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ARTICLE INFO ABSTRACT

MSC: Household adoption of rooftop photovoltaic (PV) systems is central to the green energy transition, yet diffusion
60K35 depends on social influence and behavioral biases, as well as payback economics. This study develops a
91A16 parsimonious Markovian model in which households move sequentially from being unengaged (“Carbon")
60J27 to informed, to planning, and finally to adoption (“Green"). Transition rates are micro-founded by two
Keywords: mechanisms: (i) social contagion/communication, proxied by the current share of adopters, and (ii) economic

Green energy transition
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Ethics and mathematics
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profitability, proxied by payback time computed from a Net Present Value framework. Novel to this diffusion
setting, bounded rationality is introduced via hyperbolic discounting, creating a procrastination loop that
delays adoption even when PV is economically attractive in a long-run perspective. Calibrated on the Italian
residential PV diffusion path (2006-2020) and assessed in national and regional applications, the model
reproduces observed trajectories and enables forward-looking scenario analysis (2020-2026). Results show
that policies yielding similar payback improvements can produce different outcomes once present bias is
accounted for and that behaviorally informed intervention are stronger. The findings contribute a micro-to-
macro bridge between behavioral economics and technology diffusion modeling and imply that effective policy
portfolios (and PV business models) should complement incentives with commitment devices and social-norm
peer strategies to accelerate PV uptake and its spillover emissions benefits.

1. Introduction

towards an energy system based on renewable (IEA, 2019). It con-
tributes to meeting the climate change mitigation scenario in which

1.1. Motivation of the work and modeling framework

One of the top challenges of this century is reducing greenhouse
gas emissions and preventing dangerous interferences with the climate
system. In 2015, governments committed to drastically reducing their
emissions under the Paris Agreement but faced the challenge of turning
pledges into practical policies. Against the obstacles faced by several
carbon pricing policy proposals (e.g., Carattini et al. (2015)), some
jurisdictions turned to subsidies for renewable energy as an alternative
to “first-best” policies. In particular, generating electricity from solar
photovoltaic systems has played an essential role in the transition
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global temperature rise is kept within 1.5 degrees Celsius (IPCC, 2018).
Solar energy is being utilized worldwide, with over 126 countries
implementing strong policies and regulatory frameworks to promote
its growth (IEA, 2023). The increase in solar energy generation has
been remarkable, rising from just 31 terawatt-hours (TWh) in 2010
to over 1000 TWh in 2021 — a growth of more than 30 times in
just a decade (IRENA, 2017). Despite this impressive progress, it is
widely acknowledged that our current usage of solar energy is still
significantly below its vast potential, highlighting the urgent need for
targeted initiatives to enhance its adoption (Shakeel et al., 2023).
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Recent research has emerged from this awareness, with experts
systematically exploring the critical factors influencing the adoption of
solar photovoltaic systems at the household level (see, e.g., the two
very recent literature reviews (Alipour et al., 2021; Shakeel et al.,
2023)). Notably, while Italy is a significant player in solar energy
generation and installed capacity — alongside countries like France,
Germany, Greece, Spain, and the U.K. (e.g., Dusonchet and Telaretti
(2015)) - it has not been sufficiently examined in the existing literature
(e.g., Shakeel et al. (2023), Table 4, and Bianco et al. (2021)). For
instance, in Kriechbaum et al. (2018), authors analyze the photovoltaic
panels adoption in Germany and Spain. It is claimed that a hype and
subsequent phase of disappointment, both associated with a level of
expectation specific for the country, occurred. However, the perspec-
tive in the previous study is slightly different from what is proposed
in this work: Kriechbaum et al. (2018) focuses on the spreading of
collective expectations by analyzing newspapers attention, while in our
model it is assumed that the adoption decision is influenced by the
network communication of each person or family and the so-called
payback period of the investment. In particular, the choices made by
one individual influence the likelihood that others will make similar
choices, with a contagion effect. On the other hand, the imitation
phenomenon has been taken into account in, e.g., Dong et al. (2017)
and Guidolin and Mortarino (2010). The former study focuses on the
diffusion of the residential solar photovoltaic system in California by
employing a time-series forecasting model, a threshold heterogene-
ity diffusion model, a Bass diffusion model, and National Renewable
Energy Laboratory’s Solar model. The latter, instead, focuses on the
diffusion of solar photovoltaic systems in many countries, Italy being
one of them. However, it does not take into account the recent regional
data splitting, which allows our analysis to focus also on this aspect of
the diffusion dynamics. Moreover, its analysis concerns the installed
photovoltaic solar power, and not the number of installed systems;
while in our study, in order to focus on the residential sector, we focus
on the number of installed units. Anyway, the bounded-rationality of
agents is not taken into account; see below.

The fact that Italy has not been sufficiently examined in the existing
literature presents a compelling opportunity for further investigation,
particularly since Italy is an interesting case study: It is a large elec-
tricity market with optimal climate conditions and, more importantly,
has rapidly become one of the leading EU countries in terms of pho-
tovoltaic installed capacity, even starting from a point where solar
energy contribution was virtually nonexistent (see Fig. 1). In addition,
the aforementioned studies operate under the assumption of perfect
rationality among householders. However, it is known that the actual
decision-making behaviors of individuals or families often diverge from
the theoretically optimal behavior predicted by perfect rationality,
especially in the renewable energy sector (e.g., Li et al. (2025), Masini
and Menichetti (2013), Cao et al. (2023) and He et al. (2024)).

We reference several agent-based model studies in the electricity
sector that account for the bounded rationality of the involved agents
(see Barazza and Strachan (2020), Table 1): Kwakkel and Yiicel (2014),
Kraan et al. (2019), Chappin et al. (2017) and Kraan et al. (2018). How-
ever, these studies primarily focus on electricity generators (Kwakkel
and Yiicel, 2014; Chappin et al., 2017) or investors in existing and
new electricity sectors (Kraan et al., 2019, 2018), situated within two
interconnected electricity markets in typical European countries (Chap-
pin et al., 2017), the Netherlands (Kwakkel and Yiicel, 2014), and in
liberalized European markets (Kraan et al., 2019, 2018). Additionally,
the overwhelming majority of these papers are a-theoretical, meaning
that they lack a solid theoretical foundation for their research design;
they have predominantly relied on existing literature to develop frame-
works. Specifically, authors in Shakeel et al. (2023) have highlighted
a clear need to broaden prevailing cross-disciplinary approaches by
incorporating a wider variety of theoretical concepts to improve the
construction of empirical and conceptual studies.
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Based on the analyzed contributions, there appears to be a sig-
nificant opportunity to address the gap in understanding the Italian
context by proposing a grounded theory model that also considers the
impact of householders’ bounded rational behaviors on the adoption
of solar photovoltaic systems. In particular, we will focus on procrasti-
nation as a behavioral bias that complicates the promotion of energy
efficiency renovations. This bias has primarily been studied in the
fields of health and financial savings but has received only limited
attention in energy saving research (e.g., Lillemo (2014) and Lades
et al. (2021)). In this regards, we mention the very recent paper (Mo-
gensen and Thegersen, 2024), where authors conducted a survey of
609 Danish homeowners in the final stage of an energy efficiency reno-
vation decision-making processes, and through a comparative analysis
of adopters and non-adopters, they find that procrastination is a com-
mon reason for non-adoption. In detail, this paper aims to understand
how Italy’s public sphere has behaved on the theme of green energy
transition (GET, henceforth), where for the public sphere, we mean
individual people or families, which we call agents hereafter. Notably, the
term agents is used in many areas of research to exclusively indicate
individuals whose actions (also named controls) are the result of an
optimization process. On the contrary, in Flandoli et al. (2022), the
authors show that a Markovian-type framework where agents do not
make rational decisions based on optimization rules is more suitable
to describe the public sphere’s behavior on the GET, where people
occasionally question themselves about the GET problem; see also the
discussion below regarding the description of Figs. 1 and 2. In addition,
we mention the extensive literature on opinion dynamics in which the
evolution of opinions in society is modeled through Markov chains;
see, e.g., Galam and Moscovici (1991), Holley and Liggett (1975),
Lewenstein et al. (1992) and Sirbu et al. (2017).

In light of this discussion, we adopt a Markovian-type framework
in the present paper. However, no matter how promising this ap-
proach may appear, we are not pretending that it is sufficient “as
is” for chasing black swans, i.e., unpredictable events beyond what is
typically expected of a situation and have potentially severe conse-
quences. Instead, the models presented in Section 2 analyze events
whose broad dynamics are quite well understood. Furthermore, simula-
tions in Section 3 contribute to putting in evidence the role of some key
parameters. They can indicate how to devise external actions to obtain
a specific behavior of the society under consideration. Accounting for
black swan in a Markovian-type framework is beyond the scope of
the present paper, though an exciting venue for future research; a
promising starting point could be the very recent working paper (Lee
et al., 2024).

There is a growing acknowledgment in the literature and practice
that, despite energy technology being available, and in many cases
economically beneficial, other barriers prevent households’ widespread
adoption of new green technologies (see, e.g., Luthra et al. (2014)). In
particular, we focus our discussion mainly on the following two facts:
(1) the inclination of humans to mimic the behavior of other people;
(2) the natural inclination of humans to procrastinate. Among the GET
examples, we focus, as said, on the case of photovoltaic systems (PVs,
henceforth), the primary motivation being the availability of a relatively
significant sample of data; see Section 3.1. The present article provides
conceptual and empirical results to better understand agent behavior
in the solar photovoltaic market. In particular, the present paper aims
to answer the following research question: What are the factors playing
an essential role in the decision process for PVs?

Before turning to the presentation of our models, we display in Fig.
1 Italy’s renewable electricity production by sources over 2006-2020,
and in Fig. 2 the “Solar” time-series decomposed among the following
four categories: “Agriculture”, “Domestic”, “Services”, and “Industry”,
with the “Domestic” one being our main focus (see the discussion
above). Importantly, a subdivision into two periods, separated by 2012,
characterizes “Industry” and ‘“Domestic”. Both time series show a rela-
tively exponential solid increase in the period before 2012 and a weaker
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Fig. 1. Evolution of Italy’s renewable electricity production by sources: “So-
lar” (red line), “Hydro” (blue line), “Wind” (green line) over 2006-2020.
Data Source: Terna Spa (https://www.terna.it).
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Fig. 2. Evolution of Italy’s electricity production, source “Solar”, by cate-

gories: “Agriculture” (blue line), “Domestic” (black line), “Services” (red line),

“Industry” (green line) over 2006-2020.
Data Source: GSE (https://www.gse.it/dati-e-scenari/statistiche).

exponential increase in the period after 2012. In addition, “Industry”
has a solid increase, roughly linear, around 2011, essentially absent
in the “Domestic” time-series; in 2011, Italy proposed a much more
substantial Feed-in-Tariff subsides; see Appendix A for a description
of the evolution of Italy’s solar photovoltaic market. In Flandoli et al.
(2022), the authors show that a game theory model explains the linear
increase of 2011 observed for “Industry”. In contrast, a Markovian
model easily fits the exponential increase periods. However, it is not
natural to explain the solid linear increase of 2011, which, as said, is
not present in the “Domestic” time series. In other words, companies,
around 2011, underwent a game; indeed, 2011 came after some years
of moderate-size FiT subsidies. In 2011, Italy proposed a much more
substantial FiT subsidy. Companies acted as in a game, whereas single
people or families were not prepared; they reacted but not with the
game’s logic. This fact is mainly because the planning ability of com-
panies is superior to that of domestic ones. Whence, it is more natural
to use a Markovian model in explaining “Domestic” behavior.

Notice that the decision to adopt photovoltaic (PV) technology has
a long-term aspect to it, which entails upfront costs but ultimately pays
for itself over time through the generation of electricity with minimal
variable expenses, primarily linked to maintenance. We consider two
Markovian models; in particular, the second model is a refinement of
the first one. In both models, a variable X,i characterizes the state of
each agent i, i€ {1,..., N}, being N the number of agents. A value
of X! = C stands for “Carbon” and indicates that the individual has
not decided on the theme of GET yet. She/he can be either agnostic to
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such a theme or prone to change her/his mind. For instance, she/he
can be prone to mimicry, easily swayed by the behaviors of others in
her/his social group, and attentive to social power and hierarchy. A
value of X! = I stands for “Informed” and characterizes an agent that
is fully informed on the benefits of PVs or that has developed a certain
level of sensitivity to climate change and environmental issues.’ Finally,
X ; = G stands for “Green” and denotes the state of the individual that
has installed the PVs.

In the first model, we assume that each agent i can only pass from
the state “Carbon” to “Informed”, and from the state “Informed” to
“Green”; the precise mechanism under which the transition takes place
is described in Section 2. In the second model, more structure is added
to the transition from the state “Informed” to the state “Green”. This
additional structure hinges on the concept of procrastination, which
means postponing into the future something that, from a subjective
perspective, it would be rational to do earlier (Ainslie, 2010). More
precisely, we add the state PL to the variable X/ to capture such a be-
havior. The value X; = PL stands for “Planner” and the transition from
“Informed” to “Planner” captures the following behavior. In general,
not all individuals who have not adopted PV can be labeled as pro-
crastinators. Various rational factors might explain the delay, such as
financial constraints, difficulty in accessing credit, lack of information
about available options, housing circumstances, risk misperception, etc.
Those who overcome these barriers and develop a clear preference for
purchasing PV, i.e., have become “Informed” in our language, may still
find themselves in a procrastination loop due to the long-term nature
of the decision. As the time to make the purchase nears, the perception
of investment costs versus future energy benefits can fluctuate, leading
to a temporary reversal of preferences, typically followed by regret,
akin to what occurs in instances of procrastination in general. Once
the agent gets out of the procrastination loop, she/he passes from “In-
formed” to “Planner” and then, as before, from “Planner” to “Green”.
Again, the precise mechanism under which the transition occurs is
described in Section 2.

Finally, in both models, we assume, as predominantly done in
behavioral economics, that the final transition from “Informed” to
“Green” or from “Planner” to “Green” happens in response to a cost—
benefit ratio. We assume that each agent makes the final choice of
installing PVs based on benefits outweighing costs. More precisely, we
assume that our agents first become an homo sustinens agents (Graczyk,
2021), and then (necessarily) homo economicus agents before making
the transition to the state “Green”; see Table 3 in Graczyk (2021)
for a nice overview of these two types of agents. More precisely, our
agents are boundedly rational homo economicus agents; we will defer
the discussion on this topic to the end of Section 2. Admittedly, one
can construct a refinement of the second model in which some agents
can pass from “Informed” to “Green”, but we leave this extension for
future research (we will return to this point later). We also mention
two other possible refinements that we would like to consider in
the future. First, we want to include the possibility of the transition
from “Informed” to “Carbon” occurs. In other words, we desire to
include the mechanisms that cause an agent’s opinion to revert to the
initial one. Another significant point would be the explicit inclusion
of bureaucratic obstacles to installations, such as slow installation and
difficulty finding technical information.

1.2. Positioning in the existing literature

In his article, Gifford (2011) proposes a framework to describe why
humans are not taking action to prevent or ameliorate climate change.

1 Notice that, generally, having information or being environmentally mo-
tivated may either not coincide or be equivalent: An agent can be highly
informed but do nothing or know very little but be highly motivated. However,
we will leave the modeling of the previous situations for future research.


https://www.terna.it
https://www.gse.it/dati-e-scenari/statistiche

M. Leocata et al.

Energy inefficiency is a similarly complex and abstract problem to
climate change. In particular, Gifford postulates the following seven
“dragons” of inaction with regard to climate change: (1) “limited
cognition”, (2) “ideologies”, (3) “dis-credence”, (4) “perceived risk”,
(5) “sunk costs”, (6) “comparison with others”, (7) “limited behaviors”.
So far, different authors have tried to analyze or incorporate (some
of) these dragons into mathematical models through the lenses of
different approaches in order to fit PV data. Here, we mention the
following works, which do not represent, however, a comprehensive
list. (a) Survey-based analyses; see, e.g., Colasante et al. (2021), Fa-
giolo et al. (2007). (b) Finite element methods to account for spatial
heterogeneity; see, e.g., Karakaya (2016). (c) Variants of the popular
Bass’ model (Bass, 1969); see Da Silva et al. (2020) which state that
the diffusion of solar photovoltaic systems in Brazil is highly influenced
by the knowledge about such systems. (d) The agent-based simulation
approach of, e.g., Zhao et al. (2011), Palmer et al. (2015), and Orioli
and Di Gangi (2015). The agent-based approach offers a framework to
explicitly model the adoption decision process of the agent of a hetero-
geneous social system based on their individual preferences, behavioral
rules, and interaction/communication within a social network. In par-
ticular, in the previous works, it is assumed that each agent decides
to install a PVs at a certain time ¢ when his/her total utility at that
time is greater than a certain threshold, usually calibrated on data. For
instance, in the very nice work of Palmer et al. (2015), the total utility
equals the sum of four weighted partial utilities accounting respectively
for the payback period of the investment, the environmental benefit of
investing in a PV system, the household’s income, and the influence of
communication with other agents. Therefore, these utilities concur at
the same time to determine whether or not an agent adopts a PV system.

Our modeling framework can also be considered an agent-based
model, but, importantly, the name agent-based in our case is very close
to the term “interacting particle” commonly used in Physics, where the
particles are all equal and subject — more or less — to the same rules of
interaction among them and with the environment. However, here, the
particles are individual people or families, which have more complexity
than particles in Physics and have the possibility of making decisions.
The main difference with respect to the agent-based simulation ap-
proach described in the previous paragraph is because we assume
that the number of particles is huge, but the number of parameters is
relatively small since the interaction and decision rules are the same for
all particles (i.e., all agents). The parameters are directly linked to a few
general rules of interaction and decision and, importantly, our ambition
is not to use them for a fit but rather we would like to be able to
assign the value of the parameters a priori, based on socio-economical
knowledge. Admittedly, our model’s number of parameters is still not
small compared to models typically employed in time-series analysis,
but keeping in mind our ambition, it just represents the complex nature
of the problem.

On the contrary, in the agent-based simulation approach, the num-
ber of parameters is huge, roughly proportional to the number of
agents.” This is reminiscent of what is done in Physics, where one could
fit the available data with an empirical law (the opposite of what we do
in the present paper), but alternatively, one could also develop a theory
that understands the available data and allows for generalization and
prediction (our main aim in the present work). In particular, our pur-
pose is to understand the link between the “microscopic” dynamics of
interacting agents and the time series of PV adoption, which represents,
from our natural point of view, the cumulative result of a collective
behavior.

2 Notice that the number of Sinus-Milieus® categories in Appendix C that
for folklore can be described by our model are only five and indistinguishable
with respect to the rules of interaction among them and with the environment.
In Palmer et al. (2015), where an agent-based simulation is adopted, the
authors consider eight Sinus-Milieus® categories and a corresponding set of
parameters.
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Another difference between our approach and the agent-based sim-
ulation one is that it accommodates a sequential description of the
process that leads an agent to adopt a PV, thus explaining the human
psychology on the theme of GET. Notice that this sequential description
catches the actual behavior declared by adopters in response to surveys;
see, e.g., Kotilainen et al. (2017).

Finally, the present paper extends in a by far non-trivial way the
model proposed in Flandoli et al. (2022) by explicitly characterizing
the transition rate from one state to another. This allows us to discuss
some possible policy scenarios, such as a scenario in which we modify
investment costs, a scenario in which the government supports photo-
voltaics, a scenario in which a nudging strategy is implemented, and a
scenario in which social interaction is strengthened. In particular, our
numerical simulations contribute to put in evidence the role of some
key parameters. They can indicate how to devise external actions to
eventually obtain a specific behavior of the society under consideration.

1.3. Organization of the paper

In Section 2, we describe the two Markovian models for the GET.
Section 3 describes the model’s calibration, whereas the policy sce-
narios are discussed in Section 4. Section 5 discusses the ethical and
policy implications of the present article. Finally, Section 6 presents the
article’s conclusions. Appendix B describes how to compute the NPV,
whereas Appendix C present the so-called Sinus-Milieus® characteriza-
tion.

2. Markovian models for the green energy transition

This section details the two Markovian models we have briefly
described in the introduction. In Section 3, we will use only the second
model, but since the latter is a refinement of the first one, we find it
pedagogical to present both the models here.

In the first model, we consider a world in which N agents are
characterized by a state variable at time ¢, say X f, i€ {l,...,N}, which
can take one of the following three qualitative values: X ; e {C,I,G};
and by a vector of random weights, denoted by (w'_,w! ,w' ), that

ec’ "’soc’ irr
characterizes the individual in several aspects; w' ,w' ,w'  are ran-

dom variables distributed according to a trianguel;r él?;tril;rlrltion. For
simplicity, we also assume that these weights are independent. The
state C means that agent i is “Carbon”. This expression is (admit-
tedly) very vague. It indicates agents that can be ignorant, with a
lack of awareness and limited thinking about the problem of GET.
However, otherwise, they are prone to change their mind by gathering
information from different external resources. We here count on three
different resources: (I) We count on the neighbors, relatives, friends,
and co-workers to pass information via “word of mouth” to help spread
energy efficiency, interest, and advantages. (II) We count on advertising
and public education campaigns. (II) We count on a social utility,
representing the comfort given by the impact of the agent’s action on
society. The model assumes that once the agent has been acquainted
with (I), (I), and (III), she/he will make the transition from the state
“Carbon” to the state I, which stands for “Informed”. We assume that
the rate of transition, denoted by /lg"’ , depends on a quantity related
to (I), a quantity related to (II), and a quantity related to (III). The
former is given by a function of the fraction of “Greens” at time ¢. The
second one, if we consider a feedback development in communication,
is also a function of the fraction of “Greens” at time t. According to
the following reasoning, the latter is also a function of the fraction of
“Greens” at time t. If 269 s small, then the impact of the individual
i is almost irrelevant since she/he feels that her/his choice is not a
social phenomenon. On the other hand, the impact of the individual
increases with X6 since she/he feels that her/his choice is beneficial
for society. In conclusion, the dependence on these three factors can
be summarized as the dependence on the ratio N%(') and the number
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of green agents in agent i’s network. Assuming that the influence occur-
ring locally is somewhat representative of that occurring globally, we
conclude that the dependence on these three factors can be summarized
as the dependence on the ratio 6@ " This makes our model a mean-
field model. Formally, let S = {C,I,G} and X, = (X},...,XN) e sV
a generic configuration. We denote by w the fraction of “Greens”
at time ¢, where Ng (X)) := Zj’il ]l{XIj=G) is the number of “Greens” at
time ¢. The probability to pass from C to [ in a time interval 4r — 0 is
therefore defined in the following way:

: . . Ng(X,)
_ _ . ,CT G\t
Prob(X;, , = I|X,; = C) := 4y <w‘soc, N > - At
(@]
. Ng(X)) . Ngo(X))
C—1 A\ ¢&
where A5 <w‘soc, ~ ) =wg, - F <—N .

In the previous equation, w! . is a positive random variable taking
values in the unit interval and indicating how much the agent is
influenced by the three resources described above, the symbol “:="
means “defined as” and the function F : [0,1] — [0,1] is, e.g., the
identity function; see Section 3. At this point, the model assumes that a
barrier that prevents the agent from implementing the energy efficiency
project (i.e., installing the PVs) is costs/uncertainty about payback.
In particular, we assume that the probability of passing from I to
“Greens”, denoted by G, in a time interval 4t — 0 is defined in the
following way:

. . . Ng(X
Prob(X! , =G|X] = 1) :=/1§76<w' wi Ne! ’)>~At

t+4r T ec’ Wirr» N

) . Ng(X) ) . Ng(X,)
e Gt G
where }‘5\1 (wlec, w;rr’ N > = Wee  Uec <w;rr’ N ’

(2)

In the previous equation, w’,, denotes the importance that agent i gives

to the economic utility U,.; the latter depends upon wﬁrr which captures
Ng(X)

the bounded rationality of the agent and on , i.e., the fraction of
“Greens” at time 7. For the computation of the economic utility, we take
inspiration from Palmer et al. (2015). We define it in the following way
(the explicit dependence on w{rr and % will be detailed below):

U <w{ NG(X1)> _ _max(pp) = pp()) _ 21— pp(i)

e\ N max(pp) — min(pp) 20
where pp(i) is the so called payback period (or payback time) of a specific
PV system for agent i. The payback period is determined by the year in
which the Net Present Value (NPV, henceforth) of the PV system turns
from negative to positive. More in detail, the NPV at time ¢ is defined as:

3

R(s —1)

— t<7t<t+20, (4
1+ 85, nG0) ‘ @

NPV(t, ng(1), 1) = —leeon(t) + z

s=t+1

and it depends on the fraction of “Greens” at time ¢, ng(1) := %2 via
the discount factor gi(z, s, ng(t)). The discount factor is agent-specific,
and it is defined as:

gt 5.ng(0) 1= wh - (1= ng®) - (s —1). ®)

We now describe the quantities in Eq. (4) and discuss later the discount
factor in Eq. (5). Iy (#) are the investment costs. Instead, the cash flow
R(s) comprises five factors. The term Rg,.(s, CE) includes all earnings
that are generated by directly using the produced electricity instead of
buying it from or selling it to the grid operator. The terms Rg,(s, CE),
Rpdm(8)s Rytain(s Rpeprec(s) and Ryjme(s) indicate cash flows due to
governmental support, administrative fees, maintenance and upfront
costs, depreciation allowance payments, and the cash equivalent of the
time spent for the administrative consultancy.

R(5) = Rgaye(s, CE) + Rgoy(s, CE) = Rogm (s, CE) — Ryfain(s)

3 Henceforth, we will use interchangeably the two notations.
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- RDeprec(s) = Riime(s), 6)

where CE stands for Conto Energia (see Appendix B). Since the cash
flow computation is not our contribution, we confine its description in
Appendix B. Notice that the state G is absorbing, in the sense that an
agent may jump from the state I to the state G' but cannot jump back
from G to I, or C.

In the model we have just presented, once the agent is informed,
she/he evaluates the economic utility and passes from I to G with a
rate that is proportional to the latter. In the second model, we propose a
more detailed description of the procrastination loop in which an agent
may end up trapped due to the inter-temporal structure of the green
choice. Before proceeding, we observe that an individual qualifies as a
procrastinator for an action, say A, at time 7 if the following conditions
are given:

(1) at time ¢, the individual prefers to postpone A to a time 7 + T’
(ii) at time 7 — T, the individual prefers to perform A no later than
time 1;
(iii) at time ¢ + T, the individual regrets not having performed A
earlier.

In order to gain the previous mechanism, we propose to extend the
number of qualitative values that the variable X/ can assume. In this
second model, indeed, X,i € {C,I,PL,G}. The states {C, I, G} have the
same meaning as before. The state PL, instead, stands for “Planner”;
it indicates an agent that has acquired sufficient information on the
benefits of PVs, or has developed a certain level of sensitivity on climate
change and environmental issues, and plans to install the PVs by looking
at the “projected in the future” economic utility. This last concept is
new and we will clarify it in the next few lines. The introduction of the
new state “Planner” aims to capture the following behavior. In general,
it is not enough that an individual has developed a clear preference for
purchasing a PV system to pass from “Informed” to “Green” because
the value of initial investment costs, previously judged to be lower than
that of future energy benefits, suddenly becomes higher. Precisely, the
agent evaluates the latter and passes from I to PL in a time interval
At — 0 according to the following probability

Prob(X’

t+At ec’ irr’

. .. Ng(X
=PLIX! = 1) := 2P (w' wi T, G]f[ ’)>~Ar

R O Ng(X)
where ’15\/ PL <wgc, wérr, A GN d ) 7)
. o Ng(X)
_ proj G\t
=w,, - Uk (wgrr,T, N ) .

In the previous equation, UZ" is defined as in Eq. (3) in which the NPV
at time ¢ is given by:

et +T)
1+git,t+ T, ng ()

R(s—@+T-1))
Sy 1+8(t s, ng®)

®

Finally, the probability of passing from PL to G coincides with the
probability in Eq. (2), with I = PL. The Markovian dynamics described
above capture the procrastinator traits outlined in (i)-(iii). Let us say
an individual is in the “Informed” state at time ¢ — T. Based on the
probability defined in (7), the individual can either transition to the
“Planner” state or remain in the “Informed” state. If the first event
occurs, then she/he plans to install PV no later than time ¢ (condition
(ii)). At time ¢, we may observe either that the individual has switched
to the “Green” state or that she/he has remained a “Planner”. If the
latter case happens, it indicates that the individual has postponed the
action of installing PV. This is because, even though the expected future
economic benefit is favorable, the current evaluation of the economic
benefit is not (condition (i)). At this point, the following observations
are in order. Fig. 3 displays the economic utility in Eq. (3) as a function

NPV(t,t+ T, ng(1), 1) =
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Fig. 3. Pictorial representation of the economic utility in Eq. (3) as a function
of ns(t) := NoX) for a fixed ¢ for different discount factors g'(t,s,ng(1) as
defined in Eq. (5). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

of ng(t) = N0 for a fixed t when using four different discount factors.

Each discount factor can be thought to correspond to four different
types of agents. The economic utility in black corresponds to a NPV
in Eq. (4) where g'(t,s,ng(t)) is equal to zero. It does not depend, as
expected, on ng(7): this matches a discount factor of an agent that
does behave neither like a homo economicus nor like an agent that
is bounded rational. Indeed, agents that think and behave like homo
economicus would discount each addend in Eq. (4) by (1+r)'%, where r
is the interest rate; the economic utility for such agents is displayed in
blue. Again, the latter does not depend, as expected, on ng; (7). Instead,
agents that are bounded rational would discount each addend in Eq.
(4) by 1+ gi(t,s,ns(t)), where g(t, s,n;(t)) is defined as in Eq. (5). The
corresponding utility function is displayed in red. First, we observe that
this utility is increasing with respect to the ratio of green agents. This
represents the fact that when the number of green agents increases, the
social pressure is higher and the effect of the hyperbolic discount factor
is softened. Finally, notice that U2 <wlr T, Yo )> is higher that the

i NgX)
i G\t
(wirr’ N

T’

corresponding Uy, ) and that the reversal of preferences is

temporary since an “Informed” can become “Green”, as in all cases
of procrastination (see the qualification as a procrastinator defined in
(i) (ii) above). In conclusion, we highlight that increasing the value of
w! would decrease the economic utilities. Indeed, the higher w!_, the

irr irr’
bigger the misperception of such a utility function.

2.1. Mean field derivation of the individual based model

We conclude this section by deriving the so-called mean field limit
of our second model. As explained in Section 1.2, our system of agents
can be considered a system of interacting particles, where the particles
are all equal and subject — more or less — to the same rules of
interaction among them and with the environment. The mean field
is the general method that allows to summarize the behavior of the
particles in a few “macroscopic” laws and equations; most of the
numerical simulations are based on these macroscopic laws.

Let X, = xL...XxY) € S, with S now defined as
S := {C,I,PL,G}, be a generic configuration, wg,., Wi, and we,
be the weights defined above, and P,(S x R?), P,(S), and P,(R) be
the space of probability measures (on the corresponding spaces) that
are square integrable. We suppose that the weights are constant over
time once the simulation starts, but they are also sampled from a
distribution at time zero. In what follows, we will denote by capital
letters the corresponding random variables. At this point, we can define
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the following quantities:

N N
1 3 N._ 1
vV o= ¥ Z CEAL Py (SxRY)  uV = ¥ Z}‘S"i eP,(S)
i=1 i=
1 Al 1 al
N . N P
fsoc(dwsoc) A N ; 61,4);0C € PZ (R) fec (dwec) = N ; 6w’ec € P2 (R)
1 N
findwig) 1= = Y5, €Py(R)
i=1
1 < 1 N
C.N o— I.N e
n=t(X) ~—N§n(x‘ —c; €0, 1 n" N (X,) ~—ﬁ§1”{, -1 €0,1)
1 < 1 N
nENX) = D Lixicpr €O, 1) N X) = 5 Z‘H(X’EG’ €(0,1).

€©)

The goal is to find an expression for the evolution of n®N (X)), n’-N (X,),
nPLN(x,) and n%N(X,). Toward this aim, we make the following
assumption. We assume that the weights are independent from each
other and independent from X! for each fixed 7, i.e.:

VN (dx, dWwgoe, AWee, dWire) = uN (dx) - [N (dwgoe) - FR(dWee) - FR(dwiy).

Now, we consider an observable F : S - Rand X :=(X.,....,XM) e
S. The process X, = (X/, ..., XN) is a continuous-time Markov chain (of
cellular automaton type) with the following time-dependent infinitesi-
mal generator:

N
LFX) = Y Txice)AGT! (whye N (00) (F(XHCT) = FOX))
i=1

N
+ D Lo AP (whe, w ,n®N (X)) (F(XM=PE) - F(X))
i=1
N
PL-G G.N
)’N (wec’wu—r’ (X))

+ Lixizpr
i=1

x (F(XMPL=C) — F(X)).

At this point, we can use the previous expression to time-dependent
generators £,n"N(X), £,n"N(X), £,nPLN(X) and £,n%N(X), where
nN(Xx), nl-N(X), n?L-N(X) and n%N(X) are defined in Eq. (9); one
has to replace the observable F with n©N (X), n!-N(X), n?L-N(X) and
n%N (X), respectively. We compute explicitly £,n°-N (X) since the others
can be derived by using a similar argument.

n“N(X) = Z 1xi
i=1
N

+ 2 Uiy Ay (Wi, w0 n N (X))
i=1
;( (nCN (xHI=PLy _
N

PL-G G,N
+ Z Lixizprydy (wec’ wlrr n (X))
i=1

AC%I (w G’N(X)) (nC,N(Xi,CaI)_nC,N(X))

soc’

nEN (X))

x (nCN (XIPL=G) _ 4N (X))
N
1 -
= _N Zl 1{)(’ AC ! (wsoc’ GA'N(X))
i=

=- / Wsoe - nON(X)  fige(dwgoe) - ™€ (X)
R
= —EN [Weoe| - 1V C(X) - nVE(X),
where in the penultimate equality we use the rewriting of the term

in terms of the measure vV and the independence between the ran-
dom variables. In addition, the time-dependent infinitesimal generators
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£.nlN, £.nPLN and £,n9N are given by:
Lt N (X)) =EN [Wepe| - 1N (X) - 0N (X)
— BN [Wee] - ENTU Wigr, iV XD - 0N (X).
L£,nPEN (X)) =EN [Wee| - EN [U W, nSN (XD - "N (X)
- EN [Wee| - EN[UW,;p, nVC (X1 - nPEN (X,
LN (X) = BN [Wee] - EN [U Wi, N (X))] - N (X).
Finally, by using the It6-Dynkin Equation, the second It6-Dynkin Equa-
tion (see Kipnis and Landim (1998), Appendix A), and by taking the
limit for N — oo, we obtain the following final system of ordinary
differential equations:
LnC(X) = —E [Wyoe] - € (X) - n€(X)
7 X0 = E [Weoe] -nf (X) - nf(X)
~E [Wee] - B [UE® (Wi, 7,18 00) | ()
LnPL0) = E [Wee] - E [UR (Wi, T.n0)] -0 (0
~E [Wee| E [Uec (Wier- 1 (X)) 1 (X)

irrs '

LG (X) =E [Wee] - E [Uee (Wigr n8(X))] - nPL(X).

(10)

As said, we will use it in most of our numerical simulation. Before
proceeding, the following important remark on the weights is in order.
Remark 2.1. The dependence on the weights w’, and w . is lin-
ear in the transition rates, whereas the dependence on w}  is non-
linear. In addition, the distribution matters and it appears in the term
E [Uec (VVirn ";G(X))]

3. Numerical experiments

In this section, we first present the data we will use in our analysis;
see Section 3.1, and the model’s inputs, such as the cash flows in Eq. (6);
see Section 3.2. Then, we describe the choice of the number of agents
N employed in the simulations; see Section 3.3. Finally, Section 3.4
presents the model’s calibration, along with a thorough stability and
sensitivity analysis.

3.1. Data description

In our analysis, we examine the number of installed PV systems in
Italy from 2006 to 2020 using data from the GSE report (GSE, 2007-
2020). We focus on the proportion of homeowners who have adopted
PV systems during this period. We make the following considerations:
From 2010 to 2020, we have specific values for the “Domestic” time
series. For a detailed description of the four categories into which the
national data is divided, please refer to Section 1.1. In 2009, due to
a different categorization, we estimate that ‘“Domestic” corresponds
to a certain percentage of the total installed PV systems. For the
time period 2006-2008, we lack a specific percentage. However, given
that residential PVs account for a substantial portion, we consider the
total number of installed PV systems. These systems typically range
between 1 and 20 kW, which aligns with choices made by homeowners.
Additionally, we conduct an analysis of regional data. We specifically
focus on regions where the percentage of “Domestic” installations is
notably high: Liguria, Friuli Venezia Giulia, and Veneto. In Table 1, we
present the average percentage of “Domestic” installations relative to
the total power (Avg. %) from 2010-2020 for these regions.

3.2. Model’s inputs

Here, we describe our model inputs. First, we must compute the
cash-flows in Eq. (6). We start from the term I,.,,(¢) in Eq. (12); see
Appendix B. The authors in Mazzanti and Romito Zaccagnini (2012)
indicate the numerical values for the latter quantity. The index “Plant
Cost compared to Modules Cost” (for the crystalline silicon) can be
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Table 1

Avg. % of “Domestic” PVs installation with respect the power over the period
2010-2020.

Data Source: GSE (https://www.gse.it/dati-e-scenari/statistiche).

Region Avg. %2010-2020 PVs “Domestic”
Liguria 23,48
F. V. Giulia 23,29
Veneto 19,05
Table 2

Ratio between the number of inhabited buildings and the number or
families.
Data Source: https://dati-censimentopopolazione.istat.it/.

Region or country Ratio
Italy 0,73
Liguria 0,61
F. V. Giulia 0,88
Veneto 3,80

considered equal to a value between 1.5 and 1.9; the plant size is
3 kW. The previous computation gives a result comparable with the
“Turnkey PV system” (residential) average prices obtained from the
National Survey Report of PV Power Applications in Italy. The evo-
lution of the price per installed W of a PV system over the period
2007-2020 is displayed in Fig. 4. Second, we need to recover the value
for Epy(s) = Egyn - Pupp * (1 = Eaprasion)’ ™" ~!- Admittedly, we were not
able to find in Palmer et al. (2015) and references therein a value for
the coefficient of abrasion &y agion- Therefore, we propose to use the
following procedure. We define the value Epy(¢) as the average amount
of electricity generated by a household PV system located in Milano,
Pisa, and Palermo, respectively. (Data Source: https://re.jrc.ec.europa.
eu/pvg_tools/en/#api_5.1):

(1310.32 + 1397.34 + 1523.02)
3

where the 3 in front of the equation indicates that we are considering
PV system with a size of 3 kW. Then we assume that Epy(f) decreases
by 3% every year. With this datum we can then compute Rg,.(s, CE5)
by choosing ypc = 0.85, Pelecpuy = 0.18475 Euro/KWh, pejecgenl =
0.06056 Euro/kWh, Zejec buy = 0.04302, Tejecgen = 0.03211. As we are not
interested in an exact computation, we consider the electricity prices
constant in the simulation. However, we checked that our model can
still fit the data, with slightly different parameter values, if we consider
electricity yearly medium prices. As regards as, instead, Rgqy(s, CE)
it depends on the year at which the simulation starts because of the
difference in the values of the FiT (see Appendix B). At this point,
we need to specify the negative cash flows. As regards Rpgn (s, CE),
we follow Palmer et al. (2015) and we set it equal to 3kvl::]fl;gar for all
the CE. As regards Ry, We set its by choosing ayprone = 0.010 and
Opain = 0.013. Finally, Ri;pe(s) is set to the standard value of 200 Euro.

Epy(1) =3 kWh,

3.3. Fixing the number N of agents in the system

Agents in our system are representative individuals of a small
community, i.e., a family or an apartment building. As a consequence,
we initially set N to

N « max{#of inhabited buildings, #of families}. (11

In order to fix N, we then compute the ratio between the number of
inhabited buildings and the number of families (Data Source: https://
dati-censimentopopolazione.istat.it/). Table 2 reports the ratio for Italy
and the three considered regions. According to Eq. (11), if “Ratio” is
less than one, then N is set equal to the number of inhabited buildings.
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Fig. 4. Turnkey PV system price per installed W of a PV system over
2007-2020, residential buildings.
Data Source: National Survey Report of PV Power Applications in Italy.

Instead, if the “Ratio” is greater than one, then we fix N as the number
of families.

Importantly, as pointed out in the footnote?, the number of Sinus-
Milieus® categories that for folklore can be described by our model
are only five and indistinguishable with respect to the rules of in-
teraction among them and with the environment. In particular, these
socio-cultural categories include the population segment prone to the
installation of PVs. E.g., the so-called Tradizionali Conservatori Sinus-
Milieus® category seems less inclined to consider this type of innova-
tion; see Palmer et al. (2015). We multiply N by « = 0.55 to obtain
the final number of agents in the system. It is important to note that
the qualitative nature of the results remains robust regardless of this
choice.

3.4. Model’s calibration

The model’s calibration is based on the indirect calibration approach
commonly used in agent-based simulation. This involves running sev-
eral simulations and comparing the results with empirical data to find
the best model parameters. To evaluate the model’s accuracy, the time
series is divided into three equal parts. The first two-thirds is used to
calibrate the model, and the remaining one-third is used to test the
model’s accuracy.

In principle, we should calibrate the model concerning three
weights: wee, W, and wy,, the time horizon for the “projected in
the future” economic utility (see Section 2) T, and the three initial
conditions for the system of ordinary differential equations in Eq. (10);
we have a total of eight parameters. However, to alleviate a possible
over-fitting problem, we calibrate the model only with respect to the
three weights. Instead, we deduce n;(0) from real data, fix a priori 7,
n;(0) and np(0), and derive n-(0) from a structural constraint. Table
3 summarizes what we have just said. To validate our procedure, we
discuss in Section 3.5 the stability of the model fitting with respect to
the fixed parameters.

We now describe the choice of np(0), n;(0), ng(0), n-(0), and T.
The initial number of “Greens” agents, n;(0), coincides with the num-
ber of PV adopters in 2007. As regards the initial number of “In-
formed” agents n;(0) and “Planner” agents np(0), it is reasonable to
set them as being proportional to the initial number of “Greens” and
“Procrastinator”, respectively, i.e.,

np(0) = kpng(0), and n;(0) = k;np(0),

with kp and k; greater than one; we set kp = k; = 10. Instead, the
initial number of “Informed” is set by using the following structural
constraint

nc(0) + np(0) + np(0) + ng(0) = 1.
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Finally, we set T = 5. As said, the weights we., wy,. and wj, are
calibrated via the indirect calibration approach by using as loss function
the mean square error. Precisely, the resulting values for the weights
Wees Wy determine the average of a triangular distribution with sup-
port over [0, 1]; notice that one of the most common distributions
adopted in this type of literature is the triangular one. In principle, we
can also consider time-varying weights and draw a different realization
of the weights at each time step. However, since we will consider a
“sufficiently” large number of agents in our numerical experiments,
random weights w! ,w. will be replaced by their average; see the
system in Eq. (10). The same simplification cannot be applied for the
weight w;rr because it appears hidden in a non-linear function.

Alternatively, an interesting methodology is the one proposed in
Zhao et al. (2011) for the diffusion of PV systems in the Nether-
lands. They identify four factors ((a) Advertising; (b) Neighborhood; (c)
household income; (d) payback period of a PV system) and related to
some aspects ((1) The contribution to a better natural environment; (2)
The grant on offer; (3) The central organization of the request for a
grant; (4) Independence from electricity supplier; (5) Discussion with
other owners convinced me to adopt; (6) The buying of PV systems
by neighbors/acquaintances; (7) The technical support offered by the
municipality. To the latter, they assigned a score between 1 and 5 as
in Jager (2006). Then, the resulting triangular distribution’s support is
[1,5], and the mean is obtained from the average of the score of the
pair factors-aspects. Although very interesting, we will leave this type
of approach for further research.

Table 4 reports the optimal value of the weights wg., W, and wj;
we also report the calibrated weights in Fig. 5 for a nicer represen-
tation. At this point, we simulate both the agent-based system and
its mean field limit equation to show that the latter is actually an
approximation of the former. More precisely, in the agent-based system
case, we update the configurations on a monthly basis, and we display
the sample mean; the computation of E [Ug, (Wi, n(X))] is performed
with 10 000 samples. Instead, the simulation of the mean field equation
is performed with a time-step of 0.01. In both cases, the cash flow R
(see Eq. (6)) is taken to be constant for the entire year. Fig. 6 shows
the results of the simulation of the total number of adopters over the
number of buildings in the chosen regions (top three sub-figures) and
in Italy (bottom figure). The period fit range, i.e., the first two-thirds of
the data, is displayed in the shade of blue. The diagrams illustrate the
actual PV market data and the simulation of our model, which displays
a very good fit for the actual number of adopters.

The following observation regarding Fig. 6 is in order. There are
three distinct phases. At the initial formation phase, high costs (see Fig.
4) and uncertainty result in slow and erratic growth. This formative
phase ends with a “take-off”, which kicks the growth phase, in which
growth accelerates due to positive feedback in economic profitability,
technology learning and governmental support via the different phases
of the CE. After achieving its maximum level, growth begins to slow
mainly because of the elimination of the incentives. Notice that we
do not interpret, as in Cherp et al. (2021), this phase as a saturation
phase. In particular, the growth phase after the initial formation period
is captured mainly by the variation in the economic utility: indeed,
in that period, the N curve mirrors the one of the payback period,
for which we report a typical pattern over 2007-2020 in Fig. 7. For
comparison, we also report the payback period for an homo economicus
agent who discounts the NPV via (1+r)'~!, with r being the interest rate.
Notice that over 2013-2014, the payback period decreased, although
the governmental incentives decreased. This is due to the fall in price
per installed kW of a PV system (see Fig. 4). Also, notice that with
the introduction of the CE5 the payback period is less volatile. This
observation suggests that the social influence between agents plays a
crucial role in the diffusion of the PV system in the third phase. From
the calibration, we have that w,. is at least an order of magnitude
greater than wg,.. This is in line with the results found in Palmer et al.
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Table 3
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The table reports the parameters of the model that should be calibrated with the relative
description in column Description. Column Comment indicates whether the parameter is calibrated,
fixed a priory, deduced from real data or from a structural constraint.

Parameter Description Comment

Wee Expectation of the random variable W,,, E [W,]| Calibrated

Wyoe Expectation of the random variable W,,., E [W,,]| Calibrated

Wier Expectation of the random variable W, E [W,,] Calibrated

T Time horizon “projected in the future” utility Fixed

ny(0) Initial condition of the “Informed” population Fixed

np(0) Initial condition of the “Procastinators” population Fixed

ng(0) Initial condition of the “Green” population Real Data
ne(0) Initial condition of the “Carbon” population Derived from a

structural constraint.

Table 4
Optimal value for the fitted weights w,. and w,,. obtained by calibrating the
model on the 2/3 of times series of Italy and of the three different regions.

Wee Wsoc Wiy
Italy 0.11 0.0076 0.06
Veneto 0.15 0.0175 0.15
Friuli 0.09 0.001 0.015
Liguria 0.06 0.001 0.015

02+ —

Ttaly Veneto Friuli

Liguria

Fig. 5. Influence of the weights w,., w, and w;, obtained by calibrating the
model on the 2/3 of times series of Italy and of the three different regions.

(2015), where the influence of the communication network is negligible
during the first two phases described above. Nonetheless, we point out
that the weights coefficients should not be directly compared to each
other because of the different formulations in their partial utilities, and
their value should be interpreted as their relative importance in the
adoption decision process.

3.5. Stability analysis

This subsection discusses the robustness, with respect to the param-
eters k;,kp and T, of the results reported in the previous Section 3.4.
Because we do not study the convexity properties of the likelihood of
our model, we point out that there may be other combinations for the
values of k;, kp and T that lead to similar, or even better, fitting results.
We will report the stability analysis’ results for the Italian photovoltaic
market; the results for the single regions are available from the authors
upon request. Fig. 8 summarizes the results. In its top panel, we vary
k; € [9.5,14], and we keep fixed the values of kp and 7. In the
middle panel of Fig. 8, we vary kp € [9.5,14], and we keep fixed the
values of k; and T. Finally, in the bottom panel, we vary k; € [3,7].

Overall, the results are satisfactory; however, we should notice that this
procedure appears to be more stable when calibration is conducted over
a somewhat larger portion of the time series than the one shown in Fig.
6. Numerically, we verify that it is more stable when applied to 7/10 of
the time series rather than 2/3. We now make the following important
observations. First, we observe that the values of the weights, although
different in values, maintain the same relations, i.e., wgy. < Wiy < Wee-
Second, we observe that by increasing the initial number of “Planner”
and “Informed”, i.e., by increasing the values kp and k;, we obtain,
quite naturally, lower values for w,. and wj,.. Indeed, by increasing & p
and k;, we are increasing the segment of the population that is close to
making the transition. Finally, we observe that by increasing the value
of T, we obtain higher optimal values for wj,. This result is consistent
with the model’s expectations. In fact, as T increases, the projected
economic utility would rise, thereby expanding the pool of individuals
close to making the transition. With a fixed wj,,, this would result in an
unexpected increase in the number of subjects making the transition,
making it impossible to achieve a proper fit. More precisely, both T
and wj, are parameters linked to the motivational barriers and are
positively correlated; the further into the future an individual projects
the event, the more irrational they are.

3.6. Sensitivity analysis

This section aims to explore the model’s sensitivity to the parameter
used to do the calibration. The results of the sensitivity analysis is
summarized by Fig. 9, which displays the sensitivity concerning the
weights (description in items (I), (II), and (III) below). Sensitivity
analysis is performed by holding constant the values of the calibrated
parameters in the national data adaptation, see the first line of Table 4
and varying the parameter whose sensitivity is analyzed. In particular:

(I The weight of the payback period w,. has, due to the linear
formulation of its partial utility, a stronger impact on the diffusion
process than that of the other weights. Indeed, our agents in
passing from ‘“Planner” to “Green” are homo economicus agents,
which means that if w,., ~ 0, then no transition occurs; see
Section 2. We argue that this causality is not captured by models
in which the transition occurs by evaluating a utility function
expressed as the sum of weighted partial utilities accounting for
different factors (e.g., the environmental benefit of investing in a
PV system or the influence of communication with other agents).
Indeed, in these models, the transition could happen even if it is
not economically convenient.

(ID) The weight wy,. plays a very different role than the payback
period weight. From Fig. 9, Middle Panel, we observe that higher
is the value of wg,. and closer is our model to a logistic one.
On the other hand, if wy,. =~ 0, then there is no transition; see
the green line in the corresponding figure. More precisely, the
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Fig. 6. Calibration of the installed PV capacity, 2007-2020 for Liguria, Friuli
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Source: Own illustration, based on calibration results. The blue line (resp.
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transition I - PL — G happens at a much faster rate than the
transition C — I, and, in practice, the Markovian model comes
down to a model with states {C, PL,G}. Because the transition
C — PL is not more allowed, no further transition is observed.
Said differently, the state I is not renovated rapidly enough.
The parameter w;,, influences, by construction, only the economic
utility. In particular, when w;, is one-sixth of the calibrated
value, our agents are neither homo economicus nor bounded ratio-
nal (see the discussion at the end of Section 2, where the same
effect is obtained by setting N;(X;) = N), and they perceive
a higher economic utility, thus obtaining a similar effect to an
increase of w,,; see item (I). On the other hand, an increase of wj,,
reflects that our agents may end up trapped in a procrastination
loop due to the inter-temporal structure of the green choice.
Therefore, the cumulative (normalized) number of adopters is still
growing but slowing down.

(1)

4. Scenario analysis

We test five different simulation scenarios to consider the sensitivity
and validity of the proposed model. The first is a Baseline scenario
where we use the set of parameters resulting from the calibration (see
Section 3). Then, we consider a scenario with different PV invest-
ment costs (Scenario I), a policy-driven scenario with governmental
PV support (Scenario II), a scenario in which a nudging strategy is
implemented (Scenario III), and finally, a scenario in which social
interaction is strengthened (Scenario IV). As said, all five scenarios
build on the parametrization obtained from the calibration in Section 3.

Before examining the results, we will explain the rationale behind
the design of the just-mentioned scenarios. Scenario I and Scenario II
correspond to Scenario II and Scenario III analyzed in Palmer et al.
(2015), respectively. As in their work, they are justified by the ob-
servation that, during the calibration period, the weight associated
with economic utility primarily influenced the decision to adopt photo-
voltaic technology (see Fig. 5). There are, however, two key differences
with respect to the previous study. First, the calibration period: their
calibration period is 2006-2011; so in particular, their parameters are
calibrated in a period of moderate-size Feed-in-Tariff subside policy
(before 2011) and substantial Feed-in-Tariff subside (around 2011); see
Appendix A. Second, they do not consider the impact of the bounded
rational behaviors of home owners on the adoption of solar photo-
voltaic systems. In Section 4.3, we will see that, as in Palmer et al.
(2015), both governmental incentives and the evolution of the price of
the photovoltaic system have a significant influence on the adoption
process. However, in our case, Scenario II will obtain a smaller tech-
nology adoption with respect to Scenario I, which is consistent with the
fact that after 2012 the firm subsidy policy was weaker than the one
before 2012. Interestingly, such a discrepancy can be justified in terms
of hyperbolic discounting. Moreover, in Palmer et al. (2015) authors
do not focus their scenario analysis on the lock-in of environmental
behaviors through the following two distinct mechanism: through in-
dividual decision making and through social structure. Our modeling
framework, instead, allow to test wether governments can use nudges
to encourage homeowners to adopt PV. Our ultimate goal is to study
the impact of both intertemporal nudges and social contagion policies
on PV diffusion, so that they can be taken into account by policymakers
when defining energy policy portfolios that lead to rapid decarboniza-
tion. This requires analyzing the effects of intertemporal nudges and
social contagion not only in absolute terms, but also relative to the
effects of traditional climate policies based on prices and incentives.
We have therefore developed a four-scenario analysis as the best-fit
analytical approach to help policymakers identify the most effective
mix of energy policies. Precisely, Scenario III is a self-interested type
of nudge. Scenario IV, instead, calls on prosocial, community-oriented
motives rather than on self-interest. In Section 4.4, we will use a
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framing that induces the individuals who want to install the PVs to
agree on the installation at a certain date and to start paying for it at a
specific date in the future. We will see that this self-interested type of
nudge increase the pressure to act. In addition, we will see in Scenario
IV that an increase in wg,.* help increase adoption. These findings
are important as they provide governments with a concrete additional
tools which leverage psychological insights to motivate homeowners to
adopt PV. In this regard, we mention the following studies. The recent
work of Neumann et al. (2023), where authors conduct a preregistered
field experiment involving 600 homeowners in Switzerland, testing
whether two types of personalized behavioral interventions, one based
on prosocial motives and one focusing on self-interest, lead to tangible

4 An increase in wy,, can be obtained, for instance, by sending to homeown-
ers a personalized letter activating social norms regarding one’s community by
demonstrating how many of one’s neighbors have already installed PV.
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actions towards PV adoption. The work of Zhang et al. (2022), where
authors set the following two different scenarios: (1) Network structure;
(2) subsidy strategy, to investigate factors of interest on residential PV
diffusion in Singapore. Finally, the work of Masini and Frankl (2003),
where authors focuses on the situation of southern Europe in the
early 2000s, in two specific market segments: (i) building-integrated
systems for bulk electricity production in small and remote islands
provided with a local electricity grid; (ii) building-integrated systems
for domestic grid support. This work takes into account indicators such
as the PV shipments, the expected evolution of PV module cost, the
expected date when PV will become competitive and the net avoided
carbon emissions. The conclusions of the study are that the adop-
tion of policies such as inter-temporal nudging and the strengthening
of communication networks can contribute significantly to reducing
emissions and consequently market inefficiencies. This is important
because these policies have much lower implementation costs than
traditional policy instruments such as taxes and subsidies. Our findings
are similar to Masini and Frankl (2003), in the sense that nudging and
the facilitation of communication between agents seems to be equally
or more effective than the action on the economical benefits.

In addition, we remind that our Markovian-type framework cannot
model unpredictable events beyond what is typically expected of a
situation and have potentially severe consequences, i.e., black swans.
For this reason, we have not considered incentive schemes for installing
PVs starting in 2023, and calibrated the model until 2020; indeed,
during this year, the Italian economy is still on the path to recovery
from the COVID-19 pandemic and is affected by the armed conflict
in Ukraine. Likewise, the five scenarios must be contextualized to a
standard economic environment.

For the reader’s convenience, we grouped the figures related to the
scenario analysis at the end of the present section, in Section 4.6, in
the order that they will be mentioned in the main text. Besides, we
will report the scenario analyses’ results for the Italian photovoltaic
market; the results for the single regions are available from the authors
upon request. Finally, all scenarios were realized by simulating the
mean-field approximation; see Eq. (10).

4.1. Baseline scenario

The Baseline scenario considers no further development of the Ital-
ian PV market throughout the simulation period ex-post the calibration
(i.e., 2020-2026) and serves as a comparison with the other scenarios.
In accordance, the payback period remains constant and equals its 2020
value; see Fig. 10, Top Panel. Understanding the Baseline scenario can
help us understand the decision-making process for the type of agents
described in our model. The number of adopters will increase by 50%
from 2020 to 2025. As explained in Section 3, the influence of the
network, social utility, and communication, in general, is significant
in what we have denominated the “third phase”, in which the growth
begins to slow mainly because of the elimination of the incentives.
Therefore, in the Baseline scenario, the observed exponential increase
in the third phase is primarily due to the communication network; see
Fig. 10, Bottom Panel.

4.2. Scenario I

The first scenario simulates two alternatives for the development
of PV system prices. The two alternatives are based on an optimistic
and a pessimistic outlook regarding future PV market development
from the consumers’ perspective. We obtain the “high” PV system price
alternative by increasing the PV system prices by 50%. On the other
hand, we get the “low” one by decreasing the PV system prices by
50%. Again, our model lacks realism over 2020-2023, so we will not
compare numerical simulations with actual data. Fig. 11 collects the
results. There is a clear difference relative to the Baseline scenario.
A reduction in the investment costs leads to an increase in the total
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number of adopters of 17% ca w.r.t the reference case at the end of
the simulation period. In contrast, an increase in the investment cost
slows the deployment process by 9% ca w.r.t. the Baseline scenario.
This result is not surprising since the economic profitability of the in-
vestment is one of the most influential criteria in the adoption decision;
the criteria enables the transition from “Planner” to “Green”. As a
result, an increase (resp. a decrease) in the investment costs leads to a
reduction (resp. an increase) in the payback period, in this case of two
years; see Fig. 11, Top Panel. Another parameter that most influences
the investment’s economic profitability is the governmental support
scheme, which characterizes Scenario II in the following subsection.

Remark 4.1. We observe that introducing a carbon tax will produce
an effect similar to that induced by the increase in initial invest-
ment. The introduction of a carbon tax would imply an increase in
both prices p.chases Pseirs @nd thus Ry,,.. This fact would make in-
stalling photovoltaics even more profitable and increase the number
of adopters.

4.3. Scenario II

In this scenario, we implement a governmental incentive scheme.
Again, we use the Baseline scenario as a reference for comparison.
Changes to the support scheme occur from 2020 onward and produce
the same effect on the payback period as halving prices; see Fig. 12.
More precisely, we maintain the same 2020 tax deductions, and we
add a bonus equal to Epy X 0.315, where the quantity Epy is defined
in Appendix B. The numerical result again shows a difference from the
baseline scenario. Compared to the latter, we observe an increase of
10% in the number of PV installations at the end of the simulation
period. One observation is in order. Although Scenario I and Scenario
II produce a similar change in the payback period, the former leads
to a slighter higher number of adopters than Scenario II; see Fig. 12,
Bottom Panel. The hyperbolic discounting explains this discrepancy; see
Fig. 12, Middle Panel. The hyperbolic discounting of future utility can be
seen as a temporary weakening of individual rationality induced by the
approaching possibility of gains in the present. Hyperbolic discounting
differs from exponential discounting of future utility, reflecting rational
motives, such as considering the opportunity cost of capital (Ainslie,
2012; Ang, 2012; Batini et al., 2021). When looking at future choices,
most people apply an exponential discount rate, which remains con-
stant over time. For example, subject A might prefer to cash in EUR
1000 in 2030 rather than wait and cash in EUR 1100 in 2035, but A
might agree to postpone the cash-in if they got EUR 1200 in 2035. In
other words, the opportunity cost of tying up a capital of EUR 1000
is for A between EUR 100 and 200. A applies a discount rate to the
gain only for the time position the gain occupies. Economic theory
postulates that if A prefers EUR 1200 in 2030 to EUR 1000 in 2035,
they must also prefer EUR 1200 in 2045 to EUR 1000 in 2040. And
for most people, this is indeed the case. However, things change when
the choices are not about future investments for even more future
earnings but about present investments for future earnings. When the
possibility to cash in the present approaches, the individual tends to
apply a higher discount rate of future utility than they would apply for
future investment choices with the same time distance to earnings. For
example, A might be induced to prefer EUR 1000 today rather than EUR
1200 in 5 years, even though when faced with a choice between future
investments for future earnings, they find it rational to wait five years
for a 20% gain on EUR 1000. The reasons for this temporary preference
for smaller gains in the present are to be found in simple and irrational
temporal myopia (Ang, 2012).

4.4. Scenario III

The third scenario involves implementing a policy to nudge people
to transition to solar PV installation by acting on their psyche; we
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will refer to this policy as nudging. Installing PVs is an inter-temporal
choice, and the distance between the time of the investment and the
time of future earnings is one of the triggers of the procrastination
phenomena. Therefore, in the present scenario, we induce a distance
reduction between the time of investment and that of future earnings
by proposing to the individuals who want to install the PVs to agree on
the installation at a certain date and to start paying for it at a specific
date in the future.

We implement the nudging policy in the following way. We assume
that starting from the year 2020, agents pass from PL to G in a time
interval Ar — 0 according to the following probability:

NG(X,)>

Prob(X’

— i
t+4t — GlXt -

irr’

PL) 1= w, - UM <w" ~

where the NPV in economic utility Ue"é‘dg is renewed by shifting the
initial cost of the investment into the future time ¢ + T*, i.e., the NPV
becomes:

T

_ lecon(t)
1+ gi(t,t + T*, ng(1))

R(s—1)

NPV(t, ng(1), 7) = T e

s=t+1
The transition from the state I to the state PL is modified accordingly,
through the evaluation of
~ Tecon +T)
1+ gi(t,t + T +T*,ng(1))
R(s—(t+T —1))
1+gi(t,s,n6(0)

NPV(t,1 + T, ng(1), 7) =

-3

s=t+T

Fig. 13 displays the results when a nudging policy with 7% = 1.5
years is implemented. The results indicate clear differences relative to
the Baseline scenario. Nudging leads to an increment of 24.33% in
the total number of adopters w.r.t the Baseline scenario at the end
of the simulation period. Interestingly, while nudging does not affect
the payback period of a homo economicus agent (Fig. 13, Top Panel),
it has an effect on agents’ payback period that is characterized by
bounded rationality because of the presence of the hyperbolic discount
(Fig. 13, Middle Panel). In particular, by postponing the start of the
investment, we mitigate the irrational behavior of the agent linked to
procrastination.

4.5. Scenario IV

In this last scenario, we propose strengthening the agent’s commu-
nication network by acting on the value of the weight wg,.. Fig. 14
shows the results if we consider a value of wy,. ten times greater than
the calibrated value wg,, = 0.01. We observe an increase of 93% in
the number of PV by the end of 2026. Moreover, the type of growth
makes this scenario different from those previously proposed. Indeed,
the increase is exponential in this case, whereas the growth was linear
in previous cases. This latter fact can be explained by observing the
role of wy,, in the so-called mean-field approximation of the model; see
Egs. (10). In particular, the density of the “Green” n increases with the
density of “Informed” agents n;, whose density increases, modulated by
Wgoe With ng itself. This fact means that ng; increases exponentially with
a rate proportional to wg,.. The high sensitivity of the model on the
parameter w;,. can be explained by making the following observation.
An analogy can be drawn between epidemiological models and opinion
diffusion models. This type of parallelism is quite common; see, for
example, the review of Pastor-Satorras et al. (2015). The parameter
W, plays a role similar to that of the contagion parameter (known
as f in the classic SIR model). Both parameters (w,. and f) represent
exponential growth rates; the higher their values, the more rapid and
pronounced the exponential growth. In any case, the growth observed
in this scenario may be slightly overestimated. This fact could be
explained by modeling assumptions. As we have pointed out several
times, agents interact in a mean-field way, which might have triggered
an overestimation of the effect of social interaction. A more realistic
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Source: Own illustration.

way to describe the interaction between individuals is to consider a
network-like structure; we propose exploring this in future work.

4.6. Scenario analysis: Figures

See Figs. 10-14.

5. Ethical and policy implications

This section discusses ethical and policy implications that can be
inferred from our model.

Before exploring the latter in depth, we would like to outline our
theoretical contributions. In this paper, we introduce a robust grounded
theory and a Markovian agent-based model tailored for boundedly
rational homo-economicus agents. These agents engage in comparable
interactions both amongst themselves and with their environment,
governed by shared decision-making rules. Our model stands out for its
simplicity, characterized by a limited set of parameters. A pivotal aspect
of our approach is its capacity to provide a sequential narrative that
elucidates the process by which an agent embraces pro-environmental
behavior (PV). This framework not only deepens our understanding
of the psychological dynamics surrounding the theme of the green
energy transition (GET) but also aligns closely with the actual behaviors
reported by adopters in survey responses, as evidenced in Kotilainen
et al. (2017). By bridging theory with observed behaviors, we reinforce
the validity of our model and its implications for understanding and
promoting sustainable choices. In particular, we focus on two aspects.
First, the mathematical framework proposed in Section 2 helps to
strengthen the empirical evidence that the intertemporal decisions that
are crucial for environmental protection are significantly influenced
by cognitive biases such as hyperbolic discounting of individual future
utility. This has implications for how governments should think about
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climate policy portfolios. Second, the results in Section 3 provide empir-
ical evidence that individual consumption choices should be evaluated
not only in terms of the emissions they reduce comparatively, but
also in terms of the social impacts they have. This may lead to a
reformulation of how the problem of causal inefficiency is posed in
individual climate ethics.

The classical policy approach to climate change relies mainly on
economic rationality. The basic assumption is that individuals emit be-
cause it is convenient for them to do so, in terms of cost, time, comfort,
etc. In order for them to emit less, the government must therefore give
them rational incentives to choose “green” consumption, i.e. based on
renewable energy and resources, over “brown” consumption, i.e. based
on fossil fuels (e.g., Baranzini et al. (2017), Blanchard et al. (2023) and
Sterner et al. (2024)). Public subsidies are an example of a positive
incentive, as they aim to reduce the cost of green consumption for
individuals. They are essential where the research and development of
certain green technologies is not yet sufficiently profitable to attract
sufficient private capital. Carbon pricing, on the other hand, is an
example of a negative incentive. It aims to increase the cost of brown
consumption in a more or less linear way in order to achieve a socially
efficient allocation of the costs of climate change mitigation.

This study provides empirical support for the claim that the rational
incentives approach to climate policy is at least incomplete. Policy
makers should not only be concerned with the relative costs of brown
vs. green consumption faced by individuals. They must also address
all those motivational barriers that prevent the individual agent from
making the green choice, even if that choice is economically rational in
a diachronic perspective (Andreou, 2007; Pirni, 2023). In other words,
there may be cases where the classical instruments of climate policy,
such as subsidies and taxes, are not sufficient to induce individual
agents to switch from brown to green; agents may also need to be
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Fig. 12. Italy, Scenario II. Top Panel: payback time of a PV system. Middle
Panel: payback time discounted with the hyperbolic discount. Bottom Panel:
number of installed PV system.

Source: Own illustration.

provided with the means to overcome the “impatience of the present”,
which often leads them to postpone choosing what is economically
rational in the medium-term future (Ainslie, 2010). One such means
is intertemporal nudging, i.e. the temporal separation between making
a green choice and actually paying for it (see, e.g., Elster (2000) and
Maltais (2015)). Indeed, if the hyperbolic discounting of the future
utility of a green choice is associated with the approaching cost of
the choice, policymakers could allow agents to commit to the choice
at a time before the time at which the cost is borne. In addition
to subsidizing green energy and increasing the cost of fossil energy,
policymakers could encourage firms to allow consumers to commit to
buying green products, as in the case of the PV systems analyzed here,
at a point in time prior to the actual purchase (Corvino, 2021). Further
research is needed on how much time should elapse between the time
of commitment and the time of purchase.
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The article highlights that motivational aspects are both an obstacle
that should not be overlooked, but also an opportunity for policymak-
ers, as nudging is usually associated with little or no cost (Lepenies
and Malecka, 2019). This fact is quantified in Scenarios II and III
in Section 4. In particular, in Scenario II, we show how, given two
economic policies with equal economic benefits, the motivational/ir-
rational aspects lead an agent to choose one over the other and thus
indicate which policy would be more effective. In Scenario III, on the
other hand, we quantify the effectiveness of a policy based on nudging
and show that it could be as effective as a policy based on incentives
or price reductions.

The study also provides empirical insights relevant to individual
climate ethics. Those who take a consequentialist view hold that the
decision to consume green or brown must be made on the basis of
the sum of the consequences, both negative and positive, that the
choice generates in the world — rather than, for example, on the basis
of the motivations for the choice, or the virtues that the individual
may cultivate through the choice, etc. (see, e.g., Garvey (2011) and
Jamieson (2007)). The main obstacle to justifying a duty to consume
green from a consequentialist perspective is the problem of causal
inefficacy. The latter consists in the fact that if the individual agent
goes green with a single act of consumption, e.g. buying a PV system,
this will have no or imperceptible effect on the mathematics of global
warming: with or without the additional PV system, global temperature
projections would be the same (e.g., Kingston and Sinnott-Armstrong
(2018) and Fragniére (2016)). Individuals, therefore, when choosing
what to consume, should limit themselves to choosing what is best for
them. Rather than changing individual consumption patterns, climate
change obligations will consist of promoting change at the political
level (e.g., Maclean (2019) and Sardo (2020)).

The causal inefficacy argument is based on the assumption that the
choice between green and brown consumption is mainly an economic
decision made by individuals in isolation from other people’s decisions.
The study shows that this assumption is not as robust as it is usually
made out to be. In fact, the results help to show that individual
consumer choices matter not only for the GHG emissions that the agent
reduces by making the green choice, but also for the effect that the
individual green choice has on the likelihood that other individuals
will make similar choices (Frank, 2021). The results in Section 3, in
particular Scenario IV, help to bring out this more complex picture and
contribute to changing the way in which individual mitigation duties
should be formulated.

Individual behavior has social spill-over effects that go far beyond
the individual abatement potential. In fact, the individual who makes
the green choice contributes more to climate change mitigation, not
only through the GHG emissions avoided, but also through the social
signal it sends. It could even be argued that, in some cases, com-
municating a green choice may have a greater climate impact than
actually making it. Indeed, communicating the green choice can help
to overcome various barriers on the part of those who have not yet
switched from fossil to green energy, e.g. barriers related to technical
knowledge or economic viability, or it can even trigger social pressure
mechanisms that are naturally reinforced as the number of actors who
have made the green choice increases. Accordingly, individuals need
to signal that they have made the green choice in as many ways
as possible. There are, of course, many different ways of doing this,
ranging from traditional word-of-mouth, to interaction via the internet
and social networks, to simple display.

Furthermore, the attempt of providing an effective communication
related to the green choice might inaugurate a twofold positive effect,
from the point of view of the nudging theory. On the one hand, it can
become a kind of self-rewarding - and therefore further motivating —
action: the relevant result just achieved could motivate the single agent
in pursuing other “behavioral shifts” in favor of other “green choice”
(e.g.: a different selection in food purchase, or a more efficient different
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ways for management using of water consumption in the domestic
domain). On the other hand, an effective communication of that choice
might “nudge” other people, or could function as an exemplary model
for other subjects that might replicate the same choice.

6. Conclusions

The present paper aims to analyze the diffusion of residential PV
systems in Italy from 2006 to 2026. Our approach involves a Markovian
agent-based model that takes into account the influence of network
communication and the payback period of the investment on adop-
tion decisions. The agents in our model are bounded rational homo
economicus agents and share similar interactions with each other and
the environment, as well as decision rules characterized by a small
number of parameters. This simplification allows us to summarize agent
behavior using macroscopic laws and equations through a mean field
approach. We found that it was relatively easy to calibrate the model
by adjusting the weights of the innovation-decision process. By altering
key parameters, we evaluated the projected diffusion via a scenario
analysis. Our comprehensive study led to the discussion of two societal
implications: firstly, cognitive biases, such as hyperbolic discounting
of future utility, significantly impact green choices over time; and
secondly, individual green choices influence the likelihood that others
will make similar choices and reduce greenhouse gas emissions.

Of course, the model is built on simplifications and assumptions and
may not capture unforeseen events. However, its ability to match the
actual diffusion of residential PV systems in Italy over the considered
period is promising. Additionally, the proposed framework’s applicabil-
ity to other countries and, with minor adjustments, to other renewable
energy technologies, suggests potential for future implementations with
an improved set of underlying parameters.
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Appendix A. The development of the PVs in Italy

This section provides an overview of the various measures intro-
duced by the Italian government to promote the adoption of pho-
tovoltaic (PV) systems from 2005 to the present. These measures,
collectively known as “Conto Energia” (CE), offer fixed-term con-
tracts with favorable conditions for PV systems connected to the grid
with a minimum peak power of 1 kW. Local electricity providers
are obligated by law to purchase the electricity generated by these
PV systems. The initial CE commenced in 2005 and was structured
as a net metering plan (“scambio sul posto”) tailored to small PV
systems. This plan aimed to encourage the direct consumption of self-
generated electricity. In addition to payments for each unit of electricity
produced, consumers received supplementary incentives for utilizing
the self-generated energy directly. Subsequent iterations, such as CE2,
were open to all PV systems but were primarily designed for larger
installations with limited or no direct self-consumption of electricity.
Under these later versions, the electricity produced was sold to the local
energy supplier, and the CE guaranteed an additional Feed-in Tariff
(FiT). It is worth noting that with each new version of the CE, the
FiT decreased from 0.36 €/kWh in 2006 to 0.20 €/kWh in 2012. The
implementation of CE4 in 2011 introduced financial rewards for direct
energy consumption, while CE5 offered incentives based on the energy
supplied to the grid along with a premium rate for self-consumption.

Following the conclusion of the fifth CE program, the FiT and
premium schemes were discontinued, and a tax credit program was
introduced in 2013. This was followed by the reintroduction of a new
incentive decree for photovoltaic systems (RES1) in 2019, which was
explicitly reserved for systems with a capacity of more than 20 kW
but not exceeding 1 MW. Subsidies were provided based on the net
electricity produced and fed into the grid, with the unit incentive
varying according to the plant size.

In May 2020, the Italian government enacted the “Revival Decree”
(Decree Law 34/2020), which introduced a further increase of 110% in
tax deductions. The extent of the tax deduction depended on whether
the installation was associated with energy-saving measures. Moreover,
the decree allowed for the free transfer of surplus energy to the grid and
included provisions for subsidized tax deductions and implementing
battery energy storage systems.

Additionally, the Ministerial Decree of September 16, 2020, in-
troduced an incentive measure, offering incentives for collective self-
consumption configurations and renewable energy communities. These
incentives, amounting to 100 €/MWh and 110 €/MWh, respectively,
are valid for 20 years and are subject to certain limitations.

Appendix B. Computation of the economic cost and of the cash
flows

In this section, we describe the computation of the investment
cost and the cash flows. This computation is based on Palmer et al.
(2015), except for the computation of the investment costs I..,,. In-
deed, in Palmer et al. (2015), the authors compute the investment
costs by using a very precise formula involving the maximum peak
power of the PV system, the available rooftop area for PV modules, the
efficiency of the solar cells, the PV system efficiency, and the irradiation
at standard conditions. Because in the present work we are trying to
explain the general public’s behavior on the GET, we have judged the
previous procedure too refined, and follow the ones in Krumm et al.
(2022), where they provide a formula that enables the calculation of the
cost of a given PV plant, on condition that the per-unit power module
cost and the plant size are known. More precisely:

Tecon(t) =Modules Cost[Euro/Wp]
x Plant Size[Wp] x Index “Plant Cost compared to
Modules Cost”.

12)
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The numerical values for the previous quantities are provided in the
cited reference.

We now turn to the computation of the cash flow, and we start from
the Rg,ye(s, CE). Palmer et al. (2015) provide an explicit expression for
Rgave(s, CE) in the case of the CE 5:

Rsave(s, CES) = Epy(s) - [;(DC * Pelec,buy * a1+ Telec.buy)x_t_1
+(1 - IDC) * Pelec,sell I+ Telec,sell)s_t_l] , t<s<T.

where Epy(s) is the produced amount of electricity, ypc the share of
direct electricity consumption and pejecpyy (T€SP. Pelecsenn) 1S the price
of electricity bought (sold). The amount of electricity Epy generated
by the system is a function of the level of irradiation (Eg,,), of the
installed nominal maximum peak power (Pypp), and of the predicted
PV module abrasion (éaprasion):

—i-1
Epy(s) = Egyn - Pupp * (1 = Earasion)’ ™ -

Besides energy savings, an additional positive cash flow is generated
by governmental support (Rg,y(t, CE)), which is based on the FiT (Feed
in Tariff) given by the CE. The amount of the support is calculated as
the sum of three components: a basic payment for the production of
electricity (FiTp,,q(CE)), an incentive for direct PV electricity consump-
tion (FiTpc(CE)), and, if applicable, additional bonuses (FiTg,,(CE))
that accrue in special circumstances. The cash flows associated with
governmental support are then expressed as follows:

Rgov(s, CE) = Epy(s) - (FiTp,oq(CE) + FiTpc(CE) + FiTg,,(CE)) 13)

For instance in the CE 5 the governmental support is 200 Euro/kW and
then decreases by either 15% every six months, 5% every six months
and 25% every six months. When there is no incompatibility with the
benefits from the CEs, we add the additional benefits from the Net
Metering scheme. After the end of the CEs, we consider the tax credit
program, which consists of ten tax refunds, one for every year, of the
size of a percentage of the initial investment, as done in Peralta et al.
(2022). We do not consider additional bonuses due to more invasive
house renovations, as we suppose only a fraction of adopters could
benefit from those bonuses.

As in Palmer et al. (2015), we assume that the adoption of a PV
system also entails a series of negative cash flows. Administrative fees
(Raqm(CE)) have to be paid to the provider of the electricity grid and
depend on the specific CE considered. For example, for CE 5 we have
that:

Euro

R CE)=3——r.
Adm(CE) kW year

Maintenance costs (Ryain(f)) must also be considered. Upfront costs
(e.g., the consultation of a PV expert/ adviser) are paid in the first
year of the investment, while maintenance costs occur yearly. Both
expenditures are estimated to be a fraction of the initial investment
costs (as done in Palmer et al. (2015)):

(aupfront + Ovain) * lecon I 5=t

Rtain(s) = (14)

Main * Lecon otherwise.

Finally, the cash flow includes depreciation allowance payments of the
PV system (Rpeprec(s))- The depreciation allowance amounts to a fixed
outflow taking place at the end of every year for 20 years, at which
point the remaining value of the fixed asset at the end of its useful
lifetime is zero.

Appendix C. Description of the Italian Sinus-Milieus® categories
adopted in the present paper

The Table 5 report the description of the Sinus-Milieus® categories
used in the present study. The source is Appendix A.1, Table 11,
in Palmer et al. (2015).
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Detailed description of the Italian Sinus-Milieus® categories adopted in the

present paper.

Sinus-Milieus®

Borghesia Illuminata (enlightened middle class)

Characteristics
Type of household
Age

Education

Work

Income

Share of population

Highest lifestyle, society’s elite, econ. thinking
Couples, sometimes with children

Older than 45 years

Highest education

Businessmen, qualified employees and executives
Highest income

5.7 million inhabitants (10% of population)

Sinus-Milieus®

Progressisti Tolleranti (intellectuals)

Characteristics
Type of household
Age

Education

Work

Income

Share of population

Critical intellectuals, socially ambitious
Couples, sometimes with children

40-60 year

High and highest education

Freelance, executive employees

Freelance, executive employees

5.7 million inhabitants (10% of population)

Sinus-Milieus®

Edonisti Ribelli (experimentalists)

Characteristics
Type of household
Age

Education

Work

Income

Share of population

Modern and creative, open to new ideas
Small families and singles

Younger than 35 years

Higher education

Freelancer, executive employees

Average income

4.1 million inhabitants (7% of population)

Sinus-Milieus®

Italia Media Ambiziosa (modern mainstream)

Characteristics
Type of household
Age

Education

Work

Income

Share of population

Modern mainstream, living the social norms
Small families and singles

All age classes

Average education

Employees, craftsman

Average income

9.7 million inhabitants (17% of population)

Sinus-Milieus®

Neo Achievers (modern performers)

Characteristics
Type of household
Age

Education

Work

Income

Share of population

Performance oriented, seeking individual fulfillment
Singles, mostly male

Younger than 35 years

High education

Freelance, specialized employees

Average to high income

6.4 million inhabitants (11% of population)

Data availability

Data will be made available on request.
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