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Abstract

Chapter 1 analyses a two-period model of information selling where a risk-neutral seller offers

binary signals of varying precision to a risk-neutral buyer. The seller cannot observe signal

realisations, creating information asymmetry affecting pricing strategies. We demonstrate that

only high-precision signals are offered in equilibrium, as they generate superior information rent

whilst enabling natural market segmentation. The buyer reveals private information through their

purchasing behaviour, enabling full rent extraction despite information asymmetry. Our analysis

reveals that expanding signal menus does not enhance seller profits, and optimal mechanism

design converges to perfect signals. These findings challenge conventional wisdom regarding

product variety, demonstrating that quality concentration dominates menu diversification in

information markets.

Chapter 2 extends the dynamic information selling framework by introducing seller risk aversion.

Whilst buyer behaviour remains unchanged, seller risk aversion fundamentally transforms optimal

pricing strategies by creating tension between profit maximisation and revenue smoothing.

Risk-averse sellers may abandon high-type only strategies in favour of conservative pricing

that guarantees universal participation and predictable revenue. Our analysis identifies threshold

levels of risk aversion at which optimal strategies shift, depending on signal quality and prior

beliefs. Unlike risk-neutral sellers who prefer perfect signals, risk-averse sellers deliberately

choose lower-quality signals to increase trading probability. These findings demonstrate that

risk factors significantly influence information market design with implications for real-world

providers.

Chapter 3 examines whether deliberative mechanisms enhance collective decision-making

when committee members possess opposed preferences regarding outcomes. Using cheap

talk communication and majority voting, we analyse three equilibrium configurations and

their efficiency properties. The analysis reveals that deliberative mechanisms improve

upon decision-making based solely on prior beliefs only under restrictive conditions: signal

informativeness must exceed the prior and the likelihood of recruiting well-intentioned agents

must be sufficiently high. When either condition fails, principals achieve superior outcomes by

foregoing deliberation entirely. These findings suggest that deliberation proves counterproductive

rather than beneficial in most realistic environments with significant preference conflicts.
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Chapter 1

Dynamic Sale of Information

1.1 Introduction

A decision maker often seeks external information to improve the likelihood of making a correct

decision, particularly when uncertain about the true state of the world, which determines the

ex post payoff. In many cases, information may be acquired sequentially if doing so increases

expected value. However, external information is typically costly, with sellers setting prices and

offering signals of varying quality. This paper investigates the pricing strategies of an information

seller who seeks to maximise expected profit. Four central questions are addressed: How should

the seller design a price menu for different levels of information quality to capture as much

information rent as possible? Can the seller extract full information rent and achieve the first-best

outcome? Will a broader menu with more signal types increase expected profit? If the seller can

determine the information structure, what is the optimal design?

Consider the following example. An investor must choose between taking a long or short position

on a firm. The choice depends on the investor belief about the future performance of the firm.

The investor may consult an industry expert who provides costly advice in the form of signals of

varying precision. Suppose the expert offers two exogenous signals: one high precision and one

lower precision. Further, suppose the investor can purchase a second signal after observing the

first. In this context, how should a profit-maximising expert price signals dynamically over two

periods? Can full information rent be extracted? Will adding more signal types improve profit? If

the expert chooses signal precision, what structure maximises expected profit?

The model, introduced in Section 1.3, features a two-period setting with binary signals differing in

precision. Section 1.4 characterises equilibrium strategies using the Perfect Bayesian Equilibrium

concept. The analysis shows that only the high-precision signal is used in equilibrium, as it yields

the highest information rent. The seller sets prices to induce the buyer to acquire high-type signals

in both periods.



CHAPTER 1: DYNAMIC SALE OF INFORMATION 9

The intuition is as follows. In the second period, high-type signals generate strictly greater

information rent than low-type signals, independent of the first-period realisation. Thus, low-type

signals are not purchased in the second period. In the first period, if a high-type signal confirms

the prior belief, the buyer does not purchase a second signal, as the posterior becomes extreme.

If the realisation contradicts the prior, information rent is created, which the seller can extract

fully by setting prices that bind the participation constraint. In contrast, low-type signals give the

buyer (weakly) more reason to purchase a second signal, but the seller cannot observe the first

realisation and thus cannot extract rent effectively. Moreover, low-type signals generate less rent

in the first period. Hence, offering them reduces expected profit. In equilibrium, the seller offers

only high-precision signals, thereby removing information asymmetry and achieving the first-best

outcome.

As shown by Coase (1972), commitment devices may help overcome time inconsistency. However,

in this model, commitment does not raise the seller expected payoff, for two reasons: (i)

information asymmetry arises only in the final period, eliminating self-competition across time;

and (ii) signals are not durable, so buyers are not constrained to a single purchase.

Two corollaries follow, discussed in Section 1.5.2 and Section 1.5.3. First, increasing the number

of signal types does not raise expected profit. If an equilibrium involves multiple signals, say

(q∗1 , q∗2), the outcome would be unchanged if only these two signals were available. Thus, only

the highest-precision signal is purchased. Second, under symmetric binary signals, the optimal

design is to offer only perfect signals (i.e., precision equal to one). Any less precise signal can be

replaced by a more precise one that yields a higher expected payoff, leading to the original signal

being abandoned. The seller therefore maximises profit by offering only perfect signals.

The paper proceeds as follows. Section 1.2 reviews the relevant literature on information selling

and mechanism design. Section 1.3 presents the model framework with binary signals and

establishes the game structure. Section 1.4 characterises equilibrium strategies using Perfect

Bayesian Equilibrium, demonstrating that only high-precision signals are used in equilibrium.

Section 1.5 examines first-best outcomes, commitment mechanisms, and optimal information

design. Section 1.6 concludes with policy implications and directions for future research.

9
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1.2 Literature Review

The paper closely aligns with literature regarding selling information, particularly under

conditions of uncertainty about a payoff-relevant state and heterogeneous buyer beliefs. Some

key contributions in this field are listed as follows. Hörner and Skrzypacz (2016) analyse an

information provider’s private type and derive a gradual persuasion rule. Additionally, Esö

and Szentes (2007) examine how a seller controls the release of payoff-relevant information

when contracting on the actions of decision maker. Hörner and Skrzypacz (2016) primarily

examine information sellers with private preferences and identify a gradual persuasion rule as

the optimal strategy for disclosing private information. Bergemann and Bonatti (2015) explore

the sale of cookies for online advertising. Zhong (2018) assumes an information provider with a

binary private signal selling statistical experiment and characterises the profit-maximising menu,

consisting of a continuum of experiments. Daskalakis et al. (2016) explore joint designs for selling

physical goods and private information, showing that such designs resemble optimal multi-item

mechanisms. Malenko and Malenko (2019) analyse information sales to voters, characterising

when such sales lead to more informative voting outcomes. Bergemann et al. (2018) investigate

information sales under budget constraints, restricting mechanism design to menus of statistical

experiments.

The most closely related work is Bergemann et al. (2014), which examines the optimal design

of menus consisting of Blackwell experiments, each comprising a set of binary signals. The

subgame that begins at the start of the second period in this paper can be regarded as a special

case of the one-period model in Bergemann et al. (2014). In both settings, the seller cannot

directly observe the interim belief of the buyer at that stage. However, the nature of the interim

belief creates a key distinction. Bergemann et al. (2014) allow for fully flexible interim beliefs,

whereas in this model the interim belief space contains only two possible elements, by the

nature of assumptions. This restriction effectively nullifies the incentive compatibility constraints.

Intuitively, separating equilibria do not arise in this paper because the seller can always improve

their payoff by employing a pooling pricing strategy. This paper also differs in two structural

aspects. First, the information asymmetry here arises from the inability of the seller to observe

the signal realisation at the end of the first period. However, in some cases, the buyer unbiasedly

reveals information to the seller through their signal acquisition behaviour. In contrast, Bergemann

et al. (2014) assume that the buyer holds private information about the true state, which the seller

10
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cannot observe. Second, this paper considers a dynamic two-period model, whereas Bergemann

et al. (2014) analyse a static one-period setting. The dynamic structure gives the seller greater

flexibility in extracting surplus, as it becomes possible to extract second-period surplus in advance

without violating the participation constraint of the buyer. Whilst Bergemann et al. (2014) show

that the optimal solution involves offering two signals, one of which must perfectly reveal the

true state, this paper shows that only a single perfect signal is ever offered under any equilibrium.

Che and Mierendorff (2019) study a decision maker who allocates limited attention dynamically

over different news sources that are biased towards alternative actions, showing that the decision

maker adopts a learning strategy biased towards the current belief when the belief is extreme

and against that belief when it is moderate. Whilst they examine the demand side of information

acquisition with attention constraints, our work examines the supply side with information sellers

optimally pricing different signal qualities.

The paper also contributes to the literature on dynamic information acquisition. Zhong (2022)

analyses a dynamic model in which a decision maker acquires information about payoffs with

flow costs, showing that the optimal policy involves signals arriving according to a Poisson

process. Whilst Zhong (2022) focuses on the buyer in continuous time, this paper studies the

pricing problem of the seller in a discrete two-period setting with unobservable signal realisations.

Doval and Skreta (2022) develop tools for dynamic mechanism design where only short-term

mechanisms can be committed to, making information acquisition part of the design. This paper

is related through its focus on commitment limitations in a dynamic environment, though the

emphasis here is on information asymmetry from unobservable realisations. Liang et al. (2022)

show that optimal dynamic information acquisition from multiple correlated sources becomes

myopic after finitely many periods. This paper complements that result by examining the seller’s

side and showing that optimal pricing strategies also follow a myopic pattern, selecting only

high-precision signals for the purpose of extracting information rent.

Note that this paper contributes to the literature which differs from some classic studies, including

Admati and Pfleiderer (1990) pioneered the explicit consideration of information sales, examining

how monopolists reveal noisy signals to traders in financial markets. On the other hand, this

paper also differs from mechanism design studying fully general space of contracts (e.g., Nöldeke

and Samuelson, 2018).

11
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1.3 Model

This section presents a dynamic model of information acquisition involving two players: a decision

maker, henceforth the buyer, and an expert, henceforth the seller. The interaction unfolds over

two discrete periods. The objective is to determine how the seller can price signals of varying

types to maximise expected profit. This pricing is constrained by the behaviour of the buyer,

whose decisions depend on how beliefs evolve over time. In particular, the seller must satisfy two

constraints: a participation constraint, ensuring that the buyer finds it optimal to acquire a signal,

and an incentive compatibility constraint, ensuring that the buyer prefers the intended signal over

any alternative.

The model assumes a binary state of the world, denoted θ ∈ {0, 1} ≡ Θ, which determines the

ex-post payoff of the buyer. At the outset, the buyer holds a prior belief that the state is θ = 0,

referred to as the status quo, with probability π ∈
(

1
2 , 1

)
. At the end of period t = 2, the buyer

selects an action y ∈ {0, 1} with the aim of matching the true state. The payoff from the action is

given by:

uy
B(θ, y) = 1y=θ .

Before making a decision on y, the buyer may acquire an informative binary signal

qt ∈ {qH , qL} ≡ Q at the beginning of each period t ∈ {1, 2}. Signals are independently drawn

across periods and provide noisy information about the state. Each signal realisation is denoted

st ∈ {0, 1} ≡ S, and the buyer chooses from two signal types that differ in informativeness: a

high-type signal qH and a low-type signal qL, where 1 > qH > qL > 1
2 . Given a signal of type

qt ∈ Q, the likelihood of receiving an accurate signal realisation is:

P(st = θ | θ) = qt, P(st ̸= θ | θ) = 1 − qt.

Alternatively, the buyer may also choose not to acquire any signal in any given period, which is

denoted qt = ∅. Let Q ≡ {qH , qL} denote the set of informative signals and Q0 ≡ Q ∪ {∅} the

full choice set. Likewise, let S0 ≡ S ∪ {∅} denote the full set of signal realisation.

The seller determines signal pricing by posting a price menu in each period. Let Pt(·) denote the

pricing function in period t ∈ {1, 2}. In period 1, the seller posts a function P1 : Q0 → R+, which

12
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assigns a non-negative price to each potential signal choice q1 ∈ Q0. In period 2, the seller posts a

function P2 : Q0 × Q0 → R+, mapping the first-period signal q1 and the second-period choice

q2 to a non-negative price. It is assumed that P1(∅) = P2(q1, ∅) = 0 for all q1 ∈ Q0, so that no

payment is required when no signal is acquired.

The game proceeds as follows. At the beginning of period t = 1, the seller posts a price menu,

P1 : Q0 → R+, with P1(∅) = 0. Upon observing this menu, the buyer selects a signal q1 ∈ Q0. If

an informative signal q1 ∈ Q is chosen, the buyer pays P1(q1) and observes a signal realisation

s1 ∈ {0, 1}. The buyer then updates their belief using Bayes’ rule:

µ1(q1, s1) ≡ P(θ = 0 | q1, s1).

If no signal is acquired, (i.e. q1 = ∅), the belief remains at the prior π, and the realisation is defined

as s1 = ∅.

The seller observes the choice of the the buyer, q1, but crucially not the realisation s1, and posts

a second-period price menu, P2 : Q0 × Q0 → R+, with P2(q1, ∅) = 0. The buyer then chooses

a second signal q2 ∈ Q0. If an informative signal is chosen, they pay P2(q1, q2) and observe a

second realisation s2 ∈ {0, 1}. The buyer subsequently forms a final posterior belief:

µ2 ((q1, q2), (s1, s2)) ≡ P (θ = 0 | q1, q2, s1, s2) .

Finally, the buyer chooses an action y ∈ {0, 1}, and payoffs are realised. The ex-post payoff to the

seller, denoted uS, is the sum of payments received across both periods:

uS(q1, q2) = P1(q1) + P2(q1, q2).

The ex-post payoff to the buyer, denoted uB, equals the outcome payoff from the final decision

minus the total cost of information:

uB(θ, y, q1, q2) = uy
B(θ, y)−P1(q1)−P2(q1, q2).

Both players are risk neutral and apply no discounting. Beliefs are updated according to Bayes’

rule throughout the game.

This model highlights a fundamental tension in dynamic information markets. On the one

13
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hand, a high-type signal enables the buyer to make better-informed decisions. On the other

hand, acquiring information is costly, and the marginal value of future signals depends on how

prior beliefs evolve. The seller’s challenge lies in designing a pricing mechanism that extracts

surplus without observing the buyer’s private signal realisations. This creates a trade-off between

front-loading prices and preserving incentives for future trade.

For intuition, consider an investor deciding whether to buy or short-sell a stock. The investor

begins with a prior belief and may consult an analyst who offers either a brief opinion (a low-type

signal) or a detailed report (a high-type signal). If the initial signal contradicts the prior, the

investor may seek further confirmation. The analyst must decide whether to charge a high price

up front or offer information cheaply to increase the likelihood of future purchases. This captures

the dynamic trade-offs that the model aims to formalise.

1.4 Equilibrium Characterisation

This section formally defines and characterises equilibrium strategies and outcomes. We adopt

the equilibrium concept of Perfect Bayesian Equilibrium (PBE), focusing on equilibria in pure

strategies. A strategy profile satisfies PBE if it meets three conditions. First, sequential rationality

requires each player to choose strategies that maximise expected payoff given their beliefs and

the observed history at each decision point. Second, belief consistency ensures that beliefs are

updated using Bayes’ rule wherever applicable, so that expectations about unobserved actions are

rational. Third, subgame perfection requires strategies to constitute a Nash equilibrium in every

subgame, thereby eliminating non-credible threats.

The strategy sets follow from the structure of the game, with each player facing distinct decision

problems at different information sets. A key difference arises in how the buyer and the seller

respond to risk. The strategy of the buyer remains unchanged from the risk-neutral case, since their

preferences and decision rules depend only on posterior beliefs and pricing menus. In contrast, the

strategy of the seller must account for risk aversion, which shifts the trade-off between expected

revenue and its variability across periods and states.

The strategy of the buyer consists of three components: a first-period signal choice function,

Q1 : R2
+ → Q0, which maps the observed menu prices to a signal type; a second-period signal

choice function, Q2 : Q0 × S0 × R2
+ → Q0, which maps the observed menu prices in the second

period, the first-period signal choice q1, and its realisation s1 ∈ S0, to a signal type; a final action

14
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rule, Y : (Q0)2 × (S0)2 → {0, 1}, which determines the decision based on all acquired information.

The strategy of the seller consists of two pricing functions. The first-period pricing function,

P1 : Q0 → R+, maps each signal type to a non-negative price. The second-period pricing function,

P2 : Q0 × Q0 → R+, maps the first-period signal choice of the buyer and each second-period

signal type to a non-negative price. Risk aversion fundamentally alters this pricing problem, as the

seller must now weigh the higher expected profits from aggressive strategies against the revenue

volatility inherent in approaches that concentrate profits in specific market scenarios.

Remark 1.1 (Full Surplus Extraction Benchmark). Before proceeding with the general equilibrium

analysis, we establish a crucial benchmark that guides interpretation of our results. When the seller

is restricted to offering only high-precision signals qH , full surplus extraction becomes achievable

through strategic dynamic pricing. The mechanism exploits the binary nature of information

revelation. Given prior π > 1
2 , buyers receiving confirming signal realisation s1 = 0 have their

beliefs confirmed and pushed toward certainty so that they require no additional information.

Conversely, buyers receiving signal realisation s1 = 1 face contradicted beliefs, with posterior

belief falling closer to 1
2 , creating uncertainty and valuable demand for clarification. This stark

separation perfectly reveals their first-period realisation through observable returning behaviour.

The seller leverages this revelation by extracting full information rent from returning buyers

in period t = 2, whilst those with s1 = 0 exit after the first period. Crucially, anticipating

complete extraction from future returns, the seller can offer first-period signals at minimal

prices, even potentially free, ensuring participation whilst capturing all surplus through the

dynamic mechanism. The total extraction equals the theoretical maximum: the complete value of

information given the prior and signal precision.

Bridge to Main Analysis The full extraction benchmark raises a provocative question: might

damaged goods paradoxically enhance profitability by sustaining dynamic demand? The logic

appears compelling. High-type signals create an all-or-nothing revelation, as buyers receiving

s1 = 0 achieve sufficient certainty and exit, forgoing second-period purchases entirely. By

contrast, lower-type signals preserve valuable uncertainty even after confirming realisations.

When qL < qH , buyers observing confirming realisation s1 = 0 maintain sufficient doubt to

warrant additional information acquisition, potentially unlocking revenue streams that high-type

signals foreclose. A sophisticated seller might thus deliberately dilute signal quality to cultivate

persistent demand across periods. Yet this seemingly clever strategy harbours a fatal contradiction.
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Lower-type signals generate less first-period value whilst failing to capture the second-period

rents they create. Moreover. the very uncertainty that sustains demand also enables buyers to

extract information surplus, which implies a failure of full surplus extraction. The seller confronts

an irreducible trade-off: damaged goods must either impose prohibitive prices that eliminate

participation, or accommodate demand through concessionary pricing that leaks information

rents through the screening mechanism. The subsequent analysis establishes this constraint as

binding. The ostensible sophistication of menu diversification conceals fundamental inefficiencies,

validating quality concentration as the unique profit-maximising mechanism rather than a naive

strategy.

The following subsections characterise equilibrium strategies using backward induction,

beginning with the unchanged final decision of the buyer and working backward through the

modified information acquisition and pricing choices that reflect the risk preferences of the seller.

1.4.1 Final Decision of the Buyer

We begin our equilibrium analysis at the end of the game, applying backward induction to

understand how rational players behave at each stage. At this final decision node, the buyer has

gathered all available information throughout the game and must choose an action y ∈ {0, 1} to

maximise expected payoff, E[uB(·)]. By the end of period t = 2, the buyer has observed signal

realisations from both periods and formed a posterior belief, µ2 = P(θ = 0 | (q1, q2), (s1, s2)),

using Bayes’ rule. This posterior belief represents the best assessment of the buyer of the

probability that the true state is θ = 0 (i.e., the status quo), given all observed information.

A crucial insight is that since all prices for acquired signals have been paid by this point, they

become sunk costs which do not affect the final decision of the buyer. Furthermore, given the

symmetric payoff structure, where a correct match yields uy
B = 1 and an incorrect match yields

uy
B = 0, the buyer faces a straightforward optimisation problem: which action maximises the

probability of matching the true state? The expected payoff from choosing action y = 0 is simply

the probability that θ = 0, which equals µ2. Similarly, the expected payoff from choosing action

y = 1 is the probability that θ = 1, which equals 1 − µ2. This creates a natural threshold at

probability one-half. That is, if the posterior belief satisfies µ2 ≥ 1
2 , the buyer chooses y = 0;

otherwise, the buyer chooses y = 1. Accordingly, the expected outcome payoff is given by:

E
[
uy

B

]
= max {µ2, 1 − µ2} ,
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which equals µ2 if µ2 ∈
[

1
2 , 1

]
, and 1 − µ2 if µ2 ∈

[
0, 1

2

]
. This expression elegantly captures the

value of information: better information leads to more accurate posterior beliefs, which in turn

leads to higher expected payoffs from decision-making. We formalise the optimal decision rule

regarding the final action in the following proposition:

Proposition 1.1. Given the posterior belief µ2 ∈ (0, 1), the optimal decision rule is:

y∗ = 0 if µ2 ∈
[

1
2

, 1
]

; y∗ = 1 if µ2 ∈
[

0,
1
2

]
.

Accordingly, the expected payoff of the buyer is:

E [uB] = max {µ2, 1 − µ2} − P1(q1)−P2(q1, q2).

Proof. See Appendix 1.A.1.

This result establishes a crucial benchmark for the subsequent analysis. The expected payoff of

the buyer from the final decision equals max{µ2, 1 − µ2}, which reflects the value generated by

having accurate information about the true state. The expected payoff is minimised when µ2 = 1
2 ,

corresponding to maximal uncertainty. In contrast, it is maximised as µ2 approaches either 0 or

1, reflecting minimal uncertainty and an expected payoff approaching 1. This characterises the

conditions under which information is valuable: signals are most useful when they shift beliefs

away from the midpoint µ2 = 1
2 and towards more extreme levels of certainty. This insight forms

the basis for understanding information acquisition behaviour in earlier periods.

Having established how the buyer selects an optimal final action, the analysis now proceeds

backward to examine when and why additional costly information would be acquired in the

second period. The central question concerns under what conditions further information has the

potential to improve final decision quality.

1.4.2 Signal Acquisition by the Buyer in the Second Period

Having established how the buyer selects an optimal final action, the analysis now proceeds

backward to examine the information acquisition strategy in the second period. This stage reveals

a fundamental insight: information has value only when it has the potential to alter the decision
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made by the buyer. This leads to the central concept of pivotal signals, which plays a key role in

the analysis that follows.

At the beginning of period t = 2, the buyer faces a new decision: whether to acquire additional

information before making a final choice. At this stage, the buyer has observed the first-period

signal realisation s1, formed a posterior belief µ1 based on the observed information, and been

presented with a second-period price menu, P2(q1, q2), by the seller. The buyer now chooses

amongst the following three options. They can acquire a high-type signal (i.e., q2 = qH), a low-type

signal (i.e., q2 = qL), or no additional information (i.e., q2 = ∅).

Let us begin with the simplest case when the buyer chooses q2 = ∅. If the buyer forgoes

additional information, no further payment to the seller is involved, and the posterior belief

remains unchanged, µ2 = µ1. Following the previous analysis, the expected payoff of buyer is

given by:

E [uB] = max {µ1, 1 − µ1} − P1(q1).

This option is appealing when the buyer is already confident about the true state. If the posterior

belief is already extreme, with µ1 sufficiently close to either 0 or 1, the implied uncertainty is

minimal, and the potential benefit of acquiring additional information is unlikely to justify its cost.

The Information Rent of Second-Period Signal. When the buyer acquires an informative signal

q2 ∈ Q, they understand that the posterior belief will be updated according to Bayes’ rule. This

update depends on the signal realisation s2, leading to different posterior values based on the

observed outcome: µ2(q1, s1, q2, s2 = 0) or µ2(q1, s1, q2, s2 = 1). The buyer evaluates the expected

benefit of the information acquisition before buying the signal. Specifically, the buyer forms a belief

about the distribution of possible signal realisations, which maps directly to the corresponding

posterior beliefs. These posterior beliefs, in turn, determine the expected payoff before the final

decision is made, which is characterised in the following proposition:

Proposition 1.2. Given any posterior belief µ1 ∈ (0, 1), the expected payoff of the buyer after an informative

signal q2 ∈ Q is acquired (before s2 is realised) is:

E [uB|µ1, q2] = E [max {µ2, 1 − µ2} | µ1, q2]−P2(·, q2)−P1(·)
= max {µ1, 1 − q2}+ max {µ1, q2} − µ1 −P2(·, q2)−P1(·),

18



CHAPTER 1: DYNAMIC SALE OF INFORMATION 19

where Pt(·) are the prices set by the seller.

Proof. See Appendix 1.A.2.

This seemingly complex expression reflects a simple idea. The terms max{µ1, 1 − q2}

+max{µ1, q2} represent the expected payoff from improved decision-making after receiving

the signal. The term µ1 corresponds to the expected payoff under the current decision rule of

the buyer. The difference between the two values, defined as the information rent, represents

the improvement in the expected payoff of the buyer from optimal decision-making that results

from acquiring signal, q2. It measures the value created by better information, net of the current

decision-making capability, which motivates the following formal definition:

Definition 1.1 (Information Rent). Given any posterior belief µ1 ∈ (0, 1) at the beginning of period

t = 2, the information rent associated with signal q2 ∈ Q is defined as:

φ(q2, µ1) = E [max {µ2, 1 − µ2} | µ1, q2]− max {µ1, 1 − µ1} ,

where µ2 denotes the posterior belief after observing the signal realisation s2, given the signal

choice q2.

The Pivotal Signal Concept. The analysis above leads to a crucial insight. A signal q2 is only

valuable when they can potentially change the final decision of the buyer. This motivates our

formal definition of a pivotal signal.

Definition 1.2 (Pivotal Signal). An informative signal q2 ∈ Q is pivotal with respect to the posterior

belief µ1 if and only if it can induce different optimal actions depending on the signal realisation.

Formally, q2 is pivotal if and only if, µ2(q1, s1, q2, s2 = 0) > 1
2 > µ2(q1, s1, q2, s2 = 1). That

is, the informative signal q2 induces different decisions given different signal realisations (i.e.,

y(s2 = 0) ̸= y(s2 = 1)).

A signal is pivotal when it can ’flip’ the final decision of the buyer. That is, the buyer prefers

the action y = 0, if they observe s2 = 0; the buyer prefers the action y = 1, if they observe

s2 = 1. When a signal cannot change the optimal action regardless of its realisation, it provides no

information rent to the buyer. The following lemma characterises the condition under which a

signal is pivotal.
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Lemma 1.1. Given any posterior belief µ1 ∈ (0, 1), the signal q2 is pivotal if and only if, µ1 ∈ [1 − q2, q2].

Proof. See Appendix 1.A.2.

This interval [1 − q2, q2] represents the ’uncertainty zone’, where the signal generates strictly

positive information rent. Intuitively, if the current belief is sufficiently extreme, or, the signal is

relatively uninformative, acquiring additional information does not affect the optimal decision.

Given that µ1 > q2, the posterior belief µ1 is sufficiently close to the end of θ = 0, which implies

that the buyer is already very confident that θ = 0 is the true state, where even a contradictory

signal cannot create enough doubt to change their mind. Conversely, given that µ1 < 1 − q2, the

buyer is very confident that θ = 1 must be the true state, and again, no signal can create sufficient

doubt. The buyer is sufficiently uncertain that new information could genuinely change their

preferred action, if and only if the posterior belief is moderate µ1 ∈ [1 − q2, q2]. This result is

consistent with the information rent of the signals, which is characterised through the following

proposition.

Proposition 1.3 (Information Rent Characterisation). Given any informative signal q2 ∈ Q and any

posterior belief µ1 ∈ (0, 1) such that µ1 ∈ [1 − q2, q2], the information rent can be expressed as:

φ(q2, µ1) = q2 − max{µ1, 1 − µ1}.

Given any informative signal q2 ∈ Q and any posterior belief µ1 ∈ (0, 1) such that µ1 /∈ [1 − q2, q2], the

information rent is zero, φ(q2, µ1) = 0.

Proof. See Appendix 1.A.2.

The above proposition confirms that only pivotal signals generate positive information rent.

Non-pivotal signals yield zero information rent and do not assist the buyer in improving decision

quality. We now show that the buyer has no incentive to acquire an informative signal q2 ∈ Q

at a strictly positive price P2(·, q2) > 0 if the signal q2 is not pivotal. Intuitively, a rational and

sophisticated buyer recognises when additional information offers no value and therefore refrains

from paying for it. More precisely, when the information rent is zero, there is no improvement in

expected payoff, and any positive payment would reduce the payoff of the buyer. This creates a

natural constraint on information demand and limits the ability of the seller to extract rent from

overconfident buyers.
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Proposition 1.4. Under any equilibrium, P2(q2) > 0 and µ1 /∈ [1 − q2, q2] implies q∗2 ̸= q2, ∀q2 ∈ Q.

The buyer will not acquire a non-pivotal signal q2 at any strictly positive price.

Proof. See Appendix 1.A.2.

Note that the buyer is indifferent between acquiring and not acquiring an informative signal if the

signal is offered for free (i.e., P2(·, q2) = 0). However, setting a zero price is not optimal for the

seller unless the seller believes that no information rent can be extracted in the second period with

probability one.

Quality Dominance: High-Type Signals Have Broader Applicability. A crucial asymmetry

arises when comparing different signal qualities in terms of their potential to generate information

rent for buyers. This asymmetry is fundamental to understanding why information markets tend

to favour high-quality signals. The key insight is that high-type signals are valuable across a wider

range of buyer beliefs than low-type signals. This follows from a straightforward mathematical

relationship. Given that qH > qL > 1
2 , the corresponding pivotal regions satisfy the strict

containment [1 − qL, qL] ⊂ [1 − qH , qH ].

Proposition 1.5 (Quality Dominance in Pivotal Regions). Let µ1 ∈ (0, 1) be the posterior belief before

period t = 2, and suppose that qH > qL > 1
2 . If the low-type signal q2 = qL is pivotal, then the high-type

signal q2 = qH is also pivotal.

Proof. See Appendix 1.A.2.

The intuition is as follows. High-type signals, due to their greater precision, lead to greater

dispersion in posterior beliefs compared to that of low-type signals. When a buyer acquires a

high-type signal, the resulting posterior belief shifts further from the prior belief than it would

under a low-type signal with the same signal realisation. This larger informational impact allows

high-type signals to affect decisions over a broader range of prior beliefs. For example, consider a

buyer who holds a moderate belief about the true state. A low-type signal may be too weak to

induce a change in decision, whereas a high-type signal with the same realisation might generate

enough uncertainty to prompt reconsideration. This gives an advantage to sellers who offer more

precise signals.

More importantly, the converse of Proposition 1.5 does not hold. A high-type signal may be

pivotal even when a low-type signal is not. This asymmetry creates a fundamental competitive
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advantage for high-type signals, as they can serve buyers whilst the low-type signals cannot.

Corollary 1.5.1 (Complete Characterisation of Pivotal Cases). Given any posterior belief µ1 ∈ (0, 1)

and signal types (qH , qL) ∈
(

1
2 , 1

)2
, exactly one of the following three conditions must hold:

(i) Both signal types (qH , qL) are pivotal if µ1 ∈ [1 − qL, qL];

(ii) Only the high-type signal qH is pivotal if µ1 ∈ [1 − qH , qH ] \ [1 − qL, qL];

(iii) Neither signal is pivotal if µ1 /∈ [1 − qH , qH ].

Proposition 1.5 provides the foundation for our central finding that low-type signals are never

offered in equilibrium. When both signal types are pivotal, the seller prefers to offer only high-type

signals because they generate higher extractable information rent. When only high-type signals

are pivotal, low-type signals have no value. This creates a systematic bias towards high-quality

information provision in dynamic information markets.

The Buyer’s Optimisation Problem. Having established when information has value and how

different signal types compete, we can now characterise the complete decision-making framework

of the buyer in the second period. The buyer faces a classic consumer choice problem. Given the

available options and their prices, which signal (if any) maximises net surplus?

By Lemma 1.1, given any signal q2 ∈ Q, it is pivotal if and only if the prior belief satisfies

µ1 ∈ [1 − q2, q2]. By Proposition 1.2, if the buyer acquires q2, their expected payoff is:

E [uB|q2 ∈ Q] = q2 −P2(·, q2)−P1(·),

where the posterior belief is assumed to be centred at q2 in expectation under pivotality. This

elegant result captures the essence of information value: the expected payoff of the buyer equals

the signal precision minus the total cost of information acquisition. By contrast, if the buyer does

not acquire a second-period signal (i.e., q2 = ∅), their expected payoff is:

E [uB] = max {µ1, 1 − µ1} − P1(·).

This represents the outside option of the buyer, which is the expected payoff from making a

decision based on current information alone. Hence, the buyer has an incentive to acquire the

informative signal q2 ∈ Q if and only if doing so yields a weakly higher expected payoff, that is:
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q2 −P2(·, q2) ≥ max {µ1, 1 − µ1} ,

or, P2(q2) = 0 in which the seller offers the signal at a zero price. This inequality defines the

participation constraint, where the outside option corresponds to the expected payoff without

acquiring a signal. This participation constraint has a natural economic interpretation. The result

can also be interpreted as requiring that the price of the signal not exceed the improvement in

expected outcome payoff:

P2(·, q2) ≤ q2 − max {µ1, 1 − µ1} = φ(q2, µ1),

which is equivalent to the information rent associated with the signal q2 ∈ Q by Definition 1.1. If

multiple signal types satisfy the participation constraint, the buyer faces a quality choice decision.

The risk-neutral buyer will choose the signal that maximises their surplus, defined as the difference

between expected payoff improvement and price paid, which creates the incentive compatibility

constraint:

q∗2 −P2(·, q∗2) ≥ q′2 −P2(·, q′2) for all q′2 ∈ Q.

In addition, our analysis of pivotal signals imposes an additional constraint. The buyer will not

pay a strictly positive price for a non-pivotal signal, which creates a natural boundary on when

information has value, regardless of prices:

P2(·, q2) > 0 =⇒ µ1 ∈ [1 − q2, q2].

Combining these insights, we summarise these conditions in the following proposition:

Proposition 1.6. Under any equilibrium, the buyer acquires an informative signal q∗2 ∈ Q in period t = 2

if and only if all the following conditions hold. Otherwise, q∗2 = ∅.

(i) q∗2 −P2(·, q∗2) ≥ max{µ1, 1 − µ1}, or P2(·, q∗2) = 0, participation constraint;

(ii) q∗2 −P2(·, q∗2) ≥ q′2 −P2(·, q′2), ∀q′2 ∈ Q, incentive compatibility constraint;

(iii) µ1 ∈ [1 − q∗2 , q∗2 ], or P2(·, q∗2) = 0.

Proof. See Appendix 1.A.2.
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The following discusses the economic implications. This characterisation reveals several key

insights regarding information demand in dynamic markets. Optimisation by the buyer reflects

forward-looking and sophisticated behaviour, indicating that rational agents recognise exactly

when information holds value and avoid paying for signals that cannot alter decision outcomes.

This rationality gives rise to natural trade-offs between quality and price. The choice amongst

signal types depends on the relative surplus each provides, resulting in competition across

quality levels when multiple signals are pivotal. However, the pivotality constraint imposes a

fundamental limit on information demand that cannot be addressed through pricing alone. Even

at very low prices, a buyer will not acquire information that does not affect the final action. These

constraints collectively limit the ability of the seller to extract rent from overconfident agents and

ensure that the information market operates efficiently, with demand concentrating on signals

that contribute genuine value to decision-making.

Understanding the optimisation problem faced by the buyer is essential for analysing the pricing

strategy adopted by the seller. The seller must set prices that satisfy the relevant constraints when

maximising expected profit. The central question is how the seller can effectively extract value

from the willingness to pay of the buyer for informative signals, whilst accounting for the inherent

limitations on information demand.

1.4.3 Menu Setting by the Seller in the Second Period

Having characterised the information acquisition strategy of the buyer, the analysis now turns to

the pricing problem faced by the seller. This setting reveals a fundamental tension in dynamic

information markets. The seller sets prices without access to private signal realisations of the

buyer, which results in information asymmetry that significantly affects market outcomes.

At the beginning of period t = 2, the seller faces a classic adverse selection problem. Although

the seller observes the signal choice q1 made by the buyer, the corresponding signal realisation s1

remains unobserved. As a consequence, the seller remains uncertain about the posterior belief µ1,

which determines the magnitude of information rent that can be extracted through second-period

signals.

The task for the seller is to formulate a pricing strategy that maximises expected revenue whilst

satisfying participation and incentive constraints. Since demand depends on whether a signal is

pivotal, and pivotality depends on the unobserved signal realisation, the seller must anticipate
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the distribution of possible beliefs and choose prices accordingly. This information asymmetry

imposes a fundamental constraint on the ability to extract surplus. Unlike a monopolist who can

condition prices on observable customer types, the information seller must infer willingness to pay

through revealed preferences. This strategic limitation plays a central role in shaping equilibrium

outcomes.

The following subsections proceed by analysing the pricing strategy adopted by the seller

separately for the two possible first-period signal types: (i) q1 = qH and (ii) q1 = qL.

Case 1: High-Type Signal Previously Acquired (q1 = qH)

Suppose that the buyer acquires a high-type signal in the first period, q1 = qH . The seller now

faces two possible scenarios, each corresponding to a different signal realisation that they cannot

observe: (i) s1 = 0 and (ii) s1 = 1. If s1 = 0 is realised, the buyer will have no incentive to acquire

any signal at a strictly positive price in period t = 2. To see this formally, first note that the

posterior belief is updated to:

µ1(qH , 0) =
πqH

πqH + (1 − π)(1 − qH)
> qH .

By Proposition 1.4, µ1(qH , 0) /∈ [1 − q2, q2] holds for any q2 ∈ Q, which implies that neither type

of signal is pivotal. Thus, the buyer will not acquire any signal at a strictly positive price as there

exists zero information rent associated with any signal q2 ∈ {qH , qL}. The intuition is clear. Given

two binary signals with the same precision (e.g., q1 = q2 = qH), any Bayesian decision maker

forms a posterior belief identical to the prior belief if the two realisations go against each other.

For instance, (s1, s2) = (0, 1) implies that the posterior belief equals π > 1
2 , in which y = 0 is

preferred. If s2 = 0 is realised instead, the posterior belief will be more extreme towards the

state θ = 0, which implies that y = 0 is preferred if q2 = qL is acquired. As discussed earlier,

the variance in the posterior belief resulting from the low-type signal will be smaller, indicating

that the posterior belief will be sufficiently solid on the status quo, which implies that y = 0 is

preferred. Conclusively, if q1 = qH is acquired and s1 = 0 is realised, any signal in the second

period will not be pivotal and thus with zero information rent. From the perspective of the seller,

this represents a dead end, since no further revenue can be extracted regardless of the pricing

strategy.

If s1 = 1 is realised, the resulting posterior belief moves closer to 1
2 , creating sufficient uncertainty
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that may render second-period signals valuable. The buyer considers acquiring additional

information, provided that the price does not exceed the associated information rent. More

precisely, the buyer has an incentive to acquire a high-type signal in period t = 2, as long as the

prior belief is sufficiently weak such that the signal is pivotal. According to Proposition 1.4, the

posterior belief must not be too extreme, that is, µ1(qH , 1) ∈ [1 − q2, q2].

Formally, the buyer has an incentive to acquire a high-type signal at a strictly positive price in

period t = 2 only if the following condition holds:

µ1(qH , 1) =
π(1 − qH)

π(1 − qH) + (1 − π)qH ∈
[
1 − qH , qH

]
,

which is equivalent to the more compact expression,

π(1 − qH)

(1 − π)qH ∈
[

1 − qH

qH ,
qH

1 − qH

]
⇐⇒ π(1 − qH)

(1 − π)qH ≤ qH

1 − qH ⇐⇒ π

1 − π
≤

(
qH

1 − qH

)2

.

The seller recognises a crucial pattern in buyer behaviour: only those who receive contradictory

signals, with s1 = 1, return to acquire additional information in the second period. This

behavioural response enables a powerful inference mechanism. By merely approaching the

seller again, the buyer implicitly reveals private information. More specifically, it can be inferred

that the first signal realisation contradicted the initial belief and left the buyer uncertain about

the true state. Given this, the seller understands that no revenue can be extracted when s1 = 0,

regardless of the price set for the high-type signal. As a result, the seller focuses exclusively on

scenarios in which s1 = 1 is realised. In these cases, the seller sets the price equal to the full

magnitude of the available information rent, thereby maximising expected revenue from the

subset of buyers who find the signal valuable and reveal themselves through their actions.

This revelation solves information problem of the seller. The seller can now extract the full

information rent from a returning buyer by setting the price:

P2(qH , qH) = qH − max
{

µ1(qH , 1), 1 − µ1(qH , 1)
}
= φ

(
qH , µ1(qH , 1)

)
,

which satisfies the corresponding participation constraint, by Proposition 1.6:

qH −P2(qH , qH) ≥ max
{

µ1(qH , 1), 1 − µ1(qH , 1)
}

.
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Likewise, the buyer has incentive to acquire a low-type signal in period t = 2 only if:

µ1(qH , 1) =
π(1 − qH)

π(1 − qH) + (1 − π)qH ∈
[
1 − qL, qL

]
.

However, according to Proposition 1.5, if the low-type signal is pivotal, the high-type signal is also

pivotal. When both signals are pivotal, the seller has an incentive to induce the buyer to acquire a

high-type signal rather than a low-type one, as the associated information rent is strictly greater.

Formally, the difference in information rent between the two signals is given by:

φ
(

qH , µ1(qH , 1)
)
− φ

(
qL, µ1(qH , 1)

)
= qH − qL > 0.

Crucially, this rent differential remains constant at qH − qL regardless of the buyer’s posterior

belief µ1, indicating the failure of single-crossing in our symmetric framework. In models with

single-crossing, the incremental value of higher quality would vary with the buyer’s type (here,

their posterior belief), enabling the seller to design separating menus where different types

self-select into different qualities. However, because matching either state yields identical payoffs

in our model, all buyer types value the quality upgrade qH − qL identically, making profitable

separation impossible.

This implies that the seller earns a strictly higher payoff by offering the high-type signal, without

incurring any additional cost. As a result, there is a natural tendency towards quality concentration

in information markets. The absence of single-crossing ensures this conclusion continues to hold

even when there is strictly positive information rent under the realisation s1 = 0. Moreover, if the

seller adopts a separating strategy, offering different signals depending on the realised value of s1,

they can still profitably induce the buyer to acquire a high-type signal in both cases. In particular,

the buyer who would otherwise be induced to acquire a low-type signal can instead be offered

the high-type signal at a price higher by qH − qL, without violating participation or incentive

compatibility constraints. The following proposition and proof formally establish this claim.

Proposition 1.7. Under any equilibrium, given any µ1 ∈ (0, 1) and (p, qH , qL) ∈ ( 1
2 , 1)3, the seller has

no incentive to offer a low-type signal in period t = 2.

Proof. See Appendix 1.A.3.
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To sum up, we have the following proposition given q1 = qH is acquired:

Proposition 1.8. Suppose that π
1−π ∈

(
1,
(

qH

1−qH

)2
]

and q1 = qH hold. The buyer will have no incentive

to acquire either signal type at a strictly positive price if s1 = 0 is realised. The buyer will have incentive to

acquire a high-type signal at a price lower than φ
(
qH , µ1(qH , 1)

)
if s1 = 1 is realised.

Proof. See Appendix 1.A.3.

We define such strategy of the seller as high-type only pricing strategy, since the seller induces the

buyer to acquire only high-type signals in both periods. A formal definition will be given in

Section 1.3. Next characterise the optimal menu setting strategy. The seller sets the price of a

high-type signal such that their participation constraint binds, whilst the price of a low-type signal

such that their participation constraint fails.

Proposition 1.9. Suppose that π
1−π ∈

(
1,
(

qH

1−qH

)2
]

and q1 = qH hold. The optimal menu setting

strategy in period t = 2 is:

P2(qH , qH) = φ
(

qH , µ1(qH , 1)
)

;

P2(qH , qL) ∈ φ
(

qH , µ1(qH , 1)
)
−

(
qH − qL

)
,+∞

)
.

More specifically,

{
P2(qH , qH),P2(qH , qL)

}
∈
{

qH − µ1(qH , 1)
}
×

(
qL − µ1(qH , 1),+∞

)
if π ≥ qH ;{

P2(qH , qH),P2(qH , qL)
}
∈
{

qH −
(

1 − µ1(qH , 1)
)}

×
(

qL −
(

1 − µ1(qH , 1)
)

,+∞
)

if π ≤ qH .

Next we investigate the surplus allocation between the two parties. First note that no

information rent exists under the realisation s1 = 0, as the posterior belief is sufficiently extreme,

µ1(qH , 0) > qH . Consequently, the buyer has no incentive to acquire any signal with a strictly

positive price. The expected payoff of the buyer evaluated before the decision is E[uB] = µ1(qH , 0).

Under the realisation s1 = 1, the seller extracts all the available information rent throughout the

trade. As a result, there is no change in the expected payoff of the buyer after the signal acquisition

in period t = 2. Remarkably, the seller attains the first-best outcome despite the presence of

information asymmetry. The strategic behaviour of the buyer, who returns only when the initial

signal contradicts the prior belief, effectively reveals private information. This implicit disclosure
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allows the seller to extract the full information rent without incurring the efficiency losses that are

typically associated with adverse selection.

Case 2: Low-Type Signal Previously Acquired (q1 = qL)

This section examines cases in which the buyer acquires a low-type signal in the first period,

q1 = qL. The analysis is more intricate, as low-type signals generate less extreme posterior beliefs.

As a result, the buyer is more likely to return for additional information, regardless of the signal

realisation. In contrast to the high-type case, the seller now faces two types of returning buyer:

those who observe s1 = 0 and those who observe s1 = 1. These buyers differ in their willingness

to pay, yet the seller cannot distinguish between them. This scenario presents a classic monopoly

pricing problem. Should the seller set a high price to extract the maximum possible rent from

those willing to pay more, or a low price to serve all buyers?

By Proposition 1.4, the buyer has an incentive to acquire a high-type signal in period t = 2 at

a strictly positive price only if the posterior belief after observing s1 = 0 lies within the pivotal

region, that is, µ1(qL, 0) ∈ [1 − qH , qH ]. This condition is equivalent to:

µ1(qL, 0) ∈
[
1 − qH , qH

]
⇐⇒ πqL

(1 − π)(1 − qL)
∈
[

1 − qH

qH ,
qH

1 − qH

]
⇐⇒ π

1 − π
≤ 1 − qL

qL · qH

1 − qH .

If this condition fails, the buyer will not have an incentive to acquire any additional signal. If

instead s1 = 1 is realised, the buyer may be willing to acquire a high-type signal in period t = 2 if

it is pivotal. The corresponding posterior belief is given by:

µ1(qL, 1) =
π(1 − qL)

π(1 − qL) + (1 − π)qL .

The buyer will acquire the high-type signal only if:

µ1(qL, 1) ∈
[
1 − qH , qH

]
⇐⇒ π(1 − qL)

(1 − π)qL ∈
[

1 − qH

qH ,
qH

1 − qH

]
⇐⇒ π

1 − π
≤ qL

1 − qL · qH

1 − qH .
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By Proposition 1.7, the seller has no incentive to induce the buyer to acquire a low-type signal in

period t = 2. Therefore, it is sufficient to focus on the pricing strategy for the high-type signal.

The relationship between the prior belief of the buyer and the quality of available signals gives

rise to three distinct market regimes:

Regime 1: No Demand

π

1 − π
>

qL

1 − qL · qH

1 − qH .

When the buyer holds an extremely strong prior belief, even a contradictory high-type signal fails

to generate sufficient uncertainty to make further information acquisition worthwhile. The buyer

remains confident regardless of the signal realisation, and no trade occurs in the second period.

Regime 2: Selective Demand

1 − qL

qL · qH

1 − qH <
π

1 − π
≤ qL

1 − qL · qH

1 − qH .

In this intermediate range, only buyers who observe contradictory signals, that is s1 = 1, return

for additional information. A confirming signal reinforces the prior belief too strongly, whereas a

contradictory signal introduces just enough uncertainty to make further information valuable.

Regime 3: Universal Demand

π

1 − π
≤ 1 − qL

qL · qH

1 − qH .

When the prior belief is relatively weak, further information is valuable, regardless of the

first-period signal realisation. The buyer returns in the second period, although their willingness

to pay differs depending on the realisation observed. These distinctions motivate the following

proposition.

Proposition 1.10. Given that q1 = qL holds. The buyer will have incentive to acquire a signal of high type

at a price lower than φ
(
qH , µ1(qL, s1)

)
if one the following conditions holds:

(i) s1 = 0 is realised and π
1−π ∈

(
1, 1−qL

qL · qH

1−qH

]
holds;

(ii) s1 = 1 is realised and π
1−π ∈

(
1, qL

1−qL · qH

1−qH

]
holds.
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This analysis reveals why information markets naturally evolve towards quality differentiation.

Low-type signals create persistent uncertainty that keeps buyers in the market longer, but this

apparent advantage comes with a cost: the seller faces a more complex pricing problem with

multiple buyer types. High-type signals, by contrast, create clearer market segmentation where

buyer behaviour more reliably reveals their private information. The existence of these three

regimes also explains why information providers might strategically choose their quality levels.

By offering higher-quality initial information, sellers can better predict and manage second-period

demand, potentially achieving higher overall profits despite serving fewer customers in the second

period.

The Selective Demand Case: Natural Market Segmentation

The analysis now turns to the characterisation of the optimal pricing strategy adopted by the seller,

beginning with the selective demand regime, defined by,

π

1 − π
∈
(

1 − qL

qL · qH

1 − qH ,
qL

1 − qL · qH

1 − qH

]
.

In this regime, the pricing problem is relatively straightforward. Only buyers who observe

contradictory signals, namely s1 = 1, return to acquire additional information. Those who observe

confirming signals, s1 = 0, remain too confident to place value on further information at any

positive price. This outcome results in natural segmentation of the market, which simplifies the

pricing decision faced by the seller.

Two strategic insights guide the seller. First, by Proposition 1.7, offering only high-type signals

dominates any strategy involving low-type signals, as the surplus gained from higher precision,

qH − qL, outweighs potential demand effects. Second, since only one type of buyer returns for

information, the seller is able to extract the entire information rent without encountering adverse

selection amongst different types of buyer.

According to the logic established in Proposition 1.9, the seller sets the price of the high-type signal

so that the participation constraint of the returning buyer binds exactly. This approach ensures

full rent extraction from the only type of buyer willing to acquire second-period information.

The strategy is both simple and efficient: charge the entire information rent to the buyer who

values it most, whilst excluding those who generate negligible profit. Thus, we have the following

proposition.
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Proposition 1.11. Suppose that π
1−π ∈

(
1−qL

qL
qH

1−qH , qL

1−qL
qH

1−qH

]
and q1 = qL hold. The optimal menu

setting strategy in period t = 2 is:

P2(qL, qH) = φ
(

qH , µ1(qL, 1)
)

;

P2(qL, qL) ∈
(

φ
(

qH , µ1(qL, 1)
)
−

(
qH − qL

)
,+∞

)
.

More specifically,

{
P2(qL, qH),P2(qL, qL)

}
∈
{

qH − µ1(qL, 1)
}
×

(
qL − µ1(qL, 1),+∞

)
if π ≥ qL;{

P2(qL, qH),P2(qL, qL)
}
∈
{

qH −
(

1 − µ1(qL, 1)
)}

×
(

qL −
(

1 − µ1(qL, 1)
)

,+∞
)

if π ≤ qL.

This case shows how asymmetry of information can benefit the seller by producing endogenous

segmentation in the market. Rather than attempting to price discriminate across buyer types, the

seller relies on buyers’ own optimisation to reveal willingness to pay through observed purchasing

behaviour.

The Universal Demand Case: A Complex Pricing Challenge

When the prior belief held by the buyer is relatively weak, specifically when,

π

1 − π
∈
(

1,
1 − qL

qL · qH

1 − qH

]
,

the seller faces a more intricate pricing problem. In this regime, the buyer returns for additional

information regardless of the signal observed in the first period, but with different levels of

willingness to pay.

The key insight is that although both types of buyer place value on additional information, their

willingness to pay differs substantially. Buyers who observe contradictory signals (i.e., s1 = 1)

are more uncertain and therefore place higher value on further information than buyers who

observe confirming signals (i.e., s1 = 0). This results in an asymmetry in information rents that

the seller must navigate strategically. Formally, the information rent is strictly greater when s1 = 1

is observed.

Lemma 1.2. Given any (π, qH , qL) ∈ (0, 1
2 )

3, the information rent given signal realisation s1 = 1 is
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greater than that given signal realisation s1 = 0. That is:

φ
(

qH , µ1(qL, 1)
)
= qH − max

{
µ1(qL, 1), 1 − µ1(qL, 1)

}
> qH − µ1(qL, 0) = φ

(
qH , µ1(qL, 0)

)
,

always holds.

Proof. See Appendix 1.A.3.

Faced with heterogeneity in willingness to pay, the seller must choose between two strategic

pricing approaches, each reflecting a different method of extracting value from the market. The

first approach is the aggressive pricing strategy, which focuses on extracting information rent from

the highest-paying buyers, even at the cost of excluding others. The seller sets the price equal to

the information rent of the buyer who observed s1 = 1:

P2(qL, qH) = φ
(

qH , µ1(qL, 1)
)

.

This price exceeds the willingness to pay of buyers who observed confirming signals s1 = 0,

and thus excludes them from the market. Under such strategy, only buyers with contradictory

signals s1 = 1 purchase second-period information, with probability of π(1 − qL) + (1 − π)qL.

This approach maximises the ex-post profit by targeting high-value buyers, and is preferred when

the difference in information rents between buyer types is substantial.

Proposition 1.12 (Aggressive Pricing Strategy). Suppose π
1−π ∈

(
1, 1−qL

qL · qH

1−qH

]
and q1 = qL. If the

aggressive pricing strategy is optimal, then the optimal menu setting in period t = 2 is:

P2(qL, qH) = φ
(

qH , µ1(qL, 1)
)

;

P2(qL, qL) ∈
(

φ
(

qH , µ1(qL, 1)
)
−

(
qH − qL

)
, +∞

)
.

More explicitly,

P2(qL, qH) = qH − µ1(qL, 1) if π ≥ qL;

P2(qL, qH) = qH −
(

1 − µ1(qL, 1)
)

if π ≤ qL.
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The price of the low-type signal is set prohibitively high to ensure it is not purchased.

The aggressive strategy reflects a central principle of monopoly pricing: when customers differ

in willingness to pay, it may be optimal to serve only those with the highest valuations. This

is especially relevant in information markets, where marginal cost is negligible and foregone

transactions do not save resources. This strategy also illustrates how asymmetry of information

can benefit the seller by generating endogenous segmentation. Rather than requiring complex

mechanisms to separate buyer types, the seller relies on own decisions of the buyer to reveal

willingness to pay.

The second approach is the conservative pricing strategy, which prioritises market coverage over

per-unit rent extraction. Under such strategy, the seller sets prices low enough to ensure that

all returning buyers purchase additional information, regardless of the signal realisation, which

exhibits a fundamental trade-off between profit margins and market penetration. The seller

implements this strategy by setting the price equal to the information rent of the least willing

buyer:

P2(qL, qH) = φ
(

qH , µ1(qL, 0)
)

.

This price is deliberately conservative, falling below the maximum willingness to pay of buyers

who received contradictory signals. The economic logic is compelling: by ensuring universal

participation, the seller eliminates demand uncertainty and captures revenue from the entire

market, albeit at reduced margins. Under the conservative pricing strategy, the seller earns a

guaranteed payoff φ
(
qH , µ1(qL, 0)

)
in the second period with probability one, regardless of the

signal realisation. This contrasts with the aggressive pricing strategy, under which profits are

higher per transaction but arise with lower probability.

The optimal strategy choice of the seller between these two strategies reflects a classic monopoly

pricing dilemma. The conservative strategy is preferred when:

φ
(

qH , µ1(qL, 0)
)
≥

[
π(1 − qL) + (1 − π)qL

]
φ
(

qH , µ1(qL, 1)
)

.

Rearranging this condition reveals that the conservative strategy dominates when:
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qH ≥ qH ≡ max{π(1 − qL), (1 − π)qL}
πqL + (1 − π)(1 − qL)

+
πqL

[πqL + (1 − π)(1 − qL)]
2 .

This cut-off point qH represents the critical signal quality where the seller becomes indifferent

between the two strategies. The intuition is straightforward: when qH is close to µ1(qL, 0),

the information rent from conservative buyers becomes negligible, making it optimal to focus

exclusively on eager buyers through aggressive pricing.

Proposition 1.13 (Conservative Pricing Strategy). Suppose that π
1−π ∈

(
1, 1−qL

qL · qH

1−qH

]
and q1 = qL.

If the conservative pricing strategy is optimal, then the optimal menu setting strategy in period t = 2 is:

P2(qL, qH) = φ
(

qH , µ1(qL, 0)
)

;

P2(qL, qL) ∈
(

φ
(

qH , µ1(qL, 0)
)
−

(
qH − qL

)
, +∞

)
.

The price for the low-type signal is set prohibitively high to prevent its acquisition, consistent with the

quality concentration result from Proposition 1.7.

The welfare implications of these pricing strategies reveal a surprising insight about information

asymmetry in dynamic markets. Under the aggressive strategy, the seller cannot capture surplus

from all buyers due to information asymmetry, since buyers who received confirming signals retain

positive information rent that goes unextracted. This creates apparent inefficiency relative to a

first-best benchmark where the seller observes all signal realisations. However, this interpretation

is changed when the conservative pricing strategy is considered in a dynamic context. Although

buyers who received contradictory signals (i.e., s1 = 1) obtain second-period surplus equal to

φ
(
qH , µ1(qL, 1)

)
− φ

(
qH , µ1(qL, 0)

)
> 0, this inefficiency is only superficial. The seller can extract

the expected value of this surplus through higher pricing in the first period, thereby achieving

first-best outcomes via intertemporal rent extraction. This reveals a profound insight. Dynamic

pricing can overcome information asymmetries that would otherwise generate inefficiencies in

static settings. The ability of the seller to adjust prices across time allows for sophisticated rent

extraction mechanisms that capture the full value of information provision, even when some

buyers retain surplus in individual periods.

The choice between aggressive and conservative pricing reflects deeper strategic considerations

regarding market development and buyer engagement. The aggressive strategy maximises
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short-term profit but may limit long-term participation. The conservative strategy encourages

broad participation but requires more sophisticated pricing policies over time. From a market

design perspective, this analysis suggests that providers of information face inherent trade-offs

between targeting narrow, high-value buyer segments and supporting broad participation through

inclusive pricing. The optimal approach depends critically on the quality differential between

signals and the distribution of buyer beliefs—factors that help explain the diversity of pricing

strategies observed in real-world information markets.

1.4.4 Signal Acquisition by the Buyer in the First Period

Having characterised the second-period equilibrium, the analysis now turns to the information

acquisition decision of the buyer in period t = 1. This reveals how forward-looking buyers

incorporate anticipated future opportunities into current choices, creating dynamic linkages that

shape the pricing power of the buyer across periods.

At the beginning of period t = 1, the buyer faces a strategic decision that extends beyond the

immediate value of information. They must consider not only the direct benefit of first-period

information, but also how this choice influences future opportunities to acquire additional signals.

As a consequence, this creates a dynamic optimisation problem, where current decisions affect

future payoffs. The expected payoff of the buyer consists of two components: the immediate

gain from first-period information and the expected surplus from future information acquisition,

denoted V(q1,P2). Formally, the buyer solves the following optimisation problem:

max
q1∈Q0

E[uB] = max
q1∈Q0

{
1q1∈Q {max{π, q1} − P1(q1) + V(q1,P2)}+ 1q1=∅{π}

}
,

The term V(q1,P2) captures the expected net surplus from acquiring second-period information,

which depends on the first-period signal choice of the buyer and the anticipated pricing strategy

in period t = 2. One key insight is that the value function V(q1,P2) must be non-negative for

all q1 ∈ Q0, since the buyer always has the option to choose q2 = ∅ in the second period, which

ensures that second-period optimisation is consistent with expectations formed in the first period.

The optimal first-period signal choice depends crucially on the nature of second-period pricing

strategy of the seller. Two benchmark cases are considered. If the seller implements an aggressive

pricing strategy, all available information rent is extracted in period t = 2. The buyer anticipates

zero surplus from future information acquisition, so that V(q1,P2) = 0 for all signal types. In this
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case, the optimisation problem of the buyer is reduced to:

max
q1∈Q0

E[uB] = max
q1∈Q0

{
1q1∈Q {max{π, q1} − P1(q1)}+ 1q1=∅{π}

}
,

The solution, denoted as q∗1 ∈ Q0, must satisfy the following conditions:

q∗1 −P1 (q∗1) ≥ π, or, P1 (q∗1) = 0,

q∗1 −P1 (q∗1) ≥ q′1 −P1
(
q′1
)

, ∀q′1 ∈ Q,

which suggests that the buyer simply compares the price with the immediate value of information.

When the seller extracts all future rents, the buyer becomes entirely myopic. They acquire a

signal only if its immediate value exceeds the cost. This imposes a natural upper bound on the

first-period pricing power of the seller.

When the seller implements a conservative pricing strategy, the buyer retains surplus in period

two. If q1 = qL and conservative pricing is optimal, with π
1−π ∈

(
1, 1−qL

qL · qH

1−qH

]
, then the implied

expected future surplus is:

V(qL,P2) =
[
π(1 − qL) + (1 − π)qL

] [
φ
(

qH , µ1(qL, 1)
)
− φ

(
qH , µ1(qL, 0)

)]
,

which represents the expected surplus earned when the buyer receives a contradictory signal

and returns for additional information. Thus, the buyer has the following reduced maximisation

problem:

max
q1∈Q0

E[uB] = max
q1∈Q0

{
1q1∈Q {max {π, q1} − P1(q1) + V(q1,P2)}+ 1q1=∅ {π}

}
.

The solution, denoted as q∗1 ∈ Q0, must satisfy the following conditions:

q∗1 + V(q∗1 ,P2)−P1(q∗1) ≥ π, or, P1(q∗1) = 0,

q∗1 + V(q∗1 ,P2)−P1(q∗1) ≥ q′1 + V(q′1,P2)−P1(q′1), ∀q′1 ∈ Q,

which can be regarded as the participation constraint and the incentive compatibility constraint

for the problem of the seller. The prospect of second-period surplus creates option value that

enhances the attractiveness of first-period signal acquisition. The buyer may pay more upfront to
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secure access to future value. In summary, these insights yield the following result.

Proposition 1.14 (Buyer’s First-Period Optimisation). Under any equilibrium, the buyer acquires

an informative signal q∗1 ∈ Q in period t = 1 if and only if all the following conditions hold. Otherwise,

q∗1 = ∅.

(i) q∗1 −P1(q∗1) + V(q∗1 ,P2) ≥ π, or, P1(q∗1) = 0, participation constraint;

(ii) q∗1 − P1(q∗1) + V(q∗1 ,P2) ≥ q′1 − P1(q′1) + V(q∗1 ,P2), ∀q′1 ∈ Q, incentive compatibility

constraint;

(iii) µ1 ∈ [1 − q∗1 , q∗1 ], or, P1(q∗1) = 0.

This characterisation reveals several key insights about the strategic nature of dynamic information

acquisition. The willingness of the buyer to pay for early information reflects not only immediate

value but also the option value of future decision-making, creating intertemporal linkages where

strategic complementarities connect behaviour across periods. Signals acquired in period one

may provide limited immediate benefit yet create future opportunities that justify the purchase,

demonstrating how forward-looking buyers incorporate anticipated future decisions into current

optimisation. This strategic sophistication imposes a fundamental limit on the ability of the seller

to engage in exploitative pricing, as the buyer will only pay for information that provides genuine

value across the entire game horizon. Notably, when future surplus is available to the buyer,

the seller can raise prices in early periods to capture this expected value, whereas aggressive

future pricing suppresses early demand and restricts overall rent extraction over time. These

insights collectively illustrate that dynamic information markets involve complex intertemporal

considerations that shape the strategies of both sides of the market, revealing how participants

respond strategically to incentives that unfold over multiple periods and giving rise to rich

dynamics that differ fundamentally from static information provision.

1.4.5 Menu Setting by the Seller in the First Period

We now arrive at the initial stage of the dynamic game, where the seller selects the first-period

pricing strategy with full knowledge of how the game will evolve. This analysis reveals one of the

most striking results in the model: it is always optimal for the seller to offer high-type signal in

the first period in order to generate profitable opportunities in the second period.

At the beginning of period t = 1, the seller must choose prices
(
P1(qH),P1(qL)

)
for both signal
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types to maximise expected profit across both periods. Formally, the seller solves the following

problem,

max
(P1(qH),P1(qL))

E [uS] = E [P1(q∗1) + P2(q∗1 , q∗2)] ,

where (q∗1 , q∗2) represents the optimal signal acquisition path of the buyer given the pricing strategy

of the seller. The seller anticipates how these decisions will influence immediate profit and future

revenue opportunities. This gives rise to a sophisticated intertemporal optimisation problem

in which current pricing must account for dynamic consequences. The strategy adopted by the

seller must weigh three key considerations: the information rent available in the first period, the

likelihood that buyers will return for second-period signals, and the magnitude of surplus that

can be extracted from future transactions. The optimal balance amongst these elements depends

critically on the strength of the prior belief of the buyer and the quality differential between the

available signal types.

Extreme Prior Beliefs: Market Elimination

We begin by analysing the case in which π
1−π ∈

[(
qH

1−qH

)2
,+∞

)
, which implies that π > qH > qL.

The relationship between the prior belief, π, and the signal types, (qH , qL), plays a crucial role in

the magnitude of surplus. Given the prior belief for the status quo is sufficiently strong, the buyer

has no incentive to acquire any type of signals at any strictly positive price, given any period

t ∈ {1, 2} and any signal realisation of s1 ∈ {0, 1}. Intuitively, the prior belief, π, is so extreme that

the buyer sticks to the decision of status quo, which will not be reverted by any signal realisation

throughout the entire game. Under the most extreme realisation in which the buyer acquires two

high-type signals in a row with both signal realisations against the status quo (i.e., s1 = s2 = 1),

the posterior belief is still greater than 1
2 , which implies that signals of both types are not pivotal.

The buyer will hold a posterior belief more inclined to θ = 0 with a probability of one, which

suggests that the information rent of any signal type is zero. Consequently, given participation

constraints hold, the seller should earn zero payoff. Though the buyer will accept offers if the price

is zero, the seller has no incentive to provide since they receive zero payoff at the end. Trivially,

any price menu is a solution. Thus, we have the following proposition.

Proposition 1.15. Suppose that π
1−π ∈

[(
qH

1−qH

)2
,+∞

)
holds. The optimal menu setting strategy in

period t = 1 is:
(
P1(qH),P1(qL)

)
∈ (R+)2.
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Strong Prior Beliefs: High-Type Signal Superiority

Next we consider the case in which π
1−π ∈

[
qL

1−qL
qH

1−qH ,
(

qH

1−qH

)2
]

, which again implies that

π > qH > qL. The seller recognises that if a low-type signal is offered in period t = 1, the buyer

will not acquire any further signal in period t = 2. The low-type signal is too imprecise to move the

posterior belief sufficiently close to the centre of the belief space and therefore fails to generate any

information rent in the second period. Formally, this means µ1(qL, 1) /∈ [1 − q, q], ∀q ∈ {qH , qL},

which implies that neither type of signal in period t = 2 is pivotal, by Proposition 1.4. Furthermore,

since π > qL, the signal in period t = 1 yields zero information rent. Consequently, the seller

earns zero surplus in both periods, if they induce the buyer to acquire a low-type signal in period

t = 1.

By contrast, with some probability, there exists strictly positive information rent in period t = 2,

if they induce the buyer to acquire a high-type signal in period t = 1. More specifically, the

buyer has incentive to acquire a high-type signal in period t = 2, given that q1 = qH is acquired

and s1 = 1 is realised, which can be formally verified, µ1(qH , 1) ∈ [1 − qH , qH ]. Intuitively, the

high-type signal is sufficiently strong and thus the posterior belief will be pushed further away

from the prior belief, which ends up somewhere sufficiently close to the centre. Therefore, the

buyer is so uncertain about the true state that the high-type signal in the second period is pivotal,

which incentivises them to acquire. The seller can fully extract the information rent in period t = 2

by setting the price P2(qH , qH) = qH − µ1(qH , 1), as indicated by Proposition 1.14. Compared to

the case q1 = qL in which the seller earns zero surplus throughout the game, the seller prefers the

choice q1 = qH . Consequently, in order to induce the buyer to acquire q1 = qH , the seller sets the

following menu:

P1(qH) = max
{

qH − π, 0
}
= 0;

P1(qL) ∈ (0,+∞).

It is interesting that the seller has an incentive to offer a free high-type signal rather than a low-type

signal. Intuitively, the seller offers a signal with more precision to introduce a greater variance on

the posterior belief. By doing so, there exists a strictly positive probability that the buyer ends

up with a posterior belief sufficiently close to the centre, which induces the buyer to acquire a

signal associated with strictly positive surplus in period t = 2. For notational convenience, a set
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of strategies are defined as follows.

Definition 1.3. Let τ ∈ {H, A, C} ≡ T denote a strategy in the pricing game. A strategy is called

a high-type only pricing strategy, denoted τ = H, if and only if all of the following conditions hold.

Under such a strategy, the posted price functions P̂t may not be optimal given the history, but the

signal choices q∗t must be optimal given the beliefs of the buyer and the observed menus.

(i) P̂1(qH) = max{qH − π, 0};

(ii) q∗1(P̂1) = qH ;

(iii) P̂2(qH , qH) = φ
(
qH , µ1(qH , 1)

)
;

(iv) q∗2(P̂2) = qH ;

The ex-ante expected payoff of the seller implementing the high-type only pricing strategy can be

derived as follows. The seller extracts zero information rent in period t = 1, as the prior belief

is greater than the signal precision (i.e., π > qH). The seller fully captures the information rent

P2(qH , qH) = qH − µ1(qH , 1) with the probability P(s1 = 1 | q1 = qH) = π(1 − qH) + (1 − π)qH ,

and thus the expected payoff of the seller implementing high-type only pricing strategy is:

uH
S ≡ E [uS(τ = H)] =

[
π(1 − qH) + (1 − π)qH

]
φ
(

qH , µ1(qH , 1)
)
+ max

{
qH − π, 0

}
=

[
π(1 − qH) + (1 − π)qH

] (
qH − µ1(qH , 1)

)
.

Moderate Prior Beliefs: Two-Strategy Rivalry

In the case of π
1−π ∈

[
1−qL

qL
qH

1−qH , qL

1−qL
qH

1−qH

]
, the seller has two profitable candidates for the pricing

strategy. The first one is the high-type only pricing strategy, defined in the previous paragraph, in

which the seller induces the buyer to acquire a high-type signal in both periods. The second one is

the aggressive pricing strategy, in which the seller induces the buyer to acquire a low-type signal in

period t = 1, followed by a high-type signal in period t = 2. Since the buyer acquires a signal in

period t = 2 only if s1 = 1, there exists no information asymmetry between the two parties. That

is, the seller perfectly understands that s1 = 1 must be realised if the buyer approaches them for a

second signal. Effectively, the seller is implementing the aggressive pricing strategy. The ex-ante

expected payoff of the seller implementing the aggressive pricing strategy is:
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uA
S ≡ E [uS(τ = A)] =

[
π(1 − qL) + (1 − π)qL

]
φ
(

qH , µ1(qL, 1)
)
+

[
max

{
qL − π, 0

}]
.

Definition 1.4. Let τ ∈ T denote a strategy in the pricing game. A strategy is called an aggressive

pricing strategy, denoted τ = A, if and only if all of the following conditions hold. Under such a

strategy, the posted price functions P̂t may not be optimal given the history, but the signal choices

q∗t must be optimal given the beliefs of the buyer and the observed menus.

(i) P̂1(qL) = max{qL − π, 0};

(ii) q∗1(P̂1) = qL;

(iii) P̂2(qL, qH) = φ
(
qH , µ1(qL, 1)

)
;

(iv) q∗2(P̂2) = qH .

With risk neutrality, the seller always prefers the high-type only pricing strategy regardless

of the relationship of π, qH , and qL. The probability of a trade decreases in q1 (i.e.,

π(1 − qH) + (1 − π)qH < π(1 − qL) + (1 − π)qL), whilst the ex-post surplus increases in q1

(i.e., qH − µ1(qH , 1) > qH − µ1(qL, 1)), both in a linear way. The effect of the ex-post surplus

dominates over that of the probability of a trade.

Lemma 1.3. Let f (q) ≡ [π(1 − q) + (1 − π)q]
[
qH − µ1(q, 1)

]
. Then, we have, f is increasing in q,

∀q ∈
(

1
2 , qH

)
.

Proof. See Appendix 1.A.4.

As a result, given uH
S = f (qH) and uA

S = f (qL), according to Lemma 1.3, the high-type only

pricing strategy dominates over the aggressive pricing strategy as qH > qL and f (·) is increasing.

Weak Prior Beliefs: Three-Way Strategic Competition

In the case of π
1−π ∈

(
1, 1−qL

qL
qH

1−qH

]
, there are three profitable candidates for pricing strategies:

high-type only, aggressive, and conservative. Note that π > qH > qL is not possible as

this contradicts the inequality π
1−π < 1−qL

qL
qH

1−qH . In consequence, there are only two cases:

qH > π > qL and qH > qL > π.

Definition 1.5. Let τ ∈ T denote a strategy in the pricing game. A strategy is called a conservative

pricing strategy, denoted τ = C, if and only if all of the following conditions hold. Under such a
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strategy, the posted price functions P̂t may not be optimal given the history, but the signal choices

q∗t must be optimal given the beliefs of the buyer and the observed menus.

(i) P̂1 = max
{

qL − π, 0
}
+ V(qL, P̂2);

(ii) q∗1(P̂1) = qL;

(iii) P̂2(qL, qH) = φ
(
qH , µ1(qL, 0)

)
;

(iv) q∗2(P̂2) = qH .

The ex-ante expected payoff of the seller implementing the conservative pricing strategy is:

uC
S ≡ E [uS(τ = C)]

=
[
1
]

φ
(

qH , µ1(qL, 0)
)

+
[
max{qL − π, 0}+

[
π(1 − qL) + (1 − π)qL

] (
φ
(

qH , µ1(qL, 1)
)
− φ

(
qH , µ1(qL, 0)

))]
=

[
πqL + (1 − π)(1 − qL)

] (
qH − µ1(qL, 0)

)
+

[
π(1 − qL) + (1 − π)qL

] (
qH − µ1(qL, 1)

)
.

The expected payoff of conservative pricing strategy implementation is strictly greater than

aggressive pricing strategy implementation, which implies that the conservative pricing strategy

strictly dominates the aggressive pricing strategy. Specifically, the probability of a trade in period

t = 2 is enhanced to one, since the seller gives up extracting the surplus from the buyer with a

signal realisation of s = 1, in exchange of extra surplus from the buyer with a signal realisation of

s = 0. However, the seller is able to extract the surplus they give up in period t = 2 by charging its

expected value in the first period, which does not violate the participation constraint of the buyer.

Intuitively, the buyer understands that they might enjoy a positive surplus due to information

asymmetry between the two parties in the second period. Consequently, they are willing to be

charged up to the expected value of the positive surplus in advance, which is:

V(qL) =
[
π(1 − qL) + (1 − π)qL

] (
φ
(

qH , µ1(qL, 1)
)
− φ

(
qH , µ1(qL, 0)

))
.

As a result, the seller effectively extracts the entire ex-ante expected surplus, whilst the buyer

obtains an ex-ante expected surplus of zero. This implies that the conservative pricing strategy

strictly dominates the aggressive one, uC
S > uA

S . See Appendix 1.A.7 for a proof. However, a caveat

arises regarding the conservative strategy. The inequality uC
S > uA

S does not necessarily imply that

the seller prefers τ = C to τ = A under the information set in which the seller chooses a menu in
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the second period. The seller at t = 2 overlooks the role of V(qL, ·), as the corresponding surplus

has already been obtained in period t = 1. Lacking commitment, the seller at t = 1 cannot enforce

their future self to adopt the conservative strategy in period t = 2. Nevertheless, this issue is not

problematic, as it will be shown that τ = H is strictly preferred to τ = C, and therefore τ = H

always constitutes an equilibrium.

Next investigate the preference between the high-type only pricing strategy and the conservative

pricing strategy. It can be formally shown that the seller always prefers the high-type only pricing

strategy, which strictly dominates the conservative pricing strategy. See Appendix 1.A.6 for a

proof. The advantage of selling the high-type signal in period t = 1 is the greater variance on

signal realisation which generates more surplus to be extracted. On the other hand, the advantage

of selling the low-type signal with implementation of the conservative pricing strategy is the

greater probability of sale in the second period. However, the expected surplus is lower. Given

the assumption that the seller exhibits risk-neutral behaviour, they overlook the risk and only

take the magnitude of the expected surplus into account. Consequently, the high-type only

strategy is strictly preferred. To sum up concisely, we have, uH
S > uC

S > uA
S , given any value of

(π, qH , qL) ∈
(

1
2 , 1

)3
.

Proposition 1.16. Suppose that π
1−π ∈

(
1,
(

qH

1−qH

)2
]

holds.

(i) The optimal menu setting strategy in period t = 1 is:
(
P1(qH),P1(qL)

)
∈ {0} × R+.

(ii) The implied expected payoff is: uH
S = −π(1 − qH)2 + (1 − π)qH2

> 0.

The dominance of the high-type only pricing strategy reflects a fundamental trade-off in dynamic

information markets. Although high-precision signals reduce the probability of second-period

trade, they generate substantially larger information rents when trade occurs. The magnitude

effect systematically outweighs the probability effect, making quality concentration optimal.

Moreover, the high-type only strategy achieves first-best outcomes through natural buyer

revelation, eliminating inefficiencies from information asymmetry whilst maximising expected

seller profits.

1.5 Welfare Implication

This section examines the welfare properties of the dynamic information selling mechanism.

The analysis addresses four fundamental questions: whether the equilibrium achieves first-best
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outcomes despite information asymmetry, how the seller should optimally design the information

structure, whether expanding signal menus enhances profits, and what role commitment plays

in dynamic pricing. These welfare implications reveal surprising insights about the efficiency of

information markets and the strategic value of quality concentration over menu diversification.

1.5.1 First-Best Benchmark and the Action-State Paradox

A fundamental principle in mechanism design theory holds that achieving first-best outcomes

typically requires the number of available instruments to exceed the number of possible states,

providing sufficient degrees of freedom for optimal contracting. In standard information design

problems, such a principle manifests as needing multiple signal types to screen different buyer

types and extract full surplus. Our model presents a striking departure from such a principle.

Despite having only one meaningful action in equilibrium, offering qH = 1, across two possible

first-period states s1 ∈ {0, 1}, the seller achieves first-best outcomes. Such an apparent violation

of the standard action-state relationship occurs because the dynamic structure fundamentally

transforms the nature of the contracting problem.

The key insight is that buyer behaviour functions as an additional instrument that provides

the seller with crucial information. When the buyer chooses the high-type signal, q1 = qH ,

in the first period, their subsequent return behaviour perfectly reveals the unobserved signal

realisation s1. Specifically, buyers who return for a second signal implicitly reveal that their first

signal contradicted their prior belief, whilst non-returning buyers indicate that their signal was

confirming. Such a behavioural revelation mechanism operates as follows. Consider a buyer who

acquires qH in the first period. If the signal realisation confirms their prior belief, their posterior

belief becomes sufficiently extreme that any second signal provides no positive information

value. Conversely, if the signal contradicts the prior belief, sufficient uncertainty remains to

justify acquiring additional information. The seller, observing only the buyer return decision, can

perfectly infer which scenario occurred.

Such a revelation mechanism creates natural market segmentation which eliminates the need for

complex screening menus. The seller can implement a simple strategy: extract full information

rent from returning buyers, those who received contradictory signals, whilst correctly anticipating

that non-returning buyers have no willingness to pay for additional information. Unlike static

mechanisms in which the seller must use multiple instruments to separate buyer types ex-ante, the

dynamic structure allows separation through revealed behaviour. The economic intuition is that
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time and buyer actions serve as substitutes for menu complexity. Rather than offering multiple

signal types to screen different buyer types simultaneously, the seller uses the sequential structure

to let buyers self-select through their return behaviour. Such an approach transforms a complex

multidimensional screening problem into a sequence of simpler participation constraint problems.

In static information selling models, achieving first-best typically requires satisfying multiple

incentive compatibility constraints across different buyer types, necessitating complex mechanisms

with many instruments. Here, the dynamic structure reduces the problem to simple participation

constraints which can be satisfied with a single high-quality signal. The participation constraint

for returning buyers becomes straightforward. They will acquire a second signal if and only if the

price does not exceed their information rent. Since the seller can identify returning buyers perfectly

and knows their information rent precisely, having inferred their signal realisation, setting the

price equal to such rent extracts full surplus whilst maintaining participation. The result explains

why the standard action-state relationship breaks down in our setting. The seller effectively

has access to more instruments than immediately apparent: the first-period signal choice, the

second-period signal choice, and the revealed information from the buyer return decision. Such

three instruments are sufficient to implement first-best allocations across the two-state space.

The result demonstrates that dynamic structures can overcome the apparent limitations imposed

by action-state ratios in mechanism design. When the sequential actions of agents reveal private

information, the effective dimensionality of the mechanism expands beyond the number of explicit

instruments. The key condition is that the information revelation must be sufficiently rich to

allow the principal to tailor mechanisms to each agent type. In our context, the binary nature of

the return decision provides exactly the right amount of information to achieve efficiency. The

seller learns whether the buyer received confirming or contradictory evidence, which is precisely

the information needed to set optimal prices for the second period. Such alignment between

the information revealed and the information required for optimal mechanism design drives the

efficiency result.

1.5.2 Global Optimum of Information Mechanism Design

This section examines the optimal information mechanism design for the information seller. Given

the prior belief, π, how should the seller optimally choose the signal types, (qH , qL), to maximise

their expected payoff? According to Proposition 1.16, given any (π, qH , qL) ∈
(

1
2 , 1

)3
, the seller

induces the buyers to acquire qH in both periods as such strategy maximises their expected payoff.
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Consequently, only the precision of the high-type, qH , matters. It can be proven that the optimality

suggests qH∗
= 1. Thus, we have the following proposition.

Proposition 1.17. Given any π ∈
(

1
2 , 1

)
, the global optimal signal choice is qH∗

= 1, with the

implementation of high-type only pricing strategy.

Proof. See Appendix 1.A.5.

Recall that the expected payoff of the seller, given τ = H is implemented and qH > π, is given by:

uH
S =

[
π(1 − qH) + (1 − π)qH

]
φ
(

qH , µ1(qH , 1)
)
+

(
qH − π

)
.

The probability of a trade is, π(1 − qH) + (1 − π)qH , equivalent to the probability that s1 = 1 is

realised. The probability is decreasing in qH , which implies that a higher precision is associated

with a lower chance to trade. However, the ex-post information rent possesses a greater increasing

momentum when the precision is higher. More specifically, the posterior belief regarding the

status quo decreases whilst the signal precision is higher, which widens the difference between the

two. In effect, the magnitude of information rent grows even faster. This can also be verified from

the first-order derivative: ∂uS
∂qH = 2 − (2π − 1)(2qH − 1), which is always positive. The increasing

momentum becomes higher given qH further away for the prior belief.

This result shows that although there is a trade-off between the probability of trade and the rent

obtained per transaction, the effect of information rent dominates. As a result, the seller prefers to

offer the most informative signals available. The optimal information design therefore prioritises

quality over quantity, with the seller focusing on highly precise signals rather than maintaining a

broad menu of options.

1.5.3 More than Two Signal Types

The baseline model assumes two available signal types. A natural extension considers whether

expanding the menu to include additional signal types affects the equilibrium outcome and the

expected payoff of the seller. The analysis shows that such expansion brings no benefit, as the

optimal outcome remains unchanged regardless of the number of signals offered. To formalise

this result, consider an economy with a finite set of signal types denoted by Q = {q1, q2, . . . , qN},

where q1 > q2 > . . . > qN . The underlying intuition stems from the nature of information rent

extraction in the two-period setting. When multiple signal types are available, the optimal strategy
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of the seller is still to induce the buyer to acquire only the highest precision signal in both periods,

effectively disregarding all other options.

This outcome follows from the relationship between information rent and signal precision.

Suppose the seller selects signals qi and qj on the equilibrium path, where qi > qj. Consistent

with the Propositions 1.15 and 1.16, the optimal pricing strategy induces q1 = q2 = qi in both

periods. The seller has no incentive to offer signals of lower precision, as these generate strictly

lower information rent. Since information rent increases with precision, the seller always prefers

to extract surplus by encouraging the buyer to acquire the most precise signal available. As long

as qN satisfies π
1−π ∈

[
1,
(

q1

1−q1

)2
]

, follow the proof strategy for Proposition 1.17 and it can be

inferred that the seller chooses the highest type, q1, at the optimum. If the inequality does not

hold, by Proposition 1.15, any signal induced and price set is an equilibrium, as there exists no

signal associated with strictly positive information rent.

Proposition 1.18. Given any π ∈
(

1
2 , 1

)
and

(
q1, q2, ..., qN)

∈
(

1
2 , 1

)N
, qH∗

= max
{

q1, q2, ..., qN}
constitutes an optimal solution, with the implementation of high-type only pricing strategy.

This result shows that the optimal strategy of the seller reflects a natural form of simplicity. Instead

of managing complex menus with multiple signal types, the seller achieves the best outcome by

offering only the highest quality information available. This finding has important implications

for the study of information markets, as it suggests that competition amongst providers may

naturally favour information quality over variety.

1.5.4 Commitment and the Inapplicability of the Coase Conjecture

The dynamic pricing literature extensively examines whether commitment limitations create

inefficiencies that reduce seller expected profits. The Coase conjecture suggests that monopolists

selling durable goods face time-inconsistency problems because forward-looking buyers anticipate

future price cuts, undermining current profits. In information markets, one might expect similar

commitment issues to arise when sellers interact with buyers across multiple periods. Our analysis,

which follows Perfect Bayesian Equilibrium without commitment, reveals that such concerns are

unfounded in the present setting. Under our equilibrium concept, the seller cannot commit to

future pricing strategies at the outset. Instead, in each period, the seller re-optimises to choose the

menu which maximises their expected payoff given the observed history and their beliefs about

buyer behaviour. The absence of commitment means that buyers must form rational expectations
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about how the seller will behave in future periods, taking into account the incentive of the seller

to re-optimise.

The classical Coase problem emerges when a monopolist competes with their own future pricing

decisions. Buyers of durable goods anticipate that the seller will reduce prices in subsequent

periods to capture additional demand, leading them to delay purchases or demand lower current

prices. The anticipation of future price reductions erodes the ability of the seller to extract surplus,

creating a time-inconsistency problem that commitment devices could potentially resolve. Three

structural features of our model eliminate the conditions which give rise to Coase-style problems.

First, information signals are inherently non-durable and period-specific. The information of

each period addresses distinct uncertainty, preventing the seller from competing with their own

past information provision. A buyer who purchases a signal in period t = 1 faces genuinely new

uncertainty in period t = 2, unlike buyers of durable goods who purchase once for persistent

consumption. Second, the seller faces no customer base erosion across periods. In durable goods

markets, each sale permanently removes a customer from the potential buyer pool, creating

pressure to reduce prices over time. Here, buyers who purchase information in period 1 may

retain demand in period t = 2 due to residual uncertainty. The seller does not exhaust their market

through early sales, eliminating the dynamic which drives price-cutting incentives in traditional

Coase problems. Third, the key information asymmetry in our model, namely the inability of

the seller to observe signal realisations, affects only the second period. Such timing eliminates

the forward-looking strategic behaviour which typically generates time-inconsistency concerns.

Buyers make first-period decisions without needing to anticipate how the seller will respond to

unobserved information, since the seller learns nothing new between periods about buyer types

that would alter their re-optimisation incentives.

The equilibrium mechanism naturally aligns with dynamic incentives even without commitment.

When the seller re-optimises in the second period, the optimal strategy remains offering only

high-type signals, creating a simple and predictable pricing structure. The seller has no incentive to

deviate from such a strategy when re-optimising because doing so would strictly reduce expected

profits regardless of first-period outcomes. Moreover, the information revelation mechanism

which drives our efficiency result operates effectively without commitment. The ability of

the seller to condition second-period prices on first-period choices, whilst re-optimising based

on observed buyer behaviour, creates the precise information structure needed for first-best

outcomes. Commitment to fixed prices across all contingencies would eliminate the beneficial

49



CHAPTER 1: DYNAMIC SALE OF INFORMATION 50

re-optimisation which allows the seller to tailor second-period menus to the information revealed

through buyer actions. The broader implication is that commitment concerns in information

markets depend critically on the persistence of information across periods and the structure of

information asymmetries. When information needs are renewed each period and the seller’s

re-optimisation incentives align with efficiency, the standard time-inconsistency problems which

motivate commitment devices do not arise. The result clarifies when commitment mechanisms

are likely to be valuable in dynamic information provision settings.

1.5.5 The Sustainability Challenge of Full Extraction in Extended Horizons

The remarkable full surplus extraction result in our two-period framework naturally raises the

question: does this property extend to longer horizons? This section examines a three-period

model in which the seller continues offering only high-type signals qH . The analysis reveals

that whilst full extraction remains theoretically achievable through a specific pricing strategy, its

sustainability without commitment becomes problematic, a challenge absent in the two-period

case. Consider three periods of potential signal acquisition with only qH available. A crucial

observation is that the posterior belief in any period t is determined by the difference between the

number of confirming signals (i.e., s = 0) and that of contradictory signals (i.e., s = 1). When this

difference equals zero, the posterior returns to the prior π. This counting structure implies that in

any period, at most one posterior belief value generates pivotal demand, specifically one of the

two posteriors closest to the decision threshold 1
2 , one approaching from below and the other one

from above.

Final Period Analysis At the beginning of period t = 3, the buyer holds posterior belief

determined by their signal history. Let δ denote the difference between the number of confirming

and contradictory signals:

• δ = +2: Both signals confirmed (0, 0), posterior pushed toward 1;

• δ = 0: One of each (0, 1) or (1, 0), posterior equals π;

• δ = −2: Both contradicted (1, 1), posterior pushed toward 0.

To illustrate the extraction mechanism, consider one possible configuration where

µ(δ = −1) < 1
2 < µ(δ = 0). In this example, only buyers with δ = 0 find the third-period signal

pivotal. With δ = 0, the signal moves them to δ ∈ {+1,−1}, crossing the threshold and altering
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their decision. These buyers have positive willingness-to-pay equal to their information rent. For

buyers with δ ∈ {+2,−2}, an additional signal moves them to δ ∈ {+3,+1} or δ ∈ {−1,−3}. In

this configuration, neither transition crosses the decision threshold. The third-period signal cannot

change their optimal decision, yielding zero value. The seller sets P3 equal to the information rent

at the unique pivotal posterior, extracting full surplus from the only type with demand.

The Sustainability Problem in Period 2 Working backwards to period t = 2, the buyer knows

they will capture zero surplus in period t = 3 due to perfect extraction. Given any first-period

realisation s1, the buyer will find the second-period signal pivotal only with specific posterior

µ1(s1). Following our running example, this target is µ(δ = −1). The naive approach would

set P2(s1) = qH − max{µ1(s1 = 1), 1 − µ1(s1 = 1)}, extracting full rent from a pivotal buyer.

However, this strategy proves suboptimal. Whilst s1 = 1 buyers purchase as predicted, s1 = 0

buyers, finding the signal non-pivotal, would exit permanently. This premature exit destroys

potential future surplus: these buyers might receive s2 = 1, creating valuable third-period demand.

To maximise total surplus creation, the seller must ensure all buyer types continue acquiring

signals, maintaining the possibility of reaching pivotal states. This requires offering second-period

signals for free (i.e., P2 = 0), sacrificing immediate extraction from pivotal buyers to preserve

future opportunities. Given the dynamic structure, the seller is able to recover this foregone

revenue through first-period pricing, extracting anticipated future surplus in advance, as in the

conservative pricing in the main model. The strategy achieves full extraction if sustainable under

Perfect Bayesian Equilibrium. However, sustainability requires the seller not to deviate in period

t = 2. The question is whether the seller maintains the free signal policy P2 = 0, or succumbs

to the temptation of charging the positive rent P2 = qH − max{µ1(s1 = 1), 1 − µ1(s1 = 1)}. The

answer depends on parameters. When third-period surplus is small, for instance if µ(δ = 0) is

sufficiently close to qH , the immediate gain from deviation may exceed the lost future revenue.

Without commitment, the seller faces time inconsistency: the ex-ante optimal strategy with free

intermediate signals becomes ex-post suboptimal, which contrasts sharply with the two-period

case, where no such intermediate temptation arises.

Generalisation to n Periods The mentioned mechanism can be extended to dynamics with

finitely many periods. For full surplus extraction, the following pricing strategy is necessary:

1. Final period: Set the price equal to the information rent of the pivotal buyer.
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2. First period: Set the price equal to expected total surplus from the seller’s perspective.

3. Intermediate periods: Offer free signals to maintain universal participation.

The strategy maximises surplus creation by ensuring all buyers remain active, maximising the

probability of reaching pivotal events. However, sustainability becomes increasingly fragile as

horizons extend. Each intermediate period presents a temptation to deviation, and the conditions

ensuring time consistency become progressively stringent.

The Role of Signal Diversity By restricting attention to a single signal precision, we ensure at

most one pivotal posterior per period. Introducing multiple signal types would create additional

pivotal cases, further complicating the surplus extraction problem. With both qH and qL available,

different posterior beliefs might find different signals optimal, creating heterogeneity the seller

cannot screen without single-crossing. As shown in Proposition 1.7, the failure of single-crossing

prevents profitable separation even with multiple signals. Moreover, whilst lower-type signals

might increase the probability of positive revenue by creating more pivotal events, they also

reduce the magnitude of extractable rents. My conjecture is that expected total surplus decreases

with signal diversity: lower precision dampens information value creation more than increased

pivotal frequency compensates.

The analysis reveals a fundamental tension in multi-period information markets. Whilst

full extraction remains theoretically achievable through carefully structured pricing, its

implementation requires either commitment mechanisms or parameter configurations that

naturally deter deviation. The two-period model’s elegance stems partly from avoiding this

tension: with no intermediate periods, the commitment problem disappears. Does introducing

signals with lower precision ever increase total surplus by sustaining participation across longer

horizons? Under the two-period model, the answer is definitively no. With extended horizons,

the question becomes more nuanced: might signal diversity help overcome the commitment

problem by smoothing incentives across periods? This remains an open question requiring

further investigation. The three-period extension illuminates both the potential and limitations

of dynamic surplus extraction. Full extraction remains achievable through strategic pricing that

maintains universal participation, but sustainability without commitment becomes problematic,

a challenge absent in our two-period benchmark. This finding qualifies our main result: whilst

quality concentration with high-precision signals remains optimal when feasible, extended

horizons introduce implementation challenges that may require commitment devices or alternative
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mechanisms to resolve. The robustness of full extraction thus depends not only on the information

structure but also on the institutional environment supporting dynamic contracting.

1.6 Conclusion

This paper analyses the Perfect Bayesian Equilibrium of a dynamic game between an information

seller and a buyer, offering key insights into the structure and efficiency of information markets.

The analysis shows that, despite the complexity of dynamic information pricing with multiple

signal types and informational asymmetries, the equilibrium outcome displays simplicity and

efficiency.

The central result establishes that only the highest precision signal is relevant in equilibrium, with

all other signal types having no effect on the seller optimisation problem. This challenges the

view that product diversity improves seller outcomes. Instead, the optimal strategy involves

offering only the most informative signal, implementing a high-type only approach that excludes

lower-quality options. This suggests that information markets tend to prioritise quality over

variety, with sellers focusing on the provision of valuable information rather than maintaining

complex menus.

Notably, the analysis shows that information asymmetry does not hinder the seller in extracting

information rent. Although the seller cannot observe signal realisations, the equilibrium outcome

achieves the first-best benchmark. This result follows from the structure of the optimal pricing

mechanism, which aligns with efficient information provision. By focusing on high-precision

signals, the strategy renders the unobservability of some realisations irrelevant.

The welfare implications extend beyond efficiency. The preference for precise signals introduces a

natural incentive for information quality, since more accurate signals enable greater information

rent extraction. This alignment between individual incentives and efficiency indicates that market

forces may support the emergence of high-quality information provision without requiring

regulatory intervention.

The analysis also clarifies the role of commitment. In contrast to many dynamic pricing settings

where commitment issues arise due to time inconsistency, this model shows that commitment

devices yield no advantage. The absence of self-competition across periods and the non-durable

nature of signals ensures that the usual logic behind the Coase Conjecture does not apply. This
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result informs where commitment concerns are likely to be relevant in information markets.

Several extensions could deepen the understanding of dynamic information markets. First,

introducing buyer heterogeneity in prior beliefs or decision problems could reveal how sellers

tailor signal design for different users. Second, incorporating competition amongst multiple

information sellers may offer insights into market structure and strategic interactions. Third,

considering persistent information or signals with intertemporal correlation could uncover

dynamics absent from the baseline model. Finally, empirical work testing the model predictions

in applied settings would offer valuable evidence and guide further theoretical development.
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Appendix 1.A: Omitted Proofs

1.A.1 Proofs of Section 4.1

Proof of Proposition 1.1. The buyer solves the following optimisation problem to maximise their

expected payoff (before the realisation of the true state),

y∗ = arg max
y∈{0,1}

{
E[uy

B(θ, y)]−
2

∑
t=1

Pt(·)
}

= arg max
y∈{0,1}

{
E[uy

B(θ, y)]
}

= arg max
y∈{0,1}

{
µ2 · 1y=0 + (1 − µ2) · 1y=1

}
.

Clearly, y∗ = 0 if µ2 ≥ 1 − µ2, and, y∗ = 1 if µ2 ≤ 1 − µ2, which implies that, y∗ = 0 if µ2 ≥ 1
2 ,

and, y∗ = 1 if µ2 ≤ 1
2 . The implied expected payoff is, max{µ2, 1 − µ2}. Note that the posterior

belief, µ2, depends on both the signal realisation (s1, s2), and the signal types, (q1, q2). However,

the explicit functional form of µ2 is not relevant to the maximisation problem of the buyer at this

stage, as the posterior belief is independent of the choice variable, y.

1.A.2 Proofs of Section 4.2

Proof of Proposition 1.2. The buyer evaluates the probability of signal realisation s2 ∈ {0, 1} as

P(s2 | q2). Given the signal realisation s2, the implied expected payoff before the true state

realisation is:

E[uB | q2 ∈ {qH , qL}] = P(s2 = 0|q2)max {µ2(q1, s1, q2, 0), 1 − µ2(q1, s1, q2, 0)}
+ P(s2 = 1|q2)max {µ2(q1, s1, q2, 1), 1 − µ2(q1, s1, q2, 1)}
− P2(·, q2)−P1(·)

= [µ1q2 + (1 − µ1)(1 − q2)]max
{

µ1q2

µ1q2 + (1 − µ1)(1 − q2)
,

(1 − µ1)(1 − q2)

µ1q2 + (1 − µ1)(1 − q2)

}
+ [µ1(1 − q2) + (1 − µ1)q2]max

{
µ1(1 − q2)

µ1(1 − q2) + (1 − µ1)q2
,

(1 − µ1)q2

µ1(1 − q2) + (1 − µ1)q2

}
−P2(·, q2)−P1(·)
= max {µ1q2, 1 − µ1 − q2 + µ1q2}+ max {µ1 − µ1q2, q2 − µ1q2} − P2(·, q2)−P1(·)
= max {µ1, 1 − q2}+ max {µ1, q2} − µ1 −P2(·, q2)−P1(·).
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Proof of Lemma 1.1. Given the signal realisation s2 = 0, the posterior belief before the decision is:

µ2(µ1, q2, s2 = 0) =
µ1q2

µ1q2 + (1 − µ1)(1 − q2)
=

1

1 + (1−µ1)(1−q2)
µ1q2

>
1
2

,

since 1 − µ1 < q2 and µ1 > 1 − q2.

Given the signal realisation s2 = 1, the posterior belief before the decision is:

µ2(µ1, q2, s2 = 1) =
µ1(1 − q2)

µ1(1 − q2) + (1 − µ1)q2
=

1

1 + (1−µ1)q2
µ1(1−q2)

<
1
2

,

since 1 − µ1 > 1 − q2 and µ1 < q2. By Definition 1.2, µ2(µ1, q2, s2 = 0) > 1
2 > µ2(µ1, q2, s2 = 1)

implies that q2 is pivotal.

Proof of Proposition 1.3. When µ1 ∈ [1 − q2, q2], the signal is pivotal, and direct calculation shows

that,

E[max{µ2, 1 − µ2} | µ1, q2] = max{µ1, 1 − q2}+ max{µ1, q2} − µ1 = q2.

Therefore, ϕ(q2, µ1) = q2 − max{µ1, 1 − µ1}.

When µ1 > q2, the signal is non-pivotal, and direct calculation shows that,

E[max{µ2, 1 − µ2} | µ1, q2] = max{µ1, 1 − q2}+ max{µ1, q2} − µ1 = µ1.

Therefore, ϕ(q2, µ1) = µ1 − max{µ1, 1 − µ1} = 0.

When µ1 < 1 − q2, the signal is non-pivotal, and direct calculation shows that,

E[max{µ2, 1 − µ2} | µ1, q2] = max{µ1, 1 − q2}+ max{µ1, q2} − µ1 = 1 − µ1.

Therefore, ϕ(q2, µ1) = (1 − µ1)− max{µ1, 1 − µ1} = 0.

Proof of Proposition 1.4. Suppose first that µ1 > q2. If the buyer acquires signal q2 ∈ Q, the

expected payoff of the buyer is:

E[uB | q2 ∈ Q] = µ1 −P2(·, q2)−P1(·).
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If instead the buyer chooses not to acquire a second signal (i.e., q2 = ∅), the expected payoff of

the buyer is:

E[uB | q2 = ∅] = max{µ1, 1 − µ1} − P1(·) = µ1 −P1(·)
> µ1 −P2(·, q2)−P1(·) = E[uB | q2 ∈ Q],

which implies that q2 = ∅ is optimal.

Now suppose that µ1 < 1 − q2. We have the following inequality:

E[uB | q2 = ∅] = max{µ1, 1 − µ1} − P1(·) = (1 − µ1)−P1(·)
> (1 − µ1)−P2(·, q2)−P1(·) = E[uB | q2 ∈ Q],

which implies that q2 = ∅ is optimal.

Proof of Proposition 1.5. Given that q2 = qL is pivotal, by Lemma 1.1, we have µ1 ∈ [1 − qL, qL].

Since qH > qL, the containment relation [1 − qL, qL] ⊂ [1 − qH , qH ] holds, which implies

µ1 ∈ [1 − qH , qH ]. Therefore, by Lemma 1.1, qH is also pivotal.

Proof of Proposition 1.6. We prove this by showing that the optimal choice of the buyer must satisfy

all three conditions, and that these conditions are sufficient for optimality.

Necessity: Suppose q∗2 ∈ Q is the optimal choice of the buyer. We show that each condition must

hold.

Condition (i) — Participation Constraint: The buyer chooses q∗2 over the outside option q2 = ∅. By

the earlier analysis, the expected payoffs are:

E[uB | q∗2 ] = q∗2 −P2(·, q∗2)−P1(·) (if pivotal),
E[uB | q2 = ∅] = max{µ1, 1 − µ1} − P1(·).

Optimality requires, E[uB | q∗2 ] ≥ E[uB | q2 = ∅], which implies,

q∗2 −P2(·, q∗2)−P1(·) ≥ max{µ1, 1 − µ1} − P1(·).
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Simplifying yields condition (i). If P2(·, q∗2) = 0, then the buyer is indifferent, so the condition

holds trivially.

Condition (ii) — Incentive Compatibility: The buyer chooses q∗2 over any alternative signal q′2 ∈ Q.

Optimality requires:

E[uB | q∗2 ] ≥ E[uB | q′2] for all q′2 ∈ Q.

If both signals are pivotal, this reduces to:

q∗2 −P2(·, q∗2) ≥ q′2 −P2(·, q′2).

If q′2 is not pivotal, then the expected payoff of the buyer from q′2 is

max{µ1, 1 − µ1} − P2(·, q′2)−P1(·), which is strictly less than the outside option if P2(·, q′2) > 0.

Condition (iii) — Pivotal Constraint: By Proposition 1.4, if P2(·, q∗2) > 0 and µ1 /∈ [1 − q∗2 , q∗2 ], then

q∗2 = ∅ is optimal. This contradicts our assumption that q∗2 ∈ Q. Therefore, either µ1 ∈ [1 − q∗2 , q∗2 ]

or P2(·, q∗2) = 0.

Sufficiency: Now suppose all three conditions hold for some q∗2 ∈ Q. We show that q∗2 is optimal.

Dominance over the outside option: By condition (i), q∗2 yields at least as high an expected payoff as

q2 = ∅.

Dominance over alternatives: By condition (ii), q∗2 yields at least as high an expected payoff as any

q′2 ∈ Q.

Well-defined payoffs: By condition (iii), either q∗2 is pivotal (so the payoff calculation is valid) or it is

offered for free (so the buyer is indifferent and any choice is optimal).

Therefore, q∗2 maximises the expected payoff of the buyer amongst all available options.

Necessity of all conditions: Finally, we show that if any condition fails, then q∗2 = ∅ is optimal. If

(i) fails, the outside option dominates q∗2 . If (ii) fails, some alternative q′2 dominates q∗2 . If (iii) fails,

by Proposition 1.4, q∗2 cannot be optimal when priced strictly above zero.

This completes the proof.
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1.A.3 Proofs of Section 4.3

Proof of Proposition 1.7. Suppose that, at the optimum, the seller plays the following pooling

strategy. The buyer is induced to acquire q2 = qL given any signal realisation s1. The prices set by

the seller, (P2(·, qH),P2(·, qL)), must follow the participation constraints by Proposition 1.6,

P2(·, qL) ≤ qL − max{µ1, 1 − µ1}.

It can be shown that the price, P2(·, qL) + ε, where ε → 0+, satisfies the participation constraint

for q2 = qH ,

P2(·, qL) ≤ qL − max{µ1, 1 − µ1}
⇐⇒ P2(·, qL) + ε ≤ qL + ε − max{µ1, 1 − µ1} ≤ qH − max{µ1, 1 − µ1}.

The seller strictly improves their payoff, which contradicts the conjectured optimality.

Next investigate if q2 = qL can be chosen under a separating strategy. Suppose that, at the

optimum, the seller plays the following separating strategy. The buyer is induced to acquire

q0 ∈ Q given the signal realisation s1 = 0, whilst the buyer is induced to acquire q1 ∈ Q \ {q0}

if s1 = 1 is realised. For notational convenience, the following are defined: µ0
1 ≡ µ1(q1, 0) and

µ1
1 ≡ max{µ1(q1, 1), 1 − µ1(q1, 1)}. The prices set by the seller, (P2(·, q0),P2(·, q1)), must follow

the incentive compatibility constraints by Proposition 1.6:

q0 − µ0
1 −P2(·, q0) ≥ q1 − µ0

1 −P2(·, q1) ⇐⇒ q0 −P2(·, q0) ≥ q1 −P2(·, q1);

q1 − µ1
1 −P2(·, q1) ≥ q0 − µ1

1 −P2(·, q0) ⇐⇒ q1 −P2(·, q1) ≥ q0 −P2(·, q0).

Combine the two inequalities and we have q0 − q1 = P2(·, q0) − P2(·, q1), which implies

q0 −P2(·, q0) = q1 −P2(·, q1).

Moreover, the prices must satisfy the participation constraints of the buyer: q0 − µ0
1 −P2(·, q0) ≥ 0

and q1 − µ1
1 −P2(·, q1) ≥ 0, which implies q1 − µ0

1 −P2(·, q1) ≥ 0 and q0 − µ1
1 −P2(·, q0) ≥ 0.

Given that incentive compatibility constraints and participation constraints hold, the buyer with

either signal realisation is indifferent between the two signals. The seller can obtain a higher

expected payoff if they always induce the buyer to acquire a high-type signal at the price P2(·, qH).
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The seller is better off as they increase their expected payoff by [π(1 − qL) + (1 − π)qL](qH − qL).

Proof of Proposition 1.8. We prove each claim separately.

No incentive when s1 = 0. When s1 = 0, the posterior belief of the buyer is:

µ1(qH , 0) =
πqH

πqH + (1 − π)(1 − qH)
.

It can be shown that µ1(qH , 0) > qH . Since µ1(qH , 0) > qH > qL > 1
2 , we have

µ1(qH , 0) > max{qH , qL}, which implies µ1(qH , 0) /∈ [1 − qH , qH ], and µ1(qH , 0) /∈ [1 − qL, qL], so

both signals are not pivotal. By Proposition 1.4, the buyer will not acquire either signal type at any

strictly positive price.

Incentive when s1 = 1. When s1 = 1, the posterior belief of the buyer is:

µ1(qH , 1) =
π(1 − qH)

π(1 − qH) + (1 − π)qH .

µ1(qH , 1) ≤ qH if and only if:

π(1 − qH)

π(1 − qH) + (1 − π)qH ≤ qH ,

which is equivalent to:

π

1 − π
≤

(
qH

1 − qH

)2

.

This is exactly our assumption. For the lower bound, since π > 1
2 and the signal realisation

contradicts the prior, we have µ1(qH , 1) > 1 − qH . Therefore, µ1(qH , 1) ∈ [1 − qH , qH ], making the

high-type signal pivotal. By our earlier analysis, the buyer will acquire the signal if the price is at

most qH − max{µ1(qH , 1), 1 − µ1(qH , 1)}.

Proof of Lemma 1.2. The condition π
1−π ∈

(
1, 1−qL

qL · qH

1−qH

]
implies:

µ1(qL, 0) =
πqL

πqL + (1 − π)(1 − qL)
>

π(1 − qL)

π(1 − qL) + (1 − π)qL = µ1(qL, 1).

60



CHAPTER 1: DYNAMIC SALE OF INFORMATION 61

It also implies that:

µ1(qL, 0) > 1 − µ1(qL, 1),

so that:

µ1(qL, 0) > max{µ1(qL, 1), 1 − µ1(qL, 1)},

which confirms the claim.

1.A.4 Proofs of Section 4.5

Proof of Lemma 1.3. By definition:

f (q) = [π(1 − q) + (1 − π)q]
[
qH − µ1(q, 1)

]
= [π(1 − q) + (1 − π)q]

[
qH − π(1 − q)

π(1 − q) + (1 − π)q

]
= [π(1 − q) + (1 − π)q] qH − π(1 − q)

= π(qH − 1) +
[
(1 − π)qH + (1 − qH)π

]
q,

where (1 − π)qH + (1 − qH)π > 0 implies that f (q) is increasing in q.

1.A.5 Proofs of Section 5.2

Proof of Proposition 1.17. Proof by contradiction. Suppose at the global optimum, qH = k ̸= 1. First

note that the strategy must yield a strictly positive expected payoff other than zero. If not, given

any π ∈
(

1
2 , 1

)
, there always exists a q̂H which satisfies π

1−π ∈
[

1,
(

q̂H

1−q̂H

)2
]

. By Proposition

1.16, (qH , qL) = (q̂H , ·) yields a positive expected payoff, which violates the optimality. Consider

(qH , qL) = (k + ε, k), where ε is infinitesimal and positive. By Proposition 1.16, q1 = q2 = k + ε is

optimal, which yields a strictly greater expected payoff than inducing q1 = q2 = k, contradiction.

1.A.6 Expected Payoff Comparison: τ = H vs τ = C

This section provides with a formal proof showing the high-type only pricing strategy always

dominates over the conservative pricing strategy.
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uH
S =

[
[π(1 − qH) + (1 − π)qH ][qH − max{µ1(qH , 1), 1 − µ1(qH , 1)}]

]
+

[
max{qH − π, 0}

]
=

[
π(1 − qH) + (1 − π)qH

] (
qH − µ1(qH , 1)

)
.

uC
S =

[
[1][qH − µ1(qL, 0)]

]
+

[
max{qL − π, 0}+

[
π(1 − qL) + (1 − π)qL

] (
µ1(qL, 0)− max{µ1(qL, 1), 1 − µ1(qL, 1)}

)]
=

[
[1][qH − µ1(qL, 0)]

]
+

[
π(1 − qL) + (1 − π)qL

] (
µ1(qL, 0)− µ1(qL, 1)

)
.

uH
S − uC

S =
[
π(1 − qH) + (1 − π)qH − 1

]
qH − π(1 − qH) +

πqL

πqL + (1 − π)(1 − qL)

−
([

π(1 − qL) + (1 − π)qL
] πqL

πqL + (1 − π)(1 − qL)
− π(1 − qL)

)
=

[
π(1 − qH) + (1 − π)qH − 1

]
qH + π(qH − qL) + πqL

=
[
π(1 − qH) + (1 − π)qH − 1 + π

]
qH

=
[
(2π − 1)(1 − qH)

]
qH > 0

Thus, it has been proven that, given any (π, qH , qL) ∈
(

1
2 , 1

)2
, H ≻ C holds.

1.A.7 Expected Payoff Comparison: τ = C vs τ = A

This section provides with a formal proof showing the conservative pricing strategy always

dominates over the aggressive pricing strategy.

uC
S =

[
[1][qH − µ1(qL, 0)]

]
+

[
max{qL − π, 0}+

[
π(1 − qL) + (1 − π)qL

] (
µ1(qL, 0)− max{µ1(qL, 1), 1 − µ1(qL, 1)}

)]
=

[
[1][qH − µ1(qL, 0)]

]
+

[
π(1 − qL) + (1 − π)qL

] (
µ1(qL, 0)− µ1(qL, 1)

)
=

[
[πqL + (1 − π)(1 − qL)][qH − µ1(qL, 0)]

]
+

[
π(1 − qL) + (1 − π)qL

] (
qH − µ1(qL, 1)

)
.

uA
S =

[
[π(1 − qL) + (1 − π)qL][qH − max{µ1(qL, 1), 1 − µ1(qL, 1)}]

]
+

[
max{qL − π, 0}

]
=

[
π(1 − qL) + (1 − π)qL

] (
qH − µ1(qL, 1)

)
uC

S − uA
S =

[
[πqL + (1 − π)(1 − qL)

] (
qH − µ1(qL, 0)

)
> 0.

Thus, it has been proven that, given any (π, qH , qL) ∈
(

1
2 , 1

)2
, C ≻ A holds.
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Chapter 2

Dynamic Sale of Information with Risk Aversion

2.1 Introduction

Information markets pervade modern economies, from financial research services and consulting

firms to digital platforms selling personalised data and analytics. Yet a fundamental assumption

underlying most theoretical analyses that information sellers are risk neutral sits uneasily with

empirical evidence that firms exhibit significant risk aversion in their operational decisions. The

paper investigates how the seller risk aversion transforms the strategic landscape of dynamic

information provision, revealing that the drive for higher quality signals observed under risk

neutrality, need not persist when sellers must balance expected returns against revenue volatility.

The importance of this question extends beyond theoretical interest. Real world information

providers, including investment research firms and business intelligence companies, face

substantial revenue uncertainty when selling information whose value depends on unknown

future realisations. A financial research firm, for instance, earns revenue only when its market

predictions prove sufficiently uncertain to generate client demand, creating precisely the type of

state dependent payoffs that risk-averse agents seek to avoid.

This paper extends the dynamic information selling framework by introducing risk aversion

into the preference structure of the seller. Under risk neutrality, the equilibrium pricing strategy

relies exclusively on the signal with the highest precision, as it delivers the highest expected

information rent. Whilst such a strategy introduces uncertainty in the realised payoff for the

seller, the underlying trade off is clear: higher precision leads to greater ex post information

rent conditional on a signal realisation unfavourable to the status quo, though the probability

of observing such a signal realisation is decreasing in signal precision. Nevertheless, under risk

neutrality, the marginal gain in expected information rent from increased precision dominates

the marginal loss from its declining likelihood. Consequently, a risk neutral seller strictly prefers

signals with higher precision.
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Moreover, under risk neutrality, expanding the signal space, either by introducing additional

signal types or by allowing for more flexible menu design, does not enhance the expected surplus

of the seller. In other words, increased flexibility in pricing does not translate into higher expected

payoffs. Furthermore, if the seller is endowed with the ability to design the information structure,

they will optimally choose to provide perfectly informative signals in equilibrium. This extreme

outcome reflects the alignment between precision and rent extraction when the seller does not

bear any cost from uncertainty.

The introduction of risk aversion fundamentally disrupts these simple relationships. Risk-averse

sellers do not merely seek to maximise expected revenue; they must also consider the distributional

properties of their payoffs. This creates a tension between profit maximisation and revenue

smoothing that can reverse established dominance relationships. The central insight emerges

from recognising that aggressive pricing strategies, whilst potentially more profitable on average,

concentrate revenue in specific scenarios in which buyers exhibit high uncertainty. This represents

precisely the type of volatility that risk-averse agents seek to avoid.

The analysis reveals three key departures from the risk neutral benchmark. First, risk-averse sellers

do not necessarily prefer signals with higher precision, as they may optimally choose to induce

buyers to acquire less precise signals that increase the likelihood of securing information rent

through reduced outcome volatility. Second, conservative pricing strategies that ensure universal

participation need not be dominated by aggressive approaches that maximise expected returns,

since diminishing marginal utility can make sellers prefer strategies that accept lower expected

surplus in exchange for higher certainty of positive outcomes. Third, information asymmetry

can paradoxically benefit risk-averse sellers in certain parameter regions, as the inability to

observe signal realisations enables commitment to revenue smoothing strategies that would be

unsustainable under full information.

These findings contribute to several strands of literature. Most directly, the paper extends the

growing literature on risk aversion in information markets, which has largely focused on static

settings with risk-averse buyers. The dynamic framework developed here reveals how risk

aversion affects multi period information provision strategies, showing that many insights

from static analysis do not carry over to dynamic settings. The work also contributes to the

mechanism design literature by characterising optimal dynamic mechanisms under risk aversion,

demonstrating that standard approaches fail when agents exhibit risk aversion.
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The paper proceeds as follows. Section 2.2 reviews the relevant literature on risk aversion

and information selling. Section 2.3 presents the model and establishes the baseline risk

neutral equilibrium. Section 2.4 analyses how risk aversion affects optimal pricing strategies,

characterising the conditions under which conservative strategies dominate aggressive approaches.

Section 2.5 examines welfare implications and the role of commitment mechanisms. Section 2.6

concludes with a discussion of policy implications and directions for future research.

2.2 Literature Review

The intersection of risk aversion and information selling represents a rapidly developing area that

challenges fundamental assumptions in information economics. Whilst the traditional information

selling literature assumes risk-neutral agents, introducing risk aversion fundamentally alters

market dynamics, requiring new theoretical frameworks and mechanism designs that depart

substantially from established benchmarks.

The theoretical literature establishes that risk aversion fundamentally transforms how agents value

information. Abbas et al. (2013) demonstrate that risk aversion can either increase or decrease

information value depending on decision context, with risk aversion generally decreasing the

value of perfect information through complex non-monotonic relationships. Bakır (2015) extend

this to show that information selling prices are monotonic in the degree of risk aversion, whilst

Gould (1974) provides early foundational work on risk preferences and information demand.

Cabrales et al. (2017) develop a unified framework for comparing information values across

different risk preferences, and Cabrales et al. (2013) demonstrate that more risk-averse investors

value information less because they choose conservative investment strategies, creating feedback

loops affecting information production incentives.

The mechanism design literature reveals that standard approaches fail when agents exhibit

risk aversion. Maskin and Riley (1984) show that optimal auctions for risk-averse buyers

require partial insurance through modified virtual valuation functions, fundamentally departing

from risk-neutral optimal auction of Myerson (1981). Esö and Futo (1999) analyse the reverse

problem where sellers are risk-averse, demonstrating that risk-neutral buyers can effectively

insure risk-averse sellers. Gershkov et al. (2022) find that under constant risk aversion preferences,

optimal mechanisms provide full insurance, making agent utility independent of others’ reports.

Bhalgat et al. (2012) develop algorithms showing that risk-averse sellers prefer mechanisms
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providing certainty even at the cost of lower expected revenue, whilst Sundararajan and Yan (2020)

identify robust mechanisms for risk-averse sellers that are approximately optimal regardless of

risk aversion levels.

The limited literature on dynamic information selling with risk aversion reveals significant gaps

that this paper addresses. Dai (2021) represents one of the few dynamic analyses, showing that

optimal sequential contracts shift from separating to pooling mechanisms as supplier risk aversion

increases, fundamentally altering information revelation timing. Benkert (2025) introduce loss

aversion into bilateral trade settings, demonstrating that platforms optimally provide partial

insurance in ownership but full insurance in monetary dimensions. However, these studies focus

on different information asymmetries than the one examined in this paper.

Recent work incorporates behavioural factors beyond standard risk aversion. Andries and

Haddad (2020) examine information aversion as preference-based fear of news flows, showing that

information-averse agents may prefer less information even when it improves decision-making.

Vasserman and Watt (2021) provides a comprehensive survey of risk aversion in auctions,

emphasising how risk aversion breaks revenue equivalence and creates heightened significance

for auction design decisions. Campo et al. (2011) develop semi-parametric methods for estimating

risk aversion in auctions, bridging theoretical mechanism design and empirical implementation.

Despite theoretical advances, the literature exhibits several critical limitations that this paper

addresses. First, most existing work focuses on static mechanisms, with limited analysis of

dynamic information selling where sellers face uncertainty about signal realisations. When

Bergemann et al. (2014) examine optimal menus of Blackwell experiments and Zhong (2022)

analyse dynamic information acquisition from the perspective of the buyer, neither addresses

the fundamental information asymmetry arising when sellers cannot observe signal realisations

in multi-period settings. Second, the risk aversion literature has not adequately examined how

unobservable signal realisations interact with risk preferences in dynamic settings. Hörner and

Skrzypacz (2016) analyse information sellers with private preferences but assume sellers observe

signals, whilst Doval and Skreta (2022) develop tools for dynamic mechanism design with limited

commitment but do not address risk aversion or unobservable realisations.

This paper makes three novel contributions to fill these gaps. First, it extends the dynamic

information selling literature by analysing how risk aversion affects optimal pricing strategies

when sellers cannot observe signal realisations, creating a new form of information asymmetry
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not previously studied. Second, it demonstrates how risk aversion fundamentally alters the

sustainability of commitment mechanisms in dynamic settings, showing that risk-averse sellers

may prefer pooling strategies that provide revenue insurance even when separating mechanisms

would yield higher expected returns. Third, it provides the first formal analysis of how

unobservable signal realisations interact with risk preferences to determine optimal dynamic

pricing strategies, revealing that risk aversion can make commitment mechanisms unsustainable

when full information eliminates the insurance benefits of pooling. These contributions bridge the

gap between the static risk aversion literature and dynamic information selling models, providing

new insights into how behavioural factors affect information market design in multi-period

settings with incomplete information about signal outcomes.

2.3 Model

This model builds upon the framework developed in the prior chapter. It also considers a dynamic

setting involving two agents: a decision-maker (referred to as the buyer) and an information

provider (the seller). The buyer is assumed risk neutral as in the previous chapter. However, the

seller is now assumed risk-averse. The interaction spans two discrete periods. The objective of the

seller is to design a pricing scheme for different types of signals to maximise their expected utility.

This task is subject to two key constraints arising from the behaviour of the buyer, which evolves

with their posterior beliefs over time. First, a participation constraint ensures that the buyer finds

it worthwhile to purchase a signal. Second, an incentive compatibility constraint guarantees that

the buyer prefers the seller’s intended signal over other available options.

The model assumes a binary state of the world, denoted by θ ∈ {0, 1} ≡ Θ, which determines the

ex-post payoff of the buyer. Initially, the buyer believes that the state is θ = 0 (i.e., the status quo)

with probability π ∈
(

1
2 , 1

)
. At the end of period t = 2, the buyer chooses an action y ∈ {0, 1} to

match the true state. The ex-post outcome payoff of the buyer is given by:

uy
B(θ, y) = 1y=θ .

That is, the buyer receives an outcome payoff of one if the action matches the true state, and zero

otherwise. At the beginning of each period t ∈ {1, 2}, the buyer may acquire an informative

binary signal qt ∈ {qH , qL} ≡ Q. Each signal provides noisy information about the true state and

is independently drawn across periods. A signal realisation is denoted by st ∈ {0, 1} ≡ S. The
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two signal types differ in precision, with 1 > qH > qL > 1
2 . Given signal type qt, the probability of

observing a correct signal is:

P(st = θ | θ) = qt, P(st ̸= θ | θ) = 1 − qt.

The buyer may also choose not to acquire a signal in a given period, denoted qt = ∅. Let

Q0 ≡ Q ∪ {∅} denote the full set of choices, and S0 ≡ S ∪ {∅} the set of possible signal

realisations. The seller posts a price menu in each period. In the first period, the pricing

function is P1 : Q0 → R+. In the second period, it is P2 : Q0 × Q0 → R+. It is assumed

that, P1(∅) = P2(q1, ∅) = 0 for all q1 ∈ Q0.

The game proceeds as follows.

1. In period 1, the seller posts the price menu P1.

2. The buyer chooses q1 ∈ Q0, pays P1(q1), and observes signal s1 ∈ S0.

3. In period 2, the seller observes q1, and posts a menu P2(q1, ·).

4. The buyer chooses q2 ∈ Q0, pays P2(q1, q2), and observes signal s2 ∈ S0.

5. The buyer selects action y ∈ {0, 1}, aiming to match θ.

At the beginning of period t = 1, the seller posts a price menu, P1 : Q0 → R+, with P1(∅) = 0.

Upon observing this menu, the buyer selects a signal q1 ∈ Q0. If an informative signal q1 ∈ Q

is chosen, the buyer pays P1(q1) and observes a signal realisation s1 ∈ {0, 1}. The buyer then

updates their belief using Bayes’ rule:

µ1(q1, s1) ≡ P(θ = 0 | q1, s1).

If no signal is acquired, i.e. q1 = ∅, the belief remains at the prior π, and the realisation is defined

as s1 = ∅. The seller observes the choice of the the buyer, q1, but crucially not the realisation

s1, and posts a second-period price menu, P2 : Q0 × Q0 → R+, with P2(q1, ∅) = 0. The buyer

then chooses a second signal q2 ∈ Q0. If an informative signal is chosen, they pay P2(q1, q2) and

observe a second realisation s2 ∈ {0, 1}. The buyer subsequently forms a final posterior belief:

µ2((q1, q2), (s1, s2)) ≡ P(θ = 0 | q1, q2, s1, s2).

Finally, the buyer chooses an action y ∈ {0, 1}, and payoffs are realised.
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The buyer is assumed risk neutral. As a result, their ex-post payoff to the buyer, denoted uB,

equals the outcome payoff from the final decision minus the total cost of information:

uB(θ, y, q1, q2) = uy
B(θ, y)−P1(q1)−P2(q1, q2).

The key difference in terms of assumption is here. Now the seller is inherited with a time-separable

and risk-averse preference. The signal generating cost of any type is assumed zero. Thus, the

ex-post payoff to the seller, denoted uS, is assumed:

uS(q1, q2) = u (P1(q1)) + u (P2(q1, q2)) .

Further we assume that the seller exhibits CRRA preferences, u(x) = x1−σ with σ ∈ [0, 1). Note

that σ = 0 implies risk neutrality. Zero time discount are assumed for both the seller and the

buyer at any point of time throughout the game. It is also assumed that both players rely on Bayes’

rule when measuring the probability of any event. Both players are risk neutral and apply no

discounting. Beliefs are updated according to Bayes’ rule throughout the game.

This model highlights a fundamental tension in dynamic information markets that becomes

particularly pronounced when the seller exhibits risk aversion. The introduction of CRRA

preferences with σ ∈ [0, 1) creates competing incentives between profit maximisation and revenue

smoothing across market scenarios. Under risk neutrality, the seller would focus exclusively

on extracting maximum surplus through high-precision signals that enable perfect market

segmentation. However, risk aversion introduces preferences for more stable revenue streams,

making conservative pricing strategies increasingly attractive as uncertainty aversion intensifies.

The seller must balance the higher expected profits from aggressive pricing against the volatility

inherent in strategies that concentrate revenue in specific buyer types or market conditions.

The strategic implications extend beyond simple risk-return trade-offs to fundamentally alter

market structure and information provision patterns. Risk-averse sellers may deliberately

offer lower-precision initial signals to maintain broader buyer engagement and ensure more

predictable second-period demand, even though this reduces total extractable surplus. This

preference for revenue smoothing across both time periods and buyer types can reverse the

dominance relationships established under risk neutrality, potentially favouring conservative

pricing strategies that guarantee participation over aggressive approaches that maximise expected
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profits. The resulting equilibrium reflects a sophisticated balance between information quality,

market participation, and risk management that captures essential features of real-world

information markets where providers must consider both profitability and operational stability in

their strategic decisions.

In the following section, strategies are formally defined and equilibrium outcomes are

characterised.

2.4 Equilibrium Characterisation

In this paper, we adopt the equilibrium concept of Perfect Bayesian Equilibrium (PBE), focusing

on equilibria in pure strategies. This solution concept proves particularly well-suited to dynamic

information markets, where players must form beliefs about unobserved actions and update these

beliefs as new information becomes available. A strategy profile satisfies PBE if it meets three

fundamental conditions that ensure both individual rationality and collective consistency.

As in the previous chapter, the following mappings define the strategy set of the buyer and seller.

The strategy of the buyer consists of three components: a first-period signal choice function,

Q1 : R2
+ → Q0, which maps the observed menu prices to a signal type; a second-period signal

choice function, Q2 : Q0 × S0 × R2
+ → Q0, which maps the observed menu prices in the second

period, the first-period signal choice q1, and its realisation s1 ∈ S0, to a signal type; a final action

rule, Y : (Q0)2 × (S0)2 → {0, 1}, which determines the decision based on all acquired information.

The strategy of the seller consists of two pricing functions that must anticipate buyer behaviour

whilst accounting for information asymmetries. The first-period pricing function P1 : Q0 → R+

maps each potential signal type to a non-negative price, establishing the initial terms of trade that

influence all subsequent interactions. The second-period pricing function P2 : Q0 × Q0 → R+

maps the observed first-period signal choice of the buyer and each potential second-period

signal type to a non-negative price. This function is particularly sophisticated, as it must extract

information rent whilst accounting for the inability of the seller to observe signal realisations

directly.

An important insight emerges from this strategic structure. The final action rule of the buyer

remains identical to that characterised in the previous section, as the decision criterion depends

only on posterior beliefs and remains independent of the path through which those beliefs were
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formed. This observation allows the equilibrium analysis to focus on information acquisition

decisions, where the primary strategic tensions arise. The following subsections characterise

equilibrium strategies using backward induction, beginning with the final decision and working

backward through the dynamic pricing and information acquisition choices that define the market.

2.4.1 Final Decision of the Buyer

The final decision problem of the buyer remains identical to that analysed in the previous chapter,

as the decision criterion depends only on posterior beliefs and is independent of the risk attitude of

the seller. Since the buyer maintains risk neutrality and faces the same symmetric payoff structure,

the optimal decision rule is unchanged regardless of whether the seller exhibits risk aversion or

risk neutrality. This invariance allows the equilibrium analysis to focus on the strategic tensions

that arise from information acquisition and pricing decisions, where the risk attitude of the seller

has their primary impact.

As established in the previous chapter, the buyer chooses action y = 0 if their posterior belief,

µ2, is greater than 1
2 , and y = 1 otherwise, where µ2 ≡ P(θ = 0 | (q1, q2), (s1, s2)) represents

the posterior belief that θ = 0 after observing all signal realisations. The expected outcome

payoff is:E[uy
B] = max{µ2, 1 − µ2}. The decision rule applies throughout the subsequent analysis

without further derivation. Formally, we have the following decision rule of the buyer:

y∗ ≡ arg max
y∈{0,1}

{
µ2 · 1y=0 + (1 − µ2) · 1y=1

}
,

which implies the following optimal solution:

y∗ = 0 if µ2 ∈
[

1
2

, 1
]

; y∗ = 1 if µ2 ∈
[

0,
1
2

]
.

Proposition 2.1. Given the posterior belief µ2 ∈ (0, 1), the expected outcome payoff of the buyer before the

decision is E[uy
B] = max{µ2, 1 − µ2}. The expected payoff of the buyer before the decision is:

E[uB] = max{µ2, 1 − µ2} − P1(q1)−P2(q1, q2).

71



CHAPTER 2: DYNAMIC SALE OF INFORMATION WITH RISK AVERSION 72

2.4.2 Signal Acquisition by the Buyer in the Second Period

The information acquisition strategy of the buyer in the second period remains fundamentally

unchanged from the analysis in the previous chapter. Since the buyer maintains risk neutrality

and faces identical decision criteria, the introduction of seller risk aversion does not alter the

underlying economics of information demand. The optimisation problem of the buyer, the

conditions under which information has value, and the resulting equilibrium behaviour all follow

the same logical framework established earlier. Rather than re-deriving these results, we present

the key insights and demonstrate their continued relevance in the context of risk-averse sellers.

We therefore draw upon the following definitions and results from Section 1.4.2 of Chapter 1.

The Economics of Information Demand. Information acquisition in the second period depends

critically on whether signals can influence the final decision of the buyer. A signal is valuable

only when it has the potential to change the optimal action, creating what we term a pivotal signal.

When the posterior belief of the buyer is sufficiently extreme, no additional information can alter

their decision, rendering further signals economically worthless regardless of their precision or

price.

Definition 2.1. An informative signal q2 ∈ Q is pivotal with respect to the posterior belief µ1

if and only if µ2(µ1, q2, s2 = 0) > 1
2 > µ2(µ1, q2, s2 = 1). The signal induces different optimal

decisions depending on its realisation: y(s2 = 0) ̸= y(s2 = 1).

The condition for pivotality creates a natural ”uncertainty zone” within which information has

value. When the posterior belief falls within this zone, the buyer remains sufficiently uncertain

about the true state that additional information can meaningfully improve decision-making

quality.

Lemma 2.1. A signal q2 is pivotal if and only if µ1 ∈ [1 − q2, q2].

Beyond this uncertainty zone, information becomes economically worthless. If the confidence

of the buyer in either state becomes too strong, even highly precise signals cannot generate

sufficient doubt to justify costly information acquisition. Such boundary conditions impose

natural constraints on information demand that persist regardless of seller risk preferences.

Information Rent and Value Creation. The value of information manifests through improved

decision-making quality, which we formalise through the concept of information rent. Information
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rent measures the expected improvement in payoff that results from acquiring a signal, net of the

current decision-making capability of the buyer.

Definition 2.2 (Information Rent). Given posterior belief µ1 ∈ (0, 1) at the beginning of period

t = 2, the information rent associated with signal q2 ∈ Q is defined as:

φ(q2, µ1) = E[max{µ2, 1 − µ2}|µ1, q2]− max{µ1, 1 − µ1},

where µ2 represents the posterior belief after observing signal realisation s2.

Information rent captures the incremental value created by resolving uncertainty. When signals

are pivotal, they enable the buyer to make better decisions on average by providing discriminating

information across different states of the world. When signals are not pivotal, they generate zero

information rent because they cannot improve decision quality.

Proposition 2.2 (Information Rent Characterisation). For any informative signal q2 ∈ Q and posterior

belief µ1 ∈ (0, 1):

(i) If µ1 ∈ [1 − q2, q2], then φ(q2, µ1) = q2 − max{µ1, 1 − µ1};

(ii) If µ1 /∈ [1 − q2, q2], then φ(q2, µ1) = 0.

Signal Selection and Market Dynamics. The structure of information rent creates clear

preferences over signal types when multiple options are available. Higher-precision signals

generate greater information rent when both are pivotal, establishing a natural hierarchy in

information demand.

Proposition 2.3. If a low-type signal qL is pivotal for posterior belief µ1, then the high-type signal qH is

also pivotal.

When multiple signals are pivotal, the difference in information rent equals qH − qL > 0, making

high-type signals unambiguously more valuable to buyers and more profitable for sellers. Rational

buyers will prefer higher-precision signals when both are available at comparable prices, and

rational sellers will focus on providing high-type signals when both generate positive demand.

Proposition 2.4. Under any equilibrium, the seller has no incentive to offer low-type signals in period

t = 2.

The dominance of high-type signals emerges naturally from the structure of information rent
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rather than from any assumptions about preferences or market power. Even when sellers could

potentially segment the market by offering different signal types to different buyers, the economic

logic favours concentration on high-precision alternatives.

Equilibrium Constraints and Buyer Behaviour. The optimisation problem of the buyer

generates natural constraints that any equilibrium pricing strategy must satisfy. These constraints

ensure that information markets operate efficiently by preventing sellers from extracting rent from

worthless signals whilst preserving incentives for quality provision.

Proposition 2.5. Under any equilibrium, positive prices for non-pivotal signals are incompatible with

rational buyer behaviour: P2(q2) > 0 and µ1 /∈ [1 − q2, q2] implies q∗2 = ∅.

When signals are pivotal, the participation and incentive compatibility constraints of the buyer

determine the feasible pricing strategies available to sellers.

Proposition 2.6. Under any equilibrium, the buyer acquires an informative signal q∗2 ∈ Q in period t = 2

if and only if all the following conditions hold. Otherwise, q∗2 = ∅.

(i) q∗2 −P2(·, q∗2) ≥ max{µ1, 1 − µ1}, or, P2(·, q∗2) = 0, participation constraint;

(ii) q∗2 −P2(·, q∗2) ≥ q′2 −P2(·, q′2), ∀q′2 ∈ Q, incentive compatibility constraint;

(iii) µ1 ∈ [1 − q∗2 , q∗2 ], or, P2(·, q∗2) = 0.

These constraints ensure that buyers participate voluntarily in information markets and select

their most preferred signal type from available alternatives. Sellers must respect these constraints

when designing pricing strategies, regardless of their own risk preferences. The fundamental

economics of information demand thus remain invariant to seller risk aversion. Risk-averse sellers

face the same demand conditions and buyer behaviour as their risk-neutral counterparts, but

they may respond differently to the revenue uncertainty inherent in information provision. The

analysis now turns to examine how the seller risk aversion influences pricing strategies whilst

respecting these unchanging demand fundamentals.

2.4.3 Menu Setting by the Seller in the Second Period

The architecture of pricing problem of the seller in the second period parallels the framework

established in Chapter 1: buyers have acquired first-period signals, sellers observe these choices

but not the underlying realisations, and information asymmetry constrains the ability to extract
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surplus. Yet the introduction of risk aversion fundamentally transforms how the seller navigate

this landscape. Whilst a risk-neutral seller could focus exclusively on maximising expected

revenue, a risk-averse seller will now balance profit maximisation against the volatility inherent

in different pricing approaches. This creates a richer strategic environment where the same

information asymmetries that merely complicated pricing decisions in the previous chapter now

become central to risk management. The seller challenge evolves from a pure optimisation

problem into a sophisticated portfolio choice between strategies that offer different risk-return

profiles.

The seller enters the second period observing which signal type the buyer purchased, q1, but

not what it revealed, s1. Such information asymmetry creates the central pricing challenge, as

the unobserved realisation determines the buyer posterior belief, µ1, and thus the extractable

information rent. The seller designs a pricing menu, P2(q1, q2), which maximises expected utility

whilst anticipating the range of possible buyer beliefs.

The analysis examines two cases that create distinct strategic environments for the risk-averse

seller. When the buyer initially acquires high-type signals, natural market segmentation

simplifies pricing decisions. When the buyer begins with low-type signals, persistent uncertainty

forces the risk-averse seller to choose between aggressive strategies which maximise expected

revenue and conservative approaches which smooth income across market scenarios. In both

cases, participation constraints cap prices at the available information rent, but risk aversion

fundamentally alters how the seller evaluates these trade-offs. The equilibrium characterisation

proceeds by examining each case in turn.

Case 1: High-Type Signal Previously Acquired (q1 = qH)

When the buyer acquires a high-type signal in the first period, the strategic landscape remains

remarkably similar to the risk-neutral case analysed in the previous chapter. The high precision

of the initial signal creates a natural bifurcation in buyer behaviour which simplifies the seller

pricing problem regardless of risk preferences. The economic logic established in the previous

chapter continues to hold: buyers who receive confirming signals (i.e., s1 = 0) develop such

strong posterior beliefs that no second-period signal can meaningfully influence their decisions.

These buyers exit the information market entirely, creating no revenue opportunities for the seller.

Conversely, buyers who receive contradictory signals (i.e., s1 = 1) find their confidence sufficiently

shaken that high-type signals in the second period become valuable.
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The crucial insight from the previous chapter applies with equal force here: the mere act of

returning to purchase additional information reveals the buyer private signal realisation. Only

buyers with s1 = 1 find second-period signals valuable, which eliminates the information

asymmetry that would otherwise complicate pricing decisions. For risk-averse sellers, the

revelation mechanism proves particularly attractive because it eliminates uncertainty regarding

the buyer type whilst preserving the ability to extract full information rent.

For notational convenience, the following definition regarding information rent under specific

pricing strategies is introduced.

Definition 2.3. A mapping φτ : ( 1
2 , 1)2 → R, ∀τ ∈ {H}, is defined as follows1:

φH(qH) ≡ φ
(

q2 = qH , µ1 = µ1(qH , 1)
)

,

where φτ(·) indicates the ex-post information rent in the second period under the pricing strategy

τ ∈ {H}.

The following corollary provides a useful characterisation of this information rent.

Corollary 2.6.1. Given the high-type signal is pivotal, qH ∈ [1 − µ1, µ1], the information rent in the

second period under the pricing strategy τ ∈ {H} is:

φH(qH) = qH − max
{

µ1(qH , 1), 1 − µ1(qH , 1)
}

.

Moreover, note that qH ∈ [1 − µ1, µ1] is equivalent to π
1−π ∈

(
1,
(

qH

1−qH

)2
]

.

With the information rent formally defined, we proceed to characterise the optimal pricing strategy.

The optimal pricing strategy mirrors the risk-neutral benchmark: the seller sets the following

price,

P2(qH , qH) = φH(qH),

to bind the participation constraint of returning buyers. Low-type signals are priced prohibitively

to ensure they are not purchased, consistent with the quality concentration result established in

the previous chapter. Consequently, the key proposition from the previous chapter carry forward

unchanged:

1We follow the definition of τ ∈ T defined in Section 1.4.5 of Chapter 1.
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Proposition 2.7. (High-Type Only Pricing Strategy) Suppose that π
1−π ∈

(
1,
(

qH

1−qH

)2
]

and q1 = qH

hold. The optimal menu setting strategy in period t = 2 is:

P2(qH , qH) = φH(qH);

P2(qH , qL) ∈
(

φH(qH)− (qH − qL),+∞
)

.

More explicitly,

{P2(qH , qH),P2(qH , qL)} ∈ {qH − µ1(qH , 1)} × (qL − µ1(qH , 1),+∞) if π ≥ qH ;

{P2(qH , qH),P2(qH , qL)} ∈ {qH − (1 − µ1(qH , 1))} × (qL − (1 − µ1(qH , 1)),+∞) if π ≤ qH .

From a risk management perspective, the result above represents an ideal scenario for risk-averse

sellers. The strategy concentrates revenue in specific states (i.e., s1 = 1) but does so predictably,

with the seller able to anticipate exactly when revenue will materialise. The absence of buyer-type

uncertainty eliminates the need to choose between aggressive and conservative pricing approaches,

making risk preferences irrelevant to the strategic calculus. The seller achieves the first-best

outcome despite information asymmetry, extracting full information rent from returning buyers

whilst correctly anticipating which buyers will return. Risk aversion introduces no additional

complexity because the natural market segmentation eliminates the revenue uncertainty that

would otherwise concern risk-averse agents.

Case 2: Low-Type Signal Previously Acquired (q1 = qL)

When the buyer acquires a low-type signal in the first period, the strategic environment becomes

considerably more complex than the high-type case. The lower precision of the initial signal

creates persistent uncertainty that prevents the clear market segmentation. Unlike high-type

signals which generate stark binary outcomes, low-type signals produce more nuanced posterior

beliefs that can sustain buyer interest in additional information across multiple scenarios.

The analysis established in the previous chapter reveals that the relationship between the buyer

prior belief and signal precision determines whether second-period trade occurs. When the prior

belief is extremely strong relative to signal quality, even contradictory evidence fails to generate

sufficient uncertainty to justify further information acquisition. However, when the prior belief is
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moderately strong, different signal realisations can lead to different levels of willingness to pay

for additional information, creating the central challenge for seller pricing strategy.

The key insight from the previous chapter applies here: the seller faces heterogeneous buyer

types whom they cannot distinguish. Buyers who receive confirming signals (i.e., s1 = 0) may

return with relatively low willingness to pay, whilst buyers who receive contradictory signals (i.e.,

s1 = 1) exhibit higher willingness to pay due to greater uncertainty. The inability to observe signal

realisations forces the seller to choose between pricing strategies that serve different segments of

this heterogeneous market.

For notational convenience, we introduce definitions for the information rent under different

pricing strategies that emerge in this setting.

Definition 2.4. A mapping φτ : ( 1
2 , 1)2 → R, ∀τ ∈ {A, C}, is defined as follows2:

φA(qH , qL) ≡ φ
(

q2 = qH , µ1 = µ1(qL, 1)
)

;

φC(qH , qL) ≡ φ
(

q2 = qH , µ1 = µ1(qL, 0)
)

,

where φτ(·) indicates the ex-post information rent in the second period under the pricing strategy

τ ∈ {A, C}.

The following corollary provides a useful characterisation of this information rent.

Corollary 2.7.1. Given the high-type signal is pivotal, qH ∈ [1 − µ1, µ1], the information rent in the

second period under the pricing strategy τ ∈ {A, C} is:

φA(qH , qL) = qH − max{µ1(qL, 1), 1 − µ1(qL, 1)};

φC(qH , qL) = qH − µ1(qL, 0).

Moreover, note that qH ∈ [1− µ1, µ1] is equivalent to: π
1−π ∈

(
1−qL

qL
qH

1−qH , qL

1−qL
qH

1−qH

]
if µ1 = µ1(qL, 1);

π
1−π ∈

(
1, 1−qL

qL
qH

1−qH

]
if µ1 = µ1(qL, 0).

With these definitions established, we characterise the optimal pricing strategies. The analysis

from the previous chapter demonstrates that the seller optimal choice depends on the strength of

the buyer prior belief relative to signal precision. When the prior belief is extremely strong such

2We follow the definition of τ ∈ T defined in Section 1.4.5 of Chapter 1.
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that π
1−π ∈

(
qL

1−qL
qH

1−qH ,+∞
)

, the buyer conviction remains intact, preventing any second-period

transactions, regardless of signal realisations.

The Selective Demand Case: Risk-Neutral Pricing Persists. When the prior belief is sufficiently

strong such that π
1−π ∈

(
1−qL

qL
qH

1−qH , qL

1−qL
qH

1−qH

]
, only buyers with contradictory signals (i.e., s1 = 1)

return, simplifying the pricing problem to the aggressive strategy characterised in the previous

chapter. Consequently, the key proposition from the previous chapter carry forward unchanged:

Proposition 2.8. Suppose that π
1−π ∈

(
1−qL

qL
qH

1−qH , qL

1−qL
qH

1−qH

]
and q1 = qL hold. The optimal menu

setting strategy in period t = 2 is:

P2(qL, qH) = φA(qH , qL);

P2(qL, qL) ∈
(

φA(qH , qL)− (qH − qL),+∞
)

.

More explicitly,

{P2(qL, qH),P2(qL, qL)} ∈ {qH − µ1(qL, 1)} × (qL − µ1(qL, 1),+∞) if π ≥ qL;

{P2(qL, qH),P2(qL, qL)} ∈ {qL − (1 − µ1(qL, 1))} × (qL − (1 − µ1(qL, 1)),+∞) if π ≤ qL.

The Universal Demand Case: Risk Aversion Transforms Strategy. The more interesting case

emerges when π
1−π ∈

(
1, 1−qL

qL
qH

1−qH

]
holds, the prior belief is weaker. In this regime, both types of

buyers may return for additional information, but with different reservation prices. The seller

must choose between two distinct approaches: the aggressive pricing strategy which targets only

high-willingness-to-pay buyers, and the conservative pricing strategy which ensures universal

participation at lower margins. Under the aggressive strategy, the seller sets prices to extract

maximum rent from buyers with contradictory signals, accepting that buyers with confirming

signals will be excluded. The conservative strategy adopts inclusive pricing that captures

revenue from all returning buyers, sacrificing per-unit margins for broader market participation.

Consequently, the key proposition from the previous chapter carry forward unchanged:

Proposition 2.9 (Aggressive Pricing Strategy). Suppose π
1−π ∈

(
1, 1−qL

qL
qH

1−qH

]
and q1 = qL. If the

aggressive pricing strategy is optimal, τ∗ = A, then the optimal menu setting in period t = 2 is:
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P2(qL, qH) = φA(qH , qL);

P2(qL, qL) ∈
(

φA(qH , qL)− (qH − qL),+∞
)

.

Proposition 2.10 (Conservative Pricing Strategy). Suppose that π
1−π ∈

(
1, 1−qL

qL
qH

1−qH

]
and q1 = qL.

If the conservative pricing strategy is optimal, τ∗ = C, then the optimal menu setting strategy in period

t = 2 is:

P2(qL, qH) = φC(qH , qL);

P2(qL, qL) ∈
(

φC(qH , qL)− (qH − qL),+∞
)

.

These strategic approaches reflect fundamentally different revenue philosophies. The aggressive

strategy prioritises high-value buyers whilst excluding others, maximising per-transaction

margins. The conservative strategy ensures universal participation, trading margins for market

coverage and revenue predictability.

Under risk neutrality, the choice between these approaches reduces to a straightforward

comparison of expected revenues, with the analysis in the previous chapter establishing clear

conditions under which each dominates. However, the introduction of risk aversion transforms

this calculus in profound ways. Risk-averse sellers do not merely compare expected revenues;

they must also weigh the uncertainty inherent in each approach. The aggressive strategy, whilst

potentially more profitable on average, concentrates revenue in specific scenarios where buyers

exhibit high uncertainty, creating exactly the type of volatility that risk-averse agents seek to

avoid. The conservative strategy, by contrast, offers the appeal of guaranteed participation from

all returning buyers, smoothing revenue across different market conditions. The question becomes

whether the certainty of universal participation can compensate for the sacrifice in expected profits,

a trade-off that depends critically on the degree of risk aversion exhibited by the seller.

The risk-averse seller faces a fundamentally different optimisation problem than their risk-neutral

counterpart. Rather than simply maximising expected revenue, they must balance profit potential

against revenue volatility. Under CRRA preferences with parameter σ ∈ (0, 1), the seller evaluates

strategies based on expected utility rather than expected profit alone. The strategic choice

crystallises around a key trade-off. The conservative strategy guarantees revenue of φC(qH , qL)
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with certainty, providing complete income smoothing across buyer types. The aggressive

strategy offers higher potential revenue of φA(qH , qL) but only materialises when buyers receive

contradictory signals, occurring with probability π(1 − qL) + (1 − π)qL < 1. The decision of the

seller hinges on whether the utility from guaranteed income exceeds the expected utility from this

riskier but potentially more profitable approach. We can now establish the following proposition.

Proposition 2.11. Given that τ∗ ∈ {A, C} holds, τ = C is preferred over τ = A if and only if the

following inequality holds:

[
φC(qH , qL)

]1−σ
≥

[
π(1 − qL) + (1 − π)qL

] [
φA(qH , qL)

]1−σ
.

This condition reveals the economic forces at play. The left side represents the utility from certain

revenue under conservative pricing, whilst the right side captures the expected utility from the

probabilistic revenue stream under aggressive pricing. When risk aversion is absent (i.e., σ = 0),

the comparison reduces to expected revenues. As risk aversion increases, the concavity of the

utility function increasingly favours the certainty offered by conservative pricing.

The strategic choice depends critically on the quality of available signals, which determines the

magnitude of information rents under each strategy. The analysis reveals a natural threshold

effect characterised by a cut-off signal quality qH∗ at which the seller becomes indifferent between

strategies. Above this threshold, risk-averse sellers strictly prefer conservative pricing, whilst

below it they may choose aggressive strategies despite their risk preferences.

The economic intuition behind this threshold reflects two competing forces that shape seller

preferences. The first force, discussed in the previous chapter under risk neutrality, concerns the

absolute magnitude of extractable information rent. When signal quality approaches the lower

bound (i.e., qH approaches µ1(qL, 0) from above), the conservative strategy yields information rent

φC(qH , qL) that approaches zero, naturally dampening the seller incentive to pursue guaranteed

but minimal returns. The second force emerges from risk aversion itself: the diminishing marginal

utility effect makes sellers increasingly reluctant to chase higher expected payoffs when those

payoffs come with uncertainty.

Consider the dynamics around the cut-off point. For any given low-type signal precision qL, the

probability of second-period trade under aggressive pricing remains fixed at π(1− qL)+ (1−π)qL.

The strategic choice thus hinges entirely on how the sellers evaluate the information rent

81



CHAPTER 2: DYNAMIC SALE OF INFORMATION WITH RISK AVERSION 82

differential between strategies. When signal quality increases marginally above the cut-off (i.e.,

q̃H = qH∗
+ ε), the marginal utility effect favours conservative pricing decisively. Let φC and φA

denote φC(qH , qL) and φA(qH , qL), respectively. Since u(·) exhibits diminishing marginal utility

and φC < φA, we have u′(φC) > u′(φA). Moreover, the probability weighting under aggressive

pricing further reduces its attractiveness:

u′(φC) > u′(φA) >
[
π(1 − qL) + (1 − π)qL

]
u′(φA),

cementing the preference for conservative pricing. The threshold itself responds systematically to

risk aversion. As the extent of risk aversion σ increases, the cut-off point qH∗ decreases, expanding

the range of signal qualities under which conservative pricing proves optimal. Intuitively, more

risk-averse sellers become increasingly willing to sacrifice expected profits for revenue certainty,

making the guaranteed participation offered by conservative pricing attractive across a broader

spectrum of market conditions. The following theorem formalises this threshold relationship and

its dependence on risk aversion.

Proposition 2.12. For any σ ∈ (0, 1],

(i) there exists a cut-off point qH∗ ∈ (µ1(qL, 0),+∞) such that the seller is indifferent between

conservative and aggressive pricing strategy,

[
φC(qH∗

, qL)
]1−σ

=
[
π(1 − qL) + (1 − π)qL

] [
φA(qH∗

, qL)
]1−σ

;

(ii) the cut-off point, qH∗, is decreasing in σ.

Proof. See Appendix 2.A.1.

The economic intuition behind this threshold is compelling. As signal quality increases, the

conservative strategy becomes more attractive because it guarantees extraction of substantial

information rent from all buyer types. The aggressive strategy, whilst offering higher

per-transaction profits, becomes relatively less appealing as the guaranteed revenue under

conservative pricing grows. Moreover, increased risk aversion lowers this threshold, making

conservative pricing optimal over a broader range of signal qualities.

Understanding how risk aversion influences the choice between conservative and aggressive

pricing requires examining the relationship between seller preferences and market parameters.
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The analysis focuses on how varying degrees of risk aversion affect optimal strategy selection,

holding fixed the underlying market structure characterised by parameters (π, qH , qL). The

clearest insights emerge from considering two polar cases: complete risk neutrality and extreme

risk aversion.

The Risk-Neutral Benchmark. When sellers exhibit no risk aversion (i.e., σ = 0), strategic choice

reduces to a straightforward comparison of expected revenues. The seller simply asks: which

strategy generates higher expected profits? The answer depends critically on the informativeness

of the initial low-type signal, which determines how much buyers learn from their first-period

experience.

Consider first the case where low-type signals are highly informative. When qL approaches its

upper bound, buyers who receive confirming evidence (i.e., s1 = 0) develop such strong posterior

beliefs that second-period information becomes nearly worthless. The information rent under

conservative pricing, φC(qH , qL), approaches zero, making the strategy economically unattractive.

In such environments, aggressive pricing dominates by focusing exclusively on the buyers who

remain genuinely uncertain after receiving contradictory evidence.

The opposite scenario unfolds when low-type signals are barely informative. As qL approaches

1
2 , signal realisations provide minimal information, leaving buyer beliefs largely unchanged

regardless of what they observe. The information rents under both strategies converge (i.e.,

φC(qH , qL) ≈ φA(qH , qL)), but the conservative strategy gains a decisive advantage through

its guarantee of universal participation. Whilst aggressive pricing succeeds with probability

approximately 1
2 , conservative pricing ensures trade with certainty, making it the clear winner

even without risk aversion considerations.

The Extreme Risk Aversion Case. At the opposite extreme, when risk aversion becomes severe

(i.e., σ → 1), the strategic calculus transforms completely. The utility function becomes so concave

that sellers become nearly indifferent to the magnitude of positive payoffs, caring primarily about

their probability of occurrence. Any strictly positive surplus yields utility close to one, whilst

zero surplus provides no utility whatsoever. Under such extreme preferences, the conservative

pricing strategy becomes universally optimal, regardless of signal parameters or information rent

structures. The guarantee of positive returns with certainty dominates any uncertain alternative,

no matter how potentially profitable. The seller essentially becomes a satisficer rather than an
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optimiser, prioritising the avoidance of zero outcomes over the pursuit of maximum returns.

Strategic Transitions in the Intermediate Risk Aversion Range. Between these extremes lies

the most interesting analytical territory, where moderate risk aversion creates genuine strategic

trade-offs. The transition from aggressive to conservative pricing preferences occurs gradually as

risk aversion increases, with the critical threshold depending on underlying market parameters.

When market conditions favour aggressive pricing under risk neutrality, there exists a critical level

of risk aversion σ∗
CA ∈ (0, 1) at which the seller becomes indifferent between strategies. Below this

threshold, the lure of higher expected profits outweighs concerns about revenue uncertainty.

Above it, the appeal of guaranteed returns dominates profit maximisation considerations.

Conversely, when market conditions already favour conservative pricing under risk neutrality,

risk aversion merely reinforces this preference without creating interesting threshold effects.

The following theorem formalises these insights:

Proposition 2.13. Let σ ∈ [0, 1) denote the degree of risk aversion of the seller. Then,

(i) Given that φC(qH , qL) ≤
[
π(1 − qL) + (1 − π)qL] φA(qH , qL), there exists a cut-off point

σ∗
CA ∈ [0, 1) such that the seller prefers the conservative pricing strategy if and only if σ > σ∗

CA.

(ii) Given that φC(qH , qL) ≥
[
π(1 − qL) + (1 − π)qL] φA(qH , qL), the seller always prefers the

conservative pricing strategy, regardless of the degree of risk aversion σ ∈ [0, 1).

Proof. See Appendix 2.A.1.

The distribution of surplus between seller and buyer depends critically on which pricing strategy

is implemented and reveals important insights about the welfare effects of information asymmetry

in dynamic settings. When the seller adopts aggressive pricing, surplus allocation follows a stark

binary pattern. Buyers who receive contradictory signals (i.e., s1 = 1) face prices that extract the

full information rent, leaving them with zero surplus from second-period transactions. The seller

captures all available value from these high-uncertainty buyers who desperately need additional

information. Conversely, buyers who receive confirming signals (i.e., s1 = 0) find themselves

priced out of the second-period market entirely. Whilst these buyers would derive positive value

from high-type signals as qH > µ1(qL, 0) ensures strictly positive information rent, the seller

cannot profitably serve them due to information asymmetry. The inability to observe signal

realisations prevents optimal price discrimination, leaving potential surplus unexploited. In a
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hypothetical first-best environment where the seller could observe s1, this inefficiency would

disappear. The seller could set different prices for each buyer type, extracting information rent

from both groups and achieving higher expected profits. The information asymmetry thus creates

a genuine welfare loss under aggressive pricing.

Conservative pricing generates a more nuanced surplus allocation that initially appears to suffer

from similar inefficiencies. Buyers who receive contradictory signals (i.e., s1 = 1) obtain strictly

positive surplus equal to φA(qH , qL)− φC(qH , qL), since the conservative price lies below their

maximum willingness to pay. At first glance, this surplus retention suggests that information

asymmetry prevents the seller from achieving first-best outcomes. However, this appearance

proves deceptive. The key insight is that sellers can extract the expected value of this buyer

surplus through intertemporal pricing adjustments. By increasing first-period prices by exactly

P(s1 = 1)[φA(qH , qL)− φC(qH , qL)], the seller captures the anticipated second-period surplus

without violating buyer participation constraints. Forward-looking buyers willingly pay this

premium because they anticipate receiving compensating surplus in the future. Through such

mechanism, conservative pricing achieves the remarkable result of eliminating welfare losses from

information asymmetry. The seller extracts the same total surplus as in the first-best benchmark,

merely reallocating its timing across periods rather than sacrificing it entirely. The dynamic

structure of the game thus provides a natural solution to the adverse selection problem that would

otherwise constrain seller profits. A complete analysis of this intertemporal surplus extraction

mechanism follows in Section 2.4.5, which characterises optimal first-period pricing strategies.

2.4.4 Signal Acquisition by the Buyer in the First Period

The analysis now turns to the information acquisition decision of the buyer in period t = 1. A

crucial insight emerges immediately: the strategic calculus of the buyer remains fundamentally

unchanged from the analysis in the previous chapter. Since the buyer maintains risk neutrality

and faces identical decision criteria, the introduction of seller risk aversion does not alter the

underlying economics of information demand from the perspective of the buyer. The invariance of

buyer behaviour to seller risk preferences reflects a deeper economic principle. The optimisation

problem of the buyer depends solely on anticipated prices and expected payoffs, not on the

psychological motivations underlying seller pricing decisions. Whether sellers choose aggressive

or conservative strategies due to profit maximisation or risk management considerations proves

irrelevant to buyer decision-making, provided the resulting prices and surplus opportunities
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remain accessible.

At the beginning of period t = 1, the buyer faces the same fundamental trade-off analysed in

the previous chapter. They weigh immediate information value against price, whilst account for

future surplus opportunities. The expected payoff of the buyer decomposes into immediate gains

from first-period information and expected surplus from future information acquisition, denoted

V(q1,P2), exactly as before. The critical insight from the previous chapter applies with equal force

here. The value function, V(q1,P2), depends on the nature of second-period pricing strategies,

not on the underlying motivations that drive choices for the seller. Under aggressive pricing, the

buyer anticipates zero future surplus regardless of whether the seller chooses this strategy to

maximise expected profits or to concentrate revenue in specific scenarios. Under conservative

pricing, buyers benefit from positive expected surplus whether they adopt such approach to

ensure broad participation or to manage revenue uncertainty.

The key difference does not lie in the behaviour of the buyer but in the frequency with which

different pricing strategies emerge. A Risk-averse seller proves to be more likely to adopt

conservative approaches, creating more opportunities for buyers to capture future surplus.

However, when such opportunities arise, the buyer responses follow the same strategic logic

established in the previous chapter. Accordingly, rather than re-deriving the optimisation problem

of the buyer, we draw directly upon the results established in the previous chapter. The following

characterisation applies without further modification:

Proposition 2.14 (Buyer’s First-Period Optimisation). Under any equilibrium, the buyer acquires

an informative signal q∗1 ∈ Q in period t = 1 if and only if all the following conditions hold. Otherwise,

q∗1 = ∅.

(i) q∗1 −P1(q∗1) + V(q∗1 ,P2) ≥ π, participation constraint;

(ii) q∗1 − P1(q∗1) + V(q∗1 ,P2) ≥ q′1 − P1(q′1) + V(q′1,P2) for all q′1 ∈ Q, incentive compatibility

constraint;

(iii) µ1 ∈ [1 − q∗1 , q∗1 ], pivotal signal constraint.

The strategic insights from the previous chapter carry forward unchanged. The willingness

to pay of the buyer for early information reflects both immediate value and option value of

future decision-making. The forward-looking buyer incorporates anticipated future decisions into

current optimisation, creating intertemporal linkages that constrain pricing power of the seller
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across periods.

Although the risk aversion of the seller does not directly affect the decision-making of the buyer, it

generates significant indirect effects by shaping the equilibrium pricing strategies. The risk-averse

seller tends to favour conservative pricing, thereby increasing the likelihood that buyers encounter

second-period environments with positive surplus opportunities. These environments enhance the

value of first-period signals by generating value that extends beyond the immediate informational

benefit.

The ability of the seller to extract this enhanced value through higher first-period prices

demonstrates the sophisticated nature of dynamic rent extraction. Risk-averse sellers who choose

conservative second-period pricing do not sacrifice profits; instead, they shift surplus extraction

across time whilst managing revenue uncertainty. Buyers, recognising this pattern, remain willing

to pay premium prices for access to future opportunities, ensuring that changes in seller risk

preferences ultimately prove neutral for buyer welfare whilst affecting only the timing and

distribution of surplus extraction.

The fundamental economics of information demand thus remain unchanged by seller risk

aversion. Risk-averse sellers face the same demand conditions and behaviour of the buyer

as their risk-neutral counterparts, yet they may respond differently to the revenue uncertainty

inherent in information provision. The analysis now turns to examine how the seller risk aversion

influences pricing strategies, whilst adhering to these invariant demand fundamentals.

2.4.5 Menu Setting by the Seller in the First Period

This section investigates the optimal pricing scheme of the seller in the first period, where the

fundamental tension between risk and return reaches its strategic culmination. The seller chooses

a price menu P1(qH , qL) at the start of period t = 1 which maximises their ex-ante expected utility

whilst accounting for the interactions that will unfold over both periods. This decision proves

particularly intricate because the seller must simultaneously consider three interconnected factors:

the immediate revenue from first-period sales, the probability and magnitude of future trading

opportunities, and the risk profile of the resulting revenue stream.

The problem of the seller extends far beyond simple price setting, as the first-period menu

fundamentally shapes the entire market dynamic. By choosing which signals to offer and at

what prices, the seller determines not only who will participate in the initial market but also the
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composition and behaviour of buyers who return for second-period information. This creates a

sophisticated intertemporal optimisation problem where current pricing decisions must account

for their impact on future market structure, buyer beliefs, and the ability of the seller to extract

rent in subsequent periods. The introduction of risk aversion adds another layer of complexity, as

the seller must now balance the higher expected profits from strategies that concentrate revenue

in specific market scenarios against the volatility inherent in such approaches.

The analysis reveals that different configurations of prior beliefs and signal precisions give rise

to qualitatively different strategic environments. When buyers hold very strong prior beliefs,

information has little value regardless of quality, creating a trivial pricing problem. However,

as prior beliefs become more moderate, the seller faces increasingly complex trade-off between

offering high-type signals that enable superior rent extraction and lower-type signals that generate

more stable demand patterns. The optimal strategy depends critically on the degree of risk

aversion, with more risk-averse sellers potentially preferring approaches that sacrifice expected

profits in favour of revenue stability and broader market participation.

The following analysis proceeds through three distinct parametric regimes that together exhaust all

possible configurations of prior beliefs and signal precisions. Each regime reveals fundamentally

different strategic considerations for a risk-averse seller.

Extreme Prior Beliefs: Market Breakdown

This regime captures scenarios where buyer prior beliefs are so extreme that information becomes

economically worthless regardless of signal quality or pricing strategy. The seller faces a

degenerate pricing problem where no positive surplus can be extracted under any circumstances,

making risk preferences irrelevant. This case serves as a useful benchmark demonstrating how

sufficiently strong priors can completely eliminate information markets.

As in the previous chapter, we first examine the case in which π
1−π ∈

[(
qH

1−qH

)2
,+∞

)
holds,

which implies that π > qH > qL. This parameter region represents scenarios where buyers

hold extremely strong prior beliefs that render all available information economically irrelevant,

creating a degenerate market environment that is independent of risk preferences.

When the prior belief for the status quo is sufficiently strong, the buyer has no incentive to acquire

any type of signal at any positive price, regardless of the period t ∈ {1, 2} or the signal realisation

s1 ∈ {0, 1}. The economic intuition is straightforward, The initial confidence of the buyer in
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the status quo is so overwhelming that even the most contradictory evidence cannot generate

sufficient uncertainty to justify costly information acquisition. Consider the most extreme possible

scenario where the buyer acquires two high-precision signals consecutively, both contradicting the

status quo (i.e., s1 = s2 = 1). Even under these circumstances, the posterior belief remains above

1
2 , confirming that signals of both types fail to be pivotal throughout the entire game. This extreme

parameter region illustrates a fundamental property of information markets. When prior beliefs

are sufficiently strong, information loses its economic value entirely, which creates a scenario

where trade becomes economically unviable for both parties. Although the buyer would accept

free signals, the seller has no incentive to provide them since the expected payoff remains zero

regardless of the pricing strategy employed.

The implications for optimal pricing are trivial yet instructive. Since no positive surplus can be

extracted under any circumstances, the pricing problem of the seller becomes vacuous. Any price

menu satisfies the equilibrium conditions, as market forces eliminate all trading opportunities.

This result holds regardless of the degree of risk aversion, as the absence of extractable surplus

makes risk considerations irrelevant.

Proposition 2.15. Suppose that π
1−π ∈

[(
qH

1−qH

)2
,+∞

)
holds. Given any σ ∈ (0, 1], the optimal menu

setting strategy in t = 1 is:

(P1(qH),P1(qL)) ∈ (R+)
2.

This degenerate case serves as a useful benchmark for understanding the role of prior beliefs in

information markets. It demonstrates that extremely strong priors can completely eliminate the

value of information, regardless of signal quality or market structure. The subsequent analysis

will show how relaxing this extreme assumption leads to richer strategic interactions where risk

preferences play a decisive role in determining optimal pricing strategies.

Strong Prior Beliefs: High-Type Signal Dominance

In this intermediate regime, prior beliefs remain strong but not extreme enough to eliminate all

information value. The analysis reveals a stark asymmetry between signal types: low-type signals

fail to generate any economic value across both periods, whilst high-type signals create profitable

second-period trading opportunities. The seller optimally offers free high-type signals to induce

strategic information acquisition, with this dominance holding regardless of the degree of risk
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aversion.

Next, consider the case in which π
1−π ∈

[
qL

1−qL
qH

1−qH ,
(

qH

1−qH

)2
]

, which implies π > qH > qL. This

parameter region captures an intermediate scenario where prior beliefs are strong, but not extreme

enough to nullify the value of information. The analysis uncovers a striking asymmetry between

high-type and low-type signals that fundamentally shapes the optimal pricing strategy.

The seller recognises that offering a low-type signal in the first period leads to a strategic dead end.

The low-type signal is too imprecise to shift posterior beliefs towards the centre, thereby failing to

generate any information rent in the second period, regardless of the subsequent signal realisation.

Formally, µ1(qL, 1) /∈ [1 − q, q] for all q ∈ {qH , qL}, which implies that no second-period signal is

pivotal, as established in Lemma 2.1. Economically, even when the low-type signal contradicts the

prior belief, the resulting posterior remains too extreme to induce genuine uncertainty. Moreover,

since π > qL, the first-period signal also yields zero information rent. As a result, the seller earns

no surplus in either period when the buyer is induced to acquire a low-type signal initially.

By contrast, offering a high-type signal in the first period creates valuable strategic opportunities.

With positive probability, the buyer returns in the second period and pays strictly positive

information rent—specifically when q1 = qH and s1 = 1. This follows from the fact that

µ1(qH , 1) ∈ [1 − qH , qH ] under the assumed parameters. The high-type signal is sufficiently

precise to shift the posterior belief significantly when contradictory evidence arises, moving the

posterior towards the centre and generating enough uncertainty to make the signal pivotal.

The seller can extract the entire information rent in the second period by setting the price

P2(qH , qH) = φH(qH), as shown in Proposition 2.7. This pricing strategy ensures the buyer’s

participation constraint binds exactly, allowing the seller to capture the full surplus. Compared to

the case q1 = qL, where the seller earns zero, offering a high-type signal strictly dominates for all

σ ∈ (0, 1]. The superiority of this strategy is robust to risk preferences, as the dominance arises

purely from the strategic value of information.

Proposition 2.16. Suppose that π
1−π ∈

[
qL

1−qL
qH

1−qH ,
(

qH

1−qH

)2
]

. Then, for any σ ∈ (0, 1], the optimal

first-period pricing strategy is:

P1(qH) = 0; P1(qL) ∈ (0,+∞).

The ex-ante expected utility from implementing the high-type only pricing strategy, as defined in
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the previous chapter, is as follows. Since π > qH , the seller earns zero in period one. However,

they extract the full information rent by setting the price P2(qH , qH) = qH − µ1(qH , 1) = φH(qH)

in period two with probability π(1 − qH) + (1 − π)qH . Under the CRRA utility function with risk

aversion parameter σ ∈ (0, 1], the expected utility of the seller is:

uH
S (σ) ≡ E[uS(τ = H) | σ] =

[
π(1 − qH) + (1 − π)qH

] [
φH(qH)

]1−σ
.

Moderate Prior Beliefs: Strategic Trade-offs and Risk Aversion

This regime presents the most intricate strategic environment, π
1−π ∈

(
1, qL

1−qL
qH

1−qH

]
, where

multiple pricing strategies are viable and risk preferences become decisive. The analysis naturally

separates into two sub-cases according to the seller’s degree of risk aversion. For less risk-averse

sellers, the choice is between high-type only strategies that maximise expected profits and

aggressive strategies that increase the likelihood of trade at the expense of revenue concentration.

In contrast, more risk-averse sellers may favour conservative strategies that ensure broader market

participation, offering a viable alternative to high-type only approaches. The optimal strategy

in each sub-case depends critically on the degree of risk aversion and the underlying parameter

values.

Low Risk Aversion: High-Type Only versus Aggressive Strategies. When the seller exhibits

low risk aversion, σ ≤ σ∗
CA, the strategic landscape reveals a fascinating choice between two

fundamentally different approaches to information provision. The seller faces a portfolio-like

decision: pursue the high-expected-return strategy of offering only high-type signals across both

periods, or adopt the more diversified approach of combining low-type signals initially with

high-type signals subsequently.

The high-type only strategy represents the classic quality-maximisation approach established

in the previous chapter. Under this strategy, the seller induces the buyer to acquire high-type

signals in both periods, concentrating on extracting maximum surplus from the most informative

signals available. The alternative approach follows a more nuanced path: the seller induces

the buyer to acquire a low-type signal in the first period, followed by a high-type signal in the

second period. The economic beauty of this second approach lies in its information revelation

properties. Since the buyer acquires a signal in the second period only if s1 = 1, the seller faces no

information asymmetry when designing second-period pricing. The seller perfectly understands
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that s1 = 1 must be realised if the buyer approaches them. The ex-ante expected payoff of the

seller implementing the aggressive pricing strategy captures this strategic insight:

uA
S (σ) ≡ E[uS(τ = A | σ)] =

[
π(1 − qL) + (1 − π)qL

] [
φA(qH , qL)

]1−σ

+
[
max{qL − π, 0}

]1−σ
.

Under risk neutrality, the choice between these strategies was unambiguous: the seller always

preferred the high-type-only pricing strategy (i.e., τ∗ = H) as it maximised expected surplus. The

previous chapter established this result through straightforward expected value comparisons.

However, the introduction of risk aversion fundamentally alters this calculus by making sellers

sensitive to the probability distribution of outcomes, not merely their expected values.

The transformation becomes most apparent when sellers exhibit extreme risk aversion (i.e., σ → 1).

In such cases, sellers become concerned primarily with the probability of receiving strictly positive

surplus across the two periods, rather than the magnitude of that surplus. This shift in priorities

can reverse the preference ordering established under risk neutrality, making the aggressive

pricing strategy attractive precisely because it increases the likelihood of positive returns.

In this context, the relationship between the prior belief, π, and the signal precisions, (qH , qL),

becomes crucial. We distinguish the following three cases for further analysis: (I) π > qH > qL;

(II) qH > qL > π; (III) qH > π > qL.

(I) Strong Prior Beliefs: π > qH > qL. Since the prior belief exceeds both signal precisions,

the seller is unable to extract any surplus in the first period, regardless of the pricing strategy

implemented. The seller therefore focuses solely on the probability of generating surplus in the

second period. Given that π(1 − qL) + (1 − π)qL > π(1 − qH) + (1 − π)qH always holds, the

aggressive pricing strategy is strictly preferred. A concise technical derivation is provided below.

When π > qH > qL, the implementation of the aggressive pricing strategy increases the probability

of a trade, P(s1 = 1), as follows:

P(s1 = 1 | τ = A) = π(1 − qL) + (1 − π)qL

> π(1 − qH) + (1 − π)qH = P(s1 = 1 | τ = H),
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whilst the ex-post information rent is lower:

φA(qH , qL) = qH − µ1(qL, 1)

< qH − µ1(qH , 1) = φH(qH).

Effectively, by implementing τ = A, the seller opts for a less risky lottery. In summary, inducing

the acquisition of a high-type signal is not necessarily optimal when risk neutrality is not assumed.

There exists a cut-off point σ∗
HA(π, qH , qL) at which the seller is indifferent between the two

pricing strategies. If σ ≤ σ∗
HA, the seller is relatively less risk-averse and thus prefers to induce

the acquisition of high-type signals only. Accordingly, we proceed to establish the following

proposition.

Lemma 2.2. For any (π, qH , qL) ∈ ( 1
2 , 1)3 such that π > qH > qL holds, there exists a unique cut-off

point σ∗
HA ∈ (0, 1) such that:

(i) the seller is indifferent between τ = H and τ = A if σ = σ∗
HA. That is, uH

S (σ∗
HA) = uA

S (σ
∗
HA)

holds at the cut-off point;

(ii) the seller prefers τ = H over τ = A when they exhibit sufficiently low risk aversion. That is,

uH
S (σ) ≥ uA

S (σ) holds if and only if σ ∈ [0, σ∗
HA].

Proof. See Appendix 2.A.2.

(II) Weak Prior Beliefs: qH > qL > π. Here, both signal precisions exceed the prior belief, and

thus the seller receives a strictly positive surplus in the first period under any pricing strategy,

with probability one. Thus, the expected utility from the first-period surplus is constant across

strategies. Likewise, the preference of the seller is governed by the probability of second-period

trade, leading to a strict preference for the aggressive pricing strategy due to its higher trade

probability. A concise technical derivation is provided below.

When qH > qL > π, the seller also takes into account the surplus generated in the first period,

given by max{q1 − π, 0}. As a result, the high-type only pricing strategy, τ = H, becomes

more appealing, since the marginal utility derived from the first-period information rent is more

pronounced and qH − π > qL − π holds. Nonetheless, the analogous argument applies: there

exists a unique cut-off point, denoted σ∗
HA(π, qH , qL), at which the seller is indifferent between the

two pricing strategies. Accordingly, we proceed to establish the following proposition.
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Lemma 2.3. For any (π, qH , qL) ∈ ( 1
2 , 1)3 such that qH > qL > π holds, there exists a unique cut-off

point σ∗
HA ∈ (0, 1) such that:

(i) the seller is indifferent between τ = H and τ = A if σ = σ∗
HA. That is, uH

S (σ∗
HA) = uA

S (σ
∗
HA)

holds at the cut-off point;

(ii) the seller prefers τ = H over τ = A when they exhibit sufficiently low risk aversion. That is,

uH
S (σ) ≥ uA

S (σ) holds if and only if σ ∈ [0, σ∗
HA].

Proof. See Appendix 2.A.2.

(III) Intermediate Prior Beliefs: qH > π > qL. In this case, the seller obtains strictly positive

surplus in the first period only if the high-type-only pricing strategy is implemented, since

qH > π whilst qL < π. For the seller to prefer the aggressive pricing strategy, the difference

in second-period trade probability must compensate for the loss of guaranteed surplus in the

first period. However, the compensation is infeasible. Specifically, the difference in trade

probability between the two strategies is given by π(1− qL) + (1−π)qL −π(1− qH) + (1−π)qH

= (2π − 1)(qH − qL) < 1
2 , which is strictly less than one and insufficient to offset the marginal

utility from guaranteed first-period surplus. Accordingly, in this case, the high-type-only pricing

strategy is always strictly preferred. A concise technical derivation is provided below.

When qH > π > qL, the seller always prefers the high-type only pricing strategy, for any σ ∈ (0, 1],

since a strictly positive surplus of qH − π is obtained in period t = 1 only under this strategy.

Intuitively, as the marginal utility evaluated at zero goes to positive infinity, the seller experiences

a sharp increase in utility from gaining a strictly positive surplus, making the first-period benefit

particularly salient. In contrast, when qH > qL > π or π > qH > qL, this utility gain is less

pronounced, since the seller earns a lower surplus of q1 − π or none at all in the first period.

Consequently, the effect of marginal utility is weaker than in the case where qH > π > qL. We

therefore proceed to establish the following proposition.

Lemma 2.4. For any (π, qH , qL) ∈ ( 1
2 , 1)3 such that qH > π > qL holds, the seller always prefers τ = H

over τ = A. That is, uH
S (σ) ≥ uA

S (σ) holds for any σ ∈ [0, 1).

Proof. See Appendix 2.A.2.

The subsequent proposition encapsulates the core result derived from the preceding discussion.
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Proposition 2.17. Suppose the following conditions hold: σ ≤ σ∗
CA, so that the seller optimally selects

τ∗ = A in the second period if q1 = qL is chosen, and π
1−π ∈

(
1, qL

1−qL · qH

1−qH

]
, ensuring that each pricing

strategy τ ∈ {H, A} satisfies both the participation and incentive compatibility constraints of the buyer.

Then, the optimal pricing strategy of the seller in the second period is characterised as follows:

(i) τ∗ = H, if qH > π > qL, or, σ ≤ σ∗
HA;

(ii) τ∗ = A, otherwise,

where,

{
P1(qH),P1(qL)

}
∈
{

max
{

qH − π, 0
}}

×
(

max
{

qL − π
}

,+∞
)

, if τ = H;{
P1(qH),P1(qL)

}
∈
(

max
{

qH − π
}

,+∞
)
×

{
max

{
qL − π, 0

}}
, if τ = A.

The analysis reveals that risk aversion fundamentally alters the strategic calculus in dynamic

information markets. Whilst risk-neutral sellers unambiguously prefer high-type only strategies,

risk-averse sellers face genuine trade-offs between expected returns and revenue certainty. The

existence of cut-off points σ∗
HA demonstrates that moderate risk aversion can reverse optimal

strategies, with sellers increasingly favouring aggressive pricing approaches that sacrifice per-unit

margins for higher probability of positive outcomes. The configuration of prior beliefs relative

to signal precisions determines whether these trade-offs create meaningful strategic choices or

maintain the dominance of high-type only approaches, illustrating how risk preferences interact

with market fundamentals to shape information provision strategies.

High Risk Aversion: High-Type Only versus Conservative Strategies. In the case of σ ≥ σ∗
CA,

there are two profitable candidates for pricing strategies: high-type only pricing strategy, and

conservative pricing strategy.

We start the discussion with a risk-neutral seller (i.e., σ = 0). The seller always prefers the

high-type only pricing strategy, which strictly dominates the conservative pricing strategy. The

advantage of selling the high-type signal in t = 1 is the greater variance in signal realisation,

which generates more surplus to be extracted. In contrast, the advantage of selling the low-type

signal under the conservative pricing strategy lies in the higher probability of a second-period sale.

However, the expected surplus is lower. Given that the seller exhibits risk-neutral behaviour, they

disregard risk and focus solely on the magnitude of expected surplus. Consequently, the high-type
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only strategy is strictly preferred. Moreover, the conservative pricing strategy dominates the

aggressive pricing strategy. The reason is straightforward: although both strategies generate the

same ex-post surplus, the seller captures the full surplus under the former, whereas they forgo

part of the surplus (i.e., when the signal realisation is s1 = 1) under the latter. To summarise,

the following ordering holds if σ = 0: H ≻ C ≻ A. However, with sufficient risk aversion, the

seller changes their preference. First, consider the comparison between H and C. A sufficiently

risk-averse seller prefers C over H. For any (π, qH , qL) ∈
(

1
2 , 1

)3
such that qH > max{qL, π}, there

exists a cut-off level σ∗
HC(π, qH , qL) at which the seller is indifferent between the two strategies. If

σ > σ∗
HC, the seller is sufficiently risk-averse and therefore chooses to reduce risk exposure at the

cost of some expected surplus by implementing the conservative pricing strategy. The ex-ante

expected payoff of the seller implementing the conservative pricing strategy is:

uC
S (σ) ≡ E[uS(τ = C) | σ]

=
[
1
] [

φC(qH , qL)
]1−σ

+
[
max

{
qL − π, 0

}
+

[
π(1 − qL) + (1 − π)qL

] (
φA(qH , qL)− φC(qH , qL)

)]1−σ
.

Lemma 2.5. For any (π, qH , qL) ∈ ( 1
2 , 1)3 such that qH > max{π, qL} holds, there exists a unique

cut-off point σ∗
HC ∈ (0, 1) such that:

(i) the seller is indifferent between τ = H and τ = C if σ = σ∗
HC. That is, uH

S (σ∗
HC) = uC

S (σ
∗
HC) holds

at the cut-off point;

(ii) the seller prefers τ = H over τ = C when they exhibit sufficiently low risk aversion. That is,

uH
S (σ) ≥ uC

S (σ) holds if and only if σ ∈ [0, σ∗
HC].

Proof. See Appendix 2.A.2.

The subsequent proposition encapsulates the core result derived from the preceding discussion.

Proposition 2.18. Suppose the following conditions hold: σ ≥ σ∗
CA, so that the seller optimally selects

τ∗ = C in the second period if q1 = qL is chosen, and, π
1−π ∈

(
1, 1−qL

qL
qH

1−qH

]
, ensuring that each pricing

strategy τ ∈ {H, C} satisfies both the participation and incentive compatibility constraints of the buyer.

Then, the optimal pricing strategy o the seller in the second period is characterised as follows:

(i) τ∗ = H, if σ ≤ σ∗
HC;
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(ii) τ∗ = C, otherwise.

where,

{
P1(qH),P1(qL)

}
∈
{

max
{

qH − π, 0
}}

×
(

max
{

qL − π
}

,+∞
)

, if τ = H;{
P1(qH),P1(qL)

}
∈
(

max
{

qH − π
}

,+∞
)

×
{

max
{

qL − π, 0
}
+

(
φA(qH , qL)− φC(qH , qL)

)}
, if τ = C.

The analysis demonstrates that high risk aversion fundamentally reshapes strategic preferences

in favour of conservative pricing approaches. The existence of cut-off point σ∗
HC reveals that

sufficiently risk-averse sellers will abandon the high-expected-return strategy of offering only

high-type signals in favour of conservative approaches that guarantee universal participation

and smoother revenue streams. Unlike the low risk aversion case where aggressive strategies

compete with high-type only approaches, high risk aversion creates a starker choice between

profit maximisation and risk management, with conservative pricing emerging as the dominant

strategy when uncertainty aversion becomes sufficiently pronounced.

2.5 Welfare Implication

The introduction of risk aversion into dynamic information markets creates profound welfare

implications that extend far beyond the immediate effects on pricing strategies and market

participation. Whilst the previous analysis focused on how risk preferences shape equilibrium

outcomes, this section examines the broader welfare consequences of these strategic changes,

addressing fundamental questions about market efficiency, surplus distribution, and the

desirability of different information environments. The analysis reveals that risk aversion

generates complex trade-offs between static efficiency and dynamic stability, with implications for

both market participants and potential regulatory interventions. Three key welfare dimensions

emerge as particularly important: the optimal design of information mechanisms under risk

aversion, the comparison between second-best outcomes under information asymmetry and

first-best outcomes under full information, and the role of commitment devices in enabling

revenue smoothing through dynamic pricing. Each dimension illuminates different aspects of

how risk preferences interact with information asymmetries to shape market outcomes, revealing

that the welfare effects of risk aversion prove far more nuanced than simple efficiency losses might
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suggest.

2.5.1 Global Optimum of Information Mechanism Design

The introduction of risk aversion fundamentally transforms the information mechanism design

problem, creating rich interactions between signal quality choices and pricing strategies that were

absent under risk neutrality. The analysis examines how a risk-averse seller should optimally

design the information structure, addressing the central question of whether the drive for

higher-quality signals observed under risk neutrality persists when sellers must balance expected

returns against revenue volatility.

Under risk neutrality, as demonstrated in the previous chapter, the mechanism design problem

yields a stark and elegant result: the seller should always offer the highest possible signal

quality qH = 1 by implementing a high-type only pricing strategy. The conclusion emerged

from straightforward optimisation where expected payoff increased monotonically with signal

precision, making perfect signals the dominant choice. The underlying economic logic was

compelling: better signals enable more precise rent extraction without imposing any costs on the

risk-neutral seller, who remains indifferent to the variability of outcomes.

Risk aversion disrupts this simple relationship by introducing preferences for revenue smoothing

that can conflict with profit maximisation. A risk-averse seller may deliberately choose

lower-quality signals if doing so generates more predictable revenue streams, even when

high-quality alternatives offer superior expected returns. Such preferences create a fundamental

tension between the discriminatory power of information and the financial preferences of the

provider regarding risk and uncertainty.

The analysis in Section 2.4.5 revealed that each of the three pricing strategies (i.e., high-type

only, aggressive, and conservative) emerge as optimal under different parametric conditions,

depending on the degree of risk aversion and the strength of buyer prior beliefs. The multiplicity

of equilibrium strategies suggests that the information design problem has become considerably

more complex. The seller now considers not only which signal qualities maximise expected profits,

but also how these choices interact with the risk profile of different pricing strategies and the

resulting implications for market structure and participation.

The key insight is that risk aversion can reverse the quality-maximisation imperative that

characterises the risk-neutral case. When sellers prioritise revenue stability over expected returns,
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they may prefer information structures which support more predictable trading patterns, even if

these structures sacrifice some precision and rent extraction capability. Such fundamental shift

in priorities transforms information mechanism design from a pure optimisation problem into a

sophisticated risk management exercise, where quality choices must be evaluated alongside their

implications for market dynamics and revenue uncertainty.

Optimal Signal Quality Under Aggressive and Conservative Strategies. We first investigate

the set of equilibria associated with optimal pricing strategies of either A or C. Suppose at

the global optimum, τ∗ ∈ {A, C}, at which the seller chooses to induce the buyer to acquire a

low-type signal in the first period, followed by a high-type signal in the second period. Under

these conditions, the seller chooses qH∗
= 1, since the expected utility functions are increasing in

qH . The economic intuition is straightforward. The probability distribution regarding the signal

realisation s1 = 1 is independent of qH . The uncertainty arises only from qL. The precision of

the high-type signal, qH , only determines the magnitude of the ex-post surplus extractable in the

second period. Consequently, without participation constraints, the seller has an incentive to set

qH as high as possible.

We now examine whether qH = 1 satisfies the buyer participation constraint when pricing strategy

A or C is implemented. Fortunately, the answer is positive. When the seller sets the signal

precision as q2 = qH = 1, the buyer always has incentive to acquire it as long as their posterior

belief before the acquisition is not one (i.e., µ1(·, ·) < 1), which always holds given the prior belief

and the signal precision in t = 1 is not one (i.e., (π, q1) ∈ ( 1
2 , 1)). The economic logic is compelling:

as the buyer is uncertain about the state at t = 0 (i.e., π ̸= 1), and such uncertainty cannot be

resolved by the signal in the first period (i.e., q1 ̸= 1), a perfect signal in the second period (i.e.,

q2 = qH = 1) always further enhances the buyer payoff, from which the seller can extract surplus.

Lemma 2.6. Given qH → 1, π
1−π ∈

(
1, 1−qL

qL
qH

1−qH

]
holds.

Technically, qH

1−qH will diverge towards positive infinity as qH → 1, which indicates that any prior

belief (i.e., π) satisfies the participation constraint mentioned above. To sum up, it is necessary

that the seller chooses qH∗
= 1 to maximise their ex-ante expected utility, if either A or C is

implemented under equilibrium.

Lemma 2.7. τ∗ ∈ {A, C} =⇒ qH∗
= 1. If the optimal strategy is A or C, the seller must offer a perfect

signal, qH∗
= 1, in the second period at the optimum.
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Preference Between Aggressive and Conservative Strategies. We now investigate the preference

between the aggressive pricing strategy and the conservative pricing strategy with restrictive

attention on the cases in which qH = 1 is chosen. Note that the two strategies share the same

expected utility level if qH = qL = 1 is chosen: uS(C; 1, 1) = uS(A; 1, 1) = (1 − π)1−σ. However,

the following lemma shows that the aggressive pricing strategy is not sustainable in the second

period, given any qL ∈ ( 1
2 , 1) and qH = 1. The economic intuition is that when qH = 1, the

conservative strategy guarantees full surplus extraction with certainty, whilst the aggressive

strategy creates the same surplus only probabilistically. For risk-averse sellers, the certainty of

conservative pricing dominates the uncertain but potentially equivalent returns of aggressive

pricing.

Lemma 2.8. qH = 1 =⇒ C ≻ A, ∀qL ∈ ( 1
2 , 1). Given that qH = 1 holds, C is preferred in the second

period, regardless of the choice on qL. Thus, τ∗ ̸= A.

Proof. The following inequality always holds given any qL ∈ ( 1
2 , 1):

[
φC(qH = 1, qL)

]1−σ
≥

[
π(1 − qL) + (1 − π)qL

] [
φA(qH = 1, qL)

]1−σ
.

Elimination of High-Type Only Strategies. We now demonstrate that any high-type only

pricing strategy is never optimal. Suppose at the global optimum, H is implemented with the

choice of signal type qH = qH∗. The expected utility of the seller is:

E[uS(H; qH∗
)] =

[[
π(1 − qH∗

) + (1 − π)qH∗] [
qH∗ − max

{
µ1(qH∗

, 1), 1 − µ1(qH∗
, 1)

}]]1−σ

+
[
max

{
qH∗ − π, 0

}]1−σ
.

The seller is always strictly better off if they opt for the following alternative strategy: τ = A with

the choice of signal types (qH , qL) = (1, qH∗
). The implied expected utility is:

E[uS(A; (1, qH∗
))] =

[[
π(1 − qH∗

) + (1 − π)qH∗] [
1 − max

{
µ1(qH∗

, 1), 1 − µ1(qH∗
, 1)

}]]1−σ

+
[
max

{
qH∗ − π, 0

}]1−σ
,
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which is strictly greater than E[uS(H; qH∗
)]. The economic intuition is straightforward: the seller

relies on the signal type of qH∗ in both periods if H is implemented. However, in the second

period, the seller always has incentive to enhance the precision to one (i.e., q2 = 1) for a better

payoff, as q2 does not affect the probability distribution on ex-post payoff realisation. However,

by Lemma 2.8, it can be inferred that τ = C with (qH , qL) = (1, qH∗
) generates a higher payoff,

which is sustainable equilibrium strategy proven by Lemma 2.8 itself.

Lemma 2.9. Given any π ∈ ( 1
2 , 1) and σ ∈ [0, 1), τ∗ ̸= H.

Proof. By Lemma 2.8, the following inequality holds given any qL = qH∗ which implies the desired

result:

[
φC(qH = 1, qL = qH∗

)
]1−σ

≥
[
π(1 − qL) + (1 − π)qL

] [
φA(qH = 1, qL)

]1−σ
.

The Optimal Mechanism Design. According to Lemma 2.8 and 2.9, it can be inferred that the

conservative pricing strategy is optimal, τ∗ = C, associated with the choice qH∗
= 1.

Proposition 2.19. Given any π ∈ ( 1
2 , 1) and σ ∈ [0, 1), the global optimality suggests the conservative

pricing strategy τ∗ = C with the following signal precision:

qH∗
= 1; qL∗ = arg max

qL

{ [
φC(1, qL)

]1−σ

+
[
max

{
qL − π, 0

}
+

[
π(1 − qL) + (1 − π)qL

] (
φA(1, qL)− φC(1, qL)

)]1−σ }
.

The result reveals a striking conclusion: despite the complexity introduced by risk aversion, the

optimal mechanism design converges to a conservative pricing strategy with perfect second-period

signals. Risk aversion does not lead to quality degradation in the conventional sense, but rather to

a preference for pricing strategies that guarantee universal participation and predictable revenue

streams.
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Single Signal Type Scenario

This section discusses the case when the seller is restricted to use only one signal type. If so, we

have a case equivalent to the one in which the seller implements a high-type only pricing strategy.

Unlike the previous chapter in which the seller is assumed risk neutral and thus optimality

suggests qH = 1, qH = 1 is no longer necessary if the preference of the seller exhibits sufficient

risk aversion. The seller may have an incentive to reduce qH in order to enhance the probability of

a trade in the second period. More specifically, the seller understands that positive information

rent in the second period exists only if the signal realisation in t = 1 is against the status quo (i.e.,

s1 = 1). Therefore, there exists a trade-off between the probability of trade (decreasing in qH) and

the ex-post utility (increasing in qH). The seller maximises their expected utility, uH
S , by choosing

an optimal signal type qH . The choice regarding qL is irrelevant, as long as it is lower than qH∗.

Consequently, we have the following proposition:

Proposition 2.20. If the seller is restricted to use only one signal type, qH∗
= 1 is no longer optimal.

Proof. Proof by contradiction. Suppose that qH = 1 is implemented. The implied expected utility

of the seller is:

uH
S (qH → 1) =

[
π(1 − qH) + (1 − π)qH

] [
φH(qH)

]1−σ
+

[
qH − π

]1−σ
.

Given that φH(qH = 1) = 0, the expected utility of the seller converges to,
[
qH − π

]1−σ. Consider

the alternative pricing strategy, q̃H = qH − ε, where ε → 0+. The implied expected utility of the

seller is higher due to the positively infinite marginal utility effect from (nearly) zero to strictly

positive information rent:

uH
S (q̃H) =

[
π(1 − q̃H) + (1 − π)q̃H

] [
φH(q̃H)

]1−σ
+

[
q̃H − π

]1−σ

=
[
π(1 − q̃H) + (1 − π)q̃H

] [
φH(qH) + δ

]1−σ
+

[
q̃H − π

]1−σ

>
[
π(1 − q̃H) + (1 − π)q̃H

] [
φH(qH)

]1−σ
+

[
q̃H − π

]1−σ

≈
[
π(1 − qH) + (1 − π)qH

] [
φH(qH)

]1−σ
+

[
qH − π

]1−σ

= uH
S (qH).
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2.5.2 Information Transparency and Welfare Effects

This section directly addresses the applicability concern by examining a fundamental hypothetical:

what would happen if sellers could observe first-period signal realisations? This section

examines whether risk-averse sellers benefit from information transparency by comparing

outcomes when signal realisations are observable versus unobservable. The analysis contrasts the

equilibrium under information asymmetry, where sellers cannot observe buyer signal realisations,

with the hypothetical first-best benchmark where sellers possess complete information about

buyer types. Whilst conventional wisdom might suggest that additional information always

benefits decision-makers, the results reveal a more nuanced relationship. For risk-averse

sellers, the inability to observe signal realisations can paradoxically provide welfare benefits

by enabling commitment to revenue-smoothing strategies that would prove unsustainable under

full information transparency.

When the prior belief is sufficiently extreme (i.e., π
1−π > 1−qL

qL
qH

1−qH ) such that the buyer has no

incentive to acquire any signal type in t = 2 when s1 = 0 is realised, the seller cannot extract

surplus from buyers who observe s1 = 0. The seller obtains surplus of max{q1 − π, 0} in the

first period and ex-post surplus of φτ∗(·) with probability [π(1 − q1) + (1 − π)q1] in the second

period, where q1 = qH if τ∗ = H and q1 = qL if τ∗ = A. The introduction of signal realisation

transparency does not affect optimality, which implies the outcome is equivalent to one under

information transparency.

When the prior belief is sufficiently moderate (i.e., π
1−π ≤ 1−qL

qL
qH

1−qH ), aggressive and conservative

pricing strategies are no longer sustainable under full information transparency. Strictly positive

information rent now exists when s1 = 0 is realised from a low-type signal acquisition, which the

seller can extract. The question becomes whether such transparency benefits the seller.

If τ∗ = H is optimally chosen under information asymmetry, the seller will not benefit from

signal transparency as zero information rent can be found under the realisation s1 = 0. If

τ∗ = A is optimally chosen under information asymmetry, the seller unambiguously benefits

from information transparency as they can now extract the information rent from buyers with

s1 = 0 that was previously inaccessible due to information asymmetry. If τ∗ = C is optimally

chosen under information asymmetry, the answer is ambiguous. Under information transparency,

the seller will set the price of a high-type signal in the second period as φA(qH , qL) instead of

φC(qH , qL). However, the total expected surplus is not increased, as the seller now forgoes the
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expected future benefit, V(qL), collected in the first period. Effectively, the seller is forced to

reallocate V(qL) towards the second period. Now we examine whether the seller is better off with

the compulsory surplus transfer.

First examine the case in which qH > π > qL. Under the environment of information asymmetry

(IA), the seller obtains a surplus of V(qL) in t = 1, and an ex-post surplus of φC(qH , qL) with

probability of one in t = 2. Under the information environment of information transparency

(IT), the seller obtains zero surplus in period t = 1, and, an ex-post surplus of φA(qH , qL) with

probability of π(1 − qL) + (1 − π)qL; φC(qH , qL) with probability of πqL + (1 − π)(1 − qL) in

t = 2, which makes the seller worse off. Formally, we have:

uS(C; IA) = (V(qL))1−σ + [1](qH − µ1(qL, 0))1−σ

= (V(qL))1−σ + [π(1 − qL) + (1 − π)qL](qH − µ0
1)

1−σ

+ [πqL + (1 − π)(1 − qL)](qH − µ0
1)

1−σ

> 01−σ + [π(1 − qL) + (1 − π)qL](qH − µ1
1)

1−σ + [πqL + (1 − π)(1 − qL)](qH − µ0
1)

1−σ,

where µs1
1 ≡ µ1(qL, s1). Intuitively, the reallocation of V(qL) from t = 1 to t = 2 makes the seller

worse off since they no longer benefit from the highest possible marginal utility at zero.

Second, assume that qH > qL > π. Under information asymmetry, the seller obtains surplus of

(qL −π)+V(qL) in period t = 1 and φC(qH , qL) with certainty in period t = 2. Under information

transparency, the seller obtains surplus of (qL − π) in period t = 1 and state-contingent surplus in

period t = 2. Unlike the previous case, the welfare comparison is ambiguous. If qL is sufficiently

close to qH , the seller benefits from the information environment of information transparency,

enjoying higher expected utility. Two factors drive this result. First, when qL is higher, the

marginal utility effect of V(qL) in period t = 1 weakens since the base consumption qL − π is

greater, reducing the seller’s sensitivity to additional surplus in that period. Second, higher qL

implies lower information rent when s1 = 0 (i.e., φC(qH , qL) decreases), which enhances the

marginal utility effect in period t = 2. Consequently, sellers facing sufficiently high qL may prefer

reallocating first-period surplus towards the second period, which information transparency

facilitates by enabling state-contingent pricing. We therefore state the following proposition:

Proposition 2.21. Given that π
1−π ∈

(
1, 1−qL

qL
qH

1−qH

]
holds:

(i) if τ = H is implemented under information asymmetry, the seller is indifferent to information
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transparency;

(ii) if τ = A is implemented under information asymmetry, the seller is better off under information

transparency;

(iii) if τ = C is implemented under information asymmetry, the seller is worse off under information

transparency when the low-type signal is sufficiently informative (i.e., qL is sufficiently high).

These results reveal the complex relationship between information transparency and welfare

in dynamic markets with risk-averse sellers. Whilst transparency typically benefits aggressive

sellers by enabling state-contingent pricing, it can harm conservative sellers by forcing them to

reallocate surplus across periods in ways that reduce marginal utility. The analysis demonstrates

that information asymmetry, typically viewed as a market imperfection, can paradoxically serve as

a commitment device that enables risk-averse sellers to implement revenue-smoothing strategies.

Such findings challenge conventional policy prescriptions favouring transparency, suggesting that

optimal regulatory approaches must account for the risk preferences of market participants and

the strategic value of controlled information environments.

For completeness, the technical characterisation of equilibrium strategies under the information

environment of information transparency is provided below. In summary, there are two

equilibrium classes under the information environment of information transparency (IT), given

π
1−π ≤ 1−qL

qL
qH

1−qH holds:

(i)
(
P1(qH),P2(qH , qH)

)
=

(
qH − π, qH − µ1(qH , s1)

)
, with (q1, q2) = (qH , qH),

equivalent to τ = H;

(ii)
(
P1(qL),P2(qL, qH)

)
=

(
max{qL − π, 0}, qH − max{µ1(qL, s1), 1 − µ1(qL, s1)}

)
,

with (q1, q2) = (qL, qH).

Let τ = ITH and τ = ITL denote the strategies described in (i) and (ii), respectively. The seller

prefers τ = FBL under information transparency when τ ∈ {A, C} is optimal under information

asymmetry. However, when τ = H is optimal under information asymmetry, whether the seller

prefers τ = ITH over τ = ITL under information transparency remains ambiguous.

2.5.3 Commitment and Revenue Smoothing Through Dynamic Pricing

Commitment mechanisms may enhance the welfare of the seller when there exists scope for

intertemporal revenue reallocation, particularly when the seller faces unequal marginal expected
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utility across periods. This opportunity arises most prominently when the seller anticipates zero

surplus in the first period, a situation that occurs when the prior belief which the buyer possesses

is sufficiently extreme that no signal commands a strictly positive price in the first period. Under

such circumstances, the seller faces a stark asymmetry: substantial expected revenue in the second

period but no immediate income. Risk aversion amplifies the cost of revenue concentration, as

the marginal utility of second-period income diminishes whilst the seller receives no utility from

first-period operations.

A commitment device enables the seller to smooth this revenue profile by pre-selling future

information services. Specifically, the seller can commit to offering second-period signals at lower

prices in exchange for higher first-period payments. Effectively, the arrangement functions as

an implicit loan from the buyer to the seller, with the committed repayment taking the form of

discounted future information access. This commitment proves sustainable because it aligns

with the intertemporal optimisation of the buyer. The buyer recognises that accepting higher

upfront costs in exchange for guaranteed future access represents good value, particularly when

the alternative involves uncertain future pricing. The arrangement satisfies both participation

and incentive compatibility constraints precisely because both parties benefit from the revenue

smoothing. However, the reverse arrangement, where the seller would prefer to shift first-period

surplus to the second period, proves infeasible under the assumption of non-commitment of

the buyer. Since the buyer retains the option to exit in the second period, they will refuse

any arrangement where second-period prices exceed the corresponding information rent. The

asymmetry in feasible commitment directions reflects the fundamental difference in bargaining

power between periods.

The mechanism effectively allows the seller to engage in consumption smoothing through the

pricing structure itself, transforming volatile information rents into a more stable revenue stream

that better suits risk-averse preferences. Rather than accepting the uncertainty inherent in

period-by-period pricing, the seller can use commitment to create a more predictable income

flow that reduces the welfare costs associated with revenue volatility. The following proposition

formalises these insights about optimal commitment mechanisms and their welfare properties.

Proposition 2.22 (Revenue Smoothing Through Commitment). Consider a risk-averse seller with

CRRA utility parameter σ ∈ (0, 1) facing the parameter regime where π
1−π ∈

((
qH

1−qH

)2
,+∞

)
, such

that P1(qH) = P1(qL) = 0. Define a commitment mechanism, (PC
1 ,PC

2 ), where the seller commits to
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second-period pricing before the first-period decision of the buyer. Then:

(i) Forward commitment is feasible: there exist prices (PC
1 (q

H),PC
2 (q

H , qH)) with PC
1 (q

H) > 0 and

PC
2 (q

H , qH) < φH(qH) such that both participation constraint and incentive compatibility hold.

(ii) Optimality condition: the optimal commitment satisfies,

λ1(PC
1 (·))−σ = λ2E

[
(PC

2 (·))−σ
]

,

where λ1, λ2 are the marginal utilities of consumption in periods t = 1 and t = 2, respectively.

2.6 Conclusion

This analysis demonstrates that the introduction of risk aversion fundamentally transforms the

strategic landscape of dynamic information markets, revealing that the drive for higher-quality

signals observed under risk neutrality need not persist when sellers must balance expected

returns against revenue volatility. The central insight emerges from the tension between profit

maximisation and revenue smoothing: whilst risk-neutral sellers focus exclusively on extracting

maximum surplus through high-precision signals that enable perfect market segmentation,

risk-averse sellers may rationally sacrifice expected profits in favour of more stable revenue

streams.

The findings reveal three key departures from the risk-neutral benchmark. First, risk-averse

sellers do not necessarily prefer signals with higher precision, as they may optimally choose to

induce buyers to acquire less precise signals that increase the likelihood of securing information

rent through reduced outcome volatility. Second, conservative pricing strategies that reallocate

surplus across periods through commitment mechanisms need not dominate aggressive pricing

approaches, since diminishing marginal utility can make sellers prefer strategies that accept

lower expected surplus in exchange for higher marginal utility from concentrated payoffs. Third,

information asymmetry can paradoxically benefit risk-averse sellers in certain parameter regions,

as the inability to observe signal realisations enables commitment to revenue smoothing strategies

that would be unsustainable under full information.

This preference for consumption smoothing can reverse established dominance relationships,

potentially favouring conservative pricing strategies that guarantee participation over aggressive

approaches that maximise expected returns. The resulting equilibrium reflects a sophisticated

balance between information quality, market participation, and risk management that captures
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essential features of real-world information markets where providers must consider both

profitability and operational stability in their strategic decisions. The paper thus contributes

to our understanding of information provision by showing that seller risk preferences constitute

a crucial determinant of market structure, signal quality, and pricing strategies, with important

implications for regulatory policy and market design.

Several avenues for future research emerge from this analysis. First, introducing buyer

heterogeneity in risk preferences or prior beliefs would reveal how sellers optimally segment

markets and whether risk-averse providers naturally select particular client types. Second,

competition amongst multiple information sellers could illuminate whether market forces amplify

or mitigate the effects of risk aversion on information quality and pricing strategies. Third,

extending the framework to multi-period horizons would enable examination of reputation

building and learning dynamics, particularly how risk-averse sellers balance short-term revenue

smoothing against long-term market positioning. Fourth, incorporating alternative risk preference

specifications such as ambiguity aversion or loss aversion could provide deeper insights into

how different forms of uncertainty affect information provision decisions. Finally, empirical

work calibrating the model using data from real information markets such as financial research

services, consulting firms, or digital information platforms would provide valuable evidence

on the quantitative importance of these mechanisms and guide further theoretical development.

These extensions would deepen our understanding of how risk preferences shape information

market dynamics whilst connecting the theoretical insights to observable market phenomena.
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Appendix 2.A: Omitted Proofs

2.A.1 Proofs of Section 4.3

Proof of Proposition 2.12. Given qH = µ1(qL, 0), we have:

01−σ <
[
π(1 − qL) + (1 − π)qL

] [
µ1(qL, 0)− max{µ1(qL, 1), 1 − µ1(qL, 1)}

]1−σ

⇐⇒
[

φC(qH , qL)
]1−σ

−
[
π(1 − qL) + (1 − π)qL

] [
φA(qH , qL)

]1−σ
< 0.

Given qH → +∞, by Mean Value Theorem, we have:
[
φA(qH , qL)

]1−σ −
[
φC(qH , qL)

]1−σ → 0,

which implies:

[
φA(qH , qL)

]1−σ
−

[
φC(qH , qL)

]1−σ
−

[
πqL + (1 − π)(1 − qL)

] [
φA(qH , qL)

]1−σ
< 0

⇐⇒
[

φC(qH , qL)
]1−σ

−
[
π(1 − qL) + (1 − π)qL

] [
φA(qH , qL)

]1−σ
> 0.

By Intermediate Value Theorem, there exists a cut-off point at which the seller is indifferent

between the two strategies, denoted qH∗ ∈ (µ1(qL, 0),+∞) such that:

[
φC(qH∗

, qL)
]1−σ

−
[
π(1 − qL) + (1 − π)qL

] [
φA(qH∗

, qL)
]1−σ

= 0.

Take natural log on both sides, and we have: (1 − σ) log φC(·) = log [·] + (1 − σ) log φA(·). Take

the total derivative on both side, and we have:

[− log φC] dσ +
1

φC

∂φC

∂qH∗ dqH∗
= [− log φA] dσ +

1
φA

∂φA

∂qH∗ dqH∗

=⇒ [− log φC] dσ +
1

φC
dqH∗

= [− log φA] dσ +
1

φA
dqH∗

=⇒ dqH∗

dσ
=

log φA − log φC
1

φA
− 1

φC

=
log φA

φC
φC−φA
φA φC

< 0.

Proof of Proposition 2.13. First define that:
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∆CA(σ) ≡
[
1
] [

φC(qH , qL)
]1−σ

−
[
π(1 − qL) + (1 − π)qL

] [
φA(qH , qL)

]1−σ
.

Let φC and φA denote φC(qH , qL) and φA(qH , qL), respectively. The first-order derivative with

respect to σ is:

∂∆CA
∂σ

= φ1−σ
C log φC (−1)−

[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A log φA (−1) .

The first-order condition holds if and only if:

φ1−σ
C log φC =

[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A log φA.

The second-order derivative with respect to σ is:

∂2∆CA
∂σ2 = φ1−σ

C log2 φC −
[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A log2 φA.

The following result demonstrates that the corresponding second-order derivative at any critical

point is positive, thereby implying that σ = σFOC constitutes a local minimum:

∂2∆CA
∂σ2 (σFOC) = φ1−σ

C log2 φC

=
[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A log φA log φC

>
[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A log2 φA,

which suggests that σ = σFOC is a local minimum. Given that any critical point must correspond

to a local minimum, the function admits at most one such point. Suppose ∆CA(σ = 0) < 0.

Combined with the fact that ∆CA(σ → 1) > 0, it follows that the cut-off point is unique. Suppose

∆CA(σ = 0) > 0. Then, the first-order derivative at σ = 0 is positive, since we have:

∂∆CA
∂σ

(0) = φC log φC (−1)−
[
π(1 − qL) + (1 − π)qL

]
φA log φA (−1)

> φC log φA (−1)−
[
π(1 − qL) + (1 − π)qL

]
φA log φA (−1)

= log φA (−1)
{

φC −
[
π(1 − qL) + (1 − π)qL

]
φA

}
= log φA (−1)∆CA(σ = 0) > 0.
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Combined with the facts that ∆CA(σ → 1) > 0, it follows that the cut-off point is unique.

2.A.2 Proofs of Section 4.5

Proof of Lemma 2.2. First we show that:

∆HA(σ) ≡
[
π(1 − qH) + (1 − π)qH

] [
φH(qH)

]1−σ
−

[
π(1 − qL) + (1 − π)qL

] [
φA(qH , qL)

]1−σ
,

contains only one critical point in R. Let φH and φA denote φH(qH) and φA(qH , qL), respectively.

The first-order derivative with respect to σ is:

∂∆HA
∂σ

=
[
π(1 − qH) + (1 − π)qH

]
φ1−σ

H log φH (−1)−
[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A log φA (−1) .

The first-order condition holds if and only if:

[
π(1 − qH) + (1 − π)qH

]
φ1−σFOC

H log φH =
[
π(1 − qL) + (1 − π)qL

]
φ1−σFOC

A log φA,

which suggests the following unique critical point:

σFOC = 1 −
log

[
[π(1−qL)+(1−π)qL] log φA

[π(1−qH)+(1−π)qH] log φH

]
log

[
φH
φA

] ,

For any (π, qH , qL) ∈ ( 1
2 , 1)3 and σ = 0 such that π > qH > qL holds, we have:

[
π(1 − qH) + (1 − π)qH

]
φH >

[
π(1 − qL) + (1 − π)qL

]
φA

⇐⇒
[
π(1 − qH) + (1 − π)qH

]
φH −

[
π(1 − qL) + (1 − π)qL

]
φA > 0

⇐⇒ ∆HC(σ = 0) > 0,

which has been proven in the previous chapter.

Given σ → 1, we have:
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lim
σ→1−

[
π(1 − qH) + (1 − π)qH

]
φ1−σ

H −
[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A

=
[
π(1 − qH) + (1 − π)qH

]
−

[
π(1 − qL) + (1 − π)qL

]
= (1 − 2π)

(
qH − qL

)
< 0

⇐⇒ ∆HC(σ → 1) < 0.

By Intermediate Value Theorem, there exists a cut-off point, σ∗
HA ∈ (0, 1) such that:

[
π(1 − qH) + (1 − π)qH

]
φ

1−σ∗
HA

H =
[
π(1 − qL) + (1 − π)qL

]
φ

1−σ∗
HA

A .

The uniqueness of σ∗
HA follows from the fact that the function possesses at most one critical point,

permitting only a single crossing of the horizontal axis.

Proof of Lemma 2.3. First show that:

∆HA(σ) ≡
[
π(1 − qH) + (1 − π)qH

] [
φH(qH)

]1−σ
+

[
qH − π

]1−σ

−
[
π(1 − qL) + (1 − π)qL

] [
φA(qH , qL)

]1−σ
−

[
qL − π

]1−σ
,

contains only one critical point in R. Let φH and φA denote φH(qH) and φA(qH , qL), respectively.

The first-order derivative with respect to σ is:

∂∆HA
∂σ

=
[
π(1 − qH) + (1 − π)qH

]
φ1−σ

H log φH (−1) +
[
qH − π

]1−σ
log

[
qH − π

]
(−1)

−
[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A log φA (−1)−
[
qL − π

]1−σ
log

[
qL − π

]
(−1) .

The first-order condition holds if and only if:

[
π(1 − qH) + (1 − π)qH

]
φ1−σ

H log φH +
[
qH − π

]1−σ
log

[
qH − π

]
=

[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A log φA +
[
qL − π

]1−σ
log

[
qL − π

]
.

The second-order derivative with respect to σ is:
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∂2∆HA

∂σ2 =
[
π(1 − qH) + (1 − π)qH

]
φ1−σ

H log2 φH +
[
qH − π

]1−σ
log2

[
qH − π

]
−

[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A log2 φA −
[
qL − π

]1−σ
log2

[
qL − π

]
.

The following result demonstrates that the corresponding second-order derivative at any critical

point is negative, thereby implying that σ = σFOC constitutes a local maximum:

∂2∆HA

∂σ2 (σFOC) =
[
π(1 − qH) + (1 − π)qH

]
φ1−σ

H log2 φH +
[
qH − π

]1−σ
log2

[
qH − π

]
<

[
π(1 − qH) + (1 − π)qH

]
φ1−σ

H log φH log φA

+
[
qH − π

]1−σ
log

[
qH − π

]
log

[
qL − π

]
=

[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A log2 φA +
[
qL − π

]1−σ
log

[
qL − π

]
log φA

−
[
qH − π

]1−σ
log

[
qH − π

]
log φA +

[
qH − π

]1−σ
log

[
qH − π

]
log

[
qL − π

]
=

[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A log2 φA +
[
qL − π

]1−σ
log

[
qL − π

]
log φA

−
[
qH − π

]1−σ
log

[
qH − π

]
log φA +

[
qH − π

]1−σ
log

[
qH − π

]
log

[
qL − π

]
=

[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A log2 φA +
[
qL − π

]1−σ
log

[
qL − π

]
log φA

+
[
qH − π

]1−σ
log

[
qH − π

] {
log

[
qL − π

]
− log φA

}
<

[
π(1 − qL) + (1 − π)qL

]
φ1−σ

A log2 φA −
[
qL − π

]1−σ
log2

[
qL − π

]
,

which suggests that σ = σFOC is a local maximum. Given that any critical point must correspond

to a local maximum, the function admits at most one such point. Combined with the facts that

∆HA(σ = 0) > 0 and ∆HA(σ = 1) < 0, it follows that the cut-off point is unique.

Proof of Lemma 2.4. The following provides a direct proof:

uH
S (σ) =

[
π(1 − qH) + (1 − π)qH

] [
φH(qH)

]1−σ
+

[
qH − π

]1−σ

=
[
π(1 − qH) + (1 − π)qH

] [
qH − (1 − π)qH

π(1 − qH) + (1 − π)qH

]1−σ

+
[
qH − π

]1−σ

=
[
π(1 − qH) + (1 − π)qH

]σ [[
π(1 − qH) + (1 − π)qH

]
qH − (1 − π)qH

]1−σ
+

[
qH − π

]1−σ

=
[
π(1 − qH) + (1 − π)qH

]σ [
(1 − 2π)qHqH + (2π − 1)qH

]1−σ
+

[
qH − π

]1−σ
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≥
[
π(1 − qH) + (1 − π)qH

]σ [
(1 − 2π)qHqH + (2π − 1)qH + (qH − π)

]1−σ

+
[
1 −

[
π(1 − qH) + (1 − π)qH

]σ] [
qH − π

]1−σ

=
[
π(1 − qH) + (1 − π)qH

]σ [
(1 − 2π)qHqH + (2qH − 1)π

]1−σ

+
[
1 −

[
π(1 − qH) + (1 − π)qH

]σ] [
qH − π

]1−σ

≥
[
π(1 − qH) + (1 − π)qH

]σ [
(1 − 2π)qHqL + (qH + qL − 1)π

]1−σ

+
[
1 −

[
π(1 − qH) + (1 − π)qH

]σ] [
qH − π

]1−σ

≥
[
π(1 − qL) + (1 − π)qL

] [
φA(qH , qL)

]1−σ
= uA

S (σ).

We also verify the boundary cases. For any (π, qH , qL) ∈ ( 1
2 , 1)3 and σ = 0 such that qH > π > qL

holds, we have:

uH
S (0)− uA

S (0) =
[
π(1 − qH) + (1 − π)qH

] [
φH(qH)

]
+

[
qH − π

]
−

[
π(1 − qL) + (1 − π)qL

] [
φA(qH , qL)

]
> 0,

which has been proven in the previous chapter.

Given σ → 1, we have:

lim
σ→1−

uH
S (σ)− uA

S (σ)

= lim
σ→1−

[
π(1 − qH) + (1 − π)qH

] [
φH(qH)

]1−σ
+

[
qH − π

]1−σ

−
[
π(1 − qL) + (1 − π)qL

] [
φA(qH , qL)

]1−σ

=
[
π(1 − qH) + (1 − π)qH

]
−

[
π(1 − qL) + (1 − π)qL

]
+ 1 = (1 − 2π)

(
qH − qL

)
+ 1 > 0.

Proof of Lemma 2.5. First show that:

∆HC(σ) ≡
[
π(1 − qH) + (1 − π)qH

] [
φH(qH)

]1−σ
+

[
qH − π

]1−σ

−
[
π(1 − qL) + (1 − π)qL

] [
φC(qH , qL)

]1−σ
−

[
max

{
qL − π, 0

}
+ V(qL)

]1−σ
,

114



CHAPTER 2: DYNAMIC SALE OF INFORMATION WITH RISK AVERSION 115

contains only one critical point in R. Let φH and φC denote φH(qH) and φC(qH , qL), respectively.

The first-order derivative with respect to σ is:

∂∆HC
∂σ

=
[
π(1 − qH) + (1 − π)qH

]
φ1−σ

H log φH (−1) +
[
qH − π

]1−σ
log

[
qH − π

]
(−1)

−
[
π(1 − qL) + (1 − π)qL

]
φ1−σ

C log φC (−1)−
[
V(qL)

]1−σ
log

[
V(qL)

]
(−1) .

The first-order condition holds if and only if:

[
π(1 − qH) + (1 − π)qH

]
φ1−σ

H log φH +
[
qH − π

]1−σ
log

[
qH − π

]
=

[
π(1 − qL) + (1 − π)qL

]
φ1−σ

C log φC +
[
V(qL)

]1−σ
log

[
V(qL)

]
.

The second-order derivative with respect to σ is:

∂2∆HC
∂σ2 =

[
π(1 − qH) + (1 − π)qH

]
φ1−σ

H log2 φH +
[
qH − π

]1−σ
log2

[
qH − π

]
−

[
π(1 − qL) + (1 − π)qL

]
φ1−σ

C log2 φC −
[
V(qL)

]1−σ
log2

[
V(qL)

]
.

The following result demonstrates that the corresponding second-order derivative at any critical

point is negative, thereby implying that σFOC constitutes a local maximum:

∂2∆HC
∂σ2 (σFOC) =

[
π(1 − qH) + (1 − π)qH

]
φ1−σ

H log2 φH +
[
qH − π

]1−σ
log2

[
qH − π

]
<

[
π(1 − qH) + (1 − π)qH

]
φ1−σ

H log φH log φC

+
[
qH − π

]1−σ
log

[
qH − π

]
log

[
V(qL)

]
=

[
π(1 − qL) + (1 − π)qL

]
φ1−σ

C log2 φC +
[
V(qL)

]1−σ
log

[
V(qL)

]
log φC

−
[
qH − π

]1−σ
log

[
qH − π

]
log φC +

[
qH − π

]1−σ
log

[
qH − π

]
log

[
V(qL)

]
=

[
π(1 − qL) + (1 − π)qL

]
φ1−σ

C log2 φC +
[
V(qL)

]1−σ
log

[
V(qL)

]
log φC

−
[
qH − π

]1−σ
log

[
qH − π

]
log φC +

[
qH − π

]1−σ
log

[
qH − π

]
log

[
V(qL)

]
=

[
π(1 − qL) + (1 − π)qL

]
φ1−σ

C log2 φC +
[
V(qL)

]1−σ
log

[
V(qL)

]
log φC

+
[
qH − π

]1−σ
log

[
qH − π

] {
log

[
V(qL)

]
− log φC

}
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<
[
π(1 − qL) + (1 − π)qL

]
φ1−σ

C log2 φC −
[
V(qL)

]1−σ
log2

[
V(qL)

]
,

which suggests that σ = σFOC is a local maximum. Given that any critical point must correspond

to a local maximum, the function admits at most one such point. Combined with the facts that

∆HC(σ = 0) > 0 and ∆HC(σ = 1) < 0, it follows that the cut-off point is unique.
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Chapter 3

Deliberation and Voting with Opposed Preferences

3.1 Introduction

Information aggregation through committee deliberation represents a fundamental mechanism

for enhancing collective decision-making under uncertainty. The theoretical foundation for such

mechanisms rests on the premise that agents, despite potentially heterogeneous preferences

regarding different types of errors, share a common objective of reaching decisions that align

with available evidence. However, this assumption may prove inadequate in organisational

contexts where agents possess fundamentally opposed preferences regarding decision outcomes.

Consider corporate governance, where directors serving on boards may hold financial positions

that directly conflict with shareholder interests. A director maintaining short positions in the

firm’s equity benefits from decisions that diminish share value, creating incentives to mislead the

committee towards suboptimal investment choices through strategic information transmission

during deliberation. Such scenarios give rise to a critical question in mechanism design: under

what conditions does establishing a deliberative committee improve decision quality when some

agents possess preferences that are systematically opposed to the objectives of the principal?

The analytical challenge intensifies when accounting for the strategic responses of well-intentioned

agents. Recognising that some committee members may transmit false information, agents aligned

with the principal’s interests may themselves choose to withhold or distort their private signals

to counteract potential manipulation. The resulting equilibrium behaviour can fundamentally

undermine the information aggregation benefits that deliberative mechanisms are designed to

provide. The paper develops a formal model of committee decision-making in which agents

engage in cheap talk communication before casting votes under the majority rule. The analysis

characterises three distinct equilibrium configurations: truthfully revealing equilibrium in which

all agents honestly transmit their private signals, non-truthful equilibrium in which good agents

reveal truthfully whilst bad agents systematically misrepresent their information, and babbling

equilibrium in which no meaningful information transmission occurs.
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The central contribution lies in characterising the conditions under which deliberative mechanisms

enhance or diminish collective decision-making efficiency when preferences are fundamentally

opposed rather than merely heterogeneous. The efficiency analysis demonstrates that deliberative

mechanisms improve upon decision-making based solely on prior beliefs only when signal

precision exceeds the prior probability and the likelihood of recruiting well-intentioned agents is

sufficiently high. When either condition fails, principals achieve superior outcomes by foregoing

information gathering entirely rather than investing in deliberative committee processes. These

results carry significant implications for organisational design and the structure of collective

decision-making institutions, suggesting that deliberative mechanisms, whilst potentially

beneficial under ideal conditions may prove counterproductive when preference alignment cannot

be ensured.

The paper proceeds as follows. Section 3.2 reviews the relevant literature on information

aggregation and deliberation with opposed preferences. Section 3.3 presents the model and

establishes the baseline framework with strategic messaging and voting. Section 3.4 characterises

the equilibrium conditions, analysing the conditions under which truthful revelation, systematic

deception, or communication breakdown emerge. Section 3.5 examines the efficiency implications

of each equilibrium, establishing when deliberation improves upon pure voting and when it

enhances decision-making relative to prior beliefs alone. Section 3.6 concludes with a discussion

of institutional design implications and directions for future research.

3.2 Literature Review

The literature on information aggregation through deliberation and voting can be broadly

categorised into three streams: studies examining voting-only mechanisms with heterogeneous

preferences, analyses of deliberation with standard preference assumptions, and research

departing from traditional monotonicity constraints.

Early research on committee decision-making focused on voting mechanisms without deliberation,

examining when agents truthfully reveal private information through their votes. Whilst maximal

efficiency requires all agents to vote according to their private signals, Austen-Smith and Banks

(1996) demonstrate that such nonstrategic voting may fail to constitute Nash equilibrium behaviour

under general assumptions. Feddersen and Pesendorfer (1998) extend this framework to jury

settings, showing that no Nash equilibrium exists in which all jurors employ nonstrategic voting
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under unanimity rules, highlighting fundamental tensions between individual incentives and

collective information aggregation.

Building on cheap talk communication models (e.g., Austen-Smith, 1990; Crawford and Sobel,

1982; Farrell and Rabin, 1996), subsequent research introduced deliberation stages preceding

voting. Coughlan (2000) provides the foundational framework, analysing jury deliberation under

publicly known preferences and demonstrating that truthful communication emerges only when

juror preferences are sufficiently similar. Austen-Smith and Feddersen (2005) and Austen-Smith

and Feddersen (2006) advance this analysis by incorporating private preference information,

showing that truthful deliberation can persist under non-unanimous voting rules despite potential

ex-post disagreement amongst committee members. Further developments include Gerardi and

Yariv (2007), who establish that all voting rules except unanimity generate identical equilibrium

outcomes from a mechanism design perspective, and Van Weelden (2008), who demonstrate that

sequential rather than simultaneous deliberation eliminates full information revelation under any

voting rule. Deimen et al. (2015) generalise these results to richer state and signal spaces, whilst

Le Quement and Yokeeswaran (2015) show that subgroup deliberation can Pareto improve upon

plenary deliberation outcomes.

The most directly relevant research is Meirowitz (2007), who introduces the concept of opposed

preferences that this paper adopts and extends. Their framework represents a fundamental

departure from traditional jury models by allowing agents whose preferences systematically

conflict with truth-seeking objectives. In their model, ’good’ agents prefer decisions that match

the true state whilst ’bad’ agents prefer decisions that contradict available evidence. However,

Meirowitz (2007) includes the assumption that all agents might share identical preferences with

some positive probability, creating scenarios in which preference conflict disappears entirely.

Under their framework, truthful deliberation exists only when each agent believes that the majority

of other agents share their preference type, and larger committees make truthful deliberation less

sustainable.

This paper advances beyond the analysis of Meirowitz (2007) in several key respects. First,

the model eliminates the assumption that agents might share identical preferences, ensuring

that preference conflict is always present and providing a more stringent test of deliberative

mechanisms. Second, whilst Meirowitz (2007) provides only sufficient conditions for truthful

equilibrium existence, conditions which are often far from tight, this paper delivers complete
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and precise characterisation of equilibrium existence conditions. Third, and most significantly,

Meirowitz (2007) completely omits the analysis of babbling equilibrium, despite its fundamental

importance as a benchmark configuration. Babbling equilibrium always exists regardless

of parameter values, effectively reducing deliberative mechanisms to pure voting without

information transmission. This paper recognises babbling equilibrium as the natural comparison

point for evaluating when deliberation adds value, using the expected payoff from babbling as a

crucial benchmark against which to measure other equilibria.

The efficiency analysis represents the primary theoretical advance of this paper. Whilst Meirowitz

(2007) establishes incomplete conditions for truthful deliberation to exist, they provide no analysis

of whether such deliberation actually improves decision quality relative to alternatives. This

paper conducts systematic efficiency comparisons that are entirely absent from Meirowitz (2007),

establishing precise parameter conditions under which deliberative mechanisms improve upon

decision-making based purely on prior beliefs and upon the babbling equilibrium benchmark.

The analysis reveals a fundamental tension: conditions that favour truthful equilibrium existence

typically conflict with conditions that enable efficiency gains. This implies that for most realistic

parameter combinations, organisations face a choice between sustainable equilibria that provide

no efficiency benefits and potentially beneficial but unsustainable configurations.

Additional literature examines related aspects of strategic communication in group settings.

Gerardi et al. (2009) and Wolinsky (2002) employ mechanism design approaches to information

extraction under conflicts of interest, whilst Galeotti et al. (2013) analyse multi-agent

communication networks, demonstrating that truthful revelation depends jointly on preference

composition and the number of honest agents. Hagenbach et al. (2014) examine information

revelation with certifiable communication, and Jackson and Tan (2013) show that full revelation

can be approximated in large societies regardless of voting rules. Visser and Swank (2007)

incorporate reputational concerns, finding that agents manipulate information strategically when

preferences diverge substantially.

3.3 Model

This analysis follows the model from Meirowitz (2007). Assume that the true state is binary,

ω ∈ Ω = {0, 1} associated with a prior, in which P(ω = 0) = p ∈ ( 1
2 , 1) and P(ω = 1) = 1 − p.

There is a principal who is making a decision between two alternatives, d ∈ D = {0, 1}. Instead
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of purely relying on the prior, p, they set up a committee to aggregate information from agents

in order to enhance the probability of making a correct decision. Without loss of generality, the

analysis assumes that the correct decision is the one which matches the true state. The committee

is composed of n agents, i ∈ I = {1, 2, . . . , n}. For simplicity, the number of agents, n, is odd.

Each agent possesses a preference, θi ∈ Θ = {1,−1}, in which θi = 1 indicates the agent i is a

’good’ agent who shares the same preference with the principal and thus prefers to match the

decision to the state, whilst θi = −1 indicates the agent i is a ’bad’ agent who prefers to have the

decision unmatched. Preferences are independently and identically generated from a publicly

known distribution, P(θi = 1) = α ∈ ( 1
2 , 1) and P(θi = −1) = 1 − α. In addition, preferences are

private information known by themselves only. Before deliberation, each agent receives a private

signal regarding the state, si ∈ S = {0, 1}, which is independently and identically generated

from a conditional distribution, P(si = ω | ω) = q ∈ ( 1
2 , 1) and P(si ̸= ω | ω) = 1 − q. The

signal generating distribution is known by the public. After receiving their private signal, si, each

agent simultaneously sends a message, mi ∈ M = {0, 1}, during the stage of deliberation. The

resulting message profile, m ≡ (m1, m2, . . . , mn), is publicly observed by all agents. Each agent then

simultaneously casts a vote, vi ∈ V = {0, 1}. The decision, d ∈ {0, 1}, is made according to the

majority rule. That is, d(v) = 0 if #{vi = 0} > n
2 , in which v ≡ (v1, v2, . . . , vn) is the voting profile.

The ex-post payoff of an agent i with θi = 1 is πi = 1 if d = ω, and πi = 0 otherwise, whilst that of

an agent i with θi = −1 is πi = 1 if d ̸= ω, and πi = 0 otherwise.

This paper focuses on symmetric pure message and voting strategies. Each agent observes their

preference and private signal, and then chooses a message for deliberation. Thus, a symmetric

pure message strategy is defined as a mapping: m : S × Θ → M. Afterwards, each agent further

observes the messages from other agents, i.e., message profile other than i, m−i ≡ m \ {mi}, and

updates the posterior belief regarding the true state, µi ≡ P(ω = 0 | si,m−i). Based on the

posterior belief, they cast a vote, vi. Thus, a symmetric pure voting strategy is defined as a mapping:

v : S ×Mn−1 × Θ → V . The equilibrium concept follows the definition of pure Perfect Bayesian

Equilibrium. An equilibrium is a pair of message strategy and voting strategy (m, v) which satisfies

the following two requirements: given the message strategy, no agent can improve their expected

payoff by deviating from their voting strategy whilst given the voting strategy, no agent can

improve their expected payoff by deviating from their message strategy. Formally, we define the

voting profile other than i, i.e., votes from other agents, as v−i ≡ v \ {vi}.

Definition 3.1 (Equilibrium concept). Let m∗
i ≡ m∗(si, θi) and v∗i ≡ v∗(si,m−i, θi). A pair (m∗, v∗)
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is an equilibrium if and only if,

(i) no agent can improve their payoff by unilaterally deviating from their voting strategy, taking

voting strategies as given:

∀v′i ∈ V , E[πi(ω, v∗i ,v−i, θi)] ≥ E[πi(ω, v′i,v−i, θi)];

(ii) no agent can improve their payoff by unilaterally deviating from their message strategy,

accounting for how this affects subsequent voting of any other agent:

∀m′
i ∈ M, E[πi(ω, v∗i , {v∗j (·, (m1, ...,m∗

i , ..., mn), ·)}j ̸=i, θi)]

≥ E[πi(ω, v∗i , {v∗j (·, (m1, ..., m′
i, ..., mn), ·)}j ̸=i, θi)],

where v∗j = v(sj,m−j, θj), ∀j ∈ I .

These equilibrium conditions capture the strategic interaction inherent in this two-stage game.

The first condition ensures that no agent wishes to deviate from their prescribed voting behaviour,

taking as given both the messaging strategy and the voting behaviour of all other agents. The

second condition is more subtle: it requires that no agent benefits from sending a different

message, accounting for how such a deviation would influence not only their own subsequent

voting decision but also the voting decisions of all other agents who observe the altered message

profile. Such a condition recognises that messages serve as signals to other committee members,

and any deviation in messaging will trigger corresponding adjustments in the voting behaviour

of others, creating a chain of strategic responses that the deviating agent must anticipate when

evaluating alternative messaging strategies.

This analysis examines three equilibrium configurations, each characterised by a distinct message

strategy combined with sincere voting: truthfully revealing equilibrium, non-truthful equilibrium,

and babbling equilibrium. The following presents the formal definitions of these message

strategies.

Definition 3.2 (Selected Message Strategies). This analysis examines three distinct message

strategies:

(i) Truthfully revealing message strategy: each agent of any preference sends their private signal
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during deliberation, m(si, θi) = si, ∀i ∈ I .

(ii) Non-truthful message strategy: a good agent reveals their private signal, m(si, θi = 1) = si,

whilst a bad agent sends a false message, m(si, θi = −1) = 1 − si, ∀i ∈ I .

(iii) Babbling message strategy: each agent sends a null message, m(si, θi) = 0, ∀i ∈ I .

Note that semi-separating strategies, i.e., one type plays babbling whilst the other plays

non-babbling, and mixed strategies are excluded from this paper, since the implied efficiency of any

of them should be a convex combination of the three considered message strategies. The rationale

for this exclusion rests on the observation that any semi-separating equilibrium in which one

agent type employs truthful revelation whilst the other employs babbling would yield efficiency

outcomes that lie between those of the pure strategy equilibria. Similarly, any mixed strategy

equilibrium in which agents randomise between different messaging approaches would produce

expected efficiency measures that represent weighted averages of the pure strategy outcomes.

Since efficiency comparison constitutes a primary objective of this analysis, examining these

intermediate cases would not provide additional insights beyond understanding the performance

boundaries established by the pure strategy equilibria. Therefore, it is sufficient to restrict attention

to the three pure strategy configurations for efficiency comparison purposes. The analysis derives

the conditions on parameters for the existence of these three equilibria and subsequently examines

their relative efficiency properties.

The posterior belief regarding the state based on their signal si and messages from other agents,

m−i is:

µi ≡ µ(si,m−i) ≡ P(ω = 0 | si,m−i) =
P(ω = 0, si,m−i)

P(ω = 0, si,m−i) + P(ω = 1, si,m−i)
.

For algebraic simplicity, the analysis introduces a new mapping, ϕ : S ×Mn−1 → (0, 1), and a

new variable, ϕi, to evaluate the posterior belief,

Definition 3.3 (Posterior Belief). Let ϕi denote the posterior odds ratio possessed by the agent i

given their signal si and message profile of the others m−i,

ϕi ≡ ϕ(si,m−i) ≡
P(ω = 0, si,m−i)

P(ω = 1, si,m−i)
,

where ϕ : S ×Mn−1 → (0, 1) denotes the posterior odds ratio mapping.
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Note that µi ≥ 1
2 and ϕi ≥ 1 are equivalent. Henceforth, the analysis refers to ϕi as the posterior

belief regarding the true state.

Regarding the voting stage, this paper examines the sincere voting strategy under each equilibrium.

Sincere voting differs from naive signal-based voting in that agents take into account all

information revealed during the deliberation stage. Formally, sincere voting is defined as a

voting strategy in which each good agent votes for the alternative corresponding to a posterior

belief exceeding 1
2 , or equivalently, a posterior odds ratio exceeding one. We now provide the

formal definition.

Definition 3.4 (Sincere Voting Strategy). Under sincere voting, an agent i votes for the alternative

associated with the more probable state according to their posterior odds ratio,

ϕ(si,m−i) ≥ 1 =⇒ vi = 0; ϕ(si,m−i) < 1 =⇒ vi = 1.

Strategic voting in committee settings involves a fundamental tension between information

aggregation and preference heterogeneity. Rational agents who play strategically focus primarily

on events in which they serve as pivotal voters, recognising that their individual vote determines

the collective outcome only in these decisive moments. The optimal voting decision in such

pivotal events may differ substantially from what the agent posterior belief would suggest, as

strategic considerations must account for the informational content revealed by others voting

behaviour.

The literature typically examines weakly undominated voting strategies, in which an agent weakly

prefers to cast a particular vote vi regardless of the voting profile of other agents, v−i. Under

a truthfully revealing equilibrium, sincere voting emerges as the natural strategy choice. Since

all private information has been completely shared during the deliberation stage, agent votes

cannot convey additional information beyond what has already been revealed through messages.

The voting stage thus becomes purely implementational: agents vote according to their posterior

beliefs without concern for signalling or information extraction. In such environments, an agent

optimal voting decision when pivotal coincides exactly with the decision indicated by their

posterior belief, making sincere voting both individually rational and collectively efficient.

However, the strategic landscape changes dramatically under non-truthful and babbling equilibria.

In these configurations, the voting actions of other agents, v−i, contain valuable information
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that was not fully transmitted during the deliberation stage. Bad agent votes may reveal their

true private signals despite their earlier strategic messaging, whilst the pattern of votes across

all agents provides additional evidence about the underlying state. Consequently, agents must

solve a complex pivotal voting problem, weighing their posterior beliefs against the informational

inferences they can draw from observing other agent voting behaviour. The analysis of these

strategic voting equilibria requires careful attention to the information revelation properties

of votes themselves. The subsequent analysis provides a comprehensive characterisation of

equilibrium existence conditions.

3.4 Equilibrium Characterisation

In this section, we characterise the conditions on the parameter quadruple (α, p, q, n) governing the

existence of the three equilibrium types by examining two distinct strategic incentives that agents

face. The analysis focuses on potential deviations from equilibrium behaviour: first, whether

agents wish to deviate from sincere voting given the conjectured message strategy, and second,

whether agents wish to deviate from their prescribed messaging behaviour given that all agents

vote sincerely.

The underlying logic rests on the pivotal player principle. Rational agents recognise that their

individual actions matter only in situations in which they are decisive for the collective outcome.

Consequently, strategic agents concentrate their decision-making calculus exclusively on these

pivotal events, carefully analysing the probability that such decisive moments will arise and

optimising their strategies to maximise their expected payoff conditional on being pivotal. The

pivotal reasoning manifests differently across the two stages of the game. In the voting stage,

an agent considers only events in which they cast the decisive vote, understanding that their

voting decision determines whether the committee chooses alternative zero or alternative one. The

agent weighs their posterior belief about the true state against the strategic implications of their

vote, particularly when voting behaviour itself conveys information to other committee members.

In the messaging stage, the strategic calculus becomes more complex. An agent considers only

events in which they serve as a pivotal sender, in which their message choice fundamentally alters

the information available to other committee members and thereby influences the final collective

decision. Such pivotal messaging events are less immediately apparent than pivotal voting events,

as they require the agent to trace through how their message affects posterior beliefs of others,
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which in turn affects their voting behaviour, which ultimately determines the collective outcome.

The agent must therefore engage in sophisticated forward reasoning, anticipating the chain of

responses that their messaging choice will trigger amongst other committee members.

3.4.1 Full Information Transmission: Truthfully Revealing Equilibrium

Under a truthfully revealing equilibrium, deliberative democracy achieves its theoretical ideal.

Consider a committee in which every member abandons strategic calculation and simply reports

what they observe. Such transparency transforms the group into a collective sensing mechanism,

pooling individual observations to construct a shared understanding of reality. The mathematical

structure mirrors the conceptual appeal. Each message, m(si, θi) = si, serves as an unfiltered

window into private knowledge, creating perfect information aggregation through voluntary

revelation.

The strategic beauty of this equilibrium lies in its simplicity. Since all agents commit to honesty,

each participant can decipher the message profile perfectly to infer the exact signals observed

by every other committee member. A message of zero unambiguously indicates that the sender

received signal si = 0, whilst a message of one reveals that the sender received signal si = 1.

Such perfect mapping between messages and underlying private information transforms the

committee into a collective information processing unit, in which individual signals are pooled

transparently to form a comprehensive picture of the evidence regarding the true state. The power

of this transparent system becomes evident in how agents process information. When a committee

member i observes the complete message profile, they face a straightforward belief updating

problem. Given that they understand exactly which signals their colleagues observed, they apply

Bayes’ rule to form their posterior belief, ϕ : S ×Mn−1 → R+,

ϕi ≡ ϕ(si,m−i) =
pqk(1 − q)n−k

(1 − p)(1 − q)kqn−k =
p

1 − p

(
q

1 − q

)2k−n
,

where k is the number of null messages in the message profile, k ≡ #{mi = 0 | m}. Also, let

mk ∈ {m ∈ Mn | #{mi = 0} = k} denote a message profile containing k null messages. An

agent believes that ω = 0 is more likely to be the true state if ϕi ≥ 1. The intuition behind this

threshold is straightforward. Since ϕi represents the probability ratio, a value of ϕi ≥ 1 indicates

that the agent assigns at least equal probability to state zero relative to state one. When ϕi > 1, the

agent considers state zero strictly more likely, whilst ϕi < 1 indicates that state one appears more

126



CHAPTER 3: DELIBERATION AND VOTING WITH OPPOSED PREFERENCES 127

probable. The threshold of unity thus serves as the natural decision boundary. Since the ex-post

payoff of a correct decision (i.e., d = θ) is assumed symmetric given any true state, rational agents

with preference θ = 1 prefer the alternative that corresponds to the more likely state, leading them

to favour decision d = 0 when ϕi ≥ 1 and decision d = 1 when ϕi < 1. Note that ϕi is increasing

in k, the number of null messages. The monotonic relationship reflects the informational content

of messages. Since null messages correspond to null signals under truthful revelation, observing

more null messages provides stronger evidence in favour of ω = 0. Let k∗ denote the cut-off point

such that ϕi ≥ 1 if and only if k ≥ k∗, and ϕi < 1 otherwise. We therefore introduce the following

formal definition.

Definition 3.5 (Posterior Belief Cut-off). Let k∗ ∈ N denote the minimum number of null messages

required for an agent to believe that ω = 0 is more likely than ω = 1,

k∗ ≡ argmin
k∈N

{
p

1 − p

(
q

1 − q

)2k−n
| p

1 − p

(
q

1 − q

)2k−n
≥ 1

}
.

The threshold k∗ emerges naturally from this updating process, representing the tipping point at

which accumulated evidence overcomes prior scepticism. Imagine a committee initially biased

towards believing state one is more likely. As null messages accumulate during deliberation, each

additional report of null signal chips away at this bias until, at exactly k∗ messages, the scales

tip decisively towards state zero. The threshold k∗ thus serves as a critical tipping point in the

collective assessment: when the number of null messages reaches or exceeds this threshold, the

accumulated evidence becomes sufficiently compelling to shift the balance of belief in favour of

state zero.

The economic interpretation of k∗ reveals important insights about the interaction between prior

beliefs and signal precision. It is possible that k∗ = 0 when the prior is sufficiently unequal in

favour of state zero, which implies that signals and messages make no substantial impact on the

posterior belief. In such cases, the prior dominates: agents enter the deliberation already convinced

that ω = 0 is more likely, and even contradictory evidence from signals fails to overturn this strong

initial conviction. Such situations highlight a fundamental limitation of deliberative mechanisms

when prior beliefs are heavily skewed. The information aggregation process becomes largely

ceremonial rather than genuinely informative. Conversely, when priors are more balanced and

signals are highly precise, k∗ takes on positive values, meaning that a substantial consensus of null

messages is required to tip the scales towards state zero. Such scenarios represent the deliberative
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ideal. Agents genuinely update their beliefs based on the collective evidence revealed through

deliberation, with the committee serving as an effective information processing mechanism. After

the stage of deliberation, all agents converge to thinking that ω = 0 is more likely to be true, but

this convergence reflects genuine learning rather than mere confirmation of pre-existing biases.

In the voting stage, we conjecture that all agents follow the sincere voting strategy: each good

agent (i.e., θi = 1) votes for the alternative associated with a higher posterior belief, whilst each bad

agent (i.e., θi = −1 ) votes for the alternative associated with a lower posterior belief. The intuitive

justification is that sincere voting constitutes an equilibrium because truthful signal revelation

during deliberation eliminates any informational advantage from strategic voting. Since all private

information has already been shared and incorporated into each agent posterior belief, observing

others votes yields no further insight. The voting stage therefore becomes implementational

rather than informational: agents translate posterior beliefs directly into votes without concern for

signalling or inference.

Formally, any deviation from sincere voting can be beneficial only in pivotal cases, where an

individual vote determines the collective outcome. However, under truthful communication,

an agent posterior belief conditional on being pivotal remains identical to the unconditional

belief, since all relevant information has already been revealed. Therefore, the optimal decision in

pivotal cases coincides with the sincere voting strategy. Strategic considerations such as signalling

or inference become irrelevant once deliberation achieves full information aggregation. This

transparency ensures that sincere voting is both individually rational and collectively efficient,

and that the voting stage faithfully implements the information gathered during deliberation.

Now we investigate how the final decision is determined. According to majority rule, the final

decision is determined as,

d(v) = 0, if #{vi = 0 | vi ∈ v} >
n
2

; d(v) = 1, otherwise.

The final decision d is effectively determined by the composition of preferences rather than the

informational content of signals. The alternative associated with a higher posterior belief will

be chosen if there are more good agents, whilst the alternative associated with a lower posterior

belief becomes the outcome if there are more bad agents. Such outcome reflects a fundamental

tension in the truthfully revealing equilibrium: whilst information aggregation functions perfectly

through deliberation, the voting stage reintroduces preference-based distortions that can override
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the collective assessment of evidence.

Since the posterior belief is derived from the collection of signals and the final decision, d ∈ {0, 1},

depends on the composition of preferences, we can establish a direct mapping from the underlying

fundamentals (i.e., signals and preferences) to the collective decision. The decision outcome

depends on two distinct factors operating through different channels. The informational content

of signals determines which alternative agents believe is correct, whilst the preference composition

determines which belief actually prevails in the voting. Let θ ≡ (θ1, θ2, ..., θn) denote the preference

profile. We therefore have the following reduced-form mapping from signals and preferences to

the decision:

Lemma 3.1 (Decision Rule). Given any signal profile s ∈ {0, 1}n and preference profile θ ∈ {0, 1}n,

the truthfully revealing equilibrium yields the final decision d = 0 if and only if one of the following two

conditions holds:

(i) null signals are sufficiently numerous and good agents constitute the majority:

#{si = 0 | si ∈ s} ≥ k∗ and #{θi = 1 | θi ∈ θ} >
n
2

;

(ii) null signals are sufficiently few and good agents constitute the minority:

#{si = 0 | si ∈ s} < k∗ and #{θi = 1 | θi ∈ θ} <
n
2

.

The theorem reveals the dual nature of decision-making under opposed preferences: the committee

reaches decision d = 0 either when the evidence genuinely supports this choice and good

agents implement it, or when the evidence points against it but bad agents strategically vote

in the opposite direction. Such characterisation highlights how preference heterogeneity can

produce correct decisions through two fundamentally different mechanisms, either through

aligned incentives when information favours the decision, or through misaligned incentives that

paradoxically lead to the right outcome when information opposes it. The presence of bad agents

thus creates scenarios in which inferior evidence can yield superior decisions, demonstrating the

complex interplay between information aggregation and preference conflict in committee settings.

To further simplify the notation and facilitate the discussion, we define the type of an agent,

xi, as the pair of their signal and preference, xi ≡ (si, θi). Hence, there are four types of

agents, xi ∈ X = {(0, 1), (1, 1), (0,−1), (1,−1)}. For better comprehensibility, we relabel the
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elements such that X = {G0, G1, B0, B1}, in which {G, B} indicates the preference of the agent,

and the subscript {0, 1} indicates the signal received by the agent. For example, an agent

with θi = 1 who receives si = 0 is associated with type G0. We now define a type profile as

n ≡ (n′
G0

, n′
G1

, n′
B0

, n′
B1
) ∈ N ′ ≡

{
x ∈ N4 | ∑4

i=1 xi = n
}

, in which n′
x indicates the number

of agents of type x in the committee. The type profile thus characterises the complete type

composition of the committee. Clearly, n′
G0

+ n′
G1

+ n′
B0

+ n′
B1

= n. Consequently, the decision

rule can be reduced to a mapping from the type profile:

Proposition 3.1 (Decision Rule: Truthfully Revealing Equilibrium). Given the type profile, n ∈ N ′,

and the cut-off point, k∗ ∈ N, the truthfully revealing equilibrium yields the final decision d = 0 if and

only if one of the following two conditions holds:

(i) null signals are sufficiently numerous and good agents represent the majority: n′
G0

+ n′
B0

≥ k∗ and

n′
G0

+ n′
G1

≥ n
2 ;

(ii) null signals are sufficiently few and good agents represent the minority: n′
G0

+ n′
B0

< k∗ and

n′
G0

+ n′
G1

< n
2 .

Sustainability of Sincere Voting. Now we examine whether an agent has incentive to deviate

from sincere voting. First note that sincere voting under a truthfully revealing equilibrium is an

undominated voting strategy since no further information is transmitted through the voting profile

from other agents, v−i. Therefore, regardless of how other agents cast their votes, voting according

to the posterior belief is optimal. In terms of pivotal voting, when an agent i considers the events in

which they are a pivotal voter, the conditional posterior belief regarding the true state is exactly the

same as ϕ(si,m−i). To formalise the argument, define an event with respect to an agent i as a type

profile other than i, denoted as n−i ≡ (nG0 , nG1 , nB0 , nB1) ∈ N ≡
{
x ∈ N4 | ∑4

i=1 xi = n − 1
}

, in

which nx denotes the number of agent type x, excluding i. The agent understands that they are

a pivotal voter if and only if other agents are evenly divided in their votes, which occurs if and

only if others are evenly divided in their preference. That is, nG0 + nG1 = nB0 + nB1 = n−1
2 . Let

N TRE
V ⊆ N denote the set of events in which the agent i is a pivotal voter. Therefore, the posterior

belief conditional on pivotal voting events, denoted as ϕ̃ : S ×Mn−1 → R+, is given by,

ϕ̃i ≡ ϕ̃(si,m−i) ≡
∑n−i∈N TRE

V
P(ω = 0, si,n−i)

∑n−i∈N TRE
V

P(ω = 1, si,n−i).

It is worth noting that the conditional posterior belief equals the unconditional one. We construct
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the following lemma.

Lemma 3.2 (Pivotal Posterior Equivalence). Under truthfully revealing equilibrium, the posterior belief

conditional on pivotal voting events equals the unconditional posterior belief. That is,

ϕ̃i = ϕi.

Consequently, sincere voting is always sustainable, regardless of (α, p, q, n).

Proof. See Appendix 3.A.1.

The economic intuition behind this result is straightforward. Since all private information has

already been revealed through truthful messaging, the voting stage contains no additional

informational content. When an agent conditions on being pivotal, they learn nothing new

about the true state beyond what they already knew from observing the message profile. The

act of being pivotal simply confirms that preferences are equally split, but this knowledge about

preference composition provides no additional insight into the underlying state of the world.

Consequently, the agent’s optimal voting decision when pivotal remains identical to their optimal

decision based purely on the posterior belief formed after deliberation. Therefore, they have no

incentive to deviate from sincere voting. Sincere voting is sustainable under a truthfully revealing

equilibrium.

Sustainability of Truthfully Revealing Messaging. We now turn to the more complex question

of messaging incentives. The key insight lies in understanding when an agent becomes a pivotal

sender, a position in which their message choice fundamentally alters the collective decision of

the committee. When contemplating whether to deviate from truthful messaging, a strategic

agent focuses exclusively on scenarios in which their message matters. In all other circumstances,

deviating from the conjectured strategy produces no change in the final outcome, rendering such

deviations pointless. The agent must therefore identify precisely those events in which their

message tips the balance.

Consider an agent of type xi = G0, who recognises that truthful messaging will add another null

message to the profile, potentially pushing the total count to the critical threshold k∗. Should

this occur, all committee members will form posterior beliefs ϕi ≥ 1. As someone aligned with

truth-seeking, our agent naturally prefers this outcome when the evidence genuinely supports it.
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Yet the following strategic consideration emerges: whilst the evidence may point towards d = 0,

the ultimate decision depends not merely on information but on preference composition. Under

sincere voting, good agents will vote for d = 0 whilst bad agents vote for d = 1. The final outcome

therefore hinges on which group commands the majority. The agent becomes pivotal precisely

when their message determines whether the committee reaches the threshold k∗. Formally, this

occurs when the event, n−i, satisfies nG0 + nB0 = k∗ − 1 and nG1 + nB1 = (n − 1)− (k∗ − 1). In

such circumstances, the choice of the pivotal agent between truthful messaging and deception

reverses informational assessment and, consequently, the voting behaviour of all members.

Formally, let N TRE
M (xi) denote the set of events in which the agent i of type xi is pivotal at

the messaging stage. The decision of the agent hinges on a straightforward question. Conditional

on being pivotal, does their side command the majority? If good agents predominate, truthful

messaging yields the preferred outcome d = 0. Conversely, if bad agents hold sway, truthful

messaging paradoxically leads to the undesired outcome d = 1, since bad agents vote against the

evidence. Formally, let N+
xi

(N−
xi

) denote the set of events in which the agent i of type xi belongs

to the majority (minority). Specifically, for example, N+
G0

= {x ∈ N | nG0 + nG1 > n−1
2 } and

N−
G0

= {x ∈ N | nB0 + nB1 > n−1
2 }. The condition for sustainable truthful messaging requires

that the expected payoff from honesty weakly dominates that from deception,

∑
n−i∈N TRE

M (xi)∩N+
xi

P(ω = 0, si = 0,n−i) + ∑
n−i∈N TRE

M (xi)∩N−
xi

P(ω = 1, si = 0,n−i)

≥ ∑
n−i∈N TRE

M (xi)∩N−
xi

P(ω = 0, si = 0,n−i) + ∑
n−i∈N TRE

M (xi)∩N+
xi

P(ω = 1, si = 0,n−i).

When our agent finds themselves in a pivotal position, the strategic calculation becomes clear.

Should they send the truthful message mi = 0, they obtain the expected payoff corresponding to

the left-hand side of our inequality. Conversely, deviating to mi = 1 yields the payoff shown on

the right-hand side. The first term in each expression captures the payoff when the committee

ultimately chooses d = 0, whilst the second term represents the payoff under decision d = 1.

Truthful messaging remains optimal when the left-hand side weakly dominates. Simplifying

this condition reveals its economic essence. After rearranging terms to isolate the preference

composition effects, the sustainability condition reduces to,

P(i pivotal sender and in the majority) ≥ P(i pivotal sender and in the minority).
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The interpretation proves illuminating. Applying identical reasoning to agents of types G1, B0, and

B1 yields a complete characterisation. The analysis reveals an elegant symmetry: the sustainability

conditions for types G0 and G1 prove identical, as do those for types B0 and B1. Such symmetry

reflects the fundamental alignment within each preference group, despite differences in private

signals. Following algebraic manipulation of the preceding expressions, we establish the following

proposition.

Proposition 3.2 (Sustainability: Truthfully Revealing Equilibrium). Given k∗ ̸= 0, a truthfully

revealing equilibrium exists if and only if (α, p, q, n) ∈ [ 1
2 , 1]3 × N (n odd) satisfies,

k∗−1

∑
i=0

(
k∗ − 1

i

)− n−1
2 −i−1

∑
j=0

(
n − k∗

j

)
αi+j(1 − α)n−1−i−j +

n−k∗

∑
j= n−1

2 −i

(
n − k∗

j

)
αi+j(1 − α)n−1−i−j

 ≥ 0,

k∗−1

∑
i=0

(
k∗ − 1

i

)− n−1
2 −i−1

∑
j=0

(
n − k∗

j

)
(1 − α)i+jαn−1−i−j +

n−k∗

∑
j= n−1

2 −i

(
n − k∗

j

)
(1 − α)i+jαn−1−i−j

 ≥ 0.

Given k∗ = 0, truthfully revealing equilibrium always exists.

Proof. Given k∗ ̸= 0, see Appendix 3.A.1 for full derivation. Given k∗ = 0, no pivotal events exist

for any agent type, since the constraint nG0 + nG1 = −1 proves impossible to satisfy. Consequently,

the sustainability conditions hold trivially for any parameter (α, p, q, n) such that k∗ = 0 holds.

A remarkable feature emerges from these conditions for non-trivial cases (i.e., k∗ ̸= 0). The

derived conditions depend solely on the preference composition parameter α and committee size

n, proving independent of both prior beliefs p and signal precision q, which suggests that the

sustainability of truthful revelation hinges entirely on the balance between good and bad agents,

not on the informational environment they face. This feature persists even when the assumption

of symmetric payoffs is relaxed. Accordingly, we obtain the following corollary:

Corollary 3.2.1 (Robustness to Payoff Asymmetry). Consider an asymmetric payoff structure where

u(d = ω = 0) = λ and u(d = ω = 1) = 1 for any λ ≥ 1. The sustainability conditions for truthful

revelation established in Proposition 3.2 remain unchanged. They depend solely on preference composition

α and committee size n, remaining independent of both prior beliefs p and signal precision q regardless of

the value of λ.

Proof. The proof follows directly from the observation that payoff asymmetry scales expected

utilities proportionally across all strategic configurations. See Appendix 3.A.1 for formal
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derivation.

Such robustness to payoff asymmetry reveals the fundamental mechanism underlying truthful

revelation sustainability. Consider an agent evaluating whether to report truthfully when pivotal.

Under truthful messaging, the agent benefits identically from two scenarios: commanding a

majority whilst reporting truthfully (leading to their preferred outcome), and forming a minority

whilst misreporting (overturning an adverse decision). Crucially, the relative probability of these

scenarios depends exclusively on the distribution of preference types, not on the magnitude of

state-contingent payoffs. The parameter λ affects absolute payoff levels but preserves the strategic

equivalence between truth-telling in the majority and deception in the minority. When λ increases,

the value of correctly matching state zero rises proportionally across all decision paths, leaving

unchanged the fundamental trade-off between leveraging majority influence through honesty

versus exploiting minority position through strategic misrepresentation. The independence from

informational parameters (p, q) thus persists regardless of payoff asymmetry, as the strategic

calculation reduces to comparing their likelihood of commanding influence, determined entirely

by preference composition α and committee size n. Such structural invariance demonstrates that

the sustainability of truthful communication hinges not on the stakes involved in different states,

but on the beliefs about their relative influence within the committee structure.

The analysis of truthful revelation reveals a profound paradox at the heart of deliberative

institutions with opposed preferences. The sustainability of honest communication depends not on

the quality of information available to committee members, but solely on their belief about whether

they represent the majority in pivotal moments. When agents expect their preference group to

predominate, they willingly share private information, confident that the resulting collective

decision will align with their interests. Conversely, when they anticipate being outnumbered, the

temptation to manipulate information through strategic messaging becomes irresistible.

This creates a striking independence result: the informational sophistication of committee

members, captured by signal precision q, and their collective prior knowledge, reflected in p,

prove entirely irrelevant to the survival of truthful deliberation. Instead, the mechanism’s success

hinges on a delicate balance of preference composition and committee size. Larger committees

make truthful revelation increasingly fragile, as the influence of each agent diminishes and the

probability of commanding a majority in pivotal scenarios declines.

Perhaps most remarkably, the presence of bad agents can occasionally improve decision quality
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through a perverse channel: when good agents expect to be outnumbered, their strategic deception

can paradoxically align collective choices with the true state. Such findings challenge conventional

wisdom about deliberative design, suggesting that the institutional architecture must account

not merely for information aggregation capabilities, but for the strategic incentives created by

preference heterogeneity itself.

3.4.2 Zero Information Transmission: Babbling Equilibrium

In the starkest equilibrium, deliberation completely fails to serve its intended purpose. Under a

babbling equilibrium, each agent sends an uninformative message regardless of their private signal

or preference type. The term ’babbling’ captures the essence of this communication breakdown:

agents speak, yet convey no meaningful information about the underlying state. Without loss

of generality, we model this scenario by having each agent send a null message, (m(si, θi) = 0)

for all agents. The specific message content matters little. The crucial feature lies in the complete

absence of informational content. Messages become mere noise, indistinguishable from random

utterances. When deliberation provides no information, each agent forms beliefs using only their

private signal and the common prior. The posterior belief calculation becomes strikingly simple,

ϕ(si = 0,m−i) =
pq

(1 − p)(1 − q)
> 1; ϕ(si = 1,m−i) =

p(1 − q)
(1 − p)q

.

The relationship between prior strength and signal precision determines how agents behave in

the voting stage. When the prior dominates signal precision (i.e., p ≥ q), agents effectively ignore

their private information. Both ϕ(si = 0,m−i) and ϕ(si = 1,m−i) exceed unity, leading all agents

to believe that state zero is more likely regardless of their signal. Such prior dominance creates

a stark voting pattern: good agents consistently cast vi = 0 whilst bad agents consistently cast

vi = 1. The irony becomes apparent. Agents receive costly private information yet completely

disregard it when making decisions. Conversely, when signals prove more informative than the

prior (i.e., p < q), agents rely primarily on their private information. Good agents vote according

to their signals, whilst bad agents vote against them. The resulting coalition structure depends

on signal realisations rather than preference types alone, introducing genuine uncertainty about

outcomes. We formalise this decision pattern in the following preposition,

Proposition 3.3 (Decision Rule: Babbling Equilibrium). Given the type profile, n ∈ N ′, the babbling

equilibrium yields the final decision d = 0 if and only if one of the following two conditions holds:
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(i) p ≥ q and n′
G0

+ n′
G1

> n
2 ;

(ii) p < q and n′
G0

+ n′
B1

> n
2 .

What sustains this communication breakdown as an equilibrium outcome? The mechanism

operates through a self-reinforcing cycle of expectations. When an agent anticipates that others

will send uninformative messages, any unilateral attempt to convey meaningful information

becomes futile. Their deviation cannot influence others’ beliefs or voting decisions since other

agents rationally ignore all messages. The collective decision remains unchanged, rendering

any informational effort pointless. The coordination around silence possesses a compelling

strategic logic. Each agent faces the choice between costly truth-telling and costless babbling.

When truth-telling provides no strategic advantage, since others ignore messages anyways,

babbling becomes the dominant strategy. This creates a coordination equilibrium in which rational

individual behaviour produces collective irrationality.

Perhaps the most striking feature of babbling equilibrium lies in its universal existence. The sincere

voting strategy constitutes an equilibrium since agents of any type form conditional posterior

beliefs on pivotal events that are identical to their unconditional beliefs. In other words, regardless

of parameter values, whether agents are predominantly good or bad, whether signals are precise

or noisy, whether priors are strong or weak, babbling always represents a viable equilibrium

outcome. We formalise this insight in the following proposition.

Proposition 3.4 (Sustainability: Babbling Equilibrium). A babbling equilibrium exists for all (α, p, q, n)

∈ [ 1
2 , 1]3 × N (n odd).

Proof. See Appendix 3.A.2.

The proof proceeds by examining potential deviations from equilibrium behaviour along two

dimensions. First, we demonstrate that no agent benefits from deviating from sincere voting

by showing that posterior beliefs conditional on pivotal events equal unconditional beliefs (i.e.,

ϕ̃i = ϕi). The key insight relies on a symmetry argument: the conditional probability structure

ensures that being pivotal provides no additional information beyond what agents already possess

from their private signals. Second, we establish that deviating from the babbling message strategy

cannot improve the payoff of any agent. Since messages convey no information, altering one’s

own message cannot influence others’ posterior beliefs or voting decisions. The decision outcome

remains invariant to message content, eliminating any strategic incentive for truthful revelation.
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The economic intuition behind this universal existence reveals a fundamental tension in

deliberative settings. Babbling emerges not from agent irrationality, but from perfectly rational

responses to the expected behaviour of others. The equilibrium represents a coordination failure:

whilst all agents would benefit from mutual information sharing, no individual agent can

unilaterally break the cycle of silence.

From a theoretical perspective, babbling equilibrium serves as the natural benchmark for

evaluating deliberative mechanisms. It represents the worst-case scenario: a committee that

functions no better than a pure voting mechanism without any information aggregation benefits.

The universal existence of this equilibrium carries a sobering message, even sophisticated

deliberative institutions can collapse into meaningless communication patterns. The existence

of babbling equilibrium reminds us that institutional design must go beyond merely creating

opportunities for communication. Effective deliberation requires mechanisms that align

individual incentives with collective information sharing goals. Sometimes, the most rational

individual response to strategic uncertainty is collective silence, transforming deliberation from

an information aggregation tool into an elaborate charade.

3.4.3 Distorted Information Transmission: Non-Truthful Equilibrium

The non-truthful equilibrium is perhaps the most strategically sophisticated and counterintuitive

configuration in our model, challenging conventional wisdom about the role of deception in

collective decision-making. In this equilibrium, the committee effectively bifurcates along

preference lines: good agents continue to truthfully reveal their private signals whilst bad agents

systematically lie, sending messages that directly contradict their actual information. This creates

a fascinating strategic ecosystem where truth and deception coexist in a stable pattern. At first

glance, such systematic lying might seem to undermine any possibility of meaningful information

aggregation completely. Why would good agents continue to share honestly when they know

that bad agents are deliberately misleading the committee? The answer lies in the predictable

nature of the deception. When bad agents lie systematically, always sending the opposite of

their true signal, their messages paradoxically become informative again. A sophisticated good

agent can decode the lies: if a bad agent sends message zero, the good agent infers that the bad

agent actually observed signal one. Yet this adversarial communication system proves remarkably

fragile. The sustainability of non-truthful equilibrium depends on a delicate balance of strategic

forces. Good agents must find it worthwhile to continue truth-telling despite the presence of
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liars, whilst bad agents must benefit from systematic deception rather than either truth-telling

or complete silence. Meanwhile, both types must find sincere voting optimal given the distorted

information environment created by partial lying.

The existence of an equilibrium hinges on the complex interplay between signal precision,

prior beliefs, and preference intensity. When signals are highly precise, agents rely primarily

on their own private information, making others’ messages, whether truthful or deceptive,

relatively unimportant. Conversely, when prior beliefs dominate, message content becomes largely

irrelevant regardless of its veracity. The most interesting and problematic case emerges in the

intermediate range where messages retain significant influence but deception becomes strategically

valuable, potentially destroying the equilibrium altogether. The non-truthful equilibrium thus

represents a knife-edge phenomenon: a strategic configuration that can theoretically improve

upon pure babbling by maintaining some information transmission, but whose existence requires

very specific parameter conditions that may rarely occur in practice.

Under a non-truthful equilibrium, the information structure becomes more complex than in other

configurations. Good agents truthfully reveals their signal, m(si, θi = 1) = si, whilst a bad agents

lie, m(si, θi = −1) = 1 − si. A null message mj = 0 must originate from either a good agent

who observed signal zero (i.e., xi = G0) or a bad agent who observed signal one but lies (i.e.,

xi = B1). The probability that an agent sends a null message conditional on the state ω = 0 is,

P(xi ∈ {G0, B1} | ω = 0) = αq + (1 − α)(1 − q), denoted q̃, whilst the conditional probability on

the state ω = 1 is, P(xi ∈ {G0, B1} | ω = 1) = 1− q̃, which creates a new effective signal precision

q̃ that differs from the assumed signal precision q. Given the signal si and messages from other

agent m−i ∈ N n−1, the induced posterior belief is as follows:

ϕ(si = 0,m−i) =
p

1 − p
q

1 − q

(
q̃

1 − q̃

)2k−i−n+1
;

ϕ(si = 1,m−i) =
p

1 − p
1 − q

q

(
q̃

1 − q̃

)2k−i−n+1
,

where k−i denote the number of null messages observed in m−i.

Crucially, different agent types form different posterior beliefs from the same message profile.

Recall that we have let mk ∈ {m ∈ Mn | #{mi = 0} = k} denote a message profile

containing k null messages. Given any mk ∈ Mn, the posterior beliefs satisfy the ordering,
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ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

, where ϕk
xi

denote the posterior belief of agent type xi when mk is

observed. See Appendix 3.A.3, Lemma 3.4 for proof. The hierarchy reflects how different agent

types interpret the same evidence: bad agents of type xi = B0 form the highest posterior belief

favouring ω = 0 because they observe signal si = 0and know all null messages come from agents

who received zero signals, whilst bad agents of type xi = B1 form the lowest belief because they

received contradictory evidence.

The existence of non-truthful equilibrium requires both sustainable messaging strategies and

sincere voting behaviour. The complete characterisation involves examining five distinct posterior

belief orderings that can arise depending on the number of null messages observed, each

creating different strategic incentives for deviation. The analysis reveals that sustainability

depends critically on the relationship between signal precision, prior beliefs, and the effective

informativeness created by systematic deception. Non-truthful equilibrium exists when signals

are either highly informative or when priors dominate, but fails for intermediate parameter values

where strategic manipulation becomes too profitable. Formally, the existence conditions depend

on the posterior beliefs induced by extreme message profiles (i.e., all agents sending zero versus

all sending one),

Proposition 3.5 (Sustainability: Non-Truthful Equilibrium). A non-truthful equilibrium exists if and

only if (α, p, q, n) ∈ [ 1
2 , 1]3 × N (n odd) satisfies,

(i) If p
1−p

1−q
q ( q̃

1−q̃ )
n−1 > 1, p

1−p
1−q

q ( q̃
1−q̃ )

1−n > 1 and p ≥ q.

(ii) If p
1−p

1−q
q ( q̃

1−q̃ )
n−1 < 1, p

1−p
q

1−q (
q̃

1−q̃ )
1−n > 1.

Proof. See Appendix 3.A.3.

The non-truthful equilibrium requires very specific parameter conditions. When signals are

highly precise, agents rely primarily on private information, making others’ messages relatively

unimportant and reducing the strategic value of deception. Conversely, when prior beliefs

dominate, message content becomes largely irrelevant regardless of veracity, again making

deception sustainable. The problematic region lies in the intermediate range where messages

significantly influence beliefs but deception provides strategic advantages. Here, good agents’

incentives to continue truth-telling conflict with bad agents’ desires to mislead, potentially

destroying the equilibrium altogether. When it exists, the non-truthful equilibrium enables

partial information aggregation despite systematic deception. Unlike babbling equilibrium where
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communication breaks down completely, the predictable nature of lies allows some information

extraction. However, restrictive existence conditions mean this configuration rarely improves upon

simpler alternatives. The efficiency analysis demonstrates that non-truthful equilibrium typically

yields better outcomes than babbling but worse than truthful revelation. The parameter regions

where it both exists and provides efficiency gains prove extremely narrow, limiting practical

relevance for institutional design. The equilibrium represents a fragile middle ground between

complete truth-telling and communication breakdown. Whilst theoretically more beneficial than

babbling, sustainability under only narrow conditions that rarely occur in practice limits its

practical value.

3.4.4 Comparative Equilibrium Analysis: Existence and Sustainability

This section synthesises the existence conditions for all three equilibria by combining the analytical

results derived previously with computational illustrations. The equilibrium structure is examined

under varying parameter constellations (α, p, q, n), with Figures 3.1 to 3.4 providing visual

partitions of the parameter space. Each shaded region in these diagrams corresponds to a

distinct equilibrium regime, thereby facilitating intuitive interpretation of how the proportion of

good agents, α, and signal precision, q, jointly determine equilibrium sustainability. Specifically,

all equilibria exist for all (α, q) in the lightest region; only a truthfully revealing equilibrium

and a babbling equilibrium exist for all (α, q) in the second lightest region; only a non-truthful

equilibrium and a babbling equilibrium exist for all (α, q) in the second darkest region; only a

babbling equilibrium exists for all (α, q) in the darkest region.

Figure 3.1: Existence: p = 0.7; n = 5 Figure 3.2: Existence: p = 0.7; n = 7

Figure 3.1 to 3.4 indicate that a truthfully revealing equilibrium exists if and only if (α, q) falls in

140



CHAPTER 3: DELIBERATION AND VOTING WITH OPPOSED PREFERENCES 141

Figure 3.3: Existence: p = 0.9; n = 5 Figure 3.4: Existence: p = 0.9; n = 7

the ’L-shaped’ region. In other words, it is sustainable if either α or q is sufficiently moderate (i.e.,

close to 1
2 ). When α is sufficiently moderate, both good and bad agents think that they represent

the majority when they are pivotal voters. Therefore, they are willing to truthfully reveal their

signals since they are not much concerned about the possibility that agents of the other type

exploit their signal to distort the final decision.

Recall that in Proposition 3.2, the results show that the conditions of the existence are independent

of p and q, which can be proven again by Figure 3.1 to 3.4. It is clear that, given the same number

of agents, the two corresponding figures associated with different priors share exactly the same

vertical boundary. On the other hand, a sufficiently moderate q indicates that the signal provides

limited information. Therefore, all types of agents ignore their signals and messages from others.

Instead, they rely on the prior to form their posterior belief. Eventually, good agents cast a vote

vi = 0 and bad agents cast vi = 1 independent of messages from other agents and their private

signals, which implies that there exists no incentive to deviate from any conjectured message

strategy and voting strategy. The horizontal boundary in each diagram indicates the highest q for

the negligence of signals.

Moreover, the prior belief makes an impact on the set of equilibrium existence. By comparing

Figure 3.1 and 3.3 (also Figure 3.2 and 3.4), it is clear that, with a more moderate p, we need a more

moderate q to sustain the equilibrium. This is because a moderate p indicates that prior belief is

not strong enough to make agents neglect their signals. In other words, with a more moderate

prior, agents are willing to neglect their signals if and only if the precision q is lower.

It is also found that, with more agents (i.e., a higher n), we need a more moderate α to sustain
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the equilibrium. From the perspective of a bad agent, the probability that the bad represent the

majority under pivotal events is decreasing in n. Roughly speaking, without conditioning on

pivotal events, the probability that a bad agent thinks the bad represent the majority is:

P
(

# {θi = −1 | θ} ≥ n
2

)
=

n−1

∑
i= n−1

2

(
n − 1

i

)
(1 − α)iα(n−1)−i

=

{
(2

1)(1 − α)1α1 + (2
2)(1 − α)2α0, if n = 3

(4
2)(1 − α)2α2 + (4

3)(1 − α)3α1 + (4
4)(1 − α)4α0, if n = 5

.

This gives the maximal value of αmax = 0.7071 such that P(#{θi = −1 | θ} ≥ 1
2 ) when n = 3 and

αmax = 0.6143 when n = 5. When n = 11, the value drops to αmax = 0.5483. Intuitively, with

fewer agents, say n = 3, conditional on knowing herself as a bad agent, it is more likely that the

bad is associated with the majority, since the weight of herself in the committee is 1
3 . With more

agents, the weight decreases and thus, given the same α, the probability of being the majority

decreases.

Given any α ∈
[

1
2 , 1

]
, a non-truthful equilibrium exists if q is sufficiently moderate or more

extreme. When we have a more moderate q, the signal and messages are not informative to some

extent. Consequently, agents of all types tend to rely on prior belief which implies that there exists

no change in posterior relation: ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1 always holds for any k ∈ {0, 1, 2, ..., n}.

When we have a more extreme q, signals are more informative. Thus, agents now stick to their

signals: an agent who receives si = 0 (i.e., xi ∈ {G0, B0}) forms a posterior belief ϕi > 1, whilst

an agent who receives si = 1 (i.e., xi ∈ {G1, B1}) forms a posterior belief ϕi < 1, regardless of

the observed messages from others. Thus, the posterior belief is ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

for

all k ∈ {0, 1, 2, ..., n}, which again implies that there exists no change in posterior relation. Since

no one can bias the posterior belief such that some types vote differently, there is no incentive to

deviate from the non-truthful message strategy.

As for the incentive to deviate from sincere voting, when we have a moderate q, which results in

the posterior relation ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1 for all k, by Lemma 3.7a, once p ≥ q is satisfied,

there is no incentive for any type to deviate. Since we consider a moderate q here, p ≥ q holds,

and so does the sustainability of sincere voting. When we have an extreme q, which results in the

posterior relation ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

for all k, by Lemma 3.7c, there is no incentive for

any type to deviate.
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In addition, a non-truthful equilibrium exists when α is sufficiently moderate. When

we have a moderate α, q̃ converges to 1
2 , which implies that the informativeness of a

message disappears. To see this, recall that the posterior belief induced by a message is

P(ω = 0 | mi = 0) = q̃ and P(ω = 0 | mi = 1) = 1 − q̃. With q̃ close to 1
2 , we have

P(ω = 0 | mi = 0) = P(ω = 0 | mi = 1) = 1
2 . Hence, agents tend to stick to their signals and the

prior belief only. For the same reason, if p > q, ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1 is likely to be induced

for all k; if q > p, ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

is likely to be induced for all k. Under either

posterior relation, no type has incentive to deviate from the non-truthful message and sincere

voting.

By Proposition 3.4, given any (α, p, q, n), a babbling equilibrium always exists. In fact, the

mechanism under a babbling equilibrium is equivalent to a voting-only mechanism: each agent

knows their preference and receives a signal and directly cast a vote without any forms of

deliberation. She plays strategically and thus considers the pivotal voting events for a vote.

Hence, the babbling equilibrium effectively serves as a benchmark to evaluate the benefit of the

introduction of deliberation into the mechanism.

The conclusions indicate that a truthfully revealing equilibrium arises only when either α or q is

sufficiently moderate. When α is close to 1
2 , both types of agents perceive themselves as likely

pivotal voters, and thus truthfully transmit their private signals. A low q, in contrast, renders

signals uninformative, prompting agents to ignore messages and rely on the prior belief. In both

cases, strategic misrepresentation becomes unprofitable. Additionally, for a fixed n, the vertical

boundaries remain constant across different priors, reflecting the independence of existence

conditions from q. However, higher values of n tighten the existence region, suggesting that larger

committees require more moderate α to sustain deliberation-based equilibria. These comparative

statics highlight the fragility of information aggregation when either belief polarisation or signal

precision intensifies.

3.5 Efficiency Analysis

This section evaluates the efficiency of the deliberation-voting mechanism by examining how

likely the committee is to reach a decision that matches the true state of the world. Efficiency, in

this setting, refers to the principal ex-ante expected payoff. That is, it captures the probability that

the final majority decision coincides with the actual state, before any agent observes their signal
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or preference. This measure reflects how effectively the mechanism transforms dispersed private

information into an accurate collective choice.

To assess this efficiency across strategic environments, the analysis compares the principal

expected payoff under three benchmark equilibrium configurations. These are the truthfully

revealing equilibrium, the non-truthful equilibrium, and the babbling equilibrium. Each of these

represents a distinct pattern of communication and, consequently, a different channel through

which information is aggregated. The evaluation proceeds by first characterising the decision

rule under each equilibrium. That is, the mapping from signal and preference profiles, through

message transmission and voting, to the final collective outcome. For each case, the expected

probability that the decision matches the true state is computed by integrating over all possible

combinations of agent types and signal realisations. This method provides a clean comparison of

how different strategic behaviours affect the mechanism capacity to synthesise private information

into accurate group decisions.

Efficiency under each equilibrium is formally defined as the ex-ante expected payoff of the

principal. Let ψ(m, v) denote the probability that the committee selects the alternative which

matches the true state, given the message strategy m and the voting strategy v,

ψ(m,v) = P(d = ω | m, v).

For each equilibrium configuration, the efficiency function is derived by integrating over all

realisations of agent types and signal draws, accounting for how messages and votes jointly

determine the final decision. Figures 3.5 to 3.7 illustrate the efficiency function ψ under the

three equilibrium types: truthfully revealing equilibrium (TRE), non-truthful equilibrium (NTE),

and babbling equilibrium (BE). These diagrams fix (p, n) = (0.7, 7) and vary the remaining

parameters to examine how equilibrium behaviour interacts with belief updating and strategic

communication.

In the babbling case, agents transmit no messages. Each agent votes based only on their private

signal and prior belief, conditioning their decision on the expected distribution of preferences.

This configuration serves as a baseline in which information aggregation is limited to decentralised

signal-based voting. Comparisons with the other two equilibria reveal the informational value of

deliberation, particularly when truthful or structured deception affects belief formation.
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For any given parameter quadruple (α, p, q, n), efficiency typically satisfies the ordering

ψTRE ≥ ψNTE ≥ ψBE. In rare cases, however, when the message informativeness q lies sufficiently

close to the prior p and the signal precision α approaches 1
2 , the non-truthful equilibrium may

yield higher efficiency than the truthfully revealing one. That is, ψNTE ≥ ψTRE. Yet, in these cases,

the specified parameters fail to support equilibrium existence. Figure 3.8 confirms this tension:

the region enclosed by the grey contour corresponds to parameter values for which ψNTE ≥ ψTRE,

but this region lies strictly within the parameter space where the non-truthful equilibrium does

not exist. As a result, although a non-truthful equilibrium might appear more efficient in certain

parameter ranges, such configurations are not sustainable in equilibrium. Therefore, the efficiency

comparison can be restricted without loss of generality to the truthfully revealing and babbling

equilibria.1

Figure 3.5: ψTRE: p = 0.7; n = 7 Figure 3.6: ψNTE: p = 0.7; n = 7

3.5.1 Optimal Information Aggregation: Truthfully Revealing Equilibrium

Under the truthfully revealing equilibrium, deliberative mechanisms achieve their theoretical ideal

of perfect information aggregation. Each agent truthfully reports their private signal m(si, θi) = si,

enabling complete information sharing within the committee. Such transparency transforms the

voting stage into pure implementation: agents vote according to posterior beliefs formed from the

complete signal profile, with good agents supporting the more likely state and bad agents voting

in opposition. The efficiency analysis of the equilibrium serves multiple theoretical purposes.

First, it establishes an upper bound for deliberative performance under opposed preferences,

1Note that due to discretisation of (α, q) and interpolation by the computational software, the bounded set appears to
include some (α, q) combinations for which all equilibria exist (i.e., the lightest region). However, the underlying matrix
results remain consistent with the interpretation presented above.
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Figure 3.7: ψBE: p = 0.7; n = 7
Figure 3.8: No existence for ψNTE > ψTRE:
p = 0.7; n = 7

providing a benchmark against which other configurations can be evaluated. Second, it reveals

how preference heterogeneity fundamentally alters the information aggregation process compared

to standard jury models. Third, the mathematical structure illuminates the precise conditions

under which deliberation provides value over prior-based decision-making.

The efficiency of truthfully revealing equilibrium depends on the complex interaction between

signal realisations, preference composition, and the decision threshold k∗. Each possible type

profile generates a probability-weighted contribution to overall efficiency, accounting for both the

likelihood of correct information aggregation and the preference-based voting which determines

final outcomes. Note that the symmetric case α = 1
2 merits particular attention given the existence

conditions established previously. As demonstrated in the earlier analysis and illustrated in the

equilibrium existence figures (i.e., Figures 3.1 to 3.4), truthfully revealing equilibrium exists if

and only if either the preference parameter α or the signal precision q is sufficiently moderate.

Understanding mechanism performance when α approaches 1
2 is therefore essential, since the

boundary characterises the region in which truthful revelation remains sustainable. The efficiency

implications are captured in the following theorem:

Proposition 3.6 (Efficiency: Truthfully Revealing Equilibrium). Given (α, p, q, n), the efficiency

under a truthfully revealing equilibrium is:

ψTRE(α, p, q, n) = [Detailed expression in Appendix 3.7]

Moreover, when preference composition is symmetric (i.e., α = 1
2 ), the efficiency simplifies to,
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ψTRE

(
1
2

, p, q, n
)
=

1
2

.

The result holds for any parameter values (p, q, n) and represents a fundamental symmetry property of

deliberative mechanisms under opposed preferences.

Proof. See Appendix 3.A.4.

The result reveals a crucial insight about information aggregation under preference opposition.

When good and bad agents are equally represented, the informational benefits from perfect signal

sharing exactly offset the distortions introduced by systematic preference opposition. Such balance

creates a natural efficiency benchmark which any deliberative mechanism must exceed to justify

its adoption.

The general efficiency function demonstrates that improvements over the benchmark require either

informational advantages (i.e., signals more precise than priors) or compositional advantages

through sufficient prevalence of well-intentioned agents. However, the existence conditions

derived in the previous section create a fundamental tension: the parameter regions supporting

truthful revelation often coincide with those providing minimal efficiency gains, highlighting the

practical limitations of theoretically optimal mechanisms.

3.5.2 Baseline Performance: Babbling Equilibrium

Under babbling equilibrium, deliberation completely fails to serve its informational purpose.

Agents send uninformative messages regardless of their private signals or preference types,

effectively reducing the mechanism to pure voting without any information aggregation benefits.

The term ’babbling’ captures the essence of communication breakdown: agents speak but convey

no meaningful information about the underlying state.

The babbling equilibrium serves as the natural baseline for evaluating deliberative mechanisms.

Since it represents the worst-case scenario in which communication provides no value, any

improvement over babbling efficiency demonstrates the informational benefits of structured

deliberation. Moreover, the universal existence of babbling equilibrium across all parameter

configurations makes it a robust benchmark against which other equilibria can be assessed. When

messages convey no information, each agent forms posterior beliefs using only their private signal

and the common prior. The voting behaviour depends critically on the relationship between prior
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strength and signal precision. When the prior dominates signal informativeness (i.e., p ≥ q), all

agent types effectively ignore their private information and vote according to preference type

alone. Conversely, when signals prove more informative than the prior (i.e., p < q), agents vote

according to their signal realisations, creating coalitions based on evidence rather than preferences.

The resulting decision patterns reflect the complete absence of information aggregation through

deliberation. Good agents vote for the alternative they believe most likely to be correct, whilst

bad agents vote for the opposite, but without any coordination or information sharing to improve

collective assessment. The analysis of these voting patterns yields the following efficiency

characterisation:

Proposition 3.7 (Efficiency: Babbling Equilibrium). Given (α, p, q, n), the efficiency under babbling

equilibrium is:

ψBE(α, p, q, n) =

p − (2p − 1)∑
n−1

2
i=0 (n

i )α
i(1 − α)n−i, if p ≥ q

∑n
i= n+1

2
(n

i )q̃
i(1 − q̃)n−i, if p < q

where q̃ = αq + (1 − α)(1 − q).

Proof. See Appendix 3.A.4.

The babbling equilibrium establishes the efficiency floor for deliberative mechanisms under

opposed preferences. Since the equilibrium exists universally across all parameter combinations,

it represents the guaranteed outcome when more sophisticated communication strategies

prove unsustainable. The efficiency analysis reveals that pure voting without deliberation

can still achieve reasonable performance when preference composition is favourable or when

signal-preference alignment creates effective information aggregation through voting patterns

alone. However, the analysis also demonstrates the fundamental limitations of mechanisms

without information sharing. When signals are only moderately informative or when

preference composition is unfavourable, babbling efficiency can fall substantially below the

theoretical optimum, highlighting the potential value of successful deliberative institutions whilst

simultaneously illustrating the risks when such institutions fail to function as intended.
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3.5.3 The Value of Deliberation

The central question for any information aggregation mechanism concerns whether deliberation

improves upon simpler alternatives. Whilst truthfully revealing equilibrium achieves optimal

information sharing and babbling equilibrium represents pure voting without communication,

understanding when the former dominates the latter illuminates the informational benefits of

successful deliberation under opposed preferences. The efficiency comparison between truthful

revelation and babbling reveals the upper bound of deliberation benefits. Since truthful revelation

achieves perfect information aggregation whilst babbling eliminates such aggregation entirely, the

difference between their efficiency levels captures the maximum value that communication can

provide when strategic considerations are taken into account.

The analysis demonstrates that truthful revelation consistently dominates babbling when both

equilibria exist. The intuition proves straightforward: good agents benefit from aggregating

private signals through deliberation rather than relying solely on individual information, whilst

the majority status of good agents (α ≥ 1
2 ) ensures that coordinated information sharing yields

more precise collective beliefs than isolated decision-making. From the perspective of mechanism

design, truthful communication allows good agents to coordinate effectively, mitigating the noise

introduced by bad agents who vote against posterior beliefs. The informational advantages from

structured deliberation systematically outweigh the distortions created by preference opposition,

provided that the deliberative process itself remains sustainable.

A good agent naturally prefers to aggregate private signals through deliberation rather than

rely solely on their own signal. Although bad agents vote against the posterior belief and could

potentially undermine the benefit of truth-telling, the assumption that α ≥ 1
2 ensures that good

agents constitute the majority in expectation. Therefore, exchanging signals through deliberation

yields more precise collective beliefs than simply pooling individual signals via voting alone.

Accordingly, we have the following efficiency comparison:

Proposition 3.8 (Deliberation Efficiency Gains). Given any (α, p, q, n) supporting truthfully revealing

equilibrium,

ψTRE(α, p, q, n) > ψBE(α, p, q, n).

The efficiency improvement reflects the superior information aggregation achieved through credible
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communication relative to pure voting mechanisms.

Proof. See Appendix 3.A.4.

The efficiency differential between truthful revelation and babbling depends on the specific

decision patterns that emerge under each equilibrium. Under truthful revelation, the committee

reaches decision d = 0 when either the evidence genuinely supports such choice and good agents

implement it, or when the evidence points against it but bad agents strategically vote in the

opposite direction. Such dual pathway to correct decisions reflects the complex interplay between

information aggregation and preference conflict. In contrast, babbling equilibrium produces

decisions based purely on preference composition when priors dominate (i.e., p ≥ q), or on

signal-preference alignment when signals prove more informative (i.e., p < q). The absence of

information sharing eliminates the sophisticated belief updating that characterises successful

deliberation, reducing collective decision-making to mechanical aggregation of individual

assessments.

The dominance of truthful revelation over babbling establishes a fundamental result about

deliberative mechanisms under opposed preferences. Despite the presence of agents who

systematically vote against available evidence, the informational benefits of communication

prove robust when truthful revelation can be sustained. Such robustness suggests that the

traditional emphasis on preference alignment in mechanism design, whilst important, may not be

as critical as ensuring credible information transmission. However, the sustainability conditions

for truthful revelation create important caveats to this optimistic assessment. The efficiency gains

from deliberation materialise only when the underlying strategic environment supports honest

communication, requiring either moderate preference heterogeneity or limited signal precision.

When these conditions fail, the mechanism defaults to babbling equilibrium, eliminating any

informational advantages whilst retaining the costs of deliberative processes.

The analysis thus reveals deliberation as a double-edged institutional tool: highly beneficial when

functioning properly, but potentially wasteful when strategic considerations undermine honest

communication. Such characterisation underscores the importance of institutional design choices

that promote truthful revelation rather than merely facilitating communication opportunities.
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Figure 3.9: Highest possible efficiency given
existence: p = 0.7; n = 7

Figure 3.10: Highest possible efficiency given
existence: p = 0.9; n = 7

3.5.4 The Limits of Deliberation

The ultimate test of any information aggregation mechanism lies not merely in whether it

outperforms alternative institutional arrangements, but in whether it improves upon the status

quo of relying solely on existing knowledge. In our context, this benchmark is represented by the

prior belief fo the principal p, which reflects their ex-ante assessment of the decision environment

without consulting external agents. The economic intuition suggests a fundamental trade-off:

whilst deliberative mechanisms can harness dispersed private information to enhance decision

quality, they also introduce strategic distortions when agents possess opposed preferences. The

presence of bad agents creates a coordination problem that may offset the informational benefits

of deliberation. Moreover, the costs of establishing and operating a committee, both explicit

monetary costs and implicit coordination costs, are only justified if the mechanism delivers

superior outcomes relative to unilateral decision-making based on prior beliefs alone.

Now we investigate whether the mechanism yields a higher efficiency compared to the prior,

p. Note that the prior distribution represents the ex-ante expected payoff of the principal (i.e.,

the efficiency) if they decide to stick to the prior and thus choose d = 0 without reliance on the

mechanism to aggregate any further information from agents. If the mechanism does not yield a

better efficiency greater than p, then there is no reason for the principal to seek help from outside

agents.

Figures 3.9 and 3.10 show the highest possible efficiency under an equilibrium such that the

equilibrium is sustainable given (α, q). The figures demonstrate that the deliberation-voting
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mechanism improves efficiency in decision-making if and only if q ≥ p. Additionally, it requires

that the likelihood of recruiting a good agent, α, is sufficiently high. For example, in a 7-agent

committee with a prior p = 0.7, the principal will definitely not benefit from this mechanism if α

is less than approximately 0.61.

By Proposition 3.7, if the informativeness of a signal does not exceed the prior (i.e., p ≥ q),

the efficiency under babbling equilibrium is lower than the prior (i.e., ψBE < p). Therefore,

the principal should not establish a committee for decision-making if a truthfully revealing

equilibrium does not exist, since babbling equilibrium yields worse expected payoff than adhering

to the prior. Nevertheless, as discussed in the previous section, truthfully revealing equilibrium

exists if and only if either α or q is moderate. Given moderate α or q, it remains unlikely that the

improvement in efficiency mentioned in Proposition 3.8 ensures that efficiency exceeds the prior.

Hence, we can conclude that the mechanism is unlikely to enhance efficiency in decision-making

when p ≥ q.

In contrast, if p < q, truthfully revealing equilibrium exists if and only if α is sufficiently close to

1
2 , which implies that even if truthfully revealing equilibrium exists, by Proposition 3.6, the

corresponding efficiency remains close to 1
2 < p. Alternative equilibria exist if either α is

sufficiently moderate, yielding efficiency lower than p, or q is exceptionally close to 1. For

example, suppose that n = 7 and p = 0.7. An alternative equilibrium with efficiency greater than

p exists only if q > 0.98 and α ∈ (0.6, 0.65). Beyond this narrow region, there exists no (α, q) such

that truthfully revealing equilibrium with greater-than-prior efficiency exists. Unless we aim to

focus on such extreme cases, analysing efficiency under babbling equilibrium proves sufficient.

By Proposition 3.7, the efficiency under a babbling equilibrium when p < q increases in α, since q̃

is an increasing function of α. Note that q̃ = 1
2 if α = 1

2 , which implies that the efficiency under a

babbling equilibrium with α = 1
2 is:

ψBE(α =
1
2

, p, q, n) =
n

∑
i= n+1

2

(
n
i

)(
1
2

)i (1
2

)n−i
=

1
2

.

Besides, note that q̃ = q if α = 1, which implies that the efficiency under a babbling equilibrium

when α = 1 is:

ψBE(α = 1, p, q, n) =
n

∑
i= n+1

2

(
n
i

)
qi (1 − q)n−i > q > p.
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See Appendix for a formal proof (Lemma 3.15). Hence, by continuity, given any q ∈ (p, 1], there

exists a cut-off point, denoted as α∗(q), such that the efficiency under a babbling equilibrium is

greater than p if and only if α ≥ α∗(q). Consequently, the mechanism improves the efficiency

under a babbling equilibrium only if α is sufficiently large (i.e., greater than α∗(q)). In addition, as

shown in Figure 3.7, α∗(q) is decreasing in q, which indicates that we need a higher α with less

informativeness of a signal.

Proposition 3.9 (Conditions for Mechanism Efficiency). Consider the deliberation-voting mechanism

with opposed preferences. The mechanism yields efficiency strictly greater than the prior belief, p, if and

only if the following conditions are satisfied:

(i) signal informativeness exceeds the prior: q > p;

(ii) the proportion of good agents exceeds a signal-dependent threshold: α ≥ α∗(q), where α∗(q) is

decreasing in q and satisfies α∗(q) ∈
(

1
2 , 1

)
for all q ∈ (p, 1].

Moreover, when q ≤ p, the mechanism fails to improve upon the prior for any α ∈
[

1
2 , 1

]
, except in the

degenerate case where q is exceptionally close to 1 and α lies within a narrow interval near 1
2 .

Proof. The proof follows directly from the efficiency analysis in the previous section. When

q ≤ p, Preposition 3.7 establishes that ψBE < p under babbling equilibrium, whilst conditions for

truthfully revealing and non-truthful equilibria become restrictive, yielding efficiency gains only

in exceptional parameter regions. When q > p, the continuity argument establishes the existence

of the threshold α∗(q), with the decreasing property following from the monotonicity of q̃ in α.

The boundary conditions α∗(·) ∈
(

1
2 , 1

)
follow from the efficiency expressions evaluated at α = 1

2

and α = 1.

The analysis culminates in a sobering conclusion about the practical value of deliberative

mechanisms in environments with opposed preferences. The fundamental theorem establishing

conditions for mechanism efficiency captures the essence of the trade-off between information

aggregation benefits and strategic distortions. The requirement that signal informativeness

exceed the prior (q > p) reflects the basic principle that private information must be sufficiently

valuable to justify the risks of strategic manipulation—if agents’ signals are no better than existing

knowledge, there is no reason to expose the decision process to potential deception. The second

condition, requiring a sufficiently high proportion of good agents (α ≥ α∗(q)), embodies the
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core tension in collective decision-making: the informational benefits from truthful participants

must outweigh the harm from those who actively mislead. The decreasing relationship between

α∗(q) and signal quality reveals an intuitive economic principle—more precise signals reduce the

required proportion of well-intentioned agents, as high-quality information becomes sufficiently

valuable to overcome moderate levels of strategic distortion. Yet even this relationship offers

limited practical comfort, as the efficiency gains prove modest except under restrictive parameter

combinations, suggesting that in many realistic scenarios characterised by moderate signal

precision and heterogeneous preferences, principals achieve superior outcomes by foregoing

deliberation entirely and relying on their prior beliefs.

3.6 Conclusion

This paper addresses whether deliberative mechanisms enhance decision quality when

participants possess opposed preferences. The analysis reveals that preference opposition

fundamentally alters the conditions under which deliberation succeeds or fails. The equilibrium

analysis identifies three strategic configurations. Truthfully revealing equilibria emerge when

either the proportion of good agents is moderate or signal precision approaches neutrality.

Non-truthful equilibria exist under restrictive conditions, enabling partial information aggregation

through predictable deception. Babbling equilibria emerge universally when more informative

equilibria prove unsustainable. The efficiency analysis provides sobering insights. Whilst

truthfully revealing equilibria dominate alternatives when they exist, deliberation improves

upon prior-based decision-making only under restrictive conditions: signal informativeness

must exceed prior probability and the likelihood of recruiting well-intentioned agents must be

sufficiently high. When either condition fails, principals achieve superior outcomes by foregoing

deliberation entirely.

These findings carry profound implications for organisational design. Deliberative mechanisms

may prove counterproductive in settings where preference alignment cannot be guaranteed.

Consider corporate boards: extensive deliberation benefits aligned directors with high-quality

information, but generates inferior outcomes when directors hold conflicting positions. The

analysis reveals a fundamental tension between inclusivity and effectiveness. Deliberative

mechanisms perform best when participants share common objectives—precisely when

deliberation may be least necessary. For institutional designers, the results suggest focusing
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on participant selection and information quality rather than assuming more voices improve

decisions.

This paper advances understanding of information aggregation under strategic communication.

The opposed preference framework departs significantly from standard jury models, allowing

systematic analysis of environments where agents prefer decisions contradicting available

evidence. The complete characterisation of equilibrium existence provides precise boundaries

for when different forms of deliberation succeed. The efficiency analysis constitutes the primary

advance. Previous research established incomplete conditions for truthful deliberation but

provided no analysis of whether such deliberation improves decision quality. This study

establishes precise conditions under which deliberative mechanisms improve upon alternatives,

revealing the tension between equilibrium sustainability and efficiency gains.

The implications of this analysis extend far beyond the theoretical framework to challenge

fundamental assumptions about collective decision-making. The conventional wisdom that

’more deliberation is better’ is fundamentally flawed. This research demonstrates that in realistic

organisational settings with conflicting interests, deliberation often makes decisions worse, not

better, because the conditions required for deliberation to help require perfect information sharing

and overwhelming majorities of well-intentioned participants, circumstances which rarely occur

in practice. The practical implication is stark: organisations should be highly selective about when

to use deliberative processes, investing instead in better information gathering and participant

screening rather than defaulting to committees and consensus-building. When leaders cannot

ensure both high-quality information and aligned incentives, making decisions based on existing

knowledge often produces superior outcomes than exposing the process to strategic manipulation.

Such findings fundamentally challenge how we think about democratic decision-making and

organisational governance, suggesting that inclusive deliberation, whilst normatively appealing,

may systematically underperform more selective or hierarchical approaches in environments with

significant preference conflicts.

The framework opens several promising research directions. Semi-separating equilibria may

offer intermediate possibilities through asymmetric strategies. Multidimensional preferences may

fundamentally alter strategic calculus. Empirical validation may provide crucial insights through

laboratory experiments and field studies.
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Appendix 3.A: Omitted Proofs

3.A.1 Truthfully Revealing Equilibrium: Existence

Proof of Lemma 3.2. The following shows the results that the posterior belief conditional on pivotal

voting, denoted as ϕ̃ : S ×Mn−1 → R+, is equal to the unconditional posterior belief under

truthfully revealing equilibrium.

ϕ̃i ≡ ϕ̃(si,m−i) ≡
∑n−i∈N TRE

V
P(ω = 0, si,n−i)

∑n−i∈N TRE
V

P(ω = 1, si,n−i)

=
p(n−1

n−1
2
)α

n−1
2 (1 − α)

n−1
2 qk(1 − q)n−k

(1 − p)(n−1
n−1

2
)α

n−1
2 (1 − α)

n−1
2 (1 − q)kqn−k

=
pqk(1 − q)n−k

(1 − p)(1 − q)kqn−k = ϕ(si,m−i),

where k denotes the number of null messages.

Proof of Proposition 3.2. Recall that the condition that an agent of type G0 has no incentive to

deviate from truthfully deliberating is:

∑
{n−i |nG0+nB0=k∗−1;

nG1
+nB1=(n−1)(k∗−1);

nG0+nG1
≥ n−1

2 }

P(ω = 0, si = 0,n−i) + ∑
{n−i |nG0+nB0=k∗−1;

nG1
+nB1=(n−1)(k∗−1);

nB0+nB1>
n−1

2 }

P(ω = 1, si = 0,n−i)

≥ ∑
{n−i |nG0+nB0=k∗−1;

nG1
+nB1=(n−1)(k∗−1);

nB0+nB1>
n−1

2 }

P(ω = 0, si = 0,n−i) + ∑
{n−i |nG0+nB0=k∗−1;

nG1
+nB1=(n−1)(k∗−1);

nG0+nG1
≥ n−1

2 }

P(ω = 1, si = 0,n−i),

which implies:

∑
{n−i |·}

(
n − 1
k∗ − 1

)(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
pqαnG0+nG1 (1 − α)nB0 nB1 qk∗−1(1 − q)(n−1)−(k∗−1)

+ ∑
{n−i |·}

(
n − 1
k∗ − 1

)(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
(1 − p)(1 − q)αnG0+nG1 (1 − α)nB0+nB1 q(n−1)−(k∗−1)(1 − q)k∗−1

≥ ∑
{n−i |·}

(
n − 1
k∗ − 1

)(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
pqαnG0+nG1 (1 − α)nB0+nB1 qk∗−1(1 − q)(n−1)−(k∗−1)
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+ ∑
{n−i |·}

(
n − 1
k∗ − 1

)(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
(1 − p)(1 − q)αnG0+nG1 (1 − α)nB0+nB1 q(n−1)−(k∗−1)(1 − q)k∗−1.

which further implies:

∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
pqαnG0+nG1 (1 − α)nB0+nB1 qk∗−1(1 − q)(n−1)−(k∗−1)

+ ∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
(1 − p)(1 − q)αnG0+nG1 (1 − α)nB0+nB1 q(n−1)−(k∗−1)(1 − q)k∗−1

≥ ∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
pqαnG0+nG1 (1 − α)nB0+nB1 qk∗−1(1 − q)(n−1)−(k∗−1)

+ ∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
(1 − p)(1 − q)αnG0+nG1 (1 − α)nB0+nB1 q(n−1)−(k∗−1)(1 − q)k∗−1.

which further implies:

∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
[pq · qk∗−1(1 − q)(n−1)−(k∗−1)

− (1 − p)(1 − q)q(n−1)−(k∗−1)(1 − q)k∗−1]αnG0+nG1 (1 − α)nB0+nB1

≥ ∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
[pq · qk∗−1(1 − q)(n−1)−(k∗−1)

− (1 − p)(1 − q)q(n−1)−(k∗−1)(1 − q)k∗−1]αnG0+nG1 (1 − α)nB0+nB1 .

which finally implies:

∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
αnG0+nG1 (1 − α)nB0+nB1

≥ ∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
αnG0+nG1 (1 − α)nB0+nB1 .

Note that the LHS of the simplified expression is the probability that good agents represent the

majority whilst the RHS is the probability that the bad agents represent the majority, when the

agent i is a pivotal sender. Following the same argument, the conditions that an agent of type G1,

B0, and B1 has no incentive to deviate are:

∑
{n−i |nG0+nB0=k∗ ;nG1+nB1=(n−1)−k∗ ;nG0+nG1≥

n−1
2 }

(
k∗

nG0

)(
(n − 1)− k∗

nG1

)
αnG0+nG1 (1 − α)nB0+nB1

≥ ∑
{n−i |nG0+nB0=k∗ ;nG1+nB1=(n−1)−k∗ ;nB0+nB1>

n−1
2 }

(
k∗

nG0

)(
(n − 1)− k∗

nG1

)
αnG0+nG1 (1 − α)nB0+nB1 ,
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∑
{n−i |nG0+nB0=k∗−1;nG1+nB1=(n−1)−(k∗−1);nB0+nB1≥

n−1
2 }

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
αnG0+nG1 (1 − α)nB0+nB1

≥ ∑
{n−i |nG0+nB0=k∗−1;nG1+nB1=(n−1)−(k∗−1);nG0+nG1>

n−1
2 }

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
αnG0+nG1 (1 − α)nB0+nB1 ,

∑
{n−i |nG0+nB0=k∗ ;nG1+nB1=(n−1)−k∗ ;nB0+nB1≥

n−1
2 }

(
k∗

nG0

)(
(n − 1)− k∗

nG1

)
αnG0+nG1 (1 − α)nB0+nB1

≥ ∑
{n−i |nG0+nB0=k∗ ;nG1+nB1=(n−1)−k∗ ;nG0+nG1>

n−1
2 }

(
k∗

nG0

)(
(n − 1)− k∗

nG1

)
αnG0+nG1 (1 − α)nB0+nB1 ,

respectively. Hence, we have the following explicit expressions for the four conditions.

k∗−1

∑
i=0

(
k∗ − 1

i

)− n−1
2 −i−1

∑
j=0

(
n − k∗

j

)
αi+j(1 − α)n−1−i−j +

n−k∗

∑
j= n−1

2 −i

(
n − k∗

j

)
αi+j(1 − α)n−1−i−j

 ≥ 0,

k∗

∑
i=0

(
k∗

i

)− n−1
2 −i−1

∑
j=0

(
n − k∗ − 1

j

)
αi+j(1 − α)n−1−i−j +

n−k∗−1

∑
j= n−1

2 −i

(
n − k∗ − 1

j

)
αi+j(1 − α)n−1−i−j

 ≥ 0,

k∗−1

∑
i=0

(
k∗ − 1

i

)− n−1
2 −i−1

∑
j=0

(
n − k∗

j

)
(1 − α)i+jαn−1−i−j +

n−k∗

∑
j= n−1

2 −i

(
n − k∗

j

)
(1 − α)i+jαn−1−i−j

 ≥ 0,

k∗

∑
i=0

(
k∗

i

)− n−1
2 −i−1

∑
j=0

(
n − k∗ − 1

j

)
(1 − α)i+jαn−1−i−j +

n−k∗−1

∑
j= n−1

2 −i

(
n − k∗ − 1

j

)
(1 − α)i+jαn−1−i−j

 ≥ 0.

Now we show that the first two inequalities and the last two inequalities are equivalent,

respectively. We first rearrange the LHS of an inequality by sorting αi(1 − α)n−1−i for each i.

We investigate the absolute value of the coefficients of αi(1 − α)n−1−i for each i for the first two

inequalities and find that they are exactly the same. Since, for each i, αi(1 − α)n−1−i shares

the same sign in the two inequalities, it is sufficient to investigate the absolute value of the

coefficients. First suppose that i ≤ k∗ − 1. The coefficient for the first inequality can be expressed

as ∑i
j=0 (

k∗−1
j )(n−k∗

i−j ), whilst for the second inequality it is ∑i
j=0 (

k∗
j )(

n−k∗−1
i−j ). By the Binomial

Theorem, we can show that the two inequalities are equivalent:

i

∑
j=0

(
k∗ − 1

j

)(
n − k∗

i − j

)
=

i−1

∑
j=0

(
k∗ − 1

j

)(
n − k∗

i − j

)
+

(
k∗ − 1

i

)(
n − k∗

0

)

=
i−1

∑
j=0

(
k∗ − 1

j

) [(
n − k∗ − 1

i − j

)
+

(
n − k∗ − 1
i − j − 1

)]
+

(
k∗ − 1

i

)(
n − k∗ − 1

0

)
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=
i

∑
j=0

(
k∗ − 1

j

)(
n − k∗ − 1

i − j

)
+

i−1

∑
j=0

(
k∗ − 1

j

)(
n − k∗ − 1
i − j − 1

)
.

i

∑
j=0

(
k∗

j

)(
n − k∗ − 1

i − j

)
=

i

∑
j=1

(
k∗

j

)(
n − k∗ − 1

i − j

)
+

(
k∗

0

)(
n − k∗ − 1

i

)

=
i

∑
j=1

[(
k∗ − 1

j

)(
k∗ − 1
j − 1

)](
n − k∗ − 1

i − j

)
+

(
k∗ − 1

0

)(
n − k∗ − 1

i

)

=
i

∑
j=0

(
k∗ − 1

j

)(
n − k∗ − 1

i − j

)
+

i

∑
j=1

(
k∗ − 1
j − 1

)(
n − k∗ − 1

i − j

)

=
i

∑
j=0

(
k∗ − 1

j

)(
n − k∗ − 1

i − j

)
+

i−1

∑
j=0

(
k∗ − 1

j

)(
n − k∗ − 1
i − j − 1

)
.

Suppose that k∗ ≤ i ≤ n − 1 − k∗. The coefficient for the first inequality can be expressed as

∑k∗−1
j=0 (k∗−1

j )(n−k∗
i−j ), whilst for the second inequality it is ∑k∗

j=0 (
k∗
j )(

n−k∗−1
i−j ). Thus, we have:

k∗−1

∑
j=0

(
k∗ − 1

j

)(
n − k∗

i − j

)
=

k∗−1

∑
j=0

(
k∗ − 1

j

) [(
n − k∗ − 1

i − j

)
+

(
n − k∗ − 1
i − j − 1

)]

=
k∗−1

∑
j=0

(
k∗ − 1

j

)(
n − k∗ − 1

i − j

)
+

k∗−1

∑
j=0

(
k∗ − 1

j

)(
n − k∗ − 1
i − j − 1

)
.

k∗

∑
j=0

(
k∗

j

)(
n − k∗ − 1

i − j

)
=

(
k∗

k∗

)(
n − k∗ − 1

i

)
+

k∗−1

∑
j=1

(
k∗

j

)(
n − k∗ − 1

i − j

)
+

(
k∗

0

)(
k∗

i − k∗

)

=

(
k∗ − 1

0

)(
n − k∗ − 1

i

)
+

k∗−1

∑
j=1

[(
k∗ − 1

j

)(
k∗ − 1
j − 1

)](
n − k∗ − 1

i − j

)
+

(
k∗ − 1
k∗ − 1

)(
k∗

i − k∗

)

=
k∗−1

∑
j=0

(
k∗ − 1

j

)(
n − k∗ − 1

i − j

)
+

k∗

∑
j=1

(
k∗ − 1
j − 1

)(
n − k∗ − 1

i − j

)

=
k∗−1

∑
j=0

(
k∗ − 1

j

)(
n − k∗ − 1

i − j

)
+

k∗−1

∑
j=0

(
k∗ − 1

j

)(
n − k∗ − 1
i − j − 1

)
.

Suppose that i ≥ n − k∗. The coefficient for the first inequality can be expressed as

∑k∗−1
j=i−(n−k∗) (

k∗−1
j )(n−k∗

i−j ), whilst for the second inequality it is ∑k∗
j=i−(n−k∗−1) (

k∗
j )(

n−k∗−1
i−j ). Thus,

we have:

k∗−1

∑
j=i−(n−k∗)

(
k∗ − 1

j

)(
n − k∗

i − j

)
=

(
k∗ − 1

i − (n − k∗)

)(
n − k∗

n − k∗

)
+

k∗−1

∑
j=i−(n−k∗)+1

(
k∗ − 1

j

)(
n − k∗

i − j

)

=

(
k∗ − 1

i − (n − k∗)

)(
n − k∗

n − k∗

)
+

k∗−1

∑
j=i−(n−k∗)+1

(
k∗ − 1

j

) [(
n − k∗ − 1

i − j

)
+

(
n − k∗ − 1
i − j − 1

)]

=
k∗−1

∑
j=i−(n−k∗)+1

(
k∗ − 1

j

)(
n − k∗ − 1

i − j

)
+

k∗−1

∑
j=i−(n−k∗)

(
k∗ − 1

j

)(
n − k∗ − 1
i − j − 1

)
.

k∗

∑
j=i−(n−k∗−1)

(
k∗

j

)(
n − k∗ − 1

i − j

)
=

k∗−1

∑
j=i−(n−k∗−1)

(
k∗

j

)(
n − k∗ − 1

i − j

)
+

(
k∗

k∗

)(
n − k∗ − 1

i − k∗

)
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=
k∗−1

∑
j=i−(n−k∗−1)

[(
k∗ − 1

j

)
+

(
k∗ − 1
j − 1

)](
n − k∗ − 1

i − j

)
+

(
k∗ − 1
k∗ − 1

)(
n − k∗ − 1

i − k∗

)

=
k∗−1

∑
j=i−(n−k∗−1)

(
k∗ − 1

j

)(
n − k∗ − 1

i − j

)
+

k∗

∑
j=i−(n−k∗−1)

(
k∗ − 1
j − 1

)(
n − k∗ − 1

i − j

)

=
k∗−1

∑
j=i−(n−k∗−1)

(
k∗ − 1

j

)(
n − k∗ − 1

i − j

)
+

k∗−1

∑
j=i−(n−k∗)

(
k∗ − 1

j

)(
n − k∗ − 1
i − j − 1

)
.

Since the coefficients of αi(1 − α)n−1−i are identical, the two inequalities are equivalent. Likewise,

it can be proven that the last two inequalities are equivalent as well. Now we show that the

inequalities only depend on α and n. That is, they are independent of p and q. The only proof

required for this claim is to prove the inequalities are independent of k∗. Suppose that k∗ = k̄. As

mentioned, after rearrangement, we can rewrite the first inequality as:

−
k̄−1

∑
i=0

 i

∑
j=0

(
k̄ − 1

j

)(
n − k̄
i − j

)
αi(1 − α)n−1−i

−
n−1

2 −1

∑
i=k̄

k̄−1

∑
j=0

(
k̄ − 1

j

)(
n − k̄
i − j

)
αi(1 − α)n−1−i


+

n−k̄−1

∑
i= n−1

2

k̄−1

∑
j=0

(
k̄ − 1

j

)(
n − k̄
i − j

)
αi(1 − α)n−1−i

+
n−1

∑
i=n−k̄

 k̄−1

∑
j=i−(n−k̄)

(
k̄ − 1

j

)(
n − k̄
i − j

)
αi(1 − α)n−1−i

 ≥ 0.

For notational simplicity, denote the coefficient of αi(1− α)n−1−i as κi(k∗). The inequality becomes:

n−1

∑
i=0

κi(k̄)αi(1 − α)n−1−i ≥ 0.

Suppose now instead we have k∗ = k̄ + 1. Since we have proven the following identities:

i

∑
j=0

(
k∗ − 1

j

)(
n − k∗

i − j

)
=

i

∑
j=0

(
k∗

j

)(
n − k∗ − 1

i − j

)
,

k∗−1

∑
j=0

(
k∗ − 1

j

)(
n − k∗

i − j

)
=

k∗

∑
j=0

(
k∗

j

)(
n − k∗ − 1

i − j

)
,

k∗−1

∑
j=0

(
k∗ − 1

j

)(
n − k∗

i − j

)
=

k∗

∑
j=0

(
k∗

j

)(
n − k∗ − 1

i − j

)
,

we have κi(k̄) = κi(k̄ + 1), which implies the inequality is independent of k∗, and hence

independent of p and q.

Likewise, we have the same result for the three remaining inequalities.
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Proof of Corollary 3.2.1. According to the proof of Proposition 3.2, the condition under which an

agent of type G0 has no incentive to deviate from truthfully deliberating is:

∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
λpqαnG0+nG1 (1 − α)nB0+nB1 qk∗−1(1 − q)(n−1)−(k∗−1)

+ ∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
(1 − p)(1 − q)αnG0+nG1 (1 − α)nB0+nB1 q(n−1)−(k∗−1)(1 − q)k∗−1

≥ ∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
λpqαnG0+nG1 (1 − α)nB0+nB1 qk∗−1(1 − q)(n−1)−(k∗−1)

+ ∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
(1 − p)(1 − q)αnG0+nG1 (1 − α)nB0+nB1 q(n−1)−(k∗−1)(1 − q)k∗−1.

which further implies:

∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
[λpq · qk∗−1(1 − q)(n−1)−(k∗−1)

− (1 − p)(1 − q)q(n−1)−(k∗−1)(1 − q)k∗−1]αnG0+nG1 (1 − α)nB0+nB1

≥ ∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
[λpq · qk∗−1(1 − q)(n−1)−(k∗−1)

− (1 − p)(1 − q)q(n−1)−(k∗−1)(1 − q)k∗−1]αnG0+nG1 (1 − α)nB0+nB1 .

which finally implies:

∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
αnG0+nG1 (1 − α)nB0+nB1

≥ ∑
{n−i |·}

(
k∗ − 1

nG0

)(
(n − 1)− (k∗ − 1)

nG1

)
αnG0+nG1 (1 − α)nB0+nB1 .

Following the same argument, the conditions that an agent of type G1, B0, and B1 has no incentive

to deviate from truthfully deliberating coincide with those stated in Proposition 3.2.

3.A.2 Babbling Equilibrium: Existence

Proof of Proposition 3.4. We first examine the incentive to deviate from sincere voting. An agent

understands that they are a pivotal voter if and only if, apart from herself, half of the agents cast a

vote vj = 0 and the other half cast vj = 1. Mathematically, an event n−i is pivotal if and only if

(nG0 , nG1 , nB0 , nB1) satisfies:
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nG0 + nG1 = nB0 + nB1 =
n − 1

2
if p ≥ q;

nG0 + nB0 = nG1 + nB1 =
n − 1

2
if p < q.

The agent then forms posterior belief conditional on pivotal events, ϕ̃i. Below we show that this

equals ϕi. Suppose that p ≥ q and xi = G0. The posterior belief conditional on pivotal events is:

ϕ̃i = ϕ̃(si,m−i) =
∑{n−i |nG0+nG1

=nB0+nB1=
n−1

2 )} P(ω = 0, si = 0,n−i)

∑{n−i |nG0+nG1
=nB0+nB1=

n−1
2 )} P(ω = 1, si = 0,n−i)

=
pq ∑{n−i |·} (

n−1
n−1

2
)(

n−1
2

nG0
)(

n−1
2

nB0
)α

n−1
2 (1 − α)

n−1
2 qnG0+nB0 (1 − q)nG1

+nB1

(1 − p)(1 − q)∑{n−i |·} (
n−1
n−1

2
)(

n−1
2

nG0
)(

n−1
2

nB0
)α

n−1
2 (1 − α)

n−1
2 (1 − q)nG0+nB0 qnG1

+nB1

=
pq ∑{n−i |·} (

n−1
2

nG0
)(

n−1
2

nB0
)qnG0+nB0 (1 − q)nG1

+nB1

(1 − p)(1 − q)∑{n−i |·} (
n−1

2
nG0

)(
n−1

2
nB0

)(1 − q)nG0+nB0 qnG1
+nB1

.

Observe that, if an event (a, b, c, d) is pivotal, then (d, c, b, a) is also pivotal. Furthermore, the

conditional probability of the event (ω = 0, si = 0,n−i = (a, b, c, d)) is identical to the conditional

probability of (ω = 1, si = 0,n−i = (d, c, b, a)). To prove this formally, we have:

P(ω = 0, si = 0,n−i = (a, b, c, d)) = pq
( n−1

2
a

)( n−1
2
c

)
qa+c(1 − q)b+d;

P(ω = 1, si = 0,n−i = (d, c, b, a)) = (1 − p)(1 − q)
( n−1

2
d

)( n−1
2
b

)
(1 − q)d+bqc+a,

which implies:

P(n−i = (a, b, c, d) | ω = 0, si = 0) = P(n−i = (d, c, b, a) | ω = 1, si = 0).

Therefore, we have:

ϕ̃i =
pq ∑{n−i |·} (

n−1
2

nG0
)(

n−1
2

nB0
)qnG0+nB0 (1 − q)nG1

+nB1

(1 − p)(1 − q)∑{n−i |·} (
n−1

2
nG0

)(
n−1

2
nB0

)(1 − q)nG0+nB0 qnG1
+nB1

=
pq ∑{n−i |·} P(n−i | ω = 0, si = 0)

(1 − p)(1 − q)∑{n−i |·} P(n−i | ω = 1, si = 0)
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=
pq

(1 − p)(1 − q)
= ϕ(si,m−i) = ϕi.

Following the same argument, it can be proven that ϕ̃i = ϕi holds for any other type (i.e., G1, B0,

and B1). Suppose that p < q and xi = G0. The posterior belief conditional on pivotal events is:

ϕ̃i = ϕ̃(si,m−i) =
∑{n−i |nG0+nB1=nB0+nG1

= n−1
2 )} P(ω = 0, si = 0,n−i)

∑{n−i |nG0+nB1=nB0+nG1
= n−1

2 )} P(ω = 1, si = 0,n−i)
.

Likewise, if an event (a, b, c, d) is pivotal, then (d, c, b, a) is also pivotal. Therefore, based on the

previous argument, ϕ̃i = ϕi. In conclusion, given babbling strategy, the posterior belief conditional

on pivotal events, ϕ̃i, is the same as ϕi, which implies that sincere voting is sustainable. Note that

if we have any other k-voting rule instead of simple majority, sincere voting will no longer be

sustainable in general. For example, suppose that unanimity rule of d = 1 (i.e., d = 1 if and only if

all agents cast vi = 1) is implemented and p < q. A bad agent who receives si = 0 forms ϕi > 1.

Sincere voting suggests that they should vote vi = 0. However, in pivotal voting events in which

all other agents vote vi = 1, their posterior belief should rather be:

ϕ̃i =
p

1 − p
q

1 − q

(
α(1 − q) + (1 − α)q
αq + (1 − α)(1 − q)

)n−1

=
p

1 − p
q

1 − q

(
1 − q̃

q̃

)n−1
,

which can be ϕ̃i < 1 < ϕi if, say, α is sufficiently high. As a result, the agent deviates from sincere

voting and thus sincere voting is not sustainable.

Now we investigate if any type has incentive to deviate from babbling strategy, given sincere

voting. Since messages offer no clue on private signals from other agents, deviation from sending

a null message does not influence the posterior belief and thus voting actions of any type.

Consequently, the decision is not affected by the sent message, which concludes that there exists

no incentive for any type of agents to deviate from the babbling strategy.

3.A.3 Non-Truthful Equilibrium: General

This appendix provides the complete technical analysis supporting the equilibrium

characterisation of non-truthful equilibrium in Section 3.4.2. The analysis proceeds in three

parts: establishing the information structure under systematic deception, deriving sustainability
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conditions for sincere voting, and characterising the conditions for sustainable messaging

strategies. Under a non-truthful equilibrium, good agents truthfully reveal their signals,

m(si, θi = 1) = si, whilst bad agents systematically lie, m(si, θi = −1) = 1 − si. This creates

a complex information environment where message interpretation depends on understanding the

systematic deception pattern.

Message Generation Process: A null message mj = 0 originates from agents of type xi ∈ {G0, B1},

whilst a message mj = 1 comes from agents of type xi ∈ {G1, B0}. The conditional probabilities

become:

P(xi ∈ {G0, B1} | ω = 0) = αq + (1 − α)(1 − q) ≡ q̃;
P(xi ∈ {G0, B1} | ω = 1) = 1 − q̃;
P(xi ∈ {G1, B0} | ω = 0) = 1 − q̃;
P(xi ∈ {G1, B0} | ω = 1) = q̃.

This creates an effective signal precision q̃ that differs from the original precision q.

Posterior Belief Formation: When the agent i of type xi receives signal si and observes k null

messages in the message profile m ∈ Mn, their posterior belief, denoted ϕk
xi

is:

ϕk
G0

=
p

1 − p
q

1 − q

(
q̃

1 − q̃

)2k−(n+1)
; ϕk

G1
=

p
1 − p

1 − q
q

(
q̃

1 − q̃

)2k−(n−1)
;

ϕk
B0

=
p

1 − p
q

1 − q

(
q̃

1 − q̃

)2k−(n−1)
; ϕk

B1
=

p
1 − p

1 − q
q

(
q̃

1 − q̃

)2k−(n+1)
.

Lemma 3.3 (Monotonicity of induced posterior belief). Given any message profile mk any posterior

belief increases in k ≡ #{mi = 0 | m}.

Proof. Denote a message profile with k null messages as, mk ∈ {m | #{mi = 0 | m} = k} ⊂ Mn.

Moreover, denote a message profile other than i with k null messages as,

mk
−i ∈ {m−i | #{mj = 0 | m−i} = k} ⊂ Mn−1. Then, it can be shown that:

ϕ(si,ma
−i) > ϕ(si,mb

−i) ⇐⇒ a > b.

Note that q̃ > 1
2 since, q̃ = αq+ (1− α)(1− q) = α · 1

2 + (1− α) · 1
2 + α(q− 1

2 ) + (1− α)(1− q− 1
2 )

= 1
2 + (2α − 1)(q − 1

2 ) >
1
2 . Hence, q̃

1−q̃ > 1.
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(⇐): a > b =⇒ ϕ(0,ma
−i) = p

1−p
q

1−q (
q̃

1−q̃ )
a−(n−1−a) > p

1−p
q

1−q (
q̃

1−q̃ )
b−(n−1−b) = ϕ(0,mb

−i);

ϕ(1,ma
−i) =

p
1−p

1−q
q ( q̃

1−q̃ )
a−(n−1−a) > p

1−p
1−q

q ( q̃
1−q̃ )

b−(n−1−b) = ϕ(1,mb
−i).

(⇒): If ϕ(si,ma
−i) > ϕ(si,mb

−i),
ϕ(si ,ma

−i)

ϕ(si ,mb
−i)

=
p

1−p (
q

1−q )
2si−1(

q̃
1−q̃ )

a−(n−1−a)

p
1−p (

q
1−q )

2si−1(
q̃

1−q̃ )
b−(n−1−b)

= ( q̃
1−q̃ )

2(a−b) > 1

=⇒ a > b.

Lemma 3.4 (Same message, different posterior). Let ϕk
xi

denote the posterior belief of an agent of type

xi observing k null messages in the message profile m ∈ Mn. Given any message profile m with any k,

the induced posterior belief of all types satisfies the following relationship: ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

.

Proof. Recall that we denote the posterior belief of type xi as ϕxi (m), where the message profile is

m. Mathematically, we have:

ϕxi (m) ≡ ϕ(si,m−i) s.t. m(xi) = m(si, θi) = mi.

Suppose a message profile m contains k null messages. We have,

ϕk
G0

= ϕ(0,mk−1
−i ) ; ϕk

G1
= ϕ(1,mk

−i) ; ϕk
B0

= ϕ(0,mk
−i) ; ϕk

B1
= ϕ(1,mk−1

−i ).

By Lemma 3.3, we have:

ϕk
B0

> ϕk
G0

; ϕk
G1

> ϕk
B1

.

Moreover, we have the following inequality:

ϕk
G0

ϕk
G1

=

p
1−p

q
1−q (

q̃
1−q̃ )

k−1−(n−1−(k−1))

p
1−p

1−q
q ( q̃

1−q̃ )
k−(n−1−k)

= (
q

1 − q
)2(

q̃
1 − q̃

)−2 > 1,

which implies, ϕk
G0

> ϕk
G1

. Therefore, we have, ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

.

Posterior Belief Relations and Voting Sustainability

The posterior beliefs relative to unity create five possible orderings that determine voting

behaviour:

(a) ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1;

(b) ϕk
B0

> ϕk
G0

> ϕk
G1

> 1 > ϕk
B1

;
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(c) ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

;

(d) ϕk
B0

> 1 > ϕk
G0

> ϕk
G1

> ϕk
B1

;

(e) 1 > ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

Lemma 3.5 (Monotonicity in posterior relation). Let ϕk
xi

denote the posterior belief of an agent of

type xi observing k null messages in the message profile m ∈ Mn. Let Ka ≡ {k | ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1}; Kb ≡ {k | ϕk
B0

> ϕk
G0

> ϕk
G1

> 1 > ϕk
B1
}; Kc ≡ {k | ϕk

B0
> ϕk

G0
> 1 > ϕk

G1
> ϕk

B1
};

Kd ≡ {k | ϕk
B0

> 1 > ϕk
G0

> ϕk
G1

> ϕk
B1
}; Ke ≡ {k | 1 > ϕk

B0
> ϕk

G0
> ϕk

G1
> ϕk

B1
}. Then, we have,

a > b > c > d > e, ∀a ∈ Ka, ∀b ∈ Kb, ∀c ∈ Kc, ∀d ∈ Kd, ∀e ∈ Ke.

Proof. If ϕa
B0

> ϕa
G0

> ϕa
G1

> ϕa
B1

> 1 and ϕb
B0

> ϕb
G0

> ϕb
G1

> 1 > ϕb
B1

=⇒ ϕB1(m
a)

> ϕb
B1

=⇒ ϕ(si = 1,ma−1
−i ) > ϕ(si = 1,mb−1

−i ). By Lemma 3.3, a − 1 > b − 1 and thus a

> b.

Likewise, ϕb
B0

> ϕb
G0

> ϕb
G1

> 1 > ϕb
B1

and ϕc
B0

> ϕc
G0

> 1 > ϕc
G1

> ϕc
B1

=⇒ b > c; ϕc
B0

> ϕc
G0

> 1

> ϕc
G1

> ϕc
B1

and ϕd
B0

> 1 > ϕd
G0

> ϕd
G1

> ϕd
B1

=⇒ c > d; ϕd
B0

> 1 > ϕd
G0

> ϕd
G1

> ϕd
B1

and 1 > ϕe
B0

> ϕe
G0

> ϕe
G1

> ϕe
B1

=⇒ d > e.

Lemma 3.6. The following lemmas examine some relevant conditions regarding change in posterior relation

induced by mk−1, mk, and mk+1.

Lemma 3.6a. Given ϕk
B0

> ϕk
G0

> ϕk
G1

> 1 > ϕk
B1

, it cannot be that, ϕk+1
B0

> ϕk+1
G0

> ϕk+1
G1

> ϕk+1
B1

> 1,

or, ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> 1 > ϕk−1
B1

.

Proof. 1 < ϕk
G1

= ϕk+1
B1

. By Lemma 3.4, ϕk+1
B0

> ϕk+1
G0

> ϕk+1
G1

> ϕk+1
B1

> 1.

1 > ϕk
B1

= ϕk−1
G1

.

Lemma 3.6b. Given ϕk
B0

> 1 > ϕk
G0

> ϕk
G1

> ϕk
B1

, it cannot be that, 1 > ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

,

or, ϕk+1
B0

> 1 > ϕk+1
G0

> ϕk+1
G1

> ϕk+1
B1

.

Proof. 1 > ϕk
G0

= ϕk−1
B0

. By Lemma 3.4, 1 > ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

.

1 < ϕk
B0

= ϕk+1
G0

.

Lemma 3.6c. Given ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

, it cannot be that, 1 > ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

,

or, ϕk+1
B0

> ϕk+1
G0

> ϕk+1
G1

> ϕk+1
B1

> 1.
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Proof. 1 < ϕk
G0

= ϕk−1
B0

; 1 > ϕk
G1

= ϕk+1
B1

.

Lemma 3.6d. Given ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1, it cannot be that, 1 > ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

,

ϕk−1
B0

> 1 > ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

, or, ϕk−1
B0

> ϕk−1
G0

> 1 > ϕk−1
G1

> ϕk−1
B1

.

Proof. 1 < ϕk
B1

= ϕk−1
G1

.

Lemma 3.6e. Given 1 > ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

, it cannot be that, ϕk+1
B0

> ϕk+1
G0

> ϕk+1
G1

> ϕk+1
B1

> 1,

ϕk+1
B0

> ϕk+1
G0

> ϕk+1
G1

> 1 > ϕk+1
B1

, or, ϕk+1
B0

> ϕk+1
G0

> 1 > ϕk+1
G1

> ϕk+1
B1

.

Proof. 1 > ϕk
B0

= ϕk+1
G0

.

Sustainability of Sincere Voting

The sustainability of sincere voting depends critically on which posterior relation holds and the

resulting pivotal voting incentives.

Lemma 3.7. The following lemmas examine some relevant conditions regarding sustainability of sincere

voting.

Lemma 3.7a. Given any k ∈ {0, 1, 2, ..., n} such that ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1, p ≥ q must hold for

sustainability of sincere voting.

Proof. An agent of type xi understands that they are a pivotal voter if and only if

#{vj = 0 | v−i} = #{vj = 1 | v−i}, or equivalently, n−i satisfies nG0 + nG1 = nB0 + nB1 = n−1
2 .

Moreover, they also know that nG0 + nB1 = kxi (m
k) and nG1 + nB0 = (n− 1)− kxi (m

k). Therefore,

the agent is a pivotal voter if and only if n−i satisfies:

nG0 + nG1 = nB0 + nB1 =
n − 1

2
; nG0 + nB1 = kxi (m

k); nG1 + nB0 = (n − 1)− kxi (m
k).

Observe that, if n−i = (a, b, c, d) is pivotal, then (d, c, b, a) is also pivotal. Define the conditional

probability of n−i given (ω, si) as P(n−i | ω, si). We have:

P((a, b, c, d) | 0, 0) = P((a, b, c, d) | 0, 1) = P((d, c, b, a) | 1, 0) = P((d, c, b, a) | 1, 1),

since:
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P((a, b, c, d) | 0, 0) = P((a, b, c, d) | 0, 1) =
(

a + d
a

)(
b + c

b

)
αa+b(1 − α)c+dqa+c(1 − q)b+d

=

(
d + a

d

)(
c + b

c

)
αd+c(1 − α)b+a(1 − q)d+bqc+a

= P((d, c, b, a) | 1, 0) = P((d, c, b, a) | 1, 1).

The posterior belief of type xi restricted on pivotal voting events is:

ϕ̃k
xi
=

∑n−i
P(ω = 0, si,n−i)

∑n−i
P(ω = 1, si,n−i)

=
pq1−si (1 − q)si ∑n−i

P(n−i | ω = 0, si)

(1 − p)qsi (1 − q)1−si ∑n−i
P(n−i | ω = 1, si)

=
pq1−si (1 − q)si

(1 − p)qsi (1 − q)1−si

∑n−i
P(n−i | ω = 0, si)

∑n−i
P(n−i | ω = 1, si)

,

where n−i satisfies nG0 + nG1 = nB0 + nB1 = n−1
2 , nG0 + nB1 = kxi (m

k), and nG1 + nB0

= (n − 1) −kxi (m
k). Since P((a, b, c, d) | 0, 0) = P((d, c, b, a) | 1, 0) and P((a, b, c, d) | 0, 1)

= P((d, c, b, a) | 1, 1), ∑n−i
P(n−i | ω = 0, si) = ∑n−i

P(n−i | ω = 1, si).

Thus, we have:

ϕ̃k
xi
=

pq1−si (1 − q)si

(1 − p)qsi (1 − q)1−si
=


pq

(1−p)(1−q) , if xi ∈ {G0, B1}
p(1−q)
(1−p)q , if xi ∈ {G1, B0}

.

For types xi ∈ {G0, B1}, they have no incentive to deviate since ϕ̃k
xi

≥ 1 and ϕk
xi

≥ 1,

unconditionally. For types xi ∈ {G1, B0}, they have no incentive to deviate if and only if p ≥ q so

that ϕ̃k
xi
≥ 1 and ϕk

xi
≥ 1, which implies that p ≥ q is a necessary condition for the sustainability.

Lemma 3.7b. Given any k ∈ {0, n} such that ϕk
B0

> ϕk
G0

> ϕk
G1

> 1 > ϕk
B1

, no type has incentive to

deviate from sincere voting conditional on observing mk.

Proof. Suppose that ϕn
B0

> ϕn
G0

> ϕn
G1

> 1 > ϕn
B1

. Note that there exist only type G0 and B1 if mn

is observed. Conditional on observing mn, an agent of type xi ∈ {G0, B1} understands that they

are a pivotal voter if and only if n−i satisfies nG0 + nG1 + nB1 = nB0 = n−1
2 . Given mn, there exists

no type B0 since no mj = 1 is observed, which implies there exists no n−i such that nB0 = n−1
2 .

Hence, no pivotal event exists which implies that sustainability holds.
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Suppose that ϕ0
B0

> ϕ0
G0

> ϕ0
G1

> 1 > ϕ0
B1

. Note that there exist only type G1 and B0 if m0 is

observed. Conditional on observing m0, a agent of type xi ∈ {G1, B0} understands that they are a

pivotal voter if and only if n−i satisfies nG1 = nB0 = n−1
2 . Therefore, we have,

ϕ̃0
G1

=
p(1 − q)(n−1

n−1
2
)α

n−1
2 (1 − α)

n−1
2 q

n−1
2 (1 − q)

n−1
2

(1 − p)q(n−1
n−1

2
)α

n−1
2 (1 − α)

n−1
2 (1 − q)

n−1
2 q

n−1
2

=
p(1 − q)
(1 − p)q

>
p

1 − p
1 − q

q
(

q̃
1 − q̃

)1−n = ϕ0
G1

> 1;

ϕ̃0
B0

=
pq(n−1

n−1
2
)α

n−1
2 (1 − α)

n−1
2 q

n−1
2 (1 − q)

n−1
2

(1 − p)(1 − q)(n−1
n−1

2
)α

n−1
2 (1 − α)

n−1
2 (1 − q)

n−1
2 q

n−1
2

=
pq

(1 − p)(1 − q)

>
p

1 − p
1 − q

q
(

q̃
1 − q̃

)1−n = ϕ0
B0

> 1.

Thus, there is no incentive to deviate for type G1 and B0.

Lemma 3.7c. If ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

, no type has incentive to deviate from sincere voting

conditional on observing mk.

Proof. Conditional on observing mk, an agent of type xi is a pivotal voter only if n−i satisfies

nG0 + nB1 = nG1 + nB0 =
n−1

2 , nG0 + nB1 = kxi (m
k), and nG1 + nB0 = (n − 1)− kxi (m

k).

If kxi (m
k) = n−1

2 , they are a pivotal voter for all possible n−i, which implies ϕk
xi
= ϕ̃k

xi
. Therefore,

they have no incentive to deviate from sincere voting. If kxi (m
k) ̸= n−1

2 , they are not a pivotal

voter for each n−i. Since there exists no pivotal event, they have no incentive to deviate from

sincere voting.

Lemma 3.7d. If ϕ0
B0

> 1 > ϕ0
G0

> ϕ0
G1

> ϕ0
B1

, no type has incentive to deviate from sincere voting

conditional on observing m0.

Proof. Suppose that ϕ0
B0

> 1 > ϕ0
G0

> ϕ0
G1

> ϕ0
B1

. Note that there exist only type G1 and B0 if m0

is observed.

Conditional on observing m0, an agent of type xi ∈ {G1, B0} understands that they are a pivotal

voter only if n−i satisfies nG0 + nG1 + nB0 = nB1 = n−1
2 . Given m0, there exists no type B1 since

no mj = 0 is observed, which implies there exists no n−i such that nB1 = n−1
2 . Hence, no pivotal

event exists.
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Lemma 3.7e. If 1 > ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

holds for some k ∈ {0, 1, 2, ..., n}, the sustainability of

sincere voting fails.

Proof. Observe that, if n−i = (a, b, c, d) is pivotal, (d, c, b, a) is also pivotal. Following the same

argument in the proof for Lemma 3.7a, the posterior belief conditional on pivotal events is,

ϕ̃k
xi
=


pq

(1−p)(1−q) , if xi ∈ {G0, B0}
p(1−q)
(1−p)q , if xi ∈ {G1, B1}

.

Type G0 and B0 always have incentive to deviate since ϕ̃k
xi

≥ 1 whilst ϕk
xi

< 1. Equilibrium

fails.

Sustainability of Message Strategy

An agent becomes a pivotal message sender when their deviation changes the posterior belief

relation and thereby alters voting outcomes sufficient to flip the collective decision.

Lemma 3.8 (Change in posterior relation by one message). Suppose that there is a change in posterior

belief from mk to mk−1, or, from mk−1 to mk, where k ∈ {1, 2, ...., n}. One of the following statement is

true.

(i) ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1, and ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> 1 > ϕk−1
B1

;

(ii) ϕk
B0

> ϕk
G0

> ϕk
G1

> 1 > ϕk
B1

, and ϕk−1
B0

> ϕk−1
G0

> 1 > ϕk−1
G1

> ϕk−1
B1

;

(iii) ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

, and ϕk−1
B0

> 1 > ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

;

(iv) ϕk
B0

> 1 > ϕk
G0

> ϕk
G1

> ϕk
B1

, and 1 > ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

;

(v) ϕk
B0

> ϕk
G0

> ϕk
G1

> 1 > ϕk
B1

, and ϕk−1
B0

> 1 > ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

.

Proof. Suppose that ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1. By Lemma 3.5, we cannot have 1 > ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

, ϕk−1
B0

> 1 > ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

, or ϕk−1
B0

> ϕk−1
G0

> 1 > ϕk−1
G1

> ϕk−1
B1

. Thus, ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> 1 > ϕk−1
B1

.

Suppose that ϕk
B0

> ϕk
G0

> ϕk
G1

> 1 > ϕk
B1

. By Lemma 3.5, we cannot have ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

> 1. By Lemma 3.6a, we cannot have 1 > ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

. Thus, we have

ϕk−1
B0

> ϕk−1
G0

> 1 > ϕk−1
G1

> ϕk−1
B1

or ϕk−1
B0

> 1 > ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

.

170



CHAPTER 3: DELIBERATION AND VOTING WITH OPPOSED PREFERENCES 171

Suppose that ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

. By Lemma 3.5, we cannot have ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

> 1 or ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> 1 > ϕk−1
B1

. By Lemma 3.6c, we cannot have 1 > ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

. Thus, we have ϕk−1
B0

> 1 > ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

.

Suppose that ϕk
B0

> 1 > ϕk
G0

> ϕk
G1

> ϕk
B1

. By Lemma 3.6b, we have 1 > ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

.

Suppose that 1 > ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

. By Lemma 3.5, there exists no possible change in

posterior relation from mk to mk−1.

Suppose that ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

> 1. By Lemma 3.5, there exists no possible change in

posterior relation from mk−1 to mk.

Suppose that ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> 1 > ϕk−1
B1

. By Lemma 3.6a, we have ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1.

Suppose that ϕk−1
B0

> ϕk−1
G0

> 1 > ϕk−1
G1

> ϕk−1
B1

. By Lemma 3.5, we cannot have ϕk
B0

> 1 > ϕk
G0

> ϕk
G1

> ϕk
B1

, or 1 > ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

. By Lemma 3.6c, we cannot have ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1. Thus, we have ϕk
B0

> ϕk
G0

> ϕk
G1

> 1 > ϕk
B1

.

Suppose that ϕk−1
B0

> 1 > ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

. By Lemma 3.5, we cannot have 1 > ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

. By Lemma 3.6b, we cannot have ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1. Thus, we have ϕk
B0

> 1 > ϕk
G0

> ϕk
G1

> ϕk
B1

or ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

.

Suppose that 1 > ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

. By Lemma 3.6e, we cannot have ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1, ϕk
B0

> ϕk
G0

> ϕk
G1

> 1 > ϕk
B1

, or ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

. Thus, we have ϕk
B0

> 1

> ϕk
G0

> ϕk
G1

> ϕk
B1

.

Critical Insight: The analysis reveals that certain transition patterns between posterior relations

create systematic incentives for good agents to deviate from the non-truthful messaging strategy.

Non-Empty Set of Pivotal Events

Lemma 3.9. The following lemmas examine key conditions related to the non-empty set of pivotal events.

Lemma 3.9a. If ϕk(i)
B0

> ϕk(i)
G0

> ϕk(i)
G1

> ϕk(i)
B1

> 1 and ϕk(i)−1

B0
> ϕk(i)−1

G0
> ϕk(i)−1

G1
> 1 > ϕk(i)−1

B1
hold for

some k(i) ∈ {2, 3, ..., n}, there always exists a non-empty set of pivotal events where type G0 is a pivotal

sender conditional on observing mk(i) , and a non-empty set pivotal events where type G1 is a pivotal sender

conditional on observing mk(i)−1. Moreover, the two sets are equivalent.
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Proof. Conditional on observing mk(i) , an agent of type G0 understands that they are a pivotal

sender if the type profile, n, satisfies n′
G0

+ n′
G1

+ n′
B1

> n
2 > n′

G0
+ n′

G1
. Equivalently, n−i

satisfies (nG0 + 1) + nG1 + nB1 > n
2 > (nG0 + 1) + nG1 . Along with the constraint that they

observe kG0(m
k(i)) = k(i) − 1 null messages from other agents of type G0 and B1, n−i is a pivotal

event only if n−i satisfies nG0 + nG1 + nB1 > n
2 − 1 > nG0 + nG1 , nG0 + nB1 = k(i) − 1, and

nG1 + nB0 = (n − 1)− (k(i) − 1).

Likewise, conditional on observing mk(i)−1, an agent of type G1 is a pivotal sender if the

type profile, n, satisfies n′
G0

+ n′
G1

+ n′
B1

> n
2 > n′

G0
+ n′

G1
. Equivalently, n−i satisfies

nG0 + (nG1 + 1) + nB1 > n
2 > nG0 + (nG1 + 1). Along with the constraint that they observe

kG1(m
k(i)−1) = k(i) − 1 null messages from other agents of type G0 and B1, n−i is a pivotal

event only if n−i satisfies nG0 + nG1 +nB1 > n
2 − 1 > nG0 + nG1 , nG0 + nB1 = k(i) − 1, and

nG1 + nB0 = (n − 1)− (k(i) − 1).

Since the conditions of a pivotal events are identical, n−i is a pivotal event of type G0 if and only

if n−i is a pivotal event of type G1, which concludes that the two sets are equivalent.

Denote the pivotal events as n
(i)
−i ∈ {n−i | nG0 + nG1 + nB1 > n

2 − 1 > nG0 + nG1 , nG0 + nB1

= k(i) − 1, nG1 + nB0 = (n − 1) −(k(i) − 1)}.

Lemma 3.9b. If ϕk(ii)
B0

> ϕk(ii)
G0

> ϕk(ii)
G1

> 1 > ϕk(ii)
B1

and ϕk(ii)−1

B0
> ϕk(ii)−1

G0
> 1 > ϕk(ii)−1

G1
> ϕk(ii)−1

B1
hold

for some k(ii) ∈ {1, 2, ..., n−1
2 }, there always exists a non-empty set of pivotal events where type G0 is

a pivotal sender conditional on observing mk(ii) , and a non-empty set pivotal events where type G1 is a

pivotal sender conditional on observing mk(ii)−1. Moreover, the two sets are equivalent.

Proof. Conditional on observing mk(ii) , an agent of type G0 is a pivotal message sender if

the type profile, n, satisfies n′
G0

+ n′
G1

+ n′
B1

> n
2 > n′

G0
+ n′

B1
. Equivalently, n−i satisfies

(nG0 + 1) + nG1 + nB1 > n
2 > (nG0 + 1) + nB1 . Along with the constraint that they observe

kG0(m
k(ii)) = k(ii) − 1 null messages from other agents of type G0 and B1, n−i is a pivotal event

only if n−i satisfies nG0 + nG1 + nB1 > n
2 − 1, nG0 + nB1 = k(ii) − 1, and nG1 + nB0 = (n − 1)

−(k(ii) − 1).

Likewise, conditional on observing mk(ii)−1, an agent of type G1 is a pivotal message sender

if the type profile, n, satisfies n′
G0

+ n′
G1

+ n′
B1

> n
2 > n′

G0
+ n′

B1
. Equivalently, n−i satisfies

nG0 + (nG1 + 1) + nB1 >
n
2 > nG0 + nB1 . Along with the constraint that they observe kG1(m

k(ii)−1)
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= k(ii) − 1 null messages from other agents of type G0 and B1, n−i is a pivotal event only if n−i

satisfies nG0 + nG1 + nB1 >
n
2 − 1, nG0 + nB1 = k(ii) − 1, and nG1 + nB0 = (n − 1)− (k(ii) − 1).

Since the conditions of a pivotal events are identical, n−i is a pivotal event of type G0 if and only

if n−i is a pivotal event of type G1, which concludes that the two sets are equivalent.

Denote the pivotal events as n
(ii)
−i ∈ {n−i | nG0 + nG1 + nB1 > n

2 − 1, nG0 + nB1 = k(ii) − 1,

nG1 + nB0 = (n − 1) −(k(ii) − 1)}.

Lemma 3.9c. If ϕ1
B0

> ϕ1
G0

> ϕ1
G1

> 1 > ϕ1
B1

and ϕ0
B0

> 1 > ϕ0
G0

> ϕ0
G1

> ϕ0
B1

hold, there always exists

a non-empty set of pivotal events where type G0 is a pivotal sender conditional on observing m1, and a

non-empty set pivotal events where type G1 is a pivotal sender conditional on observing m0. Moreover, the

two sets are equivalent.

Proof. Conditional on observing m1, an agent of type G0 is a pivotal message sender if the type

profile, n, satisfies n′
G0

+ n′
G1

+ n′
B1

> n
2 > n′

B1
. Equivalently, n−i satisfies (nG0 + 1) + nG1 + nB1

> n
2 > nB1 . Along with the constraint that they observe kG0(m

1) = 1 − 1 = 0 null messages

from other agents of type G0 and B1, n−i is a pivotal event only if n−i satisfies nG0 + nG1 + nB1

> n
2 − 1 > nB1 − 1, nG0 + nB1 = 0, and nG1 + nB0 = n − 1, which is equivalent to nG1 > n

2 − 1,

nG0 = nB1 = 0, and nG1 + nB0 = n − 1.

Likewise, conditional on observing m0, an agent of type G1 is a pivotal message sender if the

type profile, n, satisfies n′
G0

+ n′
G1

+ n′
B1

> n
2 > n′

B1
. Equivalently, n−i satisfies nG0 + (nG1 + 1)

+nB1 >
n
2 > nB1 . Along with the constraint that they observe kG1(m

0) = 0 null messages from

other agents of type G0 and B1, n−i is a pivotal event only if n−i satisfies nG0 + nG1 + nB1 >
n
2 − 1

> nB1 − 1, and nG0 + nB1 = 0, and nG1 + nB0 = n − 1, which is equivalent to nG1 > n
2 − 1,

nG0 = nB1 = 0, and nG1 + nB0 = n − 1.

Since the conditions of a pivotal events are identical, n−i is a pivotal event of type G0 if and only

if n−i is a pivotal event of type G1, which concludes that the two sets are equivalent.

Denote the pivotal events as n(v)
−i ∈ {n−i | nG1 > n

2 − 1, nG0 = nB1 = 0, nG1 + nB0 = n − 1}.

Deviation if There Exist Pivotal (i), (ii), (v)
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Lemma 3.10 (Either type of good agents deviates). Suppose that ∄k ∈ {2, 3, ..., n} such that ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

and ϕk−1
B0

> 1 > ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

, or, ϕ1
B0

> ϕ1
G0

> 1 > ϕ1
G1

> ϕ1
B1

and

ϕ0
B0

> 1 > ϕ0
G0

> ϕ0
G1

> ϕ0
B1

.

If at least one of the following statements is true, either type G0 or G1 will deviate.

(i) ∃k(i) ∈ {2, 3, ..., n} such that ϕk(i)
B0

> ϕk(i)
G0

> ϕk(i)
G1

> ϕk(i)
B1

> 1 and ϕk(i)−1

B0
> ϕG0(m

k(i)−1)

> ϕk(i)−1

G1
> 1 > ϕk(i)−1

B1
.

(ii) ∃k(ii) ∈ {1, 2, 3, ..., n−1
2 } such that ϕk(ii)

B0
> ϕk(ii)

G0
> ϕk(ii)

G1
> 1 > ϕk(ii)

B1
and ϕk(ii)−1

B0
> ϕk(ii)−1

G0
> 1

> ϕk(ii)−1

G1
> ϕk(ii)−1

B1
.

(iii) ϕ1
B0

> ϕ1
G0

> ϕ1
G1

> 1 > ϕ1
B1

and ϕ0
B0

> 1 > ϕ0
G0

> ϕ0
G1

> ϕ0
B1

.

Proof. By Lemma 3.9a, 3.9b, and 3.9c, there exists a pivotal event. An agent of type G0 has incentive

to deviate from mi = 0 to mi = 1 if and only if,

∆G0 ≡ pq ∑
{n(i)

−i}

P(n
(i)
−i | 0, 0)− (1 − p)(1 − q) ∑

{n(i)
−i}

P(n
(i)
−i | 1, 0)

− pq ∑
{n(ii)

−i }

P(n
(ii)
−i | 0, 0) + (1 − p)(1 − q) ∑

{n(ii)
−i }

P(n
(ii)
−i | 1, 0)

− pq ∑
{n(v)

−i}

P(n
(v)
−i | 0, 0) + (1 − p)(1 − q) ∑

{n(v)
−i}

P(n
(v)
−i | 1, 0) > 0.

However, an agent of type G1 has incentive to deviate from mi = 0 to mi = 1 if and only if,

∆G1 ≡ −pq ∑
{n(i)

−i}

P(n
(i)
−i | 0, 0) + (1 − p)(1 − q) ∑

{n(i)
−i}

P(n
(i)
−i | 1, 0)

+ pq ∑
{n(ii)

−i }

P(n
(ii)
−i | 0, 0)− (1 − p)(1 − q) ∑

{n(ii)
−i }

P(n
(ii)
−i | 1, 0)

+ pq ∑
{n(v)

−i}

P(n
(v)
−i | 0, 0)− (1 − p)(1 − q) ∑

{n(v)
−i}

P(n
(v)
−i | 1, 0) > 0

Given any ({n(i)
−i}, {n(ii)

−i }), {n
(v)
−i}), it is clear that ∆G0 = −∆G1 from the expression above.

Therefore, if either {n(i)
−i}, {n(ii)

−i }, or {n(v)
−i} is non-empty, either type G0 or G1 will deviate and

thus non-truthful message strategy is not sustainable.
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Conditions for Equilibrium Failure

Several configurations guarantee that non-truthful equilibrium cannot be sustained.

Lemma 3.11. The following lemmas examine key conditions related to failure of non-truthful equilibrium.

Lemma 3.11a. If ϕk
B0

> 1 > ϕk
G0

> ϕk
G1

> ϕk
B1

and 1 > ϕk−1
B0

> ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

hold for some

k ∈ {1, 2, ..., n}, equilibrium fails.

Proof. By Lemma 3.7e, the conjectured voting strategy is not sustainable if 1 > ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

for some k ∈ {1, 2, ..., n}. Hence, equilibrium fails.

Lemma 3.11b. If ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

and ϕk−1
B0

> 1 > ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

hold for some

k ∈ {2, 3, ..., n}, equilibrium fails.

Proof. By Lemma 3.6b, 1 > ϕk−2
B0

> ϕk−2
G0

> ϕk−2
G1

> ϕk−2
B1

. By Lemma 3.7e, the conjectured voting

strategy is not sustainable. Hence, equilibrium fails.

Lemma 3.11c. If ϕk
B0

> ϕk
G0

> ϕk
G1

> 1 > ϕk
B1

and ϕk−1
B0

> 1 > ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

hold for some

k ∈ {1, 2, 3, ..., n}, equilibrium fails.

Proof. Suppose that ϕk
B0

> ϕk
G0

> ϕk
G1

> 1 > ϕk
B1

and ϕk−1
B0

> 1 > ϕk−1
G0

> ϕk−1
G1

> ϕk−1
B1

, where

k ∈ {2, 3, ..., n}. By Lemma 3.6b, We have 1 > ϕk−2
B0

> ϕk−2
G0

> ϕk−2
G1

> ϕk−2
B1

By Lemma 3.7e,

equilibrium fails since sincere voting is not sustainable.

Suppose that ϕ1
B0

> ϕ1
G0

> ϕ1
G1

> 1 > ϕ1
B1

and ϕ0
B0

> 1 > ϕ0
G0

> ϕ0
G1

> ϕ0
B1

By Lemma 3.6a, we have

ϕ2
B0

> ϕ2
G0

> ϕ2
G1

> ϕ2
B1

> 1. By Lemma 3.10, non-truthful message strategy is not sustainable.

Conditions for Equilibrium: Empty Set of Pivotal Events or No Incentive

When equilibrium failure conditions are avoided, sustainability depends on the boundary

posterior relations.

Lemma 3.12. The following lemmas examine key conditions when a pivotal event does not exist, or, no

type has incentive to deviate.

Lemma 3.12a. If ϕ1
B0

> ϕ1
G0

> ϕ1
G1

> ϕ1
B1

> 1 and ϕ0
B0

> ϕ0
G0

> ϕ0
G1

> 1 > ϕ0
B1

hold, there exists

no pivotal event regarding the change in posterior relation from m1 to m0, or, from m0 to m1, for type

xi ∈ {G0, G1, B0}; type B1 have no incentive to deviate.
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Proof. Conditional on observing m1, an agent of type G0 is a pivotal sender if and only if n−i

satisfies nG0 + nG1 + nB1 > n
2 − 1 > nG0 + nG1 , nG0 + nB1 = 0, and nG0 + nB1 = n − 1, which

implies that nG1 >
n
2 − 1 > nG1 . Therefore, there exists no pivotal event for G0.

Conditional on observing m0, an agent of type G1 is a pivotal sender if and only if n−i satisfies

nG0 + nG1 + nB1 >
n
2 − 1 > nG0 + nG1 , nG0 + nB1 = 0, and nG0 + nB1 = n − 1, which implies that

nG1 >
n
2 − 1 > nG1 . Therefore, there exists no pivotal event for G1.

Conditional on observing m0, an agent of type B0 is a pivotal message sender if and only if n−i

satisfies nG0 + nG1 + nB1 >
n
2 > nG0 + nG1 , nG0 + nB1 = 0, and nG0 + nB1 = n − 1, which implies

that nG1 >
n
2 > nG1 . Therefore, there exists no pivotal event for B0.

Conditional on observing m1, an agent of type B1 is a pivotal message sender if and only if

n−i satisfies nG0 + nG1 + (nB1 + 1) > n
2 > nG0 + nG1 and nG0 + nB1 = 0, which implies that nG1

> n
2 − 1 > nG1 − 1. The only pivotal event is where nG0 = nB1 = 0 and nG1 = nB0 = n−1

2 . Hence,

the posterior belief conditional on pivotal events is,

ϕ̂B1 ≡
p(1 − q)(n−1

n−1
2
)α

n−1
2 (1 − α)

n−1
2 q

n−1
2 (1 − q)

n−1
2

(1 − p)q(n−1
n−1

2
)α

n−1
2 (1 − α)

n−1
2 (1 − q)

n−1
2 q

n−1
2

=
p(1 − q)
(1 − p)q

.

Recall that, by Lemma 3.7a, p ≥ q must hold for sustainability of sincere voting if ϕ1
B0

> ϕ1
G0

> ϕ1
G1

> ϕ1
B1

> 1. Therefore, we have ϕ̂B1 > 1. Since type B1 prefer to mismatch the state, they prefer the

decision d = 1. If they deviate from mi = 0 to mi = 1, all type B1 will believe that ω = 1 is more

likely and cast a vote vj = 0. Thus, the final decision is changed from d = 1 to d = 0 in pivotal

events, which results in reduction in their expected payoff. Therefore, they have no incentive to

deviate.

Lemma 3.12b. If ϕk(ii)
B0

> ϕk(ii)
G0

> ϕk(ii)
G1

> 1 > ϕk(ii)
B1

and ϕk(ii)−1
B0

> ϕk(ii)−1
G0

> 1 > ϕk(ii)−1
G1

> ϕk(ii)−1
B1

hold for some k(ii) ∈ { n+1
2 + 1, n+1

2 + 2, ..., n}, there exists no pivotal event regarding the change in

posterior relation from m
(ii)

to mk(ii)−1, or, from mk(ii)−1 to mk(ii) , for all type xi ∈ {G0, G1, B0, B1}.

Proof. Conditional on observing mk(ii) , an agent of type G0 is a pivotal sender if and only

if n−i satisfies (nG0 + 1) + nG1 + nB1 > n
2 > (nG0 + 1) + nB1 , nG0 + nB1 = k(ii) − 1, and

nG1 + nB0 = (n − 1) − (k(ii) − 1), which implies that n
2 > (nG0 + 1) + nB1 = k(ii) ≥ n+1

2 + 1.

Therefore, there exists no pivotal event for G0.

Conditional on observing mk(ii)−1, an agent of type G1 is a pivotal sender if and only if n−i
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satisfies nG0 +(nG1 + 1) +nB1 > n
2 > nG0 +nB1 , nG0 + nB1 = k(ii) − 1, and nG1 +nB0 = (n − 1)

−(k(ii) − 1), which implies that n
2 > nG0 + nB1 = k(ii) − 1 ≥ n+1

2 . Therefore, there exists no pivotal

event for G1.

Conditional on observing mk(ii)−1, an agent of type B0 is a pivotal message sender if and only

if n−i satisfies nG0 + nG1 + nB1 >
n
2 > nG0 + nB1 , nG0 + nB1 = k(ii) − 1, and nG0 + nB1 = (n − 1)

−(k(ii) − 1), which implies that n
2 > nG0 + nB1 = k(ii) − 1 ≥ n+1

2 . Therefore, there exists no pivotal

event for B0.

Conditional on observing mk(ii) , an agent of type B1 is a pivotal message sender if and only if n−i

satisfies nG0 + nG1 +(nB1 + 1)> n
2 > nG0 +(nB1+1), nG0 + nB1 = k(ii)− 1, and nG0 + nB1 = (n− 1)

−(k(ii) − 1), which implies that n
2 > nG0 + (nB1+1) = k(ii) ≥ n+1

2 + 1. Therefore, there exists no

pivotal event for B1.

Lemma 3.12c. If ϕ1
B0

> ϕ1
G0

> 1 > ϕ1
G1

> ϕ1
B1

and ϕ0
B0

> 1 > ϕ0
G0

> ϕ0
G1

> ϕ0
B1

hold, there exists no

pivotal event regarding the change in posterior relation from m1 to m0, or, from m0 to m1.

Proof. Recall that n−i is a pivotal event regarding the change in posterior relation from m1 to

m0, or, from m0 to m1 only if nG0 + nB1 > n
2 . Nevertheless, according to non-truthful message

strategy, here we have nG0 + nB1 ∈ {1, 0}, which implies nG0 + nB1 < n
2 . Hence, there exists no

pivotal event.

Complete Characterisation via Boundary Analysis

The sustainability analysis focuses on extreme message profiles mn and m0 as these capture the

boundary conditions determining equilibrium existence.

Lemma 3.13. The following lemmas examine implication of posterior relation given a all-one message

profile.

Lemma 3.13a. If ϕ0
B0

> ϕ0
G0

> ϕ0
G1

> ϕ0
B1

> 1 holds, non-truthful equilibrium exists if and only if

p ≥ q. In addition, ϕn
B0

> ϕn
G0

> ϕn
G1

> ϕn
B1

> 1.

Proof. By Lemma 3.5, ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1 for all k ∈ {0, 1, 2, ..., n}, which implies that

there exists no change in posterior relation. Therefore, no type has incentive to deviate from

non-truthful message strategy. By Lemma 3.7a, sustainability of sincere voting holds if and only if

p ≥ q.
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Lemma 3.13b. Suppose that ϕ0
B0

> ϕ0
G0

> ϕ0
G1

> 1 > ϕ0
B1

holds. Non-truthful equilibrium exists if and

only if p ≥ q. In addition, ϕn
B0

> ϕn
G0

> ϕn
G1

> ϕn
B1

> 1.

Proof. By Lemma 3.6a, we have ϕ1
B0

> ϕ1
G0

> ϕ1
G1

> ϕ1
B1

> 1. By Lemma 3.5, we have

ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1 for all k ∈ {1, 2, ..., n}. By Lemma 3.12a, there exists no incentive to

deviate from non-truthful message strategy regarding the change in posterior relation from m1 to

m0, or, from m0 to m1. By Lemma 3.7a, sustainability of sincere voting holds if and only if p ≥ q.

By Lemma 3.7b, no type has incentive to deviate from sincere voting conditional on observing

m0.

Lemma 3.13c. If ϕ0
B0

> ϕ0
G0

> 1 > ϕ0
G1

> ϕ0
B1

holds, non-truthful equilibrium exists if and only if ϕn
B0

> ϕn
G0

> 1 > ϕn
G1

> ϕn
B1

or ϕn
B0

> ϕn
G0

> ϕn
G1

> 1 > ϕn
B1

.

Proof. By Lemma 3.5, we cannot have 1 > ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

or ϕk
B0

> 1 > ϕk
G0

> ϕk
G1

> ϕk
B1

for all k ∈ {0, 1, 2, ..., n}.

If ϕn
B0

> ϕn
G0

> 1 > ϕn
G1

> ϕn
B1

, by Lemma 3.5, we have ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

for all

k ∈ {0, 1, 2, ..., n}, which implies that there exists no change in posterior relation. Therefore, no

type has incentive to deviate from non-truthful message strategy. By Lemma 3.7c, sustainability of

sincere voting always holds.

If ϕn
B0

> ϕn
G0

> ϕn
G1

> 1 > ϕn
B1

, by Lemma 3.5, we cannot have ϕn−1
B0

> ϕn−1
G0

> ϕn−1
G1

> ϕn−1
B1

> 1;

by Lemma 3.6a, we cannot have 1 > ϕn−1
B0

> ϕn−1
G0

> ϕn−1
G1

> ϕn−1
B1

or ϕn−1
B0

> ϕn−1
G0

> ϕn−1
G1

> 1

> ϕn−1
B1

. Hence, we have ϕn−1
B0

> ϕn−1
G0

> 1 > ϕn−1
G1

> ϕn−1
B1

or ϕn−1
B0

> 1 > ϕn−1
G0

> ϕn−1
G1

> ϕn−1
B1

.

Nevertheless, if ϕn−1
B0

> 1 > ϕn−1
G0

> ϕn−1
G1

> ϕn−1
B1

, by Lemma 3.6b, we have 1 > ϕn−2
B0

> ϕn−2
G0

> ϕn−2
G1

> ϕn−2
B1

, which implies that 1 > ϕ0
B0

> ϕ0
G0

> ϕ0
G1

> ϕ0
B1

by Lemma 3.5. Contradiction.

Hence, we have ϕn−1
B0

> ϕn−1
G0

> 1 > ϕn−1
G1

> ϕn−1
B1

, and thus, by Lemma 3.5, ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

for all k ∈ {0, 1, 2, ..., n − 1}. By Lemma 3.7b, no type has incentive to deviate from sincere

voting conditional on observing mn. By Lemma 3.7c, sustainability of sincere voting always

holds.

Lemma 3.13d. If ϕ0
B0

> 1 > ϕ0
G0

> ϕ0
G1

> ϕ0
B1

holds, non-truthful equilibrium exists if and only if ϕn
B0

> ϕn
G0

> 1 > ϕn
G1

> ϕn
B1

or ϕn
B0

> ϕn
G0

> ϕn
G1

> 1 > ϕn
B1

.
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Proof. By Lemma 3.5, we cannot have 1 > ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

for all k ∈ {0, 1, 2, ..., n}. By

Lemma 3.6b, we cannot have ϕ1
B0

> ϕ1
G0

> ϕ1
G1

> ϕ1
B1

> 1 and ϕ1
B0

> 1 > ϕ1
G0

> ϕ1
G1

> ϕ1
B1

. Hence,

we have ϕ1
B0

> ϕ1
G0

> ϕ1
G1

> 1 > ϕ1
B1

or ϕ1
B0

> ϕ1
G0

> 1 > ϕ1
G1

> ϕ1
B1

.

If ϕ1
B0

> ϕ1
G0

> ϕ1
G1

> 1 > ϕ1
B1

, by Lemma 3.6a, we have ϕB0(m
2) > ϕG0(m

2) > ϕG1(m
2)

> ϕB1(m
2) > 1. By Lemma 3.10, either type G0 or G1 has incentive to deviate from non-truthful

message strategy, which implies that non-truthful equilibrium does not exist.

If ϕ1
B0

> ϕ1
G0

> 1 > ϕ1
G1

> ϕ1
B1

, by Lemma 3.12c, there exists no incentive to deviate from

non-truthful message strategy regarding the change in posterior relation from m1 to m0, or, from

m0 to m1. Hence, non-truthful message strategy is sustainable only if ϕ1
B0

> ϕ1
G0

> 1 > ϕ1
G1

> ϕ1
B1

.

By Lemma 3.5, we have ϕn
B0

> ϕn
G0

> 1 > ϕn
G1

> ϕn
B1

, ϕn
B0

> ϕn
G0

> ϕn
G1

> 1 > ϕn
B1

, or ϕn
B0

> ϕn
G0

> ϕn
G1

> ϕn
B1

> 1.

If ϕn
B0

> ϕn
G0

> 1 > ϕn
G1

> ϕn
B1

, by Lemma 3.5, we have ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

for all

k ∈ {1, 2, ..., n}. Therefore, no type has incentive to deviate from non-truthful message strategy.

Equilibrium exists.

If ϕn
B0

> ϕn
G0

> ϕn
G1

> 1 > ϕn
B1

, by Lemma 3.6a, we cannot have ϕn−1
B0

> ϕn−1
G0

> ϕn−1
G1

> 1 > ϕn−1
B1

.

Hence, we have ϕn−1
B0

> ϕn−1
G0

> 1 > ϕn−1
G1

> ϕn−1
B1

; otherwise, Lemma 3.5 is violated. By Lemma

3.12b, there exists no incentive to deviate from non-truthful message strategy regarding the change

in posterior relation from mn to mn−1, or, from mn−1 to mn. By Lemma 3.5, we have ϕk
B0

> ϕk
G0

> 1 > ϕk
G1

> ϕk
B1

for all k ∈ {1, 2, ..., n − 1}. Therefore, no type has incentive to deviate from

non-truthful message strategy. By Lemma 3.7b, no type has incentive to deviate from sincere

voting conditional on observing mn. By Lemma 3.7c, no type has incentive to deviate from sincere

voting conditional on observing mk for all k ∈ {1, 2, ..., n − 1}. By Lemma 3.7d, no type has

incentive to deviate from sincere voting conditional on observing m0. Equilibrium exists.

If ϕn
B0

> ϕn
G0

> ϕn
G1

> ϕn
B1

> 1, by Lemma 3.5 and 3.6c, ∃k′ ∈ {2, 3, ..., n − 1} such that ϕB0(m
k′)

> ϕk′
G0

> ϕk′
G1

> 1 > ϕk′
B1

. By Lemma 3.10, either type G0 or G1 has incentive to deviate from

non-truthful message strategy, which implies that non-truthful equilibrium does not exist.

Lemma 3.13e. If 1 > ϕ0
B0

> ϕ0
G0

> ϕ0
G1

> ϕ0
B1

holds, non-truthful equilibrium does not exist.

Proof. By Lemma 3.7e, sincere voting is not sustainable. Thus, non-truthful equilibrium does not

exist.

179



CHAPTER 3: DELIBERATION AND VOTING WITH OPPOSED PREFERENCES 180

Key Result: The analysis establishes that equilibrium existence depends entirely on the posterior

relations induced by the all-zero message profile mn and all-one message profile m0, with the

additional requirement that p ≥ q when agents form sufficiently high posterior beliefs.

Lemma 3.14. A non-truthful equilibrium exists if and only if the posterior relation induced by mn and

m0 satisfies one of the following conditions, and, p ≥ q if ϕk
B0

> ϕk
G0

> ϕk
G1

> ϕk
B1

> 1 holds for some

k ∈ {0, 1, .., n}.

(i) ϕn
B0

> ϕn
G0

> ϕn
G1

> ϕn
B1

> 1, and ϕ0
B0

> ϕ0
G0

> ϕ0
G1

> ϕ0
B1

> 1.

(ii) ϕn
B0

> ϕn
G0

> ϕn
G1

> ϕn
B1

> 1, and ϕ0
B0

> ϕ0
G0

> ϕ0
G1

> 1 > ϕ0
B1

.

(iii) ϕn
B0

> ϕn
G0

> ϕn
G1

> 1 > ϕn
B1

, and ϕ0
B0

> ϕ0
G0

> 1 > ϕ0
G1

> ϕ0
B1

.

(iv) ϕn
B0

> ϕn
G0

> ϕn
G1

> 1 > ϕn
B1

, and ϕ0
B0

> 1 > ϕ0
G0

> ϕ0
G1

> ϕ0
B1

.

(v) ϕn
B0

> ϕn
G0

> 1 > ϕn
G1

> ϕn
B1

, and ϕ0
B0

> ϕ0
G0

> 1 > ϕ0
G1

> ϕ0
B1

.

(vi) ϕn
B0

> ϕn
G0

> 1 > ϕn
G1

> ϕn
B1

, and ϕ0
B0

> 1 > ϕ0
G0

> ϕ0
G1

> ϕ0
B1

.

Proof. By Lemma 3.13a to 3.13e, we have Lemma 3.14.

This complete technical analysis establishes the foundation for Proposition 3.5 in the main text,

demonstrating that non-truthful equilibrium exists when signals are either highly informative

(making agents rely primarily on private information) or when priors dominate (making

message content largely irrelevant), but fails for intermediate parameter values where strategic

manipulation becomes profitable whilst messages retain significant influence on decision-making.

Proof of Proposition 3.5. By Lemma 3.7a and 3.14, the sufficient and necessary condition for a

non-truthful equilibrium is:

(i) if ϕn
B1

> 1, ϕ0
G1

> 1 and p ≥ q;

(ii) if ϕn
B1

< 1, ϕ0
B0

> 1.

which implies:

(i) If p
1−p

1−q
q ( q̃

1−q̃ )
n−1 > 1, p

1−p
1−q

q ( q̃
1−q̃ )

1−n > 1 and p ≥ q.

(ii) If p
1−p

1−q
q ( q̃

1−q̃ )
n−1 < 1, p

1−p
q

1−q (
q̃

1−q̃ )
1−n > 1.
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3.A.4 Efficiency

Proposition 3.7 (Efficiency: Truthfully Revealing Equilibrium). Given (α, p, q, n), the efficiency

under a truthfully revealing equilibrium is:

ψTRE(α, p, q, n) = p

k∗−1

∑
k=0

 k

∑
i=0

ξ(i, k)χ(i, k, 0, i) +

n−1
2

∑
i=k+1

ξ(i, k)χ(i, k, 0, k)


+

n−1
2

∑
k=k∗

 n−k

∑
i= n+1

2

ξ(i, k)χ(i, k, 0, k) +
n

∑
i=n−k+1

ξ(i, k)χ(i, k, k − (n − i), k)


+

n

∑
k= n+1

2

 k

∑
i= n+1

2

ξ(i, k)χ(i, k, k − (n − i), i) +
n

∑
i=k+1

ξ(i, k)χ(i, k, k − (n − i), k)




+ (1 − p)

k∗−1

∑
k=0

 n−k

∑
i= n+1

2

ξ(i, n − k)χ(i, k, 0, k) +
n

∑
i=n−k+1

ξ(i, n − k)χ(i, k, k − (n − i), k)


+

n−1
2

∑
k=k∗

 k

∑
i=0

ξ(i, n − k)χ(i, k, 0, i) +

n−1
2

∑
i=k+1

ξ(i, k)χ(i, k, 0, k)


+

n

∑
k= n+1

2

n−k−1

∑
i=0

ξ(i, n − k)χ(i, k, 0, i) +

n−1
2

∑
i=n−k+1

ξ(i, n − k)χ(i, k, k − (n − i), i)


 ,

where ξ(i, k) ≡ αi(1 − α)n−iqk(1 − q)n−k and χ(i, k, jo, j f ) ≡ (n
i )∑

j f
j=jo (

i
j)(

n−i
k−j). Moreover, given any

(p, q, n), the efficiency is 1
2 if α = 1

2 ,

ψTRE(
1
2

, p, q, n) =
1
2

.

Proof of Proposition 3.6. Under a truthfully revealing equilibrium, good agents cast vi = 0 and bad

agents cast vi = 1 if and only if k ≥ k∗. If k < k∗, good agents cast vi = 1 and bad agents cast

vi = 0. Moreover, given truthfully deliberating, we have n′
G0

+ n′
B0

= k. Hence, the efficiency of a

truthfully revealing equilibrium can be expressed as,

ψTRE(n) = P(ω = 0, n′
G0

+ n′
G1

>
n
2

, n′
G0

+ n′
B0

≥ k∗) + P(ω = 0, n′
G0

+ n′
G1

<
n
2

, n′
G0

+ n′
B0

< k∗)

+ P(ω = 1, n′
G0

+ n′
G1

>
n
2

, n′
G0

+ n′
B0

< k∗) + P(ω = 1, n′
G0

+ n′
G1

<
n
2

, n′
G0

+ n′
B0

≥ k∗).

which implies the following proposition regarding efficiency under a truthfully revealing

equilibrium.
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Note that, conditional on ω = 0, a type profile n = (a, b, c, d) induces d = 0 if and only

if n = (c, d, a, b) induces d = 1. In addition, note that the probability of the type profile

conditional on the state is, P((a, b, c, d) | ω = 0) = αa+b(1 − α)c+dqa+c(1 − q)b+d( n
a+b)(

a+b
a )(c+d

c ).

Given that α = 1
2 and q = 1

2 , P((a, b, c, d) | ω = 0) = ( 1
2 )

n( 1
2 )

n( n
a+b)(

a+b
a )(c+d

c ). Likewise,

P((c, d, a, b) | ω = 0) = ( 1
2 )

n( 1
2 )

n( n
c+d)(

c+d
c )(a+b

c ). Since ( n
a+b) = ( n

c+d), P((a, b, c, d) | ω = 0)

= P((c, d, a, b) | ω = 0). Hence, if we sum over the conditional probability of d = 0 and

d = 1, we have, ∑ P((a, b, c, d) | ω = 0) = ∑ P((c, d, a, b) | ω = 0) =⇒ P(d = 0 | ω = 0)

= P(d = 1 | ω = 0) =⇒ P(d = 0 | ω = 0) = 1
2 . Likewise, P(d = 0 | ω = 1) = P(d = 1 | ω = 1)

= 1
2 . Therefore, P(d = ω) = P(ω = 0)P(d = 0 | ω = 0) + P(ω = 1)P(d = 1 | ω = 1)

= p · 1
2 + (1 − p) · 1

2 = 1
2 .

Proof of Proposition 3.7. In Section 3.4.2, it is shown that, under a babbling equilibrium, good

agents (i.e., types G0 and G1) cast vi = 0, and bad agents (i.e., types B0 and B1) cast vi = 1 if p ≥ q,

regardless of their private signals. When p < q, each agent believes that the state indicated by

their own signal is more likely to be true. In this case, types G0 and B1 cast vi = 0, whilst types G1

and B0 cast vi = 1. Hence, the efficiency of a babbling equilibrium can be expressed as follows.

ψBE(n) =

{
P(ω = 0, n′

G0
+ n′

G1
> n

2 ) + P(ω = 1, n′
G0

+ n′
G1

< n
2 ), if p ≥ q;

P(ω = 0, n′
G0

+ n′
B1

> n
2 ) + P(ω = 1, n′

G0
+ n′

B1
< n

2 ), if p < q,

which suggests the analytical solution of efficiency under a babbling equilibrium as in the

proposition.

Suppose that p ≥ q. Type G0 and G1 cast vi = 0 whilst type G0 and G1 cast vi = 1. Hence, the

efficiency under a babbling equilibrium is:

ψ(α, p, q, n)BE = P(ω = 0)P(n′
G0

+ n′
G1

>
n
2
| ω = 0) + P(ω = 1)P(n′

G0
+ n′

G1
<

n
2
| ω = 1)

= p
n

∑
n′

G0
+n′

G1
= n+1

2

(
n

n′
G0

+ n′
G1

)
α

n′
G0

+n′
G1 (1 − α)

n−(n′
G0

+n′
G1

)

+ (1 − p)

n−1
2

∑
n′

G0
+n′

G1
=0

(
n

n′
G0

+ n′
G1

)
α

n′
G0

+n′
G1 (1 − α)

n−(n′
G0

+n′
G1

)

= p
n

∑
i=0

(
n
i

)
αi(1 − α)n−i + (1 − 2p)

n−1
2

∑
i=0

(
n
i

)
αi(1 − α)n−i

182



CHAPTER 3: DELIBERATION AND VOTING WITH OPPOSED PREFERENCES 183

= p(α + (1 − α))n − (2p − 1)

n−1
2

∑
i=0

(
n
i

)
αi(1 − α)n−i

= p − (2p − 1)

n−1
2

∑
i=0

(
n
i

)
αi(1 − α)n−i.

Suppose that p < q. Type G0 and B1 cast vi = 0 whilst type G1 and B0 cast vi = 1. Hence, the

efficiency under a babbling equilibrium is:

ψ(α, p, q, n)BE =P(ω = 0)P(n′
G0

+ n′
B1

>
n
2
| ω = 0) + P(ω = 1)P(n′

G0
+ n′

B1
<

n
2
| ω = 1)

=p
n

∑
n′

G0
+n′

B1
= n+1

2

(
n

n′
G0

+ n′
B1

)[ n′
G0
+n′

B1

∑
n′

G0
=0

(
n′

G0
+ n′

B1

n′
G0

)(
αq

)n′
G0
(
(1 − α)(1 − q)

)(n′
G0
+n′

B1
)−n′

G0

n−(n′
G0
+n′

B1
)

∑
n′

G1
=0

(
n − (n′

G0
+ n′

B1
)

n′
G1

)(
α(1 − q)

)n′
G1
(
(1 − α)q

)(n−(n′
G0
+n′

B1
)
)
−n′

G1

]

+(1 − p)

n−1
2

∑
n′

G0
+n′

B1
=0

(
n

n′
G0

+ n′
B1

)[ n′
G0
+n′

B1

∑
n′

G0
=0

(
n′

G0
+ n′

B1

n′
G0

)(
α(1 − q)

)n′
G0
(
(1 − α)q

)(n′
G0
+n′

B1
)−n′

G0

n−(n′
G0
+n′

B1
)

∑
n′

G1
=0

(
n − (n′

G0
+ n′

B1
)

n′
G1

)(
αq

)n′
G1
(
(1 − α)(1 − q)

)(n−(n′
G0
+n′

B1
)
)
−n′

G1

]

=p
n

∑
i= n+1

2

(
n
i

)[
i

∑
j=0

(
i
j

)(
αq

)j(
(1 − α)(1 − q)

)i−j n−i

∑
k=0

(
n − i

k

)(
α(1 − q)

)k(
(1 − α)q

)n−i−k
]

+(1 − p)

n−1
2

∑
i=0

(
n
i

)[
i

∑
j=0

(
i
j

)(
α(1 − q)

)j(
(1 − α)q

)i−j n−i

∑
k=0

(
n − i

k

)(
αq

)k(
(1 − α)(1 − q)

)n−i−k
]

=p
n

∑
i= n+1

2

(
n
i

)[(
αq + (1 − α)(1 − q)

)i(
α(1 − q) + (1 − α)q

)n−i
]

+(1 − p)

n−1
2

∑
i=0

(
n
i

)[(
α(1 − q) + (1 − α)q

)i(
αq + (1 − α)(1 − q)

)n−i
]

=p
n

∑
i= n+1

2

(
n
i

)[(
q̃
)i(

1 − q̃
)n−i

]
+ (1 − p)

n−1
2

∑
i=0

(
n
i

)[(
1 − q̃

)i(
q̃
)n−i

]

=
n

∑
i= n+1

2

(
n
i

)[(
q̃
)i(

1 − q̃
)n−i

]
.

Proof of Proposition 3.8. Denote the decision under a truthfully revealing equilibrium and a

babbling equilibrium as dTRE and dBE, respectively. Note that, dTRE = 0 and dBE = 1 is decided

with a type profile n = (a, b, c, d) if and only if dTRE = 1 and dBE = 0 is decided with (c, d, a, b).
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The sum of the impact of the two type profile on the difference in efficiency is:

∆(a,b,c,d) + ∆(c,d,a,b) =

(
n
a

)(
n − a

b

)(
n − a − b

c

){
p
[
αa+b(1 − α)c+dqa+c(1 − q)b+d

]
− (1 − p)

[
αa+b(1 − α)c+dqb+d(1 − q)a+c

]}
+

(
n
c

)(
n − c

b

)(
n − c − b

a

){
− p

[
αc+d(1 − α)a+bqc+a(1 − q)d+b

]
+ (1 − p)

[
αc+d(1 − α)a+bqd+b(1 − q)c+a

]}
=

(
n
a

)(
n − a

b

)(
n − a − b

c

)[
αa+b(1 − α)c+d − αc+d(1 − α)a+b

]
[

pqa+c(1 − q)b+d − (1 − p)qb+d(1 − q)a+c
]
.

Suppose that p ≥ q. Then, we have, n′
G0

+ n′
G1

< n
2 =⇒ a + b < n

2 ; n′
G0

+ n′
B0

< k∗

=⇒ pqk(1 − q)n−k < (1 − p)(1 − q)kqn−k =⇒ pqa+c(1 − q)b+d < (1 − p)(1 − q)b+dqa+c. Hence,

∆(a,b,c,d) + ∆(c,d,a,b) > 0. Suppose that p < q. Then, we have either:

(i) n′
G0

+ n′
G1

> n
2 =⇒ a + b > n

2 ; n′
G0

+ n′
B0

≥ k∗ =⇒ pqk(1 − q)n−k > (1 − p)(1 − q)kqn−k

=⇒ pqa+c(1 − q)b+d > (1 − p)(1 − q)b+dqa+c. Hence, ∆(a,b,c,d) + ∆(c,d,a,b) > 0, or,

(ii) n′
G0

+ n′
G1

< n
2 =⇒ a + b < n

2 ; n′
G0

+ n′
B0

< k∗ =⇒ pqk(1 − q)n−k < (1 − p)(1 − q)kqn−k

=⇒ pqa+c(1 − q)b+d < (1 − p)(1 − q)b+dqa+c. Hence, ∆(a,b,c,d) + ∆(c,d,a,b) > 0.

Thus, the difference in efficiency is the summation of ∆(a,b,c,d) + ∆(c,d,a,b) over the subset of type

profiles, denoted as N̂ ⊂ N4, such that any type profile in the subsets induces dTRE and dBE.

∑
{n=(a,b,c,d)∈N̂ }

∆(a,b,c,d) + ∆(c,d,a,b) > 0.

Lemma 3.15.
n

∑
i= n+1

2

(
n
i

)
qi (1 − q)n−i > q, ∀q ∈

(
1
2

, 1
]

, n odd.

Proof. Note that we have:
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(n
i )q

i(1 − q)n−i

( n
n−i)q

n−i(1 − q)i =

(
q

1 − q

)2i−n
>

q
1 − q

, ∀i ≥ n + 1
2

=⇒
∑n

i= n+1
2

(n
i )q

i (1 − q)n−i

∑
n−1

2
i=0 (n

i )q
i (1 − q)n−i

>
q

1 − q
.

According to Binomial Theorem, we have:

n

∑
i=0

(
n
i

)
qi (1 − q)n−i =

n

∑
i= n+1

2

(
n
i

)
qi (1 − q)n−i +

n−1
2

∑
i=0

(
n
i

)
qi (1 − q)n−i = 1

=⇒
n

∑
i= n+1

2

(
n
i

)
qi (1 − q)n−i > q.
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Appendix 3.B: Supplementary Figures

Figure 3.11: Summary of existence and efficiency: p = 0.7; n = 5

Figure 3.12: Summary of existence and efficiency: p = 0.7; n = 7

186



CHAPTER 3: DELIBERATION AND VOTING WITH OPPOSED PREFERENCES 187

Figure 3.13: Summary of existence and efficiency: p = 0.9; n = 5

Figure 3.14: Summary of existence and efficiency: p = 0.9; n = 7
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