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Abstract

In the first chapter, we investigate the hidden costs associated with Guaranteed Volume-

Weighted Average Price (G-VWAP) contracts. Using a continuous-time mean–variance

model incorporating both permanent and temporary price impacts, we demonstrate that

brokers offering guaranteed execution at seemingly attractive terms exploit their market

power through strategic timing of trades. Higher permanent price impact encourages bro-

kers to front-load trades, thereby increasing execution prices and embedding hidden costs

within the VWAP benchmark. In contrast, increased temporary impact flattens the broker’s

trading path, discouraging rapid trades.

In the second chapter, we study the implications of inverted exchanges on liquidity pro-

vision, particularly in the presence of high-frequency traders. Inverted exchanges mitigate

inefficiencies arising from tick-size constraints by enabling a finer grid. Inverted venues

solve the mismatch between an HFT’s price priority and a liquidity demander’s time prior-

ity. The model yields testable predictions on HFT activity and relative exchange trading

volumes, which we confirm using high-frequency data.

In the third chapter (co-authored with Emre Ozdenoren, Jiahua Xu and Kathy Yuan), we

examine dominant currencies in Decentralized Finance. Using data collected from Uniswap,

we analyze the swapping routes between currency pairs. In line with the dominant currency

paradigm, we find that safety is a leading dominance attribute during bust periods, while

liquidity is more important during booms. We also find that an active money market, market

size, and a currency’s correlation with transaction costs are important determinants for

dominance, suggesting essential design choices for future Central Bank Digital Currencies.
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Chapter 1

Guaranteed VWAP and the Costs

of Free Execution

We develop a continuous-time model of broker execution under a Guaranteed Volume-

Weighted Average Price (VWAP) contract, highlighting the hidden costs that arise from

the broker’s market power. Incorporating both permanent and temporary price impacts

into a mean–variance framework, we show that higher permanent impact endogenously

induces front-loaded trading, as the broker accelerates purchases early on to mitigate long-

term upward price pressure. By contrast, increased temporary impact flattens the broker’s

trading path, discouraging rapid trades and thus spreading execution more evenly over

time. These comparative statics underscore how VWAP contracts can mask significant

execution costs, ultimately paid by end clients. Our findings shed light on the broker’s

economic incentive to offer seemingly attractive VWAP guarantees at low or zero fees: by

judiciously timing trades, brokers can profit from price impact while still matching the

VWAP benchmark.

1.1 Introduction

Over the past two decades, Volume-Weighted Average Price (VWAP) has become an inte-

gral benchmark in institutional equity trading, now accounting for approximately 30–40%

of institutional order flows across major financial markets. VWAP represents the average

price at which a stock trades over a specified time interval, weighted by trading volume,

offering investors a transparent metric for evaluating execution quality. This benchmark’s

popularity has surged due to advancements in electronic trading platforms, increased trans-

parency, and dedicated matching services provided by exchanges, making VWAP central to

contemporary financial market structures.

10
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In response to this trend, brokers increasingly offer Guaranteed VWAP (G-VWAP)

execution contracts, promising clients execution at or better than the VWAP benchmark,

often at minimal or zero explicit fees. This practice presents a fundamental economic

puzzle: How can brokers sustainably offer VWAP guarantees at such attractive terms?

Understanding the underlying economic incentives and hidden costs in these arrangements

is essential, as traditional benchmark evaluation methods often overlook subtle execution

costs, thereby obscuring brokers’ implicit profit margins.

This paper addresses these critical issues by developing a continuous-time optimal exe-

cution model explicitly incorporating both permanent and temporary price impacts within

a mean–variance framework. Permanent price impact captures how accumulating inven-

tory permanently affects the equilibrium price level, while temporary impact represents

transient deviations in price due to the immediacy and aggressiveness of trading. Thus, our

model aligns closely with observations in market microstructure, extensively documented

by seminal works such as Almgren and Chriss (2001) and Bertsimas and Lo (1998).

Specifically, we consider a scenario in which a risk-averse broker commits to acquiring a

fixed quantity of shares, N , over a predetermined time horizon, [0, T ], under a Guaranteed

VWAP contract. We model market prices as evolving stochastically, influenced by the bro-

ker’s inventory and instantaneous trading speed, which jointly determine both permanent

and temporary price impacts. Our goal is to characterize explicitly how brokers strate-

gically adjust their execution strategies to optimize their expected profitability, balancing

execution costs against risk exposure due to price fluctuations.

Our analysis yields explicit solutions for the broker’s optimal trading strategy, reveal-

ing key insights into how execution dynamics respond to different forms of price impact.

An increase in permanent impact induces brokers to ”front-load” their trades, aggressively

accumulating shares early to minimize exposure to rising prices throughout the execution

interval. Conversely, increased temporary price impact encourages smoother trading sched-

ules, with brokers spreading execution more evenly over time to avoid significant transient

price deviations. When there is no temporary market impact, the model simplifies con-

siderably, and the broker opportunistically pushes up the price at times of high volume.

The only penalty comes from the inventory risk (deviations from the naive schedule from

which the broker optimally deviates point-wise). To satisfy the boundary conditions, they

can simply execute a block trade and unwind the additional inventory. Effectively, the

temporary price impact prevents outsized VWAP manipulation. These comparative statics

contrast sharply with a ”näıve” VWAP approach, where brokers simply trade proportionally

to market volume, ignoring strategic adjustments to market conditions and inadvertently

inflating execution costs.

We further quantify the hidden execution costs of G-VWAP under constant volume.
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G-VWAP contracts pay brokers based on the realized market VWAP, incentivizing them

to strategically shape the execution path. Even when explicit fees are absent, brokers earn

implicit profits by manipulating the timing of trades. By front-loading trades, brokers de-

liberately elevate early market prices, thus increasing the final VWAP against which they

deliver shares, securing profits from hidden costs embedded in execution prices. Risk aver-

sion is the only factor preventing the broker from driving the VWAP benchmark arbitrarily

high.

In practice, portfolio managers and traders frequently aim to minimize the average im-

plementation shortfall (IS)—the difference between average execution price and the arrival

price—particularly when urgency in order execution is minimal. Under these conditions,

traders commonly utilize VWAP algorithms, as these algorithms distribute order execution

evenly throughout the trading day without significant regard for execution risk. Tradi-

tional IS algorithms, conversely, do not specifically aim to minimize average IS. Rather,

their primary objective is to balance execution risk against potential market impact, typi-

cally executing orders more rapidly to mitigate risk. This often results in higher average IS.

Consequently, traders with low urgency requirements often employ VWAP algorithms in

ways that deviate from their original purpose, which is to closely follow the VWAP bench-

mark. Institutional investors often benchmark their execution against VWAP believing it

represents fair market pricing: our findings challenge this assumption by highlighting sub-

stantial hidden costs. Investors relying on guaranteed VWAP benchmarks without scrutiny

unknowingly subsidize broker profits through elevated market prices induced by strategic

execution. Investors should thus carefully assess broker incentives or prefer alternative

benchmarks less susceptible to manipulation.

The remainder of the paper is organized as follows. In Section 3.2, we review the

related literature. In Section 1.3, we present the model setup. In Section 1.4, we solve

the model and analyze the determinants of front-loading. Section 1.5 extends the model to

non-linear market impact. Section 1.6 extends the model with a stochastic volume profile.

In Section 1.7, we quantify our results with a numerical analysis. Section 3.8 concludes. All

proofs are provided in the appendix.

1.2 Related Literature

Our analysis contributes to the growing literature on optimal trade execution and the eco-

nomic incentives underlying widely-used trading benchmarks, particularly VWAP contracts.

Closely related to our work is the paper by Baldauf et al. (2024), which examines optimal

contracting in block trading contexts. They analyze agency conflicts arising when clients

outsource large executions to dealers, emphasizing how price impact and hidden actions
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create subtle contractual dynamics. Our model extends this line of reasoning by specifi-

cally analyzing brokers’ incentives under Guaranteed VWAP (G-VWAP) arrangements, a

popular yet understudied form of contract.

Early seminal contributions to the literature on execution costs include Bertsimas and

Lo (1998) and Almgren and Chriss (2001), who introduced foundational continuous-time

frameworks for analyzing optimal trading strategies considering both permanent and tem-

porary price impacts. Further extensions by Almgren and Chriss (1997) focused on optimal

liquidation strategies, providing insights into strategic trade-offs between execution speed

and price impact. Our approach builds upon this fundamental structure but shifts the

focus explicitly to VWAP-based contractual arrangements and the hidden execution costs

inherent in these benchmarks.

Previous literature has extensively studied optimal VWAP execution strategies, such as

Konishi (2002), McCulloch and Kazakov (2012), and Frei and Westray (2015). These studies

primarily emphasized the trader’s perspective, focusing on the minimization of trading

costs relative to a known benchmark without explicitly modeling broker incentives under

guaranteed benchmarks. In contrast, our model incorporates a broker-centric perspective,

explicitly characterizing how brokers strategically adjust their execution paths under G-

VWAP contracts to exploit price impacts for implicit profit.

Price manipulation and strategic trading behavior have been analyzed extensively in var-

ious market contexts. Bernhardt and Taub (2008) study front-running dynamics, analyzing

informed traders’ incentives to trade ahead of large liquidity demands, a concept related

to—but distinct from—the strategic front-loading behavior we document under VWAP

contracts. Röell (1990) addresses dual-capacity trading and its implications for market

quality, providing a foundational understanding of how intermediaries’ dual roles can affect

execution outcomes. Similarly, Alfonsi and Acevedo (2014) and Klöck et al. (2011) ex-

plore optimal execution and manipulation within limit order book and dark pool contexts.

While these papers examine manipulative behavior broadly, our analysis provides specific

economic rationale and quantitative insights into brokers’ strategic deviations from näıve

VWAP benchmarks.

Recent research on benchmark design, notably Duffie and Dworczak (2021), emphasizes

the robustness of financial benchmarks against manipulative behavior. While they provide

a general framework for designing manipulation-resistant benchmarks, we contribute to this

dialogue by illustrating precisely how guaranteed benchmarks like VWAP can be manipu-

lated through strategic execution timing, reinforcing the necessity of thoughtful benchmark

design.

Finally, our paper complements studies on principal trading arrangements by Baldauf

et al. (2021) and optimal benchmark choices by Frei and Mitra (2020), as well as the incor-
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poration of order-flow dynamics into optimal execution strategies discussed in Cartea and

Jaimungal (2015). Collectively, this literature highlights the complex interactions between

execution strategies, benchmark choices, and market microstructure.

Our work significantly advances understanding of guaranteed benchmark execution,

specifically revealing hidden cost mechanisms underlying seemingly attractive broker of-

ferings. By highlighting brokers’ incentives to deviate strategically from näıve execution,

we provide practical insights for institutional investors, regulators, and trading platform

designers seeking to enhance execution transparency and market efficiency.

1.3 Model Setup

1.3.1 Trading Environment

We model a continuous-time trading environment over a fixed execution interval [0, T ].

A broker is contracted to purchase a total quantity of shares, denoted by N , on behalf

of a client. The broker begins the execution window without inventory and must exactly

achieve the target inventory level N by the terminal time T . Formally, we define the broker’s

inventory at time t ∈ [0, T ] as x(t), which satisfies the boundary conditions

x(0) = 0, x(T ) = N, (1.1)

The broker’s control is the trading speed, u(t) := ẋ(t), for 0 ≤ t ≤ T . Thus, x(t) evolves via

x(t) = x(0) +

∫ t

0
u(s) ds.

The broker executes trades continuously in a limit order market, with transaction prices

subject to both permanent and temporary price impacts. Throughout our analysis, we

assume that the broker is risk-averse, seeking to minimize expected execution costs while

also controlling the variance of those costs.

1.3.2 Market Model

We adopt a standard linear price-impact model in continuous time, which closely follows

the canonical market microstructure framework of Almgren and Chriss (2001). Specifically,

the market price of the security at time t, denoted by S(t), evolves according to:

S(t) = S(0) + λx(t) + η ẋ(t) + σ Bt, (1.2)

where
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• S(0) is the initial market price at time t = 0.

• λ > 0 captures the permanent impact per unit of inventory,

• η > 0 captures the temporary impact per unit of trading speed,

• σ > 0 is the price volatility coefficient,

• Bt is a standard Brownian motion with zero drift.

The parameter λ > 0 captures the permanent price impact of accumulated inventory. Intu-

itively, as the broker accumulates shares, their inventory permanently shifts the equilibrium

market price upward. The parameter η > 0 measures temporary price impact, which cap-

tures transient price deviations directly proportional to the instantaneous trading speed.

High trading speed temporarily pushes prices away from fundamental levels, whereas slower

trading mitigates such transient deviations.

Finally, σ > 0 is the volatility parameter, and Bt is a standard Brownian motion with

zero drift, representing random fluctuations in the market price unrelated to the broker’s

activity.

1.3.3 Guaranteed VWAP

We introduce a deterministic1 market trading volume profile V (t) ≥ 0 for t ∈ [0, T ]. Let

Vc(t) =
∫ t
0 V (u)du be the cumulative volume function. Thus, the total market volume over

the execution interval is given by

Vc(T ) =

∫ T

0
V (t) dt, (1.3)

The Volume-Weighted Average Price (VWAP) over the interval [0, T ] is defined naturally

as the total value traded divided by the total volume:

VWAP[0,T ] =

∫ T

0
S(t)V (t) dt∫ T

0
V (t) dt

=
1

Vc(T )

∫ T

0
S(t)V (t) dt, (1.4)

where S(t) is the observed market price at time t.

1For analytical tractability, we have assumed that the volume is deterministic. In reality, practitioners
often use volume forecasts to execute VWAP orders. Here, we can interpret the volume function as the
expected volume. This simplification neglects the volume variance risk, which we fully acknowledge. In
Section 1.6, we show that the stochastic volume model has similar front-loading properties.
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1.3.4 Mean-Variance Objective

Under the Guaranteed VWAP (G-VWAP) contract, the broker commits to delivering the

acquired N shares at the realized VWAP, receiving total revenue:

N ×VWAP[0,T ] =
N

Vc(T )

∫ T

0
S(t)V (t) dt,

The broker’s cost arises from purchasing these shares on the market, paying the instanta-

neous market price S(t) whenever trading at rate ẋ(t). Thus, the broker’s profit-and-loss

(PnL) from executing the VWAP order is stochastic and depends crucially on their chosen

trading strategy. The broker’s objective is to maximize a standard mean–variance utility

criterion 2 that captures both the expected cost and the riskiness (variance) of the execution

strategy:

max
x(·)

{
E[Π[x]] − γ

2 Var[Π[x]]
}
, (1.5)

where Π[x] denotes the broker’s PnL under the trading strategy x(·), and γ > 0 is the

broker’s risk-aversion coefficient. In the following, we contrast this optimization against a

”näıve” VWAP execution strategy, under which the broker simply trades in direct propor-

tion to the market’s volume profile:

1.3.5 Optimization Problem

The broker seeks to balance expected execution costs against risk (variance) in a standard

mean-variance optimization problem.

Expected Cost. Under the assumed linear price impact model (1.2), the broker’s ex-

pected cost of acquiring the shares is given by:∫ T

0
E[S(t)]ẋ(t)dt =

∫ T

0
[S(0) + λx(t) + ηẋ(t)] ẋ(t)dt, (1.6)

where x(t) denotes the broker’s inventory at time t.

2Mean-variance utility is standard in optimal-execution models because it generates tractable linear-
quadratic control problems (Almgren and Chriss, 1997). When combined with linear or power-law price
impact, the optimal schedule satisfies the Huberman and Stanzl (2004) no-dynamic-arbitrage condition: the
broker’s round-trip trades yield non-positive expected PnL.
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Profit Variance. Applying Itô’s isometry, the variance of the broker’s profit-and-loss can

be expressed as:

Var[Π[x]] = σ2
∫ T

0

(
N

Vc(T )

∫ t

0
V (u), du− x(t)

)2

dt. (1.7)

Consequently, the broker’s optimization problem can be stated as maximizing the fol-

lowing mean-variance functional:

J [x] =

∫ T

0

(
N

Vc(T )
V (t)− ẋ(t)

)
S̄(t)dt− γ

2
σ2
∫ T

0

(
N

Vc(T )

∫ t

0
V (u)du− x(t)

)2

dt, (1.8)

where S̄(t) represents the deterministic component of the price, specifically S(0) + λx(t) +

ηẋ(t).

1.4 Optimal Trading Schedule

Before deriving the broker’s optimal execution path, we first examine a simpler benchmark

known as the naive VWAP approach. Under this strategy, the broker executes trades in

exact proportion to the market’s volume profile, thereby accumulating shares at the same

rate as the overall market. Although such a policy may appear intuitive, it ignores potential

benefits of adjusting execution speed in response to market impact parameters.

1.4.1 Naive VWAP Approach

To implement the naive VWAP policy, the broker matches the volume curve by maintaining

the trading speed

ẋ(t) =
N

Vc(T )
V (t), 0 ≤ t ≤ T,

where N is the total number of shares the broker must purchase over the interval [0, T ].

Integrating this rate from 0 to t yields

x(t) =

∫ t

0
ẋ(u) du =

N

Vc(T )

∫ t

0
V (u) du,

thereby ensuring that, at any time t, the broker’s inventory tracks the cumulative market

volume proportionally.

Under this naive schedule, the expected cost of purchasing the N shares reflects both

fundamental and impact-driven components. Formally, the expected VWAP paid by the
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broker is

E[VWAP] =

∫ T

0
E[S(t)] ẋ(t) dt,

where E[S(t)] = S(0) + λx(t) + η ẋ(t) accounts for permanent impact (λ) arising from the

broker’s inventory level and temporary impact (η) due to instantaneous trading speed. Sub-

stituting ẋ(t) = N
Vc(T ) V (t) and rearranging, one can identify three distinct cost components:

Base Cost Term: ∫ T

0
S(0)

N

Vc(T )
V (t) dt = S(0)N.

This term is simply the initial price multiplied by the total number of shares purchased.

Permanent Impact Term:

λ
N

Vc(T )
· N

Vc(T )

∫ T

0

[∫ t

0
V (u) du

]
V (t) dt.

Here, the broker’s growing inventory shifts the equilibrium price upward, magnifying sub-

sequent trading costs.

Temporary Impact Term:

η
N

Vc(T )
· N

Vc(T )

∫ T

0
V (t)2 dt.

This cost reflects short-lived price deviations induced by trading at each instant.

Proposition 1 (Naive VWAP Cost). Under a naive VWAP strategy, the expected VWAP

per share is given by

E
[
VWAPnaive

]
= S(0) +

N

Vc(T )2

(
λ

∫ T

0

[∫ t

0
V (u) du

]
V (t) dt + η

∫ T

0
V (t)2 dt

)
.

The key insight is that, although naive VWAP execution may appear to eliminate track-

ing error relative to the market’s volume curve, it does not control for price impacts or

mitigate the resulting risk exposure. Consequently, brokers who rely exclusively on naive

VWAP strategies either charge a risk premium or face exposure to potentially volatile exe-

cution costs.
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1.4.2 General Solution

We now characterize the broker’s optimal trading path, which balances immediate price

impact against prolonged upward price pressure. This balance leads to systematic deviations

from the naive VWAP schedule, especially in the presence of nontrivial permanent and

temporary impact parameters. The theorem below states the solution in closed form.

Theorem 1 (Optimal Trading Schedule). Define

α :=
√

γ σ2

2 η ,

and consider the mean–variance problem in (1.8) with boundary conditions x(0) = 0 and

x(T ) = N . The unique optimal trading schedule x∗(t) is given by the trading speed

ẋ∗(t) = ẋp(t) +
[
N − xp(T )

] α cosh
(
α t
)

sinh
(
αT
) ,

and the corresponding inventory

x∗(t) = xp(t) +
[
N − xp(T )

] sinh
(
α t
)

sinh
(
αT
) . (1.9)

Here, xp(t) is a particular solution obtained through the Green’s function method:

xp(t) =

∫ T

0
G(t, s)

[
1
2 η f(s)

]
ds,

where

• G(t, s) is the Green’s function for the second-order operator d2

dt2
− α2, given by

G(t, s) =
1

α sinh
(
αT
) ×

sinh
(
α t
)
sinh

(
α (T − s)

)
, if t ≤ s,

sinh
(
α s
)
sinh

(
α (T − t)

)
, if t > s,

• the forcing term f(t) is

f(t) = − η
N

Vc(T )
V ′(t) + λ

N

Vc(T )
V (t) − γ σ2

N

Vc(T )
Vc(t).

This representation explicitly shows how the broker’s inventory and trading speed adjust

over time to trade off immediate (temporary) impact versus long-term (permanent) price

pressure, while also accounting for execution risk.
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Notice that this solution generalizes Almgren and Chriss (2001) framework, as our model

retrieves their optimal trading for a Market On Close (MOC) benchmark, the price at which

the trading session closes. In effect, it is equivalent to a VWAP benchmark where the volume

is a Dirac mass at time T . That is, we set

V (t) = 0 for t < T, V (T ) = δT , (1.10)

so that the cumulative volume

Vc(t) =

∫ t

0
V (u) du

satisfies Vc(t) = 0 for t < T and jumps at T . Consequently, the Volume-Weighted Average

Price (VWAP) becomes

VWAP =

∫ T
0 S(t)V (t) dt∫ T

0 V (t) dt
= S(T ). (1.11)

Corollary 1 (Almgren-Chriss). Under the MOC benchmark, we obtain the optimal inven-

tory trajectory:

x∗(t) = N

[
1−

sinh
(
α(T − t)

)
sinh

(
αT
) ]

.

Instead of a liquidation scenario, this results corresponds to the optimal inventory when

the brokers needs to acquire shares instead. More generally, for any volume profile, once

x∗(t) is determined, both the expected benchmark price and the execution risk can be

directly computed.

Proposition 2 (Optimal VWAP Schedule). Given the optimal trading schedule x∗(t), the

expected VWAP per share satisfies

E[VWAP∗] = S(0) +
1

Vc(T )

[
η N V (T ) +

∫ T

0
x∗(t)

(
λV (t) − η V ′(t)

)
dt
]
,

and the variance of the broker’s profit is

Var
[
Π
[
x∗
]]

= σ2
∫ T

0

( N

Vc(T )

∫ t

0
V (u) du − x∗(t)

)2
dt.

1.4.3 Discussion

In the following, we characterize the behavior of the optimal inventory.

Effect of Permanent Price Impact λ The parameter λ > 0 governs permanent price

impact, whereby an accumulated inventory x(t) permanently shifts the price dynamics
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upward by λx(t). Although the boundary condition x∗(T ) = N remains fixed regardless of

λ, the path x∗(t) for t < T generally shifts in response to changes in λ. Differentiating with

respect to λ yields
∂x∗(t)

∂λ
=

∂xp(t)

∂λ
− ∂xp(T )

∂λ

sinh
(
α t
)

sinh
(
αT
) .

Observe that sinh(αt)/ sinh(αT ) is small when t is near 0. Consequently, early in the

trading horizon, any positive increment ∂xp(t)/∂λ is largely unaffected by the subtraction

term, implying
∂x∗(t)

∂λ
> 0 for small t.

In other words, an increase in λ leads the broker to accumulate shares more aggressively

at early times, thus “front-loading” the strategy. Intuitively, if permanent impact is costly,

the broker prefers to purchase earlier so that the position is established before the price is

too greatly affected by large inventories.

Fixing the market impact parameter, if the broker anticipates large future volume (e.g.,

a “volume spike”) at some s < T , the permanent impact component λx(t) can provide an

incentive to acquire shares before that high-volume window.

Note that for tractability, we have assumed that market impact and volume are inde-

pendent. This is, of course, false, as temporary market impact should be lower with higher

volume. However, it is not exactly clear how volume affects the permanent component.

Including a volume component in λ and η would not materially change the main results of

this paper, only the magnitude.

Effect of Temporary Price Impact η. The parameter η > 0 measures the temporary

impact associated with rapid trading, reflected by the term η ẋ(t) in the price. Unlike

λ, which permanently shifts the price, η penalizes bursts of high trading speed. Recall

that α =
√

γ σ2

2 η , which implies α decreases with increasing η. When α is smaller, the

hyperbolic ratio sinh(αt)/ sinh(αT ) varies more slowly in t. Consequently, the homogeneous

component of x∗(t) flattens, reducing any strong front-loading or back-loading tendencies.

When η = 0, the optimization problem simplifies considerably, and the optimal inventory

trajectory becomes:

x∗(t) =
N

M
Vc(t)−

λN

γσ2M

[
V (t)− V (0)

]
, 0 ≤ t < T,

with the corresponding trading speed

ẋ∗(t) =
N

M
V (t)− λN

γσ2M
V ′(t) +

λN

γσ2M

[
V (T )− V (0)

]
δ(t− T ),
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where δ(·) denotes the Dirac delta function. In the absence of temporary impact, the broker

is no longer discouraged from trading rapidly. The only penalty comes from the inventory

risk (deviations from the naive schedule). To gain from the permanent impact, the broker

optimally deviates point-wise.

Remark that an impulse function appears in the solution. There is no cost to trading

infinitely fast, so the optimal strategy uses a block trade to jump to the required terminal

position. The size of the final block trade is given by

∆x(T ) =
λN

γσ2M

[
V (T )− V (0)

]
When temporary impact is present (i.e., η > 0), the objective includes a term penalizing

trading speed—roughly, a cost proportional to η ẋ(t)2. This regularizes the problem and

forces the optimal trading schedule to be smooth so that large, instantaneous trades are

avoided. However, when η = 0, the speed–penalty drops out. In this case, the functional

depends only on x(t) (and not on ẋ(t)), so the interior optimality condition is determined

point–wise. But such a point–wise optimum typically does not automatically satisfy the

boundary conditions x(0) = 0 and x(T ) = N .

Effect of Order Size N The total shares to be acquired, N > 0, enter the solution both

in the boundary condition x∗(T ) = N and in the particular solution xp(t).

Differentiating with respect to N yields

∂x∗(t)

∂N
=

∂xp(t)

∂N
+

sinh
(
α t
)

sinh
(
αT
)[ 1 − ∂xp(T )

∂N

]
.

Because xp(t) is (under typical linear market models) itself linear in N , increasing N typ-

ically shifts the entire trajectory x∗(t) upward uniformly in t. In effect, the shape of the

trading strategy remains similar; the amplitude simply increases to accommodate a larger

total acquisition.

Effect of Risk Aversion γ. The parameter γ > 0 enters through the mean–variance

objective, controlling the penalty on variance. In the price-dynamics model, increasing γ

intensifies the broker’s aversion to price uncertainty.

An increase in γ also increases α =
√
γσ2/(2η), which, by itself, steepens the homoge-

neous term sinh(αt)/ sinh(αT ) and might encourage more front-loaded trading. However,

the variance penalty also contains a term that incentivizes the broker to stay closer to the

cumulative market volume path
∫ t
0 V (u) du. Since deviating too far from the market’s nat-

ural volume profile can increase risk (as measured by variance), a higher γ counterbalances
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the front-loading tendency. In practical terms, the broker becomes more cautious, trading

in a manner that reduces volatility of PnL. Empirically, this often means a more moderate

accumulation pace rather than fully exploiting short-term cost advantages.

Figure 1.1: Impact of risk aversion on execution wedge, with fixed parameters P = 20,
λ = 0.4, η = 0.4, σ = 0.2, N = 0.50%ADV and T = 1.

Effect of the Volume Profile V (t). Finally, the volume profile V (t) drives the particular

solution xp(t). Periods with elevated volume have a disproportionate effect on the realized

VWAP—these time windows contribute more heavily to the average price. Consequently,

the broker’s optimal trajectory typically places greater emphasis on acquiring shares (and

thus potentially moving prices) before or around high-volume intervals. In scenarios where

volume spikes are anticipated, the broker may front-load in advance to benefit from the

uplift in price that accumulates when permanent impact is significant.

From an empirical standpoint, the volume profile is often U-shaped (e.g., heavier trad-

ing near market open and close). As illustrated in figure 1.2, our model suggests that if a

broker can anticipate an especially active segment of the trading day, it may seek to strate-

gically adjust its inventory in advance—if permanent impact is appreciable, doing so raises

subsequent prices to the broker’s advantage under a VWAP contract.

1.4.4 Hidden Execution Cost

Next, we want to study how much the broker’s optimal trading distorts the final benchmark.

We define the difference between the optimal and the näıve expected VWAP as

∆ = E [VWAP∗]− E [VWAPnaive]



24

(a) Constant volume (b) U-shaped volume

Figure 1.2: Optimal inventory with different volume patterns, with fixed parameters λ =
0.4, η = 0.4, σ = 0.2 , γ = 0.2, N = 1 and T = 1.

Substituting in the above expressions, we obtain

∆ =
1

Vc(T )

{
λ

[∫ T

0
x∗(t)V (t) dt−

∫ T

0
xnaive(t)V (t) dt

]
+ η

[
N V (T )− N

Vc(T )

∫ T

0
V (t)2 dt−

∫ T

0
x∗(t)V ′(t) dt

]} (1.12)

The key observation is that if permanent price impact is high enough, the optimal trading

strategy front-loads execution, i.e.

x∗(t) > xnaive(t) =
N

Vc(T )

∫ t

0
V (u) du

Proposition 3 (Front-loading). Assume that V (t) is non-decreasing and λ ≥ 3η V ′(t)
V (t) for

all t ∈ [0, T ], then the broker’s inventory process under optimal trading is always higher

than under the naive schedule, that is x∗(t) > xnaive(t), ∀t ∈ [0, T ].

Although we do not view these assumptions as realistic, we can draw significant insights

from this result. We motivate the monotonicity assumption through two examples. First,

a common stylized fact about trading volume is its U-shaped pattern. Thus, when a broker

receives an order mid-day, volume is expected to increase and culminate at market close.

Secondly, irrespective of time, a large inbound order will increase the instantaneous volume,

while having minimal impact on the total expected volume throughout the day. In that

scenario, a weaker result than Proposition 3 is that the optimal trading leads to front-loading

for a small time window τ , i.e. x∗(t) > xnaive(t), ∀t ∈ [0, τ ].
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1.4.5 Constant Volume Case

To develop additional intuition, we consider a tractable scenario in which trading volume

remains constant throughout the execution horizon. Formally, let V (t) = V for all t ∈ [0, T ].

In this special case, the Volume-Weighted Average Price (VWAP) coincides with a Time-

Weighted Average Price (TWAP). Consequently,

Vc(T ) =

∫ T

0
V (t) dt = V T and xnaive(t) =

N

T
t.

Under the naive trading strategy that simply scales with time (i.e., the broker buys shares

uniformly over the interval), a straightforward calculation shows

E
[
VWAPnaive

]
= S(0) +

N

T

(
λN
2 + η

)
.

In contrast, under the optimal strategy, the expected TWAP (equivalently, the VWAP when

V is constant) takes the form

E
[
VWAP∗] = S(0) +

1

Vc(T )

[
η N V + λV

∫ T

0
x∗(t) dt

]
= S(0) +

1

T

[
η N + λ

∫ T

0
x∗(t) dt

]
.

This result highlights how the optimal trading schedule strategically shifts more of the

broker’s purchases toward earlier times (often referred to as “front-loading”), raising the

permanent price impact over a larger portion of the execution window. The economic

intuition is that when permanent impact λ is substantial, building inventory early induces

higher future prices and thus elevates the eventual VWAP. Under a Guaranteed VWAP

contract, this benefits the broker by allowing the final shares to be offloaded at a higher

benchmark price, effectively capturing hidden profits even if explicit fees appear minimal.

Proposition 4 (Optimal TWAP schedule). Under constant volume and the optimal TWAP

execution policy, the broker’s inventory evolves according to

x(t) =
N t

T
+

N λ

γ σ2 T

[
1 − 1 − e−αT

sinh(αT )
sinh

(
α t
)
− e−α t

]
,

Proposition 5 (Hidden cost of guaranteed execution). The incremental cost associated

with the broker’s strategic trading, defined by ∆ = E[VWAP∗] − E[VWAPnaive], is given

by

∆ =
N λ2

γ σ2 T 2

[
T − 1 − e−αT

α

(
1 +

cosh(αT ) − 1

2 sinh(αT )

)]
.
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This hidden cost ∆ represents the incremental increase in the final VWAP stemming from

the broker’s front-loaded strategy. By purchasing more aggressively early in the day, the

broker exerts permanent upward pressure on the stock price for the remainder of the ex-

ecution interval, thereby boosting the ultimate average price. Although the benchmark is

technically met, the client ends up facing a higher effective purchase cost over time, enabling

the broker to reap additional (often opaque) profits. These findings underscore why, despite

low or zero explicit fees, G-VWAP agreements can embed significant implicit execution costs

that are ultimately borne by the end investor.

Corollary 2. As γ → 0,

∆ ∼ Nλ2

4
√
2ησ2

γ−1/2.

This shows that the VWAP difference diverges as γ−1/2 when the risk–aversion param-

eter γ tends to zero, reflecting that a risk–neutral broker (i.e. γ = 0) is incentivized to

front–load trades without penalty, thereby driving the benchmark price arbitrarily high.

1.5 Robustness to Concave Permanent Impact

Empirical studies (Tóth et al., 2011; Brokmann et al., 2016) show that permanent market

impact is concave in trade size. To verify our qualitative results do not hinge on linearity,

we generalize the linear-impact setup by letting the permanent component of market impact

follow a power law with exponent ρ ∈ (0, 1]:

S(t) = S(0) + λx(t)ρ + η ẋ(t) + σBt, 0 ≤ t ≤ T. (1.13)

The remaining primitives (volume curve V (·), risk parameter γ, etc.) are unchanged. We

show that the optimal trading path continues to “front-load” for any ρ < 1 and provide the

ODE characterizing the optimum.

Deriving the Euler–Lagrange equation. Re-write the broker’s mean–variance objec-

tive, as

J [x] =

∫ T

0

( N

Vc(T )
V (t)− ẋ(t)

)[
λx(t)ρ+ ηẋ(t)

]
dt− γσ2

2

∫ T

0

( N

Vc(T )
Vc(t)−x(t)

)2
dt, (1.14)

subject to x(0) = 0 and x(T ) = N . Setting L(t, x, ẋ) to be the integrand of (1.14) and ap-

plying the Euler–Lagrange condition d
dt∂ẋL− ∂xL = 0 yields, after straightforward algebra,

2η ẍ(t)−γσ2 x(t) = −η N

Vc(T )
V ′(t)+λρx(t)ρ−1

( N

Vc(T )
V (t)−ẋ(t)

)
−γσ2 N

Vc(T )
Vc(t). (1.15)
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For ρ = 1, this collapses to the linear model.

Positivity of the λ–derivative (front-loading). Let xλρ(t) denote the solution of (1.15)

for a given λ. Differentiate (1.15) with respect to λ and set y(t) := ∂xλρ(t)/∂λ. We obtain

the linear second-order ODE:

2η ÿ(t)− γσ2 y(t) = ρ xλρ(t)
ρ−1
( N

Vc(T )
V (t)− ẋλρ(t)

)
, (1.16)

with homogeneous boundary conditions y(0) = y(T ) = 0.

Because ρ ∈ (0, 1] we have xρ−1 > 0 for x > 0. Moreover V (t) ≥ 0 and, by definition of

ẋ, the bracket in (1.16) satisfies N
Vc(T )V (t) − ẋλρ(t) ≥ 0 for t close to 0 (the broker cannot

trade faster than the entire market instantaneously). Hence the right-hand side of (1.16) is

non-negative on a neighbourhood (0, ε) of the origin.

Applying the standard maximum principle for the linear ODE: 2η ÿ− γσ2y = f(t) with

f ≥ 0 shows that the minimum of y is achieved at the boundary. Given y(0) = 0 and

y′(0) = ρN
2ηVc(T )V (0) > 0, we deduce

y(t) =
∂xλρ(t)

∂λ
> 0, 0 < t < ε. (1.17)

Thus an increase in λ strictly raises the optimal inventory early in the execution window,

i.e.

xλ2
ρ (t) > xλ1

ρ (t) for 0 < t < ε, λ2 > λ1. (1.18)

Front-loading therefore persists under any concave permanent-impact exponent ρ ∈ (0, 1].

Bound on the hidden-cost wedge. Integrating (1.15) against xλρ and repeating the

steps of Proposition 5 gives

∆ρ =
λ2N

γσ2T 2−ρ

[
Cρ +O

(
(λ/η)1−ρ

)]
, (1.19)

where Cρ ∈ (0,C1] is a constant depending only on (ρ, γ, σ2).

When ρ = 1, the model collapses to the linear baseline; for ρ < 1, permanent impact

grows sub-linearly. Solving for the modified Euler-Lagrange equation, we find that front-

loading remains optimal whenever λ > 0. The curvature merely moderates its intensity.
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1.6 Stochastic Volume

For completeness, we now let the market volume be stochastic and revisit the broker’s

optimization problem. While the model becomes much harder to interpret, we show that

the main economic mechanism remains. As in Frei and Westray (2015), we use a Gamma-

Bridge to model the relative volume curve.

1.6.1 Modeling Volume with a Gamma Bridge

Unlike the purely deterministic volume setting of Section 1.4.5, we now let the intraday

cumulative volume be random, modeled via a gamma bridge. Specifically, assume that

cumulative volume Vc(t) follows a gamma process with shape parameter m > 0 and rate

θ = 1, so Vc(0) = 0. We then define

Γ(t) :=
Vc(t)

Vc(T )
,

so that Γ(0) = 0 and Γ(T ) = 1. Intuitively, Γ(t) represents the fraction of daily volume

realized by time t, and by construction, it is always in [0, 1]. We assume that Γ(·) is

independent of the Brownian motion B(·).

1.6.2 Modified Problem

Under a Guaranteed VWAP contract, the broker delivers N shares at the realized VWAP,

which is now given by

VWAP =

∫ T

0
S(t) dΓ(t).

Since Γ(T ) = 1, this is exactly the volume-weighted average of S(t) during [0, T ]. The

broker’s total profit-and-loss (PnL) from the strategy x(·) is then

Π[x] = N
[
VWAP

]
−
∫ T

0
S(t) ẋ(t) dt, (1.20)

where the integral
∫ T
0 S(t) ẋ(t) dt represents the cost of purchasing N shares in the

market.

Remark. In the special case where Γ(t) were deterministic, this objective reduces to

the earlier VWAP model of Section 1.4.5. Here, however, the fraction of daily volume

realized up to time t is itself a random process, driven by the gamma-bridge dynamics.

This randomness affects both the realized VWAP and the execution cost, so we must solve
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a stochastic control problem that accounts for Γ(t) as well as B(t).

As in Subsection 1.3.4, the broker maximizes a mean–variance objective:

max
x(·)

{
E
[
Π[x]

]
− γ

2
Var
(
Π[x]

)}
, subject to x(0) = 0, x(T ) = N. (1.21)

The broker wants to choose a trading path x(·) that balances expected PnL versus its

variance.

Substituting the price dynamics into (1.20):

Π[x] = N

∫ T

0

[
S(0)+λx(t)+η u(t)+σ B(t)

]
dΓ(t)−

∫ T

0

[
S(0)+λx(t)+η u(t)+σ B(t)

]
u(t) dt

Since the only source of randomness is B(t), by Itô’s isometry one can show that

Var(Π[x]) = σ2
∫ T

0

(
N y − x(t)

)2
dt.

Thus, the objective (1.21) becomes

J [x] = E[Π[x]]− γσ2

2

∫ T

0

(
N y − x(t)

)2
dt.

1.6.3 HJB Equation and Value Function

For each (t, x, y) ∈ [0, T ]× R× [0, 1], define

V (t, x, y) = sup
{u(s): s∈[t,T ]}

E
[
Π
[
x[t,T ]

]
− γ

2
Var
(
Π[x[t,T ]]

) ∣∣∣x(t) = x, Γ(t) = y
]
.

We want to find V (0, 0, 0) and the corresponding optimal trading speed u∗(·). In what

follows, we provide a brief sketch of the proof for the optimal trading path, before stating

the main theorem.

Infinitesimal Analysis and HJB. Using dynamic programming in continuous time, we

consider a time step from t to t+∆t. The gamma bridge Γ(·) has finite variation on [0, T ].

The Brownian motion B(·) affects the cost integral.

Let ∆Π[x] be the change in the broker’s PnL over [t, t + ∆t]. By taking expectations

and collecting second-moment terms, we obtain a dynamic-programming identity. Then we

divide by ∆t and let ∆t → 0. The outcome is that the value function should satisfy the

PDE:
∂

∂t
V (t, x, y) + sup

u∈R

{
H
(
t, x, y, u, V,∇V,∇2V

)}
+ LΓV (t, x, y) = 0,
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Finally, the HJB equation is

Vt + sup
u∈R

{
uVx − η u2

}
+

1− y

T − t
Vy +

γσ2

2

(
N y − x

)2
= 0, (1.22)

with a terminal condition that enforces x(T ) = N .

Quadratic Value Function Ansatz. We posit that this PDE takes the form of

V (t, x, y) = A(t)x2 + B(t)x y + C(t)x + D(t) y2 + E(t) y + F (t),

for some deterministic coefficient functions {A,B,C,D,E, F} : [0, T ] → R. This ansatz

is justified because the objective is a mean–variance criterion with linear/quadratic price

impacts, so the PDE is quadratic in (x, u). The gamma bridge Γ(·) only appears linearly in

y = Γ(t), apart from its finite-variation generator. This leads us naturally to a polynomial

form in (x, y).

From there, we obtain the unique classical solution to the HJB PDE on [0, T )×R× [0, 1]

that enforces x(T ) = N . The optimal trading speed (control) is

u∗(s) = − 1

2 η

∂

∂x
V
(
s, X∗(s), Γ(s)

)
,

Concretely,
∂

∂x
V (s, x, y) = 2A(s)x + B(s) y + C(s).

Putting everything together, the broker’s optimal trading speed is

u∗(s) = − 1

2 η

[
2A(s)X∗(s) + B(s) Γ(s) + C(s)

]
.

Finally, after integrating Ẋ∗(s) = u∗(s) from 0 to t and re-scaling, we obtain the following

theorem.

Theorem 2 (Optimal trading schedule under stochastic volume). Under stochastic volume,

the broker’s inventory evolves according to

X∗(t) = κ exp
(
−
∫ t

0

A(r)

η
dr
)

×
∫ t

0

[
−B(z) Γ(z) + C(z)

2 η

]
exp
(∫ z

0

A(r)

η
dr
)
dz,

where κ is a normalizing constant to satisfy X∗(T ) = N .

The broker continues to front-load trades when permanent impact increases, even though

market volume is random. While the solution is much harder to interpret, as in Section 1.3,
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the front-loading property of the optimal inventory subsists. We now quantify the magni-

tude of that gain with a back-of-the-envelope calculation.

1.7 Numerical Results

To better understand our results, we translate the closed-form wedge ∆(α) of Proposition 5

into dollars using the example of Ford ( stock price ≈ $20, ADV ≈ 100mm shares). A survey

by Greenwich Associates puts the median low-touch electronic commission at ≈ 14bps in

explicit commission for a guaranteed VWAP execution, and sell-side dealers frequently waive

even that fee to win flow. The commission rate should increase with the size of the order. In

the absence of such information and assuming that fixed fees scale up slowly with %ADV,

we use the 14 bps number for our comparative analysis.

Table 1.1: Baseline parameters

Symbol Description Units Value

λ Permanent impact per %ADV bp/%ADV 50
η Temporary impact per %ADV per min bp/%ADV/min 10
σ Annualised volatility % 30
γ Broker risk aversion — 0.010
T Trading horizon minutes 390
P Share price USD 20
ADV Average daily volume shares 1.0× 108

With ∆ defined as in Section 1.4.5,

∆(0.25%) = 8.77 bp, ∆(0.50%) = 17.53 bp,

∆(1.00%) = 35.06 bp, ∆(2.00%) = 70.13 bp.

Because ∆ ∝ λ2α, each additional basis-point of permanent impact or each extra tranche

of shares amplifies the broker’s incentive to accelerate early prints and inflate the benchmark.

Explicit commission is a flat $2.1 ¢/share, i.e. c = 14 bp. The broker’s expected dollar

P&L on the hidden wedge is Cimp = NP∆/104:

The hidden component overtakes the flat 14 bps commission once the ticket exceeds

0.5%ADV; at 2%ADV it more than doubles the explicit fee. Hence, a broker can credibly

advertise “zero or flat commission” and still expect to earn $70K on a guaranteed-VWAP

order, purely by exploiting price impact. Best-execution audits that focus on explicit fees

alone will systematically understate trading cost for benchmarked flow. Regulators and

asset owners should therefore evaluate all-in costs, adding benchmark slippage to booked
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Table 1.2: All-in execution cost with ADV= 100mm, P = $20)

Dollar cost (USD) Cost / notional (bp)

Order size Explicit Hidden Explicit Hidden

0.25 % ADV ($5 m) $5 250 $4 385 14 8.8
0.50 % ADV ($10 m) $10 500 $17 530 14 17.5
1.00 % ADV ($20 m) $21 000 $70 120 14 35.1
2.00 % ADV ($40 m) $42 000 $280 520 14 70.1

commission. Such a practice would align broker incentives with end-investor welfare and

reduce the cross-subsidy currently embedded in guaranteed VWAP contracts.

1.8 Conclusion

This paper develops a continuous-time model of broker execution under Guaranteed Volume-

Weighted Average Price (G-VWAP) contracts, shedding light on the hidden economic incen-

tives and costs behind these seemingly attractive benchmarks. Incorporating both perma-

nent and temporary price impacts into a mean–variance framework, we show that brokers

strategically deviate from naive VWAP approaches to exploit price dynamics. In particular,

front-loading becomes optimal when permanent impact is significant, whereas more evenly

distributed trading arises when temporary impact dominates.

The ability to manipulate trade timing, while still satisfying the VWAP benchmark,

helps explain how brokers can offer G-VWAP at low or zero fees. By establishing inventory

ahead of rising prices or flattening trades to reduce transient costs, brokers profit from

implicit market distortions hidden within execution prices. These findings underscore how

widely adopted VWAP guarantees can inadvertently increase total trading costs for clients,

thus highlighting the importance of scrutinizing both permanent and temporary market

impacts in execution arrangements.

Our framework contributes to the growing literature on optimal execution and market

microstructure by emphasizing the broker’s profit motive under guaranteed benchmarks.

The model’s quantitative insights have important implications for institutional investors

and regulators alike. As recent trading platforms, such as the CBOE’s BIDS VWAP-X or

the LiquidNet VWAP Cross, expand the use of VWAP-based executions, our analysis sug-

gests that regulators and platform designers should carefully evaluate how broker incentives

interact with evolving market structures.

Future research could deepen these insights further by examining real broker behav-

ior under G-VWAP using detailed transaction-level data or by extending the model to
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nonlinear price impacts and multiple strategic players. Such investigations would advance

understanding of benchmark-driven execution strategies and inform both regulatory policies

and institutional best practices.
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1.9 Appendix

1.9.1 Proofs

Proof of Theorem 1

We seek to maximize the functional

J [x] =

∫ T

0

(
N
M V (t) − ẋ(t)

)(
S(0) + λx(t) + η ẋ(t)

)
dt − γ

2
σ2
∫ T

0

(
N
M

∫ t

0
V (u) du − x(t)

)2
dt,

subject to the boundary conditions x(0) = 0 and x(T ) = N . The goal is to determine the

function x(t) that maximizes J [x].

Rewrite the Objective. Define

S̄(t) = S(0) + λx(t) + η ẋ(t).

The first term in J [x] then becomes∫ T

0

(
N
M V (t) − ẋ(t)

)
S̄(t) dt =

∫ T

0

[
N
M V (t) S̄(t) − ẋ(t) S̄(t)

]
dt.

Meanwhile, the variance-penalty term is

− γ
2 σ

2

∫ T

0

(
N
M Vc(t) − x(t)

)2
dt.

Collecting these gives

J [x] =

∫ T

0
L
(
t, x(t), ẋ(t)

)
dt,

where

L(t, x, ẋ) = N
M V (t)S(0) + λ N

M V (t)x + η N
M V (t) ẋ − S(0) ẋ − λx ẋ − η ẋ2

− γ
2 σ

2
(

N
M Vc(t)− x

)2
.

Euler–Lagrange Equation. To find the maximizer x(t), we set the Euler–Lagrange

equation
d

dt

(
∂L
∂ẋ

)
− ∂L

∂x = 0
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to zero. First, compute

∂L

∂x
= λ N

M V (t) − λ ẋ(t) + γ σ2
(
N
M Vc(t)− x

)
.

Next, the derivative with respect to ẋ is

∂L

∂ẋ
= η N

M V (t) − S(0) − λx − 2 η ẋ.

Taking the time derivative gives

d

dt

(
∂L
∂ẋ

)
= η N

M V ′(t) − λ ẋ(t) − 2 η ẍ(t).

Thus, the Euler–Lagrange equation becomes

[
η N

M V ′(t) − λ ẋ(t) − 2 η ẍ(t)
]
−
[
λ N

M V (t) − λ ẋ(t) + γ σ2 (NM Vc(t)− x)
]

= 0.

Noting that −λ ẋ and +λ ẋ cancel, we rearrange to obtain

2 η ẍ(t) − γ σ2 x(t) = − η N
M V ′(t) + λ N

M V (t) − γ σ2 N
M Vc(t).

Defining

f(t) := − η N
M V ′(t) + λ N

M V (t) − γ σ2 N
M Vc(t),

we arrive at the key ODE:

2 η ẍ(t) − γ σ2 x(t) = f(t).

Solving the Two-Point Boundary Value Problem. Let

α =

√
γ σ2

2 η
.

Then the ODE becomes

ẍ(t) − α2 x(t) =
1

2 η
f(t).

We write x(t) = xh(t) + xp(t), where xh solves the homogeneous equation ẍh − α2xh = 0,

and xp is a particular solution of the inhomogeneous problem. The homogeneous solution

is

xh(t) = C1 e
αt + C2 e

−αt,
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often expressed in hyperbolic sine/cosine form. A convenient particular solution satisfying

xp(0) = 0 and xp(T ) = 0 is given by

xp(t) =

∫ T

0
G(t, s)

[
1
2 η f(s)

]
ds,

where

G(t, s) =
1

α sinh(αT )

sinh(α t) sinh
(
α (T − s)

)
, t ≤ s,

sinh(α s) sinh
(
α (T − t)

)
, t > s.

Boundary Conditions. The final solution must satisfy x(0) = 0 and x(T ) = N . By

construction, xp(0) = 0 and xp(T ) = 0. We therefore choose

xh(t) =
(
N − xp(T )

) sinh(α t)

sinh
(
αT
) ,

so that the full solution

x(t) = xp(t) +
(
N − xp(T )

) sinh(α t)

sinh
(
αT
)

automatically satisfies both boundary conditions. This completes the derivation of the

optimal trading schedule. □

Proof of Proposition 1

The only source of randomness is the Brownian motion Bt, so the stochastic component of

the cost is

σ
N

M

∫ T

0
V (t)Bt dt.

Thus, the variance of the execution cost is

Var (Πnaive) = σ2
N2

M2
Var

(∫ T

0
V (t)Bt dt

)
.

Since the covariance of Bt satisfies Cov(Bt, Bs) = min(t, s), we obtain

Var

(∫ T

0
V (t)Bt dt

)
=

∫ T

0

∫ T

0
V (t)V (s) min(t, s) dt ds.
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By splitting the double integral, we obtain∫ T

0

∫ T

0
V (t)V (s)min(t, s) dt ds = 2

∫ T

0
s V (s)

(∫ T

s
V (t) dt

)
ds.

Since
∫ T
s V (t) dt =M − Vc(s), the expression becomes

∫ T

0

∫ T

0
V (t)V (s)min(t, s) dt ds = 2

∫ T

0
s V (s)

[
M − Vc(s)

]
ds.

Thus, the variance is

Var (Πnaive) = 2σ2
N2

M2

∫ T

0
s V (s)

[
M − Vc(s)

]
ds. (1.23)

□

Proof of Proposition 2

Given a trading schedule x(t) (with x(0) = 0 and x(T ) = N), the expected VWAP is

E[VWAP] =
1

M

∫ T

0
E[S(t)]V (t) dt (1.24)

=
1

M

∫ T

0

(
S(0) + λx(t) + η ẋ(t)

)
V (t) dt. (1.25)

= S(0) +
λ

M

∫ T

0
x(t)V (t) dt+

η

M

∫ T

0
ẋ(t)V (t) dt. (1.26)

A useful manipulation comes from noting that

d

dt
{x(t)V (t)} = ẋ(t)V (t) + x(t)V ′(t),

so that integrating from 0 to T gives∫ T

0
ẋ(t)V (t) dt = x(T )V (T )− x(0)V (0)−

∫ T

0
x(t)V ′(t) dt.

Since x(0) = 0 and x(T ) = N (and often we take V (0) = 0), it follows that∫ T

0
ẋ(t)V (t) dt = N V (T )−

∫ T

0
x(t)V ′(t) dt.
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Substituting back yields

E[VWAP] = S(0) +
1

M

[
η N V (T ) +

∫ T

0
x(t)

(
λV (t)− η V ′(t)

)
dt

]
. (2)

□

Proof of Corollary 1

The cost incurred is

Cost =

∫ T

0
S(t) ẋ(t) dt,

A brief calculation shows that the expected profit is

E[Π] = N E[S(T )]−
∫ T

0
E[S(t)] ẋ(t) dt

= N
(
S(0) + λN

)
−

{
S(0)N + λ

∫ T

0
x(t) ẋ(t) dt+ η

∫ T

0
[ẋ(t)]2 dt

}

= λN2 − λ
N2

2
− η

∫ T

0
[ẋ(t)]2 dt, (1.27)

where we have used the identity∫ T

0
x(t) ẋ(t) dt =

1

2

[
x(T )2 − x(0)2

]
=
N2

2
.

Since the only source of risk is through the terminal price S(T ) (via the Brownian motion

Bt), the variance of the profit is given by

Var[Π] = σ2
∫ T

0

(
N − x(t)

)2
dt.

Thus, the broker’s mean-variance objective is to maximize

J [x] = E[Π]− γ

2
Var[Π], (1.28)

which (up to an additive constant) is equivalent to minimizing the functional

J [x] = η

∫ T

0
[ẋ(t)]2 dt+

γσ2

2

∫ T

0

(
N − x(t)

)2
dt, (1.29)
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subject to the boundary conditions

x(0) = 0, x(T ) = N.

Define the Lagrangian

L(x, ẋ) = η [ẋ(t)]2 +
γσ2

2

(
N − x(t)

)2
.

The Euler–Lagrange equation is

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0.

A straightforward computation yields

∂L

∂ẋ
= 2η ẋ(t),

d

dt
(2η ẋ(t)) = 2η ẍ(t),

and
∂L

∂x
= −γσ2

(
N − x(t)

)
.

Thus, the Euler–Lagrange equation becomes

2η ẍ(t) + γσ2
(
N − x(t)

)
= 0. (1.30)

Dividing by 2η and defining

α2 =
γσ2

2η
,

equation (1.30) may be rewritten as

ẍ(t)− α2
(
x(t)−N

)
= 0. (1.31)

Let

y(t) = x(t)−N.

Then y(t) satisfies

ÿ(t)− α2y(t) = 0,

with boundary conditions

y(0) = x(0)−N = −N and y(T ) = x(T )−N = 0.
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The general solution of this homogeneous ordinary differential equation is

y(t) = C1e
αt + C2e

−αt.

Alternatively, writing the solution in hyperbolic form, we have

y(t) = C3 sinh(αt) + C4 cosh(αt).

The initial condition y(0) = −N immediately implies

C4 = −N.

The terminal condition y(T ) = 0 yields

0 = C3 sinh(αT )−N cosh(αT ),

so that

C3 = N
cosh(αT )

sinh(αT )
.

Thus, the solution for y(t) is

y(t) = N
cosh(αT )

sinh(αT )
sinh(αt)−N cosh(αt).

A standard rearrangement shows that this expression can be written as

y(t) = −N
sinh

(
α(T − t)

)
sinh

(
αT
) .

Returning to x(t) = N + y(t), we obtain the optimal inventory trajectory:

x∗(t) = N

[
1−

sinh
(
α(T − t)

)
sinh

(
αT
) ]

.

Differentiating, the optimal trading speed is

ẋ∗(t) = N α
cosh

(
α(T − t)

)
sinh

(
αT
) .

□
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Proof of Proposition 3

Define the difference process

d(t) := x∗(t)− xnaive(t).

Derive the ODE for d(t). The optimal inventory x∗(t) satisfies the second–order ODE

x∗′′(t)− α2x∗(t) =
1

2η
f(t), (1.32)

where

f(t) = −η N
M

V ′(t) + λ
N

M
V (t)− γσ2

N

M

∫ t

0
V (u) du.

On the other hand, since

xnaive(t) =
N

M

∫ t

0
V (u) du,

we have

x′naive(t) =
N

M
V (t) and x′′naive(t) =

N

M
V ′(t).

Thus, the näıve schedule satisfies

x′′naive(t)− α2xnaive(t) =
N

M
V ′(t)− α2N

M

∫ t

0
V (u) du. (1.33)

Subtracting (1.33) from (1.32) we obtain an ODE for d(t):

d′′(t)− α2d(t) =
[
x∗′′(t)− α2x∗(t)

]
−
[
x′′naive(t)− α2xnaive(t)

]
=

1

2η
f(t)−

[
N

M
V ′(t)− α2N

M

∫ t

0
V (u) du

]
.

Substitute the expression for f(t):

1

2η
f(t) =

N

M

(
−1

2
V ′(t) +

λ

2η
V (t)− γσ2

2η

∫ t

0
V (u) du

)
.

Thus,

d′′(t)− α2d(t) =
N

M

[
−1

2
V ′(t) +

λ

2η
V (t)− γσ2

2η

∫ t

0
V (u) du

]
− N

M
V ′(t) + α2N

M

∫ t

0
V (u) du.
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Combine the V ′(t) terms:

−1

2
V ′(t)− V ′(t) = −3

2
V ′(t).

Also, note that by the definition of α,

α2 =
γσ2

2η
,

so that the terms involving
∫ t
0 V (u) du cancel:

−γσ
2

2η

∫ t

0
V (u) du+ α2

∫ t

0
V (u) du = 0.

Therefore, we obtain

d′′(t)− α2d(t) =
N

M

[
−3

2
V ′(t) +

λ

2η
V (t)

]
.

Multiplying both sides by 2η gives

2η
[
d′′(t)− α2d(t)

]
=
N

M

[
−3η V ′(t) + λV (t)

]
.

That is,

d′′(t)− α2d(t) =
N

2ηM

[
λV (t)− 3η V ′(t)

]
. (1.34)

Sufficient Condition. Assume that the market volume V (t) is non-decreasing so that

V ′(t) ≥ 0 and that

λV (t)− 3η V ′(t) ≥ 0, ∀ t ∈ [0, T ].

Then the forcing term on the right-hand side of (1.34) is nonnegative.

The ODE (1.34) is linear with constant coefficients. The homogeneous part

d′′h(t)− α2dh(t) = 0

has general solution

dh(t) = C1 cosh(αt) + C2 sinh(αt).

Since both the optimal and the naive schedules satisfy the same boundary conditions,

x∗(0) = xnaive(0) = 0 and x∗(T ) = xnaive(T ) = N,
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it follows that

d(0) = 0 and d(T ) = 0.

Now, with a nonnegative forcing term in (1.34), the standard comparison or maximum prin-

ciple for second–order ODEs implies that the minimum of d(t) is attained at the boundary.

Since d(0) = d(T ) = 0, we deduce that

d(t) ≥ 0, ∀ t ∈ [0, T ].

□

Proof of Proposition 4

After rearranging constant terms, one may show that the Euler–Lagrange equation for the

problem reduces to

2η ẍ(t) +
Nλ

T
+ γσ2

(
N t

T
− x(t)

)
= 0,

Rearranging the above equation, we obtain

2η ẍ(t)− γσ2 x(t) = −γσ2 N t

T
− Nλ

T
.

Dividing through by 2η leads to

ẍ(t)− α2x(t) = −α2N t

T
− Nλ

2η T
,

Solution of the ODE. The homogeneous part

ẍh(t)− α2xh(t) = 0

has the general solution

xh(t) = E eαt + F e−αt.

To solve the inhomogeneous ODE, we seek a particular solution of the form

xp(t) =
N

T
t+ C.

Differentiating gives ẋp(t) =
N
T and ẍp(t) = 0. Substituting xp(t) into the ODE yields:

0− α2

(
N

T
t+ C

)
= −α2 N t

T
− Nλ

2η T
.
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Matching coefficients:

• For the term in t:

−α2 N

T
t = −α2 N t

T
(automatically satisfied).

• For the constant term:

−α2C = − Nλ

2η T
=⇒ C =

Nλ

2η T α2
=

Nλ

γσ2 T
..

Thus, the particular solution is

xp(t) =
N

T
t+

Nλ

γσ2 T
.

The general solution of the ODE is then

x(t) = xp(t) + xh(t) =
N

T
t+

Nλ

γσ2 T
+ E eαt + F e−αt.

Imposing the Boundary Conditions. The boundary conditions are:

x(0) = 0 and x(T ) = N.

At t = 0:

0 = x(0) =
Nλ

γσ2 T
+ E + F,

so that

E + F = − Nλ

γσ2 T
.

At t = T :

N = x(T ) =
N

T
T +

Nλ

γσ2 T
+ E eαT + F e−αT = N +

Nλ

γσ2 T
+ E eαT + F e−αT ,

which implies

E eαT + F e−αT = − Nλ

γσ2 T
.

The system to solve is: 
E + F = − Nλ

γσ2 T
,

E eαT + F e−αT = − Nλ

γσ2 T
.
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A short calculation yields the unique solutions:

E = − Nλ

γσ2 T

1− e−αT

2 sinh(αT )
,

F = − Nλ

γσ2 T

[
1− 1− e−αT

2 sinh(αT )

]
.

Substituting E and F back into the general solution, we obtain the optimal inventory

trajectory:

x(t) =
N t

T
+

Nλ

γσ2 T

[
1− 1− e−αT

sinh(αT )
sinh(αt)− e−αt

]
, with α =

√
γσ2

2η
.

and the optimal trading speed is given by differentiating:

ẋ(t) =
N

T
+
Nλα

γσ2 T

[
e−αt − 1− e−αT

sinh(αT )
cosh(αt)

]
.

□

Proof of Proposition 5

Simplifying the difference, we get

∆ =
λ

T

(∫ T

0
x∗(t) dt− N T

2

)
.

We now compute the integral of x∗(t):∫ T

0
x∗(t) dt =

∫ T

0

N t

T
dt+

Nλ

γσ2 T

∫ T

0

[
1− 1− e−αT

2 sinh(αT )
sinh(αt)− e−αt

]
dt.

The first term is straightforward:∫ T

0

N t

T
dt =

N

T
· T

2

2
=
N T

2
.

Next, define

I =

∫ T

0

[
1− 1− e−αT

2 sinh(αT )
sinh(αt)− e−αt

]
dt.

We have

I = T − 1− e−αT

2 sinh(αT )

∫ T

0
sinh(αt) dt−

∫ T

0
e−αt dt.
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Since ∫ T

0
sinh(αt) dt =

cosh(αT )− 1

α
and

∫ T

0
e−αt dt =

1− e−αT

α
,

it follows that

I = T − 1− e−αT

2 sinh(αT )
· cosh(αT )− 1

α
− 1− e−αT

α
.

We can write this more compactly as

I = T − 1− e−αT

α

(
1 +

cosh(αT )− 1

2 sinh(αT )

)
.

Thus, we obtain ∫ T

0
x∗(t) dt =

N T

2
+

Nλ

γσ2 T
I.

Substituting back into the expression for ∆,

∆ =
λ

T

[
N T

2
+

Nλ

γσ2 T
I − N T

2

]
=

Nλ2

γσ2 T 2
I.

That is, the closed-form expression for the VWAP difference is

∆ =
Nλ2

γσ2 T 2

[
T − 1− e−αT

α

(
1 +

cosh(αT )− 1

2 sinh(αT )

)]
□

Proof of Corollary 2

Recall the expression for the VWAP difference:

∆ =
Nλ2

γσ2 T 2

[
T − 1− e−αT

α

(
1 +

cosh(αT )− 1

2 sinh(αT )

)]
,

with

α =

√
γσ2

2η
.

As γ → 0, we have α→ 0. For small x (with x = αT ), recall:

e−x ≈ 1− x+
x2

2
− x3

6
, sinh(x) ≈ x+

x3

6
, cosh(x) ≈ 1 +

x2

2
.

Thus,

1− e−αT ≈ αT − (αT )2

2
+

(αT )3

6
,
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so that
1− e−αT

α
≈ T − αT 2

2
+O(α2).

Also,
cosh(αT )− 1

2 sinh(αT )
≈ (αT )2/2

2αT
=
αT

4
.

Therefore,

1 +
cosh(αT )− 1

2 sinh(αT )
≈ 1 +

αT

4
.

Multiplying, we have:

1− e−αT

α

(
1 +

cosh(αT )− 1

2 sinh(αT )

)
≈
(
T − αT 2

2

)(
1 +

αT

4

)
≈ T − αT 2

4
.

Thus, the bracketed term simplifies to

T −
(
T − αT 2

4

)
≈ αT 2

4
.

Substitute back into ∆:

∆ ≈ Nλ2

γσ2 T 2
· αT

2

4
=
Nλ2

4γσ2
α.

Using

α =

√
γσ2

2η
,

we obtain

∆ ≈ Nλ2

4γσ2

√
γσ2

2η
=
Nλ2

4

√
1

2ηγσ2
.

Hence, as γ → 0,

∆ ∼ Nλ2

4
√
2ησ2

γ−1/2.

□

Proof of Theorem 2

The HJB Equation. Recall the value function

V (t, x, y) = sup
u(·)

E

[
Π[x]− γ

2
Var(Π[x])

∣∣∣∣∣x(t) = x, Γ(t) = y

]
.

The state dynamics are:
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• Inventory: dx(t) = u(t) dt.

• Volume: The Gamma bridge Γ(t) has finite variation with generator (see, e.g., Émery

and Yor (2004))

LΓψ(y) =
1− y

T − t
ψ′(y),

so that

dΓ(t) =
1− Γ(t)

T − t
dt.

In addition, the control appears in the cost via the temporary impact cost −η u(t)2. Hence,
by the dynamic programming principle the HJB equation is

Vt + sup
u∈R

{
uVx − η u2

}
+

1− y

T − t
Vy +

γσ2

2

(
N y − x

)2
= 0, (1.35)

with a terminal condition that enforces x(T ) = N .

To solve the supremum in (1.35), note that the Hamiltonian

H(u) = uVx − η u2

is quadratic in u. Its first–order condition yields

Vx − 2η u = 0 =⇒ u∗(t) =
Vx
2η
.

By our cost convention (minimization) we write

u∗(t) = − 1

2η
Vx.

Substituting this optimal control back into the Hamiltonian gives

H∗ =
V 2
x

4η
.

Thus, the HJB (1.35) becomes

Vt −
1

4η
(Vx)

2 +
1− y

T − t
Vy +

γσ2

2

(
N y − x

)2
= 0. (1.36)

Quadratic Ansatz. We now postulate a quadratic form for the value function:

V (t, x, y) = A(t)x2 +B(t)xy + C(t)x+D(t)y2 + E(t)y + F (t), (1.37)
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where A(t), B(t), C(t), D(t), E(t), F (t) are functions to be determined.

Derivatives of the Ansatz. Compute the partial derivatives:

Vt = A′(t)x2 +B′(t)xy + C ′(t)x+D′(t)y2 + E′(t)y + F ′(t),

Vx = 2A(t)x+B(t)y + C(t), Vxx = 2A(t),

Vy = B(t)x+ 2D(t)y + E(t), Vyy = 2D(t).

Also, note that

(Vx)
2 =

(
2A(t)x+B(t)y + C(t)

)2
= 4A(t)2x2 + 4A(t)B(t)xy + 4A(t)C(t)x+B(t)2y2 + 2B(t)C(t)y + C(t)2.

Substituting into the HJB equation. Substitute the derivatives into (1.36):

A′(t)x2 +B′(t)xy + C ′(t)x+D′(t)y2 + E′(t)y + F ′(t)

− 1

4η

[
4A(t)2x2 + 4A(t)B(t)xy + 4A(t)C(t)x+B(t)2y2 + 2B(t)C(t)y + C(t)2

]
+

1− y

T − t

[
B(t)x+ 2D(t)y + E(t)

]
+
γσ2

2

(
x2 − 2Nxy +N2y2

)
= 0.

Since this must hold for all x and y, we now match coefficients for like monomials.

Coefficient of x2. The x2 terms come from:

A′(t)x2 − 1

4η
· 4A(t)2x2 + γσ2

2
x2.

Thus,

A′(t)− A(t)2

η
+
γσ2

2
= 0.

This is a Riccati equation for A(t).

Coefficient of xy. The xy terms arise from:

B′(t)xy − 1

4η
· 4A(t)B(t)xy +

B(t)

T − t
xy − γσ2Nxy.

Thus,

B′(t)− A(t)B(t)

η
+
B(t)

T − t
− γσ2N = 0.



50

Coefficient of x. The x terms are:

C ′(t)x− 1

4η
· 4A(t)C(t)x,

so that

C ′(t)− A(t)C(t)

η
= 0.

Coefficient of y2. The y2 terms are:

D′(t)y2 − 1

4η
B(t)2y2 +

2D(t)

T − t
y2 +

γσ2

2
N2y2.

Thus,

D′(t)− B(t)2

4η
+

2D(t)

T − t
+
γσ2

2
N2 = 0.

Coefficient of y. The y terms come from:

E′(t)y − 1

4η
· 2B(t)C(t)y +

E(t)

T − t
y,

so that

E′(t)− B(t)C(t)

2η
+
E(t)

T − t
= 0.

Constant Term. The constant term is:

F ′(t)− C(t)2

4η
+
E(t)

T − t
= 0.

In a fully explicit derivation, one finds that matching all constant-order terms from the

risk-penalty expansion shows the leftover is zero.
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Solution of the ODE System. We summarize the system:

A′(t)− A(t)2

η
+
γσ2

2
= 0, (1.38)

B′(t)− A(t)B(t)

η
+
B(t)

T − t
− γσ2N = 0, (1.39)

C ′(t)− A(t)

η
C(t) = 0, (1.40)

D′(t)− B(t)2

4η
+

2D(t)

T − t
+
γσ2

2
N2 = 0, (1.41)

E′(t)− B(t)C(t)

2η
+
E(t)

T − t
= 0, (1.42)

F ′(t)− C(t)2

4η
+
E(t)

T − t
= 0. (1.43)

Solving for A(t). The Riccati equation (1.38) is

A′(t)− A(t)2

η
+
γσ2

2
= 0.

A standard transformation shows that its solution is

A(t) = η α coth
(
α(T − t)

)
, with α =

√
γσ2

2η
.

Note that as t→ T , coth
(
α(T − t)

)
∼ 1

α(T−t) , ensuring that

lim
t→T

(T − t)A(t) = η.

The other ODEs are linear and can be solved using integrating factors. For example, (1.40)

implies

C(t) =
C0

T − t
,

with C0 determined by the terminal condition.

Similarly, one may obtain (with an appropriate normalization) an explicit expression for

B(t) such as

B(t) = −2A(t) +
2η

T − t
,

and the functions D(t), E(t), F (t) can be expressed as definite integrals. (For instance, one
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may write)

D(t) =

∫ T

t

[
λσ2 − B(s)2

4η

]
µ(s) ds,

E(t) =
1

T − t

∫ T

t

[
B(s) + 2D(s)

]
ds,

F (t) =

∫ T

t

{
C(s)2

4η
− E(s)

T − s

}
ds+ F0,

where µ(s) is an integrating factor and F0 is determined by the terminal condition.

The optimal trading inventory. Given the value function (1.37), the optimal control

is

u∗(t) = − 1

2η
Vx(t, x, y) = − 1

2η

(
2A(t)x+B(t)y + C(t)

)
.

Hence, the optimal inventory x∗(t) satisfies the ODE

ẋ∗(t) = − 1

2η

(
2A(t)x∗(t) +B(t) Γ(t) + C(t)

)
, x∗(0) = 0, x∗(T ) = N. (1.44)

This is a linear ODE. Define the integrating factor

M(t) = exp
(∫ t

0

A(s)

η
ds
)
.

Multiplying (1.44) by M(t) gives

d

dt

[
M(t)x∗(t)

]
= −M(t)

2η

[
B(t) Γ(t) + C(t)

]
.

Integrate from 0 to t:

M(t)x∗(t) = − 1

2η

∫ t

0
M(s)

[
B(s) Γ(s) + C(s)

]
ds.

Thus,

x∗(t) = exp
(
−
∫ t

0

A(s)

η
ds
){

− 1

2η

∫ t

0
exp
(∫ s

0

A(r)

η
dr
)[
B(s) Γ(s) + C(s)

]
ds

}
.
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To enforce the terminal condition x∗(T ) = N , introduce a scaling factor

κ =
N

x∗(T )
,

so that the final optimal inventory is

x∗(t) = κ exp
(
−
∫ t

0

A(s)

η
ds
){

− 1

2η

∫ t

0
exp
(∫ s

0

A(r)

η
dr
)[
B(s) Γ(s) + C(s)

]
ds

}
.

□

1.9.2 Parameter calibration in the literature

This appendix documents the empirical and theoretical arguments that motivate the base-

line choice γ = 0.10 used throughout the numerical illustrations. Table 1.3 summarizes the

values explored in the high-frequency market-making literature, all of which adopt a CARA

utility with coefficient γ.

Table 1.3: Published γ values in limit-order-book models

Paper Asset Horizon T γ range

Avellaneda and Stoikov (2008) US equities 1 hour 0.01 ; 0.10 ; 0.50
Stoikov and Sağlam (2009) Index options 1 day 0.006; 0.10
Guéant et al. (2013) EU equities 10 min 0.01



Chapter 2

Tick Size, HFT and Inverted

Exchanges

Exchanges operate various fee structures to attract liquidity on their platforms. The most

popular, make-take exchanges, offer rebates to liquidity makers while charging fees to liq-

uidity takers. An intriguing development is the rise of inverted exchanges, which charge

negative taker fees and positive maker fees. More than 180 billion shares trade on these

exchanges every year, representing 10% of total stock trading volume. This study develops

a theoretical model to analyze the implications of inverted exchanges on liquidity provision,

particularly in the presence of High-Frequency Traders. We demonstrate that inverted ex-

changes mitigate inefficiencies arising from tick-size constraints by enabling a finer price grid.

When HFTs queue up in the limit order book to provide liquidity at the nearest tick, they

prevent liquidity demanders from obtaining price improvements at the mid-point. Inverted

exchanges solve the mismatch between an HFT’s price priority and a liquidity demander’s

time priority. Our model yields testable predictions on HFT activity, relative exchange

trading volumes, and order book imbalance, which we confirm using high-frequency data.

2.1 Introduction

Over the past decade, financial market microstructure has evolved significantly due to ad-

vancements in trading technology and the emergence of alternative exchange fee models.

One notable innovation is the rise of inverted exchanges, which differ from the conventional

make-take model by charging fees to liquidity providers and offering rebates to liquid-

ity takers. At first glance, this pricing structure appears counterintuitive, as traditional

market-making theories suggest that liquidity provision should be incentivized through re-

bates rather than penalized. This paper examines the economic rationale behind inverted

54
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exchanges and their implications for market quality, particularly in the presence of High-

Frequency Trading (HFT). HFT firms, leveraging speed and sophisticated order execu-

tion strategies, dominate liquidity provision in modern markets. In traditional make-take

structures, HFTs compete for price priority by queuing at the nearest tick. While this

behavior ensures efficient liquidity provision in unconstrained environments, it creates inef-

ficiencies when tick size constraints prevent finer price adjustments. This rigidity reduces

price improvement opportunities, particularly for non-HFT participants who cannot under-

cut HFTs. This observation raises a key research question: How do inverted exchanges alter

liquidity dynamics in a market dominated by HFTs, and what are their broader implications

for execution quality?

This paper addresses this question by developing a theoretical model of liquidity provision

with exchange fees. Our starting point is the observation that tick size constraints can dis-

tort liquidity dynamics by limiting price improvement opportunities for non-HFT traders.

Inverted fee structures offer a potential solution by enabling a more granular pricing mech-

anism. Intuitively, by rewarding liquidity demanders and aligning their time priority with

HFTs’ price priority, inverted exchanges facilitate price improvements and reduce queuing

inefficiencies, effectively reshaping competition between HFTs and non-HFTs.

In our model, there are many HFTs providing liquidity to non-HFTs in each time period.

Thanks to their superior technology, HFTs can exploit stale quotes faster than non-HFT

participants. Thus, they act as market makers in this economy. Trading occurs because

non-HFTs have an inelastic demand while risk-neutral HFTs take the other side. Un-

der continuous pricing, perfect competition between HFTs ensures HFTs can only break

even. Spreads reflect the trade-off between fundamental asset risk and profits from liquidity

traders. In reality, prices are discrete and will be higher than under continuous pricing. The

inability of HFTs to further compete imposes a negative externality on non-HFT partici-

pants. HFTs are able to extract intermediation rents despite perfect competition between

them.

When the tick size is binding, non-HFT traders cannot price-improve in finer increments

using limit orders, forcing them to either match existing quotes or cross the spread using

market orders. This ensures that their orders are executed first when liquidity demand

arises, capturing profits from the bid-ask spread. Thus, the tick-size constraint effectively

acts as a barrier to entry for non-HFT liquidity providers. Transaction fees do not alter

this outcome.

In contrast to transaction fees, exchange fees are charged based on execution, not order

type. While a market order is always liquidity-taking, the fees on a limit order depends

on whether it provided liquidity or not. When the limit order immediately lifts another

order, it is removing liquidity and incurs a take-fee similarly to the market order. When
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the limit order is resting but gets matched to an order posted afterwards, it is offered a

rebate. Hence, a limit order offers cheaper execution compared to market orders only when

it is able to first rest in the order book.

To reflect this, we distinguish between two types of non-HFT traders: Retail Traders (RT)

who exclusively submit market orders, and Mutual Funds (MF), which have the flexibil-

ity to submit either market or limit orders. Beyond the price difference, the limit order

changes the nature of the fees: market orders are liquidity taking while marketable limit

orders are liquidity making. Hence, a market and a limit order at the same price will be

charged different fees, effectively resulting in different net execution costs. Market orders

ensures execution while limit orders offer price improvements. Nonetheless, non-HFTs can-

not compete on speed with limit orders and would only use these if they have guaranteed

execution.

Under continuous pricing without fees, Mutual Funds are able to execute at the fundamental

value, because any limit order they quote away from the fundamental value gets arbitraged

away by HFTs. The bid-ask spread only reflects fundamental value jump risk: HFTs make

a profit on Retail Trader flow while losing money on value jumps opposite to their quotes.

This no longer stands true in discrete pricing. When price increments are discrete, HFTs

quote at the nearest tick above the break even spread under continuous pricing. Similarly,

Mutual Funds can only quote the ticks near the fundamental value. Thus, HFTs earn addi-

tional profits on both Mutual Funds and Retail Traders compared to the continuous pricing

benchmark. When the tick size is infinitesimally small, this converges to the continuous

case with no rent.

That is, when the tick size is binding, HFTs extract a liquidity rent from non-HFTs. First,

as mentioned above, they benefit from the incremental profits of forced market orders from

Mutual Funds which generate additional fees. Mutual Funds are no longer able to quote

within the bid-ask, preventing them from posting limit orders. They are effectively behaving

like Retail Traders and using market orders only, increasing the HFT’s profits. Additionally,

in contrast to the continuous setting, HFTs can no longer compete over prices and tighten

the spread. Therefore, they extract an additional profit on all non-HFTs, equal to the

difference between the equilibrium spread under continuous pricing and the constrained

price.

Inverted fees level the playing field between HFTs and Mutual Funds. Instead of incurring

a take-fee, liquidity takers are offered a rebate. There are three possible cases in this

microstructure, depending on the asset volatility, fraction of Retail Traders and tick size.

First, there is a ”pooling” region when the spread is narrow relatively to the tick size, where

Mutual Funds are forced to use market orders. In this region, Mutual Funds effectively

behave like Retail Traders. With a low volatility and a high fraction of uninformed Retail
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Traders, HFTs can break even with tight spreads, but quotes must be at least one-tick wide.

Mutual Funds’ limit orders cannot be priced better than existing HFT orders, and market

orders are the only order type guaranteeing them execution. HFTs extract the highest

profits, because they cannot compete with each other to tighten the spread. Second, there

is an inverted equilibrium, Mutual Funds always post on inverted exchanges, to undercut

orders on traditional venues and obtain price priority. Asset risk is low but not low enough

for HFTs to out-compete the Mutual Funds. Third, conversely, there is also a maker-taker

equilibrium, where Mutual Funds always post on the traditional exchange and HFTs post on

the inverted exchange. Of particular note, an inverted exchange does not attract liquidity

from a specific trader type.

In the baseline model, there is a single unit of liquidity in the order book at the bid and

ask, as in Glosten and Milgrom (1985). In reality, HFTs can provide liquidity at deeper

levels because the effective spread is higher than the break-even spread. Thus, we introduce

depth, such that the marginal profits to liquidity provision become zero. HFTs first compete

on prices, then order queue. When the spread is sufficiently narrow, HFTs can still extract

some profits on subsequent orders resting at the top of the book. The market is cleared

at a book depth for which the last marginal liquidity provider breaks even. Higher rebates

increase the profits of liquidity provision,and as a consequence, book depth. However, a

long queue defeats its own purpose: inverted exchanges with deep order books can no longer

be used to undercut on prices.

When the tick size is severely binding, inverted exchanges should dominate overall trading

volume. In reality, even for the most tick-constrained stocks, the market share of inverted

venue caps peaks at 20%. Random order routing would still predict twice as much inverted

volume as in practice. One way to explain this is the principal-agent problem arising from

the broker’s agency, choosing the route maximizing their fees irrespective of execution price.

We offer an alternative theoretical explanation to reconcile the model with this observed

inverted usage: fragmentation. Under market fragmentation, HFTs post liquidity on both

exchanges. Because of the difference in exchange fees, the marginal profits to liquidity

provision at a fixed depth are much higher on the make-take exchanges than on the inverted

venue. As a consequence, equilibrium depth is higher on the traditional venue. When there

is a fundamental value jump, the whole order book is swept. The make-take venue has a

much deeper book and as a consequence, occupies a larger share of total trading. More

concretely, this can also be interpreted as the arrival of a large institutional liquidity trader,

requiring all liquidity available across all venues. Interestingly, trading volume is the same

across the two types of exchanges in the absence of asset value jumps.

Finally, our model yields several testable predictions, which we validate using high-frequency

trading data. First, we predict that inverted exchanges enable non-HFT participants to com-
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pete more effectively by lowering the cost of price improvement. To do so, we measure the

HFT participation rate as the ratio of NBBO transactions where at least one of the counter-

parties is an HFT. We find that inverted usage increases with HFT activity, suggesting that

inverted venues become more appealing when HFT competition is high. Second, trading

on inverted exchanges should be concentrated on the side of the order book experiencing

greater imbalance. Further, our model suggests that inverted usage – the inverted share of

total trading volume across all exchanges – is higher when tick sizes are large relative to

price levels. The empirical evidence strongly supports these predictions, as we document

significant changes in trading behavior, order book dynamics, and exchange-level liquidity

fragmentation.

Beyond contributing to the literature on exchange fee models and market microstructure,

our findings have important policy implications for tick size design and best routing prac-

tices. The U.S. equity markets operate under a uniform minimum tick size of one cent

for securities trading above one dollar, a rule designed to enhance price transparency but

one that fails to account for variation in stock price levels and liquidity needs. Our results

suggest that inverted exchanges emerge as a partial market-driven solution to these regula-

tory constraints but also introduce new forms of liquidity fragmentation, arising from the

discrepancy between gross and net prices. We elaborate on this in section 4.

The remainder of this paper is as follows. Section 3.2 discusses relative literature and

empirical motivation for our model. In section 3.4, we present the data and further stylized

facts. In section 2.4, we lay out the agents’ optimization problems and present the model.

In section 2.5, we characterize liquidity under different market environments. In section 2.6,

we empirically test the predictions from the theory. In section 2.7, we present some policy

implications. Section 3.8 concludes. The Appendix includes proofs of all propositions and

additional tables and figures.

2.2 Related Literature and Empirical Motivation

This study contributes to multiple strands of literature, particularly research on exchange fee

structures, market microstructure, and high-frequency trading. The pricing models adopted

by exchanges have significant implications for liquidity provision, price efficiency, and market

fragmentation. Harris (2013) discusses how make-take fee structures can distort displayed

prices, complicating best execution practices, while Battalio et al. (2016) show that order

routing decisions often maximize fee rebates rather than execution quality. Our theoretical

model extends this discussion by examining how inverted exchanges affect liquidity dynamics

in tick-constrained markets. Further, this paper complements the literature on collusion in

dealer markets (Dutta and Madhavan (1997),Huang and Stoll (2001)). With the emergence
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of new technologies, this phenomenon has evolved to algorithmic collusion in market making

(Cartea et al., 2022), whereby trading algorithms tacitly agree to collude on the optimal

price grid and extract a rent from the tick size constraint.

Our findings also relate to the literature on market-making and HFT behavior. The classic

work of Glosten and Milgrom (1985) models market-making under asymmetric informa-

tion. Subsequently, a large body of research emerged, focusing on HFTs as market makers

(Budish et al. (2015), Aı̈t-Sahalia and Sağlam (2023)). Consistent with these studies, we

assume that HFTs dominate liquidity provision due to their speed advantage. However,

we depart from prior work by explicitly modeling how non-HFT participants respond to

exchange fee incentives, particularly through strategic order placement on inverted venues.

By distinguishing between retail traders and mutual funds, our framework highlights the

role of order type choice in shaping market quality.

Our paper is most closely related to Li and Ye (2021) and Li et al. (2021). In a model of

competition for liquidity provision, they show that execution algorithms may benefit from

large tick sizes. Execution algorithms are unable to compete at the best bid-ask when the

tick size is binding. When it is not binding, they alternate between limit and market orders

depending on which side of the order book the price is leaning on. In contrast, our focus is

on exchange fees. With a coarse pricing grid, the fundamental value of the asset will lean

closer to one tick than the other. Hence, without fees, the mid-price does not reflect the

true value. Take-make fees reduces this asymmetry by effectively shrinking the net spread,

which has important implications on trading volume and top of book depth.

Additionally, to the best of our knowledge, this is the first paper to provide a theoretical

framework for understanding inverted exchanges. Our model is able to match stylized facts

consistent with the existing empirical literature. Notably, our paper provides a theoretical

foundation to understand Comerton-Forde et al. (2019), whereby increased trading activity

on inverted venues improves pricing efficiency when the minimum tick size is binding. As

in Malinova and Park (2015), lowering fees to remove liquidity increases trading activity

more substantially than raising rebates to providers. Corroborating Cardella et al. (2015),

fee structure in our model determines the exchange’s market share.

Finally, our work ties into policy discussions on optimal tick size regulation. The SEC’s

Rule 612 mandates a uniform minimum tick size of one cent for stocks priced above one

dollar, a policy designed to enhance order book transparency. However, as demonstrated

by Dayri and Rosenbaum (2015), Dyhrberg et al. (2023) and Fleming et al. (2024) rigid tick

size regimes can lead to unintended consequences, such as excessive queuing and reduced

price competition. In this line of literature, tick size design is centered around the trade-

off between HFT intermediation and excessive undercutting and queuing. Our findings

suggest that inverted exchanges partially offset these inefficiencies but also introduce new
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challenges related to liquidity fragmentation. This underscores the need for a more flexible

approach to tick size regulation that accounts for differences in stock characteristics and

market conditions.

2.3 Data and Stylized facts

2.3.1 Data Description

In this paper, we use four types of data to study the impact of exchange fees on market

microstructure. First, we use the NYSE Trade and Quote (TAQ) database for tick-by-tick

trade and quote data of all activity within the U.S. National Market System. Second,

we merge this dataset with the NASDAQ HFT dataset, which identifies HFTs according

to their trading and quoting behavior. Third, we use the SEC Market Information Data

Analytics System (MIDAS) for their data on market depth. MIDAS collects data from

consolidated tapes as well as proprietary feeds. These are typically used by high-frequency

traders who have more sophisticated data needs. Finally, we use CRSP for fundamental

variables such as industry sector and the number of shares outstanding to derive market

capitalization. Our sample period runs from February 22, 2010 to February 26, 2010.

The NASDAQ OMX made the HFT dataset available to academics under a Non Disclosure

Agreement. Previous papers using this dataset include Carrion (2013), Brogaard et al.

(2014), O’Hara et al. (2014) and Brogaard et al. (2014). It contains all lit trading and

quoting activity on a sample of 120 randomly selected stocks. The NASDAQ categorizes

market participants as HFT based on their trading behavior, such as inventory manage-

ment, end-of-day positioning, order cancellation rate and trading frequency. This dataset

allows us to directly observe the HFT liquidity provision. Although it is restricted to the

NASDAQ only, it accounts for more than a third of total trading activity and should be

representative of general HFT behavior. In particular, we can rule out that HFTs may

prefer to concentrate in make-take exchanges for external reasons. To illustrate stylized

facts on intraday patterns, we draw charts using all of the SP500 constituents. For the

empirical analysis, we separately used both the HFT dataset on the 120 stocks sample and

the TAQ dataset on the SP500.

2.3.2 Overview of exchanges

The make-take model is the most popular type of fee structure: the exchange provides a

rebate to liquidity makers while charging a trading fee to liquidity takers. In our sample,

they include NYSE, NASDAQ, AMEX, ARCA, BATSZ, EDGX, PHLX and represent over

85% of total trading activity on lit venues. Conversely, inverted exchanges include EDGA,
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BX, BATSY and NSX. Finally, CHX is the only exchange using a fee-fee structure, a model

charging positive fees to both liquidity takers and makers.

Figure 2.1: Exchange market share by fee structure

The US equity trading landscape operates within the confines of Regulation National Market

System (NMS), a regulatory framework designed to ensure trades are executed at optimal

prices. Its primary objective is to shield market participants from engaging in suboptimal

transactions solely due to lack of awareness or accessibility to superior pricing elsewhere.

Regulation NMS introduces the notion of a protected quotation, denoting a quote exhibited

on an exchange that is immediately and broadly accessible, thereby establishing a clear rule

to uphold its intent.

Furthermore, in adherence to Regulation NMS, trading centers are obligated to prevent

trade-through, instances where transactions are settled at prices inferior to protected quo-

tations. However, market participants are permitted to utilize inter-market sweep orders

(ISOs) to execute orders on other exchanges, provided additional ISOs are routed, as neces-

sary, to execute against the full displayed size of any superior-priced protected quotes. The

regulation, by decreeing that trades must not occur at prices inferior to the best available

price, can be construed as reinforcing brokers’ obligation to route orders for best execu-

tion—a mandate that serves both as an investor protection measure and a requirement to

secure the most advantageous terms for clients. Parameters for assessing best execution
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encompass factors such as speed, probability of execution, and price improvement, which

denotes the opportunity for an order to execute at a superior price to the prevailing quote.

These protected quotations are aggregated into a consolidated format known as the Security

Information Processor (SIP), a real-time data feed encompassing all updates to protected

quotes. At any given juncture, market participants can ascertain the optimal price available

among protected quotations via reference to the SIP. Despite furnishing a common reference

point, the SIP does not eradicate asynchronous market data dissemination. The identical

information available through the SIP is also accessible via exchanges’ proprietary direct

feeds, with participants presented various options for accessing these disparate data sources.

Hence, the TAQ data is not error-proof. Following the existing literature (Falkenberry

(2001), Wah et al. (2017)), we filter the data to only select trades and quotes that reflect

normal market activity. We restrict our focus to regular market hours from 09:30AM to

04:00PM ET. For quotes, we ignore locked and crossed markets, i.e. quotes that would

indicate a negative spread. We use the National Best Bid Offer (NBBO), i.e. the highest

bid and lowest ask in a security, sourced from among all available exchanges or trading

venues. We further exclude abnormal quotes, as defined by quotations where the National

Best Offer (NBO) is outside of the [13NBB, 3NBO] range. For trades, we remove trades

with correction indicators with sale condition codes B, C, G, H, L, M, N, O, P, Q, R, T, U,

V, W, Z, 4, 5, 6, 7, 8, or 9, corresponding to abnormal trades. Finally, we consider trades

occuring far from the NBBO to be aberrant when they do not lie within [0.9NBB, 1.1NBO]

Pricing structures may vary depending on a participant’s volume on a given venue, with at-

tainment of the most favorable, top-tier rebates contingent upon exceeding specified volume

thresholds.

2.3.3 Intraday patterns and the tick size constraint

Volume, volatility, and spread exhibit a discernible intraday pattern that underpins market

behavior. For example, the U-shaped pattern of trading volume is widely documented

(Wood et al. (1985)). Figure 2.3 clearly exhibits the downward trend of volatility during the

day. Trading volume experiences pronounced concentration during the initial and final hours

of the trading session, with the first hour notably characterized by heightened volatility

compared to subsequent periods. We observe a gradual narrowing of the bid-ask spread

and an increase in the limit order book (LOB) depth throughout the day. Admati and

Pfleiderer (1988) show that liquidity traders concentrate their activity and this effect is

amplified when there are informed insiders.

The contracting spread pattern 1 has important ramifications for venue selection. In order

1As showcased in figure 2.11, a discernible trend emerges throughout the trading day, wherein an increas-
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Figure 2.2: Fee schedule by exchange

to study venue switching, we introduce the concept of a ”tick-constrained” stock—a security

whose bid-ask spread consistently remains within a few ticks.

With these institutional details in mind, we illustrate in the next section the theoretical

mechanism underlying HFT liquidity provision, before proceeding to a more complete model

with price discreteness and inverted fees.

2.4 Model Setup

Agents. We consider a continuous-time trading environment where liquidity providers

and liquidity demanders interact strategically. We are interested in determining what order

types agents are sending and the associated equilibrium bid-ask spread. There is a single

risky asset with fundamental value Vt which is common knowledge. There are three types

of traders:

• High Frequency Traders (HFTs) are risk-neutral traders maximizing expected

profits. They have a speed advantage, enabling them to place and cancel orders

faster than other traders. By placing resting limit orders, they profit from the bid-ask

ing number of stocks transition towards becoming tick-constrained.
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Figure 2.3: Intraday pattern of volume and volatility

spread.

• Retail Traders (RT) are exogenous liquidity demanders and can only submit market

orders, accepting prevailing bid-ask prices. They do not compete with HFTs for

liquidity provision.

• Mutual Funds (MF) are strategic liquidity demanders and have the flexibility to

submit either limit or market orders to minimize transaction costs.

HFTs are present at every time period, providing liquidity. RTs and MFs only live for a

single period and arrive randomly. We refer to them as non-HFTs. The non-HFT arrival

is a Retail Trader with probability β and a Mutual Fund with probability 1− β.

Trading motivation. Contrary to HFTs, non-HFTs are liquidity traders and have an

inelastic demand. For now, we focus on the simple case where one needs to buy or sell
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one unit of asset. HFTs provides quotes to buy or sell, enabling gains from trade in this

economy.

Modelling spread. Conditional on being able to fill their order, non-HFTs minimize

their expected execution cost. HFTs are perfectly competitive and set the bid-ask spread

to maximize their expected profits.

Limit Order Book. We model the Limit Order Book (LOB) as a pair of best bid and

best offer. For limit orders resting at the same price, orders arriving earlier execute before

later orders. HFTs are equally fast and their order messages are processed in random order

if they arrive at the same time. The fundamental value Vt is common knowledge but when

liquidity providers are unable to update their quotes following value jumps, they may get

sniped by HFTs. For example, if there is a positive value jump, the previous sell order is

now underpriced and HFTs race to exploit this arbitrage. Mutual funds are always subject

to sniping risk because they are slower than HFTs.

Events and asset dynamics. An event is either a non-HFT coming to the market or a

change in the value of the asset. As in Budish et al. (2015), we model the arrival of events

as a compound Poisson process. Non-HFTs arrive at the market with Poisson intensity λL

while the asset’s fundamental value Vt has random jumps with arrival rate λV and i.i.d.

jump values σi ∼ U [−Σ,+Σ]. Therefore, with probability π = λV
λL+λV

, the next event is a

value jump and the asset value increases or decreases with equal probability by an amount

σi. With probability 1−π, the event is a non-HFT trader arrival. Among these non-HFTs,

recall that there are β MFs and 1− β RTs. Assume that RTs use buy or sell market orders

with equal probability. Thus, the next event is an RT buy market order with probability
1
2(1− β)(1− π).

Exchange fees. Traditionally, make-take exchanges operate by charging take fees higher

than make fees, incurring a profit of ft − fm for each transaction. Hence, we assume

0 < fm < ft. When there is no exchange fees, our model degenerates into Li et al. (2021).

Fees are charged based on execution, irrespective of order type. As an example, a limit

order lifting the ask removes liquidity. On the other hand, a limit order that does not get

executed immediately provides liquidity and pays a make fee when filled.

Tick size constraint. Financial markets are quoted with a discrete price grid: a tick is

the minimum price increment. This constraint does not exist under continuous pricing.
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2.4.1 HFTs

As a benchmark, we first study how the bid-ask spread is set under continuous pricing with-

out fees. In later sections, we show that price discreteness introduces frictions that HFTs

are able to exploit. We model a financial market where N high-frequency traders (HFTs)

act as liquidity providers, with N ∈ [2,∞]. HFTs have a speed advantage, allowing them

to post and cancel orders faster than other participants. HFTs maximize their expected

profits and can choose between posting liquidity or removing it. Let h be the HFTs’ quoted

half bid-ask spread, i.e. the distance from the fundamental value Vt to the best bid or

ask. HFTs strategically choose between liquidity provision and quote sniping. If an HFT

provides liquidity, HFTs post a sell limit order at Vt + h and a buy limit order at Vt − h.

It earns a spread h when a non-HFT lifts the order. However, if the fundamental price

moves before execution, the HFT’s quote becomes stale, exposing it to the risk of being

sniped. Without loss of generality, we study the expected payoff of the HFT’s sell limit

order. When a buy event occurs, the expected payoff of the HFT is:

(1− π) · h− π
N − 1

N
· (σ − h) (2.1)

Conditional on a buy event, with probability 1− π, non-HFTs lift the order and the HFT

receives h. With probability π, there is a value jump and the liquidity provider either

manages to cancel their order with probability 1
N or fails to do so and gets sniped with

probability N−1
N . The loss on stale quotes is σ − h. An HFT’s outside option is to snipe

stale quotes and does so successfully with probability 1
N . Thus, the expected payoff for

sniping is:
1

N
π(σ − h) (2.2)

HFTs post limit orders in the order book and earn profits from the bid-ask spread, but

they also face the risk of adverse selection (i.e., being picked off by rivals). The decision to

post liquidity depends on the expected profit from doing so, relative to the alternative of

removing stale quotes posted by other HFTs.

2.4.2 Mutual Funds

Mutual Funds want to minimize their execution cost C by choosing between Market Orders

(MO) and Limit Orders (LO). Their action space is defined by the set {MO, LO}. When

using market orders, they buy at the available quoted ask and pay a half-spread h over

the fundamental value. However, when the MF submits a buy limit order at Vt + ξ with

ξ < h, i.e. at a price lower than the price quoted by HFTs, HFTs immediately remove

that liquidity and earn a profit of ξ by selling above the fundamental value. The MF pays
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ξ with a limit order, instead of h with a market order. Hence, it benefits from a negative

opportunity cost h − ξ. As ξ → h, effectively, MFs execute at the fundamental value and

HFTs do not make any profits trading against them. HFTs only earn profits from Retail

Traders. Thus, MFs would always prefer to set limit orders quoted the fundamental value.

2.4.3 Equilibrium bid-ask spread

There is perfect competition among the HFTs. In this baseline model, an equilibrium

consists of a Mutual Fund’s order choice (Market Order or Limit Order) and the half-

spread h set by HFTs. In equilibrium, an HFT should be indifferent between liquidity

provision and stale quote sniping. Thus, the equilibrium bid-ask spread is the value h = hβ

which solves:

(1− β)(1− π)

(1− β)(1− π) + π
h− N − 1

N

π(σ − h)

(1− β)(1− π) + π
=

1

N

π(σ − h)

(1− β)(1− π) + π
(2.3)

The denominator (1− β)(1− π) + π reflects the probability of either a value jump or a RT

arrival. Because MFs always get executed at the fundamental value, HFTs do not earn any

profits from them. They adjust the bid-ask spread to break-even solely based on the RT

flow. The left-hand side is the value of providing liquidity to RTs while being subject to

sniping risk. The right-hand side is the value of sniping stale quotes. The equilibrium half

bid-ask spread is

hβ =
πσ

1− β(1− π)
(2.4)

HFTs always maintain one unit in the LOB at the ask price Vt + hβ and one unit at the

bid price Vt − hβ. MFs submit limit orders at Vt when they arrive and HFTs immediately

demand liquidity at Vt. When there is a positive (negative) value jump, HFTs race to snipe

stale ask (bid) quotes.

In the following section, we present different market microstructures. We first start by

deriving the equilibrium under fees. We then add the tick size friction and explain the role

of inverted exchanges in discrete pricing. Under this framework, we subsequently derive

results for the behavior of the order book, such as depth and trading volume.

2.5 Main Model

In the main model, we introduce exchange fees and the tick size constraint. Exchange fees

alter net spreads. When traders provide liquidity, they earn a positive rebate fm on their

transactions. When traders remove liquidity, they incur a take fee ft on their transactions.
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In the presence of fees, canceling their own stale quote is not equivalent to sniping it. The

HFT seller can cancel its order without incurring round-trip fees, because fees are only

charged on transactions, not orders. In this setting, the sell order has an expected payoff

given by:
(1− β)(1− π)

(1− β)(1− π) + π
(h+ fm)− N − 1

N

π(σ − (h+ fm))

(1− β)(1− π) + π
(2.5)

The first term corresponds to liquidity provision to RTs while the second term represents

the loss from being sniped in a value jump.

In equilibrium, HFTs should be indifferent between liquidity provision and stale quote

sniping. Thus, the equilibrium bid-ask spread is the value hβ which solves:

(1− β)(1− π)

(1− β)(1− π) + π
(h+ fm)− N − 1

N

π(σ − h− fm)

(1− β)(1− π) + π
=

1

N

π(σ − h− ft)

(1− β)(1− π) + π
(2.6)

The right-hand side is the sniper’s profit which now includes a cost ft for removing liquidity.

The equilibrium half bid-ask spread becomes

hβ,N =
πσ

1− β(1− π)
− fm − π

1− β(1− π)

1

N
(ft − fm) (2.7)

When an HFT wants to update its resting limit order, it does so by canceling her quote

instead of sniping it for a cost of ft − fm. Hence, it benefits from a negative opportunity

cost when providing liquidity. In equilibrium, the bid-ask spread is narrower by π
N (ft−fm).

Hence, compared with the benchmark case h = hβ, the tighter spread is not single-handedly

explained by rebates.

Assumption 1. The number of HFTs is infinite, i.e. N = ∞.

As N increases, the value of sniping decreases as the sniping race becomes more compet-

itive. An increase in N also decreases the value of liquidity provision as it decreases the

probability of successful canceling on value jumps. Effectively, N affects the opportunity

cost of canceling versus round-trip transactions given by π
N(1−β(1−π))(ft − fm).

Proposition 6. As N → +∞, the equilibrium bid-ask spread becomes:

hβ =
πσ

1− β(1− π)
− fm (2.8)

Subsequently, we denote by Hβ = hβ + fm the break-even spread excluding fees.

2.5.1 Tick constraint and the HFT rent

In an idealized market with continuous pricing, competition among HFTs would ensure that

bid-ask spreads are as tight as possible, aligning prices closely with fundamental values.
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However, in reality, exchanges enforce a minimum tick size constraint: prices can only be

quoted in discrete increments of size ∆. In the United States,the minimum price increment

is rigid and set at ∆ = 0.01$.

This discretization introduces frictions, particularly when the tick size is large relative to

the natural equilibrium spread. When the tick size constraint is binding:

• HFTs cannot tighten the spread further, even if competition would otherwise drive it

lower.

• Non-HFT participants are unable to undercut HFTs, as they are constrained to quot-

ing at fixed increments.

• HFTs can extract rents because their quotes maintain priority in the order book.

Formally, we express asset volatility in ticks such that σ = L∆. To put L in perspective,

stocks like Ford (F) or General Motors (GM) have fundamental value jumps of about L = 3

ticks. Consider the extreme case when hβ → 0. The bid-ask spread is binding at one tick.

For illustrative purposes, we always use V0 = 0. Assume that the bid-ask spread is one-tick

wide and that V0 sits in between these two price increments, i.e. V0 ∈ [−∆
2 ,+

∆
2 ]. We

distinguish two cases:

• When −∆
2 ≤ V0 ≤ −∆

2 + fm, the HFT quotes a sell order at −∆
2 . The HFT is willing

to quote a price lower than the fundamental value because they will earn a positive

profit with the maker fee.

• When −∆
2 + fm ≤ V0 ≤ ∆

2 , the HFT quotes a sell order at +∆
2 . If the order is

executed, the HFT will receive +∆
2 + fm − V0 > 0 as a rent for providing liquidity.

Remark 1. By definition, σ = L∆. Hence, the fundamental value will always sit in the

middle of two ticks.

Assumption 2. The maker fee fm < ∆
4 is small enough such that sell orders are always

quoted above fundamental value. This assumption is used to match reality and prevent

crossed orders.

In the benchmark case where tick size is not binding, HFTs break even at the half bid-ask

spread hβ and thus, it does not make sense to quote a second limit order. This is no longer

the case when HFTs can extract rent from the tick size constraint. The HFT seller always

quote at the tick above the breakeven price, i.e. hβ < +∆
2 . Because the tick size is binding,

MFs cannot undercut HFTs by posting a more aggressive quote. They are forced to use

market orders and act effectively like the RTs.
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Proposition 7. HFTs extract a rent from liquidity provision when the tick size constraint

is binding. The expected profit to providing liquidity in an empty LOB is

(1− π)(
∆

2
+ fm)− π(σ − ∆

2
− fm) = fm − πσ +

∆

2
> 0 (2.9)

HFTs extract rent through two channels. First, they benefit from the incremental profits

of β(1 − π)∆2 from the market orders of MFs. Under continuous pricing, when β = 0, the

HFTs would set the prices at the break-even spread h0 = πσ − fm < hβ. If the break-even

spread hβ is exactly at the tick, HFTs extract a profit ∆
2 with probability β(1−π) from the

market orders of the MFs. Secondly, HFTs can no longer compete over prices and tighten

the bid-ask spread. Therefore, they extract an additional profit of ∆
2 − h0 from both RTs

and MFs. We can decompose HFT’s rent into three terms:

∆

2
− h0︸ ︷︷ ︸

HFT rent

= β(1− π)
∆

2︸ ︷︷ ︸
Rent on forced

MF market orders

+(1− β)(1− π)(
∆

2
− hβ)︸ ︷︷ ︸

Incremental profits
from RT market orders

−π(hβ − ∆

2
)︸ ︷︷ ︸

Lower cost
from sniping

(2.10)

Therefore, in partial equilibrium, there is a positive expected payoff to providing liquidity.

HFTs can further compete on prices, with lower net spreads thanks to inverted fees (see

section 2.5.2), or on speed, with more depth in the LOB (see section 2.5.3).

2.5.2 Inverted exchanges for reducing the net spread

Previously, make-take exchange fees widened the net cost of a one-tick spread. On the

contrary, inverted exchanges charge a fee to liquidity providers while offering a rebate to

liquidity takers. In tick-constrained markets, price competition is limited because traders

cannot improve quotes in increments smaller than the tick size. This restriction allows high-

frequency traders (HFTs) to dominate order queues by securing price priority at the best bid

or ask. Inverted exchanges counteract this rigidity by enabling further price competition.

Denote their make and take fees by f Im < f It < 0. The total exchange fee respects the

participation constraint TI = f It − f Im > 0.

Assumption 3. fm ≤ −f It < 0 < −f Im ≤ ft

Essentially, this assumption means that getting a limit order filled on an inverted exchange

is cheaper than executing a market order on a make-take exchange at the same price. This

is consistent with real world exchange fees: inverted exchanges tend to have smaller fees

and rebates.

Mutual Funds will post limit orders when at the front of the LOB queue because it reduces

their execution cost in expectation by f it − f jm, where i denotes the exchange populated
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by HFTs and j the exchange on which MFs provide liquidity. We further characterize the

negative opportunity cost below. Denote by hI0 = H0 − f Im the equilibrium half-spread

under continuous pricing on inverted exchanges. By design, hI0 > h0.

Proposition 8.

We distinguish three cases:

• Case I: When h0 < hI0 <
∆
2 , HFTs can undercut prices on the make-take exchange by

quoting on the inverted venue and earn ∆
2 − hI0. Non-HFTs are forced to use market

orders and will always pick the inverted venue to obtain an execution cost lower by

f It − ft.

0−∆
2

∆
2

∆
2
+ fI

m
∆
2
+ fm

3∆
2

+ fI
m

3∆
2

HFT/I Ask

Figure 2.4: case I: h0 < hI0 <
∆
2

Figure 2.4 shows the equilibrium quote of the HFT. The red region corresponds to

the break-even spread range such that HFTs always quote at the nearest tick on

inverted exchanges. We denote inverted exchanges by I and make-take exchanges by

MT. There are four possible combinations for Bid and Ask: HFT/I, HFT/MT, MF/I,

MF/MT.

When h0 <
∆
2 < hI0, the break-even spread for HFTs under inverted fee structure is above

the half-tick. They provide liquidity on make-take exchanges and set the ask quote at the

nearest tick above at ∆
2 . It is not profitable to quote on inverted exchanges at the NBBO.

They do not provide liquidity at the second tick level either as Non-HFTs will pay +∆
2 + ft

on make-take exchanges instead of 3∆
2 + f It . Hence, the LOB on the inverted exchange is

empty.

In this case, MFs can choose between using market orders at the make-take exchange,

paying ∆
2 + ft, and providing liquidity at inverted exchanges, paying ∆

2 − f Im. By providing

liquidity in an empty LOB on inverted venues, MFs offer the best net price and effectively

gain priority over the overall order queue. We assume that when an MF arrives after another

MF and the inverted exchange LOB is not empty, MFs simply use market orders.

If MFs choose to post limit orders on inverted venues, HFTs only break even at the half-

spread hβ. Therefore, we distinguish two sub-cases:
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• Case II: When h0 < hβ <
∆
2 < hI0, HFT cannot break even when providing liquidity

in an inverted exchange at the nearest tick. Therefore, they provide liquidity on make-

take exchanges only. MFs always chooses to undercut HFTs when they arrive on the

market by posting orders on the inverted exchange at the tick ∆
2 , paying ∆

2 − f Im

instead of ∆
2 + ft.

0−∆
2

3∆
2

+ fI
m

3∆
2

MF/I Bid

∆
2

∆
2
− fI

m
∆
2
+ fm

HFT/MT Ask

Figure 2.5: Case II: h0 < hβ <
∆
2 < hI0

The MF puts a limit bid order at ∆
2 on the inverted exchange which gets immediately

accepted by the HFT. The HFT sells and makes a net profit of ∆
2 − f It while the MF

pays ∆
2 − f Im.

• Case III: When h0 <
∆
2 < hβ < hI0, HFT cannot break even when providing liquidity

in a make-take exchange at the nearest tick. Therefore, they provide liquidity two

ticks above on inverted exchanges. MFs always chooses to undercut HFTs when they

arrive on the market by posting orders on the make-take exchange at the tick ∆
2 →

better execution (but not at fundamental value).

0−∆
2

∆
2

∆
2
− fm

3∆
2

+ fI
m

3∆
2

HFT/I AskMF/MT Bid

Figure 2.6: Case III: h0 <
∆
2 < hβ < hI0

The MF puts a limit bid order at ∆
2 on the make-take exchange which gets immediately

accepted by the HFT. The HFT sells and makes a net profit of ∆
2 − ft while the MF

pays ∆
2 − fm.

We summarize these results in the following proposition:

Proposition 9. In the presence of inverted exchanges, there are three equilibrium regions

for the Mutual Fund’s decision:
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• a pooling equilibrium when h0 < hI0 <
∆
2 : Mutual Funds are forced to used market

orders and behave like Retail Traders. Their limit orders cannot be priced better than

existing HFT orders, and market orders are the only order type guaranteeing them

execution.

• an inverted equilibrium when h0 < hβ < ∆
2 < hI0: Mutual Funds always post on

inverted exchanges to undercut orders on traditional venues. Asset risk is low but not

low enough for HFTs to out-compete the Mutual Funds.

• a make-take equilibrium when h0 <
∆
2 < hβ < hI0: Mutual Funds always post on the

traditional exchange and HFTs post on the inverted exchange.

Note that these three scenarii do not happen sequentially as the break-even spread increases.

Recall that when HFTs cannot quote at the nearest tick on inverted exchanges, MFs can

undercut them and HFTs do not earn profits from them. Assume that hI0 = ∆
2 . For β

sufficiently high, the difference in break-even spread is hβ − hI0 = πσ β(1−π)
1−β(1−π) + f Im − fm.

Therefore, for sufficiently high β given by

β >
1

1− π
· fm − f Im
πσ + fm − f Im

(2.11)

the second case never happens and HFTs switch between providing liquidity on make-take

and inverted exchanges depending on where the fundamentals lie after the value jump.

2.5.3 Order book depth

A key takeaway from the previous sections is the positive profits to marginal liquidity

provision in partial equilibrium, when there is a single unit of liquidity in the LOB. A

natural solution is to allow the order book to have depth. HFTs provide liquidity at deeper

levels because the effective spread is higher than the break-even spread.

Denote by D the depth of the order book. Assume the first D − 1 limit orders in the LOB

have a positive expected payoff. An HFT would post the marginal Dth order in the LOB at

prevailing prices only if the rent is sufficiently high. Denote p = (1−β)(1−π)
1−β(1−π) the probability

of RT arrival instead of a value jump. With probability pD, there are D Retail Traders

arrivals in a row and the last HFT earns a profit of h + fm from liquidity provision. For

d < D, with probability pd(1 − p), there are d RT arrivals in a row. Conditional on this

sequence, with probability 1
N , the last HFT successfully wins the sniping race on D− d+1

orders while also canceling their own and make a profit of (d−1)(σ−h−ft), or gets sniped
on his stale quote and makes a loss of (σ − h− fm). Therefore, the expected payoff would

be 1
N (d− 1)(σ − h− ft)− N−1

N (σ − h− fm).
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Proposition 10. The expected payoff of marginal liquidity provision at depth D is:

g(D) = pD(h+ fm)− (σ − h)(1− pD) + (1− pD)fm (2.12)

and the equilibrium gross half bid-ask spread at depth D is HD = σ(1− pD).

Hence, under discrete pricing, order book depth matters. HFTs are incentivized to compete

for order time priority. Note that ∂g
∂d < 0, i.e. the marginal gain from liquidity provision

decreases the farther in the queue. As a consequence, the incentives for competing in the

latency race are highest among top players.

2.5.4 Market fragmentation

When the break-even half-spread is sufficiently small, i.e. H0 < πσ+f Im, inverted exchanges

should dominate all trading activity. In reality, investors do not always obtain the optimal

execution. Some orders may get filled at the NBBO but with worse outcomes after includ-

ing fees. This may arise because of the brokerage’s agency problem or simply, convenience.

This can sustain fragmented liquidity even when inverted exchanges offer finer price im-

provement. We subsequently incorporate market fragmentation into our model. Non-HFTs

are indifferent between exchanges that offer the same quotes, exclusive of fees. Therefore,

they choose the make-take and inverted venues with equal probability 1
2(1 − π). Denote

by DMT and DI the equilibrium depths on the make-take and inverted venues respectively

such that the marginal HFTs providing liquidity break even. Formally, they are defined by:

DMT = max{d ≥ 0 | (1− (1− π)d)σ ≤ ∆

2
+ fm}

DI = max{d ≥ 0 | (1− (1− π)d)σ ≤ ∆

2
+ f Im}

(2.13)

As the relative tick size increases, the equilibrium order book depth increases.

Proposition 11. Given DI , the depth on the make-take exchange is determined by:

DMT = ⌊
log(1−

∆
2
+fm
σ )

log(1− π)
⌋ (2.14)

where 1−
(
1−

∆
2
+fI

m

σ

) 1
DI+1

< π ≤ 1−
(
1−

∆
2
+fI

m

σ

) 1
DI

We display the equilibrium depth in each venue in Figure 2.7a. Depth on the make-take

exchange increases faster than on the inverted venue as the probability of a value jump π

decreases. The make-take exchange is able to capture a higher proportion of the tick size
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rent compared to the inverted venue. Hence, the inverted share displays a staircase pattern

as a function of π.

(a) Equilibrium depth (b) Inverted share of total depth

Figure 2.7: Comparative depths. Chart drawn using following the parameters: σ = 1, fm =
0.1, f Im = −0.2.

The fraction of total quoted depth is further shown in Figure 2.7b. When there is sufficiently

more rent to be extracted and posting an additional layer of liquidity is profitable, inverted

usage jumps as the make-take exchange LOB quoted depth does not increase as much

relatively. For high values of π, liquidity provision in inverted exchanges is not profitable,

and only the maker-taker model subsists. Further, the share of market depth has important

implications on trading volume.

Proposition 12. The inverted market share in the fragmented market is given by:

E[nI ]
E[nI ] + E[nMT ]

=

1
2(1−π) +DI

1
(1−π) +DMT +DI

(2.15)

While the number of trades for each venue before the arrival of a news is the same and

equal to 1
2(1−π) , they differ in the number of stale quotes sniped. On average, after a trading

session of length 1
λV

, the numbers of trades on the inverted and make-take exchanges are

given by E[nI ] = 1
2(1−π) +DI and E[nMT ] =

1
2(1−π) +DMT respectively.

2.5.5 Market share under volatility regimes

Importantly, markets exhibit heterogeneous levels of volatility, which HFTs quickly incorpo-

rate into their spreads. For instance, volatility spikes in the market open and close, as shown

in Figure 2.3. To match this stylized fact, we add volatility regimes (volatility of volatility)
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to our model. Assume the value jumps σt are i.i.d. and uniformly distributed. At time

t, a value jump occurs and the new volatility regime for time t + 1 is common knowledge.

HFTs adjust their spread accordingly. For simplicity, we assume that the volatility regime

follows a uniform distribution such that value jumps remain relatively small. The latter

assumption is only for clarity of exposure and results remain similar without restrictions on

the magnitude of the volatility regime.

Assumption 4.

σt ∼ U [−ΣV ,+ΣV ], ∀t ∈ [0,∞] where ΣV ∈ [
∆

2
+ fm,

3∆

2
+ f Im] (2.16)

This can be interpreted as important news causing a value jump as well as higher (short-

term) volatility. When ΣV > 3∆
2 + f Im, the equilibrium alternate between Case II and Case

III, while offering little economic insight. As the ratio ΣV
∆ increases, the tick size is less

and less likely to be binding. When ΣV
∆ → ∞, the tick size is infinitesimally small and

the equilibrium reverts to that of the continuous benchmark. Thus, we exclude that range

in our assumption and focus on tick size constrained environments. We compute trading

volumes for each scenario in Section 2.5.2. Without loss of generality, we study the behavior

of the LOB when HFTs provide liquidity on the ask side. Let us denote by nMT and nI

the trading intensity on make-take and inverted venues respectively. Here, we are only

interested in the trading volume of inverted exchanges relative to traditional exchanges.

Hence, we define nMT and nI as the number of trades between two value jumps. Again, as

in Section 2.5.2, we distinguish three cases:

• Case I: When H0 <
∆
2 + f Im, the nearest tick is constraining, HFTs provide liquidity

on inverted exchanges and all trades are market orders. With probability
∆
2
+fI

m

ΣV
, the

expected number of trades on inverted venues before the value jump is 1
1−π . The total

number of trades includes the stale quotes sniped during the value jumps and is given

by: E[nI |σt] = 1
1−π + 1

• Case II: When H0 > ∆
2 + f Im and Hβ ≤ ∆

2 + fm, MFs undercut the HFTs by

providing liquidity on the inverted exchange while HFTs provide liquidity on the make-

take venue. This is true when σ ≤ 1−β(1−π)
π (fm − f Im). Therefore, with probability

1
ΣV

1−β(1−π)
π (fm − f Im)−

∆
2
+fI

m

ΣV
, the expected number of inverted trades is E[nI |σt] =

β
1−π and the expected number of make-take trades is E[nMT |σt] = 1−β

1−π + 1 .

• Case III: When Hβ >
∆
2 + fm, MFs undercut the HFTs by providing liquidity at

the nearest tick on the make-take exchange while HFTs provide liquidity at the tick

above on the inverted venue. This is true when σ > 1−β(1−π)
π (fm − f Im). Therefore,
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with probability 1− 1
ΣV

1−β(1−π)
π (fm−f Im)−

∆
2
+fI

m

ΣV
, the expected number of make-take

trades (inside NBBO) is E[nMT |σt] = β
1−π and the expected number of inverted trades

is E[nI |σt] = 1−β
1−π + 1.

Note that all trading sessions last the same amount of time on average because they only

depend on the probability of a value jump arrival. In the last case, MFs post a limit order

inside the NBBO and gets immediately accepted. This explains the footprint of hidden

liquidity and price improvements in unconstrained markets. Given the average duration of

a volatility regime is 1
λV

, the average number of trades during that period is the sum across

all volatility states.

Proposition 13. The market share of the inverted exchange is determined by:

E[nI ]
E[nI ] + E[nMT ]

(2.17)

where the trading volume on each exchange is given by:

E[nI ] = 1
β< 1

1−π
· fm−fIm
πσ+fm−fIm

[
∆
2 + f Im
ΣV

· ( 1

1− π
+ 1)

+ (
1

ΣV

1− β(1− π)

π
(fm − f Im)−

∆
2 + f Im
ΣV

) · ( β

1− π
)

+(1− 1

ΣV

1− β(1− π)

π
(fm − f Im) +

∆
2 + f Im
ΣV

) · (1− β

1− π
+ 1)

]

+ 1
β≥ 1

1−π
· fm−fIm
πσ+fm−fIm

[
∆
2 + f Im
ΣV

· ( 1

1− π
+ 1)

+(1−
∆
2 + f Im
ΣV

) · (1− β

1− π
+ 1)

]

(2.18)

E[nMT ] = 1
β< 1

1−π
· fm−fIm
πσ+fm−fIm

[
(
1

ΣV

1− β(1− π)

π
(fm − f Im)−

∆
2 + f Im
ΣV

) · (1− β

1− π
+ 1)

+(1− 1

ΣV

1− β(1− π)

π
(fm − f Im) +

∆
2 + f Im
ΣV

) · ( β

1− π
)

]

+ 1
β≥ 1

1−π
· fm−fIm
πσ+fm−fIm

[
(1−

∆
2 + f Im
ΣV

) · (1− β

1− π
+ 1)

] (2.19)

For small values of β, inverted market share increases with the fraction of mutual funds.

When β crosses the threshold 1
1−π

fm−fI
m

πσ+fm−fI
m
, the market never encounters Case II. The
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inverted volume is increasing in β in Case II while it is decreasing in Case III.

Consistent with Malinova and Park (2015), trading activity is largely driven by the demand

of non-HFTs. In our model, market makers break even while non-HFTs have inelastic

demand when they arrive. A reduction in take fee makes the exchange more attractive to

liquidity demanders while an increase in the make fee has no impact in our model. Thus,

make fees are irrelevant here. However, higher rebates affects the profitability of marketable

orders and thus, the equilibrium depth of the LOB.

Contrasting the results of Section 2.5.4, the inverted market share is generally lower in

fragmented markets than in the model with volatility regimes. The amount of non-HFT

trading is the same on both exchanges. But the make-take exchange has a much deeper

book and generates high volume through the stale quote sniping channel. In reality, brokers

are incentivized by fees, not timely execution. Thus, more orders would be routed to the

make-take exchanges.

In sum, the model highlights that inverted exchanges serve as a mechanism for mitigating

tick-size inefficiencies by enabling finer price competition. However, the presence of HFTs

and order queue dynamics create additional strategic frictions.

2.6 Empirical Results

We now turn to empirical evidence to assess whether these predictions hold in real-world

trading data. In this section, we empirically test the predictions derived from our theoretical

model using high-frequency trading and quote data. We aim to assess how inverted fee

structures and tick-size constraints affect market dynamics, particularly focusing on High-

Frequency Trader (HFT) activity, the usage of inverted exchanges, and the role of order

imbalances.

Our theoretical model identifies that the rents extracted by High-Frequency Traders (HFTs)

increase substantially under binding tick-size constraints. The economic intuition behind

this prediction is straightforward. When tick sizes are binding, non-HFT traders—particularly

slower liquidity providers such as mutual funds—are unable to competitively price-improve

HFT quotes in finer increments. Consequently, HFTs enjoy greater intermediation profits,

as competition from slower market participants diminishes. We summarize this economic

intuition formally as our first empirical prediction.

Prediction 1 (HFT Activity). HFT activity is higher for tick-constrained stocks char-

acterized by lower spreads and lower volatility.

Beyond their impact on HFT activity, the tick-size constraint also directly affects the com-

petitive landscape of exchanges. A core theoretical insight of our model pertains to the
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role inverted fee structures play in alleviating tick-size constraints. In contrast to make-

take exchanges, inverted venues offer rebates to liquidity takers and charge fees to liquidity

providers. This structure effectively enables market participants, particularly institutional

investors and mutual funds, to economically offer and achieve better net execution prices

without violating the regulatory tick size. Thus, inverted venues become especially valu-

able under conditions where tick-size constraints significantly limit finer price increments,

providing a practical avenue for market participants disadvantaged in traditional venues.

Based on this mechanism, we explicitly formulate the following empirical prediction.

Prediction 2 (Inverted Exchange Usage). The relative market share of inverted ex-

changes is positively associated with tighter tick-size constraints, specifically increasing in

stocks for which the regulatory tick size represents a large fraction of the effective spread.

Predictions 1 and 2 together imply a nuanced interaction between HFT behavior, market

structure, and exchange competition. While binding tick-size constraints enable HFTs to

extract increased intermediation rents, they simultaneously incentivize non-HFT traders

to migrate toward inverted exchanges as alternative venues that mitigate these constraints

through economically favorable execution terms. Thus, our theoretical model predicts a

simultaneous increase in HFT participation and inverted exchange usage precisely in envi-

ronments characterized by tighter effective spreads and binding tick increments.

Furthermore, our theoretical analysis indicates that liquidity provision incentives vary sys-

tematically with the relative positioning of fundamental asset values within discrete tick

increments. Intuitively, when the fundamental asset price resides closer to one tick incre-

ment boundary (e.g., closer to the bid price), the other side (e.g., the ask side) becomes

relatively crowded with liquidity providers. Thus, slower traders face substantial queue

disadvantages when attempting to place limit orders on this crowded side. Consequently,

these traders strategically turn to inverted exchanges, where they can economically under-

cut existing liquidity providers through effective net price improvements afforded by taker

rebates.

This mechanism implies a clear, directional empirical relationship between order book im-

balances and side-specific trading volume on inverted exchanges, summarized explicitly in

our next empirical prediction.

Prediction 3 (Inverted Exchange Usage and Order Imbalance). Trading volume

on inverted exchanges disproportionately concentrates on the side of the order book expe-

riencing larger liquidity imbalances. Specifically, mutual fund traders strategically utilize

inverted venues primarily on the less competitive side to effectively mitigate queue disad-

vantages.
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Taken together, Predictions 2 and 3 establish a coherent narrative about how market par-

ticipants adapt their trading venue choices in response to binding tick-size constraints and

associated liquidity imbalances. Under such constraints, inverted exchanges not only pro-

vide overall improved net execution prices, but also enable strategic positioning within the

order book.

In the subsequent sections, we systematically test each of these predictions using rigorous

empirical methodologies and high-frequency data, aiming to provide clear and comprehen-

sive evidence supporting our theoretical framework.

2.6.1 Market Quality Measures

To test the model’s predictions, we first define several market quality metrics. Our primary

variable, the relative tick size, is defined as the ratio of the minimum tick increment to the

nominal stock price. This metric quantifies the economic significance of the tick constraint.

The quoted spread measures liquidity ex ante and is computed as the difference between

the displayed best bid and best ask prices. In contrast, the effective spread reflects ex

post execution costs and captures realized transaction costs as the absolute deviation of the

transaction price from the midpoint. We express these spreads as percentages relative to

the midpoint price to allow cross-stock comparisons.

To measure the spread2, we compute the dollar value-weighted relative effective half-spread

(DVWRES), which is defined as:

DVWRESt =
∑

i∈TXt−1,t

(Pricei · Sizei)∑
i∈TXt−1,t

(Pricei · Sizei)
|Pricei −Midpointi|

Midpointi
. (2.20)

where TXt−1,t is the set of all transactions between minute t−1 and t. DVWRES accurately

reflects realized transaction costs, capturing price improvement from hidden liquidity or

sub-penny executions. Although Hagströmer (2021) indicates that midpoint-based effective

spreads can slightly overstate transaction costs in discrete tick-size environments, we retain

these standard definitions for comparability to the extant literature.

Finally, we measure relative depth as the time-weighted average quoted volume at the best

bid and ask levels, relative to the concurrent 1-hour trading volume:

RelDeptht =
1

V olht

∑
i∈Ut−1,t

(ti − ti−1)(AskSizei−1 +BidSizei−1)∑
i∈Ut−1,t

(ti − ti−1)
. (2.21)

where V olht is the volume in the hour preceding minute t, Ut−1,t is the set of all NBBO

2We also run the regressions with other spread measures (time-weighted vs dollar-weighted, gross vs
effective) and do not find materially different results.
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updates (new bid or new ask) between minute t − 1 and t, and ti is the time of the ith

update. This measure captures liquidity available at the top of the book, directly relevant

for assessing execution probabilities and market impact.

The subsequent empirical analyses present regression results and visual illustrations that

validate these theoretical predictions, providing robust evidence on how tick-size constraints

and inverted fee structures jointly influence liquidity provision, venue market shares, and

trading dynamics.

The NASDAQ HFT dataset identifies high-frequency traders (HFTs) solely at the group

level, without distinguishing individual firms or explicitly identifying whether these traders

predominantly supply or take liquidity. Nevertheless, the dataset provides valuable gran-

ularity through its detailed trade classification, specifying liquidity taker and maker roles

for each transaction. Specifically, each transaction is classified into one of four categories:

NN (non-HFT taker, non-HFT maker), NH (non-HFT taker, HFT maker), HN (HFT taker,

non-HFT maker), and HH (HFT taker and maker). Consistent with the findings of Brogaard

et al. (2018), we observe heightened HFT activity during significant price jumps, typically

acting as contrarians to large price movements, thus mitigating excessive volatility.

To study HFTs’ market behavior, we follow Carrion (2013) and construct three primary

measures to quantify HFT participation in the market. The first measure concerns HFT

Activity, i.e. the participation rate of HFTs in all transactions.

HFT Activity =
HH +HN +NH

HH +HN +NH +NN
, (2.22)

The other two measures characterize the liquidity-induced states of HFT transactions, that

is, whether their transactions are liquidity-taking or liquidity-making3.

HFT Taker =
HH +HN

HH +HN +NH +NN
, (2.23)

HFTMaker =
HH +NH

HH +HN +NH +NN
. (2.24)

Moreover, to explicitly analyze HFTs’ propensity to supply liquidity relative to their overall

trading activity, we define the following variable:

HFTLP =
HH +NH

HH +NH +HN
(2.25)

which measures the fraction of HFT activity that contributes to liquidity provision.

3To be more accurate, HFTTaker (respectively, HFTMaker) is the fraction of trading in which there is at
least one HFT taking liquidity (respectively, making liquidity). We double count HH transactions, defining
them as both HFT liquidity-taking and liquidity-making
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Aggregated across daily observations, HFTs neither exhibit a systematic net liquidity-taking

nor liquidity-providing stance. This neutrality aligns with the interpretation that HFTs typ-

ically manage inventories aggressively and avoid prolonged directional exposures. However,

our theoretical framework suggests that HFTs preferentially provide liquidity for stocks

subject to significant tick size constraints. Due to their technological advantage, HFTs are

more adept at capturing the economic rents arising from discrete price grids, exploiting the

limited price improvement opportunities faced by slower market participants.

Figure 2.8: HFT share and spread through the day. The orange (blue) dots represent the
average spread in the first (last) thirty minutes of the trading day. For clarity of exposure,
the chart does not include stocks which had spreads above 0.10$ at the beginning of the
day.

Figure 2.8 illustrates the intraday evolution of HFT trading activity alongside quoted

spreads. We note a clear pattern: as volatility declines and spreads narrow over the trading

session, HFTs become increasingly active. This observation reinforces our hypothesis that

tighter tick constraints create greater incentives for HFT liquidity provision. To sharpen

the exposition, we exclude stocks with extremely wide initial spreads (greater than $0.10),
thereby concentrating the analysis on stocks meaningfully constrained by the tick size. Ta-
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ble 2.4 in the Appendix shows that, conditional on the NBBO being provided by only one

type of trader, the HFT is more likely to be the liquidity provider as tick size and market

capitalization increase.

Table 2.1 further corroborates these results through panel regression analysis. The depen-

dent variable is the share of total trading attributable to HFTs. Independent variables

include an indicator for stocks with spreads narrower than 1.5 cents—aligning with recent

SEC amendments—and the relative tick size measured as the tick size divided by nominal

stock price. In these regressions, we control for lagged volatility, relative depth of the order

book, and fixed effects at stock, day, industry, and hourly levels. The results consistently

show a positive and statistically significant association between HFT participation and tick-

constrained environments. Controlling for other variables, a binding tick size is associated

with a 2.02% higher HFT activity. More broadly, lower spreads and larger relative tick sizes

predict heightened HFT activity, consistent with theoretical predictions that HFTs capture

larger intermediation rents under constrained pricing environments.
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Table 2.1: HFT Activity on tick size and spread

This table presents coefficients from regressions of HFT activity on microstructure measures.
All variables are computed at the minute-level. The first variable indicates whether the
average bid-ask spread is below 1.5 cents. This measures whether the tick size is binding
or not. Overall results do not change with the type of spread or the threshold number. We
chose 1.5 cents as this is the threshold used by the SEC in the Reg NMS Amendments as of
September 2024. The relative tick size is the ratio of tick size to nominal price, expressed in
%. Lagged volatility is the volatility of the 1-second return after aggregating transaction-
level data (in bps). Relative depth is the ratio of order book depth to concurrent 1-hour
trading volume (in %). Market capitalization is measured once at the market close each
day. We run separate panel regressions at the stock level controlling for day and industry
fixed effects, and stock and hour fixed effects.

Dependent Variable: HFT ACTIVITY
Model: (1) (2) (3)

Variables
1spread≤0.015$ 0.0651∗∗∗ 0.0290∗ 0.0202∗∗∗

(0.0092) (0.0125) (0.0056)
RelTickSize -3.225∗∗∗ -0.9329∗∗∗ -2.287∗

(0.1897) (0.1553) (1.138)
lagged Volatility -48.84∗∗∗ -23.97∗∗∗ -11.31

(4.737) (3.833) (10.13)
lagged RelDepth 0.0006∗∗ 0.0003 −6.6× 10−5

(0.0002) (0.0001) (0.0001)
1spread≤0.015$ × RelTickSize 2.399∗∗∗ 1.396∗∗∗ 0.7380∗∗

(0.2362) (0.2150) (0.2417)
log(MarketCap) 0.0550∗∗∗

(0.0051)

Fixed-effects
date Yes Yes
industry Yes Yes
hours Yes
symbol Yes

Fit statistics
Observations 129,870 129,870 129,870
R2 0.09528 0.14244 0.19834

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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2.6.2 Market Share

Inverted exchanges facilitate trading within the quoted bid-ask spread, effectively offering

liquidity demanders opportunities for finer incremental price improvement than traditional

make-take exchanges, especially when the tick size constraint is binding. We define a stock

as tick-constrained if its time-weighted average quoted spread remains less than 2.5 ticks.

According to our model, the potential intermediation rents extracted by liquidity providers,

especially high-frequency traders (HFTs), are highest when the minimum tick increment

represents a significant fraction of the stock’s nominal price. Therefore, inverted exchange

usage is predicted to be greatest among stocks characterized by relatively tight nominal

spreads and large relative tick sizes.

We empirically test this prediction using the following regression specification:

InvSharei,t = α+ β1 · RelTickSizei,t + β2 · NBBOSpreadi,t +Xi,tγ + ϵi,t,

where i indexes stocks and t indexes hourly intervals. Here, RelTickSizei, t is defined as the

ratio of tick size to stock price, reflecting the economic significance of price discreteness.

NBBOSpreadi, t represents the National Best Bid and Offer (NBBO) spread measured in

absolute dollar terms. The vector Xi,t contains control variables including relative order

book depth, lagged absolute order imbalance, lagged HFT volume share, and lagged volatil-

ity. We employ stock and hour fixed effects to control for unobserved heterogeneity across

securities and intraday variation in market conditions.

Inverted venue usage is positively correlated with the relative tick size, suggesting that

traders actively seek price improvement opportunities when constrained by tick size rigidity.

The effect is strongest for low-spread stocks, where the inability to quote within the bid-ask

spread significantly impacts liquidity demanders.

First, broker-driven market segmentation may limit inverted venue usage. Brokers, incen-

tivized by higher fees offered by make-take exchanges, may not consistently route orders

to venues that minimize net trading costs for clients, as long as execution remains within

the NBBO. Consequently, client orders may receive inferior net execution prices despite

nominal execution at the best quoted prices.

Second, liquidity concentration effects could suppress inverted venue trading volumes. Traders,

particularly institutional investors, prefer markets with higher liquidity concentration to

minimize price impact and execution uncertainty (Admati and Pfleiderer (1988)). Inverted

exchanges, being relatively new entrants, typically display thinner liquidity, discouraging

significant order flow migration despite potential price improvements. Additionally, the

presence of thinner order books on inverted exchanges intensifies adverse selection concerns,

as liquidity providers face increased exposure to stale-quote sniping when fundamental val-

ues shift, further exacerbating liquidity concentration in traditional make-take venues.
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Table 2.2: Inverted market share on tick size and relative depth

This table presents coefficients from regressions of inverted market share on relative tick
size, NBBO spread (in $), relative depth (in %), lagged absolute order book imbalance (in
%), lagged HFT volume share (in %) and lagged 1-min volatility (in bps). All variables are
computed at the minute-level. We run panel regressions at the stock level controlling for
stock and hour fixed effects.

Dependent Variable: InvShare
Model: ALL ALL TC only TC only

Variables
RelTickSize 1.191∗∗∗ 1.110∗∗∗ 1.662∗∗∗ 1.530∗∗

(0.2491) (0.3029) (0.4327) (0.4696)
NBBO Spread 0.0177 -2.561∗∗∗ -2.263∗∗∗

(0.0125) (0.3267) (0.2559)
RelDepth 0.0002∗ 0.0002∗∗ 0.0002∗

(9.06× 10−5) (8.63× 10−5) (8.74× 10−5)
lagged AbsImbalance −6.95× 10−5 -0.0048∗ -0.0024

(0.0015) (0.0024) (0.0020)
lagged HFT Activity 0.0042∗ 0.0065∗∗∗

(0.0018) (0.0018)
lagged Vol 5.235

(2.845)

Fixed-effects
hours Yes Yes Yes Yes
symbol Yes Yes Yes Yes

Fit statistics
Observations 180,681 141,718 112,051 89,626
R2 0.07325 0.07736 0.08363 0.08358

Clustered (hours) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

This phenomenon can be exacerbated by the stale quote sniping channel. Because inverted

venues are less profitable than make-take venues, HFTs supply fewer resting orders to

the LOB. Thus, the resting depth at NBBO in inverted venues is smaller than that of

regular venues. Upon a fundamental news arrival, the existing stale quotes are sniped. This

naturally creates more volume at the make-take venue despite having the same amount of

fundamental demand categorized by non-HFTs orders.
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Figure 2.9: Inverted market share by spread

Figure 2.9 visualizes the empirical relationship between inverted market share and relative

spread, revealing a concave pattern. While inverted venues capture a higher share of trading

volume as the tick constraint becomes more severe, their market share is notably capped

at approximately 20%, even for the most constrained stocks. We propose two potential

explanations for this observed ceiling on inverted exchange volume.

2.6.3 Book depth and order imbalance

Thus far, we have analyzed aggregate market shares and overall HFT activity, linking these

factors to tick size constraints and exchange fee structures. In this subsection, we extend our

empirical analysis to examine how order imbalance affects liquidity dynamics, specifically

through the channel of inverted venue usage.

In practice, a stock’s fundamental value seldom resides exactly at the midpoint between

two ticks; it typically leans closer to either the bid or the ask side. Following Hagströmer

(2021), we leverage order imbalance as an indicator of the likely direction of this bias. When

one side of the order book displays disproportionately higher depth, it signals the direction

toward which the fundamental value is likely skewed. For instance, a surplus of sell orders

at the best ask relative to buy orders at the best bid suggests the fundamental value resides

closer to the bid tick.
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Our theoretical predictions suggest that when the tick constraint is binding and the break-

even spread falls within an intermediate range—not excessively tight nor excessively wide—inverted

exchanges will attract more liquidity on the side of the order book opposite to the funda-

mental value. Specifically, if the fundamental value leans closer to the bid tick, we expect

increased inverted venue liquidity provision at the ask side.

To empirically test whether inverted exchange usage systematically responds to order im-

balance, we compute the time-weighted order book imbalance at the NBBO:

Imbalancet =
∑

i∈Et−1,t

(ti − ti−1)∑
τ∈Et−1,t

(ti − ti−1)

(BidSizei −AskSizei)

(AskSizei +BidSizei)
. (2.26)

where Et−1,t is the set of all events (new top of book bid/ask or transaction) between minute

t − 1 and t, and ti is the time of the ith update. We then estimate panel regressions to

analyze whether inverted exchange trading volume, at the minute level, increases in the

direction of the observed imbalance. Our primary regression specification is:

InvVolBi,t

InvVolBi,t + InvVolSi,t
= α+ β1Imbalancei,t +Xi,tγ + ϵi,t, (2.27)

where InvVolBi,t and InvVolSi,t denote inverted exchange trading volumes on the buy and

sell sides, respectively, for stock i in time interval t. The vector of controls (Xi,t) includes

lagged volatility, relative order book depth, and lagged order imbalance. Fixed effects at

the stock and hourly levels control for unobservable differences across stocks and within-day

variation.

Table 2.3 presents the results. We find a statistically significant positive relationship be-

tween order imbalance and the share of inverted buy volume, consistent with the theoretical

prediction. Specifically, the coefficient on imbalance indicates that a 1% increase in order

imbalance is associated with an approximate 0.12% increase in inverted buy-side volume

share. This finding supports the hypothesis that traders strategically utilize inverted ex-

changes to gain price and queue priority, especially when the order book imbalance signals

directional biases in fundamental value.

In the second regression specification, we include additional control variables such as lagged

volatility and relative depth. The coefficient on lagged imbalance is negative, albeit only

marginally statistically significant, suggesting some intraday reversion effects. These results

indicate that inverted venue liquidity responds systematically to order imbalance signals,

reflecting sophisticated trader strategies and highlighting the nuanced interplay between

market structure, trading incentives, and information flow.
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Table 2.3: Inverted share increases on the side of the order imbalance

This table presents coefficients from regressions of the inverted buy volume share on order
book imbalance, lagged volatility (in bps), relative depth (in %), and lagged imbalance. All
variables are computed at the minute-level. We run panel regressions at the stock level
controlling for stock and hour fixed effects.

Dependent Variable:
InvVolBi,t

InvVolBi,t+InvVolSi,t

Model: (1) (2)

Variables
Imbalance 0.1215∗∗∗ 0.1301∗∗∗

(0.0177) (0.0195)
lagged Vol 2.103

(6.370)
RelDepth −1.74× 10−5

(5.11× 10−5)
lagged Imbalance -0.0092∗

(0.0047)

Fixed-effects
hours Yes Yes
symbol Yes Yes

Fit statistics
Observations 74,980 73,067
R2 0.32458 0.32198

Clustered (hours) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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2.7 Policy Implications

The findings presented in this paper carry several important implications for regulatory

policy regarding market design, especially with respect to tick size constraints and ex-

change fee structures. While a sufficiently large tick size enhances transparency by clearly

delineating prices, it simultaneously restricts market competition by preventing liquidity

providers from offering price improvements smaller than the minimum tick increment. As

demonstrated by our theoretical and empirical analyses, excessively large tick sizes lead to

increased market-maker rents, disproportionately benefiting high-frequency traders (HFTs)

who leverage their speed advantage to dominate the limit order queues.

Conversely, an excessively small tick size may introduce detrimental market dynamics. As

the cost of price undercutting diminishes, liquidity providers, particularly HFTs, frequently

submit orders just inside existing quotes. While finer increments theoretically foster tighter

spreads and improved market liquidity, they also increase execution uncertainty for mar-

ketable orders. Traders submitting marketable orders at the National Best Bid and Offer

(NBBO) face heightened risks of unfilled executions or adverse price movements. Addi-

tionally, smaller tick increments could exacerbate latency arbitrage opportunities, as HFTs

can swiftly adjust their quotes ahead of slower market participants, amplifying potential

adverse selection costs for institutional investors.

Currently, U.S. equity markets adopt a binary tick size regime dictated by Regulation NMS,

where the minimum increment is set at one penny for stocks priced above one dollar and

one hundredth of a penny for stocks priced below one dollar. As illustrated in Figure 2.10,

this structure results in substantial variation in the relative tick size across different price

levels, inadvertently generating market inefficiencies at both ends of the price spectrum.

Specifically, for low-priced stocks, the tick size becomes economically trivial, leading to

aggressive undercutting and increased uncertainty regarding order execution. For higher-

priced stocks, on the other hand, the tick size can become excessively large relative to price,

leading to restricted price competition and elevated transaction costs.

International experience offers valuable insights for alternative approaches to tick size reg-

ulation. For example, the tick size regime employed by the Hong Kong Stock Exchange

(HKEX) dynamically adjusts according to stock price tiers, maintaining relative tick sizes

within a more consistent range across varying price levels. Such a tiered tick structure

mitigates the economic distortions stemming from a fixed nominal tick size, allowing finer

pricing increments for higher-priced securities and broader increments for lower-priced ones.

This structure reduces the opportunity for HFT-driven rent extraction and promotes a more

balanced competitive environment among liquidity providers.

Beyond tick size adjustments, our analysis underscores potential issues arising from fee-
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driven order routing incentives. Brokers often prioritize fee rebates over execution quality

when routing client orders, potentially leading to suboptimal executions for end investors.

Regulatory intervention aimed at transparency and enforcement of best-execution standards

that explicitly account for net execution cost (inclusive of fees) could mitigate these agency

conflicts. Strengthening disclosure requirements regarding routing practices and mandating

greater transparency in fee structures might help align broker incentives with client interests,

fostering competition based on execution quality rather than rebates.

Figure 2.10: Tick regime in the USA and Hong Kong

The tick size as a fraction of price is displayed in Figure 2.10. The binary rule used in the

U.S. creates inefficiencies in the market, making the tick too high for low prices and too

low for high prices. In contrast, HKEX uses different tick sizes based on the price of the

security, keeping the relative tick size fairly consistent across different price ranges.

Notably, liquidity disparities intensify further away from the midpoint, suggesting that

slower liquidity providers may refrain from frequent price adjustments to avoid queue dis-

advantages relative to HFTs. This underscores the complexity inherent in liquidity provision

incentives, reinforcing the need for nuanced regulatory frameworks that address not only

tick size but also broader market design factors—including venue competition, order type

diversity, and the technological landscape.
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In summary, our results advocate for a more flexible tick size regime tailored to the price

and liquidity characteristics of individual securities. Moreover, addressing broker incentives

and improving transparency in routing practices could further enhance market efficiency

and investor welfare.

2.8 Conclusion

This paper develops a model analyzing how exchange fee structures and minimum tick

size constraints impact liquidity provision incentives, order book depth, trading volume,

and relative venue market shares. We examine two primary fee models: the traditional

make-take approach providing rebates to liquidity suppliers, and the inverted fee structure

providing rebates to liquidity demanders.

Our model shows that inverted exchanges enable more granular effective pricing when the

minimum tick size is sufficiently small and binding. The finer pricing grid afforded by

rebating takers on the inverted venues allows institutional traders to effectively undercut

the HFT top of book quotes. We derive equilibrium expressions for queue lengths, trading

volumes and relative market shares across the different fee models and market regimes.

The model yields several empirical predictions, which we confirm using market data from

the U.S. NMS exchanges. In particular, we show that inverted venue usage increases for

stocks facing more binding tick size constraints. It is especially more prevalent on the side

with more supply as implied by the order book imbalance. However, inverted venues’ usage

is capped at around 25% market share due to factors such as agency conflicts in broker

routing practices and liquidity concentration in primary exchanges. We also find evidence

supporting the model’s predictions on volume dynamics between make-take and inverted

venues.

Finally, we discuss policy implications on optimal tick size levels to reduce intermediation

rents. More granular tick size regimes scaling with price level may enhance market quality

relative to the current U.S. binary approach.

Overall, this paper contributes to the literature on market microstructure by modeling the

interactions of exchange fee structures and price discreteness. The analysis offers insights

for better tick size regulation and routing practices.
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2.9 Appendix

2.9.1 Additional tables and figures

Figure 2.11: Tick constraint over time
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(a) Spread by price

(b) Spread by ADV

Figure 2.12: Spread on nominal price and ADV



Chapter 3

The Making of Dominant

Currencies: Evidence in DeFi

We examine dominant currencies in decentralized finance (DeFi), their properties and de-

terminants. We collect data from the largest DeFi exchange, Uniswap. By analyzing the

swapping route between currency pairs of the top 50 currencies, we measure the daily

dominance of each currency by its share of total trading volume, eigenvector and between-

ness centralities of the trading network. We find that there are 3-5 currencies vying for

dominance status in DeFi. Safety is a leading dominance attribute during the bust, while

liquidity is more important during the boom. In line with findings from the dominant

currency paradigm (DCP) literature, we find that utility coins are generally preferred as

a dominant currency, whereas the dominance of stablecoins rises rapidly during market

turmoil. We also find that an active money market, market size, and a currency’s correla-

tion with transaction costs are important determinants for dominance, suggesting essential

design choices for future central bank digital currencies (CBDCs).

3.1 Introduction

The concept of a “dominant currency” has been a longstanding topic of interest in the field

of international trade and finance. Historically, one currency—such as the Dutch Florin

throughout the 18th century, followed by the British Pound (GBP) and, since the 1950s, the

US Dollar (USD)—has facilitated the majority of global trade and financial flows for an ex-

tended period of time. The global dominant currency appears to be single and sticky despite

competition from currencies such as Euro since its introduction in 1999 and more recently

the Chinese Renminbi (RMB) (Ilzetzki et al., 2020; Bahaj and Reis, 2020; Gopinath and

Itskhoki, 2022). The rise of dominant currencies has significant implications for monetary

96
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policy spillovers, financing, transaction costs, and financial market development (Gopinath

et al., 2020). However, understanding what makes a currency dominant in the international

financial system has been challenging due to the lack of historical observations and the slow

pace of change in the macro environment.

We propose a different setting to examine the making of dominant currencies—decentralized

finance (DeFi), a distributed financial system enabled by the blockchain technology. As an

alternative to the traditional financial system, DeFi offers fast growing decentralized finan-

cial intermediary services ranging from payment, lending, trading, insurance, asset manage-

ment, to derivative transactions and risk management, currently valued at over $50 billion

in USD, about half of which is exchange trading.1 Unlike the international financial system

where there is one single well-established dominant currency, there is on-going competition

for attaining the dominant currency status in DeFi among many cryptocurrencies including

stablecoins, utilities coins and cryptoassets, offering a natural experiment to examine the

properties and the making of dominant currencies, if there are any, in this environment

some of which can be generalized to the real economy.

Moreover, there is a rich amount of data in DeFi. DeFi transactions are transparent and

all historical data are publicly accessible, allowing us to examine currency usage choices in

greater detail. In contrast, international payments and transactions are notoriously difficult

to track and opaque. Furthermore, technology shocks in DeFi are rapid. New protocols

and associated cryptocurrencies emerge and die out every day. The switching cost between

protocols and currencies in DeFi is much lower thanks to the permissionless nature of

the ecosystem. Consequently, values of crypto assets are extremely volatile, potentially

causing frequent regime shifts of dominant currencies. Therefore, DeFi offers a unique

laboratory setup to study the properties of dominant currencies and to test whether any of

the mechanisms for the making of dominant currency proposed in the international money

and finance literature can be corroborated by the emergence of dominant currencies for

DeFi on blockchain.

Specifically, we examine dominant currencies in DeFi based on data from the Ethereum

blockchain, which has the largest DeFi ecosystem with smart contract compatibility and

a transaction fee (gas) that exists in proportion to computational complexity. We look at

three protocols on the Ethereum blockchain: Uniswap, Aave and Compound. Uniswap is

one of the most popular decentralized exchanges (DEXs). Aave and Compound are two

of the largest protocols for loanable funds (PLFs) on the Ethereum blockchain. DEXs

are asset exchanges with no centralized market makers. All asset swap transactions on

1The blockchain technology that underlies DeFi development has the potential to reduce contractual fric-
tion in financial transactions across geographic locations and to lower transaction costs through a distributed,
censorship-resistant network with a tamper-proof and auditable record-keeping system.
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DEXs are based on exchange rates set by a pre-programmed bonding curve (via smart

contracts) between traders and a pool of passive liquidity providers. Cross-pool trades are

possible to minimize price impacts of swap trades. Both Aave and Compound are PLF on

the Ethereum blockchain. PLFs refer to protocols that feature overcollateralized lending.

Depositors supply their assets to a PLF liquidity pool and receive supply interest based on

a deposit contract. The deposited asset can be lent to PLF users and can serve as collateral

for the depositors themselves to borrow other crypto assets.2

We begin our study by defining the dominance of a currency in DeFi utilizing unique

properties of DEX or PLF and link the dominance status with one of the three roles of

money, as a medium of exchange, a unit of account, or a store of value. The DEX protocols

are different from traditional order-book based exchanges in several aspects. First, instead of

order-books, a DEX protocol uses liquidity pools to facilitate trading and set exchange rates.

Each liquidity pool services the swap trades of an asset pair. Liquidity providers deposit

their holdings of an asset pair into the corresponding liquidity pool. Instead of trading

against each other as in the traditional exchanges, buyers and sellers in DEX are trading

against liquidity providers who are effectively passive market makers for the corresponding

asset pair. The exchange rate between the asset pair is computed automatically according

to a pre-programmed function that takes into account of the amount of each of the two

assets left in the liquidity pool – the asset that makes up a larger proportion of the liquidity

pool has relatively lower demand and hence commands a cheaper price and the price impact

is less if liquidity providers deposit more of both assets in the pool. This feature of liquidity

pools allows us to observe both the direction and the value of asset swap trades, enabling

us to map out trading networks among cryptocurrencies dynamically. Second, for each

pair-wise asset swap request, a DEX such as Uniswap uses an optimizing router to execute

trades along a chain of asset swaps via corresponding liquidity pools that incurs the lowest

total price impact. Utilizing this unique feature, we collect daily data on all executed trade

routes and categorize asset swap trades into two types: those associated with the source

or the target cryptocurrencies, which we call ‘ultimate’ trades, and those associated with

cryptocurrencies in-between the source and the target tokens, which we call ‘betweenness’

trades. This categorization helps us to isolate the role of a medium of exchange from other

roles performed by a crypto token. The ‘betweenness’ trades are driven by the desire to

lower the transaction costs of the ‘ultimate’ trades. Therefore, a cryptocurrency featured

more in the ‘betweenness’ trades is more liquid, and hence a better medium of exchange in

the cryptocurrency market. It is excessively used in exchange transactions (since it is neither

2The lending contract on PLFs specifies the terms of the loan, such as a haircut based on the characteris-
tics of the collateral, and the lending and borrowing interest rates, which are computed from a pre-specified
formula used to clear the market.
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the target nor source of any trades), a typical feature of a vehicle currency. In contrast,

the ‘ultimate’ trades are motivated by reasons other than lowering transaction cost. The

source or the target tokens are likely to be held for either investment, speculative, unit of

account, store of value or any other purposes.

Based on this trade categorization, we compute several cryptocurrency dominance metrics.

The first set are market-based. We measure a cryptocurrency’s dominance in the role

of medium of exchange as its percentage of (daily or weekly) total ‘betweenness’ trades,

and its dominance in other potential roles of monetary assets as its percentage of total

‘ultimate’ trade volume, equal or value weighted. We also compute a cryptocurrency’s

dominance based on its percentage of total trade volume including both ‘ultimate’ and

‘betweenness’ trades. Though simple and intuitive, these market-based dominance metrics,

equal or value weighted, however, are possibly affected by the size of ecosystem associated

with each cryptocurrency, thus likely biased against or towards cryptocurrencies with larger

market capitalizations. Alternatively, we also provide the second set of metrics utilizing the

additional information in the dynamic trade networks. The dominance measures in this

case are based (daily and weekly) network centrality metrics – the betweenness and the

eigenvector centrality of a cryptocurrency. The betweenness centrality of a cryptocurrency,

for example ETH, measures the fraction of those trades involving ETH in the trading route

among all the trades in which ETH is neither the ultimate source nor the ultimate target

asset. The eigenvector centrality of a cryptocurrency on the trading network is computed

based on either only ‘ultimate’ trades or both ‘ultimate’ and ‘betweenness’ trades. The

former eigenvector centrality of a cryptocurrency, for example ETH, is based only on trades

where ETH is either the target or the source coin. The latter eigenvector centrality of ETH

is based on all trades, reflecting the combined dominance of ETH in the trading network.

These network-based metrics capture the dominance not purely based on the size but also

the influence of a crypto token.

We find 3,301,933 betweenness trades, which accounts for 2.84% of total trades. We also

find that betweenness centrality of a coin leads its eigenvector centrality but only during

the boom. This suggests that liquidity (that is, the role of medium of exchange) drives

dominance in the boom. We also find that betweenness centrality explains about 60% of

the trade volume share and eigenvector centrality contributes to about 30% additionally in

the sample. Finally, we measure the safety of a cryptocurrency. Stablecoins offer safety. We

capture the difference among stablecoins by how successful they raise funds (its stablecoin

market share). The safety measure is, hence, proportional to the market share of a coin in

the stablecoin universe.

We graph time series dominant metrics for the top five cryptocurrencies in our sample

and find that utility coins are generally preferred as a dominant currency, whereas the
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dominance of stablecoins rises rapidly during market turmoils. We also compute the daily

Herfindahl indices of dominance metrics and find there are 3-5 cryptocurrencies battling for

dominance status in DeFi, more dominant currencies during the boom period. Analysis of

cross-autocorrelations among dominance metrics shows that safety is a leading dominance

attribute, especially during the bust, while liquidity is more important during the boom.

Finally, we draw insights from DCP literature to form testable hypotheses on the deter-

minants of these dominance metrics. We focus on the following asset-level characteristics:

volatility, market size, safety, correlation with the gas fee (i.e. transaction cost) on the

blockchain, and money market activities. We measure money market activities of a cryp-

tocurrency by the amount of associated deposit in PLF. Results from cross-sectional time-

series regression indicate that an active money market, market size, currency’s correlation

with (and hence ability to hedge against) transaction costs are important determinants

for dominance. We also utilize the institutional features of DeFi to design difference-in-

difference test of the importance of money market for currency dominance. We find again

that when a money market is introduced to a cryptocurrency, its trade volume share, trade

network centrality, and equally weighted betweenness centrality improve. Currently, as

cryptocurrencies and stablecoins have become more popular, many central banks, espe-

cially those in the developing countries are considering to provide CBDCs as an alternative

and competing for dominance in CBDC space.3 Our findings on the determinants of domi-

nant currency might be useful for governments to consider essential design choices for future

CBDCs.

The remainder of this paper is organized as follows. In Section 3.2, we review the related

literature. In Section 3.3, we give a quick overview of various DeFi protocols we draw data

from in the paper. In Section 3.4, we describe the data collection process. In Section 3.5,

we present the computation methodology of dominance metrics. In Section 3.6, we analyze

the properties of various dominance metrics, concentration of dominance, as well as lead-

lag relationships among them. In Section 3.7, we examine the determinants of dominance

metrics at the cryptocurrency level by conducting time-series cross-sectional regressions.

We present and discuss the estimation results. Section 3.8 concludes.

3.2 Related Literature on Dominant Currencies

To understand how a dominant currency is chosen by the majority of participants in cross-

border transactions, the existing macro and finance literature analyzes how a dominant

currency performs in each of the three traditional roles of money, namely as a unit of

3See https://www.atlanticcouncil.org/cbdctracker/ for countries that are active in launching and exper-
imenting CBDCs.
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account, a store of value, and a medium of exchange.

Dominant currency paradigm literature on international trade emphasizes the role of dom-

inant currency as a unit of account to explain the choice of currency in trade invoicing

(Gopinath et al., 2020). As a unit of account, the dominant currency is used for the major-

ity of international trade and financial transactions. According to this line of inquiry, the

interaction of nominal price stickiness with pricing complementarities and input-output link-

ages across firms generates complementarities in currency choice (Gopinath, 2015; Doepke

and Schneider, 2017; Mukhin, 2022; Eren and Malamud, 2022); that is, exporters coordinate

on the same currency of invoicing for the following two reasons: to be competitive in out-

put pricing; and to be able to hedge their balance sheet against exchange rate shocks with

the denominated currency of imported intermediate (real and financial) inputs. Financial

intermediate inputs can be thought as working capital, trade credit, or any form of financial

borrowing.4 Some DeFi services specify invoice currencies but invoice currency choices are

not directly observable other than in a few (anecdotal) cases where contracts are publicly

available. However, indirect variables that capture reasons to trade that relate to invoicing

or balance-sheet hedging: such as a network effect on the currency denomination of working

capital/financial borrowings/transaction might explain the dominance of a currency from

this perspective.

A large body of international finance literature emphasizes the role of the dominant currency

as a store of value. A dominant currency such as the US Dollar (USD) preserves its value

during global market crises and is therefore widely used as an international reserve/safe

asset. This safety feature offered by assets denominated in the dominant currency means

that the currency preserves value added in exchange transactions, leading to its wide use

in the global financial market. Differences in financial development (hence the differences

in access to safe assets) (Maggiori, 2017) or risk aversion of participants (Gourinchas and

Rey, 2022) may drive the demand for an international safe asset. Gopinath and Stein

(2021) argue that assets denominated in the dominant currency can be used as a savings

device for export producers to hedge against invoicing risk. Chahrour and Valchev (2022)

additionally suggest that safe assets are used as collateral to overcome contractual frictions

in cross-border transactions. The dominant currency regime may persist due to the feedback

between safe asset returns and the use of collateral. This literature also highlights several

4Gopinath et al. (2010) and Goldberg and Tille (2016) find that dollar pricing is more common in sectors
classified as producing goods that are homogeneous and hence likely substitutes. The theoretical result
in Mukhin (2022) indicates the size of market is important in determining the dominant currency. Amiti
et al. (2022) find that Belgium firms that import their inputs are likely to choose dollar pricing. BIS (2014)
documents that traded finance contracts are mostly dollarized even though they are sourced via local banks,
indicating most trades are financed via dollars. Bahaj and Reis (2020) find that when the cost of financing
working capital in RMB is lower due to the swap arrangement through central banks, trades are more likely
to denominated in RMB.
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key properties of safe assets denominated in the dominant currency: they have low returns,

high convenience yield, and are widely held in savings accounts. In the DeFi setting, safety

of a cryptoassets can be measured relatively easily due to the existence of stablecoin as an

asset class.

Finally, there is also abundant literature emphasizing the role of dominant currency as a

medium of exchange. A dominant currency guarantees the lowest transaction costs and

maximizes the room for mutually beneficial trade when used as a medium of exchange.

These benefits are achieved through high volume, liquidity, and network effects. Krugman

(1980) characterizes currencies with such dominance as vehicle currencies. The aforemen-

tioned literature on dominant currencies as an invoicing currency for international trade

also highlights the importance of a currency’s network effect on its ability to serve as a

medium of exchange in global trade. Interestingly, the money-search literature also focuses

on the liquidity aspect of the exchange and how dominant currencies as vehicle currencies of

trade lower transaction in payments and emphasizes the coexistence of multiple currencies

(Devereux and Shi, 2013; Zhang, 2014; Wright and Trejos, 2001). Recently, Coppola et al.

(2023) propose that market liquidity is an important determinant for firms to choose a

currency to denominate their global debt contracts due to the feedback between the market

and funding liquidity. In the DeFi setting, this would imply that dominant currencies tend

to have higher market liquidity and, relatedly, lower price impacts, and an active money

market.

The question of whether there should be a single or a basket of dominant currencies has been

a topic of debate in international trade and finance. The theory of optimal currency areas in

economics suggests that larger and more integrated markets are more likely to adopt a com-

mon currency to reduce transaction costs and increase economic efficiency (Mundell, 1957).

The theory of globalization of production suggests that intensive reliance of production

on global supply chains would lead to a single dominant currency (Gopinath et al., 2020).

Conversely, the theory of fragmentation and localization of supply chains suggests that a

basket of dominant currencies would be more appropriate (Bahaj and Reis, 2020). Fur-

thermore, the money search literature also points out the possibility of multiple dominant

currencies. Since the technology for payment and contractual financial service is improving

rapidly which lowers transaction costs and contractual frictions and potentially reduces the

switching cost between dominant currencies, it is possible that dominant currencies can be

multiple and vary over time to serve different purposes.

In spite of its name, the classification of cryptocurrencies as currencies remains an ongo-

ing debate among regulators, market participants, and academics. Given the distinctive

characteristics of these digital assets—including extreme volatility, limited historical data,

and evolving market structures—recent work has adapted classical factor models to better
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capture their pricing dynamics.

The notion that currencies may themselves exhibit risk factors is not new: Lustig et al.

(2011) document a currency carry factor built by a long-short portfolio between high and

low interest rate currencies. High interest rate currencies are negatively correlated to global

FX volatility and thus deliver low returns in periods of unexpected high volatility (Menkhoff

et al., 2012a). In a parallel work, Menkhoff et al. (2012b) show that momentum can be

extended to international currency portfolios. Focusing on G-10 currencies, Aloosh and

Bekaert (2021) argue that certain currency factors persist across different monetary regimes,

reflecting both global financial linkages and underlying macroeconomic fundamentals. In

particular, currency co-movements display a two-block structure, similar to a currency

clustering factor within the dominant currency paradigm.

In the context of cryptocurrencies, a central question is whether established asset pric-

ing frameworks, such as the Fama and French (1992) three-factor model, continue to offer

meaningful insights. Value and momentum strategies extend beyond traditional equities

to encompass currencies, commodities, and bonds (Asness et al., 2013), suggesting broader

applicability to digital assets as well. Indeed, Liu et al. (2022) find that momentum trading

appears to persist in crypto markets, reflecting both limited arbitrage capital and strong

speculative flows. While size and momentum remain important factors in explaining cryp-

tocurrency returns, the traditional value factor appears to lack a clear analogue in digital

assets. In another related work, Liu and Tsyvinski (2021) find alternative factors such

as investor attention appear to play a more prominent role. Liquidity in cryptocurrency

markets is likely to play an important role, as shown by extensive work on commonality in

stock market liquidity (Pástor and Stambaugh, 2003; Chordia et al., 2000; Korajczyk and

Sadka, 2008).

Finally, the market structure and trading behaviors in crypto markets differ fundamentally

from those in more established financial markets. Borri (2019) highlights conditional tail

risk in cryptocurrency asset pricing, showing the existence of a crypto-specific systematic

risk while exhibiting little exposure to broader equity and macro factors. Makarov and

Schoar (2020) analyze arbitrage across exchanges and uncover persistent price dislocations

tied to fragmented liquidity and regulatory constraints, suggesting that standard models,

which assume integrated markets, may understate the cost of trading frictions.

3.3 A Primer on DeFi

DeFi is a financial ecosystem built on top of blockchains. DeFi protocols operate according

to a set of rules pre-programmed into so-called “smart contracts” deployed on blockchains.

Given the transparent nature of public blockchains, all transactions are publicly available.
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This provides a perfect environment for us to conduct natural experiments on dominant

currencies. In particular, our experiment is linked to DEXs and lending protocols.

3.3.1 Ethereum

Blockchains that focus solely on simple payments such as the Bitcoin blockchain are not

able to support complex algorithms needed for running a financial application. To be DeFi-

compatible, a blockchain needs to be able to support smart contracts, which are essentially

a piece of software deployed on chain. As the oldest blockchain with the embedded smart

contract layer, Ethereum is also the most popular chain in terms of DeFi activities. Due

to the distributed nature of blockchain, a state update (e.g. crediting a recipient’s account

balance) triggered by interacting with a DeFi protocol requires computational resources

from all the validating nodes in the network. To encourage efficient usage of resources and

discourage spamming, every transaction is subject to a fee. On the Ethereum network in

particular, transaction fee is measured in gas: the higher the computational complexity of

the transaction, the higher the gas consumption. The transaction fee amount is the gas

price set by the transaction initiator multiplied by the gas consumption. Due to limited

computational resources and network capacity, users are incentivized to set up a sufficiently

high gas price for their transactions to be processed and committed to the blockchain. To

this end, the more congested the network is—meaning a higher demand for transaction

processing, the higher the gas price will generally be.

3.3.2 DEX

DEXs on blockchain usually refer to exchange protocols using automated market marking

(AMM) algorithms. Unlike traditional order-book based exchanges that execute trades by

matching buyers and sellers, an AMM-based DEX guarantees immediate trade execution by

computing the exchange rate between the asset pair traded automatically according to a pre-

programmed conservation function. Instead of trading against each other, DEX traders are

effectively trading against liquidity providers, who contribute funds to liquidity pools. Each

liquidity pool supports swap transactions of a specific asset/token pair. The conservation

function of a liquidity pool stipulates that the coordinates of the token reserves in pool

must follow a predetermined curve (or hyperplane, in case of more than two tokens in a

pool) after each trade. The simplest and most commonly adopted conservation function is a

constant product function C = r1×r2, where the product of reserves of token1 and token2—

r1 and r2 respectively—must remain constant after each trade (Xu et al., 2023). At the

time of writing, Uniswap is the largest DEX in terms of both total value locked (TVL) and

trading volume. The protocol has witnessed three iterations—v1, v2, v3, with the latter two
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most widely adopted and hence being the source of empirical data for this study. Uniswap

features token-pair pools; the v2 protocol applies the vanilla constant product function as

its conservation function as discussed above, while the v3 protocol applies a derived form

of it with an additional liquidity concentration factor to enhance capital efficiency of pool

liquidity.

Not every possible combination of asset pairs would have a pool. For capital efficiency,

typically in a liquidity pool, at least one of the two assets would be stablecoin, ETH or

some other widely held token. Therefore, when a trade between two exotic tokens occurs,

say tokenA and tokenB, usually at least two liquidity pools would be interacted with, for

example tokenA-USDC and tokenB-USDC. As such, the trade can be routed through tokenA

→ USDC → tokenB, with USDC being the intermediary settlement token, all within one

transaction. We term an unsplittable trade that involves interacting with one liquidity pool

as an “atomic trade”.
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Figure 3.1: Typical forms of transactions with an AMM-based DEX. Capital letters A, B,
... denote different cryptocurrencies; an arrow represents the direction of one atomic trade
(e.g. A → B means to sell A and buy B); a number in circle indicates the order of trade
within one transaction.

Figure 3.1 illustrates some typical forms of transactions with an AMM-based DEX. Note

that this is an inexhaustive list of transaction forms: different trade routing methods can

be combined and permutated to form a new route. Transaction (3.1a) represents a simple

trade that consists of just one atomic trade which takes place at the tokenA-tokenB liquidity

pool. Transaction (3.1b) is an indirect trade that consists of two atomic trades: tokenA

→ tokenB and tokenB → tokenC , with the former through the tokenA-tokenB liquidity

pool while the latter the tokenB-tokenC liquidity pool. Transaction (3.1c) consists of three

atomic trades: the sell volume of tokenA is first split into two parts, with one part flowing

through an indirect trade interacting with tokenA-tokenB and tokenB-tokenC pools, while

the other part traded directly with the tokenA-tokenC pool. As the Uniswap router seeks
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to maximize the output token for users, the split can occur if going through one swap route

is not optimal. This can be due to the fact that, routing a trade through different pools

can optimize the use of combined liquidity, hence reduce the price impact and increase the

output quantity. Transactions (3.1d), (3.1e) and (3.1f) involve loops: i.e. at least one token

is both an source token for one atomic trade and an target token for another atomic trade

in the same transaction. Those transactions are typically conducted for arbitrage purposes,

with or without the same trading pair. If with the same trading pair, the transaction usually

exploits price gaps between pools from different protocols (e.g. pools from Uniswap V2 and

V3 with the same trading pair); if with different trading pairs, the transaction can result

in profit by forming e.g. a triangular arbitrage. Transactions involving loops account for

approximately 1.5% of the total number of transactions; they are typically performed by

bots and do not represent genuine trading demand. We thus eliminate those transactions

in our analysis.

3.3.3 PLF

PLFs on blockchain usually refer to protocols that offer overcollateralized lending. To be

able to borrow from a PLF, deposits must first be supplied to the PLF as collateral. The uti-

lization ratio of an asset, calculated as the total borrowed divided by total supplied amount,

decides the supply and borrow interest rates of the asset based on a pre-programmed interest

rate model. At the time of writing, Aave and Compound are the two largest PLFs in terms

of TVL and trading volume on Ethereum. Lending and borrowing are the predominant

service products on DeFi.

3.4 Data

We rely on transaction record from the Uniswap protocol, lending and borrowing data from

the Compound protocol, and market-level data such as transaction cost in the Ethereum

network, as well as token-specific data such as token market cap for this study.

3.4.1 DEX data

We fetch on-chain transaction data associated with Uniswap V2 and V3 from the Subgraph

API. The data sample comprises 130,894 individual liquidity pools, including 122,458 V2

pools and 8,436 V3 pools until January 31, 2023. In total, the sample contains 28,608,912

transactions on Uniswap, including 18,635,768 transactions in V2 and 9,973,144 transactions

in V3, from the protocols’ deployment (on May 5, 2020 for V2 and May 4, 2021 for V3) until

January 31, 2023. We observe 876,929 liquidity addition, 712,934 withdrawal, 43,100,698
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exchange trades from top 50 pools on Uniswap V2 and the top 50 pools on Uniswap V3.

We focus on transactions interacting with the top 50 pools on Uniswap V2 and the top

50 pools on Uniswap V3 by monthly trading volume USD. Due to the high concentration

of liquidity in the few top pools, we believe that omitting the remaining pools would not

significantly affect the results.

The volume data can be directly fetched by the Subgraph APIs as USD derived via Ethereum

(ETH) prices from the tokens within the whitelist. Figures 3.2a and 3.2b give a snapshot

of the trading network for Uniswap V2 and V3 on June 1 2022, respectively.

(a) Uniswap V2 (b) Uniswap V3

Figure 3.2: A Snapshot of the Trading Network on June 1 2022. Nodes denote different
cryptocurrencies; the size of the node denotes the liquidity of that cryptocurrency; the node
is yellow if the cryptocurrency is the stablecoin or blue otherwise. Directed edges denote the
flow of volume between two cryptocurrencies; the weight of the edge indicates the amount
of volume.

3.4.2 PLF data

For data in the lending and borrowing markets, we focus on the Compound protocol5. We

use Compound’s own API to collect data on the total supply, borrow volume in USD, as

well as supply and borrow interest rates.

3.4.3 Ethereum network data

We fetch average daily gas fee in Wei and ETH price in USD from the Ethereum network

from Etherscan. Wei is the smallest unit of ETH: 1 ETH = 1018 Wei. The gas fee can

5We have also gathered data from Aave–another top PLF, and the data from Aave and the Compound
protocol are highly correlated. For that reason and for the ease of continuous data collection, we only use
data from the Compound protocol.
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hence be easily converted to USD using the USD-denominated ETH price.

3.4.4 Token-specific data

We collect token-specific data—including price, price volatility, and market capitalization—

from CoinGecko. We also collect token categories—e.g. governance tokens, stablecoins,

utility coins—from Coinmarketcap.

3.4.5 Boom and Bust in the Crypto Market

To facilitate our analysis, we define the boom and bust periods of the crypto market based

on the S&P crypto index value. We borrow the definition method from Aramonte et al.

(2022). Specifically, we define a boom period as the period between a price trough and a

peak with an increase of over 30%, and define a bust period as the period between a price

peak and a trough with a decrease of over 30%. There also exist periods with below-30%

price change which are neither a boom nor a bust. Figure 3.3 graphs the boom and bust

delineation of our sample period.

2017-11-30

2019-04-14

2020-08-26

2022-01-08
0

1000

2000

3000

4000

5000

6000

Figure 3.3: S&P Crypto index with boom (green) bust (red) periods. The blue line denotes
the S&P Cryptocurrency Broad Digital Market Index; the green span denotes the boom
period, while the red span denotes the bust period.
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Table 3.1: Notations and Descriptions of Variables

The table reports a list of variables and their descriptions used in the study of decentralized finance (DeFi)
markets. The variables are related to the trading volume, market capitalization, liquidity, and network cen-
trality of cryptocurrencies traded on the Ethereum blockchain. The table includes variables such as total
volume of atomic trades, in- and out-eigenvector centrality, count- and volume-weighted betweenness central-
ity, market capitalization, liquidity, and log return of token price. Additionally, some variables represent
shares and ratios of the total volume or liquidity of all tokens, and some are dummy variables that indicate
whether a token is a USD-pegged stable coin. The notations used for the variables are described in the table.

Variable Descriptions

V In
i,t Total volume of atomic trades on day t where tokeni is the target token

V Out
i,t Total volume of atomic trades on day t where tokeni is the source token

Vi,t Total volume of atomic trades on day t where tokeni is either the source or the target token,
Vi,t = V In

i,t + V Out
i,t

VShareIni,t Total volume of atomic trades on day t where tokeni is the target token, as a fraction of

summed total in-volume of all tokens, VShareIni,t =
V In
i,t∑

k V In
k,t

VShareOut
i,t Total volume of atomic trades on day t where tokeni is the source token, as a fraction of

summed total out-volume of all tokens, VShareOut
i,t =

V Out
i,t∑

k V Out
k,t

VSharei,t Total volume of atomic trades on day t where tokeni is either the source or the target token,

as a fraction of summed total volume of all tokens, VSharei,t =
Vi,t∑
k Vk,t

EigenCentIni,t In-eigenvector centrality of tokeni on day t

EigenCentOut
i,t Out-eigenvector centrality of tokeni on day t

BetwCentCi,t Count-weighted betweenness centrality of tokeni on day t

BetwCentVi,t Volume-weighted betweenness centrality of tokeni on day t

MCapi,t Market capitalization of tokeni on day t
Liquidityi,t Total amount of tokeni in Uniswap pools at the end of day t
LiquiditySharei,t Total value of tokeni in Uniswap pools at the end of day t as a fraction of summed value of

all tokens in Uniswap, LiquiditySharei,t =
Liquidityi,t∑
k Liquidityk,t

SupplySharei,t Supply amount of tokeni as a fraction of total borrow amount from Compound at the end of

day t, SupplySharei,t =
Supplyi,t∑
k Supplyk,t

RUSD
i,t Log return of tokeni price in USD on day t

IsStablei Dummy variable Stablei = 1 if tokeni is a USD-pegged stable coin
StableSharei,t Market cap of tokeni as a fraction of total market cap of all stablecoins at the end of day t

times IsStablei
σUSD
i,t Past 30-day standard deviation of daily log return of tokeni price in USD on day t

GasPricet Daily average gas price in USD of Ethereum network
σUSD
gas,t Past 30-day standard deviation of daily log return of gas price

RUSD
SP,t Log return of the S&P Crpyto composite index price in USD on day t

σUSD
SP,t Past 30-day standard deviation of daily log return of S&P price

CorSP i,t Correlation between past 30-day log return of tokeni price in USD and that of S&P Crypto
index price

CorETH i,t Correlation between past 30-day log return of tokeni price in USD and that of ETH price in
USD

CorGasi,t Correlation between past 30-day log return of tokeni price in USD and that of gas price in
USD

IsBoomt Dummy variable IsBoomt = 1 if t is a boom period according to Figure 3.3
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3.5 Measuring Currency Dominance in DeFi

In this section, we introduce a series of metrics to proxy currency dominance in DeFi. We

refer the reader to Table 3.1 for the variable notations and definitions used in the rest of

the paper.

3.5.1 Market share measurement

It is straightforward to measure currency dominance in DeFi transactions using market

data. We first measure the dominance using simple percentages of total value traded for

each currency: denoted as VShare.

As discussed in Section 3.4.1, we focus on tokens in Uniswap’s top 50 pools by monthly

trading volume. For each day t, we compute the sum of directional volume from tokeni to

tokenj on day t, denoted by V<i,j>,t where V<i,j>,t equals total volume in USD of atomic

trades on day t where tokeni is the source token and tokenj the target token. We denote

V in
i,t or V out

i,t as the total inflow or outflow volume of atomic trades on day t where tokeni is

either the source or the target token, and Vi,t as the total traded volume on day t involving

tokeni where Vi,t = V In
i,t + V Out

i,t . Hence, the dominance in inflow, outflow, or total trading

volume for coin i at date t is captured by VSharedirectioni,t =
V direction
i,t∑

k V direction
k,t

or VSharei,t where

direction = {in, out}. We omit the direction superscript when we use the total volume to

define V Share. Note that this measure of dominance can be partly explained by the size

of ecosystem relating to each currency and may or may not reflect excessive use of these

currencies as vehicles for invoicing or exchange transactions.

In Figure 3.4, we plot the time series of in-/outflow VShare of five major cryptocurrencies.

We additionally mark four major events in the timeline: (i) 26 November 2020, the price

oracle attack with DAI that caused liquidation on Compound, (ii) 5 May 2021, the intro-

duction of Uniswap V3, (iii) 10 May 2022, the LUNA/Terra collapse, (iv) 11 November

2022, the FTX collapse.

Figure 3.4a, Figure 3.4d show that WETH has consistently high volume share—both direc-

tional and non-directional, throughout the observation period, partially explainable by the

fact that most Uniswap V2 pools have a token pair with WETH on one side. This is because

a large amount of Uniswap V2 liquidity was migrated from Uniswap V16, whose design stip-

ulates that each pool must have WETH on one side. While any arbitrary token-pair can

form a pool with Uniswap V2, the protocol inherited the feature of its deprecated V1 version

due to liquidity migration. Despite this inherent mechanism, WETH’s top position in vol-

ume share on Uniswap V2 was challenged by USDC around May 2022, coinciding with the

6https://twitter.com/Uniswap/status/1262435668539715587

https://twitter.com/Uniswap/status/1262435668539715587
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Luna/Terra incident which caused a huge market turmoil. Notably, the price oracle attack

incident around November 2020 caused a surge in trading volume of USDC and DAI, and

squeezed the volume share of ETH. The effect of the attack is rather short-lived, as ETH

quickly regained its top position. This is to contrast regime-switch-triggering events such as

the introduction of Uniswap V3, which has a long-lasting effect of shaking the dominance

of ETH.

Figure 3.4b, Figure 3.4e illustrate tokens’ in-/outflow and total volume share in the Uniswap

V3 market. Uniswap V3 has a concentrated liquidity provision feature that allows liquidity

to be only provided for a certain price range defined by the liquidity provider. Uniswap

V2 and V3’s designs serve slightly different purposes: V2 is simple and gas-saving due to

its low computational complexity, while V3 is more customizable to the expense of higher

gas consumption. Therefore, the introduction of V3 does not deprecate V2. Thus, liquidity

migration from V2 to V3 is rather limited, and V3 pool token-pair combinations quickly

become much more diverse than V2. Clearly, absent mechanical constraints, multiple dom-

inant currencies emerge; and in the case of Uniswap V3, they are WETH and USDC.

Figure 3.4c and Figure 3.4f present the change in tokens’ volume share in the combined

Uniswap V2 and V3 markets. Again, we observe USDC quickly takes over WETH’s dom-

inant status since the introduction of Uniswap V3, when token-pair combination is much

less influenced by the legacy design of compulsory inclusion on WETH. Notably, the decline

of WETH’s top position in volume share appears to accelerate since the FTX collapse in

November 2022. This is also reflected by the fact that there might be a sell-out of WETH in

the Uniswap V2 market since there is an increase (a decrease) in WETH’s outflow (inflow)

volume share during the same period shown in Figure 3.4a and Figure 3.4d.

3.5.2 Eigenvector centrality

Figure 3.4c shows that WETH and USDC combined capture 80 to 90% of the market.

However, that does not mean that all trades are between these two cryptocurrencies. In fact,

we show next, either of these two cryptocurrencies are highly likely to be a counterparty of all

other cryptocurrencies in Uniswap market when we utilize the trading network to compute

eigenvector centrality, a measurement introduced by Bonacich (1987). It is computed by

solving for xt with the eigenvector equation below:

Atxt = λtxt , (3.1)

where At = (Aij,t)1≤i,j,≤n is the aggregate-volume-weighed adjacency matrix of the directed

network of token transactions on day t with eigenvalue λt, and xt = (xi,t)1≤i≤n is the

centrality vector of tokens on day t. There is a unique positive solution if λt is the highest



112

20
20

-07
-01

20
20

-10
-01

20
21

-01
-01

20
21

-04
-01

20
21

-07
-01

20
21

-10
-01

20
22

-01
-01

20
22

-04
-01

20
22

-07
-01

20
22

-10
-01

20
23

-01
-01

0.0

0.1

0.2

0.3

0.4

0.5 USDT
MATIC
FEI
DAI
USDC
WBTC
WETH

(a) VSharein , Uniswap V2

20
20

-07
-01

20
20

-10
-01

20
21

-01
-01

20
21

-04
-01

20
21

-07
-01

20
21

-10
-01

20
22

-01
-01

20
22

-04
-01

20
22

-07
-01

20
22

-10
-01

20
23

-01
-01

0.0

0.1

0.2

0.3

0.4

USDT
MATIC
FEI
DAI
USDC
WBTC
WETH

(b) VSharein , Uniswap V3

20
20

-07
-01

20
20

-10
-01

20
21

-01
-01

20
21

-04
-01

20
21

-07
-01

20
21

-10
-01

20
22

-01
-01

20
22

-04
-01

20
22

-07
-01

20
22

-10
-01

20
23

-01
-01

0.0

0.1

0.2

0.3

0.4

0.5 USDT
MATIC
FEI
DAI
USDC
WBTC
WETH

(c) VSharein , Uniswap V2, 3

20
20

-07
-01

20
20

-10
-01

20
21

-01
-01

20
21

-04
-01

20
21

-07
-01

20
21

-10
-01

20
22

-01
-01

20
22

-04
-01

20
22

-07
-01

20
22

-10
-01

20
23

-01
-01

0.0

0.1

0.2

0.3

0.4

0.5 USDT
MATIC
FEI
DAI
USDC
WBTC
WETH

(d) VShareOut , Uniswap V2

20
20

-07
-01

20
20

-10
-01

20
21

-01
-01

20
21

-04
-01

20
21

-07
-01

20
21

-10
-01

20
22

-01
-01

20
22

-04
-01

20
22

-07
-01

20
22

-10
-01

20
23

-01
-01

0.0

0.1

0.2

0.3

0.4

USDT
MATIC
FEI
DAI
USDC
WBTC
WETH

(e) VShareOut , Uniswap V3

20
20

-07
-01

20
20

-10
-01

20
21

-01
-01

20
21

-04
-01

20
21

-07
-01

20
21

-10
-01

20
22

-01
-01

20
22

-04
-01

20
22

-07
-01

20
22

-10
-01

20
23

-01
-01

0.0

0.1

0.2

0.3

0.4

0.5 USDT
MATIC
FEI
DAI
USDC
WBTC
WETH

(f) VShareOut , Uniswap V2, 3

Figure 3.4: 30-day moving average of volume of key cryptocurrencies. These figures plot the
30-day moving average of change in tokens’ volume share for seven key cryptocurrencies in
only Uniswap V2, only Uniswap V3, and both Uniswap V2 and V3; the green span denotes
the boom period, while the red span denotes the bust period.
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value by virtue of the Perron–Frobenius theorem (Mark EJ Newman, 2010). Since our

networks do not have self-edges, the diagonal matrix elements are all zeros, i.e. Akk,t = 0,

∀k ∈ {1, 2, ..., n}.
Let EigenCent Ini,t and EigenCentOut

i,t denote in-eigenvector centrality and out-eigenvector

centrality, respectively, of tokeni on day t. Thus, xi,t represents EigenCent
Out
i,t when Aij,t =

V<j,i>,t, and EigenCentOut
i,t when Aij,t = V<i,j>,t.

20
20

-07
-01

20
20

-10
-01

20
21

-01
-01

20
21

-04
-01

20
21

-07
-01

20
21

-10
-01

20
22

-01
-01

20
22

-04
-01

20
22

-07
-01

20
22

-10
-01

20
23

-01
-01

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 USDT
MATIC
FEI
DAI
USDC
WBTC
WETH

(a) EigenCentIn , Uniswap V2

20
20

-07
-01

20
20

-10
-01

20
21

-01
-01

20
21

-04
-01

20
21

-07
-01

20
21

-10
-01

20
22

-01
-01

20
22

-04
-01

20
22

-07
-01

20
22

-10
-01

20
23

-01
-01

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 USDT
MATIC
FEI
DAI
USDC
WBTC
WETH

(b) EigenCentIn , Uniswap V3

20
20

-07
-01

20
20

-10
-01

20
21

-01
-01

20
21

-04
-01

20
21

-07
-01

20
21

-10
-01

20
22

-01
-01

20
22

-04
-01

20
22

-07
-01

20
22

-10
-01

20
23

-01
-01

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 USDT
MATIC
FEI
DAI
USDC
WBTC
WETH

(c) EigenCentIn , Uniswap V2, 3
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Figure 3.5: 30-day Moving Average of eigenvector centrality of key coins. These figures plot
the 30-day moving average of eigenvector centrality for seven key cryptocurrencies in only
Uniswap V2, only Uniswap V3, and both Uniswap V2 and V3; the green span denotes the
boom period, while the red span denotes the bust period.

In Figure 3.5, we plot the eigenvector centrality of top five key tokens calculated by inflow

trade volume and outflow trade volume. Overall, Figure 3.5 shows that a token’s dominance

in terms of eigenvector centrality is similar to those when measured with inflow transaction

volume or outflow transaction volume. Similar to Figure 3.4, Figure 3.5a and Figure 3.5d

show that WETH has consistently high eigenvector centrality throughout the observation

period, partially explainable by the fact that most Uniswap V2 pools have a token pair with

WETH on one side. Figure 3.5b and Figure 3.5e illustrate tokens’ eigenvector centrality in

the Uniswap V3 market. Clearly, absent mechanical constraints in the Uniswap V3 market,

both WETH and USDC exhibit dominance.

Figure 3.5b and Figure 3.5e present the change in tokens’ eigenvector centrality in the

combined Uniswap V2 and V3 markets. Again, we observe the phenomenon of duo dominant

currencies since the introduction Uniswap V3, when token-pair combination is much less
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influenced by the legacy design of compulsory inclusion on WETH. While only WETH’s

dominance is apparent before Q2 2021, centrality of stablecoins combined–particularly with

USDT and USDC—is also quite high, but the centrality of each individual stablecoin falls

far behind WETH. Since Q2 2021, USDT’s centrality appears to steadily shift to USDC,

which coincides with USDC’s integration into mainstream payment network7 and USDT’s

scandal concerning the reserves backing its value8.

3.5.3 Betweenness centrality

Next, we turn to a unique measure of liquidity specific to each cryptocurrency in the Uniswap

market, capturing how effective each crypto coin performs the function of medium of ex-

change. This measure leverages the fact that the Uniswap router optimally finds a path of

liquidity pools that maximizes the number of output tokens for a given number of input

tokens. Therefore, each executed swap transaction implies a trade route with the lowest

price impact, the highest liquidity, and the cheapest slippage. Since liquidity is an impor-

tant feature of a medium of exchange, we use a token’s betweenness centrality (denoted by

BetwCent) to capture its dominance as a medium of exchange. Specifically, a weighted

betweenness centrality of tokenk on day t is calculated as:

BetwCentk,t =

∑
i ̸=j,i̸=k,j ̸=k

A<i,j|k>,t∑
i ̸=j,i̸=k,j ̸=k

A<i,j>,t
, (3.2)

where A<i,j>,t represents all the transactions on day t where tokeni is the ultimate source

token, and tokenj the ultimate target token; A<i,j|k>,t represents the subset of the above-

mentioned transactions where tokenk is an in-between node in the trade route. Specifi-

cally, when A represents the number of all the transactions, the betweenness centrality is

count-weighted (or equal-weighted) denoted by BetwCentCi,t; when A represents transac-

tion volume, the betweenness centrality is volume-weighted (or value-weighted), denoted by

BetwCentVi,t. Since one transaction can contain multiple atomic trades (see Figure 3.1 for

examples), we simply compute the transaction volume as the average of the volumes of the

component trades.

The computation of betweenness centrality is based on the assumption that all the trading

routes for the occurred transactions are the shortest (or the cheapest). The basic definition

of the betweenness centrality by Brandes (2001) has to iterate the graph to find the shortest

7https://techcrunch.com/2021/03/29/visa-supports-transaction-settlement-with-usdc-stabl

ecoin
8https://www.coindesk.com/markets/2021/05/13/tethers-first-reserve-breakdown-shows-token

-49-backed-by-unspecified-commercial-paper/

https://techcrunch.com/2021/03/29/visa-supports-transaction-settlement-with-usdc-stablecoin
https://techcrunch.com/2021/03/29/visa-supports-transaction-settlement-with-usdc-stablecoin
https://www.coindesk.com/markets/2021/05/13/tethers-first-reserve-breakdown-shows-token-49-backed-by-unspecified-commercial-paper/
https://www.coindesk.com/markets/2021/05/13/tethers-first-reserve-breakdown-shows-token-49-backed-by-unspecified-commercial-paper/
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path. By comparison, here the shortest route is given by the Uniswap router. Hence, we

can compute the betweenness centrality directly by counting trading routes or accumulating

trading volume along these routes. In addition, parallel edges between nodes are common in

the graph that each edge represents a single transaction between two tokens which has the

attribute of trading volume (in the case of value-weighted), unlike the unique relationship

in the social networks. Note that betweenness centrality captures excessive use of a certain

cryptocurrency since it is neither source or target of the trade. Furthermore, betweenness

centrality is a measure of active liquidity provision of a cryptocurrency since the measure

is computed based on realized trades.
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Figure 3.6: Betweenness centrality of key coins. These figures plot the 30-day moving
average of betweenness centrality for seven key cryptocurrencies in only Uniswap V2, only
Uniswap V3, and both Uniswap V2 and V3; the green span denotes the boom period, while
the red span denotes the bust period.

Figure 3.6 show that WETH has the highest betweenness centrality in V2 and V3 in terms

of trade counts, indicating WETH is the preferred medium of exchange for small value

transactions. When the trades are value weighted, we observe that USDC arises in be-

tweenness centrality from November 2021 and overtakes WETH briefly early 2022, implying

that USDC might be having less price impact for large value transactions during this pe-

riod. However, value weighted betweenness centrality measures for both WETH and USDC

drop after the Luna/Terra event, which implies, more trades were direct swap rather than

intermediated by either WETH or USDC.
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Table 3.2: Explaining trading volume with betweenness and eigenvector centralities

This table reports the decomposition of the contribution of BetwCent and EignCent to total trade volume by
regression V Share on BetwCent and EignCent.

(1) (2) (3) (4)

Dependent Var VShare VShare VShare VShare

BetwCentC
0.6724∗∗∗

(0.0008)
0.2563∗∗∗

(0.0003)

AvgEigenCent
0.3970∗∗∗

(0.0002)
0.4261∗∗∗

(0.0002)

BetwCentV
0.7557∗∗∗

(0.0012)
0.2581∗∗∗

(0.0005)

N 312,832 312,832 312,832 312,832
R2 0.674 0.970 0.565 0.958

3.5.4 Relationship between Betweenness Centrality, Eigenvector Central-

ity and Volume Share

Dominance metrics BetwCent and EignCent capture the importance of a cryptocurrency

in the trading network in different ways. Trades depicted in Figure 3.1b and Figure 3.1c

increase both the betweenness centrality and eigenvector centrality of the cryptocurrencies

between the source and the target cryptocurrency (that is, coin B in these graphs). Coin B

is involved in these trades as a vehicle currency due to its liquidity and low price impact. By

contrast, trades where a cryptocurrency is either the source or the target – such as direct

swaps pictured in Figure 3.1a or in a chain – do not affect betweenness centrality of either the

source (A) or the target coin (B) but increase the eigenvector centrality of both. These are

the trades where investors either trade to hold the target coin or sell the source coin in their

inventory. Investors trade these coins for investment or speculative purposes rather than

for liquidity reasons. These investment or speculative purposes might relate to a currency’s

role being a unit of account or store of value. Therefore, the eigenvector centrality of a

cryptocurrency reveals these additional functions of a coin beyond the medium of exchange

captured in its betweeness centrality.

To highlight these differences in the dominance, we decompose the contribution ofBetwCent

and EignCent to total trade volume by regression V Share on BetwCent and EignCent.

The results are reported in 3.2. We observe that liquidity dominance contributes 56.5%

to 67.4% of the variation in trading volume share while eigenvector centrality contributes

about 30%.
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3.5.5 Store of value measurement

Typically safe assets offer the service of store of value. In the DeFi setup, there are multiple

types of stablecoins that aim to offer this service. We measure the dominance of this service

in several ways. One is the simple classification of stablecoin or not. The other is the market

capitalization share of each stablecoin among the stablecoins in the sample reflecting the

popularity of each stablecoin, which we term StableShare.
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Figure 3.7: Stablecoin exchange rate to their underlying This figure plots the deviations
from the peg for all the stablecoins.

Figure 3.8: Comparison of Stablecoin Market Dynamics and Peg Stability

Interestingly, not all stablecoins are successful in maintaining the peg to dollar. Figure 3.7

graphs daily deviations from the peg for all the stablecoins in our sample. It is clear from

Figure 3.7 that some stablecoins are stable only in name.

3.5.6 Liquidity share

Figure 3.9 illustrates the share of liquidity provision of key cryptocurrencies in the Uniswap

market. We define liquidity provision share as the share of the total value locked at Uniswap

liquidity pools, denoted as LiquidityShare. This measure represents passive liquidity pro-

vision in the Uniswap market and potentially proxies for the status of a crypto asset both

as a medium of exchange and as a store of value. It can be the former because larger the

total value locked, the lower is the potential price impact of a trade; it can be the latter

because the liquidity providers who stake a coin in its liquidity pools passively can expect

lower impermanent loss relative to the price appreciation of the coin. Similarly as V Share,
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LiquidityShare might reflect the liquidity provision in proportion to the size of the ecosys-

tem generated by each cryptocurrency and may not be indicative of any excessive of usage

for liquidity provision.
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Figure 3.9: 30-day Moving average of liquidity provision on Uniswap of key cryptocurrencies.
These figures plot the 30-day moving average of liquidity share for seven key cryptocurren-
cies in only Uniswap V2, only Uniswap V3, and both Uniswap V2 and V3; the green span
denotes the boom period, while the red span denotes the bust period.

The general time series pattern of LiquidityShare dominance is similar to that of V Share.

Wrapped ETH’s initial dominance was taken over by stablecoins, in particular USDC after

the Luna/Terra episode in early 2022. Slightly different from the V share dominant metrics,

we observe that in Figure 3.9c where we aggregate both Uniswap V2 and V3 liquidity

provisions that there are three cryptocurrencies battling for dominance in passive liquidity

provision: WETH, USDC and DAI, especially in the latter part of the sample.

Table 3.3 describes the summary statistics for all the above dominance metrics in the sample.

It shows that for all dominance metrics the standard deviation is much larger relative to its

mean and the distribution is highly skewed.

Table 3.3: Summary statistics

This table reports the summary statistics for the dominance metrics in the sample. The metrics include VShare,
VShareIn , VShareOut , LiquidityShare, EigenCentIn , EigenCentOut , BetwCentC , and BetwCentV . The table reports
the number of observations, the mean, the standard deviation, the minimum, the 25th percentile, the 50th percentile
(median), the 75th percentile, and the maximum for each metric. The table highlights that the standard deviation is
much larger relative to the mean for all metrics, indicating high variability in the data. Additionally, the distribution
for all metrics is highly skewed.

Obs mean std min 25% 50% 75% max

VShare 58511.0 1.637299e-02 0.066159 0.000000e+00 0.000254 0.000921 0.003284 5.000000e-01

VShareIn 58436.0 1.637689e-02 0.066194 0.000000e+00 0.000238 0.000905 0.003283 6.060238e-01

VShareOut 58436.0 1.637689e-02 0.066381 0.000000e+00 0.000256 0.000932 0.003279 7.352508e-01
LiquidityShare 58436.0 1.637689e-02 0.059630 0.000000e+00 0.000456 0.001219 0.003593 5.000000e-01

EigenCentIn 58511.0 3.784705e-02 0.122233 -1.665335e-16 0.000568 0.002517 0.011358 9.365245e-01

EigenCentOut 58511.0 3.778501e-02 0.122252 -1.665335e-16 0.000616 0.002565 0.011342 8.835949e-01

BetwCentC 44852.0 1.223823e-02 0.091905 0.000000e+00 0.000000 0.000000 0.000000 9.878716e-01

BetwCentV 44852.0 9.613459e-03 0.076991 0.000000e+00 0.000000 0.000000 0.000000 9.939918e-01
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3.5.7 Dominance Concentration

To gauge the number of dominant currencies, we examine dominance concentration and in

particular Herfindahl index of dominance measures across 50 cryptocurrency at each day.

The inverse of the Herfindahl index can be regarded as the daily “effective” number of

currencies. Except for the oracle price period, the overall high level of Herfindahl index

indicates the existence of a few dominant currencies: as high as five (in January 2021—the

earlier period of the sample) and as low as two (in August 2022—the later period of the

sample).

We also compute the Herfindahl index for all other dominance measures except for eigen-

vector centralities9. The Herfindahl index for passive liquidity provision (TVL) shows that

passive liquidity provision is less concentrated over time—suggesting that price impact is

more evenly distributed in the latter part of the sample. The Herfindahl indices for both

equally and value weighted betweenness centrality – the active liquidity dominance measure

also show less concentration over time, albeit with volatile movements, indicating frequent

regime changes.

3.6 Properties of Dominance

3.6.1 Lead and Lag Relationships

In this section, we examine how these dominance metrics relate to each other and how the

relationships vary over the boom and bust cycle.

We first examine the lead-lag relationship of the two of our dominance metrics, betweenness

centrality and eigenvector centrality by running a vector auto-regression of the two series.

The estimation results are reported in Table 3.4. These results show clearly that between-

ness centrality leads network centrality and this lead relationship comes from the boom but

does not exist during the bust. This finding suggests that liquidity is a valuable attribute of

dominant currencies during booms. Vehicle currencies captured by betweenness dominance

are also the preferred investment/speculative currencies during booms.

To understand the contemporaneous relationship between all of the dominance metrics, we

also compute the correlation matrix of dominance measures, including: V Share, EigenCenAvg,

BetwCentV , BetwCentC , Stableshare, and other coin-level characteristics such as volatil-

ity σUSD and correlation with WETH and S&P Market crypto index, as well as associated

lending and borrowing statistics in the lending platforms etc, which is presented in Fig-

ure 3.10. The heatmap shows that most dominance metrics are closely related and their

correlation with risk variables are low.

9The Herfindahl index for the eigenvector centrality by definition is scaled to 1.
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Table 3.4: Panel vector autoregression results with centrality measures

This table reports the estimation results of the vector auto-regression of two dominance metrics, betweenness centrality
and eigenvector centrality. The table consists of three separate panels, and each panel reports four columns of results.
The dependent variables are either ultimate eigenvector centrality or betweenness centrality. The results indicate
that betweenness centrality leads network centrality during the boom but not during the bust. This finding suggests
that liquidity is a valuable attribute of dominant currencies during booms. The preferred investment/speculative
currencies during booms are captured by betweenness dominance. The fixed effects and time effects are included in
the estimation, and the R2 values are reported in the last row of each panel.

Panel 1: full sample

(1) (2) (3) (4)

Dependent Var EigenCentUlti BetwCentV EigenCentUlti BetwCentE

EigenCentUlti
t−1

0.8430∗∗∗

(0.0152)
−0.0012∗

(0.0007)
0.8431∗∗∗

(0.0152)
−0.0003
(0.0005)

BetwCentVt−1
0.0080∗∗∗

(0.0015)
0.9741∗∗∗

(0.0044)

BetwCentEt−1
0.0102∗∗∗

(0.0022)
0.9702∗∗∗

(0.0054)
Fixed Effect yes yes yes yes
Time Effect no no no no

N 270,450 270,450 270,450 270,450
R2 0.716 0.951 0.716 0.943

Panel 2: boom

(1) (2) (3) (4)

Dependent Var EigenCentUlti BetwCentV EigenCentUlti BetwCentE

EigenCentUlti
t−1

0.7203∗∗∗

(0.0274)
−0.0054
(0.0043)

0.7210∗∗∗

(0.0273)
−0.0056∗∗∗

(0.0020)

BetwCentVt−1
0.0124∗∗∗

(0.0043)
0.8770∗∗∗

(0.0187)

BetwCentEt−1
0.0094∗∗

(0.0037)
0.9499∗∗∗

(0.0130)
Fixed Effect yes yes yes yes
Time Effect no no no no

N 143,520 143,520 143,520 143,520
R2 0.557 0.808 0.557 0.910

Panel 3: bust

(1) (2) (3) (4)

Dependent Var EigenCentUlti BetwCentV EigenCentUlti BetwCentE

EigenCentUlti
t−1

0.7203∗∗∗

(0.0274)
−0.0054
(0.0043)

0.7210∗∗∗

(0.0273)
−0.0056∗∗∗

(0.0020)

BetwCentVt−1
0.0124∗∗∗

(0.0043)
0.8770∗∗∗

(0.0187)

BetwCentEt−1
0.0094∗∗

(0.0037)
0.9499∗∗∗

(0.0130)
Fixed Effect yes yes yes yes
Time Effect no no no no

N 143,520 143,520 143,520 143,520
R2 0.557 0.808 0.557 0.910
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Figure 3.10: Correlation matrix of key variables. This figure plots the correlation matrix
of V Share, EigenCenAvg, BetwCentV , BetwCentC , Stableshare, and other coin-level
characteristics such as volatility σUSD and correlation with WETH and S&P Market crypto
index, as well as associated lending and borrowing statistics in the lending platforms etc.
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.

To gauge the lead-lag relationship among all the dominance metrics, we then compute

(cross-)auto-correlation of these variables with 7 lags, 14 lags, 21 lags, 28 lags following

the methodology in Campbell et al. (1997). We examine whether the entries in the lower

diagonal are larger than the counterparts in the upper diagonal of the cross-autocorrelation

matrix. Over the full sample, we observe large auto-correlations among all dominance

indices and we do not observe significant differences between these entries, indicating that

there are no significant lead/lag relationships for these dominance metrics.

However, when we examine the boom and bust periods separately, we find some interesting

differences between the lower and upper diagonal entries. The cross-autocorrelation matrix

for 28 day lags for the boom subsample is shown in Figure 3.11d. We find that the cor-

relations of lagged equal-weighted betweenness centrality BetwCentC (an active liquidity

dominance measure) with all other metrics are larger than the corresponding correlation

between BetwCentC and the lagged value of other metrics. This pattern is followed by the

value-weighted BetwCentV . Therefore, this indicates that during the boom, active liquidity

provision is a main driver of currency dominance.

By contrast, Figure 3.11e shows a different pattern during the bust. First of all, we find

that the store of value dominance measure (StableShare) leads (both passive and active)

liquidity dominance metrics, indicating safety is preferred over liquidity in terms of currency

dominance attributes. Interestingly, both market share dominance (V Share and network

centrality (EigenCent) lead StableShare, indicating that market demand or supply (in

terms of market share and network centrality) affects how safety is valued during the bust.

In summary, we find some evidence that during the market crash, cryptocurrency that is

regarded safe moves up in liquidity dominance, i.e. used more to intermediate transactions;

while during the market boom, cryptocurrencies with a high score in terms of active liquidity

provision gain higher network centrality and larger trading volume shares, that is, liquidity

is a key driver for currency dominance in a boom. This is consistent with the result in

Gourinchas and Rey (2022) where they argue that investors’ risk aversion leads some to

prefer safe assets for settlement.

3.6.2 Time-Varying Market Concentration: Determinants

Next, we investigate how the Herfindahl index of relevant dominance metrics (or the inverse

of the number of effective currencies) relates to market conditions by running the following

market-wide regressions:

Herfindahlt ∼IsBoomt +GasPrice + lnMarketVolume + σUSD
SP + σUSD

gas +Herfindahlt−1 (3.3)
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Figure 3.11: Cross-autocorrelation with 28 days lag. These figures plot the cross-
autocorrelation with 28 days lag over the boom, bust, and full period.

where IsBoom is a dummy for the boom period, σUSD
SP is the volatility of the crypto market

index, and the naming of the rest of the variables is self-explanatory. All independent

variables are lagged.

The results are presented in Table 3.5. We observe that both the active and the passive liq-

uidity provisions are more concentrated during the boom or when gas price or gas volatility

is high, indicating that fewer currencies serve as vehicle currencies and hence are dominant

under these market conditions. We find that higher gas price or gas volatility lead to a less

concentrated trading volume share, indicating that there might be more direct asset swaps

rather than cross-pool tradings. Hence, there is less use of vehicle currencies to minimize

the transaction costs under these circumstances.

3.7 Drivers of Dominant Currencies

3.7.1 Testable Hypotheses

In this section, we develop testable hypotheses based on the findings from the existing

financial, international monetary, and macroeconomic literature and construct specifications

for these tests.

The DCP literature has identified at least four sets of factors that might affect a currency’s

dominant status. The first group relates to price stability. The second group concerns
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Table 3.5: Herfindahl and Market Condition

The table shows the results of market-wide regressions investigating the relationship between Herfindahl index of
relevant dominance metrics and market conditions. The dependent variables in each column represent different
metrics of market concentration. The independent variables include the dummy for the boom period, gas price, natural
logarithm of market volume, USD volatility of the crypto market index, and the previous period’s Herfindahl index.
The results are reported in terms of the estimated coefficients, and their standard errors are shown in parentheses.
The number of observations is the same across all columns. The table suggests that both active and passive liquidity
provisions are more concentrated during the boom or when gas price or gas volatility is high, indicating that fewer
currencies serve as vehicle currencies and hence dominant under these market conditions. Higher gas price or gas
volatility leads to less concentrated trading volume share, indicating that there might be more direct asset swaps
rather than cross-pool tradings. Hence there is less use of vehicle currencies to minimize the transaction cost under
these circumstances.

(1) (2) (3) (4) (5)

Dependent Var HHIVShareUlti HHIBetwCentE HHIBetwCentV HHIVShareBetw HHIVShare

HHIt−1
0.4546∗∗∗

(0.0465)
0.6299∗∗∗

(0.0381)
0.6447∗∗∗

(0.0460)
0.5648∗∗∗

(0.0525)
0.4449∗∗∗

(0.0481)

IsBoom
−0.0018
(0.0026)

0.0345∗∗∗

(0.0093)
0.0428∗∗∗

(0.0105)
0.0420∗∗∗

(0.0101)
0.0036
(0.0023)

MarketVolume
0.0018
(0.0020)

−0.0005
(0.0056)

−0.0071
(0.0063)

0.0021
(0.0067)

0.0018
(0.0018)

σUSD
SP

0.1267
(0.0995)

0.3516
(0.2920)

−0.6414∗∗

(0.3184)
−0.6178
(0.4076)

0.0185
(0.0893)

GasPriceUSD −16.6760∗∗∗

(6.0647)
46.9715∗∗

(20.8932)
49.7317∗

(27.7102)
−37.0482
(28.3063)

−13.1549∗∗

(5.1528)

σUSD
Gas

−0.0344∗∗∗

(0.0115)
0.0823∗∗∗

(0.0273)
0.0909∗∗∗

(0.0320)
0.0871∗∗∗

(0.0330)
−0.0140∗

(0.0085)

AvgClustCoef
0.0210
(0.0228)

0.0485
(0.0760)

0.0826
(0.0754)

0.1033
(0.0838)

0.0272
(0.0198)

NumClique/NumTxn
0.0000
(0.0045)

−0.0603∗∗∗

(0.0158)
−0.0525∗∗∗

(0.0166)
−0.0282∗

(0.0159)
−0.0044
(0.0037)

Year-Month Dummies yes yes yes yes yes

N 944 944 944 944 944
R2 0.885 0.960 0.961 0.931 0.782

safety characteristics. The third group relates to financial product offerings, especially

money market products such as deposits. The final group concerns characteristics of the

currency related to the role of unit of account: the size of the market associated with each

currency and the ability of the currency to hedge working capital needs.

The first group of factors are closely linked to the role of money as a store of value. Intu-

itively, if the real purchasing power of a cryptocurrency is stable, it is more likely to be used

as a store of value. Indeed, in the trade literature, this (in)stability is captured by the bi-

lateral exchange rate volatility between the invoicing currency for exports and the currency

used to purchase consumption goods (which can be either the local currency or the currency

used to pay for imported consumption goods). Since real consumption is denominated in

dollars, a measure of purchasing power volatility is the volatility of the cryptocurrency in

dollars. This leads to the following testable hypothesis.

Hypothesis 1 (Dollar volatility). A cryptocurrency is more likely to be used for transac-
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tions when the volatility of its exchange rate against dollar is lower.

Another variation of Hypothesis 1 is that a cryptocurrency is viewed safe if a cryptocurrency

can hedge again the crash risk. We use return correlation with crypto market index or ETH

to capture the market risk embedded in each cryptocurrency.

Hypothesis 1a (Crash Hedge). A cryptocurrency is more likely to be used for transactions

if its return is negatively correlated with crypto market return during downturns.

In the trade literature, Gopinath and Stein (2021) have pinpointed that the special roles

played by the safe asset—the currency that is regarded as “stable” in maintaining its real

value and hence used as the invoice asset. This indicates that, in addition to lower volatility,

traders might prefer the price stability of stablecoins when choosing it to invoice/settle a

transaction, which leads to the second group of hypothesis.

Hypothesis 2 (Stablecoins). Stablecoins are more likely to be used for transactions, espe-

cially during the volatile periods.

However, not all stablecoins are created equal. We use StableShare to capture the differential

impacts among stablecoins.

Hypothesis 2a (Stablecoin Market Share). Stablecoins that have larger market shares are

more likely to be used for transactions, especially during the volatile periods.

The third group of factors relate to financial service offerings associated with a currency.

Maggiori (2017), Gourinchas et al. (2019) and Gopinath and Stein (2021) suggest that

exporting and importing firms have an incentive to invoice/transact in currencies associated

with higher levels of financial services. If there is a well-developed debt/credit/derivatives

market denominated in a certain currency, then trade finance, working capital finance,

banking services and currency risk hedging in that particular currency would be cheaper

and readily available. Financial services applications such as deposit, lending, investing,

hedging, insurance, etc. in the crypto universe have only been developed in the last three

years as blockchain developers have begun to tap into smart contract functionalities. These

applications are characterized as decentralized finance (DeFi) as they are algorithmically

based and without any centralized authority. We use SupplyShare, the share of crypto

assets deposited in the DeFi lending protocol, as a proxy for the level of money market

services— a most basic level of financial services—associated with each cryptocurrency.

This leads to the following hypothesis.

Hypothesis 3 (Financial Service). A currency with a larger money market is more likely

to be used for trade transactions.
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Finally, the literature shows that firms are more concerned about the currency mismatch be-

tween export sales denominated in the invoicing currency and working capital denominated

in the local currency, than about the purchasing power of export sales for consumption

goods directly. This leads to the fourth group of factors. In these cases, the bilateral ex-

change rate volatility with the currency used to pay for working capital may be an important

consideration for firms to choose the currency for export invoices. In the blockchain envi-

ronment, working capital is denominated in the utility coin, commonly the chain’s native

currency, associated with a specific chain. On the Ethereum blockchain—the world’s largest

DeFi network, each transaction is subject to a gas fee (akin to working capital) priced in

ETH. This means that investors might also be concerned with the variation of gas fee. They

would like to denominate their trade in a cryptocurrency which hedges this risk.

Hypothesis 4 (Gas Hedge). A cryptocurrency is more likely to be used for transactions

when its return covariance with gas price change, is lower.

Lastly, Mukhin (2022) find that the size of the market might explain why certain currencies

are dominant. In the crypto setting, the size of a market associated with each cryptocur-

rency can be proxied by the market capitalization. For example, Bitcoin, one of the oldest

and the most widely held crypto assets, has a market capitalization of $411.41 billion as of

August 2022, double that of Ethereum in the second place and five times that of USDC, a

stablecoin in the third place. This leads to the following hypothesis.

Hypothesis 5 (Market Size). A cryptocurrency with a large market capitalization is more

likely to be used for transactions.

In the next section, we develop specifications to test these hypotheses utilizing both cross-

sectional and time-series variations.

3.7.2 Regression Specifications and Results

We now examine how each groups of factors identified in the hypotheses section explain

each of dominant metrics (AvgEigenCent , BetwCent , VShare) by running the following

fixed-effect regression for each coin at each day in our sample period:

Dominancei,t ∼Dominancei,t−1 + CorETH i,t−1 + σUSD
i,t−1 + StableSharei,t−1 (3.4)

+ CorGast−1 +MCapSharei,t−1 + SupplySharei,t−1

We run the regression with the lagged dominance proxy to control for autocorrelation and

report the results in Table 3.6. We observe that a coin’s market capitalization (that is, a

proxy for the size of ecosystem around one coin) and its supply share (that is, the amount
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Table 3.6: Dominance regression: full sample with boom interaction

This table presents the results of fixed-effect regressions for each coin at each day in the sample period to examine
how groups of factors explain each of the dominant metrics. The table displays the coefficients of the regression
model and their respective standard errors. The dependent variable in the first column is the volume share of a
cryptocurrency, and the dependent variable in the second column is the equally weighted betweenness centrality
of a cryptocurrency. The independent variables include the lagged dominance proxy to control for autocorrelation
and factors such as market capitalization, supply share, stablecoin, and correlation with gas prices. The coefficients
for market capitalization and supply share are positive and statistically significant across all dominance metrics,
supporting Hypothesis 5 and Hypothesis 3, respectively. Stablecoin contributes positively to all dominance metrics
except for equally weighted betweenness centrality, supporting Hypothesis 6. Correlation with gas prices contributes
positively to average eigenvector centrality during the boom period, weakly supporting Hypothesis 4. The table also
indicates the impact of the market boom on the coefficients of some factors.

(1) (2)

Dependent Var VShareulti VSharebetw

Dominancet−1
0.8681∗∗∗

(0.0128)
0.8704∗∗∗

(0.0137)

σUSD
t−1

−0.0000∗

(0.0000)
0.0000∗∗∗

(0.0000)

σUSD
t−1 : IsBoom

0.0000∗∗∗

(0.0000)
−0.0000∗∗∗

(0.0000)

MCapSharet−1
0.0113
(0.0089)

−0.0031
(0.0290)

MCapSharet−1 : IsBoom
−0.0003
(0.0047)

0.0828∗∗∗

(0.0176)

LiquiditySharet−1
0.0480∗∗∗

(0.0073)
0.1099∗∗∗

(0.0177)

LiquiditySharet−1 : IsBoom
−0.0012
(0.0085)

−0.0020
(0.0190)

SupplySharet−1
0.0195∗∗∗

(0.0043)
0.0428∗∗∗

(0.0107)

SupplySharet−1 : IsBoom
−0.0069∗

(0.0038)
−0.0198∗∗

(0.0089)

CorGast−1
0.0000
(0.0000)

0.0001
(0.0001)

CorGast−1 : IsBoom
0.0001
(0.0001)

−0.0000
(0.0002)

StableSharet−1
0.0464∗∗∗

(0.0073)
0.0951∗∗∗

(0.0143)

StableSharet−1 : IsBoom
−0.0121∗∗∗

(0.0025)
−0.0496∗∗∗

(0.0077)

CorETH t−1
−0.0000
(0.0000)

0.0003∗∗∗

(0.0001)

CorETH t−1 : IsBoom
0.0001
(0.0001)

−0.0001
(0.0001)

Fixed Effect yes yes
Time Effect no no

N 273,331 273,331
R2 0.855 0.886
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of deposit) positively contribute to its dominance measures consistently , supporting Hy-

pothesis 5 and Hypothesis 3, respectively. In fact, the former effect is even stronger dur-

ing the market boom. The latter effect, in contrast, is not uniform across all dominance

measures during the boom, even negative for VShare and LiquidityShare but stronger for

BetwnCentC , that is, an active money market benefits active liquidity provision but do not

contribute to volume share or passive liquidity provision during the boom.

We find that StableShare contributes positively to all dominance metrics except for equally

weighted betweenness centrality, indicating that stablecoins are less likely to intermediate

small value trades. In fact, we observe that stablecoins are much less likely to be dominant

during the boom, indicating that they play more important roles during the bust.

We also observe that the coefficients CorGas are positive for network centrality metric

AvgEigenCent during the boom period, but statistically insignificant for all other metrics.

This finding weakly supports Hypothesis 4, showing that currencies used to hedge price

volatility of working capital asset are likely to be used as dominant currencies during the

boom. We do not find strong evidence that either idiosyncratic volatility or market risk

affect any dominant metrics, which may reflect the volatile nature of this market.

Finally, to examine the importance of money market to the currency dominance, we design

a difference-in-differences test by utilizing the fact that PLFs such as Compound accept

crypto-assets as deposits/collaterals only occasionally due to the decentralized nature of

governance. The treatment group consists of coins accepted to the PLF and the control

group is made of coins that have already been accepted prior to the beginning of the observa-

tion window. We choose the control group to deal with the endogeneity concern that PLFs

might choose to accept tokens based on their predicted dominance. Our identification strat-

egy exploits ex-ante differences in being accepted by a PLF across tokens, but it does not

require the initial presence at a PLF to be random. It only requires that outcomes of treated

and control tokens would have evolved similarly absent the treatment. We compare whether

there are any significant differences in the change of dominance metrics after the treatment

date for the coins that are treated with those in the control group. We have conducted this

analysis for 14, 30 and 60 days before-and-after windows and reported the 60-day results in

Table 3.7 since estimation outcomes are similar. In Table 3.7, IsTreatedToken is a dummy

for the treated coin(s), AfterTreatedDate is a dummy for the PLF inclusion date, and

the last regressor is the interaction between the two dummies. We include the token fixed

effect in the difference-in-differences regressions and hence the dummy IsTreatedToken is

absorbed by the fixed effects. We find that the coefficients for the interaction variable is

positive for all dependent variables except for LiquidityShare and statistically significant

when the dependent variable is eigenvector and value-weight betweenness centrality. These

results suggest that being included in the PLF (that is, having a money market) is an
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important driver for currency dominance.

Table 3.7: Difference-in-differences regression in money market

This table reports the results of the difference-in-differences test to examine the impact of a money market on currency
dominance. The treatment group consists of tokens accepted to the PLF, while the control group comprises coins that
had been accepted before the observation window began. The dependent variables include VShareUlti , EigenCentUlti ,
VShareBetw , BetwCentV , BetwCentE , EigenCent , and VShare. The table shows the estimates of the coefficients for
the interaction between IsTreatedToken and AfterTreatedDate, which indicates the treatment effect. The regressions
control for MCapShare, StableShare, and σUSD, and include token fixed effects. The results demonstrate that
being included in the PLF (having access to a money market) is an important driver for currency dominance, as
indicated by the significant and positive coefficients for the interaction variable for all dependent variables, except for
LiquidityShare.

(1) (2) (3) (4) (5) (6) (7)

Dependent Var VShareUlti EigenCentUlti VShareBetw BetwCentV BetwCentE EigenCent VShare

Treatment : Post
0.0035∗∗∗

(0.0004)
0.0149∗∗∗

(0.0016)
−0.0013∗∗∗

(0.0002)
−0.0001∗∗∗

(0.0000)
−0.0001∗∗∗

(0.0000)
0.0117∗∗∗

(0.0013)
0.0027∗∗∗

(0.0003)

MCapShare
0.6586∗∗∗

(0.0473)
2.6941∗∗∗

(0.1991)
0.0477
(0.0313)

0.0040
(0.0025)

0.0029∗∗

(0.0012)
2.2211∗∗∗

(0.1656)
0.5207∗∗∗

(0.0381)

StableShare
−0.1914
(0.1713)

−0.9332
(0.7217)

0.4176∗∗∗

(0.1135)
0.0330∗∗∗

(0.0091)
0.0095∗∗

(0.0043)
−0.5940
(0.6001)

−0.0621
(0.1380)

σUSD −0.0001
(0.0000)

−0.0003
(0.0002)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

−0.0003∗

(0.0002)
−0.0000
(0.0000)

Fixed Effect yes yes yes yes yes yes yes
Time Effect yes yes yes yes yes yes yes

N 5,351 5,351 5,351 5,351 5,351 5,351 5,351

R2 0.055 0.053 0.008 0.008 0.013 0.051 0.053

It is intuitive that we do not find any positive or statistically significant results for liquidity

share. In fact, LiquidityShare is an imperfect substitute for PLF since it represents passive

liquidity provision and is an alternative way to deposit crypto-assets but without any asso-

ciated borrowing or lending facilities. It is a less effective money market instrument since

depositors to the liquidity pools share volatile trading fees rather than interest payments.

3.8 Conclusion

In this paper, we examine the properties of dominant currencies in the fast changing DeFi

world to test the theories of dominant currency paradigm (DCP) in the international trade

and finance literature. We find that unlike in the traditional finance, there are multiple

dominant currencies in DeFi, including utility coins such as WETH and stablecoins such

as USDC and DAI. We find that during the boom, liquid coins are more dominant while

during market turmoils, stablecoins play a more dominant role. We find that an active

money market is an important driver for currency dominance, suggesting an essential design

choice of future CBDCs.
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Figure 3.12: Sankey plots for inflow, outflow, and intermediary volume of Uniswap V2, V3,
and both V2 and V3 These figures plot the inflow, outflow, and intermediary volume of
only Uniswap V2, only Uniswap V3, and both Uniswap V2 and V3. The blue rectangle
denotes the source token, the green rectangle denotes the intermediary token, and the yellow
rectangle denotes the target token. The thickness of bands denote the magnitude of volume.
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3.9 Appendix

Table 3.8: Tokens acceptable by Compound and their time added to the protocol

The table shows the lending pool smart contract addresses and the time added to Compound in UTC for 13 different
tokens: ETH, USDC, USDT, WBTC, DAI, UNI, SAI, REP, MKR, YFI, USDP, ZRX, and SUSHI. The lending pool
smart contract is the address where the token is stored and from which it can be lent and borrowed. The time added
to Compound is the date and time when the token was added to the Compound protocol, which is a decentralized
finance (DeFi) platform that allows users to lend and borrow cryptocurrencies.

Token Lending pool smart contract Time added to Compound [UTC]

ETH 0x4ddc2d193948926d02f9b1fe9e1daa0718270ed5 2019-05-07 01:25:18
USDC 0x39aa39c021dfbae8fac545936693ac917d5e7563 2019-05-07 01:25:31
USDT 0xf650c3d88d12db855b8bf7d11be6c55a4e07dcc9 2020-04-15 21:13:06
WBTC 0xc11b1268c1a384e55c48c2391d8d480264a3a7f4 2019-07-16 19:47:37
DAI 0x5d3a536e4d6dbd6114cc1ead35777bab948e3643 2019-11-23 01:03:33
UNI 0x35a18000230da775cac24873d00ff85bccded550 2020-09-23 22:05:47
SAI 0xf5dce57282a584d2746faf1593d3121fcac444dc 2019-05-07 01:24:12
REP 0x158079ee67fce2f58472a96584a73c7ab9ac95c1 2019-05-07 01:24:48
MKR 0x95b4ef2869ebd94beb4eee400a99824bf5dc325b 2021-07-16 05:30:17
YFI 0x80a2ae356fc9ef4305676f7a3e2ed04e12c33946 2021-07-18 03:19:05
USDP 0x041171993284df560249b57358f931d9eb7b925d 2021-09-19 19:42:57
ZRX 0xb3319f5d18bc0d84dd1b4825dcde5d5f7266d407 2019-05-07 01:20:54
SUSHI 0x4b0181102a0112a2ef11abee5563bb4a3176c9d7 2021-07-18 03:12:59
FEI 0x7713dd9ca933848f6819f38b8352d9a15ea73f67 2021-09-15 02:26:35
BAT 0x6c8c6b02e7b2be14d4fa6022dfd6d75921d90e4e 2019-05-07 01:21:25
COMP 0x70e36f6bf80a52b3b46b3af8e106cc0ed743e8e4 2020-09-29 10:41:05
TUSD 0x12392f67bdf24fae0af363c24ac620a2f67dad86 2020-10-07 11:45:29
AAVE 0xe65cdb6479bac1e22340e4e755fae7e509ecd06c 2021-07-18 03:19:05
LINK 0xface851a4921ce59e912d19329929ce6da6eb0c7 2021-04-21 21:38:22
WBTC 0xc11b1268c1a384e55c48c2391d8d480264a3a7f4 2019-07-16 19:47:37

https://etherscan.io/address/0x4ddc2d193948926d02f9b1fe9e1daa0718270ed5
https://etherscan.io/address/0x39aa39c021dfbae8fac545936693ac917d5e7563
https://etherscan.io/address/0xf650c3d88d12db855b8bf7d11be6c55a4e07dcc9
https://etherscan.io/address/0xc11b1268c1a384e55c48c2391d8d480264a3a7f4
https://etherscan.io/address/0x5d3a536e4d6dbd6114cc1ead35777bab948e3643
https://etherscan.io/address/0x35a18000230da775cac24873d00ff85bccded550
https://etherscan.io/address/0xf5dce57282a584d2746faf1593d3121fcac444dc
https://etherscan.io/address/0x158079ee67fce2f58472a96584a73c7ab9ac95c1
https://etherscan.io/address/0x95b4ef2869ebd94beb4eee400a99824bf5dc325b
https://etherscan.io/address/0x80a2ae356fc9ef4305676f7a3e2ed04e12c33946
https://etherscan.io/address/0x041171993284df560249b57358f931d9eb7b925d
https://etherscan.io/address/0xb3319f5d18bc0d84dd1b4825dcde5d5f7266d407
https://etherscan.io/address/0x4b0181102a0112a2ef11abee5563bb4a3176c9d7
https://etherscan.io/address/0x7713dd9ca933848f6819f38b8352d9a15ea73f67
https://etherscan.io/address/0x6c8c6b02e7b2be14d4fa6022dfd6d75921d90e4e
https://etherscan.io/address/0x70e36f6bf80a52b3b46b3af8e106cc0ed743e8e4
https://etherscan.io/address/0x12392f67bdf24fae0af363c24ac620a2f67dad86
https://etherscan.io/address/0xe65cdb6479bac1e22340e4e755fae7e509ecd06c
https://etherscan.io/address/0xface851a4921ce59e912d19329929ce6da6eb0c7
https://etherscan.io/address/0xc11b1268c1a384e55c48c2391d8d480264a3a7f4
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Table 3.9: Tokens acceptable by Aave and their time added to the protocol

This table provides a list of tokens and their corresponding lending pool smart contracts that have been added to the
Aave protocol. Aave is a decentralized lending platform on the Ethereum blockchain that allows users to borrow and
lend various cryptocurrencies. The time that each token was added to the platform is also provided in Coordinated
Universal Time (UTC).

Token Lending pool smart contract Time added to Aave [UTC]

ETH 0x030ba81f1c18d280636f32af80b9aad02cf0854e 2020-11-30 22:20:30
USDC 0xbcca60bb61934080951369a648fb03df4f96263c 2020-12-01 14:23:56
USDT 0x3ed3b47dd13ec9a98b44e6204a523e766b225811 2020-11-30 22:20:30
WBTC 0x9ff58f4ffb29fa2266ab25e75e2a8b3503311656 2020-11-30 22:20:30
DAI 0x028171bca77440897b824ca71d1c56cac55b68a3 2020-12-01 14:22:02
UNI 0xb9d7cb55f463405cdfbe4e90a6d2df01c2b92bf1 2020-11-30 22:20:58
LINK 0xa06bc25b5805d5f8d82847d191cb4af5a3e873e0 2020-12-01 14:23:08
FRAX 0xd4937682df3c8aef4fe912a96a74121c0829e664 2021-09-11 23:42:46
GUSD 0xd37ee7e4f452c6638c96536e68090de8cbcdb583 2021-01-02 19:16:42
LUSD 0xce1871f791548600cb59efbeffc9c38719142079 2022-08-29 19:06:59
sUSD 0x6c5024cd4f8a59110119c56f8933403a539555eb 2020-12-01 14:23:43
TUSD 0x101cc05f4a51c0319f570d5e146a8c625198e636 2020-12-01 14:23:56
USDP 0x2e8f4bdbe3d47d7d7de490437aea9915d930f1a3 2021-07-25 12:17:36
1INCH 0xb29130cbcc3f791f077eade0266168e808e5151e 2022-07-30 17:30:33
AAVE 0xffc97d72e13e01096502cb8eb52dee56f74dad7b 2020-12-01 14:22:02
CRV 0x8dae6cb04688c62d939ed9b68d32bc62e49970b1 2020-12-27 21:46:55
DPI 0x6f634c6135d2ebd550000ac92f494f9cb8183dae 2021-08-21 17:42:40
ENS 0x9a14e23a58edf4efdcb360f68cd1b95ce2081a2f 2022-03-07 06:02:56
MKR 0xc713e5e149d5d0715dcd1c156a020976e7e56b88 2020-12-01 14:23:43
SNX 0x35f6b052c598d933d69a4eec4d04c73a191fe6c2 2020-12-01 14:23:43
stETH 0x1982b2f5814301d4e9a8b0201555376e62f82428 2022-02-27 16:22:12
WETH 0x030ba81f1c18d280636f32af80b9aad02cf0854e 2020-11-30 22:20:30

https://etherscan.io/address/0x030ba81f1c18d280636f32af80b9aad02cf0854e
https://etherscan.io/address/0xbcca60bb61934080951369a648fb03df4f96263c
https://etherscan.io/address/0x3ed3b47dd13ec9a98b44e6204a523e766b225811
https://etherscan.io/address/0x9ff58f4ffb29fa2266ab25e75e2a8b3503311656
https://etherscan.io/address/0x028171bca77440897b824ca71d1c56cac55b68a3
https://etherscan.io/address/0xb9d7cb55f463405cdfbe4e90a6d2df01c2b92bf1
https://etherscan.io/address/0xa06bc25b5805d5f8d82847d191cb4af5a3e873e0
https://etherscan.io/address/0xd4937682df3c8aef4fe912a96a74121c0829e664
https://etherscan.io/address/0xd37ee7e4f452c6638c96536e68090de8cbcdb583
https://etherscan.io/address/0xce1871f791548600cb59efbeffc9c38719142079
https://etherscan.io/address/0x6c5024cd4f8a59110119c56f8933403a539555eb
https://etherscan.io/address/0x101cc05f4a51c0319f570d5e146a8c625198e636
https://etherscan.io/address/0x2e8f4bdbe3d47d7d7de490437aea9915d930f1a3
https://etherscan.io/address/0xb29130cbcc3f791f077eade0266168e808e5151e
https://etherscan.io/address/0xffc97d72e13e01096502cb8eb52dee56f74dad7b
https://etherscan.io/address/0x8dae6cb04688c62d939ed9b68d32bc62e49970b1
https://etherscan.io/address/0x6f634c6135d2ebd550000ac92f494f9cb8183dae
https://etherscan.io/address/0x9a14e23a58edf4efdcb360f68cd1b95ce2081a2f
https://etherscan.io/address/0xc713e5e149d5d0715dcd1c156a020976e7e56b88
https://etherscan.io/address/0x35f6b052c598d933d69a4eec4d04c73a191fe6c2
https://etherscan.io/address/0x1982b2f5814301d4e9a8b0201555376e62f82428
https://etherscan.io/address/0x030ba81f1c18d280636f32af80b9aad02cf0854e
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