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Abstract

This thesis is composed of two chapters.

In the first chapter, I consider a model of production where the firm’s labour input is the

product of an endogenously organised hierarchy of workers of increasing skill. Production

of the labour input is benefited by a kind of labour-augmenting technological shock, which

I show can be identified using additional information about the composition of the firm’s

workforce and wages. I illustrate that the parameters of the model can be consistently

estimated using Monte Carlo simulations.

In the second chapter, co-authored with Martin Pesendorfer and Julien Martin, we study

the sale of oil and gas leases in New Mexico and assess the degree to which bidder behaviour

is consistent with competitive equilibrium play. We use publicly available production and

drilling cost data to reconstruct the value to bidders of each lease in our sample. We then

test the implications of competitive bidding and reject the hypothesis that bidders cannot

improve their expected payoffs by altering their bidding strategy. We find that an annual

discount rate of over 17% is necessary to make submitted bids consistent with competitive

bidding behaviour.
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Chapter 1

Quantifying Efficiency Gains from

Reorganization

1.1 Introduction

The question of how technical change impacts the productivity of different factors of pro-

duction, as well as which factors matter for the production process, is of central economic

importance. The simplest approach to this question is to aggregate observed and un-

observed factors as much as possible, but this simplicity comes at the cost of weakened

economic inference. Firms make many decisions in the production process, and overlook-

ing the marginal conditions that govern these conditions will often lead to biased inference.

Under most commonly assumed conditions, firm input decisions are endogenous, a prob-

lem which can only be overcome when it is possible to control for all variables affecting

these decisions. Mismeasuring the inputs or failing to control for unobserved technical

change will produce inconsistent estimates.

The latter problem has been addressed by an insight from the industrial organization

literature first made by Olley and Pakes (1996) and developed in Levinsohn and Petrin

(2003) and Ackerberg et al. (2015) – if firms make decisions based on what they know

about productivity, then it is possible to invert the process and infer the firm’s knowledge

of productivity from its decisions. This approach, however, will only succeed if the chan-

nels by which unobserved productivity affects firm decisions have been properly specified.

In the standard case of a single unobserved Hicks-neutral component to productivity, the

inversion mapping is correctly specified if factor demands are strictly increasing in pro-

ductivity. If, on the other hand, technical change has multiple dimensions, each affecting
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demands for a different subset of inputs, the standard approach will fail. This paper ex-

tends the approach of Olley and Pakes (1996) to a setting with multidimensional technical

change.

A similar extension has been put forward by Doraszelski and Jaumandreu (2018), who

allow for both a Hicks-neutral and a labor-augmenting dimension of productivity. They

build on a similar insight as in Olley and Pakes (1996), using the firm’s choice of an

optimal input mix to identify labor-augmenting technical change. Based on ratio of the

firm’s marginal conditions for labor and material inputs, the ratio of these two inputs

should not change when the ratio of their marginal costs does not, unless there is an

unobserved term affecting their relative marginal products. Applying their method to

a panel of Spanish manufacturing firms, they find that labor-augmenting productivity

accounts for a significant share of productivity growth as well as the falling revenue share

of labor. One challenge presented by the Spanish data, however, is the sharp distinction

in the Spanish labor market between regular and temporary workers. Changes in the ratio

of these two types of workers could affect the firm’s choice of input mix between labor

and material inputs. Consequently, the composition of the firm’s labor input, as well as

the way heterogeneous worker types are combined into an aggregate labor input, must be

specified correctly.

This paper examines the importance of the composition of the labor input for firm

choices using Chilean manufacturing data. Aside from covering a wide variety of indus-

tries over more than a decade, the Chilean data also disaggregate workers along multiple

dimensions, allowing for a richer analysis of labor composition. I show that not only does

the share of workers of different types affect a wide variety of firm outcomes, it also does

so independently of the total number of workers in the firm. If multiple dimensions of

worker heterogeneity are relevant to the firm’s decisions, how can the firm’s choice of an

input mix be feasibly modelled?

A model for the firm’s endogeneous organization of its labor force has been put forward

by Garicano (2000) and subsequently developed in a macroeconomic context (Garicano and

Rossi-Hansberg, 2004; Garicano and Rossi-Hansberg, 2006; Caliendo and Rossi-Hansberg,

2012). Workers vary along a single dimension of knowledge, defined as the probability of

successfully producing output within a given span of time. Given the way that oppor-

tunities to use knowledge are shared within the firm, the firms choose an optimal mix

of workers and knowledge levels, affecting not just the mix of different worker types but

also their wages. Variation in the average wage, then, reveals something about the firm’s
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chosen mix of workers and their skill levels. The implications of this model have been

studied in the settings of particular industries as well as entire countries. Garicano and

Hubbard (2016) find evidence of returns to hierarchical organization within law firms,

and Garicano and Hubbard (2018) study how the technology governing that organization

has changed over time. Caliendo et al. (2015) use French administrative data that links

workers with hierarchically-coded occupations to firms and find evidence that the number

of layers within a firm is statistically meaningful. Caliendo et al. (2020) repeat the exer-

cise with similar data for the Portuguese manufacturing sector and incorporate a demand

model to estimate the effects of reorganization due to a demand shock on a firm’s revenue-

and quantity-based productivity. This paper finds similar patterns in the Chilean plant

data and uses the hierarchical model of firm organization to identify the labor-augmenting

component of technical change.

The paper proceeds as follows. Section 1.2 introduces the organizational model and

provides an illustration of its application to a broader model of the firm. Section 1.3

introduces the data and explores the importance of the composition of the firm’s labor

input. Section 1.4 describes the estimation strategy and illustrates its performance in a

Monte Carlo simulation. Section 1.5 concludes.

1.2 Model

The theory of optimal firm organization was first derived by Garicano (2000) and subse-

quently developed by Caliendo and Rossi-Hansberg (2012). I follow Caliendo et al. (2020)

in proposing a model where the firm’s choice of optimal organization is nested within a

standard profit maximization problem.

1.2.1 The Labor Input

Consider a firm with a Cobb-Douglas (value-added) production technology:

Y = AKαOβ

with productivity A, capital stock K, and labor input O. The labor input is denoted

here by O rather than the traditional L to signal that it is not simply the total labor

hours within the firm. Instead, the labor input is the outcome of the firm’s organizational

decision, in which workers with different skills and positions within the firm collaborate
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to use all the knowledge within the firm efficiently.

To create the labor input, workers in the production layer generate production problems

at a constant rate, and each problem creates one unit of output if it can be solved by the

firm. The problems are drawn from a distribution F with strictly decreasing density. A

particular problem z can be solved if it falls within the production workers’ knowledge set,

denoted by the interval [0, z1]. If the problem cannot be solved in the production layer

(i.e. z > z1), the problem is passed up to higher layers consisting of managers who listen

to problems at the rate h. Managers in layer k learn to solve a range zk of problems, so

that workers in, e.g., the second layer learn to solve problems in the interval [z1, z1 + z2].

Since managers in layer k spend all of their time listening to problems from lower layers,

the employment at a layer k will be the listening rate h times the volume of unsolved

production problems n1[1 − F (Zk−1)], where Zk−1 =
∑k−1

l=1 zl. The share of production

problems that can be solved by the firm is then F (ZL), where L is the number of layers,

making the labor input O = n1F (ZL).

The cost of producing the labor input O is the sum of the wages of workers in each

layer. Knowledge is costly to acquire, and wages compensate workers for the value of their

knowledge as well as their time. Workers are paid a base wage of w per unit time and are

compensated proportionally for their knowledge at rate c.1 The wage for workers in layer

k is then wk = w[1 + czk], leading to a total wage bill W (n, z) =
∑L

k=1 nkw[1 + czk].

The optimal organization minimizes the cost of producing a target labor input to the

overall production technology, solving:

min
{zk,nk}Lk=1

L∑
k=1

nkw[1 + czk]

subject to

n1F (ZL) ≥ O

nk = hn1 [1− F (Zk−1)] , k = 2, . . . , L

1This parametrization has been interpreted by Caliendo and Rossi-Hansberg (2012) as payments to
teachers who earn a wage of w and can impart knowledge at the rate c per unit time. Alternatively, it can
be interpreted as on-the-job learning, where workers are employed by the firm but spend time outside of
their roles (producing or managing) acquiring knowledge. The only important assumption is that the firm
is a price taker in the labor market and is thus rendered indifferent between training its own employees or
hiring workers with pre-existing skillsets.
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Given values of the organizational parameters (w, c, h) and the distribution of production

problems F , this problem can be used to infer the wage bill given a value of the labor input.

Since in practice we do not observe the labor input but do observe the firm’s optimally

chosen wage bill, it is more useful to consider the dual maximization problem:

max
{nk,zk}Lk=1

n1F (ZL)

subject to

L∑
k=1

nkw [1 + czk] ≤W

nk = hn1 [1− F (Zk−1)] , k = 2, . . . , L

The solution to this problem provides a mapping from the total wage bill to the efficient

labor input.2 Imposing the additional restriction N =
∑L

k=1 nk (that is, the sum total of

labor hous at each layer must be equal to an aggregate amount N), the firm’s problem

can be rewritten in per-capita terms by substituting out labor hours in each layer3 and

dividing by N :

max
{zk}Lk=1

F (ZL)

1 + h
∑L

k=2 [1− F (Zk−1)]
(1.1)

subject to
w [1 + cz1] +

∑L
k=2 (h [1− F (Zk−1)])w [1 + czk]

1 + h
∑L

k=2 [1− F (Zk−1)]
≤ W

N
(1.2)

Let ΨL(W/N) denote the value function of this problem, i.e. the efficient per-capita

labor input given the average wage W/N . It is then possible to infer the firm’s optimal

labor input (the result of the organizational problem) given the optimally-chosen wage bill

and labor hours:

2The equivalence of cost minimization and output maximization is a textbook result, so I employ a
simple proof by contradiction. Suppose that the chosen labor input O = n1F (ZL) maximizes profit but
does not maximize the labor input given the expenditure W . Then an O′ > O exists that satisfies the
expenditure constraint, which produces output Y ′ > Y at the same cost. Since this strictly increases
profits, the labor input O cannot be a profit-maximizing choice by the firm, a contradiction. QED.

3The total number of labor hours pins down the number of hours in each layer by the listening con-
straint:

N =

L∑
k=1

nk

= n1

(
1 +

L∑
k=2

nk

n1

)

= n1

(
1 + h

L∑
k=2

[1− F (Zk−1)]

)
where the last equality uses the constraint nk = hn1 [1− F (Zk−1)] for k = 2, ..., L.
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O = N ·ΨL

(
W

N

)
(1.3)

Substituting this expression for O back into the firm’s production technology yields this

formulation of the firm’s profit maximization problem:

max
K,N,W

AKα

[
N ·ΨL

(
W

N

)]β
− rK −W (1.4)

The organizational problem enters the profit maximization decision by endogenizing the

wages paid to workers. This endogeneity does not reflect monopsony power – the firm

is still a price taker in the labor market, but it now has the choice not only of quantity

of labor but quality of labor. The effect of labor quality on output is captured by the

organizational decision, entering the production process through the value function ΨL.

1.2.2 Organizational Efficiency

Thus far, the firm’s organizational problem is completely deterministic: the wage will

always vary proportionally with labor hours in the same way for all firms. To allow for

variation in organizational efficiency, Caliendo et al. (2020) simply replace labor hours in

the production function with the cost of choosing the optimal labor input: C(O∗) =W

Y = ÃKα[C(O∗)]β

At the optimal labor input, the cost function C(O∗) divided by the input quantity O∗ is

equal to the average cost function AC(O∗), implying that O∗ = C(O∗)/AC(O∗). Substi-

tuting this into the production function yields

Ã = A[AC(O∗)]−β = A

[
W/N

ΨL (W/N)

]−β

Clearly, the average cost only varies if the average wage varies. However, the production

function in Equation 1.4 produces an average wage that does not depend on productivity

A.4 This implies that, given the organizational structure represented by ΨL, a one-to-one

mapping between wages and labor hours exists. To infer the optimal total labor hours

given a wage payment, we replace the prior constraint
∑L

k=1 nk = N with the constraint

4It is easy to show that ratio of the first order conditions for N and W is a function of the average wage
W/N only. Since the average wage must always solve an equation that does not depend on A, variation in
A will not cause variation in the average wage.
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nL = 1, following Caliendo et al. (2020). Denote the optimal aggregate labor hours

under this constraint N∗
L(W ).5 Then we can define the difference between the average

cost implied by the model and the average cost chosen by the firm:

W/N

ΨL(W/N)
=

W/N∗
L(W )

ΨL

(
W/N∗

L(W )
) · exp

(
−ξL

)
The term on the lefthand side is the average cost implied by the organizational model

when taking the firm’s choice of labor hours N as given. The first term on the righthand

side is the average cost implied by the theoretical restriction that there is only one worker

in the top layer. The term ξL is the (log) difference between these two average costs.

Positive values of ξL imply that the firm is able to acheive lower average costs than under

the constrained model. Using lowercase letters to denote logs, and defining the functions

ψL(w) ≡ lnΨL (ew) and n∗L(w) ≡ lnN∗
L (ew), we can solve for ξL:

ξL ≡ [n+ ψL(w − n)]− [n∗L(w) + ψL (w − n∗L(w))] (1.5)

This term is the analagous to the factor productivity term A in the firm’s output pro-

duction function. Higher values of A reflect a firm’s ability to produce higher levels of

output given the same level of inputs. Similarly, higher levels of ξL allow the firm to

produce higher levels of organizational output (the labor input O) given the same levels

of organizational inputs (wages W and labor hours N). Consequently, I will refer to ξL as

the organizational efficiency (or simply efficiency) of the firm to distinguish it from the

firm’s factor productivity (or simply productivity).

Using this definition of efficiency, the labor input can be written as O = N∗
L(W ) ·

ΨL (W/N∗
L(W )) ·exp

(
ξL

)
. This formulation makes it clear that organizational efficiency is

ultimately about transforming wages into productive labor. Here we see another important

parallel between organizational efficiency and factor productivity. When firms are not

price takers in the output market, it is impossible to distinguish between unobserved

factors that improve a firm’s productivity (reducing its production costs) and those that

5As before, we can plug in the listening-time constraints to pin down N given nL:

N =

L∑
k=1

nk

= nL

(
L−1∑
k=1

nk

nL
+ 1

)

= nL

(
1

h [1− F (ZL−1)]
+

L−1∑
k=2

1− F (Zk−1)

1− F (ZL−1)
+ 1

)

The function N∗
L(W ) is equal to this expression when nL = 1 and the knowledge levels z maximize n1F (ZL)

subject to nk = n1h[1− F (Zk−1)] for k = 2, . . . , L− 1, nL = 1, and
∑L

k=1 nkw[1− czk] ≤ W .
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increase a firm’s market power (raising its revenue) without imposing structure on output

demand. Similarly, if firms are not price takers in the labor market, it is impossible to

separate unobserved factors contributing to organizational efficiency (allowing a firm with

the same knowledge stock to solve more production problems) and factors that contribute

to monopsony power (allowing the firm to secure more knowledgeable workers for the same

wages) without making additional assumptions about the structure of labor supply. The

application of this definition of organizational efficiency to the study of monopsony power

is an exciting avenue for future research.

1.2.3 Efficiency vs. Productivity

To further explore the distinction between efficiency and productivity, I follow the con-

vention of Olley and Pakes (1996) and decompose (log) productivity into two terms: a

component ω that is observed by the firm when it chooses its inputs and a component

ε that is realized after input choices are made but before output is produced. Combin-

ing this decomposition with the efficiency residual ξL defined above yields the following

production function (with all variables represented in logs):

yit = α0 + αkit + βoit + ωit + εit (1.6)

where kit is the firm’s capital input and oit the firm’s labor input. The labor input (and

consequently labor hours nit) is determined by the firm’s aggregate wage payment wit and

the efficiency shifter ξLit:

oit = nit + ψL(wit − nit) = n∗L(wit) + ψL(wit − n∗L(wit)) + ξLit

The efficiency shifter ξLit enters the production function only through the choice of the

labor input oit. In this way, ξLit acts as a kind of labor-augmenting technical change,

increasing the amount of labor that enters the production function. The difference in

interpretation lies in that it does not augment the labor stock directly but instead augments

the production of the intermediate labor input from raw hours and wages. Increases in

labor efficiency change the amount of labor time that contributes to production, rather

than increasing the contribution for a constant amount of time. Evolution in efficiency

would have the same effect on output as classic labor-augmenting change if the (perhaps

nonlinear) cost of hiring workers were kept fixed, but it does not require this restriction.

The efficiency term ξLit more flexibly captures changes in the firm’s labor costs, reflecting
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changes in the optimal mix of labor sub-inputs. If the optimal mix of different worker types

varies endogenously, so too does the marginal cost of the labor input, which will in turn

affect the optimality conditions governing the firm’s demand for other inputs, rendering

estimation techniques that do not control for the mixture of worker types inconsistent.

This raises the question of whether the mixture of worker types has an effect on firm

output and demands for other inputs. To answer this question, I examine the dataset

described in the following section.

1.3 Data

To estimate the model, I use data from the Encuesta Nacional Industrial Anual (ENIA)

survey carried out by Chile’s Instituto Nacional de Estadisticas (INE). The ENIA annually

collects plant-level data from over 13,000 industrial manufacturing firms from 1995 to 2019,

with between 45 and 60 industries represented in the sample each year.

In addition to recording plants’ annual value-added and various production inputs, the

data contain the number of workers (averaged throughout the year) and their wages dis-

aggregated into various categories by contractual status and whether or not they are

associated with the industrial process. Managers are a separate category, but aggregated

together with contracted workers. All worker categories are disaggregated by sex, but

wage payments to workers in each category are not.

Some variables are not available in all years, so I restrict the sample to the years 2000-

2014, when all critical variables are observed (wages paid to managers are not recorded

until 2000, and capital stock is not recorded after 2014). This results in a dataset covering

13,304 firms across 62 industries with 117,912 plant-level observations.

Table 1.1a shows summary statistics for all firms in the sample period, and Table 1.1b

shows summary statistics for the number of workers and wages across categories (monetary

values are in billions of real Chilean pesos).

Table 1.1a provides a sense of the scale and distribution of standard firm outcomes. The

median firm produces 243 milllion pesos in value-added whil employing 27 workers who

are paid wages of 156 million pesos. Capital stock is slightly higher than wages for the

median firm, but exhibits much wider variation across the distribution, ranging from only

5 million at the 10th percentile to 4.8 billion at the 90th percentile. All distributions are
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Table 1.1: Summary Statistics

Monetary variables are measured in billions of 2015 Chilean pesos.

(a) Aggregated variables

Variable Mean St. Dev. 10th pctile Median 90th pctile

Value-added 3.810 36.374 0.028 0.243 3.965
Labor 84.755 239.969 8.647 27.112 189.728
Wages 1.082 16.266 0.030 0.156 1.632
Capital stock 6.318 107.039 0.005 0.182 4.801
Investment 1.314 29.238 0.000 0.007 0.603
Electricity 0.210 2.323 0.001 0.007 0.167
Fuel 0.189 2.923 0.000 0.007 0.123

(b) Disaggregated labor variables by category

Workers Wage
Category Mean St. Dev. Mean St. Dev.

Managers 2.571 6.654 0.114 2.124
Contracted, industrial 58.175 181.252 0.673 11.080
Contracted, nonindustrial 13.888 55.017 0.205 4.619
Subcontracted, industrial 6.407 53.358 0.066 2.499
Subcontracted, nonindustrial 2.243 24.528 0.021 0.899
Homeworkers 0.233 3.058 0.003 0.305
All workers 84.755 239.969 1.082 16.266

heavily right-skewed, with the mean being several times larger than the median.

Table 1.1b shows the average use of different labor categories across firms. Contracted

industrial workers are the largest subcategory, followed by contracted nonindustrial work-

ers, with the latter earning slightly higher wages on average (after dividing the reported

mean wage by the reported mean number of workers). Subcontracted workers form a

smaller but non-negligible component of the work force, but homeworkers are quite rare.

1.3.1 The Importance of Labor Composition

How meaningful are these subcategories of labor to firm outcomes? If labor is homogenous,

the share of any particular subcategory of labor should be essentially uncorrelated with

other endogenous choices made by the firm, such as input demands or output. At the

same time, increasing the amount of any subcategory of the labor input should on average

increase both the firm’s output directly and also its demands for other inputs due to

complementarities between the labor input and the marginal productivity of other inputs.

On the other hand, if the share of one labor subcategory within the aggregate labor stock

is correlated with other endogenous outcomes, it implies that firms choose these shares
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optimally, which in turn implies that the share affects the firm’s profit and labor should

not be treated as homogenous.

To assess whether the composition of labor affects firm outcomes, I plot the variation

of a variety of endogenous outcomes against both the level and the share of subcategories

of labor. To control for unobservable factors that are constant across firms, I also detrend

all variables using industry-specific time trends, so that a quantity xijt pertaining to firm

i in industry j at period t is scaled by x·jt, defined as the average across firms at period t

within industry j of the quantity x:

ẍijt ≡
xijt
x·jt

The resulting variable ẍijt represents the quantity of interest xijt measured as a percentage

of the average within industry j in period t. Firms with below-average quantities will have

detrended quantities between zero and one, which will become negative when plotted on

a log scale.

Here I focus on one particular subcategory: managers. Figure 1.1 depicts the variation

between the number of managers and a number of firm choices, such as the firm’s demand

for capital and intermediate inputs, the wages paid to workes in the firm, and the firm’s

output. All relationships are positive and hold both in the raw and detrended data.6 Firms

with more managers tend to hire more workers, maintain higher capital stocks, produce

more output, pay higher wages, etc. Results like this would follow from any model that

treats managers as an input to the firm’s production technology.

Figure 1.2 depicts the variation between the same outcomes with the share of managers

within the firm (the number of managers divided by the total number of workers). This

figure, in contrast to Figure 1.1, shows that the share of managers within the firm’s

workforce is negatively correlated with all of the same firm outcomes. As the share of

managers in the workforce increases, the size of the workforce decreases, together with

output, wages, capital, etc. Managers are responsible for more production workers, but

both they and the workers they manage tend to be paid less and produce less output with

lower levels of complementary inputs. Firms with a high share of managers also maintain

less capital per worker on average, so the decrease in capital is not merely proportional to

the decrease in labor.

Furthermore, these changes cannot be accounted for merely by a negative correlation

6Since logs are taken after averaging, the detrended variables will in general not have mean zero by
Jensen’s Inequality.
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(a) Raw data

(b) Detrended by industry-year

Figure 1.1: Relation between the number of managers and firm outcomes

All variables plotted on log10 scale.
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(a) Raw data

(b) Detrended by industry-year

Figure 1.2: Relation between the labor share of managers and firm outcomes

All variables plotted on log10 scale.
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Figure 1.3: Relationship between managers and manager share

between the share of managers and the total number of managers, as Figure 1.3 that these

are (weakly) positively correlated. The positive effects of increasing the level of managers

must be offset by the negative effects of increasing the share of managers.

Finally, Figure 1.4 examines the joint density of total workers with output conditional

on the total managers and share of managers in the firm. The same positive correlation

between output and labor observed in Figure 1.1 can be observed in Figure 1.4a, and the

same negative correlation as in Figure 1.2 appears in Figure 1.4b. The addition of a third

dimension sheds light on how the two vary together. The joint density shifts around as the

number or share of managers changes, but the conditional distribution of output (holding

the other two variables fixed) shifts as well. Firms with a lower manager ratio have a

distribution of output conditional on the total number of workers. This implies that the

share of managers must have some effect on the production process and is not merely

an irrelevant share of a homogeneous input. Similar effects can be shown for other labor

subcategories (e.g. production workers vs. non-production workers, contracted workers

vs. non-contracted workers). If various dimensions of the labor input are relevant for firm

outcomes, what is the “correct” dimension to consider?

1.3.2 Is Organization Meaningful?

While the data contain information about the number of workers within different cate-

gories, these categories may not directly reflect the organizational structure as it affects

productivity. Caliendo et al. (2015) and Caliendo et al. (2020) both assess the impact

of firm organization on observable outcomes by first constructing a measure of the num-
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(a) Managers

(b) Manager ratio

Figure 1.4: Joint density of value-added and labor, conditional on managers.

Value-added and labor are detrended by industry-year, and all variables except the man-

ager ratio are reported in log10 scale.
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ber of layers in the firm and then comparing the distributions of various outcomes across

organizational groups. The goal of this analysis is to establish that the classification of

employees into layers is economically meaningful rather than merely reflecting arbitrary

classification schemes that do not vary systematically across firms.7 Both papers present

three key findings.

First, the literature finds that firms with different numbers of layers have different

aggregate outcomes. Firms with more layers tend to produce more, hold more capital

stock, employ more workers, and pay higher wages.

Second, firms with different numbers of layers choose to expand in the shape of a pyra-

mid, with lower layers growing proportionally more than higher layers when the firm

increases its output. Conversely, wages for workers in higher layers grow more quickly

than for workers in lower layers.

Third, firms that restructure by adding or removing layers do not simply expand or

contract; employment and wages move in opposite directions in layers that exist both

before and after the change. Firms that add a layer of management choose to hire more

workers, but while the number of workers in the pre-existing layers rises, the average wages

within each of those layers falls. Similarly, firms that remove a layer of management also

shrink the size of the layers that remain, but the workers in those layers are paid higher

wages.

I replicate the patterns in these findings in order to establish that an economically

meaning classification of firms into different organizational hierarchies exists in ENIA

data. To identify firms with different organizations, I use the presence or absence of

managers within the firm to form a classification scheme of two layers.8 While the ENIA

dataset does not record as many categories as datasets used previously in the literature,

the three key patterns outlined above can still be clearly seen in the data.

1.3.3 Variation Across Organization

Do firms that are organizationally different have different characteristics? To examine

whether the organizational measures condsidered above have any statistical relevance,

7See Caliendo et al. (2015), page 820, and Caliendo et al. (2020), Appendix B, page 10.
8While the number of managers in the data is subject to the addition of statistical noise, it is still

possible to cleanly distinguish between cases where the number of managers must be zero and the number
of managers must be strictly positive under the assumption that managers must be paid a positive wage.
See Appendix B for details.
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I test the effects of firm organization on the distribution of endogenous firm outcomes.

Specifically, I consider capital, labor, average wages, and value-added by regressing the

log of each variable on an organizational dummy, defined as the presence of at least one

manager paid a positive wage, and a set of plant and industry-year fixed effects. Table 1.2

displays the resulting estimates.

Table 1.2: Firms Differ by Organization

Regression of log outcomes on an organizational dummy and plant and industry-year fixed

effects

Outcome Estimate Std. Error p-value Observations

Capital 0.108 0.014 0.000 63,392

Labor 0.136 0.007 0.000 67,169

Wages 0.218 0.009 0.000 67,178

Average wages 0.084 0.007 0.000 67,141

Value-added 0.113 0.011 0.000 64,344

The estimated coefficient on the organizational measure is positive and statistically

significant for all variables. The interpretation of these estimates is not causal; the claim

is only that partitioning firms by their organizational status creates two subpopulations

that are different from each other in a statistically meaningful way. Firms with at least one

managerial layer have higher levels of input (both capital and labor stock), higher average

wages, and higher production.9 These findings are robust across different specifications

of fixed effects, but other organizational measures fail to produce significantly different

distributions of outcomes (see Figure 1.6 in Section 1.6.2 for details).

Figure 1.5 shows the estimated density for each outcome both before and after removing

the plant and industry-year fixed effects.10

9Increases in the ratio of managers to workers, other than the change from zero by introducing man-
agers, tends to reduce the firm’s factor demands and output while increasing wages (table forthcoming).
Firms with a higher concentration of managers will tend to be smaller because firms with multiple manage-
rial layers can more efficiently use the managers’ knowledge and time, resulting in fewer managers relative
to production workers. If managers were merely a complementary worker category, the effects could be
reversed.

10These fixed effects are removed by running the regression:

ln yit = βLit + x′
itγ + uit

where xit is a vector of fixed effects. The estimated fixed effects γ̂ are then subtracted from ln yit and
replaced with the (log) median value m of the outcome for a firm without a managerial layer:

ln ÿit = ln yit − x′
itγ̂ +m

The figure shows the estimated local polynomial densities forln ÿit.
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Figure 1.5: Distributions by Layer
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Firms tend to maintain a hierarchical structure, with 77.8% maintaining a hierarchy

in wages (higher wages paid to managers than non-managers) and 99.0% maintaining a

hierarchy in the number of workers.

1.3.4 Expansion Across Organizations

Another feature of the organizational model is that as firms expand their production, they

do so pyramidally: the lower a layer is, the more its numbers of workers increases and the

less their wage increases.

Table 1.3: Firms Expand Pyramidally

Variable

No.

Layers Layer Estimate

Std.

Error p-value Obs.

Workers 1 1 0.263 0.011 0.000 15,837

Workers 2 1 0.298 0.008 0.000 31,406

Workers 2 2 0.259 0.009 0.000 31,438

Workers 2 2 - 1 -0.037 0.005 0.000 31,406

Wage 1 1 0.244 0.013 0.000 15,815

Wage 2 1 0.272 0.009 0.000 31,389

Wage 2 2 0.295 0.010 0.000 31,438

Wage 2 2 - 1 0.022 0.006 0.000 31,389

The average firm increases its production layer proportionally more than its management

layer when it expands. Conversely, the wage of the management layer rises proportionally

more than wage of the production layer. Not only are the estimated coefficients different,

but their difference is statistically significant (as seen by looking at the row where the

number of layer is “2 - 1”, or the log change in the management layer minus the log

change in the production layer).

1.3.5 Expansion with Reorganization

The organizational model predicts that reorganizing by adding or dropping layers is dif-

ferent than merely expanding or contracting. While a firm that expands by adding layers

also expands in total size and average knowledge, both the size and knowledge levels of

pre-existing layers shrink. To test this implication in the data, I examine whether the
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distribution of log changes in detrended firm outcomes changes significantly conditional

on reorganization. I run regressions of the form:

∆ ln ỹit = γ−11{∆Lit=−1} + γ01{∆Lit=0} + γ11{∆Lit=1} + xit
′β + εit

where xit is a vector of fixed effects or other controls and ∆Lit is the change number of

layers.

Table 1.4: Firms that Reorganize Expand Differently

Regression of log detrended variables on reorganization and plant fixed effects.
∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05

Variable ∆L = −1 ∆L = 0 ∆L = 1

Value-added -0.041* -0.000 0.048**

Total workers -0.043*** 0.000 0.036***

Production workers 0.064*** 0.000 -0.073***

Normalized workers 0.598*** 0.001 -0.627***

Average wage -0.016 -0.001 0.041**

Average production wage 0.049*** -0.001 -0.033*

Observations 2569 50376 2540

Table 1.4 shows the results of the regression of log detrended variables on reorganization

dummies and plant fixed effects.

Adding (dropping) a layer tends to coincide with expansion (contraction) of the firm’s

production, workers, and average wages. In contrast, both the number and wages of pro-

duction exhibit the opposite pattern, shrinking with the addition of a layer and expanding

with the removal of a layer. This pattern is precisely what is predicted by the organiza-

tional model of the firm and is consistent with prior empirical findings by Caliendo et al.

(2015) and Caliendo et al. (2020).11

Firms that reorganize expand everywhere except the wages paid to workers in pre-

existing layers.

11Both of these papers make use of data with more granularity in the organizational structure by
matching worker-level data, including information about the skill level of the worker’s occupation, to
firm-level data.
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Wages and Productivity

Another implication of the organizational model is a positive correlation between residual

productivity and firm knowledge. This comes through two channels.

First, firms that pay higher wages per worker do so because they are compensating

workers for their knowledge, which allows the firm to produce more of the labor input

for a given number of labor hours. Since this additional productivity is not captured by

the functional form of non-organizational production technologies, it gets added to the

residual.

Second, firms organized with more layers make more efficient use of the firm’s knowledge

for any number of workers or wage level. If the firm’s organization is not captured as an

input to the production technology, its effect on output will be captured by the residual.

If productivity is decomposed into two scalar components, one known to the firm at the

time of its production choices and the other unknown until production is realized, only the

productivity known to the firm will be correlated with organizational decisions. To test if

this correlation is present in the data, we need an estimate of this endogenous component

of productivity.

I begin by estimating an ordinary Cobb-Douglas production technology, regressing log

value-added yit on log capital stock kit, log labor stock nit, and a set of industry-year fixed

effects zit:

yit = α0 + αkit + βnit + γ′zit + εit

I take the resulting residual ε̂it and decompose it into a scalar component ωit known to

the firm in period t and a scalar component ηit that the firm does not learn until yit is

realized. I estimate ωit using the inverse f of the firm’s demand for intermediate material

inputs mit.
12 This is implemented here by approximating f with a cubic polynomial in

the firm’s electricity consumption.13

ε̂it = f(mit)︸ ︷︷ ︸
ωit

+ηit

The fitted values from this regression ω̂it are then regressed on an organizational outcome

12As established by Levinsohn and Petrin (2003), this inverse demand depends not only on material
inputs but also on the choice of other endogenous inputs. This approach does not yield consistent estimates,
but it is a serviceable approximation to illustrate a correlation in the data that motivates the more complete
model.

13The constant term is omitted as it cannot be identified separately from the intercept in the previous
regression.
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Table 1.5: Regression of residual productivity on knowledge measures

(a) Aggregate across industries

Variable Coefficient Std. Error

Average wage 0.1141 (0.0019)
Managers 0.0398 (0.0024)
Managers paid a wage 0.0510 (0.0018)
Subcontracted workers 0.0341 (0.0017)
Industrial and nonindustrial 0.1030 (0.0026)

(b) Within industries (number of 95% significant coefficients)

Variable Negative Positive Total estimates

Average wage 2 76 109
Managers 11 46 101
Managers paid a wage 7 52 103
Subcontracted workers 7 44 107
Industrial and nonindustrial 5 68 98

xit, such as the log of the average wage in the firm or a dummy variable indicating the

presence of a subcategory of workers:

ω̂it = δ0 + δxit + uit

Table 1.5 reports the resulting estimates δ̂ at different levels of aggregation. Table 1.5a

reports the estimated coefficients pooled across industries, all of which are positive and sta-

tistically significant. Table 1.5b reports the number of statistically significant coefficients

from regressions run separately for each industry. Approximately half of the industry-

specific coefficients are positive and significant, with positive coefficients considerably out-

numbering negative coefficients. The effect of the average wage is particularly strong

across industries, with 76 of 109 coefficients being positive and significant, compared to

only 2 negative and significant coefficients.

Clearly, both the average wage and the composition of the labor input are related to the

firm’s beliefs about its productivity, as measured by its demand for intermediate inputs. If

the variation in wages affected firms purely as cost shocks, firms would contract in the face

of higher wages due to a decline in the marginal profit of labor; instead, higher wages are

associated with greater levels of activity and consumption of intermediate inputs. Likewise,

adding different types of workers is associated with increased production. Both the mix of

workers and their wages affect productivity, in accordance with the organizational model.
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1.4 Estimation

I now present my estimation strategy, based on Caliendo et al. (2020). First, I discuss the

assumptions I make about the production process and the timing of firm choices and shock

realizations. Next, I define the dynamic structure of the productivity shocks. Finally, I

discuss my estimation strategy and the moment conditions I use to identify the effect of

changes in firm structure on productivity. After outlining my estimation strategy, I verify

its performance with a Monte Carlo simulation.

1.4.1 Controlling for Productivity

The inclusion of the firm’s organizational problem introduces a new unobservable com-

ponent to the estimation problem, but it also provides a model sufficient to identify the

residual efficiency using wages and labor hours for any parameter values using Equa-

tion 1.2.2. After controlling for organizational efficiency, the only remaining source of

endogeneity is the productivity term ωit, as in existing approaches. All that remains is to

make assumptions regarding the DGP sufficient to control for productivity in the moment

conditions.

I make virtually identical assumptions as Ackerberg et al. (2015) regarding the DGP. I

state the assumptions regarding the unobservables ωit and ξit in terms of a vector ζit ≡

(ωit, ξit) to allow for the possibility of correlation between the two.

Assumption 1 – Information Set

Firm i’s information set in period t (Iit) contains both current and previous

productivity and efficiency shocks {ζiτ}tτ=0. The idiosnycratic shocks εit satisfy

E[εit|Iit] = 0.

Assumption 2 – First Order Markov

Productivity evolves stochastically via a first order Markov process.

E[ζit+1|Iit] = E[ζit+1|ζit]

Assumption 3 – Timing of Input Choices

Capital and labor are chosen at in period t using the information set Iit. The labor

input is produced by a combination of wages and labor hours chosen conditional on
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Iit.

Assumption 4 – Scalar Unobservable

Material demand depends only on the scalar unobservable ωit (after conditioning on

other inputs):

mit = ht(kit, oit, ωit)

Assumption 5 – Strict Monotonicity

Material demand ht(kit, oit, ωit) is strictly increasing (and hence invertible) with re-

spect to the unobservable term ωit. There exists then a function g(kit, oit,mit) such

that

ωit = g(kit, oit,mit)

Using Assumption 5, we can replace ωit in the production equation:

yit = α0 + αkit + βoit + g(kit, oit,mit) + εit

By the assumption that the transitory shock εit is unobserved by the firm when it makes

input choices, we have the following moment condition:

E[εit|kit, oit,mit] = 0

This moment condition alone is insufficient to identify both the parameters (α, β) and the

function g. In order to acheive identification, we need to control for productivity using

instruments other than kit and oit. We acheive this by exploiting the stochastic (joint)

evolution of productivity and efficiency outlined in Assumption 2. Productivity evolves

by a first order Markov process, but we allow for the possibility that this process depends

on past efficiency as well as past productivity:

E[ωit+1|Iit] = E[ωit+1|ωit, ξit] ≡ f(ωit, ξit)

This produces a second identifying equation:

yit = η0 + αkit + βoit + f [g(kit−1, oit−1,mit−1)] + uit

with the residual uit ≡ εit+ωit−E[ωit|Iit−1]. The moment condition used for identification
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is:

E[uit|kit, kit−1, oit−1,mit−1] = 0

Finally, we require that the efficiency shocks be zero in expectation in order to identify

the scale of the labor input cost function:

E [ξi] = 0

Nonlinear functions of current or lagged capital, inferred labor input, wages, and materials

can be used as instruments to construct sufficient moment conditions to identify all the

parameters of interest.

1.4.2 Monte Carlo Simulation

This section presents details and results of a Monte Carlo simulation to verify that the

estimation technique can consistently recover the parameters of interest under a known

data-generating process (DGP). Consider a simple DGP where i) labor and capital are

chosen statically and ii) firms know their organizational efficiency but not their produc-

tivity.

Consider a cross-section of two-layer firms i = 1, . . . , N . The sample (Yi,Ki,Wi, Ni)
N
i=1

consists of output Yi, capital stock Ki, wage bill Wi, and labor stock Ni for each firm i,

with the convention that lowercase letters represent logs. Firms choose inputs to maximize

expected profits:

max
K,O

E
[
KαOβ exp (α0 + εi)− riK − C2 (O;w, c, h, λ) exp (−ξi) |Ii

]
where the firm’s information set Ii contains the efficiency shock ξi but not the productivity

shock εi. The variables (ri, εi, ξi) drive variation in firms’ input demands and output. Each

random driver is drawn from a Beta(10, 10) distribution shifted and scaled to a compact

interval: ri is distributed on [0.4, 1.0], εi on [−0.75, 0.75], and ξi on [−0.25, 0.25].

Wages and labor stock are determined uniquely by the firm’s choice of labor input. The

solution to the organizational problem provides a one-to-one mapping between observed

labor stock and the unobserved labor input oi = o(ni;w, c, h, λ). Combining this with the

observed (log) wage bill wi permits recovery of the efficiency shock, so we can solve for
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both residuals as:

εi = yi − [αo + αki + βo(ni;w, c, h, λ)]

ξi = lnC2(Oi;w, c, h, λ)− wi

The identifying moment conditions are

E [εi|ki, oi, ξi] = 0

E [ξi] = 0

The first moment condition holds given the assumptions about firm behavior, and the

second assumption is a normalization that identifies the scale w of labor input costs. The

conditional moment restriction on εi is converted into unconditional moment restrictions

involving nonlinear functions of ki, oi, ni, and wi.
14

The estimator is constructed in three steps. First, the organizational parameters are

used to infer a labor input ôi and efficiency shock ξ̂i via the one-to-one mapping given

the observed labor stock ni and wage bill wi. The mapping is estimated by numerically

solving the firm’s cost minimization problem. To avoid numerically computing this at

every observation for each objective function evaluation, the problem is solved on a grid

of values for labor input o and wage w given the organizational parameters, then a cubic

spline interpolation over this grid is used to approximate values at each observation.

Second, the inferred values ôi and ξ̂i are used to construct the unconditional sample

moments:

ĝ = N−1
N∑
i=1

(
ε̂i, kiε̂i, wiε̂i, niε̂i, ôiε̂i, kiôiε̂i, kiô

−1
i ε̂i, k

2
i ε̂i, ô

2
i ε̂i, winiε̂i, wini

−1ε̂i, ξ̂i, ξ̂iε̂i,
)′

Third, the vector of sample moments is used to evaluate the GMM objective function

(with the identity weighting matrix) Q(θ) = ĝ ′ ĝ.

Table 1.6: Monte Carlo Results

Mean parameter values for 1000 repetitions of the GMM estimator for different sample

sizes. Standard deviations in parentheses are obtained from the distribution of estimates

across repetitions.

Parameter Value 500 1500 5000 10000 15000

α0 1.25 1.2515 1.2514 1.25 1.2496 1.2497

(0.0073) (0.0058) (0.0034) (0.0035) (0.0021)

14The instruments used for εi are 1, ki, oi, kioi, ki/oi, k
2
i , o

2
i , ni, wi, wini, and wi/ni. Furthermore, ξi

is instrumented with a constant, and εi and ξi are assumed to be uncorrelated.
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Parameter Value 500 1500 5000 10000 15000

α 0.3 0.2994 0.2995 0.3 0.3004 0.3003

(0.0027) (0.0017) (0.0011) (0.0011) (0.0006)

β 0.5 0.5001 0.5 0.4999 0.4998 0.4999

(0.0028) (0.0017) (0.0011) (0.0008) (0.0006)

w 0.607 0.6065 0.6075 0.6066 0.6067 0.6069

(0.0046) (0.0033) (0.0024) (0.0013) (0.0015)

c 0.3 0.299 0.2993 0.3008 0.3006 0.3009

(0.0037) (0.0033) (0.0018) (0.0018) (0.0014)

h 0.5 0.5006 0.5034 0.499 0.5009 0.4992

(0.0211) (0.0171) (0.01) (0.0069) (0.0039)

λ 0.7 0.6998 0.7011 0.7019 0.702 0.7021

(0.0094) (0.0056) (0.005) (0.0034) (0.0041)

Table 1.6 reports the resulting estimates for 1000 repetitions of the estimator at each

sample size. Estimates are quite close to the true value for all parameters, and standard

errors shrink with the sample size. The null that the estimate is equal to the true parameter

value cannot be rejected at standard confidence levels for any parameter or sample size.

Table 1.7: Monte Carlo Results

Mean parameter values for 1000 repetitions of a simple OLS estimator for different sample

sizes. Standard deviations in parentheses are obtained from the distribution of estimates

across repetitions.

Parameter Value 500 1500 5000 10000 15000

α0 1.25 -0.3229 -0.2842 -0.2971 -0.3014 -0.2975

(0.174) (0.0997) (0.0547) (0.0378) (0.0374)

α 0.3 0.2964 0.3028 0.3001 0.2988 0.2993

(0.0469) (0.0263) (0.015) (0.0106) (0.0105)

β 0.5 0.6184 0.5942 0.6024 0.6055 0.603

(0.1136) (0.0644) (0.0362) (0.0249) (0.0248)

Table 1.7, on the other hand, reports the results of an OLS regression of log output yi on

log capital ki and log workers ni using the same simulated data. Both the intercept and the

labor coefficient are significantly biased under the misspecified model. Interestingly, the
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labor coefficient is positively biased, overstating rather than understating the sensitivity of

output to changes in aggregate labor hours. One might expect the opposite, since the true

labor input is always strictly less than aggregate labor hours, requiring a greater change

in aggregate hours to have the same effect on output as a given change in the labor input,

which in turn implies a lower output elasticity for aggregate labor. The positive bias in

the labor coefficient (and large negative bias in the intercept) are consequences of the

nonlinear relationship between the two measures of labor, meaning that the influence of

higher-order terms in the production function cannot be ignored. Because of this influence,

it is not possible to determine a priori the sign of the bias stemming from the omission of

the firm’s true organizational technology.

1.5 Conclusion

The technology by which firms combine different types of workers has implications both

for the optimal mix of worker types within the firm and for the interpretation technical

change. This paper shows that labor composition affects firm choices across a wide variety

of industries and develops an estimation approach to identify shocks to organizational

efficiency using variation in the firm’s choices of wages.

The identification of the organizational component of technical change is achieved by

developing a model of endogenous hierarchical organization of a firm’s labor force. The

relevant labor input for a firm is not simply the sum total of workers in the firm but instead

reflects the ability of skilled workers to successfully transform time spent in production into

output. Firms increase the labor input not only by hiring new workers but by increasing

worker skill, which drives up average wages. Firms differ in their organizational efficiency,

the ability to organize workers into the labor input for a given cost, resulting in different

optimal mixes of worker types across firms. Variation in the number of workers for a given

wage identifies the organizational efficiency component of productivity separately from the

Hicks-neutral component.

I show that the optimal mix of worker type affects a wide variety of endogenous firm

outcomes by studying a panel of over 13,304 Chilean manufacturing firms from 2000-

2014. I find that the level of workers of different types is positively correlated with firm

outcomes such as output, capital stock, demand for material inputs, and wages; the share

of workers, on the other hand, has varying effects. The share of managers is negatively

correlated with all outcomes while being very nearly uncorrelated with the number of
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managers. Furthermore, the distribution of outcome conditional on total workers varies as

the share of managers changes. This suggests that not only does the share of worker types

matter, the organizational technology does not depend only on the share but also on the

level of managers. Firms that choose to add managers to the mix pay their non-managers

less than before and wages are positively correlated with residual productivity, another

prediction of the hierarchy model of firm organization.

To account for potential heterogeneity in the composition of labor, I develop an esti-

mation approach incorporating the firm’s decisions to produce the labor input. The labor

input cost function is estimated parametrically, identifying both the unobserved labor in-

put and the unobserved organizational efficiency shock. This technique is tested with a

Monte Carlo simulation that recovers the both the organizational parameters and the pa-

rameters of the production function consistently when standard Cobb-Douglas estimates

are biased. This implies that the organizational model can be used to augment existing

production function estimation techniques to better control for the composition of the

labor input.
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1.6 Appendix

1.6.1 ENIA Variables and Descriptions

VariableDescription

B001 Average owners and executive male personnel

B002 Average owners and executive female personnel

B003 Average male workers with contracts associated with industrial process

B004 Average female workers with contracts associated with industrial process

B005 Average male workers with contracts not associated with industrial process

B006 Average female workers with contracts not associated with industrial process

B007 Total average workers with contracts - males

B008 Total average workers with contracts - females

B009 Total average workers with contracts

B010 Average male subcontracted workers associated with the production process

B011 Average female subcontracted workers associated with the production process

B012 Average male subcontracted workers not associated with the production process

B013 Average female subcontracted workers not associated with the production

process

B014 Average male homeworkers

B015 Average female homeworkers

B016 Total average uncontracted workers - males

B017 Total average uncontracted workers - females

B018 Total average uncontracted workers

B019 Total average workers with and without contracts - males

B020 Total average workers with and without contracts - females

B021 Total average workers with and without contracts

B022 Compensation and other payments to owners and executive personnel

B023 Compensation, fee payments, and other payments to owners and executive

personnel

B024 Compensation and other payments to workers with contracts associated with the

industrial process

B025 Compensation, fee payments, and other payments to workers with contracts

associated with the industrial process
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VariableDescription

B026 Compensation and other payments to workers with contracts not associated with

the industrial process

B027 Compensation, fee payments, and other payments to workers with contracts not

associated with the industrial process

B028 Total compensation and other payments to workers with contracts

B029 Total compensation, fee payments, and other payments to workers with contracts

B030 Compensation and other payments to subcontracted workers associated with the

production process

B031 Compensation and other payments to subcontracted workers not associated with

the production process

B032 Payments to homeworkers

B033 Total compensation and other payments to uncontracted workers

B034 Withdrawals by owners, partners, and family members. Excludes compensation

B035 Dividends distributed during the period

1.6.2 Further Descriptive Results

First, I examine the effect on the conditional mean of these outcomes by running the

regression:

yit = βLit +Xit
′γ + εit

where Lit is equal to one if the firm belongs to a given organizational category and Xit is

a set of fixed effects. Figure 1.6 reports the estimated values and significance levels of the

coefficient β for each regression.

Organizational Measure Definition

Contractual Plant hires workers both with and without contracts

Industrial Plant hires both industrial and nonindustrial workers

Managerial Plant hires managers

Each organizational measure produces significant effects at least once (for example, all

estimates for changes in labor are significant). However, only the managerial definition of

organization produces consistent effects for all variables (and, remarkably, for all sets of

fixed effects).
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Figure 1.6: Differences in Conditional Means

The effect appears to hold across the conditional distribution for each outcome of inter-

est.15

15This effect is confirmed by testing the difference in quantiles across the two distributions, using the
bootstrap to compute the variance of the difference in quantiles. This test finds significant differences at
all quantiles 0.05, 0.06, . . . , 0.95.
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Chapter 2

Underbidding for Oil and Gas

Tracts

2.1 Introduction

Oil and gas production in the state of New Mexico generates a tremendous amount of

revenue. Home to one of the most productive oil basins in the US, New Mexico received

$4.1 billion in oil and gas tax revenue in the fiscal year 2022.1 Rights to drill on state

lands are auctioned off each month by the New Mexico State Land Office (NMSLO), but

the prices paid in these auctions are difficult to reconcile with the massive value provided

to leaseholders. Though only one of eight leases are drilled, we find that the average profit

from obtaining a lease is still well over eight times the price paid in the lease sale. Such

a dramatic difference between price paid and value is cause to suspect collusive behavior

on the part of bidders in these sales. This paper examines features of the New Mexico oil

and gas lease sales that would facilitate collusion and proposes a series of statistical tests

to rule out the possibility of BNE bidding under a wide range of equilibria.

Methods to detect collusion in first-price auctions (e.g., Porter and Zona (1993), Porter

and Zona (1999), Bajari and Ye (2003), Chassang and Ortner (2019), Chassang et al.

(2022), Kawai and Nakabayashi (2022), Kawai et al. (2023)) focus on detecting bidding

anomalies inconsistent with BNE bidding. These methods provide antitrust authorities

with a set of statistical screening devices which are aimed at settings where collusive bid

patterns are not sufficiently sophisticated to disguise their intentions. We complement

1Reported by the New Mexico Taxation and Revenue Department:
https://www.tax.newmexico.gov/all-nm-taxes/oil-natural-gas-mineral-extraction-taxes/
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the existing methods by incorporating ex post returns to construct direct tests for BNE

bidding and minimum revenue. Information on ex post returns is available in many auction

settings. Ex post returns are naturally available in oil and gas lease sales as lease values are

measurable using publicly available production records, but can also be used more broadly

in settings in which resale or secondary markets can be used to assess object value.

We consider the sale of oil and gas leases in first-price, sealed bid auctions by the NMSLO

over a twenty-two-year period from 1994 to 2015. For each auction we observe each bid

submitted, along with the identity of the bidder, as well as a land survey description of

the tract. By connecting publicly available data on oil and gas production to geographic

descriptions of leased tracts, we construct estimates of the profit generated by each lease.

Examining the winners across the sample period, we find that the bidding market is highly

concentrated, with the largest four bidders holding a market share of more than 50%. Since

lease sales are held in person each month, these dominant bidders had ample experience

with each other and many opportunities to interact.

First, we show that bidder participation decisions are correlated across bidder pairs,

conditional on ex post tract value. We use a biprobit model to control for ex post value

and bidder-sale fixed effects, and reject the null hypothesis of zero correlation at the

5% significance level for 21 of 48 bidder pairs. Since the conditional independence of bid

distributions is an implication of the common values auction with independent conditional

signal distributions, we reject the null hypothesis that the observed bids were generated by

this BNE. We relax the assumption of independent signal distributions for our subsequent

tests.

Second, we utilize the return data to test for the existence of profitable strategic devi-

ations. For strategies to constitute an equilibrium they must maximize ex ante expected

payoffs regardless of the information available to bidders at the time of the auction. We

propose an underbidding test based on the Nash equilibrium condition that unilateral

deviations cannot be profitable. Our test builds on the bid-scaling (winner’s curse) test

proposed in Hendricks et al. (1987) and is robust to the information structure available

to bidders. We find that auction participants substantially underbid relative to the maxi-

mally profitable unilateral deviation. We find that when all bids of a bidder are multiplied

by a factor of 3.2 holding rival bids constant, then the expected bidder payoff doubles,

which is a violation of BNE bidding.

Finally, we examine uniform upward deviation incentives as considered in Feldman et al.

(2017) and Bergemann et al. (2017). We find that winning bids are considerably below
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this incentive bound. Winning bids in a first-price auction are bounded away from zero; if

rival bids are too low, upward deviation strategies will be profitable because the value of

winning outweighs the cost of raising one’s own bid. Bergemann et al. (2017) show that the

lowest distribution of bids that can sustain a BNE corresponds to a particular “worst-case”

equilibrium where the information structure is such that it minimizes auctioneer revenue

subject to the uniform upward deviation constraint. We formulate a statistical test based

on the non-profitability of uniform upward deviations using data on the distribution of ex

post values and winning bids. We find that profitable upward deviations exist.

While the test results we obtain are suggestive of the presence of collusion, it is important

to note that none of the tests we propose prove its existence. Section 2.8 discusses practical

steps the auctioneer can take when facing bidders who seem likely to conspire to rig their

bids.

Related Literature

The paper is organized as follows: Section 2.2 describes our framework. We describe

the auction model and discuss the assumptions. Section 2.3 devises statistical testing

procedures aimed at detecting collusion. Section 2.4 describes the market and highlights

features that may facilitate collusion. Section 2.5 argues that bidders coordinate their

bidding strategies. Section 2.6 shows that bidders underbid. Bids are too low to maximize

ex ante bidder profit. Section 2.7 examines the uniform upward deviation incentive and

shows that observed bids fail this bound. Section 2.8 concludes.

2.2 Framework

Our framework is the pure common values mineral rights model as described in Bergemann

et al. (2017), which contains the classic mineral rights model proposed in Wilson (1977)

as a special case.

A seller has one tract for sale. Bidders i = 1, . . . , N are risk-neutral and bid for the

tract. The tract has a common value v contained in a compact interval V = [v, v] ⊂ R.

The value v is drawn from the cumulative distribution function (cdf) G with support

V . The value distribution is common knowledge among bidders. Bidder i additionally

receives private information about the value beyond knowing the prior distribution. This

information comes from a signal xi ∈ [x, x] ⊂ R that is correlated with the value v. We

44



denote X = (X1, . . . , XN ) the random variables and x = (x1, . . . , xN ) the realizations.

The joint distribution of signals and ex post tract value is F (x, v). The seller announces

a minimum bid, or reserve price, r ∈ R+.

Denote the set of high bidders withW (b) = {i |bi ≥ bj , for all j = 1, .., N and bi ≥ r},

where b = (b1, . . . , bN )∈ BN = [0, v]N denotes the vector of bids. Let the probability that

bidder i receives the good be qi(b) = 1/|W (b)| if bidder i is among the high bidders, and

= 0 otherwise.

A bidding strategy for player i is a mapping βi : [x, x] −→ B from signals to bids. Let

Σi denote the set of strategies for bidder i and let β ∈ Σ = ×N
i=1Σi denote a strategy

profile.

Bidder i’s ex ante payoff from the first-price auction is given by

Ui(β) =

∫
v∈V

∫
x∈[x,x]N

[v − βi(xi)] qi(β(x)) F (dx, dv). (2.1)

The profile β is a Bayesian Nash Equilibrium (BNE) if and only if Ui(β) ≥ Ui(β
′
i, β−i)

for all β
′
i ∈ Σi.

Discussion of the Assumptions

Wilson (1977) and most of the subsequent empirical literature on common value auctions

require stronger assumptions than stated above. Wilson assumes that the signal Xi is iid

with continuous conditional cdf F (.|v). The joint distribution of signals and ex post tract

value is then F (x, v) =
∏

i F (xi|v)G(v).2

Our data do not include information on bidders’ signals. Proposition 4 in Laffont and

Vuong (1996) establishes that the signal distribution F (.|v) cannot be identified from bid

data and ex post values alone. For example, monotone rescaling of signals results in obser-

vationally equivalent signal distributions. See also Somaini (2020) for identification results

with interdependent signals. While signals are not identified, we can explore statistical

2Based on the iid signal assumption Wilson (1977) and Milgrom and Weber (1982) characterize the
symmetric BNE. Let Yi = maxj ̸=i Xj and FYi|Xi

(.|.) be the conditional distribution of Yi given Xi. Let
u(xi) = E[v|Xi = xi, Yi = xi] be the expected value conditional on the own signal being xi and the
high rival signal being at most xi. The equilibrium strategy satisfies the first-order differential equation

b′(x) = [u(x)− b(x)] · fYi|Xi
(x|x)

FYi|Xi
(x|x) with boundary condition b(x) = u(x). The solution is

βi(xi) = u(xi)−
∫ xi

x

L(y|xi)du(y) where L(y|xi) = exp

[
−
∫ xi

y

f(x|x)
F (x|x)dx

]
.
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properties of signals by examining bids instead. Bids are observed and are a strict mono-

tone function of signals. If signals are independently distributed, then bids must be as

well. We shall consider tests of this assumption using bids instead of signals in Section

2.5.

Prior empirical work on common value auctions typically adopts the Wilson BNE and

imposes additional assumptions on the information structure to guarantee identification

from observables. Bhattacharya et al. (2022) assume that bidder receive noisy signals of

the quantity of oil in a tract. Hendricks et al. (2003) assume that the signal is an unbiased

estimate of the ex post return conditional on winning. We shall consider tests of the null

hypothesis that bids satisfy the conditional independence assumption in Section 2.5. A

rejection of these tests may be indicative of bidder coordination prior to the auction, but

could also suggest that the iid signal assumption of Wilson is not satisfied (if, e.g., signals

are correlated with elements other than the ex post return). With this caveat in mind, our

main statistical analysis will be based on the weaker set of assumptions described above

which are robust to alternative information structures.

To summarize, our statistical analysis departs from the prior literature by using a weaker

set of assumptions that is robust to all information structures, including the one proposed

by Wilson. Our approach is robust to the specification of the signals and details of the

Bayesian Nash equilibrium.

2.3 Testable Implications

This section describes testable implications of BNE bidding. We will formulate suitable

statistical tests of these implications using the publicly available data on oil and gas lease

sales from the New Mexico State Land Office (NMSLO).

The sealed-bid first-price auction has bidders submitting sealed bids and awards the item

to the high bidder at his bid price. The identities of potential bidders are publicly known

before every auction. On the day of the auction, the sealed bids are publicly revealed, and

the high bidder wins. We let bt denote the vector (bt1, ..., b
t
N ) and adopt the convention

that bti = 0 when potential bidder i refrained from bidding for lot t. We denote with zt any

information that is publicly available at time t, such as the oil and gas spot (and future)

prices, that may affect bidders’ signals xt and thus bids bt. The variable vt denotes the ex

post return, which we calculate from the publicly observed drilling and production data.
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We make the following assumption on the data generating process (DGP).

Assumption 1. The observed data are (bt, vt, zt)Tt=1 where (bt, vt) are identically and

independently distributed conditional on exogenous covariates zt ∈ Z.

The assumption is commonly imposed in market games, see Tamer (2003).

We shall focus on three central implications of the mineral rights model, each requiring

a decreasing amount of structure. First, we consider the classic Wilson model in which the

submitted bids are independently distributed conditional on ex post returns and publicly

available information at the time of the auction. Second, we relax the independence

assumption and examine the null hypothesis that bidding strategies maximize ex ante

expected returns, that is, that no bidder can systematically deviate from the equilibrium

and receive strictly larger expected profits. Third, we examine winning bids and ex post

returns data only, and consider the null hypothesis that bidders cannot find it attractive

to uniformly bid upward. The last two properties hold regardless of bidders’ information

and the Bayesian Nash equilibrium. We shall describe these hypotheses in turn.

2.3.1 Independence

The data include detailed information on ex post drilling outcomes which allow us to

calculate ex post returns for bidders, which we use as a control variable. Evidence of

correlation in bids conditional on ex post returns is indicative of pre-play communication,

which would be a violation of the Bayesian Nash equilibrium condition in Wilson’s mineral

rights model.

Implication 1. Consider the assumption of Wilson (1977). The bids (signals) Bi and Bj

are independently distributed for all i, j ∈ N conditional on the ex post value realization

v.

The null hypothesis of conditional independence is

H
B|X
0 : Bi ⊥ Bj |v for all i, j∈ N, (2.2)

with the alternative its negation. The null can be tested for individual bidders or for

bidder pairs. A violation of the null hypothesis suggests that the data were not generated

from the BNE in the Wilson model. This result could indicate that the data were not

generated from a BNE (e.g. because of collusion among a subset of bidders) or that the
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data were generated by a BNE in a game with a different information structure (e.g. if

value signals are truly correlated even after conditioning on ex post values).

2.3.2 Best Response Test

Next, we relax the assumption on the information structure and go beyond the Wilson

model. A simple yet powerful test examines the BNE condition ex ante using equation

(2.1).

Bidder i’s payoff realization from an auction is given by

Ui(b, v) = [v − bi] qi(bi, b−i).

Consider a unilateral deviation ϕ : B −→ B which results in the modified payoff realization

Ui(b, v|ϕ) = [v − ϕ(bi)] qi(ϕ(bi), b−i). (2.3)

The BNE condition requires that a unilateral deviation cannot be profitable on average.

Consider the ex ante payoff under the deviation strategy:

Ui(β|ϕ) =
∫
v∈V

∫
x∈[x,x]N

[v − ϕ (βi(xi))] qi(ϕ (βi(xi)) , β−i(x)) F (dx, dv). (2.4)

This leads us to the following implication of BNE bidding.

Implication 2. In any BNE under any information structure and for any bidder i, the

function ϕ that maximizes the ex ante expected payoff in equation (2.4) must be the identity

mapping.

This property can be used to detect any deviation from BNE bidding. Our goal is

to detect whether bidders systematically underbid. We follow Hendricks et al. (1987) in

considering linear deviations, that is, deviation strategies that multiply all bids by a scalar

α > 0 such that ϕ(b) = α · b. See also Chassang et al. (2022) who introduce multiple

tests to assess whether bidders could gain by deviating from observed bidding histories for

scenarios that include nonstationary settings as well as situations in which values are not

observed.

Letting α∗ = argmaxα Ui(β, α), Implication 2 of BNE bidding leads to the following

null hypothesis:

H0 : α
∗ = 1.
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Originally, this type of best response test was aimed at testing for the presence of the win-

ner’s curse (systematic overbidding, or α∗ < 1). We expand this test to check optimality

of bidding more generally.

2.3.3 Uniform Upward Deviation

Our third test of BNE bidding focuses on the profitability of uniform upward deviations.

These deviations can be examined empirically solely based on information from winning

bids, and represent a special case of deviations described under Implication 2. Importantly,

no information on losing bids is required for this test.

A uniform upward deviation to b is defined as a deviation β̃i from strategy βi where

submitted bids are equal to β̃i(x) = max b, βi(x) for any x ∈ [x, x]. The profitability of

such a deviation is assessed by comparing the increase in payoff from winning additional

auctions with the higher bid to the decrease in payoff from paying the higher bid in auctions

that would have been won in equilibrium. This class of deviations has been studied before

by Feldman et al. (2017), who use it to establish a lower bound on winning bids in

correlated equilibria of private-value auctions, and Bergemann et al. (2017), who use the

constraints imposed on the distribution of winning bids to derive a tight lower bound

on expected revenue that is robust to the information structure. We use the observed

distribution of winning bids and valuations to test the hypothesis that uniform upward

deviations are not profitable.

Examining uniform upward deviations proves a valuable tool for empirical analysis,

as it solely relies on realized ex post returns data and prices paid. It does not require

information on losing bids, which may not be readily accessible. Prior empirical work

specifies the information distribution of bidders or the details of the Bayesian equilibrium

or information on the bidding histories. Our approach departs from the prior literature

and is robust to the specification of the information structure, signals, and other details

of the Bayesian equilibrium. We test whether observed returns and prices paid lead to

profitable uniform upward deviations.

Let Hi(b|v) denote the probability that bidder i wins with a winning bid less than

or equal to b when the value is v. Note that this probability is well defined for any

information structure and equilibrium strategies. For the sake of notational simplicity,

we omit the explicit dependence on the information structure and equilibrium strategies.

Consequently, H(b|v) =
∑N

i=1Hi(b|v) denotes the total probability that the winning bid
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is less than or equal to b when the value is v. In a BNE, a bidder receives the ex ante

expected rent ∫ v

v

∫ b

0
[v − p]Hi(dp|v)G(dv).

Suppose bidder i uniformly deviates up to b. For auctions where the winning bid is greater

than or equal to b, outcomes and therefore payoffs are unchanged. For auctions where the

winning bid is less than b, the deviator now wins the auction and receives a payoff of v−b.

The ex ante expected payoff to the deviator is therefore given by:

∫ v

v
[v − b]H(b|v)dG+

∫ v

v

∫ b

b
[v − p]Hi(dp|v)G(dv)

The attractiveness of the upward deviation depends on whether the gains outweigh the

losses incurred from deviating:

∫ v

v
[v − b]H(b|v)G(dv)−

∫ v

v

∫ b

0
[v − p]Hi(dp|v)G(dv) ≤ 0 (2.5)

Let S ⊆ {1, . . . , N} denote a subset of bidders. By summing equation (2.5) across bidders

in S, we obtain

|S|
∫ v

v
[v − b]H(b|v)G(dv)−

∫ v

v

∫ b

0
[v − p]

∑
i∈S

Hi(dp|v)G(dv) ≤ 0. (2.6)

Implication 3. In any BNE under any information structure, inequality (2.6) holds for

all b and all S ⊆ {1, . . . , N}.

We refer to Bergemann et al. (2017) Lemma 1 for a rigorous proof argument. Under the

null of competitive bidding, we assume that the observed bids are generated by a profile

of BNE bidding strategies that adhere to the uniform upward deviation constraint. The

null hypothesis necessitates that the expected net deviation payoff is non-positive. We

test Implication 3 using the null hypothesis:

H0 :
|S|

∫ v
v [v − b]H(b|v)G(dv)−

∫ v
v

∫ b
0 [v − p]

∑
i∈S Hi(dp|v)G(dv)∫ v

v

∫ b
0 [v − p]

∑
i∈S Hi(dp|v)G(dv)

≤ 0, (2.7)

which normalizes deviation gains by the ex ante expected rent for bidders in S.

The test for uniform upward deviation incentives is robust to details of the Bayesian

game being played and the information available to bidders. The incentive constraint re-

mains valid if bidders are asymmetrically informed, completely uninformed, or completely

informed about the tract values. The bound also applies when there is unobserved auction
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heterogeneity, that is, when bidders publicly observe a part of the common value that is

not recorded in the data. The bound is also robust to risk aversion – if bidders were

risk averse, we would expect more aggressive bidding, pushing bids even higher above the

bound.

Next, we shall describe the market and data.

2.4 Data

We study oil and gas lease sales held monthly by the New Mexico State Land Office

(NMSLO) on the third Tuesday of each month between 1994 until 2015.3 Every month

the NMSLO distributes a list of leases which are sold at auction next month. Bidders can

nominate an area for auction. Leases typically cover a land area of 320 acres.

Lease Sale Procedure

It is a legal requirement that the NMSLO awards leases by one of two types of auction

formats4: (i) sealed-bid first-price auction and (ii) open-outcry English auction. For most

of the sample period both formats were used in each monthly sale.5 The assignment

of auction format is mostly random, although conversations with the leading auctioneer

during the sample period suggest that, in the case of split tracts (a tract larger than 320

acres that is split into two separate lots for the sale), the first price auction is used for the

larger of the two halves or for the part closest to an existing lease owned by the bidder

that nominated the tract. The monthly lease sale proceeds in two stages: First, the sealed

bids for the first set of leases are unsealed and announced publicly. Every lease is awarded

to the high bidder. Second, the set of English auction leases are awarded in sequence by

means of an open outcry auction where all eligible bidders are present in the room. Every

month the same set of bidders interact. We do not include auctions taking place after

2015 in our sample as the post-award production record is incomplete.

The lease duration is five years, during which time the winning bidder can drill a well. If

oil or gas is found, then the lease can be extended until all minerals have been extracted.

3Data from NMSLO have been studied in the prior literature. Kong, Kong (2020, 2021) studies the
relationship between first-price and English auctions. Bhattacharya et al. (2022) study the effect of post
auction drilling decisions on the optimal auction design in terms of the royalty rate.

4The legal setting is described in New Mexico Statues, Chapter 19, Article 10, Section 19-10-17:
https://law.justia.com/codes/new-mexico/2019/chapter-19/article-10/section-19-10-17/

5During the summer of 2016 the auctions moved online. Starting in 2019 most of the sales were
conducted in first-price format only.
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Any revenues arising from the well are subject to various revenue taxes and royalty pay-

ments at a rate depending on the type of lease. Additionally, leaseholders are charged a

negligible rental rate, typically $0.50 or $1.00 per acre. The winning bidder pays corporate

taxes on profits, which is a proportional deduction and thus neutral to the bidding calcu-

lus. The winning bidder pays the bid bonus immediately after the auction and receives

the net return on future and uncertain minerals extracted.6

Our data contain detailed information on ex post drilling outcomes and production until

May 2023 which enables us to calculate the future return following the prior literature.

After the auction, the winner of the tract obtains the tract lease and the subsequent oil and

gas extraction is publicly observed. Bhattacharya et al. (2022) and Hendricks et al. (2003)

construct the value measure using the realized value of minerals extracted from ex post

drilling activity. We follow this definition of the common value and construct our value

estimates by matching publicly available production data to leases. We obtain a list of all

oil and gas wells in New Mexico from the New Mexico Oil Conservation Division (OCD)

describing the location of each well. We then match these well locations to the geographic

descriptions of leased tracts provided by the NMSLO in the letting announcements. For

each lease we aggregate the monthly oil and gas production of each well (collected from

monthly production reports submitted to the OCD) and weigh them with deflated crude

oil and gas prices. To account for production delays, we discount all returns to the date

of the auction using a ten percent annual interest rate. We account for the royalty rate,

which varies by the type of lease, and deduct a revenue tax of 7.1%7. Our final gross

revenue measure equals the realization of the discounted ex post value of the oil field net

of royalties and taxes. Our gross revenue measure is a lower bound on revenues, as it is

based on observed production and does not include potential future production beyond

20238. We define the common value v as the net return, which equals the gross revenue

6If during future production it is found that the well can be used to extract minerals for multiple
leases, then bidders are by law required to enter a pooling agreement. While the share of leases with
pooling agreements is relatively small in our data (less than four percent), it forces bidders to engage and
cooperate with each other on those leases.

7According to Chapter 2 of the “Decision-Makers Field Guide (2002),” (available online at
https://geoinfo.nmt.edu/publications/guides/decisionmakers/2002/dmfg2002 complete.pdf) there are six
taxes imposed directly on oil and gas extraction and processing: (i) severance tax which amounts to 1.875%
during the first 5-7 years of production and then increases to 3.75%; (ii) conservation tax of about 0.19%;
(iii) emergency school tax of 3.15% for oil and 4% for gas minus drilling credit which is given some times;
(iv) ad valorem production tax of about 0.39%; (v) natural gas processors tax of 0.45% and (vi) ad valorem
equipment tax of 0.07%. Totaling these taxes amounts to about 7.1%. The rate of 7.1% is also reported as
tax revenues obtained in the year 2000 on the value of oil and gas reported by the Taxation and Revenue
Department, see Figure 5 in Decision-Makers Field Guide (2002). Following Ordin (2019) we observe that
corporate profit taxes do not affect the bidding calculus as the tax rate applies proportionally.

8An alternative measure of gross revenues uses the oil and gas future prices at the time of the auction
as weights to discounted quantities instead of the realization of the oil and gas prices at the time when
production takes place. The resulting gross revenue measure is very similar in magnitude but on average
slightly larger than the measure obtained using the realized prices.
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measure minus the well cost.

Well costs are measured following the formula described in Kellogg (2014), which is based

on drilling rig rental costs predicted by oil future prices. Kellogg studies oil extraction

in the Texas region of the Permian Basin, while most of the wells we study fall in the

New Mexico region of the Permian Basin. Kellogg notes a significant positive correlation

between 18-month-ahead oil prices and rig dayrates. He regresses daily drilling rig rental

rates on 18-month-ahead oil prices and obtains an R-squared of 0.64. This regression is

used to predict the daily rig rental rate, which is then multiplied by the expected number

of drilling days to get the expected rental cost, which is in turn multiplied by three to

produce total expected drilling costs.9

We update Kellogg’s previous estimate of 19.2 days to drill a well by incorporating two

significant changes. First, we use a more conservative average of 34 days, calculated from a

sample of 332 New Mexico drilling cost records from publicly available reports on pooling

agreements10. Second, we take into account well cost heterogeneity by calculating separate

day rate estimates based on the observed annual well cost depth quintile. This approach

enables us to factor in variations in well costs associated with different well depths. Our

revised Kellogg formula accounts for variation in well costs based on the observed well

depth and is about 75% higher than Kellogg’s.

Our well cost estimates do not account for heterogeneity in well costs across bidders

or potential challenges bidders may encounter in accessing capital. While cost differences

may exist across bidders, we follow Hendricks et al. (2003) and Bhattacharya et al.

(2022) in assuming that these differences are small in magnitude or not known at the time

of the auction. However, our counterfactual exercises explore scenarios where well costs

become prohibitively costly for all but a small subset of bidders. In these exercises, we

artificially reduce the number of potential competitors from thirteen bidders to seven and

four. This artificial scenario allows us to analyze the impact of such constraints on the

bidding process.
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Table 2.1: Summary Statistics for Awarded Tracts

All First-Price English
Number of Auctions 9,717 4,535 5,182

Gross Revenue (minus royalty and tax payment) 423.9 477.0 377.5

(2,493) (2,842) (2,141)

Well Cost 171.1 173.2 169.1

(658.8) (700.5) (620.0)

Net Revenue v 252.8 303.8 208.4

(1,987) (2,268) (1,703)

Winning Bid 52.82 58.68 47.70

(113.5) (138.8) (85.0)

Reserve Price 4.71 4.53 4.87

(4.398) (4.302) (4.474)

Fraction Drilled 0.125 0.119 0.131

(0.331) (0.323) (0.337)

Well Cost of Drilled Tracts 1,367 1,457 1,295

(1,354) (1,502) (1,219)

Fraction Productive 0.111 0.107 0.114

(0.313) (0.308) (0.317)

Disc Revenue of Productive Tracts 3,818 4,442 3,304

(6,563) (7,597) (5,524 )

The data consist of all awarded auctions between 1994 and 2015. Dollar figures are
measured in thousand of 2000 US dollars. Standard deviations are in parentheses.

Descriptive Summary Statistics

Table 2.1 shows that 4,535 sales were held using first-price auctions while 5,182 using

an English auction format. Table 2.1 considers only pre-2016 sales as the initial drilling

decision can occur at the end of the lease term, as shown in Bhattacharya et al. (2022).

All dollar magnitudes are deflated using 2000 dollars.

Strikingly, the bonus bid is very small relative to tract value. The bonus bid equals

$53,000 on average, which amounts to 21 percent of the average tract value. In comparison,

the offshore lease sale literature has shown bids being much closer to the value of the tract.

Hendricks et al. (1987) report winning bids in offshore sales equal 76 percent of tract value

for wildcat sales and 49 percent for drainage sales.

A second surprising element is that only a small fraction of awarded tracts are drilled:

about 12.5 percent.11 Most drilled wells are productive (i.e. the well produced oil or gas).

9The scaling factor of three emerged from conversations with industry members who estimated that
rig rental costs constitute on average one third of total drilling costs.

10Under pooling agreements, parties are legally obligated to submit an Authorization for Expenditure
(AFE) to New Mexico’s Oil Conservation Division, providing details on the anticipated cost of a proposed
well. By parsing AFEs filed between 2000 and 2014, we extracted information on reported well depth, the
number of days drilled and the total well cost. The relevant data can be found on the OCD website at
https://wwwapps.emnrd.nm.gov/OCD/OCDPermitting/Data/Hearings/Cases.aspx.

11The drilling rate estimate is almost identical to the onshore drilling rate reported in the prior literature,
see Bhattacharya et al. (2022).
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The drilling rate and productivity rate are both low in comparison to that of offshore tracts,

which Porter (1995) finds to be 78 percent and 35 percent, respectively. We hypothesize

that the low initial drilling rate is a result of lease hoarding, which appears common for

onshore leases12. We shall provide further evidence on the number of undrilled leases

hoarded by individual bidders below.

Interestingly, the auctioneer’s revenues are higher for first-price auctions than for En-

glish auctions, both in terms of royalty payments and bonus bids, see also Kong (2020).

For split tracts, in which both auction formats were used and the assignment (according

to conversations with the lead auctioneer) is essentially random, the first-price auction

generates 23% higher cash bonus bid and also a 33% higher royalty return per acre. We

can reject the null of identical bonus bids across the two formats at the one percent sig-

nificance level. Yet, the null of identical royalty returns cannot be rejected. During the

year 2019 the NMSLO began awarding leases exclusively in the more favorable first-price

format.

The revenue ranking is surprising in the light of the classic theoretical work on sym-

metric BNE bidding equilibria in standard auction formats. Milgrom and Weber (1982)

derive that English auctions generate more revenues than first-price auctions on average.

One explanation for the revenue superiority of the first-price auction format is that some

coordination or collusion arises in English auctions. Avery (1998) shows that bidders may

use initial jump bids to signal their intention to rivals, which gives rise to multiple equi-

libria in English auctions, some of which may have drastically reduced revenues. Indeed,

we observe jump bidding in English auctions conducted online, where the timestamp of

each bid is recorded.13

Suspiciously low English auction bids arise also in split tract sales, where bidders should

arguably have the same value estimate for both halves. There are 335 occasions where

a bidder failed to win the English auction although the bidder submitted a bid in the

first-price auction that was (substantially) higher in per-acre terms than the selling price

in the English auction. On 194 of these occasions, the bidder failed to win both the first-

price auction and the English auction. On average the bidder’s losing first-price auction

12Accoding to a Wilderness Society’s article from December 15, 2015, hoarding is common in the
oild and gas industry. For instance, suspension of federal leases has affected 3.25 million acres in April
2015. See https://www.wilderness.org/articles/blog/land-hoarders-oil-and-gas-companies-are-stockpiling-
your-public-lands.

13The NMSLO online English format is similiar to eBay sales where the current standing winning price is
revealed to rival bidders and not the submitted bid. In the online English lease sale in January 2019, Slash
Exploration LP started the bidding with a bid substantially above the reserve, and two attempts by rival
bidders during the next sixteen hours to outbid Slash Exploration failed, resulting in Slash Exploration
winning the lease.
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Table 2.2: Bidding Returns for Top Bidders

Bidder No of No of Return v Bid b ROI
Bids Wins on average across

auctions won

YATES PETROLEUM CORP 5,810 4087 186.90 30.67 10.81
DANIEL E GONZALES 828 592 506.52 65.57 5.00

DOUG J SCHUTZ 838 587 195.40 64.21 -0.11
CHASE OIL CORPORATION 348 249 83.76 39.96 4.48
FEDERAL ABSTRACT COMP. 381 205 265.35 12.87 1.96
SLASH EXPLORATION LP 683 164 12.36 6.33 3.00
FEATHERSTONE DEV. C. 376 149 224.42 22.40 5.19
MARBOB ENERGY CORP 278 130 636.99 78.40 6.05

BAR CANE INC 220 129 338.71 60.95 3.86
RONALD MILES 369 122 812.46 91.09 5.17

THE BLANCO COMP. 617 103 378.37 14.39 57.25
FRINGE N/A 4280 249.82 61.44 5.28

The data consist of all awarded auctions between 1994 and 2021. Dollar figures are
measured in thousand 2000 US dollars.

bid was 120 percentage points higher than the final English auction price. While these

bid patterns seem odd, they can in fact arise as a BNE when bidders have beliefs that

they will be outbid in the English auction. Since BNE bidding in English auctions may

resemble coordination or collusion, our subsequent analysis focuses on first-price auction

sales.

Factors Facilitating Collusion

There are several factors in the lease sale market that may facilitate coordination or

collusion. We think of collusion as an implicit or explicit arrangement to limit competition

among market participants and to increase profits.

The market we study is concentrated, with three firms winning half of all leases sold

at auction. In such a setting, a small set of firms coordinating their actions can have

a big impact on market price. Table 2.2 reports summary statistics for bidders who

won more than 100 leases between 1994 and 2021 and together account for two thirds of

all bids submitted and 60% of auction awards. The table also includes a “fringe” bidder

accounting for all remaining bids. We report dollar measures on average across all auctions

won by the bidder. Yates Petroleum Corp has a market share of about 38% in the number

of leases with more than 1,000 active (undrilled) leases (320,000 acres) held during any

calendar year between 2000 and 2015. It was acquired by EOG Resources in 2016 for

$2.5 billion. Yates Petroleum operated beyond the New Mexico region and held about

1.5 million acres in at least seven US states at the time of acquisition. The next largest
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bidders are Daniel E Gonzales and Doug J Schutz, both of whom have a 5% market share

each, which amounts to more than 500 leases. These two bidders held on average more

than 130 active (undrilled) leases during the period 2000 to 2015.

The rate of return from winning an auction (ROI), measured by the profits (the tract

value minus the bonus bid) divided by the bonus bid, is substantial, equaling more than

899 percentage points on average across bidders. The high percentage arises as the lease

acquisition cost is very low relative to the return. We shall examine the null that the

bonus bid is too low to be consistent with competitive bidding in Sections 6 and 7.

Leases are homogenous products that can be resold in the future. Competition is only

in terms of price, so a cartel need only coordinate in the price dimension to collude.

Sales occur regularly at monthly intervals, with bidders gathering in person for each sale.

Consequently, bidders know the identity of other potential bidders before they bid. Bidders

may have formed relationships with each other at prior sales or as a result of pooling

agreements they are required by law to enter into when a well spans multiple leases.

Bidders participating in the NMSLO’s auctions have faced allegations of illicit conduct in

other states.14 Multiple leases are awarded at each sale date, allowing bidders to divide

the market without using side payments. Additionally, leases can be resold at subsequent

periods, providing a mechanism for bidders to implement a suitable market division. The

frequency of sales makes it costly for firms to deviate from any agreement. To summarize,

the market exhibits characteristics that facilitate collusion. It is a concentrated market, a

homogeneous product is sold, multiple leases are sold at every sale date, and sales occur

at regular monthly intervals.

Next, we shall conduct statistical tests to examine whether we can reject the null of

competitive bidding.

2.5 Conditional Independence Test

Competitive behavior requires that bidders submit their bids independently of each other

conditional on the information available to them. Bidding strategies cannot be coordinated

14On March 15, 2012, the US Department of Justice filed a law suit alleging bid-rigging in Coler-
ado, see https://www.justice.gov/atr/case/us-v-sg-interests-i-ltd-et-al. Reuters reported on June 25, 2012,
that email exchanges between Chesapeake Energy Corp and a competitor apparently intended to avoid
bidding against each other in Michigan, see https://www.reuters.com/article/us-chesapeake-land-deals-
idUSBRE85O0EI20120625. On March 1, 2015, the US Department of Justice indicted the CEO of Chesa-
peake Energy Corp for bid rigging in Oklahoma, see https://www.bloomberg.com/news/articles/2016-03-
01/chesapeake-co-founder-mcclendon-indicted-over-lease-bid-rigging.
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or correlated; a player’s strategy should be a function of their signal only. Coordination

among competing bidders or information sharing is not legal at auctions. In contrast,

when bidders coordinate or communicate prior to the auction, then we may expect bids

to be correlated beyond the information available to bidders individually. This section

considers tests aimed at distinguishing these two hypotheses based on the assumptions of

Wilson (1977).

It could be argued that such patterns of coordination could also arise due to exogenous

variations over time. For example, bidder pairs may be more active in certain seasons,

or respond in the same way to variation in oil prices or any other exogenous shock. For

example, a pattern of bid rotation would emerge when bidders are less likely to bid if a

sizable number of leases have been won in the preceding sale.

We exploit the timing of individual auctions to account for these alternative explana-

tions. Our data have multiple auctions taking place on the same date. A sale occurs once

a month, and all auctions within a sale have an identical bid submission deadline. In

total our data have 259 sales dates between 1994 and 2015 with an average 18 first price

auctions taking place per sale.

Wilson’s mineral rights model assumes the signal xi is drawn independently from a

conditional cdf F (xi|v, z), where v denotes the common value of the oil field and z are

auction date variables. We do not observe the signal realizations x but do observe the bids

b and the ex post outcome v and control for z using auction date fixed effects. In Wilson’s

BNE a bid is a strict monotone function of a bidder’s signal, bi = b(xi). Since signals are

drawn independently from F (xi|v, z), and bids are a function of one signal only, bids will

be distributed independently after conditioning on ex post returns. These assumptions

lead to the following null hypothesis for competitive bidding:

H
B|X
0 : bi ⊥ bj |v, z for all i, j ∈ N , (2.8)

with the alternative hypothesis:

H
B|X
1 : bi ̸⊥ bj |v, z for some i, j ∈ N.

As most bids in our data are equal to zero (the convention we adopt to represent that a

bid was not submitted), our test statistic aggregates bids into the binary bid submission

variable si = {1 if bi > 0; = 0 otherwise }.
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We test the null, si ⊥ sj |v, z for any pair i, j ∈ N with a parametric bivariate probit

framework. The biprobit controls for bidder-specific date effects and ex post return values

(linear and quadratic). The correlation coefficient in the biprobit measures the bidder-pair

correlation not accounted for by ex post return and date fixed effects zt.

Wilson additionally assumes that the conditional cdf F is identical for all bidders. Asym-

metries in the distribution of bids could arise if, e.g., the variance in the signals differs

across bidders. We are not concerned with testing for the presence of such asymmetries;

here we only assume that bids are independently (not necessarily identically) distributed.

Table 2.3: Biprobit Correlation Coefficients.

Pairs H0 of Zero Correlation Sign of Correlation Coefficient

rejected at
10% 5% 1% Positive Negative

48 22 21 12 33 15

Test results are reported for the null of a zero correlation coefficient in the bivariate
probit for bidder pairs. The data consist of all pairs in which both bidders are active
on sales involving at least 200 auctions. Explanatory variables include ex post return,
ex post return squared and bidder specific sale-date fixed effects.

Table 2.3 indicates that a quarter to one half of bidder pairs have correlation coefficients

that are significantly different from zero, depending on which significance level is consid-

ered. The majority of coefficients are positive. Consequently, we can reject the null of

independence in the mineral rights model. The evidence suggests that if the game played

by bidders is the same as in the mineral rights model, bid submission decisions are coor-

dinated. This coordination arises among a quarter to one half of bidder pairs mentioned

in Table 2.2.

The evidence so far has been inconsistent with competitive bidding in the mineral rights

model, but could be produced by a different information structure. In the presence of un-

observed heterogeneity – characteristics of the tract that are (i) informative of its value, (ii)

observed by bidders, and (iii) not recorded in the data – some bidder pairs would exhibit

correlation in participation decisions driven by the unobserved heterogeneity. Because

unobserved heterogeneity affects the value signal in the same direction (either positively

or negatively) for all bidders, any correlation induced by it should be positive, see Kras-

nokutskaya (2011). To examine whether the correlation we observe could be explained by

unobserved heterogeneity, we examine the distribution of participation correlation coeffi-

cients across bidder pairs.

Figure 2.1 plots the histogram of correlation coefficient estimates. Some bidder pairs

appear to refrain from bidding against each other, while the majority of bidder pairs
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Figure 2.1: Histogram of Biprobit Correlation Coefficient Estimates

complement each other in bid submission. There are both sizable negative and positive

correlation coefficients, with surprisingly little mass at zero. The histogram differs from

that of a normal distribution in that it has a hump at -0.2 and another hump at 0.2. Such

a bimodal distribution is inconsistent with the strictly positive correlation that would arise

under unobserved heterogeneity.

The empirical evidence considered so far cannot be reconciled with competitive bidding

under the mineral rights model. Having rejected the null of independent bid distributions,

we are left with two possibilities. First, the bidding strategies that generated the data

could be coordinated rather than competitive, e.g. some bidders refrain from bidding or

submit “phony” bids. Alternatively, the correlation in bids could be explained by the

underlying information structure mediating ex post returns and bids. If signals are pos-

itively correlated across some pairs and negatively correlated across others, the observed

patterns of positive and negative bid correlation could arise in a competitive equilibrium.

The next two sections consider statistical tests of bidding in the common values BNE that

are robust to the underlying information structure.

2.6 Underbidding

This section examines whether bidders systematically under- or overbid.

If bidders coordinate in order to suppress bid payments, then such behavior will be

detectable by finding the existence of a profitable deviation in the bidder’s choice problem.

Since we observe all bids, as well as the ex post return, we can measure the observed average

payoff and use it to test the null that a systematic deviation cannot be profitable.

We develop a test procedure that is applicable regardless of the underlying information
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structure. We examine deviations from observed bidding in which all bids of a bidder

are multiplied by a positive scalar, holding rival bids fixed. Of course, richer deviation

strategies can be permitted and the test augmented. Nevertheless, in our case, even a

scalar deviation results in a substantial profit increase.

Recall the null hypothesis

H0 : α
∗ ≡ argmax

α

∫
v∈V

∫
x∈[x,x]N

[v − α · βi(xi)] qi(α · βi(xi), β−i(x)) F (dx, dv) = 1.

We estimate the expectation using the sample average to compute the following test statis-

tic:

α̂∗ = argmax
α

1

T

∑
t

[
vt − α · bti

]
qi(α · bti, bt−i),

where the objective function is the average payoff realization when bid bti in all auctions

is multiplied with the scalar parameter α.

A slope estimate α̂∗ < 1 suggests the potential presence of the winner’s curse or risk

aversion, see Matthews (1983) and Maskin and Riley (1984). On the other hand, α̂∗ > 1

suggests that bidder i underbid. Hendricks et al. (1987) propose a precursor bid scaling

test and (weakly) reject the winner’s curse in offshore sales. Kong (2020) develops an

alternative approach that does not rely on ex post returns and finds evidence of risk

aversion. Chassang et al. (2022) propose bid scaling tests designed for scenarios in which

the econometrician may not observe values.

We obtain the sampling distribution for the test statistic using a block bootstrap to

account for correlation due to the exogenous variables zt by resampling blocks of auctions

where an individual block consists of a six-month sequence of auctions. Kunsch (1989)

shows the approach is consistent when the exogenous variable zt is stationary.

Table 2.4: Best Response Test: Optimal Bid Scalar α̂∗

Overall Bidder
Top-5 Non-Top-5

Bid Scalar Estimate α̂∗ 3.23 3.19 2.34
5th and 95th Quantile [2.00,3.72] [2.07,3.19] [2.00,3.82]

The confidence region is estimated using 199 bootstrap samples by resampling
from the set of all auctions using the block bootstrap.

Table 2.4 reports the scalar estimate overall and for two subgroups of bidders: the five

bidders in Table 2.2 who submit the most bids and all other bidders. Bidders in all groups

substantially underbid. That is, holding rival bids constant, an individual bidder would

optimize their expected payoff across auctions by increasing their own bid by a factor of
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more than three. Clearly, we can reject the null of BNE bidding in first-price auctions,

suggesting that bidders coordinate to keep prices substantially below market value. Note

that the test does not establish that tripling bids would result in BNE bidding as rival bids

were held constant when computing α∗; if one bidder were to triple her bid, a profitable

deviation may still exist for rivals.

Figure 2.2: Simulated Profit Varying the Bid Scalar α.

Empirical auction work typically imposes assumptions on the information structure

available to bidders and the details of the BNE. A key advantage of the underbidding

test is that these details do not have to be specified. The test is robust to informational

assumptions and the details of the BNE because it utilizes observable ex post oil extraction

returns and bid data. Ex post returns are readily available in our setting and are available

more broadly in settings where the lots can be resold or there is an active secondary market

for the good.

While the evidence of underbidding rejects the hypothesis of BNE bidding, it does

require knowledge of losing bids. The next section provides a test that solely requires

knowledge of winning bids.

2.7 Uniform Upward Deviation

This section examines whether a uniform upward deviation is profitable. This test is

applicable regardless of the underlying information structure available to bidders and re-

gardless of the BNE played. While the test does not provide a comprehensive examination

of rationality, it addresses a crucial concern when facing potentially colluding bidders. Are

the observed winning bids too low to be in equilibrium?

The uniform upward deviation constraint, which leads to a tight lower bound on revenues

in first-price auctions as shown in Bergemann et al. (2017), is attractive for empirical
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purposes. It requires minimal data, solely requiring knowledge of winning bids and ex

post values. It does not involve knowledge of losing bids, the underlying information

structure, or the equilibrium bid strategies.

The uniform upward deviations test is operationalized based on realizations of ex post

returns and winning bids. Replacing expectations in (2.7) with their sample analogues

yields

|S|
∑T

t=1[v
t − b · at] · 1(b · at ≥ pt)−

∑
i∈S

∑T
t=1[v

t − pt] · 1(pti = pt) · 1(b · at ≥ pt)∑
i∈S

∑T
t=1[v

t − pt] · 1(pti = pt)
≤ 0,

(2.9)

where vt is the observed value, pt the winning price, pti the winning price when bidder i

won the auction, and at the acreage of the tract. We specify deviation bids as linear in

acreage, with b ∈ B =
{(

pt

at

)}
T
t=1.

As a test statistic, we examine the maximal deviation gains normalized by profits,

DS
T = max

b∈B

|S|
∑T

t=1[v
t − b · at] · 1(b · at ≥ pt)−

∑
i∈S

∑T
t=1[v

t − pt] · 1(pti = pt) · 1(b · at ≥ pt)∑
i∈S

∑T
t=1[v

t − pt] · 1(pti = pt)
.

(2.10)

We consider the null hypothesis

DS
T ≤ 0.

To obtain the sampling distribution for the test statistic, we use a block bootstrap method

to account for correlation arising from the exogenous variables zt by resampling auction

blocks consisting of six-months of sales. The use of the block bootstrap enables us to obtain

a consistent measure of the sampling distribution for DS
T when the exogenous variables

zt are stationary, as shown in Kunsch (1989). We use 200 bootstrap samples for the

calculations.

Table 2.5 presents the results of the test. The column labeled “All, when |Ŝ| equals 13”

considers the set of all potential bidders, whose cardinality we estimate as the maximum

number of bidders across all auctions, which is a consistent and superefficient estimator.

While this is a commonly used approach in the empirical auction literature, we examine

the robustness of the results to alternative definitions. The column labeled “All, when

|Ŝ| equals 7” artificially reduces the set of potential number of bidders to seven. We also

include a specification where the potential number of bidders is artificially reduced from

thirteen to four.

The column labeled “Top Five” considers the five bidders in Table 2.2 who submit the
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Table 2.5: Testing Uniform Upward Deviation Incentives: H0 : D
S
T ≤ 0.

Set of Bidders All All Top-Five Top-Three

when |Ŝ| equals 13 7 5 3

Baseline Estimates DS
T 4.87 2.335 4.11 3.47

(1.13) (0.56) (1.02) (1.30)
10-% level 3.45 1.66 3.32 2.19
5-% level 2.95 1.40 2.79 1.80
1-% level 1.93 0.83 1.97 1.30

Robustness Checks
(i) Using Future Prices DS

T 6.09 2.96 4.64 3.85
(0.97) (0.49) (1.19) (1.74)

10-% level 4.98 2.38 3.70 2.46
5-% level 4.54 2.17 3.28 1.92
1-% level 3.26 1.57 2.56 1.41

(ii) Artificially setting |Ŝ| = 4 DS
T 1.05 1.05 2.14 2.08

(|Ŝ| = 3 in column “Top-Five” and (0.29) (0.29) (0.64) (0.93)

|Ŝ| = 2 in column “Top-Three”) 10-% level 0.73 0.73 1.57 1.16
5-% level 0.64 0.64 1.36 1.01
1-% level 0.32 0.32 1.02 0.63

(iii) Multiplying Well Costs by 2 DS
T 3.55 1.71 2.69 1.91

(3.12) (1.68) (0.89) (1.13)
10-% level 1.45 0.70 1.68 0.62
5-% level 0.83 0.34 1.13 0.12
1-% level 0.00 0.00 0.15 0.00

(iv) Real Interest Rate of 15% DS
T 2.28 1.09 3.09 2.38

(1.14) (0.60) (1.02) (1.33)
10-% level 1.28 0.52 1.76 0.93
5-% level 0.87 0.36 1.29 0.69
1-% level 0.10 0.11 0.72 0.16

Standard deviations are reported in parenthesis. The standard deviations of variables and the confidence levels
of the null hypothesis are estimated using 200 bootstrap samples by resampling using the block bootstrap.
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most bids. To ensure the active participation of these bidders, we select the sub-period

from February 2007 until October 2013, during which all five bidders regularly submitted

bids, participating in 78% of the sales.15 Additionally, we examine a specification where

the potential number of top five bidders is artificially reduced to three.

The column labeled “Top Three” considers the three bidders in Table 2.2 who submit

the most bids.

According to Table 2.5, the optimal upward deviation gain equals 4.87 times profit for

the average bidder. It quintuples profit for “Top Five” bidders, quadruples profit for “Top

Three” bidders and triples profit for all bidders “when |Ŝ| equals 7”. We can reject the

null hypothesis that the deviation is not profitable at the 1% confidence level for all groups

of bidders. Therefore, we reject the null of BNE bidding.

Robustness Checks

How robust is the test result? Table 2.5 reports robustness checks which relax one or more

assumptions used to calculate the test statistic. We shall comment on the column “Top

Five” bidders and the test results for “All” bidders “when |Ŝ| equals 7” and “Top Three”

bidders are described in Table 2.5.

First, we examine the scenario where bidders did not form correct expectations about

future prices correctly and instead evaluated future prices with the currently expected

future price, see Hendricks et al. (1987). In this case, the test statistic increases to 4.64

for “Top Five” bidder, and we reject the null of no deviation gains at all confidence levels.

Second, we consider artificially reducing the potential number of bidders by replacing

the consistent estimator ˆ|S| = maxN t = 13 with ˆ|S| = 4. This implies the deviation

benefit in equation (2.9) involves four bidders, while the cost include all bidders. For the

“Top Five Bidders” scenario we artificially replace the deviation benefit number with an

even smaller number ˆ|S| = 3. For “Top Five” bidders the test statistic DS
T becomes 2.14.

We rejects the null of no deviation gains for “Top Five Bidders” at all significance levels.

We can reject BNE bidding.

Third, we artificially doubled well cost estimates. This adjustment reduces the test

statistic DS
T for “Top Five” bidders to 2.69. We can reject the null of no deviation gains

at all confidence levels for top “Top Five” bidders and at the 5 percent level for other

15Doug J Schutz and Slash Exploration LP commenced bidding in February 2007. Daniel E Gonzales
stopped bidding in October 2013.
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Figure 2.3: Interest Rate and Cost Multiples Needed to Satisfy Uniform Upward Deviation

Incentives: Top Five Bidders.

(a) Realized Prices (b) Future Prices

groups.

Fourth, we artificially increased the real interest rate to 15%. This modification reduces

the test statistic DS
T for the “Top Five” bidders scenario to 3.09. We can reject the null

of no deviation gains for “Top Five Bidders” at all significance levels and therefore reject

BNE bidding.

Finally, we illustrate graphically the joint levels of interest rates and cost multipliers

required to justify the observed bids as a BNE. Figure 2.3 displays the test results indi-

cating the rejection region of the null that DS
T ≤ 0 for “Top Five” bidders. We use the

block-bootstrap method to obtain the sampling distribution for the test statistics. The

use 1000 bootstrap samples for the calculations. Points situated to the south-west of the

depicted line reject the null DS
T ≤ 0 at the reported significance level, while points located

to the north-east cannot reject BNE. The Figure shows that a real interest rate in excess

of 17.5%, or a cost increase in excess of 100% is necessary to rationalize the data as a

BNE.16 The right figure, using future prices instead of realized prices, shows that the

rejection regions expands outward, requiring even higher interest rates or cost multiples.

Consequently, we conclude that significantly elevated interest rates or cost multiples are

required to rationalize the observed bids as a BNE.

2.8 Conclusion

This paper documents evidence of systematic underbidding in oil and gas lease sales in

New Mexico. Features of this market are favorable towards bidder collusion. Leases cover

16The figure is created by using a discrete grid of well costs and interest rates. At each point in this grid,
we employ block bootstrap sampling of the test statistic to determine the rejection region. This procedure
can yield a local up-down pattern due to inherent randomness of the sampling process.
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small homogeneous units of land and are awarded at regular time intervals at in-person

auctions. The buyer’s side is highly concentrated, with half of all leases won by only four

bidders who know each other well and interact regularly.

Using the ex post value of leased tracts, we test for the presence of non-competitive bid-

ding in three ways. First, we test whether bidder participation decisions are uncorrelated

conditional on ex post returns and find statistically significant evidence of both positive

and negative pairwise correlation. Second, we test whether bidders maximize their ex-

pected profit (holding rival strategies constant) and find that bidders could approximately

double their expected profit by more than tripling each submitted bid. Finally, we test

whether bidders can increase payoffs by uniform upward deviations. We find that bidders

could increase their expected profit by more than fourfould which is inconsistent with BNE

bidding.

There are several steps NMSLO can take, some of which it has already taken, to combat

low auction revenues and to move toward the best-case outcome. First, the NMSLO

could raise the reserve price, which has occurred in recent years. Using information from

prior production outcomes of neighboring tracts, the reserve price could be raised much

further to a level close to the predicted lease value. Second, information about lease

values, from geological studies and historic production data on neighboring tracts can be

made available to bidders along with the lease sale announcement, which would reduce

informational asymmetries between bidders and encourage competition. Third, NMSLO

has made changes in regulation that make it more difficult for firms to acquire leases and

renew them without drilling for oil. This makes the practice of hoarding land to protect

any information rent a bidding ring may have more expensive, as it necessitates the drilling

of wells. Fourth, barriers to entry could be reduced by attracting new bidders, which was

encouraged with the shift to online auctions in 2016. Fifth, the identities of bidders could

be concealed, making it more difficult to detect deviations from the collusive agreement.

NMSLO introduced this practice when it moved to online auctions. Sixth, packages of

tract can be offered at auctions instead of individual tracts and lease sales could take place

at less frequent time intervals. Doing so will increase the benefits from deviation from a

collusive agreement making collusion more difficult to sustain. Taken together, these steps

may limit the potential for collusion which is a primary concern for the NMSLO if it is to

meet its objective of “optimizing revenues while protecting [New Mexico’s] heritage and

[its] future.”

While it is premature to fully assess the impact of these measures on oil and gas ex-
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ploration, their influence is already reflected in auction revenues. When comparing the

four-year period before and after 2016, auction revenues per acre nearly tripled.
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