the numerical calculation of f(x) using the sinc-based fast Hilbert transform with no filter.

In Figs 1 and 2, we show results using the sinc-based fast Hilbert transform with no filter for the
Gaussian test case described in Section 5.1. It is immediately obvious that, even for high values of N,
oscillations are visible in the numerical solution.

The oscillations can be overcome with a spectral filter, but this can have a negative effect on
the accuracy of the numerical method, especially close to the discontinuities in the state space; this
is illustrated in Figs 3-5. Figure 4 shows that the lower order filter gives a shallower slope at the
discontinuity, but has a stronger effect on the oscillations. However, we can see from Fig. 4 that,
regardless of the order of the filter, the overshoot at the discontinuity remains approximately the same.
Figure 5 shows that a spectral filter removes the oscillations away from the discontinuity and that the
best results are achieved with a filter of order 8. Although the behaviour of the numerical method using
the sinc-based fast Hilbert transform is not appropriate for a general solution to the Fredholm equation
due to the high errors at function discontinuities, it remains the case that for applications where we are
solely interested in a function value away from any jumps this may be an appropriate method to use.
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Fic. 3. Numerical and analytical f(x) using the sinc-based fast Hilbert transform with an exponential filter. The parameter p
describes the order of the filter.
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FiG. 4. Numerical and analytical f(x) using the sinc-based fast Hilbert transform with an exponential filter, focussing on the
discontinuity at x = 0. The parameter p describes the order of the filter.
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Fic. 5. Error between the numerical and analytical calculation of f(x) using the sinc-based fast Hilbert transform with an
exponential filter. The parameter p describes the order of the filter. The scale has been chosen to display the error away from
the discontinuities of f(x).
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Fic. 6. Numerical and analytical f(x) using the FFT based method with a symmetrical sign function.

6.1.2 Sign-based fast Hilbert transform method. As an alternative to the sinc-based fast Hilbert
transform, we examine the method of Rino (1970) and Henery (1974), which was used also by Fusai et al.
(2016). It is based on the simple relationship between the Hilbert transform and the Fourier transform
given in Equation (2.21).

The results for the Gaussian test case are shown in Figs 6-8; f is the analytic solution, f,,  and fy,, are
the numerical solutions obtained with the Wiener—Hopf iterative method using the fast Hilbert transform
implemented with the symmetric sign function, the latter in the Voronin variant. It is immediately
apparent from Fig. 6 that neither implementation suffers from the overshoot that was seen using the
sinc-based fast Hilbert transform. However, looking at the discontinuity more closely in Fig. 7, we can
see that we will have a peak error at a single state-space grid point as the numerical solution increases to
the final value of f(x) more slowly than the analytic function. However, unlike the sinc-based function,
where the extent of the oscillations depends not only on the filter, but also the shape the function used, we
can state here that as long as the value of x is at least one grid step away from the discontinuity, the answer
will be unaffected by the peak error. It is also interesting to note that the error is symmetrical around the
discontinuity when the iterative Wiener—Hopf method is used, but not with the Voronin variant. This
difference is likely to account for the better performance seen in Fig. 8 compared with Fig. 9. These
display the error results away from the discontinuity and we can see that, although there is some variation
in the error across x, the results for both methods are superior to those for the sinc-based fast Hilbert
transform.

Although it is important to observe the functions that are calculated numerically, when assessing the
performance of the numerical methods, the error convergence with CPU time and number of grid points
N is also important. We measured this at 10, 50 and 90% of the range between a and b; results for the
Gaussian test case are shown in Figs 10 and 11.

The fastest converging method is the Wiener—Hopf iterative method using the sign-based fast Hilbert
transform, achieving an error of O(1/N 2. The other methods exhibited O(1/N) error convergence, with
the method using the sinc-based fast Hilbert transform with spectral filter achieving better absolute error
performance versus N but converging with CPU time almost identically to the quadrature method. The
O(1/N) convergence achieved with the sinc-based fast Hilbert transform is consistent with the error
bound described by Stenger (1993) for a function with a first-order discontinuity, while the O(1/N?)
convergence seen for the sign-based variant is consistent with that reported by Fusai ef al. (2016).
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Fi1G. 7. Numerical and analytical f(x) using the FFT based method with a symmetrical sign function, focussing on the discontinuity
atx = 0.
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FiG. 8. Error of the numerical calculation of f(x) for the new iterative Wiener—Hopf method using the sign-based fast Hilbert
transform. The scale has been chosen to display the error away from the discontinuities of f (x). The error is calculated by comparing
the numerical calculation to the analytic solution.

6.2 Results for Cauchy and Laplace test cases

Figs 12—15 compare the results for the test cases in Sections 5.2 and 5.3 for the iterative Wiener—Hopf
method with the sinc- and sign-based fast Hilbert transform methods; in the figures these are labelled
Jinc and fig,,. We also compare the performance of the iterative Voronin method with the symmetrical
sign function, labelled fy;,,. An eighth-order exponential filter was used with the sinc-based fast Hilbert
transform to counteract the oscillations, as described in Section 6.1.1. As a benchmark we include results
from fourth-order Newton—Cotes quadrature with a preconditioner (Press et al., 2007; Fusai et al., 2012),
labelled f;, which was the previous state of the art; using a Gaussian quadrature would imply to lose the
Toeplitz structure of the matrix that is due to the convolution nature of the problem. The results for the
Cauchy and Laplace test cases are consistent with those for the Gaussian test case; the use of the sinc-
based fast Hilbert transform results in an overshoot at the function discontinuities and the sign-based
method results in a spot error at function discontinuities. We also notice that the quadrature method has
a spot error at the discontinuity, but this effects a smaller range of x than our new numerical methods.
The reason for this smaller range is that the Fourier-based methods need a truncation in state space at
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Fic. 9. Error of the numerical calculation of f(x) for the Voronin method using the sign-based fast Hilbert transform. The scale
has been chosen to display the error away from the discontinuities of f(x). The error is calculated by comparing the numerical
calculation to the analytic solution.
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FiG. 10. Error convergence of the numerical methods against N with the Gaussian test case.

44(b — a) in order to avoid wrap-round effects. In contrast, the range of x for quadrature only needs
truncation at the integration limits a and b.

We also measured the error convergence with the Cauchy and Laplace test cases and the results
are shown in Figs 16—19. These confirm the findings with the Gaussian test case in Section 5.1, which
showed that the best-performing method is the new iterative solution to the Wiener—Hopf equation with
the Hilbert transform implemented using the FFT with the symmetrical sign function.

7. Conclusion

We developed numerical methods based on the FFT to solve convolution integral equations on a semi-
infinite interval (Wiener—Hopf equation) or on a finite interval (Fredholm equation). We improved a
previous method for the Wiener—Hopf equation based on the FFT and projection operators (Rino, 1970;
Henery, 1974) by expressing the required Wiener—Hopf factorization through a Hilbert transform via
the Plemelj—Sokhotsky relations. This allowed us to compute the Hilbert transform with an accurate
and efficient numerical method based on a sinc functions expansion and the FFT (Stenger, 1993, 2011),
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Fic. 11. Error convergence of the numerical methods against CPU time with the Gaussian test case.
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Fic. 12. Numerical and analytical f(x) with the Cauchy test case.

reducing the total number of required FFTs from seven to five. We further enhanced the error convergence
using a spectral filter (Vandeven, 1991; Gottlieb & Shu, 1997). We resolved issues of a previous iterative
extension to the Fredholm equation (Henery, 1977). Moreover, we devised a variant of our method
inspired by the matrix factorization approach of Voronin (2004).

We carried out extensive numerical tests on the Fredholm equation of the second kind using three
kernels and provide operational open-source code. We implemented our new iterative Wiener—Hopf
method with the sinc- or sign-based fast Hilbert transform, the latter also with the variant inspired
by Voronin’s matrix factorization. For benchmark, we implemented a fourth-order Newton—Cotes
quadrature (Press et al., 2007; King, 2009) with preconditioner (Fusai et al., 2012).

Unlike an earlier application in option pricing with exponential convergence of a weighted average
error, the iterative Wiener—Hopf method with the sinc-based fast Hilbert transform does not turn out
optimal for a general solution of the Fredholm equation, having O(1/N) convergence with the number
of FFT grid points N and high errors close to the function discontinuities; this can be explained with the
different requirements of the two problems, as here the solution over the whole interval is required.
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Fic. 13. Numerical and analytical f(x) with the Cauchy test case focussing on the first discontinuity.
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FiGc. 14. Numerical and analytical f(x) with the Laplace test case.

Instead, the iterative Wiener—Hopf method with the sign-based fast Hilbert transform has O(1/N?)
convergence and therefore performs better than its sinc-based sibling, the quadrature method from the
literature and the iterative method based on Voronin’s partial solution, whose convergence is O(1/N)
even with the sign-based fast Hilbert transform. So in terms of error convergence, the iterative Wiener—
Hopf method with the sign-based fast Hilbert transform reveals the new state of the art for the numerical
solution of general Fredholm equations, achieving double the convergence speed of the known fourth-
order quadrature method.

The other aspect that we must compare for the different methods is the peak error at a discontinuity of
f(x) as shown in Figs 13 and 15. This error is wider for the Wiener—Hopf method than for the quadrature
method because a wider x range is required to avoid the wrap-around or aliasing effect of Fourier
transform methods. Therefore, if an accurate answer close to a discontinuity is required, the quadrature
method may be best. However, the excellent CPU time versus error performance shown in Figs 11, 17
and 19 recommends using the Wiener—Hopf method with the sign-based fast Hilbert transform and a
larger grid size to yield the required accuracy close to discontinuities.
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FiG. 15. Numerical and analytical f(x) with the Laplace test case focussing on the first discontinuity.
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Fic. 17. Error convergence of the numerical methods against CPU time with the Cauchy test case.
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Fic. 18. Error convergence of the numerical methods against N with the Laplace test case.
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Fic. 19. Error convergence of the numerical methods against CPU time with the Laplace test case.
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