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Abstract

In recent years, advances in technology have made it easier to collect and store high-
dimensional data, creating a growing need for effective statistical tools. This thesis
presents new approaches through three related studies to improve existing methods and
enhance their practical applicability.

Chapter 2 proposes a novel latent variable model tailored for high-dimensional mul-
tivariate longitudinal data. This model accommodates mixed data types and missing
observations by incorporating unobserved factors that capture dependence across vari-
ables and time points, facilitating both statistical inference and predictive performances.
A central limit theorem is established for inference on regression coefficients, and an in-
formation criterion is developed to consistently determine the number of factors. The
method is applied to grocery shopping data to predict and interpret consumer behaviour.

Chapter 3 introduces a stability-based method for selecting the number of latent fac-
tors in linear factor models, using principal angles between loading spaces obtained from
data splitting. Consistency is established under weaker asymptotic requirements than
existing approaches. Simulations and real data examples demonstrate the method’s im-
proved accuracy and robustness.

Chapter 4 develops a flexible statistical modelling framework for pairwise comparison
data, relaxing the conventional stochastic transitivity assumptions in classical models.
By imposing an approximately low-dimensional skew-symmetric structure, the method
achieves minimax-optimal estimation rates and performs well with sparse data. Its superi-
ority over the traditional Bradley-Terry model is supported by simulations and real-world
applications.
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Chapter 1

Introduction

In recent decades, advances in data collection have led to an abundance of high-dimensional
data across diverse fields, including biomedical research, finance and social sciences,
among many others (e.g., Fan et al. (2011); Rahnenführer et al. (2023)). High-dimensional
datasets, characterized by having a large number of observed variables relative to the
number of observations, present significant analytical challenges, including computational
complexity, risks of overfitting, and difficulties in uncovering meaningful and interpretable
structures. Traditional statistical techniques often fall short in managing these complex-
ities effectively, motivating the development of advanced methodologies.

High-dimensional factor models offer an effective framework for capturing complex
dependence structures by representing observed variables through a lower-dimensional
set of latent factors. Both the latent factors and loading matrices are treated as fixed
parameters during estimation. Early applications focused on linear settings, with estima-
tion methods such as principal component analysis and maximum likelihood (e.g., Stock
and Watson (2002); Bai (2003); Bai and Li (2012)). More recently, these models have
been extended to broader contexts, including quantile factor models that target condi-
tional quantiles of outcomes (Chen et al., 2021), and generalised latent factor models for
data following exponential family distributions (Chen et al., 2019c, 2020).

Another important class of high-dimensional models imposes an approximately low-
rank structure, offering greater flexibility for modelling noisy or heterogeneous data.
Instead of enforcing an exact rank constraint often implied by latent variable formu-
lations, these models regularize the nuclear norm or max-norm of the data matrix to
encourage approximately low-rank solutions. This framework has been widely adopted
in applications such as matrix completion, collaborative filtering, and signal recovery,
with application in real-valued matrices (e.g., Candes and Plan (2010); Cai and Zhou
(2016)) and binary matrices (e.g., Cai and Zhou (2013); Davenport et al. (2014)).

This thesis focuses on advancing latent variable modelling and statistical analysis for
high-dimensional data by addressing three distinct yet interconnected problems. These
problems are explored in detail in Chapters 2, 3, and 4. Below, we summarize the focus
of each chapter.

Chapter 2 discusses the analysis of high-dimensional multivariate longitudinal data.
A novel latent variable model for drawing statistical inferences on covariate effects and
predicting future outcomes is proposed. This model introduces unobserved factors to
account for the between-variable and across-time dependence and assist the prediction.
Statistical inference and prediction tools are developed under a general setting that allows
outcome variables to be of mixed types and possibly unobserved for certain time points,
for example, due to right censoring. A central limit theorem is established for drawing
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statistical inferences on regression coefficients. Additionally, an information criterion is
introduced to choose the number of factors. The proposed model is applied to customer
grocery shopping records to predict and understand shopping behaviour.

Chapter 3 concerns the selection of the number of latent factors. We propose a novel
method for determining the number of factors in linear factor models under stability
considerations. An instability measure is proposed based on the principal angle between
the estimated loading spaces obtained by data splitting. Based on this measure, criteria
for determining the number of factors are proposed and shown to be consistent. This
consistency is obtained using results from random matrix theory, especially the complete
delocalization of non-outlier eigenvectors. The advantage of the proposed methods over
the existing ones is shown via weaker asymptotic requirements for consistency, simulation
studies and a real data example.

Chapter 4 focuses on the analysis of pairwise comparisons data. We propose a general
family of statistical models for pairwise comparison data that relax the common stochas-
tic transitivity assumption underlying many existing approaches, such as Bradley-Terry
(BT) and Thurstone models. In this model, the pairwise probabilities are determined by
an approximately low-dimensional skew-symmetric matrix. Likelihood-based estimation
methods and computational algorithms are developed, which allow for sparse data with
only a small proportion of observed pairs. Theoretical analysis shows that the proposed
estimator achieves minimax-rate optimality, which adapts effectively to the sparsity level
of the data. The spectral theory for skew-symmetric matrices plays a crucial role in the
implementation and theoretical analysis. The proposed method’s superiority against the
BT model, along with its broad applicability across diverse scenarios, is further supported
by simulations and real data analysis.

The ideas developed in Chapters 2 to 4 are interconnected, and together they open up
many interesting directions for further exploration. For instance, in Chapter 2, the pro-
posed latent variable model relies on a consistent estimate of the number of factors, which
is currently determined by an information criterion. It would be of particular interest to
apply the stability principle from Chapter 3 for selecting the number of factors, especially
when interpretability of the latent variables is desired in the analysis of high-dimensional
multivariate longitudinal data. Moreover, when prediction of longitudinal outcomes is
the primary goal rather than inference on covariate effects, one might consider imposing
an approximate low-rank structure, as developed in Chapter 4, to yield a more robust
model. The connections also extend in the opposite direction: developing valid statisti-
cal theory for exact-rank models with rank greater than two would naturally generalize
beyond the Bradley–Terry framework for the analysis of pairwise comparison data. This
is especially valuable when the aim is to extract stable and interpretable latent factors
that help explain stochastic intransitivity among players.
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Chapter 2

A Latent Variable Approach to Learning High-
dimensional Multivariate longitudinal Data

2.1 Introduction

High-dimensional multivariate longitudinal data are becoming increasingly common, es-
pecially in social, behavioural and health sciences, where many outcomes are measured
repeatedly within individuals. Examples include ecological momentary assessment data
collected by smartphones or wearable devices for understanding within-subject social,
psychological, and physiological processes in everyday contexts (Bolger and Laurenceau,
2013; Wang et al., 2014), electronic health record data for predicting and understand-
ing health-related conditions (Lian et al., 2015; Zhang et al., 2020b), computer logfile
data for understanding human-computer interactions from solving complex computer-
simulated tasks (Chen et al., 2019b; Chen, 2020), and grocery shopping data for market
basket analysis (Wan et al., 2017, 2018). These data may involve outcome variables of dif-
ferent types. For example, for ecological momentary assessment, physiological processes
are typically measured by continuous variables, such as blood pressure, while psycholog-
ical processes are recorded by participants’ responses to survey items that involve binary
or categorical variables. In addition, many multivariate longitudinal data may be derived
from multitype recurrent event history (Chapter 2.5, Cook and Lawless, 2007), for which
an outcome variable records whether a specific type of event occurs (e.g., purchasing a
merchandise item) or the count of its occurrences within a time interval (e.g., the number
of purchases).

In this chapter, we study high-dimensional multivariate longitudinal data, aiming to
(1) infer the effect of covariates on each outcome variable and (2) predict future outcomes
based on covariates and historical data. These tasks involve three challenges. First, due to
the nature of the data, there is a complex within-individual dependence structure which
exists between outcome variables and across time. Valid statistical inference and accurate
prediction become a challenge if one fails to account for the dependence properly. Second,
the presence of many outcome variables implies a substantial number of item-specific
parameters, bringing challenges to the statistical inference. The classical theory for M-
or Z-estimators no longer applies, and new asymptotic results concerning the consistency
and asymptotic normality under a high-dimensional regime are needed. Third, some
observation units may be lost to follow-up or observed only intermittently, resulting in
incomplete data. For example, grocery shopping records based on membership may be
incomplete if customers occasionally shop without using their membership card.

To tackle these challenges, we propose a high-dimensional generalised latent factor
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model. In this model, low-dimensional factors are introduced within each observation
unit to capture the between-item and across-time dependence that is not attributable to
the covariates. The model is very flexible, allowing for many types of outcome variables,
including binary, count, and continuous variables. In addition, a computationally effi-
cient joint likelihood estimator is proposed that estimates the unobserved factors, loading
parameters, and regression coefficients simultaneously, which treats the factors as fixed
parameters. Asymptotic properties of this estimator are established, including a central
limit theorem for drawing statistical inferences on regression coefficients and an infor-
mation criterion for choosing the number of factors. Moreover, we introduce a missing
indicator approach (see Chapter 26, Molenberghs and Verbeke, 2005) to account for data
missingness. Under a Missing at Random (MAR) assumption, this approach can handle
many missingness patterns, including right-censoring that is common to recurrent event
data.

Various statistical methods have been proposed for analysing multivariate longitudi-
nal data. Generalised estimating equation (GEE) methods (e.g., Liang and Zeger, 1986;
Prentice, 1988; Carey et al., 1993; Gray and Brookmeyer, 2000) are widely used for draw-
ing statistical inferences on regression parameters relating the means of outcome variables
to a set of covariates and parameters characterizing the marginal association between out-
come variables. These methods often provide valid statistical inferences on parameters
of interest without a need to specify a full joint distribution for the outcome variables.
On the other hand, many joint models have been proposed for multivariate longitudi-
nal data that are better at making predictions while still capable of drawing statistical
inferences on parameters of interest, though the latter may be jeopardized by model mis-
specification. Joint models for multivariate longitudinal data include transition models
(Liang and Zeger, 1989; Zeng and Cook, 2007) that are specified through a sequence
of conditional probabilities of outcome variables given historical outcome variables and
covariates, copula-based models (Lambert and Vandenhende, 2002; Smith et al., 2010;
Panagiotelis et al., 2012) that specify a joint distribution via copulas, and latent variable
models (Ten Have and Morabia, 1999; Oort, 2001; Liu and Hedeker, 2006; Hsieh et al.,
2010; Proust-Lima et al., 2013; Wang et al., 2016; Ounajim et al., 2023; Sørensen et al.,
2023) that capture the complex dependence structure by introducing latent variables.
Latent variable models are very popular, thanks to their flexibility and interpretability.
However, the statistical inference for these traditional latent variable models is carried out
based on a marginal likelihood, where the latent variables are treated as random variables
and marginalized out. This approach can hardly be extended to the high-dimensional
setting with many latent variables due to the high computational cost of optimizing the
marginal likelihood. Our method extends the traditional latent variable models to the
high-dimensional setting and further overcomes their computational challenge using the
proposed joint likelihood estimator.

The proposed method is also related to high-dimensional factor models for multivari-
ate cross-sectional data or panel data that do not directly apply to the current problem.
These models are estimated by minimizing a loss function of both unobserved factors
and loading parameters. In other words, although unobserved factors may be regarded
as random variables in the model specification, they are conditioned upon and treated as
unknown parameters at the estimation stage. In this direction, Stock and Watson (2002)
and Bai and Li (2012) considered linear factor analysis and proposed estimation methods
based on quadratic and likelihood-based loss functions, respectively. Chen et al. (2020)
and Liu et al. (2023a) considered generalised latent factor models that allow for various
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data types and proposed likelihood-based estimation procedures. Moreover, Chen et al.
(2021) introduced a quantile factor model for multivariate data and proposed estimators
based on the check loss function for quantile estimation. Although Liu et al. (2023a) and
Chen et al. (2021) established some asymptotic normality results, they focused on factor
models without covariates, and their results are not directly applicable to the current
setting.

To summarize, our main contributions are three-fold: First, we propose a flexible la-
tent variable model framework for analysing high-dimensional multivariate longitudinal
data with mixed outcome types and missing values, which is unmanageable by traditional
approaches. This framework accommodates a range of correlation structures by allowing
both time-invariant and time-varying regression parameters and factor loadings, as well
as structured forms of time-dependent intercepts. Notably, this modelling flexibility is
novel compared to the existing high-dimensional factor models that are not tailored to
longitudinal settings. Second, we propose a method for drawing statistical inferences
on covariate effects and establish its statistical theory. In particular, we give conditions
on the latent variables that ensure the identifiability of the covariate effects and further
establish a central limit theorem that ensures the proposed inference method is asymp-
totically valid and efficient. Third, our theoretical result can be applied to the statistical
inference of generalised latent factor models with covariates, which, to our knowledge,
have not been previously explored. It thus may be of independent theoretical interest.

The rest of the chapter is organized as follows. Section 2.2 introduces a factor model
for high-dimensional longitudinal data and proposes a likelihood-based estimator, along
with several extensions and variants. Section 2.3 establishes the theoretical properties of
the proposed estimator. Specifically, a central limit theorem is established for statistical
inference on regression coefficients, and an information criterion is introduced for choosing
the number of factors. The proposed method is evaluated by simulation studies in Section
2.4 regarding its finite sample performance and is further applied to a grocery shopping
dataset in Section 2.5 for understanding and predicting customers’ shopping behaviour.
The chapter is concluded with discussions in Section 2.6. A software implementation
for R is available at https://github.com/Arthurlee51/LVHML. Further details about the
computation and proofs of the theoretical results are given in the supplementary material
in Appendix A.

2.2 Proposed Method

2.2.1 Setting and Proposed Model

Consider multivariate longitudinal data with N individuals and J outcome variables
observed on discrete time points t = 1, ..., T . Let Yi = (yijt)j=1,...,J,t=1,...,T be a J×T data
matrix for each individual i, where yijt is a random variable indicating the measurement of
the jth outcome at time t. We further use the vector yit = (yi1t, . . . , yiJt)

⊤ to denote all of
the individual’s outcomes at time t. Besides the measured outcomes, a set of p covariates
are collected for each individual i, denoted by xi = (xi1, ..., xip)

⊤. For ease of exposition,
we assume the covariates to be static, and an extension to time-dependent covariates will
be discussed in Section 2.2.3. Furthermore, to account for missing observations, we let
rit be a missing indicator for individual i at time t, where rit = 1 if yit is observed and
rit = 0 otherwise. We then partition Yi into Y o

i and Y m
i , where Y o

i contains those yit

for which rit = 1 and Y m
i contains the remaining components. Let ri = (ri1, . . . , riT )

⊤

13

https://github.com/Arthurlee51/LVHML


denote the vector of the individual’s missing indicators. We observe independent and
identically distributed (i.i.d.) copies of the triplet Y o

i , ri and xi, i = 1, . . . , N .
In this context, we propose a high-dimensional factor model to achieve two goals.

First, we hope to draw statistical inferences on how the covariates affect each out-
come variable based on the trained model. Second, given the up-to-date information,
we hope to train a model and use it to predict future outcome variables yijt at time
(T + 1), i = 1, ..., N , j = 1, ..., J . We introduce individual-specific random variables
θi = (θi1, ..., θiK)

⊤, also known as the latent factors, to capture the within-individual
data dependence unexplained by the covariates, where K is a pre-specified number of
factors. The latent dimension K is assumed to be small relative to N and J , but can still
be large in absolute value.

Suppose that each of yijt, i = 1, . . . , N, j = 1, . . . , J, t = 1, . . . , T , follows an expo-
nential family distribution with natural parameter γjt + a⊤

j θi + β⊤
j xi, and possibly a

scale dispersion parameter ϕj. Here γjt, aj = (aj1, . . . , ajK)
⊤ and βj = (βj1, . . . , βjp)

⊤

are item-specific parameters. Specifically, γjt is a variable- and time-specific intercept
capturing the baseline intensity, aj is a vector of the loading parameters, and βj contains
the regression coefficients. More precisely, the probability density/mass function for yijt
takes the form

f(yijt | γjt, aj,θi,βj,xi, ϕj)

= exp

(
yijt(γjt + a⊤

j θi + β⊤
j xi)− bj(γjt + a⊤

j θi + β⊤
j xi)

ϕj

+ cj(yijt, ϕj)

)
, (2.1)

where bj(·) and cj(·) are pre-specified variable-specific functions that are determined by
the choice of the exponential family distribution. This model assumption allows us to
model outcome variables of mixed types, including binary, count and continuous data.
For example, for a binary variable, (2.1) leads to a logistic model where

P (yijt = 1 | γjt, aj,θi,βj,xi) =
exp(γjt + a⊤

j θi + β⊤
j xi)

1 + exp(γjt + a⊤
j θi + β⊤

j xi)
, (2.2)

for which bj(·) = log(1 + exp(·)), ϕj = 1 and cj(·, ·) = 0. For count data, (2.1) gives

P (yijt = y | γjt, aj,θi,βj,xi) =
exp(y(γjt + a⊤

j θi + β⊤
j xi)− exp(γjt + a⊤

j θi + β⊤
j xi))

y!
,

(2.3)

a Poisson model for which bj(·) = exp(·), ϕj = 1 and cj(y, ϕj) = − log(y!).
For each individual i, we assume that yijts are conditionally independent given the

latent variables θi and covariates xi. Furthermore, we assume the missing outcome
variables to be MAR, such that the missing indicator ri is conditionally independent of
the unobserved data Y m

i given the observed data Y o
i . The MAR assumption is widely

adopted in the longitudinal analysis literature, as it allows the likelihood to be expressed
conveniently for estimation, while being less restrictive and generally more realistic than
the missing completely at random (MCAR) assumption, which requires missingness to be
independent of both observed and unobserved data. Nevertheless, the MAR assumption
cannot be verified statistically, as it concerns unobserved outcomes, and violations may
result in biased estimates.
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We denote A = (ajk)J×K as the loading matrix, Θ = (θik)N×K as the matrix for factor
scores, and X = (xil)N×p as the covariate matrix. To ensure the identifiability of the
regression coefficients βj, we impose the restriction

Θ⊤X = 0K×p, (2.4)

where 0K×p is a K×p matrix with all the entries being zero. This constraint requires the
latent factors to be uncorrelated with the observed covariates, coinciding the assumption
in traditional random effects models that random effects and regressors are orthogonal.

We provide several remarks on the model. First, it is assumed that the within-
individual dependence, both between items and across time, is completely captured by
covariates xi and low-dimensional factors θi. Conditioning on these variables, the out-
come variables are independent, and the right-hand side of (2.1) does not depend on the
outcomes at other time points. Second, one can regard the latent variables θi as random
effects capturing unobserved within-individual heterogeneity. Traditional latent variable
models for multivariate longitudinal data typically impose a parametric distributional as-
sumption (e.g., normality) on the latent variables and then performs statistical inferences
based on a marginal likelihood where the latent variables are marginalized out. While
this approach works well for low-dimensional latent variable models, it becomes compu-
tationally challenging when the latent dimension becomes moderately large (Chapter 6,
Skrondal and Rabe-Hesketh, 2004) and is not suitable for the current setting whereK can
be large. In this chapter, we adopt an approach commonly applied in high-dimensional
factor models (Chen et al., 2020, 2021; Liu et al., 2023a), optimizing an objective function
involving both the fixed parameters such as γjt, aj and βj and the latent variables θi,
without requiring distributional assumption on the latent variables. Third, while the cur-
rent approach assumes K to be fixed, it is of theoretical interest to relax this assumption
and allow K to diverge with N and J , as in Chen and Li (2022). We leave this extension
for future research. Fourth, except for βj, the rest of the unknown parameters in (2.1) are
not identifiable without additional constraints. For example, one can add a constant to
each entry of Θ and compensate it by adjusting the intercepts γjt, without changing the
density/probability (2.1). We note that similar indeterminacy phenomena are common
in factor analysis, and the identification of these parameters can be ensured by imposing
additional constraints similar to those in Bai and Li (2012). This indeterminacy does not
affect making predictions but affects the interpretation of the factors and the inference of
the corresponding loading parameters. As we are mainly interested in drawing statistical
inferences on the regression coefficients, we do not impose constraints to fix the rotational
indeterminacies. As will be shown in Section 2.2.2 below, the estimate of βj is consistent
and asymptotically normal, regardless of the identification of the rest of the parameters.

Finally, although the covariates, latent variables, and most of the parameters are
assumed to be time-independent in (2.1), we can extend our model to allow them to be
time-dependent. Some of such extensions are discussed in Sections 2.2.3, 2.2.4 and 2.6,
respectively. However, we should note that these extensions also introduce more model
parameters, which may lead to a higher variance in prediction and additional challenges
with interpretations.
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2.2.2 Estimation

We consider the estimation of the proposed model based on the joint log-likelihood func-
tion

l(Ξ) =
N∑
i=1

J∑
j=1

T∑
t=1

rit
{
yijt(γjt + a⊤

j θi + β⊤
j xi)− bj(γjt + a⊤

j θi + β⊤
j xi)

}
, (2.5)

where Ξ is a vector containing unknown quantities including γjt, aj,βj and θi, for i =
1, . . . , N, j = 1, . . . , J, t = 1, . . . , T . To estimate the regression coefficients βj, we maxi-
mize l(Ξ) with respect to Ξ under certain compactness constraints on the model param-
eters. More specifically, let ∥ · ∥ denote the Euclidean norm, we solve the optimization
problem

Ξ̂ = argmax
Ξ

l(Ξ) such that for i = 1, . . . , N, j = 1, . . . , J,

∥θi∥ ≤ c1
√
K, and ∥(a⊤

j ,γ
⊤
j ,β

⊤
j )

⊤∥ ≤ c2
√
T + p+K,

(2.6)

where c1 and c2 are two constraint parameters, and γj = (γj1, ..., γjT )
⊤. Numerically,

the compactness constraints prevent parameters from taking extreme values, which may
happen when observed variables are discrete and certain categories are rarely observed.
Theoretically, this constraint plays a crucial role in establishing the estimation consis-
tency; see Section 2.3 for the details. This optimization problem is solved by a projected
gradient descent algorithm (Chapter 4, Bertsekas, 1999) that is guaranteed to converge
to a critical point. See Section A.1 for the computational details.

We call (2.5) a joint log-likelihood function to distinguish it from the marginal log-
likelihood function used in the traditional latent variable models, as the current log-
likelihood function involves both the model parameters and the latent factors. We also
note that strictly speaking, the full joint log-likelihood function takes a form slightly
different from l(Ξ) in (2.5), given by

∑N
i=1

∑J
j=1

∑T
t=1 rit log f(yijt | γjt, aj,θi,βj,xi, ϕj),

as l(Ξ) ignores all the scale parameters ϕj. They coincide (up to a constant difference)
when all the outcome variables are binary or count variables that follow the Bernoulli
or Poisson models in (2.2) and (2.3), respectively. The proposed estimator is suitable
when all the scale parameters are close to each other. When the scale parameters are
heterogeneous, we may use the full joint log-likelihood function to jointly estimate Ξ and
all the scale parameters, for which the asymptotic results established in Section 2.3 can
be adapted accordingly.

2.2.3 Extension to Incorporating Time-dependent Covariates

In scenarios where each individual i is associated with a time-dependent covariate vector
zit = (zi1t, zi2t, . . . , zipzt)

⊤ at each time point t, with corresponding regression parame-
ters vj = (vj1, . . . , vjpz)

⊤, our model adapts accordingly. The natural parameter of the
exponential family distribution can be modelled as γjt+a⊤

j θi+β⊤
j xi+v⊤

j zit. The condi-
tional probability density/mass function f(yijt | γjt, aj,θi,βj,xi,vj, zit, ϕj) then becomes

exp
(
ϕ−1
j {yijt(γjt + a⊤

j θi + β⊤
j xi + v⊤

j zit)− bj(γjt + a⊤
j θi + β⊤

j xi + v⊤
j zit)}+ cj(yijt, ϕj)

)
.

This modification maintains the structure of the likelihood as in equation (2.5), and,
thus, the estimation algorithm described in Section 2.2.2 can still be applied. By incorpo-
rating additional assumptions for time-dependent covariates, we can derive theorems akin
to those established under the current model in Section 2.3. The specific assumptions
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and proofs of these theorems are elaborated in Sections A.3 and A.4 of the supplementary
material.

2.2.4 Extension for Time-dependent Loadings and Coefficients

To better accommodate the effects of time in complex datasets, the loadings and the
coefficients of the covariates may also be made time-dependent by modelling the natural
parameter as γjt + a⊤

jtθi + β⊤
jtxi. Similar to the extension discussed in Section 2.2.3, we

could also include time-dependent covariate Zt, and the estimation procedure outlined in
Section 2.2.2 can be adapted to incorporate this extension. Theoretical results analogous
to those in Section 2.3 can be established. The required modifications, assumptions
and proofs are detailed in Sections A.1, A.3 and A.4 of the supplementary material,
respectively.

2.2.5 Imposing Dependence Structure on Intercepts

In practical data analysis, it is often desirable to impose structured dependence on γj

to enhance estimation efficiency and predictive accuracy, or reflect prior knowledge. An
important example is γjt = tγj, which fits naturally under the framework developed in
Section 2.2.3, treating γj as the coefficient for the time-dependent covariate t. Conse-
quently, the asymptotic results established for that framework continue to hold.

This structure can also be incorporated into the extension in Section 2.2.4, with
additional assumptions required for valid asymptotic theory. These conditions and related
proof adjustments are provided in Sections A.3.2 and A.4 of the supplementary material.

2.3 Theoretical Results

2.3.1 Consistency and Asymptotic Normality

We now establish the asymptotic properties for the estimated regression coefficients β̂j.
Since J tends to infinity, we assume that as J varies, the sequence is regression coef-
ficient vectors is nested, in the sense that (β∗

1, . . .β
∗
J)

⊤ agrees with the first J vectors

in (β∗
1, . . . ,β

∗
J+1). Let u∗

j =
(
γ∗
j
⊤,β∗

j
⊤, a∗

j
⊤
)⊤

denote the vector of true values of item-

specific parameters. Additionally, define Dit = (Dit1, . . . , DitT )
⊤ as a vector of dummy

variables indicating the time periods, where Ditt = 1 and Ditt′ = 0 for t ̸= t
′
, i = 1 . . . N .

We further define e∗it = (D⊤
it ,x

⊤
i ,θ

∗
i
⊤)⊤ as the vector of true and observed individual-

specific quantities. Let K∗ denote the true dimension of the latent variables θ∗
i , and

P = T + p + K∗ denote the dimension of u∗
j . P is assumed to be fixed that does

not vary with N and J . Let Ξ∗ =
(
u∗
1
⊤, . . . ,u∗

J
⊤,θ∗

1
⊤, . . . ,θ∗

N
⊤
)⊤

denote the vector

of true parameters. Let U ⊂ RP , Θ ⊂ RK∗
and define the space of possible param-

eters HK∗
=
{
Ξ ∈ RNK∗+PJ : uj ∈ U ,θi ∈ Θ for all i, j, Θ⊤X = 0K∗×p

}
. For positive

sequences an and bn, we write an ≲ bn if an ≤ Cbn for some C > 0, and an ≍ bn if both
an ≲ bn and bn ≲ an. The following regularity conditions ensure consistency of β̂j.

Assumption 2.1. U and Θ are compact sets and Ξ∗ ∈ HK∗
. Moreover, xi ∈ X for all

i, where X ⊂ Rp is a compact set.
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Assumption 2.2. For any compact set C ⊂ R, there exists b̄ > b > 0 (depending on C)
such that b̄ ≥ b

′′
j (s) ≥ b and |b′′′j (s)| ≤ b̄ for all s ∈ C, j = 1, . . . , J . Moreover, {ϕj} ≲ 1.

Assumption 2.3. J−1A∗⊤A∗ converges to a positive definite matrix as J tends to infinity.
Also, N−1Θ∗⊤Θ∗ converge to a positive definite matrix as N tends to infinity.

Assumption 2.4. There exists κ1 > 0 such that infi=1,...,N,t=1,...,T P (rit = 1) ≥ κ1.

Assumption 2.5. There exists κ2 > 0 such that

lim inf
N→∞

πmin

(
(X ,1N)

⊤ (X ,1N)
)
/N ≥ κ2,

where πmin(·) is the minimum eigenvalue of a matrix, 1N is length-N vector of ones.

The following theorem establishes the consistency of β̂j:

Theorem 2.1. Under Assumptions 2.1 to 2.5, for each fixed j, ∥β̂j − β∗
j∥ = oP (1), as

N and J grow to infinity.

Define B∗ = (β∗
jl)J×p and Γ ∗

t = (γ∗1t, . . . , γ
∗
Jt)

⊤ for t = 1, . . . , T . Furthermore, let

Θ̂ = (θ̂ik)N×K∗ , Â = (âjk)J×K∗ , B̂ = (β̂jl)J×p and Γ̂t = (γ̂1t, . . . , γ̂Jt)
⊤, t = 1, . . . , T be

the estimated parameters from Ξ̂. The following theorem provides the average rate of
convergence of Ξ̂ and B̂ :

Theorem 2.2. Under Assumptions 2.1 to 2.5, we have

max
t=1,...,T

∥∥∥Θ̂Â⊤ −Θ∗A∗⊤ +X(B̂ −B∗)⊤ + 1N(Γ̂t − Γ ∗
t )

⊤
∥∥∥
F√

NJ
= OP (min{

√
N,
√
J}−1),

(2.7)

1√
J

∥∥∥B̂⊤ −B∗⊤
∥∥∥
F
= OP (min{

√
N,
√
J}−1).

(2.8)

We comment on the rate of convergence for J−1/2∥B̂⊤ − B∗⊤∥F . One might expect
a N−1/2 rate since B corresponds to the regression component for observed variables.
However, the latent variables are also estimated here, which introduces measurement
error. Specifically, the estimated latent component Θ̂Â⊤ has an estimation error rate

of (NJ)−1/2
∥∥∥Θ̂Â⊤ −Θ∗A∗⊤

∥∥∥
F
= OP (min{

√
N,
√
J}−1). This measurement error domi-

nates the estimation error of the regression component, resulting in the convergence rate
stated in Theorem 2.2. To establish the asymptotic normality for each β̂j, we need two
additional assumptions.

Assumption 2.6. The limits Φj = limN→∞
1
N

∑N
i=1

∑T
t=1−ϕ

−1
j E (rit) b

′′
j (u

∗
jt
⊤e∗it)e

∗
ite

∗
it
⊤

and Ψi = limJ→∞
1
J

∑J
j=1

∑T
t=1−ϕ

−1
j E (rit) b

′′
j (u

∗
jt
⊤e∗it)a

∗
ja

∗
j
⊤ exist for i = 1, . . . , N and

j = 1, . . . , J . Moreover, there exists κ3 > 0 such that πmin(Φ
⊤
j Φj) ≥ κ3 and πmin(Ψ

⊤
i Ψi) ≥

κ3.

Assumption 2.7. As N, J →∞, N ≍ J .
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Theorem 2.3. Under Assumptions 2.1 to 2.7 , for each fixed j, we have
√
N
(
β̂j − β∗

j

)
d→

N (0,ΣE ,j) , where the asymptotic variance ΣE ,j = (−Φ−1
j )(T+1):(T+p),(T+1):(T+p) is a sub-

matrix of −Φ−1
j that corresponds to its T + 1 to (T + p)th rows and columns. ΣE ,j is

uniquely determined by the true model without being affected by the indeterminacy of γjt,
aj, and θi.

Theorem 2.3 establishes the asymptotic normality of β̂j, and specifies the form of the

asymptotic variance. This shows that β̂j is efficient, as its asymptotic variance matches
the maximum likelihood estimator in generalised linear model regression, where the la-
tent factors θ∗

i are directly observable. Assumptions 2.1, 2.3 and 2.6 are standard in the
literature of factor analysis (see e.g., Bai and Ng, 2002 and Bai, 2003). Assumption 2.2
concerns the regularity conditions of the exponential family. The condition regarding the
derivatives of bj(·) is straightforward to verify and applies to a wide range of commonly
used models under the exponential family, including the logistic model for binary data and
Poisson model for count data. The condition for the scale parameter is a mild assumption
ensuring the variance of yijt does not explode. Assumption 2.4 ensures that a sufficient
proportion of outcomes are observed so that the effective sample size grows with N . In
many applications, this condition is not restrictive: as long as each individual contributes
at least one observed outcome, and there is no reason to assume zero probability of obser-
vation at other time points, the assumption is naturally satisfied. Nevertheless, it may be
possible to relax it by instead requiring that the average observation rate N−1

∑N
i=1 rit is

bounded away from zero for each t. Such weaker conditions would also guarantee a grow-
ing effective sample size, though establishing the corresponding asymptotic theory would
require a different proof strategy and is not pursed here. Assumption 2.5 is a condition
that guarantee a degree of variability in the values of X . Assumption 2.7 ensures that N
and T grow at the same rate. Similar assumptions are made when deriving asymptotic
normality for high-dimensional factor models; see e.g., Bai and Li (2012), Galvao and
Kato (2016a) and Chen et al. (2021).

Remark 2.1. In practice, asymptotic variance is unknown and needs to be estimated.

Define êit = (D⊤
it ,x

⊤
i , θ̂

⊤
i )⊤. We can estimate Φj by

Φ̂j = N−1

N∑
i=1

T∑
t=1

−ϕ̂−1
j ritb

′′

j (û
⊤
j êit)êitê

⊤
it ,

and estimate Σ̂E ,j by the corresponding submatrix. We show in Section A.4.6 in the sup-

plementary material that Σ̂E ,j is a consistent estimator for the true asymptotic variance

ΣE ,j, where ϕ̂j is any consistent estimator of the scale parameter ϕj.

Remark 2.2. Under the conditions of Theorem 2.3, the established asymptotic normality
for each j ∈ {1, . . . , J} implies a uniform convergence rate of max1≤j≤J ∥β̂j − β∗

j∥ =

OP

(
N−1/2

√
log J

)
. This result follows by applying a union bound over j = 1, . . . , J to

the sub-Gaussian tail probabilities of β̂jl − β∗
jl for l = 1, . . . , p, noting that p is assumed

fixed.

Remark 2.3. The asymptotic results in this section are derived under a double-diverging
regime where both the number of individuals N and the number of outcomes per individual
J tend to infinity. An interesting question, as pointed out by the examiner, is whether one
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can consistently estimate the regression coefficients βj under weaker growth conditions,
for example in the large N , fixed J regime, by treating the latent variables as nuisance
parameters. Exploring such restricted settings would help clarify the extent to which the
double-diverging assumption is essential, and we regard this as an important direction for
future research.
A related question is whether the assumption of fixed T can be relaxed to allow T to
diverge. We conjecture that the main results would continue to hold in this setting, since
having more time points provides additional information, while only the number of time-
dependent intercepts increases with T . In fact, sharper convergence rates may be achieved
in some of the theorems to reflect the diverging nature of T . A precise characterization
of the rates and the corresponding proofs, however, are beyond the scope of this work and
are left for future research.

2.3.2 Determining the Number of Factors

In real application, the true number of factors K∗ is unknown and, thus, needs to be
estimated. To do so, we consider a finite set K, containing the candidate numbers of
factors. For each value ofK ∈ K, we estimate the proposed model and obtain the estimate
Ξ̂K and the corresponding log-likelihood function value, l(Ξ̂K). We then construct an
information criterion taking the form IC(K) = −2l(Ξ̂K)+KΛNJ , where ΛNJ is a penalty
term to be discussed in the sequel. We then set

K̂ = argmin
K∈K

IC(K). (2.9)

Theorem 2.4. Suppose that Assumptions 2.1 to 2.5 hold and K∗ ∈ K. If the penalty
term ΛNJ satisfies max {N, J} ≲ ΛNJ ≲ NJ , then limN,J→∞ P (K̂ = K∗) = 1.

This result is an extension of an information criterion for a generalised latent factor
model proposed by Chen and Li (2022) to the current model. Following the choice in
Chen and Li (2022). we set

ΛNJ = max{N, J} × log

(
max{N, J}−1J

N∑
i=1

T∑
t=1

rit

)

in implementation, where J
∑N

i=1

∑T
t=1 rit records the total number of data points being

observed. It is easy to see that the requirement on ΛNJ is satisfied with this choice. We
note that this choice of ΛNJ lies toward the softer end of the penalty range allowed by
the theory. This reduces the risk of discarding factors with weaker signals, which might
otherwise be overlooked under a stronger penalty in a practical setting. We adopt this
choice since the main focus of this chapter is on the estimation of regression coefficients
and prediction performance.

Remark 2.4. There exists multiple approaches for determining the number of factors
beyond the information criterion adopted here. In particular, Chapter 3 introduces a
stability-based estimator designed for linear factor models, which focuses on selecting
loading structures that are reproducible across data splits. However, the theoretical re-
sults based on random matrix theory cannot be directly applied to this setting. Extending
such a stability-based approach to the current setting would be a promising future research
direction.
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2.4 Simulation Study

2.4.1 Simulation Setting

We assess the finite sample performance of the proposed method via Monte Carlo simu-
lations under a variety of settings. Specifically, we consider J = 100, 200, 300, 400 with
N = 5J or 10J , yielding eight combinations. For each setting, we generate 100 replica-
tions with the number of time points T = 4 and true latent dimensions K∗ = 3 and 8.
Model selection is performed over the candidate set K = {1, 2, . . . , 10}.

We simulate data in a binary response setting to mimic the real data example. The
simulated data follows the logistic model given in (2.2):

P (yijt = 1 | γjt, aj,θi,βj,xi) =
exp(γjt +

∑K∗

k=1 ajkθik +
∑5

l=1 βjlxil)

1 + exp(γjt +
∑K∗

k=1 ajkθik +
∑5

l=1 βjlxil)
. (2.10)

The variables are generated as follows, slightly abusing notation by using the same sym-
bols before and after normalisation. Intercepts γjt are independently sampled from a
uniform distribution U [−1, 1], and regression coefficients βjl from U [0.5, 1]. The latent
variables θik and ajk are sampled from truncated standard normal distributions on [−3, 3].
The covariates (xi1, xi2) and (xi3,xi4) are two pairs of dummy variables, each derived in-
dependently from a binomial distribution Bin(2, 0.5). The last covariate xi5 is sampled
from U [−1, 1]. The normalisation procedures described in Section A.2 of the supplemen-
tary material is applied to ensure identifiability of regression coefficients. We further set
half of normalised coefficient pairs (βj1, βj2) to zero. We independently repeat the same
procedure for (βj3,βj4), and separately set half of βj5 to zero. The missingness indicator
ri is sampled from all possible binary combinations of 0 and 1 with equal probability,
excluding the all-zero case. It leads to approximately 47% of the values in rit being 0.

2.4.2 Evaluation Criteria

The performance of the proposed estimator is assessed based on several performance
metrics, as given in Table 2.1. Specifically, in each replication, at the true number
of factors K∗, we compute the “Loss” metric defined on the left-hand side of (2.7) to
evaluate the convergence of Ξ̂ in finite sample. Additionally, we compute “Bloss” as
defined on the left-hand side of (2.8) to quantify the convergence of B̂. The mean “Loss”
and “Bloss” across 100 simulations are reported in Table 2.1.

To further assess the estimator’s performance on individual parameters, the mean
squared error (MSE) for each βjl, where j = 1, . . . , J and l = 1, . . . , 4, is computed across
all trials. The maximum of these MSE values is reported as “MMSE”. Additionally, the
proportion of instances where the correct number of factors is accurately identified is de-
noted by P (K̂ = K∗). The asymptotic variance for each simulation is estimated following
the methodology proposed in Remark 2.1, based on which 95% confidence intervals for
βjls are constructed. The empirical coverage probability (ECP) is then determined by
aggregating the coverage probabilities across all parameters and simulation repetitions.

In addition, the recovery of the coefficients βjs is evaluated against a baseline ap-
proach that assumes no factors, that is, K = 0. The corresponding likelihood is given
by
∏N

i=1

∏J
j=1

∏T
t=1

{
exp((γjt + β⊤

j xi)yijt)(1 + exp(γjt + β⊤
j xi))

−1
}rit

. The optimization
is carried out using the glm function in R, leveraging a logistic regression (LR) approach.
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Additionally, we compare the proposed method to a logistic regression model incorporat-
ing a random intercept αij, where for each j, the αij are assumed to be identically and
independently distributed as normal random variables. The likelihood for this model is∏N

i=1

∏J
j=1

∏T
t=1

{
exp((γjt + αij + β⊤

j xi)yijt)(1 + exp(γjt + αij + β⊤
j xi))

−1
}rit

. This model
is optimized using the glmer function from the lme4 package in R. The results, including
the metrics “Bloss” and “MMSE” from both approaches, are reported in Table 2.1.

Moreover, as we try to draw statistical inferences on a large number of regression
coefficients, it is essential to control for multiple testing. We report the mean false dis-
covery rate (FDR) over 100 simulations using the Benjamini–Yekutieli (BY) procedure
(Benjamini and Yekutieli, 2001), which is valid under arbitrary dependence among hy-
potheses. Since xi1, xi2 are dummy variables for a single covariate, we test the hypotheses
H0j : βj1 = βj2 = 0 for j = 1, . . . , J . The Wald test is applied using the estimator for
asymptotic variance derived in Theorem 2.3, as detailed in Remark 2.1. We reject hy-
potheses at a significance level of 0.05 based on the BY-adjusted p-values. The same
procedure is applied to the coefficients associated with xi3 and xi4. For the continu-
ous covariate xi5, we test H0j : βj5 = 0 for each j = 1, . . . , J . For each covariate, we
compute the mean FDR (MFDR) across the 100 replications and report the maximum
as “MMFDR” in Table 2.1. In addition, we report the maximum of the mean false
non-discovery rates (MMFNR), as the proportion of true alternative hypotheses that are
incorrectly not rejected, among all hypotheses not rejected. The results in Table 2.1 are
based on setting the constraint parameters in Equation (2.6) to c1 = c2 = 5. To assess
sensitivity, we repeat the simulations with c1 = c2 = c for c ∈ {3, 4, 5, 6, 7}. Results are
shown in Table A.2 of the supplementary material.

2.4.3 Results

The simulation results align with the theory for the proposed method. As N and J
increase, the metrics “Loss”, “Bloss”, and “MMSE” under the proposed method show
a decreasing trend, which occurs regardless of the number of factors and the ratio be-
tween N and J . Moreover, the information criterion for determining the true number
of factors K∗, introduced in Section 2.3.2, proves to be effective. This is evidenced by
P (K̂ = K∗) achieving 1 in every scenario, which means our method always identifies
the correct number of factors. Additionally, as N and J increase, the empirical coverage
probability (ECP) approaches the nominal 95% confidence interval level. This validates
our asymptotic normality results in Theorem 2.3 and the asymptotic variance estimator
in Remark 2.1. Moreover, “MMFDR” remain below the 0.05 significance level across all
settings, confirming that the BY procedure successfully controls the false discovery rate.
The metric “MMFNR” decreases as N and J increases, suggesting that our approach
yields high power asymptotically.

In comparison, the “Bloss” and “MMSE” metrics under the logistic regression (LR)
method are consistently higher than those of the proposed method. In addition, they do
not further improve as N and J increase when they are sufficiently large, suggesting that
this simplified model suffers from a large bias. In contrast, the logistic regression model
with a random intercept (LRRI) outperforms the basic LR model by accounting for the
effects of unobserved random intercepts. However, our proposed method continues to
demonstrate superior performance as J and N increase, highlighting the importance of
considering correlations among different outcomes to achieve optimal results.

Finally, Table A.2 indicates that the proposed estimator has stable performance across
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Table 2.1: Summary statistics for the simulation study. The results for the proposed
method, logistic regression (LR), and logistic regression with a random intercept (LRRI)
across different combinations of N , K∗ and J are reported.

Proposed LR LRRI

N J Loss P (K̂ = K∗) ECP MMFDR MMFNR Bloss MMSE Bloss MMSE Bloss MMSE

K∗ = 3
5J 100 0.55 1 0.94 0.01 0.20 0.49 0.14 0.545 0.512 0.485 0.137
5J 200 0.36 1 0.95 0.01 0.05 0.32 0.05 0.453 0.426 0.338 0.099
5J 300 0.29 1 0.95 0.00 0.00 0.25 0.03 0.427 0.407 0.268 0.104
5J 400 0.24 1 0.95 0.00 0.02 0.22 0.03 0.398 0.328 0.237 0.056
10J 100 0.48 1 0.94 0.01 0.01 0.33 0.06 0.469 0.400 0.333 0.063
10J 200 0.32 1 0.95 0.01 0.00 0.22 0.03 0.409 0.380 0.233 0.047
10J 300 0.26 1 0.95 0.00 0.00 0.18 0.01 0.399 0.388 0.194 0.030
10J 400 0.22 1 0.95 0.00 0.00 0.16 0.01 0.418 0.379 0.185 0.059

K∗ = 8
5J 100 1.26 1 0.91 0.02 0.24 0.64 0.27 0.700 0.869 0.614 0.371
5J 200 0.68 1 0.94 0.01 0.10 0.39 0.09 0.671 0.787 0.432 0.245
5J 300 0.52 1 0.94 0.01 0.07 0.31 0.06 0.642 1.059 0.366 0.403
5J 400 0.44 1 0.94 0.01 0.02 0.26 0.04 0.629 0.788 0.317 0.434
10J 100 1.12 1 0.91 0.02 0.11 0.45 0.15 0.672 0.955 0.482 1.119
10J 200 0.63 1 0.94 0.01 0.03 0.28 0.05 0.636 0.653 0.319 0.168
10J 300 0.48 1 0.94 0.01 0.00 0.22 0.03 0.613 0.582 0.260 0.113
10J 400 0.41 1 0.94 0.01 0.00 0.18 0.02 0.592 0.492 0.238 0.123

Loss: Frobenius loss measuring the convergence of Ξ̂.
P(K̂ = K∗): Proportion of instances where the correct number of factors is identified.
ECP: Empirical coverage probability of the confidence intervals.
MMFDR: Maximum mean false discovery rate across all covariates.
MMFNR: Maximum mean false non-discovery rate across all covariates.
Bloss: Frobenius loss measuring convergence of B̂.
MMSE: Maximum mean squared error across all estimated βjls.

different choices of the constraint parameter c. This suggests that the method is not overly
sensitive to the choice of constraint values. Therefore, we adopt c1 = c2 = 5 in Section
2.5.

2.5 Application to Grocery Shopping Data

2.5.1 Background

We illustrate the proposed method via an application to a grocery shopping dataset.
This dataset encompasses household-level transactions over a span of two years from
approximately 2, 000 frequent shoppers. It includes purchases made by each household,
recorded daily, alongside demographic information such as age groups, household sizes,
and income levels (recorded as categorical variables) for around 800 households. We focus
on the subset of customers with demographic information to understand how customers’
shopping behaviour is associated with their demographic variables and evaluate prediction
performance based on latent factors and demographic variables. The dataset is available
at https://www.dunnhumby.com/source-files.

In this analysis, daily transaction data are aggregated into 25 four-week periods, using
the first T = 24 intervals for statistical analysis and model training. The 25th interval
is reserved for assessing the predictive performance of our proposed model. We focus on
the transactions involving the most popular J items during the first T intervals, with N
denoting the count of customers who purchased any of the J items within these periods.
In each time period t, let yijt be a binary indicator of purchase such that yijt = 1 if
individual i purchased item j and yijt = 0 otherwise. The missing indicator, rit, is set to
0 when the ith customer did not purchase any item, including those outside the J item
list.

We introduce a covariate vector xi = (xi1, xi2, xi3, xi4)
⊤ capturing household sizes and

income levels through dummy variables. Here, xi1 = 1 indicates two-member households,
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xi2 = 1 for three or more members, xi3 = 1 for incomes between $35,000 and $74,999,
and xi4 = 1 for incomes above $75,000. The baseline level with xi1 = xi2 = 0 for size and
xi3 = xi4 = 0 for income represents single-member households earning below $35,000.

2.5.2 Statistical Inference

We first focus on inferring the effects of covariates on customers’ shopping behaviour.
In this analysis, we focus on the most popular 100 items, i.e., J = 100. The number
of observations is N = 800. We set the candidate set K = {1, 2, ..., 15} when selecting
the number of factors. Using the proposed information criterion, we obtain K̂ = 8. We
perform statistical inference under the eight-factor model.

We start with an overall significance test for all the covariates to see if any of the
covariates are associated with customers’ shopping behaviour. That is, we test the null
hypothesis of B = 0J×4. We use ∥B̂∥F as the test statistic and perform a permutation test
to obtain its reference distribution under the null hypothesis. Specifically, we perform
500 random permutations indexed by l = 1, ..., 500. In each permutation l, we randomly
shuffle customers’ covariates and then estimate the model parameters. Let the estimate
of B be denoted by B̂ (l). The reference distribution for the test statistic is then obtained
by the empirical distribution for ∥B̂ (l)∥F , l = 1, ..., 500. This results in a p-value < 0.001,
suggesting that these covariates are significantly associated with customers’ shopping
behaviour.

We move on to assess the influences of covariates on individual items. For each item
j, we calculate the p-values associated with the null hypotheses of βj1 = βj2 = 0 and
βj3 = βj4 = 0, respectively, for all j. These hypotheses test the effects of household
income and size on the likelihood of purchasing item j, respectively. P -values are derived
through Wald tests, utilizing the estimated coefficients and the asymptotic variance Σ̂E ,j,
as elaborated in Remark 2.1. To account for multiple testing, we adjust the p-values using
the BY procedure for FDR control, as discussed in Section 2.4. This adjustment is carried
out separately for the covariates of household income and size, enabling the identification
of items significantly associated with each at the predetermined FDR threshold of 5%.

Our analysis examines the influence of household income and size on the purchase
patterns of grocery items, where the items are categorized into six groups – Vegetables,
Dairy and Eggs, Beverages, Fruits, Bakery and Miscellaneous items. Table 2.2 gives the
items selected by the BY procedure for the covariate household size, the corresponding
regression coefficients, p-value, BY-adjusted p-value (adj p-value), category, subcategory,
average price, and package size. Table 2.3 is similar to Table 2.2 but gives the results
for household income. Item details absent in the original dataset are marked as NA.
The subcategory column represents the lowest level classification available within the
dataset, and the price column represents the average unit price derived from all recorded
transactions.

We examine the results about household size. As presented in Table 2.2, the co-
efficients in columns β̂1 and β̂2—particularly those corresponding to β̂2, which denote
the coefficients for households comprising three or more individuals—suggest an overall
increase in the likelihood of purchasing items compared to the baseline scenario of single-
person households. This trend aligns with the expectation that households with a greater
number of occupants tend to have higher consumption needs.

We then explore the effect of household income on consumer behaviour, as revealed in
Table 2.3. Recall that β̂3 and β̂4 are the estimated coefficients for the dummy variables of
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middle and high household incomes, respectively. Notably, most coefficients in the fruits
category are positive, suggesting a heightened health consciousness among these house-
holds in comparison to their lower-income counterparts. This hypothesis is consistent
with the data in the Beverages category, where most soft drinks are associated with neg-
ative coefficients. Although there are exceptions, the vegetable category mostly displays
positive coefficients, further reinforcing the trend toward healthier dietary preferences.
For the Bakery category, a consistent negative trend across coefficients suggests that
higher-income households are generally accepted to be less inclined to consume breakfast
at home. These observations match our knowledge about how income levels are associated
with dietary choices and lifestyle habits (see, e.g. French et al., 2019).

On the other hand, divergent preferences across income levels are observed in the
Dairy and Egg category. Specifically, we observe two opposite trends for milk: one sub-
set exhibits positive and increasing coefficients across β̂3 and β̂4, signifying a preference
among higher-income households, while the other shows negative and diminishing coeffi-
cients, indicating the contrary. Notably, price and size do not account for these trends,
as evidenced by the table. Further investigation is needed to explore the cause, such
as brand differentiation, that drives these preferences. These observations may offer in-
sight for further investigations to explain the differences in preferences uncovered by the
current exploratory model.

2.5.3 Prediction

Beyond inference for coefficients of covariates, a natural application of such models is for
predictions and recommendations. In particular, we can estimate the probabilities for
the outcome variables at time T + 1 given Ξ̂, assuming that the model (2.2) still holds
at t = T + 1. Due to the absence of an estimate for the time-dependent intercept γj,T+1,
we substitute γ̂j,T in practice. More specifically, we predict the occurrence of outcome

variable j at time T + 1 based on the predicted probability 1/(1 + exp(−(γ̂jT + â⊤
j θ̂i +

β̂
⊤
j xi))). The same prediction approach applies to the extended model in Section 2.2.4,

substituting β̂j,T and âj,T for βj,T+1 and aj,T+1, respectively. For both the original and
extended models, we also assess performance under the restriction γjt = tγj.

To assess the performance of this approach under varied settings, besides the setting
where J = 100, we also consider J = 200, 300 and 400, with all scenarios having N = 800.

Given the nature of the dataset, the focus of our evaluations is on recommenda-
tion performance. To evaluate the performance, we compute the sensitivity, namely,
the number of actual purchases in the recommendations divided by the total number of
actual purchases. We propose a comparison of seven approaches. Prop, Prop (2.2.4),
Prop (2.2.5), and Prop (2.2.4 & 2.2.5) correspond to model variants using: (i) the main
model, (ii) the extension with time-dependent loadings and regression coefficients in Sec-
tion 2.2.4, (iii) the intercept constraint γjt = tγj introduced in Section 2.2.5, and (iv)

both modifications, respectively. The number of factors K̂ selected by each method is
reported in Table A.6 in Section A.5.3 of the supplementary material. Recommendations
are ranked based on the sorted predicted probabilities of the J items from correspond-
ing model estimates. Hist ranks recommendations by the sorted cumulative purchasing
frequency for each individual, resorting to random selection when ties occur. Hist-Prop
follows the ranking of Hist but employs sorted predicted probabilities from Prop to resolve
ties. Lastly, Hist-Hist, like Hist, ranks recommendations but uses the overall cumulative
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Table 2.2: Characteristics and Estimated coefficients of selected products based on house-
hold size

Category Subcategory Price Size β̂1 β̂2 Adj p-value p-value

Beverages DAIRY CASE 100% PURE JUICE - O 1.36 NA -0.29 0.03 0.000 0.000
Beverages DAIRY CASE TEA WITH SUGAR OR S 0.99 1 GA 0.56 0.80 0.000 0.000
Beverages SFT DRNK 2 LITER BTL CARB INCL 1.16 2 LTR 0.08 0.46 0.000 0.000
Beverages SFT DRNK 2 LITER BTL CARB INCL 1.23 2 LTR 0.15 0.63 0.000 0.000
Beverages SFT DRNK 2 LITER BTL CARB INCL 1.16 2 LTR 0.04 0.86 0.000 0.000
Beverages SFT DRNK SNGL SRV BTL CARB (EX 1.07 20 OZ -0.89 0.19 0.000 0.000
Beverages SOFT DRINKS 12/18&15PK CAN CAR 3.41 12 OZ 0.10 0.74 0.000 0.000
Beverages SOFT DRINKS 12/18&15PK CAN CAR 3.33 12 OZ 0.38 0.31 0.000 0.000
Beverages SOFT DRINKS 12/18&15PK CAN CAR 3.49 12 OZ -0.05 0.49 0.000 0.000
Beverages SOFT DRINKS 12/18&15PK CAN CAR 3.41 12 OZ 0.24 0.65 0.000 0.000
Breakfast HAMBURGER BUNS 0.95 12 OZ 0.44 0.76 0.000 0.000
Breakfast HOT DOG BUNS 0.95 11 OZ 0.40 0.88 0.000 0.000
Breakfast MAINSTREAM WHITE BREAD 0.97 20 OZ -0.08 0.73 0.000 0.000
Breakfast MAINSTREAM WHITE BREAD 1.65 20 OZ 0.09 0.65 0.000 0.000
Breakfast MAINSTREAM WHITE BREAD 1.47 24 OZ 0.48 0.85 0.000 0.000
Breakfast MAINSTREAM WHITE BREAD 0.97 20 OZ -0.17 1.03 0.000 0.000
Breakfast SW GDS:DONUTS 0.49 NA -0.17 0.10 0.023 0.003
Dairy and Eggs CHOCOLATE MILK 1.28 NA -0.18 0.50 0.000 0.000
Dairy and Eggs CHOCOLATE MILK 2.36 1 GA 0.16 0.60 0.000 0.000
Dairy and Eggs CREAM CHEESE 1.55 8 OZ 0.12 0.34 0.008 0.001
Dairy and Eggs CREAM CHEESE 0.98 8 OZ -0.09 0.47 0.000 0.000
Dairy and Eggs EGGS - LARGE 1.02 1 DZ 0.01 0.26 0.000 0.000
Dairy and Eggs EGGS - LARGE 1.40 18 CT 0.02 0.35 0.000 0.000
Dairy and Eggs EGGS - MEDIUM 0.71 1 DZ -0.16 0.28 0.000 0.000
Dairy and Eggs EGGS - X-LARGE 1.06 1 DZ 0.31 0.29 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 1.35 NA 0.25 -0.10 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 1.35 NA 0.03 0.23 0.001 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 2.43 1 GA 0.37 1.00 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 1.37 NA -0.35 -0.05 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 2.41 1 GA 0.47 0.77 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 2.43 1 GA -0.16 0.64 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 2.43 1 GA 0.16 0.42 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 1.32 NA -0.30 0.27 0.000 0.000
Dairy and Eggs IWS SINGLE CHEESE 2.35 16 OZ 0.07 0.47 0.000 0.000
Dairy and Eggs IWS SINGLE CHEESE 1.89 12 OZ 0.26 0.59 0.000 0.000
Dairy and Eggs IWS SINGLE CHEESE 1.49 12 OZ -0.13 0.45 0.000 0.000
Dairy and Eggs SHREDDED CHEESE 1.57 8 OZ 0.03 0.65 0.000 0.000
Dairy and Eggs SOUR CREAMS 1.11 16 OZ 0.28 0.68 0.000 0.000
Fruits APPLES GRANNY SMITH (BULK&BAG) 2.65 NA 0.28 0.50 0.000 0.000
Fruits CANTALOUPE WHOLE 2.13 NA 0.31 0.15 0.002 0.000
Fruits GRAPES RED 3.19 18 LB 0.14 0.31 0.002 0.000
Fruits GRAPES WHITE 3.63 18 LB 0.08 0.25 0.011 0.002
Fruits STRAWBERRIES 2.61 16 OZ 0.29 0.42 0.000 0.000
Vegetables BEANS GREEN: FS/WHL/CUT 0.52 14.5 OZ 0.02 0.48 0.000 0.000
Vegetables BROCCOLI WHOLE&CROWNS 1.65 NA 0.24 0.39 0.000 0.000
Vegetables CABBAGE 1.27 14-18 CT 0.35 0.15 0.001 0.000
Vegetables CARROTS MINI PEELED 1.57 1 LB 0.03 0.28 0.000 0.000
Vegetables CELERY 1.33 NA 0.24 0.17 0.009 0.001
Vegetables CORN 0.51 15.25 OZ 0.03 0.42 0.000 0.000
Vegetables CORN YELLOW 0.36 48 CT 0.25 0.02 0.046 0.007
Vegetables CUCUMBERS 0.70 36 CT 0.28 0.30 0.000 0.000
Vegetables GARDEN PLUS 2.31 10 OZ 0.46 0.37 0.000 0.000
Vegetables GARDEN PLUS 2.26 12 OZ 0.26 0.27 0.048 0.007
Vegetables HEAD LETTUCE 0.98 24 CT 0.25 0.40 0.000 0.000
Vegetables HEAD LETTUCE 0.99 24 CT 0.23 0.43 0.001 0.000
Vegetables MUSHROOMS WHITE SLICED PKG 1.86 8 OZ -0.06 0.32 0.002 0.000
Vegetables ONIONS OTHER 0.53 48 CT 0.19 0.36 0.000 0.000
Vegetables ONIONS SWEET (BULK&BAG) 1.17 40 LB 0.28 0.14 0.011 0.002
Vegetables POTATOES RUSSET (BULK&BAG) 3.48 10 LB 0.34 0.40 0.000 0.000
Vegetables POTATOES RUSSET (BULK&BAG) 2.44 5 LB 0.11 0.31 0.001 0.000
Vegetables POTATOES SWEET&YAMS 1.81 40 LB 0.40 0.20 0.000 0.000
Vegetables ROMA TOMATOES (BULK/PKG) 1.93 25 LB -0.39 -0.33 0.000 0.000
Vegetables SALAD BAR FRESH FRUIT 2.37 NA 0.15 -0.12 0.007 0.001
Vegetables TOMATOES HOTHOUSE ON THE VINE 2.57 13 LB 0.16 -0.05 0.017 0.003
Miscellaneous CANDY BARS (SINGLES)(INCLUDING 0.42 1.6 OZ -0.11 0.57 0.000 0.000
Miscellaneous POTATO CHIPS 1.91 11.5 OZ 0.52 1.00 0.000 0.000
Miscellaneous SOUP CRACKERS (SALTINE/OYSTER) 1.05 16 OZ 0.12 0.37 0.006 0.001
Miscellaneous TORTILLA/NACHO CHIPS 2.33 12.5 OZ 0.10 0.59 0.000 0.000
Miscellaneous LEAN 3.31 NA 0.00 0.28 0.001 0.000
Miscellaneous MEAT: LUNCHMEAT BULK 2.75 NA 0.32 0.77 0.000 0.000
Miscellaneous MEAT: SAUS DRY BULK 3.29 NA 0.15 0.73 0.000 0.000
Miscellaneous PREMIUM - MEAT 2.50 1 LB 0.42 1.19 0.000 0.000
Miscellaneous CIGARETTES 3.56 974246 PK -1.00 -0.35 0.000 0.000
Miscellaneous CONDENSED SOUP 0.64 10.5 OZ 0.05 0.49 0.000 0.000
Miscellaneous GASOLINE-REG UNLEADED 0.00 NA -0.64 -0.09 0.000 0.000
Miscellaneous SUGAR 2.01 4 LB -0.10 0.37 0.000 0.000
Miscellaneous NA NA NA 0.26 0.43 0.000 0.000
Miscellaneous NA NA NA 0.00 0.17 0.044 0.007
Miscellaneous NEWSPAPER 1.42 NA -0.19 0.52 0.000 0.000
Miscellaneous TOILET TISSUE 1.02 83.5 SQ FT -0.21 0.34 0.000 0.000
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Table 2.3: Characteristics and Estimated coefficients of selected products based on house-
hold income

Category Subcategory Price Size β̂3 β̂4 Adj p-value p-value

Beverages DAIRY CASE 100% PURE JUICE - O 1.36 NA -0.33 -0.97 0.000 0.000
Beverages DAIRY CASE TEA WITH SUGAR OR S 0.99 1 GA -0.71 -3.23 0.000 0.000
Beverages SFT DRNK 2 LITER BTL CARB INCL 1.16 2 LTR -0.54 -1.35 0.000 0.000
Beverages SFT DRNK 2 LITER BTL CARB INCL 1.18 2 LTR -0.49 -0.41 0.001 0.000
Beverages SFT DRNK 2 LITER BTL CARB INCL 1.23 2 LTR -0.21 -0.62 0.000 0.000
Beverages SFT DRNK 2 LITER BTL CARB INCL 1.16 2 LTR -0.48 -1.72 0.000 0.000
Beverages SFT DRNK SNGL SRV BTL CARB (EX 1.07 20 OZ -0.54 -1.57 0.000 0.000
Beverages SOFT DRINKS 12/18&15PK CAN CAR 3.33 12 OZ 0.21 0.96 0.000 0.000
Beverages SOFT DRINKS 12/18&15PK CAN CAR 3.49 12 OZ -0.24 -0.95 0.000 0.000
Beverages SOFT DRINKS 12/18&15PK CAN CAR 3.41 12 OZ -0.28 -1.43 0.000 0.000
Breakfast HAMBURGER BUNS 0.95 12 OZ -0.09 -0.48 0.000 0.000
Breakfast HOT DOG BUNS 0.95 11 OZ -0.22 -0.49 0.000 0.000
Breakfast MAINSTREAM WHEAT/MULTIGRAIN BR 0.96 20 OZ -0.24 -0.52 0.000 0.000
Breakfast MAINSTREAM WHITE BREAD 0.97 20 OZ -0.33 -0.66 0.000 0.000
Breakfast MAINSTREAM WHITE BREAD 1.65 20 OZ 0.06 -0.45 0.000 0.000
Breakfast MAINSTREAM WHITE BREAD 1.47 24 OZ -0.09 -1.30 0.000 0.000
Breakfast MAINSTREAM WHITE BREAD 0.97 20 OZ -0.82 -1.40 0.000 0.000
Dairy and Eggs CHOCOLATE MILK 1.28 NA -0.05 -0.30 0.001 0.000
Dairy and Eggs COTTAGE CHEESE 2.09 24 OZ 0.36 -0.17 0.000 0.000
Dairy and Eggs CREAM CHEESE 1.55 8 OZ 0.26 0.35 0.011 0.002
Dairy and Eggs CREAM CHEESE 0.98 8 OZ 0.55 -0.02 0.000 0.000
Dairy and Eggs EGGS - LARGE 1.02 1 DZ 0.27 0.44 0.000 0.000
Dairy and Eggs EGGS - LARGE 1.40 18 CT -0.36 -0.25 0.000 0.000
Dairy and Eggs EGGS - MEDIUM 0.71 1 DZ -0.19 -0.73 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 1.35 NA 0.45 0.71 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 1.35 NA -0.14 -0.28 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 2.43 1 GA -0.20 -0.28 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 1.37 NA 0.37 1.00 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 2.41 1 GA 0.06 0.44 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 2.43 1 GA -0.67 -0.98 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 2.43 1 GA 0.30 1.07 0.000 0.000
Dairy and Eggs FLUID MILK WHITE ONLY 1.32 NA -0.48 -1.11 0.000 0.000
Dairy and Eggs IWS SINGLE CHEESE 2.35 16 OZ 0.17 -0.55 0.000 0.000
Dairy and Eggs IWS SINGLE CHEESE 1.89 12 OZ -0.06 -0.54 0.000 0.000
Dairy and Eggs IWS SINGLE CHEESE 1.49 12 OZ -0.32 -0.72 0.000 0.000
Dairy and Eggs SHREDDED CHEESE 1.57 8 OZ -0.02 -0.39 0.000 0.000
Dairy and Eggs SOUR CREAMS 1.11 16 OZ 0.32 -0.41 0.000 0.000
Fruits APPLES GALA (BULK&BAG) 2.36 NA 0.45 1.08 0.000 0.000
Fruits APPLES GRANNY SMITH (BULK&BAG) 2.65 NA 0.35 1.23 0.000 0.000
Fruits BANANAS 0.95 40 LB 0.43 1.08 0.000 0.000
Fruits CANTALOUPE WHOLE 2.13 NA 0.26 0.64 0.000 0.000
Fruits GRAPES RED 3.19 18 LB 0.22 0.53 0.000 0.000
Fruits GRAPES WHITE 3.63 18 LB -0.12 0.40 0.000 0.000
Fruits LEMONS 0.61 NA 0.36 1.19 0.000 0.000
Fruits ORANGES NAVELS ALL 0.51 NA -0.06 0.54 0.000 0.000
Fruits STRAWBERRIES 2.61 16 OZ 0.26 0.95 0.000 0.000
Vegetables BROCCOLI WHOLE&CROWNS 1.65 NA 0.20 1.09 0.000 0.000
Vegetables CABBAGE 1.27 14-18 CT -0.18 -0.37 0.005 0.001
Vegetables CARROTS MINI PEELED 1.57 1 LB 0.36 0.62 0.000 0.000
Vegetables CELERY 1.33 NA 0.13 0.37 0.000 0.000
Vegetables CORN 0.51 15.25 OZ 0.22 -0.32 0.000 0.000
Vegetables CORN YELLOW 0.36 48 CT 0.34 0.57 0.000 0.000
Vegetables CUCUMBERS 0.70 36 CT 0.16 0.35 0.000 0.000
Vegetables GARDEN PLUS 2.31 10 OZ 0.52 1.19 0.000 0.000
Vegetables HEAD LETTUCE 0.98 24 CT 0.03 -0.18 0.020 0.003
Vegetables MUSHROOMS WHITE SLICED PKG 1.86 8 OZ 0.01 0.93 0.000 0.000
Vegetables ONIONS OTHER 0.53 48 CT 0.23 0.58 0.000 0.000
Vegetables ONIONS SWEET (BULK&BAG) 1.17 40 LB 0.38 0.83 0.000 0.000
Vegetables ONIONS SWEET (BULK&BAG) 1.04 40 LB 0.34 0.59 0.000 0.000
Vegetables ONIONS YELLOW (BULK&BAG) 1.91 3 LB -0.30 -0.30 0.001 0.000
Vegetables PEPPERS GREEN BELL 0.72 48-54 CT 0.17 0.47 0.000 0.000
Vegetables POTATOES RUSSET (BULK&BAG) 3.48 10 LB -0.33 -0.76 0.000 0.000
Vegetables POTATOES RUSSET (BULK&BAG) 2.44 5 LB -0.13 -0.42 0.000 0.000
Vegetables POTATOES SWEET&YAMS 1.81 40 LB 0.35 0.80 0.000 0.000
Vegetables REGULAR GARDEN 1.47 1 LB -0.14 -0.30 0.020 0.003
Vegetables ROMA TOMATOES (BULK/PKG) 1.93 25 LB -0.07 0.46 0.000 0.000
Vegetables SQUASH ZUCCHINI 1.38 18 LB 0.55 1.47 0.000 0.000
Vegetables TOMATOES GRAPE 2.59 PINT 0.11 0.79 0.000 0.000
Vegetables TOMATOES HOTHOUSE ON THE VINE 2.57 13 LB 0.27 0.69 0.000 0.000
Miscellaneous CANDY BARS (SINGLES)(INCLUDING 0.42 1.6 OZ -0.09 -1.37 0.000 0.000
Miscellaneous POTATO CHIPS 1.91 11.5 OZ -0.12 -0.35 0.020 0.003
Miscellaneous SOUP CRACKERS (SALTINE/OYSTER) 1.05 16 OZ -0.52 -0.68 0.000 0.000
Miscellaneous TORTILLA/NACHO CHIPS 2.33 12.5 OZ -0.07 -0.70 0.000 0.000
Miscellaneous CHICKEN BREAST BONELESS 4.46 NA 0.25 0.50 0.000 0.000
Miscellaneous LEAN 3.31 NA -0.44 -1.27 0.000 0.000
Miscellaneous MEAT: LUNCHMEAT BULK 2.75 NA 0.26 -0.77 0.000 0.000
Miscellaneous MEAT: SAUS DRY BULK 3.29 NA 0.43 0.27 0.000 0.000
Miscellaneous PREMIUM - MEAT 2.50 1 LB -0.14 -0.54 0.000 0.000
Miscellaneous PRIMAL 3.81 NA -0.02 -0.53 0.000 0.000
Miscellaneous CIGARETTES 3.56 974246 PK 0.85 0.83 0.000 0.000
Miscellaneous CONDENSED SOUP 0.64 10.5 OZ 0.01 -0.59 0.000 0.000
Miscellaneous GARLIC WHOLE CLOVES 0.46 10 LB 0.18 1.15 0.000 0.000
Miscellaneous GASOLINE-REG UNLEADED 0.00 NA 0.61 1.08 0.000 0.000
Miscellaneous NA NA NA 0.29 0.40 0.000 0.000
Miscellaneous NA NA NA 0.27 0.43 0.000 0.000
Miscellaneous PAPER TOWELS & HOLDERS 0.55 57 SQ FT 0.09 -0.59 0.000 0.000
Miscellaneous TOILET TISSUE 1.02 83.5 SQ FT -0.29 -1.10 0.000 0.000
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Table 2.4: Sensitivity Based on Number of Recommendations

10 recommendations 20 recommendations

J=100 J=200 J=300 J=400 J=100 J=200 J=300 J=400

Hist 0.448 0.348 0.297 0.264 0.652 0.518 0.447 0.404
Prop 0.352 0.256 0.223 0.199 0.533 0.394 0.340 0.304
Prop (2.2.4) 0.323 0.208 0.173 0.143 0.498 0.332 0.275 0.224
Prop (2.2.5) 0.337 0.247 0.208 0.189 0.489 0.360 0.303 0.278
Prop (2.2.4 & 2.2.5) 0.297 0.197 0.164 0.143 0.462 0.317 0.262 0.231
Hist-Hist 0.451 0.350 0.299 0.266 0.654 0.519 0.450 0.406
Hist-Prop 0.456 0.352 0.301 0.269 0.659 0.525 0.453 0.407

30 recommendations 40 recommendations

J=100 J=200 J=300 J=400 J=100 J=200 J=300 J=400

Hist 0.774 0.627 0.546 0.496 0.848 0.705 0.618 0.565
Prop 0.658 0.490 0.425 0.382 0.752 0.570 0.496 0.447
Prop (2.2.4) 0.624 0.430 0.355 0.292 0.723 0.509 0.424 0.346
Prop (2.2.5) 0.612 0.456 0.382 0.348 0.712 0.529 0.445 0.406
Prop (2.2.4 & 2.2.5) 0.597 0.415 0.341 0.300 0.696 0.495 0.406 0.358
Hist-Hist 0.775 0.629 0.549 0.499 0.852 0.709 0.621 0.570
Hist-Prop 0.781 0.635 0.555 0.505 0.860 0.714 0.626 0.575

frequency of items across individuals to break ties. Table 2.4 displays the results for 10,
20, 30, and 40 recommendations across different values of J for all methods.

Among the proposed models, the main model achieves the best performance. The
weaker performance under the intercept constraint γjt = tγj implies the absence of a
linear trend in consumer preferences over time, which is reasonable in the context of
grocery shopping data. The weaker performance of the extension with time-dependent
regression coefficients and factor loadings may be due to overparameterisation. For in-
stance, at J = 100, with 24 time points and 4 estimated factors, the model introduces
192 parameters per item from the loadings and regression coefficients, which may lead
to overfitting. We observe that Hist generally outperforms Prop. This is not surpris-
ing as there is strong tendency for consumers to purchase the same products repeatedly
in grocery shopping data (see e.g. Wan et al., 2018), which is captured effectively by
the Hist method. Nevertheless, Hist-Prop emerges as the most proficient approach, in-
dicating that our model is beneficial for improving recommendations, especially when
customer information is sparse. This shows the capability of our method to borrow infor-
mation from similar customers and reflect their preference for previously not purchased
products. By offering personalized recommendations, this method outperforms Hist-Hist,
which merely suggests the most popular items to individuals when there are insufficient
individual history data. Finally, we highlight that it is possible to devise more advanced
approaches based on our method to further enhance recommendations performances, es-
pecially for suggesting relevant new products to customers. For example, instead of using
the proposed method to resolve ties only, we could develop more sophisticated criteria to
allocate the proportions of recommendations using individual cumulative frequency and
sorted predicted probability, respectively.
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2.6 Discussions

This chapter concerns the analysis of high-dimensional multivariate longitudinal data. A
flexible modelling framework is proposed to account for between-variable and across-time
dependence by latent variables. Statistical inference procedures are developed for param-
eter estimation and model selection, with statistical consistency and asymptotic normal-
ity results established. The method’s application to customer grocery shopping records
demonstrates its ability to identify demographic influences on purchasing patterns and
improve recommendation precision, revealing its value for analytical and predictive uses
in practical contexts. In particular, we find a positive association between household size
and the likelihood of most purchases, whereas income level is positively associated with
the consumption probabilities of healthy food and inversely with soft drinks. Moreover,
our model’s ability to capture information from other customers’ purchase behaviour al-
lows improved recommendation performance, when combined with the information from
one’s purchase history.

The current research may be extended in several directions besides the extensions
discussed in Sections 2.2.3, 2.2.4 and 2.2.5. First, the current analysis focuses on the
regression coefficients. In many applications, especially in applications of social sciences,
the substantive interpretation of the factors may be of interest. Section A.2 of the sup-
plementary material presents normalisation criteria that allow identification of the latent
factors. These results are further supported by additional simulation studies presented
in Section A.5.1. These identification criteria are not unique; rotation methods (e.g.,
Liu et al., 2023b and Rohe and Zeng, 2023) and regularized estimation methods (e.g.,
Zhu et al., 2016) may be used to obtain more interpretable factors. Theoretical anal-
ysis of these method-specific criteria under our model is beyond the current scope and
represents a promising direction for future research. Second, as in the extension in Sec-
tion 2.2.4, which allows the loadings aj to vary over time, the static factors θi can be
modified to be time-variant, becoming θit. This alteration would not significantly change
the estimation method but would require adjustments to the normalisation criteria and
assumptions to ensure the identification of the parameters βj, as well as vj in the model
with time-dependent covariates. In this direction, it is of particular interest to consider
a change-point setting that assumes the time-dependent factors θit to have a piece-wise
constant structure, allowing for individual-specific change points. This model allows us to
detect structural changes within each individual, based on which adaptive interventions
may be made (e.g., individualized marketing strategies). In addition, by controlling for
the maximum number of change points, this change point model enables us to find a
balance between model flexibility and parsimony, which leads to high prediction accu-
racy. Finally, the computational cost for the proposed estimator becomes high or even
infeasible when some or all of N , J , T and p are large. In such cases, stochastic op-
timization algorithms may be developed to efficiently obtain approximation solutions,
and further, central limit theorems may be established for the approximate solutions to
facilitate statistical inference.

Supplementary material

Appendix A presents the estimation procedure, normalisation algorithm, additional con-
ditions and theorems for extension, and the technical proofs for main theorems.
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Chapter 3

Determining number of factors under stabil-
ity considerations

3.1 Introduction

Factor analysis is a widely used technique for uncovering the latent structure of multivari-
ate data. An important problem in factor analysis is to determine the number of factors
in the model, which has been studied extensively in the literature (see e.g. Bai and Ng,
2002, Onatski, 2009, Ahn and Horenstein, 2013, Bai et al., 2018, Dobriban and Owen,
2019 and Ke et al., 2023). Most of the existing methods determine the number of factors
by identifying a gap in the eigenvalues of the sample covariance matrix, as the factor
model structure leads to some outlier eigenvalues, where the number of such eigenvalues
equals the number of factors.

This chapter proposes a new method for determining the number of factors. This
method is based on the concept of loading instability, which concerns the instability of the
estimated loading matrix when there are multiple copies of data. As factors receive their
interpretation based on the loading matrix (see e.g. Liu et al., 2023b and Rohe and Zeng,
2023), this concept is important to factor analysis, especially the reproducibility of the
learned factors. However, given the symmetric roles that loadings and factor scores play
in a factor model, the instability of factor scores can be defined similarly, based on which
the proposed method can be adapted accordingly. More specifically, loading instability is
defined by the principal angle of two independent loading matrix estimates. Intuitively,
the loading instability tends to be high when the number of factors is over-specified, as the
estimated loading space contains spurious directions that correspond to singular vectors
of a noise matrix. On the other hand, due to the presence of the eigengap, the loading
instability tends to be low when the number of factors is correctly specified, as implied, for
example, by the Davis-Kahan theorem (see e.g. Yu et al., 2015 and O’Rourke et al., 2018).
Making use of this property, we introduce several statistical criteria for determining the
number of factors and prove that they are consistent under an asymptotic regime that
is not covered by those adopted in many existing methods, including Bai and Ng, 2002
and Bai et al., 2018. The consistency is obtained using results from random matrix
theory, especially the complete delocalization of non-outlier eigenvectors (Bloemendal
et al., 2016). The superiority of the proposed criteria in selecting the correct number
of factors, compared to existing selection criteria, is demonstrated through simulations.
Additionally, the ability of the proposed criteria to preserve loading stability is illustrated
through a real data example.

Stability is a core principle of data science (Yu and Kumbier, 2020), which is impor-
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tant to the reproducibility of scientific discoveries. This principle has been applied to
several settings of statistical learning. Sun et al. (2016) defined classification instability
to quantify the sampling variability of the prediction made by classification methods and
proposed a stabilized nearest neighbour classifier. Liu et al. (2010), Sun et al. (2013),
Yu (2013), and Lim and Yu (2016) introduced stability measures for selecting tuning
parameters across various statistical models, including penalized regression and high-
dimensional graphical models. Pfister et al. (2021) introduced a stabilized regression
algorithm designed to identify an optimal subset of predictors that generalizes across dif-
ferent environments. Wang (2010) and Fang and Wang (2012) defined stability measures
for cluster analysis and used them for choosing the number of clusters. However, to our
knowledge, the stability principle has not been applied in factor analysis. The definition
of stability in factor analysis is less straightforward than that in regression due to the
rotational indeterminacy of the factor model (Bai, 2003; Anderson and Rubin, 1956).

3.2 Stability-based Approach

3.2.1 Factor model

We observe an n×p data matrixX = (xij)n×p, which contains p features of n observations.
We work with the linear factor model, satisfying

xij = λ⊤
j γi + ϵij, 1 ≤ i ≤ n, 1 ≤ j ≤ p. (3.1)

Here, γi = (γi1, . . . , γiK)
⊤ is a K-dimensional vector of factor scores of the i-th ob-

ject, with γik being independent variables with zero mean and unit variance. λj =
(λj1, . . . , λjK)

⊤ is a deterministic K-dimensional vector of factor loadings, and ϵij is an
independent noise term with mean 0 and variance ψ. In matrix form, the model spec-
ified in (3.1) can be written as X = ΓΛ⊤ + E , where Γ = (γik)n×K , Λ = (λjk)p×K and
E = (ϵij)n×p. An intercept term can be included if entries of X are not mean zero. Since
our primary goal is to determine the number of factors, and the covariance matrices
are invariant to the addition of an intercept, we proceed with model (3.1) without loss
of generality. The same setting has been considered in Bai et al. (2018), under which
information criteria are proposed for determining K.

Let xi denote the i-th row of X. The population covariance matrix of xi is Σ = ΛΛ⊤+
ψIp. By eigenvalue decomposition, we can write Σ =

∑p
j=1 σjvjv

⊤
j , where σ1 ≥ · · · ≥ σp

are the eigenvalues of Σ, and {vj}pj=1 is the set of orthonormal eigenvectors.

Remark 3.1. In this work, we focus on detecting factors whose loadings can be consis-
tently estimated. As discussed in Section 3.3, when n and p grow at the same order,
this requires σK → ∞. By contrast, the literature sometimes considers detecting spikes
separated from the bulk even when σi = O(1), in which case consistent estimation of the
associated eigenvectors is not possible. The detection of such spikes lies beyond the scope
of this work.

3.2.2 Instability Measure

We define an instability measure using the principal angle between loading matrices.
Ideally, let Uk and Vk be subspaces spanned by the leading k eigenvectors of the sample
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covariance matrices obtained from two independent and identically distributed samples.
The between-sample loading instability at k is defined as

sin∠(Uk, Vk) = max
u∈Uk,u̸=0

min
v∈Vk,v ̸=0

sin∠(u, v). (3.2)

In practice, we only observe data from a single sample. To obtain an instability
measure, we use data splitting. Let [w] denote the integer part of any real number
w. We randomly sample the rows of X = (x1, · · ·xn)

⊤ without replacement to form a

new permuted data matrix (x
(s)
1 , . . . ,x

(s)
n )⊤. This data matrix is further split into two

halves, X (1) = (x
(s)
1 , . . . ,x

(s)
n1 )

⊤ and X (2) = (x
(s)
n1+1, . . . ,x

(s)
n )⊤, where n1 = [n/2] and n2 =

n− n1. For l = 1, 2, we perform eigenvalue decomposition such that n−1
l (X (l))⊤(X (l)) =∑p

j=1 σ̃
(l)
j ṽ

(l)
j (ṽ

(l)
j )⊤, where σ̃

(l)
1 ≥ · · · ≥ σ̃

(l)
p are the eigenvalues, and ṽ

(l)
1 , . . . , ṽ

(l)
p are the

corresponding eigenvectors.
Let Ṽ

(l)
k = Span{ṽ(l)

1 , . . . , ṽ
(l)
k } denote the subspace spanned by the first k leading

eigenvectors. The loading instability measure at k is defined as sin∠(ṽ(1)
k , ṽ

(2)
k ).When k =

K, this instability measure is expected to be close to zero, indicating good reproducibility
of the factors. When k > K, the instability is expected to be close to 1, as each of ṽ

(1)
k

and ṽ
(2)
k has at least one direction that corresponds to the noise matrix, resulting in two

orthogonal directions. This phenomenon is formally stated and discussed in Section 3.3.
The measure sin∠(ṽ(1)

k , ṽ
(2)
k ) is computed using a single splitting of the data matrix

X, which introduces additional randomness. To reduce this randomness, we propose
to perform multiple random splittings and then take an average. Specifically, for j =
1, . . . , J , let sin∠(Ṽ (1,j)

k , Ṽ
(2,j)
k ) denote the loading instabiltiy measure computed from

the jth split, where J is the total number of splits. The averaged instability measure at
k is defined as INS(k) = J−1

∑J
j=1 sin∠(Ṽ

(1,j)
k , Ṽ

(2,j)
k ).We use J = 10 for simulations and

real data analysis in the rest, which seems sufficient.

3.2.3 Proposed Criteria

We propose several statistical criteria for estimating the number of factors based on the
proposed instability measure. Let K = {1, 2, ..., Kmax}. With an appropriate decreasing
deterministic sequence {ck}Kmax

k=1 , whose condition is given in Theorem 3.1, we can estimate
K consistently by

argmin
k∈{1,...,Kmax}

ck + INS(k).

Here, ck ∈ [0, 1] is used to prevent underestimation, as INS(k) is less predictable when
k < K. In particular, the minimiser of

SC1(k) = {(Kmax − k)/Kmax}+ INS(k)

is a consistent estimator of K.
Let σ̃1 ≥ σ̃2 · · · ≥ σ̃p denote the eigenvalues of n−1X⊤X . The following criterion

estimates K by combining signal strength and stability considerations:

SC2(k) = l(k)/l(0) + INS(k),

where l(k) =
∑Kmax

j=k+1 log(σ̃j + 1) for k = 0, 1, . . . , Kmax − 1, and l(Kmax) = 0. Here,
l(k)/l(0) is analogous to the first terms of commonly used information criteria, such as
the AIC and BIC proposed in Bai et al. (2018). The denominator l(0), together with the
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addition of 1 inside the logarithm to each l(k), serves to scale l(k)/l(0) within the interval
[0, 1] to align it with the scale of the loading instability measure. This criterion aims to
identify the model that balances the signal strength of the factors and their stability.

Finally, we introduce a criterion related to an information criterion in Bai and Ng
(2002) IC(k) = log(p−1

∑p
j=k+1 σ̃

2
j ) + kg(n, p), where g(n, p) is a term depending on n

and p. The second term in IC(k) penalizes the number of factors. We propose a criterion
in this spirit:

SC3(k) = log(1 + p−1

p∑
j=k+1

σ̃2
j )/log(1 + p−1

p∑
j=1

σ̃2
j ) + INS(k),

which replaces the penalty term in the IC with the proposed instability measure. Similar
to SC2, this criterion also aims to balance signal strength and stability.

Remark 3.2. The above criteria rely on a pre-specified candidate set, where as long as
Kmax is finite, it does not affect the asymptotic theory. In practice, however, choosing
Kmax too large may make the associated penalty term overly small, which could lead to
underestimation if INS(k) happens to be close to zero for some k < K. Since our method
targets reproducible factors, the true number of factors is expected to be small; accordingly,
we set Kmax = 10 in both simulations and real data analysis, which appears sufficient.

3.3 Theoretical Results

We provide sufficient conditions under which the selection based on SC1, SC2, and SC3
is consistent. For positive sequences {an} and {bn}, we denote an ≲ bn if there exists
a constant C > 0 such that an ≤ Cbn for all n. We denote an ≍ bn if an ≲ bn and
bn ≲ an. Further, for two sequences of random variables An and Bn. We say that An is
stochastically dominated by Bn, if for every ϵ > 0 and d > 0 there exists N = N(ϵ, d) such
that pr(An > nϵBn) ≤ n−d for all n ≥ N . We use the notation An ≺ Bn to denote that
An is stochastically dominated by Bn. We use O≺(Bn) to denote a term stochastically
dominated by Bn. The following assumptions are made.

Assumption 3.1. n1/κ ≤ p ≤ nκ for some positive constant κ > 1.

Assumption 3.2. For each integer m ≥ 1, there exists a universal constant κm > 0 such
that

sup
1≤i≤n,1≤j≤p

E[|ϵij|m] ≤ κm and sup
1≤i≤n,1≤k≤K

E[|γik|m] ≤ κm. (3.3)

Assumption 3.3. (σK/ψ − 1)(n/p)1/2 → +∞ for n ≳ p and (σK/ψ − 1)(n/p) → +∞
for p ≳ n.

Assumption 3.1 essentially requires that log(n) is comparable to log(p). The condition
n1/κ ≤ p may not be strictly necessary, since a larger n generally makes the problem
easier. We retain it, however, because it facilitates symmetry in the analysis by allowing
the roles of n and p to be interchanged. Assumption 3.2 is a regularity condition on the
error matrix and latent factor scores, and it can be further relaxed. For example, we
can require that (3.3) holds for all m ≤ M for a large enough constant M (Bloemendal
et al., 2016). We use the current assumption for convenience. Finally, stronger signals are
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naturally required when n is small relative to p in order to obtain reproducible loadings,
and weaker signals is sufficient when n is large compared to p. Assumption 3.3 provides
the balance between the signal strength requirement from the population covariance and
the ratio requirement between the number of features p and the number of samples n.
Specifically, this is satisfied for bounded σK when n/p diverges, whereas a diverging σK
is necessary when n ≲ p. When n ≍ p, Assumption 3.3 holds for any diverging σK ,
regardless of the convergence rate. The following proposition characterizes the behaviour
of the loading instability measure.

Proposition 3.1. Under Assumptions 3.1 to 3.3, we have sequences an and bn decaying
to zero, such that

sin∠(Ṽ (1)
k , Ṽ

(2)
k ) = 1−O≺(an) for k > K, (3.4)

sin∠(Ṽ (1)
k , Ṽ

(2)
k ) = O≺(bn) for k = K. (3.5)

Additionally, if σ1, . . . , σK are distinct, then (3.5) also holds for k = 1, . . . , K − 1.

The exact expressions of an and bn are provided in Section B.2.1 of the Supplementary
Material. The cone concentration results for outlier eigenvectors and the delocalization
results for non-outlier eigenvectors from random matrix theory (Bloemendal et al., 2016)
are crucial to proving Proposition 3.1. Although the Davis-Kahan theorem (see Yu et al.,
2015 and O’Rourke et al., 2018) also provide results on principal angles, it can only prove
(3.5) when σK grows faster than the spectral norm of the error matrix, which is stronger
than what is required in Theorem 3.1. The results for k < K are provided for independent
theoretical interest. They are not used for proving Theorem 3.1.

Theorem 3.1. Under Assumptions 3.1 to 3.3, for any decreasing sequence {ck}Kmax
k=1

with 1 ≥ ck ≥ 0 for k ∈ K, such that for some δ > 0, ck − ck+1 > δ for all k ∈
{1, . . . , K − 1}, and 1− δ > cK − cKmax. Define K̃ = argmink∈{1,...,Kmax} ck + INS(k). We

have limn→∞ pr
(
K̃ = K

)
= 1. Consequently, SC1 can consistently estimate K.

The corollaries below give the conditions for SC2 and SC3 to be consistent.

Corollary 3.1. Under Assumptions 3.1 to 3.3, if additionally p ≍ n and log σ1/ log σK ≲
C for some constant C > 0, then SC2 can consistently estimate K as n, p→ +∞.

Corollary 3.2. Under Assumptions 3.1 to 3.3, if additionally p ≍ n and σ2
k ≍ p, k =

1, . . . , K, then SC3 can consistently estimate K as n, p→ +∞.

We briefly discuss the assumptions underlying the proposed criteria and compare them
with existing methods. SC1 is the least restrictive one, requiring only Assumptions 3.1
to 3.3. SC2 and SC3 require the additional condition p ≍ n, which is also needed for
some other existing selection criteria, such as those in Bai and Ng (2002) and Bai et al.
(2018). For SC2, it is further required that log σ1 and log σK are comparable, ensuring the
gap {l(k − 1)− l(k)}/l(0) to be bounded below by a positive constant for k = 1, . . . , K.
Finally, SC3 imposes the strictest condition, requiring that σ2

k ≍ p, a crucial assumption
for this type of information criterion, as in Bai and Ng (2002).
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3.4 Numerical Experiments

3.4.1 Simulation Settings

We assess the finite sample performance of the proposed method via Monte Carlo sim-
ulations. In particular, we consider sample size n = 1, 500, where p takes values from
500, 1, 000, 1, 500 and 2, 000. Under each setting, 100 replications are generated. We set
the true number of factors to be K = 4, and the candidate set be K = {1, 2, ..., 10} for
model selection.

We simulate data from the model X = ΓΛ⊤ + DϵQϵE , where the entries of Γ are
independently drawn from the uniform distribution U [−0.5, 0.5]. The factor loadings
Λ are generated as Λ = QD, with D a diagonal matrix whose diagonal elements are
µ1, . . . , µK . The matrix Q is orthonormal, obtained via QR decomposition of a random
matrix Z ∈ Rp×K , where each entry of Z is independently sampled from a standard
normal distribution N(0, 1).

For the error term, we consider two scenarios to generate homogeneous and het-
erogeneous errors, respectively. In the first scenario (S1), E is drawn from N(0, 1), with
Dϵ = Qϵ = In, ensuring homogeneous errors. In the second scenario (S2), E is drawn from
a Student’s t-distribution with 10 degrees of freedom. To introduce heteroskedasticity and
test the robustness of the criteria under violation of the homoscedasticity assumption, Qϵ

is an n×n orthonormal matrix generated similarly to Q, and Dϵ = diag {1/n, 2/n, . . . , 1}
is a diagonal matrix. We also consider three sets of µj values, the diagonal elements of D,
corresponding to different signal strength settings: (i) {6p1/2, 5p1/2, 4p1/2, 3p1/2} for strong
signals, (ii) {6p1/6, 5p1/6, 3p1/6, 3p1/6} for weak signals, (iii) {3p1/3, 3p1/3, 3p1/6, 3p1/6} for
signals of varying strengths, and (iv) {3p1/3, 3p1/4, 3p1/5, 3p1/6} for signals with distinct
growth rates. Note that under the second and third settings, the top eigenvalues of Λ are
not distinct.

3.4.2 Results

We compare the stability-based criteria SC1, SC2, and SC3 proposed in this chapter with
Bai and Ng (2002)’s information criterion (IC) with g(n, p) = {(n+p)/(np)} log(np/(n+
p)), Bai et al. (2018)’s AIC and BIC, and the eigenvalue ratio (ER) and growth ratio
(GR) tests of Ahn and Horenstein (2013). Figure 3.1 shows the percentage of correct
selections of the true number of factors K by these criteria. All methods perform well
under S1(i), where the errors are homogeneous and the signal is strong. However, as
expected, SC3 and IC struggle when the signal does not follow the p1/2 order, as seen
in the second to fourth columns of the figure. AIC also underperforms when faced with
heterogeneous errors, as demonstrated in all S2 scenarios. While BIC shows robustness
in S2, it performs poorly under S1(ii) and S1(iii). The eigenvalue ratio methods ER and
GR perform well in the first two columns of the graph, where all signals grow at the
same rate. However, their performance becomes poor when the signals are of varying
strengths, as shown in the last two columns. Overall, SC1 and SC2 consistently select
the correct number of factors across all settings, demonstrating superior performance in
both homogeneous and heterogeneous error conditions.

Figure 3.2 illustrates the behaviour of the mean of the proposed instability measure
across all replications for k ∈ K. The instability measure is near 1 for k > 4 and close
to 0 for k = 4, providing numerical support for Proposition 3.1. For k = 1, 2, 3, the
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Figure 3.1: Correct selection percentages versus the number of features p across different scenarios (S1
and S2) and signal strengths (i,ii and iii). AIC (blue dotted line with circles), BIC (orange dashed line
with triangles), ER (teal dotted line with stars), GR (pink dashed line with inverted triangles), IC (green
solid line with diamonds), SC1 (red solid line with squares), SC2 (purple dotted line with pluses), and
SC3 (brown dashed line with crosses)

Figure 3.2: Loading instability versus k across different scenarios (S1 and S2) and signal strengths (i,ii
and iii). p = 500 (blue dotted line with circles), p = 1000 (orange dashed line with triangles), p = 1500
(green solid line with diamonds) and p = 2000 (purple dotted line with pluses).

instability measures are also close to 0 in the first and fourth columns, where signals have
distinct values. In the second and third columns, some measures deviate from 0 due to
the presence of equal signal strengths.

3.5 Data Analysis

We consider a dataset concerning the p53 tumour suppressor protein, which plays a crucial
role in cancer treatment research. This dataset includes 2D electrostatic, surface-based
features, and 3D distance-based features, extracted using a method by Danziger et al.
(2006), for a large collection of p53 mutations. It contains 5, 208 features for each of the
31, 158 mutations. It is important to understand the dependence between the features
(see Lopes et al., 2019).

To evaluate the performance of the proposed criteria, we focus on the first p = 1, 000
features and sample n = 3, 000 rows without replacement from the data matrix. The
row sampling is performed 100 times, resulting in 100 datasets that may be regarded
as independent copies of each other. For each dataset, the features are standardized
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Table 3.1: Performance of selection criteria on the p53 protein dataset

Criterion Mode Selection percentage(%) Mean between-sample loading instability
SC1 2 97 0.10
SC2 2 98 0.10
SC3 2 100 0.10
IC 10 100 0.92
AIC 10 100 0.92
BIC 10 100 0.92
ER 2 100 0.10
GR 2 100 0.10

Mode: mode of the estimated number of factors for each criterion. Selection percentage(%): Percentages
of instances selecting the mode. Mean between-sample loading instability: mean of the principal angles
between the estimated loading spaces of all 4,950 pairs of datasets.

to have mean zero and variance one. The methods discussed in Section 3.4 are then
applied to these datasets. Table 3.1 summarises the results, including the mode of the
estimated number of factors, the selection percentage of the mode, and the mean between-
sample loading instability. Specifically, the mean between-sample loading instability,
which measures the reproducibility of the estimated factor structure, is calculated as
follows. For every two datasets, we calculate the principal angle between the estimated
loading spaces, which is well-defined even when they are of different dimensions. We then
average the principal angle across all the 4,950 pairs of datasets.

The results show that the IC, AIC, and BIC criteria consistently estimate the number
of factors to be 10, the upper bound of our candidate set. They continue to choose the
maximum number in the candidate set when we increase it to 20, 30, 40 and 50. The
between-sample loading instability is 0.92, meaning the resulting ten-factor models have
some unstable factors. On the other hand, all the proposed stability-based criteria, as
well as the ER and GR criteria tend to select two factors, with a corresponding mean
between-sample loading instability being 0.10, indicating a higher level of stability. While
the true number of factors is unknown, this result shows that the proposed method is more
conservative compared with information type criteria, which ensures a more reproducible
factor structure.

3.6 Discussion

In this chapter, we proposed a loading stability measure for determining the number of
factors in factor analysis. Using results from random matrix theory, we showed that the
proposed stability-based criteria are consistent. Compared with many existing methods,
the proposed one focuses directly on the stability of the estimated loading matrix and,
thus, may give more reproducible results. Among the proposed criteria, SC1 is the least
restrictive as it relies solely on stability, making it the most flexible. SC2 and SC3
incorporate additional signal strength conditions, with SC3 being the most conservative
since it requires signals of order p1/2. Our simulation results show that SC1 and SC2
generally provide the most stable performance, and we therefore recommend their use in
practice. However, SC3 may still be suitable in applications where strong signal conditions
are plausible and the validity of the estimator depends on such assumptions, for example
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in the type of factor model studied in Bai and Ng (2002).
Although our method is proposed under a linear factor model, the principal angle

between loading spaces can be computed using two loading matrix estimates from data
splitting, regardless of the specific factor model and estimator. Therefore, the same sta-
tistical criteria can be applied to determine the number of factors for other factor models,
such as the generalised latent factor model (Chen and Li, 2022) that can be used to anal-
yse binary, categorical, and count data. Specifically, we believe that a similar consistency
result holds when the instability measure is constructed based on the constrained joint
maximum likelihood estimator (Chen et al., 2020; Chen and Li, 2022) under the gen-
eralised latent factor model. However, establishing such results is nontrivial. The key
to our consistency result is establishing the delocalization of the spurious directions of
the estimated loading space. As the random matrix theory we currently use cannot be
directly applied here, new technical tools are needed to establish the delocalization and
further the consistency of the stability-based criteria. We leave it for future investigation.

Supplementary material

Additional simulation and real data results are presented in Appendix B.1, and the
technical proofs of Proposition 3.1, Theorem 3.1, and Corollaries 1 and 2 are provided
in Appendix B.2. An implementation of the proposed selection criteria for R is available
at https://github.com/Arthurlee51/DNFSC. The real data in Section 3.5 is available from
https://archive.ics.uci.edu/dataset/188/p53+mutants.
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Chapter 4

Pairwise Comparisons without Stochastic Tran-
sitivity

4.1 Introduction

Pairwise comparison data have received intensive attention in statistics and machine
learning, with diverse applications across domains. Such data often arise from tour-
naments, where each pairwise comparison outcome results from a match between two
players or teams, or from crowdsourcing settings, where individuals are tasked with com-
paring two items, such as images, movies, or products. Specifically, the famous Thurstone
(Thurstone, 1927) and Bradley-Terry (BT; Bradley and Terry, 1952) models have set a
cornerstone in the field, followed by many extensions, including the parametric ordinal
models proposed in Shah et al. (2016a), which broadens the class of parametric models.
Oliveira et al. (2018) relax the assumption of a known link function and propose models
that allow the link function to belong to a broad family of functions. Nonparametric ap-
proaches have also emerged, such as the work introduced in Shah and Wainwright (2018)
based on the Borda counting algorithm, and the nonparametric Bradley-Terry models
studied in Chatterjee (2015) and Chatterjee and Mukherjee (2019). Additionally, pair-
wise comparison models have been developed for crowdsourced settings, as discussed in
Chen et al. (2013) and Chen et al. (2016), among many others. The models for pairwise
comparisons have received a wide range of applications, including rank aggregation (Chen
and Suh, 2015; Chen et al., 2019a; Heckel et al., 2019; Chen et al., 2022b), predicting
matches/tournaments (Cattelan et al., 2013; Tsokos et al., 2019; Macr̀ı Demartino et al.,
2024), testing the efficiency of betting markets (McHale and Morton, 2011; Lyócsa and
Vỳrost, 2018; Ramirez et al., 2023), and refinement of large language models based on
human evaluations (Christiano et al., 2017; Ouyang et al., 2022; Zhu et al., 2023).

While the models mentioned above have made significant contributions to the field,
they rely on the assumption of stochastic transitivity, which implies a strict ranking
among players/teams/items. However, this assumption may be unrealistic, particularly
in settings involving multiple skills or strategies, where intransitivity naturally arises.
Despite its practical importance, research on models that allow intransitivity remains
limited. Some notable exceptions include the work of Chen and Joachims (2016) and
Spearing et al. (2023), which extend the Bradley-Terry model by introducing additional
parameters to describe intransitivity alongside parameters specifying absolute strengths
based on Bradley-Terry probabilities. Spearing et al. (2023) propose a Markov chain
Monte Carlo algorithm for parameter estimation under a full Bayesian framework. How-
ever, their Bayesian procedure is computationally intensive and impractical for high-
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dimensional settings involving many players or a relatively high latent dimension. Chen
and Joachims (2016) treat the parameters as fixed quantities and estimate them by opti-
mizing a regularized objective function. However, their objective function is non-convex,
and their model is highly over-parameterised. Consequently, their optimization is still
computationally intensive and does not have a convergence guarantee. Moreover, no
theoretical results are established in either work for their estimator.

Motivated by these challenges, we propose a general framework for modelling in-
transitive pairwise comparisons, assuming an approximately low-rank structure for the
winning probability matrix. We propose an estimator for the probabilities, which can
be efficiently solved by a convex optimization program. This estimator is shown to be
optimal in the minimax sense, accommodating sparse data—a common issue when the
number of players diverges. To our knowledge, this is the first framework to address
intransitive comparisons with rigorous error analysis. The models presented in Chen
and Joachims (2016) and Spearing et al. (2023), which assume a low-rank structure, can
be seen as a special case of our framework. Furthermore, our method and computa-
tional algorithms scale efficiently to high-dimensional settings, making them suitable for
applications with many players/teams/items. Empirical results on real-world datasets,
including the e-sport StarCraft II and professional tennis, demonstrate the practical use-
fulness of our method, showing superior performance in intransitive settings and robust
performance when transitivity largely holds.

Pairwise comparison data has been extensively studied in the statistics and machine
learning literature, with numerous models and methods developed. We refer readers to
Cattelan (2012) for a practical overview of the field. Theoretical properties of the BT
model were first established in Simons and Yao (1999). These results were later extended
to likelihood-based and spectral estimators, as well as other parametric extensions, with
various losses and sparsity levels (Yan et al., 2012; Shah et al., 2016a; Negahban et al.,
2017; Chen et al., 2019a; Han et al., 2020; Chen et al., 2022a). More recently, Han
et al. (2023) propose a general framework covering most parametric models satisfying
strong stochastic transitivity, establishing uniform consistency results under sparse and
heterogeneous settings.

Our development is also closely related to the literature on generalised low-rank and
approximate low-rank models (Cai and Zhou, 2013; Davenport et al., 2014; Cai and Zhou,
2016; Chen et al., 2020; Chen and Li, 2022, 2024; Lee et al., 2024). While our asymptotic
results and error bounds build on techniques from these works, the parameter matrix
in the current work differs in that it has a skew-symmetric structure. This structure,
which arises naturally from pairwise comparison data, leads to dependent data entries
and distinguishes our setting from typical low-rank models. To address this, tailored
analysis is performed to establish rigorous theoretical results.

The rest of the chapter is organized as follows. Section 4.2 describes the setting, in-
troduces the general approximate low-rank model, and proposes our estimator. Section
4.3 establishes the theoretical properties of the proposed estimator, including results on
convergence and optimality. In Section 4.4, we provide an algorithm for solving the opti-
mization problem of the proposed estimator. Section 4.5 verifies the theoretical findings
and compares the proposed model with the BT model using simulations. Section 4.6
applies the proposed method to two real datasets to explore the presence of intransitivity
in sports and e-sports. Finally, we conclude with discussions in Section 4.7. Detailed
proofs of our main results are provided in Appendix C.
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4.2 Generalised Approximate Low-rank Model for Pairwise Com-
parisons

4.2.1 Setting and Proposed Model

We consider a scenario with n subjects, such as players in a sports tournament. Let
nij denote the total number of comparisons observed between subjects i and j, where
(nij)n×n is a symmetric matrix. Let yij denote the observed counts where subject i beats
subject j. Assuming no draws, we have yij = nji − yji for i, j ∈ {1, . . . , n}.

Given the total comparisons nij, we model the observed counts yij using a Binomial
distribution: yij ∼ Binomial(nij, πij), where πij denotes the probability that subject i
beats subject j. A fundamental property of the probabilities is that πij = 1 − πji for
all i, j ∈ {1, . . . , n}. This implies that the matrix Π = (πij)n×n is fully determined by
its upper triangular part. Using the logistic link function g(x) = (1 + exp(−x))−1, we
express the probabilities as πij = g(mij), where M = (mij) is a skew-symmetric matrix
satisfying M = −M⊤. As a result, estimating the probabilities Π reduces to the problem
of estimating M .

We say the model is stochastic transitive if there exists an unobserved global ranking
among all the players, denoted by i1 ≻ i2 ≻ · · · ≻ in, such that the pairwise comparison
probabilities for the adjacent pairs satisfy πi1i2 , πi2i3 , ..., πin−1in ≥ 0.5. In addition,
πik ≥ πij whenever j ≻ k, for all i ̸= j, k. In other words, for two players, j and k,
any player is more likely to win k than j if player j ranks higher than k. If stochastic
transitivity does not hold, then we say a model is stochastic intransitive. For instance,
stochastic intransitivity arises when there exists a triplet (i, j, k), such that πik ≥ πij and
πjk < 0.5.

Most traditional models for pairwise comparison assume stochastic transitivity. For
example, the BT model assumes mij = ui − uj, in which case, the global ranking of the
players is implied by the ordering of ui, i = 1, ..., n. However, stochastic intransitivity
naturally occurs in real-world competition data involving multiple strategies or skills. For
example, in the professional competitions of the e-sport StarCraft II, players can choose
from a variety of combat units with differing attributes (e.g., building cost, attack range,
toughness) during the game, leading to strategic decisions that can result in intransitivity.
In fact, for the best predictive model that we learned for the StarCraft II data, more than
70% of the (i, j, k) triplets are estimated to violate the stochastic transitivity assumption,
i.e., πik ≥ πij and πjk < 0.5; see Section 4.6 for the details.

From the modelling perspective, stochastic transitivity is achieved by imposing strong
monotonicity constraints on the parameter matrix M . To allow for stochastic intransi-
tivity, we need to relax such constraints. Given Y = (yij)n×n, the log-likelihood is

L(M) =
n∑

i=1

n∑
j=1

yij log(g(mij))

=
n∑

i=1

∑
j>i

(yij log(g(mij)) + (nij − yij) log(1− g(mij))) .

To prevent overfitting while accommodating stochastic intransitivity, we impose a con-
straint on M to reduce the size of the parameter space. Specifically, we assume that M
has an approximately low-rank structure enforced through a nuclear norm constraint:

∥M∥∗ ≤ Cnn, (4.1)
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where ∥ · ∥∗ denotes the nuclear norm, and Cn > 0 is allowed to be a constant or growing
with n. The maximal growth rate of Cn is restricted by the sparsity level, as will be
detailed in Section 4.3. The estimator is defined as:

M̂ = argmax
M

L(M) subject to ∥M∥∗ ≤ Cnn,M = −M⊤. (4.2)

It is easy to see that the optimization in (4.2) is convex; see Section 4.4 for its computation.

4.2.2 Comparison with Related Work

We compare the proposed model with existing parametric models in the literature. Han
et al. (2023) introduce a general framework for analysing pairwise comparison data under
the assumption of stochastic transitivity. In the current context, their model aligns with
those proposed by Shah et al. (2016b) and Heckel et al. (2019), which are expressed as

πij = Φ(ui − uj), and πji = 1− Φ(ui − uj).

Here, Φ(·) is any valid symmetric cumulative distribution function specified by the user,
and u = (u1, . . . , un)

⊤ is a latent score vector representing the strengths of the teams.
This framework reduces to the Bradley-Terry (BT) model when Φ(·) = g(·), the logistic
function, and to the Thurstone model when Φ(·) is the cumulative distribution function
of the standard normal distribution. Other models can be incorporated by specifying
different forms of Φ(·). The latent score u is treated as a fixed parameter to be estimated,
enabling the framework to handle a large number of players effectively. This parametric
form, however, enforces a rank-2 structure on the parameter matrix, given by

Π = Φ(u1n
⊤ − 1nu

⊤),

where 1n is an n-dimensional vector of ones.
Several attempts have been made in the literature to generalize this parametric form,

allowing the rank of the underlying parameter matrix to exceed two and accommodate
stochastic intransitivity. We should note that, since M is a skew-symmetric matrix, its
rank must be even (e.g., Horn and Johnson, 2013). For instance, Chen and Joachims
(2016) proposed a blade-chest-inner model, which can expressed as

Π = g(AB⊤ −BA⊤),

where A and B are n×K matrices. This model allows for a general rank-2k parameter
matrix, with the parameters in the frequentist sense. Similar to the parametrization in
Chen and Joachims (2016), Spearing et al. (2023) propose a Bayesian model for pairwise
comparison under stochastic intransitivity and further develop a Markov chain Monte
Carlo algorithm for its computation. Both methods lack theoretical guarantees, such as
convergence results or error bounds.

Our proposed method relaxes the requirement for an exact low-rank representation
by only requiring an approximate low-rank structure specified by the nuclear norm. This
offers a broad parameter space that covers the models proposed in Chen and Joachims
(2016) and Spearing et al. (2023), offering greater robustness to model misspecification.
This flexibility is important in real data applications, where the parameter matrix may
not exhibit a clear-cut low-rank structure. In particular, if rank(M) = 2k for some
positive integer k, it follows that

∥M∥∗ ≤
√
2k∥M∥F ≤ Cnn,
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where ∥·∥F denotes the Frobenius norm, and Cn depend on the magnitude of the entries of
M and its rank 2k. The subscript n in Cn indicates that both the magnitude of the entries
of M and its rank are allowed to grow with n. Moreover, the proposed model imposes
no distributional assumptions on the parameter matrix M , making it more scalable for
handling large numbers of players. Theoretical results, including convergence and error
bounds, are presented in Section 4.3. As a remark, our estimation method and theoretical
framework can be easily adapted when we replace the current assumption of the logistic
form of the link function g(·) with other functions, such as the standard normal cumulative
distribution function used in the Thurstone model.

4.3 Theoretical Results

We establish convergence results and lower bounds for the estimator defined in (4.2)
under settings with different data sparsity levels. For positive sequences {an} and {bn},
we denote an ≲ bn if there exists a constant δ > 0 that an ≤ δbn for all n. Let K denote
the parameter space, defined as

K = {M ∈ Rn×n : ∥M∥∗ ≤ Cnn, M = −M⊤}. (4.3)

We impose the following conditions:

Assumption 4.1. The true parameter M∗ ∈ K.
Assumption 4.2. For j = 1, . . . , n and i > j, the variables nij are independent and fol-
low a Binomial distribution, nij ∼ Binomial(T, pij,n), where T is a fixed integer represent-
ing the maximum possible number of comparisons between subjects, and pij,n = pji,n is the
success probability, which may vary across different pairs (i, j). Let 0 ≤ pn ≤ qn ≤ 1 de-
note the minimum and maximum comparison rates, respectively, such that pij,n ∈ [pn, qn]
for all i ̸= j ∈ {1, . . . , n}. We assume that pn ≍ qn and pn ≳ log(n)/n.

Assumption 4.1 ensures that the true parameter exhibits an approximately low-rank
structure specified by our model. Assumption 4.2 deserves more explanations. The
independent assumption of nij is commonly adopted in literature, as it simplifies the
likelihood formulation and facilitates estimation. Moreover, under this assumption, the
sparsity level of the data is characterized by the rate at which the success probabilities pij,n
converge to 0 as n grows. The condition pn ≳ log(n)/n sets a lower bound on the sparsity
level, which is the best possible threshold for pairwise comparison problems. Below this
bound, the comparison graph becomes disconnected with high probability (Erdős and
Rényi, 1960; Han et al., 2023). The condition pn ≍ qn imposes homogeneity on pij,n, a
common assumption in the literature (Simons and Yao, 1999; Chen et al., 2019a; Han
et al., 2020). If qn is larger, then more observations become available, and our method
is expected to benefit from this. However, establishing theoretical guarantees under this
regime requires a different proof strategy to handle the associated heterogeneous graph
structure, which we leave for future investigation. The following theorem establishes the
convergence rate of the proposed estimator.

Theorem 4.1. Under Assumptions 4.1 and 4.2, let Π̂ = (π̂ij)n×n, where π̂ij = g(m̂ij).
Further let Π∗ = g(M∗). Then, with probability at least 1− κ1/n,

1

n2 − n
∥Π̂− Π∗∥2F ≤ κ2Cn

√
1

pnn
,

where κ1 and κ2 are constants that do not depend on n.
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This theorem shows that convergence is guaranteed provided Cn = o(
√
pnn). This

means that ∥M∗∥∗ can be as large as o(n3/2√pn). Suppose M∗ has bounded entries. In
the most sparse case with pn ≍ log(n)/n, this implies that ∥M∗∥∗ can be at most of order
n
√

log(n), so the rank of M∗ cannot grow faster than
√

log(n). The following theorem
addresses the optimality of Theorem 4.1 by establishing a lower bound.

Theorem 4.2. Suppose 12 ≤ C2
n ≤ min{1, κ23/T}n, where κ3 is an absolute constant

specified in (C.6). Consider any algorithm which, for any M ∈ K, takes as input Y and
returns M̂ . Then there exists M ∈ K such that with probability at least 3/8, Π = g(M)
and Π̂ = g(M̂), satisfy

1

n2 − n
∥Π− Π̂∥2F ≥ min

{
κ4, κ5Cn

√
1

npn

}
(4.4)

for all n > N . Here κ4, κ5 > 0 and N are absolute constants.

A few technical assumptions are imposed in this theorem. The condition C2
n ≤

min{1, κ23/T}n is mild and naturally holds for sufficiently large n, provided that the
rank of M does not grow at the same rate as n. We also require C2

n ≥ 12 to avoid the
parameter space being too small for packing set construction.

Since the rates in Theorems 4.1 and 4.2 match up to a multiplicative constant, the
optimality of the proposed estimator is established.

4.4 Computation

To solve (4.2), we apply the nonmonotone spectral-projected gradient algorithm for closed
convex sets proposed by Birgin et al. (2000), which guarantees convergence to a stationary
point satisfying the constraints. Let Skewn denote the space of n × n skew-symmetric
matrices. Let V be the bijective linear mapping that vectorizes the upper-triangular part
of any matrix in Skewn into R0.5n(n−1). For anym ∈ R0.5n(n−1), define f(m) = L(V−1(m)).
Then, solving (4.2) is equivalent to solving the constrained optimization problem:

m̂ = argmax
m∈R0.5n(n−1)

f(m) subject to ∥V−1(m)∥∗ ≤ τ, (4.5)

where τ = Cnn if Cn is known. We will later discuss an algorithm for selecting τ in
practical situations where Cn is unknown.

A key step in solving (4.5) involves the orthogonal projection operator Pτ (·), defined
as

Pτ (m) = argmin
x∈R0.5n(n−1)

∥x−m∥2 subject to ∥V−1(x)∥∗ ≤ τ.

It is well known that the projection is equivalent to singular value soft-thresholding. Let
0n×n denote a n× n zero matrix, and max{·, ·} be applied entry-wise for matrix inputs.
The detailed procedure is presented in Algorithm 4.1.

In the last step, the projection outcome is defined as Pτ (m) = V(Pτ (M)), which is
only valid provided that Pτ (M) is a skew-symmetric matrix. The following proposition
ensures that this is always the case:

Proposition 4.1. For any matrix M ∈ Skewn, the projection operator satisfies Pτ (M) ∈
Skewn.
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Algorithm 4.1 Projection algorithm

Input: Parameter vector m and nuclear norm constraint parameter τ .

Compute M = V−1(m).
Perform singular value decomposition and obtain M = UΣV ⊤, where U and V are
n × n orthonormal matrices and Σ = diag(σ1, σ1, , . . . , σn/2, σn/2) if n is even and
Σ = diag(σ1, σ1, , . . . , σ⌊n/2⌋, σ⌊n/2⌋, 0) otherwise.

Compute λ, the smallest value for which
∑⌊n/2⌋

i=1 2max{σi − λ, 0} ≤ τ .
Compute projected matrix Pτ (M) = U max{Σ− λIn, 0n×n}V ⊤

Output: Projection outcome Pτ (m) = V(Pτ (M)).

Proof. We consider the case where n is even; the proof for odd n is analogous. It is
well known that M can be decomposed in the Murnaghan canonical form M = QXQ⊤

(Murnaghan and Wintner, 1931; Benner et al., 2000), where Q is orthogonal and X is
block-diagonal of the form

X =



0 σ1 0 0 . . . 0 0
−σ1 0 0 0 . . . 0 0
0 0 0 σ2 . . . 0 0
0 0 −σ2 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 σn/2
0 0 0 0 . . . −σn/2 0


,

where σ1, . . . , σn/2 are the singular values of M . It can be verified that the projection
operator Pτ (M) preserves the Murnaghan canonical form as Pτ (M) = QY Q⊤, where

Y =


0 max{σ1 − λ, 0} 0 . . . 0

−max{σ1 − λ, 0} 0 0 . . . 0

0 0
. . . . . . 0

...
...

... 0 max{σn/2 − λ, 0}
0 0 0 −max{σn/2 − λ, 0} 0

 .

Hence we have Pτ (M) ∈ Skewn.

We now introduce the spectral projected line search method, which uses the projection
operator Pτ (·) to ensure that each iteration’s outcome remains within the feasible set
defined by the nuclear norm constraint. The procedure is outlined in Algorithm 4.2.

The method employs two types of line searches. The first type performs a projection
once and searches along a linear trajectory m(α). This approach is computationally
efficient since the primary computational cost lies in the projection operation. If the
linear search fails to converge, the algorithm switches to a curvilinear trajectorymcurve(α),
which requires projecting at each step. The Spectral-step length γl−1 is decided using the
method from Barzilai and Borwein (1988) in each iteration.

The final estimation procedure is detailed in Algorithm 4.3. The convergence crite-
rion checks whether the optimality condition Pτ (m

(l)−∇f(m(l))) = m(l) is approximately
satisfied. Parts of the code are adapted from the SPGL1 package, originally implemented
in Matlab (Van Den Berg and Friedlander, 2008; Davenport et al., 2014). The pro-
posed estimator is implemented in R, and the code is available at https://github.com/
Arthurlee51/PCWST.
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Algorithm 4.2 Spectral projected line search

Input: Parameter vector from last iteration m(l−1), Matrix of comparison outcomes Y ,
nuclear norm constraint parameter τ and the spectral-step length γl−1

Compute gradient: g(l−1) = ∇f(m(l−1)).
Compute search direction: d(l−1) = Pτ (m

(l−1) − γl−1g
(l−1))−m(l−1)

Perform line search along the linear trajectory: m(α) = m(l−1) + αd(l−1).
if Convergence is reached then

Set m(l) as the result from the line search.
else

Perform line search along the alternative trajectory:

mcurve(α) = Pτ (m
(l−1) − αγl−1g

(l−1)).

Set m(l) as the result from the line search.
end if

Output: Updated parameter vector m(l).

Algorithm 4.3 Estimation Algorithm

Input: Matrix of comparison outcomes Y , nuclear norm constraint parameter τ .

Initialization: Set l = 0, m(0) = 00.5n(n−1), the zero vector and set the spectral
step-length γ0 = 1.
while l = 0 or convergence criterion is not satisfied do

Update l← l + 1.
Update m(l) via line search using Algorithm 4.2 with inputs m(l−1), Y , τ and γl−1.
Update γl as proposed by Barzilai and Borwein (1988).

end while

Output: Estimated parameter matrix M̂ = V−1(m(l)).

4.5 Simulation Results

We consider three distinct scenarios characterized by varying levels of sparsity. Specifi-
cally, we define pn as n−1 log(n), n−1/2, and 1/4, corresponding to sparse, less sparse, and
dense data, respectively. The parameter qn is given by 4pn. Each pij,n is then generated
from a uniform distribution with range [pn, qn].

The parameter matrix M is constructed as ΘJΘ⊤, where Θ is an n× 2k matrix, and
J is a 2k × 2k block diagonal matrix of the form

J =


0 n 0 . . . 0
−n 0 0 . . . 0

0 0
. . . . . . 0

...
...

... 0 n
0 0 0 −n 0

 .

The matrix Θ is orthonormal, obtained via QR decomposition of a random matrix
Z ∈ Rn×2k, where each entry of Z is independently sampled from a standard normal
distribution N(0, 1). It can be verified that ∥M∥∗ = 2kn.

We conduct 50 simulations for n = 500, 1000, 1500, and 2000, with k ranging from 1 to
10. Recall that the rank of M is 2k. Additionally, the maximum number of comparisons,
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Figure 4.1: Comparison of loss between the proposed method and the Bradley-Terry
(BT) model across different sparsity levels (sparse, less sparse, dense). The x-axis
represents the rank parameter k, while the y-axis shows the mean loss, computed as
the average of the losses defined in (4.6). Results are shown for varying sample sizes
(n = 500, 1000, 1500, 2000)

T , is fixed at 5, across all settings. We set Cn = 2k. The loss is computed as

Loss = (n2 − n)−1∥Π̂− Π∗∥2F , (4.6)

and the average loss across 50 simulations is reported for each model in Figure 4.1,
considering different values of n, k, and sparsity levels.

The results in Figure 4.1 show that the mean loss of the proposed estimator decreases
as n increases. Moreover, the mean loss is significantly lower as the data become denser,
corresponding to an increase in pn. These observations are consistent with the results
from Theorem 4.1.

Notably, the proposed and BT models incur higher losses as the rank parameter k
increases, which is expected due to increasing complexity. However, the proposed model
consistently outperforms the BT model across all settings. Furthermore, while the BT
model’s performance remains relatively unchanged as n increases, the proposed method
continues to improve, showcasing its effectiveness in handling large datasets and capturing
complex structures that stochastic transitivity assumptions cannot address.
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4.6 Real Data Examples

In this section, we compare our model’s performance with the celebrated BT model using
two real datasets. Section 4.6.1 outlines the data preparation process and describes how
the nuclear norm constraint parameter τ = Cnn is decided. Section 4.6.2 introduces the
evaluation metrics used to compare the models. Finally, Sections 4.6.3 and 4.6.4 present
detailed analyses of the results for the StarCraft II and tennis datasets, respectively.

4.6.1 Data Preparation and Parameter Tuning

The raw data consists of individual match records, with each comparison recorded as a
separate entry. We reserve 30% of the match records for testing, while the remaining
70% is divided into 50% for training and 20% for validation.

The comparison data matrix is first constructed for the training set, with players
absent from the training set removed from the validation set. The validation set is used
to tune the nuclear constraint parameter Cn, as described in the sequel. After tuning,
the training and validation sets are combined (including previously excluded entries), and
the comparison data matrix is reconstructed from the combined dataset.

The test set is then evaluated against this combined dataset, excluding entries for
players not present in the combined dataset. Although the proposed model can handle
players who never lose or win any game, we still remove them in the training and combined
dataset to ensure stabler results and a fair comparison with the BT model, as this is a
common practice.

The nuclear norm of the parameter matrix M is unknown and is tuned on the train-
ing and validation sets using log-likelihood as the loss function. The nuclear constraint
parameter τ = Cnn is determined by selecting Cn from 20 grid points, corresponding to
powers of 10 evenly spaced between −1 and 1. This results in Cn = 100.47 = 2.98 for the
StarCraft II dataset and Cn = 10−0.36 = 0.43 for the tennis dataset.

4.6.2 Evaluation Criteria

Let Y (test) = (y
(test)
ij )n×n denote the observed comparison results from the test set. Given

the estimated winning probabilities Π̂ = (π̂ij)n×n, we evaluate the performance of the
estimates using two criteria. The first criterion is the log-likelihood, given by

L(Y (test) | Π̂) =
n∑

i=1

∑
j>i

(
y
(test)
ij log(π̂ij) + y

(test)
ji log(1− π̂ij)

)
,

where a higher log-likelihood indicates a stronger agreement between the predicted prob-
abilities and the observed results. The second criterion is the test accuracy, given by

A(Y (test) | Π̂) = 1∑n
i=1

∑n
j=1 y

(test)
ij

n∑
i=1

∑
j>i

(
y
(test)
ij I(π̂ij ≥ 0.5) + y

(test)
ji I(π̂ji > 0.5)

)
.

It measures the proportion of the comparison results correctly predicted, with higher
values indicating better predictive performance. The results are presented in Table 4.1.
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StarCraft II Tennis

Proposed BT Proposed BT

Log-likelihood −1, 897, 946 −2, 137, 115 −333, 076 −322, 483
Accuracy 0.766 0.713 0.652 0.658

Table 4.1: Comparison of model performance on StarCraft II and ATP datasets. The
performance is evaluated using log-likelihood and accuracy for the proposed model and
the BT model.

4.6.3 StarCraft II Data

StarCraft II is a military science fiction real-time strategy game developed and published
by Blizzard Entertainment. The dataset comprises match results of professional StarCraft
II players sourced from the website aligulac.com, covering the period from 2010 to
2016. The matches follow the most common competitive format, where two players face
off against each other, and each game results in either a win or loss, with no possibility
of a draw.

We specifically focus on matches played using the StarCraft II: Heart of the Swarm
expansion, as different versions of the game are often treated as distinct games (Chen
and Joachims, 2016). The training set includes 1, 958 players, with 1.9% of all player
pairs competing against each other at least once. The maximum number of matches
between any pair of players is 30. The dataset is available at https://www.kaggle.com/
datasets/alimbekovkz/starcraft-ii-matches-history.

As seen in Table 4.1, the proposed model achieves a higher log-likelihood of−1, 897, 946
compared to −2, 137, 115 for the BT model. This suggests that our model provides a bet-
ter fit for the observed test data. The test accuracy of the proposed model is also signif-
icantly higher at 0.766, compared to 0.711 for the BT model. Among the 1, 249, 168, 756
distinct triplets in the data, stochastic transitivity is violated in 70% of cases, as indicated
by the matrix of estimated probabilities Π̂ under the proposed model. Specifically, this
occurs when there exists an ordering of the three players, denoted as i, j, and k, such
that π̂ik ≥ π̂ij and π̂jk < 0.5.

These results are consistent with previous findings by Chen and Joachims (2016),
who analysed a similar dataset over different time frames, suggesting that a strict rank-
ing structure may not be appropriate in e-sports. In particular, intransitivity can nat-
urally arise from game design, such as intransitive relationships among different unit
types, which provide players with significant flexibility in choosing units and strategies.
Moreover, the strong performance of our method on this dataset confirms its ability to ef-
fectively handle sparsity in real-world data, aligning with both simulation and theoretical
results.

4.6.4 Tennis Data

We analyse the tennis dataset to evaluate the performance of our model in professional
sports. The dataset contains the results of all men’s matches organized by the Associa-
tion of Tennis Professionals (ATP) from 2000 to 2018. It includes matches from major
tournaments such as the Grand Slams, the ATP World Tour Masters 1000, and other
professional tennis series held during this period.
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The training set consists of 723 players, with 6.4% of all player pairs having competed
against each other at least once. The maximum number of matches between any pair of
players is 23. The data is collected from http://www.tennis-data.co.uk.

From Table 4.1, the BT model achieves a marginally better performance, with a log-
likelihood of −322, 483 compared to −333, 076 for the proposed model, and a slightly
higher test accuracy (0.658 vs 0.652). This advantage may come from the BT model’s
smaller parameter space, which is more efficient when the data aligns well with the
stochastic transitivity assumption, where the level of intransitivity is minimal or absent.
Nevertheless, the performance of the proposed model remains close to that of the BT
model, demonstrating its robustness even in settings where transitivity holds. This flexi-
bility is particularly useful when intransitivity is uncertain, as it maintains high accuracy
without relying on strict ranking assumptions.

The lack of intransitivity in professional tennis may be due to several factors. Un-
like e-sports, tennis offers limited gameplay flexibility, as adjustments to equipment like
rackets and shoes have minimal impact compared to the choice of units in StarCraft II.
Additionally, professional tennis players may be required to be well-rounded as weak-
nesses are quickly identified and exploited by opponents. In contrast, intransitivity may
be more common at lower levels of competition, where skill imbalances are expected to
be more significant. For example, a player with a strong serve but weak baseline play
may be more likely to defeat one opponent while losing to another with a different style.
Investigating intransitivity in lower-tier competitions remains an open question for future
research.

4.7 Discussions

In this chapter, we propose a statistical framework for modelling stochastic intransitivity.
The framework assumes an approximate low-rank structure in the parameter matrix,
expressed through a nuclear norm constraint. Theoretical analysis demonstrates that
the proposed estimator achieves optimal convergence rates under a wide range of data
sparsity settings. Simulation and empirical analyses confirm that our model is superior
to the Bradley-Terry model when the assumption of stochastic transitivity is violated.

Our framework stands apart from the existing literature by imposing an approximate
low-rank structure. To our knowledge, all existing methods for pairwise comparison data
rely on exact low-rank models, even in the limited works that allow stochastic intransitiv-
ity. By accommodating a larger parameter space, our approach offers greater flexibility
and applicability to a wider range of datasets. While this may lead to slightly reduced
efficiency, our analysis of the tennis dataset demonstrates that the loss of efficiency is
small when stochastic transitivity largely holds. Therefore, the proposed model may pre-
dict pairwise comparison results more accurately in many real-world applications. For
example, for tournament data, the proposed may better predict the champion or the
number of rounds each player can play, given historical data and the current tournament
schedule.

The current research may be extended in several directions. Specifically, the current
theoretical analysis focuses on the convergence of the loss ∥Π̂−Π∗∥2/(n2−n), which can
be seen as a notion of convergence in an average sense (across entries of the comparison
probability matrix). It can be strengthened by establishing the convergence results under
the matrix max-norm loss ∥Π̂ − Π∗∥∞, which may be achieved using the refinement
techniques proposed in Chen and Li (2024). This notion of convergence ensures the
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consistency of each π̂ij. Moreover, it will be useful to further establish the asymptotic
normality for each π̂ij − π∗

ij, which can be used to quantify the uncertainty associated
with the estimated winning probabilities.

From a computational perspective, the main challenge of our algorithm lies in the
projection step, which requires performing singular value decomposition of an n × n
matrix. This step is substantially more demanding than in the Bradley–Terry model, for
which highly scalable implementations are available. While the current method is feasible
for datasets with a few thousand players, it may become computationally challenging
as the number of players grows larger. Optimizing the implementation will therefore be
important for scaling to much larger datasets and for broadening the range of applications
of the proposed method.

The proposed modelling framework also needs to be extended to accommodate more
complex settings of pairwise comparisons. First, covariate information can be incorpo-
rated into the model to facilitate the prediction. For example, for many team sports
tournaments (e.g., soccer and basketball), whether a team plays at their home court
matters and should be included as a covariate. Second, pairwise comparison data are
often collected over time, which is true for the StarCraft II and tennis data studied in
Section 4.6. The current model ignores time information in data. To better predict
future pairwise comparison results, it will be useful to model the comparison probabili-
ties as a function of time. As a result, the estimation of these time-varying comparison
probabilities will also differ substantially from the current procedure. Third, for pairwise
comparison data produced by raters, which are commonly encountered in crowd-sourcing
settings (e.g., Chen et al., 2013), characteristics of the raters, such as their reliability,
affect the pairwise comparisons. In other words, the distribution of the comparison be-
tween two items depends not only on the pair of items but also on the rater who performs
the comparison. In this regard, Chen et al. (2013) propose an extended version of the
BT model that uses a rater-specific latent variable to account for raters’ reliability. A
similar extension can be made to the current model to simultaneously account for the
raters’ heterogeneity and the items’ stochastic intransitivity.

51



Appendix A

Supplementary Materials for Chapter 2

A.1 Estimation Method

Recall that the log-likelihood function in (2.6) was defined as

l(Ξ) =
N∑
i=1

J∑
j=1

T∑
t=1

rit
{
yijt(γjt + a⊤

j θi + β⊤
j xi)− bj(γjt + a⊤

j θi + β⊤
j xi)

}
=

N∑
i=1

J∑
j=1

T∑
t=1

rit
{
yijt(u

⊤
j eit)− bj(u⊤

j eit)
}
.

We further define

ρijt(t) = yijt(u
⊤
j eit)− bj(u⊤

j eit) and ϱijt(t) = ritρijt(t), such that

ρij(uj,θi) =
T∑
t=1

ritρijt(u
⊤
j eit) =

T∑
t=1

ϱijt(u
⊤
j eit).

We now define the following objective functions:

lNJ(Ξ) =
1

NJ
l(Ξ) =

1

NJ

N∑
i=1

J∑
j=1

ρij(uj,θi),

li,J(θi, U) =
1

J

J∑
j=1

ρij(uj,θi), lj,N(uj,Θ) =
1

N

N∑
i=1

ρij(uj,θi).

Define ∇li,J(θ, U),∇2li,J(θ, U) as the gradient and Hessian matrix of li,J(θ, U) with re-
spect to θ, and ∇lj,N(u,Θ),∇2lj,N(u,Θ) as the gradient and Hessian matrix of lj,N(u,Θ)
with respect to u. To handle the constraint in (2.6), we introduce the projection operator

Proxc(y) = argmin
x:∥x∥≤c

∥y − x∥2 =

{
y if ∥y∥ ≤ c;

c∥y∥−1y otherwise.

Recall that we defined P as the length of uj. We propose the following iterative
algorithm to estimate the parameters of interest Ξ.

1. Initialization: Choose initial starting parameters Θ(0), U (0).
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Table A.1: Definitions of uj and eit under different model specifications

Model uj eit

Main model (γ⊤
j ,β⊤

j ,a⊤
j )⊤ (D⊤

it ,x
⊤
i ,θ⊤

i )⊤

Section 2.2.3 (γ⊤
j ,β⊤

j ,v⊤
j ,a⊤

j )⊤ (D⊤
it ,x

⊤
i , z⊤it ,θ

⊤
i )⊤

Section 2.2.4 (γ⊤
j ,β⊤

j1, . . . ,βjT ,v⊤
j ,a⊤

j1, . . . ,a
⊤
jT )⊤ (D⊤

it , Dit1x
⊤
i , . . . , DitTx⊤

i , z⊤it , Dit1θ
⊤
i , . . . , DitT θ⊤

i )⊤

For each model specified above, when the restriction γjt = tγj for all j ∈ {1, . . . , J}
discussed in Section 2.2.5 is imposed, we replace γj with γ in uj, and substitute the
component Dit in eit with t.

2. Parameter Update: For l = 1, . . . , L, perform

• Given Θ(l−1), U (l−1), update

u
(l)
j = Proxc

(
u
(l−1)
j − α

(
∇2lj,N

(
u(l−1),Θ(l−1)

))−1∇lj,N
(
u
(l−1)
j ,Θ(l−1)

))
for j = 1, . . . , J , where c = 5

√
P , α > 0 is a step size chosen by line search.

• Given Θ(l−1), U (l), update

θ
(l)
i = Proxc

(
θ
(l−1)
i − α

(
∇2li,J

(
θ(l−1), U (l)

))−1

∇li,J
(
θ(l−1), U (l)

))
,

for i = 1, . . . , N , where c = 5
√
K, α > 0 is a step size chosen by line search.

3. Convergence Check: Stop iteration when lNJ(Ξ
(L)) approximates lNJ(Ξ

(L−1))
closely.

This algorithm guarantees that the log likelihood increases in each iteration, when the
step size α is properly chosen in line search. Readers may refer to Chen et al. (2019c) and
Parikh et al. (2014) for further details regarding the properties of projection operator.
Moreover, when applying this estimation approach to simulation studies and data analy-
sis, we develop a singular value decomposition (SVD) based algorithm to choose a good
starting point in step 1, as presented in Section A.1.1. This algorithm can be generalised
easily for mixed types of data.

Remark A.1. The estimation procedure described above is flexible and can accommo-
date the extensions proposed in Sections 2.2.3 and 2.2.4, as well as the constraint on γj

discussed in Section 2.2.5. For each extension, the definitions of uj and eit are modified
accordingly and are summarized in Table A.1, where the definition of the parameter vector

Ξ =
(
u1

⊤, . . . ,uJ
⊤,θ1

⊤, . . . ,θN
⊤)⊤ remains unchanged.

A.1.1 SVD-based algorithm for obtaining initial values

The following algorithm, based on the work from Chen et al. (2019c) and Zhang et al.
(2020a), works for binary variables when N ≥ J . Modifications are needed when J > N .
We present the algorithm in the context of the extension presented in Section 2.2.3, noting
that the main model is a special case when time-dependent covariates are absent.

1. Input responses yijt, missing indicators rit, dimension K of latent space, and toler-
ance ϵ.
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2. Compute p̂t = (
∑N

i=1 rit)/N as the proportion of observed responses for t = 1, . . . , T .

3. Let Lt = (lijt)N×J , where

lijt =

{
2yijt − 1, if rit = 1,

0, otherwise.

4. Apply singular value decomposition to matrices Lt, t = 1, . . . , T and obtain Lt =∑J
j=1 σjtqjth

⊤
jt, where for each t, σ1t ≥ . . . ,≥ σJt are the singular values and qjts

and hjts are the left and right singular vectors.

5. Let L̃t = (l̃ijt)N×J =
∑K̃

k=1 σktqkth
⊤
kt, where K̃ = max{K + 1, argmaxk σkt ≥

2
√
Np̂t}.

6. Let Mt = (mijt)N×J , where

mijt =


ξ−1(ϵ) if l̃ijt < −1 + ϵ,

ξ−1(0.5(l̃ijt + 1)) if − 1 + ϵ ≤ l̃ijt ≤ 1− ϵ,
ξ−1(1− ϵ) if l̃ijt > 1− ϵ.

7. Set Γ
(0)
t = (γ

(0)
1t , . . . , γ

(0)
Jt )

⊤, where γ
(0)
jt = (

∑N
i=1mijt)/N .

8. Apply singular value decomposition to matrix M̃ =
(∑T

t=1(mijt − γ(0)jt )/T
)
N×J

and

obtain M̃ =
∑J

j=1 σ̃jq̃jh̃
⊤
j , where σ̃1 ≥ · · · ≥ σ̃J are the singular values and q̃js and

h̃js are the left and right singular vectors.

9. Set Θ
(0)
k =

√
N q̃k and A

(0)
k = σ̃kh̃k/

√
N, k = 1, . . . , K.

10. Plug in Γ (0), Θ(0) = (Θ
(0)
1 , . . . ,Θ

(0)
K ) and A(0) = (A

(0)
1 , . . . ,A

(0)
K ) in (2.5) and set

B (0) and V (0) such that the log-likelihood is maximized. This can be done using
the glm function in R.

11. Output U (0) = (Γ (0),B (0),V (0),A(0)) and Θ(0) as starting point.

The tolerance ϵ is a positive constant that is close to 0. A default value ϵ = 0.01 is used
in the analysis of this appendix.

Remark A.2. The above procedures can be easily adapted to obtain initial values for the
models introduced in Sections 2.2.4 and 2.2.5. In particular, in the extension considered
in Section 2.2.4, we can stack the T matrices into L = (L1, . . . , LT ) in step 3. In step
4, we perform singular value decomposition on L, and in step 5, obtain L̃ by replacing p̂t
with the average

∑T
t=1 p̂t/T . Step 6 proceeds as before to compute M = (M1, . . . ,MT ). In

step 7, each of γjt is computed from the corresponding block Mt from M , and we compute
singular value decomposition in step 8 on

M̃ =
(
(mij1 − γ(0)j1 )N×J , . . . , (mijT − γ(0)jT )N×J

)
.

We can then obtain Θ(0) and A
(0)
1 . . . ,A

(0)
T in step 9 and the rest of the procedure follows.
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When the restriction γjt = tγj is imposed, we compute Γ(0) = (γ
(0)
1 , . . . , γ

(0)
J )⊤, where

γ
(0)
j is the ordinary least square estimate given by γ

(0)
j = (

∑T
t=1

∑N
i=1 tmijt)/(N

∑T
t=1 t

2)

in step 7 and define M̃ = ((
∑T

t=1mijt − tγ
(0)
j )/T )N×J in Step 8. The rest of the steps

follow.
Finally, when the extension Section 2.2.4 is considered and the restriction γjt = tγj

is imposed, we use a similar procefure, setting

M̃ =

((
mij1 − γ(0)j

)
N×J

, . . . ,
(
mijT − Tγ(0)j

)
N×J

)
using the ordinary least square estimate for Γ.

A.2 Normalisation criteria and algorithm

In Chapter 2, we imposed the normalisation condition as outlined in (2.4), which is
fundamental for the identification of B . To ensure that the matrices Γ , Θ, and A are
also identifiable, we can introduce additional normalisation constraints as follows:

1

J
A⊤A = IK ,

1

N
Θ⊤Θ is diagonal with non-increasing diagonal elements.

Θ⊤1N = 0K, (A.1)

where 0K denotes a zero vector of length K. The normalisation criteria outlined above,
along with (2.4), are sufficient to ensure the identifiability of the parameters in both the
main model and the extension discussed in Section 2.2.3. Specifically, the parameter V
associated with the time-dependent covariate is identifiable, provided there is sufficient
variability in Zt across any two time points, as detailed in Assumption A.2 in Section
A.3. The following algorithm ensures the estimated parameters satisfy the normalisation
criteria imposed in (2.4) and (A.1):

Suppose we have initial estimates Γ , A, B and Θ. For t = 1, . . . , T , define Γt =
(γ1t, . . . , γJt)

⊤. Define IX = (1N,X ), Θ̃ = Θ−IX (IX⊤IX )−1IX⊤Θ and L = (IX⊤IX )−1

IX⊤ΘA⊤. We can set Γ̂ = (Γ̂1, . . . , Γ̂T ) and B̂ such that

Γ̂t = Γt + L⊤
[1,1:J ], t = 1, . . . T

B̂ = B + L⊤
[2:(p+1),1:J ].

Now define ΣJA = A⊤A/J and ΣNT = Θ̃⊤Θ̃/N . We apply eigendecomposition such that

Σ
1/2
JA ΣNTΣ

1/2
JA = LDL−1,

where D is a diagonal matrix and L is the matrix whose columns are the eigenvectors of
D. Then by setting

Θ̂ = Θ̃H−1 and Â = AH⊤, (A.2)

where H = (Σ
−1/2
JA L)⊤ would satisfy the required constraints.

It is simple to adjust the algorithm for the special case where only the identifiability
of B is concerned. In this case we can set L = (X⊤X )−1X⊤ΘA⊤ and update B̂ = B +L,
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Θ̂ = Θ − X (X⊤X )−1X⊤Θ. Similar adjustments apply to the normalisation algorithms
described in Remarks A.4 and A.5, when only the identifiability of B is of interest,
corresponding to the models discussed in Sections 2.2.4 and 2.2.5. Since Section A.5.1
also evaluates the recovery of latent variables, we adopt the full identifiability criterion
and corresponding algorithms throughout the simulation studies and real data analysis.

Remark A.3. We note that from this updated normalisation criteria, Assumption 2.3 is
equivalent to requiring that N−1Θ⊤Θ = diag(σN1, . . . , σNK) with σN1 ≥ σN2 · · · ≥ σNK,
and σNk → σk as N → ∞ for all k. While this does not affect the identification of B̂ ,
it is well known that the latent factors remain unidentifiable without an eigengap that
separates different components. Therefore, throughout this supplementary material, we
additionally assume that ∞ > σ1 > σ2 > · · · > σK > 0.

Remark A.4. In the context of the extension discussed in Section 2.2.4, we need to
adjust the normalisation constraints A.1. Specifically, the parameters in this extension
are identifiable given the following normalisation criteria:

1

J
A⊤

1 A1 = IK ,

1

N
Θ⊤Θ is diagonal with non-increasing diagonal elements.

Θ⊤(X,1N) = 0K×(p+1), (A.3)

where we define At = (ajkt)J×K for t ∈ {1, . . . , T}. The normalisation algorithm described
above can be adapted accordingly. Specifically, we set Θ̃ = Θ−IX (IX⊤IX )−1IX⊤Θ. For
t = 1, . . . , T , we set L(t) = (IX⊤IX )−1IX⊤ΘA⊤

t , such that Γ̂t and B̂t are given by

Γ̂t = Γt + L
(t)⊤
[1,1:J ]

B̂t = Bt + L
(t)⊤
[2:(p+1),1:J ].

We can then compute Θ̂ and Â1 as in (A.2) and set Ât = AtH
⊤ for t = 2, . . . , T .

Remark A.5. When the constraint γjt = tγj is imposed, the condition Θ⊤1N = 0K is
no longer required in either the main model or the extensions in Sections 2.2.3 and 2.2.4,
as the remaining conditions are sufficient to ensure identifiability. The normalisation
algorithm can be modified accordingly by setting Θ̃ = Θ − X(X⊤X)−1XΘ, and defining
L = (X⊤X )−1X⊤ΘA⊤ for the main model. Similarly, for the extension described in Sec-
tion 2.2.4, we use L(t) = (X⊤X )−1X⊤ΘA⊤

t . In both cases, there is no need to normalise
Γ = (γ1, . . . , γJ)

⊤. The parameters B̂ or B̂t can then be updated accordingly, and the
remainder of the algorithm remains unaffected by this restriction.

A.3 Additional Assumptions and Theoretical Results

In this section, we present the additional assumptions and theoretical results correspond-
ing to the extensions introduced in Sections 2.2.3 and 2.2.4, along with the necessary
adjustments to accommodate the constraint γjt = tγj discussed in Section 2.2.5. The
definitions of uj and eit follow those provided in Table A.1, according to the relevant
extension.

56



A.3.1 Extension in Section 2.2.3

Define Zt = (z1t, z2t, . . . , zNt) and Ut = (Γt,A,V ,B) for t = 1, . . . T . To establish
asymptotic properties under this extension, the following additional assumptions are
necessary:

Assumption A.1. zit ∈ Z for all i and t, where Z ⊂ Rpz is compact.

Assumption A.2. For some κ4 > 0, there exists t1, t2 ∈ {1, . . . , T} such that

lim inf
N→∞

πmin

(
(Zt1 − Zt2 ,1N)

⊤ (Zt1 − Zt2 ,1N)
)
/N ≥ κ4.

Assumption A.3. There exists κ5 > 0 such that the minimum eigenvalue of the matrix
diag

({
(NJ)−1/2

∑N
i=1

∑T
t=1 e

∗
ite

∗
it
⊤
}

j≤J

) (NJ)−1/2
∑T

t=1

 0T+p

zit
0K∗

 a∗
j
⊤


j≤J,i≤N

(NJ)−1/2
{∑T

t=1 a
∗
j

(
0⊤
T+p, z

⊤
it ,0

⊤
K∗

)}
i≤N,j≤J

diag

({
(NJ)−1/2T

∑J
j=1 a

∗
ja

∗
j
⊤
}

i≤N

)


is greater that κ5. Here diag({Qj}j≤J) represents a block-diagonal matrix whose jth
block on the diagonal is Qj, for any series of matrices {Qj}j≤J . Similarly {Qij}j≤J,i≤N

represents the block matrix where the {i, j}th block is Qij.

Assumption A.1 extends Assumption 2.1 to cater for the time-dependent covariate
zit. Assumption A.2 asserts sufficient variability in Zt across at least two time periods,
ensuring the identifiability of vj. Assumption A.3 is a working assumption for the proof
of asymptotic normality. As discussed in Section 2.2.5, when the constraint γjt = tγj is
imposed, the intercept term γjt1N is effectively replaced by γj(t1N), making t1N a com-
ponent of the time-dependent covariate vector Zt. In this setting, Assumptions A.1–A.3
can be naturally adapted to account for this change, and the subsequent theorems re-
main valid under the constraint. For instance, Assumption A.2 can be rewritten as
lim infN→∞ πmin

(
(Zt1 − Zt2)

⊤(Zt1 − Zt2)
)
/N ≥ κ4.

We now present the the following theorems under the normalisation criteria discussed
in (2.4) and (A.1):

Theorem A.1. Under Assumptions 2.1 to 2.5, A.1 and A.2, we have

1√
N
∥Θ̂−Θ∗ŜA∥F = OP (min{

√
N,
√
J}−1),

1√
J
∥Ût − U∗

t ŜU∥F = OP (min{
√
N,
√
J}−1).

Here, ŜA is defined as sgn(Â⊤A∗/J), where the function sgn(X) yields a diagonal matrix
whose diagonal elements are the signs of the diagonal elements of any square matrix X.
Moreover, ŜU is a (1+ p+ pz +K∗) by (1+ p+ pz +K∗) diagonal matrix whose diagonal
elements are set to 1, except for the last K∗ diagonal elements which are equal to ŜA.

Theorem A.2. Under Assumptions 2.1 to 2.7 and A.1 to A.3, for i = 1, . . . , N and
j = 1, . . . , J , we have

√
N
(
ûj − ŜUu

∗
j

)
d→ N

(
0,−Φ−1

j

)
and
√
J
(
θ̂i − ŜAθ

∗
i

)
d→ N

(
0,−Ψ−1

i

)
.
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Theorem A.3. Suppose that Assumptions 2.1 to 2.5, A.1 and A.2 hold and K∗ ∈ K. If
the penalty term ΛNJ satisfies max {N, J} ≲ ΛNJ ≲ NJ , then

lim
N,J→∞

P (K̂ = K∗) = 1.

Theorem A.1 provides the average rate of convergence of Θ̂ and Ût, t = 1, . . . , T . The
sign matrices ŜA and ŜU are introduced to address the inherent sign indeterminacy in
factors and loadings, that is, the factor structure remains unchanged if both the factors
and loadings are multiplied by −1. Theorem A.2 establishes asymptotic normality for
event-specific parameters. Similar results can also be obtained for the individual pa-
rameters θ̂i, with a modified form of asymptotic variance due to the construction of the
estimator. Theorem A.3 extends Theorem 2.4, proving that the number of latent factors
K can be consistently estimated with time-dependent covariates. The proofs of these
Theorems will be presented in Section A.4.

We point out that Theorems A.1 and A.2 hold without Assumptions A.1 to A.3 when
only static covariates are considered. They can also be viewed as more general versions
of Theorems 2.1 to 2.3. We will make that connection explicit in Section A.4, where we
present the proofs of these theoretical results.

A.3.2 Extension in Section 2.2.4

Define At = (ajkt)J×K and Ut = (Γt,At,V ,B) for t = 1, . . . , T in this context, with
the understanding that Γt = Γ = (γ1, . . . , γJ)

⊤ for all t when γjt = tγj is imposed.
To establish asymptotic properties under this extension, the following assumptions are
necessary:

Assumption A.4. For t = 1, . . . , T , J−1A∗
t
⊤A∗

t converges to a positive definite matrix
as J tends to infinity. Also, N−1Θ∗⊤Θ∗ converge to a positive definite matrix as N tends
to infinity.

Assumption A.5. There exists κ6 > 0 such that the minimum eigenvalue of the matrix

T∑
t=1


diag

({∑N
i=1 e

∗
ite

∗
it
⊤
}

j≤J

)




0T+Tp

zit
0K∗

Dit2θ
∗
i

...
DitTθ

∗
i


a∗
jt
⊤


j≤J,i≤N{

a∗
jt

(
0⊤
T+Tp, z

⊤
it ,0

⊤
K∗ , Dit2θ

∗
i
⊤, . . . , DitTθ

∗
i
⊤
)}

i≤N,j≤J
diag

({∑J
j=1 a

∗
jta

∗
jt
⊤
}

i≤N

)


is greater that (NJ)1/2κ6. When γjt = tγj, we require the minimum eigenvalue of the
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matrix

T∑
t=1



diag

({∑N
i=1 e

∗
ite

∗
it
⊤
}

j≤J

)
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

t
0Tp

zit
0K∗

Dit2θ
∗
i

...
DitTθ

∗
i
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a∗
jt
⊤


j≤J,i≤N{

a∗
jt

(
t,0⊤

Tp, z
⊤
it ,0

⊤
K∗ , Dit2θ

∗
i
⊤, . . . , DitTθ

∗
i
⊤
)}

i≤N,j≤J
diag

({∑J
j=1 a

∗
jta

∗
jt
⊤
}

i≤N

)


to be greater than (NJ)1/2κ6.

Assumption A.6. For some κ7 > 0, there exists t1, t2 ∈ {1, . . . , T} such that

lim inf
N→∞

πmin((Θ
∗,X ,1N,Zt1 ,Zt2)

⊤(Θ∗,X ,1N,Zt1 ,Zt2))/N ≥ κ7.

In the case γ∗jt = tγj, we impose additional condition that

lim inf
J→∞

πmin((Γ
∗,A∗

t1
,A∗

t1
)⊤(Γ ∗,A∗

1,A
∗
2)) ≥ κ7.

Assumptions A.4 and A.5 replaces Assumption 2.3 and A.3 under this extension,
respectively. Assumption A.6 replaces Assumptions 2.5 and A.2 and deserves more ex-
planation. The condition involving (Θ∗,X ,1N ,Zt1 ,Zt2) implies that the static factor Θ∗

must not lie in the span of (Zt1 ,Zt2). We illustrate the necessity of such assumption
through the following simple example: Suppose K = 1 and T = 2, and we are given
θ, a1, a2,v, z1 and z2 such that θ = z1 + z2 and a2 = −2a1. We can verify that

θa⊤
t + ztv

⊤ = θ̃ã⊤
t + ztṽ

⊤, for t = 1, 2, where

θ̃ = 2(z1 + 0.5z2), ã1 = a1, ã2 = 0.5a2 and ṽ = −a1 + v. Similarly, the additional
condition when γ∗jt = tγ∗ ensures that Γ = (γ1, . . . , γJ) does not lie in the span of A∗

t1

and A∗
t2
. We note that although Γ could be absorbed into v and t1N treated as part of Zt

for estimation, the original assumption no longer ensures identification, as t11N and t21N

become linearly dependent for all t1, t2 ∈ {1, . . . , T}. The additional condition is therefore
necessary and specifically tailored to address this scenario. Define Ut = (Γt,At,V ,B) for
t = 1, . . . , T . The following theorems, analogous to Theorems A.1, A.2 and A.3 hold for
this extension.

Theorem A.4. Under Assumptions 2.1, 2.2, A.4, 2.4, A.1 and A.6, we have

1√
N
∥Θ̂−Θ∗ŜA∥F = OP (min{

√
N,
√
J}−1),

1√
J
∥Ût − U∗

t ŜU∥F = OP (min{
√
N,
√
J}−1).

Here, ŜA is defined as sgn(Â⊤
1 A

∗
1/J), where the function sgn(X) yields a diagonal matrix

whose diagonal elements are the signs of the diagonal elements of any square matrix X.
Moreover, ŜU is a (1+ p+ pz +K∗) by (1+ p+ pz +K∗) diagonal matrix whose diagonal
elements are set to 1, except for the last K∗ diagonal elements which are equal to ŜA.
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Theorem A.5. Under Assumptions 2.1, 2.2, A.4, 2.4, 2.6, 2.7, A.1,A.5 and A.6, for
i = 1, . . . , N and j = 1, . . . , J , we have

√
N
(
ûj − ŜUu

∗
j

)
d→ N

(
0,−Φ−1

j

)
and
√
J
(
θ̂i − ŜAθ

∗
i

)
d→ N

(
0,−Ψ−1

i

)
.

Theorem A.6. Suppose that Assumptions 2.1, 2.2, A.4, 2.4, A.1 and A.6 hold and
K∗ ∈ K. If the penalty term ΛNJ satisfies max {N, J} ≲ ΛNJ ≲ NJ , then

lim
N,J→∞

P (K̂ = K∗) = 1.

In practice, we set ΛNJ = max{N, TJ} × log
(
max{N, TJ}−1J

∑N
i=1

∑T
t=1 rit

)
to

reflect that under this extension, each additional latent dimension introduces TJ new
parameters for each item at each time point.

The proofs of these theorems will be presented in Section A.4. We conclude this
section by noting that results analogous to those stated in Theorems 2.1 to 2.3 follow
from the proof of the above theorems, when the focus is on the regression coefficients B∗.

A.4 Proofs

In this section, we present the proofs of the theoretical results discussed in Chapter 2 and
this appendix. Specifically, Sections A.4.1, A.4.2, A.4.3, A.4.4 and A.4.5 are dedicated to
the proofs of Theorems A.1, A.2, A.3, A.4 and A.5, respectively. Moreover, Section A.4.6
establishes the consistency of the estimator introduced in Remark 2.1, for estimating the
asymptotic variance of β̂j, where j = 1, . . . , J . The argument is general and also applies
to the estimators of asymptotic variances under the extensions discussed in Sections 2.2.3
and 2.2.4, as well as to the asymptotic variance estimators for ûj and θ̂i using the same
approach.

Furthermore, it is essential to recognize that Theorem 2.1 emerges directly as a corol-
lary of Lemma A.4, which is introduced and proved in Section A.4.2. Subsequently,
Theorem 2.2 follows from the proof of Theorem A.1. Additionally, Theorem 2.3 follows
from Theorem A.2. Lastly, Theorem 2.4 is a special case of Theorem A.3, and Theorem
A.6 follows by an analogous argument, so the detailed derivation is omitted.

To simplify notation, the proofs of the theorems and results in Sections A.4.1 to
A.4.6 are conducted under the assumption that the scale parameters ϕj are known and
set to 1. Notably, the derivatives of l(Ξ) with respect to the parameters uj and θi are
equivalent to the derivatives of the full joint log-likelihood function. It is easy to see that
Theorems A.1, A.2, A.4 and A.5 hold when ϕj are unknown as the estimated parameters
in these theorems are unaffected by the scale parameters. Similarly, Theorem A.3 remains
valid since the information criterion considered in the work does not depend on the scale
parameter. Finally, it is easy to see that estimator introduced in Remark 2.1 remains
consistent when ϕj is unknown as long as the estimate of ϕ̂j is consistent.

A.4.1 Proof of Theorem A.1

Throughout this section, δ0, δ1, δ2, . . . denote positive constants that do not depend on
N, J . For any random variable Y , define the Orlicz norm ∥Y ∥Ψ as

∥Y ∥Ψ = inf {C > 0 : EΨ(|Y |/C) ≤ 1} ,
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where Ψ is a non-decreasing, convex function with Ψ(0) = 0. We write the norm as ∥Y ∥Ψ2

when Ψ(x) = exp(x2) − 1. We use ∥ · ∥S to denote the spectral norm. Additionally, we
define C(·, g,G) to denote the covering number of space G endowed with semimetric g.
We further define Mt = (mijt), where mijt = u⊤

j eit, t = 1 . . . T . For any Ξ(a),Ξ(b) ∈ HK∗
,

define d(Ξ(a),Ξ(b)) = maxt:t=1,...T ∥M (a)
t − M

(b)
t ∥F/

√
NJ . Let ρij = ρij(u

∗
j ,θ

∗
i ), ρijt =

ρijt(u
∗
j
⊤e∗it), wij(uj,θi) = ρij − ρij(uj,θi) and define

l∗NJ(Ξ) =
1

NJ

N∑
i=1

J∑
j=1

wij(uj,θi), l̄∗NJ(Ξ) =
1

NJ

N∑
i=1

J∑
j=1

E (wij(uj,θi)) .

We further define

WNJ(Ξ) = l∗NJ(Ξ)− l̄∗NJ(Ξ) =
1

NJ

N∑
i=1

J∑
j=1

(wij(uj,θi)− E (wij(uj,θi))) .

We prove the following three Lemmas. Theorem A.1 then follows from the proof of
Theorem 1 in Chen et al. (2021).

Lemma A.1. Under Assumptions 2.1,2.2, 2.4 and A.1, d(Ξ̂,Ξ∗) = op(1) as J,N →∞.

Proof: Pick any Ξ from the set HK∗
. By taking mijt = u⊤

j eit and expanding around

m∗
ijt = u∗

j
⊤e∗it for t = 1, . . . , T , we have

E
(
ρij − ρij(uj,θi)

)
=E

(
ρij − ρij −

T∑
t=1

rit(mijt −m∗
ijt)ρ

′

ijt(m
∗
ijt)− 0.5

T∑
t=1

rit(mijt −m∗
ijt)

2ρ
′′

ijt(m̃ijt)

)

=E

(
−0.5

T∑
t=1

rit(mijt −m∗
ijt)

2ρ
′′

ijt(m̃ijt)

)

=0.5
T∑
t=1

{
(mijt −m∗

ijt)
2b

′′

j (m̃ijt)P (rit = 1)
}
,

where m̃ijt lies between mijt and m
∗
ijt, t = 1, . . . T . Therefore, we have

E
(
ρij − ρij(uj,θi)

)
≳ (mijt −m∗

ijt)
2, t = 1, . . . T and

l̄∗NJ(Ξ) ≳ d2(Ξ,Ξ∗). (A.4)

by Assumptions 2.2 and 2.4. Also, by the definition of Ξ̂, we have l∗NJ(Ξ̂) = lNJ(Ξ
∗) −

lNJ(Ξ̂) ≤ 0, or equivalently WNJ(Ξ̂) + l̄∗NJ(Ξ̂) ≤ 0. Combining it with (A.4), we have

0 ≤ d2(Ξ̂,Ξ∗) ≲ l̄∗NJ(Ξ̂) ≤ sup
Ξ∈HK∗

|WNJ(Ξ)| .

So it remains to show that

sup
Ξ∈HK∗

|WNJ(Ξ)| = op(1). (A.5)

By Assumption 2.1, we can choose δ1 > 1 large enough such that ∥uj∥, ∥θi∥ ≤ δ1 for all
i, j, uj ∈ U and θi ∈ Θ. Let Bd(δ1) denote a Euclidean ball in Rd with radius δ1 for any
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positive integer d. For any ϵ > 0, let u(1), . . . ,u(qP ) be a maximal set of points in BP (δ1)
such that ∥u(h)−u(k)∥ > ϵ/δ1 for any h ̸= k. Here “maximal” signifies that no point can
be added without violating the validity of the inequality. Similarly, let θ(1), . . . ,θ(qK) be
a maximal set of points in BK(δ1) such that ∥θ(h)− θ(k)∥ > ϵ/δ1 for any h ̸= k. It is well
known that QP and QK∗ , the packing numbers of BP (δ1) and BK∗(δ1), respectively, are

bounded by δ2(δ1/ϵ)
P . For any Ξ ∈ HK∗

, define Ξ̄ = (ū⊤
1 , . . . , ū

⊤
J , θ̄

⊤
1 , . . . , θ̄

⊤
N)

⊤, where
ūj = {u(qj) : qj = min{q : q ≤ QP , ∥u(q) − uj∥ ≤ ϵ/δ1}} and θ̄i = {θ(qi) : qi = min{q :
q ≤ QK∗ , ∥θ(q) − θi∥ ≤ ϵ/δ1}}. This definition ensures that each Ξ ∈ HK∗

is uniquely
sent to a Ξ̄ ∈ HK∗

comprised of the maximal sets of points defined previously. Thus, we
can write

WNJ(Ξ) = WNJ(Ξ̄) +WNJ(Ξ)−WNJ(Ξ̄).

Define ēit = (D⊤
it ,x

⊤
i , z

⊤
it , θ̄

⊤
i )

⊤. By Assumption 2.2, there exists δ0 > 0 such that∣∣ρij(uj,θi)− ρij(ūj, θ̄i)
∣∣

≤
T∑
t=1

∣∣ρijt(u⊤
j eit)− ρijt(ū⊤

j ēit)
∣∣

≤δ0
T∑
t=1

∣∣u⊤
j eit − ū⊤

j ēit
∣∣

≤δ0
T∑
t=1

(
|γjt − γ̄jt|+ |β⊤

j xi − β̄
⊤
j xi|+ |v⊤

j zit − v̄⊤
j zit|+ |aj

⊤θi − ā⊤
j θ̄i|

)
≤δ0T

(
∥γj − γ̄j∥+ ∥aj∥∥θi − θ̄i∥+ ∥θ̄i∥∥aj − āj∥+ ∥xi∥∥βj − β̄j∥+ ∥zit∥∥vj − v̄j∥

)
≤5δ0Tϵ. (A.6)

Thus, we have

sup
Ξ∈HK∗

∥WNJ(Ξ)−WNJ(Ξ̄)∥ ≤ 10δ0Tϵ. (A.7)

Also, note that

∣∣wij(ūj, θ̄i)
∣∣ = ∣∣ρij − ρij(ūj, θ̄i)

∣∣ ≤ δ0

T∑
t=1

∣∣∣u∗
j
⊤e∗it − ū⊤

j ēit

∣∣∣ .
By Cauchy-Schwarz inequality,(

T∑
t=1

∣∣∣u∗
j
⊤e∗it − ū⊤

j ēit

∣∣∣)2

≤ T
T∑
t=1

∣∣∣u∗
j
⊤e∗it − ū⊤

j ēit

∣∣∣2 .
By Hoeffding’s inequality, we have

P
(∣∣∣√NJWNJ(Ξ̄)

∣∣∣ > c
)
≤ 2 exp

(
− 2c2

δ20T
3 · d2(Ξ̄,Ξ∗)

)
,

and by Lemma 2.2.1 of Van Der Vaart et al. (1996), it follows that ∥WNJ(Ξ̄)∥Ψ2 ≲
d(Ξ̄,Ξ∗)/

√
NJ. Since Ξ̄ can take at most QJ

P ×QN
K∗ ≲ (δ1/ϵ)

P (N+J) different values, and
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d(Ξ̄,Ξ∗) ≲ δ1, it follows from Lemma 2.2.2 of Van Der Vaart et al. (1996) that

E

(
sup

Ξ∈HK∗

∣∣WNJ(Ξ̄)
∣∣) ≤ ∥∥∥∥ sup

Ξ∈HK∗

∣∣WNJ(Ξ̄)
∣∣∥∥∥∥

Ψ2

≲
√

log(δ1/ϵ)
√
P (N + J)/

√
NJ

≲
√
log(δ1/ϵ)min

{√
N,
√
J
}−1

. (A.8)

Finally, by Markov’s inequality and (A.7), for any c > 0,

P

(
sup

Ξ∈HK∗
|WNJ(Ξ)| > c

)
≤P

(
sup

Ξ∈HK∗

∣∣WNJ(Ξ̄)
∣∣ > c

2

)
+ P

(
sup

Ξ∈HK∗

∣∣WNJ(Ξ)−WNJ(Ξ̄)
∣∣ > c

2

)
≤2

c
E

(
sup

Ξ∈HK∗

∣∣WNJ(Ξ̄)
∣∣)+ P

(
10δ0Tϵ >

c

2

)
.

Thus, by choosing c = 30δ0Tϵ, (A.5) follows from (A.8) and the fact that ϵ is arbitrary,
which concludes the proof.

Lemma A.2. Define HK∗
(c) =

{
Ξ ∈ HK∗

: d(Ξ,Ξ∗) ≤ c
}
. Under Assumptions 2.1-

2.5 and A.1-A.2, for sufficiently small c > 0 and sufficiently large N and J , for any
Ξ ∈ HK∗

(c), it holds that

∥Θ−Θ∗SA∥F/
√
N + ∥Ut − U∗

t SU∥F/
√
J ≤ δ3c, t = 1, . . . , T,

where SA = sgn
(
A⊤A∗/J

)
and SU is a (1 + p+ pz +K∗)× (1 + p+ pz +K∗) diagonal

matrix whose diagonal elements are 1, except for the last K∗ diagonal elements which are
equal to SA.

Proof: We first prove that ∥V − V ∗∥F /
√
J ≲ d(Ξ,Ξ∗). By Assumption A.2, there

exists t1, t2 ∈ {1, . . . , T} such that πmin

(
(Zt1 − Zt2 ,1N)

⊤ (Zt1 − Zt2 ,1N)
)
/N ≥ κ4/2 for

sufficiently large N . Without loss of generality, assume t1 = 1 and t2 = 2. We have

1√
NJ

∥∥∥(Z1 − Z2)
(
V ⊤ − V ∗⊤

)
+ 1N {(Γ1 − Γ ∗

1 )− (Γ2 − Γ ∗
2 )}

⊤
∥∥∥
F

≤ 1√
NJ

2∑
t=1

∥∥∥ΘA⊤ −Θ∗A∗ + X (B − B∗)⊤ + Zt

(
V ⊤ − V ∗⊤

)
+ 1N (Γt − Γ ∗

t )
⊤
∥∥∥
F

≤2d(Ξ,Ξ∗).
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Let Q = (V − V ∗, (Γ1 − Γ ∗
1 )− (Γ2 − Γ ∗

2 )), we have

1√
NJ

∥∥∥(Z1 − Z2)
(
V ⊤ − V ∗⊤

)
+ 1N {(Γ1 − Γ ∗

1 )− (Γ2 − Γ ∗
2 )}

⊤
∥∥∥
F

=
1√
NJ

∥∥(Z1 − Z2,1N)Q
⊤∥∥

F

=
1√
NJ

∥∥(Z1 − Z2,1N)Q
⊤Q(Q⊤Q)−1/2

∥∥
F

=
1√
NJ

∥∥∥(Z1 − Z2,1N)
(
Q⊤Q

)1/2∥∥∥
F

=
1√
NJ

√
tr
(
(Z1 − Z2,1N) (Q⊤Q)1/2 (Q⊤Q)1/2 (Z1 − Z2,1N)

⊤
)

≥ 1√
J

√√√√πmin

(
(Z1 − Z2,1N)

⊤ (Z1 − Z2,1N)
)

N

√
tr(Q⊤Q)

=
1√
J

√√√√πmin

(
(Z1 − Z2,1N)

⊤ (Z1 − Z2,1N)
)

N
∥Q∥F

Therefore, we have

1√
J
∥Q∥F =

1√
J
∥V − V ∗∥F +

1√
J
∥(Γ1 − Γ ∗

1 )− (Γ2 − Γ ∗
2 )∥F ≲ d(Ξ,Ξ∗). (A.9)

By triangle inequality, we have

1√
NJ

∥∥∥ΘA⊤ +XB⊤ + ZtV
⊤ + 1NΓ

⊤
t −Θ∗A∗⊤ −XB∗⊤ − ZtV

∗⊤ − 1NΓ
∗
t
⊤
∥∥∥
F
≤ d(Ξ,Ξ∗),∥∥∥ΘA⊤ +XB⊤ + 1NΓ

⊤
t −Θ∗A∗⊤ −XB∗⊤ − 1NΓ

∗
t
⊤
∥∥∥
F
≤
√
NJd(Ξ,Ξ∗) +

∥∥∥Zt (V − V ∗)⊤
∥∥∥
F
.

(A.10)

Let πmax(·) refers to the largest eigenvalue of a matrix. Since Z is bounded, we have

1√
NJ

∥∥∥Zt (V − V ∗)⊤
∥∥∥
F
=

1√
NJ

√
tr(Zt (V − V ∗)⊤ (V − V ∗)Z⊤

t )

≤ 1√
J

√
tr(Z⊤

t Zt/N · (V − V ∗)⊤ (V − V ∗))

≤ 1√
J
πmax

(√
tr(Z⊤

t Zt/N)

)∥∥∥(V − V ∗)⊤
∥∥∥
F

≲d(Ξ,Ξ∗). (A.11)

Thus by (A.10) and (A.11), we have

1√
NJ

∥∥∥ΘA⊤ +XB⊤ + 1NΓ
⊤
t −Θ∗A∗⊤ −XB∗⊤ − 1NΓ

∗
t
⊤
∥∥∥
F
≲ d(Ξ,Ξ∗).

Define H1 = ΘA⊤ −Θ∗A∗⊤ and H2 = X(B − B∗)⊤ + 1N(Γt − Γ ∗
t )

⊤,∥∥∥ΘA⊤ +XB⊤ + 1NΓt
⊤ −Θ∗A∗⊤ −XB∗⊤ − 1NΓ

∗
t
⊤
∥∥∥2
F

= ∥H1∥2F + ∥H2∥2F + 2tr(H⊤
1 H2)

= ∥H1∥2F + ∥H2∥2F
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because Θ∗⊤(1N,X ) = Θ⊤(1N,X ) = 0K∗×(1+p). Therefore, we have

1√
NJ

∥∥∥ΘA⊤ −Θ∗A∗⊤
∥∥∥
F
≲ d(Ξ,Ξ∗) (A.12)

and
1√
NJ

∥∥X (B − B∗)⊤ + 1N(Γt − Γ ∗
t )

⊤∥∥
F
≲ d(Ξ,Ξ∗). (A.13)

From (A.12) and the arguments in Lemma 2 of Chen et al. (2021), we can prove that

∥Θ−Θ∗SA∥F /
√
N + ∥A− A∗SA∥F /

√
J ≲ d(Ξ,Ξ∗). (A.14)

Finally, from (A.13),

1√
N

∥∥X (B − B∗)⊤ + 1N(Γt − Γ ∗
t )

⊤∥∥
F
≥

√
πmin (X ,1N)

⊤ (X ,1N)

N
∥(B ,Γt)− (B∗,Γ ∗

t )∥F .

Hence

∥(B ,Γt)− (B∗,Γ ∗
t )∥F /

√
J ≲ d(Ξ,Ξ∗) (A.15)

for sufficiently large N and J by Assumption 2.5. The proof of Lemma A.2 is thus
complete by (A.9), (A.14) and (A.15).

Lemma A.3. Under Assumptions 2.1-2.5 and A.1-A.2, for sufficiently small c and suf-
ficiently large N and J , it holds that

E

(
sup

Ξ∈HK∗ (c)

|WNJ(Ξ)|

)
≲

c

min
{√

N,
√
J
} .

Proof: In the proof of Lemma A.1 we have shown that, for Ξ(a),Ξ(b) ∈ HK∗
,∥∥∥√NJ ∣∣WNJ

(
Ξ(a)

)
−WNJ

(
Ξ(b)

)∣∣∥∥∥
Ψ2

≲ d
(
Ξ(a),Ξ(b)

)
.

Since the process WNJ(Ξ) is separable, it follows from Theorem 2.2.4 of Van Der Vaart
et al. (1996) that

√
NJE

(
sup

Ξ∈HK∗ (c)

|WNJ(Ξ)|

)
≲
√
NJ

∥∥∥∥∥ sup
Ξ∈HK∗ (c)

|WNJ(Ξ)|

∥∥∥∥∥
Ψ2

≲
∫ c

0

√
logD(ϵ, d,HK∗(c))dϵ.

Thus, it remains to be shown that∫ c

0

√
logD(ϵ, d,HK∗(c))dϵ = O

(√
N + Jc

)
. (A.16)

To prove (A.16), first note that Lemma A.2 implies that

HK∗
(c) ⊂

⋃
E∈S

HK∗
(c;E),
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where

S =

{
E ∈ R(1+p+pz+K∗)×(1+p+pz+K∗) :E = diag(1, . . . , 1, u(2+p+pz), . . . , u(1+p+pz+K∗)),

uk ∈ {−1, 1} for k = 2 + p+ pz, . . . , 1 + p+ pz +K∗
}

is the set of diagonal matrices E that has ones on the diagonal in all positions except for
the (2 + p+ pz)th to (1 + p+ pz +K∗)th positions, which can take either +1 or −1, and

HK∗
(c;E) =

{
Ξ ∈ HK∗

:∥Θ−Θ∗E[(2+p+pz):(1+p+pz+K∗),(2+p+pz):(1+p+pz+K∗)]∥F/
√
N

+ max
t=1,...,T

∥Ut − U∗
t E∥F/

√
J ≤ δ3c

}
.

Since there are 2K
∗
elements in S and K∗ is fixed, it suffices to show that∫ c

0

√
logD(ϵ, d,HK∗(c;E))dϵ = O

(√
N + Jc

)
for each E ∈ S. Without loss of generality, we focus on the case E = I1+K∗+p+pz .
Second, for any Ξ(a),Ξ(b) ∈ HK∗

,

d(Ξ(a),Ξ(b)) =
1√
NJ

max
t=1,...T

∥∥∥(1N,X ,Zt,Θ
(a))U

(a)
t

⊤
− (1N,X ,Zt,Θ

(b))U
(b)
t

⊤∥∥∥
F

≤ 1√
NJ

max
t=1,...T

∥∥∥(1N,X ,Zt,Θ
(a))U

(a)
t

⊤
− (1N,X ,Zt,Θ

(b))U
(a)
t

⊤∥∥∥
F

+
1√
NJ

max
t=1,...T

∥∥∥(1N,X ,Zt,Θ
(b))U

(a)
t

⊤
− (1N,X ,Zt,Θ

(b))U
(b)
t

⊤∥∥∥
F

≤ 1√
NJ

∥∥∥(Θ(a) −Θ(b)
)
A(a)⊤

∥∥∥
F
+
∥(1N,X ,Zt,Θ

(b))∥F√
N

· max
t=1,...,T

∥∥∥U (a)
t − U

(b)
t

∥∥∥
F√

J

≤δ4

∥∥Θ(a) −Θ(b)
∥∥
F√

N
+ max

t=1,...,T

∥∥∥U (a)
t − U

(b)
t

∥∥∥
F√

J


≤δ4

(∥∥Θ(a) −Θ(b)
∥∥
F√

N
+

∥∥(Γ (a),B (a),V (a),A(a)
)
−
(
Γ (b),B (b),V (b),A(b)

)∥∥
F√

J

)
.

Now define

d∗(Ξ(a),Ξ(b)) = 2δ4

√
∥Θ(a) −Θ(b)∥2F

N
+
∥(Γ (a),B (a),V (a),A(a))− (Γ (b),B (b),V (b),A(b))∥2F

J
.

It follows from
√
x+
√
y ≤ 2

√
x+ y that d(Ξ(a),Ξ(b)) ≤ d∗(Ξ(a),Ξ(b)). Moreover, for any

Ξ ∈ HK∗
(c; I1+p+pz+K∗), we have(

∥Θ−Θ∗∥F√
N

+
∥(Γ ,A,B ,V )− (Γ ∗,A∗,B∗,V ∗)∥F√

J

)
≤ Tδ3c.

Thus it follows from
√
x+ y ≤

√
x+
√
y that

HK∗
(c; I1+K∗+p+pz) ⊂ HK∗(c) =

{
Ξ ∈ HK∗

: d∗(Ξ,Ξ∗) ≤ δ5c
}

where δ5 = 2Tδ3δ4. The remainder of the proof follows from the argument presented in
lemma 3 of Chen et al. (2021).
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A.4.2 Proof of Theorem A.2

It suffices to prove the result for uj, as the argument for θi is symmetric. Without loss

of generality, we assume that ŜA = IK∗ to simplify the notation. Define

l∗j,N(uj,Θ) =
1

N

N∑
i=1

(
ρij(u

∗
j ,θ

∗
i )− ρij(uj,θi)

)
,

l̄∗j,N(uj,Θ) =
1

N

N∑
i=1

E
(
ρij(u

∗
j ,θ

∗
i )− ρij(uj,θi)

)
,

ϱ̆ijt(·) = ϱijt(·)− E(ϱijt(·)), ϱ̆ijt = ϱ̆ijt(u
∗
j
⊤e∗it).

We first prove the following Lemmas:

Lemma A.4. Under Assumptions 2.1-2.5 and A.1-A.2, we have∥∥ûj − u∗
j

∥∥
F
= oP (1) for each j.

Proof: Note that ûj = argminuj∈U l
∗
j,N(uj, Θ̂). First, we show that

sup
uj∈U

∣∣∣l∗j,N(uj, Θ̂)− l̄∗j,N(uj,Θ
∗)
∣∣∣ = oP (1). (A.17)

Note that

sup
uj∈U

∣∣∣l∗j,N(uj, Θ̂)− l̄∗j,N(uj,Θ
∗)
∣∣∣ ≤ sup

uj∈U

∣∣∣l∗j,N(uj, Θ̂)− l∗j,N(uj,Θ
∗)
∣∣∣

+ sup
uj∈U

∣∣l∗j,N(uj,Θ
∗)− l̄∗j,N(uj,Θ

∗)
∣∣ .

It is easy to show that

sup
uj∈U

∣∣∣l∗j,N(uj, Θ̂)− l∗j,N(uj,Θ
∗)
∣∣∣ ≲ sup

uj∈U
∥aj∥ ·

1

N

N∑
i=1

∥∥∥θ̂i − θ∗
i

∥∥∥
≲
∥∥∥Θ̂−Θ∗

∥∥∥
F
/
√
N = OP

(
min{

√
N,
√
J}−1

)
,

sup
uj∈U

∣∣l∗j,N(uj,Θ
∗)− l̄∗j,N(uj,Θ

∗)
∣∣ = oP (1),

thus showing that (A.17) holds.
Second, we can show that for any ϵ > 0, and Bj(ϵ) =

{
uj ∈ U :

∥∥uj − u∗
j

∥∥ ≤ ϵ
}
,

inf
uj∈BC

j (ϵ)
l̄∗j,N(uj,Θ

∗) > l̄∗j,N(u
∗
j ,Θ

∗) = 0, (A.18)

where BC
j (ϵ) denotes the complement of Bj(ϵ). It follows from standard argument by

noting that l̄∗j,N(uj,Θ
∗) is convex and differentiable, holding Θ∗ fixed, for example, the

proof of Proposition 3.1 of Galvao and Kato (2016b).
Finally, given (A.17) and (A.18), the proof is complete by standard consistency proof of
M-estimator(see Theorem 2.1 of Newey and McFadden (1994).)

Lemma A.5. Under Assumptions 2.1-2.7, A.1 and A.2, we have∥∥ûj − u∗
j

∥∥ = Op(N
−1/2) for each j.
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Proof: For any fixed uj ∈ U and θi ∈ Θ, expanding ρ
′
ijt(u

⊤
j eit)eit gives

ρ
′

ijt(u
⊤
j eit)eit

=ρ
′

ijt(u
∗
j
⊤eit)eit + ρ

′′

ijt(u
∗
j
⊤eit)eit

{
e⊤it(uj − u∗

j)
}
+ 0.5ρ

′′′

ijt(ũ
⊤
j eit)eit

{
e⊤it(uj − u∗

j)
}2

=
{
ρ

′

ijt + ρ
′′

ijt(u
∗
j
⊤ẽit)u

∗
j
⊤ (eit − e∗it)

}
eit

+
{
ρ

′′

ijt + ρ
′′′

ijt(u
∗
j
⊤ẽit)u

∗
j
⊤ (eit − e∗it)

}
eit
{
e⊤it(uj − u∗

j)
}

+ 0.5ρ
′′′

ijt(ũ
⊤
j eit)eit

{
e⊤it(uj − u∗

j)
}2

=ρ
′

ijte
∗
it + ρ

′

ijt (eit − e∗it) + ρ
′′

ijt(u
∗
j
⊤ẽit)eitu

∗
j
⊤ (eit − e∗it) + ρ

′′

ijteit
{
e⊤it(uj − u∗

j)
}

+ ρ
′′′

ijt(u
∗
j
⊤ẽit)eitu

∗
j
⊤ (eit − e∗it)

{
e⊤it(uj − u∗

j)
}
+ 0.5ρ

′′′

ijt(ũ
⊤
j eit)eit

{
e⊤it(uj − u∗

j)
}2
,

where ũj lies between uj and u∗
j and ẽit lies between eit and e∗it. Taking expectations on

both sides of the above equation, and setting uj = ûj, ei = êi, it follows that

1

N

N∑
i=1

E

(
T∑
t=1

ritρ
′

ijt(û
⊤
j êit)êit

)

=
1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′

ijt(û
⊤
j êit)

)
êit

=
1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′

ijt

)
e∗it +

1

N

N∑
i=1

T∑
t=1

(
E
(
ϱ

′′

ijt

)
êitê

⊤
it

)
(ûj − u∗

j)

+OP

(
N−1/2

∥∥∥Θ̂−Θ∗
∥∥∥
F

)
+OP

(∥∥ûj − u∗
j

∥∥) ·OP

(
N−1/2

∥∥∥Θ̂−Θ∗
∥∥∥
F

)
+OP (

∥∥ûj − u∗
j

∥∥2).
Note that we have N−1

∑N
i=1

∑T
t=1E

(
ϱ

′
ijt

)
e∗it = 0. Also, by Theorem A.1,

1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′′

ijt

)
êitê

⊤
it =

1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′′

ijt

)
e∗ite

∗
it
⊤ +

1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′′

ijt

)(
êitê

⊤
it − e∗ite

∗
it
⊤
)

= Φj + op(1).

Then, by Theorem A.1 and Lemma A.4, we have

Φj(ûj − u∗
j) + op

(∥∥ûj − u∗
j

∥∥) = OP

(
min

{√
N,
√
J
}−1

)
+

1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′

ijt(û
⊤
j êit)

)
êit.

(A.19)

Note that we can write

1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′

ijt(û
⊤
j êit)

)
êit

=− 1

N

N∑
i=1

T∑
t=1

ϱ̆
′

ijte
∗
it −

1

N

N∑
i=1

T∑
t=1

(
ϱ̆

′

ijt(û
⊤
j êit)êit − ϱ̆

′

ijte
∗
it

)
=− 1

N

N∑
i=1

T∑
t=1

ϱ̆
′

ijte
∗
it −

1

N

N∑
i=1

T∑
t=1

(
ϱ̆

′

ijt(û
⊤
j êit)êit − ϱ̆

′

ijt(û
⊤
j e

∗
it)e

∗
it

)
− 1

N

N∑
i=1

T∑
t=1

(
ϱ̆

′

ijt(û
⊤
j e

∗
it)− ϱ̆

′

ijt

)
e∗it.
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The first term of the RHS of the above equation is clearly OP (N
−1/2) by central limit

theorem. For the second term on the RHS of the equation, we have

1

N

N∑
i=1

T∑
t=1

(
ϱ̆

′

ijt(û
⊤
j êit)êit − ϱ̆

′

ijt(û
⊤
j e

∗
it)e

∗
it

)
=

1

N

N∑
i=1

T∑
t=1

ϱ̆
′

ijt(û
⊤
j e

∗
it) (êit − e∗it) +

1

N

N∑
i=1

T∑
t=1

ϱ̆
′′

ijt(û
⊤
j ẽit)êitû

⊤
j (êit − e∗it) , (A.20)

where ẽit lies between êit and e∗it. The first term of the RHS of (A.20) isOP

(
1/min

{√
N,
√
J
})

due to the boundedness of ϱ̆
′
ijt, and by Theorem A.1, we have N−1

∑N
i=1 ∥êit − e∗it∥ =

OP

(
1/min

{√
N,
√
J
})

. Similarly, the second term on the RHS of (A.20) is also

OP

(
1/min

{√
N,
√
J
})

. Finally, we can show that

1

N

N∑
i=1

T∑
t=1

(
ϱ̆

′

ijt(û
⊤
j e

∗
it)− ϱ̆

′

ijt

)
e∗it

=
1

N

N∑
i=1

T∑
t=1

{
ϱ̆

′

ijt + ϱ̆
′′

ijt(ũ
⊤
j e

∗
it)e

∗
it
⊤ (ûj − u∗

j

)
− ϱ̆′

ijt

}
e∗it

=
1

N

N∑
i=1

T∑
t=1

{
ϱ̆

′′

ijt(ũ
⊤
j e

∗
it)e

∗
it
⊤ (ûj − u∗

j

)}
e∗it

=OP (1/
√
N) · op(∥ûj − u∗

j∥)

by central limit theorem, where ũj lies between ûj and u∗
j . Combining the above results

yields

1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′

ijt(û
⊤
j êit)

)
êit = OP

(
1/min

{√
N,
√
J
})

+ op(∥ûj − u∗
j∥). (A.21)

Thus the desired result follows from (A.19), (A.21) and Assumption 2.6. To derive the
asymptotic distribution of ûj, it is essential to obtain the stochastic expansion of θ̂i.
Define

ΦN,j =
1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′′

ijt

)
e∗ite

∗
it
⊤, ΨJ,i =

1

J

J∑
j=1

T∑
t=1

E
(
ϱ

′′

ijt

)
a∗
ja

∗
j
⊤,

PNJ(Ξ) = Tδ

{
1

2J

K∗∑
l=1

K∗∑
q>l

( J∑
j=1

ajlajq

)2

+
1

2N

K∗∑
l=1

K∗∑
q>l

( N∑
i=1

θilθiq

)2

+
1

8J

K∗∑
k=1

( J∑
j=1

a2jk − J
)2

+
1

2N

K∗∑
l=1

( N∑
i=1

θil

)2

+
1

2N

K∗∑
k=1

p∑
l=1

( N∑
i=1

θikxil

)}
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for some δ > 0. We further define

S∗(Ξ)

=

. . . , 1√
NJ

N∑
i=1

T∑
t=1

E
(
ϱ

′

ijt(u
⊤
j eit)

)
e⊤it , . . .︸ ︷︷ ︸

1×JP

, . . . ,
1√
NJ

J∑
j=1

T∑
t=1

E
(
ϱ

′

ijt(u
⊤
j eit)

)
a⊤
j , . . .︸ ︷︷ ︸

1×NK∗


⊤

,

S(Ξ) = S∗(Ξ) + ∂PNJ(Ξ)/∂Ξ, H(Ξ) = ∂S∗(Ξ)/∂Ξ⊤ + ∂PNJ(Ξ)/∂Ξ∂Ξ
⊤

and let H = H(Ξ∗). Expanding S(Ξ̂) around S(Ξ∗) gives

S(Ξ̂) = S(Ξ∗) +H · (Ξ̂−Ξ∗) + 0.5R(Ξ̂), (A.22)

where

R(Ξ̂) =

{
JP+NK∗∑

m=1

∂H(Ξ̃)/∂Ξm · (Ξ̂m −Ξ∗
m)

}
(Ξ̂−Ξ∗),

Ξ̃ lies between Ξ̂ and Ξ∗. Further, define

Hd =

(
HU

d 0
0 HΘ

d

)
,HU

d =

√
N√
J
diag (ΦN,1, . . . ,ΦN,J) ,HΘ

d =

√
J√
N
diag (ΨJ,1, . . . ,ΨJ,N) ,

we have the following lemma.

Lemma A.6. Under Assumptions 2.1-2.7, A.1-A.3 and the condition that
∑N

i=1 xi =

0p and
∑N

i=1 xikxil = 0 for l, k ∈ {1, . . . , p}, l ̸= k, the matrix H is invertible and∥∥H−1 −H−1
d

∥∥
max

= O(1/N).

Proof: We assume p = T = K∗ = 2 for simplicity, which can be generalised easily.
We consider

PNJ(Ξ) = 2δ

{
1

2N

( N∑
i=1

θi1θi2

)2

+
1

2J

( J∑
j=1

aj1aj2

)2

+
1

8J

( J∑
j=1

a2j1 − J
)2

+
1

8J

( J∑
j=1

a2j2 − J
)2

+
1

2N

( N∑
i=1

θi1

)2

+
1

2N

( N∑
i=1

θi2

)2

+
1

2N

2∑
k=1

2∑
p=1

( N∑
i=1

θikxip

)2
}
.

Then we can define

µ1 = ((0⊤
4+pz , a

∗
11, 0), . . . , (0

⊤
4+pz , a

∗
J1, 0),0

⊤
2N)

⊤/
√
J,

µ2 = ((0⊤
4+pz , 0, a

∗
12), . . . , (0

⊤
4+pz , 0, a

∗
J2),0

⊤
2N)

⊤/
√
J,

µ3 = ((0⊤
4+pz , a

∗
12, a

∗
11), . . . , (0

⊤
4+pz , a

∗
J2, a

∗
J1),0

⊤
2N)

⊤/
√
J,

µ4 = (0⊤
PJ , (θ

∗
12, θ

∗
11), . . . , (θ

∗
N2, θ

∗
N1))

⊤/
√
N

µ5 = (0⊤
PJ , (1, 0), . . . , (1, 0))

⊤/
√
N,

µ6 = (0⊤
PJ , (0, 1), . . . , (0, 1))

⊤/
√
N,

µ7 = (0⊤
PJ , (x11, 0), . . . , (xN1, 0))

⊤/
√
N,

µ8 = (0⊤
PJ , (0, x11), . . . , (0, xN1))

⊤/
√
N,

µ9 = (0⊤
PJ , (x12, 0), . . . , (xN2, 0))

⊤/
√
N,

µ10 = (0⊤
PJ , (0, x12), . . . , (0, xN2))

⊤/
√
N,
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such that ∂PNJ(Ξ
∗)/∂Ξ∂Ξ⊤ = 2δ

(∑10
m=1µmµ

⊤
m

)
. We further define

ω1,1 =

(0⊤
4+pz , a

∗
11/
√
J, 0), . . . , (0⊤

4+pz , a
∗
J1/
√
J, 0)︸ ︷︷ ︸

ω⊤
1U,1

, (−θ∗11/
√
N, 0), . . . , (−θ∗N1/

√
N, 0)︸ ︷︷ ︸

ω⊤
1Θ,1


⊤

,

ω2,1 =

(0⊤
4+pz , 0, a

∗
12/
√
J), . . . , (0⊤

4+pz , 0, a
∗
J2/
√
J)︸ ︷︷ ︸

ω⊤
2U,1

, (0,−θ∗12/
√
N), . . . , (0,−θ∗N2/

√
N)︸ ︷︷ ︸

ω⊤
2Θ,1


⊤

,

ω3,1 =

(0⊤
4+pz , a

∗
12/
√
J, 0), . . . , (0⊤

4+pz , a
∗
J2/
√
J, 0)︸ ︷︷ ︸

ω⊤
3U,1

, (0,−θ∗11/
√
N), . . . , (0,−θ∗N1/

√
N)︸ ︷︷ ︸

ω⊤
3Θ,1


⊤

,

ω4,1 =

(0⊤
4+pz , 0, a

∗
11/
√
J), . . . , (0⊤

4+pz , 0, a
∗
J1/
√
J)︸ ︷︷ ︸

ω⊤
4U,1

, (−θ∗12/
√
N, 0), . . . , (−θ∗N2/

√
N, 0)︸ ︷︷ ︸

ω⊤
4Θ,1


⊤

,

ω5,1 =

(a∗11/
√
J,0⊤

5+pz), . . . , (a
∗
J1/
√
J,0⊤

5+pz)︸ ︷︷ ︸
ω⊤

5U,1

, (−1/
√
N, 0), . . . , (−1/

√
N, 0)︸ ︷︷ ︸

ω⊤
5Θ,1


⊤

,

ω6,1 =

(a∗12/
√
J,0⊤

5+pz), . . . , (a
∗
J2/
√
J,0⊤

5+pz)︸ ︷︷ ︸
ω⊤

6U,1

, (0,−1/
√
N), . . . , (0,−1/

√
N)︸ ︷︷ ︸

ω⊤
6Θ,1


⊤

,

ω7,1 =

(0, 0, a∗11/
√
J,0⊤

3+pz), . . . , (0, 0, a
∗
J1/
√
J,0⊤

3+pz)︸ ︷︷ ︸
ω⊤

7U,1

, (−x11/
√
N, 0), . . . , (−xN1/

√
N, 0)︸ ︷︷ ︸

ω⊤
7Θ,1


⊤

,

ω8,1 =

(0, 0, a∗12/
√
J,0⊤

3+pz), . . . , (0, 0, a
∗
J2/
√
J,0⊤

3+pz)︸ ︷︷ ︸
ω⊤

8U,1

, (0,−x11/
√
N), . . . , (0,−xN1/

√
N)︸ ︷︷ ︸

ω⊤
8Θ,1


⊤

,

ω9,1 =

(0, 0, 0, a∗11/
√
J,0⊤

2+pz), . . . , (0, 0, 0, a
∗
J1/
√
J,0⊤

2+pz)︸ ︷︷ ︸
ω⊤

9U,1

, (−x12/
√
N, 0), . . . , (−xN2/

√
N, 0)︸ ︷︷ ︸

ω⊤
9Θ,1


⊤

,

ω10,1 =

(0, 0, 0, a∗12/
√
J,0⊤

2+pz), . . . , (0, 0, 0, a
∗
J2/
√
J,0⊤

2+pz)︸ ︷︷ ︸
ω⊤

10U,1

, (0,−x12/
√
N), . . . , (0,−xN2/

√
N)︸ ︷︷ ︸

ω⊤
10Θ,1


⊤

,

andW1 = (ω1,1,ω2,1, . . . ,ω10,1). It is easy to check that ω⊤
p,1ωq,1 = 0 for p ̸= q. Moreover,
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we have

W1W
⊤
1 =

10∑
k=1

ωk,1ω
⊤
k,1

=


∑10

k=1 ωkU ,1ω
⊤
kU ,1 −(NJ)−1/2




Di1

xi

0pz

θ∗i

 a∗
j
⊤


j≤J,i≤N

−(NJ)−1/2
{
a∗
j

(
D⊤

i1,x
⊤
i ,0

⊤
pz , θ

∗
i
⊤)}

i≤N,j≤J

∑10
k=1ωkΘ,1ω

⊤
kΘ,1

 .

(A.23)

Further, it is easy to see that under our normalisation,

W⊤
1 W1 = diag

(
σN1 + 1, σN2 + 1, σN1 + 1, σN2 + 1, 2, 2,

1 +N−1

N∑
i=1

x2i1, 1 +N−1

N∑
i=1

x2i1, 1 +N−1

N∑
i=1

x2i2, 1 +N−1

N∑
i=1

x2i2

)
.

Next, we project µk onto W1, and write µk = W1sk,1 + ζk,1 for k = 1, . . . 10, where
sk,1 = (W⊤

1 W1)
−1W⊤

1 µk. For example, we have

s1,1 =



1
σN1+1

0
0
0
0
0
0
0
0
0


, s2,1 =



0
1

σN2+1

0
0
0
0
0
0
0
0


s3,1 =



0
0
1

σN1+1
1

σN2+1

0
0
0
0
0
0


, s4,1 =



0
0

− σN1

σN1+1

− σN2

σN2+1

0
0
0
0
0
0


, s5,1 =



0
0
0
0
−0.5
0
0
0
0
0


.

Define SN,1 =
∑10

k=1 sk,1s
⊤
k,1. We have

SN,1 =



1
(1+σN1)2

0 0 0

0 1
(1+σN2)2

0 0

0 0
1+σ2

N1

(1+σN1)2
1+σN1σN2

(σN1+1)(σN2+1)

0 0 1+σN1σN2

(σN1+1)(σN2+1)

1+σ2
N2

(1+σN2)2

04×6

06×4 diag



0.25
0.25

(N−1
∑N

i=1 x
2
i1)

2

(1+N−1
∑N

i=1 x
2
i1)

2

(N−1
∑N

i=1 x
2
i1)

2

(1+N−1
∑N

i=1 x
2
i1)

2

(N−1
∑N

i=1 x
2
i2)

2

(1+N−1
∑N

i=1 x
2
i2)

2

(N−1
∑N

i=1 x
2
i2)

2

(1+N−1
∑N

i=1 x
2
i2)

2 )





.
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It is easy to show that there exists π > 0 such that πmin(SN,1) > π for all large N as
long as σN1 − σN2 is bounded below by a positive constant for all large N , which is true
under our assumption that σN1 → σ1, σN2 → σ2, and σ1 > σ2 as well as Assumption 2.5.
Likewise, we can define ω1,2, . . . ,ω10,2 and W2 = (ω1,2,ω2,2, . . . ,ω10,2) such that

ω5,2 =

(0, a∗11/
√
J,0⊤

4+pz), . . . , (0, a
∗
J1/
√
J,0⊤

4+pz)︸ ︷︷ ︸
ω⊤

5U,2

, (−1/
√
N, 0), . . . , (−1/

√
N, 0)︸ ︷︷ ︸

ω⊤
5Θ,2


⊤

,

ω6,2 =

(0, a∗12/
√
J,0⊤

4+pz), . . . , (0, a
∗
J2/
√
J),0⊤

4+pz)︸ ︷︷ ︸
ω⊤

6U,2

, (0,−1/
√
N), . . . , (0,−1/

√
N)︸ ︷︷ ︸

ω⊤
6Θ,2


⊤

,

and ωk,2 = ωk,1 for k = 1, . . . , 4 and k = 7, . . . , 10. We can easily verify that ω⊤
p,2ωq,2 = 0

for p ̸= q,

W2W
⊤
2 =

10∑
k=1

ωk,2ω
⊤
k,2

=


∑10

k=1 ωkU ,2ω
⊤
kU ,2 −(NJ)−1/2




Di2

xi

0pz

θ∗i

 a∗
j
⊤


j≤J,i≤N

−(NJ)−1/2
{
a∗
j

(
D⊤

i2,x
⊤
i ,0

⊤
pz , θ

∗
i
⊤)}

i≤N,j≤J

∑10
k=1ωkΘ,2ω

⊤
kΘ,2

 ,

(A.24)

and W⊤
2 W2 = W⊤

1 W1. Similarly, we can write µk = W2sk,2 + ζk,2 for k = 1, . . . 10,
where sk,2 = (W⊤

2 W2)
−1W⊤

2 µk. We can easily verify that sk,2 = sk,1 for all k and thus
SN,2 =

∑10
k=1 sk,2s

⊤
k,2 = SN,1. Therefore, we write sk = sk,1 = sk,2 and SN = SN,1 = SN,2.

It then follows that

∂PNJ(Ξ
∗)/∂Ξ∂Ξ⊤ = 2δ

(
10∑
k=1

µkµ
⊤
k

)

= δ
2∑

l=1

Wl

(
10∑
k=1

sks
⊤
k

)
W⊤

l + δ
2∑

l=1

(
10∑
k=1

ζk,lζ
⊤
k,l

)

= δπ

2∑
l=1

WlW
⊤
l + δ

2∑
l=1

Wl (SN − πI10)W⊤
l + δ

2∑
l=1

(
10∑
k=1

ζk,lζ
⊤
k,l

)
.

(A.25)

Note that there exists κ8 > 0 such that E(ϱ
′′
ijt(u

⊤
j eit)) > κ8 by Assumptions 2.1, 2.2 and
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2.4. Now let δ = min{κ8, δπ}. Then it follows from (A.25) that

H =∂S∗(Ξ∗)/∂Ξ⊤ + ∂PNJ(Ξ
∗)/∂Ξ∂Ξ⊤

=∂S∗(Ξ∗)/∂Ξ⊤ + δ
2∑

l=1

WlW
⊤
l + (δπ − δ)

2∑
l=1

WlW
⊤
l + δ

2∑
l=1

Wl (SN − πI10)W⊤
l

+ δ

2∑
l=1

(
10∑
k=1

ζk,lζ
⊤
k,l

)

≥∂S∗(Ξ∗)/∂Ξ⊤ + δ

2∑
l=1

WlW
⊤
l .

Moreover, we can write

(NJ)1/2∂S∗(Ξ∗)/∂Ξ⊤

=

diag

({∑N
i=1

∑T
t=1E

(
ϱ

′′
ijt

)
e∗ite

∗
it
⊤
}

j≤J

) {∑T
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ϱ

′′
ijt

)
e∗ita

∗
j
⊤
}

j≤J,i≤N{∑T
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(
ϱ

′′
ijt

)
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je

∗
it
⊤
}

i≤N,j≤J
diag

({∑J
j=1

∑T
t=1E

(
ϱ

′′
ijt

)
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∗
j
⊤
}

i≤N

)


= δ


diag

({∑N
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∑T
t=1 e

∗
ite

∗
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⊤
}

j≤J

) ∑T
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 04

zit
02

 a∗
j
⊤


j≤J,i≤N{∑T

t=1 a
∗
j

(
0⊤
4 , z

⊤
it ,0

⊤
2

)}
i≤N,j≤J

diag

({
T
∑J

j=1 a
∗
ja

∗
j
⊤
}

i≤N

)


︸ ︷︷ ︸
(NJ)1/2I

+ δ


0(6+pz)J×(6+pz)J


∑T

t=1


Dit

xi

0pz

θ∗
i

 a∗
j
⊤


j≤J,i≤N{

a∗
j

(
D⊤

it ,x
⊤
i ,0

⊤
pz ,θ

∗
i
⊤
)}

i≤N,j≤J
02N×2N


︸ ︷︷ ︸

(NJ)1/2II

+
T∑
t=1

diag

({∑N
i=1

(
E
(
ϱ

′′
ijt

)
− δ
)
e∗ite

∗
it
⊤
}

j≤J

) {(
E
(
ϱ

′′
ijt

)
− δ
)
e∗ita

∗
j
⊤}

j≤J,i≤N{(
E
(
ϱ

′′
ijt

)
− δ
)
a∗
je

∗
it
⊤}

i≤N,j≤J
diag

({∑J
j=1

(
E
(
ϱ

′′
ijt

)
− δ
)
a∗
ja

∗
j
⊤
}
i≤N

)


︸ ︷︷ ︸
(NJ)1/2III

.

For I, we have

I ≥ κ5 · I(6+pz)J+2N (A.26)

by Assumption A.3. From (A.23) and (A.24), we have

II + δ

2∑
l=1

WlW
⊤
l = δ ·

(∑2
l=1

∑10
k=1 ωkU ,lω

⊤
kU ,l 0(6+pz)J×2N

02N×(6+pz)J

∑2
l=1

∑10
k=1ωkΘ,lω

⊤
kΘ,l

)
≥ 0PJ+2N,PJ+2N .

(A.27)
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For the last term, we have, for J,N large enough,

III =
1

NJ

J∑
j=1

N∑
i=1

T∑
t=1

(
E
(
ϱ

′′

ijt

)
− δ
)
ςijtς

⊤
ijt ≥ 0PJ+2N,PJ+2N , (A.28)

where ςijt =

0, . . . , e∗it
⊤, . . . , 0︸ ︷︷ ︸

(6+pz)J

, 0, . . . , a∗
j
⊤, . . . , 0︸ ︷︷ ︸

2N


⊤

, by the definition of δ. It then follows

from (A.26), (A.27) and (A.28) that

H ≥ ∂S∗(Ξ∗)/∂Ξ⊤ + δ · ωω⊤ = I + II + III + δ · ωω⊤ ≥ κ5 · I(6+pz)J+2N ,

and thus

H−1 ≤ κ−1
5 · I(6+pz)J+2N . (A.29)

Finally, write H = Hd + C, where

C =

 0(6+pz)J×(6+pz)J (NJ)−1/2
{∑T

t=1E
(
ϱ

′′
ijt

)
e∗ita

∗
j
⊤
}

j≤J,i≤N

(NJ)−1/2
{∑T

t=1E
(
ϱ

′′
ijt

)
a∗
je

∗
it
⊤
}

i≤N,j≤J
02N×2N


+ 2δ

(
10∑
k=1

µkµ
⊤
k

)
.

Note that

H−1 −H−1
d = −H−1

d CH
−1
d +H−1

d CH
−1CH−1

d ,

and thus
∥∥H−1 −H−1

d

∥∥
max
≤
∥∥H−1

d CH
−1
d

∥∥
max

+
∥∥H−1

d CH−1CH−1
d

∥∥
max

. Inequality (A.29)

implies that H−1
d CH−1CH−1

d ≤ κ−1
5 H−1

d C2H
−1
d , and thus the l-th diagonal element of

H−1
d CH−1CH−1

d is smaller than the l-th diagonal element of κ−1
5 H−1

d C2H
−1
d . It then follows

that
∥∥H−1

d CH−1CH−1
d

∥∥
max
≤ κ−1

5

∥∥H−1
d C2H

−1
d

∥∥
max

and therefore∥∥H−1 −H−1
d

∥∥
max
≤
∥∥H−1

d CH
−1
d

∥∥
max

+ κ−1
5

∥∥H−1
d C

2H−1
d

∥∥
max

because the entry with the largest absolute value of a positive semidefinite matrix is
always on the diagonal. Since H−1

d is a block diagonal matrix whose elements are all O(1)
from Assumptions 2.6 and ∥C∥max and ∥C2∥max are O(N−1), the proof is complete.
By this lemma, (A.22), and the fact that ∂PNJ(Ξ̂)/∂Ξ = ∂PNJ(Ξ

∗)/∂Ξ = 0, we can
write

Ξ̂−Ξ∗ = H−1S∗(Ξ̂)−H−1S∗(Ξ∗)− 0.5H−1R(Ξ̂). (A.30)

Define

S∗
NJ(Ξ) =

. . . , 1√
NJ

N∑
i=1

T∑
t=1

ϱ
′

ijt(u
⊤
j eit)e

⊤
it , . . .︸ ︷︷ ︸

JK

, . . . ,
1√
NJ

J∑
j=1

T∑
t=1

ϱ
′

ijt(u
⊤
j eit)a

⊤
j , . . .︸ ︷︷ ︸

NK∗


⊤

,
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S̆∗(Ξ) = S∗
NJ(Ξ) − S∗(Ξ) and D = H−1 − H−1

d . Note that by the first-order conditions,

S∗
NJ(Ξ̂) = 0. As a result, we can write

H−1S∗(Ξ̂) =H−1
d S∗(Ξ̂) +DS∗(Ξ̂)

=−H−1
d S̆∗(Ξ̂) +DS∗(Ξ̂)

=−H−1
d S̆∗(Ξ∗)−H−1

d

(
S̆∗(Ξ̂)− S̆∗(Ξ∗)

)
+DS∗(Ξ̂) (A.31)

=−H−1
d S̆∗(Ξ∗)−H−1

d

(
S̆∗(Ξ̂)− S̆∗(Ξ∗)

)
−DS̆∗(Ξ∗)−D

(
S̆∗(Ξ̂)− S̆∗(Ξ∗)

)
. (A.32)

Next, letR(ζ̂)m denote the vector containing the {(m−1)(P )+1}th to themP th elements
of R(ζ̂) for m = 1, . . . J , and {JP +(m−J−1)(K∗)+1}th to the {JP +(m−J)(K∗)}th
elements of R(ζ̂) for m = J +1 . . . J +N . We further let ŌP (·) denote a stochastic order
that is uniform in i and j. For example, Qij = ŌP (1) means that maxi≤N,j≤J ∥Qij∥ =
OP (1). Then, by the result of Theorem A.1, it can be shown that

R(Ξ̂)m = ŌP (1)∥ûj − u∗
j∥2 + ŌP (1/

√
N)∥ûj − u∗

j∥+ ŌP (1/N) (A.33)

for m = 1, . . . , J and

R(Ξ̂)J+m = ŌP (1)∥θ̂i − θ∗
i ∥2 + ŌP (1/

√
N)∥θ̂i − θ∗

i ∥+ ŌP (1/N) (A.34)

for i = 1, . . . , N . We define Dm,s such that

Dm,s =


D[(m−1)P :mP,(s−1)P :sP ], if m, s ∈ {1, . . . , J}
D[(m−1)P :mP,JP+(s−J−1)K∗:JP+(s−J)K∗], if m ∈ {1, . . . , J}, s ∈ {J + 1, . . . N}
D[JP+(m−J−1)K∗:JP+(m−J)K∗,(s−1)P :sP ], if m ∈ {J + 1, . . . N}, s ∈ {1, . . . , J}
D[JP+(m−J−1)K∗:JP+(m−J)K∗,JP+(s−J−1)K∗:JP+(s−J)K∗], if m, s ∈ {J + 1, . . . N}

.

Note that S∗(Ξ∗) = 0. Then, from equations (A.30) to (A.34), recall that we defined
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ϱ̆
′
ijt(u

⊤
j eit) = ϱ

′
ijt(uj

⊤eit)− E(ϱ
′
ijt(uj

⊤eit)) and ϱ̆
′
ijt = ϱ̆

′
ijt(u

∗
j
⊤e∗it), we can write

θ̂i − θ∗
i =− (ΨJ,i)

−1 1

J

J∑
j=1

T∑
t=1

ϱ̆
′

ijta
∗
j −

1√
NJ

J∑
s=1

N∑
m=1

DJ+i,s ·
T∑
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∗
mt

− 1√
NJ

J∑
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N∑
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DJ+i,J+m ·
T∑
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∗
s

− (ΨJ,i)
−1 1

J
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T∑
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(
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′

ijt(û
⊤
j êit)âj − ϱ̆

′

ijta
∗
j

)
− 1√

NJ

J∑
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DJ+i,s

T∑
t=1

(
ϱ̆

′

mst(û
⊤
s êmt)êmt − ϱ̆
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∗
mt

)
− 1√
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N∑
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DJ+i,J+m

T∑
t=1

(
ϱ̆

′

mst(û
⊤
s êmt)âs − ϱ̆

′

msta
∗
s

)
− 0.5(ΨJ,i)

−1R(Ξ̂)J+i − 0.5
J∑

s=1

DJ+i,sR(Ξ̂)s

− 0.5
N∑

m=1

DJ+i,J+mR(Ξ̂)J+m. (A.35)

Lemma A.7. Let c1, . . . , cN be a sequence of uniformly bounded constants. Then, under
the conditions in Lemma A.6, we have

1

N

N∑
i=1

ci(θ̂i − θ∗
i ) = OP

(
1

N

)
.

Proof: Define ds =
√
NJ ·N−1

∑N
i=1 ciDJ+i,s, for s = 1, . . . , N+J . Lemma A.6 implies
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that max1≤s≤N+J ∥ds∥ is bounded. From (A.35), we have

1

N

N∑
i=1

ci(θ̂i − θ∗
i )

=− 1

NJ

J∑
j=1

N∑
i=1

T∑
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ci(ΨJ,i)
−1ϱ̆

′
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∗
j

− 1
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′

mst · e∗mt −
1
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T∑
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s

− 1
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ijta
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− 1
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⊤
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∗
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− 1
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(
ϱ̆

′

mst(û
⊤
s êmt)âs − ϱ̆
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∗
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1

N

N∑
i=1

ci(ΨJ,i)
−1R(ζ̂)J+i

− 0.5
1√
NJ

J∑
s=1

dsR(Ξ̂)s − 0.5
1√
NJ

N∑
m=1

dJ+mR(Ξ̂)J+m. (A.36)

First, by Lyapunov’s CLT, it is easy to see that the first three terms on the RHS of (A.36)
are all OP (1/

√
NJ). Next, it follows from Theorem A.1, (A.33) and (A.34) that the last

three terms on the RHS of (A.36) are all OP (1/min{N, J}2). Finally, we will show that
the remaining three terms on the RHS of (A.36) are all OP (1/N), from which the desired
result follows. Define

VNJ(Ξ) =
1

NJ

N∑
m=1

J∑
s=1

T∑
t=1
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(
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mst(u
⊤
s emt)emt − ϱ̆
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∗
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)
,

and ∆NJ(Ξ
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(
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(b))
)
. Note that
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T∑
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⊤
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T∑
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(a)
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⊤
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(a)
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(b)
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⊤
e
(b)
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)
e
(b)
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∆2,NJ (ζ
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.

Note that we have∥∥∥∥∥
T∑
t=1

dsϱ̆
′

mst(u
(a)
s

⊤
e
(a)
mt)(e

(a)
mt − e

(b)
mt)

∥∥∥∥∥ ≲
∥∥∥θ(a)
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m

∥∥∥ and∣∣∣∣∣
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(a)
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⊤
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(a)
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⊤
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(b)
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s

⊤
e(b)m

∣∣∣ .
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By Hoeffding’s inequality, Lemma 2.2.1 of van der Vaart and Wellner (1996), and argu-
ments similar to the proof of Lemma A.2, we can show that for d(Ξ(a),Ξ(b)) sufficiently
small, ∥∥∆1,NJ(Ξ

(a),Ξ(b))
∥∥
Ψ2

≲
∥∥Θ(a) −Θ(b)

∥∥
F
≲ d(Ξ(a),Ξ(b)),∥∥∆2,NJ(Ξ

(a),Ξ(b))
∥∥
Ψ2

≲ d(Ξ(a),Ξ(b)).

Thus,∥∥∆NJ(Ξ
(a),Ξ(b))
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≤
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(a),Ξ(b))
∥∥
Ψ2

+
∥∥∆2,NJ(Ξ

(a),Ξ(b))
∥∥
Ψ2

≲ d(Ξ(a),Ξ(b)).

Therefore, similar to the proof of Lemma A.3, we can show that for sufficiently small
c > 0,

E

(
sup

Ξ∈HK∗ (c)

|VNJ(Ξ)|

)
≲

c

min{
√
N,
√
J}
. (A.37)

It then follows from (A.37) and Theorem A.1 that VNJ(Ξ̂) = OP (1/N). Thus the fifth
term of the right of (A.36) is OP (1/N). Similar results can be obtained for the fourth
term and sixth term on the right of (A.36), and the desired result follows.

Lemma A.8. Under the conditions in lemma A.6, for each j we have

1

N

N∑
i=1

T∑
t=1

ϱ̆
′

ijt(êit − e∗it) = OP

(
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N
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∗
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.

Proof: It suffices to prove that for each l ∈ {1, . . . , T},

1

N
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.

The proof of the two results are similar, thus we only prove the second one to save space.
By (A.31) and (A.35), we have
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⊤
mtD⊤

J+i,s

)
E
(
ϱ

′

mst(û
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First, we can write

− 1
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Since ϱ̆
′′

ijl, ϱ̆
′
ist are bounded and maxi≤N ∥(ΨJ,i)

−1∥ = O(1) for large J by Assumption 2.6,
the first term of the RHS of the above equation is OP (J

−1). By Lyapunov’s CLT, the
second term on the RHS of the above equation can be shown to be OP ((NJ)

−1/2). Thus,
the first term on the RHS of (A.38) is OP (N

−1).
Second, for the second term on the RHS of (A.38), it can be written as

OP (J
−1)− 1
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T∑
t=1

ϱ̆
′′

ijle
∗
il

(
ϱ̆

′

ist(û
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)
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−1.

Similar to the proof of Lemma A.7, the second term of the above expression can be shown
to be OP (N

−1). So the second term of the RHS of (A.38) is OP (N
−1). For the third

term on the RHS of (A.38), its p, qth element is given by

− 1

NJ

J∑
s=1

N∑
m=1

T∑
t=1

χj,sE(ϱ
′

mst(û
⊤
s êmt))êmt,

where χj,s = N−1
∑N

i=1

(√
NJDJ+i,s,q

)
ϱ̆

′′

ijle
∗
il,p, and DJ+i,s,q is the qth row of DJ+i,s.

Therefore, ∣∣∣∣∣− 1

NJ

J∑
s=1

N∑
m=1

T∑
t=1

χj,sE(ϱ
′

mst(û
⊤
s êmt))êmt

∣∣∣∣∣
≲

√√√√ 1

J

J∑
s=1

∥χj,s∥2 ·

√√√√ 1

NJ

J∑
s=1

N∑
m=1

T∑
t=1

E(ϱ
′
mst(û

⊤
s êmt))2∥êmt∥2.

Since |
√
NJDJ+i,s,q| is uniformly bounded by Lemma A.6, it can be shown that E∥χj,s∥2

is O(N−1). Moreover, for some c̃mst between u∗
s
⊤e∗mt and û⊤

s êmt,

E
(
ϱ

′

mst(û
⊤
s êmt)

)2
=
{
E(ϱ

′

mst) + E(ϱ
′′

mst(c̃mst))(u
∗
s
⊤e∗mt − û⊤

s êmt)
}2

≲ (u∗
s
⊤e∗mt − û⊤

s êmt)
2.

Thus,√√√√ 1

NJ

J∑
s=1

N∑
m=1

T∑
t=1

E(ϱ
′
mst(û

⊤
s êmt))2∥êmt∥2 ≲ d(Ξ̂,Ξ∗) = OP (1/min{

√
N,
√
J})

by Theorem A.1. So, the third term on the RHS of (A.38) is OP (N
−1), and the fourth

term of the RHS of (A.38) can be shown to be OP (N
−1) in the same way. Finally,
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it follows from Theorem A.1 and (A.34) that the fifth term on the RHS of (A.38) is
OP ((min{

√
N,
√
J}−1)2) = OP (N

−1). For the sixth term, the absolute value of the p, qth
element can be written as

1

2
√
NJ

∣∣∣∣∣
J∑

s=1

χj,sR(Ξ̂)s

∣∣∣∣∣ ≤
√
J

2
√
N

√√√√ 1

J

J∑
s=1

∥χj,s∥2

√√√√ 1

J

J∑
s=1

∥R(Ξ̂)s∥2 = OP (N
−3/2).

The same bound for the seventh term on the RHS of (A.38) can be obtained using the
same argument. Therefore, we get

1

N

N∑
i=1

ϱ̆
′′

ijle
∗
il(θ̂i − θ∗

i )
⊤ = OP (N

−1)

as desired by combining the results.

Proof of Theorem A.2 We first consider the case where the conditions in Lemma A.6
hold. From the expansion in the proof of Lemma A.5, we can derive that

ΦN,j(ûj − u∗
j) =

1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′

ijt(û
⊤
j êit)

)
êit −

1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′

ijt

)
(êit − e∗it)

− 1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′′

ijt(u
∗
j
⊤ẽit)

)
e∗itu

∗
j
⊤ (êit − e∗it)

+OP

(
N−1

∥∥∥Θ̂−Θ∗
∥∥∥2
F

)
+ oP (

∥∥ûj − u∗
j

∥∥).
Then, it follows from Theorem A.1 and Lemma A.7 that

ΦN,j(ûj − u∗
j) =

1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′

ijt(û
⊤
j êit)

)
êit +OP (N

−1) + oP (
∥∥ûj − u∗

j

∥∥).
Note that

1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′

ijt(û
⊤
j êit)

)
êit

=− 1

N

N∑
i=1

T∑
t=1

ϱ̆
′

ijt(û
⊤
j êit)êit

=− 1

N

N∑
i=1

T∑
t=1

ϱ̆
′

ijtêit −
1

N

N∑
i=1

T∑
t=1

ϱ̆
′′

ijt · (û⊤
j êit − u∗

j
⊤e∗it)êit

− 0.5
1

N

N∑
i=1

T∑
t=1

ϱ̆
′′′

ijt(m̃ijt)(û
⊤
j êit − u∗

j
⊤e∗it)

2êit,

where m̃ijt is between û⊤
j êit and u∗

j
⊤e∗it.

By Lemma A.8, we have

− 1

N

N∑
i=1

T∑
t=1

ϱ̆
′

ijtêit = −
1

N

N∑
i=1

T∑
t=1

ϱ̆
′

ijte
∗
it −

1

N

N∑
i=1

T∑
t=1

ϱ̆
′

ijt(êit − e∗it)

= − 1

N

N∑
i=1

T∑
t=1

ϱ̆
′

ijte
∗
it +OP (N

−1).
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Second,

− 1

N

N∑
i=1

T∑
t=1

ϱ̆
′′

ijt · (û⊤
j êit − u∗

j
⊤e∗it)êit

=− 1

N

N∑
i=1

T∑
t=1

ϱ̆
′′

ijtêit(êit − e∗it)
⊤ûj −

1

N

N∑
i=1

T∑
t=1

ϱ̆
′′

ijtêite
∗
it
⊤(ûj − u∗

j)

=− 1

N

N∑
i=1

T∑
t=1

ϱ̆
′′

ijte
∗
it(êit − e∗it)

⊤ûj −
1

N

N∑
i=1

T∑
t=1

ϱ̆
′′

ijt(êit − e∗it)(êit − e∗it)
⊤ûj

− 1

N

N∑
i=1

T∑
t=1

ϱ̆
′′

ijte
∗
ite

∗
it
⊤(ûj − u∗

j)−
1

N

N∑
i=1

T∑
t=1

ϱ̆
′′

ijt(êit − e∗it)e
∗
it
⊤(ûj − u∗

j). (A.39)

It then follows from Lemma A.8 and Theorem A.1 that the first two terms on the RHS
of (A.39) are OP (N

−1), respectively. It is easy to show that the last two terms on the
right of (A.39) are both oP (∥ûj − u∗

j∥). Thus, we have

− 1

N

N∑
i=1

T∑
t=1

ϱ̆
′′

ijt · (û⊤
j êit − u∗

j
⊤e∗it)êit = OP (N

−1) + oP (∥ûj − u∗
j∥).

Next, it is easy to show that∥∥∥∥∥ 1

N

N∑
i=1

T∑
t=1

ϱ̆
′′′

ijt(m̃ijt)(û
⊤
j êit − u∗

j
⊤e∗it)

2êit

∥∥∥∥∥
≲∥ûj − u∗

j∥2
1

N

T∑
t=1

|ϱ̆′′′

ijt(m̃ijt)|+
1

N

T∑
t=1

|ϱ̆′′′

ijt(m̃ijt)| · ∥êit − e∗it∥2.

Therefore, from Theorem A.1 and Lemma A.5, we have

1

N

N∑
i=1

T∑
t=1

ϱ̆
′′′

ijt(m̃ijt)(û
⊤
j êit − u∗

j
⊤e∗it)

2êit = OP (N
−1). (A.40)

Finally, combining all the results, we get

ΦN,j(ûj − u∗
j) = −

1

N

N∑
i=1

T∑
t=1

ϱ̆
′

ijte
∗
it + oP (∥ûj − u∗

j∥) +OP (N
−1).

By Assumption 2.6, we can show that

ΦN,j → Φj > 0 and − 1√
N

N∑
i=1

T∑
t=1

ϱ̆
′

ijte
∗
it

d→ N

(
0, lim

N→∞

1

N

N∑
i=1

T∑
t=1

E
(
(ϱ

′

ijt)
2
)
e∗ite

∗
it
⊤

)
.

(A.41)

Thus, the desired result follows from (A.40) and (A.41) and the fact that

lim
N→∞

1

N

N∑
i=1

T∑
t=1

E
(
(ϱ

′

ijt)
2
)
e∗ite

∗
it
⊤ = −Φj.
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For the general case where the additional assumptions for X in Lemma A.6 are not
satisfied, we note that by similar arguments in the normalisation algorithm mentioned
in Section A.2, there exists a (1 + p+ pz +K∗)× (1 + p+ pz +K∗) matrix Q such that
(Γ1,X ,Zt,Θ)Q⊤ satisfies the conditions in Lemma A.6. The corresponding estimates and
values of Ut will be ÛtQ

−1 and U∗
t Q

−1 accordingly. Define

ΦQ
N,j =

1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′′

ijt

)
Qe∗ite

∗
it
⊤Q⊤ = QΦN,jQ

⊤.

By the previous result, we have

ΦQ
N,jQ

−1⊤(ûj − u∗
j) = −

1

N

N∑
i=1

T∑
t=1

ϱ̆
′

ijtQe
∗
it + oP (∥ûj − u∗

j∥) +OP (N
−1), and thus

ΦN,j(ûj − u∗
j) = −

1

N

N∑
i=1

T∑
t=1

ϱ̆
′

ijte
∗
it + oP (∥ûj − u∗

j∥) +OP (N
−1)

by straightforward calculations. This completes the proof of Theorem A.2.

A.4.3 Proof of Theorem A.3

Recall that we defined Mt = (mijt), where mijt = u⊤
j eit, t = 1, . . . , T . With a little abuse

of notation, for ΞK1 ∈ HK1 and ΞK2 ∈ HK2 , let

d(ΞK1 ,ΞK2) = max
t:t=1,...,T

∥MK1,t −MK2,t∥F .

We further define the following functions for ΞK ∈ HK and the corresponding uK,js and
θK,is:

wij(uK,j,θK,i) = ρij(u
∗
j ,θ

∗
i )− ρij(uK,j,θK,i),

l∗NJ(ΞK) =
1

NJ

N∑
i=1

J∑
j=1

wij(uK,j,θK,i),

l̄∗NJ(ΞK) =
1

NJ

N∑
i=1

J∑
j=1

E (wij(uK,j,θK,i)) ,

WNJ(ΞK) = l∗NJ(ΞK)− l̄∗NJ(ΞK) =
1

NJ

N∑
i=1

J∑
j=1

(wij(uK,j,θK,i)− E (wij(uK,j,θK,i))) .

Following the proof of Bai and Ng (2002) and Chen et al. (2021), it suffices to show that
for some δ > 0,

−lNJ(Ξ̂K) + lNJ(Ξ̂K∗) > δ + oP (1) for K < K∗, (A.42)

−lNJ(Ξ̂K) + lNJ(Ξ̂K∗) = OP (min{N, J}−1) for K > K∗. (A.43)

Proof of (A.42) Suppose K < K∗. We can write

−lNJ(Ξ̂K) + lNJ(Ξ̂K∗) = l∗NJ(Ξ̂K)− l∗NJ(Ξ̂K∗) = l̄∗NJ(Ξ̂K) +WNJ(Ξ̂K)− l∗NJ(Ξ̂K∗).
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By the arguments in the proof of Lemma A.1, it can be shown that |WNJ(Ξ̂K)| = oP (1).
Further, since |ρij(u

∗
j ,θ

∗
i )− ρij(uj,θi)| ≲

∑T
t=1 |u∗

j
⊤e∗it − uj

⊤eit|, it follows from Lemma
A.1 that

|l∗NJ(Ξ̂K∗)| ≲ 1

NJ

N∑
i=1

J∑
j=1

T∑
t=1

|(u∗
j)

⊤e∗it − (ûK∗,j)
⊤êK∗,it| ≤ T · d(Ξ∗, Ξ̂K∗) = oP (1).

Therefore, it remains to show that l̄∗NJ(Ξ̂K) ≥ δ. By the arguments in Lemma A.1, we
can show that l̄∗NJ(Ξ̂K) ≳ d2(Ξ̂K ,Ξ

∗). Next, similar to the derivation of (A.12), we have

(NJ)−1/2∥Θ̂K(ÂK)
⊤ −Θ∗(A∗)⊤∥F ≲ d(Ξ̂K ,Ξ

∗).

Then, by the arguments in Lemma 2 of Chen et al. (2021), we have∥∥∥∥[IJ − ÂK

{
(ÂK)

⊤ÂK

}−1

(ÂK)
⊤
]
A∗
∥∥∥∥
F

/
√
J ≲ d(Ξ̂K ,Ξ

∗).

It then follows from the arguments of (A.34) to (A.37) in Chen et al. (2021) that (A.42)
holds.

Proof of (A.43) Suppose K > K∗. we can write

−lNJ(Ξ̂K) + lNJ(Ξ̂K∗) = WNJ(Ξ̂K)−WNJ(Ξ̂K∗) + l̄∗NJ(Ξ̂K)− l̄∗NJ(Ξ̂K∗).

Similar to the proof of Lemma A.3 and Theorem A.1, we can show that for sufficiently
small c and sufficiently large N and J , it holds that

E

(
sup

d(ΞK ,Ξ∗)≤c

|WNJ(ΞK)|

)
≲

c

min
{√

N,
√
J
} .

and d(Ξ̂K ,Ξ
∗) = OP (min{

√
N,
√
J}−1). It then follows that

WNJ(Ξ̂K) = OP (min{
√
N,
√
J}−2).

Similarly we can show that

WNJ(Ξ̂K∗) = OP (min{
√
N,
√
J}−2).

Finally, consider l̄∗NJ(Ξ̂K)− l̄∗NJ(Ξ̂K∗). By Taylor expansion and the fact that exp(c)/(1+
exp(c))2 is bounded above for c ∈ R, it is easy to show that

|l̄∗NJ(Ξ̂K)| ≲ d2(Ξ̂K ,Ξ
∗) and |l̄∗NJ(Ξ̂K∗)| ≲ d2(Ξ̂K∗ ,Ξ∗).

The rest of the proof follows from the remaining arguments in the proof of Theorem 3 in
Chen et al. (2021).
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A.4.4 Proof of Theorem A.4

Following the proof of Theorem A.1, it suffices to show the following three lemmas:

Lemma A.9. Under Assumptions 2.1,2.2, 2.4 and A.1, d(Ξ̂,Ξ∗) = op(1) as J,N →∞.

Proof: The proof largely follows the arguments in the proof of Lemma A.1. Therefore,
we omit the full details, and instead highlight the key step that in this context, we can
derive an upper bound similar to that in (A.6), given by∣∣ρij(uj,θi)− ρij(ūj, θ̄i)

∣∣
≤δ6

T∑
t=1

(
|γjt − γ̄jt|+ |β⊤

jtxi − β̄
⊤
jtxi|+ |v⊤

j zit − v̄⊤
j zit|+ |ajt

⊤θi − ā⊤
jtθ̄i|

)
≤δ6T

(
∥γj − γ̄j∥+ (max

t
∥ajt∥)∥θi − θ̄i∥+ ∥θ̄i∥(max

t
∥ajt − ājt∥) + ∥xi∥max

t
∥βjt − β̄jt∥

+ ∥zit∥∥vj − v̄j∥
)

≤5δ6Tϵ.

Lemma A.10. Define HK∗
(c) =

{
Ξ ∈ HK∗

: d(Ξ,Ξ∗) ≤ c
}
. Under Assumptions 2.1,

2.2, A.4, 2.4, A.1 and A.6, for sufficiently small c > 0 and sufficiently large N and J ,
for any Ξ ∈ HK∗

(c), it holds that

∥Θ−Θ∗SA∥F/
√
N + ∥Ut − U∗

t SU∥F/
√
J ≤ δ7c, t = 1, . . . , T,

where SA = sgn
(
A⊤

1 A
∗
1/J
)

and SU is a (1 + p+ pz +K∗)× (1 + p+ pz +K∗) diagonal
matrix whose diagonal elements are 1, except for the last K∗ diagonal elements which are
equal to SA.

Proof: Without loss of generality, assume that Assumption A.6 holds with t1 = 1 and
t2 = 2. Recall that for t = 1, . . . , T , we have

1

NJ
∥ΘA⊤

t −Θ∗A∗
t
⊤ + X (Bt − B∗

t )
⊤ + 1N(Γt − Γ ∗

t )
⊤ + Zt(V − V ∗)⊤∥2F ≲ d2(Ξ,Ξ∗).

For t = 1, 2, project Θ on (Θ∗,X ,1N,Zt) and express it as Θ = Θ∗M1t+XM2t+1NM3t+
ZtM4t+R1t, whereM1t,M2t,M3t andM4t are projection matrices of dimensions K∗×K∗,
p × K∗, 1 × K∗ and pz × K∗, respectively. The term R1t is an N × K matrix that is
orthogonal to Θ∗, X , Zt and 1N. We have

1

NJ
∥(Θ− R1t)A

⊤
t −Θ∗A∗

t
⊤ + X (Bt − B∗

t )
⊤ + 1N(Γt − Γ ∗

t )
⊤ + Zt(V − V ∗)⊤∥2F

+
1

NJ
∥R1tA

⊤
t ∥2F ≲ d2(Ξ,Ξ∗). (A.44)

Since (J−1/2∥At∥F )N−1/2∥R1t∥F ≤ (NJ)−1/2∥R1tA
⊤
t ∥F , we can derive that

1√
N
∥R1t∥F ≲ d(Ξ,Ξ∗). (A.45)
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Combining (A.44) and (A.45), we obtain

1√
NJ
∥Θ∗(M1tA

⊤
t − A∗

t
⊤) + X {M2tA

⊤
t + (Bt − B∗

t )
⊤}

+ 1N{M3tA
⊤
t + (Γt − Γ ∗

t )
⊤}+ Zt{M4tA

⊤
t + (V − V ∗)⊤}∥F ≲ d(Ξ,Ξ∗).

By Assumption A.6, we have πmin((Θ
∗,X ,1N,Zt)

⊤(Θ∗,X ,1N,Zt))/N ≥ κ7 for t = 1, 2.
Hence we have

1√
J
∥M1tA

⊤
t − A∗

t
⊤∥F ≲ d(Ξ,Ξ∗) and

1√
J
∥M4tA

⊤
t + (V − V ∗)⊤∥F ≲ d(Ξ,Ξ∗) (A.46)

for t = 1, 2. On the other hand, we have

N−1/2∥Θ∗(M11 −M12) + X (M21 −M22) + 1N(M31 −M32) + Z1M41 − Z2M42∥
=N−1/2∥R11 − R12∥ ≲ d(Ξ,Ξ∗).

Under Assumption A.6, we have

∥M4t∥ ≲ d(Ξ,Ξ∗) for t = 1, 2 and

∥Mj1 −Mj2∥ ≲ d(Ξ,Ξ∗) for j = 1, 2, 3. (A.47)

Combining (A.46) and (A.47), we can show that

1√
J
∥V − V ∗∥ ≲ d(Ξ,Ξ∗). (A.48)

Therefore, by (A.48), we have

1√
NJ
∥ΘA⊤

t −Θ∗A∗
t
⊤ + 1N(Γt − Γ ∗

t )
⊤ + X (Bt − B∗

t )
⊤∥F ≲ d(Ξ,Ξ∗) for t = 1, . . . , T.

(A.49)

Since Θ⊤(1N, X) = 0K∗,1+p by the normalisation condition, the rest of the proof follows
from similar argument in the proof of Lemma A.2.

Remark A.6. The above proof works for general Γ ∗
t . When γjt = γj such that Γ ∗

t =
Γ ∗ = (γ∗1 , . . . , γ

∗
J)

⊤, we can still arrive at (A.49). However, we no longer impose the
normalisation constraint Θ⊤1N = 0K∗. To proceed, we express Θ as Θ = Θ∗M1+XM2+
1NM3 + R1 using (A.47), where N−1/2∥R1∥ ≲ d(Ξ,Ξ∗). Similar to the derivation of
(A.46), we can show that

1√
J
∥M1A

⊤
t − A∗

t
⊤∥ ≲ d(Ξ,Ξ∗) for t = 1, 2.

Since A∗
t has rank K∗, M1 must be invertible and thus we can show that

(NJ)−1/2∥1N{M3M
−1
1 A∗

t
⊤ + t(Γ − Γ ∗)⊤}∥F ≲ d(Ξ,Ξ∗)

(J)−1/2∥M3M
−1
1 A∗

t
⊤ + t(Γ − Γ ∗)⊤∥F ≲ d(Ξ,Ξ∗),

where the second line follows from the additional condition in Assumption A.6. We write
Γ = m5tΓ

∗ + A∗
tM6t + r3t for t = 1, 2, such that r3t is orthogonal to (Γ ∗,A∗

t ). We have

(J)−1/2∥M3M
−1
1 A∗

t
⊤ + t(m5tΓ

∗ + A∗
tM6t + r3t − Γ ∗)⊤∥F ≲ d(Ξ,Ξ∗),

(J)−1/2∥(M3M
−1
1 +M⊤

6t)A
∗
t
⊤ + t(m5t − 1)Γ ∗⊤∥F ≲ d(Ξ,Ξ∗).
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Hence we have |m51 − 1| ≲ d(Ξ,Ξ∗) by Assumption A.6. On the other hand, we have

J−1/2∥(m52 −m51)Γ
∗ + A∗

1M61 + A∗
2M62∥F ≲ d(Ξ,Ξ∗).

Hence we have ∥M61∥ ≲ d(Ξ,Ξ∗) and thus J−1/2∥Γ − Γ ∗∥ ≲ d(Ξ,Ξ∗). We can then
obtain

1√
NJ
∥ΘA⊤

t −Θ∗A∗
t
⊤ + X (Bt − B∗

t )
⊤∥F ≲ d(Ξ,Ξ∗) for t = 1, . . . , T,

and the rest follows from the argument in the proof of Lemma 2 in Chen et al. (2021).

Lemma A.11. Under Assumptions 2.1, 2.2, A.4, 2.4, A.1 and A.6, for sufficiently small
c and sufficiently large N and J , it holds that

E

(
sup

Ξ∈HK∗ (c)

|WNJ(Ξ)|

)
≲

c

min
{√

N,
√
J
} .

The proof of Lemma A.11 follows directly from the argument in the proof of Lemma
A.3. We omit the detailed proof here.

A.4.5 Proof of Theorem A.5

The proof of this theorem largely follows from the arguments in the proof of Theorem
A.2. Therefore, we only present the proof of a key lemma essential to the derivation of
the stochastic expansion of θ̂i. In the context of this extension, define

ΦN,j =
1

N

N∑
i=1

T∑
t=1

E
(
ϱ

′′

ijt

)
e∗ite

∗
it
⊤, ΨJ,i =

1

J

J∑
j=1

T∑
t=1

E
(
ϱ

′′

ijt

)
a∗
jta

∗
jt
⊤ and

PNJ(Ξ) = Tδ

{
1

2J

K∗∑
l=1

K∗∑
q>l

( J∑
j=1

ajl1ajq1

)2

+
1

2N

K∗∑
l=1

K∗∑
q>l

( N∑
i=1

θilθiq

)2

+
1

8J

T∑
t=1

K∗∑
k=1

( J∑
j=1

a2jk1 − J
)2

+
1

2N

K∗∑
l=1

( N∑
i=1

θil

)2

+
1

2N

K∗∑
k=1

p∑
l=1

( N∑
i=1

θikxil

)}
for some δ > 0. We further define

S∗(Ξ)

=

. . . , 1√
NJ

N∑
i=1

T∑
t=1

E
(
ϱ

′

ijt(u
⊤
j eit)

)
e⊤it , . . .︸ ︷︷ ︸

1×JP

, . . . ,
1√
NJ

J∑
j=1

T∑
t=1

E
(
ϱ

′

ijt(u
⊤
j eit)

)
a⊤
jt, . . .︸ ︷︷ ︸

1×NK∗


⊤

,

S(Ξ) = S∗(Ξ) + ∂PNJ(Ξ)/∂Ξ, H(Ξ) = ∂S∗(Ξ)/∂Ξ⊤ + ∂PNJ(Ξ)/∂Ξ∂Ξ
⊤

and let H = H(Ξ∗). Further, define

Hd =

(
HU

d 0
0 HΘ

d

)
,HU

d =

√
N√
J
diag (ΦN,1, . . . ,ΦN,J) ,HΘ

d =

√
J√
N
diag (ΨJ,1, . . . ,ΨJ,N) .

We have the following lemma:
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Lemma A.12. Under Assumptions 2.1, 2.2, A.4, 2.4, 2.6, 2.7, A.1, A.5, A.6 and the
additional condition that

∑N
i=1 xi = 0p and

∑N
i=1 xikxil = 0 for l, k ∈ {1, . . . , p}, l ̸= k,

the matrix H is invertible and
∥∥H−1 −H−1

d

∥∥
max

= O(1/N).

Proof: We assume p = T = K∗ = 2 for simplicity, which can be generalised easily.
Consider

PNJ(Ξ) = 2δ

{
1

2N

( N∑
i=1

θi1θi2

)2

+
1

2J

( J∑
j=1

aj11aj21

)2

+
1

8J

( J∑
j=1

a2j11 − J
)2

+
1

8J

( J∑
j=1

a2j21 − J
)2

+
1

2N

( N∑
i=1

θi1

)2

+
1

2N

( N∑
i=1

θi2

)2

+
1

2N

2∑
k=1

2∑
p=1

( N∑
i=1

θikxip

)2
}
.

We further define

µ1 = ((0⊤
6+pz , a

∗
111, 0,0

⊤
2 ), . . . , (0

⊤
6+pz , a

∗
J11, 0,0

⊤
2 ),0

⊤
2N)

⊤/
√
J,

µ2 = ((0⊤
6+pz , 0, a

∗
121,0

⊤
2 ), . . . , (0

⊤
6+pz , 0, a

∗
J21,0

⊤
2 ),0

⊤
2N)

⊤/
√
J,

µ3 = ((0⊤
6+pz , a

∗
121, a

∗
111,0

⊤
2 ), . . . , (0

⊤
6+pz , a

∗
J21, a

∗
J11,0

⊤
2 ),0

⊤
2N)

⊤/
√
J,

µ4 = (0⊤
PJ , (θ

∗
12, θ

∗
11), . . . , (θ

∗
N2, θ

∗
N1))

⊤/
√
N

µ5 = (0⊤
PJ , (1, 0), . . . , (1, 0))

⊤/
√
N,

µ6 = (0⊤
PJ , (0, 1), . . . , (0, 1))

⊤/
√
N,

µ7 = (0⊤
PJ , (x11, 0), . . . , (xN1, 0))

⊤/
√
N,

µ8 = (0⊤
PJ , (0, x11), . . . , (0, xN1))

⊤/
√
N,

µ9 = (0⊤
PJ , (x12, 0), . . . , (xN2, 0))

⊤/
√
N,

µ10 = (0⊤
PJ , (0, x12), . . . , (0, xN2))

⊤/
√
N,

such that ∂PNJ(Ξ
∗)/∂Ξ∂Ξ⊤ = 2δ

(∑10
m=1µmµ

⊤
m

)
. At t = 2, there exists a K∗ × K∗

matrix Q2 = (qij2) such that ΘA⊤
2 = ΘQ−1

2 Q2A
⊤
2 , where

(ΘQ−1
2 )⊤ΘQ−1

2 /N is diagonal and (A2Q
⊤
2 )

⊤(A2Q
⊤
2 )/J = IK∗ .
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Define Θ̆2 = ΘQ−1
2 and Ă2 = A2Q

⊤
2 . At t = 1, define

ω1,1 =

(0⊤
6+pz , a

∗
111/
√
J, 0,0⊤

2 ), . . . , (0
⊤
6+pz , a

∗
J11/
√
J, 0,0⊤

2 )︸ ︷︷ ︸
ω⊤

1U,1

, (−θ∗11/
√
N, 0), . . . , (−θ∗N1/

√
N, 0)︸ ︷︷ ︸

ω⊤
1Θ,1


⊤

,

ω2,1 =

(0⊤
6+pz , 0, a

∗
121/
√
J,0⊤

2 ), . . . , (0
⊤
6+pz , 0, a

∗
J21/
√
J,0⊤

2 )︸ ︷︷ ︸
ω⊤

2U,1

, (0,−θ∗12/
√
N), . . . , (0,−θ∗N2/

√
N)︸ ︷︷ ︸

ω⊤
2Θ,1


⊤

,

ω3,1 =

(0⊤
6+pz , a

∗
121/
√
J, 0,0⊤

2 ), . . . , (0
⊤
6+pz , a

∗
J21/
√
J, 0,0⊤

2 )︸ ︷︷ ︸
ω⊤

3U,1

, (0,−θ∗11/
√
N), . . . , (0,−θ∗N1/

√
N)︸ ︷︷ ︸

ω⊤
3Θ,1


⊤

,

ω4,1 =

(0⊤
6+pz , 0, a

∗
111/
√
J,0⊤

2 ), . . . , (0
⊤
6+pz , 0, a

∗
J11/
√
J,0⊤

2 )︸ ︷︷ ︸
ω⊤

4U,1

, (−θ∗12/
√
N, 0), . . . , (−θ∗N2/

√
N, 0)︸ ︷︷ ︸

ω⊤
4Θ,1


⊤

,

ω5,1 =

(a∗111/
√
J,0⊤

9+pz), . . . , (a
∗
J11/
√
J,0⊤

9+pz)︸ ︷︷ ︸
ω⊤

5U,1

, (−1/
√
N, 0), . . . , (−1/

√
N, 0)︸ ︷︷ ︸

ω⊤
5Θ,1


⊤

,

ω6,1 =

(a∗121/
√
J,0⊤

9+pz), . . . , (a
∗
J21/
√
J,0⊤

9+pz)︸ ︷︷ ︸
ω⊤

6U,1

, (0,−1/
√
N), . . . , (0,−1/

√
N)︸ ︷︷ ︸

ω⊤
6Θ,1


⊤

,

ω7,1 =

(0, 0, a∗111/
√
J,0⊤

7+pz), . . . , (0, 0, a
∗
J11/
√
J,0⊤

7+pz)︸ ︷︷ ︸
ω⊤

7U,1

, (−x11/
√
N, 0), . . . , (−xN1/

√
N, 0)︸ ︷︷ ︸

ω⊤
7Θ,1


⊤

,

ω8,1 =

(0, 0, a∗121/
√
J,0⊤

7+pz), . . . , (0, 0, a
∗
J21/
√
J,0⊤

7+pz)︸ ︷︷ ︸
ω⊤

8U,1

, (0,−x11/
√
N), . . . , (0,−xN1/

√
N)︸ ︷︷ ︸

ω⊤
8Θ,1


⊤

,

ω9,1 =

(0, 0, 0, a∗111/
√
J,0⊤

6+pz), . . . , (0, 0, 0, a
∗
J11/
√
J,0⊤

6+pz)︸ ︷︷ ︸
ω⊤

9U,1

, (−x12/
√
N, 0), . . . , (−xN2/

√
N, 0)︸ ︷︷ ︸

ω⊤
9Θ,1


⊤

,

ω10,1 =

(0, 0, 0, a∗121/
√
J,0⊤

6+pz), . . . , (0, 0, 0, a
∗
J21/
√
J,0⊤

6+pz)︸ ︷︷ ︸
ω⊤

10U,1

, (0,−x12/
√
N), . . . , (0,−xN2/

√
N)︸ ︷︷ ︸

ω⊤
10Θ,1


⊤

.
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On the other hand, at t = 2, we define

ω5,2 =

(0, ă∗112/
√
J,0⊤

8+pz), . . . , (0, ă
∗
J12/
√
J,0⊤

8+pz)︸ ︷︷ ︸
ω⊤

5U,2

, (−1/
√
N, 0), . . . , (−1/

√
N, 0)︸ ︷︷ ︸

ω⊤
5Θ,2


⊤

,

ω6,2 =

(0, ă∗122/
√
J,0⊤

8+pz), . . . , (0, ă
∗
J22/
√
J,0⊤

8+pz)︸ ︷︷ ︸
ω⊤

6U,2

, (0,−1/
√
N), . . . , (0,−1/

√
N)︸ ︷︷ ︸

ω⊤
6Θ,2


⊤

,

ω7,2 =

(0⊤
4 , ă

∗
112/
√
J,0⊤

5+pz), . . . , (0
⊤
4 , ă

∗
J12/
√
J,0⊤

5+pz)︸ ︷︷ ︸
ω⊤

7U,2

, (−x11/
√
N, 0), . . . , (−xN1/

√
N, 0)︸ ︷︷ ︸

ω⊤
7Θ,2


⊤

,

ω8,2 =

(0⊤
4 , ă

∗
122/
√
J,0⊤

5+pz), . . . , (0
⊤
4 , ă

∗
J22/
√
J,0⊤

5+pz)︸ ︷︷ ︸
ω⊤

8U,2

, (0,−x11/
√
N), . . . , (0,−xN1/

√
N)︸ ︷︷ ︸

ω⊤
8Θ,2


⊤

,

ω9,2 =

(0⊤
5 , ă

∗
112/
√
J,0⊤

4+pz), . . . , (0
⊤
5 , ă

∗
J12/
√
J,0⊤

4+pz)︸ ︷︷ ︸
ω⊤

9U,2

, (−x12/
√
N, 0), . . . , (−xN2/

√
N, 0)︸ ︷︷ ︸

ω⊤
9Θ,2


⊤

,

ω10,2 =

(0⊤
5 , ă

∗
122/
√
J,0⊤

4+pz), . . . , (0
⊤
5 , ă

∗
J22/
√
J,0⊤

4+pz)︸ ︷︷ ︸
ω⊤

10U,2

, (0,−x12/
√
N), . . . , (0,−xN2/

√
N)︸ ︷︷ ︸

ω⊤
10Θ,2


⊤

.

We define W1 = (ω1,1,ω2,1, . . . ,ω10,1) and W2 = (ω5,2,ω6,2, . . . ,ω10,2). It is easy to
check that ω⊤

p,tωq,t = 0 for p ̸= q, t = 1, 2. We can verify that

W1W
⊤
1 =

10∑
k=1

ωk,1ω
⊤
k,1

=


∑10

k=1ωkU ,1ω
⊤
kU ,1 −(NJ)−1/2




Di1

xi

02+pz

θ∗
i

02

 a∗
j1

⊤


j≤J,i≤N

−(NJ)−1/2
{
a∗
j1

(
D⊤

i1,x
⊤
i ,0

⊤
2+pz ,θ

∗
i
⊤,0⊤

2

)}
i≤N,j≤J

∑10
k=1ωkΘ,1ω

⊤
kΘ,1


,

(A.50)
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W2W
⊤
2 =

10∑
k=5

ωk,2ω
⊤
k,2

=


∑10

k=5ωkU ,2ω
⊤
kU ,2 −(NJ)−1/2




Di2

02

xi

0pz+4

 ă∗⊤
j2


j≤J,i≤N

−(NJ)−1/2
{
ă∗
j2

(
D⊤

i2,0
⊤
2 ,x

⊤
i ,0

⊤
pz+4

)}
i≤N,j≤J

∑10
k=5ωkΘ,2ω

⊤
kΘ,2



=


∑10

k=5 ωkU ,2ω
⊤
kU ,2 −(NJ)−1/2




Di2

02

xi

0pz+4

 a∗
j2

⊤Q⊤
2


j≤J,i≤N

−(NJ)−1/2
{
Q2a

∗
j2

(
D⊤

i2,0
⊤
2 ,x

⊤
i ,0

⊤
pz+4

)}
i≤N,j≤J

∑10
k=5 ωkΘ,2ω

⊤
kΘ,2

 .

(A.51)

By writing

W̆2 =

(
IPJ 0
0 diag({Q−1

2 }i≤N)

)
W2, and

ω̆kΘ,2 = diag({Q−1
2 }i≤N)ωkΘ,2 for k = 5, 6, . . . , 10,

we can express W̆2W̆
⊤
2 as

W̆2W̆
⊤
2

=


∑10

k=5ωkU ,2ω
⊤
kU ,2 −(NJ)−1/2




Di2

02

xi

0pz+4

 a∗
j2

⊤


j≤J,i≤N

−(NJ)−1/2
{
a∗
j2

(
D⊤

i2,0
⊤
2 ,x

⊤
i ,0

⊤
pz+4

)}
i≤N,j≤J

∑10
k=5 ω̆kΘ,2ω̆

⊤
kΘ,2

 .

Further, it is easy to see that under our normalisation criteria,

W⊤
1 W1 = diag

(
σN1 + 1, σN2 + 1, σN1 + 1, σN2 + 1, 2, 2

1 +N−1

N∑
i=1

x2i1, 1 +N−1

N∑
i=1

x2i1, 1 +N−1

N∑
i=1

x2i2, 1 +N−1

N∑
i=1

x2i2

)
.

Moreover, we have

W⊤
2 W2 = diag

(
2, 2, 1 +N−1

N∑
i=1

x2i1, 1 +N−1

N∑
i=1

x2i1, 1 +N−1

N∑
i=1

x2i2, 1 +N−1

N∑
i=1

x2i2

)
.

At t = 1, for k = 1, . . . , 10, we project µk onto W1 and write µk = W1sk,1 + ζk,1 for
k = 1, . . . 10, where sk,1 = (W⊤

1 W1)
−1W⊤

1 µk. At t = 2, we write µk = W2sk,2 + ζk,2 for
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k = 5, 6, . . . , 10, where sk,2 = (W⊤
2 W2)

−1W⊤
2 µk. For example, at t = 2, we have

s5,2 =


−0.5
0
0
0
0
0

 , s6,2 =


0
−0.5
0
0
0
0

 s7,2 =



0
0

−N−1
∑N

i=1 x
2
i1

1+N−1
∑N

i=1 x
2
i1

0
0
0


,

s8,2 =



0
0
0

−N−1
∑N

i=1 x
2
i1

1+N−1
∑N

i=1 x
2
i1

0
0


, s9,2 =



0
0
0
0

−N−1
∑N

i=1 x
2
i2

1+N−1
∑N

i=1 x
2
i2

0


, s10,2 =



0
0
0
0
0

−N−1
∑N

i=1 x
2
i2

1+N−1
∑N

i=1 x
2
i2


.

We now define SN,1 =
∑10

k=1 sk,1s
⊤
k,1 and SN,2 =

∑10
k=5 sk,2s

⊤
k,2. We set ζk,2 = µk for

k = 1, . . . , 4. Recall that we have shown in the proof of Lemma A.6 that there exists π
such that πmin(SN,1) > π for all large N . It is easy to see that πmin(SN,2) > π. We further
Let
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. (A.52)

Recall that there exists κ9 > 0 such that E(ϱ
′′
ijt(u

⊤
j eit)) > κ9 by Assumptions 2.1, 2.2

and 2.4. Now let δ = min{κ9, δπ̄−1π}. Then it follows from (A.52) that

H = ∂S∗(Ξ∗)/∂Ξ⊤ + ∂PNJ(Ξ
∗)/∂Ξ∂Ξ⊤

≥ ∂S∗(Ξ∗)/∂Ξ⊤ + δ
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Moreover, we can write
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The rest of the proof the follows from Assumption A.5, (A.50), (A.51), (A.53) and the
arguments from the proof of Lemma A.6.

Remark A.7. When the restriction γjt = tγj is imposed, the above derivations remain
valid with minor modifications. Specifically, the normalisation constraint Θ⊤1N = 0K∗

no longer applies. Therefore, in the case where p = T = K∗ = 2, we define

PNJ(Ξ) = 2δ

{
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.

The definitions of µk and ωk,t remain the same, except that µ5, µ6, ω5,t, and ω6,t are
omitted to adjust for the normalisation constraints. The rest of the proof then proceeds
accordingly.
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A.4.6 Proof of consistency results for asymptotic variance

It suffices to show that for j = 1, . . . , J , ∥Φ̂j −Φj∥F = oP (1). Assume that Assumptions
2.1 to 2.7 and A.1 to A.3 hold. Note that
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by Theorem A.2. For the second term, we can show that
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by Theorem A.2. Therefore, we have

Φ̂j − ΦN,j = OP (N
−1/2) +

1

N

N∑
i=1

T∑
t=1

(rit − E(rit))ρ
′′

ijte
∗
ite

∗
it
⊤ = OP (N

−1/2)

and consequently ∥Φ̂j − Φj∥F = oP (1) since Φj = limN→∞ΦN,j.

A.5 Additional Simulation and Real Data Analysis result

This section provides additional numerical results. Section A.5.1 reports additional simu-
lation results for the main model. Section A.5.2 presents results for the model extensions
introduced in Sections 2.2.4 and 2.2.5. Finally, Section A.5.3 reports the number of es-
timated factors in the real data analysis under both the main model and its extensions.
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Table A.2: Summary statistics for the constraint parameter sensitivity analysis. The
results for the proposed method under different choices of the constraint parameter c
across various combinations ofN and J are reported, forK∗ = 3 andK∗ = 8, respectively.
Definitions of Loss, Bloss, and MMSE are provided in Table 2.1.

N = 5J N = 10J

K∗ Metric (c) J = 100 J = 200 J = 300 J = 400 J = 100 J = 200 J = 300 J = 400

3

Loss (c = 3) 0.54 0.36 0.28 0.24 0.48 0.32 0.26 0.22
Loss (c = 4) 0.55 0.36 0.28 0.25 0.48 0.32 0.26 0.22
Loss (c = 5) 0.55 0.36 0.29 0.24 0.48 0.32 0.26 0.22
Loss (c = 6) 0.55 0.36 0.29 0.24 0.48 0.32 0.26 0.22
Loss (c = 7) 0.55 0.36 0.28 0.24 0.48 0.32 0.26 0.22

Bloss (c = 3) 0.48 0.32 0.25 0.22 0.33 0.22 0.18 0.16
Bloss (c = 4) 0.48 0.32 0.25 0.22 0.33 0.22 0.18 0.16
Bloss (c = 5) 0.49 0.32 0.25 0.22 0.33 0.22 0.18 0.16
Bloss (c = 6) 0.48 0.32 0.25 0.22 0.33 0.22 0.18 0.16
Bloss (c = 7) 0.49 0.32 0.25 0.22 0.33 0.22 0.18 0.16

MMSE (c = 3) 0.11 0.05 0.03 0.03 0.06 0.02 0.02 0.01
MMSE (c = 4) 0.15 0.05 0.04 0.03 0.06 0.03 0.02 0.01
MMSE (c = 5) 0.12 0.06 0.03 0.03 0.06 0.03 0.02 0.02
MMSE (c = 6) 0.13 0.06 0.03 0.03 0.06 0.03 0.02 0.01
MMSE (c = 7) 0.13 0.05 0.03 0.03 0.06 0.02 0.02 0.01

8

Loss (c = 3) 1.28 0.69 0.52 0.44 1.06 0.62 0.48 0.41
Loss (c = 4) 1.31 0.69 0.52 0.44 1.08 0.63 0.48 0.41
Loss (c = 5) 1.33 0.68 0.52 0.44 1.09 0.62 0.48 0.41
Loss (c = 6) 1.38 0.68 0.52 0.44 1.10 0.62 0.48 0.41
Loss (c = 7) 1.35 0.69 0.52 0.44 1.10 0.63 0.48 0.41

Bloss (c = 3) 0.66 0.39 0.31 0.26 0.43 0.27 0.22 0.19
Bloss (c = 4) 0.67 0.39 0.31 0.26 0.44 0.27 0.21 0.19
Bloss (c = 5) 0.67 0.39 0.31 0.26 0.44 0.27 0.22 0.19
Bloss (c = 6) 0.69 0.39 0.31 0.26 0.44 0.27 0.22 0.19
Bloss (c = 7) 0.68 0.39 0.31 0.26 0.44 0.27 0.21 0.19

MMSE (c = 3) 1.21 0.09 0.06 0.04 0.15 0.04 0.03 0.02
MMSE (c = 4) 1.33 0.08 0.05 0.04 0.13 0.05 0.02 0.02
MMSE (c = 5) 1.10 0.08 0.05 0.04 0.13 0.04 0.03 0.02
MMSE (c = 6) 2.21 0.09 0.07 0.04 0.13 0.05 0.02 0.02
MMSE (c = 7) 1.03 0.09 0.06 0.03 0.15 0.05 0.03 0.02

A.5.1 Additional Simulation results for the Main Model

We present three additional sets of simulation results for the main model. Table A.2
reports the sensitivity analysis results for the constraint parameter c, as discussed in
Section 2.4.

We also compare the computation time of the proposed method using the candidate
sets K = {K∗} and K = {1, . . . , 10} with that of standard logistic regression (LR) method
and logistic regression with a random intercept (LRRI). Specifically, Table A.3 reports
the total time required to complete five replications across the settings described in Sec-
tion 2.4. When the candidate set K equals the true latent dimension K∗, the proposed
method is significantly faster than LRRI, one of the simplest traditional latent variable
models that does not account for dependence between items. This demonstrates the su-
perior computational efficiency of our method over existing latent variable approaches.
Even with a broader candidate set K = {1, . . . , 10}, the proposed method remains com-
parable in speed to LRRI and is faster in some cases, highlighting its strong scalability
for larger datasets even when the number of latent factors needs to be estimated.

Finally, we evaluate the performance of the proposed estimator in estimating the
latent variables. As noted in Remark A.3, having distinct eigenvalues in (Θ∗)⊤Θ∗/N is
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Table A.3: Computation time (in minutes) over 5 simulations under various settings.

N J Proposed(K = {K∗}) Proposed(K = {1, . . . , 10}) LR LRRI

K∗ = 3
5J 100 0.09 22.72 0.01 9.54
5J 200 0.28 78.91 0.05 37.40
5J 300 0.63 163.12 0.10 82.80
5J 400 1.15 386.44 0.18 152.36
10J 100 0.15 45.14 0.02 17.46
10J 200 0.55 202.89 0.09 77.52
10J 300 1.23 584.78 0.19 180.16
10J 400 2.25 1132.89 0.35 332.14

K∗ = 8
5J 100 0.24 11.46 0.01 12.12
5J 200 0.70 40.65 0.04 44.56
5J 300 1.54 74.08 0.10 100.88
5J 400 2.51 119.48 0.17 185.35
10J 100 0.42 21.09 0.02 21.92
10J 200 1.38 73.46 0.09 91.71
10J 300 2.57 174.58 0.19 213.08
10J 400 4.59 229.82 0.37 389.39

essential for identifying the latent factors. To ensure this, we generate each θik from a
truncated standard normal distribution on [−1, 1], multiplied by a constant factor k/2.
All other parameters are generated as in the procedures described in Section 2.4.

Following the evaluation criteria outlined in Section 2.4.2, we compute the Frobenius
losses for Â and Θ̂, denoted by “Aloss” and “Tloss”, respectively:

ALoss =
1√
J

∥∥∥Â− A∗ŜA

∥∥∥
F
, TLoss =

1√
N

∥∥∥Θ̂−Θ∗ŜA

∥∥∥
F
,

where ŜA is a diagonal matrix correcting for sign indeterminacy, as defined in Theo-
rem A.1.

To further assess the estimator’s performance at the individual parameter level, we
compute the mean squared errors for each ajk and θik, where j = 1, . . . , J , i = 1, . . . , N ,
and k = 1, . . . , K∗. The maximum MSE across all simulation trials for the entries in A
and Θ are reported as “MAMSE” and “MTMSE”, repsectively.

In addition, we construct 95% confidence intervals for ajk and θik using the asymptotic
variance estimation method described in Remark 2.1. The empirical coverage probabili-
ties (AECP for A and TECP for Θ) are computed by aggregating the coverage rates across
all parameters and simulation repetitions. The results are summarized in Table A.4.

The results validate Theorem A.1, indicated by decreasing trends in “ALoss”, “TLoss”,
“MAMSE”, and “MTMSE” with larger N and J . Empirical coverage probabilities
(AECP and TECP) approach the nominal 95% level as N increases, supporting The-
orem A.2. We note that coverage rates worsen as K∗ increases from 3 to 8, especially
when J = 100. Therefore, while the theoretical properties are supported in large samples,
caution is required when conducting inference for latent variables in practical settings,
especially when the estimated number of factors is large relative to the sample size.
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Table A.4: Summary statistics on latent variables estimations for the proposed method
across different values of N , K∗ and J .

N J Aloss Tloss MAMSE MTMSE AECP TECP

K∗ = 3
5J 100 0.39 0.36 0.28 0.11 0.88 0.94
5J 200 0.23 0.24 0.06 0.06 0.92 0.94
5J 300 0.20 0.19 0.05 0.03 0.93 0.95
5J 400 0.17 0.17 0.04 0.02 0.94 0.95
10J 100 0.25 0.35 0.08 0.12 0.89 0.94
10J 200 0.18 0.23 0.07 0.05 0.91 0.95
10J 300 0.14 0.19 0.03 0.04 0.93 0.95
10J 400 0.12 0.17 0.02 0.03 0.94 0.95

K∗ = 8
5J 100 1.86 3.69 3.74 31.94 0.36 0.65
5J 200 0.46 0.89 0.29 1.38 0.81 0.91
5J 300 0.32 0.61 0.14 0.49 0.87 0.93
5J 400 0.27 0.50 0.09 0.36 0.89 0.93
10J 100 0.82 2.16 0.81 14.85 0.55 0.85
10J 200 0.32 0.82 0.11 1.67 0.81 0.93
10J 300 0.23 0.58 0.06 0.56 0.87 0.94
10J 400 0.19 0.48 0.04 0.42 0.90 0.94

Aloss / Tloss: Frobenius loss measuring convergence of Â/Θ̂.
MAMSE / MTMSE: Maximum mean squared error across all estimated ajk/θiks.
AECP / TECP: Empirical coverage probability of the confidence intervals across all esti-
mated ajk/θiks.

Table A.5: Simulation results for the model variants introduced in Sections 2.2.4 and 2.2.5
across different combinations of N , J , and K∗.

Section 2.2.4 Section 2.2.5 Sections 2.2.4 and 2.2.5

N J Loss P (K̂ = K∗) Bloss MMSE Loss P (K̂ = K∗) Bloss MMSE Loss P (K̂ = K∗) Bloss MMSE

K∗ = 3
5J 100 0.88 1 1.06 0.85 0.51 1 0.42 0.11 0.83 1 0.94 1.02
5J 200 0.51 1 0.67 0.29 0.34 1 0.29 0.04 0.50 1 0.60 0.23
5J 300 0.40 1 0.55 0.16 0.28 1 0.23 0.03 0.38 1 0.48 0.12
5J 400 0.34 1 0.45 0.11 0.24 1 0.20 0.02 0.33 1 0.41 0.08
10J 100 0.66 1 0.71 0.35 0.46 1 0.29 0.05 0.63 1 0.63 0.33
10J 200 0.40 1 0.47 0.11 0.31 1 0.20 0.02 0.40 1 0.42 0.11
10J 300 0.32 1 0.38 0.08 0.25 1 0.16 0.02 0.31 1 0.34 0.06
10J 400 0.27 1 0.32 0.06 0.22 1 0.14 0.01 0.27 1 0.29 0.05

K∗ = 8
5J 100 7.63 1 3.55 61.55 1.24 1 0.58 0.31 7.68 1 3.03 51.17
5J 200 1.01 1 0.86 0.53 0.67 1 0.35 0.09 0.99 1 0.75 0.35
5J 300 0.73 1 0.64 0.25 0.51 1 0.28 0.04 0.72 1 0.58 0.17
5J 400 0.59 1 0.55 0.17 0.43 1 0.24 0.03 0.58 1 0.49 0.13
10J 100 2.96 1 1.24 24.35 1.09 1 0.40 0.15 3.21 1 1.23 15.53
10J 200 0.79 1 0.57 0.21 0.62 1 0.25 0.04 0.78 1 0.50 0.19
10J 300 0.59 1 0.45 0.11 0.48 1 0.20 0.02 0.59 1 0.41 0.10
10J 400 0.49 1 0.38 0.08 0.40 1 0.17 0.01 0.49 1 0.34 0.07

Loss: Frobenius loss measuring the convergence of Ξ̂.
P(K̂ = K∗): Proportion of instances where the correct number of factors is identified.

Bloss: Frobenius loss measuring convergence of B̂.
MMSE: Maximum mean squared error across all elements in B̂.
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Table A.6: Number of factors K̂ selected by each method for varying values of J in real
data analysis.

Method J = 100 J = 200 J = 300 J = 400

Prop 8 8 11 11
Prop (2.2.4) 4 2 2 1
Prop (2.2.5) 10 11 11 14
Prop (2.2.4 & 2.2.5) 5 3 3 3

A.5.2 Additional Simulation Results for Models in Section 2.2.4
and 2.2.5

To assess the performance of the model variants introduced in Sections 2.2.4 and 2.2.5,
we conduct additional simulations using the same combinations of N , J , and K∗ as
in Section 2.4. For each setting, we consider the candidate set K = {1, 2, . . . , 10} and
generate 100 independent replications.

For the extended model in Section 2.2.4, data are generated from the logistic model:

P (yijt = 1 | γjt, ajt,θi,βjt,xi) =
exp(γjt +

∑K∗

k=1 ajktθik +
∑5

l=1 βjltxil)

1 + exp(γjt +
∑K∗

k=1 ajktθik +
∑5

l=1 βjltxil)
. (A.54)

The variables are generated following a similar procedure to that described in Section 2.4
for the main model. As before, we slightly abuse notation by using the same symbols
before and after normalisation. Specifically, the covariates xi, intercepts γjt, preliminary
latent factors θik, and missingness indicators ri are generated as in the main setting. The
preliminary time-varying regression coefficients βjlt are independently sampled from a
uniform distribution U [0.5, 1], and the time-varying factor loadings ajkt are sampled from
truncated standard normal distributions on [−3, 3]. We then apply the normalisation
procedure described in Section A.2 to ensure identifiability conditions in this model are
satisfied. Following normalisation, we set half of the coefficient pairs (βj1t, βj2t) to zero.
The same procedure is applied independently to the pairs (βj3t, βj4t), and half of the
individual coefficients βj5t are also set to zero.

For simulations under the constraint γjt = tγj (Section 2.2.5), we substitute γjt ac-
cordingly in both (2.10) and (A.54), where γj is drawn from U [−0.25, 0.25].

The models described above are evaluated using the performance metrics analogous to
those introduced in Section 2.4.2, focusing on the convergence of parameters and accuracy
in determining the number of factors. In particular, for the extension in Section 2.2.4,
the convergence of the estimated time-varying regression coefficients B̂ = (B̂1, . . . , B̂T ) is
assessed by

Bloss =
1√
J

max
t=1,...,T

∥∥∥B̂t −B∗
t

∥∥∥
F
,

and the convergence of Ξ̂ is evaluated by

Loss = max
t=1,...,T

∥∥∥Θ̂Â⊤
t −Θ∗A∗

t
⊤ +X(B̂t −B∗

t )
⊤ + 1N(Γ̂t − Γ ∗

t )
⊤
∥∥∥
F√

NJ
.
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We replace Γ̂t and Γ ∗
t by tΓ̂ and tΓ ∗, respectively, in the “Loss” metric when the

model in Section 2.2.5 is evaluated. Table A.5 presents the simulation results for the
model variants described in Sections 2.2.4 and 2.2.5, as well as the combined model
incorporating both specifications. The results are consistent with the theory of these
methods. In particular, the performance metrics “Loss”, “Bloss”, and “MMSE” decrease
as N and J increase, regardless of the number of factors or the ratio between N and J .
Furthermore, the proposed information criterion is effective, with P (K̂ = K∗) consistently
equals 1 across all settings and model variants.

A.5.3 Additional Results in Real Data Analysis

Table A.6 reports the number of latent factors K̂ selected by each of the proposed methods
described in Section 2.5, for different numbers of items J = 100, 200, 300, 400.
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Appendix B

Supplementary Materials for Chapter 3

B.1 Additional Simulation and Real Data Results

We present additional simulation results for the proposed criteria SC1, SC2 and SC3,
where the total number of splits J is set to 1. Under this setup, only one random
split is performed to compute the instability measure INS(k). Figure B.1 shows the
percentage of correct selections of the true number of factors K by these criteria. The
result demonstrates that the correct selection percentages of the proposed criteria with a
single split are nearly identical to those obtained at J = 10, as shown in figure 3.1.

This observation is further supported by Table B.1, which presents the modes of the
selected number of factors and the corresponding selection percentages for each criteria
in the analysis of the p53 protein dataset using a single split. As shown in the table, all
criteria with a single split consistently select 2 as the mode, which matches the result in
Table 3.1 at J = 10.

These findings suggest that the randomness introduced by splitting does not have
severe impact on the performance of the proposed selection criteria. Therefore, using
J = 10 or any other reasonable number of splits is adequate in practice.

B.2 Proof

With slight abuse of notation, we assume n1 = n2 = n in this section for convenience. To
simplify notation, we assume ψ = 1 without loss of generality. Recall that the population
covariance matrix is

Σ = Λ⊤Λ + Ip =

p∑
j=1

σjvjv
⊤
j .

We express the eigenvalues σj of Σ as

σj = 1 + ϕ1/2
n dj, j = 1, . . . , p,

where ϕn = p/n is the dimensional ratio. For notational convenience, we suppress the
dependence on n and write ϕ. It is easy to see that σj = 1 and dj = 0 for j > K. For
any vector w ∈ RT , we use wj = ⟨vj,w⟩, j = 1, . . . , p to denote the components of w in
the eigenbasis of Σ.
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Figure B.1: Correct selection percentages versus the number of features p across different scenarios (S1
and S2) and signal strengths (i,ii and iii). All criteria are evaluated using J = 1 for the calculation of
INS(k). SC1 (red solid line with squares), SC2 (purple dotted line with pluses), and SC3 (brown dashed
line with crosses)

Table B.1: Performance of the Proposed Criteria (J = 1) on the p53 Protein Dataset

Criterion Mode Selection percentage(%)
SC1 2 95
SC2 2 95
SC3 2 98

Mode: mode of the estimated number of factors for each criterion. Selection percentage(%): Percentages
of instances selecting the mode.

B.2.1 Proof of Proposition 3.1

The following lemma establishes a delocalization bound for the (K + 1)-th to Kmax-th
eigenvectors of the sample covariance matrix of X(l1) with respect to all eigenvectors of
the sample covariance matrix of X(l2) for the candidate set K, where l1 ̸= l2.

Lemma B.1. Under Assumption 3.1 to 3.3, for any k ∈ {K + 1, . . . , Kmax} and s ∈ K,
we have

⟨ṽ(1)
k , ṽ(2)

s ⟩2 ≺ (pmin{n, p})−1/2 and ⟨ṽ(2)
k , ṽ(1)

s ⟩2 ≺ (pmin{n, p})−1/2.

Proof: We prove the first statement; the proof for the second is identical. For any
deterministic unit vector w, by Theorem 2.17 of Bloemendal et al. (2016), we have

⟨ṽ(1)
k ,w⟩2 ≺ ∥w∥

2

p
+

p∑
j=1

σjw
2
j

p(dj − 1)2 + κj
, (B.1)

where κj = min{n, p}−2/3min{j,min{n, p}+1−j}2/3. Since dj = 0 and σj = 1 for j > K,
we have

p∑
j=K+1

σjw
2
j

p{(dj − 1)2 + κj}
≤

p∑
j=K+1

w2
j

p
≤ 1

p
. (B.2)
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On the other hand, for 1 ≤ j ≤ K, by Assumption 3.3, we have dj → +∞. Therefore,
we have

σjw
2
j

p{(dj − 1)2 + κj}
=

(1 + ϕ1/2dj)w
2
j

p{(dj − 1)2 + κj}
≲

1

(np)−1/2dj
. (B.3)

Combining equations (B.1), (B.2), and (B.3), we have

⟨ṽ(1)
k ,w⟩2 ≺ (pmin{n, p})−1/2 (B.4)

for any deterministic unit vector w. Note that ṽ
(1)
k and ṽ

(2)
s are independent. Therefore,

by conditioning on ṽ
(2)
s , we can apply (B.4) and hence the lemma is proved.

We now turn to the proof of (3.4) in Proposition 3.1. It is sufficient to show that for
k > K,

min
ξ(1)∈Ṽ (1)

k ;∥ξ(1)∥=1

max
ξ(2)∈Ṽ (2)

k ;∥ξ(2)∥=1

⟨ξ(1), ξ(2)⟩ ≺ (pmin{n, p})−1/2. (B.5)

Note that Lemma B.1 implies

max
ξ(2)∈Ṽ (2)

k ;∥ξ(2)∥=1

⟨ṽ(1)
K+1, ξ

(2)⟩ ≺ (pmin{n, p})−1/2.

Since ṽ
(1)
K+1 ∈ Ṽ

(1)
k and ∥ṽ(1)

K+1∥ = 1, the proof is complete by the definition of (B.5).
We now proceed to prove (3.5) in Proposition 3.1. First, we introduce some definitions
and supporting lemmas. Let A ⊆ {1, . . . , p} be a subset of integers from 1 to p. For
l = 1, 2, define the random spectral projection

P
(l)
A =

∑
k∈A

ṽ
(l)
k (ṽ

(l)
k )⊤.

For k = 1, . . . , p, we also define

νk(A) =

{
minj /∈A |dk − dj| if k ∈ A
minj∈A |dk − dj| if k /∈ A

.

Here νk(A) is the distance from dk to either {dj}j∈A or {dj}j /∈A, whichever it does not
belong to. We further define the deterministic positive quadratic form

⟨w, ZAw⟩ =
∑
j∈A

µ(dj)w
2
j , where

µ(dj) =
σj

ϕ1/2θ(dj)
(1− d−2

j ), θ(dj) = ϕ1/2 + ϕ−1/2 + dj + d−1
j .

The following lemma describes the behaviour of eigenvectors associated with a subset
A ⊆ {1, . . . , K}, in comparison with the corresponding deterministic positive quadratic
form.

Lemma B.2. Under Assumptions 3.1 to 3.3, let A ⊆ {1, . . . , K} such that dj = dA for
all j ∈ A. Then for any deterministic unit vector w ∈ RT , we have

⟨w, P (l)
A w⟩ = ⟨w, ZAw⟩+O≺(n

−1/2), l = 1, 2.
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Proof: From Theorem 2.16 of Bloemendal et al. (2016), we have

⟨w, P (l)
A w⟩ = ⟨w, ZAw⟩+O≺

(
1

p1/2(ϕ1/2 + dA)

∑
j∈A

σjw
2
j

+

(
1 +

ϕ1/2d2A
ϕ1/2 + dA

) p∑
j=1

σjw
2
j

pνj(A)2

+
dA

ϕ1/2 + dA

(∑
j∈A

σjw
2
j

)1/2
∑

j /∈A

σjw
2
j

pνj(A)2

1/2)
. (B.6)

Recall that σj = 1 + ϕ1/2dA for j ∈ A. Thus, we have

1

p1/2(ϕ1/2 + dA)

∑
j∈A

σjw
2
j ≲

ϕ1/2dA
p1/2dA

≲
1

n1/2
. (B.7)

Moreover, we can verify that

νj(A) ≍ dA for j ∈ A,
νj(A) ≍ max{dj, dA} for j ∈ {1, . . . , K} \ A and

νj(A) ≍ dA for j ∈ {K + 1, . . . , p}.

Therefore, we have(
1 +

ϕ1/2d2A
ϕ1/2 + dA

) p∑
j=1

σjw
2
j

pνj(A)2

=

(
1 +

ϕ1/2d2A
ϕ1/2 + dA

)( K∑
j=1

σjw
2
j

pνj(A)2
+

p∑
j=K+1

σjw
2
j

pνj(A)2

)

≲
ϕdA

p(ϕ1/2 + dA)
+

ϕ1/2

p(ϕ1/2 + dA)

≲
1

n
+

1

p+ (np)1/2dA
. (B.8)

Finally,

dA
ϕ1/2 + dA

(∑
j∈A

σjw
2
j

)1/2
∑

j /∈A

σjw
2
j

pνj(A)2

1/2

≲(ϕ1/2dA)
1/2

(
ϕ1/2

pdA

)1/2

≲n−1/2. (B.9)

Therefore, the lemma is proved by (B.6), (B.7), (B.8) and (B.9).
The following lemma states some useful results derived from Lemma B.2:
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Lemma B.3. Under the conditions of Lemma B.2, we have∑
k∈A

⟨v, ṽ(l)
k ⟩

2 = 1 +O≺(n
−1/2 + ϕ1/2d−1

A + d−2
A ) and (B.10)∑

k∈A

⟨ξ(l),vk⟩2 = 1 +O≺(n
−1/2 + ϕ1/2d−1

A + d−2
A ) (B.11)

for any v ∈ Span{vj : j ∈ A} with ∥v∥ = 1 and ξ(l) ∈ Span{ṽ(l)
j : j ∈ A} with ∥ξ(l)∥ = 1.

Moreover, for j /∈ A, we have∑
k∈A

⟨vj, ṽ
(l)
k ⟩

2 = O≺(n
−1/2) and∑

k∈A

⟨ṽ(l)
j ,vk⟩2 = O≺(n

−1/2).

Proof: We only prove (B.10) and (B.11) to save space as the derivations are similar.
We first show (B.10). Let v ∈ Span{vi : i ∈ A} with length 1. By Lemma B.2, for
l = 1, 2, we have

⟨v, P (l)
A v⟩ = ⟨v, Z(l)

A v⟩+O≺(n
−1/2).

Note that

⟨v, P (l)
A v⟩ = ⟨v,

∑
k∈A

ṽ
(l)
k (ṽ

(l)
k )⊤v⟩

=
∑
k∈A

⟨v, ṽ(l)
k (ṽ

(l)
k )⊤v⟩

=
∑
k∈A

⟨v, ṽ(l)
k ⟩

2. (B.12)

On the other hand,

⟨v, Z(l)
A v⟩ =

∑
j∈A

µ(dj)⟨vj,v⟩2. (B.13)

Note that

µ(dj) =
σj

ϕ1/2(ϕ1/2 + ϕ−1/2 + dj + d−1
j )

(1− d−2
j )

=

(
1−

ϕ+ ϕ1/2d−1
j

ϕ+ 1 + ϕ1/2dj + ϕ1/2d−1
j

)
(1− d−2

j )

= 1−O≺(ϕ
1/2d−1

j + d−2
j ).

Hence (B.10) is proved by (B.12), (B.13) and the fact that
∑

j∈A⟨vj,v⟩2 = 1. Following
similar argument in Example 2.15 of Bloemendal et al. (2016), we can interchange the

role of {vi}i∈A and {ṽ(l)
i }i∈A to get (B.11), and the proof is complete.

We proceed to generalise the result of Lemma B.3 to {1, . . . , K}. Define a parti-
tion of {1, . . . , K} by ∪Ss=1As, where S is the number of distinct values in {σ1, . . . , σK}.
Specifically, define

A1 = {j : σj = σ1} and
As = {j : σj = σ∑s−1

j=1 |Aj |+1} for s = 2, . . . , S.
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For l = 1, 2, pick any ξ(l) ∈ Span{ṽ(l)
1 , . . . , ṽ

(l)
K }. We can write

ξ(l) =
S∑

s=1

ξ(l)s ,

where ξ(l)s ∈ Span{ṽ(l)
j : j ∈ As}. We have the following Lemma:

Lemma B.4. Under Assumption 3.1 to 3.3, for l = 1, 2, for any ξ(l) ∈ Span{ṽ(l)
1 , . . . , ṽ

(l)
K },

we have

max
v∈Span{v1,...,vK},∥v∥=1

⟨ξ(l),v⟩ = 1 +O≺(n
−1/2 + ϕ1/2d−1

K + d−2
K ).

Proof: From Lemma B.3, for j /∈ As, we have∑
k∈As

⟨ṽ(l)
j ,vk⟩2 = O≺(n

−1/2).

Therefore, we have ∑
k∈As

⟨ξ(l),vk⟩2 =
∑
k∈As

⟨ξ(l)s ,vk⟩2 +O≺(n
−1/2).

Hence we have

K∑
k=1

⟨ξ(l),vk⟩2 =
S∑

s=1

∑
k∈As

⟨ξ(l)s ,vk⟩2 +O≺(n
−1/2)

=
S∑

s=1

∥ξ(l)s ∥2 +O≺(n
−1/2 + ϕ1/2d−1

K + d−2
K )

= 1 +O≺(n
−1/2 + ϕ1/2d−1

K + d−2
K )

by Lemma B.3. Finally, since ⟨ξ(l),v⟩ is maximised by taking

v =

∑K
k=1⟨ξ

(l),vk⟩vk

(
∑K

k=1⟨ξ
(l),vk⟩2)1/2

,

we have

max
v∈Span{v1,...,vK∗},∥v∥=1

⟨ξ(l),v⟩ =
∑K

k=1⟨ξ
(l),vk⟩2

(
∑K

k=1⟨ξ
(l),vk⟩2)1/2

= 1 +O≺(n
−1/2 + ϕ1/2d−1

K + d−2
K )

by taylor’s expansion. Thus the proof is complete.
We are now ready to prove (3.5) and complete the proof of Proposition 3.1:
From Lemma B.4, for l = 1, 2, we have

min
ξ(l)∈Ṽ (l)

K ;∥ξ(l)∥=1

max
v∈VK ;∥v∥=1

⟨ξ(l),v⟩ = 1 +O≺(n
−1/2 + ϕ1/2d−1

K + d−2
K ).
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This implies

max
ξ(l)∈Ṽ (l)

K ;ξ(l) ̸=0

min
v∈VK ;v ̸=0

sin∠(ξ(l),v) = O≺(n
−1/2 + ϕ1/2d−1

K + d−2
K ). (B.14)

Note that the roles of ξ(l) and v in Lemma B.4 are interchangeable, as demonstrated in
the proof. Hence, by the swapped version of (B.14), we can show that

max
v∈VK ;v ̸=0

min
ξ(l)∈Ṽ (l)

K ;ξ(l) ̸=0

sin∠(v, ξ(l)) = O≺(n
−1/2 + ϕ1/2d−1

K + d−2
K ) for l = 1, 2.

Therefore, the proof is complete.

Remark B.1. When the eigenvalues are distinct, for k = 1, . . . , K − 1, it is easy to
derive result analogous to Lemma B.4 for ξ(l) ∈ Span{v1, . . . ,vk}. Hence we can verify
that (3.5) holds.

B.2.2 Proof of Theorem 3.1

Proof: Without loss of generality, we prove under the assumption that J = 1. It suffices
to show that

ck + sin∠(Ṽ (1)
k , Ṽ

(2)
k ) ≳ cK + sin∠(Ṽ (1)

K , Ṽ
(2)
K ) + δ/2 for k ∈ K, k ̸= K

as n→∞.
For k ≤ K − 1, since ck − ck+1 > δ, it follows that ck − cK > (K − k)δ. Hence, we

have

ck + sin∠(Ṽ (1)
k , Ṽ

(2)
k )− cK − sin∠(Ṽ (1)

K , Ṽ
(2)
K )

>(K − k)δ −O≺(n
−1/2 + ϕ1/2d−1

K + d−2
K )

≳δ/2 (B.15)

as n→∞ by Proposition 3.1.
On the other hand, for k > K, by Proposition 3.1, we have

ck + sin∠(Ṽ (1)
k , Ṽ

(2)
k )− cK − sin∠(Ṽ (1)

K , Ṽ
(2)
K )

=ck − cK + 1−O≺((pmin{n, p})−1/2)

>δ − 1 + 1−O≺((pmin{n, p})−1/2)

≳δ/2 (B.16)

as n→∞. Combining (B.15) and (B.16), the proof is complete.
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B.2.3 Proof of Corollary 3.1

Recall that

SC2(k) =
l(k)

l(0)
+ INS(k),

where l(k) =
∑Kmax

j=k+1 log(σ̃j +1) for k = 0, 1, . . . , Kmax− 1 and l(Kmax) = 0. It is obvious
that 1 > l(1)/l(0) > · · · > l(Kmax)/l(1) = 0. Moreover, from the assumption in the
theorem, we have

log(σK)/ log(σ1) ≳ 1/C. (B.17)

From Theorem 2.3 of Bloemendal et al. (2016), for j ∈ {1, . . . , K}, we have

|σ̃j − ϕ1/2 − ϕ−1/2 − dj − d−1
j | ≺

(
1 +

dj
1 + ϕ−1/2

)
min{p, n}−1/2.

Since σj ≍ ϕ1/2dj, by (B.17) and the assumption that p ≍ n, we have

log(σ̃K + 1)/ log(σ̃1 + 1) ≳ 1/C2

for some C2 > 1. This implies that for k ∈ {1, . . . , K − 1},

l(k)

l(0)
− l(k + 1)

l(0)
=

log(σ̃k+1 + 1)

l(0)
≳

1

KmaxC2

.

On the other hand,

l(K)

l(0)
− l(Kmax)

l(0)
≤ l(1)
l(0)
− l(Kmax)

l(0)
= 1− log(σ̃1 + 1)∑Kmax

j=1 log(σ̃j + 1)
< 1− 1

Kmax

.

Hence the proof is complete by Theorem 3.1, taking δ = KmaxC2.

B.2.4 Proof of Corollary 3.2

Recall that

SC3(k) =
log(1 + p−1

∑p
j=k+1 σ̃

2
j )

log(1 + p−1
∑p

j=1 σ̃
2
j )

+ INS(k).

It is obvious that the first term of SC3 lies between 0 and 1 for k ∈ K. Note that σ2
k ≍ p for

k = 1, . . . , K. Therefore, by Theorem 2.3 of Bloemendal et al. (2016) and the assumption
that p ≍ n, we can show that σ̃2

k ≍ p for k = 1, . . . , K. Let L(0) = log(1 + p−1
∑p

j=1 σ̃
2
j ).

For k ∈ {1, . . . , K − 1}, we have

log(1 + p−1
∑p

j=k+1 σ̃
2
j )

L(0)
−

log(1 + p−1
∑p

j=k+2 σ̃
2
j )

L(0)
=

1

L(0)
log

(
1 +

p−1σ̃2
k+1

1 + p−1
∑p

j=k+2 σ̃
2
j

)

≥ 1

L(0)
log

(
1 +

p−1σ̃2
K

1 + p−1
∑p

j=1 σ̃
2
j

)
> 0.

(B.18)
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On the other hand,

log(1 + p−1
∑p

j=K+1 σ̃
2
j )

L(0)
−

log(1 + p−1
∑p

j=Kmax+1 σ̃
2
j )

L(0)

≤
log(1 + p−1

∑p
j=K+1 σ̃

2
j )

L(0)

≤1−
L(0)− log(1 + p−1

∑p
j=K+1 σ̃

2
j )

L(0)

≤1− 1

L(0)
log

(
1 +

p−1σ̃2
1

1 + p−1
∑p

j=K+1 σ̃
2
j

)
< 1. (B.19)

Hence by (B.18) and (B.19), the conditions of Theorem 3.1 are satisfied and proof is
complete.
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Appendix C

Supplementary Materials for Chapter 4

C.1 Proofs

The appendix presents the proofs of the main results. Section C.1.1 provides the proof
of Theorem 4.1, while Section C.1.2 provides the proof of Theorem 4.2. Throughout this
section, δ0, δ1, . . . denote positive constants that do not depend on n. For two probability
distributions P and Q on a finite set A, D(P∥Q) will denote the Kullback-Leibler (KL)
divergence,

D(P∥Q) =
∑
x∈A

P(x) log
(
P(x)
Q(x)

)
.

C.1.1 Proof of Theorem 4.1

For two scalars x, z ∈ [0, 1], define the Hellinger distance as

d2H(x, z) = (
√
x−
√
z)2 + (

√
1− x−

√
1− z)2.

For n× n matrices X = (xij)n×n and Z = (zij)n×n where X,Z ∈ [0, 1]n×n, define

d2H(X,Z) =
1

n2

n∑
i=1

n∑
j=1

d2H(xij, zij).

It is straightforward to show that d2H(X,Z) ≳ ∥X−Z∥2F/(n2−n). Moreover, let ∥X∥∞ =
maxi,j |xij| denotes the entry-wise infinity norm of X. We will first prove the theorem

under an additional constraint that ∥M∗∥∞ ≤ γ and ∥M̂∥∞ ≤ γ for some γ > 0, then
send γ →∞ to recover Theorem 4.1. Formally, we prove the following theorem:

Theorem C.1. Under the conditions in Theorem 4.1, suppose in addition that ∥M∗∥∞ ≤
γ. Let M̂ be a solution to (4.2) under the additional constraint that ∥M̂∥∞ ≤ γ. Then
with probability at least 1− δ1/n,

d2H(Π̂,Π
∗) ≤ δ2Cn

√
1

pnn
,

where δ1 and δ2 are absolute constants.

Proof. Define L̄(M) = L(M) − L(0n×n). The following lemma is essential to proving
Theorem C.1:
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Lemma C.1. Under the conditions in Theorem C.1, we have

P

(
1

n2
sup
M∈G
|L̄(M)− E(L̄(M))| ≥ δ0Cn

√
Tqn
n

)
≤ δ1

n
,

where δ0 is an absolute constant, and G ⊂ Rn×n is defined as

G = {M ∈ Rn×n : ∥M∥∗ ≤ Cnn, ∥M∥∞ ≤ γ,M = −M⊤}.

Before proving the lemma, we first show how Lemma C.1 implies Theorem C.1. For
two scalars x, z ∈ [0, 1], we abuse the notation ofD(·∥·) and define the divergence measure
as

D(x∥z) = x log
(x
z

)
+ (1− x) log

(
1− x
1− z

)
.

Similarly, for two matrices X,Z ∈ [0, 1]n×n, define

D(X∥Z) =
n∑

i=1

n∑
j=1

D(xij∥zij).

For any choice of M ∈ G, we have

E(L̄(M)− L̄(M∗))

=E(L(M)− L(M∗))

=
n∑

i=1

∑
j>i

E

(
yij log

(
g(mij)

g(m∗
ij)

)
+ (nij − yij) log

(
1− g(mij)

1− g(m∗
ij)

))

=
n∑

i=1

∑
j>i

E

(
nijg(m

∗
ij) log

(
g(mij)

g(m∗
ij)

)
+ nij(1− g(m∗

ij)) log

(
1− g(mij)

1− g(m∗
ij)

))

=− T
n∑

i=1

∑
j>i

pij,nD(g(m∗
ij)∥g(mij))

≤− 0.5TpnD(Π∗∥Π).

Note that M∗ ∈ G by assumption. Therefore, for any M ∈ G, we have

L̄(M)− L̄(M∗) = E(L̄(M)− L̄(M∗)) + (L̄(M)− E(L̄(M)))− (L̄(M∗)− E(L̄(M∗)))

≤ E(L̄(M)− L̄(M∗)) + 2 sup
X∈G
|L̄(X)− E(L̄(X))|

≤ −0.5TpnD(Π∗∥Π) + 2 sup
X∈G
|L̄(X)− E(L̄(X))|.

Moreover, from the definition of M̂ , we have M̂ ∈ G and L(M̂) ≥ L(M∗). Therefore, we
obtain

0 ≤ −0.5TpnD(Π∗∥Π̂) + 2 sup
M∈G
|L̄(M)− E(L̄(M))|.

Applying Lemma C.1, then with probability at least 1− δ1/n, we have

0 ≤ −0.5TpnD(Π∗∥Π̂)
n2

+ 2δ0Cn

√
Tqn
n
.
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This implies that

D(Π∗∥Π̂)
n2

≤ 4δ0Cn

Tpn

√
Tqn
n

≲
4δ0Cn√
Tpn

√
1

n

by Assumption 4.2. Note that d2H(Π̂,Π
∗) ≤ n−2D(Π∗∥Π̂) by Jensen’s inequality combined

with the fact that (1 − x) ≤ log(x). Hence Theorem C.1 is proved. Theorem 4.1 then
follows by the fact that d2H(Π̂,Π

∗) ≳ ∥Π̂ − Π∗∥2F/(n2 − n) and taking the limit as γ →
∞.

We now begin to prove Lemma C.1.

Proof. For any h > 0, using Markov’s inequality, we have

P

(
1

n2
sup
M∈G
|L̄(M)− E(L̄(M))| ≥ δ0Cn

√
Tqn/n

)
=P

(
sup
M∈G
|L̄(M)− E(L̄(M))|h ≥

(
δ0Cnn

1.5
√
Tqn

)h)
≤
E
(
supM∈G |L̄(M)− E(L̄(M))|h

)(
δ0Cnn1.5

√
Tqn

)h . (C.1)

The bound in Lemma C.1 will be established by combining (C.1), deriving an upper
bound on E

(
supM∈G |L̄(M)− E(L̄(M))|h

)
and setting h = log(n). Note that we can

write L̄(M) as

L̄(M) =
n∑

i=1

∑
j>i

yij log

(
g(mij)

g(0)

)
+ (nij − yij) log

(
1− g(mij)

1− g(0)

)
.

By a symmetrization argument (Lemma 6.3 in Ledoux and Talagrand (1991)), we have

E

(
sup
M∈G
|L̄(M)− E(L̄(M))|h

)

≤2hE

sup
M∈G

∣∣∣∣∣
n∑

i=1

∑
j>i

ϵij

{
yij log

(
g(mij)

g(0)

)
+ (nij − yij) log

(
1− g(mij)

1− g(0)

)}∣∣∣∣∣
h
 ,

where ϵi,j are i.i.d. Rademacher random variables for i, j = 1, . . . , n. To bound the latter
term, we apply a contraction principle (Theorem 4.12 in Ledoux and Talagrand (1991)).
From the assumption that ∥M∥∞ ≤ γ, conditional on nij, for nij ≥ 1,

n−1
ij

(
yij log

(
g(mij)

g(0)

)
+ (nij − yij) log

(
1− g(mij)

1− g(0)

))
is a contraction that vanish at 0. Thus, we have

E

(
sup
M∈G
|L̄(M)− E(L̄(M))|h

)
≤(2h)(2h)E

sup
M∈G

∣∣∣∣∣
n∑

i=1

∑
j>i

nijϵijmij

∣∣∣∣∣
h


=4hE

sup
M∈G

∣∣∣∣∣
n∑

i=1

∑
j>i

nijϵijmij

∣∣∣∣∣
h
 . (C.2)
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To bound E

(
supM∈G

∣∣∣∑n
i=1

∑
j>i nijϵijmij

∣∣∣h), we apply the skew-symmetric property of

M and the fact that nij = nji for i, j ∈ {1, . . . , n}. For any M ∈ G, we have
n∑

i=1

n∑
j=1

nijϵijmij =
n∑

i=1

∑
j>i

nij(ϵij − ϵji)mij.

On the other hand, for h > 1, by the convexity of | · |h, we have∣∣∣∣∣
n∑

i=1

∑
j>i

nijϵijmij

∣∣∣∣∣
h

=

∣∣∣∣∣0.5
{

n∑
i=1

∑
j>i

nij(ϵij − ϵji)mij +
n∑

i=1

∑
j>i

nij(ϵij + ϵji)mij

}∣∣∣∣∣
h

≤ 0.5

∣∣∣∣∣
n∑

i=1

∑
j>i

nij(ϵij − ϵji)mij

∣∣∣∣∣
h

+

∣∣∣∣∣
n∑

i=1

∑
j>i

nij(ϵij + ϵji)mij

∣∣∣∣∣
h
 .

Since ϵji and −ϵji have identical distribution, after taking expectation, we have

E

sup
M∈G

∣∣∣∣∣
n∑

i=1

∑
j>i

nijϵijmij

∣∣∣∣∣
h
 ≤ E

sup
M∈G

∣∣∣∣∣
n∑

i=1

∑
j>i

nij(ϵij − ϵji)mij

∣∣∣∣∣
h


= E

sup
M∈G

∣∣∣∣∣
n∑

i=1

n∑
j=1

nijϵijmij

∣∣∣∣∣
h


= E

(
sup
M∈G
|⟨E ◦ N ,M⟩|h

)
. (C.3)

Here, E = (ϵij)n×n, N = (nij)n×n and E ◦ N represents the hadamard product between
E and N , and ⟨X,Z⟩ =

∑n
i=1

∑n
j=1 xijzij for any n × n matrices X and Z. Note that

|⟨X,Z⟩| ≤ ∥X∥op∥Z∥∗, where ∥ · ∥op is the Euclidean operator norm. Hence we have

E

(
sup
M∈G
|⟨E ◦ N ,M⟩|h

)
≤ E

(
sup
M∈G
∥E ◦ N∥hop∥M∥h∗

)
≤ (Cnn)

hE
(
∥E ◦ N∥hop

)
. (C.4)

We can write E ◦ N =
∑n

i=1

∑n
j=1 ϵijnijEij, where Eij is a n × n matrix with 1 at

the (i, j)th entry and 0 otherwise. Following arguments similar to Section 4.3 of Tropp
et al. (2015), and applying Theorem 4.1.1 in Tropp et al. (2015), for t > 0, we set
s = −t2/h/(2maxj{

∑n
i=1 n

2
ij}) such that

E(∥E ◦ N∥hop | N ) =

(∫ ∞

0

P (∥E ◦ N∥hop ≥ t)dt

)
≤
(∫ ∞

0

2n exp

(
−t2/h

2maxj{
∑n

i=1 n
2
ij}

)
dt

)
=

(∫ ∞

0

2n

(
h

2
(2max

j
{

n∑
i=1

n2
ij})h/2sh/2−1

)
exp (−s) ds

)

=

(
(nh)(2max

j
{

n∑
i=1

n2
ij})h/2

∫ ∞

0

sh/2−1 exp (−s) ds

)

=nhΓ(h/2)(2max
j
{

n∑
i=1

n2
ij})h/2,
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where Γ(·) is the gamma function. Taking expectation, we have

E(∥E ◦ N∥hop) ≤ nhΓ(h/2)2h/2E(max
j
{

n∑
i=1

n2
ij}h/2). (C.5)

We aim to find a bound for E(maxj{
∑n

i=1 n
2
ij}h/2). Using Bernstein’s inequality, for each

j and all t > 0, we have

P

(∣∣∣∣∣
n∑

i=1

(
n2
ij − E(n2

ij)
)∣∣∣∣∣ > t

)
≤ 2 exp

(
−t2/2∑n

i=1{E(n4
ij)− (E(n2

ij))
2}+ T 2t/3

)
≤ 2 exp

(
−t2/2

nT 4qn + T 2t/3

)
.

In particular, for t ≥ 6nT 2qn, we have

P

(∣∣∣∣∣
n∑

i=1

(
n2
ij − E(n2

ij)
)∣∣∣∣∣ > t

)
≤ 2 exp

(
−t/T 2

)
= 2P (Uj > t/T 2),

where U1, . . . , Un are independent and identically distributed exponential random vari-
ables. Hence, we haveE

max
j

{
n∑

i=1

n2
ij

}h/2
1/h

=

E
max

j

∣∣∣∣∣
n∑

i=1

n2
ij − E(n2

ij) + E(n2
ij)

∣∣∣∣∣
h/2
1/h

≤2

E
max

j

∣∣∣∣∣
n∑

i=1

n2
ij − E(n2

ij)

∣∣∣∣∣
h/2
1/h

+ 2

E
max

j

∣∣∣∣∣
n∑

i=1

E(n2
ij)

∣∣∣∣∣
h/2
1/h

≤2
√
nT 2qn + 2

E
max

j

∣∣∣∣∣
n∑

i=1

n2
ij − E(n2

ij)

∣∣∣∣∣
h
1/2h

=2
√
nT 2qn + 2

∫ ∞

0

P

max
j

∣∣∣∣∣
n∑

i=1

n2
ij − E(n2

ij)

∣∣∣∣∣
h

≥ t

 dt

1/2h

≤2
√
nT 2qn + 2

(6nT 2qn)
h +

∫ ∞

(6nT 2qn)h
P

max
j

∣∣∣∣∣
n∑

i=1

n2
ij − E(n2

ij)

∣∣∣∣∣
h

≥ t

 dt


1/2h

≤2
√
nT 2qn + 2

{
(6nT 2qn)

h + 2

∫ ∞

(6nT 2qn)h
P

(
max

j
{Uj}h ≥ t/T 2h

)
dt

}1/2h

≤2
√
nT 2qn + 2

{
(6nT 2qn)

h + 2E

(
max

j
{T 2Uj}h

)}1/2h

=2
√
nT 2qn + 2

{
(6nT 2qn)

h + 2T 2hE

(
(max

j
{Uj})h

)}1/2h

.
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By standard computations for exponential random variables, we can obtain the inequality
E
(
(maxj{Uj})h

)
≤ 2h! + logh(n). Thus, we haveE

max
j

{
n∑

i=1

n2
ij

}h/2
1/h

≤2
√
nT 2qn + 2

{
(6nT 2qn)

h + 2T 2h(2h! + logh(n))
}1/2h

≤2T (1 +
√
6)
√
nqn + 2T (2)1/2h(

√
log(n) + 21/2h

√
h)

≤2T (1 +
√
6)
√
nqn + 2T (2 +

√
2)
√

log(n)

using the choice h = log(n) in the final line. Combining this result with (C.5), we have

E(∥E ◦ N∥hop)1/h ≤ (nhΓ(h/2))1/h
√
2{2T (1 +

√
6)
√
nqn + 2T (2 +

√
2)
√
log(n)}

≤ δ3T
√
nqn

for some constant δ3 > 0 by Assumption 4.2. Combining this with (C.2), (C.3) and (C.4),
we obtain

E

(
sup
M∈G
|L̄(M)− E(L̄(M))|h

)1/h

≤ (4T ) (Cnn)(δ3)
√
nqn.

Plugging this into (C.1), the probability in (C.1) is upper bounded by{
(4T ) (Cnn)(δ3)

√
nqn

δ0Cnn1.5
√
Tqn

}h

≤

(
4
√
Tδ3
δ0

)log(n)

≤ δ1
n
,

provided that δ0 ≥ 4
√
Tδ3/e, which establishes the lemma.

C.1.2 Proof of Theorem 4.2

We first quote the following lemma from Davenport et al. (2014):

Lemma C.2. Suppose x, z ∈ (0, 1). Then

D(x∥z) ≤ (x− z)2

z(1− z)
.

The following lemma constructs a packing set X ⊂ K such that, for any distinct
X(a), X(b) ∈ X , ∥X(a) −X(b)∥2F is large:

Lemma C.3. Let K be defined as in (4.3), and k a positive integer. Let γ ≤ 1 be such
that k/γ2 is an integer, and suppose k/γ2 ≤ n. Then, there exists a set X ⊂ K satisfying

|X | ≥ exp

(
kn

25600γ2

)
with the following properties:

1. For all X = (xij)n×n ∈ X , each entry of X satisfies |xij| ≤ Cnγ/
√
2k.

2. For all X(a) ̸= X(b) ∈ X ,

∥X(a) −X(b)∥2F >
C2

nγ
2n2

16k
.
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Proof. We use a probabilistic argument. The set will be constructed by drawing

|X | =
⌈
exp

(
kn

25600γ2

)⌉
matrices independently from the following distribution. Set B = k/γ2. Each matrix in
X is constructed of the form S − S⊤, where S = (sij)n×n consists of blocks of dimension
B × n, stacked vertically. The entries of the first block are independent and identically
distributed symmetric random variables taking values ±Cnγ/(2

√
2k). Then S is filled

out by copying this block as many times as it fits. That is,

sij = si′j, where i
′
= i (mod B) + 1.

Now we argue that with nonzero probability, this set will have all the desired properties.
For X ∈ X , it is easy to verify that X = −X⊤. Moreover, we have

∥X∥∞ ≤ 2{Cnγ/(2
√
2k)} ≤ Cn/

√
2k.

Further, since rank(X) ≤ 2rank(S) ≤ 2B,

∥X∥∗ ≤
√
2B∥X∥F ≤

√
2k/γ2n(Cnγ/

√
2k) = Cnn.

Thus X ⊂ K, and it remains to show that X satisfies property 2 in Lemma C.3. Let
p = ⌊n/B⌋. Consider the submatrix of S containing the first B rows, denoted by S[1:B,:].
This can be written as

S[1:B,:] = (S1, S2, . . . , Sp, Sp+1),

where S1, . . . , Sp are matrices of dimension B × B, and Sp+1 accounts for the remaining
part of S[1:B,:]. If n is divisible by B, then Sp+1 is an empty matrix. For X(a) = S(a) −
(S(a))⊤ and X(b) = S(b) − (S(b))⊤, drawn from the above distribution, define

Θi =

√
2k

Cnγ

(
S
(a)
i − S

(b)
i

)
, for i = 1, . . . , p.

Each Θi is a B ×B matrix, and we write Θi = (θi,sl)B×B, where each θi,sl is independent
and identically distributed random variables such that for each s, l ∈ {1, . . . , B}, we have

P (θi,sl = 1) = P (θi,sl = −1) = 0.25 and P (θi,sl = 0) = 0.5.

Hence we can write

∥X(a) −X(b)∥2F ≥
p∑

i=1

p∑
j=1

∥S(a)
i − (S

(a)
j )⊤ − S(b)

i + (S
(b)
j )⊤∥2F

=
C2

nγ
2

2k

p∑
i=1

p∑
j=1

∥Θi −Θ⊤
j ∥2F

=
C2

nγ
2

2k

p∑
i=1

p∑
j=1

(∥Θi∥2F + ∥Θ⊤
j ∥2F − 2tr(ΘiΘj))

=
C2

nγ
2

2k

{
2p

p∑
i=1

(∥Θi∥2F )− 2tr

(
(

p∑
i=1

Θi)(

p∑
i=1

Θi)

)}
.
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The trace can be expanded as:

tr

(
(

p∑
i=1

Θi)(

p∑
i=1

Θi)

)
=

B∑
s=1

B∑
k=1

(

p∑
i=1

θi,sl)(

p∑
i=1

θi,ls)

= 2
B∑
s=1

∑
k>s

(

p∑
i=1

θi,sl)(

p∑
i=1

θi,ls) +
B∑
s=1

(

p∑
i=1

θi,ss)
2.

Hence we can write

2p

p∑
i=1

(∥Θi∥2F )− 2tr

(
(

p∑
i=1

Θi)(

p∑
i=1

Θi)

)

=2p

p∑
i=1

B∑
s=1

B∑
k=1

θ2i,sl − 4
B∑
s=1

∑
k>s

(

p∑
i=1

θi,sl)(

p∑
i=1

θi,ls)− 2
B∑
s=1

(

p∑
i=1

θi,ss)
2

=2
B∑
s=1

{p
p∑

i=1

(θ2i,ss)− (

p∑
i=1

θi,ss)
2}+ 2

B∑
s=1

B∑
k>s

{p
p∑

i=1

(θ2i,sl + θ2i,ls)− 2(

p∑
i=1

θi,sl)(

p∑
i=1

θi,ls)}.

Taking expectation, we have

E

(
2p

p∑
i=1

(∥Θi∥2F )− 2tr

(
(

p∑
i=1

Θi)(

p∑
i=1

Θi)

))
=2B{p(0.5p)− 0.5p}+ 2B(B − 1)p2

2

=Bp2 −Bp+B2p2 −Bp2

=B2p2 −Bp.

Using the fact that p = ⌊n/B⌋ ≥ n/2B and p ≤ n/B, we have

P

(
2p

p∑
i=1

(∥Θi∥2F )− 2tr

(
(

p∑
i=1

Θi)(

p∑
i=1

Θi)

)
≤ n2/8

)

=P

(
−2p

p∑
i=1

(∥Θi∥2F ) + 2tr

(
(

p∑
i=1

Θi)(

p∑
i=1

Θi)

)
+B2p2 −Bp ≥ −n2/8 +B2p2 −Bp

)

≤P

(
−2p

p∑
i=1

(∥Θi∥2F ) + 2tr

(
(

p∑
i=1

Θi)(

p∑
i=1

Θi)

)
+B2p2 −Bp ≥ −n2/8 + n2/4− n

)

≤P

(
−2p

p∑
i=1

(∥Θi∥2F ) + 2tr

(
(

p∑
i=1

Θi)(

p∑
i=1

Θi)

)
+B2p2 −Bp ≥ n2/16

)
,

where the last inequality holds as long as n ≥ 16. Using McDiarmid’s inequality, we can
obtain the bound

P

(
2p

p∑
i=1

(∥Θi∥2F )− 2tr

(
(

p∑
i=1

Θi)(

p∑
i=1

Θi)

)
≤ n2/8

)
≤ exp

(
− 2(n2/16)2∑B

s=1

∑B
k=1

∑p
i=1(10p)

2

)

= exp

(
− n4

12800B2p3

)
≤ exp

(
− nB

12800

)
.
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Using Union bound, we have that

P

(
min

X(a) ̸=X(b)∈X
2p

p∑
i=1

(∥Θi∥2F )− 2tr

(
(

p∑
i=1

Θi)(

p∑
i=1

Θi)

)
≤ n2/8

)
≤
(
|X |
2

)
exp

(
− nB

12800

)
,

which is less than 1 given the size of X . Thus the event that

2p

p∑
i=1

(∥Θi∥2F )− 2tr

(
(

p∑
i=1

Θi)(

p∑
i=1

Θi)

)
> n2/8

for all X(a) ̸= X(b) ∈ X has non-zero probability. In this event,

∥X(a) −X(b)∥2F >
C2

nγ
2

2k
(n2/8) =

C2
nγ

2n2

16k
.

The proof of the lemma is thus complete.

We now proceed to prove the following theorem, which concerns the lower bound
treating nij as given.

Theorem C.2. Suppose 12 ≤ C2
n ≤ min{1, κ23/T}n. For any given nij, i, j ∈ {1, . . . , n}, j >

i, consider any algorithm which, for any M ∈ K, takes as input Y and returns M̂ . Then
there exists M ∈ K such that with probability at least 3/4, Π = g(M) and Π̂ = g(M̂)
satisfy

1

n2 − n
∥Π− Π̂∥2F ≥ min

{
κ4, κ3Cn

√
n∑n

i=1

∑n
j=1 yij

}
. (C.6)

for all n > N . Here κ3, κ4 > 0 and N are absolute constants.

Proof. Let c = g
′
(−1) = g(−1)(1 − g(−1)), and let c

′
= g(−1). Note that for all

x ∈ [−1, 1], we have g
′
(x) ≥ c and c

′ ≤ g(x) ≤ 1− c′ . We begin by choosing ϵ so that

ϵ2 = min

{
c

64
, κ3Cn

√
n∑n

i=1

∑n
j=1 yij

}
, (C.7)

where κ3 is an absolute constant to be determined. Let k = 6 and choose γ so that k/γ2

is an integer and

4
√
2
ϵ
√
2k

Cnc
≤ γ ≤ 8ϵ

√
2k

Cnc
.

This is possible since by assumption Cn ≥
√
12, ϵ ≤ c/8 and c = 0.197. One can check

that γ satisfies the assumptions of Lemma C.3. Note that for X(i) ̸= X(j) ∈ X ,

∥g(X(i))− g(X(j))∥2F ≥ c2∥X(i) −X(j)∥2F > c2C2
nγ

2n2/16k ≥ 4ϵ2n2. (C.8)

Now suppose for the sake of a contradiction that there exists an algorithm such that for
any X ∈ K, it returns an X̂ such that

1

n2
∥g(X)− g(X̂)∥2F ≤ ϵ2. (C.9)
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with probability at least 1/4. Define

X∗ = argmin
X(a)∈X

1

n2
∥g(X(a))− g(X̂)∥2F .

If (C.9) holds, then (C.8) implies that X∗ = X. Thus, if (C.9) holds with probability at
least 1/4 then

P (X ̸= X∗) ≤ 3/4.

However, by a variant of Fano’s inequality, we have

P (X ̸= X∗) ≥ 1−
n2maxX(a) ̸=X(b) D(Y | X(a)∥Y | X(b)) + 1

log |X |
. (C.10)

Since yij + yji = nij (with nij given), the value of yji is determined by yij. Moreover, yij
are independent for i = 1, . . . , n, j > i. Therefore,

D(Y | X(a)∥Y | X(b)) =
n∑

i=1

∑
j>i

D(yij | x(a)ij ∥yij | x
(b)
ij ).

Using Lemma C.2, we have

D(yij | x(a)ij ∥yij | x
(b)
ij ) ≤

(g(Cnγ/
√
2k)− g(−Cnγ/

√
2k))2

g(Cnγ/
√
2k)(1− g(Cnγ/

√
2k))

≤ 4(g
′
(ξ))2C2

nγ
2/(2k)

g(Cnγ/
√
2k)(1− g(Cnγ/

√
2k))

=
4{g(ξ)(1− g(ξ))}2C2

nγ
2/(2k)

g(Cnγ/
√
2k)(1− g(Cnγ/

√
2k))

for some |ξ| ≤ Cnγ/
√
2k. Since c

′
< g(x) < 1 − c′ for |x| < 1, g(ξ) ≤ g(Cnγ/

√
2k), and

that

Cnγ/
√
2k ≤ Cn

8ϵ
√
2k

Cnc
√
2k

=
8ϵ

c
≤ 1,

we have

D(yij | x(a)ij ∥yij | x
(b)
ij ) ≤

4(1− c′)
c′

64ϵ2

c2
= δ4ϵ

2,

where δ4 = 256(1− c′)/(c′c2). Thus, from (C.10), we have

1

4
≤
δ4(
∑n

i=1

∑n
j=1 yij)ϵ

2 + 1

log(|X |)
≤ 25600γ2

kn
{δ4(

n∑
i=1

n∑
j=1

yij)ϵ
2 + 1}

≤ 3276800

c2
ϵ2

(
δ4(
∑n

i=1

∑n
j=1 yij)ϵ

2 + 1

nC2
n

)
.

We now argue that this leads to a contradiction. Specifically, if δ4(
∑n

i=1

∑n
j=1 yij)ϵ

2 ≤ 1,

then together with (C.7) implies that nC2
n ≤ 409600/c. Since C2

n ≥ 2k by assumption,
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if we set N > 204800/(kc), this would lead to a contradiction. Thus, suppose now that
δ4(
∑n

i=1

∑n
j=1 yij)ϵ

2 > 1, in which case we have

ϵ2 ≥ cCn

√
n

5120
√
δ4(
∑n

i=1

∑n
j=1 yij)

.

Thus setting κ3 ≤ c/(5120
√
δ4) in (C.7) leads to a contradiction, and hence (C.9) must

fail to hold with probability at least 3/4, which completes the proof.

We now apply Theorem C.2 to prove Theorem 4.2. For any ϵ > 0, Hoeffding’s
inequality allows us to derive that

P

(√
n∑n

i=1

∑n
j=1 yij

≥ ϵ

√
1

npn

)

=P

(
n∑

i=1

n∑
j=1

yij ≤
n2pn
ϵ2

)

=1− P

(
n∑

i=1

∑
j>i

(nij − Tpij,n) ≥
n2pn
ϵ2
− T

n∑
i=1

∑
j>i

pij,n

)

≥1− P

(
n∑

i=1

∑
j>i

(nij − Tpij,n) ≥
n2pn
ϵ2
− Tn(n− 1)qn

2

)

≥1− exp

(
−2[(n2pn/ϵ

2)− {Tn(n− 1)qn}/2]2

T 2n(n− 1)/2

)
=1− exp

(
−{(2n2pn/ϵ

2)− Tn(n− 1)qn}2

T 2n(n− 1)

)
.

To apply Theorem C.2, it suffices to find ϵ such that

1− exp

(
−{(2n2pn/ϵ

2)− Tn(n− 1)qn}2

T 2n(n− 1)

)
≥ 0.5

for sufficiently large n. From Assumption 4.2, we have pn ≍ qn and qn ≳ log(n)/n.
Consequently, there exists δ5, δ6 > 0 such that pn ≥ δ5qn and qn ≥ δ6 log(n)/n. Taking
ϵ =

√
δ5/T , we have

P

(√
n∑n

i=1

∑n
j=1 yij

≥
√
δ5
T

√
1

npn

)
≥P

(√
n∑n

i=1

∑n
j=1 yij

≥
√

pn
Tqn

√
1

npn

)

≥1− exp

(
−(2Tn2qn − Tn(n− 1)qn)

2

T 2n(n− 1)

)
=1− exp

(
−T

2n2q2n(n+ 1)2

T 2n(n− 1)

)
≥1− exp

(
−q2n(n+ 1)2

)
≥1− exp(−δ26(log(n))2)
≥1/2

for sufficiently large n. Therefore, the proof of Theorem 4.2 is complete by setting κ5 =
κ3
√
δ5/T .
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