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Abstract

Exploratory Factor Analysis (EFA) is a statistical technique for uncovering latent structures in

multivariate data by modeling observed variables as linear combinations of unobserved factors.

For interpretability, estimated loading matrices are often rotated to achieve sparsity, but existing

rotation methods may lack sufficient accuracy or computational efficiency.

This thesis introduces a new family of rotation criteria for recovering loading matrices with

varying sparsity in EFA, based on component-wise Lp loss functions, defined by the objective

QpΛq “
ÿ

j

ÿ

k

|λjk|p.

To address the nonsmooth nature of this objective, we develop an iteratively reweighted gradient

projection algorithm that achieves high accuracy with significantly reduced computational cost

compared to penalized estimation techniques.

We further establish novel identification conditions for the Lp rotation estimator, allowing for

a small proportion of non-simple items in the true loading matrix. Empirical results confirm that

the Lp rotation criterion consistently outperforms classical rotation methods when the underlying

factor structure is sparse.

To support valid inference, we also propose a methodology for computing p-values for factor

loadings under the Lp framework. Building on these p-values, we incorporate False Discovery Rate

(FDR) control procedures—such as the Benjamini-Yekutieli (BY) and e-value-based Benjamini-

Hochberg (eBH) methods—to guide variable selection while controlling the expected proportion of

false discoveries. These procedures are demonstrated to remain valid across various experiments.

The proposed Lp rotation framework has been implemented in the R package GPArotation,

with functions lpT and lpQ available for orthogonal and oblique solutions, respectively. Overall,

this thesis offers a unified approach to estimation, identification, and inference in EFA, contributing

both theoretical insights and practical tools for sparse and interpretable factor analysis.
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Chapter 1

Introduction

1.1. Exploratory Factor Analysis: Model and Formulation

Exploratory Factor Analysis (EFA; Thurstone (1947), Mulaik (2009), Bartholomew et al. (2011)) is

a fundamental statistical technique used to uncover latent structures underlying observed multivari-

ate data. It is primarily used as a dimension reduction method, representing observed variables as

linear combinations of a smaller number of unobserved latent constructs. In applied work, these

latent constructs can represent psychological traits, educational abilities, or consumer preferences,

depending on the context. For example, in psychology, EFA is used to identify dimensions such as

personality traits or clinical symptoms from item-level survey data (Sellbom and Tellegen, 2019); in

education, it helps reveal underlying learning domains based on student assessment results (Harer-

imana and Mtshali, 2020); and in marketing, it reduces high-dimensional preference data into a few

latent factors representing customer tastes (Ghandwani and Hastie, 2024). In the social sciences,

EFA is often applied to extract latent attitudes or value systems from survey responses (Williams

et al., 2010). EFA is also commonly used in economics and finance, where it helps summarize

macroeconomic indicators using a few latent components (Stock and Watson, 1989, 1999). Given

N observations of J-dimensional manifest variables X1, . . . ,XN , the EFA model assumes:

Xi “ Λξi ` ϵi, i “ 1, . . . , N, (1.1)

where:

• Λ “ pλjkqJˆK P RJˆK is the loading matrix that relates the observed variables to the latent

factors;
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• ξi P RK are i.i.d. latent factors following N p0,Φq, where Φ P RKˆK is a symmetric positive

definite matrix (denoted Φ ą 0) with unit diagonal entries ϕkk “ 1 for k “ 1, . . . ,K;

• ϵi P RJ is the residual noise, assumed to follow N p0,Ωq, where Ω “ pωijqJˆJ is the residual

covariance matrix. Conditional independence of the manifest variables given the latent factors

is imposed by setting the off-diagonal entries of Ω to zero.

To simplify notation, we let θ “ pΛ,Φ,Ωq denote the collection of all unknown model para-

meters. The model in Equation (1.1) implies the following marginal distribution for the observed

variable X:

X „ N p0,Σpθqq, (1.2)

where

Σpθq “ ΛΦΛ1 ` Ω.

1.1.1 Differences Between EFA and CFA Models

Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA, Jöreskog (1969a))

are both fundamental techniques for modeling the relationships between observed variables and

underlying latent factors. However, they differ substantially in their objectives and modeling

assumptions.

In EFA, no prior assumptions are made regarding the specific relationships between observed

variables and factors. All factor loadings are freely estimated, allowing the data to determine

the underlying structure. The primary goal of EFA is to explore potential factor structures by

identifying the minimum number of factors needed to explain the observed covariances among

variables.

By contrast, Confirmatory Factor Analysis (CFA) is a hypothesis-driven approach in which the

researcher specifies in advance which observed variables are expected to load onto which latent

factors, often based on theoretical considerations. In CFA models, certain factor loadings are fixed

to zero to reflect these pre-specified structures, and the model evaluates how well the hypothesized

factor structure fits the observed data. Thus, EFA is typically used in the early stages of research

for structure discovery, while CFA is employed for structure confirmation and theory testing.

Moreover, CFA imposes more constraints than EFA, providing a stricter framework for evaluating

model fit.
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CFA has been widely applied in psychology, education, and the social sciences for validating

measurement instruments, testing theoretical constructs such as personality traits, and assessing

the structure of standardized tests and questionnaires (Brown, 2015). For example, researchers

frequently use CFA to confirm the factor structure of scales like the Big Five personality inventory

(John and Srivastava, 1999) or academic motivation scales (Vallerand et al., 1992).

1.2. Sparse Loading Estimation in Exploratory Factor Analysis:

Rotations and Regularization

Researchers have widely used exploratory factor analysis (EFA) to learn the latent structure under-

lying multivariate data. A major problem in EFA is identifying an interpretable factor structure

among infinitely many equivalent solutions that give the same data distribution, where two equi-

valent solutions differ by a rotation transformation (see Chapters 10-12, Mulaik, 2009). Mathem-

atically, we aim to find a sparse solution for which many entries of the loading matrix are exactly

or approximately zero so that each factor can be interpreted based on a small number of manifest

variables whose loadings on the factor are not close to zero. This idea dates back to the seminal

discussion on simple factor structure in Thurstone (1947)

We can classify methods for obtaining sparse loading structures into two categories – rotation

and regularised estimation methods. A rotation method involves two steps. In the first, we obtain

an estimate of the loading matrix. Typically, but not necessarily, a maximum likelihood estimator is

used in this step (Bartholomew et al., 2011), under some arbitrary but mathematically convenient

constraints that avoid rotational indeterminacy. In the second step, we rotate the estimated

loading matrix to minimise a certain loss function where a smaller loss function value tends to

imply a more interpretable solution. Researchers have proposed different rotation methods that

differ by, first, whether the factors are allowed to be correlated, and second, the loss function

for measuring sparsity. A rotation method is called an orthogonal rotation when the factors are

constrained to be uncorrelated and an oblique rotation otherwise. Different loss functions have

been proposed for orthogonal and oblique rotations, including varimax (Kaiser, 1958), oblimin

(Jennrich and Sampson, 1966), geomin (Yates, 1987), simplimax (Kiers, 1994), and component-

wise loss (Jennrich, 2004, 2006), among many others. Among the existing rotation methods, we

draw attention to the monotone concave Component Loss Functions (CLFs; Jennrich, 2004, 2006)

due to their desired theoretical properties and superior performance in recovering sparse loading

matrices. Specifically, Jennrich (2004, 2006) provided some theoretical guarantees to the CLFs

when the true loading matrix has a perfect simple structure and further found that the CLFs are
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often more accurate in recovering sparse loading matrices than other rotation methods under both

orthogonal and oblique settings.

In recent years, several regularised estimation methods have been proposed for EFA (e.g.,

Trendafilov, 2014; Yamamoto et al., 2017; Jin et al., 2018; Geminiani et al., 2021). Slightly differ-

ent from rotation methods, a regularised estimation method simultaneously estimates the model

parameters and produces a sparse solution. It introduces a least absolute shrinkage and selection

operator (LASSO; Tibshirani, 1996) type sparsity-inducing regularisation term into the loss func-

tion for parameter estimation, where the regularisation term imposes sparsity on the estimated

loadings. It typically obtains a sequence of candidate models by varying the weight of the regu-

larisation term in the loss function. The final model is chosen from the candidate models, often

using an information criterion.

1.3. Summary and Outline of This Dissertation

In this dissertation, we propose a new rotation criterion—the Lp rotation criterion—

QpΛq “
ÿ

j

ÿ

k

|λjk|p, (1.3)

for Exploratory Factor Analysis (EFA) models. As demonstrated in Chapter 2, this criterion is

more effective at recovering sparse loading matrices than existing rotation methods. Building on

this foundation, we further develop identification theory and uncertainty quantification techniques

within the EFA framework. The Lp rotation has been implemented in the R package GPArotation

(Bernaards and Jennrich, 2005), via the functions lpT and lpQ for orthogonal and oblique solutions,

respectively.

Chapter 2 introduces this new family of oblique rotations based on component-wise Lp loss

functions. Due to the nonsmooth nature of these loss functions, we develop an iteratively reweighted

gradient projection algorithm to solve the resulting optimization problem efficiently. Our results

demonstrate that Lp rotation achieves accuracy comparable to penalized estimation with a small

tuning parameter, while significantly reducing computational cost.

In Chapter 3, we establish theoretical results that demonstrate the identification conditions for

the Lp rotation estimator. These conditions are novel in that they permit a small proportion of

non-simple items in the true loading matrix, relaxing the assumptions typically required in the

literature. Additionally, we show that the Lp rotation criterion tends to outperform traditional
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rotation methods when the underlying loading matrix is sparse.

Chapter 4 builds upon these results by leveraging the Lp rotation framework to identify EFA

models under minimal simple item assumptions. We then propose a method for computing p-values

in EFA models, offering a more detailed understanding of the relationships between latent variables

and observed items. To further evaluate variable selection accuracy, we incorporate False Discovery

Rate (FDR) control based on the computed p-values. Additionally, we establish methodologies and

conditions under which traditional FDR control procedures—such as the Benjamini-Yekutieli (BY)

procedure and the e-value-based Benjamini-Hochberg procedure (eBH)—remain valid.

Overall, this dissertation introduces a novel rotation framework for EFA, providing both the-

oretical guarantees and practical tools that enhance interpretability and support valid statistical

inference.
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Chapter 2

Rotation to Sparse Loadings using Lp

Losses and Related Inference

Problems

2.1. Introduction

In this chapter we propose a new family of oblique rotations based on component-wise Lp loss

functions, for 0 ă p ď 1. We show the proposed loss functions to be special cases of monotone

concave CLFs and that they thus share the same theoretical properties. We note that Jennrich

(2004, 2006) considered the L1 loss function but not the Lp loss functions with p ă 1. With

the proposed rotations, we solve several previously unaddressed problems regarding rotation and

regularised estimation methods. First, we establish the statistical consistency of the rotated solu-

tion. More specifically, we provide conditions under which the rotated solution converges to the

true sparse loading matrix as the sample size goes to infinity. These conditions also provide in-

sights into the choice of p. Seemingly straightforward, this consistency result requires some refined

analysis and, to our best knowledge, such results have not been established for other rotation

methods. In particular, the theoretical results for the CLFs in Jennrich (2004, 2006) were es-

tablished concerning the population loading matrix rather than its estimate. Second, we address

the difficulty of establishing whether regularised estimation methods outperform rotation methods

or vice versa. To gain some insights into this question, we theoretically show that the proposed

rotation method can be viewed as the limiting case of a regularised estimator when the weight of

the regularisation term converges to zero. In addition, to compare the two methods in terms of
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model selection, we develop a hard-thresholding procedure that conducts model selection based on

a rotated solution. Through computational complexity analysis and simulation studies, we find

that the proposed method achieves similar statistical accuracy as regularised estimation given a

reasonable sample size and is computationally faster. Third, monotone concave CLFs, including

the proposed Lp loss functions, are not smooth everywhere. Consequently, the traditional gradient

projection algorithms are no longer applicable. Jennrich (2004, 2006) bypassed the computational

issue by replacing a CLF with a smooth approximation and pointed out potential issues with this

treatment. We propose an Iteratively Reweighted Gradient Projection (IRGP) algorithm that

may better solve this nonsmooth optimisation problem. Finally, uncertainty quantification for the

rotated solution affects the interpretation of the factors and, thus, is vital in EFA. However, the

delta method, which is used to obtain confidence intervals for rotation methods with a smooth

objective function (Jennrich, 1973), is not applicable due to the nonsmoothness of the current loss

functions. That is, the delta method requires the loss function to be smooth at the true loading

matrix, which is not satisfied for monotone concave CLFs. We tackle this problem by developing a

post-selection inference procedure that gives asymptotically valid confidence intervals for loadings

in a rotated solution. We evaluate the proposed method and compare it with regularised estim-

ation and traditional rotation methods via simulation studies. We further illustrate it using an

application to the Big Five personality assessment.

The rest of the paper is structured as follows. In Section 2.2 we propose Lp criteria for oblique

rotation, and draw a connection with regularised estimation. In Section 2.3 we discuss statistical

inferences based on the proposed rotation method and establish their asymptotic properties, and

in Section 2.4 we develop an iteratively reweighted gradient projection algorithm for solving the

optimisation problem associated with the proposed rotation criteria. We evaluate the proposed

method via simulation studies in Section 2.5 and an application to the Big Five personality assess-

ment in Section 2.6. We conclude this paper with discussions on the limitations of the proposed

method and future directions in Section 2.7. Proof of the theoretical results, additional simulation

results, and further details of the real application are given in the Appendix for Chapter 2.
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2.2. Lp Rotation Criteria

2.2.1 Problem Setup

We consider an exploratory linear factor model with J indicators and K factors given by

X|ξ „ N pΛξ,Ωq, (2.1)

where X is a J-dimensional vector of manifest variables, Λ “ pλjkqJˆK is the loading matrix, ξ

is a K-dimensional vector of common factors, and Ω “ pωijqJˆJ denotes the residual covariance

matrix. It is assumed that the common factors are normally distributed with variances fixed to

1, i.e, ξ „ N p0,Φq, where Φ P RKˆK has diagonal entries ϕkk, k “ 1, . . . ,K, equal to 1 and

is symmetric positive definite, denoted by Φ ą 0. The manifest variables are assumed to be

conditionally independent given ξ, i.e., the off-diagonal entries of Ω are set to 0. To simplify the

notation, we use θ “ pΛ,Φ,Ωq to denote all of the unknown parameters. The model in (2.1)

implies the marginal distribution of X

X „ N p0,Σpppθqqqq, (2.2)

where Σpppθqqq “ ΛΦΛ1 `Ω. Without further constraints, the parameters in (2.2) are not identifiable

due to rotational indeterminacy. That is, two sets of parameters θ and θ̃ “ pΛ̃, Φ̃, Ω̃q give the

same distribution for X if ΛΦΛ1 “ Λ̃Φ̃Λ̃1 and Ω “ Ω̃. Note that the normality assumptions above

are not essential. We adopt them for ease of writing, and the development in the current paper

does not rely on these normality assumptions. Throughout this paper, we assume that the number

of factors K is known.

An oblique rotation method is a two-step procedure. In the first step, one obtains an estimate of

the model parameters, under the constraints that Φ “ I and other arbitrary but mathematically

convenient constraints that fix the rotational indeterminacy. Note that due to the rotational

indeterminacy, we can always constrain Φ “ I and absorb the dependence between the factors

into the loading matrix Λ. We can obtain the estimate using any reasonable estimator for factor

analysis, such as the least-square (Jöreskog and Goldberger, 1972), weighted-least-square (Browne,

1984), and maximum likelihood estimators (Jöreskog, 1967). We denote this estimator by θ̂ “

pÂ, I, Ω̂q. In the second step, we find an oblique rotation matrix T̂, such that the rotated loading

matrix Λ̂ “ ÂT̂1´1 minimises a certain loss function Q that measures the sparsity level of a

loading matrix. We will propose the functional form of Q in the sequel. Here, an oblique rotation
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matrix T satisfies that T is invertible and pT1Tqkk “ 1, k “ 1, . . . ,K. Consequently, any rotated

solution pÂT1´1,T1T, Ω̂q is still in the parameter space and gives the same distribution for X.

More precisely, we let

M “tT P RKˆK : rankpTq “ K, pT1Tqkk “ 1, k “ 1, . . . ,Ku (2.3)

be the space for oblique rotation matrices, where rankp¨q gives the rank of a matrix. Then the

oblique rotation problem involves solving the optimisation

T̂ P arg min
TPM

QpÂT1´1
q, (2.4)

and the rotated solution is given by pÂT̂1´1, T̂1T̂, Ω̂q. Equivalently, the rotated loading matrix Λ̂

satisfies

pΛ̂, Φ̂q P arg min
Λ,Φ

QpΛq, such that ΛΦΛ1 “ ÂÂ1,Φ ą 0, and ϕkk “ 1, k “ 1, . . . ,K. (2.5)

As explained in Remark 1, the minimiser of (2.4), or equivalently that of (2.5), is not unique.

Remark 1. Let D1 be the set of all K ˆ K permutation matrices and D2 be the set of all K ˆ K

sign flip matrices. For any D1 P D1, D2 P D2, and K ˆ K matrix T, TD1 is a matrix whose

columns are a permutation of those of T and, TD2 is a matrix whose kth column is either the

same as the kth column of T or the kth column of T multiplied by ´1. Let T̂ be one solution

to the optimisation problem (2.4). It is easy to check that T̂D1D2 also minimises the objective

function (2.4), for any D1 P D1 and D2 P D2. The resulting loading matrix is equivalent to Λ̂ up

to a column permutation and column sign flips.

We conclude the problem setup with two remarks.

Remark 2. The rotation problem not only applies to the linear factor model, but also other settings,

such as item factor analysis (Reckase, 2009; Chen et al., 2019, 2021) and machine learning models

such as the stochastic blockmodel and latent Dirichlet allocation (see Rohe and Zeng, 2022). These

models are all latent variable models involving manifest variables X, multi-dimensional continuous

latent variables ξ, a parameter matrix Λ, and possible other model parameters. The parameter

matrix Λ connects X and ξ, playing a similar role to the loading matrix in the linear factor model.

We can view these models as extensions of the linear factor model to more general variable types

(e.g., binary or categorical) with more flexible assumptions on the distribution of pX, ξq. We can

apply the rotation method to learn an interpretable Λ in these models.
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Remark 3. Although in the current paper we focus on oblique rotations, we note that the proposed

criteria can be easily extended to orthogonal rotation, as the latter can be viewed as a special case

of the former when Φ is fixed to be an identify matrix. That is, given a loss function Q, orthogonal

rotation solves the problem

min
Λ

QpΛq, such that ΛΛ1 “ ÂÂ1.

2.2.2 Proposed Rotation Criteria

Jennrich (2004, 2006) proposed a family of monotone concave CLFs for the choice of Q in (2.4),

taking the form

QpΛq “

J
ÿ

j“1

K
ÿ

k“1

hp|λjk|q, (2.6)

where Λ “ pλjkqJˆK and h is a concave and monotone increasing function that maps from r0,8q

to r0,8q. This family of loss functions is appealing for several reasons. First, a CLF takes a simple

form that does not involve products of loadings and their higher-order polynomial terms. Second,

the monotone concave CLFs have desirable properties. In particular, Jennrich (2006) proved that

a monotone concave CLF is minimised by loadings with a perfect simple structure when such a

loading structure exists. Third, simulation studies in Jennrich (2004, 2006) showed that these loss

functions tend to outperform traditional rotation methods (e.g., promax, simplimax, quartimin,

and geomin) when the true loading matrix is sparse.

Two examples of h are given in Jennrich (2004, 2006), including the linear CLF where hp|λ|q “

|λ| and the basic CLF where hp|λ|q “ 1 ´ expp´|λ|q. However, there does not exist a full spectrum

of monotone concave CLFs for dealing with true loading matrices with different sparsity levels. To

fill this gap, we propose a general family of monotone concave CLFs that we name the Lp CLFs.

More specifically, for each value of p P p0, 1s, the loss function takes the form

QppΛq “

J
ÿ

j“1

K
ÿ

k“1

|λjk|p. (2.7)

Proposition 1 below shows that this choice of h yields a monotone concave CLF.

Proposition 1. The absolute value function hpxq “ |x|p, p P p0, 1s is monotonically increasing

and concave on the interval r0,8q.
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Under very mild regularity conditions, any Lp CLF is uniquely minimised by a loading matrix

of perfect simple structure, when such a loading matrix exists, where we say the minimiser is

unique when all the minimisers of the loss function are equivalent up to column permutation and

sign flip transformations (see Remark 1 for these transformations). We summarise this result in

Proposition 2 below. This result improves Theorem 1 of Jennrich (2006), as the uniqueness of the

perfect simple structure is not established in Jennrich (2006) for the L1-criterion.

Proposition 2. Suppose that the true loading matrix Λ˚ has perfect simple structure, in the sense

that each row has at most one non-zero entry. Further suppose that Λ˚ is of full column rank, i.e.,

rankpΛ˚q “ K. Then, for any oblique rotation matrix T P M,

QppΛ˚T1´1
q ě QppΛ˚q,

where the two sides are equal if, and only if, T1´1
“ D1D2 for D1 P D1 and D2 P D2; see Remark 1

for the definitions of D1 and D2.

Why do we need the loss functions with p ă 1, given that the choice of p “ 1 is already available

in Jennrich (2004, 2006)? This is because different Lp CLFs may behave differently when the true

loading matrix does not have a perfect simple structure but still contains many zero loadings. Such

a loading structure is more likely to be recovered by an Lp CLF when p ă 1 than by the L1 CLF. In

what follows, we elaborate on this point. Let Λ˚ be the true sparse loading matrix and Φ˚ be the

corresponding covariance matrix for the factors. For the true loading matrix Λ˚ to be recovered

by an Lp CLF, a minimum requirement is that

QppΛ˚q “ min
Λ

QppΛq, such that there exists Φ ą 0, ϕkk “ 1, k “ 1, ...,K,Λ˚Φ˚Λ˚1

“ ΛΦΛ1.

(2.8)

In other words, Λ˚ needs to be a stationary point of Qp. In Figure 2.1 we give the plots for

|x|p with different choices of p and their derivatives when x ą 0. We note that when p ă 1 the

derivative of |x|p converges to infinity as x approaches zero. The smaller the value of p, the faster

the convergence speed is. On the other hand, when p “ 1, the derivative of |x| takes the value

one for any x ą 0. Therefore, when Λ˚ is sparse but does not have a perfect simple structure,

it is more likely to be a stationary point of Qp for p ă 1 than Q1. We illustrate this point by a

numerical example, where

pΛ˚q1 “

¨

˚

˝

1.20 0 0.15 0 0.25 1.05 0.18

0 0.27 0 1.04 0.15 1.29 0.11

˛

‹

‚

11



and Φ˚ is set to be an identity matrix. Note that a 2 ˆ 2 oblique rotation matrix can be repara-

meterised by

Tpθ1, θ2q “

¨

˚

˝

cospθ1q sinpθ2q

sinpθ1q cospθ2q

˛

‹

‚

for θ1, θ2 P r0, 2πq. In Figure 2.2 we show the contour plots of QppΛ˚Tpθ1, θ2qq, with p “ 0.5 and

1, respectively. The point p0, 0q, which is indicated by a black cross, corresponds to Λ “ Λ˚, and

the point indicated by a red point corresponds to the Λ matrix such that QppΛq is minimised. As

we can see, when p “ 0.5, the loss function is minimised by Λ˚. On the other hand, when p “ 1,

the minimiser of the loss function is not Λ˚ and the resulting solution does not contain as many

zeros as Λ˚.

We emphasise that due to the singularity of the Lp function near zero when p ă 1, the optim-

isation for Qp tends to be more challenging with a smaller value of p. This is also reflected by the

contour plots in Figure 2.2, where we see Q0.5 is very non-convex, even around the minimiser. On

the other hand, Q1 seems locally convex near the minimiser. Therefore, although the Lp-rotation

with p ă 1 may be better at recovering sparse loading matrices, its computation is more challen-

ging than the L1-rotation. Thus, the choice of p involves a trade-off between statistical accuracy

and computational cost. We have noticed that despite the above counter example, the L1 criterion

tends to give similar results as other Lp criteria (p ă 1) in most simulation and real-data settings

that we have encountered. Considering its computational advantage, we recommend users to al-

ways start with the L1 criterion. Some smaller p values (e.g., p “ 0.5) may be tried in order to

validate the L1-rotation result. Further guidance on the choice of p is provided in Section 2.7 and

illustrated through empirical results in Section A2.12. We discuss the computation of the proposed

rotation criteria in Section 2.4.

Finally, we remark that when the true loading matrix is sparse but does not have a perfect

simple structure, rotation criteria with a smooth objective function (e.g., quartimin and geomin)

typically cannot exactly recover the true sparse loading matrix, even when the true loading matrix

can be estimated without error. This is due to the fact that a smooth objective function does

not discriminate well between zero parameters and close-to-zero parameters. Thus, such rotation

criteria do not favour exactly sparse solutions (i.e., with many zero loadings) and only tend to

yield approximately sparse solutions (i.e., many small but not exactly zero loadings). Numerical

examples illustrating this point are given in Jennrich (2004, 2006), and a new numerical example

and associated simulation results are in Appendix A2.8 of the Appendix for Chapter 2.
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Figure 2.1: Panel (a): Plots of |x|p, for different choices of p. Panel (b): Plots of the derivative of
|x|p, for different choices of p.

2.2.3 Connection with regularised estimation

The proposed rotation criteria have a close connection with regularised estimators for EFA. In

what follows, we establish this connection. Recall that the proposed procedure relies on an initial

estimator of the loading matrix for which Φ is constrained to be an identity matrix. We further

require it to be an M -estimator (Chapter 5, van der Vaart, 2000), obtained by minimising a certain

loss function, denoted by LpΣpppθqqqq. Note that all the popular EFA estimators are M -estimators. For

instance, when the maximum likelihood estimator is used, then the loss function to be minimised

is

LpΣpppθqqqq “ log detpΣpppθqqqq ` trpΣpppθqqq
´1Sq,

where S “ p
řN

i“1 xix
J
i q{N is the sample covariance matrix.

Now we introduce an Lp regularised estimator based on the loss function LpΣpppθqqqq in the form

θ̂γ,p P arg min
θ

LpΣpppθqqqq ` γ
J
ÿ

j“1

K
ÿ

k“1

|λjk|p, (2.9)

where γ ą 0 is a tuning parameter and the covariance matrix Φ is estimated rather than constrained

to be an identity matrix. We note that the minimiser of (2.9) is also not unique due to column

permutation and sign flips similar to the non-uniqueness of optimisation (2.4). We denote the set

of minimisers as

Ĉγ,p “ arg min
θ

LpΣpppθqqqq ` γ
J
ÿ

j“1

K
ÿ

k“1

|λjk|p.
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(a) (b)

Figure 2.2: Plots of contours of |Λ˚T´11

|p, where T “ rcospθ1q, sinpθ2q; sinpθ1q, cospθ2qs. Panel (a):
p “ 0.5. Panel (b): p “ 1.

Note that the regularisation term takes the same form as the Lp CLF. It is used to impose sparsity

on the estimate of the loading matrix. When p “ 1, it becomes a LASSO-regularised estimator

that has been considered in, for example, Choi et al. (2010), Hirose and Yamamoto (2014, 2015),

Jin et al. (2018), and Geminiani et al. (2021). The regularised estimator (2.9) is similar in spirit

to Lp-regularised regression (Mazumder et al., 2011; Lai and Wang, 2011; Zheng et al., 2017),

where the Lp regularisation with p ă 1 has been shown to better recover sparse signals under

high-dimensional linear regression settings while computationally more challenging (Zheng et al.,

2017).

As summarised in Proposition 3 below, we can view the proposed Lp rotation solution as a

limiting case of the Lp-regularised estimator when the tuning parameter γ converges to zero.

Proposition 3. Consider a fixed p P p0, 1s and a fixed dataset. Suppose that for any sufficiently

small γ ą 0, Ĉγ,p only contains n “ 2KK! elements that are equivalent up to column permutation

and sign flips of the loading matrix, where K! denotes K factorial that counts the number of all

possible permutations and 2K gives the total number of sign flip transformations. Furthermore,

assume that for any sufficiently small γ ą 0, one can label the elements of Ĉγ,p, denoted by θ̂
piq
γ,p,

i “ 1, ..., n, such that there exists a sufficiently small constant δ ą 0, θ̂
piq
γ,p is a continuous and

bounded function of γ in p0, δq, for each i. Then the limit

θ̂
piq
0,p “ pΛ̂

piq
0,p, Φ̂

piq
0,p, Ω̂

piq
0,pq “ lim

γÑ0
θ̂piq
γ,p

exists, and θ̂
piq
0,p satisfies that pΛ̂

piq
0,p, Φ̂

piq
0,pq solves the optimisation problem (2.5) and Ω̂

piq
0,p “ Ω̂,
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where θ̂ “ pÂ, I, Ω̂q minimises the loss function LpΣpppθqqqq.

We now discuss the implications of this connection. First, if we have a numerical solver for

the regularised estimator (2.9), then we can obtain an approximate solution to the Lp-rotation

problem (2.5) by using a sufficiently small tuning parameter γ. Second, thanks to this connection,

the choice between regularised estimation and rotation becomes the choice of the tuning parameter

in regularised estimation. Note that the tuning parameter γ corresponds to a bias-variance trade-

off in estimating the model parameters θ. As γ increases, the bias of the regularised estimator also

increases and the variance decreases. In applications where the sample size is large relative to the

number of model parameters, the optimal choice of the tuning parameter is often close to zero.

In that case, it is a good idea to use the rotation method, as the regularised estimator under the

optimal tuning parameter may not be substantially more accurate than the rotation solution and

searching for the optimal tuning parameter can be computationally costly. We further discuss this

point in a simulation study in Section 2.5. We will discuss the computation of these methods in

Section 2.4.

2.3. Statistical Inference and Asymptotic Theory

2.3.1 Estimation Consistency

We establish the statistical consistency of the proposed estimator based on the Lp rotation. Suppose

the true parameter set that we aim to recover is pΛ˚,Φ˚,Ω˚q, where the true loading matrix Λ˚ is

sparse. To emphasise the dependence on the sample size, we attach the sample size N as a subscript

to the initial estimator in the first step of the rotation method; that is, θ̂N “ pÂN , I, Ω̂N q. We

require the initial estimator to be consistent, in the sense that

C1. ÂNÂ1
N

pr
Ñ Λ˚Φ˚Λ˚1 and Ω̂N

pr
Ñ Ω˚, where the notation “

pr
Ñ” denotes convergence in prob-

ability.

This requirement easily holds when the linear factor model is correctly specified and the loss

function LpΣpppθqqqq is reasonable (e.g., the negative log-likelihood). Consistency results for the max-

imum likelihood estimator in continuous factor models are provided in Bartholomew et al. (2011)

and Kano (1986). As discussed in Remark 2, the Lp rotation framework is also applicable to

other models involving multi-dimensional continuous latent factors. For example, in exploratory

multidimensional item response theory (MIRT) models (Haberman, 1977) with ordinal responses,
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the estimated loading matrix can benefit from rotation to enhance interpretability, similar to lin-

ear factor models. More broadly, the consistency of MLE can be established under the general

M-estimation framework described in van der Vaart (2000), which requires standard regularity

conditions, including identifiability, continuity of the log-likelihood, compactness (or local com-

pactness) of the parameter space, and a uniform law of large numbers. These results also extend

to settings in which the MLE is defined implicitly—such as when the likelihood involves integra-

tion over latent variables. For different models, it is important to verify appropriate identification

conditions to ensure the uniqueness of the maximizer.

In addition, we require that the EFA model is truly a K-dimensional model, in the sense that

condition C2 holds.

C2. rankpΛ˚Φ˚Λ˚1
q “ K.

For the Lp rotation estimator to be consistent, for a specific value of p P p0, 1s, we further

require that the true loading matrix uniquely minimises the Lp CLF, in the sense of condition C3

below.

C3. pΛ˚,Φ˚q P arg minΛ,ΦQppΛq such that ΛΦΛ1 “ Λ˚Φ˚Λ˚1

. In addition, for any other pΛ:,Φ:q P

arg minΛ,ΦQppΛq such that ΛΦΛ1 “ Λ˚Φ˚Λ˚1

, there exist D P D1 and D̃ P D2, such that

Λ:DD̃ “ Λ˚ and D̃´1D´1Φ:pD´1q1pD̃´1q1 “ Φ˚. Recall that D1 and D2 are the sets of

column permutation and sign flip transformations, respectively, which we gave in Remark 1.

Condition C3 tends to hold when the true loading matrix contains many zeros, as the Lp loss

function is a good approximation to the L0 function that counts the number of non-zero elements.

In particular, according to Proposition 2, condition C3 is guaranteed to hold when Λ˚ has a

perfect simple structure, i.e., if it has at most one non-zero loading in each row. As we discussed

in Section 2.2.2, this condition is more likely to hold for a smaller value of p, when there are

cross-loadings. Conditions C1 through C3 guarantee the estimation consistency of the Lp rotation

estimator, up to column permutation and sign flips. We summarise this result in Theorem 1 below.

Theorem 1. Suppose that for a given p P p0, 1s conditions C1 through C3 hold. Then there exist

DN P D1 and D̃N P D2, such that Λ̂N,pDND̃N
pr
Ñ Λ˚ and D̃´1

N D´1
N Φ̂N,ppD´1

N q1pD̃´1
N q1 pr

Ñ Φ˚,

where

pΛ̂N,p, Φ̂N,pq P arg min
Λ,Φ

QppΛq, such that ΛΦΛ1 “ ÂNÂ1
N .
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2.3.2 Model Selection

The interpretation of the factors relies on the sign pattern of the loading matrix, so that we can

interpret each factor based on the associated manifest variables and their directions (positive or

negative associations). Learning this sign pattern is a model selection problem. A regularised

estimator may seem advantageous as it yields simultaneous parameter estimation and model selec-

tion. We note that, however, we can easily achieve model selection with a rotation method, using

a Hard-Thresholding (HT) procedure. Similar HT procedures have been proven to be successful

in the model selection for linear regression models (Meinshausen and Yu, 2009).

More precisely, let Γ˚ “

´

sgnpλ˚
jkq

¯

JˆK
denote the true sign pattern of Λ˚, where sgnpxq

returns the sign of a scalar satisfying that

sgnpxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1 if x ą 0,

0 if x “ 0,

´1 if x ă 0.

Given the Lp rotation estimator Λ̂N,p “

´

λ̂
pN,pq

jk

¯

JˆK
, the HT procedure estimates the pattern

of Γ˚ by Γ̂N,p “

ˆ

sgnpλ̂
pN,pq

jk q ˆ 1
t|λ̂

pN,pq

jk |ącu

˙

JˆK

, where c ą 0 is a pre-specified threshold. If

we choose the threshold c properly, then Γ̂N,p consistently estimates Γ˚. We state this result in

Theorem 2 below.

C4. The threshold c lies in the interval p0, c0q, where c0 “ mint|λ˚
jk| : λ˚

jk ‰ 0u.

Theorem 2. Suppose that for a given p P p0, 1s conditions C1 through C4 hold. Then there exist

DN P D1 and D̃N P D2, such that the probability P pΓ̂N,pDND̃N “ Γ˚q converges to 1 as the

sample size N goes to infinity.

In practice, the value of c0 is unknown and thus cannot be used for choosing the threshold

c. Instead, we choose c based on the Bayesian Information Criterion (BIC; Schwarz, 1978). We

summarise the steps of this procedure in Algorithm 1 below, where we simplify the notation for

ease of exposition.

When the candidate values of c are chosen properly (i.e., C includes values that are below

c0), then Theorem 2 implies that with probability tending to one, the true model will be in

the candidate models. Together with the consistency of BIC for parametric models (Shao, 1997;

Vrieze, 2012), the true non-zero pattern can be consistently recovered. We remark that it may
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Algorithm 1 Hard-thresholding for model selection based on Lp rotation

Input: A sequence of candidate thresholds C, observed data, and the rotated loading matrix
Λ̂ “ pλ̂jkqJˆK given by the Lp CLF criterion.

For each value of c P C, we perform the following two steps:

Step 1: Obtain the corresponding selected loading structure Γ̂c “
´

sgnpλ̂jkq ˆ 1
t|λ̂jk|ącu

¯

JˆK
.

Step 2: Fit a Confirmatory Factor Analysis (CFA) model based on Γ̂c using the maximum
likelihood estimator, in which the pi, jqth loading parameter satisfies the sign constraint
implied by the corresponding entry of Γ̂c. Calculate the BIC value for this CFA model,
denoted by BICc.

Obtain ĉ “ arg mincPC BICc.

Output: The selected sign pattern Γ̂ĉ.

not be a good idea to manually select c or use some default thresholds. Unless there is very

good substantive knowledge about the latent structure, it is very likely to under- or over-select

c, leading to high false-positive and false-negative errors. Even with the proposed procedure, the

selection consistency is only guaranteed when the sample size goes to infinity. For a finite sample,

the false-positive and false-negative errors likely exist and thus we should look at the selected

model with caution. Furthermore, we note that the BIC is not the only information criterion that

leads to model selection consistency (Nishii, 1984), but it is probably the most commonly used

information criterion with consistency guarantee. Another commonly used information criterion

is the Akaike Information Criterion (AIC) which tends to over-select and thus does not guarantee

model selection consistency (Shao, 1997).

2.3.3 Confidence Intervals

Often, we are not only interested in the point estimate of the underlying sparse loading matrix, but

also in quantifying its uncertainty. We typically achieve uncertainty quantification by constructing

confidence intervals for the loadings of the rotated solution. Traditionally, we can do this by

establishing the asymptotic normality of the rotated loading matrix using the delta method, which

involves calculating the partial derivatives of a rotation algorithm using implicit differentiation

(Jennrich, 1973). Unfortunately, this procedure is no longer suitable if the true loading matrix is

sparse and the loss function is not differentiable with respect to the zero loadings.

Motivated by a simple but nevertheless well-performing post-selection inference procedure in

regression analysis (Zhao et al., 2021), we propose a procedure for constructing confidence intervals

for individual loading parameters of the rotated solution. More precisely, this procedure runs a
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loop over all the manifest variables, j “ 1, ..., J . Each time, the procedure obtains the confidence

intervals for the loading parameters of manifest variable j by fitting a CFA model whose loading

structure is determined by the selected sign pattern of the remaining J´1 manifest variables. More

precisely, the loading parameters of the CFA model satisfy the sign constraints imposed by the

selected sign pattern Γ̂ĉ from Algorithm 1, for all the items except for j. We impose no constraint

on the loading parameters of item j. We obtain confidence intervals for the loading parameters

of item j based on the asymptotic normality of the estimator for this CFA model. We summarise

this procedure in Algorithm 2 below.

Algorithm 2 Post-selection confidence intervals

Input: The selected sign pattern Γ̂ “ pγ̂jkqJˆK , observed data, and significance level α P p0, 1q.

For each manifest variable s “ 1, ..., J , we perform the following two steps:

Step 1: Obtain a CFA model whose loadings λjk satisfy the constraints that sgnpλjkq “ γ̂jk
for all j ‰ s and for all k.

Step 2: Fit the CFA model and obtain the p1 ´ αq-confidence intervals for parameters λs1,
..., λsK using a standard inference procedure for CFA (e.g., based on the maximum likelihood
estimator). We denote these confidence intervals by plsk, uskq. If the CFA model in Step 1
is not identifiable, we let the confidence intervals be p´8,8q.

Output: Confidence intervals plsk, uskq, s “ 1, ..., J, k “ 1, ...,K.

In what follows, we establish the consistency of confidence intervals given by Algorithm 2. To

emphasise that the statistics in Algorithm 2 depend on the sample size N , we attach N as a sub-

script or superscript when describing this consistency result. We require the following conditions:

C5. The selected sign pattern Γ̂N is consistent. That is, there exist DN P D1 and D̃N P D2,

such that the probability P pΓ̂N,pDND̃N “ Γ˚q converges to 1 as the sample size N goes to

infinity.

Thanks to the consistency of BIC selection, and when we have chosen the candidate thresholds

properly, condition C5 holds if Γ̂N is obtained by Algorithm 1.

C6. For each manifest variable s “ 1, ..., J , the CFA model whose loading parameters satisfy

sgnpλjkq “ sgnpλ˚
jkq for all j ‰ s is identifiable, and using the same procedure in Step 2 of

Algorithm 2 leads to consistent confidence intervals for λs1, ..., λsK . That is, let pl
˚pNq

sk , u
˚pNq

sk q

be the resulting confidence interval for λsk, then P pλ˚
sk P pl

˚pNq

sk , u
˚pNq

sk qq converges to 1 ´ α,

as the sample size N goes to infinity.

Note that C6 is a condition imposed on the sign pattern of the true loading matrix. It essentially
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requires that the factors can be identified by the sign pattern of any pJ ´ 1q-subset of the mani-

fest variables. Given an identified CFA model, we can easily construct the consistent confidence

intervals based on the asymptotic normality of any reasonable estimator of the CFA model, e.g.,

the maximum likelihood estimator. Under conditions C5 and C6, the following theorem holds.

Theorem 3. Suppose that conditions C5 and C6 hold for the selected sign pattern Γ̂N and the true

model, where DN P D1 and D̃N P D2 are from condition C5. Suppose we input Γ̂N , observed data

from the true model, and significance level α into the true model, and obtain output pl
pNq

sk , u
pNq

sk q,

s “ 1, ..., J, k “ 1, ...,K. Then we have P pλ
˚pNq

sk P pl
pNq

sk , u
pNq

sk qq converges to 1 ´ α, for all s “

1, ..., J, k “ 1, ...,K, where λ
˚pNq

sk are entries of Λ˚pNq “ Λ˚D̃´1
N D´1

N . Note that Λ˚pNq is equivalent

to Λ˚ up to column permutation and sign flips.

We remark that under the conditions of Theorem 3, all the CFA models fitted in Step 2 of

Algorithm 2 should be identifiable for sufficiently large N . However, in practice, it may happen

that some CFA models are not identifiable, either due to the sample size not being large enough or

the regularity conditions C5 or C6 not holding. In such cases, we set the corresponding confidence

intervals to be p´8,8q as a conservative choice.

Another remark regarding Algorithm 2 is that it is primarily designed to provide confidence

intervals for all factor loadings, including those that are zero. For other parameters—such as

the factor covariance matrix and the unique variances of items—we do not recommend using this

algorithm for inference. This is because, for each row, we fit a separate CFA model with slightly

different identification conditions, making it necessary to aggregate multiple confidence intervals in

order to obtain valid inference for these additional parameters.

We refer interested readers to Algorithm 5 and Algorithm 6 in Chapter 4, which provide a more

efficient alternative for computing confidence intervals for all parameters in the EFA model. These

methods rely on milder assumptions, are computationally less intensive, and yield a single valid

confidence interval for each parameter, thus avoiding the need for post hoc aggregation.

2.4. Computation

2.4.1 Proposed IRGP Algorithm

We now discuss the computation for the proposed rotation. Recall that we aim to solve the

optimisation problem

T̂ P arg min
TPM

QppÂT1´1
q,
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where Qp is the Lp CLF defined in (2.7). Note that this objective function is not differentiable

when ÂT1´1 has zero elements, as the Lp function is not smooth at zero. Consequently, standard

numerical solvers fail, especially when the true solution is approximately sparse. To solve this

optimisation problem, we develop an IRGP algorithm that combines the iteratively reweighted least

square algorithm (Ba et al., 2013; Daubechies et al., 2010) and the gradient projection algorithm

(Jennrich, 2002).

Similar to Jennrich (2006), the IRGP algorithm also solves a smooth approximation to the

objective function QppÂT1´1
q. That is, we introduce a sufficiently small constant ϵ ą 0, and

approximate the objective function by Qp,ϵpÂT1´1
q, where

Qp,ϵpΛq “

J
ÿ

j“1

K
ÿ

k“1

pϵ2 ` λ2
jkq

p
2 .

As we discuss in the sequel, the ϵ is introduced to make the computation more robust. The

IRGP algorithm alternates between two steps – (1) function approximation step and (2) Projected

Gradient Descent (PGD) step. More precisely, let Tt be the parameter value at the tth iteration.

The function approximation step involves approximating the objective function by

GtpTq “

J
ÿ

j“1

K
ÿ

k“1

w
ptq
jk

´

pÂT1´1
qjk

¯2
, (2.10)

where the weights w
ptq
jk are given by

w
ptq
jk “

1

ppÂpT1
tq

´1q2jk ` ϵ2q1´p{2
.

Here ϵ ą 0 is a pre-specified parameter that is chosen to be sufficiently small. We provide some

remarks about this approximation. First, the small tuning parameter is chosen to stabilise the

algorithm when certain pÂpT1
tq

´1qjks are close to zero. Without ϵ, the weight w
ptq
jk can become

very large, resulting in an unstable PGD step. Second, supposing that pÂpT1
tq

´1qjk ‰ 0 for all j

and k, then GtpTtq « QppÂpT1
tq

´1q when ϵ is sufficiently small, i.e., the function approximation

and the objective function value are close to each other at the current parameter value. Lastly,

this approximation is similar to the E-step of the Expectation-Maximisation algorithm (Dempster

et al., 1977); see Ba et al. (2013) for this correspondence.

The PGD step involves updating the parameter value based on the GtpTq via projected gradient

descent. This step is similar to the update in each iteration of the gradient projection algorithm for

oblique rotations (Jennrich, 2002). We can perform PGD on GtpTq, as this function approximation
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is smooth in T. More precisely, we define a projection operator as

ProjpTq “ TpdiagpT1Tqq´ 1
2 , (2.11)

where pdiagpT1Tqq´ 1
2 is a diagonal matrix whose ith diagonal entry is given by 1{

a

pT1Tqii. This

operator projects any invertible matrix into the space of oblique rotation matrices M as defined

in (2.3). The PGD update is given by

Tt`1 “ ProjpTt ´ α∇GtpTqq, (2.12)

where α ą 0 is a step size chosen by line search and ∇GtpTq is a K ˆ K matrix whose pi, jqth

entry is the partial derivative of GtpTq with respect to the pi, jqth entry of T. We summarise the

IRGP algorithm below.

Algorithm 3 IRGP algorithm for Lp rotation

Input: The initial loading matrix estimate Â, parameter ϵ ą 0, and an initial value T0.

For iterations t “ 0, 1, 2, ..., we iterate between the following two steps:

Step 1: Construct GtpTq using equation (2.10).

Step 2: Obtain Tt`1 using equation (2.12), where the step size α is chosen by line search.

Stop when the convergence criterion is met. Let tmax be the final iteration number.

Output: Ttmax .

Under reasonable regularity conditions (Ba et al., 2013), every limit point of tTtu
8
t“1 will be a

stationary point of the approximated objective function Qp,ϵpÂT1´1
q. In addition, the algorithm

has local linear convergence when p “ 1 and super-linear convergence when 0 ă p ă 1.

We remark on the choice of initial value T0 when 0 ă p ă 1. As discussed previously in

Section 2.2.2, when 0 ă p ă 1, the objective function QppÂT1´1
q is highly non-convex and thus

may contain many stationary points. To avoid the algorithm getting stuck at a local optimum, the

choice of T0 is important. When solving the optimisation for a smaller value of p, we recommend

using the solution from a larger value of p as the starting point (e.g., p “ 1).

2.4.2 Comparison with Regularised Estimation

To compare the computation of the proposed rotation method and that of regularised estimation,

we also describe a proximal gradient algorithm for the L1 regularised estimator. The proximal

algorithm is a state-of-the-art algorithm for solving nonsmooth optimisation problems (Parikh and
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Boyd, 2014). We can view it as a generalisation of projected gradient descent. As we will discuss

below, each iteration of the algorithm can be computed easily. In principle, we can also apply the

proximal algorithm to the Lp regularised estimator, for 0 ă p ă 1. However, it is computationally

much more costly than the case when p “ 1, and thus, will not be discussed here.

The L1 regularised estimator, also referred to as the LASSO estimator, solves the following

optimisation problem:

min
θ

LpΣpθqq ` γ
J
ÿ

j“1

K
ÿ

k“1

|λjk|.

To apply the proximal gradient algorithm, we reparameterise the covariance matrix Φ by T1T,

where we let T be an upper triangular matrix to ensure its identifiability. We also reparameterise

the diagonal entries of the diagonal matrix Ω by v “ pv1, ..., vJq, where vi “ logpωiiq. With slight

abuse of notation, we can write the optimisation problem as

min
Λ,T,v

LpΣpΛ,T,vqq ` γ
J
ÿ

j“1

K
ÿ

k“1

|λjk|.

We define a proximal operator for the loading matrix as

Proxα,γpΛ̃tq “ arg min
Λ

1

2

J
ÿ

j“1

K
ÿ

k“1

pλjk ´ λ̃
ptq
jk q2 ` αγ

J
ÿ

j“1

K
ÿ

k“1

|λjk|, (2.13)

where α ą 0 will be a step size and Λ̃t “ pλ̃
ptq
jk qJˆK will be the value of Λ from the previous

step in the proximal gradient algorithm. Note that (2.13) has a closed-form solution given by soft-

thresholding (Parikh and Boyd, 2014) that we can easily compute. We summarise the proximal

gradient algorithm in Algorithm 4 below.

Under suitable conditions, this proximal gradient algorithm converges to stationary points of

the objective function and has a local linear convergence rate (Karimi et al., 2016). We notice that

when p “ 1, Algorithms 3 and 4 have similar convergence properties. However, their per-iteration

computational complexities are different. In particular, Algorithm 4 involves parameters Λ and v,

which substantially increases its computational complexity. In fact, the per-iteration complexity

for Algorithm 3 is OpK3 ` K2Jq, while that for Algorithm 4 is OpJ3 ` J2K ` K2J ` K3q. The

difference can be substantial when J is much larger than K. We give the derivation of these

computational complexities in the Appendix for Chapter 2.
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Algorithm 4 Proximal gradient algorithm for L1 regularised estimation.

Input: The initial values Λ0, T0, and v0.

For iterations t “ 0, 1, 2, ..., we iterate between the following two steps:

Step 1: Calculate the gradients of LpΣpΛ,T,vqq with respect to Λ, T, and v, respectively,
at pΛt,Tt,vtq. Denote these gradients by ∇Lt,Λ ∇Lt,T, and ∇Lt,v.

Step 2: Update the parameters by

Λt`1 “ Proxα,γpΛt ´ α∇Lt,Λq,

Tt`1 “ ProjpTt ´ α∇Lt,Tq,

and
vt`1 “ vt ´ α∇Lt,v.

Recall that the operator Projp¨q is defined in (2.11), and α is a step size chosen by line search.

Stop when the convergence criterion is met. Let tmax be the final iteration number.

Output: pΛtmax ,Ttmax ,vtmaxq.

2.5. Simulation Study

2.5.1 Study I

In this study, we evaluate the performance of L0.5 and L1 rotations and compare them with some

traditional rotation methods and L1-regularised estimation. We consider several traditional oblique

rotation methods, including the oblimin, quartmin, simplimax, geomin, and promax methods.

These methods have been considered in the simulation studies in Jennrich (2006). They are

implemented using the GPArotation package (Bernaards and Jennrich, 2005) in R.

Settings. We consider two simulation settings, one with J “ 15 manifest variables and K “ 3

factors, and the other with J “ 30 and K “ 5. The first setting has nine manifest variables

each loading on a single factor (three variables for each factor), and six manifest variables each

loading on two factors. The second setting has 15 manifest variables each loading on a single factor

(three variables for each factor), 10 manifest variables each loading on two factors, and 5 manifest

variables each loading on three factors. We give the true model parameters in the Appendix for

Chapter 2. By numerical evaluations, the true loading matrices satisfy condition C3 for both L0.5

and L1 criteria. Under each setting, we consider three sample sizes, including N “ 400, 800, and

1,600. For each setting and each sample size, we run B “ 500 independent replications.
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Evaluation criteria. We evaluate the proposed method from three aspects. First, we compare

all estimators in terms of accuracy of point estimation. Second, we compare the proposed method

and the L1 regularised estimator in terms of their model selection accuracy. Finally, we examine

the coverage rate of the proposed method for constructing confidence intervals.

When evaluating the performance of different estimators, we take into account the indeterm-

inacy due to column permutations and sign flips. Let Λ̃pbq be the loading matrix estimate given

by a rotation or regularised estimation method in the bth replication. We then find

Λ̂pbq “ arg min
Λ

t}Λ ´ Λ˚}2 : Λ “ Λ̃pbqDD̃,D P D1, D̃ P D2u,

which is the one closest to the true loading matrix Λ˚ among all the loading matrices that are

equivalent to Λ̃pbq. Our evaluation criteria are constructed based on Λ̂pbq:

1. The accuracy of point estimation is estimated by the mean squared error (MSE):

MSE “
||Λ̂pbq ´ Λ˚||2F

JK
,

where Λ̂pbq is obtained by a certain rotation or regularisation method in the b-th replication.

2. The model selection accuracy is assessed using the area under the curve (AUC) from the

corresponding receiver operating characteristic (ROC) curve. For each threshold c, we com-

pute the average true positive rate (ĘTPRc), which is the proportion of successfully identified

non-zero elements in the true loading matrix:

ĘTPRc “
1

B

B
ÿ

b“1

ř

j,k 1tλ̂
pb,cq

jk ‰0,λ˚
jk‰0u

ř

j,k 1tλ˚
jk‰0u

, (2.14)

where tλ̂
pb,cq

jk uJˆK “ Λ̂pb,cq is the estimated loading matrix in the b-th replication from a

CFA model based on Γ̂c using the maximum likelihood estimator. Similarly, we calculate the

average true negative rate (ĘTNRc), which is the success rate of identifying zero elements:

ĘTNRc “
1

B

B
ÿ

b“1

ř

j,k 1tλ̂
pb,cq

jk “0,λ˚
jk“0u

ř

j,k 1tλ˚
jk“0u

. (2.15)

The AUC is consequently calculated by plotting ĘTPRc against 1 ´ ĘTNRc by varying the

threshold c. We also use the overall selection accuracy, i.e., the true selection rate (TR), to
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evaluate the model selection procedure described in Algorithm 1. The TR is calculated as

TR “
1

B

B
ÿ

b“1

ř

j,k 1tλ̂
pb,ĉq

jk ‰0,λ˚
jk‰0u

`
ř

j,k 1tλ̂
pb,ĉq

jk “0,λ˚
jk“0u

JK
,

where ĉ is the BIC selected threshold value from Algorithm 1. Correspondingly, we calculate

the TPR and TNR of the selected model as

TPR “ ĘTPRĉ and TNR “ ĘTNRĉ.

3. The entry-wise 95% confidence interval coverage rate (ECIC) is calculated to evaluate the

performance of our post-selection confidence interval procedure in Algorithm 2. For each

entry of the loading matrix, the empirical probability of the true loading falling within the

estimated confidence interval is calculated as

ECICjk “

řB
b“1 1tλ

˚pNq

jk Ppl
pNq

jk ,u
pNq

jk qu

B
.

Results on point estimation. In Table 2.1, we present the MSE of the estimated loading

matrix, for both simulation settings and N P t400, 800, 1, 600u. In the first five rows we show the

results based on traditional oblique rotation criteria, followed by the results of the proposed Lp

loss function for two choices of p, and finally those of the LASSO estimator for five choices of γ.

For both settings and all sample sizes, geomin performed the best among the traditional rotation

methods. The geomin results were very similar to those of Lp rotation and the LASSO estimator

with sufficiently small tuning parameter γ. For the LASSO estimator, the MSE increased as γ

increased. For Lp rotation, we observed only very small differences between p “ 0.5 and p “ 1. In

addition, their MSEs were close to those of the LASSO estimator with γ “ 0.01 and γ “ 0.05.

Results on model selection. In Table 2.2, we present the AUC, TR, TPR, and TNR for the

Lp rotations and the LASSO estimator with different tuning parameters. For both scenarios and

all sample sizes, the AUC and TR were very similar for the rotation estimator with p “ 0.5 and

p “ 1. The AUC of the LASSO estimator with a small tuning parameter is similar to that of the

L1 rotation method. We noted that the model selection performance was poor for the LASSO

estimator when γ became large. This is due to the presence of many false negative selections (i.e.,

non-zero loading parameters selected as zeros), as a result of over-regularisation.

26



15 ˆ 3 30 ˆ 5

N “ 400 N “ 800 N “ 1, 600 N “ 400 N “ 800 N “ 1, 600

Oblimin 0.012 0.007 0.004 0.012 0.008 0.006

GeominQ 0.010 0.005 0.002 0.010 0.005 0.002

Promax 0.013 0.007 0.005 0.014 0.009 0.007

L0.5 rotation 0.011 0.005 0.003 0.009 0.005 0.002

L1 rotation 0.010 0.005 0.003 0.010 0.004 0.002

LASSO, γ “ 0.01 0.009 0.004 0.002 0.008 0.003 0.002

LASSO, γ “ 0.05 0.009 0.006 0.005 0.007 0.005 0.004

LASSO, γ “ 0.1 0.017 0.015 0.014 0.012 0.011 0.010

LASSO, γ “ 0.2 0.079 0.076 0.074 0.038 0.034 0.032

LASSO, γ “ 0.5 0.244 0.244 0.244 0.144 0.149 0.150

Table 2.1: MSE obtained by using different rotation criteria under various settings, Study I.
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Figure 2.3: The MSE (for loadings) as a function of the tuning parameter γ in the LASSO-
regularised estimator. Panel (a): 15 ˆ 3 settings. Panel (b): 30 ˆ 5 settings. The dots at γ “ 0
correspond to the L1 rotation solutions.

Results on confidence intervals. In Figure 2.4, we show boxplots of the ECIC for the Lp

rotations, for p “ 0.5 and p “ 1 and N P t400, 800, 1, 600u. For both p “ 0.5 and p “ 1, the

ECICjks are close to the 95% nominal level, supporting the consistency of the proposed procedure

for constructing confidence intervals.

Some remarks. The computation for the proposed Lp rotation is fast. On a single core of a

data science workstation,1 the mean time for solving the L1 rotation criterion is within 0.29s for

the 15 ˆ 3 settings and within 0.54s for the 30 ˆ 5 settings. Using the L1 solution as the starting

point, the mean time for solving the L0.5 criterion is within 0.13s for 15 ˆ 3 settings and within

1CPU configuration: Intel Xeon 6246R 3.4GHz 2933MHz.
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15 ˆ 3 30 ˆ 5

AUC TR TPR TNR AUC TR TPR TNR

N “ 400

L0.5 rotation 0.996 0.979 0.979 0.978 0.988 0.964 0.937 0.977

L1 rotation 0.997 0.979 0.979 0.979 0.988 0.964 0.937 0.977

LASSO, γ “ 0.01 0.997 0.981 0.979 0.983 0.989 0.967 0.941 0.979

LASSO, γ “ 0.05 0.997 0.984 0.979 0.988 0.992 0.971 0.944 0.985

LASSO, γ “ 0.1 0.992 0.983 0.973 0.991 0.987 0.970 0.937 0.986

LASSO, γ “ 0.2 0.869 0.848 0.784 0.905 0.903 0.917 0.800 0.975

LASSO, γ “ 0.5 0.500 0.534 0.001 1.000 0.520 0.683 0.075 0.987

N “ 800

L0.5 rotation 1.000 0.993 0.992 0.993 0.998 0.986 0.980 0.990

L1 rotation 1.000 0.993 0.993 0.992 0.998 0.987 0.981 0.990

LASSO, γ “ 0.01 1.000 0.992 0.992 0.993 0.998 0.989 0.983 0.992

LASSO, γ “ 0.05 1.000 0.993 0.992 0.993 0.999 0.990 0.985 0.993

LASSO, γ “ 0.1 0.996 0.992 0.988 0.995 0.995 0.989 0.979 0.994

LASSO, γ “ 0.2 0.880 0.862 0.816 0.902 0.919 0.932 0.824 0.987

LASSO, γ “ 0.5 0.500 0.533 0.000 1.000 0.506 0.672 0.024 0.996

N “ 1, 600

L0.5 rotation 1.000 0.997 0.999 0.995 1.000 0.996 0.996 0.996

L1 rotation 1.000 0.997 0.999 0.995 1.000 0.996 0.996 0.996

LASSO, γ “ 0.01 1.000 0.997 1.000 0.995 1.000 0.996 0.997 0.996

LASSO, γ “ 0.05 1.000 0.997 0.999 0.996 1.000 0.997 0.998 0.996

LASSO, γ “ 0.1 0.998 0.997 0.995 0.999 0.998 0.996 0.993 0.997

LASSO, γ “ 0.2 0.886 0.870 0.831 0.904 0.929 0.941 0.838 0.993

LASSO, γ “ 0.5 0.500 0.533 0.000 1.000 0.501 0.668 0.003 0.999

Table 2.2: The AUC, TR, TPR, and TNR for the Lp-based rotation estimator and the regularised
estimator, Study I.

0.36s for the 30 ˆ 5 settings. Under the current simulation settings, condition C3 is satisfied by

both the L0.5 and L1 criteria, in which cases the two criteria tend to perform similarly. As we

will show in Section 2.5.2 below, the performance of the two criteria can be substantially different

when C3 holds for one criterion but not the other. In addition, we see that the LASSO estimator

with a small tuning parameter performed similarly to the L1 rotation method. We expected

this, since the L1 rotation solution can be viewed as the limiting case of the LASSO estimator

when the tuning parameter goes to zero. The LASSO estimator performed poorly for large tuning

parameters, due to the bias brought by the regularisation. This bias-variance trade-off is visualised

in Figure 2.3. The two panels in Figure 2.3 correspond to the 15 ˆ 3 and 30 ˆ 5 loading matrix

settings, respectively. For each panel, the x-axis shows the tuning parameter γ, and the y-axis

shows the MSE (for the loading matrix) of the corresponding LASSO estimator. The dots at
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γ “ 0 correspond to the L1 rotation solutions, as the L1-rotation estimator is the limit of the

LASSO estimator when γ converges to zero (see Proposition 3). As γ increases, the estimation

bias increases, and the variance decreases, which results in a U-shaped curve for the MSE – a well-

known phenomenon in statistical learning theory (see Chapter 2, Hastie et al., 2009). However,

the U-shaped curves in Figure 2.3 are very asymmetric – the MSE only decreases slightly before

increasing. This means that the estimators with small γ values including the rotation solution have

similar estimation accuracy to the optimal choice of the tuning parameter (i.e., the value of γ at

which the MSE curve achieves the minimum value). In that case, it may not be worth searching for

the optimal tuning parameter, as constructing a LASSO solution path is typically computationally

intensive. Instead, using the rotation method or a LASSO estimator with a sufficiently small tuning

parameter is computationally more affordable and yields a sufficiently accurate solution.

2.5.2 Study II

In this study we compare the L0.5 and L1 rotations, under a setting where condition C3 holds

for the L0.5 rotation but not the L1 rotation. We chose the setting to somewhat exaggerate the

differences, in order to show the consequence of misspecifying p.

Setting and evaluation criteria. The true loading matrix is of dimension J “ 18 and K “ 3.

Each item is set to load on two factors, so that no item has a perfect simple structure. Given the

loading structure, the model is identifiable as a confirmatory factor analysis model. We present the

true model parameters in the Appendix for Chapter 2. By grid search, we checked that C3 holds

for the L0.5 criterion but not the L1 criterion. We chose the sample size to be N “ 3, 000. Similar

to Study I, we compare the two rotation criteria using the MSE, AUC, TR, TPR, and TNR by

running B “ 500 independent replications.

Results. We present the results in Table 2.3. The L0.5 criterion performed better in terms of

both point estimation and model selection, as its MSE was lower and the AUC, TR, TPR, and

TNR were higher. In particular, we noted that the L0.5 rotation achieved a much higher TNR

than the L1 rotation, meaning that the L1 rotation tended to make many false positive selections

(i.e., zero loading parameters selected as non-zeros), as a consequence of violating condition C3.
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Figure 2.4: Boxplots of ECICjk. The label 0 means that λ˚
jk “ 0 and the label 1 means that

λ˚
jk ‰ 0.

2.6. An Application to the Big Five Personality Test

We illustrate the proposed method through an application to the Big Five personality test. We

consider the Big Five Factor Markers from the International Personality Item Pool (Goldberg,

1992), which contains 50 items designed to measure five personality factors, namely Extraversion

(E), Emotional Stability (ES), Agreeableness (A), Conscientiousness (C), and Intellect/Imagina-

tion (I). Each item is a statement describing a personality pattern like ”I am the life of the party”

and ”I get stressed out easily”, designed to primarily measure one personality factor. We can divide

the 50 items into five equal-sized groups, with each group mainly measuring one personality factor.
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MSE AUC TR TPR TNR

L0.5 rotation 0.003 0.984 0.954 0.943 0.974

L1 rotation 0.025 0.953 0.865 0.936 0.725

Table 2.3: The MSE, AUC, TR, TPR, and TNR for the Lp-based rotation estimator, Study II.

Responses to the items are on a five-level Likert scale, which we treat as continuous variables in the

current analysis. To assess the validity of this approximation, we compared the polychoric correla-

tion matrix with the Pearson correlation matrix for the data used in the experiment. The resulting

mean squared error (MSE) between the two matrices was 0.000914, indicating that treating the

ordinal responses as continuous introduces only a negligible difference.

Although the Big Five personality test was designed to have a perfect simple structure, cross-

loadings are often found in empirical data (e.g., Gow et al., 2005). To better understand the loading

structure of this widely used personality test, we applied the proposed L0.5 and L1 rotations to

a dataset2 on this test. To avoid possible complexities brought by measurement non-invariance,

we selected the subset of male respondents from the United Kingdom, which has a sample size

N “ 609. In the analysis, the number of factors is set to be K “ 5.

After applying the proposed rotations, we further adjusted the estimates by column permuta-

tion and sign flip transformations, so that the resulting factors correspond to the E, ES, A, C, and

I factors, respectively. We give our results in Tables 2.4 through 2.7. In Table 2.4 we show the

estimated covariance matrices from the two rotations. The estimated correlation matrices from the

two criteria are similar to each other. In particular, all the signs of the correlations are consistent,

except for the correlation between A and I, in which case both correlations are close to zero. In

addition, for each pair of factors, the correlations obtained by the two criteria are close. The sign

pattern of the correlations between the Big Five factors is largely consistent with those found in

the literature (e.g., Booth and Hughes, 2014; Gow et al., 2005).

In Tables 2.5 through 2.7 we show the estimated loading parameters and the corresponding

95% confidence intervals obtained from the L0.5 rotation. We indicate by asterisks the loadings

that are significantly different from zero according to the 95% confidence intervals. The results of

the L1 rotation are similar and thus we give them in the Appendix for Chapter 2. In Tables 2.5-2.7,

the items are labelled based on the personality factor that they are designed to measure, and their

scoring keys.3 The estimated loading matrix is largely consistent with the International Personality

Item Pool (IPIP) scoring key, where all the items have relatively strong loadings on the factors that

2The dataset is downloaded from: http://personality-testing.info/_rawdata/.
3Positively scored items are indicated by “p`q” and negatively scored items are indicated by “p´q”.
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they are designed to measure, and the signs of the loadings are consistent with the scoring keys.

The confidence intervals shed additional light on the uncertainty of each loading. Specifically, we

notice that many loadings are statistically insignificantly different from zero, suggesting that the

true loading structure is sparse. There are also items with fairly strong cross-loadings.

p “ 0.5 p “ 1

E ES A C I E ES A C I

E 1 1

ES 0.154 1 0.184 1

A 0.193 -0.017 1 0.197 -0.001 1

C 0.016 0.010 0.023 1 0.022 0.148 0.038 1

I 0.050 0.018 -0.005 -0.046 1 0.161 0.040 0.023 -0.019 1

Table 2.4: Estimated correlation matrices based on L0.5 and L1 rotations, Big Five personality
test

2.7. Concluding Remarks

In this paper we propose a new family of oblique rotations based on component-wise Lp loss

functions p0 ă p ď 1q and establish the relationship between the proposed rotation estimator

and the Lp regularised estimator for EFA. We develop point estimation, model selection, and

post-selection inference procedures and establish their asymptotic theories. We also develop an

iteratively reweighted gradient projection algorithm for the computation4. We demonstrate the

power of the proposed method via simulation studies and an application to Big Five personality

assessment.

We note that the proposed procedures do not rely on the normality assumption of the EFA

model, though we make such an assumption in the problem setup for ease of exposition. Specifically,

in the rotation, we only need to obtain a consistent initial estimator for EFA in the sense of

condition C1, which we can obtain with any reasonable loss function for factor analysis. In the

model selection, only the BIC uses the likelihood function based on the normal model. Note that

the likelihood function is a valid loss function under the linear factor model, even if the normality

assumption does not hold (Chapter 7, Bollen, 1989). Therefore, the BIC still yields consistent

model selection under the misspecification of the normality assumption (Machado, 1993). Finally,

the confidence intervals are based on the asymptotic distributions of CFA models. If we use

a robust method (i.e., a sandwich estimator) for computing the asymptotic variance, then the

4The R code for the proposed method is available from https://github.com/yunxiaochen/Lp_rot1129 and the
R package GPArotation (Bernaards and Jennrich, 2005)
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E ES A C I

E1(+) 0.887* -0.069 -0.068* 0.004 0.066

( 0.795, 0.984) (-0.158, 0.005) (-0.182,-0.016) (-0.113, 0.059) (-0.030, 0.140)

E2(-) -0.851* 0.131* 0.003 0.047 0.001

(-0.969,-0.765) ( 0.049, 0.228) (-0.057, 0.126) (-0.021, 0.168) (-0.071, 0.118)

E3(+) 0.780* 0.276* 0.204* 0.142* -0.107*

( 0.703, 0.879) ( 0.190, 0.344) ( 0.121, 0.277) ( 0.060, 0.220) (-0.200,-0.042)

E4(-) -0.914* -0.058 -0.022 0.002 0.105*

(-1.022,-0.844) (-0.139, 0.012) (-0.075, 0.077) (-0.066, 0.094) ( 0.050, 0.205)

E5(+) 0.898* -0.024 0.155* 0.100 0.064

( 0.814, 0.991) (-0.116, 0.034) ( 0.060, 0.212) (-0.001, 0.155) (-0.016, 0.140)

E6(-) -0.754* -0.001 -0.088 -0.061 -0.123*

(-0.854,-0.662) (-0.066, 0.106) (-0.163, 0.010) (-0.152, 0.027) (-0.200,-0.023)

E7(+) 1.119* -0.078* 0.083* 0.092* -0.042

( 1.025, 1.228) (-0.187,-0.019) ( 0.002, 0.174) ( 0.005, 0.184) (-0.175, 0.002)

E8(-) -0.724* -0.086 0.028 0.115* -0.051

(-0.829,-0.634) (-0.173, 0.002) (-0.036, 0.142) ( 0.026, 0.208) (-0.129, 0.056)

E9(+) 0.862* 0.051 0.000 -0.010 0.226*

( 0.751, 0.958) (-0.048, 0.136) (-0.110, 0.075) (-0.127, 0.067) ( 0.110, 0.301)

E10(-) -0.828* -0.117* -0.049 -0.126* 0.020

(-0.935,-0.745) (-0.189,-0.021) (-0.124, 0.046) (-0.212,-0.036) (-0.043, 0.132)

ES1(-) -0.132* -0.971* 0.006 0.001 -0.101

(-0.215,-0.028) (-1.065,-0.869) (-0.117, 0.082) (-0.133, 0.054) (-0.175, 0.003)

ES2(+) 0.147* 0.671* 0.001 -0.029 0.082

( 0.039, 0.220) ( 0.587, 0.768) (-0.066, 0.112) (-0.113, 0.064) (-0.008, 0.170)

ES3(-) -0.186* -0.780* 0.231* 0.063 0.046

(-0.277,-0.095) (-0.880,-0.696) ( 0.128, 0.306) (-0.041, 0.138) (-0.008, 0.170)

ES4(+) 0.225* 0.565* 0.002 0.110* 0.006

( 0.116, 0.314) ( 0.468, 0.664) (-0.071, 0.122) ( 0.024, 0.224) (-0.105, 0.090)

ES5(-) 0.013 -0.473* -0.042 -0.152* -0.226*

(-0.075, 0.137) (-0.566,-0.356) (-0.163, 0.046) (-0.272,-0.059) (-0.337,-0.125)

ES6(-) -0.130* -0.806* 0.257* -0.088* -0.130*

(-0.205,-0.023) (-0.903,-0.716) ( 0.147, 0.328) (-0.223,-0.039) (-0.209,-0.033)

ES7(-) 0.022 -0.962* -0.112* -0.124* 0.004

(-0.051, 0.119) (-1.051,-0.867) (-0.224,-0.050) (-0.244,-0.064) (-0.073, 0.089)

ES8(-) 0.000 -1.131* -0.135* -0.169* 0.000

(-0.085, 0.100) (-1.227,-1.029) (-0.258,-0.075) (-0.294,-0.103) (-0.078, 0.095)

ES9(-) -0.033 -0.862* -0.293* 0.097 -0.016

(-0.134, 0.048) (-0.949,-0.764) (-0.394,-0.211) (-0.002, 0.183) (-0.095, 0.082)

ES10(-) -0.344* -0.837* 0.069 -0.172* 0.104*

(-0.439,-0.256) (-0.930,-0.742) (-0.026, 0.157) (-0.284,-0.101) ( 0.032, 0.206)

Table 2.5: Part I: Point estimates and confidence intervals constructed by L0.5, Big Five personality
test. The loadings that are significantly different from zero according to the 95% confidence
intervals are indicated by asterisks.
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E ES A C I

A1(-) 0.003 -0.127* -0.778* 0.010 0.045

(-0.114, 0.087) (-0.201,-0.011) (-0.875,-0.669) (-0.095, 0.103) (-0.060, 0.136)

A2(+) 0.439* -0.007 0.557* -0.038 0.035

( 0.361, 0.526) (-0.097, 0.054) ( 0.464, 0.626) (-0.132, 0.024) (-0.042, 0.113)

A3(-) 0.193* -0.575* -0.566* -0.130* 0.134*

( 0.080, 0.286) (-0.663,-0.456) (-0.691,-0.479) (-0.265,-0.054) ( 0.026, 0.230)

A4(+) 0.013 0.001 0.979* -0.002 -0.002

(-0.035, 0.144) (-0.102, 0.038) ( 0.895, 1.050) (-0.081, 0.047) (-0.051, 0.083)

A5(-) -0.155* -0.039 -0.815* -0.012 0.090*

(-0.250,-0.091) (-0.102, 0.049) (-0.894,-0.724) (-0.085, 0.069) ( 0.017, 0.170)

A6(+) -0.059 -0.182* 0.717* 0.002 0.014

(-0.159, 0.020) (-0.272,-0.105) ( 0.629, 0.811) (-0.101, 0.070) (-0.063, 0.110)

A7(-) -0.367* -0.089* -0.733* 0.043 0.036

(-0.456,-0.300) (-0.159,-0.015) (-0.800,-0.639) (-0.023, 0.125) (-0.032, 0.115)

A8(+) 0.111* -0.038 0.692* 0.085* 0.025

( 0.039, 0.185) (-0.128, 0.010) ( 0.617, 0.771) ( 0.010, 0.152) (-0.035, 0.107)

A9(+) 0.123* -0.110* 0.751* 0.066 0.110*

( 0.040, 0.199) (-0.204,-0.054) ( 0.668, 0.836) (-0.018, 0.137) ( 0.041, 0.195)

A10(+) 0.439* 0.071 0.321* 0.133* 0.045

( 0.354, 0.517) (-0.010, 0.143) ( 0.245, 0.402) ( 0.043, 0.201) (-0.037, 0.121)

C1(+) 0.105 0.111 -0.037 0.695* 0.129*

(-0.001, 0.179) (-0.005, 0.177) (-0.099, 0.088) ( 0.597, 0.785) ( 0.055, 0.238)

C2(-) 0.080 -0.201* 0.107 -0.670* 0.142*

(-0.014, 0.194) (-0.284,-0.073) (-0.028, 0.177) (-0.800,-0.585) ( 0.013, 0.217)

C3(+) 0.023 0.007 0.114* 0.407* 0.280*

(-0.080, 0.082) (-0.094, 0.065) ( 0.050, 0.210) ( 0.315, 0.482) ( 0.213, 0.378)

C4(-) -0.123* -0.613* 0.048 -0.544* -0.039

(-0.202,-0.036) (-0.671,-0.495) (-0.057, 0.114) (-0.656,-0.483) (-0.149, 0.018)

C5(+) 0.074 0.057 0.000 0.782* -0.052

(-0.005, 0.188) (-0.051, 0.158) (-0.041, 0.163) ( 0.687, 0.882) (-0.133, 0.061)

C6(-) 0.021 -0.195* 0.045 -0.718* 0.087

(-0.085, 0.130) (-0.276,-0.058) (-0.090, 0.128) (-0.848,-0.625) (-0.028, 0.188)

C7(+) -0.129* -0.128* 0.110* 0.520* 0.042

(-0.225,-0.047) (-0.236,-0.059) ( 0.041, 0.220) ( 0.427, 0.608) (-0.015, 0.166)

C8(-) -0.000 -0.284* -0.242* -0.549* -0.000

(-0.086, 0.097) (-0.349,-0.166) (-0.361,-0.179) (-0.654,-0.466) (-0.119, 0.063)

C9(+) 0.031 -0.003 0.123* 0.722* -0.076

(-0.061, 0.129) (-0.140, 0.060) ( 0.059, 0.248) ( 0.623, 0.816) (-0.157, 0.034)

C10(+) -0.001 -0.006 0.127* 0.528* 0.235*

(-0.110, 0.057) (-0.120, 0.046) ( 0.070, 0.236) ( 0.433, 0.605) ( 0.170, 0.338)

Table 2.6: Part II: Point estimates and confidence intervals constructed by L0.5, Big Five person-
ality test.
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E ES A C I

I1(+) 0.085 0.001 -0.046 0.009 0.621*

(-0.020, 0.145) (-0.102, 0.067) (-0.148, 0.014) (-0.088, 0.078) ( 0.537, 0.713)

I2(-) -0.000 -0.222* -0.087* -0.020 -0.581*

(-0.052, 0.120) (-0.289,-0.119) (-0.183,-0.014) (-0.103, 0.071) (-0.675,-0.498)

I3(+) 0.076 -0.152* 0.024 -0.000 0.587*

(-0.028, 0.137) (-0.244,-0.087) (-0.061, 0.095) (-0.103, 0.063) ( 0.503, 0.670)

I4(-) 0.023 -0.204* -0.154* 0.008 -0.572*

(-0.027, 0.145) (-0.269,-0.101) (-0.228,-0.062) (-0.074, 0.098) (-0.663,-0.487)

I5(+) 0.240* 0.068* -0.058 0.189* 0.575*

( 0.131, 0.272) ( 0.003, 0.139) (-0.130, 0.002) ( 0.095, 0.240) ( 0.501, 0.648)

I6(-) -0.217* -0.001 -0.047 0.020 -0.505*

(-0.275,-0.104) (-0.065, 0.102) (-0.120, 0.046) (-0.053, 0.119) (-0.597,-0.421)

I7(+) 0.076 0.168* -0.035 0.117* 0.449*

(-0.018, 0.123) ( 0.089, 0.226) (-0.100, 0.036) ( 0.032, 0.176) ( 0.376, 0.520)

I8(+) -0.014 -0.163* -0.108* -0.003 0.656*

(-0.163, 0.023) (-0.262,-0.082) (-0.198,-0.020) (-0.130, 0.058) ( 0.572, 0.769)

I9(+) -0.056 -0.213* 0.239* 0.097* 0.260*

(-0.153, 0.008) (-0.305,-0.148) ( 0.157, 0.317) ( 0.006, 0.167) ( 0.188, 0.350)

I10(+) 0.246* -0.004 -0.000 0.107* 0.680*

( 0.130, 0.276) (-0.108, 0.039) (-0.072, 0.067) ( 0.009, 0.159) ( 0.606, 0.761)

Table 2.7: Part III: Point estimates and confidence intervals constructed by L0.5, Big Five person-
ality test.

resulting confidence intervals are valid when the normality assumption does not hold.

As each value of p P p0, 1s leads to a sensible rotation criterion, which Lp criterion should we

use? We do not recommend trying too many values of p. As discussed earlier and demonstrated

by the sensitivity analysis results in Section A2.12, the choice of p in Lp rotation involves a trade-

off between statistical accuracy and computational efficiency. Theoretically, a smaller value of

p is more likely to recover a sparse loading matrix, but the associated optimisation problem is

computationally more challenging. The L1 criterion is the easiest to compute. Although we gave

an example earlier in which the L1 criterion fails to recover the sparest loading structure, the L1

criterion can accurately recover the true loading structure under most simulation settings. For

several real-world datasets we have encountered, different p values also give very similar results.

We thus believe that the L1 criterion is robust and recommend users to always start with the

L1 criterion. To check the result of the L1 criterion, users may try some smaller p values (e.g.,

p “ 0.5) and compare their results with the L1 result in terms of model fitting and substantive

interpretations. If they give similar results, then the best fitting solution should be reported. If

the result from a smaller p value substantially differs from the L1 result, then the value of p should
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be further decreased until the result stabilises. Computationally, when solving the optimisation

with a smaller value of p, we recommend using the solution from the previous larger value of p as

the starting point, so that the algorithm is less likely to get stuck at a local optimum.

Our complexity analysis and simulation results suggest that obtaining a solution path for the L1-

regularised estimator has little added value over the L1 rotation when the sample size is reasonably

large. That is, obtaining the solution path of the regularised estimator is computationally more

intensive, while the best tuning parameter is often very close to zero and thus the corresponding

solution is very similar to the rotation solution. Therefore, when the sample size is reasonably

large, we do not recommend running a solution path for the L1 regularised estimator to learn

the loading structure in EFA. Instead, users can obtain a point estimate by either applying the

L1 rotation or running the L1 regularised estimator with a single small tuning parameter. Model

selection can be done by applying hard-thresholding to this point estimate. Furthermore, although

an Lp regularised estimator is mathematically well-defined with p ă 1, algorithms remain to be

developed for its computation. On the other hand, Lp rotation can be computed by the proposed

IRGP algorithm for all p P p0, 1s. However, when the sample size is small and the number of items

is large, the regularised estimators may outperform their rotation counterparts. In that case, an

optimally tuned regularised estimator may be substantially more accurate than those with very

small tuning parameters or the rotation-based estimator, and thus, better learn the sparse loading

structure.

The current work has several limitations that require future investigation. First, the way the

confidence intervals are constructed may be improved. That is, accurate model selection (condition

C5) and identifiability conditions on the true model (condition C6) are required for the confidence

intervals to have good coverage rate, while the uncertainty in the model selection step is not

taken into account in the proposed procedure. Consequently, although the proposed confidence

intervals are shown to be asymptotically valid, they may not perform well when the sample size

is small. This issue may be addressed by future researchers developing bootstrap procedures for

constructing confidence intervals, as such procedures may still be valid even when the objective

function is nonsmooth (Sen et al., 2010).

The current theoretical results only consider a low-dimensional setting where the numbers of

manifest variables and factors are fixed and the sample size goes to infinity. As factor analysis is

commonly used by those analysing high-dimensional multivariate data, it is of interest to generalise

the current results to a high-dimensional regime where the numbers of manifest variables, factors,

and observations all grow to infinity (Chen et al., 2019, 2020; Zhang et al., 2020; Chen and Li,

2022). In particular, it will be of interest to see how the rotation methods work with the joint
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maximum likelihood estimator for high-dimensional factor models (Chen et al., 2019, 2020).

Finally, as is an issue with any simulation study, we can only examine a small number of

simulation settings, and thus, may not be able to provide a complete picture of the proposed

methods. Future researchers need to investigate more simulation settings by varying the numbers

of manifest variables, factors, and observations, the sign pattern of the true loading matrix, and

the generation mechanism of the true model parameters.
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Appendix for Chapter 2

[List of]Symbols

Λ˚ : J ˆ K sparse true loading matrix that satisfies Assumption C3.

Φ˚ : K ˆ K true covariance matrix of the common factors.

A˚: J ˆ K matrix such that A˚A˚1
“ Λ˚Φ˚Λ˚1.

Â : Initial estimator of the loading matrix.

T : K ˆ K rotation matrix.

M : The space of oblique rotation matrices, such that

M “ tT P RKˆK : T1T ą 0, pT1Tqii “ 1, i “ 1, . . . ,Ku.

Qp : The family of monotone concave CLFs of the form

QppΛq “

J
ÿ

j“1

K
ÿ

k“1

|λjk|p.

T̂ : The solution to the optimisation problem

T̂ P arg min
TPM

QppÂT1´1
q.

g : A bivariate function for a fixed p such that g : RJˆK ˆ M Ñ R, which maps gpA,Tq Ñ

QppAT1´1q.

D : K ˆ K matrix such that the columns of TD are a permutation of those of T.

D̃ : K ˆK matrix such that the k:th column of TD̃ is either the same as the k:th column of T or

the k:th column of T multiplied by ´1.

D1 : The set of all K ˆ K permutation matrices.

D2 : The set of all K ˆ K sign flip matrices.

T ˚ : The solution to arg minTPM gpA˚,Tq. If T˚ “ Φ˚1{2, then T˚ is the minimiser of gpA˚,Tq,

and by Conditions C2 and C3, T ˚ “ tT˚DD̃ : D P D1, D̃ P D2u.
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Bϵ : BϵpT0q “ tT P M : ||T0´T||2 ă ϵu denotes the ϵ ball around T0, and BϵpT ˚q “
Ť

TPT ˚ BϵpTq

is the union of the ϵ balls around the elements in T ˚.

A2.1. Proof of Proposition 1

Proof. On the interval p0,8q, h1pxq “ pxp´1 ě 0 and h2pxq “ ppp ´ 1qxp´2 ď 0 for p P p0, 1s. The

function h is hence monotonically increasing and concave on r0,8q.

A2.2. Proof of Proposition 2

Proof. The inequality in Proposition 2 is already implied by Theorem 1 in Jennrich (2006) combined

with Proposition 1. Here, the focus is thus mainly on the equality condition. It is easy to check that

if T1´1
“ DD̃, then Λ˚T1´1 possesses perfect simple structure and QppΛ˚T1´1

q “ QppΛ˚q. On

the other hand, suppose that A “ Λ˚T1´1 for some T P M and QppAq “ minTPMQppΛ˚T1´1
q “

QppΛ˚q. Due to Λ˚ “ AT1 and since pT1Tqkk “ 1, k “ 1, . . . ,K, implies that ||tk||2 “ 1 for all

columns in T, each row in Λ˚ can be expressed as

λ˚
j “ aj1t

1
1 ` aj2t

1
2 ` ... ` ajKt1

K ,

j “ 1, . . . , J . By evaluating the left and right hand side in terms of their ℓ2 norm, and by applying

the triangle inequality, we get that

||λ˚
i ||2 ď

ÿ

k

|aik|||t1
k||2 “

ÿ

k

|aik|. (2.16)

Now, let λ˚
is be the only non-zero entry in λ˚

i . By raising it to the p-th power (0 ă p ď 1) and

applying Lemma 2 in Jennrich (2006),

|λ˚
is|p ď p

ÿ

k

|aik|qp ď
ÿ

k

|aik|p. (2.17)

Therefore, to achieve QppAq “ QppΛ˚q, (2.17) needs to hold as an equality for all i, which further

implies that (2.16) holds as an equality for all i as well. However, since t1, t2, t3, ..., tK are linearly

independent, (2.16) holds as an equality if and only if exactly one of ai1, ai2, ...aik is nonzero for a

certain i. Suppose aij ‰ 0. Since λ˚
i “ aijt

1
j and tj has unit length,

tj “ p0, 0, . . .
λ˚
is

aij
, . . . , 0q1 P t`es,´esu,
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where es is a column vector of length K with 1 on its s:th entry. Since rankpTq “ K, the only

possible form of T is a permutation of r˘e1,˘e2, ...,˘eKs. Therefore, T can be written as DD̃

for some D P D1 and D̃ P D2. As T1´1
“ D1´1D̃1

´1
, we can easily verify that D1´1

P D1 and

D̃1
´1

P D2 and arrive at the result.

A2.3. Proof of Proposition 3

Proof. For any γ ą 0, θ̂
piq
γ,p and θ̂ achieve the minimum of LpΣpppθqqqq ` γQppΛq and LpΣpppθqqqq

respectively. It follows that

LpΣpθ̂qq ` γQppÂq ě LpΣpθ̂piq
γ,pqq ` γQppΛ̂piq

γ,pq ě LpΣpθ̂piq
γ,pqq ě LpΣpθ̂qq. (2.18)

Therefore, when γ Ñ 0`, we have that LpΣpθ̂qq`γQppÂq Ñ LpΣpθ̂qq. By the Squeeze theorem

(page 104, Sohrab, 2003), LpΣpθ̂
piq
γ,pqq Ñ LpΣpθ̂qq when γ Ñ 0`. Since LpΣp¨qq is a continuous

function,

LpΣpθ̂
piq
0,pqq “ lim

γÑ0`
LpΣpθ̂piq

γ,pqq “ LpΣpθ̂qq “ min
θ

LpΣpθqq.

If θ̂
piq
0,p does not solve the optimisation problem in (2.5) in the main article, there exists a

θ1 “ pΛ1,Φ1,Ω1q s.t. QppΛ1q ă QppΛ̂
piq
0,pq, and LpΣpθ1qq “ min

θ
LpΣpθqq.

Since Qp is a continuous function, there exists a γ0, s.t. QppΛ1q ă QppΛ̂
piq
γ0,pq and LpΣpθ1qq ď

LpΣpθ̂
piq
γ0,pqq, where the latter is because θ1 minimises LpΣpθqq. Therefore,

LpΣpppθ1qqqq ` γ0QppΛ1q ă LpΣpθ̂piq
γ0,pqq ` γ0QppΛ̂piq

γ0,pq,

which contradicts that θ̂
piq
γ0,p achieves the minimum of LpΣpppθqqqq ` γ0QppΛq.

A2.4. Proof of Theorem 1

We fix p throughout the proof and suppress it as a subscript for all estimators and some of the

functions for ease of notation. We will add subscript N when we are considering an estimator

applied to a sample of size N . Let DpAq be the set of all column permutations and sign flips of the

matrix A, i.e, DpAq “ tADD̃ : D P D1, D̃ P D2u. Let || ¨ ||max denote the maximum entry in the

matrix, ||A||max “ maxi,j |Aij |. Let || ¨ ||2 denote the matrix norm induced by the vector 2-norm,
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||A||2 “ max||x||2“1 ||Ax||2 “
a

max eigpA1Aq “ d1pAq, where we use dkpAq to represent the k:th

largest singular value of A.

Proof. By Lemma 4, we can find a δ for any ϵdist ą 0, so that as long as ||A ´ A˚||2 ď δ,

T̂ P BϵdistpT ˚q. By Lemma 5, there exists a sequence of orthogonal matrices tONu, such that

ÂNON
pr
Ñ A˚ (2.19)

Therefore, for any ϵprob ą 0, there exists an N0 so that when N ą N0, Pp||ÂNON ´ A˚||2 ď δq ě

1 ´ ϵprob. Consequently, PpT̂N P BϵdistpT ˚qq ě 1 ´ ϵprob, where

T̂N “ argminTPMgpÂNON ,Tq.

Thus, by Condition C3, there exists DN P D1 and D̃N P D2 so that T̂NDND̃N
pr
Ñ Φ˚1{2. By

the continuous mapping theorem, T̂
1´1
N D

1´1
N D̃

1´1
N

pr
Ñ Φ˚1´1{2. Combined with (2.19) and Slutsky’s

theorem, we have that

ÂN pON T̂N q
1´1D

1´1
N D̃

1´1
N

pr
Ñ Λ˚,

since ON T̂N “ argminTPMgpÂN ,Tq and Λ̂N “ ÂN pON T̂N q
1´1. Lastly,

Φ̂N “ T̂1
N T̂N

pr
Ñ D̃

1´1
N D

1´1
N Φ˚D´1

N D̃´1
N

where D
1´1
N P D1, D̃

1´1
N P D2, which concludes the proof.

A2.4.1 Proof of Lemmata 1 to 5

To prove Lemma 4, we will use the property of a continuous function on a compact set. Firstly, let

M1 “ tT P RKˆK : pT1Tqkk “ 1, k “ 1, . . . ,Ku. Note that the space of oblique rotation matrices

M can be written as

M “ M1X
␣

T P RKˆK : rankpTq “ K
(

.

It follows that M is not a compact set since T is invertible, as dKpTq ą 0. In Corollary 1, we

therefore first show that if the initial matrix Â is in a neighborhood of A˚, i.e, in

sB “

"

A : ||A ´ A˚||2 ď
dKpA˚q

2

*

,
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then T̂ lies in a compact subset ĎM of M, where

ĎM “ M1X

"

T P RKˆK : dKpTq ě minp
dKpA˚q

4
?
JKg

1{p
max

, 1q

*

.

The maximum gmax “ maxAP sB gpA, Iq is attainable since g is continuous and sB is compact. Note

that ĎM is not empty since I P ĎM, and dKpIq “ 1.

To prove Corollary 1, we need to prove that if T is nearly invertible, i.e, its smallest singular value

is very small, then it can not be the minimizer of gpA,Tq if A P sB. To make this argument, we

will use the matrix inequality in Lemma 1, and Weyl’s bound in Lemma 2.

Lemma 1. ||AT
1´1||max ě

dKpAq
?
JK

||T´1||2

Proof. By the norm equivalence of a matrix (chapter 10.4.4, page 62, Petersen and Pedersen, 2012),

||AT1´1
||max ě

1
?
JK

||AT1´1
||2 (2.20)

Denote the thin singular value decomposition of A as UDV1, where U is a J ˆ K matrix with

orthogonal columns, D is a K ˆ K diagonal matrix whose diagonal entries Dkk “ dipAq, where

dkpAq is the k:th largest singular value of A, and V is a K ˆ K orthogonal matrix. When

dKpAq “ 0, the statement is trivial, and when dKpAq ą 0, D is invertible. Therefore

||AT1´1
||2 “ sup

||x||2“1
|x1T´1VDU1UDV1T1´1

x|1{2

“ ||DV1T1´1
||2

“ sup
||x||2“1

||x1D||2||
x1D

||x1D||2
V1T1´1

||2

ě inf
||x||2“1

||x1D||2 ¨ sup
||x||2“1

||
x1D

||x1D||2
V1T1´1

||2

“ dK sup
||y||2“1

||y1V1T1´1
||2

“ dK ||V1T1´1
||2

“ dK ||T´1||2

Plug ||AT1´1
||2 “ dK ||T´1||2 into (2.20) and we get the result.

Lemma 2 (Weyl’s bound, (Weyl, 1912)). For a J ˆ K matrix A, suppose Â “ A ` E, where E
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represents a perturbation matrix, then we have

max
1ďkďmintJ,Ku

|dkpAq ´ dkpÂq| ď ||A ´ Â||2.

We refer interested readers to Theorem 7 in O’Rourke et al. (2018)

Corollary 1. Under condition C2, A˚ is full rank, so dKpA˚q ą 0. Then, when A P sB,

arg min
TPM

gpA,Tq Ď ĎM

Proof. If T P Mz ĎM, then ||T´1||2 “ 1
dKpTq

ą
4

?
JKg

1{p
max

dKpA˚q
. Thus, by Lemma 1,

gpA,Tq ě p||AT1´1||maxqp ě p
dKpAq
?
JK

||T1´1||2qp ą p
4dKpAqg

1{p
max

dKpA˚q
qp.

When A P sB, by Lemma 2, |dKpAq ´dKpA˚q| ď ||A ´ A˚||2 ď
dKpA˚q

2 , so dKpAq ě
dKpA˚q

2 . Thus,

gpA,Tq ą 2pgmax ě gpA, Iq ě min
TPM

gpA,Tq

which contradicts that T is a minimizer.

Next, we will prove that if T is not in a neighborhood of T ˚, then there will be a gap between

gpA˚,Tq and the minimum.

Lemma 3. Define ϵ0 “ suptϵ ą 0 : ĎMXBϵpT ˚qC ‰ Hu, which is achievable since ĎM is compact.

Then, for all positive ϵ ă ϵ0, there exists a δ ą 0, such that if T P ĎM X BϵpT ˚qC,

gpA˚,Tq ´ c˚
min ě δ (2.21)

where c˚
min – minTPM gpA˚,Tq.

Proof. If the statement does not hold, there exists an ϵ1 ă ϵ0 for all δm “ 1
m ,m P N, such that

Tm P ĎMXBϵ1pT ˚qC. However, 0 ă gpA˚,Tmq ´ c˚
min ă 1

m . Since ĎMXBϵ1pT ˚qC is a closed subset

of a compact set, it is compact. Therefore, by the Bolzano–Weierstrass theorem (Fitzpatrick, 2009,

p.52), there exists a sub-sequence tTmk
u Ď tTmu and a point T0 P ĎM X Bϵ1pT ˚qC, which satisfies

Tmk
Ñ T0 when k Ñ 8. However, since gpA˚,Tq is a continuous function of T when A˚ is fixed,

gpA˚,T0q “ limkÑ8 gpA˚,Tmk
q “ c˚

min, so T0 P T ˚ Ď Bϵ1pT ˚q, which makes a contradiction.
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We can now prove that T must be close to T ˚ if A is close enough to A˚. We present this

result in Lemma 4.

Lemma 4. Under condition C2, for any ϵ ă ϵ0, there exists a δ ą 0, s.t. if ||A ´ A˚||2 ď δ, then

T P BϵpT ˚q.

Proof. For any ϵ ă ϵ0, let δ1 be the lower bound of gpA˚,Tq ´ c˚
min for T P ĎM X BϵpT ˚qC in

Lemma 3. Because Ω “ sB ˆ ĎM is a compact set in the domain of pA,Tq and g is continuous

on Ω, g is uniformly continuous on Ω. Therefore, for δ1
3 , there exists a δ2 ą 0 s.t. whenever

||A ´ A˚||2 ď δ2, |gpA,Tq ´ gpA˚,Tq| ă δ1
3 , for all T P ĎM. Let δ “ minp

dKpA˚q

2 , δ2q. When

||A ´ A˚||2 ď δ and T P ĎM X BϵpT ˚qC,

gpA,Tq ´ gpA,T˚q ě pgpA,Tq ´ gpA˚,Tqq ` pgpA˚,Tq ´ gpA˚,T˚qq `

pgpA˚,T˚q ´ gpA,T˚qq

ě ´
δ1
3

` δ1 ´
δ1
3

“
δ1
3

which means that T can not be the minimiser.

In Lemma 5, we prove that after an orthogonal transformation, ÂN lies in a small neighborhood

of A˚ asymptotically with probability 1.

Lemma 5. Under conditions C1 and C2, there exists a sequence of orthogonal matrices tONu

such that ÂNON
pr
Ñ A˚.

Proof. By condition C1, ÂNÂ1
N

pr
Ñ A˚A˚1. After multiplying both sides with A˚ and rearranging,

we get that

ÂNÂ1
NA˚ ´ A˚A˚1A˚ pr

Ñ 0.

By condition C2, rankpA˚1

A˚q “ rankpA˚A˚1

q “ K, so pA˚1

A˚q´1 exists. Thus,

ÂNÂ1
NA˚pA˚1

A˚q´1 ´ A˚ pr
Ñ 0. (2.22)

Define BN “ Â1
NA˚pA˚1

A˚q´1, and ON “ BN pB1
NBN q´1{2. Then ON is an orthogonal matrix.

Therefore, we only need to prove that ON forms the desired sequence of matrices. Let ∆N “

ON ´ BN . Then

||ÂNON ´ A˚||F “||ÂN pBN ` ∆N q ´ A˚||F

ď||ÂNBN ´ A˚||F ` ||ÂN∆N ||F ,
(2.23)
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where || ¨ ||F denotes the Frobenius norm and the first term on the right-hand side of the inequality

converges to 0 in probability according to (2.22). For the second term, we have that ||ÂN∆N ||F ď

||ÂN ||F ||∆N ||F by the sub-multiplicativity of the Frobenius norm. To control ||ÂN ||F , we can show

that under condition C1, ||ÂN ||F “

b

trpÂ1
NÂN q “

b

trpÂNÂ1
N q

pr
Ñ

a

trpA˚A˚1q “ ||A˚||F . It

is thus bounded. To control ∆N , we use Theorem 4.1 in Higham (1988), which states that

||∆N ||F “

g

f

f

e

K
ÿ

k“1

p1 ´ dipBN qq2 (2.24)

where dkpBN q is the k:th largest singular value of BN . Define A` “ A˚pA˚1

A˚q´1 and EN “

ÂNÂ1
N ´ A˚A˚1

. Then

B1
NBN “pA˚1

A˚q´1A˚1

pA˚A˚1

` EN qA˚pA˚1

A˚q´1 “ I ` pA`1

qENA`, (2.25)

and

max
1ďiďK

|dipBN q2 ´ 1| “ max
1ďiďK

|dipB
1
NBN q ´ dipIq|

ď ||pA`q1ENA`||2

ď ||EN ||||A`||22
pr
Ñ 0

(2.26)

where the first inequality is due to Lemma 2, the second inequality is due to the sub-multiplicativity

of the matrix norm, and the convergence is due to EN
pr
Ñ 0. Therefore, dkpBN q2

pr
Ñ 1 for k “

1, 2, ..,K. By the continuous mapping theorem, dipBN q
pr
Ñ 1 for i “ 1, 2, ..,K. Combined with

(2.24), we therefore have that ||∆N ||F
pr
Ñ 0 and ||ÂNON ´ A˚||F

pr
Ñ 0.

A2.5. Proof of Theorem 2

Proof. For a certain threshold c P p0, c0q, define Λ˚pNq “ Λ˚D̃´1
N D´1

N “ tλ
˚pNq

ij uJˆK and EN “

t||Λ̂N,p´Λ˚pNq||max ă minpc, c0´cqu. By Theorem 1, under conditions C1-C3, Λ̂N,pDND̃N
pr
Ñ Λ˚.

Therefore, for any ϵ ą 0, there exists a N0 such that when N ą N0, P pEN q ą 1 ´ ϵ. Denote the

entries of Γ̂N,p “

ˆ

sgnpλ̂
pN,pq

ij q ˆ 1
t|λ̂

pN,pq

ij |ącu

˙

JˆK

on EN as γ̂
pN,pq

ij :

γ̂
pN,pq

ij “

$

’

&

’

%

0, if λ
˚pNq

ij “ 0, since |λ̂N,p
ij | ´ 0 ă c

sgnpλ̂
pN,pq

ij q “ sgnpλ
˚pNq

ij q, if λ
˚pNq

ij ‰ 0, since |λ̂N,p
ij | ą |λ

˚pNq

ij | ´ pc0 ´ cq ě c

(2.27)

Therefore, when N ą N0, Γ̂N,p “ psgnpλ
˚pNq

ij qqJˆK “ Γ˚D̃´1
N D´1

N with probability at least 1´ϵ.
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A2.6. Proof of Theorem 3

Proof. For a fixed s and k, let AN “ tλ
˚pNq

sk P pl
pNq

sk , u
pNq

sk qu be the event of interest, where λ
˚pNq

sk are

the entries of Λ˚pNq “ Λ˚D̃´1
N D´1

N . Let BN “ tλ˚
sk P pl

˚pNq

sk , u
˚pNq

sk qu be the event of the confidence

interval coverage based on the true sign pattern Γ˚. Let CN “ tΓ̂N,pDND̃N “ Γ˚u be the event

that the selected sign pattern is consistent. Since AN X CN “ BN X CN ,

PpAN X CN q “ PpBN X CN q “ PpBN q ´ PpBN X CC
N q

pr
Ñ 1 ´ α,

where the limit is due to P pBN q
pr
Ñ 1 ´ α by condition C6 and 0 ď PpBN X CC

N q ď PpCC
N q

pr
Ñ 0 by

condition C5. Therefore, combined with PpAN X CC
N q

pr
Ñ 0 by condition C5,

PpAN q “ PpAN X CN q ` PpAN X CC
N q

pr
Ñ 1 ´ α.

A2.7. Computational Complexity

For the computational complexity, we remind that we have a loading matrix Λ of dimension J ˆK,

a rotation matrix T of dimension K ˆ K, a weight matrix W “ twjkuJˆK of dimension J ˆ K,

and the diagonal of the residual covariance matrix, denoted v, which is a vector of dimension

K ˆ 1. In order to calculate the computational complexity, we count the number of floating

point operations, which includes addition, subtraction, multiplication and division. The following

results are simplified by ignoring all terms except the highest order term. We use Opnq to denote

a computational complexity of order n, meaning there exists a constant C ą 0, such that the total

number of floating point operations can be controlled by Cn. For example, an m ˆ n matrix A,

n ˆ q matrix B and n ˆ n matrix C, the matrix multiplication operation AB is of computational

complexity Opmnqq. By Gauss-Jordan elimination we can also conclude that the inversion of C is

of computational complexity Opn3q.

At iteration t of the proposed IRGP algorithm in Algorithm 3 in the main text, the computa-

tions and their complexity are as follows,here we define the approximation function of the objective

function of W and Λ, by QW pW ,Λq “
ř

j,k wjkλ
2
jk

Λt “ÂpT1
tq

´1, OpJK2 ` K3q
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w
ptq
jk “

1

ppΛtq
2
jk ` ϵ2q1´p{2

, OpJKq

dQW pW,Λtq

dΛt
“2W d Λt, where d means element-wise product, OpJKq

∇GtpTqq “ ´ pΛ1
t

dQW pW,Λtq

dΛt
T´1

t q1, OpJK2 ` K3q

Tt`1 “ProjpTt ´ α∇GtpTqq, OpK2q

Therefore, the per-iteration complexity for Algorithm 3 is OpJK2 ` K3q

At iteration t of the proximal gradient descent algorithm in Algorithm 4 in the main text, the

computations and their complexity is in the following chart

Σpθq “ΛtT
1
tTtΛ

111 ` diagpexppvtqq, OpJ2K ` JK2 ` K3q

Q “Σ´1 ´ Σ´1SΣ´1, OpJ3q

∇Lt,Λ “2 ¨ QΛtT
1
tTt, OpJ2K ` JK2 ` K3q

Proxα,γpΛt ´ α∇Lt,Λq, OpJKq

∇Lt,Tij “p2 ¨ TtΛ
111
tQΛtqij1tiďju, OpJ2K ` JK2q

ProjpTt ´ α∇Lt,Tq, OpK2q

∇Lt,vt,i “Qii ¨ exppvt,iq, i “ 1, ..., J, OpJq

Therefore, the per-iteration complexity for Algorithm 4 is OpJ3 ` J2K ` JK2 ` K3q.

A2.8. Comparison with Other Rotation Criteria

In the following, we demonstrate scenarios where some of the most popular traditional rotation

criteria fail to recover the true sparse structure, unlike the proposed criterion. Consider first the

Geomin criterion (Yates, 1987), defined as

Qgeo “

J
ÿ

j“1

´

K
ź

k“1

λjk

¯
2
K
. (2.28)

The Geomin criterion thus measures the row-wise complexity and equals zero if at least one entry

λjk in the loading matrix Λ, for all j “ 1, . . . , J , equals zero. To refrain from indeterminacy of the

minimizer, the criterion is commonly modified by adding a small positive constant ϵ, such that

Qϵ
geo “

J
ÿ

j“1

´

K
ź

k“1

λ2
jk ` ϵ

¯
1
K
. (2.29)

47



In the GPArotation R package (Bernaards and Jennrich, 2005), (2.29) is the rotation criterion

being minimized when the Geomin function is called, with default value ϵ “ 0.01.

Consider an initial loading matrix A of dimension 21 ˆ 3, given in the first three columns of

in Table 2.8. Notice that the first 15 rows of A contain only one non-zero entry per row, and that

the remaining rows contain at least two non-zero entries. Also notice that several of the non-zero

entries in the dense part of A are small in magnitude. A majority of the matrix is thus sparse,

but with a dense component. One possible solution for the original Geomin criterion in 2.28 is

given by A1, since QgeopA1q “ 0. This solution is displayed in columns four to six in Table 2.8.

We verify that A1 contains 26 zero entries, whereas A contain 32 zero entries. The dense part of

A thus dominates the sparse structure in A, making the Geomin criterion unable to recover the

true sparse structure. In columns seven to nine in Table 2.8, the solution to the adjusted Geomin

criterion in (2.29) is presented, with ϵ “ 0.01. As displayed, the adjusted Geomin is not either able

to recover the true structure of A.

A A1 arg minQϵ“0.01
geo pAq

F1 F2 F3 F1 F2 F3 F1 F2 F3

1 0.633 0.000 0.000 1.096 0.000 0.895 0.633 0.005 0.014

2 0.000 0.686 0.000 0.000 0.686 0.000 -0.022 0.741 0.317

3 0.000 0.000 0.786 0.000 0.786 1.112 0.014 -0.043 0.769

4 0.954 0.000 0.000 1.653 0.000 1.349 0.954 0.007 0.021

5 0.000 0.601 0.000 0.000 0.601 0.000 -0.019 0.649 0.277

6 0.000 0.000 0.949 0.000 0.949 1.342 0.017 -0.052 0.929

7 0.972 0.000 0.000 1.684 0.000 1.375 0.973 0.008 0.022

8 0.000 0.830 0.000 0.000 0.830 0.000 -0.027 0.897 0.383

9 0.000 0.000 0.815 0.000 0.815 1.152 0.015 -0.045 0.797

10 0.531 0.000 0.000 0.920 0.000 0.751 0.531 0.004 0.012

11 0.000 0.603 0.000 0.000 0.603 0.000 -0.019 0.652 0.278

12 0.000 0.000 0.588 0.000 0.588 0.832 0.011 -0.032 0.575

13 0.844 0.000 0.000 1.461 0.000 1.193 0.844 0.007 0.019

14 0.000 0.692 0.000 0.000 0.692 0.000 -0.022 0.748 0.320

15 0.000 0.000 0.885 0.000 0.885 1.251 0.016 -0.049 0.866

16 0.000 0.117 0.489 0.000 0.606 0.691 0.005 0.100 0.532

17 0.496 -0.165 0.165 0.859 0.000 0.935 0.504 -0.184 0.096

18 0.575 1.138 -0.575 0.996 0.563 0.000 0.528 1.266 -0.024

19 0.000 0.110 0.524 0.000 0.634 0.741 0.006 0.090 0.563

20 0.513 -0.052 0.052 0.889 0.000 0.800 0.516 -0.056 0.039

21 0.559 1.065 -0.559 0.967 0.507 0.000 0.515 1.186 -0.042

Table 2.8: The initial loading matrix A, the transpose of A which is the Geomin solution, and
the solution to the adjusted Geomin criterion in (2.29) for a counterexample when the Geomin
criterion fails to recover the true sparse structure.
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We apply the proposed family of rotation criteria, with both p “ 0.5 and p “ 1, to the matrix

A. We verify that the solution is given by A using grid search over the whole oblique rotation

matrix space M. When A is used as a starting point for the proposed IRGP algorithm, all of the

minimizers of L0.5 and L1 differ at most by a sign flip or column permutation of T “ I3, where I3

is an identity matrix of dimension 3 ˆ 3. The true loading matrix A is thus recovered, up to a sign

flip and column permutation.

We compare the results with the Quartimin criterion in the Oblimin family and the Promax

algorithm as well. The former is defined as

Qobl “

K
ÿ

k“1

K
ÿ

k1‰k

J
ÿ

j“1

λ2
jkλ

2
jk1 . (2.30)

The oblimin criterion (Harman and Harman, 1976) could thus be understood as a weighted sum re-

lated to the complexity of each row of the factor loading matrix. The Promax algorithm (Hendrick-

son and White, 1964) takes the rotation matrix from Varimax rotation and raises it to powers of

4 in the stats R package (Finch, 2006) This has the effect of pushing small values down to zero

while larger values are not reduced as much.

In Table 2.9, the results of the proposed method for both p “ 0.5 and p “ 1, the Geomin and

Oblimin criteria, and the Promax algorithm are presented in terms of their MSE. The starting

point for all of the rotation criteria is A. The first column displays the entrywise MSE, calculated

as
ÿ

ij

pAij ´ rotpAqijq
2

JK
,

where rotpAq represents the rotated solution for each respective method. The second column

presents the value of the objective function at A, the third column shows the value of rotation

criteria at the rotated loading matrix, and the last column the contains the number of zeros

produced by the rotated matrix with a cut-off at 0.01. Since Promax is an algorithm that does

not involve an objective function, we do not report the objective value for it.

As demonstrated in Table 2.9, the MSE equals zero for both choices of p for the proposed

criterion. The Promax algorithm shows the second to best performance and the Oblimin and

Geomin with an ϵ “ 0.01 perform similarly. None of the methods, except for the Geomin with

ϵ “ 0 comes close to the proposed method in terms of identifying the zero elements in the loading

matrix, with the proposed method being able to identify all of them for both choices of p.

Lastly, we present the results of the average MSE for each respective rotation method over 500

simulations. The true loading matrix is still A given in Table 2.8, and with generated latent factors
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MSE Obj Obj. rot Number of zeros

L1 0.000 18.523 18.523 32

L0.5 0.000 22.898 22.898 32

Oblimin 0.021 0.896 0.265 2

Geomin(ϵ “ 0.01) 0.018 1.789 1.354 7

Geomin(ϵ “ 0) 0.251 1.070 0.000 26

Promax 0.013 - - 4

Table 2.9: Comparison of the component-wise loss function for p “ 1 and p “ 0.5, the Oblimin,
the Geomin for ϵ “ 0.01 and ϵ “ 0, and the Promax rotation methods.

that are orthogonal to each other. The unique variances of the items corresponds to Item 1-21 in

Table 2.12 under the column of Item Unique Variance. Three settings are considered, including

N “ 400, 800, and 1600. For each setting, 500 independent simulations are conducted. Table

2.10 presents the resulting MSEs, averaged over the number of simulations, and demonstrates the

superior performance of the proposed method for both choices of p over the traditional methods.

N “ 400 N “ 800 N “ 1600

L1 0.007 0.003 0.002

L0.5 0.007 0.003 0.002

Oblimin 0.027 0.024 0.022

Geomin(ϵ “ 0.01) 0.021 0.019 0.018

Promax 0.018 0.015 0.014

Table 2.10: The average MSE for the component-wise loss function for p “ 1 and p “ 0.5, the
Oblimin, the Geomin for ϵ “ 0.01, and the Promax rotation methods, for N “ t400, 800, 1600u.

A2.9. True Parameters for Simulation Study I

In this part, the parameters used in Study I are displayed in Table 2.11 to Table 2.13, including

the true loading matrices Λ˚, item unique variances Ω˚ and the lower diagonal part of the true

covariance matrices of latent variables Φ˚ (which are symmetric).

A2.10. True Parameters for Study II

The loading matrix Λ˚ is shown in Table 2.14. The covariance matrix for latent variable is the

same as the 15 ˆ 3 setting in Study I, listed in the last three columns of Table 2.13.
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Loading Matrix Item Unique Variances

Item 1-15 Item 1-15

F1 F2 F3

1 0.71 0 0 1.27

2 0 0.75 0 1.38

3 0 0 0.83 1.57

4 0.96 0 0 1.92

5 0 0.68 0 1.20

6 0 0 0.96 1.90

7 0.98 0 0 1.95

8 0 0.86 0 1.67

9 0 0 0.85 1.63

10 0.62 0.35 0 1.06

11 0 0.68 0.42 1.21

12 0.5 0 0.67 1.17

13 0.87 0 0.31 1.68

14 0.43 0.75 0 1.39

15 0 0.48 0.91 1.77

Table 2.11: 15 ˆ 3 factor loading patterns Λ˚ and item unique variances Ω˚ in Simulation Study I

Loading Matrix Item Unique Variances

Item 1-15 Item 16-30 Item 1-15 Item 16-30

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

1 0.71 0 0 0 0 16 0.8 0.34 0 0 0 1.27 1.49

2 0 0.75 0 0 0 17 0 0.89 0.38 0 0 1.38 1.72

3 0 0 0.83 0 0 18 0 0 1 0.35 0 1.57 1.99

4 0 0 0 0.96 0 19 0 0 0 0.75 0.26 1.92 1.38

5 0 0 0 0 0.68 20 0.45 0 0 0 0.91 1.20 1.79

6 0.96 0 0 0 0 21 0.97 0 0.4 0 0 1.90 1.93

7 0 0.98 0 0 0 22 0 0.68 0 0.44 0 1.95 1.21

8 0 0 0.86 0 0 23 0 0 0.86 0 0.23 1.67 1.65

9 0 0 0 0.85 0 24 0.42 0 0 0.65 0 1.63 1.13

10 0 0 0 0 0.62 25 0 0.32 0 0 0.71 1.06 1.27

11 0.68 0 0 0 0 26 0.75 0.45 0.39 0 0 1.21 1.39

12 0 0.67 0 0 0 27 0 0.61 0.43 0.37 0 1.17 1.01

13 0 0 0.87 0 0 28 0 0 0.75 0.36 0.44 1.68 1.38

14 0 0 0 0.75 0 29 0.34 0 0 0.95 0.21 1.39 1.88

15 0 0 0 0 0.91 30 0.42 0.41 0 0 0.74 1.77 1.34

Table 2.12: 30 ˆ 5 factor loading patterns Λ˚ and item unique variances Ω˚ in Simulation Study I

A2.11. Additional Results for the Big-Five Personality Test Ap-

plication

Tables 2.15 through 2.17 show the estimated loading parameters and the corresponding 95% con-

fidence intervals obtained from the L1 rotation.
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30 ˆ 5 setting 15 ˆ 3 setting

F1 F2 F3 F4 F5 F1 F2 F3

F1 1 1

F2 0.085 1 0.021 1

F3 0.429 0.042 1 0.502 0.274 1

F4 0.148 0.149 0.496 1

F5 0.249 0.309 0.121 0.19 1

Table 2.13: The true covariance matrices for latent variables in Simulation Study I.

Loading Matrix Item Unique Variances

Item 1-9 Item 10-18 Item 1-9 Item 10-18

F1 F2 F3 F1 F2 F3

1 0.531 0.760 0 10 0.124 0.765 0 1.27 1.06

2 0.744 0 0.216 11 0.412 0 0.047 1.38 1.21

3 0 1.870 1.447 12 0 0.681 0.954 1.57 1.17

4 1.816 0.424 0 13 1.374 0.964 0 1.92 1.68

5 0.403 0 1.642 14 0.768 0 1.385 1.20 1.39

6 0 0.251 1.294 15 0 0.987 0.955 1.90 1.77

7 1.889 0.534 0 16 0.995 0.372 0 1.95 1.49

8 1.322 0 1.106 17 1.435 0 0.876 1.67 1.72

9 0 0.027 1.059 18 0 1.337 0.490 1.63 1.99

Table 2.14: 18 ˆ 3 true loading matrix and item unique variances in Simulation Study II

A2.12. Sensitivity Analysis of p

In this study, we conduct a sensitivity analysis to provide insights into the choice of p in Lp rotation

for loading matrices with varying degrees of sparsity. Specifically, we simulate a toy example using

a 60 ˆ 3 loading matrix, where the proportion of simple items varies across five settings, ranging

from 95% to 5%. Each simple item has a single dominant loading generated uniformly from U r1, 2s,

while non-simple items are assigned an additional cross-loading generated from U r0.2, 0.5s. Main

loadings are distributed evenly across all factors to ensure balanced representation.

To evaluate performance, we use the GPArotation package with 50 random starts for each

value of p, ranging from 1.0 to 0.4. The algorithm is initialized with the true sparse loading matrix,

ensuring that no estimation error is introduced at the initialization stage. For each setting, we

record both the mean squared error (MSE) between the estimated and true loading matrices and

the average computational time per random start. The lower bound of p is set to 0.4, as smaller

values result in a substantial increase in computational time, reflecting the growing difficulty of

the optimization problem. This effect is also illustrated in Figure 2.2, where the contour of the
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L0.5 criterion exhibits sharper corners and a more pronounced non-convexity.

Results. Figure 2.5(a) shows that, in general, smaller values of p lead to lower MSE across

all sparsity levels. When the proportion of simple items exceeds 50%, MSE decreases steadily as

p becomes smaller, and p “ 1 is sufficient to recover the sparse loading structure. In the setting

with 25% simple items, a sharp decline in MSE is observed when p decreases from 0.6 to 0.55,

suggesting that this threshold marks the point at which Lp rotation begins to successfully identify

the true sparse structure. In contrast, for highly dense loading matrices (e.g., with only 5% simple

items), none of the tested p values yield low MSE, indicating the challenge of sparse recovery in

such settings.

Figure 2.5(b) demonstrates that the average computational time per random start increases as p

decreases. This trend highlights the increasing complexity of the non-convex optimization problem

associated with smaller values of p. Overall, these results underscore the statistical–computational

trade-off in the choice of p: smaller values tend to improve estimation accuracy but incur greater

computational cost.
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E ES A C I

E1(+) 0.878* -0.065 -0.069* -0.005 0.082*

( 0.793, 0.983) (-0.158, 0.011) (-0.180,-0.014) (-0.134, 0.038) ( 0.005, 0.171)

E2(-) -0.852* 0.127* 0.004 0.048 -0.014

(-0.975,-0.770) ( 0.047, 0.232) (-0.056, 0.126) (-0.028, 0.163) (-0.103, 0.082)

E3(+) 0.785* 0.278* 0.202* 0.099 -0.095*

( 0.692, 0.868) ( 0.197, 0.356) ( 0.118, 0.274) (-0.013, 0.148) (-0.173,-0.018)

E4(-) -0.922* -0.063 -0.020 0.022 0.091*

(-1.026,-0.847) (-0.144, 0.011) (-0.072, 0.079) (-0.030, 0.128) ( 0.034, 0.187)

E5(+) 0.889* -0.024 0.153* 0.083 0.080*

( 0.810, 0.988) (-0.117, 0.038) ( 0.061, 0.212) (-0.026, 0.131) ( 0.022, 0.173)

E6(-) -0.736* -0.003 -0.087 -0.043 -0.137*

(-0.854,-0.661) (-0.065, 0.113) (-0.160, 0.012) (-0.132, 0.051) (-0.225,-0.050)

E7(+) 1.125* -0.077* 0.081* 0.081 -0.023

( 1.025, 1.229) (-0.189,-0.014) ( 0.003, 0.174) (-0.032, 0.143) (-0.119, 0.052)

E8(-) -0.710* -0.095* 0.029 0.138* -0.064

(-0.824,-0.628) (-0.184,-0.002) (-0.035, 0.143) ( 0.059, 0.246) (-0.156, 0.025)

E9(+) 0.827* 0.057 -0.002 -0.037 0.243*

( 0.737, 0.945) (-0.045, 0.146) (-0.108, 0.078) (-0.174, 0.022) ( 0.146, 0.334)

E10(-) -0.826* -0.119* -0.047 -0.099 0.006

(-0.930,-0.739) (-0.192,-0.020) (-0.121, 0.049) (-0.169, 0.009) (-0.078, 0.093)

ES1(-) -0.085* -0.988* 0.008 0.110* -0.104*

(-0.187,-0.003) (-1.100,-0.895) (-0.117, 0.079) ( 0.067, 0.260) (-0.195,-0.019)

ES2(+) 0.113* 0.684* -0.000 -0.106* 0.085*

( 0.001, 0.178) ( 0.614, 0.804) (-0.065, 0.112) (-0.259,-0.074) ( 0.020, 0.194)

ES3(-) -0.164* -0.796* 0.233* 0.146* 0.044

(-0.232,-0.056) (-0.919,-0.726) ( 0.131, 0.308) ( 0.109, 0.296) (-0.039, 0.135)

ES4(+) 0.206* 0.571* 0.000 0.046 0.010

( 0.089, 0.286) ( 0.486, 0.688) (-0.075, 0.118) (-0.112, 0.090) (-0.077, 0.116)

ES5(-) 0.056 -0.475* -0.040 -0.096 -0.228*

(-0.046, 0.167) (-0.577,-0.361) (-0.159, 0.049) (-0.187, 0.032) (-0.349,-0.137)

ES6(-) -0.087 -0.817* 0.259* -0.001 -0.133*

(-0.172, 0.007) (-0.930,-0.736) ( 0.154, 0.334) (-0.030, 0.159) (-0.231,-0.056)

ES7(-) 0.052 -0.973* -0.110* -0.020 0.004

(-0.008, 0.157) (-1.077,-0.887) (-0.213,-0.041) (-0.059, 0.112) (-0.090, 0.072)

ES8(-) 0.036 -1.142* -0.133* -0.047 0.001

(-0.021, 0.154) (-1.259,-1.055) (-0.247,-0.066) (-0.076, 0.104) (-0.104, 0.065)

ES9(-) 0.001 -0.879* -0.292* 0.195* -0.016

(-0.086, 0.092) (-0.990,-0.795) (-0.388,-0.207) ( 0.145, 0.329) (-0.110, 0.066)

ES10(-) -0.332* -0.846* 0.071 -0.081 0.100*

(-0.399,-0.220) (-0.957,-0.765) (-0.019, 0.163) (-0.116, 0.068) ( 0.011, 0.184)

Table 2.15: Part I: Point estimates and confidence intervals constructed by L1, big-five personality
test. The loadings that are significantly different from zero according to the 95% confidence
intervals are indicated by asterisks.
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E ES A C I

A1(-) 0.002 -0.128* -0.779* 0.035 0.046

(-0.118, 0.085) (-0.209,-0.011) (-0.872,-0.666) (-0.081, 0.123) (-0.059, 0.136)

A2(+) 0.433* -0.004 0.557* -0.054 0.042

( 0.362, 0.528) (-0.092, 0.065) ( 0.465, 0.627) (-0.157, 0.003) (-0.025, 0.129)

A3(-) 0.192* -0.577* -0.566* -0.067 0.140*

( 0.090, 0.299) (-0.679,-0.465) (-0.682,-0.471) (-0.166, 0.048) ( 0.029, 0.232)

A4(+) 0.013 -0.001 0.980* -0.018 -0.002

(-0.008, 0.168) (-0.097, 0.047) ( 0.892, 1.045) (-0.093, 0.039) (-0.062, 0.070)

A5(-) -0.165* -0.038 -0.815* 0.006 0.089*

(-0.258,-0.097) (-0.108, 0.049) (-0.892,-0.723) (-0.074, 0.084) ( 0.012, 0.164)

A6(+) -0.054 -0.186* 0.718* 0.011 0.013

(-0.136, 0.042) (-0.278,-0.104) ( 0.628, 0.810) (-0.082, 0.096) (-0.077, 0.095)

A7(-) -0.366* -0.093* -0.732* 0.070* 0.031

(-0.458,-0.300) (-0.169,-0.020) (-0.798,-0.637) ( 0.006, 0.157) (-0.047, 0.099)

A8(+) 0.110* -0.042 0.692* 0.076* 0.027

( 0.044, 0.190) (-0.130, 0.013) ( 0.618, 0.771) ( 0.001, 0.147) (-0.034, 0.107)

A9(+) 0.113* -0.115* 0.752* 0.062 0.113*

( 0.047, 0.207) (-0.212,-0.056) ( 0.669, 0.837) (-0.010, 0.150) ( 0.041, 0.195)

A10(+) 0.432* 0.069 0.320* 0.112 0.053

( 0.348, 0.513) (-0.007, 0.151) ( 0.245, 0.402) (-0.004, 0.158) (-0.019, 0.138)

C1(+) 0.096 0.089 -0.039 0.682* 0.133*

(-0.004, 0.178) (-0.005, 0.181) (-0.098, 0.089) ( 0.563, 0.754) ( 0.064, 0.246)

C2(-) 0.056 -0.180* 0.110 -0.658* 0.145*

(-0.000, 0.206) (-0.262,-0.050) (-0.022, 0.181) (-0.798,-0.578) ( 0.009, 0.212)

C3(+) -0.007 -0.007 0.112* 0.399* 0.284*

(-0.091, 0.071) (-0.111, 0.052) ( 0.050, 0.210) ( 0.302, 0.473) ( 0.218, 0.382)

C4(-) -0.107* -0.604* 0.051 -0.478* -0.041*

(-0.169,-0.005) (-0.670,-0.496) (-0.048, 0.123) (-0.544,-0.371) (-0.174,-0.008)

C5(+) 0.093 0.030 -0.002 0.779* -0.051

(-0.020, 0.169) (-0.091, 0.113) (-0.048, 0.154) ( 0.679, 0.881) (-0.122, 0.072)

C6(-) 0.003 -0.172* 0.048 -0.704* 0.088

(-0.074, 0.139) (-0.255,-0.035) (-0.081, 0.136) (-0.837,-0.608) (-0.028, 0.187)

C7(+) -0.121* -0.150* 0.109* 0.535* 0.040

(-0.219,-0.041) (-0.267,-0.085) ( 0.038, 0.216) ( 0.464, 0.653) (-0.022, 0.158)

C8(-) -0.000 -0.268* -0.240* -0.518* -0.000

(-0.073, 0.109) (-0.340,-0.155) (-0.355,-0.173) (-0.604,-0.413) (-0.123, 0.058)

C9(+) 0.053 -0.029 0.121* 0.725* -0.076

(-0.062, 0.125) (-0.177, 0.024) ( 0.055, 0.243) ( 0.639, 0.841) (-0.149, 0.040)

C10(+) -0.022 -0.025 0.126* 0.523* 0.238*

(-0.116, 0.050) (-0.146, 0.025) ( 0.068, 0.234) ( 0.431, 0.609) ( 0.172, 0.340)

Table 2.16: Part II: Point estimates and confidence intervals constructed by L1, big-five personality
test.
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E ES A C I

I1(+) 0.003 0.002 -0.047 -0.007 0.630*

(-0.037, 0.131) (-0.113, 0.060) (-0.147, 0.015) (-0.106, 0.062) ( 0.539, 0.716)

I2(-) 0.083 -0.226* -0.086* 0.020 -0.588*

(-0.020, 0.157) (-0.297,-0.121) (-0.185,-0.017) (-0.047, 0.128) (-0.683,-0.505)

I3(+) 0.004 -0.152* 0.023 -0.001 0.595*

(-0.038, 0.131) (-0.254,-0.092) (-0.058, 0.099) (-0.085, 0.080) ( 0.501, 0.668)

I4(-) 0.105 -0.209* -0.153* 0.046 -0.578*

(-0.020, 0.153) (-0.273,-0.098) (-0.225,-0.059) (-0.028, 0.146) (-0.660,-0.484)

I5(+) 0.165* 0.065 -0.060 0.164* 0.586*

( 0.109, 0.252) (-0.003, 0.138) (-0.127, 0.006) ( 0.054, 0.194) ( 0.509, 0.657)

I6(-) -0.149* -0.004 -0.046 0.038 -0.515*

(-0.264,-0.090) (-0.065, 0.108) (-0.122, 0.043) (-0.034, 0.140) (-0.608,-0.432)

I7(+) 0.013 0.168* -0.036 0.087 0.455*

(-0.044, 0.099) ( 0.088, 0.229) (-0.099, 0.037) (-0.010, 0.135) ( 0.384, 0.528)

I8(+) -0.095 -0.164* -0.108* -0.001 0.664*

(-0.177, 0.011) (-0.276,-0.091) (-0.194,-0.017) (-0.097, 0.091) ( 0.572, 0.768)

I9(+) -0.081 -0.220* 0.239* 0.111* 0.262*

(-0.149, 0.014) (-0.321,-0.159) ( 0.159, 0.318) ( 0.042, 0.208) ( 0.182, 0.343)

I10(+) 0.158* -0.005 -0.002 0.086* 0.692*

( 0.110, 0.259) (-0.114, 0.038) (-0.068, 0.070) ( 0.006, 0.158) ( 0.613, 0.769)

Table 2.17: Part III: Point estimates and confidence intervals constructed by L1, big-five personality
test.
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(a) Mean squared error (MSE) of Lp rotation under varying values of p

(b) Computational time per random start for Lp rotation

Figure 2.5: Statistical and computational trade-offs for Lp rotation across different values of p.
The legend Simple% indicates the proportion of simple items in the loading matrix.
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Chapter 3

Identifiability Conditions for Sparse

Loading Matrices with L1 Rotation

3.1. Introduction

Thurstone (1947) proposed leveraging sparsity to resolve the rotational indeterminacy inherent

in factor loading matrices and factor covariances. In his words, “In numerical terms, this is a

demand for the rotation which provides the smallest number of non-vanishing entries in each row

of the oblique factor matrix.” The interpretability enabled by sparsity is crucial for understand-

ing how latent constructs are manifested in individuals’ behaviors or perceptions. When an item

loads exclusively on a single latent factor, it provides a clear and intuitive representation of that

construct, thereby enhancing the interpretability of the model, which is called a simple item. For

example, an item such as “I sympathize with others’ feelings” offers a straightforward represent-

ation of the latent trait of agreeableness if it is associated with that factor alone. Conversely,

non-simple items—those that load onto multiple latent factors—can obscure the interpretability

and complicate the theoretical understanding of the constructs

In Chapter 2, we introduced the Lp rotation criterion, which empirically outperforms existing

rotation methods in recovering sparse loading structures—structures that commonly used criteria

often fail to identify. However, a closer examination reveals that Theorem 1 only establishes the

consistency of Lp rotation under Condition C3 (see 2.3.1), which requires the true loading matrix

to be uniquely identifiable by the Lp criterion. Our current understanding of when this condition

holds is limited, except in the idealized setting where all items are simple. The goal of this chapter

is to deepen our understanding of Condition C3 by deriving sufficient conditions under which it
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holds.

Although many theoretical studies attempt to justify traditional rotation methods, none provide

identifiability guarantees for loading matrices with non-simple items. For instance, Theorem 4.1

in Rohe and Zeng (2022) shows that, under the assumption that the rows of the loading matrix

are i.i.d. and follow a leptokurtic distribution, the varimax rotation can recover the underlying

structure. However, this assumption has limited practical relevance for interpretability in applied

settings

Several rotation criteria have been proposed in the literature (Browne, 2001); however, most

lack rigorous theoretical guarantees regarding the types of loading matrices that can be recovered,

except under the highly idealized assumption of a perfect simple structure. For example, rotation

criteria in the Crawford-Ferguson family (Crawford and Ferguson, 1970; Crawford, 1975), such as

Quartimin(Carroll, 1953), Varimax(Kaiser, 1958, 1959), Equamax, Parsimax, and Factor Parsi-

mony, are based on a weighted sum of two components: a measure of row complexity (to simplify

item-level interpretation) and a measure of column complexity (to discourage a general factor).

The only available theoretical result for these criteria shows that their loss functions are minimized

when each row or column contains only a single non-zero entry. However, for more complex loading

matrices, there are no theoretical results offering insight into the behavior of the rotated solutions.

Yates’ Geomin rotation(Yates, 1987), for instance, reaches its minimum when each row contains

at least one zero. Yet, when the number of latent factors exceeds three, this sparsity condition be-

comes insufficient. A truly sparse loading matrix with a high proportion of simple items—alongside

a few complex items that load on all factors—may be penalized more than a matrix in which each

item loads on multiple factors but happens to have at least one zero. Similarly, entropy-based

criteria such as Infomax (McKeon, 1968) achieve their minimum when the loading matrix exhibits

a perfect simple structure and when the column-wise sum of squared loadings is uniform—a stricter

condition than simple structure alone. In Jennrich (2006), it is shown that the componentwise loss

function can also recover the loading matrix when it adheres to a perfect simple structure.

However, the assumption of a perfect simple structure is overly restrictive in exploratory factor

analysis (EFA), as we typically lack prior knowledge of the loading matrix and cannot ensure that

each item loads exclusively on a single latent factor. Thus, allowing for the existence of non-simple

items is critical for the effectiveness and applicability of rotation-based identification methods.

In Chapter 3, we address this limitation by extending Proposition 2 from Chapter 2 to accom-

modate loading matrices that contain both simple and non-simple items. Specifically, we establish

new theoretical conditions for L1 rotation under which the identifiability of loading matrices can be
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guaranteed, even in the presence of cross-loadings. This advancement broadens the applicability of

sparse factor analysis and offers a more flexible and realistic framework for modeling and interpret-

ing complex data structures. Our contributions not only enhance the theoretical understanding

of factor rotation but also provide practical implications for algorithm design and methodological

development in EFA.

3.2. Methodology

This chapter builds on the Lp rotation framework introduced in Chapter 2, using the same factor

analysis model. Under the sparse loading matrix assumption, consistent estimation is challenging

due to the non-identifiability arising from rotational indeterminacy. Let Λ˚ denote the true loading

matrix and Φ˚ the true factor variance-covariance matrix. To uniquely recover the sparse loading

matrix, we aim to define a rotation criterion that selects the true structure from the equivalence

class of an initial loading matrix Λ0.

We assume that the initial estimate has orthogonal latent factors with unit variance, i.e.,

Φ0 “ I, such that

Λ0Λ01

“ Λ˚Φ˚Λ˚1

,

and that the rotated solution allows for correlated factors with unit variance, i.e., pT1Tqkk “ 1 for

all k “ 1, . . . ,K.

The non-smooth Lp rotation criterion (Liu et al., 2023),

QppΛq “
ÿ

j

ÿ

k

|λjk|p, (3.1)

is effective in promoting sparsity in the loading matrix when minimized over the class of rotated

solutions. Specifically, the loading matrix is parameterized as

Λ “ Λ0T
1´1,

where the rotation matrix T belongs to the set

M “
␣

T P RKˆK : @k, pT1Tqkk “ 1, rankpTq “ K
(

.

We investigate identifiability of the L1-based criterion under relaxed conditions, aiming to find
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sufficient assumptions under which the maximizer

Λ̂ “ argmaxΛ“Λ0T1´1,TPMQ1pΛq

coincides with the ground truth Λ˚. It is known that this holds when Λ˚ has a “perfect simple

structure”, i.e., each item loads on only one factor. Our goal is to relax this assumption.

We define a “simple item” as one that loads on exactly one latent factor. Formally, for each

simple item j, there exists a unique kj P t1, . . . ,Ku such that λ˚
jkj

‰ 0. Let Sp Ď t1, . . . , Ju denote

the set of simple items, and define Spk “ tj P Sp : λ˚
jk ‰ 0u for factor k. Let Spc be the set of

“non-simple items”, i.e., those loading on multiple factors. We assume that the smallest number

of simple items across all factors is relatively large compared to the number of non-simple items

|Spc|. Specifically, we require the ratio mink |Spk|

|Spc|
to be sufficiently large.

To account for label switching and sign indeterminacy, we define

T ˚ :“
!

T˚DD̃ : D P D1, D̃ P D2

)

,

where D1 and D2 denote the sets of permutation and sign-flip matrices, respectively. Thus, T ˚ has

cardinality 2KK!, covering all permutations and sign changes of the columns of T˚.

Finally, we assume that non-zero loadings are “doubly bounded”—distinguishable from zero

and not excessively large:

C1 There exist constants 0 ă c ă C such that for all j, k with λ˚
jk ‰ 0, we have c ă |λ˚

jk| ă C.

Theorem 4. Identifiability Condition for L1 Rotation Criteria. Under C1, there exists a constant

C0, if
mink |Spk|

|SpC |
ą C0, then T ˚ contains all global minimum points of

||Λ0T´11

||1, (3.2)

where Λ0 P RJˆK is any orthogonal solution satisfying Λ0Λ01

“ Λ˚ΦΛ˚1

.

The proof is provided in the Appendix for Chapter 3. This theorem suggests that when the

proportion of non-simple items is small, the L1 rotation can effectively recover the loading matrix.

The proof shows that for simple items, any rotated loading matrix different from the true one

will result in a strictly higher L1 norm, while for non-simple items, the difference can be negative.

Therefore, if there are enough simple items, their positive contributions dominate, ensuring that

the true sparse loading matrix uniquely minimizes the L1 norm. This guarantees that the L1
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rotation criterion can correctly recover the true loading structure when the proportion of simple

items is sufficiently large.

Remark 4. We believe that a similar result may hold for the Lp rotation with p ă 1, but the

analysis is more involved and is left for future work. In the proof below, we rely on the fact that
ř

i |xi| defines a norm and that the triangle inequality applies to it—this is used in Step 3 of

Lemma 6 in the Appendix. However, for p ă 1, the quantity p
ř

i |xi|
pq1{p does not satisfy the

properties of a norm, and therefore the triangle inequality no longer holds. Additionally, Hölder’s

inequality, which underpins many key steps in the analysis, is only valid for p ě 1.

Remark 5. Compared with Proposition 2 in Chapter 2 (Liu et al., 2023), this identifiability con-

dition addresses a more complex scenario where a small proportion of the items are non-simple,

as opposed to all items being simple, which would yield a perfectly simple structure in the loading

matrix. The conditions presented here ensure the applicability of condition C3 for Theorem 1 in

Chapter 2 (Liu et al., 2023). Specifically, if the loading matrix is doubly bounded and contains only

a minor proportion of non-simple items, the L1 rotation criteria are sufficient to consistently re-

cover the loading matrix, up to column swaps and sign flips, provided the sample size is sufficiently

large.

3.3. Numerical Experiment

As stated in Theorem 5, reproducing the loading matrix requires that the proportion of simple

items remains below a certain threshold. However, our theoretical results do not provide a precise

characterization of this constant. To investigate this limitation, we conduct a simulation study.

Although the result is not formally proven for Lp rotation, we conjecture that it holds and thus

include empirical evidence in this thesis.

In the simulation, we use a 60 ˆ 3 loading matrix and vary the proportion of non-simple items

from 0% to 95%. We evaluate the mean squared error (MSE) of the L1 and L0.5 rotation criteria,

and compare their performance with two widely used oblique rotation methods: Oblimin and

Geomin. The results are presented in Table 3.1.

To generate the initial sparse loading matrix, we first construct a 3 ˆ 3 diagonal matrix for

the primary loadings, where each diagonal element is independently sampled from the uniform

distribution U r1, 2s. This process is repeated 20 times to create an initial block-diagonal structure

for the loading matrix.

To evaluate the reproducibility of different rotation criteria under varying proportions of simple
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items, cross-loadings are systematically added for non-simple items. For proportions of non-simple

items ranging from 5% to 100%, secondary loadings are generated and assigned randomly to factors

other than their primary factor. These cross-loadings are sampled from U r0.2, 0.5s, ensuring that

they remain weaker than the primary loadings.

In the implementation, we utilize the GPArotation package (Bernaards and Jennrich, 2005)

with 50 random rotation matrix starting points for the L1, L0.5, Geomin, and Oblimin rotation

functions. The process is initialized using the true sparse loading matrix, assuming no initial

error. To assess performance, we compute the Mean Squared Error (MSE) between the true and

estimated loadings. Additionally, we evaluate the true positive rate (TPR) and true negative rate

(TNR) to measure accuracy in identifying nonzero and zero entries, using a cutoff of c “ 0.01.

Loadings with a magnitude exceeding this threshold are classified as nonzero. This small cutoff is

chosen because we start with the true sparse loading matrix rather than an estimated one based

on a sample.

Proportion of L1 L0.5

Simple items MSE TNR TPR MSE TNR TPR

95% 1.27 ˆ 10´8 1 1 8.33 ˆ 10´11 1 1

90% 3.64 ˆ 10´8 1 1 2.96 ˆ 10´10 1 1

85% 7.67 ˆ 10´8 1 1 6.28 ˆ 10´10 1 1

80% 1.57 ˆ 10´7 1 1 1.21 ˆ 10´9 1 1

75% 2.76 ˆ 10´7 1 1 1.96 ˆ 10´9 1 1

70% 4.38 ˆ 10´7 1 1 3.02 ˆ 10´9 1 1

65% 5.72 ˆ 10´7 1 1 3.71 ˆ 10´9 1 1

60% 7.31 ˆ 10´7 1 1 4.90 ˆ 10´9 1 1

55% 1.00 ˆ 10´6 1 1 6.32 ˆ 10´9 1 1

50% 1.41 ˆ 10´6 1 1 8.20 ˆ 10´9 1 1

45% 1.66 ˆ 10´6 1 1 9.41 ˆ 10´9 1 1

40% 2.05 ˆ 10´6 1 1 1.11 ˆ 10´8 1 1

35% 2.83 ˆ 10´6 1 1 1.36 ˆ 10´8 1 1

30% 6.51 ˆ 10´6 1 1 1.95 ˆ 10´8 1 1

25% 6.93 ˆ 10´6 1 1 2.15 ˆ 10´8 1 1

20% 4.96 ˆ 10´5 0.778 1 2.88 ˆ 10´8 1 1

15% 4.99 ˆ 10´5 0.783 1 3.04 ˆ 10´8 1 1

10% 7.63 ˆ 10´4 0.455 1 3.76 ˆ 10´8 1 1

5% 1.22 ˆ 10´2 0.317 0.957 4.72 ˆ 10´8 1 1

0% 1.56 ˆ 10´2 0.333 0.958 1.53 ˆ 10´2 0.75 0.942

Table 3.1: The Power of Recovering Zeros with L1 and L0.5 Rotation with Varying Proportions of
Simple Items

As shown in Table 3.1, by comparing the number of estimated zeros with the true zeros in the
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Proportion of Oblimin GeominQ(ϵ “ 0.01)

Simple items MSE TNR TPR MSE TNR TPR

95% 1.13 ˆ 10´4 0.530 1 3.51 ˆ 10´6 1 1

90% 1.66 ˆ 10´4 0.509 1 8.61 ˆ 10´6 1 1

85% 3.53 ˆ 10´4 0.216 1 1.79 ˆ 10´5 0.919 1

80% 7.93 ˆ 10´4 0.185 1 3.70 ˆ 10´5 0.852 1

75% 1.30 ˆ 10´3 0.190 1 5.66 ˆ 10´5 0.771 1

70% 1.79 ˆ 10´3 0.196 1 8.61 ˆ 10´5 0.755 1

65% 2.14 ˆ 10´3 0 1 7.77 ˆ 10´5 0.626 1

60% 2.50 ˆ 10´3 0 1 8.97 ˆ 10´5 0.563 1

55% 3.15 ˆ 10´3 0 1 1.02 ˆ 10´4 0.516 1

50% 3.82 ˆ 10´3 0 1 1.33 ˆ 10´4 0.389 1

45% 4.71 ˆ 10´3 0 1 1.42 ˆ 10´4 0.322 1

40% 5.14 ˆ 10´3 0 1 1.63 ˆ 10´4 0.345 1

35% 6.00 ˆ 10´3 0 1 1.98 ˆ 10´4 0.296 1

30% 7.58 ˆ 10´3 0 1 3.04 ˆ 10´4 0.321 1

25% 8.14 ˆ 10´3 0 1 2.77 ˆ 10´4 0.173 1

20% 9.23 ˆ 10´3 0 0.991 3.70 ˆ 10´4 0.139 1

15% 9.42 ˆ 10´3 0 0.991 3.58 ˆ 10´4 0.087 1

10% 1.13 ˆ 10´2 0 0.974 4.37 ˆ 10´4 0.091 1

5% 1.31 ˆ 10´2 0 0.974 5.02 ˆ 10´4 0.063 1

0% 1.36 ˆ 10´2 0 0.975 4.97 ˆ 10´4 0.017 1

Table 3.2: Benchmark: The Power of Recovering Zeros with Oblimin and Geomin Rotation at
Different Proportions of Simple Items

loading matrix, L1 rotation accurately reproduces all zeros when the proportion of simple items

exceeds 20%. Meanwhile, L0.5 rotation demonstrates even greater power, successfully reproducing

zeros even when the proportion of simple items is 5%. In contrast, benchmark methods such as

Oblimin and GeominQ perform poorly, ceasing to work effectively when the proportion of simple

items is high (e.g., 95% and 85%, respectively). These results demonstrate that Lp rotation is

significantly more effective at recovering sparse loading matrices, even with a limited number of

simple items.

3.4. Concluding Remarks

In this chapter, we have established that when the proportion of simple items is sufficiently large,

the true sparse loading matrix can be recovered using the L1 rotation criterion. This result fills a

critical gap in the existing literature, which largely lacks theoretical guarantees for the identifiab-
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ility of sparse loading matrices in exploratory factor analysis (EFA), except under the restrictive

assumption that all items are simple.

We also generalize Proposition 2 from Chapter 2—originally formulated for L1 rotation under

a perfectly simple structure—to cases where the loading matrix includes non-simple items. This

generalization is particularly valuable for applied settings, as EFA is commonly used in early

stages of scale development or in contexts where the underlying loading structure is unknown.

In practice, it is unrealistic to assume that every item loads exclusively on a single factor. For

instance, ambiguous item wording can lead to cross-loadings, with items capturing multiple latent

constructs simultaneously. A concrete example appears in Table 2.6, where item A2, “+I am

interested in people,” loads on both Extraversion and Agreeableness.

Despite these contributions, our work has certain limitations. Notably, we are unable to extend

the theoretical guarantee to the case of Lp rotation with p ă 1, as the function p
ř

i |xi|
pq1{p is not

a proper norm in this regime. Future research may explore whether identifiability results can still

be established under this setting, and whether the Lp criterion with p ă 1 could allow for recovery

with a smaller proportion of simple items compared to the L1 case as found in the simulation.

Furthermore, it is known that component loss functions can recover a loading matrix composed

entirely of simple items. Future research could investigate whether this result can be extended to

cases involving a mix of simple and non-simple items, potentially broadening the applicability of

component-based methods in practical EFA scenarios.

Lastly, another promising direction is to refine the theoretical conditions required for identifi-

ability under L1 rotation. For example, the required proportion of simple items may increase in

scenarios with a large ratio between the upper and lower bounds of the nonzero loadings, a higher

number of latent factors, or when the smallest eigenvalue of the factor covariance matrix is low. A

more explicit relationship between these parameters and the required proportion of simple items

could inform both theory and practice. Simulation studies could help illuminate this dependency

and validate theoretical insights.
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Appendix for Chapter 3

A3.1. Proof of Theorem 4

Notations

Norms

• } ¨ }1: Entry-wise 1-norm (for matrices/vectors, not induced)

• } ¨ }2: Matrix norm induced by the ℓ2 vector norm

• } ¨ }F : Frobenius norm

Subscript Conventions

• Λk: k-th row of matrix Λ

• tk, Φk, Aj : k-th columns of matrices T, Φ, and A respectively

Key Definitions

1. Initial loading matrix Λ0 is an arbitrary orthogonal solution satisfying:

Λ0pΛ0q1 “ Λ˚ΦpΛ˚q1

2. For positive definite Φ with unit diagonal, there exists a unique rotation matrix T ˚ with unit

columns (}t˚
k}2 “ 1 @k) such that:

Λ0T ˚´1 “ Λ˚

The oblique rotation matrix space is:

M “ tT P RKˆK : }ti}2 “ 1, rankpT q “ Ku

With properties:

Φ “ T ˚1T ˚, ϕij “ xt˚
i , t

˚
j y
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Define singular values λ1pΦq (largest) and λKpΦq (smallest), and:

Φoffmax “ max
i‰j

|ϕij | “ max
i‰j

|xt˚
i , t

˚
j y| P r0, 1q

3. S: Index set of simple items in Λ˚ (loading on exactly one factor)

• Sk “ tj P S : λ˚
jk ‰ 0u (simple items for factor k)

• Sc: Non-simple items (loading on ě 2 factors)

4. D1: Set of K ˆ K permutation matrices (K! elements)

5. D2: Set of K ˆ K sign-flip matrices (2K elements)

6. T ˚: Solution set with 2KK! elements:

T ˚ :“ tT ˚DD̃ : D P D1, D̃ P D2u

Labeled as T ˚piq for i “ 1, . . . , 2KK!

7. Voronoi cell for T ˚piq:

Vi :“ tT P M : min
T̃˚PT ˚

}T ´ T̃ ˚}2F “ }T ´ T ˚piq}2F u

The structure of our proof follows a clear framework. In Lemma 8, we show that for simple

items, the difference in the L1 norm between the rotated loading and the true sparse loading is

lower bounded by a positive value. In Lemma 9, we prove that for non-simple items, the same

difference is lower bounded by a negative value. By combining these two results, we demonstrate

that as long as the proportion of simple items is sufficiently large, the overall difference remains

positive. Consequently, any rotated matrix other than the true sparse one cannot achieve the

minimum.

To prove Lemma 8, we further rely on Lemma 6, which establishes that the result holds in a

local neighborhood of the true parameter, and Lemma 7, which extends the result to regions that

are at a distance from the true parameter.

Proof. Combining Lemmas 8 and 9, for any T P Vi satisfying

mink |Sk|

|Sc|
ą

2CK

dKpT ˚qCsim

def
“ Cp,

we analyze the norm difference:
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}Λ}1 ´ }Λ˚}1 “ }ΛS}1 ´ }Λ˚
S}1

l jh n

Simple items

` }ΛSc}1 ´ }Λ˚
Sc}1

l jh n

Non-simple items

(3.3)

ě

ˆ

min
k

|Sk| ¨ Csim ´ |Sc| ¨
2CK

dKpT ˚q

˙

}T ´ T ˚piq}F (3.4)

ě 0 (3.5)

The final equality holds if and only if }T ´ T ˚piq}F “ 0, which implies T P T ˚.

In Lemma 1 below, we show that for any simple item, the difference in the L1 norm between a

rotated loading matrix and the true sparse loading matrix is locally lower bounded by a positive

value. This result strengthens Lemma 1 in Jennrich (2006) by improving the lower bound from

zero to a strictly positive value, which is essential to compensate for the presence of non-simple

items in the true loading matrix. We obtain this result by applying a Taylor expansion to the

inverse of the true rotation matrix, T ˚´1.

Lemma 6. There exists ϵ0 ą 0 such that for all T P M with }T ´ T ˚piq}F ď ϵ0, the following

inequality holds:

}ΛS}1 ´ }Λ˚
S}1 ě min

k
|Sk| ¨ Cloc}T ´ T ˚piq}F ,

where

Cloc “
cp1 ´ Φoffmaxq

2
a

2λ1pΦqp1 ` Φoffmaxq
.

Neighborhood Parameterization

For any T P M in the ϵ0-neighborhood of T ˚piq, we employ the following representation:

T “

„

b

1 ´ ϵ21t
˚piq
1 ` ϵ1∆t1, . . . ,

b

1 ´ ϵ2Kt
˚piq
K ` ϵK∆tK

ȷ

“ T ˚piqD1´ϵ2 ` ∆TDϵ

where the parameters satisfy:

1. Magnitude parameters: For each k “ 1, . . . ,K,

ϵk P r0, 12 s, ϵ “

g

f

f

e

K
ÿ

k“1

ϵ2k
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The Frobenius norm distance decomposes as:

}T ´ T ˚piq}2F “

K
ÿ

k“1

}tk ´ t
˚piq
k }22

“

K
ÿ

k“1

›

›

›

›

p

b

1 ´ ϵ2k ´ 1qt
˚piq
k ` ϵk∆tk

›

›

›

›

2

2

“

K
ÿ

k“1

„

p

b

1 ´ ϵ2k ´ 1q2 ` ϵ2k

ȷ

Using the inequality 0 ď p1 ´

b

1 ´ ϵ2kq2 ď ϵ2k for ϵk P r0, 12 s, we obtain the key bounds:

ϵ2 ď }T ´ T ˚piq}2F ď 2ϵ2 (3.6)

This representation covers all matrices in the ϵ0-neighborhood of T ˚piq in M for ϵ P p0, ϵ0s.

2. Diagonal scaling matrices:

Dϵ “ diagpϵ1, . . . , ϵKq, D1´ϵ2 “ diag

ˆ

b

1 ´ ϵ21, . . . ,
b

1 ´ ϵ2K

˙

with inverse approximation:

D´1
1´ϵ2

“ I ` OKpϵ2q

3. Column properties: For each column k,

}t
˚piq
k }2 “ }∆tk}2 “ 1 and x∆tk, t

˚piq
k y “ 0

(i) Coefficient Matrix Analysis:

Given the full-rank matrix T ˚piq “ rt
˚piq
1 , . . . , t

˚piq
K s, any perturbation vector can be

expressed as:

∆tj “

K
ÿ

k“1

akjt
˚piq
k “ T ˚piqAj

where Aj “ pa1j , . . . , aKjq
1 is the j-th column of the coefficient matrix A.

a) Orthogonality Condition: From the constraint x∆tj , t
˚piq
j y “ 0, we derive:

0 “ xT ˚piqAj , t
˚piq
j y “ A1

jΦ
piq
j (3.7)

where Φpiq “ T ˚piq1T ˚piq with entries Φ
piq
kj “ xt

˚piq
k , t

˚piq
j y.
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b) Normalization Condition: The unit norm requirement }∆tj}2 “ 1 yields:

1 “ A1
jΦ

piqAj (3.8)

(ii) Spectral Bounds: The quadratic form in (3.8) satisfies:

λKpΦq}Aj}
2
2 ď A1

jΦ
piqAj ď λ1pΦq}Aj}

2
2

Combining with (3.8) gives the key inequality:

1
a

λ1pΦq
ď }Aj}2 ď

1
a

λKpΦq
(3.9)

(iii) Matrix Representation: Collecting all columns yields the compact form:

∆T “ T ˚piqA (3.10)

4. Inverse Approximation: Using Woodbury identity:

pI ` DϵD
´1
1´ϵ2

Aq´1 “ I ´ pI ` DϵD
´1
1´ϵ2

Aq´1DϵD
´1
1´ϵ2

A

“ I ` OKpϵq

where we use:

• }DϵD
´1
1´ϵ2

A}F “ Opϵq

• Submultiplicativity of } ¨ }F

• The bound }A}F ď
a

K{λKpΦq from (3.9)

Detailed Derivation. The proof proceeds through several key steps:

Step 1: Inverse Matrix Decomposition Applying the Woodbury matrix identity to T´1, we

obtain:

T´1 “

´

T ˚piqD1´ϵ2 ` ∆TDϵ

¯´1

“

”

I ´ D´1
1´ϵ2

A
´

I ` DϵD
´1
1´ϵ2

A
¯´1

Dϵ

ı

D´1
1´ϵ2

T ˚piq´1

“
“

I ´ ADϵ ` OKpϵ2q
‰

T ˚piq´1
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where OKpϵ2q denotes a K ˆK matrix with all entries of order Opϵ2q, with constants independent

of J and ϵ.

Step 2: Norm Difference Decomposition For each loading vector Λj , we analyze:

}Λj}1 ´ }Λ˚
j }1 “ }Λ0

jT
1´1}1 ´ }Λ˚

j }1

ě }Λ˚
j ´ Λ˚

jDϵA
1}1 ´ }Λ˚

j }1 ´ C1ϵ
2

The constant C1 bounds the residual term:

}Λ˚
jOKpϵ2q}1 ď C1ϵ

2

Step 3: Simple Items (j P S) For items loading on a single factor kj :

K
ÿ

k“1

´

|λ˚
jk ´ λ˚

jkj
ϵkjakkj | ´ |λ˚

jk|

¯

“ |λ˚
jkj

´ λ˚
jkj

ϵkjakjkj | ´ |λ˚
jkj

|
l jh n

Main Loading term

`
ÿ

k‰kj

|λ˚
jkj

ϵkjakkj |

l jh n

Zero Loading terms

ě |λ˚
jkj

ϵkj |

¨

˝

ÿ

k‰kj

|akkj | ´ |akjkj |

˛

‚

From the orthogonality condition (3.7), we derive the key inequality:

|akjkj | “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k‰kj

akkjΦ
piq
kkj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Φoffmax

ÿ

k‰kj

|akkj | (3.11)

Using norm relationships and (3.9), we obtain:

1
a

λ1pΦq
ď }Akj}2 ď p1 ` Φoffmaxq

ÿ

k‰kj

|akkj | (3.12)

Combining these results yields:

}Λj}1 ´ }Λ˚
j }1

(3.11)
ě Opϵ2q

l jh n

Higher order

` cϵkj p1 ´ Φoffmaxq
ÿ

k‰kj

|akkj |

l jh n

Main term
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(3.12)
ě ´C1ϵ

2 ` C2ϵkj

where the crucial constant is:

C2 “ c
1 ´ Φoffmax

a

λ1pΦqp1 ` Φoffmaxq

Note that when Φ “ I (orthogonal case), Φoffmax “ 0 simplifies C2 to 1.

Step 4: Final Bound Choosing ϵ0 “ C2
2C1K

ensures:

}ΛS}1 ´ }Λ˚
S}1 ě min

k
|Sk| pC2 ´ C1Kϵq ϵ

ě min
k

|Sk|
C2

2

}T ´ T ˚piq}F
?

2

completing the proof with the stated constant Cloc “ C2

2
?
2
.

In Lemma 2 below, we show that for any simple item, the difference in the L1 norm between

a rotated loading matrix and the true sparse loading matrix is lower bounded by a positive value

within a region that is at a nonzero distance from the true parameter.

Lemma 7. For any T P Vi, we have the global lower bound:

}ΛS}1 ´ }Λ˚
S}1 ě min

k
|Sk| ¨ Cglo}T ´ T ˚piq}2F , (3.13)

where the global constant is:

Cglo “
cp1 ´ Φoffmaxq

4K
.

Proof. We analyze the rotation relationship Λ0 “ Λ˚T ˚1 “ ΛT 1, which implies for each item j:

Λ0
j “

ÿ

k

λ˚
jkt

˚1
k “

ÿ

k

λjkt
1
k. (3.14)

Simple Items Analysis For j P S with unique non-zero entry at kj :

}Λj}1 ´ }Λ˚
j }1 “

ÿ

k

|λjk| ´ |λ˚
jkj

|

“
ÿ

k

|λjk| ´

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k

λjkxtk, t
˚
kj

y

ˇ

ˇ

ˇ

ˇ

ˇ

ě
ÿ

k

|λjk|p1 ´ |xtk, t
˚
kj

y|q.
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From the norm identity:

min
a“˘1

}tk ´ at˚
kj

}22 “ 2p1 ´ |xtk, t
˚
kj

y|q, (3.15)

and using
ř

k |λjk| ě |λ˚
jkj

| ě c from Jennrich (2006), we obtain:

}Λj}1 ´ }Λ˚
j }1 ě

c

2
min

a“˘1,k
}tk ´ at˚

kj
}22.

Aggregate Bound Summing over all simple items:

}ΛS}1 ´ }Λ˚
S}1 ě

c

2

ÿ

k

|Sk| min
a“˘1,k1

}tk1 ´ at˚
k}22 (3.16)

Case Analysis Let mk “ arg mink1 mina“˘1 }tk1 ´ at˚
k}22 and ak “ arg mina“˘1 }tmk

´ at˚
k}22.

Case 1: Non-permutation case: If Dk1 ‰ k2 with mk1 “ mk2 :

ÿ

k

}tmk
´ akt

˚
k}22 ě ||tmk1

´ ak1t
˚
k1 ||22 ` ||tmk2

´ ak2t
˚
k2 ||22

ě
p||tmk1

´ ak1t
˚
k1

||2 ` ||tmk2
´ ak2t

˚
k2

||2q2

2

ě
}t˚

k1
´ t˚

k2
}22

2

ě 1 ´ Φoffmax

ą 0

Using }T ´ T ˚piq}2F ď 2K, we get:

ÿ

k

}tmk
´ akt

˚
k}22 ě

1 ´ Φoffmax

2K
}T ´ T ˚piq}2F (3.17)

Case 2: Permutation case: When tmku forms a permutation,then by the definition of Vi,:

ÿ

k

}tmk
´ akt

˚
k}22 ě }T ´ T ˚piq}2F ě

1 ´ Φoffmax

2K
}T ´ T ˚piq}2F (3.18)

Substituting (3.17) or (3.18) into (3.16) yields the desired bound.

Lemma 8. For any rotation matrix T P Vi, there exists a constant Csim ą 0 such that:

}ΛS}1 ´ }Λ˚
S}1 ě min

k
|Sk| ¨ Csim}T ´ T ˚piq}F

73



Proof. We consider two cases based on the distance to the optimal rotation:

Case 1: Local Neighborhood (}T ´ T ˚piq}F ď ϵ0) By Lemma 6, we have the local lower

bound:

}ΛS}1 ´ }Λ˚
S}1 ě min

k
|Sk| ¨ Cloc}T ´ T ˚piq}F

Case 2: Global Region (}T ´ T ˚piq}F ě ϵ0) By Lemma 7, we obtain the global lower bound:

}ΛS}1 ´ }Λ˚
S}1 ě min

k
|Sk| ¨ Cglo}T ´ T ˚piq}2F ě min

k
|Sk| ¨ Cgloϵ0}T ´ T ˚piq}F

Combining Both Cases Taking Csim “ minpCloc, Cgloϵ0q yields the unified bound:

}ΛS}1 ´ }Λ˚
S}1 ě min

k
|Sk| ¨ Csim}T ´ T ˚piq}F

for all T P Vi, completing the proof.

In Lemma 4 below, we show that for any non-simple item, the difference in the L1 norm between

a rotated loading matrix and the true sparse loading matrix is lower bounded by a negative value.

This result holds due to the boundedness of the loadings and the fact that the true rotation matrix

T ˚ is not rank-deficient.

Lemma 9. For any T P Vi, the non-simple items satisfy:

}ΛSc}1 ´ }Λ˚
Sc}1 ě ´|Sc|

2CK

dKpT ˚q
}T ´ T ˚piq}F (3.19)

Proof. We analyze the non-simple items through careful estimation:

Setup For T P Vi, we have:

}ΛSc}1 ´ }Λ˚
Sc}1 “ }Λ0

ScT 1´1}1 ´ }Λ˚
Sc}1

“ ||pΛ˚
ScT ˚piq1

qT
1´1||1 ´ ||Λ˚

Sc ||1

“ }Λ˚
ScpT ` T ˚piq ´ T q1T 1´1}1 ´ }Λ˚

Sc}1

“
ÿ

jPSc

`

}Λ˚
j ` Λ˚

jP }1 ´ }Λ˚
j }1

˘

where P “ pT ˚piq ´ T q1T 1´1.
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Case Analysis For each non-simple item j P Sc, consider:

Case 1: }T ´ T ˚}F ď
dKpT˚q

2

By Weyl’s inequality:

|dKpT q ´ dKpT ˚q| ď }T ´ T ˚}2 ď }T ´ T ˚}F ď
dKpT ˚q

2

Thus dKpT q ě
dKpT˚q

2 .

For the norm difference:

}Λj}1 ´ }Λ˚
j }1 ě ´

ÿ

k

|Λ˚
jPk|

ě ´C}P }1 (by Cauchy-Schwarz)

Estimating }P }1:

}P 1}1 “ }T´1pT ´ T ˚piqq}1

ď
ÿ

k

?
K||T´1||2||tk ´ t

˚piq
k ||2

ď
2K

dKpT ˚q
}T ´ T ˚piq}F

Case 2: }T ´ T ˚}F ą
dKpT˚q

2

The trivial bound holds:

}Λj}1 ´ }Λ˚
j }1 ě ´KC ě ´

2KC

dKpT ˚q
}T ´ T ˚}F

Conclusion Summing over all j P Sc yields the final result.
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Chapter 4

Controlling False Discovery Rate for

Exploratory Factor Analysis

4.1. Introduction

In the previous chapters, we introduced Lp rotation, which has proven effective in identifying

factors. Now, we aim to determine which indicators are truly associated with the latent variables

and contribute to their interpretation (Bartholomew et al., 2008). To distinguish meaningful

associations, we require hypothesis testing rather than relying solely on point estimates.

Although standard errors for the rotated loading matrix in EFA can be computed using smooth

rotation criteria (Jennrich, 1974; Jennrich and Clarkson, 1980), these methods have limitations. As

demonstrated in Chapter 3, smooth rotation criteria lack theoretical guarantees for recovering the

loading matrix under sparse settings. While Theorem 4 in Chapter 3 establishes that Lp rotation

can identify the true sparse loading matrix when the proportion of simple items is sufficiently

large, the non-smooth nature of the rotation criteria makes inference challenging. To the best of

our knowledge, the only prior attempt to quantify uncertainty in EFA under sparsity was Algorithm

2, discussed in Chapter 2. That approach leveraged the consistency of Lp rotation to recover the

full loading structure for all J items, treating it as the ground truth—an assumption that is difficult

to achieve with a small sample size. In contrast, in Section 4.3, we propose a new method that only

requires K simple items in the loading structure to be correctly identified, significantly relaxing

the identifiability assumptions.

After constructing p-values for individual loadings, we face the challenge of multiple hypothesis

testing, where we must control the overall error rate while accounting for dependencies among

76



p-values. This introduces a statistically rigorous approach to item selection. Traditionally, psycho-

metricians have relied on ad hoc methods, such as hard thresholds on factor loadings (e.g., above

0.3 or 0.4) or removing items with low communalities (Hair et al., 2019). However, these arbitrary

cutoffs are often suboptimal across datasets. A data-driven statistical approach is needed to ensure

more objective and reliable item selection.

To ensure the quality of multiple hypothesis testing, we require well-defined criteria to quantify

uncertainty. In personality assessment, the goal is to select items that genuinely measure a given

latent trait for subsequent analysis. A natural approach might be to strictly control false selections,

ensuring that no irrelevant items are included—an objective analogous to controlling the familywise

error rate (FWER) (Holm, 1979). However, such a stringent criterion is often overly conservative,

leading to the omission of many meaningful items. Instead, an alternative approach is to control

the false discovery rate (FDR) (Benjamini and Hochberg, 1995), which offers a balance between

selecting relevant items and maintaining statistical rigor. This chapter explores statistical methods

that achieve this balance, thereby improving item selection in factor analysis.

While the FDR control problem has garnered significant attention in statistical literature over

the last two decades, many of the available methods are applicable in the common regression

setting, where latent variables are not present. For example, Barber and Candès (2015) developed

the knockoff filter to control FDR with high power by constructing copies of exploratory variables

as a control group. However, their approach requires accurately estimating the distribution of these

variables (Barber et al., 2020), which is infeasible in EFA since the variables are latent. A natural

alternative is mirror statistics (Dai et al., 2023), which bypasses the need for data copies. However,

the mirror statistic procedure relies on weak dependence assumptions that do not hold in EFA,

making it inapplicable. Thus, existing methods fail to provide a valid FDR control framework for

EFA.

In settings where the estimated coefficients are either independent or exhibit positive regression

dependence on a subset of zero loadings (PRDS), the traditional Benjamini and Hochberg (BH)

procedure (Benjamini and Hochberg, 1995) effectively controls the false discovery rate (FDR).

However, this assumption does not hold in the context of exploratory factor analysis (EFA), where

estimated loadings are inherently correlated. To address this challenge, Benjamini and Yekutieli

(2001) introduced a modified BH procedure incorporating a logarithmic correction to account for

dependence among estimated coefficients. Additionally, recent developments in statistical inference

have explored the use of e-values as an alternative to p-values, with Wang and Ramdas (2022)

extending the BH procedure to the e-value framework.
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In this chapter, we propose a data-driven method to control the FDR at a prespecified level,

enabling the selection of significant loadings at both the test and factor levels. Our approach

resolves several previously unaddressed issues in uncertainty quantification and item selection for

EFA models. First, as a prerequisite for implementing the FDR control procedures, we introduce

a method that establishes the minimal conditions required to construct valid p-values for the

EFA model under the assumption of a sparse loading matrix. We provide a theoretical proof

demonstrating that this condition is sufficient for model identification. Second, we develop a

novel effective latent variable selection procedure that ensures FDR control in the EFA model.

Specifically, we adapt three widely used FDR control procedures to latent variable models.

The remainder of this chapter is organized as follows. Section 4.3 presents our proposed method

for constructing p-values and e-values for EFA, along with theoretical validation. Section 4.4

reviews three standard FDR control methods and their adaptation for factor-level and test-level

FDR control in EFA. Section 4.5 evaluates our approach through simulation studies, while Section

4.6 applies our method to the Big Five personality assessment. Finally, Section 4.7 discusses

limitations and potential future research directions.

4.2. Problem Setup

As in previous chapters, we consider the following exploratory linear factor model with a J-

dimensional vector of manifest variables X and a K-dimensional vector of common factors ξ.

ξ „N p0,Φq

X|ξ „N pΛξ,Ωq,

where Λ “ pλjkqJˆK is the loading matrix, Φ “ pϕijqKˆK and Ω “ pωijqJˆJ are the covari-

ance matrices for latent factors and residuals. We further require both covariance matrices being

positive-definite and all latent factors having unit variances (i.e. ϕkk “ 1). Moreover, the manifest

variables are assumed to be conditionally independent given ξ, i.e., Ω is a diagonal matrix. For

simplifying the notation, we use θ “ pΛ,Φ,Ωq to denote the set of all unknown parameters. The

marginal distribution of X given θ is

X „ N p0,ΛΦΛ1 ` Ωq (4.1)

A non-zero loading λjk means the k-th latent common factor ξk contributes to the explanation
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of j-th manifest variable Xj . The goal of this chapter is to select these non-zero loadings under

the sparse loading matrix assumption while controlling the FDR. Based on our purpose, we can

choose to control the FDR for the full or a single column of the loading matrix.

Factor-level FDR Control: In some cases, it may be desirable to control the proportion of

incorrectly selected manifest variables for each common factor k . For example, a psychometrician

might seek to include relevant items for a specific latent factor while allowing a small proportion

of irrelevant items, within a pre-specified threshold, to shorten the test. Consequently, there is

interest in managing the False Discovery Rate (FDR) for each column in the loading matrix.

For the k-th common factor, let Sk Ď tj : 1 ď j ď Ju denote the selection set of items j

for which we hypothesize that the true factor loading λ˚
jk ‰ 0. Here, λ˚

jk represents the pj, kq-th

element in the true factor loading matrix, indicating the strength of the relationship between item

j and factor k.

The false discovery rate (FDR) for the k-th factor is then defined as:

FDRk “ E

˜

|tj P Sk, λ
˚
jk “ 0u|

|Sk| _ 1

¸

, k “ 1, ...,K. (4.2)

where a _ b “ maxpa, bq. The denominator above ensures that FDRk is zero when no items are

selected. Suppose there are 100 items selected for latent factor k. Controlling the FDR at level

q “ 0.1 means that we can expect at most 10 of the selected items to be irrelevant to factor k, and

at least 90 to be relevant.

test-level FDR Control: When our objective is to control the False Discovery Rate (FDR)

for the entire matrix rather than focusing on a specific latent factor, we employ test-level FDR

control. Let S Ď tpj, kq : 1 ď j ď J, 1 ď k ď Ku be the set of selected loadings. The goal here is to

include as many as none zero loadings as possible while controlling FDR, the expected proportion

of selected zero loadings, in the full matrix Λ:

FDR “ E

˜

|tpj, kq P S, λ˚
jk “ 0u|

|S| _ 1

¸

. (4.3)

Note that the maximum in the denominator is to ensure the division by zero does not occur.

Suppose that 100 item loadings are selected for 3 latent factors. Controlling the FDR at level

q “ 0.1 implies that we can expect at most 10 of the selected loadings to be zero, and at least 90

to be non-zero.
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4.3. Single hypothesize testing for Exploratory Factor Analysis

Models

4.3.1 p-values and e-values for Hypothesis Testing

Before addressing false discovery rate (FDR) control—a multiple hypothesis testing problem—we

begin by discussing valid procedures for single hypothesis testing in the context of sparse loading

matrices.

Traditional hypothesis testing commonly uses a p-value, which is a random variable p P r0, 1s

satisfying Ppp ď tq ď t for all t P r0, 1s under the null hypothesis. A p-value quantifies how extreme

the test statistic, derived from the data, is relative to the null distribution. Given a significance

level q, we reject the null hypothesis if p ă q.

However, p-values have notable limitations in the multiple testing setting. Aggregating them

across tests often relies on strong independence assumptions. Furthermore, combining p-values

analytically—such as through convolution to evaluate joint distributions—is computationally chal-

lenging. In contrast, the linearity of expectation makes e-values more tractable: the expectation

of a sum of random variables equals the sum of their expectations, allowing for easier aggregation

across tests.

An alternative is the use of e-values, which are based on expectations rather than probabilities.

An e-value is a non-negative random variable e such that Eres ď 1 under the null hypothesis (Vovk

and Wang, 2021). A large e-value indicates evidence against the null. To control the Type-I error

at level q, we reject the null if e ě 1{q. Since,

Ppe ě 1{qq ď qEres ď q, (4.4)

where the first inequality is due to Markov’s inequality and the second follows from the definition

of the e-value. e-values can be constructed from p-values using p-to-e calibrators, such as:

ejk “ p
´1{2
jk ´ 1, with Erejks “

ż 1

0
pp´1{2 ´ 1qdp “ 1, (4.5)

ejk “ κpκ´1
jk , where κ P p0, 1q, since Erejks “

ż 1

0
κpκ´1dp “ 1. (4.6)
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4.3.2 Inference Procedure for EFA Models

Constructing valid p-values or e-values for exploratory factor analysis (EFA) models is challenging

due to the presence of latent variables. To perform inference, the model must first be identifiable,

which requires fixing certain parameters. As demonstrated in earlier chapters, L1 rotation can

identify a sparse loading matrix when there are sufficiently many simple items, and Lp rotation

achieves superior mean squared error (MSE) performance under this setting compared to widely

used rotation methods. However, as shown in Study A.I in the Appendix, although Lp rotation

yields consistent estimators, the sampling distribution of zero loadings deviates significantly from

normality when the number of items is small. As a result, the central limit theorem does not

apply, and standard p-value construction methods based directly on the Lp-rotated loadings become

unreliable.

A natural solution is to leverage the consistency of the Lp-rotated loading matrix for sparse

structures to perform item selection. Once the structure is identified, a confirmatory factor ana-

lysis (CFA) model can be fitted to construct valid p-values. Initially, Algorithm 2 in Chapter 2

was proposed for this purpose. However, as discussed in the concluding remarks of that chapter,

obtaining well-calibrated confidence intervals requires two strong conditions: accurate model se-

lection for all J items (Condition C5) and identifiability of the loading matrix after the removal of

each row (Condition C6). Furthermore, the original procedure does not account for the uncertainty

introduced by model selection.

In this section, we introduce a more powerful inference procedure that relaxes previous as-

sumptions, enhances computational efficiency, and enables inference for both factor covariances

and unique variances. Specifically, instead of requiring accurate identification of the full loading

pattern (Condition C5), we demonstrate in Subsection 4.3.3 that it suffices to identify K simple

items using rank statistics, as defined in Subsection 4.3.4, to serve as reference variables. The

procedure for selecting these reference items is outlined in Algorithm 5.

Finally, in subsection 4.3.5, we address the challenge of inference after model selection—where

the same dataset is used for both selection and estimation—by employing a data-splitting strategy,

implemented in Algorithm 6, to ensure the validity of inference.

4.3.3 Minimal Information Condition for Identification

To quantify uncertainty in an EFA model, additional constraints must be imposed to ensure identi-

fiability (Koopmans and Reiersol, 1950; Anderson and Rubin, 1956; Bai and Li, 2012). We adopt a
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Algorithm 5 Anchor Item Selection Using Lp Rotation

Input: Observed data X and the value of p.

1. Estimate the initial loading matrix, Λ̂0, assuming orthogonal factors (Ω “ I) and imposing
additional constraints on the loading matrix to resolve rotational indeterminacy. In the
numerical study presented in this chapter, the initial loading matrix is constrained to be
lower triangular to ensure model identification.

2. Apply the Lp rotation criterion to Λ̂0.

3. Use the rank statistic defined in Equation (4.7) (Subsection 4.3.4) to identify one reference
item per factor. For the k-th latent factor, select the item j with the smallest Ljk among
j P t1, 2, . . . , Ju as the reference item, and set Γjk1 “ 0 for all k1 ‰ k. Denote the selected
item for the k-th factor as idk.

Ljk “ max
´

|λ̂jk1 | : k1 ‰ k
¯

, (4.7)

Output: The loading structure Γ.

Algorithm 6 Constructing p-Values or e-Values for the EFA Model

Input: Observed data X.

1. Split the data into two subsets, Xp1q and Xp2q.

2. Apply Algorithm 5 to Xp1q to obtain the loading structure Γp1q.

3. Use Γp1q on Xp2q to define the CFA model and compute p-values.

4. To ensure proper reference item selection, set pidkk1 “ 1 for all k1 ‰ k, ensuring that the zero
loadings of reference items are excluded from selection.

Output: The p-values for each loading. We can also construct e-values using (4.5) or (4.6).
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widely used identification condition with a long history in the factor analysis literature, as outlined

in Table 1c of Jöreskog (1969b). This condition specifies the minimal requirements for recovering

the parameters pΛ,Φq from the observed product ΛΦΛ1. It is particularly well-suited to sparse

loading matrices, where K simple items can be selected as reference variables. Additionally, we fix

the latent factors to have unit variance, a standard approach to resolving scale indeterminacy in

latent variable models. Formally, the identification condition is defined as follows:

1. Factor Covariance Constraint: Φii “ 1, for all 1 ď i ď K.

2. Loading Matrix Constraint: Let Λ “

»

—

–

Λ1

Λ2

fi

ffi

fl

, where Λ1 is a diagonal matrix in RKˆK .

After removing any row from Λ, two disjoint submatrices must remain, each of rank K.

This condition represents the minimal requirements for model identifiability. Due to the pres-

ence of rotational indeterminacy, at least K2 constraints must be imposed on pΛ,Φq. The K

simple items each have K ´ 1 zero loadings, contributing a total of KpK ´ 1q constraints. The

unit variance constraints on the diagonal entries of Φ provide additional K constraints, ensuring

the necessary total of K2 constraints.

The following theorem establishes that these conditions uniquely determine the CFA model:

Theorem 5 (Identification Condition for CFA Model). Suppose the above identification conditions

hold. Then, the solution for pΛ,Φ,Ωq is unique up to a column sign flip of Λ.

The proof is provided in the Appendix for Chapter 4 for completeness.

4.3.4 Simple Item Selection and Identification

According to Theorem 5, selecting one item for each latent factor is sufficient for identification.

While additional item selections may enhance estimation accuracy, they also increase the risk of

incorrect choices. To balance identifiability with selection reliability, we opt to select only one item

per factor, thereby satisfying the minimum identifiability condition while minimizing selection

errors by avoiding unnecessary reference items.

To systematically identify a simple item for each factor, we establish a selection criterion based

on loading magnitudes. Specifically, for a simple item j that loads exclusively on factor k, the

second-largest loading magnitude should ideally be zero, with its corresponding estimates being
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small. Accordingly, we identify simple items using the rank statistic in (4.7), where Ljk represents

the largest non-target loading magnitude for item j on factor k.

For each factor k, let Ljk
p1q

k ď Ljk
p2q

k ď . . . ď Ljk
pJq

k denote the order statistics of L1k, . . . , LJk.

We select the item idk “ jk
p1q

as the reference item for the k-th factor and constrain all non-target

loadings of the jk
p1q

-th item to zero in the confirmatory factor analysis (CFA) loading structure,

thereby enabling the construction of a p-value or e-value.

4.3.5 Data Splitting

Although we propose a method to select a loading structure under minimal requirements, a com-

mon issue arises: performing inference on the same dataset after selection leads to biased results.

To address this, we introduce Algorithm 6, which employs data splitting to mitigate this issue.

As demonstrated in Study A.IV in Appendix, when the same dataset is used for both loading

estimation and model fitting (1DS), the sampling distribution of each loading is non-normal, even

asymptotically. However, when data splitting is applied (2DS), the distribution approximately

follows a normal pattern.

4.4. FDR control for EFA model

In this section, we briefly review three popular FDR control methods developed in the regression

setting: the Benjamini-Hochberg (BH) procedure, the Benjamini-Yekutieli (BY) procedure, and

the BH procedure using e-values (eBH procedure). We then outline the steps to adapt these

methods for factor- or test-level FDR control in the EFA model.

4.4.1 Introduction to the Benjamini-Hochberg Procedure

One of the challenges in developing methods to control the False Discovery Rate (FDR) is that

the number of rejections, |S|, is not directly observable. The following ingenious method addresses

this issue by determining a rejection threshold that is linked to the number of rejections. The

Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995) aims to control the FDR at

level α at test-level by defining the rejection set:

SBH “

"

pj, kq : pjk ď
ŝq

JK

*

, where ŝ “ max
!

s P rJKs : ppsq ď
qs

JK

)

, (4.8)

84



where q denotes the level at which the FDR is controlled, pjk is the p-value associated with the null

hypothesis Hjk : λ˚
jk “ 0. Let pp1q ď pp2q ď . . . ď ppJKq denote the order statistics of the p-values.

This approach is equivalent to rejecting the ŝ-smallest p-values that are below the threshold ŝq
JK ,

thereby rejecting as many loadings as possible while satisfying the constraint. This is done under

the assumption:

C1 The p-value for any zero loading is independent of all other loadings, including both zero and

non-zero loadings.

This assumption implies that all zero loadings are mutually independent and independent of all

non-zero loadings.

Theorem 6 (Benjamini and Hochberg (1995), Theorem 1). Under condition C1, the Benjamini–Hochberg

procedure controls the false discovery rate (FDR) at level q.

The proof is provided in the Appendix for Chapter 4 for completeness.

Remark 6. To control the FDR at the factor level for a given factor k, we restrict the procedure

to the J p-values associated with factor k by defining the rejection set as:

Sk
BH “

"

j : pjk ď
ŝq

J

*

, where ŝ “ max
!

s P rJs : pkpsq ď
qs

J

)

.

Here, pk
p1q

ď pk
p2q

ď ¨ ¨ ¨ ď pk
pJq

denotes the order statistics of the J p-values associated with factor

k.

Remark 7. In general, Condition C1 is not satisfied by the EFA model. When two items load

on the same factor, their loadings are correlated because their estimation depends on the same

latent variable. This violation of independence undermines the assumptions required by the Ben-

jamini–Hochberg (BH) procedure. As demonstrated numerically in Study A.IV in the Appendix,

Condition C1 does not hold in practice. Therefore, the use of the BH procedure is not theoretically

guaranteed to control the FDR in this context.

We also present a relaxed version of Condition C1 under which the BH procedure may still be

valid, although this condition is generally difficult to verify in practice.

Remark 8. We can relax the independence assumption by requiring only positive regression de-

pendency on a subset S0 “ tpj, kq : λ˚
jk “ 0u (PRDS, Benjamini and Yekutieli (2001)). This means

that instead of assuming full independence, we assume that within the subset S0, a form of positive

dependency holds.
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C2 PRDS on S0: For any increasing set D, meaning that if x P D, then for any y ě x

(coordinatewise), we have y P D. Moreover, for each i P S0, the conditional probability

PpX P D | Xi “ xq is nondecreasing in x.

Theorem 7 (Benjamini and Yekutieli (2001), Theorem 1.2). Under condition C2, the Ben-

jamini–Hochberg procedure controls the false discovery rate (FDR) at level q.

The proof is provided in the Appendix for Chapter 4 for completeness.

Remark 9. PRDS ensures that within the subset S0, larger values of a random variable do not

decrease the probability of belonging to an increasing set. Intuitively, if a variable Xi increases,

the likelihood of the entire vector X belonging to D should also increase or remain the same. This

assumption is weaker than full independence but still provides sufficient structure to control false

discovery rates effectively. However, this assumption is hard to verify.

4.4.2 Introduction to the Benjamini-Yekutieli (BY) procedure

The independence assumption (C1) in the Benjamini-Hochberg (BH) procedure is not always

valid. This is particularly evident in the loading matrix of factor analysis. In the context of test-

level FDR control, the estimations of zero and non-zero loadings for the same item are dependent.

Similarly, for factor-level FDR control, as discussed in Study A.IV in Appendix in the next section,

the asymptotic behavior shows that the estimations of loadings for the same factor across different

items are also dependent.

To address the violation of assumption C1, we apply the Benjamini-Hochberg procedure with

a correction, which is also called BY procedure. To control the FDR at level q, the BH procedure

is conducted with an adjusted significance level:

q1 “
q

řJK
m“1

1
m

«
q

logpJKq ` 0.577
,

where 0.577 is the Euler-Mascheroni constant.

Theorem 8 (Benjamini and Yekutieli (2001), Theorem 1.3). Without any additional conditions,

the Benjamini–Hochberg procedure with q1 in place of q controls the false discovery rate (FDR) at

level q.

The proof is provided in the Appendix for Chapter 4 for completeness.
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Remark 10. To control the FDR at the factor level for a given factor k, we modify the significance

level q in the BH procedure from (6) using

q1
k “

q
řJ

m“1
1
m

«
q

logpJq ` 0.577
, (4.9)

since we only have J items to select.

4.4.3 False discovery rate (FDR) control that utilizes e-values

However, the correction factor
řJ

m“1
1
m « logpJq ` 0.577 grows large as the number of items in-

creases, making it ineffective as J Ñ 8. To address FDR control under arbitrary dependence

among estimated loadings, we propose using an e-value-based approach as a constraint-free altern-

ative to traditional p-value-based methods.

In this setting, the e-BH procedure serves as the analogue of the Benjamini–Hochberg (BH)

method, replacing p-values with e-values. It proceeds as follows: Suppose ejk is the e-value as-

sociated with the null hypothesis Hjk : λ˚
jk “ 0. Let ep1q ě ep2q ě . . . ě epJKq denote the order

statistics of the e-values. The rejection set is defined as

Sebh “

"

pj, kq : ejk ě
JK

qŝ

*

, where ŝ “ max

"

s P rJKs : epsq ě
JK

qs

*

(4.10)

If the latter set is empty, then we set ŝ “ 0 and do not select any hypotheses. In other words,

we want to reject ŝ hypotheses with the largest e-values, and each of their corresponding e-values

should be above the threshold JK
qŝ . We reject as many hypotheses as we can as long as this criterion

is satisfied, to maximize the power.

Theorem 9 (Wang and Ramdas (2022), Theorem 1). Without any additional conditions, the eBH

procedure controls the false discovery rate (FDR) at level q.

The proof is provided in the Appendix for Chapter 4 for completeness.

Remark 11. To control the FDR at the factor level for a given factor k, we modify the eBH

procedure in (4.10) as

Sebh “

"

j : ejk ě
J

qŝ

*

, where ŝ “ max

"

s P rJs : ekpsq ě
J

qs

*

. (4.11)

Here, ek
p1q

ě ek
p2q

ě ¨ ¨ ¨ ě ek
pJq

denote the order statistics of the J item loadings on factor k.

In summary, the properties of these methods are listed in Table 4.1 below.

87



Assumptions

BH Independence or PRDS

BH with Correction No

eBH No

Table 4.1: Properties of BH, BH with Correction, and eBH

4.5. Result

4.5.1 Study I: BH, BY, and eBH Procedures

In this section, we compare the traditional Benjamini-Hochberg (BH) procedure with two vari-

ations: BY (BH procedure with correction) and eBH (BH procedure utilizing e-values). The

e-values are constructed using equation (4.5).

To control the false discovery rate (FDR) at q “ 0.1, we apply the proposed procedures to

a dataset with a loading matrix of dimensions 60 ˆ 3. Each factor comprises 10 simple items,

along with 10 additional items that primarily load onto the factor but also exhibit secondary

cross-loadings. The primary loadings and cross-loadings are uniformly sampled from U r1, 2s and

U r0.2, 0.5s, respectively.

We consider four different sample sizes: N “ 200, 500, 1000, and 5000. For each sample size

and experimental condition, we conduct B “ 1000 independent replications. In terms of factor-

level correction, the adjusted significance level for the BY procedure is determined using J “ 60,

whereas for test-level FDR control, it is calculated using JK “ 180.

To examine the influence of initial item screening on FDR control, we compare the following

two settings:

1. Oracle setting: In this scenario, the first three simple items are designated as reference

items, ensuring zero selection error. Consequently, the resulting p-values are expected to be

symmetrically distributed around zero.

2. Data-driven setting: Here, p-values and e-values are computed using Algorithm 6. Ad-

ditionally, we record selection accuracy during the initial item screening stage to assess its

impact on FDR control.

Evaluation Criteria:

We evaluate the proposed method based on three criteria under both test-level and factor-level
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FDR control:

1. Selection Accuracy: For factor-level FDR control, the selection accuracy for the k-th latent

factor is defined as:

ACCk “

B
ÿ

b“1

1
tid

pbq

k is a simple item for factor ku

B
, (4.12)

where id
pbq

k denotes the selected reference item for the k-th factor in the b-th replication.

The overall reference item selection accuracy for test-level FDR control is given by the prob-

ability that the algorithm correctly identifies all K simple items, with one item corresponding

to each factor, as reference items:

ACC “

B
ÿ

b“1

śK
k“1 1tid

pbq

k is a simple item for factor ku

B
. (4.13)

2. FDR Control: The factor-level FDR for the k-th factor is defined as the proportion of

incorrectly selected irrelevant items for factor k:

zFDRk “

B
ÿ

b“1

|tj P S
pbq

k : λ˚
jk “ 0u|

|S
pbq

k | _ 1
, (4.14)

where S
pbq

k represents the item selection set for factor k in the b-th replication.

The test-level FDR is estimated as the proportion of mistakenly selected zero-loadings across

the entire loading matrix:

zFDR “

B
ÿ

b“1

|tpj, kq P Spbq : λ˚
jk “ 0u|

|Spbq| _ 1
, (4.15)

where Spbq denotes the set of selected loadings in the b-th replication.

3. Power: The factor-level power for the k-th factor is computed as the proportion of correctly

identified relevant items for factor k:

{Powerk “

B
ÿ

b“1

|tj P S
pbq

k : λ˚
jk ‰ 0u|

|tj : λ˚
jk ‰ 0u| _ 1

, (4.16)

where S
pbq

k denotes the item selection set for the k-th factor in the b-th replication.

4. Power: The factor-level power for the k-th factor is defined as the proportion of relevant
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items correctly selected for that factor:

{Powerk “

B
ÿ

b“1

|tj P S
pbq

k : λ˚
jk ‰ 0u|

|tj : λ˚
jk ‰ 0u| _ 1

, (4.17)

where S
pbq

k denotes the set of selected items for the k-th factor in the b-th replication.

Similarly, the test-level power is computed as the proportion of nonzero loadings correctly

identified across the entire loading matrix:

{Power “

B
ÿ

b“1

|tpj, kq P Spbq : λ˚
jk ‰ 0u|

|tpj, kq : λ˚
jk ‰ 0u| _ 1

, (4.18)

where Spbq represents the set of selected loadings in the b-th replication.

BH BY eBH

N FDR power FDR power FDR power

200 0.047 0.928 0.009 0.862 0.002 0.810

500 0.049 0.991 0.009 0.973 0.002 0.952

1000 0.049 1.000 0.008 0.998 0.002 0.995

5000 0.048 1.000 0.008 1.000 0.002 1.000

Table 4.2: Results of test-level FDR control using BH, BY, and eBH with oracle item screening
information.

BH BY eBH

N ACC FDR power FDR power FDR power

200 0.917 0.048 0.844 0.009 0.768 0.002 0.722

500 0.999 0.046 0.954 0.007 0.902 0.002 0.858

1000 1.000 0.044 0.992 0.007 0.976 0.002 0.957

5000 1.000 0.046 1.000 0.008 1.000 0.002 1.000

Table 4.3: Results of test-level FDR control using BH, BY, and eBH using selected reference items.

Test-Level FDR Control: From Table 4.2 and Table 4.3, we observe that although the

assumptions required for the BH procedure to control FDR are not fully satisfied, it still maintains

the FDR at the target level of 0.1. However, we believe this is a coincidence rather than a reliable

property of the method.

Comparing the two settings, we find that the controlled FDR does not differ significantly

between them. However, the power is lower in the data-driven setting than in the oracle setting.
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This result is expected, as the data-driven setting introduces item screening errors, and the p-values

are constructed primarily based on only half of the available data points.

Furthermore, we observe that the eBH procedure is more conservative than the BY procedure

in controlling FDR. While eBH achieves an extremely low FDR, this comes at the cost of reduced

power compared to the BY procedure. To achieve at least 95% power while maintaining effective

FDR control, a sample size of N “ 1000 is required for both the BY and eBH procedures.

BH BY eBH

k N FDR power FDR power FDR power

k “ 1 200 0.052 0.973 0.011 0.938 0.002 0.892

500 0.053 0.999 0.012 0.997 0.002 0.992

1000 0.054 1.000 0.012 1.000 0.002 1.000

5000 0.055 1.000 0.012 1.000 0.002 1.000

k “ 2 200 0.043 0.916 0.010 0.852 0.002 0.787

500 0.043 0.991 0.009 0.973 0.002 0.943

1000 0.046 1.000 0.010 0.999 0.003 0.996

5000 0.043 1.000 0.008 1.000 0.002 1.000

k “ 3 200 0.045 0.899 0.010 0.830 0.002 0.766

500 0.046 0.985 0.010 0.962 0.002 0.929

1000 0.045 0.999 0.009 0.996 0.002 0.990

5000 0.043 1.000 0.010 1.000 0.002 1.000

Table 4.4: Comparison of factor-level FDR control using BH, BY, and eBH with oracle item
screening information.

BH BY eBH

N ACC FDR power FDR power FDR power

k “ 1 200 0.974 0.049 0.908 0.011 0.851 0.002 0.801

500 1 0.050 0.985 0.010 0.962 0.002 0.929

1000 1 0.047 0.999 0.010 0.996 0.002 0.990

5000 1 0.050 1.000 0.011 1.000 0.003 1.000

k “ 2 200 0.973 0.046 0.818 0.011 0.743 0.002 0.687

500 0.999 0.040 0.944 0.007 0.892 0.001 0.834

1000 1 0.039 0.990 0.008 0.973 0.002 0.946

5000 1 0.043 1.000 0.010 1.000 0.002 1.000

k “ 3 200 0.969 0.045 0.816 0.010 0.745 0.002 0.696

500 1 0.045 0.936 0.009 0.880 0.001 0.823

1000 1 0.044 0.989 0.009 0.970 0.002 0.941

5000 1 0.045 1.000 0.009 1.000 0.002 1.000

Table 4.5: Comparison of factor-level FDR control using BH, BY, and eBH with selected reference
items.
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Results for Factor-Level FDR Control: From Table 4.4 and Table 4.5, we observe a similar

pattern in factor-level FDR control, where the eBH procedure is more conservative than the BY

procedure. To achieve at least 95% power, a minimum sample size of N “ 1000 is required.

4.5.2 Study II: selection stability for BH, BY, and eBH

We evaluate the selection stability across 1000 different data splits. The true loading matrix is the

same as in Study I, with dimensions 60 ˆ 3, where 30 rows contain cross-loadings.

Figures 4.1 and 4.2 present two 4 ˆ 3 grids of histograms, illustrating the stability of selection

proportions across varying sample sizes (N “ 200, 500, 1000, 5000) and selection methods (BH,

BY, eBH), where e-values are constructed using equation (4.5). Each histogram represents the

distribution of selection probabilities across B “ 1000 data splits.

Evaluation Criteria For the pj, kq-th entry in the loading matrix, the selection probability is

defined as follows:

For test-level FDR control:

pjk “

řB
b“1 1tpj, kq P Spbqu

B
(4.19)

For factor-level FDR control:

pjk “

řB
b“1 1tj P S

pbq

k u

B
(4.20)

Shannon Entropy We measure the uncertainty of selection for each loading using average

Shannon entropy. The maximum entropy value is 1, occurring when the selection probability is

0.5, while the minimum entropy is 0, achieved when the selection probability is either 0 or 1. The

entropy is computed as:

Shannon Entropy “

ř

j

ř

k r´pjk log2 pjk ´ p1 ´ pjkq log2p1 ´ pjkqs

J ¨ K
. (4.21)

Results. As the sample size increases, the histograms exhibit more concentrated distributions

at 0 and 1, indicating greater selection stability. For extremely large samples (N “ 5000), the BY

and eBH procedures achieve stable selection. It is not surprising that the BH method is less stable,

as it selects more false positives, making these selections more susceptible to noise.
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Figure 4.1: Histograms of selection probabilities for different test-level FDR control methods (BH,
BY, eBH) across varying sample sizes (N “ 200, 500, 1000, 5000). Each subplot shows the distri-
bution of selection proportions, highlighting the proportion of stable selections (values close to 0
or 1). Stability increases with larger sample sizes, particularly for the BY and eBH methods.
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Figure 4.2: Histograms of selection probabilities for different factor-level FDR control methods
(BH, BY, eBH) across varying sample sizes (N “ 200, 500, 1000, 5000). Each subplot shows the
distribution of selection proportions, highlighting the proportion of stable selections (values close
to 0 or 1). Stability increases with larger sample sizes, particularly for the BY and eBH methods.
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4.6. An Application to the Big Five Personality Test

We use the same dataset as in section 2.6, applying our item selection method to the Big Five

Factor Markers from the International Personality Item Pool. This dataset consists of 50 items,

with 10 per personality factor: Extraversion (E), Emotional Stability (ES), Agreeableness (A),

Conscientiousness (C), and Intellect/Imagination (I). Each item is rated on a five-point Likert

scale, treated as continuous. To reduce measurement noninvariance, we focus on British males

(N “ 609) and set the number of factors to K “ 5.

Although the Big Five Personality Test is designed to measure a single personality trait per item,

empirical data often report cross-loadings due to ambiguous item wording. To better understand

the loading structure, we apply our proposed item selection method to control both factor-level

and test-level false discovery rates (FDR) at q “ 0.1. Specifically, for factor-level FDR control at

q “ 0.1, with 10 simple items intended to load primarily on each factor, if no additional items

exhibit cross-loadings, we expect around 1 of the selected items per factor to be insignificant. This

results in approximately 5 selected insignificant loadings for the overall matrix.

Results Table 4.6 provides an overview of the item selection results for Study II. Among the

50 loadings suggested by the answer key, only the eBH procedure at the factor-level FDR control

excluded one item. Specifically, for the factor Openness to Experience, the item ‘O9+ I spend time

reflecting on things’ was left out.

Number of Selection BH BY eBH

Text-level FDR control 99 77 66

Factor-level FDR control 100 82 62(-1)

Table 4.6: Overview of Results for Study IV. If any of the 50 loadings in the answer key, which were
designed by the researcher, are omitted, they are included in brackets with a negative number.

Comparing the selection tendencies of different procedures, we observe that the BH procedure

selects the largest number of items, followed by the BY procedure, while the eBH procedure selects

the fewest. Since we control the FDR at q “ 0.1, we expect approximately 8 falsely selected

loadings under the BY procedure and around 7 under the eBH procedure. If all 50 items are

simple items, as specified in the answer key, the maximum number of loadings we should select is

58. However, all methods exceed this number, indicating the presence of meaningful cross-loadings

in the Big Five questionnaire.

Tables 4.7 through 4.12 list all items selected by each FDR control method, in addition to those
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listed in the answer key. For items that appear in the answer key but are not selected, we place

them in brackets to indicate missed selections.

In Table 4.7, we observe that many items selected by the BH procedure do not intuitively

reflect meaningful relationships. For instance, the BH procedure selects two Conscientiousness

items under Extraversion: ‘C2 – I leave my belongings around.’ and ‘C7+ – I like order.’

Furthermore, the BH procedure selects a total of 99 and 100 items under test-level and factor-

level FDR control, respectively. On average, each item has two selected loadings, suggesting that

the underlying assumptions of the procedure may not hold in real-world settings.

Although the BY procedure selects fewer items than the BH procedure, some selected items

appear conceptually irrelevant. For example, in Table 4.8, the item ‘O4 – I am not interested in

abstract ideas’ is selected under Agreeableness, and in Table 4.11, the item ‘A7 – I am not really

interested in others’ is selected under Conscientiousness.

In contrast, the eBH procedure, shown in Tables 4.9 and 4.12, is highly conservative and

selects the fewest items, yet it achieves the highest selection quality with minimal false positives.

All selected items align well with theoretical expectations, making eBH the most precise procedure

among the three.

E N A C O

1 N2+I am re-

laxed most of

the time.

E2-I don’t talk a

lot.

E3+I feel com-

fortable around

people.

E8-I don’t

like to draw

attention to

myself.

E6-I have little to

say.

2 N3-I worry

about things.

E3+I feel com-

fortable around

people.

E5+I start con-

versations.

N5-I am

easily dis-

turbed.

N5-I am easily

disturbed.

3 N4+I seldom

feel blue.

A1-I feel little

concern for oth-

ers.

E8-I don’t like to

draw attention to

myself.

O6-I do not

have a good

imagina-

tion.

N10-I often feel

blue.

4 N10-I often

feel blue.

A3-I insult

people.

N1-I get stressed

out easily.

A3-I insult

people.

Table 4.7: Result for test-level FDR control by BH
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E N A C O

5 A2+I am

interested in

people.

C4-I make a mess

of things.

N3-I worry about

things.

C1+I am always

prepared.

6 A3-I insult

people.

C8-I shirk my du-

ties.

N6-I get upset

easily.

C3+I pay atten-

tion to details.

7 A5-I am not

interested in

other people’s

problems.

O2-I have diffi-

culty understand-

ing abstract ideas.

C2-I leave my be-

longings around.

C7+I like order.

8 A7-I am not

really in-

terested in

others.

O4-I am not inter-

ested in abstract

ideas.

C3+I pay atten-

tion to details.

C10+I am exact-

ing in my work.

9 A10+I make

people feel at

ease.

O7+I am quick

to understand

things.

C7+I like order.

10 C2-I leave my

belongings

around.

O9+I spend time

reflecting on

things.

C8-I shirk my du-

ties.

11 C7+I like or-

der.

C9+I follow a

schedule.

12 O6-I do not

have a good

imagination.

C10+I am exact-

ing in my work.

13 O3+I have a vivid

imagination.

14 O4-I am not inter-

ested in abstract

ideas.

Table 4.7: Result for test-level FDR control by BH
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E N A C O

15 O9+I spend time

reflecting on

things.

16 O10+I am full of

ideas.

Table 4.7: (continued) Result for test-level FDR control by BH

E N A C O

1 N2+I am relaxed
most of the time.

E2-I don’t talk a
lot.

N3-I worry about
things.

C1+I am always
prepared.

2 N4+I seldom feel
blue.

A1-I feel little
concern for oth-
ers.

N6-I get upset
easily.

C3+I pay atten-
tion to details.

3 N10-I often feel
blue.

A3-I insult
people.

C8-I shirk my du-
ties.

C10+I am exact-
ing in my work.

4 A2+I am inter-
ested in people.

C4-I make a mess
of things.

C9+I follow a
schedule.

5 A7-I am not
really interested
in others.

C8-I shirk my du-
ties.

O4-I am not inter-
ested in abstract
ideas.

6 A10+I make
people feel at
ease.

O2-I have diffi-
culty understand-
ing abstract ideas.

O9+I spend time
reflecting on
things.

7 C2-I leave my be-
longings around.

O4-I am not inter-
ested in abstract
ideas.

8 C7+I like order. O7+I am quick
to understand
things.

9 O6-I do not have
a good imagina-
tion.

O9+I spend time
reflecting on
things.

Table 4.8: Result for test-level FDR control by BY
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E N A C O

1 N10-I often feel
blue.

E2-I don’t talk a
lot.

N3-I worry about
things.

C3+I pay atten-
tion to details.

2 A2+I am inter-
ested in people.

A3-I insult
people.

N6-I get upset
easily.

C10+I am exact-
ing in my work.

3 A7-I am not
really interested
in others.

C4-I make a mess
of things.

O9+I spend time
reflecting on
things.

4 A10+I make
people feel at
ease.

C8-I shirk my du-
ties.

5 C7+I like order. O2-I have diffi-
culty understand-
ing abstract ideas.

6 O4-I am not inter-
ested in abstract
ideas.

Table 4.9: Result for test-level FDR control by eBH

E N A C O

1 N1-I get

stressed out

easily.

E2-I don’t talk a

lot.

E4-I keep in the

background.

E8-I don’t

like to draw

attention to

myself.

E3+I feel com-

fortable around

people.

2 N2+I am re-

laxed most of

the time.

E3+I feel com-

fortable around

people.

N2+I am relaxed

most of the time.

A7-I am

not really

interested

in others.

E9+I don’t mind

being the center

of attention.

3 N4+I seldom

feel blue.

A3-I insult

people.

N3-I worry about

things.

O5+I have

excellent

ideas.

N5-I am easily

disturbed.

4 N6-I get upset

easily.

A7-I am not

really interested

in others.

N6-I get upset

easily.

N6-I get upset

easily.

5 N10-I often

feel blue.

C4-I make a mess

of things.

N10-I often feel

blue.

N9-I get irritated

easily.

Table 4.10: Result for factor-level FDR control by BH
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E N A C O

6 A2+I am

interested in

people.

C7+I like order. C7+I like order. A3-I insult

people.

7 A3-I insult

people.

C8-I shirk my du-

ties.

C8-I shirk my du-

ties.

A5-I am not

interested in

other people’s

problems.

8 A5-I am not

interested in

other people’s

problems.

O2-I have diffi-

culty understand-

ing abstract ideas.

C10+I am exact-

ing in my work.

C1+I am always

prepared.

9 A7-I am not

really in-

terested in

others.

O3+I have a vivid

imagination.

O4-I am not inter-

ested in abstract

ideas.

C3+I pay atten-

tion to details.

10 A9+I feel oth-

ers’ emotions.

O7+I am quick

to understand

things.

O9+I spend time

reflecting on

things.

C10+I am exact-

ing in my work.

11 A10+I make

people feel at

ease.

O9+I spend time

reflecting on

things.

12 C2-I leave my

belongings

around.

13 C7+I like or-

der.

14 O5+I have ex-

cellent ideas.

15 O6-I do not

have a good

imagination.

Table 4.10: Result for factor-level FDR control by BH
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E N A C O

16 O10+I am full

of ideas.

Table 4.10: (continued) Result for factor-level FDR control by BH

E N A C O

1 N10-I often feel
blue.

E2-I don’t talk a
lot.

N3-I worry about
things.

A7-I am
not really
interested
in others.

N5-I am easily
disturbed.

2 A2+I am inter-
ested in people.

E3+I feel com-
fortable around
people.

N6-I get upset
easily.

O5+I have
excellent
ideas.

A5-I am not
interested in
other people’s
problems.

3 A5-I am not
interested in
other people’s
problems.

A3-I insult
people.

N10-I often feel
blue.

C3+I pay atten-
tion to details.

4 A7-I am not
really interested
in others.

C4-I make a mess
of things.

C7+I like order. C10+I am exact-
ing in my work.

5 A9+I feel others’
emotions.

C8-I shirk my du-
ties.

C8-I shirk my du-
ties.

6 A10+I make
people feel at
ease.

O2-I have diffi-
culty understand-
ing abstract ideas.

C10+I am exact-
ing in my work.

7 C2-I leave my be-
longings around.

O7+I am quick
to understand
things.

O9+I spend time
reflecting on
things.

8 C7+I like order. O9+I spend time
reflecting on
things.

9 O5+I have excel-
lent ideas.

10 O6-I do not have
a good imagina-
tion.

11 O10+I am full of
ideas.

Table 4.11: Result for factor-level FDR control by BY
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E N A C O

1 N10-I often feel
blue.

A3-I insult
people.

N3-I worry about
things.

C3+I pay atten-
tion to details.

2 A2+I am inter-
ested in people.

C4-I make a mess
of things.

N6-I get upset
easily.

(O9+I spend
time reflecting on
things.)

3 A5-I am not
interested in
other people’s
problems.

O9+I spend time
reflecting on
things.

C7+I like order.

4 A7-I am not
really interested
in others.

O9+I spend time
reflecting on
things.

5 A10+I make
people feel at
ease.

Table 4.12: Result for factor-level FDR control by eBH

4.7. Concluding Remarks

In this chapter, we developed a method for computing p-values in EFA models by utilizing the

Lp rotation criterion to achieve model identification under minimal requirements. Based on these

p-values, we proposed a data-driven approach for controlling the False Discovery Rate (FDR),

offering a statistically rigorous framework for selecting significant loadings at both the test and

factor levels. These contributions address key challenges in uncertainty quantification and item

selection, thereby bridging an important gap in the existing literature.

Among the three commonly used FDR control procedures, we find that only the BH with

correction and the eBH procedure can be applied to EFA models with theoretical guarantees.

In contrast, the standard BH procedure, which assumes independence among test statistics, is

violated in the EFA setting, as demonstrated by our numerical simulations. Additionally, the

positive regression dependency on each one from a subset (PRDS) assumption is difficult to verify,

further limiting its applicability.

One limitation of our current work is that we only consider a finite number of items and do not

extend our analysis to the high-dimensional factor analysis setting. A deeper investigation into the

covariance structure of the loading matrix in high-dimensional scenarios, as explored in Bai and

Li (2012), could provide a foundation for extending our theoretical framework.

One potential future direction is to explore methods for stabilizing the results. As demonstrated
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in Study II, a large sample size is necessary to achieve consistent selection results. For smaller

sample sizes, we could employ techniques such as multiple data splitting and aggregating the

results. For example, we could apply the inclusion rate (Dai et al., 2023) or aggregate e-values

simply by averaging them, as suggested in Ren and Barber (2024).

Finally, as with any simulation study, our analysis is inherently limited by the number of

scenarios we can examine. While our results provide strong empirical support for the proposed

methods, future research should explore a broader range of simulation settings to further validate

the robustness of our approach.
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Appendix for Chapter 4

A4.1. Proof of Theorem 5

Proof. Suppose there exist two solutions, pΛ,Φ,Ωq and pΛ̃, Φ̃, Ω̃q, that satisfy the identification

conditions, with the constraint that signpΛ1q “ signpΛ̃1q. Given that

ΛΦΛ1 ` Ω “ Λ̃Φ̃Λ̃1 ` Ω̃
def
“ Σ,

we aim to prove that pΛ,Φ,Ωq “ pΛ̃, Φ̃, Ω̃q.

1. Equality of Ω: Following the proof of Theorem 5.1 in Anderson and Rubin (1956), we extend

the result from the special case where Φ “ I to the general condition. This generalizes the

rotation from the orthogonal case to the oblique case. Since the diagonal entries of ΛΦΛ1

and Λ̃Φ̃Λ̃1 correspond to the off-diagonal entries of Σ, it suffices to show that

diagpΛΦΛ1q “ diagpΛ̃Φ̃Λ̃1q.

By the identification condition on Λ, we have J ě 2K ` 1. Let

Λ “

»

—

—

—

—

—

—

—

—

—

–

S1

λK`1

S2

S3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where S1 and S2 are nonsingular matrices, and λK`1 is the pK`1q-th row. We can rearrange

the rows of Λ such that the first K rows and the pK`2q-th to p2K`1q-th rows are nonsingular.

The corresponding partitioning holds for Λ̃. Expanding ΛΦΛ1:

ΛΦΛ1 “

»

—

—

—

—

—

—

—

—

—

–

S1ΦS1
1 S1Φλ1

K`1 S1ΦS1
2 S1ΦS1

3

λK`1ΦS1
1 λK`1Φλ1

K`1 λK`1ΦS1
2 λK`1ΦS1

3

S2ΦS1
1 S2Φλ1

K`1 S2ΦS1
2 S2ΦS1

3

S3ΦS1
1 S3Φλ1

K`1 S3ΦS1
2 S3ΦS1

3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Define:

A “ S1Φλ1
K`1 “ S̃1Φ̃λ̃1

K`1,

B “ S1ΦS1
2 “ S̃1Φ̃S̃1

2,

C “ λK`1ΦS1
2 “ λ̃K`1Φ̃S̃1

2.

Since B is nonsingular, the determinant of a pK ` 1q ˆ pK ` 1q submatrix must be zero:

0 “

∣∣∣∣∣∣∣
A B

λK`1Φλ1
K`1 C

∣∣∣∣∣∣∣ “ p´1qpm`1q`1λK`1Φλ1
K`1|B| ` fpA,Cq.

Similarly,

0 “

∣∣∣∣∣∣∣
A B

λ̃K`1Φ̃λ̃1
K`1 C

∣∣∣∣∣∣∣ “ p´1qpm`1q`1λ̃K`1Φ̃λ̃1
K`1|B| ` fpA,Cq.

Since detpBq ‰ 0, it follows that

λK`1Φλ1
K`1 “ λ̃K`1Φ̃λ̃1

K`1.

Applying this argument to all diagonal entries yields

diagpΛΦΛ1q “ diagpΛ̃Φ̃Λ̃1q.

2. Uniqueness of Λ and Φ: Given ΛΦΛ1 “ Λ̃Φ̃Λ̃1, consider the block structure:

ΛΦΛ1 “

»

—

–

Λ1ΦΛ1
1 Λ1ΦΛ1

2

Λ2ΦΛ1
1 Λ2ΦΛ1

2

fi

ffi

fl

“

»

—

–

Λ̃1Φ̃Λ̃1
1 Λ̃1Φ̃Λ̃1

2

Λ̃2Φ̃Λ̃1
1 Λ̃2Φ̃Λ̃1

2

fi

ffi

fl

.

From the diagonal elements, we obtain

λ2
1,iiΦii “ λ̃2

1,iiΦ̃ii, i “ 1, . . . ,K.

By the restrictions on Φ, we have λ2
1,ii “ λ̃2

1,ii for i “ 1, ...,K. Considering signpΛ1q “

signpΛ̃1q, we conclude that Λ1 “ Λ̃1.

Since both Λ and Λ̃ span the same column space, there exists a unique full-rank transform-

ation matrix T P RKˆK such that Λ “ Λ̃T . From Λ1 “ Λ̃1T , we deduce that T “ I,
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implying Λ “ Λ̃.

Finally, using Λ1ΦΛ1
1 “ Λ̃1Φ̃Λ̃1

1 and Λ1 “ Λ̃1, we obtain:

Φ “ Λ´1
1 Λ̃1Φ̃Λ̃1

1Λ
´J
1 “ Φ̃.

A4.2. Proof of Theorem 6

The FDR is defined as:

FDR “ E

˜

|tpj, kq P S : λ˚
jk “ 0u|

|S| _ 1

¸

.

Expanding this expression, we have:

FDR “

JK
ÿ

s“1

E

˜

|tpj, kq P S : λ˚
jk “ 0u|

s
1t|S|“su

¸

“

JK
ÿ

s“1

1

s
E

¨

˝

ÿ

λ˚
jk“0

1tpjkď
sq
JK

u1t|S|“su

˛

‚.

To further analyze the joint event 1tpjkď
sq
JK

,|S|“su, consider its meaning within the BH proced-

ure. It corresponds to rejecting the loading pj, kq as zero while rejecting s loadings in total. This

event can be decomposed into two sub-events:

E1 The zero loading λ˚
jk is associated with a p-value pjk ď

sq
JK .

E2 Among the remaining JK ´ 1 loadings, s ´ 1 have p-values below or equal to the threshold

sq
JK , while JK ´ s exceed the threshold. We denote this event as t|S´jk| “ s ´ 1u.

By assumption C1, events E1 and E2 are independent. Therefore, we can rewrite the prob-

ability as:

Pppjk ď
sq

JK
, |S| “ sq “ Pppjk ď

sq

JK
q ¨ Pp|S´jk| “ s ´ 1q.

Substituting this back, the FDR becomes:

FDR “

JK
ÿ

s“1

1

s

ÿ

λ˚
jk“0

Pppjk ď
sq

JK
q ¨ Pp|S´jk| “ s ´ 1q.

Using the uniform distribution property of p-values for true null hypotheses:

1

s
Pppjk ď

sq

JK
q “

q

JK
.
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Thus,

FDR “

JK
ÿ

s“1

ÿ

λ˚
jk“0

q

JK
¨ Pp|S´jk| “ s ´ 1q.

Simplifying further:

FDR “
q

JK

ÿ

λ˚
jk“0

˜

JK
ÿ

s“1

Pp|S´jk| “ s ´ 1q

¸

.

Since the probabilities sum to 1:

JK
ÿ

s“1

Pp|S´jk| “ s ´ 1q “ 1.

Finally,

FDR “
q

JK

ÿ

λ˚
jk“0

1 ď q.

This completes the proof that the BH procedure controls the FDR at level q.

A4.3. Proof of Theorem 7

Proof. Rearrange (A4.2):

FDR “

JK
ÿ

s“1

1

s
E

¨

˝

ÿ

λ˚
jk“0

1tpjkď
sq
JK

u1t|S|“su

˛

‚

“

JK
ÿ

s“1

ÿ

λ˚
jk“0

1

s
P
´

pjk ď
sq

JK
, |S| “ s

¯

“

JK
ÿ

s“1

ÿ

λ˚
jk“0

1

s
Pppjk ď

sq

JK
qP

´

|S| “ s | pjk ď
sq

JK

¯

ď
ÿ

λ˚
jk“0

q

JK

JK
ÿ

s“1

P
´

|S´jk| “ s ´ 1 | pjk ď
sq

JK

¯

.

If we can guarantee that

JK
ÿ

s“1

P
´

|S´jk| “ s ´ 1 | pjk ď
sq

JK

¯

ď 1, (4.22)
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then we obtain

FDR ď
#tλ˚

jk “ 0u

JK
q ď q.

Now we prove that Condition C2 implies (4.22). We proceed by induction. First, when s “ 1,

we have
ÿ

s“1

P
´

|S´jk| “ s ´ 1 | pjk ď
sq

JK

¯

ď P
´

|S´jk| ď s | pjk ď
q

JK

¯

.

Define:

P
´

|S´jk| ď s ´ 1 | pjk ď
sq

JK

¯

` P
ˆ

|S´jk| “ s | pjk ď
ps ` 1qq

JK

˙

C2
ďP

ˆ

|S´jk| ď s ´ 1 | pjk ď
ps ` 1qq

JK

˙

` P
ˆ

|S´jk| “ s | pjk ď
ps ` 1qq

JK

˙

ďP
ˆ

|S´jk| ď s | pjk ď
ps ` 1qq

JK

˙

.

where the condition C2 satisfied for p-values due to the event

t|S´jk| ď s ´ 1u “ tp´jk
pJK´1q

ě q, p´jk
pJK´2q

ě
pJK ´ 1qq

JK
, ...p´jk

psq
ě

ps ` 1qq

JK
u, (4.23)

where p´jk
pJK´1q

ě p´jk
pJK´2q

ě ... ě p´jk
psq

is the JK ´ s largest vales among all JK p-values except

for pjk Since the set rq,8q ˆ r
pJK´1qq

JK ,8q ˆ ... ˆ ˆr
ps`1qq
JK ,8q is a increasing set, by C2, we have

P p|S´jk| ď s ´ 1|pjk “ q1q ď P p|S´jk| ď s ´ 1|pjk “ q2q, if q1 ď q2 (4.24)

By Lehmann (1966), we have

Pp|S´jk| ď s ´ 1|pjk ď
sq

JK
q ď Pp|S´jk| ď s ´ 1|pjk ď

ps ` 1qq

JK
q (4.25)

A4.4. Proof of Theorem 8

Proof. Without assumption C1, events E1 and E2 are no longer independent. Therefore, the

original FDR expression in (A4.2) must be modified as follows:

FDR “

JK
ÿ

s“1

1

s

ÿ

λ˚
jk“0

P
ˆ

pjk ď
sq1

JK
, |S´jk| “ s ´ 1

˙
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“

JK
ÿ

s“1

1

s

ÿ

λ˚
jk“0

s
ÿ

m“1

P
ˆ

pm ´ 1qq1

JK
ď pjk ď

mq1

JK
, |S´jk| “ s ´ 1

˙

“
ÿ

λ˚
jk“0

JK
ÿ

m“1

JK
ÿ

s“m

1

s
P
ˆ

pm ´ 1qq1

JK
ď pjk ď

mq1

JK
, |S´jk| “ s ´ 1

˙

ď
ÿ

λ˚
jk“0

JK
ÿ

m“1

JK
ÿ

s“1

1

m
P
ˆ

pm ´ 1qq1

JK
ď pjk ď

mq1

JK
, |S´jk| “ s ´ 1

˙

ď
ÿ

λ˚
jk“0

JK
ÿ

m“1

1

m
P
ˆ

pm ´ 1qq1

JK
ď pjk ď

mq1

JK

˙

“
|tλ˚

jk “ 0u|

JK
¨ q1

JK
ÿ

m“1

1

m

«
|tλ˚

jk “ 0u|

JK
¨ q.

A4.5. Proof of Theorem 9

Proof. We notice that the false discovery proportion of the e-BH procedure satisfies:

FDP
def
“

|tpj, kq P S, λ˚
jk “ 0u|

|S| _ 1
“

ÿ

pj,kq:λ˚
jk“0

1tejk ě JK
qŝ u

ŝ _ 1
ď

ÿ

pj,kq:λ˚
jk“0

ejkq

JK
(4.26)

where the inequality holds because when 1tejk ě JK
qŝ u is true, we have

qŝejk
JK ě 1. Therefore, when

C3 is satisfied, we have:

FDR “ EFDP ď p

ř

pj,kq:λ˚
jk“0 Eejk
JK

qq ď q

A4.6. Study A.I: The Sampling Distribution of Estimation Errors

in L1 and L0.5 Rotation

In this study, we examine the sampling distribution of the L1 and L0.5 rotated loading matrices.

Our primary objective is to demonstrate that, due to the non-smooth nature of the rotation criteria,

the central limit theorem (CLT) may not always hold for Lp rotations.
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Settings To investigate this, we conducted 10,000 simulations under the settings described in

Table 4.13. For each setting, we consider five sample sizes: N “ 100, 200, 500, 1000, and 5000.

In each simulation, we generate a new dataset and compute the initial orthogonal solution using

confirmatory factor analysis (CFA), where the loading matrix is constrained to an upper triangular

structure with fixed zeros, and the factor covariance matrix is set to the identity matrix. We then

apply either the L1 or L0.5 rotation criterion to transform the initial loading matrix. The estimation

error is then analyzed by comparing the estimated loadings with their true values. If the CLT holds,

the sampling distribution of these errors should be symmetric around zero.

Loading Matrix Item Unique Variances Factor Covariance

Item 1-12 Item 1-12

F1 F2 F3 F1 F2 F3

1 1 0 0 1 1

2 0 1 0 1 0.021 1

3 0 0 1 1 0.502 0.274 1

4 1 0 0 1

5 0 1 0 1

6 0 0 1 1

7 1 0 0 1

8 0 1 0 1

9 0 0 1 1

10 1 0.2 0.3 1

11 0.3 1 0.2 1

12 0.2 0.3 1 1

Table 4.13: Parameters in Simulation Study A.I.

Results Figures 4.3, 4.4, 4.5, and 4.6 present the results of the simulations. The sample size is

indicated at the top of each column, while the row labels on the left correspond to the location

of the loadings and their respective values. As expected, the estimation error decreases as sample

size increases, consistent with Theorem 1 in Chapter 2. However, for many zero loadings, such as

Lr1, 2s and Lr2, 1s in Figure 4.3 and Lr1, 2s and Lr3, 1s in Figure 4.5, the sampling distribution

deviates significantly from normality—it is non-symmetric and highly concentrated around zero.

Notably, the L1 rotation exhibits a more pronounced asymmetry, whereas the L0.5 rotation

yields a distribution that is heavily centered at zero, suggesting its stronger ability to recover

zero loadings. In contrast, for nonzero loadings—including both primary loadings and smaller

cross-loadings—the sampling distribution appears approximately normal.
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Conclusion These findings indicate that while Lp rotations yield consistent estimates with in-

creasing sample size, the central limit theorem does not hold for zero loadings. Consequently,

standard inferential procedures based on normality assumptions, such as calculating p-values, can-

not be directly applied to the loading matrix when using Lp rotations.
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Figure 4.3: Sampling distribution of estimation errors of the top square submatrix in the loading
matrix estimated using L1 rotation.
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Figure 4.4: Sampling distribution of estimation errors of the bottom square submatrix in the
loading matrix estimated using L1 rotation.
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Figure 4.5: Sampling distribution of estimation errors of the top square submatrix in the loading
matrix estimated using L0.5 rotation.

114



Figure 4.6: Sampling distribution of estimation errors of the bottom square submatrix in the
loading matrix estimated using L0.5 rotation.
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A4.7. Study A.II: Evaluation of Anchor Item Selection Using

Rank Statistics

To assess the accuracy of anchor item selection using Algorithm 5, we adopt the same simulation

settings as in Section 3.4. Specifically, we generate a 60 ˆ 3 loading matrix while varying the

proportion of non-simple items from 0% to 95%. The main loadings are sampled from U r1, 2s,

whereas cross-loadings are drawn from U r0.2, 0.5s. The factor covariance matrix is identical to

that in Study A.I (see Table 4.13). We consider five sample sizes: N “ 100, 200, 500, 1000, 5000,

and conduct B “ 1000 independent replications for both p “ 1 and p “ 0.5.

Evaluation Criteria We evaluate the performance of the proposed method using Selection

Accuracy (ACC): The probability that the algorithm correctly identifies all K simple items as

anchor items. Formally, we define:

ACC “
1

B

B
ÿ

b“1

K
ź

k“1

1tidk is a simple item for factor ku. (4.27)

Results From Table 4.14, we observe that both L1 and L0.5 rotations achieve anchor item se-

lection accuracy exceeding 95% when the sample size is at least 200 and the proportion of simple

items is above 40%. Moreover, L1 rotation outperforms L0.5 when the proportion of simple items

exceeds 25%. This is due to L0.5’s tendency to produce smaller cross-loadings, leading to the

misclassification of non-simple items as anchor items.

However, when the proportion of simple items is extremely low (e.g., below 10%), we observe a

contrasting trend. Specifically, for N “ 5000, L0.5 correctly identifies all anchor items, whereas L1

achieves selection accuracies of only 0.427 and 0. This suggests that, under extremely sparse condi-

tions, L0.5 remains capable of recovering the loading matrix, while L1 may converge to alternative

local minima.

Conclusion The results demonstrate that Algorithm 5 performs well when the proportion of

simple items exceeds 40%, for both p “ 1 and p “ 0.5. When the proportion of simple items is

extremely low and the sample size is sufficiently large (e.g., N ą 500), L0.5 is a preferable choice,

as it better preserves sparsity and improves selection accuracy under these conditions.
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Proportion of L1 L0.5

Simple items

N 100 200 500 1000 5000 100 200 500 1000 5000

95% 1 1 1 1 1 1 1 1 1 1

90% 0.994 1 1 1 1 0.993 0.999 1 1 1

85% 0.991 0.999 1 1 1 0.984 0.999 1 1 1

80% 0.98 1 1 1 1 0.965 0.998 1 1 1

75% 0.987 0.998 1 1 1 0.965 0.997 1 1 1

70% 0.971 1 1 1 1 0.94 0.996 1 1 1

65% 0.96 0.999 1 1 1 0.92 0.991 1 1 1

60% 0.951 0.997 1 1 1 0.905 0.984 1 1 1

55% 0.917 0.99 1 1 1 0.877 0.983 1 1 1

50% 0.927 0.99 1 1 1 0.857 0.974 1 1 1

45% 0.881 0.988 1 1 1 0.805 0.96 1 1 1

40% 0.818 0.974 1 1 1 0.737 0.95 1 1 1

35% 0.725 0.944 0.999 1 1 0.62 0.903 0.997 1 1

30% 0.599 0.872 0.992 1 1 0.532 0.869 0.997 1 1

25% 0.548 0.844 0.99 1 1 0.454 0.802 0.997 1 1

20% 0.351 0.627 0.933 0.996 1 0.337 0.697 0.991 1 1

15% 0.241 0.537 0.931 0.991 1 0.245 0.644 0.98 1 1

10% 0.107 0.259 0.464 0.502 0.427 0.154 0.454 0.946 0.999 1

5% 0.016 0.054 0.048 0.013 0 0.056 0.21 0.801 0.984 1

Table 4.14: The selection accuracy of anchor items using the L1 and L0.5 rotation criteria.

A4.8. Study A.III: The Sampling Distribution of 1DS and 2DS

In this study, we aim to demonstrate the necessity of data splitting for constructing valid p-values

in Algorithm 6. To achieve this, we compare the 1DS with 2DS:

1. 1DS (One Data Set): The same dataset is used for both anchor item selection (Algorithm

5) and for refitting the CFA model.

2. 2DS (Two Data Sets): Algorithm 6 is applied, where the dataset is split into two equal

subsets. Anchor item selection is performed on one subset to determine the loading structure

Γp1q, and a CFA model is then fitted to the other subset.

Experimental Setting We use the same parameters as in Study A.I, as specified in Table

4.13. To highlight the asymptotic failure of 1DS, we consider an extremely large sample size of

N “ 20, 000 and replicate the experiment B “ 1000 times. As in Study A.I, estimation error is
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analyzed by comparing the estimated loadings to their true values. If the central limit theorem

(CLT) holds, the sampling distribution of these errors should be symmetric around zero. We

present histograms that specify both the location and magnitude of each loading.

Results Given the large sample size, as shown at the top of each column, the item selection error

for each factor is zero for both 1DS and 2DS. However, as illustrated in Figures 4.7 and 4.8, the 1DS

method fails to produce normally distributed sampling distributions. Specifically, entries such as

Lr1, 3s, Lr2, 1s, Lr4, 2s, Lr4, 3s, Lr5, 1s, Lr5, 3s, Lr6, 1s, Lr7, 2s, Lr7, 3s, Lr8, 1s, Lr9, 1s, Lr11, 1s, and

Lr11, 3s exhibit skewed distributions. Notably, all these loadings correspond either to zero loadings

or small cross-loadings. In contrast, Figures 4.9 and 4.10 show that 2DS results in distributions

that are approximately symmetric around zero.

The failure of 1DS arises from the selection process. In the item selection stage, the criterion

ensures that the estimated loading has the smallest second-largest entry magnitude. As a res-

ult, aside from the primary loading, all other loadings are estimated to be values very close to

zero. During the subsequent estimation stage, these non-primary loadings are set to zero, and a

CFA model is fitted using the same dataset. However, this approach implicitly incorporates prior

knowledge from the selection stage, leading to biased inference.

In contrast, when a separate dataset is used for selecting simple items, the covariance structure

in the second dataset does not necessarily enforce small estimated values for non-primary loadings

in the selected items determined by the first dataset. Since the two datasets are independent, the

information in one does not dictate the properties of the other. This issue, known as inference

after selection, necessitates data separation to avoid unintentional ‘data peeking’.

Conclusion We demonstrate that the data-splitting procedure in Algorithm 6 is essential for

valid inference. The problem of reusing data during the item selection stage cannot be mitigated,

even with an extremely large sample size. Failure to account for prior exposure to the dataset

leads to biased inference, reinforcing the necessity of data separation in this context.
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Figure 4.7: Sampling distribution of the top two squared submatrices in the loading matrix, es-
timated using 1DS.
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Figure 4.8: Sampling distribution of the bottom two squared submatrices in the loading matrix,
estimated using 1DS.
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Figure 4.9: Sampling distribution of the top two squared submatrices in the loading matrix, es-
timated using 2DS.
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Figure 4.10: Sampling distribution of the bottom two squared submatrices in the loading matrix,
estimated using 2DS.
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A4.9. Study A.IV: Dependence in the CFA Model and its Implic-

ations for the BH Procedure

In this section, we demonstrate that the independence assumption required for the Benjamini-

Hochberg (BH) procedure does not hold in the confirmatory factor analysis (CFA) model. This

violation arises due to the correlation between zero loadings and nonzero loadings at both the test

level and the factor level.

Experimental Setting To analyze the asymptotic variance of the loading matrix, we consider

an extremely large sample size: N “ 100, 000. We run a CFA model on a dataset with a loading

matrix of dimensions 60 ˆ 3. Each factor consists of 10 simple items, along with 10 additional

items that primarily load onto the factor but also exhibit secondary cross-loadings. The primary

loadings and cross-loadings are uniformly sampled from U r1, 2s and U r0.2, 0.5s, respectively. For

each sample size and experimental condition, we conduct B “ 1000 independent replications. We

then plot the histogram of the covariance between zero loadings and nonzero loadings. Notably,

the variances of all variables are excluded from the graph. To compute the sample covariance, we

multiply it by the convergence rate N to account for the effect of sample size scaling.

Results As shown in Figure 4.11, the adjusted covariance values range from approximately

´0.1 to 0.5. Given that the nonzero loadings are sampled from the range r0.2, 2s, the square root

of these covariance values is of comparable magnitude to the true loading scale. This empirical

evidence demonstrates that zero loadings are correlated with nonzero loadings at both the factor

and test levels. Consequently, the independence assumption required for the BH procedure is

violated, limiting its applicability in the CFA model.
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Figure 4.11: Sampling distribution of off-diagonal covariance values for different loading conditions.
The first row represents the covariance between zero loadings, zero and nonzero loadings, and
nonzero loadings in the full loading matrix. The subsequent rows show covariance distributions for
each factor (k = 1, 2, 3).
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Chapter 5

Discussions

This thesis introduces a novel rotation framework for Exploratory Factor Analysis (EFA), offering

both theoretical guarantees and practical tools that enhance interpretability and support valid

statistical inference.

Specifically, we developed the Lp rotation criterion to recover sparse loading matrices in EFA.

This rotation method improves model interpretability by simplifying the associations between

latent factors and manifest variables. Within the Lp framework, we introduced computational

algorithms, identification theory, and variable selection techniques, with a particular focus on

controlling the False Discovery Rate (FDR). The Lp rotation functionality has been implemented

in the R package GPArotation (Bernaards and Jennrich, 2005), with the functions lpT and lpQ

supporting orthogonal and oblique rotations, respectively.

In Chapter 2, we proposed a new family of oblique rotations based on component-wise Lp loss

functions and developed an iteratively reweighted gradient projection algorithm to efficiently solve

the resulting non-smooth optimization problem. Our results demonstrate that Lp rotation achieves

accuracy comparable to lp penalized estimation with a small tuning parameter, while significantly

reducing computational cost—particularly when the number of items J is large.

In Chapter 3, we established theoretical results that confirm the identification conditions for

Lp rotation estimation. These results address a gap in the literature, which has predominantly

focused on loading matrices with only simple items. We extended the theory to accommodate cases

where the loading matrix includes a small proportion of non-simple items—an assumption more

appropriate for EFA, where the loading structure is typically unknown. Additionally, we showed

that Lp rotation tends to outperform traditional rotation methods when the true loading matrix

is sparse.
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Chapter 4 further extends this methodology by applying Lp rotation to identify loading struc-

tures in Confirmatory Factor Analysis (CFA) models under less restrictive assumptions. Building

upon this, we proposed a procedure for computing p-values in EFA models and adapted common

FDR control methods for this context. We found that the Benjamini-Hochberg (BH) procedure

violates the independence assumptions of EFA, whereas the Benjamini-Yekutieli (BY) and e-value-

based Benjamini-Hochberg (eBH) procedures remain valid.

In many modern applications, we encounter settings where the number of items J is comparable

to, or even exceeds, the sample size N ; that is, J « N or J ą N . In such cases, it is more

appropriate to consider a high-dimensional asymptotic regime when performing exploratory factor

analysis (EFA). Despite its importance, relatively little theoretical work has been done in this area,

with the notable exception of Rohe and Zeng (2022).

A promising direction for future research is to extend the existing consistency results to the

high-dimensional setting, where J Ñ 8. From a methodological perspective, we expect that

the proposed Lp rotation method and the p-value computation procedure (Algorithm 6) can still

operate effectively in this regime. However, for false discovery rate (FDR) control, the Ben-

jamini–Yekutieli (BY) procedure becomes infeasible, as its correction factor diverges when J Ñ 8.

In contrast, the Benjamini–Hochberg (BH) procedure based on e-values remains applicable, making

it a promising candidate for FDR control in high-dimensional settings and an important subject

for further investigation.

From a theoretical standpoint, the consistency result for Lp rotation presented in Theorem 1

must be revisited in this regime, as the eigenvalues of the true loading matrix Λ˚ may grow with J .

Moreover, a central limit theorem (CLT) specifically tailored to high-dimensional factor analysis

models—such as the one proposed in Bai and Li (2012)—is needed to justify the validity of p-value

estimation. This high-dimensional CLT should be derived under identification conditions that

involve simple items. Such theoretical developments are particularly important, as the classical

CLT for maximum likelihood estimation no longer applies when the sample covariance matrix is

not positive definite, which commonly occurs when J ą N .

In this work, we treat the number of factors as given. However, in many applications of

exploratory factor analysis (EFA), the true number of factors is unknown. We recommend the

use of consistent and theoretically grounded selection methods—such as the Bayesian Information

Criterion (BIC) or parallel analysis—to establish a valid foundation before applying factor rotation.

This step is essential because rotation methods—whether orthogonal, oblique, or sparse—are post-

processing procedures applied to an estimated factor loading matrix of fixed dimensionality. Among
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various model selection criteria, BIC has been shown to consistently estimate the true number of

factors under suitable regularity conditions (Bai and Ng, 2002). Parallel analysis (Horn, 1965) is

another widely used method, which compares the observed eigenvalues to those generated under

a null model. In contrast, methods such as the scree plot (Cattell, 1966) and the Kaiser criterion

(eigenvalue ą 1 rule) are based on the eigenvalues of the sample correlation matrix and thus derive

from principal component analysis (PCA) rather than the factor model. While these techniques are

often used as simple heuristics for dimensionality selection, they lack the statistical rigor required

for EFA and should be interpreted with caution.

In practice, many datasets consist of categorical variables, for which linear factor models may

be inappropriate. In such cases, nonlinear or generalized factor models—such as item response

theory (IRT) models—are more suitable (Bartholomew et al., 2011; Skrondal and Rabe-Hesketh,

2004). A promising direction for future research is to extend the Lp rotation framework to these

models. For instance, in IRT models where the manifest variables are categorical but the latent

factors remain continuous, Lp rotation can be applied to produce sparser and more interpretable

loading structures. More generally, for any model with multiple continuous latent factors, where the

condition C1 on Chapter 2 are satisfied, a two-step procedure can be used: first, obtain an initial

estimate of the loading matrix; second, apply Lp rotation to enhance sparsity and interpretability.

In models with a single latent factor, it is not common practice to apply rotation. This is

because in the unidimensional case, any rotation would amount to a trivial rescaling or sign change,

offering no new structural insight or interpretability benefits. Many widely used models fall under

this category, including the classical one-factor model, the two-parameter logistic (2PL) IRT model,

and the testlet model with a single general factor and structured residuals. In such settings, the

primary goal is typically to estimate the latent trait or ability accurately rather than to uncover

a sparse or interpretable factor loading structure. Rotation techniques are thus more relevant in

multidimensional exploratory contexts, where identifying interpretable factor patterns is a central

objective.
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