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 A B S T R A C T

Household adoption of rooftop photovoltaic (PV) systems is central to the green energy transition, yet diffusion 
depends on social influence and behavioral biases, as well as payback economics. This study develops a 
parsimonious Markovian model in which households move sequentially from being unengaged (‘‘Carbon") 
to informed, to planning, and finally to adoption (‘‘Green"). Transition rates are micro-founded by two 
mechanisms: (i) social contagion/communication, proxied by the current share of adopters, and (ii) economic 
profitability, proxied by payback time computed from a Net Present Value framework. Novel to this diffusion 
setting, bounded rationality is introduced via hyperbolic discounting, creating a procrastination loop that 
delays adoption even when PV is economically attractive in a long-run perspective. Calibrated on the Italian 
residential PV diffusion path (2006–2020) and assessed in national and regional applications, the model 
reproduces observed trajectories and enables forward-looking scenario analysis (2020–2026). Results show 
that policies yielding similar payback improvements can produce different outcomes once present bias is 
accounted for and that behaviorally informed intervention are stronger. The findings contribute a micro-to-
macro bridge between behavioral economics and technology diffusion modeling and imply that effective policy 
portfolios (and PV business models) should complement incentives with commitment devices and social-norm 
peer strategies to accelerate PV uptake and its spillover emissions benefits.
1. Introduction

1.1. Motivation of the work and modeling framework

One of the top challenges of this century is reducing greenhouse 
gas emissions and preventing dangerous interferences with the climate 
system. In 2015, governments committed to drastically reducing their 
emissions under the Paris Agreement but faced the challenge of turning 
pledges into practical policies. Against the obstacles faced by several
carbon pricing policy proposals (e.g., Carattini et al. (2015)), some 
jurisdictions turned to subsidies for renewable energy as an alternative 
to ‘‘first-best’’ policies. In particular, generating electricity from solar 
photovoltaic systems has played an essential role in the transition 
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towards an energy system based on renewable (IEA, 2019). It con-
tributes to meeting the climate change mitigation scenario in which 
global temperature rise is kept within 1.5 degrees Celsius (IPCC, 2018). 
Solar energy is being utilized worldwide, with over 126 countries 
implementing strong policies and regulatory frameworks to promote 
its growth (IEA, 2023). The increase in solar energy generation has 
been remarkable, rising from just 31 terawatt-hours (TWh) in 2010 
to over 1000 TWh in 2021 — a growth of more than 30 times in 
just a decade (IRENA, 2017). Despite this impressive progress, it is 
widely acknowledged that our current usage of solar energy is still 
significantly below its vast potential, highlighting the urgent need for 
targeted initiatives to enhance its adoption (Shakeel et al., 2023).
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Recent research has emerged from this awareness, with experts 
systematically exploring the critical factors influencing the adoption of 
solar photovoltaic systems at the household level (see, e.g., the two 
very recent literature reviews (Alipour et al., 2021; Shakeel et al., 
2023)). Notably, while Italy is a significant player in solar energy 
generation and installed capacity — alongside countries like France, 
Germany, Greece, Spain, and the U.K. (e.g., Dusonchet and Telaretti 
(2015)) – it has not been sufficiently examined in the existing literature 
(e.g., Shakeel et al. (2023), Table 4, and Bianco et al. (2021)). For 
instance, in Kriechbaum et al. (2018), authors analyze the photovoltaic 
panels adoption in Germany and Spain. It is claimed that a hype and 
subsequent phase of disappointment, both associated with a level of 
expectation specific for the country, occurred. However, the perspec-
tive in the previous study is slightly different from what is proposed 
in this work: Kriechbaum et al. (2018) focuses on the spreading of 
collective expectations by analyzing newspapers attention, while in our 
model it is assumed that the adoption decision is influenced by the 
network communication of each person or family and the so-called 
payback period of the investment. In particular, the choices made by 
one individual influence the likelihood that others will make similar 
choices, with a contagion effect. On the other hand, the imitation 
phenomenon has been taken into account in, e.g., Dong et al. (2017) 
and Guidolin and Mortarino (2010). The former study focuses on the 
diffusion of the residential solar photovoltaic system in California by 
employing a time-series forecasting model, a threshold heterogene-
ity diffusion model, a Bass diffusion model, and National Renewable 
Energy Laboratory’s Solar model. The latter, instead, focuses on the 
diffusion of solar photovoltaic systems in many countries, Italy being 
one of them. However, it does not take into account the recent regional 
data splitting, which allows our analysis to focus also on this aspect of 
the diffusion dynamics. Moreover, its analysis concerns the installed 
photovoltaic solar power, and not the number of installed systems; 
while in our study, in order to focus on the residential sector, we focus 
on the number of installed units. Anyway, the bounded-rationality of 
agents is not taken into account; see below.

The fact that Italy has not been sufficiently examined in the existing 
literature presents a compelling opportunity for further investigation, 
particularly since Italy is an interesting case study: It is a large elec-
tricity market with optimal climate conditions and, more importantly, 
has rapidly become one of the leading EU countries in terms of pho-
tovoltaic installed capacity, even starting from a point where solar 
energy contribution was virtually nonexistent (see Fig.  1). In addition, 
the aforementioned studies operate under the assumption of perfect 
rationality among householders. However, it is known that the actual 
decision-making behaviors of individuals or families often diverge from 
the theoretically optimal behavior predicted by perfect rationality, 
especially in the renewable energy sector (e.g., Li et al. (2025), Masini 
and Menichetti (2013), Cao et al. (2023) and He et al. (2024)).

We reference several agent-based model studies in the electricity 
sector that account for the bounded rationality of the involved agents 
(see Barazza and Strachan (2020), Table 1): Kwakkel and Yücel (2014), 
Kraan et al. (2019), Chappin et al. (2017) and Kraan et al. (2018). How-
ever, these studies primarily focus on electricity generators (Kwakkel 
and Yücel, 2014; Chappin et al., 2017) or investors in existing and 
new electricity sectors (Kraan et al., 2019, 2018), situated within two 
interconnected electricity markets in typical European countries (Chap-
pin et al., 2017), the Netherlands (Kwakkel and Yücel, 2014), and in 
liberalized European markets (Kraan et al., 2019, 2018). Additionally, 
the overwhelming majority of these papers are a-theoretical, meaning 
that they lack a solid theoretical foundation for their research design; 
they have predominantly relied on existing literature to develop frame-
works. Specifically, authors in Shakeel et al. (2023) have highlighted 
a clear need to broaden prevailing cross-disciplinary approaches by 
incorporating a wider variety of theoretical concepts to improve the 
construction of empirical and conceptual studies.
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Based on the analyzed contributions, there appears to be a sig-
nificant opportunity to address the gap in understanding the Italian 
context by proposing a grounded theory model that also considers the 
impact of householders’ bounded rational behaviors on the adoption 
of solar photovoltaic systems. In particular, we will focus on procrasti-
nation as a behavioral bias that complicates the promotion of energy 
efficiency renovations. This bias has primarily been studied in the 
fields of health and financial savings but has received only limited 
attention in energy saving research (e.g., Lillemo (2014) and Lades 
et al. (2021)). In this regards, we mention the very recent paper (Mo-
gensen and Thøgersen, 2024), where authors conducted a survey of 
609 Danish homeowners in the final stage of an energy efficiency reno-
vation decision-making processes, and through a comparative analysis 
of adopters and non-adopters, they find that procrastination is a com-
mon reason for non-adoption. In detail, this paper aims to understand 
how Italy’s public sphere has behaved on the theme of green energy 
transition (GET, henceforth), where for the public sphere, we mean
individual people or families, which we call agents hereafter. Notably, the 
term agents is used in many areas of research to exclusively indicate 
individuals whose actions (also named controls) are the result of an 
optimization process. On the contrary, in Flandoli et al. (2022), the 
authors show that a Markovian-type framework where agents do not 
make rational decisions based on optimization rules is more suitable 
to describe the public sphere’s behavior on the GET, where people 
occasionally question themselves about the GET problem; see also the 
discussion below regarding the description of Figs.  1 and 2. In addition, 
we mention the extensive literature on opinion dynamics in which the 
evolution of opinions in society is modeled through Markov chains; 
see, e.g., Galam and Moscovici (1991), Holley and Liggett (1975), 
Lewenstein et al. (1992) and Sirbu et al. (2017).

In light of this discussion, we adopt a Markovian-type framework 
in the present paper. However, no matter how promising this ap-
proach may appear, we are not pretending that it is sufficient ‘‘as 
is’’ for chasing black swans, i.e., unpredictable events beyond what is 
typically expected of a situation and have potentially severe conse-
quences. Instead, the models presented in Section 2 analyze events 
whose broad dynamics are quite well understood. Furthermore, simula-
tions in Section 3 contribute to putting in evidence the role of some key 
parameters. They can indicate how to devise external actions to obtain 
a specific behavior of the society under consideration. Accounting for 
black swan in a Markovian-type framework is beyond the scope of 
the present paper, though an exciting venue for future research; a 
promising starting point could be the very recent working paper (Lee 
et al., 2024).

There is a growing acknowledgment in the literature and practice 
that, despite energy technology being available, and in many cases 
economically beneficial, other barriers prevent households’ widespread 
adoption of new green technologies (see, e.g., Luthra et al. (2014)). In 
particular, we focus our discussion mainly on the following two facts: 
(1) the inclination of humans to mimic the behavior of other people; 
(2) the natural inclination of humans to procrastinate. Among the GET 
examples, we focus, as said, on the case of photovoltaic systems (PVs, 
henceforth), the primary motivation being the availability of a relatively
significant sample of data; see Section 3.1. The present article provides 
conceptual and empirical results to better understand agent behavior 
in the solar photovoltaic market. In particular, the present paper aims 
to answer the following research question: What are the factors playing 
an essential role in the decision process for PVs?

Before turning to the presentation of our models, we display in Fig. 
1 Italy’s renewable electricity production by sources over 2006–2020, 
and in Fig.  2 the ‘‘Solar’’ time-series decomposed among the following 
four categories: ‘‘Agriculture’’, ‘‘Domestic’’, ‘‘Services’’, and ‘‘Industry’’, 
with the ‘‘Domestic’’ one being our main focus (see the discussion 
above). Importantly, a subdivision into two periods, separated by 2012, 
characterizes ‘‘Industry’’ and ‘‘Domestic’’. Both time series show a rela-
tively exponential solid increase in the period before 2012 and a weaker 
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Fig. 1. Evolution of Italy’s renewable electricity production by sources: ‘‘So-
lar’’ (red line), ‘‘Hydro’’ (blue line), ‘‘Wind’’ (green line) over 2006–2020.
Data Source: Terna Spa (https://www.terna.it).

Fig. 2. Evolution of Italy’s electricity production, source ‘‘Solar’’, by cate-
gories: ‘‘Agriculture’’ (blue line), ‘‘Domestic’’ (black line), ‘‘Services’’ (red line), 
‘‘Industry’’ (green line) over 2006–2020.
Data Source: GSE (https://www.gse.it/dati-e-scenari/statistiche).

exponential increase in the period after 2012. In addition, ‘‘Industry’’ 
has a solid increase, roughly linear, around 2011, essentially absent 
in the ‘‘Domestic’’ time-series; in 2011, Italy proposed a much more 
substantial Feed-in-Tariff subsides; see Appendix  A for a description 
of the evolution of Italy’s solar photovoltaic market. In Flandoli et al. 
(2022), the authors show that a game theory model explains the linear 
increase of 2011 observed for ‘‘Industry’’. In contrast, a Markovian 
model easily fits the exponential increase periods. However, it is not 
natural to explain the solid linear increase of 2011, which, as said, is 
not present in the ‘‘Domestic’’ time series. In other words, companies, 
around 2011, underwent a game; indeed, 2011 came after some years 
of moderate-size FiT subsidies. In 2011, Italy proposed a much more 
substantial FiT subsidy. Companies acted as in a game, whereas single 
people or families were not prepared; they reacted but not with the 
game’s logic. This fact is mainly because the planning ability of com-
panies is superior to that of domestic ones. Whence, it is more natural 
to use a Markovian model in explaining ‘‘Domestic’’ behavior.

Notice that the decision to adopt photovoltaic (PV) technology has 
a long-term aspect to it, which entails upfront costs but ultimately pays 
for itself over time through the generation of electricity with minimal 
variable expenses, primarily linked to maintenance. We consider two 
Markovian models; in particular, the second model is a refinement of 
the first one. In both models, a variable 𝑋𝑖

𝑡 characterizes the state of 
each agent i, i∈ {1,… , 𝑁}, being 𝑁 the number of agents. A value 
of 𝑋𝑖

𝑡 = 𝐶 stands for ‘‘Carbon’’ and indicates that the individual has 
not decided on the theme of GET yet. She/he can be either agnostic to 
3 
such a theme or prone to change her/his mind. For instance, she/he 
can be prone to mimicry, easily swayed by the behaviors of others in 
her/his social group, and attentive to social power and hierarchy. A 
value of 𝑋𝑖

𝑡 = 𝐼 stands for ‘‘Informed’’ and characterizes an agent that 
is fully informed on the benefits of PVs or that has developed a certain 
level of sensitivity to climate change and environmental issues.1 Finally, 
𝑋𝑖

𝑡 = 𝐺 stands for ‘‘Green’’ and denotes the state of the individual that 
has installed the PVs.

In the first model, we assume that each agent 𝑖 can only pass from 
the state ‘‘Carbon’’ to ‘‘Informed’’, and from the state ‘‘Informed’’ to 
‘‘Green’’; the precise mechanism under which the transition takes place 
is described in Section 2. In the second model, more structure is added 
to the transition from the state ‘‘Informed’’ to the state ‘‘Green’’. This 
additional structure hinges on the concept of procrastination, which 
means postponing into the future something that, from a subjective 
perspective, it would be rational to do earlier (Ainslie, 2010). More 
precisely, we add the state 𝑃𝐿 to the variable 𝑋𝑖

𝑡 to capture such a be-
havior. The value 𝑋𝑖

𝑡 = 𝑃𝐿 stands for ‘‘Planner’’ and the transition from 
‘‘Informed’’ to ‘‘Planner’’ captures the following behavior. In general, 
not all individuals who have not adopted PV can be labeled as pro-
crastinators. Various rational factors might explain the delay, such as 
financial constraints, difficulty in accessing credit, lack of information 
about available options, housing circumstances, risk misperception, etc. 
Those who overcome these barriers and develop a clear preference for 
purchasing PV, i.e., have become ‘‘Informed’’ in our language, may still 
find themselves in a procrastination loop due to the long-term nature 
of the decision. As the time to make the purchase nears, the perception 
of investment costs versus future energy benefits can fluctuate, leading 
to a temporary reversal of preferences, typically followed by regret, 
akin to what occurs in instances of procrastination in general. Once 
the agent gets out of the procrastination loop, she/he passes from ‘‘In-
formed’’ to ‘‘Planner’’ and then, as before, from ‘‘Planner’’ to ‘‘Green’’. 
Again, the precise mechanism under which the transition occurs is 
described in Section 2.

Finally, in both models, we assume, as predominantly done in 
behavioral economics, that the final transition from ‘‘Informed’’ to 
‘‘Green’’ or from ‘‘Planner’’ to ‘‘Green’’ happens in response to a cost–
benefit ratio. We assume that each agent makes the final choice of 
installing PVs based on benefits outweighing costs. More precisely, we 
assume that our agents first become an homo sustinens agents (Graczyk, 
2021), and then (necessarily) homo economicus agents before making 
the transition to the state ‘‘Green’’; see Table 3 in Graczyk (2021) 
for a nice overview of these two types of agents. More precisely, our 
agents are boundedly rational homo economicus agents; we will defer 
the discussion on this topic to the end of Section 2. Admittedly, one 
can construct a refinement of the second model in which some agents 
can pass from ‘‘Informed’’ to ‘‘Green’’, but we leave this extension for 
future research (we will return to this point later). We also mention 
two other possible refinements that we would like to consider in 
the future. First, we want to include the possibility of the transition 
from ‘‘Informed’’ to ‘‘Carbon’’ occurs. In other words, we desire to 
include the mechanisms that cause an agent’s opinion to revert to the 
initial one. Another significant point would be the explicit inclusion 
of bureaucratic obstacles to installations, such as slow installation and 
difficulty finding technical information.

1.2. Positioning in the existing literature

In his article, Gifford (2011) proposes a framework to describe why 
humans are not taking action to prevent or ameliorate climate change. 

1 Notice that, generally, having information or being environmentally mo-
tivated may either not coincide or be equivalent: An agent can be highly 
informed but do nothing or know very little but be highly motivated. However, 
we will leave the modeling of the previous situations for future research.

https://www.terna.it
https://www.gse.it/dati-e-scenari/statistiche
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Energy inefficiency is a similarly complex and abstract problem to 
climate change. In particular, Gifford postulates the following seven 
‘‘dragons’’ of inaction with regard to climate change: (1) ‘‘limited 
cognition’’, (2) ‘‘ideologies’’, (3) ‘‘dis-credence’’, (4) ‘‘perceived risk’’, 
(5) ‘‘sunk costs’’, (6) ‘‘comparison with others’’, (7) ‘‘limited behaviors’’. 
So far, different authors have tried to analyze or incorporate (some 
of) these dragons into mathematical models through the lenses of 
different approaches in order to fit PV data. Here, we mention the 
following works, which do not represent, however, a comprehensive 
list. (a) Survey-based analyses; see, e.g., Colasante et al. (2021),  Fa-
giolo et al. (2007). (b) Finite element methods to account for spatial 
heterogeneity; see, e.g., Karakaya (2016). (c) Variants of the popular 
Bass’ model (Bass, 1969); see Da Silva et al. (2020) which state that 
the diffusion of solar photovoltaic systems in Brazil is highly influenced 
by the knowledge about such systems. (d) The agent-based simulation 
approach of, e.g., Zhao et al. (2011), Palmer et al. (2015), and Orioli 
and Di Gangi (2015). The agent-based approach offers a framework to 
explicitly model the adoption decision process of the agent of a hetero-
geneous social system based on their individual preferences, behavioral 
rules, and interaction/communication within a social network. In par-
ticular, in the previous works, it is assumed that each agent decides 
to install a PVs at a certain time 𝑡 when his/her total utility at that 
time is greater than a certain threshold, usually calibrated on data. For 
instance, in the very nice work of Palmer et al. (2015), the total utility 
equals the sum of four weighted partial utilities accounting respectively 
for the payback period of the investment, the environmental benefit of 
investing in a PV system, the household’s income, and the influence of 
communication with other agents. Therefore, these utilities concur at 
the same time to determine whether or not an agent adopts a PV system.

Our modeling framework can also be considered an agent-based 
model, but, importantly, the name agent-based in our case is very close 
to the term ‘‘interacting particle’’ commonly used in Physics, where the 
particles are all equal and subject — more or less — to the same rules of 
interaction among them and with the environment. However, here, the 
particles are individual people or families, which have more complexity 
than particles in Physics and have the possibility of making decisions. 
The main difference with respect to the agent-based simulation ap-
proach described in the previous paragraph is because we assume 
that the number of particles is huge, but the number of parameters is 
relatively small since the interaction and decision rules are the same for 
all particles (i.e., all agents). The parameters are directly linked to a few 
general rules of interaction and decision and, importantly, our ambition 
is not to use them for a fit but rather we would like to be able to 
assign the value of the parameters a priori, based on socio-economical 
knowledge. Admittedly, our model’s number of parameters is still not 
small compared to models typically employed in time-series analysis, 
but keeping in mind our ambition, it just represents the complex nature 
of the problem.

On the contrary, in the agent-based simulation approach, the num-
ber of parameters is huge, roughly proportional to the number of 
agents.2 This is reminiscent of what is done in Physics, where one could 
fit the available data with an empirical law (the opposite of what we do 
in the present paper), but alternatively, one could also develop a theory 
that understands the available data and allows for generalization and 
prediction (our main aim in the present work). In particular, our pur-
pose is to understand the link between the ‘‘microscopic’’ dynamics of 
interacting agents and the time series of PV adoption, which represents, 
from our natural point of view, the cumulative result of a collective 
behavior.

2 Notice that the number of Sinus-Milieus® categories in Appendix  C that 
for folklore can be described by our model are only five and indistinguishable 
with respect to the rules of interaction among them and with the environment. 
In Palmer et al. (2015), where an agent-based simulation is adopted, the 
authors consider eight Sinus-Milieus® categories and a corresponding set of 
parameters.
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Another difference between our approach and the agent-based sim-
ulation one is that it accommodates a sequential description of the 
process that leads an agent to adopt a PV, thus explaining the human 
psychology on the theme of GET. Notice that this sequential description 
catches the actual behavior declared by adopters in response to surveys; 
see, e.g., Kotilainen et al. (2017).

Finally, the present paper extends in a by far non-trivial way the 
model proposed in Flandoli et al. (2022) by explicitly characterizing 
the transition rate from one state to another. This allows us to discuss 
some possible policy scenarios, such as a scenario in which we modify 
investment costs, a scenario in which the government supports photo-
voltaics, a scenario in which a nudging strategy is implemented, and a 
scenario in which social interaction is strengthened. In particular, our 
numerical simulations contribute to put in evidence the role of some 
key parameters. They can indicate how to devise external actions to 
eventually obtain a specific behavior of the society under consideration.

1.3. Organization of the paper

In Section 2, we describe the two Markovian models for the GET. 
Section 3 describes the model’s calibration, whereas the policy sce-
narios are discussed in Section 4.  Section 5 discusses the ethical and 
policy implications of the present article. Finally, Section 6 presents the 
article’s conclusions. Appendix  B describes how to compute the NPV, 
whereas Appendix  C present the so-called Sinus-Milieus® characteriza-
tion.

2. Markovian models for the green energy transition

This section details the two Markovian models we have briefly 
described in the introduction. In Section 3, we will use only the second 
model, but since the latter is a refinement of the first one, we find it 
pedagogical to present both the models here.

In the first model, we consider a world in which 𝑁 agents are 
characterized by a state variable at time 𝑡, say 𝑋𝑖

𝑡 , 𝑖 ∈ {1,… , 𝑁}, which 
can take one of the following three qualitative values: 𝑋𝑖

𝑡 ∈ {𝐶, 𝐼, 𝐺}; 
and by a vector of random weights, denoted by (𝑤𝑖

ec, 𝑤
𝑖
soc, 𝑤

𝑖
𝑖𝑟𝑟), that 

characterizes the individual in several aspects; 𝑤𝑖
ec, 𝑤

𝑖
soc, 𝑤

𝑖
𝑖𝑟𝑟 are ran-

dom variables distributed according to a triangular distribution. For 
simplicity, we also assume that these weights are independent. The 
state 𝐶 means that agent 𝑖 is ‘‘Carbon’’. This expression is (admit-
tedly) very vague. It indicates agents that can be ignorant, with a 
lack of awareness and limited thinking about the problem of GET. 
However, otherwise, they are prone to change their mind by gathering 
information from different external resources. We here count on three 
different resources: (I) We count on the neighbors, relatives, friends, 
and co-workers to pass information via ‘‘word of mouth’’ to help spread 
energy efficiency, interest, and advantages. (II) We count on advertising 
and public education campaigns. (III) We count on a social utility, 
representing the comfort given by the impact of the agent’s action on 
society. The model assumes that once the agent has been acquainted 
with (I), (II), and (III), she/he will make the transition from the state 
‘‘Carbon’’ to the state 𝐼 , which stands for ‘‘Informed’’. We assume that 
the rate of transition, denoted by 𝜆𝐶→𝐼

𝑁 , depends on a quantity related 
to (I), a quantity related to (II), and a quantity related to (III). The 
former is given by a function of the fraction of ‘‘Greens’’ at time 𝑡. The 
second one, if we consider a feedback development in communication, 
is also a function of the fraction of ‘‘Greens’’ at time 𝑡. According to 
the following reasoning, the latter is also a function of the fraction of 
‘‘Greens’’ at time 𝑡. If 𝑁𝐺 (𝑡)

𝑁  is small, then the impact of the individual 
𝑖 is almost irrelevant since she/he feels that her/his choice is not a 
social phenomenon. On the other hand, the impact of the individual 
increases with 𝑁𝐺 (𝑡)

𝑁  since she/he feels that her/his choice is beneficial 
for society. In conclusion, the dependence on these three factors can 
be summarized as the dependence on the ratio 𝑁𝐺 (𝑡)  and the number 
𝑁
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of green agents in agent 𝑖’s network. Assuming that the influence occur-
ring locally is somewhat representative of that occurring globally, we 
conclude that the dependence on these three factors can be summarized 
as the dependence on the ratio 𝑁𝐺 (𝑡)

𝑁 . This makes our model a mean-
field model. Formally, let  = {𝐶, 𝐼, 𝐺} and 𝑋𝑡 = (𝑋1

𝑡 ,… , 𝑋𝑁
𝑡 ) ∈ 𝑁

a generic configuration. We denote by 𝑁𝐺 (𝑋𝑡)
𝑁  the fraction of ‘‘Greens’’ 

at time 𝑡, where 𝑁𝐺(𝑋𝑡) ∶=
∑𝑁

𝑗=1 1{𝑋𝑗
𝑡 =𝐺} is the number of ‘‘Greens’’ at 

time 𝑡. The probability to pass from 𝐶 to 𝐼 in a time interval 𝛥𝑡 → 0 is 
therefore defined in the following way: 

Prob(𝑋𝑖
𝑡+𝛥𝑡 = 𝐼|𝑋𝑖

𝑡 = 𝐶) ∶= 𝜆𝐶→𝐼
𝑁

(

𝑤𝑖
soc,

𝑁𝐺(𝑋𝑡)
𝑁

)

⋅ 𝛥𝑡

where 𝜆𝐶→𝐼
𝑁

(

𝑤𝑖
soc,

𝑁𝐺(𝑋𝑡)
𝑁

)

∶= 𝑤𝑖
soc ⋅ 𝐹

(

𝑁𝐺(𝑋𝑡)
𝑁

)

.
(1)

In the previous equation, 𝑤𝑖
soc is a positive random variable taking 

values in the unit interval and indicating how much the agent is 
influenced by the three resources described above, the symbol ‘‘∶=’’ 
means ‘‘defined as’’ and the function 𝐹 ∶ [0, 1] → [0, 1] is, e.g., the 
identity function; see Section 3. At this point, the model assumes that a 
barrier that prevents the agent from implementing the energy efficiency 
project (i.e., installing the PVs) is costs/uncertainty about payback. 
In particular, we assume that the probability of passing from 𝐼 to 
‘‘Greens’’, denoted by 𝐺, in a time interval 𝛥𝑡 → 0 is defined in the 
following way: 

Prob(𝑋𝑖
𝑡+𝛥𝑡 = 𝐺|𝑋𝑖

𝑡 = 𝐼) ∶= 𝜆𝐼→𝐺
𝑁

(

𝑤𝑖
ec, 𝑤

𝑖
irr,

𝑁𝐺(𝑋𝑡)
𝑁

)

⋅ 𝛥𝑡

where 𝜆𝐼→𝐺
𝑁

(

𝑤𝑖
ec, 𝑤

𝑖
irr,

𝑁𝐺(𝑋𝑡)
𝑁

)

= 𝑤𝑖
ec ⋅ 𝑈ec

(

𝑤𝑖
irr,

𝑁𝐺(𝑋𝑡)
𝑁

)

.

(2)

In the previous equation, 𝑤𝑖
ec denotes the importance that agent i gives 

to the economic utility 𝑈ec; the latter depends upon 𝑤𝑖
irr which captures 

the bounded rationality of the agent and on 𝑁𝐺 (𝑋𝑡)
𝑁 , i.e., the fraction of 

‘‘Greens’’ at time 𝑡. For the computation of the economic utility, we take 
inspiration from Palmer et al. (2015). We define it in the following way 
(the explicit dependence on 𝑤𝑖

irr and 
𝑁𝐺 (𝑋𝑡)

𝑁  will be detailed below): 

𝑈ec

(

𝑤𝑖
irr,

𝑁𝐺(𝑋𝑡)
𝑁

)

=
max(𝑝𝑝) − 𝑝𝑝(𝑖)

max(𝑝𝑝) − min(𝑝𝑝)
=

21 − 𝑝𝑝(𝑖)
20

, (3)

where 𝑝𝑝(𝑖) is the so called payback period (or payback time) of a specific 
PV system for agent i. The payback period is determined by the year in 
which the Net Present Value (NPV, henceforth) of the PV system turns 
from negative to positive. More in detail, the NPV at time 𝑡 is defined as:

NPV(𝑡, 𝑛𝐺(𝑡), 𝜏) = −𝐼econ(𝑡) +
𝜏
∑

𝑠=𝑡+1

𝑅(𝑠 − 𝑡)
1 + 𝑔𝑖(𝑡, 𝑠, 𝑛𝐺(𝑡))

, 𝑡 ≤ 𝜏 ≤ 𝑡 + 20, (4)

and it depends on the fraction of ‘‘Greens’’ at time 𝑡, 𝑛𝐺(𝑡) ∶= 𝑁𝐺 (𝑋𝑡)
𝑁

3 via 
the discount factor 𝑔𝑖(𝑡, 𝑠, 𝑛𝐺(𝑡)). The discount factor is agent-specific, 
and it is defined as: 
𝑔𝑖(𝑡, 𝑠, 𝑛𝐺(𝑡)) ∶= 𝑤𝑖

irr ⋅ (1 − 𝑛𝐺(𝑡)) ⋅ (𝑠 − 𝑡). (5)

We now describe the quantities in Eq.  (4) and discuss later the discount 
factor in Eq.  (5). 𝐼econ(𝑡) are the investment costs. Instead, the cash flow 
𝑅(𝑠) comprises five factors. The term 𝑅Save(𝑠,CE) includes all earnings 
that are generated by directly using the produced electricity instead of 
buying it from or selling it to the grid operator. The terms 𝑅Gov(𝑠,CE), 
𝑅Adm(𝑠), 𝑅Main(𝑡), 𝑅Deprec(𝑠) and 𝑅time(𝑠) indicate cash flows due to 
governmental support, administrative fees, maintenance and upfront 
costs, depreciation allowance payments, and the cash equivalent of the 
time spent for the administrative consultancy.
𝑅(𝑠) = 𝑅Save(𝑠,CE) + 𝑅Gov(𝑠,CE) − 𝑅Adm(𝑠,CE) − 𝑅Main(𝑠)

3 Henceforth, we will use interchangeably the two notations.
5 
− 𝑅Deprec(𝑠) − 𝑅time(𝑠), (6)

where CE stands for Conto Energia (see Appendix  B). Since the cash 
flow computation is not our contribution, we confine its description in 
Appendix  B. Notice that the state 𝐺 is absorbing, in the sense that an 
agent may jump from the state 𝐼 to the state 𝐺 but cannot jump back 
from 𝐺 to 𝐼 , or 𝐶.

In the model we have just presented, once the agent is informed, 
she/he evaluates the economic utility and passes from 𝐼 to 𝐺 with a 
rate that is proportional to the latter. In the second model, we propose a 
more detailed description of the procrastination loop in which an agent 
may end up trapped due to the inter-temporal structure of the green 
choice. Before proceeding, we observe that an individual qualifies as a 
procrastinator for an action, say 𝐴, at time 𝑡 if the following conditions 
are given:

(i) at time 𝑡, the individual prefers to postpone 𝐴 to a time 𝑡 + 𝑇 ;
(ii) at time 𝑡 − 𝑇 , the individual prefers to perform 𝐴 no later than 

time 𝑡;
(iii) at time 𝑡 + 𝑇 , the individual regrets not having performed 𝐴

earlier.

In order to gain the previous mechanism, we propose to extend the 
number of qualitative values that the variable 𝑋𝑖

𝑡 can assume. In this 
second model, indeed, 𝑋𝑖

𝑡 ∈ {𝐶, 𝐼, 𝑃𝐿,𝐺}. The states {𝐶, 𝐼, 𝐺} have the 
same meaning as before. The state 𝑃𝐿, instead, stands for ‘‘Planner’’; 
it indicates an agent that has acquired sufficient information on the 
benefits of PVs, or has developed a certain level of sensitivity on climate 
change and environmental issues, and plans to install the PVs by looking 
at the ‘‘projected in the future’’ economic utility. This last concept is 
new and we will clarify it in the next few lines. The introduction of the 
new state ‘‘Planner’’ aims to capture the following behavior. In general, 
it is not enough that an individual has developed a clear preference for 
purchasing a PV system to pass from ‘‘Informed’’ to ‘‘Green’’ because 
the value of initial investment costs, previously judged to be lower than 
that of future energy benefits, suddenly becomes higher. Precisely, the 
agent evaluates the latter and passes from 𝐼 to 𝑃𝐿 in a time interval 
𝛥𝑡 → 0 according to the following probability 

Prob(𝑋𝑖
𝑡+𝛥𝑡 = 𝑃𝐿|𝑋𝑖

𝑡 = 𝐼) ∶= 𝜆𝐼→𝑃𝐿
𝑁

(

𝑤𝑖
ec, 𝑤

𝑖
irr, 𝑇 ,

𝑁𝐺(𝑋𝑡)
𝑁

)

⋅ 𝛥𝑡

where 𝜆𝐼→𝑃𝐿
𝑁

(

𝑤𝑖
ec, 𝑤

𝑖
irr, 𝑇 ,

𝑁𝐺(𝑋𝑡)
𝑁

)

= 𝑤𝑖
ec ⋅ 𝑈

𝑝𝑟𝑜𝑗
ec

(

𝑤𝑖
irr, 𝑇 ,

𝑁𝐺(𝑋𝑡)
𝑁

)

.

(7)

In the previous equation, 𝑈 𝑝𝑟𝑜𝑗
ec  is defined as in Eq.  (3) in which the NPV 

at time 𝑡 is given by: 

NPV(𝑡, 𝑡 + 𝑇 , 𝑛𝐺(𝑡), 𝜏) = −
𝐼econ(𝑡 + 𝑇 )

1 + 𝑔𝑖(𝑡, 𝑡 + 𝑇 , 𝑛𝐺(𝑡))
+

𝜏
∑

𝑠=𝑡+𝑇

𝑅(𝑠 − (𝑡 + 𝑇 − 1))
1 + 𝑔𝑖(𝑡, 𝑠, 𝑛𝐺(𝑡))

(8)

Finally, the probability of passing from 𝑃𝐿 to 𝐺 coincides with the 
probability in Eq.  (2), with 𝐼 ≡ 𝑃𝐿. The Markovian dynamics described 
above capture the procrastinator traits outlined in (i)–(iii). Let us say 
an individual is in the ‘‘Informed’’ state at time 𝑡 − 𝑇 . Based on the 
probability defined in (7), the individual can either transition to the 
‘‘Planner’’ state or remain in the ‘‘Informed’’ state. If the first event 
occurs, then she/he plans to install PV no later than time 𝑡 (condition 
(ii)). At time 𝑡, we may observe either that the individual has switched 
to the ‘‘Green’’ state or that she/he has remained a ‘‘Planner’’. If the 
latter case happens, it indicates that the individual has postponed the 
action of installing PV. This is because, even though the expected future 
economic benefit is favorable, the current evaluation of the economic 
benefit is not (condition (i)). At this point, the following observations 
are in order. Fig.  3 displays the economic utility in Eq.  (3) as a function 
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Fig. 3. Pictorial representation of the economic utility in Eq.  (3) as a function 
of 𝑛𝐺(𝑡) ∶= 𝑁𝐺 (𝑋𝑡)

𝑁
 for a fixed 𝑡 for different discount factors 𝑔𝑖(𝑡, 𝑠, 𝑛𝐺(𝑡)) as 

defined in Eq.  (5).  (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

of 𝑛𝐺(𝑡) = 𝑁𝐺 (𝑋𝑡)
𝑁  for a fixed 𝑡 when using four different discount factors. 

Each discount factor can be thought to correspond to four different 
types of agents. The economic utility in black corresponds to a NPV 
in Eq.  (4) where 𝑔𝑖(𝑡, 𝑠, 𝑛𝐺(𝑡)) is equal to zero. It does not depend, as 
expected, on 𝑛𝐺(𝑡): this matches a discount factor of an agent that 
does behave neither like a homo economicus nor like an agent that 
is bounded rational. Indeed, agents that think and behave like homo 
economicus would discount each addend in Eq.  (4) by (1+𝑟)𝑡−𝑠, where 𝑟
is the interest rate; the economic utility for such agents is displayed in 
blue. Again, the latter does not depend, as expected, on 𝑛𝐺(𝑡). Instead, 
agents that are bounded rational would discount each addend in Eq. 
(4) by 1 + 𝑔𝑖(𝑡, 𝑠, 𝑛𝐺(𝑡)), where 𝑔𝑖(𝑡, 𝑠, 𝑛𝐺(𝑡)) is defined as in Eq.  (5). The 
corresponding utility function is displayed in red. First, we observe that 
this utility is increasing with respect to the ratio of green agents. This 
represents the fact that when the number of green agents increases, the 
social pressure is higher and the effect of the hyperbolic discount factor 
is softened. Finally, notice that 𝑈 𝑝𝑟𝑜𝑗

ec

(

𝑤𝑖
irr, 𝑇 ,

𝑁𝐺 (𝑋𝑡)
𝑁

)

 is higher that the 
corresponding 𝑈ec

(

𝑤𝑖
irr,

𝑁𝐺 (𝑋𝑡)
𝑁

)

 and that the reversal of preferences is 
temporary since an ‘‘Informed’’ can become ‘‘Green’’, as in all cases 
of procrastination (see the qualification as a procrastinator defined in 
(i)–(ii) above). In conclusion, we highlight that increasing the value of 
𝑤𝑖
irr would decrease the economic utilities. Indeed, the higher 𝑤𝑖

irr, the 
bigger the misperception of such a utility function.

2.1. Mean field derivation of the individual based model

We conclude this section by deriving the so-called mean field limit 
of our second model. As explained in Section 1.2, our system of agents 
can be considered a system of interacting particles, where the particles 
are all equal and subject — more or less — to the same rules of 
interaction among them and with the environment. The mean field 
is the general method that allows to summarize the behavior of the 
particles in a few ‘‘macroscopic’’ laws and equations; most of the 
numerical simulations are based on these macroscopic laws.

Let 𝑋𝑡 = (𝑋1
𝑡 ,… , 𝑋𝑁

𝑡 ) ∈ , with  now defined as
 ∶= {𝐶, 𝐼, 𝑃𝐿,𝐺}, be a generic configuration, 𝑤soc, 𝑤irr and 𝑤ec
be the weights defined above, and 2( × R3), 2(), and 2(R) be 
the space of probability measures (on the corresponding spaces) that 
are square integrable. We suppose that the weights are constant over 
time once the simulation starts, but they are also sampled from a 
distribution at time zero. In what follows, we will denote by capital 
letters the corresponding random variables. At this point, we can define 
6 
the following quantities: 

𝜈𝑁𝑡 ∶= 1
𝑁

𝑁
∑

𝑖=1
𝛿(

𝑋𝑖
𝑡 ,𝑤

𝑖
soc ,𝑤

𝑖
ec ,𝑤

𝑖
irr

) ∈ 2
(

 × R3) 𝜇𝑁
𝑡 ∶= 1

𝑁

𝑁
∑

𝑖=1
𝛿𝑋𝑖

𝑡
∈ 2 ()

𝑓𝑁
soc(𝑑𝑤soc) ∶=

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑤𝑖

soc
∈ 2 (R) 𝑓𝑁

ec (𝑑𝑤ec) ∶=
1
𝑁

𝑁
∑

𝑖=1
𝛿𝑤𝑖

ec
∈ 2 (R)

𝑓𝑁
irr(𝑑𝑤irr) ∶=

1
𝑁

𝑁
∑

𝑖=1
𝛿𝑤𝑖

irr
∈ 2 (R)

𝑛𝐶,𝑁 (𝑋𝑡) ∶=
1
𝑁

𝑁
∑

𝑖=1
1{𝑋𝑖

𝑡=𝐶} ∈ (0, 1) 𝑛𝐼,𝑁 (𝑋𝑡) ∶=
1
𝑁

𝑁
∑

𝑖=1
1{𝑋𝑖

𝑡=𝐼}
∈ (0, 1)

𝑛𝑃𝐿,𝑁 (𝑋𝑡) ∶=
1
𝑁

𝑁
∑

𝑖=1
1{𝑋𝑖

𝑡=𝑃𝐿}
∈ (0, 1) 𝑛𝐺,𝑁 (𝑋𝑡) =

1
𝑁

𝑁
∑

𝑖=1
1{𝑋𝑖

𝑡=𝐺} ∈ (0, 1).

(9)

The goal is to find an expression for the evolution of 𝑛𝐶,𝑁 (𝑋𝑡), 𝑛𝐼,𝑁 (𝑋𝑡), 
𝑛𝑃𝐿,𝑁 (𝑋𝑡) and 𝑛𝐺,𝑁 (𝑋𝑡). Toward this aim, we make the following 
assumption. We assume that the weights are independent from each 
other and independent from 𝑋𝑖

𝑡 for each fixed 𝑡, i.e.:

𝜈𝑁𝑡 (𝑑𝑥, 𝑑𝑤soc, 𝑑𝑤ec, 𝑑𝑤irr) = 𝜇𝑁 (𝑑𝑥) ⋅ 𝑓𝑁
soc(𝑑𝑤soc) ⋅ 𝑓𝑁

ec (𝑑𝑤ec) ⋅ 𝑓𝑁
irr(𝑑𝑤irr).

Now, we consider an observable 𝐹 ∶  → R and 𝑋 ∶= (𝑋1,… , 𝑋𝑁 ) ∈
. The process 𝑋𝑡 = (𝑋1

𝑡 ,… , 𝑋𝑁
𝑡 ) is a continuous-time Markov chain (of 

cellular automaton type) with the following time-dependent infinitesi-
mal generator:

𝑡𝐹 (𝑋) =
𝑁
∑

𝑖=1
1{𝑋𝑖=𝐶}𝜆

𝐶→𝐼
𝑁

(

𝑤𝑖
soc, 𝑛

𝐺,𝑁 (𝑋)
) (

𝐹 (𝑋𝑖,𝐶→𝐼 ) − 𝐹 (𝑋)
)

+
𝑁
∑

𝑖=1
1{𝑋𝑖=𝐼}𝜆

𝐼→𝑃𝐿
𝑁

(

𝑤𝑖
ec, 𝑤

𝑖
irr, 𝑛

𝐺,𝑁 (𝑋)
) (

𝐹 (𝑋𝑖,𝐼→𝑃𝐿) − 𝐹 (𝑋)
)

+
𝑁
∑

𝑖=1
1{𝑋𝑖=𝑃𝐿}𝜆

𝑃𝐿→𝐺
𝑁

(

𝑤𝑖
ec, 𝑤

𝑖
irr, 𝑛

𝐺,𝑁 (𝑋)
)

×
(

𝐹 (𝑋𝑖,𝑃𝐿→𝐺) − 𝐹 (𝑋)
)

.

At this point, we can use the previous expression to time-dependent 
generators 𝑡𝑛𝐶,𝑁 (𝑋), 𝑡𝑛𝐼,𝑁 (𝑋), 𝑡𝑛𝑃𝐿,𝑁 (𝑋) and 𝑡𝑛𝐺,𝑁 (𝑋), where 
𝑛𝐶,𝑁 (𝑋), 𝑛𝐼,𝑁 (𝑋), 𝑛𝑃𝐿,𝑁 (𝑋) and 𝑛𝐺,𝑁 (𝑋) are defined in Eq.  (9); one 
has to replace the observable 𝐹  with 𝑛𝐶,𝑁 (𝑋), 𝑛𝐼,𝑁 (𝑋), 𝑛𝑃𝐿,𝑁 (𝑋) and 
𝑛𝐺,𝑁 (𝑋), respectively. We compute explicitly 𝑡𝑛𝐶,𝑁 (𝑋) since the others 
can be derived by using a similar argument.

𝑡𝑛
𝐶,𝑁 (𝑋) =

𝑁
∑

𝑖=1
1{𝑋𝑖=𝐶}𝜆

𝐶→𝐼
𝑁

(

𝑤𝑖
soc, 𝑛

𝐺,𝑁 (𝑋)
) (

𝑛𝐶,𝑁 (𝑋𝑖,𝐶→𝐼 ) − 𝑛𝐶,𝑁 (𝑋)
)

+
𝑁
∑

𝑖=1
1{𝑋𝑖=𝐼}𝜆

𝐼→𝑃𝐿
𝑁

(

𝑤𝑖
ec, 𝑤

𝑖
irr, 𝑛

𝐺,𝑁 (𝑋)
)

×
(

𝑛𝐶,𝑁 (𝑋𝑖,𝐼→𝑃𝐿) − 𝑛𝐶,𝑁 (𝑋)
)

+
𝑁
∑

𝑖=1
1{𝑋𝑖=𝑃𝐿}𝜆

𝑃𝐿→𝐺
𝑁

(

𝑤𝑖
ec, 𝑤

𝑖
irr, 𝑛

𝐺,𝑁 (𝑋)
)

×
(

𝑛𝐶,𝑁 (𝑋𝑖,𝑃𝐿→𝐺) − 𝑛𝐶,𝑁 (𝑋)
)

= − 1
𝑁

𝑁
∑

𝑖=1
1{𝑋𝑖=𝐶}𝜆

𝐶→𝐼
𝑁

(

𝑤𝑖
soc, 𝑛

𝐺,𝑁 (𝑋)
)

= −∫R
𝑤soc ⋅ 𝑛

𝐺,𝑁 (𝑋) ⋅ 𝑓𝑁
soc(𝑑𝑤soc) ⋅ 𝑛𝑁,𝐶 (𝑋)

= −E𝑁 [

𝑊soc
]

⋅ 𝑛𝑁,𝐶 (𝑋) ⋅ 𝑛𝑁,𝐺(𝑋),

where in the penultimate equality we use the rewriting of the term 
in terms of the measure 𝜈𝑁  and the independence between the ran-
dom variables. In addition, the time-dependent infinitesimal generators 
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𝑡𝑛𝐼,𝑁 , 𝑡𝑛𝑃𝐿,𝑁  and 𝑡𝑛𝐺,𝑁  are given by:
𝑡𝑛

𝐼,𝑁 (𝑋) = E𝑁 [

𝑊soc
]

⋅ 𝑛𝐶,𝑁 (𝑋) ⋅ 𝑛𝐺,𝑁 (𝑋)

− E𝑁 [

𝑊ec
]

⋅ E𝑁 [𝑈 (𝑊irr, 𝑛
𝑁,𝐺(𝑋))] ⋅ 𝑛𝐼,𝑁 (𝑋).

𝑡𝑛
𝑃𝐿,𝑁 (𝑋) = E𝑁 [

𝑊ec
]

⋅ E𝑁 [𝑈 (𝑊irr, 𝑛
𝐺,𝑁 (𝑋))] ⋅ 𝑛𝐼,𝑁 (𝑋)

− E𝑁 [

𝑊ec
]

⋅ E𝑁 [𝑈 (𝑊irr, 𝑛
𝑁,𝐺(𝑋))] ⋅ 𝑛𝑃𝐿,𝑁 (𝑋).

𝑡𝑛
𝐺,𝑁 (𝑋) = E𝑁 [

𝑊ec
]

⋅ E𝑁 [𝑈 (𝑊irr, 𝑛
𝐺,𝑁 (𝑋))] ⋅ 𝑛𝐼,𝑁 (𝑋).

Finally, by using the Itô–Dynkin Equation, the second Itô–Dynkin Equa-
tion (see Kipnis and Landim (1998), Appendix A), and by taking the 
limit for 𝑁 → ∞, we obtain the following final system of ordinary 
differential equations: 
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑
𝑑𝑡 𝑛

𝐶 (𝑋) = −E
[

𝑊soc
]

⋅ 𝑛𝐶𝑡 (𝑋) ⋅ 𝑛𝐺𝑡 (𝑋)
𝑑
𝑑𝑡 𝑛

𝐼
𝑡 (𝑋) = E

[

𝑊soc
]

⋅ 𝑛𝐶𝑡 (𝑋) ⋅ 𝑛𝐺𝑡 (𝑋)

−E
[

𝑊ec
]

⋅ E
[

𝑈proj
ec

(

𝑊irr, 𝑇 , 𝑛𝐺𝑡 (𝑋)
)

]

𝑛𝐼𝑡 (𝑋)
𝑑
𝑑𝑡 𝑛

𝑃𝐿
𝑡 (𝑋) = E

[

𝑊ec
]

⋅ E
[

𝑈proj
ec

(

𝑊irr, 𝑇 , 𝑛𝐺𝑡
)

]

⋅ 𝑛𝐼 (𝑋)

−E
[

𝑊ec
]

E
[

𝑈ec
(

𝑊irr, 𝑛𝐺𝑡 (𝑋)
)]

𝑛𝑃𝐿𝑡 (𝑋)
𝑑
𝑑𝑡 𝑛

𝐺
𝑡 (𝑋) = E

[

𝑊ec
]

⋅ E
[

𝑈ec
(

𝑊irr, 𝑛𝐺𝑡 (𝑋)
)]

⋅ 𝑛𝑃𝐿𝑡 (𝑋).

(10)

As said, we will use it in most of our numerical simulation. Before 
proceeding, the following important remark on the weights is in order. 

Remark 2.1.  The dependence on the weights 𝑤𝑖
ec and 𝑤𝑖

soc is lin-
ear in the transition rates, whereas the dependence on 𝑤𝑖

irr is non-
linear. In addition, the distribution matters and it appears in the term 
E
[

𝑈ec
(

𝑊irr, 𝑛𝐺𝑡 (𝑋)
)]

.

3. Numerical experiments

In this section, we first present the data we will use in our analysis; 
see Section 3.1, and the model’s inputs, such as the cash flows in Eq.  (6); 
see Section 3.2. Then, we describe the choice of the number of agents 
𝑁 employed in the simulations; see Section 3.3. Finally, Section 3.4 
presents the model’s calibration, along with a thorough stability and 
sensitivity analysis.

3.1. Data description

In our analysis, we examine the number of installed PV systems in 
Italy from 2006 to 2020 using data from the GSE report (GSE, 2007-
2020). We focus on the proportion of homeowners who have adopted 
PV systems during this period. We make the following considerations: 
From 2010 to 2020, we have specific values for the ‘‘Domestic’’ time 
series. For a detailed description of the four categories into which the 
national data is divided, please refer to Section 1.1. In 2009, due to 
a different categorization, we estimate that ‘‘Domestic’’ corresponds 
to a certain percentage of the total installed PV systems. For the 
time period 2006–2008, we lack a specific percentage. However, given 
that residential PVs account for a substantial portion, we consider the 
total number of installed PV systems. These systems typically range 
between 1 and 20 kW, which aligns with choices made by homeowners. 
Additionally, we conduct an analysis of regional data. We specifically 
focus on regions where the percentage of ‘‘Domestic’’ installations is 
notably high: Liguria, Friuli Venezia Giulia, and Veneto. In Table  1, we 
present the average percentage of ‘‘Domestic’’ installations relative to 
the total power (Avg.  %) from 2010–2020 for these regions.

3.2. Model’s inputs

Here, we describe our model inputs. First, we must compute the 
cash-flows in Eq.  (6). We start from the term 𝐼econ(𝑡) in Eq.  (12); see 
Appendix  B. The authors in Mazzanti and Romito Zaccagnini (2012) 
indicate the numerical values for the latter quantity. The index ‘‘Plant 
Cost compared to Modules Cost’’ (for the crystalline silicon) can be 
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Table 1
Avg.  % of ‘‘Domestic’’ PVs installation with respect the power over the period 
2010–2020.
Data Source: GSE (https://www.gse.it/dati-e-scenari/statistiche).
 Region Avg.  %2010–2020PVs ‘‘Domestic’’ 
 Liguria 23,48  
 F. V. Giulia 23,29  
 Veneto 19,05  

Table 2
Ratio between the number of inhabited buildings and the number or
families.
Data Source: https://dati-censimentopopolazione.istat.it/.
 Region or country Ratio 
 Italy 0,73  
 Liguria 0,61  
 F. V. Giulia 0,88  
 Veneto 3,80  

considered equal to a value between 1.5 and 1.9; the plant size is 
3 kW. The previous computation gives a result comparable with the 
‘‘Turnkey PV system’’ (residential) average prices obtained from the 
National Survey Report of PV Power Applications in Italy. The evo-
lution of the price per installed W of a PV system over the period 
2007–2020 is displayed in Fig.  4. Second, we need to recover the value 
for 𝐸PV(𝑠) = 𝐸Sun ⋅ 𝑃MPP ⋅ (1 − 𝜉Abrasion)𝑠−𝑡−1. Admittedly, we were not 
able to find in Palmer et al. (2015) and references therein a value for 
the coefficient of abrasion 𝜉Abrasion. Therefore, we propose to use the 
following procedure. We define the value 𝐸PV(𝑡) as the average amount 
of electricity generated by a household PV system located in Milano, 
Pisa, and Palermo, respectively. (Data Source: https://re.jrc.ec.europa.
eu/pvg_tools/en/#api_5.1):

𝐸PV(𝑡) = 3 ⋅
(1310.32 + 1397.34 + 1523.02)

3
kWh,

where the 3 in front of the equation indicates that we are considering 
PV system with a size of 3 kW. Then we assume that 𝐸PV(𝑡) decreases 
by 3% every year. With this datum we can then compute 𝑅Save(𝑠,CE5)
by choosing 𝜒𝐷𝐶 = 0.85, 𝑝elec,buy = 0.18475 Euro/kWh, 𝑝elec,sell =
0.06056 Euro/kWh, 𝜏elec,buy = 0.04302, 𝜏elec,sell = 0.03211. As we are not 
interested in an exact computation, we consider the electricity prices 
constant in the simulation. However, we checked that our model can 
still fit the data, with slightly different parameter values, if we consider 
electricity yearly medium prices. As regards as, instead, 𝑅Gov(𝑠,CE)
it depends on the year at which the simulation starts because of the 
difference in the values of the FiT (see Appendix  B). At this point, 
we need to specify the negative cash flows. As regards 𝑅Adm(𝑠,CE), 
we follow Palmer et al. (2015) and we set it equal to 3 Euro

kW⋅year  for all 
the CE. As regards 𝑅Main, we set its by choosing 𝛼upfront = 0.010 and 
𝛼Main = 0.013. Finally, 𝑅time(𝑠) is set to the standard value of 200 Euro.

3.3. Fixing the number 𝑁 of agents in the system

Agents in our system are representative individuals of a small 
community, i.e., a family or an apartment building. As a consequence, 
we initially set 𝑁 to 

𝑁 ∝ max{#of inhabited buildings, #of families}. (11)

In order to fix 𝑁 , we then compute the ratio between the number of 
inhabited buildings and the number of families (Data Source: https://
dati-censimentopopolazione.istat.it/). Table  2 reports the ratio for Italy 
and the three considered regions. According to Eq.  (11), if ‘‘Ratio’’ is 
less than one, then 𝑁 is set equal to the number of inhabited buildings. 

https://www.gse.it/dati-e-scenari/statistiche
https://dati-censimentopopolazione.istat.it/
https://re.jrc.ec.europa.eu/pvg_tools/en/#api_5.1
https://re.jrc.ec.europa.eu/pvg_tools/en/#api_5.1
https://dati-censimentopopolazione.istat.it/
https://dati-censimentopopolazione.istat.it/
https://dati-censimentopopolazione.istat.it/
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Fig. 4. Turnkey PV system price per installed W of a PV system over 
2007–2020, residential buildings.
Data Source: National Survey Report of PV Power Applications in Italy.

Instead, if the ‘‘Ratio’’ is greater than one, then we fix 𝑁 as the number 
of families.

Importantly, as pointed out in the footnote2, the number of Sinus-
Milieus® categories that for folklore can be described by our model 
are only five and indistinguishable with respect to the rules of in-
teraction among them and with the environment. In particular, these 
socio-cultural categories include the population segment prone to the 
installation of PVs. E.g., the so-called Tradizionali Conservatori Sinus-
Milieus® category seems less inclined to consider this type of innova-
tion; see Palmer et al. (2015). We multiply 𝑁 by 𝛼 = 0.55 to obtain 
the final number of agents in the system. It is important to note that 
the qualitative nature of the results remains robust regardless of this 
choice.

3.4. Model’s calibration

The model’s calibration is based on the indirect calibration approach 
commonly used in agent-based simulation. This involves running sev-
eral simulations and comparing the results with empirical data to find 
the best model parameters. To evaluate the model’s accuracy, the time 
series is divided into three equal parts. The first two-thirds is used to 
calibrate the model, and the remaining one-third is used to test the 
model’s accuracy.

In principle, we should calibrate the model concerning three
weights: 𝑤ec, 𝑤soc, and 𝑤irr, the time horizon for the ‘‘projected in 
the future’’ economic utility (see Section 2) 𝑇 , and the three initial 
conditions for the system of ordinary differential equations in Eq.  (10); 
we have a total of eight parameters. However, to alleviate a possible 
over-fitting problem, we calibrate the model only with respect to the 
three weights. Instead, we deduce 𝑛𝐺(0) from real data, fix a priori 𝑇 , 
𝑛𝐼 (0) and 𝑛𝑃 (0), and derive 𝑛𝐶 (0) from a structural constraint. Table 
3 summarizes what we have just said. To validate our procedure, we 
discuss in Section 3.5 the stability of the model fitting with respect to 
the fixed parameters.

We now describe the choice of 𝑛𝑃 (0), 𝑛𝐼 (0), 𝑛𝐺(0), 𝑛𝐶 (0), and 𝑇 . 
The initial number of ‘‘Greens’’ agents, 𝑛𝐺(0), coincides with the num-
ber of PV adopters in 2007. As regards the initial number of ‘‘In-
formed’’ agents 𝑛𝐼 (0) and ‘‘Planner’’ agents 𝑛𝑃 (0), it is reasonable to 
set them as being proportional to the initial number of ‘‘Greens’’ and 
‘‘Procrastinator’’, respectively, i.e.,
𝑛𝑃 (0) = 𝑘𝑃 𝑛𝐺(0), and 𝑛𝐼 (0) = 𝑘𝐼𝑛𝑃 (0),

with 𝑘𝑃  and 𝑘𝐼  greater than one; we set 𝑘𝑃 = 𝑘𝐼 = 10. Instead, the 
initial number of ‘‘Informed’’ is set by using the following structural 
constraint

𝑛 (0) + 𝑛 (0) + 𝑛 (0) + 𝑛 (0) = 1.
𝐶 𝐼 𝑃 𝐺
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Finally, we set 𝑇 = 5. As said, the weights 𝑤ec, 𝑤soc and 𝑤irr are 
calibrated via the indirect calibration approach by using as loss function 
the mean square error. Precisely, the resulting values for the weights 
𝑤ec, 𝑤soc determine the average of a triangular distribution with sup-
port over [0, 1]; notice that one of the most common distributions 
adopted in this type of literature is the triangular one. In principle, we 
can also consider time-varying weights and draw a different realization 
of the weights at each time step. However, since we will consider a 
‘‘sufficiently’’ large number of agents in our numerical experiments, 
random weights 𝑤𝑖

soc, 𝑤
𝑖
ec will be replaced by their average; see the 

system in Eq.  (10). The same simplification cannot be applied for the 
weight 𝑤𝑖

irr because it appears hidden in a non-linear function.
Alternatively, an interesting methodology is the one proposed in

Zhao et al. (2011) for the diffusion of PV systems in the Nether-
lands. They identify four factors ((a) Advertising; (b) Neighborhood; (c) 
household income; (d) payback period of a PV system) and related to
some aspects ((1) The contribution to a better natural environment; (2) 
The grant on offer; (3) The central organization of the request for a 
grant; (4) Independence from electricity supplier; (5) Discussion with 
other owners convinced me to adopt; (6) The buying of PV systems 
by neighbors/acquaintances; (7) The technical support offered by the 
municipality. To the latter, they assigned a score between 1 and 5 as 
in Jager (2006). Then, the resulting triangular distribution’s support is 
[1, 5], and the mean is obtained from the average of the score of the 
pair factors-aspects. Although very interesting, we will leave this type 
of approach for further research.

Table  4 reports the optimal value of the weights 𝑤soc, 𝑤ec, and 𝑤irr; 
we also report the calibrated weights in Fig.  5 for a nicer represen-
tation. At this point, we simulate both the agent-based system and 
its mean field limit equation to show that the latter is actually an 
approximation of the former. More precisely, in the agent-based system 
case, we update the configurations on a monthly basis, and we display 
the sample mean; the computation of E [

𝑈ec
(

𝑊irr, 𝑛𝐺𝑡 (𝑋)
)] is performed 

with 10000 samples. Instead, the simulation of the mean field equation 
is performed with a time-step of 0.01. In both cases, the cash flow 𝑅
(see Eq.  (6)) is taken to be constant for the entire year. Fig.  6 shows 
the results of the simulation of the total number of adopters over the 
number of buildings in the chosen regions (top three sub-figures) and 
in Italy (bottom figure). The period fit range, i.e., the first two-thirds of 
the data, is displayed in the shade of blue. The diagrams illustrate the 
actual PV market data and the simulation of our model, which displays 
a very good fit for the actual number of adopters.

The following observation regarding Fig.  6 is in order. There are 
three distinct phases. At the initial formation phase, high costs (see Fig. 
4) and uncertainty result in slow and erratic growth. This formative 
phase ends with a ‘‘take-off’’, which kicks the growth phase, in which 
growth accelerates due to positive feedback in economic profitability, 
technology learning and governmental support via the different phases 
of the CE. After achieving its maximum level, growth begins to slow 
mainly because of the elimination of the incentives. Notice that we 
do not interpret, as in Cherp et al. (2021), this phase as a saturation 
phase. In particular, the growth phase after the initial formation period 
is captured mainly by the variation in the economic utility: indeed, 
in that period, the 𝑁𝐺 curve mirrors the one of the payback period, 
for which we report a typical pattern over 2007–2020 in Fig.  7. For 
comparison, we also report the payback period for an homo economicus
agent who discounts the NPV via (1+𝑟)𝑡−1, with 𝑟 being the interest rate. 
Notice that over 2013–2014, the payback period decreased, although 
the governmental incentives decreased. This is due to the fall in price 
per installed kW of a PV system (see Fig.  4). Also, notice that with 
the introduction of the CE5 the payback period is less volatile. This 
observation suggests that the social influence between agents plays a 
crucial role in the diffusion of the PV system in the third phase. From 
the calibration, we have that 𝑤ec is at least an order of magnitude 
greater than 𝑤 . This is in line with the results found in Palmer et al. 
soc
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Table 3
The table reports the parameters of the model that should be calibrated with the relative 
description in column Description. Column Comment indicates whether the parameter is calibrated, 
fixed a priory, deduced from real data or from a structural constraint.
 Parameter Description Comment  
 𝑤ec Expectation of the random variable 𝑊𝑒𝑐 , E [

𝑊𝑒𝑐
]

Calibrated  
 𝑤soc Expectation of the random variable 𝑊𝑠𝑜𝑐 , E [

𝑊𝑠𝑜𝑐
]

Calibrated  
 𝑤irr Expectation of the random variable 𝑊𝑖𝑟𝑟, E [

𝑊𝑖𝑟𝑟
]

Calibrated  
 𝑇 Time horizon ‘‘projected in the future’’ utility Fixed  
 𝑛𝐼 (0) Initial condition of the ‘‘Informed’’ population Fixed  
 𝑛𝑃 (0) Initial condition of the ‘‘Procastinators’’ population Fixed  
 𝑛𝐺(0) Initial condition of the ‘‘Green’’ population Real Data  
 𝑛𝐶 (0) Initial condition of the ‘‘Carbon’’ population Derived from a  
 structural constraint. 
Table 4
Optimal value for the fitted weights 𝑤ec and 𝑤soc obtained by calibrating the 
model on the 2∕3 of times series of Italy and of the three different regions.
 𝑤ec 𝑤soc 𝑤irr  
 Italy 0.11 0.0076 0.06  
 Veneto 0.15 0.0175 0.15  
 Friuli 0.09 0.001 0.015 
 Liguria 0.06 0.001 0.015 

Fig. 5. Influence of the weights 𝑤ec, 𝑤soc and 𝑤irr obtained by calibrating the 
model on the 2∕3 of times series of Italy and of the three different regions.

(2015), where the influence of the communication network is negligible 
during the first two phases described above. Nonetheless, we point out 
that the weights coefficients should not be directly compared to each 
other because of the different formulations in their partial utilities, and 
their value should be interpreted as their relative importance in the 
adoption decision process.

3.5. Stability analysis

This subsection discusses the robustness, with respect to the param-
eters 𝑘𝐼 , 𝑘𝑃  and 𝑇 , of the results reported in the previous Section 3.4. 
Because we do not study the convexity properties of the likelihood of 
our model, we point out that there may be other combinations for the 
values of 𝑘𝐼 , 𝑘𝑃  and 𝑇  that lead to similar, or even better, fitting results. 
We will report the stability analysis’ results for the Italian photovoltaic 
market; the results for the single regions are available from the authors 
upon request. Fig.  8 summarizes the results. In its top panel, we vary 
𝑘𝐼 ∈ [9.5, 14], and we keep fixed the values of 𝑘𝑃  and 𝑇 . In the 
middle panel of Fig.  8, we vary 𝑘𝑃 ∈ [9.5, 14], and we keep fixed the 
values of 𝑘  and 𝑇 . Finally, in the bottom panel, we vary 𝑘 ∈ [3, 7]. 
𝐼 𝐼
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Overall, the results are satisfactory; however, we should notice that this 
procedure appears to be more stable when calibration is conducted over 
a somewhat larger portion of the time series than the one shown in Fig. 
6. Numerically, we verify that it is more stable when applied to 7∕10 of 
the time series rather than 2∕3. We now make the following important 
observations. First, we observe that the values of the weights, although 
different in values, maintain the same relations, i.e., 𝑤soc ≤ 𝑤irr ≤ 𝑤ec. 
Second, we observe that by increasing the initial number of ‘‘Planner’’ 
and ‘‘Informed’’, i.e., by increasing the values 𝑘𝑃  and 𝑘𝐼 , we obtain, 
quite naturally, lower values for 𝑤ec and 𝑤soc. Indeed, by increasing 𝑘𝑃
and 𝑘𝐼 , we are increasing the segment of the population that is close to 
making the transition. Finally, we observe that by increasing the value 
of 𝑇 , we obtain higher optimal values for 𝑤irr. This result is consistent 
with the model’s expectations. In fact, as 𝑇  increases, the projected 
economic utility would rise, thereby expanding the pool of individuals 
close to making the transition. With a fixed 𝑤irr, this would result in an 
unexpected increase in the number of subjects making the transition, 
making it impossible to achieve a proper fit. More precisely, both 𝑇
and 𝑤irr are parameters linked to the motivational barriers and are 
positively correlated; the further into the future an individual projects 
the event, the more irrational they are.

3.6. Sensitivity analysis

This section aims to explore the model’s sensitivity to the parameter 
used to do the calibration. The results of the sensitivity analysis is 
summarized by Fig.  9, which displays the sensitivity concerning the 
weights (description in items (I), (II), and (III) below). Sensitivity 
analysis is performed by holding constant the values of the calibrated 
parameters in the national data adaptation, see the first line of Table  4 
and varying the parameter whose sensitivity is analyzed. In particular:

(I) The weight of the payback period 𝑤ec has, due to the linear 
formulation of its partial utility, a stronger impact on the diffusion 
process than that of the other weights. Indeed, our agents in 
passing from ‘‘Planner’’ to ‘‘Green’’ are homo economicus agents, 
which means that if 𝑤ec ≈ 0, then no transition occurs; see 
Section 2. We argue that this causality is not captured by models 
in which the transition occurs by evaluating a utility function 
expressed as the sum of weighted partial utilities accounting for 
different factors (e.g., the environmental benefit of investing in a 
PV system or the influence of communication with other agents). 
Indeed, in these models, the transition could happen even if it is 
not economically convenient.

(II) The weight 𝑤soc plays a very different role than the payback 
period weight. From Fig.  9, Middle Panel, we observe that higher 
is the value of 𝑤soc and closer is our model to a logistic one. 
On the other hand, if 𝑤soc ≈ 0, then there is no transition; see 
the green line in the corresponding figure. More precisely, the 



M. Leocata et al. Technological Forecasting & Social Change 225 (2026) 124555 
Fig. 6. Calibration of the installed PV capacity, 2007–2020 for Liguria, Friuli 
Venezia Giulia, Veneto, and Italy.  (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
Source: Own illustration, based on calibration results. The blue line (resp. 
light blue dots) represents the calibrated mean field model (resp. particle 
system) applied to the first two-thirds of the data set, while the red line (resp. 
green dots) shows the mean field model (resp. particle system) run during the 
remaining period.
10 
Fig. 7. Example of a payback period of a PV system over 2007–2020, with the 
discount of the so called ‘‘homo economicus’’ and our discount where for each 
time 𝑡, 𝑊irr is a random variable with a triangular distribution with average 
𝑤irr = 0.06.

Fig. 8. Stability analysis on the initial number of agents in each state. From 
top to bottom:  𝑘𝑃  and 𝑇  fixed; 𝑘𝐼 and 𝑇  fixed; 𝑘𝐼 and 𝑘𝑃  fixed.
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transition 𝐼 → 𝑃𝐿 → 𝐺 happens at a much faster rate than the 
transition 𝐶 → 𝐼 , and, in practice, the Markovian model comes 
down to a model with states {𝐶, 𝑃𝐿,𝐺}. Because the transition 
𝐶 → 𝑃𝐿 is not more allowed, no further transition is observed. 
Said differently, the state 𝐼 is not renovated rapidly enough.

(III) The parameter 𝑤irr influences, by construction, only the economic 
utility. In particular, when 𝑤𝑖𝑟𝑟 is one-sixth of the calibrated 
value, our agents are neither homo economicus nor bounded ratio-
nal (see the discussion at the end of Section 2, where the same 
effect is obtained by setting 𝑁𝐺(𝑋𝑡) = 𝑁), and they perceive 
a higher economic utility, thus obtaining a similar effect to an 
increase of 𝑤ec; see item (I). On the other hand, an increase of 𝑤irr
reflects that our agents may end up trapped in a procrastination 
loop due to the inter-temporal structure of the green choice. 
Therefore, the cumulative (normalized) number of adopters is still 
growing but slowing down.

4. Scenario analysis

We test five different simulation scenarios to consider the sensitivity 
and validity of the proposed model. The first is a Baseline scenario 
where we use the set of parameters resulting from the calibration (see 
Section 3). Then, we consider a scenario with different PV invest-
ment costs (Scenario I), a policy-driven scenario with governmental 
PV support (Scenario II), a scenario in which a nudging strategy is 
implemented (Scenario III), and finally, a scenario in which social 
interaction is strengthened (Scenario IV). As said, all five scenarios 
build on the parametrization obtained from the calibration in Section 3.

Before examining the results, we will explain the rationale behind 
the design of the just-mentioned scenarios. Scenario I and Scenario II 
correspond to Scenario II and Scenario III analyzed in Palmer et al. 
(2015), respectively. As in their work, they are justified by the ob-
servation that, during the calibration period, the weight associated 
with economic utility primarily influenced the decision to adopt photo-
voltaic technology (see Fig.  5). There are, however, two key differences 
with respect to the previous study. First, the calibration period: their 
calibration period is 2006–2011; so in particular, their parameters are 
calibrated in a period of moderate-size Feed-in-Tariff subside policy 
(before 2011) and substantial Feed-in-Tariff subside (around 2011); see 
Appendix  A. Second, they do not consider the impact of the bounded 
rational behaviors of home owners on the adoption of solar photo-
voltaic systems. In Section 4.3, we will see that, as in Palmer et al. 
(2015), both governmental incentives and the evolution of the price of 
the photovoltaic system have a significant influence on the adoption 
process. However, in our case, Scenario II will obtain a smaller tech-
nology adoption with respect to Scenario I, which is consistent with the 
fact that after 2012 the firm subsidy policy was weaker than the one 
before 2012. Interestingly, such a discrepancy can be justified in terms 
of hyperbolic discounting. Moreover, in Palmer et al. (2015) authors 
do not focus their scenario analysis on the lock-in of environmental 
behaviors through the following two distinct mechanism: through in-
dividual decision making and through social structure. Our modeling 
framework, instead, allow to test wether governments can use nudges 
to encourage homeowners to adopt PV. Our ultimate goal is to study 
the impact of both intertemporal nudges and social contagion policies 
on PV diffusion, so that they can be taken into account by policymakers 
when defining energy policy portfolios that lead to rapid decarboniza-
tion. This requires analyzing the effects of intertemporal nudges and 
social contagion not only in absolute terms, but also relative to the 
effects of traditional climate policies based on prices and incentives. 
We have therefore developed a four-scenario analysis as the best-fit 
analytical approach to help policymakers identify the most effective 
mix of energy policies. Precisely, Scenario III is a self-interested type 
of nudge. Scenario IV, instead, calls on prosocial, community-oriented 
motives rather than on self-interest. In Section 4.4, we will use a 
11 
Fig. 9. Sensitivity analysis on the weights. From top to bottom:  𝑤soc, 𝑤irr, 𝑘𝑃 , 
𝑘𝐼 and 𝑇  fixed; 𝑤ec, 𝑤irr, 𝑘𝑃 , 𝑘𝐼 and 𝑇  fixed; 𝑤soc, 𝑤ec, 𝑘𝑃 , 𝑘𝐼 and 𝑇  fixed.

framing that induces the individuals who want to install the PVs to 
agree on the installation at a certain date and to start paying for it at a 
specific date in the future. We will see that this self-interested type of 
nudge increase the pressure to act. In addition, we will see in Scenario 
IV that an increase in 𝑤soc

4 help increase adoption. These findings 
are important as they provide governments with a concrete additional 
tools which leverage psychological insights to motivate homeowners to 
adopt PV. In this regard, we mention the following studies. The recent 
work of Neumann et al. (2023), where authors conduct a preregistered 
field experiment involving 600 homeowners in Switzerland, testing 
whether two types of personalized behavioral interventions, one based 
on prosocial motives and one focusing on self-interest, lead to tangible 

4 An increase in 𝑤soc can be obtained, for instance, by sending to homeown-
ers a personalized letter activating social norms regarding one’s community by 
demonstrating how many of one’s neighbors have already installed PV.
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actions towards PV adoption. The work of Zhang et al. (2022), where 
authors set the following two different scenarios: (1) Network structure; 
(2) subsidy strategy, to investigate factors of interest on residential PV 
diffusion in Singapore. Finally, the work of Masini and Frankl (2003), 
where authors focuses on the situation of southern Europe in the 
early 2000s, in two specific market segments: (i) building-integrated 
systems for bulk electricity production in small and remote islands 
provided with a local electricity grid; (ii) building-integrated systems 
for domestic grid support. This work takes into account indicators such 
as the PV shipments, the expected evolution of PV module cost, the 
expected date when PV will become competitive and the net avoided 
carbon emissions. The conclusions of the study are that the adop-
tion of policies such as inter-temporal nudging and the strengthening 
of communication networks can contribute significantly to reducing 
emissions and consequently market inefficiencies. This is important 
because these policies have much lower implementation costs than 
traditional policy instruments such as taxes and subsidies. Our findings 
are similar to Masini and Frankl (2003), in the sense that nudging and 
the facilitation of communication between agents seems to be equally 
or more effective than the action on the economical benefits.

In addition, we remind that our Markovian-type framework cannot 
model unpredictable events beyond what is typically expected of a 
situation and have potentially severe consequences, i.e., black swans. 
For this reason, we have not considered incentive schemes for installing 
PVs starting in 2023, and calibrated the model until 2020; indeed, 
during this year, the Italian economy is still on the path to recovery 
from the COVID-19 pandemic and is affected by the armed conflict 
in Ukraine. Likewise, the five scenarios must be contextualized to a 
standard economic environment.

For the reader’s convenience, we grouped the figures related to the 
scenario analysis at the end of the present section, in Section 4.6, in 
the order that they will be mentioned in the main text. Besides, we 
will report the scenario analyses’ results for the Italian photovoltaic 
market; the results for the single regions are available from the authors 
upon request. Finally, all scenarios were realized by simulating the 
mean-field approximation; see Eq.  (10).

4.1. Baseline scenario

The Baseline scenario considers no further development of the Ital-
ian PV market throughout the simulation period ex-post the calibration 
(i.e., 2020–2026) and serves as a comparison with the other scenarios. 
In accordance, the payback period remains constant and equals its 2020 
value; see Fig.  10, Top Panel. Understanding the Baseline scenario can 
help us understand the decision-making process for the type of agents 
described in our model. The number of adopters will increase by 50% 
from 2020 to 2025. As explained in Section 3, the influence of the 
network, social utility, and communication, in general, is significant 
in what we have denominated the ‘‘third phase’’, in which the growth 
begins to slow mainly because of the elimination of the incentives. 
Therefore, in the Baseline scenario, the observed exponential increase 
in the third phase is primarily due to the communication network; see 
Fig.  10, Bottom Panel.

4.2. Scenario I

The first scenario simulates two alternatives for the development 
of PV system prices. The two alternatives are based on an optimistic 
and a pessimistic outlook regarding future PV market development 
from the consumers’ perspective. We obtain the ‘‘high’’ PV system price 
alternative by increasing the PV system prices by 50%. On the other 
hand, we get the ‘‘low’’ one by decreasing the PV system prices by 
50%. Again, our model lacks realism over 2020–2023, so we will not 
compare numerical simulations with actual data. Fig.  11 collects the 
results. There is a clear difference relative to the Baseline scenario. 
A reduction in the investment costs leads to an increase in the total 
12 
number of adopters of 17% ca w.r.t the reference case at the end of 
the simulation period. In contrast, an increase in the investment cost 
slows the deployment process by 9% ca w.r.t. the Baseline scenario. 
This result is not surprising since the economic profitability of the in-
vestment is one of the most influential criteria in the adoption decision; 
the criteria enables the transition from ‘‘Planner’’ to ‘‘Green’’. As a 
result, an increase (resp. a decrease) in the investment costs leads to a 
reduction (resp. an increase) in the payback period, in this case of two 
years; see Fig.  11, Top Panel. Another parameter that most influences 
the investment’s economic profitability is the governmental support 
scheme, which characterizes Scenario II in the following subsection.

Remark 4.1.  We observe that introducing a carbon tax will produce 
an effect similar to that induced by the increase in initial invest-
ment. The introduction of a carbon tax would imply an increase in 
both prices 𝑝𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒, 𝑝𝑠𝑒𝑙𝑙, and thus 𝑅𝑠𝑎𝑣𝑒. This fact would make in-
stalling photovoltaics even more profitable and increase the number 
of adopters.

4.3. Scenario II

In this scenario, we implement a governmental incentive scheme. 
Again, we use the Baseline scenario as a reference for comparison. 
Changes to the support scheme occur from 2020 onward and produce 
the same effect on the payback period as halving prices; see Fig.  12. 
More precisely, we maintain the same 2020 tax deductions, and we 
add a bonus equal to 𝐸PV × 0.315, where the quantity 𝐸PV is defined 
in Appendix  B. The numerical result again shows a difference from the 
baseline scenario. Compared to the latter, we observe an increase of 
10% in the number of PV installations at the end of the simulation 
period. One observation is in order. Although Scenario I and Scenario 
II produce a similar change in the payback period, the former leads 
to a slighter higher number of adopters than Scenario II; see Fig.  12,
Bottom Panel. The hyperbolic discounting explains this discrepancy; see 
Fig.  12, Middle Panel. The hyperbolic discounting of future utility can be 
seen as a temporary weakening of individual rationality induced by the 
approaching possibility of gains in the present. Hyperbolic discounting 
differs from exponential discounting of future utility, reflecting rational 
motives, such as considering the opportunity cost of capital (Ainslie, 
2012; Ang, 2012; Batini et al., 2021). When looking at future choices, 
most people apply an exponential discount rate, which remains con-
stant over time. For example, subject A might prefer to cash in EUR 
1000 in 2030 rather than wait and cash in EUR 1100 in 2035, but A
might agree to postpone the cash-in if they got EUR 1200 in 2035. In 
other words, the opportunity cost of tying up a capital of EUR 1000 
is for A between EUR 100 and 200. A applies a discount rate to the 
gain only for the time position the gain occupies. Economic theory 
postulates that if A prefers EUR 1200 in 2030 to EUR 1000 in 2035, 
they must also prefer EUR 1200 in 2045 to EUR 1000 in 2040. And 
for most people, this is indeed the case. However, things change when 
the choices are not about future investments for even more future 
earnings but about present investments for future earnings. When the 
possibility to cash in the present approaches, the individual tends to 
apply a higher discount rate of future utility than they would apply for 
future investment choices with the same time distance to earnings. For 
example, A might be induced to prefer EUR 1000 today rather than EUR 
1200 in 5 years, even though when faced with a choice between future 
investments for future earnings, they find it rational to wait five years 
for a 20% gain on EUR 1000. The reasons for this temporary preference 
for smaller gains in the present are to be found in simple and irrational 
temporal myopia (Ang, 2012).

4.4. Scenario III

The third scenario involves implementing a policy to nudge people 
to transition to solar PV installation by acting on their psyche; we 
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will refer to this policy as nudging. Installing PVs is an inter-temporal 
choice, and the distance between the time of the investment and the 
time of future earnings is one of the triggers of the procrastination 
phenomena. Therefore, in the present scenario, we induce a distance 
reduction between the time of investment and that of future earnings 
by proposing to the individuals who want to install the PVs to agree on 
the installation at a certain date and to start paying for it at a specific 
date in the future.

We implement the nudging policy in the following way. We assume 
that starting from the year 2020, agents pass from 𝑃𝐿 to 𝐺 in a time 
interval 𝛥𝑡 → 0 according to the following probability:

Prob(𝑋𝑖
𝑡+𝛥𝑡 = 𝐺|𝑋𝑖

𝑡 = 𝑃𝐿) ∶= 𝑤𝑖
ec ⋅ 𝑈

𝑛𝑢𝑑𝑔
ec

(

𝑤𝑖
irr,

𝑁𝐺(𝑋𝑡)
𝑁

)

,

where the NPV in economic utility 𝑈𝑛𝑢𝑑𝑔
ec  is renewed by shifting the 

initial cost of the investment into the future time 𝑡 + 𝑇 ∗, i.e., the NPV 
becomes:

NPV(𝑡, 𝑛𝐺(𝑡), 𝜏) = −
𝐼econ(𝑡)

1 + 𝑔𝑖(𝑡, 𝑡 + 𝑇 ∗, 𝑛𝐺(𝑡))
+

𝜏
∑

𝑠=𝑡+1

𝑅(𝑠 − 𝑡)
1 + 𝑔𝑖(𝑡, 𝑠, 𝑛𝐺(𝑡))

.

The transition from the state 𝐼 to the state 𝑃𝐿 is modified accordingly, 
through the evaluation of

NPV(𝑡, 𝑡 + 𝑇 , 𝑛𝐺(𝑡), 𝜏) = −
𝐼econ(𝑡 + 𝑇 )

1 + 𝑔𝑖(𝑡, 𝑡 + 𝑇 + 𝑇 ∗, 𝑛𝐺(𝑡))

+
𝜏
∑

𝑠=𝑡+𝑇

𝑅(𝑠 − (𝑡 + 𝑇 − 1))
1 + 𝑔𝑖(𝑡, 𝑠, 𝑛𝐺(𝑡))

.

Fig.  13 displays the results when a nudging policy with 𝑇 ∗ = 1.5
years is implemented. The results indicate clear differences relative to 
the Baseline scenario. Nudging leads to an increment of 24.33% in 
the total number of adopters w.r.t the Baseline scenario at the end 
of the simulation period. Interestingly, while nudging does not affect 
the payback period of a homo economicus agent (Fig.  13, Top Panel), 
it has an effect on agents’ payback period that is characterized by 
bounded rationality because of the presence of the hyperbolic discount 
(Fig.  13, Middle Panel). In particular, by postponing the start of the 
investment, we mitigate the irrational behavior of the agent linked to 
procrastination.

4.5. Scenario IV

In this last scenario, we propose strengthening the agent’s commu-
nication network by acting on the value of the weight 𝑤soc. Fig.  14 
shows the results if we consider a value of 𝑤soc ten times greater than 
the calibrated value 𝑤soc = 0.01. We observe an increase of 93% in 
the number of PV by the end of 2026. Moreover, the type of growth 
makes this scenario different from those previously proposed. Indeed, 
the increase is exponential in this case, whereas the growth was linear 
in previous cases. This latter fact can be explained by observing the 
role of 𝑤soc in the so-called mean-field approximation of the model; see 
Eqs. (10). In particular, the density of the ‘‘Green’’ 𝑛𝐺 increases with the 
density of ‘‘Informed’’ agents 𝑛𝐼 , whose density increases, modulated by 
𝑤soc with 𝑛𝐺 itself. This fact means that 𝑛𝐺 increases exponentially with 
a rate proportional to 𝑤soc. The high sensitivity of the model on the 
parameter 𝑤soc can be explained by making the following observation. 
An analogy can be drawn between epidemiological models and opinion 
diffusion models. This type of parallelism is quite common; see, for 
example, the review of Pastor-Satorras et al. (2015). The parameter 
𝑤soc plays a role similar to that of the contagion parameter (known 
as 𝛽 in the classic SIR model). Both parameters (𝑤soc and 𝛽) represent 
exponential growth rates; the higher their values, the more rapid and 
pronounced the exponential growth. In any case, the growth observed 
in this scenario may be slightly overestimated. This fact could be 
explained by modeling assumptions. As we have pointed out several 
times, agents interact in a mean-field way, which might have triggered 
an overestimation of the effect of social interaction. A more realistic 
13 
Fig. 10. Italy, Baseline scenario. Top Panel: payback period of a PV system;
Bottom Panel: number of installed PV system.
Source: Own illustration.

way to describe the interaction between individuals is to consider a 
network-like structure; we propose exploring this in future work.

4.6. Scenario analysis: Figures

See Figs.  10–14.

5. Ethical and policy implications

This section discusses ethical and policy implications that can be 
inferred from our model.

Before exploring the latter in depth, we would like to outline our 
theoretical contributions. In this paper, we introduce a robust grounded 
theory and a Markovian agent-based model tailored for boundedly 
rational homo-economicus agents. These agents engage in comparable 
interactions both amongst themselves and with their environment, 
governed by shared decision-making rules. Our model stands out for its 
simplicity, characterized by a limited set of parameters. A pivotal aspect 
of our approach is its capacity to provide a sequential narrative that 
elucidates the process by which an agent embraces pro-environmental 
behavior (PV). This framework not only deepens our understanding 
of the psychological dynamics surrounding the theme of the green 
energy transition (GET) but also aligns closely with the actual behaviors 
reported by adopters in survey responses, as evidenced in Kotilainen 
et al. (2017). By bridging theory with observed behaviors, we reinforce 
the validity of our model and its implications for understanding and 
promoting sustainable choices. In particular, we focus on two aspects. 
First, the mathematical framework proposed in Section 2 helps to 
strengthen the empirical evidence that the intertemporal decisions that 
are crucial for environmental protection are significantly influenced 
by cognitive biases such as hyperbolic discounting of individual future 
utility. This has implications for how governments should think about 
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Fig. 11. Italy, scenario I. Top Panel: payback period of a PV system; Bottom 
Panel: number of installed PV system.
Source: Own illustration

climate policy portfolios. Second, the results in Section 3 provide empir-
ical evidence that individual consumption choices should be evaluated 
not only in terms of the emissions they reduce comparatively, but 
also in terms of the social impacts they have. This may lead to a 
reformulation of how the problem of causal inefficiency is posed in 
individual climate ethics.

The classical policy approach to climate change relies mainly on 
economic rationality. The basic assumption is that individuals emit be-
cause it is convenient for them to do so, in terms of cost, time, comfort, 
etc. In order for them to emit less, the government must therefore give 
them rational incentives to choose ‘‘green’’ consumption, i.e. based on 
renewable energy and resources, over ‘‘brown’’ consumption, i.e. based 
on fossil fuels (e.g., Baranzini et al. (2017), Blanchard et al. (2023) and 
Sterner et al. (2024)). Public subsidies are an example of a positive 
incentive, as they aim to reduce the cost of green consumption for 
individuals. They are essential where the research and development of 
certain green technologies is not yet sufficiently profitable to attract 
sufficient private capital. Carbon pricing, on the other hand, is an 
example of a negative incentive. It aims to increase the cost of brown 
consumption in a more or less linear way in order to achieve a socially 
efficient allocation of the costs of climate change mitigation.

This study provides empirical support for the claim that the rational 
incentives approach to climate policy is at least incomplete. Policy 
makers should not only be concerned with the relative costs of brown 
vs. green consumption faced by individuals. They must also address 
all those motivational barriers that prevent the individual agent from 
making the green choice, even if that choice is economically rational in 
a diachronic perspective (Andreou, 2007; Pirni, 2023). In other words, 
there may be cases where the classical instruments of climate policy, 
such as subsidies and taxes, are not sufficient to induce individual 
agents to switch from brown to green; agents may also need to be 
14 
Fig. 12. Italy, Scenario II. Top Panel: payback time of a PV system. Middle 
Panel: payback time discounted with the hyperbolic discount. Bottom Panel: 
number of installed PV system.
Source: Own illustration.

provided with the means to overcome the ‘‘impatience of the present’’, 
which often leads them to postpone choosing what is economically 
rational in the medium-term future (Ainslie, 2010). One such means 
is intertemporal nudging, i.e. the temporal separation between making 
a green choice and actually paying for it (see, e.g., Elster (2000) and 
Maltais (2015)). Indeed, if the hyperbolic discounting of the future 
utility of a green choice is associated with the approaching cost of 
the choice, policymakers could allow agents to commit to the choice 
at a time before the time at which the cost is borne. In addition 
to subsidizing green energy and increasing the cost of fossil energy, 
policymakers could encourage firms to allow consumers to commit to 
buying green products, as in the case of the PV systems analyzed here, 
at a point in time prior to the actual purchase (Corvino, 2021). Further 
research is needed on how much time should elapse between the time 
of commitment and the time of purchase.
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Fig. 13. Italy, Scenario III. Top Panel: payback period of a PV system; Middle 
Panel: payback period of a PV system; Bottom Panel: number of installed PV 
systems.
Source: Own illustration.

Fig. 14. Italy, Scenario IV: number of installed PV systems.
Source: Own illustration.
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The article highlights that motivational aspects are both an obstacle 
that should not be overlooked, but also an opportunity for policymak-
ers, as nudging is usually associated with little or no cost (Lepenies 
and Malecka, 2019). This fact is quantified in Scenarios II and III 
in Section 4. In particular, in Scenario II, we show how, given two 
economic policies with equal economic benefits, the motivational/ir-
rational aspects lead an agent to choose one over the other and thus 
indicate which policy would be more effective. In Scenario III, on the 
other hand, we quantify the effectiveness of a policy based on nudging 
and show that it could be as effective as a policy based on incentives 
or price reductions.

The study also provides empirical insights relevant to individual 
climate ethics. Those who take a consequentialist view hold that the 
decision to consume green or brown must be made on the basis of 
the sum of the consequences, both negative and positive, that the 
choice generates in the world — rather than, for example, on the basis 
of the motivations for the choice, or the virtues that the individual 
may cultivate through the choice, etc. (see, e.g., Garvey (2011) and 
Jamieson (2007)). The main obstacle to justifying a duty to consume 
green from a consequentialist perspective is the problem of causal 
inefficacy. The latter consists in the fact that if the individual agent 
goes green with a single act of consumption, e.g. buying a PV system, 
this will have no or imperceptible effect on the mathematics of global 
warming: with or without the additional PV system, global temperature 
projections would be the same (e.g., Kingston and Sinnott-Armstrong 
(2018) and Fragniére (2016)). Individuals, therefore, when choosing 
what to consume, should limit themselves to choosing what is best for 
them. Rather than changing individual consumption patterns, climate 
change obligations will consist of promoting change at the political 
level (e.g., Maclean (2019) and Sardo (2020)).

The causal inefficacy argument is based on the assumption that the 
choice between green and brown consumption is mainly an economic 
decision made by individuals in isolation from other people’s decisions. 
The study shows that this assumption is not as robust as it is usually 
made out to be. In fact, the results help to show that individual 
consumer choices matter not only for the GHG emissions that the agent 
reduces by making the green choice, but also for the effect that the 
individual green choice has on the likelihood that other individuals 
will make similar choices (Frank, 2021). The results in Section 3, in 
particular Scenario IV, help to bring out this more complex picture and 
contribute to changing the way in which individual mitigation duties 
should be formulated.

Individual behavior has social spill-over effects that go far beyond 
the individual abatement potential. In fact, the individual who makes 
the green choice contributes more to climate change mitigation, not 
only through the GHG emissions avoided, but also through the social 
signal it sends. It could even be argued that, in some cases, com-
municating a green choice may have a greater climate impact than 
actually making it. Indeed, communicating the green choice can help 
to overcome various barriers on the part of those who have not yet 
switched from fossil to green energy, e.g. barriers related to technical 
knowledge or economic viability, or it can even trigger social pressure 
mechanisms that are naturally reinforced as the number of actors who 
have made the green choice increases. Accordingly, individuals need 
to signal that they have made the green choice in as many ways 
as possible. There are, of course, many different ways of doing this, 
ranging from traditional word-of-mouth, to interaction via the internet 
and social networks, to simple display.

Furthermore, the attempt of providing an effective communication 
related to the green choice might inaugurate a twofold positive effect, 
from the point of view of the nudging theory. On the one hand, it can 
become a kind of self-rewarding - and therefore further motivating — 
action: the relevant result just achieved could motivate the single agent 
in pursuing other ‘‘behavioral shifts’’ in favor of other ‘‘green choice’’ 
(e.g.: a different selection in food purchase, or a more efficient different 
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ways for management using of water consumption in the domestic 
domain). On the other hand, an effective communication of that choice 
might ‘‘nudge’’ other people, or could function as an exemplary model 
for other subjects that might replicate the same choice.

6. Conclusions

The present paper aims to analyze the diffusion of residential PV 
systems in Italy from 2006 to 2026. Our approach involves a Markovian 
agent-based model that takes into account the influence of network 
communication and the payback period of the investment on adop-
tion decisions. The agents in our model are bounded rational homo 
economicus agents and share similar interactions with each other and 
the environment, as well as decision rules characterized by a small 
number of parameters. This simplification allows us to summarize agent 
behavior using macroscopic laws and equations through a mean field 
approach. We found that it was relatively easy to calibrate the model 
by adjusting the weights of the innovation-decision process. By altering 
key parameters, we evaluated the projected diffusion via a scenario 
analysis. Our comprehensive study led to the discussion of two societal 
implications: firstly, cognitive biases, such as hyperbolic discounting 
of future utility, significantly impact green choices over time; and 
secondly, individual green choices influence the likelihood that others 
will make similar choices and reduce greenhouse gas emissions.

Of course, the model is built on simplifications and assumptions and 
may not capture unforeseen events. However, its ability to match the 
actual diffusion of residential PV systems in Italy over the considered 
period is promising. Additionally, the proposed framework’s applicabil-
ity to other countries and, with minor adjustments, to other renewable 
energy technologies, suggests potential for future implementations with 
an improved set of underlying parameters.
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Appendix A. The development of the PVs in Italy

This section provides an overview of the various measures intro-
duced by the Italian government to promote the adoption of pho-
tovoltaic (PV) systems from 2005 to the present. These measures, 
collectively known as ‘‘Conto Energia’’ (CE), offer fixed-term con-
tracts with favorable conditions for PV systems connected to the grid 
with a minimum peak power of 1 kW. Local electricity providers 
are obligated by law to purchase the electricity generated by these 
PV systems. The initial CE commenced in 2005 and was structured 
as a net metering plan (‘‘scambio sul posto’’) tailored to small PV 
systems. This plan aimed to encourage the direct consumption of self-
generated electricity. In addition to payments for each unit of electricity 
produced, consumers received supplementary incentives for utilizing 
the self-generated energy directly. Subsequent iterations, such as CE2, 
were open to all PV systems but were primarily designed for larger 
installations with limited or no direct self-consumption of electricity. 
Under these later versions, the electricity produced was sold to the local 
energy supplier, and the CE guaranteed an additional Feed-in Tariff 
(FiT). It is worth noting that with each new version of the CE, the 
FiT decreased from 0.36 e/kWh in 2006 to 0.20 e/kWh in 2012. The 
implementation of CE4 in 2011 introduced financial rewards for direct 
energy consumption, while CE5 offered incentives based on the energy 
supplied to the grid along with a premium rate for self-consumption.

Following the conclusion of the fifth CE program, the FiT and 
premium schemes were discontinued, and a tax credit program was 
introduced in 2013. This was followed by the reintroduction of a new 
incentive decree for photovoltaic systems (RES1) in 2019, which was 
explicitly reserved for systems with a capacity of more than 20 kW 
but not exceeding 1 MW. Subsidies were provided based on the net 
electricity produced and fed into the grid, with the unit incentive 
varying according to the plant size.

In May 2020, the Italian government enacted the ‘‘Revival Decree’’ 
(Decree Law 34/2020), which introduced a further increase of 110% in 
tax deductions. The extent of the tax deduction depended on whether 
the installation was associated with energy-saving measures. Moreover, 
the decree allowed for the free transfer of surplus energy to the grid and 
included provisions for subsidized tax deductions and implementing 
battery energy storage systems.

Additionally, the Ministerial Decree of September 16, 2020, in-
troduced an incentive measure, offering incentives for collective self-
consumption configurations and renewable energy communities. These 
incentives, amounting to 100 e/MWh and 110 e/MWh, respectively, 
are valid for 20 years and are subject to certain limitations.

Appendix B. Computation of the economic cost and of the cash 
flows

In this section, we describe the computation of the investment 
cost and the cash flows. This computation is based on Palmer et al. 
(2015), except for the computation of the investment costs 𝐼econ. In-
deed, in Palmer et al. (2015), the authors compute the investment 
costs by using a very precise formula involving the maximum peak 
power of the PV system, the available rooftop area for PV modules, the 
efficiency of the solar cells, the PV system efficiency, and the irradiation 
at standard conditions. Because in the present work we are trying to 
explain the general public’s behavior on the GET, we have judged the 
previous procedure too refined, and follow the ones in Krumm et al. 
(2022), where they provide a formula that enables the calculation of the 
cost of a given PV plant, on condition that the per-unit power module 
cost and the plant size are known. More precisely: 
𝐼econ(𝑡) =Modules Cost[Euro/Wp]

× Plant Size[Wp] × Index ‘‘Plant Cost compared to (12)

Modules Cost’’.
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The numerical values for the previous quantities are provided in the 
cited reference.

We now turn to the computation of the cash flow, and we start from 
the 𝑅Save(𝑠,CE). Palmer et al. (2015) provide an explicit expression for 
𝑅Save(𝑠,CE) in the case of the CE 5:
𝑅Save(𝑠,CE5) = 𝐸PV(𝑠) ⋅

[

𝜒DC ⋅ 𝑝elec,buy ⋅ (1 + 𝜏elec,buy)𝑠−𝑡−1

+(1 − 𝜒DC) ⋅ 𝑝elec,sell ⋅ (1 + 𝜏elec,sell)𝑠−𝑡−1
]

, 𝑡 ≤ 𝑠 ≤ 𝜏.

where 𝐸PV(𝑠) is the produced amount of electricity, 𝜒DC the share of 
direct electricity consumption and 𝑝elec,buy (resp. 𝑝elec,sell) is the price 
of electricity bought (sold). The amount of electricity 𝐸PV generated 
by the system is a function of the level of irradiation (𝐸Sun), of the 
installed nominal maximum peak power (𝑃MPP), and of the predicted 
PV module abrasion (𝜉Abrasion):
𝐸PV(𝑠) = 𝐸Sun ⋅ 𝑃MPP ⋅ (1 − 𝜉Abrasion)𝑠−𝑡−1.

Besides energy savings, an additional positive cash flow is generated 
by governmental support (𝑅Gov(𝑡, 𝐶𝐸)), which is based on the FiT (Feed 
in Tariff) given by the CE. The amount of the support is calculated as 
the sum of three components: a basic payment for the production of 
electricity (FiTProd(𝐶𝐸)), an incentive for direct PV electricity consump-
tion (FiTDC(CE)), and, if applicable, additional bonuses (FiTBon(CE)) 
that accrue in special circumstances. The cash flows associated with 
governmental support are then expressed as follows: 

𝑅Gov(𝑠,CE) = 𝐸PV(𝑠) ⋅ (FiTProd(CE) + FiTDC(CE) + FiTBon(CE)) (13)

For instance in the CE 5 the governmental support is 200 Euro/kW and 
then decreases by either 15% every six months, 5% every six months 
and 25% every six months. When there is no incompatibility with the 
benefits from the CEs, we add the additional benefits from the Net 
Metering scheme. After the end of the CEs, we consider the tax credit 
program, which consists of ten tax refunds, one for every year, of the 
size of a percentage of the initial investment, as done in Peralta et al. 
(2022). We do not consider additional bonuses due to more invasive 
house renovations, as we suppose only a fraction of adopters could 
benefit from those bonuses.

As in Palmer et al. (2015), we assume that the adoption of a PV 
system also entails a series of negative cash flows. Administrative fees 
(𝑅Adm(𝐶𝐸)) have to be paid to the provider of the electricity grid and 
depend on the specific CE considered. For example, for CE 5 we have 
that:

𝑅Adm(CE) = 3 Euro
kW year .

Maintenance costs (𝑅Main(𝑡)) must also be considered. Upfront costs 
(e.g., the consultation of a PV expert/ adviser) are paid in the first 
year of the investment, while maintenance costs occur yearly. Both 
expenditures are estimated to be a fraction of the initial investment 
costs (as done in Palmer et al. (2015)): 

𝑅Main(𝑠) =

{

(𝛼upfront + 𝛼Main) ⋅ 𝐼econ if 𝑠 = 𝑡
𝛼Main ⋅ 𝐼econ otherwise.

(14)

Finally, the cash flow includes depreciation allowance payments of the 
PV system (𝑅Deprec(𝑠)). The depreciation allowance amounts to a fixed 
outflow taking place at the end of every year for 20 years, at which 
point the remaining value of the fixed asset at the end of its useful 
lifetime is zero.

Appendix C. Description of the Italian Sinus-Milieus® categories 
adopted in the present paper

The Table  5 report the description of the Sinus-Milieus® categories 
used in the present study. The source is Appendix A.1, Table 11, 
in Palmer et al. (2015).
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Table 5
Detailed description of the Italian Sinus-Milieus® categories adopted in the 
present paper.
 Sinus-Milieus® Borghesia Illuminata (enlightened middle class)  
 Characteristics Highest lifestyle, society’s elite, econ. thinking 
 Type of household Couples, sometimes with children  
 Age Older than 45 years  
 Education Highest education  
 Work Businessmen, qualified employees and executives  
 Income Highest income  
 Share of population 5.7 million inhabitants (10% of population)  
 Sinus-Milieus® Progressisti Tolleranti (intellectuals)  
 Characteristics Critical intellectuals, socially ambitious  
 Type of household Couples, sometimes with children  
 Age 40–60 year  
 Education High and highest education  
 Work Freelance, executive employees  
 Income Freelance, executive employees  
 Share of population 5.7 million inhabitants (10% of population)  
 Sinus-Milieus® Edonisti Ribelli (experimentalists)  
 Characteristics Modern and creative, open to new ideas  
 Type of household Small families and singles  
 Age Younger than 35 years  
 Education Higher education  
 Work Freelancer, executive employees  
 Income Average income  
 Share of population 4.1 million inhabitants (7% of population)  
 Sinus-Milieus® Italia Media Ambiziosa (modern mainstream)  
 Characteristics Modern mainstream, living the social norms  
 Type of household Small families and singles  
 Age All age classes  
 Education Average education  
 Work Employees, craftsman  
 Income Average income  
 Share of population 9.7 million inhabitants (17% of population)  
 Sinus-Milieus® Neo Achievers (modern performers)  
 Characteristics Performance oriented, seeking individual fulfillment 
 Type of household Singles, mostly male  
 Age Younger than 35 years  
 Education High education  
 Work Freelance, specialized employees  
 Income Average to high income  
 Share of population 6.4 million inhabitants (11% of population)  

Data availability

Data will be made available on request.
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