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Abstract

This thesis is concerned with a multi-agent equilibrium expansion model where agents

are faced with an exogenous stochastic constant elasticity demand function. Producers

simultaneously decide their production schedule, via a sequential equilibrium market

clearing condition, as well as their optimal expansion schedule which is formulated as

the solution of a singular stochastic control problem. In particular, agents take into

account both the fact that their expansion has an adverse effect to the price and also

the effect of their actions on the rest of the agents. For every agent, the value function

and the optimal control process is determined and a Nash equilibrium for the market

is established. The problem is divided into two sections, the monopolist case, where a

single agent dominates the market and the competitive case in which all agents form

a price-taking continuum, and the problem takes the form of a mean-field stochastic

differential game. In both cases the value function as well as the control is calculated in

closed form.

In a different topic using an implicit numerical scheme and under mild conditions we

recover, in a compact way, the optimal weak convergence rate for a Cox–Ingersoll–Ross

(CIR) process despite the fact that the coefficients of the underlying Stochastic differential

equation are not Lipschitz.
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Chapter 1

Introduction

1.1 Description of this thesis

Capacity expansion under uncertainty involves planning for future growth and resource

allocation despite unpredictable factors such as fluctuating demand, technology shifts,

and economic changes. The idea, part of a field called industrial organization[Tir88]

started as the necessity to provide a theoretical framework for investment in industries

like heavy process industries, communication networks, electrical power services, water

resource systems, oil and gas sector, pharmaceuticals, high-tech industries and real estate.

Additionally, it has provided valuable assistance to government policy, especially in areas

like infrastructure investment, environmental regulation, and Research and Development

(R&D) subsidies, where timing and uncertainty play critical roles.

Early on, apart from the pioneering work of Manne [Man61] many models assumed

perfect forecasting of the economic conditions[Lus82]. This approach is very valuable

but has a significant disadvantage, in a constantly transforming world with constant

shocks in the supply/demand side[Coc94, FVGQKRR15], unexpected structural shifts

on a sector[She98] or even political uncertainty [JY12] perfect forecasting becomes

meaningless. To this end, much of the work shifted in a stochastic environment where
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the demand has been described as a Brownian motion with a drift[Man61] or as mixed

diffusion/pure jump process model to accommodate for unexpected structural demand

shifts [Tap79, BT79] as a reference, a small number of papers of the same period are

cited for the interested reader[GM77, Nic77, ESO81, MP87a, PKR91]. Another crucial

element to the necessity of a mathematical framework is the fact that most major

investments are almost irreversible and even if the de-investment process is possible

the cost associated with it might be detrimental for future growth. As highlighted by

Pindyck [Pin88] industry investment can be quite specific which means that it is not

transferable to other sectors and thus if the demand for the produced product falls

significantly it renders the investment to become a sunken cost, a reasoning which doesn’t

apply only to the production industry but also to technology equipment and software.

Nevertheless, let us mention that Abel & Eberly[AE96] argue that in some cases partial

reversibility is plausible under the assumption that the cost of investment is higher than

the de-investment profit. A simple approach to investment is to follow a Net present

value(NPV)-strategy, i.e. invest when the value of the capital is at least as large as the

corresponding costs which works in a deterministic environment but fails in an dynamic

uncertain one. Instead, under uncertainty one should aim to minimize the probability

of the occurrence of a bad scenario which is to have low or even negative return to

investment. Therefore, a plausible strategy would be to aim to invest whenever the net

present value is sufficiently positive and do nothing otherwise or in the extreme case

where returns are expected to be low to choose to exit the market. Such type of strategies

are described by Dixit & Pindyck in their book Investment under uncertainty [DP94]

and are known as the real options theory which incorporates the value of waiting for

additional information regarding market conditions or for the current market condition to

reach a certain threshold before committing to investments. The aforementioned option

is called the value of waiting and it has to be compared against the value of expanding

as well as if permitted the value of exiting and the value to reduce investment.
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The approach of the previous discussion rings a bell regarding the appropriate mathemat-

ical formulation of these types of problems (actually most of the problems in economics).

As probably the reader has guessed the stochastic control formulation of the problem

has flourished in this field. In fact, many of the aforementioned works we have cited use

such an approach, for example much of [DP94] is devoted to the dynamic programming

approach. In addition, important work of the same period using a stochastic control

approach is that of Davis, Dempster & Sethi[DDSV87]. In particular, the fact that we

are mainly interested in comparing the value of expanding, value of waiting and the value

of exiting makes the problem suitable to be usually formulated as a singular/optimal stop-

ping/impulse control problem, and much work has been devoted to this approach. In this

direction, interesting work has been conducted by Knudsen, Bernhard & Zervos[KMZ98]

where they study the valuation of an investment producing a single commodity and

provide the investor with the option to abandon the process, Duckworth & Zervos, where

they consider an investment model that involves entry and exit decisions as well as

decisions related to production scheduling [DZ00] and in a following paper where they

assume that firms can enter and exit and determine the optimal production scheduling

as well as the sequence of entry and exit decisions [DZ01]. Moreover, Riedel & Su and

independently Pham studied a singular control model of irreversible capacity with capital

depreciation and showed that the optimal policy is to retain an amount of capital above a

certain base level [RS11, KLSP06]. Also an interesting approach was done by Guo Miao

& Morellec where they consider the case of irreversible investment but with regime shifts

in the demand shock, an approach which could simulate abrupt demand shocks during

business cycles[GMM05]. Additionally, Mehri & Zervos considered a singular control

model of reversible expansion [MZ07]. Moreover, Motairi & Zervos considered a model of

irreversible capacity for which expansion also affects the price [AMZ17b] and De Angelis,

Federico & Ferrari considered a model where the uncertainty is also extended to the

expansion costs[DAFF17]. More recently, Dammann & Ferrari considered the investment

problem for a firm that produces two different products[DF22]
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A significant component that we have neglected is competition. In particular, firms

compete for labor, investment and as participants of the market through prices. Quite

a lot of effort has been put in addressing the effects of competition. For example,

Baldursson addressed the problem of investment in oligopoly [BK96] , Baludrsson &

Karatzas studied the problem for small firms organized by a central planner[Bal98] while

Grenadier focused on the effect of increasing competition on the waiting option to delay

investment [Gre02]. A similar approach was studied by Back & Paulsen[BP09] and

Steg[Ste12]. In a different framework, Novy-Marx shows that in equilibrium it might be

optimal for firms to delay investment even when the NPV is sufficiently positive [NM07].

Another interesting work includes the work by Huisman & Kort where they considered a

leader/follower duopoly problem of capacity to study how investment of the leader deters

the follower from investing[HK15].

In our model we consider an economy which produces a non-durable/non-storable good

and with a sequential market clearing condition. The demand function is a constant

price elasticity function where the base demand follows a geometric Brownian motion.

Producers have to do a two-fold optimization. Firstly, with fixed capability (capacity)

producers decide how much quantity they have to produce. The fact that the produced

good is non-storable/non-durable along with the sequential market clearing condition

makes the agents myopic. In this context capacity in this context could be anything from

hiring more labour to installing new facilities or to an upgrade in technology. Secondly,

producers decide the expansion of their capabilities taking into account the discounted

lifetime reward they will receive. The capacity optimization problem is then formulated

as a stochastic singular control problem in which additional investment has an adverse

effect on the price process of the underlying product. We consider models of three

different economies. Firstly, we consider the case of a monopolistic production economy

for which the market is dominated by a single producer. In this case a closed form

solution for the optimal schedule process as well as the value function is provided. In
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addition, we consider the case where the monopolist faces capital depreciation. Next,

we consider the case where we have a fully competitive market in which all participants

have heterogeneity in their initial capacity and discount rate as well as in production

parameters. In this scenario firms have negligible influence to the price of the underlying

commodity and thus each firm acts as a price taker, and the problem is formulated as

a mean-field stochastic differential game. Every individual producer solves a singular

stochastic control problem taking into account the initial price level, their initial capacity

and the maximum of the price level. For each heterogeneous producer we obtain a closed

form solution for the optimal schedule process as well as the value function. Moreover, a

Nash equilibrium for the competitive market is established.

In the final chapter we tackle the problem of the weak convergence rate for the CIR

process. Under mild conditions and with a mathematically clean and compact formulation

we are able to prove that the weak convergence rate for a CIR proces is of the order

O(1/N), where N is the number of steps. The weak convergence rate was studied by

[Alf05] using additional hypotheses for the numerical scheme it was shown while recently

in [MN21] using an appropriate but rather complicated stochastic discretization scheme

to obtain a weak convergence rate. In the present chapter, inspired by [cH21] we used

only elementary arguments and mild assumptions on the payoff function in order to find

the optimal convergence rate.

1.2 Stochastic Singular control problems

In this section we give a short description to problems of stochastic singular control and

to that of stochastic differential game theory. We do so that the reader will be more

comfortable with the techniques and concepts we use throughout this thesis. Please note

that the exposition of the topic is not intended to be detailed and we will refer the reader

to the relevant literature for further details.
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Apart from industry investment, singular stochastic control problems have been exten-

sively used to describe many real world situations such as the so-called "satellite problems"

[Jac99, FNV85, PV79] in which the problem is to keep an object fixed in some location or

to move along a specific trajectory[BC67, Kar83, KOWZ00, Ban05, CDAGL22], optimal

execution problems in algorithmic trading[GZ15], in queuing theory [Har88], in fiscal

policy[FR20], sustainable exploitation of the ecosystem[LZ20, Alv00, H+22] and many

other fields.

We now turn our attention to the mathematical formulation of the problem. Assume a d-

dimensional Brownian motion W living on a filtered probability space (Ω,F , (Ft)t∈R+ ,P)

satisfying the usual conditions. In addition, let X denote the solution of the following

stochastic differential equation (SDE)

dXx
t = b(Xx

t )dt + σ(Xx
t )dWt; Xx

0− = x ∈ Rd (1.2.1)

where b ∶ Rd → Rd, σ ∶ Rd → Rd×m are deterministic functions such that a unique strong

solution exists.

Let us assume that we want to control the d-dimensional SDE via a control process ξ

and a direction η ∈ Sd−1, where Sd−1 ∶ = {x ∈ Rd ∶ ∥x∥ = 1}. In this direction, each initial

x ∈ Rd gives rise to Xξ,x which in turn obeys the following controlled SDE

dXξ,x
t = b(Xξ,x

t )dt + σ(Xξ,x
t )dWt + ηtdξt (1.2.2)

We define the cumulative control process as

ζt = ∫
[0,t)

ηsdξs (1.2.3)

One may notice that not only continuous behavior but also jumps might be optimal

which implies that ζ might not be absolutely continuous controls of t. Therefore, we
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must enlarge the class of controls to admit ζ which may not be an absolutely continuous.

However, we assume that each component of ζ is a process of bounded variation on

every finite interval [0, t] which means that every component of ζ can be represented

as ζ = ζ+ − ζ−, where ξ± are non-decreasing processes that are right continuous with left

limits.

Hence, this lead us to define the set of admissible controls

A = {ζt ∈ R ∣ ζt is Ft adapted, cádlag with locally bounded variation} (1.2.4)

Moreover, there is a one-to-one correspondence between left-continuous processes of

bounded variation and signed measures. Therefore, by an application of Girsanov’s

theorem we have

ζt = ∫
[0,t)

ηtdξt (1.2.5)

where, η ∈ Sd−1 and ξ is the total variation of ζ.

For any given initial condition x ∈ Rd, we want to solve the problem of maximizing the

following objective function

Jx(ξ) = Ex [∫
∞

0
e−rtf(Xξ,x

t )dt − ∫
[0,∞)

e−rtk(ηt)dξt] (1.2.6)

where f ∶ R→ R is an increasing continuous function, k ∶ Sd−1 → R+ is continuous, r > 0 is

the discount factor.

The objective of the problem is to find η ∈ Sd−1, ξ∗ ∈ A such that

v(x) ∶= sup
η∈Sd−1,ξ∈A

Jx(ξ) (1.2.7)
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The Hamilton-Jacobi-Bellman equation of (1.2.7) is of (quasi)-variational nature and is

given by:

max{L v(x) + f(x) − ρv(x), Hsing(∇v(x))} = 0 (1.2.8)

where

Hsing(p) ∶= sup
η∈Sd−1

(ηp − k(η)) (1.2.9)

and L is the infinitesimal generator of X defined by

L f(x) ∶= lim
h→0

Ex[f(Xt+h)] − f(Xt)
h

; f ∶ Rd → R,

provided that the limit exists. in the case where the SDE is described by (1.2.1).

L ∶=
d

∑
i=1
bi(x)

∂

∂xi

+ 1
2

d

∑
i=1

d

∑
j=1
(σσ⊺)

ij
(x) ∂2

∂xi∂xj

, (1.2.10)

Also in the special case where the cost is independent of direction η we get that

max{L v(x) + f(x) − rv(x), ∣∇v(x)∣ − k} = 0 (1.2.11)

The solution of this problem can be characterized by the presence of the inaction region

W = {x ∈ Rd ∶ ∣∇v(x)∣ < k}. Typically, we can associate the solution of problem (1.2.7)

with a Skorokhod reflection problem or a modified version of it. The classical definition

of a Skorokhod problem is given by

Definition 1.2.1 Let O be an open subset of Rd. Let x ∈ Rd and unit vector n̂ ∈ Sd−1 on

∂O. We say that the process ζ ∈ A, given by

ζt = ∫
[0,t)

ηtdξt, (1.2.12)
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η ∈ Sd−1 and ξ is the total variation of ζ, is a solution to the classical Skorokhod problem

for Xx,ζ starting in x ∈ O reflected along the direction n̂ if

(i) ∣η∣ = 1 and ξ is continuous and non-decreasing

(ii) the controlled process satisfies P(Xt ∈ O, ∀t ∈ R+) = 1

(iii) P-a.s. it holds that for all t ∈ R+

ξt = ∫
[0,t)

1{Xs∈∂O,ηs=n̂(Xs)}dξs (1.2.13)

Let us note that this definition is not enough to cover all cases. In particular, in

order to control a Brownian motion in d ≥ 3, Kruk used a generalized definition of the

Skorokhod problem[Kru00]. Further work on the skorokhod problem has been conducted

in [LS84, DF23]

At this point we describe a very simple model of irreversible investment taken from

Pham[Pha09]. Assume a one-dimensional Brownian motion B living on a filtered proba-

bility space (Ω,F , (Ft)t∈R+ ,P) Let us assume that the production capacity process evolves

as

dXC
t = −δXC

t dt +
√

2σdBt + dCt ; X0− = x (1.2.14)

where δ is the depreciation rate, σ denotes the volatility constant of random fluctuations

of capacity and Ct is the number of units of capacity that the firm purchases at cost

kdCt. The objective of the firm is to maximize the lifetime reward, i.e.

v(x) = sup
C∈A

Ex [∫
∞

0
e−rtf(XC

t )dt − ∫
[0,t)

e−rtkdCt] , (1.2.15)

where f ∶ R+ → R is a C1 concave non-decreasing function.
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In this case the (quasi)variational inequality is given

max{σ2vxx(x) − δvx − rv(x) + f(x), vx(x) − k} = 0. (1.2.16)

In this case one can show that the value function v is a classical C2 solution and the

optimal control process is given by the solution of a Skorokhod problem (1.2.1).

In particular, let x∗ ∶= inf{x ∈ R+ ∶ vx(x) < k} then C∗ is a right-continuous with

left limits (RCLL) and non-decreasing process such that X∗t ∈ [x∗,∞),∀t ≥ 0 and

C∗t = ∫[0,t) 1{X∗t =x∗}dC∗s . Moreover, if x ≥ x∗ then C∗ is continuous otherwise there is a

jump at t = 0− with C∗0 = x∗ − x and X∗0 = x∗.

The previous discussion was intended to be a brief description of the problem of singular

stochastic control. The interested reader may refer to [Kru00, FS06], from which the

discussion was mainly based, to see a rigorous approach and the assumptions that have to

be made in order to have existence/uniqueness of classical or viscosity solutions. Finally,

let us note that there is another class of singular stochastic control problems in which

the Hamiltonian exhibits singularities[FS06, Car16, Pha09]

1.3 Stochastic differential games

In this section we give an informal description of the concept of stochastic differential

game theory directed to the unfamiliar audience. Stochastic differential game theory

is an extension of game theory to extend the concept of a game in a continuous time

framework with uncertainty. Core applications can be found in economics, such as the

study of wealth inequality, principal-agent games and firm competition [CL21, KMV18,

AHL+22, Aiy94, San08, San07] as well as in engineering/computer science where it is

widely used in communications networks and algorithms designed with the help of game

theory to improve computational efficiency[Han12, ZYB21]
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Of course the references are not exhaustive and represent only a minor fraction of the

field.

To begin with, consider that N agents participate in a game G where each agent takes an

action αi taken from an admissible class Ai and for simplicity the total admissible space

is given by A ∶= ∏N
i=1 ×Ai. In addition there is a an m-dimensional Brownian motion

defined in a filtered probability space (Ω,F , (Ft)t∈R+ ,P) and a state process X, being

driven by W , which is given by

dXα
t = b(t,Xα

t , αt)dt + σ(t,Xα
t , αt)dWt, (1.3.1)

where b ∶ [0, T ] × Rd × A ↦ Rd, σ ∶ [0, T ] × Rd × A ↦ Rd×m are deterministic functions,

where αi refers to the control of agent i while α−i = (α1, ..., αi−1, αi+1, ..., αN) refers to the

controls of the rest of agents excluding i.

Additionally, assume that every agent tries to maximize her objective function

J i
x(αi, α−i) = Ex [∫

T

0
fi(s,Xs, α

i
s, α

−i
s )ds + gi(XT )] (1.3.2)

Definition 1.3.1 (Nash Equilibrium) A set of admissible strategies α∗ = (α∗1 , ..., α∗N) ∈ A

is said to be a Nash equilibrium of the system if for all i = 1, ...,N

J i(α∗i , α∗−i) ≥ J i(αi, α
∗
−i),∀αi ∈ Ai (1.3.3)

The notion of Nash equilibrium simply states that assuming that all agents are rational,

in equilibrium none of the agents should regret their decision process given the fact

that all the rest of the agents will use their best strategy. The Nash equilibrium is

the fundamental element of game theory but it’s generic form does not specify the

information structure of the game. For example agents might have to commit to their

initial decision strategy even in the case where they observe a deviation in the strategy of
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another agent. On the other hand agents in highly dynamic environments like algorithmic

trading or in repeated auctions agents need to continuously adjust to the feedback they

receive from their competitors and thus commitment to an initial strategy might not

make sense. Therefore, we need to further specialize the definition of Nash equilibrium

to case where the agents are either restricted (hence the model naturally restrict the

available strategies) to play one type of strategy or the game itself contains different types

of Nash equilibria. To this end we define two different notions of a Nash equilibrium

[SY19, MNMS24, YP06, JFRZ18, MMKN23, BP09].

Definition 1.3.2 (Open Loop Nash Equilibrium) An open loop Nash equilibrium is a set

of strategies a∗ ∈ A such that for every i = 1, ...,N

J i(α∗i , α∗−i) ≥ J i(αi, α
∗
−i),∀αi ∈ Ai (1.3.4)

and all strategies α∗i , αi are of the form

αi = ϕi(t,X0,W[0,T ]), i = 1, ...,N, (1.3.5)

where W[0,T ] denotes the full path of the Brownian motion from t = 0 to t = T and {ϕi}N
i=1

deterministic functions

Hence, as the definition implies, the agent adapts her strategy only on the signal it

receives from the exogenous process W . The fact, that the control takes into account the

full path of the Brownian motion is just for the sake of generality and more approachable

cases are when the control is deterministic αi = ϕi(t,X0) or Markovian αi = ϕi(t,X0,Wt).

Definition 1.3.3 (Closed Loop Nash Equilibrium) A closed loop Nash equilibrium is a

set of strategies a∗ ∈ A such that for every i = 1, ...,N

J i(α∗i , α∗−i) ≥ J i(αi, α
∗
−i),∀αi ∈ Ai (1.3.6)
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and all strategies α∗i , αi are of the form

αi = ϕi(t,X0,X[0,T ]), i = 1, ...,N, (1.3.7)

where X[0,T ] denotes the full path of the state process from t = 0 to t = T and {ϕi}N
i=1

deterministic functions

Similarly to the previous case a more approachable decision process is the Markovian

feedback form where for i = 1, ...,N αi = ϕi(t,X0,Xt).

Note that the existence and uniqueness of a Nash Equilibrium is based on the specific

setting of the game as well as the type of Nash equilibrium we are considering. In any

of the cases though the solution process is to reformulate the problem as a fixed point

problem. In particular, assume for notational convenience that the best response of every

agent to the other agent’s fixed strategies α−i is the function (as opposed to a set valued

function in the case of multiple best responses) B ∶ ∏j≠iAj ↦ Ai given by βi = Bi(αi).

and let us define the mapping B ∶ A ↦ A given by

B(α1, ..., αN) = (β1, ..., βN). (1.3.8)

The Nash equilibrium of the game is the set of strategies α∗ = (α∗1 , ..., α∗N) which satisfy

B(α∗1 , ..., α∗N) = (α∗1 , ..., α∗N). (1.3.9)

The best response map is not always well defined and we must first impose appropriate

assumptions to guarantee that the individual agent’s optimization problems can provide

an optimal strategy or at least a set of optimal strategies. In addition, as one can guess,

it is not always the case that (1.3.9) has a fixed point. However, there are very useful



14 Introduction

theorems which give a positive answer under certain conditions. We mention some of the

most famous fixed point theorems which are frequently used (and we will use them)

Theorem 1.3.4 (Brouwer’s Fixed-Point Theorem) Let D ⊂ Rn be a closed, bounded, and

convex subset of Rn. If f ∶D ↦D is a continuous function, then there exists at least one

point x ∈D such that

f(x) = x.

Proof: for the proof see [Tes20] ∎

Theorem 1.3.5 (Kakutani’s fixed point theorem) Let X be a non-empty, compact, convex

subset of a finite-dimensional Euclidean space Rn. Let F ∶X → 2X be a set-valued function

that satisfies the following conditions:

• For each x ∈X, F (x) is a non-empty, closed, and convex subset of X.

• F is upper semi-continuous, meaning that for any closed subset C ⊂ X, the set

{x ∈X ∣ F (x) ⊂ C} is closed in X.

Then there exists a point x∗ ∈X such that

x∗ ∈ F (x∗).

Proof: For the proof see [Kak41] ∎

Theorem 1.3.6 (Knaster-Tarski’s fixed-point theorem) Let (L,≤) be a complete lattice,

and let f ∶ L → L be an order-preserving (monotone) function. Then the set of fixed

points of f ,

{x ∈ L ∣ f(x) = x},

is non-empty and forms a complete lattice under the ordering ≤.
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In particular, f has both a least fixed point and a greatest fixed point. The least fixed

point can be expressed as

x∗ = inf{x ∈ L ∣ f(x) ≤ x},

and the greatest fixed point as

y∗ = sup{x ∈ L ∣ x ≤ f(x)}.

Proof: For the proof see [DP02] ∎

Finally, we omit to discuss the ideas of mean-field game theory due to the fact that even

a short exposition would need a lot of ideas and machinery to be introduced. However,

we describe succinctly the central idea

Assume that a game takes place on a fixed finite time horizon T > 0 and agent i chooses

a control process αi from the set of controls U([0, T ]). the control process influences

the evolution of the state process according to the following dynamics

dXit =b(Xit, µ
N
t , αi)dt + σ(Xit, µ

N
t , αi)dWt

µN
t =

1
N

N

∑
k=1

δXit
, (1.3.10)

where µN
t is called the empirical measure which represents the collective influence of all

the other agents through their controls.

Each agent maximizes

J i
x(αi, α−i) = Ex [∫

T

0
f(s,Xs, α

i
s, α

−i
s )ds + g(XT )] (1.3.11)

In the limit of N → ∞, assume that µN
t → µt and the the influence of each agent i is

negligible on the measure flow µt. Therefore, the problem reduces to a representative
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agent problem

J i
x(α) =Ex [∫

T

0
f(s,Xs, αs, µs)ds + g(XT , µT )]

dXt =b(Xt, µt, α)dt + σ(Xt, µt, α)dWt (1.3.12)

The concept of equilibrium for the mean field game (1.3.12) is to the the measure flow

µt such that µt = L(Xµ,α∗
t ) = P ○ X−1 for each t ∈ R+ and for some optimal control

α∗ ∈ U([0, T ]). For more information we refer to [Car16]. Finally, a concept that is not

directly relevant to this thesis but is important is that of ϵ-Nash equilibrium which is

defined as follows

Definition 1.3.7 an ε-Nash equilibrium is a strategy profile α∗ ∈ A such that for every

player i = 1, ...,N ,

J i(α∗i , α∗−i) ≥ J i(αi, α
∗
−i) − ε for all αi ∈ Ai,

.

The ε-Nash equilibrium provides a practical relaxation, ensuring that no player can

gain more than ε by deviating. In addition, its mathematical importance in regard to

mean-field games is that under certain conditions one can approximate a finite N number

of agents game with a mean field game and show that the obtained Nash equilibria are

actually ε-Nash equilibria for the finite N agent game where ε depends on N (typically

as O(1/N1/2) or O(1/N)) [BFY+13]

Finally, throughout this thesis we will make use of Fatou’s lemma, the monotone and

dominated convergence theorems and thus we provide the statements



1.3 Stochastic differential games 17

Lemma 1 (Fatou’s Lemma) Let (X,A, µ) be a measure space and let {fn}∞n=1 be a

sequence of nonnegative measurable functions fn ∶X → [0,∞]. Then

∫
X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
X
fn dµ.

Proof: For the proof see [SS09] ∎

Theorem 1.3.8 (Monotone Convergence Theorem) Let (fn)∞n=1 be a sequence of

nonnegative measurable functions on a measure space (X,A, µ) such that

f1(x) ≤ f2(x) ≤ ⋯ for all x ∈X.

Define

f(x) = lim
n→∞

fn(x).

Then f is measurable, and

lim
n→∞
∫

X
fn dµ = ∫

X
f dµ.

Proof: For the proof see [SS09] ∎

Theorem 1.3.9 (Dominated Convergence Theorem) Let (X,A, µ) be a measure

space and let {fn}∞n=1 be a sequence of measurable functions fn ∶ X → R such that

fn(x) → f(x) for µ-almost every x ∈X. Suppose there exists g ∈ L1(µ) with ∣fn(x)∣ ≤ g(x)

for µ-almost every x and all n. Then f ∈ L1(µ) and

lim
n→∞
∫

X
fn dµ = ∫

X
f dµ.

Moreover,

lim
n→∞
∫

X
∣fn − f ∣dµ = 0.

Proof: For the proof see [SS09] ∎
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1.4 Numerical schemes for SDEs

This section serves as a brief elementary introduction on numerical schemes for stochastic

differential equations, intended to introduce concepts to the unfamiliar reader which

will be used in chapter 4. In particular, we discuss the concepts of Euler-Maruyama

discretization and implicit schemes. In addition, we introduce the concepts of strong and

weak modes of convergence.

To begin with, let us consider a one-dimensional diffusion process

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0 = x (1.4.1)

where b ∶ [0, T ] × R → R, σ ∶ [0, T ] × R → R are deterministic functions. We wish to

simulate values of XT without the help of its distribution. This could be due to the fact

that we cannot calculate the distribution or because simulating from the distribution is

computationally unfeasible. In the case of ODEs the simplest discretization method is

that of Euler. The intuitive extention, the Euler-Maruyama scheme is given by:

X̂tn = X̂tn−1 + b(X̂tn−1 , tn)∆t + σ(X̂tn−1 , tn)
√

∆tZn; n = 1, ...,N (1.4.2)

where the discretization times are 0 = t0 < t1 < ... < tN = T , ∆t = tn − tn−1 and Zn are

N(0,1) i.i.d.

Another way to discretize the SDE (1.4.1) is through an implicit scheme

X̂tn = X̂tn−1 + b(X̂tn , tn)∆t + σ(X̂tn , tn)
√

∆tZn; n = 1, ...,N (1.4.3)

Consequently, we define the two criteria of measuring the convergence of a discretized

process X̂ ≡ {X̂0, X̂t1 , ..., X̂T} to the original process X ≡ (Xt; t ∈ [0, T ])
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Definition 1.4.1 (strong convergence) A general time discrete approximation X̂ con-

verges strongly to the solution X at time T if

lim
∆t→0

E [∣XT − X̂T ∣] = 0 (1.4.4)

Definition 1.4.2 (strong order of convergence) We say that a general time discrete

approximation X̂ has a strong order of convergence m if

E [∣XT − X̂T ∣] ≤
K

Nm
, (1.4.5)

for some positive constant K and sufficiently large N .

Definition 1.4.3 (weak convergence) A general time discrete approximation X̂ converges

weakly to the solution X at time T if

lim
∆t→0
∣E[f(XT )] −E[f(X̂T )]∣ = 0, (1.4.6)

where f ∶ R → R are appropriate smooth functions.

Let us mention that the weak convergence criterion compares the distributions and

therefore we could have a small weak convergence error even if X̂ and X live in a different

probability space. This criterion is most relevant in financial application since we usually

want to numerically evaluate the price of a derivative of the underlying process X.

Definition 1.4.4 (weak order of convergence) We say that a general time discrete ap-

proximation X̂ has a weak order of convergence d if

∣E[f(XT )] −E[f(X̂T )]∣ ≤
K

Nd
, (1.4.7)
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where K > 0, N sufficiently large and f are functions whose derivatives of all orders

up to 2d + 2 are polynomially bounded, i.e. there exist M > 0 and q ∈ N such that

∣f (k)(x)∣ ≤M(1 + ∣x∣q), k = 1, ...,2d + 2



Chapter 2

An equilibrium model for capacity

expansion: The case of a monopolist.

In this chapter we consider an irreversible capacity expansion model for a single agent

faced with an exogenous stochastic demand function. The agent decides the production

schedule via the expansion of her capability (capacity) and the optimization problem is

formulated as a singular stochastic control problem in which additional investment has

an adverse effect on the price process of the underlying product. For this model, a closed

form solution for the optimal schedule process as well as the value function is provided.

2.1 Introduction

The research area of capacity (capability) expansion under uncertainty is a decision-

making process that firms regularly face particularly in industries such as manufacturing,

energy, and technology[KK13, Jeo23, RSM98, SvJAdK21, MZ94, SS86]. Firms must

decide when and how much capacity to add in response to future demand, technological

shifts, and market changes, all of which are inherently uncertain. The standard approach

to capacity expansion considers the trade-off between committing to large investments,
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which are thought as irreversible, and the potential for under-utilizing resources if

demand does not meet expectations. In particular, in their seminal work Majd and

Pindyck [MP87b] emphasized the importance of considering the option value of delaying

investment until economic conditions are favorable. In particular a waiting period could

be maximize cumulative profits since it allows firms to gather more information about

future demand, costs, or more broadly speaking about market conditions. Capacity

expansion, optimal trading and other related problems, can be formulated as stochastic

control problems[GZ15, GKTY11, DDSV87, Man61, Kob93]. In particular, in capacity

expansion the optimized quantity is the firm’s profit and the control process is the

capacity. In our model, a monopolist is faced with the problem of irreversibly increasing

capacity when the production cost function is inversely proportional to the level of

capacity and faced with a constant elasticity of substitution stochastic (CES) demand

function. The irreversibility assumption is particularly plausible for industries where they

have high upfront costs and re-selling of capital will result into significant financial losses

In particular, the problem is formulated as a singular stochastic control problem were the

price process is adversely affected by the expansion of capacity. Singular control problems

have been extensively studied due to both their mathematical complexity and interesting

applications. A representative but definitely non-exhaustive list includes[BSW80, JJZ08,

Ma92, HS95a, HS95b, Ben84, Kar83, DM04, Ban05, MZ07, DZ94, HHSZ15, FFS20].

Finally, irreversible capacity expansion models have been studied in many different

settings and some related to our work are [AMZ17a, Øks00, Kob93, DAFF17, BC94,

Alv10, BK96, CH05, LZ11, CF14].

The rest of the chapter is structured as follows. In section 1 we formulate the production

problem of the agent, in section 2 we introduce some necessary assumptions and tools

while in section 3 we solve the HJB equations and prove that indeed the solution that

we found is optimal. Finally, in section 4 we make a small extension to the model to

incorporate depreciation of capital.
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2.2 Problem Formulation

Consider a monopolist with capability (capacity) Ct at time t ∈ R+ that has to decide

the amount of product per unit time Qt given a price level Pt and has a running profit

function Π ∶ R+0 ×R+ → R given by

Π(Qt,Ct) = QtPt(Qt) −
1

λ
1

β−1

β − 1
β1+ 1

β−1

Qt
1+ 1

β−1

Ct

α
β−1

, (2.2.1)

where λ > 0 and β > 1.

The above profit function, models in a simple way the fact that increasing capability

(capacity) decreases the cost of production of one unit of product. Moreover, note that

the multiplicative parameter is arbitrary and is solely presented in such a way to simplify

subsequent calculations, since everything could be absorbed to a new λ parameter.

The equation for the optimum quantity Q∗t at time t can be found by differentiating

Π(Q,C) with respect to Q and is given by:

Pt(Q∗t ) +Q∗tP ′t (Q∗t ) −
1

λ
1

β−1

β − 1
β1+ 1

β−1

Qt

1
β−1

Ct

α
β−1
= 0. (2.2.2)

In addition, we will make use of the market clearing condition

Qt =Dt (2.2.3)

where the demand process is given by

Dt =
Bt

P δ
t

, (2.2.4)

with B ≡ (Bt; t ∈ R+) being a base demand process and δ > 1 is the price elasticity of

demand. In particular we use that by differentiating (2.2.3) w.r.t. Q after substituting
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Dt = Qt we obtain that

1 = −δ Bt

P δ+1
t

(2.2.5)

Combining (2.2.2) and (2.2.5) we obtain that the optimum quantity process for the single

agent is

Q∗t = βλ(1 −
1
δ
)β−1Ct

αP β−1
t (2.2.6)

Using the market clearing condition (2.2.3) and (2.2.4) we obtain that

P β+δ−1
t = 1

βγλγ(1 − 1
δ )γ(β−1)

Bt

Cα
t

, (2.2.7)

Pt =
1

(βλ(1 − 1
δ )γ)β−1

Bγ
t

Cθ
t

, (2.2.8)

For notational we also temporarily absorb the factor 1/(λ(1 − 1
δ )β−1)γ into the base

demand by simply re-defining appropriately the initial level of the B process. Therefore,

Q∗t = β(1 −
1
δ
)β−1Ct

αP β−1
t , (2.2.9)

and

Pt =
Bγ

t

Cθ
t

, (2.2.10)

where γ ∶= 1
β+δ−1 and θ ∶= αγ

In order to model market uncertainty, we fix a probability space (Ω,F ,P) equipped with

a filtration (Ft)t∈R+ satisfying the usual conditions of right continuity and augmentation

by P-negligible sets, and carrying a standard one-dimensional (Ft)-Brownian motion

W = (Wt; t ∈ R+). Consequently, we assume that the base demand B = (Bt; t ∈ R+) is

subject to market fluctuations given by means of the geometric Brownian motion (GBM),
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i.e.

dBt = µbBtdt + σbBtdWt, B0 = b0 (2.2.11)

The capability (capacity) process of the producer is a positive process which is given by

Ct = c + ξt, ; C0− = c > 0 (2.2.12)

where ξ = (ξt; t ∈ R+) ∈ Z ∶= {ξ ∈ R+ ∶ ξ is cáglág Ft − adapted non-decreasing with ξ0 = 0}

which is controlled by the agent.

The state space of the control problem of study is defined as

S = {(p, c) ∈ R+ ×R+>0} (2.2.13)

Definition 1 The set A of all admissible capacity expansion strategies is the family of

all processes ξ ∈ Z such that

E[∫
[0,∞)

ke−rtdξt] < ∞ (2.2.14)

The agent’s objective is to maximize the cumulative profit by deciding when to expand

her capacity, taking into account that a unit of capacity has cost k̃. Therefore, she needs

to maximize the following objective function

Jp,c(C) = Ep,c [∫
∞

0
e−rtCα

t P
β
t dt − k̃∫

∞

0
e−rtdξt] , (2.2.15)

where r is a discounting factor, reflecting the agent’s preference of future payoffs relative

to present payoffs. In particular, as r decreases the agent becomes more patient and thus

the valuation of future payoffs increases

Moreover, for convenience the coefficient βλ(1 − 1
δ )β−1 is absorbed into the cost per unit

constant, i.e. k̃ → k̃/(βλ (1 − 1
δ
)β−1).



26 An equilibrium model for capacity expansion: The case of a monopolist.

Therefore, the agent’s value function

v(p, c) = βλ(1 − 1
δ
)

β−1
max
C∈A
Jp,c(C) (2.2.16)

The agent’s maximization problem is subject to the price dynamics which are determined

by the Ito-Tanaka-Meyer formula[PP05]. Specifically, for any f ∈ C2,1 function we have

df(Bt,Ct) =
∂f

∂b
dBt +

∂f

∂c
dCt +

1
2
∂2f

∂b2 (Bt,Ct)d⟨Bt.Bt⟩

+ ∑
0≤s≤t
[f(Bs,Cs) − f(Bs,Cs−) −

∂f

∂c
(Bs,Cs−)∆Cs] . (2.2.17)

Equivalently this can be written as

df(Bt,Ct) =
∂f

∂b
dBt +

∂f

∂c
dCc

t +
1
2
∂2f

∂b2 (Bt,Ct)d⟨Bt.Bt⟩ + ∑
0≤s≤t
[f(Bs,Cs) − f(Bs,Cs−)] ,

(2.2.18)

where the superscript c indicates that we tak into account only the continuous part of C.

Hence, the dynamics of the corresponding price process P ≡ (Pt; t ∈ R+) are given by

dPt = µPtdt − θ
Pt

Ct

dCc
t − θ ∑

0≤s≤t
Ps−∫

ξs−

0

Cθ
s−

(Cs− + z)θ+1dz + σPtdWt, P0− = p, (2.2.19)

where, µ ∶= γµb + 1
2γ(γ − 1)σ2

b and σ ∶= σbγ

Note that the jump term in (2.2.19) is derived as follows. Let us make, at t− an arbitrary

capacity jump ξt−, then we have that

f(Bs,Cs)−f(Bs,Cs−) = f(Bs,Cs−+ξs−)−f(Bs,Cs−) = ∫
ξs−

0

∂f(Bs,Cs− + u)
∂u

du, (2.2.20)
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where we just used the fact that ∫
b

a
∂f(u)

∂u du = f(b) − f(a) for a suitable integrable f

function

For future reference we define as P 0
t the net price process, i.e. if the agent does not

increase capacity above the initial level c, with dynamics given by

dP 0
t = µP 0

t dt + σP 0
t dWt, P

0
0− = p (2.2.21)

For clarity, note that before any expansion by the producer the price process is given

by Pt = P 0
t = Bγ

t /cθ while after the first expansion we have that Pt = Bγ
t /Cθ

τE , where

τE ∶= {t ∈ R+∣Ct −Ct− > 0} and is chosen by the producer.

Therefore, after the first expansion time and before the second expansion, one can re-write

the price process as

Pt = P 0
t (

c

CτE
)

θ

(2.2.22)

where τE ∶= {t ∈ R+∣Ct −Ct− > 0}

2.3 Model Assumptions

To begin with, our analysis involves the general solution to the second order Euler’s ODE

σ2p2u′′(p) + bpu′(p) − ru(p) = 0 (2.3.1)

which is given by

u(p) = Apn +Bpm

where ,

n,m =
−(b − σ2) ±

√
(b − σ2) + 4σ2r

2σ2 , (2.3.2)
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and are solutions of the algebraic equation

σ2

2 t
2 + (µ − σ

2

2 )t − r = 0. (2.3.3)

In addition, as proven by [KMZ98, AMZ17a] one has that

E [∫
∞

0
e−rt(P 0

t )λdt] < ∞, (2.3.4)

iff λ ∈ (−n,n) and that for λ ∈ (0, n) there exists ε,C > 0 such that:

e−rTE
⎡⎢⎢⎢⎢⎣
( sup

0≤t≤T
P 0

t )
λ⎤⎥⎥⎥⎥⎦
< Cpλe−εT and E

⎡⎢⎢⎢⎢⎣
(sup

T≥0
e−rTP 0

T)
λ⎤⎥⎥⎥⎥⎦
< Cpλ (2.3.5)

Assumption 2.3.1 We will consider control processes from the following class of ad-

missible controls

A = {ξt ∈ Z ∶ E[∫
[0,T ]

ke−rtdξt] < ∞} , (2.3.6)

where Z is the class of all non-decreasing cádglád adapted to the {Ft}t∈R+ filtration

processes.

Assumption 2.3.2 We assume that r, σ > 0 and δ, β > 1 and α ∈ R+. Furthermore we

must have that

α > βθ (2.3.7)

β ∈ (0, n) (2.3.8)
β

1 − α ∈ (−n,n) (2.3.9)

Moreover, define ν ∶= β
βθ+1−α and notice that the last condition implies that ν < n or

equivalently that n(βθ − α) + n − β > 0.
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Lemma 2.3.3 For any initial condition (p, c) ∈ S if βθ > α then the problem is trivially

solved by the no investment strategy ξt = 0. In addition, if the rest of relations in

assumption 2.3.2 do not hold, then for any initial condition (p, c) ∈ S the value function

diverges.

Proof: Firstly, let us assume that β > n and consider the strategy where the single

agent chooses to not expand, i.e. ξt = 0, ∀t ∈ R+ Then,

v(p, c) ≥ cαE [∫
∞

0
e−rt(P 0

t )βdt] . (2.3.10)

However, since β > n as shown in appendix B the expectation on the right hand side

diverges.

Next, in order to reject the case where a < βθ but β < n we consider an arbitrary

admissible strategy ξt. Let us assume that we choose expand capacity by Z at t = 0 and

then keep capacity constant, i.e., ξt = Z By (2.2.22) we have that the impact on the price

is given by P0 = P 0
0

cθ

(c+Z)θ
. Therefore,

Jp,c(ξ) =
cθβ

(c +Z)βθ−α
Ep,c [∫

∞

0
e−rt(P 0

t )βdt] − kEp,c [∫
∞

0
e−rtdξt]

(2.3.11)

Evidently, in this case it is always optimal for the agent to not invest and thus, the

problem is trivially solved by the strategy ξt = 0, ∀t ∈ R+.

Finally, let ∣ β
1−α ∣ > n and consider an investment strategy[MZ07] such that

Ct > (P
0
t )

n−β
α−θβ (2.3.12)
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Then, by virtue of (2.2.22) and (2.3.4) observe that

Ep,c [∫
∞

0
e−rtCα

t P
β
t dt] ≥ Ep,c [∫

∞

0
e−rt(P 0

t )ndt] = ∞ (2.3.13)

Hence,

Ep,c [∫
∞

0
e−rtCα

t P
β
t dt] = Ep,c [∫

∞

0
e−rt(P 0

t )ndt] = ∞. (2.3.14)

Thus, the problem reduces to proving that E [∫
∞

0 e−rtdξt] < ∞.

In particular,

Ep,c [∫
∞

0
e−rtdξt] =E(p,c) [∫

T

0
e−rtdξt] = lim

T→∞
E(p,c) [r∫

(0,T )
e−rtξtdt + e−rT ξT ]

= lim
T→∞
∫

T

0
e−rtE [ξt]dt + lim

T→∞
e−rTE [ξT ]

= lim
T→∞
∫

T

0
e−rtE [(P 0

t )
n−α

β ]dt + lim
T→∞

E [e−rT (P 0
T )

n−α
β ] . (2.3.15)

since β
1−α > n this implies that n−β

α < n and thus the use of (2.3.4) and (2.3.5) imply that

Ep,c [∫
∞

0 e−rtdξt] < ∞ which concludes the argument.

∎

2.4 Solution to the Control Problem

In this section, using heuristics, we derive the HJB equations. Consequently, we directly

solve the HJB equation and provide a candidate for the value function the optimal control.

Finally, we verify that our solution is indeed optimal.

2.4.1 Heuristic Derivation of the HJB equation

To begin with, a heuristic analysis shows that there are two actions that the producer

can make. The first one is to choose to wait, i.e. not expand capacity, while the second
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one is to expand. Let us assume that she chooses to take the first action which is to wait

for a short period of time ∆t and then continue optimally. Bellman’s principle imply

that this action is not necessarily optimal and therefore,

v(p, c) ≥ Ep,c [∫
∆t

0
e−rtcαP β

t dt + e−r∆tv(P∆t, c)] (2.4.1)

Applying Ito’s formula [PP05] to the second term of the right hand side(RHS), dividing

by ∆t and letting ∆t→ 0, we obtain that we must have

σ2

2 p
2vpp(p, c) + µpvp(p, c) − rv(p, c) + pβca ≤ 0, (p, c) ∈ S (2.4.2)

On the other hand, one could choose to increase capacity by ε > 0 and then continue

optimally. In this case with the use of (2.2.22) we have that

v(p, c) ≥ v (p cθ

(c + ε)θ , c + ε) − k (2.4.3)

Expanding the integral on the RHS up two powers of ε we get that

vc(p, c) − θ
p

c
vp(p, c) − k ≤ 0, (p, c) ∈ S (2.4.4)

Due to the Markovian character of the problem it is guaranteed that one of these options

should be optimal and one of (2.4.3),(2.4.4) should hold with equality at any point in

the state space S. It follows that the problem’s value function v should identify with an

appropriate solution w to the following HJB equation

max{σ
2

2 p
2vpp(p, c) + µpvp(p, c) − rv(p, c) + capβ,

vc(p, c) − θ
p

c
vp(p, c) − k} = 0, ∀(p, c) ∈ S. (2.4.5)
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Intermedio: Change of variables

Even though the previous formulation was more immediate from an economic point of

view, and this is why we choose to start the presentation of the problem in that way, it

is mathematically convenient to reformulate the problem using the base demand instead

of the actual price process. We define as D ∶= (Bγ
t ; t ∈ R+). Also for future reference we

define D⋅ ∶= sups≤⋅Ds. As a small remark note that D = cP 0

In particular, the objective function can be re-written as

Jc,c(C) = Eb,c [∫
∞

0
e−rtCα−βθ

t Dβ
t dt − k∫

∞

0
e−rtdξt] , (2.4.6)

while the HJB equation will become

max{σ
2

2 d
2vdd(d, c) + µdvd(d, c) − rv(d, c) + ca−βθdβ, vc(d, c) − k} = 0, ∀(d, c) ∈ S.

(2.4.7)

Note that we retain the same symbol for the state space S since it is the same space

but in a different coordinate system. In addition, the same constraints hold since the

problem has the same economic and mathematical properties albeit written in a different

coordinate system.

We will look for a classical solution w ∶ S → R which identifies with the value function v

of the control problem. The construction of the solution relies on the introduction of a

strictly increasing function G ∶ R+ → R+ which partitions the state space S into a waiting

region W and an investment region E , defined by

W ∶ { (d, c) ∈ S ∣ d ≤ G(c) }

E ∶ { (d, c) ∈ S ∣ d > G(c) }
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To begin with, in the waiting region W the solution w must satisfy the following equation.

σ2

2 d
2wdd(d, c) + µdwd(d, c) − rw(d, c) + ca−βθdβ = 0, (2.4.8)

which implies that we have a solution of the form

w(d, c) = A(c)dn + Γdβcα−βθ, (2.4.9)

where n is given by (2.3.2), while the negative solution is eliminated due to the fact that

w should be finite when d approaches zero (transversality condition). In addition, the

constant Γ is given by

Γ = 2
σ2(β + ∣m∣)(n − β) (2.4.10)

Moreover, in the investment region E , w should satisfy that:

wc(d, c) − k = 0, (2.4.11)

Consequently, as we are looking for a classical solution we must impose that w(d, c) is

C2,1 along the free boundary p = G(c)

Therefore, on d = G(c)

wc (G(c), c) − k = 0, (2.4.12)

wcd (G(c), c) = 0, (2.4.13)

Hence,
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Ȧ(c)Gn(c) = k + Γ(θβ − α)Gβ(c)ca−βθ−1, (2.4.14)

Ȧ(c)Gn(c) = Γβ
n
(θβ − α)Gβ(c)ca−βθ−1 (2.4.15)

Thus,

G(c) = k̃c
1−a+βθ

β (2.4.16)

where,

k̃ = ( kn

Γ(α − βθ)(n − β))
1
β

(2.4.17)

Note that we can re-write the free boundary G(c) in terms of the price p by using the

transformation d = pcθ. We have to find the points in the state space such that p = G̃(c).

Hence, this leads to

G̃(c) = k̃c
1−a

β (2.4.18)

W = {p ≤ G̃(c)} E = {p > G̃(c)}

c

p

Figure 2.1 Illustration of free boundary G̃(c). The lines indicate the fact that increasing
capacity decreases the price. Note that on the plane (d, c) the free boundary has similar
form but the capacity expansion lines should be vertical as they don’t have any effect on
the demand process
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Note that in order for G(c) to be well-defined we must have that

α > βθ, n > β, 0 < α < 1 (2.4.19)

At this point note that from (2.3.3) we have the identity r = σ2

2 ∣m∣n and thus re-arranging

terms we get
n

Γ(n − β) =
σ2

2 (nβ + n∣m∣) > r (2.4.20)

and consequently that

k̃β = kσ2n
β + ∣m∣
α − βθ > rk (2.4.21)

Finally, A(c) will be given by

Ȧ(c) = −kac
n α−βθ−1

β (2.4.22)

where,

ka =
Γβ
n
k̃β−n(α − θβ) (2.4.23)

Therefore, we need to evaluation the following for A

A(c) = ka∫
∞

c

1

uθn+
(1−a)n

β

du, (2.4.24)

which results in

A(c) = β

θnβ + n(1 − α) − βkac
1+n

β
(α−1)−θn. (2.4.25)

In addition to the previous condition, note that in order to obtain a well-defined result,

i.e., that w(d, c) is finite for finite c we also have to require the condition θβ +1−α− β
n > 0

otherwise A(c) blows up. Moreover, note that this requirement makes A(c) > 0 which

implies that w is a non-negative function.
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At this point we introduce the optimal capacity expansion function z(d) ∶ E → R+0 which

is given by

d = G(z(d)). (2.4.26)

In the following lemma we prove that the function w is a classical solution of the HJB

equation (2.4.5) and we provide some useful bounds.

Lemma 2.4.1 The function w ∶ S → R defined by

w(d, c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A(c)dn + Γdβcα−βθ if (d, c) ∈ W

w (d, z(d)) − k(z(d) − c) if (d, c) ∈ E
(2.4.27)

where

A(c) = Γβ2

n

α − θβ
n(θβ − α) + n − β k̃

β c

Gn(c) (2.4.28)

and z(p) ∶ E → R+ is determined by

z(d) = 1
k̃ν
dν (2.4.29)

is a C2,1 solution to the HJB equation (2.4.5)

Finally, for all (d, c) ∈ S

0 ≤ w(d, c) ≤ Λ(c + dν) (2.4.30)

where Λ > 0 depends only on the parameters of the problems

Proof: To begin with, z(d) ∶ E → R+ is determined by

d = G(z(d)). (2.4.31)
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Solving for z(p) we obtain that

z(d) = 1
k̃ν
dν (2.4.32)

where ν = β
βθ+1−α .

Next, we are going to prove that w(d, c) is C2,1 throughout the whole S. To this end we

must consider the continuity of w along the free-boundary G.

consequently, we calculate the derivative with respect to c

wc(d, c) =
∂

∂c
[w(d, z(d)) − k(z(d) − c)]

= wc(d, z(d)) (2.4.33)

Similarly, differentiating with respect to the d

wd(d, c) =
∂

∂d
[w(d, z(d)) − k(z(d) − c)] (2.4.34)

+wd(d, z(d)) + [wc(d, z(d)) − k] zd(d)

= wd(d, z(d)) (2.4.35)

wdd(d, c) =
∂

∂d
[wd(d, z(d))]

= wdd(d, z(d)) (2.4.36)

Next, we shall prove that w(d, c) satisfies the HJB equation(3.4.18). To this direction,

we must prove that the solution is sub-optimal in the complementary region.
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To this direction, let (d, c) ∈ W.

wc(d, c) − k =

= Ȧ(c)dn + (α − θβ)Γdβcα−1−βθ − k

= (α − βθ)k̃βΓ
⎡⎢⎢⎢⎢⎣
( d

G(c))
β

− β
n
( d

G(c))
n⎤⎥⎥⎥⎥⎦
− k ≤ 0 (2.4.37)

Where the last inequality follows from the fact that d ≤ G(c) and assumptions (2.3.2).

Note that strict equality holds for d = G(c)

Similarly, we must prove that that solution of the investment region is sup-optimal in

the waiting region. Let (d, c) ∈ E

σ2

2 d
2wdd(p, c) + µdwd(d, c) − rw(d, c) + cα−βθdβ

= σ
2

2 d
2wdd(d, z(d)) + µdwd(d, z(d)) − rw(d, z(d)) + rk(z(d) − c) + cα−βθdβ

= −zα−βθ(d)zβ(d) + cα−βθdβ + rk(z(d) − c)

= −z(d)α−βθGβ(z(d)) + cα−βθdβ + rk(z(d) − c)

= −∫
z(d)

c
[ ∂
∂u
(uα−βθ)dβ − rk]du ≤ 0 (2.4.38)

where we have used the fact that for (d, c) ∈ E we have that d > G(c) the relevant

assumptions (2.3.2) and (2.4.20) to observe that the integrand is a non-negative quantity

Finally, we prove the relevant bounds for w(d, c). Firstly, the lower bound is immediate

since from (2.4.27) w(d, c) > 0. Regarding the upper bound let us take any point (d, c)

in the waiting region W.

w(d, c) = Γk̃β

⎡⎢⎢⎢⎢⎣
( d

G(c))
β

+ β
n

α − βθ
n − β − n(α − βθ) (

d

G(c))
n⎤⎥⎥⎥⎥⎦
c

≤ Λc (2.4.39)
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where we have used that d ≤ G(c).

Next, for a point in the investment region E result follows again from (2.4.27)

w(d, c) ≤ Λ̃z(d, c) = Λ̃dν (2.4.40)

∎

2.4.2 Verification theorem

We know turn to the main theorem of this chapter. We prove that the function w

identifies with the value function v and we give a closed form description of the optimal

control.

Theorem 2.4.2 Let us assume that all assumptions (2.3.2) hold. The value function of

the control problem identifies with the classical solution (2.4.27) multiplied by βλ (1 − 1
δ
)β−1.

In addition, the optimal capacity expansion is given by

ξ∗t = (
Dt

k̃
)

ν

1{D̄t≥G(c)}, t > 0 (2.4.41)

Moreover, the process ξ∗ ∈ A

Finally, the equilibrium price process P ∗ can be found in terms of the base demand process

B and is given by

P ∗t =
Dt

cθ ∨ 1
k̃νθ sups≤tD

νθ

s

, D0 = d (2.4.42)

Proof: Take any point (d, c) ∈ S with the assumption that the control C is admissible

in the sense given by (2.3.1)

We begin by using the Ito’s formula [PP05] on e−rTw(DT ,CT ).
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e−rTw(DT ,CT )

= w(d, c) + ∫
T

0
e−rt [σ

2

2 D
2
twdd(Dt,Ct) + µDtwd(Dt,Ct) − rw(Dt,Ct)]dt

+ ∫
[0,T )

e−rtwc(Dt,Ct)dξc
t

+ ∑
0≤s≤T

e−rt [w(Dt,Ct) −w(Dt,Ct−)] +MT , (2.4.43)

where the process M ≡ (Mt; t ∈ R+) is defined as

Mt ∶= σ∫
t

0
e−rsDswp(Ds,Cs)dWs (2.4.44)

Therefore,

∫
T

0
e−rtCα−βθ

t Dβ
t dt − ∫

[0,T )
ke−rtdξt + e−rTw(DT ,CT )

= w(d, c) + ∫
T

0
e−rt [σ

2

2 D
2
twdd(Dt,Ct) + µDtwd(Dt,Ct) − rw(Dt,Ct) +Cα−βθ

t Dβ
t ]dt

+ ∫
[0,T )

e−rt [wc(Dt,Ct) − k]dξc
t+

+ ∑
0≤t≤T

e−rt [w(Dt,Ct) −w(Dt,Ct−) − k∆Ct] +MT (2.4.45)

Next, consider the term w(Dt,Ct) −w(Dt,Ct−) and an arbitrary positive change ∆Ct =

z > 0.

w(Dt,Ct) −w(Dt,Ct−) = ∫
z

0

d

ds
w (Dt

Cθ
t

(Ct + s)θ
,Ct + s)ds

=∫
z

0
[wc (Dt

Ct

(Ct + s)θ
,Ct + s)]ds (2.4.46)

Thus, using the fact that w(d, c) satisfies the corresponding (HJB) inequalities we obtain
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∫
T

0
e−rtCα−βθ

t Dβ
t dt − ∫

[0,T )
ke−rtdξt + e−rTw(DT ,CT ) ≤ w(d, c) +MT (2.4.47)

By Lemma 2.4.1 we have that

MT ≥ −w(d, c) − ∫
[0,T )

ke−rtdξt (2.4.48)

Therefore, we obtain that E[infT≥0MT ] > −∞ and thus the process M is a supermartingale

with E[MT ] ≤ 0, ∀T > 0 which along with Fatou’s lemma (1) gives that

J(d,c)(ξ) ≤ lim inf
T→∞

E[∫
T

0
e−rtCα−βθ

t Dβ
t dt−∫

[0,T )
ke−rtdξt] ≤ w(d, c)+lim inf

T→∞
e−rTE[−w(DT ,CT )]

(2.4.49)

Thus, we conclude that

v(d, c) ≤ w(d, c) (2.4.50)

Consequently, we want to prove the reverse inequality and thus prove optimality. Apart

from an possible initial jump at t = 0−, the optimal control should be such that the process

(D,C⋆) is reflecting in the free-boundary G in the positive direction. In particular,

Dt ≤ G(C⋆t ) and ξ⋆t − ξ⋆0 = ∫
(0,t)

1{Ds=G(C⋆s )} dξ
⋆
s for all t > 0.

while at t = 0− the jump can occur iff

ξ∗0 = (G−1(d) − c)+ > 0 (2.4.51)

Thus,

C∗t = c1{D̄t<G(c)} + z(Dt)1{D̄t≥G(c)} (2.4.52)

The fact that z(d) = G−1(d) − c directly implies that ξ∗0 = z(d).
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In particular from (2.4.29), (2.3.5) assumption (2.3.2) one can immediately see that

e−ritE[C∗it] < ∞ and E [∫
T

0
e−ritC∗itdt] < ∞. (2.4.53)

Using integration by parts we obtain that

e−riTCiT = c + ri∫
T

0
e−ritCitdt + ∫

[0,T )
e−ritdCit (2.4.54)

Using the monotone convergence (1.3.8) on the first part of the left hand side, the

estimates (2.3.5) and dominated convergence theorem (1.3.9) allow us to gives that

E [∫
∞

0
e−ritdC∗it] < ∞, (2.4.55)

concluding that the admisibility of the control process {C∗t }t∈R+ .

Hence, from (2.4.1) and in view of the HJB equations (2.4.5) we can see that

∫
T

0
e−rt(C∗t )

α−βθ
Dβ

t dt − ∫
[0,T ]

ke−rtdξ∗t + e−rTw(DT ,C
∗
T ) = w(d, c) +M∗

T (2.4.56)

Consequently,

∫
T

0
e−rt (C∗t )

α−βθ
Dβ

t dt − ∫
[0,T ]

ke−rtdξt + e−rTw(DT ,C
∗
T ) = w(d, c) +M∗

T− (2.4.57)

Hence,

sup
T ∈R+

M∗
T ≤ ∫

∞

0
e−rt(C∗t )

α−βθ
Dβ

t dt + sup
T ∈R+

e−rTw(P ∗T ,C∗T )

(2.4.58)
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Using the Hölder inequality on ∫
T

0 e−rt(C∗t )α−βθDβ
t dt, the estimates (2.3.4) and (2.4.30)

and the fact that the C∗ is admissible assumption (2.3.1) we obtain that

E [∫
∞

0
e−rtC∗t

α−βθD∗t
βdt] ≤ (E [∫

∞

0
e−rtC∗t dt])

α−βθ

(E [∫
∞

0
e−rtDt

β
1−α+βθ dt])

1−α+βθ

< ∞

(2.4.59)

In addition using (2.4.30),

w(DT ,C
∗
T ) ≤ Λ [C∗T +Dν

T ]

=KD̄ν
T , (2.4.60)

where K a positive constant.

Therefore, by (2.3.4) we obtain that

E [sup
T ∈R+

e−rTw(DT ,C
∗
T )] < ∞ (2.4.61)

The above discussion concluded that M∗ is a submartingale and therefore,

E [∫
T

0
e−rt(C∗t )α−βθDβ

t dt − ∫
[0,T ]

ke−rtdξt] + e−rTE [w(DT ,C
∗
T )] ≥ w(d, c) (2.4.62)

where monotone convergence on the first part of the left hand side and the estimates

(2.4.30) and the use of dominated convergence on the second part of the right hand side

give the required inequality,

v(d, c) ≥ w(d, c) (2.4.63)

Hence, we have proved that v(d, c) = w(d, c), ∀(d, c) ∈ S.

Finally, the formula for the equilibrium price is immediate.
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∎

2.5 An extension : Optimal control in the presence

of depreciation

In this section, we shortly present a simple extention of the control problem to the case

where the producer also has to incorporate continuous wear and tear (depreciation) into

her optimal strategy. This part is not incorporated into the main sections of this chapter

because in 3 where the case of the continuum of agents is presented, a deprecation rate

cannot be integrated.

Specifically, in this case

dCt = −λCtdt + dξt (2.5.1)

Therefore, we have the following objective function:

Jp,c(C) = Ep,c [∫
∞

0
e−rtCα−θβ

t Dβ
t + kλCtdt − k∫

∞

0
e−rtdCt] , (2.5.2)

Hence, the HJB equation in this case become:

max{σ
2

2 d
2vdd(d, c) + µdvd(d, c) − rv(d, c) + cα−βθdβ + kλc

vc(d, c) − k} = 0, ∀(p, c) ∈ S (2.5.3)

in the waiting region we have a solution of the form w(p, c) = A(c)pn + Γpβcα−βθ − λk
r c

using the same procedure of smooth pasting between investment E and W, the free
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boundary can be found to be

G(c) = (
k(1 + λ

r )
Γ(a − βθ)n)

1/β

c
α−θβ−1

β (2.5.4)

We conjecture that the agent still wants to increase capacity at the free boundary and

therefore z(d) ∶ E → R+ is given by:

z(d) = 1
k̃ν
dν (2.5.5)

Therefore, integrating (2.5.1) the investment area we get that the candidate optimal

control is

C∗t = ce−λt ∨ sup
s≤t

1
k̃ν
Dν

se
λ(s−t) (2.5.6)

In addition, we can define a candidate solution for the optimization problem

Lemma 2.5.1 The function w ∶ S → R defined by

w(d, c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A(c)dn + Γdβcα−βθ − λk
r c if (d, c) ∈ W

w (d, z(d, c)) − k[z(d) − c] if (d, c) ∈ E
(2.5.7)

where

A(c) = Γβ2

n

α − θβ
n(θβ − α) + n − β k̃

β c

Gn(c) (2.5.8)

and z(d) ∶ E → R+ is determined by

z(d) = 1
k̃ν
dν (2.5.9)

is a C2,1 solution to the HJB equation (2.5.3)

Proof: The proof is similar to the non-depreciation case ∎
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Finally, a similar verification theorem can be proven for the depreciation case

Theorem 2.5.2 The value function of the problem is given by (2.5.7) while the optimal

control is

C∗t = ce−λt ∨ sup
s≤t

1
k̃ν
Dν

se
λ(s−t) (2.5.10)

where C∗t ∈ A

Proof: The proof follows the same lines as in the non-depreciation case ∎



Chapter 3

A equilibrium model for capacity

expansion: The competitive market

case.

In this chapter we consider an irreversible capacity expansion model for a continuum of

heterogenous agents faced with an exogenous stochastic demand function. The agents

decide the production schedule via the expansion of their capability (capacity) and the

optimization problem is formulated as a singular stochastic control problem in which

additional investment has collectively an adverse effect on the price process of the

underlying product as opposed to the monopolist case. We obtain a closed form solution

for the optimal schedule process as well as the value function of each individual agent

and a closed-loop mean field Nash equilibrium is established.

3.1 Introduction

In the previous chapter, we examined the rationale behind a monopolist’s decision to

invest in capacity expansion in an economy where demand for the underlying commodity



48 A equilibrium model for capacity expansion: The competitive market case.

follows a CES (Constant Elasticity of Substitution) function. A natural extension of this

analysis is to explore how individual firms make investment decisions in a competitive

market. In such a multi-agent environment, each producer strategically chooses to

increase investment capacity while anticipating the decisions of their competitors. Several

models of irreversible investment under varying market structures, ranging from monopoly

to perfect competition, have been studied in the literature, including works by [BP09,

BK96, AMZ17a, Bal98, Gre02, Lea93, NM07, Ste12].

Recently, significant attention has been directed toward the macroeconomic implications

of heterogeneity [KS98, Aiy94, LJM14, AHL+22, NM18] and its impact on individual

decision-making processes in multi-agent systems. Furthermore, due to the complexity of

multi-agent stochastic differential games, the focus has increasingly shifted toward Mean

Field Games (MFG), where the influence of any single agent on the system is negligible,

but the collective behavior of all agents plays a crucial role in shaping decision-making

[LL07]. This approach allows for greater tractability while maintaining the indirect

interaction between agents through a collective variable.

In this work, we consider a continuum of heterogeneous producers facing an exogenous

stochastic CES demand function. Producers must decide how much investment to make

in order to improve their production efficiency and they have to commit to their decision,

meaning that investment is irreversible. This assumption is particularly plausible for

industries where they have high upfront costs and re-selling of capital will result into

significant financial losses. The decision problem for each producer is framed as a singular

stochastic control problem, with heterogeneity reflected in their initial production capacity,

individual discount rates, unit costs of capacity expansion, and production costs. Each

producer acts as a price-taker, meaning they have no direct influence on prices. However,

they account for the collective impact of all producers on the price dynamics, resulting

in a model with dimensionality d = 3.
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Interestingly, we derive closed-form solutions for both the value function and the optimal

control strategy, and we demonstrate the existence of a mean field Nash equilibrium

on the supply side of the economy. Additionally, due to the competitive nature of the

model, we obtain the equivalence of open- and closed-loop Nash equilibria, related to the

literature on stochastic differential games[MMKN23, Rei82, Ols02, BP09, Car16].

3.2 Framework

Let us assume that we have a continuum of price taking heterogeneous agents indexed from

a probability space (I,m,I) and assume that m is an atomless measure, i.e., m({i}) = 0

for all i ∈ I. The initial configuration of the system is C0−, a positive random variable,

and W be a Brownian motion independent of C0−. We denote the filtration generated

by W as FW ≡ (FW
t )t∈R+ and we work on a filtered probability space (Ω,P,F∞, (Ft)t∈R+)

where the filtration is, the smallest generated by C0− and FW and F∞ ≡ ⋁t∈R+ Ft. The

Brownian motion W will be the driver of the stochastic demand. Again, we assume that

the demand process D ≡ (Dt; t ∈ R+) is given by a constant elasticity of substitution

(CES)

Dt =
Bt

P δ
t

, D0− = d (3.2.1)

where the base demand process B ≡ (Bt; t ∈ R+) is given by a GBM

dBt = µbBtdt + σbBtdWt, B0 = b (3.2.2)

3.3 Individual Problem Setup

We take the point of view of a single producer of product quantity per unit time Qt,

faced with external prices P ≡ (Pt; t ∈ R+) with available capability (capacity) Cit > 0,
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the production function is

Π(Qit,Cit) = QitPt −
1

λ
1

β−1
i

β − 1
β1+ 1

β−1

Q
1+ 1

β−1
it

C
α

β−1
it

(3.3.1)

The producer is a price taker and thus, the equation for the optimum quantity Q∗it at

time t is given by:

Pt −
(Q∗it)

1
β−1

C
αi

β−1
it

= 0, (3.3.2)

where we immediately obtain that

Q∗it = λiβC
αi
it P

β−1
t . (3.3.3)

Since agent i ∈ I is part of a price-taking continuum, the total production is given by

Q∗t = βP β−1
t ∫i∈I λiC

αi
it m(di)

In this case the market clearing condition is Dt = Q∗t and using (3.2.1) we obtain that

Pt =
Bγ

t

Hγ
t

, (3.3.4)

where γ = 1/(δ + β − 1) and Ht ≡ Em [βλCα
t ∣FW ] = β ∫i∈I λiC

αi
it m(di) represents the mean

field term incorporating the action from all the agents.

The producer needs to decide long term investment strategy thus in terms of capacity

maximization is not myopic and thus needs to decide how the investment dCit in expanding

capacity. Assuming that the cost of unit expansion is λiki, the objective function of every

individual is

J i(Cit∣P ) = Ep,C0− [∫
∞

0
e−ritCαi

it P
β
t dt − ∫

[0,∞)
kie
−ritdCit] (3.3.5)
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where C0− > 0.

Remark 3.3.1 Note that the objective function is given by

J̃ i(Ci∣P ) = λiJ i(Ci∣P )

The problem takes the form of a competitive game where competition occurs through

the price process, however the effect of every individual is negligible, and therefore each

producer has to find an expansion schedule Ci ≡ (Cit; t ∈ R+) taking as given the price

process P , i.e. the producer needs to find

C∗it = arg sup
(Cit; t∈R+)

Ep,C0− [∫
∞

0
e−ritCαi

it P
β
t dt − ∫

[0,∞)
kie
−ritdCit] , (3.3.6)

with P an exogenous process.

Before we start the analysis of the control problem let us introduce a set of necessary

assumptions.

Definition 3.3.2 For every producer i ∈ I the class of admissible controls is given by

Ai = {ξit ∈ Z ∶ E[∫
[0,∞)

kie
−ritdξit] < ∞} , (3.3.7)

ri, ki are positive constants and Z is the class of all non-decreasing cádglad Ft-adapted

processes.

Assumption 3.3.3 We assume that µ ∶= γµb + 1
2γ(γ −1)σ2

b and σ ∶= σbγ and are positive

quantities. Furthermore, for each agent i we must have that

0 ≤ αi < 1 (3.3.8)

β ∈ (0, ni) (3.3.9)
β

1 − αi

∈ (−ni, ni) (3.3.10)
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where ni ∶=
−(µ− 1

2 σ2)+
√

(µ− 1
2 σ2)

2
+2σ2ri

σ2 .

Assumption 3.3.4 We assume that the indexing i → ci is a measurable function and

that

∫
i∈I
λic

αi
i m(di) < ∞ (3.3.11)

for every ci ≥ 0

3.4 Individual producer’s HJB equations

In this section we will derive the HJB equations for a rational producer i ∈ I, who

participates in a multi-agent mean field game. To be more specific, producer i chooses

her optimal strategy taking into account the strategies of all other producers. Thus, it

is expected that producers’s i value function is a function of C0− as well as the initial

price P0−. In addition, we expect that the control process Ci will take into account the

processes of all the other agents {C−i}i∈I and previous chapter’s intuition tell us that all

producers should increase capacity when a new maximum price Pt is reached at time t.

The maximum price is defined as

P t = sup
0≤s≤t

Pt; (3.4.1)

Therefore, we restrict ourselves to strategies which are of the form Cit = Ci(Pt), where the

function Ci is assumed to be non-decreasing function that can be written as a difference

of two convex functions and Ci(0) = ci. To this end, we consider the following assumption

Assumption 3.4.1 Assume that the strategies of all the other producers belong to V.

We write H ∶ R+ → R+ as defined by

H(p) ∶= (β ∫
i∈I
λiC

αi
i (p)m(di))

γ

. (3.4.2)
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The function H ∶ R+ → R+ is known to producer i. Also, for future reference we define

h ∶= lnH

This assumption is necessary since we are looking for this kind of class of equilibria,

i.e. equilibria where every producer utilizes a strategy where capacity will change when

the the function reaches a new maximum. Notice that, even though we will not prove

uniqueness of such equilibria, the works of [BEK04, BR01] hint towards this direction.

In particular, in equilibrium we will search for controls of the

Cit = ci ∨Ψi(Pt) (3.4.3)

where Ψi satisfy the following definition.

Assumption 3.4.2 We define B to be the set of all families of functions {Ψi, i ∈ I}

such that each Ψi is the difference of two convex functions satisfying

Ψ′i(p) > 0 for all p > 0, lim
p↓0

Ψi(p) = 0 and lim
p↑∞

Ψi(p) = ∞ (3.4.4)

and such that ∫i∈I λiΨαi
i (p)m(di) < ∞ for all p > 0 holds true.

In addition, (3.4.3) and (3.4.2) we can see that

lim
p→0

H(p) =M, lim
p→∞

H(p) = ∞ (3.4.5)

and

H ′(p) < 0 for all p > sup{p ≥ 0 ∣H(p) =M} , (3.4.6)

where M a positive constant

Assumption 3.4.3 We say that H ∈ V if H is a difference of two convex functions and

satisfies (3.4.5), (3.4.6)
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Finally, before we resume our main discussion, we prove the following lemma regarding

the differentiability of H

Lemma 3.4.4 We assume that the controls, of all producers, {Ci}i∈I are of the form

are (3.4.3) and they also satisfy assumption 3.4.2 functions of p then H is absolutely

continuous and left differentiable.

Proof: Notice that H(p2)
1
γ can be written as

1
β
H1/γ(p2) =

1
β
H1/γ(p1) + ∫

i∈I
(∫

p2

p1

λi(ci ∨Ψi)αi

p−(y)dy)m(di) (3.4.7)

where the subscript fp−(p) denotes the left derivative of f(p) with respect to p. By the

non-negativity of the derivative of (ci ∧Ψi(p))αi we can use Tonelli’s theorem resulting

into
1
β
(H1/γ(p2) −H1/γ(p1)) = ∫

p2

p1

(∫
i∈I
λi(ci ∨Ψi)αi

p−(y)m(di))dy (3.4.8)

Therefore, we conclude that H is absolutely continuous and a difference of two convex

functions which implies that it is also differentiable a.s. and left/right-differentiable

everywhere while the derivative is given by

Hp−(p) = γβH
γ−1

γ (p)∫
i∈I
λi(cαi

i ∨Ψαi
i )p(p)m(di) (3.4.9)

∎

In view of the assumption (3.4.1) and (3.3.4), the price process P that every producer

expects can be re-written as

Pt = Bγ
t e
−h(Pt),

Note that the corresponding price process SDE is given by
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dPt = µPtdt + σPtdWt − Ptdh(Pt) + ∑
0≤s≤t
(Ps − Ps−) (3.4.10)

or equivalently,

dPt = µPtdt + σPtdWt − Pthp−(Pt)dPt + ∑
0≤s≤t
(Ps − Ps−) (3.4.11)

We denote the price process that every producer i ∈ I expects as P however it is implicit

from (3.4.11) that P is influenced by H, in the sense that every producer monitors the

price process given that the strategies of the rest of the producers are fixed.

Consequently, to obtain the HJB equations the following process

ζ i
t ≡ e−ritvi(Cit, Pt, Pt) + ∫

t

u
e−ris (Cαi

is P
β
s ds − kidCis) ; t ≥ 0,

is a supermartingale for all Cit, and a martingale for the optimal C∗it. Hence, by Ito’s

lemma we obtain that

eritdζ i
t = (Liv

i(Pt, Pt,Cit) + P β
t C

αi
it )dt

+ (vi
p(Pt, Pt,Cit) − Ptv

i
p(Pt, Pt,Cit)hp−(Pt))dPt

c

+ (vi
c(Pt, Pt,Cit) − ki)dCc

it + e−ritσPtv
i
p(Pt, Pt,Cit)dWt

+ ∑
0≤s≤t
[vi(Pt, Pt,Cit) − vi(Pt−, P t−,Cit−)]

where Li ∶= σ2

2 p
2∂pp + µp∂p − ri is the generator of the discounted diffusion process

Therefore, we get that in the continuous region the producer needs to solve the following

HJB equation:

max {Liv
i(p, p, c) + pβcαi , vi

c(p, p, c) − ki} = 0; ∀(p, p, c) ∈ S, (3.4.12)
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Incorporating the impact of all other producers in the additional boundary condition

vi
p(p, p, c) − php−(p)vi

p(p, p, c) = 0; ∀(p, p, c) ∈ S (3.4.13)

Let us mention that by the form of H, we can only have a single discontinuous jump

between t = 0− and t = 0. Therefore, for every u > 0 P,P do not have jumps.

3.4.1 Equivalence of P vs X formalism

Intermedio: Change of variables

As in chapter 2 the problem becomes mathematically easier if we choose to work with

the base demand instead of the price. Hence, we reformulate the problem using the base

demand instead of the actual price process. We define as X ∶= (Bγ
t ; t ∈ R+). Also for

future reference we define X ⋅ ∶= x ∨ sups≤⋅Xs. Here, we allow for any initial condition

x ≥ x simply to accommodate the technical fact that we will solve the problem using

dynamic programming.

Before we proceed we give the following definition

Definition 2 We define H̃ ∶ R+ → R+ as

H̃(x) ∶= (β ∫
i∈I
λi (ci ∨Φi(x))αi m(di))

γ

. (3.4.14)

where Φi ∈ B

Note that the above definition does not necessarily gets as an input the optimal functions

but rather a broad class of functions that belong to B.

Consequently, the price process can be re-written as

Pt =
Xt

H(Pt)
, (3.4.15)
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or equivalently using the above definition

Pt =
Xt

H̃(Xt)
⇐⇒ Pt =Xte

−h̃(Xt) (3.4.16)

In particular, the objective function can be re-written as

Jx,c,x(C) = Ex,c,x [∫
∞

0
e−ritCαi

t e
−βh̃(Xt)Xβ

t dt − ki∫
∞

0
e−ritdξt] , (3.4.17)

while the HJB equation will become

max{σ
2

2 x
2vxx(x, c, x) + µxvx(x, c, x) − rv(x, c, x) + cαie−βh̃(x)xβ ,

vc(x, c, x) − ki} = 0, ∀(x, c, x) ∈ S. (3.4.18)

while the boundary condition becomes

vi
x(x,x, c) = 0; ∀(x,x, c) ∈ S (3.4.19)

The following result identifies pairs of expansion strategies of the form (3.1) and expansion

strategies of the form (3.8) that are associated with the same price process P .

Lemma 3.4.5 In the presence of assumption 3.3.4, the following statements hold true.

(I) Consider a collection {Φi, i ∈ I} ∈ B and suppose that the function φ ∈ V given by

(3.4.14) is such that

(x/H̃(x))′ > 0 for all x > 0 and lim
x→∞

x/H̃(x) = ∞. (3.4.20)

If we define

χ1(x) = (x/H̃(x)), x > 0, and Ψi(p) = Φi(χinv
1 (p)), p > 0, (3.4.21)
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where χinv
1 is the inverse function of χ1, then {Ψi, i ∈ I} ∈ B if and only if the integrability

condition assumption 3.3.4 holds true. In this case, if H ∈ V is defined by for Ψi, i ∈ I,

given by (3.4.20), then

H(p) = (H̃ ○ χinv
1 )(p), for all p > 0. (3.4.22)

(II) Consider a family {Ψi, i ∈ I} ∈ B and let H ∈ V. The function

χ2(p) = pH(p), p > 0, (3.4.23)

is such that

(χ2)′(p) = pH(p) > 1, and lim
p→∞

χ2(p) = lim
p→∞

pH(p) = ∞. (3.4.24)

If we define

Φi(x) = Ψi (
x

H ○ χinv
2 (x)

) , x > 0, (3.4.25)

where χinv
2 is the inverse of the function χ2, then {Φi, i ∈ I} ∈ B. Furthermore, if H̃ ∈ V

for Φi, i ∈ I, given by (3.4.25), then H̃ satisfies (3.4.20) and

H̃(x) = (H ○ χinv
2 )(x), for all x > 0. (3.4.26)

(III) In the context of either (I) or (II),

H̃(X) =H(P ). (3.4.27)

Proof: The claim that the family {Ψi, i ∈ I} defined by (3.11) belongs to B if and only

if assumption 3.3.4 holds true follows from the assumption that {Φi, i ∈ I} ∈ B. On the
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other hand, the function H ∈ V for Ψi, i ∈ I, given by (3.4.21), satisfies (3.4.22) because

H(p) = (β ∫
I
λi(cαi

i ∨Φαi
i (χinv

1 (p)))m(di))
γ

= H̃(χinv
1 (p)).

The claims in (3.4.23) follow immediately from the fact that H satisfies (3.4.5) and

(3.4.6). In turn, (3.4.23) and the observation that

χ2(p)/(H ○ χinv
2 )(χ2(p)) = p ⇐⇒ x/(H ○ χinv

2 )(x) = χinv
2 (x), (3.4.28)

imply that the collection {Φi, i ∈ I} defined by (3.4.25) belongs to B thanks to the

assumption that {Ψi, i ∈ I} ∈ B and the observation that

∫
I
λiΦαi(x)m(di) = ∫

I
λiΨαi(χinv

2 (x))m(di) ≤ ∫
I
λiΨαi(x)m(di) < ∞ for all x > 0.

(3.4.29)

The function H̃ for Φi, i ∈ I, given by (3.4.25) satisfies (3.4.25) because

H̃(x) =(β ∫
I
λi(cαi

i ∨Ψαi
i (

x

H ○ χinv
2 (x)

)m(di))
γ

=

H ( x

H ○ χinv
2 (x)

) =H (χinv
2 (x)) , (3.4.30)

Finally, (3.16) is an immediate consequence of the equivalences

P =X/H(P ) ⇐⇒ P = χinv
2 (X),

and

P = X

H̃(X)
⇐⇒ X = χinv

1 (P ),

which follow from (3.4) and (3.9). ∎
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The usefulness of the above lemma is that it shows the equivalence between the two

formalisms and will be used in a subsequent section.

3.5 Individual producer’s control solution

The aim of this section is to determine the optimal strategy for a producer i ∈ I. We

proceed directly solving the HJB equation using the assumption of continuity and

differentiation. A free boundary participates the space into two waiting regions W i
1,W i

2

and an expansion region E i as well as the optimal control. The proof of a verification

theorem concludes that the conjectured optimal control is indeed optimal. Finally, in

Appendix A conjecturing a candidate optimal control and using probabilistic arguments,

we directly evaluate the value function. This method is particularly useful, as it is

an immediate solution to the control problem. In addition, it provides an interesting

alternative to the evaluation of the value function assuming that an educated guess for

the optimal control has been made.

3.5.1 Solving the Hamilton Jacobi Bellman Equation

We will solve the individual agent’s optimization problem by deriving the solution to the

quasi-variational inequality stated in Problem 3.7.1 below. This involves a C1 function

Gi ∶ R2
+ ×R2

+ → R+ such that

∂Gi(c, x)
∂c

> 0, lim
c↓0

Gi(c, x) = 0 and lim
c↑∞

Gi(c, x) = ∞. (3.5.1)

It also involves the unique solution Φi ∶ R+ → R+ to the equation

Gi(Φi(x), x) = x, x > 0 (3.5.2)
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where the function Φi is required to be C1 and such that

Φ′i(x) > 0 for all x > 0, lim
x↓0

Φi(x) = 0 and lim
x↑∞

Φi(x) = ∞. (3.5.3)

We define the following free-boundary surfaces

S1
i = {(c, x, x) ∈ R+ ∣ 0 < x ≤ x and x = Gi(c, x)} (3.5.4)

and S2
i = {(c, x, x) ∈ R+ ∣ 0 < x ≤ x and c = Φi(x)} (3.5.5)

To begin with we define the following surfaces which partition the control’s problem state

space

S = {(c, x, x) ∈ R3
+ ∣ 0 < x ≤ x} (3.5.6)

into the sets

Ei = {(c, x, x) ∈ R+ ∣ 0 < x ≤ x and c ≤ Γi(x,x)}, (3.5.7)

and W1
i = {(c, x, x) ∈ R+ ∣ 0 < x ≤ x and c ≥ Φi(x)}, (3.5.8)

W2
i = {(c, x, x) ∈ R+ ∣ 0 < x ≤ x and Γi(x,x) < c < Φi(x)} (3.5.9)

where

Γi(⋅, x) ∶= Ginv
i (⋅, x)

The idea of conjecturing such a partition of the state-space comes from the fact that

contrary to the monopolist case where only two state variables were needed now we need

also to include a third one and therefore without an extra partition of the state space the

HJB equations will not be consistent. Alternatively, one can directly evaluate the value
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function using directly a conjecture for the optimal control as it was done in Appendix A

. In this case one can see that the waiting region is naturally divided into two parts.

We postulate that the individual producer’s optimal capacity schedule can be informally

described as follows. At time 0, if the initial state (c, x, x) is inside the region Ei, then it

is optimal for the individual producer to exert action so that they reposition the state

process on the boundary surface S2
i . In view of standard singular stochastic control

theory, such an action is associated with the requirement that the value function vi

should satisfy (3.7.26) as well as the inequality in (3.7.27). Beyond such a possible jump

at time 0, it is optimal for the individual producer to exert minimal action so as to

prevent the state process entering the interior of Ei. On the other hand, it is optimal for

the individual producer to exert no control effort while the state process takes values in

the interior of the set W1
i ∪W2

i , which is associated with the inequalities (3.7.24) and

(3.7.25) as well as the equalities in (3.7.27). The significance of the surface S2
i arises from

the fact that, eventually, it is optimal for the individual producer to exert minimal effort

so as to prevent the state process falling below the curve defined by x = x and c = Φi(x),

which is the intersection of S2
i with the boundary of the state space defined by x = x. In

particular, it is optimal that minimal control effort should be exercised so that the state

process takes values on the surface S2
i at all times after this surface has been reached.

Therefore, in terms of the HJB equations the problem can be succinctly states as:

Problem 3.5.1 Determine a function Gi ∶ R2
+ → R+ and a function vi ∶ S → R, satisfying

the following conditions.

(I) the functions Gi(⋅, x) is C1, while Gi(c, ⋅) and Φ(⋅) are differences of two convex

functions and satisfy. Furthermore they satisfy (3.5.1)–(3.5.3).

(II) The function vi(⋅, ⋅, x) is C1,2 in the interior of S.
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(III) The function vi(c, x, ⋅) is a difference of two convex functions in the interior of S.

Furthermore,

wx(c, x, x) ∶= lim
x↑x

wx−(c, x, x) = 0 for all 0 < Φi(x) ≤ c (3.5.10)

(IV) The function vi is such that

vi
c(c, x, x) < ki for all 0 < x < x and Φi(x) ≤ c, (3.5.11)

vi
c(c, x, x) < ki for all 0 < x ≤ x and Γi(x,x) < c < Φi(x), (3.5.12)

vi
c(c, x, x) = ki for all 0 < x ≤ x and c ≤ Γi(x,x), (3.5.13)

and

Liv
i(c, x, x) + xβcαie−βh(x) ∶= 1

2σ
2x2vi

xx(c, x, x) + µxvi
x(c, x, x) − riv

i(c, x, x) + xβcαie−βh(x)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 0 for all 0 < x < x and 0 < Φi(x) ≤ c,

= 0 for all 0 < x ≤ x and Γi(x,x) < c < Φi(x),

< 0 for all 0 < x < x and c ≤ Γi(x,x).

(3.5.14)

Every solution to the ODE, Liv(c, x, x) + xβcαie−βh̃(x) = 0, associated with (3.7.27) is

given by

vi(c, x, x) =∆1(c, x)xmi +∆2(c, x)xni + 1
ρi

xβcαie−βh̃(x)
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for some functions ∆1 and ∆2, where mi < 0 < ni are the solutions to the quadratic

equation

1
2σ

2k2 + (µ − 1
2σ

2)k − ri = 0,

given by

ni,mi =
−(µ − 1

2σ
2) ±
√
(µ − 1

2σ
2)2 + 2σ2ri

σ2 .

For future reference, we note that

ri > µ ⇔ ni > β, ni +mi − 1 = −2µ
σ2 , nimi = −

2ri

σ2 (3.5.15)

and ρi =
1
2σ

2(ni − β)(−mi + β). (3.5.16)

We consider a solution to Problem 3.7.1 of the form

vi(c, x, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai(c, x)xni + 1
ρi
xβcαie−βh̃(x), if (c, x, x) ∈ W1

i ,

Bi(c, x)xni + 1
ρi
xβcαie−βh̃(x), if (c, x, x) ∈ W2

i ∪ S1
i ,

vi(Γi(x,x), x, x) − ki(Γi(x,x) − c), if (c, x, x) ∈ Ei ∖ S1
i ,

(3.5.17)

To determine the function Bi and the free-boundary function Gi, we appeal to the so

called “smooth-pasting condition” of singular stochastic control1. In particular, we require

that vi(⋅, x, x) should be C2 along the free-boundary point Gi(c, x), which suggests the
1Note that this is more of a conjecture. We are searching for a solution with this kind of regularity

and consequently we have use a verification theorem to prove that indeed this is a solution to the
problem. It is not ex-ante certain that such a solution should exist
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equations

lim
x↑Gi(c,x)

vi
c(c, x, x) = (Bi)c(c, x)Gni

i (c, x) +
αi

ρi

Gβ
i (c, x)cαi−1e−βh̃(x) = ki (3.5.18)

and lim
x↑Gi(c,x)

vi
cx(c, x, x) = ni(Bi)c(c, x) +

αiβ

ρi

Gβ−ni

i (c, x)cαi−1e−βh̃(x) = 0. (3.5.19)

The solution to this system of equations is given by

Gi(c, x) = (
ρiniki

αi(ni − β)
)

1
β

c
1−αi

β eh̃(x) and (Bi)c(c, x) = −
ki

ni − β
G−ni

i (c, x). (3.5.20)

For Gi given by the first of these expressions, we can see that the unique solution to

equation (3.5.2) is given by

Γi(x,x) = (
αi(ni − β)
ρiniki

)
1

1−αi

(xe−h̃(x))
β

1−αi , (3.5.21)

Φi(x) = (
αi(ni − β)
ρiniki

)
1

1−αi

(xe−h̃(x))
β

1−αi , (3.5.22)

Wi

Ei

Gi(c)c

p

Figure 3.1 Illustration of agent’s i free boundary Gi(c). The vertical lines indicate the
fact that in the mean field setting the decision of an agent to increase capacity does not
affect the price level of the product



66 A equilibrium model for capacity expansion: The competitive market case.

On the other hand, the solution to the ODE in (3.5.20) is given by

Bi(c, x) = f̃i(x) +
kiβ2

(ni − β)(ni(1 − αi) − β)
c

Gn
i (c, x)

, (3.5.23)

where f̃i is a function to be determined.

In order to determine f̃i we will use the fact that in the region {x = x} ∩W2
i we should

have that

vi
x(Φi(x), x, x) = 0 (3.5.24)

Therefore, substituting (3.5.23) into (3.5.24) we obtain that

f̃(x) = − kiβ2

(ni − β)((1 − αi)ni − β)
∫
∞

x
y−nih̃x(x)(y)Φi(y)dy+

β

ρ ∫
∞

x
yβ−nih̃x(y)Φαi

i (y)e−βh̃(y) dy.

(3.5.25)

or equivalently we obtain that

f̃(x) = − kiβ2

(ni − β)((1 − αi)ni − β)
∫
∞

x
y−nih̃x(x)(y)Φi(y)dy+

nikiβ

αi(ni − β) ∫
∞

x
yβ−nih̃x(y)Φi(y)dy.

(3.5.26)

we should have limx→∞ f̃i(p) = 0

Consequently, to determine Ai(c, x) we use again the fact that for W1
i and x → x we

have that

lim
x↑x

vi
x(c, x, x) = 0 (3.5.27)

Hence, we obtain that

Ai(c, x) = −∫
Gi(c,x)

x

β

ρi

yβ−nih̃x(y)cαie−βh̃(x)dy + fi(c) (3.5.28)
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Next, the requirement that vi should be continuous is reflected by the identity

lim
c↑Φi(x)

vi(c, x, x) = lim
c↓Φi(x)

vi(c, x, x),

which gives rise to the expression

Ai(Φi(x), x) = Bi(Φi(x), x) ⇒

fi(Φi(x)) = Bi(Φi(x), x) (3.5.29)

Therefore, we conclude that

fi(c) = −
(1 − αi)nikiβ

(ni − β)((1 − αi)ni − β)
∫
∞

x
y−ni(Φi)x(y)dy +

β

ρ ∫
∞

x
yβ−nih̃x(y)Φαi

i (y)e−βh̃(y) dy

+ kiβ2

(ni − β)(ni(1 − αi) − β)
c

Gn
i (c, x)

(3.5.30)

Lemma 3.5.2 The function wi ∶ S → R defined by

wi(c, x, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai(c, x)xni + 1
ρi
xβcαie−βh̃(x) if (c, x, x) ∈ W1

i

Bi(c, x)xni + 1
ρi
xβcαie−βh̃(x) if (c, x, x) ∈ W2

i ∪ S1

wi (Γi(x,x), x, x) − ki[Γi(x,x) − c] if (c, x, x) ∈ Ei

(3.5.31)

Ai(c, x) = −
kiβ2

(ni − β)((1 − αi)ni − β)
∫
∞

x
y−nih̃x(x)(y)Φi(y)dy −

β

ρ ∫
∞

x
yβ−nih̃x(y)Φαi

i (y)e−βh̃(y) dy

+ kiβ2

(ni − β)(ni(1 − αi) − β)
c

Gn
i (c, x)

+ ∫
Gi(c,x)

x

β

ρi

yβ−nih̃x(y)cαie−βh̃(x)dy,

(3.5.32)
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Bi(c, x) =
kiβ2

(ni − β)(ni(1 − αi) − β)
c

Gn
i (c, x)

− kiβ2

(ni − β)((1 − αi)ni − β)
∫
∞

x
y−nih̃x(x)(y)Φi(y)dy

− β
ρ ∫

∞

x
yβ−nih̃x(y)Φαi

i (y)e−βh̃(y) dy (3.5.33)

and Γi(x,x) ∶ Ei → R+, Γi(x,x) ∶ Ei → R+ are determined by

Γi(x,x) = (
(ni − β)αi

ρikini

)
1

1−αi (xe−h̃(x))
β

1−αi (3.5.34)

Φi(x) = (
(ni − β)αi

ρikini

)
1

1−αi (xe−h̃(x))
β

1−αi (3.5.35)

is a C2,1 solution to agent’s i ∈ I HJB equation (3.4.12). Finally, for all (c, x, x) ∈ S

0 ≤ wi(c, x, x) ≤ Λi (c + cαiΦ1−αi
i (x) +Φi(x)) (3.5.36)

where Λi > 0 depends only on the parameters of the problems

Remark 3.5.3 Note that by performing the coordinate transformation x → peh(p) and

x→ peh(p) and after a series of integrations by parts recover (3.7.20) (Appendix B) with

Ψi(p) = (
(ni − β)αi

ρikini

)
1

1−αi

p
β

1−αi (3.5.37)

This also shows consistency between the two formulations of the problem.

3.5.2 Verification theorem

Now we turn our attention on proving that the previous discussion leads to an optimal

solution for a producer i ∈ I.
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Theorem 3.5.4 Let us assume that assumptions Assumptions 3.3.2, Assumptions 3.3.3

hold for the producer i ∈ I. rise to the mean field process H satisfying (3.4.4). The

value function of the control problem identifies with the solution (3.5.2). In addition, the

optimal capacity expansion strategy is given by

C∗it = ci ∨Φi(X t) (3.5.38)

Moreover, C∗i ∈ A, ∀i ∈ I

Proof:

e−riTwi(CiT ,XT ,XT )

= wi(c, x, x) + ∫
T

0
e−ritLie

−ritwi(Cit,Xt,Xt)dt + ∫
[0,T )

e−ritwi
c(Cit,Xt,Xt)dCc

it

+ ∫
T

0
e−ritwi

x(Cit,Xt,Xt)dXt

+ ∑
0≤s≤T

e−rit [wi(Cit,Xt,Xt) −wi(Cit−,Xt,Xt)] +M i
T (3.5.39)

where,

M i
T = σ∫

T

0
e−ritXtw

i
p(Cit,Xt,Xt)dWt. (3.5.40)

Therefore,

∫
T

0
e−ritXβ

t C
αi
it e
−βh̃(Xt)dt − ∫

[0,T ]
kie
−ritdCit + e−riTwi(CiT ,XT ,XT )

= wi(c, x, x) + ∫
T

0
e−rit [Liw

i(Cit,,Xt,Xt) +Xβ
t C

αi
it e
−βh̃(Xt)]dt

+ ∫
[0,T ]

e−rit [wi
c(Cit,Xt,Xt) − ki]dCc

it + ∫
T

0
e−ritwi

x(Cit,Xt,Xt)dXt

+ ∑
0≤t≤T

e−rit [wi(Cit,Xt,Xt) −wi(Cit−,Xt,Xt) − ki∆Cit] +MT (3.5.41)
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To evaluate the jump term wi(Cit,Xt,Xt) − wi(Cit−,Xt,X t), consider that producer i

makes and arbitrary expansion ∆Cit = z > 0

wi(Cit,Xt,Xt) −wi(Cit−,Xt,Xt) = ∫
z

0

d

ds
wi (Cit + s,Xt,Xt)ds

= ∫
z

0
wi

c (Cit + s,Xt,Xt)ds (3.5.42)

Thus, using the fact that wi(c, x, x) satisfies the corresponding HJB (3.4.12) equation

we obtain

∫
T

0
e−ritXβ

t C
αi
it e
−βh̃(Xt)dt − ∫

[0,T ]
kie
−ritdCit + e−riTwi(CiT ,XT ,XT ) ≤ wi(c, x, x) +MT

(3.5.43)

Consequently, consider a localizing sequence of stopping times {τn}n∈N such that

limn→∞ τn = ∞ and the process {MT∧τn}n∈N is a local martingale. Taking expectations

and using the fact that (3.5.36) from Lemma 3.5.2 we have that

E [∫
T∧τn

0
e−ritXβ

t C
αi
it e
−βh̃(Xt)dt − ∫

[0,T∧τn]
kie
−ritdCit] ≤ wi(c, x, x)

− e−riT∧τnE[wi (Ci(T∧τn)−,XT∧τn ,XT∧τn)]

(3.5.44)

Hence, we get that

vi(c, x, x) ≤ wi(c, x, x) (3.5.45)

Next, the reverse inequality will be proven by making use of the control process given

by (3.5.38). We start by showing that it is indeed an admissible strategy in the sense of
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(3.3.2). In particular from (3.5.34) (3.5.35) and assumption (3.3.4) one can immediately

see that

C∗it ≤ ci +Φi(x) +Φi(Xt), (3.5.46)

Therefore, using (3.5.35) combined with the assumptions (3.3.2) we have that

e−ritE[C∗it] < ∞ and E [∫
T

0
e−ritC∗itdt] < ∞. (3.5.47)

Using integration by parts we obtain that

e−riTCiT = c + ri∫
T

0
e−ritCitdt + ∫

[0,T )
e−ritdCit (3.5.48)

which along with the monotone convergence theorem allow us to gives that

E [∫
∞

0
e−ritdC∗it] < ∞, (3.5.49)

concluding that the admisibility of the control process C∗.

Consequently, following similar arguments as in (2.4.2) regarding the optimality of the

control and in view of the transformed HJB (3.4.12) we get that

∫
T

0
e−ritXβ

t (C∗it)
αie−h̃(Xt)dt − ∫

[0,T ]
kie
−ritdC∗it + e−riTw(C∗iT ,XT ,Xt) = w(c, x, x) +M∗

T

(3.5.50)

Again from a localization argument and taking expectations we obtain that

E [∫
T∧τn

0
e−ritXβ

t (C∗it)
αie−βh̃(Xt)dt − ∫

[0,T∧τn)
kie
−ritdC∗it]+E [e−riT∧τnw(C∗iT ,XT ,Xt)] = w(c, x, x)

(3.5.51)
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Therefore, by the monotone convergence theorem we can take take the limits n → ∞,

T →∞ we get that

J i
(c,x,x)(C∗i ) + lim

T→∞
E [e−riT∧τnw(C∗iT ,XT ,XT )] = wi(c, x, x) (3.5.52)

Next, using (3.5.36) and assumption (3.3.4) and (2.3.5) we obtain that

E [w(C∗iT ,XT ,XT )] ≤KiE [ci +Φi(x) +Φi(Xt) +Φ1−αi
i (Xt)] < ∞. (3.5.53)

Thus, using the dominated convergence theorem we can pass the limit and conclude that

J i
(c,x,x)

(C∗i ) = wi(c, x, x) which implies that vi(c, x, x) = wi(c, x, x)

∎

Remark 3.5.5 Finally, the true value function for producer i ∈ I is given by

ṽi(c, x, x) = λiv
i(c, x, x)

3.6 Nash Equilibrium for the multi-agent game

In the previous section we proved that given the strategies C−i of the other producers,

producers i ∈ I optimal strategy is given by theorem 3.5.4 and the value function by

lemma 3.5.2. Using lemma (3.4.5) we show that the optimal control in terms of X process

is equivalent with a control in terms of the P process. Hence, in this section we form

the market equilibrium by assuming that also all other producers uses their optimal

strategy C∗it which gives rise to the mean field H. As a side note, let us mention that

since producers form a continuum, the notion of open/closed-loop strategies Appendix

are not so interesting from a practical point of view. In our case, we have to follow the

idea of a mean field game equilibrium. In particular, since P =X/H, we need to find the
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mean field H such that when all players use their optimal expansion schedules based on

the H we get back H. i.e. we have the following fixed point equation

H(p) =
⎛
⎝
β ∫

i∈I
λiC

αi
i (p;H(p))m(di)

⎞
⎠

γ

, ∀p ∈ R+ (3.6.1)

In conjunction with theorem (3.5.4) which shows the optimal expansion schedule for

every producer is not directly dependent through H but only through the price process

P we conclude with the following Nash equilibrium for the market which concludes this

section

Theorem 3.6.1 (Market Equilibrium)

Define the increasing function H∗ ∶ R+ → R+ by

H∗(p) ∶=
⎛
⎝
β ∫

i∈I
λi

⎛
⎝
cαi

i ∨ (
αi(ni − β)
ρiniki

pβ
⎞
⎠

αi
1−αi ⎞
⎠
m(di)

⎞
⎠

γ

, p ∈ R+.

Then, the individual optimal schedule process given by

C∗it = ci ∨ (
(αi(ni − β)
ρiniki

P̄ β
t )

1
1−αi

, (3.6.2)

and the price process P is given by Pt = g̃−1(Xt) where g̃ is defined through g̃(p)e−g̃(p) ∶= p

form the multi-producer’s equilibrium

Proof: Using (3.3.4) for Cit = C∗it Pt = Xt/H(Pt) which implies that Pt = Xt/H(Pt).

Hence,

Pt = f−1(Xt), (3.6.3)

where f(p) = pH(p).

However, we have shown that for every H ∶ R+ → R+ which satisfies the assumption

(3.4.1)
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The optimal expansion is given by (3.6.2) Thus, the solution of the fixed point equation

H should be equal to H∗ which concludes the proof ∎

To help the reader understand the above proof we briedly outline the idea of the proof.

Assume that with the possible exception of the producer labeled by i ∈ I, suppose that

every other producer, say j ∈ I ∖ {i}, adopts the capacity expansion strategy

Cj(t) = cj ∨Φj(X̄t).

In the competitive setting that we have considered, this assumption and the clearing

condition give rise to the price process

P =X/H̃(Xt). (3.6.4)

However, producer i, who has been singled out, is faced with the task of maximising the

performance index

J̃
(i)
Ci
(Ci ∣ P ) = J(i)Ci,x,x(Ci),

over all Ci ∈ A, where J̃(i)Ci
(Ci ∣ P ) and J

(i)
Ci,x,x(Ci) are the performance criteria defined

by (3.3.5) and (3.4.17) while by the Theorem (3.5.4) the expansion strategy

C∗it = (
αi(ni − β)
(ri − µ)niki

)
β

1−αi

(Xte
−h̃(Xt))

β
(1−αi)

= ci ∨Φi(Xt) = ci ∨Ψ⋆i (P t),

where

Ψ⋆i (p) = (
αi(ni − β)
(ri − µ)niki

)
β

1−αi

p
β

1−αi , (3.6.5)
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is the optimal behavior for the ith agent given the optimal response of for every j ∈ I −{i}.

Therefore,

H∗(p) ∶=
⎛
⎝
β ∫

i∈I
λi

⎛
⎝
cαi

i ∨ (
αi(ni − β)
ρiniki

pβ
⎞
⎠

αi
1−αi ⎞
⎠
m(di)

⎞
⎠

γ

, p ∈ R+.

is indeed a solution to the fixed point problem and thus P = X/H∗ along with the

optimal expansion strategies Cit = ci ∨Ψi(Pt) must comprise a competitive production

equilibrium.

3.7 Appendix

Appendix A: Proof of lemma 3.5.2

In this part we prove lemma 3.5.2

Proof: By construction w ∶ S → R is a continuous function, w(c, x, ⋅) ∶ [x,∞) ∶ R is a

difference of two convex functions and therefore absolutely continuous. Moreover, wc

is continuous along the surface S1
i . Hence, we must only prove the continuity of the

continuity of wx and wxx across the surface S1
i . Let (c, x, x) ∈ Ei ∖ S1

i ,

wi
x(c, x, x) = lim

c↓Γi(x,x)
wi

x(c, x, x) + (wc(Γi(x,x), x, x) − ki)(Γi)x(x,x)

= lim
c↓Γi(x,x)

wi
x(c, x, x) = wi

x(Γi(x,x), x, x) (3.7.1)

and wi
xx(c, x, x) = lim

c↓Γi(x,x)
wi

xx(c, x, x) +wi
cx(Γi(x,x), x, x)(Γi)x(x,x)

= lim
c↓Γi(x,x)

wxx(c, x, x) = wxx(Γi(x,x), x, x), (3.7.2)

where we have used the definition (3.5.31) of wi as well as (3.5.18) and (3.5.19). Conse-

quently, due to (3.5.31) and the expression (3.5.33) we have that wx and wxx are also

continuous across the surface S2. On the other hand, in view of (3.5.32) and (3.5.33) we
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obtain that

lim
c↓Φi(x)

wi
c(c, x, x) = Ac(Φi(x), x)xn + αi

ρi

xβΦαi−1
i (x)e−βh̃(x)

= Bc(Φi(x), x)xn + αi

ρ
xβΦαi−1

i (x) = lim
c↑Φi(x)

wi
c(c, x, x).

Therefore, we have concluded that the function w(⋅, ⋅, x) is C2,1 in the interior of S for

all x > 0.

Next we prove that wi provides a solution to Problem 3.7.1, i.e we show that

wi
c(c, x, x) < ki for all 0 < x < x and Φi(x) < c, (3.7.3)

wi
c(c, x, x) < ki for all 0 < x ≤ x and Γi(x,x) < c ≤ Φi(x), (3.7.4)

and Liw
i(c, x, x) + xβcαi ≤ 0 for all 0 < x ≤ x and c ≤ Γi(x,x). (3.7.5)

To begin with, let (c, x, x) ∈ W2
i , i.e. a point in S such that 0 < x ≤ x and Γi(x,x) < c ≤

Φi(x). In this case, we get that

wi
c(c, x, x) =

αixβcαi−1

ρi

(1 − β
ni

Gβ−n
i (c, x)xni−β) ≤ ki, (3.7.6)

where we have used the fact that p ≤ Gi(c, x) and that Gβ(c, x) = niρiki

αi(ni−β)c
1−αieh̃(x) and

equality is satisfied for c ↓ Γi(x,x).

Similarly, for any point (c, x, x) ∈ W1
i

wi
c(c, x, x) ≤ ki, (3.7.7)

where equality is satisfied in the limit of x ↑ x and c ↓ Φi(x)
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Next, to establish (3.7.5)., we use the definition (3.5.31) of wi, as well as (3.7.1) and

(3.7.2), to obtain. In particular let (c, x, x) ∈ Ei

Liw
i(c, x, x) + cαixβe−βh̃(x) =Liw

i(Γi(x,x), x, x) + riki(Γi(x,x) − c) + cαixβe−βh̃(x)

= −Γαi
i (x,x)xβe−βh̃(x) + riki(Γi(x,x) − c) + cαixβe−βh̃(x)

= −∫
Γi(x,x)

c
(αiu

αi−1xβe−βh̃(x) − riki)du for all c < Γi(x,x).

In view of (3.5.15) and (3.5.16), we can see that the free-boundary point Gi(c, x) given

by (3.5.20) is the unique solution to the equation2

∫
Gi(c,x)

0
u−mi−1(αuαi−1xβe−βh̃(x) − riki)du = 0.

Therefore, αicαi−1xβe−βh̃(x) − riki > 0 for all x ≥ Gi(c, x), which implies that

αic
αi−1xβe−βh̃(x) − riki > 0 for all c ≤ Γi(x,x),

because Γi(⋅, x) is the inverse of the strictly increasing function Gi(c, x). However, this

conclusion imply that wi satisfies (3.7.5).

Finally, it is straightforward to find the relevant bounds of wi(c, x, x). In particular, from

the expressions (3.5.32) and (3.5.33) as well as the expression for (3.5.35) and the fact

that for (c, x, x) ∈ Wi we have that c > Φi(x) we obtain that

Ai(c, x) ≤ ΛA (cx−ni + (xe−h̃(x))
β

1−αi ) , (3.7.8)

where ΛA > 0 a positive constant.
2This is essentially the same argument as in the proof of the corresponding lemma in chapter 2
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Similarly we obtain that obtain that

Bi(c, x) ≤ ΛB (cx−ni + (xe−h̃(x))
β

1−αi ) , (3.7.9)

where ΛB > 0 a positive constant.

In addition, note that from (3.5.35) one can see that (xe−h̃(x))
β

1−αi ≤KiΦi(x) xβe−βh̃(x) ≤

KiΦ1−αi
i (x) with K a suitable positive constant therefore for both regions W1

i ,W2
i we

can write them as

wi(c, x, x) ≤ Λi (c + cαiΦ1−αi
i (x) +Φi(x)) , (c, x, x) ∈ Wi (3.7.10)

Finally, for (c, x, x, ) ∈ Ei we have that c ≤ Φi(x) and therefore we have that

wi(c, x, x) ≤ ΛiΦi(x), (c, x, x) ∈ Ei (3.7.11)

Hence, as required we get (3.5.36). Finally, the positivity of wi(c, x, x) becomes a simple

observation after using the remark (3.5.3) since the integral form is immediately shown

to be positive ∎

Appendix B: Solution of the HJB equation using the P process

Heuristic solution to agent’s control problem

A heuristic method is used to calculate the conjectured value function by conjecturing the

optimal strategy and directly computing the objective function. To make the exposition

easier we will use log-prices, i.e. Pt = eZt . Therefore, the SDE for Z ≡ (Zt; t ∈ R+) is

dZt = (µ −
σ2

2 )dt + σdWt − dh(Zt) (3.7.12)
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We conjecture that the agent’s i ∈ I optimal strategy is Cit = ci ∨ Ψ̃i(Zt) while the other

player’s strategies give rise to the mean field process {H(Zt)}t∈R+ which are assumed to

be fixed. In the following lines we will directly evaluate the objective function with the

aforementioned expansion schedule.

vi(c, z, z) = Ez [∫
∞

0
e−rit+βZtΨ̃αi

i (Zt)dt − ki∫
∞

0
e−ritdΨ̃i(Zt)] (3.7.13)

where Ψ̃i belong to a class of non-decreasing differentiable functions

First of all,

Ez [∫
∞

0
e−ritdΨ̃i(Zt)] = Ez [∫

∞

z
e−riτydΨ̃i(y)] ,

where τy ≡ {t ∈ R+∣Zt = y} is the first hitting time at level y ∈ R+ of Z. Furthermore, by

Girsanov,

Ez [∫
∞

0
e−rit+βZtΨ̃αi

i (Zt)dt] = eβ(z+h(z))EQ
z [∫

∞

0
e−ρit−βh(Zt)Ψ̃αi

i (Zt)dt]

where

ρi ∶= ri − β(µ −
σ2

2 ) −
(βσ)2

2 > 0.

and Zt = µ′t + σW ′
t under Q, where µ′ ∶= µ − σ2

2 + βσ2. Integration-by-parts gives

ρiEQ
z [∫

∞

0
e−ρit−βh(Zt)Ψ̃αi

i (Zt)dt] = e−γh(z)Ψ̃αi(z) +EQ
z [∫

∞

z
e−ρiτyd (e−βh(y)Ψ̃αi

i (y))]

Therefore,

Ez [∫
∞

0
e−rit+βXtΨ̃αi

i (Zt)dt] =
1
ρi

eβzΨ̃αi
i (z) +

1
ρi

eβ(z+h(z))EQ
z [∫

∞

z
e−ρiτyd (e−βh(y)Ψ̃αi

i (y))] .

(3.7.14)
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For a generic process with dZt = adt+σdWt−dh(Zt) under P, we have that eb(Zt+h(Zt)−(z+h(z)))−bat−(bσ)2/2t

being a martingale, and optional sampling gives

EP
z [e−(ba+b2σ2/2)τy] = e−b(y+h(y)−z−h(z))

Therefore, define

ni ∶=

¿
ÁÁÀ2ri

σ2 + (
2µ − σ2

2σ2 )
2
− 2µ − σ2

2σ2 ;

we can show that

Ez[e−riτy] = e−ni(y+h(y)−x−h(z));

using

ξi(y) ∶= e−ni(y+h(y))

this gives

Ez [∫
∞

0
e−ritdΨ̃i(Zt)] =

1
ξi(z) ∫

∞

z
ξi(y)dΨ̃i(y), (3.7.15)

i.e.,

Ez [∫
∞

0
e−ritdΨ̃i(Zt)] = −Ψ̃i(z) +

1
ξi(z) ∫

∞

z
Ψ̃i(y)ξi(y)ni(1 +Hz(y))dy,

as well as

EQ
z [e−ρiτy] = e(ni−β)(y+h(y)−z−h(z)),

which gives that equals

Ez [∫
∞

0
e−rit+βZtΨ̃αi

i (Zt)dt] =
1
ρi

eγzΨ̃αi
i (z) +

1
ρi

1
ξi(z) ∫

∞

z
ξi(y)eβ(y+h(y))d (e−βh(y)Ψ̃αi

i (y)) ,

(3.7.16)



3.7 Appendix 81

where by performing an integration by parts is further equal to

Ez [∫
∞

0
e−rit+βZtΨ̃αi

i (Zt)dt] =
1

ρiξi(z) ∫
∞

z
Ψ̃αi

i (y)ξi(y)eβy(ni − β)(1 + hz(y))dy,

(3.7.17)

In total, equals

Ez [∫
∞

0
e−rit+βZtΨ̃αi

i (Zt)dt − ∫
∞

0
e−ritkdΨ̃i(Zt)] =

= 1
ξi(z) ∫

∞

z
( 1
ρi

Ψ̃αi
i (y)(ni − β)eβy − kniΨ̃i(y)) ξi(y)(1 + hz(y))dy + kΨ̃i(z), (3.7.18)

Therefore, a pointwise maximization inside the integral gives that the optimal Ψ̃ is

Ψ̃i(y) = (
(ni − β)αi

ρikini

)
1

1−αi

e
β

1−αi
y
. (3.7.19)

and thus, we conjecture that the agent’s optimal strategy is C∗it ∶= C0− ∨ Ψ̃i(Xt) which

in conjunction the direct evaluation of (3.7.13) allows for a closed-form expression of the

conjectured value function.

In particular, let

mi(y, c) ∶= max
Ψ̃≥c
{ni − β

ρi

eγyΨ̃α − kiniΨ̃}

Therefore, if c ≤ Ψ̃(y), the maximum occurs at Ψ̃i(y)

mi(y, c) = (1 − αi) (
αi

kini

)
αi

1−αi (ni − β
ρi

)
1

1−αi

e
β

1−αi
y
,

On the other hand, if c > Ψ̃i(y), the optimum occurs at Ψ̃ = c. Therefore, it follows that

mi(y, c) = (
ni − β
ρi

eβycαi − kinic)1{Ψ̃i(y)<c}
+
⎛
⎝
(1 − αi) (

αi

kini

)
αi

1−αi (ni − β
ρ
)

1
1−αi

e
β

1−αi
y⎞
⎠

1{c≤Ψ̃i(y)}
.
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Therefore, the value function on the continuation region W = {(c, z, z)∣ c > Ψ̃i(z)} is

defined as

wi(c, z, z) ∶= cki + ∫
∞

z
mi(y, c)e−ni(y−z+(h(y)−h(z))+)(1 + hz(y)1{z<y})dy.

By integration-by-parts, we obtain

wi(c, z, z) ∶= ni − β
ρini

eβzcαi + ∫
∞

z
ji(y, c)eni(z+h(z)−h(y∨z)−y)dy

where

ji(y, c) =
ni − β
ρini

βeβycαi1{Ψ̃i(y)<c}
+ β (αi

ki

)
αi

1−αi (ni − β
ρini

eβy)
1

1−αi 1{c≤Ψ̃i(y)}
.

Moreover, in the investment region Ei = {(c, z, z)∣ c ≤ Ψ̃i(z)}, we define

wi(c, z, z) = wi(Ψ̃i(z), z, z) − ki(Ψ̃i(z) − c).

Finally, we can re-write the conjectured value function in terms of prices, using the fact

that p = ez and noting that ψ̃i(ln z) = Ψi(p)

wi(c, p, p) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ni−β
ρini

pβcαi + pni ∫
∞

p ji(y, c)eni(h(p)−h(y∨p))dy if (c, p, p) ∈ Wi

wi (Ψi(p), p, p) − ki[Ψi(p) − c] if (c, p, p) ∈ Ei

(3.7.20)

where,

ji(y, c) =
ni − β
ρini

βpβ−ni−1cαi1{Ψi(y)<c} + β
ni − β
ρini

pβ−ni−1Ψαi
i (y)1{c≤Ψi(y)} (3.7.21)
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and

Ψi(p) = (
(ni − β)αi

ρikini

)
1

1−αi

p
β

1−αi (3.7.22)

Formal solution to the HJB equations

In this section we provide a solution of the HJB equations using the P process. This

simple corresponds to the transformation x→ peh(p) and p→ peh(p) of the problem and

corresponds to

Problem 3.7.1 Determine a function Gi ∶ R+ → R+ and a function vi ∶ S → R, satisfying

the following conditions.

(I) the functions Gi and Ψi are C1 and satisfy (3.5.1)–(3.5.3).

(II) The function wi(⋅, ⋅, p) is C2,1 in the interior of S.

(III) The function wi(c, p, ⋅) is a difference of two convex functions in the interior of S.

(IV)

The function wi is such that

wi
p−(c, p, p) = hp−(p)pwi

p(c, p, p) for all 0 < Ψi(p) ≤ c, (3.7.23)

wi
c(c, p, p) < ki for all 0 < p < p and Ψi(p) ≤ c, (3.7.24)

wi
c(c, p, p) < ki for all 0 < p ≤ p and Ψ(p) < c < Ψi(p), (3.7.25)

wi
c(c, p, p) = ki for all 0 < p ≤ p and c ≤ Ψ(p), (3.7.26)
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where wi
p−(p, p, c) = limp↑p vi

p−(p, p, c), and

Liv
i(c, p, p) + pβcαi ∶= 1

2σ
2p2wi

pp(c, p, p) + µpwi
p(c, p, p) − riv

i(c, p, p) + pβcαi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 0 for all 0 < p < p and 0 < Ψi(p) ≤ c,

= 0 for all 0 < p ≤ p and Ψi(p) < c < Ψi(p),

< 0 for all 0 < p < p and c ≤ Ψi(p).

(3.7.27)

We consider a solution to Problem 3.7.1 of the form

wi(c, p, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai(c, p)pni + 1
ρi
pβcαi , if (c, p, p) ∈ W1

i ,

Bi(c, p)pni + 1
ρi
pβcαi , if (p, p, c) ∈ W2

i ∪ S1
i ,

vi(Ψi(p), p, p) − ki(Ψi(p) − c), if (p, p, c) ∈ Ei ∖ S1
i ,

(3.7.28)

To determine the function Bi and the free-boundary function Gi, we appeal to the so

called “smooth-pasting condition” of singular stochastic control. In particular, we require

that wi(⋅, p, p) should be C2 along the free-boundary point Gi(c), which suggests the

equations

lim
p↑Gi(c)

vi
c(c, p, p) = (Bi)c(c, p)Gni

i (c) +
αi

ρi

Gβ
i (c)cαi−1 = ki (3.7.29)

and lim
p↑Gi(c)

vi
cp(c, p, p) = ni(Bi)c(c, p) +

αiβ

ρi

Gβ−ni

i (c)cαi−1 = 0. (3.7.30)

The solution to this system of equations is given by

Gi(c) = (
ρiniki

αi(ni − β)
)

1
β

c
1−αi

β and (Bi)c(c, p) = −
ki

ni − β
G−ni

i (c). (3.7.31)
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For Gi given by the first of these expressions, we can see that the unique solution to

equation (3.5.2) is given by

Ψi(p) = (
αi(ni − β)
ρiniki

)
1

1−αi

p
β

1−αi , (3.7.32)

On the other hand, the solution to the ODE in (3.7.31) is given by

Bi(c, p) = f̃i(p) +
kiβ2

(ni − β)(ni(1 − αi) − β)
c

Gn
i (c)

, (3.7.33)

where f̃i is a function to be determined.

In order to determine f̃i we will use the fact that in the region {p = p} ∩W2
i we should

have that

vi
p(Ψ(p), p, p)) = hp−(p)vi

p(Ψ(p), p, p) (3.7.34)

Therefore,

f̃ ′i(p) − nhp−(p)f̃i(p) =
1
ρi

β

ni

(ni − β)(1 − αi)
ni(1 − αi) − β

pβ−niΨαi
i (p)hp−(p) (3.7.35)

Thus, integrating we obtain that

f̃i(p) = ∫
∞

p

1
ρi

β

ni

(ni − β)(1 − αi)
ni(1 − αi) − β

yβ−niΨαi
i (y)nihp−(y)eni(h(p)−h(y))dy, (3.7.36)

where we used the fact that we should have limp→∞ f̃i(p)enh(p) = 0

Performing an integration by parts we obtain that

f̃i(p) =
1
ρi

β(ni − β)
ni

1 − αi

β − ni(1 − αi)
pβ−niΨαi

i (p)

+ ∫
∞

p

1
ρi

β(ni − β)
ni

yβ−ni−1Ψαi
i (y)eni(h(p)−h(y))dy (3.7.37)
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Consequently, to determine Ai(c, p) we use again the fact that for W1
i and p→ p we have

that

lim
p↑p

wi
p(c, p, p) = hp−(p) lim

p↑p
wi

p(c, p, p) (3.7.38)

Hence, we obtain that

Ai(c, p) −Ai(c,G(c))e−ni(h(p)−h(Gi(c))) = 1
ρi

β

ni

Gi(c)β−nicαieni(h(p)−h(Gi(c))) − 1
ρi

β

ni

pβ−nicαi+

∫
Gi(c)

p

1
ρi

β
ni − β
ni

yβ−ni−1cαen(h(p)−h(y))dy

+ fi(c)enh(p) (3.7.39)

Next, the requirement that vi should be continuous is reflected by the identity

lim
c↑Ψi(p)

wi(c, p, p) = lim
c↓Ψi(p)

wi(c, p, p),

which gives rise to the expression

Ai(Ψi(p), p) = Bi(Ψi(p), p) ⇒

fi(Ψi(p)) = ∫
∞

p

1
ρi

β(ni − β)
ni

yβ−ni−1Ψαi
i (y)e−nih(y)dy (3.7.40)

Therefore, we conclude that

fi(c) = ∫
∞

Gi(c)

1
ρi

β(ni − β)
ni

yβ−ni−1Ψαi
i (y)e−nih(y)dy (3.7.41)
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To conclude, as a consistency check, we recover the form of (3.7.20) let (p, p, c) ∈ W1
i .

Then

wi(c, p, p) = Ai(c, p)pni + 1
ρi

pβcαi =

− 1
ρi

β

ni

pβ−nicαi + ∫
Gi(c)

p

1
ρi

β
ni − β
ni

yβ−ni−1cαeni(h(p)−h(y))dy

+ ∫
∞

Gi(c)

1
ρi

β(ni − β)
ni

yβ−ni−1Ψαi
i (y)eni(h(p)−h(y))dy + 1

ρi

pβcαi (3.7.42)

This can be clearly re-written as

wi(c, p, p) = 1
ρi

ni − β
ni

pβcαi + pn∫
∞

p
j(y, c)eni(h(p)−h(y))+dy, (c, p, p) ∈ W1

i (3.7.43)

Similarly, for (c, p, p) ∈ W2
i ∪ S1

i we recover the same compact form verifying (3.7.20)

Appendix C: Asymptotic Results

This section supplements the main part and, in particular, provides some elementary

asymptotic results regarding the asymptotic behavior of the H (or correspondingly H̃)

function.

To begin with we define

ᾱ =m-ess sup α = inf{a ∈]0,1] ∣m(α > a) = 0}.

where α = {αi}i∈I

Lemma 3.7.2 For any I-measurable functions η ∶ I → [0,∞), ζ ∶ I → (0,∞) and

ξ ∶ I → R such that

∫
I
ζi ι(di) < ∞ and O(y) ∶= ∫

I
1{ηi<y}ζiy

ξi m(di) < ∞ for all y > 0,
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it holds that

lim
y→∞

lnO(y)
ln y =m-ess sup ξ =∶ ξ̄.

Proof: We first note that

lim sup
y→∞

lnO(y)
ln y = lim sup

y→∞

1
ln y ln∫

I
ζie

ξi ln y m(di) = lim sup
y→∞

1
ln y ln∫

I
eξi ln y m̃(di)

= lim sup
y→∞

∥eξ⋅∥
Lln y(m̃)

= m̃-ess sup ξ =m-ess sup ξ,

where m̃ is the finite measure on (I,I) that is equivalent to m, with Radon-Nikodym

derivative given by dm̃/dm = ζ.

Next, for k ∈ N define Ik ∶= {η < k} ∈ I, and note that

lim inf
y→∞

lnO(y)
ln y ≥ lim inf

y→∞

1
ln y ln∫

I
1Ik
eξi ln y m̃(di) = lim inf

y→∞
∥1Ik

eξ⋅∥
Lln y(m̃)

=m-ess sup (1Ik
ξ).

Combining this result with the fact that ⋃∞k=1 Ik = I, we obtain

lim inf
y→∞

lnO(y)
ln y ≥m-ess sup ξ.

This last inequality and (3.7) imply (3.7.2)

Using this lemma and the equivalence

lim
y→∞

lnQ(y)
ln y = −ℓ ⇔ lim

y→∞
yℓQ(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if ξ < ℓ,

∞, if ξ > ℓ,

where Q is a strictly positive function, we can establish the following asymptotic result.

∎
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Lemma 3.7.3 Suppose that Assumption (3.3.4) holds true and let Ψ = {Ψi, i ∈ I} ∈ B be

such that

Ψi(p) =Kip
β

1−αi ,

for some constant β > 0 and some I-measurable functions K > 0 and α such that αi ∈ (0, 1)

for all i ∈ I. Also, let χ2, H̃,Φ = {Φi, i ∈ I} be as in lemma (3.4.5)(II)

The functions H and H̃ are such that

lim
p→∞

lnH(p)
ln p = αβγ1 − α, lim

p→∞

lnH ′(p)
ln p = αβγ1 − α − 1,

lim
x→∞

ln H̃(x)
lnx = αβγ

1 − α + αβγ , lim
x→∞

ln(H̃ ′(x))
lnx = αβγ

1 − α + αβγ − 1,

where α is defined by (3.7).

Proof: In view of the definition of H, we can see that

β ∫
I
λiΨαi

i (p)m(di) ≤H1/γ(p) ≤ βκ0 + β ∫
I
λiΨαi

i (p)m(di),

where κ0 = ∫i∈I λic
αi
i m(di) < ∞. These inequalities, lemma (3.7.2) and the fact that the

function (0,1) ∋ α ↦ α/(1 − α) is increasing imply the first limit in (3.7.3).

On the other hand, combining the expression

ln(H ′(p)) = ln(γβ) + γ − 1
γ

lnH(p) + ln∫
I
1{(ci/Ki)

(1−αi)/β<p}
αiβλiK

αi
i

1 − αi

pαiβ/(1−αi)−1m(di),

which follows from (3.4.9), with lemma (3.7.2) and the first limit in (3.7.3), we obtain

the second limit in (3.7.3).
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Using the definitions of χ2 and H̃ as well as (3.7.3), we can see that

lim
p→∞

lnχ2(p)
ln p = 1 + lim

p→∞

lnH(p)
ln p = 1 + αβγ1 − α,

lim
x→∞

lnχinv
2 (x)

lnx = lim
x→∞

lnχinv
2 (x)

lnχ2(χinv
2 (x))

= (1 + αβγ1 − α)
−1
,

and lim
x→∞

ln H̃(x)
lnx = lim

x→∞

lnH(χinv
2 (x))

lnχinv
2 (x)

⋅ lnχ
inv
2 (x)

lnx = αβγ

1 − α + αβγ .

The last two of these limits and the equivalence in (3.7.2) imply that

lim
p→∞

pξ(χ2)′(p) = lim
p→∞

pξ (H(p) + pH ′(p)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if ξ < −αβγ
1−α ,

∞, if ξ > −αβγ
1−α

Combining this observation with (3.7), we obtain

lim
p→∞

ln(χ2)′(p)
ln p = αβγ1 − α

In view of the limits that we have derived thus far and the calculation

lim
x→∞

ln(H̃ ′(x))
lnx = lim

x→∞

⎛
⎝

ln(H ′)(χinv
2 (x))

lnχinv
2 (x)

−
lnχ2(χinv

2 (x))
′

lnχinv
2 (x)

⎞
⎠

lnχinv
2 (x)

lnx ,

we can see that the second limit in (3.7.3) also holds true.

∎



Chapter 4

Weak convergence rate for the

Cox-Ingersoll-Ross process

In this chapter, we study the weak convergence approximation rate of the Cox-Ingersoll-

Ross (CIR) process in the regime where the process is positive, using a drift implicit

method. Using a simple argumentation we were are able to obtain a convergence rate

of order one under mild conditions on the payoff function and despite the fact that the

coefficients of the underlying stochastic differential equation are not Lipschitz.

4.1 Introduction

The CIR process has the following form:

dXt = k(µ −Xt)dt + θ
√
X tdWt,X0 = x; t ∈ R+, (4.1.1)

where W ∶= (Wt; t ∈ R+) is a one-dimensional Brownian motion, k ≥ 0 is the speed of

adjustment, µ ≥ 0 is the long term mean and θ > 0 the diffusion parameter, with all

parameters being non-negative. At this point, let us mention that from now on we will use
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parameter α ∶= kµ instead of k,µ separately. The CIR model is a prominent model for the

short-term prediction of interest rates since it satisfies three main properties[CIR85, KS91]:

(i) It is well known that admits a unique strong solution which is non-negative, (ii)

volatility decreases when itself the interest rate increases, (iii) An equilibrium state exists.

Additionally, Feller’s test of explosions[KS91] ensures that if X0 > 0

P(X̂t > 0, t ≥ 0) = 1 (4.1.2)

provided that 2α ≥ θ2

At the core of financial applications is the pricing of derivatives which in a one-dimensional

setting is simply translated as the ability to evaluate E[f(XT )], where f represents the

payoff function and T is the maturity time. In most cases, although the aforementioned

solution is integrable, it cannot be evaluated in closed form and therefore a suitable

numerical scheme should be suggested.

Even though the increments of the CIR process are non-central chi-squared random

variables and thus the process can be simulated exactly, the exact simulation is computa-

tionally unfeasible and thus an approximation scheme is preferred. For example, there are

many available methods such as a Monte Carlo method or the so-called Walk on Spheres

algorithm[Mul56, Mil97] or finally a discretization method, such as the Euler-Maruyama.

In general, the Euler-Maruyama method is a straightforward and simple method in which

time is turned into a discretized grid, say of N points, and all continuous quantities

are substituted by their discrete counterparts. In fact, it is a widely used method for

numerically solving ordinary and partial differential equations while extensions of this

method provide us with the well known Runge-Kutta method.

At this point let us point out that in the case of killed diffusions, it was shown by Göbet

[Göb00] that the weak convergence rate is O(N−1/2) with this rate being exact and

intrinsic to the problems arising from the discretization of the killing stopping time.
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Interestingly, Çetin & Hok 2022, Çetin [cH21, Ç18] using a recurrent transformation

managed, under mild conditions on the diffusion process and the barrier payoff to bring

back the convergence rate to O(1/N). In the case of the CIR process, recurrence is a

simple parameter adjustment since by the Feller test it is ensured that Xt > 0,P-a.s. if

2αµ ≥ θ2 provided that X0 > 0. The Imposition of non-negativity is crucial and should

be respectively obeyed by the discretized stochastic process X̂. However, if we consider

an explicit Euler-Maruyama scheme

X̂tn+1 = X̂tn + (α − kX̂tn)
T

N
+ θ
√
X̂tn(Wtn+1 −Wtn), (4.1.3)

where tn = n T
N for n = 1, ...,N , it becomes evident that positivity is not preserved since

the Gaussian process can take arbitrarily large negative values. Solutions to this problem

have been given in [DD98, BD07], though the most natural solution is to realize an

implicit scheme. In particular, an appropriate implicit scheme was proposed by Brigo &

Alfonsi [BA05]

Alternatively, consider the implicit scheme originating from the SDE which drives the

square-root process, [Alf05]

√
X̂t =

√
X̂tn +

α − θ2/4
2
√
X̂ t

(t − tn) −
k

2

√
X̂t(t − tn) +

θ

2(Wt −Wtn), (4.1.4)

Hence, X̂t is the solution of a second order algebraic equation

[2 + k(t − tn)]X̂t − [θ(Wt −Wtn) +
√
X̂tn]

√
X̂t −

α − θ2/4
2 (t − tn) = 0, (4.1.5)

which for 4α > σ2 has a unique positive root[Alf05].

The purpose of this article is to prove that the weak convergence rate of the CIR

process scales as O(1/N). Let us mention that the strong convergence rate has been
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an extensively studied subject [DD98, BD07, Alf05, NS14, DNS12] and was found to

optimally be at the order of 1. On the other hand, the weak convergence rate was studied

by [Alf05] where using convergence hypotheses for the numerical scheme it was shown

that the rate scales as O(1/N) while recently in [MN21] using an appropriate stochastic

discretization inspired by the stochastic trapezoidal rule used in [Zhe17] they were able

to obtain a weak convergence rate of 1 when 2α ≥ θ2 and the payoff is an appropriate

four times differentiable function.

The present work serves as a proof of concept since only elementary arguments and mild

assumptions on the payoff function were used in order to find the optimal convergence rate.

Hence, hoping to make the evaluation of the optimal convergence rate a straightforward

task, it would be interesting to extend this method to a broader class of stochastic process.

This will be the study of a subsequent paper.

4.2 Weak Convergence of the CIR model

Lemma 4.2.1 Consider the implicit scheme defined by (4.1.4) with 2α ≥ θ2. Then,

dX̂t =
σ(X̂t)

F (X̂t, t; tn)
dWt +

σ2(X̂t)
F 2(X̂t, t; tn)

[g(X̂t, t; tn) +
b(X̂t)
σ2(X̂t)

]dt, t ∈ (tn, tn+1] (4.2.1)

where σ(X̂t) = θ
√
X t, b(X̂t) = α − kX̂t,

F (x, t; tn) = 1 + k2(t − tn) +
(4α − θ2)

8x
g(x, t; tn) = −

k(t − tn)
2θ2 + 1

2x −
2(2 + k(t − tn))

4x(2 + 2k(t − tn)) + (4α − θ2)(t − tn)
− (4α − θ

2)2(t − tn)
32θ2x2 ,

Additionally, 1
F (x,t;tn)

≤ 1 and ∣g(x, t; tn)∣ ≤ K (1 + 1
x +

t−tn

x2 ), with K a positive constant

depending only on α, θ and T
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Proof: Let us define H(x, t; tn) ∶= (2+k(t− tn))
√
x−(α− θ2

4 )
(t−tn)
√

x
. To begin with, note

that we cannot directly apply Ito’s lemma due to the fact that H is not C2. To this end,

let us consider the stopping time τM ∶= inf{t ≥ 0∣X̂t ≤ 1
M } and localize the corresponding

stochastic process {H(X̂t, t; tn)}t≥0.

H(X̂t∧τM
, t ∧ τM ; tn) =H(X0,0; tn) + ∫

t∧τM

0
∂sH(X̂s, s; tn)ds + ∫

t∧τM

0
∂xH(X̂s, s; tn)dX̂s

+ ∫
t∧τM

0

1
2∂xxH(X̂s, s; tn) d⟨X̂s⟩ (4.2.2)

Consequently, due to the fact that the root solution of the implicit scheme is always

positive, lim
M→∞

τM →∞ P-a.s. implying that Ito’s lemma can be applied safely throughout

the interval [0, T ].

Consequently, using (4.1.5) and re-arranging the terms leads to the desired form

dX̂t =
σ(X̂t)

F (X̂t, t; tn)
dWt +

σ2(X̂t)
F 2(X̂t, t; tn)

[g(X̂t, t; tn) +
b(X̂t)
σ2(X̂t)

]dt, (4.2.3)

with

g(x, t; tn) ∶= −
1
2
∂xxH(x, t; tn)
∂xH(x, t; tn)

− 1
θ2∂xH(x, t; tn)∂tH(X̂t, t; tn) −

b(x)
σ2(x) ,

where F (x, t; tn) ∶=
√
x∂xH(x, t; tn). Note that from Ito’s lemma we have identified the

quadratic variation as d⟨X̂t⟩ = σ(X̂t)/F (X̂t, t; tn)

Simple computations lead to g(x, t; tn) and F (x, t; tn) given at (4.2.1). In addition,

application of the triangle inequality and the fact that 4α > θ2 give the desired bounds

on g(x, t; tn) and F (x, t; tn).

Finally, we calculate ∂xg(x, t; tn)

∂xg(x, t; tn) =
8 ((t − tn)k + 2)2

(4a(t − tn) − (t − tn)θ2 + 4(t − tn)kx + 8x)2
− (t − tn) (θ

2 − 4a)2

16θ2x3 − 1
2x2

(4.2.4)
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using elementary inequalities we get that ∂xg(x, t; tn) ≤ 0 concluding that inf
x≥0

g(x, t; tn) =

− k
2θ2 (t − tn) ≥ − −k

2θ2T . ∎

The next lemma allow us to show that certain (inverse) moments of the discretized

process are finite. This is crucial in order to control the estimates that are responsible

for the weak convergence rate of {X̂t}t≥0 towards the original process {Xt}t≥0

Lemma 2 Let X̂ be the process defined by (4.1.4) and 2α ≥ θ2. If 0 ≤ p < 2α
θ2 then

sup
t≤T,N

Ex [∫
t

tn

1
X̂p

s

1
F 2(X̂s, s; tn)

ds] ≤K(t − tn), (4.2.5)

for some constant K > 0. Additionally, the process X̂ does not have explosions.

Finally, ∀m ≥ 0

sup
t≤T,N

Ex[X̂m
t ] < ∞ (4.2.6)

Proof: From (4.2.1)

dX̂t =
σ(X̂t)

F (X̂t, t; tn)
dWt +

σ2(X̂t)
F 2(X̂t, t; tn)

[g(X̂t, t; tn) +
α/θ2

X̂t

− k

θ2 ]dt, (4.2.7)

Consider the process Ŷ defined by Ŷt = X̂A−1
t

, where

dAt =
1

F 2(X̂t, t; tn)
dt, (4.2.8)

and A−1
t ∶= {s ≥ 0 ∣ ∫

s

0
1

F 2(X̂s,s;tn)
ds = t} denotes the stopping time for which At becomes t.

Firstly, At is well defined since by Lemma 4.2.1 we have that 1
F (X̂t,t;tn)

≤ 1 which in turns

gives that At ≤ t P-a.s

Consequently, Dambis, Dubins-Schwarz theorem [RY99] yields

dŶt = θ
√
ŶtdBt + θ2 [(g(Ŷt, t; tn) −

k

θ2) Ŷt +
α

θ2 ]dt, t ∈ (tn, tn+1] (4.2.9)
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where B is a standard Brownian motion adapted to the filtration (FA−1
t
)t≥0

Therefore, if we define Y as the CIR process starting for X0, i.e.,

Yt =X0 + ∫
t

0
θ
√
Y sdBs + ∫

t

0
(α − ∣c∣Ys)ds, c = − kT2θ2 , (4.2.10)

we can apply the comparison theorem of stochastic differential equations[cD18, KS91],

since g(x, t; tn) ≥ infx g(x, t; tn) ≥ − kT
2θ2 , as given by Lemma 4.2.1 to obtain that

P(Ŷt ≥ Yt, t ≤ T ) = 1. (4.2.11)

Immediate use of the above identity gives that

sup
t≤T,N

Ex [∫
t

tn

1
X̂p

s

1
F 2(X̂s, s; tn)

ds] ≤ θ sup
t≤T

Ex [∫
At

tn

1
Y p

s
ds] . (4.2.12)

Therefore, using the fact that supt≤T E[ 1
Y p

t
] < ∞ iff p < 2α

θ2 [DNS12, HK08] combined with

Fubini’s theorem and the fact that At ≤ t P−a.s. we conclude the first statement.

Next, for the second statement of the lemma. It is already proven that ∀t ∈ [0, T ] X̂t >

0 P−a.s provided that X0 > 0. Thus, we are left to show that explosions do not occur for

the (4.2.1) scheme. From Lemma 4.2.1 we know that g(x.t; tn) can be be bounded by

supt≤T,N g(x.t; tn) ≤K ( 1
x + 1

x2 ) where K > 0 and depends only on α, θ and T . In addition,

note that the bound on the total drift term is K(1+ 1
x) + b(x) which we can see that it is

locally Lipschitz.

Consequently, consider a general time inhomogeneous SDE and define its scale function

s(x) = exp(−2 ∫
y

c d(ξ)β(ξ)dξ)dy, where d ∶ R→ R is the drift coefficient, β ∶ R→ R is the

diffusion coefficient and c ∈ intD where D is the domain where the diffusion lives. Then, if
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s(x) = ∞ it implies that x is an inaccessible point[KS91]. Therefore, if we consider the pro-

cess {Zt}t≥0 starting from X0 we obtain by a comparison theorem argument[KS91, cD18]

that P(Ŷt ≤ Zt,∀t ∈ R+) = 1. Hence, a straightforward computation of the scale function

for the process Z shows that infinity is an inaccessible point and hence explosions do not

occur throughout the whole [0, T ] which is immediately translated for X̂.

For the next assertion, we define the stopping time ζM ∶= inf{t ≥ 0∣X̂t >M}.

Again from (4.2.1) we get that

Ex [X̂t∧ζM
] = E [∫

t∧ζM

tn

σ(X̂t)
F (X̂t, t; tn)

dWt + ∫
t∧ζM

tn

σ2(X̂t)
F 2(X̂t, t; tn)

[g(X̂t, t; tn) +
b(X̂t)
σ2(X̂t)

]dt]

(4.2.13)

Evidently, this sequence is a localizing sequence which reduces the local martingale term

to a true martingale one. In addition, using the first statement of the lemma we obtain

that

sup
t≤T,N

Ex[X̂t∧ζm] <K [1 + ∫
t∧τM

tn

Ex[X̂s]ds] , (4.2.14)

where K is a positive constant. Finally, since explosions do not occur limM→∞ ζM →

∞ P-a.s. and thus, application of Fatou’s lemma on the left hand side and monotone

convergence on the right hand side along with Grönwall’s inequality results to

sup
t≤T,N

Ex[X̂t] < ∞. (4.2.15)

Consequently, let us assume that

E(m) ∶= sup
t≤T,N

Ex[X̂m
t ] < ∞, m ≥ 2 (4.2.16)
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Once again, using Ito’s Lemma we obtain

X̂m+1
t = X̂m+1

tn
+ (m + 1)∫

t

tn

X̂m
s

σ(X̂s)
F (X̂s, s; tn)

dWs

+ (m + 1)∫
t

tn

X̂m
s

σ(X̂s)2

F 2(X̂s, s; tn)
(g(X̂s, s; tn) −

k

θ2 +
α
θ2

X̂t

)ds

+ 1
2m(m + 1)∫

t

tn

X̂m−1
s

σ(X̂s)2

F 2(X̂s, s; tn)
ds, t ∈ (tn, tn + 1] (4.2.17)

Therefore, taking expectations for the corresponding stopped process and using the

bounds of for g(x, t; tn), F (x, t; tn) we obtain

E[X̂m+1
t∧ζM
] ≤ E[X̂m+1

tn∧ζM
] +K ∫

t∧ζM

tn

E[X̂m
s ]ds +K ∫

t∧ζM

tn

E[X̂m−1
s ]ds (4.2.18)

where K > 0 a constant depending on the parameters of the problem and T . Note that

the local martingale term is eradicated by the localization. In view of Fatou’s lemma

and monotone convergence in the left and right hand side respectively, the inequality

xm−1 ≤ 1 + xm and using (4.2.18) recursively we are left with

E(m + 1) ≤ X̂m+1
0 +KE(m) < ∞. (4.2.19)

Finally, supt≤T,N Ex[X̂m
t ] < ∞, ∀m ∈ N trivially implies that the extension for all m ≥ 0

holds. ∎

Next, a PDE expression for the expectation of the payoff-function is needed since we

must compare the difference between the actual result and the numerical approximation

which subsequently going to give rise to differential terms. Alfonsi [Alf05] using the

analytical formula of the CIR transition density proved the following proposition

Proposition 4.2.1 Let f ∈ C(q)((0,∞),R), m ≥ q such that there is K > 0 and m ≥

q, m ∈ N such that

∀x ≥ 0, ∣f (q)(x)∣ ≤K(1 + ∣x∣m). (4.2.20)
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Then if v ∶ R+ × [0, T ] → R defined by v(x, t) ≡ Ex[f(XT−t)] it holds that v satisfies the

following PDE:

∂tv + b(x)∂xv +
σ(x)2

2 ∂xxv = 0, (4.2.21)

v(T,x) = f(x). Additionally, derivatives of v(x, t) are uniformly bounded and there exists

K > 0 such that

∀(x, t) ∈ R+ × [0, T ], ∣∂k
x∂

r
t v(x, t)∣ ≤K(1 + xm+q+r), k + 2r ≤ q (4.2.22)

Consequently, we are ready to proceed to the main result of this paper.

Theorem 4.2.2 Let 2αµ ≥ θ2 and f ∈ C(2)b ((0,∞),R) such that ∣f (2)(x)∣ ≤ K(1 + xm),

where m ≥ 2 Then,

∣Ex[f(Xt)] −Ex[f(X̂t)]∣ ∼ O(
1
N
) (4.2.23)

Proof: In order to evaluate ∣Ex[f(XT )]−Ex[f(X̂T )] we partition it into small intervals

as follows:

Ex[f(XT )] −Ex[f(X̂T )] = Ex[v(T, X̂T )] − v(0,X0)] =
N−1
∑
n=0

Ex[v(tn+1, X̂tn+1) − v(tn, X̂tn)]

(4.2.24)

In view of Ito’s lemma and (4.2.21) we obtain that

v(tn+1, X̂tn+1) − v(tn, X̂tn) =Mtn+1 −Mtn + In
1 + In

2 , (4.2.25)
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where

In
1 ≡ ∫

tn+1

tn

∂tv(X̂t, t)(1 −
1

F 2(X̂t, t; tn)
)dt (4.2.26)

In
2 ≡ ∫

tn+1

tn

∂xv(X̂t, t) g(X̂t, t; tn)
σ(X̂t)2

F 2(X̂t, t; tn)
dt (4.2.27)

Mt ≡ ∫
t

0
∂xv(X̂t, t)

σ(X̂t)
F (X̂t, t; tn)

dWt (4.2.28)

with M being a local martingale.

At this point, before we proceed to the main calculations, we define two polynomial

functions which will be used further down

Q(x) ∶= 1 + xm+2

P (x) ∶= 1 + xm+3. (4.2.29)

To begin with, we show that M is a true martingale. Indeed,

Ex[⟨M⟩t] = Ex [∫
t

0
(∂xv(X̂t, t))

2 σ(X̂t)2

F 2(X̂t, t; tn)
dt] ≤ θ∫

t

0
sup
t≤T

Ex[(∂xv(X̂t, t))
2
X̂t]dt

(4.2.30)

Since ∣∂xv(x, t)∣ ≤ Q(x), Lemma 2 immediately shows that M is a true martingale and

thus Ex[Mtn+1 −Mtn] = 0.

Next,

∣Ex[f(XT )] −Ex[f(X̂T )]∣ = ∣
N−1
∑
n=0

Ex[In
1 + In

2 ]∣ ≤
N−1
∑
n=0
(Ex[∣In

1 ∣] +Ex[∣In
2 ∣]) (4.2.31)

Hence, we need to evaluate Ex[∣In
1 ∣] and Ex[∣In

2 ∣].
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At this point we outline the idea for bounding In
j , j = 1,2. Firstly, we shall make

use of Ito’s lemma in order to prove that In
j ∼ O( 1

N2 ) which consequently gives us

integrals of the form

Ex [∫
tn+1

tn
∫

t

tn

S(Xt, t; tn)
1

F 2(X̂s, s; tn)
ds dt] . (4.2.32)

Hence, if the S(x, t; tn) does not diverge quicker that 1/x
2α
θ2 when x approaches zero

then Fubini’s theorem and the first part of Lemma 2 ensures the required scaling with

respect to N . In addition, if S(x, t; tn) has a polynomial behavior then the second part

of the aforementioned proof along with Fubini’s theorem shall be used to obtain the same

bound. Additionally, Proposition 4.2.1 tell us that ∀(x, t) ∈ R+ × [0, T ] ∣∂xv(x, t)∣ ≤ Q(x)

and ∣∂tv(x, t)∣ ≤ P (x) ∀t ∈ R+, and thus we only need to appropriately bound the terms

which come from the inherited properties of the process X̂.

Let us start with evaluation of In
1 estimate. Direct use of supt≤T ∣∂sv(x, t)∣ ≤ P (x)

and Ito’s lemma results to

∣∫
tn+1

tn

∂sv(X̂t, t)(1 −
1

F 2(X̂t, t; tn)
)dt∣ ≤ ∫

tn+1

tn

P (X̂t)(1 −
1

F 2(X̂t, t; tn)
)dt

= ∫
tn+1

tn

[∫
t

tn

P (X̂s)∂sΨ(X̂s, s; tn)ds

+∫
t

tn

P (X̂s)∂xΨ(X̂s, s; tn)dX̂s + ∫
t

tn

∂xP (X̂s)Ψ(X̂s, s; tn)dX̂s

+∫
t

tn

∂xxP (X̂s)Ψ(X̂s, s; tn)
σ2(X̂s)

2F 2(X̂s, s; tn)
ds (4.2.33)

+∫
t

tn

P (X̂s)∂xxΨ(X̂s, s; tn)
σ2(X̂s)

2F 2(X̂s, s; tn)
ds

+∫
t

tn

∂xP (X̂s)∂xΨ(X̂s, s; tn)
σ2(X̂s)

F 2(X̂s, s; tn)
ds]dt, (4.2.34)
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where we used the fact that F 2(x, tn; tn) = 1 and Ψ is defined as Ψ(x, t; tn) ∶= 1− 1
F 2(x,t;tn)

In order to demonstrate how Lemma 2 controls our particular estimates to an ap-

propriately convergent term, let us calculate the fifth term of the right hand side. Since
1

F 2(x,t;tn)
≤ 1 we get that ∣1 − 1

F 2(x,t;tn)
∣ ≤ 1 and thus,

Ex [∫
tn+1

tn
∫

t

tn

∣∂xxP (X̂s)Ψ(X̂s, s; tn)
σ(X̂s)2

2F 2(X̂s, s; tn)
∣ds dt] ≤ θ2 ∫

tn+1

tn
∫

t

tn

Ex [∂xxP (X̂s)X̂s]ds dt

≤K ∫
tn+1

tn
∫

t

tn

ds dt ∼ O( 1
N2 ),

The reasoning for the rest of the terms is similar and is exhibited in Appendix A

where with the help of Lemma 2 we prove that all terms are O( 1
N2 ) which immediately

gives that Ex[∣In
1 ∣] ∼ O( 1

N2 ).

For the second estimate In
2 we follow a similar argument where Proposition 4.2.1 provides

the bound ∣∂xv(x, t)∣ ≤ Q(x). Additionally, as shown in Lemma 4.2.1 the last term of

g(x, t; tn) is O(t − tn) and thus we separate this term from g(x, t; tn) and apply Ito’s

lemma to the rest:
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∣∫
tn+1

tn

∂xv(X̂t, t)g(X̂t, t; tn)
σ(X̂s)2

F 2(X̂t, t; tn)
dt∣ ≤ ∫

tn+1

tn

Q(X̂t)∣g(X̂t, s; tn)∣
σ(X̂t)

F 2(X̂t, t; tn)
dt

≤ ∫
tn+1

tn

⎡⎢⎢⎢⎢⎣
Q(X̂t)(t − tn)

⎛
⎝

4α−θ2

16 + X̂t

2θ2X̂t

⎞
⎠

σ(X̂t)2

F 2(X̂t, t; tn)
+ ∫

t

tn

Q(X̂s)∂sZ(X̂s, s; tn)ds

+∫
t

tn

∂xQ(X̂s)Z(X̂s, s; tn)dX̂s + ∫
t

tn

Q(X̂s)∂xZ(X̂s, s; tn)dX̂s

+∫
t

tn

∂xxQ(X̂s)Z(X̂s, s; tn)
σ2(X̂s)

2F 2(X̂s, s; tn)
ds

+ ∫
t

tn

Q(X̂s)∂xxZ(X̂s, s; tn)
σ(X̂s)2

2F 2(X̂s, s; tn)
ds

+∫
t

tn

∂xQ(X̂s)∂xZ(X̂s, s; tn)
σ2(X̂s)

2F 2(X̂s, s; tn)
ds]dt, (4.2.35)

where Z(x, t; tn) ∶= g̃(x, t; tn) σ2(x)
F 2(x,t;tn)

with g̃(x, t; tn) ∶= 1
2x −

2+k(t−tn)

2x(2+k(t−tn))+(4α−θ2)(t−tn)
. Ad-

ditionally, note that we also used the triangle inequality along with the fact that

g̃(x, t; tn) ≥ 0 with g(x, tn; tn) = 0

The O( 1
N2 ) convergence rate of the first term of the right hand side is immediate

from Lemma 2. while for the rest of the terms we show in appendix A that all integrated

terms can be controlled by finite expectation quantities and thus also, Ex[∣In
2 ∣] ∼ O( 1

N2 )

Finally, from (4.2.31) we get that

∣Ex[f(XT )] −Ex[f(X̂T )]∣ ∼ O(
1
N
) (4.2.36)

∎
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4.3 Appendix A

Intended to clarify the obtained bounds in Theorem 4.2.2 we provide all quantities which

appear in the estimation of In
1 , I

n
2 .

4.3.1 Calculations for In
1

Let us start with the relevant quantities for In
1

Ft(x, t; tn) =
4α − θ2

8x + k2 ⇒
Ft(x, t; tn)
F (x, t; tn)

≤ 4α − θ2

8x + k2

Thus, application of Lemma 2 results to

E [∫
tn+1

tn
∫

t

tn

∣P (X̂s)∂sW (X̂t, t; tn)∣ds dt] ∣ ∼ O(
1
N2 )

Next,

∂xΨ(x, t; tn) = ∂x (1 −
1

F 2(x, t; tn)
) = 128(t − tn)x (θ2 − 4a)
[(4a − θ2)(t − tn) + 4x(2 + k(t − tn))]3

Hence, using the triangle inequality and the fact that 4α > θ2 we obtain the following

two inequalities

∣∂xΨ(x, t; tn)∣ ≤
K

t − tn
∣∂xΨ(x, t; tn)∣ ≤

K

x
, (4.3.1)

(4.3.2)

where K depends only on α, θ, T .

The construction of two separate inequalities allow us to efficiently control the term
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∂xΨ(x, t; tn) (g(x, t; tn) + b(x)
σ2(x))σ2(x). At this point, let us justify the purpose of the

above construction. As shown below, the first inequality of (4.3.1) will be used to control

the t−tn

x2 term contained in g(x, t; tn) while the second one will be used to control the rest

of the terms thus allowing us to get a finite result. For instance, if we were to use only the

first inequality we would get a divergence from the integration of 1
t−tn

while if instead we

chose to use only the second one we would get a 1
x2 total term in our integrated quantity

which, unless we further further impose that α > σ2, has a divergent expected value.

Thus, using the aforementioned inequalities we obtain

∣∂xΨ(x, t; tn)
(4α − θ2)2(t − tn)

32θ2x2 ∣ ≤ K
x2

∣∂xΨ(x, t; tn)(
b(x)
σ2(x) + g(x, t; tn) −

(4α − θ2)2(t − tn)
32θ2x2 )∣ ≤K(1

x
+ 1
x2 ),

Getting things together we obtain an integrand of the form K(1 + 1
x) 1

F 2(x,t;tn)
which

ensures that

E [∫
tn+1

tn
∫

t

tn

∣P (X̂s)∂xΨ(X̂s, s; tn)(g(X̂s, s; tn) +
b(X̂s)
σ2(X̂s)

) σ2(X̂s)
F 2(X̂s, s; tn)

∣ds dt] ∼ O( 1
N2 )

The next term of concern is

∂xxΨ(x, t; tn) = 128(t − tn)(4α − θ2) 8x(1 + 2k(t − tn)) − (t − tn)(4α − θ2)
(8x(1 + 2k(t − tn)) + (t − tn)(4α − θ2))4

Again, using elementary algebra one can obtain that

∣∂xxΨ(x, t; tn)∣ ≤
128(t − tn)(4α − θ2)

(8x(1 + 2k(t − tn)) + (t − tn)(4α − θ2))3 ≤
K

x2
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Therefore, immediate application of the same arguments results to

E [∫
tn+1

tn
∫

t

tn

∣P (X̂s)∂xxΨ(X̂s, s; tn)
σ2(X̂s)

2F 2(X̂s, s; tn)
∣ds dt] ∼ O( 1

N2 )

Concluding calculations for In
1 we show that the local martingale terms of (4.2.33),

∫
t

tn

P (X̂t)∂xΨ(X̂s, s; tn)
σ(X̂s)

F (X̂s, s; tn)
dWs

∫
t

tn

∂xP (X̂t)Ψ(X̂s, s; tn)
σ(X̂s)

F (X̂s, s; tn)
dŴs

are true martingales and thus have vanishing expectations. Indeed, their corresponding

quadratic variations

Ex

⎡⎢⎢⎢⎢⎣
∫

t

tn

(P (X̂t)∂xΨ(X̂s, s; tn)
σ(X̂s)

F (X̂s, s; tn)
)

2

ds

⎤⎥⎥⎥⎥⎦
≤KEx [∫

t

tn

P (X̂s)/X̂s

F 2(X̂s, s; tn)
ds] < ∞

Ex

⎡⎢⎢⎢⎢⎣
∫

t

tn

(∂xP (X̂t)Ψ(X̂s, s; tn)
σ(X̂s)

F (X̂s, s; tn)
]

2

ds
⎞
⎠
≤K ∫

t

tn

Ex[∂xP (Xs)X̂s]ds < ∞,

where for the first quadratic variation we used the second (4.3.1).

Note that, for the rest of the terms of (4.2.33) it is immediate, using the aforemen-

tioned techniques, to prove that they converge as O( 1
N2 )

4.3.2 Calculations for In
2

Next, let us move on to the estimates regarding In
2
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∂tZ(x, t; tn) = ∂t (g̃(x, t; tn)
σ2(x)

F 2(x, t; tn)
) =

θ2

x (− 2
F 2(x,t;tn)

+ (2+(t−tn)k)(4a−θ2+4kx)

F 2(x,t;tn)
− 32k2

θ2 x2)
F 2(x, t; tn)

+
θ2 (4a − θ2 + 4kx) ( (2+(t−tn)k)

xF (x,t;tn)
+ (t−tn)k2

θ2 − 1
x)

8F 3(x, t; tn)

The above quantity can be bounded as

∣∂tZ(x, t; tn)∣ ≤K(
1
x
+ 1 + x) 1

F 2(x, t; tn)
(4.3.3)

Therefore,

E [∫
tn+1

tn
∫

t

tn

Q(X̂s) ∣∂sZ(X̂s, s; tn)∣ds dt] ∼ O(
1
N2 )

Next, since ∣Z(x, t; tn)∣ = g̃(x, t; tn) σ2(x)
F 2(x,t;tn)

≤K(1+ x) and ∣g(x, t; tn) + b(x)
σ2(x) ∣ ≤K(1+ 1

x +
t−tn

x2 ) it is evident that their product will be of the form

∣Z(x, t; tn)(g(x, t; tn) +
b(x)
σ2(x))

σ2(x)
F 2(x, t; tn)

∣ ≤K (1 + 1
x
+ x + x2) ,

Concluding that

E [∫
tn+1

tn
∫

t

tn

∣∂xQ(X̂s)Z(X̂s, s; tn)
σ2(X̂s)

F 2(X̂s, s; tn)
(g(X̂s, s; tn) +

b(X̂t)
σ2(X̂s)

)∣ds dt] ∼ O( 1
N2 ).

Consequently, the next term is bounded by

∣∂xZ(x, t; tn)(g(x, t; tn) +
b(x)
σ2(x))∣ ≤K (1 +

1
x
+ 1
x2) ,

Thus, the term

E [∫
tn+1

tn
∫

t

tn

∣Q(X̂s)∂xZ(X̂s, s; tn)(g(X̂s, s; tn) +
b(X̂s)
σ2(X̂s)

) σ2(X̂s)
F 2(X̂s, s; tn)

∣ds dt]
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is also O( 1
N2 )

The remaining terms are in the same spirit and thus, it remains to show that the

corresponding local martingales are true martingales. This is immediate by the previous

discussion

Ex

⎡⎢⎢⎢⎢⎣
∫

t

tn

(Q(X̂s)∂xZ(X̂s, s; tn)
σ(X̂s)

F (X̂s, s; tn)
)

2

ds

⎤⎥⎥⎥⎥⎦
< ∞

Ex

⎡⎢⎢⎢⎢⎣
∫

t

tn

(∂xQ(X̂s)Z(X̂s, s; tn)
σ(X̂s)

F (X̂s, s; tn)
)

2

ds

⎤⎥⎥⎥⎥⎦
< ∞,

Concluding that is also In
2 ∼ O( 1

N2 )
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