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Abstract

This thesis contains three chapters developing and applying novel techniques in financial

econometrics.

In the first chapter, I show that to construct factor models for the cross-section of

expected returns, principal component factors should be selected based on risk premia or

Sharpe ratios – rather than eigenvalues, as is predominantly done in the literature. This is

because principal component factors’ prices of risk are given by their risk premia divided

by eigenvalues. I show that selection based on risk premia (Sharpe ratios) minimizes

the sum of squared pricing errors (Hansen-Jagannathan distance) for a factor model and

demonstrate empirically that the proposed selection methods lead to substantial in- and

out-of-sample improvements. Further, I devise a test to determine the number of factors

to approximate the stochastic discount factor.

In the second chapter, co-authored with Tommaso Mancini-Griffoli, Christian Julliard,

and Kathy Yuan, using an equilibrium network model and a large international panel of

cross-border trade, we analyse empirically the drivers of foreign currency invoicing. First,

we find evidence of strategic complementarity in currency invoicing across countries. Sec-

ond, key players for a given currency are also countries that are central to the international

trade network. Third, we find evidence of natural hedging, between the choices of export

and import currencies. Fourth, in counterfactual analysis, we find that the position of the

USD is inherently fragile.

In the third chapter, I estimate risk preferences through nonparametric methods from

option data. The proposed estimator is shown to be consistent and asymptotically nor-

mally distributed. The estimated risk preferences are more in line with preferences implied

by classical utility functions than other studies suggest. Specifically, formal statistical tests

suggest that there is no statistically significant evidence supporting the pricing kernel puz-

zle. In contrast, constraining estimated risk preferences to be monotonically decreasing

improves the associated beliefs’ forecasting performance substantially.
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Chapter 1.

Constructing Factor Models that Approximate the

Stochastic Discount Factor

I show that to construct factor models for the cross-section of expected returns, principal

component factors should be selected based on risk premia or Sharpe ratios – rather than

eigenvalues, as is predominantly done in the literature. This is because prices of risk for

principal component factors are given by their risk premia divided by eigenvalues. Hence,

selection based on eigenvalues does not guarantee selection of economically relevant factors.

Formally, I show that selection based on risk premia (Sharpe ratios) minimizes the sum of

squared pricing errors (Hansen-Jagannathan distance) for a factor model and demonstrate

empirically that the proposed selection methods lead to substantial in- and out-of-sample

improvements. For example, for a five-factor model selection based on Sharpe ratios

increases the associated maximum Sharpe ratio by 68% out-of-sample. Further, I devise a

test to determine the number of factors and find that relatively few principal components

approximate the stochastic discount factor.

1.1. Introduction. A central prediction of asset pricing theory is that assets have dif-

ferent exposures to systematic sources of risk which carry risk premia as compensation for

bearing such risk. Identifying the correct factors associated with these sources of risk has

become a central question of asset pricing as it is the crucial first step for several prac-

tical applications such as capital budgeting, performance evaluation of asset managers,

estimating risk premia of non-tradable factors, and so on.

Economic theory offers some guidance on the nature of these factors. However, the

search for factors has produced hundreds of potential candidates, leaving applied re-

searchers with ambiguity around the relevance as well as significance of different factors

and on how to construct a model from them. Due to this proliferation of factors, machine

learning and statistical methods for factor model construction have re-emerged in empiri-

cal asset pricing with the prevalent approach being principal component analysis (for early

examples see Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986); for

recent examples see Kelly, Pruitt, and Su (2019) and Giglio and Xiu (2021)).

An attractive feature of this approach is that the use of principal component factors

can be motivated by the law of one price. Kozak, Nagel, and Santosh (2018) demonstrate

that the projection of the stochastic discount factor (SDF) on excess returns, as derived in

L. Hansen and Jagannathan (1991), can always be expressed as a linear function of the N

principal component factors, where N denotes the number of assets. This implies that, for

any test asset set considered, a correct factor model is the one containing the N principal

component factors. Applied researchers use only a subset K < N principal component

factors, which consequently gives rise to an approximation of the valid model. This raises

the question, what the consequences of this approximation are, and more specifically, how

the principal component factors should be selected in light of the SDF.

The predominant approach is to rank principal component factors based on their eigen-

values, i.e. their variance, and retain the K largest. The main result of this paper is

that if the objective is to select factors that are relevant to pricing the cross-section –

or equivalently to approximating the SDF – selection should be based on principal com-

ponent factor’s risk premia or the Sharpe ratios, not based on their eigenvalues. To see
5



the intuition for this result, note that principal component factors are by construction

orthogonal to each other. Therefore, prices of risk, i.e. the multivariate regression coef-

ficients with which factors enter the SDF, are equal to the principal component factor’s

risk premia divided by its eigenvalue. Consequently, selection based on eigenvalues gives

little guarantee that the selected factors are relevant to the SDF as their prices of risk are

potentially small. If, for example, the risk premium is zero, the factor does not matter

regardless of its eigenvalue. In contrast, when focusing on the cross-section of expected

returns, risk premia of principal component factors inform us not only if a factor is priced,

but also if it is pricing assets.

Formally, I demonstrate the following results. Selecting a subset of K < N princi-

pal component factors leads to pricing errors. If the objective is to select K principal

component factors such that the associated factor model’s sum of squared pricing errors

is minimized, the K principal component factors with the largest (squared) risk premia

should be selected. If however, the objective is to find factors that approximate the SDF

well, i.e. that minimize the L. Hansen and Jagannathan (1997) (HJ-)distance of the asso-

ciated factor model, the ranking should be based on (squared) Sharpe ratios. The latter

approach has the convenient interpretation that selection based on Sharpe ratios leads to

the optimal SDF approximation in the least-square sense and maximizes the Sharpe ratio

of the tangency portfolio associated with the constructed factor model.

For asset pricing, principal component factor selection based on eigenvalues was mo-

tivated by Chamberlain and Rothschild (1983), who demonstrated that doing so bounds

the sum of squared pricing errors of the associated factor model. The presented analy-

sis is consistent with this result and specifically can be viewed as a tightening of their

bound. Empirically, I document that the proposed selection rules lead to substantial in-

and out-of-sample improvements over selection based on eigenvalues, measured in terms of

root mean squared error, the HJ-distance, and the Sharpe ratios associated with a factor

model’s tangency portfolio. For example, on the anomaly portfolios by Kozak, Nagel, and

Santosh (2020) constructing a 5-factor model based on factors associated with the largest

squared Sharpe ratios doubles the associated tangency portfolio’s Sharpe ratio in-sample

and increases it by 68% out-of-sample. Additionally, it reduces the HJ-distance by more

than 50% in- and-out-of-sample.

Having established how factors should be selected in light of the SDF, I turn to how

many factors should be selected. I devise a method to estimate the number of factors

required to approximate the SDF1. The approach adds principal component factors to a

factor model based on their Sharpe ratio and repeatedly tests whether the HJ-distance is

significantly different from zero at a specified significance level. This identifies the num-

ber of factors required such that the factor model’s HJ-distance is no longer significantly

different from zero. To mitigate multiple testing problems, the stopping point K̂ is based

on the approach by G’Sell et al. (2016), which controls the family-wise error rate. Empir-

ically, I document that for several datasets relatively few principal component factors are

required to approximate the SDF well, when selected based on their Sharpe ratios.

The estimator requires establishing the asymptotic distribution for quantities associated

with principal component factor models. To do so, I draw on results from the large

dimensional factor literature (see Bai and Ng (2008) for a survey), which allows me to

1 Several estimators for the number of principal component factors exist, however, these are designed to
determine the number of factors required to capture the variation in data.
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establish the properties of risk premia, prices of risk, pricing errors, and the HJ-distance.

Relative to existing studies, I examine the necessary assumptions such that the factor

model implied by the law of one price connects to the factor model analyzed in the large

dimensional factor literature – this shows that the law of one price implies additional

structure for the data generating process. Because of this, under similar assumptions

as in Giglio and Xiu (2021), I show that principal component factor’s risk premia are

recovered up to their sign at potentially faster convergence rates and derive the asymptotic

distribution of these and of prices of risk. Under slightly strengthened assumptions, I derive

the asymptotic distribution of pricing errors, whose asymptotic covariance matrix exhibits

an adjustment reminiscent of the Shanken (1992) adjustment, but larger. Using this result

the properties of the HJ-distance are established.

The results of this paper are closely related to other approaches recently developed

in the literature. Kozak, Nagel, and Santosh (2020) estimate the SDF via elastic net

regularization. When their estimator is applied to principal components of the return

data the Lasso component (L1-penalty) of their estimator performs principal component

factor selection based on risk premia. The results of this paper formally justify this com-

ponent. Empirically, I demonstrate that factor models constructed using the presented

optimal selection rules outperform the Kozak, Nagel, and Santosh (2020) estimator in- and

out-of-sample across multiple datasets. Lettau and Pelger (2020b) design a method to ex-

tract factors for the cross-section of expected returns – risk premium principal component

analysis (RP-PCA). I empirically document that while the RP-PCA based factor models

outperform factor models constructed from standard principal component factors, they

do so to a substantially lesser degree once the optimal selection rules are employed. For

example, principal component factor based models with factors selected based on Sharpe

ratios typically outperform the RP-PCA in terms of the HJ-distance in- and out-of-sample.

I further demonstrate that the presented selection rules also apply to the RP-PCA and

document empirically that this further boosts its in- and out-of-sample performance.

To see the broader relevance of the results of this paper, consider the estimation of risk

premia of non-traded factors. Giglio and Xiu (2021) highlight that classical approaches

– two pass cross-sectional regressions, Fama-MacBeth regressions, and factor mimicking

portfolios – are susceptible to omitted variable bias. This arises whenever the factor model

specified by the econometrician does not fully account for all priced sources of risk in the

economy. They suggest constructing factor models via principal component analysis and

demonstrate how this resolves issues arising from omitted variable bias. A crucial step in

this approach is that principal component analysis recovers priced factors. The presented

results aid in the efficient selection of relevant priced sources of risk for any test asset set

under consideration.

Section 1.2 gives an example to highlight the connection between the SDF and principal

component factors. Section 1.3 derives the general result and discusses the relationship to

Chamberlain and Rothschild (1983). Section 1.4 derives and discusses the asymptotics.

Section 1.5 discusses the out-of-sample performance of the selection rules, the estimator

for the number of factors and highlights complementarities of the results of this paper

with Kozak, Nagel, and Santosh (2020) and Lettau and Pelger (2020b). Finally, section

1.6 concludes.

1.2. The SDF and Principal Components. To understand the role of principal com-

ponents for factor models consider the following stylized example. Let Rt denote a vector
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of gross returns and let E[Rt+1R
′
t+1] = QΛQ′ denote the eigendecomposition of the second

unconditional moment, where Q is the collection of eigenvectors and Λ is a diagonal matrix

containing eigenvalues. Consider the SDF projection onto the gross return space

M∗
t+1 = i′NE[Rt+1R

′
t+1]

−1Rt+1 =

N∑
k=1

(i′Nqk)(q
′
kRt+1)

λk

where iN is a N×1 vector of ones, qk is the kth column of Q and λk is the kth element of the

diagonal of Λ. By substituting the eigendecomposition of E[Rt+1R
′
t+1] the SDF projection

can be expressed as a N factor model with factors being principal components q′kRt+1.

Furthermore, they enter the SDF with coefficient i′Nqk/λk highlighting that eigenvectors

play an important role in whether a principal component factor matters for the SDF or

equivalently the cross-section of expected returns.

To demonstrate this link further, assume that the first eigenvector satisfies q1 = iN/
√
N .

Due to the orthogonality of eigenvectors it immediately follows that i′Nqk = 0 for all k ≥ 2.

Therefore, the SDF projection reduces to

M∗
t+1 =

(i′Nq1)(q
′
1Rt+1)

λ1

Notice that the eigenvector can be viewed as portfolio weights and q′1Rt+1 denotes the

portfolio return. Since q1 = iN/
√
N the first principal component is related to the market

portfolio. Define

RM,t+1 =
1

N
i′NRt+1 =

1√
N

q′1Rt+1

and note E[R2
M,t+1] = λ1/N . Therefore,

M∗
t+1 =

RM,t+1

E[R2
M,t+1]

which shows that the SDF projection is proportional to the market portfolio. Define the

zero beta rate γ = 1/E[M∗
t+1] and by the law of one price, E[M∗

t+1Ri,t+1] = 1, it follows

that for any i

E[Ri,t+1]− γ = −
Cov(RM,t+1, Ri,t+1)

V ar(RM,t+1)

V ar(RM,t+1)

E[R2
M,t+1]

1

E[M∗
t+1]

By applying the prior result to the market portfolio itself, the expression simplifies to

E[Ri,t+1]− γ = βM,i(E[RM,t+1]− γ)

where βM,i = Cov(RM,t+1, Ri,t+1)/V ar(RM,t+1). Hence, assuming q1 ∝ iN , or any qk ∝ iN

for that matter, in combination with the law of one price implies the extreme case in which

only one factor, i.e. the market factor, matters for the SDF and by extension implies a

factor model resembling the CAPM for the cross-section of expected returns.

Assuming q1 = iN/
√
N is crucial to the above result, however, does not hold in practice.

Several studies suggest q1 ≈ iN/
√
N (see for example Kozak, Nagel, and Santosh (2018)

and Pelger (2019)), however, this cannot hold exactly. To see why, note that in the prior

example, the expected market risk premium is positive only if the expected market return,

and therefore zero beta rate, is negative2.

The example illustrates the link between principal components, the SDF, and factor

models. A correct factor model consists of the N principal component factors. Further,

2 Since γ = 1/E[M∗
t+1] = E[R2

M,T+1]/E[RM,T+1] it follows that E[RM,t+1]−γ = −V ar(R∗
Mt+1)/E[RM,t+1].

Therefore the expected market risk premium is positive only if the expected market return is negative.
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the eigenvectors of principal components provide insights into the relevance of each factor.

The next section builds on this intuition and derives more general results with a focus on

how principal component factors should be selected when constructing factor models for

asset pricing.

1.3. Economically Motivated Selection Rules for Principal Components. The

focus of most studies is on excess or long-short returns. As before, it is straightforward

to show that for any cross-section of excess returns, the N principal components give a

valid factor model. Analyzing how these factors relate to the SDF allows to assess the

quality of factor models constructed from a selection of principal component factors. To

do so, let Rt+1 be a N × 1 vector of excess or long-short returns with µ = E[Rt+1],

Σ = V ar(Rt+1) and Σ = QΛQ′, where Q = [q1, ..., qN ] is the collection of eigenvectors

and Λ a diagonal matrix containing eigenvalues. I focus on unconditional expectations for

convenience, however, all results carry over to conditional expectations.

Assume the law of one price holds and consider the SDF projected onto excess returns.

Following L. Hansen and Richard (1987) and L. Hansen and Jagannathan (1991), the SDF

projection can be expressed as

M∗
t+1 = 1− µ′Σ−1(Rt+1 − µ)

where I have normalized E[M∗
t+1] = 1 for convenience but without loss of generality. Note

E[M∗
t+1Rt+1] = 0 holds for the set of assets onto which the SDF is projected exactly. As

in Kozak, Nagel, and Santosh (2018), substituting the eigendecomposition in the above

the SDF becomes

(1) M∗
t+1 = 1−

N∑
k=1

µ′qk
λk

q′k(Rt+1 − µ)

By substituting (1) in E[M∗
t+1Rt+1] = 0, the above immediately implies a N factor model

for returns of form

(2) E[Ri,t+1] =

N∑
k=1

µ′qkβi,k

where βi,k = Cov(q′kRt+1, Ri,t+1)/V ar(q′kRt+1). Note that βi,k = qi,k as V ar(q′kRt+1) = λk

and Cov(q′kRt+1, Ri,t+1) = λkqi,k due to properties of eigenvectors. In spirit of section 1.2,

equations (1) and (2) demonstrate that a valid factor model for the SDF and the cross-

section of expected returns consists of the N principal components.

Equation (1) shows that the multivariate regression coefficients with which factors enter

the SDF, or their prices of risk, are bk = µ′qk/λk and allows to analyze how a selection of

principal component factors enters the SDF. In practice, the predominant approach is to

rank principal component factors based on their eigenvalues, λk, and build a factor model

with factors associated with the largest eigenvalues. Equation (1) demonstrates that this

approach gives little guarantee that selected factors are relevant to the SDF as their prices

of risk, bk, are potentially small. The problem is that such a selection method ignores

the risk premium of factors, µ′qk. If for example µ′qk = 0 the factor should be ignored

regardless of its eigenvalue.

To gauge the practical relevance of this observation, I examine two datasets commonly

used in the literature – the 25 size and value portfolios (FF25 ) and the 57 long-short

anomaly portfolios by Kozak, Nagel, and Santosh (2020) (KNS57 ). For each, I calculate

principal component factors and rank these by eigenvalues. Table 1 reports the eigenvalues
9



Table 1. Factor Statistics and Model Evaluation

FF25

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Factor statistics λ̂k 0.123 0.006 0.005 0.004 0.001 0.001 0.001 0.001

R̂P k 0.527 0.083 0.026 0.045 0.046 0.012 0.014 0.041

ŜRk 0.433 0.298 0.111 0.208 0.371 0.107 0.128 0.456

Model statistics α̂′α̂ 0.015 0.008 0.008 0.006 0.004 0.003 0.003 0.002

ĤJ 0.076 0.068 0.067 0.064 0.052 0.051 0.050 0.033

b̂k 0.356∗∗∗ 1.070∗∗∗ 0.477 0.960∗∗ 3.010∗∗∗ 0.932 1.210 5.081∗∗∗

(0.000) (0.001) (0.251) (0.050) (0.000) (0.289) (0.184) (0.000)

KNS57

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Factor statistics λ̂k 0.030 0.011 0.008 0.006 0.003 0.003 0.002 0.002

R̂P k 0.191 0.072 0.084 0.104 0.111 0.207 0.017 0.081

ŜRk 0.320 0.197 0.277 0.404 0.561 1.100 0.105 0.565

Model statistics α̂′α̂ 0.111 0.106 0.099 0.088 0.076 0.033 0.033 0.026

ĤJ 0.637 0.634 0.628 0.614 0.588 0.487 0.486 0.460

b̂k 0.536∗∗ 0.537∗ 0.916∗ 1.565∗∗∗ 2.848∗∗∗ 5.841∗∗∗ 0.655 3.957∗∗∗

(0.028) (0.088) (0.055) (0.006) (0.000) (0.000) (0.516) (0.000)

Note: The table reports estimated eigenvalues (λ̂k), risk premia (R̂P k = µ̂′q̂k), Sharpe ratios (ŜRk =

µ̂′q̂k/
√

λ̂k), sum of squared pricing errors (α̂′α̂), HJ-distance (ĤJ = α̂′Σ̂−1α̂) and prices of risk (b̂k =

µ̂′q̂k/λ̂k) for the first eight principal components extracted from different datasets. Note risk premia,
Sharpe ratios and the sum of squared pricing errors are annualized and factors have been normalized
to have positive mean. The sum of squared pricing errors and HJ-distance correspond to a factor model
containing the first through Kth principal component indicated in each column. In brackets below the price
of risk estimates the p-value associated with H0 : bk = 0 is reported based on the asymptotic distribution
derived in section 1.4. The Newey and West (1987) covariance estimator is employed with T 1/4 lags.
Estimates significant at the 10%, 5% and 1% are indicated by ∗, ∗∗ and ∗∗∗ respectively. Each dataset
consists of monthly excess or long-short returns – for a description of the data see section 1.5.1.

and annualized risk premia and Sharpe ratios for these. From the principal component

factors, I construct factor models subsequently increasing the number of factors. To eval-

uate the model, I report the annualized sum of squared pricing errors, the HJ-distance,

and the price of risk for each principal component factor in table 1.

For both datasets selection of principal components based on eigenvalues does not guar-

antee that factors with the largest and most significant prices of risk are selected early

on. Focussing on squared pricing errors, the largest reductions seem to occur when factors

with large risk premia are added to the factor model – for FF25 these are PC2, PC4, and

PC5; for KNS57 these are PC4, PC5, and PC6. Turning to the HJ-distance, the largest

reductions occur when factors with large Sharpe ratios are added to the factor model – for

FF25 these are PC2, PC5, and PC8; for KNS57 these are PC5, PC6, and PC8. Overall,

this suggests that selection of principal component factors solely based on eigenvalues may

be suboptimal if the goal is to select factors relevant to pricing the cross-section.

To formally analyze how principal component selection affects the ability of the asso-

ciated factor model to price the cross-section consider the SDF approximation containing

K principal components

M̃∗
t+1 = 1−

K∑
k=1

µ′qk
λk

q′k(Rt+1 − µ)
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The approximation will lead to violations of the law of one price, that is E[M̃∗
t+1Ri,t+1] ̸= 0.

These violations can be expressed as

(3)

αi = E[M̃∗
t+1Ri,t+1]

= E[Ri,t+1]−
K∑
k=1

µ′qkqi,k

=

N∑
k=K+1

µ′qkqi,k

where I used the definition of M̃∗
t+1 to obtain the first equality and (2) to obtain the second

equality. These αi correspond to OLS intercepts of a time series regression of Ri,t+1 on a

constant and the K factors Fk,t+1 = q′kRt+1.

Jointly expression (1) and (3) reveal how a selection method impacts the quality of

the SDF approximation and of the associated factor model, measured by mispricing αi.

Selection based solely on λk may lead to a poor SDF approximation or a factor model with

poor pricing performance. This insight and what it implies for optimal factor selection

can be made more precise by considering explicit criteria with which factor models are

evaluated.

1.3.1. Squared Pricing Errors. Consider the sum of squared pricing errors across all assets

associated with a factor model containing K principal component factors. Let QN−K =

[qK+1, ..., qN ] be the set of omitted eigenvectors. Note (3) can be written more compactly

as α = QN−KQ′
N−Kµ. Therefore,

(4) α′α =
N∑
i=1

α2
i =

N∑
k=K+1

(µ′qk)
2

where I used the fact that Q′
N−KQN−K = IN−K . Recall that the principal component

factor is Fk,t+1 = q′kRt+1, so the associated risk premium and variance is E[Fk,t+1] = q′kµ

and V ar(Fk,t+1) = λk respectively.

Expression (4) demonstrates that the sum of squared pricing errors is equal to the sum

of squared risk premia belonging to the principal component factors omitted from the

SDF approximation or factor model. Equation (1) already demonstrated that risk premia

matter for whether or not a principal component factor enters the SDF, as there is a

one-to-one mapping between risk premia and prices of risk. The surprising insight of (4)

is that if the objective is to select factors that minimize pricing errors only risk premia

matter and eigenvalues, λk, are irrelevant. Put differently, if we wish to construct a factor

model from principal components that minimize α′α, we should select factors with the

largest risk premia and omit factors with small risk premia.

1.3.2. HJ-Distance. Albeit interesting, α′α may not be the right criterion to consider.

Specifically, a low α′α does not guarantee that the SDF is well approximated and α′α is sus-

ceptible to repackaging and scaling of test assets. The L. Hansen and Jagannathan (1997)

(HJ-) distance overcomes these issues.

The objective of the HJ-distance is to assess the magnitude of specification error induced

by using a proxy SDF from the set of admissible SDFs. As I consider excess returns, the

law of one price does not identify the mean of the SDF. I therefore normalize the mean

of the proxy and of the set of admissible SDFs to be one. Under this normalization the
11



HJ-distance is given as3

HJ = α′Σ−1α

and measures the least-squares distance between the proxy SDF and the set of admissible

SDFs. Substituting (3) and the eigendecomposition of Σ in the expression yields

(5)

HJ = µ′QN−KQ′
N−KQΛ−1Q′QN−KQ′

N−Kµ

= µ′QN−KΛ−1
N−KQ′

N−Kµ

=
N∑

k=K+1

(µ′qk)
2

λk

where I used the orthogonality of eigenvectors to arrive at the second equality. Notice

that (µ′qk)
2/λk is the squared Sharpe ratio of principal component factor k. From (5) it

follows that

(6)
HJ =

N∑
k=1

(µ′qk)
2

λk
−

K∑
k=1

(µ′qk)
2

λk

= SR(M∗
t+1)

2 − SR(M̃∗
t+1)

2

where SR(M) denotes the Sharpe ratio of the tangency portfolio associated with SDF M4.

Therefore, in the considered setting, the HJ-distance additionally measures how close the

Sharpe ratio associated with the proxy SDF, M̃∗
t+1, is to the maximum attainable Sharpe

ratio on the test assets which is associated with M∗
t+1.

Expression (5) demonstrates that the HJ-distance is equal to the sum of squared Sharpe

ratios belonging to the principal component factors omitted from the SDF approximation

or factor model. This suggests principal component factors with the largest Sharpe ratios

should be selected. In turn, this achieves three objectives. First, it leads to a factor model

that minimizes weighted pricing errors. Second, it leads to a SDF approximation that is as

close as possible, in the least-squares sense, to the set of admissible SDFs. Third, by (6),

it ensures that the Sharpe ratio of the tangency portfolio associated with the approximate

SDF is as close as possible to the maximum attainable Sharpe ratio. In contrast, classical

selection based on λk is not guaranteed to achieve either of the aforementioned objectives.

1.3.3. Relationship to Chamberlain and Rothschild (1983). Classical selection of princi-

pal components is based on retaining the factors associated with the largest eigenvalues.

Economically, this selection procedure was formally motivated by Chamberlain and Roth-

schild (1983) for asset pricing, who demonstrated that such a selection will bound the sum

of squared pricing errors of the associated factor model. The result derived from equation

(4) seems to be at odds with their result. I here demonstrate that (4) is consistent with

their result and specifically can be viewed as tightening their bound.

Chamberlain and Rothschild (1983) showed that under no arbitrage, as N → ∞, as-

suming the K + 1st largest eigenvalue is finite, that the squared pricing errors associated

with a factor model consisting of the K principal components obey

(7) δ2λK+1 ≥
N∑
i=1

α2
i

3 Let y be a general SDF proxy, M be the set of admissible SDFs with m ∈ M and let ||.|| be the standard
L2 norm. L. Hansen and Jagannathan (1997) consider the general problem HJ ≡ minm∈M ||y−m||, which
yields HJ = α′E[Rt+1R

′
t+1]

−1α. When we constrain E[y] = E[m] = 1, Kan and Robotti (2008) show that
HJ ≡ minm∈M,E[m]=1 ||y −m|| yields HJ = α′Σ−1α.
4 Specifically, it corresponds to the Sharpe ratio of the return R∗

t+1 = µ′
FΣ

−1
F Ft+1.
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where δ is the maximum attainable Sharpe ratio in the economy and λK+1 is the K + 1st

largest eigenvalue eigenvalue5. Hence, selection based on the largest eigenvalues ensures

that the above bound is as tight as possible and therefore should lead to lower squared

pricing errors.

The setup considered thus far is slightly different from Chamberlain and Rothschild (1983).

I here work with the weaker assumption that the law of one price holds, make no assump-

tions on the behaviour of eigenvalues and the results hold for all N . Nevertheless, their

bound can also be derived under these assumptions. Notice that under the law of one price,

the maximum attainable squared Sharpe ratio is equal to V ar(M∗
t+1) since E[M∗

t+1] = 1

(see L. Hansen and Jagannathan (1997)). Therefore,

δ2 = V ar(M∗
t+1) =

K∑
k=1

(µ′qk)
2

λk
+

N∑
k=K+1

(µ′qk)
2

λk

which follows by (1) using the properties of principal components. I further split the

variance of M∗
t+1 into two components for exposition. Let λK+1 denote the eigenvalue

such that λK+1 ≥ λk for all k ∈ {K + 1, ..., N}. As the first term on the right-hand side

is positive and by the definition of λK+1 it follows that

δ2 ≥ 1

λK+1

N∑
k=K+1

(µ′qk)
2

which using (4) immediately yields the Chamberlain and Rothschild (1983) result in (7).

The difference between the Chamberlain and Rothschild (1983) bound in (7) and the

result in (4) is that their bound can be arbitrarily loose. Selecting principal component

factors associated with the largest λk can ensure that the bound becomes as tight as

possible, however, this will not guarantee that it will hold exactly. In contrast, the result

in (4) is an identity and therefore selecting principal component factors associated with

the largest risk premia directly ensures that α′α is as low as possible. This allows for

potentially more efficient selection.

1.3.4. Comparison of Selection Rules. To evaluate the relevance of the previously dis-

cussed selection rules, I examine the performance of principal component based factor

models for three different test asset sets. On each test asset set, I calculate the principal

component factors and sort them by eigenvalues, squared risk premia, or squared Sharpe

ratios. I then construct pricing errors and the return on the associated tangency portfolio.

Based on these I calculate the root mean squared error, the HJ-distance, and the Sharpe

ratio. For details on the datasets and estimation see section 1.5.1.

From left to right, the panels in figure 1 report RMSE, the HJ-distance, and the Sharpe

ratio for the three different selection methods over the full set of principal components, that

is for every approximation degree K. The leftmost figures illustrate that selection based

5 They show that the pricing errors are bounded by the highest squared Sharpe ratio, δ2, and the K +1st

eigenvalue, that is
N∑
i=1

(µi −
K∑

k=1

τkβi,k)
2 =

N∑
i=1

α2
i ≤ λK+1δ

2

where µi are mean excess returns and τk are coefficients for the betas. The above bound corresponds
to their theorem 3’ and is for a finite economy with N assets, which they allow to go to infinity (see
Chamberlain and Rothschild (1983)). As in the limit λK+1 is finite, they argue principal components
corresponding to the largest K eigenvalues can be used to price assets well and the arbitrage pricing
theorem holds approximately. Using their lemma 1 it can be shown that their expression for τkβi,k in the
above is equal to q′kµqi,k using the notation here.
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Figure 1. Comparison of PCA Factor Selection Rules
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Note: The figure depicts the RMSE, the HJ-distance and Sharpe ratio of R∗
t+1 for factor models subse-

quently increasing K, the number of principal components selected. For each test asset set the principal
components are extracted. They are then sorted based on the largest λk, (µ

′qk)
2 or (µ′qk)

2/λk to con-
struct factor models. All test assets are at monthly frequency and returns correspond to excess returns or
long-short returns – for a description of the data see section 1.5.1.

on squared risk premia minimizes RMSE consistently across all approximation degrees and

datasets. Trivially, as K → N , a factor model prices assets perfectly – all selection rules

lead to zero RMSE. The important feature is that selection based on squared risk premia

achieves consistently lower RMSE than the competing methods for all approximation

degrees, especially for lower K (see table 11 in the appendix).

The central and rightmost figures illustrate that selection based on squared Sharpe ratios

minimizes the HJ-distance and maximizes the Sharpe ratio of the associated tangency

portfolio with consistently sizeable gains over selection based on eigenvalues. Again, as

all principal components are included the HJ-distance becomes zero for all selection rules,

however, selection based on squared Sharpe ratios is able to deliver consistently lower HJ-

distances for all approximation degrees. Further, these gains are economically meaningful,

even if only few principal components are considered as illustrated in table 11 in the

appendix. For K = 3, across datasets selection based on principal component Sharpe
14



ratios improves monthly tangency portfolio Sharpe ratios by 0.06-0.44 relative to selection

based on eigenvalues. More so, these gains persist across a variety of approximation degrees

K until the SDF approximation reaches the limit.

Finally, as discussed and illustrated in table 1 principal component factor selection based

on eigenvalues can lead to the inclusion of less important factors in terms of their associated

prices of risk. Table 13 in the appendix compares the prices of risk for the first ten factors

selected under each selection rule for different datasets. Selection based on squared Sharpe

ratios leads to substantial improvements over selection based on eigenvalues. Factors with

larger and highly significant prices of risk are selected early on. This is expected as prices

of risk, bk = µ′qk/λk, are closely related to Sharpe ratios, SRk = µ′qk/
√
λk, but not

fully mechanical as the selection rule is not directly based on p-values. Selection based on

squared risk premia in comparison only leads to minor improvements over selection based

on eigenvalues. Therefore, the results in table 13 further strengthen the results obtained

for the HJ-distance. If the goal is to construct factor models that approximate the SDF

well and include factors relevant to the SDF, selection of principal components should be

based on Sharpe ratios.

1.4. Asymptotic Results for Principal Component Factor Models. This section

derives asymptotic results to evaluate the quality of a principal component factor model in

the context of the SDF. First, I establish asymptotic results to evaluate whether principal

component factors enter the SDF with nonzero coefficients, i.e. nonzero prices of risk.

Further, to assess the overall quality with which a model approximates the SDF the

asymptotic distribution of pricing errors and the HJ-distance is given. All proofs are

deferred to the appendix.

1.4.1. Setup. Since PCA is typically applied to datasets with large cross-sections the

results are derived for both N,T → ∞. To do so, I draw on the large dimensional factor

literature (see Bai and Ng (2008) for a survey). The starting point in this literature is

that data is driven by K < N factors and idiosyncratic errors.

As shown, the law of one price implies that a valid factor model consists of the N

principal component factors. Writing equation (2) compactly gives

µ = QKQ′
Kµ+QN−KQ′

N−Kµ

where I separated factors into two groups and used the fact that for each group betas are

equal to eigenvectors6. It follows that

Rt = QKQ′
KRt +QN−KQ′

N−KRt

No error is introduced as the above is an identity since QQ′ = IN . To connect the prior

to settings considered in the large dimensional factor literature the following assumption

is made.

Assumption E.1. Let µ′qk = 0 ∀ k ∈ K + 1, . . . , N .

Assumption E.1 implies that the second term in the return identity is zero in expec-

tation. For all economic purposes, this component is noise as it does not deliver risk

compensation. The assumption therefore separates the process for Rt into a factor and

6 The N factor representation of µ is valid for any orthonormal matrix or basis. The eigenvector matrix
Q of the covariance matrix is a natural choice motivated by the law of one price.
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idiosyncratic error component given as

(8) Rt = βFt + Et

where β = QK , Ft = Q′
KRt and Et = QN−KQ′

N−KRt. It follows that E[Et] = 0, E[FtE
′
t] =

0, β′Et = 0, V ar(Ft) = ΛT,K which is diagonal and β′β = IK .

Given (8) assumptions on factors and errors are made to characterize the asymptotic

properties of the principal component factors. I make assumptions similar to the strong

factor setting by Bai (2003), which establishes asymptotic properties under fairly general

conditions. The results can be extended along the line of Bai and Ng (2023) to allow for

weaker factors. Relative to existing studies, the setup considered here differs in several

aspects. First, coefficients and errors are orthogonal, β′Et = 0, which leads to faster

convergence rates for coefficients than in e.g. Bai (2003). Second, the restrictions on

factors and coefficients imply a specific factor normalization in spirit of Bai and Ng (2013)

– theorem 1 demonstrates that risk premia are therefore recovered up to their sign. Finally,

as in Lettau and Pelger (2020a) and Giglio and Xiu (2021), returns are allowed to have

non-zero means which requires additional assumptions.

1.4.1.1. Assumptions. In what follows, let X̄ = X − iT x̄
′, where x̄ = 1/T

∑
tXt, let

∥.∥ denote the Frobenius norm and ∥.∥sp denote the spectral norm. Also define δNT =

min(
√
N,

√
T ). As limits are taken over bothN and T , it is convenient to define the sample

covariance matrix Σ̂T and normalized sample covariance matrix Σ̂NT = Σ̂T /N – both

matrices share the same eigenvectors and their eigenvalues are connected via Λ̂T = N Λ̂NT .

Assumption A.1. Let γN (s, t) = E[ 1NE′
sEt]. For all N and T there is a positive constant

M < ∞ such that

(i) 1
T

∑
s

∑
t |γN (s, t)| ≤ M and maxt |γN (t, t)| ≤ M

(ii) 1
T 2

∑
s

∑
t E[(

∑
iEi,sEi,t − E[Ei,sEi,t])

2] ≤ MN

Assumption A.2. For all T and every i there is some positive constant M < ∞ such

that E[∥
∑

t FtEi,t∥2] ≤ MT .

Assumption A.2’. For all T and every i there is some positive constant M < ∞ such

that E[∥
∑

t F̄tĒi,t∥2] ≤ MT .

Assumption A.3. As N,T → ∞, let

(i) 1√
N
f̄

p→ µF where µF is finite;

(ii) 1
NT F̄

′F̄
p→ ΛTN,K where ΛTN,K is diagonal, positive, finite and has distinct ele-

ments.
Assumption A.4. Define vt = 1√

N
Ft − µF so that v̄ = 1√

N
f̄ − µF . As T → ∞ the

following central limit theorem holds

√
T v̄

d→ N(0,Ωv)

where Ωv = limT→∞ TE[v̄v̄′].
Assumption A.5. Define ē = 1

T

∑
tEt. As T → ∞ the following central limit theorem

holds √
T ē

d→ N(0,Ωe)

where Ωe = limT→∞ TE[ēē′].

Assumption A.1 restricts the dependence of Et. It limits the contribution of errors to

the overall return variance, however, allows the largest eigenvalues of the error covariance

matrix to grow at rate
√
N and is therefore more general than the setting in Chamberlain
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and Rothschild (1983)7. Assumption A.2 is as in Bai (2003) and restricts the dependence

between errors and factors. Assumption A.2’ further constrains the variation of error and

factor lead-lag correlation and is used to analyze the properties of α̂. Assumption A.3 (ii)

corresponds to the standard pervasiveness condition and states that factor variances grow

with N – it takes a slightly different form than in e.g. Bai (2003) as coefficients in

(8) are normalized. Assumption A.3 (i) is necessary to rule out asymptotic arbitrage

opportunities or mechanical irrelevance of factors for pricing as together with assumption

A.3 (ii) it ensures sample Sharpe ratios converge to a finite limit. Finally assumption A.4

and A.5 state that sample means of factors and errors satisfy central limit theorems.

1.4.2. Asymptotic Results. To test if principal component factors are relevant to the

SDF, I first establish the asymptotic properties of sample risk premia. Let µ̂F denote the

sample average of the principal component factors F̂t = Q̂′
KRt. Theorem 1 presents the

asymptotic distribution of µ̂F with the proof given in the appendix.

Theorem 1. Under E.1 and A.1-A.4, as N,T → ∞
1√
N

µ̂F − SµF = Sv̄ +Op(
1

T
+

1

N2
)

for the K × K matrix S that is asymptotically diagonal with 1 or -1 on its diagonal.

Further, if
√
T/N2 → 0

√
T (

1√
N

µ̂F − SµF )
d→ N(0,Ωµ)

where Ωµ = Ωv with Ωv defined in A.4.

Theorem 1 establishes that appropriately scaled risk premia converge to their population

counterpart up to sign and are asymptotically normally distributed. The asymptotic

covariance matrix does not depend on the covariance matrix of residuals or the estimation

error of factor coefficients – in the appendix, I demonstrate that these terms are negligible.

The result is similar to Giglio and Xiu (2021), however, the convergence rate is faster. This

is because errors are orthogonal to factor coefficients.

The theorem allows to test if factors enter the SDF with nonzero coefficients – or

prices of risk – which are given as bk = µF,k/λk. Hence, testing whether bk is zero is

equivalent to testing whether the factor has a zero Sharpe ratio. Corollary C.1 establishes

the asymptotic distribution for the respective joint or individual factor test under the null.

Corollary C.1. Suppose Ω̂µ
p→ Ωµ. Under the null H0 : µ

′
FΛ

−1
K,TµF = 0, E.1 and A.1-A.4,

as N,T → ∞ with
√
T/N2 → 0

T µ̂′
F Λ̂

−1
K,T µ̂F

d→ χ2(d, iK)

where χ2(d, iK) denotes a weighted χ2 distribution8 with weights d equal to the eigenvalues

of Λ−1
K,NTΩµ and iK is a K × 1 vector of ones specifying the degrees of freedom of each

chi-square random variable. Further, under H0 : µ
2
F,k/λT,k = 0

T
µ̂2
F,k

λ̂T,k

d→ χ2(dk, 1)

7 Specifically, A.1 implies E[∥E′E∥2] ≤ O( (TN)2

δ2
NT

), so E[∥ 1
T
E′E∥2] ≤ O( N2

δ2
NT

). By Lyapunov’s inequality

E[∥ 1
T
E′E∥] ≤ E[∥ 1

T
E′E∥2]1/2 ≤ O( N

δNT
). Finally, by the expectation inequality ∥ΣE∥ ≤ ∥E[ 1

T
E′E]∥, so

by standard norm inequalities ∥ΣE∥sp ≤ O( N
δNT

) = O(max(
√
N,N/

√
T )).

8 See B. E. Hansen (2021).
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where dk = Ωµ,kk/λNT,k with Ωµ,kk denoting the kth element on the diagonal of Ωµ.

The result in corollary C.1 is helpful to evaluate if factors matter for the SDF, however,

often it is more interesting to assess the quality with which a factor model is able to

approximate the SDF or price assets. The HJ-distance is the natural metric to consider.

To do so, theorem 2 first establishes the asymptotic properties of the pricing errors – note

by E.1 these are zero in population.

Theorem 2. Under E.1, A.1-A.5 and A.2’, as N,T → ∞

α̂ = ē(1 + µ′
F Λ̂

−1
NT,KµF ) +Op(

1√
TδNT

) +Op(

√
N

δ3NT

)

Further, if
√
T/N → 0 and

√
N/T → 0

√
T α̂

d→ N(0,Ωα)

where Ωα = (1 + µ′
FΛ

−1
NT,KµF )

2Ωe with Ωe defined in A.5.

Theorem 2 establishes that pricing errors are asymptotically normally distributed around

zero. The theorem restricts the rates at which N and T are allowed to grow relative to each

other and requires that neither grows too quickly. The conditions are satisfied for example

if T/N → c < ∞. Unlike for risk premia, the asymptotic covariance matrix of pricing

errors contains an adjustment that resembles the Shanken adjustment (Shanken (1992))

– in contrast to the classical adjustment, the present adjustment is squared and hence

larger. The adjustment is higher the larger factor means and the lower factor variances

are.

From theorem 2 the asymptotic distribution of the HJ-distance can be established. Note

E.1 implies that the HJ-distance is zero in population, so the below result establishes the

distribution under the null that the HJ-distance is zero.

Theorem 3. Define Σ−1
α,T = QN−KΛ−1

T,N−KQ′
N−K . Let d̂ denote the non-zero eigenvalues

of Σ̂−1
α,T Ω̂α and suppose d̂

p→ d. Under E.1, A.1-A.5 and A.2’, as N,T → ∞ with
√
T/N →

0 and
√
N/T → 0

T α̂Σ̂−1
T α̂−

N−K∑
i

d̂i√
2
N−K∑

i
d̂i

d→ N(0, 1)

Theorem 3 establishes that the scaled and centered HJ-distance is asymptotically stan-

dard normally distributed. To see why, note T α̂Σ̂−1
T α̂ can be written as a weighted sum

of asymptotically independent chi-square variables. For finite N , the HJ-distance would

converge to a weighted chi-square distribution. However, because N → ∞ this weighted

chi-square distribution in turn converges to a normal distribution by a standard central

limit argument.

1.5. Empirical Results.

1.5.1. Data and Implementation. In what follows I use data on monthly excess or long-

short returns for several anomaly portfolios. I consider the 25 size and value portfolios

(FF25 ), 57 long-short anomaly portfolios by Kozak, Nagel, and Santosh (2020) (KNS57 )

and the 212 long-short anomaly portfolios by A. Y. Chen and Zimmermann (2022) (CZ212 ).

Where necessary, excess returns are calculated using the monthly T-bill rate. To deal with
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missing observations, I only keep periods for which at least 75% of anomaly portfolio re-

turns are observed and subsequently keep portfolios that are observed for the full period9.

I focus on these datasets as they are frequently encountered in the literature and results

can therefore be compared by the reader easily.

To evaluate the performance of factor models, I construct in-sample and out-of-sample

root mean squared error (RMSE), HJ-distances, and the Sharpe ratio of the implied tan-

gency portfolio. This is done for the different principal component factor selection methods

whilst varying the number of factors K.

For the in-sample exercises, K principal component factors are selected using the full

sample from which I construct pricing errors based on the associated factor model expres-

sion in (3) using sample analogs. Pricing errors are hence computed as α̂ = µ̂− Q̂KQ̂′
K µ̂

from which I calculate RMSE =
√
α̂′α̂/N and HJ = α̂′Σ̂−1α̂. To construct the Sharpe

ratio, the return proportional to the associated tangency portfolio is constructed as R∗
t+1 =

µ̂′Q̂KΛ̂−1
K Q̂′

KRt+1 from which the Sharpe ratio is calculated on the full sample.

Out-of-sample quantities are constructed using rolling estimation. Using information

over the last 20 years up to time t, K principal component factors are selected. For a set

of K factors, denote by Q̂K,t, Λ̂K,t and µ̂t the estimates of factor weights or betas, factor

variances and return means using information until t. Let TOOS denote the total number of

out-of-sample periods. Out-of-sample pricing errors at t+1 are then constructed as ϵ̂t+1 =

Rt+1−Q̂K,tQ̂
′
K,tRt+1 for all TOOS periods, from which I compute α̂ = 1/TOOS

∑
t ϵ̂t. Using

these, RMSE and the HJ-distance are constructed where the HJ-distance uses the sample

covariance matrix estimated on the TOOS out-of-sample periods. Out-of-sample returns

proportional on the tangency portfolio are constructed as R∗
t+1 = µ̂′

tQ̂K,tΛ̂
−1
K,tQ̂

′
K,tRt+1,

from which the Sharpe ratios is calculated over the TOOS out-of-sample periods.

1.5.2. Out-of-Sample Evaluation of Principal Component Factor Selection Rules. This

section evaluates how the selection rules discussed in section 1.3 perform out-of-sample.

Figure 2 reports the out-of-sample performance of the different selection methods across K

– for clarity, I only compare selection based on eigenvalues with the optimal selection rule

for the respective criteria derived in 1.3. Table 12 in the appendix reports the performance

for K = 1, 3, 5 corresponding to the number of factors often encountered in the literature.

Focussing on RMSE, note that as K → N the out-of-sample RMSE goes to zero. This

is because the rolling eigenvectors, QK,t, form an orthonormal basis10. Hence, as before

what matters is the speed with which the different selection rules decrease pricing errors

relative to each other. For smaller K, selection of principal component factors based on

squared risk premia typically leads to improvements over selection based on eigenvalues

in terms of out-of-sample RMSE (see table 12). These gains are however not as large or

consistent as for the in-sample results and as illustrated in figure 2 do not persist across all

K. Overall, selection based on squared risk premia and eigenvalues leads to comparable

performance in terms of out-of-sample RMSE.

Turning to the HJ-distance, selection of factors based on squared Sharpe ratios leads

to consistent and substantial improvements over selection based on eigenvalues across all

K and datasets considered. Comparing the out-of-sample results with their in-sample

9 For FF25 this leaves 25 portfolios covering July 1926 to November 2023, for KNS57 this leaves 39
portfolios covering July 1963 to December 2019 and for CZ212 this leaves 155 portfolios covering July 1973
to December 2022.
10 As K → N it follows that QK,tQ

′
K,t → IN for every t, so ϵt+1 = Rt+1 −QK,tQ

′
K,tRt+1 → 0 for every t.

Therefore, both out-of-sample RMSE and the HJ-distance converge to zero as K → N .
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Figure 2. Full OOS Performance
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Note: The figure depicts the out-of-sample RMSE, the HJ-distance and Sharpe ratio of R∗
t+1 for factor

models subsequently increasing K, the number of principal components selected. For each test asset set
the principal components estimated on the training data are extracted and sorted based on λk, (µ

′qk)
2 or

(µ′qk)
2/λk to construct the factor models and the tangency portfolio weights. See section 1.5.1 for details

on the data and the estimation of out-of-sample statistics.

counterparts in figure 1 shows that the result derived in section 1.3.2 do not fully gener-

alize out-of-sample. For example, on the KNS57 dataset the selection of factors based on

conditional squared Sharpe ratios, estimated using 20-year rolling windows, does not en-

sure that the out-of-sample HJ-distance decreases strictly. Nevertheless, doing so delivers

significant out-of-sample improvements over selection based on eigenvalues estimated over

the same windows.

In terms of the out-of-sample Sharpe ratio of the tangency portfolio selection of factors

based on squared Sharpe ratios leads to sizeable gains over selection based on eigenvalues,

especially for smaller K. These gains are economically meaningful. For K = 3, across

datasets selection based on squared Sharpe ratios improves the monthly out-of-sample

Sharpe ratio of the tangency portfolio by 0.08-0.229 relative to selection based on eigen-

values (see table 12). On all except the CZ212 dataset, these gains typically persist. For
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the latter, selection based on squared Sharpe ratios outperforms selection based on eigen-

values until K = 22. As for RMSE and the HJ-distance, this shows that the in-sample

results do not fully carry over out-of-sample. To be precise, the selection rules when

implemented using 20-year rolling window estimation do not retain the same optimality

guarantees out-of-sample as they do in-sample.

Still, selection of principal component factors based on squared Sharpe ratios leads to

substantial and consistent improvements in the out-of-sample HJ-distance for all K and

to economically significant improvements in terms of the out-of-sample Sharpe ratio of the

tangency portfolio for most K relative to selection based on eigenvalues. Figure 14 in the

appendix shows that these results are robust when decreasing the frequency with which

parameters are estimated from monthly to once every 2 years. In practice, especially if

the goal is to construct a low-dimensional factor models from principal component factors,

the results here further support selection of factors based on squared Sharpe ratios.

1.5.3. Number of Factors. The previous sections evaluated factor model performance for

various numbers of factors K, however, in practice an estimator for the number of factors

to include in a model is required. Several estimators for the number of factors have been

suggested in the large dimensional factor literature11. These focus on determining the

number of factors such that variation in the return data is captured. I here present an

estimator that focuses on determining the number of factors required to approximate the

SDF.

For every factor model includingK factors the associated HJ-distance can be calculated,

which measures how close the factor model is to the set of admissible SDFs. Using the

results established in theorem 3, I can test if the HJ-distance is statistically significantly

different from zero. Ideally, factors are added until the test can no longer be rejected.

To achieve the maximum reduction in the HJ-distance possible, section 1.3 demonstrated

that factors should be sorted based on their squared Sharpe ratios. Intuitively, this exam-

ines how many factors are required to price the cross-section and approximate the SDF

sufficiently well.

The estimator proceeds as follows. Sort principal component factors based on their

squared Sharpe ratio and construct factor models subsequently increasing the number of

factors until N − 1 – the case of N factors is excluded as it will trivially price all assets

perfectly. For each factor model test whether the HJ-distance is zero and compute the

respective p-value (see theorem 3) which leaves a list of p-values, pk. The simple stop

estimator is then defined as

(9) K̂ = max{k ∈ {1, ..., N − 1} : pk ≤ a}+ 1

and corresponds to the first k such that the HJ-distance is no longer significantly different

from zero at level a, i.e. it simply stops the first time pk > a. Figure 3 illustrates the

estimator by plotting the HJ-distance and associated critical values for various K and

further marking the simple stop estimator K̂ for the 5% significance level across different

datasets.

The proposed estimator repeatedly tests the hypothesis that the HJ-distance is zero

and only tests a K factor model if the factor models with 1 through K − 1 factors have

been sequentially rejected. Hence, the estimator is a multiple-testing problem in which

11 See for example Bai and Ng (2002), Onatski (2010), Ahn and Horenstein (2013) and Freyalden-
hoven (2022).
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Figure 3. Number of Factors
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Note: The figure shows the HJ-distance and corresponding critical values for factor models subsequently
increasing K, the number of principal components selected sorted by their squared Sharpe ratio. Criti-
cal values are calculated based on theorem 3 where covariance matrices are estimated using Newey and

West (1987) considering up to T 1/4 lags. In blue the simple stop estimator K̂ in equation (9) is highlighted.
See section 1.5.1 for details on the data.

hypotheses are rejected in an ordered fashion. It therefore is prone to a false discovery

problem. Restricting each individual test’s type-I error rate to be a does not control the

overall probability of false discoveries. A solution is to instead control the probability

of one or more false rejections – the family-wise error rate (FWER). The strong stop

procedure by G’Sell et al. (2016) is designed to control the FWER at level a for settings

in which hypotheses are rejected sequentially. The procedure takes the sequential p-values

as its input and the estimator is defined as

(10) K̂S = max

{
k ∈ {1, ..., N − 1} : exp

(N−1∑
j=k

log(pj)

j

)
≤ ak

N − 1

}
+ 1

The estimator ensures that P (K̂S > K) ≤ a, i.e. ensures the probability of one or more

false rejections is below a (see G’Sell et al. (2016))12. In the context at hand, the strong

stop estimator therefore ensures that the probability of the estimated number of factors

being above the true number of factors is below a.

12 When the p-values under the null are drawn from a uniform distribution, independent to each other,
the strong stop procedure controls FWER for a given a. This is the case if the last N − 1 − K p-values
are null.
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Table 2. Number of Factors

Dataset

FF25 KNS57 CZ212

Simple Stop 6 11 16
Strong Stop 4 8 10

Note: The table depicts the simple stop estimator given in (9) and the strong stop estimator given in (10)
for the number of factors at the five percent level for different datasets.

Table 2 depicts results for the simple and strong stop estimator across the different

datasets. The simple stop estimator suggests that across datasets 10-28% of total principal

component factors are required to approximate the SDF sufficiently well. Comparing the

results of the simple with the strong stop estimator, the multiple testing adjustment can be

substantial. Focussing on the strong stop estimator, 6-21% of total principal component

factors are required to approximate the SDF sufficiently well. Overall, this suggests that

once principal component factors are sorted by squared Sharpe ratios relatively few factors

are required to approximate the SDF for the datasets considered.

1.5.4. Comparison to Other Methods. I here benchmark the results of this paper against

other approaches in the literature and highlight complementarities. Specifically, I focus on

the methods proposed in Kozak, Nagel, and Santosh (2020) and Lettau and Pelger (2020b).

For exposition, I focus on the KNS57 dataset as it is the dataset considered in the two

studies. Results for the other datasets are reported in the appendix.

1.5.4.1. Comparison with Kozak, Nagel, and Santosh (2020). The objective of this paper

is related to Kozak, Nagel, and Santosh (2020). They focus on constructing a robust SDF,

which they define as a SDF that prices assets well out-of-sample in a high-dimensional

setting. They achieve this by estimating the prices of risk of the SDF projected onto

the test data under L1- and L2-penalization, i.e. elastic net estimation. If the SDF is

projected onto the principal components of the data their estimator has a closed-form

solution, which assuming µ′qk > 0 for all k is given by

(11)

M∗
t+1 = 1− b′KNSQ

′(Rt+1 − µ)

bk,KNS =


q′kµ−γ1
λk+γ2

if q′kµ ≥ γ1

0 if q′kµ < γ1

where γ1 and γ2 control the degree of L1- and L2-penalties respectively. The L2-penalty

shrinks prices of risk towards zero. The L1-penalty performs selection of principal com-

ponent factors based on risk premia and further shrinks prices of risk.

Kozak, Nagel, and Santosh (2020) motivate the L2-penalization through priors on the

maximum attainable Sharpe ratio in the economy, however, give little justification for

the L1-penalization. The results of this paper are complementary. The law of one price

implies that principal component factors should be selected based on risk premia to ensure

the factor model and associated SDF approximation minimize squared pricing errors (see

equation (4))13.

13 There is a subtle difference between the L1-penalty and the derived selection rule from (4). The law
of one price would imply that to minimize squared pricing errors principal component factors with the
largest (squared) risk premia should be selected. The L1-penalty leads to an identical selection rule but in
addition subtracts γ1 after the selection, which further shrinks prices of risk towards zero. The selection
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To compare the performance of the factor models constructed from principal component

factors selected based on squared risk premia or Sharpe ratios with the Kozak, Nagel, and

Santosh (2020) estimator, I implement the elastic net estimator for principal components

given in (11). I vary their L1-penalty so that K factors are selected and determine their

L2-penalty via 3-fold cross-validation on either the full sample (for in-sample results) or

20 years of rolling training data (for out-of-sample results). Results are compared across

varying K. As the elastic net estimator is focussed on estimating regularized prices of

risk, b̂k,KNS , it is straightforward to construct the return on the associated tangency

portfolio as R∗
t+1 = b̂′KNSQ̂

′Rt+1. The estimator however does not map into an associated

factor model. Pricing errors therefore are calculated based on the SDF moment condition

α̂ = 1/T
∑

t M̂
∗
t+1Rt+1. For out-of-sample exercises all parameters in (11) – bKNS , Q, and

µ – are estimated on the 20 years of rolling training data.

Figure 4a compares the Kozak, Nagel, and Santosh (2020) estimator in-sample against

principal component based factor models with factors selected based on either squared

risk premia or Sharpe ratios for the previously considered evaluation criteria for varying

K. Principal component factor models with factors selected based on squared risk premia

lead to substantially lower RMSE. Similarly, factor models with factors selected based

on squared Sharpe ratios lead to consistent improvements over the Kozak, Nagel, and

Santosh (2020) estimator in terms of HJ-distance and the Sharpe ratio of the associated

tangency portfolio across all K. Table 11 illustrates that these gains are economically

sizeable even for small K and figure 15 demonstrates that these results hold for the other

considered datasets.

This is expected as the elastic net estimator by Kozak, Nagel, and Santosh (2020)

shrinks the prices of risk and therefore produces a biased estimate of the SDF. The bias

becomes visible in figure 4a: even as K → N the elastic net estimator does not reduce

pricing errors to zero. This bias leads to a deterioration of the in-sample performance in

exchange for potentially boosting out-of-sample performance.

Figure 4b presents the same statistics out-of-sample. Focussing on RMSE, principal

component factor models with factors selected based on squared risk premia outperform

the Kozak, Nagel, and Santosh (2020) estimator across all K out-of-sample. Similarly, se-

lection based on squared Sharpe ratios outperforms in terms of out-of-sample HJ-distances

across all datasets and approximation degrees. This is accompanied by consistent and sub-

stantial increases in the out-of-sample Sharpe ratio for the tangency portfolio, even for

small K (see table 12). Other datasets give rise to similar results (see figure 15).

To conclude, the results in section 1.3.1 are complementary to the Kozak, Nagel, and

Santosh (2020) estimator as they can formally motivate the use of their L1-penalty. Having

said so, simple factor models constructed from principal component factors selected based

on squared risk premia or Sharpe ratios outperform the Kozak, Nagel, and Santosh (2020)

estimator consistently across approximation degrees K in-and out-of-sample.

1.5.4.2. Comparison with Lettau and Pelger (2020b). The risk premium PCA (RP-PCA)

by Lettau and Pelger (2020b) estimates factors by solving a constrained PCA problem

that simultaneously minimizes the squared pricing errors. To construct their factors, the

eigendecomposition is applied to a modified covariance matrix

(12) ΣRP = Σ+ (1 + γ)µµ′

rule derived in section 1.3 is a type of hard-thresholding, while the Kozak, Nagel, and Santosh (2020)
L1-penalty is a type of soft-thresholding.
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Figure 4. Performance Comparison with Robust SDF Estimator
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Note: The figure depicts the in-sample and out-of-sample RMSE, HJ-distances and Sharpe ratios of the
tangency portfolio for factor models subsequently increasing K, the number of factors, constructed from
principal component factors selected by squared risk premia (µ′qk)

2 or squared Sharpe ratios (µ′qk)
2/λk

and the Kozak, Nagel, and Santosh (2020) estimator. In-sample results are constructed using the full
dataset, whereas out-of-sample results are constructed using a 20-year rolling window. Data corresponds
to the Kozak, Nagel, and Santosh (2020) 57 anomaly long-short portfolio returns which are at monthly
frequency.

where γ is a hyperparameter penalizing pricing errors (see Lettau and Pelger (2020b)).

Let ΣRP = Q̃Λ̃Q̃′ denote the eigendecomposition, where Q̃ is the collection of eigenvectors

and Λ̃ is a diagonal matrix containing the eigenvalues.

The RP-PCA estimator is concerned with the construction of factors well suited for

cross-sectional asset pricing. This paper is concerned with optimal factor selection and

it turns out the results are complementary. In appendix 4.3 I demonstrate that similar

selection rules as for the standard principal component factors hold for the RP-principal

component factors. Specifically, I show that factor selection based on squared Sharpe

ratios, (µ′q̃k)
2/λ̃k, is optimal for the HJ-distance and the Sharpe ratio of the tangency

portfolio associated with a factor model constructed from RP-principal component fac-

tors14. A similar result suggests that selection of RP-principal component factors based

on squared risk premia, (µ′q̃k)
2, is approximately optimal for squared pricing errors.

To compare the performance of the factor models constructed from standard principal

component factors with the RP-principal component factors and across different factor

selection methods, I implement the RP-PCA following Lettau and Pelger (2020b). I

fix γ = 10 and unless specified differently select RP-principal component factors based

on eigenvalues, which corresponds to their baseline specification. Factors are extracted

as F̃k,t = q̃′kRt where q̃k is an eigenvector obtained from the eigendecomposition of (12).

14 Note that for the RP-PCA (µ′q̃k)
2/λ̃k no longer corresponds to the squared Sharpe ratio as λ̃k ̸=

V ar(F̃k,t) where F̃k,t = q̃′kRt. However, for γ = 10 the difference is negligible for most factors, so

(µ′q̃k)
2/λ̃k ≈ S̃R

2
k.
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Using the factors, betas are estimated through regression. In-sample pricing errors and the

return on the tangency portfolio are constructed in line with section 1.5.1. To construct

out-of-sample quantities, the relevant parameters are estimated over a 20-year rolling

window, and pricing errors and the return on the tangency portfolio are then constructed

in line with section 1.5.1.

Figure 5. Performance Comparison with Baseline RP-PCA
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Note: The figure depicts the in-sample and out-of-sample RMSE, HJ-distances, and Sharpe ratios of the
tangency portfolio for factor models subsequently increasing K, the number of factors, constructed from
principal component factors selected by squared risk premia (µ′qk)

2 or squared Sharpe ratios (µ′qk)
2/λk

and the baseline RP-PCA factor model. In-sample results are constructed using the full dataset, whereas
out-of-sample results are constructed using a 20-year rolling window. Data corresponds to the Kozak,
Nagel, and Santosh (2020) 57 anomaly long-short portfolio returns which are at monthly frequency.

Figure 5a compares the baseline RP-principal component factor model with factor mod-

els constructed from standard PCA and factors selected based on either their squared risk

premia or Sharpe ratios in-sample. Focussing on RMSE, the RP-PCA approach performs

comparable to the standard PCA based model. Principal component factor models with

factors selected based on their squared Sharpe ratio outperform the RP-PCA approach in

terms of HJ-distance and Sharpe ratio of the tangency portfolio. These improvements are

economically sizeable for small K as illustrated in table 11. Other datasets give rise to

similar results (see figure 16).

Figure 5b presents the results out-of-sample. The baseline RP-PCA improves over

simple principal component factor based models with factors selected based on squared

risk premia in terms of out-of-sample RMSE. Principal component factor models with

factors selected based on their squared Sharpe ratio lead to substantial and consistent

improvements in terms of out-of-sample HJ-distance over the baseline RP-PCA. For all

except the CZ212 dataset, the out-of-sample Sharpe ratio of the tangency portfolio is

comparable (see figure 16). For the latter, the RP-PCA based models lead to substantial

gains in the out-of-sample Sharpe ratio of the tangency portfolio, particularly for small
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K (see table 12). Overall the baseline RP-PCA appears to improve the factor models’

performance in terms of RMSE, whilst standard principal component factor models with

factors selected based on squared Sharpe ratios demonstrate better performance in terms

of HJ-distances and mostly comparable performance in terms of the Sharpe ratio of the

tangency portfolio.

The performance of the RP-PCA can be further boosted by adopting the discussed

factor selection rules. Figure 6a demonstrates this in-sample. For comparability, the per-

formance of the standard PCA with factors selected based on either their squared risk

premia or Sharpe ratios are included. Selecting RP-principal component factors based on

their squared risk premium further boosts the performance of the factor model in terms

of in-sample RMSE. The figure also illustrates that selection based on squared risk pre-

mia is only approximately optimal as the largest decreases in RMSE do not one-to-one

line up with the ranking based on squared risk premia (see appendix 4.3 for further de-

tails). Selecting RP-principal component factors based on squared Sharpe ratios leads to

an improvement of the HJ-distance and the Sharpe ratio of the associated tangency port-

folio with performance similar to the factor models constructed from standard principal

component factors. Other datasets give rise to similar results (see figure 17).

Figure 6. Performance Comparison with Baseline and Optimally Selected
RP-PCA
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Note: The figure depicts the in-sample and out-of-sample RMSE, HJ-distances and Sharpe ratios of the
tangency portfolio for factor models subsequently increasing K, the number factors, constructed from
standard or RP-principal component factors selected by squared risk premia (µ′qk)

2 or squared Sharpe
ratios (µ′qk)

2/λk and the baseline RP-PCA factor model. RP-PCA methods set γ = 10. In-sample
results are constructed using the full dataset, whereas out-of-sample results are constructed using a 20-
year rolling window. Data corresponds to the Kozak, Nagel, and Santosh (2020) 57 anomaly long-short
portfolio returns which are at monthly frequency.

Figure 6b presents the out-of-sample results. Focusing on RMSE, selecting RP-principal

component factors based on risk premia does not seem to improve performance for the
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KNS57 dataset. Figure 17 illustrates that on the other datasets selection based on squared

risk premia leads to marginal improvements (for FF25 performance is unaffected, whilst

for CZ212 performance slightly improves). For the HJ-distance, selecting RP-principal

component factors based on Sharpe ratios improves the performance of the RP-principal

component factor model, however, the factor models based on standard principal com-

ponent factors selected based on squared Sharpe ratios continue to outperform. Finally,

the out-of-sample Sharpe ratio of the RP-principal component factor model generally im-

proves by selecting factors based on squared Sharpe ratios and consistently outperforms

the Sharpe ratio of the tangency portfolio associated with a factor model based on stan-

dard principal components selected by squared Sharpe ratios. The other datasets give rise

to similar observations (see figure 17).

The results of this paper are therefore complementary to the RP-PCA by Lettau and

Pelger (2020b). The selection rules derived in section 1.3 are optimal for the RP-PCA (see

section 4.3 for details) and lead to improvements in its in- and out-of-sample performance.

Interestingly, standard principal component based factor models with factors selected by

squared Sharpe ratios generally outperformed the RP-PCA in terms of the HJ-distance

in- and out-of-sample.

1.6. Conclusion. This paper examines the selection of principal component factors for

the construction of the SDF and by extension factor models describing the cross-section

of expected returns. Starting from the law of one price, I show that factor selection based

on eigenvalues is typically suboptimal for asset pricing. Specifically, if the goal is to select

factors such that the associated factor model’s sum of squared pricing errors (HJ-distance)

is minimized, factors associated with the largest squared risk premia (Sharpe ratios) should

be selected. The intuition for this result is that the latter criteria are linked to principal

component factor’s prices of risk and hence inform us whether a given factor is useful

in pricing other assets. Empirically, this leads to substantial improvements in the factor

model’s performance in- and out-of-sample and once ranked by Sharpe ratios it appears

few principal components are sufficient to approximate the SDF adequately.

Having said so, factor selection will always depend on the objective of the empirical re-

searcher. If the goal is to obtain a lower-dimensional representation capturing the variation

of the data, selection should be carried out based on eigenvalues. The contribution of this

paper is that if the objective is to identify factors relevant for pricing the cross-section of

expected returns other criteria are optimal. Specifically, if the goal is to approximate the

SDF well, minimize the weighted sum of squared pricing errors, or maximize the Sharpe

ratio of a factor model’s associated tangency portfolio, selection based on Sharpe ratios is

recommended.
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Chapter 2.

The Network Drivers of Trade Currency Invoicing

Co-authored with Tommaso Mancini-Griffoli, Christian Jul-

liard, and Kathy Yuan

Using an equilibrium network model and a large international panel of cross-border

trade, we analyse empirically the drivers of foreign currency invoicing. First, we find

strong evidence of strategic complementarity in currency invoicing across countries: Ex-

porting countries tend to invoice more in a given currency when their main trade partners

invoice in that same currency. This in turn leads to an amplification of domestic shocks

through the trade network. Second, key players for a given currency are not only coun-

tries that invoice most of their exports in that foreign currency (e.g., China, South Korea

and Russia), but also countries that are central in the international trade network (e.g.,

Japan, Germany and Canada). Third, at the country-level, we find evidence of strategic

complementarity, or natural hedging, between the choices of export and import currencies.

Fourth, in counterfactual analysis, we find that, due to the large network externalities that

we identify, the position of the USD as dominant trade currency is inherently fragile with

respect to the currency invoicing choices of EU and BRICS countries.

2.1. Introduction. It is well documented that the vast majority of international trade is

invoiced in a small number of dominant currencies, with the USD playing an outsized role

(Goldberg and Tille (2016); Gopinath (2015)). Dominant currency pricing has significant

implications for monetary policy spillovers, transaction costs, and financial market devel-

opment Gopinath, Boz, et al. (2020). In this paper, in addition to the factors proposed by

the literature on dominant currency, we examine whether the currency invoicing decisions

of the firms in a country are affected by those of its trading partners.

Specifically, in the theoretical model, a representative firm in a country chooses the

size of invoicing in a dominant currency for international trade transactions based on a

cost-benefit analysis. The cost and benefit, as identified by the literature, can be due to a

multitude of factors. For example, the interaction of nominal price stickiness with pricing

complementarities and input-output linkages across firms generates complementarities in

currency choice (Gopinath (2015); Doepke and Schneider (2017); Mukhin (2022); Eren and

Malamud (2022)). That is, exporters coordinate on the same currency of invoicing for the

following two reasons: to be competitive in output pricing; and to be able to hedge their

balance sheet against exchange rate shocks with the denominated currency of imported

intermediate (real and financial) inputs. This indicates that the size of the market is an

important driver of the dominant currency Mukhin (2022), as well as various price index

levels and other macroeconomic and financial variables at the country-level. Additionally,

a large body of literature on international finance emphasizes the safety feature of the

dominant currencies. Differences in financial development, and hence the differences in

access to safe assets Maggiori (2017), or risk aversion of participants Gourinchas and

Hélène Rey (2022) may drive the demand for an international safe asset. The dominant

currency preserves value added in exchange transactions, leading to its wide use in the
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global financial market.15 This indicates that safety/volatility of the currency is potentially

a major determinant of its dominant status. Importantly, the network of international

trade underlies how these factors affect each country’s invoicing decisions. The network

of international trade not only captures the potential network effects of neighbouring

countries in choosing a dominant currency for pairwise transactions (for stable transactions

or cheaper access to working capital or financial borrowing) but also reflects the input-

output linkages across countries. Furthermore, the trade network might also give rise to

the need for balance sheet currency hedging: A representative firm in a country that is

invoiced in a certain dominant currency in its imports has more incentive to invoice their

exports in the same currency to hedge its currency risk exposure. In our paper, we use a

network model to capture these trade-offs.

In the model, the currency invoicing decision of a representative firm in a country

is affected not only by its own economic conditions, such as the size of the economy,

inflation, financial market conditions, and other relevant economic variables, but also

the invoicing decision of its trading partners and its trading partner country’s economic

variables. Similarly, the currency invoicing decisions of its trading partners are affected by

those of their own trading partners, as well as their economic variables, and so forth. In

equilibrium, we show that this network dependency is captured by a network attenuation

factor ϕ, the key parameter whose sign determines whether the Nash equilibrium features

strategic substitution (ϕ < 0) or complementarity (ϕ > 0) in agents’ invoicing decisions.

Each agent’s equilibrium invoicing amount in the dominant currency depends not only on

the network attenuation factor ϕ but also on its network centrality measure.

We estimate the equilibrium based on four different sets of restrictions on the model

parameters, that is, four models – Panel, Spatial Error (SEM), Spatial Lag (SLM) and

Spatial Durbin (SDM) – using Bayesian methods. For example, setting ϕ = 0 in the

equilibrium condition yields a simple panel structure for the data. We use a Bayesian

procedure for model specification and assess whether the data support the presence of

network externalities and if so, which spatial specification. Our empirical analysis focusses

on excessive USD or EUR invoicing for each country to assess the use of the USD or EUR

as a vehicle currency in international trade.16 The measure is constructed at monthly

frequency based on the payment share dataset by Boz et al. (2022) and the Direction of

Trade Statistics database by the International Monetary Fund. We further augment the

payment share dataset with a proprietary dataset obtained from the Society for Worldwide

Interbank Financial Telecommunications (SWIFT) to increase the cross-sectional coverage.

The final dataset contains 84 countries from January 2004 to December 2019 and covers

on average 91% (93%) of worldwide exports (imports).

Our analysis shows that there is overwhelming evidence of network spillovers: The panel

specification with no spatial dependency is never preferred by the data. There is strong

evidence of strategic complementarity in currency invoicing across countries: Exporting

countries tend to invoice more in a given currency when their main trade partners invoice in

that same currency. This in turn leads to an amplification of domestic shocks through the

trade network. In fact, the SDM model – the specification of our theoretical formulation

15Furthermore, Gopinath and Stein (2021) argue that assets denominated in the dominant currency can be
used as a savings device for export producers to hedge against invoicing risk. Chahrour and Valchev (2022)
additionally suggest that safe assets are used as collateral to overcome contractual frictions in cross-border
transactions.
16For robustness, we also use aggregate currency invoicing amounts in USD or EUR. The results are similar
and reported in the appendix.
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– is always strongly preferred by the data. We conduct analysis based on the SDM

specification and include among the control variables the lagged values of the dependent

variables to capture time series autocorrelation. Therefore, the model not only captures the

contemporaneous, or short-term, impact of a shock originating from any of the independent

variables but also their long-term effects. Due to the network specification we are further

able to decompose these effects into direct and indirect effects, the latter being impacts

originating from trade partners propagated through the trade network. The network

attenuation factor for USD excessive invoicing is around 0.24, while that of the EUR

is 0.16. This indicates that USD excessing invoicing is inherently less stable: A small

negative shock might lead to a substantial reduction in the use of the USD as a vehicle

currency.

We find that key players for a given currency are not only countries that invoice most

of their exports in that foreign currency (e.g., China, South Korea, and Russia) but also

countries that are central in the international trade network (e.g., Japan, Germany, and

Canada). The driver of the former set of countries is based on their large direct impacts,

while that of the latter set of countries is due to the network amplification and to the

central position that these countries have in the trade network.

Furthermore, at the country-level, we find evidence of strategic complementarity be-

tween exports and imports in a given currency, lending support to the natural hedge

hypothesis proposed in the literature (Doepke and Schneider (2017); Amiti, Itskhoki, and

Konings (2022)). This investigation is based on a reduced-form Vector Autoregression

(VAR) in our SDM specification with four dependent variables (and their respective con-

trols): Excessive currency invoicing in EUR and USD of both export and import. We

employ identification via cross-sectional heteroskedasticity. That is, we exploit hetero-

geneity across residuals’ covariances of our panel dataset to pin down structural param-

eters. The key identification assumption this requires is that all countries have identical

contemporaneous reactions to USD or EUR import- or export-based shocks.

Finally, we conduct a counterfactual analysis to examine the impact of a set of countries

choosing to abandon the USD for excessive invoicing. We conduct this exercise for Russia,

Brazil, India and China, the EU block, and the members of BRICS in our sample, i.e.

Brazil, Russia, India and China jointly. The estimated effects are quantitatively large, with

the effects of the BRIC(S) block (EU) abandoning the USD for excess invoicing resulting

in a 42% (11%) reduction in the overall use of this currency. More so, the channels through

which these reductions arise are quite different. For the BRIC(S) block, most of the effect

is driven by the direct reduction in the use of the USD by these countries. For the EU,

almost half of the effect is driven by indirect network externalities. This underlines the

fragility of a dominant trade currency such as the USD – coordinated abandonment can

have substantial impacts on the overall use of a dominant currency for trade invoicing,

specifically as the network externalities highlighted in this paper lead to an amplification.

The remainder of this paper is organized as follows. In Section 2.2, we review the related

literature. In Section 2.3, we present a network model to guide our analysis of currency

choice for invoicing. In Section 2.4 we present our estimation methodology. In Section

2.5, we describe the data and variable construction. In Section 2.6 we present and discuss

the estimation results and conduct the counterfactual analysis. Section 2.7 concludes.

2.2. Related Literature. The current international macro literature has shown that

the choice of currency in trade invoicing is an active firm-level decision with some degree
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of persistence over time Amiti, Itskhoki, and Konings (2022). This evidence is contrary

to the conventional international literature, which assumes exogenous producer currency

pricing (PCP) or local currency pricing (LCP), that is, trades are denominated either in

the producer’s currency or the importer’s currency. Instead, recent studies postulate the

existence of dominant currencies for international trade that can endogenously emerge –

dominant currency pricing (DCP) – and focus on their determinants and implications for

optimal monetary policies with different spillover dynamics.

The DCP literature on international trade proposes that the interaction of nominal price

stickiness with pricing complementarities and input-output linkages across firms generate

complementarities in currency choice (Gopinath (2015); Doepke and Schneider (2017);

Gopinath, Boz, et al. (2020); Mukhin (2022); Eren and Malamud (2022)). That is, ex-

porters coordinate on the same currency of invoicing to be competitive in output pric-

ing and to be able to hedge their balance sheet against exchange rate shocks with the

denominated currency of imported intermediate (real and financial) inputs. Financial

intermediate inputs can be thought of as working capital, trade credit, or any form of

financial borrowing. According to this line of research, important determinants for domi-

nant currencies include the competitiveness or importance of the destination market and

the currencies that denominate the intermediate inputs. Exporting firms that import a lot

of intermediate products, or borrow capitals in the international markets, are more likely

to choose DCP. The theoretical result in Mukhin (2022) also indicates that the market

size is important in determining the dominant currency. Our model of the network effects

of currency invoicing choices is motivated by this line of research. The complementarities

in invoicing currency choice we identify are via the import/export network channel.

Additionally, there are many other determinants for currency choices in trade invoic-

ing. Existing empirical work using transactions of firm-level import or export data shed

light on these determinants. Gopinath, Itskhoki, and Rigobon (2010) and Goldberg and

Tille (2016) analyze transaction-level data on currency invoicing for, respectively, US and

Canadian imports, and find that USD pricing is more common in sectors classified as

producing homogeneous goods and hence likely substitutes. Chung (2016) finds that a 1%

decrease in the share of imported inputs priced in sterling decreases the probability that

UK exporters invoice in sterling by about 18% using UK trade transaction data with non-

EU countries. Studying the currency invoicing choices of Belgian exporting firms, Amiti,

Itskhoki, and Konings (2022) find that large and import-intensive firms tend to invoice

their exports in USD. There is also evidence supporting firms choosing their invoicing

currency to hedge their financial input risk. BIS (2014) document that traded financial

contracts are mostly USD denominated even though they are sourced through local banks,

indicating most trades are financed in USD. Bahaj and Reis (2020) find that when the cost

of financing working capital in Renminbi (RMB) is lower due to swap arrangements by

central banks, trades are more likely to be denominated in RMB. Furthermore, although

invoicing and settlement currencies do not necessarily coincide, in most transaction they

are the same currency Gopinath, Boz, et al. (2020). Therefore, the choice of an invoicing

currency also depends on its liquidity level. In our estimation, we control for these deter-

minants identified by the trade literature and examine whether these determinants might

have additional impact propagated through the trade network.

Finally, recent work in the DCP literature also emphasizes financial frictions in cross-

border transactions as an important factor in currency choices. A dominant currency such
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as the USD preserves its value during global market crises, and thus is widely used as an

international reserve or safe asset. This safety feature offered by assets denominated in

dominant currency means that the dominant currency preserves value added in exchange

transactions, leading to its wide use in global financial market. Differences in financial

development or the differences in access to safe asset Maggiori (2017) or risk aversion of

participants Gourinchas and Hélène Rey (2022) may drive the demand for an international

safe asset. Chahrour and Valchev (2022) propose that safe assets are used as collateral

to overcome contractual frictions in cross-border transactions. Gopinath and Stein (2021)

argue that assets denominated in the dominant currency can be used as saving devices

for export producers to hedge against invoicing risk. In our analysis, we also examine the

impact of these financial frictions for dominant currencies at the country-level in relation

to the trade network.

2.3. The Network Model. In this section, we construct a network model of currency

invoicing decisions for international trade transactions. This framework directly guides

our empirical estimation of network effects. In this model, there is a representative firm in

each country. They simultaneously decide in which currency to invoice their trades given

the import and export trade network structure. For the ease of exposition, the optimizing

agent in the model is described as a country (rather than a representation of firms in a

country). A country’s optimal currency invoicing decision not only depends on its own

characteristics but also responds to all other countries’ invoicing decisions (and potentially

characteristics) through the given trade network. In Section 2.4, we lay out the steps for

structurally estimating the model.

The Network. There are n countries. The time-t trade network is predetermined,

characterized by an n-square adjacency matrix Gt. If its element gij ̸=i,t are not null,

country i and j are connected. To construct Gt in the structural estimation, we use

country-level bilateral trade data. Specifically, we focus on the case where gij ̸=i,t is the

fraction of imports or exports by country i from or to country j in the previous month.

The matrix Gt keeps track of all direct connections – links of order one – between any

pair of countries in the network. Similarly, the matrix Gh
t , for any positive integer h,

encodes all links of order h between countries, that is, the paths of length h between any

pair of countries. The coefficient in the (i, j)th cell of Gh
t , i.e.,

{
Gh

t

}
ij
, gives the exposure

of country i to country j in h steps. Since Gt is a right stochastic matrix (with each row

summing up to one), it can be interpreted as a Markov chain transition kernel, and Gh
t

as the h-step transition matrix.

Countries and their Invoice Currency Preference. We study the amount of excessive

currency countries choose to invoice their trade partners at the beginning of each period t.

The amount of excessive currency invoiced for a given currency is defined as any amount

above the corresponding bilateral trade volume. For example, it is natural for a country

to invoice their trade counterparts located in the US in USD. However, if this country

invoices trades with other countries in USD, we define these transactions as excessive

USD invoicing. We aim to explain this decision at the country-level.

Let yi,k,t denote the total excessive currency k invoiced by country i. We model the

impact of the trade network on country i’s choice of yi,k,t. In the rest of the paper, we

drop the index k for expositional simplicity and often refer to k as the dominant currency

(DC).
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Given the predetermined network Gt measured by trade links, each country chooses

excessive DC invoicing simultaneously to maximize its own payoff. In our model, we

specify the per-unit value µ̃i,t of excess DC for country i in network Gt as

(13) µ̃i,t := µi,t + xi,tδ + xp,tρ+ ϕ
∑
j

gij,tyj,t +
∑
j

gij,txi,j,tθ

where xi,t is a row vector of country-specific characteristics, xp,t denotes aggregate common

controls, xi,j,t captures pair-specific covariates, µi,t := µ̄i+ ϵi,t contains a countries specific

fixed effect (µ̄i), and shock (ϵi,t), δ, ρ and θ are conformable column vectors and ϕ is a

scalar coefficient. The first and second set of variables capture the country-level variables

that directly affect the value of a unit of DC such as bilateral (local versus the invoicing

currency) exchange rate volatility, inflation, and other macro variables. The third set of

variables capture aggregate factors that might affect all countries’ choices.

The fourth term in equation (13) is a network-dependent component of valuation of extra

unit of DC invoicing: ϕ
∑

j gij,tyj,t. It is motivated by the DCP hypothesis. According to

DCP, firms in country i have a preference for invoicing their exports in the same currency

as their imports so to minimize the currency mismatch on their assets and liabilities.

Network effects lead to certain currencies such as the USD emerging as the dominant

currency for countries to coordinate their invoices.

The last term in equation (13) highlights that the network-dependent mechanism may

also operate via the characteristics of the trading partners. Variable xi,j,t denotes match-

specific control variables and the characteristics of other countries, and θ is a vector of

suitable dimension. That is, in addition to the aggregate information embedded in the

neighbouring countries’ level of excessive DC invoicing, macro variables and the neighbour-

ing countries’ characteristics affect the per-unit valuation of the excessive DC invoicing.

For example, suppose that country j has a well-developed financial market denominated

in EUR instead of USD. This means that trade financing, work capital financing, and

currency risk hedging in EUR would be cheaper and readily available. Firms in country j

would have more incentives to invoice their trades in EUR, which can impact the invoicing

decision of country i. The DCP empirical literature has identified several such determi-

nants for xi,j,t, such as the size of the economy, financial market development, foreign

direct investment, foreign debt, and inflation.

Next, assuming a quadratic cost for holding yi,t amounts of DC, we specify country i’s

utility from DC invoicing as

ui(yt|gt) = µ̃i,tyi,t −
1

2
y2i,t.(14)

The bilateral network influences in our model are captured by the following cross-

derivatives for i ̸= j:
∂2ui(yi,t, {yj,t}j ̸=i |Gt)

∂yi,t∂yj,t
= ϕgij,t,

where ϕ is the network attenuation factor, the key parameter whose sign determines

whether the Nash equilibrium features strategic substitution (ϕ < 0) or complementarity

(ϕ > 0). We are agnostic about the sign of ϕ, and we instead estimate it empirically.

We solve countries’ optimal excessive DC invoicing decision in the Nash equilibrium of

simultaneous action. The optimal response function for each country is then

(15) y∗i,t = µi,t + xi,tδ + xp,tρ+ ϕ
∑
j

gij,tyj,t +
∑
j

gij,txi,j,tθ.
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Note that the empirical counterpart of the above best response is the spatial Durbin model.

Let us denote µi,t+xi,tδ+xp,tρ+
∑

j gij,txi,j,tθ by µ̆t. The following result is immediate.

Proposition 1. Suppose that |ϕ| < 1. Then, there is a unique interior solution for the

individual equilibrium outcome given by

(16) y∗i,t (ϕ, g) = {M (ϕ,Gt)}i. µ̆t,

where {}i. is the operator that returns the i-th row of its argument, µ̆t := [µ̆1,t, ..., µ̆n,t]
⊤,

yi,t denotes the total excessive DC invoicing by country i, and

(17) M (ϕ,Gt) ≡ I+ ϕGt + ϕ2G2
t + ϕ3G3

t + ... =
∞∑
k=0

ϕkGk
t = (I− ϕGt)

−1 ,

where I is the N ×N identity matrix.

Proof. The first-order condition identifies the individual country’s optimal response. Ap-

plying Theorem 1(b) in Calvo-Armengol, Patacchini, and Zenou (2009), we know that the

necessary equilibrium condition is |ϕλmax (Gt)| < 1, where the function λmax (·) returns

the largest eigenvalue. Since Gt is a right stochastic matrix, its largest eigenvalue is 1.

Hence, the condition requires |ϕ| < 1, and if so, the infinite sum in equation (17) is finite

and equal to the stated result (Debreu and Herstein (1953)). □

The condition |ϕ| < 1 states that network externalities must be small enough in order

to prevent the feedback triggered by such externalities to escalate without bounds. In

vector form, yt ≡ [y1,t, ..., yN,t]
⊤, and in equilibrium,

(18) y∗t = M (ϕ,Gt) µ̆t

Network Propagation. In equilibrium, the matrix M (ϕ,Gt) contains information

about the centrality of network players.17 Multiplying the rows (columns) of M (ϕ,Gt)

by a unit vector of conformable dimensions, we recover the indegree (outdegree) Katz–

Bonacich centrality measure. The indegree centrality measure provides the weighted count

of the number of ties directed to each node (i.e., inward paths), while the outdegree cen-

trality measure provides the weighted count of ties that each node directs to the other

nodes (i.e., outward paths). That is, the i-th row of M (ϕ,Gt) captures how country i

loads on the trade network as whole, while the i-th column of M (ϕ,Gt) captures how

the trade network as a whole loads on country i. Therefore, the trade network central-

ity of a country affects the dominance status of its currency, potentially also through its

characteristics (captured by variables xi).

2.4. Estimation Method. Making explicit the role of the shocks, ϵi,t, and country fixed

effects, µ̄i, in the first order condition (15), yields the empirical representation

(19) yi,t = µ̄i + xi,tδ + xp,tρ+ ϕ
∑
j

gij,tyj,t +
∑
j

gij,txi,j,tθ + ϵi,t

where the covariates, xi,t, are contemporaneously independent from the time t shock.

Hence, we can also accommodate, among other controls, the lagged value of the both

import and export excess currency invoicing. The above formulation is the so-called

17This centrality measure takes into account the number of both direct and indirect connections in a
network. For more on the Bonacich centrality measure, see Bonacich (1987) and Matthew O. Jack-
son (2010). For other economic applications, see Ballester, Calvo-Armengol, and Zenou (2006) and Ace-
moglu et al. (2012). For an excellent review of the literature, see Matthew O Jackson and Zenou (2012).
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spatial Durbin model (SDM – see, e.g., LeSage and Pace (2009)). We estimate the model

using monthly data, and we include year fixed effects to control for unobserved macro

factors. At time t, the network is predetermined and gij,t is measured by the fraction

of country i’s imports or exports from or to country j. We include a very broad set of

country-, and pair-specific, characteristics suggested in the previous literature (such as

existence of swap line, bilateral exchange rate volatility, consumer price index volatility,

financial market development, denomination of corporate sector FX liability), and lagged

values of the excess currency invoicing of both exports and imports. All control variables

are lagged by one period for predeterminancy.

The general formulation in equation (19) nests several more restrictive models consid-

ered in the previous literature on network spillovers. For instance, setting the vector θ

to zero, i.e. shutting down the direct dependency of country i’s outcome variable on the

covariates of all other countries, we have a simple spatial lag (SLM) as in Ozdagli and

Weber (2023). Furthermore, restricting xi,j,t = [xj,t, xp,t] and θ = −ϕ[δ⊤, ρ⊤]⊤, we have a

spatial error model (SEM) as in Denbee et al. (2021). As shown in Bramoullé, Djebbari,

and Fortin (2009), the identification conditions for SDM and SLM boils down to the re-

quirement of linear independence of the identity matrix, the adjacency matrix containing

the network weights (gij,t), and the square of this matrix, while in SEM identification

arises from the implied restriction on the covariance matrix of the error terms.18

Note that in all three formulations for the spatial dependency (SDM, SLM, and SEM),

assessing the presence of network externalities boils down to testing whether the coefficient

ϕ is different from zero, and setting ϕ = 0 yields a simple panel structure for the data.

Frequentist estimation of these models is possible via e.g., (quasi) maximum likelihood

and the Generalized Method of Moments (see, e.g. Anselin (1988)). Nevertheless, we opt

for a Bayesian procedure, since we aim to select a specification, and assess whether the

data support the presence of network externalities (i.e., a ϕ ̸= 0), with a procedure that

is robust to model misspecification in that it does not require testing under the null of a

correctly specified model. Nevertheless, since we employ flat priors for the parameters,19

and we assume Gaussianity for the error terms, the posterior modes coincide with the quasi

maximum likelihood estimates (a consistent estimator in this setting). When comparing

models (the SDM, SLM, SEM, and panel specifications), we assign equal prior probability

to each formulation, and posteriors are sampled via the Gibbs sampling procedure detailed

in Appendix 5.2.

Furthermore, the estimate of ϕ also reveals the type of equilibrium on the network, i.e.,

strategic substitution (when ϕ < 0) or complementarity (when ϕ > 0). Note also that

from equation (15) we have that the conditional covariance of yt is

(20) V art−1(yt) = V art−1 (M (ϕ,Gt) ϵt) = M (ϕ,Gt) ΣϵM (ϕ,Gt)
⊤

since Gt is predetermined at time t and Σϵ ≡ V ar(ϵt). Hence, the variance is increasing

in ϕ: The stronger the degree of strategic complementarity, the larger is the endogenous

amplification of shocks to the system, and the higher is the volatility of total excess in-

voicing in the network. To see this, note that the variance of total excess invoicing is

18See Denbee et al. (2021) for a detailed discussion.
19We use improper flat priors for δ, ρ, and θ, since these parameters are common across specifications,
and consequently the improper prior does not invalidate the posterior model probabilities. For ϕ instead
we employ a Gaussian prior and modify the acceptance rate to ensure proper support.
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V art−1(1
⊤yt), hence, a unit shock equally spread among all N countries has a contempo-

raneous impact on total excess invoicing equal to 1⊤NM (ϕ,Gt)1N/N = 1/(1− ϕ), where

1N denotes a vector of ones with length N .20

2.5. Variable Construction and Data Description. The main focus of our analysis

is excessive currency invoicing, yxi,k,t, where i denotes a country, t the time period, k the

currency (USD or EUR), and x the trade direction (export or import). To construct the

variable we rely on the dataset by Boz et al. (2022) and the Direction of Trade Statistics

database by the International Monetary Fund. The former is augmented with data from

SWIFT to increase cross-sectional coverage21 and provides data on the shares of aggregate

exports or imports invoiced in USD and EUR by country over time, which we denote

as PSx
i,k,t. The latter provides data on the value of merchandise exports or imports

disaggregated according to a country’s trading partners over time, which we denote as

T x
i,j,t.

It is natural to assume that merchants in country i when exporting to the United

States (Euro Area) invoice these exports in USD (EUR). However, if they also invoice in

USD (EUR) when exporting to other destination countries these are not the local official

currency, we refer to these transactions as excessive USD (EUR) invoicing.

To calculate our variable of interest from the data, let jk be the set of countries j with

home currency k, e.g., if k = EUR, then jk denotes all Euro Area countries. Using the

previously defined variables, we then have

(21) yxi,k,t = PSx
i,k,t

∑
j∈Ji,t

T x
i,j,t − T x

i,jk,t

where Ji,t denotes the set of trade counterparties of country i at time t. The first term

captures the aggregate currency invoicing of country i in currency k with direction x.

The second term deducts the trade conducted with the countries that have currency k as

their home currency, thereby isolating the excessive amount of currency k invoiced. More

details on the construction of yxi,k,t based on the raw datasets is given in appendix 5.1.1.

Figure 7 depicts the geographic distribution of the average export-based excessive cur-

rency invoicing for the USD and the EUR in our sample. Figure 18 in appendix 5.3 depicts

the distribution for import-based excessive currency invoicing. In total, we cover 119 coun-

tries in our dataset. Focussing on the USD export-based excessive currency invoicing, all

countries, except the Bahamas, Niger, and the Republic of Fiji, use the USD in excess of

their trade with the United States on average. That is, we find substantial use of the USD

as a vehicle currency to conduct export-based trade. Particularly Asian and some Latin

American countries have large positive export-based excessive USD invoicing positions on

average. Generally, European countries have positive, albeit relatively lower, positions.

The USD import-based measure in Figure 18 panel (a) shows similar patterns. Only one

country, the Bahamas, has a negative USD import-based excessive currency invoicing po-

sition on average. Judging from the magnitude of positions, there is comparable usage of

the USD across exports and imports as a vehicle currency. On the import side, Asian and

European countries have particularly large positive import-based excessive USD invoicing

positions on average.

20Since 1N = (IN − ϕGt)
−1(IN − ϕGt)1N = (IN − ϕGt)

−11N (1− ϕ) due to Gt being a right stochastic
matrix. Hence, M (ϕ,Gt)1N = (1− ϕ)−11N .
21Crucially, the SWIFT dataset allows us to cover China, Hong Kong, Mexico, Canada, the United Arab
Emirates, Singapore, Vietnam and Sri Lanka. For details on the augmentation see appendix section 5.1.1.
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Figure 7. Export-Based Excessive Currency Invoicing across Countries

(a) USD Excessive Currency Invoicing

(b) EUR Excessive Currency Invoicing

The figure depicts the average monthly excessive currency invoicing across countries over our sample. All
amounts are in USD equivalents. The countries marked in white are not included in our sample due to
missing observations. The top ten countries by export-based excessive USD invoicing positions in our
sample are: China, the United States, Taiwan, Russia, South Korea, Saudi Arabia, Japan, Vietnam,
Singapore, and Mexico. The top ten countries by export-based excessive EUR invoicing positions in
our sample are: Germany, the Netherlands, Italy, Ireland, France, Belgium, Austria, Spain, the Slovak
Republic, and the Czech Republic. Panel (a): USD excessive currency invoicing. Panel (b): EUR excessive
currency invoicing.

Focussing on the EUR export-based excessive currency invoicing, the majority of coun-

tries use less EUR relative to their trade with the Euro Area countries on average, leading

to negative excessive currency invoicing positions. Mostly European and their immediate

neighbouring countries have large positive export-based excessive EUR invoicing positions.

The fact that some European countries on average have large positive EUR export-based

excessive currency invoicing positions indicates a form of producer currency pricing. The

EUR import-based measure in figure 18 panel (b) again shows similar patterns, in that

mostly European and neighbouring countries have large positive import-based excessive

EUR invoicing positions. Interestingly, we again observe that European countries on av-

erage have a large positive EUR import-based excessive currency invoicing position. This

indicates a form of local (destination) currency pricing. Together, these patterns lend

support to claims that the EUR is less of a globally, but more of a regionally dominant

currency.

2.5.1. Dataset Construction. The focus of the empirical study is to investigate the drivers

of USD and EUR excessive currency invoicing, and in particular to asses whether network
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externalities affect the currency invoicing decision. We construct our dependent variable

at monthly frequency based in exports and imports and add a large set of country-specific

variables, suggested in the previous literature as potential drivers of the currency invoicing

decisions, to our dataset.

In particular, the literature has found that exporters might coordinate on a certain

invoicing currency to improve their pricing competitiveness in a certain market or hedge

against exchange rate shocks to their inputs (e.g., labor, capital, or intermediate goods)

(see Gopinath (2015), Doepke and Schneider (2017), Mukhin (2022) and Eren and Mala-

mud (2022)). It is important to control for price volatilities and the size of the market.

Hence, among the covariates, we include consumer price index-based inflation and infla-

tion volatility, the change in domestic exchange rates and exchange rate volatility with the

USD or EUR and the share of total aggregate imports or exports. Bahaj and Reis (2020)

find that currency invoicing decisions of exporters depend on the level of financial services

provided to exporting and importing firms denominated in certain currencies. For exam-

ple, suppose a large share of counterparties of country i have a well-developed financial

market denominated in EUR instead of USD. Trade and working capital financing as well

as currency risk hedging in EUR would be cheaper and readily available. Then, firms

in country i would have more incentive to invoice their trades in EUR. Similar ideas are

also found in Maggiori (2017), Gourinchas, Helene Rey, and Sauzet (2019), and Gopinath

and Stein (2021). In these papers, it is the characteristics of a country’s trading partner

countries, such as whether these partner countries have a well-developed credit or debt

market denominated in USD or EUR, that determine whether USD, or EUR, or any other

currency is used for invoicing. Motivated by these findings, we also include the aggregate

level of firm-level debt denominated in the USD or EUR, dummy variables indicating

whether a country has swap lines with the United States Federal Reserve or the European

Central Bank, the financial development index, and the foreign direct investment inflows

or outflows of a country. For detailed variable definitions, data sources and data-cleaning

steps, see Appendix 5.1.

To construct the final dataset we lag all independent variables with respect to their

original frequency. We then add lagged dependent variables, that is, lags of import-

or export-based USD or EUR excessive currency invoicing and time- and country-fixed

effects. The final dataset, including explanatory variables for our baseline specification,

covers 84 countries from January 2004 to December 2019. These countries cover on average

91% (93%) of worldwide exports (imports) reported in the Direction of Trade Statistics

database during the sample period.

Before estimation we standardise our data in two ways. First, we divide our dependent

variable by lagged nominal gross domestic product. We also divide our foreign direct

investment and aggregate level of firm-level debt variables by contemporaneous nominal

gross domestic product. Second, we normalise all variables (independent and covariates),

except the swap line dummy variable, by their sample standard deviation.

2.6. Network Analysis. In this section, our focus is to explore the influence of network

externalities on the currency invoicing choices for a broad set of countries in the context

of trade-induced transactions. We incorporate a substantial set of covariates, previously

suggested in relevant literature, as potential factors driving currency invoicing decisions,

and we examine whether the structure of the trade network itself acts as an additional

driving force.
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First, we start by conducting a comparative analysis between dynamic panel specifi-

cations for the invoicing decision and alternative specifications (SLM, SEM, and SDM)

that account for potential network spillover effects. The data overwhelmingly indicate

that a country’s currency invoicing decision is significantly influenced by the currency in-

voicing choices made by its trade partners. In essence, network externalities emerge as

one of the significant drivers impacting the currency invoicing choices. Second, we revisit

the evidence on the determinants of the currency invoicing choice through the lenses of

spatial dependency across countries. In doing so, we discover that certain findings from

previous analyses become more nuanced when we consider both direct and indirect (i.e.,

effects through the network) effects. Third, employing our estimated structural model,

we identify the key players in currency invoicing – countries whose decisions wield the

most significant influence on total currency invoicing. Remarkably, countries and regions

exhibiting substantial trade network centrality emerge as critical actors in this process.

Fourth, we analyse the spillovers between export and import invoicing, to shed light on

the natural hedge (Doepke and Schneider (2017); Amiti, Itskhoki, and Konings (2022))

channel of currency invoicing determination, and whether USD and EUR are complemen-

tary or substitute in the invoicing decisions. Fifth, we perform counterfactual analysis to

assess the potential fragility of the current dominant currency equilibrium.

2.6.1. Are there Trade-Network Spillovers in Currency Invoicing? The first question we

ask the data is whether there are indeed network spillovers driving the currency invoicing

decision. We do so by computing the posterior probability of the spatial Durbin model

(SDM) implied by our currency invoicing model in equation (15) and the same quantity

for the panel specification obtainable by shutting down the trade-network channel (i.e.,

setting ϕ and the vector θ equal to zero). Furthermore, we consider alternative sources

of spatial dependence. In particular, we consider two alternative canonical cases. First,

the case in which the invoicing decision of country i depends on the invoicing of other

countries in the network, but not directly on the other countries’ covariates (i.e., ϕ ̸= 0

but the vector θ equal to zero in equation (15)). This is the so-called spatial lag or spatial

autocorrelation model (SLM). Second, we also consider network spillovers purely driven

by network propagation of the shocks (as, e.g., in Denbee et al. (2021)). That is, the

invoicing decision of each country does not depend directly on the invoicing decision of

any other countries or on other countries’ covariates (i.e., ϕ and the vector θ equal to zero

as in a panel specification), but the shocks in each country are linked via the network,

i.e. µi,t = µi + zi,t, where zi,t = ϕ
∑

j gi,j,tzj,t + νi,t, where νi,t denotes cross-sectionally

uncorrelated shocks.

Posterior model probabilities, that is the likelihood of the various models being the

true data generating process, are computed assuming equal prior probabilities for all the

models (i.e., assuming that the various specification are ex ante equally likely). That is,

the posterior probability of the m-th model is probm = pm∑
m pm

, where pm denotes the so-

called marginal likelihood of model m (the value of the integrated unnormalized posterior,

i.e. likelihood times the prior, over the parameter space).

Log marginal likelihood values and posterior specification probabilities are reported in

table 3. Each column considers a different dependent variable: excessive currency invoic-

ing of exports in USD (column 1) and EUR (column 2), and excess currency invoicing

of imports in the same two currencies (respectively, columns 3 and 4). Several observa-

tions are in order. First, there is overwhelming evidence of network spillovers: The panel
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Table 3. The Posterior Likelihood of Trade-Network Spillovers

Specification: ECIEx
USD ECIEx

EUR ECIImUSD ECIImEUR

Panel ln pm 203.701 -1999.739 721.933 -2653.269
probm 0.000 0.000 0.000 0.000

SEM ln pm 178.036 -1973.738 710.634 -2634.372
probm 0.000 0.000 0.000 0.000

SLM ln pm 227.448 -2001.040 732.393 -2570.273
probm 0.000 0.000 0.000 0.000

SDM ln pm 274.748 -1863.344 897.106 -2479.632
probm 1.000 1.000 1.000 1.000

The table reports the logarithm of the marginal likelihood (ln pm) of the data, given the model and the
posterior model probabilities (probm). Note that the marginal likelihoods are adjusted by subtracting the
logarithm of the number of observations. The models are separately estimated on each dataset using our
baseline specification. Depending on the dataset, the baseline specification uses, respectively, USD or EUR
export- or import-based excessive currency invoicing as the dependent variable. As independent variables,
we include lags of inward foreign direct investments, a USD SWAP line dummy, exchange rate changes
with the USD and EUR, realized exchange rate volatility with the USD and EUR, the share of aggregate
exports, CPI-based inflation and CPI-based inflation volatility, USD export-, USD import-, EUR export-,
and EUR import-based excessive currency invoicing, and country- and time-fixed effects.

specification with no spatial dependency is never preferred by the data. Second, the SDM

model – the specification of our theoretical formulation – is always strongly preferred by

the data, with posterior probability approaching 1 in all cases considered. Third, even

alternative spatial formulations generally dominate the specification with no network de-

pendency with the SLM formulation being almost always strongly preferred to the panel

one. Fourth, the SEM model is typically the worst performing among the spatial specifi-

cations considered, and it is a less likely data generating process (DGP) than the dynamic

panel in all cases: This emphasizes that the measured network spillovers are driven by the

effect of a country’s invoicing decision on its traded partner’s invoicing decisions, rather

than being merely the result of common shocks propagated via the trade network. Fur-

thermore, as shown in table 5.4 of the appendix, the above findings hold if we use actual

currency invoicing, or aggregate currency invoicing, instead of our preferred measure of

excessive currency invoicing as the dependent variable.

Overall, table 3 emphasizes the need to account for network spillovers when analyzing

the currency invoicing choice and provides strong support for the formulation (the SDM)

adopted in our model.

2.6.2. The Drivers of Excessive Currency Invoicing. Having established the presence of

network spillovers and empirical support for our SDM formulation, we now turn to analyse

the implications of our model for the determinants of currency invoicing suggested in the

previous literature.

Direct interpretation of coefficients for spatial models is difficult, as they often do not

represent the marginal effects of the explanatory variables. This is because marginal

effects in spatial models depend on potentially non-zero cross-derivatives. Intuitively, this

is because the change in an explanatory variable for an individual country can potentially

affect the dependent variable in all other countries, through, for example, feedback loops.

Hence, covariates have both a direct and indirect (through the network dependency) effect

on the outcome variables. Furthermore, since we also include among the controls the lagged
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values of the dependent variables to capture time series autocorrelation, perturbations of

any of the covariates have both short- and long-run effects.

Hence, we report direct and total effects – the difference between the two indicating the

indirect effect – in both the short-term (i.e., contemporaneously) and the long-term. The

total effect, which we define as in LeSage and Pace (2009), is the time series average of

the average row sum of partial derivatives (since, due to time variation in Gt, the partial

derivatives are time varying). This corresponds to the average impact on the individual

dependent variable yi,t resulting from changing a given explanatory variable by the same

amount across all individual countries. It is important to account for changes across

multiple countries, as this allows us to trace out the spatial impact. The direct effect,

which we also define similarly to LeSage and Pace (2009), is the time series average of

the diagonal partial derivatives. This corresponds to the average impact on individual

observation yi,t by changing its own ith observation of a given explanatory variable. This

statistic is closely related to the marginal effect in a standard regression model. To see

this, suppose ϕ and θ are all zero. We would then find that the direct effect is exactly the

β coefficient associated with the given covariate. Finally, the indirect effect is defined as

the difference between total and direct effect.

We report these estimated effects in tables 4 and 5 for excessive and, respectively,

aggregate currency invoicing. In each table panel A and B focus, respectively, on USD and

EUR denominated invoicing. We add different groups of regressors, while always including

country- and time-fixed effects, and lagged values of inward foreign direct investments,

outward foreign direct investments, USD export-, USD import-, EUR export-, and EUR

import-based excessive currency invoicing, as control variables. In both tables, long-term

and short-term effects are similar in sign and significance. We report both for completeness.

Several observations are in order. First, for both USD and EUR denominated excess

currency invoicing, we observe large and highly statistically significant network effects:

The ϕ coefficient ranges from 0.245 to 0.296 for USD denominated invoicing and from

0.144 to 0.188 for EUR denominated invoicing. These estimated coefficients are not only

statistically significant at any customary confidence level but also very stable across spec-

ifications.

Second, being positive, the estimates of ϕ imply strategic complementarity in the cur-

rency invoicing decision: If a country increases its invoicing in a given currency, its trade

partners are also likely to do so. In particular, the coefficients imply an average ampli-

fication of the shocks to currency invoicing of about 17%–42% relative to a world with

ϕ = 0.

Moreover, as shown in table 5, this strong evidence of network-induced strategic com-

plementarity in the currency invoicing choice is supported by the data even if we use

aggregate invoicing values rather than our preferred excessive currency invoicing measure.

If anything, in this robustness check, the measured network spillovers are even stronger.

This stability of the estimated network effect is extremely reassuring.

Third, albeit most estimates of the direct effects of covariates conform with previous

findings in the literature, these are much less stable across specifications and currency

denomination, and, most importantly, it is not uncommon to find significant direct effects

– akin to those estimated with a panel specification – while the total effects are not

statistically significant, and vice versa. This is not too surprising given the strong evidence

in Table 3 in favour of spatial modeling, which indicates that evidence produced ignoring
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Table 4. The Drivers of Excess Currency Invoicing
Independent Variables

(1) (2) (3) (4) (5) (6)

CPI CPIV ol FXChngUSD FXChngEUR FXV olUSD FXV olEUR TSEx FDUSD FDChngUSD FDEUR FDChngEUR SWAPUSD SWAPEUR FMI

Panel A. Dependent Variable: Export Excess Currency Invoicing in USD (ECIEx
USD)

Short-term: Direct Effect -0.011∗∗ 0.028∗∗∗ -0.017 -0.004 -0.014 -0.004 -0.097∗∗∗ 0.042∗∗∗ 0.019∗∗ 0.012 -0.011 0.048 -0.045 0.006
(0.092) (0.000) (0.182) (0.668) (0.210) (0.687) (0.000) (0.000) (0.017) (0.106) (0.148) (0.129) (0.208) (0.317)

Total Effect -0.093∗∗∗ 0.019∗∗ -0.083 -0.074∗∗∗ 0.070 -0.072∗∗ -0.136∗∗∗ 0.104∗∗∗ 0.017 0.042 -0.037 0.324∗∗∗ -0.453∗∗∗ 0.007
(0.000) (0.080) (0.113) (0.009) (0.203) (0.014) (0.000) (0.004) (0.460) (0.195) (0.264) (0.001) (0.000) (0.828)

Long-term: Direct Effect -0.044∗∗ 0.108∗∗∗ -0.067 -0.017 -0.055 -0.016 -0.434∗∗∗ 0.159∗∗∗ 0.074∗∗ 0.044 -0.043 0.192 -0.178 0.025
(0.086) (0.000) (0.176) (0.651) (0.219) (0.668) (0.000) (0.000) (0.017) (0.105) (0.147) (0.123) (0.199) (0.319)

Total Effect -0.399∗∗∗ 0.084∗∗ -0.363 -0.325∗∗ 0.304 -0.317∗∗ -0.749∗∗∗ 0.426∗∗∗ 0.073 0.172 -0.150 1.370∗∗∗ -1.915∗∗∗ 0.031
(0.001) (0.086) (0.116) (0.010) (0.206) (0.018) (0.000) (0.005) (0.458) (0.201) (0.268) (0.001) (0.000) (0.829)

ϕ 0.252∗∗∗ 0.245∗∗∗ 0.248∗∗∗ 0.296∗∗∗ 0.259∗∗∗ 0.248∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R2 0.948 0.948 0.949 0.950 0.948 0.948

NObs 10812 10835 10835 9303 10835 10835
log marginal 194.757 198.141 291.295 -75.518 206.735 182.530

Panel B. Dependent Variable: Export Excess Currency Invoicing in EUR (ECIEx
EUR)

Short-term: Direct Effect -0.006 -0.009 0.033∗∗ -0.006 -0.005 0.023∗∗ 0.046∗∗∗ -0.005 0.037∗∗∗ -0.012 0.009 -0.198∗∗∗ -0.106∗∗ 0.000
(0.459) (0.252) (0.028) (0.609) (0.740) (0.044) (0.000) (0.637) (0.000) (0.165) (0.367) (0.000) (0.013) (0.962)

Total Effect 0.079∗∗∗ -0.042∗∗∗ -0.025 -0.035 -0.017 0.044 0.060∗∗∗ 0.103∗∗∗ -0.046∗∗ 0.051 -0.103∗∗∗ -0.047 -0.516∗∗∗ 0.009
(0.005) (0.000) (0.653) (0.250) (0.771) (0.161) (0.000) (0.008) (0.064) (0.138) (0.003) (0.638) (0.000) (0.798)

Long-term: Direct Effect -0.017 -0.029 0.105∗∗ -0.019 -0.015 0.074∗∗ 0.141∗∗∗ -0.014 0.105∗∗∗ -0.034 0.024 -0.606∗∗∗ -0.324∗∗ 0.001
(0.494) (0.244) (0.028) (0.607) (0.738) (0.044) (0.000) (0.638) (0.000) (0.165) (0.367) (0.000) (0.013) (0.961)

Total Effect 0.286∗∗∗ -0.154∗∗∗ -0.081 -0.112 -0.055 0.142 0.196∗∗∗ 0.296∗∗ -0.131∗∗ 0.146 -0.295∗∗∗ -0.139 -1.528∗∗∗ 0.029
(0.006) (0.001) (0.655) (0.251) (0.769) (0.163) (0.000) (0.010) (0.066) (0.144) (0.003) (0.637) (0.000) (0.799)

ϕ 0.161∗∗∗ 0.144∗∗∗ 0.144∗∗∗ 0.188∗∗∗ 0.144∗∗∗ 0.147∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R2 0.963 0.963 0.963 0.966 0.963 0.963

NObs 10813 10836 10836 9304 10836 10836
ln pm -1864.490 -1872.266 -1867.117 -1910.905 -1845.850 -1884.534

The table reports the posterior means of the estimated effects and their respective p-values in brackets. Coefficient estimates significant at the 10%, 5% and 1% levels are indicated
by ∗, ∗∗, and ∗∗∗ respectively. Estimation is carried out separately for the two different datasets. In addition to the listed independent variables, we always include country- and
time-fixed effects, lags of inward foreign direct investments, outward foreign direct investments, USD export-, USD import-, EUR export-, and EUR import-based excessive currency
invoicing as control variables.
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Table 5. The Drivers of Aggregate Currency Invoicing
Independent Variables

(1) (2) (3) (4) (5) (6)

CPI CPIV ol FXChngUSD FXChngEUR FXV olUSD FXV olEUR TSEx FDUSD FDChngUSD FDEUR FDChngEUR SWAPUSD SWAPEUR FMI

Panel A. Dependent Variable: Export Aggregate Currency Invoicing in USD (ACIEx
USD)

Short-term Direct Effect -0.001 0.021∗∗∗ -0.021∗∗ 0.006 -0.014 -0.008 -0.121∗∗∗ 0.029∗∗∗ 0.020∗∗∗ 0.005 -0.016∗∗ 0.039 -0.043 0.007
(0.858) (0.000) (0.049) (0.447) (0.163) (0.367) (0.000) (0.000) (0.004) (0.368) (0.012) (0.160) (0.175) (0.201)

Total Effect -0.112∗∗∗ 0.017 -0.102∗∗ -0.091∗∗∗ 0.079 -0.093∗∗∗ -0.194∗∗∗ 0.060 0.012 0.014 -0.128∗∗∗ 0.096 -0.612∗∗∗ 0.003
(0.000) (0.149) (0.074) (0.005) (0.183) (0.004) (0.000) (0.171) (0.674) (0.700) (0.001) (0.403) (0.000) (0.932)

Long-term Direct Effect -0.001 0.101∗∗∗ -0.098∗∗ 0.033 -0.067 -0.033 -0.651∗∗∗ 0.129∗∗∗ 0.090∗∗∗ 0.024 -0.069∗∗ 0.182 -0.182 0.033
(0.957) (0.000) (0.055) (0.412) (0.149) (0.399) (0.000) (0.000) (0.004) (0.368) (0.018) (0.164) (0.218) (0.195)

Total Effect -0.416∗∗∗ 0.063 -0.388∗∗ -0.348∗∗∗ 0.302 -0.358∗∗∗ -0.998∗∗∗ 0.172 0.035 0.041 -0.370∗∗∗ 0.349 -2.218∗∗∗ 0.011
(0.000) (0.154) (0.079) (0.008) (0.188) (0.007) (0.000) (0.179) (0.666) (0.704) (0.002) (0.406) (0.000) (0.937)

ϕ 0.387∗∗∗ 0.391∗∗∗ 0.369∗∗∗ 0.450∗∗∗ 0.393∗∗∗ 0.393∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R2 0.963 0.963 0.964 0.963 0.963 0.963

NObs 10812 10835 10835 9271 10835 10835
ln pm 1663.108 1663.017 1842.718 1180.256 1677.898 1644.081

Panel B. Dependent Variable: Export Aggregate Currency Invoicing in EUR (ACIEx
EUR)

Short-term Direct Effect 0.008 0.018∗∗∗ -0.027∗∗∗ -0.004 -0.005 0.004 -0.101∗∗∗ 0.016∗∗ 0.028∗∗∗ 0.002 -0.014∗∗ -0.015 -0.027 0.001
(0.133) (0.001) (0.007) (0.634) (0.567) (0.581) (0.000) (0.018) (0.000) (0.741) (0.015) (0.560) (0.357) (0.854)

Total Effect -0.046 0.014 -0.125∗∗ -0.109∗∗∗ 0.026 -0.056 -0.229∗∗∗ -0.028 0.017 0.027 -0.198∗∗∗ 0.085 -0.792∗∗∗ -0.042
(0.143) (0.282) (0.048) (0.002) (0.695) (0.123) (0.000) (0.555) (0.568) (0.493) (0.000) (0.505) (0.000) (0.285)

Long-term Direct Effect 0.042 0.094∗∗∗ -0.141∗∗∗ -0.018 -0.028 0.023 -0.563∗∗∗ 0.083∗∗ 0.142∗∗∗ 0.009 -0.071∗∗ -0.079 -0.109 0.006
(0.130) (0.001) (0.008) (0.669) (0.559) (0.563) (0.000) (0.016) (0.000) (0.751) (0.020) (0.544) (0.457) (0.835)

Total Effect -0.231 0.069 -0.565∗∗ -0.495∗∗∗ 0.117 -0.254 -1.121∗∗∗ -0.116 0.077 0.119 -0.860∗∗∗ 0.328 -2.973∗∗∗ -0.200
(0.153) (0.289) (0.055) (0.004) (0.697) (0.133) (0.000) (0.574) (0.569) (0.500) (0.000) (0.504) (0.000) (0.293)

ϕ 0.499∗∗∗ 0.491∗∗∗ 0.488∗∗∗ 0.543∗∗∗ 0.496∗∗∗ 0.493∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R2 0.964 0.965 0.965 0.967 0.964 0.964

NObs 10813 10836 10836 9272 10836 10836
ln pm 2491.015 2493.079 2638.641 2047.666 2515.026 2473.841

The table reports the posterior means of the estimated effects and their respective p-values in brackets. Coefficient estimates significant at the 10%, 5% and 1% levels are indicated
by ∗, ∗∗, and ∗∗∗ respectively. Estimation is carried out separately for the two different datasets. In addition to the listed independent variables, we always include country- and
time-fixed effects, lags of inward foreign direct investments, outward foreign direct investments, USD export-, USD import-, EUR export-, and EUR import-based aggregate currency
invoicing as control variables.
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the network spillovers is affected by a large degree of misspecification. Hence, reduced-

form evidence that ignores the spatial dependency should be taken with a substantial grain

of salt.

Tables 4 and 5 further highlight that impacts for USD and EUR invoicing are noticeably

different in terms of sign, magnitude, and significance. To a large degree the differences

in results across USD and EUR, as well as across excess and aggregate currency invoicing,

can be reconciled with explanations treating the USD as a globally dominant currency and

the EUR as a regionally dominant currency, i.e. a pecking order of dominant currencies.

For example, we find that the larger a country’s share of worldwide exports (TSEx)

is, the smaller is its amount of USD excess and aggregate invoicing. This finding is in

line with the theoretical results in Mukhin (2022), predicting that the larger a country’s

market size the lower is its reliance on vehicle currencies for invoicing. For EUR aggregate

invoicing, similar patterns arise, however, for EUR excess invoicing we find that a country’s

trade size leads to higher EUR excess invoicing. EUR excess currency invoicing proxies

for a country’s EUR trade conducted with non-Euro Area countries. This indicates that

larger countries tend to be more likely to invoice in EUR with non-Euro Area countries.

Finally, judging by the marginal likelihoods (ln pm), a country’s trade size is one of the

most important determinants across the considered covariates for currency invoicing.

Next, we find that swap lines with the US federal reserve (SWAPUSD) lead to an in-

crease in USD excess and aggregate invoicing. This corroborates the findings by Bahaj

and Reis (2020) for Chinese RMB trade invoicing. The coefficients for aggregate invoicing

are overall insignificant, indicating that swap lines typically impact vehicle currency trade

invoicing. Further, for USD denominated excess invoicing, only the total effect is signifi-

cant, while the direct effect remains insignificant. This illustrates that swap lines lead to

an increase in USD excess invoicing predominantly through indirect network effects. The

significantly negative effect on EUR excess invoicing suggests substitution between EUR

and USD when the swap line is activated, consistent with a pecking order and the domi-

nance of the USD. Turning to swap lines with the European Central Bank (SWAPEUR),

we find only negative effects. Closer examination of the data showed that in total only ten

non-Euro Area countries had a swap line with the European Central Bank. These became

effective during the great financial crisis or European debt crisis, explaining the estimated

negative effects of EUR swap lines for both USD and EUR invoicing22.

Turning to exchange rate related variables, we document that when a country’s cur-

rency depreciates with respect to the USD or EUR (FXChngUSD and FXChngEUR

respectively), in general excess and aggregate invoicing in both USD and EUR decrease.

The only exception is that for depreciation with respect to the USD (FXChngUSD), we

find a positive statistically significant direct effect for EUR excess invoicing. Note how-

ever, the total effect is negative albeit insignificant and for aggregate EUR invoicing the

effects are negative and significant. Overall, the estimated effects are more significant for

aggregate than for excess currency invoicing, indicating that exchange rate depreciation

is relatively less relevant for vehicle currency invoicing. Theoretically, exporting firms in-

voice in vehicle currency to hedge against exchange rate volatility. We find weak evidence

to support that exchange rate volatility increases dominant currency invoicing. In Table

4, we observe that the direct effect of higher EUR exchange rate volatility (FXV olEUR)

22The non-Euro Area countries are the United States, the United Kingdom, Denmark, Sweden, Switzer-
land, Canada, Japan, China, Hungary, and Poland. Swap lines were activated in 2007-2011 and kept in
place throughout the sample for all countries except Poland and Hungary.
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is positive and significant on excess EUR invoicing while the total effect is positive but

not significant. By comparison, the direct effect of higher USD exchange rate volatility

(FXV olUSD) on USD excess invoicing is actually negative, whereas the total effect after

accounting for network impact is positive as expected, although neither estimate is statis-

tically significant. In table 5, when we study the driver of aggregate currency invoicing,

the impacts of exchange rate volatility are statistically insignificant. We also observe a

cross-currency impact: a larger EUR exchange rate volatility lowers both excess and ag-

gregate USD invoicing, and the total effects are statistically significant. This, again, might

reflect a substitution effect between the two currencies when exporting firms hedge against

relevant exchange rate volatility.

Inflation and inflation volatility have statistically significant but different impacts on

excessive currency invoicing decisions for both USD and EUR. For aggregate USD currency

invoicing the effects appear similar, however, significance levels change somewhat. The

level of domestic inflation (CPI) has negative direct and total effects. This might reflect

that domestic inflation makes exporters more competitive due to reduced local cost and

less concerned about price competition in target markets. Interestingly, domestic inflation

volatility (CPIV ol) has positive direct and total effects. Therefore, inflation risk appears

to be a more important driver than the level of inflation for dominant currency invoicing.

This is intuitive because exporters use currency invoicing to manage balance sheet risks

caused by inflation volatility. For excess EUR currency invoicing the signs of the effects are

the opposite, however, they change across the two tables. This highlights that the effects

are sensitive with respect to EUR invoiced trade conducted with Euro Area countries.

The negative effect of inflation volatility for excess rather than aggregate EUR invoicing

means that a higher CPI volatility leads to a lower amount of EUR invoicing to non-Euro

Area countries, suggesting that the EUR is used as a regional currency.

We also find that foreign debt, which is measured as amount of corporate debt in USD

(FDUSD) relative to domestic gross domestic product, is positively linked with excess

and aggregate USD and EUR invoicing. The variable can be viewed as proxying whether

a country has access to international capital markets and hence suggests that countries

with more access to international capital markets tend to invoice more of their trade using

vehicle currencies. We find that corporate debt in EUR (FDEUR) is not associated with a

significant effect. This can be viewed as further evidence of the USD dominance relative to

that of the EUR. We further examine the change in corporate debt in USD (FDChngUSD)

or EUR (FDChngEUR), which typically lead to effects with plausible signs. Note however

that overall the model incorporating data on corporate debt performs worst in terms of

its associated marginal likelihood (ln pm), indicating that corporate debt is a less relevant

determinant relative to the other variables considered.

Finally, we do not find that the financial market index (FMI), an index aiming to

summarise the broad financial development of a country, has any significant impact on

trade invoicing. Together with the previous results, this suggests that only certain financial

frictions such as liquidity (captured by swap lines or the level of foreign firm debt relative

to gross domestic product) affect trade invoicing decisions.

Tables 15 and 16 in the appendix depict our model baseline specification underlying

the subsequent analysis. We included all of the discussed variables except the financial

market index and the foreign debt variables. The former was excluded as the overall

impact was insignificant. The latter were excluded as judging by the marginal likelihood
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other model specifications were preferred. Finally, we excluded the swap line with the

European Central Bank due to the aforementioned issues. We further dropped outward

foreign direct investments, which improved the marginal likelihood of the resulting models.

2.6.3. The Network Key Players. With the estimated spatial Durbin we can evaluate

which country’s shocks are expected to have the largest impact on the overall network –

that is, we can identify the key players in the trade network. To see this, note that the

SDM, singling out the role of the lagged dependent variables and merging the x covariates

into a more compact notation, can be rewritten in vector form as

(22) yt = αyt−1 + ηGtyt−1 + ϕGtyt +Xtβ +GtXtθ + ϵt

where ϵt ∼ N(0, σ2I). Define Mt = (I − ϕGt)
−1 and At = (αI + ηGt). Suppose that

yt, as in our empirical implementation, is scaled by the GDP levels for stationarity and

normalized to have unit variance. Let Dt = diag(GDP−1
i,t ) and Λ = diag(σ−1

i ), where

σi = V ar(yi,t/GDPi,t)
1/2. Hence, we have yt = ΛDty

$
t , where y$t is our independent

variable in USD units. The above immediately implies that the standard deviation of the

errors of the USD unit dependent variable, ϵ$t , are heteroskedastic and vary over time.

Specifically, σ$
i,t = V ar(ϵ$i,t)

1/2 = σσiGDPi,t. We are mostly interested in computing

statistics in terms of USD units from here onward. In what follows, let e be a column

vector of ones of size N × 1. Hence, Yt = e′y$t denotes the total USD excess currency

invoicing at time t.

Given the presence of lagged independent variables on the right-hand side of equation

(22), a country-specific shock affects all other countries both contemporaneously and over

time. That is, impulse-response functions (IRFs) of this model have both a spatial (across

countries) and a temporal (across time) dimension. We define the USD unit spatiotemporal

impulse-response function (STIRF) of Yt = e′y$t , to a one standard deviation shock to

country i, as

STIRFi,t,τ =
∂Yt+τ

∂ϵ$i,t
σ$
i,t =

{
e′{D−1

t Λ−1Mt}·,iσ for τ = 0

e′{D−1
t+τΛ

−1
∏τ−1

j=0 Mt+τ−jAt+τ−jMt}·,iσ for τ ≥ 1

where {}·,i is the operator returning the ith column of a matrix.

We can also isolate the purely network-driven part of the STIRF – which is the effect

in excess of the original shock

STIRF e
i,t,τ =

{
e′{D−1

t Λ−1Mt}·,iσ − σσiGDPi,t for τ = 0

e′{D−1
t+τΛ

−1
∏τ−1

j=0 Mt+τ−jAt+τ−jMt}·,iσ − ατσσiGDPi,t for τ ≥ 1

Figures 8 and 9 report STIRFi,τ and STIRF e
i,τ of, respectively, USD and EUR ex-

cess currency invoicing evaluated at the average adjacency matrix during the sample and

average gross domestic product of each individual country.

Focusing on the USD denominated currency invoicing in Figure 8, China is the key

player for USD invoicing: A one standard deviation shock generates a contemporaneous

change in total ECI of 15 billion USD with about 10% of the effect driven by trade

externalities. The United States follows in second place – this is mostly because China

exports almost 1.5 times as much as the United States and invoices 92% of its exports

in USD on average. Four other countries stand out: Japan, South Korea, Russia, and

Germany. A one standard deviation shock to the ECI of these countries would result in

a contemporaneous change (panel a) in total ECI of about 2.7-3.1 billion USD invoicing,
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i.e. about 0.5% of the total ECI in USD and a total cumulative effect (panel b) after 18

months of 15-21 billions – about 0.2% of total USD ECI over the same period. However,

the drivers of these large effects are very different in nature, as outlined by the STIRFs in

excess of the original shocks. For Russia, and to a lesser extent South Korea, the effects

are almost entirely driven by the direct effect of a change in their USD invoicing, whereas

for Germany, and to a lesser extent Japan, more than a third of the effect of a domestic

shock is due to the network amplification and the central position that these countries

have in the trade network. Furthermore, for countries such as Canada, the UK, Hong

Kong, France, and the Netherlands, we also observe that a large share of the total effect

is generated by network externalities.

Figure 8. Impulse-Response Functions of USD Excess Currency Invoicing
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(b) Cumulated Effect over 18 Months

Spatiotemporal impulse-response functions to a domestic one standard deviation shock. Left axis = USD.
Right axis = percentage of monthly total excess currency invoicing in USD over the same horizon. Panel
(a): Contemporaneous effect. Panel (b): Cumulative effect after 18 months. Box-plots report posterior
means and centered 95% posterior coverage.
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Figure 9. Impulse-Response Functions of EUR Excess Currency Invoicing
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(b) Cumulated Effect over 18 Months

Spatiotemporal impulse-response functions to a domestic one standard deviation shock. Left axis = EUR.
Right axis = percentage of monthly total excess currency invoicing in EUR the over same horizon. Panel
(a): Contemporaneous effect. Panel (b): Cumulative effect after 18 months. Box-plots report posterior
means and centered 95% posterior coverage.

Focusing on the EUR denominated currency invoicing in Figure 9, Germany is a clear

outlier: a one standard deviation shock in this country would imply a contemporaneous

change (panel a) of about 4 billion EUR (about 11.5% of total EUR ECI), with around

16% of the effect due to the network externalities generated by this country. Similarly,

Germany generates the largest cumulative impulse-response after 18 months, with a total

effect of about 15 billion EUR (or around 2.3% of EUR ECI over the same period). The

second and third largest STIRFs are generated, in order of magnitude, by Italy and the

United States (with STIRFs, respectively, about 75% and 50% of the German ones).

Interestingly, albeit the effect of a shock to Italian EUR ECI is larger than that of the

United States, the shocks arising in the latter are characterised by a larger degree of

network amplification. It is worth noticing that Russia, with the ninth largest STIRFs,
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seems to play an important role also for the EUR denominated ECI but this effect, as in

the USD case, is almost entirely direct in nature, rather than being amplified through the

network.

In figures 19 and 20 of the appendix we report the network impulse-response functions

for actual currency invoicing, rather than our excess invoicing measure, and find extremely

similar results. Overall, the stability of the estimated effects is extremely reassuring.

2.6.4. Cross-Currency and Export-Import Spillovers. So far we have considered the de-

termination of excess currency invoicing of exports in USD and EUR separately, while

including as controls the lagged values of ECI in the currencies for both exports and im-

ports. This allows us to consistently estimate the spatial spillovers in a specific currency

export or import pair, but it does not provide an estimate of the contemporaneous links

within a country of the ECI in different currencies and of imports and exports.

Nevertheless, our SDM specification implies that, after accounting for the spatial de-

pendency, the estimation equations for the ECI in EUR and USD have the same structure

as the corresponding equations of a reduced-form Vector Autoregression (VAR) system

with four dependent variables (in addition to contemporaneously independent covariates

and fixed effects): ECI in EUR and USD for both exports and imports. This observa-

tion implies that, by also estimating our SDM specification for the ECI of imports, we

have a complete reduced-form VAR (with spatial dependencies in the mean processes)

for these four variables. Hence, as in the Structural-VAR literature (see, e.g., Sims and

Zha (1999)), one can recover the contemporaneous relationship between ECI of imports

and exports and of different currencies, that is the matrix Γ, from the covariance matrix

of the reduced-form VAR residuals.

Recall from (19) that ϵi,t correspond to country-specific shocks, which in our model

in (13) is interpreted as shocks to a country’s value of excess invoicing. To emphasise,

ϵi,t measures the shock to a country without propagating it through the network system.

It measures an idiosyncratic country-specific shock to the value of a country’s excess

invoicing. Using our estimates, we can calculate theNt×1 vectors ϵ̂xk,t,b = (I−ϕ̂x
k,bG

x
t )y

x
k,t−

(Xtβ̂
x
k,b+Gx

tXtθ̂
x
k,b), where k denotes the currency, t denotes the time period, b denotes the

posterior sample draw, and x denotes the trade direction. Note that parameter estimates

have subscript k and superscript x to emphasise that estimation is carried out separately

on the four types of ECI (USD export, EUR export, USD import and EUR import).

For the sake of exposition, let us suppress the dependence on b, the posterior sample

draw. We then organise a country’s residuals as a 4×1 vector ϵ̂i,t = [ϵ̂Im$,i,t, ϵ̂
Im
e,i,t, ϵ̂

Ex
$,i,t, ϵ̂

Ex
e,i,t]

⊤.

Let Σi denote the corresponding covariance matrix of dimension 4 × 4. The covariance

matrices Σi can be used to recover the matrix of contemporaneous linkages Γi, since

Σi ≡ Γ−1
i Λi(Γ

⊤
i )

−1, where Λi is a diagonal matrix with entries equal to the country-specific

variance of the structural shocks.

Since Σi is symmetric, it has only 4×(4+1)
2 distinct entries, while the matrix of contem-

poraneous linkages Γi has 4×4 free entries and the matrix of structural variances has four

free entries, Γi and Λi cannot be recovered without imposing additional restrictions. To

achieve identification, we assume that Γi is identical across countries, i.e. Γi = Γ. Put

differently, we assume that all countries USD or EUR export or import ECI react the same

way to structural shocks. Notice that this still allows for cross-sectional heterogeneity in

the structural variances, Λi. This implies that Σi = Γ−1Λi(Γ
−1)⊤ ∀ i. To emphasize, Γ
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encodes the contemporaneous relationships between ECI of import and export for different

currencies for a specific country.

The above identification strategy mimics ideas from identification via time series het-

eroskedasticity. In these models, time variation in Σt is used to identify the structural

parameters (see Brunnermeier et al. (2021) for a recent example). Instead of time series

variation, we utilize cross-sectional heteroskedasticity. That is, we use the variation in

Σi to identify the structural parameters. The reason we opt for identification via cross-

sectional heteroskedasticity is twofold. First, our dataset covers only a relatively short

time period from 2004 to 2019. Second, by employing identification via heteroskedas-

ticity, we are not required to take a stance on short-run, long-run, or sign restrictions,

allowing us to identify effects under fairly general conditions. As long as the contempora-

neous relationship matrix Γ is shared across the countries, identification via cross-sectional

heteroskedasticity is possible.

Note that the previous assumptions achieve identification for the different products of

Γ and Λi, however, similar to Brunnermeier et al. (2021), we cannot separate Γ from Λi
23.

Therefore, we need to impose one more restriction

1

N

N∑
i=1

λx
k,i = 1

where λx
k,i is one of the diagonal elements of Λi. The interpretation of this normalization

is that we force the cross-country average structural variance to be one in each equation.

This ensures identification of Γ up to flipping the sign of a row and identification of Γ

and the set of Λi up to permuting the order of rows. We rule out former permutations by

requiring Γ to have a positive sign on the diagonal and the latter permutations by selecting

the final rows to ensure that Γ has its largest element on the diagonal. We estimate Γ and

Λi using Bayesian techniques. The estimation procedure yields posterior samples of the

4× 4 matrix Γb, and details on the estimation are given in appendix 5.2.4.

The posterior distribution of the off-diagonal elements of Γ – the contemporaneous

effects matrix – is reported in Figure 10. Coefficients have been normalized such that con-

temporaneous partial derivatives between variables can be identified immediately. Several

observations are in order.

First, we find some evidence of natural hedging, i.e. countries limiting their currency mis-

match between imports and exports. Consider an increase in excessive USD denominated

imports and focus on panels b and e. As the excessive USD denominated imports in-

crease, USD denominated exports increase and EUR denominated exports decrease. This

suggests that countries actively rebalance the currency denomination of their exports as

they are faced with higher USD denominated imports. A similar pattern is observed for

EUR denominated exports. Panels h and k illustrate that when countries excessive EUR

denominated exports increase, in response USD denominated imports decrease and EUR

denominated imports increase. These findings are in line with natural hedging and are

fairly robust when considering our alternative aggregate currency invoicing measure (see

figure 21 in appendix 5.3). Further, the coefficients in b and k are close to one, indicating

almost perfect natural hedging for excessive currency invoicing – when considering aggre-

gate currency invoicing these same coefficients are substantially below one. This indicates

23Multiplying the rows of Γ and the set of Λi by scale factors leaves the likelihood function unchanged (see
appendix 5.2.4 equation (41)).
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Figure 10. Cross-Currency and Export-Import Spillovers
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The figures depict the posterior distribution of the elements of Γ, identified via cross-sectional heteroskedas-
ticity. For the sake of interpretation, we have scaled the draws of Γb such that the diagonal only contains
ones and then multiplied each row by negative one. Additionally, the figures depict the posterior mean, as
well as 90% and 95% confidence intervals.

that the hedging motive is particularly prevalent when counterparties use a vehicle cur-

rency to conduct trade, i.e. when the currency does not correspond to the home currency

of either involved country.

The responses associated with increases in excessive USD denominated exports and

EUR denominated imports are less in line with natural hedging. Specifically, the posterior

mean of the relevant coefficients in panel g and, respectively, panel f have the wrong

sign. However, these coefficient estimates seem to be less robust as when considering our

alternative aggregate currency invoicing measure the coefficient in g becomes insignificant

and in f flips sign, i.e. starts to support natural hedging (see figure 21). Furthermore,

evaluating the joint responses associated with increases in excessive USD denominated

exports or excessive EUR denominated imports (panels d, g, j and, respectively, c, f, i),

could indicate that other currencies play a role not considered in the analysis here. For

example, panels d, g, and j suggest that as excessive USD denominated exports increase,

so do excessive EUR denominated exports, but excessive USD and EUR denominated

imports decrease. The increase in exports can be reconciled either with additional domestic

production or imports denominated in another currency. However, with the data available

to us this is difficult to distinguish.
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Second, we find evidence of complementarity across currencies used for export and im-

port invoicing. Panels a and d illustrate that generally as a country increases its excessive

currency invoicing for exports in either currency, excessive invoicing of exports in the other

currency also increases contemporaneously. This suggests that as a country increases its

international exports, it tends to do so both in USD and EUR. Panels i and l suggest a

similar pattern for imports. However, the response of excessive EUR denominated imports

to excessive USD denominated imports is insignificant.

When examining aggregate currency invoicing (see figure 21) the coefficients for d and

l flip signs. This indicates that as a country increases its aggregate USD denominated

exports (imports), their EUR denominated exports (imports) decrease. As aggregate EUR

denominated exports or imports increase, their USD counterparties still increase. These

patterns can be interpreted as confirming the dominant status of the USD over the EUR,

at least for exports and imports evaluated in aggregate currency invoicing. The latter

indicate that as a country exports or imports more, it does so in either currency, whereas

the former stress the special role of the USD: EUR denominated trade is substituted for

USD denominated trade.

2.6.5. Counter-Factual Analysis. Suppose a country decides to permanently stop using

a vehicle currency, and let us focus on the USD for exposition. This would lead to a

reduction of yxi,USD,t+τ to zero for all τ . Notice that since we focus on excessive currency

invoicing, this allows for countries to continue using the USD to trade with the United

States but requires countries to use another currency as a vehicle currency, such as the

EUR or Renminbi, when trading with other counterparties.

Within our framework, using our previous notation, we can view this as a shock ϵ$i,t, such

that y$i,t = 0 in period t. In period t+ 1, we then seek a shock ϵ$i,t+1, such that y$i,t+1 = 0,

taking into account the previous shock ϵ$i,t. Due to scaling and the network effects, ϵ$i,t+τ

is multiplied by a matrix (D−1
t+τΛ

−1Mt+τΛDt+τ ), and it is therefore not immediately clear

what size the shock must take.

Let S denote a set of countries that we want to shock such that for i ∈ S, we require

y$i,t+τ = 0. Let |S| be the cardinality of set S and let y$S,t+τ and ϵ$S,t+τ for τ ≥ 0 be

the sequence of vectors of size |S| × 1 containing ECI and shocks of countries within the

set. Let {D−1
t+τΛ

−1Mt+τΛDt+τ}S,S denote the submatrix corresponding to the countries

within the set. Using this notation, we can show that the sequence of shocks ϵ$S,t+τ needs

to satisfy

0 = y$S,t+τ + {D−1
t+τΛ

−1Mt+τΛDt+τ}S,Sϵ$S,t+τ︸ ︷︷ ︸
Impact of shock at t+ τ

+

τ∑
j=1

{D−1
t+τΛ

−1
j−1∏
i=0

Mt+τ−iAt+τ−iMt+τ−jΛDt+τ−j}S,Sϵ$S,t+τ−j︸ ︷︷ ︸
Impact of shocks up until t+ τ − 1

Assuming that {D−1
t+τΛ

−1Mt+τΛDt+τ}S,S is invertible, the above has a unique solution

and allows us to solve for ϵ$S,t+τ sequentially. That is, given ϵ$S,t, we can determine ϵ$S,t+1.

Then given ϵ$S,t and ϵ$S,t+1, we can determine ϵ$S,t+2, and so forth. Once these shocks are

obtained, we can calculate the STIRFs of each shock and aggregate them to assess the

impact on total excessive currency invoicing over time.
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Figure 11. Counterfactual: Abandonment of USD as Vehicle Currency
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(b) Cumulative Effect over 18 Months

Spatiotemporal impulse-response functions to a shock sequence that sets the excessive currency invoicing
of the specified countries to zero permanently. EU contains all 19 EUR-Area countries while BRIC(S)
contain the BRICS countries excluding South Africa, due to missing observations. Left axis = USD. Right
axis = percentage of monthly total excess currency invoicing in USD. Panel (a): Contemporaneous effect.
Panel (b): Cumulative effect after 18 month. Box-plots report posterior means and centered 95% posterior
coverage.

Figure 11 depicts this counterfactual exercise for Russia, Brazil, India, and China indi-

vidually, the EU block, and the members of BRICS in our sample (Brazil, Russia, India

and China jointly). The calculations are done using average values. The estimated effects

are quantitatively large, with the effects of the BRIC(S) block (EU) abandoning the USD

for excess invoicing resulting in a 42% (11%) reduction in the overall use of this currency.

But the channels through which these large effects arise are quite different. In the case of

the BRIC(S) countries, most of the effect is driven by the direct reduction in the use of

this currency by these countries, while in the EU case almost half of the effect is due to

network externalities. That is, due to the EU countries central role in the trade network,

and the strategic complementarity in the invoicing currency choice, if the block were to

abandon the USD, the consequent reduction in the usage of this currency would almost

double the direct effect.

To emphasize, the figures depict the impact on total excessive currency invoicing if

the aforementioned sets of countries stop using the USD as vehicle currency permanently.

The exercise still allows for countries to continue trading in USD or EUR with the United

States or the EU, respectively. In figures 22 of the appendix we report results on the same

exercise using aggregate currency invoicing. The findings are similar.

The above counterfactual stresses the inherent fragility of the dominant currency equi-

librium we uncover in the data: In the presence of strategic complementarity in currency

choice, the abandonment of the dominant currency by players that are large or central to

the trade network can have dramatic effects.

2.7. Conclusion. In this paper, we examine the drivers of dominant currency invoicing

for cross-border trades by constructing and estimating an equilibrium network model. The

network externality arises because when choosing in which foreign currency to invoice their

trades, besides being affected by its own macro and microeconomic conditions, agents are

impacted by their trading partners’ invoicing decisions either due to balance sheet hedging,

competition, financing considerations or various other reasons.
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Our estimation results show strong evidence of strategic complementarity in currency

invoicing across countries: Exporting countries tend to invoice more in a given currency

when their main trade partners invoice in that same currency. We find that the USD as a

dominant currency is less stable than the EUR. The estimated network attenuation factor,

ϕ, for the USD export trade is 0.241 and for the EUR export trade is 0.159. This suggests

that there is a higher degree of complementarity for USD invoicing than for EUR invoicing.

Conversely, this underscores that the USD as a dominant currency is more fragile than for

example the EUR – the ϕ coefficients imply an average shock amplification of about 32%

for the USD export ECI compared to 19% for the EUR export ECI.

We also identify key players in a given dominant currency, that is, countries that would

have a sizeable impact if they were to abandon a certain dominant currency. Some of

these key player countries are those that invoice most of their exports in that foreign

currency (e.g., China, South Korea, and Russia). Some are countries that are central

in the international trade network (e.g., Japan, Germany, and Canada). Furthermore,

we find evidence for strategic complementarity between the choices of export and import

currencies supporting the balance sheet hedging hypotheses for currency invoicing.

Finally, we conduct counterfactual analyses to examine how the use of dominant cur-

rency for trade invoicing were impacted if some countries were to abandon the USD in

coordination. We find that if the BRIC(S) block (EU) were to bring their excessive in-

voicing in USD to zero, there would be a 42% (11%) reduction in the usage of USD in

international trade with countries other than the United States.
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Chapter 3.

Estimating Risk Preferences from Option Data

This paper estimates risk preferences through nonparametric methods from option data,

and as a by-product recovers rational beliefs. The proposed estimator is shown to be

consistent and asymptotically normally distributed. The estimated risk preferences are

much more in line with preferences implied by classical utility functions than other studies

suggest. Specifically, formal statistical tests suggest that there is no statistically significant

evidence supporting the pricing kernel puzzle. In contrast, by constraining estimated risk

preferences to be monotonically decreasing, the associated beliefs’ forecasting performance

improves substantially. Finally, CRRA risk preferences with a risk aversion coefficient of

two are shown to approximate the nonparametric estimator reasonably, implying risk-

neutral densities can be translated into physical densities easily.

3.1. Introduction. In this paper, I study the extraction of risk preferences from asset

prices. Using non-parametric methods, risk preferences, and as a by-product rational

beliefs are recovered from data on realized returns and forward-looking option data.

The starting point of this paper is an identity that relates conditional risk preferences,

the stochastic discount factor, to Arrow-Debreu securities and probabilities. In the absence

of arbitrage opportunities

(23) Mt(ω) =
at(ω)

πt(ω)

where Mt(ω) is the time t conditional stochastic discount factor, πt(ω) is the conditional

probability (or rational beliefs) and at(ω) is the price of an Arrow-Debreu security, i.e.

the price of an asset that pays of 1$ if state ω realizes.

When specified with respect to general states of the world, equation (23) is of little use

for estimating risk preferences as neither of the three variables is observed. Progress can

be made by focussing on states of the world summarized by the return R of a specific asset

– formally this corresponds to projecting each variable onto the return space. Breeden

and Litzenberger (1978) demonstrated that Arrow-Debreu securities over the return space

of an asset, at(R), can be inferred from an asset’s option prices. Further, past return

realizations contain information about the probability distribution as they correspond to

draws from πt(R). Combining the two then allows to infer risk preferences over the return

space, Mt(R).

To highlight the intuition of the estimation approach in this paper, consider a generic

candidate, ht(R), for the stochastic discount factor function. Based on (23) and the

observed Arrow-Debreu securities, at(R), the associated conditional probability function

is pinned down: πt(R;h) = at(R)/ht(R). Evaluating this expression for the historically

observed returns, πt(Rt+1;h), allows to compute the likelihood of the historical returns

implied by the candidate. This allows me to estimate risk preferences that lead to beliefs

consistent with the data generating process underlying observed returns.

Formally, this approach searches over a space of functions and estimates the stochastic

discount factor function through maximum likelihood. The space of candidate functions

is large, hence, some structure is imposed to make estimation feasible. I assume that the

true stochastic discount factor is proportional to a time-invariant function. The stochastic

discount factor function is then estimated using the method of sieves, a nonparametric
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estimation technique that approximates the unknown function through a combination of

basis functions (see X. Chen (2007)). I demonstrate that the estimator is consistent and

asymptotically normally distributed, i.e. comes with the guarantee that asymptotically

the correct risk preferences are recovered. A caveat of the method of sieves is that for

finite samples there are few results available to guide the choice of basis functions and the

degree of sieve approximation K. I develop intuitive criteria for selecting basis functions

and the degree of approximation, exploiting the structure by equation (23). Specifically, I

demonstrate that using polynomial basis functions up to degree K ensures implied beliefs,

πt(R;h), are consistent with sample moments up to the Kth power, E[RK
t ].

To test whether assuming that the stochastic discount factor function is proportional

to a time-invariant function is empirically plausible, I employ the procedure by Müller

and Petalas (2010). I find that there is no significant evidence of time variation in the

parameters describing the shape of the stochastic discount factor function. Together with

the asymptotic results, this makes the proposed estimation strategy attractive.

Examining the estimated stochastic discount factor function, I find that risk prefer-

ences appear downward sloping over returns. This finding is in line with predictions from

standard utility functions, which imply a monotonically decreasing stochastic discount

factor over returns, reflecting investor’s high marginal utility in low return states and low

marginal utility in high return states.

However, the findings of this paper are in contrast with other studies in the litera-

ture, which document the pricing kernel puzzle, i.e. that risk preferences are generally

not monotonically decreasing over returns (see Cuesdeanu and J. Jackwerth (2018) for a

survey). To investigate this, I develop a novel formal test of the pricing kernel puzzle. I

find that there is no statistically significant evidence against monotonically decreasing risk

preferences. Further, I compute the conditional mean from the estimated beliefs, Et[Rt+1],

and evaluate its ability to forecast returns in terms of out-of-sample R2, constructed as in

Welch and Goyal (2008). I find that constraining estimated risk preferences to be mono-

tonically decreasing leads to substantial improvements in the out-of-sample R2 across all

considered forecasting horizons. For example, for forecasts at the monthly horizon the

out-of-sample R2 increases by 67%. Overall, these results call into question the existence

of the pricing kernel puzzle.

The results of this paper suggest that risk preferences are much more in line with

preferences implied by standard utility functions than previously thought. Specifically,

I find that CRRA preferences with a risk aversion coefficient of around two give rise to

a reasonable approximation of the nonparametric estimate. For practitioners, this has

the advantage that the stochastic discount factor for CRRA preferences is available in

closed-form. Therefore, the physical conditional return distribution can be extracted from

Arrow-Debreu securities (or the risk-neutral distribution) easily.

3.1.1. Related Literature. This paper contributes to a large body of work studying the

relationship between risk preferences, the (physical) probability distributions of returns,

and option prices both theoretically and empirically. Based on equation (23), the literature

can be roughly split into two approaches. The first type estimates the probability distri-

bution of returns and studies the associated risk preferences implied by option data (see

e.g. J. C. Jackwerth (2000), Aıt-Sahalia and Lo (2000) and Rosenberg and Engle (2002)).

The second type makes explicit or high-level assumptions on risk preferences and studies
57



the implied conditional probability distribution of returns (see e.g. Bliss and Panigirt-

zoglou (2004), Kostakis, Panigirtzoglou, and Skiadopoulos (2011), S. A. Ross (2015) and

Martin (2017)).

The first strand of the literature requires estimation of the conditional return distribu-

tion, which is generally non-trivial. Several approaches, such as J. C. Jackwerth (2000)

and Aıt-Sahalia and Lo (2000), estimate the conditional return distribution using rolling

windows of historical return data. Returns and specifically their distributions are known to

fluctuate wildly over time, implying there is little guarantee that a rolling window estimate

gives an accurate depiction of the conditional return density24. Alternative approaches,

such as Rosenberg and Engle (2002), assume a specific form for the conditional return dis-

tribution, i.e. for the data generating process (e.g. GARCH), which is prone to suffer from

misspecification25. This type of literature has documented the pricing kernel puzzle, i.e.

they find that risk preferences are not monotonically decreasing over the return space. Cru-

cially, these approaches depend on specifying and estimating πt(R) correctly. Therefore,

the pricing kernel puzzle may arise precisely because of the aforementioned drawbacks.

The presented approach allows me to revisit the pricing kernel puzzle without estimating

or specifying the conditional return distribution explicitly, overcoming challenges in exist-

ing approaches of this literature. Doing so, I find that there is no statistically significant

evidence supporting the puzzle. These findings corroborate recent results by Linn, Shive,

and Shumway (2018).

The second strand of the literature either assumes a specific preference function (e.g.

Bliss and Panigirtzoglou (2004)) or makes higher-level assumptions about preferences,

such as the negative correlation condition in Martin (2017). The approach taken in this

paper is therefore closer to this literature – the key assumption that makes estimation

feasible is that the risk preference function is time-invariant. However, due to the non-

parametric methods employed, the approach does not overly restrict the functional form

of the stochastic discount factor function a priori. Rather the data is allowed to tell us

the most likely shape of the unknown risk preferences over returns.

The results of this paper are further related to a large literature examining whether

option data or information extracted from option data, has predictive power for realized

returns (see Christoffersen, Jacobs, and Chang (2013)). I find that the probability density

function extracted through the presented approach from option data has predictive power

for returns. Further, imposing the economically motivated restriction that risk preferences

are monotonically decreasing improves the predictive power, in spirit of Campbell and

Thompson (2008).

Finally, the presented approach is related to an increasing body of studies employing the

method of sieves – a popular sieve are neural networks (see X. Chen (2007)). The presented

estimator employs a linear sieve paired with a maximum likelihood objective function.

Implicitly, the approach models the conditional return distribution as belonging to the

family of exponential distributions (see E. Lehmann and Casella (2006)), and therefore

24To take the argument to the extreme, suppose the return distribution is based on the full history
of returns, i.e. the rolling window is made arbitrarily long. By definition, this is an estimate of the
unconditional density. Equation (23) requires the conditional density, meaning this approach is only valid
if conditional and unconditional distributions are identical.
25A standard GARCH model, implies that πt(R) is a normal distribution. Risk-neutral distributions
(Arrow-Debreu securities scaled by the risk-free rate) are typically negatively skewed and leptokurtic.
Therefore, assuming normality for πt(R) is bound to create non-monotonicities in the stochastic discount
factor function.
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the estimator inherits several convenient properties. Specifically, it belongs to the family

of concave extended linear models (Huang (2001)).

The paper is structured as follows. Section 3.2 reviews observed Arrow-Debreu securi-

ties, at(R), and examines the stochastic discount factor and beliefs that can be constructed

from these. Section 3.3 presents the nonparametric estimator, discusses its intuition and

its asymptotic properties. Further, the selection of basis functions and sieve approxima-

tion degree K in finite samples is examined. Section 3.4 describes the data. Section 3.5

presents and discusses the results and section 3.6 concludes.

3.2. Preferences Associated with Observed Arrow-Debreu Securities. Arrow-

Debreu securities extracted from option data are defined over the return space of the asset

underlying the options (e.g. the S&P 500). By extension, preferences associated with

these Arrow-Debreu securities correspond to the projection of the (general) preferences

onto the return space of the underlying asset.

To see this formally, consider a setting with discrete time, where Ft denotes the sigma-

algebra used to depict the information available at time t. Let ω ∈ Ω denote the realization

of a state of nature. The absence of arbitrage opportunities implies the existence of

positive Arrow-Debreu state prices (Dybvig and S. Ross (2003)). For tractability, but

without loss of generality, let the relevant state variables be the gross return of an asset

next period, Rt+1, and a supplementary variable Xt+1. Then at(Rt+1, Xt+1) is the price of

an Arrow-Debreu security that pays 1$ (or one unit of the consumption good) if Rt+1 and

Xt+1 realize. Preferences are connected to these securities through the stochastic discount

factor by the pricing rule representation theorem (Theorem 2, Dybvig and S. Ross (2003)).

Formally,

Mt(Rt+1, Xt+1) =
at(Rt+1, Xt+1)

πt(Rt+1, Xt+1)

where Mt(Rt+1, Xt+1) denotes the stochastic discount factor and πt(Rt+1, Xt+1) denotes

the conditional probability of realization Rt+1 and Xt+1. Subscripts t indicate that the

variables are conditional on Ft.

Breeden and Litzenberger (1978) demonstrated that a type of Arrow-Debreu security is

observed through a rich set of option data. Let Ct(K, t+ 1) be the time t call price with

strike K and maturity next period. They showed that the time t price of an Arrow-Debreu

security paying 1$ if return Rt+1 realizes is equal to the second derivative of the call price

curve evaluated at K = Rt+1St, where St is the current price of the underlying. Formally,

at(Rt+1) =
∂2Ct(K, t+ 1)

∂K2

∣∣∣∣
K=Rt+1St

Importantly, these pay 1$ if Rt+1 realizes regardless of the realization of Xt+1. Hence, by

no arbitrage at(Rt+1) corresponds to at(Rt+1, Xt+1) summed over all potential realizations

of Xt+1, keeping Rt+1 fixed. Formally,

(24) at(Rt+1) =

∫
at(Rt+1, X)dX

Therefore, the stochastic discount factors associated with at(Rt+1) and at(Rt+1, Xt+1) are

connected as follows

Mt(Rt+1) =
at(Rt+1)

πt(Rt+1)
=

∫
πt(X|Rt+1)

at(Rt+1, X)

πt(Rt+1, X)
dX

= Et[Mt(Rt+1, Xt+1)|Rt+1]
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where to obtain the second equality I used equation (24) and the fact that πt(X|Rt+1) =

πt(Rt+1, X)/πt(Rt+1). The final equality follows by definition of Mt(Rt+1, Xt+1). This

formally demonstrates that the stochastic discount factor, or more generally preferences,

based on the observed Arrow-Debreu securities extracted following Breeden and Litzen-

berger (1978) corresponds to the projection of the stochastic discount factor defined over

multiple state variables onto the return of the option’s underlying asset.

It immediately follows that Mt(Rt+1) inherits several properties of its general counter-

part. First, it is positive. Second, by the law of iterated expectations it has the same mean

as the actual stochastic discount factor26. Third, since Mt(Rt+1) is a projection it is gener-

ally less variable than Mt(Rt+1, Xt+1). For example, by the law of total variance, it follows

that V art(Mt(Rt+1, Xt+1)) ≥ V art(Mt(Rt+1)). A similar result can be obtained in terms

of entropy. Hence, the variability of Mt(Rt+1) gives a lower bound for Mt(Rt+1, Xt+1)

and can be contrasted empirically with results from existing bounds such as L. Hansen

and Jagannathan (1991) and Alvarez and Jermann (2005). Fourth, unlike Mt(Rt+1, Xt+1)

the projection Mt(Rt+1) generally does not price all assets. However, if the conditional

projection error is uncorrelated with an asset, Mt(Rt+1) will price it correctly27. Further,

as long as Arrow-Debreu securities are extracted to ensure
∫
Rat(R)dR = 1, Mt(Rt+1)

will always price the underlying asset correctly.

Most relevant to the subsequent estimation, this discussion highlights that the stochastic

discount factor associated with Arrow-Debreu securities extracted following Breeden and

Litzenberger (1978) is a function over the return space of the option’s underlying asset,

generally with dependence on Ft. Further, any stochastic discount factor extracted from

these is a projection of the true stochastic discount factor and inherits several its properties.

3.3. Estimation. The objective of this paper is to estimate the unknown function Mt(R)

under the assumption that its general shape does not change over time. For practical

reasons, any function of R is assumed to have support over the closed interval R ∈ R.
This is because Arrow-Debreu security prices, at(R), are typically only observed over a

closed interval.

Estimating Mt(R) can be thought of as selecting a function h from the space of func-

tions M with support over R. To see this, note any candidate h needs to give rise to a

stochastic discount factor function that is positive and implies proper probabilities given

the observed Arrow-Debreu securities. Given that Mt(R) is assumed to be proportional

to a time-invariant function, the first constraint is ensured if log(Mt(R)) = h(R)+ log(ct).

The associated probabilities are πt(R;h) = at(R)/ct exp(h(R)). The second constraint

therefore pins down ct since

1 =

∫
R
πt(R;h)dR =

∫
R

at(R)

ct exp(h(R))
dR

⇒ ct =

∫
R

at(R)

exp(h(R))
dR

Note, ct varies due to at(R). Hence, estimating Mt(R) is equivalent to estimating h(R).

26As long as Arrow-Debreu securities are extracted to ensure that
∫
at(R)dR = 1/Rf,t+1, it follows that

Et[Mt(Rt+1)] = 1/Rf,t+1.
27The projection error is defined as et+1 = Mt(Rt+1, Xt+1)−Et[Mt(Rt+1, Xt+1)|Rt+1]. Consider some asset
with returnRi,t+1 and suppose it is uncorrelated with et+1. Since Et[et+1] = 0, this implies Et[Ri,t+1et+1] =
0. Therefore, Et[Mt(Rt+1)Ri,t+1] = Et[(Mt(Rt+1, Xt+1) − et+1)Ri,t+1] = 1, since Mt(Rt+1, Xt+1) prices
all assets.
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Next, a criterion needs to be defined. To do so, I exploit the structure implied by the

pricing rule representation theorem. Let m ∈ M denote the function corresponding to

the true Mt(R). Given a candidate h ∈ M, the log-likelihood of realized returns is de-

fined as lt(h) = log(πt(Rt+1;h)) by equation (23). Suppose the unconditional expectation

taken with respect to the true probability measure induced by m exists. The Kullback-

Leibler information inequality in combination with the law of iterated expectations ensures

E[lt(m)] ≥ E[lt(h)] for all h ∈ M. Denote by LT (h) the sample analog of E[lt(h)]. There-
fore, a natural way of estimating Mt(R) is by maximizing LT (h) over M, i.e. to estimate

Mt(R) by maximum likelihood as

m̂ = argmax
h∈M

1

T

T∑
t=1

log(πt(Rt+1;h))

This estimator formalizes the idea of estimating the stochastic discount factor function

that makes the realization of historical returns most likely, given the information up to

time t, particularly exploiting the information contained in the observed Arrow-Debreu

securities. To illustrate how to search over some abstract function space M, consider a

simplified example with CRRA preferences.

Example 3.1 (CRRA preferences). Consider a standard one-period portfolio choice prob-

lem with CRRA preferences defined over next period wealth and let R denote the optimal

portfolio return. The implied stochastic discount factor is

Mt(R) =
R−γ

Et[R
1−γ
t+1 ]

where γ is the coefficient of relative risk aversion. CRRA preferences can therefore be

thought of as restricting the function space M to only include functions of type h(R) =

−γ log(R). Note that, ct = Et[R
1−γ
t+1 ]

−1 =
∫
at(R)RγdR to ensure probabilities integrate to

one. Selecting a function from this space is equivalent to estimating the parameter γ. The

estimation problem therefore becomes the simple parametric problem

(25) γ̂ = argmax
γ

1

T

T∑
t=1

log(πt(Rt+1; γ))

with πt(Rt+1; γ) = at(Rt+1)R
γ
t+1(

∫
at(R)RγdR)−1. This problem is straightforward to

solve numerically given data on Arrow-Debreu securities and returns.

3.3.1. Estimation through Method of Sieves. Since generally M is infinite-dimensional,

maximizing LT (h) over M tends to be infeasible and, if possible, may exhibit undesirable

large sample properties. To address this issue, the method of sieves is employed. Instead

of estimating over M, estimation is carried out over a sequence of approximating spaces

MK . The sieve spaces are less complex, but their complexity grows with the sample size so

as to be dense in the original space. These approximating spaces are constructed through

a combination of basis functions, e.g. a linear combination of polynomials up to degree K

increasing with T (see X. Chen (2007) for a detailed discussion).

The key ingredients for the method of sieves are the choice of the criterion function and

of the basis functions. The former is suggested by the setup and is based on maximum

likelihood. The latter is chosen to ensure that the unknown function can be well ap-

proximated. Motivated by the Weierstrass approximation theorem28, a linear sieve using

28The Weierstrass approximation theorem (Weierstrass (1885)) states that if f(.) is a continuous real-
valued function defined on the real interval [a, b], then for every ϵ > 0 there exists a polynomial pK(.)
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polynomials is implemented. Further finite-sample arguments for using polynomials are

given in section 3.3.2.

Let {bj(R), j = 0, 1, ...} denote a sequence of polynomial basis functions, e.g. standard,

Hermite, or Laguerre polynomials. Since Mt(R) is approximated using a linear combi-

nation of basis functions, the location normalization h(1) = 0 is imposed29. The sieve

approximation space is MK = {h(R) =
∑K

j=0 θjbj(R), h(1) = 0, R ∈ R, θj ∈ R} where

dim(MK) = K → ∞ as T → ∞ with K/T → 0. Therefore, MK becomes dense in M
by the Weierstrass approximation theorem. For πt(Rt+1;h) = at(Rt+1)/ct exp(h(R)) the

sieve estimator is defined as

(26) m̂ = arg max
h∈MK

1

T

T∑
t=1

log(πt(Rt+1;h))

and is a finite-dimensional problem in which K parameters are estimated subject to the

location normalization constraint – θ0 is determined by the constraint. Denote by θ̂T the

vector of coefficient estimates. The estimator for the stochastic discount factor function

then is

(27)
Mt(R; θ̂T ) = exp

( K∑
j=0

θ̂jbj(R)
)

︸ ︷︷ ︸
exp(ĥ(R))

∫
R

at(R)

exp
(∑K

j=0 θ̂jbj(R)
)dR︸ ︷︷ ︸

ĉt

where the first term captures the general shape of the stochastic discount factor function

and the second allows the function to shift over time.

3.3.1.1. Consistency. The sieve estimator defined in equation (26) is consistent under

mild regularity conditions. Formally, the following theorem establishes the consistency for

the estimator.

Theorem 4. Let K,T → ∞ and K/T → 0. Under assumptions A.6-A.9 it follows that

||m̂−m||∞ = op(1).

The assumptions and proof can be found in section 6.1 in the appendix. The proof

relies on satisfying the conditions of theorem 3.1 in X. Chen (2007). To do so the as-

sumption that the stochastic discount factor is proportional to a time-invariant function

is used. Further, the proof relies on a variation of the Weierstrass approximation theorem

to argue that the sieve approximation is asymptotically accurate. Finally, I exploit the

fact that the probabilities implied by h ∈ MK , πt(R;h), belong to the exponential family

(for a definition see E. L. Lehmann, Romano, and Casella (2005) and E. Lehmann and

Casella (2006)). Hence, the estimator in equation (26) belongs to the family of concave

extended linear models (see Huang (2001)), which implies log(πt(R;h)) is strictly concave

in h.

3.3.1.2. Asymptotic Distribution. Under additional regularity conditions, the estimator

is asymptotically normally distributed. Formally, the following theorem establishes the

asymptotic distribution for the estimator.

of some degree K sufficiently large such that for all x ∈ [a, b] we have ||f(.) − pK(.)||∞ < ϵ, where ||.||∞
denotes the supremum norm.
29Note that for any constant c, it follows that h(R)+ c+log(

∫
R at(R) exp(−(h(R)+ c))dR) = log(Mt(R)),

meaning Mt(R) is not identified if h(R) is modeled to be a member of some linear space. Common
location normalizations are constraints such as h(R∗) = 0 for some R∗ ∈ R. This ensures the mapping
from h(R) 7→ log(Mt(R)) is one-to-one, i.e. Mt(R) is identified. See also Stone (1990), Huang (2001) and
example 2.6 in X. Chen (2007).
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Theorem 5. Under the assumptions for theorem 4 and assumptions A.10-A.14 it follows

that
√
T (m̂−m)

d→ N(0, bm
i2m

).

The assumptions and proof can be found in appendix 6.1. The proof relies on the

fact that the scores of the estimator defined over M, i.e. evaluated at m, constitute

a martingale difference sequence with respect to the filtration Ft. Therefore, a central

limit theorem for martingale difference sequences applies. The additional assumptions are

standard and amongst other things ensure that the approximation error is negligible.

Confidence intervals for the estimated SDF function can be constructed from the sample

scores and Hessians of the log-likelihood with respect to the parameters θ and by applying

the delta method. Note under the assumptions, bm = −im by lemma L.6. In practice

when working with overlapping data, e.g. using daily data on returns and options with

a maturity of more than one day, scores will be serially correlated and the sandwich

estimator with a robust estimator for the covariance matrix of scores is used (e.g. Newey

and West (1987)).

3.3.2. Selection of Basis Function and Approximation Degree in Finite Samples. In the

previous section, the sieve dimension K was allowed to grow with the sample size, and

asymptotic results were used to justify the choice of the basis function. However, there is

little guidance on how to selectK and the basis functions for any finite sample. This section

demonstrates that for linear sieves the estimator defined in equation (26) exhibits special

features that can guide both the selection of basis functions and of K for finite samples.

Specifically, polynomial basis functions ensure moments based on πt(R; θ̂T ) satisfy the law

of iterated expectations up to the Kth moment.

To see this, consider the first order conditions of (26) with respect to θk, evaluated at

θ̂T

0 =
T∑
t=1

−bk(Rt+1) +

∫
R at(R) exp(−

∑
k θ̂kbk(R))bk(R)∫

R at(R) exp(−
∑

k θ̂kbk(R))

By the definition of πt(R; θ̂T ) the above can be rewritten as

(28)
1

T

T∑
t=1

Êt[bk(Rt+1)] =
1

T

T∑
t=1

bk(Rt+1)

where Êt[.] denotes the expectation taken with respect to πt(R; θ̂T ). Equation (28) illus-

trates that θk is selected to ensure that the sample average of the conditional expectation

of the kth basis function is equal to its sample analog. Put differently, θk is chosen to

ensure Êt[bk(Rt+1)] satisfies the law of iterated expectations.

Equation (28) can be used to inform both the choice of K and of basis functions in finite

samples. The condition holds for any bk(R), so the choice of a basis function controls what

moment conditions the estimated density should match in the data. Relative to other

common basis functions, polynomial basis functions have an appealing feature. They

ensure conditional moments up to order K implied by the estimated density, Êt[R
k
t+1] for

k ≤ K, are consistent with moments calculated from the sample data30.

30Other basis functions give rise to less intuitive moment conditions. Consider for example trigonometric
basis functions or basis functions of polynomial splines. Trigonometric basis functions are btrigk (R) =
cos(2kπR) + sin(2kπR). For a polynomial spline of degree K with J knot points, the basis functions are

bsplk (R) = Rk for k = 0, 1, ...,K and bsplK+j(R) = max(R − tj , 0)
K for j = 1, ..., J , where tj denotes knot j.

The moment conditions associated with btrigk (R) and bsplK+j(R) seem less desirable.
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Hence, for polynomial basis functions, K controls both the approximation flexibility and

the maximum number of sample moments matched by the estimated conditional density.

This introduces a trade-off since typically, the higher a moment the more samples are

required to estimate it reliably. For the purposes of this paper, it appears sensible to set

K = 4. Therefore, the estimated density will match the historical sample mean, variance,

skewness, and kurtosis.

3.4. Data. To implement the estimator, I construct a dataset based on raw option price

data obtained from IvyDB US Optionmetrics. The dataset spans 4-Jan-1996 to 31-Dec-

2020 and contains daily data on the continuously compounded dividend yield of the S&P

500, continuously compounded zero coupon interest rates for several maturities, and the

expiration date, strike price, highest closing bid and lowest closing ask of all call and put

options on the S&P 500. Furthermore, data on the S&P 500 closing price is obtained

from CRSP. Several filters, cleaning, and processing steps are implemented and detailed

in section 6.2.1 in the appendix.

For the empirical exercise, I require an option dataset for identical maturities at each

point in time and a set of standardized strikes that are identical over time. Therefore, inter-

and extrapolation of the raw data is necessary. Several approaches have been developed.

The overall goal is to extract representative Arrow-Debreu security prices. A survey

discussing the practical details of extracting these Arrow-Debreu securities is given in

Figlewski (2018).

The baseline dataset follows Gatheral and Jacquier (2014) and allows for inter-/ ex-

trapolation taking into account the full option dataset on each date across maturities and

strikes while enforcing several no-arbitrage constraints. For robustness, I implement three

additional approaches, following Figlewski (2008), Ulrich and Walther (2020) and J. Jack-

werth and Menner (2020). See section 6.2.2 in the appendix for details. The baseline

dataset has daily Arrow-Debreu security price curves for a maturity of one, two, three,

six, and twelve months over a discrete grid of strikes. The grid corresponds to gross re-

turns with 1% increments related to strikes via Ki = RiSt, where St is the time t price of

the S&P 500. The grid range is chosen to capture the minimum and maximum observed

return of the S&P 500 over the sample period for each maturity horizon, e.g. for the

1-month horizon, it ranges from 66% to 125%.

3.5. Empirical Results. This section presents results on the estimated risk preferences.

First, in comparison with other approaches, I find estimated risk preferences are more in

line with traditional utility functions, i.e. generally decreasing over the return space.

Second, I find empirical support for the assumption that the stochastic discount factor

function is proportional to a time-invariant function through parameter instability tests.

Third, I document that there is little evidence of the pricing kernel puzzle. Specifically, I

find no statistically significant evidence against monotonically decreasing risk preferences.

On the contrary, when imposing Mt(R) to be monotonically decreasing, the associated

conditional return distributions can better predict return realizations. Fourth, I demon-

strate that CRRA preferences with a risk aversion coefficient of two approximate the

nonparametric estimates of Mt(R) well.

3.5.1. Estimated Risk Preferences and Parameter Stability. The estimator is implemented

for monthly returns, sampled at daily frequency. Based on the discussion in section 3.3,

regular polynomial basis functions, bk(R) = Rk, are employed with K = 4. The sieve
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approximation degree is set slightly higher than what is suggested by classical model

selection criteria, such as the Akaike or the Bayesian information criterion (see table 17

in the appendix).

Estimated risk preferences, Mt(R; θ̂T ), are available at each point in time. Figure 12

depicts these for several snapshot dates.

Figure 12. Estimated Risk Preferences
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Note: The figure depicts the estimated stochastic discount factor function given in equation (27) on several
dates using regular polynomial basis functions with K = 4. Further, 95% confidence intervals obtained via
the delta method are reported. I employ a Newey and West (1987) type estimator with lag length 21 for
the covariance matrix of the scores.

The estimated risk preference function appears generally decreasing over the return

space. The point estimates exhibit a slight u-shape, which taking into account the con-

fidence intervals does not appear to be substantial. Confidence intervals are relatively

tight for gross returns between -5% to 5% and widen exponentially towards the left and

right ends of the grid. For the sample, roughly 80% of monthly S&P 500 returns fall into

this range, giving rise to more precise estimates in this area. Shifts of the risk preference

function due to ct become apparent when comparing the different snapshots, however, are

overall minor.

The estimator assumes that the true stochastic discount factor function is proportional

to a time-invariant function. The shape of the estimated function is characterised by the

parameters θ. A way of testing whether the stochastic discount factor function is indeed

proportional to a time-invariant function is to examine whether the shape parameters, θ,

vary over time.

Several parameter instability tests exist and I here implement the procedure by Müller

and Petalas (2010), which is designed for testing parameter stability in nonlinear mod-

els. Their procedure is convenient, as it only requires the scores, Hessian, and (robust)

covariance matrix of the scores, which are readily available from (27). Further, their test

statistic is sufficiently general. It is specified against a wide range of alternative param-

eter dynamics that lead to persistent time-varying parameter paths of relatively small

variability. Naturally, as with most tests of parameter instability, it cannot test against all
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types of alternative time-variation31. However, it encompasses a variety of alternatives of

interest such as random walks or breaks at unknown dates (see Elliott and Müller (2006)

and Müller and Petalas (2010) for a detailed discussion).

Table 6 depicts the results for the Müller and Petalas (2010) qLL test statistic. Note the

test statistic rejects the null hypothesis of parameter stability for small (negative) values.

Table 6. Test of Parameter Stability

K 2 3 4 5 6

qLL -15.036 -15.598 -15.652 -24.912 -24.835
p-value (0.034) (0.245) (0.705) (0.267) (0.644)

Note: The table repots the estimated qLL test statistic following Müller and Petalas (2010) for the
estimator in (27) using non-overlapping observations and regular polynomial basis functions. The different
columns correspond to the number of parameters, or the approximation degree, K. The qLL test is
calculated following Müller and Petalas (2010) using c = 10 for robustified scores. The reported p-values
are calculated by simulating the distribution of the qLL test statistic with c = 10 from the random variable
in Elliott and Müller (2006) lemma 2.

The results indicate that the test fails to reject the null of parameter stability across the

considered approximation degrees, except for K = 2. The results in tables 18 and 19 of

the appendix, which report the qLL test statistic for other values of the hyperparameter c

(see Müller and Petalas (2010) for details), further corroborate this finding. Overall, these

findings are encouraging. They suggest it is reasonable to assume that the stochastic

discount factor function is proportional to a time-invariant function.

3.5.2. Revisiting the Pricing Kernel Puzzle. Several studies that have estimated risk pref-

erences from observed Arrow-Debreu securities have found that the stochastic discount

factor is not monotonically decreasing over the return space – the so-called pricing ker-

nel puzzle. This is surprising since we generally expect marginal utility to decrease over

wealth or returns, i.e. we would expect a monotonically decreasing stochastic discount

factor function. Figure 13 contrasts the estimator developed in this paper with two repre-

sentative alternatives based on J. C. Jackwerth (2000) and Rosenberg and Engle (2002).

The alternative methods give rise to a stochastic discount factor function that fluctuates

wildly over time. Further, they exhibit features indicative of the pricing kernel puzzle, i.e.

the stochastic discount factor functions are generally not monotonically decreasing over the

return space. In contrast, the estimator developed in this paper appears to be consistent

with a monotonically decreasing stochastic discount factor function.

Section 3.3 demonstrated that if the stochastic discount factor function is proportional

to a time-invariant function, the developed estimator is consistent. The alternative ap-

proaches achieve this only under fairly restrictive assumptions. The J. C. Jackwerth (2000)

approach estimates πt(R) from returns over the last four years. This recovers the condi-

tional return distribution with respect to information set Ft only under fairly restrictive

assumptions32. The Rosenberg and Engle (2002) approach overcomes this, by employing

31For example, the Müller and Petalas (2010) test may fail to detect parameter instability that is less
persistent and displays substantial mean reversion (see Calvori et al. (2017)).
32To illustrate the shortcomings, consider the extreme example in which πt(R) is estimated on the full
history of returns up to t. By definition, this corresponds to an estimate of the unconditional return
distribution. Hence, the estimation approach would only be valid if the conditional return distribution is
equal to the unconditional return distribution.
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Figure 13. Comparison of Estimated Risk Preferences
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Note: The figure depicts the estimated stochastic discount factor function on several dates for the esti-
mator proposed in this paper (black), the J. C. Jackwerth (2000) estimator (blue) and the Rosenberg and
Engle (2002) estimator (purple). The J. C. Jackwerth (2000) estimator divides Arrow-Debreu securities by
the return distribution estimated from 4 years of prior non-overlapping monthly return data using a kernel
estimator. The Rosenberg and Engle (2002) estimator divides Arrow-Debreu securities by the conditional
distribution of a GARCH(1,1) model fit to non-overlapping monthly data using the full sample.

a GARCH model. However, this requires specifying the data generating process. The

estimator in figure 13 assumes that πt(R) is a normal distribution. Since risk-neutral dis-

tributions (Arrow-Debreu securities scaled by the risk-free rate) are typically leptokurtic

and negatively skewed, misspecification of the conditional return distribution may lead to

a biased estimator of the stochastic discount factor function.

In contrast, the estimator developed in this paper overcomes several of these issues as

it does not require assumptions regarding the data generating process of returns, while

simultaneously allowing risk preferences to be estimated flexibly. To formally evaluate the

pricing kernel puzzle, I conduct two tests. First, I develop a statistical test examining

whether a monotonically decreasing pricing kernel can be rejected. Second, I examine the

ability of πt(R;h) to forecast returns when the pricing kernel function is constrained to

be monotonically decreasing. Both tests suggest that there is no support for the pricing

kernel puzzle.

3.5.2.1. Statistical Test of the Pricing Kernel Puzzle. The pricing kernel puzzle states

that the stochastic discount factor projection is not monotonically decreasing. To evaluate

the puzzle, the estimator in (27) can be implemented subject to the constraint that the

function is monotonically decreasing. In the context of the suggested linear sieve, the

constraint takes the form

(29)
K∑
k=0

θk
∂

∂Ri
bk(Ri) ≤ 0

Denote by θ̃ the coefficients estimated from (27) subject to the constraint in (29). By

comparing the constrained and unconstrained parameter estimates, the pricing kernel
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puzzle can be evaluated formally. Specifically, I will evaluate the hypothesis that the

constrained and unconstrained estimates are equal, i.e. the null hypothesis H0 : θ = θ̃.

To test the hypothesis a Lagrange multiplier test is implemented as it has a particularly

convenient interpretation. Generally, the Lagrange multiplier test examines if the average

scores under the constraint are significantly different from zero. A constraint sets θ̃k

such that the average score is no longer exactly equal to zero. Based on equation (28),

the moment condition for the kth basis function will therefore be violated. The Lagrange

multiplier test therefore examines whether the constraint leads to a conditional distribution

that is no longer consistent with the sample moments.

Given the hypothesis, the Lagrange multiplier statistic takes the form

(30) LM =
1

T

( T∑
t=1

ut(θ̃T )

)′
B−1

θ̃

( T∑
t=1

ut(θ̃T )

)
where Bθ̃ is the asymptotic covariance matrix of the scores evaluated at the estimate for

θ̃ and can be estimated e.g. via a Newey and West (1987) estimator. Note the LM

statistic is asymptotically χ2 distributed with K degrees of freedom due to the location

normalization constraint. For large values, the Lagrange multiplier test will reject the

monotonically decreasing stochastic discount factor function, i.e. favour the pricing kernel

puzzle.

Table 7 reports the Lagrange multiplier test statistic. Figure 23 in the appendix further

compares the unconstrained with the constrained estimator.

Table 7. Pricing Kernel Puzzle Tests

K 2 3 4 5 6

LM 3.400 0.883 3.611 3.298 3.482

p-value (0.183) (0.830) (0.461) (0.654) (0.746)

Note: The table presents the Lagrange multiplier test statistic for the estimator in (27) subject to the
constraint in (29) using regular polynomial basis functions for various K as indicated in the table columns.
The p-values are based on a χ2 distribution with K degrees of freedom.

For all values of K, the Lagrange multiplier test fails to reject the constrained estimator

in favour of the unconstrained estimator. Put differently, there is no statistically significant

evidence against a monotonically decreasing stochastic discount factor function. Figure 23

further illustrates these findings. The constrained estimate of the stochastic discount factor

is fairly close to the unconstrained estimate and falls well within the confidence interval

surrounding the unconstrained estimator. The appendix reports several robustness checks

for the above results. First, table 20 illustrates that the results are robust if Arrow-Debreu

securities are extracted through alternative methods than Gatheral and Jacquier (2014).

Second, table 21 illustrates that the results are robust if Arrow-Debreu securities are

extracted through mid, bid, or ask prices. Third, table 22 illustrates that the results are

robust if other basis functions such as Legendre, Laguerre, or Hermite polynomials are

used. Fourth, table 23 illustrates that the results hold for other maturity horizons, i.e.

when considering returns and Arrow-Debreu securities corresponding to two-, three-, six-

or twelve-month horizons.
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3.5.2.2. Out-of-sample Performance of a Monotonically Decreasing Pricing Kernel.

To evaluate the pricing kernel puzzle along a different dimension, I examine the ability

of πt(R; θ) to predict return realizations. Specifically, I compute the conditional mean,

Êt[Rt+1], implied by the constrained and unconstrained estimator. To evaluate its pre-

dictive performance, I compute the associated out-of-sample R2 following the procedure

by Welch and Goyal (2008). Table 8 depicts the out-of-sample R2 associated with the

estimated πt(R; θ) and πt(R; θ̃) for several forecasting horizons. A positive value indicates

that Êt[Rt+1] outperforms the expanding window sample mean benchmark and vice versa.

Table 8. Out-of-Sample Performance across Maturities

τ 30 60 90 180 360

R2
OOS Unconstrained 0.030 0.030 0.029 -0.040 -0.423

Constrained 0.050 0.074 0.076 0.005 -0.412

Note: The table depicts the forecasting performance as measured through the out-of-sample R2 (Welch
and Goyal (2008)) across multiple horizons of the conditional mean implied by the estimator in (27) with
and without the constraint in (29). Regular polynomial basis functions with K = 4 are employed. See
section 6.3 for details on the computation of the out-of-sample R2.

Table 8 illustrates that the conditional mean based on the constrained estimator outper-

forms its unconstrained counterpart. Across all maturities, imposing the constraint that

the stochastic discount factor function is monotonically decreasing increases the ability

of the conditional mean associated with πt(R; θ) to predict returns. At the one-month

horizon, the out-of-sample R2 increases by 67%, and at the two- and three-month hori-

zon it more than doubles. For larger horizons, the out-of-sample R2 is generally nega-

tive, however, the constraint still leads to improvements. In the spirit of Campbell and

Thompson (2008), this demonstrates the added value of imposing economically motivated

constraints.

3.5.3. CRRA Approximation. The results presented thus far suggest that risk preferences

estimated from option data are much more in line with preferences implied by standard

utility functions than previously thought. Stochastic discount factor functions implied

by standard utility functions are convenient, as they are available closed-form (see e.g.

example 3.1) and allow practitioners to translate Arrow-Debreu securities (or risk-neutral

distributions) into physical return distributions easily. To what extent can risk preferences

associated with standard utility functions approximate the nonparametric estimate?

To make progress on this question, I consider the stochastic discount factor function

implied by CRRA preferences33. As discussed in example 3.1, this requires estimation

33Alternative preferences that often appear in the literature are CARA preferences, i.e. exponential utility
(see Bliss and Panigirtzoglou (2004)). I do not consider these here for the following reasons. First, CARA
preferences have several questionable implications, e.g. for portfolio choice and risk premia in a growing
economy (see Campbell (2017) section 2.1.3 for a discussion). Second, portfolio choice problems with
CARA preferences imply a stochastic discount factor over next period wealth, not return as considered
here. Third, if initial wealth is normalized to be one, CARA preferences are nested in the nonparametric
estimator employing regular polynomial basis functions in equation (27) by setting K = 1. Based on
section 3.3.2, this implies beliefs implied by CARA preferences only match the first sample moment of
returns. Further, the model selection criteria in table 17 suggest K to be at least two, providing suggestive
evidence against CARA preferences.
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of the risk aversion coefficient as in (25). Table 9 below reports the results for various

maturity horizons.

Table 9. CRRA Coefficient Estimates

τ 30 60 90 180 360

γ̂ 2.073 1.832 1.914 1.897 1.862

se(γ̂) (0.798) (0.792) (0.798) (0.922) (1.153)

Note: The table depicts the point estimates of the CRRA coefficients across different maturities. Below
the point estimates robust standard errors are reported, employing a Newey and West (1987) estimator
with lag length corresponding to the respective horizon in trading days.

The estimated risk aversion coefficient, γ̂, is close to two and stable across maturities.

To examine whether the associated stochastic discount factor functions approximate the

nonparametric estimate well, I conduct a Lagrange multiplier test. To do so, I project

the logarithm of the CRRA implied stochastic discount factor function with γ̂ onto the

basis function space, subject to the location normalization34 and calculate the associated

Lagrange multiplier statistic given in equation (30). Formally, this examines whether the

CRRA implied stochastic discount factor function is rejected in favour of the nonparamet-

ric estimate. Table 10 reports the test results and figure 24 in the appendix depicts the

nonparametric and CRRA implied stochastic discount factor functions.

Table 10. Are CRRA Preferences Rejected?

τ 30 60 90 180 360

CRRA LM 7.378 8.593 8.195 3.813 0.922

p-value (0.117) (0.072) (0.085) (0.432) (0.921)

Note: The table depicts the test results that examine whether we can reject the CRRA implied stochastic
discount factor (constrained estimator) in favour of the nonparametric estimate across different maturities.
To do so the logarithm of the CRRA implied stochastic discount factor function evaluated at γ̂ reported
in table 9 is projected onto the basis function space. Regular polynomial basis functions with K = 4 are
employed. The p-values are based on a χ2 distribution with K degrees of freedom.

Table 10 illustrates that for the one-month horizon the CRRA implied stochastic dis-

count factor function cannot be rejected at the conventional 10% level. Further, across

frequencies, there is no rejection at the 5% level. By the properties of the Lagrange multi-

plier test, this implies that the unconditional moments derived from the beliefs implied by

the CRRA preferences are approximately consistent with the sample moments observed

in the data. Further, this suggests that the CRRA implied stochastic discount factor

function is close to its nonparametric counterpart. This is further corroborated by the

estimates depicted in figure 24 in the appendix. The CRRA implied stochastic discount

factor function lies within the confidence interval around the nonparametric estimate.

Overall, this suggests that CRRA preferences with a risk aversion coefficient of two

approximate the nonparametric estimate of Mt(R) well, at least for the S&P 500 at the

34Ignoring the location normalization and letting B denote the basis function matrix over the return grid,
this amounts to determining the regression coefficients θ̃ = (B′B)−1B′(−γ̂ log(R)). The log-likelihood,

scores, and Hessian of (26) can then be evaluated at θ̃ as usual.
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one-month horizon. For practitioners, this has the advantage that CRRA preferences with

γ = 2 are easily implemented as they are available in closed-form. This is convenient,

since Arrow-Debreu securities (or risk-neutral distributions) can then easily be translated

to physical conditional distributions.

3.6. Conclusion. This paper develops a nonparametric estimator of risk preferences

from option data and observed returns as long as the true stochastic discount factor is

proportional to a time-invariant function. Relative to other approaches in the literature,

the estimator is attractive as it is consistent and asymptotically normal.

The estimated risk preferences appear in line with preferences implied by standard

utility functions. Specifically, formal tests suggest that there is no evidence in support of

the pricing kernel puzzle. In contrast, by constraining estimated risk preferences to be

monotonically decreasing – as is suggested by classical utility functions – the associated

beliefs are found to better forecast returns.

Since the estimated risk preferences are much more in line with standard utility functions

than previously thought, it is reasonable to expect that risk preferences implied by some

classical utility function approximate the nonparametric estimate well. The stochastic

discount factor implied by CRRA preferences with a risk aversion coefficient of two is found

to approximate the nonparametric estimate well. As these are available in closed-form,

practitioners can easily translate Arrow-Debreu securities (or risk-neutral distributions)

into physical conditional return distributions.
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Bramoullé, Y, H Djebbari, and B Fortin (2009). “Identification of Peer Effects through

Social Networks”. In: Journal of Econometrics 150.1, pp. 41–55.

Breeden, Douglas and Robert Litzenberger (1978). “Prices of State-Contingent Claims

Implicit in Option Prices”. In: Journal of Business, pp. 621–651.

Brunnermeier, Markus et al. (2021). “Feedbacks: financial markets and economic activity”.

In: American Economic Review 111.6, pp. 1845–1879.

Calvo-Armengol, Antoni, Eleonora Patacchini, and Yves Zenou (2009). “Peer effects and

social networks in education”. In: Review of Economic Studies 76, pp. 1239–1267.

Calvori, Francesco et al. (2017). “Testing for parameter instability across different model-

ing frameworks”. In: Journal of Financial Econometrics 15.2, pp. 223–246.

Campbell, John Y (2017). Financial decisions and markets: a course in asset pricing.

Princeton University Press.

Campbell, John Y and Samuel B Thompson (2008). “Predicting excess stock returns out of

sample: Can anything beat the historical average?” In: The Review of Financial Studies

21.4, pp. 1509–1531.

Chahrour, Ryan and Rosen Valchev (July 2022). “Trade Finance and the Durability of

the Dollar”. In: The Review of Economic Studies 89.4, pp. 1873–1910. issn: 0034-6527.

doi: 10.1093/restud/rdab072.

Chamberlain, Gary and Michael Rothschild (1983). “Arbitrage, Factor Structure, and

Mean-Variance Analysis on Large Asset Markets”. In: Econometrica: Journal of the

Econometric Society, pp. 1281–1304.

Chen, Andrew Y and Tom Zimmermann (2022). “Open Source Cross-Sectional Asset

Pricing”. In: Critical Finance Review 11.2, pp. 207–265.

Chen, Xiaohong (2007). “Large sample sieve estimation of semi-nonparametric models”.

In: Handbook of Econometrics 6, pp. 5549–5632.

Christensen, Timothy M (2017). “Nonparametric stochastic discount factor decomposi-

tion”. In: Econometrica 85.5, pp. 1501–1536.

Christoffersen, Peter, Kris Jacobs, and Bo Young Chang (2013). “Forecasting with option-

implied information”. In: Handbook of economic forecasting 2, pp. 581–656.

Chung, Wanyu (2016). “Imported inputs and invoicing currency choice: Theory and evi-

dence from UK transaction data”. In: Journal of International Economics 99.C, pp. 237–

250. doi: 10.1016/j.jinteco.2015.11.

Connor, Gregory and Robert A Korajczyk (1986). “Performance measurement with the

arbitrage pricing theory: A new framework for analysis”. In: Journal of Financial Eco-

nomics 15.3, pp. 373–394.

Cuesdeanu, Horatio and Jens Jackwerth (2018). “The pricing kernel puzzle: Survey and

outlook”. In: Annals of Finance 14.3, pp. 289–329.

Debreu, G and I N Herstein (1953). “Nonnegative Square Matrices”. In: Econometrica 21,

pp. 597–607.

Denbee, Edward et al. (2021). “Network risk and key players: A structural analysis of

interbank liquidity”. In: Journal of Financial Economics 141.3, pp. 831–859. issn: 0304-

405X. doi: https://doi.org/10.1016/j.jfineco.2021.05.010.

Doepke, Matthias and Martin Schneider (Sept. 2017). “Money as a Unit of Account”. In:

Econometrica 85.5, pp. 1537–1574. issn: 1468-0262. doi: 10.3982/ECTA11963.

Dybvig, Philip and Stephen Ross (2003). “Arbitrage, state prices and portfolio theory”.

In: Handbook of the Economics of Finance 1, pp. 605–637.

73

https://doi.org/10.1093/restud/rdab072
https://doi.org/10.1016/j.jinteco.2015.11
https://doi.org/https://doi.org/10.1016/j.jfineco.2021.05.010
https://doi.org/10.3982/ECTA11963


Elliott, Graham and Ulrich K Müller (2006). “Efficient tests for general persistent time

variation in regression coefficients”. In: The Review of Economic Studies 73.4, pp. 907–

940.

Eren, Egemen and Semyon Malamud (May 2022). “Dominant currency debt”. In: Journal

of Financial Economics 144.2, pp. 571–589. issn: 0304405X. doi: 10.1016/j.jfineco.

2021.06.023.

Figlewski, Stephen (2008). “Estimating the implied risk neutral density”. In.

– (2018). “Risk-neutral densities: A review”. In: Annual Review of Financial Economics

10, pp. 329–359.

Freyaldenhoven, Simon (2022). “Factor models with local factors—Determining the num-

ber of relevant factors”. In: Journal of Econometrics 229.1, pp. 80–102.

G’Sell, Max Grazier et al. (2016). “Sequential selection procedures and false discovery rate

control”. In: Journal of the Royal Statistical Society Series B: Statistical Methodology

78.2, pp. 423–444.

Gatheral, Jim and Antoine Jacquier (2014). “Arbitrage-Free SVI Volatility Surfaces”. In:

Quantitative Finance 14.1, pp. 59–71.

Giglio, Stefano and Dacheng Xiu (2021). “Asset pricing with omitted factors”. In: Journal

of Political Economy 129.7, pp. 1947–1990.

Goldberg, Linda S. and Cédric Tille (Sept. 2016). “Micro, macro, and strategic forces in

international trade invoicing: Synthesis and novel patterns”. In: Journal of International

Economics 102, pp. 173–187. issn: 00221996. doi: 10.1016/j.jinteco.2016.07.004.

Gopinath, Gita (2015). “The International price system”. In: Jackson Hole Symposium 1,

pp. 1–7.

Gopinath, Gita, Emine Boz, et al. (Mar. 2020). “Dominant currency paradigm”. In: Ameri-

can Economic Review 110.3, pp. 677–719. issn: 19447981. doi: 10.1257/aer.20171201.

Gopinath, Gita, Oleg Itskhoki, and Roberto Rigobon (Mar. 2010). “Currency Choice and

Exchange Rate Pass-Through”. In: American Economic Review 100.1, pp. 304–336.

issn: 0002-8282. doi: 10.1257/aer.100.1.304.

Gopinath, Gita and Jeremy C. Stein (Mar. 2021). “Banking, Trade, and the Making of

a Dominant Currency”. In: The Quarterly Journal of Economics 136.2, pp. 783–830.

issn: 0033-5533. doi: 10.1093/qje/qjaa036.

Gourinchas, Pierre-Olivier and Hélène Rey (Jan. 2022). “Exorbitant Privilege and Exor-

bitant Duty”.

Gourinchas, Pierre-Olivier, Helene Rey, and Maxime Sauzet (2019). “The International

Monetary and Financial System”. In: Annual Review of Economics 11.1, pp. 859–893.

Hamilton, James Douglas (2020). Time series analysis. Princeton university press.

Hansen, Bruce E. (2021). “Criterion-Based Inference Without the Information Equality:

The Weighted Chi-Square Distribution”. In.

Hansen, Lars and Ravi Jagannathan (1991). “Implications of Security Market Data for

Models of Dynamic Economies”. In: Journal of Political Economy 99.2, pp. 225–262.

– (1997). “Assessing specification errors in stochastic discount factor models”. In: The

Journal of Finance 52.2, pp. 557–590.

Hansen, Lars and Scott F Richard (1987). “The role of conditioning information in deduc-

ing testable restrictions implied by dynamic asset pricing models”. In: Econometrica:

Journal of the Econometric Society, pp. 587–613.

74

https://doi.org/10.1016/j.jfineco.2021.06.023
https://doi.org/10.1016/j.jfineco.2021.06.023
https://doi.org/10.1016/j.jinteco.2016.07.004
https://doi.org/10.1257/aer.20171201
https://doi.org/10.1257/aer.100.1.304
https://doi.org/10.1093/qje/qjaa036


Huang, Jianhua Z (2001). “Concave extended linear modeling: a theoretical synthesis”.

In: Statistica Sinica, pp. 173–197.

IMF (Oct. 2018). Direction of Trade Statistics Introductory Notes. International Monetary

Fund.

Jackson, Matthew O and Yves Zenou (Sept. 2012). Games on Networks. Tech. rep. 9127.

C.E.P.R. Discussion Papers.

Jackson, Matthew O. (2010). Social and Economic Networks. New Jersey: Princeton Uni-

versity Press, pp. 1–504. isbn: 1.

Jackwerth, Jens (2004). “Option-implied risk-neutral distributions and risk aversion”. In.

Jackwerth, Jens and Marco Menner (2020). “Does the Ross Recovery Theorem Work

Empirically?” In: Journal of Financial Economics 137.3, pp. 723–739.

Jackwerth, Jens Carsten (2000). “Recovering risk aversion from option prices and realized

returns”. In: The Review of Financial Studies 13.2, pp. 433–451.

Kan, Raymond and Cesare Robotti (2008). “Specification tests of asset pricing models

using excess returns”. In: Journal of Empirical Finance 15.5, pp. 816–838.

Kelly, Bryan, Seth Pruitt, and Yinan Su (2019). “Characteristics are covariances: A unified

model of risk and return”. In: Journal of Financial Economics 134.3, pp. 501–524.

Kostakis, Alexandros, Nikolaos Panigirtzoglou, and George Skiadopoulos (2011). “Market

timing with option-implied distributions: A forward-looking approach”. In:Management

Science 57.7, pp. 1231–1249.

Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh (2018). “Interpreting factor models”.

In: The Journal of Finance 73.3, pp. 1183–1223.

– (2020). “Shrinking the cross-section”. In: Journal of Financial Economics 135.2, pp. 271–

292.

Lancaster, T. (2004). Introduction to Modern Bayesian Econometrics. Wiley and Sons.

isbn: 9781405117203.

Lanne, Markku, Helmut Lütkepohl, and Katarzyna Maciejowska (2010). “Structural vec-

tor autoregressions with Markov switching”. In: Journal of Economic Dynamics and

Control 34.2, pp. 121–131.

Lehmann, Erich and George Casella (2006). Theory of point estimation. Springer Science

& Business Media.

Lehmann, Erich Leo, Joseph P Romano, and George Casella (2005). Testing statistical

hypotheses. Vol. 3. Springer.

LeSage, J P and R K Pace (2009). Introduction to spatial econometrics. Statistics, text-

books and monographs. CRC Press. isbn: 9781420064247.

Lettau, Martin and Markus Pelger (2020a). “Estimating latent asset-pricing factors”. In:

Journal of Econometrics 218.1, pp. 1–31.

– (2020b). “Factors that fit the time series and cross-section of stock returns”. In: The

Review of Financial Studies 33.5, pp. 2274–2325.

Linn, Matthew, Sophie Shive, and Tyler Shumway (2018). “Pricing kernel monotonicity

and conditional information”. In: The Review of Financial Studies 31.2, pp. 493–531.

Maggiori, Matteo (Oct. 2017). “Financial intermediation, international risk sharing, and

reserve currencies”. In: American Economic Review 107.10, pp. 3038–3071. issn: 00028282.

doi: 10.1257/aer.20130479.

Martin, Ian (2017). “What is the Expected Return on the Market?” In: The Quarterly

Journal of Economics 132.1, pp. 367–433.

75

https://doi.org/10.1257/aer.20130479


Mrkaic, Mr. Mico, Minsuk Kim, and Rui Mano (Sept. 2020). Do FX Interventions Lead

to Higher FX Debt? Evidence from Firm-Level Data. IMF Working Papers 2020/197.

International Monetary Fund.

Mukhin, Dmitry (Feb. 2022). “An Equilibrium Model of the International Price System”.

In: American Economic Review 112.2, pp. 650–688. issn: 0002-8282. doi: 10.1257/

aer.20181550.

Müller, Ulrich K and Philippe-Emmanuel Petalas (2010). “Efficient estimation of the pa-

rameter path in unstable time series models”. In: The Review of Economic Studies 77.4,

pp. 1508–1539.

Newey, Whitney and KennethWest (1987). “A Simple, Positive Semi-Definite, Heteroskedas-

ticity and Autocorrelation Consistent Covariance Matrix”. In: Econometrica 55.3, pp. 703–

708.

Onatski, Alexei (2010). “Determining the number of factors from empirical distribution of

eigenvalues”. In: The Review of Economics and Statistics 92.4, pp. 1004–1016.

Ozdagli, Ali K. and Michael Weber (2023). “Monetary Policy through Production Net-

works: Evidence from the Stock Market”.

Pelger, Markus (2019). “Large-dimensional factor modeling based on high-frequency ob-

servations”. In: Journal of Econometrics 208.1, pp. 23–42.

Perks, Michael et al. (Aug. 2021). Evolution of Bilateral Swap Lines. IMF Working Papers

2021/210. International Monetary Fund.

Rosenberg, Joshua V and Robert F Engle (2002). “Empirical pricing kernels”. In: Journal

of Financial Economics 64.3, pp. 341–372.

Ross, Stephen A (2015). “The Recovery Theorem”. In: The Journal of Finance 70.2,

pp. 615–648.

Schumaker, Larry (2007). Spline functions: basic theory. Cambridge University Press.

Shanken, Jay (1992). “On the estimation of beta-pricing models”. In: The Review of Fi-

nancial Studies 5.1, pp. 1–33.

Sims, Christopher A and Tao Zha (1999). “Error Bands for Impulse Responses”. In: Econo-

metrica 67.5, pp. 1113–1155. doi: 10.1111/1468-0262.00071.

Stone, Charles J (1990). “Large-sample inference for log-spline models”. In: The Annals

of Statistics 18.2, pp. 717–741.

Svirydzenka, Katsiaryna (Jan. 2016). Introducing a New Broad-based Index of Financial

Development. IMF Working Papers 2016/005. International Monetary Fund.

Ulrich, Maxim and Simon Walther (2020). “Option-implied information: What’s the vol

surface got to do with it?” In: Review of Derivatives Research 23.3, pp. 323–355.
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4. Appendix of Chapter 1

4.1. Lemmas. In what follows, let X̄ = X − iT x̄
′, where x̄ = 1/T

∑
tXt, let ∥.∥ denote

the Frobenius norm, ∥.∥sp denote the spectral norm and ∥.∥∞ denote the infinity norm.

Also define δNT = min(
√
N,

√
T ). Let µ = E[Rt] and ΣT = V ar(Rt) = QΛTQ

′, where

Q denotes the collection of eigenvectors and ΛT is a diagonal matrix containing eigenval-

ues. Finally, for the T × N return matrix R, define the sample covariance estimator as

Σ̂T = 1/T R̄′R̄ and the scaled sample covariance estimator as Σ̂T = 1/(TN)R̄′R̄. Both

matrices share the same eigenvectors and their eigenvalues are connected via Λ̂T = Λ̂NT .

Lemma L.1. Let Λ̂TN,K correspond to the K largest eigenvalues of Σ̂TN . We have

Λ̂TN,K
p→ ΛTN,K .

Proof. From (8) we have R̄ = F̄Q′
K + Ē and therefore

(31)
1

NT
R̄′R̄ =

1

NT
(QK F̄ ′F̄Q′

K +QK F̄ ′Ē + Ē′F̄Q′
K + Ē′Ē)

The goal is to analyze the eigenvalues of the above. To do so we will analyze the Frobenius

norm of the last three terms as it gives an upper bound for the spectral norm.

Note ∥QK F̄ ′Ē∥ = ∥F̄ ′Ē∥ since Q′
KQK = IK . Further,

∥F̄ ′Ē∥ = ∥F ′E − T f̄ ē′∥ ≤ ∥F ′E∥+ T∥f̄∥∥ē∥

By assumption A.2 ∥F ′E∥ ≤ Op(
√
NT ). By assumption A.3 (i) ∥f̄∥ = Op(

√
N). By

assumption A.1 (i)

E[∥ē∥2] = 1

T 2
E[
∑
i

∑
t

∑
s

Ei,tEi,s] =
N

T 2

∑
t

∑
s

E[
1

N
E′

sEt]

≤ N

T 2

∑
t

∑
s

|γN (s, t)| ≤ M
N

T

E[∥E∥2] = E[
∑
i

∑
t

E2
i,t] ≤ N

∑
t

|γN (t, t)| ≤ MNT

so ∥ē∥ = Op(
√

N
T ) and ∥E∥ = Op(

√
NT ). Therefore, ∥F̄ ′Ē∥ = Op(

√
NT ) + Op(N

√
T ) =

Op(N
√
T ). This implies that

(32) ∥ 1

NT
F̄ ′Ē∥sp ≤ ∥ 1

NT
F̄ ′Ē∥ = Op(

1√
T
)

p→ 0

which also holds for Ē′F̄Q′
K .

Next, note that ∥Ē′Ē∥ = ∥ĒĒ′∥ and ĒĒ′ = EE′ − Eēi′T − iT ē
′E′ + iT ē

′ēi′T . Note

∥iT ē′E′∥ ≤ ∥it∥∥ē∥∥E∥ = Op(
√
TN) and ∥iT ē′ēi′T ∥ = T∥ē∥2 = Op(N) by assumption

A.1 (i). Let Γ be a T × T matrix with γN (s, t). By assumption A.1 (ii) we have

E[∥EE′ −NΓ∥2] =
∑
t

∑
s

E[(
∑
j

ej,tej,s − E[ej,tej,s])2] ≤ MNT 2
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Define ρN (s, t) = γN (s, t)/(γN (s, s)γN (t, t)). By the Cauchy-Schwartz inequality |ρN (s, t)| ≤
1. Then,

∥Γ∥2 =
∑
t

∑
s

γN (s, t)2 =
∑
t

∑
s

ρN (s, t)2γN (s, s)γN (t, t)

≤ M
∑
t

∑
s

|ρN (s, t)|
√
γN (s, s)γN (t, t) = M

∑
t

∑
s

|γN (s, t)| ≤ MT

by assumption A.1 (i) and |ρN (s, t)| ≤ 1. To see this note |ρN (s, t)| ≥ ρN (s, t)2 by

|ρN (s, t)| ≤ 1. Next, γN (s, s)γN (t, t) =
√
γN (s, s)γN (t, t)

2
and by assumption A.1 (i)√

γN (s, s)γN (t, t) ≤ M . Hence, ρN (s, t)2γN (s, s)γN (t, t) ≤ M |ρN (s, t)|
√

γN (s, s)γN (t, t).

Therefore, we have

∥ĒĒ′ −NΓ∥ = ∥EE′ −NΓ∥+ 2∥Eēi′T ∥+ ∥iT ē′ēi′T ∥

= Op(T
√
N) +Op(N) +Op(

√
TN)

and,

(33)

∥Ē′Ē∥ = ∥ĒĒ′∥ ≤ ∥ĒĒ′ −NΓ∥+ ∥NΓ∥

= Op(T
√
N) +Op(N) +Op(

√
TN) = Op(

NT

δNT
)

This implies that

∥ 1

NT
Ē′Ē∥sp ≤ ∥ 1

NT
Ē′Ē∥ = Op(

1

δNT
)

p→ 0

Therefore, the largest eigenvalues of the three last matrices in (31) converge to zero. By

the matrix pertubation theorem, the K largest eigenvalues of 1
NT R̄

′R̄ are then determined

by the first matrix 1
NT QK F̄ ′F̄Q′

K , whose eigenvalues are the same as those of 1
NT F̄

′F̄

since Q′
KQK = IK . Since 1

NT F̄
′F̄ converges to ΛTN,K by assumption A.3 (ii) we have the

desired result. Weyl’s inequality can be used to show convergence of each eigenvalue35. □

Lemma L.2. We have ∥Q̂K −QKH∥ ≤ Op(1/
√
T + 1/N).

Proof. I begin by establishing a preliminary convergence rate. From the definition of an

eigenvector we have 1/(TN)R̄′R̄Q̂K = Q̂KΛ̂NT,K and therefore

Q̂K =
1

NT
(QK F̄ ′F̄Q′

K +QK F̄ ′Ē + Ē′F̄Q′
K + Ē′Ē)Q̂KΛ̂−1

NT,K

Define H = 1/(NT )F̄ ′F̄Q′
KQ̂KΛ̂−1

NT,K , the rotation matrix up to which we recover QK

based on Q̂K . Therefore,

(34) Q̂K −QKH =
1

NT
(QK F̄ ′Ē + Ē′F̄Q′

K + Ē′Ē)Q̂KΛ̂−1
NT,K

Note ∥QK∥ = Op(1) and ∥Q̂K∥ = Op(1). By lemma L.1 and the Continuous Mapping

Theorem we have ∥Λ̂−1
NT,K∥ = Op(1). Using (32) and (33) we have

∥Q̂K −QKH∥2 ≤ 2∥QK∥2∥Q̂K∥2∥Λ̂−1
NT,K∥2∥ F̄

′Ē

NT
∥2 + ∥Q̂K∥2∥Λ̂−1

NT,K∥2∥Ē
′Ē

NT
∥2

= Op

( 1
T

)
+Op

( 1

δ2NT

)
= Op

( 1

δ2NT

)

35 By Weyl’s inequality we have for k ∈ 1, ...,K

|λk(
1

NT
R̄′R̄)− λk(

1

NT
QK F̄ ′F̄Q′

K)| ≤ ∥ 1

NT
(QK F̄ ′Ē + Ē′F̄Q′

K + Ē′Ē)∥sp ≤ Op(
1

δNT
)

p→ 0
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The above rate can be improved. Note that because ĒQK = 0

Q̂K −QKH =
1

NT
QK F̄ ′Ē(Q̂K −QKH)Λ̂−1

NT,K +
1

NT
Ē′F̄Q′

KQ̂KΛ̂−1
NT,K

+
1

NT
Ē′Ē(Q̂K −QKH)Λ̂−1

NT,K

Using (32), (33), the Continuous Mapping Theorem with lemma L.1 and the previously

established rate

∥Q̂K −QKH∥ = ∥QK∥∥ 1

NT
F̄ ′Ē∥∥(Q̂K −QKH)∥∥Λ̂−1

NT,K∥

+ ∥ 1

NT
Ē′F̄∥∥QK∥∥Q̂K∥∥Λ̂−1

NT,K∥

+ ∥ 1

NT
Ē′Ē∥∥(Q̂K −QKH)∥∥Λ̂−1

NT,K∥

≤ Op(
1√

TδNT

) +Op(
1√
T
) +Op(

1

δ2NT

) = Op(
1√
T

+
1

N
)

□

Lemma L.3. We have ∥H∥ ≤ Op(1).

Proof. By the definition of H we have

∥H∥ ≤ ∥ F̄
′F̄

NT
∥∥QK∥∥Q̂K∥∥Λ̂−1

NT,K∥ = Op(1)

by assumption A.3 (ii), ∥QK∥ = Op(1), ∥Q̂K∥ = Op(1), lemma L.1 and the Continuous

Mapping Theorem. □

Lemma L.4. We have ∥Q̂′
K(QKH − Q̂K)∥ ≤ Op(1/T + 1/N2).

Proof. Note we can write

Q̂′
K(QKH − Q̂K) = (Q̂K −QKH)′(QKH − Q̂K) +H ′Q′

K(QKH − Q̂K)

Lemma L.2 establishes the rate of the first component. For the second term, we have by

(34)

Q′
K(QKH − Q̂K) = − 1

NT
(Q′

KQK F̄ ′Ē +Q′
KĒ′F̄Q′

K +Q′
KĒ′Ē)Q̂KΛ̂−1

NT,K

= − 1

NT
F̄ ′ĒQ̂KΛ̂−1

NT,K

= − 1

NT
F̄ ′Ē(Q̂K −QKH)Λ̂−1

NT,K

where I used Q′
KĒ′ = 0. Therefore,

(35) ∥Q′
K(QKH − Q̂K)∥ ≤ ∥ 1

NT
F̄ ′Ē∥∥(Q̂K −QKH)∥∥Λ̂−1

NT,K∥ = Op(
1

T
+

1

N
√
T
)

by (32), lemma L.1, L.2 and the Continuous Mapping Theorem. Therefore,

∥Q̂′
K(QKH − Q̂K)∥ ≤ Op

(
max

( 1
T
,

1√
TN

,
1

N2

))
= Op(

1

T
+

1

N2
)

□

Lemma L.5. We have H = S +Op(1/T + 1/N2), H−1 = S +Op(1/T + 1/N2) where S

is a diagonal matrix with 1 or −1 and ∥H−1∥ ≤ Op(1).
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Proof. Note that

Q̂′
KQK = (Q̂K −QKH)′QK +H ′ = H ′ +Op(

1

T
+

1

N
√
T
)

by (35). Therefore, Q̂′
KQKH = H ′H +Op(1/(

√
TδNT )) by lemma L.3. Next, note that

Q̂′
KQKH = Q̂′

K(QKH − Q̂K) + IK = IK +Op(
1

T
+

1

N2
)

by lemma L.4. Together, these imply

H ′H = IK +Op(
1

T
+

1

N2
)

This shows that, up to Op(1/δ
2
NT ), H is an orthogonal matrix and therefore has eigenvalues

of 1 or −1. By definition of H I have

H ′ = Λ̂−1
NT,KQ̂′

KQK F̄ ′F̄
1

NT
= Λ̂−1

NT,KH ′F̄ ′F̄
1

NT
+Op(

1

T
+

1

N
√
T
)

Hence,

(36)
F̄ ′F̄

NT
H = HΛ̂NT,K +Op(

1

T
+

1

N
√
T
)

As in Bai and Ng (2013) we can now conclude that H, up to a negligible term, is a

matrix consisting of eigenvectors for the diagonal matrix F̄ ′F̄ /(NT ). Thus, H consists of

eigenvectors that have a single non-zero element. This implies that H is diagonal up to

Op(1/T + 1/(N
√
T )), or Op(1/T + 1/N2). Since the eigenvalues are 1 or −1, we have

H = S +Op(
1

T
+

1

N2
)

where S is a K × K diagonal matrix with 1 or −1. Note the same argument can be

made for H−1, by multiplying (36) by H−1 from the left and right to obtain H−1 =

S +Op(1/T + 1/N2). This further implies ∥H−1∥ ≤ Op(1). □
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4.2. Proofs of Theorems.

Proof of theorem 1. The goal is to analyze the asymptotic properties of µ̂F . The approach

is to express µ̂F in the quantities characterized in the lemmas to establish its convergence

rate. First, note that under E.1 the data generating process is given by (8) and hence

µ̂F =
1

T

∑
t

F̂t = Q̂′
K

(
QK f̄ + ē)

Note assumption A.3 (i) implies 1√
N
f̄

p→ µF , so it will be convenient to standardize the

above by 1/
√
N . We then have

1√
N

µ̂F = Q̂′
K

(
QK

1√
N

f̄ +
1√
N

ē)

= Q̂′
K

(
QKµF +QK(

1√
N

f̄ − µF ) +
1√
N

ē)

= Q̂′
K

(
QKµF +QK v̄ +

1√
N

ē)

where I defined v̄ = 1√
N
f̄ − µF in line with assumption A.4. Next, note that

1√
N

µ̂F = Q̂′
K

(
QKHH−1(µF + v̄) +

1√
N

ē)

= Q̂′
K

(
Q̂KH−1(µF + v̄) + (QKH − Q̂K)H−1(µF + v̄) +

1√
N

ē)

= H−1(µF + v̄) + Q̂′
K(QKH − Q̂K)(H−1µF +H−1v̄) + (Q̂K −QKH)′

1√
N

ē

where I used the fact that Q′
K ē = 0 and that Q̂′

KQ̂K = IK . Therefore,

(37)

1√
N

µ̂F −H−1µF = H−1v̄ + Q̂′
K(QKH − Q̂K)H−1µF

+ Q̂′
K(QKH − Q̂K)H−1v̄ + (Q̂K −QKH)′

1√
N

ē

I analyze each term on the right-hand side separately. First, we have

∥H−1v̄∥ ≤ Op(1)Op

( 1√
T

)
= Op

( 1√
T

)
by assumption A.4 and lemma L.5. Next,

∥Q̂′
K(QKH − Q̂K)H−1µF ∥ ≤ Op(

1

T
+

1

N2
)Op(1)Op(1) = Op(

1

T
+

1

N2
)

by lemma L.4 and L.5 and since µF is of dimension K and finite by assumption A.3 (i).

Next,

∥Q̂′
K(QKH − Q̂K)H−1v̄∥ ≤ Op(

1

T
+

1

N2
)Op(1)Op

( 1√
T

)
= Op(

1√
TT

+
1√
TN2

)

by lemma L.4 and L.5 and assumption A.4. Finally,

∥(Q̂K −QKH)′
1√
N

ē∥ ≤ Op(
1

T
+

1√
TN

)

by lemma L.2 and since ∥ē∥ = Op(
√
N/

√
T ) by assumption A.1.

To conclude, we have

1√
N

µ̂F −H−1µF = H−1v̄ +Op(
1

T
+

1

N2
)
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Note that by lemma L.5 we have H−1 = SK +Op(1/T + 1/N2) and therefore

1√
N

µ̂F − SµF = Sv̄ +Op(
1

T
+

1

N2
)

which prooves the first part of the theorem.

Finally, given
√
T/N2 → 0 assumption A.4 implies that under the null

√
T (

1√
N

µ̂F − SµF )
d→ N(0,Ωµ)

where Ωµ = Ωv = limT→∞ TE[v̄v̄′].
□
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Proof of theorem 2. The goal is to analyze the asymptotic properties of α̂. To do so

assumption A.2’ is imposed. This impacts several of the previous lemmas, which are given

below.

Lemma L.2’. We have ∥Q̂K −QKH∥ ≤ Op(1/δ
2
NT ).

Lemma L.4’. We have ∥Q̂′
K(QKH − Q̂K)∥ ≤ Op(1/δ

4
NT ).

The proofs follow the same steps as the original lemmas and are hence omitted for

brevity.

Note that the estimate is given by

α̂ = r̄ − Q̂K µ̂F

As with µ̂F , it will be convenient to scale by 1/
√
N . Given (8) we have

1√
N

α̂ =
1√
N

r̄ − Q̂K
1√
N

µ̂F

=
1√
N

ē+ (QKH − Q̂K)H−1µF +QK v̄ − Q̂K(
1√
N

µ̂F −H−1µF )

Substituting (37)

1√
N

α̂ =
1√
N

ē+ (QKH − Q̂K)H−1µF

+ (QKH − Q̂K)H−1v̄ − Q̂KQ̂′
K(QKH − Q̂K)H−1µF

− Q̂KQ̂′
K(QKH − Q̂K)H−1v̄ − Q̂K(Q̂K −QKH)′

1√
N

ē

It will be convenient to scale the above expression by
√
NT to directly analyze

√
T α̂.

Doing so
√
T α̂ =

√
T ē−

√
NT (Q̂K −QKH)H−1µF

−
√
TQ̂K(Q̂K −QKH)′ē−

√
NT (Q̂K −QKH)H−1v̄

+
√
NTQ̂KQ̂′

K(Q̂K −QKH)H−1µF +
√
NTQ̂KQ̂′

K(Q̂K −QKH)H−1v̄

Note that

∥
√
TQ̂K(Q̂K −QKH)′ē∥ ≤ Op(1)Op(

1

δ2NT

)Op(
√
N) = Op(

√
N

δ2NT

)

by lemma L.2’, assumption A.1 and ∥Q̂K∥ = Op(1). Next

∥
√
NT (Q̂K −QKH)H−1v̄∥ ≤ Op(

√
NT )Op(

1

δ2NT

)Op(1)Op(
1√
T
) = Op(

√
N

δ2NT

)

by the Continuous Mapping Theorem with lemma L.1, lemma L.2’ and assumption A.4.

Next

∥
√
NTQ̂KQ̂′

K(Q̂K −QKH)H−1µF ∥ ≤ Op(
√
NT )Op(1)Op(

1

δ4NT

)Op(1)Op(1)

= Op(

√
NT

δ4NT

)
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by the Continuous Mapping Theorem with lemma L.1, lemma L.4’, assumption A.3 and

∥Q̂K∥ = Op(1). Finally,

∥
√
NTQ̂KQ̂′

K(Q̂K −QKH)H−1v̄∥ ≤ Op(
√
NT )Op(1)Op(

1

δ4NT

)Op(1)Op(
1√
T
)

= Op(

√
N

δ4NT

)

by the Continuous Mapping Theorem with lemma L.1, lemma L.4’, assumption A.4 and

∥Q̂K∥ = Op(1). Therefore,

(38)
√
T α̂ =

√
T ē−

√
NT (Q̂K −QKH)H−1µF +Op(

√
N

δ2NT

) +Op(

√
NT

δ4NT

)

The second term can be further decomposed using (34), which yields

√
NT (Q̂K −QKH)H−1µF =

1√
NT

QK F̄ ′Ē(Q̂K −QKH)Λ̂−1
NT,KH−1µF

+
1√
NT

Ē′F̄HΛ̂−1
NT,KH−1µF

+
1√
NT

Ē′F̄Q′
K(Q̂K −QKH)Λ̂−1

NT,KH−1µF

+
1√
NT

Ē′Ē(Q̂K −QKH)Λ̂−1
NT,KH−1µF

Note that

∥ 1√
NT

QK F̄ ′Ē(Q̂K −QKH)Λ̂−1
NT,KH−1µF ∥ ≤ Op(1)Op(1)Op(

1

δ2NT

)Op(1)Op(1)Op(1)

= Op(
1

δ2NT

)

by the Continuous Mapping Theorem with lemma L.1, lemma L.2’ and L.5, assumption

A.2’ and A.3 and ∥QK∥ = Op(1). Similarly,

∥ 1√
NT

Ē′F̄Q′
K(Q̂K −QKH)Λ̂−1

NT,KH−1µF ∥ ≤ Op(1)Op(1)Op(
1

δ2NT

)Op(1)Op(1)Op(1)

= Op(
1

δ2NT

)

by the Continuous Mapping Theorem with lemma L.1, lemma L.2’ and L.5, assumption

A.2’ and A.3 and ∥QK∥ = Op(1). Finally

∥ 1√
NT

Ē′Ē(Q̂K −QKH)Λ̂−1
NT,KH−1µF ∥ ≤ Op(

√
NT

δNT
)Op(

1

δ2NT

)Op(1)Op(1)Op(1)

= Op(

√
NT

δ3NT

)

by the Continuous Mapping Theorem with lemma L.1, lemma L.2’ and L.5, assumption

A.3 and equation (33). Therefore,

√
NT (Q̂K −QKH)H−1µF =

1√
NT

Ē′F̄HΛ̂−1
NT,KH−1µF +Op(

√
NT

δ3NT

)

=
1√
NT

E′F Λ̂−1
NT,KµF −

√
T ēµ′

F Λ̂
−1
NT,KµF

−
√
T ēv̄′Λ̂−1

NT,KµF +Op(

√
NT

δ3NT

)
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where to obtain the second equality I used the fact that a diagonal matrix always com-

mutes, so HΛ̂−1
NT,KH−1 = Λ̂−1

NT,K , the fact that Ē′F̄ = E′F − T ēf̄ ′ and the definition of

v̄.

The terms can be analyzed in infinity norm to establish tighter bounds. Specifically,

all bounds obtained in Frobenius norm carry over to the infinity norm, as the above are

N × 1 vectors. Note

∥ 1√
NT

E′F Λ̂−1
NT,KµF ∥∞ = max

i
| 1√

NT
E′

iF Λ̂−1
NT,KµF | = max

i
∥ 1√

NT
E′

iF Λ̂−1
NT,KµF ∥

≤ max
i

∥ 1√
NT

E′
iF∥∥Λ̂−1

NT,KµF ∥ ≤ Op(
1√
N

)

where the first equality follows from the definition of the infinity norm, the second equality

from the fact that E′
iF Λ̂−1

NT,KµF is a scalar and the first inequality by standard norm prop-

erties. The second inequality uses assumption A.2 and A.3 and the Continuous Mapping

Theorem with lemma L.1. Next

∥
√
T ēv̄′Λ̂−1

NT,KµF ∥∞ = max
i

|
√
T ēiv̄

′Λ̂−1
NT,KµF | = max

i
∥
√
T ēiv̄

′Λ̂−1
NT,KµF ∥

≤ max
i

∥
√
T ēi∥∥v̄′Λ̂−1

NT,KµF ∥ ≤ Op(
1√
T
)

using the same arguments as before and assumption A.3, A.4 and A.5 and the Continuous

Mapping Theorem with lemma L.1. Therefore,

√
NT (Q̂K −QKH)H−1µF = −

√
T ēµ′

F Λ̂
−1
NT,KµF +Op(

1

δNT
) +Op(

√
NT

δ3NT

)

Substituting the above in (38)

√
T α̂ =

√
T ē+

√
T ēµ′

F Λ̂
−1
NT,KµF +Op(

1

δNT
) +Op(

√
NT

δ3NT

)

=
√
T ē(1 + µ′

F Λ̂
−1
NT,KµF ) +Op(

1

δNT
) +Op(

√
NT

δ3NT

)

which proves the first part of the theorem. Notice that the final term vanishes as long as√
N/T → 0 and

√
T/N → 0. For example if T/N → c < ∞ these conditions are satisfied.

Finally, assumption A.5, Slutsky’s theorem and lemma L.1 imply that under the null,

as long as
√
N/T → 0 and

√
T/N → 0

√
T α̂

d→ N(0,Ωα)

where Ωα = (1 + µ′
FΛ

−1
NT,KµF )

2Ωe with Ωe = limT→∞ TE[ēē′].
□
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Proof of theorem 3. The goal is to analyze the asymptotic properties of α̂′Σ̂−1
T α̂. First,

note that since α̂ = Q̂N−KQ̂′
N−K r̄ the HJ-distance can equivalently be written as

α̂′Σ̂−1
T α̂ = r̄′Q̂N−KΛ̂−1

T,N−KQ̂′
N−K r̄

= r̄′Q̂N−KQ̂′
N−KQ̂N−KΛ̂−1

T,N−KQ̂′
N−KQ̂N−KQ̂′

N−K r̄

= α̂′Σ̂−1
α,T α̂

where the first equality follows since Σ̂T = Q̂Λ̂T Q̂
′ and by the orthogonality of eigenvectors.

The second equality exploits Q̂′
N−KQ̂N−K = IN−K . The final equality defines Σ̂−1

α,T =

Q̂N−KΛ̂−1
T,N−KQ̂′

N−K . Importantly, Σ̂α,T ̸= Ω̂α defined in theorem 2.

We can further write the HJ-distance as

α̂′Σ̂−1
T α̂ = α̂′Ω̂

− 1
2

α Ω̂
1
2
αΣ̂

−1
α,T Ω̂

1
2
αΩ̂

− 1
2

α α̂

Under the conditions in theorem 2

√
T Ω̂

− 1
2

α α̂
d→ N(0, IN )

Let Ω̂
1
2
αΣ̂

−1
α,T Ω̂

1
2
α = Ŵ D̂Ŵ ′ where Ŵ ′Ŵ = IN . Therefore,

√
TŴ ′Ω̂

− 1
2

α α̂
d→ N(0, IN )

For convenience define x̂ =
√
TŴ ′Ω̂

− 1
2

α α̂. Combining the above, the HJ-distance can be

written as

T α̂′Σ̂−1
T α̂ =

N∑
i=1

x̂2i d̂i

which is a weighted sum of variables that are asymptotically χ2(1). The weights are given

by the elements of D̂ which are the eigenvalues of Ω̂
1
2
αΣ̂

−1
α,T Ω̂

1
2
α , or equivalently of Σ̂−1

α,T Ω̂α.

To determine the degrees of freedom of the distribution I need to assess the number of

non-zero eigenvalues of Σ̂−1
α,T Ω̂α. Since Σ̂−1

α,T = Q̂N−KΛ̂−1
T,N−KQ̂′

N−K the first matrix has

N −K non-zero eigenvalues and K zero eigenvalues. Therefore, D̂ will have only N −K

non-zero eigenvalues. Hence,

T α̂′Σ̂−1
T α̂ =

N−K∑
i=1

x̂2i d̂i

where the sum is taken for the N −K non-zero eigenvalues.

For finite N the above would converge to a weighted χ2 distribution36, however N goes

to infinity. As the asymptotic properties of x̂i are known, so the Lindeberg CLT can be

applied to the limit, which however requires an extra argument.

Denote by xi the limit of x̂i. Note x̂ converges to a vector of normally distributed

independent random variables with unit variance. Hence xi is independent of xj and x2i
is χ2(1) distributed. Therefore, E[x2i ] = 1 and V ar(x2i ) = 2. Similar to Bai (2003), the

almost sure representation theorem can be applied. Because, x̂2i
d→ x2i the almost sure

representation theorem asserts that there exists a random variable x̂∗2i and x∗2i with the

36 Specifically, a weighted χ2 distribution with weights equal to the non-zero eigenvalues of Σ−1
α,TΩα.
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same distributions as x̂2i and x2i respectively such that x̂∗2i
d→ x∗2i almost surely. Therefore

N−K∑
i

x̂∗2i d̂i =

N−K∑
i

x∗2i d̂i +

N−K∑
i

(x∗2i − x̂∗2i )d̂i

and the last term is op(1) because of almost sure convergence.

Note that the first term is a weighted sum of independent random variables with unit

mean and finite variance. So as N → ∞ the Lindeberg CLT applies. Assume d̂i converges

to some di, so Slutsky’s theorem applies. Therefore, as N,T → ∞∑N−K
i x∗2i d̂i −

∑N−K
i d̂i√

2
∑N−K

i d̂2i

d→ N(0, 1)

which implies ∑N−K
i x̂∗2i d̂i −

∑N−K
i d̂i√

2
∑N−K

i d̂2i

d→ N(0, 1)

Finally, since x̂∗2i and x̂2i have the same distribution I obtain∑N−K
i x̂2i d̂i −

∑N−K
i d̂i√

2
∑N−K

i d̂2i

d→ N(0, 1)

To summarize, the above establishes that under the conditions in theorem 2, for con-

sistent estimates of Ωα and Σα,T

T α̂Σ̂−1
T α̂−

N−K∑
i

d̂i√
2
N−K∑

i
d̂i

d→ N(0, 1)

where d̂i are the nonzero eigenvalues of Σ̂−1
α,T Ω̂α.

□

4.3. Selection Rules for RP-PCA. I here demonstrate that selection of RP-principal

component factors based on risk premia is approximately optimal for squared pricing errors

and selection based on Sharpe ratios is optimal for the HJ-distance and the Sharpe ratio

of the associated tangency portfolio. The key difference to section 1.3 is that for RP-PCA

eigenvectors are no longer equal to betas. However, results carry over.

Let Σ̃ = Σ + (1 + γ)µµ′ = Q̃Λ̃Q̃′ denote the modified covariance matrix in Lettau and

Pelger (2020b) where γ is a hyperparameter controlling penalization of pricing errors, Q̃

denotes the collection of eigenvectors and Λ̃ is a diagonal matrix containing the eigenvalues.

For a selection of K eigenvectors, factors are constructed as F̃K = RQ̃K and let µ̃F = Q̃′
Kµ

denote their means.

Pricing errors are given by

α = µ− β̃µ̃F

where β̃ = Cov(Rt, F̃t)V ar(F̃t)
−1. Using the definition of F̃K and since Q̃K are fixed

β̃ = ΣQ̃K(Q̃′
KΣQ̃K)−1

Note by definition of Σ̃

Q̃′
KΣQ̃K = Q̃′

KΣ̃Q̃K − (1 + γ)Q̃′
Kµµ′Q̃K

= Λ̃K − (1 + γ)µ̃F µ̃
′
F
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where the second equality follows from the eigendecomposition of Σ̃ and the definition of

µ̃F . By similar arguments,

ΣQ̃K = Σ̃Q̃K − (1 + γ)µµ′Q̃K

= Q̃KΛ̃K − (1 + γ)µµ̃′
F

Therefore, β̃ can be expressed as

β̃ = (Q̃KΛ̃K − (1 + γ)µµ̃′
F )(Λ̃K − (1 + γ)µ̃F µ̃

′
F )

−1

= (Q̃KΛ̃K − (1 + γ)µµ̃′
F )(Λ̃

−1
K + (1 + γ)Λ̃−1

K µ̃F µ̃
′
F Λ̃

−1
K (1− (1 + γ)µ̃′

F Λ̃
−1
K µ̃F )

−1)

= Q̃K + Q̃K(1 + γ)µ̃F µ̃
′
F Λ̃

−1
K (1− (1 + γ)µ̃′

F Λ̃
−1
K µ̃F )

−1

− (1 + γ)µµ̃′
F Λ̃

−1
K − (1 + γ)2µµ̃′

F Λ̃
−1
K µ̃F µ̃

′
F Λ̃

−1
K (1− (1 + γ)µ̃′

F Λ̃
−1
K µ̃F )

−1

where the second equality follows by the Sherman-Morrison equality. It is straightforward

to show using the definition of µ̃F that

β̃µ̃F = Q̃KQ̃′
Kµ− Q̃N−KQ̃′

N−Kµ
(1 + γ)µ̃′

F Λ̃
−1
K µ̃F

1− (1 + γ)µ̃′
F Λ̃

−1
K µ̃F

where Q̃N−K denotes the collection of eigenvectors omitted from the factor model.

Since Q̃ forms an orthonormal basis µ = Q̃KQ̃′
Kµ+ Q̃N−KQ̃′

N−Kµ and hence

(39) α = Q̃N−KQ̃′
N−Kµ

1

1− (1 + γ)µ̃′
F Λ̃

−1
K µ̃F

and since Q̃′
N−KQ̃N−K = IN−K it follows

(40) α′α = µ′Q̃N−KQ̃′
N−Kµ

1

(1− (1 + γ)µ̃′
F Λ̃

−1
K µ̃F )2

Note that Q̃′
N−Kµ are the risk premia of the RP-principal component factors of the omitted

factors. The second term depends on µ̃′
F Λ̃

−1
K µ̃F which is approximately equal to the

squared Sharpe ratio of the included factors. Depending on µ̃′
F Λ̃

−1
K µ̃F and γ the second

term can be above or below 1. Therefore, the second term introduces a non-trivial non-

linearity in optimal factor selection. To minimize the first term factors with low risk

premia should be excluded. Depending on γ and µ̃′
F Λ̃

−1
K µ̃F this is however not guaranteed

to minimize α′α due to the second term.

Nevertheless, (40) shows that selection based on risk premia seems beneficial. To demon-

strate that selection based on risk premia is at least approximately optimal, note that in

the data typically β̃ ≈ Q̃K and hence α ≈ Q̃N−KQ̃′
N−Kµ so α′α ≈ µ′Q̃N−KQ̃′

N−Kµ.

This suggests that in practice the second term is less important and hence selection of

RP-principal component factors based on squared risk premia is approximately optimal

for minimizing the sum of squared pricing errors α′α.

Turning to the HJ-distance, note that by the Sherman-Morrison equality and the defi-

nition of Σ̃

Σ−1 = Σ̃−1 + (1 + γ)Σ̃−1µµ′Σ̃−1(1− (1 + γ)µ′Σ̃−1µ)−1

Using (39) it is then straightforward to show that

α′Σ−1α = µ′Q̃N−KΛ̃−1
N−KQ̃′

N−Kµ
1

1− (1 + γ)µ̃′
F Λ̃

−1
K µ̃F

1

1− (1 + γ)µ′Σ̃−1µ̃

note that the first term resembles the expression in section 1.3.2 and can be thought of

as equal to the sum of the squared Sharpe ratios of the omitted factors. The above is
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decreasing in the sum of the squared Sharpe ratios of the RP-principal component factors

included in the factor model. Hence, including RP-principal component factors with the

largest squared Sharpe ratios, (µ′q̃k)
2/λ̃k, leads to a factor model that minimizes the

HJ-distance.

The return on the associated tangency portfolio is given by R∗
t+1 = µ̃F Σ̃

−1
F F̃K,t+1.

Hence, the squared Sharpe ratio is

SR2 = µ̃′
F Σ̃

−1
F µ̃F

= µ′Q̃K(Q̃′
KΣQ̃K)−1Q̃′

Kµ

by definition of F̃K . By the Sherman-Morrison equality and the definition of Σ̃

SR2 = µ̃′
F Λ̃

−1
K µ̃F

1

1− (1 + γ)µ̃′
F Λ̃

−1
K µ̃F

which is increasing in the sum of squared Sharpe ratios of the included factors, µ̃′
F Λ̃

−1
K µ̃F .

Hence, including RP-principal component factors with the largest squared Sharpe ratios,

(µ′q̃k)
2/λ̃k, leads to a factor model that maximizes the Sharpe ratio of the associated

tangency portfolio.
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4.4. Additional Figures.

Figure 14. Full OOS Performance – 24 months
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(a) 25 Fama French Size-Value Portfolios
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(b) 57 Kozak, Nagel, and Santosh (2020) Equity Anomaly Portfolios
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(c) 212 A. Y. Chen and Zimmermann (2022) Equity Anomaly Portfolios

Note: The figure depicts the out-of-sample RMSE, the HJ-distance and Sharpe ratio of R∗
t+1 for factor

models subsequently increasing K, the number of principal components selected. Out-of-sample statistics

are constructed in a rolling fashion using 20 years of data to estimate parameters to then construct the

pricing errors or return on R∗
t+1 over the next 24 months before re-estimation. For each test asset set

the principal components estimated on the training data are extracted and sorted based on λk, (µ
′qk)

2 or

(µ′qk)
2/λk to construct the factor models and the tangency portfolio weights.
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Figure 15. Performance Comparison with Robust SDF Estimator – Other
Datasets
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(a) FF25: In-Sample
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(b) FF25: Out-of-Sample

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150
0

1

2

3

4

5

0 50 100 150
0

0.5

1

1.5

2

2.5

(c) CZ212: In-Sample
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(d) CZ212: Out-of-Sample

Note: The figure replicates figure 5 for the FF25 and CZ212 dataset.
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Figure 16. Performance Comparison with Baseline RP-PCA – Other
Datasets
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(a) FF25: In-Sample
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(b) FF25: Out-of-Sample
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(c) CZ212: In-Sample
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(d) CZ212: Out-of-Sample

Note: The figure replicates figure 5 for the FF25 and CZ212 dataset.
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Figure 17. Performance Comparison with Baseline and Optimally Se-
lected RP-PCA – Other Datasets
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(a) FF25: In-Sample
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(b) FF25: Out-of-Sample
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(c) CZ212: In-Sample

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150
0

2

4

6

8

0 50 100 150
0.2

0.4

0.6

0.8

1

1.2

(d) CZ212: Out-of-Sample

Note: The figure replicates figure 6 for the FF25 and CZ212 dataset.
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4.5. Additional Tables.

Table 11. IS Performance

RMSE HJ SR

Factors: 1 3 5 1 3 5 1 3 5

FF25 λk 0.206 0.147 0.100 0.076 0.067 0.052 0.125 0.155 0.198

(µ′qk)
2 0.206 0.132 0.085 0.076 0.057 0.036 0.125 0.186 0.235

(µ′qk)
2/λk 0.900 0.179 0.107 0.074 0.047 0.033 0.132 0.211 0.242

KNS 0.346 0.310 0.297 0.077 0.076 0.074 0.125 0.131 0.138

PL 0.205 0.139 0.089 0.075 0.065 0.043 0.126 0.163 0.221

KNS57 λk 0.445 0.420 0.368 0.637 0.628 0.588 0.092 0.135 0.241

(µ′qk)
2 0.432 0.316 0.243 0.545 0.511 0.441 0.317 0.368 0.453

(µ′qk)
2/λk 0.432 0.404 0.396 0.545 0.423 0.327 0.317 0.472 0.565

KNS 0.503 0.416 0.371 0.633 0.578 0.539 0.317 0.331 0.411

PL 0.446 0.367 0.183 0.630 0.495 0.384 0.129 0.389 0.512

CZ212 λk 0.610 0.490 0.456 4.704 4.626 4.562 0.054 0.284 0.380

(µ′qk)
2 0.540 0.472 0.421 4.644 4.470 4.214 0.250 0.486 0.702

(µ′qk)
2/λk 0.599 0.570 0.559 4.498 4.182 3.928 0.457 0.724 0.883

KNS 0.575 0.559 0.519 4.670 4.649 4.532 0.250 0.319 0.581

PL 0.681 0.561 0.355 4.646 4.320 3.330 0.246 0.621 1.173

Note: The table depicts the RMSE, HJ-distance and Sharpe ratio of R∗
t+1 for factor models with different

K, the number of principal components selected, matching the size of frequently encountered factor models
in the literature. Bold letters indicates the model with the best performance for a specific metric across
the different selection methods for standard PCA by dataset and approximation degree.
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Table 12. OOS Performance

RMSE HJ SR

Factors: 1 3 5 1 3 5 1 3 5

FF25 λk 0.221 0.129 0.103 0.130 0.108 0.088 0.112 0.159 0.157

(µ′qk)
2 0.221 0.141 0.096 0.130 0.104 0.053 0.112 0.160 0.237

(µ′qk)
2/λk 0.607 0.526 0.439 0.104 0.068 0.053 0.157 0.239 0.237

KNS 0.435 0.378 0.372 0.133 0.129 0.127 0.110 0.122 0.129

PL 0.220 0.125 0.073 0.130 0.102 0.053 0.114 0.169 0.215

KNS57 λk 0.388 0.343 0.241 0.489 0.458 0.441 0.070 0.118 0.218

(µ′qk)
2 0.347 0.268 0.250 0.388 0.381 0.349 0.303 0.295 0.329

(µ′qk)
2/λk 0.411 0.364 0.356 0.385 0.274 0.242 0.208 0.347 0.366

KNS 0.428 0.384 0.339 0.457 0.431 0.427 0.223 0.326 0.326

PL 0.404 0.222 0.148 0.514 0.373 0.278 0.144 0.358 0.444

CZ212 λk 0.560 0.446 0.414 5.683 5.936 5.813 -0.041 0.214 0.316

(µ′qk)
2 0.492 0.451 0.340 5.828 5.460 5.422 0.176 0.349 0.524

(µ′qk)
2/λk 0.568 0.566 0.564 5.564 5.162 4.858 0.254 0.380 0.496

KNS 0.539 0.479 0.472 5.704 5.652 5.679 0.188 0.312 0.337

PL 0.511 0.436 0.352 6.136 6.090 5.951 0.279 0.465 0.796

Note: The table depicts the out-of-sample RMSE, HJ-distance and Sharpe ratio of R∗
t+1 for factor models

with different K, the number of principal components selected, matching the size of frequently encountered
factor models in the literature. Bold letters indicates the model with the best performance for a specific
metric across the different selection methods for standard PCA by dataset and approximation degree.

Table 13. Prices of Risk under Different Selection Rules

FF25 KNS57 CZ212

PC λk (µ′qk)
2 (µ′qk)

2/λk λk (µ′qk)
2 (µ′qk)

2/λk λk (µ′qk)
2 (µ′qk)

2/λk

PC1 0.356∗∗∗ 0.356∗∗∗ 5.081∗∗∗ 0.536∗∗ 5.841∗∗∗ 5.841∗∗∗ 0.189 1.628∗∗∗ 9.988∗∗∗

(0.000) (0.000) (0.000) (0.028) (0.000) (0.000) (0.238) (0.000) (0.000)

PC2 1.070∗∗∗ 1.070∗∗∗ 0.356∗∗∗ 0.537∗ 0.536∗∗ 24.297∗∗∗ 0.640∗∗∗ 0.640∗∗∗ 7.120∗∗∗

(0.001) (0.001) (0.000) (0.088) (0.028) (0.000) (0.005) (0.005) (0.000)

PC3 0.477 3.010∗∗∗ 3.010∗∗∗ 0.916∗ 2.848∗∗∗ 6.050∗∗∗ 1.628∗∗∗ 7.120∗∗∗ 34.554∗∗∗

(0.251) (0.000) (0.000) (0.055) (0.000) (0.000) (0.000) (0.000) (0.000)

PC4 0.960∗∗ 0.960∗∗ 1.070∗∗∗ 1.565∗∗∗ 6.050∗∗∗ 11.199∗∗∗ 1.088∗∗∗ 9.988∗∗∗ 10.077∗∗∗

(0.050) (0.050) (0.001) (0.006) (0.000) (0.000) (0.004) (0.000) (0.000)

PC5 3.010∗∗∗ 5.081∗∗∗ 3.717∗∗∗ 2.848∗∗∗ 1.565∗∗∗ 33.412∗∗∗ 2.855∗∗∗ 2.855∗∗∗ 24.397∗∗∗

(0.000) (0.000) (0.003) (0.000) (0.006) (0.000) (0.000) (0.000) (0.000)

PC6 0.932 0.477 4.087∗∗∗ 5.841∗∗∗ 0.916∗ 12.594∗∗∗ 1.414∗∗ 3.595∗∗∗ 39.477∗∗∗

(0.289) (0.251) (0.001) (0.000) (0.055) (0.000) (0.025) (0.000) (0.000)

PC7 1.210 3.717∗∗∗ 0.960∗∗ 0.655 3.957∗∗∗ 42.616∗∗∗ 3.039∗∗∗ 0.189 62.409∗∗∗

(0.184) (0.003) (0.050) (0.516) (0.000) (0.000) (0.000) (0.238) (0.000)

PC8 5.081∗∗∗ 4.087∗∗∗ 4.619∗∗ 3.957∗∗∗ 0.537∗ 3.957∗∗∗ 3.595∗∗∗ 1.088∗∗∗ 18.429∗∗∗

(0.000) (0.001) (0.044) (0.000) (0.088) (0.000) (0.000) (0.004) (0.000)

PC9 1.654 1.210 4.188∗ 6.050∗∗∗ 11.199∗∗∗ 2.848∗∗∗ 0.299 3.039∗∗∗ 21.477∗∗∗

(0.178) (0.184) (0.076) (0.000) (0.000) (0.000) (0.641) (0.000) (0.000)

PC10 1.786 0.932 3.472∗ 2.853∗∗ 2.853∗∗ 13.149∗∗∗ -0.037 5.664∗∗∗ 7.693∗∗∗

(0.116) (0.289) (0.090) (0.015) (0.015) (0.000) (0.965) (0.000) (0.000)

Note: The table depicts the estimated prices of risk, b̂k = µ̂′q̂k/λ̂k for the first ten principal component
factors under different selection rules. In brackets below the price of risk estimates the p-value associated
with H0 : bk = 0 is reported based on the asymptotic distribution derived in section 1.4. The Newey and
West (1987) covariance estimator is employed with T 1/4 lags. Estimates significant at the 10%, 5% and
1% are indicated by ∗, ∗∗ and ∗∗∗ respectively. Factors have been normalized to have positive mean.
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5. Appendix of Chapter 2

5.1. Data.

5.1.1. Excessive Currency Invoicing. We define excessive currency invoicing as in (21),

that is, as the aggregate exports (imports) per country and currency in excess of exports

(imports) to (from) countries that have such currency as their base currency, in USD

equivalent amounts. To construct excessive currency invoicing we will rely on data on the

value of merchandise imports and exports disaggregated according to a country’s trading

partners and on data on the shares of aggregate exports (imports) invoiced in USD and

EUR by countries.

The data on exports (imports) trades between countries over time is obtained from the

Direction of Trade Statistics database of the International Monetary Fund at monthly

frequency in USD equivalent amounts. Import trades are quoted as cost, insurance and

freight and translated to free-on-board by dividing reported values by 1.1 before January

2000 and by 1.06 thereafter, following IMF (2018). Export trades are quoted as free-

on-board. Where possible, missing import (export) values of a country from (to) its

counterparty are filled with observed export (import) values of the counterparty to (from)

the country. This leaves us with monthly unbalanced import (export) trade data for 216

different countries from January 1960 to January 2022.

The data on the shares of aggregate imports (exports) invoiced by USD and EUR are

taken from Boz et al. (2022) and are at annual frequency. We keep only payment share data

on the USD and EUR due to data coverage issues. This leaves us with data on payment

shares for the USD, EUR, and “Other excluding EUR and USD” for imports and exports.

We found that in seven cases the last category for exports reported a negative value. In

these cases we set the value to zero and renormalize the other shares.

Data for several key countries, such as China, Mexico, and Canada, are missing or poorly

covered by the Boz et al. (2022) dataset. For this reason, we augment the dataset with

proprietary data obtained from SWIFT on payment settlements across borders. These

data are available to us for several countries at monthly frequency, broken down by coun-

terparty country, currency and message type. We focus on message types MT400, which is

an advice of payment, and MT700, which is an issue of a documentary credit. Both mes-

sage types are directly related to trade activity. From this we calculate for each country

the shares of aggregate payments sent (imports) or received (exports) in USD and EUR at

monthly frequency. To combine the SWIFT payment share data with the annual payment

share data by Boz et al. (2022), we average the SWIFT data for each year. This allows us

to augment the payment share dataset with data on eleven countries37 from 2011 to 2022.

To combine the annual payment share data with the monthly import (export) data, we

assume that payment shares are constant throughout the reporting year. This leaves us

with annual unbalanced payment share data for 119 different countries from 1989 to 2019.

37The countries are Mexico, Singapore, the United Arab Emirates, Vietnam, China, Hong Kong, Canada,
Taiwan, Libya, Cuba, and Sri Lanka. Data on more countries are available, however, were disregarded
due to data quality concerns. Specifically, to add a country, we first calculate the total imports or exports
of a country implied by the SWIFT dataset. We then calculate the correlation of changes in SWIFT-
based imports or exports with changes in imports or exports reported in the Direction of Trade Statistics
database. We keep a country only if the correlation is above 0.2 for both imports and exports. We have
made two exceptions to this rule: Canada exhibited a correlation of 0.195 for imports and Mexico exhibited
a correlation of 0.12 for exports. Due to the size and role within international trade we kept these in the
final dataset.
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Following our definition in (21), we first aggregate import (export) trades of a country

across counterparties. We then multiply the resulting value by the aggregate import

(export) invoicing share for the USD or EUR. Finally, we obtain USD excessive currency

invoicing by deducting the import (export) trade with the United States. To obtain EUR

excessive currency invoicing, we deduct the import (export) trades with countries that were

members of the Euro Area at the respective point in time. This leaves us with monthly

unbalanced excessive currency invoicing data for 119 different countries from January 1989

to December 2022.

5.1.2. Consumer Price Index Data. We construct inflation and inflation volatility of the

consumer price index (CPI) of a country.

The data on the CPI of each country is obtained from the International Financial

Statistics and Consumer Price Index (CPI) database of the International Monetary Fund

at monthly frequency. For New Zealand and Australia, the CPI was not available at

monthly frequency. Hence, we used CPI data at quarterly frequency. For Argentina no

CPI data were available. Hence, consumer price implied inflation was taken from the

Instituto Nacional de Estadistica y Censos Republica Argentina at monthly frequency.

We first linearly interpolate the raw data to monthly frequency where necessary. We

then calculate the implied inflation rate of a country as the percentage change in the

inflation index. To this we add the Argentinian inflation data. This leaves us with monthly

unbalanced inflation data for 185 different countries from January 1989 to December 2022.

To obtain inflation volatility, a GARCH(1,1) model is fit to the inflation data. The

GARCH(1,1) model is fit in an expanding fashion for each country separately and requires

at least 24 initial inflation datapoints. If inflation data are missing within the estimation

window, due to the data being unbalanced, we linearly interpolate the inflation data. From

the fitted model we then infer the monthly volatility at the end of the estimation window

and multiply it by
√
12. This leaves us with monthly unbalanced inflation volatility data

for 185 different countries from December 1990 to December 2022.

5.1.3. Exchange Rate Data. We construct the change and realised volatility of the ex-

change rate of a country with the USD and the EUR.

The exchange rate data are obtained from Reuters and the Bank of International Set-

tlement Statistics Warehouse at daily frequency. We use the latter database for Euro Area

countries as it in our experience accurately accounts for changes in the home currency of

countries, i.e. the adoption of the EUR by some countries. We measure exchange rates as

the amount of a country’s currency per USD (EUR).

Based on the raw data, we calculate the average exchange rate prevailing within each

month. We then calculate the change in monthly average exchange rates with the USD

(EUR) for each country. Given how we measure exchange rates, a positive change cor-

responds to a country’s currency depreciating, whilst a negative change corresponds to

a countries currency appreciating with respect to the USD (EUR). This leaves us with

monthly change in exchange rate data for 149 different countries from February 2000 to

August 2022.

To obtain realised exchange rate volatility with the USD (EUR), we calculate the daily

log return for each exchange rate. We then calculate realised exchange rate volatility

within each month. Finally, we multiply the volatility measure with
√
252. To calculate

the volatility measure, we require at least 15 observations within each month. This leaves
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us with monthly realised exchange rate volatility data for 149 different countries from

January 2000 to August 2022.

5.1.4. Trade Share Data. We construct the percentage trade share of a country out of

aggregate import (export) trades.

Data on import (export) trades between countries over time is obtained from the Direc-

tion of Trade Statistics database of the International Monetary Fund at monthly frequency

in USD equivalent amounts. We clean the raw data following the same steps as in section

5.1.1 and are left with monthly trade data.

To obtain the import (export) trade share of a country out of total trades, we first calcu-

late the total aggregate imports (exports), aggregated across counterparties and countries,

at each point in time. We then aggregate the imports (exports) of a country across counter-

parties. Finally, we divide a country’s aggregate imports (exports) by the total aggregate

imports (exports). This leaves us with monthly trade shares for 216 different countries

from January 1960 to January 2022.

5.1.5. Foreign Debt by Firms. We use data on the aggregate amount of firm-level debt

denominated in USD and the EUR and its change, measured in USD equivalents.

Data on firm-level debt-instruments aggregated by industry are obtained from Mrkaic,

Kim, and Mano (2020) at annual frequency. We first aggregate the raw data by industry

and debt-instrument type, leaving us with annual data for USD and EUR denominated

debt by country. We then linearly interpolate the raw data to monthly frequency. This

leaves us with monthly unbalanced aggregate firm-level debt data for 141 different countries

from December 2005 to December 2020.

Based on the aggregate firm-level debt data we also calculate its change. This leaves

us with monthly unbalanced change in aggregate firm-level debt data for 139 different

countries from January 2006 to December 2020.

5.1.6. Swap Line Data. We construct a dummy variable indicating whether a swap line

existed between a country and the United States Federal Reserve (FED) or the European

Central Bank (ECB).

We obtain data on swap line agreements from Perks et al. (2021) and from The Yale

Program on Financial Stability swap line database. To construct our dummy variable, we

checked in both databases whether throughout a month a country had a swap line in place

with the FED or ECB. If a swap line was in place, the dummy variable takes value one.

We construct the swap line dummy variable at monthly frequency for the 119 countries in

our excessive currency invoicing sample from April 1994 to December 2019.

5.1.7. Financial Market Index Data. We construct the change of the financial market

index as developed by Svirydzenka (2016). The index aims to summarise the development

of financial institutions and financial markets in terms of their depth, access, and efficiency.

Data on the index by country is obtained from the Financial Development Index data-

base of the International Monetary Fund at annual frequency. We first linearly interpolate

the index to monthly frequency and then calculate its change. This leaves us with monthly

unbalanced change in financial market index data for 187 different countries from January

1981 to December 2019.
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5.1.8. Foreign Direct Investment Data. We use foreign direct investment equity flows into

or out of the reporting economy, measured in USD equivalents.

Data on foreign direct investment flows by country are obtained from the Balance of

Payments database of the World Bank at annual frequency. We linearly interpolate the

data to monthly frequency. This leaves us with monthly unbalanced data on foreign

direct investment inflows (outflows) for 193 (187) different countries from December 1970

to December 2021.

5.1.9. Gross Domestic Product Data. We use nominal gross domestic product data, mea-

sured in USD equivalents.

Data on nominal gross domestic product by country is obtained from the “International

Financial Statistics” database by the International Monetary Fund at annual and quar-

terly frequencies in local currency. First, we combine the annual and quarterly databases

to obtain better country coverage. To do so, we divide the annual figures by four and

repeat them throughout the quarters within a year. We then linearly interpolate the data

to monthly frequency. Lastly, using our average monthly exchange rate data (see section

5.1.3), we translate the gross domestic product to USD equivalents. This leaves us with

monthly unbalanced data on nominal gross domestic product for 104 different countries

from January 2000 to June 2022.

5.2. Additional Estimation Details. We estimate four different models (Panel, SEM,

SLM, and SDM) using Bayesian methods in our empirical analysis. Throughout we assume

a flat prior on β := [δ⊤, ρ⊤]⊤, θ, and σ2 and a uniform prior for ϕ over [−1, 1]. Below

we describe the posterior sampling algorithms for the three spatial model specifications

(SDM, SLM and SEM), while we omit for brevity the one of the simple panel model since

it is readily available in the literature (see, e.g., Lancaster (2004)).

It will be convenient to define some notation. As we allow for unbalanced samples in

our estimation approach, the number of cross-sectional observation available per period,

Nt, changes over time. Let N =
∑T

t=1Nt denote the total number of observations in our

sample. At each point in time, let yt = [y1,t, ..., yNt,t]
⊤ be the Nt×1 vector containing our

dependent variable observations, let Xt = [x1,t, ..., xNt,t]
⊤ be the Nt×k matrix containing

our independent variable observations, and let Gt be the Nt × Nt matrix containing the

row standardized network weights (hence, Gt is always a right stochastic matrix). Define

the N × 1 vector y = [y1, ...., yT ]
⊤, the N × k matrix X = [X⊤

1 , ..., X⊤
T ]⊤, and the block-

diagonal N ×N matrix G containing Gt ∀ t as its diagonal elements. Furthermore, let I

be the N ×N identity matrix, ỹ = (I − ϕG)y, and X̃ = (I − ϕG)X. We will always be

conditioning on the matrix of independent variables X and the network matrix G. Hence,

for brevity, we will leave this conditioning implicit in the notation.

5.2.1. Spatial Error Model. The model takes the form (I − ϕG)y = (I − ϕG)Xβ + ϵ,

where ϵ ∼ N(0, σ2I). Conditional on ϕ, a flat prior on β and σ2 yields the normal-inverse-

gamma posterior distribution for β and σ2 of a linear regression model of ỹ on X̃. That

is,
p(β|y, σ2, ϕ) ∼ N(β̂, (X̃⊤X̃)−1σ2)

p(σ2|y, ϕ) ∼ Inv-Γ((N − k)/2− 1, Nσ̂2/2)

where β̂ is the OLS coefficient of a regression of ỹ on X̃ and σ̂2 is the corresponding OLS

estimate of the residual variance.
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The posterior of ϕ conditional on β and σ2 is non-standard, but can be readily obtained

by writing the likelihood38 for y and dropping the terms that do not affect the posterior

shape. This gives us

p(ϕ|y, β, σ2) ∝ |I − ϕG|exp
(
− 1

2σ2
[ỹ − X̃β]⊤[ỹ − X̃β]

)
The above is a non-standard distribution, but we can take draws from it using a Metropolis-

Hastings (MH) approach. To do so, we use a Gaussian proposal distribution. To ensure

that |ϕ| < 1 (see proposition 1), we always discard draws outside of the support [−1, 1] by

modifying the acceptance rate.

The Gibbs sampling algorithm, with a nested MH component, to draw from the poste-

rior distribution is then as follows:

(1) Initialization:

• Set b = 1 and set a starting value ϕ0

(2) OLS step:

• Compute β̂ = (X̃⊤X̃)−1X̃⊤ỹ and σ̂2 = (ϵ̂⊤ϵ̂)/(N − k), where ϵ̂ = ỹ − X̃β̂

(3) Draw β and σ2:

• Draw σ2
b from Inv-Γ((N − k)/2− 1, Nσ̂2/2)

• Draw βb from N(β̂, (X̃⊤X̃)−1σ2
b )

(4) Draw ϕ using MH:

• Draw ϕc from N(ϕb−1, c
2)

• Calculate the acceptance rate r = min(1,
p(ϕc|y,βb,σ

2
b )q(ϕb−1|ϕc)

p(ϕb−1|y,βb,σ
2
b )q(ϕc|ϕb−1)

,1(|ϕc| ≤ 1)),

where q(ϕb−1|ϕc) is N(ϕc, c
2) evaluated at ϕb−1 and p(ϕc|y, βb, σ2

b ) is the de-

rived posterior of ϕ evaluated at ϕc, βb and σ2
b . q(ϕc|ϕb−1) and p(ϕb−1|y, βb, σ2

b )

are defined similarly

• Set ϕb = ϕc with probability r, else set ϕb = ϕb−1. If ϕb = ϕc, set acb = 1

• Calculate acr =
∑b

j=1 acj/b. If acr < 0.4, set c = c/1.1. If acr > 0.6, set

c = 1.1c

(5) Increase b by one and repeat from point 2 above.

Repeating the above B times, after discarding an initial set of draws, leaves us with a set

of parameter draws from the posterior. We always set B = 50000, discard the first 5000

draws, set ϕ0 = 0.5, and initialize c = 0.2.

5.2.2. Spatial Lag Model. The model takes the form (I − ϕG)y = Xβ + ϵ, where ϵ ∼
N(0, σ2I). Conditional on ϕ, a flat prior on β and σ2 yields the normal-inverse-gamma

posterior distribution for β and σ2 of a linear regression model of ỹ on X. That is,

p(β|y, σ2, ϕ) ∼ N(β̂, (X⊤X)−1σ2)

p(σ2|y, ϕ) ∼ Inv-Γ((N − k)/2− 1, Nσ̂2/2)

where β̂ is the OLS coefficient of ỹ on X and σ̂2 is the corresponding OLS estimate of the

residual variance.

The posterior of ϕ conditional on β and σ2 is non-standard, but can be readily obtained

by writing the likelihood39 for y and dropping the terms that do not affect the posterior

38This is simply the likelihood of y = Xβ + η, where η ∼ N(0, σ2(I − ϕG)−1[(I − ϕG)−1]⊤).
39This is simply the likelihood of y = (I − ϕG)−1Xβ + η, where η ∼ N(0, σ2(I − ϕG)−1[(I − ϕG)−1]⊤).
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shape. This gives us

p(ϕ|y, β, σ2) ∝ |I − ϕG|exp
(
− 1

2σ2
[ỹ −Xβ]⊤[ỹ −Xβ]

)
The above is a non-standard distribution, but we can take draws from it using a Metropolis-

Hastings (MH) approach. To do so, we use a Gaussian proposal distribution. To ensure

that |ϕ| < 1 (see proposition 1), we always discard draws outside of the support [−1, 1] by

modifying the acceptance rate.

The Gibbs sampling algorithm, with a nested MH component, to draw from the poste-

rior distribution is then as follows:

(1) Initialization:

• Set b = 1 and set a starting value ϕ0

(2) OLS step:

• Compute β̂ = (X⊤X)−1X⊤ỹ and σ̂2 = (ϵ̂⊤ϵ̂)/(N − k), where ϵ̂ = ỹ −Xβ̂

(3) Draw β and σ2:

• Draw σ2
b from Inv-Γ((N − k)/2− 1, Nσ̂2/2)

• Draw βb from N(β̂, (X⊤X)−1σ2
b )

(4) Draw ϕ using MH:

• Draw ϕc from N(ϕb−1, c
2)

• Calculate the acceptance rate r = min(1,
p(ϕc|y,βb,σ

2
b )q(ϕb−1|ϕc)

p(ϕb−1|y,βb,σ
2
b )q(ϕc|ϕb−1)

,1(|ϕc| ≤ 1)),

where q(ϕb−1|ϕc) is N(ϕc, c
2) evaluated at ϕb−1 and p(ϕc|y, βb, σ2

b ) is the de-

rived posterior of ϕ evaluated at ϕc, βb and σ2
b . q(ϕc|ϕb−1) and p(ϕb−1|y, βb, σ2

b )

are defined similarly

• Set ϕb = ϕc with probability r, else set ϕb = ϕb−1. If ϕb = ϕc, set acb = 1

• Calculate acr =
∑b

j=1 acj/b. If acr < 0.4, set c = c/1.1. If acr > 0.6, set

c = 1.1c

(5) Increase b by one and repeat from point 2 above.

Repeating the above B times, after discarding an initial set of draws, leaves us with a set

of parameter draws from the posterior. We always set B = 50000, discard the first 5000

draws, set ϕ0 = 0.5 and initialize c = 0.2.

5.2.3. Spatial Durbin Model. The model takes the form (I − ϕG)y = Xβ + GXsθ + ϵ,

where ϵ ∼ N(0, σ2I). The matrix Xs is of dimension N × s with s ≤ k and contains a

subset of the matrix X. This allows for spatial lags of some independent variables to enter

the model. It will be convenient to define Z = [X,GXs] and γ = [β⊤, θ⊤]⊤. Conditional

on ϕ, a flat prior on γ and σ2 yields the normal-inverse-gamma posterior distribution for

γ and σ2 of a linear regression model of ỹ on X. That is,

p(γ|y, σ2, ϕ) ∼ N(γ̂, (Z⊤Z)−1σ2)

p(σ2|y, ϕ) ∼ Inv-Γ((N − k − s)/2− 1, Nσ̂2/2)

where γ̂ is the OLS coefficient of ỹ on Z and σ̂2 is the corresponding OLS estimate of the

residual variance.

The posterior of ϕ conditional on γ and σ2 is non-standard, but can be readily obtained

by writing the likelihood40 for y and dropping the terms that do not affect the posterior

40This is simply the likelihood of y = (I − ϕG)−1Zγ + η, where η ∼ N(0, σ2(I − ϕG)−1[(I − ϕG)−1]⊤).
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shape. This gives us

p(ϕ|y, γ, σ2) ∝ |I − ϕG|exp
(
− 1

2σ2
[ỹ − Zγ]⊤[ỹ − Zγ]

)
The above is a non-standard distribution, but we can take draws from it using a Metropolis-

Hastings (MH) approach. To do so, we use a Gaussian proposal distribution. To ensure

that |ϕ| < 1 (see proposition 1), we always discard draws outside of the support [−1, 1] by

modifying the acceptance rate.

The Gibbs sampling algorithm, with a nested MH component, to draw from the poste-

rior distribution is then as follows:

(1) Initialization:

• Set b = 1 and set a starting value ϕ0

(2) OLS step:

• Compute γ̂ = (Z⊤Z)−1Z⊤ỹ and σ̂2 = (ϵ̂⊤ϵ̂)/(N − k − s), where ϵ̂ = ỹ − Zγ̂

(3) Draw γ and σ2:

• Draw σ2
b from Inv-Γ((N − k − s)/2− 1, Nσ̂2/2)

• Draw γb from N(γ̂, (Z⊤Z)−1σ2
b )

(4) Draw ϕ using MH:

• Draw ϕc from N(ϕb−1, c
2)

• Calculate the acceptance rate r = min(1,
p(ϕc|y,γb,σ2

b )q(ϕb−1|ϕc)

p(ϕb−1|y,γb,σ2
b )q(ϕc|ϕb−1)

,1(|ϕc| ≤ 1)),

where q(ϕb−1|ϕc) is N(ϕc, c
2) evaluated at ϕb−1 and p(ϕc|y, γb, σ2

b ) is the de-

rived posterior of ϕ evaluated at ϕc, γb and σ2
b . q(ϕc|ϕb−1) and p(ϕb−1|y, γb, σ2

b )

are defined similarly

• Set ϕb = ϕc with probability r, else set ϕb = ϕb−1. If ϕb = ϕc, set acb = 1

• Calculate acr =
∑b

j=1 acj/b. If acr < 0.4, set c = c/1.1. If acr > 0.6, set

c = 1.1c

(5) Increase b by one and repeat from point 2 above.

Repeating the above B times, after discarding an initial set of draws, leaves us with a set

of parameter draws from the posterior. We always set B = 50000, discard the first 5000

draws, set ϕ0 = 0.5, and initialize c = 0.2.

5.2.4. Γ Estimation via Heterogeneous SVAR . For exposition we consider the SDM case.

Let x denote the dataset, i.e. x ∈ {EUR − Im,USD − Im,EUR − Ex,USD − Ex}.
Define Zx

t = [Xt, G
x
tXt], γ

x = [(βx)⊤, (θx)⊤]⊤, and ϵxt = (I − ϕxGx
t )y

x
t − Zx

t γ
x. Denote

by ϵi,t = [ϵImUSD,i,t, ϵ
Im
EUR,i,t, ϵ

Ex
USD,i,t, ϵ

Ex
EUR,i,t]

⊤ the 4 × 1 vector of residuals for a specific

country. Let ϵi be the corresponding 4×Ti matrix of residuals for country i. Define ỹi as

the Ti×4, matrix where the element in row t and column x is ỹxi,t = {(I−ϕxGx
t )}i.yxt . Define

Zi = [ZIm
USD,i, Z

Im
EUR,i, Z

Ex
USD,i, Z

Ex
EUR,i] as the Ti × 4k matrix of independent variables, and

define Ψ as a blockdiagonal matrix of dimension 4k × 4 with the respective γx on its

diagonal. Note that we have ϵ⊤i = ỹi −ZiΨ. For convenience, we denote the collection of

parameters across the different datasets by α = [αIm
USD, α

Im
EUR, α

Ex
USD, α

Ex
EUR].
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We assume that ϵi,t ∼ N(0,Σi), where Σi = Γ−1Λi(Γ
−1)⊤ for all i. Note that the

likelihood is proportional to

(41)

q({Σi},Ψ,ϕ) ∝
N∏
i=1

|Σi|−Ti/2 exp

(
− 1

2

Ti∑
t=1

ϵ⊤i,tΣ
−1
i ϵi,t

)

=

N∏
i=1

|Σi|−Ti/2 exp

(
− 1

2
trace(Σ−1

i [ϵ̂iϵ̂i
⊤ + (Ψ− Ψ̂)⊤Z⊤

i Zi(Ψ− Ψ̂)])

)
where Ψ̂ are the OLS estimates of the regression parameters and ϵ̂i the corresponding

OLS residuals.

Similar to Lanne, Lütkepohl, and Maciejowska (2010) and Brunnermeier et al. (2021),

an identification issue remains. We can multiply Γ and Λ by scale factors without changing

the likelihood. Following Brunnermeier et al. (2021), we impose the restriction

1

N

N∑
i=1

λx,i = 1 ∀ x ∈ 1, ..., 4

where in slight abuse of notation, λx,i is the x
th diagonal element of Λi. The interpretation

of this normalization is that we make the cross-country average structural variance one

in each equation. Given the normalization and the technical condition that each pair of

equations differs in variance in at least one country, we can uniquely identify Γ, up to the

sign of a row. See Lanne, Lütkepohl, and Maciejowska (2010) for details and Brunnermeier

et al. (2021) for a similar application in the context of time series heteroskedasticity.

Following Brunnermeier et al. (2021), we use a Dirichlet prior for λx./N . This restricts

each λx,i to lie in [0, N ] and enforces our normalization constraint that for each structural

shock the λx,i average to one across countries. We further introduce a prior p(Γ) = |Γ|4k

and integrate out Ψ such that the posterior becomes

p({Λi},Γ|ϕ) ∝
N∏
i=1

|Γ|Ti |Λi|−(Ti−4k)/2 exp

(
− 1

2
trace(Γ⊤Λ−1

i Γϵ̂iϵ̂i
⊤)

) 4∏
j=1

Γ (αN)

Γ (α)N

N∏
i=1

λj,i

N

α−1

where, in slight abuse of notation, Γ (.) refers to the Gamma function. The above is a

non-standard distribution, but we can take draws from it using a Metropolis-Hastings

(MH) approach. To do so we will employ random walks for all parameters41.

Note that the distribution of {Λi} and Γ is conditional on the ϕ. Specifically, the ϵ̂i

are OLS residuals computed conditional on the draw of ϕ. Hence, given draws for ϕ, we

can sample {Λi} and Γ. The draws of {Λi} and Γ do not affect the draws of the other

parameters. Hence, to make drawing efficient, we first carry out the estimation of the

models on the different ECI datasets and store the corresponding parameter draws, or,

equivalently, OLS residuals ϵ̂xt . Put differently, we can estimate {Λi} and Γ and the other

parameters in two separate stages.

The sampling algorithm to draw {Λi} and Γ from the posterior distribution is as follows:

(1) Pre-estimation:

• Estimate the model on the different ECI datasets and store ϵ̂xt for different

draws

(2) Initialization:

41For Γ this is straightforward. Note that Λi needs to be sampled subject to the normalization constraint.
We enforce the constraint, by sampling λx,1:N−1, using the random walk and set λx,N such that the
constraint is satisfied.
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• Set b = 1 and set a starting value Γ0 and Λi,0 for all i

(3) Draw {Λi} and Γ using MH:

• Denote the collection of parameters as θ = [vec(Γ)⊤, diag(Λ1)
⊤, ..., diag(ΛN−1)

⊤]⊤

• Draw vec(θc) from N(vec(θb−1, cVθ)

• Determine ΛN,c from the constraint

• Calculate the acceptance rate r = min(1,
p({Λi,c},Γc|ϕb−1)

p({Λi,b−1},Γb−1|ϕb−1)
), where p({Λi},Γ|ϕ)

was defined previously

• Set {Λi,b} = {Λi,c} and Γb = Γc with probability r, else set {Λi,b} = {Λi,b−1}
and Γb = Γb−1. If accepted, set acb = 1

• Calculate acr =
∑b

j=1 acj/b. If acr < 0.4, set c = max(c/1.1, 10−6). If

acr > 0.6, set c = min(1.1c, 5)

(4) Increase b by one and repeat from point 3 above.

Repeating the above B times, after discarding an initial set of draws, leaves us with a

set of parameter draws from the posterior. We always set B = 50000 and discard the

first 5000 draws. To initialize the algorithm we first compute the posterior mode42. We

then set Γ0 and Λi,0 to the respective estimates. We start with c = 0.1, set Vθ to the

inverse Hessian obtained from the estimation of the posterior mode, and set the prior for

{Λi} with α = 2. We have found that since we use an estimate of the posterior mode

satisfying the normalizations, no ex-post normalization (sign-flipping or row permutation)

was necessary. To obtain a reliable sample from the posterior distribution, we ran the

above algorithm 100 times and pooled the final draws across all MCMC chains.

42The posterior mode is obtained from a constrained optimization for ϵ̂i evaluated at the posterior mean
of ϕ. The constraints ensure that the diagonal elements of Γ are positive. Finally the rows of the resulting
estimates for Γ and Λi are permuted to ensure that the large elements are on the diagonal of Γ.
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5.3. Additional Figures.

Figure 18. Import-Based Excessive Currency Invoicing across Countries

(a) USD Excessive Currency Invoicing

(b) EUR Excessive Currency Invoicing

The figure depicts the average monthly excessive currency invoicing across countries over our sample. All
amounts are in USD equivalents. The countries marked in white are not included in our sample due to
missing observations. The top ten countries by import-based excessive USD invoicing positions in our
sample are: the United States, China, Hong Kong, Japan, Singapore, Mexico, Taiwan, South Korea,
Vietnam, and the United Kingdom. The top ten countries by import-based excessive EUR invoicing
positions in our sample are: Germany, the Netherlands, Italy, France, Belgium, Spain, Austria, Ireland,
the Slovak Republic, and Sweden. Panel (a): USD excessive currency invoicing. Panel (b): EUR excessive
currency invoicing.
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Figure 19. Impulse-Response Functions of USD Aggregate Currency In-
voicing
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(b) Cumulated Effect over 18 Months

Spatiotemporal impulse-response functions to a domestic one standard deviation shock. Left axis = USD.
Right axis = percentage of monthly total aggregate currency invoicing in USD over same horizon. Panel
(a): contemporaneous effect. Panel (b): cumulative effect after 18 months. Box-plots report posterior
means and centered 95% posterior coverage.
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Figure 20. Impulse-Response Functions of EUR Aggregate Currency In-
voicing
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(b) Cumulated Effect over 18 Months

Spatiotemporal impulse-response functions to a domestic one standard deviation shock. Left axis = EUR.
Right axis = percentage of monthly total aggregate currency invoicing in EUR over same horizon. Panel
(a): contemporaneous effect. Panel (b): cumulative effect after 18 months. Box-plots report posterior
means and centered 95% posterior coverage.
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Figure 21. Cross-Currency and Export-Import Spillovers – Aggregate
Currency Invoicing

0.74 0.76 0.78 0.8 0.82
0

20

40

60

(a) ∂yEx
$ /∂yEx

e

0.24 0.26 0.28 0.3
0

20

40

60

(b) ∂yEx
$ /∂yIm$

-0.24 -0.22 -0.2 -0.18
0

10

20

30

40

50
Density
Mean
90%
95%

(c) ∂yEx
$ /∂yIme

-0.18 -0.16 -0.14 -0.12
0

20

40

60

(d) ∂yEx
e /∂yEx

$

-0.06 -0.05 -0.04 -0.03 -0.02
0

20

40

60

80

(e) ∂yEx
e /∂yIm$

0.14 0.16 0.18 0.2 0.22
0

20

40

60

(f) ∂yEx
e /∂yIme

-0.03 -0.02 -0.01 0 0.01
0

20

40

60

80

100

(g) ∂yIm$ /∂yEx
$

0 0.01 0.02 0.03 0.04
0

20

40

60

80

100

(h) ∂yIm$ /∂yEx
e

0.88 0.9 0.92 0.94 0.96
0

20

40

60

80

(i) ∂yIm$ /∂yIme

0 0.05 0.1
0

10

20

30

(j) ∂yIme /∂yEx
$

0.1 0.15 0.2
0

10

20

30

(k) ∂yIme /∂yEx
e

-1.4 -1.3 -1.2 -1.1 -1
0

2

4

6

8

10

(l) ∂yIme /∂yIm$
The figure depicts the posterior distribution of the elements of Γ, identified via cross-sectional heteroskedas-
ticity. For interpretation, we scaled the draws of Γb such that the diagonal only contains ones and then
multiplied each row by negative one. Additionally, the figure depicts the posterior mean, as well as 90%
and 95% confidence intervals.
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Figure 22. Counterfactual: Abandonment of USD as Vehicle Currency –
Aggregate Currency Invoicing
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(b) Cumulated Effect over 18 Months

Spatiotemporal impulse-response functions to a shock sequence that sets the aggregate currency invoicing
of the specified countries to zero permanently. EU contains all 19 EUR-Area countries while BRIC(S)
contain the BRICS countries excluding South Africa due to missing observations. Left axis = USD. Right
axis = percentage of monthly total excess currency invoicing in USD. Panel (a): contemporaneous effect.
Panel (b): cumulative effect after 18 month. Box-plots report posterior means and centered 95% posterior
coverage.
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5.4. Additional Tables.

Table 14. The Posterior Likelihood of Trade-Network Spillovers

Specification: ACIEx
USD ACIEx

EUR ACIImUSD ACIImEUR

Panel ln pm 1602.892 2260.553 1298.417 163.474

probm 0.000 0.000 0.000 0.000

SEM ln pm 1612.020 2429.686 1335.039 -27.280

probm 0.000 0.000 0.000 0.000

SLM ln pm 1626.628 2348.159 1308.943 273.662

probm 0.000 0.000 0.000 0.000

SDM ln pm 1769.339 2592.921 1543.097 562.501

probm 1.000 1.000 1.000 1.000

The table reports the logarithm of the marginal likelihood (ln pm) of the data, given the model and the
posterior model probabilities (probm). Note that the marginal likelihoods are adjusted by subtracting the
logarithm of the number of observations. The models are separately estimated on each dataset using our
baseline specification. Depending on the dataset, the baseline specification uses respectively USD or EUR
export or import-based aggregate currency invoicing as the dependent variable. As independent variables,
we include lags of inward foreign direct investments, a USD SWAP line dummy, exchange rate changes
with the USD and EUR, realized exchange rate volatility with the USD and EUR, the share of aggregate
exports, CPI-based inflation and CPI-based inflation volatility, USD export-, USD import-, EUR export-,
and EUR import-based aggregate currency invoicing, and country- and time-fixed effects.

110



Table 15. The Baseline Spatial Durbin Model
Independent Variables

ECIImUSD ECIImEUR ECIEx
USD ECIEx

EUR FDIIn FXChngUSD FXChngEUR FXV olUSD FXV olEUR SWAPUSD TSEx CPI CPIV ol

Panel A. Dependent Variable: Export Excess Currency Invoicing in USD (ECIEx
USD)

Short-term Direct Effect 0.015∗∗ 0.027∗∗∗ 0.791∗∗∗ -0.035∗∗∗ 0.015∗∗ -0.015 -0.013 -0.004 -0.023∗∗ -0.055∗∗ -0.101∗∗∗ -0.009 0.019∗∗∗

(0.059) (0.000) (0.000) (0.000) (0.023) (0.243) (0.264) (0.658) (0.020) (0.074) (0.000) (0.188) (0.004)

Total Effect -0.013 0.061∗∗∗ 0.846∗∗∗ -0.058∗∗∗ 0.053∗∗ -0.075 0.078 -0.111∗∗∗ -0.103∗∗∗ 0.188∗∗ -0.145∗∗∗ -0.075∗∗∗ 0.005

(0.630) (0.004) (0.000) (0.005) (0.015) (0.148) (0.153) (0.000) (0.001) (0.044) (0.000) (0.004) (0.633)

Long-term Direct Effect 0.065∗∗ 0.122∗∗∗ -0.155∗∗∗ 0.068∗∗ -0.066 -0.054 -0.022 -0.104∗∗ -0.236∗∗ -0.451∗∗∗ -0.040 0.084∗∗∗

(0.060) (0.000) (0.000) (0.022) (0.228) (0.288) (0.603) (0.018) (0.084) (0.000) (0.165) (0.005)

Total Effect -0.081 0.337∗∗∗ -0.321∗∗∗ 0.294∗∗ -0.411 0.426 -0.610∗∗∗ -0.568∗∗∗ 1.031∗∗ -0.798∗∗∗ -0.411∗∗∗ 0.030

(0.608) (0.008) (0.010) (0.019) (0.153) (0.158) (0.001) (0.002) (0.047) (0.000) (0.005) (0.629)

ϕ 0.241∗∗∗

(0.000)

R2 0.949

NObs 10871

log marginal 284.0414

Panel B. Dependent Variable: Export Excess Currency Invoicing in EUR (ECIEx
EUR)

Short-term Direct Effect 0.122∗∗∗ -0.056∗∗∗ -0.079∗∗∗ 0.668∗∗∗ -0.010 0.029∗∗ -0.002 -0.001 0.022∗∗ -0.203∗∗∗ 0.038∗∗∗ -0.007 -0.005

(0.000) (0.000) (0.000) (0.000) (0.234) (0.053) (0.895) (0.930) (0.062) (0.000) (0.000) (0.353) (0.554)

Total Effect 0.310∗∗∗ -0.105∗∗∗ -0.034 0.738∗∗∗ -0.076∗∗∗ -0.026 -0.030 -0.021 0.066∗∗ 0.043 0.077∗∗∗ 0.074∗∗∗ -0.053∗∗∗

(0.000) (0.000) (0.225) (0.000) (0.002) (0.652) (0.618) (0.520) (0.050) (0.677) (0.000) (0.009) (0.000)

Long-term Direct Effect 0.369∗∗∗ -0.169∗∗∗ -0.233∗∗∗ -0.030 0.086∗∗ -0.006 -0.004 0.068∗∗ -0.599∗∗∗ 0.113∗∗∗ -0.020 -0.015

(0.000) (0.000) (0.000) (0.212) (0.056) (0.881) (0.920) (0.058) (0.000) (0.000) (0.395) (0.523)

Total Effect 1.147∗∗∗ -0.395∗∗∗ -0.126 -0.282∗∗∗ -0.095 -0.110 -0.076 0.246∗∗ 0.158 0.287∗∗∗ 0.273∗∗ -0.197∗∗∗

(0.000) (0.000) (0.231) (0.002) (0.653) (0.618) (0.523) (0.053) (0.678) (0.000) (0.010) (0.000)

ϕ 0.159∗∗∗

(0.000)

R2 0.963

NObs 10872

ln pm -1854.050

The table reports the posterior means of the estimated effects and their respective p-values. Coefficient estimates significant at the 10%, 5%, and 1% levels are indicated by ∗, ∗∗, and
∗∗∗ respectively. Estimation is carried out separately for the two different datasets. On top of the depicted independent variables, we always include country- and time-fixed effects.
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Table 16. The Baseline Spatial Durbin Model
Independent Variables

ACIImUSD ACIImEUR ACIEx
USD ACIEx

EUR FDIIn FXChngUSD FXChngEUR FXV olUSD FXV olEUR SWAPUSD TSEx CPI CPIV ol

Panel A. Dependent Variable: Export Aggregate Currency Invoicing in USD (ACIEx
USD)

Short-term Direct Effect 0.028∗∗∗ -0.003 0.861∗∗∗ -0.055∗∗∗ 0.020∗∗∗ -0.019∗∗ -0.014 0.005 -0.029∗∗∗ -0.076∗∗∗ -0.121∗∗∗ 0.003 0.013∗∗

(0.000) (0.711) (0.000) (0.000) (0.001) (0.081) (0.167) (0.553) (0.001) (0.004) (0.000) (0.617) (0.029)

Total Effect -0.053 -0.020 0.858∗∗∗ 0.009 0.070∗∗∗ -0.090 0.090 -0.126∗∗∗ -0.132∗∗∗ 0.063 -0.178∗∗∗ -0.078∗∗∗ -0.015

(0.111) (0.472) (0.000) (0.686) (0.004) (0.104) (0.117) (0.000) (0.000) (0.564) (0.000) (0.004) (0.182)

Long-term Direct Effect 0.160∗∗∗ -0.015 -0.323∗∗∗ 0.114∗∗∗ -0.110∗∗ -0.080 0.029 -0.170∗∗∗ -0.441∗∗∗ -0.701∗∗∗ 0.017 0.074∗∗

(0.000) (0.715) (0.000) (0.001) (0.082) (0.167) (0.552) (0.001) (0.005) (0.000) (0.615) (0.030)

Total Effect -0.318 -0.115 0.052 0.408∗∗∗ -0.519 0.522 -0.733∗∗∗ -0.770∗∗∗ 0.357 -1.030∗∗∗ -0.453∗∗∗ -0.088

(0.142) (0.481) (0.700) (0.008) (0.110) (0.123) (0.000) (0.001) (0.571) (0.000) (0.007) (0.189)

ϕ 0.382∗∗∗

(0.000)

R2 0.964

NObs 10871

ln pm 1778.633

Panel B. Dependent Variable: Export Aggregate Currency Invoicing in EUR (ACIEx
EUR)

Short-term Direct Effect 0.027∗∗∗ -0.005 -0.056∗∗∗ 0.870∗∗∗ 0.014∗∗ -0.025∗∗ -0.006 -0.004 -0.017∗∗ -0.094∗∗∗ -0.102∗∗∗ 0.011∗∗ 0.010∗∗

(0.000) (0.478) (0.000) (0.000) (0.012) (0.012) (0.531) (0.650) (0.035) (0.000) (0.000) (0.030) (0.075)

Total Effect -0.030 -0.092∗∗∗ -0.061∗∗ 0.942∗∗∗ 0.003 -0.104∗∗ 0.036 -0.179∗∗∗ -0.120∗∗∗ 0.207∗∗ -0.184∗∗∗ -0.004 -0.023∗∗

(0.410) (0.004) (0.050) (0.000) (0.912) (0.093) (0.574) (0.000) (0.001) (0.090) (0.000) (0.886) (0.067)

Long-term Direct Effect 0.159∗∗∗ -0.033 -0.338∗∗∗ 0.082∗∗ -0.156∗∗ -0.033 -0.031 -0.106∗∗ -0.548∗∗∗ -0.620∗∗∗ 0.068∗∗ 0.056∗∗

(0.000) (0.407) (0.000) (0.014) (0.010) (0.561) (0.511) (0.026) (0.000) (0.000) (0.034) (0.088)

Total Effect -0.254 -0.791∗∗ -0.516∗∗ 0.029 -0.873 0.303 -1.497∗∗∗ -1.005∗∗∗ 1.732∗∗ -1.546∗∗∗ -0.037 -0.199∗∗

(0.416) (0.019) (0.065) (0.902) (0.102) (0.579) (0.000) (0.002) (0.098) (0.000) (0.887) (0.083)

ϕ 0.492∗∗∗

(0.000)

R2 0.965

NObs 10872

ln pm 2602.215

The table reports the posterior means of the estimated effects and their respective p-values. Coefficient estimates significant at the 10%, 5%, and 1% levels are indicated by ∗, ∗∗, and
∗∗∗ respectively. Estimation is carried out separately for the two different datasets. On top of the depicted independent variables, we always include country- and time-fixed effects.
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6. Appendix of Chapter 3

6.1. Assumptions, Lemmas and Proofs. I here present the accompanying assump-

tions, lemmas and proofs to section 3.3.1.

6.1.1. Assumptions and Lemmas. In what follows, for h ∈ M or h ∈ MK , let lt(h) =

log(πt(Rt+1;h), L(h) = E[lt(h)] and LT (h) = 1/T
∑T

t=1 lt(h). Further, define ut(h) =
∂
∂h lt(h), it(h) =

∂
∂hut(h), UT (h) =

∂
∂hLT (h) and IT (h) =

∂
∂hUT (h). Subscripts t indicate

that variables are defined with respect to filtration Ft which is defined as usually.

Assumption A.6. Let M be compact under the sup-norm.

Assumption A.7. Assume lt(h) satisfies the standard measurability and continuity re-

quirements on R×M.

Assumptions A.6 and A.7 are fairly standard. Assumption A.6 may be violated if M is

too complex, however, can be easily relaxed following X. Chen (2007). For a definition of

the standard measurability and continuity requirements see Definition A.2 in the appendix

of Wooldridge (1994).

Assumption A.8. Assume that i) there is a m ∈ M such that πo
t (R) = πt(R;m) ∀ t, ii)

L(m) > −∞ and iii) for h1, h2 ∈ M that Pr(Rt+1 ∈ R : lt(h1) ̸= lt(h2)) > 0.

Assumption A.8 i) formalizes that Mt(R) is proportional to a time-invariant function

and the implied probability measure is correct. Assumption A.8 iii) requires the log-

likelihood ratios to be non-constant random variables.

Assumption A.9. For all K ≥ 1 and h ∈ MK let plim
T→∞

suph∈MK
|LT (h)− L(h)| = 0.

Assumption A.9 requires lt(h) to satisfy a uniform weak law of large numbers.

Assumption A.10. Assume the interchange of derivatives and integrals holds for all

h ∈ M.

Assumption A.11. Assume E[| ∂
∂h lt(h)|

r] < ∞ for r > 2 for all t.

Assumption A.11 implies that ut(h) and it(h) are uniformly integrable and also ensures

that the relevant expectations exist.

Lemma L.6. Under assumptions A.10 and A.11 (i) Et−1[ut(m)] = 0, (ii) Et−1[ut(m)uτ (m)] =

0 for τ < t and (iii) Et−1[−it(m)] = V art−1(ut(m)). By the law of iterated expectations,

(iv) E[ut(m)] = 0 for all t and (v) E[ut(m)uτ (m)] = 0 for τ ̸= t. By the law of total

variance, (vi) V ar(ut(m)) = E[−it(m)] = E[ut(m)2].

Assumption A.12. Assume 1
T

∑T
t=1 V ar(ut(m))

p→ bm and 1
T

∑T
t=1 ut(m)2

p→ bm.

Lemma L.7. Under assumptions A.10 and A.11 it follows by lemma L.6 that ut(m)

is a martingale difference sequence and a L1-mixingale with respect to Ft. Further-

more, 1
T

∑T
t=1 ut(m)

p→ 0. Additionally, under A.12 it follows that T−1/2
∑T

t=1 ut(m)
d→

N(0, bm).

The proofs for the lemmas are given in section 6.1.2. Lemma L.7 establishes that the law

of large numbers for L1-mixingales and the central limit theorem for a martingale difference

sequence hold for ut(m) (see Hamilton (2020) proposition 7.6 and 7.8 for definitions).
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Define the optimal sieve approximation on MK in population by m∗ = πKm. The

difference between m∗ and m is due to approximation error. The difference between m∗

and m̂ is due to estimation error. Let m̄∗ ∈ [m∗, m̂].

Assumption A.13. Assume (i) IT (m)
p→ im and (ii) ||IT (m̄∗)− IT (m)||∞ = op(1).

Assumption A.14. Assume (i) ||m−m∗||∞ = o(T−1/2) and (ii) ||UT (m)−UT (m
∗)||∞ =

op(T
−1/2).

Assumption A.13 (i) makes standard assumptions regarding the convergence of the Hes-

sian. Due to theorem 4 assumption A.13 (ii) can be relaxed. Assumption A.14 (i) is often

referred to as an under-smoothing condition, which ensures that the approximation error

is asymptotically negligible (see X. Chen (2007) and Christensen (2017)). Assumption

A.14 (ii) is similar to condition 4.4 (i) in section 4.2.1 of X. Chen (2007).

6.1.2. Proofs of Lemmas.

Proof of lemma L.6. I will show results (i), (ii), and (iii) of lemma L.6. (iv), (v) and (vi)

are self-contained. Let ∂
∂hf(R;h)

∣∣
h=m

= f ′(m). Assumption A.11 is required throughout

for the existence of the relevant integrals. To show (i) note that ut(m) = π′
t−1(m)/πt−1(m).

Therefore,

Et−1[ut(m)] =

∫
R

π′
t−1(m)

πt−1(m)
πt−1(m)dR =

∂

∂h

∫
R
πt−1(m)dR = 0

where the second equality follows from assumption A.10. To show (ii) notice that the

information set Ft−1 contains uτ (m) for τ < t. Hence, (ii) is an immediate implication of

(i). To show (iii), notice V art−1(ut(m)) = Et−1[ut(m)2] by (i). Further, note that

Et−1[it(m)] =

∫
R

(
π′′
t−1(m)

πt−1(m)
−
(
π′
t−1(m)

πt−1(m)

)2)
πt−1(m)dR

=
∂2

∂h2

∫
R
πt−1(m)dR−

∫
R
ut(m)2πt−1(m)dR

= −Et−1[ut(m)2]

where the interchange of partial derivative and integrals follows from assumption A.10 and

the definition of ut(m) was used. This establishes (iii). □

Proof of lemma L.7. By lemma L.6 (i) and (iv) it follows that ut(m) is a martingale dif-

ference sequence with respect to Ft (see Hamilton (2020) p. 189). By assumption A.11

it follows that E[|ut(m)|r] < M ′ ∀ t for some r > 2 and M ′ < ∞, so ut(m) is uniformly

integrable (see Hamilton (2020) proposition 7.7). This implies E[|ut(m)|] < M for some

M < ∞.

To show that ut(m) satisfies the law of large numbers for L1-mixingales, note that since

E[ut(m)] = 0 ∀ t and Et−1[ut(m)] = 0 ∀ t, it follows by choosing dt = M and ζ0 = 1 and

ζn = 0 ∀ n ≥ 1 that ut(m) satisfies the definition of an L1-mixingale with respect to Ft

(see Hamilton (2020) example 7.9). Therefore, by proposition 7.6 in Hamilton (2020) it

follows that 1
T

∑T
t=1 ut(m)

p→ 0.

Since ut(m) is a martingale difference sequence, E[ut(m)2] = V ar(ut(m)) > 0, and

by assumptions A.11 and A.12 the conditions of proposition 7.8 Hamilton (2020) are

satisfied, i.e. ut(m) satisfies the central limit theorem for a martingale difference sequence.
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Therefore,

1√
T

T∑
t=1

ut(m)
d→ N(0, bm)

□

6.1.3. Proofs of Theorems.

Proof of theorem 4. I here demonstrate that under assumptions A.6-A.9 the consistency

of the estimator m̂ defined in equation (26) follows as K,T → ∞ and K/T → 0. The

strategy is to show that conditions 3.1”, 3.2, 3.4 and 3.5(i) of X. Chen (2007) hold and

therefore theorem 3.1 of X. Chen (2007) applies. This establishes consistency.

First, assumption A.6-A.8 imply condition 3.1” in X. Chen (2007). To see this, consider

πt(R;m), the probability measure induced by m given the observed at(R) as defined by

the fundamental pricing rule representation theorem. The Kullback-Leibler information

inequality implies L(m) > L(h) ∀ h ∈ M where the strict inequality is due to assumption

A.8. Hence, m is the unique solution.

Second, the linear sieve spaces MK defined for the estimator in equation (26) in com-

bination with a version of the Weierstrass approximation theorem imply condition 3.2 in

X. Chen (2007). Note that MK as defined for the estimator satisfies MK ⊂ MK+1 ⊂ M
for all K ≥ 1. Denote by πKm the approximation of m on MK . The Weierstrass ap-

proximation theorem establishes that m can be approximated arbitrarily well through

polynomials. By Jackson’s theorem (theorem 13.3 Schumaker (2007)43) it follows that

||πKm−m||∞ → 0 as K → ∞.

Third, condition 3.4 in X. Chen (2007) is not required since L(h) is concave for h ∈ MK .

Stone (1990) has shown that the estimator as defined in equation (26) is concave for

h ∈ MK ; see also Huang (2001). This is because, as stated in (26), the associated

πt(R;h) for h ∈ MK belongs to the exponential family. Therefore, condition 3.4 is not

required (see section 2.2.3 of X. Chen (2007)).

Fourth, condition 3.5(i) of X. Chen (2007) follows directly from assumption A.9.

Therefore, the conditions of theorem 3.1 in X. Chen (2007) p. 5591 are satisfied and it

follows that ||m̂−m||∞ = op(1). □

Proof of theorem 5. Define m∗ = πKm as the optimal sieve approximation on MK in

population. A mean value expansion of UT (m̂) around m∗ gives rise to

UT (m̂) = 0 = UT (m
∗) + IT (m̄

∗)(m̂−m∗)

where m̄∗ ∈ [m∗, m̂]. It follows that
√
T (m̂−m) = −IT (m̄

∗)−1
√
TUT (m)︸ ︷︷ ︸

(i)

− IT (m̄
∗)−1

√
T (UT (m)− UT (m

∗))︸ ︷︷ ︸
(ii)

−
√
T (m−m∗)︸ ︷︷ ︸

(iii)

By assumption A.14 it follows that ||
√
T (m − m∗)||∞ = o(1) and that ||

√
T (UT (m) −

UT (m
∗))||∞ = op(1). By assumption A.13 IT (m̄

∗)
p→ im. Therefore term (ii) and (iii) are

negligible.

By lemma L.7, the continuous mapping theorem and Slutsky’s theorem it follows that

−IT (m̄
∗)−1

√
TUT (m)

d→ N

(
0,

bm
i2m

)
43Jackson’s theorem gives rise to theorem 13.3 in Schumaker (2007): for every continuous, real-valued
function f on the interval [a, b] there exists a sequence of polynomials πKf ∈ MK with ||πKf − f ||∞ → 0
as K → ∞ where K is the order of the polynomial.
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Therefore,
√
T (m̂−m)

d→ N(0, bm/i2m) + op(1).

□

6.2. Data Processing. I here detail the data-cleaning steps and inter-/ extrapolation

methods implemented to arrive at the full set of Arrow-Debreu security prices.

6.2.1. Cleaning Steps. Several pre-processing steps of the raw data are undertaken be-

fore the inter-/ extrapolation methods are applied. These steps have the goal to mitigate

data errors and to extract a representative dataset that best approximates the markets’

aggregation of individual risk-neutral subjective probability beliefs or Arrow-Debreu se-

curity prices in the investor population. An incomprehensive list of studies working with

similar datasets is Ait-Sahalia and Lo (1998), J. C. Jackwerth (2000), Rosenberg and En-

gle (2002), Bliss and Panigirtzoglou (2004), Figlewski (2008), Martin (2017), Ulrich and

Walther (2020) and J. Jackwerth and Menner (2020). A survey discussing the practical

details of extracting Arrow-Debreu securities is given in Figlewski (2018).

I focus on options on the S&P 500, which are actively traded and cash-settled with

European exercise style, obtained from Optionmetrics. All observations with a bid price

of zero and all observations with a bid price larger than their ask price are dropped.

I then begin to drop observations that are known to suffer significantly from poor liq-

uidity. First, all observations with a residual maturity less than seven days are dropped.

At each date, the implied volatility using Black and Scholes (1973) based on the mid, bid,

and ask price using the dividend yield and zero coupon rate reported by Optionmetrics

are calculated. Where necessary, the zero coupon rates are matched to the residual ma-

turity of the observations by shape-preserving piecewise cubic interpolation44. Second, all

observations are dropped for which the Black-Scholes implied volatility computation did

not converge. Third, I drop all observations where the difference between the bid and ask

based implied volatility is larger than 50%. This tends to eliminate options significantly

in the money or sporadic outliers. Fourth, I drop all observations with a bid-ask spread

above 100$, which eliminates outliers45.

In some cases, I am left with multiple option prices per strike. For all call and put

options separately, on each date, by maturity, I only keep the observations with the lowest

bid-ask spread, mid price and implied volatility.

I proceed to check observations for violations of no-arbitrage conditions. For all call

and put options separately, on each date, by maturity, I drop all observations that vio-

late vertical spread arbitrage and the monotonicity condition of option price curves (see

Rosenberg and Engle (2002)).

Finally, since inter-/ extrapolation will be performed, I require on each date for each

maturity at least seven observations, else the observations are dropped.

The inter-/ extrapolation of the raw data is done by translating out-of-the-money option

mid prices to implied volatilities using Black and Scholes (1973) and then inter-/ extrapo-

lating the volatility surface. For a brief discussion of the advantages of inter-/ extrapolation

of the volatility surface instead of the call or put price surface, see Figlewski (2018).

44I have found this to yield a better fit than the commonly used linear interpolation on multiple cases.
45These filters are similar to filters in existing studies that drop observations with ”too large” bid-ask
spreads or implied volatilities. For example Ait-Sahalia and Lo (1998) delete observations with implied
volatilities larger than 70% and J. C. Jackwerth (2000) deletes observations with bid-ask spreads larger
than 2$. I have found such existing filters to be too restrictive, however, dropping them all together leaves
several outliers. The described thresholds have been chosen based on several case by case inspections to
guarantee outliers are deleted efficiently.
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Working with out-of-the-money implied volatilities based of call and put options has

several challenges. First, to determine the moneyness of an option forward prices for a

given maturity at each date are required. Second, switching from out-of-the-money put to

out-of-the-money call implied volatilities leads to a discontinuity in the implied volatility

curve at a specific maturity, also documented in Figlewski (2008), Figlewski (2018) and

Ulrich and Walther (2020). It tends to be the case that implied volatilities for put op-

tions are higher than for call options. Explanations appeal to limits of arbitrage due to

short sale constraints (see Atmaz and Basak (2019)) or lending and borrowing constraints

(see Bergman (1995)). Third, to compute the correct implied volatilities, consistent with

investors aggregated beliefs, the interest rate and dividend yield used by investors are

required.

To address the first concern, forward prices are determined by the intersection of the

mid price call and put curve. Based on put-call-parity, the two intersect at the strike that

is equal to the forward. Where necessary, the curves are extrapolated over the strike price

grid by maximally 25$ in either direction.

To address the second and third concern, I compute the implied dividend yield from the

forward price using Optionmetrics reported zero coupon rates. Atmaz and Basak (2019)

argue that short sale constraints can be thought of as ”artificially” increasing the dividend

yield46. Assuming that the LIBOR rate reported by Optionmetrics reasonably approxi-

mates the interest rate available to arbitrageurs, the market implied dividend yield is

defined as

δ∗τ = rτ −
log

(Ft,τ

St

)
τ

where δ∗τ is the dividend yield, rτ the zero coupon rate for the appropriate horizon τ , Ft,τ

the forward price and St the spot price of the underlying.

Since the forward price is based on the intersection of put and call price curves, using

δ∗τ the implied volatilities based on Black and Scholes (1973) practically equates the mid

price based implied volatilities of put and call options at the money, i.e. eliminates the

discontinuity47. As a consequence, by using δ∗τ in the computation of implied volatilities

based on out-of-the-money put and call options, I am left with a smooth implied volatility

curve for each maturity48.

This leaves me with a large daily dataset of implied volatilities for irregularly spaced

strikes and maturities that can be inter-/ extrapolated.

46They show that an increase in short-sale costs of the underlying increases put prices and decreases
call prices ceteris paribus. During periods of high short-selling costs one would therefore observe a large
discontinuity between implied volatilities computed from call and put prices using standard Black and
Scholes (1973). They further show that short sale costs manifest themselves as an adjustment to the
dividend yield and once the adjustment is taken into account implied volatilities coincide.
47I here only allow for an adjustment of the dividend yield and do not adjust interest rates. Suppose
observed put price implied volatilities are higher than call price implied volatilities. Increasing the dividend
yield, leads to a decrease of the put based implied volatility and an increase of the call based implied
volatility. On the other hand, assuming lending rates are below the reported rate, decreasing the interest
rate leads to the same effect. Adjustments of the dividend yield or interest rate have roughly the same
impact on implied volatilities.
48An alternative procedure suggested by Figlewski (2008) is to average the implied volatilities of put and
call prices calculated using the reported dividend yield and interest rate in an area around the forward to
create a smooth transition in implied volatilities. The area in which the average is taken is ad hoc. Using
δ∗τ on the other hand leads to an implied volatility curve that lies between the put and call based implied
volatilities, i.e. is averaged as well, however, can be motivated economically.
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6.2.2. Inter-/ Extrapolation. Multiple approaches for inter/- extrapolation of the volatil-

ity surface exist. An incomprehensive list of studies is Ait-Sahalia and Lo (1998), J. C.

Jackwerth (2000), J. Jackwerth (2004), Figlewski (2008) and Gatheral and Jacquier (2014).

I implement four different methods to conduct robustness checks of the main results. All

methods allow me to obtain implied volatilities on an arbitrarily fine grid of strikes, how-

ever, only some allow for inter-/ extrapolation across maturities.

The first – and preferred – method is based on Gatheral and Jacquier (2014). The

approach fits at each date a stochastic volatility inspired parameterization of the volatility

surface to the raw data that is free of calendar spread and butterfly arbitrage. The

approach therefore creates arbitrage free implied volatility estimates, taking into account

all available information across strikes and maturities on that date and allows for inter-/

extrapolation across strikes and maturities. Specifically, the power-law parameterization

is implemented (see Gatheral and Jacquier (2014)).

The second method is based on Ulrich and Walther (2020), which is a modified version

of the method in Ait-Sahalia and Lo (1998). On each date, an implied volatility curve is

fit for each maturity separately, through a kernel regression over implied volatilities and

moneyness. Extrapolation of the tails is done via linear interpolation, which is performed

before the kernel regression (see Ulrich and Walther (2020) for details). The approach

therefore creates implied volatility estimates, taking into account only information across

strikes for a given maturity and allows for inter-/ extrapolation across strikes. Inter-/

extrapolation across maturities is performed through the approach described in section

5.3 of Gatheral and Jacquier (2014).

The third approach is inspired by J. Jackwerth and Menner (2020). On each date, I fit a

volatility surface to the data using thin-plated smoothing splines. The approach therefore

creates implied volatility estimates, taking into account information across strikes and

maturities on that date and allows for inter/- extrapolation across strikes and maturities.

The fourth approach is based on Figlewski (2008). The approach fits on each date a

4th order spline with a single knot placed at the money for the observed range of implied

volatilities, for each maturity separately. Next the implied risk-neutral probability density

is computed based on Breeden and Litzenberger (1978) from the fitted and interpolated

implied volatilities. Then, motivated by the Fisher-Tippett theorem, a generalized extreme

value distribution is fit to the left and right tail separately, to extrapolate the tails (see

Figlewski (2008) and Figlewski (2018) for details). The approach therefore directly creates

Arrow-Debreu security price curves, taking into account only information across strikes for

a given maturity and allows for inter-/ extrapolation across strikes. Inter-/ extrapolation

across maturities is performed through the approach described in section 5.3 of Gatheral

and Jacquier (2014).

After the inter-/ extrapolation, where necessary, the call price curves are computed

using Black and Scholes (1973) and the Arrow-Debreu security price curves are computed

following Breeden and Litzenberger (1978) by numerically approximating the second de-

rivative of the call price curve with respect to strikes. Each approach, except the Gatheral

and Jacquier (2014) approach, is implemented such that I am left with Arrow-Debreu

security price curves corresponding to one month of maturity over a discrete return grid

ranging from 59% to 141% with 1% increments. For Gatheral and Jacquier (2014) Arrow-

Debreu security price curves are extracted corresponding to one, two, three, six, and twelve
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months of maturity and over a grid ranging from 29% to 171% – this is necessary, as for

higher maturities the historically observed return range is wider.

Finally, when importing the Arrow-Debreu security price curves for estimation the

Arrow-Debreu security price curve is resampled onto a strike grid corresponding to gross

returns that range from the minimum to the maximum of observed returns of the S&P

500 over the sample period for each maturity. They are then rescaled to ensure that the

price curve sums to the reciprocal of the risk-free rate for the respective maturity. Before

the estimation is conducted, Arrow-Debreu security price curves containing negative ob-

servations are dropped – this step is irrelevant for the Gatheral and Jacquier (2014) based

curves. Furthermore, for computational convenience, all Arrow-Debreu security prices

equal to 0 are set to 1e−15.

6.3. Goyal Welch Procedure. To assess the predictive performance of Et[Rt+1] implied

by the estimation, I follow Welch and Goyal (2008) and compute the out-of-sample R2.

The out-of-sample R2, R2
OOS , is constructed in an expanding window fashion. I start

the out-of-sample test in January 2011, i.e. 15 years after my dataset begins. To do so

Êt[Rt+1] and the sample mean µ̂t are re-estimated each period as the training sample

expands. Forecasting errors are computed as ϵt+1 = Rt+1− Êt[Rt+1] and vt+1 = Rt+1− µ̂t.

This is repeated until I reach T . R2
OOS is then defined as

R2
OOS = 1−

∑
t ϵ

2
t+1∑

t v
2
t+1

R2
OOS , therefore benchmarks the predictor Êt[Rt+1] against the forecast based on the

expanding window sample mean µ̂t. A positive value indicates that the predictor outper-

forms the expanding window sample mean based forecast. A negative value indicates that

the expanding window sample mean based forecast outperforms the predictor.
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6.4. Additional Figures.

Figure 23. Unconstrained and Constrained Estimated Risk Preferences
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Note: The figure depicts the unconstrained estimated stochastic discount factor function given in equation

(27) in black on several snapshot dates using regular polynomial basis functions with K = 4. Further,

95% confidence intervals obtained via the delta method are reported. I employ a Newey and West (1987)

type estimator with lag length 21 for the covariance matrix of the scores. Additionally, the figure depicts

the constrained estimated stochastic discount factor function in red, corresponding to the solution of (26)

subject to the constraint in (29).
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Figure 24. Estimated Risk Preferences and CRRA Preferences across Ma-
turity Horizons

0.85 0.9 0.95 1 1.05 1.1
0.5

1

1.5

2

2.5

0.8 0.9 1 1.1
0.5

1

1.5

2

2.5

0.8 0.9 1 1.1 1.2
0.5

1

1.5

2

2.5

0.9 0.95 1 1.05 1.1 1.15 1.2
0.5

1

1.5

2

2.5

0.9 1 1.1 1.2 1.3
0.5

1

1.5

2

2.5

Note: The figure depicts the unconstrained estimated stochastic discount factor function given in equation

(27) in black for different maturity horizons using regular polynomial basis functions with K = 4. The

estimated risk preferences correspond to 04-Jan-1996. Further, 95% confidence intervals obtained via the

delta method are reported. I employ a Newey andWest (1987) type estimator with lag length corresponding

to the respective maturity translated to trading days for the covariance matrix of the scores. Additionally,

the figure depicts the stochastic discount factor corresponding to CRRA preferences estimated as in (25)

in green.
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6.5. Additional Tables.

Table 17. Information Criteria

K 1 2 3 4 5 6

Regular AIC 35490.6078 35443.6361 35439.0596 35440.8709 35436.7712 35430.437

BIC 35497.3481 35457.1167 35459.2806 35467.8322 35470.4729 35470.8791

Legendre AIC 35490.6078 35443.6361 35439.0596 35440.8709 35436.7712 35430.437

BIC 35497.3481 35457.1167 35459.2806 35467.8322 35470.4729 35470.8791

Laguerre AIC 35490.6078 35443.6361 35439.0596 35440.8709 35436.7712 35438.589

BIC 35497.3481 35457.1167 35459.2806 35467.8322 35470.4729 35479.0311

Hermite AIC 35490.6078 35443.6361 35439.0596 35440.8709 35436.7712 35430.437

BIC 35497.3481 35457.1167 35459.2806 35467.8322 35470.4729 35470.8791

Note: The table reports the Bayesian and Akaike information criterion corresponding to the estimator in
(26) for various sieve dimensions and basis functions. The lowest values are highlighted in bold.

Table 18. Test of Parameter Stability – c = 5

K 2 3 4 5 6

qLL -6.391 -6.487 -6.452 -10.086 -10.068

p-value (0.091) (0.346) (0.712) (0.435) (0.721)

Note: The table repots the estimated qLL test statistic following Müller and Petalas (2010) for the
estimator in (27) using non-overlapping observations and regular polynomial basis functions. The different
columns correspond to the number of parameters, or the approximation degree, K. The qLL test is
calculated following Müller and Petalas (2010) using c = 5 for robustified scores. The reported p-values
are calculated by simulating the distribution of the qLL test statistic with c = 5 from the random variable
in Elliott and Müller (2006) lemma 2.

Table 19. Test of Parameter Stability – c = 25

K 2 3 4 5 6

qLL -38.791 -41.045 -41.305 -66.002 -65.864

p-value (0.006) (0.188) (0.841) (0.206) (0.768)

Note: The table repots the estimated qLL test statistic following Müller and Petalas (2010) for the
estimator in (27) using non-overlapping observations and regular polynomial basis functions. The different
columns correspond to the number of parameters, or the approximation degree, K. The qLL test is
calculated following Müller and Petalas (2010) using c = 25 for robustified scores. The reported p-values
are calculated by simulating the distribution of the qLL test statistic with c = 25 from the random variable
in Elliott and Müller (2006) lemma 2.
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Table 20. Pricing Kernel Puzzle Test for Different Volatility Surface Inter-
/ Extrapolation Methods

K 2 3 4 5 6

Jacquier Gatheral LM 3.400 0.883 3.611 3.298 3.482

p-value (0.183) (0.830) (0.461) (0.654) (0.746)

Jackwerth Menner LM 6.387 3.538 5.047 6.264 7.168

p-value (0.041) (0.316) (0.282) (0.281) (0.306)

Ulrich Walther LM 6.072 2.921 4.375 4.204 6.422

p-value (0.048) (0.404) (0.358) (0.520) (0.378)

Figlewski LM 4.661 2.130 2.985 4.230 4.404

p-value (0.097) (0.546) (0.560) (0.517) (0.622)

Note: The table presents the Lagrange multiplier test statistic for the estimator in (27) subject to the
constraint in (29) using regular polynomial basis functions for various K as indicated in the table columns.
The rows correspond to different Arrow-Debreu security extraction methods following either Gatheral and
Jacquier (2014), J. Jackwerth and Menner (2020), Ulrich and Walther (2020) and Figlewski (2008) as
detailed in appendix 6.2.2. The p-values are based on a χ2 distribution with K degrees of freedom.

Table 21. Pricing Kernel Puzzle Test for Arrow-Debreu Securities Ex-
tracted from Different Option Quotes

K 2 3 4 5 6

MID LM 3.400 0.883 3.611 3.298 3.482

p-value (0.183) (0.830) (0.461) (0.654) (0.746)

BID LM 1.592 0.421 0.513 0.555 0.583

p-value (0.451) (0.936) (0.972) (0.990) (0.997)

ASK LM 6.239 1.841 2.808 2.187 2.542

p-value (0.044) (0.606) (0.591) (0.823) (0.864)

Note: The table presents the Lagrange multiplier test statistic for the estimator in (27) subject to the
constraint in (29) using regular polynomial basis functions for various K as indicated in the table columns.
The rows correspond to Arrow-Debreu securities extracted following Gatheral and Jacquier (2014) using
either mid, bid, or ask based option data. The p-values are based on a χ2 distribution with K degrees of
freedom.
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Table 22. Pricing Kernel Puzzle Test with Different Basis Functions

K 2 3 4 5 6

Regular Polynomial LM 3.400 0.883 3.611 3.298 3.482

p-value (0.183) (0.830) (0.461) (0.654) (0.746)

Legendre Polynomial LM 3.400 4.125 1.564 1.294 1.839

p-value (0.183) (0.248) (0.815) (0.935) (0.934)

Laguerre Polynomial LM 3.400 0.597 0.868 0.785 0.334

p-value (0.183) (0.897) (0.929) (0.978) (0.999)

Hermite Polynomial LM 3.400 0.862 1.365 0.647 0.727

p-value (0.183) (0.835) (0.850) (0.986) (0.994)

Note: The table presents the Lagrange multiplier test statistic for the estimator in (27) subject to the
constraint in (29) for various K as indicated in the table columns. The rows correspond to different basis
functions employed. The p-values are based on a χ2 distribution with K degrees of freedom.

Table 23. Pricing Kernel Puzzle Test across Maturities

τ 30 60 90 180 360

LM 3.611 3.300 2.108 1.052 0.449

p-value (0.461) (0.509) (0.716) (0.902) (0.978)

Note: The table presents the Lagrange multiplier test statistic for the estimator in (27) subject to the
constraint in (29) using regular polynomial basis functions for various K = 4. The columns correspond to
different maturity horizons for the Arrow-Debreu securities and returns. The p-values are based on a χ2

distribution with K degrees of freedom.
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