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Abstract—This study presents an innovative weighted Fed-
erated Learning (FL) framework with integrated encryption
for diabetes classification across multiple healthcare institutions.
Our comprehensive approach addresses three critical challenges
in collaborative healthcare analytics: data privacy preservation,
non-IID data distribution, and model performance optimization.
The framework incorporates a weighted aggregation mecha-
nism based on local data volumes to effectively handle client
data imbalance, while implementing a lightweight masking-
based encryption scheme to protect model parameters during
transmission without compromising computational efficiency. We
evaluate our approach using a comprehensive dataset of 15,347
entries from three internationally recognized medical organiza-
tions (ADCES, CDC, IDF) across five machine learning models:
Logistic Regression (LR), Random Forest (RF), Support Vector
Machine (SVM), three-layer Deep Neural Network (DNN), and
deeper five-layer network (Deeper DNN). Experimental results
demonstrate that weighted FL consistently equals or surpasses
centralized learning performance while maintaining strict privacy
compliance. Notable improvements include SVM AUC enhance-
ment from 0.46 to 0.57 and RF AUC improvement from 0.70 to
0.76. The encryption mechanism introduces negligible overhead
(0.0001s encryption, 0.0013s decryption per round) with minimal
communication costs (0.16 KB per round). Our framework’s
ability to securely handle non-IID healthcare datasets while
providing interpretable results through SHAP analysis positions
it as a practical solution for privacy-preserving collaborative
diagnostics. This research represents a significant advancement
toward scalable, privacy-conscious medical analytics that can be
adopted across diverse healthcare institutions without compro-
mising data sovereignty or diagnostic accuracy.

Index Terms—Encryption, Federated learning, centralized
learning, Weighted aggregation, Diabetes classification

I. INTRODUCTION

Diabetes, a global health crisis affecting over 530 million
adults worldwide, demands innovative approaches to diagnosis
and management that prioritize both accuracy and patient pri-
vacy [1], [2].While the abundance of healthcare data presents

a significant opportunity for improving diagnostic precision,
privacy concerns and regulatory restrictions often impede the
aggregation and analysis of this valuable information across
institutions. Traditional centralized approaches to data analysis
face challenges in accessing diverse datasets due to these
privacy constraints, potentially limiting the development of
robust predictive models. In this context, FL emerges as a
promising solution, offering a paradigm shift in how we
approach collaborative model development in healthcare [3].

Recent studies have extended FL beyond conventional clin-
ical applications, showing its adaptability in complex real-
world scenarios. In industrial contexts, FL has been applied
within 6G-enabled IIoT systems to support decentralized
learning under energy and communication constraints, involv-
ing heterogeneous components such as smart devices and
autonomous systems [4]. In healthcare, FL has enabled secure,
collaborative training across distributed medical institutions
by integrating with edge computing and IoT technologies,
supporting low-latency decision-making while preserving data
privacy [5]. These advancements highlight FL’s growing rele-
vance in privacy-sensitive, scalable applications.

FL enables the creation of robust machine learning mod-
els by leveraging diverse datasets from multiple institutions
without compromising patient confidentiality, potentially en-
hancing predictive accuracy for conditions like diabetes. This
approach addresses challenges faced by traditional methods,
capturing a more comprehensive representation of the patient
population while maintaining compliance with data protection
regulation [6].

FL in healthcare faces challenges, including data hetero-
geneity, imbalance, and privacy risks. Our research addresses
these issues through a Weighted FL framework that manages
non-IID data distributions and incorporates encryption for
enhanced privacy protection during model updates.

We propose an enhanced weighted FL framework that sup-
ports a broad spectrum of classifiers including LR, RF, SVM,



DNN, and Deeper DNN for the task of diabetes prediction.
In the federated setting, local models are trained on-site and
aggregated by a weight-based scheme that accounts for the
relative data volume and class balance at each institution. An
efficient encryption layer safeguards model parameters during
transmission, thereby preserving patient privacy without ex-
posing raw records.

This framework addresses three key challenges in collabora-
tive healthcare analytics. First, it maintains privacy by keeping
data within institutional firewalls and applying lightweight
cryptography to model updates. Second, it improves data
utility under non–IID conditions by weighting client contribu-
tions, which stabilizes training when local class distributions
vary. Third, it provides architectural flexibility: both classical
algorithms (LR, SVM, RF) and deep neural networks can be
trained under the same protocol, easing deployment across
sites with heterogeneous computational resources.

Our work extends prior studies that relied on centrally
pooled datasets for diabetes classification with SVMs and
RFs [7] and builds on recent FL initiatives focused on privacy
in diabetes management [8]. By integrating weight-aware
aggregation, support for deep learning, and an encryption
mechanism with negligible overhead, we lay the groundwork
for scalable, privacy-preserving diagnostic systems that can
be adopted by multiple healthcare institutions without com-
promising data sovereignty.

The rest of this paper is organized as follows. Section
II reviews related work on diabetes classification and FL.
Section III details the weighted FL framework, covering data
preparation, aggregation, and encryption. Section IV outlines
the experimental setup and presents the results with inter-
pretability analysis. Section V concludes and suggests avenues
for future research.

II. RELATED WORKS

This chapter reviews relevant machine learning approaches
for diabetes classification, with particular emphasis on FL
frameworks and their applications in healthcare.

A. Machine Learning Approaches

Contemporary machine learning research employs three
primary paradigms: centralized, distributed, and FL [9]. While
centralized learning consolidates data in a single location for
training, it faces significant challenges regarding data privacy
and scalability [10]. Distributed learning addresses compu-
tational limitations through data partitioning across multiple
nodes, but privacy concerns remain unresolved. FL emerges
as a promising solution by enabling local model training on
distributed devices, with only model updates shared through a
central server [11]. This approach effectively balances compu-
tational efficiency with stringent privacy requirements essential
for healthcare applications.

B. FL in Healthcare

FL encompasses various architectures, including horizon-
tal, vertical, and federated transfer learning [3], [12]. The

paradigm offers distinct advantages over traditional distributed
approaches by accommodating data heterogeneity, varying
node stability, and communication constraints while support-
ing privacy-sensitive environments through secure aggregation
techniques [13], [14].

In diabetes management, existing FL research has shown
promising but limited results. Boltri et al. [15] focus primarily
on policy initiatives without addressing technological imple-
mentation challenges for cross-institutional data security. Islam
et al. [8] develop a federated framework for diabetes compli-
cation prediction, emphasizing privacy and decentralization.
However, their approach lacks advanced privacy mechanisms
such as differential privacy and does not adequately address
non-IID data distribution challenges common in healthcare
settings.

C. Diabetes Classification Methods

Machine learning techniques have demonstrated effective-
ness in diabetes classification using clinical datasets [7], [16].
Various algorithms have been evaluated, with SVMs showing
reliable performance on the PIMA Indian diabetes dataset [7],
while Bayesian networks achieved 99.51% accuracy in com-
parative studies [16]. Recent work by Butt et al. [17] and
Maniruzzaman et al. [18] further validates the effectiveness of
ensemble methods and neural networks, with Multilayer Per-
ceptron achieving 86.08% accuracy across multiple classifiers
including RF, LR, Naı̈ve Bayes, and Decision Trees.

Despite these advances, existing approaches primarily focus
on centralized learning paradigms, limiting their applicability
in privacy-sensitive healthcare environments where data cannot
be centrally aggregated. Furthermore, most studies do not ad-
dress the inherent data heterogeneity and imbalance challenges
present in multi-institutional healthcare settings.

D. Research Gap and Contribution

Building upon existing research, this study introduces a
comprehensive FL framework that addresses key limitations
in current diabetes classification approaches. Our contribution
includes: (1) a weighted aggregation mechanism that han-
dles non-IID data distribution across healthcare institutions,
(2) an enhanced privacy protection scheme using masking
techniques during model update transmission, and (3) im-
proved model performance compared to traditional centralized
methods while maintaining strict privacy compliance. This
framework advances FL from basic analytics to a robust
tool for collaborative diabetes management across multiple
healthcare providers.

III. METHODOLOGY

This section presents our research methodology, detailing
the data sources, preprocessing protocols, and the application
of horizontal FL for diabetes classification.

A. Dataset Description and Pre-processing

We assemble a comprehensive diabetes dataset from three
internationally recognised medical organisations: the Associ-
ation of Diabetes Care & Education Specialists (ADCES),



the Centers for Disease Control and Prevention (CDC), and
the International Diabetes Federation (IDF). These institutions
were selected for their established credibility and capacity
to provide high-quality, well-curated datasets. In total, our
study encompasses 15,347 data entries, with the sample size
from each organisation detailed in Table I. To address the

TABLE I
Dataset overview

Organisation Sample size

ADCES 4 995
CDC 5 172
IDF 5 180

critical challenge of non-identical data distributions (non-IID)
commonly encountered in FL environments, we developed
a robust preprocessing protocol implemented locally at each
participating node. This protocol encompasses: (1) imputa-
tion techniques to handle missing data while preserving data
integrity; (2) normalisation procedures to standardise scales
for effective aggregation and comparison across heterogeneous
sources; and (3) rigorous anonymisation protocols to protect
personal health information (PHI) in compliance with privacy
regulations. By conducting these steps locally, we maintain
data locality, minimise the risk of privacy breaches, and ensure
sensitive information never leaves its originating organisation.

Fig. 1. Correlation matrix among variables including Diabetes status, BMI,
Age group, HighBP, etc.

Figure 1 presents the Pearson correlation matrix for the
seven clinical covariates considered in this study. Diabetes
status exhibits its strongest linear association with hyperten-
sion (HighBP), yielding a coefficient of approximately 0.24.
Moderate positive correlations are also observed with age
group (≈ 0.19) and body mass index (BMI, ≈ 0.20). These
findings indicate that older individuals, those with elevated
blood pressure, and those with greater adiposity are dispro-
portionately affected by diabetes in this cohort. By contrast,
the correlation between sex and diabetes is negligible (≈ 0.02),

and smoking shows only a weak yet positive relationship
with diabetes. Collectively, the heat map highlights a coherent
cardiometabolic risk cluster comprising age, hypertension,
BMI, and diabetes, and it also confirms that none of the
pairwise correlations exceed 0.40; therefore multicollinearity
is unlikely to bias the subsequent multivariable modelling.

Fig. 2. Proportion of individuals with risk factors (e.g., high blood pressure,
heart disease, smoking) in diabetic and non-diabetic groups.

Figure 2 compares the prevalence of four binary risk factors
between individuals with and without diabetes. The bar plot
indicates markedly higher rates of hypertension, heart disease,
and smoking among participants diagnosed with diabetes.
Hypertension is present in about 61 % of diabetic subjects
compared with 29 % in the non-diabetic group, making it
the most distinctive comorbidity. Heart disease appears in
roughly 20 % of the diabetic cohort but only 7 % of their
non-diabetic peers. Current smoking is reported by slightly
more than half of people with diabetes, while fewer than half
of those without diabetes smoke. In contrast, the proportion
of men and women is almost identical in the two groups,
suggesting that sex is unlikely to be a major confounder.
These large prevalence gaps show that the dataset is strongly
unbalanced for key cardiometabolic risk factors. Addressing
this imbalance is essential to prevent biased inference in later
analyses.

Fig. 3. The proportions of individuals with diabetes across age groups.

Figure 3 illustrates how the proportion of individuals diag-
nosed with diabetes changes across successive five-year age
categories. Prevalence is minimal in early adulthood (18–
34 years) and rises gradually through middle age. The increase



becomes steep from 55–59 years onward, culminating in the
70–74 year category where nearly one quarter of participants
are affected. Although prevalence declines slightly beyond
75 years, it remains substantially higher than in younger
cohorts. These data confirm that advancing age markedly
elevates diabetes risk and establish age as one of the most
important demographic drivers in this cohort.

B. Feature Selection and Experimental Setup

To prevent data leakage, feature selection is also performed
within the federated setting. Each site independently computes
Laplacian scores for its local data to identify the most informa-
tive features. The selected features include Sex, Age, HighBP,
HeartDisease, Smoker, and BMI, with Diabetes as the binary
target variable. Following feature selection, the dataset at each
node is split into an 80% training set and a 20% test set,
preparing it for the federated model training process.

C. Laplacian Score Computation

Our dataset’s high dimensionality, comprising 14 distinct
features, requires carefully selecting of the most informative
attributes to enhance both computational efficiency and model
accuracy. To achieve this, we utilize the Laplacian score
method, which prioritizes features based on their capacity
to preserve local neighborhood information. This method is
especially effective for data with a manifold-like structure,
as it maintains the inherent data topology within the selected
feature subsets, thereby improving learning performance.

We construct a similarity graph where nodes represent
samples and edges connect nearest neighbors based on feature
similarity, represented by an adjacency matrix A. Let each
sample xi ∈ Rd be a feature vector in d-dimensional space,
where i = 1, . . . , n and n is the total number of samples. From
A, we derive a weight matrix S, with weights calculated as:

Sij = exp

(
−∥xi − xj∥2

t

)
, (1)

where t is a scaling parameter.
The scaling parameter t is a pivotal hyperparameter that

governs the exponential decay of affinity between data points.
When t is small, the decay is steep and the weight matrix em-
phasizes only the nearest neighbors; when t is large, the decay
is gradual and broader neighborhood information is retained.
We determined t through an empirical cross-validation proce-
dure on a held-out validation subset of the training data. A
grid of candidate values was evaluated, Laplacian scores were
computed for each candidate, and the value that maximized the
variance of these scores was selected. This criterion increases
the contrast between highly informative and less informative
attributes, thereby producing the most discriminative feature
subset for the downstream learning tasks.

Subsequently, we compute a diagonal matrix D where each
diagonal element Dii is the sum of the weights connected to
node i, and define the unnormalized Laplacian matrix as:

L = D − S (2)

For each feature fr, where fr ∈ Rn represents the values
of the r-th feature across all n samples, the Laplacian score
Lr is calculated to assess the relevance of the feature while
accounting for data distribution. The score is computed as:

Lr =
fT
r Lfr

fT
r Dfr

(3)

This score measures how effectively a feature preserves the
local data structure, with lower scores indicating higher rele-
vance. By systematically applying the Laplacian score method,
we reduce the feature dimensionality while maintaining data
integrity, thereby enhancing both our machine learning mod-
els’ computational efficiency and predictive performance.

D. Comparison of Weighted FL and Centralized Learning
We aim to evaluate and compare the performance of ma-

chine learning models under two different learning frame-
works: Weighted FL and Centralized Learning. The focus is
on understanding the impact of data imbalance among clients
and the benefits of weighted aggregation can bring in federated
settings, particularly in handling non-IID (non-Independent
and Identically Distributed) data distributions common in real-
world scenarios.

1) Weighted FL:
a) Overview: FL is a decentralized machine learning

paradigm where multiple clients collaboratively train a shared
global model under the coordination of a central server while
keeping the training data localized on each client to preserve
privacy [19]. However, in practice, clients may have different
amounts of data, leading to data imbalance, and the data
distributions across clients may be heterogeneous. This hetero-
geneity poses challenges to the convergence and performance
of the federated model.

To address these challenges, Weighted FL assigns different
weights to each client’s local model updates during the aggre-
gation process proportionally to the number of data samples
they possess. This weighting strategy ensures that clients with
larger datasets have a more significant influence on the global
model, potentially improving the overall performance and
convergence stability.

b) Mathematical Formulation: Let us consider N clients,
where each client i holds a local dataset Di of size ni. The
total number of data samples across all clients is n =

∑N
i=1 ni.

At communication round t, each client performs local training
initialized from the previous global model wt−1, and computes
a local model update ∆wt

i . That is, the updated local model
is given by:

wt
i = wt−1 +∆wt

i , (4)

where ∆wt
i denotes the local model update computed by

Client i. The server then aggregates the weighted local updates
to form the new global model:

wt = wt−1 +

N∑
i=1

ni

n
∆wt

i , (5)

where ni

n reflects the contribution of client i in proportion to its
local data volume. This update rule aligns the global model



with the underlying data distribution, potentially improving
generalization.

c) Algorithmic Description: Algorithm 1 presents the
detailed procedure of the Weighted FL algorithm.

Algorithm 1 Weighted FL Algorithm
1: Input: Local datasets {Di}Ni=1, number of communication

rounds T , initial global model parameters w0.
2: Output: Trained global model parameters wT .
3: for each round t = 1 to T do
4: for each client i in parallel do
5: Local Training:
6: Initialize local model parameters: wt

i ← wt−1.
7: Train the local model on Di to obtain updated

parameters wt
i .

8: Compute local model update: ∆wt
i = wt

i − wt−1.
9: end for

10: Server Aggregation:
11: Update global model parameters using weighted ag-

gregation:

wt = wt−1 +

N∑
i=1

ni

n
∆wt

i .

12: end for
13: Return final global model parameters wT .

d) Convergence Analysis: Weighted FL can improve
convergence speed and model performance in settings with
data imbalance. By giving more weight to clients with larger
datasets, the aggregated global model can better reflect the
overall data distribution. Previous works have shown that
weighted aggregation can lead to convergence guarantees
under certain conditions. For instance, Tian Li et al.’s study on
the FedProx framework shows that adaptive computation based
on system capabilities and effective management of statistical
heterogeneity ensure convergence. [20].

e) Implementation Considerations: Implementing
Weighted FL requires careful consideration of communication
efficiency and computational overhead. The algorithm must
ensure secure and efficient communication of model updates
while handling potential issues such as stragglers and
communication delays. Techniques such as compression of
updates, asynchronous communication, and secure aggregation
protocols can be employed to address these challenges.

2) Centralized Learning: In centralized learning, all client
data from clients are collected and aggregated at a central
server, where a global model is trained using the combined
dataset. While this approach can potentially achieve high per-
formance due to access to all data, it raises significant privacy
concerns, particularly when dealing with sensitive medical
records. The centralized model parameters w are obtained by
minimizing a global loss function: Let D =

⋃N
i=1 Di repre-

sent the aggregated dataset from all clients. The centralized
model parameters w are obtained by minimizing a global loss
function:

w∗ = argmin
w

N∑
i=1

∑
(xij ,yij)∈Di

ℓ(w;xij , yij), (6)

where ℓ(w;xij , yij) is the loss function for the sample
(xij , yij).

3) Encryption Phase in FL: To enhance privacy, we incor-
porate an encryption phase using a masking technique during
the transmission of local model updates. This method ensures
that individual updates remain confidential.

a) Algorithm: Algorithm 2 details the encryption and
aggregation process with masking.

Algorithm 2 Encrypted FL with Masking
1: Input: Local datasets {Di}Ni=1, number of rounds T ,

initial global model w0, random seeds {si}Ni=1.
2: Output: Trained global model wT .
3: for each round t = 1 to T do
4: for each client i in parallel do
5: Local Training:
6: Compute local model wt

i based on Di.
7: Compute local update ∆wt

i = wt
i − wt−1.

8: Encryption:
9: Generate random mask mi using seed si.

10: Masked update: ∆̃w
t

i = ∆wt
i +mi.

11: Send ∆̃w
t

i to the server.
12: end for
13: Server Aggregation:
14: Aggregate masked updates: ∆̃w

t
=

∑N
i=1 ∆̃w

t

i.
15: Decryption:
16: Compute total mask M =

∑N
i=1 mi.

17: Unmask aggregated update: ∆wt = ∆̃w
t
−M .

18: Update global model: wt = wt−1 + 1
N∆wt.

19: end for
20: return wT

b) Performance Metrics: We evaluate the encryption
scheme based on the following metrics:

• Average Encryption Time per Round: Time taken to
encrypt updates at each client.

• Average Decryption Time per Round: Time taken to
decrypt aggregated updates at the server.

• Average Communication Size per Round: Total data
transmitted between clients and server.

4) Centralized Learning: In centralized learning, data from
all participating institutions are aggregated into a single
dataset. This traditional method leverages the full spectrum
of data to train machine learning models without considering
data privacy or decentralization.

E. Machine Learning Models

We employ several machine learning models to evaluate the
performance under both frameworks.



F. Machine Learning Models

We benchmarked five algorithms under both the centralized
and federated frameworks.

LR: Implemented with LogisticRegression. In the
federated setting, local coefficient vectors are averaged to form
the global model.

RF: Implemented with RandomForestClassifier.
For federated training, each site builds its own forest and the
global prediction is the average of all local predictions.

SVM: Implemented with SVC. Similar to the random-forest
procedure, aggregation in FL relies on averaging the decision
scores from local models.

DNN: A three-layer feed-forward neural network built in
PyTorch. Federated training follows the FedAvg protocol,
where model weights are averaged after each communication
round.

Deeper DNN: A five-layer neural network with a larger
hidden dimension, also implemented in PyTorch. The same
FedAvg weight-averaging strategy is used for global aggrega-
tion.

G. Experimental Setup

The dataset is split into training and testing sets, maintaining
the class distribution in both sets. All features are standardized
to improve model training performance.

For the FL framework, each client’s local data is used
to train a local model. The global model is updated by
aggregating the local models using weighted averaging based
on the number of samples at each client.

In the centralized learning framework, all data are combined
to train a single model.

H. Communication Overhead Analysis

The communication overhead introduced by the encryption
phase is analyzed in the FL framework. The communication
size per round is a critical factor in assessing the efficiency
of the FL system. Our analysis shows that the communication
size remains relatively constant across training rounds, indicat-
ing a predictable communication overhead. This consistency
in communication size benefits resource planning and system
stability in FL implementations.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Table II confirms that the weighted FL framework consis-
tently equals or surpasses the centralized baseline, underscor-
ing the benefit of collaborative training on distributed data.
We first examine the classical models. The federated RF lifts
AUC from 0.70 to 0.76 while maintaining a strong Weighted
F1 of 0.82, indicating more reliable class separation. SVM
shows an even larger gain: its AUC rises from 0.46 to 0.57
and its F1 improves from 0.79 to 0.81. LR likewise benefits,
with higher precision and F1 under FL while retaining an AUC
comparable to the centralized model.

Turning to deep learning, the pattern remains consistent.
Federated training boosts the three-layer Deep Neural Network
(DNN) from an F1 of 0.80 to 0.82 and keeps AUC at a

competitive 0.77. The deeper five-layer network sees similar
gains, confirming that the proposed weighting strategy scales
effectively to high-capacity models.

Privacy preservation does not come at the cost of accu-
racy. Metrics for Federated (With Encryption) mirror those
without encryption across every model. Moreover, the crypto-
graphic layer is lightweight: encryption and decryption aver-
age 0.0001 s and 0.0013 s per round, respectively, with only
0.16 KB of communication—negligible overhead for routine
clinical networks.

Because each institution retains its data locally, the frame-
work remains robust under non-IID conditions. Local statis-
tical properties are preserved while the global model benefits
from diverse sources, thereby respecting privacy regulations
and encouraging collaboration among sites with heterogeneous
data.

Fig. 4. SHAP Feature Impact for Diabetes Prediction.

To improve the transparency and interpretability of the
prediction process, we applied the SHAP (SHapley Additive
ExPlanations) framework to the best performing model, the
RF classifier. Figure 4 displays the resulting SHAP summary
plot and quantifies how each feature affects the predicted
probability of diabetes. The horizontal axis shows the SHAP
value: positive values raise the likelihood of a diabetes predic-
tion, whereas negative values lower it. Each point represents a
single observation and is colored by its original feature value.

The plot highlights Body Mass Index as the dominant driver:
high BMI values align with large positive SHAP scores. Age
is the second strongest contributor, followed by High Blood
Pressure (HighBP) and a history of heart disease. In contrast,
Smoking status and Sex cluster around zero, indicating lim-
ited influence for most cases. These effect patterns mirror
established clinical knowledge and therefore lend biological
plausibility to the model.

In summary, the weighted FL framework offers performance
that meets or exceeds centralized learning, adds negligible
encryption overhead, remains effective for both classical and
deep architectures, and produces transparent, clinically mean-
ingful explanations through SHAP. Together, these qualities
position the approach as a practical and privacy-conscious
solution for large-scale medical diagnostics.



TABLE II
Final performance comparison across learning frameworks

Model Learning Framework Weighted F1 AUC Precision Recall

LR Centralized 0.81 0.78 0.81 0.86
LR Federated (No Encryption) 0.82 0.76 0.82 0.87
LR Federated (With Encryption) 0.82 0.76 0.82 0.87

SVM Centralized 0.79 0.46 0.78 0.79
SVM Federated (No Encryption) 0.81 0.57 0.89 0.87
SVM Federated (With Encryption) 0.81 0.57 0.89 0.87

RF Centralized 0.82 0.70 0.81 0.85
RF Federated (No Encryption) 0.82 0.76 0.83 0.87
RF Federated (With Encryption) 0.82 0.76 0.83 0.87

DNN Centralized 0.80 0.78 0.83 0.86
DNN Federated (No Encryption) 0.82 0.77 0.83 0.87
DNN Federated (With Encryption) 0.82 0.77 0.83 0.87

Deeper DNN Centralized 0.80 0.78 0.88 0.86
Deeper DNN Federated (No Encryption) 0.81 0.77 0.76 0.87
Deeper DNN Federated (With Encryption) 0.82 0.77 0.83 0.87

V. CONCLUSION

We developed a weighted FL framework with an integrated
encryption phase for privacy preserving diabetes classification
across multiple healthcare institutions. The framework sup-
ports a broad family of classifiers, including LR, RF, SVM,
DNN, and Deeper DNN. Local training is performed on
site. Model updates are aggregated with client weights that
reflect the local sample size and class balance. A lightweight
masking based encryption scheme protects model parameters
during transmission so that raw patient records never leave the
originating institution.

The study drew on curated data from three recognized
organizations (ADCES, CDC, IDF) and applied a consistent
local preprocessing pipeline that included imputation, normal-
ization, and anonymization. Exploratory analyses identified a
cardiometabolic risk cluster linking age, hypertension, body
mass index, and diabetes, and showed that prevalence rises
sharply after midlife. These data characteristics motivated our
feature selection strategy and informed the interpretation of
model outputs.

Comprehensive experiments demonstrated that weighted FL
matches or improves upon centralized learning across most
metrics for both classical and deep models. The largest dis-
crimination gains appeared in the SVM and RF settings, where
federated aggregation yielded stronger class separation under
heterogeneous data. Deep neural networks trained federatively
also performed competitively, indicating that the weighting
scheme scales to higher capacity architectures. Performance
remained stable when encryption was enabled. The measured
encryption and decryption times were very small, and per
round communication costs were minimal, suggesting the
approach is feasible for routine clinical networks.

We further examined model transparency using SHAP ex-
planations applied to the federated RF. Body mass index
emerged as the leading driver of diabetes predictions, followed

by age, high blood pressure, and prior heart disease. Smoking
status and sex contributed little. These patterns align with
established clinical knowledge and provide face validity for
the learned decision rules. The ability to generate clinically
grounded explanations is important for building trust in privacy
preserving machine intelligence.

Several limitations merit attention. Our analyses used cross-
sectional data and a limited feature set. Site level label quality
and coding consistency may vary. Communication delays,
client drop out, and stronger adversarial threat models were
not fully explored. Although encryption overhead was small
in our experiments, large-scale deployments may encounter
bandwidth constraints and hardware heterogeneity. These is-
sues define important directions for future work.

Future research should evaluate adaptive or personalized
weighting schemes that respond to changing local data quality
and class ratios. Stronger privacy protections such as dif-
ferential privacy or secure multiparty aggregation could be
layered onto the current protocol. Extending the framework
to longitudinal outcomes, multimodal EHR data, and addi-
tional disease domains would test generalizability. Finally,
prospective clinical studies that integrate workflow feedback
and calibration monitoring are needed to assess real world
impact.

In conclusion, this work shows that privacy aware collabora-
tion across institutions is both practical and effective. Weighted
FL with encryption can harness heterogeneous clinical data,
protect patient confidentiality, produce interpretable models,
and support scalable diagnostic decision making in healthcare
analytics.
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