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Abstract

Throughout history, environmental dynamics and risks have both necessitated and inspired

innovation. In this thesis I explore the interaction between the environment and innovation in

four standalone chapters. The first two chapters examine environmental dynamics in the context

of climate change adaptation, while the latter two chapters explore how environmental factors

can influence inventor productivity. Specifically, in Chapter 1, I examine how flooding affects

the development of flood adaptation innovation. Using county-level data from the United States,

I focus particularly on the local effect of flooding. Chapter 2 presents a departure from the

empirical research methods and explores how climate uncertainty affects the decision-making of

inventors for climate adaptation innovation using a real option valuation approach. In Chapters 3

and 4, I focus on exploring environmental factors as possible negative stimulants for innovation.

Tracking inventors’ patenting output over time, Chapter 3 empirically examines the influence

of temperature variations on inventor productivity, while Chapter 4 explores the impact of air

pollution. The findings of this thesis suggest that various environmental factors, particularly

amid the growing threat of climate change, continue to shape the development of innovations

today.
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Introduction

Nature is the essence of human existence. It provides the air we breathe, the food we eat, and

other resources necessary to sustain life on Earth. However, as much as nature is vital to humanity,

it also gives rise to threats including dangerous wildlife, extreme weather events and disease. For

millennia, innovation has enabled us to overcome these risks and advance as a species. From

the control of fire to ward off animal predators to the development of housing for shelter and

vaccines to combat disease, innovation has continuously shaped our development. At the same

time, technological progress has also inflicted damage on the environment, contributing to issues

such as air pollution, ozone depletion and most significantly anthropogenic climate change.

Yet, just as innovation has contributed to these issues, it has also been key in addressing them.

Technological advancements cut car emissions by over 95% in the latter half of the 20th Century

(Mondt 2000), while innovations following the Montreal Protocol reduced chlorofluorocarbons

by 80% (Dugoua 2023). Recently, a surge in innovation for clean energy, electric transportation

and emerging technologies like carbon capture and storage among others have significantly

helped curb the growth of greenhouse gas emissions. Aside from environmental risks shaping

the need for innovation, natural processes frequently serve as inspiration. For example, the

invention of Velcro drew inspiration from burrs sticking to animal fur while birds’ flight patterns

influenced the design of airplane wings. Though the pursuit of knowledge is intrinsic to human

nature, history suggests that the environment has and continues to have a significant influence on

the dynamics of innovation.

This thesis lies at the intersection of innovation and the environment. I explore how environmental
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Introduction

dynamics influence innovation, acting both as a driver and impediment. Specifically, I focus

on the development of innovation and inventors as decision-making agents. In the first two

chapters I examine innovation dynamics in the context of climate adaptation, while in the latter

two chapters, I analyse the effect of environmental factors on inventor productivity.

I begin my study in Chapter 1, by examining to what extent local experiences of flooding

influence the development of flood adaptation innovation. Flooding is the most frequent mass

natural disaster today and climate change is expected to further amplify the magnitude and

frequency of flood events over time. Using a novel dataset of flood adaptation patents from the

United States between 2007 and 2020, I find that one additional flood episode in a county leads

to an increase of 9.4% in flood-related patents filed by resident inventors the following year. I

find that geographic proximity to the shock is important and provide some tentative evidence that

flood insurance may moderate the effect. The results indicate that, to a certain degree, progress in

flood-related innovation is driven by inventors’ local experiences of flooding and points towards

an incidental development of adaptation innovation rather than a coordinated effort.

In Chapter 2, I present a theoretical model that examines the role of climate uncertainty in the

development of climate adaptation innovation. Specifically, I employ a real option valuation

approach to analyse the effect of uncertainty on the decision-making of inventors. I find that

the uncertainty surrounding climate outcomes and the possibility of rare and extreme climate

disasters raise the investment threshold for inventors. The prospects of future breakthroughs in

climate science further complicate the investment decisions, and, in some cases, contribute to

additional delays. The analysis suggests that the highly stochastic and dynamic nature of the

market for climate adaptation presents a unique environment for inventors and may, to some

extent, explain the slow growth we have observed so far. Inventors’ subjective expectations play

a crucial role, and government policy requires careful consideration as the mere anticipation of

future government action may, in some cases, further delay investment.

In Chapter 3, co-authored with colleagues, we analyse the effect of temperature on inventor

productivity. Increasing evidence shows detrimental impacts of higher temperatures on the
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labour market. However, temperature fluctuations are likely to have varying impacts across

the workforce due to differences in work environments, tasks, and adaptive capacity. In this

paper, we explore the impacts of temperatures on inventor productivity as a group of high-skilled

workers who not only contribute significantly to a country’s wealth but also play a critical role in

economic growth. Using inventor-level data from the United States from 2000 to 2020, we find

that higher temperatures have a negative and significant impact on patenting output. Specifically,

we find that one additional day above 20◦C in the past three years, reduces the number of

patent applications filed by the inventor by 0.12% today. Temperatures seem to impact labour

productivity not only in the short-term but also in the longer-term cumulative output processes

that define innovation. Our results further suggest that the results are driven by California and

wide-spread air conditioning mitigates the effect, albeit not eliminating it.

Finally, in Chapter 4, co-authored with colleagues, we focus on the role of air pollution on

inventor productivity. This chapter builds on a well-established literature documenting a wide

range of health and productivity outcomes linked to air pollution. For identification, we employ

an inventor fixed effects model and an instrumental variable (IV) approach that leverages the

2005 PM2.5 National Ambient Air Quality Standards (NAAQS) nonattainment designations as a

plausible exogenous shock to pollution levels. Using both fixed-effects and IV approaches, we

find that air pollution significantly hinders innovation. Specifically, our fixed-effects estimates

indicate that one standard deviation increase in PM2.5 over the preceding three years reduces

inventor productivity by 4.1%, while our IV estimates suggest that 1µg/m3 increase in PM2.5

decreases patent output by 9.8%. Given the important role of inventors for economic growth, this

highlights an additional cost of air pollution that has yet to be accounted for in policy discussions.

While each chapter details its specific contributions, it is worth highlighting the two overarching

contributions of this thesis here. The first primary contribution is to the literature on innovation

for climate adaptation. While ever-increasing evidence of climate impacts has fuelled a surge

in research on climate mitigation innovation, studies on climate adaptation innovation remain

strikingly sparse. This is despite the opportunities that technological advancements offer to
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navigate the many challenges of adaptation, including social and economic ties, pre-existing

built environments, and high costs, and the limited growth of these innovations that has been

observed over time.

The second overarching contribution is to the literature on environmental influences on labour

outcomes. Previous studies have largely overlooked inventors, assuming that their higher

propensity to work indoors shields them from environmental factors. However, this assumption

has not been tested, and our results indicate that this is not the case. Given that many individuals in

high-income countries work indoors in high-skilled professions with long-term output processes,

our findings highlight the vulnerability of workers whose profiles align closely with a significant

part of the modern workforce.
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Chapter 1: Local Flood Exposure and Flood Adaptation Innovation

1.1 Introduction

While considerable strides have been made in addressing climate change, there is a consensus

among scientists that human-induced climate change is already underway. Global surface

temperatures from 2011 to 2020 were 1.09 degrees Celsius above pre-industrial levels (IPCC

2023a) and since 1993, global sea levels have increased by around 10 centimetres, averaging 3.4

millimetres per year (NOAA National Centers for Environmental Information 2022). In fact,

some researchers have estimated that even if we stopped emitting carbon dioxide today it would

take around 1,000 years to fully reverse the impact on climate change due to the longevity of

carbon dioxide concentration in the atmosphere (Solomon et al. 2009).

Increased risk of flooding is one of the many consequences associated with climate change,

directly through sea level rise and indirectly through water cycle disruptions. Increased global

temperatures lead to a greater moisture capacity in the atmosphere, which in turn causes more

frequent and intense storms and heavy rainfall, along with changes in the precipitation patterns

(IPCC 2023a). Not only is the risk of flooding estimated to increase over time (IPCC 2023b), but

it will build on what is already a global threat. Between 1990 and 2023, floods accounted for

22% of mass disasters, representing a higher proportion than any other type of natural disaster

(EM-DAT 2023). 23% of the world population is already directly exposed to 1-in-100 year floods

(Rentschler, Salhab, and Jafino 2022), and the financial costs are significant. In 2021 alone, flood

disasters caused an estimated $82 bn in damages which is a conservative estimate since smaller

flood events were excluded from these calculations (Bevere and Remondi 2022).

Effective adaptation to flooding is therefore both a necessity today and continues to grow in

importance. However, the availability of adaptive strategies for flooding and other climate impacts

is increasingly limited by pre-existing built environments, social constraints, economics ties and

financial costs. Technological innovations offer an opportunity to address these challenges and,

according to induced innovation theory, should see increased development as climate change

impacts become more salient over time. However, in stark contrast to mitigation, the share
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of patents dedicated to climate adaptation technologies, including flooding, has not seen any

significant increase from 1995 to 2015 (Dechezlepretre et al. 2020).

In this paper I examine, the role of weathers shocks in the development of climate adaptation

innovation, focusing on flooding as an increasingly prominent and damaging threat. Specifically,

I analyse to what extent local flooding influence the decision-making of resident inventors with

respect to flood-related patenting. An innovation response may point to the importance of risk

updating and/ or experience-based learning of inventors in climate adaptation innovation and

may help partly account for the slow progress we have observed so far.

Empirically, I estimate the effect of flooding on flood adaptation innovation using a county-level

fixed-effects model with data from the United States from 2007 to 2020. To overcome key data

challenges, I develop a novel dataset of flood-related innovations that mitigates biases from

automatic patent tagging systems. Furthermore, rather than relying on the commonly used

EM-DAT database or remote sensing data, I use NOAA’s Storm Events Database to capture

smaller-scale flood events more comprehensively. The sub-national approach allows me to focus

on the locality of flooding while omitting biases from differential patenting systems.

The results suggest that one additional flood episode in a county leads to a 9.4% increase in

flood-related patent applications by resident inventors the following year. A large proportion of

patents are applied for by individuals who only file for a flood-related patent once and receive no

government funding. Geographic proximity to the shock seems important with flood episodes in

neighbouring counties having a smaller yet positive effect on inventor activity, while episodes in

the rest of the state and socially connected counties seem irrelevant. The results indicate that, to

a certain degree, progress in flood-related innovation is driven by inventors’ local experiences of

flooding and points towards an incidental development of adaptation innovation rather than a

coordinated effort.

I choose the United States for this analysis for three key reasons. Firstly, the United States has a

high exposure to flooding. According to the U.S. Departmnet of Homeland Security (2024), 90%
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of natural disasters in the United States include flooding. There is at least one flood event on 8

out of 10 days throughout the year (Tompkins and Watts 2022) and annual average flood losses

are significant, estimated to be around $32.1 bn (Wing et al. 2022). Moreover, it is predicted that

flood risk will rise by 26% in 2050, making it a dynamic and increasing threat for the United

States (Wing et al. 2022). Secondly, the United States is a leader in technological innovation. It

ranks second in the world in patenting activity and first in the economic value of patents which is

estimated to be around $3 trillion (Toole, Miller, and Rada 2019). It also ranks first in the world

high-value adaptation innovations (Dechezlepretre et al. 2020) and has a history of successful

adaptation technologies, such as residential air conditioning to protect against heat (Barreca

et al. 2016). Finally, the United States is unique in its universal availability of flood insurance,

an important adaptive strategy that needs consideration in this context. Compared to the often

fragmented markets in other countries, flood insurance in the United States is predominantly

provided through the National Flood Insurance Program (NFIP), offering a comprehensive and

reliable source of data.

The contributions of this study are fourfold. First and foremost, I contribute to the very sparse

literature on the supply of innovation for climate adaptation. Though directly linked by the

issue of climate change, the economic characteristics of mitigation and adaptation innovations

differ. Whereas the benefits of mitigation innovations are a global public good, the benefits

of adaptation innovations are often private or a mixture of public and private benefits. At

the same time, adaptation innovations also differ from conventional innovations due to the

unpredictable nature of their benefits which are tied to the considerable uncertainty of climate

change impacts. Thus, the dynamics of climate adaptation innovations warrant an analysis in their

own right. Though researchers have examined aspects of adaptation innovation such as efficiency

of adaptation technology portfolios (Berrang-Ford et al. 2019) and barriers to technological

adoption (Prince et al. 2013; Tambo and Abdoulaye 2012; Darkwa et al. 2016), very few have

explored the dynamics of their development. In an early study Chhetri and Easterling (2010)

find evidence that weather shocks are associated with increased innovations in rice-farming in

Nepal in the early 2000s, but are limited to correlational results due to data short-comings. Miao
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and Popp (2014) builds on this and examine the effect of floods, droughts, and earthquakes

on the developments of adaptation patents across countries. They find that floods have the

most pronounced positive and long-term impact on adaptation innovation and attribute this to

disaster-induced risk-updating which results in demand-pull innovation. However, the authors

are unable to provide empirical evidence of the underlying mechanism due to the lack of the

granularity in country-level analyses. More recently, in a study of the agricultural sector in

the US, Miao (2020) finds that crop exposure to drought is associated with increases in crop

innovation and that the prevalence of crop insurance mitigates this effect. By focusing on the

local exposure of inventors, this paper contributes to the literature by analysing the importance

of proximity to the shock in greater detail, presenting a conceptual framework that outlines

mechanisms beyond demand-pull innovation, and providing an analysis specific to flooding as

an increasingly damaging threat.

The second contribution of this paper it to the literature on protection motivation theory in

environmental research. In the presence of a threat, protection motivation theory suggests that

individual decision-making is based on threat appraisal and coping appraisal. The former consists

of expectations regarding the magnitude and probability of a threat while the latter evaluates the

efficacy of the available protective measures (Rogers 1975). In the context of climate adaptation,

research has shown that exposure and subjective experiences of extreme weather events are

positively correlated with climate risk-perception, i.e. threat appraisal (Marlon et al. 2019;

Poudyal et al. 2021). In turn, increases in risk-perceptions have been found to positively correlate

with adaptive behaviour (Valkengoed and Steg 2019), suggesting that protection motivation

may be underlying the observed increases in adaptation demand in response to extreme weather

events (McFadden, Smith, and Wallander 2022; Zaalberg et al. 2009; Grothmann and Reusswig

2006; Tasantab, Gajendran, and Maund 2022; Kreibich et al. 2005). In this paper, I extent the

application of protection motivation theory to the inventor and the supply of climate adaptation

rather than demand, presenting a conceptual framework that explores its potential role as a driver

for the development of adaptation innovation in response to environmental shocks.
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Thirdly, I contribute to the literature on the motivation of inventors. To understand what drives

innovation, external factors such as organizational structures (Tushman and O’Reilly 1996),

government policies, regulation and the uncertainty thereof (Porter and Van der Linde 1995;

Noailly, Nowzohour, and Van Den Heuvel 2022), institutional setting (Nelson 1993) and market

demand (Di Stefano, Gambardella, and Verona 2012) have all proven to play an important role.

In addition, the motivation of the inventors themselves seems to influence the development of

innovations. Inventors possess a deep amount of expertise and skills that often afford them

considerable autonomy, even when working within larger organizations. In this context, the

literature typically distinguishes between inventors’ intrinsic and extrinsic motivation. While

intrinsic motivation includes curiosity, passion and an inherent interest in solving difficult

problems (Singh and Fleming 2010; Owan and Nagaoka 2011), extrinsic motivation relates to

economic incentives, financial rewards, and professional recognition (Scherer and Harhoff 2000;

Azoulay, Ding, and Stuart 2007; Dugoua and Gerarden 2023). I contribute to this literature by

exploring environmental shocks as an additional determinant of inventors’ motivation. I focus on

the impact of flooding on inventors’ decisions to develop flood adaptation solutions, thus the

type of innovation produced in response to flooding rather than overall productivity effects.

Finally, this paper contributes by constructing a novel dataset on flood-related patents. Limited

previous research has largely relied on the Cooperative Patent Classification Y02A – ’Technolo-

gies for Adaptation to Climate Change’ to identify climate adaptation patents. Introduced in 2018,

this classification also includes the subgroup Y02A 10/30 ’Flood prevention; Flood or storm

water management, e.g. using flood barriers’. However, because patents are indexed without a

formal disclosure of the tagging mechanism, a simple word search reveals that many relevant

patents remain undetected, yielding only 69 unique flood-related patents filed by inventors in

the United States between 2007 and 2020. Furthermore, there seem to be clear instances of

oversight and inaccurate tagging, such as the inclusion of patents unrelated to flood protection but

associated with the term “overflow”, resulting in misclassification of 20 patents related to toilet

technologies. I develop a new classification approach based on a dictionary search, identifying

475 unique flood-related patents. I manually review and verify this more comprehensive universe
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of flood-related patents using the abstracts. Not only does this dataset underpin the analysis

presented in this paper but it also offers valuable insights into the landscape of flood adaptation

innovation and highlights the important shortcomings in the current use of the Y02A tagging.

Moreover, it has the potential to be used in future analyses, contribute to the development of

more advanced patent identification methods, or verify previous findings.

1.2 Conceptual Framework

I stipulate that inventors are decision-making agents in the supply of flood adaptation innovation.

As such, they have a certain degree of agency in determining the level and direction of innovation.

To some or full extent, they may decide if, when, and how much innovation to produce. Over time,

inventors are exposed to varying degrees of flooding. Directly, this may include a flooded home

or a closed road on their commute, or indirectly damages incurred by friends or family. This

flood exposure may influence the inventors’ decision-making with respect to flood adaptation

innovation, either by shaping their expectations of future flooding leading to profit-motivated or

protection-motivated innovation, or by inducing innovation through experience-based learning.

Under the first mechanism, flooding influences how inventors perceive the likelihood and severity

of future flooding. Ex-ante inventors hold expectations regarding the magnitude of flooding they

will be exposed to, directly or indirectly. This is built on an information set which among other

factors include past occurrences of flooding. When a flood episode unfolds, its occurrence and

impact either align with expectations or are unexpected. If they align, there are no updates to

the information set and expectations of future flooding remain unchanged. However, if flooding

occurs unexpectedly, inventors revise their information sets with this new information, leading to

an adjustment of their expectations of future flooding which in turn may lead to profit-motivated

or protection-motivated innovation for flood adaptation.

Under profit motivation, this increase in the expectation of future flooding may lead to higher
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anticipated demand for flood protection and flood adaptation innovation. Thus, flooding results

in demand-pull and profit-motivated development of adaptation innovation. On the other hand,

protection motivation theory suggests that inventors may be motivated by a desire to safeguard

themselves against future flooding. In this case, inventors are driven by a personal desire for

protection rather than economic incentives. Increased expectations of future flooding raise the

threat appraisal and thus motivate inventors to engage in more flood adaptation innovation. This

is conditional on a non-binding coping appraisal; that is, inventors are not constrained by their

abilities and believe in the effectiveness of their adaptive solutions to mitigate future flooding.

FIGURE 1.1: Illustration - expectation updating

Flood insurance in this context may have a moderating effect on this relationship. Flood

insurance, which partially or fully compensates flood damages, may limit risk-updating of the

inventor. Albeit that only financial damages can be insured, flood insurance may stimulate the

magnitude of the increase in expectation after a flood episode leading to a weakening of profit-

or protection-motivated innovation. It is also worth noting that flood insurance itself may have a

causal effect on flood-related patenting. For example, flood insurance may increase awareness of

flooding and thereby provide a more accurate information set about future flooding. Similarly,

insurance premiums and requirements are based on flood maps along with flood elevation levels

and flood adaptation innovation may be spurred by a desire to alter these.

Aside from updated expectation, the second mechanism that may underlie the relationship

between flooding and flood adaptation innovation builds on the idea that repeated exposure to

flooding may allow inventors to learn from their experiences. When an inventor experiences local
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FIGURE 1.2: Illustration - insurance moderation

flooding, the variety of challenges associated with flooding and the effectiveness of protective

solutions may become more salient. Similarly, local flooding may also highlight challenges

specific to the local environment and the need for location-specific solutions. This iterative

learning process may equip the inventors to develop more effective solutions, enabling better

protection for themselves or others against future flooding and leading to increased development

of flood adaptation innovation. Under this mechanism, the impact of flood adaptation innovation

is driven by supply dynamics through inventors’ experience-based learning.

FIGURE 1.3: Illustration - experience-based learning

1.3 Data

1.3.1 Patents

To measure innovation in flood adaptation, I download data on patent applications from the U.S.

Patent and Trademark Office (USPTO) via PatentsView from 2007 to 2020. The downloaded data

files capture all applications submitted to the USPTO, including those for which patents were

never granted, ensuring a comprehensive measure of formal innovative activity. Given the major
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shortcomings of the Y02A patent classification for flood adaptation patents, I employ my own

dictionary search of patent abstracts and titles to identify patents related to flood prevention and

mitigation
1
. The term ‘flood’ is used across a variety of disciplines which are often irrelevant in

this context such as flooding of computer servers with requests or flooded reactions in chemistry.

To address this issue, I focus solely on CPC section E – ’Fixed Constructions’, excluding class

E21 (’Earth or Rock Drilling; Mining’) and E99 (’Subject Matter Not Otherwise Provided For In

This Section’) to ensure relevance. As a result, I exclude patents rooted in more science-intensive

domains, such as flood forecasting systems, from the main analysis. To check for robustness,

I also download patent data related to flood forecasting systems using the imperfect Y02A

classifications 10/40 (’Controlling or monitoring, e.g., of flood or hurricane; Forecasting, e.g.,

risk assessment or mapping’) and 90/10 (’Information and communication technologies [ICT]

supporting adaptation to climate change, e.g., for weather forecasting or climate simulation’).

I filter these patents using the same dictionary-based search criteria as before to identify those

specifically related to flooding. However, due to the lack of clear guidance on the tagging system

of Y02A patents as discussed previously, I cannot confidently assert that this dataset provides

an unbiased measure of flood forecasting technologies. To ensure consistency, for the main

analysis, I therefore focus on my restricted dataset of innovation for flood adaptation in fixed

constructions. Nonetheless, I present the results of the main analysis including the forecasting

technologies identified through the Y02A classification in the robustness check.

To identify inventors resident in the United States, I use the home address of the inventors

listed on the patents. In some cases, new patent applications are filed as new claims are added.

However, the patent applications in these cases still cover the same technical content, thus can be

considered a singular innovation. I consolidate similar cases, retaining just one record for each

unique abstract.

To construct the outcome variable, I aggregate flood-related patent applications by county using

the home location of the inventor and identify the year of innovation as the first filing date

1 See Appendix 1.A.1 for more details.
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associated with the application. If a patent application lists multiple inventors, I attribute the

patent application separately to each inventor. In addition to the absolute count of flood-related

patent applications, I also calculate flood-related patent applications as a share of the total number

of patent applications filed in CPC section ’E’.

In total, I identify 475 unique patent applications related to flood adaptation filed by 531 inventors

resident in 223 counties in the contiguous United States from 2007 to 2020. The absolute number

of patent applications for flood related patents seems to increase slightly over the period but

there is notable variation from year to year (Figure 1.4). The number of flood-related patents

as a share of other innovations in CPC section ’E’, seems to stay relatively flat over the period

(Figure 1.5), aligning with the findings of overall adaptation innovation growth by Dechezlepretre

et al. (2020).

FIGURE 1.4: Flood-related patent applications per year
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FIGURE 1.5: Share of flood-related patent applications per year

At closer inspection of the inventors, I find that 49% of inventors submitted their patent ap-

plication independently, without listing an assignee
2
. This sharply contrasts with the average

of 27% for CPC section ’E’ during the same period and suggests that the decision making of

individuals in flood patenting may play a larger role. Regarding the remaining inventors, 47%

list a U.S. company as the assignee, while a minor segment, 4%, involve foreign companies.

It is also worth noting that, aside from one application which listed the U.S. EPA, none of the

patent applications list government interest which means that the innovation did not involve

funding through government research grants or contracts. This poses an interesting question in

itself and stands in contrast to the findings by Hötte and Jee (2022) who suggest that government

funding for adaptation innovations is around 10% higher than average using the CPC Y02A

classification.

23% of inventors filed only one patent in total over the whole period. Moreover, a large majority

of inventors (75%) seem to be one-off inventors in flooding, filing for only one flood-related

patent between 2007 and 2020. This is suggestive of an isolated catalytic event triggering

innovation rather than a life-long commitment to patenting for flood adaptation.

2 In this context, the assignee is a legal entity such as a firm, foundation or other partnership that holds the right to a
patent rather than the inventor.
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FIGURE 1.6: Number of inventors by number of patents

Finally, the mapping of inventors’ home locations shows a strong association with proximity

to water. Inventors are largely clustered in the coastal area of the North-East, Florida, Texas,

California and Washington, while landlocked inventors are predominantly located near large

rivers or other bodies of water such as Lake Michigan. Certainly, inventor locations also seem to

be associated with larger cities which are often located near water but the proximity to water is

noteworthy.
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FIGURE 1.7: Inventor locations

In the case of patents with assignees, the location of the assignees closely relates to the location

of the inventors (Figure 1.8), with assignees predominantly located in the same state as the

inventor but not in the same county (Figure 1.A.2).

FIGURE 1.8: Assignee locations
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1.3.2 Flooding

To measure exposure to flooding, I download data from the Storm Event Database, a comprehen-

sive repository of weather and climate-related events in the United States maintained by NOAA

National Centers for Environmental Information. Data is freely available from 1950 to 2023, and

I download the Storm Event Details files for each year from 2007 until 2020. I disregard data

pre-2007 to avoid data bias resulting from changes in the reporting systems in 2006. Sources for

the database include among others: weather reports from the National Weather Service (NWS),

law enforcement agencies, emergency management agencies and trained storm spotters. Due to

the wide range of sources this database provides a more comprehensive record of flood events

including smaller ones which remote sensing data is unable to detect due to cloud coverage and

urban built environments. Each reported event is assigned an event and episode identification

number. Multiple storm events, such as a flooded road, can be contained within a storm episode

and I filter for episodes classified as “Coastal Flood”, “Flash Flood”, “Flood”, “Lakeshore Flood”,

“Storm Surge/Tide”, “Heavy Rain”, “Hurricane (Typhoon)”, “Seiche”, “Tsunami” or “Tropical

Depression”. The database also provides information on injury, fatality and damages for each

event. However, property damages are not always official amounts but can also be estimates

made by the reporting source, thus should be viewed with caution. For the main specifications

I determine flood exposure by calculating number of flood episodes by county and year. If an

episode spreads across different counties, I count it separately in each affected county.

From 2007 to 2020, 25,199 unique flood episodes were reported in the contiguous United States

with 99% of counties (3079 out of 3109) affected. The average number of episodes per year

was 1,798 with Figure 1.9 showing the inter-year variation over the period. Counties with

flood-related patenting during the period experienced an average of 2.63 flood episodes per

year compared to a lower average of 1.31 for counties without flood-related patenting. In the

year before a county recorded a flood-related patent application filed by a resident inventor, the

number of flood episodes in the county was higher with an average of 3.21, suggesting that

flood-related patenting was preceded by increases in flood exposure. The total number of direct
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and indirect deaths over the whole period was 1,449 with Harris and Galveston County in Texas

recording the most deaths, followed by Richmond County in New York. This correlates with

impact areas of major Hurricanes Ike and Harvey in Texas in 2008 and 2017 and Hurricane

Sandy in the coastal north east in 2012.
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FIGURE 1.9: Flood episodes by year

In Figure 1.10, I plot the number of episodes by type. The overwhelmingly dominant type of

episodes are flash floods and floods, making up 96% of all episodes. However, it is important to

note that classification is nuanced and not always straightforward. Many episodes associated with

larger weather phenomena such as hurricanes are more generally classified as floods, making

further heterogeneity analysis of by type of flood exposure difficult.
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FIGURE 1.10: Flood episodes by type
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Finally, I examine the spatial distribution of flood exposure. I merge annual county population

estimates from the U.S. Census Bureau since it is not merely the occurrence of flooding that mat-

ters but its intersection with populated areas. A visualization of population-adjusted flood impact

is shown in a bivariate map in Figure 1.11. The map shows the annual average number of flood

episodes and annual average population from 2007 to 2020. Sizeable areas with high population

and high flood exposure include the north east, Florida, Southern California and Arizona, and

coincide noticeably with flood inventor locations. Flood inventor hubs around Seattle, Chicago

and Houston equally show high correspondence of flood exposure and population. The counties

with the highest coincidence of flood episodes and population are Cook County in Illinois, Los

Angeles County and San Bernadino County in California, Miami-Dade County in Florida and

Harris County in Texas.

FIGURE 1.11: Average annual flood episodes and population 2007 - 2020
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1.3.3 Flood Insurance

To account for the presence of flood insurance I download the ‘FIMA NFIP Redacted Policies –

v2’ dataset which is freely available from the Federal Emergency Management Agency (FEMA).

This dataset encompasses all flood insurance policy transactions under the National Flood

Insurance Program (NFIP) which covers 96% of all flood insurance in the United States. Flood

insurance policies provide coverage for buildings and contents rather than the individual per

se and are limited to one dwelling per policy. In other words, a person who wishes to insure

two homes will have to buy two separate policies. The redacted policy dataset lists every flood

insurance policy purchased during the period, including comprehensive information about the

insured buildings and contents, while omitting any information related to the buyer. Under

the NFIP, any individual may purchase flood insurance as long as the dwelling to be insured

is within the boundary of a participating community
3
. As of 2022, FEMA recognizes 24,774

communities of which 91% participate in the NFIP with the large majority joining in the 1970s

and 1980s. To participate a community has to adopt a floodplain ordinance which meets the

minimum NFIP floodplain management standards based on FEMAs flood risk mapping of the

area. Until 2021, the cost of insurance, i.e. the premium, was determined by Flood Insurance

Maps (FIRMs) which designated geographic areas into different zones depending on their flood

risk. Flood insurance policies typically have a term length of one year after which policyholders

may choose to terminate or renew their coverage. I use the ’policyEffectiveDate’ and the

’policyTerminationDate’ to determine the exact start and end date of insurance coverage for each

policy. For the final insurance variable, I aggregate the number of active policies by county

and year and divide them by the total estimated housing stock using annual data from the U.S.

Census Bureau. The final insurance variable thus describes the proportion of homes covered by

flood insurance in a given county and year.

The total number of active flood insurance policies rose from 2.7 million to 3.5 million between

3 Communities in this context are political entities, such as cities, towns, townships, Indian tribes or authorized tribal
organization which have the authority to adopt and enforce floodplain ordinances including rules and regulation
regarding building standards and land use in flood risk zones.

23



Chapter 1: Local Flood Exposure and Flood Adaptation Innovation

2007 and 2020. This represents an increase in the proportion of homes covered by flood insurance

from 2% to 2.6%, suggesting a modest upward trend but low flood insurance penetration overall.

There is very limited inter-year variation but significant geographic variation which seems to

correlate with exposure to hurricanes. For example, Louisiana which was majorly affected by

Hurricane Katrina in 2005 has the highest flood insurance penetration with 15.7% followed by

Florida, South Carolina and Texas.

1.3.4 Other

In addition to the data sources listed above, I access annual county population estimates from the

U.S. Census Bureau and personal income estimates by county and year from the U.S. Bureau

of Economic Analysis. Furthermore, I download data on FEMA’s public assistance program,

which provides financial support in response to major declared disasters and emergencies. These

funds may be used for a variety of issues post flooding, such as debris removal or restoration

of disaster-damaged facilities. The grants also encourage the allocation of funds for resilient

infrastructure rebuilding. The data is categorized by project, grant date and disaster type. I filter

for flood-related disasters and aggregate the data by county and year.

Additionally, I download the county adjacency file from the U.S. Census Bureau, which details

each county’s neighbouring counties, to calculate the number of flood episodes in neighbouring

counties. Finally, I download the Facebook Social Connectedness Index through The Humanitar-

ian Data Exchange which measures inter-county connectivity through the number of Facebook

Friends. I use this to calculate the number of flood episodes in counties that have strong social

ties to the county of interest.
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1.3.5 Summary Statistics

To provide an overview of the key variables used in the analysis, Table 1.1 presents summary

statistics for all counties in the contiguous United States, as well as separately for innovating

counties, i.e. those with at least one flood-related patent application between 2007 and 2020,

and non-innovating counties. Innovating counties represent a small subsample (223) out of

all counties (3,109) and exhibit some notable differences. It is worth highlighting, that in 30

counties, neither flooding nor flood-related patenting is observed and these counties are therefore

excluded from the sample.

The table shows that innovating counties have an average of 0.259 patent applications per year.

These counties experience nearly twice as many flood episodes per year on average compared

to non-innovating counties and also show greater variation in flood exposure as reflected in a

higher standard deviation. This increased exposure to flooding is also associated with higher

average levels of flood insurance coverage in innovating counties, suggesting some response to

flood risk.

Demographically, innovating counties have significantly higher populations on average and

higher income levels, consistent with the broader geography of innovation concentrated in urban

areas and hubs of economic activity. In addition, innovating counties also receive more FEMA

assistance on average which may reflect both larger populations and greater exposure to flooding.

All Counties Innovating Counties Non-Innovating Counties

Variable Mean Std Dev Mean Std Dev Mean Std Dev

Flood Patents 0.019 0.224 0.259 0.795 0.000 0.000
# Episodes 1.391 2.111 2.560 3.068 1.300 1.988
Insurance Coverage 0.021 0.053 0.042 0.082 0.019 0.049
Population 102,251 326,063 605,319 955,806 62,971 148,341
Income 39,514 11,709 50,644 19,488 38,645 10,380
FEMA Assistance 893,975 32,800,730 5,928,815 109,526,005 500,849 14,879,601

Observations 40,027 40,027 2,899 2,899 37,128 37,128
# Counties 3,079 3,079 223 223 2,856 2,856

Notes: Population is in 10,000s, Income in $1000, Insurance Coverage is expressed as a ratio of # policies divided by housing stock,
and FEMA Assistance in $10,000,000.

TABLE 1.1: Summary statistics
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1.4 Empirical Strategy

Empirically, I examine the effect of flooding on flood adaptation innovation by employing a

Poisson pseudo-maximum likelihood (PPML) estimator with fixed effects. The use of a Poisson

model addresses the non-negative and skewed nature of flood adaptation patents as a count

variable, accounts for heteroscedasticity and ensures consistent estimation even with many

zero observations when no patents are recorded in a county-year. Furthermore, the PPML

estimator allows for consistent estimation without requiring the dependent variable to follow a

true Poisson distribution, relying instead on correct specification of the conditional mean. The

main specification is described by the following equation:

Patc,t = exp
(

α +β1Floodc,t−1 +β2Insc,t−1 +β3Floodc,t−1 × Insc,t−1

+β4Popc,t−1 +β5Floodc,t−1 ×Popc,t−1

+β6Incc,t−1 +β7FEMAc,t−1 + γc +δt +νc · t
) (1.1)

The county serves as the most suitable and feasible unit for the analysis. The practicality of an

inventor-level analysis with inventor fixed effects is hindered by the high number of inventors

who only contribute once and would require making assumptions about inventors’ active periods.

Furthermore, the county provides a consistent geographical unit for both the flooding data and the

inventor’s geolocation, which becomes less precise with greater granularity. Finally, measuring

flood exposure at the county level allows me to account for both direct and indirect local impacts,

recognising that an inventor’s exposure to flooding extends beyond their home address. For

example, flooding may cause restrictions in movement for work or leisure and inventors may

also be influenced by flood-related disruptions of nearby friends and family.

The outcome variable Patc,t describes the number of patent applications filed by inventors resident

in county c in year t. By definition this measures formal innovation and excludes other forms

of innovation, such as policy or managerial innovation, which are likely influenced by different
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factors, including political and legal dynamics.

The main variable of interest is Floodc,t−1 and represents the number of flood episodes in

county c in year t − 1. Though the primary time-unit for analysis is one year, I also account

for contemporaneous and delayed effects of flood exposure by introducing current and up to

three-year lags in a distributed lag analysis.

To control for the correlation of flood insurance with flooding and its potentially causal effect

on flood-related patenting I add the insurance variable Insc,t−1. I further interact this with flood

exposure to account for possible mitigating impacts on the relationship between flooding and

innovation. Since flood insurance is lagged, I consider the endogeneity risk due to reverse

causality from flood adaptation innovation to flood insurance to be minimal.

I include county-level population and personal income estimates, Popc,t−1 and Incc,t−1, to

account for possible biases in the reporting of flooding with increasing population or income

levels. I further interact flood exposure with population size to capture varying effects of flooding

across different market sizes.

It is worth noting that interpreting interaction terms in non-linear models is not always straight-

forward. Ai and Norton (2003) show that in such models estimated coefficients on interaction

terms do not directly correspond to marginal interaction effects. Instead, the interaction effect

must be computed at specific covariate values and standard errors derived via the delta method.

However, in this paper, I estimate a PPML model in which the log of the expected patent count

is specified as a linear function of the covariates. This log-linear specification allows coefficients

to be interpreted as semi-elasticities, i.e. percentage changes in expected patent counts. The

interaction terms then indicate how the percentage effect of flooding varies with insurance cover-

age and population size. This interpretation in terms of semi-elasticities avoids the limitations

associated with level-based interaction terms discussed by Ai and Norton (2003) and allows for

the direct use of coefficient estimates and their standard errors
4
.

4 See Appendix 1.A.2 for more details.
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To account for changes in public spending after flooding, I calculate the value of all granted

FEMA public assistance in county c in year t − 1, FEMAc,t−1. This not only correlates with

flooding but may also influence the development of flood-adaptation innovation. For example,

after a major storm, FEMA may fund the rebuilding of a hospital. Since the program promotes

resilient reconstruction, firms involved in the reconstruction may be encouraged to invest in

flood adaptation innovation. While the variable serves as an approximation of flood-induced

investments, I stipulate that it captures significant changes in spending.

Finally, I add county-fixed effects, γc, to address any unobserved time-invariant characteristics of

counties and year-fixed effects, δt , to address any unobserved overall time-trends. In addition to

this, I also add county-specific time trends, νc · t to allow for varying tendencies within counties.

This aims to control for differences in county trends that may correlate with the flood variable

and influence flood-related innovation. For example, county-specific trends in education may

lead to better reporting of flood episodes while simultaneously fostering an environment that

supports the development of innovation.

While county-level fixed effects help address endogeneity and omitted variable bias, they lead to

the exclusion of counties that never file any flood-related patents during the period, as the lack of

within-county variation prevents identification under the PPML estimator. Consequently, the

estimated effect of flooding pertains to the 223 counties with at least one flood-related patent and

should be interpreted as conditional on patenting occurring.

To address concerns that the estimated effects may not generalise to counties that experience

flooding but never patent, I also employ a linear specification and a Mundlak approach using the

full sample of counties. While these methods allow for the inclusion of all counties, both come

with caveats, particularly regarding functional form assumptions and the treatment of unobserved

heterogeneity, and are therefore presented as robustness checks. Given the non-negative, skewed,

and count-based nature of the patent data, PPML’s robustness to heteroscedasticity, and the

greater ability of county fixed effects to account for unobserved heterogeneity, I retain the PPML

estimator with county-level fixed effects as the main specification.
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1.5 Results

1.5.1 Main

The results of the main specification are presented in Table 1.2. The analysis reveals a positive

and significant effect of flooding on flood-related patenting. Specifically, I find that one additional

flood episode in a county leads to a 9.4% increase in the number of unique flood-related patent

applications filed by inventors resident in the county the following year. The experience of local

flooding seems to motivate an adaptation innovation response. While the literature indicates

that financial shocks negatively impact overall inventor productivity (Bernstein, Mcquade,

and Townsend 2021), flooding as an environmental shock seems stimulate innovation to a

certain extent. In line with the conceptual framework this may be driven by experience-based

learning or risk-updating, leading to a profit- or protection-motivated innovation response. The

relatively quick response to flooding further implies that these innovations are readily accessible

opportunities or require limited experience-based learning. More generally, the results suggests

that inventors’ decisions to develop climate adaptation innovation may to a certain extent be

influenced by their local experience of environmental shocks.

As proposed, the presence of flood insurance appears to weaken this relationship, indicated by

the negative coefficient on the interaction term between flood insurance coverage and flooding.

Although the coefficient is not statistically significant, the size of the standard error is insufficient

to attribute this finding definitively to noise, and is more likely due to limited annual variation

in flood insurance coverage across counties. The positive coefficient on the interaction term

tentatively suggests that flood insurance to some extent limits inventors’ updating of expectation

after local flood episodes. This is further supported by the slightly larger coefficient associated

with flooding when flood insurance is included in the model. However, these results are only

indicative.

Meanwhile, I do not find evidence that population size influences the relationship between
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flooding and flood-related patenting. The exact coefficient of ’# Episode t-1 x Population t-1’ is

0.000046 with a standard error of 0.000097, indicating a statistically insignificant effect. There

may be two possible explanations for this. Firstly, this may point to a lack of demand-pull

for flood adaptation innovation in response to a shock. A homogeneous effect of flooding

across different numbers of affected individuals and thus potential market size for future flood

adaptation, may suggest that profit motivation is not a key driver of innovation in this context.

Secondly, it is also possible that the demand increase generated by the local market in the county

is simply too small to induce demand-pull innovation. In this case, the demand-pull channel may

be active but the effect of local flooding on expectations of future demand may be too weak to

drive a measurable effect.

Flood Patents
(1) (2)

# Episodes t-1 0.082∗∗∗ 0.090∗∗∗

(0.030) (0.034)
Population t-1 -0.057 -0.080∗∗

(0.041) (0.038)
Income t-1 -0.035 -0.037

(0.039) (0.039)
FEMA Assistance t-1 -0.002 -0.002

(0.002) (0.002)
# Episodes t-1 × Population t-1 0.000 0.000

(0.000) (0.000)
Insurance Coverage t-1 -0.136

(0.087)
# Episodes t-1 × Insurance Coverage t-1 -0.004

(0.003)

Year FEs X X
County FEs X X
County-Year Trends X X

Observations 2,899 2,899
Squared Correlation 0.33210 0.34243

Notes: This model is estimated using a Poisson pseudo-maximum likelihood estimator. Standard errors are in parenthesis and are
clustered at the county level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. Model (1) excludes flood insurance and Model
(2) represents the results of the main specification. The outcome variable is flood patent applications at t and the main variable of
interest is # Episodes t -1. Population t-1 is in 10,000s, Income t-1 in $1000, Insurance Coverage t-1 in %, and FEMA Assistance t-1 in
$10,000,000.

TABLE 1.2: Main specification

To allow for delayed or immediate effects of flood exposure and address uncertainty regarding
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the time required to develop an innovation, I run a distributed lag model of the main specification

with current and up to three-year lags of the explanatory variables. The coefficients of the various

flood exposures are plotted in Figure 1.12. The coefficient on one-year lagged flood exposure is

the only coefficient to achieve statistical significance and remains robust in size when including

additional lags and current year flood exposure. The results suggests that inventors react within

one-year of being exposed to flooding and seem to engage in innovation that does not require

more extended development horizons such as innovative drug developments which have a mean

development phase of 9 years (Brown et al. 2022). This aligns with the descriptive finding that

a large share of flood-related patent applications are filed by individuals who only patent in

this field once rather than showing a career commitments to flood adaptation innovation. The

complete absence of patents supported by government grants and high share of inventors who file

without assignees, thus may have limited resource to invest in long-term R&D projects, further

emphasize this observation. For patents with assignees, it is also worth noting, that institutions

such as research institutes and universities who tend to have a longer-term outlook on innovation

development are only listed on three flood-related patents. Based on the results of the distributed

lag model, I focus on one-year lagged flood exposure for the remainder of the analysis.
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Notes: The plot depicts the 95% confidence intervals for flood episodes at t-3, t-2, t-1, and t. The outcome variable is flood patent
applications at t. Coefficients are estimated using a Poisson pseudo-maximum likelihood estimator that incorporates the same control
variables and their associated lags as in the main specification, along with county fixed effects, year fixed effects, and county-year trends.
Standard errors are clustered at the county level.

FIGURE 1.12: Lag analysis

1.5.2 Locality of Flooding

Following the baseline analysis, I shift my focus to examine the importance of proximity to

flooding in more detail, where proximity may be defined in geographic or social terms. In order

to do so, I introduce flood episodes that occur outside the county but within the same state,

in neighbouring counties and in socially connected counties. The results of this analysis are

shown in Table 1.3. Across all three models, the effect of own-county flood episodes remains

robust and relatively stable in magnitude. However, flood episodes in the rest of the state and in

socially connected counties do not seem to affect own-county flood-related patenting. In other

words, flood episodes that occur in the rest of the state or in other counties connected via strong

social ties do not affect the decision-making of local inventors with respect to flood adaptation

innovation. In contrast to this, flood episodes that occur in neighbouring counties seem to have

some positive effect on the development of flood-related innovation, albeit to a significantly
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lesser extent than own-county flood episodes.

The results suggests that geographic proximity to flooding matters. For one, there may be

informational frictions in flood reporting, such that information about more distant flooding and

changes in demand for flood protection innovation may not always reach inventors effectively.

Although possible, given the highly connected nature of the United States and the likely sub-

stantial information exchange between socially connected counties, this may not be sufficient to

explain the results. Another explanation may be that personal experience of flooding is important

in this context. Flood episodes that happen far away may not be as salient for the inventor and

flood reporting via news, friends and family may not be sufficiently tangible to lead to updated

expectation of future flooding. Geographic proximity to flooding may also be important in

the context of flood adaptation innovation due to the possible need for hyper-local solutions.

Innovations in flood protection products may simply not be applicable in different environments.

In this context, flood episodes in neighbouring counties may still stimulate the development of

flood innovation. Saliency of flood risk may be more pronounced as inventors’ daily lives may

span neighbouring county borders, local news reporting may reduce informational friction or

neighbouring counties may have similar geographical landscapes such that local flood protections

which may not have broad geographic application are still effective locally.

An alternative interpretation of these results relates to the prevalence of the underlying mecha-

nisms. Assuming that all flooding, irrelevant of where it occurs, results in updating of expectation

of future flooding, at least to some extent, the profit-motivated inventor should also respond to

flood episodes outside the county. Whether the expected increase in demand for flood protection

innovation originates from the local county, other counties or state markets should not impact

the decision-making process of a rational inventor. Under this interpretation, the irrelevance

of flooding in the rest of the state and socially connected counties suggests demand-pull is not

driving the relationship with protection motivation or experience-based learning are the more

likely underlying mechanism. The relevance of flood episodes in neighbouring counties may

still be supported under this interpretation as inventors’ activities may span neighbouring county
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borders such that flooding in neighbouring counties can still lead to experience-based learning

and increased threat appraisals.

Overall, geographic proximity to flooding appears to be important in the response of inventors

to flooding. This finding may align with increased saliency of personal experiences with

flooding, informational frictions, local applicability of flood solutions or suggest the prevalence

of protection motivation or experience-based learning as the underlying mechanism.

Flood Patents
(1) (2) (3)

# Episodes t-1 0.076∗∗ 0.065∗ 0.081∗∗

(0.034) (0.035) (0.034)
# Episodes State t-1 0.003

(0.002)
# Episodes Neighbouring Counties t-1 0.025∗

(0.014)
Social Connectivity Weighted # Episodes t-1 0.017

(0.015)
Controls Yes Yes Yes

Year FEs X X X
County FEs X X X
County-Year Trends X X X

Observations 2,899 2,899 2,899
Squared Correlation 0.34281 0.34799 0.34560

Notes: This model is estimated using a Poisson pseudo-maximum likelihood estimator. Standard errors are in parenthesis and are
clustered at the county level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. Model (1) estimates the effect of adding flood
episodes outside the county but within the same state. Model (2) estimates the effect of adding flood episodes in neighbouring counties.
Model (3) estimates the effect of adding flood episodes in socially connected counties. The outcome variable is flood patent applications
at t. Controls include Population t-1, Income t-1, Insurance Coverage t-1, FEMA Assistance t-1, Population t-1 x # Episodes t-1 and
Insurance Coverage t-1 x # Episodes t-1.

TABLE 1.3: Locality of flooding

1.5.3 Robustness

Due to the inclusion of county-level fixed effects, the PPML estimates reflect the effect of

flooding on flood-related patenting conditional on at least one flood-related patent per county

from 2007 to 2020. To test the robustness of the findings across the full sample of counties in

the contiguous United States, including those that never see any flood-related patent filings, I
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implement two alternative estimation strategies.

First, I estimate the fixed-effects model using a linear specification instead of the Poisson

specification. The results, shown in column (1) of Table 1.4, suggest that one additional flood

episode increases the number of flood-related patents filed in a county by 0.0017 the following

year. Given the sample mean of 0.019 flood-related patents per year, this corresponds to a 9%

increase, consistent with the main results.

However, linear estimation of patent data can be problematic as patents are non-negative, skewed

count data and linear models may suffer from heteroscedasticity. Therefore, I also re-estimate

the model using a Mundlak approach. To implement this, I replace county-level fixed effects

with county-level means of the covariates to account for the time-invariant differences in county

characteristics. While this does not fully eliminate all time-invariant unobserved heterogeneity as

county fixed effects do, it accounts for potential correlations between the covariates and county

characteristics under the assumption that such correlation is captured by the covariate means.

The model is then estimated using the PPML estimator as before, but without county-level

fixed effects, allowing identification across the full sample of counties. The estimated model is

described by the following equation:

Patc,t = exp
(

β1Floodc,t−1 +β2Insc,t−1 +β3Floodc,t−1 × Insc,t−1

+β4Popc,t−1 +β5Floodc,t−1 ×Popc,t−1

+β6Incc,t−1 +β7FEMAc,t−1

+θ1Floodc +θ2Insc +θ3Popc +θ4Incc +θ5FEMAc

+δt +νc · t
)

(1.2)

The result of this alternative specification is presented in column (2) of Table 1.4. The estimated

coefficient on flooding remains statistically significant and is quantitatively consistent with the

main findings.
5

In fact, the coefficient is estimated with greater precision likely due to the increase

5 All main text estimations re-estimated using the Mundlak approach can be found in Appendix 1.A.4. The results
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in number of observations. Including counties that experience flooding but never produce flood-

related patents does not dilute the estimated effect of flooding on flood adaptation innovation.

This is likely because these counties differ systematically in ways that are accounted for by the

covariate means and make flood-related innovation unlikely in those counties, regardless of flood

exposure. The results of the Mundlak estimation thus reinforce the main result and strengthens

confidence in its robustness.

Flood Patents
(1) (2)

# Episodes t-1 0.002∗∗ 0.091∗∗∗

(0.001) (0.027)
Insurance Coverage t-1 -0.005 -0.062∗

(0.003) (0.036)
Population t-1 0.014 0.036∗∗∗

(0.012) (0.012)
Income t-1 -0.001∗∗ -0.027

(0.000) (0.023)
FEMA Assistance t-1 0.000 -0.001

(0.001) (0.002)
# Episodes t-1 × Population t-1 0.000∗ 0.000∗∗

(0.000) (0.000)
# Episodes t-1 × Insurance Coverage t-1 0.000 -0.002

(0.000) (0.002)

Year FEs X X
County FEs X
County-Year Trends X X
County-Means X

Observations 40,027 40,027
Squared Correlation 0.33950 0.31955

Notes: Model (1) represents the linear estimation and Model (2) represents the Mundlak approach. Standard errors are in parenthesis
and are clustered at the county level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. The outcome variable is flood patent
applications at t and the main variable of interest is # Episodes t -1. Population t-1 is in 10,000s, Income t-1 in $1000, Insurance
Coverage t-1 in %, and FEMA Assistance t-1 in $10,000,000.

TABLE 1.4: Linear and Mundlak estimations

To evaluate the robustness of the results further, I introduce a few additional specifications which

are illustrated in Figure 1.13. First, I redefine the outcome variable as the share of flood-related

patent applications relative to all applications filed in CPC section ‘E’. The results tentatively

show that one-year lagged flooding also has a positive effect on the share of flood adaptation

are consistent throughout.
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patents in CPC section ‘E’ filed for in the county in the following year. Although the estimate

is more noisy, the results indicate that the effect of flood exposure on flood-related patenting

extends beyond a general increase in construction-related patenting. It suggests that the overall

effect is not merely attributable to an overall increase in innovation for the purpose of rebuilding

and repairing of flood damages but specific to future flood protection.

Next, I modify the outcome variable to include flood adaptation innovation beyond fixed con-

structions. For this purpose, I include the additional patents I identified using a mixed approach

of Y02A tagging and the dictionary search as described in the data section. The results show

that the effect of flooding on flood-related innovation, including flood forecasting, is positive

and consistent. Not only does this support the robustness of the main results but it also suggests

that the innovative response to local flood exposure may extend beyond innovation focused on

physical flood adaptation and also includes more science-intensive innovation.

Additionally, I re-examine the results using the location of the assignee instead of the location of

the inventor. Specifically, I calculate the number of flood episodes and flood-related patenting

in the county based on the assignee’s address listed on the patent application, which typically

represents the entity’s headquarters. The assignee’s county-location is different to the inventor’s

county in all cases (Figure 1.A.2). The results suggests that flooding at the assignee’s location

does not affect flood-related patenting in the same way. Since only 47% of flood patents list a

US assignee this analysis is based on a smaller sample and therefore produces slightly noisier

results. Nevertheless, the finding supports the robustness of our main results, suggesting that

the effect of flooding is driven by exposures of the inventor rather than the assignee. Since the

assignee’s address represents a business location and the inventor’s address is a home address, it

may imply that experiences outside the workplace play a more significant role in the innovative

response. Alternatively, it may also suggest that those affected by flooding at headquarters such

as high-level management, have little involvement in the day-to-day decisions made by inventors.

Finally, given the relatively small sample size, I perform a permutation test where I randomly

reassign flood episodes across counties and re-estimate the model 1,000 times using these
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randomised assignments. 5.8% of the estimations produce a p-value for the flood episodes

coefficient that reaches above the significance threshold. This is consistent with the expected

Type I error rate and further supports the robustness of the findings. The exact distribution of

p-values from this test is detailed in Appendix 1.A.4.

Notes: The plots depict the 95% confidence intervals of the flood variable under different specifications. Plot 1 shows the coefficient for
# Episodes t-1 when the outcome variable is share of flood patent applications at t. Plot 2 shows the coefficient for # Episodes t-1 when
the outcome variable is flood patent applications including forecast innovation. Plot 3 shows the coefficient for # Episodes t-1 based on
the assignee location. Coefficients are estimated using a Poisson pseudo-maximum likelihood estimator that incorporates the same
control variables as in the main specification, along with county fixed effects, year fixed effects, and county-year trends. Standard errors
are clustered at the county level.

FIGURE 1.13: Robustness

1.5.4 Heterogeneity

To detect heterogeneous effects in the relationship, I begin by re-examining the model under

different types of flooding intensity. First, I filter for flood episodes that last at least 48 hours

as such episodes are commonly the ones detected by satellite data or categorized as significant

flood events. By definition, this measure excludes the majority of flood episodes defined as

flash floods. The results in Figure 1.14 suggests that an increase in number of long-lasting flood
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episodes does not affect flood patenting in the county. Inventors do not seem to respond the same

way when only accounting for flooding that persists for several days.

Secondly, I measure flood intensity by focusing on the impact on human health. I calculate

the number of direct and indirect deaths due to flooding in a county and do not find an effect

of one-year lagged flood related deaths on flood patenting the following year. Considering the

relatively low mortality associated with flooding in the United States, this measure of flood

exposure focuses only on severe incidents of flooding.

Both of these results indicate that inventors are more reactive to moderate and frequent episodes

of flooding rather than extreme events. Possible explanations may include that inventors assume

flood episodes associated with deaths or lasting for several days are far outliers with a lower

chance of recurrence. Under a protection motivation mechanism, this could also indicate the

presence of a binding coping appraisal, where inventors believe that their innovation would not

be sufficient to protect against extreme flood episodes. Additionally, more severe flood episodes

may cause significant damage that diverts inventors’ focus away from research and development.

I further analyse flood intensity by calculating flood-induced property damages in the county.

Though I do not find a meaningful effect, I believe that this result should be examined with

caution. As discussed in the data section, damages in the data set are not always official amount

but often estimates made by the reporting source which may be imprecise. In addition, property

damages are likely to correlated with time-varying inter-county differences in housing stock

values which I am unable to account for and therefore may lead to endogeneity concerns. Despite

these issues, it is important to note that many property damages include damages to public

infrastructure, which may not be transparent to inventors or irrelevant when considering own

protection or experience-based learning as motivation.
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Notes: The plots depict the 95% confidence intervals of the flood variable under varying definitions. Plot 1 shows the coefficient of
the flood variable when flooding is measured by # significant episodes at t-1. Plot 2 shows the coefficient of the flood variable when
flooding is measured by # deaths at t-1. Plot 3 shows the coefficient of the flood variable when flooding is measured by property
damages at t-1. The outcome variable is flood patent applications at t. Coefficients are estimated using a Poisson pseudo-maximum
likelihood estimator that incorporates the same control variables as in the main specification, along with county fixed effects, year fixed
effects, and county-year trends. Standard errors are clustered at the county level.

FIGURE 1.14: Flood intensity

Next, I examine heterogeneity of the relationship by the type of inventor. Specifically, subset the

sample for patent applications that list an assignee, i.e. patents that are not filed by individuals.

The results suggests that the effect of local flood episodes for this subsample is significantly

larger than the effect for the full sample. I find that one additional flood episodes in a county,

leads to an increase of 21.4% in flood-related patents that are filed with an assignee (Table

1.5). This suggests that the observed increase in flood-patenting in response to a flood episode

is likely driven by firm-affiliated inventors. When a flood episode occurs, they may be able

respond by switching between different areas of innovation more quickly and leverage their

existing infrastructure. However, given that 68% of inventors with assignee only file for a flood

adaptation patent once, this does not necessarily mean they are dedicated to flood innovation.

Rather, their ability to respond to local flood exposure may stem from their existing resources

and institutional support. In contrast, the results also suggests that the large share of flood-related
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patent applications applied for by individuals may not necessarily be the result of local flood

exposure, at least not in the short-run. It is worth noting that, under the specification with

assignee-listed patents, the moderating effect of insurance is statistically significant. Specifically,

the results suggest that a 1% increase in county-wide insurance coverage reduces the impact of

flooding on innovation from 21.4% to 18.9%. While the decrease is modest, it reinforces the

tentative findings of insurance moderation from the main specification.

In the final part of the analysis, I examine how the impact of flooding on innovation varies across

patents of different quality. Given that patent quality is notoriously difficult to measure and often

prone to errors, I use a simple indicator of whether the patent is granted as a proxy for quality to

subset my data. This includes approximately 75% of patents. The coefficient on one-year flood

exposure remains positive but is more noisy. Although this may in part be due to the reduced

sample size, the results suggest that flooding has a more significant effect on the number of

applications for patents that are not ultimately granted. This may indicate a lower quality of

applications, but other factors should also be considered. Patent applications are complicated

processes, often associated with high legal costs and requiring a strategic approach. Since the

majority of inventors only file for a flood-related patents once, they may have less expertise

in submitting effective applications in this area and may be unaware of conflicting patents.

Nonetheless, the results speak to the economic value of flood-related patenting post-flooding,

albeit that it is possible that inventors are also bringing their innovations to market through more

informal channels.
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Flood Patents with Assignee Granted Flood Patents
(1) (2)

# Episodes t-1 0.193∗∗∗ 0.047
(0.049) (0.038)

Population t-1 0.034 -0.066
(0.058) (0.041)

Income t-1 -0.069 -0.056
(0.066) (0.047)

Insurance Coverage t-1 -0.188 -0.115
(0.142) (0.121)

FEMA Assistance t-1 -0.007 -0.002
(0.007) (0.003)

# Episodes t-1 × Population t-1 0.000∗∗∗ 0.000
(0.000) (0.000)

# Episodes t-1 × Insurance Coverage t-1 -0.020∗∗∗ -0.003
(0.008) (0.004)

County X X
Year X X
County-Year Trends X X

Observations 1,807 2,418
Squared Correlation 0.35912 0.34536

Notes: This model is estimated using a Poisson pseudo-maximum likelihood estimator. Standard errors are in parenthesis and are
clustered at the county level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. The outcome variable in Model (1) is flood patents
with assignee at t. The outcome variable in Model (2) is flood patent applications that have been granted at t. The the main variable of
interest is # Episodes t-1. Population t-1 is in 10,000s, Income t-1 in $1000, Insurance Coverage t-1 in %, and FEMA Assistance t-1 in
$10,000,000

TABLE 1.5: Assignee and granted patents

42



Chapter 1: Local Flood Exposure and Flood Adaptation Innovation

1.6 Conclusion

Overall, the results of this study suggest that local flooding has a positive effect on the develop-

ment of innovations for flood adaptation. Using a new classification of flood adaptation patents in

the United States from 2007 to 2020, I find that one additional flood episode in a county leads to

an increase of 9.4% in flood-related patents filed by resident inventors in the following year. The

analysis suggests that this effect is the result of frequent, moderate flooding rather than extreme

events and more pronounced for patents with assignee and for patents that are applied for but not

ultimately granted. Furthermore, the response to flooding seems to occur promptly, with flood

episodes lagged by more than one year showing little to no impact on current innovative activity,

implying short-development horizons and/ or readily available opportunities for innovation in

flood adaptation. This stands in contrast to the finding of Miao and Popp (2014) who suggest

that the impact of flooding on flood-related patenting last up to 7 years after exposure, though

national-level analyses may involve other complicating dynamics.

The observed effect of flood exposure may be explained by inventors’ updated expectation

of future flooding, leading to profit- or protection-motivated innovation, or experience-based

learning. Though it is difficult to determine which mechanism is most prevalent, I find that

geographic proximity to the shock is key. Flood episodes in the rest of the state and in counties

in close social proximity do not influence the local development of flood adaptation innovation.

However, flood episodes in neighbouring counties have some effect, albeit to a lesser extent than

own-county flood episodes. This result may have different interpretations. For one, informational

frictions or reduced prominence of distant flood episodes, may lead to break down of risk-

updating, preventing demand-pull or protection-motivated innovation. Alternatively, flood

innovation may be hyper-local with inventors only responding to local flooding because they are

developing solutions for the local market where the environment is familiar. Furthermore, in the

absence or limited presence of these challenges, the importance of geographic proximity may also

point to a prevalence of protection-motivation or experience-based learning over demand-pull as

the underlying mechanism.
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Although I am unable to provide a causal analysis of the role of flood insurance in this context

due the lack of exogenous variation, there seems to be some suggestive evidence of a moderating

effect of flood insurance on the relationship between flood exposure and flood adaptation

innovation. Considering the sizeable cost of the National Flood Insurance Program and the

possible unintended consequences on flood adaptation innovation, this remains an important area

of future research. Key to exploring this further will be to identify exogenous variation in flood

insurance coverage which is challenging due to the often political dynamics in the management

of the NFIP. Future researchers may explore the variation introduced by the introduction of

NFIP’s new pricing approach in 2023. "Risk Rating 2.0" has replaced the static Flood Insurance

Rate Maps used to determine flood premia, providing a more accurate measure of flood risk and

significant changes to the cost of insurance for policy holders. Though this new pricing approach

is too recent to be exploited for the purpose of this paper, it provides a promising avenue for

further analysis of the suggestive findings of this paper.

Naturally, this study is not without caveats. Firstly, due to lack of data availability I am unable to

account for flood-induced changes in research and development spending. Though I approximate

changes in public investment via FEMA’s public assistance program and control for county levels

and trends, there is room for future researchers to explore this interaction further. Additionally,

I am unable to differentiate between different types of flood exposure beyond intensity due to

imprecision in the reporting nor am I able to examine the effect of varying types of damages

such as home damages, road closures, etc., due to the lack of granularity in the flood data and

geolocation of inventors. Finally, I believe there is value in constructing a more comprehensive

dataset of flood-related innovation beyond fixed construction or formal innovation.

Nonetheless, the findings of this paper present compelling evidence that the local experience of

the inventor plays a role in the development of adaptation innovation. Flooding, as an environ-

mental shock, can act as a catalyst for innovation activity. To a certain extent, inventors seem to

react to flood episodes rather than proactively preparing for them, potentially missing opportu-

nities to pre-emptively mitigate flood damage. The importance of local flood exposure, along
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with the significant presence of one-off inventors, points to a rather uncoordinated development

in flood adaptation innovation and a possible explanation for the slow progress that we have

observed so far. The development of flood adaptation innovations appears to be more incidental

driven by subjective experience of inventors rather than strategically planned. Improving the

dissemination of information about future flood risks or devising clear adaptation innovation

policy and incentives may help accelerate efforts in light of the ever-increasing damages of

flooding.
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1.A Appendix

1.A.1 Search Strategy

To identify flood-related patents, I filter for all patents within CPC Section ’E’ – ’Fixed Con-

struction’ – excluding those classified under E21 (’Earth or Rock Drilling; Mining’) and E99

(’Subject Matter Not Otherwise Classified’). I retain the title and abstract of each patent and

search for case-insensitive occurrences of: "flood", "storm surge" and "storm water". Rather

than a whole-word match, I use a substring search which does not require word boundaries.

This ensures that terms such as "flooding" and "storm surges" or alternative spelling such as

"stormwater" instead of "storm water" are also detected. I further eliminate all patents that

contain the world "toilet". The search yields 475 unique patent applications filed at the USPTO

by US resident inventors from 2007 to 2020.

Example: US10364564B2

Filing Year: 2018

CPC Classifications: E02B5/02; E03F1/002; E02B3/02; E02B3/04; E03F1/00; E02B11/00

Assignee: Individual

Title: Super drainage system and method for flood control

Abstract: A super drainage system and a method for flood control comprise an open channel, a

reinforced concrete conduit (RCC) inside the open channel. The RCC has a bottom

slab supported on a riverbed, a bank-side wall for retaining bank soils, and a top slab

elevated above a predetermined level. The RCC supports a road below the top of river

banks for traffic traveling along the river banks during normal weather conditions.

The traffic is either on the top slab or on the bottom slab. During extreme weather

conditions, traffic is evacuated from the super drainage system and the entire space is
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available for water conveyance.

Link to CPC Classification E: Link

1.A.2 Note on Interaction Term

An interaction term measures the change in marginal effect of one variable with respect to

changes in another and is defined by the cross-partial derivative: ∂ 2E[y|x]
∂x1∂x2

.

Consider first a linear model: E[y|x] = β0 +β1x1 +β2x2 +β3x1x2.

The marginal effect of x1 is: ∂E[y|x]
∂x1

= β1+β3x2 and the interaction effect is given by: ∂ 2E[y|x]
∂x1∂x2

= β3

In this case, the coefficient β3 on the interaction term directly represents the interaction effect,

making interpretation straightforward.

Now consider a Poisson model: E[y|x] = exp(β0 +β1x1 +β2x2 +β3x1x2).

The marginal effect of x1 becomes: ∂E[y|x]
∂x1

= exp(·) · (β1 +β3x2)

Applying the product rule, the interaction effect is: ∂ 2E[y|x]
∂x1∂x2

= exp(·) [β3 +(β1 +β3x1)(β2 +β3x2)]

As shown by Ai and Norton (2003), in non-linear models like this, the interaction effect depends

on all covariates and their values. Hence, β3 does not directly represent the interaction effect and

must be evaluated at specific covariate values with standard errors via the delta method.

However, the PPML model uses a log-link specification: logE[y|x] = β0 +β1x1 +β2x2 +β3x1x2.

The marginal effect of x1 on the log scale is: ∂ logE[y|x]
∂x1

= β1 +β3x2 and the interaction effect is:
∂ 2 logE[y|x]

∂x1∂x2
= β3

Thus, in the PPML estimation, interaction coefficients can be interpreted directly as changes

in the log of expected outcomes. Since coefficients are interpreted as semi-elasticities, the
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interpretation of β3 and the associated standard error remains valid and avoids the concerns

raised by Ai and Norton (2003).

1.A.3 Additional Descriptive Figures
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FIGURE 1.A.1: Assignee type listed on inventor applications
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FIGURE 1.A.2: Inventor - assignee location
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FIGURE 1.A.3: Inventor location scaled by number of patent applications

FIGURE 1.A.4: Average annual significant flood episodes and population 2007 - 2020
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1.A.4 Additional Result Tables and Figures

Notes: The plot displays the results of a permutation test conducted via Monte Carlo simulations over 1,000 iterations. The distribution
shows the p-values of the flood variable when flood episodes are reassigned randomly across counties. The vertical red-line represents
the 95% confidence threshold. The vertical red line marks the 95% significance threshold, with p-values falling below this line
indicating statistical significance. The outcome variable is flood patent applications at t. Coefficients are estimated using a Poisson
pseudo-maximum likelihood estimator that incorporates the same control variables and their associated lags as in the main specification,
along with county fixed effects, year fixed effects, and county-year trends. Standard errors are clustered at the county level.

FIGURE 1.A.5: Distribution of p-values in randomisation test
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Notes: The plot depicts the 95% confidence intervals for flood episodes at t-3, t-2, t-1 and t. The outcome variable is flood patent
applications at t. Coefficients are estimated using a Mundlak approach with a Poisson pseudo-maximum likelihood estimator that
incorporates the same control variables and their associated lags as in the main specification, along with county-level means of the
covariates, year fixed effects, and county-year trends. Standard errors are clustered at the county level.

FIGURE 1.A.6: Lag analysis - Mundlak approach
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Notes: The plot depicts the 95% confidence intervals for flood episodes at t-3, t-2, t-1 and t. The outcome variable is the share of
flood patent applications at t. Coefficients are estimated using a Poisson pseudo-maximum likelihood estimator that incorporates the
same control variables and their associated lags as in the main specification, along with county fixed effects, year fixed effects, and
county-year trends. Standard errors are clustered at the county level.

FIGURE 1.A.7: Lag analysis - share of flood patents
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Notes: The plot depicts the 95% confidence intervals for flood episodes at t-3, t-2, t-1 and t. The outcome variable is flood patent
applications (including forecast innovation) at t. Coefficients are estimated using a Poisson pseudo-maximum likelihood estimator that
incorporates the same control variables and their associated lags as in the main specification, along with county fixed effects, year fixed
effects, and county-year trends. Standard errors are clustered at the county level.

FIGURE 1.A.8: Lag analysis - including forecast innovation
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Flood Patents
(1) (2) (3)

# Episodes t-1 0.075∗∗∗ 0.074∗∗∗ 0.089∗∗∗

(0.027) (0.028) (0.027)
# Episodes State t-1 0.003

(0.002)
# Episodes Neighbouring Counties t-1 0.015

(0.010)
Social Connectivity Weighted # Episodes t-1 0.003

(0.013)
Controls Yes Yes Yes

Year FEs X X X
County-Year Trends X X X
County-Means X X X

Observations 40,027 40,027 40,027
Squared Correlation 0.31771 0.32086 0.31971

Notes: This model is estimated using a Mundlak approach with a Poisson pseudo-maximum likelihood estimator. Standard errors are
in parenthesis and are clustered at the county level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. Model (1) estimates the
effect of adding flood episodes outside the county but within the same state. Model (2) estimates the effect of adding flood episodes in
neighbouring counties. Model (3) estimates the effect of adding flood episodes in socially connected counties. The outcome variable is
share of flood patent applications at t. Controls include Population t-1, Income t-1, Insurance Coverage t-1, FEMA Assistance t-1,
Population t-1 x # Episodes t-1 and Insurance Coverage t-1 x # Episodes t-1.

TABLE 1.A.1: Locality of flooding - Mundlak approach

Share of Flood Patents
(1) (2) (3)

# Episodes t-1 0.050 0.073 0.091
(0.063) (0.066) (0.064)

# Episodes State t-1 0.005
(0.005)

# Episodes Neighbouring Counties t-1 0.031
(0.029)

Social Connectivity Weighted # Episodes t-1 0.009
(0.033)

Controls Yes Yes Yes

Year FEs X X X
County FEs X X X
County-Year Trends X X X

Observations 2,860 2,471 2,247
Squared Correlation 0.38794 0.40844 0.37513

Notes: This model is estimated using a Poisson pseudo-maximum likelihood estimator. Standard errors are in parenthesis and are
clustered at the county level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. Model (1) estimates the effect of adding flood
episodes outside the county but within the same state. Model (2) estimates the effect of adding flood episodes in neighbouring counties.
Model (3) estimates the effect of adding flood episodes in socially connected counties. The outcome variable is share of flood patent
applications at t. Controls include Population t-1, Income t-1, Insurance Coverage t-1, FEMA Assistance t-1, Population t-1 x #
Episodes t-1 and Insurance Coverage t-1 x # Episodes t-1.

TABLE 1.A.2: Locality of flooding - share of flood patents
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Flood Patents
(1) (2) (3)

# Episodes t-1 0.091∗∗ 0.064∗ 0.096∗∗

(0.037) (0.038) (0.040)
# Episodes State t-1 0.001

(0.002)
# Episodes Neighbouring Counties t-1 0.038∗∗∗

(0.014)
Social Connectivity Weighted # Episodes t-1 0.024∗

(0.014)
Controls Yes Yes Yes

Year FEs X X X
County FEs X X X
County-Year Trends X X X

Observations 2,628 2,293 2,113
Squared Correlation 0.34095 0.36870 0.37584

Notes: This model is estimated using a Poisson pseudo-maximum likelihood estimator. Standard errors are in parenthesis and are
clustered at the county level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. Model (1) estimates the effect of adding flood
episodes outside the county but within the same state. Model (2) estimates the effect of adding flood episodes in neighbouring counties.
Model (3) estimates the effect of adding flood episodes in socially connected counties. The outcome variable is flood patent applications
(including forecast innovation) at t. Controls include Population t-1, Income t-1, Insurance Coverage t-1, FEMA Assistance t-1,
Population t-1 x # Episodes t-1 and Insurance Coverage t-1 x # Episodes t-1.

TABLE 1.A.3: Locality of flooding- including forecast innovation
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Notes: The plots depict the 95% confidence intervals of the flood variable under different specifications. Plot 1 shows the coefficient
for # Episodes t-1 when the outcome variable is share of flood patent applications at t. Plot 2 shows the coefficient for # Episodes t-1
when the outcome variable is flood patent applications including forecast innovation. Plot 3 shows the coefficient for # Episodes t-1
based on the assignee location. Coefficients are estimated using a Poisson pseudo-maximum likelihood estimator that incorporates the
same control variables and their associated lags as in the main specification, along with county fixed effects, year fixed effects, and
county-year trends. Standard errors are clustered at the county level.

FIGURE 1.A.9: Robustness - Mundlak approach
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Notes: The plots depict the 95% confidence intervals of the flood variable under varying definitions. Plot 1 shows the coefficient of
the flood variable when flooding is measured by # significant episodes at t-1. Plot 2 shows the coefficient of the flood variable when
flooding is measured by # deaths at t-1. Plot 3 shows the coefficient of the flood variable when flooding is measured by property
damages at t-1. The outcome variable is flood patent applications at t. Coefficients are estimated using a Poisson pseudo-maximum
likelihood estimator that incorporates the same control variables and their associated lags as in the main specification, along with county
fixed effects, year fixed effects, and county-year trends. Standard errors are clustered at the county level.

FIGURE 1.A.10: Flood intensity - Mundlak approach
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Flood Patents with Assignee Granted Flood Patents
(1) (2)

# Episodes t-1 0.180∗∗∗ 0.053
(0.032) (0.033)

Population t-1 0.062∗∗∗ 0.030∗∗∗

(0.023) (0.011)
Income t-1 -0.032 -0.032

(0.033) (0.031)
Insurance Coverage t-1 -0.157 -0.073∗

(0.112) (0.044)
FEMA Assistance t-1 -0.004 -0.001

(0.004) (0.002)
# Episodes t-1 × Population t-1 0.000∗∗∗ 0.000

(0.000) (0.000)
# Episodes t-1 × Insurance Coverage t-1 -0.019∗∗∗ -0.003

(0.007) (0.004)

Year X X
County-Year Trends X X
County-Means X X

Observations 40,027 40,027
Squared Correlation 0.26191 0.32088

Notes: This model is estimated using a Mundlak approach with a Poisson pseudo-maximum likelihood estimator. Standard errors are in
parenthesis and are clustered at the county level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. The outcome variable in Model
(1) is flood patents with assignee at t (including forecast innovation). The outcome variable in Model (2) is flood patent applications that
have been granted at t (including forecast innovation). The main variable of interest is # Episodes t-1. Population t-1 is in 10,000s,
Income t-1 in $1000, Insurance Coverage t-1 in %, and FEMA Assistance t-1 in $10,000,000.

TABLE 1.A.4: Assignee and granted patents - Mundlak approach
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Flood Patents with Assignee Granted Flood Patents
(1) (2)

# Episodes t-1 0.183∗∗∗ 0.073∗

(0.052) (0.043)
Population t-1 -0.006 -0.085∗

(0.076) (0.049)
Income t-1 -0.010 -0.008

(0.081) (0.058)
Insurance Coverage t-1 -0.543 -0.071

(0.365) (0.200)
FEMA Assistance t-1 -0.005 -0.002

(0.006) (0.003)
# Episodes t-1 × Population t-1 0.000∗∗ 0.000

(0.000) (0.000)
# Episodes t-1 × Insurance Coverage t-1 -0.026∗∗ -0.005

(0.012) (0.006)

County X X
Year X X
County-Year Trends X X

Observations 1,680 2,172
Squared Correlation 0.35571 0.33762

Notes: This model is estimated using a Poisson pseudo-maximum likelihood estimator. Standard errors are in parenthesis and are
clustered at the county level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. The outcome variable in Model (1) is flood patents
with assignee at t (including forecast innovation). The outcome variable in Model (2) is flood patent applications that have been granted
at t (including forecast innovation). The main variable of interest is # Episodes t-1. Population t-1 is in 10,000s, Income t-1 in $1000,
Insurance Coverage t-1 in %, and FEMA Assistance t-1 in $10,000,000.

TABLE 1.A.5: Assignee and granted patents - including forecast innovation
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2.1 Introduction

The existence of anthropogenic climate change is well-established today. In 2023 global CO2

emissions reached a record high of 37.4 billion tonnes (IEA 2023), coinciding with global

temperature reaching their highest levels since the start of global weather recordings in 1850

(NOAA National Centers for Environmental Information 2023). Since 1993, global sea levels

have increased by around 10 centimetres, averaging 3.4 millimetres per year and the water loss

of mountain glaciers since 1970 reached 26 metres in 2022 (NOAA National Centers for Envi-

ronmental Information 2025). As certainty over the existence of climate change has grown, so

have the efforts to mitigate it. An important component of this has been technological innovation

such as advancements in renewable energies, energy efficiency, transportation, agriculture and

emerging technologies such as carbon capture and storage. In fact, green patents have grown by

500 % from 2000 - 2019 (IPO UK 2024), far outperforming other technologies.

However, significant uncertainty remains over the extent of climate change with estimated tem-

perature increases varying anywhere between 1.4◦C to 4.4◦C by the end of the century compared

to pre-industrial levels (IPCC 2023). Even more uncertainty remains over the magnitude, ge-

olocation and frequency of climate damages. Aside from the scientific uncertainty, there also

remains significant socio-economic uncertainty introduced by unpredictability of government,

firm and individual decision-making. Nonetheless, we have already seen some of the impacts

of climate change. In 2022, the international disaster database, EM-DAT, recorded over 12,000

lives lost in climate disasters (Save the Children International 2023) and a recent study suggests

that climate damages between 2000 and 2019 already resulted in annual financial losses of

$143 billion (Newman and Noy 2023). Similar to mitigation, innovation in climate adaptation

can play a pivotal role in addressing the novel challenges posed by climate change, given its

unprecedented scale, distribution, scope and the often limited availability of adaptive strategies

due to pre-existing built environments, social constraints, economic ties and financial costs.

However, in contrast to mitigation, the share of adaptation patents remained constant from 1995

to 2015 (Dechezlepretre et al. 2020).
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In this paper, I present a theoretical model to analyse how the persistent and significant uncertainty

surrounding climate outcomes may be impacting inventors for climate adaptation and their

decisions to invest. Using a real option valuation approach, I find that the continuous uncertainty

over the market for adaptation and the anticipation of rare climate disasters can raise the

investment threshold whereas uncertainty over future scientific discoveries may have a more

ambiguous effect. Extending the lifetime of patents can mitigate the effect of the uncertainties,

but all outcomes are largely dependent on inventors’ subjective expectations. In terms of policy,

climate treaties, pledges and mandates may lower uncertainty and decrease the investment

threshold, but under certain circumstances, their anticipation alone can lead to further delays

in investment. Competition incentives and innovation protections may also be viable policy

options but need to be designed in consideration of each other. Though inventors in all sectors of

the economy are exposed to uncertainty, I propose the complexities of uncertainty in climate

adaptation warrant a more careful consideration, may contribute to the stagnant growth over time

and point to a possible need for more distinct policy action.

My contribution to the literature is two-fold. Firstly, I contribute to the very limited literature

on innovations for climate adaptation, which has thus far primarily focused on the demand side,

with researchers exploring topics such as the diffusion of patents for climate change adaptation

(Dechezlepretre et al. 2020), efficiency of adaptation portfolios (Berrang-Ford et al. 2019) and

barriers to adoption (Tambo and Abdoulaye 2012; Darkwa et al. 2016; Prince et al. 2013). On

the supply side there are few empirical studies which have focused on exploring adaptation

innovation in response to climate disasters (Miao and Popp 2014; Miao 2020; Dechezlepretre

et al. 2020). This paper furthers the study of supply-side dynamics in adaptation innovation by

taking climate uncertainty into consideration and introducing a theoretical framework to study

the decision-making of the inventors.

My second contribution is to the literature on real option theory through an extension of its

application in the context of climate adaptation innovation. Originating in finance in the 1970s,

real option theory has received increasing attention in various research areas following its
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translation to general investment decisions under uncertainty in the seminal works of McDonald

and Siegel (1986) and Dixit and Pindyck (1994). In the innovation literature, real option theory

has been applied to study a variety of topics, such as uncertainty over future cash flows (Bloom,

Bond, and Van Reenen 2001), choice between different R&D projects (Childs and Triantis 1999),

process uncertainty (Berk, Green, and Naik 2004), the timing of patent filings and abandonments

(Jou 2018), and the impact of R&D uncertainty on market valuation of firms (Bloom and Van

Reenen 2002; Oriani and Sobrero 2008). Similarly, real option theory has also found applications

in environmental economics; for example in the study of natural resource management (Cortazar

and Casassus 1998; Insley 2002; Laughton and Jacoby 1993; Saphores 2001) and decision-

making for environmental policy (Wesseler and Zhao 2019). In the context of climate economics

specifically, real option theory has predominantly been studied as a tool to empirically evaluate

investments in mitigation and adaptation projects, focusing on examining the difference in

evaluation approaches and often contrasting net present value calculations with a real option

valuation approach (Abadie, Sainz de Murieta, and Galarraga 2017; Linquiti and Vonortas 2012;

Woodward, Gouldby, Kapelan, et al. 2011; Heumesser et al. 2012). In this paper, I integrate

these strands of literature to develop a theoretical model tailored to the unique dynamics and

uncertainties of climate adaptation innovation. Despite the clear significance of uncertainty in

this context and the widespread use of real options theory, to the best of my knowledge, it has

not been applied here but offers a valuable framework for analysing the dynamics and observed

trends in climate adaptation innovation.

The rest of the paper is structured as follows. I will begin by presenting some economic

characteristics of climate adaptation innovation and a brief introduction to real option theory. I

will then introduce the theoretical framework and analysis of the impact of climate uncertainty

on inventors’ decision-making in climate adaptation. This will be followed by a discussion of

selected policy options and a conclusion.
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2.2 Background

2.2.1 Climate Adaptation Innovation

Although both adaptation and mitigation innovations are linked to climate change, they differ in

their economic characteristics. The benefits of climate mitigation innovations are a global public

good. The benefits of reduced emissions and mitigated climate change are non-excludable and

non-rival, resulting in little private incentives for investment and presenting a standard case for

government intervention. Conversely, the benefits of climate adaptation can be either private

or public. For example, innovations in flood-proofing for households provide private benefits,

while innovations in dams and dikes offer public benefits enjoyed by many. Consequently,

there exist private incentives for investment in climate adaptation to some extent and the need

for government intervention beyond addressing knowledge externalities, common across all

innovation, is less straightforward. Given this difference in economic incentives, the theoretical

analysis of mitigation innovation cannot directly be applied to adaptation innovation. At the

same time, the unique nature of climate change and its uncertainties present distinct market

dynamics for climate adaptation innovation compared to other innovation.

In this paper, I will consider adaptation innovation as any scientific or technological developments

that help limit or prevent the impacts of climate change. Among many others these may include

innovations for drainage systems, cool roof designs, forecasting technologies or drought-resistant

crops. The end users of adaptation innovations may be local or national governments, firms, or

individuals. Given the wide range of climate change impacts, adaptation innovations span across

various sectors and are influenced by diverse sector dynamics. Although this paper focuses on

uncertainty as a common aspect of climate innovations across all sectors, there is room for future

research to focus on specific sectors and account for their unique dynamics.

The limited evidence so far suggests that the market for adaptation is primary local, with no

significant patent dispersion across borders (Dechezlepretre et al. 2020). However, it remains
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unclear whether this is because bespoke local solutions are required due to factors such as

pre-built environments, compatibility across systems, local preferences, or because there are

other barriers, such as informational or legal obstacles, that prevent the spread of innovations.

2.2.2 Real Option Theory

In classical economic theory, uncertain outcomes are traditionally modelled using a net present

value approach. However, this approach assumes that all possible outcomes are known at the time

of decision-making and there is no volatility in the outcomes over time. Net present valuation

further assumes that the decision is a one-time opportunity and the investment must be made

immediately or not at all. In contrast, real option valuation allows for stochastic development of

outcomes over time and flexibility in the timing of investments, enabling inventors to trade off

the value of investing today with the value of the option to invest in the future. There is no “now

or never” assumption as there is in net present value calculation and the option to be able to invest

in the future holds value in itself. For example, let us assume we have an investment opportunity

that, depending on the market conditions in the next period and with equal probability, will yield

20 or 5 each period from then onwards. With an investment cost of 100 and discount rate of 10%,

the net present value of the future cash flows is 25
1
. Since this is positive, the valuation suggests

we should invest today. Now, let us look at the real option valuation of the investment opportunity.

If we wait one period, we will know whether we are facing favourable or unfavourable market

conditions. If the market conditions are favourable, we will invest and receive 20 each period

onwards; if the market conditions are unfavourable, we will abandon the investment opportunity.

The real option value is 45.45
2
. While the parameters remain the same, having the option to wait

increases the value of the investment opportunity by 20.45.

In the context of climate adaptation innovation, I propose that a real option valuation framework is

better suited. Due to the significant scientific and socio-economic uncertainty of climate damages,

1 −100+∑
∞
t=1(0.5 ·20+0.5 ·5)/(1.1)t = 25

2 0.5 · [−100/1.1+∑
∞
t=2 20/(1.1)t ]+0.5 ·0 = 45.45
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the value of climate adaptation evolves stochastically, with no deterministic probabilities for

all future outcomes over time. Though inventors learn the value of adaptation innovation every

period uncertainty always remains. Inventors are not obliged to make a decision today but hold

flexibility to delay their investment decision.

2.3 Theoretical Analysis

2.3.1 Baseline Model

The baseline framework I adopt relies on the established mathematical formulations of investment

under uncertainty by Dixit and Pindyck (1994). While I preserve the core mathematical structure

of the framework, I apply and reinterpret its parameters in the context of decision-making for

climate adaptation innovation. I focus on the option of the inventor to defer their investment

decision rather than operating options or options to switch between technologies. Though the

baseline framework yields similar comparative static results to those in general cases of value

uncertainty, I later extend this framework to account for the more unique uncertainties associated

with the market for climate adaptation innovation.

I begin with a simple model of an inventor who has the option to engage in research for climate

adaptation at an irreversibly fixed cost I. When the inventor engages in research, she produces a

climate adaptation patent which generates royalties every period, resulting in a series of cash

flows Vt . However, royalties from the innovation are not paid indefinitely. They may cease if a

more advanced adaptation patent supersedes the original, the original patent expires, or it faces

legal challenges. The lifetime of patent royalties following the development of the innovation,

denoted by T , follows a Poisson process with probability θ dT that royalties drop to zero over

the interval dT .

The source of uncertainty in this analysis lies in the value of the adaptation patent royalties
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rather than technological uncertainties such as feasibility and costs of developing the adaptation

innovation. This means that arrival of information over time is driven by market developments

rather than insights from the research and development process itself. Learning is external rather

than internal. At the point of investment, the value of the royalties for the climate adaptation

innovation is uncertain due to uncertainties in the market that arise due to a variety of factors,

for example ambiguity over spatial distributions or intensity of climate damages. Royalties

therefore exhibit some random movements σV dz over time, where σ is a constant describing the

volatility parameter and dz is the increment of the continuous-time stochastic Wiener process, zt .

Predictability of future royalties decreases over time modelled by linearly increasing variance

dz = ε
√

dt, where ε is a standard normal random variable. Furthermore, I assume that the value

of the adaptation patent exhibits some positive trend over time driven by economic growth and an

expanding market for climate adaptation innovation due to past and predicted consistent upward

trends in climate damages. This is described by αV dt where α is a constant describing the drift

parameter. I assume increments in adaptation patent royalties dV are independent and royalties

are not normally but log-normally distributed. They may never be negative and are likely skewed

to the right due to the existence of rare, high-value disruptive adaptation innovation that result

in high royalties. For example, a new meteorological AI technology that radically improves

predicability of hurricane paths, limiting extremely expensive damages may be an adaptation

innovation with exceptional impact and high royalties. Finally, I assume the Markov property

holds suggesting that all relevant information on future royalties, Vt+1, is contained in the current

value of the royalties, Vt . The resultant continuous stochastic process is a standard geometric

Brownian Motion with drift of the form:

dV = αV dt +σV dz (2.1)

with the generic solution
3
:

3 See Appendix 2.A.1.1
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Vt =V0 e(α− 1
2 σ2)t+σzt

and

E[Vt ] =V0 eαt

(2.2)

Every period the inventor receives information by learning the value of Vt based on the de-

velopments in the market for adaptation innovation but the value of future royalties remains

uncertain.

The present value of the royalties assuming the random lifetime of the patent, T , is
4
:

E[
∫ T

0
Vte−ρt dt] =V0

e(α−ρ)T −1
α −ρ

(2.3)

where ρ is the discount rate and V0 represents the value of the initial royalties of the adaptation

patent.

The lifetime of the royalties is given by the standard exponential cumulative probability function:

1− e−θT (2.4)

with the associated probability density function:

θe−θT (2.5)

When the inventor decides to invest, she receives a termination payoff equal to the present value

of the royalties over the lifetime of the patent, net of the investment cost
5
:

4 See Appendix 2.A.1.2
5 See Appendix 2.A.1.3
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∫
∞

0
θ e−θT V0

e(α−ρ)T −1
α −ρ

dT − I =
1

ρ +θ −α
V0 − I (2.6)

For the integral to converge we require ρ +θ > α . If the growth trend of patent royalties exceeds

the effective discount rate including both time discounting and the risk of patent expiry, the

innovation value will not be bounded, and the inventor will always invest immediately. While

unbounded innovation value may be possible, it represents a different scenario from the one I

aim to capture in this model.

Every period the inventor decides whether to invest and innovate for climate adaptation or wait

another period, i.e. hold or trigger the option. I assume that there is no fixed finite time horizon

for this innovation opportunity so that the value of the option is common across all periods and

denoted by the Bellman equation F(V ):

F(V ) = max{ 1
ρ +θ −α

V − I,
1

1+ρ
E[F(V ′)|V ]} (2.7)

where 1
ρ+θ−α

V − I is the termination payoff, V ′ is the value of the royalties in the next period and

1
1+ρ

E[F(V ′)|V ] is the expected payoff if she continues to wait. The inventor may hold multiple

of such innovation options for climate adaptation at any point in time, each associated with a

unique value function and investment costs. For the purpose of this paper, I will assume that

these innovation decisions are additive in nature and therefore consider a single representative

decision.

To analyse the investment decision of the inventor under varying levels of uncertainty, I stipulate

that there exists some value V ∗ for which V <V ∗ the inventor continues to wait and for which

V > V ∗ she engages in research to develop her climate adaptation innovation. She does not

receive any cash flows from having the option to engage in research except for earning interest

on capital, which I assume to be equal to the discount rate. Therefore, in the continuation region
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where V <V ∗ the Bellman equation can be re-written as
6
:

ρF(V )dt = E[dF ] (2.8)

We can expand dF using Itô calculus, omitting terms that go faster to zero than dt and taking

expectations
7
:

E[dF ] = E[F ′(V )dV +0.5F ′′(V )(dV )2] (2.9)

The Bellman equation in the continuation region thus becomes the homogeneous second order

differential equation:

F ′(V )αV +0.5F ′′(V )σ2V 2 −ρF(V ) = 0 (2.10)

Boundary Condition 1: When the value of the royalties is zero, the value of the option to develop

a patent for climate adaptation that would create such royalties is zero:

F(0) = 0 (2.11)

Boundary Condition 2: The value of the option at the point of the investment is equal to the

termination payoff, i.e. the value of the climate adaptation patent minus the cost of investment.

If the value of the investment opportunity was higher than the payoff the inventor should not

invest and innovate but continue to wait:
6 See Appendix 2.A.1.4
7 See Appendix 2.A.1.5
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F(V ∗) =
1

ρ +θ −α
V ∗− I (2.12)

Boundary Condition 3: Finally, I assume "smooth pasting" such that the derivative of the payoff

function is equal to the derivative of the value function at the optimal stopping value. If this is

not the case, then there is a discontinuity and the stopping value is not optimal:

F ′(V ∗) =
1

ρ +θ −α
(2.13)

Assuming a functional form F(V ) = AV γ to solve the second order differential equation we

arrive at
8
:

(α −0.5σ
2)γ +0.5σ

2
γ

2 −ρ = 0 (2.14)

with roots:

γ1 =
−(α −0.5σ2)+

√
(α −0.5σ2)2 +2σ2ρ

σ2 > 1

γ2 =
−(α −0.5σ2)−

√
(α −0.5σ2)2 +2σ2ρ

σ2 < 0

(2.15)

and the general solution of the second order differential equation:

F(V ) = A1V γ1 +A2V γ2 (2.16)

However, V γ2 approaches ∞ when V = 0 which means the boundary condition F(0) = 0 implies

A2 = 0, resulting in F(V ) = A1V γ1 . For simplicity of notation, in the remainder of the analysis,

I will redefine A1 = A and γ1 = γ . We can use remaining boundary conditions to solve for the

8 See Appendix 2.A.1.6
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investment threshold, V ∗9
:

V ∗ =
γ

γ −1
I (ρ +θ −α)

δV ∗

δγ
> 0

(2.17)

Since δγ1
δσ

> 0 (Eq. 2.15), the higher the uncertainty of the future value of the adaptation patent

royalties, i.e. higher volatility of its random movements, the higher the critical value of the initial

royalties V ∗ for which it is optimal to trigger the option and invest. In other words, the threshold

to invest and innovate for climate adaptation increases with increasing uncertainty over the value

of its future royalties. There is higher value in waiting and observing the development of Vt until

it reaches V ∗. This is the common result of higher value uncertainty in real option valuation

investment models.

To illustrate these results, I have included some numerical examples of the investment threshold

shown in Figure 2.1. The parameters are set as follows: the investment cost of the innovation

at I = 10, the interest rate at ρ = 0.05 and the parameter describing the uncertainty over the

lifetime of the climate adaptation patent royalties at θ = 0.1. The red dotted line shows V ∗

in the absence of a growth trend in the value of climate adaptation innovation. In this case,

when there is no volatility, the investment threshold is 1.5. The blue line shows the investment

threshold with a drift rate of α = 0.01. In both cases, higher volatility increases V ∗ exponentially.

With α = 0.01, under low uncertainty, for instance σ = 0.01, the value at which the adaptation

becomes a worthwhile investment is 1.7586. However, as uncertainty increases, such as σ = 0.2,

the investment threshold, V ∗, rises to 3.0455 (Table 2.1). With greater uncertainty, the value of

the initial royalties must be significantly higher for the inventor to invest and innovate in climate

adaptation. Increased uncertainty in the market for climate adaptation innovation elevates the

risk associated with investing today and raises the value of the option to delay the decision.

Simple in its form, the baseline model provides the theoretical foundation to analyse the effect

9 See Appendix 2.A.1.7
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of climate uncertainty in the development of adaptation innovation. The return to investments

in research and development of all innovations involve various uncertainties, including market

uncertainty, which result in the random movements, represented by σ in the model. For climate

adaptation innovations, market uncertainty is particularly pronounced because their values are

derived from their ability to protect from climate damages which are not only highly uncertain

but also subject to interdependent and compounding uncertainties across multiple dimensions.

For instance, although considerable strides have been made in climate sensitivity analysis and

the impacts of greenhouse gas emissions on global temperature, predictions are not definite and

are primarily presented as probability distributions rather than specific estimates which diverge

significantly with increasing estimation horizons. Furthermore, even with accurate estimations

of the impact of greenhouse gases on global temperatures, there remains much uncertainty

regarding future emissions which are dependent on a variety of factors such as government

mandates, firm and household decisions as well as technological advancement. Finally, even if

these were known with certainty, there remains a tremendous amount of uncertainty regarding

the implications and damages of higher temperatures including magnitude, spatial distributions

and the mitigating or enhancing effect of socioeconomic developments. Inventors in climate

adaptation are facing an underdeveloped, highly uncertain market, making the expected payoff

of innovation also highly uncertain. The implications of this can be modelled through a high

volatility parameter, σ , resulting in delayed investments in climate adaptation innovation and

a high investment threshold, thus providing a theoretical explanation, at least in part, for the

observed slow growth.

It is worth noting that in this model, the inventor faces a single decision: once the investment is

made, they have no option but to complete the project. More generally, research and development

may occur over several stages, and at each stage, the inventor may decide to abandon the project

rather than continue investing. However, within this framework, an inventor who invests in

stage one of the project will proceed to invest in the following stages until the innovation is

complete. To illustrate this I present a two-stage model in the Appendix 2.A.2. The mathematical

workings show that the investment threshold of the first stage will always exceed the one of the
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Note: This figure plots the investment threshold for the climate adaptation innovation under different volatility parameters. The
investment cost is fixed at I = 10 with interest rate at ρ = 0.05 and the uncertainty parameter for the lifetime of the patent royalties at
θ = 0.01. The different curves depict the impact of the volatility parameter on the investment threshold under varying trend rates, α .

FIGURE 2.1: Investment threshold with increasing volatility

second stage and the inventor will complete the innovation. For the remainder of the paper, I

will therefore focus on the singular investment decision.
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σ γ A V*

0.0100 4.9043 40.8135 1.7586
0.0200 4.6590 40.3942 1.7826
0.0300 4.3457 40.1878 1.8184
0.0500 3.7284 41.1661 1.9131
0.0700 3.2323 43.9746 2.0272
0.1000 2.7016 50.8524 2.2228
0.1200 2.4480 56.9132 2.3669
0.1500 2.1645 68.0591 2.6023
0.1700 2.0205 76.8794 2.7719
0.2000 1.8508 92.3295 3.0455

Notes: This table shows the results for the investment threshold, V ∗, and the parameters of the value function, γ and A, under varying
levels of volatility, σ . The investment cost is fixed at I = 10, with interest rate at ρ = 0.05, the uncertainty parameter for the lifetime of
the patent royalties at θ = 0.01 and a positive drift in patent royalties at α = 0.01.

TABLE 2.1: Investment threshold - baseline model

2.3.2 Climate Disasters

Following the results of the baseline model, I shift to consider additional uncertainty dynamics

in climate adaptation and their respective implications for the inventor’s decision-making.

A key component of the uncertainty associated with climate damages are climate disasters such

as the Australian wildfires in 2020, the German floods in 2021 or the Southeast Asian floods

in 2022. These are rare and extreme events with a small probability of occurrence but usually

result in significant human and economic damages. This phenomenon is commonly modelled by

fat-tails in climate damage distributions in the literature (Weitzman 2011). Following climate

disasters, research has shown demand for climate adaptation increases (McFadden, Smith,

and Wallander 2022; Zaalberg et al. 2009; Tasantab, Gajendran, and Maund 2022; Kreibich

et al. 2005; Grothmann and Reusswig 2006). Reasons for this include protection motivation,

updated expectations of future damages or policy changes. I propose that these are not just
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short-term reactions to the shock, but long-lasting shifts driven by climate disasters signalling the

risk of future climate damages and importance of adaptation. For climate adaptation innovation,

climate disasters can thus result in rare, sudden and significant positive jumps in the value of

adaptation technologies as demand increases. The uncertainty over climate disasters differs

from the random fluctuations discussed in the baseline model; they are rare and discrete, and

therefore cannot be modelled by the continuous volatility parameter, σ . It should be noted

that climate disasters could also result in negative jumps in the patent value if a disaster is so

severe that it unveils the adaptation innovation as an inadequate protection. However, for the

purpose of this discussion, I will focus on the more probable scenario of positive value impacts.

In our model, we can add uncertainty of climate disasters by introducing Poisson jumps to the

geometric Brownian motion:

dV = αV dt +σV dz+uV dq (2.18)

where dq represents the increment of the Poisson process. For simplicity, I assume that jumps

are discrete in size and increase the royalties of the adaptation patent by some percentage u such

that the royalty after the occurrence of a climate disaster can be described by (1+u)V . Certainly,

in reality, the scale of climate disasters and thereby the jump in royalties is not discrete and

may vary. This could be modelled by a log-normal distribution of u. However, incorporating

distributional jump sizes into the model requires a significantly more complex solution approach

without offering additional insights within the scope of the paper. Due to the impact of climate

disasters stretching beyond a short-term reaction, the jump in value is permanent. The arrival

rate of climate disasters is described by λ such that the probability over a small interval of time

is described by λdt. In other words, in each time period dt, the probability of a climate disaster

occurring and leading to a jump in the value of the adaptation patent is λ .

The present value of the royalties at the point of investment now include the possibility of climate
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disasters
10

:

E[
∫ T

0
Vte−ρt dt] =V0

e(α+λu−ρ)T −1
α +λu−ρ

(2.19)

The termination payoff, net of investment costs is
11

:

∫
∞

0
θ e−θT V0

e(α+λu−ρ)T−1

α −ρ
dT − I =

1
ρ +θ −α −λu

V0 − I (2.20)

Using Itô calculus to expand dF , noting that we can ignore higher order derivatives of dq

which approach zero faster as dt approaches zero, and taking expectation, the Bellman equation

becomes
12

:

ρF(V )dt = E[dF ]

= αV F ′(V )dt +0.5F ′′(V )σ2V 2dt +λ [F((1+u)V )−F(V )]dt
(2.21)

Following the same logic as the baseline model, the new boundary conditions are:

F(0) = 0

F(V ∗) =
1

ρ +θ −α −λu
V ∗− I

F ′(V ∗) =
1

ρ +θ −α −λu

(2.22)

Assuming the same functional form as before AV γ , we can solve the Bellman equation to get the

following quadratic equation:

10 See Appendix 2.A.3.1 and 2.A.3.2
11 See Appendix 2.A.3.1
12 See Appendix 2.A.3.4

82



Chapter 2: Climate Uncertainty: Real Option Theory in Climate Adaptation Innovation

γαVAV γ−1 +0.5σ
2V 2

γ(γ −1)AV γ−2 +λA(1+u)γV γ −λAV γ −ρAV γ = 0

(α −0.5σ
2)γ +0.5σ

2
γ

2 − (λ +ρ)+λ (1+u)γ = 0
(2.23)

Finally, the new boundary conditions imply
13

:

V ∗ =
γ

γ −1
I

1
ρ +θ −α −λu

(2.24)

The quadratic equation is more complicated but can be solved numerically. I set the volatility

parameter at σ = 0.1 and maintain all other parameters from the reference model to ensure

comparability between results. Similar to the reference model, I calculate the investment

threshold, V ∗ but this time in the presence of climate disaster uncertainty modelled by the

Poisson jumps. The numerical results under different arrival rates and jump sizes are presented

in Figure 2.2. Accounting for climate disaster in the valuation of the adaptation patent (λ > 0),

increases the investment threshold and the value of the option to wait. This effect is exponentially

increasing in the magnitude of the jump, u, and more significantly with the probability of the

jump, λ . Some numerical results are presented in Table 2.2 for reference. This table also

includes the equivalent volatility parameter of the reference model that would result in the same

increase in the investment threshold. Assuming a 2% risk of a climate disaster occurring over

the time interval dt and a magnitude of the impact on the value of adaptation patents of 10%, the

investment threshold increases from 2.2228 to 2.2839. Increasing the size of the impact to 30%

raises the investment threshold to 2.4782, equivalent to a volatility of σ = 13.45%. Increasing

the likelihood of the climate disaster from 2% to 10%, the increase in the investment threshold

with a jump size of 30 percent is equivalent to a volatility of σ = 47.35%.

13 See Appendix 2.A.3.5
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Note: This figure plots the investment threshold, V ∗, for the climate adaptation innovation under the possibility of climate disasters
with varying jump sizes, u, and arrival rates, λ . The investment cost is fixed at I = 10, with interest rate at ρ = 0.05, the uncertainty
parameter for the lifetime of the patent royalties at θ = 0.01, a positive drift at α = 0.01 and volatility at 0.1.

FIGURE 2.2: Investment threshold with climate disasters

λ u γ V* Equivalent σ

0.0000 0.1000 2.7016 2.2228 0.1000
0.0000 0.2000 2.7016 2.2228 0.1000
0.0000 0.3000 2.7016 2.2228 0.1000
0.0200 0.1000 2.5267 2.2839 0.1087
0.0200 0.2000 2.3482 2.3687 0.1202
0.0200 0.3000 2.1773 2.4782 0.1345
0.0500 0.1000 2.2940 2.3933 0.1235
0.0500 0.2000 1.9471 2.6726 0.1584
0.0500 0.3000 1.6751 3.1016 0.2058
0.1000 0.1000 1.9725 2.6367 0.1542
0.1000 0.2000 1.4954 3.6224 0.2562
0.1000 0.3000 1.1962 6.7079 0.4735

Notes: This table shows the results for the investment threshold, V ∗, the parameter of the value function γ and the volatility equivalent
under varying arrival rates, λ , and sizes, u, of the climate disasters. The investment cost is fixed at I = 10, with interest rate at ρ = 0.05,
the uncertainty parameter for the lifetime of the patent royalties at θ = 0.01, a positive drift at α = 0.01, and volatility at σ = 0.1.

TABLE 2.2: Investment threshold - climate disaster model
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The results suggest that the possibility of climate disasters increases the inventor’s opportunity

costs of investing in climate adaptation innovation today. Although climate disasters increase the

value of the royalties in the future, the arrival of the disaster is uncertain. This uncertainty over

the timing of the disaster makes the inventor more willing to wait for future increases in value,

earning interest on their capital in the meantime.

However, the results hinge on the assumptions about the lifetime of the patent. With a smaller

probability of patent decay (smaller θ ), the increases in value of the royalties from climate

disaster-induced jumps become more significant as they are longer lasting. This counteracts the

effect of uncertainty over arrival of the disaster, resulting in a less pronounced increase of the

investment threshold. As the lifetime of the patent approaches infinity (θ → 0), climate disasters

can even decrease the investment threshold. The inventor receiving royalties far into the future,

benefits from the cumulative increase in value of the patent caused by climate disasters over time

making immediate investment more attractive than in the absence of climate disasters. I illustrate

the results of this in Table 2.3. In practice, it is worth noting that, even in the absence of legal

challenges or newer innovations superseding the original, patents have a fixed maximum lifespan.

This means that royalties will eventually cease and are not infinite, though it is also true that first

mover advantages such as brand recognition under certain circumstances may effectively extend

benefits beyond this.

Overall, the uncertainty of future climate disaster resulting in sudden positive jumps in the value

of adaptation innovation can increase the investment threshold as inventors wait for the jump

in value to materialise before investing. This effect increases with the size of the jump and the

arrival rate of such disasters. However, the effect decreases with increased lifetime of the patent

and may even have the opposite effect if royalties are paid indefinitely as the positive effect of

increased value outweighs the added uncertainty over the arrival of the jumps.
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θ V ∗
λ=0 V ∗

λ=0.2 % Difference

0.0100 0.7938 0.8012 0.9245
0.0500 1.4289 1.4979 4.8250
0.1000 2.2228 2.3687 6.5663
0.0010 0.6510 0.6444 -1.0019

Notes: This table compares the impact of a climate disaster with arrival rate, λ = 0.2, on the investment threshold, V ∗, under varying
probabilities of patent decay, θ . The final column in the table describes the percentage difference in the investment threshold when
climate disasters are introduced into the model. The investment cost is fixed at I = 10, with interest rate at ρ = 0.05, a positive drift at
α = 0.01, volatility at σ = 0.1, and jump size at 0.02.

TABLE 2.3: Climate disaster under varying theta

2.3.3 Scientific Discoveries

A significant part of the uncertainty associated with the future value of climate adaptation stems

from the scientific uncertainty that persists in our understanding of climate change. Nevertheless,

progress continues with the number of climate science related publications having increased

exponentially since the 1970s, both in absolute and in relative terms (Klingelhöfer et al. 2020).

As climate science progresses, so does our understanding of damages and the need for climate

adaptation. However, uncertainty remains regarding what future scientific discoveries may reveal.

In this part of the analysis, I will focus on the uncertainty surrounding future scientific discoveries

and its effect on the inventor’s decision-making for climate adaptation innovation.

To incorporate this in the model, I consider scientific discoveries as non-transitory and long-

lasting changes that substantially alter the stochastic development of the value of adaptation

innovation. As such they may influence the drift as well as the volatility parameter. This stands

in contrast to climate disaster which lead to discrete jumps in the value of adaptation innovation

but do not affect the parameters of change. It is important to note that these scientific discoveries

do not include the smaller, continuous scientific insights, as their effects and uncertainties

are already captured by the existing drift and volatility parameters. I stipulate further that

86



Chapter 2: Climate Uncertainty: Real Option Theory in Climate Adaptation Innovation

scientific discoveries have no impact on the arrival rate or size of rare climate disasters. Scientific

discoveries do not occur every period but are rare and discrete, following a Poisson process. The

arrival rate is π such that the probability of a scientific discovery over a small interval dt is πdt.

The effect of the scientific discovery on the drift parameter is (1+ω)α and the effect on the

volatility parameter is (1+ν)σ . Importantly, the change to the drift and volatility parameter are

permanent and do not revert back:

dα =


0, with probability 1−π,

ω, with probability π.

(2.25)

dσ =


0, with probability 1−π,

ν , with probability π.

(2.26)

Scientific discoveries may have zero, positive or negative effects on each of the parameters. For

example, a positive effect on the drift parameter might stem from identifying a new greenhouse

gas that accelerates climate change, thereby solidifying a need for adaptation. A negative effect

could be the result of widespread implementation of stratospheric aerosol injections which could

mitigate climate change and the need for adaptation. In terms of volatility, scientific discoveries

that decrease uncertainty could include better geospatial forecasting of climate impacts or

refinements in climate sensitivity analysis. However, negative impacts on volatility might arise

from discoveries that reveal previously ’unknown unknowns’, thus increasing the uncertainty

around the future need for climate adaptation. Furthermore, a single scientific discovery may

influence both parameters at the same time. For example, the discovery of deep ocean warming

increased our expectations of climate warming and at the same time added a new dimension

of climate uncertainty. For the purpose of this analysis, I will suggest that the inventor holds

some expectation regarding the impact that scientific discoveries will have on the parameters
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of change for the value of adaptation innovation (ω and ν), and analyse the effect of this in a

series of numerical examples. If the inventor expects the overall effect of discoveries on drift and

volatility to be zero, their decision-making process will remain unaffected.

Under the arrival of scientific discoveries over time, the stochastic process of the value of the

adaptation patent becomes:

dV = (α +ωds)V dt +(σ +νds)V dz (2.27)

where ds is the increment of the Poisson process with arrival rate π , taking the value 1 if a

scientific discovery occurs and 0 otherwise. For simplicity, I assume that over the small time

interval dt, only one scientific discovery may occur, such that for small dt:

dV = (α +πω)V dt +(σ +πν)V dz (2.28)

The expected payoff for a patent with lifetime T is
14

:

E[
∫ T

0
Vte−ρt dt] =V0

e(α+πω−ρ)T −1
α +πω −ρ

(2.29)

with termination payoff
15

:

∫
∞

0
θ e−θT V0

e(α+πω−ρ)T −1
α +πω −ρ

dT − I =
1

ρ +θ −α −πω
V0 − I (2.30)

As before, the Bellman equation in the continuation region using Itô calculus is:

14 See Appendix 2.A.3.6 and 2.A.4.1
15 See Appendix 2.A.4.2
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ρF(V )dt = E[dF ]

= E[F ′(V )dV +0.5F ′′(V )(dV )2]

(2.31)

Since ds only takes value 0 or 1 over the small time interval dt (i.e. at most one scientific

discovery occurs during dt) and (ds)2 = ds, higher-order exponentials of ds do not converge to

zero. Further, we know that E[ωds] over the small time interval dt is equal to (1−π)∗0+πω

as discoveries are rare. We can therefore expand the previous equation to
16

:

F ′(V )(α +ωπ)V dt +0.5F ′′(V )(σ2 +2σνπ +ν
2
π)V 2dt −ρF(V )dt = 0 (2.32)

The new boundary conditions are:

F(0) = 0

F(V ∗) =
1

ρ +θ −α −πω
V ∗− I

F ′(V ∗) =
1

ρ +θ −α −πω

(2.33)

I assume the same functional form as before, F(V ) = AV γ :

γAV γ−1(α +ωπ)V +0.5γ(γ −1)AV γ−2(σ2 +2σνπ +ν
2
π)V 2 −ρAV γ = 0

γ(α +ωπ)+0.5γ(γ −1)(σ2 +2σνπ +ν
2
π)−ρ = 0

(2.34)

The resultant termination payoff with scientific discoveries is
17

:

V ∗ =
γ

γ −1
I

1
ρ +θ −α −πω

(2.35)

16 See Appendix 2.A.4.3
17 See Appendix 2.A.4.4
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We can solve this equation for γ , bearing in mind that we can disregard γ < 0 due to the boundary

conditions (see Baseline Model). Utilizing the same parameter values for α , σ , ρ , θ and I as

before, the numerical solutions for V ∗ under different expectations of scientific discoveries are

shown in Table 2.4.

I assume scientific discoveries have an arrival rate of 2%, although naturally, similar to climate

disasters, increasing the arrival rate will amplify the effects. When either π or both ω and ν

are equal to zero we remain at the baseline threshold, V ∗ = 2.2228. π = 0 implies no scientific

discoveries, whereas ω = 0 and ν = 0 imply that the inventor’s expectations over the effect of

scientific discoveries are neutral. For example, this may be because the inventor assigns equal

likelihoods to positive and negative effects of discoveries or assumes a normal distribution for ω

and ν .

Now, let us examine the results when the inventor holds specific expectations regarding the impact

of future scientific discoveries. Consider an inventor who believes that scientific discoveries will

reveal a greater need for climate adaptation, thus higher climate adaptation innovation royalties,

ω > 0. Holding the effect of the discovery on the volatility parameter at zero, an expectation

of a 50% increase in the drift parameter will result in a 0.11 % increase in the investment

threshold. Although the inventor expects the payoff from the adaptation innovation to increase

eventually, there is uncertainty over the timing of this and they prefer to wait. While this may

seem counter-intuitive at first, the key lies in the opportunity cost. Investing now is more costly as

the option to invest later when the drift of adaptation value increases has become more rewarding.

Contrary, an inventor who believes scientific discoveries will reveal a decrease in the need for

adaptation innovation, (ω < 0), will have a lower investment threshold. This inventor wants to

capitalize on current growth rates before scientific discoveries reveal less need for adaptation.

With regards to volatility, inventors expecting scientific discoveries to resolve some of the

uncertainty (ν < 0), face a decreased investment threshold. For example, an expected 50%

decrease in volatility due to scientific discoveries results in a 23.48% decrease in the investment

threshold. Contrary an increase of 50% results in an increase of 38.90%. Changes in volatility
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have a more pronounced and asymmetric effect on the investment threshold as uncertainty affects

the threshold exponentially, as seen in the baseline model. An inventor who expects reduced

uncertainty in the value of adaptation innovation due to future scientific discoveries, is more

confident in investing today, i.e. has a lower investment threshold and innovates earlier.

Furthermore, the effects on volatility and drift due to a scientific discovery are independent, with

the overall impact on the investment threshold being the sum of their individual effects. However,

for the same percentage change in the parameters, volatility changes have a greater influence on

the investment decision.

Similar to climate disasters, these results hinge on the assumptions about the lifetime of the

patent and the duration of royalty payments. The effect of scientific discoveries on the investment

threshold via the volatility parameter remains consistent in an prolonged/ infinite royalty payment

time horizon. Increased uncertainty always raises the investment threshold, irrespective of the

time horizon. Though a longer time horizon mutes this effect, it has no benefits to counteract

them.

On the other hand, changes in the drift parameter bring along changes to the expected termination

payoff. The longer the time horizon, the more the effects of the scientific discoveries on the drift

parameter will be accounted for. The benefits of the impact on the payoff will counteract the

effect of uncertainty surrounding the arrival of the scientific discoveries. As the lifetime of the

patent approaches infinity (θ → 0), depending on the size and arrival rate, scientific discoveries

that affect the drift parameter can have a reverse effect on the investment threshold. In other

words, the anticipation of scientific events that result in a significant positive change in the drift

parameter would decrease the investment threshold as the increase in future expected royalties

outweighs the uncertainty over the arrival of the discoveries.

Overall, the uncertainty over significant scientific discoveries adds yet another element of

uncertainty for inventors in climate adaptation. Expectation of inventors regarding the magnitude

and direction on the growth rate and volatility of adaptation innovation are crucial in determining
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the effect of discoveries on the investment thresholds. Anticipation that scientific discoveries

may resolve future uncertainty will always lead to a decrease in the investment threshold. On

the other hand, anticipation of scientific discoveries that point to more need for adaptation, thus

increased drift in adaptation royalties, can under a limited patent lifetime actually raise the

investment threshold as the opportunity cost of investing today increases.

ω ν V* % diff

0.0025 0.0000 2.2240 0.0562
0.0050 0.0000 2.2253 0.1126
0.0075 0.0000 2.2265 0.1692

-0.0025 0.0000 2.2215 -0.0560
-0.0050 0.0000 2.2203 -0.1117
-0.0075 0.0000 2.2191 -0.1672
0.0000 0.0250 2.2267 0.1754
0.0000 0.0500 2.2314 0.3890
0.0000 0.0750 2.2370 0.6402
0.0000 -0.0250 2.2197 -0.1368
0.0000 -0.0500 2.2176 -0.2348
0.0000 -0.0750 2.2162 -0.2937
0.0000 0.0000 2.2228 0.0000
0.0050 0.0500 2.2339 0.5018
0.0050 -0.0500 2.2201 -0.1224

-0.0050 0.0500 2.2289 0.2770
-0.0050 -0.0500 2.2151 -0.3463

Notes: This table shows the results for the investment threshold, V ∗ under the possibility of scientific discoveries with varying magnitudes
of the impact on the drift, ω and volatility, ν . The final column describes the percentage change of the investment threshold compared to
the model without scientific discoveries. The investment cost is fixed at I = 10, with interest rate at ρ = 0.05, the uncertainty parameter
for the lifetime of the patent royalties at θ = 0.01, a positive drift at α = 0.01, and volatility at σ = 0.1.

TABLE 2.4: Investment threshold - scientific discoveries
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2.4 Policy Discussion

In this section, I analyse a limited selection of policy options to lower the investment threshold

in climate adaptation innovation and incentivise earlier innovation.

2.4.1 Climate Treaties, Pledges and Government Mandates

The first international climate treaty was ratified in 1992 at the Earth Summit in Rio de Janeiro.

Since then, a series of international treaties and national climate pledges have followed, with 107

countries having net zero targets as of June 2024 (United Nations Environment Programme 2024).

Similarly, more recently, there has also been a notable increase in government commitments to

climate adaptation, such as the increasing adoption of National Adaptation Plans.

For inventors in climate adaptation, government commitments to climate mitigation and adapta-

tion can reduce some of the uncertainty over the future market size for adaptation innovation.

This can reduce the volatility parameter, lowering the investment threshold and incentivise earlier

investment. Moreover, if treaties and pledges include mandates that specifically require the

procurement of adaptation products and support the development of adaptation technologies,

this could also lead to a jump in the value of adaptation innovation and growth, accelerating the

timeline to reach the investment threshold.

However, there are caveats to this. Firstly, the effectiveness of government action largely relies

on its credibility. Treaties and pledges often lack enforcement mechanism and government

changes can lead to sudden reversals of climate policy as seen with the United States exiting the

Paris Agreement under Donald Trump. For climate treaties, pledges and government mandates

to effectively reduce uncertainty, they must be credible and inspire confidence among inventors.

Secondly, while immediate government action could yield positive results, uncertainty about the

timing and nature of future government climate policy could have the opposite effect. Similar to
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scientific discoveries, this can be modelled as the uncertain arrival of a regime shift that alters

the drift and volatility parameter. If the majority of uncertainty stems from scientific uncertainty,

inventors may anticipate minimal reductions in uncertainty from government action. At the

same time, if inventors expect significant future government procurement that increases the drift

parameter of adaptation value, the investment threshold may actually increase. In this case, the

anticipation of future government action may lead to a rise of the opportunity cost of investing

early. As before, the outcomes of this depend on the lifetime of royalties, the anticipated arrival

rate of government action and the magnitude of changes to the parameters but is a caveat that

needs to be considered.

2.4.2 Competition Incentives

Next, I will consider competition incentives as a policy to reduce the investment threshold in

adaptation innovation. So far, in this model I have assumed that the inventor holds the option to

invest in climate adaptation indefinitely. However, over time other inventor with similar ideas

may innovate first and capture the market, thereby reducing the value of the option, F(V ), to zero.

To incorporate this competition risk, we can introduce negative Poisson jumps with size u =−1.

This is akin to the modifications of the baseline model with climate disasters, except that now the

value of the option drops to zero when an event occurs. Therefore, we can immediately see that

the presence of competition will decrease the investment threshold as the risk of another inventor

capturing the market increases the opportunity cost of waiting. Though the effect of general

uncertainty, climate disasters and scientific discoveries will remain, increasing competition could

weaken these effects and reduce the investment threshold. Government policies to increase

competition may include support for innovation clusters, competitions or research funding.

However, this needs to be carefully considered as increasing competition may also decrease the

expected lifetime of royalty payments following the development of the innovation (higher θ ).

More competition increases the likelihood that other inventors will produce adaptation patents
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that supersede the original, thus leading to an earlier decline in patent royalties and a higher

investment threshold.

2.4.3 Innovation Protections

This caveat leads to the final policy option I consider, namely innovation protections such

as intellectual property rights. Longer protection of the innovation result in a longer stream

of royalty payments (higher θ ) and therefore a higher expected payoff. This will reduce the

investment threshold and incentivise inventors to invest earlier. It will also decrease the negative

effects of uncertainty of climate disasters and scientific discoveries. However, it will be important

to develop protections that have limited effect on competition as this may otherwise increase the

threshold of investment. Possible options may be increasing accessibility of patent application,

expanding legal protection, patent duration and enforcement.

Overall, the policy options I have discussed here show different approaches to incentivise earlier

innovation in climate adaptation. Many others exist, such as educational climate campaigns for

inventors or funding for climate science to reduce the uncertainty of future adaptation needs.

Considering the complex dynamics that depend heavenly on subjective expectations of inventors,

this section demonstrates that policy in climate adaptation policy may not be straightforward and

requires careful consideration.

2.5 Concluding Remarks

Climate impacts continue to involve a vast amount of uncertainty resulting from uncertainty

in greenhouse gas emissions, climate sensitivity to those emissions, uncertainty over the type,

magnitude and geographic location of climate damages and path dependencies from decisions

made by governments, firms, and individuals. The possibility of rare catastrophic disasters and

scientific breakthroughs further amplify this. The uncertainties in climate damages translate
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directly into uncertainties in the market for climate adaptation. In this paper, I have presented

a real option valuation model to analyse the impact of these uncertainties on the decisions by

inventors in climate adaptation.

The results show that the scale and complexities of uncertainty in climate adaptation can lead to

a high investment threshold for inventors and the decision to delay investment. The significant

interdependent and compounding uncertainties in the market for adaptation may outweigh

market uncertainties experienced by inventors in other markets and can have an exponential

effect on the investment threshold. Additionally, the anticipation of climate disasters, which may

trigger sudden increases in demand for adaptation, can raise the opportunity cost of investing

today. Although inventors may expect future climate disaster to increase the value of their

adaptation, uncertainty over the timing of such events can outweigh the expected present value

of future benefits. However, increased lifetime of patent royalties will mitigate this effect,

and near infinite patent royalties coupled with significant positive jumps in value, may even

decrease in the investment threshold. Effects of uncertainty over future scientific discoveries

are nuanced. Whereas expectations of future uncertainty-reducing discoveries will lower the

investment threshold, expectations that future research will unveil additional unknowns will raise

the investment threshold. Paradoxically, inventors anticipating research that reveals higher future

demand for adaptation may face an increased opportunity cost of investing today, as uncertainty

over the timing of discoveries can outweigh the benefits of the increased present value from

future royalties. While the volatility effects of scientific discoveries remain constant over a

patent’s lifetime, anticipated changed to the drift depend, as with climate disasters on the size of

the impact and the lifetime of the patent. The effects of discoveries on volatility and drift are

additive, with the overall impact depending on the relative magnitude of the effects.

In terms of policy, in this paper I briefly presented three policy options. Climate treaties,

pledges and mandates have the potential to reduce the investment threshold for adaptation

innovation by reducing the uncertainty over future market demand or increasing its value. For

this, the credibility of governments and their commitments is key. However, in a seeming
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contradiction, the anticipation of future policy that inflates the value of adaptation innovation

can delay inventors’ investment decisions akin to climate disasters. In fact, the anticipation

of government investment in adaptation after climate disaster can further raise the threshold

and deter inventors from early investments. Secondly, policies to increase competition in the

market for adaptation innovation may encourage early investment, as inventors who wait risk

being outpaced by competitors. However, increased competition may also shorten the lifetime

of patent royalties if newer patents begin to more quickly supersede the original. Finally, to

address this, governments may introduce enhanced innovation protections such as accessibility

in the patenting process and enforcements of patents but these must be designed carefully to

avoid eroding competition. Though I only presented a selection of policy options, there remain

many others that should be taken into consideration such as funding for climate impact research

and education. Bearing the context in mind, some uncertainty will invariably continue to exist.

Central to this issue are the views of the inventors and their expectations of future prospects,

highlighting the need for information campaigns to minimise frictions between inventors and the

scientific community.

The insights of this paper are of course not without caveats. Firstly, the results of the analysis

hinge on the assumption that inventors hold ideas for viable adaptation products. If inventors

perceive the impacts of climate change as insurmountable, they may not believe they can develop

effective innovations thereby reducing the option value to zero. Furthermore, this paper only

provides the theoretical argument of the impact of uncertainty. To corroborate and refine the

results, surveying potential inventors would therefore be a valuable area for future research.

Finally, I believe that there remains a significant need for future research in the study of the

supply of adaptation innovation including the incorporation of considerations beyond uncertainty,

such as choice models between different types of adaptation innovation and sector or climate

impact specific analyses.

Overall, I propose that the scale and complexities of climate damages, in addition to the common

uncertainty dynamics faced by inventors across all sectors, may lead to a higher investment
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threshold for inventors in climate adaptation and contribute to the slow growth we have observed

so far. Although market demand may exist, the uncertainty over its future may hinder the

development of innovative solutions. To foster innovation for adaptation, distinct policy action

may therefore be required, as standard innovation incentives may not be sufficient to overcome

the investment barriers.

98



Chapter 2: Climate Uncertainty: Real Option Theory in Climate Adaptation Innovation

Bibliography

Abadie, Luis Maria, Elisa Sainz de Murieta, and Ibon Galarraga. 2017. “Investing in adaptation:
Flood risk and real option application to Bilbao.” Environmental Modelling & Software 95
(September 1, 2017): 76–89.

Berk, Jonathan B, Richard C Green, and Vasant Naik. 2004. “Valuation and Return Dynamics of
New Ventures.” Rev. Financ. Stud. 17 (1 2004): 1–35.

Berrang-Ford, Lea, Robbert Biesbroek, James D Ford, Alexandra Lesnikowski, Andrew Tanabe,
Frances M Wang, Chen Chen, et al. 2019. “Tracking global climate change adaptation
among governments.” Nat. Clim. Chang. 9 (6 2019): 440–449.

Bloom, Nicholas, Stephen R Bond, and John Van Reenen. 2001. “The Dynamics of Investment
Under Uncertainty” (February 1, 2001). Accessed July 31, 2024.

Bloom, Nicholas, and John Van Reenen. 2002. “Patents, Real Options and Firm Performance.”
Econ J 112 (478 2002): C97–C116.

Childs, Paul D, and Alexander J Triantis. 1999. “Dynamic R&D Investment Policies.” Manage.

Sci. 45 (10 1999): 1359–1377.

Cortazar, Gonzalo, and Jaime Casassus. 1998. “Optimal timing of a mine expansion: Implement-
ing a real options model.” Q. Rev. Econ. Finance 38 (3, Part 2 1998): 755–769.

Darkwa, K, D Ambachew, H Mohammed, A Asfaw, et al. 2016. “Evaluation of common bean
(Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia.” The crop

journal.

Dechezlepretre, Antoine, Sam Fankhauser, Matthieu Glachant, Jan Stoever, and Simon Touboul.
2020. Invention and Global Diffusion of Technologies for Climate Change Adaptation: A

patent analysis. World Bank, Washington, DC, June 1, 2020.

Dixit, Avinash K, and Robert S Pindyck. 1994. Investment under uncertainty. Princeton, NJ:
Princeton University Press, January 10, 1994.

Grothmann, Torsten, and Fritz Reusswig. 2006. “People at risk of flooding: Why some residents
take precautionary action while others do not.” Nat. Hazards 38 (1-2): 101–120.

Heumesser, Christine, Sabine Fuss, Jana Szolgayová, Franziska Strauss, and Erwin Schmid.
2012. “Investment in Irrigation Systems under Precipitation Uncertainty.” Water Resour.

Manage. 26 (11 2012): 3113–3137.

99



Chapter 2: Climate Uncertainty: Real Option Theory in Climate Adaptation Innovation

IEA. 2023. “CO2 Emissions in 2023.” https : / / www . iea . org / reports / co2 - emissions - in -
2023/executive-summary.

Insley, Margaret. 2002. “A Real Options Approach to the Valuation of a Forestry Investment.” J.

Environ. Econ. Manage. 44 (3 2002): 471–492.

IPCC. 2023. “Summary for Policymakers.” Climate Change 2023: Synthesis Report. Contribution

of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental

Panel on Climate Change.

IPO UK. 2024. “The race to net zero: Tracking the green industrial revolution through IP”
(February 26, 2024).

Jou, Jyh-Bang. 2018. “R&D investment and patent renewal decisions.” Q. Rev. Econ. Finance 69
(March 1, 2018): 144–154.

Klingelhöfer, Doris, Ruth Müller, Markus Braun, Dörthe Brüggmann, and David A Groneberg.
2020. “Climate change: Does international research fulfill global demands and necessities?”
Environ Sci Eur 32 (1 2020): 137.

Kreibich, H, A Thieken, T Petrow, Meike Müller, and B Merz. 2005. “Flood loss reduction of
private households due to building precautionary measures - lessons learned from the Elbe
flood in August 2002.” Nat. Hazards Earth Syst. Sci. 5 (January 25, 2005): 117–126.

Laughton, David G, and Henry D Jacoby. 1993. “Reversion, Timing Options, and Long-Term
Decision-Making.” Financial Management 22 (3): 225–240.

Linquiti, Peter, and Nicholas Vonortas. 2012. “The Value of Flexibility in Adapting to Climate
Change: A Real Options Analysis of Investments in Coastal Defense.” Clim. Change Econ.

03 (02 2012): 1250008.

McDonald, R, and D Siegel. 1986. “The value of waiting to invest.” Q. J. Econ.

McFadden, Jonathan, David Smith, and Steven Wallander. 2022. “Climate, Drought Exposure,
and Technology Adoption: An Application to Drought-Tolerant Corn in the United States.”
NBER Chapters.

Miao, Qing, and David Popp. 2014. “Necessity as the mother of invention: Innovative responses
to natural disasters.” J. Environ. Econ. Manage. 68 (2 2014): 280–295.

Miao, Ruiqing. 2020. “Climate, insurance and innovation: the case of drought and innovations in
drought-tolerant traits in US agriculture.” Eur. Rev. Agric. Econ. 47 (5 2020): 1826–1860.

100

https://www.iea.org/reports/co2-emissions-in-2023/executive-summary
https://www.iea.org/reports/co2-emissions-in-2023/executive-summary


Chapter 2: Climate Uncertainty: Real Option Theory in Climate Adaptation Innovation

Newman, Rebecca, and Ilan Noy. 2023. “The global costs of extreme weather that are attributable
to climate change.” Nat. Commun. 14 (1 2023): 6103.

NOAA National Centers for Environmental Information. 2023. “Global Climate Report.”

NOAA National Centers for Environmental Information. 2025. “Global Climate Dashboard.”
Accessed January 20, 2025. http://www.climate.gov/climatedashboard.

Oriani, Raffaele, and Maurizio Sobrero. 2008. “Uncertainty and the market valuation of R&D
within a real options logic.” Strategic Manage. J. 29 (4): 343–361.

Prince, Maxwell Etwire, M Al-Hassan Ramatu, K M Kuwornu John, and Osei-Owusu Yaw. 2013.
“Smallholder farmersâC™ adoption of technologies for adaptation to climate change in
Northern Ghana.” Journal of Agricultural Extension and Rural Development 5 (6): 121–129.

Saphores, J. 2001. “The option value of harvesting a renewable resource.”

Save the Children International. 2023. “2023 In Review: Climate Disasters Claimed 12,000 Lives
Globally In 2023,” December 20, 2023. Accessed May 9, 2024. https://www.savethechildren.
net/news/2023-review-climate-disasters-claimed-12000-lives-globally-2023.

Tambo, J A, and T Abdoulaye. 2012. “Climate change and agricultural technology adoption: the
case of drought tolerant maize in rural Nigeria.” Mitigation and Adaptation Strategies for

Global.

Tasantab, Jerry Chati, Thayaparan Gajendran, and Kim Maund. 2022. “Expanding protection
motivation theory: The role of coping experience in flood risk adaptation intentions in
informal settlements.” International Journal of Disaster Risk Reduction 76 (June 15, 2022):
103020.

United Nations Environment Programme. 2024. Emissions Gap Report 2024: No more hot air

. . . please! With a massive gap between rhetoric and reality, countries draft new climate

commitments.

Weitzman, Martin L. 2011. “Fat-Tailed Uncertainty in the Economics of Catastrophic Climate
Change.” Review of Environmental Economics and Policy 5 (2 2011): 275–292.

Wesseler, Justus, and Jinhua Zhao. 2019. “Real Options and Environmental Policies: The Good,
the Bad, and the Ugly.” Annual Review of Resource Economics 11 (Volume 11, 2019 2019):
43–58. Accessed July 30, 2024.

Woodward, M, B Gouldby, Z Kapelan, et al. 2011. “R eal O ptions in flood risk management
decision making.” Journal of Flood Risk.

101

http://www.climate.gov/climatedashboard
https://www.savethechildren.net/news/2023-review-climate-disasters-claimed-12000-lives-globally-2023
https://www.savethechildren.net/news/2023-review-climate-disasters-claimed-12000-lives-globally-2023


Chapter 2: Climate Uncertainty: Real Option Theory in Climate Adaptation Innovation

Zaalberg, Ruud, Cees Midden, Anneloes Meijnders, and Teddy McCalley. 2009. “Prevention,
adaptation, and threat denial: flooding experiences in the Netherlands.” Risk Anal. 29 (12):
1759–1778.

102



Chapter 2: Climate Uncertainty: Real Option Theory in Climate Adaptation Innovation

2.A Mathematical Appendix

2.A.1 Baseline Model

2.A.1.1 Solution to the Geometric Brownian Motion - Baseline

In this section I will provide the generic derivation of the solution to the geometric Brownian

motion:

dVt = αVtdt +σVtdzt

Please note for simplicity, I omitted the time subscripts throughout the analysis but am re-

introducing it here for clarity.

Let us assume a function f (Vt) = ln(Vt) such that Xt = lnVt . Applying Itô calculus:

dXt =
1
Vt

dVt +
1

2V 2
t

dV 2
t

dXt =
1
Vt
(αVtdt +σVtdzt)−

1
2V 2

t
σ

2V 2
t dt

dXt = (α − 1
2

σ
2)dt +σdzt

Integrating from 0 to t:

Xt = X0 +
∫ t

0
(α − 1

2
σ

2)ds+
∫ t

0
σdzt

Xt = X0 +(α − 1
2

σ
2)t +σzt

Exponentiating to return to Vt gives:
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Vt =V0e(α− 1
2 σ2)t +σzt

The expectation of Vt is given by:

E[Vt ] =V0 e(α− 1
2 σ2)t +E[eσzt ]

Since the Wiener process zt is normally distributed with mean zero and variance t, the standard

moment generating function for a normal distribution implies

E[eσzt ] = e
1
2 σ2t

and therefore:

E[Vt ] =V0 e(α− 1
2 σ2)t+ 1

2 σ2t

E[Vt ] =V0 eαt

2.A.1.2 Present Value of Royalties - Baseline

Since royalties are non-negative, under Tonelli’s theorem:

E[
∫ T

0
Vte−ρt dt]− I =

∫ T

0
E[Vte−ρt ]dt − I

and thus:
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∫ T

0
E[Vte−ρt ]dt − I

=
∫ T

0
V0eαte−ρt dt − I

=V0

[
1

α −ρ
e(α−ρ)t

]T

0

=V0
e(α−ρ)T −1

α −ρ
− I

2.A.1.3 Termination Payoff - Baseline

The present value of the royalties assuming the random lifetime of the patent, T , and a discount

rate ρ is:

=
∫

∞

0
θ e−θT V0

e(α−ρ)T −1
α −ρ

dT

=
V0

α −ρ

[∫
∞

0
θ e(α−ρ−θ)T dT −

∫
∞

0
θ e−θT dT

]
=

V0

α −ρ

[
θ

α −ρ −θ
e(α−ρ−θ)T

]∞

0
+
[
e−θT

]∞

0

=
V0

α −ρ

[
− θ

α −ρ −θ
−1
]

=
1

ρ +θ −α
V0

2.A.1.4 Derivation of Bellman Equation - Baseline

In the continuation region the Bellman equation is:

F(V ) =
1

1+ρ
E[F(V ′)|V ]
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In continuous time the discount factor over a short time interval dt is e−ρdt which can be

approximated via the Taylor expansion by:

e−ρdt = 1−ρdt +
(ρdt)2

2
− (ρdt)3

3
...

≈ 1−ρdt

Furthermore, the expectation of the value function over the small time interval dt:

E[F(V ′)|V ] = F(V )+E[dF ]

Substituting these back into the original equation gives:

F(V ) = (1−ρdt)(F(V )+E[dF ])

= F(V )−ρF(V )dt +E[dF ]+ρdt E[dF ]

where ρdt E[dF ] is of order (dt)2, thus goes to zero faster than dt, and can be dropped as dt

becomes small, giving:

ρF(V )dt = E[dF ]

106



Chapter 2: Climate Uncertainty: Real Option Theory in Climate Adaptation Innovation

2.A.1.5 Expansion of the Bellman Equation - Baseline

dF = F ′(V )dV +0.5F ′′(V )(dV )2

= F ′(V )(αV dt +σV dz)

+0.5F ′′(V )[(α2V 2dt2 +ασV 2dtdz+σ
2V 2dz2)]

= F ′(V )(αV dt +σV dz)

+0.5F ′′(V )[(α2V 2dt2 +ασV 2dtdz+σ
2V 2dt)]

Omitting terms that go to zero faster than dt and taking expectations:

E[dF ] = F ′(V )αV dt +0.5F ′′(V )σ2V 2dt

The Bellman equation in the continuation region becomes the homogeneous second order

differential equation:

F ′(V )αV dt +0.5F ′′(V )σ2V 2dt −ρF(V )dt = 0

F ′(V )αV +0.5F ′′(V )σ2V 2 −ρF(V ) = 0

2.A.1.6 Solving second order differential equation - Baseline

Since:

F(V ) = AV γ

F ′(V ) = γAV γ−1

F ′′(V ) = γ(γ −1)AV γ−2
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Substituting F(V ) = AV γ into F ′(V )αV +0.5F ′′(V )σ2V 2 −ρF(V ) = 0

F ′(V )αV +0.5F ′′(V )σ2V 2 −ρF(V ) = 0

γAV γ−1
αV +0.5σ

2
γ(γ −1)AV γ−2V 2 −ρAV γ = 0

(α −0.5σ
2)γ +0.5σ

2
γ

2 −ρ = 0

2.A.1.7 Solving for V ∗ - Baseline

The boundary conditions are:

F(0) = 0

F(V ∗) =
1

ρ +θ −α
V ∗− I

F ′(V ∗) =
1

ρ +θ −α

Using the solution F(V ) = AV γ

1
ρ +θ −α

= γAV ∗γ−1

1
ρ +θ −α

V ∗ = γAV ∗γ

1
ρ +θ −α

V ∗− I = AV ∗γ

1
ρ +θ −α

V ∗ = γ

(
1

ρ +θ −α
V ∗− I

)
V ∗ (1− γ) =−(ρ +θ −α)γ I

V ∗ =
γ

γ −1
I (ρ +θ −α)

δV ∗

δγ
> 0
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2.A.2 Multi-Stage Investment

I apply a simple proof of multi-stage investment from Dixit and Pindyck (1994) to my model.

Assuming a two-stage process for developing the innovation, the first stage involves an investment

cost I1 and a value function F1(V ). In the second stage, the investment cost is I2, and the value

function is F2(V ). The inventor only receives patent royalties upon completion in stage two.

Using the results from the baseline model, the value function in the second stage is:

F2(V ) =


A2V γ if V <V ∗

2 ,

1
ρ+θ−α

V ∗− I2 if V >V ∗
2 ,

The value function in period 1 is:

F1(V ) = max{ 1
ρ +θ −α

V − I1 ,
1

1+ρ
E[F2(V ′)|V ]}

with boundary conditions:

F1(0) = 0

F1(V ∗
1 ) = F∗

2 (V
∗
1 )− I1

F ′
1(V

∗
1 ) = F ′

2(V
∗
1 )

If V <V ∗
2 the value function is F2(V ) =A1V γ and the second boundary condition implies A1 ̸=A2

since:
F1(V ∗

1 ) = A1V ∗γ

1

F1(V ∗
1 ) = A2V ∗γ

1 − I1

However, the third boundary condition would imply A1 = A2 since:
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γA1V ∗γ−1
1 = γA2V ∗γ−1

1

Using backwards induction we therefore know that V ∗
2 >V and F2(V ) = 1

ρ+θ−α
V ∗

2 − I2, resulting

in:

F1(V ∗
1 ) =

1
ρ +θ −α

V ∗
2 − I2 − I1

Finally, this implies that V ∗
1 >V ∗

2 , suggesting that if the inventor invests in the first stage of the

research and development project, they will always complete the second stage and produce the

innovation.

2.A.3 Climate Disasters

2.A.3.1 Solution to the Geometric Brownian Motion - Climate Disasters

The geometric Brownian motion with climate disasters is defined as:

dVt = αVtdt +σVtdzt +uVtdqt

Let us assume a function f (Vt) = ln(Vt) such that Xt = lnVt . Applying Itô calculus:
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dXt =
1
Vt

dVt +
1

2V 2
t

dV 2
t +[ln((1+u)Vt)− ln(Vt)−

1
Vt

uVt ]dqt

dXt =
1
Vt
(αVtdt +σVtdzt +uVtdqt)−

1
2

σ
2dt +[ln(1+u)−u]dqt

dXt = (α − 1
2

σ
2)dt + ln(1+u)dqt +σdzt

Integrating from 0 to t:

Xt = X0 +
∫ t

0
(α − 1

2
σ

2)ds+
∫ t

0
σdzs +

∫ t

0
ln(1+u)dqs

Xt = X0 +(α − 1
2

σ
2)t +σzt + ln(1+u)Nt

where Nt is the number of jumps up to time t.

Exponentiating to return to Vt gives:

Vt =V0 e(α− 1
2 σ2)t +σzt ln(1+u)Nt

Since zt and Nt are independent the expectation of Vt is given by:

E[Vt ] =V0E[e(α− 1
2 σ2)t +σzt ]E[ln(1+u)Nt ]

The Wiener process zt is normally distributed with mean zero and variance t so the standard

moment generating function for a normal distribution implies:

E[eσzt ] = e
1
2 σ2t
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Furthermore, for the Poisson process Nt the standard probability generating function implies:

E[(1+u)Nt ] = eλut

Therefore:

E[Vt ] =V0 e(α+λu− 1
2 σ2)t +E[eσzt ]

E[Vt ] =V0 e(α− 1
2 σ2)t+ 1

2 σ2t

E[Vt ] =V0 e(α+λu)t

2.A.3.2 Present Value of Royalties - Climate Disasters

Since royalties are non-negative, under Tonelli’s theorem:

E[
∫ T

0
Vte−ρt dt]− I =

∫ T

0
E[Vte−ρt ]dt − I

and thus:

∫ T

0
E[Vte−ρt ]dt − I

=
∫ T

0
V0e(α+λu)te−ρt dt − I

=V0

[
1

α +λu−ρ
e(α+λu−ρ)t

]T

0

=V0
e(α+λu−ρ)T −1

α +λu−ρ
− I
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2.A.3.3 Termination Payoff - Climate Disasters

The present value of the royalties assuming the random lifetime of the patent, T , and a discount

rate ρ is:

=
∫

∞

0
θ e−θT V0

e(α+λu−ρ)T −1
α +λu−ρ

dT

=
V0

α +λu−ρ

[∫
∞

0
θ e(α+λu−ρ−θ)T dT −

∫
∞

0
θ e−θT dT

]
=

V0

α +λu−ρ

[
θ

α +λu−ρ −θ
e(α+λu−ρ−θ)T

]∞

0
+
[
e−θT

]∞

0

=
V0

α +λu−ρ

[
− θ

α +λu−ρ −θ
−1
]

=
1

ρ +θ −α −λu
V0

2.A.3.4 Expansion of the Bellman Equation - Climate Disasters

The Bellman equation is expanded using Itô calculus similar to before but adjusted for the jumps

from the climate disasters:

ρF(V )dt = E[dF ]

= E[F ′(V )dV +0.5F ′′(V )(dV )2 +[F((1+u)V )−F(V )]−F ′(V )uV dq]

= E[F ′(V )(αV dt +σV dz)+0.5F ′′(V )(dV )2 +[F((1+u)V )−F(V )]dq]

= αV F ′(V )dt +0.5F ′′(V )σ2V 2dt +λ [F((1+u)V )−F(V )]dt

2.A.3.5 Solving for V ∗ - Climate Disasters

The boundary conditions are:
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F(0) = 0

F(V ∗) =
1

ρ +θ −α −λu
V ∗− I

F ′(V ∗) =
1

ρ +θ −α −λu

Using the solution F(V ) = AV γ

1
ρ +θ −α −λu

= γAV ∗γ−1

1
ρ +θ −α −λu

V ∗ = γAV ∗γ

1
ρ +θ −α −λu

V ∗− I = AV ∗γ

1
ρ +θ −α −λu

V ∗ = γ

(
1

ρ +θ −α −λu
V ∗− I

)
V ∗ (1− γ) =−(ρ +θ −α −λu)γ I

V ∗ =
γ

γ −1
I (ρ +θ −α −λu)

2.A.3.6 Solution to the Geometric Brownian Motion - Scientific Discoveries

The geometric Brownian motion with scientific is defined as:

dVt = (α +ωds)Vtdt +(σ +νds)Vtdzt

For small dt, a scientific discovery occurs at most once with probability π:

dVt = (α +πω)Vtdt +(σ +πν)Vtdzt
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Let us assume a function f (Vt) = ln(Vt) such that Xt = lnVt . Applying Itô calculus:

dXt =
1
Vt

dVt +
1

2V 2
t

dV 2
t

dXt =
1
Vt
[α +πω)Vtdt +(σ +πν)Vtdzt ]−

1
2V 2

t
(σ +πν)2V 2

t dt

dXt = [α +πω − 1
2
(σ +πν)2]dt +(σ +πν)dzt

Integrating from 0 to t:

Xt = X0 +
∫ t

0
[α +πω − 1

2
(σ +πν)2]ds+

∫ t

0
(σ +πν)dzt

Xt = X0 +[α +πω − 1
2
(σ +πν)2]t +(σ +πν)zt

Exponentiating to return to Vt gives:

Vt =V0e[α+πω− 1
2 (σ+πν)2]t +(σ+πν)zt

The expectation of Vt is given by:

E[Vt ] =V0 e[α+πω− 1
2 (σ+πν)2]t +E[e(σ+πν)zt ]

Since the Wiener process zt is normally distributed with mean zero and variance t, the standard

moment generating function for a normal distribution implies

E[e(σ+πν)]zt ] = e
1
2 (σ+πν)2t
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and therefore:

E[Vt ] =V0 e([α+πω− 1
2 (σ+πν)2]t+ 1

2 (σ+πν)2t

E[Vt ] =V0 e(α+πω)t

2.A.4 Scientific Discovery

2.A.4.1 Present Value of Royalties - Scientific Discovery

Since royalties are non-negative, under Tonelli’s theorem:

E[
∫ T

0
Vte−ρt dt]− I =

∫ T

0
E[Vte−ρt ]dt − I

and thus:

∫ T

0
E[Vte−ρt ]dt − I

=
∫ T

0
V0e(α+πω)te−ρt dt − I

=V0

[
1

α +πω −ρ
e(α+πω−ρ)t

]T

0

=V0
e(α+πω−ρ)T −1

α +πω −ρ
− I

2.A.4.2 Termination Payoff - Scientific Discovery

The present value of the royalties assuming the random lifetime of the patent, T , and a discount

rate ρ is:
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=
∫

∞

0
θ e−θT V0

e(α+πω−ρ)T −1
α +πω −ρ

dT

=
V0

α +πω −ρ

[∫
∞

0
θ e(α+πω−ρ−θ)T dT −

∫
∞

0
θ e−θT dT

]
=

V0

α +πω −ρ

[
θ

α +πω −ρ −θ
e(α+πω−ρ−θ)T

]∞

0
+
[
e−θT

]∞

0

=
V0

α +πω −ρ

[
− θ

α +πω −ρ −θ
−1
]

=
1

ρ +θ −α −πω
V0

2.A.4.3 Expansion of Bellman Equation - Scientific Discoveries

We need to expand the Bellman equation:

ρF(V )dt = E[F ′(V )dV +0.5F ′′(V )(dV )2]

We will do this in two parts:

E[dV ] =E[(α +ωds)V dt]+E[(σ +νds)V dz]

=(α +ωπ)V dt

And

E[(dV )2] =E[(α +ωds)2V 2(dt)2 +(α +ωds)V dt(σ +νds)V dz+(σ +νds)2V 2(dz)2]

=(σ +νds)2V 2dt

=(σ2 +2σνπ +ν
2
π)V 2dt
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Substituting the results back into the Itô-expanded Bellman equation:

F ′(V )(α +ωπ)V dt +0.5F ′′(V )(σ2 +2σνπ +ν
2
π)V 2dt −ρF(V )dt = 0

2.A.4.4 Solving for V ∗ - Scientific Discoveries

The boundary conditions are:

F(0) = 0

F(V ∗) =
1

ρ +θ −α −πω
V ∗− I

F ′(V ∗) =
1

ρ +θ −α −πω

Using the solution F(V ) = AV γ

1
ρ +θ −α −πω

= γAV ∗γ−1

1
ρ +θ −α −πω

V ∗ = γAV ∗γ

1
ρ +θ −α −πω

V ∗− I = AV ∗γ

1
ρ +θ −α −πω

V ∗ = γ

(
1

ρ +θ −α −πω
V ∗− I

)
V ∗ (1− γ) =−(ρ +θ −α −πω)γ I

V ∗ =
γ

γ −1
I (ρ +θ −α −πω)
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3.1 Introduction

According to NOAA’s National Centers for Environmental Information, 2024 was the hottest year

on record since measurements began (NOAA National Centers for Environmental Information

2025). In 1960, a person born in Miami experienced around 85 days of extreme heat on average,

but today, they can expect an average of 133. Furthermore, projections suggest that by the time

they reach 80 years of age, the yearly average will rise to around 143 days of extreme heat

(Popovich et al. 2018). Aside from the human costs associated with rising temperatures, extensive

research shows that higher annual temperatures negatively impact economic output (e.g. Dell,

Jones, and Olken 2012; Linsenmeier 2023). As CO2 emissions continue to rise, understanding

the underlying drivers of this has become increasingly important to develop effective adaptation

strategies and policies, and mitigate damages.

A key component to this is understanding the effect of temperature on the labour market. The

International Labour Organisation estimates that 70% of the global workforce is already at risk

of extreme heat today, with more than 18,000 annual work-related deaths attributed to heat stress

(Flouris et al. 2024). However, temperatures are unlikely to have a homogeneous effect across

the whole workforce. Not only do physical work environments differ, but depending on the

occupation, the individual may employ different skills, perform a wide variety of tasks, follow

different timelines and have varying ability and agency in adapting to higher temperatures. The

analysis of temperature and labour outcomes therefore requires careful consideration of the

diversity of sectors and employment types.

In this paper, we focus on the effect of temperature on the productivity of inventors. Inventors

form a unique group of high-skilled workers who not only contribute largely to the wealth of

an economy but also play a critical role in driving economic growth (Romer 1990; Rosenberg

2006; Aghion et al. 1998). Even modest effects of temperature on inventor productivity can thus

have substantial implications and hence warrant an analysis in its own right. Furthermore, since

inventors, like much of the workforce in high-income countries, primarily work indoors, the
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analysis offers insights into temperature effects on labour beyond outdoor-intensive sectors.

However, the study of inventor productivity is not without challenges. The productivity of inven-

tors depends substantially on individual attributes. Compared to many other sectors, personal

factors such as motivation, expertise, and creative thinking are particularly influential. Though

innovation requires original insights, these often emerge alongside considerable routine and

methodical work. Thus, innovation encompasses both unique ideas and systematic, incremental

efforts. To examine the effect of temperature, it can therefore be important to account for inventor-

specific characteristics. At the same time, tracking inventors over time is challenging due to

inconsistencies in patent applications, including name variations and changes, spelling mistakes

and the inclusion or omission of middle names and titles, which can lead to identification issues.

Additionally, the inventors’ environment including city networks and innovation hubs therein can

play an important role in determining productivity, thus their existence and trends are important

control for.

To overcome these challenges, we employ an inventor-level fixed-effects model using the recent

disambiguation efforts by the U.S. Patent and Trademark Office to track inventors’ patent

applications over time. In our Poisson pseudo-maximum likelihood estimation, we control

for inventor characteristics and the wider innovation environment by introducing inventor and

time fixed effects as well as city-specific time trends. The geographic focus of this paper is

the United States as a key player in the innovation space (Dutta et al. 2022) with a diverse

climate, access to detailed climate and patent data, and high adaptive capacity through measures

such as air conditioning (U.S. Energy Information Administration 2022). Our analysis of

inventors from 2000 to 2020 suggests that higher temperatures have a negative effect on inventor

productivity. Specifically, we find that one additional day with daily maximum temperatures

above 20◦C compared to a day between 10◦C to 15◦C leads to a decrease in patenting activity

by around 0.12%. This effect does not increase exponentially with higher temperatures. we

further find evidence that higher air conditioning penetration in the county significantly mitigates

this result. Though not the primary focus of this paper, the results also suggest that extremely
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low temperatures increase the patenting output of inventors, possibly indicating a substitution

between leisure and labour.

Our main contribution is to the growing body of research on the effects of temperature in the

labour market. In terms of labour supply, evidence from the American Time Use Survey suggests

that working hours drop with rising temperatures, specifically for workers in outdoor settings who

seem to substitute this with more indoor leisure time (Graff Zivin and Neidell 2014). Similarly,

using payroll data, Behrer and Park (2017) find that payrolls decrease on hotter days for workers

across outdoor industries, though the authors state that this may be attributed to either labour

productivity or labour supply. In contrast to this, a study by Cai, Lu, and Wang (2018) finds

no change in labour supply at increasing temperatures, potentially due to the rigidity or lack of

flexibility of work schedules.

In terms of labour productivity, negative effects of temperatures have been observed in both

indoor and outdoor settings when workers are not shielded by climate controls. For example,

research from India shows that per-worker output in the manufacturing sector declines on hot

days (Somanathan et al. 2021), with similar evidence found for workers in call centres in

Finland, (Niemelä et al. 2002), automobile manufacturing plants in the US (Cachon, Gallino, and

Olivares 2012) and construction workers in China (Zhang et al. 2023). For high-skilled workers,

the evidence is more sparse, largely due to increased difficulty in measuring and evaluating

individual labour productivity in higher-skilled professions. Nonetheless, studies have found

declines in labour productivity in professional tennis players (Burke et al. 2023) and helicopter

pilots (Froom et al. 1993), who appear to be more prone to errors at higher temperatures. A study

of US immigration judges further reveals increased probabilities of unfavourable rulings on hot

days, despite the climate-controlled settings of courthouses (Heyes and Saberian 2019).

A common thread among the existing studies is the emphasis on short-term temperature exposure

and instantaneous labour output. However, high-skilled workers largely engage in more long-

term, cumulative production processes where short-term fluctuations in temperatures may be

less influential. For example, while increased temperature may lead to a drop in productivity one
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day, it can rebound the next, potentially resulting in a negligible or net-zero effect. Furthermore,

high-skilled workers, including inventors, are also likely to have greater agency in their work

schedules and work environments to adapt to varying temperatures.

This paper contributes by studying a distinct part of the workforce that is not only a critical

component of the economy but also varies in their work patterns and adaptive capacity from

previous studies. Our analysis focuses on prolonged temperature exposures and longer-term

labour output processes. Since inventors’ occupational profiles align more closely with a large

share of high-skilled workers in high-income economies, the results provide new evidence of

temperature effects for the wider labour market.

Our second contribution is to the literature on the effect of temperature on economic output

and growth. Though there is a general consensus that higher annual temperatures negatively

affect the level of economic output, the influence on growth remains highly debated. While

researchers such as Dell, Jones, and Olken (2012), Burke, Hsiang, and Miguel (2015) and Nath,

Ramey, and Klenow (2024) find evidence for negative effects of annual mean temperature on

economic growth, other studies challenge this view. Some findings suggest that while temperature

influences total factor productivity, it does not affect its growth rates, implying that temperature

effects might be temporary (Casey, Fried, and Goode 2023). This paper contributes to the

discussion of temperature and economic growth by examining the productivity of inventors, a

group of workers who are a critical component of economic growth. As such, evidence of a

negative effect may offer an additional perspective to this debate.

Our final contribution is to the more general literature on inventor productivity. Understanding

the drivers of innovation has long been of interest due to its economic significance. While earlier

research largely focused on market and firm dynamics, the productivity of inventors themselves

has received increasing attention over time. Inventor productivity has been shown to improve

with increasing job mobility (Trajtenberg, Shiff, and Melamed 2006; Hoisl 2007), firm size (Kim,

Lee, and Marschke 2009; Mariani and Romanelli 2007) and knowledge resources (Nooteboom

et al. 2007). Furthermore, research suggests that the institutional structure of universities and
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research centres can influence innovative output (Lissoni et al. 2008). Spatially, inventors tend to

cluster geographically (Carlino et al. 2015), and those in larger clusters (Moretti 2021) or near

academic research centres (Kantor and Whalley 2014) appear to be more productive. Similarly,

individual characteristics can influence productivity, including age (Jones 2010), risk attitude and

creative skills (Frosch et al. 2015), and childhood exposures (Bell et al. 2019) as well as intrinsic

(Owan and Nagaoka 2011; Singh and Fleming 2010; Hess et al. 2008) and extrinsic motivation

(Azoulay, Ding, and Stuart 2007; Dugoua and Gerarden 2023). Furthermore, factors beyond the

inventors’ control, such as abrupt changes in wealth (Bernstein, Mcquade, and Townsend 2021)

and conflict exposure (Luo, Chen, and Lin 2024), may reduce their productivity.

Despite the extensive research on various determinants of inventor productivity and the signifi-

cance of environmental factors in other economic contexts, research on environmental factors

and inventor productivity remains sparse. One study by Chen et al. (2016) finds that inventors

exposed to more sunlight produce higher-quality patents, but to the best of our knowledge, no ex-

isting studies examine the effects of temperature on inventor productivity. Given the significance

of inventor productivity, we believe this contribution is therefore both novel and valuable in this

context.

3.2 Background

The mechanisms underlying the relationship between temperature and labour productivity

present a complex picture due to the various physiological and psychological impacts of higher

temperatures.

Physiologically, evidence suggests that extreme heat increases hospital admissions, particularly

among vulnerable groups such as children and the elderly (Gronlund et al. 2014; White 2017)

and results in excess deaths (Carleton et al. 2022). Higher temperatures also seem to negatively

affect a variety of bodily functions, including the cardiovascular system (Donaldson, Keatinge,
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and Saunders 2003), brain activity (Nielsen et al. 2001) and sleep patterns (Minor et al. 2022).

Cognitive performance, which is particularly relevant to inventors, has also been shown to decline

on high-temperature days, as evidenced by lower student test scores (Park et al. 2020). While

medical research suggests that the human body can partially acclimate to heat over time (Lorenzo

et al. 2010; Cheung and McLellan 1998; Sexton, Wang, and Mullins 2022), this adaptation seems

to diminish in the absence of continuous high temperatures (Périard, Racinais, and Sawka 2015).

Psychologically, higher temperatures seem to have a negative impact on emotional well-being

and mood. Evidence by Hsiang, Burke, and Miguel (2013) and Burke et al. (2009) indicates that

people exhibit increased conflict propensity in hotter environments, while Ranson (2014) and

Jacob, Lefgren, and Moretti (2005) find increased crime rates on hotter days. Furthermore, a

study analysing data from X (formerly Twitter) finds that higher temperatures are associated

with more negative sentiments in online communication (Baylis 2015).

An inventor exposed to heat may thus experience declines in labour productivity and labour

supply for a variety of reasons. Directly, the inventor may suffer from poor health at increased

temperatures, slower cognitive performance or disrupted sleep, resulting in lower performance

or reduced working hours. Reduced concentration may also make the inventor more prone to

errors. For instance, Park, Pankratz, and Behrer (2021) find that workplace accidents, such as

falls from heights, increase with higher temperatures. Similarly, mood changes induced by heat

may affect the inventor’s ability to focus or engage creatively.

Beyond the direct effects, inventors may also be indirectly impacted by temperature fluctuations.

For example, they may be at greater risk of becoming victims of crime or have increased care-

giving responsibilities for dependents who are vulnerable to extreme temperatures. The relevance

of temperature-induced disruption will likely depend on the nature of work, such as whether

desk-based or manual, the work environment and the level of agency in adapting to disruptions.

Furthermore, temperature fluctuations may also induce labour-leisure substitution. Higher

temperatures may not only raise the cost of labour but also increase the appeal of leisure.
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Activities such as surfing or beach days may be unavailable on colder days but become accessible

in warmer weather, increasing the opportunity cost of labour and possible reducing hours worked

by the inventor. Conversely, colder days may lead inventors to substitute leisure for work.

However, the opposite may also be true, depending on the individual inventor’s preferences for

warm- versus cold-weather leisure activities.

It is important to note that the effect of increased temperatures on inventor productivity is

unclear ex-ante. Though previous evidence suggests that higher temperatures negatively impact

labour productivity, a work pattern that closely aligns with the inventor has not been studied yet.

Prolonged exposure to higher temperatures may have a different effect than short-term exposures,

just as the effect on instantaneous output may be different to the effect on long-term, cumulative

output processes. Furthermore, inventors may be able to take advantage of shifting work

schedules or of the biological adaptability of the body to mitigate productivity influences over

a longer time horizon. Whereas some mechanisms, such as heat-induced workplace accidents,

may be relevant in manual labour settings, they may not be relevant for inventors in desk-based

jobs. Inventors may work less due to disrupted sleep or increase their outdoor leisure time at

higher temperatures, or they may increase their labour supply by preferring to stay indoors in

climate-controlled environments. For example, a study on gaming behaviour revealed that while

gaming performance declined at extreme high and low temperatures, gaming time increased

as individuals spent more time indoors to escape temperature extremes (Bao and Fan 2020).

Additionally, inventors are more likely to already be working in climate-controlled environments

and have more flexibility in adapting to temperature variations, such as by working from home.

Whether the effect of temperature on productivity persists due to exposure outside working hours

is not straightforward. Based on this, we thus begin this study without clear expectations of

where the results may lead.
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3.3 Data

3.3.1 Patents

We retrieve data on patent applications filed at the U.S. Patent and Trademark Office (USPTO)

from 2000 to 2020 through PatentsView. Data from PatentsView provides inventor disam-

biguation directly, assigning unique inventor IDs that enable us to consistently track individual

inventors and their patent outputs over time. To incorporate additional details, including infor-

mation on patent families, we merge the PatentsView data with PATSTAT, the global patent

database maintained by the European Patent Office (EPO). This merge is performed directly

using official patent application numbers. We filter for inventors based in the contiguous United

States, as temperature data is unavailable for areas outside this region.

To determine the inventor’s location, we use the city listed in their home address on the patent

application. Although patent applications sometimes include more specific geographic details,

such as street names, this data is not always available, making a more granular definition of

inventor location challenging and the city the smallest consistent geographic unit. Some inventors

change residences during the sampling period, listing different home addresses on different patent

filings. However, since we only observe addresses during filing years, we cannot determine when

these moves occur. Therefore, we drop any inventors who report multiple addresses, assuming

that the remaining inventors have not moved during the sampling period, providing us with a

continuous measure of inventor location. This conservative approach minimises the risks of

misclassifying inventors’ locations but also means that we are unable to capture relocation as an

adaptive response to temperature changes.

To measure an inventor’s annual patent output, we first group patent applications into patent

families, which consist of sets of patents protecting the same invention. For each patent family,

we identify the earliest filing date on which the inventor appears and attribute the patent to the

inventor’s output in that year. Using the global PATSTAT database, we determine the earliest
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and latest filing dates across all patent families for each inventor, defining their active patenting

period. An inventor is considered active from their first observed filing date until their last.

Within this period, years without patent filings are assigned a value of zero. Years outside

this active range are classified as missing due to the absence of accurate information about the

inventor’s career timeline.

We restrict our main analysis sample to prolific inventors, defined as the top 25% of inventors

who filed the most patents during the period (those with 13 or more). This selection simplifies

the analysis computationally and focuses attention on inventors who significantly contribute

to innovation, given that inventive activity is highly skewed towards a small number of highly

productive individuals. However, we retain the full inventor sample for robustness checks.

We identify a total of 1,331,426 unique inventors resident in the United States in the period from

2000 to 2020. After filtering for inventors who only list one address through the period and

prolific inventors, we retain 181,777 inventors resident in 7,237 cities. The number of patent

applications varies widely, with a mean number of patent applications per year of 4.64 but a

standard deviation of 14.22. The large standard deviation is primarily driven by inventor outliers,

such as Tao Luo, who has filed several thousand patent applications over the years. Within

individual inventors, the mean inter-year standard deviation is much smaller, at 4.18 patents.

The number of inventors increased consistently until 2014 but then began to drop off with sharp

declines after 2018 (Figure 3.1). This is likely due to the fact that our dataset only includes

patent filings up to 2021, such that inventors who file patents infrequently may be classified

as inactive even if they file additional patent applications after 2021. For example, an inventor

who filed for a patent in 2008, 2014 and 2022 will be classified as active from 2008 to 2014 but

inactive thereafter. Since prolific inventors file more frequently, the effect is less pronounced

in this sample. Although this leads to an under-sampling of active inventors toward the end of

the observation period, its uniform nature ensures that any misclassification of inventor activity

is systematic rather than correlated with other explanatory factors and thus should not pose an

endogeneity issue.
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Notes: The graph depicts the number of active prolific inventors in the sample from 2000 to 2020. The graph
excludes movers, i.e. inventors who list multiple addresses, since these are excluded from our sample. A
graph showing all inventors, including movers, can be found in the Appendix and shows a similar pattern.

FIGURE 3.1: Number of inventors over time

The geographic distribution shows that the largest proportion of prolific inventors by a consid-

erable margin reside in California (25%). This is followed by Texas, 7.1%, New York, 5.6%,

and Washington 5.4% (Appendix Figure 3.A.2). The number of patents per inventor and year,

both nationwide and in states with high patenting activity, increases over the period (Figure

3.3). However, data toward the end of the period should be interpreted with caution due to the

potential undersampling of active inventors stemming from the aforementioned limitations in the

construction of the panel. Examining California as a hub for innovation more closely, we find

that a major share of patent activity is concentrated in the Bay Area, with notable contributions

from San Diego, Los Angeles, and Irvine in the southern region (Figure 3.4). In particular, San

Diego stands out with a sharp exponential increase in the average number of patents per inventor

starting in 2006 (Figure 3.5), likely attributed to its emergence as a hub for biotech and human

genome research during this period. This trend is not merely a result of a reduction in the number

of inventors but is characterized by a marked rise in patent filings (Appendix Figure 3.A.4).

Overall, the descriptive findings suggest significant variation in inter-year inventor patenting

activity while also indicating differences across states and possible city-level trends.
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Notes: The map depicts the distribution of unique prolific inventors by state from 2000 to 2020. The
distribution including non-prolific inventors by states can be found in the Appendix and shows a similar
pattern. Both charts exclude movers, i.e., inventors who list multiple addresses, since these are excluded
from our sample.

FIGURE 3.2: Patenting by state

Notes: The graph depicts the average number of patent family applications per inventor from 2000 to
2020 for the subset of prolific inventors. This is calculated by dividing the total number of patent family
applications filed by prolific inventors by the number of active prolific inventors. The graph including
non-prolific inventors can be found in the Appendix and shows a similar pattern. Both charts exclude movers,
i.e. inventors who list multiple addresses, since these are excluded from our sample.

FIGURE 3.3: Patenting trends in the US and high patenting States
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Notes: The bar chart depicts the distribution of unique prolific inventors by city in California from 2000 to
2020. Prolific inventors are defined as those with 13 or more patent family applications during the period.
The chart excludes cities with fewer than 1% of inventors. The distribution including non-prolific inventors
by city can be found in the Appendix and shows a similar pattern. Both charts exclude movers, i.e., inventors
who list multiple addresses since these are excluded from our sample.

FIGURE 3.4: Patenting by city - California

Notes: The graph depicts the average number of patent family applications per inventor from 2000 to 2020
for prolific inventors in cities in California with a high number of prolific inventors. This is calculated by
dividing the total number of patent family applications filed by prolific inventors by the number of active
prolific inventors. The graph including non-prolific inventors can be found in the Appendix and shows
a similar pattern. Both charts exclude movers, i.e. inventors who list multiple addresses, since these are
excluded from our sample.

FIGURE 3.5: Patenting trends in California and high patenting cities
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3.3.2 Temperature and Climate Controls

For our main explanatory variable, we download daily temperature data, measured in ◦C, for the

contiguous United States from the PRISM Climate Group. The dataset is constructed using a

regression-based spatial interpolation model that takes topographical influences into account and

has a resolution of 4km x 4km. It is commonly used in temperature studies in the United States

due to its high-resolution, peer reviewed methodology and use of extensive ground-based weather

station observations. For our main specification we download daily maximum temperature data,

although we also access daily mean and minimum temperature data for further analysis later on.

To construct our main explanatory variable, we group daily maximum temperature observations

into 5◦C temperature bins and, within each raster, compute the annual number of days falling in

each temperature bin. Next, we download the Incorporated Place and Census Designated Place

file from the U.S. Census Bureau to retrieve the geometric boundaries of cities. To aggregate

raster temperature data at the city level, we perform a weighted spatial aggregation, assigning

full weight to cells entirely within city boundaries and proportionally weighting those that

are only partially encompassed. For example, suppose the annual number of days in the 25

to 30◦C temperature bin for raster cells A, B, C, and D are 20, 35, 50, and 25, respectively.

Further, assume that the city boundaries fully encompass raster A, cover 50% of raster B, 20%

of raster C, and do not include raster D at all. The spatial aggregation computes the city-level

count as follows: 20×1+35×0.5+50×0.2
1+0.5+0.2 = 28. We perform this aggregation after classifying daily

temperatures within each raster to ensure that we account for local variations, do not smooth over

extremes and preserve the original distribution of temperature values. Once we have aggregated

at the city level, we use a crosswalk to match the Place FIPS codes from the boundary file to the

cities listed on the inventor applications. This requires some manual cleaning of city names to

ensure consistent matching. The final temperature variable for the inventors consists of a series

of count variables that delineate the annual number of days within each 5◦C temperature bin,

measured at the city location of the inventors’ home addresses.
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In addition to temperature, we download daily precipitation and dew point data from PRISM.

These climatic controls account for the fact that higher moisture in the air increases stress on

the body by reducing its ability to cool down, which may, in turn, impact inventor productivity.

Similar to the temperature data, the PRISM precipitation and dew point data is available as raster

data at 4km x 4km resolution. We perform the same weighted spatial aggregation to determine

annual average precipitation, measured in millimetres, and annual average dew point, measured

in ◦C, for each inventor city.

The average annual daily maximum temperature across all inventor cities was 19◦C for both the

full sample and the subset of prolific inventors. However, daily maximum temperatures naturally

varied across locations and throughout the year. To illustrate the distribution of daily maximum

temperatures, we plot the annual distribution for the year 2020 in Figure 3.6. Daily maximum

temperatures exceeded 20°C on 49% of days, with 2% of days exceeding 35°C. Similar to the

average annual daily maximum temperature, there is little difference in the distribution between

the full sample and the subset of prolific inventors (Figure 3.A.7). We therefore focus on our

main sample of prolific inventors for the remaining descriptive statistics.
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Notes: The graph shows the percentage distribution of days within each temperature bin in inventor cities
in 2020. Inventor cities are defined as cities with at least one resident prolific inventor. The temperature
distribution for inventor cities including non-prolific inventor cities can be found in the Appendix. Both
charts exclude movers, i.e. inventors who list multiple addresses since these are excluded from our sample.

FIGURE 3.6: Temperature distribution in 2020
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On average, inventors experienced 9.84 days per year of daily maximum temperatures exceeding

35◦C. The highest number of days above 35◦C in any single year was recorded in Roma, Texas,

where inventors were exposed to extreme heat over 35◦C for nearly half of the year, 174 days.

Mohave Valley in Arizona had the highest average annual number of days above 35◦C, with 153.6

days per year. Arizona also recorded the hottest year among all states, with an average of 122.2

days exceeding 35◦C across its inventor cities in 2020 and an annual average daily maximum

temperature of 28.5◦C. Although Arizona consistently saw the highest number of extremely hot

days, Florida recorded the highest mean annual daily maximum temperature, suggesting that

while Arizona experienced more extreme temperature fluctuations, Florida maintained a more

consistently warm climate. Conversely, North Dakota was the coldest state, averaging the most

days below -5°C annually at 52.6 and an average daily maximum temperature of 11.4°C across

inventor cities. Badger, Minnesota, experienced the most extreme cold, with 93 days below -5°C

in a single year.

The year-to-year variability of average annual daily maximum temperature differed across

inventors. Inventors in Center, North Dakota, experienced the greatest inter-year variability at

1.34°C, while inventors in Wellington, Florida, experienced the least at 0.34°C. Freer, Texas, had

the highest inter-year variation in the number of days above 35°C at 28.9 days. The inter-year

standard deviation of inventors’ average annual daily maximum temperature on average was

0.79°C. At the extreme end of the temperature distribution, the average inter-year variation in

the number of days exceeding 35°C was 4.8 days, while for days below -5°C, it was 4.2 days.

The results for all temperature bins are shown in Table 3.1. It is also worth noting that not all

cities experienced the full range of temperatures. For example, Alabama never experienced days

above 35°C, while Arcata, California, never recorded any days with daily maximum temperature

below -5°C. Overall, our data shows significant variation in temperature across years and cities,

accommodating a wide range of climates along with temperature variations within inventors.
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Temperature Bin Average Standard Deviation

(-Inf, -5] 4.20
(-5, 0] 5.29
(0, 5] 6.99

(5, 10] 7.70
(10, 15] 7.41
(15, 20] 8.69
(20, 25] 9.42
(25, 30] 10.49
(30, 35] 11.16
(35, Inf] 4.84

Notes: The table describes the average inter-year standard deviation of days per temperature
bin for prolific inventors. For each prolific inventor, we calculate the standard deviation of
days in every bin over the period from 2000 to 2020, then average these values across all
prolific inventors.

TABLE 3.1: Inter-year standard deviations

3.3.3 Summary Statistics

Table 3.2 presents summary statistics for key variables across the full inventor sample, as well as

the prolific and non-prolific subsamples. Due to the data limitations described above, the dataset

excludes inventors who list more than one address over the period. The full sample includes over

6 million inventor-year observations across nearly one million unique inventors.

By construction, prolific inventors file significantly more patent family applications per year than

prolific inventors. The share of granted applications is similar across groups, averaging 74% for

prolific and 72% for non-prolific inventors, suggesting that prolific and non-prolific inventors are

equally likely on average to be successful in their patent applications. When weighting patent

families by the number of inventors listed on the application, the average output for prolific

inventors falls to about 33% of the unweighted count, compared to 40% for non-prolific inventors.

This indicates that non-prolific inventors are slightly more likely to file alone while prolific

inventors seem to collaborate more frequently.
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In terms of the temperature distribution, the average number of days in each temperature bin is

broadly similar across inventor groups. Notably, exposure to extreme cold days (below -5◦C) are

less common than exposure to extremely hot days (above 35◦C) for inventors. Dew point and

precipitation levels are also nearly identical across groups.

Among all inventors, 42% file only once during the sample period. As expected, this share rises

to 51% among non-prolific inventors.

All Inventors Prolific Inventors Non-prolific Inventors

Variable Mean Std Dev Mean Std Dev Mean Std Dev

Simple Count 2.37 9.63 4.64 14.22 0.61 0.87
Simple Granted 1.74 6.74 3.43 9.92 0.44 0.73
Weighted 0.80 2.84 1.53 4.17 0.24 0.41
Weighted - Granted 0.60 2.12 1.14 3.11 0.17 0.35
# Days (Inf, -5] 5.76 10.24 5.74 10.27 5.77 10.22
# Days (-5, 0] 11.68 13.62 11.55 13.63 11.79 13.62
# Days (0, 5] 22.88 20.50 22.60 20.66 23.10 20.37
# Days (5, 10] 31.01 22.71 30.77 23.03 31.19 22.45
# Days (10, 15] 45.91 22.03 46.65 22.28 45.33 21.81
# Days (15, 20] 61.56 32.34 63.09 33.04 60.37 31.74
# Days (20, 25] 66.80 25.66 67.85 26.40 65.98 25.04
# Days (25, 30] 68.35 23.23 67.62 22.37 68.92 23.86
# Days (30, 35] 41.33 32.52 39.56 31.19 42.69 33.46
# Days (35, Inf) 9.99 21.94 9.84 21.70 10.11 22.13
Dew Point 6.95 3.96 6.92 3.77 6.97 4.11
Precipitation 2.51 1.16 2.48 1.16 2.54 1.16

Observations 6,385,797 6,385,797 2,790,051 2,790,051 3,595,746 3,595,746
# Inventors 994,669 994,669 181,780 181,780 812,889 812,889
One-Time Inventors 0.42 0.42 0 0 0.51 0.51

Notes: The table above describes annual averages of key variables.’Simple Count’ describes patent family applications per year; ’Simple
Granted’ describes patent family applications per year that were granted; ’Weighted’ describes patent family applications per year
weighted by the number of inventors listed on the application; ’Weighted-Granted’ describes patent family applications per year that
were granted weighted by the number of inventors listed on the application; ’Dew Point’ is measured in ◦C; ’Precipitation’ is measured
in millimetres and describes annual averages of daily rainfall not total yearly accumulation of rain; ’One-Time Inventors’ is the ratio of
one-time inventors divided by total number of inventors.

TABLE 3.2: Summary Statistics

3.4 Methodology

We estimate an inventor-level panel fixed effect model that tracks inventors’ temperature expo-

sures and patent application output from 2000 to 2020. Our main specification, estimated using
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a Poisson pseudo-maximum likelihood estimator (PPML), is defined by the following equation:

Patenti,c,t = exp

(
α +

B

∑
b ̸=10−15

βb

(
3
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c,t−k

)
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(
3
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Pptc,t−k

)
+ γ2

(
3
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Dewc,t−k

)
+δi +σt +νc · t

) (3.1)

The main outcome variable is Patenti,c,t and describes the number of patent families filed by

inventor i residing in city c in year t. This variable captures all patent applications independent

of whether they are ultimately granted. This approach mitigates biases arising from varying time

horizons for patent approvals and quality judgments while providing a comprehensive measure

of formal innovative activity. By focusing on the number of patent applications per inventor, this

measure addresses the intensive margin of innovation rather than the extensive margin, which

would consider the number of new inventors entering under varying temperature fluctuations.

The main variable of interest, Tempb
c,t−k, is the number of days in the past three years, with

temperatures in bin b in city c. With limited prior assumptions about the influence of temperature

on innovation, our preferred functional form is a bin specification. This allows for non-linear

effects as well as an easy interpretation of results. We measure temperature exposure based on

the temperatures inventors were likely exposed to over the preceding three years. This lag choice

aligns with survey evidence from Nagaoka and Walsh (2009), who find that inventors typically

spend up to three years developing a new invention. Due to the lag structure of the analysis, we

deem the risk of reverse causality to be minimal. Patenting activity today is unlikely to affect

temperature variations in previous years.

To mitigate potential endogeneity concerns, we engage several empirical strategies. Since higher

moisture in the air has been associated with increased stress on the body and reduced ability

to cool down, we control for precipitation and humidity in the temperature exposure period.

These variables may not only correlate with the temperature inventors perceive but may also

independently influence productivity. Examples of this may include commute delays caused by
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flooding, inability to take breaks outdoors or general discomfort that inhibits creativity. We add

inventor fixed effects to account for individual characteristics that may correlate with temperature

and affect patenting output. For example, this may include pre-existing health conditions, which

likely influence sensitivity to temperature but may also independently lead to variations in

inventor productivity.

Furthermore, we include year fixed effects to address endogeneity concerns related to general

trends in temperature and patenting. To further account for varying time trends within cities

that may correlate with temperature exposure and innovation activity and to capture potential

dynamics specific to innovation clusters, we add city-specific time trends. An example of such

a trend may be infrastructure projects contributing to urban heat island effects but simultane-

ously attracting economic activity, thus both potentially influencing temperature and inventor

productivity. Another example may be city-wide investments in health care that could enhance

inventors’ ability to cope with heat stress while also influencing productivity through broader

health improvements. Given the large sample size and the divergent patenting trends across

cities observed in the descriptive analysis, we include both linear and squared city time trends to

allow for nonlinearity. Finally, we control for spatial correlation in the patenting activities of

inventors by clustering standard errors at the city level. This addresses any arbitrary correlation

in error terms among inventors within the same city over time, recognising the spatial nature of

temperature variations and innovation clusters.

3.5 Results

3.5.1 Main

We present the outcome of the main specification, including all controls, fixed effects and time

trends in Figure 3.7. The 10 to 15◦C temperature bin serves as the reference category and

is omitted from the regression. Consequently, the results are to be interpreted relative to this
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baseline, meaning the effect of an additional day in a given temperature bin is measured in

comparison to a day in the 10 to 15◦C temperature range. The estimated inventor temperature

response function differs from the commonly observed inverted U-shape of previous temperature-

labour studies. At the high end of the temperature distribution, the results suggest that one

additional day of temperatures exceeding 20◦C decreases the number of patent applications

of the inventor by 0.12%. In other words, an inventor who experienced an additional day

with a maximum temperature above 20◦C in the last three years will file 0.12% fewer patent

applications today, relative to experiencing a maximum daily temperature between 10 to 15◦C.

This effect is relatively stable in magnitude for all temperature bins above 20◦C, indicating that

once the threshold is crossed, the effect persists but does not intensify with further increases

in temperatures. In contrast, at the low end of the temperature distribution, additional days

with daily maximum temperatures below freezing, 0◦C, seem to increase patenting activity. An

inventor who experiences one additional day with maximum temperatures not exceeding -5◦C

will file 0.2% more patent applications.

The magnitude of the effects may seem small at first. For the average inventor, who has 4.64

patent filings per year, it would take an additional 180 days above 20◦C over three years to

result in the loss of a single patent filing. However, since patent filings are influenced by a wide

range of factors, it is unsurprising that the effect of temperature alone, while significant, is not

overwhelmingly large. On the contrary, an excessively large effect would more likely raise

suspicions about the robustness of our empirical strategy. Furthermore, our estimate reflects

an aggregate effect, likely masking significant heterogeneity among certain inventors, firms or

sectors, some of whom may experience substantially larger impacts. For example, for a highly

prolific inventor with an average of 83 patent filings per year, a 0.12% decrease in patenting

means that just 10 additional days above 20◦C would result in one less patent filing.

Though the shape of the temperature response function differs, the results indicate that inventors

are not immune to variations in temperatures. Many possible mechanisms may underlie this

relationship. While inventors are more likely to work indoors, not all workplaces may have
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Notes: The temperature response function is estimated using a PPML estimator and includes inventor and year fixed effects, as well as
linear and squared time trends and controls for humidity and precipitation. Standard errors are clustered at the city level. The grey
shaded area represents the 95% confidence interval for the coefficient estimate. The outcome variable is expressed as the percentage
change in patent family application filings, with 10 to 15◦C as the reference category. This analysis is based on three-year cumulative
lagged exposure.

FIGURE 3.7: Temperature response function - main
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effective climate controls and temperature exposures outside the workplace may have delayed

or spillover productivity effects during work hours. Similarly, inventors may work closely with

individuals who are temperature-exposed such that the productivity effects of these workers may

have knock-on effects on inventors’ patenting output.

Furthermore, given that inventors are likely to have some agency in their work schedule, they

may engage in leisure-labour substitution. In warmer periods, inventors may substitute work for

outdoor leisure time leading to decreases in patent filings. Conversely, increased patenting at

very low temperatures may reflect a substitution of leisure time for work. As daily maximum

temperatures fall below 0◦C, leisure activities may be increasingly limited, encouraging inventors

to stay indoors and work instead.

Finally, the distinct shape of the response function, particularly the absence of an exponential

increase at higher temperatures, may be supported by a lack of direct physiological stress among

inventors. Individuals who perform manual work in outdoor industries are more likely to be

subject to exponential declines in productivity as physiological stress intensifies with both

increasingly high and low temperatures. Since inventors are more likely to engage in cognitive

tasks and work indoors, it is plausible that temperatures may not have the same exponential

effect.

Though identifying the underlying mechanism lies beyond the scope of this paper, our findings

indicate that inventors are not immune to temperature variations, and higher temperatures may

have a significant negative effect on innovative activity.

Further to analysing the 3-year cumulative temperature exposure, we also examine the effect

of temperature variation nearer the filing date by estimating the model with only one-year

lagged exposure. This provides insights into potential variation in effects during the final stages

of innovation or shorter-term projects. As an innovation nears completion, inventors may,

for instance, be more willing to compensate for temperature-induced productivity losses by

increasing work hours. Alternatively, temperature effects on productivity may differ depending
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Notes: The temperature response function is estimated using a PPML estimator and includes inventor and year fixed effects, as well as
linear and squared time trends and controls for humidity and precipitation. Standard errors are clustered at the city level. The grey
shaded area represents the 95% confidence interval for the coefficient estimate. The outcome variable is expressed as the percentage
change in patent family application filings, with 10 to 15◦C as the reference category. This analysis is based on 1-year lagged exposure.

FIGURE 3.8: Temperature response function - 1-year lag

on the tasks involved at various development stages. For example, temperature-induced stress

may be more or less harmful during the initial creative phases or strategic stages closer to patent

filing. Furthermore, inventors working on shorter-term projects may experience temperature

effects differently. Short-term projects may be more accessible, whereas long-term projects

may be more complex and thus more significantly affected by temperature-induced cognitive

impairments or disruptions.

The estimated temperature response function based on one-year lagged exposure is illustrated in

Figure 3.8. While the negative effect at the high end of the temperature distribution persists, we

no longer detect a positive effect at low temperatures. However, these estimates are noisier and

less clearly defined and suggest that temperature variations closer to the patent filing may be less

significant for inventor productivity.
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Notes: The plot shows the results for the coefficient of the temperature bin covering
days above 20◦C for all inventors and the subsample of prolific inventors of the main
specification. The model is estimated using a PPML estimator and includes inventor and
year fixed effects, as well as linear and squared time trends and controls for humidity and
precipitation. Standard errors are clustered at the city level, and the plot shows the 95%
confidence interval for the coefficient estimate. The outcome variable is expressed as the
percentage change in patent family application filings. This analysis is based on three-year
cumulative exposure.

FIGURE 3.9: Robustness - all versus prolific inventors

3.5.2 Robustness

Given the focus of this paper and the slightly noisier results at lower temperatures, we concentrate

on the high end of the temperature distribution for our robustness checks. For computational

reasons, we collapse the temperature variable to a single bin describing the number of days with

daily maximum temperatures above 20◦C.

To begin, we extend our analysis to the sample that includes non-prolific inventors. The results

show that the negative effect of temperatures above 20◦C is consistent and robust when estimated

using the full sample (Figure 3.9). Inventors independent of their output or work intensity seem

to be equally affected by higher temperatures.

Next, we test the robustness of our temperature metric. Instead of using daily maximum

temperatures, we calculate the number of days above 20◦C based on the daily mean and daily

minimum temperatures. Daily maximum and minimum temperatures capture extremes at

different times of the day: maximum temperatures typically occur during the day when the
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Notes: The plot shows the results for the coefficient of the temperature bin covering days
above 20◦C when this is calculated using daily maximum, daily mean or daily minimum
temperatures. The model is estimated using a PPML estimator and includes inventor and
year fixed effects, as well as linear and squared time trends and controls for humidity and
precipitation. Standard errors are clustered at the city level, and the plot shows the 95%
confidence interval for the coefficient estimate. The outcome variable is expressed as the
percentage change in patent family application filings. This analysis is based on three-year
cumulative exposure

FIGURE 3.10: Robustness - maximum, minimum, mean
temperatures

inventor is likely to be at work, while minimum temperatures occur at night, likely when the

inventor is asleep. More pronounced effects of daily maximum temperature would suggest that

temperature primarily impacts productivity through daytime activities. In contrast, the strong

effects of daily minimum temperature may suggest disrupted sleep as a driver for the negative

effect on inventor productivity.

The results, shown in Figure 3.10, confirm that the effect of temperature is more pronounced

when using daily maximum temperatures, suggesting that daytime heat is more relevant in

influencing inventor productivity. Possible explanations include that inventors may be shielded at

night by residential air conditioning or that variations in temperature are more important during

work hours, with limited spillover effects from variations at night.

Finally, we assess the robustness of our results to geographic subsampling of our data. Specifi-

cally, we remove California as the largest contributor to innovation and home to around a quarter

of the country’s inventors. The results in Figure 3.11 suggest that the main results are largely
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Notes: This graph shows the temperature response function without inventors resident in California. It is estimated using a PPML
estimator and includes inventor and year fixed effects, as well as linear and squared time trends and controls for humidity and
precipitation. Standard errors are clustered at the city level. The grey shaded area represents the 95% confidence interval for the
coefficient estimate. The outcome variable is expressed as the percentage change in patent family application filings, with 10 to 15◦C as
the reference category. This analysis is based on three-year cumulative lagged exposure.

FIGURE 3.11: Temperature response function - no California

driven by California. In the estimation without California, higher temperatures do not seem to

affect inventors’ patent filings, whereas the positive effect of low temperatures persists. Given

the significantly divergent patenting trends observed in San Diego, we also subset our sample to

exclude San Diego while keeping the rest of California. In this case, the effect of temperatures

above 20◦C persists, indicating that San Diego is not solely responsible for the observed change

in patterns (Appendix Figure 3.A.11). Though California is the fifth-largest economy in the

world, and results specific to California hold value on their own, in the following section, we

explore factors that may lead to heterogeneous effects.

3.5.3 Heterogeneity

Air conditioning is the most obvious form of adaptation to higher temperatures and can shield

inventors from temperature fluctuations. Thus, variations in the prevalence of air conditioning
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are likely to influence how inventors respond to these changes. Importantly, the presence of

air conditioning may be relevant not only at the workplace but also in other environments that

intersect with the life of the inventor, such as at home, in shops or on public transport. Disruptions

due to temperature in these settings may carry over and affect productivity during work hours.

Since we are unable to track the inventor’s exact movements and their access to air conditioning

over time, we rely on an approximation of air conditioning exposure. Though detailed-time

series air conditioning data is not readily available, we utilise a dataset constructed by Shrader,

Bakkensen, and Lemoine (2023), which estimates annual household air conditioning rates by

county from 2005 to 2017. Using individual-level restricted access data from the American

Housing Survey alongside climate data, the authors employ a multi-step model selection process

to estimate coefficients predicting household air conditioning take-up. They then apply these

coefficients to standardized American Community Survey data to generate household predictions

that are aggregated by county and year and subsequently smoothed over time. The final air

conditioning variable is expressed as a penetration rate between 0 and 1, where 0 indicates no

air conditioning and 1 universal coverage. Although this data does not capture air conditioning

outside the household, it provides our best available approximation of overall air conditioning

levels. We subset our sample to fit the availability of the data and create three-year rolling

averages of air conditioning penetration by county.

The distribution of average household air conditioning penetration between 2005 and 2017 is

shown in Figure 3.12. For the United States overall, the mean air conditioning penetration during

this period is 84%. However, there is significant geographical variation, with notably lower

air conditioning rates in the western and northeastern United States. In California, the mean

household air conditioning rate is 66%, while in densely populated counties along the coast of

California, it is even lower with an average of 34%.

To analyse how differences in air conditioning may lead to heterogenous effects of temperature

on inventor productivity, we interact the temperature variable with county-level air conditioning

penetration (Figure 3.13). Interpreting interaction terms in non-linear models can be complex
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Notes: The map shows the air conditioning penetration rates by county from 2005 to 2017. Penetration rates are expressed from 0 to 1,
where 0 indicates no air conditioning and 1 full air conditioning.

FIGURE 3.12: Air conditioning penetration

as coefficients generally do not correspond to marginal effects when the outcome is expressed

in levels (Ai and Norton 2003). However, the PPML model used here specifies the log of

expected patent family applications as a linear function of temperature, allowing coefficients

to be interpreted as percentage changes
1
. In this context, interaction terms capture how the

percentage effect of temperature varies with air conditioning penetration and can be directly

interpreted from the estimated coefficients, avoiding the concerns raised by Ai and Norton (2003).

Under full household air conditioning (AC = 1), the effect of temperature is the sum of the

coefficient and the interaction term. It suggests that net of air conditioning, one additional day

above 20C decreases an inventor’s patent filings by 0.05%. While the negative effect of higher

temperatures is significantly smaller with air conditioning, it persists and suggests that widespread

air conditioning may not be sufficient to fully mitigate the impacts. However, it is important

to remember that the air conditioning variable is an approximation, capturing household air

conditioning penetration but not accounting for air conditioning in other environments, such

as workplaces or commercial spaces. While this is our best available measure, the incomplete

1 See Appendix 3.A.2 for more details.
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mitigation effect may thus also result from limited air conditioning in other settings. Nonetheless,

the evidence suggests that air conditioning can significantly reduce the negative impact of

temperature on productivity.

Not only does this finding make intuitive sense, but given the significantly lower air conditioning

rates in California, it also offers a compelling explanation for the differential effect without

California observed in the previous section. Furthermore, it is worth noting that the US, including

California, already has significantly higher rates of air conditioning compared to Europe and

many other regions globally. This suggests that the effects of higher temperatures on inventor

productivity may be even more pronounced elsewhere.

Notes: The plot shows the results for the coefficient of the temperature bin covering
days above 20◦C, as well as the interaction of this coefficient with the air conditioning
penetration variable. The model is estimated using a PPML estimator and includes inventor
and year fixed effects, as well as linear and squared time trends and controls for humidity
and precipitation. Standard errors are clustered at the city level, and the plot shows the
95% confidence interval for the coefficient estimate. The outcome variable is expressed
as the percentage change in patent family application filings. This analysis is based on
three-year cumulative exposure.

FIGURE 3.13: Heterogeneity - air conditioning

Beyond air conditioning, we also examine how differences in patenting intensity may lead to

heterogeneous effects. As the number of inventors increases, their interconnectivity also grows.

Minor decreases in temperature-induced productivity may compound and lead to spillover effects

throughout the network. For example, in a highly connected network, if one inventor is suffering

from temperature-induced health problems, it may delay the progress of inventors in the same
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network who rely on the innovative developments of the specific individual, thus leading to

compounded decreases in patent filings. To test this, we produce a measure for patenting

intensity in inventor cities by using the number of patent applications five years prior to our

estimation period (1995 – 1999). Though the coefficient on our main temperature variable

remains consistent, the coefficient on the interaction term of temperature with patenting intensity

is zero, suggesting that patenting intensity does not influence the relationship between higher

temperatures and inventor productivity.

Notes: The plot shows the results for the coefficient of the temperature bin covering days
above 20◦C, as well as the interaction of this coefficient with the patenting intensity
variable. The model is estimated using a PPML estimator and includes inventor and year
fixed effects, as well as linear and squared time trends and controls for humidity and
precipitation. Standard errors are clustered at the city level, and the plot shows the 95%
confidence interval for the coefficient estimate. The outcome variable is expressed as the
percentage change in patent family application filings. This analysis is based on three-year
cumulative exposure.

FIGURE 3.14: Heterogeneity - patenting intensity

Finally, we explore whether climate may lead to heterogeneous effects of temperature on inventor

productivity. On the one hand, in a warmer climate, socioeconomic infrastructure may be better

adapted, and inventors may be more accustomed to higher temperatures, enabling them to cope

better with additional hot days. On the other hand, additional heating days in a warmer climate

may also reduce the essential reprieve that cooler days provide in mitigating the effects of

prolonged heat exposure. For example, an inventor who has already experienced two weeks of

high temperatures may experience greater heat stress from an additional hot day compared to
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someone who has had intermittent cooler days. Similarly, socioeconomic infrastructure such

as hospitals may be stretched thin during prolonged heat exposure, making additional hot days

more disruptive.

To approximate climate, we download 30-year annual temperature normals (1991 – 2020 from

PRISM) and aggregate these to the inventor city-level using the same weighted spatial aggregation

methods as before. The inclusion of temperature normals introduces some noise to the main

temperature variable as some of the variation is inevitably absorbed by the normals. However,

interacting the normals with our main temperature variable, we do not find evidence that climate

influences the relationship between high temperatures and inventor productivity.

Notes: The plot shows the results for the coefficient of the temperature bin covering days
above 20◦C, as well as the interaction of this coefficient with the climate normals. The
model is estimated using a PPML estimator and includes inventor and year fixed effects, as
well as linear and squared time trends and controls for humidity and precipitation. Standard
errors are clustered at the city level, and the plot shows the 95% confidence interval for the
coefficient estimate. The outcome variable is expressed as the percentage change in patent
family application filings. This analysis is based on three-year cumulative exposure.

FIGURE 3.15: Heterogeneity - climate

3.6 Conclusion

In this study, we have explored the effect of temperature variations on inventor productivity.

Using data from the United States from 2000 to 2020, our inventor-level analysis suggests that

one additional day above 20◦C in the past three years compared to a day between 10 to 15◦C
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leads to a 0.12% decrease in the patent applications filed by the inventor today. On the other

hand, temperatures below 0◦C seem to increase inventor patenting activity, possibly explained by

labour-leisure substitution. The results suggest that temperatures can impact labour productivity

not only in the short term but also in the longer-term cumulative processes of research and

development.

Furthermore, our analysis indicates that the negative effect of higher temperatures is largely

driven by California. Since the state is home to a quarter of the inventors in the United States and

is considered to be the fifth-largest economy in the world, results pertaining to California hold

value in themselves. Nonetheless, we have attempted to identify the specific factors underlying

these results. We find evidence that while climate and patenting intensity do not influence

the relationship between temperature and inventor productivity, air conditioning penetration

does. Specifically, we find that higher rates of air conditioning decrease the negative effect of

temperature on inventor productivity. Given significantly lower than average air conditioning

rates in California compared to other parts of the United States, these findings align with the

geographic heterogeneity of our results.

In addition, although we cannot test this directly, it is possible that lower patenting in California

on warmer days partly reflects substitution away from work towards leisure. Inventors who

choose to live in California may have stronger preferences for outdoor activities, making them

more likely to shift time towards leisure when temperatures increase. The state’s emphasis on

outdoor living, extensive coastline and abundance of warm-weather recreational activities may

reinforce this tendency. From a welfare perspective, this then raises the question of whether such

responses warrant policy intervention, particularly if reduced productivity is offset by increased

leisure utility.

Of course, this study is not without caveats. Firstly, we acknowledge that we are unable to

capture changes in R&D investments that may correlate with temperature fluctuations and could

impact inventor patent filings. Ideally, we would control for changes in R&D expenditure of

the firm employing the inventor to separate this effect. However, this data is difficult to obtain,
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as it requires both firm-level data on R&D spending and matching inventors to firms over time.

For public U.S. firms, R&D data may be obtained via Compustat, but attributing it to individual

inventors would require detailed tracking of their career paths. While this is not straightforward,

it remains an avenue for future research. Furthermore, we are limited by the geographic precision

of inventors’ home addresses as listed on the patent applications, and while cities provide a

relatively granular unit, there may be additional temperature variations within the cities that

we are unable to account for. Finally, we are also limited by the geographic precision of air

conditioning data and are unable to determine where air conditioning might be most relevant, for

example, whether at home or at work. Though we have outlined several possible mechanisms

underlying the relationship between temperature and inventor productivity, there remains a need

for future research to determine their relative importance.

Nonetheless, we believe that our study makes an important contribution to the literature. Under-

standing the impact of temperature on the labour market has become increasingly important in

light of rising global temperatures. Inventors are a critical economic component of the workforce,

yet the effects of environmental shocks on their productivity have largely been overlooked. Albeit

that inventors are more likely to work indoors, our results challenge the notion that this renders

inventors immune to the disruptions associated with variations in temperature. This finding

also adds a new perspective to the debate on the level versus economic growth effects of rising

temperatures, with productivity effects of inventors possibly contributing to the negative impacts

on growth. However, these effects may also be offset by an expanding inventive workforce.

Future policy discussions in this context should thus further consider human capital formation in

a warming world. Importantly, our study suggests that air conditioning constitutes an effective

adaptation strategy. However, for it to be truly protective, our findings also indicate that penetra-

tion rates need to be sufficiently high, and residential air conditioning alone may not be enough.

Given that air conditioning rates are much lower in Europe and in many parts of the rest of the

world compared to California, the impact of rising temperatures on inventor productivity may be

even more severe in these regions and will require future study.
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3.A Appendix

3.A.1 Additional Descriptive Figures

Notes: The graph depicts the number of all active inventors in the sample from 2000 to 2020. The graph
includes movers, i.e. inventors who list multiple addresses.

FIGURE 3.A.1: Number of inventors over time - incl. movers

Notes: The bar chart depicts the distribution of unique inventors by state from 2000 to 2020. The chart
excludes states with fewer than 1% of inventors. The chart excludes movers, i.e., inventors who list multiple
addresses since these are excluded from our sample.

FIGURE 3.A.2: Patenting by state - incl. non-prolific
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Notes: The graph depicts the average number of patent family applications per inventor from 2000 to 2020.
This is calculated by dividing the total number of patent family applications by the number of active inventors.
The chart excludes movers, i.e. inventors who list multiple addresses since these are excluded from our
sample.

FIGURE 3.A.3: Patenting trends in the US and high patenting states -
incl. non-prolific

Notes: The graph depicts the number of prolific inventors and the number of patent family application filings
in San Diego from 200 to 2020. The y-axis on the left provides the scale for the number of inventors, while
the y-axis on the right provides the scale for the number of patent family application filings.

FIGURE 3.A.4: Inventors and patenting in San Diego
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Notes: The bar chart depicts the distribution of unique inventors by city in California from 2000 to 2020.
The chart excludes cities with fewer than 1% of inventors. The chart excludes movers, i.e., inventors who list
multiple addresses, since these are excluded from our sample.

FIGURE 3.A.5: Patenting by city - California - incl. non-prolific

Notes: The graph depicts the average number of patent family applications per inventor from 2000 to 2020
in cities in California with a higher number of inventors. This is calculated by dividing the total number of
patent family applications by the number of active inventors. The graph excludes movers, i.e. inventors who
list multiple addresses, since these are excluded from our sample.

FIGURE 3.A.6: Patenting trends in California and cities - incl.
non-prolific
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Notes: The graph shows the percentage distribution of days within each temperature bin in inventor cities in
2020. Inventor cities are defined by the home address of inventors. The chart excludes movers, i.e. inventors
who list multiple addresses since these are excluded from our sample

FIGURE 3.A.7: Temperature distributions in 2020 - incl. non-prolific
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3.A.2 Note on Interaction Terms

[This note is equivalent to the explanation provided in Appendix 1.A.2 of Chapter 1, as the

econometric structure and interpretation of interaction terms are identical across both chapters.]

An interaction term measures the change in marginal effect of one variable with respect to

changes in another and is defined by the cross-partial derivative: ∂ 2E[y|x]
∂x1∂x2

.

Consider first a linear model: E[y|x] = β0 +β1x1 +β2x2 +β3x1x2.

The marginal effect of x1 is: ∂E[y|x]
∂x1

= β1+β3x2 and the interaction effect is given by: ∂ 2E[y|x]
∂x1∂x2

= β3

In this case, the coefficient β3 on the interaction term directly represents the interaction effect,

making interpretation straightforward.

Now consider a Poisson model: E[y|x] = exp(β0 +β1x1 +β2x2 +β3x1x2).

The marginal effect of x1 becomes: ∂E[y|x]
∂x1

= exp(·) · (β1 +β3x2)

Applying the product rule, the interaction effect is: ∂ 2E[y|x]
∂x1∂x2

= exp(·) [β3 +(β1 +β3x1)(β2 +β3x2)]

As shown by Ai and Norton (2003), in non-linear models like this, the interaction effect depends

on all covariates and their values. Hence, β3 does not directly represent the interaction effect and

must be evaluated at specific covariate values with standard errors via the delta method.

However, the PPML model uses a log-link specification: logE[y|x] = β0 +β1x1 +β2x2 +β3x1x2.

The marginal effect of x1 on the log scale is: ∂ logE[y|x]
∂x1

= β1 +β3x2 and the interaction effect is:
∂ 2 logE[y|x]

∂x1∂x2
= β3

Thus, in the PPML estimation, interaction coefficients can be interpreted directly as changes

in the log of expected outcomes. Since coefficients are interpreted as semi-elasticities, the

interpretation of β3 and the associated standard error remains valid and avoids the concerns

raised by Ai and Norton (2003).
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3.A.3 Additional Result Figures

Notes: This graph shows the temperature response function of the main specification when tenure fixed effects are added. It is estimated
using a PPML estimator and also includes inventor and year fixed effects, linear and squared time trends, as well as controls for humidity
and precipitation. Standard errors are clustered at the city level. The grey shaded area represents the 95% confidence interval for the
coefficient estimate. The outcome variable is expressed as the percentage change in patent family application filings, with 10 to 15◦C as
the reference category. This analysis is based on three-year cumulative lagged exposure.

FIGURE 3.A.8: Robustness - tenure fixed effects
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Notes: This graph shows the temperature response function of the main specification when pollution controls are added. It is estimated
using a PPML estimator and also includes inventor and year fixed effects, linear and squared time trends, as well as controls for humidity
and precipitation. Standard errors are clustered at the city level. The grey shaded area represents the 95% confidence interval for the
coefficient estimate. The outcome variable is expressed as the percentage change in patent family application filings, with 10 to 15◦C as
the reference category. This analysis is based on three-year cumulative lagged exposure.

FIGURE 3.A.9: Robustness - pollution controls
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Notes: The plot shows the results for the coefficient of the temperature bin covering days above 20◦C for different outcome variables.
Model 1 shows the effect of temperature on patent families that are weighted by the number of inventors listed on the patent. Model 2
shows the effect of temperature on granted patent families. Model 3 shows the effect of temperature on granted patent families that are
weighted by the number of inventors listed on the patent. The models are estimated using a PPML estimator and include inventor and
year fixed effects, as well as linear and squared time trends and controls for humidity and precipitation. Standard errors are clustered at
the city level, and the plot shows the 95% confidence interval for the coefficient estimate.

FIGURE 3.A.10: Robustness - weighted and granted patents
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Notes: This graph shows the temperature response function without inventors resident in San Diego. It is estimated using a PPML
estimator and includes inventor and year fixed effects, as well as linear and squared time trends and controls for humidity and
precipitation. Standard errors are clustered at the city level. The grey shaded area represents the 95% confidence interval for the
coefficient estimate. The outcome variable is expressed as the percentage change in patent family application filings, with 10 to 15◦C as
the reference category. This analysis is based on three-year cumulative lagged exposure.

FIGURE 3.A.11: Robustness - no San Diego

Notes: The map shows the air conditioning penetration rates by county from 2005 to 2017 in California.
Penetration rates are expressed from 0 to 1, where 0 indicates no air conditioning and 1 full air conditioning.

FIGURE 3.A.12: Air conditioning rates - California
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4.1 Introduction

Air pollution has been increasingly recognized as a significant determinant of economic perfor-

mance, affecting labour productivity (Borgschulte, Molitor, and Zou 2024; Neidell and Pestel

2023), health outcomes (Chay and Greenstone 2003; Neidell 2004; Currie 2011; Schlenker

and Walker 2016; Deschênes, Greenstone, and Shapiro 2017; Zhang, Chen, and Zhang 2018;

Deryugina et al. 2019; Barreca, Neidell, and Sanders 2021; Graff Zivin et al. 2023), cognitive

performance (Ebenstein, Lavy, and Roth 2014; Zhang, Chen, and Zhang 2018; Carneiro, Cole,

and Strobl 2021; Krebs and Luechinger 2024) and other dimensions of human well-being (Chay

and Greenstone 2003; Currie et al. 2015; Sager 2019; Bondy, Roth, and Sager 2020). A growing

body of literature in economics demonstrates that elevated pollution levels substantially reduce

worker productivity specifically, predominantly focusing on low-skilled occupations and short-

term exposure periods such as daily or weekly fluctuations (Graff Zivin and Neidell 2012; Chang

et al. 2016; He, Liu, and Salvo 2019). A few studies have also documented negative effects of

daily pollution exposure on high-skilled professionals in performance-based occupations, such

as professional athletes and umpires (Archsmith, Heyes, and Saberian 2018; Lichter, Pestel,

and Sommer 2017). However, despite these important contributions, little is known about the

longer-term effects of pollution on productivity, especially among high-skilled workers whose

contributions play a critical role in driving sustained economic growth.

This paper addresses this gap in knowledge by examining the impact of air pollution on inventor

productivity over multi-year horizons, specifically measuring innovative output through patenting

activities. Innovation has long been recognized as a cornerstone of long-term productivity growth,

shaping the trajectory of economic development and societal welfare (Romer 1990; Aghion

et al. 1998; Jones 1995). High-skilled professionals, particularly scientists and engineers, play a

central role in this process, as their creativity and productivity underpin technological advances

and sustained economic progress (Mokyr 2005; Hanlon 2022). Given the crucial role these

inventors play in fostering innovation and economic growth, understanding how environmental

factors such as air pollution influence their productivity provides valuable insights into the
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determinants of long-run economic performance.

Estimating the causal relationship between air pollution and innovation is challenging primarily

due to the potential presence of correlated omitted variables and measurement error in pollution

exposure. To overcome these empirical issues, we leverage detailed inventor-level panel data

combined with city-level measures of Fine Particulate Matter (PM2.5) pollution. Our analysis

employs two complementary identification strategies to ensure robust causal inference. First,

we use a fixed-effects approach, exploiting rich inventor-level variation in pollution exposure

over time, using inventor-specific fixed effects to capture time-invariant unobserved confounding

factors. We augment this specification with year fixed effects to account for common trends in

patenting across locations and include controls for local weather conditions that might jointly

affect pollution and innovation. Second, we adopt an instrumental variable (IV) approach

that exploits exogenous variation arising from changes in regulatory designation under the

PM2.5 National Ambient Air Quality Standards (NAAQS), providing plausibly exogenous

shocks to local air quality. Our IV strategy, therefore, addresses remaining concerns about

time-varying omitted variables and potential measurement error in pollution exposure. Together,

these complementary empirical strategies enable us to provide credible causal estimates of

pollution’s impact on innovation.

We find statistically and economically significant negative effects of PM2.5 pollution on inno-

vation, showing that increased exposure leads to substantial declines in patenting productivity.

Using a Poisson Pseudo-Maximum Likelihood estimator (PPML), we estimate that a one-

standard-deviation increase in PM2.5 concentrations (4.6µg/m3) in the previous year leads to

a 2.6% reduction in patents per inventor. This result is consistent across multiple measures of

patenting activity, including simple patent-family counts and fractional patenting measures that

account for co-inventorship. To quantify the potential innovation losses, we conduct a coun-

terfactual exercise: if all inventors had been exposed to air pollution levels capped at 5µg/m3,

approximately 10,300 additional patents would have been filed in 2016 alone, translating into an

estimated economic loss of at least $10.3 billion (0.05% of GDP in 2016).
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Extending our analysis over a longer time horizon, we incorporate three-year pollution exposure

lags and estimate cumulative effects to capture the longer-term relationship between pollution

and innovation. We find that the negative effect of pollution strengthens over time, with the

largest decline in patenting occurring at a three-year lag. The cumulative estimates suggest that a

one-standard-deviation increase in pollution leads to a 4.1% decline in patenting per inventor

over a three-year period. These findings highlight that pollution does not only impose short-term

productivity losses but also disrupts the longer-term innovation process, an effect that has been

largely overlooked in the existing literature.

To further strengthen identification, we implement an IV approach that exploits regulatory

changes in attainment status under the PM2.5 NAAQS, similar to the approach of Sager and

Singer (2025). Our reduced-form analysis confirms that pollution-control policies significantly

increased inventor productivity, with compliance leading to about a 10% increase in innovation

over a three-year period. In our main control function estimates, we find that a 1µg/m3 increase

in PM2.5 pollution leads to a 9.8% decline in patenting activity, a larger effect than that estimated

in our fixed-effects models. Several factors may explain this discrepancy. First, the difference

is consistent with attenuation bias in the fixed-effects estimates due to measurement error in

pollution exposure, which would bias the coefficient toward zero. Second, our fixed-effects

models may not fully account for time-varying confounders correlated with both pollution and

innovation, while our IV approach plausibly mitigates these concerns. Third, our IV estimates

identify a Local Average Treatment Effect (LATE). Nonetheless, the alignment between our

reduced-form and control function estimates provides strong support for the robustness of our IV

findings, as the reduced-form relies on less restrictive assumptions. Overall, our results provide

compelling empirical evidence that air pollution significantly impairs high-skilled productivity,

with persistent and economically meaningful effects on innovation. These findings highlight

an important but often overlooked channel through which environmental quality influences

economic growth and technological progress.

Our paper contributes to both the academic literature and ongoing policy debates in several
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key ways. First, we extend the literature on the economic costs of air pollution, particularly

in the context of labour productivity, which has largely focused on low-skilled occupations

and short-term exposure effects (Graff Zivin and Neidell 2012; Chang et al. 2016; He, Liu,

and Salvo 2019). The empirical evidence on the relationship between pollution and innovation

remains extremely limited, with only two recent studies examining this causal link to the best of

our knowledge. Bracht and Verhoeven (2025) analyse the impact of air pollution on patenting

activity at the NUTS3 level across European regions, identifying negative effects using regional-

level variation. Similarly, Cui, Huang, and Wang (2023) investigate the impact of pollution

on patent applications in China at the city level, finding that an annual increase of 1µg/m3

PM2.5 concentration leads to a 1.3% decline in patenting activity. Our study builds on and

significantly extends these contributions by providing the first rigorous causal estimates for the

United States and, crucially, by focusing on individual inventors rather than aggregated regional

or city-level data. This granular approach allows us to directly examine the mechanism through

which pollution affects innovation via the productivity of high-skilled innovators, a group central

to technological advancement and long-run economic growth. Using detailed inventor-level

panel data and implementing a quasi-experimental identification strategy, our findings offer

novel insights into how environmental conditions shape knowledge production at the micro level,

complementing and expanding the existing literature on the economic consequences of pollution.

Second, our analysis contributes to the broader literature examining the hidden or less visible

costs of air pollution, which extends beyond traditional measures such as direct health outcomes

(Aguilar-Gomez et al. 2022). By documenting sizable negative impacts on innovative activity,

we provide new evidence that air pollution imposes substantial economic damages previously

unaccounted for in standard policy analyses. Consequently, our findings suggest that the socially

efficient level of air pollution is likely lower than previously estimated, and more stringent

regulation may yield substantial economic returns.

Third, by employing a policy-driven IV strategy, exploiting exogenous variation arising from

regulatory changes in attainment status under the U.S. NAAQS, we provide robust causal
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evidence of the significant economic benefits achievable through targeted pollution-reduction

policies. This result has important implications for policymakers, reinforcing the potential

economic returns to improved air quality beyond health considerations alone.

Finally, our study contributes directly to the literature on economic growth and innovation. While

previous research has identified various determinants of innovation at the firm level, emphasizing

market structures and incentives (Aghion et al. 2005; Bloom, Schankerman, and Van Reenen

2013), recent work increasingly recognizes the central role played by individual inventors and

scientists in transforming knowledge into productive technologies (Acemoglu and Cao 2015;

Bell et al. 2019). Our paper expands this line of research by identifying environmental factors,

specifically air pollution, as a novel determinant influencing individual innovators’ productivity.

In doing so, we provide valuable insights into previously fairly overlooked channels through

which environmental quality shapes the process of innovation and long-term economic growth.

4.2 Data

4.2.1 Inventor

To build the inventor-level patenting panel, we download data on patent applications filed at

the U.S. Patent and Trademark Office (USPTO) from 1981 to 2016 via PatentsView. The

disambiguated data files provide us with unique inventor IDs, allowing us to track inventors

over time. We use the home address of the inventors listed on the application filings to filter for

US-based inventors and supplement this data with information from PATSTAT, the global patent

database maintained by the European Patent Office (EPO). This enables us to identify the full

universe of patents filed by inventors over the period as well as patent families, collaboration

networks and whether patent applications are granted. We assign each patent family a filing year

based on the earliest patent application in which the inventor appears.
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To measure productivity, we count the number of unique patent families by inventor and year.

Since patenting activity is inherently irregular, with many inventors not filing patents annually,

we construct our panel by including years with zero patents. Specifically, we input zeros for all

years between an inventor’s first and last observed patent application, allowing us to capture both

active and less active periods in the inventor’s career. We further approximate the individual

inventor’s experience by calculating the number of years since their first ever filing. In addition

to the count of all patent families, we calculate a count of the patent families where at least one

application was ultimately granted.

We construct a fractional patenting measure, also referred to as the weighted count, which

adjusts patent counts based on co-authorship. If a patent lists N inventors, each is assigned a

weight of 1/N. For instance, an inventor on a patent with three co-inventors receives 0.25 of

the patent count. This approach accounts for teamwork in innovation and helps assess whether

collaboration mitigates the negative effects of air pollution on inventor productivity.

In our sample from 1981 to 2016, we identify 1,584,065 unique inventors. On average, inventors

file 1.96 patent applications per year with a standard deviation of 7.73. When considering only

granted patents, the mean number of patent families drops only slightly to 1.6 patents per year,

while the mean for patent families, weighted by the number of inventors listed on the application,

is 0.71. Just over a third of inventors file only one patent during the period (36.8%).

FIGURE 4.1: Total number of resident inventors by state 1981 to 2016
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By a significant margin, California has the largest number of resident inventors (20.5%), followed

by Texas (6.75%) and New York (6.22%). The full distribution of inventors across states is

illustrated in the map in Figure 4.1. Inventors reside in 16,667 cities, which constitutes 53.4% of

incorporated places in the contiguous United States recognised by the U.S. Census Bureau. The

bar chart in Figure 4.2 shows the number of inventors in the 15 cities with the most inventor. A

chart depicting the top 15 cities based on patenting count can be found in the Appendix 4.A.1. In

both cases, cities in California largely lead the rankings. The widespread distribution of inventors

across the United States allows for sufficient geographic variation for the purpose of this analysis.

FIGURE 4.2: Top 15 cities with the largest number of resident inventors 1981 to 2016

4.2.2 Air Pollution

To determine the inventors’ air pollution exposures, we access the dataset built by Meng et

al. (2019). Using information from chemical transportation models, satellite remote sensing

and ground-based monitoring, the raster data maps PM2.5 concentrations for the United States

from 1981 to 2016 at a fine spatial resolution of 0.01 x 0.01 degrees (approximately 1km x

1km). We download city boundary shapefiles from the U.S. Census Bureau and aggregate PM2.5

concentrations by city and year. We use a weighted spatial aggregation method that assigns

each raster cell a weight based on the proportion of the cell falling within the city boundary and

matches the annual city air pollution values to the inventor panel using the city location of the
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inventors’ home address. Due to discrepancies and human error in patent filings, the city serves

as the smallest consistent geographic unit for the inventors’ location. Although this approach

does not capture exact exposure, it provides a reasonable approximation as most inventors will

spend a significant portion of their time in the city of their home address. They are also likely

to work relatively close to where they live, making city-level data the best available option.

Nonetheless, it is important to note that city-level averages may mask within-city variation in

pollution exposure. This measurement error would likely bias our estimates toward zero, making

our results conservative. Since the data excludes Hawaii, US overseas territories and the majority

of Alaska, we subset for inventors resident in the contiguous United States.

Furthermore, we address the possibility that inventors may move between cities during our

sampling period. We track these moves through changes in reported addresses and carefully

assign pollution exposure based on observed locations. Specifically, we observe inventors’

locations at every patent filing but lack information between filings. Thus, to approximate

pollution exposures between filings, we assign them the pollution levels of their previous location

up until the midpoint between observed addresses. For example, if an inventor appears in San

Francisco in 2000 and then in New York in 2010, we assign them San Francisco’s air pollution

levels until 2005 and New York’s levels thereafter. While this approach ensures we maintain a

consistent measure of exposure, we also create a sub-sample of non-movers for inventors who

list the same address in their patent filings throughout the sampling period.

The final panel delineates an inventor’s annual air pollution in their city of residence. We create up

to three-year lags of exposure and z-standardise the pollution variable for easier interpretability.

Across the sampling period and all inventor cities, the average annual PM2.5 concentration was

11.87. From 1981 to 2016, this average declined significantly, dropping from 21.73 in 1981 to

6.65 in 2016. The maximum annual PM2.5 concentration also decreased notably: in 1981, the

highest recorded level for an inventor city was 41 in Santa Ana, California, whereas by 2016, the

maximum had fallen to 13.81 and was experienced by inventors resident in Tustin, California.
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Year Mean PM2.5 Min PM2.5 Max PM2.5 Mean PM2.5 (Same Cities)

1981 21.73 2.45 41.01 22.06
2016 6.65 0.39 13.81 6.81

Notes: PM2.5 is measured in µg/m3. Mean PM2.5 (Same Cities) refers to results in the subsample of cities that had resident inventors
in both 1981 and 2016.

TABLE 4.1: Pollution statistics in 1981 and 2016

While California dominates the inventor landscape, it is also home to the most polluted cities,

with all of the top 10 most polluted inventor cities in both 1981 and 2016 located in the state. The

full geographic distribution of PM2.5 concentrations in 1981 and 2016 is illustrated in Figures

4.3 and 4.4. Despite the significant decline in PM2.5 levels, the geographic distribution of the

most and least affected areas has remained relatively stable.

Notes: The map shows annual PM2.5 concentration measured in
µg/m3 in 1981. The resolution of the raster is 0.01 x 0.01 degrees.

FIGURE 4.3: Ambient air pollution in 1981

Notes: The map shows annual PM2.5 concentration measured in
µg/m3 in 2016. The resolution of the raster is 0.01 x 0.01 degrees.

FIGURE 4.4: Ambient air pollution in 2016

4.2.3 Weather Controls and Nonattainment

To control for possible interactions of air pollution with climate, we download data on temperature

and humidity from the PRISM Climate Group. Specifically, we access annual mean temperatures

and annual dew points for the United States from 1981 to 2016. The raster data has a slightly

larger resolution of approximately 4km x 4km. We aggregate the annual climate data to the

city level using the U.S. Census Bureau city boundary shapefiles and the same weighted spatial
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aggregation method as before. Once aggregated at the city level, we match annual temperatures

and dew points to the inventor panel, using z-standardisation for easier interpretability.

Furthermore, for our IV, we download the list of nonattainment counties for all criteria pollutants

from the U.S. Environmental Protection Agency (EPA). The data file provides the annual status

of counties in nonattainment for various NAAQS. We filter for counties in nonattainment of the

PM2.5 (1997) NAAQS in 2005 and match this information to the inventor panel.

In total, 209 counties were deemed in nonattainment of the PM2.5 (1997) NAAQS in 2005. The

geographic distribution of nonattainment counties is illustrated in Figure 4.5.

Notes: The map depicts the status of counties in 2005. 209 counties were designated in
nonattainment of the 1997 PM2.5 NAAQS.

FIGURE 4.5: Nonattainment counties

A comprehensive set of descriptive statistics is provided in Table 4.2, detailing key variables

across our full fixed-effects sample as well as our IV sample, which includes both movers

and non-movers. As expected, the IV sample is naturally smaller, given that it is restricted

to observations within three years before and after the regulatory change. The non-movers

subsample is also smaller due to the additional restriction on relocation. Reassuringly, PM2.5

levels appear similar across samples, though they remain above the current regulated threshold

of 9µg/m3, a level that was slightly higher throughout the study period. In terms of patenting

activity, we observe slightly higher average patent counts in the IV sample, but values remain

nearly identical when comparing movers and non-movers within the IV sample.
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Sample - Movers Sample - Non-Movers IV Sample - Movers IV Sample - Non-Movers
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

PM2.5 11.87 4.63 11.69 4.62 11.08 2.71 11.04 2.73
Temperature 13.44 4.14 13.42 4.13 13.47 3.90 13.42 3.94
Dew point 5.81 3.97 5.78 3.96 5.89 3.80 5.85 3.83
Simple Count 1.96 7.73 1.76 6.79 2.74 8.23 2.47 7.46
Simple count granted 1.60 6.29 1.43 5.51 2.21 6.50 2.01 5.97
Weighted 0.71 2.51 0.63 2.19 0.99 2.83 0.88 2.57
Weighted - Granted 0.58 2.08 0.52 1.83 0.80 2.34 0.72 2.18

Observations 13,798,206 7,378,701 699,790 313,658

Notes: The table depicts descriptive statistics for the full sample, IV sample and non-mover IV sample. ’Simple Count’ measures the number of
patent family applications filed, ’Simple Count Granted’ measures the number of patent family applications that were filed and ultimately granted,
’Weighted’ measures the number of patent family applications weighted by the number of co-inventors and ’Weighted-Granted’ measures the
number of patent family applications that were filed and ultimately granted weighted by the number of co-inventors. PM2.5 is measured in
µg/m3, Temperature is measured in ◦C, Dew Point is measured in ◦C.

TABLE 4.2: Descriptive statistics - full sample vs IV samples

4.3 Methods

Estimating the causal relationship between air pollution and inventor productivity presents

several identification challenges. The primary concern is potential omitted-variable bias arising

from factors correlated with both pollution levels and innovative output. For example, highly

productive inventors might systematically choose to reside in locations with lower pollution,

leading naïve regression estimates to overstate the true impact of pollution on productivity.

We address these concerns using two different identification strategies. First, we use a fixed-

effects model, which includes inventor fixed effects. Our fixed-effects model leverages changes

in pollution exposure for the same inventor over time, either due to changes in local pollution

levels or because of relocation to a different city. The key advantage of this approach is that it

controls for any fixed differences across inventors that might affect both their location choices

and their productivity. We also include year fixed effects in our specification to account for

any common trends in patenting activity across all locations, such as changes in patenting

practices. We address further potential confounders by including weather conditions. The causal
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interpretation of our fixed-effects estimates relies on the assumption that changes in air pollution

are uncorrelated with other time-varying factors that affect inventor productivity after controlling

for inventor and year fixed effects and our set of time-varying controls.

More formally, our main fixed effect specification is estimated via a Poisson pseudo-maximum

likelihood (PPML) estimator and described as follows:

Patentsi,k,c,t = exp(α +βPollutioni,c,t−1 + γXi,c,t−1 +δi +δk +δt) (4.1)

Patenti,k,c,t is a proxy for the productivity of inventor i in year t, where inventor i resides in city

c and possesses k years of patenting experience, termed as a “tenure” of k years. The primary

variable used as a proxy for inventor’s productivity is the number of patent applications (simple

count) filed by inventor i in year t, although we also consider alternative productivity measures

as described earlier.

Pollutioni,c,t−1 represents the concentration of PM2.5 exposure for inventor i (residing in city

c) in the preceding year/s (e.g. year t −1) or other years and durations. In particular, our key

explanatory variable is the PM2.5 level in the previous three years in the city where the inventor

resides. We link inventors to city-level PM2.5 data from the three previous years to account for

the time it typically takes to develop patentable innovations. This is particularly important as

the creative process underlying innovation often extends over multiple years. This choice of

lags is supported by survey evidence on inventor activities, who report that between 80% and

90% of patents involve three or fewer years of research leading up to an application (Nagaoka

and Walsh 2009). This lag structure also helps mitigate potential reverse causality concerns, as

current patenting activity cannot affect past pollution levels. To account for potential spatial

correlation in innovation activities, we cluster standard errors at the city level, allowing for

arbitrary correlation in the error terms across inventors within the same city and over time. This

approach provides conservative inference that acknowledges the spatial nature of both pollution

exposure and innovation clusters.
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As mentioned above, we examine alternative specifications using different outcome variables.

Firstly, since many inventors work on patents together with a team of other inventors, we calculate

“fractional” equivalents of patent counts. Secondly, we investigate the influence of air pollution

on patent quality by counting only patent applications that eventually were granted.

Despite its strengths, the fixed-effects approach has limitations. It cannot fully account for biases

arising from unobserved time-varying factors correlated with both innovation and pollution, nor

can it correct for measurement errors in our pollution measure, which may introduce attenuation

bias. To address these issues, we implement an IV approach, leveraging exogenous variation

from changes in regulatory designation under the PM2.5 NAAQS, following Sager and Singer

(2025).

Unlike our fixed-effects approach, which utilises a full inventor-year panel, the IV analysis

focuses on a balanced panel spanning three years before and three years after the 2005 policy

change. For each inventor, we aggregate patent counts over these periods and compute the

average number of patents in the pre- and post-policy periods. Thus, the time variable t in our

specifications represents either the pre- or post-policy period rather than individual years.

We begin by estimating the following reduced-form equation using a PPML estimator:

Patentsi,c,t = exp(α1 +θNAi,c,t + γ1Xi,c,t +δi +δt) (4.2)

Equation (4.2) directly estimates the impact of regulatory changes under the PM2.5 NAAQS

on inventor productivity. Here, Patentsi,c,t represents the average number of families filed by

inventor i during either the pre-policy or post-policy period. For each inventor i resident in city c

in period t, NAi,c,t = 1 if city c is located within a county designated as being in "nonattainment"

under the PM2.5 NAAQS in period t, and 0 otherwise. We include the same vector of temperature

and humidity controls (Xi,c,t) as well as inventor (δi) and time fixed effects (δt). Tenure fixed

effects are not included, as tenure in the two-period setup increases uniformly across all inventors
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with time and is thus collinear with the time fixed effects.

This reduced-form relationship is of substantial independent interest because it provides a direct

measure of the policy’s impact on innovation, a critical driver of economic growth. Additionally,

this reduced-form estimation approach relies on fewer identifying assumptions, notably avoiding

the need for the exclusion restriction required by IV approaches.

To further isolate the effect of pollution itself on innovation, we employ a control function

approach. The standard two-stage least squares (2SLS) method is inappropriate in this context

because it assumes a linear functional form in both stages. Instead, the control function approach

corrects for endogeneity by including a residual-based adjustment term that captures the endoge-

nous variation in pollution exposure and is compatible with the non-linear Poisson specification.

The first-stage regression is estimated linearly and given by:

Pollutioni,c,t = α2 +πNAi,c,t + γ2Xi,c,t +δi +δt +µi,c,t (4.3)

Equation (4.3) estimates the impact of regulatory designation changes on pollution exposure.

Specifically, it exploits variation in PM2.5 levels induced by nonattainment status to construct a

control function for pollution exposure. Here, Pollutioni,c,t represents the pollution exposure

level for inventor i in city c at time t, measured as the average PM2.5 concentration in the city of

residence. We obtain the residuals, µ̂i,c,t , from this first-stage regression.

In the second stage, we estimate the causal effect of instrumented pollution exposure on patent

productivity using a PPML estimator:

Patentsi,c,t = exp
(
α3 +βPollutioni,c,t +ρµ̂i,c,t + γ3Xi,c,t +δi +δt

)
(4.4)

Equation (4.4), rather than using predicted pollution values as in 2SLS, includes the residuals

from the first stage as an additional regressor. These residuals act as a control function, capturing
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the endogenous variation in pollution that is correlated with the structural error term. The validity

of our IV strategy relies on the exclusion restriction: changes in regulatory designation under

the PM2.5 standards must affect inventor productivity only through their impact on pollution

exposure.

By structuring our estimation approach in this manner, we provide a robust identification strategy

to quantify the causal impact of air pollution on inventor productivity. Standard errors are

clustered at the city level to account for spatial correlation over time.

4.4 Results

4.4.1 Fixed-Effects Results

Table 4.3 examines the relationship between air pollution and patenting productivity using a

fixed-effects model estimated with PPML and with a one-year lag. Specifically, we estimate

how pollution concentrations in the previous year affect inventor productivity, measured by four

distinct indicators. The first two columns of Table 4.3 report results using simple patent-family

counts: column (1) considers all patent families, while column (2) restricts attention to patent

families with at least one granted patent. The rationale for the latter measure is that granted

patents are typically indicative of higher-quality innovation. The last two columns of Table

4.3 present the results using our fractional counts where families are weighted inversely by the

number of co-inventors. Column (3) reports results for all fractional patent-family counts, while

column (4) focuses specifically on fractional counts of patent families with at least one granted

patent.

We find robust and statistically significant negative impacts of PM2.5 concentrations on inventor

patenting across all our outcome measures. Specifically, our estimates indicate that a one-

standard-deviation (4.6µg/m3) increase in PM2.5 pollution in the preceding year reduces the
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number of patents filed per inventor by approximately 2.57%. Given an average baseline

productivity of 1.96 patents per inventor annually in our sample, this translates into about 0.05

fewer patents per inventor per year.

Importantly, this effect is economically meaningful at an aggregate level. To illustrate this, we

conduct a counterfactual analysis using the elasticities estimated with fractional patent counts

(thus avoiding double-counting patents across inventors): If all inventors in our sample had

experienced PM2.5 levels capped at 5µg/m3, approximately 10,300 additional patents would

have been filed in the year 2016 alone. To arrive at this figure, we first calculate the hypothetical

reduction in PM2.5 concentrations for inventors initially exposed to pollution levels exceeding

5µg/m3. We then convert this pollution reduction into expected increases in patenting using our

estimated elasticity. Finally, we sum the observed patents for each inventor with the predicted

incremental patents attributable to the simulated pollution reduction.

Given that private returns per patent typically range from $100,000 to $20 million (Stevenson

2022), even a midpoint valuation of $1 million per patent implies an aggregate economic loss

of approximately $10.3 billion. This represents about 0.05% of GDP in 2016, highlighting

the substantial economic cost associated with air pollution-induced reductions in inventive

productivity.

(1) (2) (3) (4)
Simple Count Simple Count Granted Weighted Weighted - Granted

PM2.5 (Z score, t-1) -0.026∗ -0.031∗∗ -0.025∗∗ -0.029∗∗∗

(0.016) (0.013) (0.012) (0.011)
Temp and Dew Controls X X X X

Year FEs X X X X
Inventor FEs X X X X
Tenure FEs X X X X

Observations 13,798,206 13,625,141 13,797,986 13,624,935

Notes: The models are estimated using a Poisson pseudo-maximum likelihood estimator. Standard errors are in parenthesis and are
clustered at the city level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. Model (1) estimates the effect on patent family
applications, Model (2) estimates the effect on granted patent family application, Model (3) estimates the effect on patent family
application weighted by the number of co-inventors and Model (4) estimates the effect on granted family applications weighted by the
number of co-inventors. The models are estimated using the full sample of inventors.

TABLE 4.3: Fixed-effects results - full sample & standardised
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Next, we examine the effects of pollution on inventor productivity over a longer time horizon.

Specifically, we employ the same PPML fixed-effects models described previously but now

incorporate three yearly lags, as well as the cumulative effects across these lags. This approach

enables us to better capture the dynamics through which pollution exposure influences the

innovation process. Table 4.4 presents the results. Notably, the adverse effect of pollution

exposure is strongest at the three-year lag and diminishes monotonically toward the one-year

lag, underscoring the persistent and dynamic impact of pollution on inventive productivity.

The cumulative effects (over all three lags) are statistically significant and exhibit reassuring

consistency in magnitude across all our outcome measures. Specifically, our cumulative estimates

for fractional counts of patent families with at least one granted patent (reported in column (4))

show that a one-standard-deviation increase in PM2.5 pollution is associated with a reduction of

approximately 4.1% in patents filed per inventor over a three-year period or 0.09 of a standard

deviation.

Our findings align closely with previous economics research documenting productivity losses

attributable to air pollution. For instance, Graff Zivin and Neidell (2012) document adverse

effects of daily ozone pollution on agricultural worker productivity in California. There is

also growing evidence that pollutants such as PM2.5 and CO adversely affect productivity

across various other sectors, including manufacturing (Chang et al. 2016; He, Liu, and Salvo

2019), professional sports (Lichter, Pestel, and Sommer 2017; Archsmith, Heyes, and Saberian

2018), and multiple other industries (He, Liu, and Salvo 2019). However, most existing studies

examine productivity effects primarily among low-skilled workers or high-skilled professionals

in performance-based occupations only (professional athletes and umpires) and over relatively

short time frames (mainly daily). Our study extends this literature by quantifying productivity

effects over a longer horizon, specifically within the context of innovation and patenting activity.

Notably, we demonstrate that negative productivity effects persist and remain economically

meaningful among high-skilled workers engaged in innovation—one of the key drivers of

economic growth.
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(1) (2) (3) (4)
Simple Count Simple Count Granted Weighted Weighted - Granted

PM2.5 (z-score, t-1) -0.007 -0.011 -0.006 -0.010
(0.012) (0.010) (0.010) (0.009)

PM2.5 (z-score, t-2) -0.017 -0.018∗∗ -0.016∗∗ -0.015∗∗∗

(0.010) (0.009) (0.007) (0.006)
PM2.5 (z-score, t-3) -0.018∗∗ -0.019∗∗∗ -0.020∗∗∗ -0.019∗∗∗

(0.007) (0.007) (0.007) (0.007)
PM2.5 (z-score, cum 3 lags) -0.042∗∗∗ -0.048∗∗∗ -0.041∗∗∗ -0.044∗∗∗

(0.017) (0.015) (0.014) (0.013)
Temp and Dew Controls X X X X

Year FEs X X X X
Inventor FEs X X X X
Tenure FEs X X X X

Observations 13,798,206 13,625,141 13,797,986 13,624,935

Notes: The models are estimated using a Poisson pseudo-maximum likelihood estimator. Standard errors are in parenthesis and are
clustered at the city level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. Model (1) estimates the effect on patent family
applications, Model (2) estimates the effect on granted patent family application, Model (3) estimates the effect on patent family
application weighted by the number of co-inventors and Model (4) estimates the effect on granted family applications weighted by the
number of co-inventors. The models are estimated using the full sample of inventors

TABLE 4.4: Fixed effects results - full sample & lags

As discussed previously, our fixed-effects approach leverages within-inventor variation to mitigate

many confounding factors. Nevertheless, some important identification challenges remain. One

key concern is that inventors may relocate over time, complicating exposure measurement and

interpretation. To address this issue within our fixed-effects framework, we repeat our analysis

focusing exclusively on inventors who remain in the same location throughout the study period

("non-movers"), following an approach commonly used in labour economics (e.g. Moretti 2004).

These results are presented in Appendix Tables 4.A.1 and 4.A.2, corresponding directly to Tables

4.3 and 4.4 but restricted to the subsample of non-moving inventors. The estimated coefficients

remain similar in magnitude to our main results, though they are less precisely estimated due to

the substantially reduced sample size.

In a further robustness check, we extend the fixed-effects specification by adding city-specific

linear time trends. This aims to control for unobserved city-level trends over time that may

jointly influence both pollution and inventor productivity. However, this approach presents

some practical challenges, and, for computational reasons, we must exclude tenure fixed effects.
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In addition, we are limited to including linear trends, as higher-order specifications such as

quadratic city-trends are too demanding given the available time-series variation of pollution

within cities. Even so, the models using granted and weighted-granted patent counts fail to

converge. For the simple and weighted patent counts, the estimated effects remain directionally

consistent but are smaller in magnitude and no longer statistically significant (See Appendix

Table 4.A.3). While this may raise concerns about robustness, city-specific trends may also

overfit the data, inadvertently absorbing meaningful within-city variation and thus attenuating

our estimates. Nonetheless, this robustness exercise indicates that accounting for within-city

time varying factors may be important, providing further motivation for our complementary

instrumental variable strategy.

4.4.2 Instrumental Variable Results

The fixed-effects results presented above provide strong evidence of the relationship between air

pollution and inventor productivity. However, these models address only time-invariant confound-

ing factors, leaving unresolved concerns about time-varying factors that may be correlated with

both pollution exposure and innovation outcomes. Although we directly control for some of these

variables (e.g., weather conditions), others remain unobserved or uncontrolled. Furthermore,

fixed-effects models do not account for measurement error, which may be particularly significant

when analysing pollution exposure.

To address these concerns, we complement our fixed-effects approach with an alternative iden-

tification strategy based on an IV framework. This IV approach allows us to mitigate both

time-varying omitted-variable bias and measurement error. Specifically, our IV strategy exploits

exogenous variation arising from the designation of attainment or nonattainment status under the

PM2.5 National Ambient Air Quality Standards (NAAQS), similar to Sager and Singer (2025)

and as described in our Methods section.

We begin our IV analysis by presenting results that directly estimate the reduced-form impact
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of pollution-control policies on inventor productivity. Table 4.5 reports the reduced-form effect

of attainment status designation under the PM2.5 National Ambient Air Quality Standards

(NAAQS) on innovation outcomes. This analysis provides two important advantages: first, it

offers valuable evidence of the policy’s direct impact on the productivity of inventors before we

turn to the control function analysis, which estimates the causal effect of PM2.5 concentrations

on inventor productivity. Second, the reduced-form analysis does not rely on the exclusion

restriction assumption required by the subsequent analysis.

We find that the pollution-control policy had a significant positive impact on inventor produc-

tivity. Specifically, innovation increased substantially following policy implementation, with

our estimates indicating that attaining compliance with the PM2.5 standards (approximately a

reduction of 1µg/m3) is associated with an increase in inventor productivity of between 9.4 to

10.2% over a three-year period. This corresponds to an increase of about 0.27 patents per inventor

on average. Additionally, the results obtained using the subsample of inventors who remain in

the same location throughout the study period ("non-movers") are presented in Appendix Table

4.A.5. Although the estimates are smaller and less precise, they are qualitatively in line with the

main findings.

(1) (2) (3) (4)
Simple Count Simple Count Granted Coinventor-Weighted Coinventor-Weighted Granted

Nonattainment 0.097∗∗ 0.096∗∗ 0.092∗∗ 0.090∗

(0.042) (0.047) (0.042) (0.048)
Temp and Dew Covariates X X X X

Year FEs X X X X
Inventor FEs X X X X

Observations 571,752 544,252 571,718 544,219

Notes: The regressions are estimated using a Poisson pseudo-maximum likelihood estimator. Standard errors are in parenthesis and are
clustered at the city level. Temperature and Dew Point controls are included. The significance codes are: ***: 0.01, **: 0.05, *:0.1.
’Nonattainment’ is the indicator for treatment status in period t: 0 not treated, 1 treated. Model (1) shows the reduced-form estimates for
patent family applications, Model (2) shows the reduced-form estimates for granted patent family applications, Model (3) shows the
reduced-form estimates for patent family applications weighted by the number of co-inventors and Model (4) shows the reduced-form
estimates for granted family applications weighted by the number of co-inventors. The models are estimated using the full subsample of
inventors. PM2.5 is not z-score standardised.

TABLE 4.5: Reduced-form estimates - full sample
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Next, we turn to our IV analysis to estimate the causal effect of PM2.5 pollution on inventor

productivity. Table 4.6 presents the results. First, the first-stage relationship between our

instrument and pollution exposure is very strong (F-statistic of 100), validating the relevance

condition
1
. Focusing now on the second-stage results, our IV estimates indicate that a one-unit

increase in PM2.5, approximately equivalent to the magnitude of the policy-induced reduction

in PM2.5 concentrations, leads to a 9.8% decrease in patenting activity
2
. These estimates

are qualitatively consistent with our fixed-effects results, though larger in magnitude. The IV

estimate implies that a one-unit (1µg/m3) reduction in PM2.5 increases innovation by roughly

9.8%, while the fixed-effects estimates suggest that a one-standard deviation (4.6µg/m3) increase

in pollution is associated with a cumulative productivity decline of approximately 4.1% over a

three-year period. Several factors may explain this difference. Firstly, the difference is consistent

with attenuation bias in the fixed-effects estimates, potentially arising from measurement error in

pollution exposure. Secondly, it may reflect the presence of omitted time-varying confounders

that the fixed-effects model does not fully account for but which are effectively addressed by our

IV strategy. Finally, the IV identifies a Local Average Treatment Effect (LATE) for inventors

in the subset of cities affected by the policy and active in both periods, over a shorter and more

recent time frame than the fixed-effects model. Extrapolating this effect to larger pollution

changes or broader context may therefore require caution. Nonetheless, since the IV estimates

address both measurement error and time-varying confounders, two serious concerns in the

context of pollution, they provide an important complement to the fixed-effects results.

1 See Appendix Table 4.A.4.
2 As before, analogous IV results restricted to inventors who remain in the same location ("non-movers") are
presented in Appendix Table 4.A.7.
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(1) (2) (3) (4)
Simple Count Simple Count Granted Coinventor-Weighted Coinventor-Weighted Granted

PM2.5 (instrumented) -0.103∗∗ -0.101∗∗ -0.097∗∗ -0.095∗

(0.042) (0.048) (0.042) (0.049)
Temp and Dew Covariates X X X X

Year FEs X X X X
Inventor FEs X X X X

Observations 571,752 544,252 571,718 544,219

Notes: The regressions are estimated using a Poisson pseudo-maximum likelihood estimator with first-stage residuals incorporated in a
control-function approach. Standard errors are in parentheses and are clustered at the city level. Temperature and Dew Point controls
are included. The significance codes are: ***: 0.01, **: 0.05, *:0.1. Model (1) shows the instrumented PM2.5 effect on patent family
applications, Model (2) shows the instrumented PM2.5 effect on granted patent family application, Model (3) shows the instrumented
PM2.5 effect on patent family application weighted by the number of co-inventors and Model (4) shows the instrumented PM2.5 effect
on granted family applications weighted by the number of co-inventors. The models are estimated using the full sample of inventors.
PM2.5 is not z-score standardised.

TABLE 4.6: IV results - full sample

Overall, our IV estimates reinforce both our fixed effects findings and the broader evidence

linking air pollution to declines in productivity while also providing novel contributions to the

literature. Specifically, our results demonstrate that the negative effects of pollution on produc-

tivity persist over significantly longer time horizons,measured in years rather than days, and

extend beyond lower-skilled occupations to high-skilled professionals whose innovation activi-

ties are key drivers of long-term economic growth. These effects are economically meaningful,

statistically robust across multiple outcome measures, and consistent across a range of empirical

specifications, underscoring the substantial impact of pollution on technological progress.

4.5 Conclusion

This paper provides rigorous empirical evidence of the impact of air pollution on inventor

productivity, highlighting substantial yet previously overlooked costs of pollution. Leveraging

detailed inventor-level data combined with robust identification strategies, including inventor and

year fixed effects and an instrumental-variable approach, we document economically significant

negative effects of PM2.5 exposure on patenting activity over the years. The fixed-effects
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results suggest that a one-standard-deviation increase in PM2.5 concentrations reduces inventor

productivity by roughly 2.6% annually, with cumulative effects increasing to around 4.1% over a

three-year horizon. Complementing this, our instrumental variable approach addresses concerns

that the fixed-effects model may not fully capture. In particular, the IV approach helps mitigate

measurement error in pollution exposure and account for unobserved time-varying confounders

by exploiting exogenous regulatory changes under the U.S. National Ambient Air Quality

Standards (NAAQS). These estimates provide causal evidence that policy driven reductions in

PM2.5 pollution lead to meaningful increases in innovation. Specifically, the results suggest that

a 1µg/m3 increase in PM2.5 reduces patenting by approximately 9.8%. While these estimates

differ in magnitude and scope from the fixed-effects results, they jointly reinforce the evidence

that air pollution negatively affects inventor productivity.

Our results have significant implications for both the economic literature and public policy.

By establishing that air pollution adversely affects the productivity of high-skilled inventors, a

critical driver of technological advancement and sustained economic growth, our findings extend

the literature on environmental economics beyond traditional analyses focused predominantly

on health impacts or labour market outcomes that mainly explore short-term (daily) fluctuation

in pollution exposure. Our results suggest that the true economic costs of pollution are likely

underestimated in current regulatory analyses, indicating that more stringent air quality standards

may yield substantial economic benefits through enhanced innovation and productivity.

Nevertheless, our study is subject to several important limitations that future research should

address. First, while we provide credible causal evidence linking pollution exposure to reduced

inventor productivity, the exact underlying mechanisms remain unclear. Multiple plausible ex-

planations exist for this relationship, including health-related absenteeism, diminished cognitive

performance, or reduced creativity induced by pollution exposure. A detailed investigation into

these channels, potentially utilising richer data sources and experimentation, could significantly

improve our understanding of how environmental conditions affect innovation. Second, our

instrumental-variable estimates rely on the assumption that regulatory changes targeting PM2.5
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exposure did not systematically affect other pollutants, an assumption that, if violated, could

introduce bias into our estimates. While we consider this scenario unlikely, we cannot com-

pletely rule it out and acknowledge this potential limitation. However, the robustness of our

reduced-form estimates (the effect of the policy on inventor productivity), which do not rely on

the exclusion restriction, provides reassuring consistency, supporting our overall conclusions.

Overall, our findings underscore the importance of environmental quality not only as a matter of

public health but also as a crucial determinant of innovation and economic growth. By highlight-

ing these broader economic consequences, our study offers valuable insights for policymakers

seeking to foster sustained technological progress and economic development through effective

environmental regulation.
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4.A Appendix

4.A.1 Additional Descriptive Figures

FIGURE 4.A.1: Total number of patents filed in cities 1981 to 2016 - top 15

4.A.2 Additional Result Tables

(1) (2) (3) (4)
Simple Count Simple Count Granted Weighted Weighted - Granted

PM2.5 (Z score, t-1) -0.021 -0.029 -0.027 -0.034
(0.032) (0.026) (0.026) (0.024)

Temp and Dew Controls X X X X

Year FEs X X X X
Inventor FEs X X X X
Tenure FEs X X X X

Observations 7,378,701 7,224,064 7,378,583 7,223,942

Notes: The models are estimated using a Poisson pseudo-maximum likelihood estimator. Standard errors are in parenthesis and are
clustered at the city level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. Model (1) estimates the effect on patent family
applications, Model (2) estimates the effect on granted patent family application, Model (3) estimates the effect on patent family
application weighted by the number of co-inventors and Model (4) estimates the effect on granted family applications weighted by the
number of co-inventors. The models are estimated using the subsample of inventors who do not move.

TABLE 4.A.1: Fixed-effects results - non-movers
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(1) (2) (3) (4)
Simple Count Simple Count Granted Weighted Weighted - Granted

PM2.5 (z-score, t-1) 0.015 0.004 0.010 -0.002
(0.029) (0.023) (0.024) (0.021)

PM2.5 (z-score, t-2) -0.020 -0.016 -0.018 -0.014
(0.022) (0.017) (0.015) (0.011)

PM2.5 (z-score, t-3) -0.045∗∗ -0.041∗∗ -0.047∗∗ -0.040∗∗

(0.023) (0.021) (0.020) (0.018)
PM2.5 (z-score, cum 3 lags) -0.050 -0.054 -0.055 -0.056∗

(0.043) (0.035) (0.035) (0.030)
Temp and Dew Controls X X X X

Year FEs X X X X
Inventor FEs X X X X
Tenure FEs X X X X

Observations 7,378,701 7,224,064 7,378,583 7,223,942

Notes: The models are estimated using a Poisson pseudo-maximum likelihood estimator. Standard errors are in parenthesis and are
clustered at the city level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. Model (1) estimates the effect on patent family
applications, Model (2) estimates the effect on granted patent family application, Model (3) estimates the effect on patent family
application weighted by the number of co-inventors and Model (4) estimates the effect on granted family applications weighted by the
number of co-inventors. The models are estimated using the subsample of inventors who do not move.

TABLE 4.A.2: Fixed-effects results - non-movers & lags

Simple Count Simple Count Granted Weighted Weighted - Granted
(1) (2) (3) (4)

PM2.5 (z-score, t-1) -0.012 -0.018 -0.014 -0.019
(0.018) (0.016) (0.015) (0.014)

Temp and Dew Controls X X X X

Year FEs X X X X
Inventor FEs X X X X
City-Year Trends X X X X

Convergence TRUE FALSE TRUE FALSE
Observations 13,798,206 13,625,141 13,797,986 13,624,935

Notes: The models are estimated using a Poisson pseudo-maximum likelihood estimator. Standard errors are in parenthesis and are
clustered at the city level. The significance codes are: ***: 0.01, **: 0.05, *:0.1. Model (1) estimates the effect on patent family
applications, Model (2) estimates the effect on granted patent family application, Model (3) estimates the effect on patent family
application weighted by the number of co-inventors and Model (4) estimates the effect on granted family applications weighted by the
number of co-inventors. The models are estimated using the full sample of inventors.

TABLE 4.A.3: Fixed-effects results - city trends
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(1)
PM2.5

Nonattainment -0.956∗∗∗

(0.096)
Temp and Dew Covariates X

Year FEs X
Inventor FEs X

Observations 699,790

Notes: The regression is estimated linearly and shows the effect of nonattainment designation on PM2.5. The reported F-statistic is
100.09. Standard errors are in parenthesis and are clustered at the city level. Temperature and Dew Point controls are included. The
significance codes are: ***: 0.01, **: 0.05, *:0.1. The model is estimated using the full sample of inventors. PM2.5 is not z-score
standardised.

TABLE 4.A.4: IV first stage - movers

(1) (2) (3) (4)
Simple Count Simple Count Granted Coinventor-Weighted Coinventor-Weighted Granted

Nonattainment 0.025 0.013 0.020 0.005
(0.063) (0.072) (0.061) (0.070)

Temp and Dew Covariates X X X X

Year FEs X X X X
Inventor FEs X X X X

Observations 249,442 237,448 249,422 237,427

Notes: The regressions are estimated using a Poisson pseudo-maximum likelihood estimator. Standard errors are in parenthesis and are
clustered at the city level. Temperature and Dew Point controls are included. The significance codes are: ***: 0.01, **: 0.05, *:0.1.
’Nonattainment’ is the indicator for treatment status in period t: 0 not treated, 1 treated. Model (1) shows the reduced-form estimates for
patent family applications, Model (2) shows the reduced-form estimates for granted patent family applications, Model (3) shows the
reduced-form estimates for patent family applications weighted by the number of co-inventors and Model (4) shows the reduced-form
estimates for granted family applications weighted by the number of co-inventors. The models are estimated using the subsample of
inventors who do not move. PM2.5 is not z-score standardised.

TABLE 4.A.5: Reduced-form estimates - non-movers

199



Chapter 4: Air Pollution and Inventor Productivity

(1)
PM2.5

Nonattainment -0.963∗∗∗

(0.073)
Temp and Dew Covariates X

Year FEs X
Inventor FEs X

Observations 313,658

Notes: The regression is estimated linearly and shows the effect of nonattainment designation on PM2.5. The reported F-statistic is
175.18. Standard errors are in parenthesis and are clustered at the city level. Temperature and Dew Point controls are included. The
significance codes are: ***: 0.01, **: 0.05, *:0.1. The model is estimated using the subsample of inventors who do not move. PM2.5 is
not z-score standardised.

TABLE 4.A.6: IV first stage - non-movers

(1) (2) (3) (4)
Simple Count Simple Count Granted Coinventor-Weighted Coinventor-Weighted Granted

PM2.5 (instrumented) -0.029 -0.015 -0.021 -0.005
(0.063) (0.073) (0.062) (0.071)

Temp and Dew Covariates X X X X

Year FEs X X X X
Inventor FEs X X X X

Observations 249,442 237,448 249,422 237,427

Notes: The regressions are estimated using a Poisson pseudo-maximum likelihood estimator with first-stage residuals incorporated in a
control-function approach. Standard errors are in parentheses and are clustered at the city level. Temperature and Dew Point controls
are included. The significance codes are: ***: 0.01, **: 0.05, *:0.1. Model (1) shows the instrumented PM2.5 effect on patent family
applications, Model (2) shows the instrumented PM2.5 effect on granted patent family application, Model (3) shows the instrumented
PM2.5 effect on patent family application weighted by the number of co-inventors and Model (4) shows the instrumented PM2.5 effect
on granted family applications weighted by the number of co-inventors. The models are estimated using the subsample of inventors
who do not move. PM2.5 is not z-score standardised.

TABLE 4.A.7: IV results - non-movers
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Innovation and the pursuit of knowledge are an omnipresent cornerstone of society. In 2023,

global research and development spending grew close to $3 trillion, with 1.8 million scientific

articles published, $228 billion invested in venture capital, and 3.5 million patents filed (World

Intellectual Property Organization 2024a, 2024b). Throughout history, environmental dynamics

have both necessitated and inspired innovation. As the environment continues to evolve, new

interactions with innovation emerge while others shift, making it a continually evolving field of

study. In this thesis, I have examined different aspects of this interaction in four chapters.

In Chapter 1 I find evidence that local flooding positively influences the development of flood

adaptation innovation. Geographic proximity of inventors to flooding seems particularly im-

portant, suggesting that flood-related innovation is often incidental rather than strategically

planned. I believe future research would benefit from a more comprehensive, standardized,

and transparent approach to identifying climate adaptation patents, one that extends beyond

flood-related patents and addresses the shortcomings of the Y02A classification. Additionally,

examining sector-specific dynamics and the types of adaptation patents produced in response to

shocks could provide further valuable insights.

The theoretical analysis presented in Chapter 2 highlights that the unique uncertainties related

to climate damages and the market for adaptation innovations can discourage inventors from

investing, leading to delays in development. These uncertainties extend beyond the general

market risks in other sectors and may affect policy outcomes. Given the critical role of inventor

expectations in this context, future surveys on the nature of these expectations would likely
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enhance our understanding further.

Chapter 3 and 4, show that environmental factors can negatively impact inventor productivity.

Specifically, we find that increased temperatures and air pollution over the past three years leads

to decreases in the number of patents filed by inventors today. Future research may explore the

prevalence of the underlying mechanisms driving these effects and examine differences across

sectors, types of innovation and countries.

More broadly, I believe that while patents offer a consistent measure of formal innovation activity,

developing additional metrics for informal innovation activity would likely be beneficial and

lead to interesting new discoveries. Additionally, Chapters 1 and 2 underscore the need for

further research to address the limited academic and policy attention currently devoted to climate

adaptation innovation, despite growing evidence of climate impacts. Finally, I believe there is

value in exploring the inspirational role of the environment in more detail, such as understanding

how inventors may adapt to climate change by learning from the way nature mitigates threats.

Overall, ever-evolving environmental dynamics and risks, including climate change, continue to

shape and redefine interactions with innovation. While much research remains, I hope this thesis

has contributed new and valuable insights, highlighted key areas for further study and provided a

foundation for future researchers to build upon.
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