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Abstract

This thesis studies how the global transition to a low carbon economy affects, and is affected
by, countries’ interactions in global trade, as well as broader technological developments. It
contains four self-contained chapters.

Chapter 2 presents a strategic model of trade in a clean technology in the presence of differ-
ential country-level production costs and imperfect competition. I show that when production
cost disparities surpass a critical threshold, and learning-by-doing facilitates catch-up for the
laggard, opting for autarky during Stage 1 can enhance overall welfare for both countries.

Chapter 3 examines the effects of Chinese import competition on firm-level innovation
in solar photovoltaic technology by European firms using a sample of 10,137 firms in 15 EU
countries over the period 1999-2020. I show that firms which were exposed to higher import
competition innovated more if they had a relatively small existing stock of innovation, but less
if their historical knowledge stock fell within the top 10th percentile of firms in the sample. As
firms with a smaller knowledge stock tended to innovate more overall, trade with China appears
to have been beneficial in encouraging innovation among the most innovative firms. However, |
also find evidence that import competition increased the probability of exit among firms in the
sample.

Chapter 4 highlights which countries are most at risk of seeing their productive capabilities
‘stranded’. Using methods from economic geography and complexity, we show that countries
exporting a high number of technologically sophisticated brown products should find it rela-
tively easy to transition. Conversely, those relying on few, low-complexity brown products for
a large percentage of export volume have few diversification opportunities.

In Chapter 5 we show how, in theory, a General Purpose Technology such as Al might
affect the competition between clean and dirty technologies. We then use patent data to show
that clean technologies absorb more spillovers from Al and ICT than dirty technologies and that
energy patenting firms with higher AI knowledge stocks are more likely to absorb Al spillovers

for their energy inventions.
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Chapter 1

Introduction

Meeting the climate challenge requires a rapid and pervasive shift towards cleaner modes of
production, particularly in the energy, transport and agricultural sectors. Both research and
public discourse have previously focused largely on the economic cost of doing so and how
much mitigation is optimal given the implied welfare trade-offs (see e.g. Crost and Traeger
2014; Jensen and Traeger 2014; Nordhaus 1992, 2007; Stern 2006), as well as how costs should
be distributed across nations and how to solve collective action problems arising from the global
nature of climate change (e.g. Barrett 1994a, 2005; Finus 2008; Harstad 2016).

There have been two important narrative shifts in recent years. First, there is an increasing
recognition of the importance of technological change in reducing mitigation costs (Acemoglu
et al. 2012; Acemoglu et al. 2016a; Jaffe et al. 2005). Some scholars even argue that transition-
ing to renewable energy sources will significantly reduce energy costs in the long term (Way
et al. 2022). Second, the policy discourse has increasingly focused on ambitions to become a
‘green leader’ and promote ‘green growth’ by becoming competitive in emerging green indus-
tries and reaping associated benefits in terms of growth and job creation (Bowen and Fankhauser
2011).

The literature on technological change and the green economy focuses on what innovation
in clean technologies implies for the optimal policy path, usually arguing in favor of R&D
subsidies in addition to a carbon price (Acemoglu et al. 2012; Acemoglu et al. 2016a; Jaffe
et al. 2005). However, interactions of this shift with its broader technological and geopolitical
context have received considerably less attention. The literature on the ‘green race’, on the
other hand, has focused largely on which countries have the productive capabilities needed
to take advantage of demand for new, green technologies (Fankhauser et al. 2013; Mealy and
Teytelboym 2020). Less work has been done on the characteristics of countries whose economic
viability is at risk, and what a just transition might look like for them.

This thesis therefore considers how the low carbon transition affects, and is affected by,

(1) the trade regime, as well as the ability and desire of national governments to be competitive
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in global trade; and (2) the broader technological shift towards artificial intelligence (AI) and
other digital technologies.

Chapter 2 presents a conceptual model highlighting the importance of enabling learning-
by-doing in order to realise gains from trade through increased market competition. I show that
when a product has positive consumption externalities — as clean technologies do by replacing
dirty ones — catching up can be globally beneficial; even at the cost of temporarily remaining
in autarky. The model also highlights how the motive of extracting rents from other countries
may be at odds with, and even outweigh, a preference for greater climate action and consumer
surplus on the part of more advanced countries.

Chapter 3 uses the solar photovoltaics (PV) sector as a case study within the ‘China Shock’
literature (e.g. Autor et al. 2013; Autor et al. 2016; Bloom et al. 2016; Bloom et al. 2021). I
use an instrumental variable strategy to study how import competition from China affected
innovation in solar PV in 15 EU countries between 1999 and 2020. I find that firms which were
exposed to higher import competition tended to innovate more if they had a low, and less if
they had a high, historical stock of innovation. Innovation was driven by newcomers more than
incumbents. Finally, import competition significantly increased the probability of firm exit.

While previous work has considered which countries are well placed to ‘win’ in the green
transition (Fankhauser et al. 2013; Mealy and Teytelboym 2020), less work has been done on
measuring transition risk based on the path dependency of industrial development. Chapter 4
therefore develops measures of country dependence on declining sectors — such as coal, oil or
internal combustion engines — and the ease of transitioning out of those sectors. We find that
most countries whose production capabilities are diverse and technologically sophisticated will
likely find it easy to transition; even if they export many dirty products. Conversely, countries
which heavily depend on exports of unprocessed fossil fuels have few transition opportunities.
This highlights the importance of policy to enable path-breaking diversification in those coun-
tries.

Finally, prior work has considered the policy implications of path dependency for the
competitive race between clean and dirty technologies (Acemoglu et al. 2012; Acemoglu et
al. 2016a). However, there is little existing research on how broader technological developments
such as the arrival of a new General Purpose Technology (GPT) might affect these dynamics.
In light of the recent rise of Al, Chapter 5 therefore studies theoretically how we would expect
a GPT to affect this ‘race’, arguing that a new GPT can weaken path dependence. We then use
patent data to proxy the absorptive capacity of clean and dirty innovations and show that clean
transport and electricity technologies use Al more than dirty ones.

The overall contribution of this thesis is to place the transition to clean technology in its
broader technological and geopolitical context. The results highlight the importance of coordi-

nating and aligning policy with broader objectives and technological developments.



Chapter 2

Industrial Policy and Global Public Goods
Provision: Rethinking the Environmental

Trade Agreement

2.1 INTRODUCTION

Climate change has been an item on the agenda of global diplomacy and politics for decades.
Policy action at the level of nation states, however, has to date remained woefully insufficient to
achieve stated aims to reduce greenhouse gas emissions and avoid catastrophic warming. The
reason for this is, according to much of the economics literature, the cost of reducing emissions
— and the fact that due to the global nature of climate change, each country has an incentive
to free-ride on others’ efforts (Barrett 1994a, 2005; Finus 2008). One might therefore expect
that reductions in the cost of technological solutions would be universally welcomed. And yet,
policy support for renewable energy, which is a key component of a climate-compatible global
production system, has frequently been accompanied by or met with trade barriers, which are
associated with increased user costs.! Such decisions are taken in the interest of each country’s
domestic industry producing renewable energy technology.

Are there conditions under which this might prove beneficial to climate action? Fischer
(2017) shows how domestic incentives to expand global market share in a green industry can

balance out environmental externalities in a framework in which two producer countries use

1. For example, China required 40% of wind turbines and blades to be manufactured locally for projects to
be eligible for public tenders as early as 1997. Between 2011 and 2017, India imposed a 60% local content
requirement on tenders for solar photovoltaics (PV), and 30% for concentrated solar power. France’s feed-in tariff
for solar PV between 2002 and 2012 came with a 60% local content requirement (Scheifele et al. 2022). More
recent examples include domestic content requirements in the US Inflation Reduction Act, as well as the EU’s
Net Zero Industry Act which includes the explicit aim that ‘by 2030, the manufacturing capacity in the Union
of [strategic net-zero technologies] approaches or reaches at least 40% of the Union’s annual deployment needs’
(European Commission 2023).
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upstream subsidies and compete for a third market. Here, I consider instead the intertemporal
trade-off between foregoing gains from trade early on in order to realise greater gains later, by
allowing an infant industry to mature. The literature on industrial policy and infant industry
maturation tends to focus on the effectiveness of industrial policy and the cost-benefit trade-off
at the level of the country promoting its infant industry (e.g. Krueger and Tuncer 1982; Melitz
2005; Young 1991). In contrast, I analyse the global as well as the local welfare implications
of allowing an infant industry to mature in the context of a product with positive consumption
externalities. The analysis suggests that such externalities could make infant industry matura-
tion beneficial for both the initially laggard and the initially frontier country. Conversely, in the
absence of positive consumption externalities, the frontier country prefers to extract rents from
the laggard country’s consumers. However, the laggard country, acting strategically, may still
opt to protect its infant industry.

China’s entry into the solar photovoltaics (hereafter PV) market, which was enabled by
targeted industrial policy, considerably increased competition in this market?> and is widely
credited to have contributed to the dramatic declines in the cost of solar PV energy over the past
decade (Carvalho et al. 2017; Dent 2018; Nemet 2019). This raises the following question: if
industrial policy — possibly including temporary protectionist measures — is necessary to allow
a potential supplier country of clean technology to realise its potential and increase competition
in the future, can the long-term global benefits of doing so outweigh the short-term cost of
protection? I present a stylised model highlighting conditions under which this may be the case.
I then add the use of quantity subsidies, and show how this alters the trade-offs considered. The
key insight is that allowing the initially laggard country to more effectively compete with the
frontier country can be beneficial for the global economy, and allowing for the use of producer
subsidies can accomplish this goal while avoiding the temporary cost of protectionism.

I model the production and consumption of an environmentally beneficial product in a 2-
country, 2-stage game with imperfect competition, differences in initial production cost, and
learning-by-doing. Each country has a representative firm which can produce a technology
capable of generating private as well as public benefits. We can think of this as a renewable
energy technology which benefits consumers directly by supplying energy, as well as reducing
negative externalities which would result if fossil fuels were used instead. While the chapter
is motivated by the global challenge of addressing climate change, the model is potentially
relevant to any game in which consuming a technology carries benefits to other consumers at

home and abroad. Other examples include the use of vaccines, which also generate both private

2. In 2008, the 10 largest solar PV equipment manufacturers accounted for almost 90% of global market share,
operating in just four countries (Germany, the US, Switzerland and Japan). By 2021, the top ten manufacturers’
share had dropped by half due to new firm entry. Today, all top ten equipment manufacturers are in China and
claim over 45% of the global market share (IEA 2022).
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and public benefits (Brito et al. 1991; Fisman and Laupland 2009; Francis 1997).

I start with the assumption that there are no subsidies and governments can choose only
whether to trade or not. Firms play a Bertrand game if countries engage in trade, and act as
local monopolists otherwise. If the laggard (high cost) firm is active during Stage 1, it ‘catches
up’ with the frontier (low cost) firm by Stage 2. If countries trade, then the laggard firm remains
inactive and the frontier country extracts rents from the laggard country’s consumers. Under
both trade and autarky and in the absence of other policy action, consumption and positive
externalities are inefficiently low even without the additional factor of transboundary (global)
positive externalities. This is due to imperfect competition.>

If the laggard firm catches up, Bertrand competition leads to marginal cost pricing in Stage
2. The model shows how for a sufficiently large difference in initial marginal cost, and in the
absence of other policy tools, autarky in Stage 1 can benefit both countries through increased
consumer surplus and positive externalities in Stage 2. The frontier country loses the rents it
could otherwise extract from the laggard country.

In the presence of market failures, such as those arising from the positive externality and
imperfectly competitive market structure considered here, a social planner will usually wish to
intervene beyond the decision of whether or not to trade. Indeed, various subsidies, preferential
loans and other incentives implemented by policy-makers around the world have been decisive
in scaling up the deployment of renewable energy technologies. I therefore analyse how quan-
tity subsidies affect the dynamics of trade and positive externalities. The model suggests that
when consumer subsidies are available as a policy tool, autarky in Stage 1 is always benefi-
cial for the laggard and globally, as competition from the laggard country in Stage 1 no longer
provides benefits in terms of constraining the frontier monopolist.

If countries can choose both upstream (producer) and downstream (consumer) subsidies
then the laggard country will choose a producer subsidy which is sufficiently high to force
the frontier firm to set price equal to marginal cost, but which leaves it to supply the whole
market. Both countries subsidise consumers to the point of internalising the domestic part of
the positive externality. The outcome is equivalent to the non-cooperative equilibrium obtained
under perfect competition. While the first best is not attainable, the ‘second best’ policy mix
which achieves an outcome equivalent to a game with perfect competition thus requires that
countries are able to choose a mix of consumer and producer subsidies.

The chapter connects the literature on industrial policy and infant industry protection (e.g.
Chang 2003; Krueger and Tuncer 1982; Melitz 2005; Young 1991) to that highlighting in-
creased competition as a cause of gains from trade (Krugman 1979; Markusen 1981) by mod-

elling learning-by-doing in an initially laggard industry as a pre-condition to enable competition

3. Arguably a reasonable assumption for a new industry, see e.g. Fischer (2017) and Fischer et al. (2018)
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later on. It also builds on the literature on international collective action problems related to cli-
mate change and the environment (see e.g. Barrett 1994a, 2005; Finus 2008; Harstad 2016).
The positive global externality arising from consumption of the good implies that the benefits
of an infant industry catching up may be global, rather than being limited to the initially laggard
country. In contrast, in the absence of positive externalities the advanced country always prefers
to retain its ability to extract rents, despite associated losses in consumer surplus.

Previous work on the infant industry argument has emphasised the need for the cost of
temporary protection to be outweighed by the benefits of domestic production in a higher value-
added industry later (Krueger and Tuncer 1982); for example, because learning-by-doing ex-
hibits spillovers across goods (Young 1991) or domestic and foreign goods are imperfectly
substitutable (Melitz 2005). This chapter highlights an additional channel through which infant
industry protection may be warranted. I model the maturation of an infant industry as a pre-
condition for allowing gains from trade via increased competition (Krugman 1979; Markusen
1981) to increase in the future.

The model allows me to identify conditions for infant industry protection to improve wel-
fare in the initially laggard country, as well as in the frontier country and globally, even while
abstracting from any macroeconomic spillovers or growth effects. I also highlight how the
frontier country can, under trade, extract rents from the laggard country, offsetting any losses in
consumer surplus from imperfect competition. Finally, introducing a global positive consump-
tion externality implies that infant industry protection can be welfare improving not only for
the initially laggard country, but also for the frontier country. The larger the public benefit from
consumption becomes relative to the private benefit, the closer countries’ interests should align.

Efforts to liberalise trade in ‘green’ technologies — including, but not limited to, those with
the potential to reduce greenhouse gas emissions — have been underway for years. In the 2001
Doha declarations ministers stated their commitment to negotiations on reducing or eliminating
tariff and non-tariff barriers to environmental goods and services (Balineau and De Melo 2013;
Droege et al. 2016). The Asia-Pacific Economic Cooperation (APEC) countries reached an
environmental trade agreement in 2012 (Jacob and Mgller 2017; Steenblik 2005; Vossenaar
2016), while negotiations for a World Trade Organisation (WTO)-wide agreement are ongoing
(De Melo and Solleder 2020; Monkelbaan 2017). The theoretical rationale for liberalising trade
in clean technologies is clear: doing so is expected to facilitate diffusion of such technologies,
thereby increasing their deployment, and enabling greater climate change mitigation and other
environmentally beneficial outcomes at a lower cost. In practice, however, countries’ attitudes
towards these technologies have frequently proven to be mercantilist in nature (De Melo and
Solleder 2022).

This chapter suggests that while a trade agreement may be beneficial for climate action and

global welfare, producer subsidies may be key to realising gains from trade. It further provides
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intuition for why countries which provide consumer subsidies for renewables often use local
content requirements, as well as why early mover countries such as the US or Germany tend to
oppose producer subsidies in other countries — even at the expense of their own consumers.*
The remainder of the chapter proceeds as follows. Section 2.2 summarises the literatures
on trade and international public good games which the chapter builds on. Section 2.3 discusses
the evolution of the solar PV sector as a real-world example of the dynamics the model seeks
to highlight. Section 2.4 introduces the key tenets of the model and the benchmark ‘first best’
cooperative outcome, comparing it to a status quo under which countries are in autarky and
do not subsidise the technology in any way. Section 2.5.1 analyses the welfare implications
of trade when no other climate policy is available, and identifies the conditions under which
autarky may be individually or jointly preferable to trade. Section 2.5.2 introduces quantity

subsidies and analyses how this changes the dynamics of the game. Section 2.6 concludes.

2.2 RELATED LITERATURE

Gains From Trade and Infant Industries The trade literature identifies many mechanisms
through which gains from trade may materialise. These include the efficiency gains of each
country specialising where it has a comparative advantage (Ricardo 1891); increased competi-
tion and increasing returns to scale in a larger market (Krugman 1979); and a redistribution of
market share towards the most productive firms and the exit of the least productive (Baldwin
and Gu 2004; Melitz 2003). A larger potential market might further increase incentives to inno-
vate (Aghion et al. 2018a; Grossman and Helpman 1990) and raise the potential for knowledge
spillovers and technology diffusion (Grossman and Helpman 1990; Keller 2004), by making
technology more widely and cheaply available (Carbaugh and St Brown 2012; ICTSD 2011).
If comparative advantage and industrial structure are taken as fixed, the benefits of lib-
eralising trade are clear and highly intuitive. However, patterns of comparative advantage are
not solely determined by fundamental endowments (Hausmann et al. 2007). In highly com-
plex modern industries in particular, competitiveness is developed over time. Many scholars
argue that industries need temporary protection from import competition in order to develop
and become competitive (Chang 2003; Hanlon 2017; Juhdsz 2018). This is known as the ‘in-
fant industry argument’. Infant industry protection is usually seen as a strategy for developing
countries, but can also play a role in building productive capabilities in developed economies,

especially if the industry in question is underdeveloped in a particular country (Andreoni and

4. The expansion of low-cost solar panel manufacturing in China was met with anti-dumping duties by both the
United States and the European Union (Hughes and Meckling 2017; Meckling and Hughes 2018; Wu and Salzman
2013). Estimates of the cost of US protective tariffs downstream, both in the solar PV sector and more broadly,
include Houde and Wang (2022) and Fajgelbaum et al. (2020).
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Chang 2016).

Theoretical models suggest that temporary protection can be beneficial when entry barriers
and dynamic learning effects are high (Irwin 2000; Melitz 2005; Young 1991). The temporary
costs of protecting the infant industry must be outweighed by the benefits of domestic produc-
tion in a higher value-added industry later on (Krueger and Tuncer 1982). Empirical evidence
on the justifications for and effectiveness of infant industry protection is mixed: Krueger and
Tuncer (1982) show that protected industries in Turkey over the period 1963-1976 did not expe-
rience faster cost declines than others, and argue that infant industry protection could therefore
not be a valid argument for the use of tariffs. Conversely, Hanlon (2017) argues that compe-
tition from Britain hindered North American shipbuilders’ ability to transition from wood to
metal shipbuilding in the late 19th century, while Juhdsz (2018) shows that the blockade of
British imports during the Napoleonic wars enabled more protected French regions to more
rapidly transition to mechanised cotton spinning.

Overall, more competition through trade may not necessarily be beneficial during the early
stage of developing a new industry. This may provide some justification for the use of instru-
ments such as local content requirements (Johnson 2016). The returns from infant industry
protection are usually modelled as greater future growth via the reallocation of output to more
rapidly growing industry; inter-industry spillovers enabling learning-by-doing (Young 1991);
the result of imperfect substitutability between domestic and foreign goods (Melitz 2005); or
protection against a sudden demand-shock favouring a foreign-produced good with non-linearly
increasing production cost (Traiberman and Rotemberg 2022). In contrast, this chapter explores
the implications of infant industry dynamics for consumer surplus and positive externalities un-
der trade and autarky, and in particular the potential global benefits of temporarily protecting
an infant industry through its impact on competition later on. I thereby identify an additional
mechanism through which infant industry protection may be beneficial, and explicitly model
the rents which the initially frontier country can extract from the initially laggard country under
imperfect competition in the absence of any policy supporting the infant industry. The chap-
ter does not explicitly model the source of these dynamics, nor does it consider other, more
long-term, implications of competition and market size beyond prices and quantities, such as

innovation or learning by the frontier industry.

Climate Change and International Cooperation Climate change is an inherently global prob-
lem, which must nevertheless be addressed within the current framework of individual nation-
states. Action on climate change and other transboundary environmental problems involves
strategic interaction between individual countries, which makes game theory an attractive tool
of analysis. In the absence of a supra-national authority which could force countries to act to

achieve the global social optimum, incentives to free ride on others’ efforts abound, making it
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extremely difficult for international cooperation to be achieved.

A broad literature has therefore used game theory to formally analyse the mechanisms
at play in international climate negotiations. Due to the absence of an authority which could
hold countries to a binding agreement, non-cooperative game theory is usually thought most
relevant (Barrett 2005; Finus 2008). This literature typically attempts to provide insights on how
treaties may improve on the status quo, using two benchmark cases: no agreement with each
country only taking into account its own environmental damages and ignoring the transboundary
externalities caused by its emissions; and the global ‘first-best” or fully cooperative outcome,
which would be obtained if a benevolent social planner could set global policy (e.g. Barrett
1994a; Battaglini and Harstad 2016; Harstad 2012b).

Technology as a potential channel for enhancing international cooperation has also been
explored. Barrett (2006) discusses if and how a system of two treaties promoting R&D and
adoption of a resulting breakthrough technology could enhance cooperation. He argues that
the R&D and technology approach faces the same challenges as the Kyoto approach, with the
exception of breakthrough technologies with increasing returns to scale. Building on Barrett
(2006), Hoel and De Zeeuw (2010) show that when R&D costs affect adoption costs, a large
stable coalition is possible and can improve welfare. Harstad (2016), however, points out that
in a dynamic setting, green investment may be negatively affected by the hold-up problem iden-
tified in earlier literature (Beccherle and Tirole 2011): incentives to invest in green technology
may be reduced if countries expect this will force them to agree to abate more in future nego-
tiations, which is especially damaging in the presence of technological spillovers. Conversely,
Battaglini and Harstad (2016) present a dynamic model with incomplete contracts, in which
the non-contractibility of investments in green technology can help leverage the hold-up prob-
lem when agreement duration is endogenous: in their model, a short-term agreement with low
investment is used as a credible threat against free-riding, bringing about a longer-term, more
comprehensive agreement.

This chapter also relates to a growing body of literature exploring international environ-
mental or climate cooperation in the presence of international trade. Research in this area
typically explores the issue of pollution leakage and the potential for border adjustments (e.g.
Barrett 1994b; Grubb et al. 2022; Richter et al. 2021); the potential use of trade policy to incen-
tivise cooperation, also referred to as ‘issue linkage’ (e.g. Barrett 1997; Barrett and Dannenberg
2022; Hagen and Schneider 2021; Nordhaus 2015); or both (e.g. Helm et al. 2012). The chapter
departs from most existing research on trade and the environment in that it considers trade in

pollution-reducing, rather than polluting, products.® Existing work in this vein includes Fischer

5. In reality, of course, the production process itself of so-called ‘clean technology’ is rarely carbon-neutral.
However, for the purposes of this analysis I will focus on the mitigation potential of a clean technology and its
resultant positive externalities.
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et al. (2017), who compare the relative merits of up- and downstream subsidies when regions
set different emission taxes and upstream producers engage in Cournot competition, selling
abatement technology to downstream polluting firms in both regions. They find greater emis-
sion reductions under upstream subsidies, as a downstream subsidy increases the global price
of abatement technology, leading the other region to use less of it. Fischer (2017), building
on Spencer and Brander (1983) and Brander and Spencer (1985), shows that when producing
countries of an environmental technology have domestic political incentives to increase produc-
tion, and environmental benefits are large relative to such political distortions, restrictions on

upstream subsidies can reduce global welfare.

2.3 MOTIVATION: SOLAR PHOTOVOLTAICS

Renewable energy technologies, once considered too expensive to be economically viable, have
seen dramatic declines in cost over the past few decades, becoming competitive with traditional
fossil fuels in many contexts. The two great success stories are electricity production using
wind and solar power. Since the first commercial use of solar PV in 1958, its cost decreased by
more than three orders of magnitude (Way et al. 2022). The price of solar panels fell by 75%
between 2010 and 2015 (Gerarden 2023).

While about half of these cost declines can be attributed to reductions in material costs,
economies of scale, and efficiency-increasing innovation (Nemet 2006), increased competition
is thought to be another key driver (Carvalho et al. 2017; Dent 2018; Nemet 2006).

Figure 2.1 shows the levelised cost of electricity® in solar PV, as well as global electric-
ity generation from solar, over the period 2000-2016. During this time, the levelised cost of
electricity declined from over 0.5 to 0.1 USD per kWh, while global electricity generation in-
creased from virtually nothing to more then 70 TWh per year. Technology innovation support
and demand creation through government subsidies around the world, as well as the expansion
of Chinese manufacturing — characterised by both supply- and demand-side industrial policy
(Chen 2015) — are likely to have played a significant role.” Early government policies sup-
porting solar PV include, for example, government R&D support and the founding of the Solar
Energy Research Institute in the US in 1974 and the 1990 ‘1000 Roof” solar deployment pro-
gram, as well as the 1991 solar feed-in tariff, in Germany (Hansen et al. 2018).

Figure 2.2 illustrates how the share of the top 10 firms in terms of global solar PV ship-
ments declined from 88% in 2000 to 53% in 2015% — a period which experienced significant

6. The price per unit of electricity which would be required in order for a project to break even over its lifetime

7. In the context of the model presented in this chapter, measures targeting the supply side (such as R&D
support or export subsidies) will be conceptualised as ‘producer subsidies’, while demand-creation policies (such
as feed-in tariffs or other deployment programmes) are conceptualised as ‘consumer subsidies’.

8. Note that the data on market concentration displayed in this section was sourced from industry blogs, as it
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Note: The green line plots the Levelised Cost of Electricity from solar PV in $ per kWh between 2000 and
2016. The blue bars show global electricity generation from solar PV in TWh over the same period. We see cost
declining from over 0.5 to 0.1 $ per kWh, while deployment rose from close to zero to over 70 TWh. Source:
Author’s calculations based on Way et al. (2022) and Dudley et al. (2018).

FIGURE 2.1
Solar PV Cost and Deployment, 2000-2016

firm entry, in particular by Chinese firms. The Chinese government supported its solar PV in-
dustry using a mix of upstream subsidies, including discounts on raw materials, electricity and
funding, export subsidies, and technological, infrastructure and personnel support (Chen 2015);
and demand-creation measures such as feed-in tariffs and free grid connection services for dis-
tributed solar by China’s largest state-owned utility (Zhang and He 2013). Chinese solar panel
manufacturers reached more than 50% of global revenue share by 2012 (Chen 2015).

In 2012 and 2013, the US and the EU respectively imposed anti-dumping duties on Chi-
nese solar panels, arguing that the latter were unfairly subsidised (Hughes and Meckling 2017;
Meckling and Hughes 2018) and thereby retaliating against subsidies which reduced the cost
of a low-carbon energy technology for their own utilities and consumers. The model presented
below provides intuition for why the loss in profits earned by domestic producers may have
outweighed the benefits to consumers and the climate from the perspective of western govern-
ments.

Looking forward, technologies which need to decline in cost in order to be economical

include carbon capture and storage, green hydrogen, and energy storage. Lithium ion batteries,

was not possible to obtain data going back further than 2015 and covering more than the top 5 players from more
formal data providers.
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Note: The figure shows the share of the top 10 producers in global shipments of solar PV generation capacity for
the years 2000 (when the top 10 captured 88% of global market share), 2005, 2010, and 2015 (when the share
of the top 10 had declined to 53%). Source: Author’s calculations based on Mints (2016) and Renewable Energy
World (2014).

FIGURE 2.2
Market Concentration Over Time (Solar PV)

for example, are currently the most expensive part of electric vehicles, with a heavily concen-
trated global market. Figure 2.3 plots global market shares in EV batteries in 2022, showing that
the top 10 producers currently capture 92% of global market share. Firm entry and competition
may be key to driving down cost.

However, it is important to note that competition is only one of many reasons why the
solar sector has evolved as it has. Moreover, the ability of Chinese manufacturers to sell at
lower prices is likely to be at least in part due to domestic production conditions, rather than
rent-seeking by western manufacturers.’® Finally, the relationship between firm entry and tech-
nological maturity is surely bi-directional. While this section has sought to add intuition and
real-world context to the theoretical model presented below, it should be interpreted with cau-

tion.

9. One seemingly obvious advantage are lower labour costs. However, Chen (2015) argues that labour costs
account for only 10% of the cost of solar panel manufacturing, due to the industry’s highly capital intensive nature.
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Note: The figure shows the global market share of the top 10 firms in EV batteries in 2022. The market is highly
concentrated, with the top 10 producers capturing 92% of the global market. Source: Author’s calculations based
on E-Vehicle Info (2022).

FIGURE 2.3
Market Concentration in 2022 (EV Batteries)

2.4 MODEL AND PRELIMINARIES

I analyse the strategic interactions between two countries, denoted as i € {F,L}, over two time
periods ¢ € {1,2}. The model is a sequential game, wherein in each period, both countries
simultaneously set policy. Both countries face the challenge of climate change and consider
supporting the adoption of a climate-friendly technology that mitigates climate damages and
negative externalities associated with fossil fuels. This technology is modeled to generate posi-
tive global externalities.

The strategic agents in this game are the governments of the two countries, responsible
for trade policy and subsidies with the aim of maximising domestic welfare over both periods.
For simplicity, I assume there is no discount factor. Each government’s welfare function en-
compasses consumer surplus (CS; ), industry profits (I1; ), and positive externalities (B;;) from
global technology consumption.

Both governments are assumed to have complete information.

Government Policy To define the action set, it is useful to distinguish between the policy deci-

sions each government can take.
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First, in both periods government i chooses whether to trade or not to trade: 7; = (7 1, Ti2)-

T ={(71,7%2)|(%i1, T2 €{0,1})}

, where 7;; = 0 means autarky in period ¢ and 7;; = 1 means trade in period ¢.

Trade requires mutual agreement, such that it is sufficient for one country to prefer autarky
to prevent trade.!® This implies that countries’ decisions with respect to trade map to trade
policy outcomes as follows: A; = min(tg;,T), where A; = 0 indicates that countries are in
autarky in period ¢, and A; = 1 indicates that they are trading (i.e. there is a trade agreement) in
period ¢. Let the sequence of trade policy outcomes'! be denoted A = {A},A,}.

Second, in each period ¢, governments also set the level of consumer subsidies s79"** > 0

prod

and producer subsidies s;, > 0. The set of subsidy policy decisions across both periods is

L cons _prod _cons _prody|/ cons prod cons _prod +
S,—{(SM Si1 0Si2 5Sin )|(Si,1 i1 %2 2S8in eRM)}

An element s; € S; is therefore 4-dimensional vector with the levels of subsidies for country
i in both periods.

The full action set of government i is

b =T xS,

I assume that the subsidies employed are quantity subsidies, such that the overall cost of

(.,‘OI’IS
it
country i and period ¢, and that of a producer subsidy is s

a consumer subsidy is s{9"°r; ;, where r;, represents the quantity demanded by consumers in

f’ tmdqiyt, where ¢;; s the quantity
produced by the domestic industry in period . The government’s best response will be that

which maximises

Z?:]W/i,t('tl'?sb T—i, S7j> -
Z?:lcsi,l‘(rb Siy T—iy s*i) + Hi,l‘(fia Siy T—is S*l’) + Bi,t(Tia Siy T—is S*i) (21)

cons prod
—Sip i (Tiy Sty ToiyS—i) = Siy Gia (Tis Sis T—iy S—i)

Consumer Demand and Externalities In each country and at each stage,!? private sector de-
mand for the technology is characterised by a linear relationship,'®> where p; is the domestic

10. In practice, of course, trade policy tends to focus either on import or export barriers. Strategic sectors might
be protected from import competition, while key inputs into such sectors might be subject to export restrictions.
However, trade barriers do tend to be reciprocal where possible, and free trade agreements require mutual cooper-
ation. I therefore consider this a reasonable simplification.

11. hereafter referred to as a ‘trade policy sequence’

12. Time subscripts are dropped where possible to to aid readability.

13. Similarly to Fischer (2017) and Fischer et al. (2018).
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price of the technology, and a is the demand curve intercept:

n= a (-5 @2

implying that consumer surplus is

Vet W (V)
2 2 2

I assume that the clean technology replaces a dirty one, thereby avoiding negative exter-

nalities from pollution. For ease of exposition, I model this as a public benefit. The positive

externality (B;;) from consumption in country i is a linear function'* of global consumption:

b
Bi; = E(rF,t +rLy)

The global positive externality is the sum of both countries’ externalities, i.e.

B; = b(”F,t + i’L,t)

Production and Market Structure Each country possesses a domestic industry capable of
producing any quantity of the technology. The quantity produced in country i is denoted g;. The
cost of production depends on previous experience, with constant marginal cost ¢ if experience
exists and dc¢ otherwise, where d > 1.

I assume that at the beginning of Stage 1, industry F is at the technology frontier with
marginal production cost ¢, while industry L is lagging behind with marginal production cost
dc. The process of the laggard country moving from marginal production cost dc in Stage 1 to
marginal production cost ¢ in Stage 2 will hereafter be referred to as ‘catching up’. This process

is captured by

cqry if g1 >0

) (2.3)
deqrpif g11 =0

cr2(qr2) = {

Markets are imperfectly competitive, with each country’s domestic industry acting as a

monopolist under autarky and a Bertrand duopolist under trade. I assume that the leading firm’s

5

monopoly price'® exceeds the marginal cost of the lagging firm, such that trade puts competitive

pressure on both firms under all scenarios. This implies that

a—+c

> >dc (2.4)

14. Linear climate damage functions are used in much of the literature on international climate cooperation, e.g.
Battaglini and Harstad (2016) and Holtsmark and Midttgmme (2021).
15. Firm F’s monopoly price is given by Equation 2.6.
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Firms are assumed to be myopic and only take into account the information available in

the current period.

Market Equilibrium Under autarky, firm i solves

maxIl; = pigi(pi) + st qi(pi) — cilai(pi) (2.5)
Under trade, both consumers face the same prices — therefore, the firm with the lower price

captures the whole market. Firm F’s individual demand curve is given by

2a —2pp +sF" 457" 0 pr < pL
S,C(IHS_"_YCOI’[S
°F °L

qr(pr,pL) = { a— pr + 51— if pr=pL
0 if pr>pr

while firm L’s demand curve is given by

0 if pr <pr
qu(pr.pL) =4 a— pp + E if pr=pr
2a —2pp + sF" 4+ 57" if pr > pr
. Let the competitive price faced by the consumer be denoted p. In the absence of producer
subsidies, this leads to p = c if the industry is levelled, and p = dc — € if it is unlevelled, where
€ is an infinitesimal positive number. When producer subsidies are positive they modify firms’
marginal costs accordingly.
I further assume that @ > dc, which ensures consumption in all scenarios.
First Best A benevolent social planner seeking to maximise the sum of both countries’ welfare
over both periods would set global marginal benefits from consuming the technology, both

private and public, equal to marginal cost c.!® This yields

at+b—c=vr;

in each stage of the game. Proof: Appendix A.1.
Business As Usual Under autarky and without subsidies, each firm acts as a monopolist, lead-
ing to suboptimal outcomes due to monopoly losses, missed trade gains, and uninternalised

externalities.
In both Stage 1 and Stage 2, in country F, the representative firm solves

16. Because the frontier country’s marginal cost is lower, it is more efficient for the frontier country to supply
the whole market in this scenario.
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max[[lp = (a— pr)pr —(a— pr)c|

{pr}
yielding
a+tc a—c
PF,1 = PF2 = STE = TF) = (2.6)
2 2

In country L,

a+dc a+c a—dc a—c

= N = o r = o r =
PL1 2 sPL2 5 L1 5 L2 7

Proof: Appendix A.1.

Subgame Perfect Nash Equilibrium I analyse governments’ strategies over trade policy and
subsidies. The following analysis will use backward induction to identify Subgame Perfect

Nash Equilibria in pure strategies.

2.5 ANALYSIS & RESULTS

In the following, I identify Subgame Perfect Nash Equlibria in pure strategies for different
versions of the game and examine their welfare implications. I start by analysing the case in
which countries have the option to trade, but do not use any additional policy to correct market
failures. I then move on to a scenario in which countries can additionally use quantity subsidies

to support the clean technology.

2.5.1 Equilibrium and Welfare without Subsidies

Could a trade agreement on its own (absent other policy to internalise externalities or correct
monopoly losses) constitute an improvement over business-as-usual? Proposition 1 discusses
countries’ welfare payoffs under different trade policy strategies and highlights how these de-
pend on the distance to frontier d. Proposition 2 characterises the pareto optimal Subgame
Perfect Nash Equilibrium, and Proposition 3 highlights the global welfare implications of dif-

ferent trade policy sequences.

Proposition 1. Suppose that no subsidies can be employed, and the government’s action
set is restricted to T;. Let T;" denote country i’s trade policy choice in both periods under its

best response. Then,
i Zt2:1WL~,I((TLJ ) 1)7 le"k)) > Z?:IWLJ«TLJ 70)7 TI?))

i X2 Wre((tp1,1), 7)) > X2 W ((T7,1,0),T7))
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iii There exists a threshold @ = f(a,c,b) such that

« Ford > : T2 Wii((0,1),T7)) = 52, We,((1,1),T7))
« Ford < @: T2 Wii((0,1),T7)) < 52, Wi, ((1,1),77))

iv There exists a threshold y = g(a,c,b) such that

« Ford>vyandb>a—c: X2 Wk, ((0,1),T7)) > T2, Wg,((1,1),T}))
« Ford <yorb<a—c: 22 W, ((0,1),T})) < X2 Wr,((1,1),T}))

v For any a,c,b which are consistent with the assumptions of the model, ® < Y.

Proof: Welfare payoffs under trade and autarky and the implied thresholds @ and 7y are
derived in Appendix A.2.

Proposition 1, parts (i) and (ii) state that both countries are better off if they trade in Stage
2. In Stage 2, if the laggard firm has not caught up with the frontier firm, the frontier firm will
dominate the market with a price p = dc — €. However, if the laggard firm catches up, both
firms share the market at a price p = c¢. In either case, trade leads to higher consumer surplus,
consumption, and positive externalities compared to autarky.!” Because trade requires mutual
agreement, there are other Nash Equilibria in which there is no trade. Therefore, this implies
that trade is a weakly dominant strategy for both countries in Stage 2.

If the laggard country has not caught up, the frontier firm extracts rent from the laggard
country amounting to ¢(d — 1)rz. Conversely, if it has caught up, prices are lower, consumption,
consumer surplus, and positive externalities are higher, and the deadweight loss of monopoly
is eliminated. In order for the laggard country to catch up, countries must remain in autarky in
Stage 1.

Proposition 1, part (iii) states that whether the laggard country’s welfare over both periods
is greater under trade in both periods or autarky in Stage 1, trade in Stage 2, depends on the
value of d. As in Stage 2, in Stage 1 welfare is higher under trade than autarky. However,
remaining in autarky allows the laggard country to catch up. If countries trade in Stage 1, then
the frontier firm supplies the market in both periods. If they remain in autarky in Stage 1, the
laggard country trades off welfare losses in Stage 1 for gains in Stage 2. Whether welfare gains
in Stage 2 outweigh welfare losses in Stage 1 of remaining in autarky to catch up with the
frontier country depends on whether d exceeds some threshold .

While the frontier country extracts rents from the laggard country in an unlevelled industry

with trade, it also enjoys higher consumer surplus and positive externalities in Stage 2 if the

17. This is not the case when subsidies can be employed to correct for monopoly losses and positive externalities.
However, when there are no subsidies, given stated assumptions trade always leads to competitive benefits for both
countries.
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laggard country has caught up. Proposition 1, part (iv) states that the frontier country’s best
response is also dependent on the value of d, as well as the level of the positive externality b.
If d exceeds a threshold 7y and there are positive externalities b > a — ¢, the frontier country’s
welfare payoff is also higher under the trade policy sequence A = {0, 1} than under A = {1,1}.
Intuitively, while the intertemporal trade-off for the laggard country depends only on the relative
levels of consumer surplus and positive externalities under different trade policy sequences, the
frontier country additionally takes into account the rents it can extract from the laggard in an
unlevelled industry under trade. In the absence of positive externalities, these rents ensure that
the benefits from trading in the first stage (comprising higher consumer surplus in Stage 1, as
well as rents collected in both stages) always outweigh the gains in consumer surplus in Stage
2 if the laggard has caught up. However, positive externalities from consumption present an
additional gain from fiercer competition in Stage 2, resulting in the conditions presented in (iv).

Part (v) states that the threshold @ is smaller than 7y, meaning that there are values of d
for which the laggard country’s pay-off is higher under A = {0, 1}, while that of the frontier
country would be higher under A = {1,1}.

Following from Proposition 1, we can characterise the pareto-optimal SPNE in pure strate-

gies as follows:

Proposition 2. If no subsidies can be employed, and the government’s action set is restricted
to T;, then

i There exists a pareto-optimal Subgame Perfect Nash Equilibrium in which the outcome is

characterised by

* Autarky in Stage 1, Trade in Stage 2 ifd > ®
* Trade in Stage 1, Trade in Stage 2 if d < ®

ii Ifd>vy>wand b >a—cord< <Y, this SPNE is pareto superior to any other trade

policy sequence, including other Nash Equilibria as well as non-equilibria.

iii If o <d<vyord>Yandb < a-—c, the SPNE is pareto optimal, but the frontier country
would enjoy a higher welfare payoff under trade in both Stage I and Stage 2.

Given that trade requires mutual agreement, it is sufficient for one country to prefer autarky
over trade in order to prevent trade. Proposition 2, part (i) therefore describes the equilibrium
as determined by the value of d in relation to @ as defined in Proposition 1: the pareto optimal
Subgame Perfect Nash Equilibrium involves autarky in Stage 1, trade in Stage 2 if d > @, and
trade in both periods if d < .

Proposition 2, part (i1) states that if d > ¥ (as defined in Proposition 1) and b > a — ¢ or if
d < o, the policy outcomes defining the SPNE are associated with the highest possible welfare
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payoff for both the laggard and the frontier country, and are therefore pareto superior to all other

possible outcomes (including both equilibria and non-equilibria). Part (iii) states that if one of

these conditions does not hold, the equilibrium is pareto optimal, but it is not the only pareto

optimal allocation: the frontier country would enjoy a higher welfare payoff under a different

outcome which is, however, not an equilibrium.

As per the reasoning presented above and the welfare payoffs derived in Appendix A.2,

if countries trade in Stage 2, neither country can increase its welfare by moving to autarky.

In Stage 1, if d > o, cumulative welfare over both periods in the laggard country is higher

by remaining in autarky, and moving to trade will therefore not constitute a welfare improve-

ment. Since trade requires mutual agreement, the frontier country cannot unilaterally bring

about trade, even if this would be welfare-improving. Moreover, if d < @, moving to autarky

would be welfare-reducing for both countries, making the mutual decision to trade an equilib-

rium.

Other Equilibria The Subgame Perfect Nash Equilibrium in pure strategies as outlined in

Proposition 2 is pareto optimal, but not unique. Due to the assumption that trade requires mutual

agreement, opting for trade affects payoffs only if the other country also opts for trade, while

opting for autarky affects payoffs only if the other country does not. This implies that there

are additional Subgame Perfect Nash Equilibria which deviate from the equilibrium outlined

in Proposition 2, for example because both countries have opted for autarky in Stage 1 despite

d < o or both countries have opted for autarky in Stage 2. These equilibria are pareto inferior.

Having analysed each individual country’s welfare payoffs under different trade policy

outcomes and characterised the pareto optimal SPNE, I now turn to global welfare.

Proposition 3. If the government’s action set is restricted to T,, there exists a threshold 60 =
k(a,c,b) such that

. Ford>9andb>%:

=5 Wi ((0,1), (t2.1,1)) + Wi (221, 1),(0,1))
z“1/‘2:1VVFJ((TFJ7 1)’ (07 1)) +WLJ((07 1)’ (TF,17 1)) > 21‘2:1WFJ((15 1)7 (lv 1)) +WL7t((17 1)7 (lv 1))

e ford<Borb< %:

thzleJ((O’ 1)’ (TLJ? 1)) +WLJ((TL,17 1)7 (07 1))
E12=1VVFJ((7:F.,17 1)7 (07 1)) +WLJ((07 1)7 (TFJ? 1)) < thzleJ((lv 1)7 (L 1)) +WLJ((17 1)7 (17 1))

Proof: 6 is derived in Appendix A.2.

Proposition 3 states that the presence of positive externalities implies that the policy se-

quence A = {0, 1} is associated with greater global welfare than A = {1,1} if d exceeds a
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particular threshold. For any a,c,b which are consistent with the assumptions of the model,
w<0<y.
Appendix A.2 derives welfare payoffs for both countries for all possible strategy profiles.
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Note: The figures above plot the ratios of overall (sum of Stage 1 and Stage 2) country welfare, global welfare, and
firm F’s profit for different values of d under A = {1, 1} as compared to A = {0, 1} when a = 2¢. Figures A.1, A.2
and A.3 (Appendix) show the same plots for different ratios of a to c. Where the ratio falls below 1, the outcome
in question is improved by remaining in autarky in Stage 1.

The figures illustrate the opposing effects of trade on profit and welfare: the further country L is from the techno-
logical frontier, the more A = {1, 1} reduces overall welfare as compared to A = {0, 1}, and the more it increases
firm F’s profits (firm L’s profits are not plotted as the ratio is always 0). Figures 2.4a and 2.4c highlight the sig-
nificance of the positive externality b(rp + r7) in the model: for b =0, A = {1,1} is always welfare improving
for the frontier country, as well as globally, for any value of d which is greater than 1 and satisfies Equation 2.4.
However, for sufficiently large positive values of b, trading in both periods can become welfare reducing beyond
certain thresholds of d for both countries. Moreover, the greater b becomes relative to a, the more the ratio of
individual countries’ welfare payoffs should resemble each other.

FIGURE 2.4
Welfare and Profit Under Trade Relative to Autarky

Figure 2.4a plots the ratio of the frontier country’s, Figure 2.4b the laggard country’s over-



2.5. ANALYSIS & RESULTS 34

all (Stage 1 plus Stage 2) welfare under the policy sequence A = {1,1} versus A = {0, 1} for
different values of d and b when a = 2¢. The figures show that for b = 0, losses in rents and
Stage 1 externalities and consumer surplus outweigh any Stage 2 gains in externalities and con-
sumer surplus from the laggard industry catching up for the frontier country, while ® is much
lower than it is at higher values of b. The greater the positive externality b, the more closely
aligned countries’ preferences for trade or autarky in Stage 1 become: @ and A converge as
b increases. Finally, Figure 2.4c plots the ratios of global welfare for different values of b,
showing that in the absence of positive externalities, global welfare implications more closely
resemble the frontier country’s welfare and make free trade the preferred choice. When a posi-
tive externality is present, remaining in autarky in Stage 1 to allow the laggard country to catch
up becomes welfare improving globally for sufficiently high values of d.

Finally, Figure 2.4d plots the ratio of profits earned by firm F in the scenario A = {1,1}
compared to A = {0, 1}.

2.5.2 Optimal Subsidy Mix Under Trade

In the presence of market failures such as consumption externalities and imperfect competition,
a policy maker may want to intervene beyond the decision whether or not to trade. In this
section, I therefore consider the use of quantity subsidies.

An upstream (producer) subsidy shifts the firm’s profit, as in Equation 2.5, while a down-
stream (consumer) subsidy shifts the demand curve, as shown in Equation 2.2. Under autarky,
either subsidy affects quantitites and welfare in the same way. Under trade, the subsidy mix

matters. '8

prod x

Let s7 denote country i’s optimal subsidy mix, with s; and s°"* denoting the optimal

producer and consumer subsidy.

Proposition 4. Suppose both countries can choose a mix of consumer and producer subsidies.
In Stage 1, the laggard firm produces at constant marginal cost dc, while the frontier firm pro-
duces at constant marginal cost c. Then there exists a pareto-optimal SPNE in pure strategies

such that
i Countries trade in both periods: T/ = Ty = (1,1).

ii In each period, the laggard country sets its producer subsidy at sfmd* =c(d—1)—c¢

. - d
iii The frontier country does not use producer subsidies: s"}m =0
iv In each period, both countries set consumer subsidies s7"* = s{°"* = %.

18. Fischer (2017) highlights how under imperfect competition, an upstream subsidy will enhance the domes-
tic firm’s market share, while a downstream subsidy benefits both domestic and foreign firms. Under Cournot
competition, a downstream subsidy also tends to increase prices globally, which is not the case here.
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Proposition 4, part (i) is based on the observation that if both countries have the flexibility
to choose their subsidy mix, the weakly dominant strategy for both is to trade in both periods.'’
Part (i1) states that the laggard country opts for a producer subsidy that enforces marginal cost

pricing and prevents the frontier firm from extracting rents:

s’L)md* =cld—1)—¢
Part (iv) states that simultaneously, both countries implement a consumer subsidy equal to

b

S%Ons* — SZO}’!S* — E
, thereby internalising domestic positive externalities.
As a result, the frontier firm supplies the global market at a price of p = ¢, with demand
(rr and rz) equal to a — c. The outcome is equivalent to perfect competition. Welfare in each

country during each stage of the game can be expressed as:

(a—c)?
2

This configuration represents a Subgame Perfect Nash Equilibrium in this model. The

Wrp =W, = +b(a—c)

equilibrium is pareto-optimal, but not unique. Optimal subsidies and the resulting quantities
and welfare payoffs are derived in Appendix A.4.

The laggard country has no incentive to deviate from this equilibrium. Moving to autarky
would increase production costs and reduce consumer surplus and positive externalities. Setting
a higher upstream subsidy results in either market sharing or the laggard firm monopolising the
market, both of which similarly reduce its welfare. Reducing the subsidy would allow the
frontier firm to extract rent from its consumers and increase prices while reducing consumer
surplus and positive externalities.

Likewise, the frontier country finds no welfare-improving deviations. In autarky, the fron-
tier country would set a subsidy which eliminates the deadweight loss from the monopoly and
internalises domestic positive externalities, leading to the same domestic outcome as that which
is obtained when countries trade and s&"/* = ¢(d — 1) — & and s$* = s¢ons* — 5. Autarky
would reduce welfare in the frontier country by lowering positive externalities from consump-
tion in the laggard country.

Finally, given the price regime and trade conditions, g is the optimal consumer subsidy.
While positive externalities would increase if the subsidy was higher, each country considers

only the marginal benefit to its own population, which equals %.

19. When both producer and consumer subsidies are available, neither country benefits from allowing the laggard
country to catch up. The inter-temporal trade-off therefore becomes irrelevant.
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The policy mix countries will choose if they are able to trade and use a combination of
producer and consumer subsidies thus delivers the highest cumulative welfare, given the first
best is not available. It cannot correct the market failure resulting from the climate externality.
However, it yields an outcome equivalent to perfect competition.

Other Equilibria The Subgame Perfect Nash Equilibrium in pure strategies as outlined
above is pareto optimal, but not unique. Because trade requires mutual agreement, neither
country can unilaterally decide to bring about trade. If one country opts to remain in autarky
then the other country is indifferent between trade and autarky, making trade a weakly dominant
strategy. This implies that there are additional Subgame Perfect Nash Equilibria in which coun-
tries trade only in one period, but not the other, or remain in autarky throughout both periods.
In any given stage of the game, such an equilibrium could come about because both countries
have opted for autarky. The optimal subsidy for each country becomes that which eliminates the
deadweight loss from monopoly and internalises domestic positive externalities. However, both
countries are worse off under autarky relative to trade, rendering these other equilibria pareto

inferior. For optimal subsidies, quantities and welfare under autarky, see Appendix A.3.

Equilibrium and Welfare without Producer Subsidies In practice, countries have often relied
on downstream subsidies to support green industries. This may be due to political acceptability
considerations, fiscal constraints, or the dubious status of upstream subsidies under World Trade
Organisation rules. This section therefore analyses equilibrium policy and welfare when only

consumer subsidies are available.

Proposition 5. Suppose countries can only use consumer subsidies, and all other assumptions

remain unchanged. Then,

i th:]WLJ((Oa 1)7‘927 T;:as}k?)) = Z?:]WL’[((0,0),SZ, T]j"kas}k?) > Z?:IWLJ((LTLQ)?SZ? bevs}k’))
There are thus two weakly dominant strategies for the laggard country. One strategy in-
volves autarky in both stages, while the other involves autarky in the first and trade in the

second stage.

ii There are eight SPNE in pure strategies. In all of them, the strategy profiles imply autarky
in the first stage.

CONS * CONS *

iii For all equilibria, in Stage 1: Sp = a+b—c si°" =a+b—dc

iv For all equilibria, in Stage 2, both firms produce at constant marginal cost c.

v For the set of SPNE in which countries trade in the second stage, in Stage 2: s@5°* =

cons* b

SL2 2
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vi For the set of SPNE in which countries are in autarky in the second stage, in Stage 2:

cons* __ ,CONns* __ _
Sga =S =a+b-—c

Proof: Appendix A.4.1.

Proposition 5, part (i) states that the laggard country’s overall welfare payoff is higher if
countries remain in autarky in Stage 1 than if they trade in Stage 1. Whether countries trade
in Stage 2, having remained in autarky in Stage 1, is irrelevant to either country’s welfare.
Under autarky each government will subsidise in order to eliminate the deadweight loss from
the monopoly and internalise the domestic part of the climate externality.

As a result, there are no competitive benefits from trade, and quantities consumed in both
countries in any given stage are the same under trade as under autarky. However, remaining in
autarky in Stage 1 implies equalised marginal costs in Stage 2, which reduces prices, increases
consumer surplus and positive externalities, and eliminates the possibility of rent extraction by
the frontier country. The laggard country’s (weakly)?® dominant strategy is therefore to remain
in autarky in Stage 1. There is no equlibrium involving trade in Stage 1. In Stage 2, both
countries are indifferent between trade and autarky as quantities consumed and welfare payoffs
are identical under both scenarios. There are thus eight Subgame Perfect Nash Equilibria in
pure strategies, as stated in Proposition 5, part (ii).

Each SPNE involves autarky in Stage 1, with the consumer subsidies given in Proposition
5, part (iii). As a result, the laggard firm catches up and also produces at marginal cost ¢ in
Stage 2, as stated in part (iv).

Part (v) states optimal consumer subsidies in Stage 2 of those SPNE which involve trade
in the second stage, while part (vi) states optimal consumer subsidies in Stage 2 of the SPNE
which involve autarky in the second stage.

To see why these are the only pure strategy Nash Equilibria, suppose countries opted for
trade in Stage 1. As shown in Table A.3, Appendix A.4.1, the laggard’s welfare in Stage 1
remains the same, while the frontier country’s welfare in Stage 1 increases by ¢(d — 1)rz. In
Stage 2, following autarky, the laggard is indifferent between trade and autarky. However, its
welfare would be higher, had it remained in autarky in Stage 1 and caught up to the technology
frontier. Anticipating this, the laggard could increase its Stage 2 welfare by moving to autarky
in Stage 1, without sacrificing any Stage 1 welfare. Thus, the laggard’s best response if the
frontier country opts for trade in Stage 1 is to opt for autarky. Given the laggard’s best response,

the frontier is indifferent between trade and autarky.

20. Because trade requires mutual agreement, such that the laggard country would be indifferent between trade
and autarky if the frontier country had opted for autarky.
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2.6 DISCUSSION & CONCLUSION

Government support for climate change mitigation technologies often goes hand in hand with
efforts to promote domestic production, such as in the US Inflation Reduction Act and the EU’s
Net Zero Industry Act. Meanwhile, foreign subsidies for such technologies have in the past
been met with trade restrictions such as anti-dumping measures, as for example in the US- and
EU-China solar trade wars in 2012 and 2013. While restrictions on trade increase the cost
of deploying green technologies, thereby potentially slowing down climate change mitigation
efforts, attempts to reach an environmental trade agreement at the WTO have thus far been
unsuccessful.

Promoting domestic green industries could be deemed desirable for many reasons. Under-
lying factors and objectives could include local job creation and the interests of industry lobby
groups, as well as the resilience of domestic supply chains in a key sector such as energy, par-
ticularly in the context of a volatile geopolitical environment. Fischer (2017) shows how in the
presence of environmental externalities, these individual country objectives can lead to an up-
stream subsidy race correcting environmental externalities in a framework building on Spencer
and Brander (1983) and Brander and Spencer (1985), where two producing countries compete
for a third country export market.

This chapter has focused on the implications of environmental externalities in the presence
of an infant industry and imperfect competition. In the absence of policy tools such as subsidies
to correct for market failures, temporarily protecting an infant industry can be beneficial for
the protecting country in the long run. In contrast to other work on infant industries, which
typically emphasises intersectoral spillovers and other growth-promoting factors rendering a
sector strategically important, these benefits arise because allowing the infant industry to ma-
ture increases global competition later on. This prevents rent extraction by the country which
was originally at the technology frontier. Moreover, when there are sufficiently large positive
externalities from the technology (such as, in this case, avoided climate damages), allowing an
infant industry to catch up improves not only the welfare of the initially laggard country, but
also global welfare, and sometimes even the welfare of the frontier country.

In contrast, when countries are able to use both up- and downstream subsidies, the laggard
can avoid rent extraction by the frontier country and global gains from trade are maximised.
Infant industry protection is no longer necessary in this framework and the short-term costs
associated with it can be avoided. However, when only downstream subsidies are available,
gains from trade disappear. Then, both the laggard country’s welfare as well as global welfare
are unambiguously higher when the infant industry is allowed to catch up. The frontier country
is worse off than under free trade, as it loses the ability to extract rents from the laggard.

The model provides intuition for why it may be optimal that (a) countries supporting clean
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technology often use trade barriers such as local content requirements, to the extent to which
those actually work,?! and (b) early movers in the global market often oppose production sub-
sidies, as was apparent in the EU and US-China solar trade wars, for example.?? The results
imply that an environmental trade agreement may be desirable from a climate point of view only
when production subsidies are available. Global trade law does not currently make allowances
for the potential global benefits of producer subsidies for products with positive externalities,
which renders such subsidies susceptible to challenge, as exemplified in the US- and EU-China
solar trade wars. This relates to the broader challenge of reviewing WTO rules to ensure they
are compatible with climate goals, especially given stated plans to introduce a Carbon Border
Adjustment Mechanism in the European Union (Grubb et al. 2022).

More broadly, the framework presented here demonstrates that when there are positive
externalities, industrial policy can benefit not only the country undertaking it, but also the rest
of the world. This is relevant to any technology with positive consumption externalities in
addition to those with environmental benefits.

The model presented is very parsimonious and includes a number of limiting assumptions.
First, the only mechanism through which an active domestic industry is beneficial for the lag-
gard country is by catching up the technology frontier and thereby avoiding rent extraction by
the other country. Once the laggard has caught up, Bertrand competition implies profit dissi-
pation for both countries. The model abstracts from any other potential benefits of having an
active domestic industry, such as job creation or inter-sectoral spillovers.

While there may be some differences in quality, the products motivating the chapter — such
as solar panels, batteries or vaccines — are homogenous enough for price competition to be a
reasonable assumption. The ‘catching up’ process can be conceptualised as implicitly being
driven by entry costs or dynamic economies of scale, and, while highly simplified, is sufficient
to illustrate the mechanism this chapter has sought to highlight. However, other factors such
as capacity constraints on the one hand, economies of scale on the other, are not explicitly
considered here and might more appropriately be modelled using Cournot competition.

In a Cournot model, both firms would produce positive quantities even in an unlevelled
industry, implying that results would depend on the properties of the learning curve. Here, the
learning process is modelled in a very simplistic way: if the laggard country is active, it catches
up; otherwise the industry remains unlevelled. The frontier country does not learn. Future work

could consider a more sophisticated learning curve, as well as dynamics of innovation in level

21. Recent empirical evidence, however, suggests that local content requirements alone are not sufficient to
develop an infant industry, see Scheifele et al. (2022).

22. The inspiration for this chapter comes from China’s entry into the solar PV market, supported by industrial
policy, and the resulting increase in competition and reduction in prices. By now, however, China has come to
dominate the market for solar PV as well as other clean technologies. One might therefore argue that at this point
in time, China has become the frontier country and countries which used to be early movers are lagging behind.
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versus uneven global supplier markets. The merits of infant industry protection would then
depend on the relative rates of learning, as well as degree to which current market share and

competition incentivise learning and innovation.



Chapter 3

Was the Trade War Justified? Solar PV
Innovation in Europe and the Impact of
the ‘China Shock’

3.1 INTRODUCTION

Preventing the worst effects of climate climate change by limiting global temperature rises (be
it to 2°C or even 1.5°C) requires rapid and dramatic reductions in greenhouse gas emissions
around the world. In the face of continuing economic and population growth, this implies an
even more rapid reduction in the global economy’s emission intensity. Technological change
can lead to significant long run cost reductions in clean technologies, thereby altering the pre-
sumed trade-off between climate benefits and economic cost in magnitude (Popp et al. 2010) if
not removing it entirely. This is rarely more evident than in the case of electricity production
from renewable sources, specifically onshore wind and solar power, which saw reductions in the
levelised cost of electricity of 23% and 73%, respectively, between 2010 and 2017 alone (Gie-
len et al. 2019). The main drivers of these trends, in particular with respect to solar technology,
are thought to be policy support and the expansion of low cost manufacturing in China. The
latter has, however, also resulted in trade tensions, culminating in the US-China solar trade war
in 2012 and the EU-China solar trade war in 2013. This chapter adds to the empirical literature
on clean technological change by examining whether low wage import competition presented a
driver or a barrier to technological progress in solar photovoltaic technology. It also constitutes
a case study relating to the wider literatures on the China Shock and on the relationship between
competition and innovation in a world of heterogeneous firms.

The effects of competition (through trade or otherwise) on innovation and growth are am-
biguous. Trade theory suggests that higher competition through trade leads to a redistribution

of market share towards the most productive firms and the exit of the least productive, thereby
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raising overall productivity (Baldwin and Gu 2004; Melitz 2003). A similar effect could exist
for innovation, with the most innovative firms escaping competition through innovation (Bloom
et al. 2016), or innovating in order to simply keep up with competitors (Aghion et al. 2005;
Baldwin 1992). Trade may further unlock benefits from comparative advantage, knowledge
spillovers, and increased incentives to innovate due to a larger market (Grossman and Help-
man 1990). On the other hand, more trade and fiercer competition could also harm innovation
through a reduction of rents available to invest in it, and by reducing firms’ ability to appropriate
post-innovation rents (Baldwin 1992).

Empirically, the effect of competition on innovation appears to depend on market structure.
Aghion et al. (2005) show that the relationship between product market competition and inno-
vation resembles an inverted U-shape. In a related paper, Aghion et al. (2009) test the effects
of entry on incumbent innovation using UK firm-level data, showing that the threat of entry
encourages incumbent innovation and productivity growth in sectors close to the technological
frontier, but may discourage it in laggard sectors. Schumpeterian growth models, such as the
one presented in Aghion et al. (2014), provide a theoretical framework which can explain these
empirical patterns. They distinguish between R&D efforts by laggard firms to ‘catch up’ with
the leader, and efforts to innovate by neck-and-neck firms attempting to become a leader, which
is more beneficial in a more competitive environment. An increase in product market compe-
tition leads to a ‘Schumpeterian effect’ reducing innovation among laggards, as the benefits of
catching up with the leader are reduced when less rent can be extracted; at the frontier, firms
may conversely be encouraged to innovate more in order to ‘escape competition’ (Aghion et
al. 2014). Given the very low initial levels of competition identified by Carvalho et al. (2017),
we might expect that increased competition would tend to encourage innovation within the so-
lar PV manufacturing sector — in particular in countries which started out as the technological
leaders. In line with the theory of international trade with heterogeneous firms, we would also
expect to find this effect to be more pronounced among the most technologically advanced firms
(Bloom et al. 2016; Melitz 2003).

Existing work on the evolution of the solar value chain includes Carvalho et al. (2017),
who argue using descriptive statistics that although the expansion of solar panel manufacturing
in China squeezed profit margins and forced many western firms out of the market, innovation
became more intensive and radical among survivors. This is in line with some of the more gen-
eral literature on Chinese import competition: Bloom et al. (2016), using European firm-level
data, find that higher import competition from China after its accession to the WTO increased
innovation within the most exposed European firms, while employment and survival among
low tech firms decreased. In contrast, Autor et al. (2020) estimate the effect of Chinese import
competition on US manufacturing innovation and find a significant negative impact on private

sector innovation, both at the firm- and technology class-level. Chakravorty et al. (2023) find
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an inverted U-shaped relationship between innovation by publicly listed US firms and Chinese
import competition, wherein the latter increased innovation if it was below 60%, but reduced
it above 60%. Further, Acemoglu et al. (2016a) argue that import competition from China has
been responsible for significant manufacturing job losses in the US, as well as weak overall
employment growth. A systematic review of existing research on this topic by Shu and Stein-
wender (2019) concludes that the empirical literature finds mixed effects of import competition
on firm productivity and innovation in the US in particular, but that positive effects are generally
found for developing countries and, to some extent, Europe. The authors posit that perhaps the
US are to the right of Aghion’s inverted U, whilst Europe and the developing world are to its
left.

The lack of consensus emerging from the broader ‘China Shock’ literature motivates this
case study of the solar sector. I carry out a firm-level analysis of the effects of the China
shock on firm-level innovation in solar PV and related technologies by 10,137 firms in 15 EU
countries between 1999 and 2020. The main challenge to this endeavour is the endogeneity of
trade patterns, which I address by instrumenting for country-level Chinese imports (scaled by
market absorption) using overall Chinese exports to the rest of the world interacted with start-
of-period import competition. Using import penetration in other countries or world exports as
an instrument is a widely used approach in the broader China Shock literature. In addition, I
interact country-level measures of import competition with a firm-level exposure measure based
on the similarity of each firm’s patent portfolio to those of Chinese solar innovators, based on
Jaffe (1986)’s proposed measure of technological proximity.

The results indicate that firms which were exposed to higher import competition tended to
innovate more if they had a low, and less if they had a high, historical stock of innovation —
with the exception of the small minority of firms whose knowledge stock fell within the top 1
percentile, which also increased their innovation. Moreover, a high a priori technology stock
is negatively associated with future innovation. This suggests that innovation in the solar PV
sector was driven by newcomers, rather than incumbents with a large existing knowledge stock.
Newer firms appear to have been more adaptive in responding to competition by increasing
innovation, while incumbents may have been locked into old technological paradigms. Given
that firms with a smaller existing knowledge stock seemed to innovate more overall, the fact
that import competition was associated with higher innovation among those firms suggests that
China’s entry into the sector introduced a healthy dose of competition, calling into question the
rationale behind the trade war.

I do, however, find evidence to suggest that import competition increased the odds of firm
exit by about 10%. Moreover, I do not consider the effects of Chinese competition on employ-
ment or global market share in solar PV, outcomes which policy-makers may have considered

to be of greater importance than innovation or market dynamism.
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The remainder of the chapter proceeds as follows. Section 3.2 further motivates the case
study by providing a brief overview of the literature on clean technological change and the
context and significance of the solar trade war. Section 3.3 provides details of the dataset and

empirical strategy. Section 3.4 reports results, and section 3.5 concludes.

3.2 BACKGROUND: CLEAN TECHNOLOGICAL CHANGE
AND THE SOLAR TRADE WAR

There is some empirical evidence that pricing carbon — economists’ poster child for a ‘first
best’ policy — can on its own encourage innovation in low carbon technologies, for example
in the case of the EU ETS (Calel 2020; Calel and Dechezleprétre 2016). However, a broader
literature on technological change and the environment argues that this is not sufficient: there
are multiple externalities at play, including positive knowledge spillovers from R&D, (dynam-
ically) increasing returns to scale, technological lock-in and path-dependency, network effects
and learning-by-doing. Energy systems in particular are resistant to change (Neuhoff 2005).
This calls for a portfolio of policies, combining environmental regulation legislating for emis-
sion reductions with R&D incentives and policies to support diffusion (Acemoglu et al. 2012;
Acemoglu et al. 2016b; Jaffe 2012; Jaffe et al. 2005; Popp 2010; Popp et al. 2010). In prac-
tice, governments aiming to promote renewable energy technology have deployed a range of
demand-pull policies such as feed-in tariffs and renewable energy portfolio standards, as well
as supply-push policies like R&D or manufacturing subsidies.

Aside from its importance for climate change mitigation, clean technological change may
bring a number of co-benefits. Using citations from clean, grey and dirty transport and elec-
tricity generation patents to identify knowledge spillovers from those respective technologies,
Dechezleprétre et al. (2017) find that clean technologies tend to generate larger spillovers than
their dirty counterparts (though they acknowledge this may be due to those technologies’ nov-
elty more than anything else). Renewable energy technologies are also thought to have partic-
ularly large macroeconomic multipliers (Hepburn et al. 2020). Co-benefits such as economic
growth and job creation are often brought forward by governments seeking popular support for
pro-climate technology support; this strategy, while possibly effective, has also contributed to
trade tensions in the renewable energy space (Lewis 2012, 2014).

Gerarden (2023) estimates a dynamic structural model of oligopolistic (Cournot) firm com-
petition to study the effects of consumer subsidies on solar manufacturers. Using data on the
electrical conversion efficiency of solar panels as measure of technological innovation, he shows
not only that induced innovation significantly increases the social benefits of subsidies (as com-

pared to the benefit of short run mitigation alone), but also that induced innovation may not only
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occur in the country paying out the subsidies, but spill over to other parts of the world (Gerarden
2023). In addition to potential concerns over where the benefits of domestic subsidies accrue,
foreign subsidies are inevitably susceptible to challenge under WTO law, as the case of solar

PV demonstrates.

The Evolution of the Solar PV Sector Solar photovoltaics is a technology central to decarbon-
isation, which has undergone a dramatic evolution since its conception in the 1950s. Its cost
has declined by a factor of almost 100 since then, making it a unique historical example in the
sphere of energy technologies (Nemet 2006).

Nemet (2006), focusing on the period 1975-2001 (during which the cost of PV modules
decreased by a factor of 20), identifies the three largest drivers of cost reductions (out of the
seven considered) as being plant size, cell efficiency, and the cost of silicon. However, those
seven drivers (which additionally include yield, poly-crystalline share, silicone consumption
and wafer size) leave nearly half the change in cost over the period unexplained.

One of the potential explanations for this residual is increased competition (Nemet 2006).
Indeed, the dramatic reductions in the cost of solar PV equipment are often attributed to the
expansion of low-cost manufacturing in China (Carvalho et al. 2017; Dent 2018), which drasti-
cally increased competition in the sector, reducing the share of top 5 producers from about 80%
in 2004 to about 30% in 2012 in up- and midstream production (Carvalho et al. 2017). Between
2010 and 2015 alone, the price of solar panels fell by 75% — two thirds of all solar panels were
produced by Chinese manufacturers during this period (Gerarden 2023).

Due (at least to a large extent) to these dramatic falls in equipment costs, the levelised
cost of electricity (LCOE) has decreased rapidly, making it competitive with fossil fuels in
many cases. Figure 3.1 illustrates the rapid reduction in the LCOE from solar PV, falling from
about 80,000 USD per MWh in 1965 to just 84 in 2016. The graph also shows how electricity
generation using the technology has risen sharply since the turn of the century.

This is good news for the cost of greening the energy sector, which is responsible for two
thirds of global greenhouse gas emissions (Gielen et al. 2019). However, the expansion of low-
cost manufacturing in China has not only enabled dramatic cost reductions, but has also resulted

in trade tensions.

Solar Trade Wars Figure 3.2a graphs the evolution of imports of solar panels from China to
France, Germany, the UK, the US, and worldwide. While a notable drop can be observed fol-
lowing the trade dispute in 2012, the global trend mirrors country and regional trends. As figure
3.2b shows, world exports of solar panels also followed a similar trend for the regions shown,
with China clearly rising to dominance between 2005 and 2010, but all countries’ exports peak-
ing just after 2010. This is likely reflective of the solar panel ‘production glut’: the global

oversupply of solar panels which occurred during this period.
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FIGURE 3.1

Solar PV Cost and Deployment Over Time

Note: The figure plots global levelised cost of electricity (LCOE) from solar PV in USD per kWh over time (left
axis, green line) against global solar PV electricity generation in TWh (right axis, blue bars). It demonstrates the
dramatic fall in costs between the 1960s and early 2000s, as well as the rapid increase in deployment since about
2005. Source: Way et al. (2022), Dudley et al. (2018).

In 2012, the US and China entered into a trade dispute over solar PV subsidies when the US
imposed anti-dumping and countervailing duties on Chinese module manufacturers, following
a petition led by a subsidiary of the German firm SolarWorld 2011. Tariffs were supported by
a coalition of congress members and manufacturing firms despite opposition from a majority
of US solar firms. China responded with a WTO complaint and imposed its own anti-dumping
duties on US polysilicon (Hughes and Meckling 2017; Stemler et al. 2016).

The EU-China solar trade war started out in a very similar fashion. An industry coalition
named ‘Pro Sun’, again led by Solar World, called for anti-dumping and anti-subsidy inves-
tigations. In September 2012, the European Comission launched investigations and imposed
provisional tariffs on Chinese solar panel imports in 2013, despite opposition by a number of
other industry coalitions. The dispute was resolved when the European Commission and China
agreed on a minimum price for imports, as well as restrictions on export volumes (Meckling
and Hughes 2018).

The extant literature studying the effects of these trade disputes suggests that the US and
European anti-dumping measures reduced stock market valuations of Chinese solar companies

(Crowley et al. 2019; Huang et al. 2016), as well as those of European manufacturers (Mc-
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FIGURE 3.2
Regional and Global Trends in Solar PV Trade

Note: Figure 3.2a plots Chinese imports of solar panels by a subset of countries and worldwide over time. Figure
3.2b plots the same countries’ global exports of solar panels. Both graphs show a peak in solar panel trade around
2010, which led to the global production glut.

carthy 2016), and that they reduced demand for solar in the US and were generally damaging
to downstream utilities and consumers (Houde and Wang 2022). More generally, anti-dumping
measures are thought to have heterogeneous effects on firms in the protected market. Using Eu-
ropean firm-level data and a distance-to-frontier measure, Konings and Vandenbussche (2008)
find that laggard firms experience productivity gains and frontier firms experience productivity
losses during periods of protection. Jabbour et al. (2019) distinguish between importing and
import-competing firms when analysing the effect of EU anti-dumping measures on total fac-
tor productivity, employment, exports and investment in R&D over the period 1999-2007, and
estimate a negative net effect on French employment and exports.

There are a number of competing claims surrounding the solar trade war, its justifications
and its effects. On the one hand, US and EU trade defence measures against China were op-
posed by many domestic firms, whose position in the international supply chain meant that they
could be adversely affected by the anti-dumping measures (Curran 2015; Meckling and Hughes
2018; Wu and Salzman 2013). On the other hand, the narrative supporting trade remedies held
that China was utilising unfair public subsidies to drive out foreign competition and establish
a monopoly by ‘dumping’ underpriced solar panels on the European market. Ensuring a com-
petitive solar industry in the future would in such a case require trade defence (Goron 2018).
Gaining better insight into how China’s manufacturing expansion affected the solar sector, and
thus, potentially, the energy transition, is crucial in order to evaluate the decision to impose
trade defence measures.
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3.3 DATA & EMPIRICAL STRATEGY

This chapter combines firm-level patent data with country-level trade and production data. Data
on patent families, representing inventions, was obtained from the EPO’s PATSTAT Global
Database (2023 spring edition). Patents and their respective patent families were selected using
a list of technology codes from the Cooperative Patent Classification (see Table B.1 for the
list of codes used). The technology categories included are solar photovoltaic cells; production
equipment and inputs; storage; energy systems which include solar cells; enabling technologies;
and hybrid technologies such as solar PV-thermal or solar-wind hybrids. Codes were selected
via a keyword search and manual checks on the descriptions of codes within the Cooperative
Patent Classification. Furthermore, patents related to solar cells were identified as belonging to
generation 1, 2 or 3 as set out in Table B.2 (Appendix B.2).! 2

Patent families were matched to patent applicants and inventors, identified by their psn_id.
psn_id records were retained if the assignee’s country code was among the sample of countries
studied, and if the variable psn_sector identified them as a company. In addition, patents were
matched to firms in Bureau Van Dijk’s ORBIS database, using ORBIS IP as a crosswalk. This
allows me to include firm-level financials, such as turnover, assets and employment, as control
variables. However, the ORBIS-based firm panel results in a significantly smaller sample size
(8,475 firms in the ORBIS versus 10,137 in the PATSTAT-derived final dataset, with the overall
number of observations in the baseline regression using the ORBIS dataset amounting to only
a third of those using the PATSTAT dataset). About 31.49% of all patent families (across all
relevant technologies) could be matched to ORBIS. The analysis therefore relies primarily on
companies from PATSTAT, using ORBIS as a robustness check.

The ORBIS dataset allows for the construction of a survival indicator, based on its status
variable. The survival variable is assigned as 1 (indicating survival) if a firm is active for at
least three years post the reference year, or if its last observed year is at least three years after
the reference year. A value of 0 (indicating exit) is assigned to inactive firms whose final status
is recorded within less than three years from the reference year. The variable is set to missing
for years beyond 2018 or when the survival status is indeterminate.

Bilateral trade data was acquired from CEPII’s BACI database (Gaulier and Zignago 2010).
The database contains annual bilateral trade values and volumes for all countries at the Har-

monised System 6 digit code level. This data was used to compile a panel of Chinese exports

1. My thanks to Professor Dr Ulf Blieske from the Cologne Institute for Renewable Energy for his help in
categorising the set of solar photovoltaic codes into ‘generations’.

2. Note that only two technology codes from the cooperative patent classification were categorised as falling
under generation three; the categorisation does not consider tandem, triple junction, perovskites or quantum dot
solar cells, as no technology codes relating specifically to these third generation technologies could be found.
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to each of the countries in the sample at HS 1992 code 854140° and 854150*. Country-level
production, overall import and export data at Prodcom code 26112240° and 26114070° was
obtained from Eurostat’s Prodcom database and combined with bilateral trade data to construct
country-level import penetration measures. Country-level exposure to Chinese import competi-
tion at the start of the study period was proxied using trade and production in semi-conductors.’
The sample includes the 15 countries for which Prodcom data was available from the start of
the study period, 1999.3

TABLE 3.1
Summary Statistics

mean sd min max
Patent Family Count, Weighted by Size 0.20 1.97 0.00 143.04
Patent Family Count 0.19 1.66 0.00 79.00
Patent Family Stock, Weighted by Size 0.95 8.80 0.00 508.35
Patent Family Stock 0.87 7.29 0.00 295.01
Hirschmann-Herfindahl Index (Weighted Family Stock) 0.09 0.10 0.00 1.00
Import Penetration 0.09 1.20 -1.49 23.69
Exports (USD 100M) 16.67 21.80 0.00 84.36
Chinese Imports (USD 100M) 9.48 17.72 0.00 79.63
Market Size (USD 100M) 24728.24  37137.04 -1501.20  153435.19
Observations 91820

Note: The table shows the mean, standard deviation and range of key firm- and country-level variables. While the
regression uses size-weighted patent family counts and stocks, the table also includes simple counts as a point of

. . . _ imp_CHNj : N
comparison. Import Penetration is defined as IMP; = 100 x Drody+impy—expy? where imp_CHNj; is the value of solar

panel imports from China in country i at time ¢, prod;; is country i’s production of solar panels at ¢, and imp;, are
imports and exp;; exports of solar panels from country i at 7.

3.3.1 Empirical Strategy

Definition of Key Variables The main dependent variable is each firm’s new patent counts.
To avoid double-counting the same invention, these counts are constructed at the patent family
level, rather than the patent level. A patent family is a group of patents which relate to the same
invention, but are filed in multiple patent offices for commercial purposes. Firm-level patent
family counts are weighted by the size of the patent family. Weighting accounts for the fact that

not all patents contain the same amount of innovative novelty — patents which have been filed in

3. Electrical apparatus; photosensitive, including photovoltaic cells, whether or not assembled in modules or
made up into panels, light emitting diodes

4. Electrical apparatus; photosensitive semi-conductor devices n.e.s. in heading no. 8541, including photo-
voltaic cells, whether or not assembled in modules or made up into panels

5. Photosensitive semi-conductor devices; solar cells, photo-diodes, photo-transistors, etc.

6. Parts of diodes, transistors and similar semi-conductor devices, photosensitive semi-conductor devices and
photovoltaic cells, light-emitting diodes and mounted piezo-electric crystals

7. Trade in semi-conductors was identified using HS92 codes 854110, 854121, 854129, 854130, 854140,
854150, 854160, and 854190, while domestic production data from Prodcom is based on Prodcom codes
26112280, 27902050, 26112260, 27115023, 26112240, 26112180, 26112150, 26114070, 26112120, and
26112220.

8. Austria, Belgium, Luxembourg, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands,
Portugal, Spain, Sweden, and the United Kingdom.
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a larger number of countries are likely to be more valuable (Harhoff et al. 2003; Lanjouw and
Schankerman 1999).

In addition, patent stocks for each firm j were computed as a measure of accumulated
past innovation, where FamStockj = FamStockj; 1 * 0.85 + FamCount j;, starting from 1980.
Following convention (Hall et al. 2005), patents are discounted at an annual rate of 15% to
account for the decay in their value over time. The patent stock variable aims to capture firms’
heterogeneity in terms of their previously accumulated stock of knowledge. How much a firm
has innovated in the past may affect its propensity to further innovate in solar PV and could
alter the effects of import competition on the firm’s innovative efforts. Theory and empirical
evidence tend to suggest that firms which are more productive and/or innovative will be more
likely to increase innovation (or at least reduce it to a lesser degree) in response to heightened
competition, while the opposite is the case for firms that are further away from the technological
frontier. Conversely, firms with a higher a priori patent stock may be more locked into old
technological paradigms and therefore less able to innovate in more disruptive technologies.

Import penetration in country 7 and year ¢ is defined as Chinese imports divided by market
absorption:

imp_CHNj;

IMP; = 100 % - 3.1)
prody; +impi; — expis

where imp_CHNj; is the value of solar panel imports from China in country i at time ¢, prod;
is country i’s production of solar panels at #, and imp;; are imports and exp;; exports of solar
panels from country i at #. To aid interpretation as a percentage, the fraction is multiplied by
100.° 19 As an alternative to import penetration, some of the regressions use overall Chinese
imports as the variable of interest (while controlling for market size).

The China Shock literature traditionally exploits sectoral variation in import penetration.
Because I analyse trade and innovation in only one product, only geographical variation in trade
is available. To obtain additional variation, I interact country-level import penetration and over-
all imports with a firm-level exposure variable based on the similarity of firms’ patent portfolios
to Chinese firms and inventors. For each sampled firm and each Chinese inventor associated
with a solar patent, I collect all other patents in PATSTAT and their IPC codes. I then con-
struct the share of each IPC class in the knowledge stock (calculated iteratively from 1980 and

9. The measure, being a percentage, is robust to price fluctuations which would affect both the numerator and
the denominator. The sharp decline in solar panel prices during the period is therefore no cause for concern.

10. There are a few instances in which market absorption, and thus also import penetration, are smaller than
zero. This may happen for a number of reasons related to the construction of Prodcom and external trade statistics
by Eurostat. The production data is derived from the PRODCOM survey, while the trade data originally comes
from external trade surveys. These surveys differ in a few respects, such as the sampling procedure, the product
classification used originally, and the fact that Prodcom accounts for sales, while external trade statistics record
the value of goods passing a border and estimate this value if no sale takes place, etc. Furthermore, Prodcom does
not identify whether a product sold is consumed, or added to an inventory; for this reason, positive exports may be
observed during a year when no production appears to have taken place.



3.3. DATA & EMPIRICAL STRATEGY 51

discounted at 15% per year) of each sampled firm, as well as the share of each IPC class in
the knowledge stock of Chinese inventors and applicants overall. Following Jaffe (1986), I use
these shares to compute the cosine similarity of each firm’s patent portfolio to the patent port-
folios of Chinese solar inventors. This firm-level exposure variable is bounded between 0 and

1, with higher levels indicating higher similarity and therefore exposure to Chinese inventors.

Instrumental Variable Estimation Any attempt to study the effects of an increase in trade on
an economy must contend with endogeneity issues. Import penetration in a given market at a
given time is likely to be correlated with numerous factors which could affect, or be affected
by, the innovativeness of the local industry — for example, local demand, the ability of the
local industry to meet demand, its competitiveness in terms of quality and price, etc. However,
import penetration in other, similar countries or overall Chinese export growth are more likely
to be externally driven by China, rather than each country’s endogenous characteristics and
capabilities.

The main regression specification therefore uses exposure-weighted Chinese export growth
in solar panels as an instrument for import penetration in each country. The instrumental vari-
able is 3-, 4- and 5-year averages in overall Chinese exports to the rest of the world times a
given country’s import penetration in semi-conductors at the start of the study period (1999).

Prior research within the China shock literature tends to consider multiple industrial sec-
tors, rather than just one. Because this is a case study focusing on a single technology, the only
sources of variation in import competition are time and geography. While other work within the
China Shock literature has constructed Bartik-style instruments exploiting the share of a given
industry in regional employment, for instance (Autor et al. 2013), this chapter therefore uses
start-of-period import competition in semi-conductors as a measure of ‘exposure’. In addition,
I interact import competition with firm-level technological similarity to obtain a more granular
measure of exposure. The analysis further accounts for unobserved firm characteristics and time
shocks by using year and firm fixed effects.

The validity of the instrumental variable rests on the assumption that it is a) relevant and b)
exogenous. Relevance is easily verified using the results of the first stage regression reported in
Table 3.2. The instrument is highly relevant, with a first stage F-statistic of 22.6 for regressions
using import penetration and 98909 when using overall Chinese imports.

The exclusion restriction for Bartik-style instruments requires that the shares used to
construct them are uncorrelated with the error term of the main regression, given controls
(Goldsmith-Pinkham et al. 2020). The validity of the instrumental variable used here there-
fore rests on the assumption that the share of Chinese imports in each country’s market for
semi-conductors in 1999 does not affect innovation in solar panels through any channels other

than its implications for import competition in solar panels (given controls, which include firm
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fixed effects). I argue that this is a reasonable assumption, given that China did not accede to
the WTO until 2001 and did not account for a significant share of semi-conductor trade in 1999.
In the dataset used in this analysis, the highest level of import penetration in semi-conductors in
1999 was observed in Belgium, amounting to 0.01%. By 2012, semi-conductor import penetra-
tion in Belgium had risen tenfold to 0.11%, with the highest levels observed in the Netherlands
at 0.69%.

Estimation Strategy The system of equations used to estimate the relationship of interest is

t+3 _ TASD T oo
Y, FamCountjy =  exp(BiIMP;; 4; 3; 2;1% Exposure, 4, 3; 2,1
+BoFamStockj;—a4-3;—2,-1+Yj+ O + € + UFirasSiage)

- - conduct
IMPj; 4434241 = bICHNExportsROW,; ,_,, 3, 5, | *IMP}{gq """+ (3.2)

b2Exp0rtSi,t—4,t—3,t—2,t—1 + b3AbS0rpti0ni7t_4J_37[_27,_1 +

')/j+51+1/l

where 222 FamCount; is the sum of quality adjusted patent families by firm j during
the current year and the following 3 years; IMP;;_4;_3,_7;—1 is import penetration in coun-
try i (where firm j is based) , averaged over the preceeding 4 years; Exposure;;, 4, 3, 5|

is firm-level proximity to the Chinese knowledge stock, FamStock;; 4: 3; 2,1 is firm j’s

weighted, discounted patent family stock, CHNExportsROW i1—44—3—2,—1 are Chinese exports
to the rest of the world (excluding country i), Wi,t—4,t—3,t—2,t—l are country i’s exports,
and th%’t%’t,zﬁl is market absorption in country i, all averaged over the preceed-
ing 4 years. IM ﬁ'ggg conductors i import competition in semi-conductors in country i at the start
of the period; ¥; ére firm fixed effects; &; are year dummies; u and € are error terms. Forward
looking sums for the dependent variable and backward looking averages for the regressors are
used to account for the fact that innovation is a prolonged process and any changes therein are
likely to occur over a timespan of several years. Complete patent data from the PATSTAT 2023
edition is available until 2020, implying that 4-year forward looking sums effectively limit the
analysis to 2017 and earlier.

Due to the count nature of the dependent variable, the relationship is estimated using a pois-
son fixed effects model, with the instrumental variable strategy implemented using the control
function method. The residuals from the first stage are included in the second stage regression
to control for the endogenous part of the main regressor.

Theory suggests that competition is more likely to induce innovation among firms which
are at the technological frontier, while discouraging it among those which are lagging behind.

To account for the potential heterogeneity of the relationship under investigation, some regres-
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sion include interactions of the main regressor with two binary variables indicating whether the
firm’s historical patent family stock is in the top or bottom 1%, 5%, 10% or 20% of the sample
for a given year.

Other variations of the regression model include 3- and 5-year sums and averages, and
substituting overall Chinese imports for import penetration.

TABLE 3.2
First Stage Regression

(1 (@)

Import Penetration ~ Chinese Imports

Chinese Exports (ROW) x Semiconductor IMP 1999 0.086*** 0.738***
(0.010) (0.080)
Market Size (USD 100M) -0.000*** 0.000***
(0.000) (0.000)
Exports (USD 100M) 0.002*** 0.372%*
(0.000) (0.008)
Constant 0.015 -1.959**
(0.015) (0.110)
F Stat 22.62 98909.26
Observations 15356 15356

First Stage Regression on Estimation Sample.
All Variables are Averaged Over the Preceeding 4 Years.
Robust Standard Errors in Parentheses.
Note: The table shows the results of the first stage regression, using either import penetration or overall Chinese

import volume as the endogenous regressor. The first stage includes year and firm fixed effects.

3.4 EMPIRICAL RESULTS

Trends in Solar PV and Related Patenting Figure 3.3a plots the number of new solar PV
patent families over time by country of inventor or applicant. Patenting by Chinese inventors
shows two peaks: one around 2007 and the other arond 2017. In contrast, figure 3.3b shows
that the number of new patent families filed in the Chinese Patent Office, while stagnant in
other authorities, has risen continuously and steeply since the early 2000s. Figure 3.4a plots
new patent families filed anywhere in the world by generation of solar cell over time, showing
a clear dominance of 2nd and 3rd generation over 1st generation solar cells since the 1990s.
Figure 3.4b plots new patent families in solar PV and related technologies filed at any patent
authority. While there appears to have been a slight dip in patenting in upstream production
equipment and inputs, as well as solar cells and solar thermal, following the trade disputes in
2012/2013, overall trends for all technologies continue to increase.

Effect of Import Competition on Firm Innovation Table 3.3 reports regression results of
overall solar cell innovation on imports, with and without the inclusion of the instrumental vari-

able estimation. While the coefficient on Chinese Import Penetration, as well as overall Chinese
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Regional Trends in Solar PV Patenting

Note: Figure 3.3a plots new solar PV patent families by country of inventor, while figure 3.3b plots families by
patent authority, showing that while few new families were attributed to Chinese inventors after a small peak in the
early 2000s, patents filed in the Chinese patent office are on a steep upward trend. Figure 3.3 plots new families
filed at any patent office by generation of solar cell and for related technologies.

imports, interacted with firm-level exposure, is negative and significant when no instrumental
variable and no other interactions are included (Models (1) and (5)), it becomes insignificant
when using an instrumental variable design. The coefficient on import penetration remains in-
significant when interaction terms accounting for heterogeneity in firms’ existing patent stocks
are introduced. However, Models (7) and (8) suggest that overall Chinese imports (controlling
for market size) affect solar cell innovation differently for different firms. Firms whose patent
stocks are in the bottom 10th percentile (which make up the majority — about 70% of obser-

0.109

vations) increase their quality-adjusted patenting by a factor of e ~ 1.115 for each unit

of exposure weighted imports (100M USD times the cosine similarity to Chinese inventors).
Firms whose stocks are in the top 10th percentile, conversely, reduce patenting by a factor of

¢=0-026 ~ 0.974. The coefficient on the historical stock of patent families is consistently nega-
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tive and significant (though small in size), indicating that firms with a large historical knowledge
stock tend to innovate less in general.

There is some nuance to this result. Table B.8 (Appendix) carries out the same analysis,
but uses the top and bottom 1 percentile, instead of the 10th percentile, of accumulated patent
stocks. Firms in the top 1 percentile make up only 0.8% of observations, while those in the top
10 percentile account for 6.57%.!1 The results in column (8) of Table B.8 indicate that firms
in the top 1 percentile increase quality-adjusted patenting by a factor of ¢*°12 = 1.01 for each
unit of exposure weighted imports. No significant results are found for the top 5 percentile
(Appendix Table B.9), which account for 3.88% of observations, while the top 20 percentile
(Appendix Table B.10, 9.91% of observations) show a similar pattern to the top 10 percentile.

Effects of Chinese Imports on Solar Cell Innovation
(&) 2 (3) “ (5) (6) (@) ®)
No IV v No IV v No IV v No IV v
Import Penetration x Exposure -0.081** -0.045 -0.122 -0.064
(0.032) (0.060) (0.126) (0.141)
Import Penetration x Exposure x Bottom 10% 0.091 0.084
(0.174) (0.181)
Import Penetration x Exposure x Top 10% 0.040 0.019
(0.127) (0.123)
Chinese Imports (USD 100M) x Exposure -0.013** -0.007 0.011 0.020
(0.005) (0.006) (0.013) (0.013)
Chinese Imports (USD 100M) x Exposure x Bottom 10% 0.108***  0.109***
(0.023) (0.024)
Chinese Imports (USD 100M) x Exposure x Top 10% -0.023**  -0.026**
(0.012) (0.012)
Fam Stock -0.001** -0.001**  -0.001™*  -0.001**  -0.002***  -0.002***  -0.001"*  -0.001*"*
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Market Size (USD 100M) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Exports (USD 100M) -0.009**  -0.009***  -0.009***  -0.009***  -0.007** -0.006* -0.007**  -0.006*
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
IV regression X X X X
Year FEs X X X X X X X X
Firm FEs X X X X X X X X
Observations 15356 15356 15356 15356 15356 15356 15356 15356

Poisson Pseudo-Likelihood Estimation.

Dependent Variable: Firm-Level Patenting over 4 Years.
Independent Variables are Averaged over the preceeding 4 Years.
Robust Standard Errors in Parentheses.

Note: The table reports the results of a poisson pseudo-likelihood regression of firm-level patenting in solar cells
on Chinese import penetration and overall Chinese imports. The dependent variable is the sum of quality-adjusted
patent families over 4 years in the future. All independent variables are averaged over the preceeding 4 years.
Firm-level exposure is based on the technological proximity of firms’ patent portfolios to the average Chinese
firm’s patent portfolio. ‘Bottom 10%’ and ‘Top 10%’ are binary variables indicating whether a firm’s quality-
adjusted patent family stock over the preceeding 4 years falls in the top or bottom 10th percentile among firms
during that year. Standard errors are heteroskedasticity robust and bootstrapped with 1000 repetitions. Models 2,
4, 6 and 8 use an instrumental variables regression, implemented using the control function method.

Table 3.4 reports results separately for different generations of solar cells. While the co-

11. As the distribution is heavily skewed towards 0, the choice of percentile makes little difference as far as the
lowest category is concerned (always about 70%).
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efficients on exposure-weighted import penetration and its interactions remain insignificant for
patenting in 2nd-generation solar cells, columns (2) and (4) suggest that a larger share of Chi-
nese imports in overall market absorption is associated with higher patenting in generation 1
and 3 technologies for firms in the bottom 10th percentile of historical patenters. Meanwhile,
higher levels of overall Chinese imports are associated with an increase in generation 2 patent
counts by a factor of ¢%190 ~ 1.18 for firms in the middle 80 percentile, and a reduction by

—0.156

a factor of e ~ 0.86 for firms in the top 10th percentile. Patenting in generation 1 solar

cells increases for the bottom 10th percentile only, while patenting in generation 3 declines by

a factor of ¢—0-019

~ 0.98 for the middle 80 percentile but increases by a factor of ¢*124 ~ 1.13
for the bottom 10th percentile of historical patent stocks. These results broadly hold when
controlling for market concentration using the Hirschmann-Herfindahl Index (calculated based
on firms’ shares in overall patent stocks within their countries) — results reported in Table B.4
(Appendix).

Results differ slightly when using the ORBIS firm sample (Appendix Table B.12): higher
levels of import penetration are significantly associated with higher patenting in solar cells over-
all for the middle 80 percentile and negatively for the top 10th percentile, while no significant
effect is observed for individual generations of solar cells. Meanwhile, Chinese imports overall
seem to reduce innovation in the middle 80 percentile, while increasing it in the bottom 10th
percentile, for generations 1, 3 and overall. As in the PATSTAT sample, a higher historical
patent stock is associated with lower levels of future patenting.

Repeating the baseline regression separately for the periods before and after the trade war
yields interesting effects: until 2012, both import penetration and increases in import volume
increase patenting for firms with historical stocks in the bottom 10th, but reduce it for firms with
a historical stock within the top 10th percentile. After 2013, all coefficients become insignificant
(this can be observed both during the immediate aftermath, as well as the post-trade-war period
overall). Results are reported in Appendix Table B.5.

I also examine the effects of Chinese imports on patenting in related technologies (results
reported in Appendix Tables B.6 and B.7). Import penetration is negatively and significantly
associated with patenting in storage technologies for the top 10th percentile and positively for
patenting in production equipment for the bottom 10th percentile of historical innovators, while
no significant effect is found for any other technologies. The volume of imports, on the other
hand, is significantly associated with an increase in patenting for the bottom 10 and/or middle
80 percentiles in solar thermal, production equipment, storage, enabling, and systems related
technologies. It is negatively and significantly associated in patenting in solar thermal, pro-
duction equipment, storage, and enabling technologies for the top 10th percentile of historical

patent stocks.
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TABLE 3.4
Effects of Chinese Imports on Solar Cell Innovation by Generation

(e)) (2) (3) 4) (5) (6) (@) (8)
Solar cells Gen 1 Gen 2 Gen 3 Solar cells Gen 1 Gen 2 Gen 3
Import Penetration x Exposure -0.064 -0.363 9.714 -0.057
(0.134) (0.221) (17.086)  (0.161)
Import Penetration x Exposure x Bottom 10% 0.084 0.916"** -9.049 0.275**
(0.174) (0.214) (17.104)  (0.136)
Import Penetration x Exposure x Top 10% 0.019 0.000 -9.501 0.000
(0.119) (0.000) (17.088)  (0.000)
Chinese Imports (USD 100M) x Exposure 0.020 -0.002 0.166* -0.019**
(0.013) (0.014) (0.092) (0.010)
Chinese Imports (USD 100M) x Exposure x Bottom 10% 0.109*** 0.163*** -0.018 0.124*
(0.023) (0.030) (0.090) (0.025)
Chinese Imports (USD 100M) x Exposure x Top 10% -0.026** 0.000 -0.156* 0.000
(0.011) (0.000) (0.090) (0.000)
Fam Stock -0.001** -0.002 -0.039**  -0.001 -0.001** -0.002 -0.038** -0.001
(0.001) (0.003) (0.005) (0.001) (0.001) (0.002) (0.005) (0.001)
Market Size (USD 100M) 0.000 -0.000 0.000*** -0.000 0.000 -0.000 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Exports (USD 100M) -0.009*** -0.011 -0.013** 0.006 -0.006* -0.007 -0.013** 0.011
(0.003) (0.007) (0.004) (0.007) (0.003) (0.008) (0.005) (0.008)
IV regression X X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X X X X X
Observations 15356 2612 5855 3105 15356 2612 5855 3105

Poisson Pseudo-Likelihood Estimation.

Dependent Variable: Firm-Level Patenting over 4 Years.
Independent Variables are Averaged over the preceeding 4 Years.
Robust Standard Errors in Parentheses.

Note: The table reports the results of a poisson pseudo-likelihood regression of firm-level patenting in different
generations of solar cells on Chinese import penetration and overall Chinese imports. The dependent variable is
the sum of quality-adjusted patent families over 4 years in the future. All independent variables are averaged over
the preceeding 4 years. Firm-level exposure is based on the technological proximity of firms’ patent portfolios to
the average Chinese firm’s patent portfolio. ‘Bottom 10%’ and ‘Top 10%’ are binary variables indicating whether
a firm’s quality-adjusted patent family stock over the preceeding 4 years falls in the top or bottom 10th percentile
among during that year. Standard errors are heteroskedasticity robust and bootstrapped with 1000 repetitions. All
regressions use an instrumental variables regression, implemented using the control function method.

3.4.1 Effect of Import Competition on Firm Survival

Finally, I use the ORBIS sample to estimate the effects of Chinese import penetration and import
volume on the probability of firm survival, using a logistic regression reported in Table 3.5. The
instrumental variable regression is once again implemented using the control function method.
Results suggest that accounting for heterogeneity in firm patent stocks is not appropriate here.
Model (2) indicates that a unit increase in exposure-weighted import penetration is associated

with an ¢~ 1205

~ 0.3 factor reduction in the odds of a firm surviving over the next 3 years.
Model (6) suggests that a unit increase in exposure-weighted import volumes reduces the same

odds by a factor of e 0195 ~ 0.9.

3.4.2 Robustness and Limitations
The baseline analysis relies on forward-looking sums (for the dependent variable) and
backward-looking averages (for the explanatory variables) over 4 years. As a robustness check,

I carry out the same analysis using 3- and 5-year sums and averages. Results are reported in
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TABLE 3.5
Effects of Chinese Imports on Firm Survival

(1) 2) (3) 4) (5) (6) ) (®)
No IV v No IV v No IV v No IV v
Import Penetration x Exposure -0.818*  -1.205** -1.451 -1.567
(0.465)  (0.548)  (2.949) (2.991)
Import Penetration x Exposure x Bottom 10% 0.974 0.697
(3.205)  (3.174)
Import Penetration x Exposure x Top 10% 1.500 1.199
(3.049)  (3.067)
Chinese Imports (USD 100M) x Exposure -0.107***  -0.105***  -0.092 -0.090
(0.034) (0.035) (0.340)  (0.295)
Chinese Imports (USD 100M) x Exposure x Bottom 10% 0.001 0.001
(0.345)  (0.303)
Chinese Imports (USD 100M) x Exposure x Top 10% -0.063 -0.063
(0.342)  (0.297)
Fam Stock 0.120 0.119 0.106 0.108* 0.120 0.120 0.162* 0.162*
(0.082)  (0.078)  (0.071)  (0.065) (0.076) (0.079) (0.084)  (0.084)
Total Assets (USD 100M) -0.000 -0.000 -0.000  -0.000 -0.000 -0.000 -0.000 -0.000
(0.001)  (0.001)  (0.002)  (0.002) (0.002) (0.002) (0.002)  (0.001)
Number of Employees 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000)  (0.000)  (0.000)  (0.000) (0.000) (0.000) (0.000)  (0.000)
Market Size (USD 100M) 0.000 0.000 0.000 0.000 0.000** 0.000** 0.000**  0.000**
(0.000)  (0.000)  (0.000)  (0.000) (0.000) (0.000) (0.000)  (0.000)
Exports (USD 100M) -0.023 -0.021 -0.022  -0.021 -0.021 -0.021 -0.021 -0.021
(0.020)  (0.019)  (0.020)  (0.020) (0.022) (0.021) (0.022)  (0.022)
IV regression X X X X
Year FEs X X X X X X X X
Firm FEs
Observations 25772 25772 25772 25772 25772 25772 25772 25772

Poisson Pseudo-Likelihood Estimation.

Dependent Variable: Firm Survival over 3 Years.

Independent Variables are Averaged over the preceeding 4 Years.
Robust Standard Errors in Parentheses.

Note: The table reports the results of a logistic regression of firm survival on Chinese import competition and
overall imports. The dependent variable takes the value 1 if a firm is still active within 3 years, and 0 if it is not. All
independent variables are averaged over the preceeding 4 years. Firm-level exposure is based on the technological
proximity of firms’ patent portfolios to the average Chinese firm’s patent portfolio. ‘Bottom 10%’ and ‘Top 10%’
are binary variables indicating whether a firm’s quality-adjusted patent family stock over the preceeding 4 years
falls in the top or bottom 10th percentile among firms during that year. Standard errors are heteroskedasticity
robust and bootstrapped with 1000 repetitions. IV regressions are implemented using the control function method.

Appendix Table B.3. Using 3-year sums and averages yields a qualitatively similar result in
terms of the coefficient on exposure-weighted Chinese imports for firms whose patent stocks
fall within the bottom 10 percentile, while there is no significant effect for the top 10 percentile.
Over 5 years, on the other hand, qualitatively similar results are observed as over 4 years;
however, there is an additionally significant positive effect of imports on innovation for the
middle 80 percentile. All significant coefficients also increase in magnitude. This suggests that
changes in innovation in response to competition tend to take place over longer time periods.

I further carry out two placebo tests.

First, I repeat the baseline regressions using randomised exposure variables. Firm-level
exposure is randomised using a beta distribution, with the @ and 8 parameters estimated using
the real mean and variance of the distribution. Import penetration is randomised using Kernel

Density estimation, and import volume is randomised using a log-normal distribution. Results
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are reported in Appendix Table B.13. All coefficients related to import competition are insignif-
icant, lending credence to the validity of the baseline model.

Second, I construct a sample of firms patenting in dentistry prosthetics (IPC Class
A61C/13). Dentistry prosthetics were chosen as innovation dynamics therein are arguably un-
likely to be correlated with innovation in the solar sector (to the extent that this is ever the case
where the evolution of different technologies is concerned). Results are reported in Appendix
Table B.14. All patent-based variables, as well as exposure to Chinese firms, are constructed
in the same way as in the main sample. This time, both the interaction of import volume (in
solar PV) and with the bottom 10th percentile and that with the top 10th percentile of histor-
ical patent stocks are positive and significant (recall that in the main analysis, the first tended
to be positive, the second negative and significant). This suggests that the effect of historical
patenting dynamics may be the main driver of these results.

Results differ somewhat between the PATSTAT and ORBIS samples. No significant ef-
fect of import penetration on overall solar PV innovation was found in the PATSTAT sample,
while in the ORBIS sample I observe a significant positive effect on firms with knowledge
stocks within the middle 80 percentile and a significant negative effect on firms within the top
10 percentile. For overall Chinese imports I observe the same positive significant effect on
firms within the bottom 10 percentile as in the PATSTAT sample; however, the coefficient be-
comes significant (and negative) for the middle 80 percentile, but insignificant for the top 10
percentile. There are some further differences when analysing different generations of solar
cells separately, as discussed above.

While these results can be interpreted similarly, it is interesting that ORBIS firms display a
similar response to import penetration as PATSTAT firms do to overall imports. The differences
observed particularly between different levels of historical knowledge stocks could potentially
be due to the characteristics of the ORBIS sample. Only about 31.49% of all patent families
identified in PATSTAT could be matched to ORBIS. Moreover, other research has highlighted
that larger, more productive firms tend to be overrepresented in ORBIS data (Bajgar et al. 2020).
The PATSTAT sample is therefore more likely to be representative of the population of patenting
firms. On the other hand, the ORBIS sample does allow for the inclusion of firm-level controls
which may increase confidence in the results.

The exclusion of tandem, triple junction, perovskites and quantum dot solar cells from the
category of generation 3 solar cells presents an additional limitation of the analysis. Finally, the
analysis considers innovation as the only outcome of interest. Employment and market share,

including in upstream and downstream sectors, are not taken into account here.
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3.5 DISCUSSION & CONCLUSION

Transitioning to cleaner energy sources is crucial in the fight against climate change. The expan-
sion of low cost manufacturing of solar panels in China is credited with contributing strongly
to the rapid decrease in the cost of producing electricity from solar photovoltaic technology.
However, it has not been popular with some Western producers, and led to the imposition of
anti-dumping duties against Chinese solar panels by the European Commission in 2013 (fol-
lowing a similar move in the US the previous year). In order to justify trade defence measures
under WTO law, the member imposing them must argue convincingly that the other member is
harming its industry by flooding its market with an unfairly subsidised or otherwise underpriced
product.

This chapter provides an investigation of the effect of the ‘China Shock’ on solar PV in-
novation using a causal inference estimation strategy. I combine patent data from the EPO’s
PATSTAT database with country-level trade and production data from UN Comtrade and Eu-
rostat, as well as firm level financials and status information from Bureau van Dijk’s ORBIS
database. Innovation is measured using patent family counts, weighted by family size to ac-
count for quality, and import competition instrumented using changes in overall Chinese solar
PV exports to the rest of the world interacted with start-of-period import competition in semi-
conductors. I also interact import penetration and import volumes with a firm-level measure of
similarity to Chinese innovators.

I find that an increase in exposure-weighted imports from China is associated with an
increase in patenting for firms with a small existing patent stock and a reduction for firms with
a relatively high patent stock, where the latter is defined as falling within the top 10th or 20th
percentile for a given year. Conversely, firms whose accumulated knowledge stock falls within
the top 1 percentile increase their patenting in response to an increase in imports. The effect
of import penetration (the share of Chinese imports in overall market absorption) is statistically
significant only for innovation in generation 1 and 3 solar cell technology, leading to an increase
in patenting among firms with a relatively small historical stock of innovation. Firms with
a large existing patent stock generally innovate less, which may be a sign of technological
lock-in. Similar findings are obtained using a smaller sample of ORBIS firms with assets and
employment as additional control variables.

The theoretical frameworks discussed in Section 3.1 indicate that firms at the technological
frontier are likely to innovate more in response to an increase in competition, while laggards
are likely to innovate less. The findings in this chapter are consistent with this prediction if we
consider — somewhat counter-intuitively — firms with a small historical knowledge stock to be
among the most innovative firms in the sample. This proposition seems reasonable given the

consistently negative relationship between the historical knowledge stock and future patenting
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observed in this chapter. The small minority of firms with an accumulated stock within the top
1 percentile also increased their innovation in response to heightened competition, while the
remainder of those within the top 20 percentile reduced patenting.

The empirical literature on the effect of Chinese import competition on innovation overall
has yielded mixed results for the US, but broadly positive ones for Europe (Shu and Steinwender
2019). The results presented here are also consistent with Carvalho et al. (2017)’s observation
that levels of competition in the solar sector were quite low prior to China’s entry.

Given China’s manufacturing dominance in primarily crystalline solar PV, we would ex-
pect that firms might attempt to compete by moving into 2nd or 3rd generation solar cells.
However, when analysing the effects of Chinese imports on innovation within each generation
separately I do not observe much of a difference, except that the positive effect of overall im-
ports is observed for the middle 80 percentile of historical innovators for generation 2 and the
bottom 10 percentile for generation 1 and 3. I also find a significant positive effect of import
penetration on innovation among firms within the bottom 10 percentile in generation 1 and 3.
These dynamics could be a reflection of the technology lifecycle, wherein more established as
well as very novel technologies benefit from competition which is particularly driven by new-
comers. Firms with a ‘medium-sized’ knowledge stock seem to have been more important in
driving innovation in generation 2 solar technologies in response to import competition.

Overall we may infer that competition in the solar PV sector in the European countries
studied, prior to China’s entry into the sector, was low enough for competition to be conducive
to innovation. The firms which responded by innovating more appear to have included rela-
tive newcomers to solar PV innovation, as well as very large incumbents with extremely high
accumulated knowledge stocks. Other incumbents with large knowledge stocks, which were
however not at the very top, seem to have been less able to adapt.

I further study the effects of import competition on innovation in related technologies. Im-
port penetration appears to be negatively associated with patenting in storage technologies for
firms with a large existing stock of innovation, while an increase in import volume increases
patenting among firms with a low historical knowledge stock and reduces it among firms with
a high knowledge stock for solar thermal, production equipment, storage, and enabling tech-
nologies. Finally, I use status information from ORBIS to compute a variable indicating firm
survival over 3 years, and find that an increase in both import penetration and import volume,
weighted by exposure, reduced the odds of firm survival considerably.

Overall, the fact that innovation appeared to be driven mostly by firms with a lower existing
patent stock, and that those firms tended to innovate more in response to competition from
China, suggests that the overall impact of import competition on innovation pre-trade war was
likely positive. Trade defence measures appear to have been mainly in the interest of incumbents

which were unable to adapt to a more competitive environment. Future trade policy should
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more carefully consider the competitive environment and whether more competition could be
beneficial in incentivising incumbents to innovate more. Alternative measures for supporting
domestic industries, such as R&D support, could also be considered.

However, the role of import competition in driving firm exit has implications for outcomes
not explicitly studied here, such as employment or global market share in solar PV. Policy-
makers may have considered these to be of greater importance than innovation or market dy-
namism. Further research could explore the effects of Chinese import competition on other
outcomes of interest. A focus on solar panel manufacturers more broadly, as well as firms

operating in upstream and downstream industries, would be beneficial for this purpose.



Chapter 4

Stranded Nations? Transition Risks and

Opportunities Towards a Clean Economy

4.1 INTRODUCTION

As the world transitions from dirty to clean energy sources and modes of production, some
countries will be affected more than others. Previous research has explored which countries
have the know-how, skills and innovative drive that makes them likely leaders in the ‘race’ to-
wards green competitiveness (Fankhauser et al. 2013; Mealy and Teytelboym 2020). However,
there has been less work to better understand the characteristics of countries that could get left
behind. Are all exporters of ‘brown’ (or emissions intensive) products likely to face signifi-
cant transition risk, or are some brown export industries more challenging to transition from
than others? While recent literature has studied transition risks to companies (e.g. Bolton and
Kacperczyk 2021) and financial systems (e.g. Semieniuk et al. 2021), quantitative estimates
at the country-level are lacking. This chapter fills this gap by estimating the degree to which
countries’ productive capabilities are ‘locked-in’ to sectors that are at risk of stranding.

A rich literature in economic geography has shown that industrial development in countries
and regions is path dependent (Hausmann and Klinger 2006). Places are more likely to diver-
sify into new activities that are similar to those they already have an advantage in (Frenken et
al. 2007; Hausmann and Klinger 2006; Hidalgo et al. 2007; Neffke et al. 2011). This, alongside
the fact that exporting more technologically sophisticated products tends to be associated with
higher income and growth (Hausmann et al. 2007; Hidalgo and Hausmann 2009), has given
rise to the ‘Smart Specialisation Policy’ paradigm. The latter emphasises place-based industrial
policy which targets complex new economic activities that are also related to existing regional
capabilities, thereby increasing the likelihood of success (Balland et al. 2019; Boschma and
Gianelle 2013). Path dependency implies that existing productive capabilities are important

drivers of countries’ ability to seize opportunities emerging in the green economy (Mealy and
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Teytelboym 2020). It also creates the potential for countries to be locked-in to brown industries,
possibly resulting in stranded assets, stranded jobs and the risk of economic decline.

Fossil fuel resources may become effectively worthless as countries around the world take
action to mitigate climate change (Caldecott 2015; Cust et al. 2017), with significant impli-
cations for the companies and countries owning them. While the literature on asset stranding
often focuses on carbon lock-in through long-lived physical infrastructure (e.g. Fisch-Romito
et al. 2021; Pfeiffer et al. 2018), a broader definition beyond the risk to fossil fuel compa-
nies includes the risks to countries which are heavily dependent on fossil fuel exports, as well
as workers whose skills are specific to declining activities (Van Der Ploeg and Rezai 2020).
Country-level vulnerability to the transition will be governed both by their exposure to de-
clining sectors, and their flexibility to adapt and change their economic structure accordingly
(Zenghelis et al. 2018).

Here, we quantify the degree to which countries’ productive capabilities are tied up in de-
clining sectors and identify viable transition paths, which is crucial to achieving a just transition.
With the exception of Jee and Srivastav (2022), there has been limited research on this issue. Jee
and Srivastav (2022) use patent data to show that direct knowledge spillovers between green and
brown technologies are limited, but most green patents are connected to a brown patent through
two or more degrees of separation. However, the ability of different energy-related inventions to
build on one another need not directly translate into the ease with which a country’s productive
capabilities as a whole may transition to new activities. Moreover, mitigating transition risk
need not require moving into green sectors, but rather moving out of brown ones.

We leverage methods introduced by Hidalgo and Hausmann (2009) and Hidalgo et
al. (2007); and Mealy and Teytelboym (2020) to develop indicators of country-level lock-in
to brown sectors and transition opportunities into activities which require similar capabilities.
First, we compile a list of traded ‘brown’ products that are likely to see reduced global demand
in a green economy. Drawing on the product space approach developed by Hidalgo et al. (2007),
we explore transition possibilities out of each brown product, and rank them in terms of their
product complexity and transition outlook. While some products like coal or crude oil appear
to have relatively limited diversification opportunities, other products such as engines, pumps
and hydrocarbon-derived chemicals involve a wider variety of skills, capabilities and factors of
production that could be used to diversify into other industries.

We then turn to countries and develop several novel metrics to explore the extent to which
countries may be locked-in to brown exports. We show that countries exporting a high number
of brown products, especially technologically sophisticated ones, may not only find it relatively
easy to transition, but could also position themselves to play a key role in the production of
green technologies and products. Conversely, countries with export baskets concentrated in

few, low-complexity brown products have much more limited diversification opportunities into
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green or other exports. Their areas of specialisation are heavily concentrated in the periphery of
the product space, with few ‘nearby’ areas to move into. This is due to the peripheral location of
extractive industries such as oil, gas and mining in the product space. Affected countries have
few adjacent areas to move into and are therefore unlikely to adapt to a net zero future without
policy to enable path-breaking diversification. Our findings are evocative of the ‘resource curse’
literature which emphasises the difficulties resource-rich countries face in diversifying their
economies (e.g. Krugman 1987; Manzano 2014).

Our results suggest that export complexity and diversity play a key role in mitigating tran-
sition risk and could potentially be more important than the ‘brown-ness’ of a country’s export
profile on its own. Early and pro-active policy interventions will likely be necessary to ensure a

just and inclusive transition.

4.2 METHOD

4.2.1 Data

We construct our dataset using CEPII’s BACI database (Gaulier and Zignago 2010), which is a
global database of bilateral trade flows at the HS 6-digit level, spanning the period from 1995
to 2020. To ensure our results are not skewed by short-term trade fluctuations, we average
country-product export values over 5-year periods. This results in a panel dataset of 5 distinct
periods: 1996-2000, 2001-2005, 2006-2010, 2011-2015, and 2016-2020. Our panel includes
228 countries and territories. We collect control variables from the World Bank’s World Devel-
opment Indicators Database and OECD Stat’s Environment Indicators.! Table C.5 (Appendix)

displays summary statistics.

4.2.2 List of ‘Brown’ Products

We develop a new list of ‘brown’ products which are likely to decline in demand as the world
decarbonises. Because our focus is on economic competitiveness in a low carbon global econ-
omy, we focus on products which are brown in use rather than brown in production. We create
a narrow and a broad list based on an initial keyword search on product descriptions and then
validate these lists with key subject experts. We also draw on lists of green (Mealy and Teytel-
boym 2020) and carbon capture and storage related (Serin et al. 2021) products used in prior

research. More detail about the construction of this list can be found in Appendix Section C.1.

4.2.3 Measuring Dependence on Brown Exports
The Green Complexity Index (GCI) introduced in Mealy and Teytelboym (2020) provides a

measure of the degree to which countries are able to capitalise on the opportunities the green

1. Variables from OECD Stat are available only for varying subsets of countries in our export dataset.
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economy brings, by measuring their export competitiveness in technologically sophisticated
green products. A key aim of this chapter is to construct a ‘brown’ counterpart to the GCI: a
measure of dependence on brown activities which provide fewer and fewer opportunities to the
economy as the green transition progresses. Intuitively, the GCI is a complexity-weighted count
of a country’s competitive green exports. It therefore has a strong relationship with a country’s
diversity (the number of products exported competitively) and especially its green diversity
(the number of green products exported competitively). Table C.8 (Appendix) documents this
relationship.

When it comes to measuring brown lock-in, however, we find that countries which de-
pend on brown products for a large share of their export value or export diversity tend to have
low diversity overall. That is, major hydrocarbon exporters, for example, with up to 90% of
export value composed of brown products, have few other competitive exports — including, in
many cases, brown competitive exports, as brown diversity and overall diversity are in turn
positively correlated (Table C.8, Appendix). As Revealed Comparative Advantage (RCA) in
brown exports for major fossil fuel exporters will in many cases be enormous, a binary measure
of whether or not a country is competitive in brown products will not necessarily capture the
degree of lock-in very well. On the other hand, exporting a large number of technologically so-
phisticated brown products implies that many pockets of competitiveness in high value-added
activities are at risk of stranding. We therefore compute two indices capturing these different
aspects of brown lock-in.

Our baseline measure of country lock-in to low-complexity, brown exports is the ‘Brown
Lock-in Index’ (BLI), which we compute as:

1 ~
BLI, = £, 2P (1 peI). @.1)
Y pexportsy
Here % is the share of each brown product in overall export values, and PCI is the

Product Complexity Index normalised to take a value between 0 and 1. Intuitively, the BLI
measures the share of brown exports in a country’s export volume, weighted by the inverse
of PCI such that less technologically sophisticated products (which tend to be associated with
lower income and growth compared to more complex ones, and open up fewer diversification
paths) carry a larger weight.
We also construct a more obvious brown equivalent to the GCI: the Brown Complexity
Index (BCI), calculated as
BCI, = ¥,p; + PCI. 4.2)

This index counts the number of competitive brown exports, weighted by each product’s com-
plexity (as opposed to the BLI, which measures their share in exports and gives a greater weight
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to less complex brown products). Export capabilities in more technologically sophisticated
activities may take longer to develop, involve more specialised equipment, and tend to bring
greater benefits to the economy in terms of growth and income. On the other hand, countries
with high overall complexity tend to have higher income, rendering them more adaptable to
climate- and transition risks. Finally, more complex products are located in the denser core of
the product space (see Figure 4.1 for an illustration), implying a greater number of other, nearby
diversification opportunities. Despite these benefits, countries must move out of brown areas of

comparative advantage if we are to transition to a greener production system.

4.2.4 Measuring Transition Outlook

Due to the path dependency of industrial development, countries are more likely to develop
future competitive advantages in products which require similar capabilities to the ones they
already produce. Recall that Hidalgo et al. (2007) measure the similarity or ‘pairwise proximity’
of two products as the probability that a country has RCA > 1 in one if it does in the other. We
use this insight to develop measures aiming to capture the ease of transitioning out of brown
activities.

While country proximity to non-brown products would be a measure of climate compatible
diversification options more generally, there may be physical, institutional and human capital
within a country which specialises in a declining sector and cannot easily transition into those
new activities — in other words, even if activity in declining sectors were balanced out, or even
exceeded, by new opportunities within the same country, the firms and individuals facing the
highest transition risk may not be the same as those benefiting from opportunities in the green
economy. We therefore aim to measure the proximity of each particular declining activity to
other, climate compatible activities.

For each brown product, we compute the average proximity to products in a non-brown
list (green or any non-brown), divided by the product’s average proximity to all products, as

follows:

0 P

where €, , is the pairwise proximity between brown product b and climate-compatible

TransitionOutlook, = 4.3)

(green or non-brown) product g; Q is the total number of products of type q; €, ,, is the pairwise
proximity between product b and product p; and P is the set of all traded products.

We then compute the Country Transition Outlook as the average of product-level transition
possibilities from brown products which the country exports with RCA > 1 to products in a non-

brown list (green/any non-brown):
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Yppp xTOp
Lpp;,
where p; indicates whether the country has RCA in product b, and 70, denotes the prod-

TransitionOutlook,. = 4.4)

uct’s Transition Outlook to list q.
All indices are standardised to mean 0 and standard deviation 1. Table C.4 (Appendix) pro-
vides an overview over the measures we construct using trade data, some of which are derived

from prior literature.

4.3 RESULTS

4.3.1 Are Brown Products Different From Other Exports?

Following the methodology originally used to create the product space (Hidalgo et al. 2007),
Figure 4.1 plots the network of all products at the 6-digit level, highlighting those categorised
as green or brown. In this network, traded products are represented as nodes, linked to each
other on the basis of their product-to-product proximity. This provides some visual intuition
for where green and brown products are located in the broader product space. Some brown
products (such as conventional vehicles) are located within the dense core of the product space,
close to many non-brown products, including green ones (such as electric or hybrid vehicles).
Others, such as bovine meat or crude oil, are located in the periphery and mostly near other
brown products. Petroleum is a particularly interesting case: while refined oil is arguably still
within the core and near a good number of other products, crude oil is very peripheral. This
would suggest that countries engaged in petroleum refining may find it easier to transition than
those mostly exporting crude oil.

Overall, we find that brown products tend to be less complex than green products (see
Figure 4.2). We also find that brown products tend to be closer to green products in the product
space than they are to other products. This suggests that countries which export these products
may find it relatively easy to shift towards greener activities.

Figure 4.2 plots the distribution of the Product Complexity Index (hereafter PCI) for prod-
ucts on our narrow brown list (in brown), compared to the distribution of PCI for all products
(in blue). The PCI distribution for brown products is not statistically different to the PCI distri-
bution for all products, suggesting brown products are no more or less complex than average.’
Brown products thus tend to be less complex than green products, the latter on average being
more complex than other products (Mealy and Teytelboym 2020).

Tables C.10 and C.11 (Appendix) list the 20 brown products with the highest and the lowest

2. The two sampled Kolmogorov—Smirnov test statistic is 0.0499 and the p-value is 0.816.
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PCI, respectively. Brown products which are high in complexity include engines, pumps and
various hydrocarbon-derived chemicals, while low-complexity brown products more promi-

nently feature unprocessed hydrocarbons.
I Brown Products [ Brown Products
04 B All Products 0.5 [ Green Products
0.4
0.3
2 >03
£ £
C C
[0 [0
002 a
0.2
0.1
0.1
0.0 0.0
-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3
Product Complexity Index

Product Complexity Index
FIGURE 4.2
Distribution of Product Complexity Index for Brown Products
Note: The figure plots the distribution of brown products’ PCI against that of all products (left), as well as green
products (right). Visualisation created from trade data averaged over the period 2016-2020.

Figure 4.3 plots the distribution of Product Transition Outlook to green products for the
period 2016-2020. Transition opportunities for brown to green products tend to be above av-
erage, as indicated by the higher density of products with transition possibilities above 1. This
suggests that there are proximate green transition opportunities for many brown exports.



4.3. RESULTS 71

4.0
[ Brown Product Proximity to Green Products
3.5

3.0

25

Density

0.5

0.0
0.4 0.6 0.8 1.0 1.2 1.4 1.6

Product Transition Outlook

FIGURE 4.3
Distribution of normalised proximity from brown to green products

Note: Density of normalised proximity from brown to green products, which we interpret as a proxy for the ease
of transitioning from brown to green products. To obtain normalised proximity (‘Product Transition Outlook’), we
compute a brown product’s average proximity to green or non-brown products, divided by its average proximity to
all products. Visualisation created from trade data averaged over the period 2016-2020.

Section C.4 (Appendix) reports global trends in exports of brown and green products. We
find that trade in brown products is currently much larger than trade in green products, but has

declined slightly in recent years, while trade in green products shows a steady increase.

4.3.2 Country Dependence on Brown Exports and Transition Possibilities

Our results indicate that countries which rely on low complexity brown products for a large
share of their exports face very different challenges in the transition to those exporting more
sophisticated brown products. For the latter group, we find that brown exports tend to be close
to non-brown diversification opportunities in the product space. By contrast, the former group,
and petrostates in particular, have low transition opportunities and could find it more difficult to
adjust to a low carbon global economy.

Tables 4.1 and 4.2 show the 20 countries ranking most highly on the Brown Lock-in Index
and Brown Complexity Index, respectively.® As we have alluded to, they paint two very differ-
ent pictures. The countries ranking highest on the BLI include South Sudan, Iraq, and Libya,

followed by a number of mostly other petrostates including Venezuela, Kuwait, Saudi Arabia,

3. Tables C.6 and C.7, Appendix, extend these tables, showing the 50 highest ranking countries.
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TABLE 4.1
Countries Ranking Most Highly on the Brown Lock-in Index

Country BLI Brown exports [IM USD]  Brown Export Share [%] GDP per capita [USD]  Transition Outlook  Green TO
South Sudan 3.57 13.49 94.82 NaN -4.42 -2.39
Iraq 3.48 634.12 94.50 5115.69 -0.30 -0.55
Libya 3.29 193.89 90.92 5810.85 -2.45 -2.21
Angola 3.27 307.13 88.99 3095.46 -1.58 -1.67
Equatorial Guinea ~ 3.21 38.62 88.80 8897.39 -1.87 -2.03
Azerbaijan 3.19 148.20 89.41 4358.97 -0.99 -0.55
Nigeria 3.18 449.05 87.69 2099.86 -1.51 -1.84
Brunei Darussalam ~ 3.02 56.55 91.51 29177.48 -0.73 -0.21
Chad 2.98 11.30 81.44 690.87 -4.42 -2.39
Venezuela 2.92 178.51 84.28 NaN -0.31 -0.47
Kuwait 292 479.84 90.00 29599.34 -0.75 -0.76
Algeria 291 299.23 93.75 3898.94 -1.27 -1.28
Qatar 2.77 571.76 86.98 58919.32 -1.71 -1.19
Turkmenistan 2.49 71.46 87.21 6888.55 -0.17 -0.86
Saudi Arabia 242 1592.41 74.14 21453.67 -1.04 -0.40
Timor-Leste 2.25 0.63 69.09 1385.77 -2.05 -0.05
Gabon 2.19 32.41 64.23 7364.51 -2.51 -1.02
Oman 2.16 240.97 69.68 17047.08 -1.22 -0.73
Kazakhstan 2.09 343.43 63.78 9141.98 -1.18 -1.21
Iran 1.99 369.01 63.00 3981.87 -0.85 -0.77

Note: The Brown Lock-in Index (BLI) constitutes our baseline measure of lock-in to brown exports. It is computed

_ exportsy _ pF exports,  : .
as BLI, =%, S exporis, * (1—=PCI) where S, exporisy 1S the share of each brown product in overall export values, and

PCI is the Product Complexity Index normalised to take a value between 0 and 1. The table shows the 20 countries
with the highest BLI.

and Iran.

The BCI yields very different results. The country with the highest ranking of BCI, shown
in Table 4.2, is the United States, followed by Japan, Germany, and predominantly other indus-
trialised nations, as well as emerging economies such as India and China. The BCI correlates
possitively with the GCI, indicating that countries which competitively export complex prod-
ucts, even if many of them are classed as ‘brown’, also tend to have strong capabilities to export
complex green products. Table C.8 (Appendix) reports correlations between these and other
indices.

Which countries enjoy proximate transition opportunities? Table 4.3 reports the results of

a regression estimating the relationship

TransitionOutlook.; =Py + BiIndex.; + BoGDP, ; + B3CoalRents. ;+ “.5)
BsOilRents.; + BsGasRents.; + BsCO2Emissions.; + & + € .

where Index.; denotes BLI, BCI or GCI, &; are year dummies, and € is the error term.
Standard errors are clustered at the country level.*

Results indicate that the BLI is negatively and significantly associated with the ease of

4. Note that this and other regression analyses in this chapter are intended to identify correlations. We cannot
claim identification of any causal relationships. Instead, our aim is to highlight how the measures we develop relate
to one another and, where applicable, whether they are useful in predicting probable future trends.
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TABLE 4.2
Countries Ranking Most Highly on the Brown Complexity Index

Country BCI Brown exports [IM USD]  Brown Export Share [%] GDP per capita [USD]  Transition Outlook Green TO
USA 4.93 2462.74 17.11 62013.69 -0.52 0.14
Japan 4.27 1257.50 18.67 39814.17 -0.24 0.31
Germany 3.95 1824.49 13.21 45520.66 0.02 0.68
Belgium 3.73 460.61 14.92 45068.76 -0.41 0.14
Netherlands 3.67 718.24 14.26 50490.97 -0.44 -0.24
France 3.24 468.56 8.99 39380.82 0.27 0.65
United Kingdom 3.03 802.30 19.29 42026.79 -0.05 0.77
Rep. of Korea 2.84 871.01 15.49 31579.38 -0.19 0.07
Thailand 2.76 321.74 13.03 6977.58 0.07 0.31
India 2.48 488.12 15.91 1947.72 0.43 -0.33
Spain 2.39 534.73 17.27 28314.84 0.14 0.02
Italy 222 434.85 8.74 32645.50 0.92 0.97
Austria 2.02 147.49 9.11 48550.29 0.30 1.15
China 1.91 652.10 2.60 9479.06 0.88 -0.59
Poland 1.67 189.41 7.87 14646.76 0.74 0.77
Finland 1.62 98.55 14.24 47483.98 0.54 1.43
Canada 1.62 1269.66 31.52 44725.29 -0.85 0.33
Singapore 1.61 507.49 16.89 62028.43 -0.47 0.04
Turkey 1.44 222.47 12.58 9719.31 0.80 0.46
Portugal 1.40 76.23 11.80 22094.78 0.48 0.18

Note: The Brown Complexity Index (BCI) forms a direct counterpart to the Green Complexity Index (GCI) and
measures the number and complexity of brown products a country is competitive in. It is computed as BCI, =
Yppp * PCI. Export capabilities in more technologically sophisticated activities may take longer to develop and
bring greater benefits to the economy. However, by opening up a greater number of diversification paths they are
likely associated with easier transition pathways. The table shows the 20 countries with the highest BCIL.

transitioning to green or overall non-brown products. The BCI is negatively associated with
transition opportunities to non-brown products overall, but positively with transition opportuni-
ties to green products, which tend to be more complex.

We also explore the relationship between natural resource rents and CO2 emissions and
the ease of transitioning away from brown areas of competitive advantage. Most coefficients
estimated are not statistically significant. Both coal and oil rents (as a % of GDP) seem to
be negatively associated with transition possibilities (significant in most specifications), while
natural gas rents are negatively associated with transition possibilities to non-brown products
overall, but insignificant when it comes to transitioning to green. The coefficient on logged CO2
emissions per capita is insignificant.

We carry out robustness checks computing our baseline measures of BLI and BCI for the
longer list of brown products, which includes in particular cattle and sheep farming exports, as
discussed in Section C.1 (Appendix). Appendix Section C.5 shows that our baseline results are

broadly robust to this alternative definition of ‘brown’.

4.3.3 Validation

We take several steps to ensure our measures are meaningful. First, we regress the Brown Lock-

in Index and the Brown Complexity Index on a number of potentially relevant covariates, such
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TABLE 4.3
Correlates of Country Transition Outlook Measures

() ()] 3) “) (%) (©)

Overall Overall Overall Green Green Green
Brown Lock-in Index -0.518*** -0.550***

(0.068) (0.063)
GDP per capita (current USD) (log) -0.051 -0.028 -0.073 0.074 0.038 -0.030

(0.058) (0.066) (0.066) (0.068) (0.072) (0.063)
Coal rents (% of GDP) -0.066™  -0.083**  -0.083*** -0.151"** -0.172"** -0.165"**

(0.030) (0.038) (0.030) (0.041) (0.057) (0.062)
Oil rents (% of GDP) 0.006 -0.044**  -0.038"** 0.005 -0.039***  -0.031***

(0.007) (0.004) (0.004) (0.006) (0.004) (0.004)
Natural gas rents (% of GDP) -0.021**  -0.041**  -0.038*** -0.001 -0.017 -0.015

(0.009) (0.016) (0.013) (0.015) (0.018) (0.016)
CO2 emissions (metric tons per capita, log) 0.042 0.065 -0.005 0.176 0.061 0.053

(0.099) 0.114) (0.106) (0.110) (0.125) (0.106)
Brown Complexity Index -0.115% 0.208***

(0.041) (0.052)
Green Complexity Index 0.082 0.360***
(0.050) (0.049)

Year FEs X X X X X X
Observations 854 854 854 854 854 854
R2 267 21 204 318 274 335

Linear regression. Cluster-Robust Standard Errors in Parentheses.
Dependent Variables are Country-Level Transition Opportunities from Brown to the List Stated.
The label (log) refers to the natural logarithm of 1 + the variable in question.
Note: The table reports the results of a regression of Green and Overall Transition Outlook on the a number of

potential explanatory variables.

as income, natural resource rents, and Revealed Technological Advantage5 (RTA) in climate-
relevant technologies. While there is no statistically significant relationship between the BLI
and income, our results suggest high BCI-countries also have higher GDP per capita. The BLI is
positively and significantly, the BCI negatively and significantly associated with higher oil rents.
The BLI is also positively associated with natural gas rents and patenting in carbon capture and
storage (CCS), but negatively with patenting in transport-related mitigation technologies. There
is no significant association between BLI and per capita CO2 emissions; however, countries
which score highly in BCI have higher CO2 emissions. By contrast, Mealy and Teytelboym
(2020) find that countries with high green complexity have lower per capita emissions.

We also test the relevance of our Transition Outlook measures. We first regress BLI and
BCI on lagged Green and Overall Transition Outlook, as well as their own lagged values, GDP
per capita and other covariates. Results suggest that the Green Transition Outlook is a statis-
tically significant predictor of future reductions in Brown Complexity Index, but not Brown

Lock-in Index.® The Overall Transition Outlook, on the other hand, is significantly associated

5. An index computed in a similar fashion as Revealed Comparative Advantage, but based on country-level
patenting, rather than exports (e.g. Montresor and Quatraro 2017).
6. This is consistent with our finding in 4.3.1 that the proximity of many brown to green products is higher
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with reductions in future BLI but not BCL.”

Regression tables can be found in Appendix Section C.2.

4.4 DISCUSSION

Mitigating climate change requires a systemic technological transformation which is histori-
cally unparalleled in speed and scale. This transition is likely to leave large swaths of previ-
ously productive and profitable assets stranded. While the transition risk facing oil exporting
countries has been noted (e.g. Manley et al. 2017; Zenghelis et al. 2018), quantitative measures
of transition risk at the level of nations’ productive structures have been lacking — a gap this
chapter has endeavoured to fill. Our estimates of current lock-in to declining sectors, as well
as the ease of transitioning to climate-compatible activities, highlight the isolated nature of ex-
tractive industries and the importance of diverse productive assets and capabilities in adapting
to global economic shifts (Zenghelis et al. 2018). We also map the similarity of brown products
to green products within the product space, and find that many brown products seem to require
similar productive capabilities as green products — in line with a recent finding by Jee and Sri-
vastav (2022) that most clean patents are at least indirectly connected to a dirty patent in the
technology space. This suggests many productive assets currently devoted to brown activities
may shift to emerging green ones with relative ease. We find a similar pattern at the country
level, with countries exporting a diverse number of sophisticated brown products often being
well-positioned to shift into green technologies. Countries depending on a small number of
fossil fuel exports, however, face significant transition risk.

There is an ongoing policy debate about transition opportunities for the fossil fuel indus-
try. Suggested possibilities include green hydrogen and other low carbon fuels, ammonia, and
products used in carbon capture and storage. These tend to co-occur with high-carbon prod-
ucts, as CO2 captured and stored with the respective technology can be utilised in a synthesis
of methanol, for example (Collodi et al. 2017). Hydrogen is primarily an energy carrier, which
can be transformed to ammonia for easier transport, another net-zero relevant energy carrier.
As the global market for hydrogen still needs to be scaled up, one can expect initially grey
hydrogen to increasingly transform into blue and eventually green, as large-scale production
facilities in countries such as Namibia, Morrocco, Chile and Australia come on-stream (Eicke
and De Blasio 2022; International Energy Agency 2021).8

than average, as well as the intuition that countries scoring high on BLI are specialised in a small number of
low-complexity brown products located at the periphery of the product space.

7. This suggests that countries scoring high in BCI tend to move away from brown and into green activities,
while those high in BLI find it easier to transition into undefined areas.

8. Both hydrogen and ammonia are labelled based on the type of energy used to produce then, which is green
for renewable energy, blue for fossil-based production with carbon-capture and storage, grey for fossil-based pro-
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Our methodological approach has some potential to validate these largely anecdotal ac-
counts. While the above considerations are mostly strategic and forward-looking, and trends
in such directions therefore unlikely to feature prominently in historical data, there are some
encouraging individual country examples. Saudi Arabia is the world’s largest exporter of an-

9

hydrous ammonia,” accounting for 23% of world exports, followed by Russia and Trinidad and

Tobago. Trinidad and Tobago and Saudi Arabia are further the largest exporters of methanol'”
at 13% of world exports each, followed by Iran at 11%. Drawing on the list of products related
to carbon capture, utilisation and storage (CCUS) compiled by Serin et al. (2021), we find that
declines (increases) in the share of refined oil, natural gas (liquefied or piped) and coal are all
significantly associated with increases (reductions) in revealed comparative advantage in car-
bon capture and storage technologies, as well as — with the exception of LNG — export share of
CCUS. There is, however, no correlation between changes in the share of crude and CCUS.

Despite these encouraging examples, however, our results highlight the limitations of ex-
ploiting ‘latent comparative advantage’ in countries which score highly on our Brown Lock-in
Index measure. Countries which have reduced their BLI have tended to reduce reliance on coal
or crude oil, but have usually done this either by increasing reliance on other hydrocarbon ex-
ports, like refined oil or natural gas, or by increasing exports of unrelated products. Pathways
for ‘related diversification’ for these ‘locked-in’ countries are thus very limited. For example,
the United Arab Emirates, whose BLI rank fell from 19 in 1996-2000 to 32 in 2016-2020, re-
duced the share of crude oil in its exports from 56.24% to 21.42% during the same period.'!
Meanwhile, the share of refined oil almost doubled, from 6.97% to 12.23%. The country further
increased its exports of diamonds, metals and gold, jewellery and radio transmissions apparatus.

Overall, our results suggest that the complexity of a nation’s exports could be more impor-
tant to mitigating transition risk than the ‘brown-ness’ of those exports on its own. The related
diversification approach is of limited use to countries which have few areas of latent compar-
ative advantage in sectors that are likely to remain viable in the green economy. The question
then becomes: how can countries break out of low complexity, low diversity specialisation
paths?

There is significantly less quantitative evidence on how regions may break out of path
dependent trajectories than there is for the importance of relatedness in driving industrial de-
velopment. Studies which do engage with this question suggest that the capacity to invest in
innovation may play an important role in reducing the constraints of existing capabilities and

enabling regions to jump into less related areas of specialisation (e.g. Xiao et al. 2018; Zhu

duction without CCS, and so on.
9. Ammonia has pairwise proximity 0.27 to crude oil
10. Methanol has pairwise proximity 0.37 to crude oil, making it crude’s closest non-hydrocarbon export
11. Note, however, that absolute export volumes continued to increase.
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et al. 2017). Xiao et al. (2018), in their study of Chinese regions’ diversification into related
and unrelated new industries over the period 2002-2011, further find a significant and positive
effect of factors such as extra-regional linkages (proxied by FDI and imports), human capital
and ‘open-minded social-institutional contexts’ in enabling regions to jump further within the
industry space. This suggests that promoting extra-regional knowledge exchange and fostering
healthy innovation ecosystems (see e.g. Brown and Mawson 2019; Gomes et al. 2018; Leen-
dertse et al. 2021) may be key strategies for countries locked-in to low-complexity, declining

industrial sectors.

4.5 CONCLUSION

This chapter estimates the extent to which countries’ productive capabilities are specialised in
both complex and non-complex brown exports. We make three contributions to the literature.
First, we develop novel measures of country-level transition risk that account for the ability of
countries with brown exports to transition into more climate-compatible areas of comparative
advantage. Second, we develop a list of traded ‘brown’ products, which provides a previously
missing counterpart to the WTO’s ‘green’ list used in prior research. Third, we locate declining
brown products within the product space and measure their proximity to climate-compatible
products.

Compared to the average exported product, brown products tend to be more proximate to
green products. This is an encouraging finding, as it suggests that factors of production currently
devoted to many brown activities could be redeployed towards climate compatible alternatives
relatively easily. However, the picture is bleaker for major hydrocarbon exporters that score
low on diversity, complexity, and have low proximity between their brown areas of comparative
advantage and non-brown products within the product space. While smart specialisation poli-
cies and relatedness measures can highlight the most proximate products for brown activities to
shift into, this is less helpful for countries specialised in brown products at the periphery of the
product space that have very few proximate diversification opportunities. As the difficulty fossil
fuel exporters face in adapting to a low carbon future presents a threat to effective global climate
action, there is an urgent need to find viable development pathways for these countries. Fur-
ther research on how to achieve path-breaking diversification, particularly for low complexity
regions, should be a high priority.

While our chapter provides trade-based measures of transition risk and opportunities across
nations, we recognise that transition risk will also vary within countries. Although our measures

are agnostic regarding the underlying mechanisms of relatedness,'? the ability of workers to

12. which likely include the traditional drivers of agglomeration economies: knowledge spillovers, labour market
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move into new activities as some sectors decline is key to achieving a just transition. Existing
research has examined the similarity of green skills to non-green skills (e.g. Consoli et al. 2016;
Saussay et al. 2022). Saussay et al. (2022) identify the skills intensities required for low- and
high-carbon jobs using job ads data, and find evidence to suggest that differences between high-
and low-carbon jobs tend to be smaller than those between generic and low-carbon jobs, but
that high and low-carbon jobs in the US tend not to be spatially co-located. However, granular
evidence on the transferability of skills used in declining sectors to climate compatible ones
(green or not) is currently lacking and should be a priority for future research.

More broadly, our measures are based on historical patterns of co-exporting. The low car-
bon transition requires shifts in global trade, as well as changes in technologies themselves.
Such dynamics are likely to transform the product space network and alter the relatedness be-
tween different economic activities. The implications of such changes in the network of eco-

nomic activities for economic development are another important avenue for future inquiry.

pooling, and input-output linkages



Chapter 5

Directed Technological Change and
General Purpose Technologies: Can Al

Accelerate Clean Energy Innovation?

5.1 INTRODUCTION

Directing technological change away from polluting technologies and towards cleaner options
is central to addressing global environmental problems such as climate change. Prior work
has shown that a combination of taxes and research subsidies can effectively level the playing
field between clean and dirty technologies (Acemoglu et al. 2012; Aghion et al. 2016). Those
policies incentivise the development and adoption of environmentally friendly technologies,
which allows clean sectors’ productivity to catch up to their dirty counterparts in the longer
term.

However, the race between clean and dirty technologies is taking place against a backdrop
of improvements in information and communication technologies (ICT) and artificial intelli-
gence (Al). Some highlight the positive impact those technological developments may have in
helping solve environmental problems.! But are low-carbon technologies surfing the Al wave
better than dirty technologies? Al and ICT, in some respect, resemble the textbook case of
general-purpose technologies in that they have the potential to be applied in many, if not most,
areas of the economy, including in high-carbon energy industries (Brynjolfsson et al. 2021;
Crafts 2021; Trajtenberg 2018). Thus, a priori, there is no reason to believe that they can drive
the low-carbon transition, as they may just as well help incumbent technologies continue to gain
productivity.

This chapter investigates how a new general-purpose technology (GPT) affects the direc-

tion of technological change and, in particular, the competition between clean and dirty tech-

1. See, for example, Rolnick et al. (2019) or private sector initiatives such as Microsoft’s ‘Al for the Planet’.
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nologies. We do so, first, theoretically and then empirically by examining the extent to which
energy patents rely on Al and ICT inventions. In line with the literature on directed techno-
logical change and the environment, we consider low-carbon electricity and transport to be
competing in a race with the incumbent fossil fuel-based technologies, where the latter have an
advantage due to their greater maturity (i.e., in the absence of corrective policy, they will attract
more talent and R&D resources). But we recast this race as happening against the backdrop of
advances in Al

Our theory shows that the arrival of a GPT opens new opportunities to shift to a clean tech-
nology equilibrium because it disrupts the path dependence mechanisms that otherwise entrench
dirty incumbent technologies. In addition, the shift to the clean equilibrium is made easier if
clean technologies have a higher capacity to absorb the GPT than dirty technologies. The ab-
sorptive capacity of a technology is shaped both by characteristics intrinsic to the technology
and previous exposure to the GPT: both can make it easier to apply the GPT in that particular
technological field.

We then study the absorptive capacities of clean and dirty technologies empirically. To do
so, we analyse citations between energy patents and Al (or ICT) patents and show that clean
energy technologies absorb digital technologies much more than dirty energy technologies do.
This is true both across and within individual firms’ patent portfolios. We interpret this as
an indication that the differences between clean and dirty technologies arise both from firm-
level capacities and characteristics intrinsic to the technologies (i.e. technological reasons why
there is more potential to apply Al and ICT in clean technologies than in dirty ones). At the
firm level, we then find that a firm’s stock of knowledge in Al increases the extent to which
it applies Al to its energy innovations, and the effect is much stronger for clean technologies.
Interestingly, having a lot of prior experience in energy technologies seems to be a barrier to the
use of Al, which suggests that new entrants to clean transport and electricity who have strong
Al capabilities are critical to accelerating the diffusion of Al into low-carbon technologies.

In summary, this chapter argues on theoretical grounds that it is critical for the low-carbon
transition that clean technologies be more successful in ‘riding the AI wave’ (i.e. applying the
GPT) than dirty ones. Empirically, we find early evidence that this is the case, both because
these technologies are intrinsically more able to use Al and because this, in turn, encourages
firms with Al knowledge to invest in those technologies. However, compared to other techno-
logical fields, the rate at which Al is entering clean transport and electricity technologies re-
mains low compared to other areas, such as medical technologies or telecommunications. This
suggests that there are good reasons for innovation policy to deliberately target applications of
Al (and digital technologies more broadly) to clean technologies.

This chapter contributes to both the theoretical and empirical literatures on directed techno-

logical change and the environment (Acemoglu et al. 2012; Aghion et al. 2016; Dechezleprétre
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et al. 2017; Johnstone et al. 2010; Popp et al. 2020). This literature tends to analyse environ-
mentally beneficial innovations in isolation from other technological developments. Here, we
extend it by studying the interaction with a general-purpose technology. In doing so, we also
contribute to the economic literature on GPTs (Helpman and Trajtenberg 1994, 1996; Lipsey
et al. 2005; Rosenberg and Trajtenberg 2010). This literature is mainly concerned with under-
standing the contribution of GPTs to growth and has not investigated how GPTs can modify
the direction of technological change (except for the literature on digital technologies and skill-
biased technical change).

Economic history, however, has provided detailed accounts of how specific GPTs have
created new technological eras by reconfiguring technological systems, creating new comple-
mentarities between technologies, and between new technologies and infrastructure, produc-
tion methods, lifestyles and consumption habits (Fouquet2008; Dosi 1982; Griibler et al. 1999;
Perez 2009; Rosenberg 1979). This qualitative strand of literature is complemented by recent
empirical work that aims to quantify technological interdependencies, for the most part using
patent data (Acemoglu et al. 2016b; Napolitano et al. 2018; Pichler et al. 2020). These papers
find that the patterns of technological interdependencies predict future rates of innovation. This
underscores the importance of understanding the complementarity between clean innovation
and other fast-improving fields of innovation.

The remainder of this chapter proceeds as follows. Section 5.2 provides background on
general-purpose technologies, in particular their role in economic transformations, and on ICT
and Al technologies with a focus on their potential applications to the low-carbon transition.
Section 5.3 analyses a model of green directed technological change in which we add a GPT.
Section 5.4 describes the construction of our global dataset of 2,545,063 electricity and transport
patent families and the extent to which they have absorbed Al and ICT knowledge. Section 5.5
presents our key result about clean technologies’ greater ability to absorb the GPT as compared
to dirty technologies. Section 5.6 presents the results of the firm-level analysis, while section

5.7 discusses the implications of our results for the low-carbon transition.

5.2 BACKGROUND

Artificial Intelligence as the next General Purpose Technology Artificial Intelligence (AI)
— defined by Miriam-Webster as ‘the capability of a machine to imitate intelligent human be-
haviour’ — is widely thought to be the next game-changing technology about to unleash large
productivity gains and a wave of automation by optimists and pessimists alike (Trajtenberg
2018). Al includes several techniques and functional applications in computer science, such

as deep learning, symbolic systems and reasoning, speech processing, and computer vision, all
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of which are key to advancing optimisation, prediction and robotics, which can be deployed in
many sectors. According to Cockburn et al. (2018), deep learning has the potential to change
the research process itself, thus qualifying as the ‘invention of a method of invention’. There is,
therefore, significant evidence that Al qualifies as a general-purpose technology, and an emer-
gent literature aspires to model its potential effects on growth and knowledge creation. For
example, Aghion et al. (2018b) model Al as a process of automation of goods and services, as
well as the production of ideas. Agrawal et al. (2018) integrate Al breakthroughs into a knowl-
edge production function as enabling faster discoveries in combinatorial knowledge creation.

Applications of Al in Energy Sectors Some ICT and Al technologies may have applications
essential for the transition to clean energy. For example, smart grids facilitate the integration of
distributed renewable energy with bulk power generation plants and bulk energy storage systems
(Bose 2017), and smart buildings can benefit from effective load demand forecasting (Raza and
Khosravi 2015) and better monitoring through smart meters (Fouquet 2017). Al techniques
can also be used to plan, optimise, and manage renewable energy technologies, including solar
and wind systems and hydro power (Jha et al. 2017). For example, fuzzy logic controllers can
adjust turbine speeds to optimise aerodynamic efficiency and extract maximum power, while
neural networks can carry out automatic performance checks (Bose 2017). Lee (2020) has
analysed patent citations and found that Al has contributed to improving battery performance
and optimising cars’ energy management systems and charging systems.

Potential applications of Al in the energy sector are not limited to clean technologies. Al
can enhance productivity in many application sectors by automating some tasks and freeing up
labour to complete other, more complex ones. It is also valuable for planning the maintenance
and deployment of physical capital or inventories. More broadly, and not specific to clean or
dirty energy, Lyu and Liu (2021) analyse online job postings data from 2010-2019, and find
that among emerging digital technologies (among which they include Artificial Intelligence,
Big data, Internet of Things, Robotics, Blockchain technology, and Cloud Computing), Al is
the most widely applied in the energy sector (as measured by the extent to which new hires are
asked to provide expertise in Al). Al-related knowledge also carries the highest wage premium
compared to average wages and contributes most to energy firms’ performance. Crucially,
there are numerous potential applications for Al not just in clean but also in dirty energy. For
example, Al can increase the efficiency of fossil fuel exploration (such as through well logging
or geological mapping), field development and engineering, and other parts of the value chain
(Koroteev and Tekic 2021). In combustion technologies, Al can be used to monitor and optimise
combustion processes. Thus, Al could accelerate innovation in clean technologies, but given its
wide range of applications, it could also help the productivity of dirty technologies and prolong

their attractiveness.
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The economics of GPTs Our analysis is informed by several key contributions from the eco-
nomics literature on GPTs and innovation spillovers. First, as emphasised by Helpman and
Trajtenberg (1994) and Helpman and Trajtenberg (1996), the economic benefits from a new
GPT may accrue only after a lag because advances in the GPT do not diffuse spontaneously:
adoption requires complementary co-invention in application sectors typically happening via
R&D investments. Helpman and Trajtenberg (1996) model the diffusion of a new GPT, allow-
ing for both early and late adopters, and the extent to which application sectors innovate to make
use of the GPT depends on four key factors: their capacity to absorb the GPT (that is to learn
from it to create large productivity gains in their sector); their market size; the historical stock
of components developed for the old GPT; and the cost of developing new components. Our
theoretical analysis will build on those factors.

We also follow Cohen and Levinthal (1990) in considering absorptive capacity to be en-
dogenous, meaning that it is the result of deliberate investments in an area of knowledge to
be better able to learn from other inventors and inventions (thus, knowledge spillovers are not
‘free’ or spontaneous).

Finally, while prior literature mainly focused on the effects of GPTs on growth, we ex-
amine how GPTs shape the race between two competing technologies and may catalyse the
creative destruction of a (dirty) incumbent technology by a newer (clean) challenger. Indeed,
in modeling the diffusion of a GPT, Helpman and Trajtenberg (1996), for example, assume that
all viable application sectors will eventually adopt the GPT. In the race between clean and dirty,

however, enhancing welfare requires that the dirty sector declines and disappears.

5.3 THEORY

How should we expect a GPT to affect the direction of technological change? Specifically,
under what conditions can a GPT accelerate the pace of innovation more in dirty rather than
clean technologies? We build on the seminal model of directed technological change and the
environment put forth by Acemoglu et al. (2012) by adding a general-purpose technology and
letting clean and dirty sectors have potentially differing capacities to absorb this GPT.

We first consider the case where absorptive capacity is entirely exogenous, and then we
partially endogenise it by allowing firms or scientists to invest in it. In both cases, we solve
for the equilibrium level of innovation in the clean and dirty sectors. Endogenising absorp-
tive capacity also yields comparative statics that we use as hypotheses to explain the observed

empirical variation in the extent to which different technologies and firms draw on the GPT.
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Baseline model

Let there be an aggregate final good competitively produced from the combination of dirty and

clean inputs ¥; and Y, (e.g., energy source or material):

e—1 e—1

Y = (Y¥,* "‘Ydt?)m (5.1)
We assume that clean and dirty inputs are highly substitutable (¢ > 1)?. Sector j € {c,d}
produces input ¥; competitively using a combination of labour and sector-specific machines:
l-a ! l-a o g

Yi=Lj /0 Ay Xjidi (5.2)

For example, if the input is electricity and j = ¢, the machines may be wind turbines and

solar panels, and for j = d, gas-fired power plants. The machines form a continuum; machine i
has productivity A j;; and is consumed by the intermediate producer of input Y; in quantity x ;.
Meanwhile, scientists choose whether to work on clean or dirty technology. Having made

this choice, each scientist is randomly allocated to a single machine in the sector of choice.

In the standard model, scientists successfully innovate on machine i with probability n;. If

successful, the machine’s productivity gets an incremental increase, denoted y. Formally:

The scientist then obtains a one-period patent and becomes the monopolistic producer of

that machine for that period (producing each machine at a cost of 7 units of the final good).

Adding Spillovers from a GPT

We modify the dynamic equation governing the change in productivity of machines (Equation
5.3) by introducing a stock of knowledge in a GPT (GPT;) and an exogenous absorptive capacity
B for scientists working on technologies of sector j. Here, we consider that spillovers from the
GPT increase the value of an innovation by boosting the the machines’ productivity.> Formally,
we write:

Ajir = (14+ 7+ B;GPT)A it (5.4)

This modeling choice is supported by Table 5.4 in Section 5.5, which shows that the value

of an energy patent (as measured by the citations it receives) is greater for those patents that

2. This is a key assumption in Acemoglu et al. (2012), which is arguably plausible in the sectors we analyse.
Electricity from renewable energy sources can be used in much the same way as electricity from a coal power plant,
just as an electric vehicle is a good substitute for an internal combustion engine powered one. For a more detailed
discussion of this assumption and its justification, please refer to Acemoglu et al. (2012), page 135, footnote 6.

3. Alternatively, we could model the idea that spillovers from the GPT increase the rate of innovation (as in the
notion that AT may accelerate discovery of solutions), such that 17; « 3;GPT;. But this does not change the results
of our analysis.
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draw on the GPT. Equation 5.4 also implies that the spillovers from the GPT depend only on
absorptive capacity f3;, and is therefore the same for any machine within the sector j.

Next, we focus on characterising the profitability of research in each sector to understand
how the GPT affects the direction of technological change.* The average productivity of sector
jis:

1
Ay = / Ajudi (5.5)
0

It evolves over time according to the following equation:
Aji = (1+(v+B;GPT)Njsj)A i1, (5.6)

where s; is the share of scientists who choose to work in sector j (where market clearing
of R&D labour requires s. 4+ s; = 1). The equilibrium profits of a producer of machine with
productivity A j; is:

1

i = (1 —a)ap *LiAju (5.7)
Ex-ante, the expected profit from choosing to work in sector j is:

1

0 =n;(1+7y+B;GPT)(1 —a)op;, “LyAji— (5.8)

Solving for equilibrium values of pj, and Lj;, and substituting, we obtain the following

ratio of R&D profits for working in the clean versus dirty sector:

1
Iy

—9-1 0
— Flsesg) = Ne 1+ v+ B.GPT, ( 1+(y+ﬁCGPT,)ncsc) (Ac,1> (5.9)

T Na L4+ 74 BiGPT \ 1 + (y+ B4GPT,)Nasa Ag—1

Equation 5.9 allows us to study how the GPT affects the direction of technological change.
If £(1,0) > 1, then (s, = 1, s; = 0) is an equilibrium, and technological change is directed to-
wards the clean sector. If £(0,1) < 1, then (s, =0, s; = 1) is an equilibrium, and technological
change is directed towards the dirty sector. If f(1,0) > 1 and f(0,1) < 1 simultaneously, then
we obtain multiple equilibria, meaning that either the dirty or the clean equilibrium is possible,
and some coordination device is required to select one equilibrium.

Let’s denote A.;_1(Ag,—1) the value of A.,_; where f(1,0) = 1. This is the minimum
value that A.; | must take, given A;;_1, so that a clean equilibrium becomes possible. Con-
versely, denote AdJ_l (Ac—1) the value of Ay, ; where £(0,1) = 1. This is the minimum value
that Ay, must take, given A., 1, so that a dirty equilibrium becomes possible. These two

functions, depicted in Figure 5.1, delineate the area in the (A, ,—; ,Ad’,_l) space where we ob-

4. Appendix D.1 provides the step by step derivation of the equilibrium equations.
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tain a clean equilibrium, a dirty equilibrium, or multiple equilibria. Result 1 below summarises

the impact of the GPT on the direction of technological change.’
Result 1.

(a) An increase in GPT; causes both A.;_1(Ag;—1) and Ag;—1(Acy—1) to decrease, which

means that we obtain multiple equilibria for a wider set of historical states (Ac;—1,Aq1-1)-

(b) An increase in Bj causes Aj,_1(A_j,_1) to decrease and A_j,_(Aj,_1) to increase, thus

expanding the range of histories in which all scientists engage in innovation of type j.

Figure 5.1 illustrates Result 1. As a baseline, consider 3. = B; = 0 which corresponds
to the case where neither sector can absorb the GPT, making it irrelevant and equivalent to the
original model by Acemoglu et al. (2012). In Figure 5.1a, we see that, in this case, technological
change is geared towards the sector that is already the most productive. There is a narrow area,
when A¢; 1 is close to Ay, 1, where multiple equilibria are possible: actors have to coordinate
on the clean or the dirty equilibrium. But, for most of the state space, the equilibria are path
dependent and reflect what was done in the past. For example, an initial advantage in the dirty
sector would lead to a unique equilibrium in which scientists work on dirty innovations.

When the two sectors can both absorb the GPT, as stated in Result 1a), the window of
multiple equilibria expands. In other words, thanks to the GPT, the innovation system has more
opportunities to break free from the determinism of the past, even when both the incumbent
and the challenger technology have the same absorptive capacity. Actors can use the GPT to
move either technology sufficiently ahead of the other to make it competitive. The direction of
technological change then depends on which technology actors coordinate on.

On Figure 5.1b, we consider a case when clean and dirty have different absorption capac-
ities to illustrate Result 1b). We see that a higher 3. increases the area where we get multiple
equilibria, and, most importantly, shrinks the area where the dirty technology dominates.

Result 1 and Figure 5.1 highlight what is at stake in studying the GPT’s influence on clean
and dirty technologies: the GPT can upend the path dependence of technology. In the absence
of a GPT, the more mature technology attracts more effort because, being more productive, it
has a larger market. Thanks to the GPT, however, the less mature technology can catch up.
A GPT can therefore fundamentally change the nature of the race between the newer clean
technologies and the more mature dirty technologies. It reduces the weight of the past, by
providing an opportunity to coordinate on the new clean equilibrium, especially if the clean

technology has a higher absorptive capacity than the dirty.

5. The proof is shown in Appendix D.1.2.
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Bi=2p=1 Bj=0 B=1 Bc=2,Ba=1
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8 clean innovation Bi=0 8 clean innovation

multiple equilibria
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multiple equilibria

10
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(a) Clean and dirty have equal absorptive capacity (b) Clean has higher absorptive capacity

Note: Direction of technological change in equilibrium, that is the allocation of scientists in the clean or dirty
sectors, given each sector’s past stock of knowledge (A;_1) and absorptive capacity (j3,).

FIGURE 5.1
Direction of Technological Change With a GPT

Endogenising the Spillovers from a GPT

We now endogenise absorptive capacity, allowing scientists to invest in their capacity to absorb
the GPT. This allows us to derive comparative statics for the level of effort in absorbing the
GPT. To do this, let’s decompose f3; into an exogenous and an endogenous component, such
that:

Bj=10b,Bj, (5.10)

where b; is exogenous (coming from the characteristics of the technology) and B; is an
endogenous investment in absorption which comes at a cost of 1//B§. Scientists first choose
which sector to work on (i.e. clean or dirty), and then decide how much to invest in their
capacity to absorb the GPT.

The expected profit from working on technology j is now:

I = 1;(1+y+b;B;GPT)a(1 — a)pi " LA 1 — wB (5.11)

Hence, a scientist working in sector j would optimally invest in their absorptive capacity

as follows:
(I-a)a 1/(1-a)

B; = (n;b;GPT;) 2y P

LitAji (5.12)

Using Equation 5.12 in combination with the other equations that characterise the equilib-

rium, we obtain Result 2 below.®

6. The proof is shown in Appendix D.1.3.
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Result 2. In equilibrium, investments in absorbing the GPT in a given sector increase with the
existing accessible stock of the GPT and with the intrinsic absorptive capacity of the application

sector:

dB*
(a) —de)jT[ >0

dB*;
J
(b) 75 >0

(c) At the equilibrium for type j: de—Tthj >0

Result 2 tells us that efforts in absorbing the GPT increase with the accessible stock of the
GPT and with the intrinsic absorptive capacity of the technology. In other words, the potential
for spillovers encourages innovation investments in applying the GPT. We expect the extent of
potential spillovers to vary by technology (due to the intrinsic absorptive capacity), but also
across firms, regions or innovation systems (due to variation in the stock of the GPT across
these social units).

Furthermore, as Result 2¢) indicates, there is a positive interaction between intrinsic ab-
sorptive capacity and the stock of knowledge in the GPT for the technology chosen in equilib-

rium. In the empirical section, we will bring these comparative statics to firm-level data.

Technological Lock-In

In this part, we consider the role of technological maturity in absorbing the GPT. Specifically,
we allow absorptive capacity to decay with the application sector’s productivity A ;. We now
write the absorptive capacity ; as a function of A j;:

Bi=b;BiAL°, (5.13)

where 0 > 0 represents an aging factor. The idea is that more mature technologies are less

able to undergo radical changes, or in other words, aging causes lock-in.

Result 3.

dB’
(@) g <0if§>1

(b) g >0if§ <1

Result 3 shows that the maturity of the technology in the application sector can impact
the endogenous part of absorptive capacity.” If the aging factor is large (8§ > 1), then when

the technology matures and becomes more productive, fewer investments are made which leads

7. The proof is shown in Appendix D.1.4.
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to lower absorptive capacity. On the contrary, when the impact of aging is minimal (§ < 1),
an increase in the productivity of technology j leads to more investment and higher absorptive

capacity.

5.4 DATA

Patent Data. Our next steps focus on measuring the extent to which clean and dirty technologies
absorb spillovers from Al and ICT. To do so, we use data on patent applications from PATSTAT
and obtain a full coverage of patents filed around the world up until 2018.% To avoid double-
counting, we aggregate patent applications at the level of DOCDB families, which are groups
of patents that have been identified as covering the same invention.” To place patent families
over time, we use the priority year, that is the year when the earliest application in the family

was filed.

Energy Inventions. We use technology codes from the International Patent Classification (IPC)
and from the Cooperative Patent Classification (CPC) to identify inventions related to energy
technologies for electricity and transportation.! The codes are assigned by patent examin-
ers and are often used to classify patents as either clean, grey or dirty (Acemoglu et al. 2012;
Aghion et al. 2016; Dechezleprétre et al. 2017; Johnstone et al. 2010; Lanzi et al. 2011; OECD
2016; Popp et al. 2020). Table 5.1 summarises how we classify technologies. ‘Dirty’ refers to
conventional, highly polluting technologies, while ‘clean’ includes the least polluting alterna-
tives. The category ‘grey’ captures increased efficiency of dirty technologies. A full list of the
codes used is shown in Appendix Table D.1 and D.2.

We keep all energy families with a priority year between 1990 and 2018. For this period,
we find a total of 1,674,751 electricity families (809,327 clean, 257,490 grey, 607,934 dirty)
and 1,300,651 transport patent families (795,408 clean, 298,645 grey, 206,598 dirty). Figure
5.2a and 5.2b show that the number of energy families have been going up both for electricity

and transport. In transport, clean vastly outpaces dirty and grey throughout most of the period,

8. We use the 2021 Spring edition of PATSTAT. Since there is a delay between when applications are filed and
when the data is transferred to the database, the years 2018 onwards are severely truncated.

9. Several patents are typically filed about the same invention because the different applications may cover
slightly different claims (about the same invention) or may contain exactly the same claim but are filed in different
countries. We include patent families of all sizes (i.e., including size 1) and with patent applications filed in any
jurisdictions. This approach allows us to capture global trends in clean and dirty innovation without restrictions
on where the invention happened and how many jurisdictions the assignees deemed interesting to file in. Some
regressions will only use triadic granted families as a way to narrow down the analysis to potentially more valuable
inventions.

10. We use both classifications in order to capture as many relevant families as possible. Using IPC codes is
necessary to capture many families from the Chinese, Japanese and Russian patent offices which do not use the
CPC. A family is assigned to a category if at least one patent within it has been assigned a relevant technology
code.
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TABLE 5.1
Technology Categories

Electricity Transport
Renewable Energy (Wind, Solar, Geothermal, Electric, Hybrid, or Hydrogen vehicles, Fuel
Clean Hydro, Marine), Nuclear Energy, Enabling cells, Batteries, Enabling technologies (e.g.,
technologies (e.g., smart grids) charging stations)
Grey Efficiency, Biomass and waste Efficiency of internal combustion engines

Combustion of traditional fossil fuels (Oil,

Dirty Natural Gas and Coal), Hydrofracturing

Internal combustion engines

Note: The table shows the technologies we include as clean, grey or dirty electricity and/or transport. We identify
patent families related to those technologies based on codes from the Cooperative Patent Classification (CPC)
and the International Patent Classification (IPC). We use both classifications in order to capture as many relevant
families as possible. Using IPC codes is necessary to capture many families from the Chinese, Japanese and
Russian patent offices which do not use the CPC. A family is assigned to a category if at least one patent within it
has been assigned a relevant technology code.

while in electricity clean innovation has exceeded dirty and grey since the early 2000s.

AI and ICT Inventions. To identify patents related to Al, we follow the methodology devel-
oped by WIPO (2019) that uses technology codes and keyword searches in abstracts and ti-
tles. Keywords include ‘artificial or computational intelligence’, ‘neural networks’ or ‘learning
model or algorithm’. For ICT, we use a series of technological codes following Inaba and Squic-
ciarini (2017). These codes include inventions classified as related to the ‘transmission of dig-
ital information’, ‘self-organising networks, e.g. ad hoc networks or sensor networks’ or ‘high
speed computing’. In the end, this procedure identifies 548,641 Al families and 10,883,849
ICT families. We note that, to this day, the stock of ICT knowledge is vastly greater than that
of Al Figures 5.2c and 5.2d show that the number of Al families remains relatively small and
has only begun rising sharply since 2010. On the other hand, more than 150,000 ICT families
have been filed each year since the early 1990s. We also find that a majority of Al families also
qualify as ICT: this implies that, to some degree, Al can be thought of as a sub-field of ICT (see
Appendix Figure D.1).

Backward Patent Citations. We use backward citations to quantify the extent to which energy
inventions rely on Al and ICT. Specifically, as a measure of absorption, we calculate the per-
centage of backward citations that each energy family makes to AI or ICT patent families.!!
In our sample, the average energy family cites about 3.8 patent families with 0.3% going to Al
and 4.3% to ICT. This hides considerable variation, however, since some families have 100% of
their backward citations going to Al or ICT patents while others cite none. Table 5.2 provides

examples of energy patents with high reliance on Al. The first patent in the table, for instance,

11. PATSTAT provides information about citations at the family level, meaning if two patents in the same family
cite the same Al patent, that patent counts only as one citation.
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Note: The figure plots the total number of patent families over time filed worldwide for each of the following
categories: a) electricity, b) transport, ¢) Al and d) ICT. The year used is the priority year of the family. We note
that Al patenting has seen a sharp increase since 2010. Source: Authors’ calculations based on PATSTAT 2021.

FIGURE 5.2
Patenting Trends Over Time by Family Type

corresponds to a dirty electricity family filed in 2017 entitled *’Improved Flow Valve Port for a
Gas Regulator’. The patent makes 49 citations to other patents and 67% of those are citations

going to Al families.

Proxies of Patent Quality. We follow prior work by using the number of citations received
(a.k.a. forward citations) as a proxy of patent quality (Jaffe and De Rassenfosse 2017; Jaffe et
al. 2000). The number of times a particular family is cited by other families, however, heavily
depends on the number of years since it was first filed: the older the family, the more opportuni-
ties there have been for other families to cite it. It is therefore inappropriate to compare families
filed in different years since the younger ones would mechanically have fewer citations. To

avoid this problem, our main measure is the number of forward citations received within 3
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TABLE 5.2
Examples of Energy Innovations Citing Al Patents

Patent Application Title Sector Type Year Citations to Al
# %
Improved Flow Valve Port for a Gas Regulator Electricity Dirty 2007 49 67
Robotic cleaning device Transport Clean 2013 297 41
Virtual sensor system and method Transport Dirty 2007 37 26
Battery agnostic provisioning of power Transport, Electricity Clean 2016 119 13
System and approach. fqr d}./namlc vehicle speed Transport Grey 2015 51 10

optimisation

Dual fuel heater with selector valve Electricity Grey 2011 38 9

Method and apparatus for configuring a

C Electricity Clean 2014 55 2
communication interface

Note: The table illustrates how Al may be applied to energy technologies by showing examples of energy patent
families with a high number of citations to Al

years. '2 As an additional proxy of patent quality, we also use the number of countries where
the patent family was filed as well as the size of the family (i.e., the total number of applications
in the family).

Firm-Level Data. We use European Patent Office data obtained from the Bureau Van Dijk Orbis
hard-drive to link PATSTAT patent ids to Orbis firm identifiers. We then construct firm-level
innovation indicators: for each firm, we count the yearly number of families of different types
(e.g., clean electricity or dirty transport). We also construct proxies of firm-level knowledge
stocks by calculating cumulative discounted sum of families going back to 1980. We discount
stocks by 15% each year following prior work (Hall et al. 2005). Finally, we collect financial
and legal data on firms from Orbis. We follow Kalemli-Ozcan et al. (2015) when cleaning the
data; in particular, we use multiple vintages to optimise coverage.'> The end result is a dataset
of 1,460,034 observations covering 21,046 firms over 1990 to 2018.

5.5 AI AND ICT ABSORPTION INTO CLEAN AND DIRTY
INVENTIONS

This section examines the extent to which energy families have absorbed knowledge spillovers

from AI and ICT over the last decades. First, on Figure 5.3, we plot trends over time in the

12. We also use the number of forward citations received within 5 years as a robustness check where appropriate.
Since we use forward citations here to make statements about families relative to other families within a particular
time window, the particular time window used should not matter (assuming that there is not much variation in
how citations appear over time across families). In any case, we find that citations peak after 4 years, and so, our
robustness checks using citations received within 5 years ensure that our measures cover the majority of citations.

13. We use the following vintages: 201709, 201812, 201912, 202012, and 202106. Please refer to the Appendix
to Chapter 3 (B.1) for more details on the data cleaning process.
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percentage of backward citations going to Al or ICT for different types of energy families. A
key take-away is that, in the transport sector, clean patents build on Al and ICT more than
dirty and grey, while, in the electricity sector, grey slightly leads clean. On Figure 5.3a, we see
that, overall, the average percentage of backward citations going to Al is low, typically well
below 1%, even though it has been increasing since 2010 which coincides with the rise of Al
patenting seen on Figure 5.2c. We also note that Al absorption is higher in clean than in grey or
dirty (especially since 2010) and that it is higher in transport than in electricity.

Figure 5.3b shows that, similar to the case of Al, the percentage of backward citations
going to ICT is higher in clean than in grey or in dirty. The magnitude of ICT absorption in clean
electricity is particularly high: the average percentage of citations going to ICT reached nearly
20% in the late 2000s, while other technology groups have remained below 10% throughout.
We also note that the share of ICT in backward citations is overall much higher than that of
Al but this should not be surprising since ICT is more mature and constitutes a larger pool of
potential patent families to be cited.

Next, we run a series of regressions to investigate how the absorption of Al and ICT for
clean relative to dirty technologies varies when we include firm fixed effects and quality con-

trols. The main specification is as follows:

Absorption;j; = Bo + B.Clean; + B,Grey; +bX; + & + 6, + ;s (5.14)

Absorption;j, is the percentage of backward citations going to Al or ICT for patent family
i filed by firm j in year t. Clean; and Grey; are binary variables that equal 1 if family i is
classified as clean or grey, respectively (either in transport or in electricity). B is the intercept.
X; is a series of variable proxying the quality of family i which includes the number of forward
citations received by family i in three first years of its filing, the size of family i and the number
of countries where family i was filed. &; and 0; are year and firm fixed effects, respectively.
Table 5.3 presents the regression results. Column 1 to 4 focus on Al, Column 5 to 8 on ICT.
Column 1 and 5 show specifications with year fixed effects but without firm fixed effects; this
allows us to document the size of the effect in the whole sample of families without any controls.
As we move from Column 1 to Column 4, we add more restrictions on the sample and on
the specifications such as firm fixed effects and quality controls. Whether the coefficients on
‘Clean’ and ‘Grey’ change at all from Column 1 and Column 4 is instructive in understanding
what may or not be driving the effect. In particular, showing the difference between results with
and without firm fixed effects illustrates that the magnitude of the overall trends can be driven,
to a large extent, by differences between firms (rather than within).

Consistent with Figure 5.3, the coefficients on ‘Clean’ are positive and statistically signif-

icant, indicating that clean families rely more on Al and ICT than their dirty counterparts. To
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Note: The figure shows the percentage of citations going to Al (a) and ICT (b) for the average electricity (left) and
transport (right) family over time. The year used is the priority year of the family. Since 2010, Al clearly makes
up a greater share of backward citations in clean transport families than in grey and dirty families. For electricity
the picture is less clear. The share of ICT in backward citations is higher for clean families throughout the period
in both electricity and transport. Source: Authors’ calculations based on PATSTAT 2021.

FIGURE 5.3
Percentage of Citations to Al and ICT Over Time
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allow for an easier interpretation of the main effect captured by f3, the line ‘Ratio Clean/Dirty’
in Table 5.3 expresses the magnitude of the effect in percentage term relative to dirty and can

be interpreted as the relative absorptive capacity of clean vs dirty. Formally, it corresponds to

100x B,
meany

the average dirty family. For example, Column 1 indicates that the absorptive capacity for Al is
304% higher in clean than in dirty. It is 502% higher for ICT (see Column 5).

The relative absorptive capacity may be high for reasons intrinsic to the technologies (e.g.,

, where meany is the average percentage of backward citations going to Al (or ICT) in

many clean technologies may simply be technologically closer to ICT or Al) or due to general
equilibrium effects (e.g., because R&D is being redirected towards clean technologies across
the economy). Another reason, however, could be that clean inventions are developed by firms
that are better able to leverage Al and ICT technologies into their energy inventions. The high
relative absorptive capacity may therefore be driven by firm-level characteristics rather than
intrinsic technological differences. To investigate whether firm-level characteristics play a sig-
nificant role, Column 2 and 6 include firm fixed effects. We find that the ratio changes little
for Al but decreases for ICT, highlighting that firms may play a larger role for ICT than Al
The ratio remains high showing that, even within the same firm, clean inventions cite more than
300% as much Al than dirty ones. Section 5.6 explores the role of firm-level characteristics in
more depth.

In Column 3, 4, 7 and 8, we examine whether clean inventions maintain their lead when
restricting the analysis to high-quality inventions. To do so, Columns 3 and 7 run the same
regressions as Columns 2 and 6 while limiting the sample to triadic patent families that have
been granted.'* Columns 4 and 8 further control for a series of variables proxying for quality
(forward citations, family size and number of countries). We find that Al and ICT absorption in
clean remain much higher than for dirty in those specifications too.!> When running regressions
separately for transport and electricity families, we find that the Al absorption gap between
clean and dirty is stronger in transport than in electricity. The reverse is true for ICT: clean
electricity is much more ahead in absorbing ICT than dirty.'®

Next, we examine how the relative absorptive capacity of clean vs dirty has changed over

time by running a similar regressions as Column 1 and 2 for Al (and Column 4 and 5 for ICT)

14. A family is said to be triadic if it was filed at the three main patent authorities: the USPTO, the EPO and the
JPO.

15. All coefficients excluded from the main tables are shown in the long version of the same table in Appendix
Table D.3. The number of patents in the family and the number of countries in the family are not significant. The
number of citations received (within 3 years) is positive and significant at the 10% level for Al and at the 5% level
for ICT. They do seem to add some explanatory power to the model since the R squared goes from 0.058 to 0.060
for Al and from 0.441 to 0.445 for ICT.

16. Those regressions are shown on Appendix Tables D.6 and D.7. For Al the coefficients on Clean are lower
in Electricity compared to Transport. When controlling for quality proxies, the coefficients become insignificant.
This indicates that among high-quality electricity families, there is no difference between the ability of clean and
dirty technologies to absorb Al. The same coefficient for ICT remains strongly significant however.



5.5. AI AND ICT ABSORPTION INTO CLEAN AND DIRTY INVENTIONS 96

TABLE 5.3
Estimating the Absorptive Capacity of Clean, Grey and Dirty Technologies

(O] (@) 3) “ (5 (6) ) ®)

Al Al Al Al ICT ICT ICT ICT
Clean Family 0.437** 0.530** 0.463** 0.420** 8.243%** 7.071% 10.329*** 9.951**
(0.024) (0.069) (0.077) (0.070) (0.263) (0.943) (0.951) (0.947)
Grey Family 0.264*** 0.040 -0.124 -0.151 0.894** 0.432 0.443 0.196
(0.001) (0.105) (0.098) (0.103) (0.142) (0.255) (0.211) (0.208)
Nbr Citations Made (1000s) ~ 8.134*** 3.081* 0.177 -0.434 103.298***  47.204** 3.524* -3.953
(0.497) (0.610) (0.302) (0.235) (9.297) (7.022) (1.124) (1.487)
Constant 0.121** 0.245** 0.575%** 0.624** 1.402%** 4.591%* 7.691%** 9.157**
(0.010) (0.042) (0.033) (0.030) (0.107) (0.461) (0.443) (1.172)
Ratio Clean/Dirty 304.35** 212.71* 94.15** 85.39** 501.72%* 239.56** 229.29*** 220.91**
(16.63) (27.86) (15.77) (14.24) (16.00) (31.96) (21.11) (21.02)
Sample Gr. Triadic ~ Gr. Triadic Gr. Triadic ~ Gr. Triadic
Year FEs X X X X X X X X
Firm FEs X X X X X X
Quality Proxies X X
Adjusted R2 0.006 0.043 0.058 0.060 0.067 0.312 0.441 0.445
Observations 2,550,428 1,495,048 131,564 131,564 2,550,428 1,495,048 131,564 131,564

Linear Regression.

Standard Errors in Parentheses. Clustered at the type and firm level.

Dependent Variable: Percentage of backward citations going to Al or ICT
Note: To allow for an easier interpretation of the main effect captured by S, the line ‘Ratio Clean/Dirty” expresses
the magnitude of the effect in percentage term relative to dirty and can be interpreted as the relative absorptive
capacity of clean vs dirty. Formally, it corresponds to 1’28:,5”, where mean, is the average percentage of backward
citations going to Al (or ICT) in the average dirty family. Quality proxies include the number of citations received
within three years, the size of the family and the number of countries where the family was filed. Column 1 and
5 use observations at the family level while the other columns use observations at the family-firm level. Some
families are associated with several firms, implying that those families appear multiple times in the data. For this
reason, the number of observations in Columns 2 (and 6) could in theory be larger than Columns 1 (and 5). All
coefficients excluded from the main tables are shown in the long version of the same table in Appendix Table D.3.

but for each year separately. We then plot the yearly estimated ‘Ratio Clean/Dirty’ either with
or without firm fixed effects on Figure 5.4. The dotted lines represent a measure of relative
absorption arising from intrinsic characteristics and general equilibrium effects alone, whereas
the solid lines should be interpreted as a measure of relative absorption that also includes firm
composition effects (e.g., changes in the number of firms with high capacity to use the GPT).
We see that the relative absorptive capacity for Al has increased over the years: it is fairly
noisy up until around 2002, then becomes positive, and reaches close to 600% in 2018. For
most years, it is very similar whether or not firm fixed effects are used in the estimation. Since
2008, however, the within-firm absorptive capacity is consistently higher. This means that Al
did not diffuse through all firms at the same pace.!” We further explore heterogeneity along

firm characteristics in the next section.

17. The specifications using firm fixed effects mechanically drop the families filed by firms that do not have
both clean and dirty families. As a result, those specifications capture only the relative absorptive capacity in the
context of firms that do both clean and dirty patenting. Intuitively, we can expect those to be large diversified
firms. Conversely, the specifications without firm fixed effects contain families associated to any kind of firms:
either firms filing both clean and dirty, firms specialising in dirty patenting only, or firms specialising in clean
patenting.
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Note: The figure examines how the relative absorptive capacity of clean vs dirty has changed over time. To do so,
we run similar regressions as Column 1 and 2 for Al (and Column 4 and 5 for ICT) but for each year separately.
We then plot the yearly estimated ‘Ratio Clean/Dirty’ either with or without firm fixed effects. The dotted lines
represent a measure of relative absorption arising from intrinsic characteristics and general equilibrium effects
alone, whereas the solid lines should be interpreted as a measure of relative absorption that also includes firm
composition effects (e.g., changes in the number of firms with high capacity to use the GPT). While the relative
absorptive capacity of clean technologies is higher for ICT through most of the period, relative absorptive capacity
for Al seems to be catching up in the most recent years. The differences between the solid and dotted lines indicate
that firm-level characteristics are playing a significant role, which we further investigate in Section 5.6. Source:
Authors’ calculations based on PATSTAT 2021 and BvD Orbis.

FIGURE 5.4
Relative Absorptive Capacity of Clean vs. Dirty Over Time

For ICT, the story differs slightly. The relative absorption is positive and significantly
higher for ICT than for Al for most years. Al has recently caught up and, by the end of our
sample, we see that clean inventions have a similar lead in both. The difference between the
relative absorptive capacity estimated with and without firm fixed effects is larger for ICT than
for Al But, this time, the line without firm fixed effects is on top. This means that firms
specialising in clean patenting have an easier time absorbing ICT, compared to other firms.

Finally, in Table 5.4, we explore whether inventions relying on Al or ICT generate greater
value. For this purpose, we proxy ‘value’ by the number of citations received within 3 years of
the priority year.!® First, in Column 1, we see clean families receive about 66% more citations
then dirty.!® This is consistent with prior work by Dechezleprétre et al. (2017) and implies that
clean inventions are more valuable than dirty. Second, Column 2 shows that families citing Al

receive about 27% more citations.?? The effect of citing Al declines somewhat when firm fixed

18. We run a similar analysis using citations received within 5 years in Appendix Table D.10 and find similar
results.

19. The specification is log-linear, hence we convert the coefficients in the following way: 100 (%508 — 1) =
66.2%.
20. Similarly: 100 (¢%24 —1) = 27.1%.
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TABLE 5.4
Do Families Citing Al or ICT Receive More Forward Citations?

@ (@) 3 “ (5 (6) ) (®)
Al Al Al Al ICT ICT ICT ICT
Clean Family 0.508*** 0.497** 0.413** 0.394** 0.508*** 0.480*** 0.413** 0.377**
(0.024) (0.022) (0.042) 0.041) (0.024) (0.040) (0.042) (0.042)
Grey Family 0.324** 0.322%* 0.265*** 0.262%** 0.324** 0.342%** 0.265*** 0.262**
(0.019) (0.017) (0.032) (0.030) (0.019) (0.022) (0.032) (0.027)
Al Citing 0.240*** 0.130™**
(0.046) (0.026)
Clean X Citing Al 0.061*** 0.119***
(0.014) (0.022)
Grey X Citing Al 0.008 0.042
(0.017) (0.028)
ICT Citing 0.335%* 0.156**
(0.047) (0.039)
Clean X Citing ICT 0111+ 0.007
(0.005) (0.020)
Grey X Citing ICT -0.126"** -0.022
(0.016) (0.027)
Constant -1.4077  -1.385"*  -0.960"**  -0.945**  -1.407"*  -1.401"**  -0.960"*  -0.957***
(0.088) (0.093) (0.090) (0.095) (0.088) (0.090) (0.090) (0.091)
Sample
Year FEs X X X X X X X X
Firm FEs X X X X
Quality Proxies X X X X X X X X
Pseudo R2 0.282 0.284 0.338 0.339 0.282 0.285 0.338 0.340
Observations 2.55e+06  2.55e+06  1.47e+06  1.47e+06  2.55e+06  2.55e+06  1.47e+06  1.47e+06

Poisson Pseudo-Likelithood Regression.

Standard Errors in Parentheses. Clustered at the type and firm level.
Dependent Variable: Citations Received Within 3 Years of Priority.
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Note: Quality proxies include the size of the family, the number of countries where the family was filed, the logged
number of citations made by the family, whether it is granted, and whether it is triadic. All coefficients excluded
from the main tables are shown in the long version of the same table in Appendix Table D.9.

effects are included, but the magnitude remains relatively high at around 14%. The interaction
between being clean and citing Al is positive and significant implying that the effect of citing
Al on forward citations is stronger for clean than dirty inventions. This interaction effect is

much greater when firm fixed effects are included.

5.6 FIRM-LEVEL MECHANISMS

In this section, we examine cross-firm variation in the capacity to absorb Al and ICT spillovers
into energy inventions. In the previous section, family-level analyses highlighted the role of
firms’ characteristics in determining relative absorptive capacity. In addition, recall that our
theoretical results show that spillovers from a GPT knowledge stock should be an important
determinant of the level of absorption (see Result 2). Arguably, some firms may have access
to larger GPT stocks, especially as a large number of firms in our sample patent both in energy
and Al or ICT (see Appendix Figure D.2).

To estimate the role of GPT spillovers within firms, we construct a dataset at the firm-year-
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TABLE 5.5
Examples of Top Energy Patenting Firms

Firm Type Name Count Energy % Clean % Dirty % Clean Families Citing Al % Dirty Families Citing Al
Electricity Sharp Corporation 256 87 8 1 0
Electricity GE 115 8 45 14 5
Electricity Kobe Steel,Ltd. 92 22 56 2 0
Transport Toyota 3259 54 11 5 1
Transport Bosch 1215 33 9 11 3
Transport Denso 1108 30 27 9 1
Both Panasonic 1096 85 10 2 0
Both Sanyo Electric Co.,Ltd. 651 97 2 0 0
Both Toshiba 615 80 8 2 1

Note: The table shows the number of energy patent families, the percentage of families which are clean or dirty,

and the percentage of each which cite Al, for some of the top patenting firms. The values correspond to averages
. . . . . CountT t—CountElectricity

over the period 1990-2018. To cla'smfy firms, we calculate the following ratio: CZ;:zT:ZZfﬁ o JqCZ;Zt - lif;if;,; , where

Count refers to the number of family in the category. We define firms as “Transport’ if this ratio is greater than 0.5;

‘Electricity’ if it is smaller than -0.5; and ‘Both’ if it ranges from -0.5 to 0.5.

portfolio level where a ‘portfolio’ is a group of patents of a particular type. Firms’ portfolio
can be either clean electricity, clean transport, grey electricity, grey transport, dirty electricity or
dirty transport. For each firm-year-portfolio observation, we count the number (and percentage)
of families in the portfolio that cite at least one Al family. We construct similar measures
relative to ICT.

Table 5.5 provides some examples of top patenting firms, together with the average annual
number of clean and dirty families and the percentage citing Al. For clarity, we group firms
into three types: those that mostly patent electricity-related inventions, those that patent mostly
transport-related inventions and those that do both.”?! We note that the percentage of families
citing Al is always higher in clean portfolios than in dirty but the percentage can go from 3%
(e.g., Panasonic) to 11% (e.g., Vestas, a leading wind energy firm).

Figure 5.5 provides more evidence of firm-level variation in absorption capacity. First,
on Figure 5.5a, we see that, the average firm’s clean portfolio always relies more on Al and
ICT than dirty.?> For Al we also note that the gap between clean and dirty has somewhat
been widening over time, and especially since 2010. These trends are consistent with what we
observed at the family level on Figure 5.4. We note, however, that ICT absorption has been
going down since 2010. This is almost coincidental with the temporary slowdown in clean
patenting observed on Figure 5.2a and 5.2b.

Figures 5.5b, 5.5¢ and 5.5d illustrate the variation across firms. On these graphs, each

21. To classify firms, we calculate the following ratio: gzz:‘lg;%jp ort_CountElectricity '\ hare Count refers to the
A . . port+CountElectricity
number of family in the category. This ratio spans values from —1 to +1, where —1 corresponds to firms do-
ing 100% electricity and +1 100% transport. We define firms as ‘Electricity’ if the ratio is smaller than -0.5;
‘Transport’ if it is greater than 0.5; and ‘Both’ if it ranges from -0.5 to 0.5.
22. To be exact, Figure 5.5a plots the weighted mean share of families that cite Al or ICT in a given portfolio.

The mean is weighted by the size of the portfolio so that firms with larger portfolios weigh more in the calculation.
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FIGURE 5.5
Variation Over Time and Across Firms in the Percentage of Families Citing Al and ICT
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bubble represents a firm-year-portfolio observation where the bubble’s size is proportional to
the number of families in the portfolio in that year. The values are calculated for the years 2005
to 2015. First, Figure 5.5b shows the variation across firms in the percentage of families in
clean and dirty portfolios that cite Al or ICT. Unsurprisingly, portfolios rely on ICT in larger
proportions than for Al (the y-axis’ scale is larger than that of the x-axis). The solid lines
further show that, for a given level of ICT absorption, Al absorption is typically higher in clean
portfolios compared to dirty. Again, this is consistent with what we saw in the previous section.

Next, we examine whether firm-level stock of Al knowledge is an important predictor of
absorptive capacity. In other words, do firms that filed more Al patent families in the past rely
more on Al in their clean portfolios? According to Figure 5.5c, the answer is a tentative yes.
The solid lines highlight that firms patenting in both sectors (purple) or mostly in transport (red)
have a higher level of absorption on average. The correlation seems also stronger for those firms
relative to those patenting mostly in electricity.

Finally, we explore whether energy incumbents may be at a disadvantage relative to new
entrants. To do so, we calculate firms’ energy stock as the sum of clean, grey and dirty elec-
tricity/transportation patent stocks. Figure 5.5d shows there is a positive relationship between
firm-level Al absorption and the ratio of the firm’s Al stock to Energy stock. This suggests that
firms with a very high energy stock relative to their Al stock are less able to apply Al to energy
technologies, which would be consistent with new or smaller energy firms being better able to
absorb Al and ICT into their inventions.

We probe those relationships further using linear regressions. First, we check whether
clean portfolios absorb more Al and ICT than dirty ones. The first specification is, therefore, as

follows:

FamilyCountCitingGPT ;. = o + B1 FamilyCount jy; + B.Cleany + BoGreyy
+bX 4 0 + 0, + €k

(5.15)

FamilyCountCitingGPT}y, is the count of families in portfolio k filed in year ¢ by firm j
that cite some Al or ICT patents. FamilyCount j; is the total number of families in portfolio
k (filed in year ¢ by firm j). Clean; and Greyy are binary variables equal to 1 if the portfolio
is clean or grey. We run separate regressions for the transport and electricity portfolios. X; is
a series of firm-level controls that include total assets, number of employees and years since
incorporation. ¢; and J; are year and firm fixed effects.

To examine more closely how absorption varies by type of firms, we also include two
other control variables interacted with Clean and Grey. The first, ‘Firm Sectoral Focus’, is a

variable with values between —1 and 1 that captures the degree of sectoral specialisation. It
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equals to —1 when the firm’s energy families are all in electricity, and to 1 when they are all

in transport. Specifically, it is equal to ggzz;;:zgg Z:;;gg%gii;ggg , where Count refers to the
number of families in the category (for firm j in year #). Second, we include variables that
capture specialisation within the clean-grey-dirty space. In particular, ‘Firm Clean Focus’ is
the percentage of clean families out of all energy families (in year ¢) and allows us to explore
whether the propensity to absorb Al and ICT is higher or lower in firms that specialise in clean
energy inventions.

Next, we examine 1) whether higher stocks of Al or ICT facilitate Al and ICT absorption,
and 2) whether there is a negative incumbent effect such that a higher stock of energy patents
correlates with lower levels of absorption. To do so, we study a regression similar to the one

above, but adding terms for the Al, ICT and energy stocks:

FamilyCountCitingGPTjy. = Bo + Bi FamilyCount jy + B.Cleany + By Greyy
+ B2StockGPTj;—1 + B3StockEnergy j;— (5.16)
+bXjt + 6 + 6 + €k

StockGPTj; 1 is the discounted cumulative count of Al or ICT families firm j filed up
to time ¢t — 1. StockEnergy ;1 is the discounted cumulative count of energy families (of any
type) firm j filed up to time ¢ — 1. We also include interactions between the stock variables and
Clean; and Greyy. Table 5.6 and 5.7 present the regression results. In both Tables, Column 1
to 4 focus on Al, Column 5 to 8 on ICT. Columns 1-2 and 5-6 examine “Transport’ portfolios,
while Columns 3-4 and 7-8 examine ‘Electricity’ portfolios.

First, Columns 1, 3, 5 and 7 in Table 5.6 show that clean portfolios typically absorb more
Al or ICT than dirty: in all columns, the coefficient on Clean is positive and significant at the
1% level, except for Al in electricity.”> This is indicative that clean technologies have a greater
intrinsic capacity to use Al in transport, and ICT in both transport and electricity. On the
other hand, it seems unlikely that clean technologies in electricity have a much higher intrinsic
absorptive capacity for Al than dirty.

Results shown in Columns 2, 4, 6, and 8, however, highlight that the lead of clean over
dirty is significantly different for firms with different specialisations. For transport portfolios,
the lead of clean over dirty in absorbing Al and ICT is mostly present when firms’ patenting
concentrates on clean transport.

In electricity, the story is different. First, clean portfolios do not appear to absorb signifi-
cantly more Al, and, in fact, dirty may lead slightly when firms concentrate on dirty electricity.

Indeed, in Column 4, the coefficient on ‘Clean Portfolio’ is negative and significant at the 10%

23. This is consistent with our family-level results presented in Section 5.5.
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TABLE 5.6
Do Firms’ Clean Portfolios Rely More on Al and ICT Than Dirty Portfolios?
M (@) 3 “ () (6) @) ®)
Al Al Al Al ICT ICT ICT ICT
Family Count (log) 0.944** 0.974** 0.979** 0.997** 0.888*** 0.921%* 0.979** 0.970**
(0.049) (0.050) (0.040) (0.055) (0.038) (0.042) (0.026) (0.030)
Clean Portfolio 1.471%* -0.020 0.156 -0.599* 0.904** 0.176 0.495%* 0.188
(0.098) (0.297) (0.123) (0.363) (0.062) (0.182) (0.057) (0.154)

Firm Sectoral Focus -0.028 -0.101 -0.046 -0.091

(0.194) (0.167) 0.117) (0.099)
Firm Clean Focus -0.004 -0.005 -0.001 -0.003*

(0.004) (0.003) (0.002) (0.002)
Clean X Firm Sectoral Focus 0.523** 0.179 0.201* -0.142

(0.195) (0.162) (0.115) 0.111)
Clean X Firm Clean Focus 0.012%* 0.012** 0.006** 0.003

(0.005) (0.005) (0.003) (0.002)
Portfolio Type Transport  Transport  Electricity  Electricity =~ Transport — Transport  Electricity  Electricity
Portfolio FEs X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X X X X X
Firm level controls X X X X X X X X
Observations 10,733 10,733 10,082 10,082 17,310 17,310 22,476 22,476
R2 0.738 0.740 0.450 0.455 0.835 0.836 0.732 0.733

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm Tevel.
Dependent variable: Count of Families citing Al or ICT.
Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.
Note: Firm Sectoral Focus is a variable from —1 to 1 that captures the degree of specialisation (in year ¢). It equals
to —1 when the firm’s energy families are all in electricity; it equals to 1 when they are all in transport. Specifically,
it is equal to gzz%;miigzlggzggigzgg, where Count refers to the number of families in the category. Firm Clean
Focus is the percentage of clean families out of all energy families (in year #). ‘Grey’ and interactions with ‘Grey’
are included in the regressions but left out of the table for clarity. All coefficients shown in the longer version of

the same table in Appendix Table D.11.

level.

ICT absorption in electricity also presents a mixed picture. Although Column 7 shows
that clean indeed leads over dirty, the effect mostly disappears (but remains positive) when
controlling for firms’ sectoral and clean specialisations. The coefficients are not significant for
those variables, but qualitatively, their signs indicate that that the gap between clean and dirty
is stronger when firms specialise in electricity.

Next, on Table 5.7, we find that firms with higher Al (resp. ICT) stocks cite more Al
(resp. ICT) patents in their inventions (Columns 1, 3, 5 and 7). This is consistent with the
earlier theoretical result 2a) which stated that GPT absorption will increase with the existing
accessible GPT stock.

When adding firm fixed effects, however, the coefficients on Al stock is no longer signif-
icant (Columns 2). In other words, the variation over time within firms in the size of the Al
stock explains little of the variation in absorptive capacity. The coefficient on the interaction,
however, remains significant at the 10% level.

The interaction between the Al stock and Clean is also positive and significant for transport

(at the 10% level). It indicates that a higher Al stock facilitates Al absorption more so for clean
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than dirty portfolios. This is consistent with our theoretical result 2c), which predicted a positive
interaction between the intrinsic absorption capacity of a technology and the GPT stock (for the
technology which is chosen as the direction of technological change).

The story of Al absorption in ‘Electricity’ portfolios is similar but weaker. Column 3
indicates that firms with a higher Al stock cite more Al in both their clean and dirty portfolios.
Coefficients lose significance once adding firm fixed effects (Column 4) highlighting that the
correlations in Column 3 were driven by variation across firms.

ICT absorption also seems to increase when firms have a higher stock of ICT patents.
However, now the coefficient on the interaction between Clean and ICT Stock is negative and
significant, highlighting that the facilitating effect of the ICT stock is stronger for dirty than
clean portfolios. Interestingly, those results hold also when including firm fixed effects, thus
using only variation over time within firms. This indicates that, as firms grow their stock of
ICT, they also increase the proportion of their energy patents absorbing ICT.

Last but not least, we explore whether experience in energy patenting accelerates or slows
down absorption in the GPT. Here, the coefficients on ‘Stock Energy’ are negative and almost
always strongly significant. This indicates that firms with many energy patents (e.g., incum-
bents) tend to absorb the GPT less. The coefficients on the interaction ‘Clean X Stock Energy’
are generally not significant, highlighting that this effect is similar for both clean and dirty port-
folios. Importantly, this negative incumbent effect is consistent with our theoretical result 3
assuming an aging parameter 0 greater than 1; in other words, mature application sectors are
less able to absorb the GPT.
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TABLE 5.7
Does Experience in Al, ICT and/or Energy Patenting Facilitate AI/ICT Absorption?
M 2) (3) (4) (5) (6) )] (3)
Al Al Al Al ICT ICT ICT ICT
Family Count (log) 0.982%** 0.922%* 1.064*** 1.017*** 0.939*** 0.887** 1.032%** 1.016"**
(0.044) (0.045) (0.126) (0.042) (0.030) (0.044) (0.036) (0.026)
Clean Portfolio 0.750*** 1.014*** 0.350*** 0.006 0.680*** 0.697*** 0.903*** 0.476***
(0.147) (0.273) (0.112) (0.184) (0.075) (0.126) (0.064) (0.102)
Stock AI (log, t-1) 0.273** 0.020 0.333*** -0.067
(0.066) (0.096) (0.082) (0.087)
Clean X Stock AI (log, t-1) 0.138* 0.137* -0.030 -0.014
(0.073) (0.074) (0.101) (0.047)
Stock Energy (log, t-1) -0.199**  -0.186** -0.136*** -0.048 -0.169**  -0.244**  -0.250"** -0.183***
(0.045) (0.083) (0.051) (0.063) (0.026) (0.049) (0.023) (0.045)
Clean X Energy Stock (log, t-1) -0.029 -0.007 -0.112* 0.033 0.109%** 0.093** 0.017 0.101**
(0.046) (0.065) (0.068) (0.042) (0.025) (0.026) (0.033) (0.032)
Stock ICT (log, t-1) 0.231** 0.197** 0.305** 0.083*
(0.022) (0.060) (0.019) (0.049)
Clean X Stock ICT (log, t-1) -0.121*  -0.072**  -0.099*** -0.084***
(0.027) (0.024) (0.023) (0.023)
Portfolio Type Transport  Transport  Electricity  Electricity =~ Transport — Transport  Electricity  Electricity
Portfolio FEs X X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X
Firm level controls X X X X
Observations 26,810 9,610 41,591 9,097 26,810 15,604 41,591 20,266
R2 0.660 0.742 0.335 0.449 0.769 0.836 0.639 0.726

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm ITevel.

Dependent variable: Count of Families citing Al or ICT.
Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.
Note: Stock Energy corresponds to the firm’s total stock of energy patents (i.e., the sum of clean, grey and dirty

electricity/transportation patent stocks). We add interactions between the portfolio type and the GPT stock but
only show the interaction for ‘Clean’. ‘Grey’ is included in the regressions but left out of the table for clarity. All
coefficients excluded from the main tables are shown in longer versions of the same table in Appendix Table D.18

and D.19.
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5.7 DISCUSSION AND CONCLUSION

This chapter explores theoretically and empirically whether Al has the potential to accelerate
clean energy innovation. We first examine how a GPT can affect the race between clean and
dirty in a model of directed technological change. We find that, depending on the relative
absorptive capacity of clean and dirty, the GPT can break path dependency and help clean tech-
nologies compete with dirty. We then use patent data to develop empirical proxies of absorptive
capacity and examine how clean and dirty technologies compared over the last two decades.
We find evidence, both at the patent family and firm levels, that clean inventions consistently
absorb more Al and ICT spillovers than dirty ones. Moreover, this trend has been particularly
clear since 2010 for Al

These results provide grounds for cautious optimism regarding the potential for Al to ac-
celerate the transition to clean energy. Indeed, our theory highlights that a GPT can make new
technologies more attractive for R&D investments, especially if they more effectively absorb
the GPT than incumbent technologies. The theory also shows that this can generate a virtuous
feedback. If inventors start preferring clean, they will put more effort into applying the GPT
to it, which in turn increases the technology’s productivity, further encouraging innovators to
focus on it.

Our firm-level empirical results provide supporting evidence for this process. First, clean
technologies’ advantage over dirty ones not only holds, but increases within firms, suggesting
that clean tech has a higher intrinsic absorptive capacity and is now the preferred direction of
technological change.?* If this is the case, our theory predicts that a higher stock of the GPT
leads innovators to put more effort into applying the GPT, especially to the clean sector. We
find evidence of this in the data. We further find that a firm’s prior focus on energy hinders
absorption, in line with the idea that the GPT helps break path dependence and open new op-
portunities.

Our optimism, however, is cautious. Indeed, the rate of Al absorption is still low. On aver-
age, only about 0.3% of backward citations that energy patents make go to Al inventions. Sim-
ilarly, only about 9% of firms’ patents cite any Al invention. These figures are much lower than
the trends for ICT between 1990 and 2010. Figure 5.6 also puts these statistics into a broader
context by plotting them along with other technological application sectors. We see that sec-
tors more closely related to Al such as ‘Control’ or ‘Digital Communication,” absorb Al faster.
But more distant technological applications, such as ‘Medical Technologies’, ‘Telecommunica-
tions’, or ‘Transport overall’ (i.e. non-road transport and other aspects of transport innovation,

such as automated driving), also absorb it faster than our two focal energy sectors.

24. The within-firm result rules out the alternative explanation that differences in firm capabilities or location are
correlated both with working on clean technologies and having more access to knowledge on the GPT.
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FIGURE 5.6
Al Absorption Across the Economy
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Our analysis is a first step in understanding the impact of Al on the transition, and further
research is needed to address some limitations. First, our analysis focused on comparing broad
categories such as clean and dirty, but further work could develop more granular measures to
examine the absorptive capacity of specific energy technologies (e.g., solar or wind). Analysing
the heterogeneous impact on different technologies is important to better understand the extent
to which the trends are driven by intrinsic technological factors or endogenous processes that are
more amenable to policy intervention. Furthermore, we treat all Al patents the same. However,
some Al patents probably have a greater potential to be applied broadly (to be a GPT), while
others are likely more narrow. Furthermore, Al algorithms are often not patented. Additional
work could include citations to scientific publications and distinguish between broad and narrow
Al patents.

Finally, our analysis only looks at knowledge spillovers through citations and does not ex-
amine the extent to which these spillovers impact the rate of progress of clean technologies, or
indeed if and how fast new technologies drawing on Al actually make it to market. Does the in-
tegration of Al make technologies more productive and does it accelerate the rate of subsequent
innovation? Are there barriers to deployment which mean that many of these technologies are
not actually being used? To answer these questions, future research could look at the impact
of Al-based energy innovation on firm productivity, sales and subsequent rate of innovation, as
well as the degree to which such innovation leads to technology adoption in markets in which
it could be most useful.

Despite its limitations, this chapter provides the first empirical analysis of innovation
spillovers from Al and ICT to clean and dirty technologies on a global scale. Although pol-
icymakers often recognise the potential importance of Al and ICT for clean energy, there has
been little research on the topic. Our results, therefore, can help inform energy innovation pol-
icy. First, our empirical analysis shows that firms are an essential locus for knowledge spillovers
between the GPT and energy applications. This suggests that it is worthwhile to increase the
joint development of firm-level capabilities in digital and low-carbon technologies.

Our results also suggest that there is a case to support innovations that specifically draw
on Al to advance clean technologies. Indeed, those can help spur a positive feedback loop
between more Al absorption in clean and more clean innovations in general. Further research,
however, is needed to understand the mechanisms better, particularly the role of different actors

in catalysing spillovers (universities, startups, large firms, regional clusters).



Chapter 6

Conclusion

The transition to greener technologies is key to meeting the world’s climate and other environ-
mental challenges. This transition is bound to create winners and losers, and is taking place in
the context of broader geopolitical and often mercantilist competition between nations on the
global stage, as well as broader technological shifts.

This thesis has considered the shift towards green technologies and its relationship with
the broader global landscape of trade, economic competitiveness and competition, as well as
other technological transitions, from a number of different angles and using several different
methods. In doing so, I have drawn on both theory (Chapters 2 and 5) and empirical analy-
ses using patent, trade and firm-level data combined with empirical approaches from standard
econometrics (Chapters 3 and 5) and economic geography and complexity (Chapter 4).

Chapters 2 and 3 both studied the issue of protectionism in the renewable energy sector
with a focus on solar photovoltaics (PV), albeit from different angles. Chapter 2 presented an
analytical framework highlighting the potential for infant industry maturation in a product with
positive externalities to yield global benefits through increased gains from trade via competition
long term, even at the cost of temporary protection from trade. The chapter used solar PV as a
real world case study, illustrating how China’s entry into solar manufacturing dramatically in-
creased global competition and drove down costs. Chapter 3 then turned to the 2013 EU-China
solar trade war, investigating whether Chinese import competition was beneficial or harmful to
firm-level solar PV innovation in Europe. It has argued that competition from China seems to
have in fact increased innovation by European firms.

Both chapters add evidence to the literature arguing that environmental and trade policies
need to be designed jointly (De Melo and Solleder 2022; Grubb et al. 2022; Jakob et al. 2022;
Messerlin 2010), substantiating the case for greater integration of climate-trade regimes. They
highlight the importance of competition for market share in green technologies to feature in this
discourse, which currently focuses heavily on carbon border adjustments (e.g. Barrett 1994b;
Grubb et al. 2022; Richter et al. 2021) and issue linkage (e.g. Barrett 1997; Barrett and Dannen-
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berg 2022; Hagen and Schneider 2021; Helm et al. 2012; Nordhaus 2015). Chapter 3 further
presents a case study in the ‘China Shock’ literature (e.g. Autor et al. 2013; Autor et al. 2016;
Bloom et al. 2016; Bloom et al. 2021), examining this issue from a ‘green’ angle.

Chapter 4 turned away from countries’ attempts to seize opportunities in the green econ-
omy and towards the issues facing countries whose production capabilities are heavily concen-
trated in declining, brown sectors. The chapter has provided quantitative estimates of country
transition risk and highlighted the limitations of the ‘smart specialisation policy’ paradigm. The
level of difficulty fossil fuel exporters face in adapting to a low carbon future presents a threat
to effective global climate action and raises the contentious issue of compensation or buy-outs
(e.g. Collier and Venables 2014; Harstad 2012a). In the case of low income fossil fuel exporters,
compensation could be considered consistent with the moral imperative of a just transition, and
possibly be used to fund policies to support economic diversification (Steckel and Jakob 2022).

Finally, the transition is taking place in the context of broader technological shifts which
may have implications for policy, as well as for the ‘green race’. Chapter 5 therefore analysed
how the technological competition between clean and dirty energy and transport technologies
may be affected by advances in artificial intelligence (Al) technology. It has argued, using
theory and empirics, that the arrival of a new General Purpose Technology such as Al can
reduce the path dependency currently favoring incumbent fossil fuel technologies (Acemoglu
et al. 2012; Aghion et al. 2016), and that clean innovations seem to more intensely draw on Al
technology than dirty ones.

More broadly, I hope that this thesis has contributed to demonstrating the value of breaking
out of the intellectual niches we can sometimes be locked into and investigate a topic from

multiple angles and methodological approaches.
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Appendix A

Industrial Policy and Global Public Goods
Provision: Rethinking the Environmental

Trade Agreement

A.1 MODEL PRELIMINARIES

First Best Note that because production costs are lower in the frontier country, welfare would
be higher if all production took place there, provided other market failures such as those arising
from imperfect competition can be corrected.

In each stage, a benevolent social planner maximises global welfare by setting the marginal
benefit of consumption equal to the marginal cost.

From the demand curve we deduce that the marginal private benefit from consumption
(given by the marginal willingness to pay price p;, p; = a — r;) is equal to a — r; in each country
i € {F,L}. The global public benefit from consumption is equal to B = b(rr + rz), implying
that the marginal public benefit from each additional unit consumed is b. Finally, the marginal

cost of production in the frontier country is c. Thus, the social planner sets

a—ri+b=c

such that

re=rp=a+b—c

However, due to misalignment of countries’ incentives this outcome cannot be sustained
as an equilibrium. Neither country has an incentive to pay the subsidies required to achieve the
first best outcome, because the marginal public benefit from consumption in each country is

only %’.
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Business as Usual Let a business-as-usual scenario be one where countries are in autarky and
no subsidies are employed. Then, in the frontier country the monopolist sets prices or quantities

to solve
maxIlr = rr(pr —c) =(a— pr)(pr —c)
{pr}
=apr — p% —ac—+ prc

The first order condition is:

oIl
S —gte— 2pr =0
OpF
It is satisfied at
a+tc a—c
= ;r fr—
PF 2 F 3

The second order condition is always satisfied as

8Ty
Spr B

The monopolist in the laggard country solves an equivalent problem, substituting dc for ¢

-2<0

in Stage 1. Thus

a+dc a—dc
PL1 = SrL1 =
’ 2 ’ 2
P d—c (A.1)
:—;r g
PL2 ) L2 2

A.2 EQUILIBRIUM WITH NO SUBSIDIES

In a business-as-usual scenario in which countries are in autarky and no subsidies are used, each
firm acts as a monopolist, with prices and quantities given by Equation A.1.

Let € be an infinitesimal positive number. Under trade and in the absence of subsidies,
the competitive price and resultant quantities are given by p; = pr| =dc— &€, g1 = rp,1 +

rr1;qr,1 =0and rpy = rp 1 = a—dcin Stage 1. In Stage 2,

prp=dc—¢€ ifq 1 =0
P2 = e
PF2 =PpL2=C if qrL1 > 0

implying that
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TER+T1L 1

qr2=rr2+rr2:qr2=0if g1 1 =0
qrF2 =qL2 = —5 = if g1 >0

and

rpp=rpp=a—dcif g1 =0
FFa=rL2=a—¢ if QL,1>O

Welfare payoffs for each strategy profile in the game without subsidies are given in Table
Al

In Stage 2, trade is a weakly dominant strategy for both countries. The following analysis
will therefore focus on characterising the Subgame-Perfect Nash Equilibrium in which coun-
tries trade in Stage 2, and determine which Stage 1 strategy is welfare maximising across both
periods.

It is clear that Stage 1 welfare in both countries is greater under trade, while the laggard
country’s and collective Stage 2 welfare are greater following autarky in Stage 1.! Each govern-
ment must therefore trade off the welfare losses from Stage 1 autarky against the welfare gains

derived from the frontier firm’s ability to catch up.

Proof of Proposition 1 Using the welfare payoffs presented in Table A.1, we see that

Z%:IWLJ((Ov 1)7Tl;k)) > ZtZ:IWL,l((L 1)7Tl;k))

requires
3 —c)? b
g(a —dc)* + Q + Z(6a —c(54d)) > (a—dc)*+2b(a—dc)
which holds for
5a+7b 1 [20a?%+ 50ab +49b* — 40ac — 50bc + 20c?
d> 5c 5 c?

. We therefore define the threshold  as

o — Sa+7b 1\/20412 +50ab + 49b% — 40ac — 50bc + 20c?

5¢ 5 c?

T Wre((0,1),T7)) > X7 Wre (1, 1),T7))

1. The frontier country’s welfare may be higher or lower in Stage 2 following autarky in Stage 1, depending
on whether the increases in consumer surplus and positive externalities are greater or lower than the loss in rents
extracted from the laggard country’s consumers.
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requires that

ba—dc a-—c (a—c)? a—dc

A R S A

%(a—c)z—l— +b(a—c)>2{(a—dc)< +2c(d—1)+b>}

which holds for

- 8a—Tb+ 16¢ 1 88a? — 16ab +49b2 — 176ac + 16bc + 88¢2
24c¢ 24 c?

d

b>a—c

leading us to define Y as

8a—Tb+ 16¢ 1 88a? — 16ab +49b2 — 176ac + 16bc + 88¢2
Y=yt :
24c¢ 24 c

Proof of Proposition 3 Defining trade policy in terms of outcomes A = {A,A;} rather than

strategies for ease of exposition,

2 W ({0,13) + Wi, ({0,13) > 22 Wi, ({1,13) + Wi, ({1,1})

requires that

%(a—c)z—l—%(a—dc)z—l—b <3a— c(sz_d)) > 2(a—dc)*+4(a—dc)(c(d—1)+D)

which holds for

3a—14b+16¢c 1 474+ 68ab+ 196b% —94ac — 68bc + 47¢?
d> + —
19¢ 19 c?

a—c
24
. This leads us to define

b>

3a—14b+ 16¢ N 1 [47a? +68ab+ 196b% —94ac — 68bc + 47 ¢

19¢ 19 c?
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In any stage of the game, the optimal subsidy under autarky corrects monopoly losses and

internalises positive externalities which are realised locally. It does not matter whether the

government subsidises the consumer or the producer.

2

Consider a consumer subsidy in country i. A quantity subsidy s¢“"** shifts consumer de-

mand such that

i

2. To see this, consider how a producer subsidy would shift the monopolist’s profit maximisation problem.

Profit in the frontier country would become Iy = (a — pr)pr + (a — pr)s

prod

7 —(a— pr)c, which is equivalent to

Equation A.2. The laggard firm’s profit maximisation function is modified in the same way, substituting dc for c.
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cons
ri=a—pi+s;

The monopolist in the frontier country now maximises

cons

p = (a—pr+s™)(pF—c)

such that
a _|_S%{)I’ES + c a + S(F'{)}’ZS —c
PP =~ =

The government thus faces the objective function

2
b
max Wi (s5"%) = arp — £ — (pp — 85"V rp + pprp — crp + = (rp + 1)
(s5%) 2 2
b r% b
= (a_C‘f’E)rF—?F—FEI’L
Js60ns o )
B b, a+s" —c (—a 5—) b
—(0—0+5)( 5 ) — 5 e

From the first order condition we get the optimal consumer subsidy

s =a+b—c
which yields

rr =dad—=c¢ 2,pF—a 3
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(A.2)

Unlevelled industry In an unlevelled industry, country L solves a similar problem, substituting

dc for c¢. The optimal consumer subsidy is

s =a+b—dc

leading to quantity and price

—a—de+Zipr=a+?
rp =a C 2,pL—a )

Therefore, welfare in the frontier country is
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rs b b
Wr=-"+4rr(a+=z—c)+=(rp+r)—rr(a+b—c)

2 2 2
2 b\2
=5 = 2 +ola—dets)

Similarly, welfare in the laggard country is

2 b\2
r; b (a—dc+5)° b b
L= TyF 2 tala—cty)
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Levelled industry In a levelled industry, subsidies, prices and quantities in the frontier country

are the same as in the unlevelled case. In the laggard country,

" b b
si()l’ls* :a—|—b—c;rL:a—C+§;pL:a+§

Therefore, welfare in both countries is

a—c+8)? b b
g#——(u—c—f——)

Wrp =W, = 7 7

A.4 OPTIMAL SUBSIDIES UNDER TRADE

Unlevelled industry Let € be an infinitesimal positive number. In each period, the competitive

price facing the consumer is defined by

DF :dc—s’L’md—e if pr <pL
p=X pr=pr=dc—s"" =c—s"if pr = p;
pL:c—sI;md—s if pr>pr

Quantities demanded are

cons cons

{rr,r} ={a—p+sg™,a—p+s]

Quantities produced by each firm are given by
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{rr +r.,0} if pr <pL
{CIF7QL}: {(”F—‘Z‘JL)’M} if PF = PL
{0,rp +rL} if pr > pr

Welfare in the frontier country is defined as follows

(p-l—sp rod _ )(I’F-l-l’L) +3 (rp-l—rL) _S%ons F— S;i—md(l”[? +I’L) if pr <pr

+

prod (rerL) b cons P"Od ("F-H’L) if _
+(p+sp —c) 2 +2(”F+”L) SptF—S8p T II pr=pL
+

g(rF +rr) —57"rp if pr> pr

=
I
l\)lﬁ-? to l\)l';m Nl':;no

While welfare in the laggard country is

2
%+b(rF+rL)_szansL if pr <pL
2
Wy = 7§+ (p+ 50" —de) EE) b ) — sgonsyy — Pt UL, g e =y
d .
T (p4s —de)(rp + L) + B (rr 1) — 557 r — s (rp + 1) i pr > pr.

Optimal subsidies if pr < p, First, note that pp < py, implies ¢ — 52 < dc — sP™?.
The first order condition on s%*™ is given by

F
oW, b
5Sc0[rzs = (P + Sprod ) + 5 —rp— s%ons ;rod —0
F

—p—C—FZ; cons -0

therefore

S%()ns (d—1)+§— prod

The second order condition is trivially satisfied with

L/
55%0’13 =—-1<
The first order condition on sI;rOd I
OWr
W =(rp+r)—(rpr+r)=0

and is satisfied at any value of sﬁmd, implying that sﬁr is solely defined by ¢ — sp rod

prod
dc—s; .
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Solving for the laggard’s optimal subsidies gives

oWy b

cons
—(Sscons rL-l-E—SL I"L:O
L
therefore
cons* __ l_’
L 2

with the second order condition trivially satisfied at

52w,
6Scons

=—-1<0

When solving for the optimal level of 5",

52wy

prod
osy

prod prod

indicates that the laggard’s welfare is strictly increasing in s; — as long as ¢ —sp <

dc— ’L)md is satisfied and all production takes place in the frontier country.

In equilibrium, the frontier country’s producer subsidy will therefore equal zero, while
s — ¢(d —1) —e. To see this, consider the case where s = ¢(d — 1) — A, where A > ¢ is

p rod <dc— prod

a non-negligible positive number, and ¢ — . Welfare in the frontier country is

2
r b
Wr = EF F(p+si =) (rp L) + 5 5 (rF L) =" rr = s (rp 411

r% b cons

=5 T p=c)rrtr)+5(rr+r1) s rr (A.3)
rI27 prod b cons

:7+(dc—sL —c)(rF+rL)+§(rF+rL)—sF 'rr

The second term in the above equation becomes negative, as dc —c(d — 1) — A —c = —A.

This implies that there is a profitable unilateral deviation for the frontier country. By reducing

prod de — prod

its own production subsidy such that ¢ — s + € it can shift all production to

the laggard country and increase its welfare by A (rp + rL) while retaining the same level of

consumption and positive externalities.

prod

Similarly, if sz > 0 there would be a profitable unilateral deviation for the lag-

gard country, which could reduce prices and increase its own welfare by raising sfmd to
¢(d—1)+A. Finally, if s?" < ¢(d — 1) — & the frontier country would extracts rents amounting

to (dc — s’L’md —¢)rg, > 0 from the laggard country and consumer surplus and positive external-
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ities would be lower in both countries. This implies a profitable unilateral deviation for the
laggard country, which increases s?" until all rents have dissipated.

Given sgmd* =0, le’md* =c(d—1)—¢, and s§"* = 5{7"* = %, the price facing the con-
sumer is p = pr = ¢ and quantities demanded in both countries are rr = rp =a—c+ %’.

Welfare is equal in both countries:

2 b\2
rv b b (a—c+5)° b b
Wr=-£ 4+~ P S T O R Mt
F=5+50rtr)—5rr 7 +ala—ct3)
2 b\2
r; b b (a—c+5)° b b
W, =L~ S s S A Tty O R Rt
L=5+a0rtr)—sn 5 +5la—c+3)
Optimal subsidies if pr = p; pr = p; implies that p = ¢ — sff”d = dc — s{md. Since
p+ sﬁmd —c=0and p+ s{md —dc = 0, the frontier country maximises
2
b
Wr = "F +—(rp+rp) — ¢ rp — s’;md—(rF 1)
2 2 2
where rp —a—c+ sﬁmd +s@"and rp, =a—c+ sﬁmd + 57,
The laggard country maximises
7 b
WF — % + E(”'F + rL> o Slc;onsrL o s{r{)d (rF ;T rL)

d . . d .
where rp =a—dc+ sy + 56" and r, = a —dc + 57 + 5§,

Taking partial derivatives with respect to 55, s2/°¢, s¢n5 and s yields the first and

second order conditions

5WF rod séons 1 geons 62WF
— S‘D _°F L —_0- _
prod ~ F — Yo prod T
foXys 2 foXys
d
6WF . é _cons S?m A 52WF —_1
Ssee 2 F 2 s
5WL vod geons + geons 52WL
_p_ prod _OF L _ . _
prod — L — e prod T
oSy 2 OSk
d
6WL . é __cons sim —0: 62WL -
Sscons — L T T T ggons
Solving this system of equations yields
s?md = b,s{md =b,sg" =0,57" =0 (A4)

Since dc — b = ¢ — b requires that d = 1, this implies that a market sharing equilibrium is
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not possible in an unlevelled industry. Moreover, 52/ = s?"** = b is not a Nash Equilibrium

even when d = 1, as will be argued in the paragraph below denoted ‘Levelled industry’.

Optimal subsidies if pr > p;. pr > p;. implies that ¢ — s > dc — sP™?

The price faced
by the consumer is defined by ¢ — sF.

No subsidy mix satisfying this condition can be a Nash equilibrium. To see this, assume
that ¢ — s > dc — s?" holds. Suppose that 52! = 0 and s = ¢(d — 1) + &. Now, the

laggard country S Welfare is

2
b
W= "Lt (p+ s —de)(rp + 1) + 2 (rp + 1) = 5§70 rp — 55" (r 4 1)

2 2 L
2
,

:EL+(p_dC)<rF+rL)+§(I”F+FL) s

— i _ prod é cons

=5 +(c—sF dC)(rF+rL)+2(rF+rL) s7"rp

The second term in the above equation is negative as ¢ —dc < 0 for any d > 1. Thus, by
reducing sp od o c(d — 1) — € the laggard can shift all production to the frontier country and
retain the same prices, consumer surplus and positive externalities, while increasing its welfare
by c(d — 1)(rp +rr). The laggard will therefore not be willing to support at producer subsidy
greater than sfmd =cld-1)—

Levelled industry In a levelled industry, prices, quantities and welfare are defined as in the un-
prod « prod «

levelled case, where d = 1. The unique Nash Equilibrium is characterised by sy~ * = 57 =
_b
O Scons* Sions* — E-
. . prod prod
To see this, suppose first that pr < pr, which requires that ¢ — s < c— thus
52704 > Pl Assume that 520 > 5P and 5277 = ).

Welfare in the frontier country is given by Equation A.3, with d = 1. The frontier country
can profitably deviate by reducing its s’lff”d to A — & and shifting all production to the other

country without lowering consumption and positive externalities in a meaningful way. This
prod prod

increases its welfare by A (rr +r7). By the same logic, s, =~ <s; ~ cannot be sustained as a

Nash Equilibrium either. Thus, the Nash Equilibrium will involve a market sharing equilibrium,

with spmd fmd = 5P and p = pr = pp = ¢ — sP".
prod
Equation A.4 implies that s”"°¢ = b and s = 570 = s = g — £5— = 0. While these
subsidies are optimal as long as s = s?"*  either country can increase its welfare by unilat-

erally reducing its producer subsidy to b — &, thereby shifting all production and the burden of

subsidising to the other country. As demonstrated previously, such a move increases the deviat-

(rF +VL)

ing country’s welfare by b and reduces the other country’s welfare by the same amount.

The other country can then do the same by reducing its producer subsidy to b — 2&.
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In conclusion, profitable deviations are possible for any positive producer subsidy. Thus,

shrodx — ghrodx _ ) geonsx — gconsx % in equilibrium. Prices are pr = p;, = ¢ and quantities
b - L (a—c+5? b b
rp = rp = a—c+ 5. Welfare in both countries is Wr = W = 52— +3(a—c+3).

Table A.2 lays out welfare payoffs for both countries under all trade strategy profiles given the
prices, quantities and optimal subsidies derived in this section. Since dc > ¢ by assumption,
these payoffs imply that trade is a weakly dominant strategy for both countries in both stages of

the game. The pareto-optimal Subgame Perfect Nash Equilibrium is one in which
1 Countries trade in both periods.

ii The laggard country sets 2% = ¢(d — 1).

iii Both countries set their consumer subsidies, sz and s7°"** equal to lj’.

A.4.1 Equilibrium without Producer Subsidies

Optimal consumer subsidies in autarky are derived in Appendix A.3.
Under trade, again assuming that dc is below the frontier country’s monopoly price, only
the frontier firm is active and supplies the market at global price p = pr = dc — €. Dropping €

for simplicity, the frontier country’s government sets a subsidy to optimise

2
b
Wr = arp — %F —(de—s"Yrp+ (de—c)(rp +rL) — resg™ + E(rp +rL)

cons

Given that rp = a —dc+ 5% and ry, is not affected by the domestic subsidy, the first order

condition implies that

b
S = e(d—1)+3

The laggard country’s government solves

2 b
maxWy = ary — % —dcrp + 5(1’1: +rr)
yielding
b
consx __ Y
St = 3

These subsidies lead to quantities

rF:a—c+§;rL:a_dC+§

and welfare
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7 b b
Wi =L ted =) +r1)+ 5 (1) = (e(d = ) +3)rr
2

b
=%F—|—(c(d—l)+§)rL
a—c+5%)? b
—< 2) +(cd—1)+=)(a—dc+ )
2 2
2
r b b
WL:EL—l—E(rF—l—rL)—ErL
2
_r. b
2 T’
(a—dc+5)* b b
> sla=e+3)

The frontier country extracts rent amounting to

Rentp = c(d—1)rg,

Table A.3 shows the welfare payoff matrix in the version of the game with consumer subsi-
dies only. While country F' weakly prefers trade in Stage 2, country L’s Stage 2 pay-offs depend
solely on the strategy chosen in Stage 1. The laggard country’s welfare in Stage 1 is the same
whether countries trade or remain in autarky. However, its welfare in Stage 2 — and therefore
its cumulative welfare — is higher if countries are in autarky in Stage 1. As trade requires mu-
tual agreement, there is no equilibrium under which countries trade in Stage 1. There are eight

SPNE in pure strategies, which are characterised by the following optimal trade decisions:
(1) T =(0,1) and Ty = (1,1)
(2) T; =(0,1) and T = (0,1)
(3) T =(0,1) and T = (1,0)
4) T; = (0,1) and T = (0,0)
(5) T; = (0,0) and T7 = (1,1)
(6) T; =(0,0) and T = (0,1)
(7) T; = (0,0) and T = (1,0)

(8) T; = (0,0) and T} = (0,0)
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Appendix B

Was the Trade War Justified? Solar PV
Innovation in Europe and the Impact of
the ‘China Shock’

B.1 DATA CLEANING PROCEDURE FOR BVvD ORBIS

Following Kalemli-Ozcan et al. (2015), observations were assigned to the reporting year if the
financial data was reported during or after June 1st (as indicated by the variable ‘closing date’),
and the previous year if the report was made before June. In order to avoid duplication, all
observations with consolidation code C2 (consolidated account, when there is an unconsolidated
companion) were dropped, as were observations with consolidation code LF (limited financial
information available). To address quality issues, observations were dropped if total assets,
operating revenue, sales and employment were simultaneously missing. Furthermore, the whole

company was dropped if

* employment, sales, total assets or tangible fixed assets were negative in any year;

the ratio of employment/sales was larger than the 99.9th percentile in any year and vice

versa;
* employment/total assets was larger than 99.9 pct in any year and vice versa;

* employment/revenue larger was larger than 99.9 pct in any year and vice versa;

the value of sales to total assets was larger than 99.9 pct in any year.

To deal with sudden jumps, observations were set to missing if assets or employment
changed by more than 100% upwards or 50% downwards one year and the reverse the following

year.
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Following this cleaning procedure, financials data and patenting indicators were matched.

Where a particular firm was missing in Orbis during a period lying between the year it was first

and last observed, a firm-year observation was created, but all control variables derived from

Orbis missing. Patent-based innovation counts were set to O when no patent was associated with

the firm during a particular period.

B.2 TECHNOLOGY CODES

TABLE B.1

Solar Related CPC Codes

Technology

| CPC Codes

Enabling

Hybrid technology
Production equipment and inputs
Solar cell

Solar thermal
Storage

System including solar cell

System including solar cell; Storage

HO02J 2300/22, HO2J 2300/24, HO2J 2300/26, HO2J
3/383, HO2J 3/385, HO2S 20, HO2S 20/10, HO2S
20/20, HO2S 20/21, HO2S 20/22, HO2S 20/23, HO2S
20/24, HO2S 20/25, HO2S 20/26, HO2S 20/30, HO2S
20/32, HO2S 30, HO2S 30/10, HO2S 40, HO2S 40/10,
HO2S 40/12, HO2S 40/20, HO2S 40/22, HO2S 40/30,
HO2S 40/32, HO2S 40/34, HO2S 40/345, HO2S 40/36,
HO02S 40/40, HO2S 40/42, HO2S 40/425, HO2S 50,
HO02S 50/10, HO2S 50/15, HO2S 99/00, YO2E 10/56,
Y04S 10/123

HO2S 10/12, HO2S 40/44, YO2E 10/60

HOI1L 31, HO1L 51

HO1G 9/20, HO1L 51/42, HO2S 10/30, HO2S 30/20,
YO2E 10/50, YO2E 10/52, YO2E 10/541, YO2E
10/542, YO2E 10/543, YO2E 10/544, YO2E 10/545,
YO02E 10/546, YO2E 10/547, YO2E 10/548, YO2E
10/549

YO2E 10/40

HOIM 10, HOIM 12, HOIM 14, HOIM 16, HO1M
2200, HO1M 2250/40, HO1M 2300, HOIM 4, HOIM
50, HOIM 8, HO02J 15, HO2S 40/38, Y04S 10/14
FO3G 6/0001, HO2J 2300/24, HO2J 2300/26, HO2J
3/383, HO2J 3/385, HO2S 10, HO2S 10/10, HO2S
10/40, YO2B 10/10

HO02S 10/20

Note: The table lists the technology codes from the Cooperative Patent Classification (CPC) used to identify Solar
PV and related patents. For maximum coverage I also search for the equivalent codes from the International Patent
Classification (IPC). I identify a patent family as belonging to a given category if it has at least one patent with a

relevant technology code.
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TABLE B.2
Generations of Solar Cells

CPC Code Description
Generation
Any YO2E 10/50 | Photovoltaic [PV] energy
1 YO2E 10/544 | Solar cells from Group III-V materials
YO2E 10/545 | Microcrystalline silicon PV cells
YO2E 10/546 | Polycrystalline silicon PV cells
YO2E 10/547 | Monocrystalline silicon PV cells
2 HO1G 9/20 Electrolytic light sensitive devices, e.g. dye sensitized solar
cells
HO2S 10/30 | Thermophotovoltaic systems
HO02S 30/20 | Collapsible or foldable PV modules
YO2E 10/52 | PV systems with concentrators
YO2E 10/541 | CulnSe2 material PV cells
YO02E 10/542 | Dye sensitized solar cells
YO2E 10/543 | Solar cells from Group II-VI materials
YO2E 10/548 | Amorphous silicon PV cells
3 HOIL 51/42 | Solid state devices using organic materials as the active part, or
using a combination of organic materials with other materials
as the active part;specially adapted for sensing infra-red radia-
tion, light, electro-magnetic radiation of shorter wavelength or
corpuscular radiation and adapted for the conversion of the en-
ergy of such radiation into electrical energy or for the control
of electrical energy by such radiation
YO2E 10/549 | Organic PV cells

Note: The table lists the technology codes from the Cooperative Patent Classification (CPC) used to identify Solar
PV patents, classified into ‘generations’.
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B.3 ADDITIONAL REGRESSION TABLES

B.3.1 PATSTAT Firm Dataset

TABLE B.3
Effects of Chinese Imports on Solar Cell Innovation, Using 3, 4 and 5-year sums and averages

) (2 (3) “) (O] (6)
3 Years 4 Years 5 Years 3 Years 4 Years 5 Years
Import Penetration x Exposure -0.009 -0.064 -0.133
(0.121) (0.148) (0.181)
Import Penetration x Exposure x Bottom 10% -0.105 0.084 0.234
(0.217) (0.170) (0.175)
Import Penetration x Exposure x Top 10% -0.009 0.019 0.001
(0.107) (0.130) (0.156)
Chinese Imports (USD 100M) x Exposure 0.012 0.020 0.032**
(0.012) (0.013) (0.014)
Chinese Imports (USD 100M) x Exposure x Bottom 10% 0.072***  0.109**  0.158"**
(0.017) (0.022) (0.041)
Chinese Imports (USD 100M) x Exposure x Top 10% -0.017 -0.026**  -0.038"**
(0.011) (0.011) (0.012)
Fam Stock -0.001**  -0.001***  -0.002**  -0.001**  -0.001** -0.002**
(0.000) (0.001) (0.001) (0.000) (0.001) (0.001)
Market Size (USD 100M) 0.000** 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Exports (USD 100M) -0.009***  -0.009***  -0.008**  -0.007** -0.006* -0.005
(0.003) (0.003) (0.004) (0.003) (0.003) (0.004)
IV regression X X X X X X
Year FEs X X X X X X
Firm FEs X X X X X X
Observations 19283 15356 12077 19283 15356 12077

Poisson Pseudo-Likelihood Estimation.

Dependent Variable: Firm-Level Patenting over 3, 4 or 5 Years.
Independent Variables are Averaged over the preceeding 3, 4 or 5 Years.

Robust Standard Errors in Parentheses.

149

Note: The table reports the results of a poisson pseudo-likelihood regression of firm-level patenting in solar cells
on Chinese import penetration and overall Chinese imports. The dependent variable is the sum of quality-adjusted
patent families over 3, 4 and 5 years in the future. All independent variables are averaged over the preceeding 3, 4
and 5 years. Firm-level exposure is based on the technological proximity of firms’ patent portfolios to the average
Chinese firm’s patent portfolio. ‘Bottom 10%’ and ‘Top 10%’ are binary variables indicating whether a firm’s
quality-adjusted patent family stock over the preceeding 3, 4 or 5 years falls in the top or bottom 10th percentile
among firms during that year. Standard errors are heteroskedasticity robust and bootstrapped with 200 repetitions.
All regressions use an instrumental variables regression, implemented using the control function method.
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TABLE B.4
Effects of Chinese Imports on Solar Cell Innovation by Generation, Including HHI

1 (2) 3) ) 5) (6) (@) (8)
Solar cells Gen 1 Gen 2 Gen 3 Solar cells Gen 1 Gen 2 Gen 3
Import Penetration x Exposure -0.106 -0.363* 8.620 -0.057
(0.156) 0.211) (18.472)  (0.164)
Import Penetration x Exposure x Bottom 10% 0.083 0.907* -7.933 0.275*
(0.168) (0.208) (18.464)  (0.150)
Import Penetration x Exposure x Top 10% 0.046 0.000 -8.402 0.000
(0.133) (0.000) (18.478)  (0.000)
Chinese Imports (USD 100M) x Exposure 0.022* -0.002 0.164* -0.019**
(0.013) (0.015) (0.084) (0.009)
Chinese Imports (USD 100M) x Exposure x Bottom 10% 0.103*** 0.163** -0.016 0.124*
(0.024) (0.029) (0.081) (0.025)
Chinese Imports (USD 100M) x Exposure x Top 10% -0.026** 0.000 -0.154* 0.000
(0.011) (0.000) (0.082) (0.000)
Fam Stock -0.001** -0.002 -0.040*  -0.001 -0.001** -0.001 -0.039** -0.001
(0.001) (0.003) (0.005) (0.001) (0.001) (0.002) (0.004) (0.001)
Hirschman-Herfindahl Index -0.626* -1.076 1.021** -0.458 -0.738** -2.546** 1.206*** -0.412
(0.360) (1.418) 0.477) (0.649) (0.343) (1.136) (0.466) (0.587)
Market Size (USD 100M) 0.000 -0.000 0.000*** -0.000 0.000 -0.000 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Exports (USD 100M) -0.008** -0.008 -0.014* 0.005 -0.005 -0.002 -0.015% 0.010
(0.003) (0.008) (0.004) (0.008) (0.003) (0.008) (0.005) (0.007)
IV regression X X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X X X X X
Observations 14602 2612 5854 3097 14602 2612 5854 3097

Poisson Pseudo-Likelithood Estimation.

Dependent Variable: Firm-Level Patenting over 4 Years.
Independent Variables are Averaged over the preceeding 4 Years.
Robust Standard Errors in Parentheses.

Note: Like Table 3.4, with the additional inclusion of the Hirschmann-Herfindahl Index (HHI) as an indicator
overall market competitiveness. The HHI is calculated based on each firm’s historical patent stock’s share in the
sum of knowledge stocks within the sample, by country and year. Standard errors are heteroskedasticity robust and
bootstrapped with 200 repetitions.
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TABLE B.5
Effects of Chinese Imports on Solar Cell Innovation, Pre- and Post-2013

()] 2) 3 (C)) (5) (6)
2000-2012  2014-2015  2014-2017  2000-2012  2014-2015  2014-2017
Import Penetration x Exposure 0.077 10.602 0.953
(0.114) (15.820) (4.118)
Import Penetration x Exposure x Bottom 10% 0.316"** 28.097 15.860
(0.120) (28.238) (11.677)
Import Penetration x Exposure x Top 10% -0.242* 1.069 0.777
(0.099) (12.908) (3.280)
Chinese Imports (USD 100M) x Exposure 0.053*** -0.015 -0.018
(0.019) (0.047) (0.028)
Chinese Imports (USD 100M) x Exposure x Bottom 10% 0217+ 0.022 0.012
(0.044) (0.058) (0.029)
Chinese Imports (USD 100M) x Exposure x Top 10% -0.059*** 0.015 0.020
(0.017) (0.040) (0.022)
Fam Stock -0.002 -0.007 -0.008** -0.001 -0.007 -0.008***
(0.001) (0.014) (0.003) (0.001) (0.015) (0.003)
Market Size (USD 100M) 0.000 -0.000 -0.000 0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Exports (USD 100M) -0.006 0.005 0.003 -0.005 0.007 0.005
(0.005) (0.014) (0.007) (0.005) (0.017) (0.008)
IV regression X X X X X X
Year FEs X X X X X X
Firm FEs X X X X X X
Observations 9320 908 2044 9320 908 2044

Poisson Pseudo-Likelihood Estimation.

Dependent Variable: Firm-Level Patenting over 4 Years.
Independent Variables are Averaged over the preceeding 4 Years.
Robust Standard Errors in Parentheses.

Note: The table reports the results of a poisson pseudo-likelihood regression of firm-level patenting in different
generations of solar cells on Chinese import penetration and overall Chinese imports. The dependent variable is
the sum of quality-adjusted patent families over 4 years in the future. All independent variables are averaged over
the preceeding 4 years. Firm-level exposure is based on the technological proximity of firms’ patent portfolios to
the average Chinese firm’s patent portfolio. ‘Bottom 10%’ and ‘Top 10%’ are binary variables indicating whether
a firm’s quality-adjusted patent family stock over the preceeding 4 years falls in the top or bottom 10th percentile
among firms during that year. Standard errors are heteroskedasticity robust and bootstrapped with 200 repetitions.
All regressions use an instrumental variables regression, implemented using the control function method.
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TABLE B.6
Effects of Chinese Imports on Solar Cell and Related Innovation

()] @ 3 (C)) (6) (6) @)
Solar cells Hybrid Solar thermal ~ Production Storage Enabling Systems
Import Penetration x Exposure -0.064 -0.657 0.351 -0.036 0.080 -0.139 0.165
(0.139) (0.408) (0.409) (0.208) (0.125) (0.571) (0.795)
Import Penetration x Exposure x Bottom 10% 0.084 0.200 0.655 0.428* 0.097 0.162 -0.182
(0.187) (0.442) (0.788) (0.249) (0.244) (0.566) (0.778)
Import Penetration x Exposure x Top 10% 0.019 0.000 -0.294 -0.024 -0.252** 0.143 -0.184
(0.123) (0.000) (0.410) (0.176) 0.114) (0.566) (0.780)
Fam Stock -0.001** -0.336™* -0.015% 0.001 0.000 -0.002***  -0.002***
(0.001) (0.104) (0.001) (0.001) (0.000) (0.000) (0.001)
Market Size (USD 100M) 0.000 -0.000** -0.000 0.000 -0.000*** 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Exports (USD 100M) -0.009** 0.011 -0.002 -0.003 0.019*  -0.009*** -0.002
(0.003) (0.008) (0.003) (0.003) (0.003) (0.003) (0.003)
IV regression X X X X X X X
Year FEs X X X X X X X
Firm FEs X X X X X X X
Observations 15356 1648 9604 14766 20256 11297 8876

Poisson Pseudo-Likelthood Estimation.

Dependent Variable: Firm-Level Patenting over 4 Years.
Independent Variables are Averaged over the preceeding 4 Years.
Robust Standard Errors in Parentheses.

Note: The table reports the results of a poisson pseudo-likelihood regression of firm-level patenting in solar cells
and related technologies on Chinese import penetration. The dependent variable is the sum of quality-adjusted
patent families over 4 years in the future. All independent variables are averaged over the preceeding 4 years.
Firm-level exposure is based on the technological proximity of firms’ patent portfolios to the average Chinese firm’s
patent portfolio. ‘Bottom 10%’ and ‘Top 10%’ are binary variables indicating whether a firm’s quality-adjusted
patent family stock over the preceeding 4 years falls in the top or bottom 10th percentile among firms during that
year. Standard errors are heteroskedasticity robust and bootstrapped with 200 repetitions. All regressions use an
instrumental variables regression, implemented using the control function method.
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TABLE B.7
Effects of Chinese Import Penetration on Solar Cell and Related Innovation

(e)) (@) 3) “ ) (6) @)
Solar cells Hybrid Solar thermal ~ Production Storage Enabling Systems
Chinese Imports (USD 100M) x Exposure 0.012 0.022 0.078*** -0.010 0.032%** 0.038** 0.036*
(0.012) (0.021) (0.022) (0.011) (0.009) (0.016) (0.019)
Chinese Imports (USD 100M) x Exposure x Bottom 10% 0.108*** 0.059 0.123** 0.117** -0.057 0.070%** 0.076***
(0.023) (0.039) (0.054) (0.021) (0.059) (0.018) (0.021)
Chinese Imports (USD 100M) x Exposure x Top 10% -0.024** 0.000 -0.060%** -0.019** -0.017* -0.029** -0.023
(0.011) (0.000) (0.020) (0.009) (0.009) (0.014) (0.018)
Fam Stock -0.001** -0.319* -0.016* 0.000 0.000 -0.002**  -0.003***
(0.001) (0.103) (0.001) (0.001) (0.000) (0.000) (0.001)
Market Size (USD 100M) 0.000 -0.000** -0.000 0.000* -0.000*** -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Exports (USD 100M) -0.007** 0.006 -0.004 0.002 0.016**  -0.010"* -0.004
(0.004) (0.009) (0.003) (0.004) (0.003) (0.003) (0.004)
IV regression X X X X X X X
Year FEs X X X X X X X
Firm FEs X X X X X X X
Observations 15356 1648 9604 14766 20256 11297 8876

Poisson Pseudo-Likelihood Estimation.

Dependent Variable: Firm-Level Patenting over 4 Years.
Independent Variables are Averaged over the preceeding 4 Years.
Robust Standard Errors in Parentheses.

Note: The table reports the results of a poisson pseudo-likelihood regression of firm-level patenting in solar cells
and related technologies on overall Chinese imports. The dependent variable is the sum of quality-adjusted patent
families over 4 years in the future. All independent variables are averaged over the preceeding 4 years. Firm-
level exposure is based on the technological proximity of firms’ patent portfolios to the average Chinese firm’s
patent portfolio. ‘Bottom 10%’ and “Top 10%’ are binary variables indicating whether a firm’s quality-adjusted
patent family stock over the preceeding 4 years falls in the top or bottom 10th percentile among firms during that
year. Standard errors are heteroskedasticity robust and bootstrapped with 200 repetitions. All regressions use an
instrumental variables regression, implemented using the control function method.
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TABLE B.8
Effects of Chinese Imports on Solar Cell Innovation,
Top/Bottom 1st Percentile of Patent Stocks

1) 2 3) “) () (6) (7 (8)
No IV v No IV v No IV v No IV v
Import Penetration x Exposure -0.081"** -0.045 -0.084** -0.042
(0.030) (0.057) (0.038) (0.070)
Import Penetration x Exposure x Bottom 1% 0.056 0.065
(0.138) (0.136)
Import Penetration x Exposure x Top 1% 0.002 -0.004
(0.059) (0.059)
Chinese Imports (USD 100M) x Exposure -0.013** -0.007 -0.026"*  -0.017*
(0.006) (0.007) (0.008) (0.008)
Chinese Imports (USD 100M) x Exposure x Bottom 1% 0.131*  0.131**
(0.021) (0.023)
Chinese Imports (USD 100M) x Exposure x Top 1% 0.015** 0.012*
(0.007) (0.007)
Fam Stock -0.001**  -0.001***  -0.001** -0.001**  -0.002***  -0.002***  -0.002***  -0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Market Size (USD 100M) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Exports (USD 100M) -0.009***  -0.009***  -0.009***  -0.009*** -0.007* -0.006* -0.007** -0.006*
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
IV regression X X X X
Year FEs X X X X X X X X
Firm FEs X X X X X X X X
Observations 15356 15356 15356 15356 15356 15356 15356 15356

Poisson Pseudo-Likelihood Estimation.

Dependent Variable: Firm-Level Patenting over 4 Years.
Independent Variables are Averaged over the preceeding 4 Years.
Robust Standard Errors in Parentheses.

Note: Like Table 3.3, but using the 1st and 99th percentile of accumulated patent family stocks. Standard errors
are heteroskedasticity robust and bootstrapped with 200 repetitions.
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TABLE B.9
Effects of Chinese Imports on Solar Cell Innovation,
Top/Bottom 5th Percentile of Patent Stocks

1) 2 3) ) () (6) [©) (8)
No IV v No IV v No IV v No IV v
Import Penetration x Exposure -0.081** -0.045 -0.038 0.023
(0.034) (0.058) (0.069) (0.083)
Import Penetration x Exposure x Bottom 5% 0.015 0.016
(0.154) (0.152)
Import Penetration x Exposure x Top 5% -0.050 -0.067
(0.075) (0.076)
Chinese Imports (USD 100M) x Exposure -0.013** -0.007 -0.017 -0.007
(0.006) (0.005) 0.011) (0.011)
Chinese Imports (USD 100M) x Exposure x Bottom 5% 0.128**  0.128**
(0.025) (0.020)
Chinese Imports (USD 100M) x Exposure x Top 5% 0.005 0.001
(0.010) (0.009)
Fam Stock -0.001** -0.001** -0.001**  -0.001***  -0.002***  -0.002**  -0.002**  -0.002***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Market Size (USD 100M) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Exports (USD 100M) -0.009***  -0.009***  -0.009***  -0.009"**  -0.007** -0.006*  -0.007** -0.006*
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
IV regression X X X X
Year FEs X X X X X X X X
Firm FEs X X X X X X X X
Observations 15356 15356 15356 15356 15356 15356 15356 15356

Poisson Pseudo-Likelihood Estimation.

Dependent Variable: Firm-Level Patenting over 4 Years.
Independent Variables are Averaged over the preceeding 4 Years.
Robust Standard Errors in Parentheses.

Note: Like Table 3.3, but using the 5th and 95th percentile of accumulated patent family stocks. Standard errors
are heteroskedasticity robust and bootstrapped with 200 repetitions.



B.3. ADDITIONAL REGRESSION TABLES

TABLE B.10
Effects of Chinese Imports on Solar Cell Innovation,
Top/Bottom 20th Percentile Percentile of Patent Stocks

156

1) 2 (3) “) (5) (6) [©) (8)
No IV v No IV v No IV v No IV v
Import Penetration x Exposure -0.081** -0.045 -0.084 0.026
(0.031) (0.060) (1.825) (1.721)
Import Penetration x Exposure x Bottom 20% 0.056 -0.004
(1.836) (1.728)
Import Penetration x Exposure x Top 20% 0.001 -0.071
(1.821) (1.718)
Chinese Imports (USD 100M) x Exposure -0.013** -0.007 0.018 0.029
(0.006) (0.006) (0.018) (0.019)
Chinese Imports (USD 100M) x Exposure x Bottom 20% 0.096**  0.094***
(0.025) (0.024)
Chinese Imports (USD 100M) x Exposure x Top 20% -0.030* -0.035**
(0.017) 0.017)
Fam Stock -0.001**  -0.001***  -0.001**  -0.001***  -0.002**  -0.002***  -0.001"**  -0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Market Size (USD 100M) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Exports (USD 100M) -0.009**  -0.009***  -0.009***  -0.009***  -0.007** -0.006* -0.007* -0.006**
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
IV regression X X X X
Year FEs X X X X X X X X
Firm FEs X X X X X X X X
Observations 15356 15356 15356 15356 15356 15356 15356 15356

Poisson Pseudo-Likelihood Estimation.

Dependent Variable: Firm-Level Patenting over 4 Years.
Independent Variables are Averaged over the preceeding 4 Years.

Robust Standard Errors in Parentheses.

Note: Like Table 3.3, but using the 20th and 80th percentile of accumulated patent family stocks. Standard errors
are heteroskedasticity robust and bootstrapped with 200 repetitions.
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B.3.2 ORBIS Firm Dataset

TABLE B.11
Effects of Chinese Imports on Solar Cell Innovation, Using ORBIS Firms

(1) () (3) “4) (5) (6) ()] (®)

No IV v No IV v No IV v No IV v
Import Penetration x Exposure -0.080 -0.002 0.869** 1.252*
(0.145) (0.181) (0.379) (0.649)
Import Penetration x Exposure x Bottom 10% -0.797 -0.994
(0.548) (0.842)
Import Penetration x Exposure x Top 10% -0.955%  -1.231**
(0.518) (0.591)
Chinese Imports (USD 100M) x Exposure -0.050***  -0.056*** -0.034 -0.041*
(0.014) (0.015) (0.021) (0.023)
Chinese Imports (USD 100M) x Exposure x Bottom 10% 0.129** 0.130**
(0.037) (0.038)
Chinese Imports (USD 100M) x Exposure x Top 10% -0.023 -0.022
(0.020) (0.020)
Fam Stock -0.007**  -0.007**  -0.007**  -0.007**  -0.008"**  -0.008"**  -0.008"**  -0.008"**
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Total Assets (USD 100M) 0.002** 0.002**  0.002***  0.002"**  0.002*** 0.002*** 0.002*** 0.002***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Number of Employees 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Market Size (USD 100M) -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Exports (USD 100M) 0.003 0.003 0.003 0.003 0.009* 0.009* 0.011** 0.011*
(0.006) (0.006) (0.006) (0.007) (0.005) (0.005) (0.005) (0.006)
IV regression X X X X
Year FEs X X X X X X X X
Firm FEs X X X X X X X X
Observations 5617 5617 5617 5617 5617 5617 5617 5617

Poisson Pseudo-Likelihood Estimation.

Dependent Variable: Firm-Level Patenting over 4 Years.
Independent Variables are Averaged over the preceeding 4 Years.
Robust Standard Errors in Parentheses.

Note: The table reports the results of a poisson pseudo-likelihood regression of firm-level patenting in solar cells
on Chinese import penetration and overall Chinese imports, using the sample of firms from ORBIS. The depen-
dent variable is the sum of quality-adjusted patent families over 4 years in the future. All independent variables
are averaged over the preceeding 4 years. Firm-level exposure is based on the technological proximity of firms’
patent portfolios to the average Chinese firm’s patent portfolio. ‘Bottom 10%’ and “Top 10%’ are binary variables
indicating whether a firm’s quality-adjusted patent family stock over the preceeding 4 years falls in the top or bot-
tom 10th percentile among firms during that year. Standard errors are heteroskedasticity robust and bootstrapped
with 200 repetitions. Models 2, 4, 6 and 8 use an instrumental variables regression, implemented using the control
function method.
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TABLE B.12
Effects of Chinese Imports on Solar Cell Innovation by Generation, Using ORBIS Firms

1) (2 (3) 4 (5) (6) (@) ®)
Solar cells Gen 1 Gen 2 Gen 3 Solar cells Gen 1 Gen 2 Gen 3
Import Penetration x Exposure 1.252** -0.402 0.105 -0.117
(0.596) (1.725) (1.454) (2.233)
Import Penetration x Exposure x Bottom 10% -0.994 0.730 0.542 32.281
(1.024) (5.107)  (43.788) (25.680)
Import Penetration x Exposure x Top 10% -1.231* 0.000 0.000 0.000
(0.568) (0.000) (0.000) (0.000)
Chinese Imports (USD 100M) x Exposure -0.041* -0.084*** -0.017 -0.124**
(0.022) (0.031) (0.024) (0.027)
Chinese Imports (USD 100M) x Exposure x Bottom 10% 0.130*** 0.155** 0.073 0.140**
(0.033) (0.049) (0.123) (0.067)
Chinese Imports (USD 100M) x Exposure x Top 10% -0.022 0.000 0.000 0.000
(0.019) (0.000) (0.000) (0.000)
Fam Stock -0.007** -0.040%  -0.064**  -0.026"**  -0.008*** -0.041 -0.064*  -0.027***
(0.003) (0.021) (0.013) (0.005) (0.003) (0.027) (0.011) (0.004)
Total Assets (USD 100M) 0.002*** 0.002 0.005** 0.002** 0.002*** 0.001 0.005*** 0.002*
(0.001) (0.002) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001)
Number of Employees 0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Market Size (USD 100M) -0.000 -0.000 -0.000** -0.000 -0.000 0.000 -0.000** 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Exports (USD 100M) 0.003 -0.021* 0.002 0.026** 0.011** -0.009 0.005 0.033***
(0.006) (0.011) (0.008) (0.010) (0.005) (0.012) (0.009) (0.011)
IV regression X X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X X X X X
Observations 5617 944 1929 989 5617 944 1929 989

Poisson Pseudo-Likelihood Estimation.

Dependent Variable: Firm-Level Patenting over 4 Years.
Independent Variables are Averaged over the preceeding 4 Years.
Robust Standard Errors in Parentheses.

Note: The table reports the results of a poisson pseudo-likelihood regression of firm-level patenting in different
generations of solar cells on Chinese import penetration and overall Chinese imports, using the sample of firms
from ORBIS. The dependent variable is the sum of quality-adjusted patent families over 4 years in the future. All
independent variables are averaged over the preceeding 4 years. Firm-level exposure is based on the technological
proximity of firms’ patent portfolios to the average Chinese firm’s patent portfolio. ‘Bottom 10%’ and ‘Top 10%’
are binary variables indicating whether a firm’s quality-adjusted patent family stock over the preceeding 4 years
falls in the top or bottom 10th percentile among firms during that year. Standard errors are heteroskedasticity robust
and bootstrapped with 200 repetitions. All regressions use an instrumental variables regression, implemented using
the control function method.
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B.3.3 Placebo Regressions

TABLE B.13
Placebo Test: Randomised Exposure

()] (@) 3 (C)) (5) (6) ) (®)
No IV v No IV v NoIV v No IV v
Import Penetration x Exposure 0.388 -0.061 -2.597 -3.350
(2.383)  (2.966) (2.770)  (3.039)
Import Penetration x Exposure x Bottom 10% 6.153 6.150
(4237)  (3.879)
Import Penetration x Exposure x Top 10% 3.613 3913
(4.681)  (4.693)
Chinese Imports (USD 100M) x Exposure 0.034 0.042 -0.086 -0.080
(0.108)  (0.125)  (0.516)  (0.551)
Chinese Imports (USD 100M) x Exposure x Bottom 10% 0.183 0.179
(0.548)  (0.579)
Chinese Imports (USD 100M) x Exposure x Top 10% 0.017 0.021
(0.517)  (0.562)
Fam Stock 0.030**  0.031**  0.030*  0.031™  0.032**  0.033**  0.029**  0.030*
(0.015)  (0.014)  (0.014) (0.014) (0.014) (0.014) (0.015) (0.015)
Market Size (USD 100M) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)
Exports (USD 100M) 0.011 0.010 0.013 0.012 0.010 0.009 0.011 0.011
(0.016)  (0.015)  (0.016) (0.015) (0.016) (0.016) (0.017)  (0.018)
IV regression X X X X
Year FEs X X X X X X X X
Firm FEs X X X X X X X X
Observations 581 581 581 581 581 581 581 581

Poisson Pseudo-Likelihood Estimation.

Dependent Variable: Firm-Level Patenting over 4 Years.

Independent Variables are Averaged over the preceeding 4 Years.

Robust Standard Errors in Parentheses.
Note: Like Table 3.3, but using randomised exposure variables. Firm-level exposure is randomised using a beta
distribution, with the o and B parameters estimated using the real mean and variance of the distribution. Import
penetration is randomised using Kernel Density estimation, and import volume is randomised using a log-normal

distribution.
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TABLE B.14
Placebo: Innovation in Dental Prosthetics

(&) 2 (3) 4) (5) (6) (7 ()]
No IV v No IV v No IV v No IV v
Import Penetration x Exposure -0.162 0.192 -0.126 0.056
(0.165) (0.259)  (0.145)  (0.368)
Import Penetration x Exposure x Bottom 10% -3.537 -2.660
(2.834)  (2.934)
Import Penetration x Exposure x Top 10% -0.517 -0.573
(1.728)  (1.831)
Chinese Imports (USD 100M) x Exposure -0.017 -0.013 -0.023 -0.021
(0.014) (0.014) (0.015) (0.015)
Chinese Imports (USD 100M) x Exposure x Bottom 10% 0277 0.278***
(0.056) (0.059)
Chinese Imports (USD 100M) x Exposure x Top 10% 0.023** 0.025**
(0.011) (0.011)
Fam Stock -0.013* -0.013*  -0.013*  -0.013* -0.013* -0.011 -0.013* -0.010
(0.007) (0.007)  (0.007)  (0.007) (0.007) (0.007) (0.007) (0.007)
Market Size (USD 100M) -0.000* -0.000*  -0.000*  -0.000* -0.000 -0.000 -0.000 -0.000*
(0.000) (0.000)  (0.000)  (0.000) (0.000) (0.000) (0.000) (0.000)
Exports (USD 100M) 0.019*** 0.019**  0.019*  0.018**  0.019"*  0.018"*  0.019"*  0.018"**
(0.007) (0.007)  (0.007)  (0.007) (0.007) (0.007) (0.007) (0.007)
IV regression X X X X
Year FEs X X X X X X X X
Firm FEs X X X X X X X X
Observations 2804 2804 2804 2804 2804 2804 2804 2804

Poisson Pseudo-Likelthood Estimation.

Dependent Variable: Firm-Level Patenting over 4 Years.
Independent Variables are Averaged over the preceeding 4 Years.

Robust Standard Errors in Parentheses.
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Note: Like Table 3.3, but using a sample of firms patenting in dentistry prosthetics (IPC Class A61C/13), with all
patent-based variables constructed using patent families from IPC Class A61C/13.



Appendix C

Stranded Nations? Transition Risks and

Opportunities Towards a Clean Economy

C.1 LIST OF ‘BROWN’ PRODUCTS

To identify specialisations in ‘brown’ products, we first define and identify such products within
trade data, as no such list exists to date. Prior research analysing patenting trends in clean and
dirty technologies has compiled various lists of dirty patent codes, which tend to focus primar-
ily on the energy and transport sectors (e.g. Aghion et al. 2016; Dechezleprétre et al. 2017,
Johnstone et al. 2010; Popp et al. 2020; Verdolini and Galeotti 2011). Much of our list is in
the spirit of this work. While the capacity to innovate is likely geographically correlated with
production capabilities in a particular sector, exports are a more direct proxy of a country’s ac-
tual manufacturing and other production capacity, as well as the jobs and capital tied up therein.
They also have significant implications for overall economic viability and terms of trade. We
therefore measure productive capabilities using export, rather than patent, data.

Since the goal of this chapter is to assess transition risks and transition possibilities for
countries, we focus specifically on developing a list of brown products for which global demand
is likely to decline as the world decarbonises. We maintain a focus on products which are mostly
brown in use, rather than production. As such, we do not consider products where current
production processes are polluting, but which can be expected to form part of the low carbon
economy.! Moreover, our focus on the transition to a low carbon economy results in a narrower
classification than a broader definition of ‘brown’ might.

We first conduct a keyword search on the descriptions of 6-digit codes within the Har-

monised System,? aiming to create a ‘narrow’ and a ‘broad’ list. The narrow list focuses on

1. Examples would include hard to decarbonise sectors, such as heavy industry. Steel, for example, is an
essential input into many green products, such as wind turbine towers.

2. In line with Mealy and Teytelboym (2020), we use the 1992 edition of the Harmonised System to permit us
to use the full time series of trade data available from UN Comtrade.
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fossil fuels and includes the following keywords: ‘coal’, ‘petro’, ‘hydrocarbon’, ‘internal com-
bustion engine’, ‘gas’, ‘combustion’. Fossil fuels are the biggest contributors to climate change,
and their use must decline most substantially to reach net zero CO2 emissions (IPCC 2019,
2022). The burning of coal, for example, accounts for 26% of global greenhouse gas emissions
and needs to decline by 20-70% by 2030 in order to reach the goals of the Paris agreement
(Steckel and Jakob 2022), and coal consumption without carbon capture and storage needs to
fall by 67-82% by 2030 to limit global warming to 1.5°C. Oil and gas consumption need to
decline less abruptly. Overall, 30% of oil, 50% of gas and 80% of coal reserves are unburn-
able if we are to limit global warming to 2° Celsius (IPCC 2022). Coal, oil and gas patents
codes are also classified as dirty in the respective patent-literature (e.g. Aghion et al. 2016;
Dechezleprétre et al. 2017).

The broad list additionally includes the keywords ‘bovine’ (relating to cattle) and ‘sheep’.
Meat consumption, particularly beef and mutton, is particularly emission intensive and con-
sumption reductions can reduce emissions substantially (Funke et al. 2021; IPCC 2019). While
they are brown in production, rather than in use, a more sustainable diet requires a shift away
from these agricultural products. Hence we include both in our broader list, which is used for
robustness checks.

To validate this keyword search-based classification into brown product categories and re-
spective lists, we elicited feedback from five policy, chemicals and green innovation and growth
experts. We approached experts based on their technical ability to assess the implications of the
transition for relevant economic sectors. Whenever more than one expert disagreed with our
classification, say to classify a product as brown, we followed that suggestion and reclassified
the product. Upon cross-checking the proposed new list with the WTQO’s original green list we
found that 7 products to be moved to the brown list were on the WTQO’s list of green products
and should therefore remain excluded. In the end, only one additional product was added to the
brown list and another removed. We also matched our list to the green list used in prior research
(Mealy and Teytelboym 2020) and excluded products which appeared on the green list from
the brown list. Following this validation process, 144 products constitute the narrow brown
list vis-a-vis 171 products in the full brown list. The revised green list includes 299 products,
which includes carbon capture, utilisation and storage products listed in Serin et al. 20213. For
consistency with prior research, the Green Complexity Index is computed based on the list used
in Mealy and Teytelboym 2020 and does not include additional products from the CCUS list.

We initially approached experts to also review a list of grey products designed to deal with
controversial cases — specifically, the small set of products which appeared on both our brown

and the WTO’s green list, as well as steel, cement and plastic products. Steel, cement and plastic

3. Excluding those previously identified as potentially ‘brown’.
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are particularly difficult cases to contend with: they are essential inputs into many sectors of the
economy, including clean infrastructure. However, the emissions involved in their production
process are very large, and not easily mitigated with available technology. Nevertheless, the fact
that demand for some of these products such as cement and steel might increase as a result of
the net zero transition, and that there was no clear rationale for including or excluding a product
from the grey list given that most fossil-energy based production processes are polluting and
need cleaning up, led us to eventually drop the list. Instead, we focus on brown goods which
are both brown in use and likely to decline in demand in net zero scenarios.

There are many possible approaches which could be taken, such as selecting products
based on embodied emissions (e.g. Broner et al. 2012), and we therefore cannot claim this list
to be exhaustive or authoritative. We have selected products which we consider uncontroversial
in their status as ‘highly likely to see demand declines in the green transition’, as this approach
is best suited to our aim of capturing transition risk. Other research on ‘brown trade’ (for
example, work which focuses on exposure to carbon border adjustments) may be better served

by a different list (for example, one which is based on embodied carbon emissions).
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C.2 VALIDATION

Table C.1 reports our estimates of

BLI.; =Po + Bi1GDP.; + ByCoalRents,; + B3OilRents.; + BsGasRents. ;+
BsCO>Emissions.; + BeRTA Climate.; + 0 + €

(C.1)

and

BCl.; =Bo + BiGDP. ; + BrCoalRents.; + B3OilRents. ; + PsGasRents. ;+
BsCO,Emissions.; + BsRTA_Cl imatec; + o6 +¢

(C.2)

where RTA _Climate., is a vector of Revealed Technological Advantage (RTA) values in
climate-related technologies, & are year dummies, and € is the error term. Standard errors are

clustered at the country level.
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TABLE C.1
Correlates of Brown Dependence Measures

1) ) 3) C)) (5) (6)
BLI BLI BLI BCI BCI BCI
GDP per capita (current USD) (log) 0.045 -0.004 0.057 0.321*** 0.180* 0.204
(0.041) (0.049)  (0.083)  (0.055) (0.100) (0.159)
Coal rents (% of GDP) 0.035 0.008
(0.022) (0.086)
Oil rents (% of GDP) 0.090*** -0.025%**
(0.006) (0.005)
Natural gas rents (% of GDP) 0.036** -0.017
(0.014) (0.015)
CO2 emissions (metric tons per capita, log) 0.050 0.421%*
(0.098) (0.159)
RTA, Environment-related Technologies 1.939 1.271
(1.198) (1.809)
RTA, Energy-related Mitigation Technologies -0.425 -3.280**
(1.210) (1.498)
RTA, Carbon Capture and Storage 3.658"** -4.977*
(0.688) (2.660)
RTA, Climate Change Adaptation Technologies 0.765 -1.061*
(0.646) (0.556)
RTA, Transport-related Mitigation Technologies -2.525%* 2.730
(1.066) (2.748)
Year FEs X X X X X X
Observations 933 854 222 933 854 222
R2 .00453 167 .203 212 .324 171

Linear regression. Cluster-Robust Standard Errors in Parentheses.

The label (log) refers to the natural logarithm of 1 + the variable in question.

Dependent Variables Relate to Brown List (Narrow).
Note: We regress the Brown Lock-in Index and the Brown Complexity Index on a number of potentially relevant
covariates, such as income, natural resource rents, and Revealed Technological Advantage in climate-relevant
technologies.

Table C.2 reports our estimates of

BLI;; =PBo + B1BLI; ;1 + ByGreenTransitionOutlook; ;1 + B3X;—1 + & + € (C.3)
and
BCI;; =Po+ B1BCl;;—1 + B2GreenTransitionOutlook; ;1 + B3Xi ;-1 + 0 + € (C4)

while Table C.3 reports estimates of
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TABLE C.2

Predictive Power of Green Transition Outlook

() 2 (3) 4)
BLI BLI BCI BCI
Brown Lock-in Index (t-1) 0.957**  0.949***
(0.017)  (0.034)
Green Transition Outlook (t-1) -0.006 -0.001 -0.027***  -0.024**
(0.018)  (0.019) (0.010) (0.011)
GDP per capita (current USD, log, t-1) -0.002 -0.015  0.023*** 0.021
(0.009) (0.016) (0.007) (0.017)
Coal rents (% of GDP, t-1) 0.026*** 0.001
(0.009) (0.010)
Oil rents (% of GDP, t-1) 0.002 -0.002
(0.003) (0.001)
Natural gas rents (% of GDP, t-1) 0.004* -0.001
(0.002) (0.001)
CO2 emissions (metric tons per capita, log, t-1) 0.024 0.021
(0.027) (0.027)
Brown Complexity Index (t-1) 0.955**  0.947***
(0.014) (0.016)
Year FEs X X X X
Observations 715 661 715 661
R2 931 943 926 93

Linear regression. Cluster-Robust Standard Errors in Parentheses.
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The label (log) refers to the natural logarithm of 1 + the variable in question.

t-1 refers to the previous period’s value.

. . . 2,p5+TO,
Note: Country Transition Outlook is calculated as TransitionOutlook. = =2 g’; ;c b
b

country has RCA in product b, and 70, denotes the product’s Transition Outlook to list q (more intuitively called

, where p; indicates whether the

Normalised Product Proximity). TOp, = %/ 25# with Q; , being the pairwise proximity between brown
product b and climate-compatible (green or non-brown) product q; Q the total number of products of type q; € ,
the pairwise proximity between product b and product p; and P the set of all traded products. The table reports
the results of a regression of the BLI and BCI on their lagged values, lagged Green Transition Outlook and several
covariates, showing that a higher Green Transition Outlook predicts future decreases in BCI, but has no statistically
significant association with BLI.

BLI;; =Bo+ BiBLI; ;1 + BaTransitionOutlook; ;1 + B3Xi—1+ 6 + € (C5)

and

BCI;; =Po + B1BCl; ;1 + B2 TransitionOutlook; 1 + B3 Xis—1 + & + € (C.6)

where X;,_; is a vector of controls, & are year dummies, and € is the error term. Standard

errors are clustered at the country level.
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TABLE C.3

Predictive Power of Overall Transition Outlook
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() 2) (3) 4)
BLI BLI BCI BCI
Brown Lock-in Index (t-1) 0.941%*  0.939***
(0.018) (0.030)
Overall Transition Outlook (t-1) -0.0427**  -0.024* 0.005 0.010
(0.016) (0.013)  (0.009) (0.012)
GDP per capita (current USD, log, t-1) -0.005 -0.016  0.022** 0.020
(0.008) (0.016)  (0.007)  (0.017)
Coal rents (% of GDP, t-1) 0.025*** 0.005
(0.009) (0.011)
Oil rents (% of GDP, t-1) 0.002 -0.000
(0.003) (0.001)
Natural gas rents (% of GDP, t-1) 0.004* -0.000
(0.002) (0.001)
CO2 emissions (metric tons per capita, log, t-1) 0.023 0.019
(0.026) (0.027)
Brown Complexity Index (t-1) 0.948"**  (0.943***
(0.015)  (0.016)
Year FEs X X X X
Observations 715 661 715 661
R2 932 943 926 93

Linear regression. Cluster-Robust Standard Errors in Parentheses.
The label (log) refers to the natural logarithm of 1 + the variable in question.

t-1 refers to the previous period’s value.

Note: Like C.2, but using overall, instead of green, Transition Outlook.
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C.3 SUPPLEMENTARY TABLES

TABLE C.4
Measures Derived From Trade Data

Name Formula Source
Revealed Comparative Advantage (RCA) RCA = ):5 - / zf)”:f . Balassa 1965
.. o Zpl’;*p;, ZP;*P;, .
Product-to-Product Proximity Q) py =min(— T Hidalgo et al. 2007
.. L p5EQ, .
Country-to-Product Proximity o, = 55 Hidalgo et al. 2007
P =%p.p
(Proximity Density)
Diversity 0, Hidalgo and Hausmann 2009
Economic Complexity Index (ECI) Eigenvector associated with the second Hidalgo and Hausmann 2009

largest right eigenvalue of the matrix
given by D~!MU~'M’ where D is the
diagonal matrix formed from the vector
of countries’ diversity values, U is the
diagonal matrix formed from the vector
of product ubiquity values and M is a
binary matrix where rows correspond to
countries, columns correspond to products
and M., = 1 if country ¢’s RCA in
product p is > 1 and 0 otherwise.

Product Complexity Index (PCI) Eigenvector associated with the second Hidalgo and Hausmann 2009
largest right eigenvalue of the matrix
givenby U~ 'M'D~'M

Green Complexity Index (GCI) GCl. =Xgpg * PCI Mealy and Teytelboym 2020
Brown Lock-in Index (BLI) BLI. =%, % * (1 — PCI) This Chapter

Brown Complexity Index (BCI) BCI. = Xpy, * PCI This Chapter

Brown Lock-in Index (binary) BLI. = X,p§ * (1 — PCI) This Chapter
Product Transition Outlook TransitionOutlooky, = Zgigb“’ / Zﬁipl"p This Chapter

(Normalised Proximity)

Zppp*T0p
Lypy,

Country Transition Outlook TransitionOutlook, = This Chapter

exportsp

Note: Notation: 5 exporis, 15 the share of each brown product in overall export values. p,, is a binary variable

taking the value 1 if a country exports the product in question with RCA > 1. PCI is the Product Complexity Index
normalised to take a value between 0 and 1. €, , is the pairwise proximity between brown product b and climate-
compatible (green or non-brown) product q; Q is the total number of products of type q; €, , is the pairwise
proximity between product b and product p; and P is the set of all traded products.

Table C.9 reports estimates of the relationships
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TABLE C.5
Summary Statistics for Trade and Policy Variables

mean sd min max
Brown Export Volume (1,000 USD) 1.13e+07 3.08e+07 11.94 2.88e+08
% Share of Brown in Export Volume 19.90 26.66 0.07 99.70
Number of Competitive Brown Products 11.89 12.83 1.00 76.00
% Share of Brown in Export Diversity 3.45 4.67 0.14 50.00
Green Export Volume (1,000 USD) 5.19e+06 2.22e+07 0.00 3.30e+08
% Share of Green in Export Volume 4.27 4.35 0.00 29.01
Number of Competitive Green Products 31.32 35.89 0.00 200.00
% Share of Green in Export Diversity 5.82 2.98 0.00 16.67
CO2 emissions (metric tons per capita) 4.50 5.44 0.00 42.74
GDP per capita (current USD) 1259735 18127.71 12493 116072.05
Coal rents (% of GDP) 0.14 0.65 0.00 10.63
Oil rents (% of GDP) 3.79 9.43 0.00 66.21
Natural gas rents (% of GDP) 0.66 3.25 0.00 57.32
RTA, Climate Change Adaptation Technologies 0.68 1.27 0.00 15.62
RTA, Energy-related Mitigation Technologies 0.50 0.82 0.03 8.81
RTA, Environment-related Technologies 0.81 0.87 0.08 5.38
RTA, Carbon Capture and Storage 0.06 0.18 0.00 1.75
RTA, Transport-related Mitigation Technologies 0.26 0.58 0.01 5.26
Observations 1051

Note: The table displays summary statistics for some of the indices we compute, as well as policy and control
variables. Export-based indicators are computed using data from CEPII’s BACI database (Gaulier and Zignago
2010). Revealed Technological Advantage (RTA) in different low carbon technologies is derived from OECD Stat.
All other variables are collected from the World Bank’s World Development Indicators.

AExportShare(s® =Py + ﬁlAExportSharef;f inedOil
BZAEXPortSharezc\f?mralGas + ﬁ3AExP0rtShareLNG+ (C.7)

ot
ﬁ4AExp0rtShareE?“l + ﬁsAExportShareCC;”d‘?Oﬂ +6+¢

ARCAS,CS =Po+ ﬁlAExportSharef;f inedOil |
ﬁzAExportShareIC\f arur, alGas 4 By AExportShare=Y+ (C.8)

c,t

ﬁ4AExp0rtShareg?“l + ﬁsAExportShareg”dEOﬂ +6+¢
where & are year dummies, and € is the error term. Standard errors are clustered at the

country level.
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TABLE C.6
Countries Ranking Most Highly on the Brown Lock-in Index (Top 50)

Country BLI  Brown exports [IM USD]  Brown Export Share [%] GDP per capita [USD]  Transition Outlook  Green TO
South Sudan 3.57 13.49 94.82 NaN -4.42 -2.39
Iraq 3.48 634.12 94.50 5115.69 -0.30 -0.55
Libya 3.29 193.89 90.92 5810.85 -245 -2.21
Angola 3.27 307.13 88.99 3095.46 -1.58 -1.67
Equatorial Guinea 3.21 38.62 88.80 8897.39 -1.87 -2.03
Azerbaijan 3.19 148.20 89.41 4358.97 -0.99 -0.55
Nigeria 3.18 449.05 87.69 2099.86 -1.51 -1.84
Brunei Darussalam 3.02 56.55 91.51 29177.48 -0.73 -0.21
Chad 2.98 11.30 81.44 690.87 -4.42 -2.39
Venezuela 2.92 178.51 84.28 NaN -0.31 -0.47
Kuwait 2.92 479.84 90.00 29599.34 -0.75 -0.76
Algeria 291 299.23 93.75 3898.94 -1.27 -1.28
Qatar 2.77 571.76 86.98 58919.32 -1.71 -1.19
Turkmenistan 2.49 71.46 87.21 6888.55 -0.17 -0.86
Saudi Arabia 2.42 1592.41 74.14 21453.67 -1.04 -0.40
Timor-Leste 2.25 0.63 69.09 1385.77 -2.05 -0.05
Gabon 2.19 3241 64.23 7364.51 -2.51 -1.02
Oman 2.16 240.97 69.68 17047.08 -1.22 -0.73
Kazakhstan 2.09 343.43 63.78 9141.98 -1.18 -1.21
Iran 1.99 369.01 63.00 3981.87 -0.85 -0.77
Br. Indian Ocean Terr. 1.73 0.16 54.42 NaN -0.90 0.25
Congo 1.53 49.64 49.38 2208.69 -2.32 -0.93
Norway 1.52 580.71 55.28 7425491 -0.90 -0.44
Russian Federation 1.47 2130.54 57.93 10467.39 -0.78 -0.63
Yemen 1.44 6.89 46.56 958.38 -1.41 -1.79
Trinidad and Tobago 1.40 46.02 53.31 16305.01 -1.61 -1.20
Colombia 1.38 203.33 54.26 6147.32 -1.12 -0.82
Bonaire 1.13 0.12 66.64 NaN -0.53 -0.23
Cameroon 1.12 17.64 40.52 1507.63 -1.43 -1.18
Papua New Guinea 1.11 41.80 42.63 2716.75 -1.55 -2.06
Ecuador 0.88 72.13 35.01 6078.49 -0.92 -0.53
United Arab Emirates 0.84 932.20 41.47 40322.40 -0.09 -0.21
Aruba 0.62 0.83 39.63 29352.08 -0.13 -0.11
Curagao 0.60 3.60 44.28 19018.16 -0.37 -0.43
Saint Vincent and the Grenadines  0.59 0.63 29.35 7277.43 0.52 -0.43
Mozambique 0.55 24.90 37.38 469.77 -0.90 -1.78
Mongolia 0.54 25.93 34.84 3993.63 -0.82 -2.19
Bolivia (Plurinational State of) 0.54 26.19 31.54 3332.31 -2.18 -1.06
Myanmar 0.50 55.89 29.30 1255.32 -0.60 -1.11
Australia 0.48 774.30 30.92 53512.98 -0.87 -1.07
Togo 0.46 9.45 37.88 868.74 0.95 0.27
Bahrain 0.35 43.99 35.98 22879.85 0.13 -0.16
Canada 0.30 1269.66 31.52 44725.29 -0.85 0.33
Gibraltar 0.28 1.08 47.31 NaN -0.17 1.54
Ghana 0.26 34.82 19.78 2151.85 -0.93 -0.31
Dem. People’s Rep. of Korea 0.22 3.18 29.77 NaN 0.57 0.36
Egypt 0.22 76.91 22.34 3017.92 -0.34 -0.50
Greece 0.16 100.15 28.84 18590.33 0.34 -0.24
Maldives 0.13 0.57 21.76 9310.32 0.01 -0.10
Sudan 0.12 7.55 16.78 783.89 -2.48 -2.01

Note: The Brown Lock-in Index (BLI) constitutes our baseline measure of lock-in to brown exports. It is computed

as BLI, = X, 2L (1 — PCI) where 52220

Ypexportsy

pexXportsy

is the share of each brown product in overall export values, and

PClI is the Product Complexity Index normalised to take a value between 0 and 1. The table shows the 50 countries

with the highest BLI.
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TABLE C.7
Countries Ranking Most Highly on the Brown Complexity Index (Top 50)
Country BCI  Brown exports [IM USD]  Brown Export Share [%] GDP per capita [USD]  Transition Outlook  Green TO
USA 4.93 2462.74 17.11 62013.69 -0.52 0.14
Japan 4.27 1257.50 18.67 39814.17 -0.24 0.31
Germany 3.95 1824.49 13.21 45520.66 0.02 0.68
Belgium 3.73 460.61 14.92 45068.76 -0.41 0.14
Netherlands 3.67 718.24 14.26 50490.97 -0.44 -0.24
France 3.24 468.56 8.99 39380.82 0.27 0.65
United Kingdom 3.03 802.30 19.29 42026.79 -0.05 0.77
Rep. of Korea 2.84 871.01 15.49 31579.38 -0.19 0.07
Thailand 2.76 321.74 13.03 6977.58 0.07 0.31
India 2.48 488.12 1591 1947.72 0.43 -0.33
Spain 2.39 534.73 17.27 28314.84 0.14 0.02
Ttaly 2.22 434.85 8.74 32645.50 0.92 0.97
Austria 2.02 147.49 9.11 48550.29 0.30 1.15
China 1.91 652.10 2.60 9479.06 0.88 -0.59
Poland 1.67 189.41 7.87 14646.76 0.74 0.77
Finland 1.62 98.55 14.24 47483.98 0.54 143
Canada 1.62 1269.66 31.52 44725.29 -0.85 0.33
Singapore 1.61 507.49 16.89 62028.43 -0.47 0.04
Turkey 1.44 22247 12.58 9719.31 0.80 0.46
Portugal 1.40 76.23 11.80 22094.78 0.48 0.18
Hungary 1.34 165.05 14.31 15374.97 0.36 1.55
Russian Federation 1.31 2130.54 57.93 10467.39 -0.78 -0.63
Czechia 1.26 220.90 11.88 21844.52 0.63 1.22
Indonesia 1.25 392.90 21.41 3859.81 -0.52 -0.65
Slovenia 1.21 38.85 10.97 24536.80 0.89 1.42
United Arab Emirates 1.07 932.20 41.47 40322.40 -0.09 -0.21
South Africa 1.05 177.88 16.75 6346.73 -0.24 -0.07
Saudi Arabia 1.03 1592.41 74.14 21453.67 -1.04 -0.40
Sweden 1.01 214.53 14.07 5291191 0.52 1.62
Brazil 0.95 314.56 14.47 8696.90 -0.58 -0.13
Iran 0.92 369.01 63.00 3981.87 -0.85 -0.77
Slovakia 0.91 202.41 23.43 18389.28 0.08 1.27
Mexico 0.84 959.84 22.13 9199.81 0.26 1.70
Romania 0.81 65.12 8.68 11710.00 0.30 1.00
Lithuania 0.80 43.68 14.10 18165.61 0.41 0.93
Grenada 0.67 0.01 3.81 10067.39 0.61 0.97
Belarus 0.66 71.87 24.71 6089.46 -0.07 0.62
Israel 0.62 29.40 4.99 41657.61 -0.12 0.01
Denmark 0.61 50.99 5.14 58941.02 0.71 0.87
Philippines 0.52 16.98 1.99 3246.64 0.40 -0.55
Brunei Darussalam 0.49 56.55 91.51 29177.48 -0.73 -0.21
Oman 0.48 240.97 69.68 17047.08 -1.22 -0.73
Ukraine 0.43 11.92 2.42 3061.80 0.52 0.28
Norway 0.40 580.71 55.28 7425491 -0.90 -0.44
Argentina 0.39 78.12 13.07 11566.82 -0.77 -0.12
Latvia 0.35 9.55 6.47 16697.55 0.40 0.17
Egypt 0.33 76.91 22.34 3017.92 -0.34 -0.50
Guam 0.31 0.02 5.78 36407.51 -0.06 0.07
Cyprus 0.27 7.67 16.63 27456.57 -0.02 -0.24
Serbia 0.25 13.92 7.34 6889.57 0.54 1.17

Note: The Brown Complexity Index (BCI) forms a direct counterpart to the Green Complexity Index (GCI) and
measures the number and complexity of brown products a country is competitive in. It is computed as BCI, =
Lppp * PCI. Export capabilities in more technologically sophisticated activities may take longer to develop and
bring greater benefits to the economy. However, by opening up a greater number of diversification paths they are
likely associated with easier transition pathways. The table shows the 50 countries with the highest BCI.
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TABLE C.8
Key Relationships
Variable 1 Variable 2 Correlation
Brown Complexity Index ~Brown Diversity Share 0.04
Brown Complexity Index ~Brown Export Diversity 0.99
Brown Complexity Index Brown Export Share [%] 0.00
Brown Complexity Index  Diversity 0.78
Brown Complexity Index Economic Complexity Index 0.62
Brown Complexity Index GDP per capita [USD] 0.39
Brown Complexity Index  Green Complexity Index 0.80
Brown Diversity Share Diversity -0.26
Brown Export Diversity ~ Diversity 0.77
Brown Export Share [%]  Diversity -0.25
Brown Lock-in Index Brown Diversity Share 0.72
Brown Lock-in Index Brown Export Diversity 0.00
Brown Lock-in Index Brown Export Share [%] 0.98
Brown Lock-in Index Diversity -0.30
Brown Lock-in Index Economic Complexity Index -0.33
Brown Lock-in Index GDP per capita [USD] -0.03
Brown Lock-in Index Green Complexity Index -0.25
Green Complexity Index  Diversity 0.88
Green Complexity Index  Green Export Diversity 0.99
Green Export Diversity Diversity 0.91
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Note: The table shows correlation coefficients between our key indices, as well as the indices and other relevant
measures such as export diversity and GDP per capita.

Changes in the Relative Share of Carbon Capture and Storage Technologies

country level.

TABLE C.9

(1) (2)
AExport Share ARCA
A Export Share, Refined (%) -0.005* -0.005*
(0.003) (0.003)
A Export Share, Natural Gas (%) -0.004** -0.004**
(0.002) (0.002)
A Export Share, LNG (%) -0.003 -0.003*
(0.002) (0.002)
A Export Share, Coal (%) -0.017*** -0.016***
(0.005) (0.004)
A Export Share, Crude (%) -0.000 -0.000
(0.002) (0.002)
Year FEs X X
Observations 823 823
R2 .00599 .00457

Linear Regression. Dependent Variables Relate to Carbon Capture and Storage.

Cluster-Robust Standard Errors in Parentheses.
Note: The table reports results of a linear regression of changes in the export share and revealed comparative
advantage in CCUS products on changes in the shares of selected fossil fuels. Standard errors are clustered at the



C.4. SUPPLEMENTARY FIGURES 173

C.4 SUPPLEMENTARY FIGURES

Products on our brown list account for a significantly larger share of global trade than green
products. However, our results suggest that trade in brown products declined somewhat in the
last period (2016-2020) compared to the penultimate period (2011-2015). Figure C.1 indicates
that ‘brown’ trade peaked at close to 40 billion USD (about 22% of global trade) during the
2011-2015 period and declined slightly thereafter. While this may be partly attributable to the
global covid-19 pandemic, it is noteworthy that volumes of green trade continued to rise during
the same time period.

Figure C.2 plots the top 10 exporters in terms of trade values for green and brown products.
Strikingly, China rose to the top of this ranking for green products during the early 2000s,
but does not appear within the top 10 exporters of brown products - unlike the United States,
Germany, Japan, the United Kingdom, Canada, South Korea and Mexico, all of which appear
alongside petrostates such as Russia, Saudi Arabia and the UAE.

Table C.10 lists the 20 brown products with the highest PCI and their descriptions, while
Table C.11 shows those with the lowest PCI. Brown products which are high in complexity in-
clude engines, pumps and various hydrocarbon-derived chemicals, while low-complexity brown

products more prominently feature unprocessed hydrocarbons.
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FIGURE C.1
Global Trends in Green and Brown Trade

Note: The figure plots total trade volume in each product group (brown and green) and their shares of global trade

over time.
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FIGURE C.2
Top 10 Exporters of Green and Brown Products

Note: The figure plots total export volumes in green and brown products by the top 10 exports of such products

over time.
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TABLE C.12

178

Correlates of Brown Dependence Measures, Using the Long List of Brown Products

(¢)) (@) 3 “ (5) (0)
BLI(Full) BLI(Full) BLI(Full) BCI(Full) BCI(Full) BCI (Full)
GDP per capita (current USD) (log) 0.078* -0.056 0.068 0.325%** 0.219** 0.216
(0.041) (0.066) (0.079) (0.054) (0.098) (0.165)
Coal rents (% of GDP) 0.006 0.047
(0.032) (0.089)
Oil rents (% of GDP) 0.070*** -0.026™**
(0.006) (0.005)
Natural gas rents (% of GDP) 0.050** -0.019
(0.024) (0.015)
CO2 emissions (metric tons per capita, log) 0.228* 0.366**
(0.127) (0.158)
RTA, Environment-related Technologies 1.661 1.029
(1.114) (1.660)
RTA, Energy-related Mitigation Technologies -0.500 -3.077**
(1.133) (1.412)
RTA, Carbon Capture and Storage 3.476%** -4.730*
(0.711) (2.533)
RTA, Climate Change Adaptation Technologies 0.805 -1.070*
(0.676) (0.555)
RTA, Transport-related Mitigation Technologies -2.500** 2.399
(0.992) (2.627)
Year FEs X X X X X X
Observations 933 854 222 933 854 222
R2 .0139 .659 .186 22 347 191

Linear regression. Cluster-Robust Standard Errors in Parentheses.
The label (log) refers to the natural logarithm of 1 + the variable in question.
Dependent Variables Relate to Brown List (Narrow).

Note: Like Table C.1, but using the long list of brown products.
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C.5 EXTENSION: LONG LIST OF BROWN PRODUCTS

TABLE C.13
Predictive Power of Green Transition Outlook, Using the Long List of Brown Products

ey @) (3) )
BLI (Full) BLI (Full) BCI(Full) BCI (Full)
Brown Lock-in Index (full list, t-1) 0.911*** 0.903***
(0.024) (0.031)
Green Transition Outlook (t-1) -0.036* -0.019 -0.019* -0.014
(0.019) (0.019) (0.010) (0.011)
GDP per capita (current USD, log, t-1) 0.008 -0.005 0.025*** 0.025
(0.010) (0.018) (0.007) (0.018)
Coal rents (% of GDP, t-1) 0.026* -0.001
(0.014) (0.009)
Oil rents (% of GDP, t-1) 0.004** -0.001
(0.002) (0.001)
Natural gas rents (% of GDP, t-1) 0.010*** -0.001
(0.003) (0.001)
CO2 emissions (metric tons per capita, log, t-1) 0.025 0.020
(0.029) (0.028)
Brown Complexity Index (t-1) 0.950*** 0.938***
(0.013) (0.015)
Year FEs X X X X
Observations 715 661 715 661
R2 .86 .884 922 926

Linear regression. Cluster-Robust Standard Errors in Parentheses.
The label (log) refers to the natural logarithm of 1 + the variable in question.
t-1 refers to the previous period’s value.

Note: Like Table C.2, but using the long list of brown products.
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TABLE C.14
Predictive Power of Overall Transition Outlook, Using the Long List of Brown Products

(1 (2) (3) )
BLI (Full) BLI(Full) BCI(Full) BCI (Full)
Brown Lock-in Index (full list, t-1) 0.9027*** 0.901***
(0.024) (0.030)
Overall Transition Outlook (t-1) -0.060*** -0.029* 0.006 0.009
(0.019) (0.017) (0.009) (0.012)
GDP per capita (current USD, log, t-1) 0.000 -0.007 0.024** 0.024
(0.008) (0.018) (0.007) (0.018)
Coal rents (% of GDP, t-1) 0.027** 0.001
(0.013) (0.010)
Oil rents (% of GDP, t-1) 0.004** -0.000
(0.002) (0.001)
Natural gas rents (% of GDP, t-1) 0.009*** -0.000
(0.003) (0.001)
CO2 emissions (metric tons per capita, log, t-1) 0.021 0.018
(0.029) (0.028)
Brown Complexity Index (t-1) 0.945*** 0.937***
(0.014) (0.015)
Year FEs X X X X
Observations 715 661 715 661
R2 .862 .884 922 926

Linear regression. Cluster-Robust Standard Errors in Parentheses.
The label (log) refers to the natural logarithm of 1 + the variable in question.
t-1 refers to the previous period’s value.

Note: Like Table C.3, but using the long list of brown products.

C.6 EXTENSION: ALTERNATIVE BLI USING BINARY
RCA

As an extension of our baseline analysis, we compute the Brown Lock-in Index using binary
RCA, instead of product shares in country exports. This alternative version of BLI is calculated

as
BLI. = %,pf + (1 —PCI) (C.9)

This 1s a more direct inverse of the GCI: it is computed in exactly the same manner, but
using brown instead of green products and attributing greater weight to less, rather than more,
complex products. The index is positively associated with overall export diversity and a larger
number of diversification paths, making our baseline BLI the preferred measure for brown lock-
in.

Our key result here is that when BLI is computed in this manner, it displays a strong posi-

tive correlation to BCI — which, as we have shown, correlates positively with GCI, a relationship
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TABLE C.15
Alternative BLI Top 20
Country GDP per capita [USD] BLI (binary) Brown exports [IM USD]  Brown Export Share [%] Transition Outlook Green TO
USA 62013.69 4.39 2462.74 17.11 -0.52 0.14
India 1947.72 293 488.12 1591 0.43 -0.33
Spain 28314.84 2.89 534.73 17.27 0.14 0.02
Japan 39814.17 2.86 1257.50 18.67 -0.24 0.31
Russian Federation 10467.39 2.69 2130.54 57.93 -0.78 -0.63
Netherlands 50490.97 2.65 718.24 14.26 -0.44 -0.24
United Kingdom 42026.79 2.53 802.30 19.29 -0.05 0.77
Belgium 45068.76 2.53 460.61 14.92 -0.41 0.14
United Arab Emirates 40322.40 2.48 932.20 41.47 -0.09 -0.21
France 39380.82 2.32 468.56 8.99 0.27 0.65
Germany 45520.66 231 1824.49 13.21 0.02 0.68
Thailand 6977.58 2.12 321.74 13.03 0.07 0.31
Indonesia 3859.81 2.09 392.90 21.41 -0.52 -0.65
Canada 44725.29 2.06 1269.66 31.52 -0.85 0.33
Turkey 9719.31 1.94 222.47 12.58 0.80 0.46
Rep. of Korea 31579.38 1.94 871.01 15.49 -0.19 0.07
Saudi Arabia 21453.67 1.83 1592.41 74.14 -1.04 -0.40
Iran 3981.87 1.82 369.01 63.00 -0.85 -0.77
South Africa 6346.73 1.77 177.88 16.75 -0.24 -0.07
Italy 32645.50 1.77 434.85 8.74 0.92 0.97

Note: The Brown Lock-in Index is here computed as BLI, = X,pf = (1 — PCI).

apparently driven by higher export diversity and the ‘weighted count’ nature of these indices.
Figure C.3 plots our baseline and alternative measures of BLI against the BCI, underscoring
this finding. The correlation between BCI and the alternative measure of BLI indicates that
the weighting by either PCI or inverse PCI plays a secondary role to the diversity aspect (the
number of competitive exports within a product group) when a country’s rank is computed.
Countries with an unusually high share of brown exports in overall export volumes tend to have
low export diversity, including within the group of brown products, as well as low export com-
plexity. In contrast, countries which score high on our alternative BLI or BCI measures export
a greater number of brown products with RCA > 1, and the ranking of countries is similar re-
gardless of whether we give a higher relative weight to products with high or low complexity,
as Tables C.7 and C.15 show. In both cases, the United States score most highly and a number
of industrialised countries feature among the top 20 countries. However, some petrostates —
such as Russia, the UAE, Saudi Arabia and Iran — score highly on our alternative BLI, but not
BCI, suggesting that these countries export a variety of low-complexity brown products, but not

high-complexity ones.
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TABLE C.16
Correlates of Brown Dependence Measures, Using Alternative BLI

()] (@) 3) “ () (6
BLI (binary) BLI (binary) BLI (binary) BCI BCI BCI
GDP per capita (current USD) (log) 0.297*** 0.040 0.070 0.321% 0.180* 0.204
(0.047) (0.090) (0.153) (0.055) (0.100) (0.159)
Coal rents (% of GDP) 0.049 0.008
(0.127) (0.086)
Oil rents (% of GDP) -0.011** -0.025%*
(0.005) (0.005)
Natural gas rents (% of GDP) -0.016 -0.017
(0.016) (0.015)
CO2 emissions (metric tons per capita, log) 0.636"* 0.421***
(0.145) (0.159)
RTA, Environment-related Technologies 0.926 1.271
(1.792) (1.809)
RTA, Energy-related Mitigation Technologies -2.166 -3.280**
(1.398) (1.498)
RTA, Carbon Capture and Storage -3.453 -4.977*
(2.370) (2.660)
RTA, Climate Change Adaptation Technologies -0.564 -1.061*
(0.595) (0.556)
RTA, Transport-related Mitigation Technologies 0.261 2.730
(2.101) (2.748)
Year FEs X X X X X X
Observations 933 854 222 933 854 222
R2 194 32 .0924 212 324 171

Linear regression. Cluster-Robust Standard Errors in Parentheses.
The label (log) refers to the natural logarithm of 1 + the variable in question.
Dependent Variables Relate to Brown List (Narrow).

Note: Like Table C.1, except that the Brown Lock-in Index is here computed as BLI. = £,pf x (1 — PCI).

TABLE C.17
Predictive Power of Green Transition Outlook, Using Alternative BLI
M ) 3) “
BLI (binary) BLI (binary) BCI BCI
Brown Lock-in Index (binary RCA, t-1) 0.895%** 0.881***
(0.021) (0.024)
Green Transition Outlook (t-1) -0.019 -0.005 -0.027*  -0.024**
(0.012) (0.014) (0.010) (0.011)
GDP per capita (current USD, log, t-1) 0.039** 0.037* 0.023** 0.021
0.011) (0.022) (0.007)  (0.017)
Coal rents (% of GDP, t-1) 0.028 0.001
(0.019) (0.010)
Oil rents (% of GDP, t-1) 0.001 -0.002
(0.001) (0.001)
Natural gas rents (% of GDP, t-1) 0.001 -0.001
(0.002) (0.001)
CO2 emissions (metric tons per capita, log, t-1) 0.023 0.021
(0.037) (0.027)
Brown Complexity Index (t-1) 0.955%*  0.947***
(0.014) (0.016)
Year FEs X X X X
Observations 715 661 715 661
R2 .843 .849 926 .93

Linear regression. Cluster-Robust Standard Errors in Parentheses.
The label (log) refers to the natural logarithm of 1 + the variable in question.
t-1 refers to the previous period’s value.

Note: Like Table C.2, except that the Brown Lock-in Index is here computed as BLI. = ¥, py*(1— PCI).
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TABLE C.18
Predictive Power of Overall Transition Outlook, Using Alternative BLI

(1) (2) 3) “)
BLI (binary) BLI (binary) BCI BCI
Brown Lock-in Index (binary RCA, t-1) 0.891*** 0.881**
(0.022) (0.024)
Overall Transition Outlook (t-1) -0.009 0.003 0.005 0.010
(0.013) (0.017) (0.009) (0.012)
GDP per capita (current USD, log, t-1) 0.037** 0.037* 0.022%* 0.020
(0.011) (0.022) (0.007)  (0.017)
Coal rents (% of GDP, t-1) 0.029 0.005
(0.019) (0.011)
Oil rents (% of GDP, t-1) 0.001 -0.000
(0.001) (0.001)
Natural gas rents (% of GDP, t-1) 0.001 -0.000
(0.002) (0.001)
CO2 emissions (metric tons per capita, log, t-1) 0.023 0.019
(0.037) (0.027)
Brown Complexity Index (t-1) 0.948**  (0.943***
(0.015)  (0.016)
Year FEs X X X X
Observations 715 661 715 661
R2 .843 .849 926 93

Linear regression. Cluster-Robust Standard Errors in Parentheses.
The label (log) refers to the natural logarithm of 1 + the variable in question.
t-1 refers to the previous period’s value.
Note: Like Table C.3, except that the Brown Lock-in Index is here computed as BLI. = ¥, pyx(1— PCI).

Tables C.17 and C.18 show that our Transition Outlook measures are not predictive of

future changes in binary BLI.
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FIGURE C.3
Baseline and alternative measures of BLI, plotted against BCI
Note: The baseline BLI is computed as BLI, =X % % (1— PCI). The alternative binary version is computed
as BLI. = Xppj * (1 — PCI). Our baseline measure is more appropriate as a measure of lock-in. Visualisation
created from trade data averaged over the period 2016-2020.
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C.7 EXTENSION: ALTERNATIVE AVERAGING PROCE-
DURE

The BACI database only records strictly non-negative trade flows to save space. For this reason
we assume that missing exporter-year-product observations are 0 and include these in the 5-year
averages used in our baseline estimates. As a robustness checks, we also compile an alternative
dataset in which missing exporter-year-product observations are treated as missing. This section
reports key results using this procedure and shows that our country rankings and key regression

results change only very marginally when doing so.
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TABLE C.19
Countries Ranking Most Highly on the Brown Lock-in Index, Excluding Missing Trade Values
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Country BLI Brown exports [IM USD]  Brown Export Share [%] GDP per capita [USD]  Transition Outlook  Green TO
Iraq 3.43 635.06 94.34 5115.69 -0.48 -0.45
South Sudan 3.37 13.49 91.06 NaN -4.67 -2.48
Libya 3.26 195.45 90.71 5810.85 -2.46 -2.39
Angola 3.20 307.47 87.87 3095.46 -1.74 -1.85
Equatorial Guinea 3.18 38.68 87.98 8897.39 -2.15 -2.21
Azerbaijan 3.16 148.25 88.81 4358.97 -1.00 -0.61
Nigeria 3.11 449.44 86.35 2099.86 -1.49 -2.13
Brunei Darussalam 293 60.42 91.25 29177.48 -0.81 -0.24
Algeria 2.92 301.82 93.26 3898.94 -1.47 -1.42
Chad 2.89 11.30 80.07 690.87 -4.67 -2.48
Kuwait 2.86 481.19 88.85 29599.34 -1.14 -0.86
Venezuela 2.82 178.86 82.68 NaN -0.35 -0.53
Qatar 2.81 571.86 86.56 58919.32 -1.63 -1.10
Br. Indian Ocean Terr. 2.56 0.77 73.49 NaN -0.87 0.05
Turkmenistan 2.52 71.58 83.74 6888.55 -0.20 -0.97
Saudi Arabia 2.39 1595.39 74.05 21453.67 -1.13 -0.50
Gabon 2.13 3243 63.37 7364.51 -2.15 -1.04
Oman 2.12 241.70 68.81 17047.08 -1.26 -0.83
Kazakhstan 2.07 344.28 63.60 9141.98 -1.40 -1.14
Iran 1.97 375.71 63.13 3981.87 -0.91 -0.84
Timor-Leste 1.87 0.77 62.43 1385.77 -2.11 -0.10
Norway 1.56 580.79 55.25 7425491 -0.99 -0.52
Bonaire 1.55 0.44 78.77 NaN -0.77 -0.32
Congo 1.49 49.69 48.83 2208.69 -1.59 -0.68
Russian Federation 1.46 2130.54 57.91 10467.39 -0.87 -0.60
Trinidad and Tobago 1.43 46.66 53.38 16305.01 -1.57 -1.66
Colombia 1.37 203.38 54.13 6147.32 -1.20 -0.87
Yemen 1.37 7.02 45.37 958.38 -1.33 -2.15
Papua New Guinea 1.14 42.12 42.48 2716.75 -1.76 -2.20
Cameroon 1.13 19.04 41.27 1507.63 -1.61 -1.26
Guyana 1.09 11.75 38.82 6329.52 -2.10 -1.30
Ecuador 0.85 72.18 34.89 6078.49 -0.96 -0.60
United Arab Emirates 0.82 932.20 41.46 40322.40 -0.19 -0.23
Dem. People’s Rep. of Korea 0.67 7.57 38.52 NaN 0.45 0.15
Curagao 0.62 4.02 44.30 19018.16 -1.12 -0.70
Myanmar 0.61 61.47 30.68 1255.32 -0.83 -0.96
Bolivia (Plurinational State of) 0.59 26.19 31.26 3332.31 -2.06 -1.34
Mozambique 0.55 24.98 36.21 469.77 -0.78 -1.56
Mongolia 0.53 25.96 34.38 3993.63 -1.08 -2.26
Australia 0.50 774.31 30.89 53512.98 -0.95 -1.16
Aruba 0.47 1.15 33.84 29352.08 -0.21 -0.34
Togo 0.43 9.47 37.42 868.74 0.96 0.02
Maldives 0.42 0.93 29.46 9310.32 0.12 -0.16
Saint Vincent and the Grenadines  0.39 0.64 23.99 7277.43 0.13 -0.43
American Samoa 0.32 0.24 27.39 11824.79 -0.26 -0.81
Bahrain 0.31 44.12 35.40 22879.85 0.08 -0.30
Canada 0.28 1269.67 31.51 44725.29 -0.92 0.42
Ghana 0.24 34.84 19.65 2151.85 -0.68 0.33
Egypt 0.22 78.75 22.67 3017.92 -0.49 -0.79
Greece 0.14 100.18 28.82 18590.33 0.14 -0.36

Note: Like Table C.6, but using an alternative averaging procedure.
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TABLE C.20
Countries Ranking Most Highly on the Brown Complexity Index, Excluding Missing Trade
Values
Country BCI  Brown exports [IM USD]  Brown Export Share [%] GDP per capita [USD]  Transition Outlook ~ Green TO
USA 4.97 2462.74 17.11 62013.69 -0.56 0.22
Japan 427 1257.50 18.67 39814.17 -0.25 0.40
Germany 3.93 1824.49 13.20 45520.66 -0.04 0.77
Belgium 3.78 460.61 14.90 45068.76 -0.48 0.21
Netherlands 3.64 718.24 14.25 50490.97 -0.51 -0.24
France 3.28 468.56 8.98 39380.82 0.19 0.73
United Kingdom 3.04 802.30 19.28 42026.79 -0.15 0.80
Rep. of Korea 2.80 871.01 15.49 31579.38 -0.24 0.11
Thailand 2.80 321.74 13.02 6977.58 -0.01 0.41
India 2.39 488.12 15.91 1947.72 0.24 -0.34
Ttaly 2.33 434.90 8.74 32645.50 0.83 1.16
Spain 2.29 534.73 17.26 28314.84 0.12 0.09
Austria 2.02 147.49 9.10 48550.29 0.23 1.27
China 1.74 652.10 2.60 9479.06 0.77 -0.46
Poland 1.66 189.41 7.87 14646.76 0.69 0.87
Canada 1.62 1269.67 31.51 44725.29 -0.92 0.42
Finland 1.58 98.56 14.22 47483.98 0.51 1.54
Singapore 1.57 507.52 16.88 62028.43 -0.52 0.08
Turkey 1.43 22247 12.58 9719.31 0.73 0.52
Portugal 1.38 76.24 11.80 22094.78 0.40 0.23
Hungary 1.37 165.06 14.30 15374.97 0.31 1.70
Czechia 1.30 220.90 11.86 21844.52 0.57 1.39
Slovenia 1.21 38.85 10.95 24536.80 0.84 1.60
Russian Federation 1.20 2130.54 57.91 10467.39 -0.87 -0.60
Indonesia 1.18 393.05 21.39 3859.81 -0.61 -0.62
Grenada 1.07 0.02 4.26 10067.39 0.51 1.18
Saudi Arabia 1.05 1595.39 74.05 21453.67 -1.13 -0.50
United Arab Emirates  1.03 932.20 41.46 40322.40 -0.19 -0.23
South Africa 0.99 177.88 16.74 6346.73 -0.36 -0.09
Sweden 091 214.53 14.04 52911.91 0.56 1.69
Slovakia 091 202.41 23.41 18389.28 -0.02 1.40
Brazil 0.88 314.64 14.46 8696.90 -0.61 -0.14
Mexico 0.88 960.02 22.13 9199.81 0.26 1.83
Iran 0.82 375.71 63.13 3981.87 -0.91 -0.84
Romania 0.78 65.18 8.68 11710.00 0.26 1.07
Lithuania 0.77 4372 14.07 18165.61 0.34 1.00
Oman 0.63 241.70 68.81 17047.08 -1.26 -0.83
Saint Lucia 0.60 0.37 25.76 10629.27 0.64 0.51
Belarus 0.59 71.98 24.62 6089.46 -0.09 0.66
Denmark 0.57 50.99 5.13 58941.02 0.68 0.89
Israel 0.54 29.41 4.98 41657.61 -0.18 -0.10
Guam 0.54 0.03 8.54 36407.51 -0.14 -0.13
Brunei Darussalam 0.52 60.42 91.25 29177.48 -0.81 -0.24
Philippines 0.49 17.23 1.98 3246.64 0.20 -0.53
Ukraine 0.35 12.07 2.45 3061.80 043 0.32
Argentina 0.32 78.28 13.00 11566.82 -0.78 -0.13
Norway 0.31 580.79 55.25 7425491 -0.99 -0.52
Estonia 0.31 18.53 11.22 21629.33 0.28 0.38
Latvia 0.28 9.62 6.49 16697.55 0.32 0.16
Egypt 0.25 78.75 22.67 3017.92 -0.49 -0.79

Note: Like Table C.7, but using an alternative averaging procedure.
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TABLE C.21
Correlates of Country Transition Outlook Measures, Excluding Missing Trade Values

M 2 (3) 4) (5) (6)

Overall Overall Overall Green Green Green
Brown Lock-in Index -0.606"* -0.586**

(0.068) (0.062)
GDP per capita (current USD) (log) -0.060 -0.027 -0.071 0.100 0.064 -0.006

(0.050) (0.060) (0.059) (0.064) (0.069) (0.057)
Coal rents (% of GDP) -0.088***  -0.108***  -0.105** -0.130** -0.145*** -0.136""

(0.023) (0.034) (0.028) (0.037) (0.052) (0.057)
Oil rents (% of GDP) 0.008 -0.050"*  -0.044*** 0.007 -0.039"*  -0.029***

(0.006) (0.004) (0.004) (0.006) (0.004) (0.004)
Natural gas rents (% of GDP) -0.011 -0.035* -0.031* -0.001 -0.017 -0.014

(0.010) (0.019) (0.016) (0.014) (0.018) (0.016)
CO2 emissions (metric tons per capita, log) 0.001 0.016 -0.061 0.142 -0.004 -0.010

(0.082) (0.108) (0.098) (0.109) (0.125) (0.104)
Brown Complexity Index -0.140** 0.248***

(0.037) (0.055)
Green Complexity Index 0.065 0.403**
(0.048) (0.050)

Year FEs X X X X X X
Observations 873 873 873 873 873 873
R2 356 276 263 332 291 .36

Linear regression. Cluster-Robust Standard Errors in Parentheses.
Dependent Variables are Country-Level Transition Opportunities from Brown to the List Stated.
The label (log) refers to the natural logarithm of 1 + the variable in question.

Note: Like Table 3, but using an alternative averaging procedure.
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TABLE C.22
Correlates of Brown Dependence Measures, Excluding Missing Trade Values
)] ) 3) C)) (5) (0)
BLI BLI BLI BCI BCI BCI
GDP per capita (current USD) (log) 0.048 -0.013 0.059  0316™*  0.179* 0.212
(0.040)  (0.050)  (0.084)  (0.055)  (0.099)  (0.159)
Coal rents (% of GDP) 0.031 -0.009
(0.023) (0.078)
Oil rents (% of GDP) 0.089*** -0.025***
(0.006) (0.005)
Natural gas rents (% of GDP) 0.035** -0.017
(0.015) (0.016)
CO2 emissions (metric tons per capita, log) 0.072 0.420**
(0.099) (0.158)
RTA, Environment-related Technologies 1.956 1.364
(1.204) (1.836)
RTA, Energy-related Mitigation Technologies -0.439 -3.384**
(1.221) (1.520)
RTA, Carbon Capture and Storage 3.726%** -4.899*
(0.695) (2.620)
RTA, Climate Change Adaptation Technologies 0.775 -1.150*
(0.653) (0.556)
RTA, Transport-related Mitigation Technologies -2.569** 2.936
(1.079) (2.792)
Year FEs X X X X X X
Observations 961 873 222 961 873 222
R2 .00524 758 203 209 324 173

Linear regression. Cluster-Robust Standard Errors in Parentheses.
The label (log) refers to the natural logarithm of 1 + the variable in question.
Dependent Variables Relate to Brown List (Narrow).

Note: Like Table C.1, but using an alternative averaging procedure.
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TABLE C.23

Predictive Power of Green Transition Outlook

(1) (2) (3) (4)
BLI BLI BCI BCI
Brown Lock-in Index (t-1) 0.949**  0.921"*
(0.017)  (0.035)
Green Transition Outlook (t-1) -0.007 -0.006  -0.023**  -0.023*
(0.015)  (0.016) (0.010) (0.012)
GDP per capita (current USD, log, t-1) -0.002 -0.017  0.029*** 0.028
(0.009) (0.017)  (0.007)  (0.018)
Coal rents (% of GDP, t-1) 0.025** 0.000
(0.010) (0.011)
Oil rents (% of GDP, t-1) 0.005 -0.002*
(0.003) (0.001)
Natural gas rents (% of GDP, t-1) 0.002 -0.003**
(0.003) (0.001)
CO2 emissions (metric tons per capita, log, t-1) 0.028 0.021
(0.027) (0.028)
Brown Complexity Index (t-1) 0.947**  0.938***
(0.015)  (0.016)
Year FEs X X X X
Observations 749 687 749 687
R2 92 932 917 922

Linear regression. Cluster-Robust Standard Errors in Parentheses.
The label (log) refers to the natural logarithm of 1 + the variable in question.

t-1 refers to the previous period’s value.
Note: Like Table C.2 but using an alternative averaging procedure.
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TABLE C.24
Predictive Power of Overall Transition Outlook, Excluding Missing Trade Values

(D (2) (3) (4)
BLI BLI BCI BCI
Brown Lock-in Index (t-1) 0.930***  0.907***
(0.019) (0.034)
Overall Transition Outlook (t-1) -0.044**  -0.032** 0.001 0.004
(0.014) (0.013)  (0.009) (0.012)
GDP per capita (current USD, log, t-1) -0.006 -0.019  0.028*** 0.027
(0.007) (0.016)  (0.008)  (0.018)
Coal rents (% of GDP, t-1) 0.023** 0.003
(0.010) (0.012)
Oil rents (% of GDP, t-1) 0.005 -0.001
(0.003) (0.001)
Natural gas rents (% of GDP, t-1) 0.002 -0.003
(0.003) (0.002)
CO2 emissions (metric tons per capita, log, t-1) 0.026 0.021
(0.027) (0.029)
Brown Complexity Index (t-1) 0.940***  0.933***
(0.015)  (0.016)
Year FEs X X X X
Observations 749 687 749 687
R2 921 933 916 922

Linear regression. Cluster-Robust Standard Errors in Parentheses.
The label (log) refers to the natural logarithm of 1 + the variable in question.
t-1 refers to the previous period’s value.

Note: Like Table C.3, but using an alternative averaging procedure.



Appendix D

Directed Technological Change and
General Purpose Technologies: Can Al

Accelerate Clean Energy Innovation?

D.1 THEORETICAL DERIVATIONS

D.1.1 Model Derivation

The equilibrium must satisfy the following equations:

1. Competitive equilibrium for the two inputs used in producing the final good. Since the

final good is produced competitively, the inputs’ relative price must satisfy:

P _ <&) e (D.1)
Pat Y
In addition, we normalise the final good’s price to 1:

1—¢
(pif e +p}1,‘8) =1 (D.2)

2. Profit maximisation for input j. This determines labour demand L, and the inverse de-

mand curve of machine x ;. Specifically, labour demand in each sector must satisfy:

1
(1—a)pjeL;,” /0 AL OxSdi = w, (D.3)
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And the inverse demand for x j; must satisfy:

1
opjr T-a

Aji[th (D4)

Xy =

M Djit
3. Profit maximisation for the machine producer. The machine producer is a monopolist
maximising 7;; = (pji — W)xji where xj;; is given by Equation D.4. This gives pj; =
v/a. We follow the original model in normalising ¥ = &>, which yields the following

relations:
Pjit = & (D.5)
1
Xjit = Py “LjAjir (D.6)
1/(1—
mia = a(1—a)pi{ " LA (D.7)

4. Profit maximisation for research scientists who decide which sector to work in.

Using Equation D.6, we obtain the following equilibrium production level of input j:

1

1
1—- 1— - .
le :th a/() Ajita(pjl't athAjil)adl

= (pj)TaLjtAj (D.8)

Using Equations D.6 and D.3, we derive an expression for the relative price of clean and

dirty inputs as a function of the relative productivities of the two sectors:

Pet _ (ﬁ)_(l_a) (D.9)
Pat Ay
Using Equations D.8, D.1 and D.9, we obtain an equation for relative employment in each
sector: )
L Ag\
et _ (_Ct> (D.10)
La; Adr

where ¢ = (1 —o)(1 —€).

The expected profit IT;; for a scientist doing research in sector j is the expected profit from
becoming a monopolist producer of a machine with productivity A j; = (1+¥)Aji;—1, which is
(see Eq D.7):

e = n;(1+7+B,GPT)a(1 - a)pi{ " "L (D.11)

Using Equation D.11 with Equation D.9 and D.10, we get the ratio of expected profit from

doing research in the clean versus dirty sector given by Equation 5.9.
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Next, we obtain a system of equation to solve to obtain the equilibrium by combining
Equations D.9, D.2 and D.10 with market clearing L., + L;; = 1, and the expressions for the

advancement of the technology frontier in each sector.

D.1.2 Proof of Result 1

We defined A, as the value of A, for which £(1,0) = 1. We want to show that i’%}}; <0
and %—1’,}: <0.

e 1 .GPT, oA, N\
£(1,0) = e LEVED ’(H(HBCGPTMC) ( ”) 1

~ Na 147+ BsGPT, Agi—1
Ne 1+7+B.GPT,\'/? —
= Ay =Ag_1| = < 1 .GPT;)n.
1 d ](nd1+7+ﬁdGPTz> ( +(y+B z)n)
dAct—l :lA l(& (Bc_ﬁd)(l_{—’}/) _(¢+1) ncﬁc )
dGPT, ¢\ Ny (1+7+B.GPT,)(1+ 7+ PsGPT;) 1+ (v+B.GPT)n.
~0 <0

The first term goes as GPTf2 whereas the second one goes as GPT,”!. Thus, the sign of the
derivative is dominated by the second term, which is negative if and only if @ < 1. The converse
derivation works for Ag_ 1.

We now want to show that dfl%“ < 0and d‘zﬂg‘l > 0.

dAa—1 e(1+¢(1+ v+ B.GPT)) — 1
— 2 = —A,_1GPT, <0
dp T 9 (1+ v+ B.GPT,) (1+ (v + B.GPTr))
A}

The term in bracket is positive because under the assumption that ¢ < 1, both the numerator

and denominator are negative. Finally:

o1 .GPT, O A \?
£(0,1) = e 17D ’(1+<y+ﬁdGPn>nd) (#) 1

 Ma 1+ 7+ BsGPT, Ac—1
a1+ 7+ BaGPT\ /? -5
= Ay 1 =Au_1| % ! 1+ (y+ B4GPT, )
di—1 t l(nc l—i—’}/—{—ﬁcGPT}) ( (Y+Ba Na
dAg—1 Ay 1GPT,

dBe  0(l+7+B.GPT)
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D.1.3 Proof of Result 2
We start with studying the behavior of B;‘- with respect to GPT; and b;.

% 06(1—06) 1/(1-c

GPT; and b; occupy symmetric positions in the equation, so the proof is the same for both

variables. We thus proceed studying the behavior with respect to GPT;.

dB;
dGPT,

(X(I—OC) 1/(1—
= (njbijjt/( a)thAjt—1> (1 +

1 GPT; dpy  GPT, dL;
l1—o Djt dGPT; Lj, dGPT;
(D.12)

WLOG, we describe what happens in the clean equilibrium s, = 1 (the dirty equilib-
rium can then be analyzed symmetrically). Using Equation D.9 together with Aj; = (1 + (y+
biBiGPT;)N;jsj)Aji—1, we see that:

Pa ( A )—“-‘”
_— = rp —
Pdr Adi—1

dez _ dpjl dAg

This tells us that in the clean equilibrium, IGPT, = dA, dcpr- In the clean equilibrium, we
already know that %I?Tf > 0. Since Ay, is fixed and — (1 — @) < 0, the relative price ratio rp—
dpjt

0 as A, increases. To understand how this affects =, take Equation D.2 (the normalisation of

the price of the final good) and rewrite it as:

_ _ 1
(py C(rpy o+ 1))(§) =1
1

(rlljfe + 1)1/(1—8)

Pad =

. 1
limp;=——o0
r—0 r
limp. =rpgs=1
r—0

These limits imply that d‘é’;"Tt is negative but goes to 0 (since p. asymptotes to 1), and

dpg
dGPT, = 0.

We follow a similar reasoning to examine the behavior of equilibrium labour allocations.
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From Equation D.10, we have:

Lo ( Au )“”
— ==
Ly; Adgi—1

. . . dL; dL; .
This tells us that in the clean equilibrium, WIth = WZ d@]gtﬂ . With Ay, fixed and —¢ > 0,

the relative labour ratio ry increases as A, increases. Given the market clearing condition
Lo+ Ly = 1, this implies that L, — 1 and Ly — 0 as GPT;, and therefore, A, increases.
H AL -0
ence, zepr .
Thus, Equation D.12 now gives us:

dB; o(l—a)
—FA

Hence, in the clean equilibrium, investments in absorptive capacity by the clean sector increase
with the GPT stock, and this is even more so if b, (the intrinsic absorptive capacity) and A
(the prior stock) are higher.

For the dirty sector, i.e., the sector which is not favored by the equilibrium, investments in

absorptive capacity also have a positive relationship to the GPT. This is because ddegtT, > 0 and

does not asymptote, unlike ddGLIgITt' However, the derivative remains small because Ly, — 0.

D.1.4 Proof of Result 3
We now consider the role of the energy stock in investments towards absorptive capacity, allow-
ing for an aging factor that reduces the intrinsic absorptive capacity of more mature technolo-

gies.

b; a(l—a) 1/(1-a)
GPT, P

5 t

P 2y J

B; =n;

f LjAj—

with & > 0, the aging paramter.

dB’; o(l—a) 1/01- 1 Aj dp; Aj—1 dL;
U /(1-a) -6 Jt—1 Jjt Jt—1 jt
b;GPT,(1—0 D LA 1+ +
dAjt,1 (le / t( ) 2y J st jt—1> ( -« Dijt dAjt,1 th dAjtl)

(D.13)

The reasoning we developed in proof D.1.3 regarding the derivatives of prices and labour with
respect to GPT; and their limiting behavior carries over to the behavior of these derivatives and
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limits with respect to A j; ;. Hence, in the clean equilibrium, we have:

dB;

dActfl

oy A

— (NebcGPT;(1-9)

Clearly, if 6 = 0, this derivative is positive. However, if 0 > 1, then the aging effect -
impeding absorption of the new GPT - is larger than the ‘building upon the shoulders of giants”
effect (innovation opportunities arising from having a larger stock of past knowledge). In this
case, the derivative is negative, indicating that effort in absorbing the GPT will decrease with

the maturity of the technology.
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Electricity Codes

| Type | Sub-sector | Codes

Clean | Biomass and waste F02B43/08

Clean | Enabling technologies Systems integration | YO2E40/70, Y04S

Clean | Nuclear Energy YO02E30

Clean | Renewable Energy YO02E10

Clean | Renewable Energy Geothermal F03G7/04, YO2E10/10

Clean | Renewable Energy Hydro YO02E10/20

Clean | Renewable Energy Marine E02B9/08, F03B13/10, F03B13/12,
F03G7/05, YO2E10/30

Clean | Renewable Energy Solar F03G6, F26B3/28, HO1L.31/04,
Y02E10/40, YO2E10/50, YO2E10/60

Clean | Renewable Energy Wind FO3D, HO1L.27/142, YO2E10/70

Dirty | Hydrofracturing C10G1, E21B43

Dirty | Traditional Fossil Fuels C10J, CI0L1, C10L3, C10L5, FOIK,
F02C, F22, F23, F27, F28

Grey | Biomass and waste C10L5/40, FO1K25/14, YO02E20,
YO02ES0

Grey | Efficiency B01J8/20, B01J8/24, C10J3,
FO1K17/06,  FO01K23, FO1K27,
FO1K3, FO1KS, FO2B1/12, FO2B11,
FO2B13/02, F02B3/06, F02B49,
FO02B7, F02C3/20, F02C3/32,
F02C3/34, F02C3/36, F02C6/10,
F02C7/30, FO2GS, F22B31,

F22B33/14, F22G, F23B10, F23B30,
F23B70, F23B80, F23C1, F23Cl10,
F23C5/24, F23C6, F23D1, F23D17,
F23D7, F27B15, Y02E20/10,
Y02E20/30, YO2E40

Note: The table lists the technology codes from the Cooperative Patent Classification (CPC) used to identify
electricity patents. For maximum coverage we also search for the equivalent codes from the International Patent
Classification (IPC). We identify a patent family as belonging to a given category if it has at least one patent with
a relevant technology code.
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TABLE D.2
Transport Codes

Type Sub-sector | Codes

Clean Batteries Y02T10/70

Clean Biomass and waste F02B43/08

Clean Electric vehicles B60K1, B60L15, B60OL,
B60L3, B60L7, B60RI16,
B60R16/033, B60R16/04,
B60S5/06, B60OW10, YO2T10/64

Clean Enabling technologies Y02T90

Clean Enabling technologies Systems integration | Y02T90/167, Y02T90/168,
Y02T90/169

Clean Fuel cells, Batteries HO1M

Clean Hybrid vehicles B60K6, B60L7/10, B60L7/20,
B60W20, Y02T10/62

Clean Hydrogen vehicles / fuel cells B60W10/28

Clean/Grey | Mitigation Air Y02T50

Clean/Grey | Mitigation Maritime Y02T70

Clean/Grey | Mitigation Rail Y02T30

Dirty Internal combustion engine FO02B, FO02D, FO2F, FO2M,
FO2N, FO2P

Grey Efficiency F02B1/12, FO2B11, FO2B13/02,

F02B3/06, FO2B47/06, FO2B49,

FO2B7, F02D41, F02M23,
FO2M25, FO02M3, F02M309,
FO2M41, F02M43, F02M45,
FO2M47, F02M49, F02MS51,
FO2MS53, F02MS5, F02MS57,
FO2M59, FO02M61, F02M63,
FO2M65, F02M67, F02M69,

FO2M71, Y02T10/10

Note: The table lists the technology codes from the Cooperative Patent Classification (CPC) used to identify
transport patents. For maximum coverage we also search for the equivalent codes from the International Patent
Classification (IPC). We identify a patent family as belonging to a given category if it has at least one patent with
a relevant technology code.
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D.1.5 Overlap Between Al and ICT Patent Families

125100 423541 10460308

Al

ICT

Note: The venn diagram shows the number of Al patent families which are only categorised as Al, the number
of ICT families only categorised as ICT, and the number of families identified by both methodologies. It shows
that (1) the pool of ICT families is much larger than that of Al families; (2) the majority of Al families are

also categorised as ICT; and (3) the majority of ICT families are not AL. Source: Authors’ calculations based on
PATSTAT 2021.

FIGURE D.1
Al and ICT Overlap
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D.2 ADDITIONAL FIGURES AND TABLES FOR FAMILY-

LEVEL ANALYSIS

D.2.1 Longer Versions of Table 5.3

Long Version of Table 5.3

TABLE D.3

()] (@) 3 ) (5) (6) ©) (®)
Al Al Al Al ICT ICT ICT ICT
Clean Family 0.437** 0.530** 0.463** 0.420** 8.243*** 7.071** 10.329*** 9.951***
(0.024) (0.069) 0.077) (0.070) (0.263) (0.943) (0.951) (0.947)
Grey Family 0.264*** 0.040 -0.124 -0.151 0.894** 0.432 0.443 0.196
(0.001) (0.105) (0.098) (0.103) (0.142) (0.255) 0.211) (0.208)
Nbr Citations Made (1000s) ~ 8.134*** 3.081* 0.177 -0.434 103.298**  47.204** 3.524* -3.953
(0.497) (0.610) (0.302) (0.235) (9.297) (7.022) (1.124) (1.487)
Nbr Patents in Family -0.020 0.124
(0.010) (0.062)
Nbr Countries in Family 0.000 -0.573
(0.011) (0.279)
Citations Received (3 yrs) 0.026* 0.184**
(0.008) (0.035)
Constant 0.121%* 0.245** 0.575** 0.624** 1.402%** 4.591™* 7.691%* 9.157*
(0.010) (0.042) (0.033) (0.030) (0.107) (0.461) (0.443) (1.172)
Ratio Clean/Dirty 304.35% 212.71* 94.15** 85.39** 501.72%* 239.56** 229.29*** 22091
(16.63) (27.86) (15.77) (14.24) (16.00) (31.96) (21.11) (21.02)
Sample Gr. Triadic  Gr. Triadic Gr. Triadic  Gr. Triadic
Year FEs X X X X X X X X
Firm FEs X X X X X X
Quality Proxies X X
Adjusted R2 0.006 0.043 0.058 0.060 0.067 0.312 0.441 0.445
Observations 2,550,428 1,495,048 131,564 131,564 2,550,428 1,495,048 131,564 131,564

Linear Regression.

Standard Errors in Parentheses. Clustered at the type and firm level.
Dependent Variable: Percentage of backward citations going to Al or ICT
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TABLE D.4
Similar to Table 5.3 With More Specifications for Al

(e)] 2 3) ) 5) (6) (W) ®) © 10 an
Clean Family 0.470%** 0.437%%* 0.580** 0.408*** 0.530** 0.491** 0.490** 0.560%** 0.463** 0.420** 0.416™*
(0.000) (0.024) (0.067) (0.026) (0.069) (0.068) 0.067) (0.000) 0.077) (0.070) 0.071)
Grey Family 0.259*** 0.264*** 0.050 0.265*** 0.040 0.013 0.013 0.241%* -0.124 -0.151 -0.152
(0.001) (0.001) (0.101) 0.022) (0.105) (0.110) (0.109) (0.000) (0.098) (0.103) (0.102)
Nbr Citations Made (1000s) 7.928** 8.134** 3.262** 5.492%%* 3.081"* 0.299 0.467 0.545 0.177 -0.434 -0.291
(0.461) (0.497) (0.679) (0.392) 0.610) (0.442) (0.414) (0.415) (0.302) (0.235) (0.299)
Nbr Patents in Family -0.021 -0.027 -0.020 -0.022
0.015) 0.017) 0.010) 0.011)
Nbr Countries in Family 0.073 0.076 0.000 0.003
(0.044) (0.045) 0.011) 0.012)
Citations Received (3 yrs) 0.045** 0.026*
0.010) (0.008)
Citations Received (5 yrs) 0.030** 0.017*
(0.006) (0.004)
Constant 0.107* 0.121%%* 0.217* 0.233%%* 0.245** 0.111 0.113 0.516%** 0.575%* 0.624%** 0.618%*
(0.002) (0.010) (0.034) (0.015) (0.042) (0.044) (0.044) (0.010) (0.033) (0.030) (0.028)
Ratio Clean/Dirty 327.54** 304.35%** 232.66** 163.61*** 212.71%* 212.71%* 212.71%* 105.80*** 94.15** 85.39%** 84.71%*
(0.26) (4.12) (27.08) (10.47) (27.86) (27.86) (27.86) (0.08) (15.77) (8.37) (8.37)
Sample Gr. Triadic Gr. Triadic Gr. Triadic Gr. Triadic
Year FEs X X X X X X X X
Firm FEs X X X X X X X
Quality Proxies X X X X
Adjusted R2 0.004 0.006 0.041 0.006 0.043 0.045 0.045 0.002 0.058 0.060 0.060
Observations 2.55e+06 2.55e+06 1.50e+06 1.50e+06 1.50e+06 1.50e+06 1.50e+06 1.15e+05 1.32e+05 1.32e+05 1.32e+05

Linear Regression.

Heteroskedasticity Robust Standard Errors in Parentheses.
Dependent Variable: Percentage of Al Families in Cited Families

Note: To make things more comparable, Column 4 replicates Column 2 but using the same sample of observations

as in Column 5.

TABLE D.5
Similar to Table 5.3 With More Specifications for ICT

(€] (@) 3) ) (5) (6) (@) (®) ©9) (10) 1n
Clean Family 8.642** 8.243** 8.119%** 10.055*** 7.071%* 6.770** 6.767** 16.809*** 10.329*** 9.951*** 9.942%+*
(0.009) (0.263) (0.692) (0.454) (0.943) (0.937) (0.941) (0.001) (0.951) (0.947) (0.946)
Grey Family 1.097** 0.894** 0.727* 0.406 0.432 0.190 0.192 0.332%* 0.443 0.196 0.199
(0.020) (0.142) (0.179) (0.200) (0.255) (0.449) (0.449) (0.000) 0211 (0.208) (0.202)
Nbr Citations Made (1000s) 109.614*** 103.298*** 54.146** 80.584** 47.204* 18.434** 19.985** 18.456** 3.524* -3.953 -2.760
(10.508) (9.297) (7.745) (10.546) (7.022) (2.861) (2.975) (1.419) (1.124) (1.487) (1.050)
Nbr Patents in Family 0.250 0.217 0.124 0.111
(0.215) (0.205) (0.062) (0.058)
Nbr Countries in Family 0.245 0.264 -0.573 -0.562
(0.120) (0.126) (0.279) (0.275)
Citations Received (3 yrs) 0.330** 0.184**
(0.045) (0.035)
Citations Received (5 yrs) 0.211** 0.113**
(0.028) (0.019)
Constant 1,133 1,402+ 3.954% 2.858"F  4.501% 3252 3265 4,405 7,691+ 9.157* 9.128**
(0.049) (0.107) (0.314) (0.205) (0.461) (0.414) (0.412) (0.033) (0.443) (1.172) (1.178)
Ratio Clean/Dirty 525.98** 501.72%* 275.06*** 340.68*** 239.56** 239.56** 239.56** 348.11%* 229.29*** 220.91** 220.71%*
(0.52) (1.68) (23.45) (15.39) (31.96) (31.96) (31.96) (0.03) @L11) (4.06) (4.06)
Sample Gr. Triadic Gr. Triadic Gr. Triadic Gr. Triadic
Year FEs X X X X X X X X
Firm FEs X X X X X X X
Quality Proxies X X X X
Adjusted R2 0.057 0.067 0.301 0.083 0.312 0.318 0.318 0.103 0.441 0.445 0.445
Observations 2.55e+06 2.55e+06 1.50e+06 1.50e+06 1.50e+06 1.50e+06 1.50e+06 1.15e+05 1.32e+05 1.32e+05 1.32e+05

Linear Regression.

Heteroskedasticity Robust Standard Errors in Parentheses.
Dependent Variable: Percentage of Al Families in Cited Families
Note: To make things more comparable, Column 4 replicates Column 2 but using the same sample of observations

as in Column 5.



D.2. ADDITIONAL FIGURES AND TABLES FOR FAMILY-LEVEL ANALYSIS 203

D.2.2 Separating Transport and Electricity Families

TABLE D.6

Similar to Table 5.3 but Only for Transport Families

(1) @) 3 “ (5) (6) (7 (3)
Al Al Al Al ICT ICT ICT ICT
Clean Family 0.502*** 0.872** 0.682** 0.625* 3.993%++ 4.921* 5.409** 5.134*
(0.050) (0.111) (0.141) (0.132) (0.194) (0.608) (0.753) (0.699)
Grey Family 0.298*** 0.141 -0.115 -0.155 0.663** -0.198 -1.224 -1.428*
(0.009) (0.061) (0.120) (0.126) (0.084) (0.346) (0.434) (0.487)
Nbr Citations Made (1000s) ~ 10.991*** 4.180* 0.413* -0.460 68.676***  38.654** 3717 -1.407
(0.222) (1.125) (0.141) (0.245) (1.946) (8.021) (0.690) (1.799)
Nbr Patents in Family -0.022 0.030
0.011) (0.034)
Nbr Countries in Family -0.020 -0.315
(0.015) (0.120)
Citations Received (3 yrs) 0.037* 0.167*
(0.009) (0.040)
Constant 0.177* 0.069 0.633** 0.738* 1.373** 2.147* 5.399*** 6.067**
(0.034) (0.066) (0.090) 0.114) (0.148) (0.342) (0.380) (0.274)
Ratio Clean/Dirty 320.10%*  398.99** 87.94* 80.53** 296.07**  258.40** 117.09** 111.14*
(31.78) (50.73) (18.16) (16.97) (14.40) (31.94) (16.31) (15.14)
Sample Gr. Triadic ~ Gr. Triadic Gr. Triadic ~ Gr. Triadic
Year FEs X X X X X X X X
Firm FEs X X X X X X
Quality Proxies X X
Adjusted R2 0.006 0.056 0.072 0.074 0.035 0.174 0.253 0.258
Observations 1,300,651 878,182 83,433 83,433 1,300,651 878,182 83,433 83,433

Linear Regression.

Standard Errors in Parentheses. Clustered at the type and firm level.

Dependent Variable: Percentage of backward citations going to Al or ICT
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TABLE D.7
Similar to Table 5.3 but Only for Electricity Families

@) (@) 3 “ 5 (©) ) ®)
Al Al Al Al ICT ICT ICT ICT
Clean Family 0.190*** 0.187* 0.014 0.003 16.011°*  19.803** 33.257* 32.749**
(0.010) (0.058) (0.059) (0.061) (0.418) (2.395) (3.905) (3.964)
Grey Family 0.136™** 0.066 0.030 0.026 1.546™* 2.941* 3.070** 2.974%*
(0.006) (0.038) (0.048) (0.048) (0.313) (0.307) (0.081) (0.165)
Nbr Citations Made (1000s) 4.332% 0.952 -1.288 -1.421* 150.644* 67.586 -1.612 -15.035
(0.758) (0.769) (0.595) (0.444) (45.563) (41.354) (10.370) (10.666)
Nbr Patents in Family -0.006 0.102
(0.011) (0.037)
Nbr Countries in Family 0.002 -0.636
(0.013) (0.403)
Citations Received (3 yrs) 0.006 0.194**
(0.003) (0.024)
Constant 0.124** 0.295** 0.405** 0.425%* 1.264*** 5.214* 9.497* 12.015*
(0.008) (0.019) (0.023) (0.027) (0.029) (0.689) (1.554) (3.701)
Ratio Clean/Dirty 136.34*** 71.53* 3.68 0.89 918.29*** 58247 751.80** 740.32**
(7.39) (22.23) (15.66) (16.08) (23.98) (70.45) (88.28) (89.61)
Sample Gr. Triadic ~ Gr. Triadic Gr. Triadic ~ Gr. Triadic
Year FEs X X X X X X X X
Firm FEs X X X X X X
Quality Proxies X X
Adjusted R2 0.003 0.029 0.024 0.024 0.134 0.461 0.708 0.711
Observations 1,249,777 608,033 46,383 46,383 1,249,777 608,033 46,383 46,383

Linear Regression.

Standard Errors in Parentheses. Clustered at the type and firm level.

Dependent Variable: Percentage of backward citations going to Al or ICT
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D.2.3 Using Count Rather Than Percentage as Outcome Variable

TABLE D.8
Similar to Table 5.3 but Using Count of Citations to Al and ICT

(1) ) 3) “ (5) (6) (7) ®)
Al Al Al Al ICT ICT ICT ICT
Clean Family 11727 0.903*** 0.612%* 0.601*** 1.393*** 0.848*** 0.858*** 0.844**
(0.022) (0.099) (0.091) (0.081) (0.012) (0.081) (0.088) (0.086)
Grey Family 0.647** 0.151* -0.056 -0.067 0.165** 0.081* -0.027 -0.042
(0.002) (0.064) (0.052) (0.055) (0.003) (0.045) (0.023) (0.026)
Nbr Citations Made (log) 1.261%* 1.222%** 1.109%** 1.116™** 1.258*** 1.214%* L1177 1.095***
(0.010) (0.048) (0.093) (0.084) (0.022) (0.022) (0.024) (0.022)
Nbr Patents in Family -0.015%** 0.003
(0.004) (0.002)
Nbr Countries in Family -0.039%* -0.033***
(0.004) (0.008)
Citations Received (3 yrs) 0.007*** 0.002***
(0.001) (0.001)
Constant -6.266™*  -5.132%* -4.504** -4.290*** -3.765% 2717 -2.401%* -2.205**
(0.049) (0.163) (0.400) (0.358) (0.069) (0.072) (0.092) (0.087)
Ratio Clean/Dirty 248.32%* 176.46** 132.91* 113.18** 308.68*** 142.81** 180.33** 159.26**
(20.82) (29.65) (27.91) (21.00) (22.49) (20.75) (22.65) (22.72)
Sample Gr. Triadic ~ Gr. Triadic Gr. Triadic ~ Gr. Triadic
Year FEs X X X X X X X X
Firm FEs X X X X X X
Quality Proxies X X
Adjusted R2
Observations 2,550,428 1,157,642 97,052 97,052 2,550,428 1,378,673 125,339 125,339

Linear Regression.
Standard Errors in Parentheses. Clustered at the type and firm level.
Dependent Variable: Percentage of backward citations going to Al or ICT
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D.2.4 Forward Citations as Outcome Variable
TABLE D.9
Long Version of Table 5.4
(1) 2) (3) “4) 5) (6) (7 (8)
Al Al Al Al Al ICT ICT ICT
Clean Family 0.508*** 0.497** 0.413** 0.394*** 0.508*** 0.480*** 0.413** 0.377**
(0.024) (0.022) (0.042) (0.041) (0.024) (0.040) (0.042) (0.042)
Grey Family 0.324*** 0.322%** 0.265*** 0.262*** 0.324*** 0.342%* 0.265*** 0.262***
(0.019) (0.017) (0.032) (0.030) (0.019) (0.022) (0.032) (0.027)
Nbr Patents in Family 0.013*** 0.013*** 0.013*** 0.012*** 0.013*** 0.013*** 0.013*** 0.013***
(0.003) (0.003) (0.002) (0.002) (0.003) (0.003) (0.002) (0.002)
Nbr Countries in Family 0.017*** 0.019*** 0.053*** 0.053*** 0.017*** 0.018*** 0.053** 0.0527*
(0.003) (0.003) (0.006) (0.006) (0.003) (0.003) (0.006) (0.005)
Granted 0.217*** 0.215%** 0.227** 0.229*** 0.217** 0.216*** 0.227** 0.227**
(0.039) (0.039) (0.035) (0.035) (0.039) (0.038) (0.035) (0.035)
Triadic 0.121** 0.129*** 0.152%** 0.155** 0.121%* 0.118** 0.152%* 0.149**
(0.017) (0.019) (0.020) (0.020) (0.017) (0.016) (0.020) (0.019)
Nbr Citations Made (log) ~ 0.572*** 0.553*** 0.456*** 0.443** 0.572*** 0.530*** 0.456*** 0.431**
(0.018) (0.025) (0.018) (0.021) (0.018) (0.027) (0.018) (0.024)
Al Citing 0.240*** 0.130***
(0.046) (0.026)
Clean X Citing Al 0.061*** 0.119***
(0.014) (0.022)
Grey X Citing Al 0.008 0.042
(0.017) (0.028)
ICT Citing 0.335%* 0.156***
(0.047) (0.039)
Clean X Citing ICT -0. 1117 0.007
(0.005) (0.020)
Grey X Citing ICT -0.126*** -0.022
(0.016) (0.027)
Constant -1.407*  -1.385***  -0.960***  -0.945***  -1.407"*  -1.401"**  -0.960***  -0.957***
(0.088) (0.093) (0.090) (0.095) (0.088) (0.090) (0.090) (0.091)
Sample
Year FEs X X X X X X X X
Firm FEs X X X X
Quality Proxies X X X X X X X X
Pseudo R2 0.282 0.284 0.338 0.339 0.282 0.285 0.338 0.340
Observations 2.55e+06  2.55e+06  1.47e+06 1.47e+06  2.55e+06  2.55e+06 1.47e+06 1.47e+06

Poisson Pseudo-Likelithood Regression.
Standard Errors in Parentheses. Clustered at the type and firm level.
Dependent Variable: Citations Received Within 3 Years of Priority.

Note: Quality Proxies include the size of the family, the number of countries where the family was filed, the logged

number of citations made by the family, whether it is granted, and whether it is triadic.
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TABLE D.10
Like Table 5.4, Using Citations Within 5 Years as an Outcome

(1) (2) 3) “4) S) (6) (7 (8)

Al Al Al Al ICT ICT ICT ICT
Clean Family 0.492°% 04847 0395  0.381°% 04927 0468  0.395%  0.367°
0.022)  (0.020)  (0.040)  (0.039)  (0.022)  (0.038)  (0.040)  (0.041)
Grey Family 03007 0.308°* 0243 02417 03097 0.3347% 02437 0.247°
0.018)  (0.016)  (0.030)  (0.029)  (0.018)  (0.020)  (0.030)  (0.026)
Nbr Patents in Family 0013 0.013**  0.014 0013 0013 0013 0014  0.014"

(0.003) (0.003) (0.002) (0.002) (0.003) (0.003) (0.002) (0.002)
Nbr Countries in Family 0.019*** 0.021* 0.051%* 0.051* 0.019*** 0.020*** 0.051%* 0.051*
(0.003) (0.003) (0.005) (0.005) (0.003) (0.003) (0.005) (0.005)

Granted 0.221%* 0.220%** 0.242%* 0.245** 0.221%* 0.221%* 0.242%* 0.243**
(0.037) (0.036) (0.033) (0.032) (0.037) (0.036) (0.033) (0.033)
Triadic 0.144%* 0.151%* 0.171%* 0.173** 0.144%* 0.141%* 0.171%* 0.169***

(0.021) (0.022) (0.020) (0.020) (0.021) (0.019) (0.020) (0.020)
Nbr Citations Made (log) ~ 0.584*** 0.567** 0.457** 0.446** 0.584** 0.544%* 0.457** 0.434**
(0.021) (0.027) (0.018) (0.021) (0.021) (0.030) (0.018) (0.024)

Al Citing 0.247** 0.136™**
(0.050) (0.027)
Clean X Citing Al 0.028* 0.078***
(0.014) (0.016)
Grey X Citing Al -0.028 0.017
0.017) (0.019)
ICT Citing 0.329*** 0.157**
(0.053) (0.040)
Clean X Citing ICT -0.115%* -0.007
(0.005) (0.018)
Grey X Citing ICT -0.146** -0.040
0.017) (0.026)
Constant -0.985%*  -0.967**  -0.520"**  -0.508***  -0.985"**  -0.984**  -0.520"** = -0.521***
(0.084) (0.089) (0.083) (0.087) (0.084) (0.088) (0.083) (0.084)
Sample
Year FEs X X X X X X X X
Firm FEs X X X X
Quality Proxies X X X X X X X X
Pseudo R2 0.35133 0.35265 0.39754 0.39836 0.35133 0.35398 0.39754 0.39864
Observations 2.55e+06  2.55e+06  1.48e+06  1.48e+06  2.55e+06  2.55¢+06  1.48e+06  1.48e+06

Poisson Pseudo-Likelithood Regression.
Standard Errors in Parentheses. Clustered at the type and firm level.
Dependent Variable: Citations Received Within 5 Years of Priority.

Note: Quality Proxies include the size of the family, the number of countries where the family was filed, the logged
number of citations made by the family, whether it is granted, and whether it is triadic.
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D.3 ADDITIONAL FIGURES AND TABLES FOR FIRM-

LEVEL ANALYSIS

D.3.1 Firms Patenting in Energy and AI/ICT

15534 1726 3294

Al

Electricity

(a) Firms Patenting in Electricity and Al

10680 6580 28807

Electricity
ICT

(c) Firms Patenting in Electricity and ICT

7631 1560 3460

Al

Transport

(b) Firms Patenting in Transport and Al

4817 4374 31013

Transport

ICT

(d) Firms Patenting in Transport and ICT

Note: The figure shows the number of firms which have at least one patent in either electricity/transport, AI/ICT,
or both over the study period. Source: Authors’ calculations based on PATSTAT 2021 and BvD Orbis.

FIGURE D.2

Firms Patenting in Energy and Al
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D.3.2 Additional Regression Tables
D.3.2.1 Comparing Clean and Dirty Portfolios
TABLE D.11
Long Version of Table 5.6
(eY) 2) (3) 4) (5) (6) )] ®)
Al Al Al Al ICT ICT ICT ICT
Family Count (log) 0.944* 0.974*** 0.979*** 0.997** 0.888** 0.921** 0.979*** 0.970***
(0.049) (0.050) (0.040) (0.055) (0.038) (0.042) (0.026) (0.030)
Clean Portfolio 1.471% -0.020 0.156 -0.599* 0.904*** 0.176 0.495*** 0.188
(0.098) (0.297) (0.123) (0.363) (0.062) (0.182) (0.057) (0.154)
Grey Portfolio 0.873** -0.121 0.253 -0.516 0.439*** -0.297 0.067 -0.667**
(0.076) (0.310) (0.170) (0.393) (0.068) (0.234) 0.071) (0.199)
Total Assets (log) 0.136* 0.146* -0.083* -0.074 0.163*** 0.154*** 0.006 0.013
(0.080) (0.079) (0.048) (0.048) (0.055) (0.053) (0.034) (0.033)
Nbr Empoyees (log) -0.208**  -0.229*** 0.069 0.061 -0.097**  -0.114*** 0.016 0.017
(0.057) (0.058) (0.065) (0.065) (0.031) (0.032) (0.043) (0.043)
Age (log) -0.5217*  -0.525%** -0.416** -0.428  -0.460"*  -0.466"*  -0.284"** -0.258**
(0.200) (0.170) (0.164) (0.164) (0.136) (0.138) (0.088) (0.086)
Firm Sectoral Focus -0.028 -0.101 -0.046 -0.091
(0.194) (0.167) 0.117) (0.099)
Firm Clean Focus -0.004 -0.005 -0.001 -0.003*
(0.004) (0.003) (0.002) (0.002)
Firm Grey Focus -0.001 0.004 -0.002 -0.006***
(0.004) (0.005) (0.002) (0.002)
Clean X Firm Sectoral Focus 0.523*** 0.179 0.201* -0.142
(0.195) (0.162) (0.115) 0.111)
Grey X Firm Sectoral Focus 0.231 -0.045 0.235** -0.131
(0.158) (0.160) (0.093) (0.105)
Clean X Firm Clean Focus 0.012*** 0.012** 0.006** 0.003
(0.005) (0.005) (0.003) (0.002)
Grey X Firm Clean Focus 0.011** 0.017** 0.009*** 0.009***
(0.004) (0.005) (0.003) (0.002)
Clean X Firm Grey Focus 0.017** 0.013* 0.010*** 0.009***
(0.004) (0.007) (0.002) (0.002)
Grey X Firm Grey Focus 0.010* 0.003 0.005 0.011%*
(0.006) (0.006) (0.004) (0.003)
Constant -2.653** -2.557* -0.204 -0.361 -2.663** -2.226* -0.610 -0.676
(1.354) (1.314) (1.094) (1.057) (1.170) (1.139) (0.665) (0.673)
Portfolio Type Transport  Transport  Electricity  Electricity =~ Transport  Transport  Electricity  Electricity
Portfolio FEs X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X X X X X
Firm level controls X X X X X X X X
Observations 10,733 10,733 10,082 10,082 17,310 17,310 22,476 22,476
R2 0.738 0.740 0.450 0.455 0.835 0.836 0.732 0.733

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm level.
Dependent variable: Count of Families citing Al or ICT.
Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.
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TABLE D.12
Similar to Table 5.6 With More Specifications for Al in Transport
(e)) @) 3) ) (5) (6) (@) ®)
Al Al Al Al Al Al Al Al
Family Count (log) 1.023** 0.939*** 0.944** 0.973** 0.961* 0.974** 0.943** 0.774%*
(0.026) (0.047) (0.049) (0.029) (0.053) (0.050) (0.027) (0.035)
Clean Portfolio 1.105*** 1.433%* 1471 0.304 -0.013 -0.020 0.796™* 0.421
(0.105) (0.089) (0.098) (0.337) (0.271) (0.297) (0.327) (0.390)
Grey Portfolio 0.905*** 0.837*** 0.873*** 0.346 -0.135 -0.121 0.482* 0.184
(0.084) (0.078) (0.076) (0.298) (0.306) (0.310) (0.281) (0.331)
Total Assets (log) 0.136* 0.146* 0.012
(0.080) (0.079) (0.094)
Nbr Empoyees (log) -0.208*** -0.229*** 0.262**
(0.057) (0.058) (0.115)
Age (log) -0.521%* -0.525%** -0.114
(0.200) (0.170) (0.075)
Firm Sectoral Focus -0.218 -0.079 -0.028
(0.173) (0.197) (0.194)
Firm Clean Focus -0.002 -0.006* -0.004
(0.003) (0.003) (0.004)
Firm Grey Focus 0.011%* 0.000 -0.001
(0.004) (0.005) (0.004)
Clean X Firm Sectoral Focus 1.212%* 0.589*** 0.523**
(0.193) (0.186) (0.195)
Grey X Firm Sectoral Focus 0.669*** 0.297* 0.231
(0.159) (0.153) (0.158)
Clean X Firm Clean Focus 0.003 0.013** 0.012%**
(0.004) (0.004) (0.005)
Grey X Firm Clean Focus 0.006 0.011%* 0.011%*
(0.004) (0.004) (0.004)
Clean X Firm Grey Focus 0.008* 0.014** 0.017**
(0.004) (0.004) (0.004)
Grey X Firm Grey Focus -0.004 0.009 0.010*
(0.004) (0.006) (0.006)
Firm Sectoral Focus (mean) -0.251 0.008
(0.161) (0.170)
Firm Clean Focus (mean) 0.004 -0.004
(0.004) (0.005)
Firm Grey Focus (mean) 0.011** 0.004
(0.005) (0.005)
Clean X Firm Sectoral Focus (mean) 1.238%* 1.006***
(0.180) (0.193)
Grey X Firm Sectoral Focus (mean) 0.699*** 0.508"**
(0.151) (0.167)
Clean X Firm Clean Focus (mean) -0.006 0.005
(0.004) (0.006)
Grey X Firm Clean Focus (mean) 0.001 0.005
(0.004) (0.005)
Clean X Firm Grey Focus (mean) 0.005 0.011**
(0.005) (0.005)
Grey X Firm Grey Focus (mean) -0.002 0.009
(0.004) (0.005)
Constant -4.234%% 35427 -2.653** -4.203"*  -3.336*** -2.557* -4.207% 577237
(0.095) (0.214) (1.354) (0.246) (0.293) (1.314) (0.257) (1.089)
Portfolio Type Transport ~ Transport  Transport — Transport  Transport  Transport  Transport  Transport
Portfolio FEs X X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X
Firm level controls X X X
Observations 30,805 12,902 10,733 30,805 12,902 10,733 30,805 23,447
R2 0.621 0.719 0.738 0.653 0.722 0.740 0.654 0.694

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm level.
Dependent variable: Count of Families citing Al.
Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.
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TABLE D.13
Similar to Table 5.6 With More Specifications for Al in Electricity
€Y} 2) 3) (€} (5) ©) @] (8)
Al Al Al Al Al Al Al Al
Family Count (log) 1.037** 0.968*** 0.979** 1.060*** 0.964** 0.997** 1.058** 0.890***
(0.047) (0.040) (0.040) (0.068) (0.051) (0.055) (0.071) (0.074)
Clean Portfolio -0.102 0.214* 0.156 -0.441 -0.636™* -0.599* -0.446 -1.541%
(0.207) (0.115) (0.123) (0.617) (0.316) (0.363) (0.616) (0.705)
Grey Portfolio 0.243* 0.203 0.253 0.055 -0.689** -0.516 -0.026 -0.931*
(0.141) (0.146) (0.170) (0.403) (0.334) (0.393) (0.387) (0.443)
Total Assets (log) -0.083* -0.074 0.051
(0.048) (0.048) (0.112)
Nbr Empoyees (log) 0.069 0.061 0.276*
(0.065) (0.065) (0.146)
Age (log) -0.416* -0.428*** -0.405**
(0.164) (0.164) (0.098)
Firm Sectoral Focus 0.025 -0.063 -0.101
(0.225) (0.156) (0.167)
Firm Clean Focus -0.007 -0.007** -0.005
(0.005) (0.003) (0.003)
Firm Grey Focus 0.008 -0.000 0.004
(0.007) (0.004) (0.005)
Clean X Firm Sectoral Focus -0.580* 0.040 0.179
(0.326) (0.162) (0.162)
Grey X Firm Sectoral Focus 0.009 -0.084 -0.045
(0.205) (0.156) (0.160)
Clean X Firm Clean Focus 0.006 0.013*** 0.012**
(0.008) (0.004) (0.005)
Grey X Firm Clean Focus 0.014* 0.019*** 0.017**
(0.006) (0.004) (0.005)
Clean X Firm Grey Focus 0.015 0.014** 0.013*
(0.009) (0.006) (0.007)
Grey X Firm Grey Focus -0.009 0.007 0.003
(0.009) (0.005) (0.006)
Firm Sectoral Focus (mean) 0.081 -0.025
(0.210) (0.204)
Firm Clean Focus (mean) -0.007 -0.015***
(0.005) (0.006)
Firm Grey Focus (mean) 0.006 -0.002
(0.008) (0.010)
Clean X Firm Sectoral Focus (mean) -0.620* -0.562
(0.346) (0.372)
Grey X Firm Sectoral Focus (mean) 0.047 -0.239
(0.199) (0.214)
Clean X Firm Clean Focus (mean) 0.005 0.024***
(0.008) (0.008)
Grey X Firm Clean Focus (mean) 0.014** 0.023***
(0.006) (0.006)
Clean X Firm Grey Focus (mean) 0.011 0.022*
(0.010) (0.012)
Grey X Firm Grey Focus (mean) -0.007 0.008
(0.009) (0.010)
Constant -4.090"** -2.898*** -0.204 4,124 2771 -0.361 -4.045"+* -5.203***
(0.119) (0.111) (1.094) (0.288) (0.258) (1.057) (0.303) (1.262)
Portfolio Type Electricity ~ Electricity ~ Electricity ~ Electricity  Electricity  Electricity  Electricity  Electricity
Portfolio FEs X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X
Firm level controls X X X
Observations 48,082 12,402 10,082 48,082 12,402 10,082 48,082 33,997
R2 0.301 0.433 0.450 0.314 0.437 0.455 0.311 0.374

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm Ievel.

Dependent variable: Count of Families citing Al

Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.
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TABLE D.14
Similar to Table 5.6 With More Specifications for ICT in Transport
1) (2 (3) “4) (5) (6) (@) (®)
ICT ICT ICT ICT ICT ICT ICT ICT
Family Count (log) 0.986*** 0.891** 0.888*** 0.956"** 0.921** 0.921** 0.951** 0.850***
(0.020) (0.039) (0.038) (0.021) (0.042) (0.042) (0.021) (0.027)
Clean Portfolio 0.816** 0.893*** 0.904*** 0.560*** 0.270* 0.176 0.705*** 0.294
(0.054) (0.057) (0.062) (0.202) (0.158) (0.182) (0.180) (0.216)
Grey Portfolio 0.449*** 0.426*** 0.439** 0.043 -0.236 -0.297 0.157 -0.131
(0.069) (0.066) (0.068) (0.169) (0.219) (0.234) (0.165) (0.219)
Total Assets (log) 0.163*** 0.154*** -0.020
(0.055) (0.053) (0.042)
Nbr Empoyees (log) -0.097* -0.114% 0.168***
(0.031) (0.032) (0.049)
Age (log) -0.460*** -0.466*** 0.003
(0.136) (0.138) (0.061)
Firm Sectoral Focus -0.274* -0.050 -0.046
(0.102) (0.117) (0.117)
Firm Clean Focus 0.004** -0.001 -0.001
(0.001) (0.002) (0.002)
Firm Grey Focus 0.007*** -0.001 -0.002
(0.003) (0.003) (0.002)
Clean X Firm Sectoral Focus 0.413** 0.196* 0.201*
(0.110) (0.108) (0.115)
Grey X Firm Sectoral Focus 0.515%* 0.209** 0.235%*
(0.082) (0.086) (0.093)
Clean X Firm Clean Focus -0.001 0.005* 0.006**
(0.003) (0.003) (0.003)
Grey X Firm Clean Focus 0.004** 0.008*** 0.009***
(0.002) (0.003) (0.003)
Clean X Firm Grey Focus 0.004 0.008*** 0.010***
(0.003) (0.002) (0.002)
Grey X Firm Grey Focus -0.004 0.005 0.005
(0.003) (0.004) (0.004)
Firm Sectoral Focus (mean) -0.390*** -0.260**
(0.096) (0.109)
Firm Clean Focus (mean) 0.007*** 0.002
(0.002) (0.002)
Firm Grey Focus (mean) 0.008*** 0.003
(0.003) (0.003)
Clean X Firm Sectoral Focus (mean) 0.506*** 0.431%*
(0.103) (0.114)
Grey X Firm Sectoral Focus (mean) 0.641%* 0.524**
(0.085) (0.092)
Clean X Firm Clean Focus (mean) -0.005* 0.004
(0.002) (0.003)
Grey X Firm Clean Focus (mean) 0.001 0.005*
(0.002) (0.003)
Clean X Firm Grey Focus (mean) 0.002 0.007*
(0.003) (0.004)
Grey X Firm Grey Focus (mean) -0.005 0.003
(0.003) (0.005)
Constant 222264 -1.677* -2.663" -2.204%%  -1.650*** -2.226* 223450 2871
(0.064) (0.155) (1.170) (0.127) (0.174) (1.139) (0.139) (0.526)
Portfolio Type Transport ~ Transport  Transport — Transport  Transport  Transport  Transport  Transport
Portfolio FEs X X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X
Firm level controls X X X
Observations 30,805 21,231 17,310 30,805 21,231 17,310 30,805 23,447
R2 0.759 0.822 0.835 0.764 0.822 0.836 0.763 0.790

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm level.
Dependent variable: Count of Families citing ICT.

Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).

The label (log) refers to the natural logarithm of 1 + the variable in question.
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TABLE D.15
Similar to Table 5.6 With More Specifications for ICT in Electricity
(D (2) 3) (€} (5) ©) @] 8)
ICT ICT ICT ICT ICT ICT ICT ICT
Family Count (log) 0.998"** 0.998*** 0.979** 1.055"* 0.991* 0.970*** 1.054** 0.927*
(0.026) (0.024) (0.026) (0.022) (0.027) (0.030) (0.022) (0.025)
Clean Portfolio 0.732%+* 0.485*** 0.495** 1.103*** 0.181 0.188 1.120™* 0.463*
(0.076) (0.052) (0.057) (0.287) (0.141) (0.154) (0.277) (0.254)
Grey Portfolio 0.011 0.059 0.067 -0.378 -0.558"** -0.667** -0.402* -0.999***
(0.075) (0.062) (0.071) (0.240) (0.173) (0.199) (0.243) (0.280)
Total Assets (log) 0.006 0.013 -0.011
(0.034) (0.033) (0.026)
Nbr Empoyees (log) 0.016 0.017 0.196"**
(0.043) (0.043) (0.037)
Age (log) -0.284*** -0.258*** -0.112**
(0.088) (0.086) (0.048)
Firm Sectoral Focus -0.184 -0.099 -0.091
(0.137) (0.090) (0.099)
Firm Clean Focus 0.009*** -0.002 -0.003*
(0.003) (0.001) (0.002)
Firm Grey Focus -0.004 -0.005** -0.006™**
(0.003) (0.001) (0.002)
Clean X Firm Sectoral Focus -0.331* -0.143 -0.142
(0.131) (0.100) (0.111)
Grey X Firm Sectoral Focus -0.051 -0.118 -0.131
(0.127) (0.095) (0.105)
Clean X Firm Clean Focus -0.012%* 0.003 0.003
(0.004) (0.002) (0.002)
Grey X Firm Clean Focus 0.005 0.008*** 0.009***
(0.003) (0.002) (0.002)
Clean X Firm Grey Focus 0.002 0.009*** 0.009***
(0.004) (0.002) (0.002)
Grey X Firm Grey Focus 0.007 0.010*** 0.011%*
(0.004) (0.002) (0.003)
Firm Sectoral Focus (mean) -0.124 -0.203*
0.111) (0.107)
Firm Clean Focus (mean) 0.010%** 0.005*
(0.003) (0.003)
Firm Grey Focus (mean) -0.007 -0.010**
(0.004) (0.005)
Clean X Firm Sectoral Focus (mean) -0.316** -0.303**
(0.115) (0.108)
Grey X Firm Sectoral Focus (mean) -0.052 -0.182
(0.113) (0.114)
Clean X Firm Clean Focus (mean) -0.013%** -0.001
(0.004) (0.003)
Grey X Firm Clean Focus (mean) 0.004 0.011%*
(0.003) (0.003)
Clean X Firm Grey Focus (mean) 0.001 0.007
(0.005) (0.006)
Grey X Firm Grey Focus (mean) 0.008* 0.018"**
(0.005) (0.006)
Constant -1.946™+* -1.462** -0.610 -2.347* -1.315 -0.676 -2.319"* -2.797*
(0.078) (0.081) (0.665) (0.172) (0.138) (0.673) (0.181) (0.324)
Portfolio Type Electricity ~ Electricity ~ Electricity ~ Electricity  Electricity  Electricity  Electricity  Electricity
Portfolio FEs X X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X
Firm level controls X X X
Observations 48,082 28,739 22,476 48,082 28,739 22,476 48,082 34,170
R2 0.601 0.710 0.732 0.616 0.711 0.733 0.616 0.666

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm Ievel.

Dependent variable: Count of Families citing ICT.

Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.
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D.3.2.2 Examining the Role of Al and ICT Stocks
TABLE D.16
Similar to Table 5.7 Without Energy Stocks and More Specifications for Al
(O] @ 3 “ (6)) (6) ) ®
Al Al Al Al Al Al Al Al
Family Count (log) 0.780*** 0.781** 0.913** 0.916** 0.817** 0.837** 1.001** 1.009***
(0.028) (0.029) (0.044) (0.046) (0.083) (0.090) (0.040) (0.040)
Clean Portfolio 1.247%* 0.726%* 0.970*** 1.007*** -0.134 0.079 0.227* 0.126
(0.129) (0.126) (0.132) (0.146) (0.222) (0.181) (0.121) (0.138)
Grey Portfolio 0.986""* 0.955%* 0.762*** 0.819** 0.059 0.127 0.069 0.126
(0.084) (0.147) (0.120) (0.132) (0.156) (0.129) (0.116) (0.128)
Stock Al (log, t-1) 0.295%** 0.179** -0.065 -0.060 0.241%* 0.288*** -0.086 -0.095
(0.034) (0.036) (0.068) (0.076) (0.057) (0.067) (0.074) (0.085)
Clean X Stock AI (log, t-1) 0.156"** 0.135%** 0.129*** -0.094 -0.007 0.005
(0.040) (0.040) (0.042) (0.070) (0.044) (0.045)
Grey X Stock Al (log, t-1) 0.025 0.038 0.029 -0.035 0.038 0.032
(0.036) (0.036) (0.036) (0.051) (0.076) (0.076)
Total Assets (log) 0.160* -0.065
(0.088) (0.047)
Nbr Empoyees (log) -0.215%* 0.037
(0.056) (0.079)
Age (log) -0.633** -0.342*
(0.294) (0.202)
Constant -42577% 238957 3218 -2.342F -3.910%* -4.050%* -2.706™** -0.345
(0.100) (0.118) (0.315) (1.359) (0.121) (0.132) (0.221) (1.225)
Portfolio Type Transport — Transport — Transport  Transport  Electricity  Electricity  Electricity  Electricity
Portfolio FEs X X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X
Firm level controls X X
Observations 26,810 26,810 11,337 9,610 41,591 41,591 10,957 9,097
R2 0.652 0.655 0.724 0.742 0.326 0.328 0.434 0.448

Poisson pseudo-maximum Iikelihood regression. Standard errors in parentheses, Clustered at firm Ievel.
Dependent variable: Count of Families citing Al
Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).

The label (log) refers to the natural logarithm of 1 + the variable in question.
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TABLE D.17
Similar to Table 5.7 Without Energy Stocks and More Specifications for ICT
() 3) C)) ) (6) 0 ®)
ICT ICT ICT ICT ICT ICT ICT
Family Count (log) 0.880*** 0.893*** 0.890*** 0.775*** 0.792%** 1.038"** 1.015***
(0.023) (0.042) (0.043) (0.032) (0.034) (0.023) (0.025)
Clean Portfolio 0.941** 0.941** 0.963*** 0.628*** 0.913** 0.669*** 0.658"**
(0.089) (0.096) (0.107) (0.082) (0.070) (0.094) (0.107)
Grey Portfolio 0.514** 0.441** 0.442%* -0.108 -0.047 -0.112 -0.175%
(0.099) (0.107) (0.120) (0.080) (0.084) (0.090) (0.103)
Stock ICT (log, t-1) 0.120*** 0.023 0.037 0.169*** 0.204** -0.049 -0.034
0.017) (0.055) (0.055) (0.014) (0.018) (0.040) (0.045)
Clean X Stock ICT (log, t-1) -0.024 -0.005 -0.007 -0.059*** -0.033* -0.027
0.017) (0.017) (0.018) (0.018) (0.019) (0.021)
Grey X Stock ICT (log, t-1) -0.005 0.000 0.001 -0.014 0.031 0.040*
(0.023) (0.025) (0.026) (0.021) (0.022) (0.023)
Total Assets (log) 0.155%* 0.008
(0.052) (0.032)
Nbr Empoyees (log) -0.108*** 0.031
(0.033) (0.046)
Age (log) -0.571%* -0.218**
(0.190) (0.094)
Constant -2.470%*  -1.838*** -2.176* -2.063*** -2.262%%* -1.271% -0.917
(0.090) (0.399) (1.223) (0.066) (0.067) (0.242) (0.682)
Portfolio Type Transport ~ Transport  Transport  Electricity  Electricity  Electricity  Electricity
Portfolio FEs X X X X X X X
Year FEs X X X X X X X
Firm FEs X X X X
Firm level controls X X
Observations 26,810 18,675 15,604 41,591 41,591 25,213 20,266
R2 0.768 0.823 0.836 0.625 0.626 0.707 0.725

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm Ievel.
Dependent variable: Count of Families citing ICT.
Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.
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D.3.2.3 Examining the Role of Energy Stock

TABLE D.18
Similar to Table 5.7 With More Specifications for Al
()] (@) 3 ) %) ©) O] ®)
Al Al Al Al Al Al Al Al
Family Count (log) 0.982** 0.982%* 0.930%** 0.922%* 0.971** 1.064*** 1.014%* 1.017**
(0.044) (0.044) (0.043) (0.045) (0.108) (0.126) (0.041) (0.042)
Clean Portfolio 1.026%** 0.750*** 0.912%* 1.014*** -0.202 0.350%** 0.142 0.006
(0.122) (0.147) (0.248) (0.273) (0.231) (0.112) (0.159) (0.184)
Grey Portfolio 0.846** 0.847** 0.589*** 0.645*** 0.128 0.134 -0.219 -0.230
(0.091) (0.147) (0.204) (0.225) (0.142) 0.117) (0.193) 0.218)
Stock Al (log, t-1) 0.362*** 0.273*** 0.054 0.020 0.303*** 0.333*** -0.029 -0.067
(0.037) (0.066) (0.082) (0.096) (0.058) (0.082) (0.078) (0.087)
Stock Energy (log, t-1) -0.216™*  -0.199"**  -0.258*** -0.186** -0.143*** -0.136** -0.108* -0.048
(0.037) (0.045) (0.069) (0.083) (0.040) (0.051) (0.056) (0.063)
Clean X Stock Al (log, t-1) 0.138* 0.124* 0.137* -0.030 -0.022 -0.014
(0.073) (0.069) (0.074) (0.101) (0.047) (0.047)
Grey X Stock Al (log, t-1) -0.061 -0.008 -0.015 -0.060 -0.021 -0.035
(0.081) (0.066) (0.070) (0.065) (0.085) (0.086)
Clean X Energy Stock (log, t-1) -0.029 0.011 -0.007 -0.112* 0.023 0.033
(0.046) (0.059) (0.065) (0.068) (0.037) (0.042)
Grey X Energy Stock (log, t-1) 0.039 0.046 0.046 0.028 0.086* 0.103*
(0.051) (0.051) (0.057) (0.042) (0.047) (0.053)
Total Assets (log) 0.178** -0.065
(0.088) (0.047)
Nbr Empoyees (log) -0.201** 0.038
(0.057) (0.079)
Age (log) -0.562* -0.341*
(0.308) (0.203)
Constant -3.758* - -3.595%  -1.960*** -2.226 -3.774%* -4.075*** -2.339"** -0.210
(0.106) (0.127) (0.493) (1.394) (0.136) (0.114) (0.316) (1.203)
Portfolio Type Transport ~ Transport  Transport  Transport  Electricity  Electricity  Electricity  Electricity
Portfolio FEs X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X
Firm level controls X X
Observations 26,810 26,810 11,337 9,610 41,591 41,591 10,957 9,097
R2 0.658 0.660 0.725 0.742 0.330 0.335 0.435 0.449

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm level.
Dependent variable: Count of Families citing Al

Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.
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TABLE D.19
Similar to Table 5.7 With More Specifications for ICT
() @) 3 ) (5) (6) O] (®)
ICT ICT ICT ICT ICT ICT ICT ICT
Family Count (log) 0.937** 0.939*** 0.896*** 0.887** 0.977* 1.032%* 1.039%* 1.016***
(0.028) (0.030) (0.044) (0.044) (0.033) (0.036) (0.024) (0.026)
Clean Portfolio 0.735%* 0.680*** 0.683*** 0.697** 0.512%* 0.903*** 0.489*** 0.476***
(0.056) (0.075) (0.112) (0.126) (0.081) (0.064) (0.092) (0.102)
Grey Portfolio 0.460** 0.303*** 0.067 0.023 -0.000 -0.054 -0.252** -0.331%**
(0.066) (0.100) (0.164) (0.171) (0.069) (0.075) (0.105) (0.115)
Stock ICT (log, t-1) 0.121%* 0.231%* 0.211%* 0.197** 0.235%* 0.305*** 0.081* 0.083*
0.017) (0.022) (0.066) (0.060) (0.014) (0.019) (0.042) (0.049)
Stock Energy (log, t-1) -0.065*  -0.169"*  -0.283***  -0.244"*  -0.205"** -0.250™** -0.189"** -0.183***
(0.023) (0.026) (0.047) (0.049) (0.019) (0.023) (0.039) (0.045)
Clean X Stock ICT (log, t-1) -0.121%*  -0.068***  -0.072*** -0.099*** -0.092%** -0.084***
(0.027) (0.024) (0.024) (0.023) 0.021) (0.023)
Grey X Stock ICT (log, t-1) -0.095***  -0.101***  -0.112*** -0.041* 0.001 0.006
(0.026) (0.027) (0.029) (0.025) (0.019) (0.022)
Clean X Energy Stock (log, t-1) 0.109*** 0.089*** 0.093** 0.017 0.105** 0.101***
(0.025) (0.025) (0.026) (0.033) (0.030) (0.032)
Grey X Energy Stock (log, t-1) 0.100*** 0.137** 0.154** 0.057* 0.062*** 0.070**
(0.026) (0.040) (0.041) (0.030) (0.024) (0.028)
Total Assets (log) 0.149*** 0.010
(0.052) (0.032)
Nbr Empoyees (log) -0.097** 0.036
(0.034) (0.046)
Age (log) -0.505*** -0.170*
(0.193) (0.094)
Constant -2.250"* 22,162 -1.067*** -1.700 -1.927%* -2.178* -1.067*** -0.950
(0.056) (0.077) (0.402) (1.245) (0.062) (0.060) (0.238) (0.657)
Portfolio Type Transport — Transport  Transport  Transport  Electricity  Electricity  Electricity  Electricity
Portfolio FEs X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X
Firm level controls X X
Observations 26,810 26,810 18,675 15,604 41,591 41,591 25,213 20,266
R2 0.769 0.769 0.824 0.836 0.635 0.639 0.707 0.726

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm Ievel.

Dependent variable: Count of Families citing ICT.
Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.
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TABLE D.20
Similar to D.18 Controlling for Sectoral/Clean/Grey Focus (Transport)
M (@) 3 (C)) (&) (6)
Al Al Al Al Al Al
Family Count (log) 0.973** 0.974** 0.982%* 0.922%* 0.841** 0.994**
(0.029) (0.050) (0.044) (0.045) (0.048) (0.046)
Clean Portfolio 0.304 -0.020 0.750%* 1.014*** 0.689** 0.032
(0.337) (0.297) (0.147) (0.273) (0.341) (0.355)
Grey Portfolio 0.346 -0.121 0.847** 0.645** 0.219 -0.233
(0.298) (0.310) (0.147) (0.225) (0.465) (0.338)
Firm Sectoral Focus -0.218 -0.028 -0.121 -0.095
(0.173) (0.194) (0.156) (0.204)
Firm Clean Focus -0.002 -0.004 -0.005 0.000
(0.003) (0.004) (0.004) (0.005)
Firm Grey Focus 0.011*** -0.001 0.011*** 0.002
(0.004) (0.004) (0.003) (0.004)
Clean X Firm Sectoral Focus 1.212%** 0.523*** 1.323%** 0.662***
(0.193) (0.195) (0.189) (0.199)
Grey X Firm Sectoral Focus 0.669*** 0.231 0.688*** 0.235
(0.159) (0.158) (0.180) (0.175)
Clean X Firm Clean Focus 0.003 0.012*** -0.001 0.006
(0.004) (0.005) (0.005) (0.005)
Grey X Firm Clean Focus 0.006 0.011** 0.001 0.011**
(0.004) (0.004) (0.005) (0.005)
Clean X Firm Grey Focus 0.008* 0.017*** -0.003 0.013***
(0.004) (0.004) (0.005) (0.004)
Grey X Firm Grey Focus -0.004 0.010* -0.007 0.009*
(0.004) (0.006) (0.006) (0.005)
Total Assets (log) 0.146* 0.178** 0.175*
(0.079) (0.088) (0.084)
Nbr Empoyees (log) -0.229"** -0.201*** -0.237%**
(0.058) (0.057) (0.058)
Age (log) -0.525%** -0.562* -0.581**
(0.170) (0.308) (0.268)
Stock Al (log, t-1) 0.273*** 0.020 0.326*** 0.033
(0.066) (0.096) (0.059) (0.110)
Clean X Stock Al (log, t-1) 0.138* 0.137* 0.205%** 0.143*
(0.073) (0.074) (0.067) (0.081)
Grey X Stock Al (log, t-1) -0.061 -0.015 -0.068 -0.057
(0.081) (0.070) (0.090) (0.081)
Stock Energy (log, t-1) -0.199"**  -0.186**  -0.162*** -0.166*
(0.045) (0.083) (0.054) (0.090)
Clean X Energy Stock (log, t-1) -0.029 -0.007 -0.081 -0.040
(0.046) (0.065) (0.049) (0.067)
Grey X Energy Stock (log, t-1) 0.039 0.046 0.104 0.049
(0.051) (0.057) (0.072) (0.062)
Constant -4.203"* -2.557* -3.595%** -2.226 -3.617* -2.202*
(0.246) (1.314) (0.127) (1.394) (0.200) (1.287)
Portfolio Type Transport  Transport  Transport  Transport  Transport Transport
Portfolio FEs X X X X X X
Year FEs X X X X X X
Firm FEs X X X
Firm level controls X X X
Observations 30,805 10,733 26,810 9,610 26,810 9,610
R2 0.653 0.740 0.660 0.742 0.696 0.745

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm Ievel.

Dependent variable: Count of Families citing Al.
Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.
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TABLE D.21
Similar to D.18 Controlling for Sectoral/Clean/Grey Focus (Electricity)
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M (@) 3 “ (5 (6)
Al Al Al Al Al Al
Family Count (log) 1.060*** 0.997** 1.064*** 1.017** 1.016*** 1.091%*
(0.068) (0.055) (0.126) (0.042) (0.068) (0.052)
Clean Portfolio -0.441 -0.599* 0.350%* 0.006 0.803 -0.024
(0.617) (0.363) (0.112) (0.184) (0.946) (0.462)
Grey Portfolio 0.055 -0.516 0.134 -0.230 0.911* -1.207*
(0.403) (0.393) (0.117) (0.218) (0.444) (0.476)
Firm Sectoral Focus 0.025 -0.101 -0.438 -0.077
(0.225) (0.167) (0.284) (0.178)
Firm Clean Focus -0.007 -0.005 -0.029*** -0.006
(0.005) (0.003) (0.008) (0.004)
Firm Grey Focus 0.008 0.004 0.005 0.005
(0.007) (0.005) (0.007) (0.004)
Clean X Firm Sectoral Focus -0.580* 0.179 0.089 0.225
(0.326) (0.162) (0.495) 0.174)
Grey X Firm Sectoral Focus 0.009 -0.045 0.369 -0.237
(0.205) (0.160) (0.287) (0.150)
Clean X Firm Clean Focus 0.006 0.012** 0.026*** 0.009*
(0.008) (0.005) (0.009) (0.005)
Grey X Firm Clean Focus 0.014** 0.017*** 0.029*** 0.020***
(0.006) (0.005) (0.008) (0.006)
Clean X Firm Grey Focus 0.015 0.013* 0.015* 0.011*
(0.009) (0.007) (0.009) (0.006)
Grey X Firm Grey Focus -0.009 0.003 -0.009 0.005
(0.009) (0.006) (0.008) (0.006)
Total Assets (log) -0.074 -0.065 -0.057
(0.048) (0.047) (0.047)
Nbr Empoyees (log) 0.061 0.038 0.022
(0.065) (0.079) (0.076)
Age (log) -0.428** -0.341* -0.350*
(0.164) (0.203) (0.210)
Stock Al (log, t-1) 0.333** -0.067 0.582%** -0.020
(0.082) (0.087) (0.104) (0.096)
Clean X Stock Al (log, t-1) -0.030 -0.014 -0.285** -0.073
(0.101) (0.047) (0.122) (0.060)
Grey X Stock Al (log, t-1) -0.060 -0.035 -0.317** -0.123
(0.065) (0.086) (0.084) (0.087)
Stock Energy (log, t-1) -0.136™** -0.048 -0.057 -0.054
(0.051) (0.063) (0.072) (0.065)
Clean X Energy Stock (log, t-1) -0.112* 0.033 -0.166 -0.011
(0.068) (0.042) (0.122) (0.051)
Grey X Energy Stock (log, t-1) 0.028 0.103* -0.056 0.156™**
(0.042) (0.053) (0.073) (0.058)
Constant -4.124%* -0.361 -4.075** -0.210 -4.534%* -0.515
(0.288) (1.057) (0.114) (1.203) (0.292) (1.177)
Portfolio Type Electricity  Electricity ~ Electricity  Electricity  Electricity Electricity
Portfolio FEs X X X X X
Year FEs X X X X X X
Firm FEs X X X
Firm level controls X X X
Observations 48,082 10,082 41,591 9,097 41,591 9,097
R2 0314 0.455 0.335 0.449 0.355 0.455

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm Ievel.
Dependent variable: Count of Families citing Al.

Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.
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TABLE D.22
Similar to D.18 Controlling for Sectoral/Clean/Grey Focus (Transport)
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) (@) 3 ) (5) (6)
ICT ICT ICT ICT ICT ICT
Family Count (log) 0.956*** 0.921** 0.860*** 0.880*** 0.810*** 0.937**
(0.021) (0.042) (0.029) (0.039) (0.034) (0.038)
Clean Portfolio 0.560** 0.176 0.895** 0.838** 0.502** 0.339
(0.202) (0.182) (0.080) (0.151) (0.188) (0.216)
Grey Portfolio 0.043 -0.297 0.284%* 0.047 -0.322 -0.550**
(0.169) (0.234) (0.097) (0.180) (0.263) (0.248)
Firm Sectoral Focus -0.274%* -0.046 -0.166* -0.097
(0.102) (0.117) (0.088) (0.121)
Firm Clean Focus 0.004*** -0.001 -0.002 -0.002
(0.001) (0.002) (0.003) (0.002)
Firm Grey Focus 0.007*** -0.002 0.004** -0.002
(0.003) (0.002) (0.002) (0.002)
Clean X Firm Sectoral Focus 0.413* 0.201* 0.410*** 0.269**
(0.110) (0.115) (0.104) (0.116)
Grey X Firm Sectoral Focus 0.515*** 0.235** 0.473** 0.223**
(0.082) (0.093) (0.084) (0.095)
Clean X Firm Clean Focus -0.001 0.006** 0.004 0.005*
(0.003) (0.003) (0.003) (0.003)
Grey X Firm Clean Focus 0.004** 0.009*** 0.006** 0.011**
(0.002) (0.003) (0.003) (0.003)
Clean X Firm Grey Focus 0.004 0.010*** 0.003 0.009***
(0.003) (0.002) (0.003) (0.002)
Grey X Firm Grey Focus -0.004 0.005 0.000 0.006*
(0.003) (0.004) (0.003) (0.004)
Total Assets (log) 0.154*** 0.143%* 0.134***
(0.053) (0.048) (0.046)
Nbr Empoyees (log) -0.114** -0.095*** -0.119***
(0.032) (0.034) (0.035)
Age (log) -0.466** -0.503** -0.511*
(0.138) (0.220) (0.216)
Stock Al (log, t-1) 0.188*** 0.076 0.205*** 0.101*
(0.037) (0.054) (0.034) (0.056)
Clean X Stock Al (log, t-1) 0.029 0.064* 0.017 0.039
(0.039) (0.038) (0.035) (0.034)
Grey X Stock Al (log, t-1) -0.034 -0.036 -0.056 -0.082*
(0.046) (0.041) (0.048) (0.044)
Stock Energy (log, t-1) -0.035 -0.109** -0.019 -0.102**
(0.024) (0.050) (0.031) (0.051)
Clean X Energy Stock (log, t-1) -0.018 -0.021 -0.016 -0.043
(0.025) (0.034) (0.031) (0.036)
Grey X Energy Stock (log, t-1) 0.047* 0.076** 0.067* 0.061*
(0.027) (0.038) (0.037) (0.035)
Constant -2.294%* -2.226* -2.105%** -1.536 -2.030%** -1.179
(0.127) (1.139) (0.085) (1.159) (0.099) (1.122)
Portfolio Type Transport  Transport  Transport  Transport  Transport Transport
Portfolio FEs X X X X X X
Year FEs X X X X X X
Firm FEs X X X
Firm level controls X X X
Observations 30,805 17,310 26,810 15,604 26,810 15,604
R2 0.764 0.836 0.776 0.836 0.780 0.837

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm Ievel.

Dependent variable: Count of Families citing ICT.
Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.
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TABLE D.23
Electricity: Similar to D.18 Controlling for Sectoral/Clean/Grey Focus (Electricity)
) 2 3 “ (5) (6)
ICT ICT ICT ICT ICT ICT
Family Count (log) 1.055*** 0.970** 1.023*** 1.006*** 0.941** 1.006***
(0.022) (0.030) (0.039) (0.025) (0.034) (0.028)
Clean Portfolio 1.103*** 0.188 1.022%** 0.231** 0.930*** 0.005
(0.287) (0.154) (0.066) (0.097) (0.222) (0.159)
Grey Portfolio -0.378 -0.667** -0.059 -0.340*** -0.195 -1.336***
(0.240) (0.199) (0.069) (0.112) (0.304) (0.233)
Firm Sectoral Focus -0.184 -0.091 -0.348** -0.001
(0.137) (0.099) (0.128) (0.084)
Firm Clean Focus 0.009*** -0.003* 0.001 -0.002
(0.003) (0.002) (0.004) (0.002)
Firm Grey Focus -0.004 -0.006*** -0.006 -0.004**
(0.003) (0.002) (0.005) (0.002)
Clean X Firm Sectoral Focus -0.331* -0.142 -0.226* -0.207**
(0.131) (0.111) (0.129) (0.092)
Grey X Firm Sectoral Focus -0.051 -0.131 -0.014 -0.337*
(0.127) (0.105) (0.134) (0.095)
Clean X Firm Clean Focus -0.012%* 0.003 -0.002 0.002
(0.004) (0.002) (0.004) (0.002)
Grey X Firm Clean Focus 0.005 0.009*** 0.008* 0.009***
(0.003) (0.002) (0.004) (0.003)
Clean X Firm Grey Focus 0.002 0.009*** 0.004 0.007***
(0.004) (0.002) (0.005) (0.002)
Grey X Firm Grey Focus 0.007 0.011** 0.008 0.012***
(0.004) (0.003) (0.005) (0.003)
Total Assets (log) 0.013 0.015 0.021
(0.033) (0.033) (0.033)
Nbr Empoyees (log) 0.017 0.036 0.034
(0.043) (0.045) (0.045)
Age (log) -0.258** -0.173* -0.149
(0.086) (0.095) (0.092)
Stock Al (log, t-1) 0.268*** 0.083* 0.259** 0.087*
(0.046) (0.043) (0.045) (0.043)
Clean X Stock Al (log, t-1) -0.138*** -0.089*** -0.133*** -0.097**
(0.041) (0.024) (0.042) (0.026)
Grey X Stock Al (log, t-1) -0.025 0.003 -0.054 -0.013
(0.047) (0.032) (0.048) (0.038)
Stock Energy (log, t-1) -0.095*** -0.165*** 0.000 -0.166***
(0.028) (0.041) (0.045) (0.041)
Clean X Energy Stock (log, t-1) -0.025 0.093*** 0.002 0.095***
(0.032) (0.027) (0.052) (0.028)
Grey X Energy Stock (log, t-1) 0.009 0.072** -0.034 0.108***
(0.032) (0.031) (0.057) (0.035)
Constant -2.347* -0.676 -2.004*** -0.817 -2.342% -0.917
(0.172) (0.673) (0.062) (0.673) (0.138) (0.682)
Portfolio Type Electricity  Electricity ~ Electricity  Electricity  Electricity Electricity
Portfolio FEs X X X X X X
Year FEs X X X X X X
Firm FEs X X X
Firm level controls X X X
Observations 48,082 22,476 41,591 20,266 41,591 20,266
R2 0.616 0.733 0.613 0.726 0.624 0.727

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm Ievel.

Dependent variable: Count of Families citing ICT.

Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.
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