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Abstract

This thesis contains three chapters developing and applying novel techniques in financial
econometrics.

In the first chapter, I show that to construct factor models for the cross-section of
expected returns, principal component factors should be selected based on risk premia or
Sharpe ratios — rather than eigenvalues, as is predominantly done in the literature. This is
because principal component factors’ prices of risk are given by their risk premia divided
by eigenvalues. I show that selection based on risk premia (Sharpe ratios) minimizes
the sum of squared pricing errors (Hansen-Jagannathan distance) for a factor model and
demonstrate empirically that the proposed selection methods lead to substantial in- and
out-of-sample improvements. Further, I devise a test to determine the number of factors
to approximate the stochastic discount factor.

In the second chapter, co-authored with Tommaso Mancini-Griffoli, Christian Julliard,
and Kathy Yuan, using an equilibrium network model and a large international panel of
cross-border trade, we analyse empirically the drivers of foreign currency invoicing. First,
we find evidence of strategic complementarity in currency invoicing across countries. Sec-
ond, key players for a given currency are also countries that are central to the international
trade network. Third, we find evidence of natural hedging, between the choices of export
and import currencies. Fourth, in counterfactual analysis, we find that the position of the
USD is inherently fragile.

In the third chapter, I estimate risk preferences through nonparametric methods from
option data. The proposed estimator is shown to be consistent and asymptotically nor-
mally distributed. The estimated risk preferences are more in line with preferences implied
by classical utility functions than other studies suggest. Specifically, formal statistical tests
suggest that there is no statistically significant evidence supporting the pricing kernel puz-
zle. In contrast, constraining estimated risk preferences to be monotonically decreasing
improves the associated beliefs’ forecasting performance substantially.



CONTENTS

1. Constructing Factor Models that Approximate the Stochastic Discount Factor .

1.1, Inmtroduction ...
1.2. The SDF and Principal Components ................coiiiiiiiiiiiia ..
1.3. Economically Motivated Selection Rules for Principal Components........
1.3.1. Squared Pricing Errors....... ...
1.3.2. HJ-DiStance. ....... ..ot
1.3.3. Relationship to Chamberlain and Rothschild (1983) ..................
1.3.4. Comparison of Selection Rules............. ...,
1.4.  Asymptotic Results for Principal Component Factor Models..............
R O 1 v o 2 P
1.4.2. Asymptotic Results ...
1.5, Empirical Results . ...
1.5.1. Data and Implementation.......... ... ... i i

1.5.2.  Out-of-Sample Evaluation of Principal Component Factor Selection

1.5.3. Number of Factors ....... .o e
1.5.4. Comparison to Other Methods .............. ... ... . ..
1.6, ConCIUSION . . oottt
2. The Network Drivers of Trade Currency Invoicing ........... ...t
2.1, Introduction . ... ..o e
2.2. Related Literature ..........ooiiiiiiiiiii i,
2.3. The Network Model . ... .. ... e
2.4. Estimation Method........... ... ... . .. . .
2.5. Variable Construction and Data Description........................o.....
2.5.1. Dataset Construction .............oiiiiiiiiiiiii i
2.6. Network Analysis ..........ouiiuiiii e
2.6.1.  Are there Trade-Network Spillovers in Currency Invoicing? ...........
2.6.2.  The Drivers of Excessive Currency Invoicing..........................
2.6.3. The Network Key Players....... ..o
2.6.4. Cross-Currency and Export-Import Spillovers ........................
2.6.5. Counter-Factual Analysis....... ...
2.7, COnCIUSION . ..\ttt
3. Estimating Risk Preferences from Option Data ........... ... .. ... ... ..
3.1, INtroduction ... ......
3.1.1. Related Literature ...... ..o e
3.2. Preferences Associated with Observed Arrow-Debreu Securities...........
3.3, Estimation.........ooiiiii e
3.3.1. Estimation through Method of Sieves............. ... ... ... ... ...
3.3.2. Selection of Basis Function and Approximation Degree in Finite
SAMPIES . .t
. DAt . e
3.5. Empirical Results . ....... .
3.5.1. Estimated Risk Preferences and Parameter Stability..................
3.5.2. Revisiting the Pricing Kernel Puzzle............ .. ... ... ... . ...
3.5.3. CRRA Approximation ............o.uiiiiuieiiie i,

40



3.6, COnCIUSION . o o oottt 71

REfErences . ...t 72
4. Appendix of Chapter 1. ... .. 7
O 17 003 T 77
4.2. Proofs of Theorems . .........ouuiiii e 81
4.3. Selection Rules for RP-PCA ... .. e 87
4.4. Additional Figures ....... ..o 90
4.5. Additional Tables ... ..ot 94

5. Appendix of Chapter 2........ .o 96
D.1. Daba . e 96
5.1.1.  Excessive Currency Invoicing..............coooiiiiiiiiii .. 96
5.1.2.  Consumer Price Index Data.......... ... o i i, 97
5.1.3. Exchange Rate Data ......... ... i i 97
5.1.4. Trade Share Data ... 98
5.1.5. Foreign Debt by Firms ....... ..o i i 98
5.1.6. Swap Line Data...... ... 98
5.1.7. Financial Market Index Data......... ... ... i i, 98
5.1.8. Foreign Direct Investment Data .............. ... .. ... ... ... .. 99
5.1.9. Gross Domestic Product Data............ ... ..o i, 99

5.2. Additional Estimation Details............ ... . i i 99
5.2.1. Spatial Error Model....... ... 99
5.2.2. Spatial Lag Model ......... o i 100
5.2.3. Spatial Durbin Model ... ... ... . . 101
5.2.4. T Estimation via Heterogeneous SVAR ........ .. ... ... .. .. ... 102

5.3. Additional Figures .. ... ... 105
5.4. Additional Tables .. ... ... 110
6. Appendix of Chapter 3..... ... . 113
6.1. Assumptions, Lemmas and Proofs........... ... ... ... L. 113
6.1.1. Assumptions and Lemmas. ... 113
6.1.2. Proofsof Lemmas. ...t 114
6.1.3. Proofs of Theorems ..........oouiiiiiii i 115

6.2. Data Processing..........cooiiiiiiii e 116
6.2.1.  Cleaning StepsS .. ...ttt 116
6.2.2. Inter-/ Extrapolation............. .. .o 118

6.3. Goyal Welch Procedure. ... ... ... 119
6.4. Additional Figures ..........o.iiiii i 120
6.5. Additional Tables . ... 122



© o0 N O ot s W N

g St
N S Ut R W NN = O

18
19
20
21
22

23
24

LiST OF FIGURES

Comparison of PCA Factor Selection Rules.............. ..., 14
Full OOS Performance . ...... ... e 20
Number of FACtors . ... ...t e e e 22
Performance Comparison with Robust SDF Estimator........................... 25
Performance Comparison with Baseline RP-PCA ................................ 26
Performance Comparison with Baseline and Optimally Selected RP-PCA ....... 27
Export-Based Excessive Currency Invoicing across Countries .................... 38
Impulse-Response Functions of USD Excess Currency Invoicing.................. 48
Impulse-Response Functions of EUR Excess Currency Invoicing ................. 49
Cross-Currency and Export-Import Spillovers .......... ... ..ot 52
Counterfactual: Abandonment of USD as Vehicle Currency...................... 54
Estimated Risk Preferences ......... ... i 65
Comparison of Estimated Risk Preferences.............. ... ... ... 67
Full OOS Performance — 24 months ... 90
Performance Comparison with Robust SDF Estimator — Other Datasets......... 91
Performance Comparison with Baseline RP-PCA — Other Datasets.............. 92
Performance Comparison with Baseline and Optimally Selected RP-PCA — Other

DataSES . . vttt 93
Import-Based Excessive Currency Invoicing across Countries .................... 105
Impulse-Response Functions of USD Aggregate Currency Invoicing.............. 106
Impulse-Response Functions of EUR Aggregate Currency Invoicing.............. 107

Cross-Currency and Export-Import Spillovers — Aggregate Currency Invoicing ... 108

Counterfactual: Abandonment of USD as Vehicle Currency — Aggregate Currency
INVOICIIG . . . .o 109

Unconstrained and Constrained Estimated Risk Preferences..................... 120

Estimated Risk Preferences and CRRA Preferences across Maturity Horizons. ... 121



© 0 N O Ot s W N

[ i i e e e e e e
S © 00 N O U ok W NN = O

21

22
23

LisT oF TABLES

Factor Statistics and Model Evaluation........... ... ... oL, 10
Number of Factors . ... 23
The Posterior Likelihood of Trade-Network Spillovers............................ 41
The Drivers of Excess Currency Invoicing ... 43
The Drivers of Aggregate Currency Invoicing........... ... o oL, 44
Test of Parameter Stability...... ..o 66
Pricing Kernel Puzzle Tests . ... ... 68
Out-of-Sample Performance across Maturities ...............coiiiiieeiina... 69
CRRA Coefficient EStImMates ... .....oon i 70
Are CRRA Preferences Rejected? . ... ..o 70
IS Performance .. ... e 94
OOS Performance. . .. ....ouu o 95
Prices of Risk under Different Selection Rules ............. .. ... ... ... ... ... 95
The Posterior Likelihood of Trade-Network Spillovers............................ 110
The Baseline Spatial Durbin Model ........ ... .. i 111
The Baseline Spatial Durbin Model ........ ... ... i i, 112
Information Criteria . ... ... .. ..ot 122
Test of Parameter Stability —c=5....... . 122
Test of Parameter Stability —c=25.. ... . 122
Pricing Kernel Puzzle Test for Different Volatility Surface Inter-/ Extrapolation

Methods . ..o 123
Pricing Kernel Puzzle Test for Arrow-Debreu Securities Extracted from Different

Option QUOLES . .« ottt 123
Pricing Kernel Puzzle Test with Different Basis Functions....................... 124
Pricing Kernel Puzzle Test across Maturities................oo i, 124



Chapter 1.
Constructing Factor Models that Approximate the
Stochastic Discount Factor

I show that to construct factor models for the cross-section of expected returns, principal
component factors should be selected based on risk premia or Sharpe ratios — rather than
eigenvalues, as is predominantly done in the literature. This is because prices of risk for
principal component factors are given by their risk premia divided by eigenvalues. Hence,
selection based on eigenvalues does not guarantee selection of economically relevant factors.
Formally, I show that selection based on risk premia (Sharpe ratios) minimizes the sum of
squared pricing errors (Hansen-Jagannathan distance) for a factor model and demonstrate
empirically that the proposed selection methods lead to substantial in- and out-of-sample
improvements. For example, for a five-factor model selection based on Sharpe ratios
increases the associated maximum Sharpe ratio by 68% out-of-sample. Further, I devise a
test to determine the number of factors and find that relatively few principal components

approximate the stochastic discount factor.

1.1. Introduction. A central prediction of asset pricing theory is that assets have dif-
ferent exposures to systematic sources of risk which carry risk premia as compensation for
bearing such risk. Identifying the correct factors associated with these sources of risk has
become a central question of asset pricing as it is the crucial first step for several prac-
tical applications such as capital budgeting, performance evaluation of asset managers,
estimating risk premia of non-tradable factors, and so on.

Economic theory offers some guidance on the nature of these factors. However, the
search for factors has produced hundreds of potential candidates, leaving applied re-
searchers with ambiguity around the relevance as well as significance of different factors
and on how to construct a model from them. Due to this proliferation of factors, machine
learning and statistical methods for factor model construction have re-emerged in empiri-
cal asset pricing with the prevalent approach being principal component analysis (for early
examples see Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986); for
recent examples see Kelly, Pruitt, and Su (2019) and Giglio and Xiu (2021)).

An attractive feature of this approach is that the use of principal component factors
can be motivated by the law of one price. Kozak, Nagel, and Santosh (2018) demonstrate
that the projection of the stochastic discount factor (SDF) on excess returns, as derived in
L. Hansen and Jagannathan (1991), can always be expressed as a linear function of the NV
principal component factors, where IV denotes the number of assets. This implies that, for
any test asset set considered, a correct factor model is the one containing the N principal
component factors. Applied researchers use only a subset K < N principal component
factors, which consequently gives rise to an approximation of the valid model. This raises
the question, what the consequences of this approximation are, and more specifically, how
the principal component factors should be selected in light of the SDF.

The predominant approach is to rank principal component factors based on their eigen-
values, i.e. their variance, and retain the K largest. The main result of this paper is
that if the objective is to select factors that are relevant to pricing the cross-section —
or equivalently to approximating the SDF — selection should be based on principal com-

ponent factor’s risk premia or the Sharpe ratios, not based on their eigenvalues. To see
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the intuition for this result, note that principal component factors are by construction
orthogonal to each other. Therefore, prices of risk, i.e. the multivariate regression coef-
ficients with which factors enter the SDF, are equal to the principal component factor’s
risk premia divided by its eigenvalue. Consequently, selection based on eigenvalues gives
little guarantee that the selected factors are relevant to the SDF as their prices of risk are
potentially small. If, for example, the risk premium is zero, the factor does not matter
regardless of its eigenvalue. In contrast, when focusing on the cross-section of expected
returns, risk premia of principal component factors inform us not only if a factor is priced,
but also if it is pricing assets.

Formally, I demonstrate the following results. Selecting a subset of K < N princi-
pal component factors leads to pricing errors. If the objective is to select K principal
component factors such that the associated factor model’s sum of squared pricing errors
is minimized, the K principal component factors with the largest (squared) risk premia
should be selected. If however, the objective is to find factors that approximate the SDF
well, i.e. that minimize the L. Hansen and Jagannathan (1997) (HJ-)distance of the asso-
ciated factor model, the ranking should be based on (squared) Sharpe ratios. The latter
approach has the convenient interpretation that selection based on Sharpe ratios leads to
the optimal SDF approximation in the least-square sense and maximizes the Sharpe ratio
of the tangency portfolio associated with the constructed factor model.

For asset pricing, principal component factor selection based on eigenvalues was mo-
tivated by Chamberlain and Rothschild (1983), who demonstrated that doing so bounds
the sum of squared pricing errors of the associated factor model. The presented analy-
sis is consistent with this result and specifically can be viewed as a tightening of their
bound. Empirically, I document that the proposed selection rules lead to substantial in-
and out-of-sample improvements over selection based on eigenvalues, measured in terms of
root mean squared error, the HJ-distance, and the Sharpe ratios associated with a factor
model’s tangency portfolio. For example, on the anomaly portfolios by Kozak, Nagel, and
Santosh (2020) constructing a 5-factor model based on factors associated with the largest
squared Sharpe ratios doubles the associated tangency portfolio’s Sharpe ratio in-sample
and increases it by 68% out-of-sample. Additionally, it reduces the HJ-distance by more
than 50% in- and-out-of-sample.

Having established how factors should be selected in light of the SDF, I turn to how
many factors should be selected. I devise a method to estimate the number of factors
required to approximate the SDF!. The approach adds principal component factors to a
factor model based on their Sharpe ratio and repeatedly tests whether the HJ-distance is
significantly different from zero at a specified significance level. This identifies the num-
ber of factors required such that the factor model’s HJ-distance is no longer significantly
different from zero. To mitigate multiple testing problems, the stopping point K is based
on the approach by G’Sell et al. (2016), which controls the family-wise error rate. Empir-
ically, I document that for several datasets relatively few principal component factors are
required to approximate the SDF well, when selected based on their Sharpe ratios.

The estimator requires establishing the asymptotic distribution for quantities associated
with principal component factor models. To do so, I draw on results from the large
dimensional factor literature (see Bai and Ng (2008) for a survey), which allows me to

1 Several estimators for the number of principal component factors exist, however, these are designed to
determine the number of factors required to capture the variation in data.
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establish the properties of risk premia, prices of risk, pricing errors, and the HJ-distance.
Relative to existing studies, I examine the necessary assumptions such that the factor
model implied by the law of one price connects to the factor model analyzed in the large
dimensional factor literature — this shows that the law of one price implies additional
structure for the data generating process. Because of this, under similar assumptions
as in Giglio and Xiu (2021), I show that principal component factor’s risk premia are
recovered up to their sign at potentially faster convergence rates and derive the asymptotic
distribution of these and of prices of risk. Under slightly strengthened assumptions, I derive
the asymptotic distribution of pricing errors, whose asymptotic covariance matrix exhibits
an adjustment reminiscent of the Shanken (1992) adjustment, but larger. Using this result
the properties of the HJ-distance are established.

The results of this paper are closely related to other approaches recently developed
in the literature. Kozak, Nagel, and Santosh (2020) estimate the SDF via elastic net
regularization. When their estimator is applied to principal components of the return
data the Lasso component (L!-penalty) of their estimator performs principal component
factor selection based on risk premia. The results of this paper formally justify this com-
ponent. FEmpirically, I demonstrate that factor models constructed using the presented
optimal selection rules outperform the Kozak, Nagel, and Santosh (2020) estimator in- and
out-of-sample across multiple datasets. Lettau and Pelger (2020b) design a method to ex-
tract factors for the cross-section of expected returns — risk premium principal component
analysis (RP-PCA). T empirically document that while the RP-PCA based factor models
outperform factor models constructed from standard principal component factors, they
do so to a substantially lesser degree once the optimal selection rules are employed. For
example, principal component factor based models with factors selected based on Sharpe
ratios typically outperform the RP-PCA in terms of the HJ-distance in- and out-of-sample.
I further demonstrate that the presented selection rules also apply to the RP-PCA and
document empirically that this further boosts its in- and out-of-sample performance.

To see the broader relevance of the results of this paper, consider the estimation of risk
premia of non-traded factors. Giglio and Xiu (2021) highlight that classical approaches
— two pass cross-sectional regressions, Fama-MacBeth regressions, and factor mimicking
portfolios — are susceptible to omitted variable bias. This arises whenever the factor model
specified by the econometrician does not fully account for all priced sources of risk in the
economy. They suggest constructing factor models via principal component analysis and
demonstrate how this resolves issues arising from omitted variable bias. A crucial step in
this approach is that principal component analysis recovers priced factors. The presented
results aid in the efficient selection of relevant priced sources of risk for any test asset set
under consideration.

Section 1.2 gives an example to highlight the connection between the SDF and principal
component factors. Section 1.3 derives the general result and discusses the relationship to
Chamberlain and Rothschild (1983). Section 1.4 derives and discusses the asymptotics.
Section 1.5 discusses the out-of-sample performance of the selection rules, the estimator
for the number of factors and highlights complementarities of the results of this paper
with Kozak, Nagel, and Santosh (2020) and Lettau and Pelger (2020b). Finally, section
1.6 concludes.

1.2. The SDF and Principal Components. To understand the role of principal com-

ponents for factor models consider the following stylized example. Let R; denote a vector
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of gross returns and let E[R; 11 R}, ;] = QAQ’ denote the eigendecomposition of the second
unconditional moment, where (@ is the collection of eigenvectors and A is a diagonal matrix
containing eigenvalues. Consider the SDF projection onto the gross return space

N ., /
M}, = iNE[Rp 1Ry Ry = Z (ZN%);qutH)
k=1 k
where iy is a N x 1 vector of ones, g is the k' column of Q and ), is the k* element of the
diagonal of A. By substituting the eigendecomposition of E[R;;1R; ] the SDF projection
can be expressed as a N factor model with factors being principal components g Ry 1.
Furthermore, they enter the SDF with coefficient iy g /Ax highlighting that eigenvectors
play an important role in whether a principal component factor matters for the SDF or
equivalently the cross-section of expected returns.

To demonstrate this link further, assume that the first eigenvector satisfies ¢ = iy /v/N.
Due to the orthogonality of eigenvectors it immediately follows that 'y q; = 0 for all k£ > 2.
Therefore, the SDF projection reduces to
(ivq1) (¢ Resr)

A1

Notice that the eigenvector can be viewed as portfolio weights and ¢} Ri+1 denotes the

* j—
Mt+1 -

portfolio return. Since q; = iy /v N the first principal component is related to the market

portfolio. Define
1. 1
Ryriv1 = NZNRtH = ﬁ(ﬁRtﬂ

and note E[R?\/[,t 41l = A1/N. Therefore,

« _ R
S E[R%\/Lt—f—l]
which shows that the SDF projection is proportional to the market portfolio. Define the
zero beta rate v = 1/E[M} ;] and by the law of one price, E[M/ ;R; ;1] = 1, it follows
that for any ¢
Cov(Rym 41, Rigr1) Var(Ra41) 1
Var(Ru41) E[R3, 1] E[M;]

E[Rit41] —v=—
By applying the prior result to the market portfolio itself, the expression simplifies to

E[R; t+1] —v = Bumi(E[Rpi41] — )

where Sar; = Cov(Ras 41, Rit+1)/Var(Rar+1). Hence, assuming ¢ o< i, or any g o iy
for that matter, in combination with the law of one price implies the extreme case in which
only one factor, i.e. the market factor, matters for the SDF and by extension implies a
factor model resembling the CAPM for the cross-section of expected returns.

Assuming q; = in/v/N is crucial to the above result, however, does not hold in practice.
Several studies suggest q; ~ iy /v N (see for example Kozak, Nagel, and Santosh (2018)
and Pelger (2019)), however, this cannot hold exactly. To see why, note that in the prior
example, the expected market risk premium is positive only if the expected market return,
and therefore zero beta rate, is negative’.

The example illustrates the link between principal components, the SDF, and factor

models. A correct factor model consists of the N principal component factors. Further,

2 Since v = 1/E[M{y1] = E[R3; 74 1)/E[Ru,7+41] it follows that E[Ras¢+1] —v = —Var(Risy1)/E[Ras,i41]-
Therefore the expected market risk premium is positive only if the expected market return is negative.
8



the eigenvectors of principal components provide insights into the relevance of each factor.
The next section builds on this intuition and derives more general results with a focus on
how principal component factors should be selected when constructing factor models for

asset pricing.

1.3. Economically Motivated Selection Rules for Principal Components. The
focus of most studies is on excess or long-short returns. As before, it is straightforward
to show that for any cross-section of excess returns, the N principal components give a
valid factor model. Analyzing how these factors relate to the SDF allows to assess the
quality of factor models constructed from a selection of principal component factors. To
do so, let Ri41 be a N x 1 vector of excess or long-short returns with p = E[Ry41],
Y = Var(Rit1) and ¥ = QAQ’, where Q = [q1,...,qn] is the collection of eigenvectors
and A a diagonal matrix containing eigenvalues. I focus on unconditional expectations for
convenience, however, all results carry over to conditional expectations.

Assume the law of one price holds and consider the SDF projected onto excess returns.
Following L. Hansen and Richard (1987) and L. Hansen and Jagannathan (1991), the SDF

projection can be expressed as
Mgy =1 'S (Ryy1 — p)

where I have normalized E[M}, ] = 1 for convenience but without loss of generality. Note
E[M}, Ri11] = 0 holds for the set of assets onto which the SDF is projected exactly. As
in Kozak, Nagel, and Santosh (2018), substituting the eigendecomposition in the above

the SDF becomes
N /
o Miey =1 =37 508G (Revs = )
k=1
By substituting (1) in E[M} ; R;11] = 0, the above immediately implies a IV factor model

for returns of form
N

(2) E[R; 1] = Z 1 . Bi
k=1

where 3; ;, = Cov(q,,Ri+1, Ri41)/Var(q,Ri+1). Note that 5 = ¢ as Var(q,Rir1) = Mk
and Cov(qRiy1, Rit+1) = A\k¢ik due to properties of eigenvectors. In spirit of section 1.2,
equations (1) and (2) demonstrate that a valid factor model for the SDF and the cross-
section of expected returns consists of the N principal components.

Equation (1) shows that the multivariate regression coefficients with which factors enter
the SDF, or their prices of risk, are by, = p/qi/ M\, and allows to analyze how a selection of
principal component factors enters the SDF. In practice, the predominant approach is to
rank principal component factors based on their eigenvalues, Ag, and build a factor model
with factors associated with the largest eigenvalues. Equation (1) demonstrates that this
approach gives little guarantee that selected factors are relevant to the SDF as their prices
of risk, by, are potentially small. The problem is that such a selection method ignores
the risk premium of factors, p'qs. If for example p/'qr = 0 the factor should be ignored
regardless of its eigenvalue.

To gauge the practical relevance of this observation, I examine two datasets commonly
used in the literature — the 25 size and value portfolios (FF25) and the 57 long-short
anomaly portfolios by Kozak, Nagel, and Santosh (2020) (KNS57). For each, I calculate

principal component factors and rank these by eigenvalues. Table 1 reports the eigenvalues
9



Table 1. Factor Statistics and Model Evaluation
FF25
PC1 PC2 PC3 PC4 PCh PC6 PC7 PC8

Factor statistics ~ Ag 0.123 0.006 0.005 0.004 0.001 0.001 0.001 0.001
RP,  0.527 0.083 0.026 0.045 0.046 0.012 0.014 0.041
SR, 0433 0.298 0.111 0.208 0.371 0.107 0.128 0.456

Model statistics &a  0.015  0.008  0.008  0.006  0.004  0.003  0.003  0.002
HJ 0076 0068 0067 0064 0052 0051 0050 0.033

be  0.356*** 1.070"* 0477 0960 3.010* 0932  1.210 5.081**

(0.000)  (0.001) (0.251) (0.050) (0.000) (0.289) (0.184) (0.000)

KNS57
PC1 PC2 PC3 PC4 PC5 PC6 pPC7 PC8

Factor statistics ~ Ap 0.030 0.011 0.008 0.006 0.003 0.003 0.002 0.002
RP, 0.191 0.072 0.084 0.104 0.111 0.207 0.017 0.081
SR, 0.320 0.197 0.277 0.404 0.561 1.100 0.105 0.565

Model statistics &/é 0.111  0.106  0.099  0.088  0.076  0.033  0.033  0.026
HJ 0637 0634 0628 0614 058 0487 0486  0.460

be  0.536™  0.537*  0.916* 1.565"* 2.848*** 5.841*** 0.655 3.957

(0.028) (0.088) (0.055) (0.006) (0.000) (0.000) (0.516) (0.000)

Note: The table reports estimated eigenvalues (S\k), risk premia, (El\% = [i’Gx), Sharpe ratios (S/'I\%k =
p/qk/\/ﬂ), sum of squared pricing errors (6'a), HJ-distance (HJ = &’S~'a) and prices of risk (bx =
i Qg /5\;@) for the first eight principal components extracted from different datasets. Note risk premia,
Sharpe ratios and the sum of squared pricing errors are annualized and factors have been normalized
to have positive mean. The sum of squared pricing errors and HJ-distance correspond to a factor model
containing the first through K*" principal component indicated in each column. In brackets below the price
of risk estimates the p-value associated with Hy : by = 0 is reported based on the asymptotic distribution
derived in section 1.4. The Newey and West (1987) covariance estimator is employed with T4 lags.
Estimates significant at the 10%, 5% and 1% are indicated by *, ** and *** respectively. Each dataset
consists of monthly excess or long-short returns — for a description of the data see section 1.5.1.

and annualized risk premia and Sharpe ratios for these. From the principal component
factors, I construct factor models subsequently increasing the number of factors. To eval-
uate the model, I report the annualized sum of squared pricing errors, the HJ-distance,
and the price of risk for each principal component factor in table 1.

For both datasets selection of principal components based on eigenvalues does not guar-
antee that factors with the largest and most significant prices of risk are selected early
on. Focussing on squared pricing errors, the largest reductions seem to occur when factors
with large risk premia are added to the factor model — for FF25 these are PC2, PC4, and
PC5; for KNS57 these are PC4, PC5, and PC6. Turning to the HJ-distance, the largest
reductions occur when factors with large Sharpe ratios are added to the factor model — for
FF25 these are PC2, PC5, and PCS8; for KNS57 these are PC5, PC6, and PC8. Overall,
this suggests that selection of principal component factors solely based on eigenvalues may
be suboptimal if the goal is to select factors relevant to pricing the cross-section.

To formally analyze how principal component selection affects the ability of the asso-
ciated factor model to price the cross-section consider the SDF approximation containing
K principal components



The approximation will lead to violations of the law of one price, that is E[M}, | R; 11] # 0.

These violations can be expressed as

Q= E[Mt*+1Ri,t+1]

K
=E[R;4+1] — Z 1 Qi g
k=1

N
= Y Warain
k=K+1
where I used the definition of ]\thﬁrl to obtain the first equality and (2) to obtain the second
equality. These o; correspond to OLS intercepts of a time series regression of R; ;1 on a
constant and the K factors Fj 411 = qfthH.

Jointly expression (1) and (3) reveal how a selection method impacts the quality of
the SDF approximation and of the associated factor model, measured by mispricing «;.
Selection based solely on Ax may lead to a poor SDF approximation or a factor model with
poor pricing performance. This insight and what it implies for optimal factor selection
can be made more precise by considering explicit criteria with which factor models are
evaluated.

1.3.1. Squared Pricing Errors. Consider the sum of squared pricing errors across all assets
associated with a factor model containing K principal component factors. Let Qn_g =
[qK 41, ---, qn] be the set of omitted eigenvectors. Note (3) can be written more compactly
as @ = QN_gQy_ g p. Therefore,

N N
(4) da=Y al= Y (Wa)
=1 k=K+1

where I used the fact that Qy_,Qn—x = In—k. Recall that the principal component
factor is Fj 11 = q;RtH, so the associated risk premium and variance is E[Fj, ;41] = q}cu
and Var(Fy;41) = A, respectively.

Expression (4) demonstrates that the sum of squared pricing errors is equal to the sum
of squared risk premia belonging to the principal component factors omitted from the
SDF approximation or factor model. Equation (1) already demonstrated that risk premia
matter for whether or not a principal component factor enters the SDF, as there is a
one-to-one mapping between risk premia and prices of risk. The surprising insight of (4)
is that if the objective is to select factors that minimize pricing errors only risk premia
matter and eigenvalues, A\, are irrelevant. Put differently, if we wish to construct a factor
model from principal components that minimize o’«, we should select factors with the

largest risk premia and omit factors with small risk premia.

1.3.2. HJ-Distance. Albeit interesting, o/a may not be the right criterion to consider.
Specifically, a low o/ a does not guarantee that the SDF is well approximated and o’ « is sus-
ceptible to repackaging and scaling of test assets. The L. Hansen and Jagannathan (1997)
(HJ-) distance overcomes these issues.

The objective of the HJ-distance is to assess the magnitude of specification error induced
by using a proxy SDF from the set of admissible SDFs. As I consider excess returns, the
law of one price does not identify the mean of the SDF. I therefore normalize the mean

of the proxy and of the set of admissible SDFs to be one. Under this normalization the
11



HJ-distance is given as®
HJ =dY o
and measures the least-squares distance between the proxy SDF and the set of admissible

SDF's. Substituting (3) and the eigendecomposition of ¥ in the expression yields

HJ = Qn-kQy_xQN Q' Qn-_rQN_xn
= 1 QN-k AN QN Kl

_ i (1'q)?

A
k=K+1 'k

()

where I used the orthogonality of eigenvectors to arrive at the second equality. Notice
that (¢/qx)?/ M is the squared Sharpe ratio of principal component factor k. From (5) it
follows that

N K
o (W aw)? (1 qi)?
HI=> N > N
k=1 k=1
= SR( 15*-1-1)2 - SR( 15*-1-1)2

(6)

where SR(M) denotes the Sharpe ratio of the tangency portfolio associated with SDF M*.
Therefore, in the considered setting, the HJ-distance additionally measures how close the
Sharpe ratio associated with the proxy SDF, ~t*+1, is to the maximum attainable Sharpe
ratio on the test assets which is associated with M}, ;.

Expression (5) demonstrates that the HJ-distance is equal to the sum of squared Sharpe
ratios belonging to the principal component factors omitted from the SDF approximation
or factor model. This suggests principal component factors with the largest Sharpe ratios
should be selected. In turn, this achieves three objectives. First, it leads to a factor model
that minimizes weighted pricing errors. Second, it leads to a SDF approximation that is as
close as possible, in the least-squares sense, to the set of admissible SDFs. Third, by (6),
it ensures that the Sharpe ratio of the tangency portfolio associated with the approximate
SDF is as close as possible to the maximum attainable Sharpe ratio. In contrast, classical

selection based on A is not guaranteed to achieve either of the aforementioned objectives.

1.3.3. Relationship to Chamberlain and Rothschild (1983). Classical selection of princi-
pal components is based on retaining the factors associated with the largest eigenvalues.
Economically, this selection procedure was formally motivated by Chamberlain and Roth-
schild (1983) for asset pricing, who demonstrated that such a selection will bound the sum
of squared pricing errors of the associated factor model. The result derived from equation
(4) seems to be at odds with their result. I here demonstrate that (4) is consistent with
their result and specifically can be viewed as tightening their bound.

Chamberlain and Rothschild (1983) showed that under no arbitrage, as N — oo, as-
suming the K + 1% largest eigenvalue is finite, that the squared pricing errors associated

with a factor model consisting of the K principal components obey

N
(7) Pk =Y of
=1

3 Let y be a general SDF proxy, M be the set of admissible SDFs with m € M and let ||.|| be the standard
L? norm. L. Hansen and Jagannathan (1997) consider the general problem H.J = minmeam ||y —m||, which
yields HJ = o/E[Rs+1R;1] " a. When we constrain E[y] = E[m] = 1, Kan and Robotti (2008) show that
HJ = ming,e mgmi=1 ||ly — m|| yields HJ = o'S 7 a.

4 Specifically, it corresponds to the Sharpe ratio of the return R;,; = u%E;lFtH.
12



where § is the maximum attainable Sharpe ratio in the economy and Ay 1 is the K + 1

largest eigenvalue eigenvalue®

. Hence, selection based on the largest eigenvalues ensures
that the above bound is as tight as possible and therefore should lead to lower squared
pricing errors.
The setup considered thus far is slightly different from Chamberlain and Rothschild (1983).

I here work with the weaker assumption that the law of one price holds, make no assump-
tions on the behaviour of eigenvalues and the results hold for all N. Nevertheless, their
bound can also be derived under these assumptions. Notice that under the law of one price,

*

the maximum attainable squared Sharpe ratio is equal to Var(M/, ) since E[M/ ] =1
(see L. Hansen and Jagannathan (1997)). Therefore,

/

52 — Var(M; )_EK: (War)?® | i (1'qr)?
= t+1) = e A
k=1 k=K-+1
which follows by (1) using the properties of principal components. I further split the
variance of M, into two components for exposition. Let Ax;1 denote the eigenvalue
such that A1 > A\ for all k € {K 4+ 1,...,N}. As the first term on the right-hand side

is positive and by the definition of Ax 41 it follows that

1 N
P S ()
K+1 k=K1

which using (4) immediately yields the Chamberlain and Rothschild (1983) result in (7).

The difference between the Chamberlain and Rothschild (1983) bound in (7) and the
result in (4) is that their bound can be arbitrarily loose. Selecting principal component
factors associated with the largest A; can ensure that the bound becomes as tight as
possible, however, this will not guarantee that it will hold exactly. In contrast, the result
in (4) is an identity and therefore selecting principal component factors associated with
the largest risk premia directly ensures that o/« is as low as possible. This allows for

potentially more efficient selection.

1.3.4. Comparison of Selection Rules. To evaluate the relevance of the previously dis-
cussed selection rules, I examine the performance of principal component based factor
models for three different test asset sets. On each test asset set, I calculate the principal
component factors and sort them by eigenvalues, squared risk premia, or squared Sharpe
ratios. I then construct pricing errors and the return on the associated tangency portfolio.
Based on these I calculate the root mean squared error, the HJ-distance, and the Sharpe
ratio. For details on the datasets and estimation see section 1.5.1.

From left to right, the panels in figure 1 report RMSE, the HJ-distance, and the Sharpe
ratio for the three different selection methods over the full set of principal components, that

is for every approximation degree K. The leftmost figures illustrate that selection based

5 They show that the pricing errors are bounded by the highest squared Sharpe ratio, 62, and the K + 1°¢

eigenvalue, that is
N

K N
Z(#i - ZTkﬂi,k)Q = Za? < Ag416°
i=1 k=1 i=1
where p; are mean excess returns and 7 are coefficients for the betas. The above bound corresponds
to their theorem 3’ and is for a finite economy with N assets, which they allow to go to infinity (see
Chamberlain and Rothschild (1983)). As in the limit Ax4+1 is finite, they argue principal components
corresponding to the largest K eigenvalues can be used to price assets well and the arbitrage pricing
theorem holds approximately. Using their lemma 1 it can be shown that their expression for 7, 3; x in the
above is equal to g g, using the notation here.
13



Figure 1. Comparison of PCA Factor Selection Rules
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Note: The figure depicts the RMSE, the HJ-distance and Sharpe ratio of Ry, for factor models subse-
quently increasing K, the number of principal components selected. For each test asset set the principal
components are extracted. They are then sorted based on the largest A, (¢'qx)? or (1'qx)?/ Ak to con-
struct factor models. All test assets are at monthly frequency and returns correspond to excess returns or
long-short returns — for a description of the data see section 1.5.1.

on squared risk premia minimizes RMSE consistently across all approximation degrees and
datasets. Trivially, as K — N, a factor model prices assets perfectly — all selection rules
lead to zero RMSE. The important feature is that selection based on squared risk premia
achieves consistently lower RMSE than the competing methods for all approximation
degrees, especially for lower K (see table 11 in the appendix).

The central and rightmost figures illustrate that selection based on squared Sharpe ratios
minimizes the HJ-distance and maximizes the Sharpe ratio of the associated tangency
portfolio with consistently sizeable gains over selection based on eigenvalues. Again, as
all principal components are included the HJ-distance becomes zero for all selection rules,
however, selection based on squared Sharpe ratios is able to deliver consistently lower HJ-
distances for all approximation degrees. Further, these gains are economically meaningful,
even if only few principal components are considered as illustrated in table 11 in the

appendix. For K = 3, across datasets selection based on principal component Sharpe
14



ratios improves monthly tangency portfolio Sharpe ratios by 0.06-0.44 relative to selection
based on eigenvalues. More so, these gains persist across a variety of approximation degrees
K until the SDF approximation reaches the limit.

Finally, as discussed and illustrated in table 1 principal component factor selection based
on eigenvalues can lead to the inclusion of less important factors in terms of their associated
prices of risk. Table 13 in the appendix compares the prices of risk for the first ten factors
selected under each selection rule for different datasets. Selection based on squared Sharpe
ratios leads to substantial improvements over selection based on eigenvalues. Factors with
larger and highly significant prices of risk are selected early on. This is expected as prices
of risk, by, = p'qx/Mk, are closely related to Sharpe ratios, SRy = p'qx/v/Ak, but not
fully mechanical as the selection rule is not directly based on p-values. Selection based on
squared risk premia in comparison only leads to minor improvements over selection based
on eigenvalues. Therefore, the results in table 13 further strengthen the results obtained
for the HJ-distance. If the goal is to construct factor models that approximate the SDF
well and include factors relevant to the SDF, selection of principal components should be

based on Sharpe ratios.

1.4. Asymptotic Results for Principal Component Factor Models. This section
derives asymptotic results to evaluate the quality of a principal component factor model in
the context of the SDF. First, I establish asymptotic results to evaluate whether principal
component factors enter the SDF with nonzero coefficients, i.e. nonzero prices of risk.
Further, to assess the overall quality with which a model approximates the SDF the
asymptotic distribution of pricing errors and the HJ-distance is given. All proofs are
deferred to the appendix.

1.4.1. Setup. Since PCA is typically applied to datasets with large cross-sections the
results are derived for both N,T — oco. To do so, I draw on the large dimensional factor
literature (see Bai and Ng (2008) for a survey). The starting point in this literature is
that data is driven by K < N factors and idiosyncratic errors.

As shown, the law of one price implies that a valid factor model consists of the N

principal component factors. Writing equation (2) compactly gives

p=QrQxn+ QN-KkQN_KI

where I separated factors into two groups and used the fact that for each group betas are

equal to eigenvectors®. It follows that
R = QrQxRi+ QN-rQNn_gR:

No error is introduced as the above is an identity since QQ" = Iy. To connect the prior
to settings considered in the large dimensional factor literature the following assumption
is made.

Assumption E.1. Let y/q, =0V ke K+1,...,N.

Assumption E.1 implies that the second term in the return identity is zero in expec-
tation. For all economic purposes, this component is noise as it does not deliver risk

compensation. The assumption therefore separates the process for R; into a factor and

e actor representation of p is valid for any orthonormal matrix or basis. e eigenvector matrix
6 The N fact tation of y is valid for any orth ] matrix or basis. The eig t tri
Q@ of the covariance matrix is a natural choice motivated by the law of one price.
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idiosyncratic error component given as
(8) Rt — ,BFt + Et

where § = Qk, F} = QxR and Ey = Qn_gQ'y_ ;¢ Re. It follows that E[E;] = 0, E[FLE}] =
0, f/E; =0, Var(F;) = Ar kg which is diagonal and 5’ = Ik.

Given (8) assumptions on factors and errors are made to characterize the asymptotic
properties of the principal component factors. I make assumptions similar to the strong
factor setting by Bai (2003), which establishes asymptotic properties under fairly general
conditions. The results can be extended along the line of Bai and Ng (2023) to allow for
weaker factors. Relative to existing studies, the setup considered here differs in several
aspects. First, coefficients and errors are orthogonal, 3'E; = 0, which leads to faster
convergence rates for coefficients than in e.g. Bai (2003). Second, the restrictions on
factors and coefficients imply a specific factor normalization in spirit of Bai and Ng (2013)
—theorem 1 demonstrates that risk premia are therefore recovered up to their sign. Finally,
as in Lettau and Pelger (2020a) and Giglio and Xiu (2021), returns are allowed to have
non-zero means which requires additional assumptions.
1.4.1.1.  Assumptions. In what follows, let X = X — ip@’, where z = 1/T'Y, Xy, let
||l.|| denote the Frobenius norm and [|.||s, denote the spectral norm. Also define dy7 =
min(v/N,+/T). As limits are taken over both N and T, it is convenient to define the sample
covariance matrix fJT and normalized sample covariance matrix )y NT = fJT /N — both

matrices share the same eigenvectors and their eigenvalues are connected via A7 = NAy7.

Assumption A.1. Let yn(s,t) = E[%E;Et] For all N and T there is a positive constant
M < oo such that

(i) % Yo 2w (s, t)] < M and maxy [yn(t,t)] < M

(i) 73 3 2t BN, Bis iy — E[EisEig])?] < MN
Assumption A.2. For all T and every i there is some positive constant M < oo such
that B[||>>, FEi.||*] < MT.
Assumption A.2’. For all T and every i there is some positive constant M < oo such
that B[], FyEit||*] < MT.
Assumption A.3. As N,T — oo, let

(i) ﬁf& wr where pp s finite;

(ii) ﬁF’F LA Arn k. where Arn i is diagonal, positive, finite and has distinct ele-

ments.

Assumption A.4. Define vy = ﬁFt — up Sso that v = Tlﬁf— pp. AsT — oo the

following central limit theorem holds
VTo % N(0,9Q,)

where Q, = limp_,o, TE[07'].
Assumption A.5. Define e = %Zt Ey. As T — oo the following central limit theorem
holds

VTe % N(0,9.)

where Q. = limp_,, TE[e€'].

Assumption A.1 restricts the dependence of E;. It limits the contribution of errors to
the overall return variance, however, allows the largest eigenvalues of the error covariance

matrix to grow at rate v/ IV and is therefore more general than the setting in Chamberlain
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and Rothschild (1983)7. Assumption A.2 is as in Bai (2003) and restricts the dependence
between errors and factors. Assumption A.2’ further constrains the variation of error and
factor lead-lag correlation and is used to analyze the properties of &. Assumption A.3 (ii)
corresponds to the standard pervasiveness condition and states that factor variances grow
with N — it takes a slightly different form than in e.g. Bai (2003) as coefficients in
(8) are normalized. Assumption A.3 (i) is necessary to rule out asymptotic arbitrage
opportunities or mechanical irrelevance of factors for pricing as together with assumption
A.3 (ii) it ensures sample Sharpe ratios converge to a finite limit. Finally assumption A.4

and A.5 state that sample means of factors and errors satisfy central limit theorems.

1.4.2. Asymptotic Results. To test if principal component factors are relevant to the
SDF, I first establish the asymptotic properties of sample risk premia. Let fir denote the
sample average of the principal component factors Fy = Q’KRt. Theorem 1 presents the
asymptotic distribution of i with the proof given in the appendix.

Theorem 1. Under E.1 and A.1-A.}, as N,T —
1. _ 1 1
—F—Ur — SMF = SU + Op(f + W)

VN

for the K x K matrixz S that is asymptotically diagonal with 1 or -1 on its diagonal.
Further, if \/T/N2 -0

1 d
ﬁ(ﬁ F— Sur) = N(0,9,)
where Q,, = Q, with €, defined in A.4.

Theorem 1 establishes that appropriately scaled risk premia converge to their population
counterpart up to sign and are asymptotically normally distributed. The asymptotic
covariance matrix does not depend on the covariance matrix of residuals or the estimation
error of factor coefficients — in the appendix, I demonstrate that these terms are negligible.
The result is similar to Giglio and Xiu (2021), however, the convergence rate is faster. This
is because errors are orthogonal to factor coefficients.

The theorem allows to test if factors enter the SDF with nonzero coefficients — or
prices of risk — which are given as by = ppi/A;. Hence, testing whether by is zero is
equivalent to testing whether the factor has a zero Sharpe ratio. Corollary C.1 establishes

the asymptotic distribution for the respective joint or individual factor test under the null.

Corollary C.1. Suppose Qu EN Q.. Under the null Hy : M%A}ITMF =0, £.1and A.1-A.J,
as N, T — oo with VT /N? — 0

A1 A d .
Tl riie = X (dyik)
where x2(d,ix) denotes a weighted x? distribution® with weights d equal to the eigenvalues

of A;{lNTQM and ig is a K x 1 vector of ones specifying the degrees of freedom of each
chi-square random variable. Further, under Hy : M%k/)\T,k =0

Kk a4 o
T~ — X (dk'v 1)
AT
7 Specifically, A.1 implies E[|| E'E|]?] < 0(<§2N>2), so E[|| = E'E|’] < O(X>). By Lyapunov’s inequality
NT NT
E[|+E'E|] < E[|2E'E|*]'/? < O(%). Finally, by the expectation inequality |Sg| < ||E[+E'E]||, so

by standard norm inequalities ||Xg]|sp < O(%) = O(max(v'N, N/VT)).
8 See B. E. Hansen (2021).
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where dj, = Qg / ANT R With Q11 denoting the Kh element on the diagonal of €1,,.

The result in corollary C.1 is helpful to evaluate if factors matter for the SDF, however,
often it is more interesting to assess the quality with which a factor model is able to
approximate the SDF or price assets. The HJ-distance is the natural metric to consider.
To do so, theorem 2 first establishes the asymptotic properties of the pricing errors — note

by E.1 these are zero in population.

Theorem 2. Under E.1, A.1-A.5 and A.2°, as N,T — oo

. o 1 vIN
a=e(l+ //FANIT,KMF) + Op(\/TTNT) + p((ST)
NT

Further, if \/T/N — 0 and \/N/T -0
VTa 3% N(0,9,)
where Qo = (1 + NIF’A;\flT,KNFer with Qe defined in A.5.

Theorem 2 establishes that pricing errors are asymptotically normally distributed around
zero. The theorem restricts the rates at which N and T are allowed to grow relative to each
other and requires that neither grows too quickly. The conditions are satisfied for example
if T/N — ¢ < oco. Unlike for risk premia, the asymptotic covariance matrix of pricing
errors contains an adjustment that resembles the Shanken adjustment (Shanken (1992))
— in contrast to the classical adjustment, the present adjustment is squared and hence
larger. The adjustment is higher the larger factor means and the lower factor variances
are.

From theorem 2 the asymptotic distribution of the HJ-distance can be established. Note
E.1 implies that the HJ-distance is zero in population, so the below result establishes the

distribution under the null that the HJ-distance is zero.

Theorem 3. Define 2;71 = QN—KAE}N,KQ'N_K Let d denote the non-zero eigenvalues
ofig,lTQa and suppose d 5 d. Under E.1, A.1-A.5and A.2°, as N, T — oo with \/T/N —
0 and VN/T — 0

Theorem 3 establishes that the scaled and centered HJ-distance is asymptotically stan-
dard normally distributed. To see why, note Tdf];ld can be written as a weighted sum
of asymptotically independent chi-square variables. For finite N, the HJ-distance would
converge to a weighted chi-square distribution. However, because N — oo this weighted
chi-square distribution in turn converges to a normal distribution by a standard central

limit argument.
1.5. Empirical Results.

1.5.1. Data and Implementation. In what follows I use data on monthly excess or long-
short returns for several anomaly portfolios. I consider the 25 size and value portfolios
(FF25), 57 long-short anomaly portfolios by Kozak, Nagel, and Santosh (2020) (KNS57)
and the 212 long-short anomaly portfolios by A. Y. Chen and Zimmermann (2022) (CZ212).

Where necessary, excess returns are calculated using the monthly T-bill rate. To deal with
18



missing observations, I only keep periods for which at least 75% of anomaly portfolio re-
turns are observed and subsequently keep portfolios that are observed for the full period”.
I focus on these datasets as they are frequently encountered in the literature and results
can therefore be compared by the reader easily.

To evaluate the performance of factor models, I construct in-sample and out-of-sample
root mean squared error (RMSE), HJ-distances, and the Sharpe ratio of the implied tan-
gency portfolio. This is done for the different principal component factor selection methods
whilst varying the number of factors K.

For the in-sample exercises, K principal component factors are selected using the full
sample from which I construct pricing errors based on the associated factor model expres-
sion in (3) using sample analogs. Pricing errors are hence computed as & = i — Q KQ’K,&
from which I calculate RMSE = \/m and HJ = &%~ 'a. To construct the Sharpe
ratio, the return proportional to the associated tangency portfolio is constructed as R}, | =
i@Q K[\I_(l Q’KRtH from which the Sharpe ratio is calculated on the full sample.

Out-of-sample quantities are constructed using rolling estimation. Using information
over the last 20 years up to time ¢, K principal component factors are selected. For a set
of K factors, denote by Q Kt /AXK,t and [i; the estimates of factor weights or betas, factor
variances and return means using information until ¢. Let Tppg denote the total number of
out-of-sample periods. Out-of-sample pricing errors at t+ 1 are then constructed as é;y1 =
Ry -Q KﬂfQ/K,tRH'l for all Toos periods, from which I compute & = 1/Toos >, €. Using
these, RMSE and the HJ-distance are constructed where the HJ-distance uses the sample
covariance matrix estimated on the Tppg out-of-sample periods. Out-of-sample returns
proportional on the tangency portfolio are constructed as Ry ; = ihQ K,tA;{}tQ/IQth‘F]-’
from which the Sharpe ratios is calculated over the Tpog out-of-sample periods.

1.5.2. Out-of-Sample Evaluation of Principal Component Factor Selection Rules. This
section evaluates how the selection rules discussed in section 1.3 perform out-of-sample.
Figure 2 reports the out-of-sample performance of the different selection methods across K
— for clarity, I only compare selection based on eigenvalues with the optimal selection rule
for the respective criteria derived in 1.3. Table 12 in the appendix reports the performance
for K =1, 3,5 corresponding to the number of factors often encountered in the literature.

Focussing on RMSE, note that as K — N the out-of-sample RMSE goes to zero. This
is because the rolling eigenvectors, Qx , form an orthonormal basis'. Hence, as before
what matters is the speed with which the different selection rules decrease pricing errors
relative to each other. For smaller K, selection of principal component factors based on
squared risk premia typically leads to improvements over selection based on eigenvalues
in terms of out-of-sample RMSE (see table 12). These gains are however not as large or
consistent as for the in-sample results and as illustrated in figure 2 do not persist across all
K. Overall, selection based on squared risk premia and eigenvalues leads to comparable
performance in terms of out-of-sample RMSE.

Turning to the HJ-distance, selection of factors based on squared Sharpe ratios leads
to consistent and substantial improvements over selection based on eigenvalues across all
K and datasets considered. Comparing the out-of-sample results with their in-sample

9 For FF25 this leaves 25 portfolios covering July 1926 to November 2023, for KNS57 this leaves 39
portfolios covering July 1963 to December 2019 and for CZ212 this leaves 155 portfolios covering July 1973
to December 2022.
10 Ag K — N it follows that Qr,Qk. — In for every t, s0 €141 = Ryp1 — Qi1 Q' ; Riy1 — 0 for every t.
Therefore, both out-of-sample RMSE and the HJ-distance converge to zero as K — N.
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Figure 2. Full OOS Performance
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Note: The figure depicts the out-of-sample RMSE, the HJ-distance and Sharpe ratio of Ry, for factor
models subsequently increasing K, the number of principal components selected. For each test asset set
the principal components estimated on the training data are extracted and sorted based on Ag, (;/qk)2 or
(1'qr)?/ Mk to construct the factor models and the tangency portfolio weights. See section 1.5.1 for details
on the data and the estimation of out-of-sample statistics.

counterparts in figure 1 shows that the result derived in section 1.3.2 do not fully gener-
alize out-of-sample. For example, on the KNS57 dataset the selection of factors based on
conditional squared Sharpe ratios, estimated using 20-year rolling windows, does not en-
sure that the out-of-sample HJ-distance decreases strictly. Nevertheless, doing so delivers
significant out-of-sample improvements over selection based on eigenvalues estimated over
the same windows.

In terms of the out-of-sample Sharpe ratio of the tangency portfolio selection of factors
based on squared Sharpe ratios leads to sizeable gains over selection based on eigenvalues,
especially for smaller K. These gains are economically meaningful. For K = 3, across
datasets selection based on squared Sharpe ratios improves the monthly out-of-sample
Sharpe ratio of the tangency portfolio by 0.08-0.229 relative to selection based on eigen-

values (see table 12). On all except the CZ212 dataset, these gains typically persist. For
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the latter, selection based on squared Sharpe ratios outperforms selection based on eigen-
values until K = 22. As for RMSE and the HJ-distance, this shows that the in-sample
results do not fully carry over out-of-sample. To be precise, the selection rules when
implemented using 20-year rolling window estimation do not retain the same optimality
guarantees out-of-sample as they do in-sample.

Still, selection of principal component factors based on squared Sharpe ratios leads to
substantial and consistent improvements in the out-of-sample HJ-distance for all K and
to economically significant improvements in terms of the out-of-sample Sharpe ratio of the
tangency portfolio for most K relative to selection based on eigenvalues. Figure 14 in the
appendix shows that these results are robust when decreasing the frequency with which
parameters are estimated from monthly to once every 2 years. In practice, especially if
the goal is to construct a low-dimensional factor models from principal component factors,
the results here further support selection of factors based on squared Sharpe ratios.

1.5.3. Number of Factors. The previous sections evaluated factor model performance for
various numbers of factors K, however, in practice an estimator for the number of factors
to include in a model is required. Several estimators for the number of factors have been

1 These focus on determining the

suggested in the large dimensional factor literature
number of factors such that variation in the return data is captured. I here present an
estimator that focuses on determining the number of factors required to approximate the
SDF.

For every factor model including K factors the associated HJ-distance can be calculated,
which measures how close the factor model is to the set of admissible SDFs. Using the
results established in theorem 3, I can test if the HJ-distance is statistically significantly
different from zero. Ideally, factors are added until the test can no longer be rejected.
To achieve the maximum reduction in the HJ-distance possible, section 1.3 demonstrated
that factors should be sorted based on their squared Sharpe ratios. Intuitively, this exam-
ines how many factors are required to price the cross-section and approximate the SDF
sufficiently well.

The estimator proceeds as follows. Sort principal component factors based on their
squared Sharpe ratio and construct factor models subsequently increasing the number of
factors until V — 1 — the case of N factors is excluded as it will trivially price all assets
perfectly. For each factor model test whether the HJ-distance is zero and compute the
respective p-value (see theorem 3) which leaves a list of p-values, py. The simple stop

estimator is then defined as
9) K=max{ke{l,..N—1}:p, <a}+1

and corresponds to the first k such that the HJ-distance is no longer significantly different
from zero at level a, i.e. it simply stops the first time pi > a. Figure 3 illustrates the
estimator by plotting the HJ-distance and associated critical values for various K and
further marking the simple stop estimator K for the 5% significance level across different
datasets.

The proposed estimator repeatedly tests the hypothesis that the HJ-distance is zero
and only tests a K factor model if the factor models with 1 through K — 1 factors have

been sequentially rejected. Hence, the estimator is a multiple-testing problem in which

11 See for example Bai and Ng (2002), Onatski (2010), Ahn and Horenstein (2013) and Freyalden-
hoven (2022).
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Figure 3. Number of Factors
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Note: The figure shows the HJ-distance and corresponding critical values for factor models subsequently
increasing K, the number of principal components selected sorted by their squared Sharpe ratio. Criti-
cal values are calculated based on theorem 3 where covariance matrices are estimated using Newey and
West (1987) considering up to T'/* lags. In blue the simple stop estimator K in equation (9) is highlighted.
See section 1.5.1 for details on the data.

hypotheses are rejected in an ordered fashion. It therefore is prone to a false discovery
problem. Restricting each individual test’s type-I error rate to be a does not control the
overall probability of false discoveries. A solution is to instead control the probability
of one or more false rejections — the family-wise error rate (FWER). The strong stop
procedure by G’Sell et al. (2016) is designed to control the FWER at level a for settings
in which hypotheses are rejected sequentially. The procedure takes the sequential p-values
as its input and the estimator is defined as

N-1

(10) Ks :max{k e{l,.,N -1} :exp(Z logﬁpj)> < Nafl} +1
j=Fk

The estimator ensures that P (K s > K) < a, i.e. ensures the probability of one or more
false rejections is below a (see G'Sell et al. (2016))'?. In the context at hand, the strong
stop estimator therefore ensures that the probability of the estimated number of factors

being above the true number of factors is below a.

12 When the p-values under the null are drawn from a uniform distribution, independent to each other,
the strong stop procedure controls FWER for a given a. This is the case if the last N — 1 — K p-values
are null.
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Table 2. Number of Factors

Dataset
FF25 KNS57 CZ212
Simple Stop 6 11 16
Strong Stop 4 8 10

Note: The table depicts the simple stop estimator given in (9) and the strong stop estimator given in (10)
for the number of factors at the five percent level for different datasets.

Table 2 depicts results for the simple and strong stop estimator across the different
datasets. The simple stop estimator suggests that across datasets 10-28% of total principal
component factors are required to approximate the SDF sufficiently well. Comparing the
results of the simple with the strong stop estimator, the multiple testing adjustment can be
substantial. Focussing on the strong stop estimator, 6-21% of total principal component
factors are required to approximate the SDF sufficiently well. Overall, this suggests that
once principal component factors are sorted by squared Sharpe ratios relatively few factors

are required to approximate the SDF for the datasets considered.

1.5.4. Comparison to Other Methods. 1 here benchmark the results of this paper against
other approaches in the literature and highlight complementarities. Specifically, I focus on
the methods proposed in Kozak, Nagel, and Santosh (2020) and Lettau and Pelger (2020b).
For exposition, I focus on the KNS57 dataset as it is the dataset considered in the two
studies. Results for the other datasets are reported in the appendix.

1.5.4.1. Comparison with Kozak, Nagel, and Santosh (2020). The objective of this paper
is related to Kozak, Nagel, and Santosh (2020). They focus on constructing a robust SDF,
which they define as a SDF that prices assets well out-of-sample in a high-dimensional
setting. They achieve this by estimating the prices of risk of the SDF projected onto
the test data under L'- and L?-penalization, i.e. elastic net estimation. If the SDF is
projected onto the principal components of the data their estimator has a closed-form

solution, which assuming /g, > 0 for all k is given by

M =1—bns@Q (Rep1 — )

(11) BT gl >
_ ) A2 kF =
br,kNS = ‘o
0 it g <m

where v; and 7o control the degree of L'- and L?-penalties respectively. The L?-penalty
shrinks prices of risk towards zero. The L!'-penalty performs selection of principal com-
ponent factors based on risk premia and further shrinks prices of risk.

Kozak, Nagel, and Santosh (2020) motivate the L?-penalization through priors on the
maximum attainable Sharpe ratio in the economy, however, give little justification for
the L'-penalization. The results of this paper are complementary. The law of one price
implies that principal component factors should be selected based on risk premia to ensure
the factor model and associated SDF approximation minimize squared pricing errors (see

equation (4))%2.

13 There is a subtle difference between the L'-penalty and the derived selection rule from (4). The law

of one price would imply that to minimize squared pricing errors principal component factors with the

largest (squared) risk premia should be selected. The L'-penalty leads to an identical selection rule but in

addition subtracts 7; after the selection, which further shrinks prices of risk towards zero. The selection
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To compare the performance of the factor models constructed from principal component
factors selected based on squared risk premia or Sharpe ratios with the Kozak, Nagel, and
Santosh (2020) estimator, I implement the elastic net estimator for principal components
given in (11). I vary their L'-penalty so that K factors are selected and determine their
L2-penalty via 3-fold cross-validation on either the full sample (for in-sample results) or
20 years of rolling training data (for out-of-sample results). Results are compared across
varying K. As the elastic net estimator is focussed on estimating regularized prices of
risk, l;kaNS, it is straightforward to construct the return on the associated tangency
portfolio as R}, | = 6’K NSQ/ R;11. The estimator however does not map into an associated
factor model. Pricing errors therefore are calculated based on the SDF moment condition
a=1/TY, M;LrlRtH. For out-of-sample exercises all parameters in (11) — bxng, @, and
1 — are estimated on the 20 years of rolling training data.

Figure 4a compares the Kozak, Nagel, and Santosh (2020) estimator in-sample against
principal component based factor models with factors selected based on either squared
risk premia or Sharpe ratios for the previously considered evaluation criteria for varying
K. Principal component factor models with factors selected based on squared risk premia
lead to substantially lower RMSE. Similarly, factor models with factors selected based
on squared Sharpe ratios lead to consistent improvements over the Kozak, Nagel, and
Santosh (2020) estimator in terms of HJ-distance and the Sharpe ratio of the associated
tangency portfolio across all K. Table 11 illustrates that these gains are economically
sizeable even for small K and figure 15 demonstrates that these results hold for the other
considered datasets.

This is expected as the elastic net estimator by Kozak, Nagel, and Santosh (2020)
shrinks the prices of risk and therefore produces a biased estimate of the SDF. The bias
becomes visible in figure 4a: even as K — N the elastic net estimator does not reduce
pricing errors to zero. This bias leads to a deterioration of the in-sample performance in
exchange for potentially boosting out-of-sample performance.

Figure 4b presents the same statistics out-of-sample. Focussing on RMSE, principal
component factor models with factors selected based on squared risk premia outperform
the Kozak, Nagel, and Santosh (2020) estimator across all K out-of-sample. Similarly, se-
lection based on squared Sharpe ratios outperforms in terms of out-of-sample HJ-distances
across all datasets and approximation degrees. This is accompanied by consistent and sub-
stantial increases in the out-of-sample Sharpe ratio for the tangency portfolio, even for
small K (see table 12). Other datasets give rise to similar results (see figure 15).

To conclude, the results in section 1.3.1 are complementary to the Kozak, Nagel, and
Santosh (2020) estimator as they can formally motivate the use of their L!-penalty. Having
said so, simple factor models constructed from principal component factors selected based
on squared risk premia or Sharpe ratios outperform the Kozak, Nagel, and Santosh (2020)
estimator consistently across approximation degrees K in-and out-of-sample.
1.5.4.2. Comparison with Lettau and Pelger (2020b). The risk premium PCA (RP-PCA)
by Lettau and Pelger (2020b) estimates factors by solving a constrained PCA problem
that simultaneously minimizes the squared pricing errors. To construct their factors, the

eigendecomposition is applied to a modified covariance matrix
(12) Yrp =3+ (1+7y)uy

rule derived in section 1.3 is a type of hard-thresholding, while the Kozak, Nagel, and Santosh (2020)
L'-penalty is a type of soft-thresholding.
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Figure 4. Performance Comparison with Robust SDF Estimator
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Note: The figure depicts the in-sample and out-of-sample RMSE, HJ-distances and Sharpe ratios of the
tangency portfolio for factor models subsequently increasing K, the number of factors, constructed from
principal component factors selected by squared risk premia (u'qx)? or squared Sharpe ratios (1'qx)?/Ax
and the Kozak, Nagel, and Santosh (2020) estimator. In-sample results are constructed using the full
dataset, whereas out-of-sample results are constructed using a 20-year rolling window. Data corresponds
to the Kozak, Nagel, and Santosh (2020) 57 anomaly long-short portfolio returns which are at monthly
frequency.

where 7 is a hyperparameter penalizing pricing errors (see Lettau and Pelger (2020b)).
Let Xgp = Q[\Q’ denote the eigendecomposition, where Q is the collection of eigenvectors
and A is a diagonal matrix containing the eigenvalues.

The RP-PCA estimator is concerned with the construction of factors well suited for
cross-sectional asset pricing. This paper is concerned with optimal factor selection and
it turns out the results are complementary. In appendix 4.3 I demonstrate that similar
selection rules as for the standard principal component factors hold for the RP-principal
component factors. Specifically, I show that factor selection based on squared Sharpe
ratios, (u'Gy)?/ Mi, is optimal for the HJ-distance and the Sharpe ratio of the tangency
portfolio associated with a factor model constructed from RP-principal component fac-
tors'®. A similar result suggests that selection of RP-principal component factors based
on squared risk premia, (1/gy)?, is approximately optimal for squared pricing errors.

To compare the performance of the factor models constructed from standard principal
component factors with the RP-principal component factors and across different factor
selection methods, I implement the RP-PCA following Lettau and Pelger (2020b). I
fix v = 10 and unless specified differently select RP-principal component factors based
on eigenvalues, which corresponds to their baseline specification. Factors are extracted

as Fk,t = (j}th where @ is an eigenvector obtained from the eigendecomposition of (12).

14 Note that for the RP-PCA (,u’cjk)Q/S\k no longer corresponds to the squared Sharpe ratio as e #*
Var(Fg:) where Fr: = §,R:. However, for v = 10 the difference is negligible for most factors, so
- ¥ 2
(W' @)* Ak = SRy
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Using the factors, betas are estimated through regression. In-sample pricing errors and the
return on the tangency portfolio are constructed in line with section 1.5.1. To construct
out-of-sample quantities, the relevant parameters are estimated over a 20-year rolling
window, and pricing errors and the return on the tangency portfolio are then constructed
in line with section 1.5.1.

Figure 5. Performance Comparison with Baseline RP-PCA
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Note: The figure depicts the in-sample and out-of-sample RMSE, HJ-distances, and Sharpe ratios of the
tangency portfolio for factor models subsequently increasing K, the number of factors, constructed from
principal component factors selected by squared risk premia (u'qx)? or squared Sharpe ratios (u'qr)?/Ax
and the baseline RP-PCA factor model. In-sample results are constructed using the full dataset, whereas
out-of-sample results are constructed using a 20-year rolling window. Data corresponds to the Kozak,
Nagel, and Santosh (2020) 57 anomaly long-short portfolio returns which are at monthly frequency.

Figure 5a compares the baseline RP-principal component factor model with factor mod-
els constructed from standard PCA and factors selected based on either their squared risk
premia or Sharpe ratios in-sample. Focussing on RMSE, the RP-PCA approach performs
comparable to the standard PCA based model. Principal component factor models with
factors selected based on their squared Sharpe ratio outperform the RP-PCA approach in
terms of HJ-distance and Sharpe ratio of the tangency portfolio. These improvements are
economically sizeable for small K as illustrated in table 11. Other datasets give rise to
similar results (see figure 16).

Figure 5b presents the results out-of-sample. The baseline RP-PCA improves over
simple principal component factor based models with factors selected based on squared
risk premia in terms of out-of-sample RMSE. Principal component factor models with
factors selected based on their squared Sharpe ratio lead to substantial and consistent
improvements in terms of out-of-sample HJ-distance over the baseline RP-PCA. For all
except the CZ212 dataset, the out-of-sample Sharpe ratio of the tangency portfolio is
comparable (see figure 16). For the latter, the RP-PCA based models lead to substantial

gains in the out-of-sample Sharpe ratio of the tangency portfolio, particularly for small
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K (see table 12). Overall the baseline RP-PCA appears to improve the factor models’
performance in terms of RMSE, whilst standard principal component factor models with
factors selected based on squared Sharpe ratios demonstrate better performance in terms
of HJ-distances and mostly comparable performance in terms of the Sharpe ratio of the
tangency portfolio.

The performance of the RP-PCA can be further boosted by adopting the discussed
factor selection rules. Figure 6a demonstrates this in-sample. For comparability, the per-
formance of the standard PCA with factors selected based on either their squared risk
premia or Sharpe ratios are included. Selecting RP-principal component factors based on
their squared risk premium further boosts the performance of the factor model in terms
of in-sample RMSE. The figure also illustrates that selection based on squared risk pre-
mia is only approximately optimal as the largest decreases in RMSE do not one-to-one
line up with the ranking based on squared risk premia (see appendix 4.3 for further de-
tails). Selecting RP-principal component factors based on squared Sharpe ratios leads to
an improvement of the HJ-distance and the Sharpe ratio of the associated tangency port-
folio with performance similar to the factor models constructed from standard principal

component factors. Other datasets give rise to similar results (see figure 17).

Figure 6. Performance Comparison with Baseline and Optimally Selected
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Note: The figure depicts the in-sample and out-of-sample RMSE, HJ-distances and Sharpe ratios of the
tangency portfolio for factor models subsequently increasing K, the number factors, constructed from
standard or RP-principal component factors selected by squared risk premia (u'qx)? or squared Sharpe
ratios (1/qx)?/M, and the baseline RP-PCA factor model. RP-PCA methods set v = 10. In-sample
results are constructed using the full dataset, whereas out-of-sample results are constructed using a 20-
year rolling window. Data corresponds to the Kozak, Nagel, and Santosh (2020) 57 anomaly long-short
portfolio returns which are at monthly frequency.

Figure 6b presents the out-of-sample results. Focusing on RMSE, selecting RP-principal

component factors based on risk premia does not seem to improve performance for the
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KNS57 dataset. Figure 17 illustrates that on the other datasets selection based on squared
risk premia leads to marginal improvements (for FF25 performance is unaffected, whilst
for CZ212 performance slightly improves). For the HJ-distance, selecting RP-principal
component factors based on Sharpe ratios improves the performance of the RP-principal
component factor model, however, the factor models based on standard principal com-
ponent factors selected based on squared Sharpe ratios continue to outperform. Finally,
the out-of-sample Sharpe ratio of the RP-principal component factor model generally im-
proves by selecting factors based on squared Sharpe ratios and consistently outperforms
the Sharpe ratio of the tangency portfolio associated with a factor model based on stan-
dard principal components selected by squared Sharpe ratios. The other datasets give rise
to similar observations (see figure 17).

The results of this paper are therefore complementary to the RP-PCA by Lettau and
Pelger (2020b). The selection rules derived in section 1.3 are optimal for the RP-PCA (see
section 4.3 for details) and lead to improvements in its in- and out-of-sample performance.
Interestingly, standard principal component based factor models with factors selected by
squared Sharpe ratios generally outperformed the RP-PCA in terms of the HJ-distance
in- and out-of-sample.

1.6. Conclusion. This paper examines the selection of principal component factors for
the construction of the SDF and by extension factor models describing the cross-section
of expected returns. Starting from the law of one price, I show that factor selection based
on eigenvalues is typically suboptimal for asset pricing. Specifically, if the goal is to select
factors such that the associated factor model’s sum of squared pricing errors (HJ-distance)
is minimized, factors associated with the largest squared risk premia (Sharpe ratios) should
be selected. The intuition for this result is that the latter criteria are linked to principal
component factor’s prices of risk and hence inform us whether a given factor is useful
in pricing other assets. Empirically, this leads to substantial improvements in the factor
model’s performance in- and out-of-sample and once ranked by Sharpe ratios it appears
few principal components are sufficient to approximate the SDF adequately.

Having said so, factor selection will always depend on the objective of the empirical re-
searcher. If the goal is to obtain a lower-dimensional representation capturing the variation
of the data, selection should be carried out based on eigenvalues. The contribution of this
paper is that if the objective is to identify factors relevant for pricing the cross-section of
expected returns other criteria are optimal. Specifically, if the goal is to approximate the
SDF well, minimize the weighted sum of squared pricing errors, or maximize the Sharpe
ratio of a factor model’s associated tangency portfolio, selection based on Sharpe ratios is

recommended.
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Chapter 2.
The Network Drivers of Trade Currency Invoicing

Co-authored with Tommaso Mancini-Griffoli, Christian Jul-
liard, and Kathy Yuan

Using an equilibrium network model and a large international panel of cross-border
trade, we analyse empirically the drivers of foreign currency invoicing. First, we find
strong evidence of strategic complementarity in currency invoicing across countries: Ex-
porting countries tend to invoice more in a given currency when their main trade partners
invoice in that same currency. This in turn leads to an amplification of domestic shocks
through the trade network. Second, key players for a given currency are not only coun-
tries that invoice most of their exports in that foreign currency (e.g., China, South Korea
and Russia), but also countries that are central in the international trade network (e.g.,
Japan, Germany and Canada). Third, at the country-level, we find evidence of strategic
complementarity, or natural hedging, between the choices of export and import currencies.
Fourth, in counterfactual analysis, we find that, due to the large network externalities that
we identify, the position of the USD as dominant trade currency is inherently fragile with

respect to the currency invoicing choices of EU and BRICS countries.

2.1. Introduction. It is well documented that the vast majority of international trade is
invoiced in a small number of dominant currencies, with the USD playing an outsized role
(Goldberg and Tille (2016); Gopinath (2015)). Dominant currency pricing has significant
implications for monetary policy spillovers, transaction costs, and financial market devel-
opment Gopinath, Boz, et al. (2020). In this paper, in addition to the factors proposed by
the literature on dominant currency, we examine whether the currency invoicing decisions
of the firms in a country are affected by those of its trading partners.

Specifically, in the theoretical model, a representative firm in a country chooses the
size of invoicing in a dominant currency for international trade transactions based on a
cost-benefit analysis. The cost and benefit, as identified by the literature, can be due to a
multitude of factors. For example, the interaction of nominal price stickiness with pricing
complementarities and input-output linkages across firms generates complementarities in
currency choice (Gopinath (2015); Doepke and Schneider (2017); Mukhin (2022); Eren and
Malamud (2022)). That is, exporters coordinate on the same currency of invoicing for the
following two reasons: to be competitive in output pricing; and to be able to hedge their
balance sheet against exchange rate shocks with the denominated currency of imported
intermediate (real and financial) inputs. This indicates that the size of the market is an
important driver of the dominant currency Mukhin (2022), as well as various price index
levels and other macroeconomic and financial variables at the country-level. Additionally,
a large body of literature on international finance emphasizes the safety feature of the
dominant currencies. Differences in financial development, and hence the differences in
access to safe assets Maggiori (2017), or risk aversion of participants Gourinchas and
Hélene Rey (2022) may drive the demand for an international safe asset. The dominant

currency preserves value added in exchange transactions, leading to its wide use in the
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global financial market." This indicates that safety/volatility of the currency is potentially
a major determinant of its dominant status. Importantly, the network of international
trade underlies how these factors affect each country’s invoicing decisions. The network
of international trade not only captures the potential network effects of neighbouring
countries in choosing a dominant currency for pairwise transactions (for stable transactions
or cheaper access to working capital or financial borrowing) but also reflects the input-
output linkages across countries. Furthermore, the trade network might also give rise to
the need for balance sheet currency hedging: A representative firm in a country that is
invoiced in a certain dominant currency in its imports has more incentive to invoice their
exports in the same currency to hedge its currency risk exposure. In our paper, we use a
network model to capture these trade-offs.

In the model, the currency invoicing decision of a representative firm in a country
is affected not only by its own economic conditions, such as the size of the economy,
inflation, financial market conditions, and other relevant economic variables, but also
the invoicing decision of its trading partners and its trading partner country’s economic
variables. Similarly, the currency invoicing decisions of its trading partners are affected by
those of their own trading partners, as well as their economic variables, and so forth. In
equilibrium, we show that this network dependency is captured by a network attenuation
factor ¢, the key parameter whose sign determines whether the Nash equilibrium features
strategic substitution (¢ < 0) or complementarity (¢ > 0) in agents’ invoicing decisions.
Each agent’s equilibrium invoicing amount in the dominant currency depends not only on
the network attenuation factor ¢ but also on its network centrality measure.

We estimate the equilibrium based on four different sets of restrictions on the model
parameters, that is, four models — Panel, Spatial Error (SEM), Spatial Lag (SLM) and
Spatial Durbin (SDM) — using Bayesian methods. For example, setting ¢ = 0 in the
equilibrium condition yields a simple panel structure for the data. We use a Bayesian
procedure for model specification and assess whether the data support the presence of
network externalities and if so, which spatial specification. Our empirical analysis focusses
on excessive USD or EUR invoicing for each country to assess the use of the USD or EUR
as a vehicle currency in international trade.' The measure is constructed at monthly
frequency based on the payment share dataset by Boz et al. (2022) and the Direction of
Trade Statistics database by the International Monetary Fund. We further augment the
payment share dataset with a proprietary dataset obtained from the Society for Worldwide
Interbank Financial Telecommunications (SWIFT) to increase the cross-sectional coverage.
The final dataset contains 84 countries from January 2004 to December 2019 and covers
on average 91% (93%) of worldwide exports (imports).

Our analysis shows that there is overwhelming evidence of network spillovers: The panel
specification with no spatial dependency is never preferred by the data. There is strong
evidence of strategic complementarity in currency invoicing across countries: Exporting
countries tend to invoice more in a given currency when their main trade partners invoice in
that same currency. This in turn leads to an amplification of domestic shocks through the
trade network. In fact, the SDM model — the specification of our theoretical formulation
5Furthermore, Gopinath and Stein (2021) argue that assets denominated in the dominant currency can be
used as a savings device for export producers to hedge against invoicing risk. Chahrour and Valchev (2022)
additionally suggest that safe assets are used as collateral to overcome contractual frictions in cross-border
transactions.

L6Roy robustness, we also use aggregate currency invoicing amounts in USD or EUR. The results are similar

and reported in the appendix.
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— is always strongly preferred by the data. We conduct analysis based on the SDM
specification and include among the control variables the lagged values of the dependent
variables to capture time series autocorrelation. Therefore, the model not only captures the
contemporaneous, or short-term, impact of a shock originating from any of the independent
variables but also their long-term effects. Due to the network specification we are further
able to decompose these effects into direct and indirect effects, the latter being impacts
originating from trade partners propagated through the trade network. The network
attenuation factor for USD excessive invoicing is around 0.24, while that of the EUR
is 0.16. This indicates that USD excessing invoicing is inherently less stable: A small
negative shock might lead to a substantial reduction in the use of the USD as a vehicle
currency.

We find that key players for a given currency are not only countries that invoice most
of their exports in that foreign currency (e.g., China, South Korea, and Russia) but also
countries that are central in the international trade network (e.g., Japan, Germany, and
Canada). The driver of the former set of countries is based on their large direct impacts,
while that of the latter set of countries is due to the network amplification and to the
central position that these countries have in the trade network.

Furthermore, at the country-level, we find evidence of strategic complementarity be-
tween exports and imports in a given currency, lending support to the natural hedge
hypothesis proposed in the literature (Doepke and Schneider (2017); Amiti, Itskhoki, and
Konings (2022)). This investigation is based on a reduced-form Vector Autoregression
(VAR) in our SDM specification with four dependent variables (and their respective con-
trols): Excessive currency invoicing in EUR and USD of both export and import. We
employ identification via cross-sectional heteroskedasticity. That is, we exploit hetero-
geneity across residuals’ covariances of our panel dataset to pin down structural param-
eters. The key identification assumption this requires is that all countries have identical
contemporaneous reactions to USD or EUR import- or export-based shocks.

Finally, we conduct a counterfactual analysis to examine the impact of a set of countries
choosing to abandon the USD for excessive invoicing. We conduct this exercise for Russia,
Brazil, India and China, the EU block, and the members of BRICS in our sample, i.e.
Brazil, Russia, India and China jointly. The estimated effects are quantitatively large, with
the effects of the BRIC(S) block (EU) abandoning the USD for excess invoicing resulting
in a 42% (11%) reduction in the overall use of this currency. More so, the channels through
which these reductions arise are quite different. For the BRIC(S) block, most of the effect
is driven by the direct reduction in the use of the USD by these countries. For the EU,
almost half of the effect is driven by indirect network externalities. This underlines the
fragility of a dominant trade currency such as the USD — coordinated abandonment can
have substantial impacts on the overall use of a dominant currency for trade invoicing,
specifically as the network externalities highlighted in this paper lead to an amplification.

The remainder of this paper is organized as follows. In Section 2.2, we review the related
literature. In Section 2.3, we present a network model to guide our analysis of currency
choice for invoicing. In Section 2.4 we present our estimation methodology. In Section
2.5, we describe the data and variable construction. In Section 2.6 we present and discuss
the estimation results and conduct the counterfactual analysis. Section 2.7 concludes.

2.2. Related Literature. The current international macro literature has shown that

the choice of currency in trade invoicing is an active firm-level decision with some degree
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of persistence over time Amiti, Itskhoki, and Konings (2022). This evidence is contrary
to the conventional international literature, which assumes exogenous producer currency
pricing (PCP) or local currency pricing (LCP), that is, trades are denominated either in
the producer’s currency or the importer’s currency. Instead, recent studies postulate the
existence of dominant currencies for international trade that can endogenously emerge —
dominant currency pricing (DCP) — and focus on their determinants and implications for
optimal monetary policies with different spillover dynamics.

The DCP literature on international trade proposes that the interaction of nominal price
stickiness with pricing complementarities and input-output linkages across firms generate
complementarities in currency choice (Gopinath (2015); Doepke and Schneider (2017);
Gopinath, Boz, et al. (2020); Mukhin (2022); Eren and Malamud (2022)). That is, ex-
porters coordinate on the same currency of invoicing to be competitive in output pric-
ing and to be able to hedge their balance sheet against exchange rate shocks with the
denominated currency of imported intermediate (real and financial) inputs. Financial
intermediate inputs can be thought of as working capital, trade credit, or any form of
financial borrowing. According to this line of research, important determinants for domi-
nant currencies include the competitiveness or importance of the destination market and
the currencies that denominate the intermediate inputs. Exporting firms that import a lot
of intermediate products, or borrow capitals in the international markets, are more likely
to choose DCP. The theoretical result in Mukhin (2022) also indicates that the market
size is important in determining the dominant currency. Our model of the network effects
of currency invoicing choices is motivated by this line of research. The complementarities
in invoicing currency choice we identify are via the import/export network channel.

Additionally, there are many other determinants for currency choices in trade invoic-
ing. Existing empirical work using transactions of firm-level import or export data shed
light on these determinants. Gopinath, Itskhoki, and Rigobon (2010) and Goldberg and
Tille (2016) analyze transaction-level data on currency invoicing for, respectively, US and
Canadian imports, and find that USD pricing is more common in sectors classified as
producing homogeneous goods and hence likely substitutes. Chung (2016) finds that a 1%
decrease in the share of imported inputs priced in sterling decreases the probability that
UK exporters invoice in sterling by about 18% using UK trade transaction data with non-
EU countries. Studying the currency invoicing choices of Belgian exporting firms, Amiti,
Itskhoki, and Konings (2022) find that large and import-intensive firms tend to invoice
their exports in USD. There is also evidence supporting firms choosing their invoicing
currency to hedge their financial input risk. BIS (2014) document that traded financial
contracts are mostly USD denominated even though they are sourced through local banks,
indicating most trades are financed in USD. Bahaj and Reis (2020) find that when the cost
of financing working capital in Renminbi (RMB) is lower due to swap arrangements by
central banks, trades are more likely to be denominated in RMB. Furthermore, although
invoicing and settlement currencies do not necessarily coincide, in most transaction they
are the same currency Gopinath, Boz, et al. (2020). Therefore, the choice of an invoicing
currency also depends on its liquidity level. In our estimation, we control for these deter-
minants identified by the trade literature and examine whether these determinants might
have additional impact propagated through the trade network.

Finally, recent work in the DCP literature also emphasizes financial frictions in cross-

border transactions as an important factor in currency choices. A dominant currency such
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as the USD preserves its value during global market crises, and thus is widely used as an
international reserve or safe asset. This safety feature offered by assets denominated in
dominant currency means that the dominant currency preserves value added in exchange
transactions, leading to its wide use in global financial market. Differences in financial
development or the differences in access to safe asset Maggiori (2017) or risk aversion of
participants Gourinchas and Hélene Rey (2022) may drive the demand for an international
safe asset. Chahrour and Valchev (2022) propose that safe assets are used as collateral
to overcome contractual frictions in cross-border transactions. Gopinath and Stein (2021)
argue that assets denominated in the dominant currency can be used as saving devices
for export producers to hedge against invoicing risk. In our analysis, we also examine the
impact of these financial frictions for dominant currencies at the country-level in relation
to the trade network.

2.3. The Network Model. In this section, we construct a network model of currency
invoicing decisions for international trade transactions. This framework directly guides
our empirical estimation of network effects. In this model, there is a representative firm in
each country. They simultaneously decide in which currency to invoice their trades given
the import and export trade network structure. For the ease of exposition, the optimizing
agent in the model is described as a country (rather than a representation of firms in a
country). A country’s optimal currency invoicing decision not only depends on its own
characteristics but also responds to all other countries’ invoicing decisions (and potentially
characteristics) through the given trade network. In Section 2.4, we lay out the steps for

structurally estimating the model.

The Network. There are n countries. The time-t trade network is predetermined,
characterized by an n-square adjacency matrix Gy. If its element g;;-;; are not null,
country ¢ and j are connected. To construct G; in the structural estimation, we use
country-level bilateral trade data. Specifically, we focus on the case where g;;.;; is the
fraction of imports or exports by country 4 from or to country j in the previous month.
The matrix G; keeps track of all direct connections — links of order one — between any
pair of countries in the network. Similarly, the matrix GJ, for any positive integer h,
encodes all links of order h between countries, that is, the paths of length h between any
pair of countries. The coefficient in the (7, j)th cell of G?, i.e., {G?}ij, gives the exposure
of country i to country j in h steps. Since Gy is a right stochastic matrix (with each row
summing up to one), it can be interpreted as a Markov chain transition kernel, and G}

as the h-step transition matrix.

Countries and their Invoice Currency Preference. We study the amount of excessive
currency countries choose to invoice their trade partners at the beginning of each period ¢.
The amount of excessive currency invoiced for a given currency is defined as any amount
above the corresponding bilateral trade volume. For example, it is natural for a country
to invoice their trade counterparts located in the US in USD. However, if this country
invoices trades with other countries in USD, we define these transactions as excessive
USD invoicing. We aim to explain this decision at the country-level.

Let y; 1+ denote the total excessive currency k invoiced by country . We model the
impact of the trade network on country ¢’s choice of y; 1. In the rest of the paper, we
drop the index k for expositional simplicity and often refer to k as the dominant currency

(DC).
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Given the predetermined network G; measured by trade links, each country chooses
excessive DC invoicing simultaneously to maximize its own payoff. In our model, we

specify the per-unit value fi; ; of excess DC for country ¢ in network Gy as

(13) flig o= i+ Tigd + Tpap+ 0> Gijalis + Y Gijaijah
J J

where x;; is a row vector of country-specific characteristics, x, ; denotes aggregate common
controls, x; ;; captures pair-specific covariates, p;+ := [i; +¢€; ¢+ contains a countries specific
fixed effect (fi;), and shock (e;¢), 0, p and € are conformable column vectors and ¢ is a
scalar coefficient. The first and second set of variables capture the country-level variables
that directly affect the value of a unit of DC such as bilateral (local versus the invoicing
currency) exchange rate volatility, inflation, and other macro variables. The third set of
variables capture aggregate factors that might affect all countries’ choices.

The fourth term in equation (13) is a network-dependent component of valuation of extra
unit of DC invoicing: ¢ j 9yt 1t s motivated by the DCP hypothesis. According to
DCP, firms in country ¢ have a preference for invoicing their exports in the same currency
as their imports so to minimize the currency mismatch on their assets and liabilities.
Network effects lead to certain currencies such as the USD emerging as the dominant
currency for countries to coordinate their invoices.

The last term in equation (13) highlights that the network-dependent mechanism may
also operate via the characteristics of the trading partners. Variable x; j; denotes match-
specific control variables and the characteristics of other countries, and 6 is a vector of
suitable dimension. That is, in addition to the aggregate information embedded in the
neighbouring countries’ level of excessive DC invoicing, macro variables and the neighbour-
ing countries’ characteristics affect the per-unit valuation of the excessive DC invoicing.
For example, suppose that country j has a well-developed financial market denominated
in EUR instead of USD. This means that trade financing, work capital financing, and
currency risk hedging in EUR would be cheaper and readily available. Firms in country j
would have more incentives to invoice their trades in EUR, which can impact the invoicing
decision of country i. The DCP empirical literature has identified several such determi-
nants for x;;;, such as the size of the economy, financial market development, foreign
direct investment, foreign debt, and inflation.

Next, assuming a quadratic cost for holding y; ; amounts of DC, we specify country i’s
utility from DC invoicing as

- 1,
(14) wilyelgr) = Rityie = SYie

The bilateral network influences in our model are captured by the following cross-
derivatives for i # j:

O%ui(Yits (st} jzi |G
0Yi,t0y; 1
where ¢ is the network attenuation factor, the key parameter whose sign determines

= PGijt,

whether the Nash equilibrium features strategic substitution (¢ < 0) or complementarity
(¢ > 0). We are agnostic about the sign of ¢, and we instead estimate it empirically.

We solve countries’ optimal excessive DC invoicing decision in the Nash equilibrium of
simultaneous action. The optimal response function for each country is then

(15) Yit = Mig + Tigd +Tpip+ @ Z 9ijtYjt + Z GijtTij 0.
J J
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Note that the empirical counterpart of the above best response is the spatial Durbin model.

Let us denote 14; ¢ +x; 40 —i—xp,tp—i—zj 9ij,+%i 5,10 by fi. The following result is immediate.

Proposition 1. Suppose that |¢| < 1. Then, there is a unique interior solution for the

individual equilibrium outcome given by

(16) ?JZt (¢,9) = {M (¢, Gt)}i. fits

where {}, is the operator that returns the i-th row of its argument, iy := [fi14, ...,ﬁm]—r,

Yi+ denotes the total excessive DC' invoicing by country i, and

(17)  M(¢,G) =T+ ¢G, + ¢°G] + ¢°G) + ... = Y ¢"G; = (I—¢Gy) ™",
k=0

where I is the N x N identity matriz.

Proof. The first-order condition identifies the individual country’s optimal response. Ap-
plying Theorem 1(b) in Calvo-Armengol, Patacchini, and Zenou (2009), we know that the
necessary equilibrium condition is [pA™%* (G¢)| < 1, where the function A"™* (-) returns
the largest eigenvalue. Since Gy is a right stochastic matrix, its largest eigenvalue is 1.
Hence, the condition requires |¢| < 1, and if so, the infinite sum in equation (17) is finite
and equal to the stated result (Debreu and Herstein (1953)). O

The condition |¢| < 1 states that network externalities must be small enough in order
to prevent the feedback triggered by such externalities to escalate without bounds. In

vector form, v = [y14, ..., yN7t]T, and in equilibrium,

(18) yi = M (¢, Gy) iy

Network Propagation. In equilibrium, the matrix M (¢, G;) contains information
about the centrality of network players.!” Multiplying the rows (columns) of M (¢, G;)
by a unit vector of conformable dimensions, we recover the indegree (outdegree) Katz—
Bonacich centrality measure. The indegree centrality measure provides the weighted count
of the number of ties directed to each node (i.e., inward paths), while the outdegree cen-
trality measure provides the weighted count of ties that each node directs to the other
nodes (i.e., outward paths). That is, the i-th row of M (¢, G¢) captures how country i
loads on the trade network as whole, while the i-th column of M (¢, G¢) captures how
the trade network as a whole loads on country i. Therefore, the trade network central-
ity of a country affects the dominance status of its currency, potentially also through its

characteristics (captured by variables x;).

2.4. Estimation Method. Making explicit the role of the shocks, €; ¢+, and country fixed

effects, fi;, in the first order condition (15), yields the empirical representation

(19) Yit = i + i 00 + Tpip + @ Z 9ijtYjt + Z Gij,t%i .10 + €t
J J

where the covariates, x;;, are contemporaneously independent from the time ¢ shock.
Hence, we can also accommodate, among other controls, the lagged value of the both
import and export excess currency invoicing. The above formulation is the so-called
17T his centrality measure takes into account the number of both direct and indirect connections in a
network. For more on the Bonacich centrality measure, see Bonacich (1987) and Matthew O. Jack-
son (2010). For other economic applications, see Ballester, Calvo-Armengol, and Zenou (2006) and Ace-

moglu et al. (2012). For an excellent review of the literature, see Matthew O Jackson and Zenou (2012).
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spatial Durbin model (SDM - see, e.g., LeSage and Pace (2009)). We estimate the model
using monthly data, and we include year fixed effects to control for unobserved macro
factors. At time t, the network is predetermined and g;;; is measured by the fraction
of country ¢’s imports or exports from or to country j. We include a very broad set of
country-, and pair-specific, characteristics suggested in the previous literature (such as
existence of swap line, bilateral exchange rate volatility, consumer price index volatility,
financial market development, denomination of corporate sector FX liability), and lagged
values of the excess currency invoicing of both exports and imports. All control variables
are lagged by one period for predeterminancy.

The general formulation in equation (19) nests several more restrictive models consid-
ered in the previous literature on network spillovers. For instance, setting the vector 6
to zero, i.e. shutting down the direct dependency of country ¢’s outcome variable on the
covariates of all other countries, we have a simple spatial lag (SLM) as in Ozdagli and
Weber (2023). Furthermore, restricting @; j; = (x4, zp] and § = =[5, p"]", we have a
spatial error model (SEM) as in Denbee et al. (2021). As shown in Bramoullé, Djebbari,
and Fortin (2009), the identification conditions for SDM and SLM boils down to the re-
quirement of linear independence of the identity matrix, the adjacency matrix containing
the network weights (g;;¢), and the square of this matrix, while in SEM identification
arises from the implied restriction on the covariance matrix of the error terms.'®

Note that in all three formulations for the spatial dependency (SDM, SLM, and SEM),
assessing the presence of network externalities boils down to testing whether the coefficient
¢ is different from zero, and setting ¢ = 0 yields a simple panel structure for the data.
Frequentist estimation of these models is possible via e.g., (quasi) maximum likelihood
and the Generalized Method of Moments (see, e.g. Anselin (1988)). Nevertheless, we opt
for a Bayesian procedure, since we aim to select a specification, and assess whether the
data support the presence of network externalities (i.e., a ¢ # 0), with a procedure that
is robust to model misspecification in that it does not require testing under the null of a
correctly specified model. Nevertheless, since we employ flat priors for the parameters,'’
and we assume Gaussianity for the error terms, the posterior modes coincide with the quasi
maximum likelihood estimates (a consistent estimator in this setting). When comparing
models (the SDM, SLM, SEM, and panel specifications), we assign equal prior probability
to each formulation, and posteriors are sampled via the Gibbs sampling procedure detailed
in Appendix 5.2.

Furthermore, the estimate of ¢ also reveals the type of equilibrium on the network, i.e.,
strategic substitution (when ¢ < 0) or complementarity (when ¢ > 0). Note also that
from equation (15) we have that the conditional covariance of y; is

(20) Vare—1(ys) = Var—1 (M (¢, Gy) &) = M (¢, G¢) M (¢, Gy) T

since Gy is predetermined at time t and X, = Var(e;). Hence, the variance is increasing
in ¢: The stronger the degree of strategic complementarity, the larger is the endogenous
amplification of shocks to the system, and the higher is the volatility of total excess in-

voicing in the network. To see this, note that the variance of total excess invoicing is

183ee Denbee et al. (2021) for a detailed discussion.
we use improper flat priors for 4, p, and 6, since these parameters are common across specifications,
and consequently the improper prior does not invalidate the posterior model probabilities. For ¢ instead
we employ a Gaussian prior and modify the acceptance rate to ensure proper support.
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Vars_1(1Ty;), hence, a unit shock equally spread among all N' countries has a contempo-
raneous impact on total excess invoicing equal to 1, M (¢, G¢) 1x/N = 1/(1 — ¢), where

1y denotes a vector of ones with length N.?

2.5. Variable Construction and Data Description. The main focus of our analysis
is excessive currency invoicing, 7’y ;, where 7 denotes a country, ¢ the time period, k the
currency (USD or EUR), and z the trade direction (export or import). To construct the
variable we rely on the dataset by Boz et al. (2022) and the Direction of Trade Statistics
database by the International Monetary Fund. The former is augmented with data from
SWIFT to increase cross-sectional coverage®! and provides data on the shares of aggregate
exports or imports invoiced in USD and EUR by country over time, which we denote
as PS;‘L:M' The latter provides data on the value of merchandise exports or imports
disaggregated according to a country’s trading partners over time, which we denote as
it

It is natural to assume that merchants in country ¢ when exporting to the United
States (Euro Area) invoice these exports in USD (EUR). However, if they also invoice in
USD (EUR) when exporting to other destination countries these are not the local official
currency, we refer to these transactions as excessive USD (EUR) invoicing.

To calculate our variable of interest from the data, let ji be the set of countries j with
home currency k, e.g., if K = EUR, then j; denotes all Euro Area countries. Using the

previously defined variables, we then have

(21) yzwkt = PSigfm Z Tz‘:fj,t - Efjk,t
J€Jit

where J;; denotes the set of trade counterparties of country 7 at time ¢. The first term
captures the aggregate currency invoicing of country i in currency k with direction zx.
The second term deducts the trade conducted with the countries that have currency k as
their home currency, thereby isolating the excessive amount of currency k invoiced. More
details on the construction of Yikt based on the raw datasets is given in appendix 5.1.1.

Figure 7 depicts the geographic distribution of the average export-based excessive cur-
rency invoicing for the USD and the EUR in our sample. Figure 18 in appendix 5.3 depicts
the distribution for import-based excessive currency invoicing. In total, we cover 119 coun-
tries in our dataset. Focussing on the USD export-based excessive currency invoicing, all
countries, except the Bahamas, Niger, and the Republic of Fiji, use the USD in excess of
their trade with the United States on average. That is, we find substantial use of the USD
as a vehicle currency to conduct export-based trade. Particularly Asian and some Latin
American countries have large positive export-based excessive USD invoicing positions on
average. Generally, European countries have positive, albeit relatively lower, positions.
The USD import-based measure in Figure 18 panel (a) shows similar patterns. Only one
country, the Bahamas, has a negative USD import-based excessive currency invoicing po-
sition on average. Judging from the magnitude of positions, there is comparable usage of
the USD across exports and imports as a vehicle currency. On the import side, Asian and
European countries have particularly large positive import-based excessive USD invoicing

positions on average.

20gince 1y =(In — ¢Gt)71(IN — ¢G)1In = (In — ¢Gt)711N(1 — ¢) due to G¢ being a right stochastic

matrix. Hence, M (¢, G¢)1n = (1 — ¢) '1n.

21Cruciablly, the SWIFT dataset allows us to cover China, Hong Kong, Mexico, Canada, the United Arab

Emirates, Singapore, Vietnam and Sri Lanka. For details on the augmentation see appendix section 5.1.1.
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Figure 7. Export-Based Excessive Currency Invoicing across Countries
167234 min. USD

15786 min. USD
1482 min. USD
131 min. USD

3 min. USD

-70 min. USD

39770 min. EUR

1626 min. EUR

57 min. EUR

-26 min. EUR

-868 min. EUR

-21347 min. EUR

(b) EUR Excessive Currency Invoicing

The figure depicts the average monthly excessive currency invoicing across countries over our sample. All
amounts are in USD equivalents. The countries marked in white are not included in our sample due to
missing observations. The top ten countries by export-based excessive USD invoicing positions in our
sample are: China, the United States, Taiwan, Russia, South Korea, Saudi Arabia, Japan, Vietnam,
Singapore, and Mexico. The top ten countries by export-based excessive EUR invoicing positions in
our sample are: Germany, the Netherlands, Italy, Ireland, France, Belgium, Austria, Spain, the Slovak
Republic, and the Czech Republic. Panel (a): USD excessive currency invoicing. Panel (b): EUR excessive
currency invoicing.

Focussing on the EUR export-based excessive currency invoicing, the majority of coun-
tries use less EUR relative to their trade with the Euro Area countries on average, leading
to negative excessive currency invoicing positions. Mostly European and their immediate
neighbouring countries have large positive export-based excessive EUR invoicing positions.
The fact that some European countries on average have large positive EUR, export-based
excessive currency invoicing positions indicates a form of producer currency pricing. The
EUR import-based measure in figure 18 panel (b) again shows similar patterns, in that
mostly European and neighbouring countries have large positive import-based excessive
EUR invoicing positions. Interestingly, we again observe that European countries on av-
erage have a large positive EUR import-based excessive currency invoicing position. This
indicates a form of local (destination) currency pricing. Together, these patterns lend
support to claims that the EUR is less of a globally, but more of a regionally dominant

currency.

2.5.1. Dataset Construction. The focus of the empirical study is to investigate the drivers

of USD and EUR excessive currency invoicing, and in particular to asses whether network
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externalities affect the currency invoicing decision. We construct our dependent variable
at monthly frequency based in exports and imports and add a large set of country-specific
variables, suggested in the previous literature as potential drivers of the currency invoicing
decisions, to our dataset.

In particular, the literature has found that exporters might coordinate on a certain
invoicing currency to improve their pricing competitiveness in a certain market or hedge
against exchange rate shocks to their inputs (e.g., labor, capital, or intermediate goods)
(see Gopinath (2015), Doepke and Schneider (2017), Mukhin (2022) and Eren and Mala-
mud (2022)). It is important to control for price volatilities and the size of the market.
Hence, among the covariates, we include consumer price index-based inflation and infla-
tion volatility, the change in domestic exchange rates and exchange rate volatility with the
USD or EUR and the share of total aggregate imports or exports. Bahaj and Reis (2020)
find that currency invoicing decisions of exporters depend on the level of financial services
provided to exporting and importing firms denominated in certain currencies. For exam-
ple, suppose a large share of counterparties of country ¢ have a well-developed financial
market denominated in EUR instead of USD. Trade and working capital financing as well
as currency risk hedging in EUR would be cheaper and readily available. Then, firms
in country ¢ would have more incentive to invoice their trades in EUR. Similar ideas are
also found in Maggiori (2017), Gourinchas, Helene Rey, and Sauzet (2019), and Gopinath
and Stein (2021). In these papers, it is the characteristics of a country’s trading partner
countries, such as whether these partner countries have a well-developed credit or debt
market denominated in USD or EUR, that determine whether USD, or EUR, or any other
currency is used for invoicing. Motivated by these findings, we also include the aggregate
level of firm-level debt denominated in the USD or EUR, dummy variables indicating
whether a country has swap lines with the United States Federal Reserve or the European
Central Bank, the financial development index, and the foreign direct investment inflows
or outflows of a country. For detailed variable definitions, data sources and data-cleaning
steps, see Appendix 5.1.

To construct the final dataset we lag all independent variables with respect to their
original frequency. We then add lagged dependent variables, that is, lags of import-
or export-based USD or EUR excessive currency invoicing and time- and country-fixed
effects. The final dataset, including explanatory variables for our baseline specification,
covers 84 countries from January 2004 to December 2019. These countries cover on average
91% (93%) of worldwide exports (imports) reported in the Direction of Trade Statistics
database during the sample period.

Before estimation we standardise our data in two ways. First, we divide our dependent
variable by lagged nominal gross domestic product. We also divide our foreign direct
investment and aggregate level of firm-level debt variables by contemporaneous nominal
gross domestic product. Second, we normalise all variables (independent and covariates),

except the swap line dummy variable, by their sample standard deviation.

2.6. Network Analysis. In this section, our focus is to explore the influence of network
externalities on the currency invoicing choices for a broad set of countries in the context
of trade-induced transactions. We incorporate a substantial set of covariates, previously
suggested in relevant literature, as potential factors driving currency invoicing decisions,
and we examine whether the structure of the trade network itself acts as an additional

driving force.
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First, we start by conducting a comparative analysis between dynamic panel specifi-
cations for the invoicing decision and alternative specifications (SLM, SEM, and SDM)
that account for potential network spillover effects. The data overwhelmingly indicate
that a country’s currency invoicing decision is significantly influenced by the currency in-
voicing choices made by its trade partners. In essence, network externalities emerge as
one of the significant drivers impacting the currency invoicing choices. Second, we revisit
the evidence on the determinants of the currency invoicing choice through the lenses of
spatial dependency across countries. In doing so, we discover that certain findings from
previous analyses become more nuanced when we consider both direct and indirect (i.e.,
effects through the network) effects. Third, employing our estimated structural model,
we identify the key players in currency invoicing — countries whose decisions wield the
most significant influence on total currency invoicing. Remarkably, countries and regions
exhibiting substantial trade network centrality emerge as critical actors in this process.
Fourth, we analyse the spillovers between export and import invoicing, to shed light on
the natural hedge (Doepke and Schneider (2017); Amiti, Itskhoki, and Konings (2022))
channel of currency invoicing determination, and whether USD and EUR are complemen-
tary or substitute in the invoicing decisions. Fifth, we perform counterfactual analysis to
assess the potential fragility of the current dominant currency equilibrium.

2.6.1. Are there Trade-Network Spillovers in Currency Invoicing? The first question we
ask the data is whether there are indeed network spillovers driving the currency invoicing
decision. We do so by computing the posterior probability of the spatial Durbin model
(SDM) implied by our currency invoicing model in equation (15) and the same quantity
for the panel specification obtainable by shutting down the trade-network channel (i.e.,
setting ¢ and the vector 6 equal to zero). Furthermore, we consider alternative sources
of spatial dependence. In particular, we consider two alternative canonical cases. First,
the case in which the invoicing decision of country ¢ depends on the invoicing of other
countries in the network, but not directly on the other countries’ covariates (i.e., ¢ # 0
but the vector 6 equal to zero in equation (15)). This is the so-called spatial lag or spatial
autocorrelation model (SLM). Second, we also consider network spillovers purely driven
by network propagation of the shocks (as, e.g., in Denbee et al. (2021)). That is, the
invoicing decision of each country does not depend directly on the invoicing decision of
any other countries or on other countries’ covariates (i.e., ¢ and the vector 6 equal to zero
as in a panel specification), but the shocks in each country are linked via the network,
ie. pi¢ = p; + 2, where z;; = d)Zj 9ijtZjt + Vit, where v;; denotes cross-sectionally
uncorrelated shocks.

Posterior model probabilities, that is the likelihood of the various models being the
true data generating process, are computed assuming equal prior probabilities for all the
models (i.e., assuming that the various specification are ex ante equally likely). That is,
the posterior probability of the m-th model is prob,, = %, where p,, denotes the so-
called marginal likelihood of model m (the value of the integrated unnormalized posterior,
i.e. likelihood times the prior, over the parameter space).

Log marginal likelihood values and posterior specification probabilities are reported in
table 3. Each column considers a different dependent variable: excessive currency invoic-
ing of exports in USD (column 1) and EUR (column 2), and excess currency invoicing
of imports in the same two currencies (respectively, columns 3 and 4). Several observa-

tions are in order. First, there is overwhelming evidence of network spillovers: The panel
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Table 3. The Posterior Likelihood of Trade-Network Spillovers

Specification: ECIFE, ECIE:, ECIE, ECIT

Panel Inp, 203.701 -1999.739 721.933 -2653.269
prob,  0.000 0.000 0.000 0.000

SEM Inp, 178.036 -1973.738 710.634 -2634.372
prob,  0.000 0.000 0.000 0.000

SLM Inp, 227.448 -2001.040 732.393 -2570.273
prob,,  0.000 0.000 0.000 0.000

SDM Inp, 274.748 -1863.344 897.106 -2479.632

prob,,  1.000 1.000 1.000 1.000

The table reports the logarithm of the marginal likelihood (Inp.,) of the data, given the model and the
posterior model probabilities (prob,,). Note that the marginal likelihoods are adjusted by subtracting the
logarithm of the number of observations. The models are separately estimated on each dataset using our
baseline specification. Depending on the dataset, the baseline specification uses, respectively, USD or EUR
export- or import-based excessive currency invoicing as the dependent variable. As independent variables,
we include lags of inward foreign direct investments, a USD SWAP line dummy, exchange rate changes
with the USD and EUR, realized exchange rate volatility with the USD and EUR, the share of aggregate
exports, CPI-based inflation and CPI-based inflation volatility, USD export-, USD import-, EUR export-,
and EUR import-based excessive currency invoicing, and country- and time-fixed effects.

specification with no spatial dependency is never preferred by the data. Second, the SDM
model — the specification of our theoretical formulation — is always strongly preferred by
the data, with posterior probability approaching 1 in all cases considered. Third, even
alternative spatial formulations generally dominate the specification with no network de-
pendency with the SLM formulation being almost always strongly preferred to the panel
one. Fourth, the SEM model is typically the worst performing among the spatial specifi-
cations considered, and it is a less likely data generating process (DGP) than the dynamic
panel in all cases: This emphasizes that the measured network spillovers are driven by the
effect of a country’s invoicing decision on its traded partner’s invoicing decisions, rather
than being merely the result of common shocks propagated via the trade network. Fur-
thermore, as shown in table 5.4 of the appendix, the above findings hold if we use actual
currency invoicing, or aggregate currency invoicing, instead of our preferred measure of
excessive currency invoicing as the dependent variable.

Overall, table 3 emphasizes the need to account for network spillovers when analyzing
the currency invoicing choice and provides strong support for the formulation (the SDM)
adopted in our model.

2.6.2. The Drivers of Excessive Currency Invoicing. Having established the presence of
network spillovers and empirical support for our SDM formulation, we now turn to analyse
the implications of our model for the determinants of currency invoicing suggested in the
previous literature.

Direct interpretation of coefficients for spatial models is difficult, as they often do not
represent the marginal effects of the explanatory variables. This is because marginal
effects in spatial models depend on potentially non-zero cross-derivatives. Intuitively, this
is because the change in an explanatory variable for an individual country can potentially
affect the dependent variable in all other countries, through, for example, feedback loops.
Hence, covariates have both a direct and indirect (through the network dependency) effect

on the outcome variables. Furthermore, since we also include among the controls the lagged
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values of the dependent variables to capture time series autocorrelation, perturbations of
any of the covariates have both short- and long-run effects.

Hence, we report direct and total effects — the difference between the two indicating the
indirect effect — in both the short-term (i.e., contemporaneously) and the long-term. The
total effect, which we define as in LeSage and Pace (2009), is the time series average of
the average row sum of partial derivatives (since, due to time variation in Gy, the partial
derivatives are time varying). This corresponds to the average impact on the individual
dependent variable y;; resulting from changing a given explanatory variable by the same
amount across all individual countries. It is important to account for changes across
multiple countries, as this allows us to trace out the spatial impact. The direct effect,
which we also define similarly to LeSage and Pace (2009), is the time series average of
the diagonal partial derivatives. This corresponds to the average impact on individual
observation y;; by changing its own " observation of a given explanatory variable. This
statistic is closely related to the marginal effect in a standard regression model. To see
this, suppose ¢ and 0 are all zero. We would then find that the direct effect is exactly the
B coefficient associated with the given covariate. Finally, the indirect effect is defined as
the difference between total and direct effect.

We report these estimated effects in tables 4 and 5 for excessive and, respectively,
aggregate currency invoicing. In each table panel A and B focus, respectively, on USD and
EUR denominated invoicing. We add different groups of regressors, while always including
country- and time-fixed effects, and lagged values of inward foreign direct investments,
outward foreign direct investments, USD export-, USD import-, EUR export-, and EUR
import-based excessive currency invoicing, as control variables. In both tables, long-term
and short-term effects are similar in sign and significance. We report both for completeness.

Several observations are in order. First, for both USD and EUR denominated excess
currency invoicing, we observe large and highly statistically significant network effects:
The ¢ coefficient ranges from 0.245 to 0.296 for USD denominated invoicing and from
0.144 to 0.188 for EUR denominated invoicing. These estimated coefficients are not only
statistically significant at any customary confidence level but also very stable across spec-
ifications.

Second, being positive, the estimates of ¢ imply strategic complementarity in the cur-
rency invoicing decision: If a country increases its invoicing in a given currency, its trade
partners are also likely to do so. In particular, the coefficients imply an average ampli-
fication of the shocks to currency invoicing of about 17%-42% relative to a world with
¢ =0.

Moreover, as shown in table 5, this strong evidence of network-induced strategic com-
plementarity in the currency invoicing choice is supported by the data even if we use
aggregate invoicing values rather than our preferred excessive currency invoicing measure.
If anything, in this robustness check, the measured network spillovers are even stronger.
This stability of the estimated network effect is extremely reassuring.

Third, albeit most estimates of the direct effects of covariates conform with previous
findings in the literature, these are much less stable across specifications and currency
denomination, and, most importantly, it is not uncommon to find significant direct effects
— akin to those estimated with a panel specification — while the total effects are not
statistically significant, and vice versa. This is not too surprising given the strong evidence

in Table 3 in favour of spatial modeling, which indicates that evidence produced ignoring
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Table 4. The Drivers of Excess Currency Invoicing

Independent Variables

1974

) 2 (3) (4) (5) (6)
CPI CPIVol FXChngysp FXChngeyr FXVolysp FXVolpyr  TSP*  FDysp FDChngusp FDpyr FDChngpyr SWAPysp SWAPpyr  FMI
Panel A. Dependent Variable: Export Excess Currency Invoicing in USD (ECI[%JD)
Short-term: Direct Effect -0.011**  0.028*** -0.017 -0.004 -0.014 -0.004 -0.097***  0.042*** 0.019** 0.012 -0.011 0.048 -0.045 0.006
(0.092)  (0.000) (0.182) (0.668) (0.210) (0.687) (0.000)  (0.000) (0.017) (0.106) (0.148) (0.129) (0.208) (0.317)
Total Effect | -0.093***  0.019** -0.083 -0.074*** 0.070 -0.072** -0.136™** | 0.104*** 0.017 0.042 -0.037 0.324*** -0.453*** 0.007
(0.000)  (0.080) (0.113) (0.009) (0.203) (0.014) (0.000) | (0.004) (0.460) (0.195) (0.264) (0.001) (0.000) (0.828)
Long-term: Direct Effect | -0.044**  0.108"** -0.067 -0.017 -0.055 -0.016 -0.434*** | 0.159*** 0.074** 0.044 -0.043 0.192 -0.178 0.025
(0.086)  (0.000) (0.176) (0.651) (0.219) (0.668) (0.000) | (0.000) (0.017) (0.105) (0.147) (0.123) (0.199) (0.319)
Total Effect | -0.399***  0.084** -0.363 -0.325** 0.304 -0.317** -0.749*** | 0.426™** 0.073 0.172 -0.150 1.370%** -1.915%* 0.031
(0.001)  (0.086) (0.116) (0.010) (0.206) (0.018) (0.000) | (0.005) (0.458) (0.201) (0.268) (0.001) (0.000) (0.829)
0] 0.252%** 0.245** 0.248** 0.296*** 0.259*** 0.248***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R? 0.948 0.948 0.949 0.950 0.948 0.948
NObs 10812 10835 10835 9303 10835 10835
log marginal 194.757 198.141 291.295 -75.518 206.735 182.530
Panel B. Dependent Variable: Export Excess (urrency Inyoicing in EUR (ECT g;}n)
Short-term: Direct Effect | -0.006 -0.009 0.033** -0.006 -0.005 0.023** 0.046™*  -0.005 0.037** -0.012 0.009 -0.198*** -0.106** 0.000
(0.459)  (0.252) (0.028) (0.609) (0.740) (0.044) (0.000) | (0.637) (0.000) (0.165) (0.367) (0.000) (0.013) (0.962)
Total Effect | 0.079™* -0.042*** -0.025 -0.035 -0.017 0.044 0.060"** | 0.103*** -0.046** 0.051 -0.103*** -0.047 -0.516*** 0.009
(0.005)  (0.000) (0.653) (0.250) (0.771) (0.161) (0.000) | (0.008) (0.064) (0.138) (0.003) (0.638) (0.000) (0.798)
Long-term: Direct Effect | -0.017 -0.029 0.105** -0.019 -0.015 0.074** 0.141** | -0.014 0.105"* -0.034 0.024 -0.606*** -0.324** 0.001
(0.494)  (0.244) (0.028) (0.607) (0.738) (0.044) (0.000) | (0.638) (0.000) (0.165) (0.367) (0.000) (0.013) (0.961)
Total Effect | 0.286*** -0.154*** -0.081 -0.112 -0.055 0.142 0.196*** | 0.296** -0.131** 0.146 -0.295%** -0.139 -1.528*** 0.029
(0.006)  (0.001) (0.655) (0.251) (0.769) (0.163) (0.000) | (0.010) (0.066) (0.144) (0.003) (0.637) (0.000) (0.799)
] 0.161*** 0.144** 0.144** 0.188*** 0.144** 0.147%*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R? 0.963 0.963 0.963 0.966 0.963 0.963
NObs 10813 10836 10836 9304 10836 10836
In py, -1864.490 -1872.266 -1867.117 -1910.905 -1845.850 -1884.534

The table reports the posterior means of the estimated effects and their respective p-values in brackets. Coefficient estimates significant at the 10%, 5% and 1% levels are indicated
by *, **, and *** respectively. Estimation is carried out separately for the two different datasets. In addition to the listed independent variables, we always include country- and
time-fixed effects, lags of inward foreign direct investments, outward foreign direct investments, USD export-, USD import-, EUR export-, and EUR import-based excessive currency
invoicing as control variables.



144

Table 5. The Drivers of Aggregate Currency Invoicing

Independent Variables

(1) 2) (3) (4) (5) (6)
CPI CPIVol FXChngysp FXChngpyr FXVolysp FXVolgyr TSP* FDysp FDChngysp FDpyr FDChngpyr SWAPysp SWAPpyr  FMI
Panel A. Dependent Variable: Export Aggregate Currency Invoicing in USD (ACI[7§D)

Short-term  Direct Effect  -0.001  0.021*** -0.021** 0.006 -0.014 -0.008 -0.121%**  0.029*** 0.020"** 0.005 -0.016** 0.039 -0.043 0.007
(0.858)  (0.000) (0.049) (0.447) (0.163) (0.367) (0.000)  (0.000) (0.004) (0.368) (0.012) (0.160) (0.175) (0.201)

Total Effect |-0.112***  0.017 -0.102** -0.091*** 0.079 -0.093*** | -0.194*** | 0.060 0.012 0.014 -0.128* 0.096 -0.612%* 0.003

(0.000)  (0.149) (0.074) (0.005) (0.183) (0.004) (0.000) | (0.171) (0.674) (0.700) (0.001) (0.403) (0.000) (0.932)

Long-term Direct Effect | -0.001  0.101*** -0.098** 0.033 -0.067 -0.033 -0.651*** | 0.129*** 0.090*** 0.024 -0.069** 0.182 -0.182 0.033
(0.957)  (0.000) (0.055) (0.412) (0.149) (0.399) (0.000) | (0.000) (0.004) (0.368) (0.018) (0.164) (0.218) (0.195)

Total Effect | -0.416***  0.063 -0.388** -0.348*** 0.302 -0.358*** | -0.998"** | 0.172 0.035 0.041 -0.370%** 0.349 -2.218*** 0.011

(0.000)  (0.154) (0.079) (0.008) (0.188) (0.007) (0.000) | (0.179) (0.666) (0.704) (0.002) (0.406) (0.000) (0.937)

[9) 0.387** 0.391** 0.369*** 0.450*** 0.393*** 0.393**

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R? 0.963 0.963 0.964 0.963 0.963 0.963

NObs 10812 10835 10835 9271 10835 10835
Inppm, 1663.108 1663.017 1842.718 1180.256 1677.898 1644.081

Panel B. Dependent Variable: Export Aggregate Currency [nvoicing in EUR (ACIE*’DEYR)

Short-term  Direct Effect | 0.008  0.018*** -0.027%* -0.004 -0.005 0.004 -0.101**  0.016** 0.028"** 0.002 -0.014** -0.015 -0.027 0.001
(0.133)  (0.001) (0.007) (0.634) (0.567) (0.581) (0.000) | (0.018) (0.000) (0.741) (0.015) (0.560) (0.357) (0.854)

Total Effect | -0.046 0.014 -0.125** -0.109*** 0.026 -0.056 -0.229*** | -0.028 0.017 0.027 -0.198*** 0.085 -0.792%* -0.042
(0.143)  (0.282) (0.048) (0.002) (0.695) (0.123) (0.000) | (0.555) (0.568) (0.493) (0.000) (0.505) (0.000) (0.285)

Long-term Direct Effect | 0.042  0.094*** -0.141%+* -0.018 -0.028 0.023 -0.563*** | 0.083** 0.142%* 0.009 -0.071** -0.079 -0.109 0.006
(0.130)  (0.001) (0.008) (0.669) (0.559) (0.563) (0.000) | (0.016) (0.000) (0.751) (0.020) (0.544) (0.457) (0.835)

Total Effect | -0.231 0.069 -0.565** -0.495*** 0.117 -0.254 -1.121%%* | -0.116 0.077 0.119 -0.860*** 0.328 -2.973*** -0.200
(0.153)  (0.289) (0.055) (0.004) (0.697) (0.133) (0.000) | (0.574) (0.569) (0.500) (0.000) (0.504) (0.000) (0.293)
[9) 0.499*** 0.491** 0.488*** 0.543** 0.496™** 0.493***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R? 0.964 0.965 0.965 0.967 0.964 0.964

NObs 10813 10836 10836 9272 10836 10836
Inppm, 2491.015 2493.079 2638.641 2047.666 2515.026 2473.841

The table reports the posterior means of the estimated effects and their respective p-values in brackets. Coefficient estimates significant at the 10%, 5% and 1% levels are indicated
by *, **, and *** respectively. Estimation is carried out separately for the two different datasets. In addition to the listed independent variables, we always include country- and
time-fixed effects, lags of inward foreign direct investments, outward foreign direct investments, USD export-, USD import-, EUR export-, and EUR import-based aggregate currency
invoicing as control variables.



the network spillovers is affected by a large degree of misspecification. Hence, reduced-
form evidence that ignores the spatial dependency should be taken with a substantial grain
of salt.

Tables 4 and 5 further highlight that impacts for USD and EUR invoicing are noticeably
different in terms of sign, magnitude, and significance. To a large degree the differences
in results across USD and EUR, as well as across excess and aggregate currency invoicing,
can be reconciled with explanations treating the USD as a globally dominant currency and
the EUR as a regionally dominant currency, i.e. a pecking order of dominant currencies.

For example, we find that the larger a country’s share of worldwide exports (7'SF?)
is, the smaller is its amount of USD excess and aggregate invoicing. This finding is in
line with the theoretical results in Mukhin (2022), predicting that the larger a country’s
market size the lower is its reliance on vehicle currencies for invoicing. For EUR aggregate
invoicing, similar patterns arise, however, for EUR excess invoicing we find that a country’s
trade size leads to higher EUR excess invoicing. EUR excess currency invoicing proxies
for a country’s EUR trade conducted with non-Euro Area countries. This indicates that
larger countries tend to be more likely to invoice in EUR with non-Euro Area countries.
Finally, judging by the marginal likelihoods (Inpy,), a country’s trade size is one of the
most important determinants across the considered covariates for currency invoicing.

Next, we find that swap lines with the US federal reserve (SW APysp) lead to an in-
crease in USD excess and aggregate invoicing. This corroborates the findings by Bahaj
and Reis (2020) for Chinese RMB trade invoicing. The coefficients for aggregate invoicing
are overall insignificant, indicating that swap lines typically impact vehicle currency trade
invoicing. Further, for USD denominated excess invoicing, only the total effect is signifi-
cant, while the direct effect remains insignificant. This illustrates that swap lines lead to
an increase in USD excess invoicing predominantly through indirect network effects. The
significantly negative effect on EUR excess invoicing suggests substitution between EUR
and USD when the swap line is activated, consistent with a pecking order and the domi-
nance of the USD. Turning to swap lines with the European Central Bank (SW APgyRr),
we find only negative effects. Closer examination of the data showed that in total only ten
non-Euro Area countries had a swap line with the European Central Bank. These became
effective during the great financial crisis or European debt crisis, explaining the estimated
negative effects of EUR swap lines for both USD and EUR invoicing®?.

Turning to exchange rate related variables, we document that when a country’s cur-
rency depreciates with respect to the USD or EUR (FXChngysp and FXChngpur
respectively), in general excess and aggregate invoicing in both USD and EUR decrease.
The only exception is that for depreciation with respect to the USD (FXChngysp), we
find a positive statistically significant direct effect for EUR excess invoicing. Note how-
ever, the total effect is negative albeit insignificant and for aggregate EUR invoicing the
effects are negative and significant. Overall, the estimated effects are more significant for
aggregate than for excess currency invoicing, indicating that exchange rate depreciation
is relatively less relevant for vehicle currency invoicing. Theoretically, exporting firms in-
voice in vehicle currency to hedge against exchange rate volatility. We find weak evidence
to support that exchange rate volatility increases dominant currency invoicing. In Table
4, we observe that the direct effect of higher EUR exchange rate volatility (FXVolgyr)

22The non-Euro Area countries are the United States, the United Kingdom, Denmark, Sweden, Switzer-
land, Canada, Japan, China, Hungary, and Poland. Swap lines were activated in 2007-2011 and kept in
place throughout the sample for all countries except Poland and Hungary.
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is positive and significant on excess EUR invoicing while the total effect is positive but
not significant. By comparison, the direct effect of higher USD exchange rate volatility
(FXVolysp) on USD excess invoicing is actually negative, whereas the total effect after
accounting for network impact is positive as expected, although neither estimate is statis-
tically significant. In table 5, when we study the driver of aggregate currency invoicing,
the impacts of exchange rate volatility are statistically insignificant. We also observe a
cross-currency impact: a larger EUR exchange rate volatility lowers both excess and ag-
gregate USD invoicing, and the total effects are statistically significant. This, again, might
reflect a substitution effect between the two currencies when exporting firms hedge against
relevant exchange rate volatility.

Inflation and inflation volatility have statistically significant but different impacts on
excessive currency invoicing decisions for both USD and EUR. For aggregate USD currency
invoicing the effects appear similar, however, significance levels change somewhat. The
level of domestic inflation (C'PI) has negative direct and total effects. This might reflect
that domestic inflation makes exporters more competitive due to reduced local cost and
less concerned about price competition in target markets. Interestingly, domestic inflation
volatility (CPIVol) has positive direct and total effects. Therefore, inflation risk appears
to be a more important driver than the level of inflation for dominant currency invoicing.
This is intuitive because exporters use currency invoicing to manage balance sheet risks
caused by inflation volatility. For excess EUR currency invoicing the signs of the effects are
the opposite, however, they change across the two tables. This highlights that the effects
are sensitive with respect to EUR invoiced trade conducted with Euro Area countries.
The negative effect of inflation volatility for excess rather than aggregate EUR invoicing
means that a higher CPI volatility leads to a lower amount of EUR invoicing to non-Euro
Area countries, suggesting that the EUR is used as a regional currency.

We also find that foreign debt, which is measured as amount of corporate debt in USD
(FDygp) relative to domestic gross domestic product, is positively linked with excess
and aggregate USD and EUR invoicing. The variable can be viewed as proxying whether
a country has access to international capital markets and hence suggests that countries
with more access to international capital markets tend to invoice more of their trade using
vehicle currencies. We find that corporate debt in EUR (FDgyr) is not associated with a
significant effect. This can be viewed as further evidence of the USD dominance relative to
that of the EUR. We further examine the change in corporate debt in USD (FDChngysp)
or EUR (FDChnggur), which typically lead to effects with plausible signs. Note however
that overall the model incorporating data on corporate debt performs worst in terms of
its associated marginal likelihood (In p,,), indicating that corporate debt is a less relevant
determinant relative to the other variables considered.

Finally, we do not find that the financial market index (F'MI), an index aiming to
summarise the broad financial development of a country, has any significant impact on
trade invoicing. Together with the previous results, this suggests that only certain financial
frictions such as liquidity (captured by swap lines or the level of foreign firm debt relative
to gross domestic product) affect trade invoicing decisions.

Tables 15 and 16 in the appendix depict our model baseline specification underlying
the subsequent analysis. We included all of the discussed variables except the financial
market index and the foreign debt variables. The former was excluded as the overall

impact was insignificant. The latter were excluded as judging by the marginal likelihood
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other model specifications were preferred. Finally, we excluded the swap line with the
European Central Bank due to the aforementioned issues. We further dropped outward

foreign direct investments, which improved the marginal likelihood of the resulting models.

2.6.3. The Network Key Players. With the estimated spatial Durbin we can evaluate
which country’s shocks are expected to have the largest impact on the overall network —
that is, we can identify the key players in the trade network. To see this, note that the
SDM, singling out the role of the lagged dependent variables and merging the x covariates

into a more compact notation, can be rewritten in vector form as
(22) Yt = ay1 +nGyi—1 + oGy + Xy f + G X0 + &
where ¢, ~ N(0,02I). Define M; = (I — ¢G;)~! and A; = (al + nGy). Suppose that

Yt, as in our empirical implementation, is scaled by the GDP levels for stationarity and
normalized to have unit variance. Let D; = diag(GDPiTtl) and A = diag(o; '), where
o = Var(yi7t/GDPi7t)1/2. Hence, we have y; = ADtyf, where yf is our independent
variable in USD units. The above immediately implies that the standard deviation of the
errors of the USD unit dependent variable, ef , are heteroskedastic and vary over time.
Specifically, ait = Var(eit)l/ 2 = 00;GDP;;. We are mostly interested in computing
statistics in terms of USD units from here onward. In what follows, let e be a column
vector of ones of size N x 1. Hence, Y; = €' yf denotes the total USD excess currency
invoicing at time t.

Given the presence of lagged independent variables on the right-hand side of equation
(22), a country-specific shock affects all other countries both contemporaneously and over
time. That is, impulse-response functions (IRFs) of this model have both a spatial (across
countries) and a temporal (across time) dimension. We define the USD unit spatiotemporal
impulse-response function (STIRF) of V; = ¢’ yf , to a one standard deviation shock to

country 4, as

STIRF;;, =

a}/t+7- $ { el{Dt_lAilMt}.’iU forT=0

Oit = —1 x—1 -1
Eit e{D A H;:o Myyr—jAiir—jM}. j0 for 7> 1

where {}.; is the operator returning the i column of a matrix.

We can also isolate the purely network-driven part of the STIRF — which is the effect
in excess of the original shock

e{D; ' ATIMyY. 0 — 00;GDP;y for 7 =0

STIRFf, =
LhT { €I{D;+17_A_1 H;;é Mt+T*jAt+Tijt}',l'O- - OZTO'O'iGDPi,t forr>1

Figures 8 and 9 report STIRF;; and STIRF  of, respectively, USD and EUR ex-
cess currency invoicing evaluated at the average adjacency matrix during the sample and
average gross domestic product of each individual country.

Focusing on the USD denominated currency invoicing in Figure 8, China is the key
player for USD invoicing: A one standard deviation shock generates a contemporaneous
change in total ECI of 15 billion USD with about 10% of the effect driven by trade
externalities. The United States follows in second place — this is mostly because China
exports almost 1.5 times as much as the United States and invoices 92% of its exports
in USD on average. Four other countries stand out: Japan, South Korea, Russia, and
Germany. A one standard deviation shock to the ECI of these countries would result in

a contemporaneous change (panel a) in total ECI of about 2.7-3.1 billion USD invoicing,
a7



i.e. about 0.5% of the total ECI in USD and a total cumulative effect (panel b) after 18
months of 15-21 billions — about 0.2% of total USD ECI over the same period. However,
the drivers of these large effects are very different in nature, as outlined by the STIRFs in
excess of the original shocks. For Russia, and to a lesser extent South Korea, the effects
are almost entirely driven by the direct effect of a change in their USD invoicing, whereas
for Germany, and to a lesser extent Japan, more than a third of the effect of a domestic
shock is due to the network amplification and the central position that these countries
have in the trade network. Furthermore, for countries such as Canada, the UK, Hong
Kong, France, and the Netherlands, we also observe that a large share of the total effect

is generated by network externalities.

Figure 8. Impulse-Response Functions of USD Excess Currency Invoicing
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Figure 9. Impulse-Response Functions of EUR Excess Currency Invoicing
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Focusing on the EUR denominated currency invoicing in Figure 9, Germany is a clear

outlier: a one standard deviation shock in this country would imply a contemporaneous
change (panel a) of about 4 billion EUR (about 11.5% of total EUR ECI), with around
16% of the effect due to the network externalities generated by this country. Similarly,

Germany generates the largest cumulative impulse-response after 18 months, with a total
effect of about 15 billion EUR (or around 2.3% of EUR ECI over the same period). The
second and third largest STIRF's are generated, in order of magnitude, by Italy and the
United States (with STIRFs, respectively, about 75% and 50% of the German ones).
Interestingly, albeit the effect of a shock to Italian EUR ECI is larger than that of the
United States, the shocks arising in the latter are characterised by a larger degree of

network amplification. It is worth noticing that Russia, with the ninth largest STIRF's,



seems to play an important role also for the EUR denominated ECI but this effect, as in
the USD case, is almost entirely direct in nature, rather than being amplified through the
network.

In figures 19 and 20 of the appendix we report the network impulse-response functions
for actual currency invoicing, rather than our excess invoicing measure, and find extremely

similar results. Overall, the stability of the estimated effects is extremely reassuring.

2.6.4. Cross-Currency and Fxport-Import Spillovers. So far we have considered the de-
termination of excess currency invoicing of exports in USD and EUR separately, while
including as controls the lagged values of ECI in the currencies for both exports and im-
ports. This allows us to consistently estimate the spatial spillovers in a specific currency
export or import pair, but it does not provide an estimate of the contemporaneous links
within a country of the ECI in different currencies and of imports and exports.

Nevertheless, our SDM specification implies that, after accounting for the spatial de-
pendency, the estimation equations for the ECI in EUR and USD have the same structure
as the corresponding equations of a reduced-form Vector Autoregression (VAR) system
with four dependent variables (in addition to contemporaneously independent covariates
and fixed effects): ECI in EUR and USD for both exports and imports. This observa-
tion implies that, by also estimating our SDM specification for the ECI of imports, we
have a complete reduced-form VAR (with spatial dependencies in the mean processes)
for these four variables. Hence, as in the Structural-VAR literature (see, e.g., Sims and
Zha (1999)), one can recover the contemporaneous relationship between ECI of imports
and exports and of different currencies, that is the matrix I', from the covariance matrix
of the reduced-form VAR residuals.

Recall from (19) that €;; correspond to country-specific shocks, which in our model
in (13) is interpreted as shocks to a country’s value of excess invoicing. To emphasise,
€;+ measures the shock to a country without propagating it through the network system.
It measures an idiosyncratic country-specific shock to the value of a country’s excess
invoicing. Using our estimates, we can calculate the Ny X1 vectors € , |, = (I—qgi’be)y,f’t—
(Xy B,f’b—l—Gth A,"’;b), where k denotes the currency, ¢ denotes the time period, b denotes the
posterior sample draw, and x denotes the trade direction. Note that parameter estimates
have subscript k£ and superscript x to emphasise that estimation is carried out separately
on the four types of ECI (USD export, EUR export, USD import and EUR import).

For the sake of exposition, let us suppress the dependence on b, the posterior sample
draw. We then organise a country’s residuals as a 4x 1 vector €; ; = [€é2t, éé,i,t’ €gl o €g§yt]—r
Let X; denote the corresponding covariance matrix of dimension 4 x 4. The covariance
matrices Y; can be used to recover the matrix of contemporaneous linkages I';, since
¥ = F;lAi(Fl—-r)_l, where A; is a diagonal matrix with entries equal to the country-specific
variance of the structural shocks.

w distinct entries, while the matrix of contem-

Since ¥; is symmetric, it has only
poraneous linkages I'; has 4 x 4 free entries and the matrix of structural variances has four
free entries, I'; and A; cannot be recovered without imposing additional restrictions. To
achieve identification, we assume that I'; is identical across countries, i.e. I'; = I'. Put
differently, we assume that all countries USD or EUR export or import ECI react the same
way to structural shocks. Notice that this still allows for cross-sectional heterogeneity in

the structural variances, A;. This implies that ¥; = T7'A;(I'"!)T V i. To emphasize, T
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encodes the contemporaneous relationships between ECI of import and export for different
currencies for a specific country.

The above identification strategy mimics ideas from identification via time series het-
eroskedasticity. In these models, time variation in Y; is used to identify the structural
parameters (see Brunnermeier et al. (2021) for a recent example). Instead of time series
variation, we utilize cross-sectional heteroskedasticity. That is, we use the variation in
¥; to identify the structural parameters. The reason we opt for identification via cross-
sectional heteroskedasticity is twofold. First, our dataset covers only a relatively short
time period from 2004 to 2019. Second, by employing identification via heteroskedas-
ticity, we are not required to take a stance on short-run, long-run, or sign restrictions,
allowing us to identify effects under fairly general conditions. As long as the contempora-
neous relationship matrix I' is shared across the countries, identification via cross-sectional
heteroskedasticity is possible.

Note that the previous assumptions achieve identification for the different products of
I" and A;, however, similar to Brunnermeier et al. (2021), we cannot separate I" from A;*°.

Therefore, we need to impose one more restriction

1 N
N Mi=1
=1

where Ay ; is one of the diagonal elements of A;. The interpretation of this normalization
is that we force the cross-country average structural variance to be one in each equation.
This ensures identification of I' up to flipping the sign of a row and identification of I'
and the set of A; up to permuting the order of rows. We rule out former permutations by
requiring I' to have a positive sign on the diagonal and the latter permutations by selecting
the final rows to ensure that I' has its largest element on the diagonal. We estimate I' and
A; using Bayesian techniques. The estimation procedure yields posterior samples of the
4 x 4 matrix I'y, and details on the estimation are given in appendix 5.2.4.

The posterior distribution of the off-diagonal elements of I' — the contemporaneous
effects matrix — is reported in Figure 10. Coefficients have been normalized such that con-
temporaneous partial derivatives between variables can be identified immediately. Several
observations are in order.

First, we find some evidence of natural hedging, i.e. countries limiting their currency mis-
match between imports and exports. Consider an increase in excessive USD denominated
imports and focus on panels b and e. As the excessive USD denominated imports in-
crease, USD denominated exports increase and EUR denominated exports decrease. This
suggests that countries actively rebalance the currency denomination of their exports as
they are faced with higher USD denominated imports. A similar pattern is observed for
EUR denominated exports. Panels h and k illustrate that when countries excessive EUR
denominated exports increase, in response USD denominated imports decrease and EUR
denominated imports increase. These findings are in line with natural hedging and are
fairly robust when considering our alternative aggregate currency invoicing measure (see
figure 21 in appendix 5.3). Further, the coefficients in b and k are close to one, indicating
almost perfect natural hedging for excessive currency invoicing — when considering aggre-

gate currency invoicing these same coefficients are substantially below one. This indicates

2SMultiplying the rows of I' and the set of A; by scale factors leaves the likelihood function unchanged (see
appendix 5.2.4 equation (41)).
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Figure 10. Cross-Currency and Export-Import Spillovers
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The figures depict the posterior distribution of the elements of T", identified via cross-sectional heteroskedas-
ticity. For the sake of interpretation, we have scaled the draws of I';, such that the diagonal only contains
ones and then multiplied each row by negative one. Additionally, the figures depict the posterior mean, as
well as 90% and 95% confidence intervals.

that the hedging motive is particularly prevalent when counterparties use a vehicle cur-
rency to conduct trade, i.e. when the currency does not correspond to the home currency
of either involved country.

The responses associated with increases in excessive USD denominated exports and
EUR denominated imports are less in line with natural hedging. Specifically, the posterior
mean of the relevant coefficients in panel g and, respectively, panel f have the wrong
sign. However, these coefficient estimates seem to be less robust as when considering our
alternative aggregate currency invoicing measure the coefficient in g becomes insignificant
and in f flips sign, i.e. starts to support natural hedging (see figure 21). Furthermore,
evaluating the joint responses associated with increases in excessive USD denominated
exports or excessive EUR denominated imports (panels d, g, j and, respectively, c, f, i),
could indicate that other currencies play a role not considered in the analysis here. For
example, panels d, g, and j suggest that as excessive USD denominated exports increase,
so do excessive EUR denominated exports, but excessive USD and EUR denominated
imports decrease. The increase in exports can be reconciled either with additional domestic
production or imports denominated in another currency. However, with the data available

to us this is difficult to distinguish.
52



Second, we find evidence of complementarity across currencies used for export and im-
port invoicing. Panels a and d illustrate that generally as a country increases its excessive
currency invoicing for exports in either currency, excessive invoicing of exports in the other
currency also increases contemporaneously. This suggests that as a country increases its
international exports, it tends to do so both in USD and EUR. Panels i and 1 suggest a
similar pattern for imports. However, the response of excessive EUR denominated imports
to excessive USD denominated imports is insignificant.

When examining aggregate currency invoicing (see figure 21) the coefficients for d and
| flip signs. This indicates that as a country increases its aggregate USD denominated
exports (imports), their EUR denominated exports (imports) decrease. As aggregate EUR
denominated exports or imports increase, their USD counterparties still increase. These
patterns can be interpreted as confirming the dominant status of the USD over the EUR,
at least for exports and imports evaluated in aggregate currency invoicing. The latter
indicate that as a country exports or imports more, it does so in either currency, whereas
the former stress the special role of the USD: EUR denominated trade is substituted for
USD denominated trade.

2.6.5. Counter-Factual Analysis. Suppose a country decides to permanently stop using
a vehicle currency, and let us focus on the USD for exposition. This would lead to a
reduction of Yiusp t+r tO zero for all 7. Notice that since we focus on excessive currency
invoicing, this allows for countries to continue using the USD to trade with the United
States but requires countries to use another currency as a vehicle currency, such as the
EUR or Renminbi, when trading with other counterparties.

Within our framework, using our previous notation, we can view this as a shock eit, such
that ygt = 0 in period ¢. In period t 4 1, we then seek a shock e?tﬂ, such that y§t+1 =0,
taking into account the previous shock 6?,15' Due to scaling and the network effects, 6?715 r
is multiplied by a matrix (D, J:TA_IMHTADHT), and it is therefore not immediately clear
what size the shock must take.

Let S denote a set of countries that we want to shock such that for i € S, we require
yiHT = 0. Let |S| be the cardinality of set S and let ngT and e%’H_T for 7 > 0 be
the sequence of vectors of size |S| x 1 containing ECI and shocks of countries within the
set. Let {D,, JrlTA_lMHTADHT}&S denote the submatrix corresponding to the countries
within the set. Using this notation, we can show that the sequence of shocks egt 4, heeds
to satisfy

0=y, +{D A My AD s seb

Impact of shock at t + 7

T 7—1
1 a1
+ Z{Dt—H’A H MtJrTfiAt+Tfth+‘rfjADt+Tfj}S,Sei"t+7_j
j=1 =0

Impact of shocks up until t +7 — 1

Assuming that {D,, _i_lTA_lMHTADHT}g’S is invertible, the above has a unique solution
and allows us to solve for 6$$‘¢ 4 sequentially. That is, given egt, we can determine e%yt 1
Then given egt and egt 41, We can determine egt 4o, and so forth. Once these shocks are
obtained, we can calculate the STIRFs of each shock and aggregate them to assess the

impact on total excessive currency invoicing over time.
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Figure 11. Counterfactual: Abandonment of USD as Vehicle Currency
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Spatiotemporal impulse-response functions to a shock sequence that sets the excessive currency invoicing
of the specified countries to zero permanently. EU contains all 19 EUR-Area countries while BRIC(S)
contain the BRICS countries excluding South Africa, due to missing observations. Left axis = USD. Right
axis = percentage of monthly total excess currency invoicing in USD. Panel (a): Contemporaneous effect.
Panel (b): Cumulative effect after 18 month. Box-plots report posterior means and centered 95% posterior
coverage.

Figure 11 depicts this counterfactual exercise for Russia, Brazil, India, and China indi-
vidually, the EU block, and the members of BRICS in our sample (Brazil, Russia, India
and China jointly). The calculations are done using average values. The estimated effects
are quantitatively large, with the effects of the BRIC(S) block (EU) abandoning the USD
for excess invoicing resulting in a 42% (11%) reduction in the overall use of this currency.
But the channels through which these large effects arise are quite different. In the case of
the BRIC(S) countries, most of the effect is driven by the direct reduction in the use of
this currency by these countries, while in the EU case almost half of the effect is due to
network externalities. That is, due to the EU countries central role in the trade network,
and the strategic complementarity in the invoicing currency choice, if the block were to
abandon the USD, the consequent reduction in the usage of this currency would almost
double the direct effect.

To emphasize, the figures depict the impact on total excessive currency invoicing if
the aforementioned sets of countries stop using the USD as vehicle currency permanently.
The exercise still allows for countries to continue trading in USD or EUR with the United
States or the EU, respectively. In figures 22 of the appendix we report results on the same
exercise using aggregate currency invoicing. The findings are similar.

The above counterfactual stresses the inherent fragility of the dominant currency equi-
librium we uncover in the data: In the presence of strategic complementarity in currency
choice, the abandonment of the dominant currency by players that are large or central to

the trade network can have dramatic effects.

2.7. Conclusion. In this paper, we examine the drivers of dominant currency invoicing
for cross-border trades by constructing and estimating an equilibrium network model. The
network externality arises because when choosing in which foreign currency to invoice their
trades, besides being affected by its own macro and microeconomic conditions, agents are
impacted by their trading partners’ invoicing decisions either due to balance sheet hedging,

competition, financing considerations or various other reasons.
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Our estimation results show strong evidence of strategic complementarity in currency
invoicing across countries: Exporting countries tend to invoice more in a given currency
when their main trade partners invoice in that same currency. We find that the USD as a
dominant currency is less stable than the EUR. The estimated network attenuation factor,
¢, for the USD export trade is 0.241 and for the EUR export trade is 0.159. This suggests
that there is a higher degree of complementarity for USD invoicing than for EUR invoicing.
Conversely, this underscores that the USD as a dominant currency is more fragile than for
example the EUR — the ¢ coefficients imply an average shock amplification of about 32%
for the USD export ECI compared to 19% for the EUR export ECI.

We also identify key players in a given dominant currency, that is, countries that would
have a sizeable impact if they were to abandon a certain dominant currency. Some of
these key player countries are those that invoice most of their exports in that foreign
currency (e.g., China, South Korea, and Russia). Some are countries that are central
in the international trade network (e.g., Japan, Germany, and Canada). Furthermore,
we find evidence for strategic complementarity between the choices of export and import
currencies supporting the balance sheet hedging hypotheses for currency invoicing.

Finally, we conduct counterfactual analyses to examine how the use of dominant cur-
rency for trade invoicing were impacted if some countries were to abandon the USD in
coordination. We find that if the BRIC(S) block (EU) were to bring their excessive in-
voicing in USD to zero, there would be a 42% (11%) reduction in the usage of USD in

international trade with countries other than the United States.
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Chapter 3.
Estimating Risk Preferences from Option Data

This paper estimates risk preferences through nonparametric methods from option data,
and as a by-product recovers rational beliefs. The proposed estimator is shown to be
consistent and asymptotically normally distributed. The estimated risk preferences are
much more in line with preferences implied by classical utility functions than other studies
suggest. Specifically, formal statistical tests suggest that there is no statistically significant
evidence supporting the pricing kernel puzzle. In contrast, by constraining estimated risk
preferences to be monotonically decreasing, the associated beliefs’ forecasting performance
improves substantially. Finally, CRRA risk preferences with a risk aversion coefficient of
two are shown to approximate the nonparametric estimator reasonably, implying risk-
neutral densities can be translated into physical densities easily.

3.1. Introduction. In this paper, I study the extraction of risk preferences from asset
prices. Using non-parametric methods, risk preferences, and as a by-product rational
beliefs are recovered from data on realized returns and forward-looking option data.

The starting point of this paper is an identity that relates conditional risk preferences,
the stochastic discount factor, to Arrow-Debreu securities and probabilities. In the absence

of arbitrage opportunities

(23) Mi(w) =

where M;(w) is the time ¢ conditional stochastic discount factor, m (w) is the conditional
probability (or rational beliefs) and a;(w) is the price of an Arrow-Debreu security, i.e.
the price of an asset that pays of 13 if state w realizes.

When specified with respect to general states of the world, equation (23) is of little use
for estimating risk preferences as neither of the three variables is observed. Progress can
be made by focussing on states of the world summarized by the return R of a specific asset
— formally this corresponds to projecting each variable onto the return space. Breeden
and Litzenberger (1978) demonstrated that Arrow-Debreu securities over the return space
of an asset, a;(R), can be inferred from an asset’s option prices. Further, past return
realizations contain information about the probability distribution as they correspond to
draws from m;(R). Combining the two then allows to infer risk preferences over the return
space, M¢(R).

To highlight the intuition of the estimation approach in this paper, consider a generic
candidate, hi(R), for the stochastic discount factor function. Based on (23) and the
observed Arrow-Debreu securities, a;(R), the associated conditional probability function
is pinned down: m¢(R;h) = at(R)/hi(R). Evaluating this expression for the historically
observed returns, m(Ry1;h), allows to compute the likelihood of the historical returns
implied by the candidate. This allows me to estimate risk preferences that lead to beliefs
consistent with the data generating process underlying observed returns.

Formally, this approach searches over a space of functions and estimates the stochastic
discount factor function through maximum likelihood. The space of candidate functions
is large, hence, some structure is imposed to make estimation feasible. I assume that the
true stochastic discount factor is proportional to a time-invariant function. The stochastic

discount factor function is then estimated using the method of sieves, a nonparametric
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estimation technique that approximates the unknown function through a combination of
basis functions (see X. Chen (2007)). I demonstrate that the estimator is consistent and
asymptotically normally distributed, i.e. comes with the guarantee that asymptotically
the correct risk preferences are recovered. A caveat of the method of sieves is that for
finite samples there are few results available to guide the choice of basis functions and the
degree of sieve approximation K. I develop intuitive criteria for selecting basis functions
and the degree of approximation, exploiting the structure by equation (23). Specifically, I
demonstrate that using polynomial basis functions up to degree K ensures implied beliefs,
7¢(R; h), are consistent with sample moments up to the K** power, E[Rf].

To test whether assuming that the stochastic discount factor function is proportional
to a time-invariant function is empirically plausible, I employ the procedure by Miiller
and Petalas (2010). I find that there is no significant evidence of time variation in the
parameters describing the shape of the stochastic discount factor function. Together with
the asymptotic results, this makes the proposed estimation strategy attractive.

Examining the estimated stochastic discount factor function, I find that risk prefer-
ences appear downward sloping over returns. This finding is in line with predictions from
standard utility functions, which imply a monotonically decreasing stochastic discount
factor over returns, reflecting investor’s high marginal utility in low return states and low
marginal utility in high return states.

However, the findings of this paper are in contrast with other studies in the litera-
ture, which document the pricing kernel puzzle, i.e. that risk preferences are generally
not monotonically decreasing over returns (see Cuesdeanu and J. Jackwerth (2018) for a
survey). To investigate this, I develop a novel formal test of the pricing kernel puzzle. 1
find that there is no statistically significant evidence against monotonically decreasing risk
preferences. Further, I compute the conditional mean from the estimated beliefs, E;[R¢11],
and evaluate its ability to forecast returns in terms of out-of-sample R?, constructed as in
Welch and Goyal (2008). I find that constraining estimated risk preferences to be mono-
tonically decreasing leads to substantial improvements in the out-of-sample R? across all
considered forecasting horizons. For example, for forecasts at the monthly horizon the
out-of-sample R? increases by 67%. Overall, these results call into question the existence
of the pricing kernel puzzle.

The results of this paper suggest that risk preferences are much more in line with
preferences implied by standard utility functions than previously thought. Specifically,
I find that CRRA preferences with a risk aversion coefficient of around two give rise to
a reasonable approximation of the nonparametric estimate. For practitioners, this has
the advantage that the stochastic discount factor for CRRA preferences is available in
closed-form. Therefore, the physical conditional return distribution can be extracted from

Arrow-Debreu securities (or the risk-neutral distribution) easily.

3.1.1. Related Literature. This paper contributes to a large body of work studying the
relationship between risk preferences, the (physical) probability distributions of returns,
and option prices both theoretically and empirically. Based on equation (23), the literature
can be roughly split into two approaches. The first type estimates the probability distri-
bution of returns and studies the associated risk preferences implied by option data (see
e.g. J. C. Jackwerth (2000), Ait-Sahalia and Lo (2000) and Rosenberg and Engle (2002)).

The second type makes explicit or high-level assumptions on risk preferences and studies
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the implied conditional probability distribution of returns (see e.g. Bliss and Panigirt-
zoglou (2004), Kostakis, Panigirtzoglou, and Skiadopoulos (2011), S. A. Ross (2015) and
Martin (2017)).

The first strand of the literature requires estimation of the conditional return distribu-
tion, which is generally non-trivial. Several approaches, such as J. C. Jackwerth (2000)
and Ait-Sahalia and Lo (2000), estimate the conditional return distribution using rolling
windows of historical return data. Returns and specifically their distributions are known to
fluctuate wildly over time, implying there is little guarantee that a rolling window estimate
gives an accurate depiction of the conditional return density?*. Alternative approaches,
such as Rosenberg and Engle (2002), assume a specific form for the conditional return dis-
tribution, i.e. for the data generating process (e.g. GARCH), which is prone to suffer from
misspecification®”. This type of literature has documented the pricing kernel puzzle, i.e.
they find that risk preferences are not monotonically decreasing over the return space. Cru-
cially, these approaches depend on specifying and estimating m;(R) correctly. Therefore,
the pricing kernel puzzle may arise precisely because of the aforementioned drawbacks.
The presented approach allows me to revisit the pricing kernel puzzle without estimating
or specifying the conditional return distribution explicitly, overcoming challenges in exist-
ing approaches of this literature. Doing so, I find that there is no statistically significant
evidence supporting the puzzle. These findings corroborate recent results by Linn, Shive,
and Shumway (2018).

The second strand of the literature either assumes a specific preference function (e.g.
Bliss and Panigirtzoglou (2004)) or makes higher-level assumptions about preferences,
such as the negative correlation condition in Martin (2017). The approach taken in this
paper is therefore closer to this literature — the key assumption that makes estimation
feasible is that the risk preference function is time-invariant. However, due to the non-
parametric methods employed, the approach does not overly restrict the functional form
of the stochastic discount factor function a priori. Rather the data is allowed to tell us
the most likely shape of the unknown risk preferences over returns.

The results of this paper are further related to a large literature examining whether
option data or information extracted from option data, has predictive power for realized
returns (see Christoffersen, Jacobs, and Chang (2013)). I find that the probability density
function extracted through the presented approach from option data has predictive power
for returns. Further, imposing the economically motivated restriction that risk preferences
are monotonically decreasing improves the predictive power, in spirit of Campbell and
Thompson (2008).

Finally, the presented approach is related to an increasing body of studies employing the
method of sieves — a popular sieve are neural networks (see X. Chen (2007)). The presented
estimator employs a linear sieve paired with a maximum likelihood objective function.
Implicitly, the approach models the conditional return distribution as belonging to the

family of exponential distributions (see E. Lehmann and Casella (2006)), and therefore

24T take the argument to the extreme, suppose the return distribution is based on the full history
of returns, i.e. the rolling window is made arbitrarily long. By definition, this is an estimate of the
unconditional density. Equation (23) requires the conditional density, meaning this approach is only valid
if conditional and unconditional distributions are identical.

25A standard GARCH model, implies that m¢(R) is a normal distribution. Risk-neutral distributions
(Arrow-Debreu securities scaled by the risk-free rate) are typically negatively skewed and leptokurtic.
Therefore, assuming normality for 7, (R) is bound to create non-monotonicities in the stochastic discount
factor function.
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the estimator inherits several convenient properties. Specifically, it belongs to the family
of concave extended linear models (Huang (2001)).

The paper is structured as follows. Section 3.2 reviews observed Arrow-Debreu securi-
ties, a;(R), and examines the stochastic discount factor and beliefs that can be constructed
from these. Section 3.3 presents the nonparametric estimator, discusses its intuition and
its asymptotic properties. Further, the selection of basis functions and sieve approxima-
tion degree K in finite samples is examined. Section 3.4 describes the data. Section 3.5

presents and discusses the results and section 3.6 concludes.

3.2. Preferences Associated with Observed Arrow-Debreu Securities. Arrow-
Debreu securities extracted from option data are defined over the return space of the asset
underlying the options (e.g. the S&P 500). By extension, preferences associated with
these Arrow-Debreu securities correspond to the projection of the (general) preferences
onto the return space of the underlying asset.

To see this formally, consider a setting with discrete time, where F; denotes the sigma-
algebra used to depict the information available at time ¢. Let w € ) denote the realization
of a state of nature. The absence of arbitrage opportunities implies the existence of
positive Arrow-Debreu state prices (Dybvig and S. Ross (2003)). For tractability, but
without loss of generality, let the relevant state variables be the gross return of an asset
next period, Ry, and a supplementary variable X;y;. Then a;(R¢4+1, X¢+1) is the price of
an Arrow-Debreu security that pays 1$ (or one unit of the consumption good) if Ry11 and
X1 realize. Preferences are connected to these securities through the stochastic discount
factor by the pricing rule representation theorem (Theorem 2, Dybvig and S. Ross (2003)).

Formally,

a(Riy1, Xiy1)

Wt(Rt+17Xt+1)

where My(Ry+1, X¢4+1) denotes the stochastic discount factor and 7 (Ryy1, X¢4+1) denotes

My(Rig1, X)) =

the conditional probability of realization R;y; and X:11. Subscripts ¢ indicate that the
variables are conditional on F;.

Breeden and Litzenberger (1978) demonstrated that a type of Arrow-Debreu security is
observed through a rich set of option data. Let Cy(K,t+ 1) be the time ¢ call price with
strike K and maturity next period. They showed that the time ¢ price of an Arrow-Debreu
security paying 1$ if return R;;1 realizes is equal to the second derivative of the call price
curve evaluated at K = R;y1.5¢, where S; is the current price of the underlying. Formally,
O?Cy(K,t +1)

at(Riy1) = K2

K=R;115¢
Importantly, these pay 1$ if R;1 realizes regardless of the realization of X; 1. Hence, by
no arbitrage a;(Ry+1) corresponds to a;(Ryy1, X¢+1) summed over all potential realizations

of Xy41, keeping Ry fixed. Formally,

(24) CLt(Rt+1) —/at(Rt+1,X)dX

Therefore, the stochastic discount factors associated with ay(R¢+1) and a¢(Ri4+1, Xi41) are
connected as follows

at(Rit1) / at(Rit1, X)
e e T (X|R — " _ZdX
T (Rig1) (X Hl)ﬂt(RtH»X)

= E¢[Me(Rey1, Xev1) | Req1]
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where to obtain the second equality I used equation (24) and the fact that m (X |Rey1) =
7 (Riv1, X)/mi(Rit+1). The final equality follows by definition of M;(Ry+1, X+1). This
formally demonstrates that the stochastic discount factor, or more generally preferences,
based on the observed Arrow-Debreu securities extracted following Breeden and Litzen-
berger (1978) corresponds to the projection of the stochastic discount factor defined over
multiple state variables onto the return of the option’s underlying asset.

It immediately follows that M;(R:41) inherits several properties of its general counter-
part. First, it is positive. Second, by the law of iterated expectations it has the same mean
as the actual stochastic discount factor’®. Third, since M;(Ry+1) is a projection it is gener-
ally less variable than M (Ry4+1, X¢+1). For example, by the law of total variance, it follows
that Vary(My(Rit+1, Xi+1)) = Vary(My(Ry41)). A similar result can be obtained in terms
of entropy. Hence, the variability of M;(R;+1) gives a lower bound for M;(Rit+1, Xi41)
and can be contrasted empirically with results from existing bounds such as L. Hansen
and Jagannathan (1991) and Alvarez and Jermann (2005). Fourth, unlike M;(Ri+1, X¢+1)
the projection My(R:41) generally does not price all assets. However, if the conditional
projection error is uncorrelated with an asset, M;(R:41) will price it correctly?’. Further,
as long as Arrow-Debreu securities are extracted to ensure [ Ra;(R)dR = 1, M(Ry11)
will always price the underlying asset correctly.

Most relevant to the subsequent estimation, this discussion highlights that the stochastic
discount factor associated with Arrow-Debreu securities extracted following Breeden and
Litzenberger (1978) is a function over the return space of the option’s underlying asset,
generally with dependence on F;. Further, any stochastic discount factor extracted from
these is a projection of the true stochastic discount factor and inherits several its properties.

3.3. Estimation. The objective of this paper is to estimate the unknown function M;(R)
under the assumption that its general shape does not change over time. For practical
reasons, any function of R is assumed to have support over the closed interval R € R.
This is because Arrow-Debreu security prices, a;(R), are typically only observed over a
closed interval.

Estimating M;(R) can be thought of as selecting a function h from the space of func-
tions M with support over R. To see this, note any candidate h needs to give rise to a
stochastic discount factor function that is positive and implies proper probabilities given
the observed Arrow-Debreu securities. Given that M;(R) is assumed to be proportional
to a time-invariant function, the first constraint is ensured if log(M;(R)) = h(R) +1log(ct).
The associated probabilities are 7 (R;h) = a:(R)/crexp(h(R)). The second constraint

therefore pins down ¢; since

I _ at(R)
= /R (B h)dR = /R crexp(h(R) T

_ ar(R)
== | o™

Note, ¢; varies due to a;(R). Hence, estimating M;(R) is equivalent to estimating h(R).

2675 long as Arrow-Debreu securities are extracted to ensure that J at(R)dR = 1/Ry 141, it follows that
E¢[Mi(Req1)] = 1/ Rye41-

The projection error is defined as er+1 = M¢(Rit1, Xet1)—Ee[Mi(Req1, X¢41)|Re+1]. Consider some asset
with return R; ;41 and suppose it is uncorrelated with e;1. Since E¢[e¢11] = 0, this implies E¢[R; t+1€141] =
0. Therefore, Et[Mt(Rt—Q—l)Ri,t-q—l} = Et[(Mt(Rt+1,Xz+1) — €t+1)Ri,t+1] = 1, since Mt(Rt+1,X1+1) prices
all assets.
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Next, a criterion needs to be defined. To do so, I exploit the structure implied by the
pricing rule representation theorem. Let m € M denote the function corresponding to
the true M;(R). Given a candidate h € M, the log-likelihood of realized returns is de-
fined as I;(h) = log(m(R¢+1; h)) by equation (23). Suppose the unconditional expectation
taken with respect to the true probability measure induced by m exists. The Kullback-
Leibler information inequality in combination with the law of iterated expectations ensures
E[l(m)] > E[l:(h)] for all h € M. Denote by Ly(h) the sample analog of E[l;(h)]. There-
fore, a natural way of estimating M;(R) is by maximizing Ly(h) over M, i.e. to estimate
M,;(R) by maximum likelihood as

T
A 1
1M = arg mMax - ; log(me(Re+13h))

This estimator formalizes the idea of estimating the stochastic discount factor function
that makes the realization of historical returns most likely, given the information up to
time t, particularly exploiting the information contained in the observed Arrow-Debreu
securities. To illustrate how to search over some abstract function space M, consider a
simplified example with CRRA preferences.

Example 3.1 (CRRA preferences). Consider a standard one-period portfolio choice prob-
lem with CRRA preferences defined over next period wealth and let R denote the optimal
portfolio return. The implied stochastic discount factor is
i =
R
where v is the coefficient of relative risk aversion. CRRA preferences can therefore be
thought of as restricting the function space M to only include functions of type h(R) =
—~vlog(R). Note that, ¢; = Ei[R, +1 = [‘a;(R)RVdR to ensure probabilities integrate to
one. Selecting a function from this space is equivalent to estimating the parameter v. The

estimation problem therefore becomes the simple parametric problem

T
. 1
(25) 4 = arg mVaX T ; log(mi(Re+1;7))
with m(Riy1;7y) = a(Rit1) Rt+1 ([ a(R)RYdR)~'. This problem is straightforward to

solve numerically given data on Arrow-Debreu securities and returns.

3.3.1. Estimation through Method of Sieves. Since generally M is infinite-dimensional,
maximizing Ly (h) over M tends to be infeasible and, if possible, may exhibit undesirable
large sample properties. To address this issue, the method of sieves is employed. Instead
of estimating over M, estimation is carried out over a sequence of approximating spaces
M. The sieve spaces are less complex, but their complexity grows with the sample size so
as to be dense in the original space. These approximating spaces are constructed through
a combination of basis functions, e.g. a linear combination of polynomials up to degree K
increasing with 7' (see X. Chen (2007) for a detailed discussion).

The key ingredients for the method of sieves are the choice of the criterion function and
of the basis functions. The former is suggested by the setup and is based on maximum
likelihood. The latter is chosen to ensure that the unknown function can be well ap-

28 a linear sieve using

proximated. Motivated by the Weierstrass approximation theorem

28The Weierstrass approximation theorem (Weierstrass (1885)) states that if f(.) is a continuous real-

valued function defined on the real interval [a,b], then for every € > 0 there exists a polynomial px(.)
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polynomials is implemented. Further finite-sample arguments for using polynomials are
given in section 3.3.2.

Let {b;(R),j = 0,1, ...} denote a sequence of polynomial basis functions, e.g. standard,
Hermite, or Laguerre polynomials. Since M;(R) is approximated using a linear combi-
nation of basis functions, the location normalization h(1) = 0 is imposed®’. The sieve
approximation space is Mg = {h(R) = ZjK:o ;b;(R),h(1) = 0,R € R,0; € R} where
dim(Mg) = K — oo as T — oo with K/T — 0. Therefore, Mg becomes dense in M
by the Weierstrass approximation theorem. For m(Rit+1;h) = ai(Ry1)/ciexp(h(R)) the
sieve estimator is defined as

T
1
(26) = arg max o ; log(my(Rye11; 1))

and is a finite-dimensional problem in which K parameters are estimated subject to the
location normalization constraint — 6y is determined by the constraint. Denote by 6 the
vector of coefficient estimates. The estimator for the stochastic discount factor function

then is
; SR ar(R)
My(R;07) = exp (Y 0;b;(R)) / S dR
(27) jzo 7 R exp (Z}K:O 0;b;(R))
exp(h(R)) &

where the first term captures the general shape of the stochastic discount factor function
and the second allows the function to shift over time.

3.83.1.1.  Consistency. The sieve estimator defined in equation (26) is consistent under
mild regularity conditions. Formally, the following theorem establishes the consistency for
the estimator.

Theorem 4. Let K,T — oo and K/T — 0. Under assumptions A.6-A.9 it follows that

[l = m||oo = 0p(1).

The assumptions and proof can be found in section 6.1 in the appendix. The proof
relies on satisfying the conditions of theorem 3.1 in X. Chen (2007). To do so the as-
sumption that the stochastic discount factor is proportional to a time-invariant function
is used. Further, the proof relies on a variation of the Weierstrass approximation theorem
to argue that the sieve approximation is asymptotically accurate. Finally, I exploit the
fact that the probabilities implied by h € Mg, 7 (R; h), belong to the exponential family
(for a definition see E. L. Lehmann, Romano, and Casella (2005) and E. Lehmann and
Casella (2006)). Hence, the estimator in equation (26) belongs to the family of concave
extended linear models (see Huang (2001)), which implies log(m:(R; h)) is strictly concave
in h.
8.8.1.2. Asymptotic Distribution. Under additional regularity conditions, the estimator
is asymptotically normally distributed. Formally, the following theorem establishes the
asymptotic distribution for the estimator.

of some degree K sufficiently large such that for all z € [a,b] we have ||f(.) — px(.)||oo < €, where ||.||oo
denotes the supremum norm.

29Note that for any constant c, it follows that h(R) + c+log( [ at(R)exp(—(h(R)+c))dR) = log(M;(R)),
meaning M;(R) is not identified if h(R) is modeled to be a member of some linear space. Common
location normalizations are constraints such as h(R*) = 0 for some R* € R. This ensures the mapping
from h(R) — log(M.(R)) is one-to-one, i.e. M¢(R) is identified. See also Stone (1990), Huang (2001) and
example 2.6 in X. Chen (2007).
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Theorem 5. Under the assumptions for theorem 4 and assumptions A.10-A.1/ it follows
that /T (i —m) % N(0,%).

The assumptions and proof can be found in appendix 6.1. The proof relies on the
fact that the scores of the estimator defined over M, i.e. evaluated at m, constitute
a martingale difference sequence with respect to the filtration F;. Therefore, a central
limit theorem for martingale difference sequences applies. The additional assumptions are
standard and amongst other things ensure that the approximation error is negligible.

Confidence intervals for the estimated SDF function can be constructed from the sample
scores and Hessians of the log-likelihood with respect to the parameters 6 and by applying
the delta method. Note under the assumptions, b,, = —i,, by lemma L.6. In practice
when working with overlapping data, e.g. using daily data on returns and options with
a maturity of more than one day, scores will be serially correlated and the sandwich
estimator with a robust estimator for the covariance matrix of scores is used (e.g. Newey
and West (1987)).

3.3.2. Selection of Basis Function and Approximation Degree in Finite Samples. In the
previous section, the sieve dimension K was allowed to grow with the sample size, and
asymptotic results were used to justify the choice of the basis function. However, there is
little guidance on how to select K and the basis functions for any finite sample. This section
demonstrates that for linear sieves the estimator defined in equation (26) exhibits special
features that can guide both the selection of basis functions and of K for finite samples.
Specifically, polynomial basis functions ensure moments based on 7 (R; éT) satisfy the law
of iterated expectations up to the K** moment.

To see this, consider the first order conditions of (26) with respect to 6y, evaluated at
Or

- Jr at(R) exp(= 32, Obi () bi(R)

= —bp(R )
0 ; k(Riv1) + Jre at(R) exp(— 3 Okbi(R))

By the definition of m;(R; A7) the above can be rewritten as

(28) = Z Bt [br(Ri+1)] Z bi(Ri+1)

where F;[.] denotes the expectation taken with respect to m(R;67). Equation (28) illus-
trates that 6y is selected to ensure that the sample average of the conditional expectation
of the k" basis function is equal to its sample analog. Put differently, ), is chosen to
ensure [, [br,(Ry+1)] satisfies the law of iterated expectations.

Equation (28) can be used to inform both the choice of K and of basis functions in finite
samples. The condition holds for any b (R), so the choice of a basis function controls what
moment conditions the estimated density should match in the data. Relative to other
common basis functions, polynomial basis functions have an appealing feature. They
ensure conditional moments up to order K implied by the estimated density, Et [Rt 1) for

k < K, are consistent with moments calculated from the sample data’

300ther basis functions give rise to less intuitive moment conditions. Consider for example trigonometric
basis functions or basis functions of polynomial splines. Trigonometric basis functions are bzmg (R) =
cos(2kmR) + sin(2kmR). For a polynomial spline of degree K with J knot points, the basis functions are
b:?'(R) = R* for k = 0,1,..., K and b;ﬁj(ﬁ) = max(R — t;,0)¥ for j = 1,...,.J, where t; denotes knot j.
The moment conditions associated with b;"*?(R) and bifi_ ;(RR) seem less desirable.
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Hence, for polynomial basis functions, K controls both the approximation flexibility and
the maximum number of sample moments matched by the estimated conditional density.
This introduces a trade-off since typically, the higher a moment the more samples are
required to estimate it reliably. For the purposes of this paper, it appears sensible to set
K = 4. Therefore, the estimated density will match the historical sample mean, variance,
skewness, and kurtosis.

3.4. Data. To implement the estimator, I construct a dataset based on raw option price
data obtained from IvyDB US Optionmetrics. The dataset spans 4-Jan-1996 to 31-Dec-
2020 and contains daily data on the continuously compounded dividend yield of the S&P
500, continuously compounded zero coupon interest rates for several maturities, and the
expiration date, strike price, highest closing bid and lowest closing ask of all call and put
options on the S&P 500. Furthermore, data on the S&P 500 closing price is obtained
from CRSP. Several filters, cleaning, and processing steps are implemented and detailed
in section 6.2.1 in the appendix.

For the empirical exercise, I require an option dataset for identical maturities at each
point in time and a set of standardized strikes that are identical over time. Therefore, inter-
and extrapolation of the raw data is necessary. Several approaches have been developed.
The overall goal is to extract representative Arrow-Debreu security prices. A survey
discussing the practical details of extracting these Arrow-Debreu securities is given in
Figlewski (2018).

The baseline dataset follows Gatheral and Jacquier (2014) and allows for inter-/ ex-
trapolation taking into account the full option dataset on each date across maturities and
strikes while enforcing several no-arbitrage constraints. For robustness, I implement three
additional approaches, following Figlewski (2008), Ulrich and Walther (2020) and J. Jack-
werth and Menner (2020). See section 6.2.2 in the appendix for details. The baseline
dataset has daily Arrow-Debreu security price curves for a maturity of one, two, three,
six, and twelve months over a discrete grid of strikes. The grid corresponds to gross re-
turns with 1% increments related to strikes via K; = R;S;, where S; is the time ¢ price of
the S&P 500. The grid range is chosen to capture the minimum and maximum observed
return of the S&P 500 over the sample period for each maturity horizon, e.g. for the
1-month horizon, it ranges from 66% to 125%.

3.5. Empirical Results. This section presents results on the estimated risk preferences.
First, in comparison with other approaches, I find estimated risk preferences are more in
line with traditional utility functions, i.e. generally decreasing over the return space.
Second, I find empirical support for the assumption that the stochastic discount factor
function is proportional to a time-invariant function through parameter instability tests.
Third, I document that there is little evidence of the pricing kernel puzzle. Specifically, 1
find no statistically significant evidence against monotonically decreasing risk preferences.
On the contrary, when imposing M;(R) to be monotonically decreasing, the associated
conditional return distributions can better predict return realizations. Fourth, I demon-
strate that CRRA preferences with a risk aversion coefficient of two approximate the

nonparametric estimates of M;(R) well.

3.5.1. Estimated Risk Preferences and Parameter Stability. The estimator is implemented
for monthly returns, sampled at daily frequency. Based on the discussion in section 3.3,

regular polynomial basis functions, by(R) = R¥, are employed with K = 4. The sieve
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approximation degree is set slightly higher than what is suggested by classical model
selection criteria, such as the Akaike or the Bayesian information criterion (see table 17
in the appendix).

Estimated risk preferences, M;(R; 9T), are available at each point in time. Figure 12

depicts these for several snapshot dates.

Figure 12. Estimated Risk Preferences

31-Jan-1996 30-Apr-2001 28-Nov-2008
2.5 25 25
s
2 2 2
1.5 15 15
1 1 1
05 0.5 0.5
0.85 0.9 0.95 1 1.05 11 0.85 0.9 0.95 1 1.05 11 0.85 0.9 0.95 1 1.05 11
R R R
28-Feb-2014 30-Nov-2018 30-Apr-2020
2.5 25 25
2 2 2
15 15 15
1 1 1
05 0.5 0.5
0.85 0.9 0.95 1 1.05 11 0.85 0.9 0.95 1 1.05 11 0.85 0.9 0.95 1 1.05 11
R R R

Note: The figure depicts the estimated stochastic discount factor function given in equation (27) on several
dates using regular polynomial basis functions with K = 4. Further, 95% confidence intervals obtained via
the delta method are reported. I employ a Newey and West (1987) type estimator with lag length 21 for
the covariance matrix of the scores.

The estimated risk preference function appears generally decreasing over the return
space. The point estimates exhibit a slight u-shape, which taking into account the con-
fidence intervals does not appear to be substantial. Confidence intervals are relatively
tight for gross returns between -5% to 5% and widen exponentially towards the left and
right ends of the grid. For the sample, roughly 80% of monthly S&P 500 returns fall into
this range, giving rise to more precise estimates in this area. Shifts of the risk preference
function due to ¢; become apparent when comparing the different snapshots, however, are
overall minor.

The estimator assumes that the true stochastic discount factor function is proportional
to a time-invariant function. The shape of the estimated function is characterised by the
parameters 6. A way of testing whether the stochastic discount factor function is indeed
proportional to a time-invariant function is to examine whether the shape parameters, 6,
vary over time.

Several parameter instability tests exist and I here implement the procedure by Miiller
and Petalas (2010), which is designed for testing parameter stability in nonlinear mod-
els. Their procedure is convenient, as it only requires the scores, Hessian, and (robust)
covariance matrix of the scores, which are readily available from (27). Further, their test
statistic is sufficiently general. It is specified against a wide range of alternative param-
eter dynamics that lead to persistent time-varying parameter paths of relatively small

variability. Naturally, as with most tests of parameter instability, it cannot test against all
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types of alternative time-variation®'. However, it encompasses a variety of alternatives of
interest such as random walks or breaks at unknown dates (see Elliott and Miller (2006)
and Miiller and Petalas (2010) for a detailed discussion).

Table 6 depicts the results for the Miiller and Petalas (2010) gL L test statistic. Note the

test statistic rejects the null hypothesis of parameter stability for small (negative) values.

Table 6. Test of Parameter Stability

K 2 3 4 ) 6

gLL  -15.036 -15.598 -15.652 -24.912 -24.835
p-value (0.034) (0.245) (0.705) (0.267) (0.644)

Note: The table repots the estimated qLL test statistic following Miiller and Petalas (2010) for the
estimator in (27) using non-overlapping observations and regular polynomial basis functions. The different
columns correspond to the number of parameters, or the approximation degree, K. The gLL test is
calculated following Miiller and Petalas (2010) using ¢ = 10 for robustified scores. The reported p-values
are calculated by simulating the distribution of the gL L test statistic with ¢ = 10 from the random variable
in Elliott and Miiller (2006) lemma 2.

The results indicate that the test fails to reject the null of parameter stability across the
considered approximation degrees, except for K = 2. The results in tables 18 and 19 of
the appendix, which report the qL L test statistic for other values of the hyperparameter c
(see Miiller and Petalas (2010) for details), further corroborate this finding. Overall, these
findings are encouraging. They suggest it is reasonable to assume that the stochastic

discount factor function is proportional to a time-invariant function.

3.5.2. Rewisiting the Pricing Kernel Puzzle. Several studies that have estimated risk pref-
erences from observed Arrow-Debreu securities have found that the stochastic discount
factor is not monotonically decreasing over the return space — the so-called pricing ker-
nel puzzle. This is surprising since we generally expect marginal utility to decrease over
wealth or returns, i.e. we would expect a monotonically decreasing stochastic discount
factor function. Figure 13 contrasts the estimator developed in this paper with two repre-
sentative alternatives based on J. C. Jackwerth (2000) and Rosenberg and Engle (2002).

The alternative methods give rise to a stochastic discount factor function that fluctuates
wildly over time. Further, they exhibit features indicative of the pricing kernel puzzle, i.e.
the stochastic discount factor functions are generally not monotonically decreasing over the
return space. In contrast, the estimator developed in this paper appears to be consistent
with a monotonically decreasing stochastic discount factor function.

Section 3.3 demonstrated that if the stochastic discount factor function is proportional
to a time-invariant function, the developed estimator is consistent. The alternative ap-
proaches achieve this only under fairly restrictive assumptions. The J. C. Jackwerth (2000)
approach estimates m;(R) from returns over the last four years. This recovers the condi-
tional return distribution with respect to information set F; only under fairly restrictive
assumptions®>. The Rosenberg and Engle (2002) approach overcomes this, by employing
31For example, the Miiller and Petalas (2010) test may fail to detect parameter instability that is less
persistent and displays substantial mean reversion (see Calvori et al. (2017)).

3276 illustrate the shortcomings, consider the extreme example in which 7:(R) is estimated on the full
history of returns up to ¢t. By definition, this corresponds to an estimate of the unconditional return
distribution. Hence, the estimation approach would only be valid if the conditional return distribution is

equal to the unconditional return distribution.
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Figure 13. Comparison of Estimated Risk Preferences
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Note: The figure depicts the estimated stochastic discount factor function on several dates for the esti-
mator proposed in this paper (black), the J. C. Jackwerth (2000) estimator (blue) and the Rosenberg and
Engle (2002) estimator (purple). The J. C. Jackwerth (2000) estimator divides Arrow-Debreu securities by
the return distribution estimated from 4 years of prior non-overlapping monthly return data using a kernel
estimator. The Rosenberg and Engle (2002) estimator divides Arrow-Debreu securities by the conditional
distribution of a GARCH(1,1) model fit to non-overlapping monthly data using the full sample.

a GARCH model. However, this requires specifying the data generating process. The
estimator in figure 13 assumes that m(R) is a normal distribution. Since risk-neutral dis-
tributions (Arrow-Debreu securities scaled by the risk-free rate) are typically leptokurtic
and negatively skewed, misspecification of the conditional return distribution may lead to
a biased estimator of the stochastic discount factor function.

In contrast, the estimator developed in this paper overcomes several of these issues as
it does not require assumptions regarding the data generating process of returns, while
simultaneously allowing risk preferences to be estimated flexibly. To formally evaluate the
pricing kernel puzzle, I conduct two tests. First, I develop a statistical test examining
whether a monotonically decreasing pricing kernel can be rejected. Second, I examine the
ability of m(R;h) to forecast returns when the pricing kernel function is constrained to
be monotonically decreasing. Both tests suggest that there is no support for the pricing
kernel puzzle.
3.5.2.1.  Statistical Test of the Pricing Kernel Puzzle. The pricing kernel puzzle states
that the stochastic discount factor projection is not monotonically decreasing. To evaluate
the puzzle, the estimator in (27) can be implemented subject to the constraint that the
function is monotonically decreasing. In the context of the suggested linear sieve, the
constraint takes the form

Ky
2 - ) <
(29) kzoekaRibk(Rn <0

Denote by 0 the coefficients estimated from (27) subject to the constraint in (29). By

comparing the constrained and unconstrained parameter estimates, the pricing kernel
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puzzle can be evaluated formally. Specifically, I will evaluate the hypothesis that the
constrained and unconstrained estimates are equal, i.e. the null hypothesis Hy : 0 = 0.

To test the hypothesis a Lagrange multiplier test is implemented as it has a particularly
convenient interpretation. Generally, the Lagrange multiplier test examines if the average
scores under the constraint are significantly different from zero. A constraint sets 6y
such that the average score is no longer exactly equal to zero. Based on equation (28),
the moment condition for the k** basis function will therefore be violated. The Lagrange
multiplier test therefore examines whether the constraint leads to a conditional distribution
that is no longer consistent with the sample moments.

Given the hypothesis, the Lagrange multiplier statistic takes the form

(30) LM = ;(gut(éT)>/Bé_l<§;ut(éT))

where Bj is the asymptotic covariance matrix of the scores evaluated at the estimate for
0 and can be estimated e.g. via a Newey and West (1987) estimator. Note the LM
statistic is asymptotically x? distributed with K degrees of freedom due to the location
normalization constraint. For large values, the Lagrange multiplier test will reject the
monotonically decreasing stochastic discount factor function, i.e. favour the pricing kernel
puzzle.

Table 7 reports the Lagrange multiplier test statistic. Figure 23 in the appendix further

compares the unconstrained with the constrained estimator.

Table 7. Pricing Kernel Puzzle Tests

K 2 3 4 5 6

LM 3400 0883 3.611 3298  3.482
p-value (0.183) (0.830) (0.461) (0.654) (0.746)

Note: The table presents the Lagrange multiplier test statistic for the estimator in (27) subject to the
constraint in (29) using regular polynomial basis functions for various K as indicated in the table columns.
The p-values are based on a x? distribution with K degrees of freedom.

For all values of K, the Lagrange multiplier test fails to reject the constrained estimator
in favour of the unconstrained estimator. Put differently, there is no statistically significant
evidence against a monotonically decreasing stochastic discount factor function. Figure 23
further illustrates these findings. The constrained estimate of the stochastic discount factor
is fairly close to the unconstrained estimate and falls well within the confidence interval
surrounding the unconstrained estimator. The appendix reports several robustness checks
for the above results. First, table 20 illustrates that the results are robust if Arrow-Debreu
securities are extracted through alternative methods than Gatheral and Jacquier (2014).
Second, table 21 illustrates that the results are robust if Arrow-Debreu securities are
extracted through mid, bid, or ask prices. Third, table 22 illustrates that the results are
robust if other basis functions such as Legendre, Laguerre, or Hermite polynomials are
used. Fourth, table 23 illustrates that the results hold for other maturity horizons, i.e.
when considering returns and Arrow-Debreu securities corresponding to two-, three-, six-

or twelve-month horizons.
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3.5.2.2. Out-of-sample Performance of a Monotonically Decreasing Pricing Kernel.
To evaluate the pricing kernel puzzle along a different dimension, I examine the ability
of m(R;0) to predict return realizations. Specifically, I compute the conditional mean,
[, [Ri+1], implied by the constrained and unconstrained estimator. To evaluate its pre-
dictive performance, I compute the associated out-of-sample R? following the procedure
by Welch and Goyal (2008). Table 8 depicts the out-of-sample R? associated with the
estimated 7 (R; 0) and m;(R; 6) for several forecasting horizons. A positive value indicates

that [ [Ry+1] outperforms the expanding window sample mean benchmark and vice versa.

Table 8. Out-of-Sample Performance across Maturities

T 30 60 90 180 360

RQOOS Unconstrained 0.030 0.030 0.029 -0.040 -0.423
Constrained 0.050 0.074 0.076 0.005 -0.412

Note: The table depicts the forecasting performance as measured through the out-of-sample R? (Welch
and Goyal (2008)) across multiple horizons of the conditional mean implied by the estimator in (27) with
and without the constraint in (29). Regular polynomial basis functions with K = 4 are employed. See
section 6.3 for details on the computation of the out-of-sample R>.

Table 8 illustrates that the conditional mean based on the constrained estimator outper-
forms its unconstrained counterpart. Across all maturities, imposing the constraint that
the stochastic discount factor function is monotonically decreasing increases the ability
of the conditional mean associated with m(R;6) to predict returns. At the one-month
horizon, the out-of-sample R? increases by 67%, and at the two- and three-month hori-
zon it more than doubles. For larger horizons, the out-of-sample R? is generally nega-
tive, however, the constraint still leads to improvements. In the spirit of Campbell and
Thompson (2008), this demonstrates the added value of imposing economically motivated

constraints.

3.5.3. CRRA Approzimation. The results presented thus far suggest that risk preferences
estimated from option data are much more in line with preferences implied by standard
utility functions than previously thought. Stochastic discount factor functions implied
by standard utility functions are convenient, as they are available closed-form (see e.g.
example 3.1) and allow practitioners to translate Arrow-Debreu securities (or risk-neutral
distributions) into physical return distributions easily. To what extent can risk preferences
associated with standard utility functions approximate the nonparametric estimate?

To make progress on this question, I consider the stochastic discount factor function

implied by CRRA preferences®®. As discussed in example 3.1, this requires estimation

33 Alternative preferences that often appear in the literature are CARA preferences, i.e. exponential utility
(see Bliss and Panigirtzoglou (2004)). I do not consider these here for the following reasons. First, CARA
preferences have several questionable implications, e.g. for portfolio choice and risk premia in a growing
economy (see Campbell (2017) section 2.1.3 for a discussion). Second, portfolio choice problems with
CARA preferences imply a stochastic discount factor over next period wealth, not return as considered
here. Third, if initial wealth is normalized to be one, CARA preferences are nested in the nonparametric
estimator employing regular polynomial basis functions in equation (27) by setting K = 1. Based on
section 3.3.2, this implies beliefs implied by CARA preferences only match the first sample moment of
returns. Further, the model selection criteria in table 17 suggest K to be at least two, providing suggestive
evidence against CARA preferences.
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of the risk aversion coefficient as in (25). Table 9 below reports the results for various

maturity horizons.

Table 9. CRRA Coefficient Estimates

T 30 60 90 180 360

4 2073 1.832 1914 1.897  1.862
se(4) (0.798) (0.792) (0.798) (0.922) (1.153)

Note: The table depicts the point estimates of the CRRA coefficients across different maturities. Below
the point estimates robust standard errors are reported, employing a Newey and West (1987) estimator
with lag length corresponding to the respective horizon in trading days.

The estimated risk aversion coefficient, ¥, is close to two and stable across maturities.
To examine whether the associated stochastic discount factor functions approximate the
nonparametric estimate well, I conduct a Lagrange multiplier test. To do so, I project
the logarithm of the CRRA implied stochastic discount factor function with 4 onto the
basis function space, subject to the location normalization®* and calculate the associated
Lagrange multiplier statistic given in equation (30). Formally, this examines whether the
CRRA implied stochastic discount factor function is rejected in favour of the nonparamet-
ric estimate. Table 10 reports the test results and figure 24 in the appendix depicts the
nonparametric and CRRA implied stochastic discount factor functions.

Table 10. Are CRRA Preferences Rejected?

T 30 60 90 180 360

CRRA LM 7.378 8593 8195 3.813  0.922
p-value (0.117) (0.072) (0.085) (0.432) (0.921)

Note: The table depicts the test results that examine whether we can reject the CRRA implied stochastic
discount factor (constrained estimator) in favour of the nonparametric estimate across different maturities.
To do so the logarithm of the CRRA implied stochastic discount factor function evaluated at 4 reported
in table 9 is projected onto the basis function space. Regular polynomial basis functions with K = 4 are

employed. The p-values are based on a x? distribution with K degrees of freedom.

Table 10 illustrates that for the one-month horizon the CRRA implied stochastic dis-
count factor function cannot be rejected at the conventional 10% level. Further, across
frequencies, there is no rejection at the 5% level. By the properties of the Lagrange multi-
plier test, this implies that the unconditional moments derived from the beliefs implied by
the CRRA preferences are approximately consistent with the sample moments observed
in the data. Further, this suggests that the CRRA implied stochastic discount factor
function is close to its nonparametric counterpart. This is further corroborated by the
estimates depicted in figure 24 in the appendix. The CRRA implied stochastic discount
factor function lies within the confidence interval around the nonparametric estimate.

Overall, this suggests that CRRA preferences with a risk aversion coefficient of two
approximate the nonparametric estimate of M;(R) well, at least for the S&P 500 at the
34Ignoring the location normalization and letting B denote the basis function matrix over the return grid,
this amounts to determining the regression coefficients § = (B’B)~'B’(—4log(R)). The log-likelihood,

scores, and Hessian of (26) can then be evaluated at 6 as usual.
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one-month horizon. For practitioners, this has the advantage that CRRA preferences with
v = 2 are easily implemented as they are available in closed-form. This is convenient,
since Arrow-Debreu securities (or risk-neutral distributions) can then easily be translated
to physical conditional distributions.

3.6. Conclusion. This paper develops a nonparametric estimator of risk preferences
from option data and observed returns as long as the true stochastic discount factor is
proportional to a time-invariant function. Relative to other approaches in the literature,
the estimator is attractive as it is consistent and asymptotically normal.

The estimated risk preferences appear in line with preferences implied by standard
utility functions. Specifically, formal tests suggest that there is no evidence in support of
the pricing kernel puzzle. In contrast, by constraining estimated risk preferences to be
monotonically decreasing — as is suggested by classical utility functions — the associated
beliefs are found to better forecast returns.

Since the estimated risk preferences are much more in line with standard utility functions
than previously thought, it is reasonable to expect that risk preferences implied by some
classical utility function approximate the nonparametric estimate well. The stochastic
discount factor implied by CRRA preferences with a risk aversion coefficient of two is found
to approximate the nonparametric estimate well. As these are available in closed-form,
practitioners can easily translate Arrow-Debreu securities (or risk-neutral distributions)
into physical conditional return distributions.
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4. Appendix of Chapter 1

4.1. Lemmas. In what follows, let X = X —ip@, where z = 1/T')", Xy, let |.| denote
the Frobenius norm, |.||s, denote the spectral norm and ||.|| denote the infinity norm.
Also define Sy = min(v/N,VT). Let u = E[Ry] and X7 = Var(R;) = QArQ’, where
@ denotes the collection of eigenvectors and At is a diagonal matrix containing eigenval-
ues. Finally, for the T' x N return matrix R, define the sample covariance estimator as
S = 1/TR'R and the scaled sample covariance estimator as Y7 = 1/(TN)R'R. Both
matrices share the same eigenvectors and their eigenvalues are connected via AT =A NT-

Lemma L.1. Let ATN,K correspond to the K largest eigenvalues of 2TN. We have

N D
Arn g = AN k.

Proof. From (8) we have R = FQ); + E and therefore

1
31 — R'R= F'F F'E+E'F E'E
(31) NTRR NT(QK Qx + Qx + Qx + )

The goal is to analyze the eigenvalues of the above. To do so we will analyze the Frobenius
norm of the last three terms as it gives an upper bound for the spectral norm.

Note |Qx F'E| = || F'E|| since Q% Qx = Ir. Further,
IF'E| = |F'E-Tfe|| < |F'E| +T| fllel

By assumption A.2 |F'E|| < O,(V'NT). By assumption A.3 (i) ||f|| = Op(v/N). By
assumption A.1 (i)

Bllel’] = 2B 3 X Bk = S S Bl BB
t s
_TQZZWNstKMf
E[]| E||) ZZEft <NZ\7Ntt\<MNT
so el = 0,(4/) and | B|| = O,(VNT). Therefore, | F'E|| = O,(VNT) + O,(NVT) =
O,(N/T). This implies that

1
Op(—=) 50

32 —F’E < FE =
(32) 577 Bl < 1357 Bl = O =

which also holds for E'FQ.
Next, note that |E'E| = |[EE'| and EE' = EE' — Eeéily, — iré' E' + iré'éi’.. Note

lir@ E'|| < [liellllEl| Ell = Op(VTN) and [ire’eify| = Te]* = Op(N) by assumption
A1 (i). Let I' be a T' x T matrix with yx(s,t). By assumption A.1 (ii) we have

E[|BE' — NTJ% = 3 S EIY ejiess — Elejees))?) < MNT?

7



Define pn(s,t) = yn(s,t)/(vn (s, s)yn(t, t)). By the Cauchy-Schwartz inequality |pn (s, t)| <
1. Then,

IT|? = ZZ'YN (s,t) ZZPN (s,8)* N (s, 8)yn (¢, 1)
<MZZ|pNst|\/7NSS’yNtt MZZ]’yNst]<MT

by assumption A.1 (i) and |pn(s,t)] < 1. To see this note |pn(s,t)] > pn(s,t)? by

lpn(s,t)] < 1. Next, yn(s,s)yn(t,t) = \/'yN(s,s)w\r(t,t)2 and by assumption A.1 (i)

VN (s, )N (t,1) < M. Hence, pn (s, t)*n (s, ) (t, t) < Mlpn (s, t)[y/ 7 (s, s)n (¢, 1)
Therefore, we have

|EE" — NT|| = ||[EE" — NT|| + 2| Eeip| + ||live’eir||
= O,(TVN) + O,(N) + O,(VTN)

and,

IE'E|l = |EE'|| < |EE"— NT|| + [INT||

(33) NT

=)

= Op(TVN) + 0,(N) + O,(VTN) = Op(5—
This implies that
1 -, = 1 -, = 1
—E'E|sp < | E'E|| = Op(——) 50
1572 Bl < |57/l = 0y(50)

Therefore, the largest eigenvalues of the three last matrices in (31) converge to zero. By
the matrix pertubation theorem, the K largest eigenvalues of ﬁ}?’ R are then determined
by the first matrix +=QxF'FQ), whose eigenvalues are the same as those of g=F'F
since QQk = Ix. Since ﬁ[? 'F converges to A1y x by assumption A.3 (ii) we have the
desired result. Weyl’s inequality can be used to show convergence of each eigenvalue®. [

Lemma L.2. We have |Qx — Qi H|| < O,(1/vT +1/N).

Proof. 1 begin by establishing a preliminary convergence rate. From the definition of an
eigenvector we have 1/(TN)R’ ROk = QrA ~n7.k and therefore

. 1 o I o
Qk = W(QKF’FQ}( + QK F'E+ E'FQy + E'E)QrAyh ¢
Define H = 1/(NT)F’FQ’KQK[\N1[’K, the rotation matrix up to which we recover Qg
based on Q)i . Therefore,

(34) Qx ~ QucH = o (QkF'E + B'FQic + B'B)Quch g

Note |Qxk|| = Op(1) and ||Qk|| = O,(1). By lemma L.1 and the Continuous Mapping
Theorem we have HANTKH = Op(1). Using (32) and (33) we have

H|* <2 AL AL

10k — QucHI < 21 @i PIQx P 2+ Qi) =k
1

=0 ( )+O (52 ):Op((;Q )

NT

35 By Weyl’s inequality we have for k € 1, ..., K

Mg B B) = Mg Qe F Qi) < |1 (Qu B + B'F Qi + B'E) oy < Op(5—) 50
NT
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The above rate can be improved. Note that because EQp = 0

Qr — QxH = %QKF/E(QK - QKH)A_ ! —F FQKQKA]_\]TK

NT
1 _
+ WE/ (QK QKH)ANTK
Using (32), (33), the Continuous Mapping Theorem with lemma L.1 and the previously

established rate

@k — QuHIl = Q57 FEHII(QK Qe H)[1A N7 |
+ H*E FlIQx IOk A VT x|

1
E'E|(@Qx — QuH)IIANT &l

+llwr
Opl )+ Op( =) + Opl53-) = Opl = + 1)
= P Ténr VT Ry VT N
U
Lemma L.3. We have |[H|| < O,(1).
Proof. By the definition of H we have
F/
1] < Il ||||QK||HQKH||ANTKH = Op(1)
by assumption A.3 (i), Q|| = Op(1), [|Qx| = Op(1), lemma L.1 and the Continuous
Mapping Theorem. O

Lemma L.4. We have | Q% (QxH — Qk)| < O,(1/T + 1/N?).

Proof. Note we can write
Qx(QrH — Q) = (Qx — QxH) (QxH — Q) + H'Q(Qx H — Q)
Lemma L.2 establishes the rate of the first component. For the second term, we have by
(34)
Qx(QxH — Qx) = (QKQKF'E + Qx E'FQ + QxE'E)Qr Ay i

= _WF/ (Qx — QrH)AL

where I used Q- E’ = 0. Therefore,

/ 9 1 nAn A .| 1 1
_ < || . _ 1
(35) Q@ ~ Quoll < |7 FEIN@k - Qe )IIARY ] = Oyl + =)
by (32), lemma L.1, L.2 and the Continuous Mapping Theorem. Therefore,
A A 1 1 1 1 1
Q% (QxH — Qk)|| <O (max(T \FN NQ)) 1) (T + W)

O

Lemma L.5. We have H =S + O,(1/T +1/N?), H™' = S + O,(1/T + 1/N?) where S

is a diagonal matriz with 1 or —1 and ||[H|| < O,(1).
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Proof. Note that

A A 1

/ — _ H !/ Hl HI

QxQrx = (Qx — QrH)' QK + +O(T N\f)

by (35). Therefore, Q' QxH = H'H + O,(1/(~Tdn7)) by lemma L.3. Next, note that

1

QxQrH = Qx(QrH — Qk) + Ix = Ix + O, (T N2)

by lemma L.4. Together, these imply

1 1 L

T N2

This shows that, up to O,(1/6%), H is an orthogonal matrix and therefore has eigenvalues

of 1 or —1. By definition of H I have

H/H—IK+O(

R _ 1 1 1
= A7) F'F— =AYk  HFF— —
Hence,
F'F . 1 1
36 H=HA — 4+ ——
(36) NT NT,K+Op(T+N\/T)

As in Bai and Ng (2013) we can now conclude that H, up to a negligible term, is a
matrix consisting of eigenvectors for the diagonal matrix F’F/(NT). Thus, H consists of
eigenvectors that have a single non-zero element. This implies that H is diagonal up to
O,(1/T +1/(NVT)), or O,(1/T 4 1/N?). Since the eigenvalues are 1 or —1, we have
H=5+0 ( T NQ)

where S is a K x K diagonal matrix with 1 or —1. Note the same argument can be
made for H—!, by multiplying (36) by H~' from the left and right to obtain H~! =
S+ O,(1/T + 1/N?). This further implies ||H || < O,(1). O
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4.2. Proofs of Theorems.

Proof of theorem 1. The goal is to analyze the asymptotic properties of fir. The approach
is to express jir in the quantities characterized in the lemmas to establish its convergence
rate. First, note that under E.1 the data generating process is given by (8) and hence

fip = = ZFt Qw(Qxf+e)

Note assumption A.3 (i) implies ﬁ f LN pE, so it will be convenient to standardize the
above by 1/v/ N. We then have

1 1. 1

ﬁuF = QK(QKﬁf + ﬁe)
= Qi (Qrpr + QK(\IF]F F)+ \;ﬁé)
= Qk (Qupr + Qv + \}6)

where I defined v = \/% f — pr in line with assumption A.4. Next, note that

= Qx (QxHH " (ur +v) + \}Ne)

T
= Q (QKH (r +0) + (QrxH — Qk)H *(ur +9) + \;Né)
= H Mpup +0) + Qx(QxH — Q) (H *pp + H'0) + (Qx — QKH)T

where I used the fact that Q€ = 0 and that Q'KQ k = Ir. Therefore,

I - 1A A -
——=jr — H 'pp = H 04+ Qx(QxH — Qx)H ' pr
VN
(37)
+Q H-Qr)H o+ (Qx — QxH)' —eé
Qx(QrxH — Qk) (@x — QrH) N0y
I analyze each term on the right-hand side separately. First, we have
1 1
H™ '] < 0,(1)0p(—=) = Op(—=
1175 < 0,10, () = Oy 7=)
by assumption A.4 and lemma L.5. Next,
1 1 1
Qi @icH ~ Qi) B 1| < Oyl + 1:7)0p(1O(1) = Oyl + 1)

by lemma L.4 and 1.5 and since pp is of dimension K and finite by assumption A.3 (i).

Next,
10 @i H — O H 5] < 0p(% + 1)0,(1)0, (=) = 0)(— 1 + 1)
K — p T NQ p p T p TT TNQ

by lemma L.4 and L.5 and assumption A.4. Finally,

1(Qx — QrH)'

1 1
——é|| < Op(m + —=—
\/JV = Ol VTN
by lemma 1.2 and since ||&]| = O,(v/N/v/T) by assumption A.1.

)

To conclude, we have

1 1 1

—H™ =H" Op —
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Note that by lemma L.5 we have H™1 = Sk + O,(1/T + 1/N?) and therefore
1 _ 1 1

which prooves the first part of the theorem.
Finally, given T /N? — 0 assumption A.4 implies that under the null

ﬁ(\/lﬁﬂF — Spr) 5 N(0,9,)

where Q,, = Q, = lim7_,o, TE[07'].
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Proof of theorem 2. The goal is to analyze the asymptotic properties of &. To do so
assumption A.2’ is imposed. This impacts several of the previous lemmas, which are given
below.

Lemma L.2°. We have |Qx — Qi H|| < O,(1/6%7).

Lemma L.4’. We have ||Q% (QrxH — Q)| < Op(1/8%7).

The proofs follow the same steps as the original lemmas and are hence omitted for
brevity.
Note that the estimate is given by
& =T~ Qrir

As with fir, it will be convenient to scale by 1/v/N. Given (8) we have

i = ot~ Qi
_ \/:lﬁe+ (QrH — Q) H ' pp + Qi — QK(\/leﬂF CH )
Substituting (37)
1Nd = \/1]Vé +(QxH — Qr)H 'up
+(QkH — Qr)H "0 — QxQ (QxH — Qx)H 'pup
— Ok Qi (QiH — Qi) H o — Qi (Q — QKH)/\;NE

It will be convenient to scale the above expression by vV NT to directly analyze vTé.

Doing so
VTé =VTe —VNT(Qxg — Qe H)H ‘g
~VTQk(Qx — QxH)'e — VNT(Qx — QxH)H '
+VNTQrQw(Qx — QuH)H Y up + VNTQrQw(Qx — QuH)H o
Note that

A 1 N
IVTQx(@r — QuHYell < 0,10, (5—10,(V) = O, %)
NT NT
by lemma 1.2, assumption A.1 and ||Qg|| = Op(1). Next
R L 1 1 VN
IVNT(Qkx = QrH)H™ 0| < Op(VNT)Op(5—)0p(1)O0p(—=) = Op(55—)

VT R

by the Continuous Mapping Theorem with lemma L.1, lemma L.2’ and assumption A.4.
Next

2
5NT

IVNTQwQl(Qr — Qi HYH | < Op(VNT)O,(1)0p(—)0p(1)0p(1)

4
6NT



by the Continuous Mapping Theorem with lemma L.1, lemma [..4’, assumption A.3 and
Qx| = Op(1). Finally,

IVNTQx Qi@ — Q) H ™01 < Oy(VNTION1)0, 10,10 )
N
-0,

by the Continuous Mapping Theorem with lemma L.1, lemma L[.4’, assumption A.4 and
|Qx || = Op(1). Therefore,

(38) VTé =VTe — VNT(Qx — QH)H *pup + O, (;NHO <*§iw>
NT NT

The second term can be further decomposed using (34), which yields

VNT(Qx — QxH)H ‘pp = WQKF/ (Qx — QKH)A]_VT KH e
+ ;E’FH]\;V; H ur
+ jl\fTE'FQ%(QK — QrH)Ar  H ' pp
+ ]1\,TE'E(QK ~ QH)AYy (H
Note that
A @n ' B(Q = QAR T ] < 0p<1>op<1>op<<%1T>op<1>0p<1>op<1>
- op<5]2v1T>

by the Continuous Mapping Theorem with lemma L.1, lemma L.2” and L.5, assumption
A.2" and A.3 and ||Qk|| = Op(1). Similarly,

1 =y A s _ 1
H\/WE FQK(QK - QKH)AN%F,KH 1MF” < Op(l)Op(l)Op(%)Op(l)Op(1)012(1)
1

by the Continuous Mapping Theorem with lemma L.1, lemma [..2° and L.5, assumption

A.2" and A.3 and ||Qk|| = Op(1). Finally

'E _ VvVNT

I B E(@K ~ QAR cH ] < 055055510410, (10, (1)
VvVNT
~ot

by the Continuous Mapping Theorem with lemma L.1, lemma [..2° and L.5, assumption
A.3 and equation (33). Therefore,

_ 1 _ VNT
VNT(Qx ~ QuH)H iy = e B FHARY (™ e+ Op (57—
NT
1 - -
VNT
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where to obtain the second equality I used the fact that a diagonal matrix always com-
mutes, so H/AX]_V%,,KH* = ANITK, the fact that E'F = E'F — Tef’" and the definition of
V.

The terms can be analyzed in infinity norm to establish tighter bounds. Specifically,
all bounds obtained in Frobenius norm carry over to the infinity norm, as the above are
N x 1 vectors. Note

1 N 1 A
I P PARacnelloe = o | BLARY | = w2 PUPAR

1 1,
VNT VN

where the first equality follows from the definition of the infinity norm, the second equality

A—1
< max| EiF|[IAyg cir |l < Op(

from the fact that E{F/AX]*VlT x M is a scalar and the first inequality by standard norm prop-
erties. The second inequality uses assumption A.2 and A.3 and the Continuous Mapping
Theorem with lemma I..1. Next

IVTev' Ay el = max IVTew' Ayl o] = m?xH\/Téi@’A;,lT’KWH
~)
VT

using the same arguments as before and assumption A.3, A.4 and A.5 and the Continuous

< maXH\/TeZ”HU/ANTKMFH < Op(

Mapping Theorem with lemma L.1. Therefore,

VNI

VNT(Qk — QxH)H 'pp = —VTeup Ay i + O 53
NT

)+ Op( )

1
ONT
Substituting the above in (38)

N 1
VTé = VTe+ VTeppAyh jopr + Op(5—

1
ONT
which proves the first part of the theorem. Notice that the final term vanishes as long as
VN/T — 0 and /T /N — 0. For example if T/N — ¢ < oo these conditions are satisfied.

Finally, assumption A.5, Slutsky’s theorem and lemma [.1 imply that under the null,
as long as vVN/T — 0 and VT /N — 0

Te(l+ ppAyy gnr) + Op(

VTa % N(0,9Q,)

where Qq = (1 + pp ANy ohir)?Qe with Q¢ = limg_,o, TE[e].
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Proof of theorem 3. The goal is to analyze the asymptotic properties of &' 2;10}. First,
note that since & = Q N— KQ’N_ T the HJ-distance can equivalently be written as

&'Srta = Qn KA _kQn KT
QN KQN KQN KATN KQ/N—KQN—KQ/N—KF
=&Y ha
where the first equality follows since Sr = QATQ’ and by the orthogonality of eigenvectors.
The second equality exploits Q?vf KQ N—x = In_g. The final equality defines i];lT =
QN_K/A\;INfKQA’NfK. Importantly, XA]OC,T #* Q. defined in theorem 2.
We can further write the HJ-distance as
a'Sta = a0,
Under the conditions in theorem 2
A1
VTQL 26 % N(0, Iy)
L1 P ..
1TQ(§ = WDW’ where W'W = In. Therefore,

A AL
VTW Q.26 % N(0,Iy)

-1
24

For convenience define & = vVTW’'Q,

written as

. Combining the above, the HJ-distance can be

N
T&'S Z i2d;
which is a weighted sum of variables that are asymptotlcally x 2(1). The weights are given

by the elements of D which are the eigenvalues of (222 Qé, or equivalently of E Q
To determine the degrees of freedom of the dlstrlbutlon I need to assess the number of

non-zero eigenvalues of f);lela Since 37 aT = QN KAT N_ KQ’N_ i the first matrix has

N — K non-zero eigenvalues and K zero eigenvalues. Therefore, D will have only N — K

non-zero eigenvalues. Hence,

Ta'S3a Z 22d;
where the sum is taken for the N — K non-zero eigenvalues.
For finite N the above would converge to a weighted x? distribution®, however N goes

to infinity. As the asymptotic properties of Z; are known, so the Lindeberg CLT can be
applied to the limit, which however requires an extra argument.

Denote by z; the limit of ;. Note & converges to a vector of normally distributed
independent random variables with unit variance. Hence z; is independent of x; and :c?
is x2(1) distributed. Therefore, E[z?] = 1 and Var(z?) = 2. Similar to Bai (2003), the

2

. . .9 d
almost sure representation theorem can be applied. Because, 7 — :cf the almost sure

representation theorem asserts that there exists a random variable ic;fQ and x;?‘Q with the

36 Specifically, a weighted x? distribution with weights equal to the non-zero eigenvalues of E;}TQQ.
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same distributions as i’z and x2 respectively such that :E’?‘Q A :6’?‘2 almost surely. Therefore

N-K

Z A*2d _ Z x*Qd + Z *2 jj*2 Z

[
and the last term is 0p,(1) because of almost sure convergence.

Note that the first term is a weighted sum of independent random variables with unit
mean and finite variance. So as N — oo the Lindeberg CLT applies. Assume d; converges
to some d;, so Slutsky’s theorem applies. Therefore, as N, T — oo

N—-K N—K
L a5 s g N(0,1)
2y " dp

which implies
N—K ~x23 N-K 3
> Bd; — 3, di
N—-K 3
2y
Finally, since £ 2 and :1312 have the same distribution I obtain

N—-K ~92;3 N-K 3
; 2d; — SSV-K .
ZZ xl Zl d N(O, 1)

4 N(0,1)

To summarize, the above establishes that under the conditions in theorem 2, for con-
sistent estimates of €2, and X, 7

TaSta — i

2Zdz

where d; are the nonzero eigenvalues of E;TQQ.
O

4.3. Selection Rules for RP-PCA. I here demonstrate that selection of RP-principal
component factors based on risk premia is approximately optimal for squared pricing errors
and selection based on Sharpe ratios is optimal for the HJ-distance and the Sharpe ratio
of the associated tangency portfolio. The key difference to section 1.3 is that for RP-PCA
eigenvectors are no longer equal to betas. However, results carry over.

Let © =% + (14+~y)pp' = QAQ’ denote the modified covariance matrix in Lettau and
Pelger (2020b) where + is a hyperparameter controlling penalization of pricing errors, Q
denotes the collection of eigenvectors and A is a diagonal matrix containing the eigenvalues.
For a selection of K eigenvectors, factors are constructed as Fx = RQx and let fip = Q}( W
denote their means.

Pricing errors are given by

a=p—Bip
where 3 = Cov(Ry, F’t)Var(ﬁ't)*l. Using the definition of Fy and since Q are fixed
b =2Qx(Qx2Qx) "
Note by definition of ¥
QxEQk = QxEQk — (14 7)Qun'Qx

= Ag — (1 +)firfiy
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where the second equality follows from the eigendecomposition of 3 and the definition of

. By similar arguments,
S0k =2XQk — (L+7)up'Qr
= QrAx — (L +)piiy
Therefore, 3 can be expressed as
B = (Qrhr — (1 +7)pip) (Mg — (1 +7)iriy)

= (Qrhx = (L Vi) (A + (U AL firfipA g (1= (14 )i Ay for) ™)

= Qr + QL+ irfiphi (1= L+ )iphy fir) ™!

— (L pipA — (L7 it A ip e A (1= (14 )M fie) ™!

where the second equality follows by the Sherman-Morrison equality. It is straightforward

to show using the definition of jir that
(1+ DA i
L= (U ipAil i

where Qn_f denotes the collection of eigenvectors omitted from the factor model.

Biir = Qr Qi — QN-kQN_g i

Since Q forms an orthonormal basis W= Q KQ’K,u +Qn_ KQQ\L i and hence
1
L= (L+)aph fir

(39) a=Qn-kQN_gh

and since Q/N,KQN—K = In_p it follows
1
(1= (1 + ) A fir)?

Note that Q’N_ i1 are the risk premia of the RP-principal component factors of the omitted

(40) oo =p'QN_kQy_gn

factors. The second term depends on ﬂ};]&l}lﬂp which is approximately equal to the
squared Sharpe ratio of the included factors. Depending on [L};/N\}l iir and v the second
term can be above or below 1. Therefore, the second term introduces a non-trivial non-
linearity in optimal factor selection. To minimize the first term factors with low risk
premia should be excluded. Depending on v and /1’};/1;{1/1 r this is however not guaranteed
to minimize o/« due to the second term.

Nevertheless, (40) shows that selection based on risk premia seems beneficial. To demon-
strate that selection based on risk premia is at least approximately optimal, note that in
the data typically 8 ~ Qx and hence o ~ QN_KQQV7K;L so o' ~ ;L’QN_KQ§V7KM.
This suggests that in practice the second term is less important and hence selection of
RP-principal component factors based on squared risk premia is approximately optimal
for minimizing the sum of squared pricing errors o/a.

Turning to the HJ-distance, note that by the Sherman-Morrison equality and the defi-
nition of ¥

ST =T (L4 )2 ST (1 - (L4 ) S )
Using (39) it is then straightforward to show that
1 1
1— (L4 )ipAg ip 1 — 1+ 9)w'S i

note that the first term resembles the expression in section 1.3.2 and can be thought of

oS a = Qo AR Qv xp

as equal to the sum of the squared Sharpe ratios of the omitted factors. The above is
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decreasing in the sum of the squared Sharpe ratios of the RP-principal component factors
included in the factor model. Hence, including RP-principal component factors with the
largest squared Sharpe ratios, (u/'qr)? /S\k, leads to a factor model that minimizes the
HJ-distance.

The return on the associated tangency portfolio is given by Rj, ; = ﬁpi}lﬁ’ K41
Hence, the squared Sharpe ratio is

SR* = [ipSy' fiF
= W Qr(QxEQK) ™' Qp
by definition of Fy. By the Sherman-Morrison equality and the definition of >
1

1— (1 +y)ipAg i

which is increasing in the sum of squared Sharpe ratios of the included factors, [/F]X;{l .

SR* = fipAg fir

Hence, including RP-principal component factors with the largest squared Sharpe ratios,
(1'Ge)?/ Me, leads to a factor model that maximizes the Sharpe ratio of the associated
tangency portfolio.
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4.4. Additional Figures.

Figure 14. Full OOS Performance — 24 months
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Note: The figure depicts the out-of-sample RMSE, the HJ-distance and Sharpe ratio of Ry, for factor

models subsequently increasing K, the number of principal components selected. Out-of-sample statistics

are constructed in a rolling fashion using 20 years of data to estimate parameters to then construct the

pricing errors or return on Rj,; over the next 24 months before re-estimation. For each test asset set

the principal components estimated on the training data are extracted and sorted based on g, (1'qx)? or

(;/qk)Q/)\k to construct the factor models and the tangency portfolio weights.
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Figure 15. Performance Comparison with Robust SDF Estimator — Other

Datasets
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Note: The figure replicates figure 5 for the FF25 and CZ212 dataset.
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Figure 16. Performance Comparison with Baseline RP-PCA — Other

Datasets
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Note: The figure replicates figure 5 for the FF25 and CZ212 dataset.
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Figure 17. Performance Comparison with Baseline and Optimally Se-
lected RP-PCA — Other Datasets
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Note: The figure replicates figure 6 for the FF25 and CZ212 dataset.
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4.5. Additional Tables.

Table 11. IS Performance

RMSE HJ SR
Factors: 1 3 5 1 3 5 1 3 5
FF25 Ak 0.206 0.147 0.100 | 0.076 0.067 0.052 | 0.125 0.155 0.198

(W qr)? 0.206 0.132 0.085 | 0.076 0.057 0.036 | 0.125 0.186 0.235
(W' qr)?/ M, | 0.900 0.179  0.107 | 0.074 0.047 0.033 | 0.132 0.211 0.242

KNS57 Ak 0.445 0.420 0.368 | 0.637 0.628 0.588 | 0.092 0.135 0.241
(Wqp)? |0.432 0.316 0.243 | 0.545 0.511 0.441 | 0.317 0.368 0.453
(W'qr)?/A | 0.432  0.404 0.396 | 0.545 0.423 0.327 | 0.317 0.472 0.565

C7212 Ak 0.610 0490 0.456 | 4.704 4.626 4.562 | 0.054 0.284 0.380
(Wqr)? | 0.540 0.472 0.421 | 4644 4470 4.214 | 0.250 0.486 0.702
()% M | 0599 0.570  0.559 | 4.498 4.182 3.928 | 0.457 0.724 0.883

Note: The table depicts the RMSE, HJ-distance and Sharpe ratio of R;; for factor models with different
K, the number of principal components selected, matching the size of frequently encountered factor models
in the literature. Bold letters indicates the model with the best performance for a specific metric across
the different selection methods for standard PCA by dataset and approximation degree.
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Note: The table depicts the out-of-sample RMSE, HJ-distance and Sharpe ratio of Ry, for factor models
with different K, the number of principal components selected, matching the size of frequently encountered
factor models in the literature. Bold letters indicates the model with the best performance for a specific

Table

12. OOS Performance

RMSE HJ SR
Factors: 1 5 1 3 5 1 3 5

FF25 Ak 0.221 0.129 0.103 | 0.130 0.108 0.088 | 0.112 0.159 0.157

(' qr)? 0.221 0.141 0.096 | 0.130 0.104 0.053 | 0.112 0.160 0.237

(Wqr)?/ A | 0.607 0.526 0.439 | 0.104 0.068 0.053 | 0.157 0.239 0.237
KNS | 0435 0378 0372 ] 0.133 0129 0.127 | 0.110 0.122 0.129 |

PL 0.220 0.125 0.073 | 0.130 0.102 0.053 | 0.114 0.169 0.215

KNS57 Ak 0.388 0.343 0.241 | 0.489 0.458 0.441 | 0.070 0.118 0.218

(' qi)? 0.347 0.268 0.250 | 0.388 0.381 0.349 | 0.303 0.295 0.329

(Wqrp)?/ A | 0.411  0.364 0.356 | 0.385 0.274 0.242 | 0.208 0.347 0.366
KNS | 0428 0.384 0.339 | 0.457 0431 0.427 | 0.223 0.326 0.326 |

PL 0.404 0.222 0.148 | 0.514 0.373 0.278 | 0.144 0.358 0.444

CZ212 Ak 0.560 0.446 0.414 | 5.683 5.936 5.813 |-0.041 0.214 0.316

(' qr)? 0.492 0.451 0.340 | 5.828 5.460 5.422 | 0.176 0.349 0.524

(W qr)?/ A | 0.568 0.566 0.564 | 5.564 5.162 4.858 | 0.254 0.380 0.496
KNS | 0539 0479 0472 | 5704 5652 5679 | 0.188 0.312 0.337 |

PL 0.511 0436 0.352 | 6.136 6.090 5.951 | 0.279 0.465 0.796

metric across the different selection methods for standard PCA by dataset and approximation degree.

Table 13. Prices of Risk under Different Selection Rules

FF25 KNS57 C7212
PC Ak War)*  (Wa)*/ | M Wa)?  Wa)? /M| M (War)®  (War)*/An
PC1 | 0.356*"** 0.356™**  5.081*** 0.536™*  5.841*** 5.841%** 0.189 1.628***  9.988***
(0.000)  (0.000)  (0.000) | (0.028)  (0.000)  (0.000) | (0.238) (0.000)  (0.000)
PC2 | 1.070"* 1.070***  0.356*** 0.537* 0.536** 24.297*** | 0.640*** 0.640***  7.120***
(0.001) (0.001)  (0.000) | (0.088) (0.028)  (0.000) | (0.005) (0.005)  (0.000)
PC3 0.477  3.010"*  3.010*** 0.916* 2.848*** 6.050*** 1.628***  7.120***  34.554***
(0.251)  (0.000)  (0.000) | (0.055)  (0.000)  (0.000) | (0.000) (0.000)  (0.000)
PC4 | 0.960** 0.960** 1.070*** 1.565***  6.050*** 11.199*** | 1.088*** 9.988***  10.077***
(0.050)  (0.050)  (0.001) | (0.006)  (0.000)  (0.000) | (0.004) (0.000)  (0.000)
PC5 | 3.010*** 5.081***  3.717*** 2.848***  1.565™*  33.412*** | 2.855*** 2.855***  24.397***
(0.000)  (0.000)  (0.003) | (0.000) (0.006)  (0.000) | (0.000) (0.000)  (0.000)
PC6 0.932 0.477 4.087*** 5.841*** 0.916* 12.594*** 1.414**  3.595"**  39.477***
(0.289) (0.251)  (0.001) | (0.000) (0.055)  (0.000) | (0.025) (0.000)  (0.000)
PC7 1.210 3.717%** 0.960** 0.655 3.957*  42.616%** | 3.039*** 0.189 62.409***
(0.184)  (0.003)  (0.050) | (0.516)  (0.000)  (0.000) | (0.000) (0.238)  (0.000)
PC8 | 5.081*** 4.087*** 4.619** 3.957%* 0.537* 3.957** | 3.595"** 1.088™**  18.429***
(0.000)  (0.001)  (0.044) | (0.000) (0.088)  (0.000) | (0.000) (0.004)  (0.000)
PC9 1.654 1.210 4.188* 6.050***  11.199***  2.848*** 0.299  3.039***  21.477***
(0.178)  (0.184)  (0.076) | (0.000)  (0.000)  (0.000) | (0.641) (0.000)  (0.000)
PC10 1.786 0.932 3.472* 2.853** 2.853** 13.149*** -0.037  5.664™*  7.693***
(0.116)  (0.289)  (0.090) | (0.015)  (0.015)  (0.000) | (0.965) (0.000)  (0.000)

Note: The table depicts the estimated prices of risk, by = ﬂ'(}k/jxk for the first ten principal component
factors under different selection rules. In brackets below the price of risk estimates the p-value associated
with Ho : by = 0 is reported based on the asymptotic distribution derived in section 1.4. The Newey and
West (1987) covariance estimator is employed with T4 lags. Estimates significant at the 10%, 5% and

1% are indicated by *, ** and *** respectively. Factors have been normalized to have positive mean.
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5. Appendix of Chapter 2
5.1. Data.

5.1.1. Ezcessive Currency Invoicing. We define excessive currency invoicing as in (21),
that is, as the aggregate exports (imports) per country and currency in excess of exports
(imports) to (from) countries that have such currency as their base currency, in USD
equivalent amounts. To construct excessive currency invoicing we will rely on data on the
value of merchandise imports and exports disaggregated according to a country’s trading
partners and on data on the shares of aggregate exports (imports) invoiced in USD and
EUR by countries.

The data on exports (imports) trades between countries over time is obtained from the
Direction of Trade Statistics database of the International Monetary Fund at monthly
frequency in USD equivalent amounts. Import trades are quoted as cost, insurance and
freight and translated to free-on-board by dividing reported values by 1.1 before January
2000 and by 1.06 thereafter, following IMF (2018). Export trades are quoted as free-
on-board. Where possible, missing import (export) values of a country from (to) its
counterparty are filled with observed export (import) values of the counterparty to (from)
the country. This leaves us with monthly unbalanced import (export) trade data for 216
different countries from January 1960 to January 2022.

The data on the shares of aggregate imports (exports) invoiced by USD and EUR are
taken from Boz et al. (2022) and are at annual frequency. We keep only payment share data
on the USD and EUR due to data coverage issues. This leaves us with data on payment
shares for the USD, EUR, and “Other excluding EUR and USD” for imports and exports.
We found that in seven cases the last category for exports reported a negative value. In
these cases we set the value to zero and renormalize the other shares.

Data for several key countries, such as China, Mexico, and Canada, are missing or poorly
covered by the Boz et al. (2022) dataset. For this reason, we augment the dataset with
proprietary data obtained from SWIFT on payment settlements across borders. These
data are available to us for several countries at monthly frequency, broken down by coun-
terparty country, currency and message type. We focus on message types MT400, which is
an advice of payment, and MT700, which is an issue of a documentary credit. Both mes-
sage types are directly related to trade activity. From this we calculate for each country
the shares of aggregate payments sent (imports) or received (exports) in USD and EUR at
monthly frequency. To combine the SWIFT payment share data with the annual payment
share data by Boz et al. (2022), we average the SWIFT data for each year. This allows us
to augment the payment share dataset with data on eleven countries®” from 2011 to 2022.

To combine the annual payment share data with the monthly import (export) data, we
assume that payment shares are constant throughout the reporting year. This leaves us

with annual unbalanced payment share data for 119 different countries from 1989 to 2019.

3"The countries are Mexico, Singapore, the United Arab Emirates, Vietnam, China, Hong Kong, Canada,
Taiwan, Libya, Cuba, and Sri Lanka. Data on more countries are available, however, were disregarded
due to data quality concerns. Specifically, to add a country, we first calculate the total imports or exports
of a country implied by the SWIFT dataset. We then calculate the correlation of changes in SWIFT-
based imports or exports with changes in imports or exports reported in the Direction of Trade Statistics
database. We keep a country only if the correlation is above 0.2 for both imports and exports. We have
made two exceptions to this rule: Canada exhibited a correlation of 0.195 for imports and Mexico exhibited
a correlation of 0.12 for exports. Due to the size and role within international trade we kept these in the
final dataset.
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Following our definition in (21), we first aggregate import (export) trades of a country
across counterparties. We then multiply the resulting value by the aggregate import
(export) invoicing share for the USD or EUR. Finally, we obtain USD excessive currency
invoicing by deducting the import (export) trade with the United States. To obtain EUR
excessive currency invoicing, we deduct the import (export) trades with countries that were
members of the Euro Area at the respective point in time. This leaves us with monthly
unbalanced excessive currency invoicing data for 119 different countries from January 1989
to December 2022.

5.1.2. Consumer Price Index Data. We construct inflation and inflation volatility of the
consumer price index (CPI) of a country.

The data on the CPI of each country is obtained from the International Financial
Statistics and Consumer Price Index (CPI) database of the International Monetary Fund
at monthly frequency. For New Zealand and Australia, the CPI was not available at
monthly frequency. Hence, we used CPI data at quarterly frequency. For Argentina no
CPI data were available. Hence, consumer price implied inflation was taken from the
Instituto Nacional de Estadistica y Censos Republica Argentina at monthly frequency.

We first linearly interpolate the raw data to monthly frequency where necessary. We
then calculate the implied inflation rate of a country as the percentage change in the
inflation index. To this we add the Argentinian inflation data. This leaves us with monthly
unbalanced inflation data for 185 different countries from January 1989 to December 2022.

To obtain inflation volatility, a GARCH(1,1) model is fit to the inflation data. The
GARCH(1,1) model is fit in an expanding fashion for each country separately and requires
at least 24 initial inflation datapoints. If inflation data are missing within the estimation
window, due to the data being unbalanced, we linearly interpolate the inflation data. From
the fitted model we then infer the monthly volatility at the end of the estimation window
and multiply it by v/12. This leaves us with monthly unbalanced inflation volatility data
for 185 different countries from December 1990 to December 2022.

5.1.3. Fxzchange Rate Data. We construct the change and realised volatility of the ex-
change rate of a country with the USD and the EUR.

The exchange rate data are obtained from Reuters and the Bank of International Set-
tlement Statistics Warehouse at daily frequency. We use the latter database for Euro Area
countries as it in our experience accurately accounts for changes in the home currency of
countries, i.e. the adoption of the EUR by some countries. We measure exchange rates as
the amount of a country’s currency per USD (EUR).

Based on the raw data, we calculate the average exchange rate prevailing within each
month. We then calculate the change in monthly average exchange rates with the USD
(EUR) for each country. Given how we measure exchange rates, a positive change cor-
responds to a country’s currency depreciating, whilst a negative change corresponds to
a countries currency appreciating with respect to the USD (EUR). This leaves us with
monthly change in exchange rate data for 149 different countries from February 2000 to
August 2022.

To obtain realised exchange rate volatility with the USD (EUR), we calculate the daily
log return for each exchange rate. We then calculate realised exchange rate volatility
within each month. Finally, we multiply the volatility measure with v/252. To calculate

the volatility measure, we require at least 15 observations within each month. This leaves
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us with monthly realised exchange rate volatility data for 149 different countries from
January 2000 to August 2022.

5.1.4. Trade Share Data. We construct the percentage trade share of a country out of
aggregate import (export) trades.

Data on import (export) trades between countries over time is obtained from the Direc-
tion of Trade Statistics database of the International Monetary Fund at monthly frequency
in USD equivalent amounts. We clean the raw data following the same steps as in section
5.1.1 and are left with monthly trade data.

To obtain the import (export) trade share of a country out of total trades, we first calcu-
late the total aggregate imports (exports), aggregated across counterparties and countries,
at each point in time. We then aggregate the imports (exports) of a country across counter-
parties. Finally, we divide a country’s aggregate imports (exports) by the total aggregate
imports (exports). This leaves us with monthly trade shares for 216 different countries

from January 1960 to January 2022.

5.1.5. Foreign Debt by Firms. We use data on the aggregate amount of firm-level debt
denominated in USD and the EUR and its change, measured in USD equivalents.

Data on firm-level debt-instruments aggregated by industry are obtained from Mrkaic,
Kim, and Mano (2020) at annual frequency. We first aggregate the raw data by industry
and debt-instrument type, leaving us with annual data for USD and EUR denominated
debt by country. We then linearly interpolate the raw data to monthly frequency. This
leaves us with monthly unbalanced aggregate firm-level debt data for 141 different countries
from December 2005 to December 2020.

Based on the aggregate firm-level debt data we also calculate its change. This leaves
us with monthly unbalanced change in aggregate firm-level debt data for 139 different

countries from January 2006 to December 2020.

5.1.6. Swap Line Data. We construct a dummy variable indicating whether a swap line
existed between a country and the United States Federal Reserve (FED) or the European
Central Bank (ECB).

We obtain data on swap line agreements from Perks et al. (2021) and from The Yale
Program on Financial Stability swap line database. To construct our dummy variable, we
checked in both databases whether throughout a month a country had a swap line in place
with the FED or ECB. If a swap line was in place, the dummy variable takes value one.
We construct the swap line dummy variable at monthly frequency for the 119 countries in
our excessive currency invoicing sample from April 1994 to December 2019.

5.1.7. Financial Market Index Data. We construct the change of the financial market
index as developed by Svirydzenka (2016). The index aims to summarise the development
of financial institutions and financial markets in terms of their depth, access, and efficiency.

Data on the index by country is obtained from the Financial Development Index data-
base of the International Monetary Fund at annual frequency. We first linearly interpolate
the index to monthly frequency and then calculate its change. This leaves us with monthly
unbalanced change in financial market index data for 187 different countries from January

1981 to December 2019.
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5.1.8. Foreign Direct Investment Data. We use foreign direct investment equity flows into
or out of the reporting economy, measured in USD equivalents.

Data on foreign direct investment flows by country are obtained from the Balance of
Payments database of the World Bank at annual frequency. We linearly interpolate the
data to monthly frequency. This leaves us with monthly unbalanced data on foreign
direct investment inflows (outflows) for 193 (187) different countries from December 1970
to December 2021.

5.1.9. Gross Domestic Product Data. We use nominal gross domestic product data, mea-
sured in USD equivalents.

Data on nominal gross domestic product by country is obtained from the “International
Financial Statistics” database by the International Monetary Fund at annual and quar-
terly frequencies in local currency. First, we combine the annual and quarterly databases
to obtain better country coverage. To do so, we divide the annual figures by four and
repeat them throughout the quarters within a year. We then linearly interpolate the data
to monthly frequency. Lastly, using our average monthly exchange rate data (see section
5.1.3), we translate the gross domestic product to USD equivalents. This leaves us with
monthly unbalanced data on nominal gross domestic product for 104 different countries
from January 2000 to June 2022.

5.2. Additional Estimation Details. We estimate four different models (Panel, SEM,
SLM, and SDM) using Bayesian methods in our empirical analysis. Throughout we assume
a flat prior on B :=[6",p"]", 6, and 02 and a uniform prior for ¢ over [~1,1]. Below
we describe the posterior sampling algorithms for the three spatial model specifications
(SDM, SLM and SEM), while we omit for brevity the one of the simple panel model since
it is readily available in the literature (see, e.g., Lancaster (2004)).

It will be convenient to define some notation. As we allow for unbalanced samples in
our estimation approach, the number of cross-sectional observation available per period,
Ny, changes over time. Let N = 23:1 N; denote the total number of observations in our
sample. At each point in time, let y; = [y14, ..., yNt7t]T be the N; x 1 vector containing our
dependent variable observations, let X; = [z14, ..., Nt,t]T be the Ny x k matrix containing
our independent variable observations, and let G; be the N; X N; matrix containing the
row standardized network weights (hence, G, is always a right stochastic matrix). Define
the N x 1 vector y = [y1,....,yr] ', the N x k matrix X = [X]', ..., X}]T, and the block-
diagonal N x N matrix G containing G¢ V ¢ as its diagonal elements. Furthermore, let 1
be the N x N identity matrix, §j = (I — ¢G)y, and X = (I — ¢G)X. We will always be
conditioning on the matrix of independent variables X and the network matrix G. Hence,

for brevity, we will leave this conditioning implicit in the notation.

5.2.1. Spatial Error Model. The model takes the form (I — ¢G)y = (I — ¢G)X S + e,
where € ~ N(0,0%1). Conditional on ¢, a flat prior on 3 and ¢ yields the normal-inverse-
gamma posterior distribution for 8 and o2 of a linear regression model of § on X. That
is,
p(Bly,0* ¢) ~ N(B, (X X)"0?)
p(o?y, ) ~ Inv-T'(N — k)/2 — 1, N6?/2)

where £ is the OLS coefficient of a regression of § on X and 62 is the corresponding OLS

estimate of the residual variance.
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The posterior of ¢ conditional on 5 and ¢? is non-standard, but can be readily obtained
by writing the likelihood®® for y and dropping the terms that do not affect the posterior
shape. This gives us

plo10.5,0%) o 1T~ 6Gleap( — 57l — XAl - %)

The above is a non-standard distribution, but we can take draws from it using a Metropolis-
Hastings (MH) approach. To do so, we use a Gaussian proposal distribution. To ensure
that |¢| < 1 (see proposition 1), we always discard draws outside of the support [—1, 1] by
modifying the acceptance rate.
The Gibbs sampling algorithm, with a nested MH component, to draw from the poste-
rior distribution is then as follows:
(1) Initialization:
e Set b =1 and set a starting value ¢q
(2) OLS step:
e Compute = (XTX)" X Tjand 62 = (¢'¢)/(N — k), where é = § — X3
(3) Draw 3 and o2
e Draw o7 from Inv-I'((N — k)/2 — 1, N52/2)
e Draw £, from N (3, (XTX)to})
(4) Draw ¢ using MH:

e Draw ¢, from N(¢p_1,c?)
. p(be|y,By,02)a(dp—1]9c)
e Calculate the acceptance rate r = min(1, p(¢b—1|y76b70§)q(¢c‘¢b—1)’]1<‘¢c‘ <1)),

where q(dp_1]dc) is N(¢e, %) evaluated at ¢p_1 and p(¢e|y, By, 07) is the de-
rived posterior of ¢ evaluated at ¢, B and o2. q(¢c|dp—1) and p(Pp—1|y, Bp, o7)

are defined similarly
e Set ¢y, = ¢, with probability r, else set ¢p = Pp_1. If ¢p = P, set acy =1
e Calculate acr = 22:1 ac;j/b. If acr < 0.4, set ¢ = ¢/1.1. If acr > 0.6, set
c=1.1l¢c
(5) Increase b by one and repeat from point 2 above.
Repeating the above B times, after discarding an initial set of draws, leaves us with a set
of parameter draws from the posterior. We always set B = 50000, discard the first 5000

draws, set ¢g9 = 0.5, and initialize ¢ = 0.2.

5.2.2. Spatial Lag Model. The model takes the form (I — ¢G)y = X[ + ¢, where € ~
N(0,02%I). Conditional on ¢, a flat prior on 8 and o? yields the normal-inverse-gamma
posterior distribution for § and o? of a linear regression model of § on X. That is,

p(Bly, 0% 9) ~ N(B, (X X)"'0?)
p(0?]y,8) ~ Inv-T (N — k)/2 — 1, N6*/2)

where B is the OLS coefficient of §j on X and &2 is the corresponding OLS estimate of the
residual variance.
The posterior of ¢ conditional on 8 and ¢ is non-standard, but can be readily obtained

by writing the likelihood®” for y and dropping the terms that do not affect the posterior

38This is simply the likelihood of y = X + 1, where n ~ N(0,0%(I — ¢G) ' [(I — ¢G) 7).
39This is simply the likelihood of y = (I — ¢G) "' X + 1, where n ~ N(0,02(I — ¢G) " [(I — $G)~1]T).
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shape. This gives us

p(6ly. B,0?) |1 - ¢Grexp( _ L —x8" —Xm)

202
The above is a non-standard distribution, but we can take draws from it using a Metropolis-
Hastings (MH) approach. To do so, we use a Gaussian proposal distribution. To ensure
that |¢| < 1 (see proposition 1), we always discard draws outside of the support [—1, 1] by
modifying the acceptance rate.
The Gibbs sampling algorithm, with a nested MH component, to draw from the poste-
rior distribution is then as follows:
(1) Initialization:
e Set b =1 and set a starting value ¢g
(2) OLS step:
e Compute = (X"X)'XTjand 62 = (¢"¢)/(N — k), where é = j — XJ3
(3) Draw § and o2
e Draw o} from Inv-I'(N — k)/2 — 1, N5?/2)
e Draw (3, from N (3, (XTX) o)
(4) Draw ¢ using MH:
e Draw ¢, from N(¢p_1,c?)

o p(Bc|y,By,02)a(dp—1]¢c)
e Calculate the acceptance rate r = min(1, p(¢b—1|y7/3b70'§)q(¢c|¢b—1)’]1(‘¢)C‘ <1)),

where q(¢p—1|dc) is N(¢c, ¢®) evaluated at ¢p—1 and p(dcly, By, 0F) is the de-
rived posterior of ¢ evaluated at ¢, By and o2. q(¢¢|dp—1) and p(¢p—1]y, By, o7)

are defined similarly
e Set ¢y, = ¢. with probability r, else set ¢p = Pp_1. If ¢p = P, set acpy =1
e Calculate acr = Z;’-Zl ac;j/b. If acr < 0.4, set ¢ = ¢/1.1. If acr > 0.6, set
c=1.1c
(5) Increase b by one and repeat from point 2 above.
Repeating the above B times, after discarding an initial set of draws, leaves us with a set
of parameter draws from the posterior. We always set B = 50000, discard the first 5000
draws, set ¢g = 0.5 and initialize ¢ = 0.2.

5.2.3. Spatial Durbin Model. The model takes the form (I — ¢G)y = X5 + GX,0 + e,
where € ~ N(0,0%I). The matrix X; is of dimension N x s with s < k and contains a
subset of the matrix X. This allows for spatial lags of some independent variables to enter
the model. It will be convenient to define Z = [X, GX;] and v = [3",0"]". Conditional
on ¢, a flat prior on v and o2 yields the normal-inverse-gamma posterior distribution for
v and o? of a linear regression model of 4 on X. That is,

p(Vly, 0% ¢) ~ N(3, (27 2)"'0?)
p(o?y, @) ~ Inv-T((N — k — 5)/2 — 1, N62/2)

where 4 is the OLS coefficient of § on Z and &2 is the corresponding OLS estimate of the
residual variance.
The posterior of ¢ conditional on v and o2 is non-standard, but can be readily obtained

by writing the likelihood*” for 3 and dropping the terms that do not affect the posterior

40This is simply the likelihood of y = (I — ¢G) "' Zy +n, where n ~ N(0,0%(I — ¢G) " [(I — ¢G) | T).
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shape. This gives us

p(8ly,7,0%) o T - ¢Grea:p( -z - Zv])

202
The above is a non-standard distribution, but we can take draws from it using a Metropolis-
Hastings (MH) approach. To do so, we use a Gaussian proposal distribution. To ensure
that |¢| < 1 (see proposition 1), we always discard draws outside of the support [—1, 1] by
modifying the acceptance rate.
The Gibbs sampling algorithm, with a nested MH component, to draw from the poste-
rior distribution is then as follows:
(1) Initialization:
e Set b =1 and set a starting value ¢q
(2) OLS step:
e Compute ¥ = (Z"Z)"'Z"§ and 62 = (¢'¢)/(N — k — 5), where é = §j — Z%
(3) Draw 7 and o
e Draw o} from Inv-T'(N — k — 5)/2 — 1, N6?/2)
e Draw -, from N(%,(Z"Z)"'o})
(4) Draw ¢ using MH:
e Draw ¢, from N(¢p_1,c?)

o p(dely,vo,02)a(dp—1dc)
e Calculate the acceptance rate r = min(1, P R N 1(|oc| < 1)),

where q(¢p—1|dc) is N(de,c?) evaluated at ¢p—1 and p(¢e|y, v, 0F) is the de-
rived posterior of ¢ evaluated at ¢, v, and 0. q(dc|dp—1) and p(dp—1y, 1, o7)

are defined similarly
e Set ¢y, = ¢, with probability r, else set ¢p = Pp_1. If ¢ = P, set acy =1
e Calculate acr = Z?Zl ac;j/b. If acr < 0.4, set ¢ = ¢/1.1. If acr > 0.6, set
c=1.1c
(5) Increase b by one and repeat from point 2 above.
Repeating the above B times, after discarding an initial set of draws, leaves us with a set
of parameter draws from the posterior. We always set B = 50000, discard the first 5000
draws, set ¢g = 0.5, and initialize ¢ = 0.2.

5.2.4. T' Estimation via Heterogeneous SVAR . For exposition we consider the SDM case.
Let = denote the dataset, i.e. © € {FUR — Im,USD — Im,EUR — Ex,USD — Ex}.
Define Z7 = [X;, G¥Xy], v* = [(%)7,(0%)T]7, and F = (I — ¢°G¥)yF — Z¥~*. Denote
by €+ = [eIU7gD7i7t,e]IE%R7i7t,eggD’ivt,engR’m]T the 4 x 1 vector of residuals for a specific
country. Let €; be the corresponding 4 x T; matrix of residuals for country i. Define y; as
the T; x4, matrix where the element in row ¢ and column z is g7, = {(I —¢"G{) }i.yi. Define
Z; = [Z{,@LDW ZggR,i’ Z{%D’i, ZEﬁR,i] as the T; x 4k matrix of independent variables, and
define ¥ as a blockdiagonal matrix of dimension 4k x 4 with the respective v* on its
diagonal. Note that we have e;r = y; — Z;¥. For convenience, we denote the collection of

parameters across the different datasets by a0 = [a{}g D aIE% R O, aBE ).
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We assume that €;; ~ N(0,%;), where ¥; = IIA(T~Y)T for all . Note that the
likelihood is proportional to
(41)

N T,
T 1 _
q({%i}, ¥, @) H |2 7T/ exp < —3 ZQ‘TtZi 15i,t>
i=1 =1

N
-7 1 T - -

= H 1575/ exp < - itrace(Ei lge + (v —9)' 2 z,(w - \Il)])>

i=1
where ¥ are the OLS estimates of the regression parameters and €; the corresponding
OLS residuals.

Similar to Lanne, Liitkepohl, and Maciejowska (2010) and Brunnermeier et al. (2021),
an identification issue remains. We can multiply I" and A by scale factors without changing

the likelihood. Following Brunnermeier et al. (2021), we impose the restriction
| X
NZAM =1V azel, .4
i=1

where in slight abuse of notation, A, ; is the x" diagonal element of A;. The interpretation
of this normalization is that we make the cross-country average structural variance one
in each equation. Given the normalization and the technical condition that each pair of
equations differs in variance in at least one country, we can uniquely identify I', up to the
sign of a row. See Lanne, Liitkepohl, and Maciejowska (2010) for details and Brunnermeier
et al. (2021) for a similar application in the context of time series heteroskedasticity.

Following Brunnermeier et al. (2021), we use a Dirichlet prior for A, /N. This restricts
each \;; to lie in [0, N] and enforces our normalization constraint that for each structural
shock the ), ; average to one across countries. We further introduce a prior p(I') = |T'|**
and integrate out ¥ such that the posterior becomes

({A:},T]o) ﬂ || 7| Ay |~ (T 4k)/2 lt TTA T ) ﬁ I'(aN) ﬁ Nt
r B i=1 ' P 2 race P j=1 I'(a)N i=1 N

where, in slight abuse of notation, I'(.) refers to the Gamma function. The above is a
non-standard distribution, but we can take draws from it using a Metropolis-Hastings
(MH) approach. To do so we will employ random walks for all parameters®!.

Note that the distribution of {A;} and I' is conditional on the ¢. Specifically, the €;
are OLS residuals computed conditional on the draw of ¢. Hence, given draws for ¢, we
can sample {A;} and I". The draws of {A;} and T do not affect the draws of the other
parameters. Hence, to make drawing efficient, we first carry out the estimation of the
models on the different ECI datasets and store the corresponding parameter draws, or,
equivalently, OLS residuals €. Put differently, we can estimate {A;} and I" and the other
parameters in two separate stages.

The sampling algorithm to draw {A;} and I" from the posterior distribution is as follows:

(1) Pre-estimation:
e Estimate the model on the different ECI datasets and store € for different
draws
(2) Initialization:
HFor T this is straightforward. Note that A; needs to be sampled subject to the normalization constraint.
We enforce the constraint, by sampling Az 1.n—1, using the random walk and set A,y such that the

constraint is satisfied.
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e Set b =1 and set a starting value I'y and A; o for all
(3) Draw {A;} and I" using MH:
e Denote the collection of parameters as § = [vec(I) T, diag(A1) 7, ..., diag(An_1)"]"
e Draw vec(f.) from N(vec(0p_1,cVp)
e Determine Ay from the constraint

e Calculate the acceptance rate r = min(1, p(f/(é/:iﬁll:;fﬁ;)_l) ), where p({A;},T'|¢)

was defined previously
o Set {A;p} = {Ai.} and I'y, = I'. with probability r, else set {A;p} = {A;p—1}
and I'y = I'y_1. If accepted, set ac, = 1
e Calculate acr = 22:1 ac;/b. If acr < 0.4, set ¢ = max(c/1.1,107%). If
acr > 0.6, set ¢ = min(1.1¢,5)
(4) Increase b by one and repeat from point 3 above.
Repeating the above B times, after discarding an initial set of draws, leaves us with a
set of parameter draws from the posterior. We always set B = 50000 and discard the
first 5000 draws. To initialize the algorithm we first compute the posterior mode*?. We
then set I'g and A; o to the respective estimates. We start with ¢ = 0.1, set Vp to the
inverse Hessian obtained from the estimation of the posterior mode, and set the prior for
{A;} with & = 2. We have found that since we use an estimate of the posterior mode
satisfying the normalizations, no ex-post normalization (sign-flipping or row permutation)
was necessary. To obtain a reliable sample from the posterior distribution, we ran the
above algorithm 100 times and pooled the final draws across all MCMC chains.

42The posterior mode is obtained from a constrained optimization for €; evaluated at the posterior mean
of ¢. The constraints ensure that the diagonal elements of I" are positive. Finally the rows of the resulting
estimates for I and A; are permuted to ensure that the large elements are on the diagonal of I'.
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5.3. Additional Figures.

Figure 18. Import-Based Excessive Currency Invoicing across Countries
151680 min. USD
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(b) EUR Excessive Currency Invoicing

The figure depicts the average monthly excessive currency invoicing across countries over our sample. All
amounts are in USD equivalents. The countries marked in white are not included in our sample due to
missing observations. The top ten countries by import-based excessive USD invoicing positions in our
sample are: the United States, China, Hong Kong, Japan, Singapore, Mexico, Taiwan, South Korea,
Vietnam, and the United Kingdom. The top ten countries by import-based excessive EUR invoicing
positions in our sample are: Germany, the Netherlands, Italy, France, Belgium, Spain, Austria, Ireland,
the Slovak Republic, and Sweden. Panel (a): USD excessive currency invoicing. Panel (b): EUR excessive
currency invoicing.

105



Figure 19. Impulse-Response Functions of USD Aggregate Currency In-
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(a) Contemporaneous Effect (b) Cumulated Effect over 18 Months

Spatiotemporal impulse-response functions to a domestic one standard deviation shock. Left axis = USD.
Right axis = percentage of monthly total aggregate currency invoicing in USD over same horizon. Panel
(a): contemporaneous effect. Panel (b): cumulative effect after 18 months. Box-plots report posterior
means and centered 95% posterior coverage.
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Figure 20. Impulse-Response Functions of EUR Aggregate Currency In-
voicing
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(a) Contemporaneous Effect (b) Cumulated Effect over 18 Months

Spatiotemporal impulse-response functions to a domestic one standard deviation shock. Left axis = EUR.
Right axis = percentage of monthly total aggregate currency invoicing in EUR over same horizon. Panel
(a): contemporaneous effect. Panel (b): cumulative effect after 18 months. Box-plots report posterior
means and centered 95% posterior coverage.
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Figure 21. Cross-Currency and Export-Import Spillovers — Aggregate

Currency Invoicing
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The figure depicts the posterior distribution of the elements of I", identified via cross-sectional heteroskedas-
ticity. For interpretation, we scaled the draws of I', such that the diagonal only contains ones and then
multiplied each row by negative one. Additionally, the figure depicts the posterior mean, as well as 90%

and 95% confidence intervals.
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Figure 22. Counterfactual: Abandonment of USD as Vehicle Currency —

Aggregate Currency Invoicing
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(a) Contemporaneous Effect

Spatiotemporal impulse-response functions to a shock sequence that sets the aggregate currency invoicing
of the specified countries to zero permanently. EU contains all 19 EUR-Area countries while BRIC(S)
contain the BRICS countries excluding South Africa due to missing observations. Left axis = USD. Right
axis = percentage of monthly total excess currency invoicing in USD. Panel (a): contemporaneous effect.
Panel (b): cumulative effect after 18 month. Box-plots report posterior means and centered 95% posterior

coverage.

45.90

138.25

0.00

109

12

6 «10 7 = 0:18
5| }
w4r
< } i STIRF
= i STIRF®
S8
n
APy
| %
]
NI T
> & %, C. <& &
2 D o 4 2
S < ® "29 /Ofd)

0.00

(b) Cumulated Effect over 18 Months



5.4. Additional Tables.

Table 14. The Posterior Likelihood of Trade-Network Spillovers

Specification: ACIfE, ACIE:, Acrli, AcCIim,
Panel Inp, 1602.892 2260.553 1208.417 163.474
prob,  0.000 0.000 0.000 0.000

SEM Inp, 1612.020 2429.686 1335.039 -27.280
prob,  0.000 0.000 0.000 0.000

SLM Inp, 1626.628 2348.159 1308.943 273.662
prob,,  0.000 0.000 0.000 0.000

SDM Inp, 1769.339 2592.921 1543.097 562.501

prob,,  1.000 1.000 1.000 1.000

The table reports the logarithm of the marginal likelihood (Inp.,) of the data, given the model and the
posterior model probabilities (prob.,). Note that the marginal likelihoods are adjusted by subtracting the
logarithm of the number of observations. The models are separately estimated on each dataset using our
baseline specification. Depending on the dataset, the baseline specification uses respectively USD or EUR
export or import-based aggregate currency invoicing as the dependent variable. As independent variables,
we include lags of inward foreign direct investments, a USD SWAP line dummy, exchange rate changes
with the USD and EUR, realized exchange rate volatility with the USD and EUR, the share of aggregate
exports, CPI-based inflation and CPI-based inflation volatility, USD export-, USD import-, EUR export-,
and EUR import-based aggregate currency invoicing, and country- and time-fixed effects.
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Table 15. The Baseline Spatial Durbin Model

Independent Variables

ECI[I;ED ECII{JTIV}R ECIggD ECIEEII’,R FD]M FXChTL.(]USD FXCh'n,gEUR FXVOZUSD FXVOIEUR SVVAPUSD TSE‘T CPI CPIVol

Panel A. Dependent Variable: Export Excess Currency Invoicing in USD (ECIEE )

Direct Effect -0.013
(0.264)
Total Effect 0.078
(0.153)
Direct Effect -0.054
(0.288)
Total Effect 0.426
(0.158)
¢ 0.241**
(0.000)
R? 0.949
NObs 10871
log marginal 284.0414

T1T

Panel B. Dependent Variable: Export Excess Currency Invoicing in EUR (ECIEE{',R)

Direct Effect -0.002
(0.895)
Total Effect -0.030
(0.618)
Direct Effect -0.006
(0.881)
Total Effect -0.110
(0.618)
1) 0.159***
(0.000)
R? 0.963
NObs 10872
Inpp, -1854.050

The table reports the posterior means of the estimated effects and their respective p-values. Coefficient estimates significant at the 10%, 5%, and 1% levels are indicated by *, **, and
respectively. Estimation is carried out separately for the two different datasets. On top of the depicted independent variables, we always include country- and time-fixed effects.
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respectively. Estimation is carried out separately for the two different datasets. On top of the depicted independent variables, we always include country- and time-fixed effects.
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Table 16. The Baseline Spatial Durbin Model

Independent Variables

ACI{;;%D ACIE{}R ACI[?;D ACIE[?’R FDI’” FXCh’n,gUSD FXC]L’n,gEUR FXV()ZUSD FXVOIEUR SWAPUSD TSEI CPI CPIVol
Panel A. Dependent Variable: Export Aggregate Currency Invoicing in USD (ACIEE )
Short-term  Direct Effect 0.028***  -0.003  0.861*** -0.055"** 0.020"** -0.019** -0.014 0.005 -0.029** -0.076*  -0.121*  0.003 0.013**
(0.000)  (0.711)  (0.000)  (0.000)  (0.001) (0.081) (0.167) (0.553) (0.001) (0.004) (0.000)  (0.617)  (0.029)
Total Effect | -0.053 -0.020  0.858"*** 0.009  0.070™** -0.090 0.090 -0.126%* -0.132%* 0.063 -0.178**  -0.078**  -0.015
(0.111)  (0.472)  (0.000)  (0.686)  (0.004) (0.104) (0.117) (0.000) (0.000) (0.564) (0.000)  (0.004)  (0.182)
Long-term Direct Effect | 0.160***  -0.015 -0.323%*  (0.114*** -0.110** -0.080 0.029 -0.170*** -0.441%*  -0.701***  0.017 0.074*
(0.000)  (0.715) (0.000)  (0.001) (0.082) (0.167) (0.552) (0.001) (0.005) (0.000)  (0.615)  (0.030)
Total Effect | -0.318 -0.115 0.052  0.408™** -0.519 0.522 -0.733** -0.770%* 0.357 -1.030***  -0.453"**  -0.088
(0.142)  (0.481) (0.700)  (0.008) (0.110) (0.123) (0.000) (0.001) (0.571) (0.000)  (0.007)  (0.189)
¢ 0.382***
(0.000)
R? 0.964
NObs 10871
Inpp, 1778.633
Panel B. Dependent Variable: Export Aggregate Currency Invoicing in EUR (ACIE’%,R)
Short-term  Direct Effect | 0.027***  -0.005  -0.056*** 0.870*** 0.014** -0.025** -0.006 -0.004 -0.017** -0.094***  -0.102***  0.011**  0.010**
(0.000)  (0.478)  (0.000)  (0.000)  (0.012) (0.012) (0.531) (0.650) (0.035) (0.000) (0.000)  (0.030)  (0.075)
Total Effect | -0.030  -0.092** -0.061** 0.942***  0.003 -0.104** 0.036 -0.179** -0.120** 0.207** -0.184***  -0.004  -0.023**
(0.410)  (0.004)  (0.050)  (0.000)  (0.912) (0.093) (0.574) (0.000) (0.001) (0.090) (0.000)  (0.886)  (0.067)
Long-term Direct Effect | 0.159**  -0.033  -0.338"*** 0.082** -0.156** -0.033 -0.031 -0.106** -0.548**  -0.620**  0.068*  0.056**
(0.000)  (0.407)  (0.000) (0.014) (0.010) (0.561) (0.511) (0.026) (0.000) (0.000)  (0.034)  (0.088)
Total Effect | -0.254  -0.791**  -0.516** 0.029 -0.873 0.303 -1.497*** -1.005*** 1.732%* -1.546**  -0.037  -0.199**
(0.416)  (0.019)  (0.065) (0.902) (0.102) (0.579) (0.000) (0.002) (0.098) (0.000)  (0.887)  (0.083)
¢ 0.492%**
(0.000)
R? 0.965
NObs 10872
Inpm 2602.215

*

, and



6. Appendix of Chapter 3

6.1. Assumptions, Lemmas and Proofs. I here present the accompanying assump-
tions, lemmas and proofs to section 3.3.1.

6.1.1. Assumptions and Lemmas. In what follows, for h € M or h € M, let l;(h) =
log(m¢(Rey1;h), L(h) = E[ls(h)] and Lr(h) = 1/Tz:tT:1 lt(h). Further, define ui(h) =
G1(h), iy (h) = Suy(h), Ur(h) = & Lr(h) and Ip(h) = Z-Up(h). Subscripts ¢ indicate
that variables are defined with respect to filtration JF; which is defined as usually.

Assumption A.6. Let M be compact under the sup-norm.

Assumption A.7. Assume ly(h) satisfies the standard measurability and continuity re-

quirements on R x M.

Assumptions A.6 and A.7 are fairly standard. Assumption A.6 may be violated if M is
too complex, however, can be easily relaxed following X. Chen (2007). For a definition of
the standard measurability and continuity requirements see Definition A.2 in the appendix
of Wooldridge (1994).

Assumption A.8. Assume that i) there is a m € M such that 7f(R) = m(R;m) V t, ii)
L(m) > —oo and i) for hi,hy € M that Pr(Ri1 € R : li(h1) # lt(h2)) > 0.

Assumption A.8 i) formalizes that M;(R) is proportional to a time-invariant function
and the implied probability measure is correct. Assumption A.8 iii) requires the log-
likelihood ratios to be non-constant random variables.

Assumption A.9. For all K > 1 and h € Mk let plim suppc rq,. |L7(h) — L(h)| = 0.
T—o0

Assumption A.9 requires [;(h) to satisfy a uniform weak law of large numbers.

Assumption A.10. Assume the interchange of derivatives and integrals holds for all

h e M.
Assumption A.11. Assume E[|3%lt(h)|’”] < o0 forr >2 for allt.

Assumption A.11 implies that u;(h) and i;(h) are uniformly integrable and also ensures

that the relevant expectations exist.

Lemma L.6. Under assumptions A.10 and A.11 (1) Et_1]us(m)] = 0, (i) Ei—1[us(m)ur(m)] =
0 for 7 <t and (iii) E_1[—it(m)] = Vari_i1(u¢(m)). By the law of iterated expectations,
(iv) Elu¢(m)] = 0 for all t and (v) E[ui(m)ur(m)] = 0 for 7 # t. By the law of total

variance, (vi) Var(uy(m)) = E[—i;(m)] = E[us(m)?].

Assumption A.12. Assume %E;‘le Var(ug(m)) 2 by, and % Zthl wp(m)2 2 by,

Lemma L.7. Under assumptions A.10 and A.11 it follows by lemma L.G that u,(m)
is a martingale difference sequence and a L'-mizingale with respect to F;. Further-
more, % Zthl w(m) B 0. Additionally, under A.12 it follows that T—1/2 Zthl ug(m) KN
N(0,by,).

The proofs for the lemmas are given in section 6.1.2. Lemma L.7 establishes that the law
of large numbers for L!-mixingales and the central limit theorem for a martingale difference

sequence hold for u(m) (see Hamilton (2020) proposition 7.6 and 7.8 for definitions).
113



Define the optimal sieve approximation on Mg in population by m* = wxgm. The
difference between m* and m is due to approximation error. The difference between m*

and m is due to estimation error. Let m* € [m*, ).
Assumption A.13. Assume (i) It(m) 2 iy, and (i) ||Ir(m*) — Ir(m)||so = 0p(1).

Assumption A.14. Assume (i) ||m—m*||ec = o(T~Y2) and (i) ||[Ur(m) — Up(m*)||so =
op(T~1/2).

Assumption A.13 (i) makes standard assumptions regarding the convergence of the Hes-
sian. Due to theorem 4 assumption A.13 (ii) can be relaxed. Assumption A.14 (i) is often
referred to as an under-smoothing condition, which ensures that the approximation error
is asymptotically negligible (see X. Chen (2007) and Christensen (2017)). Assumption
A.14 (ii) is similar to condition 4.4 (i) in section 4.2.1 of X. Chen (2007).

6.1.2. Proofs of Lemmas.

Proof of lemma L.6. 1 will show results (i), (ii), and (iii) of lemma L.6. (iv), (v) and (vi)
are self-contained. Let % f(R; h)}h:m = f’(m). Assumption A.11 is required throughout
for the existence of the relevant integrals. To show (i) note that u,(m) = m,_;(m)/m—1(m).

Therefore,
m_1(m) 0
Ei_ - | D=V dR = — / _ dR =0
il(m)) = [ T ()R = - [ wa(m)
where the second equality follows from assumption A.10. To show (ii) notice that the
information set F;_1 contains u,(m) for 7 < t. Hence, (ii) is an immediate implication of

(i). To show (iii), notice Var;_1(us(m)) = E;_1[us(m)?] by (i). Further, note that

B )] — /R (wé’_l(m) B (wg_ﬂm))?)m_l(m) .

Ft_l(m) 7"'t—l(nl)
2
= —Ei_1[ut(m)?]

where the interchange of partial derivative and integrals follows from assumption A.10 and
the definition of u;(m) was used. This establishes (iii). O

Proof of lemma L.7. By lemma L.6 (i) and (iv) it follows that u;(m) is a martingale dif-
ference sequence with respect to F; (see Hamilton (2020) p. 189). By assumption A.11
it follows that E[|us(m)|"] < M’V t for some r > 2 and M’ < oo, so u;(m) is uniformly
integrable (see Hamilton (2020) proposition 7.7). This implies E[ju:(m)|] < M for some
M < oo.

To show that u;(m) satisfies the law of large numbers for L'-mixingales, note that since
Elui(m)] =0V t and E;_;[u(m)] = 0 V ¢, it follows by choosing d; = M and {p = 1 and
Cu = 0V n > 1 that us(m) satisfies the definition of an L!-mixingale with respect to JF;
(see Hamilton (2020) example 7.9). Therefore, by proposition 7.6 in Hamilton (2020) it
follows that = ST u(m) B 0.

Since u;(m) is a martingale difference sequence, E[us(m)?] = Var(us(m)) > 0, and
by assumptions A.11 and A.12 the conditions of proposition 7.8 Hamilton (2020) are

satisfied, i.e. us(m) satisfies the central limit theorem for a martingale difference sequence.
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Therefore,

T
Z N(0, b)

3\

6.1.3. Proofs of Theorems.

Proof of theorem 4. 1 here demonstrate that under assumptions A.6-A.9 the consistency
of the estimator m defined in equation (26) follows as K,T — oo and K/T — 0. The
strategy is to show that conditions 3.17, 3.2, 3.4 and 3.5(i) of X. Chen (2007) hold and
therefore theorem 3.1 of X. Chen (2007) applies. This establishes consistency.

First, assumption A.6-A.8 imply condition 3.1” in X. Chen (2007). To see this, consider
7¢(R;m), the probability measure induced by m given the observed a;(R) as defined by
the fundamental pricing rule representation theorem. The Kullback-Leibler information
inequality implies L(m) > L(h) ¥ h € M where the strict inequality is due to assumption
A.8. Hence, m is the unique solution.

Second, the linear sieve spaces Mg defined for the estimator in equation (26) in com-
bination with a version of the Weierstrass approximation theorem imply condition 3.2 in
X. Chen (2007). Note that M as defined for the estimator satisfies Mg C Mg41 C M
for all K > 1. Denote by mgm the approximation of m on Mpg. The Weierstrass ap-
proximation theorem establishes that m can be approximated arbitrarily well through
polynomials. By Jackson’s theorem (theorem 13.3 Schumaker (2007)*%) it follows that
l|[Tem — m||ee — 0 as K — oo.

Third, condition 3.4 in X. Chen (2007) is not required since L(h) is concave for h € M.
Stone (1990) has shown that the estimator as defined in equation (26) is concave for
h € Myg; see also Huang (2001). This is because, as stated in (26), the associated
m(R; h) for h € Mg belongs to the exponential family. Therefore, condition 3.4 is not
required (see section 2.2.3 of X. Chen (2007)).

Fourth, condition 3.5(i) of X. Chen (2007) follows directly from assumption A.9.

Therefore, the conditions of theorem 3.1 in X. Chen (2007) p. 5591 are satisfied and it
follows that || — m||s = 0p(1). O

Proof of theorem 5. Define m* = mwxm as the optimal sieve approximation on Mg in
population. A mean value expansion of Ur(m) around m* gives rise to

Ur(m) = 0 = Ur(m®) + Ir(m*) (1 — m”)
where m* € [m*,m]. It follows that
VT (1 —m) = =Ip(m*) " 'VTUr(m) — Ir(m*) "' VT (Ur(m) — Ur(m*)) = VT (m — m")
(#) (i) (#i4)
By assumption A.14 it follows that ||v/T(m — m*)||ee = o(1) and that ||v/T(Ur(m) —
Ur(m*))||oe = 0p(1). By assumption A.13 Ir(m*) 2 i,,. Therefore term (ii) and (iii) are

negligible.

By lemma L.7, the continuous mapping theorem and Slutsky’s theorem it follows that
bm
—Ip(m*) " WTUp(m) % N(O, 12>

43 Jackson’s theorem gives rise to theorem 13.3 in Schumaker (2007): for every continuous, real-valued
function f on the interval [a, b] there exists a sequence of polynomials 7x f € Mg with ||7x f — f|lcc — 0
as K — oo where K is the order of the polynomial.
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Therefore, /T (1 — m) 4 N(0,b,/i2,) + 0p(1).
U

6.2. Data Processing. I here detail the data-cleaning steps and inter-/ extrapolation

methods implemented to arrive at the full set of Arrow-Debreu security prices.

6.2.1. Cleaning Steps. Several pre-processing steps of the raw data are undertaken be-
fore the inter-/ extrapolation methods are applied. These steps have the goal to mitigate
data errors and to extract a representative dataset that best approximates the markets’
aggregation of individual risk-neutral subjective probability beliefs or Arrow-Debreu se-
curity prices in the investor population. An incomprehensive list of studies working with
similar datasets is Ait-Sahalia and Lo (1998), J. C. Jackwerth (2000), Rosenberg and En-
gle (2002), Bliss and Panigirtzoglou (2004), Figlewski (2008), Martin (2017), Ulrich and
Walther (2020) and J. Jackwerth and Menner (2020). A survey discussing the practical
details of extracting Arrow-Debreu securities is given in Figlewski (2018).

I focus on options on the S&P 500, which are actively traded and cash-settled with
European exercise style, obtained from Optionmetrics. All observations with a bid price
of zero and all observations with a bid price larger than their ask price are dropped.

I then begin to drop observations that are known to suffer significantly from poor lig-
uidity. First, all observations with a residual maturity less than seven days are dropped.
At each date, the implied volatility using Black and Scholes (1973) based on the mid, bid,
and ask price using the dividend yield and zero coupon rate reported by Optionmetrics
are calculated. Where necessary, the zero coupon rates are matched to the residual ma-
turity of the observations by shape-preserving piecewise cubic interpolation®’. Second, all
observations are dropped for which the Black-Scholes implied volatility computation did
not converge. Third, I drop all observations where the difference between the bid and ask
based implied volatility is larger than 50%. This tends to eliminate options significantly
in the money or sporadic outliers. Fourth, I drop all observations with a bid-ask spread
above 100$, which eliminates outliers*.

In some cases, I am left with multiple option prices per strike. For all call and put
options separately, on each date, by maturity, I only keep the observations with the lowest
bid-ask spread, mid price and implied volatility.

I proceed to check observations for violations of no-arbitrage conditions. For all call
and put options separately, on each date, by maturity, I drop all observations that vio-
late vertical spread arbitrage and the monotonicity condition of option price curves (see
Rosenberg and Engle (2002)).

Finally, since inter-/ extrapolation will be performed, I require on each date for each
maturity at least seven observations, else the observations are dropped.

The inter-/ extrapolation of the raw data is done by translating out-of-the-money option
mid prices to implied volatilities using Black and Scholes (1973) and then inter-/ extrapo-
lating the volatility surface. For a brief discussion of the advantages of inter-/ extrapolation

of the volatility surface instead of the call or put price surface, see Figlewski (2018).

447 have found this to yield a better fit than the commonly used linear interpolation on multiple cases.
45These filters are similar to filters in existing studies that drop observations with ”too large” bid-ask
spreads or implied volatilities. For example Ait-Sahalia and Lo (1998) delete observations with implied
volatilities larger than 70% and J. C. Jackwerth (2000) deletes observations with bid-ask spreads larger
than 2$. T have found such existing filters to be too restrictive, however, dropping them all together leaves
several outliers. The described thresholds have been chosen based on several case by case inspections to
guarantee outliers are deleted efficiently.
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Working with out-of-the-money implied volatilities based of call and put options has
several challenges. First, to determine the moneyness of an option forward prices for a
given maturity at each date are required. Second, switching from out-of-the-money put to
out-of-the-money call implied volatilities leads to a discontinuity in the implied volatility
curve at a specific maturity, also documented in Figlewski (2008), Figlewski (2018) and
Ulrich and Walther (2020). It tends to be the case that implied volatilities for put op-
tions are higher than for call options. Explanations appeal to limits of arbitrage due to
short sale constraints (see Atmaz and Basak (2019)) or lending and borrowing constraints
(see Bergman (1995)). Third, to compute the correct implied volatilities, consistent with
investors aggregated beliefs, the interest rate and dividend yield used by investors are
required.

To address the first concern, forward prices are determined by the intersection of the
mid price call and put curve. Based on put-call-parity, the two intersect at the strike that
is equal to the forward. Where necessary, the curves are extrapolated over the strike price
grid by maximally 25$ in either direction.

To address the second and third concern, I compute the implied dividend yield from the
forward price using Optionmetrics reported zero coupon rates. Atmaz and Basak (2019)
argue that short sale constraints can be thought of as ”artificially” increasing the dividend
yield’®. Assuming that the LIBOR rate reported by Optionmetrics reasonably approxi-
mates the interest rate available to arbitrageurs, the market implied dividend yield is

defined as "
log(“5T)
i

where 07 is the dividend yield, r; the zero coupon rate for the appropriate horizon 7, F; -

*
or =1,

the forward price and S; the spot price of the underlying.

Since the forward price is based on the intersection of put and call price curves, using
0¥ the implied volatilities based on Black and Scholes (1973) practically equates the mid
price based implied volatilities of put and call options at the money, i.e. eliminates the
discontinuity®”. As a consequence, by using 6* in the computation of implied volatilities
based on out-of-the-money put and call options, I am left with a smooth implied volatility
curve for each maturity™®.

This leaves me with a large daily dataset of implied volatilities for irregularly spaced

strikes and maturities that can be inter-/ extrapolated.

46They show that an increase in short-sale costs of the underlying increases put prices and decreases
call prices ceteris paribus. During periods of high short-selling costs one would therefore observe a large
discontinuity between implied volatilities computed from call and put prices using standard Black and
Scholes (1973). They further show that short sale costs manifest themselves as an adjustment to the
dividend yield and once the adjustment is taken into account implied volatilities coincide.
471 here only allow for an adjustment of the dividend yield and do not adjust interest rates. Suppose
observed put price implied volatilities are higher than call price implied volatilities. Increasing the dividend
yield, leads to a decrease of the put based implied volatility and an increase of the call based implied
volatility. On the other hand, assuming lending rates are below the reported rate, decreasing the interest
rate leads to the same effect. Adjustments of the dividend yield or interest rate have roughly the same
impact on implied volatilities.
48 An alternative procedure suggested by Figlewski (2008) is to average the implied volatilities of put and
call prices calculated using the reported dividend yield and interest rate in an area around the forward to
create a smooth transition in implied volatilities. The area in which the average is taken is ad hoc. Using
&7 on the other hand leads to an implied volatility curve that lies between the put and call based implied
volatilities, i.e. is averaged as well, however, can be motivated economically.
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6.2.2. Inter-/ Extrapolation. Multiple approaches for inter/- extrapolation of the volatil-
ity surface exist. An incomprehensive list of studies is Ait-Sahalia and Lo (1998), J. C.
Jackwerth (2000), J. Jackwerth (2004), Figlewski (2008) and Gatheral and Jacquier (2014).
I implement four different methods to conduct robustness checks of the main results. All
methods allow me to obtain implied volatilities on an arbitrarily fine grid of strikes, how-
ever, only some allow for inter-/ extrapolation across maturities.

The first — and preferred — method is based on Gatheral and Jacquier (2014). The
approach fits at each date a stochastic volatility inspired parameterization of the volatility
surface to the raw data that is free of calendar spread and butterfly arbitrage. The
approach therefore creates arbitrage free implied volatility estimates, taking into account
all available information across strikes and maturities on that date and allows for inter-/
extrapolation across strikes and maturities. Specifically, the power-law parameterization
is implemented (see Gatheral and Jacquier (2014)).

The second method is based on Ulrich and Walther (2020), which is a modified version
of the method in Ait-Sahalia and Lo (1998). On each date, an implied volatility curve is
fit for each maturity separately, through a kernel regression over implied volatilities and
moneyness. Extrapolation of the tails is done via linear interpolation, which is performed
before the kernel regression (see Ulrich and Walther (2020) for details). The approach
therefore creates implied volatility estimates, taking into account only information across
strikes for a given maturity and allows for inter-/ extrapolation across strikes. Inter-/
extrapolation across maturities is performed through the approach described in section
5.3 of Gatheral and Jacquier (2014).

The third approach is inspired by J. Jackwerth and Menner (2020). On each date, I fit a
volatility surface to the data using thin-plated smoothing splines. The approach therefore
creates implied volatility estimates, taking into account information across strikes and
maturities on that date and allows for inter/- extrapolation across strikes and maturities.

The fourth approach is based on Figlewski (2008). The approach fits on each date a
4t order spline with a single knot placed at the money for the observed range of implied
volatilities, for each maturity separately. Next the implied risk-neutral probability density
is computed based on Breeden and Litzenberger (1978) from the fitted and interpolated
implied volatilities. Then, motivated by the Fisher-Tippett theorem, a generalized extreme
value distribution is fit to the left and right tail separately, to extrapolate the tails (see
Figlewski (2008) and Figlewski (2018) for details). The approach therefore directly creates
Arrow-Debreu security price curves, taking into account only information across strikes for
a given maturity and allows for inter-/ extrapolation across strikes. Inter-/ extrapolation
across maturities is performed through the approach described in section 5.3 of Gatheral
and Jacquier (2014).

After the inter-/ extrapolation, where necessary, the call price curves are computed
using Black and Scholes (1973) and the Arrow-Debreu security price curves are computed
following Breeden and Litzenberger (1978) by numerically approximating the second de-
rivative of the call price curve with respect to strikes. Each approach, except the Gatheral
and Jacquier (2014) approach, is implemented such that I am left with Arrow-Debreu
security price curves corresponding to one month of maturity over a discrete return grid
ranging from 59% to 141% with 1% increments. For Gatheral and Jacquier (2014) Arrow-

Debreu security price curves are extracted corresponding to one, two, three, six, and twelve

118



months of maturity and over a grid ranging from 29% to 171% — this is necessary, as for
higher maturities the historically observed return range is wider.

Finally, when importing the Arrow-Debreu security price curves for estimation the
Arrow-Debreu security price curve is resampled onto a strike grid corresponding to gross
returns that range from the minimum to the maximum of observed returns of the S&P
500 over the sample period for each maturity. They are then rescaled to ensure that the
price curve sums to the reciprocal of the risk-free rate for the respective maturity. Before
the estimation is conducted, Arrow-Debreu security price curves containing negative ob-
servations are dropped — this step is irrelevant for the Gatheral and Jacquier (2014) based
curves. Furthermore, for computational convenience, all Arrow-Debreu security prices

equal to 0 are set to le 1°.

6.3. Goyal Welch Procedure. To assess the predictive performance of E;[R; ;] implied
by the estimation, I follow Welch and Goyal (2008) and compute the out-of-sample R2.

The out-of-sample R?, RQOOS, is constructed in an expanding window fashion. I start
the out-of-sample test in January 2011, i.e. 15 years after my dataset begins. To do so
I/[f,t [Ri+1] and the sample mean fi; are re-estimated each period as the training sample
expands. Forecasting errors are computed as €;41 = Ri41 —]/Et [Riy1] and viy1 = Ryy1 — i
This is repeated until I reach T'. RQOOS is then defined as

Zt E1t2+1
Do ”t2+1

R2OOS, therefore benchmarks the predictor Et[RHﬂ against the forecast based on the

2
Roos =1—

expanding window sample mean fi;. A positive value indicates that the predictor outper-
forms the expanding window sample mean based forecast. A negative value indicates that

the expanding window sample mean based forecast outperforms the predictor.
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6.4. Additional Figures.

Figure 23. Unconstrained and Constrained Estimated Risk Preferences

31-Jan-1996 30-Apr-2001 28-Nov-2008
25 25 25
Confidence Intervals
—e—SDF
—u— Constrained SDF
2 2 2
15 15 1.5
1 1 1
0. 05 0.
0.85 0.9 0.95 1 1.05 11 0.85 0.9 0.95 1 1.05 11 0.85 0.9 0.95 1 1.05 11
R R R
28-Feb-2014 30-Nov-2018 30-Apr-2020
25 2.5 25
2 2 2
15 15 15
1 1 1
0.5 0.5 0.5
0.85 0.9 0.95 1 1.05 11 0.85 0.9 0.95 1 1.05 11 0.85 0.9 0.95 1 1.05 11
R R R

Note: The figure depicts the unconstrained estimated stochastic discount factor function given in equation
(27) in black on several snapshot dates using regular polynomial basis functions with K = 4. Further,
95% confidence intervals obtained via the delta method are reported. I employ a Newey and West (1987)
type estimator with lag length 21 for the covariance matrix of the scores. Additionally, the figure depicts
the constrained estimated stochastic discount factor function in red, corresponding to the solution of (26)

subject to the constraint in (29).
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Figure 24. Estimated Risk Preferences and CRRA Preferences across Ma-

turity Horizons
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Note: The figure depicts the unconstrained estimated stochastic discount factor function given in equation

(27) in black for different maturity horizons using regular polynomial basis functions with K = 4. The

estimated risk preferences correspond to 04-Jan-1996. Further, 95% confidence intervals obtained via the

delta method are reported. I employ a Newey and West (1987) type estimator with lag length corresponding

to the respective maturity translated to trading days for the covariance matrix of the scores. Additionally,

the figure depicts the stochastic discount factor corresponding to CRRA preferences estimated as in (25)

in green.
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6.5. Additional Tables.

Table 17. Information Criteria

K 1 2 3 4 ) 6

Regular AIC 35490.6078 35443.6361 35439.0596 35440.8709 35436.7712 35430.437
BIC 35497.3481 35457.1167 35459.2806 35467.8322 35470.4729  35470.8791

Legendre AIC 35490.6078 35443.6361 35439.0596 35440.8709 35436.7712 35430.437
BIC 35497.3481 35457.1167 35459.2806 35467.8322 35470.4729  35470.8791

Laguerre AIC 35490.6078 35443.6361 35439.0596 35440.8709 35436.7712 35438.589
BIC 35497.3481 35457.1167 35459.2806 35467.8322 35470.4729  35479.0311

Hermite AIC 35490.6078 35443.6361 35439.0596 35440.8709 35436.7712 35430.437
BIC 35497.3481 35457.1167 35459.2806 35467.8322 35470.4729  35470.8791

Note: The table reports the Bayesian and Akaike information criterion corresponding to the estimator in
(26) for various sieve dimensions and basis functions. The lowest values are highlighted in bold.

Table 18. Test of Parameter Stability — ¢ =5

K 2 3 4 ) 6

gLL  -6.391 -6.487 -6.452 -10.086 -10.068
p-value (0.091) (0.346) (0.712) (0.435) (0.721)

Note: The table repots the estimated qLL test statistic following Miiller and Petalas (2010) for the
estimator in (27) using non-overlapping observations and regular polynomial basis functions. The different
columns correspond to the number of parameters, or the approximation degree, K. The gLL test is
calculated following Miiller and Petalas (2010) using ¢ = 5 for robustified scores. The reported p-values
are calculated by simulating the distribution of the gL L test statistic with ¢ = 5 from the random variable
in Elliott and Miiller (2006) lemma 2.

Table 19. Test of Parameter Stability — ¢ = 25

K 2 3 4 ) 6

gLL  -38.791 -41.045 -41.305 -66.002 -65.864
p-value (0.006) (0.188) (0.841) (0.206) (0.768)

Note: The table repots the estimated gLL test statistic following Miiller and Petalas (2010) for the
estimator in (27) using non-overlapping observations and regular polynomial basis functions. The different
columns correspond to the number of parameters, or the approximation degree, K. The gqLL test is
calculated following Miiller and Petalas (2010) using ¢ = 25 for robustified scores. The reported p-values
are calculated by simulating the distribution of the ¢L L test statistic with ¢ = 25 from the random variable
in Elliott and Miiller (2006) lemma 2.
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Table 20. Pricing Kernel Puzzle Test for Different Volatility Surface Inter-
/ Extrapolation Methods

K 2 3 4 ) 6

Jacquier Gatheral LM 3.400 0.883  3.611 3.298  3.482
p-value (0.183) (0.830) (0.461) (0.654) (0.746)

Jackwerth Menner LM 6.387 3.538 5.047 6.264 7.168
p-value (0.041) (0.316) (0.282) (0.281) (0.306)

Ulrich Walther LM 6.072  2.921  4.375  4.204  6.422
p-value (0.048) (0.404) (0.358) (0.520) (0.378)

Figlewski LM 4661 2130 2985 4.230 4.404
p-value (0.097) (0.546) (0.560) (0.517) (0.622)

Note: The table presents the Lagrange multiplier test statistic for the estimator in (27) subject to the
constraint in (29) using regular polynomial basis functions for various K as indicated in the table columns.
The rows correspond to different Arrow-Debreu security extraction methods following either Gatheral and
Jacquier (2014), J. Jackwerth and Menner (2020), Ulrich and Walther (2020) and Figlewski (2008) as

detailed in appendix 6.2.2. The p-values are based on a x? distribution with K degrees of freedom.

Table 21. Pricing Kernel Puzzle Test for Arrow-Debreu Securities Ex-
tracted from Different Option Quotes

K 2 3 4 ) 6

MID LM  3.400 0.883 3.611 3.208  3.482
p-value (0.183) (0.830) (0.461) (0.654) (0.746)

BID LM 1592 0421 0513 0555 0.583
p-value (0.451) (0.936) (0.972) (0.990) (0.997)

ASK LM 6239 1841 2.808 2.187  2.542
p-value (0.044) (0.606) (0.591) (0.823) (0.864)

Note: The table presents the Lagrange multiplier test statistic for the estimator in (27) subject to the
constraint in (29) using regular polynomial basis functions for various K as indicated in the table columns.
The rows correspond to Arrow-Debreu securities extracted following Gatheral and Jacquier (2014) using

either mid, bid, or ask based option data. The p-values are based on a x? distribution with K degrees of
freedom.
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Table 22. Pricing Kernel Puzzle Test with Different Basis Functions

K 2 3 4 ) 6

Regular Polynomial LM 3.400 0.883  3.611  3.298  3.482
p-value (0.183) (0.830) (0.461) (0.654) (0.746)

Legendre Polynomial LM 3.400  4.125 1.564  1.294 1.839
p-value (0.183) (0.248) (0.815) (0.935) (0.934)

Laguerre Polynomial LM 3.400 0.597 0.868 0.785  0.334
p-value (0.183) (0.897) (0.929) (0.978) (0.999)

Hermite Polynomial LM 3.400  0.862 1.365  0.647  0.727
p-value (0.183) (0.835) (0.850) (0.986) (0.994)

Note: The table presents the Lagrange multiplier test statistic for the estimator in (27) subject to the
constraint in (29) for various K as indicated in the table columns. The rows correspond to different basis
functions employed. The p-values are based on a x? distribution with K degrees of freedom.

Table 23. Pricing Kernel Puzzle Test across Maturities

T 30 60 90 180 360

LM 3611 3300 2108 1.052  0.449
p-value (0.461) (0.509) (0.716) (0.902) (0.978)

Note: The table presents the Lagrange multiplier test statistic for the estimator in (27) subject to the
constraint in (29) using regular polynomial basis functions for various K = 4. The columns correspond to

different maturity horizons for the Arrow-Debreu securities and returns. The p-values are based on a x>
distribution with K degrees of freedom.
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