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Abstract

This thesis is concerned with a multi-agent equilibrium expansion model where agents
are faced with an exogenous stochastic constant elasticity demand function. Producers
simultaneously decide their production schedule, via a sequential equilibrium market
clearing condition, as well as their optimal expansion schedule which is formulated as
the solution of a singular stochastic control problem. In particular, agents take into
account both the fact that their expansion has an adverse effect to the price and also
the effect of their actions on the rest of the agents. For every agent, the value function
and the optimal control process is determined and a Nash equilibrium for the market
is established. The problem is divided into two sections, the monopolist case, where a
single agent dominates the market and the competitive case in which all agents form
a price-taking continuum, and the problem takes the form of a mean-field stochastic
differential game. In both cases the value function as well as the control is calculated in

closed form.

In a different topic using an implicit numerical scheme and under mild conditions we
recover, in a compact way, the optimal weak convergence rate for a Cox-Ingersoll-Ross
(CIR) process despite the fact that the coefficients of the underlying Stochastic differential

equation are not Lipschitz.






Contents

3

Introduction 1
1.1 Description of this thesis . . . . . . ... ... ... ... ... .. ...... 1
1.2 Stochastic Singular control problems . . . ... ... ... ... . ...... )
1.3 Stochastic differential games . . . . . ... ... oo L 10
1.4 Numerical schemes for SDEs . . . .. ... ... ... ... ... .. ..... 18

An equilibrium model for capacity expansion: The case of a monopolist. 21

2.1 Imtroduction . . . . . . . .. 21
2.2 Problem Formulation . . .. ... ... ... . .. . . . 23
2.3 Model Assumptions . . ... ... .. 27
2.4 Solution to the Control Problem . . . . . . ... ... ... ... ... ..., 30

2.4.1 Heuristic Derivation of the HJB equation . . . . .. ... ... ... 30

2.4.2 Verification theorem . . . . . . ... ... ... oL 39
2.5 An extension : Optimal control in the presence of depreciation . .. . .. 44

A equilibrium model for capacity expansion: The competitive market

case. 47
3.1 Introduction . . . . .. .. .. 47
3.2 Framework . . . . . . ... 49
3.3 Individual Problem Setup . . . . .. .. .. ... L 49

3.4 Individual producer’s HJB equations . . . ... ... ... ... ... ..., 52



xii

Contents

3.4.1 Equivalence of P vs X formalism . . ... ... .......
3.5 Individual producer’s control solution . ... ... ... ... ...
3.5.1 Solving the Hamilton Jacobi Bellman Equation . . .. ..
3.5.2 Verification theorem . . . . . . . ... ... ... .. ... ..
3.6 Nash Equilibrium for the multi-agent game . . . . . ... ... ..
3.7 Appendix . ...

4 Weak convergence rate for the Cox-Ingersoll-Ross process

4.1 Introduction . . . . .. ... ... ..
4.2 Weak Convergence of the CIR model . . . ... ... ... ... ..
4.3 Appendix A . . ..

4.3.1 Calculations for I7* . .. ... ... ... ... ... ..

4.3.2 Calculations for I3 . .. ... ... .. oL L.

Bibliography



Chapter 1

Introduction

1.1 Description of this thesis

Capacity expansion under uncertainty involves planning for future growth and resource
allocation despite unpredictable factors such as fluctuating demand, technology shifts,
and economic changes. The idea, part of a field called industrial organization|[Tir88]
started as the necessity to provide a theoretical framework for investment in industries
like heavy process industries, communication networks, electrical power services, water
resource systems, oil and gas sector, pharmaceuticals, high-tech industries and real estate.
Additionally, it has provided valuable assistance to government policy, especially in areas
like infrastructure investment, environmental regulation, and Research and Development

(R&D) subsidies, where timing and uncertainty play critical roles.

Early on, apart from the pioneering work of Manne [Man61] many models assumed
perfect forecasting of the economic conditions[Lus82]. This approach is very valuable
but has a significant disadvantage, in a constantly transforming world with constant
shocks in the supply/demand side[Coc94, FVGQKRR15], unexpected structural shifts
on a sector[She98| or even political uncertainty [JY12] perfect forecasting becomes

meaningless. To this end, much of the work shifted in a stochastic environment where
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the demand has been described as a Brownian motion with a drift[Man61] or as mixed
diffusion/pure jump process model to accommodate for unexpected structural demand
shifts [Tap79, BT79] as a reference, a small number of papers of the same period are
cited for the interested reader[GM77, Nic77, ESO81, MP87a, PKR91]. Another crucial
element to the necessity of a mathematical framework is the fact that most major
investments are almost irreversible and even if the de-investment process is possible
the cost associated with it might be detrimental for future growth. As highlighted by
Pindyck [Pin88] industry investment can be quite specific which means that it is not
transferable to other sectors and thus if the demand for the produced product falls
significantly it renders the investment to become a sunken cost, a reasoning which doesn’t
apply only to the production industry but also to technology equipment and software.
Nevertheless, let us mention that Abel & Eberly[AE96] argue that in some cases partial
reversibility is plausible under the assumption that the cost of investment is higher than
the de-investment profit. A simple approach to investment is to follow a Net present
value(NPV)-strategy, i.e. invest when the value of the capital is at least as large as the
corresponding costs which works in a deterministic environment but fails in an dynamic
uncertain one. Instead, under uncertainty one should aim to minimize the probability
of the occurrence of a bad scenario which is to have low or even negative return to
investment. Therefore, a plausible strategy would be to aim to invest whenever the net
present value is sufficiently positive and do nothing otherwise or in the extreme case
where returns are expected to be low to choose to exit the market. Such type of strategies
are described by Dixit & Pindyck in their book Investment under uncertainty [DP94]
and are known as the real options theory which incorporates the value of waiting for
additional information regarding market conditions or for the current market condition to
reach a certain threshold before committing to investments. The aforementioned option
is called the wvalue of waiting and it has to be compared against the value of expanding

as well as if permitted the value of exiting and the value to reduce investment.
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The approach of the previous discussion rings a bell regarding the appropriate mathemat-
ical formulation of these types of problems (actually most of the problems in economics).
As probably the reader has guessed the stochastic control formulation of the problem
has flourished in this field. In fact, many of the aforementioned works we have cited use
such an approach, for example much of [DP94] is devoted to the dynamic programming
approach. In addition, important work of the same period using a stochastic control
approach is that of Davis, Dempster & SethilDDSV87]. In particular, the fact that we
are mainly interested in comparing the value of expanding, value of waiting and the value
of exiting makes the problem suitable to be usually formulated as a singular/optimal stop-
ping/impulse control problem, and much work has been devoted to this approach. In this
direction, interesting work has been conducted by Knudsen, Bernhard & Zervos[KMZ98§]
where they study the valuation of an investment producing a single commodity and
provide the investor with the option to abandon the process, Duckworth & Zervos, where
they consider an investment model that involves entry and exit decisions as well as
decisions related to production scheduling [DZ00] and in a following paper where they
assume that firms can enter and exit and determine the optimal production scheduling
as well as the sequence of entry and exit decisions [DZ01]. Moreover, Riedel & Su and
independently Pham studied a singular control model of irreversible capacity with capital
depreciation and showed that the optimal policy is to retain an amount of capital above a
certain base level [RS11, KLSP06]. Also an interesting approach was done by Guo Miao
& Morellec where they consider the case of irreversible investment but with regime shifts
in the demand shock, an approach which could simulate abrupt demand shocks during
business cycles[GMMO05]. Additionally, Mehri & Zervos considered a singular control
model of reversible expansion [MZ07]. Moreover, Motairi & Zervos considered a model of
irreversible capacity for which expansion also affects the price [AMZ17b] and De Angelis,
Federico & Ferrari considered a model where the uncertainty is also extended to the
expansion costs|DAFF17]. More recently, Dammann & Ferrari considered the investment

problem for a firm that produces two different products[DF22]
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A significant component that we have neglected is competition. In particular, firms
compete for labor, investment and as participants of the market through prices. Quite
a lot of effort has been put in addressing the effects of competition. For example,
Baldursson addressed the problem of investment in oligopoly [BK96] , Baludrsson &
Karatzas studied the problem for small firms organized by a central planner[Bal98] while
Grenadier focused on the effect of increasing competition on the waiting option to delay
investment [Gre02]. A similar approach was studied by Back & Paulsen[BP09] and
Steg[Stel2]. In a different framework, Novy-Marx shows that in equilibrium it might be
optimal for firms to delay investment even when the NPV is sufficiently positive [NMOT].
Another interesting work includes the work by Huisman & Kort where they considered a
leader /follower duopoly problem of capacity to study how investment of the leader deters

the follower from investing[HK15].

In our model we consider an economy which produces a non-durable/non-storable good
and with a sequential market clearing condition. The demand function is a constant
price elasticity function where the base demand follows a geometric Brownian motion.
Producers have to do a two-fold optimization. Firstly, with fixed capability (capacity)
producers decide how much quantity they have to produce. The fact that the produced
good is non-storable/non-durable along with the sequential market clearing condition
makes the agents myopic. In this context capacity in this context could be anything from
hiring more labour to installing new facilities or to an upgrade in technology. Secondly,
producers decide the expansion of their capabilities taking into account the discounted
lifetime reward they will receive. The capacity optimization problem is then formulated
as a stochastic singular control problem in which additional investment has an adverse
effect on the price process of the underlying product. We consider models of three
different economies. Firstly, we consider the case of a monopolistic production economy
for which the market is dominated by a single producer. In this case a closed form

solution for the optimal schedule process as well as the value function is provided. In
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addition, we consider the case where the monopolist faces capital depreciation. Next,
we consider the case where we have a fully competitive market in which all participants
have heterogeneity in their initial capacity and discount rate as well as in production
parameters. In this scenario firms have negligible influence to the price of the underlying
commodity and thus each firm acts as a price taker, and the problem is formulated as
a mean-field stochastic differential game. Every individual producer solves a singular
stochastic control problem taking into account the initial price level, their initial capacity
and the maximum of the price level. For each heterogeneous producer we obtain a closed
form solution for the optimal schedule process as well as the value function. Moreover, a

Nash equilibrium for the competitive market is established.

In the final chapter we tackle the problem of the weak convergence rate for the CIR
process. Under mild conditions and with a mathematically clean and compact formulation
we are able to prove that the weak convergence rate for a CIR proces is of the order
O(1/N), where N is the number of steps. The weak convergence rate was studied by
[Alf05] using additional hypotheses for the numerical scheme it was shown while recently
in [MN21] using an appropriate but rather complicated stochastic discretization scheme
to obtain a weak convergence rate. In the present chapter, inspired by [cH21] we used
only elementary arguments and mild assumptions on the payoff function in order to find

the optimal convergence rate.

1.2 Stochastic Singular control problems

In this section we give a short description to problems of stochastic singular control and
to that of stochastic differential game theory. We do so that the reader will be more
comfortable with the techniques and concepts we use throughout this thesis. Please note
that the exposition of the topic is not intended to be detailed and we will refer the reader

to the relevant literature for further details.
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Apart from industry investment, singular stochastic control problems have been exten-
sively used to describe many real world situations such as the so-called "satellite problems"
[Jac99, FNV85, PV79] in which the problem is to keep an object fixed in some location or
to move along a specific trajectory[BC67, Kar83, KOWZ00, Ban05, CDAGL22|, optimal
execution problems in algorithmic trading|GZ15], in queuing theory [Har88], in fiscal
policy[FR20], sustainable exploitation of the ecosystem[LZ20, Alv00, H*22] and many
other fields.

We now turn our attention to the mathematical formulation of the problem. Assume a d-
dimensional Brownian motion W living on a filtered probability space (Q, F, (F;)ier+, P)
satisfying the usual conditions. In addition, let X denote the solution of the following

stochastic differential equation (SDE)
dXF =b(XE)dt + o (XF)dW,; XE =2 eR? (1.2.1)

where b:R? - R?, g : R4 - R™™ are deterministic functions such that a unique strong

solution exists.

Let us assume that we want to control the d-dimensional SDE via a control process &
and a direction n € ST!, where S%':= {z eR?: ||| = 1}. In this direction, each initial

x € R gives rise to X4* which in turn obeys the following controlled SDE
dX5" = (X5 dt + o (X57)dW, + n,dE, (1.2.2)
We define the cumulative control process as

Ct:At)nsdés (123)

One may notice that not only continuous behavior but also jumps might be optimal

which implies that ¢ might not be absolutely continuous controls of ¢t. Therefore, we
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must enlarge the class of controls to admit ¢ which may not be an absolutely continuous.
However, we assume that each component of ( is a process of bounded variation on
every finite interval [0,¢] which means that every component of ( can be represented
as ( = (" - (", where £* are non-decreasing processes that are right continuous with left

limits.

Hence, this lead us to define the set of admissible controls

A={¢ eR | ( is F; adapted, cddlag with locally bounded variation} (1.2.4)

Moreover, there is a one-to-one correspondence between left-continuous processes of
bounded variation and signed measures. Therefore, by an application of Girsanov’s

theorem we have

Ct:At)ntdét (1.2.5)

where, n € S41 and £ is the total variation of (.

For any given initial condition x € R?, we want to solve the problem of maximizing the

following objective function

7.9 =B | [T ey - I )e—”km)d&] (1.2.6)

,00

where f:R — R is an increasing continuous function, k : S*! - R* is continuous, r > 0 is

the discount factor.

The objective of the problem is to find 1 € S*1,£* € A such that

v(z) = sup J.(§) (1.2.7)

neS-1,ceA
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The Hamilton-Jacobi-Bellman equation of (1.2.7) is of (quasi)-variational nature and is

given by:
max{Lv(z) + f(z) — pv(x), Hsng(Vo(x))} =0 (1.2.8)
where
Hisng(p) 3= sup (p = k() (1.2.9)

and .Z is the infinitesimal generator of X defined by

gf(x) . }Lli% ]E$[f(Xt+l”;L)]_f(Xt)’ f]Rd_)R’

provided that the limit exists. in the case where the SDE is described by (1.2.1).

0
0.CEZ‘

3 (Jo‘T)ij(:p)am?;xj : (1.2.10)

j=1

d 1 d
L= i)+ 5
i=1 -1

(2

Also in the special case where the cost is independent of direction n we get that

max{.Lv(zx) + f(x) —rv(z),|Vu(z)| -k} =0 (1.2.11)

The solution of this problem can be characterized by the presence of the inaction region
W={zeR? : |Vu(z)| <k} Typically, we can associate the solution of problem (1.2.7)
with a Skorokhod reflection problem or a modified version of it. The classical definition

of a Skorokhod problem is given by

Definition 1.2.1 Let O be an open subset of R?. Let x € R and unit vector i € S on

00. We say that the process ¢ € A, given by

Ct = f ntdftv (1212)
[07t)
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n €S and £ is the total variation of C, is a solution to the classical Skorokhod problem

for X=< starting in x € O reflected along the direction 7 if
(i) |n| =1 and £ is continuous and non-decreasing
(i1) the controlled process satisfies P(X, e O, VteR*) =1

(ii7) P-a.s. it holds that for all t € R*

&t = [[0 ) L x,e00,ms=(Xs)}dEs (1.2.13)

)

Let us note that this definition is not enough to cover all cases. In particular, in
order to control a Brownian motion in d > 3, Kruk used a generalized definition of the
Skorokhod problem[Kru00]. Further work on the skorokhod problem has been conducted

in [LS84, DF23]

At this point we describe a very simple model of irreversible investment taken from
Pham[Pha09]. Assume a one-dimensional Brownian motion B living on a filtered proba-
bility space (2, F, (F;)iwer+, P) Let us assume that the production capacity process evolves
as

dXC = -0XCdt +20dB, +dCy ; Xo- = (1.2.14)

where ¢ is the depreciation rate, o denotes the volatility constant of random fluctuations
of capacity and C} is the number of units of capacity that the firm purchases at cost

kdCy. The objective of the firm is to maximize the lifetime reward, i.e.

v(zx) = sup E* [[ooe_rtf(Xtc)dt— /

e‘”det] , (1.2.15)
CeA 0 [0,t)

where f:R* - R is a C' concave non-decreasing function.
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In this case the (quasi)variational inequality is given
max{o?v,, () - dv, —rv(z) + f(2),v.(2) -k} = 0. (1.2.16)

In this case one can show that the value function v is a classical C? solution and the

optimal control process is given by the solution of a Skorokhod problem (1.2.1).

In particular, let z* := inf{z € R* : v,(x) < k} then C* is a right-continuous with
left limits (RCLL) and non-decreasing process such that X; € [z*,00),Vt > 0 and
Cr = f[o 1 Lixp=erydC7 . Moreover, if x > z* then C* is continuous otherwise there is a

jump at ¢t = 0- with Cj = 2* -z and X = 2*.

The previous discussion was intended to be a brief description of the problem of singular
stochastic control. The interested reader may refer to [Kru00, FS06], from which the
discussion was mainly based, to see a rigorous approach and the assumptions that have to
be made in order to have existence/uniqueness of classical or viscosity solutions. Finally,
let us note that there is another class of singular stochastic control problems in which

the Hamiltonian exhibits singularities[F'S06, Car16, Pha09]

1.3 Stochastic differential games

In this section we give an informal description of the concept of stochastic differential
game theory directed to the unfamiliar audience. Stochastic differential game theory
is an extension of game theory to extend the concept of a game in a continuous time
framework with uncertainty. Core applications can be found in economics, such as the
study of wealth inequality, principal-agent games and firm competition [CL21, KMV18,
AHL*22, Aiy94, San08, San07] as well as in engineering/computer science where it is
widely used in communications networks and algorithms designed with the help of game

theory to improve computational efficiency[Han12, ZYB21]
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Of course the references are not exhaustive and represent only a minor fraction of the

field.

To begin with, consider that N agents participate in a game G where each agent takes an
action «; taken from an admissible class A; and for simplicity the total admissible space
is given by A := [T, xA;. In addition there is a an m-dimensional Brownian motion
defined in a filtered probability space (£, F, (F;)wr+,P) and a state process X, being

driven by W, which is given by
dXP =0b(t, X5, ap)dt + o(t, X7, oy )dW, (1.3.1)

where b: [0,T] xRIx A~ R4 o :[0,T] x R x A R>™ are deterministic functions,
where o refers to the control of agent ¢ while o™ = (v, ..., a1, o1, ... ay) refers to the

controls of the rest of agents excluding i.

Additionally, assume that every agent tries to maximize her objective function

Ti(al a ') = B* UOT Fi(s, X, i, a")ds + gi(XT)] (1.3.2)

Definition 1.3.1 (Nash Equilibrium) A set of admissible strategies a* = (aF,...,a%) € A

is said to be a Nash equilibrium of the system if for alli=1,.... N

JT'(af,a%) 2 T (o, a%), Yoy € A; (1.3.3)

The notion of Nash equilibrium simply states that assuming that all agents are rational,
in equilibrium none of the agents should regret their decision process given the fact
that all the rest of the agents will use their best strategy. The Nash equilibrium is
the fundamental element of game theory but it’s generic form does not specify the
information structure of the game. For example agents might have to commit to their

initial decision strategy even in the case where they observe a deviation in the strategy of
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another agent. On the other hand agents in highly dynamic environments like algorithmic
trading or in repeated auctions agents need to continuously adjust to the feedback they
receive from their competitors and thus commitment to an initial strategy might not
make sense. Therefore, we need to further specialize the definition of Nash equilibrium
to case where the agents are either restricted (hence the model naturally restrict the
available strategies) to play one type of strategy or the game itself contains different types
of Nash equilibria. To this end we define two different notions of a Nash equilibrium

[SY19, MNMS24, YP06, JFRZ18, MMKN23, BP09].

Definition 1.3.2 (Open Loop Nash Equilibrium) An open loop Nash equilibrium is a set

of strategies a* € A such that for everyi=1,...,N

T, o) 2 T, o), Va, € A (1.3.4)

and all strategies o, oy are of the form

o = ¢i(t, Xo, Wiorp), 1=1,...,N, (1.3.5)

where Wio ) denotes the full path of the Brownian motion from t =0 to t =T and {¢;} ¥,

deterministic functions

Hence, as the definition implies, the agent adapts her strategy only on the signal it
receives from the exogenous process W. The fact, that the control takes into account the
full path of the Brownian motion is just for the sake of generality and more approachable

cases are when the control is deterministic «; = ¢;(t, Xo) or Markovian «; = ¢;(t, Xo, W5).

Definition 1.3.3 (Closed Loop Nash Equilibrium) A closed loop Nash equilibrium is a

set of strategies a* € A such that for everyi=1,..,N
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*
17

and all strategies o, «; are of the form

a; = ¢i(t, Xo, Xpo7), i=1,...,N, (1.3.7)

where Xpory denotes the full path of the state process from t =0 to t =T and {¢;} ¥,

deterministic functions

Similarly to the previous case a more approachable decision process is the Markovian

feedback form where for i = 1,.... N «; = ¢;(t, Xo, X).

Note that the existence and uniqueness of a Nash Equilibrium is based on the specific
setting of the game as well as the type of Nash equilibrium we are considering. In any
of the cases though the solution process is to reformulate the problem as a fixed point
problem. In particular, assume for notational convenience that the best response of every
agent to the other agent’s fixed strategies a_; is the function (as opposed to a set valued

function in the case of multiple best responses) B: [],.; A; = A; given by 3; = Bi().

and let us define the mapping B: A — A given by

B(Ozl,...,O[N) Z(/Bl,...,BN). (138)

The Nash equilibrium of the game is the set of strategies a* = (af, ..., a%,) which satisfy

B(aj,...,ay) = (af,...,ax). (1.3.9)

The best response map is not always well defined and we must first impose appropriate
assumptions to guarantee that the individual agent’s optimization problems can provide
an optimal strategy or at least a set of optimal strategies. In addition, as one can guess,

it is not always the case that (1.3.9) has a fixed point. However, there are very useful
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theorems which give a positive answer under certain conditions. We mention some of the

most famous fixed point theorems which are frequently used (and we will use them)

Theorem 1.3.4 (Brouwer’s Fized-Point Theorem) Let D c R™ be a closed, bounded, and
convex subset of R*. If f: D w~ D is a continuous function, then there exists at least one

point x € D such that
f(x) = .
Proof: for the proof see [Tes20] [ ]

Theorem 1.3.5 (Kakutani’s fized point theorem) Let X be a non-empty, compact, convex
subset of a finite-dimensional Euclidean space R™. Let F: X — 2X be a set-valued function

that satisfies the following conditions:
o For each x € X, F(x) is a non-empty, closed, and convex subset of X.

o F' is upper semi-continuous, meaning that for any closed subset C' c X, the set

{re X|F(x)cC} is closed in X.

Then there exists a point x* € X such that

x*e F(x").

Proof: For the proof see [Kak41] n

Theorem 1.3.6 (Knaster-Tarski’s fized-point theorem) Let (L,<) be a complete lattice,

and let f: L - L be an order-preserving (monotone) function. Then the set of fized

points of f,
{wel|f(z)=ua},

is non-empty and forms a complete lattice under the ordering <.
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In particular, f has both a least fixed point and a greatest fived point. The least fixed
point can be expressed as

¥ =inf{xeL| f(z) <z},

and the greatest fixed point as
y*=sup{zel|z< f(x)}.

Proof: For the proof see [DP02] u

Finally, we omit to discuss the ideas of mean-field game theory due to the fact that even
a short exposition would need a lot of ideas and machinery to be introduced. However,

we describe succinctly the central idea

Assume that a game takes place on a fixed finite time horizon T'> 0 and agent ¢ chooses
a control process «; from the set of controls U([0,7']). the control process influences

the evolution of the state process according to the following dynamics

dXit :b(Xitv Mi\f’ az)dt + U(Xita :uiN: ai)th

1 N
uy % > 0x,,, (1.3.10)
k=1

where plY is called the empirical measure which represents the collective influence of all

the other agents through their controls.

Each agent maximizes
Ji(ata™) =FE” [[ f(s, X, 0k, a")ds + g(XT)] (1.3.11)
0

In the limit of N — oo, assume that u — p; and the the influence of each agent i is

negligible on the measure flow ;. Therefore, the problem reduces to a representative
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agent problem

i) 2] [ 1, s )ds + o(Xr )]

dXt =b(Xt,,ut,oz)dt+U(Xt,,ut,oz)th (1312)

The concept of equilibrium for the mean field game (1.3.12) is to the the measure flow
iy such that p; = E(X{”’a*) = Po X! for each t € R* and for some optimal control
a* €U([0,T]). For more information we refer to [Carl6]. Finally, a concept that is not
directly relevant to this thesis but is important is that of e-Nash equilibrium which is

defined as follows

Definition 1.3.7 an e-Nash equilibrium is a strategy profile a* € A such that for every

playeri=1,....N,

J(af,at) 2 T, ar)—e  forall a; € A,

The e-Nash equilibrium provides a practical relaxation, ensuring that no player can
gain more than ¢ by deviating. In addition, its mathematical importance in regard to
mean-field games is that under certain conditions one can approximate a finite N number
of agents game with a mean field game and show that the obtained Nash equilibria are

actually e-Nash equilibria for the finite N agent game where £ depends on N (typically
as O(1/N'/?) or O(1/N)) [BFY*13]

Finally, throughout this thesis we will make use of Fatou’s lemma, the monotone and

dominated convergence theorems and thus we provide the statements
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Lemma 1 (Fatou’s Lemma) Let (X, A, ) be a measure space and let {f,}52, be a

sequence of nonnegative measurable functions f, : X — [0,00]. Then

liminf f, dp < liminf/ frndpu.
n—00 X

X n—>00

Proof: For the proof see [SS09] |

Theorem 1.3.8 (Monotone Convergence Theorem) Let (f,,), be a sequence of

nonnegative measurable functions on a measure space (X, A, ) such that
fi(x) < fa(z) <o forallzeX.

Define
F(@) = lim £, (2).

Then f is measurable, and

lim fndu:ffdu.
X X

n—oo

Proof: For the proof see [SS09] u

Theorem 1.3.9 (Dominated Convergence Theorem) Let (X, A, 1) be a measure
space and let {f,}22, be a sequence of measurable functions f, : X - R such that
fu(z) = f(x) for u-almost every x € X. Suppose there exists g € L'(u) with |f,(x)| < g(x)

for p-almost every x and all n. Then fe L'(u) and

lim [ f,du = ffd,u.
X X

n—>o0

Moreover,

hm[\fn—ﬂdu - 0.
n—oo X

Proof: For the proof see [SS09] u
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1.4 Numerical schemes for SDEs

This section serves as a brief elementary introduction on numerical schemes for stochastic
differential equations, intended to introduce concepts to the unfamiliar reader which
will be used in chapter 4. In particular, we discuss the concepts of Euler-Maruyama
discretization and implicit schemes. In addition, we introduce the concepts of strong and

weak modes of convergence.

To begin with, let us consider a one-dimensional diffusion process
dXt = b(t,Xt)dt‘f'O'(t,Xt)th, XO =T (141)

where b: [0,T] xR - R, 0:[0,7] x R > R are deterministic functions. We wish to
simulate values of X7 without the help of its distribution. This could be due to the fact
that we cannot calculate the distribution or because simulating from the distribution is
computationally unfeasible. In the case of ODEs the simplest discretization method is

that of Euler. The intuitive extention, the Euler-Maruyama scheme is given by:
Xi =X +0(Xe, o t) At +0(Xy,  t) VAL Zy; n=1,..,N (1.4.2)

where the discretization times are 0 = tg <ty < ... <ty =T, At =t, —t,_1 and Z,, are

N(0,1) iid.

Another way to discretize the SDE (1.4.1) is through an implicit scheme

X, =X, +b(Xy, tn) At +o(X,,  t)) VAL Zy; n=1,... N (1.4.3)

Consequently, we define the two criteria of measuring the convergence of a discretized

process X = {Xo, X;,,..., X1} to the original process X = (X;; t €[0,77])
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Definition 1.4.1 (strong convergence) A general time discrete approximation X con-

verges strongly to the solution X at time T if

lim E[|Xr - X7]] =0 (1.4.4)

Definition 1.4.2 (strong order of convergence) We say that a general time discrete

approximation X has a strong order of convergence m if

K

E[| X7 - X7|] < T (1.4.5)

for some positive constant K and sufficiently large N.

Definition 1.4.3 (weak convergence) A general time discrete approzimation X converges

weakly to the solution X at time T if
iiglo ‘E[f(XT)] - E[f(XT)]‘ =0, (1.4.6)

where f: R — R are appropriate smooth functions.

Let us mention that the weak convergence criterion compares the distributions and
therefore we could have a small weak convergence error even if X and X live in a different
probability space. This criterion is most relevant in financial application since we usually

want to numerically evaluate the price of a derivative of the underlying process X.

Definition 1.4.4 (weak order of convergence) We say that a general time discrete ap-

proximation X has a weak order of convergence d if

[ELF(Xr)] - ELF(X0)]| < 42 (1.47)
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where K >0, N sufficiently large and f are functions whose derivatives of all orders
up to 2d + 2 are polynomially bounded, i.e. there exist M > 0 and q € N such that
If®E) ()] < M(1+|x|9), k=1,...,2d + 2



Chapter 2

An equilibrium model for capacity

expansion: The case of a monopolist.

In this chapter we consider an irreversible capacity expansion model for a single agent
faced with an exogenous stochastic demand function. The agent decides the production
schedule via the expansion of her capability (capacity) and the optimization problem is
formulated as a singular stochastic control problem in which additional investment has
an adverse effect on the price process of the underlying product. For this model, a closed

form solution for the optimal schedule process as well as the value function is provided.

2.1 Introduction

The research area of capacity (capability) expansion under uncertainty is a decision-
making process that firms regularly face particularly in industries such as manufacturing,
energy, and technology[KK13, Jeo23, RSM98, SvJAdK21, MZ94, SS86]. Firms must
decide when and how much capacity to add in response to future demand, technological
shifts, and market changes, all of which are inherently uncertain. The standard approach

to capacity expansion considers the trade-off between committing to large investments,
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which are thought as irreversible, and the potential for under-utilizing resources if
demand does not meet expectations. In particular, in their seminal work Majd and
Pindyck [MP87b] emphasized the importance of considering the option value of delaying
investment until economic conditions are favorable. In particular a waiting period could
be maximize cumulative profits since it allows firms to gather more information about
future demand, costs, or more broadly speaking about market conditions. Capacity
expansion, optimal trading and other related problems, can be formulated as stochastic
control problems|GZ15, GKTY11, DDSV87, Man61, Kob93]. In particular, in capacity
expansion the optimized quantity is the firm’s profit and the control process is the
capacity. In our model, a monopolist is faced with the problem of irreversibly increasing
capacity when the production cost function is inversely proportional to the level of
capacity and faced with a constant elasticity of substitution stochastic (CES) demand
function. The irreversibility assumption is particularly plausible for industries where they

have high upfront costs and re-selling of capital will result into significant financial losses

In particular, the problem is formulated as a singular stochastic control problem were the
price process is adversely affected by the expansion of capacity. Singular control problems
have been extensively studied due to both their mathematical complexity and interesting
applications. A representative but definitely non-exhaustive list includes|[BSW80, JJZ08,
Ma92, HS95a, HS95b, Ben84, Kar83, DM04, Ban05, MZ07, DZ94, HHSZ15, FFS20].
Finally, irreversible capacity expansion models have been studied in many different
settings and some related to our work are [AMZ17a, Oks00, Kob93, DAFF17, BC94,
Alv10, BK96, CHO5, LZ11, CF14].

The rest of the chapter is structured as follows. In section 1 we formulate the production
problem of the agent, in section 2 we introduce some necessary assumptions and tools
while in section 3 we solve the HJB equations and prove that indeed the solution that
we found is optimal. Finally, in section 4 we make a small extension to the model to

incorporate depreciation of capital.



2.2 Problem Formulation 23

2.2 Problem Formulation

Consider a monopolist with capability (capacity) C; at time ¢ € R* that has to decide
the amount of product per unit time @); given a price level P, and has a running profit

function II: R x R* - R given by

H(Qt,ct) = Qtpt(Qt) T T

, (2.2.1)

where A\ >0 and 3 > 1.

The above profit function, models in a simple way the fact that increasing capability
(capacity) decreases the cost of production of one unit of product. Moreover, note that
the multiplicative parameter is arbitrary and is solely presented in such a way to simplify

subsequent calculations, since everything could be absorbed to a new A\ parameter.

The equation for the optimum quantity )f at time ¢ can be found by differentiating

I1(Q, C') with respect to @ and is given by:

1
* * ! * 1 Q T
P(Q7) +Q; P(Qy) - I W =0. (2.2.2)
N1 3751 Gy 5

In addition, we will make use of the market clearing condition

Qt = Dt (223)
where the demand process is given by
B,
D, = — 2.2.4

t Pt(g ) ( )

with B = (By;t € R*) being a base demand process and § > 1 is the price elasticity of

demand. In particular we use that by differentiating (2.2.3) w.r.t. @ after substituting
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D; = (); we obtain that
B,

1= _6Pt§+1

(2.2.5)

Combining (2.2.2) and (2.2.5) we obtain that the optimum quantity process for the single
agent is

1 _
Qr =pA(1- )R (2.2.6)

Using the market clearing condition (2.2.3) and (2.2.4) we obtain that

B+6-1 _ 1 &
t B BINY(1 - %)7([3—1) ce’

(2.2.7)

- 1 5/
A -Hmser

(2.2.8)

For notational we also temporarily absorb the factor 1/(A(1 - 5)?7')7 into the base

demand by simply re-defining appropriately the initial level of the B process. Therefore,

1 _
Qr=p(1- g)ﬁ—lcﬂpf t (2.2.9)
and
B’Y
P ==t (2.2.10)
t Cte

where 7 := ﬁ and 6 := ay

In order to model market uncertainty, we fix a probability space (€2, F,P) equipped with
a filtration (F;).r+ satisfying the usual conditions of right continuity and augmentation
by P-negligible sets, and carrying a standard one-dimensional (F;)-Brownian motion
W = (W,;; teR*). Consequently, we assume that the base demand B = (By; t € RY) is

subject to market fluctuations given by means of the geometric Brownian motion (GBM),



2.2 Problem Formulation 25

i.e.

dBt = ,U/bBtdt + O'bBtth, BO = b() (2211)

The capability (capacity) process of the producer is a positive process which is given by
Ci=c+&, ; Coo=c>0 (2.2.12)

where £ = (§;t e R*) e Z:= {€ e R*: £ is caglag F; — adapted non-decreasing with &, =0}

which is controlled by the agent.

The state space of the control problem of study is defined as
S={(p.c) eR" xRL, | (2.2.13)

Definition 1 The set A of all admissible capacity expansion strategies is the family of

all processes & € Z such that

E[ f ke g | < oo (2.2.14)
[0,00)

The agent’s objective is to maximize the cumulative profit by deciding when to expand
her capacity, taking into account that a unit of capacity has cost k. Therefore, she needs

to maximize the following objective function

T.(C) = EPe [ f T oo pldt - f N e‘”d{t], (2.2.15)
0 0

where 7 is a discounting factor, reflecting the agent’s preference of future payoffs relative
to present payoffs. In particular, as r decreases the agent becomes more patient and thus

the valuation of future payoffs increases

Moreover, for convenience the coefficient SA(1 - %)5*1 is absorbed into the cost per unit

constant, i.e. k — k/(BA(1- %)6_1).
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Therefore, the agent’s value function

B-1
wpe)=A(1-5)  max 5e(C) (2:2.16)

The agent’s maximization problem is subject to the price dynamics which are determined

by the Ito-Tanaka-Meyer formula[PP05]. Specifically, for any f € C>! function we have

df (B, C,) = g‘det gdet sz];(Bt,C’t)d(BtBQ
) [1B..c- B0y - S coyac (2.2.17)

Equivalently this can be written as

f

Lap, + W gee L2 B ciBLBY + Y (B CL) - F(Ba G,

df(Bta Ot) - a 2 abQ 0
<s<t

(2.2.18)

where the superscript ¢ indicates that we tak into account only the continuous part of C'.

Hence, the dynamics of the corresponding price process P = (P;;t € R*) are given by

) & o
dPt /,Lptdt 60 dC QO;«tP - A mdz + O'Ptth, PO* =p, (2219)

where, =y, + 37(y-1)o? and o := oy

Note that the jump term in (2.2.19) is derived as follows. Let us make, at t— an arbitrary

capacity jump &_, then we have that

& Of(Bs,Cs. +u)
ou

F(Bo,Co) = F(By,Cs.) = f(Be, Co+&, )~ F(Be, Cs) = ]0 du, (2.2.20)
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where we just used the fact that | b1 goy = f (b) - f(a) for a suitable integrable f

a Ou

function

For future reference we define as P? the net price process, i.e. if the agent does not

increase capacity above the initial level ¢, with dynamics given by

dP? = uPdt + o PPdW;, PO =p (2.2.21)

For clarity, note that before any expansion by the producer the price process is given
by P, = PP = B]/c? while after the first expansion we have that P, = B] /C? | where

7e := {t e R*|C; = Cy_ > 0} and is chosen by the producer.

Therefore, after the first expansion time and before the second expansion, one can re-write

the price process as

0
C
P, :Pto(o ) (2.2.22)

TE

where 7¢ := {t e R*|Cy, - C;_ > 0}

2.3 Model Assumptions
To begin with, our analysis involves the general solution to the second order Euler’s ODE
o’p*u’(p) + bpu'(p) —ru(p) =0 (2.3.1)

which is given by

u(p) = Ap™ + Bp™

where |

_ ~(b-0%) £/(b-02) +402r

202 ’

n,m (2.3.2)
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and are solutions of the algebraic equation

2 2
f%ﬁ+(u—%ﬁt—r:0 (2.3.3)

In addition, as proven by [KMZ98, AMZ17a] one has that

ELAwe”%H%Nﬁ]<m, (2.3.4)

iff A e (-n,n) and that for A € (0,n) there exists €, C' > 0 such that:

A
e TE [( sup Pto)
0<t<T

Assumption 2.3.1 We will consider control processes from the following class of ad-

<Cp* (2.3.5)

A
<Cpre T and E [(sup e‘TTPQQ)

T>0

missible controls

A:{&EZ%%AWﬁEM@J<w} (2.3.6)

where Z is the class of all non-decreasing cddglad adapted to the {F;}wr+ filtration

Processes.

Assumption 2.3.2 We assume that r,o >0 and 6,5 > 1 and o € R*. Furthermore we

must have that

a> 0 (2.3.7)
Be(0,n) (2.3.8)
1?ae(ﬂ%n) (2.3.9)

— B
Moreover, define v := e

equivalently that n(0 —a) +n— > 0.

and notice that the last condition implies that v < n or
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Lemma 2.3.3 For any initial condition (p,c) € S if 56 > a then the problem is trivially
solved by the no investment strategy & = 0. In addition, if the rest of relations in
assumption 2.3.2 do not hold, then for any initial condition (p,c) € S the value function

diverges.

Proof: Firstly, let us assume that § > n and consider the strategy where the single

agent chooses to not expand, i.e. & =0, Vt € R* Then,

o(p,c) zcaE[ fo “e-rt(Pp)ﬂdt]. (2.3.10)

However, since § > n as shown in appendix B the expectation on the right hand side

diverges.

Next, in order to reject the case where a < 6 but 8 < n we consider an arbitrary
admissible strategy &;. Let us assume that we choose expand capacity by Z at ¢t =0 and
then keep capacity constant, i.e., & = Z By (2.2.22) we have that the impact on the price

is given by Py = PY % Therefore,

Te(€) = %EM[ fo me‘”(Pto)ﬁdt] —kEW[ fo me—”dgt]

(2.3.11)

Evidently, in this case it is always optimal for the agent to not invest and thus, the

problem is trivially solved by the strategy & =0, Vi e R*.

Finally, let |&| >n and consider an investment strategy[MZ07] such that

C, > (P))aos (2.3.12)
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Then, by virtue of (2.2.22) and (2.3.4) observe that

]Ep,c [[OO e?‘tCtaPtht] > ]EP,C |:/°° ert(PtO)ndt] =0 (2313)
0 0

Hence,

Epc [/M e_TtC'fPtﬁdt] - P [/Oo e—rt(PtO)”dt] = 0. (2.3.14)
0 0

Thus, the problem reduces to proving that [ [ I e"”tdft] < 00.

In particular,

oo T
EPe [ A e”d@] “E?©) [ A e”dft] = lim B0 [r | e”ﬁtdt+erT§T]
0 0 T—oco (0,T)

T

= lim e E[&]dt + lim e TE [¢7]
T—oo JO T—o0
. T _r —0, n-a . 750 \ 2z
=Jim [ e E[(P))7 ]dt+TIg§OE[e T(Pp) T (2315)

since -2~ > n this implies that % <n and thus the use of (2.3.4) and (2.3.5) imply that

l-«

[Ep-c [ f0°° e‘”dft] < oo which concludes the argument.

2.4 Solution to the Control Problem

In this section, using heuristics, we derive the HJB equations. Consequently, we directly
solve the HJB equation and provide a candidate for the value function the optimal control.

Finally, we verify that our solution is indeed optimal.

2.4.1 Heuristic Derivation of the HJB equation

To begin with, a heuristic analysis shows that there are two actions that the producer

can make. The first one is to choose to wait, i.e. not expand capacity, while the second
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one is to expand. Let us assume that she chooses to take the first action which is to wait
for a short period of time At and then continue optimally. Bellman’s principle imply

that this action is not necessarily optimal and therefore,

At
v(p,c) > EPC [[o e e PPt + e A( Py, c)] (2.4.1)

Applying Ito’s formula [PP05] to the second term of the right hand side(RHS), dividing

by At and letting At - 0, we obtain that we must have

o2

5 P*0pp(p ) + upup(p, €) —rv(p, ) +p°c* <0, (p,c) €S (2.4.2)

On the other hand, one could choose to increase capacity by € > 0 and then continue

optimally. In this case with the use of (2.2.22) we have that

v(p, c) 2v(p(ci—9€y),c+5) -k (2.4.3)

Expanding the integral on the RHS up two powers of ¢ we get that

ve(p,e) =020, (p,c) ~k <0, (p,c) €S (2.4.4)
C

Due to the Markovian character of the problem it is guaranteed that one of these options
should be optimal and one of (2.4.3),(2.4.4) should hold with equality at any point in
the state space §. It follows that the problem’s value function v should identify with an

appropriate solution w to the following HJB equation

2
o a
mac { 7720 () + 100 (. 0) = 70 () + '

ve(p,c) - H]gvp(p, c) - k} =0, Y(p,c)eS. (2.4.5)
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Intermedio: Change of variables

Even though the previous formulation was more immediate from an economic point of
view, and this is why we choose to start the presentation of the problem in that way, it
is mathematically convenient to reformulate the problem using the base demand instead
of the actual price process. We define as D := (B]/;t € R*). Also for future reference we

define D. :=sup,.. D,. As a small remark note that D = c¢P?

In particular, the objective function can be re-written as
Joo(C) =P [ f e O DBt f e‘”dét] , (2.4.6)
0 0

while the HJB equation will become

max {gd%dd(d, c) + pdvg(d, c) —rv(d,c) + c* P dP v (d, c) - k} =0, VY(d,c)eS.
(2.4.7)
Note that we retain the same symbol for the state space S since it is the same space
but in a different coordinate system. In addition, the same constraints hold since the
problem has the same economic and mathematical properties albeit written in a different

coordinate system.

We will look for a classical solution w : S -— R which identifies with the value function v
of the control problem. The construction of the solution relies on the introduction of a
strictly increasing function G : R* — R* which partitions the state space § into a waiting

region V¥V and an investment region £, defined by

W:{ (d,c)eS|dSG(c)}

5:{(d,c)e$|d>G(c)}
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To begin with, in the waiting region W the solution w must satisfy the following equation.
%2d2wdd(d, c) + pdwq(d, c) - rw(d,c) + c*Pd’ = 0, (2.4.8)

which implies that we have a solution of the form
w(d,c) = A(c)d™ + TdP > (2.4.9)

where n is given by (2.3.2), while the negative solution is eliminated due to the fact that
w should be finite when d approaches zero (transversality condition). In addition, the

constant I' is given by

2
I = 2.4.10
B+ ) (n—5) (2410
Moreover, in the investment region &, w should satisfy that:
we(d,c) -k =0, (2.4.11)

Consequently, as we are looking for a classical solution we must impose that w(d, c) is
C?1 along the free boundary p = G(c)
Therefore, on d = G(c)

we (G(c),c) -k =0, (2.4.12)

weq (G(€),¢) =0, (2.4.13)

Hence,
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A(e)G™(¢) = k+T(08 - )G (c) 2 P01, (2.4.14)
A(c)G™(c) = %(Qﬁ —a)GP(c)c* P01 (2.4.15)
Thus,
Gle)=ke 7 (2.4.16)
where,

~ kn 5
kz(F(a—B@)(n—ﬁ)) (2.4.17)

Note that we can re-write the free boundary G(c¢) in terms of the price p by using the
transformation d = pc?. We have to find the points in the state space such that p = G (c).
Hence, this leads to

G(c) = ke 7 (2.4.18)

W= {p< @) £={p>G(c)}

Figure 2.1 Illustration of free boundary é(c) The lines indicate the fact that increasing
capacity decreases the price. Note that on the plane (d,c) the free boundary has similar
form but the capacity expansion lines should be vertical as they don’t have any effect on
the demand process
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Note that in order for G(c) to be well-defined we must have that

a>p0, n>B, 0<a<l (2.4.19)

At this point note that from (2.3.3) we have the identity r = %2|m|n and thus re-arranging

terms we get
2

n o
and consequently that
kP = ka2ni+_—|g;| >k (2.4.21)
Finally, A(c¢) will be given by
Ale) = ko (2.4.22)
where,
NGRS
ko = —6/@5’”(@ -08) (2.4.23)
n

Therefore, we need to evaluation the following for A

oo 1
Ale) =k, f o (2.4.24)
< u 3

which results in

_ 5 1+Z(a-1)-0n
AQ) = gy =g . (2.4.25)

In addition to the previous condition, note that in order to obtain a well-defined result,
i.e., that w(d, c) is finite for finite ¢ we also have to require the condition 65+ 1 —oz—g >0
otherwise A(c) blows up. Moreover, note that this requirement makes A(c) > 0 which

implies that w is a non-negative function.
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At this point we introduce the optimal capacity expansion function z(d) : £ = R{ which
is given by
d=G(z2(d)). (2.4.26)

In the following lemma we prove that the function w is a classical solution of the HJB

equation (2.4.5) and we provide some useful bounds.

Lemma 2.4.1 The function w:S - R defined by

A(c)d™ + T'dP =59 if (d,c) eW
w(d,c) = (2.4.27)

w(d,z(d)) = k(z(d)-—c) if (d,c)e&

where
I'p? a-03 5 C
Ac) = kP 2.4.28
(c) n n(@f-a)+n-5  G"(c) ( )
and z(p) : € > R* is determined by
1
2(d) = ﬁd” (2.4.29)
is a C*' solution to the HJB equation (2.4.5)
Finally, for all (d,c) €S
0<w(d,c) < A(c+d") (2.4.30)

where A >0 depends only on the parameters of the problems

Proof: To begin with, z(d) : £ - R* is determined by

d = G(2(d)). (2.4.31)
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Solving for z(p) we obtain that

1 14
2(d) = =d (2.4.32)

B

where v = /m

Next, we are going to prove that w(d,c) is C*! throughout the whole S. To this end we

must consider the continuity of w along the free-boundary G.

consequently, we calculate the derivative with respect to ¢

weld, ) = < [w(d, 2(d)) ~ k(:(d) ~ )]

= we(d, 2(d)) (2.4.33)

Similarly, differentiating with respect to the d

wq(d, c) = %[w(d, 2(d)) = k(z(d) - ¢)] (2.4.34)
+wy(d, z2(d)) + [we(d, 2(d)) — k] za(d)

=wqy(d, 2(d)) (2.4.35)

wald,€) = £ [wa(d, ()]

= wqa(d, 2(d)) (2.4.36)

Next, we shall prove that w(d, c) satisfies the HJB equation(3.4.18). To this direction,

we must prove that the solution is sub-optimal in the complementary region.
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To this direction, let (d,c) e W.

we(d,c) —k =

= A(c)d" + (a - 0B)LdP P9 —

a\ p( d\
(m) ‘E(G«:)) ]‘“0 (2437

Where the last inequality follows from the fact that d < G(c) and assumptions (2.3.2).

= (- BO)E°T

Note that strict equality holds for d = G(c¢)

Similarly, we must prove that that solution of the investment region is sup-optimal in

the waiting region. Let (d,c) € £

2
%dedd(p, c) + pdwq(d, c) —rw(d, c) + > °dP

- O;dded(d, 2(d)) + pdwq(d, 2(d)) —rw(d, z(d)) + rk(z(d) - ¢) + c*P?dP
= -2 d) 2P (d) + “Pd° + rk(2(d) - ¢)
= —2(d)* PGP (2(d)) + c*PdP + rk(2(d) - c)

z(d) 1 O
- [ [%(u“‘ﬁe)dﬁ - rk:] du <0 (2.4.38)

where we have used the fact that for (d,c) € £ we have that d > G(c¢) the relevant

assumptions (2.3.2) and (2.4.20) to observe that the integrand is a non-negative quantity

Finally, we prove the relevant bounds for w(d,c). Firstly, the lower bound is immediate
since from (2.4.27) w(d, c¢) > 0. Regarding the upper bound let us take any point (d,c)

in the waiting region W.

w(d,c) =Tk?

() ]
G(c) nn-p-n(a-p£0)\G(c)

<Ac (2.4.39)
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where we have used that d < G(c).

Next, for a point in the investment region &£ result follows again from (2.4.27)

w(d,c) <Az(d,c) = Ad” (2.4.40)

2.4.2 Verification theorem

We know turn to the main theorem of this chapter. We prove that the function w
identifies with the value function v and we give a closed form description of the optimal

control.

Theorem 2.4.2 Let us assume that all assumptions (2.3.2) hold. The value function of
the control problem identifies with the classical solution (2.4.27) multiplied by SA (1 - %)ﬁ_l.

In addition, the optimal capacity expansion is given by

E v
& = (f) Lipsaeey, >0 (2.4.41)

Moreover, the process £* € A

Finally, the equilibrium price process P* can be found in terms of the base demand process

B and is given by

D
P = L, Dy=d (2.4.42)
v ]gﬁ sups.; D

S

Proof: Take any point (d,c) € S with the assumption that the control C' is admissible

in the sense given by (2.3.1)

We begin by using the Ito’s formula [PP05] on e-"Tw(Dr, Cr).
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e""w(Dr,Cr)

T
= w(d, C) + f -t [ 5 D U)dd(Dt, Ot) + M.thd(Dt, Ct) T’U)(_Dt, Ct):| dt
0
v [ etud(D G
[0,T)

+ > e w(Dy,Cy) —w(Dy, Cyo)] + My, (2.4.43)

0<s<T

where the process M = (M;;t € R*) is defined as

t
M, =0 f ¢ Dy (D, Cy)dW, (2.4.44)
0

Therefore,

T
f et OO DB g f kertde, + e w(Dr, Cr)
0 [0,7)
T 2
:w(d,c)+f e‘”[%DEwdd(Dt,C})+thwd(Dt,Ct)—rw(Dt,Ct)JrCta‘BeDf dt
0
" f e [wo(Dy, Cy) — k] dec+
[0.7)

+ Z w(Dt7Ct) w(Dt,Ct ) kAOt] +MT (2445)

0<t<T

Next, consider the term w(Dy, Cy) —w(D;, Cy_) and an arbitrary positive change AC; =

z> 0.

w(Dy, Cy) —w(Dy, Cyo) = / ( 0 )G,C’t+s)ds

Lo

Thus, using the fact that w(d, ¢) satisfies the corresponding (HJB) inequalities we obtain
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T
f et DB g f[ ket e Tw(Dr, Or) S w(de) + My (2447)
0 0,7

By Lemma 2.4.1 we have that

My > -w(d,c) - ke "td¢, (2.4.48)
(0,7

Therefore, we obtain that E[infrsq M7] > —oo and thus the process M is a supermartingale

with E[Mr] <0, VT >0 which along with Fatou’s lemma (1) gives that

T
Tae)(§) < li%n ianE[/ erth_BeDfdt—[ )ke’”dft] <w(d, c)+li%ninf e TE[-w(Dr,Cr)]
—00 0 0T 00
(2.4.49)

Thus, we conclude that

v(d,c) <w(d,c) (2.4.50)

Consequently, we want to prove the reverse inequality and thus prove optimality. Apart
from an possible initial jump at ¢ = 0—, the optimal control should be such that the process

(D, C*) is reflecting in the free-boundary G in the positive direction. In particular,
D,<G(Cy) and & -¢ = f( o L €5 for all 10
while at £ = 0— the jump can occur iff
& =(G(d)~c) >0 (2.4.51)

Thus,

Ct* = Cl{Dt<G(c)} + Z(Dt)]‘{DtZG(c)} (2452)

The fact that z(d) = G71(d) — ¢ directly implies that £ = z(d).
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In particular from (2.4.29), (2.3.5) assumption (2.3.2) one can immediately see that

T
eTE[C3] < 00 and E[ f emcgtdt] < 0. (2.4.53)
0

Using integration by parts we obtain that

T
e T Cip=c+r; f e "t Cydt + f et dCy (2.4.54)
0 [0,7)

Using the monotone convergence (1.3.8) on the first part of the left hand side, the

estimates (2.3.5) and dominated convergence theorem (1.3.9) allow us to gives that

E[ f ooe‘”tdC;;] < 0o, (2.4.55)
0

concluding that the admisibility of the control process {C; }ier+

Hence, from (2.4.1) and in view of the HJB equations (2.4.5) we can see that

/OT e (O Dl dt - f[m ket d¢; + e w(Dr, Cq) = w(d, ) + M (2.4.56)
Consequently,

fOT e (C1) DBt /[O’T] ket de, + e Tw( Dy, Cb) = w(d,c) + My (2.4.57)
Hence,

sup M7 < /0 e (CH* Dl dt + sup e Tw( Py, C)

TeR* TeR*

(2.4.58)
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Using the Holder inequality on fOT et(C1)e-B0 DYt the estimates (2.3.4) and (2.4.30)

and the fact that the C'* is admissible assumption (2.3.1) we obtain that

0 00 a—B30 0 3 1-a+p86
E[ [ e”C;aﬂ‘)D;ﬁdt] < (]E[ f e”c;dt]) (E[ f ¢~ D, T dt]) < oo
0 0 0

(2.4.59)
In addition using (2.4.30),
w(Dr,C7) < A[CF + DY ]
= KDY, (2.4.60)
where K a positive constant.
Therefore, by (2.3.4) we obtain that
E [Sup e w(Dr, C})] < 00 (2.4.61)
TeR*

The above discussion concluded that M* is a submartingale and therefore,
T
E [ [ e (CF) P DBt — f[ ] ke‘”d@] + e TE[w(Dr,C)] > w(d,c)  (2.4.62)
0 0,7

where monotone convergence on the first part of the left hand side and the estimates
(2.4.30) and the use of dominated convergence on the second part of the right hand side
give the required inequality,

v(d,c) > w(d,c) (2.4.63)

Hence, we have proved that v(d,c) =w(d,c), V(d,c)e€S.

Finally, the formula for the equilibrium price is immediate.
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2.5 An extension : Optimal control in the presence
of depreciation

In this section, we shortly present a simple extention of the control problem to the case
where the producer also has to incorporate continuous wear and tear (depreciation) into
her optimal strategy. This part is not incorporated into the main sections of this chapter
because in 3 where the case of the continuum of agents is presented, a deprecation rate

cannot be integrated.

Specifically, in this case
dOt = —)thdt + dgt (251)

Therefore, we have the following objective function:

T,.(C) = EPe [ f T et DE NGt~ k f ” e‘”dCt], (2.5.2)
0 0

Hence, the HJB equation in this case become:

2
max {%d%dd(d, c) + pudvg(d, c) —rv(d, c) + > P°dP + ke

ve(d,c) -k} =0, Y(p,c)eS (2.5.3)
in the waiting region we have a solution of the form w(p,c) = A(c)p™ + TpPcoh? — 2c

using the same procedure of smooth pasting between investment £ and W, the free
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boundary can be found to be

k(1+2) )l/ﬂ eifl (2.5.4)
C L0,

Gle)= (W

We conjecture that the agent still wants to increase capacity at the free boundary and

therefore z(d) : £ - R* is given by:

+(d) = %dv (2.5.5)

Therefore, integrating (2.5.1) the investment area we get that the candidate optimal
control is
1
Cr =ce™M vsup —DVers) (2.5.6)

s<t KY

In addition, we can define a candidate solution for the optimization problem

Lemma 2.5.1 The function w:S - R defined by

A(c)dr + TdPcoPo — 2k if (d,c)eW
w(d,c) = (2.5.7)

w(d,z(d,c)) —k[z(d)—c] if (d,c) €&

where

g LE___acb8 g c (2.5.8)

Al n n(@f-a)+n-5  G"(c)

and z(d) : € - R* is determined by
1
2(d) = —d (2.5.9)
kv
is a C>1 solution to the HJB equation (2.5.3)

Proof: The proof is similar to the non-depreciation case [
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Finally, a similar verification theorem can be proven for the depreciation case

Theorem 2.5.2 The value function of the problem is given by (2.5.7) while the optimal

control is

1
C; = ce™ vsup N—VDZe’\(S‘t) (2.5.10)

s<t

where C} € A

Proof: The proof follows the same lines as in the non-depreciation case [ ]



Chapter 3

A equilibrium model for capacity
expansion: The competitive market

case.

In this chapter we consider an irreversible capacity expansion model for a continuum of
heterogenous agents faced with an exogenous stochastic demand function. The agents
decide the production schedule via the expansion of their capability (capacity) and the
optimization problem is formulated as a singular stochastic control problem in which
additional investment has collectively an adverse effect on the price process of the
underlying product as opposed to the monopolist case. We obtain a closed form solution
for the optimal schedule process as well as the value function of each individual agent

and a closed-loop mean field Nash equilibrium is established.

3.1 Introduction

In the previous chapter, we examined the rationale behind a monopolist’s decision to

invest in capacity expansion in an economy where demand for the underlying commodity
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follows a CES (Constant Elasticity of Substitution) function. A natural extension of this
analysis is to explore how individual firms make investment decisions in a competitive
market. In such a multi-agent environment, each producer strategically chooses to
increase investment capacity while anticipating the decisions of their competitors. Several
models of irreversible investment under varying market structures, ranging from monopoly
to perfect competition, have been studied in the literature, including works by [BP09,

BK96, AMZ17a, Bal98, Gre02, Lead3, NMO07, Ste12].

Recently, significant attention has been directed toward the macroeconomic implications
of heterogeneity [KS98, Aiy94, LIM14, AHL*22, NM18] and its impact on individual
decision-making processes in multi-agent systems. Furthermore, due to the complexity of
multi-agent stochastic differential games, the focus has increasingly shifted toward Mean
Field Games (MFG), where the influence of any single agent on the system is negligible,
but the collective behavior of all agents plays a crucial role in shaping decision-making
[LLO7]. This approach allows for greater tractability while maintaining the indirect

interaction between agents through a collective variable.

In this work, we consider a continuum of heterogeneous producers facing an exogenous
stochastic CES demand function. Producers must decide how much investment to make
in order to improve their production efficiency and they have to commit to their decision,
meaning that investment is irreversible. This assumption is particularly plausible for
industries where they have high upfront costs and re-selling of capital will result into
significant financial losses. The decision problem for each producer is framed as a singular
stochastic control problem, with heterogeneity reflected in their initial production capacity,
individual discount rates, unit costs of capacity expansion, and production costs. Each
producer acts as a price-taker, meaning they have no direct influence on prices. However,
they account for the collective impact of all producers on the price dynamics, resulting

in a model with dimensionality d = 3.
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Interestingly, we derive closed-form solutions for both the value function and the optimal
control strategy, and we demonstrate the existence of a mean field Nash equilibrium
on the supply side of the economy. Additionally, due to the competitive nature of the
model, we obtain the equivalence of open- and closed-loop Nash equilibria, related to the

literature on stochastic differential games[MMKN23, Rei82, Ols02, BP09, Carl6].

3.2 Framework

Let us assume that we have a continuum of price taking heterogeneous agents indexed from
a probability space (I,m,Z) and assume that m is an atomless measure, i.e., m({z}) =0
for all ¢ € I. The initial configuration of the system is Cj_, a positive random variable,
and W be a Brownian motion independent of C,_. We denote the filtration generated
by W as FW = (F}V),+ and we work on a filtered probability space (2, P, Foo, (Ft)sep+)
where the filtration is, the smallest generated by Cy_- and FW and Fo = Vyg+ F;. The
Brownian motion W will be the driver of the stochastic demand. Again, we assume that

the demand process D = (Dy;t € R,) is given by a constant elasticity of substitution

(CES)
B

D, = =L
t Pt57

Dy =d (3.2.1)

where the base demand process B = (By;t € R,) is given by a GBM

dBt = /LbBtdt + UbBtth7 BO =b (322)

3.3 Individual Problem Setup

We take the point of view of a single producer of product quantity per unit time @,

faced with external prices P = (P;t € R*) with available capability (capacity) Cy > 0,
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the production function is

% 1+%1 e
N g ot

7 (2

I(Qit, Cir) = Quu Py - (3.3.1)

The producer is a price taker and thus, the equation for the optimum quantity @)}, at

time ¢ is given by:

=t
p- QT (3.3.2)
¢
where we immediately obtain that
Q; = \BC P (3.3.3)

Since agent i € I is part of a price-taking continuum, the total production is given by

Q; = AP [, MCim(di)

In this case the market clearing condition is D; = Q; and using (3.2.1) we obtain that

_B/

P =—
t H;Y’

(3.3.4)

where y=1/(6 + 8- 1) and H, = E,, [BAC|FWV] = [, MiC5'm(di) represents the mean

field term incorporating the action from all the agents.

The producer needs to decide long term investment strategy thus in terms of capacity
maximization is not myopic and thus needs to decide how the investment dC}; in expanding
capacity. Assuming that the cost of unit expansion is \;k;, the objective function of every
individual is

jl(CZt|P) = EILCO— [[ €_TitCiOtéiPtht - kl-e_”tdC'it] (335)
0

[0,00)
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where Cy_ > 0.

Remark 3.3.1 Note that the objective function is given by

J'(Ci|P) = T (Ci|P)

The problem takes the form of a competitive game where competition occurs through
the price process, however the effect of every individual is negligible, and therefore each
producer has to find an expansion schedule C; = (Cy;t € R, ) taking as given the price

process P, i.e. the producer needs to find

C:=arg sup EPCO- [f e‘”thg"Pfdt -

kie‘”tdC’it] s (336)
(Cit;tER+) 0 [0700)

with P an exogenous process.

Before we start the analysis of the control problem let us introduce a set of necessary

assumptions.

Definition 3.3.2 For every producer i € I the class of admissible controls is given by

A={ewez B[ hertdg] <o, (3.3.7)

)

r;, k; are positive constants and Z is the class of all non-decreasing cidglad F;-adapted

processes.

Assumption 3.3.3 We assume that ju:= v, + 37(y—-1)0o} and o := oyy and are positive

quantities. Furthermore, for each agent i we must have that

0<a;<1 (3.3.8)
Be(0,n;) (3.3.9)
5 i) (3.3.10)

1—041'
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where n; := —

Assumption 3.3.4 We assume that the indexing i — ¢; is a measurable function and

that

f Acim(di) < oo (3.3.11)
iel

for every ¢; >0

3.4 Individual producer’s HJB equations

In this section we will derive the HJB equations for a rational producer ¢ € I, who
participates in a multi-agent mean field game. To be more specific, producer ¢ chooses
her optimal strategy taking into account the strategies of all other producers. Thus, it
is expected that producers’s ¢ value function is a function of Cy_ as well as the initial
price Fy_. In addition, we expect that the control process C; will take into account the
processes of all the other agents {C_;};; and previous chapter’s intuition tell us that all
producers should increase capacity when a new maximum price P, is reached at time .

The maximum price is defined as

P, = sup P; (3.4.1)

0<s<t

Therefore, we restrict ourselves to strategies which are of the form Cj; = C;(P;), where the
function C; is assumed to be non-decreasing function that can be written as a difference

of two convex functions and C;(0) = ¢;. To this end, we consider the following assumption

Assumption 3.4.1 Assume that the strategies of all the other producers belong to V.
We write H : R* - R* as defined by

1@ = (5 [ A @man) (34.2)
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The function H : Rt - R* is known to producer i. Also, for future reference we define

hi=InH

This assumption is necessary since we are looking for this kind of class of equilibria,
i.e. equilibria where every producer utilizes a strategy where capacity will change when
the the function reaches a new maximum. Notice that, even though we will not prove
uniqueness of such equilibria, the works of [BEK04, BRO1] hint towards this direction.

In particular, in equilibrium we will search for controls of the
Cit =CV \I/Z(Ft) (343)

where U, satisfy the following definition.

Assumption 3.4.2 We define B to be the set of all families of functions {V;, i € I}

such that each V; is the difference of two convex functions satisfying
Ui(p) >0  forallp>0, Lifgl U;(p) =0 and lle U,;(p) = o0 (3.4.4)
p ploo

and such that [, ; N,V (p)m(di) < oo for all p>0 holds true.

In addition, (3.4.3) and (3.4.2) we can see that

lim H(p) = M. lim H(p) = oo (3.4.5)
p— p—o0
and

H'(p) <0 forallp>sup{p>0|H(p)=M}, (3.4.6)

where M a positive constant

Assumption 3.4.3 We say that H €V if H is a difference of two convex functions and
satisfies (3.4.5), (3.4.6)
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Finally, before we resume our main discussion, we prove the following lemma regarding

the differentiability of H

Lemma 3.4.4 We assume that the controls, of all producers, {C;}i; are of the form
are (3.4.3) and they also satisfy assumption 3.4.2 functions of p then H is absolutely

continuous and left differentiable.

Proof: Notice that H (}_92)% can be written as

% H(p,) = % G+ [ ( fp 1”2 (e v \I!i);‘i(y)dy) m(di) (347

where the subscript f;-(p) denotes the left derivative of f(p) with respect to p. By the
non-negativity of the derivative of (¢; A ¥;(p))* we can use Tonelli’s theorem resulting

into

%(H1/7(1—32) _ Hl/v(pl)) _ [:Q (/ZEI Ni(ci v \Ifi);‘)‘i(y)m(dz')) dy (3.4.8)

Therefore, we conclude that H is absolutely continuous and a difference of two convex
functions which implies that it is also differentiable a.s. and left/right-differentiable

everywhere while the derivative is given by
— =1 o &\ (= .
Hy-(5) =1BH (B) [ n(e v we)(pym(di) (3.4.9)

In view of the assumption (3.4.1) and (3.3.4), the price process P that every producer

expects can be re-written as

P, = Bl

Note that the corresponding price process SDE is given by
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dP; = pPdt + o PdW, - P,dh(P,) + > (Ps - Py.) (3.4.10)
0<s<t
or equivalently,
dP; = pPydt + o PdW, - Pihy_(B)dP, + Y (P - Py.) (3.4.11)
0<s<t

We denote the price process that every producer ¢ € I expects as P however it is implicit
from (3.4.11) that P is influenced by H, in the sense that every producer monitors the

price process given that the strategies of the rest of the producers are fixed.

Consequently, to obtain the HJB equations the following process
Ctl = e_”tvl(cit, Pta Pt) + [ e e (Cf;’PsBdS - k‘ldO,s) ) t2> O,

is a supermartingale for all Cj, and a martingale for the optimal C};. Hence, by Ito’s

lemma we obtain that

e"td¢) = (L' (P, P, Cy) + PLCSY) dt
+ (U%(Pb?t? Cz't) - PtU;(Bh?h Cit)hﬁ—(?t)) dﬁtc
+ (VA( P, Py, Ciy) - ki) dC§ + € "' o Pl (P, By, Ciy ) AW,

+ Z [vi(Ptaﬁta Clt) - Ui(Pt,’?t,, Citf)]

0<s<t

where %, := ”—22p28pp + up0, — r; is the generator of the discounted diffusion process

Therefore, we get that in the continuous region the producer needs to solve the following

HJB equation:

max { Zv'(p, D, ¢) + p’c™, vi(p,D.c) - ki} =0; V(p,B,c) €8, (3.4.12)
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Incorporating the impact of all other producers in the additional boundary condition
vs(p, B, ) — phyp-(D)vs(p,B,¢) = 0; V(p,p,c) €S (3.4.13)

Let us mention that by the form of H, we can only have a single discontinuous jump

between t = 0- and t = 0. Therefore, for every v >0 P, P do not have jumps.

3.4.1 Equivalence of P vs X formalism
Intermedio: Change of variables

As in chapter 2 the problem becomes mathematically easier if we choose to work with
the base demand instead of the price. Hence, we reformulate the problem using the base
demand instead of the actual price process. We define as X := (B;;t e R*). Also for
future reference we define X. := T v sup,.. Xs. Here, we allow for any initial condition
T > z simply to accommodate the technical fact that we will solve the problem using

dynamic programming.
Before we proceed we give the following definition

Definition 2 We define H : R* - R* as

() = (5 JRICY @i(f))aim(dz‘))v. (3.4.14)

where ®; € B

Note that the above definition does not necessarily gets as an input the optimal functions

but rather a broad class of functions that belong to B.

Consequently, the price process can be re-written as

P, = Lt_, (3.4.15)
H(P,)
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or equivalently using the above definition

X -~
P = = «— P, = X;e "X (3.4.16)
H(Xy)

In particular, the objective function can be re-written as

Toea(C) = EP°7 [ [T eriope T a1 [ e—n-tdgt] , (3.4.17)
0 0

while the HJB equation will become

2 7 —
max {%xzvm(x, ¢, T) + pavg(x, ¢, T) — ro(z, ¢, T) + e Ph@ g8

ve(z,c,T) = ki} =0, V(x,c,T)€S. (3.4.18)
while the boundary condition becomes

vi(x,Z,¢)=0; V(x,T,c)eS (3.4.19)

The following result identifies pairs of expansion strategies of the form (3.1) and expansion

strategies of the form (3.8) that are associated with the same price process P.
Lemma 3.4.5 In the presence of assumption 3.3.4, the following statements hold true.

(I) Consider a collection {®;, i € I} € B and suppose that the function ¢ €V given by
(3.4.14) s such that

(T/H(Z))' >0 for allT>0 and lim T/H(T) = oo. (3.4.20)

T—00

If we define

@) = @/H@), 750, and U,(F)=0(™@)), >0, (3.4.21)
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where X'V is the inverse function of x1, then {¥;, i € I} € B if and only if the integrability
condition assumption 3.3.4 holds true. In this case, if H €V is defined by for V;, i€,

given by (3.4.20), then

H(p) = (H o x\™)(p), for all p>0. (3.4.22)

(I1) Consider a family {V;, i€ I} € B and let H € V. The function

x2(p) =pH(p), P>0, (3.4.23)

is such that
()@ =PHE) > 1, and Do) = ImpHp) =0, (3.424)

If we define
,(T) = U, (#2@)) @0, (3.4.25)

where XV is the inverse of the function xa, then {®;, i € I} € B. Furthermore, ifHeV
for ®;, iel, given by (3.4.25), then H satisfies (3.4.20) and

H(Z) = (H o x\'™)(T), for all T>0. (3.4.26)

(III) In the context of either (1) or (1),

H(X)=H(P). (3.4.27)

Proof: The claim that the family {¥;, 7 € I’} defined by (3.11) belongs to B if and only

if assumption 3.3.4 holds true follows from the assumption that {®;, i€ I} € B. On the
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other hand, the function H €V for ¥;, i € I, given by (3.4.21), satisfies (3.4.22) because
HE) = (8 [ A v e (v @)m(dn) = O 7).

The claims in (3.4.23) follow immediately from the fact that H satisfies (3.4.5) and

(3.4.6). In turn, (3.4.23) and the observation that

X2(B)/(Hoxy")(x2(P)) =p <= T/(Hox3")(T) =x3" (@), (3.4.28)

imply that the collection {®;, ¢ € I} defined by (3.4.25) belongs to B thanks to the

assumption that {W;, i € [} € B and the observation that

fl XD (T) m(di) = f] AW (i (T)) m(di) < fl AU (T) m(di) < oo for all T> 0.

(3.4.20)
The function H for ®;, i€ I, given by (3.4.25) satisfies (3.4.25) because
~ . T N
H(T) z(ﬁ fz)\i(ci A% (—Ho NTTE: ))m(dz)) -
T
H v (z 3.4.30
(HOXmV(iC)) ( ( )) ( )

Finally, (3.16) is an immediate consequence of the equivalences

=X/H(P) <= P=x3"(X),

and

which follow from (3.4) and (3.9). n
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The usefulness of the above lemma is that it shows the equivalence between the two

formalisms and will be used in a subsequent section.

3.5 Individual producer’s control solution

The aim of this section is to determine the optimal strategy for a producer i € I. We
proceed directly solving the HJB equation using the assumption of continuity and
differentiation. A free boundary participates the space into two waiting regions Wi, Wi
and an expansion region £ as well as the optimal control. The proof of a verification
theorem concludes that the conjectured optimal control is indeed optimal. Finally, in
Appendix A conjecturing a candidate optimal control and using probabilistic arguments,
we directly evaluate the value function. This method is particularly useful, as it is
an immediate solution to the control problem. In addition, it provides an interesting
alternative to the evaluation of the value function assuming that an educated guess for

the optimal control has been made.

3.5.1 Solving the Hamilton Jacobi Bellman Equation

We will solve the individual agent’s optimization problem by deriving the solution to the

quasi-variational inequality stated in Problem 3.7.1 below. This involves a C! function

G;:R2 xR?2 - R, such that

9G,(c,7)

>0, limGi(e,7)=0 and limG;(c¢,T) = oo. (3.5.1)
aC cl0 ctoo

It also involves the unique solution ®; : R, - R, to the equation

Gi(®:(7),7) =7, T>0 (3.5.2)
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where the function ®; is required to be C! and such that

¢ (Z) >0 for all >0, 11{51 ®,(z)=0 and liTm O,(T) = oo. (3.5.3)

We define the following free-boundary surfaces

S}z{(c,x,i}eRJr | 0<xsfandx:Gi(c,f)} (3.5.4)

and S?={(c,z,7)eR,| 0<z<T and c=P;(T)} (3.5.5)

To begin with we define the following surfaces which partition the control’s problem state

space

S={(c,z,7) eR}| 0<a<T} (3.5.6)
into the sets
Si:{(c,a:,f) eR,| 0<z<Z and cSFi(x,f)}, (3.5.7)
and W} ={(c,z,7)eR,| 0<z <7 and c> &;(7)}, (3.5.8)
W2 = {(c,a:,f) eR,| O<z <7 and I';(z,7) <c< @1(5)} (3.5.9)

where

Li(7) = G;HV(.j)

The idea of conjecturing such a partition of the state-space comes from the fact that
contrary to the monopolist case where only two state variables were needed now we need
also to include a third one and therefore without an extra partition of the state space the

HJB equations will not be consistent. Alternatively, one can directly evaluate the value
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function using directly a conjecture for the optimal control as it was done in Appendix A

. In this case one can see that the waiting region is naturally divided into two parts.

We postulate that the individual producer’s optimal capacity schedule can be informally
described as follows. At time 0, if the initial state (¢, z,T) is inside the region &;, then it
is optimal for the individual producer to exert action so that they reposition the state
process on the boundary surface S?. In view of standard singular stochastic control
theory, such an action is associated with the requirement that the value function v?
should satisfy (3.7.26) as well as the inequality in (3.7.27). Beyond such a possible jump
at time 0, it is optimal for the individual producer to exert minimal action so as to
prevent the state process entering the interior of £. On the other hand, it is optimal for
the individual producer to exert no control effort while the state process takes values in
the interior of the set W} uW?, which is associated with the inequalities (3.7.24) and
(3.7.25) as well as the equalities in (3.7.27). The significance of the surface S? arises from
the fact that, eventually, it is optimal for the individual producer to exert minimal effort
so as to prevent the state process falling below the curve defined by x =7 and ¢ = ®;(),
which is the intersection of 8? with the boundary of the state space defined by = =Z. In
particular, it is optimal that minimal control effort should be exercised so that the state

process takes values on the surface S at all times after this surface has been reached.
Therefore, in terms of the HJB equations the problem can be succinctly states as:

Problem 3.5.1 Determine a function G; : R?2 = R, and a function v' : S - R, satisfying

the following conditions.

(I) the functions G;(-, @) is C*, while Gi(c,) and ®(-) are differences of two convex

functions and satisfy. Furthermore they satisfy (3.5.1)-(5.5.3).

(IT) The function vi(-,-,T) is CY2 in the interior of S.
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(ITI) The function vi(c,z,-) is a difference of two convex functions in the interior of S.

Furthermore,

wz(e,Z,T) = li{gwg_(c,x,f) =0 forall 0<®;(T)<c (3.5.10)

(IV) The function v® is such that

vi(c,z,T) <k; forall0<z<T and ®;(T) < c, (3.5.11)
vi(e,x,T) <k; forall0<z<T and T;y(z,T) < ¢ < ®;(T), (3.5.12)
vi(e,x,T)=k; forall0<z<T and c <T;(z,T), (3.5.13)

and

. _ 1 . . . _
Zv'(e,z,T) + 2P cie @ = 502x211;x(07 2, T) + pavy (e, x,T) - rv' (¢, 2, T) + aletie P
=0 forall0<x<T and 0<®,(T) <c,

=0 forall0<x<T and I'i(z,T) < c < ®;(T), (3.5.14)

<0 forall0<x<T and c<T;(x,T).

Every solution to the ODE, Zu(c,z,T) + 2BceieBh@) = 0, associated with (3.7.27) is

given by

' 1 o
vile, 2, T) = Ar (e, T) 2™ + Ao(e,T)a™ + —aPcie @
i
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for some functions A; and A,, where m; < 0 < n; are the solutions to the quadratic

equation
L 5.0 2
i k*+|\p—=0o")k-r;=0,
given by
~(p-302)+ \/(u - %02)2 +202%r;
o
For future reference, we note that
2 2r;
> p = ng >0, ni+mi—1=——/;, nimiz——z (3.5.15)
o o
1
and p; = 502(71@- - B)(-m; + ). (3.5.16)
We consider a solution to Problem 3.7.1 of the form
Ai(e, )z + iﬂcaie*ﬁﬁ@), if (c,z,T) e W},
v'(c,x,T) = Bi(c,T)x™ + %xﬁcaie‘ﬁﬁ(f), if (¢,x,T) e WU S}, (3.5.17)

vi(Fi(x,f), x,f) - k‘i(Fi(x,f) - c),

if (c,z,7) €& NS

To determine the function B; and the free-boundary function G;, we appeal to the so

called “smooth-pasting condition” of singular stochastic control'. In particular, we require

that vi(-,x,7) should be C? along the free-boundary point G;(c,T), which suggests the

Note that this is more of a conjecture. We are searching for a solution with this kind of regularity
and consequently we have use a verification theorem to prove that indeed this is a solution to the
problem. It is not ex-ante certain that such a solution should exist
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equations
Télr(n vi(e,2,T) = (By)c(c,T)G (¢, T) + —Gﬁ(c 7)™ e Ph@) =k, (3.5.18)
and Cl;lr(n )U (e, T) =ni(B;)e(e,T) + ZBGﬁ (e, T)e ! e PR@) — ). (3.5.19)
xt c,T

The solution to this system of equations is given by

CRER |
Gi(c,f):( p’"zklﬁ)) ¢ 7 @ and (B)(c,T) = - i G;" (e, 7). (3.5.20)

O-/z(nz n; — B

For G; given by the first of these expressions, we can see that the unique solution to

equation (3.5.2) is given by

B

Ty(2,7) = (O"(nz kﬁ)) ( @) (3.5.21)

plnl (2

(3.5.22)

—

Figure 3.1 Illustration of agent’s i free boundary G;(c). The vertical lines indicate the
fact that in the mean field setting the decision of an agent to increase capacity does not
affect the price level of the product
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On the other hand, the solution to the ODE in (3.5.20) is given by

ki62 C
(ni = B)(ni(1 - i) = ) G (e, ®)’

Bi(e,T) = fi(T) + (3.5.23)

where ﬁ is a function to be determined.

In order to determine f; we will use the fact that in the region {z =%} nW? we should
have that

vi(®4(T),2,T) =0 (3.5.24)

Therefore, substituting (3.5.23) into (3.5.24) we obtain that

. . 32
Fw) - - .

(n = 3)((1 - )i - ) [T @@ et [Ty R e o dy
(3.5.25)

or equivalently we obtain that

kip?

f(f) = _(ni_ﬁ)((l_ai)ni_

5 L @ m ot [T e
(3.5.26)

we should have limg_. f;(P) = 0

Consequently, to determine A;(¢,ZT) we use again the fact that for W! and = - 7 we
have that

limvi(c,z,7) =0 (3.5.27)

T

Hence, we obtain that

Gi(c,f) — _
Ai(c,x) = - [ gyﬁmhx(y)caieﬁh(“)dy + fi(c) (3.5.28)
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Next, the requirement that v* should be continuous is reflected by the identity

lim v(c,z,7) = lim (e, z,7),
ct®;(T) ( ) cl®; () ( )

which gives rise to the expression

fi(®:(2)) = Bi(®:(7),7) (3.5.29)

Therefore, we conclude that

(o) = (d-a)nikif (D)) dy 2 [ BT ()% (1))
O == T 5] Lo @etdy 7 [y e w)e 7O dy
Fild” < (3.5.30)

" (ni = B)(ni(1 - oy) - B) Gi (e, )

Lemma 3.5.2 The function w*:S — R defined by

Ai(c,T)a™ + éxﬁcaie‘ﬁ@) if (¢,x,T) e W}

w'(c,r,T) = Bi(c,T)x™ + i$5caie‘5ﬁ(§) if (¢,x,T) e WU S!? (3.5.31)

w' (Ti(x,@),2,T) - k[Ti(z,T) -] if (c,x,T) €&

4, ) = k’iBQ -n; r b, /é - T o B ~( )
(ens (i 5)((1 —a)n; —6) fx y " ha(T) (y) Pily) dy - — fx y° hz(y) @ (y)e Bh(Y) qyy
k; 32 c Gi(c,T) _8 T s BT

(ni—ﬁ)(m(l—ai)_ﬂ) G (c,7) +/; iyﬂ ha(y) e @) qy,

(3.5.32)
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— k; 32 c k; 32 o
Bilem) = =) "ihz(T D, (y)d
(D (ni - B)(ni(1 - ;) = B) G, T) (= B)((1 - )i - B) [x Yy (7)(y)®i(y) dy

) g Ly e mer (e oy (3.5.33)

and T'y(x,7) : & - RY, T'y(x,7) : & = R* are determined by

Iy(z,7) = ((”pki)o‘) L(xe:ﬁ(f))l%i (3.5.34)
@(f):((";zki)lal) 'L(x *h(@)lﬂ% (3.5.35)

is a C*1 solution to agent’s i€ I HJB equation (3.4.12). Finally, for all (¢,z,T) €S

0<w'(c,z,T) <A (c+ P (T) + D;(T)) (3.5.36)

where A; >0 depends only on the parameters of the problems

Remark 3.5.3 Note that by performing the coordinate transformation x — pe"® and

T - pe"®) and after a series of integrations by parts recover (3.7.20) (Appendiz B) with

V,(p) = ((";Zki )O‘) P (3.5.37)

This also shows consistency between the two formulations of the problem.

3.5.2 Verification theorem

Now we turn our attention on proving that the previous discussion leads to an optimal

solution for a producer 7 € I.
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Theorem 3.5.4 Let us assume that assumptions Assumptions 3.5.2, Assumptions 3.3.3
hold for the producer i € I. rise to the mean field process H satisfying (3.4.4). The
value function of the control problem identifies with the solution (3.5.2). In addition, the

optimal capacity expansion strategy is given by

Ch=c; v @ (X,) (3.5.38)
Moreover, Cf e A, Yiel
Proof:

e Tw'(Cor, X7, X7)
. T . — - —
=w'(c,x,T) + f e it Le it (Cy, Xy, Xy )dt + /[ ) e it (Cy, Xy, X3 )dCS,
0 0,7

T ) .
+ f e_ritw%(Cit,Xt,Xt)dXt
0

+ > et [w'(C, Xo, Xy) w0 (Cirey X4, X)) | + M (3.5.39)
0<s<T
where,
T R
M=o fo e X wi (Cy, X, X )dW,. (3.5.40)
Therefore,
[}T e’”tXngie’Bﬁ(Yt)dt = Jor kie " tdCyy + e T (Cyp, X, X1)

. T ] . o
=w'(c,z,T) + / e it [.Z-w’(Cit,,Xt,Xt) +Xfcgi€—ﬁh(xt):| dt
0
. _ T ' L
’ /[ ] e [wi(Cu X0, X0) ~ ki AT, + f e wi(Cir, Xy, X )d X,
0,T 0

+ ), et [wi(Cit,Xt,Yt) - w'(Cy, X4, Xy) - kiACit] + My (3.5.41)

0<t<T



70 A equilibrium model for capacity expansion: The competitive market case.

To evaluate the jump term wi(Cy, Xy, X;) — w'(Cy—, X4, X;), consider that producer i

makes and arbitrary expansion ACj; = z > 0

‘ _ ‘ _ = d _
W (Cits X0, X7) = 0 (Ciy X1, X5 = [0 ' (Gt s, X, X0 ds

= f w’ (Cl-t +3,Xt,yt) ds (3.5.42)
0

Thus, using the fact that wi(c,z,T) satisfies the corresponding HJB (3.4.12) equation

we obtain

T o , _ .
f e‘”tXfC;"'e‘ﬁh(Xf)dt - | kie "tdCyy + e T w' (Cip, X, X1) < w'(e, 2, T) + My
0

[0,7

(3.5.43)

Consequently, consider a localizing sequence of stopping times {7,}n.n such that
lim,, . 7, = 00 and the process { M, }nen is a local martingale. Taking expectations

and using the fact that (3.5.36) from Lemma 3.5.2 we have that

TATh, PO .
E [f e_”tXfC'gie_ﬁh(X’f)dt - f kie_”tdC’it] <w'(c,x,T)
0 [0,7ATn ]

- e_riTATn]E[wi (Ci(T/\Tn)*7 XT/\TTL7YT/\T”)]
(3.5.44)

Hence, we get that

v'(c,z,T) <w'(c,x,T) (3.5.45)

Next, the reverse inequality will be proven by making use of the control process given

by (3.5.38). We start by showing that it is indeed an admissible strategy in the sense of
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(3.3.2). In particular from (3.5.34) (3.5.35) and assumption (3.3.4) one can immediately
see that

Cir < ¢+ 0i(T) + (X)), (3.5.46)
Therefore, using (3.5.35) combined with the assumptions (3.3.2) we have that

T
e "'E[C}] < oo and E [/ e_”tC{;dt] < 0. (3.5.47)
0

Using integration by parts we obtain that
T
e’”TC’iT =Cc+7T; [ €7Titcitdt + [ €7Titdcit (3548)
0 [0,T)
which along with the monotone convergence theorem allow us to gives that

IE[ f we—”tdq;] < oo, (3.5.49)
0

concluding that the admisibility of the control process C*.

Consequently, following similar arguments as in (2.4.2) regarding the optimality of the

control and in view of the transformed HJB (3.4.12) we get that

T ~— R
f XS (C) e D g - f[ kTG + e T (Clp, X X) = e )+ M
0 0,7
(3.5.50)

Again from a localization argument and taking expectations we obtain that

TATh PO I
E [ f et XP ()i e PR gt — kie”tdC;;]HE [e T w(Chp, X7, X)) | = w(e, 2, T)
0

[OaT/\Tn)

(3.5.51)
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Therefore, by the monotone convergence theorem we can take take the limits n — oo,

T — oo we get that

Tlowm (CF) + lim E [e" T w(Chp, Xp, X7) ] = w'(c, 2, T) (3.5.52)

Next, using (3.5.36) and assumption (3.3.4) and (2.3.5) we obtain that

E[w(Cir, X1, X7)] < KGE [c; + ©:(T) + ®:(X;) + D} (X,)] < oo. (3.5.53)

(2

Thus, using the dominated convergence theorem we can pass the limit and conclude that

j(icmf)(q.*) = w'(¢, z,7) which implies that vi(c,z,7) = w'(c,z,T)

Remark 3.5.5 Finally, the true value function for producer i € I is given by

(e, x,T) = \v'(c, x,T)

3.6 Nash Equilibrium for the multi-agent game

In the previous section we proved that given the strategies C_; of the other producers,
producers i € I optimal strategy is given by theorem 3.5.4 and the value function by
lemma 3.5.2. Using lemma (3.4.5) we show that the optimal control in terms of X process
is equivalent with a control in terms of the P process. Hence, in this section we form
the market equilibrium by assuming that also all other producers uses their optimal
strategy C; which gives rise to the mean field H. As a side note, let us mention that
since producers form a continuum, the notion of open/closed-loop strategies Appendix
are not so interesting from a practical point of view. In our case, we have to follow the

idea of a mean field game equilibrium. In particular, since P = X /H, we need to find the
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mean field H such that when all players use their optimal expansion schedules based on

the H we get back H. i.e. we have the following fixed point equation
2
H(p) - (ﬁ [ Aic?i@;H(ﬁ))m(dz’)) VPR’ (36.1)

In conjunction with theorem (3.5.4) which shows the optimal expansion schedule for
every producer is not directly dependent through H but only through the price process
P we conclude with the following Nash equilibrium for the market which concludes this

section
Theorem 3.6.1 (Market Equilibrium)

Define the increasing function H* : R* - R* by

e v
H*(p) = (5LIA1(C§Y¢V(%W) )m(dz)) . peR*.

Then, the individual optimal schedule process given by

Ol = ;v (Wgﬂ) - (3.6.2)

and the price process P is given by P, =G (X;) where § is defined through §(p)e 9®) :=p

form the multi-producer’s equilibrium

Proof: Using (3.3.4) for C;y = C, P, = X,/H(P,) which implies that P, = X,/H(P,).
Hence,

P = f1(X)), (3.6.3)

where f(p) = pH (p)-

However, we have shown that for every H : R* — R* which satisfies the assumption

(3.4.1)
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The optimal expansion is given by (3.6.2) Thus, the solution of the fixed point equation

H should be equal to H* which concludes the proof [
To help the reader understand the above proof we briedly outline the idea of the proof.

Assume that with the possible exception of the producer labeled by ¢ € I, suppose that

every other producer, say j € I \ {i}, adopts the capacity expansion strategy
Cy(t) = ;v @;(X0).

In the competitive setting that we have considered, this assumption and the clearing

condition give rise to the price process

P=X/H(X,). (3.6.4)

However, producer i, who has been singled out, is faced with the task of maximising the

performance index

TNCi | P) = T8, (0,

over all C; € A, where jgl )(C; | P) and Jgj )IE(CZ) are the performance criteria defined

by (3.3.5) and (3.4.17) while by the Theorem (3.5.4) the expansion strategy

8
Oéi(ni - 5) 1o % ]
ol =7 X (Xt)\ T=—ayp)

=C VvV (I)Z(Z) =C VvV \I/: (ﬁt),

where

Oéi(ni_ﬁ) )1:8%1—)16041- (365)

W (p) - ( b4



3.7 Appendix 75

is the optimal behavior for the ith agent given the optimal response of for every j € I —{i}.

Therefore,

H*(p) := (ﬁfm/\i(cfiv(%ﬁﬁ) _ )m(d@)) , peR™.

is indeed a solution to the fixed point problem and thus P = X/H* along with the
optimal expansion strategies Cy; = ¢; v \Ifz(?t) must comprise a competitive production

equilibrium.

3.7 Appendix

Appendix A: Proof of lemma 3.5.2

In this part we prove lemma 3.5.2

Proof: By construction w: S - R is a continuous function, w(c,x,-) : [z,00) : R is a
difference of two convex functions and therefore absolutely continuous. Moreover, w,
is continuous along the surface S}. Hence, we must only prove the continuity of the
continuity of w, and w,, across the surface S}. Let (¢,z,T) € &\ S},
w'(c,z,T) = wh{n*) wt(c,x,T) + (wc(Fi(x,f), :L’,E) - kl)(f‘l)x(x,f)
clli(xz,x

= lim wi(c,z,7) = wi(Ti(z,7),2,T) (3.7.1)

Clrl (Z‘,E)

and wiz(caxaf) = “_‘h{n,)w;x(caxaf)+wéx(ri(xaf)axaf)(ri)x(xaz)

= F11%rn )wm(c,x,f) = wm(Fi(x,E),x,f), (3.7.2)
cil'i(z,x

where we have used the definition (3.5.31) of w! as well as (3.5.18) and (3.5.19). Conse-
quently, due to (3.5.31) and the expression (3.5.33) we have that w, and w,, are also

continuous across the surface S2. On the other hand, in view of (3.5.32) and (3.5.33) we
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obtain that

lim )'LUi(C, l‘,f) = Ac(@z(f),f)x” + %l‘ﬂq)?i_l(f)efﬂﬁhl@)

cl®;(z i

o ,
= B(®;(Z),7)z" + —2P®¥1(Z) = lim wi(c,x,T).
(@) 2)a" + Lo (@) = T w0

Therefore, we have concluded that the function w(-,-,Z) is C?! in the interior of S for

all z > 0.

Next we prove that w? provides a solution to Problem 3.7.1, i.e we show that

wi(c,z,7) <k; forall 0<x<7Tand &;(T) <c, (3.7.3)
wi(c,z,T) <k; forall0<x <7 and Iy(2,T) <c<®y(T), (3.7.4)

and Zuw'(c,z,7) +2°c* <0 forall 0<x <7 and c<Ti(z,T). (3.7.5)

To begin with, let (¢, z,T) € W2, i.e. a point in § such that 0 <2 <T and I';(2,7) <c <

®,(7). In this case, we get that

wi(c,xj) =

B =1
Lre (1 _ L, f)xm-ﬁ) < ki, (3.7.6)

i

where we have used the fact that p < G;(¢,T) and that G?(¢,T) = %cl‘%eﬁ(i) and

equality is satisfied for ¢ | I';(z,T).

Similarly, for any point (¢, z,7) € W}

wi(c,x,T) < ky, (3.7.7)

where equality is satisfied in the limit of z 1 T and ¢ | ®;(7)
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Next, to establish (3.7.5)., we use the definition (3.5.31) of w;, as well as (3.7.1) and

(3.7.2), to obtain. In particular let (¢,z,T) € &;

Zwi(C, T f) * Caixﬁeiﬁ,ﬁ(}) = Zwl(rz(ma f)a I’,E) + le'z(rz(l',f) - C) + Caixﬂeﬁﬁﬁﬁ(f)
= 1% (2, 7)ae M@ 4k (Ti(2,T) - ¢) + izPe @

Fi(*rvj) o —
= - [ (aiu“i‘lxﬁe‘ﬁh(m) - riki) du for all ¢ < T';(z,T).

In view of (3.5.15) and (3.5.16), we can see that the free-boundary point G;(¢,7) given

by (3.5.20) is the unique solution to the equation?

Gi(¢,T) —_
[ u—mi—l(auai—lxﬂe_ﬁh(x) — Tzkl) du = 0
0

Therefore, a;c®taBePh@ —rk; > 0 for all z > G;(c,T), which implies that
aico‘i_lxﬁe_ﬁﬁ(@ —rik; >0 for all ¢ <Ty(x,7),

because I';(+,T) is the inverse of the strictly increasing function G;(c,7). However, this

conclusion imply that w; satisfies (3.7.5).

Finally, it is straightforward to find the relevant bounds of wi(c,x,7). In particular, from
the expressions (3.5.32) and (3.5.33) as well as the expression for (3.5.35) and the fact

that for (c,z,T) € W; we have that ¢ > ®,(T) we obtain that
TN B
Ai(e,T) <Ay (ci’”i + (e M@) e ) , (3.7.8)

where A4 > 0 a positive constant.

2This is essentially the same argument as in the proof of the corresponding lemma in chapter 2
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Similarly we obtain that obtain that
oy B
Bi(e,T) < Ay (cf” + (T @)y ) , (3.7.9)

where Ap >0 a positive constant.

=\ B =
In addition, note that from (3.5.35) one can see that (Ze "®@)Ta < K;®,(7) 7°e#M@ <
K;®;"(F) with K a suitable positive constant therefore for both regions W} W? we

can write them as

w'(c,r,T) <Ay (c + DT + <I>Z(E)) , (c,z,T)eW; (3.7.10)

Finally, for (¢, z,7,) € & we have that ¢ < ®;(Z) and therefore we have that

w'(e,r,7) < Ny®i(T), (c,2,7) €& (3.7.11)

Hence, as required we get (3.5.36). Finally, the positivity of wi(c¢,x,Z) becomes a simple
observation after using the remark (3.5.3) since the integral form is immediately shown

to be positive n

Appendix B: Solution of the HJB equation using the P process
Heuristic solution to agent’s control problem

A heuristic method is used to calculate the conjectured value function by conjecturing the
optimal strategy and directly computing the objective function. To make the exposition

easier we will use log-prices, i.e. P, = e?t. Therefore, the SDE for Z = (Z;;t e R*) is

2 —_—
dZ, = (j - %)dt+ath—dh(Zt) (3.7.12)
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We conjecture that the agent’s i € I optimal strategy is Cy = ¢; v ¥;(Z,) while the other
player’s strategies give rise to the mean field process {H(Z;)}sr+ which are assumed to
be fixed. In the following lines we will directly evaluate the objective function with the

aforementioned expansion schedule.

vi(e, %) = E. [ [T eren Zyi -k [ e—md@(z)] (3.7.13)
0 0
where U, belong to a class of non-decreasing differentiable functions
First of all,

E, [/OOO e_ritd‘f’i(Z)] =E, [/Zoo G_TiTyd‘T’i(?J)] ;

where 7, = {t € R*|Z; = y} is the first hitting time at level y e R* of Z. Furthermore, by

Girsanov,
E, [[oo e””ﬁz’f\IJC.”(Zt)dt] = f+h(2))EQ [/w epitﬁh(zt)\llc.”(Zt)dt]
0 ’ “1Jo ’

where

2 2
pi = Ti_ﬁ(/l_%)_@>0-

and Z; = 't + oW/ under Q, where u/ = p - é + Bo?. Integration-by-parts gives
0 z
Therefore,

o0 ~ 1 ~ 1 o0 ~
E, [ / e”t*ﬁxt\IJ?"(Zt)dt] - Losgeiay 4 —eﬂ<z+h<z>>1@9[ i e””yd(eﬁh(y)\l/?i(y))].
p, .

0 i i z

(3.7.14)
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For a generic process with dZ; = adt+odW,~dh(Z;) under P, we have that eb(Zi+h(Ze)=(z+h(2)))~bat~(ba) /2t

being a martingale, and optional sampling gives

EIZP’ [ef(ba+b2cr2/2)ry] — efb(erh(y)fth(z))

Therefore, define

2r; (2u—02)2 24— o2
n; = — + — ;
o? 202 202

we can show that

E,[e "] = e mi(v+hv)-e-h(2)),

using
Ei(y) = e milurh®)
this gives
© it T (T —L s .
E.| [ W@ o5 [ 6wat) (3.7.15)

ie.,

o0 - _ 1 0

IE[/O e‘”td\Ifi(Zt)]=—‘I’¢(Z)+£(Z) f Wi (y)&i(y)ni(1 + H=(y))dy,

as well as

RQ [eritu] = e(Mi-Ayrh(y)-2-h(2)

which gives that equals

00 ~ 1 ~ 1
E. [ [ e-ri“ﬁzt\ygfi(zt)dt] _ Loy 4
O .

1 o0 _
- . Bly+h(y)) 4 (LM W) g
Pi pi &i(2) /z Gily)e (e ¢ (y)) ’

(3.7.16)
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where by performing an integration by parts is further equal to

1
pi&i(2)

B| [T e @ @t - — = [T @E@e - B+ (),

(3.7.17)

In total, equals

E[f e AN (7, ) dt ~ fo ooe"“i%d@(Z)] -
- [ (WA - T w) 6 0) 1+ b))y KT (), (718

Therefore, a pointwise maximization inside the integral gives that the optimal T is

T,(y) = (%) ety (3.7.19)
PikiT;

and thus, we conjecture that the agent’s optimal strategy is C}, = Cyp- v "IVIZ(K) which
in conjunction the direct evaluation of (3.7.13) allows for a closed-form expression of the

conjectured value function.

In particular, let

m;(y,c) = max{ =5 U — ke, U}
U>c Pi

Therefore, if ¢ < ¥(y), the maximum occurs at U;(y)

g _1
\To; (n; — B\To _8
ity ) = (1-a0) (2) 7 (2 5)

kin; Pi

On the other hand, if ¢ > {Ivli(y), the optimum occurs at W = ¢. Therefore, it follows that

X

1
(148 gy o\ (mm B\
mi(yac)_( . e’e —kmic)1{Ef,-(y)<c}+((1—04i)(kini) ( , ) el )1{cg\‘ﬁi(y)}-




82 A equilibrium model for capacity expansion: The competitive market case.

Therefore, the value function on the continuation region W = {(¢, z,%)| ¢ > ¥;(2)} is

defined as
w'(e,2,Z) = ck; + [ZOO mi(y, c)e W= W)=hGE)4) (1 4 h=(y)1(z<yy )dy.
By integration-by-parts, we obtain
wi(e.z.3) = ”;i_;iﬁeﬁzcai N f " iy, ) en @ BV gy

where

n; — 3

Pily;

. . i\ 1 ni—ﬁ 1-a;
Ji(y,¢) = 565?’0’1{@@)«}%(@) ( eﬁy) L@y

Moreover, in the investment region & = {(¢, z,Z)| ¢ < U;(2)}, we define

w'(e,2,%) = w (¥;(2), 2,Z) - ki(T;(2) - ¢).

Finally, we can re-write the conjectured value function in terms of prices, using the fact

that p = e# and noting that ;(In z) = U;(p)

wpﬁcai +pTLi fpoo jl(y7 C)eni(h(ﬁ)_h(yvﬁ))dy lf (C7p’z_)) € WZ

w'(c,p,p) =4 """ (3.7.20)
wz(\l’z(p)ap,ﬁ)_]fz[qu(p)_c] if (Capaf_))egz
where,
- n; = -n;-1 n; = —n;—1\Jy
Ji(y,c) = B e Ly (g)<ey + B PP (Y) L ecws () (3.7.21)

1'% '
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and

w,(p) - () g 3122

Formal solution to the HJB equations

In this section we provide a solution of the HJB equations using the P process. This
simple corresponds to the transformation z — pe® and p — pe(® of the problem and

corresponds to

Problem 3.7.1 Determine a function G; : R, - R, and a function v*: S - R, satisfying

the following conditions.
(I) the functions G; and ¥; are C* and satisfy (3.5.1)—(3.5.3).
(IT) The function wi(-,-,p) is C*! in the interior of S.

(III) The function wi(c,p,-) is a difference of two convex functions in the interior of S.

(IV)

The function w' is such that

w%_(c,p,ﬁ) = hﬁ_(ﬁ)pwz(c,p,ﬁ) for all 0 < U,;(p) <c, (3.7.23)
wi(c,p,p) <k; forall0<p<p and ¥;(p) <c, (3.7.24)
wi(c,p,p) <k; forall0<p<p and ¥ (p) < c< V;(p), (3.7.25)

wi(c,p,p) =ki for all0<p<p and c < ¥(p), (3.7.26)
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where w}_ (f), D, c) = limyp 07 (p,ﬁ, c), and

1 = i = i = o
202p2wl (¢,p, D) + ppw,(c,p,p) —r:v* (¢, p, B) + p’c™

L' (e,p,p) +pc =
=0 forall0<p<p and 0<V;(P) <,
1=0 for all0<p<p and ¥;(p) < c< V;(p), (3.7.27)

<0 forall0<p<p and c<V;(p).

We consider a solution to Problem 3.7.1 of the form

Az(ca]_))pm + %pﬁcaia lf (CapaI_j) € Wi17

wi(c,p,]_?) =\ Bi(c,p)p™ + ipﬁcai’ if (p,p,c) € WE U Silv (3.7.28)

v(Vi(p),p,P) - ki(Vi(P) - ¢), if (p,p.c) € &N S,

To determine the function B; and the free-boundary function G;, we appeal to the so
called “smooth-pasting condition” of singular stochastic control. In particular, we require

that w'(-,p,p) should be C? along the free-boundary point G;(c), which suggests the

equations
T111][(1 vi(e,p,D) = (By)e(c,D)G (c) + p—Gﬁ(c)c‘;” = k; (3.7.29)
zﬁ B-n; -
and mlérr(l)vcp(c ,0,P) =n;(B;)c(c,p) + — ) —G M (e)ev T = 0. (3.7.30)

The solution to this system of equations is given by

Gi(c) = ( pmlklﬁ))ﬁ ¢ 7 and (Bi)e(c,p) = —n'k_i BG;M(C). (3.7.31)

a;(n;
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For G; given by the first of these expressions, we can see that the unique solution to

equation (3.5.2) is given by

qf@-(p)=(&’;n; kﬁ )) pre, (3.7.32)

On the other hand, the solution to the ODE in (3.7.31) is given by

]{31‘62 C
(ni - 5)(”1’(1 - ;) - B) Gi(e)’

By(c.p) = fi(P) + (3.7.33)

where f; is a function to be determined.

In order to determine f; we will use the fact that in the region {p =p} n W? we should

have that

(¥ (D). 5,P)) = hp-(P)vs(¥(P), P.D) (3.7.34)
Therefore,

1 5 (ni = B)(1 - ai)

F1(®) = nhy- (D) fi(P) = T PP (B)hs- (D) (3.7.35)
Thus, integrating we obtain that
ﬁ(}_?) _ [oo 1 ﬁ (nz ﬁ)(l sz) 5 nijaz(y)nihﬁ_(y)eni(h(ﬁ)fh(y))dy’ (3736)
PPNy nz(]- az) 6

where we used the fact that we should have limy_., f;(7)em"® =0

Performing an integration by parts we obtain that

15(”@ 6) 1_04@'

_ —B—m\IJ%‘ B
fz( ) n; 6 nl(l— )p ! (p)
+/‘°° 1 M g - 1\Ijocz(y)enz(h(p) h(y))dy (3.7.37)
P pi i
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Consequently, to determine A;(c,p) we use again the fact that for W! and p - p we have

that

lim wi(c,p, D) = hp-(P) lim wh(c,p. D) (3.7.38)

Hence, we obtain that

Ay(e,T) - Ai(e, G(e))e @G = LB e yo-ns s gnin@-niciu@n) _ LB gpons oy,

Pi N Pi M
f ¢ 1 5Myﬁ—ni—lcaen(h(@—h(y))dy
P Pi n;
+ fi(c)e® (3.7.39)

Next, the requirement that v should be continuous is reflected by the identity

lim w'(e,p,p) = lim w'(e,p,p),
m w'e,p.p) = lim (e, p,p)

which gives rise to the expression

Ai(Vi(p),p) = Bz‘(%(ﬁ)»ﬁ) =

fi(Pi(p)) = ﬁ oo;Mg/ﬂ‘"rquﬁi(y)e—"ih@)dy (3.7.40)

p Pi %

Therefore, we conclude that

°° lﬁ(nz - B)yﬂ_ni_

Lg% (4)e W) dy 3.7.41
- () ( )

fi(e) =
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To conclude, as a consistency check, we recover the form of (3.7.20) let (p,p,c) € W}

Then

. B B L 50
w'(e,p,p) = Ai(c,p)p™ +p—p5 ‘=

LB ponigon +[G(C) L3I et g (b@-hw) g

:01 nz Pi n;
© 1 i . , (= 1 .
+ f _ﬁ(n 6)yﬁ—nz—lq;?z(y)em(h(p)—h(y))dy + _pﬁcaz (3‘7‘42)
Gi(c) Pi n; Pi

This can be clearly re-written as

-8 5 ol e (h(B)— _
w'(e,p,p) = p— — ——pPei 4 pn / 3 (y, c)en M@= gy (c,p,p) e W} (3.7.43)
p

K3 3

Similarly, for (¢,p,p) €e W? U S} we recover the same compact form verifying (3.7.20)

Appendix C: Asymptotic Results

This section supplements the main part and, in particular, provides some elementary
asymptotic results regarding the asymptotic behavior of the H (or correspondingly H )

function.

To begin with we define
a = m-ess sup a = inf{a €]0,1] ‘m(a >a) =0}.

where a = {@; }ier

Lemma 3.7.2 For any Z-measurable functions n : I - [0,00), ( : [ - (0,00) and
&1 - R such that

/Cz’ (di) <oo and O(y):= [1{ni<y}Ciy£i m(di) <oo forall y>0,
I I



88 A equilibrium model for capacity expansion: The competitive market case.

it holds that
InO(y) -

=me-ess sup & =: €.

lim
y—oo  Iny

Proof: We first note that

imsup ————= = limsup —In e m(de) =limsup — In [ e~"Ym(di
1 O(y) 1 11 1 fC Eilny (d) 1 11 1 f flny~(d)
I I

y—>00 lny Y—>00 ny Yy—oo ny

= fm-ess sup & = m-ess sup &,

= lim sup ||e%| LIy ()
Yy—>00

where m is the finite measure on (/,7) that is equivalent to m, with Radon-Nikodym

derivative given by dim/dm = (.
Next, for k € N define I}, := {5 < k} € Z, and note that

InO 1
lim inf — ) > hminf—ln[llke&lnym(di) = liminf Hllkeg'|
y—>00 ny Y—>00 lny I Y—>00

Linu(my = 17688 SUp (11,.6).

Combining this result with the fact that g2, I = I, we obtain

lim inf mO(y)

y=oo  Iny

> me-ess sup €.

This last inequality and (3.7) imply (3.7.2)

Using this lemma and the equivalence

0, ife<d,
< limy‘Q(y) =
Yy—00
oo, ifE>Y,

lim nQ(y) =/

y—oo  Iny

where () is a strictly positive function, we can establish the following asymptotic result.
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Lemma 3.7.3 Suppose that Assumption (3.3.4) holds true and let U ={V;, ie I} e B be
such that

_B_
‘Ilz(ﬁ) = Ki]_jl_ai )

for some constant >0 and some Z-measurable functions K >0 and o such that «; € (0,1)

for allieI. Also, let yo, H,® = {®;, i eI} be as in lemma (3.4.5)(11)

The functions H and H are such that

lim lnHSp) _ aﬁz) lim lnH_(p) _ ozﬁv_ 1

p—oo  Inp 1-« p—~oo  InD 1-«
lim In ng) _ fﬁv_ | lim ln(HEx)) _ 1157_ 1
T-co  INT 1-a+apy Toco  INT 1-a+apy

where & is defined by (3.7).

Proof: In view of the definition of H, we can see that

8 [ A @) m(di) < H'V () < o + 8 A0 () m(di),

where kg = [, Aicim(di) < co. These inequalities, lemma (3.7.2) and the fact that the

function (0,1) 3 a~ «a/(1 - «) is increasing imply the first limit in (3.7.3).

On the other hand, combining the expression

1= v-1 — Oéiﬁ/\iK?i_a. a)— .
In(H'(p)) =In(vB) + p” InH(p) +1In [11{(@/[(1-)(1%)/6@}?17 B0~ (dj),

which follows from (3.4.9), with lemma (3.7.2) and the first limit in (3.7.3), we obtain

the second limit in (3.7.3).
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Using the definitions of x, and H as well as (3.7.3), we can see that

1 D In H(p a
o B WEE) |
pooo  Inp p—ooo  Inp 1-«

inv inv - -1
i 02V (@) o e (@) :(1 aﬂv) |

oo InT 700 In X2 (XV(T)) 1-a
7 (= 1 H nv 1 inv =
and lim M = lim - (X (:1:)) nx" (7) = 267_ .
-0 InT -0 InxIV(T) Inz l-a+apfy

The last two of these limits and the equivalence in (3.7.2) imply that

0, if&<-22,
Tim P*(x2)'(p) = lim p* (H(p) + PH' (D)) =

oo, if &€>-25

Combining this observation with (3.7), we obtain

lim 202)'(®) _ @By
pooo  Inp 1-«

In view of the limits that we have derived thus far and the calculation

lim

T—00 lnf

ln(ﬁ'(f)) —l' ln(H')(XmV(x)) IHXQ(XIHV(:U)), In i (7)
_— = jl—>nolo hl Xlnv(x) ln Xlnv(x) lnx

we can see that the second limit in (3.7.3) also holds true.



Chapter 4

Weak convergence rate for the

Cox-Ingersoll-Ross process

In this chapter, we study the weak convergence approximation rate of the Cox-Ingersoll-
Ross (CIR) process in the regime where the process is positive, using a drift implicit
method. Using a simple argumentation we were are able to obtain a convergence rate
of order one under mild conditions on the payoff function and despite the fact that the

coefficients of the underlying stochastic differential equation are not Lipschitz.

4.1 Introduction

The CIR process has the following form:
dX, = k(pu—X,)dt + VX, dW,, Xo = 2; t e R, (4.1.1)

where W := (W,;t € R,) is a one-dimensional Brownian motion, k > 0 is the speed of
adjustment, p > 0 is the long term mean and 6 > 0 the diffusion parameter, with all

parameters being non-negative. At this point, let us mention that from now on we will use
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parameter « := ku instead of k, u separately. The CIR model is a prominent model for the
short-term prediction of interest rates since it satisfies three main properties[CIR85, KS91]:
(i) It is well known that admits a unique strong solution which is non-negative, (ii)
volatility decreases when itself the interest rate increases, (iii) An equilibrium state exists.

Additionally, Feller’s test of explosions[KS91| ensures that if X, >0

P(X,>0,t>0)=1 (4.1.2)

provided that 2« > 62

At the core of financial applications is the pricing of derivatives which in a one-dimensional
setting is simply translated as the ability to evaluate E[ f(X7)], where f represents the
payoff function and 7' is the maturity time. In most cases, although the aforementioned
solution is integrable, it cannot be evaluated in closed form and therefore a suitable

numerical scheme should be suggested.

Even though the increments of the CIR process are non-central chi-squared random
variables and thus the process can be simulated exactly, the exact simulation is computa-
tionally unfeasible and thus an approximation scheme is preferred. For example, there are
many available methods such as a Monte Carlo method or the so-called Walk on Spheres

algorithm|[Mul56, Mil97] or finally a discretization method, such as the Euler-Maruyama.

In general, the Euler-Maruyama method is a straightforward and simple method in which
time is turned into a discretized grid, say of N points, and all continuous quantities
are substituted by their discrete counterparts. In fact, it is a widely used method for
numerically solving ordinary and partial differential equations while extensions of this

method provide us with the well known Runge-Kutta method.

At this point let us point out that in the case of killed diffusions, it was shown by Gobet
[G&b00] that the weak convergence rate is O (N-1/2) with this rate being exact and

intrinsic to the problems arising from the discretization of the killing stopping time.
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Interestingly, Cetin & Hok 2022, Cetin [cH21, (18] using a recurrent transformation
managed, under mild conditions on the diffusion process and the barrier payoff to bring
back the convergence rate to O (1/N). In the case of the CIR process, recurrence is a
simple parameter adjustment since by the Feller test it is ensured that X; > 0, P-a.s. if
2au > 02 provided that Xy > 0. The Imposition of non-negativity is crucial and should
be respectively obeyed by the discretized stochastic process X. However, if we consider

an explicit Euler-Maruyama scheme
N N A T [~
th+1 = th + (Oé - kth)N + 0 th (th+1 - th)7 (413)

where t,, = n% for n=1,..., N, it becomes evident that positivity is not preserved since
the Gaussian process can take arbitrarily large negative values. Solutions to this problem
have been given in [DD98, BDO07], though the most natural solution is to realize an
implicit scheme. In particular, an appropriate implicit scheme was proposed by Brigo &

Alfonsi [BAO5]

Alternatively, consider the implicit scheme originating from the SDE which drives the

square-root process, [Alf05]
n N a-0%/4 k [+ 0
VX=X, + —/ (t—tn) - =V Xe(t—t,) + (W =W,,), (4.1.4)
2V X, 2 2

Hence, X, is the solution of a second order algebraic equation

(24 k(t - 1,)]X, [Q(Wt W)+ \/Z]f - 02/4(t—tn):0, (4.1.5)

which for 4« > 02 has a unique positive root[Alf05].

The purpose of this article is to prove that the weak convergence rate of the CIR

process scales as O(1/N). Let us mention that the strong convergence rate has been
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an extensively studied subject [DD98, BD07, Alf05, NS14, DNS12] and was found to
optimally be at the order of 1. On the other hand, the weak convergence rate was studied
by [Alf05] where using convergence hypotheses for the numerical scheme it was shown
that the rate scales as O(1/N) while recently in [MN21] using an appropriate stochastic
discretization inspired by the stochastic trapezoidal rule used in [Zhel7] they were able
to obtain a weak convergence rate of 1 when 2« > 62 and the payoff is an appropriate

four times differentiable function.

The present work serves as a proof of concept since only elementary arguments and mild
assumptions on the payoff function were used in order to find the optimal convergence rate.
Hence, hoping to make the evaluation of the optimal convergence rate a straightforward
task, it would be interesting to extend this method to a broader class of stochastic process.

This will be the study of a subsequent paper.

4.2 Weak Convergence of the CIR model

Lemma 4.2.1 Consider the implicit scheme defined by (4.1.4) with 2a > 62, Then,

. X 2(X A X
dX, = "A( ) dW, + "A( ) g( Xy, tit,) + at f) dt, te(tn,tn] (4.2.1)
F(Xy t:t,) F2( Xy, t;t) o2(Xy)
where o(X;) = 0V X,, b(X)) =a-kX,,
k (dov - 62)

Fla,tity) =1+ ~(t—t,) + —2

(z,t;t,) + 2(t tn) + o

(o111 )__k:(t—tn) 1 202+ k(t-t,)) (4o -02)2(t-t,)
) = g T o T ax(2 4 2k(E—t,)) + (4o — 02)(E—t,) 32022

Additionally, m <1 and|g(z,t;t,)| < K (1 +14 t‘t”), with K a positive constant

xr2

depending only on o, 0 and T
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Proof: Let us define H(z,t;t,) = (2+k(t-t,))V/r—(a— %)(t_—jz"). To begin with, note
that we cannot directly apply Ito’s lemma due to the fact that H is not C2. To this end,
let us consider the stopping time 7 := inf{¢ > 0|Xt < 27} and localize the corresponding

stochastic process {H (X, t;tp) }iso-

N AT R tAT, N N
H(XWM,tATM;tn)=H(Xo,0;tn)+f " asH(Xs,s;tn)ds+f YO H (X, 5:t,)dX,
0 0

tATM 1 N R

; f S0 H (X sit) d(X,) (4.2.2)
0

Consequently, due to the fact that the root solution of the implicit scheme is always

positive, A%im Ty — oo P-a.s. implying that Ito’s lemma can be applied safely throughout

the interval [0,T].

Consequently, using (4.1.5) and re-arranging the terms leads to the desired form

5 X 2(X ; b(X.
dXt = O-A( t) th + U ,\( t) g(Xt,t,tn) + (—,\t) dt, (423)
F(Xt,t,tn) FQ(Xt,t,tn) 0'2(Xt)

with
10 H(z,t5t,) 1

. ¢ b(x)
_2 axH(x,t,tn) - ﬁ&xH(ﬂf,t, tn)atH(Xt,t,tn) - 0’2(1‘)7

g(z,t;t,) =

where F(x,t;t,) = /20, H(x,t;t,). Note that from Ito’s lemma we have identified the

quadratic variation as d(X,) = o(X,)/F (X, t; t,)

Simple computations lead to g(z,t;t,) and F(x,t;t,) given at (4.2.1). In addition,
application of the triangle inequality and the fact that 4« > 62 give the desired bounds
on g(x,t;t,) and F(x,t;t,).

Finally, we calculate 0,¢g(z,t;t,)
8((t—tn)k+2)° (-t (°-40)® 1

(da(t —t,) = (t —1,)0% + 4(t — t, ) kx + 8z)* 166223 22
(4.2.4)
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using elementary inequalities we get that 0,¢g(z,t;t,) <0 concluding that in[f) g(z, t;t,) =
x>

_%(t_tn)— 2_(9k2T "

The next lemma allow us to show that certain (inverse) moments of the discretized
process are finite. This is crucial in order to control the estimates that are responsible

for the weak convergence rate of {X;};s0 towards the original process {X;}s0

Lemma 2 Let X be the process defined by (4.1.4) and 200> 02, If 0 <p < 2% 2% then

t] 1
sup E* l ———————ds| < K(t-t,), (4.2.5)
t<T,N tn X F2(X,,s;5t,)

for some constant K > 0. Additionally, the process X does not have explosions.

Finally, Vm >0

sup E*[X7"] < o0 (4.2.6)
t<T\N
Proof: From (4.2.1)
A X 2(X 02 k&
dXt = Mth + M (Xt, t,t ) + 04/ 7 dt, (427)
F(X,tt0) F?(Xy, titn) X, 0
Consider the process Y defined by V; = X A-1, where
1
dA; = ———dt, (4.2.8)
FQ(XN t? tn)

and A1 :={s>0]f; FQ(X—ds =t} denotes the stopping time for which A; becomes t.

< 1 which in turns

Firstly, A; is well defined since by Lemma 4.2.1 we have that F( Xt 0 <

gives that A, <t P-a.s

Consequently, Dambis, Dubins-Schwarz theorem [RY99] yields

dY; =0 f/tdBtnLQQ[(g(Yt,t,t) k)Yt 7 ]dt, t € (tn, tns1] (4.2.9)
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where B is a standard Brownian motion adapted to the filtration (F4-1)ss0

Therefore, if we define Y as the CIR process starting for X, i.e.,

t t T
Y;:Xo+/ 0\/}75st+f(a—|c|}/;)ds, c:—%, (4.2.10)
0 0

we can apply the comparison theorem of stochastic differential equations[cD18, KS91],

since g(z,t;t,) > inf, g(x,t;t,) > —£L | as given by Lemma 4.2.1 to obtain that
P(Y;>Y;, t<T)=1. (4.2.11)

Immediate use of the above identity gives that

t 1 1 A 1
sup E* ———=———ds|<0su Ex[ —ds]. 4.2.12
g l tn X8 F2(X,,8:t,) ] tsIP tn VY ( )
Therefore, using the fact that sup,., E[55] < oo iff p < 23 [DNS12, HK08] combined with

Fubini’s theorem and the fact that A; <t P-a.s. we conclude the first statement.

Next, for the second statement of the lemma. It is already proven that ¥t e [0,7] X, >
0 P-a.s provided that Xy > 0. Thus, we are left to show that explosions do not occur for
the (4.2.1) scheme. From Lemma 4.2.1 we know that g(x.t;t,) can be be bounded by
supyer v 9(2.;t,) < K (2 + &) where K > 0 and depends only on a6 and 7' In addition,
note that the bound on the total drift term is K (1+ 1) +b(x) which we can see that it is

locally Lipschitz.

Consequently, consider a general time inhomogeneous SDE and define its scale function
s(z) =exp(-2 [V d(&)B(€)dE)dy, where d: R — R is the drift coefficient, 3 : R — R is the

diffusion coefficient and ¢ € intD where D is the domain where the diffusion lives. Then, if
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s(x) = oo it implies that z is an inaccessible point[KKS91]. Therefore, if we consider the pro-
cess {Z; }1s0 starting from X we obtain by a comparison theorem argument[KS91, ¢D18§]
that P(fﬁ < Zy,VteR,) =1. Hence, a straightforward computation of the scale function
for the process Z shows that infinity is an inaccessible point and hence explosions do not

occur throughout the whole [0, 7] which is immediately translated for X
For the next assertion, we define the stopping time (y; := inf{t > 0[X, > M}.

Again from (4.2.1) we get that

R tAC X’ 128 2 X N b X
E* [Xinc, ] =E[ | SO R | MM[g(Xt,t;tn) +(—f)]dt]
tn F(Xtat;tn) tn Fz(Xtat; tn) 02 Xt
(4.2.13)
Evidently, this sequence is a localizing sequence which reduces the local martingale term
to a true martingale one. In addition, using the first statement of the lemma we obtain

that

R tATM R
sup E°[Knc, ] <K[1+[ " ]EI[XS]ds], (4.2.14)
tn

t<T,N
where K is a positive constant. Finally, since explosions do not occur lim;_.. (yr =
oo [P-a.s. and thus, application of Fatou’s lemma on the left hand side and monotone

convergence on the right hand side along with Gronwall’s inequality results to

sup E*[X,] < 0. (4.2.15)
t<T,N
Consequently, let us assume that
E(m) := sup E*[X™] < o0, m>2 (4.2.16)

t<T,N
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Once again, using Ito’s Lemma we obtain

A A t A %
Xthrl — XtT:LLJrI + (m+ 1) xXm U(XS)

. — dW
tn F(XS78;tn)

t, X,)? » k5
+(m+1) X;“U(A—) (g(XS,s;tn) -+ GT)ds
T (X, 85t) 0= X,
. X,)?
+-—m(m+1) ;”‘10(A—)ds, t € (tn,tn +1] (4.2.17)
tn FQ(Xsas;tn)

Therefore, taking expectations for the corresponding stopped process and using the
bounds of for g(z,t;t,), F(x,t;t,) we obtain

tACM N

tAC
]E[Xmﬂ ] < Xm+1 " Kf M ds + K E[Xm’l]ds (4.2.18)

tACM tn /\CM s
tn

>

where K >0 a constant depending on the parameters of the problem and 7. Note that
the local martingale term is eradicated by the localization. In view of Fatou’s lemma
and monotone convergence in the left and right hand side respectively, the inequality

™1 <1+ 2™ and using (4.2.18) recursively we are left with

A

E(m+1) < X"+ KE(m) < oo. (4.2.19)

Finally, sup,.r v Ex[f(tm] < oo, VmeN trivially implies that the extension for all m >0

holds. [}

Next, a PDE expression for the expectation of the payoff-function is needed since we
must compare the difference between the actual result and the numerical approximation
which subsequently going to give rise to differential terms. Alfonsi [Alf05] using the

analytical formula of the CIR transition density proved the following proposition

Proposition 4.2.1 Let f € C(@D((0,00),R), m > q such that there is K >0 and m >
q, meN such that
V>0, [fO) < K(1+z™). (4.2.20)
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Then if v:R, x [0,T] > R defined by v(x,t) = E*[ f(Xr_4)] it holds that v satisfies the

following PDE:

2
Dy + b(2) D0 + @amu -0, (4.2.21)

o(T,x) = f(x). Additionally, derivatives of v(x,t) are uniformly bounded and there exists
K >0 such that

V(z,t) eR, x[0,T], |0F0rv(w,t)|< K(1+2™7"), k+2r<gq (4.2.22)

Consequently, we are ready to proceed to the main result of this paper.

Theorem 4.2.2 Let 2apu > 0% and f € CZSZ)((O, 00),R) such that |fP(x)] < K(1 +2™),

where m > 2 Then,

B[/ (X)) - BLF (K] ~ O( ) (1223

Proof: In order to evaluate |E=[ f(X7)]-E=[f(X7)] we partition it into small intervals

as follows:
E[f(Xr)] - E[f(Xr)] = E*[u(T, X7)] - v(0, Xo)] = NZ::_:E“[U(MH, Xiir) = 0(tn, X1,)]

(4.2.24)

In view of Ito’s lemma and (4.2.21) we obtain that

V(tper, Xo) = 0(tn, X3,) = My, — My, + 17 + 17, (4.2.25)
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where

trs . 1
= [ 18tv(Xt,t)(1—A—)dt (4.2.26)

FQ(Xtvtatn)
trit . R U(Xt)z
I"E[ 0, 0( X t) g( Ky tit,) —2t)” 1227
2 . (Xe,t) 9(Xq )FQ(Xt,t;tn) ( )
M, = / 0y0 (X, 1) — 2t o(X,) AW, (4.2.28)
(Xta ) )

with M being a local martingale.

At this point, before we proceed to the main calculations, we define two polynomial

functions which will be used further down

Q(z) =1+

P(x):=1+a™3. (4.2.29)

To begin with, we show that M is a true martingale. Indeed,

o(X.)?

E*[{M),] = E" lfot (f%v(f(t,t))zm

t N A
dt] <0 [ supE[(0,0(X,1))” X, ]dt

0 T

(4.2.30)

Since |0,v(x,t)| < Q(z), Lemma 2 immediately shows that M is a true martingale and

thus Ex[Mth - Mtn] =0.

Next,

N-

Z eI+ I3

Ef(Xr)] - <Y @) 28

Hence, we need to evaluate E*[|I7'|] and E=[|I}].
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At this point we outline the idea for bounding I?, 7 =1,2. Firstly, we shall make
use of Ito’s lemma in order to prove that I ~ O(gz) which consequently gives us

integrals of the form

e ¢ 1
Er[ f 1 f S(Xy, ity ——————ds dt|. (4.2.32)
tn tn FQ(X&S;tn)

Hence, if the S(x,t;t,) does not diverge quicker that 1 /x% when x approaches zero
then Fubini’s theorem and the first part of Lemma 2 ensures the required scaling with
respect to N. In addition, if S(z,t;t,) has a polynomial behavior then the second part
of the aforementioned proof along with Fubini’s theorem shall be used to obtain the same
bound. Additionally, Proposition 4.2.1 tell us that V(z,t) € R, x [0, T] |0,v(z,t)| < Q(x)
and |Oyv(z,t)| < P(x) VteR,, and thus we only need to appropriately bound the terms

which come from the inherited properties of the process X.

Let us start with evaluation of I7 estimate. Direct use of sup,.;|0sv(z,t)| < P(x)

and Ito’s lemma results to

tn+1 “ tn+1 N
tn F2(Xt,t,tn) in Fz(Xt,t‘tn)

tn+1 t N ~
:f U P(X)0,0(X,, 5:1,)ds
tn t

n

t N N R t N N N
+f P(XS)@E\IJ(XS,s;tn)dXS+/ 0,P(X)U(R,, s:t,)dX,

tn tn

02(X,)
2F2(X,, s:ty)

t R R 2(X
+/ P(Xs)amxlf(xs,s;tn)M
tn 2F2%( X, s5tp)

o
X)) ds]dt, (4.2.34)

3 ~ ~
" f 0, P(X)U(X,, 5:1,) ds (4.2.33)
tn

t ~ ~
" f 0, P(X,)0,W(Xs, 5:1,)
tn
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where we used the fact that F%(z,t,;t,) =1 and ¥ is defined as V(z,t;t,) = 1- m

In order to demonstrate how Lemma 2 controls our particular estimates to an ap-
propriately convergent term, let us calculate the fifth term of the right hand side. Since

m <1 we get that |1 - M\ <1 and thus,

tn+1 t
=
tn tn

k[ [Cdsdt~ 0=
< t~ O(—
- \}C; ~/£; S ( j\[? )7

o(X,)’

amP(XS)\IJ(XS,s;tn)A—
2F2(X,, s5tp)

- ¢ o
tn tn

The reasoning for the rest of the terms is similar and is exhibited in Appendix A

where with the help of Lemma 2 we prove that all terms are O (ﬁ) which immediately

gives that E*[|I7]] ~ O(5z).

For the second estimate I} we follow a similar argument where Proposition 4.2.1 provides
the bound |0,v(z,t)| < Q(x). Additionally, as shown in Lemma 4.2.1 the last term of
g(x,t;t,) is O(t - t,) and thus we separate this term from g(z,t;t,) and apply Ito’s

lemma to the rest:
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o (X,)? a(Xy)
FQ(Xt, ,t ) FQ(Xt7t7tn)

tn+1 4a 02 + X, . .
sftn [Q(Xt)(t t )( QQXX )FQ()((Xt - /n Q(X,)0,Z(Xs, s:t,)ds

tn+1 ~ ~ tn+1 N ~
[ ot st i< [ R0l (R,

t N N ~ N ~ N
+f 8$Q(XS)Z(XS,s;tn)dXS+f QX)) Z (X, 5:1,)dX,

tn tn

o2(Xy)
2F2(Xs,s;tn)

o(X,)?2
QFQ(XS,s;tn)

t A A
¥ [ 0, Q(X)Z(X,, 551,) ds
tn

t A A
+ / Q(XS)amZ(XsaSEtn) ds
tn

t . . o2(X,)
+f 0:Q(X;)0:Z (X, 8 ty) ——————ds | dt, (4.2.35)
tn 2F%(X,, s5tp)

. o 2+k(t=tn
where Z(x,t;t,) = g(x,t;t, )W with §(z,t;,) = 5 — 2w(2+k(t7t:))(+(4a)792)(Hn). Ad-
ditionally, note that we also used the triangle inequality along with the fact that

g(z,t;t,) >0 with g(x,t,;t,) =0

The O(§z) convergence rate of the first term of the right hand side is immediate
from Lemma 2. while for the rest of the terms we show in appendix A that all integrated

terms can be controlled by finite expectation quantities and thus also, E*[|I3]] ~ O(5)

Finally, from (4.2.31) we get that

B[/ (X)) - B[ ()]~ O(5:) (42:36)
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4.3 Appendix A

Intended to clarify the obtained bounds in Theorem 4.2.2 we provide all quantities which

appear in the estimation of I7, I7}.

4.3.1 Calculations for I

Let us start with the relevant quantities for I

t\ T, 15ln ) = 8 2 F(:E,t;tn) = 8r 5

Thus, application of Lemma 2 results to
tn+1 t N R 1

Next,

_ 2 _
0.V (x,t;t,) = 0, (1 1 ) _ 128(t - t,,)z (0% - 4a)

CFA(xtitn)) [(da-02)(t—t,) + de(2+ k(1 - )]

Hence, using the triangle inequality and the fact that 4« > 6% we obtain the following

two inequalities

|0,V (z,t;t,)| <

~

—t,
10, W (z,t;t,)] <

s |

(4.3.1)

(4.3.2)

where K depends only on «,0,7T.

The construction of two separate inequalities allow us to efficiently control the term
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0. W, tit) (9(x, ) + A

above construction. As shown below, the first inequality of (4.3.1) will be used to control

)0’2(1‘) At this point, let us justify the purpose of the

the =5 term contained in g(z,¢;t,) while the second one will be used to control the rest
of the terms thus allowing us to get a finite result. For instance, if we were to use only the
first inequality we would get a divergence from the integration of ;—— while if instead we
chose to use only the second one we would get a — L total term in our integrated quantity

which, unless we further further impose that o > 2, has a divergent expected value.

Thus, using the aforementioned inequalities we obtain

(e R(t)) K

7t7

3260222 T
b(x 4o —02)2(t - t, 1 1
et (02((:6)) olatitn) - 320)2:52 ))‘ <KGra)

Getting things together we obtain an integrand of the form K (1 + = )m which

ensures that

tn+1

. (X ) 0'2(XS)
P(X )0, U (X, st )(Q(X&St ) o2(X, )) F2(X,, ;1)

1
ds dt] ~ O(m

The next term of concern is

8z(1+2k(t —1,)) - (t — £,) (4w - 62)

0wV (,t;t,) = 128(t _t")(4a_92)(8x(1 T 2k(t—tn)) + (t—tn)(da - 02))°

Again, using elementary algebra one can obtain that

128(t - t,,) (4 — 62) K
(8z(1+2k(t—t,)) + (t—tn) (A — 62))3 ~ 22

|02V (2, t5t,)] <
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Therefore, immediate application of the same arguments results to

tn+1 t
=
tn tn

Concluding calculations for I we show that the local martingale terms of (4.2.33),

0*(X,)

P(X,)0,, U (X, 51t,) — 2l —
2F%( X, s5tp)

1

. A )
[ PR s T,
tn F(Xsas;tn)

t R . X R
f 0, P(X) (%5 0,)—2 ) i
tn F(Xsas;tn)

are true martingales and thus have vanishing expectations. Indeed, their corresponding

quadratic variations

Ex [tt (P(Xt)am\l’()zs,s;tn)a(—f(s)) ds] < KE* l]t-t Md;l .

i F(X,,sitn) w F2(Xy, 55t,)
[ R R O(XS) 2 ¢ R

E* f 0, P(X)W(X,, 5:t,)—222) | g gK/ E7[8, P(X,)X,]ds < oo,
| tn F( 375;tn) t"

where for the first quadratic variation we used the second (4.3.1).

Note that, for the rest of the terms of (4.2.33) it is immediate, using the aforemen-

tioned techniques, to prove that they converge as O(ﬁ)

4.3.2 Calculations for 17

Next, let us move on to the estimates regarding I
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92 9 (2+(t-tn)k)(4a-02+4kz) 3012 9
o?(x) ?(‘F?(m-tn) + F2(2,500) T T )
oZ(x,t;t,) =0 | gz, t;t, = — —
2 titn) = (g(x )FZ(x,t;tn)) F2(z,t;t,)
|0 (a6 + dko) (Gt | (o) 1)
8F%(x,t;1y)
The above quantity can be bounded as
0,22t 1)) < K (2 +1 4+ 2) (4.3.3)
x,tt,)| < K(— r)————— 3.
A x F2(x,t;t,)
Therefore,
ter Lt . 1
E[/ [ Q) [0.2(X, 5:t,)]ds dt] " O(—
tn tn N2
Next, since |Z(z,t;t,)| = g(z, t; tn)% <K(1+x) and |[g(z,t;t,) + :2(—8)| <K(1+1+
t;t;’) it is evident that their product will be of the form

|Z($,t;tn) (g(x,t;tn)+ b(z) ) o?(x) !

o?(x) ) F2(x,t;t,)

SK(1+l+x+x2),

Concluding that

tn+1 t
=
tn tn

Consequently, the next term is bounded by

o2(X,)
F2(X,, s;tn)

. +b(Xt) 5 Lo L
500+ 25 o] o 1.

azQ(Xs)Z(st S5 Zfn)

2 (x)

0 Z(x,t;t,) (g(:r;,t;tn) + b(z) )‘ < K(l + 1 + i),

Thus, the term

tn+1 t
A
tn tn

b(f(s)) o?(X,)
o2(X,)) F2(X,, s:t,)

Q(X)0.Z(X,, 5:t,) (g(f(s, Sitn) +

ds dt]
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is also O(5)

The remaining terms are in the same spirit and thus, it remains to show that the
corresponding local martingales are true martingales. This is immediate by the previous

discussion

A 2
ke ' % e o(X;)
E lﬂ (Q(Xs)axZ(Xs;Sytn)F(XS,S7tn)) dS < 00

A 2
t A A
E* [ (axQ(Xs)Z(Xsasvtn)&) ds < 00,
tn F(Xs’s;tn)

Concluding that is also I§ ~ O(+)
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