

1 **The London School of Economics and Political Science**

2

3 *Temporal drivers of heterogeneity: understanding the role of “when” in*
4 *cognition and decision-making*

5

6 Virginia Fedrigo

7

8 A thesis submitted to the Department of Psychological and Behavioural
9 Science of the London School of Economics and Political Science for the
10 degree of Doctor of Philosophy,

11

12 London, February 2024

13 **Declaration**

14 I certify that the thesis I have presented for examination for the MPhil/PhD
15 degree of the London School of Economics and Political Science is solely my
16 own work other than where I have clearly indicated that it is the work of others
17 (in which case the extent of any work carried out jointly by me and any other
18 person is clearly identified in it).

19 The copyright of this thesis rests with the author. Quotation from it is permitted,
20 provided that full acknowledgement is made. This thesis may not be
21 reproduced without my prior written consent.

22 I warrant that this authorisation does not, to the best of my belief, infringe the
23 rights of any third party.

24 I declare that my thesis consists of 66,113 words.

25 **Statement of co-authored work**

26 I confirm that Paper 1 was jointly co-authored with Matteo Galizzi, Rob Jenkins,
27 and Jet G. Sanders; I contributed 60% of this work.

28 I confirm that Paper 2 was jointly co-authored with Matteo Galizzi, Benno
29 Guenther, Rob Jenkins, and Jet G. Sanders; I contributed 60% of this work.

30 I confirm that Paper 3 was jointly co-authored with Barbara Fasolo, Matteo
31 Galizzi, and Jet G. Sanders; I contributed 60% of this work.

32 I confirm that Paper 4 was jointly co-authored with Barbara Fasolo, Matteo
33 Galizzi, and Claire Heard; I contributed 50% of this work.

34 **Acknowledgements**

35 This PhD would not have been possible without all those that supported me
36 along the way—thank you.

37 To my supervisors, Dr Matteo Galizzi and Dr Barbara Fasolo, for your
38 unwavering support and mentorship.

39 To my parents, for never doubting me and sacrificing so much.

40 To my partner, for everything and more.

41 **Abstract**

42 Behavioural science researchers, practitioners, and policymakers have
43 realised how important is to characterize the various drivers of heterogeneity
44 of human behaviour within populations in order to understand intra- and inter-
45 individual differences and create better interventions.

46 This thesis examines temporal drivers of heterogeneity, focusing on *when*
47 decisions are made, especially looking at the day of the week. The day of the
48 week has been shown to affect individual cognition and decision-making, and
49 this is termed the 'day of the week effect'.

50 This thesis examines the antecedents (paper 1), the potential causes (paper
51 2), the manifestations (paper 3), and extended applications (paper 4) of the day
52 of the week effect.

53 The first paper reveals that at the start of the day, individual thoughts are largely
54 uniform across the days of the week, focusing on the day ahead and on a to-
55 do list. The second paper finds that both individual awareness of the days of
56 the week as well as societal meaning of the days of the week are needed for
57 the days to influence an individual. The third paper finds that the day of the
58 week does not influence engagement with health information. The fourth paper
59 finds that the day of the week does not affect established decision-making
60 patterns or strategies, suggesting that it may only affect certain domains of
61 cognition and decision-making.

62 Overall, this thesis contributes to the ongoing discussion of heterogeneity
63 within behavioural science, in particular adding to the understanding of the day
64 of the week effect.

65	<u>Table of Contents</u>	
66	DECLARATION	2
67	STATEMENT OF CO-AUTHORED WORK.....	2
68	ACKNOWLEDGEMENTS.....	3
69	ABSTRACT	4
70	GENERAL INTRODUCTION.....	9
71	1. WHAT IS BEHAVIOURAL SCIENCE?	10
72	2. BEHAVIOURAL SCIENCE AND INDIVIDUAL HETEROGENEITY	12
73	3. BEHAVIOURAL SCIENCE HEALTH APPLICATIONS.....	14
74	4. WEEKLY FLUCTUATIONS BACKGROUND.....	15
75	5. THE PRESENT WORK	17
76	REFERENCES.....	19
77	PAPER 1: PENUMBRAL THOUGHTS: CONTENTS OF CONSCIOUSNESS UPON WAKING.....	24
78	PAPER 1: IN CONTEXT.....	25
79	ABSTRACT.....	26
80	1. INTRODUCTION	26
81	2. METHODS	29
82	<i>2.1. Participants</i>	29
83	<i>2.2. Materials and procedure</i>	29
84	<i>2.3. Analysis</i>	31
85	3. RESULTS	32
86	<i>3.1. Open responses.....</i>	32
87	<i>3.2 Thought characterisation.....</i>	32
88	<i>3.3. Thought context.....</i>	36
89	<i>3.4. Consistency across demographics and weekday</i>	38
90	<i>3.5. Reflection responses</i>	38
91	4. DISCUSSION	42
92	5. DATA AVAILABILITY STATEMENT	45

93	6. FUNDING	45
94	7. AUTHOR CONTRIBUTIONS	45
95	8. REFERENCES	46
96	PAPER 2: WEAKENED WEEKDAYS: LOCKDOWN DISRUPTS THE WEEKLY CYCLE OF RISK	
97	TOLERANCE	52
98	PAPER 2: IN CONTEXT	53
99	1. ABSTRACT	54
100	2. INTRODUCTION	54
101	3. METHODS	58
102	3.1. <i>Materials and design (Study 1 & 2)</i>	58
103	3.2. <i>Study 1</i>	60
104	3.3. <i>Study 2</i>	61
105	4. DATA ANALYSIS	61
106	5. RESULTS	62
107	5.1. <i>Study 1</i>	62
108	5.2. <i>Study 2</i>	65
109	6. DISCUSSION	68
110	6.1. <i>Study 1</i>	68
111	6.2. <i>Study 2</i>	69
112	6.3. <i>General Discussion</i>	70
113	7. COMPETING INTERESTS	75
114	8. AUTHOR CONTRIBUTIONS	75
115	9. ACKNOWLEDGEMENTS	75
116	10. DATA AVAILABILITY STATEMENT	75
117	11. WORKS CITED	76
118	PAPER 3: DOES THE DAY MATTER? NO DAY OF THE WEEK EFFECT IN AN EXPERIMENT ON	
119	HEALTH INFORMATION ENGAGEMENT	82
120	PAPER 3: IN CONTEXT	83
121	ABSTRACT	84

122	1. INTRODUCTION	84
123	2. METHODS	87
124	<i>2.1. Participant recruitment</i>	87
125	<i>2.2. Materials and procedure</i>	89
126	3. RESULTS	92
127	<i>3.1. Main analysis</i>	92
128	<i>3.2. Exploratory analyses</i>	98
129	4. DISCUSSION	101
130	5. FUNDING	104
131	6. DATA AVAILABILITY	104
132	7. AUTHOR CONTRIBUTIONS	105
133	8. REFERENCES	106
134	PAPER 4: REPLICATION AND EXTENSION OF THE AFFECT GAP: ROBUST TO DAY OF THE	
135	WEEK EFFECTS	113
136	PAPER 4: IN CONTEXT	114
137	ABSTRACT	116
138	1. INTRODUCTION	116
139	2. METHODS	121
140	<i>2.1. Participant recruitment</i>	121
141	<i>2.2. Materials and procedure</i>	122
142	3. RESULTS	124
143	<i>3.1. Preference reversals</i>	124
144	<i>3.2. Day of the week effect on heuristic and integral affect</i>	124
145	<i>3.3. Incidental affect changes over the week</i>	127
146	<i>3.4. Preference reversals, heuristics, and incidental affect</i>	127
147	4. DISCUSSION	127
148	5. FUNDING	130
149	6. DATA AVAILABILITY	130
150	7. CONTRIBUTIONS	130

151	8. REFERENCES	131
152	GENERAL DISCUSSION	134
153	CONTRIBUTIONS.....	135
154	LIMITATIONS	138
155	FUTURE STUDIES AND DIRECTIONS.....	143
156	IMPLICATIONS FOR PRACTITIONERS.....	146
157	CONCLUSION	148
158	SUPPLEMENTARY MATERIALS	150
159	PAPER 1	150
160	PAPER 2	162
161	Study 1:.....	162
162	Study 2:.....	210
163	PAPER 3	258
164	PAPER 4	292
165		
166		

167 **General Introduction**

168 This introductory chapter discusses four relevant concepts in the literature,
169 upon which this thesis builds. First, this begins with a discussion of what
170 behavioural science is to orient this work within the context of the aims and
171 methods of the field. Second, this introduction discusses behavioural science
172 and individual heterogeneity, as the field continues to struggle with how to
173 reconcile differences both within and between individuals with the typical broad-
174 strokes implementation of many behavioural science interventions. Third,
175 behavioural science and health is briefly discussed, as applications of
176 behavioural science to health are common and widespread (including within
177 the third paper of this thesis). Lastly, the weekly cycle is discussed to lay the
178 groundwork for the temporal element of heterogeneity that is a cornerstone of
179 this thesis' focus.

180 Broadly, this thesis sets out to understand and better characterize temporal
181 drivers of individual heterogeneity within behavioural science. The motivation
182 behind this investigation is that time is an inescapable feature of every
183 behaviour an individual ever carries out and scaffolds our understanding of the
184 world around us. Therefore, this thesis contains four chapters that investigate
185 time's effect on individual heterogeneity from different theoretical 'distances',
186 from the antecedents, the manifestations, the first-order implications, and the
187 second-order implications. Through this methodological examination, a
188 multifaceted understanding of the temporal drivers of heterogeneity (and their
189 effects) emerges that creates an understanding on how time cycles change
190 individual behaviour. The diversified methodological approach taken in this
191 research reflects a wider recognition in the social sciences: the questions I seek
192 to answer require drawing from different disciplines and integrating their
193 associated methods into a unified approach (Buyalskaya et al., 2021). By a
194 thorough examination of (some of) what makes individuals different, especially
195 focusing on different from *themselves* from one day to the next, a clearer
196 understanding of heterogeneity and its implications for behavioural science,
197 can be built.

198 **1. What is behavioural science?**

199 Behavioural science, as a field, seeks to understand and characterize actions
200 and decisions made by people both individually and in groups (National
201 Research Council, 1988). While this is an important goal, behavioural science
202 is not unique in its interest in understanding individual action. Whether through
203 economic modelling or neuroscience-based predictions, understanding human
204 behaviour and its many (in)consistencies is a shared interest across many
205 scientific disciplines (Glimcher & Fehr, 2013; Sanfey, 2007). One of the primary
206 strengths of behavioural science as a field has been its willingness to draw from
207 a wide variety of disciplines, incorporating their guiding principles, methods,
208 and analytical toolkit (Gintis, 2007; Kwon & Silva, 2020). This creates an
209 exciting and interdisciplinary field, as age-old questions—what makes us
210 decide the way we do?—are tackled by groups of behavioural scientists with
211 backgrounds as varied as their approaches.

212 One of the tenets of behavioural science lies in the acknowledgement that
213 individual behaviour cannot be neatly predicted and categorized—further,
214 individuals often act directly against best interests (both their own and collective
215 ones) and their overarching intentions. Consider a non-exhaustive list of
216 examples: not saving for retirement, continuing unhealthy behaviours, and
217 more (Duckworth et al., 2018). While perhaps an intuitive proposition in the
218 context of contemporary science, it is important to note that the very concept
219 of human bounded rationality was in and of itself a revolution for many fields,
220 for example economics (see Mill, 1824, for the original definition of *Homo*
221 *economicus*). The very acknowledgement of human limited rationality, and the
222 predictable ways from which we often go astray, has opened the door to the
223 conception of behavioural science as a discipline.

224 Behavioural science has gone from strength to strength in all areas, from
225 universities offering specialised degrees in the area, to integration within
226 governments, to holding its own in both commercial and policy applications
227 around the world (Benartzi et al., 2017). Through a robust, evidence-based
228 examination of individual behaviours and biases, leaving long behind the idea

229 of *Homo economicus*, behavioural science has allowed for light-touch
230 modifications of existing systems to yield massive changes.

231 A prominent example of this integration is through the Behavioural Insights
232 Team (BIT), an organization originally set up within the United Kingdom's
233 cabinet to apply behavioural science methods to existing policy challenges.
234 Now an international research consultancy working for a variety of private,
235 public, and governmental bodies, BIT has paved the way for impactful
236 integration of rigorous behavioural science methods to pressing questions. An
237 early success for BIT involved invoking social norms in text messages
238 regarding taxes (Hallsworth et al., 2007). Through small modifications to
239 language, researchers were able to increase the proportion of taxpayers paying
240 their taxes on time. While a small example in a sea of applications, the power
241 of behavioural science to shape behaviour was recognized and embraced.

242 However, behavioural science has not been without its detractors. A large
243 meta-analysis of behavioural science led interventions, both in the academic
244 and the so-called 'nudge unit' sphere (i.e., government entities), showed that
245 effect sizes in academic papers often are wildly beyond what can be expected
246 in interventions in the wild (Dellavigna & Linos, 2022). The replicability crisis,
247 an ongoing phenomenon within the social sciences including behavioural
248 science (Pashler & Wagenmakers, 2012), centres around the finding that many
249 famous social science studies, which have served as cornerstones of their
250 respective subfields, do not replicate when other researchers attempt to
251 conduct the same study. This has plagued many high-profile publications (see
252 Camerer et al., 2018) and led to a questioning of what effects, if any,
253 behavioural science can safely lay claim to. A blog post from BIT itself,
254 provocatively titled "Behavioural Science or Bullsh*t?" (*Behavioural Science or*
255 *Bullshit? | The Behavioural Insights Team*, 2022) sought to re-establish the
256 importance of rigorous methodology and scientific grounding which some
257 corners of behavioural science had lost.

258 It is important, therefore, to lend a critical eye to what we are asking when we
259 think about using behavioural science as a tool to answer a question. What
260 behaviours are we actually looking at, and what are we trying to measure?

261 What toolkit are we drawing from, and how robust are the conclusions we can
262 draw? What are the limits of what we can claim, and how do we go about finding
263 them? A review of the roots of behavioural science may seem out of place when
264 setting the stage for new research, as the basics are well-known to experts
265 within the field and may be perceived as rudimentary. I argue that it is indeed
266 crucial to the proceedings of this discipline to remain in touch with its original
267 conception and aims, to remind researchers and practitioners alike what
268 behavioural science can and cannot do. Furthermore, it is critical to connect
269 the present work, mentioned above and further presented in section 5 of this
270 introduction, to one of the main domains where it can be applied, behavioural
271 science.

272 **2. Behavioural science and individual heterogeneity**

273 Behavioural science and associated interventions are a powerful tool for
274 inciting behavioural change on an individual and often collective level.
275 However, its failure to account for the effects of individual heterogeneity (both
276 within and between individuals) often leads to unexpected outcomes. A pivotal
277 piece by Bryan et al. (2021) draws the connection between these issues in
278 replicability and the unacknowledged heterogeneity that often underlies the
279 samples used in various intervention studies. Briefly put, one cannot expect a
280 behavioural science intervention to have a homogenous effect when applied to
281 heterogeneous populations. This underappreciation for heterogeneity within
282 populations can be reframed as a factor that can provide more insight into the
283 causal mechanisms behind how these interventions affect the outcome
284 behaviour.

285 In behavioural science, this is often borne out as much-lauded interventions
286 failing to generate the expected significant effect size that had been found in
287 other studies, particularly in the policy space. A well-known example of this
288 phenomenon is the Opower case, originally put forth by Allcott (2011). Briefly,
289 this intervention aimed to decrease electricity usage through a social norm
290 approach. Homeowners were given information about the consumption levels
291 of their neighbours, allowing them to see where they fell in energy consumption
292 compared to similar households. The original experiment had a sample of

293 roughly 600,000 homes and resulted in a 2% decrease in electricity usage.
294 While this was a promising change, it did not carry over into subsequent
295 expansions of the Opower intervention. It later emerged that differences in
296 neighbourhood demographics were strong predictors of whether an Opower-
297 style intervention would have a measurable effect on household energy
298 consumption (Allcott, 2015).

299 This is one expression of how heterogeneity in a target population can be
300 conflated with a replication crisis. The inability to replicate a finding may be
301 misattributed to the research process versus a more nuanced understanding
302 of the participants and causal mechanism behind the intervention itself. Bryan
303 et al. (2021) therefore call for a “heterogeneity revolution”, wherein such
304 sources of heterogeneity are considered throughout the whole intervention
305 design process. As expressed in Bryan et al. (2021):

306 What if instead of treating variation in intervention effects as a nuisance
307 or a limitation on the impressiveness of an intervention, we assumed
308 that intervention effects should be expected to vary across contexts and
309 populations? How would we design the research pipeline differently if
310 we took seriously the challenge of using heterogeneity as a tool for
311 building more complete theories and producing more robust and
312 predictable effects across contexts and populations at the end of the
313 line?

314 Implementation of these methodologies would further help to reveal the causal
315 mechanism behind these interventions’ effects, while further separating out
316 between failures to replicate due to experimental error and unaccounted for
317 heterogeneity in participant pools driving disparate results. This idea is central
318 to the research presented here, as building an understanding of temporal
319 drivers of individual heterogeneity is one step towards forming a more complete
320 characterization of individual sources and manifestations of heterogeneity. As
321 this thesis sets out to understand individual heterogeneity, the
322 acknowledgement of its role within behavioural science-led interventions lays
323 the groundwork for a crucial application in this space.

324 **3. Behavioural science health applications**

325 Behavioural science is applied to assess which principles are most effective for
326 shifting health behaviour on a population scale (Livingood et al., 2011). There
327 are a host of undesirable behaviours (or lack of desirable behaviours) that incur
328 significant costs, both in terms of individual wellbeing and burdens to public
329 services. These behaviours are not always driven by lack of information (i.e., a
330 Gallup poll revealed 95% of Americans think smoking is harmful, yet 23%
331 smoke (Moore, 1999)). This points to the need for an approach that tackles the
332 underlying irrationality and contradictions that are often present in individual
333 behaviours. For example, there is no strictly rational reason that a smoker
334 should be more inclined to quit just through receiving information that changes
335 the language to suggest images of diseased lungs are like their own. However,
336 this is exactly the type of approach that is motivating a new intervention by
337 Murray et al. (2020) that uses images of individuals' own lungs to motivate
338 smoking cessation. This is an example of behavioural science needing to
339 address less 'rational' aspects of decision-making within individuals.

340 By understanding irrationality and using an evidence-based approach,
341 behavioural scientists have been able to introduce interventions that have
342 included everything from citizen taxation (Larkin et al., 2019) and incentive
343 structures within the NHS (*NHS England » NHS to Introduce New Financial
344 Incentive to Improve Staff Health*, 2016) to text message content for
345 appointment attendance (Arora et al., 2015) and modified supermarket layouts
346 (Gittelsohn et al., 2012). This has shown that behavioural interventions are a
347 feasible, cost-effective means to modify behaviours of the public, including in
348 the healthcare space.

349 Evidence-based methods are often used to test the effect of physical or spatial
350 alterations on behaviour. Behavioural scientists have successfully altered
351 undesirable behaviour such as smoking and alcohol consumption (Gill &
352 O'May, 2007; Robinson et al., 2019). However, current applications have
353 focused only on the physical aspect of the decision space. This presents an
354 opportunity for an enrichment of the method, by understanding the decision
355 space as part of a larger context that has a temporal dimension. I argue that by

356 integrating the temporal aspect into our current understanding of decision-
357 making, we can gain a richer and more complete understanding of decision-
358 making behaviour.

359 Behavioural science focuses on overcoming systematic decision-making bias
360 in behaviours on an individual level, but often does not address the inter- and
361 intra-personal fluctuations in any given behaviour and the role of individual
362 heterogeneity. This is often described as noise in decision-making and can
363 manifest in a diversity of cases. For example, when pathologists assessed the
364 severity of biopsy results across two independent instances, the correlation
365 between their ratings was only 0.61. In other words, their diagnoses were
366 frequently inconsistent (Kahneman et al., 2016). An important step in better
367 understanding these inconsistencies is to explore underlying systematic
368 fluctuation as a driver of heterogeneity in preference and cognitive stability
369 within individuals. Classifying these fluctuations could also inform the current
370 push in behavioural science to understand why behavioural interventions have
371 heterogeneous effects (see earlier discussion, as well as Bao & Ho (2015);
372 Sunstein (2017)) and in turn pave the way for more effective interventions.
373 Therefore, the understanding of individual heterogeneity is pivotal not just as
374 something to understand within the context of psychological research—rather,
375 it lays the groundwork for the creation of more effective interventions in the
376 future.

377 **4. Weekly fluctuations background**

378 Time is often viewed as the backdrop against which human behaviour unfolds,
379 and it seldom garners adequate attention in and of itself. However, it governs
380 much of the rhythm of daily life, dictating plans, actions, and mindsets. For
381 example, the beginning a new week has been found to increase goal-directed
382 behaviour (Dai et al., 2014). Furthermore, the cyclical structure of modern
383 Western society has given to time (namely, breaking it up into seven-day
384 weeks) has become a pervasive scaffolding to which individuals fit in and
385 organize their lives. This seven-day structure is an entirely ‘artificial’ one, as it
386 is not based in a physical or biological rhythm (in contrast with the 24-hour day
387 and the circadian rhythm)—however, it has existed in some form since the

388 Babylonians (Copeland, 1939). I argue that this imposed cyclical structure, by
389 which society largely uniformly operates, has a greater effect on individual
390 states and subsequent decision-making than is commonly recognized,
391 hereafter referred to as the day of the week effect. Of note, the day of the week
392 effect discussed herein is based in the predominantly Western understanding
393 of the week; namely, Monday through Friday are weekdays associated with
394 work and school for children, while Saturday and Sunday are weekends
395 associated with time off and leisure activities.

396 One area in which these differences are pervasive is in individual subjective
397 experience and affect on various days. Many naturally associate certain times
398 of the day or week with different events, habits, and emotions (Ellis et al., 2015).
399 And as many individuals can recognise anecdotally, Friday carries a sense of
400 elation at the upcoming weekend, while Monday carries a sense of fatigue and
401 a negative mood (Stone et al., 2012). This is an intriguing finding, as there is
402 little materially different in a biological or geophysical sense between a Friday
403 or a Monday of the same week—unlike comparing a December morning to a
404 July morning, the differences are largely socially constructed. There is growing
405 research into the effects these ubiquitous temporal patterns, especially the
406 seven-day week, have on individual cognition, emotions, and the subsequent
407 decisions.

408 These cyclical differences between weekdays, previously identified in affect,
409 have been shown to have larger-scale impacts on behaviours across several
410 domains. For example, the day of the week has been shown to have an effect
411 in various behavioural domains, from the mundane such as traffic flow and
412 coffee queues, and attendance to medical appointments (Ellis et al., 2022.) to
413 suicide rates (Brådvik & Berglund, 2003), stock performance (Gibbons & Hess,
414 1981), political decision-making (Sanders & Jenkins, 2016), and surgical risk
415 (Aylin et al., 2013). Interestingly, these fluctuations have also been found in
416 incidence of acute illness, such as myocardial infarctions and stroke (Arntz,
417 2000; Gerber et al., 2006; Phillips et al., 1999; Wang et al., 2002). In the case
418 of acute myocardial infarction, the increase in sympathetic nervous system
419 activity (a driver of acute myocardial infarction) associated with the stress of

420 Monday has been proposed as a cause for the spike in incidence (Kloner,
421 2006). These “natural and unnatural triggers” (Kloner, 2006), mentioned in the
422 context of causes of the cyclical nature of myocardial infarction, suggest an
423 interplay between the societally formed seven-day weekly cycle and its tangible
424 effects on individuals.

425 In sum, we are all influenced by time and the rites and structures built around
426 it: the time of day (Roeser et al., 2016), day of the week (Stone et al., 2012),
427 and the month of the year (Thaler, 1987) are influences present in every
428 decision an individual will ever make. The effect of these influences has been
429 briefly described above, including both affect, physical symptoms, and larger
430 action patterns. Despite this, the effect of time is rarely considered when we
431 seek to explain variance in human decision-making and behaviour. In my
432 thesis, I explore whether some of what has previously been understood as
433 ‘noise’ in action and decision-making patterns can be explained by underlying
434 temporally driven small-scale fluctuations of decision-making and
435 subsequently, behaviour.

436 Therefore, the perspective taken in this thesis marries the effect of the day of
437 the week with an understanding on the role between situation and behaviour.
438 The intuition for this is the following: if behaviours are dynamic and based upon
439 a person-situation interaction, and large-scale differences have been found in
440 behaviour over the course of the days of the week, the proposed research
441 seeks to treat each day of the week as its own ‘situation’ (or functional
442 equivalency class, borrowing the language of Mischel & Peake (1982)) and
443 then examine the effects of the days of the week on individual behaviours.

444 **5. The present work**

445 The present work seeks to understand how temporal factors interplay with
446 different individual drivers of heterogeneity. This work builds upon behavioural
447 science and its power to change behaviour and the continuously building
448 heterogeneity question facing the social sciences. By drawing on the insights
449 garnered by each of these lines of inquiry (behavioural science, behavioural
450 science and health, and the weekly cycle), this thesis seeks to refocus the

451 discussion on temporal drivers of heterogeneity, examining how different
452 individual traits and decisions are affected.

453 Each chapter in this thesis has a short one-page ‘in context’ introduction
454 preceding it to orient the reader of where the research fits into the larger puzzle
455 of temporal heterogeneity.

456 Overall, the questions guiding this line of research are the following.

457 1. Do the day of the week differences manifest at the beginning of one’s
458 day?

459 2. How do alterations in the daily structure, like during COVID-19
460 lockdowns, change manifestations of the day of the week effects,
461 especially within risk attitudes?

462 3. How does the day of the week effect change engagement with health
463 information?

464 4. How does the day of the week affect existing decision-making patterns?

465 In conclusion, this novel research direction rests on two pillars: 1) the
466 established fluctuations in said personality and cognitive traits (again, like risk
467 or intellect) and 2) the role that these traits play in decision-making. This line of
468 research draws together numerous fields of research with the goal to create a
469 more comprehensive characterisation of population-wide patterns in small-
470 scale fluctuations in cognitive traits.

471 **References**

472 Allcott, H. (2011). Social norms and energy conservation. *Journal of Public
473 Economics*, 95(9–10), 1082–1095.
474 <https://doi.org/10.1016/j.jpubeco.2011.03.003>

475 Allcott, H. (2015). Site selection bias in program evaluation. *The Quarterly
476 Journal of Economics*, 130(3), 1117–1165.

477 Arntz, H. (2000). Diurnal, weekly and seasonal variation of sudden death.
478 Population-based analysis of 24061 consecutive cases. *European Heart
479 Journal*, 21(4), 315–320. <https://doi.org/10.1053/euhj.1999.1739>

480 Arora, S., Burner, E., Terp, S., Nok Lam, C., Nercisian, A., Bhatt, V., &
481 Menchine, M. (2015). Improving attendance at post-emergency department
482 follow-up via automated text message appointment reminders: A randomized
483 controlled trial. *Academic Emergency Medicine*, 22(1), 31–37.

484 Aylin, P., Alexandrescu, R., Jen, M., Mayer, E., & Bottle, A. (2013). Day of week
485 of procedure and 30 day mortality for elective surgery: Retrospective analysis
486 of hospital episode statistics. *Bmj*, 346.

487 Bao, J., & Ho, B. (2015). Heterogeneous effects of informational nudges on
488 pro-social behavior. *The BE Journal of Economic Analysis & Policy*, 15(4),
489 1619–1655.

490 *Behavioural Science or Bullshit? | The Behavioural Insights Team.* (March 15,
491 2022). Retrieved January 22, 2024, from
492 <https://www.bi.team/blogs/behavioural-science-or-bullshit/>

493 Benartzi, S., Beshears, J., Milkman, K. L., Sunstein, C. R., Thaler, R. H.,
494 Shankar, M., Tucker-Ray, W., Congdon, W. J., & Galing, S. (2017). Should
495 Governments Invest More in Nudging? *Psychological Science*, 28(8), 1041–
496 1055. <https://doi.org/10.1177/0956797617702501>

497 Brådvik, L., & Berglund, M. (2003). A suicide peak after weekends and holidays
498 in patients with alcohol dependence. *Suicide and Life-Threatening Behavior*,
499 33(2), 186–191.

500 Bryan, C. J., Tipton, E., & Yeager, D. S. (2021). Behavioural science is unlikely
501 to change the world without a heterogeneity revolution. *Nature Human
502 Behaviour*, 5(8), 980–989.

503 Buyalskaya, A., Gallo, M., & Camerer, C. F. (2021). The golden age of social
504 science. *Proceedings of the National Academy of Sciences*, 118(5),
505 e2002923118. <https://doi.org/10.1073/pnas.2002923118>

506 Copeland, L. S. (1939). Sources of the Seven-Day Week. *Popular Astronomy*,
507 47, 175.

508 Dai, H., Milkman, K. L., & Riis, J. (2014). The fresh start effect: Temporal
509 landmarks motivate aspirational behavior. *Management Science*, 60(10),
510 2563–2582.

511 Duckworth, A. L., Milkman, K. L., & Laibson, D. (2018). Beyond Willpower:
512 Strategies for Reducing Failures of Self-Control. *Psychological Science in the
513 Public Interest*, 19(3), 102–129. <https://doi.org/10.1177/1529100618821893>

514 Ellis, D. A., Sanders, J. G., & Jenkins, R. (n.d.). Weekday intervention reduces
515 missed outpatient appointments. *In Prep.*

516 Ellis, D. A., Wiseman, R., & Jenkins, R. (2015). Mental Representations of
517 Weekdays. *PLOS ONE*, 10(8), e0134555.
518 <https://doi.org/10.1371/journal.pone.0134555>

519 Gerber, Y., Jacobsen, S. J., Killian, J. M., Weston, S. A., & Roger, V. L. (2006).
520 Seasonality and daily weather conditions in relation to myocardial infarction
521 and sudden cardiac death in Olmsted County, Minnesota, 1979 to 2002.
522 *Journal of the American College of Cardiology*, 48(2), 287–292.

523 Gibbons, M. R., & Hess, P. (1981). Day of the week effects and asset returns.
524 *Journal of Business*, 579–596.

525 Gill, J., & O'May, F. (2007). Practical demonstration of personal daily
526 consumption limits: A useful intervention tool to promote responsible drinking
527 among UK adults? *Alcohol & Alcoholism*, 42(5), 436–441.

528 Gintis, H. (2007). Unifying the behavioral sciences II. *Behavioral and Brain*
529 *Sciences*, 30, 45–53. <https://doi.org/10.1017/S0140525X0700088X>

530 Gittelsohn, J., Rowan, M., & Gadhoke, P. (2012). Interventions in small food
531 stores to change the food environment, improve diet, and reduce risk of chronic
532 disease. *Preventing Chronic Disease*, 9.

533 Glimcher, P. W., & Fehr, E. (2013). *Neuroeconomics: Decision making and the*
534 *brain*. Academic Press.

535 Kahneman, D., Rosenfield, A., Gandhi, L., & Blaser, T. (2016). Noise. *Harvard*
536 *Bus Rev*, 38–46.

537 Kloner, R. A. (2006). Natural and Unnatural Triggers of Myocardial Infarction.
538 *Progress in Cardiovascular Diseases*, 48(4), 285–300.
539 <https://doi.org/10.1016/j.pcad.2005.07.001>

540 Kwon, H. R., & Silva, E. A. (2020). Mapping the Landscape of Behavioral
541 Theories: Systematic Literature Review. *Journal of Planning Literature*, 35(2),
542 161–179. <https://doi.org/10.1177/0885412219881135>

543 Larkin, C., Sanders, M., Andresen, I., & Algata, F. (2019). Testing local
544 descriptive norms and salience of enforcement action: A field experiment to
545 increase tax collection. *Journal of Behavioral Public Administration*, 2(1).
546 <https://doi.org/10.30636/jbpa.21.54>

547 Livingood, W. C., Allegrante, J. P., Airhihenbuwa, C. O., Clark, N. M., Windsor,
548 R. C., Zimmerman, M. A., & Green, L. W. (2011). Applied social and behavioral
549 science to address complex health problems. *American Journal of Preventive*
550 *Medicine*, 41(5), 525–531.

551 Moore, D. (1999, October 7). *Nine of Ten Americans View Smoking as*
552 *Harmful*. Gallup. <https://news.gallup.com/poll/3553/Nine-Ten-Americans-View-Smoking-Harmful.aspx>

554 Murray, R. L., Brain, K., Britton, J., Quinn-Scoggins, H. D., Lewis, S.,
555 McCutchan, G. M., Quaife, S. L., Wu, Q., Ashurst, A., Baldwin, D., Crosbie, P.

556 A. J., Neal, R. D., Parrott, S., Rogerson, S., Thorley, R., & Callister, M. E.
557 (2020). Yorkshire Enhanced Stop Smoking (YES) study: A protocol for a
558 randomised controlled trial to evaluate the effect of adding a personalised
559 smoking cessation intervention to a lung cancer screening programme. *BMJ*
560 *Open*, 10(9), e037086. <https://doi.org/10.1136/bmjopen-2020-037086>

561 *NHS England » NHS to introduce new financial incentive to improve staff*
562 *health*. (2016, March 5). <https://www.england.nhs.uk/2016/03/improve-staff-health/>

564 Pashler, H., & Wagenmakers, E. (2012). Editors' introduction to the special
565 section on replicability in psychological science: A crisis of confidence?
566 *Perspectives on Psychological Science*, 7(6), 528–530.

567 Phillips, D. P., Christenfeld, N., & Ryan, N. M. (1999). An increase in the
568 number of deaths in the United States in the first week of the month—An
569 association with substance abuse and other causes of death. *New England*
570 *Journal of Medicine*, 341(2), 93–98.

571 Rebele, R. W., Koval, P., & Smillie, L. D. (2021). Personality-informed
572 intervention design: Examining how trait regulation can inform efforts to change
573 behavior. *European Journal of Personality*, 35(4), 623–645.
574 <https://doi.org/10.1177/08902070211016251>

575 Robinson, J., McEwen, A., Heah, R., & Papadakis, S. (2019). A 'Cut-Down-To-
576 Stop' intervention for smokers who find it hard to quit: A qualitative evaluation.
577 *BMC Public Health*, 19(1), 1–10.

578 Roeser, K., McGregor, V. E., Stegmaier, S., Mathew, J., Kübler, A., & Meule,
579 A. (2016). The Dark Triad of personality and unethical behavior at different
580 times of day. *Personality and Individual Differences*, 88, 73–77.
581 <https://doi.org/10.1016/j.paid.2015.09.002>

582 Sanders, J. G., & Jenkins, R. (2016). Weekly Fluctuations in Risk Tolerance
583 and Voting Behaviour. *PLOS ONE*, 11(7), e0159017.
584 <https://doi.org/10.1371/journal.pone.0159017>

585 Sanfey, A. G. (2007). Social Decision-Making: Insights from Game Theory and
586 Neuroscience. *Science*, 318(5850), 598–602.
587 <https://doi.org/10.1126/science.1142996>

588 Stone, A. A., Schneider, S., & Harter, J. K. (2012). Day-of-week mood patterns
589 in the United States: On the existence of 'Blue Monday', 'Thank God it's
590 Friday' and weekend effects. *The Journal of Positive Psychology*, 7(4), 306–
591 314.

592 Sunstein, C. R. (2017). Nudges that fail. *Behavioural Public Policy*, 1(1), 4–25.

593 Thaler, R. H. (1987). Anomalies: Weekend, holiday, turn of the month, and
594 intraday effects. *Journal of Economic Perspectives*, 1(2), 169–177.

595 Wang, H., Sekine, M., Chen, X., & Kagamimori, S. (2002). A study of weekly
596 and seasonal variation of stroke onset. *International Journal of
597 Biometeorology*, 47(1), 13–20.

598 Warr, P., Miles, A., & Platts, C. (2001). Age and personality in the British
599 population between 16 and 64 years. *Journal of Occupational and
600 Organizational Psychology*, 74(2), 165–199.
601 <https://doi.org/10.1348/096317901167307>

602 **Paper 1: Penumbral Thoughts: Contents of consciousness upon waking**

603 Virginia Fedrigo^{1*}, Matteo M. Galizzi¹, Rob Jenkins², Jet G. Sanders¹

604

605 ¹Department of Psychological and Behavioural Science, London School of
606 Economics and Political Science, London, United Kingdom.

607 ²Department of Psychology, University of York, York, United Kingdom.

608

609 *Corresponding author

610 Email: v.a.fedrigo@lse.ac.uk (VF)

611

612 Citation: Fedrigo, V., Galizzi, M. M., Jenkins, R., & Sanders, J. G. (2023).
613 Penumbral thoughts: Contents of consciousness upon waking. *PLOS
614 One*, 18(12), <https://doi.org/10.1371/journal.pone.0289654> .

615 **Paper 1: In context**

616 [Citation: Fedrigo, V., Galizzi, M. M., Jenkins, R., & Sanders, J. G. (2023).
617 Penumbral thoughts: Contents of consciousness upon waking. *PLOS
618 One*, 18(12), <https://doi.org/10.1371/journal.pone.0289654>]

619 The first paper in this thesis focuses on the antecedents of the day of the week
620 effect by investigating individuals' thoughts at the start of the day. The
621 motivation behind this research is to uncover *when* the day of the week effect
622 emerges. Past research has shown that the day of the week can have outsized
623 effects on a variety of behaviours, but at what point do these differentiations
624 begin to emerge? This paper seeks to determine whether these are differences
625 that can be found early in the day, in an individual's first waking thoughts.

626 The primary finding of this paper is the exceptional homogeneity of first waking
627 thoughts, termed here *penumbral thoughts*, across the days of the week.
628 Individuals primarily look toward the future in a short timescale, focusing on
629 what needs to be done immediately and what the day ahead will look like. As
630 such, there is no day of the week effect on content found in penumbral
631 thoughts. This homogeneity in thought content across the days suggests that
632 it is the answers to these penumbral thoughts, like the content of the to-do list
633 and the activities of the day ahead, that lead to the cognitive (and behavioural)
634 fluctuations we see across days of the week.

635 In sum, the antecedents of the day of the week effect are not found upon
636 waking—penumbral thoughts are a surprisingly unifying category across
637 individuals with different traits. The differences emerge as the days and the
638 behaviour instead develops. This suggests a strong role of social influence (see
639 more in Paper 2) in forming these cognitive predispositions that yield different
640 day of the week effects. This paper begins the exploration of the weekly cycle
641 from the very first moment of consciousness, paving the way for the rest of
642 thesis to further investigate drivers of heterogeneity across days.

643 **Abstract**

644 Thoughts shape our experience, choice, and behaviour throughout the day.
645 Yet the content of 'penumbral thoughts'—first thoughts upon waking—has
646 received very little research attention. Across seven independent samples
647 (total N = 829), we used recall and reflection methods, solicited the same day,
648 to understand what individuals think as they regain consciousness. These
649 penumbral thoughts show remarkable thematic consistency: individuals were
650 most likely to reflect on their somatic or psychological state, focus on temporal
651 orientation, and prioritise waking actions. Survey results demonstrate that
652 temporal and spatial orientation are dominated by the current time and the day
653 ahead, rather than the past or other future timescales. Our results provide
654 some insight into the order of priority in consciousness. We conclude that
655 establishing one's temporal position is important to the daily process of
656 'rebooting' conscious awareness.

657 **1. Introduction**

658 Humans wake up every day. What can we learn from their first waking
659 thoughts? One possibility is that the earliest thoughts reveal levels of priority
660 ascribed to the various constructs which play a role in consciousness.
661 Following the metaphor of a rebooting computer, powering its most essential
662 features (such as working memory) triggers the reboot of secondary features
663 (such as stored memory). Once the system is up and running, new actions can
664 be taken through its interface. When we extend this metaphor to the daily
665 emergence of consciousness, a similar order of prioritisation may take place.
666 Identifying which thoughts occur first allows us to identify which processes
667 receive cognitive priority. Previous studies have shown that experiences of
668 waking up can reverberate for several hours. For example, self-reported
669 anticipation of stress first thing in the morning reduced that day's working
670 memory [1]. Similarly, a workplace correlational study found that waking up
671 positively left employees more likely to perceive interactions with their
672 customers and work quality more positively too [2]. Such findings demonstrate
673 how early thoughts can set the tone of the rest of the day and may predict
674 variability between thoughts and behaviour over the course of that day.

675 The first thoughts emerge during a qualitatively different cognitive state from
676 thoughts that emerge during normal wakeful cognition. This state, during the
677 time window between sleeping and being awake, is sometimes known as sleep
678 inertia— “the temporary time of sleepiness, disorientation and impaired
679 cognitive performance experienced upon awakening” [3]. Studies of sleep
680 inertia have emphasised its detrimental effects on performance. Although acute
681 effects of sleep inertia have been shown to dissipate after 15–30 minutes of
682 waking [3], performance on cognitively-challenging tasks during this time has
683 been found to be worse immediately after waking than after 26 hours of sleep
684 deprivation [4]. Similarly, complex planning of military strategy amongst junior
685 officers was found to be impaired immediately after waking [5]. These
686 behavioural findings suggest a relatively basic and primal level of cognition
687 during the transitory period between sleep and wakefulness, devoid of
688 sophisticated levels of thought.

689 Converging evidence comes from studies which have measured people’s
690 physiological profile during this period. This transition between sleep and
691 wakefulness is marked by a clear sequence of synchronised neurological
692 activity comprising the thalamic nuclei and cingulate cortex [6] marking a large
693 shift in patterns of neural activation. Cognition immediately after waking has
694 been associated with a number of neural correlates, such as increased power
695 of delta waves (the lowest frequency brain waves, associated with the deepest
696 phases of sleep) [7] and decreased blood flow to frontal regions, relative to
697 wakeful activity [8] These neural findings could explain the distinct cognition
698 seen in sleep inertia.

699 In sum, the work on sleep inertia suggests that thoughts during the transition
700 from sleep to wakefulness may have a distinct profile from thoughts during
701 either full sleep or full wakefulness. We refer to these as *Penumbral Thoughts*
702 by analogy to the boundary between shadow to light. If penumbral thoughts
703 reflect cognitive rebooting, they may be less cognitively sophisticated and less
704 variable across individuals, relative to typical wakeful thought [9,10]. To the
705 best of our knowledge, however, no previous study has examined penumbral
706 thoughts from a psychological science perspective. This omission is perhaps

707 surprising, given 1) the ubiquity of regaining consciousness as a daily
708 experience, 2) it is frequently studied in other disciplines i.e., through literary or
709 cinematic representation (as in Proust's 'Swann's Way' [11], discussed in [12],
710 or Charles Dickens' 'A Christmas Carol' [13], discussed in [14]), and 3) the
711 insights gleaned from behavioural and physiological studies of sleep inertia. It
712 reveals a gap in understanding between the content of thoughts during sleep
713 (i.e., dreaming; [15,16]) [9,17–22], and the content of thoughts during full
714 wakefulness—both of which have been studied intensively in psychological
715 research.

716 The contrast with full wakefulness is particularly relevant here. Over the last
717 decade, several studies have sought to characterise the content of wakeful
718 thought, including its temporal and spatial orientation, protagonist focus, and
719 affective valence [9,17–22]. For example, thought content is only on-task (in
720 the present) about half of the time [9]. The other half is focused on the past
721 (episodic memory) or planning of the future (episodic foresight) [9,22].
722 Estimates suggest that about two-thirds of wakeful thoughts are future-
723 oriented, and one-third are past-oriented [17,18]. D'Argembeau, Renaud & van
724 der Linden found that on a typical day, an average 42.5% of thoughts were
725 future-oriented, with 31% of these future-oriented thoughts pertaining to later
726 in the same day [18]. Other studies have found that the content of thought is
727 often related to oneself, with the affective valence more often negative or
728 neutral than positive [17,20,21]. These regularities matter, not least because
729 they can affect the thinker's mood: future-orientation and positive mood tend to
730 go together; and past-orientation and negative mood tend to go together [19].
731 These associations suggest that the temporal orientation of penumbral
732 thoughts may shape the quality of conscious experience for the day ahead.

733 In the current study, we set out to categorise the content, valence, protagonist,
734 and orientation of penumbral thoughts. To monitor the consistency of
735 penumbral thoughts, we collected data in seven independent samples, one on
736 each day of the week [23,24]. If penumbral thoughts reflect early prioritisation,
737 we expect a degree of consistency across samples and person demographics,
738 such that a small number of readily identifiable themes emerge. We also expect

739 future orientation with a short horizon, geared towards ordering behaviour over
740 the day ahead.

741 **2. Methods**

742 2.1. Participants

743 A total of 829 paid participants from the UK were recruited on the Prolific
744 platform over two weeks in November 2020 (117-121 participants total per day
745 of week; mean age = 32.7 years, age range = 18-75; 71.5% female). See
746 Supplementary Material 1 for the age and gender distribution per sample. All
747 participants provided informed consent (University Ethics approval number
748 07564).

749 2.2. Materials and procedure

750 The experiment was run entirely online using Prolific. The survey was created
751 and compiled using Qualtrics, which was used to administer task instructions,
752 present test materials, and record participants' responses. Participants
753 accessed the experiment from their own devices.

754 *2.2.1. Open recall question*

755 Participants were first asked to complete a free recall question, “*What was your*
756 *first thought when you woke up this morning?*”, with waking up described as
757 *“the first moment of consciousness after sleep”* in order to clarify the intended
758 period of time. We opted to ask for the first thought as a thought could also
759 refer to a direct thought process (i.e., where am I?), but also an experience (i.e.
760 It's cold here) or emotional state ('I am tired'). The intention here was to capture
761 information that participants volunteered when they were not led to any
762 particular theme.

763 *2.2.2. Reflections*

764 Reflection items were used to elicit data on specific topics of interest.
765 Participants were asked whether they (i) already knew, or (ii) sought to
766 establish the time, day, or place when they first woke up (See Table 1A). We

767 compared knowing or establishing of temporal information (time or day; which
768 is typically different on successive wakings and therefore may be less known)
769 to the baseline of spatial information (place; which is typically the same on
770 successive wakings and therefore more known (1)). Participants responded on
771 a Likert scale from Never (0), to Sometimes (1), to Usually (2) to Always (3).
772 For example: *How often does the following statement apply: When I wake up,*
773 *I want to establish the time.*

774 Next, participants were asked to reflect on an additional six statements to
775 establish the temporal orientation of their penumbral thoughts. Our aim was to
776 distinguish between temporal direction (i.e., future or past) and temporal
777 distance (day, week, or year; see Table 1B). For example: *How often does the*
778 *following statement apply: As I wake up, I think about the day ahead.*

A) Prior knowledge

When I wake up, ...

Prior knowledge	...I know...	...I want to establish...
Place	...the place	...the place
Day	...the day	...the day
Time	...the time	...the time

B) Temporal orientation

As I wake up, I think about...

Direction	Future	Past

Distance (day)	...the day ahead	...the previous day
Distance (week)	...the week ahead	...the previous week
Distance (year)	...the year ahead	...the previous year

779

780 *Table 1: Statements on A) prior knowledge and B) temporal orientation were*
 781 *presented to participants. Participants responded on a Likert scale from Always*
 782 *(3), Usually (2), Sometimes (1), to Never (0).*

783 2.3. Analysis

784 2.3.1. *Open recall responses*

785 2.3.1.1. Thought characterisation

786 The purpose of thought characterisation is to capture the variety of unprompted
 787 thoughts and rank the most commonly occurring themes [25]. To identify
 788 common themes of penumbral thought content we used a blended approach
 789 between open and template coding [26,27] and an intercoder reliability
 790 procedure to develop a codebook [28]. Once themes had been identified, we
 791 used a co-occurrence analysis between the three identified themes and age,
 792 gender, and weekday. See Supplementary Materials 2 for full methodology,
 793 decision log, finalised codebook, and analysis. In line with the procedures in
 794 qualitative coding [29], no inferential statistics is used, but rather a focus is
 795 drawn to ranking between classes of response [25].

796 2.3.1.2. Thought context

797 To establish the context of penumbral thoughts each response was also rated
 798 on a number of dimensions previously identified in wakeful thought content

799 [9,19]. These include temporal orientation (past, present, future), protagonist
800 (self or other), and valence of thought (positive, neutral, negative). As we were
801 interested in the information that people seek to acquire when emerging from
802 sleep, we also analysed sentence formulation (question or statement).
803 Binomial tests with Clopper-Pearson 95% CI, controlled for multiple
804 comparisons, were used to test for differences between reports across
805 categories. To assess differences across age, gender, and weekdays we used
806 chi-square tests across each dimension, also controlled for multiple
807 comparisons.

808 **2.3.2. *Reflection responses***

809 To show how often (DV) participants knew or sought to establish (IV1) thought
810 about time, day, or place (IV2) when they first woke up, we used a 2x3 repeated
811 measures ANOVA. Similarly, we used a 2x3 repeated measures ANOVA of
812 day, week, year (temporal distance, IV1) by its temporal direction (past or
813 future, IV2) to establish the temporal orientation of participants' firsts (DV).
814 Next, we ran a 2x3x7 mixed design ANOVA, repeated the above two analyses
815 adding in the factor of the day of the week (IV3), to measure consistency in any
816 observed patterns across weekdays.

817 **3. Results**

818 **3.1. Open responses**

819 97.8% of participants reported thought content (811 of 829). The remaining 18
820 participants left the response box blank (n=11), mentioned that they had
821 forgotten (n=6) or reported 'nothing' (n=1).

822 **3.2 Thought characterisation**

823 Three themes of penumbral thought content were identified: 1) reflection on
824 present psychological or physical state (including transition from sleep to
825 wakefulness), 2) temporal and/or spatial orientation, 3) establishing waking
826 action (see Figure 1 for selective codes). Below we describe the themes and
827 codes which elicited at least 3% of participants responses, in its ranked order.

828 3.2.1. Description of themes

829 A total of 1053 codes were awarded (range: 0–8 codes per response) to 807
 830 responses (99.5% of all responses). See Figure 1 for a distribution of counts
 831 across themes. Due to imbalance in gender and age groups, comparisons are
 832 made across rows. Counts of codes in each theme group can be found in
 833 Supplementary Materials S3.

	Psychological and physical state					Temporal and spatial orientation				Waking action			Sum	
	(Lack of) sleep or rest	Waking up or awoken	Discomfort, sick or ill	Dreams	Other	Place	Day	Time	Other	Immediate needs	To-do list & commitments	Technology	Other	
<25	55	19	8	9	21	6	2	56	1	38	107	13	7	342
26-38	56	30	11	9	21	18	19	71	1	57	143	11	20	467
38+	21	12	4	4	20	12	10	39	0	34	68	3	9	236
M	28	18	3	1	20	10	8	48	1	44	92	8	14	295
F	104	43	20	20	43	26	23	118	1	85	228	18	23	752
M	14	10	3	2	9	6	3	17	0	19	36	2	4	125
T	19	6	1	2	9	2	3	24	0	16	47	8	4	141
W	25	8	4	5	13	4	6	21	0	17	43	4	7	157
Th	22	10	5	5	9	5	2	28	0	18	43	1	5	153
F	15	9	2	3	8	7	6	28	0	15	54	3	6	156
S	19	7	2	1	5	4	10	18	1	26	46	5	6	150
Su	19	11	6	4	10	8	1	31	1	18	52	4	6	171
Sum	133	61	23	22	63	36	31	167	2	129	321	27	38	1053

834
 835 **Figure 1:** Counts of codes based on free response statements to the question
 836 “*What did you think about when you first woke up?*” by demographic groups
 837 (age and gender) and by days of the week.

838 3.2.1.1. Reflection on psychological and physical state

839 For 1 out of 4 participants, their penumbral thought referred to their own
 840 psychological or physical state. Most of these referred to the transition from
 841 sleep to wakefulness. Of these participants, a quarter referred to their sleep or
 842 to still being asleep (*‘I’ve slept too long’*), another quarter mentioned (still) being
 843 tired (and needing more sleep). Others described the waking up process
 844 (*‘disoriented and tired’*) or specifically what they were awoken by (such as an
 845 alarm or an interruption *‘oh no baby is crying’*). A few participants mentioned
 846 feelings of physical discomfort (*‘headache’*, *‘feel ill’*).

847 3.2.1.2. Temporal and/or spatial orientation

848 1 in 4 participants aimed to establish the time, day, or place when they first
 849 woke up. 1 in 5 aim to establish the time and, 1 in 10 participants note their
 850 exact penumbral thought to be *‘What time is it?’*. Some others aimed to
 851 establish *‘What day it is’* or how they expected to fill their time that day (*‘what*
 852 *do I need to do today’*). Some participants referred to spatial orientation. Most

853 frequently they mentioned elements of change in their surroundings, such as
854 the weather ('*is it snowing?*', '*what is the weather like?*').

855 3.2.1.3. Establishing waking action

856 1 in 2 described thinking about the actions they needed to take that day. These
857 included immediate bodily needs ('*I need to eat*', '*need the bathroom*'), but
858 could also refer to longer timeframes of action. 1 in 3 participants referred to
859 (items on) their 'to-do list' for the day, by noting this as a question ('*what*
860 *meetings do I have today?*') or listing tasks for the day explicitly ('*need to do*
861 *my exercises*'). None of the participants explicitly described tasks further than
862 a day ahead.

863 3.2.2. *Consistency across age, gender, and weekday*

864 To test for consistency of thought content, we segmented the data by the
865 person characteristics. Co-occurrence analysis of the three emergent themes
866 across three age categories (<25, 25-38 and 38+), gender, and weekday
867 demonstrated high levels of consistency. Only two statistically significant
868 associations were found. First, participants under the age of 25 were more
869 likely to report physical and psychological state upon waking (OR: 1.40 (95%
870 CI 1.00 - 1.95)). A qualitative inference suggests that this may be driven by
871 fewer young participants describing being awoken (possibly due to lack of
872 childcare responsibilities). Second, across weekdays, reports of time, day or
873 place were more likely on Mondays than on other days (OR: 1.73 (95% CI 0.97
874 - 2.99)), and less likely on Sundays than on other days (OR: 0.50 (0.23 - 0.96)).

875 See Table 2 for details.

	Physical and Psychological State	Temporal and Spatial Orientation	Waking Action
Age			

under 25	1.40 (1.00 - 1.95)*	0.84 (0.52 - 1.33)	1.04 (0.73 - 1.47)
26 - 38	0.73 (0.52 - 1.02)	1.20 (0.76 - 1.95)	0.95 (0.67 - 1.35)
over 38	0.87 (0.60 - 1.26)	1.37 (0.85 - 2.17)	1.05 (0.71 - 1.52)
Gender			
Female	Reference		
Male	0.99 (0.69 - 1.40)	1.03 (0.63 - 1.63)	1.20 (0.83 - 1.71)
Weekday			
Monday	1.11 (0.69 - 1.76)	1.73 (0.97 - 2.99)*	0.94 (0.56 - 1.53)
Tuesday	0.75 (0.45 - 1.21)	0.46 (0.19 - 0.99)	1.27 (0.79 - 2.01)
Wednesday	1.10 (0.70 - 1.71)	0.78 (0.39 - 1.47)	1.06 (0.66 - 1.68)
Thursday	1.34 (0.85 - 2.08)	1.27 (0.69 - 2.24)	0.85 (0.51 - 1.38)
Friday	0.86 (0.53 - 1.37)	1.37 (0.75 - 2.39)	0.85 (0.51 - 1.38)
Saturday	0.82 (0.50 - 1.31)	1.37 (0.75 - 2.39)	1.06 (0.65 - 1.69)
Sunday	1.09 (0.71 - 1.64)	0.50 (0.23 - 0.96)*	0.99 (0.64 - 1.53)

876 Table 2: Co-occurrence between themes, age, gender, and weekday

877 presented in odds ratio, 95% confidence interval. *p < 0.05

878 3.3. Thought context

879 To characterise the context of penumbral thoughts, we categorised each
880 response on four dimensions: (i) its temporal orientation (past, future), (ii) the
881 protagonist or personal referent (self, other), (iii) its affective valence (positive,
882 negative), and (iv) sentence formulation (statement, question). To avoid
883 confusion between the participant-generated thought content and the above
884 qualities of the thought, we will use the term 'thought context' for this group of
885 features. To control for multiple comparisons, a Bonferroni adjusted p-value of
886 0.0125 was used for statistical inferences.

887 3.3.1. *Distribution of responses across dimensions*

888 See Figure 2 for the distribution of responses across dimensions. Due to
889 imbalance in gender and age groups, comparisons are made across rows.

	Temporal Orientation		Protagonist		Valence		Sentence formulation	
	Past	Future	Self	Other	Positive	Negative	Question	Statement
<25	28	65	207	37	9	17	59	199
26-38	23	79	242	68	6	26	101	252
38+	13	42	125	37	10	10	64	134
M	14	52	161	41	7	11	65	160
F	49	133	410	100	18	42	159	422
M	6	22	75	19	1	8	26	79
T	8	29	75	27	1	5	22	88
W	10	22	86	17	4	7	37	79
Th	12	27	77	20	2	14	27	83
F	10	29	77	16	6	5	42	63
S	9	30	85	20	7	4	26	84
Su	9	27	100	23	4	10	43	97
Sum	64	186	575	142	25	53	223	573

890
891 **Figure 2:** Raw counts of observer ratings of free response statements to the
892 question "what did you think about when you first woke up?" based on four
893 dimensions: temporal orientation, the protagonist, valence, and sentence
894 formulation, by demographic groups (age and gender) and by days of the week.

895 3.3.1.1. Dimension 1: Temporal orientation

896 Temporal orientation (past, future) was identifiable for 30.2% of the responses
897 (N = 250). Other responses were excluded from further analysis. Of those given

898 a temporal orientation, significantly more (74.4%; N=186) referred to future
899 events ('*working today*' and '*I need to get up as expecting a delivery early*'),
900 than events in the past (N=64; 25.6%; '*about the dream I just had*' '*I messed up*
901 *salary negotiation during a call with HR for a job i (sic) was interviewing for*') [p
902 < 0.001, z = -7.65, 95% CI = [68.5%, 79.7%]].

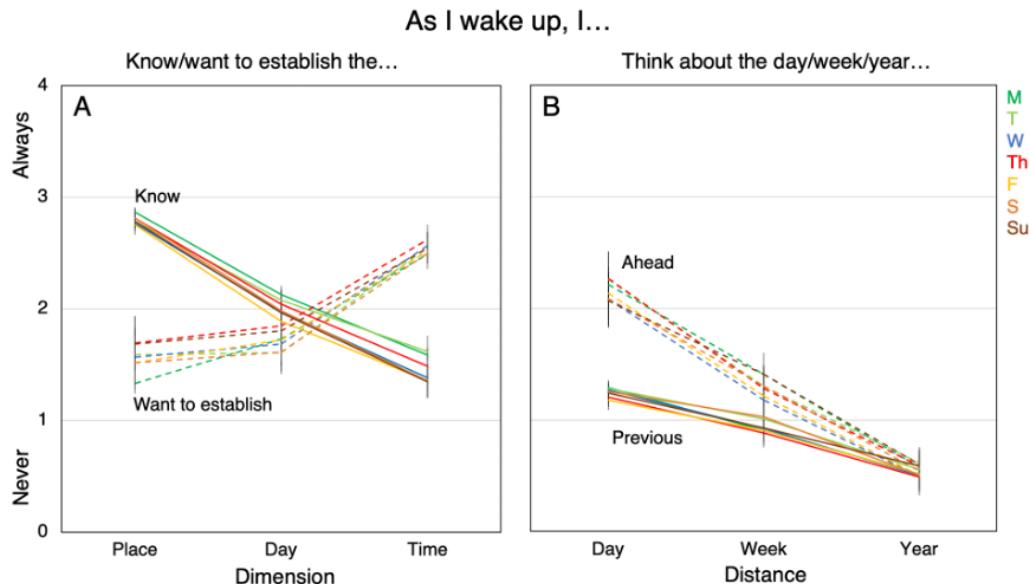
903 3.3.1.2. Dimension 2: Protagonist

904 More participants (80.2%; N = 575) expressed having a self-referred thought
905 when they first woke up, than having an other-referred thought (19.8%; N =
906 142); [p < 0.01, z = 16.13, 95% CI = [77.1%, 83.1%]]. Individually centred
907 statements included reflections on one's current state ('*am alive*', '*im (sic) still*
908 *tired*'), a plan for future activities ('*I'll go out for a walk*', '*check my phone*'), or
909 personal care needs ('*I need a wee.*', '*I need a coffee*'). Other-centred thoughts
910 referred to members of a social circle (friends, family, or pets on occasion).
911 Qualitative inference indicated that other-centred thoughts were often paired
912 with responsibilities, such as school preparation or other caring responsibilities
913 ('*get kids ready for school*', '*ringing and waking my boyfriend*', '*how is my*
914 *daughter*'). At times, participants mentioned having been awoken by someone
915 or something in their household ('*oh no baby is crying*').

916 3.3.1.3. Dimension 3: Valence

917 Explicit emotional valence of thought (negative, positive) could be attributed to
918 only 9.4% (N = 78) of responses. Other responses did not express explicit
919 valence, were interpreted as neutral ('*food*', '*Packaging some parcels*'), and
920 thus excluded from this comparison. Negative statements (67.9%; N =53
921 '*About work. I have stressful deadlines today.*') were twice as likely as positive
922 statements (32.1%; N=25; '"*Yes!!!!!" - I always wake up like this.*"'); p < 0.001, z
923 = 3.06, 95% CI = [56.4%, 78.1%]. Statements of a negative valence most often
924 referred to feelings of physical discomfort ('*can't breathe*'). Positive statements
925 varied and referred to feelings of gratitude ('*Thank god it's Saturday*'), or
926 general observations ('*That I had a good night's sleep*', '*I'm (sic) so happy*').

927 3.3.1.4. Dimension 4: Sentence formulation


928 More (72.3%; N=586) penumbral thoughts were formulated as statements than
929 as questions (27.7%; N = 225); [p < 0.001, z = 12.64, 95% CI = [69.0%, 75.3%].
930 Interestingly, the observed frequency of questions in this sample (N = 225,
931 27.7%) was significantly higher than the expected frequency based on
932 analyses of everyday speech (5%)²³ [p < 0.001, z = 29.64, 95% CI = [24.7%,
933 31.0%]]. Common formulations include '*What are the kids doing?*', '*Did I*
934 *oversleep?*'. Unsurprisingly this code frequently co-occurs with establishing
935 time or day '*What time is it?*'; c-coefficient = 0.442).

936 3.4. Consistency across demographics and weekday

937 Next, we examined the consistency in thought context across person
938 characteristics and the samples for each day of the week. Controlling for
939 multiple comparisons with a Bonferroni correction at a p-value threshold of
940 0.004, we found no differences were observed between any person
941 characteristics or weekday across any of the dimensions (across age groups:
942 (temporal orientation: [χ^2 (2, N = 250) = 1.60, p = 0.449]); protagonist: [χ^2 (2,
943 N = 716) = 5.13, p = 0.077]; valence: [χ^2 (2, N = 78) = 5.64, p = 0.060]; sentence
944 formulation [χ^2 (2, N = 809) = 5.27, p = 0.072]); between genders: (temporal
945 orientation: [χ^2 (1, N = 248) = 0.83, p = 0.361]; protagonist [χ^2 (1, N = 712) =
946 0.04, p = 0.835]; valence:[χ^2 (1, N = 78) = 0.50, p = 0.478]; sentence
947 formulation [χ^2 (1, N = 806) = 0.29, p = 0.588]); across weekdays: (temporal
948 orientation: [χ^2 (6, N = 811)= 8.165 , p = 0.226]; protagonist:[χ^2 (6, N = 811)=
949 4.139, p = 0.658]; sentence formulation: [χ^2 (6, N = 811)= 14.609, p = 0.024])).
950 We conclude that there are high levels of consistency in thought context.

951 3.5. Reflection responses

952 Responses to the rating items are summarised in Figure 3.

953

954 **Figure 3:** How often participants (A) know or want to establish the spatial
 955 (place) or two temporal (day and time) dimensions and (B) have thoughts about
 956 the week, day, or year ahead or behind, across seven independent samples
 957 (one for each weekday), when they first wake up. Error bars display 95%
 958 confidence intervals.

959 *3.5.1. Knowing and establishing information*

960 A 2x3 repeated measures ANOVA was performed of prior knowledge (know
 961 versus want to establish) by dimension (place, day, time), with knowing place
 962 ($M = 2.80$, $SE = 0.02$, 95% CI = [2.77, 2.83]), knowing day ($M = 2.01$, $SE =$
 963 0.02, 95% CI = [1.96, 2.06]), knowing time ($M = 1.45$, $SE = 0.03$, 95% CI =
 964 [1.39, 1.51]), wanting to establish place ($M = 1.56$, $SE = 0.05$, 95% CI = [1.47,
 965 1.65]), wanting to establish day ($M = 1.71$, $SE = 0.04$, 95% CI = [1.64, 1.78]),
 966 and wanting to establish time ($M = 2.54$, $SE = 0.03$, 95% CI = [2.49, 2.59]). We
 967 observed a main effect of prior knowledge [$F(1, 821) = 19.90$, $p < 0.001$, $\eta^2_p =$
 968 0.024, 95% CI = [0.007, 0.048]], and dimension [$F(2, 1642) = 86.60$, $p < 0.001$,
 969 $\eta^2_p = 0.095$, 95% CI = [0.070, 0.122]]. We also observe a significant interaction
 970 between dimension and knowledge [$F(2, 1642) = 985.90$, $p < 0.001$, $\eta^2_p =$
 971 0.546, 95% CI = [0.516, 0.582]]. Post-hoc comparisons with a Bonferroni
 972 correction showed the interaction effect was driven by stark differences
 973 between spatial and temporal dimension in terms of prior knowledge and

974 interest in establishing knowledge. There is a need for establishing the time,
975 and a clear lack of knowing the time at the point of waking [pairwise comparison
976 for establishing and knowing time: $t = 27.01$, $p < 0.001$, Cohen's $d = 1.385$, 95%
977 CI = [1.277, 1.492].

978 However, there is a strong existing knowledge of place and a weaker inclination
979 towards establishing it [$t = -24.6$, $p < 0.001$, Cohen's $d = -1.277$, 95% CI = [-
980 1.375, -1.078]]. Lastly, there is a smaller gap between knowing and wanting to
981 establish the day [$t = -6.91$, $p < 0.001$, Cohen's $d = -0.339$, 95% CI = [-0.476, -
982 0.202]]. The general variation of time in an individual's waking up and the
983 relative stability in the place help to contextualise these findings. See
984 Supplementary Materials 4 for all pairwise comparisons.

985 To review the heterogeneity of this pattern across weekday, we ran a $2 \times 3 \times 7$
986 mixed design ANOVA of repeated measures orientation of prior knowledge
987 (knowing versus wanting to establish), and dimension of thought (place, day,
988 time) and independent measure of weekday (Monday, Tuesday, Wednesday,
989 Thursday, Friday, Saturday, Sunday). There was a significant main effect of
990 dimension [$F(2, 1628) = 6.59$, $p = 0.001$, $\eta^2_p = 0.008$, 95% CI = [0.001, 0.018]]
991 but no significant main effect of prior knowledge [$F(1, 814) = 0.145$, $p = 0.703$,
992 $\eta^2_p = 0.000$, 95% CI = [0.000, 0.006]]. Importantly, there was no significant main
993 effect of weekday [$F(7, 814) = 1.23$, $p = 0.285$, $\eta^2_p = 0.010$, 95% CI = [0.000,
994 0.019]] . There were also no significant interaction effects with weekday
995 [dimension x weekday: $F(14, 1628) = 1.04$, $p = 0.409$, $\eta^2_p = 0.009$, 95% CI
996 = [0.000, 0.010], prior knowledge x weekday: $F(7, 814) = 1.70$, $p = 0.105$, $\eta^2_p =$
997 0.014, 95% CI = [0.000, 0.026], dimension x prior knowledge x weekday: $F(14,$
998 $1628) = 0.437$, $p = 0.963$, $\eta^2_p = 0.004$, 95% CI = [0.000, 7.38e-4]]. This
999 demonstrates that prior knowledge and dimension are consistent across
1000 weekdays (see Figure 3A).

1001 *3.5.2. Temporal orientation*

1002 A 2x3 repeated measures ANOVA of temporal orientation (future versus past)
1003 and temporal distance (day, week, year) [day ahead: $M = 2.16$, $SE = 0.03$,
1004 95% CI = [2.11, 2.21], week ahead: $M = 1.30$, $SE = 0.23$, 95% CI = [1.25, 1.35],

1005 year ahead: $M = 0.56$, $SE = 0.02$, 95% CI = [0.51, 0.61], day before: $M = 1.25$,
1006 $SE = 0.03$, 95% CI = [1.20, 1.30], week before: $M = 0.94$, $SE = 0.02$, 95% CI =
1007 [0.94, 0.94], year before: $M = 0.56$, $SE = 0.02$, 95% CI = [0.51, 0.61]] showed
1008 a significant main effect of temporal distance [$F(2, 1640) = 1632$, $p < 0.001$, η^2_p
1009 = 0.666, 95% CI = [0.643, 0.689]], a significant main effect of temporal
1010 orientation [$F(1, 820) = 447$, $p < 0.001$, $\eta^2_p = 0.353$, 95% CI = [0.304, 0.399]]
1011 and a significant interaction effect for temporal distance and temporal
1012 orientation [$F(2, 1640) = 391$, $p < 0.001$; $\eta^2_p = 0.306$, 95% CI = [0.270, 0.339]].
1013 A follow up analysis, using post-hoc comparisons using a Bonferroni correction
1014 revealed that the interaction was driven by an increased focus on the day
1015 ahead (relative to the day behind), with smaller differences between week
1016 ahead and week behind [$t = 12.65$, $p = < 0.001$, Cohen's $d = 0.494$, 95% CI =
1017 [0.356, 0.633]], and no differences between the year ahead and year behind [t
1018 = 1.69, $p = 0.536$, Cohen's $d = -0.055$, 95% CI = [-0.191, 0.081]].

1019 Interestingly, these results also provide some insight into the mental
1020 representation of temporal distance and orientation. For example, post-hoc
1021 comparisons demonstrate no significant difference in the amount of time
1022 thought about the day before and week ahead [$t = -1.40$, $p = 0.727$, Cohen's d
1023 = -0.066, 95% CI = [-0.163, -0.030]]. This suggests that these two concepts
1024 may be psychologically similar, despite being chronologically very different
1025 (one day versus seven days). See Supplementary Materials 5 for details.

1026 To analyse the heterogeneity of this pattern across the days of the week, we
1027 ran a $2 \times 3 \times 7$ mixed measures ANOVA, of repeated measures orientation of
1028 thought (future versus past), and temporal distance of thought (day, week,
1029 year) and independent measure of weekday (Monday, Tuesday, Wednesday,
1030 Thursday, Friday, Saturday, Sunday). Results replicate a significant main effect
1031 of temporal distance [$F(2, 1626) = 129.92$, $p < 0.001$, $\eta^2_p = 0.138$, 95% CI =
1032 [0.108, 0.168]], a significant main effect of temporal orientation [$F(1, 813) =$
1033 15.55, $p < 0.001$, $\eta^2_p = 0.019$, 95% CI = [0.005, 0.041]], and a significant
1034 interaction effect between temporal orientation and temporal distance [$F(2,$
1035 1626) = 15.31, $p < 0.001$; $\eta^2_p = 0.018$, 95% CI = [0.007, 0.033]], but show no
1036 significant effect of weekday [$F(7, 813) = 0.98$, $p = 0.441$, $\eta^2_p = 0.008$, 95% CI

1037 =[0.00, 0.015]], and no significant interaction effects with weekday [temporal
1038 distance and weekday: $F(14, 1626) = 0.985, p = 0.466, \eta^2_p = 0.008, 95\% \text{ CI}$
1039 =[0.00, 0.016]]; temporal orientation x weekday: $F(7, 813) = 1.79, p = 0.085,$
1040 $\eta^2_p = 0.015, 95\% \text{ CI} =[0.00, 0.023]$; temporal distance x temporal orientation x
1041 weekday: $F(14, 1626) = 1.473, p = 0.113, \eta^2_p = 0.013, 95\% \text{ CI} =[0.00, 0.016]$.
1042 In sum, we demonstrate a high level of consistency in temporal orientation and
1043 distance of penumbral thoughts across the seven weekdays (see Figure 3B).

1044 **4. Discussion**

1045 In this paper we sought to understand penumbral thoughts—the contents of
1046 consciousness at the boundary between sleep and wakefulness. The
1047 combination of qualitative and quantitative data reveals a cohesive picture of
1048 thought content across age groups, genders, and weekdays. The homogeneity
1049 of responses across a broad participant sample suggests that certain cognitive
1050 priorities may be characteristic of regaining consciousness. First, we observe
1051 a much higher incidence of questions in reports of penumbral thoughts (27%)
1052 than expected based on language use elsewhere (5%) [30]. The apparent
1053 overrepresentation of questions suggests an orientation towards information
1054 seeking. Second, we identify the principal themes of penumbral thoughts—a
1055 mental or physical check-in, locating oneself in time, and previewing tasks for
1056 the day ahead. Third, we find that temporal location is less well known than
1057 spatial location upon waking, and that resolving time and day is a priority.

1058 How do penumbral thoughts compare to other wakeful thoughts? There are
1059 some points of contact and some points of departure. Compared with previous
1060 studies, we see broadly similar patterns for affective valence [17,20], self-
1061 orientation [17,20,31–33], and temporal direction (past vs. future) [17,18]. On
1062 the other hand, penumbral thoughts seem to be especially focused on the
1063 short-term future, particularly the day ahead. Whereas D'Argembeau, Renaud
1064 & van der Linden found that only about 1 in 3 future-oriented thoughts pertain
1065 to the same day [18], we find that nearly all penumbral thoughts concern this
1066 timeframe. We also find that time is often the subject of penumbral thoughts,
1067 with 1 in 5 participants trying to establish the time as they wake up.

1068 Indeed, the dominance of a small number of themes among penumbral
1069 thoughts—internal state, orientation in time, tasks for the day ahead—suggest
1070 that the first moments of wakefulness may be especially convergent. Dreams
1071 are highly diverse across individuals [15,16]. Wakeful thoughts are highly
1072 diverse across individuals [34–39]. In comparison, penumbral thoughts appear
1073 to be much more restricted.

1074 As well as illuminating the nature of penumbral thoughts, our findings contribute
1075 to a growing psychological literature on the influence of the weekly cycle. It is
1076 well established that mood changes through the weekly cycle, both at the level
1077 of mental representations [23] and at the level of reported experience [24,40].
1078 What is less clear is how these two levels may be related. Early retrieval of the
1079 day of the week suggests a path by which stereotypical weekday associations
1080 could set the tone for the rest of the day. At the same time, the uniformity of
1081 retrieval over the cycle suggests that differential associations for each day will
1082 land with similar force.

1083 We note several possible limitations of our study. First, data collection took
1084 place during the COVID-19 lockdown period in the UK in November 2020.
1085 Given that some people reported difficulties keeping track of time during
1086 COVID-19 lockdowns [41], it is possible that our sample captures an unusual
1087 level of temporal disorientation. However, if lockdown was dominating
1088 participants' thoughts, we might expect it to be mentioned in their responses.
1089 In fact, such mentions were rare (two mention lockdown, two mention COVID-
1090 19). Nonetheless, we are aware that the government restrictions could have
1091 homogenised the set of experiences across individuals. Generalisability across
1092 data collection conditions could be estimated by repeating the study when
1093 lockdown restrictions are lifted.

1094 A second limitation is that penumbral thoughts were solicited later in the day
1095 through recollection rather than immediately after they occurred. The delay
1096 between occurrence and reporting places a considerable burden on recall, with
1097 risk of introducing noise into the data. Importantly, the validity of such a method
1098 has been well-reported through the use of the day reconstruction method
1099 (DRM) [42] and the use of the present data collection method is widespread

1100 (e.g., [43–46]). A well-known limitation of the DRM is that delay can hinder
1101 recall performance [47]. This may apply more so when individuals rely on
1102 logical deductions or perhaps when sleep inertia applies, as could be the case
1103 in this study. Future studies could complement this methodology by adapting
1104 the sleep diary method to capture penumbral thoughts soon after they arise
1105 [48]. Such in-the-moment solicitation could then simultaneously serve to
1106 validate the use of DRM for penumbral thought elicitation. We situate this
1107 existing research as a first exploration of penumbral thoughts, laying theoretical
1108 groundwork for exciting future studies utilising a variety of methods.

1109 Further, as specific question phrasing affects content of dream reports [49],
1110 another opportunity for future research is to elicit responses in early waking
1111 with different questions. For example, one could ask specifically about
1112 emotions, thoughts, and perception at the point of waking. Similarly, within-
1113 subject data on penumbral thoughts and daytime thoughts could be collected,
1114 further elucidating the differences between states but within an individual (and
1115 their specific context).

1116 Future research could also integrate these self-reported findings with measures
1117 of neural activity to further characterise the relationship between the penumbral
1118 thoughts experienced and the neural correlates of these thoughts, especially in
1119 light of established patterns of activation within this sleep to wakefulness state
1120 transition [6]. Another interesting avenue for future research would be to
1121 examine penumbral thoughts when regaining consciousness in other
1122 situations, such as emerging from anaesthesia [50,51]. Such comparisons
1123 would allow us to test whether penumbral thoughts depend on the conditions
1124 in which consciousness was lost.

1125 It is also important to note that many of the shared orientations and propensity
1126 towards the self in wakefulness thought are known to be affected by shared
1127 cultural cognitions (i.e., [52]) and particularly a culturally rooted understanding
1128 of self versus others [53]. An interesting future research pursuit would be to
1129 investigate the extent to which this applies to penumbral thoughts too.

1130 For now, we offer a first insight into what people think about when they wake
1131 up. Across seven independent samples, we find that individuals are most likely
1132 to check in on their somatic or psychological state, focus on temporal
1133 orientation, and preview waking actions. We conclude that these themes reflect
1134 cognitive priorities as waking consciousness reboots.

1135 **5. Data availability statement**

1136 The datasets generated and/or analysed during the current study are
1137 available in the OSF repository, <https://osf.io/v3azp/>.

1138 **6. Funding**

1139 The authors gratefully acknowledge financial support from a British Academy
1140 Mid-Career Fellowship (MD19\190023) to RJ (<https://www.thebritishacademy.ac.uk>), from a Leverhulme Trust Research
1141 Fellowship (RF-2020-448\10) to RJ (<https://www.thebritishacademy.ac.uk>),
1142 and from the Research Infrastructure and Investment Fund (RIIF) from the
1143 (University Department) to MMG.

1145 **7. Author contributions**

1146 **Conceptualization:** Virginia Fedrigo, Matteo M. Galizzi, Rob Jenkins, Jet G.
1147 Sanders. **Formal analysis:** Virginia Fedrigo, Jet G. Sanders.

1148 **Funding acquisition:** Matteo M. Galizzi, Rob Jenkins, Jet G. Sanders.

1149 **Investigation:** Virginia Fedrigo.

1150 **Project administration:** Virginia Fedrigo.

1151 **Supervision:** Matteo M. Galizzi, Rob Jenkins, Jet G. Sanders.

1152 **Visualization:** Virginia Fedrigo.

1153 **Writing – original draft:** Virginia Fedrigo, Jet G. Sanders.

1154 **Writing – review & editing:** Virginia Fedrigo, Matteo M. Galizzi, Rob Jenkins,
1155 Jet G. Sanders.

1156 **8. References**

1157 1. Hyun J, Sliwinski MJ, Smyth JM. Waking Up on the Wrong Side of the
1158 Bed: The Effects of Stress Anticipation on Working Memory in Daily Life.
1159 The Journals of Gerontology: Series B. 2019;74: 38–46.
1160 doi:10.1093/geronb/gby042

1161 2. Rothbard NP, Wilk SL. Waking up on the right or wrong side of the bed:
1162 Start-of-workday mood, work events, employee affect, and performance.
1163 Academy of Management Journal. 2011;54: 959–980.

1164 3. Hilditch CJ, McHill AW. Sleep inertia: current insights. NSS. 2019;Volume
1165 11: 155–165. doi:10.2147/NSS.S188911

1166 4. Wertz AT, Ronda JM, Czeisler CA, Wright KP. Effects of Sleep Inertia on
1167 Cognition. JAMA. 2006;295: 159–164. doi:10.1001/jama.295.2.163

1168 5. Horne J, Moseley R. Sudden early-morning awakening impairs immediate
1169 tactical planning in a changing ‘emergency’ scenario. Journal of Sleep
1170 Research. 2011;20: 275–278. doi:10.1111/j.1365-2869.2010.00904.x

1171 6. Setzer B, Fultz NE, Gomez DEP, Williams SD, Bonmassar G, Polimeni
1172 JR, et al. A temporal sequence of thalamic activity unfolds at transitions in
1173 behavioral arousal state. Nat Commun. 2022;13: 5442.
1174 doi:10.1038/s41467-022-33010-8

1175 7. Marzano C, Ferrara M, Moroni F, De Gennaro L. Electroencephalographic
1176 sleep inertia of the awakening brain. Neuroscience. 2011;176: 308–317.
1177 doi:10.1016/j.neuroscience.2010.12.014

1178 8. Balkin TJ, Braun AR, Wesensten NJ, Jeffries K, Varga M, Baldwin P, et al.
1179 The process of awakening: a PET study of regional brain activity patterns
1180 mediating the re-establishment of alertness and consciousness. Brain.
1181 2002;125: 2308–2319. doi:10.1093/brain/awf228

1182 9. Killingsworth MA, Gilbert DT. A Wandering Mind Is an Unhappy Mind.
1183 Science. 2010;330: 932–932. doi:10.1126/science.1192439

1184 10. Wang H-T, Poerio G, Murphy C, Bzdok D, Jefferies E, Smallwood J.
1185 Dimensions of Experience: Exploring the Heterogeneity of the Wandering
1186 Mind. *Psychol Sci*. 2018;29: 56–71. doi:10.1177/0956797617728727

1187 11. Proust M 1871-1922. *Swann's way*. Modern Library paperback edition.
1188 New York : Modern Library, 2003.; 2003. Available:
1189 <https://search.library.wisc.edu/catalog/9910113556302121>

1190 12. Bernini M. The heterocosmic self: analogy, temporality and structural
1191 couplings in Proust's "Swann's way". In: Anderson M, Garratt P, Sprevak
1192 M, editors. Anderson, M & Garratt, P & Sprevak, M (Eds) *Distributed*
1193 cognition in Victorian culture and modernism Edinburgh: Edinburgh
1194 University Press. Edinburgh: Edinburgh University Press; 2020. Available:
1195 [https://edinburghuniversitypress.com/book-distributed-cognition-in-](https://edinburghuniversitypress.com/book-distributed-cognition-in-victorian-culture-and-modernism-hb.html)
1196 [victorian-culture-and-modernism-hb.html](https://edinburghuniversitypress.com/book-distributed-cognition-in-victorian-culture-and-modernism-hb.html)

1197 13. Dickens C 1812-1870. *A Christmas carol and other stories*. Modern Library
1198 edition. New York : Modern Library, 1995.; 1995. Available:
1199 <https://search.library.wisc.edu/catalog/999764281602121>

1200 14. da Mota Gomes M, Nardi AE. Charles Dickens' hypnagogia, dreams, and
1201 creativity. *Frontiers in Psychology*. 2021;12: 700882.

1202 15. Domhoff GW, Schneider A. Studying dream content using the archive and
1203 search engine on DreamBank. net. *Consciousness and Cognition*.
1204 2008;17: 1238–1247.

1205 16. Hall CS. What people dream about. *Scientific American*. 1951;184: 60–63.

1206 17. Andrews-Hanna JR, Kaiser RH, Turner AEJ, Reineberg AE, Godinez D,
1207 Dimidjian S, et al. A penny for your thoughts: dimensions of self-generated
1208 thought content and relationships with individual differences in emotional
1209 wellbeing. *Front Psychol*. 2013;4. doi:10.3389/fpsyg.2013.00900

1210 18. D'Argembeau A, Renaud O, Linden MV der. Frequency, characteristics
1211 and functions of future-oriented thoughts in daily life. *Applied Cognitive
1212 Psychology*. 2011;25: 96–103. doi:10.1002/acp.1647

1213 19. Ruby FJM, Smallwood J, Engen H, Singer T. How Self-Generated
1214 Thought Shapes Mood—The Relation between Mind-Wandering and
1215 Mood Depends on the Socio-Temporal Content of Thoughts. *PLOS ONE*.
1216 2013;8: e77554. doi:10.1371/journal.pone.0077554

1217 20. Song X, Wang X. Mind Wandering in Chinese Daily Lives – An Experience
1218 Sampling Study. Krueger F, editor. *PLoS ONE*. 2012;7: e44423.
1219 doi:10.1371/journal.pone.0044423

1220 21. Stawarczyk D, Cassol H, D'Argembeau A. Phenomenology of future-
1221 oriented mind-wandering episodes. *Frontiers in Psychology*. 2013;4: 425.

1222 22. Suddendorf T. Episodic memory versus episodic foresight: Similarities and
1223 differences. *WIREs Cogn Sci*. 2010;1: 99–107. doi:10.1002/wcs.23

1224 23. Ellis DA, Wiseman R, Jenkins R. Mental representations of weekdays.
1225 *PLoS one*. 2015;10: e0134555.

1226 24. Sanders JG, Jenkins R. Weekly Fluctuations in Risk Tolerance and Voting
1227 Behaviour. Georgantzis N, editor. *PLoS ONE*. 2016;11: e0159017.
1228 doi:10.1371/journal.pone.0159017

1229 25. Anderson C. Presenting and evaluating qualitative research. *American
1230 journal of pharmaceutical education*. 2010;74.

1231 26. Blair E. A reflexive exploration of two qualitative data coding techniques.
1232 *Journal of Methods and Measurement in the Social Sciences*. 2015;6: 14–
1233 29.

1234 27. King N. Template analysis. *Qualitative methods and analysis in
1235 organizational research: A practical guide*. Thousand Oaks, CA: Sage
1236 Publications Ltd; 1998. pp. 118–134.

1237 28. O'Connor C, Joffe H. Intercoder reliability in qualitative research: debates
1238 and practical guidelines. *International Journal of Qualitative Methods*.
1239 2020;19: 1609406919899220.

1240 29. Burnard P. Writing a qualitative research report. *Accident and emergency*
1241 nursing. 2004;12: 176–181.

1242 30. Jurafsky D, Bates R, Coccaro N, Martin R, Meteer M, Ries K, et al.
1243 Automatic detection of discourse structure for speech recognition and
1244 understanding. IEEE; 1997. pp. 88–95.

1245 31. Baird B, Smallwood J, Schooler JW. Back to the future: Autobiographical
1246 planning and the functionality of mind-wandering. *Consciousness and*
1247 *cognition*. 2011;20: 1604–1611.

1248 32. Iijima Y, Tanno Y. The effect of cognitive load on the temporal focus of
1249 mind wandering. *Shinrigaku kenkyu: The Japanese journal of psychology*.
1250 2012;83: 232–236.

1251 33. Smallwood J, Fitzgerald A, Miles LK, Phillips LH. Shifting moods,
1252 wandering minds: negative moods lead the mind to wander. *Emotion*.
1253 2009;9: 271.

1254 34. Hultsch D, Hammer M, Small B. Age Differences in Cognitive Performance
1255 in Later Life: Relationships to Self-Reported Health and Activity Life Style.
1256 *Journal of gerontology*. 1993;48: P1-11. doi:10.1093/geronj/48.1.P1

1257 35. Kimura D. Human sex differences in cognition, fact, not predicament.
1258 *Sexualities, Evolution & Gender*. 2004;6: 45–53.
1259 doi:10.1080/14616660410001733597

1260 36. Madden DJ, Spaniol J, Costello MC, Bucur B, White LE, Cabeza R, et al.
1261 Cerebral White Matter Integrity Mediates Adult Age Differences in
1262 Cognitive Performance. *J Cogn Neurosci*. 2009;21: 289–302.
1263 doi:10.1162/jocn.2009.21047

1264 37. Parsons TD, Rizzo AR, Zaag C van der, McGee JS, Buckwalter JG.
1265 Gender Differences and Cognition Among Older Adults. *Aging,*
1266 *Neuropsychology, and Cognition*. 2005;12: 78–88.
1267 doi:10.1080/13825580590925125

1268 38. Russell TA, Tchanturia K, Rahman Q, Schmidt U. Sex differences in
1269 theory of mind: A male advantage on Happé's "cartoon" task. *Cognition &*
1270 *Emotion*. 2007;21: 1554–1564. doi:10.1080/02699930601117096

1271 39. Shanmugaratnam S, Kass SJ, Arruda JE. Age differences in cognitive and
1272 psychomotor abilities and simulated driving. *Accident Analysis &*
1273 *Prevention*. 2010;42: 802–808.

1274 40. Stone AA, Schneider S, Harter JK. Day-of-week mood patterns in the
1275 United States: On the existence of 'Blue Monday', 'Thank God it's
1276 Friday' and weekend effects. *The Journal of Positive Psychology*. 2012;7:
1277 306–314.

1278 41. Cellini N, Canale N, Mioni G, Costa S. Changes in sleep pattern, sense of
1279 time and digital media use during COVID-19 lockdown in Italy. *Journal of*
1280 *Sleep Research*. 2020;29: e13074. doi:<https://doi.org/10.1111/jsr.13074>

1281 42. Kahneman D, Krueger AB, Schkade DA, Schwarz N, Stone AA. A Survey
1282 Method for Characterizing Daily Life Experience: The Day Reconstruction
1283 Method. *Science*. 2004;306: 1776–1780. doi:10.1126/science.1103572

1284 43. White MP, Dolan P. Accounting for the Richness of Daily Activities.
1285 *Psychol Sci*. 2009;20: 1000–1008. doi:10.1111/j.1467-9280.2009.02392.x

1286 44. Bakker AB, Demerouti E, Oerlemans W, Sonnentag S. Workaholism and
1287 daily recovery: A day reconstruction study of leisure activities. *Journal of*
1288 *Organizational Behavior*. 2013;34: 87–107. doi:10.1002/job.1796

1289 45. Bylsma L, Taylor-Clift A, Rottenberg J. Emotional Reactivity to Daily
1290 Events in Major and Minor Depression. *Journal of abnormal psychology*.
1291 2011;120: 155–67. doi:10.1037/a0021662

1292 46. Kahneman D, Sugden R. Experienced Utility as a Standard of Policy
1293 Evaluation. *Environ Resource Econ*. 2005;32: 161–181.
1294 doi:10.1007/s10640-005-6032-4

1295 47. Schumann F, Steinborn MB, Kürten J, Cao L, Händel BF, Huestegge L.
1296 Restoration of Attention by Rest in a Multitasking World: Theory,
1297 Methodology, and Empirical Evidence. *Front Psychol.* 2022;13: 867978.
1298 doi:10.3389/fpsyg.2022.867978

1299 48. Libman E, Fichten CS, Bailes S, Amsel R. Sleep questionnaire versus
1300 sleep diary: which measure is better? *International Journal of*
1301 *Rehabilitation and Health.* 2000;5: 205–209.

1302 49. Nielsen T, Svob C, Kuiken D. Dream-Enacting Behaviors in a Normal
1303 Population. *Sleep.* 2009;32: 1629–1636. doi:10.1093/sleep/32.12.1629

1304 50. Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia.
1305 *Science.* 2008;322: 876–880.

1306 51. Mashour GA, Alkire MT. Consciousness, anesthesia, and the
1307 thalamocortical system. *The Journal of the American Society of*
1308 *Anesthesiologists.* 2013;118: 13–15.

1309 52. Triandis HC. The Psychological Measurement of Cultural Syndromes.
1310 *American Psychologist.* 1996; 9.

1311 53. Markus HR, Kitayama S. Culture and the self: Implications for cognition,
1312 emotion, and motivation. *Psychological review.* 1991;98: 224.

1313 **Paper 2: Weakened weekdays: Lockdown disrupts the weekly cycle of**
1314 **risk tolerance**

1315 Virginia Fedrigo^{1*}, Benno Guenther¹, Rob Jenkins², Matteo M. Galizzi¹, Jet G.
1316 Sanders¹

1317 ¹Department of Psychological and Behavioural Sciences, London School of
1318 Economics and Political Science, Houghton Street, WC2A 2AE, London,
1319 United Kingdom.

1320 ²Department of Psychology, University of York, Heslington, YO10 5DD, York,
1321 United Kingdom.

1322 *Corresponding author Virginia Fedrigo (v.a.fedrigo@lse.ac.uk), Department of
1323 Psychological and Behavioural Sciences, London School of Economics and
1324 Political Science, Houghton Street, WC2A 2AE, London, United Kingdom.

1325 Citation: Fedrigo, V., Guenther, B., Jenkins, R. *et al.* Weakened weekdays:
1326 lockdown disrupts the weekly cycle of risk tolerance. *Sci Rep* **13**, 21147 (2023).
1327 <https://doi.org/10.1038/s41598-023-48395-9>

1328 **Paper 2: In context**

1329 [Citation: Fedrigo, V., Guenther, B., Jenkins, R. *et al.* Weakened weekdays:
1330 lockdown disrupts the weekly cycle of risk tolerance. *Sci Rep* **13**, 21147 (2023).
1331 <https://doi.org/10.1038/s41598-023-48395-9>]

1332 This second paper takes another angle on understanding the day of the week
1333 effect through the lens of larger structural effects. This work examines a pre-
1334 established trait that fluctuates over the course of the week, namely risk, at
1335 different points of the COVID-19 lockdowns. The importance of the lockdowns
1336 for this study is that it provides a natural experiment to see what happens to
1337 the day of the week effect when the day itself ceases to have the same meaning
1338 and associations. As many recall, days blurred together during the lockdowns
1339 as the activities and behaviours that made each day distinct were removed.
1340 This allowed for an investigation to what extent the days of the week
1341 associations were needed for the day of the week effect.

1342 The primary finding of this paper is the importance of meaningful day of the
1343 week associations for a day of the week effect. Study 1, which took place during
1344 an early lockdown, found that only those that reported a strong sense of the
1345 weekday showed day of the week effects. However, Study 2 showed that these
1346 associations themselves are not enough for the day of the week effect to hold
1347 in the same way—if the understanding of what each day means has eroded
1348 (such as occurs during repeated lockdowns), having a sense of the day of the
1349 week is not enough.

1350 In sum, day of the week effects are something that cannot be attributed solely
1351 to individual cognition—rather, it seems that they take strongly from the
1352 structured activities in the world around us. Therefore, the temporal driver of
1353 heterogeneity acts in broad strokes, affecting everyone in stereotyped ways
1354 through the days of the week, bolstered via the structure of society. This helps
1355 further disentangle individual relationship to the day of the week effect.

1356 **1. Abstract**

1357 Risk tolerance decreases from Monday to Thursday and increases on Friday.
1358 Antecedents of this weekly risk cycle are difficult to investigate experimentally
1359 as manipulating the seven-day cycle is impractical. Here we used temporal
1360 disorientation during the UK COVID-19 lockdown to conduct a natural
1361 experiment. In two studies, we measured responses to risk in participants with
1362 either a strong or weak sense of weekday, after either a short or long period of
1363 disruption to their weekly routine by lockdown. In Study 1 (N = 864), the weekly
1364 risk cycle was consistent in risk attitude measures specifically to participants
1365 who reported a strong sense of weekday. In Study 2 (N = 829), the weekly risk
1366 cycle was abolished, even for participants who retained a strong sense of
1367 weekday. We propose that two factors sustain the weekly risk cycle. If the
1368 sense of weekday is lacking, then weekday will have little effect because the
1369 current day is not salient. If weekday associations decay, then weekday will
1370 have little effect because the current day is not meaningful. The weekly risk
1371 cycle is strong and consistent when (i) sense of weekday is robust and (ii)
1372 weekday associations are maintained.

1373 **2. Introduction**

1374 Does the day on which a decision is made affect the outcome of the decision?
1375 On its face, it seems unlikely. The day of the week is rarely a factor in decision
1376 making. However, weekdays have distinct profiles at the level of mental
1377 representation^{1,2}, are associated with different routines and activities³, and can
1378 arouse contrasting emotional states^{4–6}.

1379 Weekly fluctuations have been well documented in a variety of settings.
1380 Examples range from traffic flow⁷ and energy consumption⁸ to medical^{9–11},
1381 economic¹², and political decisions¹³. For example, one study suggests that
1382 opting for a surgery later in the week can double the risk of complications⁹.
1383 Another study shows that the day on which national votes are held could
1384 determine their outcome¹³. As counterintuitive as it may seem, our adherence
1385 to the weekly cycle has unintended consequences in all sectors of society.

1386 Why do weekly fluctuations in decisions outcomes occur, and why are they so
1387 widespread? At a higher level, insights from personality psychology can shed
1388 light on a speculative mechanism. Past work has shown that individuals behave
1389 in different ways, especially in manifestation of different personality traits, in
1390 different settings^{14,15}. As such, each day of the week can be conceptualised as
1391 a different stereotyped 'setting', wherein the norms and expectations (i.e., one
1392 attends a pub in the UK on a Friday or Saturday at more than 4 times the rate
1393 as on a Monday¹⁶) dynamically shape the manifestations of different traits.

1394 One possible explanation is that the weekly cycle affects a foundational
1395 cognitive process that feeds into thinking and behaviour more generally. We
1396 have previously proposed risk tolerance as a candidate process¹³. In a
1397 repeated-measures implementation of the Balloon Analogue Risk Task
1398 (BART¹⁷) that was counterbalanced for order effects, risk tolerance decreased
1399 from Monday to Thursday then increased on Friday. This same distinctive
1400 pattern was observed in UK polling data for high-stakes political decisions¹³.

1401 One of the difficulties in establishing a causal connection between the weekly
1402 cycle and a pattern of behaviour is the unrelenting nature of the cycle itself.
1403 From an experimental point of view, it would be informative to remove the
1404 weekly cycle and measure any resulting change in the behaviour of interest.
1405 For example, if the behavioural pattern were to disappear after the weekly cycle
1406 was suspended, that would suggest a causal role for the weekly cycle in
1407 maintaining the behaviour.

1408 In practice, of course, we cannot suspend the weekly cycle. Instead,
1409 researchers have relied on minor perturbations to the weekly cycle, such as
1410 phase offsets caused by long weekends¹ or differences in cultural
1411 conventions¹⁸.

1412 The COVID-19 pandemic presented a unique opportunity to study a major
1413 disruption to the weekly cycle. Although the imposed lockdowns did not strictly
1414 suspend the weekly cycle, they loosened its grip on large parts of the
1415 population by placing millions of people on furlough and requiring others to stay
1416 at home. Many whose routines were disrupted reported losing track of what

1417 day it was or complained that all days began to feel the same—a phenomenon
1418 known as *Blursday* in the media¹⁹.

1419 In Study 1, we used this unique circumstance to examine the connection
1420 between reported salience of the weekly cycle (perception) and weekly
1421 fluctuations in risk tolerance (behaviour). Specifically, we compared risk
1422 measures for participants who reported a normal or strong sense of weekday
1423 (Normal/Strong SOW) and participants who reported a weak sense of weekday
1424 (Weak SOW). We predicted that the Normal/Strong group would show the
1425 same weekly risk cycle that we have seen elsewhere, with risk tolerance
1426 declining from Monday to Thursday then rebounding on Friday. However, we
1427 also predicted that this pattern would be attenuated in the Weak group,
1428 resulting in a flatter function for that group specifically. To explore the generality
1429 of these effects and their relation to different aspects of risk, we gathered from
1430 each participant several standard measures of risk that have been developed
1431 for different purposes. Regularities between these different measures should
1432 give us more confidence in the overall pattern and its scope.

1433 The first study was conducted in May 2020, four weeks into the first UK
1434 lockdown since World War II. At this stage, disruption to weekly routines was
1435 considerable and widespread. Working from home had increased to 35.9%²⁰
1436 and at its peak 29% of workers were furloughed²¹. In view of this disruption, it
1437 seemed likely that those affected would report a weaker sense of the weekday
1438 than they had before (Weak SOW), while people who were unaffected would
1439 report a sense of the weekday that was just as strong as normal (Normal/Strong
1440 SOW). Our main interest was whether a difference in SOW would impact the
1441 weekly risk cycle. Based on previous findings, we expected risk scores in the
1442 Strong SOW group to exhibit the following features: (i) systematic change
1443 through the week, rather than random fluctuation, (ii) decreasing, rather than
1444 increasing, risk tolerance from the start of the week, and (iii) inflection point on
1445 Thursday, such that risk tolerance on Friday is higher. Observing this very
1446 specific pattern in different risk measures should increase our confidence in the
1447 effect. If the weekly risk cycle depends on a clear idea of what day it is, then
1448 this pattern should be reduced or eliminated in the Weak SOW group, in a

1449 manner that is consistent across risk measures. We had no specific predictions
1450 concerning the weekend days but included them throughout for completeness.

1451 The cycles we live by are laden with associations: Night is associated as darker
1452 than day, winter as colder than summer, Friday as preferable to Monday^{1,22}.
1453 Yet the origins of these associations are very different. Diurnal and seasonal
1454 associations follow the clockwork of the solar system and are written into our
1455 biological inheritance^{23,24}.

1456 In Study 2, we again examined the weekly risk cycle, this time during the
1457 second UK lockdown in November 2020. The design was similar to Study 1,
1458 using the same risk measures and the same comparison of Normal/Strong
1459 SOW versus Weak SOW groups. The most important difference was that Study
1460 1 followed a period of stability in the weekly cycle (the decades preceding
1461 COVID-19 restrictions), during which we would expect normal weekday
1462 associations to have been continually reinforced. In contrast, Study 2 followed
1463 a period of severe disruption (the months of COVID-19 restrictions), during
1464 which we would expect normal weekday associations to be reinforced much
1465 less.

1466 As with Study 1, we expected the weekly risk cycle to be absent in the Weak
1467 SOW group. Our main interest was in the Normal/Strong SOW group. If
1468 weekday associations are sustained via social structure, those associations
1469 should dissipate over prolonged disruption to those structures. In that situation,
1470 knowing what day it is should make no difference. A strong sense of weekday
1471 is meaningless if the weekdays have lost their meaning. It follows that a weekly
1472 risk cycle that is based on weekday associations should also dissipate, even in
1473 the Normal/Strong SOW group.

1474 If normal social structure is not required to sustain weekday associations, or
1475 the weekly risk cycle does not depend on weekday associations, then the
1476 weekly risk cycle in the Normal/Strong SOW group should be as strong as it
1477 was in Study 1.

1478 **3. Methods**

1479 3.1. Materials and design (Study 1 & 2)

1480 Each participant completed four risk assessments, reported on their sense of
1481 weekday, and provided answers to basic demographic questions. Specifically,
1482 both studies used four different risk assessments capturing different aspects of
1483 risk tolerance²⁵ that have been associated with different real-world behaviours:
1484 the Domain-Specific Risk Task (DOSPERT) questionnaire²⁶; the German
1485 socioeconomic panel self-reported question (SOEP²⁷); the incentive-
1486 compatible multiple lotteries gambling task (BEG^{28,29}); and the performance-
1487 incentivised Balloon Analogue Risk Task (BART¹⁷). The BART and BEG are
1488 performance-incentivised tasks where participants had random chances of
1489 receiving the task pay-out in addition to their base pay. This diversity of risk
1490 measurements covers both actual risk-taking behaviour (BART, BEG) and
1491 general risk attitude (DOSPERT, SOEP). We believe that this spread of
1492 different risk measurements allows us to paint a more complete picture of an
1493 individual's risk attitude.

1494 *DOSPERT*

1495 Risk-taking has been shown to vary by domain^{30,31}. The DOSPERT
1496 questionnaire asks participants to self-report the likelihood that they would
1497 participate in a certain risky activity (Likert scale from 1 to 7), with the activities
1498 purposefully spanning different domains: ethics, recreational, health & safety,
1499 social, and financial decisions. The DOSPERT subscales have demonstrated
1500 real-world validity in these separable domains (e.g.³²). To arrive at a collective
1501 risk score as well as the five domain-specific risk scores, the average across
1502 the respective responses is calculated.

1503 *SOEP*

1504 The SOEP, originating from the German Socio-Economic Panel longitudinal
1505 study, asks participants to self-report their willingness to take risks using a 0-
1506 10 Likert scale²⁷. Participants in our study were presented with both a general
1507 question, asking directly how prepared the participant was to take risks in

1508 general, as well as five specific questions duplicating the general wording, but
1509 asking regarding health, financial, career, driving, and leisure and sports risks.
1510 For its simplicity, the SOEP is used in many panel cohorts and has shown to
1511 be predictive of various behaviours^{33,34}.

1512 **BEG**

1513 The BEG is a multiple lotteries task, wherein participants select one gamble
1514 between six options^{28,29}. Each gamble has two outcomes both with a 50%
1515 probability of occurring. Importantly, the expected value of each gamble
1516 increases but also presents a larger difference between the two outcomes
1517 (ranging from a certain pay-out of £28, to a gamble with a 50/50 chance of
1518 paying out £2 or £70). There was also an option presented to opt out and not
1519 participate in the gamble at all. The BEG is a common behavioural measure
1520 developed to assess risk preferences, and their applications to decision making
1521 and risk taking^{28,29,35,36}. Across the studies, the participants had a 1 in 100
1522 chance to be paid the outcome of their lottery choice.

1523 **BART**

1524 The BART measures risk taking through a virtual balloon-pumping task¹⁷.
1525 Participants are presented with a series of 20 balloons that they can inflate
1526 incrementally through clicking. The value of the balloon increases by a set
1527 amount (£0.01) per pump. However, each balloon will pop at a certain volume
1528 (based on a probability distribution unknown to the participants), bringing its
1529 value to zero. As such, a participant must balance increasing their pay-out from
1530 each balloon with the increasing risk of the balloon popping and losing the
1531 money for this particular balloon. For each participant, the *adjusted BART score*
1532 is calculated, as the average number of pumps for balloons that did not pop.
1533 The BART is a task developed in health psychology and shows to be most
1534 predictive of health risk behaviours such as smoking (e.g.³⁷) or drinking (e.g.³⁸).
1535 For the purpose of this study, the task was adapted for online use. For
1536 scalability, we also used a level of abstraction with respect to the stakes: rather
1537 than a direct pay-out of winnings, the participants had a 1 in 20 chance to be
1538 paid the winnings from the task. Based on the participants performance it was

1539 possible to earn a total bonus of up to GBP 81.80 across the two performance-
1540 incentivised tasks. While these tasks are designed to be incentive-compatible,
1541 we acknowledge that payment of tasks may not be enough to ensure true
1542 incentive compatibility³⁹⁻⁴³.

1543 *Sense of weekday*

1544 In order to determine whether risk fluctuation may depend on subjective
1545 experiences of time, we separated participants by their self-reported *sense of*
1546 *weekday* (SOW). Each participant responded to the question “During
1547 lockdown, my sense of which day of the week we are on is...?” on a scale of
1548 much weaker than usual (1) weaker than usual (2) the same as usual (3)
1549 stronger than usual (4) much stronger than usual (5) by means of a
1550 manipulation check as to whether their experience of time had or had not
1551 shifted.

1552 *Demographic questions*

1553 Participants also reported on their age, gender, and employment.

1554 3.2. Study 1

1555 3.2.1. *Participants and procedure*

1556 864 paid participants were recruited via Prolific Academic (www.prolific.co⁴⁴)
1557 across 14 days from May 11 to May 24, 2020 (n = 122-128 per weekday; mean
1558 age = 32.9 years, age range = 18-77; 67.8% female; see Supplementary
1559 Materials Table A for a demographic breakdown by weekday). For their
1560 participation, the participants received a fixed payment of GBP 2.00 (Study 1)
1561 and GBP 3.00 (Study 2). Moreover, participants had the chance to be paid an
1562 additional bonus of up to GBP 81.80 based on two performance-incentivised
1563 tasks. Participants provided informed consent in line with the University
1564 Research Ethics Committee requirements (ethics approval number 07564) and
1565 were compensated in line with Prolific’s wage guidelines.

1566 3.3. Study 2

1567 3.3.1. *Participants and procedure*

1568 829 paid participants were recruited via Prolific Academic across 14
1569 consecutive days during a UK government lockdown between 16 November
1570 and 29 November 2020 (117-121 participants per day of week; mean age =
1571 32.7 years, age range = 18-75; 71.9% female; see Supplementary Materials F
1572 for a detailed breakdown of participant demographics). Participants provided
1573 informed consent in line with the LSE Research Ethics Committee
1574 requirements (ethics approval number 07564) and were compensated in line
1575 with Prolific's wage guidelines.

1576 The procedure, materials and data analysis of Study 2 were identical to Study
1577 1, bar one adjustment.

1578 Similar to Study 1, each participant responded to the question "During this
1579 lockdown, my sense of which day of the week we are on is...?" on a scale of
1580 much weaker than usual (1) weaker than usual (2) the same as usual (3)
1581 stronger than usual (4) much stronger than usual (5). This differs from the
1582 question in Study 1 with the addition of the word "this", to make sure it is clear
1583 which lockdown was being referred to.

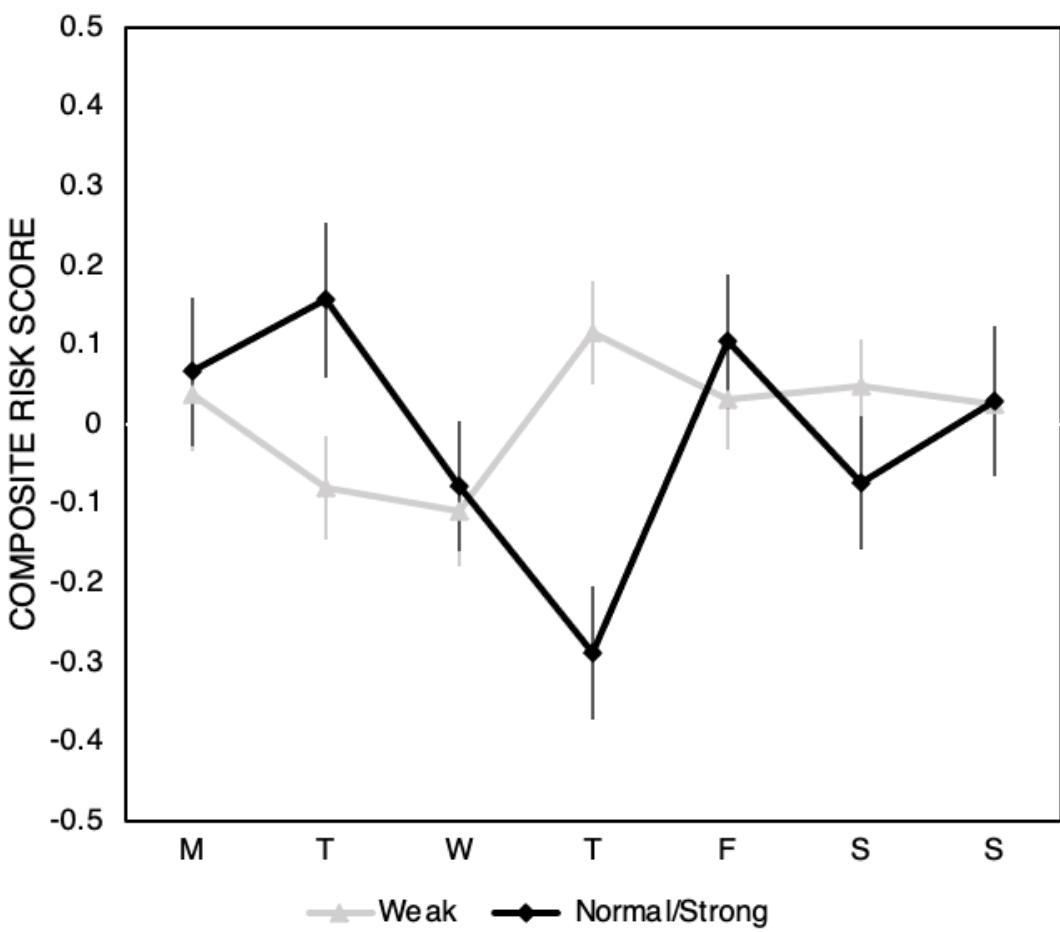
1584 **4. Data Analysis**

1585 Using a linear regression model, the primary dependent variable for our
1586 analysis was a composite risk score, calculated in a three-step process. First,
1587 scores for each of the above risk measures were calculated by participant, as
1588 per the respective standard procedure^{17,26-29}. Then, all individual scores
1589 across each risk measurement (and each subscale for the DOSPERT and
1590 SOEP) were converted into Z-scores. Third, the Z-scores were averaged
1591 across the four risk measures for each participant to obtain a single composite
1592 risk score. The choice of this methodology for computing the composite score
1593 builds upon the equal weight, both computationally and theoretically, of each
1594 risk measurement.

1595 Subsequent analyses divided participants into two groups by sense of weekday
1596 (SOW). Therefore, each analysis was conducted once for those with a
1597 Normal/Strong SOW and once for those with a Weak SOW.

1598 As independent variables we used the day of the week (Monday, Tuesday,
1599 Wednesday, Thursday, Friday, Saturday, Sunday). We categorise the sense of
1600 the weekday by splitting it into two groups: weak (Much weaker (1) or weak (2))
1601 and strong (normal (3), strong (4) or much stronger (5)).

1602 We additionally control for gender and age effects in the model which have
1603 been shown to be important predictors of risk tolerance. In particular, men have
1604 been found to be more risk tolerant than women^{45–48} and age to be inversely
1605 related to risk tolerance^{49–51}. In case of any imbalances in the sample,
1606 incidental effects of age and gender may appear and can be accounted for.


1607 To check for consistency across the different risk measures, we repeat this
1608 analysis for each risk measure independently and report these findings in the
1609 Supplementary Materials.

1610 **5. Results**

1611 **5.1. Study 1**

1612 Firstly, we note that there were no demographic differences between
1613 participants who self-reported a weak or strong SOW across the seven
1614 weekdays (see Supplementary Materials Table A). We note that we did not use
1615 weighting in the analysis to account for demographic variations.

1616

1617

1618 **Figure 1:** Composite risk score separated by participants with a Strong vs
1619 Weak sense of weekday plotted across the days of the week during the first
1620 lockdown. Error bars represent +/- SE.

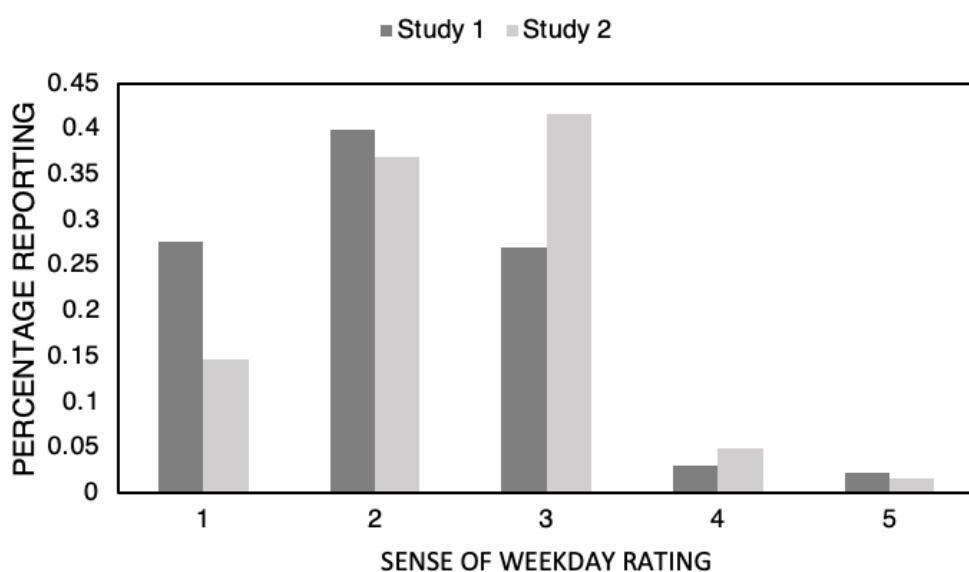
1621 Figure 1 shows the composite risk score by weekday separately for participants
1622 who report a strong SOW and those who report a weak SOW. Table 1 shows
1623 the associated values.

Sense	Day of the week	Mean	Standard Error	95% CI
Strong/Normal	Monday	0.066	0.093	[-0.116, 0.248]
	Tuesday	0.157	0.098	[-0.034, 0.349]

	Wednesday	-0.077	0.082	[-0.239, 0.084]
	Thursday	-0.288	0.084	[-0.454, -0.123]
	Friday	0.104	0.084	[-0.061, 0.269]
	Saturday	0.073	0.084	[-0.238, 0.092]
	Sunday	0.030	0.095	[-0.156, 0.216]
Weak	Monday	0.037	0.071	[-0.102, 0.176]
	Tuesday	-0.079	0.066	[-0.208, 0.049]
	Wednesday	-0.11	0.068	[-0.244, 0.023]
	Thursday	0.116	0.065	[-0.011, 0.243]
	Friday	0.032	0.063	[-0.092, 0.156]
	Saturday	0.048	0.059	[-0.067, 0.163]
	Sunday	0.260	0.063	[-0.097, 0.149]

Table 1: Composite risk score for Normal/Strong and Weak SOW across days

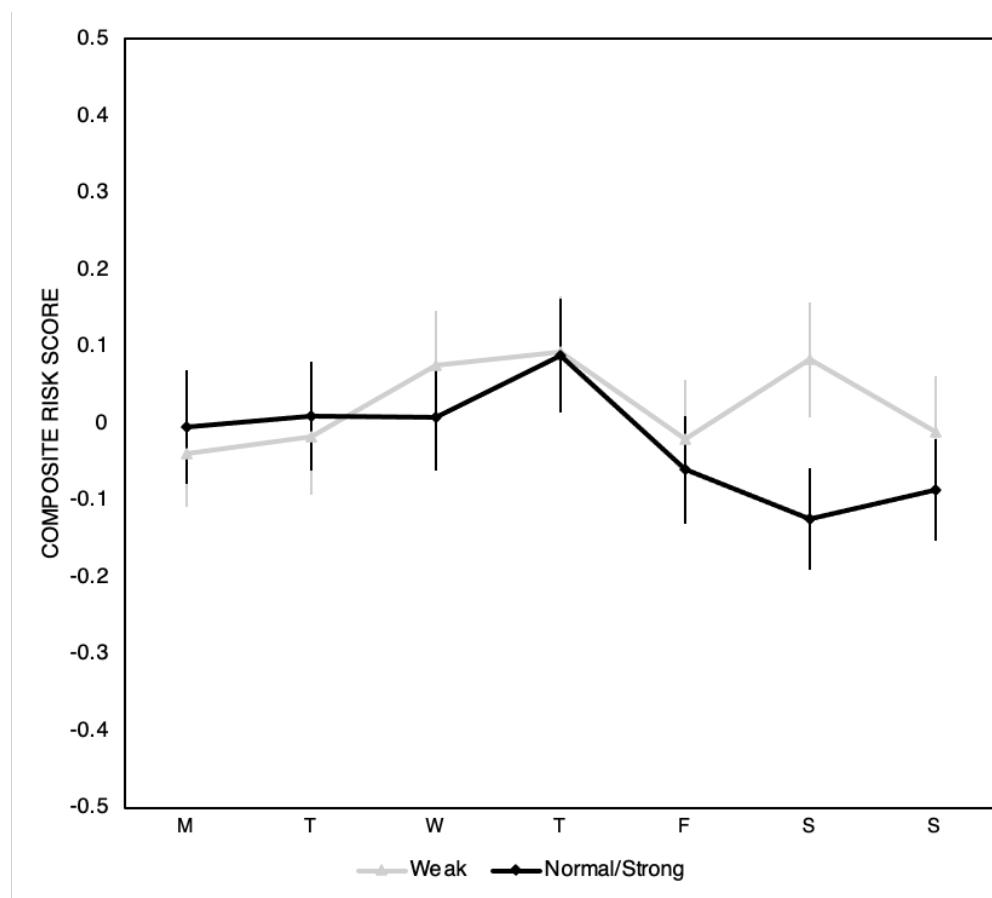
of the week (mean, standard error, 95% CI).


A linear regression for those with a Normal/Strong SOW of weekday on composite risk score (adjusted $R^2 = 0.037$) reveals an effect of weekday (Effect size $\eta^2 = 0.058$, 95% CI [0.003, 0.103]) driven by Thursday – Monday (Estimate = -0.355, SE = 0.127, 95% CI [-0.604, -0.105] $t = -2.802$, $p = 0.005$). See Supplementary Materials Table B.1. for full reporting and Supplementary Material Table B.2. for post-hoc comparisons. Additionally, see and Supplementary Material Table B.3. – B.4. for full reporting and post-hoc comparisons of a model including additional demographic controls (age, gender).

A linear regression for those with a Weak SOW of weekday on composite risk score (adjusted $R^2 = 0.004$) reveals no main effect of weekday. See

1637 Supplementary Materials Table B.5. for full reporting and Supplementary
1638 Material Table B.6. for post-hoc comparisons. Additionally, see and
1639 Supplementary Material Table B.7. – B.8. for full reporting and post-hoc
1640 comparisons of a model including additional demographic controls (age,
1641 gender).

1642 The same analysis was performed for each risk measure separately, again
1643 dividing by sense of weekday into two groups (Normal/Strong SOW, Weak
1644 SOW). Analyses of both weekday only and of weekday, age, gender are both
1645 reported. See Supplementary Materials C for descriptives of each measure and
1646 Supplementary Materials Figure D and tables D.1. to D.32. for details of each
1647 independent analysis and Supplementary Materials Figure E and tables E.1. to
1648 E.8. for calculation of the composite risk score without the inclusion of BART.
1649 For the Normal/Strong SOW specifically, the Mon-Thursday dip was significant
1650 across both composite score variations (calculated with and without BART), as
1651 well as the SOEP and DOSPERT, but not the BEG or the BART.


1652 5.2. Study 2

1653

1654 **Figure 2:** The distribution of participant scores for Study 1 and Study 2 for the
1655 question “How strong is your sense of weekday?” on a scale of 1 (much
1656 weaker) to 5 (much stronger).

1657 Figure 2 shows the distribution of SOW for the two studies. To check whether
1658 the experience of the days of the week had shifted between the first and second
1659 lockdown, we compared Sense of Weekday (SOW) ratings obtained in Study
1660 2 (lockdown 2) with those obtained in Study 1 (lockdown 1). An independent
1661 samples t-test ($t(1690) = -6.25, p < 0.001$; Cohen's $d = 0.332$) indicates that
1662 people reported a stronger sense of weekday on average in the second
1663 lockdown ($M = 2.420, SE = 0.0300, Mode = 3$) than in the first ($M = 2.123, SE$
1664 = 0.032, Mode = 2).

1665

1666 **Figure 3:** Composite risk score across weekdays separated by weak and
1667 strong sense of weekday. Error bars represent +/- SE.

1668 Figure 3 shows the composite risk score separated by weekday for those who
1669 report a strong and those who report a weak SOW during the second lockdown.
1670 Table 2 shows the associated values.

Sense	Day of the week	Mean	Standard Error	95% CI
Strong/Normal	Monday	-0.004	0.074	[-0.149, 0.140]
	Tuesday	0.0103	0.071	[-0.130, 0.149]
	Wednesday	0.007	0.069	[-0.127, 0.142]
	Thursday	0.088	0.074	[-0.058, 0.234]
	Friday	-0.061	0.069	[-0.197, 0.076]
	Saturday	-0.125	0.066	[-0.255, 0.006]
	Sunday	-0.087	0.067	[-0.217, 0.044]
Weak	Monday	-0.039	0.068	[-0.173, 0.095]
	Tuesday	-0.018	0.073	[-0.161, 0.125]
	Wednesday	0.075	0.070	[-0.061, 0.212]
	Thursday	0.092	0.072	[-0.048, 0.233]
	Friday	-0.021	0.075	[-0.168, 0.127]
	Saturday	0.083	0.073	[-0.060, 0.225]
	Sunday	-0.011	0.071	[-0.150, 0.128]

1671 **Table 2:** Composite risk score for Normal/Strong and Weak SOW across days
1672 of the week (mean, standard error, 95% CI).

1673 A linear regression for those with a Normal/Strong SOW of weekday on
1674 composite risk score (adjusted $R^2 = 6.884e-4$) reveals no main effect of
1675 weekday. See Supplementary Materials Table G.1. for full reporting and
1676 Supplementary Material Table G.2. for post-hoc comparisons. Additionally, see
1677 and Supplementary Material Table G.3. – G.4. for full reporting and post-hoc
1678 comparisons of a model including additional demographic controls (age,

1679 gender).

1680 A linear regression for those with a Weak SOW of weekday on composite risk
1681 score (adjusted $R^2 = -0.005$) reveals no main effect of weekday. See
1682 Supplementary Materials Table G.5. for full reporting and Supplementary
1683 Material Table G.6. for post-hoc comparisons. Additionally, see and
1684 Supplementary Material Table G.7. – G.8. for full reporting and post-hoc
1685 comparisons of a model including additional demographic controls (age,
1686 gender).

1687 The analysis was repeated for each risk measure separately, again through
1688 separate analyses for those with Strong/Normal and Weak SOW (See
1689 Supplementary Material Figure H for descriptives, and Figure I and Tables I.1.
1690 to I.16 for details of analysis). As in Study 1, see Supplementary Material Figure
1691 J and tables J.1. to J.4. for comparison of the composite risk score as calculated
1692 with and without the inclusion of BART. Across all additional analyses, both for
1693 Normal/Strong and Weak SOW groups, there was no main effect of weekday.

1694 **6. Discussion**

1695 6.1. Study 1

1696 This study makes a number of contributions. First and foremost, among those
1697 who reported a strong sense of weekday, we found a similar pattern of weekly
1698 fluctuations in risk tolerance to¹³. As with the original findings¹³, risk tolerance
1699 began high in the beginning of the week, reached its lowest point on Thursday,
1700 and rebounded on Friday. The similarity of this pattern across studies is
1701 especially interesting given the differences between studies. The original study
1702 was conducted with a student sample in a laboratory setting, using a repeated
1703 measures design. The current study was conducted with a general population
1704 sample in an online setting, using a between-subjects design. Conservation of
1705 the basic pattern across these design changes suggests a high degree of
1706 generalisability.

1707 Interestingly, the only measures that did not show the pattern is the BART and
1708 the BEG, the two tasks measuring actual risk taking (compared to self-reported,

1709 such as the DOSPERT and SOEP). At first sight, this may seem surprising, as
1710 the BART is the measure with which the pattern was originally observed. We
1711 explore further peculiarities of BART in the General Discussion (Section 6.3)
1712 that may have contributed to this finding. However, it is interesting to note that
1713 the effect of weekday fell cleanly along the split between tasks measuring
1714 actual risk taking and risk attitudes. We hypothesise that this discrepancy
1715 between the DOSPERT/SOEP and BART/BEG may be due in part to the
1716 relationships between the different types of measures and risk-taking
1717 behaviour: in a direct comparison, risk-taking questionnaires (in the present
1718 study, comparable to the SOEP and DOSPERT) have been shown to have a
1719 higher test-retest reliability and correlation with actual risk-taking behaviour
1720 than lottery-choice tasks (such as the BEG)⁵². The choice of risk task in
1721 experimental work has long been a point of interest⁵³, and we tentatively
1722 suggest that this difference in type of test may describe the present study's
1723 findings.

1724 In another extension to previous work, we also collected data on weekend
1725 days. For the Strong SOW group, risk tolerance on Saturday and Sunday was
1726 similar to that on Monday, Tuesday and Friday, suggesting that the observed
1727 pattern is better characterised as a midweek dip than as peaks that bookend
1728 the working week. Given the human origins of the weekly cycle, we are inclined
1729 to attribute weekly fluctuations in risk tolerance to human causes, such as
1730 semantic or emotional associations with the days of the week. In the next study,
1731 we had the opportunity to examine the impact of COVID-19 restrictions over
1732 the longer term, when such associations may have atrophied.

1733 6.2. Study 2

1734 We found no evidence in Study 2 for the weekly cycle in risk tolerance seen in
1735 Study 1. Critically, the cycle was abolished even among people who retained a
1736 strong sense of weekday. We suggest that 30 weeks without normal
1737 reinforcement of weekday associations was enough to decouple mere
1738 knowledge of the current day from its usual ramifications.

1739 6.3. General Discussion

1740 In the current studies, we used the unique circumstance of the COVID-19
1741 lockdown to examine connections between reported salience of the weekly
1742 cycle (perception) and weekly fluctuations in risk tolerance (behaviour). Our
1743 results corroborate the findings of previous studies: risk tolerance decreased
1744 from Monday to Thursday and increased on Friday. However, the current
1745 studies demonstrate this cycle using different measures of risk. They also
1746 identify conditions under which the weekly risk cycle emerges.

1747 We begin by considering similarities between Study 1 and Study 2. In both
1748 studies, a portion of respondents reported that their sense of weekday was at
1749 least as strong as it had been before lockdown. Apparently, their sense of
1750 weekday was not perturbed by the onset (Study 1) or continuation (Study 2) of
1751 lockdown restrictions. There are at least two possible reasons for this
1752 resilience. The first appeals to situational factors⁵⁴. For example, those
1753 reporting a strong sense of weekday might have continued their normal work
1754 pattern. The second appeals to dispositional factors. For example, the days of
1755 the week could be more salient to some people than to others. The latter
1756 suggests a more trait-like attribute, perhaps analogous to sense of direction.
1757 This analogy between sense of weekday and sense of direction seems
1758 potentially fruitful. A few studies have examined psychometric properties of
1759 sense of direction and identified clear personality correlates (e.g. ⁵⁵). Some
1760 aspects of previous findings suggest that sense of weekday could be amenable
1761 to similar analyses. For example, studies requiring participants to name the
1762 current day have shown broad distribution in performance^{1,56}. As of yet
1763 however, no studies have taken an individual differences approach to the
1764 salience of the weekly cycle. One possible exception concerns studies of
1765 calendrical savants, who can rapidly report the weekday corresponding to a
1766 given date (e.g.⁵⁷). Such individuals demonstrate that it is possible to be highly
1767 attuned to the days of the week. However, it is not clear whether this ability
1768 represents one extreme on a continuum of sensitivity or a qualitatively distinct
1769 skill.

1770 We now turn to differences between Study 1 and Study 2. Even among
1771 participants who reported a strong sense of weekday, the weekly risk cycle was
1772 very different earlier during COVID-19 restrictions (Study 1) compared with
1773 later during the restrictions (Study 2). This finding shows that the weekly risk
1774 cycle is not reducible to sense of weekday and is dissociable from it. The
1775 absence of a weekly risk cycle in Weak SOW participants (Studies 1 & 2)
1776 suggests that a Strong SOW is *necessary* for the weekly risk cycle to occur.
1777 The absence of a weekly risk cycle in Strong SOW participants (Study 2 only)
1778 suggests that Strong SOW is not *sufficient*. Some other factor, present in Study
1779 1 but not in Study 2, is also required for the weekly risk cycle to emerge. It is
1780 inevitable that the two studies differed in many ways that cannot be equated.
1781 For example, Study 1 was conducted in spring, whereas Study 2 was
1782 conducted in autumn; the participant samples contained different people. In
1783 view of such mismatches, we should be cautious in attributing divergent
1784 outcomes to any single cause. At the same time, part of the motivation behind
1785 this project was the temporal disorientation that people reported during COVID-
1786 19 restrictions, specifically concerning the days of the week^{19,58,59}. Duration of
1787 disruption becomes key here. While participants in Study 1 had experienced
1788 only 4–5 weeks of disruption, participants in Study 2 had experienced 31–32
1789 weeks of disruption. How might this factor be important? Our working
1790 hypothesis is that stereotypical weekday associations underpinning the weekly
1791 risk cycle require reinforcement. Normally, this reinforcement is supplied by the
1792 social environment—directly, as we adhere to weekly routines ourselves, and
1793 indirectly as we interact with others as they adhere to weekly routines. When
1794 this reinforcement is withdrawn (as during COVID-19 restrictions), weekday
1795 associations begin to decay suggesting a shift in what is understood as a
1796 ‘normal’ SOW, with association strength proportional to elapsed time. This is
1797 further supported by the larger proportion of individuals reporting a
1798 Normal/Strong SOW in Study 2, as we hypothesise the understanding of a
1799 ‘normal’ SOW shifted over the course of COVID-19 restrictions.

1800 The upshot is that there are at least two ways in which the weekly risk cycle
1801 can fail. If sense of weekday is weak, then weekday will have little effect
1802 because the current day is not salient. This applies irrespective of weekday

1803 associations. If stereotypical weekday associations atrophy, then weekday will
1804 have little effect because the current day is not meaningful. This applies
1805 irrespective of sense of weekday. Figure 4 summarises our interpretation.

1806

Stereotypical weekday associations?

	Yes	No
Strong		
Weak		
	(Study 1, Strong SOW group)	(Study 2, Strong SOW group)
	(Study 1, Weak SOW group)	(Study 2, Strong SOW group)

1807

1808 **Figure 4:** Factors affecting the weekly risk cycle. Rows refer to sense of
1809 weekday, which may be strong or weak. Columns refer to stereotypical
1810 weekday associations, which may or may not be maintained. Quadrants show
1811 the mapping of the current studies onto these factors. The weekly risk cycle
1812 occurs only when sense of weekday is strong and weekday associations are
1813 maintained (Top Left).

1814 One further observation seems worth noting. In Study 2, there was no
1815 statistically significant effect of weekday in the Strong SOW group. In other
1816 words, risk scores were not statistically different from one day to the next.
1817 However, a separate question we can ask is: On which day of the week were
1818 risk scores most extreme? For the SOEP, the DOSPERT, and the BEG alike
1819 (but not the BART), the answer is Thursday. This observation is curious for two
1820 reasons. First, it seems improbable that the most extreme day should again be
1821 Thursday rather than some other day of the week. Second, for all three
1822 measures the deviation in Study 2 was in the opposite direction to the deviation
1823 in Study 1 (with Thursday being the most risk tolerant day rather than the most

1824 risk averse day). Again, the difference in Study 2 was not statistically
1825 significant.

1826 A note on the different risk measures in this study. The first laboratory
1827 demonstration of a weekly risk cycle reported fluctuations in BART scores¹³.
1828 Our intention here was to use the same measure to examine the weekly risk
1829 cycle during lockdown. We also administered the DOSPERT, the SOEP, and
1830 the BEG to test whether the same weekly risk cycle was evident in other
1831 measures. As it turned out, the DOSPERT and the SOEP showed the weekly
1832 risk cycle. However, the BART and the BEG did not. How did we arrive at this
1833 puzzling outcome? The first noteworthy difference is that, by design, the
1834 DOSPERT and SOEP measure *risk attitudes*, while the BEG and the BART
1835 measure actual *risk taking* through use of tasks (gambles and balloon inflation,
1836 respectively).

1837 Further, comparisons of BART designs provide some useful clues.^{60,61}
1838 demonstrate that the sensitivity of the BART depends on reward structure. We
1839 made several changes to reward structure to accommodate online testing. For
1840 example,¹³ involved a laboratory setting, larger rewards, and a more concrete
1841 representation of the stakes. In contrast, the current version involved an online
1842 setting, smaller rewards, and a more abstract representation of the stakes. We
1843 introduced these changes in an effort to make data collection more efficient.
1844 However, we believe that they may have blunted the sensitivity of the test.
1845 Separate analyses, unrelated to weekday effects, support this interpretation.
1846 For example, scores from the current implementation of the BART did not
1847 correlate with scores on other risk measures⁴⁷. Nor did they detect well-
1848 established sex differences in risk taking⁶². Given these reservations, we
1849 recognise that there is a case for setting aside the current BART data:
1850 incorporating an insensitive measure into the combined risk score can only
1851 dilute the pattern of interest. We choose to include them here to avoid selective
1852 reporting, to reflect our uncertainty in the source of the discrepancy, and to
1853 underscore the insightfulness of⁶¹ analysis. For the interested reader, we
1854 present combined risk scores that exclude the BART in Supplementary
1855 Materials. These alternative scores show the weekly risk cycle more

1856 emphatically (Study 1, Strong SOW), but otherwise support the same
1857 conclusions.

1858 Despite the early stages of research in this area, there are already some clear
1859 predictions emerging from the work presented here. First, sense of weekday
1860 should reveal substantial individual differences, such that some people are
1861 more attuned to the weekly cycle than others. By analogy to sense of direction,
1862 we expect sense of weekday to be a trait-like attribute that generalises across
1863 different measures and is stable over time. Second, weekday associations
1864 should be malleable. This proposal could be tested by comparing weekday
1865 associations of people with unusual work patterns, for example, people who
1866 work weekends and take days off midweek (i.e., cross-sectional comparison).
1867 We expect that weekday associations in such groups will differ from
1868 stereotypical associations in systematic ways. Third, loss of weekday
1869 associations (or acquisition of new ones) should occur somewhere in a 4- to
1870 30-week time window (the number of weeks between the two lockdown
1871 periods). A more precise time course could be established by studying
1872 transitions into or out of unusual weekly routines (i.e., longitudinal comparison
1873 as people retire, leave or enter a period of incarceration, start or leave work on
1874 an oil rig or cruise ship). Studying such transitions would also allow us to test
1875 directly for repulsion aftereffects when an entrained pattern ceases, namely
1876 whether suspension of an entrained weekly cycle, with its midweek dip in risk
1877 tolerance, might also induce a repulsion aftereffect, such that the midweek dip
1878 is temporarily reversed (i.e., a midweek boost in risk tolerance). Lastly, we
1879 believe there is scope to explore different stereotyped behavioural patterns
1880 associated with the day of the week beyond risk attitudes. Further explorations
1881 of a range of cognitive and individual traits fluctuating over days of the week
1882 could further add to this body of research.

1883 For now, we show that the weekly cycle in risk tolerance generalises across
1884 several standard measures of risk. We identify two enabling conditions for the
1885 observed cycle: strong sense of weekday and stereotypical weekday
1886 associations. When both conditions were met, the weekly risk cycle was strong
1887 and consistent. Withdrawing either condition abolished the effect.

1888 **7. Competing interests**

1889 The authors declare no competing interests.

1890 **8. Author contributions**

1891 All authors developed the concept and designed the studies. MMG, RJ, and
1892 JGS funded the studies. BG conducted data collection and pre-processing for
1893 Study 1. VF conducted data collection and pre-processing for Study 2. VF
1894 conducted quantitative analysis for both studies. VF drafted the manuscript,
1895 with critical revisions from all authors. All authors approved the final version for
1896 submission.

1897 **9. Acknowledgements**

1898 The authors gratefully acknowledge financial support from a British Academy
1899 Mid-Career Fellowship (MD19\190023) to RJ, from a Leverhulme Trust
1900 Research Fellowship (RF-2020-448\10) to RJ, and from the Research
1901 Infrastructure and Investment Fund (RIIF) from the (University Department) to
1902 MMG and JGS.

1903 **10. Data availability statement**

1904 The datasets generated and/or analysed during the current study are available
1905 in the OSF repository <https://osf.io/h8rq9>.

1906 **11. Works Cited**

1907 1. Ellis, D. A., Wiseman, R. & Jenkins, R. Mental Representations of
1908 Weekdays. *PLoS ONE* **10**, e0134555 (2015).

1909 2. Pecjak, V. Verbal synesthesiae of colors, emotions, and days of the
1910 week. *Journal of Verbal Learning and Verbal Behavior* **9**, 623–626 (1970).

1911 3. Kennedy-Moore, E., Greenberg, M. A., Newman, M. G. & Stone, A. A.
1912 The relationship between daily events and mood: The mood measure may
1913 matter. *Motiv Emot* **16**, 143–155 (1992).

1914 4. Mishne, G. & De Rijke, M. Capturing Global Mood Levels using Blog
1915 Posts. in vol. 6 145–152 (2006).

1916 5. Stone, A. A., Schneider, S. & Harter, J. K. Day-of-week mood patterns
1917 in the United States: On the existence of 'Blue Monday', 'Thank God it's
1918 Friday' and weekend effects. *The Journal of Positive Psychology* **7**, 306–314
1919 (2012).

1920 6. Tsai, M.-C. The Good, the Bad, and the Ordinary: The Day-of-the-Week
1921 Effect on Mood Across the Globe. *J Happiness Stud* **20**, 2101–2124 (2019).

1922 7. Rakha, H. & Van Aerde, M. Statistical analysis of day-to-day variations
1923 in real-time traffic flow data. *Transportation research record* 26–34 (1995).

1924 8. Singh, S. & Yassine, A. Big data mining of energy time series for
1925 behavioral analytics and energy consumption forecasting. *Energies* **11**, 452
1926 (2018).

1927 9. Aylin, P., Alexandrescu, R., Jen, M., Mayer, E. & Bottle, A. Day of week
1928 of procedure and 30 day mortality for elective surgery: retrospective analysis
1929 of hospital episode statistics. *BMJ* **346**, (2013).

1930 10. Brådvik, L. & Berglund, M. A suicide peak after weekends and holidays
1931 in patients with alcohol dependence. *Suicide and Life-Threatening Behavior*
1932 **33**, 186–191 (2003).

1933 11. Ellis, D. A., Sanders, J. G., Jenkins, R. & McAuslan, L. A weekday
1934 intervention to reduce missed appointments. *PLOS ONE* **17**, e0274670 (2022).

1935 12. Gibbons, M. R. & Hess, P. Day of the week effects and asset returns.
1936 *Journal of business* 579–596 (1981).

1937 13. Sanders, J. G. & Jenkins, R. Weekly Fluctuations in Risk Tolerance and
1938 Voting Behaviour. *PLoS ONE* **11**, e0159017 (2016).

1939 14. Matz, S. C. & Harari, G. M. Personality–place transactions: Mapping the
1940 relationships between Big Five personality traits, states, and daily places.
1941 *Journal of Personality and Social Psychology* **120**, 1367–1385 (2021).

1942 15. Mischel, W. & Peake, P. K. Analyzing the construction of consistency in
1943 personality. in (University of Nebraska Press, 1982).

1944 16. Statista Research Department. UK consumers: day of the week going
1945 to a pub 2017. *Statista* [https://www.statista.com/statistics/807171/day-of-the-](https://www.statista.com/statistics/807171/day-of-the-week-going-to-a-pub-in-uk-united-kingdom/)
1946 [week-going-to-a-pub-in-uk-united-kingdom/](https://www.statista.com/statistics/807171/day-of-the-week-going-to-a-pub-in-uk-united-kingdom/) (2017).

1947 17. Lejuez, C. W. *et al.* Evaluation of a behavioral measure of risk taking:
1948 The Balloon Analogue Risk Task (BART). *Journal of Experimental Psychology:*
1949 *Applied* **8**, 75–84 (2002).

1950 18. Zerubavel, E. *The seven day circle: The history and meaning of the*
1951 *week*. (University of Chicago Press, 1989).

1952 19. Chaumon, M. *et al.* The Blursday database as a resource to study
1953 subjective temporalities during COVID-19. *Nature Human Behaviour* 1–13
1954 (2022).

1955 20. Homeworking hours, rewards and opportunities in the UK: 2011 to 2020
1956 - Office for National Statistics.
1957 <https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/labourproductivity/articles/homeworkinghoursrewardsandopportunitiesintheuk2011to2020/20/2021-04-19>.

1960 21. Comparison of furloughed jobs data, UK. *Office for National Statistics*
1961 [https://www.ons.gov.uk/businessindustryandtrade/business/businessservices/](https://www.ons.gov.uk/businessindustryandtrade/business/businessservices/articles/comparisonoffurloughedjobsdata/march2020tojanuary2021)
1962 [articles/comparisonoffurloughedjobsdata/march2020tojanuary2021](https://www.ons.gov.uk/businessindustryandtrade/business/businessservices/articles/comparisonoffurloughedjobsdata/march2020tojanuary2021) (2020).

1963 22. Areni, C. S. & Burger, M. Memories of 'Bad' Days Are More Biased Than
1964 Memories of 'Good' Days: Past Saturdays Vary, but Past Mondays Are Always
1965 Blue. *J Appl Social Psychol* **38**, 1395–1415 (2008).

1966 23. Merrow, M., Spoelstra, K. & Roenneberg, T. The circadian cycle: daily
1967 rhythms from behaviour to genes. *EMBO reports* **6**, 930–935 (2005).

1968 24. Murray, G., Allen, N. B., Rawlings, D. & Trinder, J. Seasonality and
1969 personality: a prospective investigation of Five Factor Model correlates of
1970 mood seasonality. *Eur J Pers* **16**, 457–468 (2002).

1971 25. Frey, R., Pedroni, A., Mata, R., Rieskamp, J. & Hertwig, R. Risk
1972 preference shares the psychometric structure of major psychological traits. *Sci.
1973 Adv.* **3**, e1701381 (2017).

1974 26. Blais, A.-R. & Weber, E. U. A Domain-Specific Risk-Taking (DOSPERT)
1975 scale for adult populations. *Judgment and Decision Making* **1**, 15 (2006).

1976 27. Wagner, G. G., Frick, J. R. & Schupp, J. *The German socio-economic
1977 panel study (SOEP): Scope, evolution and enhancements.* (2007).

1978 28. Binswanger, H. P. Attitudes toward Risk: Experimental Measurement in
1979 Rural India. *American Journal of Agricultural Economics* **62**, 395–407 (1980).

1980 29. Eckel, C. C. & Grossman, P. J. Sex differences and statistical
1981 stereotyping in attitudes toward financial risk. *Evolution and Human Behavior*
1982 **23**, 281–295 (2002).

1983 30. MacCrimmon, K. R. & Wehrung, D. A. Assessing risk propensity. in
1984 *Recent developments in the foundations of utility and risk theory* 291–309
1985 (Springer, 1986).

1986 31. MacCrimmon, K. R. & Wehrung, D. A. Characteristics of risk taking
1987 executives. *Management science* **36**, 422–435 (1990).

1988 32. Hanoch, Y., Johnson, J. G. & Wilke, A. Domain specificity in
1989 experimental measures and participant recruitment: An application to risk-
1990 taking behavior. *Psychological science* **17**, 300–304 (2006).

1991 33. Dohmen, T. *et al.* Individual risk attitudes: Measurement, determinants,
1992 and behavioral consequences. *Journal of the european economic association*
1993 **9**, 522–550 (2011).

1994 34. Falk, A. *et al.* Global evidence on economic preferences. *The Quarterly
1995 Journal of Economics* **133**, 1645–1692 (2018).

1996 35. Castillo, M., Jordan, J. L. & Petrie, R. Children's rationality, risk attitudes
1997 and field behavior. *European economic review* **102**, 62–81 (2018).

1998 36. Dave, C., Eckel, C. C., Johnson, C. A. & Rojas, C. Eliciting risk
1999 preferences: When is simple better? *Journal of Risk and Uncertainty* **41**, 219–
2000 243 (2010).

2001 37. Lejuez, C. W. *et al.* The balloon analogue risk task (BART) differentiates
2002 smokers and nonsmokers. *Experimental and Clinical Psychopharmacology* **11**,
2003 26–33 (2003).

2004 38. Canning, J. R., Schallert, M. R. & Larimer, M. E. A systematic review of
2005 the balloon analogue risk task (BART) in alcohol research. *Alcohol and
2006 Alcoholism* **57**, 85–103 (2022).

2007 39. Azrieli, Y., Chambers, C. P. & Healy, P. J. Incentives in Experiments: A
2008 Theoretical Analysis. *Journal of Political Economy* **126**, 1472–1503 (2018).

2009 40. Azrieli, Y., Chambers, C. P. & Healy, P. J. Incentives in experiments with
2010 objective lotteries. *Exp Econ* **23**, 1–29 (2020).

2011 41. Cox, J. C., Sadiraj, V. & Schmidt, U. Asymmetrically Dominated Choice
2012 Problems, the Isolation Hypothesis and Random Incentive Mechanisms. *PLOS
2013 ONE* **9**, e90742 (2014).

2014 42. Cox, J. C., Sadiraj, V. & Schmidt, U. Paradoxes and mechanisms for
2015 choice under risk. *Experimental Economics* **18**, 215–250 (2015).

2016 43. Moffatt, P. et al. *Experimental economics: Rethinking the rules*.
2017 (Princeton University Press, 2009).

2018 44. Palan, S. & Schitter, C. Prolific.ac—A subject pool for online
2019 experiments. *Journal of Behavioral and Experimental Finance* **17**, 22–27
2020 (2018).

2021 45. Eckel, C. C. & Füllbrunn, S. C. Thar she blows? Gender, competition,
2022 and bubbles in experimental asset markets. *American Economic Review* **105**,
2023 906–20 (2015).

2024 46. Eckel, C. C. & Grossman, P. J. Men, women and risk aversion:
2025 Experimental evidence. *Handbook of experimental economics results* **1**, 1061–
2026 1073 (2008).

2027 47. Guenther, B., Galizzi, M. M. & Sanders, J. G. Heterogeneity in risk-
2028 taking during the COVID-19 pandemic: evidence from the UK lockdown.
2029 *Frontiers in psychology* **12**, 643653 (2021).

2030 48. Nicholson, N., Soane, E., Fenton-O'Creevy, M. & Willman, P.
2031 Personality and domain-specific risk taking. *Journal of Risk Research* **8**, 157–
2032 176 (2005).

2033 49. Fisher, P. J. & Yao, R. Gender differences in financial risk tolerance.
2034 *Journal of Economic Psychology* **61**, 191–202 (2017).

2035 50. Grable, J. E., McGill, S. & Britt, S. Risk tolerance estimation bias: The
2036 age effect. *Journal of Business & Economics Research (JBER)* **7**, (2009).

2037 51. Wang, H. & Hanna, S. D. Does risk tolerance decrease with age?
2038 *Financial Counseling and Planning* **8**, (1997).

2039 52. Lönnqvist, J.-E., Verkasalo, M., Walkowitz, G. & Wichardt, P. C.
2040 Measuring individual risk attitudes in the lab: Task or ask? An empirical
2041 comparison. *Journal of Economic Behavior & Organization* **119**, 254–266
2042 (2015).

2043 53. Charness, G., Gneezy, U. & Imas, A. Experimental methods: Eliciting
2044 risk preferences. *Journal of Economic Behavior & Organization* **87**, 43–51
2045 (2013).

2046 54. Jonas, K. J. & Huguet, P. What day is today? A social-psychological
2047 investigation into the process of time orientation. *Personality and Social
2048 Psychology Bulletin* **34**, 353–365 (2008).

2049 55. Condon, D. M. & Revelle, W. Selected personality data from the SAPA-
2050 Project: On the structure of phrased self-report items. (2015).

2051 56. Koriat, A. & Fischhoff, B. What day is today? An inquiry into the process
2052 of time orientation. *Memory & Cognition* **2**, 201–205 (1974).

2053 57. Thioux, M., Stark, D. E., Klaiman, C. & Schultz, R. T. The day of the
2054 week when you were born in 700 ms: calendar computation in an Autistic
2055 savant. *Journal of Experimental Psychology: Human Perception and
2056 Performance* **32**, 1155 (2006).

2057 58. Cellini, N., Canale, N., Mioni, G. & Costa, S. Changes in sleep pattern,
2058 sense of time and digital media use during COVID-19 lockdown in Italy. *Journal
2059 of Sleep Research* **29**, e13074 (2020).

2060 59. Lattanzi, G. M. What day is it? Changes to the Sociotemporal Order and
2061 the Self during COVID-19. *Survive & Thrive: A Journal for Medical Humanities
2062 and Narrative as Medicine* **6**, 4 (2021).

2063 60. Ferrey, A. E. & Mishra, S. Compensation method affects risk-taking in
2064 the Balloon Analogue Risk Task. *Personality and Individual Differences* **64**,
2065 111–114 (2014).

2066 61. Xu, S., Xiao, Z. & Rao, H. Hypothetical versus real monetary reward
2067 decrease the behavioral and affective effects in the Balloon Analogue Risk
2068 Task. *Experimental Psychology* (2019).

2069 62. Byrnes, J. P., Miller, D. C. & Schafer, W. D. Gender differences in risk
2070 taking: A meta-analysis. *Psychological bulletin* **125**, 367 (1999).

2071 **Paper 3: Does the day matter? No day of the week effect in an experiment**
2072 **on health information engagement**

2073

2074 Virginia Fedrigo ¹, Barbara Fasolo ², Jet G. Sanders ¹, Matteo M. Galizzi¹

2075 ¹ London School of Economics and Political Science, Department of
2076 Psychological and Behavioural Science, London, United Kingdom

2077 ² London School of Economics and Political Science, Department of
2078 Management, London, United Kingdom

2079 **Paper 3: In context**

2080 The third paper in this thesis shifts focus beyond the antecedents (paper 1) and
2081 contributing causes (paper 2) of the day of the week and focus to how the day
2082 of the week effect can have observable behavioural effects. Specifically, this
2083 paper looks within the framework of behavioural science, namely health
2084 information. The motivation for this paper is that, if the day of the week has a
2085 clear effect on engagement levels with health information, future information-
2086 based campaigns could build upon this information to reach individuals more
2087 effectively. This paper looks at if there is a day of the week effect on individual
2088 engagement with information on sedentary behaviour, measured through six
2089 different engagement metrics. Further, this paper adds a strong methodological
2090 contribution by randomly allocating individuals into participation on different
2091 days of the week to eliminate the confound of individuals self-sorting into days
2092 of the week to participate.

2093 The main finding of this paper is the lack of the day of the week effect in
2094 engagement (along any of the six measurements). This study, with its strong
2095 methodology of randomly assigning individuals into participating on different
2096 days of the week, suggests that the day of the week effect is more nuanced in
2097 application than may have been previously thought. These findings of a null
2098 day of the week effect, along with the methodological innovation of random
2099 allocation, have important implications for behavioural science practitioners
2100 moving forward.

2101 In sum, the day of the week effect is not found within engagement with health
2102 information engagement. While this adds a degree of liberty in research design
2103 (i.e., the day of the week effect is not always a strong confound), it also adds
2104 to the increased complexity of understanding and applying an understanding
2105 the day of the week effect.

2106 **Abstract**

2107 Does the day on which participants receive information matter? Correlational
2108 and cross-sectional research suggests that different days of the week can
2109 amplify different attitudes and beliefs, which may result in different choices.
2110 The present large pre-registered experiment is the first to experimentally test
2111 for different levels of engagement with health information. After screening
2112 3,000 online participants, 2,138 respondents in the UK who did less than 150
2113 minutes of exercise per week were randomly allocated into one of seven
2114 consecutive days of the week to participate in our study. We measured
2115 engagement with educational material relating to sedentary behaviour using
2116 cognitive and behavioural outcomes, and preferences around physical activity.
2117 While preference to engage in physical activity varied over the course of the
2118 week, there was no significant differences in levels of engagement with health
2119 information, as measured by cognitive outcomes such as performance on
2120 sorting and knowledge, and behavioural outcomes such as engagement with
2121 a link and amount of time spent engaging with stimuli.

2122 **1. Introduction**

2123 Days of the week are important markers of time, deeply engrained in human
2124 behaviour (Henkin, 2018). The notion of a preferred day of the week for
2125 messaging, broadly construed, is empirically supported and widely accepted
2126 within marketing and advertising (Bleier & Eisenbeiss, 2015; Heflin & Haygood,
2127 1985; Huang et al., 2021; Spasojevic et al., 2015; Villanova et al., 2021). For
2128 instance, fine tuning the temporal element of advertising can improve consumer
2129 engagement (Bleier & Eisenbeiss, 2015; Heflin & Haygood, 1985; Huang et al.,
2130 2021; Spasojevic et al., 2015; Villanova et al., 2021). These results have
2131 important practical applications: an online search of non-academic platforms
2132 results in countless web resources guiding advertisers and social media users
2133 alike on when the best day of the week and time to post for maximum
2134 engagement is (Geyser, 2019; Glover, 2023; Oladipo, 2023); this extends to
2135 when is the best time to post studies on research sites (*When Are Prolific
2136 Participants Most Active?*, 2023; *When Is the Best Time to Send a Survey?*,
2137 n.d.). While findings vary, Tuesday has, for example, been proposed as the

2138 best day to post on Instagram (Geyser, 2019; Glover, 2023). However, these
2139 findings are, to the best of our knowledge, based on correlational evidence and
2140 base conclusions on number of 'hits' (whatever the metric given the message
2141 sender's aim) on different days and times.

2142 Both advertising and behavioural science share a common aim to change
2143 behaviours. For instance, behavioural science messaging has been applied in
2144 a variety of domains, from encouraging healthier behaviours (Marteau et al.,
2145 2011) to promoting pro-environmental behaviours (Byerly et al., 2018). Yet,
2146 behavioural science has been slower to embrace the idea of testing when, if
2147 any, is the *right time* to message. Further, this has not been explored
2148 experimentally: the above understandings of when is the 'right' time are based
2149 around correlational evidence. For the purposes of this paper, the
2150 understanding of the 'right' time will centre around when it is most likely to
2151 capture the attention of the recipient and engaged with, rather than ignored.
2152 Further discussion of the concept of engagement can be found in the Methods
2153 section.

2154 The under-explored concept of temporality within behavioural science is an
2155 opportunity for investigation. This concept has both theoretical and applied
2156 impacts for the field. Theoretically, understanding differential response rates to
2157 messaging would contribute to the ongoing 'heterogeneity revolution' (Bryan et
2158 al., 2021) within behavioural science by further informing how individuals differ
2159 systematically across days of the week. In a research setting, understanding
2160 these differences would impact how behavioural science research is
2161 conducted. Researchers would be compelled to take into consideration the day
2162 when undertaking research, whether through expressly focusing on (or
2163 excluding) a particular day from data collection or having to ensure an even
2164 distribution of responses across days of the week. In this setting, a
2165 misrepresentation of day of the week differences could erroneously lead to
2166 misattributions of association to experimental conditions. In applied settings,
2167 understanding temporal fluctuations of engagement with information could also
2168 serve to increase the effectiveness of messaging interventions.

2169 The temporal dimension of behavioural science information communication
2170 has been rarely investigated. Many prominent studies centring around
2171 information dissemination for behaviour change do not typically report the time
2172 and day of the week when messaging was sent, as well as if and when the
2173 message was engaged with in the desired way, such as if it was opened
2174 (Milkman et al., 2022; Park et al., 2015; Patel et al., 2023; Stockwell et al.,
2175 2012).

2176 There is the possibility that the lack of consideration given to when information
2177 is sent is contributing to the high heterogeneity of participant responses, and
2178 thus of their reported effects (Bryan et al., 2021; Szaszi et al., 2022). The
2179 motivation for further investigation into timing for the field of behavioural
2180 science is clear: there is no way to *not* make a choice regarding timing if one is
2181 sharing information—the information will be sent at a certain time on a certain
2182 day, whether or not the senders have deliberately selected these parameters.

2183 The day of the week structures much of how individuals spend their time
2184 (Kennedy-Moore et al., 1992). There is correlational evidence that different
2185 days of the week come with different mental representations (Ellis et al., 2015;
2186 Pecjak, 1970), different emotional states (Helliwell & Wang, 2014; Mishne & De
2187 Rijke, 2006; Stone et al., 2012; Tsai, 2019) and different attitudes (Fedrigo et
2188 al., 2023; Sanders & Jenkins, 2016). The behavioural and affective synchrony
2189 around the day of the week has been reported to create knock-on effects on
2190 decision making and behaviour across a variety of domains from energy
2191 consumption (Singh & Yassine, 2018), to economic choices (Gibbons & Hess,
2192 1981), from medical decisions (Aylin et al., 2013; Brådvik & Berglund, 2003;
2193 Ellis et al., 2022), to political outcomes (Sanders & Jenkins, 2016).

2194 Despite these reported differences in individual and large-scale behaviour
2195 related to different days of the week, the mechanisms of these effects are
2196 neither clear nor certain across different individuals and samples (Gnambs,
2197 2021). To the best of our knowledge, all work within the field has been cross-
2198 sectional rather than experimental; thus, there have not been examinations
2199 explicitly into differences across days of the week. Further, the effect itself has
2200 been brought into doubt, raising the question of unobservable characteristics

2201 causing participants to non-randomly sort into different days of the week when
2202 taking part in a study (Tumen & Zeydanli, 2014). This concern is only
2203 strengthened by some of the methods used to collect data in behavioural
2204 science: convenience sampling, which allow participants to take part in a study
2205 on a day or time that suits them; or secondary data analysis, which often
2206 obfuscates information about the day when the original data were solicited or
2207 collected. As such, there is an opportunity to complement the current evidence
2208 with experimental methods to test for day of the week effects on how people
2209 respond to messages.

2210 The present study is motivated by the intersection of day of the week effect and
2211 the lack of experimental studies on differences across days of the week in
2212 engagement with health information. Motivated by the suggestion that the day
2213 of the week could have tangible effects on individual behaviour and decision-
2214 making, this work aims to experimentally test whether and how the day of the
2215 week could impact an individual's engagement with information. By introducing
2216 randomization into the allocation of individuals into the seven days of the week,
2217 we seek to improve methodologically upon existing evidence, and to directly
2218 address the issue of "non-random sorting on unobservables" potentially
2219 impacting non-experimental studies (Tumen & Zeydanli, 2014). We aim to
2220 explore how the day of the week could potentially drive different levels of
2221 engagement with a message.

2222 **2. Methods**

2223 This study's design and analyses were pre-registered (<https://osf.io/8uhs5/>)
2224 and approved via University Ethics approval (number 144834).

2225 *2.1. Participant recruitment*

2226 Participants were recruited via Prolific in a two-step procedure to ensure
2227 random allocation to different days.

2228 The first step of recruitment, hereafter referred to as the screener stage,
2229 involved a short survey to query individual interest in participating in a main
2230 survey (n = 3,000 participants) on July 21, 2023. Eligibility for this stage used

2231 Prolific's inbuilt filters, limiting the survey to those who exercised under 150
2232 minutes per week and were residing in the UK. Participants in this screener
2233 survey were informed that they would be invited to the main survey on one day
2234 of the coming week and asked to participate in the main survey on the day the
2235 invitation was received. After participants were provided with general
2236 information on the main survey, they were asked whether they would be
2237 interested in participating through a yes or no question. Participants were
2238 informed that compensation for this screener stage was not dependent on their
2239 response with respect to interest in the main survey. Median participation time
2240 was 42 seconds and participants were compensated in line with Prolific's wage
2241 guidelines. 97.37% (2,921 of 3,000 responses) confirmed interest in
2242 participation in the main survey.

2243 All participants who expressed interest were asked to partake in the main
2244 survey. Using a between-subjects design, interested participants were
2245 randomly allocated into seven groups (numbered 1-7), to allocate the day of
2246 participation in the main survey. Participants were invited on one randomly
2247 allocated day to participate in the survey. If they did not participate on the day
2248 on which they were invited, they lost access to the survey and were not invited
2249 to participate on subsequent days.

2250 The main survey was posted on seven consecutive days (Monday to Sunday)
2251 at the same time every day (6 AM) between July 24-30, 2023. When the survey
2252 was posted on the Prolific platform, participants received an email invitation to
2253 participate in the main survey. The survey was made unavailable at the same
2254 time every day (9:40 PM), regardless of whether all invited participants had
2255 taken the survey. Survey content remained identical in each posting and all
2256 participants provided informed consent. Through this process, out of 2,921
2257 invited participants, 2,205 participants completed the survey (with a total of
2258 2,138 participants passing attention checks). Participants were compensated
2259 in line with Prolific's wage requirements.

2260 *2.2. Materials and procedure*

2261 The context of our experiment is one of the most prevalent domains in
2262 behavioural science: health information, in this case to encourage physical
2263 activity and to discourage sedentary lifestyles (for a review, see (Williamson et
2264 al., 2020)). Currently, the recommendations for adults are at least 150 minutes
2265 of moderate-intensity physical activity a week (NHS, 2021). The health impacts
2266 of insufficient physical activity on individual health are well-documented, with
2267 increased risk of cardiovascular diseases, diabetes, cancer, and an increased
2268 risk of death (World Health Organization, 2022). Additionally, physical activity
2269 carries significant mental and physical benefits. Yet 1 in 4 adults globally do not
2270 meet the recommended levels (World Health Organization, 2022). This
2271 motivates the choice of the specific content of messaging in our study. The
2272 information utilized in this study is structured as a 'System 2 nudge', focusing
2273 on providing information and statistics to individuals (Sunstein, 2016).

2274 *2.2.1. Dependent variables: engagement*

2275 We utilized three different sets of dependent variables to measure participant
2276 engagement with information on physical activity.

2277 Here, we measure engagement by looking at how our participants interface
2278 with different tasks and information sources. This measurement helps create a
2279 point-in-time estimate by using several quantifiable aspects of how the
2280 participant interfaces with a task to create a multi-faceted characterization of
2281 overall individual level of engagement. Firstly, we consider the amount of time
2282 spent on a task. As there is no requirement inherent in the activity to spend a
2283 certain amount of time on a survey, we consider a longer time spent on a task
2284 to suggest a deeper engagement with it. Secondly, we consider performance
2285 on tasks as a proxy for the effort the participant exerted on the task, as a higher
2286 score can be understood as a proxy for higher effort. Together, these tasks
2287 help build out a profile of the participant as they completed the tasks: Did they
2288 take their time, or rush through? Were the answers carefully considered, or
2289 randomly clicked through? Through measuring engagement across three

2290 different tasks as above, we are able to gain a deeper understanding into how
2291 an individual completed our tasks.

2292 The first set was via presenting a link to the United Kingdom's National Health
2293 Service (NHS) page on sedentary behaviour. The webpage, designed for the
2294 general public, was informational with some suggestions on how to improve
2295 levels of physical fitness while outlining the issues that sedentary behaviour
2296 could pose for health. Participants were invited to click on the NHS link
2297 [<https://www.nhs.uk/live-well/exercise/exercise-guidelines/why-sitting-too-much-is-bad-for-us/>] with the following language:

2299 *"We would like to provide you with some information on sedentary behaviour
2300 that we believe may be helpful to you from the NHS. If you would like to learn
2301 more about NHS recommendations [Click here](#). This link will open in a separate
2302 window. Please return to the survey whenever you are ready."*

2303 To ensure that we measured genuine engagement with the information, the
2304 note was added to ensure participants understood that clicking on the link was
2305 optional and would not affect their progress within the study. The survey
2306 recorded, but did not display to participants, a binary metric of whether the link
2307 was clicked and how long participants spent on this survey page.

2308 The second set was through a sorting quiz. Participants were presented with
2309 12 physical activities and asked to classify each as either gentle, moderate, or
2310 vigorous physical activity. Activities contained in this quiz were evenly divided
2311 between gentle, moderate, and vigorous physical exertion. Information
2312 contained in this quiz did not overlap with information displayed on the previous
2313 page's NHS link. Participants were informed that their performance on this quiz
2314 would not affect the compensation for the study. The survey recorded how long
2315 participants spent on this page but did not display a timer to participants. Once
2316 participants had completed the quiz and clicked to finalize their responses, they
2317 were able to see a 'scored' version of the quiz showing which ones and how
2318 many they answered correctly. They were not able to revise their responses at
2319 this stage.

2320 The third set was through a knowledge quiz, similar in format to the previous
2321 form (sorting quiz). Participants were presented with 10 questions covering
2322 various aspects of physical activity and sedentary behaviour. As with the
2323 second form, participants were informed that their performance on this quiz
2324 would not affect their compensation for the overall survey. The survey recorded
2325 how long participants spent on this page but did not display a timer to
2326 participants. After completing the quiz and finalizing their responses,
2327 participants were able to see a 'scored' version of the quiz showing which ones
2328 and how many they answered correctly. They were not able to revise their
2329 responses at this stage.

2330 2.2.2. Dependent variables: preferred day for physical activity

2331 The last set of dependent variables focused around when participants would
2332 want to participate in two types of physical activity: a one-time charity walk, and
2333 a repeated fitness regimen (Couch-to-5k). The format and the phrasing of the
2334 questions were identical; however, they were repeated twice (first for the one-
2335 time charity walk, then for the repeated fitness regimen).

2336 Participants first read a short description of the event and were asked what day
2337 of the week they would like to participate on, assuming no prior scheduling
2338 conflicts; and then what time of the day they would like to participate at
2339 (segmented into early morning, mid-morning, early afternoon, late afternoon,
2340 evening). For the one-time charity walk, the above questions corresponded to
2341 when they would like to participate in this one-time event. For the repeated
2342 fitness regimen, they were asked on what day and then what time of that day
2343 they would like to start this regimen.

2344 The motivation behind capturing the preferred day of the week for participating
2345 in physical exercise (both one-time and repeated) was that individual
2346 engagement with health behaviours has been found to vary significantly with
2347 day of the week (Dai et al., 2014). For example, online searches relating to
2348 stopping smoking have been found to peak on Mondays (Ayers et al., 2014),
2349 at a volume larger than Tuesday to Sunday combined. As such, the view of
2350 Monday as a preferred day to engage in health-seeking behaviours would

2351 suggest that engagement in physical activity could be hypothesized to follow a
2352 similar pattern, peaking on Monday.

2353 **2.2.3. Control variables: busyness**

2354 To better understand, and control for, the day of the week dynamics within the
2355 sample, we also queried participants on how they would rate their busyness on
2356 each day of a typical week, looking at the last weeks. Participants scored their
2357 relative busyness on a Likert scale from “extremely calm” to “extremely busy”.

2358 **2.2.4. Exploratory analyses: other personality and cognitive measures**

2359 To further characterize the day of the week effect on other personality and
2360 cognitive measures, we added in three further measures. Firstly, we utilized the
2361 Ten Item Personality Index (TIPI) (Gosling et al., 2003) to see whether there
2362 were marked differences in personality manifestation across the days of the
2363 week. While exploratory and seemingly contrary to certain conceptualizations
2364 of personality as stable (Bergner, 2020), this enquiry follows the
2365 conceptualization of personality as changeable in its manifestation across
2366 different situations (Fleeson, 2001). Secondly, we utilized the SOEP risk
2367 attitude question (Wagner et al., 2007) to explore whether risk attitudes varied
2368 over the days of the week. Lastly, experienced affect on that day was also
2369 queried; participants were asked whether they experienced enjoyment,
2370 happiness, worry, sadness, stress, and anger that day, in line with how these
2371 were queried in (Stone et al., 2012), a previous exploration of day of the week
2372 effect on affect. Questions were used and presented as they were in the original
2373 studies above.

2374 **3. Results**

2375 For participant characteristics, see Supplementary Materials S1.

2376 **3.1. Main analysis**

2377 Following the pre-registered analysis plan (see sections 2.2.1. and 2.2.2. in
2378 Methods), we sought to determine whether there was an effect on the day of
2379 the week the survey was taken on engagement and preferred day for physical

2380 activity. As discussed above (section 2.2.1), engagement is defined through
2381 three sets of dependent variables: for the NHS link, whether it was clicked and
2382 how much time was spent on the page; for the two quizzes (sorting quiz and
2383 knowledge quiz), number of questions correct, and time spent on the page. As
2384 discussed above (section 2.2.2), preferred physical activity is defined through
2385 two dependent variables: preferred day of the week for a one-time charity walk,
2386 and for a repeated fitness regimen (Couch-to-5k).

2387 3.1.1. NHS Link- Click

2388 Of all participants, 639 clicked on the link (29.89% of total respondents, SE =
2389 0.0099).

2390 A logistic regression was used due to the binary nature of the outcome variable,
2391 with 0 representing the link not being clicked and 1 representing the link being
2392 clicked. The dependent variable was whether or not the link was clicked.

2393 A logistic regression model (McFadden's $R^2 = 0.002$) of weekday showed no
2394 significant effect of weekday on whether or not the link was clicked across all
2395 weekday comparisons (Tuesday – Monday: Estimate = -0.016, SE = 0.172,
2396 95% CI [-0.353, 0.321], $Z = -0.093$, $p = 0.926$; Wednesday – Monday: Estimate
2397 = -0.013, SE = 0.171, 95% CI [-0.347, 0.322], $Z = -0.074$, $p = 0.941$; Thursday
2398 – Monday: Estimate = 0.039, SE = 0.173, 95% CI [-0.299, 0.377], $Z = 0.227$, p
2399 = 0.821; Friday – Monday : Estimate = -0.239, SE = 0.181, 95% CI [0.594,
2400 0.115], $Z = -1.323$, $p = 0.186$; Saturday – Monday: Estimate = -0.246, SE =
2401 0.184, 95% CI [-0.606, 0.114], $Z = -1.339$, $p = 0.181$; Sunday – Monday:
2402 Estimate = 0.061, SE = 0.175, 95% CI [-0.282, 0.404], $Z = 0.346$, $p = 0.729$).

2403 A further logistic regression model (McFadden's $R^2 = 0.008$) of weekday, age,
2404 number of children at home, and gender on whether or not the link was clicked
2405 revealed again no significant main effects of weekday, and additionally no
2406 significant effect of number of children at home. However, there were significant
2407 effects of gender such that males clicked less often than females (male –
2408 female; Estimate = -0.234, SE = 0.099, 95% CI [-0.428, -0.041], $Z = -2.370$, p
2409 = 0.018) and of age such that older individuals clicked more than younger ones
2410 (Estimate = 0.007, SE = 0.005, 95% CI [1.320e-4, 0.014]), $Z = 1.997$, $p = 0.046$

2411 on the binary outcome of whether or not the link was clicked. For full reporting,
2412 please see Table S2.

2413 3.1.2. NHS Link- Time

2414 Across all participants, the average time spent on the NHS page was 34.696
2415 seconds (SE = 1.205).

2416 A linear regression was used with the dependent variable of amount of time
2417 spent on the NHS page.

2418 A linear regression model ($R^2 = 0.004$) of weekday showed no significant effect
2419 of weekday on time spent on the NHS page across all weekday comparisons
2420 (Tuesday – Monday: Estimate = -0.245, SE = 4.415, 95% CI [-8.904, 8.414], t
2421 = -0.055, p = 0.956; Wednesday – Monday: Estimate = 3.259, SE = 4.415, 95%
2422 CI [-5.342, 11.860], t = 0.743, p = 0.458; Thursday – Monday: Estimate = 0.486,
2423 SE = 4.457, 95% CI [-8.255, 9.226], t = 0.109, p = 0.913; Friday – Monday :
2424 Estimate = -6.134, SE = 4.533, 95% CI [-15.024, 2.757], t = -1.353, p = 0.176;
2425 Saturday – Monday: Estimate = -5.040, SE = 4.592, 95% CI [-14.046, 3.966], t
2426 = -1.097, p = 0.273; Sunday – Monday: Estimate = 4.141, SE = 4.533, 95% CI
2427 [-4.749, 13.032], t = 0.914, p = 0.361).

2428 A further linear regression was used, with the outcome variable being amount
2429 of time spent on the page. A linear regression model ($R^2 = 0.008$) of weekday,
2430 age, number of children at home, and gender revealed no significant main
2431 effects of weekday, number of children in the home, or gender, but a significant
2432 effect of age such that older individuals spent more time on the page (Estimate
2433 = 0.234, SE = 0.091, 95% CI [0.056, 0.412], t = 2.581, p = 0.010, Effect size
2434 $\eta^2 = 0.002$, 95% CI [0.000, 0.007]) on the amount of time spent on the NHS
2435 webpage. For full reporting, please see Table S3.

2436 3.1.3. Sorting quiz- Score

2437 A linear regression was used with the dependent variable of the score on the
2438 sorting quiz.

2439 A linear regression of weekday ($R^2 = 0.001$) showed no significant effect of
2440 weekday on the score on the sorting quiz (Tuesday – Monday: Estimate = -
2441 0.148, SE = 0.128, 95% CI [-0.399, 0.103], $t = -1.157$, $p = 0.247$; Wednesday
2442 – Monday: Estimate = -0.144, SE = 0.127, 95% CI [-0.394, 0.105], $t = -1.134$,
2443 $p = 0.257$; Thursday – Monday: Estimate = -0.149, SE = 0.129, 95% CI [-0.403,
2444 0.104], $t = -1.156$, $p = 0.248$; Friday – Monday : Estimate = -0.034, SE = 0.131,
2445 95% CI [-0.291, 0.224], $t = -0.256$, $p = 0.798$; Saturday – Monday: Estimate =
2446 -0.043, SE = 0.133, 95% CI [-0.304, 0.218], $t = -0.321$, $p = 0.749$; Sunday –
2447 Monday: Estimate = -0.113, SE = 0.131, 95% CI [-0.370, 0.145], $t = -0.857$, p
2448 = 0.391).

2449 A linear regression model ($R^2 = 0.016$) of weekday, age, number of children at
2450 home, and gender revealed again no significant main effects of weekday, and
2451 no effect of gender, or of number of children present in the home on the score
2452 on the sorting quiz. However, there was a significant effect of age such that
2453 older individuals scored worse than younger ones (Estimate = -0.014, SE =
2454 0.003, 95% CI [-0.019, -0.008], $t = -5.179$, $p < .001$, Effect size $\eta^2 = 0.012$, 95%
2455 CI [0.005, 0.023]) on the score on the sorting quiz. For full reporting, please
2456 see Table S4.

2457 3.1.4. Sorting quiz- Time

2458 A linear regression was used, with the dependent variable of the amount of
2459 time spent on a sorting quiz.

2460 A linear regression of weekday ($R^2 = 0.003$) showed no significant effect of
2461 weekday on the amount of time spent on the sorting quiz (Tuesday – Monday:
2462 Estimate = 3.561, SE = 5.559, 95% CI [-7.340, 14.461], $t = 0.641$, $p = 0.522$;
2463 Wednesday – Monday: Estimate = 1.116, SE = 5.521, 95% CI [-9.712, 11.943],
2464 $t = 0.202$, $p = 0.840$; Thursday – Monday: Estimate = -7.906, SE = 5.611, 95%
2465 CI [-18.909, 3.098], $t = -1.409$, $p = 0.159$; Friday – Monday : Estimate = -4.078,
2466 SE = 5.707, 95% CI [-15.270, 7.114], $t = -0.715$, $p = 0.475$; Saturday – Monday:
2467 Estimate = -2.085, SE = 5.781, 95% CI [-13.422, 9.253], $t = -0.361$, $p = 0.718$;
2468 Sunday – Monday: Estimate = -4.429, SE = 5.707, 95% CI [-15.621, 6.763], t
2469 = -0.776, $p = 0.438$).

2470 A further linear regression model ($R^2 = 0.010$) of weekday, age, number of
2471 children at home, and gender revealed no significant main effects of weekday,
2472 but an effect of age (Estimate = 0.384, SE = 0.114, 95% CI [0.160, 0.608], $t =$
2473 3.365, $p < .001$, Effect size $\eta^2 = 0.005$, 95% CI [9.234e-4, 0.013])) on the amount
2474 of time spent on the sorting quiz, such that older individuals spent longer.
2475 Additionally, there was no significant effect of weekday, gender, or of number
2476 of children present in the home. For full reporting, please see Table S5.

2477 3.1.5. Knowledge quiz- Score

2478 A linear regression was used, with the dependent variable of the score on the
2479 knowledge quiz.

2480 A linear regression of weekday ($R^2 = 0.003$) showed no significant effect of
2481 weekday on the score on the knowledge quiz (Tuesday – Monday: Estimate =
2482 -0.181, SE = 0.111, 95% CI [-0.399, 0.036], $t = -1.634$, $p = 0.102$; Wednesday
2483 – Monday: Estimate = -0.040, SE = 0.110, 95% CI [-0.256, 0.176], $t = -0.363$,
2484 $p = 0.717$; Thursday – Monday: Estimate = -0.011, SE = 0.112, 95% CI [-0.230,
2485 0.209], $t = -0.094$, $p = 0.925$; Friday – Monday : Estimate = -0.159, SE = 0.114,
2486 95% CI [-0.382, 0.065], $t = -1.392$, $p = 0.164$; Saturday – Monday: Estimate =
2487 0.003, SE = 0.115, 95% CI [-0.223, 0.229], $t = 0.026$, $p = 0.979$; Sunday –
2488 Monday: Estimate = -0.042, SE = 0.114, 95% CI [-0.265, 0.182], $t = -0.367$, p
2489 = 0.714).

2490 A further linear regression model ($R^2 = 0.013$) of weekday, age, number of
2491 children at home, and gender revealed again no significant main effects of
2492 weekday or gender, but an effect of age such that older individuals score worse
2493 than younger ones (Estimate = -0.007, SE = 0.002, 95% CI [-0.011, -0.002], t
2494 = -3.025, $p = 0.003$, Effect size $\eta^2 = 0.004$, 95% CI [5.207e-4, 0.011])) and
2495 number of children in the home such that those with more children in the home
2496 score worse than those with fewer or none (Estimate = -0.089, SE = 0.033,
2497 95% CI [-0.153, -0.025], $t = -2.724$, $p = 0.007$, Effect size $\eta^2 = 0.003$, 95% CI
2498 [2.631e-4, 0.010])) on the score on the knowledge quiz. For full reporting,
2499 please see Table S6.

2500 3.1.6. Knowledge quiz- Time

2501 A linear regression was used, with the dependent variable of the amount of
2502 time on the knowledge quiz.

2503 A linear regression of weekday ($R^2 = 0.003$) showed no significant effect of
2504 weekday on amount of time spent on the knowledge quiz (Tuesday – Monday:
2505 Estimate = 2.955, SE = 6.723, 95% CI [-10.228, 16.139], $t = 0.440$, $p = 0.660$;
2506 Wednesday – Monday: Estimate = -3.256, SE = 6.678, 95% CI [-16.351, 9.840],
2507 $t = -0.488$, $p = 0.626$; Thursday – Monday: Estimate = -11.064, SE = 6.786,
2508 95% CI [-24.372, 2.244], $t = -1.630$, $p = 0.103$; Friday – Monday : Estimate = -
2509 0.164, SE = 6.902, 95% CI [-13.700, 13.372], $t = -0.024$, $p = 0.981$; Saturday –
2510 Monday: Estimate = 3.796, SE = 6.992, 95% CI [-9.916, 17.508], $t = 0.543$, $p =$
2511 0.587; Sunday – Monday: Estimate = -0.696, SE = 6.902, 95% CI [-14.232,
2512 12.840], $t = -0.101$, $p = 0.920$).

2513 A further linear regression model ($R^2 = 0.012$) of weekday, age, number of
2514 children at home, and gender revealed no significant main effects of weekday,
2515 but an effect of age (Estimate = 0.520, SE = 0.138, 95% CI [0.250, 0.791], $t =$
2516 3.772, $p < .001$, Effect size $\eta^2 = 0.007$, 95% CI [0.002, 0.015])) on the amount of
2517 time spent on the knowledge quiz, such that older individuals spent longer.
2518 Further, there was no effect of weekday, gender, or of number of children
2519 present in the home. For full reporting, please see Table S7.

2520 3.1.7. One shot – preferred participation day

2521 To see if there was a difference in what day people said they wanted to
2522 participate in a charity walk, a Chi square goodness of fit test was used. There
2523 was a significant difference in preferred days [$\chi^2(6, N = 2134)$
2524 = 1296.197, $p < .001$] such that Saturday was the favourite day to participate.

2525 To examine if there was a difference in preferred day based on what day
2526 participants answered the survey, a contingency table was used. There was no
2527 significant day of the week effect on preferred day [$\chi^2(36, N = 2134)$
2528 = 46.611, $p = 0.111$, Cramer's V = 0.060].

2529 For full reporting, please see table S8.

2530 3.1.8. Repeated– preferred participation day

2531 To see if there was a difference in what day people said they wanted to begin
2532 an exercise regime, a Chi square goodness of fit test was used. There was a
2533 significant difference in preferred days [$\chi^2(6, N = 2127) = 2607.590, p = <.001$],
2534 such that Monday was the preferred day to begin.

2535 To examine if there was a difference in preferred day based on what day
2536 participants answered the survey, a contingency table was used. There was no
2537 significant day of the week effect on preferred day [$\chi^2(36, N = 2127)$
2538 = 38.511, $p = 0.357$].

2539 For full reporting, please see table S9.

2540 3.2. *Exploratory analyses*

2541 Following the pre-registered exploratory analyses plan (see section 2.2.2 –
2542 2.2.4. in Methods), we sought to investigate further day of week effects.

2543 3.2.1. SOEP

2544 To see whether there was a difference in risk attitude across days of the week,
2545 measured via SOEP, a risk attitude question querying “Are you generally a
2546 person who is fully prepared to take risks or do you try to avoid taking risks?”
2547 with response on a 0-10 Likert scale, a linear regression was used, with the
2548 outcome variable being the score on the SOEP.

2549 A linear regression model ($R^2 = 0.008$) of weekday revealed a significant effect
2550 of day of the week driven by Sunday—Monday (Estimate = -0.457, SE = 0.208,
2551 95% CI [-0.866, -0.048]), $t = -2.193, p = 0.028$), such that Sunday was
2552 significantly less risk averse than Monday.

2553 A further linear regression model ($R^2 = 0.065$) of weekday, age, number of
2554 children at home, and gender revealed a significant effect of day of the week
2555 driven by Saturday—Monday (Estimate = -0.438, SE = 0.206, 95% CI [-0.842,
2556 -0.026]), $t = -2.126, p = 0.034$) and Sunday—Monday (Estimate = -0.424, SE =

2557 0.203, 95% CI [-0.822, -0.026]), $t = -2.089$, $p = 0.037$), such that Saturday and
2558 Sunday were both significantly more risk averse days than Monday.
2559 Additionally, there was a significant effect of age wherein older individuals were
2560 less risk-taking than younger ones (Estimate = -0.029, SE = 0.004, 95% CI [-
2561 0.037, -0.021], $t = -7.024$, $p < .001$, Effect size $\eta^2 = 0.022$, 95% CI [0.011,
2562 0.036]), number of children in the home (Estimate = 0.135, SE = 0.058, 95%
2563 CI [0.021, 0.250], $t = 2.317$, $p = 0.021$, Effect size $\eta^2 = 0.002$, 95% CI [3.999e-
2564 6, 0.008]), such that those with more children in the home were more risk-
2565 seeking, and gender (male—female, (Estimate = 0.919, SE = 0.111, 95% CI
2566 [0.701, 1.137], $t = 8.667$, $p < .001$, Effect size $\eta^2 = 0.031$, 95% CI [0.017, 0.045]),
2567 such that males were more risk-taking than females.

2568 For full reporting, please see table S10.

2569 3.2.2. Busyness on different days of the week

2570 To see whether different days were ranked differently in terms of busyness, a
2571 one-way ANOVA was run. There was a significant difference in busyness rating
2572 given to each of the days of the week ($F(6,6647) = 262.6$, $p < .001$).

2573 The Games-Howell Post-hoc Test revealed that this difference was driven by
2574 Saturday (Mean = 2.06, SE = 0.03) and Sunday (Mean = 1.642, SE = 0.03)
2575 having significantly lower busyness ratings than Monday to Friday across all
2576 pairwise comparisons between days of the week ($p < .001$).

2577 For full reporting and all pairwise comparisons, please see table S11.

2578 3.2.3. TIPI

2579 To see whether there was a difference across the five different sub-measures
2580 of the TIPI across days of the week, a linear regression was used with the
2581 outcome variable being the score of each sub-measure.

2582 The only sub-measure that revealed day of the week effects was TIPI –
2583 Extroversion. A linear regression model ($R^2 = 0.005$) of weekday revealed a
2584 significant effect of day of the week driven by Wednesday—Monday (Estimate

2585 = 0.278, SE = 0.118, 95% CI [0.046, 0.511)], $t = 2.350$, $p = 0.019$), such that
2586 Wednesday was significantly extroverted than Monday.

2587 The other four sub-measures of TIPI showed no effects of the day of the week.
2588 For full reporting across all TIPI sub-measures, please see table S12.

2589 **Affect**

2590 To see whether there was a difference across the seven different sub-
2591 measures of affect across the days of the week used by (Stone et al., 2012), a
2592 binomial logistic regression was used with the outcome variable being the
2593 answer to the question (yes or no).

2594 For each sub-measure, the primary analysis (a linear regression of weekday
2595 on the sub-measure) is presented below. For further analyses including the
2596 addition of demographic controls and for full reporting, please see table S13.
2597 The different sub-measures are presented next.

2598 *3.2.5.1. Enjoyment*

2599 A logistic regression model (McFadden's $R^2 = 0.003$) of weekday showed a
2600 significant effect of weekday on individuals responses to a question if they had
2601 experienced joy, driven by a significant weekend effect (Saturday – Monday:
2602 Estimate = 0.417, SE = 0.167, $Z = 2.505$, $p = 0.012$; Sunday – Monday:
2603 Estimate = 0.413, SE = 0.163, $Z = 2.514$, $p = 0.012$), such that weekends had
2604 more people saying they had experienced enjoyment.

2605 *3.2.5.2. Happiness*

2606 A logistic regression model (McFadden's $R^2 = 0.012$) of weekday showed a
2607 significant effect of weekday on individual responses to a question if they had
2608 experienced happiness, driven by Sunday (Sunday – Monday: Estimate =
2609 0.374, SE = 0.173, $Z = 2.169$, $p = 0.030$).

2610 3.2.5.3. *Worry*

2611 A logistic regression model (McFadden's $R^2 = 0.012$) of weekday showed no
2612 significant effect of weekday on individual responses to a question if they had
2613 experienced worry.

2614 3.2.5.4. *Sadness*

2615 A logistic regression model (McFadden's $R^2 = 0.004$) of weekday showed a
2616 significant effect of weekday on individual responses to a question if they had
2617 experienced sadness, driven by Sunday (Sunday – Monday: Estimate = -0.492,
2618 SE = 0.197, Z = -2.497, p = 0.013), such that fewer individuals experienced
2619 sadness on Sundays.

2620 3.2.5.5. *Stress*

2621 A logistic regression model (McFadden's $R^2 = 0.004$) of weekday showed a
2622 significant effect of weekday on individual responses to a question if they had
2623 experienced stress, driven by Sunday (Sunday – Monday: Estimate = -0.412,
2624 SE = 0.168, Z = -2.449, p = 0.014), such that fewer individuals experienced
2625 stress on Sundays.

2626 3.2.5.6. *Anger*

2627 A logistic regression model (McFadden's $R^2 = 0.003$) of weekday showed no
2628 significant effect of weekday on individual responses to a question if they had
2629 experienced anger.

2630 **4. Discussion**

2631 The present work innovatively contributes to the literature on weekday effects
2632 by introducing a rigorous randomization procedure to better understand
2633 differences across days of the week in engagement with health information.

2634 This study makes a crucial methodological contribution by experimentally
2635 allocating participants across the seven days of the week to participate in the
2636 study. Further, this study keeps track of a range of actual participant
2637 engagements, not just when information was presented (but perhaps not read).

2638 These key features of our study complement and qualify the evidence
2639 previously gathered employing different non-experimental methods, relying
2640 upon secondary data with no or little information about the day when the
2641 original data were collected, or on studies where participants could self-select
2642 onto participation timeslots. We know of no other study that has addressed this
2643 self-selection bias issue with respect to engagement with information. This has
2644 allowed us to achieve a between-subjects randomized study design to
2645 rigorously examine what effect, if any, day of the week has on participant
2646 engagement levels with health information.

2647 Contrary to the literature that points to day-of-the-week effects through
2648 correlational or cross-sectional data collection methods (Stone et al., 2012),
2649 our experimental study does not find such an effect on any of our dependent
2650 variables: we find no statistically significant differences across days of the week
2651 across six total outcome variables for engagement.

2652 Our study also successfully replicates a number of existing findings. First, it
2653 substantially echoes in an implicit within-subjects design the fresh start effect
2654 originally documented by (Dai et al., 2014) using a within-subjects design,
2655 wherein more people wanted to start a repeated exercise regime on a Monday.
2656 This is especially noteworthy as this result is robust to the day of the week on
2657 which participants took the study and is therefore not due to the distance
2658 between the day in which the preference is expressed and the day preferred.
2659 Second, it replicates previous findings that males are more risk-taking than
2660 females using the SOEP measurement (Byrnes et al., 1999; Fisher & Yao,
2661 2017). Third, it confirms that better mood is experienced on weekends (Stone
2662 et al., 2012).

2663 We find no statistically significant differences across the seven days of the
2664 week in any of our dependent variables. It is important to further note that
2665 engagement with clicking on the NHS link did not suffer from a floor or ceiling
2666 effect, with 29.89% of participants choosing to explore the page. As such, this
2667 measure maintains its ability to discriminate different levels of engagement
2668 between participants. It is also worth noting that the differences across the
2669 seven weekdays in all our five dependent variables are not statistically

2670 significant even before correcting for multiple hypotheses testing, an
2671 appropriate correction given the multiple dependent variables.

2672 The discussion of the role of heterogeneity in behavioural science is gaining a
2673 lot of attention, with the rightful acknowledgement from researchers that not all
2674 individuals will react to stimuli in the same way (Bryan et al., 2021; Cikara et
2675 al., 2022; Hallsworth, 2023; Hecht et al., 2019; Mertens et al., 2022; Szaszi et
2676 al., 2022; Tipton et al., 2023). The lack of a day of the week effect in the present
2677 study highlights the complexity of understanding drivers of heterogeneity in
2678 behavioural science research: while the day of the week had previously been
2679 positioned as a potential cause of heterogeneity, we do not find that it is so in
2680 our present context. Day of the week is an ingrained important framework
2681 (Henkin, 2018) around which discussion and understanding of individual trait
2682 and behaviour fluctuations and rhythms have been scaffolded. The day of the
2683 week indeed can affect risk taking measure, mood, and preferences for starting
2684 behaviours. However, we find that day of the week does not actually affect
2685 engagement with health information.

2686 While in our study we employ a broad and diverse set of dependent variables
2687 to measure cognition and proxies for the relevant outcome behaviour, we also
2688 openly acknowledge that our findings may not necessarily generalize to other
2689 behavioural outcomes, settings, domains, or interventions. In particular,
2690 whether information dissemination to specifically target long-term changes in
2691 physical activity in naturally occurring settings would or would not show
2692 distinctive patterns for effectiveness across different weekdays remains to be
2693 tested and understood.

2694 This result adds a degree of freedom on the researcher's side, as it suggests
2695 that data collection on outcomes with relation to attention and engagement with
2696 a message do not need to consider the day on which data were collected as a
2697 potential confounder. While the content of this study strictly refers to
2698 engagement with health information, further work could generalize and scale-
2699 up these findings beyond this domain.

2700 This work leaves open the interesting question of what relationship we *do*
2701 exactly have to the day of the week. As a ‘synthetic’ concept based in neither
2702 biology nor astronomy, and studied by historians, it has introduced a
2703 regimented way that many use to structure their time. Both in a one-time charity
2704 walk and in beginning a repeated exercise regimen, participants report
2705 overwhelming favourite days to engage in these activities. Despite finding that
2706 weekdays are reported as roughly the same level of busyness by participants
2707 in the present study, our data show Monday is the preferred day to engage in
2708 a repeated behaviour, while Thursday lags considerably behind. This finding
2709 mirrors the “fresh start effect” (Dai et al., 2014), showing that individuals do, in
2710 some way, differentiate between days of the week when it comes to beginning
2711 new behaviours.

2712 In conclusion, we believe this study represents an important step forward in
2713 understanding the causal effect of the day of the week on behaviour. The role
2714 of the day of the week on individuals needs a more nuanced understanding,
2715 one that will unfortunately not permit sweeping statements on different days
2716 leading to a uniform set of different behaviours across domains. Rather, we
2717 should ask—what makes a Tuesday a Tuesday? And for whom does this apply
2718 and in what way? How can we look beyond the day of the week to understand
2719 what other lurking factors are fluctuating behind the scenes, be it stress, free
2720 time, perceived autonomy, etc., that influence how we engage with
2721 information? For now, this work suggests a cautious and nuanced approach to
2722 characterizations of day-to-day heterogeneity and its effects on behaviour.

2723 **5. Funding**

2724 This research has been supported by the European Union’s Horizon 2020
2725 research and innovation programme PERISCOPE: Pan European Response
2726 to the Impacts of COVID-19 and Future Pandemics and Epidemics, under grant
2727 agreement no. 101016233.

2728 **6. Data Availability**

2729 Pre-registration and full data are available at <https://osf.io/8uhs5/>.

2730 **7. Author contributions**

2731 **Conceptualization:** VF, MMG, BF, JGS

2732 **Methodology:** VF, MMG

2733 **Validation:** VF

2734 **Formal analysis:** VF

2735 **Investigation:** VF

2736 **Data curation:** VF

2737 **Writing – original draft:** VF

2738 **Writing – review & editing:** VF, MMG, BF, JGS

2739 **Supervision:** MMG, BF

2740 **Project administration:** MMG

2741 **Funding acquisition:** MMG, BF

2742 **8. References**

2743 Aylin, P., Alexandrescu, R., Jen, M., Mayer, E., & Bottle, A. (2013). Day of week
2744 of procedure and 30 day mortality for elective surgery: Retrospective analysis
2745 of hospital episode statistics. *Bmj*, 346.

2746 Bergner, R. M. (2020). What is personality? Two myths and a definition. *New
2747 Ideas in Psychology*, 57, 100759.
2748 <https://doi.org/10.1016/j.newideapsych.2019.100759>

2749 Bleier, A., & Eisenbeiss, M. (2015). Personalized Online Advertising
2750 Effectiveness: The Interplay of What, When, and Where. *Marketing Science*,
2751 34(5), 669–688. <https://doi.org/10.1287/mksc.2015.0930>

2752 Brådvik, L., & Berglund, M. (2003). A suicide peak after weekends and holidays
2753 in patients with alcohol dependence. *Suicide and Life-Threatening Behavior*,
2754 33(2), 186–191.

2755 Bryan, C. J., Tipton, E., & Yeager, D. S. (2021). Behavioural science is unlikely
2756 to change the world without a heterogeneity revolution. *Nature Human
2757 Behaviour*, 5(8), 980–989.

2758 Byerly, H., Balmford, A., Ferraro, P. J., Hammond Wagner, C., Palchak, E.,
2759 Polasky, S., Ricketts, T. H., Schwartz, A. J., & Fisher, B. (2018). Nudging pro-
2760 environmental behavior: Evidence and opportunities. *Frontiers in Ecology and
2761 the Environment*, 16(3), 159–168. <https://doi.org/10.1002/fee.1777>

2762 Byrnes, J. P., Miller, D. C., & Schafer, W. D. (1999). Gender differences in risk
2763 taking: A meta-analysis. *Psychological Bulletin*, 125(3), 367.

2764 Cikara, M., Martinez, J. E., & Lewis, N. A. (2022). Moving beyond social
2765 categories by incorporating context in social psychological theory. *Nature
2766 Reviews Psychology*, 1(9), Article 9. [https://doi.org/10.1038/s44159-022-00079-3](https://doi.org/10.1038/s44159-022-
2767 00079-3)

2768 Dai, H., Milkman, K. L., & Riis, J. (2014). The fresh start effect: Temporal
2769 landmarks motivate aspirational behavior. *Management Science*, 60(10),
2770 2563–2582.

2771 Ellis, D. A., Sanders, J. G., Jenkins, R., & McAuslan, L. (2022). A weekday
2772 intervention to reduce missed appointments. *PLOS ONE*, 17(9), e0274670.
2773 <https://doi.org/10.1371/journal.pone.0274670>

2774 Ellis, D. A., Wiseman, R., & Jenkins, R. (2015). Mental Representations of
2775 Weekdays. *PLOS ONE*, 10(8), e0134555.
2776 <https://doi.org/10.1371/journal.pone.0134555>

2777 Fedrigo, V., Galizzi, M. M., Jenkins, R., & Sanders, J. G. (2023). Penumbral
2778 thoughts: Contents of consciousness upon waking. *PLOS ONE*, 18(12),
2779 e0289654. <https://doi.org/10.1371/journal.pone.0289654>

2780 Fisher, P. J., & Yao, R. (2017). Gender differences in financial risk tolerance.
2781 *Journal of Economic Psychology*, 61, 191–202.
2782 <https://doi.org/10.1016/j.jeop.2017.03.006>

2783 Fleeson, W. (2001). Toward a structure-and process-integrated view of
2784 personality: Traits as density distributions of states. *Journal of Personality and*
2785 *Social Psychology*, 80(6), 1011.

2786 Geyser, W. (2019, June 12). *When is the Best Time to Post on Instagram in*
2787 *2023 [+ Cheat Sheet]*. Influencer Marketing Hub.
2788 <https://influencermarketinghub.com/best-time-to-post-on-instagram/>

2789 Gibbons, M. R., & Hess, P. (1981). Day of the week effects and asset returns.
2790 *Journal of Business*, 579–596.

2791 Glover, R. (2023, August 22). The Best Time to Post on Instagram in 2023 [For
2792 Every Scenario]. *WordStream*.
2793 <https://www.wordstream.com/blog/ws/2021/12/01/best-time-to-post-on-instagram>

2795 Gnambs, T. (2021). The Day of the Week Effect on Subjective Well-Being in
2796 the European Social Survey. *Zeitschrift Für Psychologie*, 229(1), 38–47.
2797 <https://doi.org/10.1027/2151-2604/a000436>

2798 Gosling, S. D., Rentfrow, P. J., & Swann, W. B. (2003). A very brief measure
2799 of the Big-Five personality domains. *Journal of Research in Personality*, 37(6),
2800 504–528. [https://doi.org/10.1016/S0092-6566\(03\)00046-1](https://doi.org/10.1016/S0092-6566(03)00046-1)

2801 Hallsworth, M. (2023). A manifesto for applying behavioural science. *Nature
2802 Human Behaviour*, 7(3), Article 3. <https://doi.org/10.1038/s41562-023-01555-3>

2803 Hecht, C. A., Priniski, S. J., & Harackiewicz, J. M. (2019). Understanding Long-
2804 Term Effects of Motivation Interventions in a Changing World. *Advances in
2805 Motivation and Achievement: A Research Annual*, 20, 81–98.
2806 <https://doi.org/10.1108/S0749-742320190000020005>

2807 Heflin, D. T. A., & Haygood, R. C. (1985). Effects of Scheduling on Retention
2808 of Advertising Messages. *Journal of Advertising*, 14(2), 41–64.
2809 <https://doi.org/10.1080/00913367.1985.10672945>

2810 Helliwell, J. F., & Wang, S. (2014). Weekends and Subjective Well-Being.
2811 *Social Indicators Research*, 116(2), 389–407. <https://doi.org/10.1007/s11205-013-0306-y>

2813 Henkin, D. (2018). Tick, Tock, Tuesday: Serial Timekeeping and the History of
2814 the Modern Week. *Nineteenth-Century Contexts*, 40(5), 509–524.
2815 <https://doi.org/10.1080/08905495.2018.1516964>

2816 Huang, M., Fang, Z., Weibel, R., Zhang, T., & Huang, H. (2021). Dynamic
2817 optimization models for displaying outdoor advertisement at the right time and
2818 place. *International Journal of Geographical Information Science*, 35(6), 1179–
2819 1204. <https://doi.org/10.1080/13658816.2020.1823396>

2820 Kennedy-Moore, E., Greenberg, M. A., Newman, M. G., & Stone, A. A. (1992).
2821 The relationship between daily events and mood: The mood measure may
2822 matter. *Motivation and Emotion*, 16(2), 143–155.
2823 <https://doi.org/10.1007/BF00995516>

2824 Marteau, T. M., Ogilvie, D., Roland, M., Suhrcke, M., & Kelly, M. (2011).
2825 Judging Nudging: Can Nudging Improve Population Health? *BMJ (Clinical*
2826 *Research Ed.)*, 342, d228. <https://doi.org/10.1136/bmj.d228>

2827 Mertens, S., Herberz, M., Hahnel, U. J. J., & Brosch, T. (2022). The
2828 effectiveness of nudging: A meta-analysis of choice architecture interventions
2829 across behavioral domains. *Proceedings of the National Academy of Sciences*,
2830 119(1), e2107346118. <https://doi.org/10.1073/pnas.2107346118>

2831 Milkman, K. L., Gandhi, L., Patel, M. S., Graci, H. N., Gromet, D. M., Ho, H.,
2832 Kay, J. S., Lee, T. W., Rothschild, J., Bogard, J. E., Brody, I., Chabris, C. F.,
2833 Chang, E., Chapman, G. B., Dannals, J. E., Goldstein, N. J., Goren, A.,
2834 Hershfield, H., Hirsch, A., ... Duckworth, A. L. (2022). A 680,000-person
2835 megastudy of nudges to encourage vaccination in pharmacies. *Proceedings of*
2836 *the National Academy of Sciences*, 119(6), e2115126119.
2837 <https://doi.org/10.1073/pnas.2115126119>

2838 Mishne, G., & De Rijke, M. (2006). *Capturing Global Mood Levels using Blog*
2839 *Posts*. 6, 145–152.

2840 NHS. (2021, August 4). *Physical activity guidelines for adults aged 19 to 64*.
2841 Nhs.Uk. <https://www.nhs.uk/live-well/exercise/exercise-guidelines/physical-activity-guidelines-for-adults-aged-19-to-64/>

2843 Oladipo, T. (2023, April 10). *The Best Times to Post on Instagram in 2023*.
2844 Buffer Library. <https://buffer.com/library/when-is-the-best-time-to-post-on-instagram/>

2846 Park, L. G., Howie-Esquivel, J., Whooley, M. A., & Dracup, K. (2015).
2847 Psychosocial factors and medication adherence among patients with coronary
2848 heart disease: A text messaging intervention. *European Journal of*
2849 *Cardiovascular Nursing*, 14(3), 264–273.
2850 <https://doi.org/10.1177/1474515114537024>

2851 Patel, M. S., Milkman, K. L., Gandhi, L., Graci, H. N., Gromet, D., Ho, H., Kay,
2852 J. S., Lee, T. W., Rothschild, J., Akinola, M., Beshears, J., Bogard, J. E.,

2853 Buttenheim, A., Chabris, C., Chapman, G. B., Choi, J. J., Dai, H., Fox, C. R.,
2854 Goren, A., ... Duckworth, A. L. (2023). A Randomized Trial of Behavioral
2855 Nudges Delivered Through Text Messages to Increase Influenza Vaccination
2856 Among Patients With an Upcoming Primary Care Visit. *American Journal of*
2857 *Health Promotion*, 37(3), 324–332.
2858 <https://doi.org/10.1177/08901171221131021>

2859 Pecjak, V. (1970). Verbal synesthesiae of colors, emotions, and days of the
2860 week. *Journal of Verbal Learning and Verbal Behavior*, 9(6), 623–626.
2861 [https://doi.org/10.1016/S0022-5371\(70\)80023-8](https://doi.org/10.1016/S0022-5371(70)80023-8)

2862 Sanders, J. G., & Jenkins, R. (2016). Weekly Fluctuations in Risk Tolerance
2863 and Voting Behaviour. *PLOS ONE*, 11(7), e0159017.
2864 <https://doi.org/10.1371/journal.pone.0159017>

2865 Singh, S., & Yassine, A. (2018). Big data mining of energy time series for
2866 behavioral analytics and energy consumption forecasting. *Energies*, 11(2),
2867 452.

2868 Spasojevic, N., Li, Z., Rao, A., & Bhattacharyya, P. (2015). When-To-Post on
2869 Social Networks. *Proceedings of the 21th ACM SIGKDD International*
2870 *Conference on Knowledge Discovery and Data Mining*, 2127–2136.
2871 <https://doi.org/10.1145/2783258.2788584>

2872 Stockwell, M. S., Kharbanda, E. O., Martinez, R. A., Vargas, C. Y., Vawdrey,
2873 D. K., & Camargo, S. (2012). Effect of a Text Messaging Intervention on
2874 Influenza Vaccination in an Urban, Low-Income Pediatric and Adolescent
2875 Population: A Randomized Controlled Trial. *JAMA*, 307(16), 1702–1708.
2876 <https://doi.org/10.1001/jama.2012.502>

2877 Stone, A. A., Schneider, S., & Harter, J. K. (2012). Day-of-week mood patterns
2878 in the United States: On the existence of 'Blue Monday', 'Thank God it's
2879 Friday' and weekend effects. *The Journal of Positive Psychology*, 7(4), 306–
2880 314.

2881 Sunstein, C. R. (2016). People Prefer System 2 Nudges (kind Of). *Duke Law*
2882 *Journal*, 66(1), 121–168.

2883 Szaszi, B., Higney, A., Charlton, A., Gelman, A., Ziano, I., Aczel, B., Goldstein,
2884 D. G., Yeager, D. S., & Tipton, E. (2022). No reason to expect large and
2885 consistent effects of nudge interventions. *Proceedings of the National*
2886 *Academy of Sciences*, 119(31), e2200732119.
2887 <https://doi.org/10.1073/pnas.2200732119>

2888 Tipton, E., Bryan, C., Murray, J., McDaniel, M. A., Schneider, B., & Yeager, D.
2889 S. (2023). Why meta-analyses of growth mindset and other interventions
2890 should follow best practices for examining heterogeneity: Commentary on
2891 Macnamara and Burgoine (2023) and Burnette et al. (2023). *Psychological*
2892 *Bulletin*, 149(3–4), 229–241. <https://doi.org/10.1037/bul0000384>

2893 Tsai, M.-C. (2019). The Good, the Bad, and the Ordinary: The Day-of-the-Week
2894 Effect on Mood Across the Globe. *Journal of Happiness Studies*, 20(7), 2101–
2895 2124. <https://doi.org/10.1007/s10902-018-0035-7>

2896 Tumen, S., & Zeydanli, T. (2014). Day-of-the-Week Effects in Subjective Well-
2897 Being: Does Selectivity Matter? *Social Indicators Research*, 119(1), 139–162.

2898 Villanova, D., Bodapati, A. V., Puccinelli, N. M., Tsilos, M., Goodstein, R. C.,
2899 Kushwaha, T., Suri, R., Ho, H., Brandon, R., & Hatfield, C. (2021). Retailer
2900 Marketing Communications in the Digital Age: Getting the Right Message to
2901 the Right Shopper at the Right Time. *Journal of Retailing*, 97(1), 116–132.
2902 <https://doi.org/10.1016/j.jretai.2021.02.001>

2903 Wagner, G. G., Frick, J. R., & Schupp, J. (2007). *The German socio-economic*
2904 *panel study (SOEP): Scope, evolution and enhancements*. SOEPpapers on
2905 Multidisciplinary Panel Data Research.

2906 *When are Prolific participants most active?* (2023, October 25). Prolific.
2907 <https://researcher-help.prolific.com/hc/en-gb/articles/360011657739-When->
2908 [are-Prolific-participants-most-active-](#)

2909 *When is the best time to send a survey?* (n.d.). SurveyMonkey. Retrieved
2910 November 22, 2023, from <https://www.surveymonkey.com/curiosity/day-of-the->
2911 [week/](#)

2912 Williamson, C., Baker, G., Mutrie, N., Niven, A., & Kelly, P. (2020). Get the
2913 message? A scoping review of physical activity messaging. *International*
2914 *Journal of Behavioral Nutrition and Physical Activity*, 17, 1–15.
2915 <https://doi.org/10.1186/s12966-020-00954-3>

2916 World Health Organization. (2022, October 5). *Physical activity*.
2917 <https://www.who.int/news-room/fact-sheets/detail/physical-activity>

2918 **Paper 4: Replication and extension of the affect gap: robust to day of the**
2919 **week effects**

2920 Virginia Fedrigo^{1*}, Claire Heard^{2*}, Barbara Fasolo³, Matteo M. Galizzi¹

2921 ¹ London School of Economics and Political Science, Department of
2922 Psychological and Behavioural Science, and LSE Behavioural Lab, London,
2923 United Kingdom

2924 ² King's College London, Institute of Psychology, Psychiatry, and
2925 Neuroscience, London, United Kingdom

2926 ³ London School of Economics and Political Science, Department of
2927 Management, and LSE Behavioural Lab, London, United Kingdom

2928

2929 * These authors contributed equally to this work

2930 **Paper 4: in context**

2931 The fourth paper in this thesis expands the understanding of the day of the
2932 week effect into an established decision-making pattern, the affect gap. The
2933 affect gap refers to how decisions that are rich in affect often invoke different
2934 decision-making strategies than those who affect-poor, often leading to a
2935 preference reversal between parallel questions that vary only in affect level.
2936 The motivation behind this is that different decision-making strategies tend to
2937 be related to individual's underlying affect. Given the fluctuation of affect based
2938 on day of the week, it would be natural to test whether the affect gap also
2939 fluctuates based on the day of the week.

2940 This chapter adds a new depth to the understanding of the day of the week
2941 effect. This work replicates the established affect gap and the established
2942 fluctuation in affect over the days of the week but does not find an effect of the
2943 day of the week on the affect gap. Further, it replicates the different decision-
2944 making strategies under affect-rich and affect-poor conditions. This paper
2945 contributes significantly through a large-scale replication of the affect gap
2946 (across seven days), as well as by replicating the differences in affect across
2947 the days of the week. These findings add to the existing evidence for both the
2948 day of the week effect and the affect gap (of which the authors are not aware
2949 of any published replications).

2950 This replication and extension help advance the understanding of how the day
2951 of the week, as a driver of temporal heterogeneity, can affect established
2952 decision-making patterns (like the difference between affect-rich and affect-
2953 poor decisions). By showing that affect does indeed change over the course of
2954 the week, but the affect gap is not affected, this suggests that, broadly, there
2955 may be certain core tenets of how individuals navigate decision-making that
2956 are robust to the small-scale changes that take place (such as affect over the
2957 course of the week). While out of the scope of the present paper, this begins to
2958 open the conversation of what aspects of individual cognition the day of the
2959 week effect does change. The robustness of the affect gap suggests that
2960 differential processing (in terms of different decision-making strategies) of

2961 affect-rich versus affect-poor questions is not easily affected by intra-individual
2962 heterogeneity.

2963 **Abstract**

2964 The day of the week has been shown to change an individual's expression of
2965 cognitive and personality traits, especially affect, but its impact on
2966 consequential judgments and decisions, with varying level of affect present,
2967 has not yet been fully explored. Our large pre-registered study tests how the
2968 day of the week affects the so-called "affect gap". The affect gap is the within-
2969 subject differential judgement between affect-rich and affect-poor versions of
2970 equivalent scenarios that often leads to preference reversals (Pachur et al.,
2971 2014). Our study replicates this seminal study across 7 consecutive days of the
2972 week and extends it to a contemporary and important context: vaccine
2973 decisions. 2,138 UK participants were randomly allocated into participating on
2974 one of seven consecutive days, and asked to make 26 choices, across thirteen
2975 affect-rich (medical vaccines) and affect-poor (monetary lottery) options,
2976 calibrated to have matched willingness-to-pay (WTP). We find consistent
2977 evidence for preference reversals between affect-rich and affect-poor
2978 questions and no day of the week effect on the presence of the affect gap.
2979 However, we do find individual affect impacted by the day of the week effect.
2980 This suggests that the difference in judgement between affect-rich and affect-
2981 poor decisions is robust to the day of the week effect and the associated
2982 changes in individual affect. Theoretical and practical implications are
2983 discussed.

2984 **1. Introduction**

2985 Affect plays an important role in everyday decision-making, from individual
2986 understanding of risk in communications to making everyday choices. Different
2987 decisions have varying levels of affect attached to them, for example, situations
2988 of medical decisions (often seen as affect-rich) versus filling out tax forms (often
2989 seen as affect-poor). When making a decision, affect may overpower strictly
2990 rational and cognitively-driven assessments of the choice and sway ultimate
2991 decision-making, as postulated, for example, by the risk-as-feelings theory
2992 (Loewenstein et al., 2001) or the affect infusion model (Forgas, 1995). Overall,
2993 there is an understanding of affect as an important driver in decision making
2994 (Lerner et al., 2015).

2995 The way in which affect modifies decision-making can very clearly be seen
2996 when equivalent decisions, with differing levels of affect, are directly compared.
2997 This has given rise to the finding of the 'affect gap', or the difference in decisions
2998 made in affect-rich versus affect-poor settings. These affect-rich and affect-
2999 poor decisions are often evaluated differently by decision-makers, often leading
3000 to preference reversals between two equivalent questions (Pachur et al., 2014).
3001 In a seminal paper using within-subjects design, Pachur et al. (2014)
3002 investigate different decision-making strategies between affect-rich and affect-
3003 poor scenarios. The questions were formulated to be equivalent by soliciting
3004 individual willingness-to-pay (WTP) to avoid certain side effects and then
3005 presenting this information in two ways. First, in the affect-rich situation,
3006 participants were asked to choose between a certain percentage (for example,
3007 10%) chance of one side effect (for example, depression) versus another
3008 percentage chance (for example, 30%) of another side effect (for example,
3009 itching). In the parallel affect-poor question, participants were asked whether
3010 they would choose a 10% chance of losing the monetary amount allocated to
3011 their WTP for depression versus a 30% chance of losing the monetary amount
3012 allocated to their WTP for itching. Pachur et al. (2014) find that individuals use
3013 a more compensatory strategy and consider both outcomes and probability
3014 when assessing affect-poor decisions (e.g., maximising expected value [EV],
3015 such as EVmax decision-makers), whereas in affect-rich decisions, individuals
3016 use simpler strategies that neglect probabilities and compare outcomes (e.g.,
3017 choosing the 'least worst' choice, such as mini-max decision-makers). This
3018 suggests that decision makers use different heuristics in contexts that are
3019 affect-rich versus affect-poor.

3020 For the purposes of the present research, there will be a focus on EVmax
3021 versus mini-max as the potential heuristics individuals could use. While the
3022 study of heuristics is wide-reaching and encompasses many different
3023 information strategies (Gigerenzer & Gaissmaier, 2011), the selection has been
3024 based upon previous work showing those engaging in affect-rich decisions to
3025 be more likely to display probability neglect (as discussed in Pachur, 2014, see
3026 also McGraw, Todorov & Kunreuther, 2010), pointing towards a mini-max
3027 strategy. Conversely, if a decision-maker were to not neglect the probabilities,

3028 the strategy of maximizing the expected value (EVmax), would likely come into
3029 play; EVmax rests upon a simplification of expected utility theory (Schoemaker,
3030 1982) that has served as the backbone of much decision-making research. As
3031 such, the two heuristics highlighted focus on either the probability neglect (mini-
3032 max), or a simple model of incorporating probability (EVmax). While there are
3033 countless other models for decision making that have been investigated (for an
3034 example investigation see Camerer, 1989), the current research will focus on
3035 the above two.

3036 Understanding this effect and what strategies individuals use in different types
3037 of decisions is important to help create more effective communications. For
3038 example, the implications of the affect gap are especially salient in risk
3039 communications, where it would be important to emphasise probabilities in
3040 high-affect situations to help decision-makers avoid neglecting probabilities
3041 and only deciding based on what the outcomes are. Pachur et al. (2014) have
3042 shown this to be relevant in the context of considering choice of drugs (in
3043 relation to their medical side effects). The affect stirred by the question and
3044 topic itself could change the decision-making heuristic used and could be likely
3045 to lead to suboptimal decision-making. Here we extend existing affect gap work
3046 to the context of people's vaccinations choices. Vaccination decisions,
3047 especially for new vaccines (such as during the COVID-19 pandemic) are a
3048 similar high-affect situation. As such, the present study investigates vaccine
3049 side effects as a choice setting: under which settings do people ignore
3050 probability more or less in such an important decision as vaccination?
3051 Concretely, do people look more of the severity of the vaccine side effect, and
3052 ignore the probability when the vaccine decisions are presented in an affect-
3053 poor rather than affect-rich manner?

3054 An individual's underlying affect can have important effects on what decisions
3055 are made. An important distinction is the incidental affect (such as an
3056 individual's mood going into a decision) and integral affect (that is, affect
3057 directly related to the decision at hand, such as of vaccine side effects, or
3058 medicine side effects as studied and measured by Pachur et al. (2014)), both
3059 of which have been shown to affect decision-making (Västfjäll et al., 2016).

3060 Further, incidental affect, as well as the valence of the affect, has been shown
3061 to change an individual's decision-making or information processing strategy
3062 (Bless et al., 1996; Fredrickson, 2004; Schwarz et al., 1991; Schwarz & Clore,
3063 1996). For example, both negative mood (Schwarz & Clore, 1996) and positive
3064 mood (Fredrickson, 2004) have been shown to relate to more compensatory
3065 strategies. An example of incidental affect's impact on decision-making was
3066 described by Johnson & Tversky (1983) where the authors create incidental
3067 affect in participants (either negative or positive) and find that positive incidental
3068 affect decreased the judgement of the likelihood of risky events, despite being
3069 unrelated. The present study presents a novel contribution of investigation of
3070 both incidental and integral affect.

3071 One factor that has been shown to affect incidental affect is the day of the week
3072 (termed the 'day of the week effect'). The day of the week is omnipresent in all
3073 decisions made. While a seemingly innocuous feature of a decision, individual
3074 decision-makers are all subject to the same 'context' of the day of the week.
3075 Broadly, the day of the week serves as a unifying societal organisation that
3076 dictates many individual behaviours, activities, and time allocations (Kennedy-
3077 Moore et al., 1992). Following the terminology introduced above, each day of
3078 the week can be thought of as a population-wide 'functional equivalency class',
3079 introducing its own set of trait pressures, resultant behaviours, and affect.
3080 Therefore, synchronised societal activity of days of the week introduces in and
3081 of itself different influences into decisions.

3082 The day of the week is a unique rhythm as it often plays a dominant role in
3083 structuring life but is not linked to any existing celestial rhythms and has been
3084 extant for thousands of years (Copeland, 1939). Despite this, the days of the
3085 week are extremely salient and individuals have strong associations for
3086 different days of the week and different affect is manifested on different days,
3087 such as the weekend having more positive affect (Stone et al., 2012). Broadly,
3088 the day of the week has been shown to affect incidental affect across several
3089 studies (Elgoff et al., 1995, Ryan et al., 2010, Tsai, 2018), especially in regard
3090 to weekends having a more positive affect than weekdays. These studies are

3091 largely correlational or analyses of secondary data and do not utilise random
3092 assignment for allocating participants into particular days to take part.

3093 The day of the week has a notable effect on many unexpected domains in
3094 everything from medical decisions (Aylin et al., 2013; Brådvik & Berglund, 2003;
3095 Ellis et al., 2022) to energy consumption (Singh & Yassine, 2018). However,
3096 the exact mechanism and traits of the so-called ‘day of the week effect’ is poorly
3097 understood and has been questioned as an emergent property of experimental
3098 design creating a “non-random sorting on unobservables” (Tumen & Zeydanli,
3099 2014)—as such, it is difficult to predict how different facets of decisions are
3100 affected.

3101 This day of the week effect on incidental affect sets up an opportunity to further
3102 understand the affect gap and its relationship to incidental affect. The
3103 mechanism of the affect gap builds on the integral affect, namely the affective
3104 properties of the task as a mechanism for bringing about different heuristics in
3105 the participant’s decision. However, it remains to be understood what
3106 relationship incidental affect plays in this process. If an individual were faced
3107 with both affect-rich and affect-poor questions, would their use of different
3108 decision-making heuristics be swayed by their existing incidental affect? For
3109 example, if an individual is happier (incidental affect) on a particular day, it
3110 could be hypothesized that the affect of the task (integral affect) would impact
3111 them less (or perhaps more!), leading to different choices than someone less
3112 happy—much in line with Johnson & Tversky (1983), Schwarz & Clore (1996)
3113 and Fredrickson (2004), where an individual’s incidental affect was found to
3114 affect decision-making. The present research then seeks to explore the
3115 relationship between integral affect and incidental affect in relation to the
3116 manifestation of the affect gap.

3117 The present research and analyses (pre-registered at
3118 https://aspredicted.org/6QF_QG2) therefore rests on three main aims. First, we
3119 seek to replicate the finding of the affect gap by demonstrating preference
3120 reversals between affect-rich and affect-poor decisions. Secondly, we seek to
3121 understand the decision-making strategy used in affect-rich versus affect-poor
3122 decisions to see how they vary. We predict that preference reversals will occur,

3123 as affect-poor questions will rely more on a calculation of expected value of the
3124 two options, whereas affect-rich questions will disregard probabilities and
3125 choose the most attractive ('least worst') option. Thirdly, we seek to replicate
3126 the affect gap over the days of the week to understand whether there is a day
3127 of the week effect on the presence or strength of the affect gap. This line of
3128 inquiry seeks to understand the role of incidental affect on the affect gap, as
3129 the days of the week have been shown to have differences in incidental affect
3130 as outlined above.

3131 Therefore, we seek to investigate the interplay between the day of the week
3132 effect and the affect gap. The difference in affect, decision-making, and general
3133 behaviour across different days of the week is documented, but what is unclear
3134 is how these small-scale fluctuations to an individual's incidental affect can
3135 affect established decision-making patterns. It is plausible that the affect gap,
3136 a difference in information search, may fluctuate in strength across the days of
3137 the week, if shifts in individual affect affects the strength of this affect gap.
3138 However, it is also possible that this affect gap is enduring and while the
3139 underlying individual affect traits may fluctuate, an affect-poor decision will
3140 always be understood differently from an affect-rich decision. Focusing on the
3141 above characterisation of a more compensatory decision-making strategy
3142 being prompted by either a negative (Schwarz & Clore, 1996) or a positive
3143 (Fredrickson, 2004) affect, we seek to investigate whether the affect gap is
3144 attenuated during days with more negative affect, or amplified during those
3145 days, respectively. Overall, the present paper seeks to better understand and
3146 characterise the intersection between the day of the week effect and the affect
3147 gap.

3148 **2. Methods**

3149 *2.1. Participant recruitment*

3150 The study was approved by the University Research Ethics committee
3151 (approval number 136961) and all participants provided informed consent.
3152 Participants were recruited via the Prolific platform sharing the method and data
3153 collection of paper 3 of this thesis (in preparation for publication).

3154 Recruitment followed a two-step method to ensure participants were not able
3155 to self-select into participating on a certain day of the week.

3156 The first step was a screening survey where participants indicated their interest
3157 in participating in a future survey (n = 3,000 responses) in July 2023.
3158 Respondents were informed that they would be invited to participate in a follow-
3159 up survey on a random day the following week and would be asked to
3160 participate on the day the invitation was received. Once participants had
3161 received the above general information on the follow-up survey, they were
3162 asked through a yes or no response if they were interested in participating in
3163 the follow-up survey. It was explicitly stated that compensation for the present
3164 survey would not depend on an individual response. 97.37% (2,921 of 3,000
3165 responses) confirmed interest in participation in the main survey.

3166 Participants who expressed interest in the above screening survey were invited
3167 to participate in the main survey. Prior to the commencement of the main
3168 survey, individuals were randomised into seven groups denoting which day of
3169 the week they would be invited to participate in the main survey. The main
3170 survey was posted on seven consecutive days (Monday to Sunday) between
3171 24 and 30 July 2023. The survey was posted and taken down at the same time
3172 every day. From the screener survey, 29,21 participants were invited to the
3173 main survey and 2,205 participants completed the main survey. Of those, 2,138
3174 participants passed attention checks. For more information on participant
3175 demographics, please see Supplementary Materials S1.

3176 *2.2. Materials and procedure*

3177 The study analyses are pre-registered at [redacted prior to publication]. For
3178 measurement of the affect gap, the present study replicated the methods of
3179 (Pachur et al., 2014). The affect gap refers to the difference in choices between
3180 commensurate choices phrased in either affect-rich or affect-poor framing.

3181 The first set of questions were broadly 'willingness to pay' (WTP) questions.
3182 They listed 12 side effects of a vaccine and asked participants how much
3183 money, in GBP, they would be willing to pay to avoid experiencing this side
3184 effect. There were no restrictions set on what amounts participants entered.

3185 Subsequent questions fell broadly into two categories: affect-poor and affect-
3186 rich choices (presented randomly in line with Pachur et al., 2014). In the affect-
3187 poor choices, participants were asked to choose between two monetary loss
3188 gambles (example, 70% chance of losing £10 or 20% chance of losing £20). In
3189 the affect-rich choices, participants were asked between two side effects of a
3190 vaccine (note, the original study stated a medication) with different probabilities
3191 of occurring.

3192 The survey structure was set up to pipe in responses from the first set of
3193 willingness to pay questions into the rest of the survey. As such, each affect-
3194 rich question would have a 'paired' affect-poor question. For example, a
3195 question asking participants to choose between 70% probability of depression
3196 and 20% probability of itching, would then be twinned with an affect-poor
3197 question that would ask 70% probability of losing the amount the participant
3198 said they would pay to avoid depression and a 20% probability of losing the
3199 amount the participant said they would pay to avoid itching.

3200 The structure allowed for a direct within-subject comparison of participant
3201 decisions between parallel questions, where the monetary value matched the
3202 WTP each participant ascribed to the side effects. This allowed for the
3203 examination of preference reversals by seeing how many times an individual
3204 switched their preferred choice between parallel questions (i.e., the affect-poor
3205 and affect-rich version of the same question). The affect gap then refers to this
3206 *difference* in participant decisions between the affect-poor and affect-rich
3207 versions of the question.

3208 Lastly, we also queried incidental affect replicating measures used in previous
3209 research of day of the week effect (Stone et al., 2012) through six different sub-
3210 measures (sadness, anger, stress, worry, enjoyment, happiness). Each of the
3211 sub-measures was measured by asking participants if they had experienced a
3212 particular emotion that day, and respondents answered yes or no. Of note, this
3213 measure is an extension to the methods of Pachur et al. (2014) who did not
3214 measure incidental affect.

3215 **3. Results**

3216 *3.1. Preference reversals*

3217 To understand whether the type of scenario (affect-rich vs. affect-poor)
3218 changed the choices people made, we calculated a proportion of preference
3219 reversal score. As our decisions are matched for willingness to pay, we
3220 calculate this by counting the number of reversals out of the total number (N=
3221 27,794) of decisions (or 13 decisions for each of the 2,138 participants). On
3222 average, collapsing across days of the week, individuals had preference
3223 reversals in 33.97% of cases (mean = 0.3397, standard error = 0.0042). For
3224 comparison, Pachur et al. (2014) found preference reversal to occur at the
3225 following rates in their studies: Study 1, 46.4% (SD = 24.5); Study 2, 36.7% (SD
3226 = 15.4); Study 3, 42.6% (SD = 17.5).

3227 To examine the effect of the day of the week on the proportion of preference
3228 reversals (i.e., when the choices between paired affective and non-affective
3229 questions were different), a non-parametric Kruskal-Wallis test was conducted
3230 with the percentage of preference reversals as the dependent variable. There
3231 was no significant effect of the day of the week on percentage of preference
3232 reversals ($\chi^2(6) = 2.300$, $p = 0.890$).

3233 *3.2. Day of the week effect on heuristic and integral affect*

3234 For each decision made by a participant, we determined whether this decision
3235 aligned with an expected value maximisation heuristic (EVmax) or the
3236 prioritising less harmful outcomes ignoring probabilities heuristic (mini-max).
3237 Each participant made 13 decisions in each condition (for a total of 26
3238 decisions). Importantly, depending on the WTP inputted by the participant in
3239 the first part, there were occasions where the EV of the two options were equal
3240 and/or there was no 'worst' choice (i.e., both choices were equally 'bad', so
3241 minimax ascribes equal value to both; alternatively, the expected value is equal
3242 for both choices). As such, it cannot be said in these situations if the participant
3243 choice is aligned with either heuristic, as the heuristic in question ascribes an
3244 equal value to both. There was a total of 14.68 % of decisions that fell into this
3245 category and were therefore excluded from 'counting' towards a choice that
3246 used that heuristic. To clarify further with an example, if one of the participant's

3247 13 questions in the Affective category had an expected value of 15 for each
3248 option, the participant's choice would not be counted as aligning with EVmax,
3249 as both options have the same expected value. As such, the total number of
3250 questions when considering the overall percentage of choices that aligned with
3251 EVmax would be 13 total – 1 excluded = 12 remaining.

3252 Next, we looked at for each person, what percent of decisions they made that
3253 aligned with EVmax or mini-max heuristic, again excluding the cases where a
3254 heuristic ascribed equal value to both options. As such, the total number of
3255 'valid' decisions differs by individual, as there were different numbers of
3256 questions per heuristic that had to be discarded per participant. Therefore, the
3257 amounts are presented in percentages, with the note that the total number
3258 varies. Note that these percentages may total over 100% as sometimes the
3259 option that aligned with the EVmax heuristic and the option that aligned with
3260 mini-max are the same, therefore it is impossible to then discern which heuristic
3261 was used. To elaborate further: If in a question, option B is both the option with
3262 the highest EV and the 'least-worst' option, and the participant chose B, this
3263 decision would be counted both as a case where EVmax was used and where
3264 mini-max was used. As such, the percentages where EVmax was used and
3265 where mini-max were used could total over 100%.

3266 When making decisions presented in an affect-poor manner, decision makers
3267 used an EVmax compensatory strategy 84.62% of the time and a non-
3268 compensatory mini-max strategy 49.43% of the time. When making decisions
3269 presented in an affect-rich manner, decision makers used an EVmax
3270 compensatory strategy in 64.83% of the time and used a non-compensatory
3271 mini-max strategy in 49.99% of the time. Of all valid affect-rich decisions,
3272 64.83% used EVmax and 49.99% used mini-max. Of all valid affect-poor
3273 decisions, 84.62% used EVmax and 49.43% used mini-max.

3274 We subsequently investigated the main, within-participant effects of category
3275 of decision (affect-rich or affect-poor) and heuristic (EVmax or mini-max) and
3276 the between-participant effects of day of the week.

3277 A repeated measures ANOVA with repeated measures factors of heuristic
3278 (mini-max; EV) by category of decision (affect-rich; affect poor) with day of the
3279 week as a between-subject factor revealed several significant effects. First,
3280 there was a significant effect of heuristic ($F(1) = 1645.073, p < .001$). Post-hoc
3281 comparison of mini-max to EV revealed a mean difference of -0.216 ($t(1832) =$
3282 $-40.559, p_{\text{tukey}} < .001$), suggesting that individuals used EV more than mini-max
3283 collapsing across both affect-rich and affect poor decisions.

3284 Further, there was a significant effect of category of decision ($F(1) = 177.115,$
3285 $p < .001$). Post-hoc comparison of affect-poor to affect rich revealed a
3286 significant mean difference of 0.063 ($t(1832) = 13.308, p_{\text{tukey}} < .001$), suggesting
3287 that individuals in affect-poor decisions made decisions aligned with any
3288 decision-making heuristic (either EVmax or mini-max) more than those in
3289 affect-rich decisions, who aligned their choices less with either decision-making
3290 heuristic (i.e., did not follow EVmax or mini-max). Finally, there was no
3291 significant between-participant effect of day of the week ($F(6) = 0.891, p =$
3292 $.501$).

3293 There was also a significant interaction between heuristic and category of
3294 decision ($F(1) = 770.480, p < .001$). Post-hoc comparisons revealed that all
3295 comparisons between the four categories (affect-rich using EVmax, affect-rich
3296 using mini-max, affect-poor using EVmax, affect-poor using mini-max) were
3297 significant at the $p_{\text{tukey}} < .001$ level, suggesting the percentage of individuals
3298 relying upon each heuristic in each category of decision was significantly
3299 different. Importantly, mini-max was used more in affect-rich than in affect poor
3300 situations. However, it is important to note that the small absolute difference in
3301 proportion (49.99% versus 49.43% in affect-rich versus affect-poor,
3302 respectively) suggests a small effect size. Additionally, EV was used more in
3303 affect-poor than affect-rich situations. This mirrors findings in Pachur et al.
3304 (2014). See Supplementary Materials S2 for full reporting.

3305 Finally, there was no significant interaction between heuristic, category of
3306 decision, (or even heuristic * category of decision) and day of the week
3307 (heuristic * day of week: $F(6) = 0.562, p = .761$; category * day of week: $F(6) =$
3308 $0.403, p = .877$; heuristic * category * day of week = $F(6) = 1.143, p = .334$).

3309 This suggests there was no impact on day of the week for the type of strategy
3310 individuals used in decision-making.

3311 *3.3. Incidental affect changes over the week*

3312 A composite measure of incidental affect (hereafter 'composite incidental affect
3313 score') was made by adding up the scores for each of the six affect sub-
3314 measures (1 for yes, 0 for no) and reverse scoring those of negative affect
3315 (worry, sadness, stress, anger) and standard scoring for positive affect
3316 (enjoyment, happiness).

3317 A linear regression model of weekday only (no other predictor variables) ($R^2 =$
3318 0.005) showed no significant effect of weekday on the composite incidental
3319 affect score.

3320 Next, we looked at the effect of weekday versus weekend (creating a dummy
3321 variable for 0 = weekday and 1 = weekend) on the composite incidental affect
3322 score. A linear regression model of weekend or weekday showed a significant
3323 effect (Weekend – Weekday: Estimate = 0.285, $t = 3.148$, $p = 0.002$),
3324 suggesting that the composite incidental affect score was higher on weekends
3325 (Saturday and Sunday) than weekdays (Monday to Friday).

3326 *3.4. Preference reversals, heuristics, and incidental affect*

3327 An exploratory analysis looked at whether there was a correlation between the
3328 percentage of preference reversals and the composite incidental affect score,
3329 an extension to the original design of Pachur et al. (2014) as the original design
3330 did not measure incidental affect. Further, the percentage of decisions that
3331 used mini-max or EVmax for each category of decision (affect-poor or affect
3332 rich) are included. There was no significant correlation with the composite
3333 incidental affect score, heuristic use, and preference reversals. See
3334 Supplementary S3 for a full report.

3335 **4. Discussion**

3336 This exploration of the day of the week effect within the established predictable
3337 difference in decision-making of the affect gap allows for a sharpened
3338 understanding of both phenomena. Through a randomization of participants

3339 into different days of participation, we conduct a large-scale replication of the
3340 affect gap finding across seven different days and show that it is robust to any
3341 day of the week effects, despite finding that incidental affective differences do
3342 exist between days of the week with weekends being generally more positive
3343 than the rest of the week. We show different heuristics at play (EVmax versus
3344 mini-max) used in different types of decisions (affect-rich versus affect poor)
3345 with preference reversals present within individuals between the two types of
3346 decisions, replicating the findings of Pachur et al., (2014) in a closely related
3347 domain (yet one that is distinct—medication side effects versus the present
3348 vaccine side effects). This reinforces the finding of the decreased sensitivity to
3349 presented probabilities in affect-rich decisions. Overall, this work replicates the
3350 finding of the affect gap (Pachur et al. (2014)). Further, this work echoes the
3351 work found in (Stone et al., (2012) that affect is higher on the weekends than
3352 weekdays, although not detecting any change in affect over the day of the week
3353 with the existing measure used. Lastly, our work shows that there is no
3354 detectable correlation between the utilized incidental affect measure and
3355 preference reversals or heuristic used in decisions. This can suggest that the
3356 affect gap relates more directly to integral affect, although further work would
3357 be needed to fully investigate this link.

3358 First, this finding offers an important theoretical contribution by deepening the
3359 characterization of the affect gap and understanding in regard to theories of
3360 affect's role in decision making. By showing that the affect gap perseveres no
3361 matter what day of the week a participant makes these choices, this seven-
3362 sample, large-scale replication further cements the phenomenon as something
3363 intrinsic to human decision-making and how affect-rich and affect-poor stimuli
3364 are processed. While day of the week effects can impact many individual
3365 cognitive processes and incidental affect (and we do indeed find differences in
3366 affect across the days of the week), the differential processing between affect-
3367 rich and affect-poor stimuli perseveres. This extends the original investigation
3368 of Pachur et al. (2014) by controlling for incidental affect in the investigation of
3369 questions with different integral affect. This replication of the affect gap with the
3370 tightly controlled temporal element suggests a much deeper level of weighting
3371 of affect, beyond what can be impacted by outside influences and incidental

3372 affect, that yields these different decision-making heuristics and the affect gap
3373 effect.

3374 One possible hypothesis rests in the very nature of the affect gap, especially
3375 when compared to the characteristics of other cognitive traits for which the day
3376 of the week has been found (for example, risk, Fedrigo et al., (2023)). This
3377 suggests that the processing of affect-rich and affect-poor scenarios, and any
3378 differences therein, may be robust to large-level changes in affect that an
3379 individual may experience (for example, across weekdays). The individual's
3380 'starting affect' therefore may have limited importance. One way to
3381 conceptualise this is through the often-cited concepts of state and trait. The day
3382 of the week may impart different states upon an individual, but the affect gap
3383 (and the extent to which it affects an individual) is a trait of such decisions.

3384 This work has important implications for how information is communicated in
3385 affect-rich versus affect-poor scenarios, as the tendency to neglect information
3386 on probabilities seems inherent to situations high in integral affect. For
3387 example, affect-rich communications have significant impacts for public health
3388 policy and programs, such as individuals choosing whether to vaccinate when
3389 presented with a number of affect-rich side effects. As such, policymakers can
3390 choose how information is framed (affect-rich or affect-poor), the present work
3391 suggesting that an affect-poor frame may support decision makers in making
3392 better choices. Further, this work suggests that the incidental affect
3393 experienced by the decision maker (something out of control of policymakers)
3394 plays less of a role in the information search and heuristic used by decision-
3395 makers. This follows the research line of "boosting" (Hertwig & Grüne-Yanoff,
3396 2017), wherein the aim is to empower decision makers to make informed
3397 decisions, rather than pushing towards a singular choice as many behavioural
3398 science nudges traditionally do. Taken together, this presents a strong set of
3399 suggestions for how high-risk, high-impact decisions can be framed to support
3400 decision makers.

3401 Another important contribution of this work is to help to further understand the
3402 role of individual heterogeneity in behavioural science (Bryan et al., 2021).
3403 Individual heterogeneity helps illuminate why responses to different

3404 behavioural interventions often vary significantly across individuals. However,
3405 this unified manifestation of the affect gap suggests that the bounds of
3406 individual heterogeneity are to be explored on a case-by-case basis. For
3407 example, when is the effect size of individual heterogeneity large enough to
3408 completely nullify a purported effect of an intervention, and when is it less
3409 consequential (such as for the affect gap)? By further understanding drivers of
3410 heterogeneity and their interplay with established affective states, behavioural
3411 interventions—and in this particular case, risk communications—can be more
3412 effectively designed and implemented.

3413 **5. Funding**

3414 This research has been supported by the European Union's Horizon 2020
3415 research and innovation programme PERISCOPE: Pan European Response
3416 to the Impacts of COVID-19 and Future Pandemics and Epidemics, under grant
3417 agreement no. 101016233.

3418 **6. Data Availability**

3419 Pre-registration available at https://aspredicted.org/6QF_QG2

3420 **7. Contributions**

3421 **Conceptualization:** VF, CH, MMG, BF

3422 **Methodology:** VF, CH, MMG

3423 **Investigation:** VF

3424 **Data curation:** VF, CH

3425 **Writing – original draft:** VF

3426 **Writing – review & editing:** VF, CH, BF, MMG

3427 **Supervision:** MMG, BF

3428 **Project administration:** MMG

3429 **Funding acquisition:** MMG, BF

3430 **8. References**

3431 Aylin, P., Alexandrescu, R., Jen, M., Mayer, E., & Bottle, A. (2013). Day of week
3432 of procedure and 30 day mortality for elective surgery: Retrospective analysis
3433 of hospital episode statistics. *Bmj*, 346.

3434 Bless, H., Schwarz, N., & Kemmelmeier, M. (1996). Mood and Stereotyping:
3435 Affective States and the Use of General Knowledge Structures. *European
3436 Review of Social Psychology*, 7(1), 63–93.
3437 <https://doi.org/10.1080/14792779443000102>

3438 Brådvik, L., & Berglund, M. (2003). A suicide peak after weekends and holidays
3439 in patients with alcohol dependence. *Suicide and Life-Threatening Behavior*,
3440 33(2), 186–191.

3441 Bryan, C. J., Tipton, E., & Yeager, D. S. (2021). Behavioural science is unlikely
3442 to change the world without a heterogeneity revolution. *Nature Human
3443 Behaviour*, 5(8), 980–989.

3444 Camerer, C. F. (1989). An experimental test of several generalized utility
3445 theories. *Journal of Risk and Uncertainty*, 2, 61-104.

3446 Copeland, L. S. (1939). Sources of the Seven-Day Week. *Popular Astronomy*,
3447 47, 175.

3448 Egloff, B., Tausch, A., Kohlmann, C. W., & Krohne, H. W. (1995). Relationships
3449 between time of day, day of the week, and positive mood: Exploring the role of
3450 the mood measure. *Motivation and emotion*, 19, 99-110.

3451 Ellis, D. A., Sanders, J. G., Jenkins, R., & McAuslan, L. (2022). A weekday
3452 intervention to reduce missed appointments. *PLOS ONE*, 17(9), e0274670.
3453 <https://doi.org/10.1371/journal.pone.0274670>

3454 Fedrigo, V., Guenther, B., Jenkins, R., Galizzi, M. M., & Sanders, J. G. (2023).
3455 Weakened weekdays: Lockdown disrupts the weekly cycle of risk tolerance.
3456 *Scientific Reports*, 13(1), 21147. <https://doi.org/10.1038/s41598-023-48395-9>

3457 Forgas, J. (1995). Mood and judgment: The Affect Infusion Model (AIM).
3458 *Psychological Bulletin*, 117, 39–66. <https://doi.org/10.1037/0033-2909.117.1.39>

3460 Fredrickson, B. L. (2004). The broaden-and-build theory of positive emotions.
3461 *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*, 359(1449), 1367–1377.

3463 Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. *Annual review of psychology*, 62(1), 451-482.

3465 Hertwig, R., & Grüne-Yanoff, T. (2017). Nudging and boosting: Steering or
3466 empowering good decisions. *Perspectives on Psychological Science*, 12(6),
3467 973-986.

3468 Johnson, E. J., & Tversky, A. (1983). Affect, generalization, and the perception
3469 of risk. *Journal of Personality and Social Psychology*, 45(1), 20.

3470 Kennedy-Moore, E., Greenberg, M. A., Newman, M. G., & Stone, A. A. (1992).
3471 The relationship between daily events and mood: The mood measure may
3472 matter. *Motivation and Emotion*, 16(2), 143–155.
3473 <https://doi.org/10.1007/BF00995516>

3474 Lerner, J. S., Li, Y., Valdesolo, P., & Kassam, K. S. (2015). Emotion and
3475 Decision Making. *Annual Review of Psychology*, 66(1), 799–823.
3476 <https://doi.org/10.1146/annurev-psych-010213-115043>

3477 Loewenstein, G. F., Weber, E. U., Hsee, C. K., & Welch, N. (2001). Risk as
3478 feelings. *Psychological Bulletin*, 127(2), 267.

3479 McGraw, A. P., Shafir, E., & Todorov, A. (2010). Valuing money and things:
3480 Why a \$20 item can be worth more and less than \$20. *Management Science*, 56(5), 816-830.

3482 Pachur, T., Hertwig, R., & Wolkewitz, R. (2014). The affect gap in risky choice:
3483 Affect-rich outcomes attenuate attention to probability information. *Decision*,
3484 1(1), 64–78. <https://doi.org/10.1037/dec0000006>

3485 Ryan, R. M., Bernstein, J. H., & Brown, K. W. (2010). Weekends, work, and
3486 well-being: Psychological need satisfactions and day of the week effects on
3487 mood, vitality, and physical symptoms. *Journal of social and clinical
3488 psychology*, 29(1), 95-122.

3489 Schoemaker, P. J. (1982). The expected utility model: Its variants, purposes,
3490 evidence and limitations. *Journal of Economic Literature*, 529-563.

3491 Schwarz, N., Bless, H., & Bohner, G. (1991). Mood and Persuasion: Affective
3492 States Influence the Processing of Persuasive Communications. In *Advances
3493 in Experimental Social Psychology* (Vol. 24, pp. 161–199). Elsevier.
3494 [https://doi.org/10.1016/S0065-2601\(08\)60329-9](https://doi.org/10.1016/S0065-2601(08)60329-9)

3495 Schwarz, N., & Clore, G. L. (1996). Feelings and phenomenal experiences.
3496 *Social Psychology: Handbook of Basic Principles*, 2, 385–407.

3497 Singh, S., & Yassine, A. (2018). Big data mining of energy time series for
3498 behavioral analytics and energy consumption forecasting. *Energies*, 11(2),
3499 452.

3500 Stone, A. A., Schneider, S., & Harter, J. K. (2012). Day-of-week mood patterns
3501 in the United States: On the existence of 'Blue Monday', 'Thank God it's
3502 Friday' and weekend effects. *The Journal of Positive Psychology*, 7(4), 306–
3503 314.

3504 Tsai, M. C. (2019). The good, the bad, and the ordinary: The day-of-the-week
3505 effect on mood across the globe. *Journal of Happiness Studies*, 20(7), 2101–
3506 2124.

3507 Tumen, S., & Zeydanli, T. (2014). Day-of-the-Week Effects in Subjective Well-
3508 Being: Does Selectivity Matter? *Social Indicators Research*, 119(1), 139–162.

3509 Västfjäll, D., Slovic, P., Burns, W. J., Erlandsson, A., Koppel, L., Asutay, E., &
3510 Tinghög, G. (2016). The Arithmetic of Emotion: Integration of Incidental and
3511 Integral Affect in Judgments and Decisions. *Frontiers in Psychology*, 7.
3512 <https://doi.org/10.3389/fpsyg.2016.00325>

3513 **General Discussion**

3514 This thesis set out to tackle a broad overarching question—what relationship
3515 does time and the temporal dimension have to the heterogeneity expressed
3516 between and within individuals?

3517 The initial introductory literature review tackled topics such as what really is
3518 behavioural science, the question of heterogeneity in behavioural science, the
3519 dynamic nature of personality, behavioural science in health, and weekday
3520 fluctuations. This served to set the stage for the central research themes that
3521 would run through the rest of the thesis, focusing on temporal heterogeneity
3522 through the day of the week effect.

3523 The first paper examined the antecedents of these day of the week effects by
3524 focusing on what thoughts individuals had upon waking. This paper found that
3525 the thoughts over the days of the week were very uniform, suggesting a focus
3526 on what was to come up that day for the individual and what their own to-do list
3527 was.

3528 The second paper looked at some of the causes of the day of the week effect,
3529 using the government lockdowns during the pandemic to address both the role
3530 of individual and societal understanding of weekdays in fluctuations in risk
3531 aversion. This paper found that both a societal setting that gave meaning to the
3532 days of the week as well as an individual understanding of days of the week in
3533 order to show day of the week effects.

3534 The third paper then looked into the manifestations of the day of the week effect
3535 in engagement levels with health information, using an innovative methodology
3536 to randomly assign participants into days of the week to participate (removing
3537 the issue of self-sorting). This paper found no effect of the day of the week,
3538 introducing a level of nuance into understandings of what the day of the week
3539 effect may be.

3540 The fourth paper then looked at whether there was a day of the week effect
3541 within an established pattern within judgment and decision-making (namely, the
3542 affect gap showing different decision-making and processes during affect-rich

3543 versus affect-poor choices). This also found no day of the week effect,
3544 suggesting limits to which realms the day of the week effect can have an effect.

3545 Overall, this work presents a cohesive view of temporal drivers of
3546 heterogeneity, focusing on the antecedents, potential causes, manifestations,
3547 and extensions of application. The conclusion of this thesis will seek to
3548 contextualize this work further by presenting the contributions, the promise, and
3549 the limitations, implications, and outlook for this work looking forward.

3550 **Contributions**

3551 The work presented herein it spans multiple research threads and cannot be
3552 subsumed by one field of behavioural science. Further, one of the primary
3553 contributions (especially within the third and fourth papers presented) is
3554 methodological, which raises the question: where does this work fit in and how
3555 does it contribute? After all, the value of this research, apart from any intrinsic
3556 value determined by its conceptualization and rigor, primarily lies in how it can
3557 help to advance understanding of what behavioural science (broadly) wants to
3558 do and *can* do.

3559 The core idea of this work is the concept of heterogeneity, and how it can be
3560 primarily within individuals (as well as between). The very nature of attempting
3561 to measure heterogeneity and isolate drivers is how many confounds are within
3562 the system and how challenging it is to isolate any one candidate influence.
3563 The work presented here seeks to isolate (as much as possible) and
3564 understand the influence of time, primarily the days of the week, as a driver of
3565 heterogeneity.

3566 However, I argue that the primary contribution of this thesis extends beyond
3567 the concrete findings of each paper that help elucidate the inner mechanisms
3568 of the day of the week effects. I argue that this work makes significant strides
3569 in three primary areas: 1) understanding of temporal fluctuations, 2)
3570 methodological contributions, and 3) high-level understandings of
3571 heterogeneity.

3572 First, the surface-level contribution of this work, spanning across all papers,
3573 can be pithily summarized: the day of the week effect is shaped by our
3574 surroundings and affects some facets of individual decision-making. This in and
3575 of itself is a novel characterization of an effect that, to this point, has presented
3576 itself with various levels of definition—where the effect came from, how strong
3577 it was, and how it manifested, as in the early stages of characterization. The
3578 present work sharpens the understanding of this effect significantly, cautioning
3579 us for when it should be treated with caution and when it can be understood
3580 and handled accordingly. Spanning across four papers, the current
3581 understanding is the following: the day of the week effect can be said to not
3582 form upon waking, but rather be an emergent effect of what a particular day
3583 means to the individual, what is to be done, combined with how external
3584 societal patterns give meaning and structure to the days. The day of the week
3585 effect, however, may be diminished when using random assignment for
3586 experimental participation (discussed more in the next contribution). This
3587 suggests that there is a degree of uncharacterized sorting that takes place
3588 between individuals between the days that may either fully comprise or
3589 strengthen an existing day of the week effect in studies that use a between-
3590 subject design, without random assignment, to show differences across days
3591 of the week. Importantly, this does not apply to research that observes
3592 behaviours over time without a selection or recruitment component. Lastly, the
3593 day of the week effect was not shown to impact an established decision-making
3594 pattern (the affect gap), which further puts into question when and how it
3595 impacts individuals. Overall, this characterization on multiple levels leads to a
3596 more complete understanding of the day of the week that can help guide future
3597 investigations.

3598 Second, regarding methodology, the present work refines existing practices
3599 within the study of temporal heterogeneity. In short, this work, primarily the third
3600 and fourth papers, seeks to assess and address the issue of individuals self-
3601 selecting their participation into studies, as far as the day of the week upon
3602 which to participate, at their convenience. By working to uncouple the
3603 individual's participation from any individual behavioural patterns, it is possible
3604 to gain a sharpened (that is, less confounded by unobserved characteristics)

3605 understanding of the temporal effect on heterogeneity. Methodologically, there
3606 seems to be very little argument for why this *does not* help to characterize the
3607 day of the week effects and therefore should not become common practice for
3608 such an investigation. While this may seem like a strong statement, it is
3609 anchored in existing norms and practices in social sciences more generally:
3610 random assignment is one of the existing tools to limit the effect of confounds.
3611 As such, the practice to randomly assign individuals to different days of the
3612 week, if one starts with the assumption that the days can be in a sense
3613 'treatment groups', follows clearly from existing best practices. This leads to the
3614 suggestion that the random assignment should then become common practice.

3615 Third, regarding a more abstracted understanding of heterogeneity, this work
3616 seeks to refine the understanding of a dimension along which heterogeneity is
3617 evident, the temporal dimension. We understand time and setting as abstractly
3618 important features in determining our own comportment, but the work herein
3619 drives us to question what time is actually serving as a proxy for. The first and
3620 second papers begin to suggest that the heterogeneity based on day of the
3621 week is built upon a delicate balance of individual perceptions, individual
3622 activities, and external or societal patterns. However, the different ways in
3623 which these factors contribute is not entirely clear. As such, the heterogeneity
3624 observed becomes presents itself as an emergent factor of both individual and
3625 societal patterns, where the contributions of each theoretical component are
3626 not yet clear. This leads to an understanding of temporal heterogeneity which,
3627 in theory is clear to understand—different times and time cycles can lead to
3628 different individual manifestations of traits and behaviours. However, the
3629 mechanisms and components (what is sufficient or necessary?) is not yet
3630 resolved. When discussing a circadian rhythm, time can be thought of as a
3631 proxy for the hormone levels that fluctuate like clockwork within a 24-hour cycle.
3632 When considering other, longer cycles like the week, the answer becomes less
3633 obvious.

3634 The work herein argues that we have yet to gain enough of an understanding
3635 of this day of the week effect, both on an individual and societal level, to reliably
3636 call upon it. Individually, the open question remains on what individual traits, if

3637 any, are amplified on different days that create these differences between days
3638 of the week. If these previously characterized day of the week effects disappear
3639 when individuals are not allowed to self-select into different days to participate
3640 in research, then what actually *is*, if anything, changing between individuals on
3641 different days of the week? As such, the evidence (contributed by the second
3642 paper) suggests that there are larger societal drivers behind the observed
3643 changes in individual behaviour. However, characterizing exactly what goes
3644 into these social dimensions is something that is unfortunately beyond the
3645 scope of the current work.

3646 Summarizing the above contributions, this allows for a renewed understanding
3647 of what temporal heterogeneity means and how it should be addressed. The
3648 first paper solidifies that temporal heterogeneity is not something that is present
3649 immediately, rather, first thoughts are incredibly uniform, and the differences
3650 form over the course of the day. The second paper suggests that these
3651 differences require both individual tuning to the days of the week as well as a
3652 social structure that keeps these notions intact. The third paper finds that these
3653 individual fluctuations are not present when random assignment into
3654 participation takes place, suggesting that there is an internal process
3655 (unobserved characteristics motivating self-sorting) that drives these different
3656 manifestations across the days of the week in between-subject studies that
3657 recruit, without random assignment, into different days of the week. The fourth
3658 paper considers these changes in the light of an established decision-making
3659 pattern, finding that again, there are no changes present—suggesting that the
3660 effect of the day of the week may not permeate into certain established
3661 patterns. Together, this sets the groundwork for future studies into what
3662 heterogeneity means, where it originates, and how it manifests.

3663 **Limitations**

3664 The present research seeks to understand how the structure of time influences
3665 individual displays of heterogeneity. However, there are three limitations to the
3666 research that are important in interpretation and implications for future work.

3667 The first limitation may not be thought of as a limitation *per se*, but as a word
3668 of caution when interpreting the work included in this thesis (and similar). In
3669 short, many of the measured dependent variables serve as the best possible
3670 proxy for 'real-world' behaviours but cannot be taken as direct substitutes.
3671 Specifically, within the context of the present work, the link between observed
3672 behaviour and underlying personality trait levels is stated as a primary
3673 conceptual construct upon which this line of research is built (as set out in the
3674 introduction). While this is an established connection within the field of
3675 personality psychology, it is important to note that this means that the
3676 measured variables may be conceptually 'one step away' from the true
3677 underlying variable of interest (such as a risk measurement versus actual risk-
3678 taking behaviour). This does not devalue the findings within this work, as the
3679 changes in the measured dependent variables add important information to
3680 understanding heterogeneity. However, the direct applicability of this work to
3681 larger naturalistic phenomena, especially when looking at behaviour, should be
3682 treated with caution.

3683 As an important introductory note, it is crucial to note that the gap between true
3684 phenomena of interest and measured variables is one that is not unique to the
3685 present work nor unique within behavioural science. Whether due to limitations
3686 in feasibility, resources, or time, measuring something more accessible in lieu
3687 of a complex naturalistic behaviour is a frequent tactic within the field. I would
3688 go so far as to argue that this is not a true problem or limitation as long as
3689 interpretations are kept within the bounds of what is reasonable given the
3690 design. This issue is described subsequently within the context of the second
3691 and third papers.

3692 In the context of the second paper, the dependent variable measured over the
3693 course of the study is risk attitude. However, while risk attitude fluctuations due
3694 to the day of the week effect is important when considering temporal drivers of
3695 heterogeneity, the important implication of risk attitude is how it influences
3696 behaviour. As such, the interpretation of this work can lay the groundwork for
3697 speculation on behavioural impacts but cannot be used to definitively
3698 characterize them. This does not diminish the impact of the work, as

3699 understanding fluctuations in risk attitudes is arguably a ‘pre-step’ to
3700 understanding fluctuations in risk behaviour (as attitudes are antecedents to
3701 behaviours). As such, these understandings still add an important part of the
3702 puzzle to manifestations of temporal heterogeneity, but interpretations should
3703 be restrained by the scope of what is actually measured.

3704 This concept can be similarly extrapolated to the content of the third paper,
3705 which looks at engagement with health information in relation to the day of the
3706 week effect. While the measures for engagement for this paper were carefully
3707 crafted to capture as many angles as possible (time spent on measures,
3708 scoring, engagement with links), it is exactly that in the long term—measures
3709 of engagement and behaviour in a smaller scale. The findings here are
3710 important as they can inform experimental design and response to information
3711 in a controlled environment, but larger implications on behaviour over the
3712 course of the week are not possible. As such, the limitation of this work is also
3713 its strength—by understanding engagement levels across days of the week,
3714 we can begin to puzzle together the factors that contribute to behaviour.

3715 Taken together, this first limitation is not something that needs to be ‘solved’,
3716 per-se, as measuring what is conceptually the next-best dependent variable
3717 (for example, lab measurements of risk attitude versus risky behaviour in the
3718 real world) is the backbone of much of experimental work. The reason this
3719 aspect of the research is highlighted is that it is important to interpret findings
3720 in light of what was actually done and measured. Of course, in a perfect world,
3721 measuring real-world behaviour would be ideal, but then loss of control over
3722 confounds would be incurred, and often field experiments are not immediately
3723 feasible. The value of experimental work, as such, is not diminished at all—
3724 applications and implications can be speculated upon, but there is always more
3725 work to be done to bring measured variables closer to the true behaviour of
3726 interest.

3727 A second limitation of this work is the primary view of time cycles, namely, the
3728 seven-day week. Using a seven-day week has significant strengths in that it
3729 examines an omnipresent unified societal and social schedule that is imposed
3730 upon individuals. It is expressed in every avenue, from schedules to behaviours

3731 to store openings. However, this focus on the day of the week rests on a
3732 number of assumptions that are very hard to disentangle within the present set
3733 of experimental designs. Simply put, different individuals have different
3734 conceptions of what a Tuesday is, and a great degree of that is shaped by
3735 microenvironments that are difficult to characterize.

3736 More concretely, it is useful to consider the thought exercise of comparing an
3737 individual living in a rural environment versus one living in an urban area. What
3738 gives that individual a sense of day of the week? Perhaps it is the schedule of
3739 a routine 9-5, Monday-Friday desk job in an urban setting, but what about the
3740 variable schedule of someone working on a farm, or someone working as part
3741 of the gig economy? Perhaps it is the schedule of the children in school, but
3742 what about a family without children, or a couple with opposing shift work?
3743 While these examples are purposefully selected to show a range of
3744 possibilities, they do speak to an integral truth—individual schedules may
3745 synchronize *within* small microcosms (such as individuals with similar lifestyles
3746 and rhythms), but it is unclear how these microcosms may sync *between*
3747 themselves.

3748 The issue of “what makes a Tuesday, a Tuesday?” could be further investigated
3749 by embracing the many different factors that day of the week is currently used
3750 as a proxy by. Mixed-methods research could be used to take a deep dive into
3751 the days and schedules of a range of individuals, from the farm worker to the
3752 gig economy worker mentioned above, to understand what truly gives
3753 individuals their steer for what the day of the week looks like. This thesis
3754 touches upon the idea of unobservable characteristics driving day of the week
3755 effect several times, but this limitation could begin to be addressed by taking a
3756 deep dive into what makes a Tuesday, a Tuesday for a wide variety of
3757 individuals to drill down further into what is driving this linked to the day of the
3758 week temporal heterogeneity.

3759 Thirdly, this research relies repeatedly on a participant sample gathered from
3760 Prolific who are living in the UK. This presents a two-pronged problem in the
3761 sense that the participant pool is both poorly diversified and poorly specified.

3762 Regarding poorly diversified, the fact that those who are participating from the
3763 UK on Prolific is not a representative sample of the human experience is an
3764 obvious argument that does not require much elaboration. This work should be
3765 understood to limited to a profoundly WEIRD (western, educated,
3766 industrialized, rich, democratic) sample from a single region—as such, it cannot
3767 generalize broadly. This becomes even more so the case when the
3768 understanding of the days of the week is built upon one specific to such a
3769 population; the days of the week have different connotations and associations
3770 in different areas of the world and among different populations. This ties back
3771 to the discussion of heterogeneity—claims when investigating heterogeneity
3772 with the population at hand is, by many metrics, homogenous, should be made
3773 cautiously This work should be repeated with a broader sample in different
3774 populations to create a more universal understanding of what is driving
3775 temporal heterogeneity, across different populations with different perceptions
3776 of days and activities.

3777 Regarding this population being poorly specified, as the measures of what
3778 makes each day unique are not yet clear (as discussed previously), it is then
3779 also hard to measure how much the day of respondents on Prolific mirrors or
3780 diverges from an average Tuesday. It is important to consider how
3781 representative, even with the narrow population of individuals living in the UK,
3782 a Prolific online sample is. How much do their days align with the days of the
3783 ‘average’ UK individual? This is of course difficult to concretely answer as the
3784 metrics at hand only reflect basic demographic information when the nuance is
3785 likely much more complex than that and we can only begin to guess. For
3786 example, perhaps the day characteristics (and how we would assess its
3787 difference between a Prolific respondent and an ‘average’ UK inhabitant)—how
3788 much urgency is in their day to day? What is asked of them each day? How
3789 much of that requires interaction with immediate close individuals, or with
3790 society at large? As these questions cannot be answered, this limitation can
3791 only be raised as something to keep in mind when interpreting both the results
3792 included in this thesis and broader work on the topic.

3793 As such, research on heterogeneity in general requires making a set of
3794 (simplifying) assumptions. While we look at heterogeneity looking for a
3795 particular explanatory factor (in the context of this thesis, temporal cycles), it is
3796 difficult to have a complete view of the number of confounds present in the
3797 sample. While randomization techniques (such as those used in the third and
3798 fourth papers) help to ward against some confounds, it is important to keep this
3799 larger concept in mind when looking into heterogeneity. What factors are being
3800 measured? What factors are being controlled for? What oversights may exist?
3801 While cautious experimental design is a strong start, the challenge in
3802 measuring true drivers of heterogeneity is a difficult aspect of this line of
3803 research.

3804 **Future studies and directions**

3805 The research contained in this thesis shows just a first step towards untangling
3806 the question of individual heterogeneity and its role within behavioural science
3807 broadly. The structure of this thesis has represented a progression in a sense,
3808 from the first paper seeking the antecedents of the day of the week effect to
3809 the final two papers that look for its manifestations in a variety of domains.
3810 Especially in light of the limitations discussed previously, there are a two main
3811 lines of additional investigations that can be suggested to help continue the
3812 work of this thesis.

3813 First and foremost, the nature of the day of the week effect and its role in driving
3814 temporal heterogeneity is not entirely understood, and this thesis itself
3815 presents mixed results in that regard. As such, the exploration should begin
3816 with better understanding where and how the days of the week shape
3817 behaviour.

3818 The above is relatively narrow in scope, as it focuses solely on one particular
3819 manifestation of how time, and cycles of time, shape individual cognition and
3820 manifestation of personality traits. However, this understanding can be
3821 broadened in future work to explore the role of the day of the week. For
3822 example, the day of the week is in a sense used as a proxy for coordinated
3823 societal actions, but as seen in the limitations, that is perhaps an

3824 oversimplification. As such, the investigation could continue into what makes
3825 days of the week what they have come to mean. For example, would a
3826 Tuesday hold the same meaning among different groups whose experience of
3827 the week is further from the ‘typical’ modern, westernized conceptualization?
3828 For example, if living in regions of the world where the so-called ‘weekend’ is
3829 different, or working a fixed, Sunday-Thursday schedule? While these
3830 questions may seem on the surface mundane, it would help to get to an integral
3831 question the present research has not been able to definitively answer—is it
3832 our own actions, the actions of others, or both, that help shape what a day
3833 means to us?

3834 Secondly and more broadly, the current characterization of the day of the week
3835 effect only begins to scratch the surface into what parts of individual behaviour
3836 and predisposition are changeable by this amorphous society/individual
3837 interaction of the weekdays. Further work, both to further characterize the
3838 extent and the mechanism of these temporal drivers of heterogeneity, should
3839 continue to explore where and how this day of the week effect is found. The
3840 third paper suggested that it is not present for engagement with health
3841 information, but what if it is extended to other types of information, or to
3842 measured change in behaviour? Further, the fourth paper shows a common
3843 pattern within information search and decision-making does not manifest any
3844 day of the week effect—what types, if any of the established decision-making
3845 patterns are susceptible changes due to the day of the week effect? Is it driven
3846 by underlying changes in more primary traits (such as risk or affect) or is it an
3847 emerging feature, a result of a symphony of changes that yield different
3848 decision-making effects?

3849 As such, the further directions for this line of work can be understood to fall into
3850 two broad categories: first, what do the days of the week serve as a rough proxy
3851 for? Namely, when we investigate the day of the week effect, what effect are
3852 we truly looking at (social, personal, an interplay)? Second, what parts of the
3853 individual (both states or traits and behaviours) are susceptible to change? How
3854 do evidenced patterns of decision-making hold up against these fluctuations, if
3855 any? By understanding these dimensions of the day of the week effect, it will

3856 be possible to better characterize individual heterogeneity, both out of
3857 individual interest and for the improvement of behavioural science
3858 interventions.

3859 Answering the above questions will require an interdisciplinary investigation.
3860 As mentioned in the introduction, behavioural science will have to acknowledge
3861 its strengths and weaknesses—while being incredibly interdisciplinary, it often
3862 comes from an angle of changing behaviour first without understanding the full
3863 ensemble of individual and societal influences that lead to a behaviour. As
3864 such, it is likely that the balance between individual systems (from the biological
3865 to the behavioural) and larger systems (societal) cannot be fully understood if
3866 the lens is through strictly behaviour change only, rather than behaviour
3867 *characterization*. Focusing on heterogeneity, it is now an unavoidable
3868 acknowledgement within the discussion of behavioural science that individuals
3869 are different and there are both individual and social or societal drivers to this.
3870 To create better behaviour change methods (the goal of much of behavioural
3871 science), one must understand the ways in which the population differs both
3872 within and between individuals. An approach harmonizing different levels of
3873 scholarship is likely a strong direction. Biological drivers of behaviour, whether
3874 characterized through hormonal analyses or through understanding different
3875 neural activation patterns, would help to characterize *why* some differences
3876 exist even if they cannot be fully articulated by the person at play. Economists'
3877 analyses of behaviour can help to further elucidate mechanisms of how
3878 decisions are made, what are the main drivers, and where people differ. These
3879 analyses can further be enhanced by physiological measurements, helping to
3880 marry the ideas and proposed mechanisms of biological and economic views
3881 of decision-making. Additionally, large-scale investigations driven by
3882 sociologists would help to inform what role our society plays in shaping this
3883 temporal heterogeneity and heterogeneity overall. The above is purposefully
3884 painted in broad strokes as it is important to understand how many directions
3885 behavioural science can, and arguably *must* expand, to continue to build (in
3886 parallel) understandings of and modifications for behaviour.

3887 **Implications for practitioners**

3888 How then, does the present work inform behavioural science work (both in
3889 academia and outside of it) moving forward? Given the general push for an
3890 acknowledgement of heterogeneity and refinement of methods, the slightly
3891 mixed bag of results presented herein does not immediately present a clear
3892 path forward. This section will therefore outline three key implications and
3893 associated, actionable recommendations for practitioners moving forward.

3894 Firstly, there are implications that must be considered for experimental design.
3895 A primary question is of course how much time and its cycles must be
3896 considered within the design of studies, as the present work highlights the risk
3897 that the day(s) upon which data is collected inadvertently changes the findings.
3898 The extent to which this must now be taken into account is not immediately
3899 clear, as findings from the second paper recommend caution, while findings
3900 from the third and fourth papers suggest a more nuanced approach. As such,
3901 the outlook and methods can be interpreted in a multitude of ways.

3902 On one hand, there seems to be evidence for individuals, when allowed to self-
3903 select into participation days and when couched within the societal structure,
3904 indeed exhibiting differences in traits (broadly construed). On the other hand, it
3905 seems that distance from a societal structure and random participation
3906 assignment into days of the week may wash out these effects. Or perhaps the
3907 interpretation should be held at the level of the measure of interest—perhaps
3908 for more base-level traits such as risk attitude, the day of the week matters
3909 more, but for more emergent and nuanced behaviours (that are a compounding
3910 of other traits) such as reaction to information, there is less of a day of the week
3911 effect?

3912 For the practitioner, the above leaves more questions open than answered. As
3913 such, experimental design should proceed with caution and awareness. For
3914 example, considering one's risk attitude: a single point collection for measuring
3915 one's risk attitude, regardless of the day of the week, is unlikely to create a
3916 robust picture of an individual's trait. Where possible, experimental design
3917 should consider to what extent it is feasible to distribute data collection across

3918 days (and indeed both within and between participants, depending on the
3919 research question at hand). This would help to diffuse some of the concerns
3920 presented by the discussions of temporal heterogeneity—by focusing on a
3921 dependent variable of interest sampled at multiple points (where possible), it
3922 becomes harder to create elaborate hypotheses based upon what are
3923 underlying fluctuations and cycles of heterogeneity.

3924 Secondly, another important recommendation is to consider when participants
3925 participate (or indeed, when measurements are taken) as a variable that should
3926 be controlled for, especially when it is not randomly assigned by the
3927 experimenter. If an individual participates in a study on a day of their choosing
3928 (especially when assuming a data collection that spans several days), it is
3929 important to consider what that choice of participation says about the individual.
3930 What traits and predispositions are this day of participation a proxy for—more
3931 leisure time, a changed risk attitude, listlessness, something else? The
3932 unfortunate response of course is that it is impossible for a researcher to keep
3933 in mind the many different causes present within the participant that could lead
3934 to the choice to participate. However, by understanding the day of participation
3935 as something that may shape the outcomes of the work, it is possible to
3936 maintain control over its influence in experimental design.

3937 Thirdly, and perhaps in seeming opposition to the above, perhaps the day of
3938 the week effect does not need to create such a methodological and structural
3939 headache for researchers. Namely, it seems that while the day of the week may
3940 be a handy proxy of a driver of temporal heterogeneity in some domains,
3941 perhaps its effect remains limited. For example, the third paper demonstrates
3942 a clear nullification of the effect, even when there could have been a theoretical
3943 explanation for how the effect could hold. As such, it seems that one must not
3944 necessarily worry about the validity of individual studies and measurements if
3945 the day of the week was taken casually—for example, within the domain of
3946 engagement with health information, or when examining existing decision-
3947 making patterns (fourth paper) there was no effect found, and it is unlikely that
3948 this is the only domain with such a lack of effect. Therefore, perhaps one
3949 possible explanation is that the existing link between complex behaviours and

3950 these more base-level traits that do fluctuate is too abstracted to draw solid
3951 causal conclusions regarding the effects of temporal heterogeneity.

3952 **Conclusion**

3953 This research follows in a research stream of understanding why and how our
3954 'tools' within behavioural science work, especially when considering how
3955 individuals differ both from each other and within themselves from day to day.
3956 The underlying assumptions of this field, briefly covered in the introductory
3957 chapter, often assume a homogenous response to a stimulus in heterogeneous
3958 populations—an obvious issue from the start.

3959 This work sought to untangle one dimension of heterogeneity, the temporal
3960 one, to understand how time and all of the meaning, dispositions, and
3961 behaviours it creates can create synchronized (and ideally predictable)
3962 fluctuations within individual behaviours. The first and second papers found that
3963 much of these fluctuations are individually and socially informed and driven,
3964 while the third and fourth papers raised questions about if and when/where
3965 these fluctuations can be found. It is perhaps inherent to the nature of the line
3966 of inquiry itself, as heterogeneity in a system as complicated as our social world
3967 has a multitude of drivers that cannot always be cleanly understood or
3968 dissociated by experimental methods. Taken together, this work suggests that
3969 temporal drivers of heterogeneity are much more nuanced than was once
3970 assumed. Rather than seeing a day of the week as a broad stroke that affects
3971 everyone in the same way, this thesis has contributed nuance and caution to
3972 the interpretation. Individuals indeed are affected by the day and the setting
3973 around them, but the extent and mechanism remain unknown.

3974 This thesis presents a complex set of recommendations that are not always
3975 clear—perhaps then the takeaway is to control as much as possible (random
3976 allocation where possible, samples taken over multiple days), but to
3977 acknowledge that temporal heterogeneity is more complicated than we are fully
3978 able to appreciate. Changes in individuals due to time cycles are likely the
3979 culmination of a multitude of different influences that we are unable to fully
3980 capture—from the banal time spent to the moods of others, traffic, obligations,

3981 expectations, and the outlook for the future (or the feelings of the past). As
3982 such, when we view the idea of the ‘day of the week effect’, it is exactly that—
3983 a proxy wherein we attempt to box together all the above into a neatly packaged
3984 label, a black box of “Tuesday” and all the elements therein. However, as we
3985 cannot fully understand what goes into this box at this stage, it becomes difficult
3986 to use this concept in a reliable and predictive way, especially as individuals
3987 have unique demands on their time and dynamics to their days (a retiree versus
3988 a white collar 9-5 versus a student versus a parent) that we have yet to fully
3989 measure. This of course leaves the door open to other exciting work, as a full
3990 exploration into what makes a Tuesday a Tuesday for individuals would likely
3991 begin to shed light on this phenomenon—however, this is unfortunately out of
3992 the scope of the present work. As such, this thesis likely joins many others in
3993 recommendations that can be light-heartedly summarized as “well, it’s
3994 complicated”.

3995 **Supplementary Materials**

3996 **Paper 1**

3997 **S1: Demographics by weekday**

Day of Week	N	% Male	Average Age	Age range
Monday	118	29.66	33.73	18-66
Tuesday	117	25.64	32.61	18-66
Wednesday	120	32.50	31.65	18-63
Thursday	117	23.08	33.34	18-67
Friday	118	24.58	33.69	18-75
Saturday	118	27.97	32.53	18-75
Sunday	121	33.06	31.62	18-65

3998

3999 **S2: Full methodology of thematic analysis, decision log and codebook**

4000 To identify common themes of penumbral thought content we used a blended
4001 approach between open and template coding [1,2]. It is important to note that
4002 several codes (temporal content, protagonist, valence, sentence formulation)
4003 were templates, whereas the others emerged through open coding. The codes
4004 and process were refined through an intercoder reliability procedure [3]. A
4005 random 10% of items were coded independently by authors JGS and VF. Once
4006 completed, coders discussed emerging codes, and areas of divergence until
4007 they reached agreement (see the decision log, Stage 1 below). This yielded a
4008 first intercoder rating (Krippendorf's alpha = 0.855). Following this process,
4009 themes originating from the open coding were further distilled to axial codes
4010 and resulted in selective codes [4,5].

4011 Next, all items were coded by author VF. To establish a final interrater
4012 agreement, score 10% of coded items were randomly selected and coded by
4013 author JGS independently. Coders discussed differences in interpretation and
4014 agreements were logged (see the decision log, Stage 2 below; Krippendorf's
4015 alpha = 0.954). The coded data was then adjusted in line with the decision log
4016 by author VF. Finally, some codes were collapsed into selective codes to
4017 simplify the data (see Supplementary Material 3 for the finalised codebook).

4018 In line with the procedures in qualitative coding, no inferential statistics is used,
4019 but rather a focus is drawn to ranking between classes of response [6]. This is
4020 in line with reporting standards for qualitative research as "cannot be usefully
4021 quantified given the nature, composition and size of the sample group, and
4022 ultimately the epistemological aim of the methodology" [7]. We do review co-
4023 occurrence between the three identified themes for each demographic
4024 characteristics of age and gender and across the seven weekdays. Sub-
4025 themes could not be analysed due to a minimum count of 20 items per cell. As
4026 we had an imbalance in the sample for age and gender, we compared the
4027 number of reported accounts for each theme, relative to the number of reports
4028 on other themes (by row), controlling for the number of participants in each
4029 demographic cell (columns). Where there were more than two cells per
4030 comparison, counts were compared with the average count across the others
4031 within the same characteristic (age, gender, or weekday), for example: under
4032 25 years old, versus average of 25-38 and over 38 for age.

4033 **Decision Log for qualitative coding exercise**

4034 **STAGE 1 (initial coding of 10% of items by authors VF and JGS and
4035 discussion of emerging codes)**

4036 • Simple statements of "food" or similar (coffee, breakfast, etc.) are
4037 expressions of desires that are not temporally anchored (i.e., thought is not
4038 referring to time frame)

4039 • "I need to ____" or similar is a statement of intent or a tentative plan, so it
4040 refers to something in the unspecified future, regardless of coder interpretation
4041 of when the event would logically take place.

4042 • Statements of "food" or similar (coffee, breakfast, etc.) are referring to self-based thoughts unless otherwise explicitly mentioned

4044 • "I'm still tired" or similar is a past unspecified occurrence, as it is something
4045 that was true in the past and is now continuing.

4046 • "Time to get the children ready" or similar is about other, as it is a social
4047 action with "other" beneficiary

4048 • "What time/day/etc is it" is temporal>other, as it is clearly a time anchored
4049 inquiry but cannot be said to be either future or past necessarily

4050 • Any statement that explicitly refers to time but is not clearly related to
4051 future/past (i.e. "Why am I awake (it was 3am)" is coded as temporal>other,
4052 because it is anchored into time but not in relation to future/past

4053 • Statements that are left blank or say "nothing" or "I can't remember" are left
4054 completely blank

4055 • References to being late are treated as future unspecified, as they refer to
4056 an individual thinking of an event that is yet to happen

4057 • Statements of illness or physical discomfort are treated as negative valence

4058 **STAGE 2 (coding of an additional 10% of data by VF & JGS, further
4059 discussion and collapsing of codes as necessary)**

4060 • Statements of action that don't specify any time frame (i.e., "ringing my
4061 boyfriend") are no time reference, as we cannot suppose they are future

4062 • to do list is things you either do or don't have to do, so "i have to work" and
4063 "i don't have to work" both apply

4064 • "what things I have to do today" is establishing a to-do list, not establishing
4065 time

4066 **Final codebook and dimension categorisation**

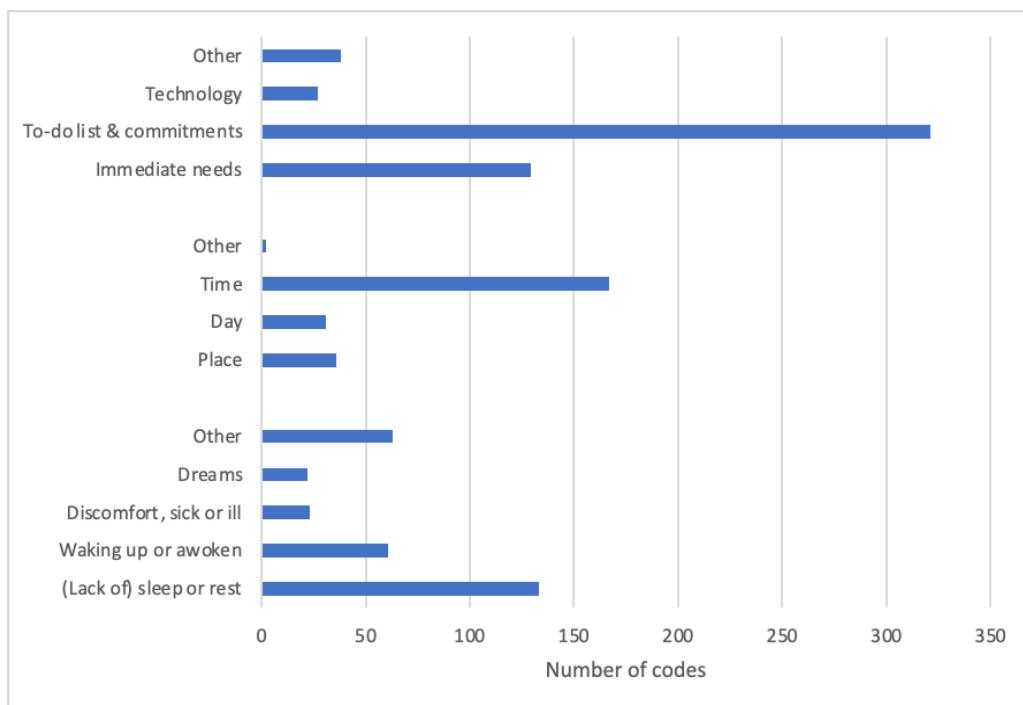
	N1 code	N2 code	N3 code	N4 code
Thought characterisation	Thoughts about feelings of states	(lack of) sleep or rest <i>Example: "I wish i (sic) slept more hours"</i>		
		Dreams <i>Example: "...that was a weird dream"</i>		
		Discomfort/sick/ill <i>Example: "I'm aching"</i>		
	Waking up or being awoken	Alarm clock, alarm or noise <i>Example: "I need to turn my alarm off"</i>		
		Being awake <i>Example: "I don't want to be awake yet."</i>		
		Being woken up <i>Example: "why have the cats both woken me up earlier than usual?"</i>		
		Spatial orientation (inc. weather) <i>Example: "omg, what a bad weather"</i>		

Spatial or temporal orientation	Temporal orientation (day)	What day is it	
		<i>Example: "What day is it"</i>	
	Temporal orientation (time)	How many days are left	
		Known day <i>Example: "ps5 is out today"</i>	
	Temporal orientation (time)	What time is it	
		<i>Example: "What time is it?"</i>	
		Known time <i>Example: "Why am I awake (it was 3am)"</i>	
		How much time is left/lateness	
		<i>Example: "Oh god I am late for work"</i>	
Waking action	Immediate needs (water, food, bathroom)	Attending to bodily needs	Drinking <i>Example: "having a drink"</i>
			Eating <i>Example: "food"</i>

				Medication <i>Example:</i> <i>“Taking my medication for my chronic disease”</i>
		Getting up		Showering <i>Example:</i> <i>“Need to get a shower”</i>
				Bathroom <i>Example:</i> <i>“That I needed the bathroom”</i>
				Toilet <i>Example:</i> “I need to go to the toilet”
				Getting out of bed <i>Example:</i> <i>“Better get</i>

				<i>out of bed at some point</i>
				Getting ready or dressed <i>Example: "I need to get ready for work"</i>
Looking at technology (phone or email)				<i>Example: "Check my phone."</i>
				To-do list for the day Establishing 'to do list' of the day <i>Example: "What I have to do in the day"</i>
		Commitment to...	Self (work/chores/tasks) <i>Example: "About my chores for the day"</i>	

				Other (work/chores/tasks) <i>Example:</i> “Get kids ready for school”
--	--	--	--	---


Thought context	Dimension	Categories	
	Temporal window (“when am I?”)	Thought is not referring to a timeframe	
	Thought refers to past	Day	<i>Example:</i> “Remembering something upsetting that happened to me yesterday.”
		Week	
		Unspecified	<i>Example:</i> “something about the dream I was having, related to work”
	Thought refers to future	Day	<i>Example:</i> “work for the day”
		Week	

			<i>Example: "About a hospital appointment next week."</i>
			Unspecified <i>Example: "how much work I needed to do"</i>
Question vs. statement	Question <i>Example: "what shall I wear?"</i>		
	Statement <i>Example: "it's dark"</i>		
Valence of statement	Positive <i>Example: "glad im (sic) here"</i>		
	Negative <i>Example: "felt frustration and mild despair"</i>		
	Neutral <i>Example: "To check my phone"</i>		
Protagonis t	Self <i>Example: "I'm tired"</i>		
	Other	Partner	

		<i>Example: “Ringing and waking up my boyfriend”</i>
		Family/children/friends <i>Example: “go and get my son”</i>
		iPhone/PS5/email/electronics <i>Example: “I wonder if I’m going to have a lot of emails in my inbox”</i>

4067

4068 **S3: Numbers of reports in different code groups**

4069

4070

4071 **S3: Pairwise comparisons for prior knowledge and dimension**

4072

	Establish Place	Establish Day	Establish Time	Know Place	Know Day	Know Time
Establish Place		-0.157*	-0.984**	-1.242**	-0.446**	0.112
Establish Day	0.157*		-0.827**	-1.085**	-0.290**	0.269**
Establish Time	0.984**	0.827**		-0.258**	0.538**	1.096**
Know Place	1.242**	1.085**	0.258**		0.796**	0.796**
Know Day	0.446**	0.290**	-0.538**	-0.796**		0.558**
Know Time	-0.112	0.269**	-1.096**	-1.354	-0.558**	

4073 **Note: boxes contain the mean difference between the values. *p < 0.05**
 4074 **level, **p < 0.001 level using Bonferroni correction.**

4075 **S4: Pairwise comparisons for temporal orientation and temporal distance**

	Day Ahead	Week Ahead	Year Ahead	Day Before	Week Before	Year Before
Day Ahead		0.864**	1.596**	0.907**	1.216**	1.630**
Week Ahead	-0.864**		0.732**	0.044	0.352*	0.766**
Year Ahead	-1.596**	-0.732**		-0.689**	-0.380**	0.034
Day Before	-0.907**	-0.044	-1.596**		0.308**	0.722**
Week Before	-1.216**	-0.352**	0.380**	-0.308**		0.414**

Year Before	-1.630**	-0.766**	-0.034	-0.722**	-0.414**	
--------------------	----------	----------	--------	----------	----------	--

4076 *Note: boxes contain the mean difference between the values. *p < 0.05 level,*
 4077 ***p < 0.001 level*

4078 **References**

4079 1. Blair E. A reflexive exploration of two qualitative data coding techniques.
 4080 *Journal of Methods and Measurement in the Social Sciences.* 2015;6: 14–29.

4081 2. King N. Template analysis. Qualitative methods and analysis in
 4082 organizational research: A practical guide. Thousand Oaks, CA: Sage
 4083 Publications Ltd; 1998. pp. 118–134.

4084 3. O'Connor C, Joffe H. Intercoder reliability in qualitative research:
 4085 debates and practical guidelines. *International Journal of Qualitative Methods.*
 4086 2020;19: 1609406919899220.

4087 4. Strauss A, Corbin J. *Discovery of grounded theory.* 1967.

4088 5. Williams M, Moser T. The art of coding and thematic exploration in
 4089 qualitative research. *International Management Review.* 2019;15: 45–55.

4090 6. Anderson C. Presenting and evaluating qualitative research. *American*
 4091 *journal of pharmaceutical education.* 2010;74.

4092 7. Burnard P. Writing a qualitative research report. *Accident and*
 4093 *emergency nursing.* 2004;12: 176–181.

4094

4095

4096 **Paper 2**

4097 **Study 1:**

4098 ***Supplementary Table A:** Demographic breakdown by weekday and Sense
4099 of Week (SOW) in Study 1. Chi-square test was used to determine any
4100 deviations in observed frequencies of males in strong [$\chi^2(6, N = 172) = 4.28, p$
4101 = 0.64] and weak [$\chi^2(6, N = 106) = 6.99, p = 0.32$] groups. A t-test was used
4102 to determine whether there were significant variations in ages between the
4103 strong/normal and weak groups and was found to be non-significant [$t(12) = -$
4104 0.90, $p = 0.39$]. There were significantly more males in the Normal/Strong SOW
4105 group than in the Weak SOW group significant [$t(517.9) = -2.446, p = 0.015$].

4106

Sense of Day of the N	% Male	Average Age (σ_M)
weekday	Week	
Strong, Normal		
<i>Monday</i>	41	41.46
<i>Tuesday</i>	43	30.23
<i>Wednesday</i>	47	32.61
<i>Thursday</i>	37	24.32
<i>Friday</i>	36	52.78
<i>Saturday</i>	34	44.11
<i>Sunday</i>	39	43.59
Weak		
<i>Monday</i>	81	34.57
<i>Tuesday</i>	80	25.93
		34.04 (1.30)
		33.86 (1.46)

<i>Wednesday</i>	76	27.63	32.55 (1.28)
<i>Thursday</i>	84	19.27	32.59 (1.42)
<i>Friday</i>	86	34.88	31.21 (1.37)
<i>Saturday</i>	94	31.91	33.21 (1.38)
<i>Sunday</i>	83	46.66	31.60 (11.46)

4107

4108 ***Supplementary Table B.1.:** Results of generalized linear model for Z-scored
 4109 composite risk score for those with a Normal/Strong SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.009	0.034	-0.058	0.076	0	266	0.264	0.792
Tue - Mon	0.092	0.123	-0.151	0.335	0.162	266	0.746	0.456
Wed - Mon	-0.143	0.12	-0.379	0.093	-0.251	266	-1.192	0.234
Thu - Mon**	-0.355	0.127	-0.604	-0.105	-0.623	266	-2.802	0.005
Fri - Mon	0.036	0.128	-0.215	0.287	0.063	266	0.283	0.777
Sat - Mon	-0.141	0.131	-0.398	0.116	-0.248	266	-1.082	0.28
Sun - Mon	-0.037	0.125	-0.283	0.209	-0.065	266	-0.295	0.768

4110 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4111

4112 ***Supplementary Materials Table B.2.:** Results of post-hoc comparisons for
 4113 Z-scored composite risk score for those with a Normal/Strong SOW of weekday
 4114 only.

Weekday	Difference	SE	t	df	p	p _{bonferroni}
---------	------------	----	---	----	---	-------------------------

Fri	-	Sat	0.177	0.135	1.318	266	0.189	1
Fri	-	Sun	0.073	0.129	0.565	266	0.572	1
Mon	-	Fri	-0.036	0.128	-0.283	266	0.777	1
Mon	-	Sat	0.141	0.131	1.082	266	0.28	1
Mon	-	Sun	0.037	0.125	0.295	266	0.768	1
Mon	-	Wed	0.143	0.12	1.192	266	0.234	1
Mon	-	Thu	0.355	0.127	2.802	266	0.005	0.115
Mon	-	Tue	-0.092	0.123	-0.746	266	0.456	1
Sat	-	Sun	-0.104	0.132	-0.791	266	0.43	1
Wed	-	Fri	-0.179	0.124	-1.441	266	0.151	1
Wed	-	Sat	-0.002	0.127	-0.013	266	0.99	1
Wed	-	Sun	-0.106	0.122	-0.873	266	0.384	1
Wed	-	Thu	0.212	0.123	1.718	266	0.087	1
Thu	-	Fri	-0.391	0.131	-2.99	266	0.003	0.064
Thu	-	Sat	-0.214	0.134	-1.597	266	0.112	1
Thu	-	Sun	-0.318	0.128	-2.481	266	0.014	0.288
Tue	-	Fri	0.056	0.128	0.439	266	0.661	1
Tue	-	Sat	0.233	0.131	1.787	266	0.075	1
Tue	-	Sun	0.129	0.125	1.032	266	0.303	1
Tue	-	Wed	0.235	0.12	1.959	266	0.051	1
Tue	-	Thu*	0.447	0.127	3.529	266	<.001	0.01

4115 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4116 ***Supplementary Table B.3.:** Results of generalized linear model for Z-scored
4117 composite risk score for those with a Normal/Strong SOW of weekday, age,
4118 and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.034	0.034	-0.033	0.101	0.000	264	0.994	0.321
Male – Female**	0.223	0.069	0.086	0.359	0.391	264	3.215	0.001
Age*	-0.008	0.003	-0.014	-0.002	-0.151	264	-2.575	0.011
Tue - Mon	0.121	0.121	-0.117	0.358	0.212	264	1.000	0.318
Wed -Mon	-0.102	0.117	-0.333	0.129	-0.179	264	-0.867	0.387
Thu – Mon*	-0.305	0.124	-0.550	-0.060	-0.536	264	-2.456	0.015
Fri - Mon	-0.003	0.125	-0.249	0.242	-0.006	264	-0.026	0.979
Sat - Mon	-0.154	0.127	-0.405	0.097	-0.271	264	-1.211	0.227
Sun - Mon	-0.043	0.122	-0.283	0.197	-0.076	264	-0.353	0.724

4119 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4120

4121 ***Supplementary Materials Table B.4.:** Results of post-hoc comparisons for
4122 Z-scored composite risk score for those with a Normal/Strong SOW of
4123 weekday, age, and gender.

Weekday	Difference	SE	t	df	p	$p_{\text{bonferroni}}$
Fri - Sat	0.151	0.132	1.149	264	0.252	1
Fri - Sun	0.040	0.126	0.315	264	0.753	1
Mon - Fri	0.003	0.125	0.026	264	0.979	1

Mon	-	Sat	0.154	0.128	1.211	264	0.227	1
Mon	-	Sun	0.043	0.122	0.353	264	0.724	1
Mon	-	Wed	0.102	0.118	0.867	264	0.387	1
Mon	-	Thu	0.305	0.124	2.456	264	0.015	0.309
Mon	-	Tue	-0.121	0.121	-1.000	264	0.318	1
Sat	-	Sun	-0.111	0.129	-0.864	264	0.389	1
Wed	-	Fri	-0.099	0.123	-0.802	264	0.423	1
Wed	-	Sat	0.052	0.125	0.419	264	0.675	1
Wed	-	Sun	-0.059	0.119	-0.494	264	0.622	1
Wed	-	Thu	0.203	0.121	1.686	264	0.093	1
Thu	-	Fri	-0.302	0.130	-2.329	264	0.021	0.433
Thu	-	Sat	-0.151	0.131	-1.147	264	0.252	1
Thu	-	Sun	-0.262	0.126	-2.082	264	0.038	0.805
Tue	-	Fri	0.124	0.126	0.986	264	0.325	1
Tue	-	Sat	0.275	0.128	2.151	264	0.032	0.681
Tue	-	Sun	0.164	0.122	1.339	264	0.182	1
Tue	-	Wed	0.222	0.117	1.899	264	0.059	1
Tue	-	Thu*	0.426	0.124	3.442	264	<.001	0.014

4124 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4125

4126 ***Supplementary Table B.5.:** Results of generalized linear model for Z-scored
 4127 composite risk score for those with a Weak SOW of weekday only.

	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	-7.397e-4	0.024	-0.049	0.047	0	574	-0.03	0.976
Tue - Mon	-0.116	0.093	-0.299	0.067	-0.197	574	-1.248	0.212
Wed - Mon	-0.148	0.094	-0.333	0.037	-0.251	574	-1.567	0.118
Thu - Mon	0.079	0.092	-0.102	0.26	0.133	574	0.856	0.392
Fri - Mon	-0.006	0.091	-0.186	0.174	-0.01	574	-0.064	0.949
Sat - Mon	0.011	0.09	-0.165	0.187	0.019	574	0.123	0.902
Sun - Mon	-0.012	0.093	-0.193	0.17	-0.02	574	-0.126	0.9

4128 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4129

4130 ***Supplementary Materials Table B.6.:** Results of post-hoc comparisons for
4131 Z-scored composite risk score for those with a Weak SOW of weekday only.

Weekday		Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	-0.017	0.088	-0.192	574	0.848	1
Fri	-	Sun	0.006	0.091	0.064	574	0.949	1
Mon	-	Fri	0.006	0.091	0.064	574	0.949	1
Mon	-	Sat	-0.011	0.09	-0.123	574	0.902	1
Mon	-	Sun	0.012	0.093	0.126	574	0.9	1
Mon	-	Wed	0.148	0.094	1.567	574	0.118	1
Mon	-	Thu	-0.079	0.092	-0.856	574	0.392	1
Mon	-	Tue	0.116	0.093	1.248	574	0.212	1
Sat	-	Sun	0.023	0.089	0.254	574	0.8	1
Wed	-	Fri	-0.142	0.093	-1.532	574	0.126	1
Wed	-	Sat	-0.159	0.091	-1.745	574	0.082	1

Wed	-	Sun	-0.136	0.094	-1.453	574	0.147	1
Wed	-	Thu	-0.227	0.093	-2.43	574	0.015	0.323
Thu	-	Fri	0.085	0.09	0.936	574	0.35	1
Thu	-	Sat	0.068	0.089	0.764	574	0.445	1
Thu	-	Sun	0.09	0.091	0.988	574	0.323	1
Tue	-	Fri	-0.11	0.091	-1.207	574	0.228	1
Tue	-	Sat	-0.127	0.09	-1.417	574	0.157	1
Tue	-	Sun	-0.105	0.093	-1.13	574	0.259	1
Tue	-	Wed	0.032	0.094	0.335	574	0.738	1
Tue	-	Thu	-0.195	0.092	-2.119	574	0.035	0.725

4132 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4133

4134 *Supplementary Table B.7.: Results of generalized linear model for Z-scored
4135 composite risk score for those with a Weak SOW of weekday, age, and gender.

95% Confidence Interval								
Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.078	0.025	0.029	0.127	0.000	571	3.124	0.002
Male – Female***	0.380	0.050	0.282	0.479	0.643	571	7.582	< .001
Age***	-0.011	0.002	-0.014	-0.007	-0.233	571	-6.035	< .001
Tue - Mon	-0.086	0.087	-0.256	0.084	-0.146	571	-0.993	0.321
Wed - Mon	-0.137	0.088	-0.309	0.035	-0.232	571	-1.564	0.118
Thu - Mon	0.125	0.086	-0.044	0.294	0.211	571	1.449	0.148
Fri - Mon	-0.037	0.085	-0.204	0.130	-0.063	571	-0.439	0.661
Sat - Mon	0.013	0.083	-0.151	0.177	0.022	571	0.154	0.878

Sun - Mon -0.026 0.086 -0.195 0.143 -0.044 571 -0.301 0.764

4136 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4137

4138 ***Supplementary Materials Table B.8.:** Results of post-hoc comparisons for
4139 Z-scored composite risk score for those with a Weak SOW of weekday, age,
4140 and gender.

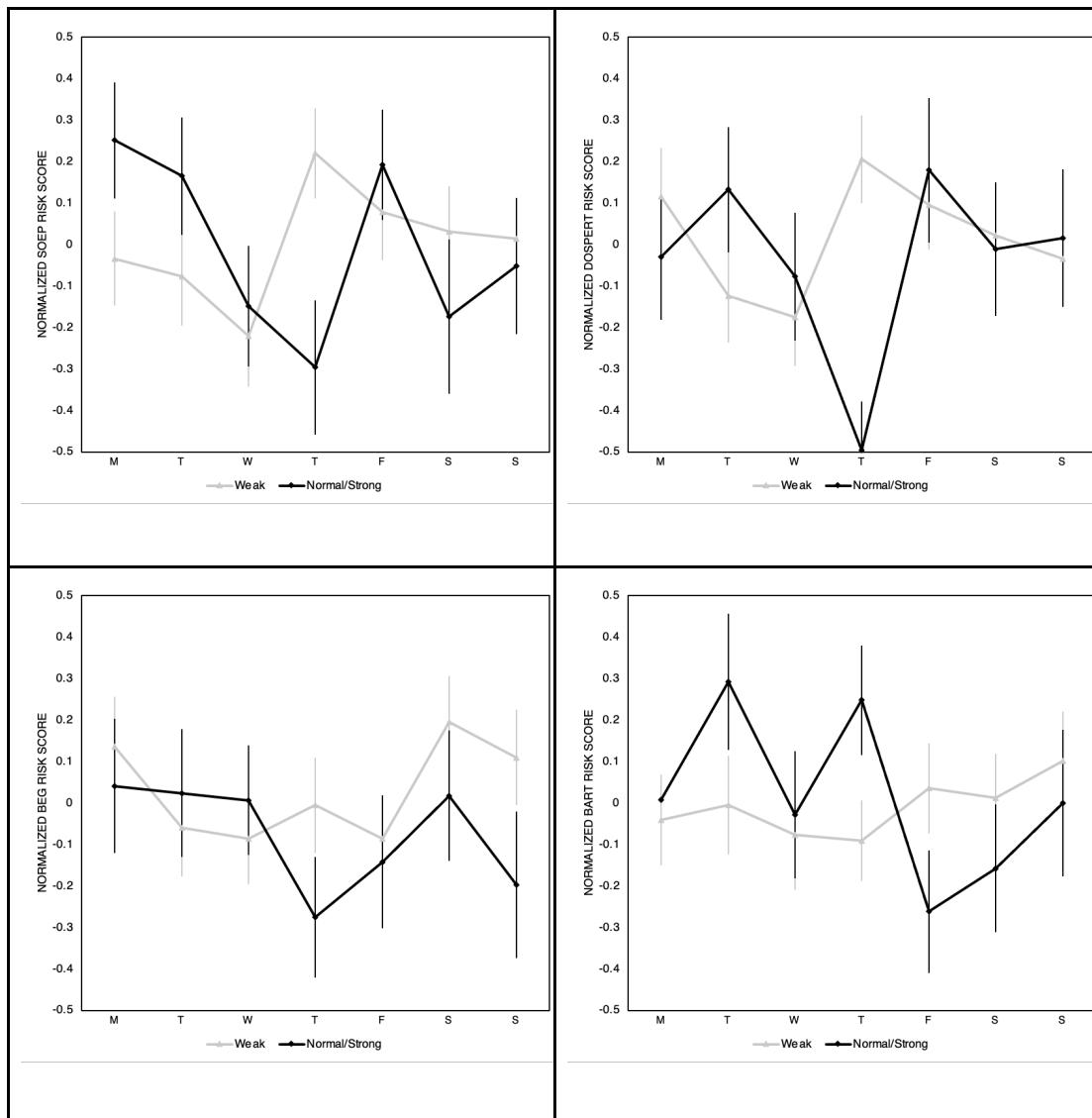
Weekday	-	Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	-0.050	0.082	-0.612	571	0.541	1
Fri	-	Sun	-0.011	0.084	-0.136	571	0.892	1
Mon	-	Fri	0.037	0.085	0.439	571	0.661	1
Mon	-	Sat	-0.013	0.083	-0.154	571	0.878	1
Mon	-	Sun	0.026	0.086	0.301	571	0.764	1
Mon	-	Wed	0.137	0.088	1.564	571	0.118	1
Mon	-	Thu	-0.125	0.086	-1.449	571	0.148	1
Mon	-	Tue	0.086	0.087	0.993	571	0.321	1
Sat	-	Sun	0.039	0.083	0.467	571	0.641	1
Wed	-	Fri	-0.100	0.086	-1.157	571	0.248	1
Wed	-	Sat	-0.150	0.085	-1.772	571	0.077	1
Wed	-	Sun	-0.111	0.087	-1.277	571	0.202	1
Wed	-	Thu	-0.262	0.087	-3.011	571	0.003	0.057
Thu	-	Fri	0.162	0.085	1.916	571	0.056	1
Thu	-	Sat	0.112	0.083	1.350	571	0.178	1

Thu	- Sun	0.151	0.085	1.763	571	0.078	1
Tue	- Fri	-0.049	0.085	-0.571	571	0.569	1
Tue	- Sat	-0.099	0.083	-1.184	571	0.237	1
Tue	- Sun	-0.060	0.086	-0.698	571	0.486	1
Tue	- Wed	0.051	0.088	0.584	571	0.559	1
Tue	- Thu	-0.211	0.086	-2.455	571	0.014	0.302

4141 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4142

4143 **Supplementary Material Table C:** Individual risk measurement descriptives
 4144 by weekday and Sense of Week (SOW) in Study 1.


			N	Mean	σ_M
SOEP	Strong, Normal	<i>Monday</i>	41	0.251	0.14
		<i>Tuesday</i>	42	0.165	0.141
		<i>Wednesday</i>	47	-0.149	0.145
		<i>Thursday</i>	37	-0.296	0.162
		<i>Friday</i>	38	0.192	0.133
		<i>Saturday</i>	34	-0.174	0.186
		<i>Sunday</i>	39	-0.0519	0.164
	Weak	<i>Monday</i>	81	-0.0338	0.112

		<i>Tuesday</i>	80	-0.0767	0.118
		<i>Wednesday</i>	76	-0.221	0.12
		<i>Thursday</i>	84	0.22	0.107
		<i>Friday</i>	86	0.0773	0.113
		<i>Saturday</i>	94	0.0313	0.107
		<i>Sunday</i>	83	0.0132	0.0958
DOSPERT	Strong, Normal	<i>Monday</i>	41	-0.0301	0.152
		<i>Tuesday</i>	43	0.132	0.151
		<i>Wednesday</i>	47	-0.0772	0.154
		<i>Thursday</i>	37	-0.495	0.117
		<i>Friday</i>	38	0.179	0.174
		<i>Saturday</i>	34	-0.0112	0.161
		<i>Sunday</i>	39	0.015	0.166
Weak		<i>Monday</i>	81	0.115	0.116
		<i>Tuesday</i>	80	-0.123	0.112
		<i>Wednesday</i>	76	-0.175	0.116

		<i>Thursday</i>	84	0.206	0.104
		<i>Friday</i>	86	0.0952	0.106
		<i>Saturday</i>	94	0.0224	0.105
		<i>Sunday</i>	83	-0.0351	0.112
BEG	Strong, Normal	<i>Monday</i>	41	0.0407	0.162
		<i>Tuesday</i>	43	0.0233	0.154
		<i>Wednesday</i>	46	0.00678	0.132
		<i>Thursday</i>	37	-0.275	0.145
		<i>Friday</i>	36	-0.142	0.16
		<i>Saturday</i>	33	0.0175	0.157
		<i>Sunday</i>	39	-0.197	0.177
Weak		<i>Monday</i>	80	0.136	0.119
		<i>Tuesday</i>	80	-0.0597	0.115
		<i>Wednesday</i>	76	-0.0865	0.108
		<i>Thursday</i>	84	-0.00556	0.113
		<i>Friday</i>	86	0.195	0.1

		<i>Saturday</i>	93	0.195	0.109
		<i>Sunday</i>	82	0.11	0.114
BART	Strong,	<i>Monday</i>	41	0.00711	0.131
	Normal	<i>Tuesday</i>	43	0.292	0.164
		<i>Wednesday</i>	47	-0.0278	0.153
		<i>Thursday</i>	37	0.248	0.132
		<i>Friday</i>	38	-0.262	0.148
		<i>Saturday</i>	34	-0.158	0.154
		<i>Sunday</i>	39	0.000184	0.177
Weak	Monday	81	-0.041	0.108	
	<i>Tuesday</i>	80	-0.00473	0.117	
	<i>Wednesday</i>	76	-0.0762	0.132	
	<i>Thursday</i>	84	-0.0909	0.0951	
	<i>Friday</i>	86	0.0356	0.107	
	<i>Saturday</i>	94	0.0125	0.104	
	<i>Sunday</i>	83	0.101	0.117	

4145 **Supplementary Material Figure D:** The mean scores for each of the four main
 4146 risk measurements across participants, separated out between a weak (rating
 4147 of 1 or 2 on a scale of 1 to 5) versus normal or weak (rating of 3, 4, or 5 on the
 4148 same scale) sense of the week, in Study 1, all normalized using z-scoring. A)
 4149 SOEP General, B) DOSPERT General, C) BEG, D) Normalized BART scores,
 4150 scored as per Lejuez et al. (2002) methodology. Error bars represent +/- SE.

4151

4152 ***Supplementary Table D.1.: Results of generalized linear model for Z-scored**
 4153 **SOEP for those with a Normal/Strong SOW of weekday only.**

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	-0.004	0.06	-0.122	0.113	0	271	-0.069	0.945
Tue - Mon	-0.089	0.217	-0.517	0.339	-0.089	271	-0.409	0.683
Wed - Mon	-0.412	0.212	-0.828	0.005	-0.412	271	-1.944	0.053
Thu - Mon*	-0.563	0.225	-1.005	-0.121	-0.563	271	-2.505	0.013
Fri - Mon	-0.061	0.223	-0.5	0.378	-0.061	271	-0.273	0.785
Sat - Mon	-0.437	0.23	-0.889	0.015	-0.437	271	-1.902	0.058
Sun - Mon	-0.312	0.222	-0.748	0.125	-0.312	271	-1.407	0.161

4154

4155 ***Supplementary Materials Table D.2.:** Results of post-hoc comparisons for
 4156 Z-scored SOEP risk score for those with a Normal/Strong SOW of weekday
 4157 only.

Weekday		Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	0.376	0.234	1.608	271	0.109	1
Fri	-	Sun	0.251	0.226	1.11	271	0.268	1
Mon	-	Fri	0.061	0.223	0.273	271	0.785	1
Mon	-	Sat	0.437	0.23	1.902	271	0.058	1
Mon	-	Sun	0.312	0.222	1.407	271	0.161	1
Mon	-	Wed	0.412	0.212	1.944	271	0.053	1
Mon	-	Thu	0.563	0.225	2.505	271	0.013	0.269
Mon	-	Tue	0.089	0.217	0.409	271	0.683	1
Sat	-	Sun	-0.125	0.232	-0.539	271	0.59	1
Wed	-	Fri	-0.351	0.216	-1.622	271	0.106	1
Wed	-	Sat	0.025	0.223	0.114	271	0.91	1

Wed	-	Sun	-0.1	0.215	-0.466	271	0.642	1
Wed	-	Thu	0.151	0.218	0.694	271	0.488	1
Thu	-	Fri	-0.502	0.229	-2.193	271	0.029	0.612
Thu	-	Sat	-0.126	0.235	-0.535	271	0.593	1
Thu	-	Sun	-0.251	0.227	-1.104	271	0.27	1
Tue	-	Fri	-0.028	0.222	-0.126	271	0.9	1
Tue	-	Sat	0.348	0.228	1.523	271	0.129	1
Tue	-	Sun	0.223	0.22	1.011	271	0.313	1
Tue	-	Wed	0.323	0.21	1.534	271	0.126	1
Tue	-	Thu	0.474	0.223	2.122	271	0.035	0.73

4158 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4159

4160 ***Supplementary Table D.3.: Results of generalized linear model for Z-scored**
 4161 **SOEP for those with a Normal/Strong SOW of weekday, age, and gender.**

95% Confidence Interval								
Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.04	0.06	-0.079	0.158	0	269	0.663	0.508
Male - Female	0.387	0.122	0.146	0.627	0.387	269	3.168	0.002
Tue - Mon	-0.041	0.214	-0.462	0.379	-0.041	269	-0.193	0.847
Wed - Mon	-0.355	0.208	-0.765	0.055	-0.355	269	-1.704	0.089
Thu - Mon*	-0.481	0.221	-0.917	-0.045	-0.481	269	-2.173	0.031
Fri - Mon	-0.103	0.219	-0.534	0.329	-0.103	269	-0.469	0.64
Sat - Mon*	-0.459	0.225	-0.903	-0.015	-0.459	269	-2.037	0.043
Sun - Mon	-0.322	0.217	-0.749	0.106	-0.322	269	-1.481	0.14

Age	-0.01	0.005	-0.021	1.56E-04	-0.114	269	-1.939	0.054
-----	-------	-------	--------	----------	--------	-----	--------	-------

4162 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4163

4164 ***Supplementary Materials Table D.4.:** Results of post-hoc comparisons for
 4165 Z-scored SOEP risk score for those with a Normal/Strong SOW of weekday,
 4166 age, and gender.

Weekday		Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	0.356	0.229	1.554	269	0.121	1
Fri	-	Sun	0.219	0.222	0.989	269	0.324	1
Mon	-	Fri	0.103	0.219	0.469	269	0.64	1
Mon	-	Sat	0.459	0.225	2.037	269	0.043	0.896
Mon	-	Sun	0.322	0.217	1.481	269	0.14	1
Mon	-	Wed	0.355	0.208	1.704	269	0.089	1
Mon	-	Thu	0.481	0.221	2.173	269	0.031	0.644
Mon	-	Tue	0.041	0.214	0.193	269	0.847	1
Sat	-	Sun	-0.137	0.228	-0.602	269	0.547	1
Wed	-	Fri	-0.252	0.214	-1.181	269	0.239	1
Wed	-	Sat	0.104	0.22	0.473	269	0.637	1
Wed	-	Sun	-0.033	0.211	-0.157	269	0.875	1
Wed	-	Thu	0.126	0.214	0.59	269	0.556	1
Thu	-	Fri	-0.378	0.227	-1.668	269	0.097	1
Thu	-	Sat	-0.022	0.233	-0.095	269	0.924	1
Thu	-	Sun	-0.159	0.224	-0.71	269	0.478	1

Tue	-	Fri	0.061	0.219	0.281	269	0.779	1
Tue	-	Sat	0.418	0.225	1.858	269	0.064	1
Tue	-	Sun	0.281	0.217	1.295	269	0.196	1
Tue	-	Wed	0.314	0.207	1.52	269	0.13	1
Tue	-	Thu	0.44	0.219	2.007	269	0.046	0.96

4167 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4168

4169 ***Supplementary Table D.5.:** Results of generalized linear model for Z-scored
 4170 SOEP for those with a Weak SOW of weekday only.

95% Confidence Interval									
Effect	Estimate	SE	Lower	Upper	β	df	t	p	
(Intercept)	-0.004	0.041	-0.086	0.077	0	577	-0.108	0.914	
Tue - Mon	-0.042	0.157	-0.351	0.266	-0.042	577	-0.27	0.787	
Wed - Mon	-0.185	0.159	-0.498	0.128	-0.185	577	-1.161	0.246	
Thu - Mon	0.251	0.155	-0.054	0.556	0.251	577	1.615	0.107	
Fri - Mon	0.11	0.154	-0.194	0.413	0.11	577	0.711	0.477	
Sat - Mon	0.064	0.151	-0.233	0.361	0.064	577	0.426	0.671	
Sun - Mon	0.047	0.156	-0.259	0.353	0.047	577	0.299	0.765	

4171 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4172

4173 ***Supplementary Materials Table D.6.:** Results of post-hoc comparisons for
 4174 Z-scored SOEP risk score for those with a Weak SOW of weekday only.

Weekday	Weekday	Difference	SE	t	df	P	p _{bonferroni}	
Fri	-	Sat	0.045	0.149	0.306	577	0.76	1

Fri	-	Sun	0.063	0.154	0.412	577	0.68	1
Mon	-	Fri	-0.11	0.154	-0.711	577	0.477	1
Mon	-	Sat	-0.064	0.151	-0.426	577	0.671	1
Mon	-	Sun	-0.047	0.156	-0.299	577	0.765	1
Mon	-	Wed	0.185	0.159	1.161	577	0.246	1
Mon	-	Thu	-0.251	0.155	-1.615	577	0.107	1
Mon	-	Tue	0.042	0.157	0.27	577	0.787	1
Sat	-	Sun	0.018	0.15	0.119	577	0.906	1
Wed	-	Fri	-0.295	0.157	-1.877	577	0.061	1
Wed	-	Sat	-0.249	0.154	-1.62	577	0.106	1
Wed	-	Sun	-0.231	0.158	-1.461	577	0.144	1
Wed	-	Thu	-0.436	0.158	-2.76	577	0.006	0.125
Thu	-	Fri	0.141	0.153	0.922	577	0.357	1
Thu	-	Sat	0.187	0.15	1.246	577	0.213	1
Thu	-	Sun	0.204	0.154	1.324	577	0.186	1
Tue	-	Fri	-0.152	0.155	-0.983	577	0.326	1
Tue	-	Sat	-0.107	0.152	-0.704	577	0.482	1
Tue	-	Sun	-0.089	0.156	-0.569	577	0.569	1
Tue	-	Wed	0.142	0.16	0.891	577	0.373	1
Tue	-	Thu	-0.293	0.156	-1.883	577	0.06	1

4175 $[\ast p < 0.05; \ast\ast p < 0.01, \ast\ast\ast p < 0.001]$

4176 ***Supplementary Table D.7.: Results of generalized linear model for Z-scored
4177 SOEP for those with a Weak SOW of weekday, age, and gender.**

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.102	0.043	0.017	0.187	0	574	2.355	0.019
Male – Female***	0.518	0.087	0.347	0.688	0.518	574	5.966	< .001
Age***	-0.016	0.003	-0.022	-0.01	-0.205	574	-5.199	< .001
Tue - Mon	-0.002	0.15	-0.297	0.292	-0.002	574	-0.015	0.988
Wed - Mon	-0.173	0.152	-0.471	0.125	-0.173	574	-1.14	0.255
Thu – Mon*	0.304	0.149	0.011	0.597	0.304	574	2.04	0.042
Fri - Mon	0.062	0.147	-0.227	0.352	0.062	574	0.422	0.673
Sat - Mon	0.065	0.144	-0.218	0.348	0.065	574	0.449	0.653
Sun - Mon	0.024	0.149	-0.268	0.316	0.024	574	0.16	0.873

4178 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4179

4180 ***Supplementary Materials Table D.8.:** Results of post-hoc comparisons for
 4181 Z-scored SOEP risk score for those with a Weak SOW of weekday, age, and
 4182 gender.

Weekday	-	Weekday	Difference	SE	t	df	P	pbonferroni
Fri	-	Sat	-0.002	0.142	-0.017	574	0.986	1
Fri	-	Sun	0.038	0.146	0.263	574	0.792	1
Mon	-	Fri	-0.062	0.147	-0.422	574	0.673	1
Mon	-	Sat	-0.065	0.144	-0.449	574	0.653	1
Mon	-	Sun	-0.024	0.149	-0.16	574	0.873	1
Mon	-	Wed	0.173	0.152	1.14	574	0.255	1
Mon	-	Thu	-0.304	0.149	-2.04	574	0.042	0.877
Mon	-	Tue	0.002	0.15	0.015	574	0.988	1

Sat	-	Sun	0.041	0.143	0.286	574	0.775	1
Wed	-	Fri	-0.235	0.15	-1.572	574	0.117	1
Wed	-	Sat	-0.238	0.147	-1.622	574	0.105	1
Wed	-	Sun	-0.197	0.151	-1.305	574	0.192	1
Wed	-	Thu*	-0.477	0.151	-3.16	574	0.002	0.035
Thu	-	Fri	0.242	0.147	1.647	574	0.1	1
Thu	-	Sat	0.239	0.144	1.668	574	0.096	1
Thu	-	Sun	0.28	0.148	1.896	574	0.058	1
Tue	-	Fri	-0.064	0.148	-0.436	574	0.663	1
Tue	-	Sat	-0.067	0.145	-0.463	574	0.644	1
Tue	-	Sun	-0.026	0.149	-0.174	574	0.862	1
Tue	-	Wed	0.171	0.152	1.123	574	0.262	1
Tue	-	Thu	-0.306	0.149	-2.055	574	0.04	0.846

4183 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4184

4185 *Supplementary Table D.9.: Results of generalized linear model for Z-scored
4186 DOSPERT for those with a Normal/Strong SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	T	p
(Intercept)	-0.004	0.06	-0.121	0.114	0	272	-0.059	0.953
Tue - Mon	0.164	0.216	-0.261	0.59	0.164	272	0.76	0.448
Wed - Mon	-0.048	0.212	-0.464	0.369	-0.048	272	-0.225	0.822
Thu - Mon*	-0.47	0.225	-0.912	-0.028	-0.47	272	-2.095	0.037
Fri - Mon	0.211	0.223	-0.228	0.65	0.211	272	0.947	0.344

Sat - Mon	0.019	0.23	-0.433	0.471	0.019	272	0.083	0.934
Sun - Mon	0.046	0.222	-0.391	0.482	0.046	272	0.206	0.837

4187 $^{*}p < 0.05$; $^{**}p < 0.01$, $^{***}p < 0.001$

4188

4189 ***Supplementary Materials Table D.10.:** Results of post-hoc comparisons for
4190 Z-scored DOSPERT risk score for those with a Normal/Strong SOW of
4191 weekday only.

Weekday	-	Weekday	Difference	SE	t	df	P	p _{bonferroni}
Fri	-	Sat	0.192	0.234	0.822	272	0.412	1
Fri	-	Sun	0.166	0.226	0.734	272	0.464	1
Mon	-	Fri	-0.211	0.223	-0.947	272	0.344	1
Mon	-	Sat	-0.019	0.23	-0.083	272	0.934	1
Mon	-	Sun	-0.046	0.222	-0.206	272	0.837	1
Mon	-	Wed	0.048	0.212	0.225	272	0.822	1
Mon	-	Thu	0.47	0.225	2.095	272	0.037	0.78
Mon	-	Tue	-0.164	0.216	-0.76	272	0.448	1
Sat	-	Sun	-0.026	0.232	-0.114	272	0.909	1
Wed	-	Fri	-0.259	0.216	-1.199	272	0.232	1
Wed	-	Sat	-0.067	0.223	-0.299	272	0.765	1
Wed	-	Sun	-0.093	0.215	-0.435	272	0.664	1
Wed	-	Thu	0.423	0.218	1.942	272	0.053	1
Thu	-	Fri	-0.682	0.229	-2.98	272	0.003	0.066
Thu	-	Sat	-0.489	0.235	-2.08	272	0.038	0.807
Thu	-	Sun	-0.516	0.227	-2.27	272	0.024	0.504

Tue	-	Fri	-0.047	0.22	-0.213	272	0.832	1
Tue	-	Sat	0.145	0.227	0.639	272	0.523	1
Tue	-	Sun	0.119	0.219	0.543	272	0.588	1
Tue	-	Wed	0.212	0.209	1.015	272	0.311	1
Tue	-	Thu	0.635	0.222	2.858	272	0.005	0.096

4192 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4193

4194 ***Supplementary Materials Table D.11.:** Results of generalized linear model
 4195 for Z-scored DOSPERT risk score for those with a Normal/Strong SOW of
 4196 weekday, age, and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	T	p
(Intercept)	0.035	0.060	-0.083	0.152	0.000	270	0.583	0.560
Age***	-0.018	0.005	-0.028	-0.007	-0.196	270	-3.362	< .001
Male – Female**	0.340	0.121	0.102	0.578	0.340	270	2.810	0.005
Tue - Mon	0.214	0.211	-0.201	0.629	0.214	270	1.016	0.311
Wed - Mon	0.025	0.206	-0.381	0.432	0.025	270	0.123	0.902
Thu - Mon	-0.386	0.219	-0.818	0.046	-0.386	270	-1.757	0.080
Fri - Mon	0.167	0.217	-0.260	0.595	0.167	270	0.771	0.441
Sat - Mon	-0.010	0.223	-0.450	0.430	-0.010	270	-0.046	0.963
Sun - Mon	0.035	0.215	-0.389	0.459	0.035	270	0.163	0.871

4197 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4198

4199 ***Supplementary Materials Table D.12.:** Results of post-hoc comparisons for
 4200 Z-scored DOSPERT risk score for those with a Normal/Strong SOW of
 4201 weekday, age, and gender.

Weekday	-	Weekday	Difference	SE	t	df	P	p _{bonferroni}
Fri	-	Sat	0.178	0.227	0.782	270	0.435	1
Fri	-	Sun	0.132	0.220	0.602	270	0.547	1
Mon	-	Fri	-0.167	0.217	-0.771	270	0.441	1
Mon	-	Sat	0.010	0.223	0.046	270	0.963	1
Mon	-	Sun	-0.035	0.215	-0.163	270	0.871	1
Mon	-	Wed	-0.025	0.207	-0.123	270	0.902	1
Mon	-	Thu	0.386	0.220	1.757	270	0.08	1
Mon	-	Tue	-0.214	0.211	-1.016	270	0.311	1
Sat	-	Sun	-0.045	0.226	-0.201	270	0.841	1
Wed	-	Fri	-0.142	0.212	-0.670	270	0.503	1
Wed	-	Sat	0.036	0.218	0.164	270	0.87	1
Wed	-	Sun	-0.010	0.210	-0.046	270	0.963	1
Wed	-	Thu	0.411	0.212	1.939	270	0.053	1
Thu	-	Fri	-0.553	0.225	-2.459	270	0.015	0.306
Thu	-	Sat	-0.375	0.231	-1.629	270	0.105	1
Thu	-	Sun	-0.421	0.222	-1.892	270	0.06	1
Tue	-	Fri	0.047	0.216	0.216	270	0.829	1
Tue	-	Sat	0.224	0.222	1.011	270	0.313	1
Tue	-	Sun	0.179	0.214	0.837	270	0.403	1
Tue	-	Wed	0.189	0.204	0.927	270	0.355	1
Tue	-	Thu	0.600	0.216	2.776	270	0.006	0.124

4202 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4203

4204 ***Supplementary Table D.13.:** Results of generalized linear model for Z-scored
4205 DOSPERT for those with a Weak SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	T	p
(Intercept)	-0.003	0.041	-0.085	0.078	0	577	-0.085	0.933
Tue - Mon	-0.236	0.157	-0.545	0.073	-0.236	577	-1.501	0.134
Wed - Mon	-0.287	0.159	-0.6	0.026	-0.287	577	-1.804	0.072
Thu - Mon	0.091	0.155	-0.214	0.396	0.091	577	0.587	0.557
Fri - Mon	-0.019	0.154	-0.323	0.284	-0.019	577	-0.125	0.901
Sat - Mon	-0.092	0.151	-0.389	0.206	-0.092	577	-0.605	0.545
Sun - Mon	-0.149	0.156	-0.455	0.157	-0.149	577	-0.954	0.34

4206 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4207

4208 ***Supplementary Materials Table D.14.:** Results of post-hoc comparisons for
4209 Z-scored SOEP risk score for those with a Weak SOW of weekday only.

	Weekday	Difference	SE	t	df	p	p _{bonferroni}	
Fri	-	Sat	0.072	0.149	0.486	577	0.627	1
Fri	-	Sun	0.129	0.153	0.843	577	0.399	1
Mon	-	Fri	0.019	0.154	0.125	577	0.901	1
Mon	-	Sat	0.092	0.151	0.605	577	0.545	1
Mon	-	Sun	0.149	0.156	0.954	577	0.34	1
Mon	-	Wed	0.287	0.159	1.804	577	0.072	1
Mon	-	Thu	-0.091	0.155	-0.587	577	0.557	1

Mon	-	Tue	0.236	0.157	1.501	577	0.134	1
Sat	-	Sun	0.057	0.15	0.38	577	0.704	1
Wed	-	Fri	-0.268	0.157	-1.707	577	0.088	1
Wed	-	Sat	-0.196	0.154	-1.273	577	0.204	1
Wed	-	Sun	-0.139	0.158	-0.876	577	0.382	1
Wed	-	Thu	-0.379	0.158	-2.397	577	0.017	0.354
Thu	-	Fri	0.11	0.153	0.722	577	0.471	1
Thu	-	Sat	0.183	0.15	1.22	577	0.223	1
Thu	-	Sun	0.24	0.154	1.554	577	0.121	1
Tue	-	Fri	-0.217	0.155	-1.399	577	0.162	1
Tue	-	Sat	-0.144	0.152	-0.952	577	0.342	1
Tue	-	Sun	-0.087	0.156	-0.559	577	0.577	1
Tue	-	Wed	0.051	0.16	0.321	577	0.748	1
Tue	-	Thu	-0.327	0.156	-2.1	577	0.036	0.76

4210 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4211 *Supplementary Table D.15: Results of generalized linear model for Z-scored
 4212 DOSPERT for those with a Weak SOW of weekday, age, and gender.

95% Confidence Interval									
Effect	Estimate	SE	Lower	Upper	β	df	t	p	
(Intercept)	0.110	0.043	0.026	0.194	0.000	574	2.584	0.01	
Age***	-0.019	0.003	-0.025	-0.013	-0.243	574	-6.249	< .001	
Male – Female***	0.548	0.086	0.380	0.717	0.548	574	6.404	< .001	
Tue - Mon	-0.194	0.148	-0.484	0.097	-0.194	574	-1.310	0.191	
Wed - Mon	-0.278	0.150	-0.572	0.016	-0.278	574	-1.855	0.064	

Thu - Mon	0.152	0.147	-0.136	0.441	0.152	574	1.037	0.300
Fri - Mon	-0.075	0.145	-0.361	0.210	-0.075	574	-0.519	0.604
Sat - Mon	-0.093	0.142	-0.372	0.186	-0.093	574	-0.654	0.514
Sun - Mon	-0.178	0.147	-0.466	0.110	-0.178	574	-1.213	0.226

4213 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4214

4215 ***Supplementary Materials Table D.16.: Results of post-hoc comparisons for**
 4216 **Z-scored DOSPERT risk score for those with a Weak SOW of weekday, age,**
 4217 **and gender.**

Weekday	-	Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	0.017	0.140	0.124	574	0.901	1
Fri	-	Sun	0.102	0.144	0.710	574	0.478	1
Mon	-	Fri	0.075	0.145	0.519	574	0.604	1
Mon	-	Sat	0.093	0.142	0.654	574	0.514	1
Mon	-	Sun	0.178	0.147	1.213	574	0.226	1
Mon	-	Wed	0.278	0.150	1.855	574	0.064	1
Mon	-	Thu	-0.152	0.147	-1.037	574	0.3	1
Mon	-	Tue	0.194	0.148	1.310	574	0.191	1
Sat	-	Sun	0.085	0.141	0.602	574	0.548	1
Wed	-	Fri	-0.202	0.148	-1.371	574	0.171	1
Wed	-	Sat	-0.185	0.145	-1.280	574	0.201	1
Wed	-	Sun	-0.100	0.149	-0.673	574	0.501	1
Wed	-	Thu	-0.430	0.149	-2.889	574	0.004	0.084
Thu	-	Fri	0.228	0.145	1.573	574	0.116	1

Thu	-	Sat	0.245	0.142	1.733	574	0.084	1
Thu	-	Sun	0.330	0.146	2.264	574	0.024	0.503
Tue	-	Fri	-0.118	0.146	-0.810	574	0.418	1
Tue	-	Sat	-0.101	0.143	-0.707	574	0.48	1
Tue	-	Sun	-0.016	0.147	-0.108	574	0.914	1
Tue	-	Wed	0.084	0.150	0.561	574	0.575	1
Tue	-	Thu	-0.346	0.147	-2.355	574	0.019	0.396

4218 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4219

4220 ***Supplementary Table D.17:** Results of generalized linear model for Z-scored
 4221 BEG for those with a Normal/Strong SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	-0.005	0.061	-0.124	0.115	0	268	-0.077	0.939
Tue - Mon	-0.018	0.219	-0.449	0.413	-0.018	268	-0.082	0.935
Wed - Mon	-0.035	0.216	-0.459	0.389	-0.035	268	-0.162	0.871
Thu - Mon	-0.325	0.228	-0.773	0.123	-0.325	268	-1.428	0.154
Fri - Mon	-0.189	0.229	-0.64	0.263	-0.189	268	-0.823	0.411
Sat - Mon	-0.024	0.235	-0.486	0.438	-0.024	268	-0.102	0.919
Sun - Mon	-0.245	0.225	-0.687	0.197	-0.245	268	-1.093	0.276

4222 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4223

4224 ***Supplementary Materials Table D.18.:** Results of post-hoc comparisons for
 4225 Z-scored BEG risk score for those with a Normal/Strong SOW of weekday only.

Weekday	-	Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	-0.165	0.242	-0.681	268	0.496	1
Fri	-	Sun	0.057	0.232	0.244	268	0.807	1
Mon	-	Fri	0.189	0.229	0.823	268	0.411	1
Mon	-	Sat	0.024	0.235	0.102	268	0.919	1
Mon	-	Sun	0.245	0.225	1.093	268	0.276	1
Mon	-	Wed	0.035	0.216	0.162	268	0.871	1
Mon	-	Thu	0.325	0.228	1.428	268	0.154	1
Mon	-	Tue	0.018	0.219	0.082	268	0.935	1
Sat	-	Sun	0.221	0.237	0.933	268	0.352	1
Wed	-	Fri	0.154	0.223	0.688	268	0.492	1
Wed	-	Sat	-0.011	0.229	-0.048	268	0.961	1
Wed	-	Sun	0.21	0.218	0.963	268	0.337	1
Wed	-	Thu	0.29	0.222	1.309	268	0.192	1
Thu	-	Fri	-0.136	0.235	-0.58	268	0.562	1
Thu	-	Sat	-0.301	0.24	-1.253	268	0.211	1
Thu	-	Sun	-0.08	0.23	-0.346	268	0.73	1
Tue	-	Fri	0.171	0.227	0.753	268	0.452	1
Tue	-	Sat	0.006	0.232	0.025	268	0.98	1
Tue	-	Sun	0.227	0.222	1.024	268	0.307	1
Tue	-	Wed	0.017	0.213	0.08	268	0.936	1
Tue	-	Thu	0.307	0.225	1.364	268	0.174	1

4226 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4227

4228 ***Supplementary Table D.19:** Results of generalized linear model for Z-scored
4229 BEG for those with a Normal/Strong SOW of weekday, age, and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.018	0.063	-0.105	0.142	0.000	266	0.293	0.770
Age	0.002	0.006	-0.009	0.013	0.021	266	0.341	0.734
Male - Female	0.193	0.127	-0.058	0.444	0.193	266	1.515	0.131
Tue - Mon	0.002	0.219	-0.429	0.434	0.002	266	0.011	0.991
Wed - Mon	-0.023	0.216	-0.449	0.403	-0.023	266	-0.107	0.915
Thu - Mon	-0.295	0.229	-0.745	0.155	-0.295	266	-1.289	0.198
Fri - Mon	-0.207	0.230	-0.659	0.245	-0.207	266	-0.901	0.368
Sat - Mon	-0.023	0.235	-0.485	0.439	-0.023	266	-0.098	0.922
Sun - Mon	-0.249	0.224	-0.691	0.193	-0.249	266	-1.110	0.268

4230 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4231

4232 ***Supplementary Materials Table D.20.:** Results of post-hoc comparisons for
4233 Z-scored BEG risk score for those with a Normal/Strong SOW of weekday, age,
4234 and gender.

Weekday	-	Weekday	Difference	SE	t	df	p	$p_{bonferroni}$
Fri	-	Sat	-0.184	0.242	-0.760	266	0.448	1
Fri	-	Sun	0.042	0.232	0.181	266	0.857	1
Mon	-	Fri	0.207	0.230	0.901	266	0.368	1
Mon	-	Sat	0.023	0.235	0.098	266	0.922	1
Mon	-	Sun	0.249	0.224	1.110	266	0.268	1

Mon	-	Wed	0.023	0.216	0.107	266	0.915	1
Mon	-	Thu	0.295	0.229	1.289	266	0.198	1
Mon	-	Tue	-0.002	0.219	-0.011	266	0.991	1
Sat	-	Sun	0.226	0.237	0.952	266	0.342	1
Wed	-	Fri	0.184	0.226	0.813	266	0.417	1
Wed	-	Sat	0.000	0.230	0.000	266	1	1
Wed	-	Sun	0.226	0.219	1.030	266	0.304	1
Wed	-	Thu	0.272	0.222	1.225	266	0.222	1
Thu	-	Fri	-0.088	0.239	-0.368	266	0.713	1
Thu	-	Sat	-0.272	0.242	-1.123	266	0.262	1
Thu	-	Sun	-0.046	0.232	-0.197	266	0.844	1
Tue	-	Fri	0.210	0.229	0.915	266	0.361	1
Tue	-	Sat	0.026	0.233	0.110	266	0.913	1
Tue	-	Sun	0.252	0.223	1.131	266	0.259	1
Tue	-	Wed	0.026	0.213	0.120	266	0.905	1
Tue	-	Thu	0.297	0.225	1.321	266	0.188	1

4235 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4236

4237 *Supplementary Table D.21: Results of generalized linear model for Z-scored
 4238 BEG risk score for those with a Weak SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	-0.003	0.042	-0.085	0.078	0	574	-0.08	0.936

Tue - Mon	-0.193	0.158	-0.504	0.117	-0.193	574	-1.225	0.221
Wed - Mon	-0.22	0.16	-0.534	0.094	-0.22	574	-1.374	0.17
Thu - Mon	-0.14	0.156	-0.447	0.167	-0.14	574	-0.897	0.37
Fri - Mon	-0.22	0.155	-0.524	0.085	-0.22	574	-1.415	0.158
Sat - Mon	0.058	0.152	-0.241	0.358	0.058	574	0.382	0.702
Sun - Mon	-0.026	0.157	-0.335	0.282	-0.026	574	-0.168	0.866

4239 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4240

4241 ***Supplementary Materials Table D.22.:** Results of post-hoc comparisons for
4242 Z-scored BEG risk score for those with a Weak SOW of weekday only.

Weekday		Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	-0.278	0.15	-1.858	574	0.064	1
Fri	-	Sun	-0.193	0.154	-1.252	574	0.211	1
Mon	-	Fri	0.22	0.155	1.415	574	0.158	1
Mon	-	Sat	-0.058	0.152	-0.382	574	0.702	1
Mon	-	Sun	0.026	0.157	0.168	574	0.866	1
Mon	-	Wed	0.22	0.16	1.374	574	0.17	1
Mon	-	Thu	0.14	0.156	0.897	574	0.37	1
Mon	-	Tue	0.193	0.158	1.225	574	0.221	1
Sat	-	Sun	0.085	0.151	0.559	574	0.576	1
Wed	-	Fri	-3.789e-4	0.157	-0.002	574	0.998	1
Wed	-	Sat	-0.278	0.155	-1.8	574	0.072	1
Wed	-	Sun	-0.194	0.159	-1.216	574	0.224	1
Wed	-	Thu	-0.08	0.158	-0.505	574	0.614	1

Thu	-	Fri	0.08	0.153	0.519	574	0.604	1
Thu	-	Sat	-0.198	0.15	-1.318	574	0.188	1
Thu	-	Sun	-0.114	0.155	-0.732	574	0.464	1
Tue	-	Fri	0.026	0.155	0.168	574	0.867	1
Tue	-	Sat	-0.252	0.152	-1.652	574	0.099	1
Tue	-	Sun	-0.167	0.157	-1.064	574	0.288	1
Tue	-	Wed	0.026	0.16	0.165	574	0.869	1
Tue	-	Thu	-0.053	0.156	-0.342	574	0.732	1

4243 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4244

4245 ***Supplementary Table D.23:** Results of generalized linear model for Z-scored
 4246 BEG risk score for those with a Weak SOW of weekday, age, and gender.

95% Confidence Interval									
Effect	Estimate	SE	Lower	Upper	β	df	t	p	
(Intercept)	0.053	0.045	-0.036	0.142	0.000	571	1.170	0.243	
Age	0.002	0.003	-0.005	0.008	0.019	571	0.466	0.642	
Male – Female**	0.269	0.091	0.090	0.447	0.268	571	2.949	0.003	
Tue - Mon	-0.174	0.157	-0.483	0.135	-0.174	571	-1.104	0.270	
Wed - Mon	-0.202	0.159	-0.515	0.111	-0.202	571	-1.266	0.206	
Thu - Mon	-0.092	0.156	-0.399	0.215	-0.092	571	-0.588	0.557	
Fri - Mon	-0.219	0.155	-0.522	0.085	-0.219	571	-1.415	0.158	
Sat - Mon	0.063	0.152	-0.235	0.361	0.063	571	0.414	0.679	
Sun - Mon	-0.018	0.156	-0.325	0.289	-0.018	571	-0.114	0.909	

4247 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4248

4249 ***Supplementary Materials Table D.24.**: Results of post-hoc comparisons for
 4250 Z-scored BEG risk score for those with a Weak SOW of weekday, age, and
 4251 gender

Weekday	Weekday	Difference	SE	t	df	p	p_{bonferroni}
Fri	- Sat	-0.282	0.149	-1.892	571	0.059	1
Fri	- Sun	-0.201	0.153	-1.310	571	0.191	1
Mon	- Fri	0.219	0.155	1.415	571	0.158	1
Mon	- Sat	-0.063	0.152	-0.414	571	0.679	1
Mon	- Sun	0.018	0.156	0.114	571	0.909	1
Mon	- Wed	0.202	0.159	1.266	571	0.206	1
Mon	- Thu	0.092	0.156	0.588	571	0.557	1
Mon	- Tue	0.174	0.157	1.104	571	0.27	1
Sat	- Sun	0.081	0.151	0.535	571	0.593	1
Wed	- Fri	0.017	0.157	0.109	571	0.913	1
Wed	- Sat	-0.265	0.154	-1.721	571	0.086	1
Wed	- Sun	-0.184	0.158	-1.162	571	0.246	1
Wed	- Thu	-0.110	0.158	-0.696	571	0.487	1
Thu	- Fri	0.127	0.154	0.826	571	0.409	1
Thu	- Sat	-0.155	0.151	-1.027	571	0.305	1
Thu	- Sun	-0.074	0.155	-0.477	571	0.634	1
Tue	- Fri	0.045	0.155	0.292	571	0.77	1
Tue	- Sat	-0.236	0.152	-1.559	571	0.12	1
Tue	- Sun	-0.156	0.156	-0.996	571	0.32	1

Tue	-	Wed	0.028	0.159	0.177	571	0.86	1
Tue	-	Thu	-0.082	0.156	-0.524	571	0.6	1

4252 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4253

4254 ***Supplementary Table D.25:** Results of generalized linear model for Z-scored
 4255 BART for those with a Normal/Strong SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	-0.005	0.06	-0.123	0.112	0	272	-0.088	0.93
Tue - Mon	0.293	0.217	-0.134	0.719	0.293	272	1.351	0.178
Wed - Mon	-0.036	0.212	-0.454	0.382	-0.036	272	-0.169	0.866
Thu - Mon	0.247	0.225	-0.196	0.69	0.247	272	1.098	0.273
Fri - Mon	-0.276	0.224	-0.717	0.164	-0.276	272	-1.236	0.217
Sat - Mon	-0.17	0.23	-0.623	0.284	-0.17	272	-0.737	0.462
Sun - Mon	-0.007	0.222	-0.444	0.43	-0.007	272	-0.032	0.974

4256 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4257

4258 ***Supplementary Materials Table D.26.:** Results of post-hoc comparisons for
 4259 Z-scored BART risk score for those with a Normal/Strong SOW of weekday
 4260 only.

Weekday	Weekday	Difference	SE	t	df	p	$p_{bonferroni}$	
Fri	-	Sat	-0.107	0.234	-0.455	272	0.65	1
Fri	-	Sun	-0.269	0.226	-1.19	272	0.235	1

Mon	-	Fri	0.276	0.224	1.236	272	0.217	1
Mon	-	Sat	0.17	0.23	0.737	272	0.462	1
Mon	-	Sun	0.007	0.222	0.032	272	0.974	1
Mon	-	Wed	0.036	0.212	0.169	272	0.866	1
Mon	-	Thu	-0.247	0.225	-1.098	272	0.273	1
Mon	-	Tue	-0.293	0.217	-1.351	272	0.178	1
Sat	-	Sun	-0.163	0.233	-0.698	272	0.486	1
Wed	-	Fri	0.241	0.217	1.111	272	0.268	1
Wed	-	Sat	0.134	0.224	0.599	272	0.549	1
Wed	-	Sun	-0.029	0.215	-0.134	272	0.894	1
Wed	-	Thu	-0.283	0.218	-1.297	272	0.196	1
Thu	-	Fri	0.524	0.229	2.283	272	0.023	0.487
Thu	-	Sat	0.417	0.236	1.768	272	0.078	1
Thu	-	Sun	0.254	0.228	1.116	272	0.265	1
Tue	-	Fri	0.569	0.221	2.574	272	0.011	0.222
Tue	-	Sat	0.463	0.228	2.03	272	0.043	0.91
Tue	-	Sun	0.3	0.22	1.366	272	0.173	1
Tue	-	Wed	0.329	0.21	1.568	272	0.118	1
Tue	-	Thu	0.046	0.223	0.205	272	0.838	1

4261 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4262

4263 *Supplementary Table D.27: Results of generalized linear model for Z-scored
 4264 BART for those with a Normal/Strong SOW of weekday, age, and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.017	0.061	-0.104	0.138	0.000	270	0.277	0.782
Male - Female	0.191	0.125	-0.054	0.437	0.191	270	1.536	0.126
Age	-0.002	0.005	-0.012	0.009	-0.021	270	-0.352	0.725
Tue - Mon	0.315	0.217	-0.112	0.743	0.315	270	1.453	0.147
Wed - Mon	-0.016	0.213	-0.435	0.402	-0.016	270	-0.077	0.938
Thu - Mon	0.283	0.226	-0.163	0.728	0.283	270	1.250	0.212
Fri - Mon	-0.294	0.224	-0.735	0.146	-0.294	270	-1.315	0.189
Sat - Mon	-0.177	0.230	-0.630	0.276	-0.177	270	-0.769	0.443
Sun - Mon	-0.012	0.222	-0.448	0.425	-0.012	270	-0.052	0.959

4265 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4266

4267 ***Supplementary Materials Table D.28.:** Results of post-hoc comparisons for
4268 Z-scored BART risk score for those with a Normal/Strong SOW of weekday,
4269 age, and gender.

Weekday	-	Weekday	Difference	SE	t	df	p	$p_{bonferroni}$
Fri	-	Sat	-0.117	0.234	-0.500	270	0.617	1
Fri	-	Sun	-0.283	0.226	-1.249	270	0.213	1
Mon	-	Fri	0.294	0.224	1.315	270	0.189	1
Mon	-	Sat	0.177	0.230	0.769	270	0.443	1
Mon	-	Sun	0.012	0.222	0.052	270	0.959	1
Mon	-	Wed	0.016	0.213	0.077	270	0.938	1

Mon	-	Thu	-0.283	0.226	-1.250	270	0.212	1
Mon	-	Tue	-0.315	0.217	-1.453	270	0.147	1
Sat	-	Sun	-0.166	0.233	-0.711	270	0.478	1
Wed	-	Fri	0.278	0.218	1.272	270	0.204	1
Wed	-	Sat	0.161	0.225	0.714	270	0.476	1
Wed	-	Sun	-0.005	0.216	-0.023	270	0.982	1
Wed	-	Thu	-0.299	0.219	-1.370	270	0.172	1
Thu	-	Fri	0.577	0.232	2.489	270	0.013	0.282
Thu	-	Sat	0.460	0.238	1.936	270	0.054	1
Thu	-	Sun	0.294	0.229	1.284	270	0.2	1
Tue	-	Fri	0.610	0.223	2.741	270	0.007	0.137
Tue	-	Sat	0.493	0.229	2.154	270	0.032	0.674
Tue	-	Sun	0.327	0.220	1.486	270	0.139	1
Tue	-	Wed	0.332	0.210	1.583	270	0.115	1
Tue	-	Thu	0.033	0.223	0.147	270	0.884	1

4270 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4271

4272 *Supplementary Table D.29: Results of generalized linear model for Z-scored
 4273 BART for those with a Weak SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	-0.001	0.042	-0.083	0.08	0	577	-0.033	0.974
Tue - Mon	0.036	0.158	-0.275	0.346	0.036	577	0.227	0.821

Wed - Mon	-0.035	0.16	-0.349	0.28	-0.035	577	-0.216	0.829
Thu - Mon	-0.049	0.156	-0.356	0.258	-0.049	577	-0.315	0.753
Fri - Mon	0.076	0.155	-0.23	0.381	0.076	577	0.487	0.627
Sat - Mon	0.053	0.152	-0.246	0.352	0.053	577	0.348	0.728
Sun - Mon	0.14	0.157	-0.168	0.448	0.14	577	0.893	0.372

4274 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4275

4276 ***Supplementary Materials Table D.30.:** Results of post-hoc comparisons for
4277 Z-scored BART risk score for those with a Weak SOW of weekday only.

Weekday	-	Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	0.023	0.15	0.152	577	0.879	1
Fri	-	Sun	-0.064	0.154	-0.416	577	0.677	1
Mon	-	Fri	-0.076	0.155	-0.487	577	0.627	1
Mon	-	Sat	-0.053	0.152	-0.348	577	0.728	1
Mon	-	Sun	-0.14	0.157	-0.893	577	0.372	1
Mon	-	Wed	0.035	0.16	0.216	577	0.829	1
Mon	-	Thu	0.049	0.156	0.315	577	0.753	1
Mon	-	Tue	-0.036	0.158	-0.227	577	0.821	1
Sat	-	Sun	-0.087	0.151	-0.576	577	0.565	1
Wed	-	Fri	-0.11	0.158	-0.698	577	0.485	1
Wed	-	Sat	-0.088	0.155	-0.566	577	0.572	1
Wed	-	Sun	-0.175	0.159	-1.096	577	0.274	1
Wed	-	Thu	0.015	0.159	0.091	577	0.927	1

Thu	-	Fri	-0.125	0.154	-0.811	577	0.418	1
Thu	-	Sat	-0.102	0.151	-0.677	577	0.498	1
Thu	-	Sun	-0.189	0.155	-1.218	577	0.224	1
Tue	-	Fri	-0.04	0.156	-0.255	577	0.799	1
Tue	-	Sat	-0.017	0.153	-0.112	577	0.911	1
Tue	-	Sun	-0.104	0.157	-0.662	577	0.508	1
Tue	-	Wed	0.071	0.161	0.439	577	0.661	1
Tue	-	Thu	0.085	0.157	0.542	577	0.588	1

4278 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4279

4280 ***Supplementary Table D.31:** Results of generalized linear model for Z-scored
 4281 BART for those with a Weak SOW of weekday, age, and gender.

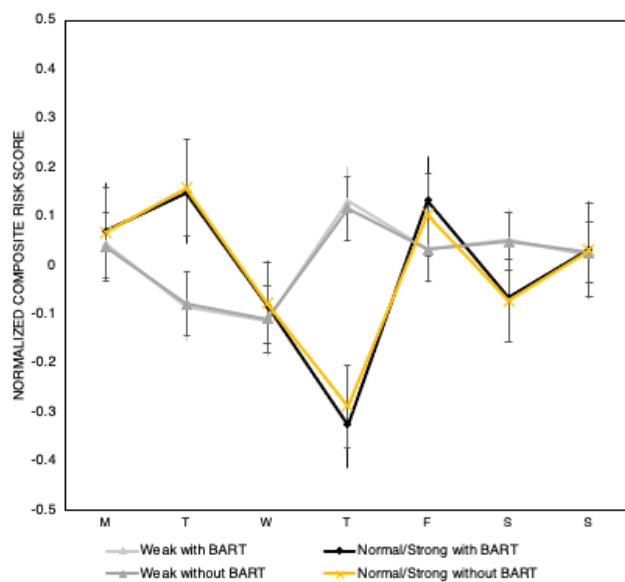
95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.034	0.046	-0.056	0.124	0.000	574	0.747	0.455
Male - Female	0.172	0.092	-0.008	0.352	0.172	574	1.878	0.061
Age	-0.003	0.003	-0.009	0.004	-0.032	574	-0.774	0.439
Tue - Mon	0.050	0.158	-0.261	0.360	0.050	574	0.314	0.754
Wed - Mon	-0.027	0.160	-0.341	0.288	-0.027	574	-0.166	0.869
Thu - Mon	-0.026	0.157	-0.335	0.283	-0.026	574	-0.166	0.868
Fri - Mon	0.068	0.155	-0.238	0.373	0.068	574	0.436	0.663
Sat - Mon	0.055	0.152	-0.243	0.354	0.055	574	0.364	0.716
Sun - Mon	0.139	0.157	-0.169	0.447	0.139	574	0.888	0.375

4282 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4283

4284 ***Supplementary Materials Table D.32.:** Results of post-hoc comparisons for
 4285 Z-scored BART risk score for those with a Weak SOW of weekday, age, and
 4286 gender


Weekday		Difference	SE	t	df	p	p _{bonferroni}
Fri	- Sat	0.013	0.150	0.084	574	0.933	1
Fri	- Sun	-0.071	0.154	-0.463	574	0.644	1
Mon	- Fri	-0.068	0.156	-0.436	574	0.663	1
Mon	- Sat	-0.055	0.152	-0.364	574	0.716	1
Mon	- Sun	-0.139	0.157	-0.888	574	0.375	1
Mon	- Wed	0.027	0.160	0.166	574	0.869	1
Mon	- Thu	0.026	0.157	0.166	574	0.868	1
Mon	- Tue	-0.050	0.158	-0.314	574	0.754	1
Sat	- Sun	-0.084	0.151	-0.555	574	0.579	1
Wed	- Fri	-0.094	0.158	-0.597	574	0.551	1
Wed	- Sat	-0.082	0.155	-0.529	574	0.597	1
Wed	- Sun	-0.166	0.159	-1.041	574	0.298	1
Wed	- Thu	-3.638e-4	0.159	-0.002	574	0.998	1
Thu	- Fri	-0.094	0.155	-0.607	574	0.544	1
Thu	- Sat	-0.081	0.151	-0.538	574	0.591	1
Thu	- Sun	-0.165	0.156	-1.060	574	0.29	1
Tue	- Fri	-0.018	0.156	-0.116	574	0.907	1
Tue	- Sat	-0.006	0.153	-0.037	574	0.971	1
Tue	- Sun	-0.090	0.157	-0.569	574	0.569	1

Tue	-	Wed	0.076	0.161	0.475	574	0.635	1
Tue	-	Thu	0.076	0.157	0.482	574	0.63	1

4287 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4288

4289 **Supplementary Material Figure E:** Comparison of risk score calculated as in
 4290 main text and calculated in the same manner but without inclusion of the BART
 4291 score. Error bars represent +/- SE.

4292

4293

4294 ***Supplementary Table E.1:** Results of generalized linear model for composite
 4295 risk score, without BART, for those with a Normal/Strong SOW of weekday
 4296 only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	df	t	p
(Intercept)	0.01	0.036	-0.061	0.081	266	0.28	0.779
Tue - Mon	0.078	0.13	-0.178	0.334	266	0.598	0.55
Wed - Mon	-0.152	0.127	-0.401	0.097	266	-1.201	0.231

Thu – Mon**	-0.398	0.134	-0.661	-0.135	266	-2.977	0.003
Fri - Mon	0.06	0.135	-0.205	0.325	266	0.446	0.656
Sat - Mon	-0.139	0.138	-0.411	0.132	266	-1.01	0.313
Sun - Mon	-0.039	0.132	-0.299	0.221	266	-0.296	0.767

4297 $[\ast p < 0.05; \ast\ast p < 0.01, \ast\ast\ast p < 0.001]$

4298

4299 ***Supplementary Materials Table E.2.: Results of post-hoc comparisons for**
 4300 composite risk score, without BART, for those with a Normal/Strong SOW of
 4301 weekday only.

Weekday		Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	0.199	0.142	1.403	266	0.162	1
Fri	-	Sun	0.099	0.136	0.727	266	0.468	1
Mon	-	Fri	-0.06	0.135	-0.446	266	0.656	1
Mon	-	Sat	0.139	0.138	1.01	266	0.313	1
Mon	-	Sun	0.039	0.132	0.296	266	0.767	1
Mon	-	Wed	0.152	0.127	1.201	266	0.231	1
Mon	-	Thu	0.398	0.134	2.977	266	0.003	0.067
Mon	-	Tue	-0.078	0.13	-0.598	266	0.55	1
Sat	-	Sun	-0.1	0.139	-0.719	266	0.473	1
Wed	-	Fri	-0.212	0.131	-1.617	266	0.107	1
Wed	-	Sat	-0.013	0.134	-0.095	266	0.924	1
Wed	-	Sun	-0.113	0.128	-0.881	266	0.379	1
Wed	-	Thu	0.246	0.13	1.889	266	0.06	1
Thu	-	Fri*	-0.458	0.138	-3.319	266	0.001	0.022

Thu	-	Sat	-0.259	0.141	-1.833	266	0.068	1
Thu	-	Sun	-0.359	0.135	-2.653	266	0.008	0.178
Tue	-	Fri	0.018	0.135	0.132	266	0.895	1
Tue	-	Sat	0.217	0.138	1.575	266	0.116	1
Tue	-	Sun	0.117	0.132	0.887	266	0.376	1
Tue	-	Wed	0.23	0.127	1.816	266	0.07	1
Tue	-	Thu**	0.476	0.134	3.56	266	< .001	0.009

4302 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4303

4304 ***Supplementary Table E.3:** Results of generalized linear model for composite
 4305 risk score, without BART, for those with a Normal/Strong SOW of weekday,
 4306 age, and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	df	t	p
(Intercept)	0.035	0.036	-0.036	0.106	264	0.970	0.333
Male – Female**	0.223	0.073	0.079	0.367	264	3.048	0.003
Age*	-0.008	0.003	-0.014	-0.002	264	-2.550	0.011
Tue - Mon	0.107	0.127	-0.144	0.358	264	0.837	0.403
Wed - Mon	-0.110	0.124	-0.355	0.135	264	-0.885	0.377
Thu – Mon**	-0.347	0.131	-0.606	-0.089	264	-2.645	0.009
Fri - Mon	0.020	0.132	-0.240	0.280	264	0.151	0.880
Sat - Mon	-0.153	0.135	-0.418	0.113	264	-1.133	0.258
Sun - Mon	-0.045	0.129	-0.299	0.208	264	-0.351	0.726

4307 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4308

4309 ***Supplementary Materials Table E.4:** Results of post-hoc comparisons for
 4310 composite risk score, without BART, for those with a Normal/Strong SOW of
 4311 weekday, age, and gender.

Weekday	-	Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	0.173	0.139	1.242	264	0.215	1
Fri	-	Sun	0.065	0.133	0.488	264	0.626	1
Mon	-	Fri	-0.020	0.132	-0.151	264	0.88	1
Mon	-	Sat	0.153	0.135	1.133	264	0.258	1
Mon	-	Sun	0.045	0.129	0.351	264	0.726	1
Mon	-	Wed	0.110	0.124	0.885	264	0.377	1
Mon	-	Thu	0.347	0.131	2.645	264	0.009	0.182
Mon	-	Tue	-0.107	0.128	-0.837	264	0.403	1
Sat	-	Sun	-0.108	0.136	-0.789	264	0.431	1
Wed	-	Fri	-0.130	0.130	-0.999	264	0.319	1
Wed	-	Sat	0.043	0.132	0.324	264	0.746	1
Wed	-	Sun	-0.065	0.126	-0.513	264	0.608	1
Wed	-	Thu	0.238	0.127	1.864	264	0.063	1
Thu	-	Fri	-0.367	0.137	-2.681	264	0.008	0.164
Thu	-	Sat	-0.195	0.139	-1.401	264	0.162	1
Thu	-	Sun	-0.302	0.133	-2.270	264	0.024	0.504
Tue	-	Fri	0.087	0.133	0.654	264	0.514	1
Tue	-	Sat	0.259	0.135	1.920	264	0.056	1
Tue	-	Sun	0.152	0.129	1.176	264	0.241	1

Tue	-	Wed	0.217	0.124	1.749	264	0.081	1
Tue	-	Thu*	0.454	0.131	3.474	264	<.001	0.013

4312 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4313

4314 ***Supplementary Table E.5:** Results of generalized linear model for composite
 4315 risk score, without BART, for those with a Weak SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	df	t	p
(Intercept)	-6.345e-4	0.026	-0.051	0.05	574	-0.025	0.98
Tue - Mon	-0.128	0.098	-0.321	0.066	574	-1.298	0.195
Wed - Mon	-0.157	0.1	-0.353	0.039	574	-1.57	0.117
Thu - Mon	0.087	0.097	-0.104	0.278	574	0.896	0.371
Fri - Mon	-0.012	0.097	-0.202	0.178	574	-0.128	0.898
Sat - Mon	0.007	0.095	-0.179	0.194	574	0.078	0.938
Sun - Mon	-0.024	0.098	-0.216	0.169	574	-0.24	0.81

4316 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4317

4318 ***Supplementary Materials Table E.6:** Results of post-hoc comparisons for
 4319 composite risk score, without BART, for those with a Weak SOW of weekday
 4320 only.

Weekday	Weekday	Difference	SE	t	df	p	p _{bonferroni}	
Fri	-	Sat	-0.02	0.093	-0.212	574	0.832	1
Fri	-	Sun	0.011	0.096	0.116	574	0.908	1
Mon	-	Fri	0.012	0.097	0.128	574	0.898	1

Mon	-	Sat	-0.007	0.095	-0.078	574	0.938	1
Mon	-	Sun	0.024	0.098	0.24	574	0.81	1
Mon	-	Wed	0.157	0.1	1.57	574	0.117	1
Mon	-	Thu	-0.087	0.097	-0.896	574	0.371	1
Mon	-	Tue	0.128	0.098	1.298	574	0.195	1
Sat	-	Sun	0.031	0.094	0.328	574	0.743	1
Wed	-	Fri	-0.144	0.098	-1.472	574	0.142	1
Wed	-	Sat	-0.164	0.096	-1.704	574	0.089	1
Wed	-	Sun	-0.133	0.099	-1.343	574	0.18	1
Wed	-	Thu	-0.244	0.099	-2.473	574	0.014	0.287
Thu	-	Fri	0.1	0.096	1.042	574	0.298	1
Thu	-	Sat	0.08	0.094	0.851	574	0.395	1
Thu	-	Sun	0.111	0.097	1.145	574	0.253	1
Tue	-	Fri	-0.115	0.097	-1.193	574	0.233	1
Tue	-	Sat	-0.135	0.095	-1.424	574	0.155	1
Tue	-	Sun	-0.104	0.098	-1.066	574	0.287	1
Tue	-	Wed	0.029	0.1	0.289	574	0.773	1
Tue	-	Thu	-0.215	0.097	-2.21	574	0.028	0.578

4321 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4322

4323 ***Supplementary Table E.7:** Results of generalized linear model for composite
 4324 risk score, without BART, for those with a Weak SOW of weekday, age, and
 4325 gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	df	t	p
(Intercept)	0.081	0.026	0.029	0.133	571	3.072	0.002
Male – Female***	0.395	0.053	0.291	0.500	571	7.443	< .001
Age***	-0.012	0.002	-0.015	-0.008	571	-5.999	< .001
Tue - Mon	-0.096	0.092	-0.276	0.084	571	-1.050	0.294
Wed - Mon	-0.146	0.093	-0.328	0.037	571	-1.568	0.117
Thu - Mon	0.135	0.091	-0.044	0.314	571	1.479	0.140
Fri - Mon	-0.045	0.090	-0.223	0.132	571	-0.505	0.614
Sat - Mon	0.009	0.088	-0.164	0.183	571	0.104	0.917
Sun - Mon	-0.039	0.091	-0.218	0.140	571	-0.424	0.672

4326 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4327

4328 ***Supplementary Materials Table E.8.:** Results of post-hoc comparisons for
 4329 composite risk score, without BART, for those with a Weak SOW of weekday,
 4330 age, and gender.

Weekday	-	Difference	SE	t	df	p	p _{bonferroni}	
Fri	-	Sat	-0.055	0.087	-0.630	571	0.529	1
Fri	-	Sun	-0.007	0.089	-0.077	571	0.939	1
Mon	-	Fri	0.045	0.090	0.505	571	0.614	1
Mon	-	Sat	-0.009	0.088	-0.104	571	0.917	1
Mon	-	Sun	0.039	0.091	0.424	571	0.672	1
Mon	-	Wed	0.146	0.093	1.568	571	0.117	1
Mon	-	Thu	-0.135	0.091	-1.479	571	0.14	1
Mon	-	Tue	0.096	0.092	1.050	571	0.294	1

Sat	-	Sun	0.048	0.088	0.545	571	0.586	1
Wed	-	Fri	-0.100	0.091	-1.097	571	0.273	1
Wed	-	Sat	-0.155	0.090	-1.728	571	0.085	1
Wed	-	Sun	-0.107	0.092	-1.159	571	0.247	1
Wed	-	Thu	-0.281	0.092	-3.045	571	0.002	0.051
Thu	-	Fri	0.180	0.090	2.013	571	0.045	0.937
Thu	-	Sat	0.126	0.088	1.431	571	0.153	1
Thu	-	Sun	0.174	0.091	1.917	571	0.056	1
Tue	-	Fri	-0.051	0.090	-0.563	571	0.574	1
Tue	-	Sat	-0.106	0.088	-1.193	571	0.233	1
Tue	-	Sun	-0.058	0.091	-0.632	571	0.528	1
Tue	-	Wed	0.049	0.093	0.532	571	0.595	1
Tue	-	Thu	-0.231	0.091	-2.543	571	0.011	0.237

4331 $[\ast p < 0.05; \ast\ast p < 0.01, \ast\ast\ast p < 0.001]$

4332

4333 **Study 2:**

4334

4335 **Supplementary Table F:** Chi-square test was used to determine any
4336 deviations in observed frequencies of males in strong [$\chi^2(6, N = 1119) = 5.65$,
4337 $p = 0.46$] and weak [$\chi^2(6, N = 114) = 6.47, p = 0.37$] groups. A t-test was used
4338 to determine whether there were significant variations in ages between the
4339 strong/normal and weak groups and was found to be significant [$t(12) = 2.39$,
4340 $p = 0.03$]. There were not significantly more males in the Normal/Strong SOW
4341 group than in the Weak SOW group [$t(819.1) = -0.972, p = 0.332$].

Sense of weekday	Day of the Week	N	% Male	Average Age (σ_M)
Strong, Normal	<i>Monday</i>	64	31.25	35.67 (1.43)
	<i>Tuesday</i>	56	33.93	31.27 (1.30)
	<i>Wednesday</i>	56	35.71	33.14 (1.53)
	<i>Thursday</i>	59	22.03	34.27 (1.72)
	<i>Friday</i>	50	20.00	35.64 (1.69)
	<i>Saturday</i>	62	32.26	32.69 (1.39)
	<i>Sunday</i>	54	31.48	33.15 (1.50)
Weak	<i>Monday</i>	54	27.78	31.43 (1.77)
	<i>Tuesday</i>	61	18.03	33.84 (1.59)
	<i>Wednesday</i>	64	29.69	30.34 (1.19)
	<i>Thursday</i>	58	24.14	32.40 (1.53)

	<i>Friday</i>	68	27.94	32.26 (1.39)
	<i>Saturday</i>	56	23.21	32.34 (1.55)
	<i>Sunday</i>	67	34.33	30.39 (1.52)

4342

4343 ***Supplementary Table G.1:** Results of generalized linear model for Z-scored
 4344 composite risk score for those with a Normal/Strong SOW of weekday only.

95% Confidence Interval									
Effect	Estimate	SE	Lower	Upper	β	df	t	p	
(Intercept)	-0.025	0.027	-0.077	0.028	0	394	-0.919	0.359	
Tue - Mon	0.014	0.098	-0.178	0.206	0.026	394	0.141	0.888	
Wed - Mon	0.011	0.098	-0.181	0.203	0.021	394	0.117	0.907	
Thu - Mon	0.092	0.096	-0.097	0.282	0.173	394	0.958	0.339	
Fri - Mon	-0.056	0.101	-0.254	0.142	-0.105	394	-0.558	0.577	
Sat - Mon	-0.12	0.095	-0.307	0.067	-0.225	394	-1.264	0.207	
Sun - Mon	-0.083	0.099	-0.276	0.111	-0.155	394	-0.837	0.403	

4345 $[\ast p < 0.05; \ast\ast p < 0.01, \ast\ast\ast p < 0.001]$

4346

4347 ***Supplementary Materials Table G.2.:** Results of post-hoc comparisons for
 4348 Z-scored composite risk score for those with a Normal/Strong SOW of weekday
 4349 only.

Weekday	Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	- Sat	0.064	0.101	0.631	394	0.529	1
Fri	- Sun	0.026	0.105	0.251	394	0.802	1
Mon	- Fri	0.056	0.101	0.558	394	0.577	1

Mon	-	Sat	0.12	0.095	1.264	394	0.207	1
Mon	-	Sun	0.083	0.099	0.837	394	0.403	1
Mon	-	Wed	-0.011	0.098	-0.117	394	0.907	1
Mon	-	Thu	-0.092	0.096	-0.958	394	0.339	1
Mon	-	Tue	-0.014	0.098	-0.141	394	0.888	1
Sat	-	Sun	-0.038	0.099	-0.379	394	0.705	1
Wed	-	Fri	0.068	0.104	0.652	394	0.515	1
Wed	-	Sat	0.132	0.098	1.338	394	0.182	1
Wed	-	Sun	0.094	0.102	0.923	394	0.357	1
Wed	-	Thu	-0.081	0.1	-0.812	394	0.418	1
Thu	-	Fri	0.148	0.103	1.447	394	0.149	1
Thu	-	Sat	0.212	0.097	2.189	394	0.029	0.613
Thu	-	Sun	0.175	0.1	1.739	394	0.083	1
Tue	-	Fri	0.07	0.104	0.674	394	0.501	1
Tue	-	Sat	0.134	0.098	1.362	394	0.174	1
Tue	-	Sun	0.096	0.102	0.946	394	0.345	1
Tue	-	Wed	0.002	0.101	0.023	394	0.982	1
Tue	-	Thu	-0.078	0.1	-0.788	394	0.431	1

4350 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4351

4352 ***Supplementary Table G.3:** Results of generalized linear model for Z-scored
 4353 composite risk score for those with a Normal/Strong SOW of weekday, age,
 4354 and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.043	0.028	-0.012	0.097	0.000	392	1.549	0.122
Age ***	-0.009	0.002	-0.013	-0.004	-0.189	392	-3.984	< .001
Male – Female ***	0.328	0.055	0.220	0.437	0.615	392	5.939	< .001
Tue - Mon	-0.034	0.092	-0.215	0.148	-0.063	392	-0.367	0.714
Wed - Mon	-0.026	0.092	-0.206	0.155	-0.048	392	-0.277	0.782
Thu - Mon	0.110	0.091	-0.068	0.289	0.206	392	1.214	0.226
Fri - Mon	-0.020	0.095	-0.206	0.167	-0.037	392	-0.206	0.837
Sat - Mon	-0.150	0.090	-0.326	0.027	-0.281	392	-1.670	0.096
Sun - Mon	-0.106	0.093	-0.288	0.077	-0.198	392	-1.136	0.257

4355 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4356

4357 ***Supplementary Materials Table G.4:** Results of post-hoc comparisons for Z-scored composite risk score for those with a Normal/Strong SOW of weekday, 4358 age, and gender.

Weekday	-	Difference	SE	t	df	p	p _{bonferroni}	
Fri	-	Sat	0.130	0.096	1.359	392	0.175	1
Fri	-	Sun	0.086	0.099	0.870	392	0.385	1
Mon	-	Fri	0.020	0.095	0.206	392	0.837	1
Mon	-	Sat	0.150	0.090	1.670	392	0.096	1
Mon	-	Sun	0.106	0.093	1.136	392	0.257	1
Mon	-	Wed	0.026	0.092	0.277	392	0.782	1
Mon	-	Thu	-0.110	0.091	-1.214	392	0.226	1
Mon	-	Tue	0.034	0.092	0.367	392	0.714	1

Sat	-	Sun	-0.044	0.093	-0.474	392	0.636	1
Wed	-	Fri	-0.006	0.098	-0.061	392	0.952	1
Wed	-	Sat	0.124	0.093	1.343	392	0.18	1
Wed	-	Sun	0.080	0.096	0.836	392	0.404	1
Wed	-	Thu	-0.136	0.094	-1.444	392	0.149	1
Thu	-	Fri	0.130	0.097	1.344	392	0.18	1
Thu	-	Sat	0.260	0.091	2.841	392	0.005	0.099
Thu	-	Sun	0.216	0.095	2.278	392	0.023	0.488
Tue	-	Fri	-0.014	0.098	-0.145	392	0.884	1
Tue	-	Sat	0.116	0.093	1.252	392	0.211	1
Tue	-	Sun	0.072	0.096	0.748	392	0.455	1
Tue	-	Wed	-0.008	0.095	-0.088	392	0.93	1
Tue	-	Thu	-0.144	0.094	-1.531	392	0.126	1

4360 $[\ast p < 0.05; \ast\ast p < 0.01, \ast\ast\ast p < 0.001]$

4361

4362 ***Supplementary Table G.5:** Results of generalized linear model for Z-scored
 4363 composite risk score for those with a Weak SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.023	0.027	-0.031	0.077	0	421	0.847	0.398
Tue - Mon	0.021	0.105	-0.186	0.228	0.037	421	0.198	0.843
Wed - Mon	0.114	0.104	-0.09	0.319	0.203	421	1.096	0.274
Thu - Mon	0.131	0.106	-0.078	0.34	0.233	421	1.231	0.219
Fri - Mon	0.018	0.103	-0.184	0.22	0.032	421	0.175	0.861

Sat - Mon	0.122	0.107	-0.089	0.333	0.217	421	1.132	0.258
Sun - Mon	0.027	0.103	-0.175	0.23	0.049	421	0.267	0.79

4364 $^{*} p < 0.05; ^{**} p < 0.01, ^{***} p < 0.001$

4365

4366 ***Supplementary Materials Table G.6:** Results of post-hoc comparisons for Z-scored composite risk score for those with a Weak SOW of weekday only.

Weekday	-	Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	-0.104	0.102	-1.02	421	0.308	1
Fri	-	Sun	-0.009	0.097	-0.098	421	0.922	1
Mon	-	Fri	-0.018	0.103	-0.175	421	0.861	1
Mon	-	Sat	-0.122	0.107	-1.132	421	0.258	1
Mon	-	Sun	-0.027	0.103	-0.267	421	0.79	1
Mon	-	Wed	-0.114	0.104	-1.096	421	0.274	1
Mon	-	Thu	-0.131	0.106	-1.231	421	0.219	1
Mon	-	Tue	-0.021	0.105	-0.198	421	0.843	1
Sat	-	Sun	0.094	0.102	0.924	421	0.356	1
Wed	-	Fri	0.096	0.098	0.979	421	0.328	1
Wed	-	Sat	-0.008	0.103	-0.074	421	0.941	1
Wed	-	Sun	0.087	0.098	0.88	421	0.38	1
Wed	-	Thu	-0.017	0.102	-0.167	421	0.868	1
Thu	-	Fri	0.113	0.101	1.123	421	0.262	1
Thu	-	Sat	0.009	0.106	0.089	421	0.929	1
Thu	-	Sun	0.104	0.101	1.026	421	0.306	1

Tue	-	Fri	0.003	0.099	0.029	421	0.977	1
Tue	-	Sat	-0.101	0.104	-0.967	421	0.334	1
Tue	-	Sun	-0.007	0.1	-0.066	421	0.947	1
Tue	-	Wed	-0.093	0.101	-0.925	421	0.356	1
Tue	-	Thu	-0.11	0.103	-1.067	421	0.287	1

4368 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4369

4370 ***Supplementary Table G.7:** Results of generalized linear model for Z-scored
4371 composite risk score for those with a Weak SOW of weekday, age, and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.092	0.030	0.034	0.151	0.000	419	3.113	0.002
Age ***	-0.008	0.002	-0.013	-0.004	-0.176	419	-3.762	< .001
Male - Female ***	0.293	0.059	0.176	0.410	0.522	419	4.936	< .001
Tue - Mon	0.070	0.101	-0.129	0.269	0.124	419	0.690	0.491
Wed - Mon	0.099	0.100	-0.097	0.296	0.177	419	0.995	0.320
Thu - Mon	0.150	0.102	-0.051	0.351	0.267	419	1.468	0.143
Fri - Mon	0.025	0.098	-0.169	0.218	0.044	419	0.250	0.803
Sat - Mon	0.143	0.103	-0.060	0.345	0.254	419	1.385	0.167
Sun - Mon	-5.191e-4	0.099	-0.195	0.194	-9.243e-4	419	-0.005	0.996

4372 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4373

4374 ***Supplementary Materials Table G.8.:** Results of post-hoc comparisons for
4375 Z-scored composite risk score for those with a Weak SOW of weekday, age,
4376 and gender.

DOW			Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	-0.118	0.097	-1.212	419	0.226	1
Fri	-	Sun	0.025	0.093	0.270	419	0.788	1
Mon	-	Fri	-0.025	0.098	-0.250	419	0.803	1
Mon	-	Sat	-0.143	0.103	-1.385	419	0.167	1
Mon	-	Sun	0.001	0.099	0.005	419	0.996	1
Mon	-	Wed	-0.099	0.100	-0.995	419	0.32	1
Mon	-	Thu	-0.150	0.102	-1.468	419	0.143	1
Mon	-	Tue	-0.070	0.101	-0.690	419	0.491	1
Sat	-	Sun	0.143	0.098	1.460	419	0.145	1
Wed	-	Fri	0.075	0.094	0.794	419	0.428	1
Wed	-	Sat	-0.043	0.099	-0.439	419	0.661	1
Wed	-	Sun	0.100	0.094	1.057	419	0.291	1
Wed	-	Thu	-0.051	0.098	-0.516	419	0.606	1
Thu	-	Fri	0.125	0.097	1.298	419	0.195	1
Thu	-	Sat	0.007	0.101	0.071	419	0.943	1
Thu	-	Sun	0.150	0.097	1.549	419	0.122	1
Tue	-	Fri	0.045	0.095	0.473	419	0.636	1
Tue	-	Sat	-0.073	0.100	-0.729	419	0.466	1
Tue	-	Sun	0.070	0.096	0.730	419	0.466	1
Tue	-	Wed	-0.030	0.097	-0.304	419	0.761	1
Tue	-	Thu	-0.080	0.099	-0.808	419	0.419	1

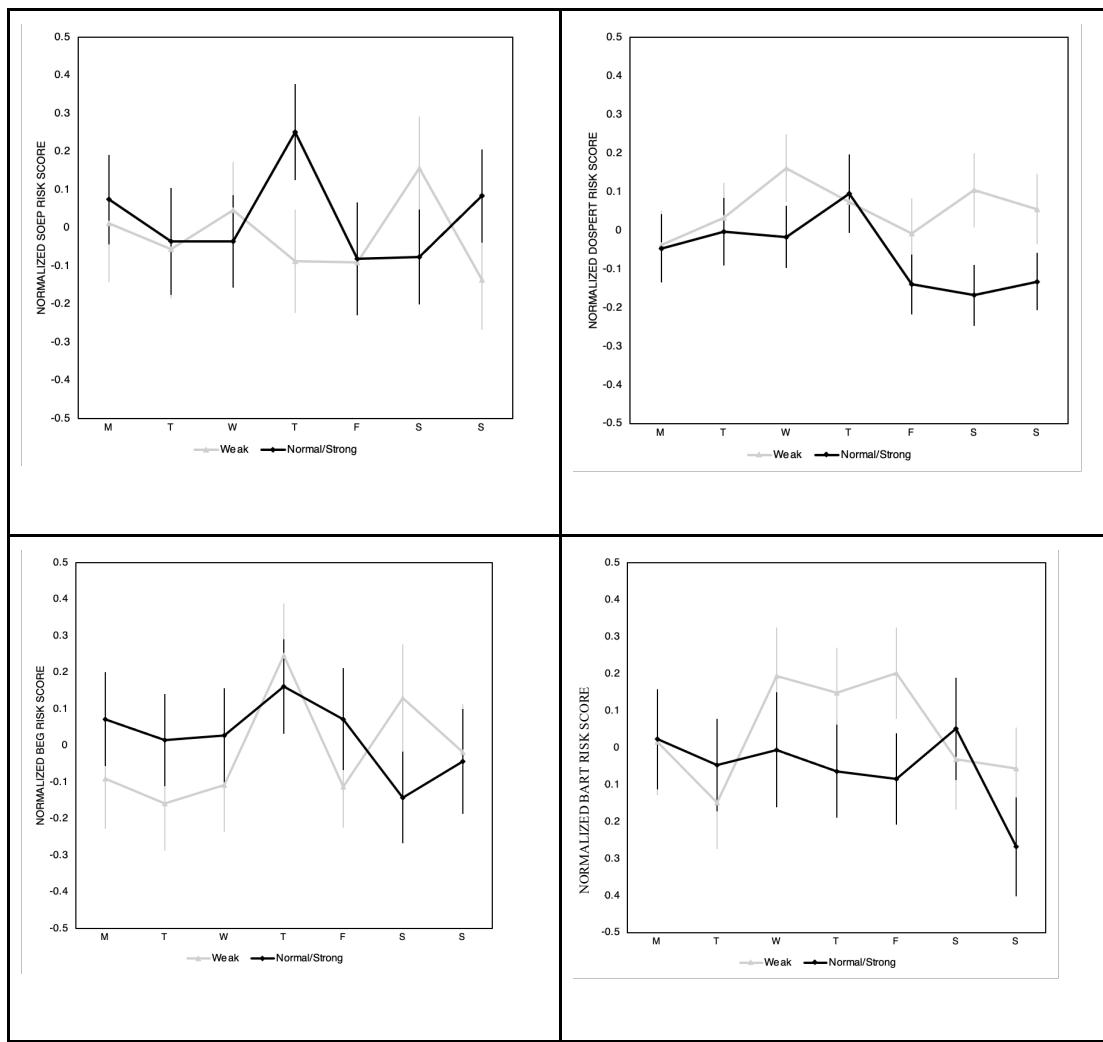
4377 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4378

4379 **Supplementary Table H:** Individual risk measurement descriptives by
4380 weekday and Sense of Week (SOW) in Study 2.

			N	Mean	σ_M
SOEP	Strong, Normal	<i>Monday</i>	64	0.07421	0.1177
		<i>Tuesday</i>	56	-0.03577	0.1402
		<i>Wednesday</i>	56	-0.03577	0.1211
		<i>Thursday</i>	59	0.2507	0.1262
		<i>Friday</i>	50	-0.08084	0.1477
		<i>Saturday</i>	62	-0.07610	0.1243
		<i>Sunday</i>	54	0.08371	0.1225
Weak	Weak	<i>Monday</i>	54	0.01168	0.1519
		<i>Tuesday</i>	61	-0.05576	0.1271
		<i>Wednesday</i>	64	0.04720	0.1266
		<i>Thursday</i>	58	-0.08739	0.1344
		<i>Friday</i>	68	-0.09024	0.1266
		<i>Saturday</i>	56	0.1572	0.1343
		<i>Sunday</i>	67	-0.1364	0.1292

DOSPERT	Strong,	<i>Monday</i>	64	-0.04650	0.08794
	Normal				
		<i>Tuesday</i>	56	-0.003154	0.08736
		<i>Wednesday</i>	56	-0.01669	0.08081
		<i>Thursday</i>	59	0.09547	0.1018
		<i>Friday</i>	50	-0.1398	0.07726
Weak	<i>Saturday</i>	62	-0.1684	0.07874	
	<i>Sunday</i>	54	-0.1328	0.0742	
	Monday	54	-0.03739	0.08648	
	<i>Tuesday</i>	61	0.03215	0.08893	
	<i>Wednesday</i>	64	0.1611	0.0857	
BEG	<i>Thursday</i>	58	0.07381	0.07683	
	<i>Friday</i>	68	-0.007734	0.08947	
	<i>Saturday</i>	56	0.1042	0.09423	
	<i>Sunday</i>	66	0.05519	0.08926	
	Monday	64	0.07248	0.1291	
	<i>Tuesday</i>	55	0.01554	0.1258	
	<i>Wednesday</i>	55	0.02722	0.1296	


		<i>Thursday</i>	57	0.1612	0.1292
		<i>Friday</i>	48	0.07248	0.1387
		<i>Saturday</i>	62	-0.1425	0.1246
		<i>Sunday</i>	54	-0.0435	0.1435
	Weak	<i>Monday</i>	54	-0.09108	0.1348
		<i>Tuesday</i>	60	-0.1577	0.1272
		<i>Wednesday</i>	64	-0.1082	0.1257
		<i>Thursday</i>	58	0.2469	0.1395
		<i>Friday</i>	68	-0.1117	0.1115
		<i>Saturday</i>	56	0.1298	0.1452
		<i>Sunday</i>	67	-0.0174	0.1278
BART	Strong, Normal	<i>Monday</i>	64	0.02275	0.1352
		<i>Tuesday</i>	56	-0.04724	0.125
		<i>Wednesday</i>	56	-0.005911	0.1547
		<i>Thursday</i>	59	-0.06381	0.1262
		<i>Friday</i>	50	-0.08459	0.123
		<i>Saturday</i>	62	0.05096	0.1377

	<i>Sunday</i>	54	-0.2678	0.1336
Weak	<i>Monday</i>	54	0.01505	0.1417
	<i>Tuesday</i>	61	-0.1489	0.1233
	<i>Wednesday</i>	64	0.1929	0.1296
	<i>Thursday</i>	58	0.1485	0.1199
	<i>Friday</i>	68	0.2019	0.1221
	<i>Saturday</i>	56	-0.03155	0.1344
	<i>Sunday</i>	67	-0.05719	0.1099

4381

4382 **Supplementary Material Figure I:** The mean scores for each of the four main
 4383 risk measurements across participants, separated out between a weak (rating
 4384 of 1 or 2 on a scale of 1 to 5) versus normal or weak (rating of 3, 4, or 5 on the
 4385 same scale) sense of the week, in Study 2, all normalized using z-scoring. A)
 4386 SOEP General, B) DOSPERT General, C) BEG, D) Normalized BART scores,
 4387 scored as per Lejuez et al. (2002) methodology. Error bars represent +/- SE.

4388

4389

4390 ***Supplementary Table G.1:** Results of generalized linear model for Z-scored
 4391 SOEP for those with a Normal/Strong SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.026	0.049	-0.07	0.121	0	394	0.53	0.597
Tue - Mon	-0.11	0.178	-0.459	0.239	-0.113	394	-0.619	0.536
Wed - Mon	-0.11	0.178	-0.459	0.239	-0.113	394	-0.619	0.536
Thu - Mon	0.176	0.175	-0.168	0.521	0.182	394	1.008	0.314
Fri - Mon	-0.155	0.183	-0.515	0.205	-0.16	394	-0.847	0.398
Sat - Mon	-0.15	0.173	-0.49	0.19	-0.155	394	-0.869	0.385

Sun - Mon	0.01	0.179	-0.343	0.362	0.01	394	0.053	0.958
-----------	------	-------	--------	-------	------	-----	-------	-------

4392 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4393

4394 ***Supplementary Materials Table G.2.:** Results of post-hoc comparisons for
4395 Z-scored SOEP for those with a Normal/Strong SOW of weekday only.

Weekday	-	Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	-0.005	0.184	-0.026	394	0.98	1
Fri	-	Sun	-0.165	0.19	-0.864	394	0.388	1
Mon	-	Fri	0.155	0.183	0.847	394	0.398	1
Mon	-	Sat	0.15	0.173	0.869	394	0.385	1
Mon	-	Sun	-0.01	0.179	-0.053	394	0.958	1
Mon	-	Wed	0.11	0.178	0.619	394	0.536	1
Mon	-	Thu	-0.176	0.175	-1.008	394	0.314	1
Mon	-	Tue	0.11	0.178	0.619	394	0.536	1
Sat	-	Sun	-0.16	0.181	-0.885	394	0.377	1
Wed	-	Fri	0.045	0.189	0.239	394	0.811	1
Wed	-	Sat	0.04	0.179	0.225	394	0.822	1
Wed	-	Sun	-0.119	0.185	-0.646	394	0.519	1
Wed	-	Thu	-0.286	0.181	-1.583	394	0.114	1
Thu	-	Fri	0.332	0.186	1.778	394	0.076	1
Thu	-	Sat	0.327	0.176	1.852	394	0.065	1
Thu	-	Sun	0.167	0.183	0.914	394	0.361	1
Tue	-	Fri	0.045	0.189	0.239	394	0.811	1

Tue	-	Sat	0.04	0.179	0.225	394	0.822	1
Tue	-	Sun	-0.119	0.185	-0.646	394	0.519	1
Tue	-	Wed	3.57E-11	0.183	1.95E-10	394	1	1
Tue	-	Thu	-0.286	0.181	-1.583	394	0.114	1

4396 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4397

4398 ***Supplementary Table G.3:** Results of generalized linear model for Z-scored
 4399 SOEP for those with a Normal/Strong SOW of weekday, age, and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.106	0.052	0.005	0.208	0.000	392	2.063	0.04
Age ***	-0.015	0.004	-0.023	-0.007	-0.175	392	-3.580	< .001
Male - Female ***	0.394	0.103	0.191	0.598	0.407	392	3.808	< .001
Tue - Mon	-0.186	0.173	-0.525	0.154	-0.192	392	-1.076	0.283
Wed - Mon	-0.165	0.172	-0.504	0.173	-0.170	392	-0.959	0.338
Thu - Mon	0.192	0.170	-0.142	0.526	0.198	392	1.131	0.259
Fri - Mon	-0.111	0.178	-0.460	0.238	-0.115	392	-0.626	0.532
Sat - Mon	-0.198	0.168	-0.528	0.131	-0.205	392	-1.183	0.238
Sun - Mon	-0.029	0.174	-0.370	0.313	-0.030	392	-0.166	0.868

4400 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4401

4402 ***Supplementary Materials Table G.4:** Results of post-hoc comparisons for Z-
 4403 scored SOEP for those with a Normal/Strong SOW of weekday, age, and
 4404 gender.

Weekday	Difference	SE	t	df	p	$p_{\text{bonferroni}}$
---------	------------	----	---	----	---	-------------------------

Fri	-	Sat	0.087	0.179	0.487	392	0.627	1
Fri	-	Sun	-0.082	0.185	-0.445	392	0.656	1
Mon	-	Fri	0.111	0.178	0.626	392	0.532	1
Mon	-	Sat	0.198	0.168	1.183	392	0.238	1
Mon	-	Sun	0.029	0.174	0.166	392	0.868	1
Mon	-	Wed	0.165	0.172	0.959	392	0.338	1
Mon	-	Thu	-0.192	0.170	-1.131	392	0.259	1
Mon	-	Tue	0.186	0.173	1.076	392	0.283	1
Sat	-	Sun	-0.170	0.175	-0.971	392	0.332	1
Wed	-	Fri	-0.054	0.184	-0.293	392	0.769	1
Wed	-	Sat	0.033	0.173	0.193	392	0.847	1
Wed	-	Sun	-0.136	0.179	-0.761	392	0.447	1
Wed	-	Thu	-0.357	0.176	-2.032	392	0.043	0.9
Thu	-	Fri	0.303	0.181	1.679	392	0.094	1
Thu	-	Sat	0.390	0.171	2.281	392	0.023	0.485
Thu	-	Sun	0.221	0.177	1.247	392	0.213	1
Tue	-	Fri	-0.075	0.184	-0.406	392	0.685	1
Tue	-	Sat	0.013	0.173	0.073	392	0.942	1
Tue	-	Sun	-0.157	0.179	-0.876	392	0.382	1
Tue	-	Wed	-0.021	0.178	-0.117	392	0.907	1
Tue	-	Thu	-0.378	0.176	-2.147	392	0.032	0.68

4405 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4406

4407 ***Supplementary Table G.5:** Results of generalized linear model for Z-scored
 4408 SOEP for those with a Weak SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	-0.022	0.05	-0.12	0.076	0	421	-0.439	0.661
Tue - Mon	-0.067	0.193	-0.446	0.311	-0.066	421	-0.35	0.727
Wed - Mon	0.036	0.191	-0.339	0.41	0.035	421	0.186	0.852
Thu - Mon	-0.099	0.195	-0.482	0.284	-0.096	421	-0.508	0.612
Fri - Mon	-0.102	0.188	-0.471	0.268	-0.099	421	-0.542	0.588
Sat - Mon	0.145	0.197	-0.241	0.532	0.141	421	0.74	0.46
Sun - Mon	-0.148	0.189	-0.519	0.223	-0.144	421	-0.785	0.433

4409 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4410

4411 ***Supplementary Materials Table G.6:** Results of post-hoc comparisons for Z-scored
 4412 SOEP for those with a Weak SOW of weekday only.

Weekday		Weekday	Difference	SE	t	df	p	$p_{\text{bonferroni}}$
Fri	-	Sat	-0.247	0.186	-1.329	421	0.185	1
Fri	-	Sun	0.046	0.178	0.26	421	0.795	1
Mon	-	Fri	0.102	0.188	0.542	421	0.588	1
Mon	-	Sat	-0.145	0.197	-0.74	421	0.46	1
Mon	-	Sun	0.148	0.189	0.785	421	0.433	1
Mon	-	Wed	-0.036	0.191	-0.186	421	0.852	1
Mon	-	Thu	0.099	0.195	0.508	421	0.612	1
Mon	-	Tue	0.067	0.193	0.35	421	0.727	1

Sat	-	Sun	0.294	0.187	1.572	421	0.117	1
Wed	-	Fri	0.137	0.18	0.765	421	0.445	1
Wed	-	Sat	-0.11	0.189	-0.583	421	0.56	1
Wed	-	Sun	0.184	0.18	1.019	421	0.309	1
Wed	-	Thu	0.135	0.187	0.72	421	0.472	1
Thu	-	Fri	0.003	0.184	0.015	421	0.988	1
Thu	-	Sat	-0.245	0.193	-1.266	421	0.206	1
Thu	-	Sun	0.049	0.185	0.265	421	0.791	1
Tue	-	Fri	0.034	0.182	0.19	421	0.85	1
Tue	-	Sat	-0.213	0.191	-1.115	421	0.265	1
Tue	-	Sun	0.081	0.183	0.442	421	0.659	1
Tue	-	Wed	-0.103	0.185	-0.558	421	0.577	1
Tue	-	Thu	0.032	0.189	0.167	421	0.867	1

4413 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4414

4415 *Supplementary Table G.7: Results of generalized linear model for Z-scored
4416 SOEP for those with a Weak SOW of weekday, age, and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.027	0.056	-0.084	0.138	0.000	419	0.478	0.633
Age*	-0.009	0.004	-0.017	-2.832e-4	-0.098	419	-2.032	0.043
Male - Female	0.207	0.113	-0.015	0.428	0.201	419	1.833	0.068
Tue - Mon	-0.026	0.192	-0.404	0.351	-0.026	419	-0.138	0.891
Wed - Mon	0.022	0.189	-0.350	0.395	0.022	419	0.117	0.907

Thu - Mon	-0.083	0.194	-0.464	0.298	-0.081	419	-0.429	0.668
Fri - Mon	-0.095	0.187	-0.462	0.272	-0.092	419	-0.509	0.611
Sat - Mon	0.163	0.196	-0.222	0.547	0.158	419	0.833	0.406
Sun - Mon	-0.171	0.188	-0.539	0.198	-0.166	419	-0.910	0.364

4417 $[\ast p < 0.05; \ast\ast p < 0.01, \ast\ast\ast p < 0.001]$

4418

4419 ***Supplementary Materials Table G.8.:** Results of post-hoc comparisons for
4420 Z-scored SOEP for those with a Weak SOW of weekday, age, and gender.

DOW			Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	-0.258	0.185	-1.394	419	0.164	1
Fri	-	Sun	0.076	0.177	0.428	419	0.669	1
Mon	-	Fri	0.095	0.187	0.509	419	0.611	1
Mon	-	Sat	-0.163	0.196	-0.833	419	0.406	1
Mon	-	Sun	0.171	0.188	0.910	419	0.364	1
Mon	-	Wed	-0.022	0.189	-0.117	419	0.907	1
Mon	-	Thu	0.083	0.194	0.429	419	0.668	1
Mon	-	Tue	0.026	0.192	0.138	419	0.891	1
Sat	-	Sun	0.333	0.186	1.791	419	0.074	1
Wed	-	Fri	0.117	0.179	0.656	419	0.512	1
Wed	-	Sat	-0.141	0.188	-0.749	419	0.455	1
Wed	-	Sun	0.193	0.179	1.076	419	0.282	1
Wed	-	Thu	0.105	0.186	0.566	419	0.572	1
Thu	-	Fri	0.012	0.183	0.065	419	0.948	1

Thu	-	Sat	-0.246	0.192	-1.281	419	0.201	1
Thu	-	Sun	0.087	0.184	0.475	419	0.635	1
Tue	-	Fri	0.069	0.181	0.378	419	0.705	1
Tue	-	Sat	-0.189	0.190	-0.997	419	0.319	1
Tue	-	Sun	0.144	0.183	0.789	419	0.431	1
Tue	-	Wed	-0.049	0.184	-0.264	419	0.792	1
Tue	-	Thu	0.057	0.188	0.301	419	0.763	1

4421 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4422

4423 ***Supplementary Table G.9:** Results of generalized linear model for Z-scored
 4424 DOSPERT for those with a Normal/Strong SOW of weekday only.

95% Confidence Interval								
Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	-0.059	0.032	-0.122	0.005	0	394	-1.82	0.07
Tue - Mon	0.043	0.118	-0.189	0.276	0.067	394	0.367	0.714
Wed - Mon	0.03	0.118	-0.202	0.262	0.046	394	0.252	0.801
Thu - Mon	0.142	0.116	-0.087	0.371	0.22	394	1.219	0.224
Fri - Mon	-0.093	0.122	-0.333	0.146	-0.144	394	-0.766	0.444
Sat - Mon	-0.122	0.115	-0.348	0.104	-0.189	394	-1.06	0.29
Sun - Mon	-0.086	0.119	-0.321	0.148	-0.133	394	-0.724	0.47

4425 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4426

4427 **(Supplementary Materials Table G.10.:** Results of post-hoc comparisons for
 4428 Z-scored DOSPERT for those with a Normal/Strong SOW of weekday only.

Weekday	-		Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	0.029	0.123	0.234	394	0.815	1
Fri	-	Sun	-0.007	0.127	-0.055	394	0.956	1
Mon	-	Fri	0.093	0.122	0.766	394	0.444	1
Mon	-	Sat	0.122	0.115	1.06	394	0.29	1
Mon	-	Sun	0.086	0.119	0.724	394	0.47	1
Mon	-	Wed	-0.03	0.118	-0.252	394	0.801	1
Mon	-	Thu	-0.142	0.116	-1.219	394	0.224	1
Mon	-	Tue	-0.043	0.118	-0.367	394	0.714	1
Sat	-	Sun	-0.036	0.12	-0.297	394	0.767	1
Wed	-	Fri	0.123	0.126	0.98	394	0.328	1
Wed	-	Sat	0.152	0.119	1.275	394	0.203	1
Wed	-	Sun	0.116	0.123	0.943	394	0.346	1
Wed	-	Thu	-0.112	0.12	-0.932	394	0.352	1
Thu	-	Fri	0.235	0.124	1.896	394	0.059	1
Thu	-	Sat	0.264	0.117	2.248	394	0.025	0.527
Thu	-	Sun	0.228	0.122	1.878	394	0.061	1
Tue	-	Fri	0.137	0.126	1.088	394	0.277	1
Tue	-	Sat	0.165	0.119	1.389	394	0.166	1
Tue	-	Sun	0.13	0.123	1.053	394	0.293	1
Tue	-	Wed	0.014	0.122	0.111	394	0.912	1
Tue	-	Thu	-0.099	0.12	-0.819	394	0.413	1

4429 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4430

4431 ***Supplementary Table G.11:** Results of generalized linear model for Z-scored
 4432 DOSPERT for those with a Normal/Strong SOW of weekday, age, and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.028	0.033	-0.037	0.094	0.000	392	0.850	0.396
Age **	-0.008	0.003	-0.013	-0.002	-0.136	392	-2.863	0.004
Male - Female ***	0.426	0.067	0.294	0.558	0.659	392	6.349	< .001
Tue - Mon	-0.002	0.112	-0.222	0.218	-0.003	392	-0.017	0.986
Wed - Mon	-0.009	0.112	-0.228	0.211	-0.013	392	-0.078	0.938
Thu - Mon	0.170	0.110	-0.046	0.387	0.264	392	1.548	0.123
Fri - Mon	-0.046	0.115	-0.272	0.181	-0.070	392	-0.395	0.693
Sat - Mon	-0.149	0.109	-0.363	0.065	-0.231	392	-1.370	0.171
Sun - Mon	-0.107	0.113	-0.328	0.115	-0.165	392	-0.946	0.345

4433 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4434

4435 ***Supplementary Materials Table G.12:** Results of post-hoc comparisons for
 4436 Z-scored DOSPERT for those with a Normal/Strong SOW of weekday, age,
 4437 and gender.

Weekday	Difference	SE	t	df	p	$p_{\text{bonferroni}}$
Fri - Sat	0.104	0.116	0.890	392	0.374	1
Fri - Sun	0.061	0.120	0.510	392	0.611	1
Mon - Fri	0.046	0.115	0.395	392	0.693	1
Mon - Sat	0.149	0.109	1.370	392	0.171	1
Mon - Sun	0.107	0.113	0.946	392	0.345	1

Mon	-	Wed	0.009	0.112	0.078	392	0.938	1
Mon	-	Thu	-0.170	0.110	-1.548	392	0.123	1
Mon	-	Tue	0.002	0.112	0.017	392	0.986	1
Sat	-	Sun	-0.042	0.113	-0.374	392	0.708	1
Wed	-	Fri	0.037	0.119	0.310	392	0.757	1
Wed	-	Sat	0.140	0.112	1.251	392	0.212	1
Wed	-	Sun	0.098	0.116	0.844	392	0.399	1
Wed	-	Thu	-0.179	0.114	-1.571	392	0.117	1
Thu	-	Fri	0.216	0.117	1.844	392	0.066	1
Thu	-	Sat	0.320	0.111	2.878	392	0.004	0.089
Thu	-	Sun	0.277	0.115	2.412	392	0.016	0.343
Tue	-	Fri	0.044	0.119	0.365	392	0.715	1
Tue	-	Sat	0.147	0.112	1.310	392	0.191	1
Tue	-	Sun	0.105	0.116	0.901	392	0.368	1
Tue	-	Wed	0.007	0.115	0.058	392	0.953	1
Tue	-	Thu	-0.172	0.114	-1.510	392	0.132	1

4438 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4439

4440 *Supplementary Table G.13: Results of generalized linear model for Z-scored
 4441 DOSPERT for those with a Weak SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.054	0.033	-0.011	0.12	0	420	1.637	0.102

Tue - Mon	0.07	0.128	-0.182	0.321	0.102	420	0.543	0.588
Wed - Mon	0.198	0.127	-0.051	0.448	0.29	420	1.567	0.118
Thu - Mon	0.111	0.13	-0.144	0.366	0.163	420	0.858	0.392
Fri - Mon	0.03	0.125	-0.216	0.275	0.043	420	0.237	0.813
Sat - Mon	0.142	0.131	-0.115	0.399	0.207	420	1.083	0.279
Sun - Mon	0.093	0.126	-0.155	0.34	0.135	420	0.736	0.462

4442 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4443

4444 ***Supplementary Materials Table G.14:** Results of post-hoc comparisons for
4445 Z-scored DOSPERT for those with a Weak SOW of weekday only.

Weekday	-	Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	-0.112	0.124	-0.905	420	0.366	1
Fri	-	Sun	-0.063	0.118	-0.531	420	0.596	1
Mon	-	Fri	-0.03	0.125	-0.237	420	0.813	1
Mon	-	Sat	-0.142	0.131	-1.083	420	0.279	1
Mon	-	Sun	-0.093	0.126	-0.736	420	0.462	1
Mon	-	Wed	-0.198	0.127	-1.567	420	0.118	1
Mon	-	Thu	-0.111	0.13	-0.858	420	0.392	1
Mon	-	Tue	-0.07	0.128	-0.543	420	0.588	1
Sat	-	Sun	0.049	0.125	0.394	420	0.694	1
Wed	-	Fri	0.169	0.119	1.414	420	0.158	1
Wed	-	Sat	0.057	0.125	0.453	420	0.651	1
Wed	-	Sun	0.106	0.12	0.88	420	0.379	1
Wed	-	Thu	0.087	0.124	0.702	420	0.483	1

Thu	-	Fri	0.082	0.123	0.665	420	0.506	1
Thu	-	Sat	-0.03	0.128	-0.237	420	0.813	1
Thu	-	Sun	0.019	0.123	0.151	420	0.88	1
Tue	-	Fri	0.04	0.121	0.33	420	0.742	1
Tue	-	Sat	-0.072	0.127	-0.568	420	0.57	1
Tue	-	Sun	-0.023	0.122	-0.189	420	0.85	1
Tue	-	Wed	-0.129	0.123	-1.051	420	0.294	1
Tue	-	Thu	-0.042	0.126	-0.331	420	0.741	1

4446 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4447

4448 ***Supplementary Table G.15:** Results of generalized linear model for Z-scored
 4449 DOSPERT for those with a Weak SOW of weekday, age, and gender.

95% Confidence Interval									
Effect	Estimate	SE	Lower	Upper	β	df	t	p	
(Intercept)	0.144	0.036	0.073	0.214	0.000	418	4.014	< .001	
Age ***	-0.012	0.003	-0.017	-0.006	-0.201	418	-4.338	< .001	
Male - Female ***	0.379	0.072	0.238	0.520	0.555	418	5.289	< .001	
Tue - Mon	0.135	0.122	-0.105	0.375	0.197	418	1.104	0.270	
Wed - Mon	0.179	0.120	-0.058	0.415	0.261	418	1.482	0.139	
Thu - Mon	0.136	0.123	-0.106	0.379	0.200	418	1.107	0.269	
Fri - Mon	0.039	0.119	-0.195	0.272	0.057	418	0.328	0.743	
Sat - Mon	0.170	0.124	-0.075	0.414	0.248	418	1.365	0.173	
Sun - Mon	0.052	0.120	-0.183	0.287	0.076	418	0.435	0.664	

4450 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4451

4452 ***Supplementary Materials Table G.16.**: Results of post-hoc comparisons for
 4453 Z-scored DOSPERT for those with a Weak SOW of weekday, age, and gender.

DOW	-	DOW	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	-0.131	0.118	-1.112	418	0.267	1
Fri	-	Sun	-0.013	0.113	-0.116	418	0.907	1
Mon	-	Fri	-0.039	0.119	-0.327	418	0.743	1
Mon	-	Sat	-0.170	0.124	-1.365	418	0.173	1
Mon	-	Sun	-0.052	0.120	-0.435	418	0.664	1
Mon	-	Wed	-0.179	0.120	-1.482	418	0.139	1
Mon	-	Thu	-0.136	0.123	-1.107	418	0.269	1
Mon	-	Tue	-0.135	0.122	-1.104	418	0.27	1
Sat	-	Sun	0.118	0.119	0.990	418	0.323	1
Wed	-	Fri	0.140	0.114	1.229	418	0.22	1
Wed	-	Sat	0.009	0.119	0.074	418	0.941	1
Wed	-	Sun	0.127	0.114	1.106	418	0.269	1
Wed	-	Thu	0.042	0.118	0.356	418	0.722	1
Thu	-	Fri	0.098	0.117	0.837	418	0.403	1
Thu	-	Sat	-0.033	0.122	-0.272	418	0.785	1
Thu	-	Sun	0.084	0.118	0.717	418	0.474	1
Tue	-	Fri	0.096	0.115	0.833	418	0.405	1
Tue	-	Sat	-0.035	0.121	-0.288	418	0.773	1
Tue	-	Sun	0.083	0.117	0.709	418	0.478	1
Tue	-	Wed	-0.044	0.117	-0.373	418	0.71	1

Tue - Thu -0.002 0.120 -0.013 418 0.99 1

4454 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4455

4456 ***Supplementary Table G.17:** Results of generalized linear model for Z-scored

4457 BEG for those with a Normal/Strong SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.023	0.05	-0.075	0.121	0	388	0.467	0.641
Tue - Mon	-0.057	0.182	-0.414	0.3	-0.058	388	-0.314	0.754
Wed - Mon	-0.045	0.182	-0.402	0.312	-0.046	388	-0.249	0.803
Thu - Mon	0.089	0.18	-0.265	0.442	0.09	388	0.493	0.622
Fri - Mon	-6.250e-11	0.189	-0.371	0.371	-6.350e-11	388	-3.315e-10	1
Sat - Mon	-0.215	0.176	-0.561	0.131	-0.218	388	-1.222	0.223
Sun - Mon	-0.116	0.182	-0.475	0.243	-0.118	388	-0.636	0.525

4458 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4459

4460 ***Supplementary Materials Table G.18.:** Results of post-hoc comparisons for

4461 Z-scored BEG for those with a Normal/Strong SOW of weekday only.

Weekday	Difference	SE	t	df	p	$p_{bonferroni}$
Fri - Sat	0.215	0.19	1.132	388	0.258	1
Fri - Sun	0.116	0.196	0.592	388	0.554	1
Mon - Fri	6.25E-11	0.189	3.32E-10	388	1	1
Mon - Sat	0.215	0.176	1.222	388	0.223	1
Mon - Sun	0.116	0.182	0.636	388	0.525	1

Mon	-	Wed	0.045	0.182	0.249	388	0.803	1
Mon	-	Thu	-0.089	0.18	-0.493	388	0.622	1
Mon	-	Tue	0.057	0.182	0.314	388	0.754	1
Sat	-	Sun	-0.099	0.184	-0.539	388	0.591	1
Wed	-	Fri	-0.045	0.195	-0.232	388	0.817	1
Wed	-	Sat	0.17	0.183	0.928	388	0.354	1
Wed	-	Sun	0.071	0.189	0.374	388	0.709	1
Wed	-	Thu	-0.134	0.187	-0.718	388	0.473	1
Thu	-	Fri	0.089	0.193	0.459	388	0.647	1
Thu	-	Sat	0.304	0.181	1.676	388	0.095	1
Thu	-	Sun	0.205	0.188	1.092	388	0.276	1
Tue	-	Fri	-0.057	0.195	-0.292	388	0.771	1
Tue	-	Sat	0.158	0.183	0.864	388	0.388	1
Tue	-	Sun	0.059	0.189	0.312	388	0.755	1
Tue	-	Wed	-0.012	0.188	-0.062	388	0.951	1
Tue	-	Thu	-0.146	0.187	-0.78	388	0.436	1

4462

4463 *Supplementary Table G.19: Results of generalized linear model for Z-scored
 4464 BEG for those with a Normal/Strong SOW of weekday, age, and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.038	0.055	-0.069	0.146	0.000	386	0.698	0.486
Age	0.001	0.004	-0.008	0.009	0.008	386	0.147	0.883
Male - Female	0.073	0.110	-0.142	0.289	0.075	386	0.670	0.503

Tue - Mon	-0.056	0.183	-0.416	0.303	-0.057	386	-0.309	0.758
Wed - Mon	-0.046	0.182	-0.404	0.312	-0.047	386	-0.253	0.801
Thu - Mon	0.096	0.181	-0.259	0.451	0.097	386	0.530	0.596
Fri - Mon	0.008	0.189	-0.365	0.380	0.008	386	0.040	0.968
Sat - Mon	-0.214	0.177	-0.561	0.134	-0.217	386	-1.209	0.227
Sun - Mon	-0.115	0.183	-0.475	0.246	-0.116	386	-0.625	0.532

4465 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4466

4467 ***Supplementary Materials Table G.20:** Results of post-hoc comparisons for
4468 Z-scored BEG for those with a Normal/Strong SOW of weekday, age, and
4469 gender.

Weekday		Difference	SE	t	df	p	p _{bonferroni}	
Fri	-	Sat	0.221	0.191	1.159	386	0.247	1
Fri	-	Sun	0.122	0.197	0.620	386	0.535	1
Mon	-	Fri	-0.008	0.189	-0.040	386	0.968	1
Mon	-	Sat	0.214	0.177	1.209	386	0.227	1
Mon	-	Sun	0.115	0.183	0.625	386	0.532	1
Mon	-	Wed	0.046	0.182	0.253	386	0.801	1
Mon	-	Thu	-0.096	0.181	-0.530	386	0.596	1
Mon	-	Tue	0.056	0.183	0.309	386	0.758	1
Sat	-	Sun	-0.099	0.184	-0.539	386	0.590	1
Wed	-	Fri	-0.054	0.196	-0.274	386	0.785	1
Wed	-	Sat	0.168	0.183	0.915	386	0.361	1
Wed	-	Sun	0.068	0.190	0.361	386	0.718	1

Wed	-	Thu	-0.142	0.188	-0.756	386	0.450	1
Thu	-	Fri	0.088	0.194	0.454	386	0.650	1
Thu	-	Sat	0.310	0.182	1.701	386	0.090	1
Thu	-	Sun	0.210	0.188	1.117	386	0.265	1
Tue	-	Fri	-0.064	0.197	-0.326	386	0.745	1
Tue	-	Sat	0.157	0.183	0.858	386	0.392	1
Tue	-	Sun	0.058	0.190	0.306	386	0.760	1
Tue	-	Wed	-0.010	0.189	-0.055	386	0.956	1
Tue	-	Thu	-0.152	0.188	-0.810	386	0.418	1

4470 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4471

4472 *Supplementary Table G.21: Results of generalized linear model for Z-scored
 4473 BEG for those with a Weak SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	-0.016	0.049	-0.112	0.081	0	420	-0.318	0.751
Tue - Mon	-0.067	0.19	-0.44	0.307	-0.066	420	-0.351	0.726
Wed - Mon	-0.017	0.187	-0.385	0.351	-0.017	420	-0.091	0.927
Thu - Mon	0.338	0.192	-0.039	0.715	0.333	420	1.764	0.078
Fri - Mon	-0.021	0.185	-0.384	0.342	-0.02	420	-0.112	0.911
Sat - Mon	0.221	0.193	-0.159	0.601	0.218	420	1.143	0.254
Sun - Mon	0.074	0.185	-0.29	0.438	0.073	420	0.398	0.691

4474 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4475

4476 ***Supplementary Materials Table G.22:** Results of post-hoc comparisons for
 4477 Z-scored BEG for those with a Weak SOW of weekday only.

Weekday		Weekday	Difference	SE	t	df	p	pbonferroni
Fri	-	Sat	-0.242	0.183	-1.321	420	0.187	1
Fri	-	Sun	-0.094	0.174	-0.541	420	0.589	1
Mon	-	Fri	0.021	0.185	0.112	420	0.911	1
Mon	-	Sat	-0.221	0.193	-1.143	420	0.254	1
Mon	-	Sun	-0.074	0.185	-0.398	420	0.691	1
Mon	-	Wed	0.017	0.187	0.091	420	0.927	1
Mon	-	Thu	-0.338	0.192	-1.764	420	0.078	1
Mon	-	Tue	0.067	0.19	0.351	420	0.726	1
Sat	-	Sun	0.147	0.183	0.803	420	0.423	1
Wed	-	Fri	0.004	0.176	0.02	420	0.984	1
Wed	-	Sat	-0.238	0.185	-1.284	420	0.2	1
Wed	-	Sun	-0.091	0.177	-0.513	420	0.608	1
Wed	-	Thu	-0.355	0.184	-1.933	420	0.054	1
Thu	-	Fri	0.359	0.181	1.981	420	0.048	1
Thu	-	Sat	0.117	0.19	0.617	420	0.538	1
Thu	-	Sun	0.264	0.182	1.455	420	0.147	1
Tue	-	Fri	-0.046	0.179	-0.256	420	0.798	1
Tue	-	Sat	-0.288	0.188	-1.527	420	0.127	1
Tue	-	Sun	-0.14	0.18	-0.779	420	0.436	1
Tue	-	Wed	-0.05	0.182	-0.272	420	0.786	1

Tue - Thu -0.405 0.187 -2.169 420 0.031 0.644

4478 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4479

4480 ***Supplementary Table G.23:** Results of generalized linear model for Z-scored
4481 BEG for those with a Weak SOW of weekday, age, and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.020	0.056	-0.089	0.130	0.000	418	0.362	0.717
Age	0.001	0.004	-0.007	0.010	0.014	418	0.297	0.766
Male - Female	0.152	0.111	-0.067	0.372	0.150	418	1.368	0.172
Tue - Mon	-0.055	0.191	-0.430	0.319	-0.055	418	-0.291	0.771
Wed - Mon	-0.019	0.187	-0.387	0.349	-0.018	418	-0.100	0.921
Thu - Mon	0.342	0.192	-0.034	0.719	0.337	418	1.786	0.075
Fri - Mon	-0.022	0.185	-0.385	0.341	-0.022	418	-0.119	0.906
Sat - Mon	0.227	0.193	-0.153	0.607	0.223	418	1.173	0.242
Sun - Mon	0.065	0.185	-0.300	0.430	0.064	418	0.350	0.726

4482 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4483

4484 ***Supplementary Materials Table G.24.:** Results of post-hoc comparisons for
4485 Z-scored BEG for those with a Weak SOW of weekday, age, and gender.

DOW	Difference	SE	t	df	p	p _{bonferroni}
Fri - Sat	-0.249	0.183	-1.360	418	0.175	1
Fri - Sun	-0.087	0.175	-0.498	418	0.619	1
Mon - Fri	0.022	0.185	0.119	418	0.906	1

Mon	-	Sat	-0.227	0.193	-1.173	418	0.242	1
Mon	-	Sun	-0.065	0.186	-0.350	418	0.726	1
Mon	-	Wed	0.019	0.187	0.100	418	0.921	1
Mon	-	Thu	-0.342	0.192	-1.786	418	0.075	1
Mon	-	Tue	0.055	0.191	0.291	418	0.771	1
Sat	-	Sun	0.162	0.184	0.879	418	0.38	1
Wed	-	Fri	0.003	0.177	0.019	418	0.985	1
Wed	-	Sat	-0.245	0.186	-1.321	418	0.187	1
Wed	-	Sun	-0.084	0.177	-0.472	418	0.637	1
Wed	-	Thu	-0.361	0.184	-1.962	418	0.05	1
Thu	-	Fri	0.364	0.181	2.011	418	0.045	0.944
Thu	-	Sat	0.116	0.190	0.609	418	0.543	1
Thu	-	Sun	0.277	0.182	1.522	418	0.129	1
Tue	-	Fri	-0.033	0.180	-0.186	418	0.852	1
Tue	-	Sat	-0.282	0.189	-1.497	418	0.135	1
Tue	-	Sun	-0.120	0.182	-0.663	418	0.508	1
Tue	-	Wed	-0.037	0.183	-0.201	418	0.841	1
Tue	-	Thu	-0.398	0.187	-2.129	418	0.034	0.710

4486 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4487

4488 ***Supplementary Table G.25:** Results of generalized linear model for Z-scored
 4489 BART for those with a Normal/Strong SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	-0.057	0.051	-0.157	0.044	0	394	-1.107	0.269
Tue - Mon	-0.07	0.187	-0.437	0.297	-0.069	394	-0.375	0.708
Wed - Mon	-0.029	0.187	-0.396	0.338	-0.028	394	-0.154	0.878
Thu - Mon	-0.087	0.184	-0.448	0.275	-0.085	394	-0.47	0.638
Fri - Mon	-0.107	0.192	-0.486	0.271	-0.106	394	-0.558	0.577
Sat - Mon	0.028	0.182	-0.329	0.386	0.028	394	0.155	0.877
Sun - Mon	-0.291	0.188	-0.661	0.08	-0.286	394	-1.542	0.124

4490 $[\ast p < 0.05; \ast\ast p < 0.01, \ast\ast\ast p < 0.001]$

4491

4492 ***Supplementary Materials Table G.26.:** Results of post-hoc comparisons for
4493 Z-scored BART for those with a Normal/Strong SOW of weekday only.

Weekday	-	Weekday	Difference	SE	t	df	p	p _{bonferroni}
Fri	-	Sat	-0.136	0.194	-0.699	394	0.485	1
Fri	-	Sun	0.183	0.2	0.916	394	0.36	1
Mon	-	Fri	0.107	0.192	0.558	394	0.577	1
Mon	-	Sat	-0.028	0.182	-0.155	394	0.877	1
Mon	-	Sun	0.291	0.188	1.542	394	0.124	1
Mon	-	Wed	0.029	0.187	0.154	394	0.878	1
Mon	-	Thu	0.087	0.184	0.47	394	0.638	1
Mon	-	Tue	0.07	0.187	0.375	394	0.708	1
Sat	-	Sun	0.319	0.19	1.679	394	0.094	1
Wed	-	Fri	0.079	0.198	0.396	394	0.692	1
Wed	-	Sat	-0.057	0.188	-0.302	394	0.762	1

Wed	-	Sun	0.262	0.195	1.347	394	0.179	1
Wed	-	Thu	0.058	0.19	0.304	394	0.761	1
Thu	-	Fri	0.021	0.196	0.106	394	0.916	1
Thu	-	Sat	-0.115	0.185	-0.619	394	0.536	1
Thu	-	Sun	0.204	0.192	1.062	394	0.289	1
Tue	-	Fri	0.037	0.198	0.188	394	0.851	1
Tue	-	Sat	-0.098	0.188	-0.522	394	0.602	1
Tue	-	Sun	0.221	0.195	1.134	394	0.257	1
Tue	-	Wed	-0.041	0.193	-0.214	394	0.83	1
Tue	-	Thu	0.017	0.19	0.087	394	0.931	1

4494 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4495

4496 ***Supplementary Table G.27:** Results of generalized linear model for Z-scored
4497 BART for those with a Normal/Strong SOW of weekday, age, and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	-0.098	0.056	-0.208	0.012	0.000	392	-1.758	0.08
Age	-0.001	0.004	-0.010	0.008	-0.013	392	-0.253	0.801
Male - Female	-0.204	0.112	-0.425	0.016	-0.201	392	-1.819	0.07
Tue - Mon	-0.070	0.187	-0.438	0.299	-0.068	392	-0.371	0.711
Wed - Mon	-0.022	0.187	-0.389	0.345	-0.022	392	-0.120	0.904
Thu - Mon	-0.107	0.184	-0.469	0.255	-0.105	392	-0.581	0.562
Fri - Mon	-0.130	0.193	-0.509	0.248	-0.128	392	-0.677	0.499
Sat - Mon	0.027	0.182	-0.331	0.385	0.026	392	0.148	0.883

Sun - Mon -0.293 0.188 -0.664 0.078 -0.288 392 -1.555 0.121

4498 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4499

4500 ***Supplementary Materials Table G.28:** Results of post-hoc comparisons for
4501 Z-scored BART for those with a Normal/Strong SOW of weekday, age, and
4502 gender.

Weekday		Difference	SE	t	df	p	p _{bonferroni}	
Fri	-	Sat	-0.157	0.194	-0.809	392	0.419	1
Fri	-	Sun	0.163	0.201	0.811	392	0.418	1
Mon	-	Fri	0.130	0.193	0.677	392	0.499	1
Mon	-	Sat	-0.027	0.182	-0.148	392	0.883	1
Mon	-	Sun	0.293	0.189	1.555	392	0.121	1
Mon	-	Wed	0.022	0.187	0.120	392	0.904	1
Mon	-	Thu	0.107	0.184	0.581	392	0.562	1
Mon	-	Tue	0.070	0.187	0.371	392	0.711	1
Sat	-	Sun	0.320	0.190	1.688	392	0.092	1
Wed	-	Fri	0.108	0.199	0.542	392	0.588	1
Wed	-	Sat	-0.049	0.188	-0.263	392	0.793	1
Wed	-	Sun	0.271	0.194	1.393	392	0.164	1
Wed	-	Thu	0.085	0.191	0.444	392	0.658	1
Thu	-	Fri	0.023	0.196	0.119	392	0.905	1
Thu	-	Sat	-0.134	0.186	-0.721	392	0.471	1
Thu	-	Sun	0.186	0.192	0.968	392	0.333	1

Tue	-	Fri	0.061	0.200	0.305	392	0.761	1
Tue	-	Sat	-0.096	0.188	-0.513	392	0.608	1
Tue	-	Sun	0.223	0.194	1.150	392	0.251	1
Tue	-	Wed	-0.047	0.193	-0.245	392	0.807	1
Tue	-	Thu	0.037	0.191	0.196	392	0.845	1

4503 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4504

4505 ***Supplementary Table G.29:** Results of generalized linear model for Z-scored
 4506 BART for those with a Weak SOW of weekday only.

95% Confidence Interval									
Effect	Estimate	SE	Lower	Upper	β	df	t	p	
(Intercept)	0.046	0.048	-0.048	0.139	0	421	0.963	0.336	
Tue - Mon	-0.164	0.183	-0.524	0.196	-0.167	421	-0.894	0.372	
Wed - Mon	0.178	0.181	-0.179	0.534	0.181	421	0.981	0.327	
Thu - Mon	0.133	0.186	-0.231	0.498	0.136	421	0.719	0.472	
Fri - Mon	0.187	0.179	-0.165	0.538	0.19	421	1.045	0.297	
Sat - Mon	-0.047	0.187	-0.414	0.321	-0.047	421	-0.249	0.803	
Sun - Mon	-0.072	0.179	-0.425	0.28	-0.074	421	-0.403	0.687	

4507 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4508

4509 ***Supplementary Materials Table G.30:** Results of post-hoc comparisons for
 4510 Z-scored BART for those with a Weak SOW of weekday only.

Weekday	Weekday	Difference	SE	t	df	p	$p_{\text{bonferroni}}$	
Fri	-	Sat	0.233	0.177	1.318	421	0.188	1

Fri	-	Sun	0.259	0.169	1.534	421	0.126	1
Mon	-	Fri	-0.187	0.179	-1.045	421	0.297	1
Mon	-	Sat	0.047	0.187	0.249	421	0.803	1
Mon	-	Sun	0.072	0.179	0.403	421	0.687	1
Mon	-	Wed	-0.178	0.181	-0.981	421	0.327	1
Mon	-	Thu	-0.133	0.186	-0.719	421	0.472	1
Mon	-	Tue	0.164	0.183	0.894	421	0.372	1
Sat	-	Sun	0.026	0.178	0.144	421	0.885	1
Wed	-	Fri	-0.009	0.171	-0.052	421	0.958	1
Wed	-	Sat	0.224	0.18	1.25	421	0.212	1
Wed	-	Sun	0.25	0.171	1.458	421	0.145	1
Wed	-	Thu	0.044	0.178	0.25	421	0.803	1
Thu	-	Fri	-0.053	0.175	-0.304	421	0.761	1
Thu	-	Sat	0.18	0.184	0.98	421	0.328	1
Thu	-	Sun	0.206	0.176	1.169	421	0.243	1
Tue	-	Fri	-0.351	0.173	-2.027	421	0.043	0.909
Tue	-	Sat	-0.117	0.182	-0.646	421	0.519	1
Tue	-	Sun	-0.092	0.174	-0.528	421	0.598	1
Tue	-	Wed	-0.342	0.176	-1.947	421	0.052	1
Tue	-	Thu	-0.297	0.18	-1.653	421	0.099	1

4511 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4512

4513 *Supplementary Table G.31: Results of generalized linear model for Z-scored
 4514 BART for those with a Weak SOW of weekday, age, and gender.

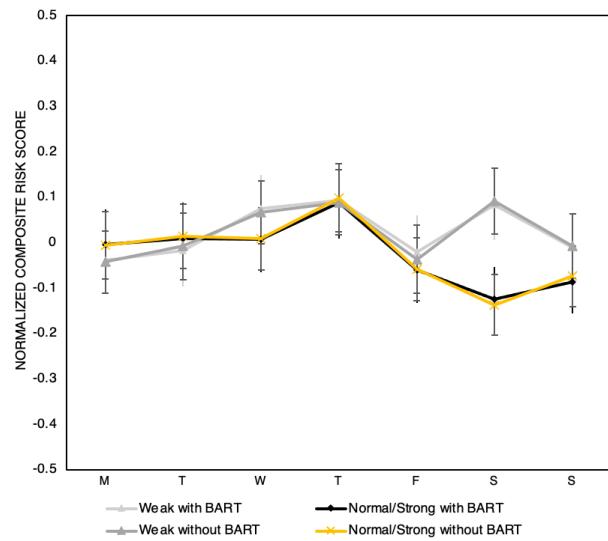
95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.072	0.054	-0.034	0.178	0.000	419	1.337	0.182
Age	-0.006	0.004	-0.014	0.002	-0.071	419	-1.455	0.147
Male - Female	0.111	0.108	-0.101	0.323	0.113	419	1.027	0.305
Tue - Mon	-0.139	0.184	-0.500	0.222	-0.141	419	-0.756	0.450
Wed - Mon	0.169	0.181	-0.187	0.525	0.172	419	0.935	0.350
Thu - Mon	0.143	0.185	-0.221	0.508	0.146	419	0.773	0.440
Fri - Mon	0.192	0.179	-0.160	0.543	0.195	419	1.073	0.284
Sat - Mon	-0.036	0.187	-0.404	0.331	-0.037	419	-0.193	0.847
Sun - Mon	-0.086	0.179	-0.438	0.267	-0.087	419	-0.477	0.633

4515 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4516

4517 ***Supplementary Materials Table G.32.:** Results of post-hoc comparisons for
4518 Z-scored BART for those with a Weak SOW of weekday, age, and gender.


Weekday		Difference	SE	t	df	p	p _{bonferroni}	
Fri	-	Sat	0.228	0.177	1.288	419	0.199	1
Fri	-	Sun	0.277	0.169	1.641	419	0.102	1
Mon	-	Fri	-0.192	0.179	-1.073	419	0.284	1
Mon	-	Sat	0.036	0.187	0.193	419	0.847	1
Mon	-	Sun	0.086	0.179	0.477	419	0.633	1
Mon	-	Wed	-0.169	0.181	-0.935	419	0.350	1
Mon	-	Thu	-0.143	0.185	-0.773	419	0.440	1
Mon	-	Tue	0.139	0.184	0.756	419	0.450	1

Sat	-	Sun	0.050	0.178	0.278	419	0.781	1
Wed	-	Fri	-0.022	0.171	-0.130	419	0.896	1
Wed	-	Sat	0.205	0.180	1.144	419	0.253	1
Wed	-	Sun	0.255	0.171	1.488	419	0.137	1
Wed	-	Thu	0.026	0.178	0.147	419	0.883	1
Thu	-	Fri	-0.048	0.175	-0.276	419	0.783	1
Thu	-	Sat	0.179	0.184	0.977	419	0.329	1
Thu	-	Sun	0.229	0.176	1.299	419	0.195	1
Tue	-	Fri	-0.330	0.173	-1.908	419	0.057	1
Tue	-	Sat	-0.103	0.182	-0.566	419	0.572	1
Tue	-	Sun	-0.053	0.175	-0.305	419	0.761	1
Tue	-	Wed	-0.308	0.176	-1.748	419	0.081	1
Tue	-	Thu	-0.282	0.180	-1.568	419	0.118	1

4519 $[\ast p < 0.05; \ast\ast p < 0.01, \ast\ast\ast p < 0.001]$

4520

4521 **Supplementary Material Figure J:** Comparison of risk score calculated as in
 4522 main text and calculated in the same manner but without inclusion of the BART
 4523 score. Error bars represent \pm SE.

4524

4525

4526 ***Supplementary Table J.1:** Results of generalized linear model for Z-scored composite risk score without BART for those with a Normal/Strong SOW of weekday only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	-0.022	0.028	-0.078	0.034	0	394	-0.783	0.434
Tue - Mon	0.02	0.104	-0.184	0.224	0.035	394	0.191	0.848
Wed - Mon	0.014	0.104	-0.19	0.219	0.025	394	0.139	0.889
Thu - Mon	0.105	0.102	-0.097	0.306	0.184	394	1.022	0.307
Fri - Mon	-0.052	0.107	-0.263	0.158	-0.092	394	-0.49	0.625
Sat - Mon	-0.131	0.101	-0.33	0.068	-0.23	394	-1.294	0.196
Sun - Mon	-0.068	0.105	-0.274	0.138	-0.119	394	-0.645	0.519

4529 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4530

4531 ***Supplementary Materials Table J.2.:** Results of post-hoc comparisons for Z-scored composite risk score without BART for those with a Normal/Strong SOW of weekday only.

4534

Weekday	-	Weekday	Difference	SE	t	df	p	pbonferroni
Fri	-	Sat	0.078	0.108	0.727	394	0.468	1
Fri	-	Sun	0.015	0.111	0.137	394	0.891	1
Mon	-	Fri	0.052	0.107	0.49	394	0.625	1
Mon	-	Sat	0.131	0.101	1.294	394	0.196	1
Mon	-	Sun	0.068	0.105	0.645	394	0.519	1
Mon	-	Wed	-0.014	0.104	-0.139	394	0.889	1
Mon	-	Thu	-0.105	0.102	-1.022	394	0.307	1
Mon	-	Tue	-0.02	0.104	-0.191	394	0.848	1
Sat	-	Sun	-0.063	0.106	-0.598	394	0.55	1
Wed	-	Fri	0.067	0.11	0.606	394	0.545	1
Wed	-	Sat	0.145	0.105	1.389	394	0.166	1
Wed	-	Sun	0.082	0.108	0.759	394	0.448	1
Wed	-	Thu	-0.09	0.106	-0.852	394	0.395	1
Thu	-	Fri	0.157	0.109	1.441	394	0.151	1
Thu	-	Sat	0.235	0.103	2.282	394	0.023	0.483
Thu	-	Sun	0.172	0.107	1.613	394	0.108	1
Tue	-	Fri	0.072	0.11	0.655	394	0.513	1
Tue	-	Sat	0.151	0.105	1.441	394	0.151	1
Tue	-	Sun	0.087	0.108	0.809	394	0.419	1
Tue	-	Wed	0.005	0.107	0.05	394	0.96	1
Tue	-	Thu	-0.085	0.106	-0.801	394	0.423	1

4535 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4536

4537 ***Supplementary Table J.3:** Results of generalized linear model for Z-scored
4538 composite risk score without BART for those with a Normal/Strong SOW of
4539 weekday, age, and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.053	0.029	-0.005	0.110	0.000	392	1.810	0.071
Age ***	-0.009	0.002	-0.014	-0.005	-0.189	392	-4.000	< .001
Male – Female ***	0.367	0.059	0.252	0.482	0.646	392	6.265	< .001
Tue - Mon	-0.031	0.098	-0.223	0.161	-0.055	392	-0.319	0.750
Wed - Mon	-0.026	0.097	-0.217	0.166	-0.045	392	-0.263	0.793
Thu - Mon	0.125	0.096	-0.063	0.314	0.221	392	1.305	0.193
Fri - Mon	-0.011	0.100	-0.209	0.186	-0.020	392	-0.114	0.909
Sat - Mon	-0.162	0.095	-0.349	0.024	-0.286	392	-1.712	0.088
Sun - Mon	-0.092	0.098	-0.285	0.101	-0.162	392	-0.938	0.349

4540 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4541

4542 ***Supplementary Materials Table J.4:** Results of post-hoc comparisons for Z-
4543 scored composite risk score without BART for those with a Normal/Strong SOW
4544 of weekday, age, and gender.

Weekday		Difference	SE	t	df	p	$p_{\text{bonferroni}}$	
Fri	-	Sat	0.151	0.101	1.489	392	0.137	1.000
Fri	-	Sun	0.081	0.105	0.772	392	0.441	1.000
Mon	-	Fri	0.011	0.100	0.114	392	0.909	1.000

Mon	-	Sat	0.162	0.095	1.712	392	0.088	1.000
Mon	-	Sun	0.092	0.098	0.937	392	0.349	1.000
Mon	-	Wed	0.026	0.097	0.263	392	0.793	1.000
Mon	-	Thu	-0.125	0.096	-1.305	392	0.193	1.000
Mon	-	Tue	0.031	0.098	0.319	392	0.750	1.000
Sat	-	Sun	-0.070	0.099	-0.711	392	0.478	1.000
Wed	-	Fri	-0.014	0.104	-0.136	392	0.892	1.000
Wed	-	Sat	0.137	0.098	1.397	392	0.163	1.000
Wed	-	Sun	0.067	0.101	0.657	392	0.512	1.000
Wed	-	Thu	-0.151	0.099	-1.519	392	0.130	1.000
Thu	-	Fri	0.137	0.102	1.340	392	0.181	1.000
Thu	-	Sat	0.288	0.097	2.972	392	0.003	0.066
Thu	-	Sun	0.217	0.100	2.171	392	0.031	0.641
Tue	-	Fri	-0.020	0.104	-0.190	392	0.850	1.000
Tue	-	Sat	0.131	0.098	1.340	392	0.181	1.000
Tue	-	Sun	0.061	0.101	0.601	392	0.548	1.000
Tue	-	Wed	-0.006	0.100	-0.056	392	0.955	1.000
Tue	-	Thu	-0.157	0.100	-1.573	392	0.116	1.000

4545 $[\ast p < 0.05; \ast\ast p < 0.01, \ast\ast\ast p < 0.001]$

4546

4547 ***Supplementary Table J.5:** Results of generalized linear model for Z-scored
 4548 composite risk score without BART for those with a Weak SOW of weekday
 4549 only.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.022	0.029	-0.035	0.078	0	421	0.752	0.452
Tue - Mon	0.034	0.11	-0.182	0.251	0.058	421	0.309	0.757
Wed - Mon	0.109	0.109	-0.105	0.324	0.186	421	1.005	0.315
Thu - Mon	0.131	0.111	-0.088	0.35	0.223	421	1.174	0.241
Fri - Mon	0.006	0.107	-0.205	0.217	0.01	421	0.055	0.956
Sat - Mon	0.134	0.112	-0.087	0.355	0.227	421	1.189	0.235
Sun - Mon	0.035	0.108	-0.177	0.246	0.059	421	0.321	0.749

4550 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4551

4552 ***Supplementary Materials Table J.6:** Results of post-hoc comparisons for Z-scored composite risk score without BART for those with a Weak SOW of
 4553 weekday only.

Weekday	-	Weekday	Difference	SE	t	df	p	$p_{\text{bonferroni}}$
Fri	-	Sat	-0.128	0.106	-1.201	421	0.231	1
Fri	-	Sun	-0.029	0.101	-0.282	421	0.778	1
Mon	-	Fri	-0.006	0.107	-0.055	421	0.956	1
Mon	-	Sat	-0.134	0.112	-1.189	421	0.235	1
Mon	-	Sun	-0.035	0.108	-0.321	421	0.749	1
Mon	-	Wed	-0.109	0.109	-1.005	421	0.315	1
Mon	-	Thu	-0.131	0.111	-1.174	421	0.241	1
Mon	-	Tue	-0.034	0.11	-0.309	421	0.757	1
Sat	-	Sun	0.099	0.107	0.928	421	0.354	1

Wed	-	Fri	0.104	0.103	1.009	421	0.314	1
Wed	-	Sat	-0.024	0.108	-0.224	421	0.823	1
Wed	-	Sun	0.075	0.103	0.727	421	0.468	1
Wed	-	Thu	-0.021	0.107	-0.2	421	0.841	1
Thu	-	Fri	0.125	0.105	1.186	421	0.236	1
Thu	-	Sat	-0.003	0.11	-0.025	421	0.98	1
Thu	-	Sun	0.096	0.106	0.911	421	0.363	1
Tue	-	Fri	0.028	0.104	0.271	421	0.787	1
Tue	-	Sat	-0.1	0.109	-0.913	421	0.362	1
Tue	-	Sun	-4.848e-4	0.104	-0.005	421	0.996	1
Tue	-	Wed	-0.075	0.105	-0.715	421	0.475	1
Tue	-	Thu	-0.097	0.108	-0.895	421	0.371	1

4555 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4556

4557 ***Supplementary Table J.7:** Results of generalized linear model for Z-scored
 4558 composite risk score without BART for those with a Weak SOW of weekday,
 4559 age, and gender.

95% Confidence Interval

Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	0.094	0.031	0.033	0.155	0.000	419	3.018	0.003
Age ***	-0.009	0.002	-0.013	-0.004	-0.172	419	-3.668	< .001
Male - Female ***	0.306	0.062	0.184	0.429	0.521	419	4.920	< .001
Tue - Mon	0.085	0.106	-0.124	0.293	0.144	419	0.799	0.425
Wed - Mon	0.094	0.105	-0.111	0.300	0.160	419	0.902	0.368

Thu - Mon	0.150	0.107	-0.060	0.361	0.256	419	1.405	0.161
Fri - Mon	0.013	0.103	-0.190	0.215	0.022	419	0.123	0.902
Sat - Mon	0.155	0.108	-0.057	0.368	0.265	419	1.440	0.151
Sun - Mon	0.006	0.104	-0.198	0.209	0.009	419	0.054	0.957

4560 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

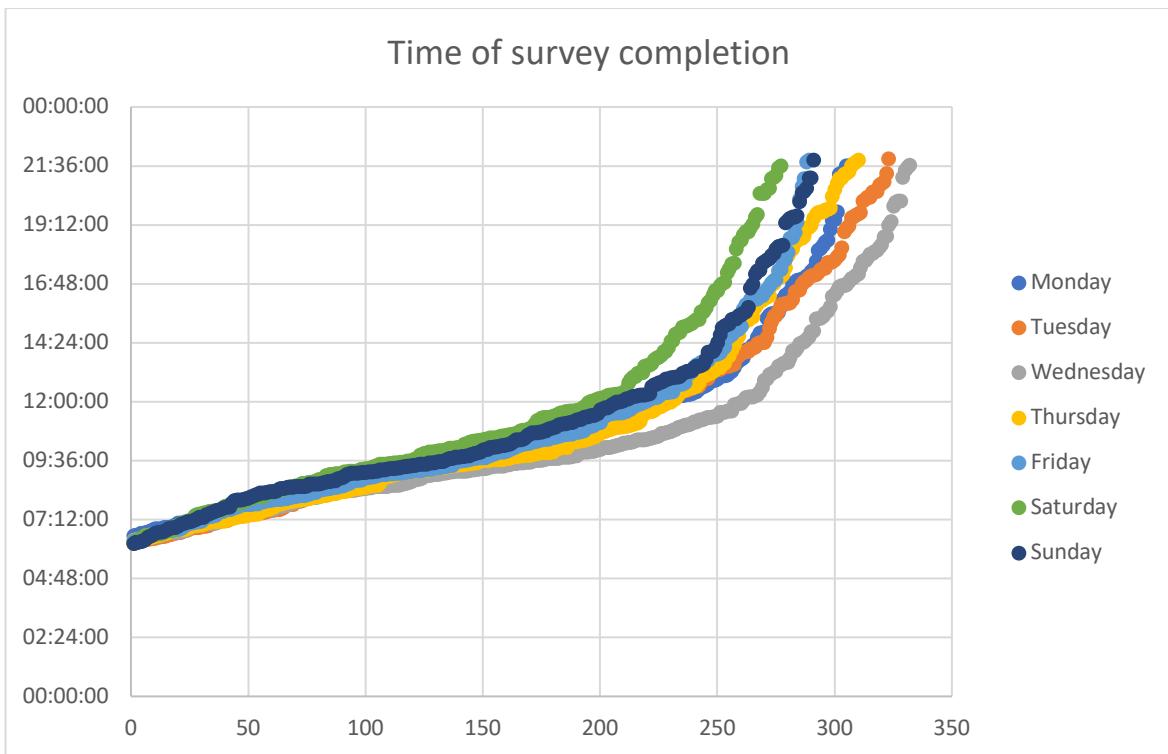
4561

4562 ***Supplementary Materials Table J.8.: Results of post-hoc comparisons for Z-scored composite risk score for those with a Weak SOW of weekday, age, and gender.**

Weekday		Difference	SE	t	df	p	p _{bonferroni}	
Fri	-	Sat	-0.143	0.102	-1.398	419	0.163	1
Fri	-	Sun	0.007	0.098	0.073	419	0.942	1
Mon	-	Fri	-0.013	0.103	-0.123	419	0.902	1
Mon	-	Sat	-0.155	0.108	-1.440	419	0.151	1
Mon	-	Sun	-0.006	0.104	-0.054	419	0.957	1
Mon	-	Wed	-0.094	0.105	-0.902	419	0.368	1
Mon	-	Thu	-0.150	0.107	-1.405	419	0.161	1
Mon	-	Tue	-0.085	0.106	-0.799	419	0.425	1
Sat	-	Sun	0.150	0.103	1.459	419	0.145	1
Wed	-	Fri	0.082	0.099	0.828	419	0.408	1
Wed	-	Sat	-0.061	0.104	-0.590	419	0.556	1
Wed	-	Sun	0.089	0.099	0.897	419	0.370	1
Wed	-	Thu	-0.056	0.103	-0.546	419	0.585	1
Thu	-	Fri	0.138	0.101	1.362	419	0.174	1

Thu	-	Sat	-0.005	0.106	-0.048	419	0.962	1
Thu	-	Sun	0.145	0.102	1.423	419	0.155	1
Tue	-	Fri	0.072	0.100	0.720	419	0.472	1
Tue	-	Sat	-0.071	0.105	-0.675	419	0.500	1
Tue	-	Sun	0.079	0.101	0.784	419	0.433	1
Tue	-	Wed	-0.010	0.102	-0.094	419	0.925	1
Tue	-	Thu	-0.066	0.104	-0.632	419	0.528	1

4565 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]


4566

4567 **Paper 3**

4568 **S1. Demographic information**

Day of Week	N		Number invited	Percentage of invited who completed	Number failing attention checks (removed for data analyses)
				successfully	
Monday	313		418	74.88%	4
Tuesday	323		418	77.27%	3
Wednesday	332		417	79.62%	5
Thursday	311		418	74.40%	4
Friday	291		418	69.62%	3
Saturday	277		418	66.27%	4
Sunday	291		413	70.46%	0

4569 To provide information on when the survey was taken over the course of the
4570 day, the course of completion over the time range of the survey being open to
4571 access (06:00 to 21:40), please see below:

4572

4573 To test for significance in sample sizes across days of the week, Chi square
 4574 goodness of fit test was used: $\chi^2(6, N = 2134) = 7.62, p = 0.27$ and revealed
 4575 no significant differences.

4576

Day of the week	Female	Male	Non-binary / third gender	Prefer not to say
Monday	198	114	1	0
Tuesday	191	129	3	0
Wednesday	188	138	5	1
Thursday	183	121	6	1
Friday	165	121	4	1
Saturday	161	115	1	0
Sunday	180	108	3	0

4577

4578 To test for a difference in gender proportions across days of the week, a
4579 contingency table and Chi-square test was used [$\chi^2(18, N = 2127)$
4580 = 13.98, $p = 0.73$] and revealed no significant differences.

4581

Day of week	Average Age	Age Range	Standard Error
Monday	42.74	19-71	0.7060
Tuesday	42.98	18-80	0.7776
Wednesday	41.64	19-88	0.7462
Thursday	42.57	18-86	0.7753
Friday	41.75	19-74	0.7904
Saturday	42.5	20-79	0.7825
Sunday	43.93	21-78	0.8387

4582 To test for difference in age across days of the week, ANOVA was used [$F(6,$
4583 $1086) = 0.99, p = 0.34$] and revealed no significant differences.

4584

4585 **S2. Main Analyses – NHS Link Click**

95% Confidence Interval						
Predictor	Estimate	Lower	Upper	SE	Z	p
Intercept	-0.974	-1.379	-0.569	0.207	-4.711	< .001
Day of week:						
Tuesday	-	-0.018	-0.356	0.320	0.172	-0.102
Monday						0.919
Wednesday	-	0.000	-0.336	0.336	0.171	0.002
Monday						0.998

Thursday	-	0.043	-0.296	0.383	0.173	0.250	0.802
Monday							
Friday	-	-0.230	-0.586	0.127	0.182	-1.262	0.207
Monday							
Saturday	-	-0.232	-0.594	0.129	0.184	-1.260	0.208
Monday							
Sunday	-	0.046	-0.298	0.391	0.176	0.263	0.793
Monday							
Age		0.007	0.000	0.014	0.004	1.997	0.046*
Children		-0.070	-0.174	0.033	0.053	-1.329	0.184
Gender							
Male	-	-0.234	-0.428	-0.041	0.099	-2.370	0.018*
Female							
Non-binary /							
third gender -	-0.248	-1.195	0.699	0.483	-0.514	0.607	
Female							
Prefer not to say – Female	1.529	-0.883	3.940	1.230	1.243	0.214	

Note. Estimates represent the log odds of "clicked = 1" vs. "clicked = 0"

4586 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4587

4588 S3. Main Analyses – NHS Link Time

95% Confidence Interval

Predictor	Estimate	SE	Lower	Upper	t	p
Intercept ^a	26.100	5.273	15.759	36.440	4.950	< .001
Day of week:						
Tuesday	-	-0.383	4.419	-9.049	8.283	-0.087
Monday						

Wednesday – Monday	3.349	4.394	-5.268	11.966	0.762	0.446
Thursday – Monday	0.251	4.466	-8.506	9.008	0.056	0.955
Friday – Monday	-6.064	4.541	-14.969	2.842	-1.335	0.182
Saturday – Monday	-4.965	4.605	-13.996	4.066	-1.078	0.281
Sunday – Monday	3.702	4.537	-5.197	12.600	0.816	0.415
Age	0.234	0.091	0.056	0.412	2.581	0.010*
Children	-0.133	1.307	-2.696	2.430	-0.102	0.919
Gender						
Male – Female	-2.454	2.483	-7.324	2.415	-0.988	0.323
Non-binary / third gender – Female	10.323	11.804	-12.826	33.472	0.875	0.382
Prefer not to say – Female	24.970	32.199	-38.176	88.115	0.775	0.438

^a Represents reference level

4589 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4590

4591 S4. Main Analyses – Sorting Quiz Score

95% Confidence Interval

Predictor	Estimate	SE	Lower	Upper	t	p
Intercept ^a	8.374	0.152	8.076	8.672	55.084	<.001
Day of week:						
Tuesday – Monday	-0.141	0.127	-0.391	0.109	-1.106	0.269

Wednesday – Monday	–	-0.150	0.127	-0.399	0.098	-1.186	0.236
Thursday – Monday	–	-0.142	0.129	-0.394	0.111	-1.102	0.271
Friday – Monday	–	-0.039	0.131	-0.296	0.218	-0.300	0.764
Saturday – Monday	–	-0.050	0.133	-0.311	0.210	-0.380	0.704
Sunday – Monday	–	-0.093	0.131	-0.350	0.163	-0.713	0.476
Age		-0.014	0.003	-0.019	-0.008	-5.179	< .001***
Children		0.018	0.038	-0.056	0.092	0.487	0.626
Gender							
Male – Female	–	-0.049	0.072	-0.189	0.092	-0.680	0.497
Non-binary / third gender – Female	–	-0.714	0.340	-1.381	-0.046	-2.097	0.036*
Prefer not to say – Female	–	-0.425	0.928	-2.245	1.396	-0.457	0.647

^a Represents reference level

4592 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4593

4594 S5. Main Analyses – Sorting Quiz Time

95% Confidence Interval

Predictor	Estimate	SE	Lower	Upper	t	p	
Intercept ^a	56.398	6.629	43.398	69.398	8.508	< .001	
Day of week:							
Tuesday – Monday	–	3.203	5.556	-7.692	14.098	0.577	0.564

Wednesday – Monday	1.439	5.524	-9.395	12.272	0.261	0.795
Thursday – Monday	-7.796	5.614	-18.806	3.213	-1.389	0.165
Friday – Monday	-3.763	5.709	-14.959	7.432	-0.659	0.510
Saturday – Monday	-2.307	5.790	-13.661	9.047	-0.398	0.690
Sunday – Monday	-5.099	5.704	-16.286	6.087	-0.894	0.371
Age	0.384	0.114	0.160	0.608	3.365	< .001***
Children	-1.836	1.643	-5.057	1.386	-1.118	0.264
Gender						
Male – Female	1.799	3.122	-4.323	7.921	0.576	0.564
Non-binary / third gender – Female	-1.849	14.840	-30.952	27.254	-0.125	0.901
Prefer not to say – Female	-20.543	40.481	-99.928	58.843	-0.508	0.612

^a Represents reference level

4595 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4596

4597 S6. Main Analyses – Knowledge Quiz Score

95% Confidence Interval

Predictor	Estimate	SE	Lower	Upper	t	p
Intercept ^a	3.242	0.132	2.983	3.501	24.550	< .001
Day of week:						
Tuesday – Monday	-0.184	0.111	-0.401	0.033	-1.666	0.096

Wednesday – Monday	–	-0.050	0.110	-0.266	0.166	-0.457	0.648
Thursday – Monday	–	-0.016	0.112	-0.235	0.204	-0.141	0.888
Friday – Monday	–	-0.166	0.114	-0.389	0.057	-1.464	0.143
Saturday – Monday	–	-0.007	0.115	-0.234	0.219	-0.064	0.949
Sunday – Monday	–	-0.042	0.114	-0.265	0.181	-0.369	0.712
Age		-0.007	0.002	-0.011	-0.002	-3.025	0.003**
Children		-0.089	0.033	-0.153	-0.025	-2.724	0.007**
Gender							
Male	–	-0.106	0.062	-0.228	0.016	-1.711	0.087
Female							
Non-binary / third gender – Female		0.537	0.296	-0.043	1.116	1.815	0.070
Prefer not to say – Female		0.857	0.806	-0.724	2.439	1.063	0.288

^a Represents reference level

4598 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4599

4600 S7. Main Analyses – Knowledge Quiz Time

95% Confidence Interval

Predictor	Estimate	SE	Lower	Upper	t	p	
Intercept ^a	101.912	8.009	86.206	117.618	12.725	< .001	
Day of week:							
Tuesday – Monday	–	2.703	6.712	-10.460	15.866	0.403	0.687

Wednesday – Monday	-2.468	6.674	-15.556	10.620	-0.370	0.712
Thursday – Monday	-10.673	6.782	-23.974	2.628	-1.574	0.116
Friday – Monday	-0.613	6.897	-12.913	14.139	0.089	0.929
Saturday – Monday	-4.021	6.995	-9.696	17.739	0.575	0.565
Sunday – Monday	-1.517	6.892	-15.032	11.998	-0.220	0.826
Age	0.520	0.138	0.250	0.791	3.772	< .001***
Children	-2.913	1.985	-6.805	0.979	-1.468	0.142
Gender						
Male – Female	-2.844	3.772	-10.241	4.552	-0.754	0.451
Non-binary / third gender – Female	-5.950	17.929	-41.110	29.210	-0.332	0.740
Prefer not to say – Female	-22.430	48.906	-118.339	73.478	-0.459	0.647

^a Represents reference level

4601 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4602

4603 S8. Exploratory Analyses – Preferred One Shot

Proportions

Level	Count	Proportion
Monday	437	0.205
Tuesday	104	0.049

Wednesday	173	0.081
Thursday	67	0.031
Friday	148	0.069
Saturday	778	0.365
Sunday	427	0.200

χ^2 Goodness of Fit

χ^2	df	p
1296	6	< .001

4604

Contingency Tables

*Note row is day of the week response was given on, column is stated preferred response

Day of week	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Total
Monday	71	16	19	10	21	108	68	313
Tuesday	54	21	23	12	26	114	71	321
Wednesday	64	19	31	10	26	117	65	332
Thursday	69	13	26	11	24	115	52	310
Friday	62	5	21	9	21	120	53	291
Saturday	73	16	23	3	16	101	45	277
Sunday	44	14	30	12	14	103	73	290
Total	437	104	173	67	148	778	427	2134

χ^2 Tests

	Value	df	p
χ^2	46.61	36	0.111
N	2134		

4605

4606 **S9. Exploratory Analyses – Preferred Repeated**

Level	Count	Proportion
Monday	1059	0.498
Tuesday	96	0.045
Wednesday	102	0.048
Thursday	43	0.020
Friday	100	0.047
Saturday	467	0.220
Sunday	260	0.122

χ^2 Goodness of Fit

χ^2	df	p
2608	6	< .001

4607

Contingency Tables

*Note row is day of the week response was given on, column is stated preferred response

Day of week	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Total
Monday	166	12	13	5	12	70	33	311
Tuesday	150	24	16	6	18	65	44	323
Wednesday	154	23	12	5	20	77	40	331
Thursday	154	5	18	9	20	65	35	306
Friday	155	10	16	4	10	60	36	291
Saturday	142	9	14	5	11	61	35	277
Sunday	138	13	13	9	9	69	37	288
Total	1059	96	102	43	100	467	260	2127

χ^2 Tests

	Value	df	p
χ^2	38.51	36	0.357
N	2127		

4608

4609 S10. Exploratory Analyses – SOEP

Model
Coefficients -
SOEP G

Predictor	Estimate	SE	95% Confidence Interval		t	p
			Lower	Upper		
Intercept ^a	4.502	0.145	4.218	4.785	31.12	< .001

Day of week:

Tuesday	–	0.21	0.203	-0.189	0.608	1.032	0.302
Monday							
Wednesday	–	0.001	0.202	-0.394	0.397	0.007	0.994
Monday							
Thursday	–	-0.277	0.205	-0.678	0.125	-1.35	0.177
Monday							
Friday	–	0.021	0.208	-0.388	0.429	0.1	0.921
Monday							
Saturday	–	-0.39	0.211	-0.804	0.024	-1.846	0.065
Monday							
Sunday	–	-0.457	0.208	-0.866	-0.048	-2.193	0.028*
Monday							

^a Represents
reference
level

4610 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

95% Confidence Interval

Predictor	Estimate	SE	Lower	Upper	t	p
Intercept ^a	5.306	0.236	4.843	5.768	22.487	< .001
Day of week:						
Tuesday	–	0.190	0.198	-0.198	0.578	0.959
Monday						
Wednesday	–	-0.085	0.197	-0.470	0.301	-0.431
Monday						
Thursday	–	-0.319	0.200	-0.710	0.073	-1.594
Monday						
Friday	–	-0.065	0.203	-0.463	0.333	-0.320
Monday						
Saturday	–	-0.438	0.206	-0.842	-0.034	-2.126
Monday						

Sunday	-	-0.424	0.203	-0.822	-0.026	-2.089	0.037*
Monday							
Age		-0.029	0.004	-0.037	-0.021	-7.024	< .001***
Children		0.135	0.058	0.021	0.250	2.317	0.021
Gender							
Male	-	0.919	0.111	0.701	1.137	8.266	< .001***
Female							
Non-binary / third gender –		0.078	0.528	-0.958	1.114	0.148	0.883
Female							
Prefer not to say – Female		1.152	1.441	-1.673	3.977	0.800	0.424

^a Represents
reference
level

4611 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4612

4613 S11. Exploratory Analyses – Busyness

4614

One-Way ANOVA (Welch's)

	F	df1	df2	p
rating	262.6	6	6647	< .001

4615

Group Descriptives – Busyness ratings per day of the week

	day	N (# responses)	Mean Rating	SD	SE
Rating of busyness on...	Monday	2138	2.629	1.132	0.024
	Tuesday	2138	2.646	1.101	0.024
	Wednesday	2138	2.7	1.094	0.024
	Thursday	2138	2.673	1.094	0.024
	Friday	2138	2.616	1.121	0.024
	Saturday	2138	2.056	1.203	0.026
	Sunday	2138	1.642	1.194	0.026

4616

4617 Post Hoc Tests

Games-Howell Post-Hoc Test – rating

		Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Monday	Mean difference	—	-0.01731	-0.07109	-0.04443	0.0131	0.5725	0.9864
	t-value	—	-0.5068	-2.088	-1.3054	0.3801	16.03	27.73
	df	—	4271	4269	4269	4274	4258	4262
	p-value	—	0.999	0.36	0.85	1	< .001 ***	< .001 ***
Tuesday	Mean difference	—	-0.05379	-0.02713	0.0304	0.5898	1.0037	
	t-value	—	-1.602	-0.8082	0.8946	16.72	28.58	
	df	—	4274	4274	4273	4241	4246	
	p-value	—	0.681	0.984	0.973	< .001 ***	< .001 ***	
Wednesday	Mean difference	—	0.02666	0.08419	0.6436	1.0575		
	t-value	—	0.7967	2.4848	18.3	30.19		
	df	—	4274	4272	4236	4242		

		p-value	—	0.985	0.165	< .001***	< .001***
Thursday	Mean difference		—	0.05753	0.6169	1.0309	
	t-value		—	1.6984	17.55	29.44	
	df		—	4271	4236	4242	
	p-value		—	0.617	< .001***	< .001***	
Friday	Mean difference		—	0.5594	0.9733		
	t-value		—	15.73	27.48		
	df		—	4253	4257		
	p-value		—	< .001	< .001***		
Saturday	Mean difference		—	0.4139			
	t-value		—	11.29			
	df		—	4274			
	p-value		—	< .001***			
Sunday	Mean difference		—				
	t-value		—				
	df		—				
	p-value		—				

Note. * p < .05, ** p < .01, *** p < .001

4618

4619 S12. Exploratory Analyses – TIPI

TIPI – Extroversion

95%
Confidence
Interval

Predictor	Estimate	SE	Lower	Upper	t	p
Intercept ^a	3.229	0.085	3.062	3.396	37.975	< .001
Day of week:						
Tuesday – Monday	0.104	0.119	-0.13	0.337	0.869	0.385
Wednesday – Monday	0.278	0.118	0.046	0.511	2.35	0.019**
Thursday – Monday	0.179	0.12	-0.057	0.415	1.489	0.137
Friday – Monday	0.181	0.123	-0.059	0.421	1.479	0.139
Saturday – Monday	-0.034	0.124	-0.277	0.209	-0.276	0.783
Sunday – Monday	-0.018	0.122	-0.258	0.222	-0.146	0.884

^a Represents
reference
level

4620 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4621

4622

Tipi – Extroversion

95% Confidence Interval						
Predictor	Estimate	SE	Lower	Upper	t	p
Intercept ^a	3.127	0.141	2.851	3.404	22.149	< .001
Day of week:						
Tuesday – Monday	0.124	0.118	-0.108	0.357	1.051	0.293
Wednesday – Monday	0.309	0.118	0.078	0.539	2.622	0.009

Thursday – Monday	0.197	0.12	-0.038	0.432	1.647	0.1
Friday – Monday	0.209	0.122	-0.03	0.448	1.718	0.086
Saturday – Monday	-0.021	0.123	-0.263	0.221	-0.171	0.864
Sunday – Monday	-0.008	0.122	-0.246	0.231	-0.062	0.95
Age	0.003	0.002	-0.001	0.008	1.357	0.175
Children in the home	0.114	0.035	0.046	0.183	3.269	0.001**
Gender						
Male – Female	-0.293	0.067	-0.423	-0.162	-4.402	< .001***
Non-binary / third gender – Female	-0.784	0.316	-1.404	-0.164	-2.482	0.013*
Prefer not to say – Female	-1.108	0.862	-2.798	0.583	-1.285	0.199

^a Represents reference level

4623 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4624

TIPI – Openness to Experience

Predictor	Estimate	SE	95% Confidence Interval		t	p
			Lower	Upper		
Intercept ^a	4.617	0.067	4.485	4.748	68.881	< .001
Day of week:						
Tuesday – Monday	0.069	0.094	-0.115	0.254	0.735	0.462
Wednesday – Monday	0.115	0.093	-0.069	0.298	1.225	0.221

Thursday	-	-0.036	0.095	-0.222	0.15	-0.382	0.703
Monday	-						
Friday	-	0.073	0.097	-0.116	0.263	0.756	0.45
Monday	-						
Saturday	-	-0.073	0.098	-0.265	0.119	-0.747	0.455
Monday	-						
Sunday	-	-0.094	0.097	-0.284	0.095	-0.976	0.329
Monday	-						

^a Represents
reference
level

4625 $[* p < 0.05; ** p < 0.01, *** p < 0.001]$

4626

TIPI – Openness to Experience

Predictor	Estimate	SE	95% Confidence Interval		t	p
			Lower	Upper		
Intercept ^a	4.891	0.112	4.671	5.111	43.629	< .001
Day of week:						
Tuesday – Monday	0.063	0.094	-0.121	0.247	0.668	0.504
Wednesday – Monday	0.097	0.093	-0.086	0.28	1.037	0.3
Thursday – Monday	-0.049	0.095	-0.235	0.137	-0.514	0.607
Friday – Monday	0.057	0.097	-0.133	0.246	0.588	0.556
Saturday – Monday	-0.081	0.098	-0.274	0.111	-0.831	0.406
Sunday – Monday	-0.096	0.096	-0.285	0.094	-0.991	0.322
Age	-0.006	0.002	-0.01	-0.002	-3.052	0.002**
Children in the home	-0.038	0.028	-0.093	0.016	-1.37	0.171

Gender

Male – Female	0.004	0.053	-0.1	0.108	0.075	0.94
Non-binary / third gender – Female	0.527	0.251	0.035	1.019	2.099	0.036*
Prefer not to say – Female	0.84	0.684	-0.502	2.182	1.227	0.22

^a Represents reference level

4627 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4628

TIPI – Conscientiousness

Predictor	Estimate	SE	95% Confidence Interval		t	p
			Lower	Upper		
Intercept ^a	5.16	0.071	5.02	5.299	72.606	< .001
Day of week:						
Tuesday – Monday	0.02	0.1	-0.176	0.215	0.199	0.842
Wednesday – Monday	0.059	0.099	-0.136	0.253	0.592	0.554
Thursday – Monday	0.004	0.101	-0.193	0.202	0.042	0.966
Friday – Monday	-0.033	0.103	-0.235	0.168	-0.326	0.744
Saturday – Monday	0.005	0.104	-0.199	0.208	0.044	0.965
Sunday – Monday	0.02	0.102	-0.181	0.221	0.191	0.849

^a Represents reference level

4629 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4630

TIPI – Conscientiousness

Predictor	Estimate	SE	95% Confidence Interval		t	p
			Lower	Upper		
Intercept ^a	4.394	0.117	4.164	4.624	37.449	< .001
Day of week:						
Tuesday – Monday	0.015	0.098	-0.178	0.208	0.15	0.881
Wednesday – Monday	0.074	0.098	-0.117	0.266	0.761	0.447
Thursday – Monday	0.007	0.099	-0.188	0.202	0.068	0.946
Friday – Monday	-0.02	0.101	-0.218	0.179	-0.194	0.846
Saturday – Monday	-0.002	0.102	-0.203	0.199	-0.017	0.986
Sunday – Monday	0.002	0.101	-0.196	0.2	0.017	0.987
Age	0.016	0.002	0.012	0.02	8.12	< .001***
Children in the home	0.044	0.029	-0.013	0.101	1.504	0.133
Gender						
Male – Female	0.109	0.055	1.54E-04	0.217	1.964	0.05
Non-binary / third gender – Female	-0.211	0.263	-0.726	0.304	-0.804	0.422
Prefer not to say – Female	-0.759	0.716	-2.164	0.645	-1.06	0.289

^a Represents reference level

4631 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4632

TIPI -- Agreeableness

Predictor	Estimate	SE	95% Confidence Interval		t	p
			Lower	Upper		
Intercept ^a	5.153	0.068	5.021	5.286	76.157	< .001
Day of week:						
Tuesday – Monday	0.044	0.095	-0.143	0.23	0.461	0.645
Wednesday – Monday	0.051	0.094	-0.133	0.236	0.546	0.585
Thursday – Monday	-0.062	0.096	-0.25	0.126	-0.644	0.52
Friday – Monday	0.029	0.097	-0.162	0.22	0.295	0.768
Saturday – Monday	-0.067	0.099	-0.26	0.127	-0.676	0.499
Sunday – Monday	0.017	0.097	-0.174	0.208	0.172	0.864

^a Represents reference level

4633 [$* p < 0.05$; $** p < 0.01$, $*** p < 0.001$]

TIPI -- Agreeableness

Predictor	Estimate	SE	95% Confidence Interval		t	p
			Lower	Upper		
Intercept ^a	4.665	0.111	4.446	4.883	41.87	< .001
Day of week:						
Tuesday – Monday	0.05	0.093	-0.134	0.233	0.53	0.596
Wednesday – Monday	0.079	0.093	-0.103	0.261	0.856	0.392
Thursday – Monday	-0.055	0.094	-0.24	0.13	-0.587	0.557

Friday – Monday	0.055	0.096	-0.133	0.243	0.571	0.568
Saturday – Monday	-0.053	0.097	-0.244	0.138	-0.543	0.587
Sunday – Monday	8.78E-04	0.096	-0.187	0.189	0.009	0.993
Age	0.014	0.002	0.01	0.017	7.077	<.001***
Children in the home	0.037	0.028	-0.017	0.091	1.348	0.178
Gender						
Male – Female	-0.3	0.052	-0.403	-0.197	-5.724	<.001***
Non-binary / third gender – Female	-0.132	0.249	-0.621	0.357	-0.53	0.596
Prefer not to say – Female	-0.42	0.68	-1.754	0.913	-0.618	0.537

^a Represents reference level

4634 [** p < 0.05; ** p < 0.01, *** p < 0.001*]

4635

TIPI – Emotional Stability

Predictor	Estimate	SE	95% Confidence Interval		t	p
			Lower	Upper		
Intercept ^a	4.354	0.087	4.183	4.525	49.931	<.001
Day of week:						
Tuesday – Monday	0.069	0.122	-0.171	0.308	0.564	0.573
Wednesday – Monday	0.145	0.121	-0.093	0.383	1.193	0.233
Thursday – Monday	-0.016	0.123	-0.258	0.226	-0.13	0.896

Friday	–	-0.028	0.126	-0.274	0.218	-0.222	0.825
Monday							
Saturday	–	0.116	0.127	-0.134	0.365	0.908	0.364

Sunday	–	0.079	0.125	-0.167	0.325	0.632	0.527
Monday							

^a Represents
reference
level

4636 $[\ast p < 0.05; \ast\ast p < 0.01, \ast\ast\ast p < 0.001]$

TIPI – Emotional Stability

Predictor	Estimate	SE	95% Confidence Interval		t	p
			Lower	Upper		
Intercept ^a	2.967	0.139	2.693	3.24	21.273	< .001
Day of week:						
Tuesday – Monday	0.052	0.117	-0.177	0.282	0.447	0.655
Wednesday – Monday	0.142	0.116	-0.086	0.37	1.218	0.223
Thursday – Monday	-0.033	0.118	-0.265	0.199	-0.281	0.779
Friday – Monday	-0.035	0.12	-0.271	0.201	-0.289	0.773
Saturday – Monday	0.1	0.122	-0.139	0.339	0.82	0.412
Sunday – Monday	0.056	0.12	-0.179	0.292	0.469	0.639
Age	0.025	0.002	0.02	0.03	10.385	< .001***
Children in the home	0.168	0.035	0.1	0.235	4.851	< .001***
Gender						
Male – Female	0.601	0.066	0.472	0.73	9.143	< .001***

Non-binary / third gender – Female	-0.172	0.312	-0.784	0.44	-0.55	0.582
Prefer not to say – Female	0.043	0.851	-1.626	1.712	0.051	0.96

^a Represents reference level

4637 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4638

4639 S13. Exploratory Analyses – Stone Affect

Stone Enjoyment

Predictor	Estimate	SE	Z	p
Intercept	-0.045	0.113	-0.396	0.692
Day of week:				
Tuesday – Monday	0.25	0.159	1.57	0.116
Wednesday – Monday	0.262	0.158	1.661	0.097
Thursday – Monday	0.161	0.16	1.004	0.316
Friday – Monday	0.259	0.163	1.583	0.113
Saturday – Monday	0.417	0.167	2.505	0.012*
Sunday – Monday	0.413	0.164	2.514	0.012*

Note. Estimates represent the log odds of "Enjoyment = Yes" vs. "Enjoyment = No"

4640 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4641

Stone Enjoyment

Predictor	Estimate	SE	Z	p
Intercept	-0.366	0.191	-1.911	0.056
Day of week:				
Tuesday – Monday	0.264	0.16	1.648	0.099
Wednesday – Monday	0.289	0.159	1.809	0.07
Thursday – Monday	0.163	0.162	1.008	0.313
Friday – Monday	0.282	0.165	1.71	0.087
Saturday – Monday	0.432	0.168	2.568	0.01*
Sunday – Monday	0.413	0.166	2.492	0.013*
Age	0.008	0.003	2.552	0.011*
Gender				
Male – Female	-0.317	0.09	-3.514	< .001***
Non-binary / third gender – Female	-0.089	0.426	-0.209	0.834
Prefer not to say – Female	-1.035	1.23	-0.841	0.4
Children in the home	0.133	0.048	2.761	0.006**

Note. Estimates represent the log odds
of "Enjoyment = Yes" vs. "Enjoyment =
No"

4642 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4643

Stone – Happy

Predictor	Estimate	SE	Z	p
Intercept	0.462	0.116	3.978	< .001

Day of week:

Tuesday – Monday	0.131	0.164	0.797	0.425
Wednesday – Monday	0.187	0.164	1.139	0.255
Thursday – Monday	0.025	0.165	0.152	0.879
Friday – Monday	0.185	0.169	1.094	0.274
Saturday – Monday	0.237	0.172	1.373	0.17
Sunday – Monday	0.374	0.173	2.169	0.03*

Note. Estimates represent the
log odds of "Happy = Yes" vs.
"Happy = No"

4644 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4645

Stone Happy

Predictor	Estimate	SE	Z	p
Intercept	0.24	0.197	1.216	0.224
Day of week:				
Tuesday – Monday	0.146	0.166	0.883	0.377
Wednesday – Monday	0.21	0.165	1.27	0.204
Thursday – Monday	0.027	0.166	0.164	0.869
Friday – Monday	0.205	0.171	1.197	0.231
Saturday – Monday	0.248	0.174	1.426	0.154
Sunday – Monday	0.381	0.174	2.194	0.028
Age	0.005	0.003	1.46	0.144
Gender				
Male – Female	-0.258	0.094	-2.752	0.006**

Non-binary / third gender – Female	-0.502	0.426	-1.177	0.239
Prefer not to say – Female	-1.473	1.233	-1.195	0.232
Children in the home	0.193	0.052	3.704	< .001***

Note. Estimates represent the log odds
of "Happy = Yes" vs. "Happy = No"

4646 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4647

Stone – Worry

Predictor	Estimate	SE	Z	p
Intercept	-0.323	0.115	-2.818	0.005
Day of week:				
Tuesday – Monday	0.093	0.16	0.581	0.561
Wednesday – Monday	0.093	0.159	0.586	0.558
Thursday – Monday	0.123	0.162	0.762	0.446
Friday – Monday	0.137	0.164	0.835	0.404
Saturday – Monday	-0.124	0.168	-0.739	0.46
Sunday – Monday	-0.146	0.166	-0.875	0.381

Note. Estimates represent the
log odds of "Worry = Yes" vs.
"Worry = No"

4648 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4649

Stone – Worry

Predictor	Estimate	SE	Z	p

Intercept	0.347	0.193	1.793	0.073
Day of week:				
Tuesday – Monday	0.106	0.162	0.657	0.511
Wednesday – Monday	0.092	0.161	0.574	0.566
Thursday – Monday	0.126	0.163	0.773	0.439
Friday – Monday	0.138	0.166	0.832	0.406
Saturday – Monday	-0.12	0.17	-0.705	0.481
Sunday – Monday	-0.134	0.168	-0.801	0.423
Age	-0.012	0.003	-3.698	< .001
Gender				
Male – Female	-0.362	0.092	-3.951	< .001***
Non-binary / third gender – Female	-0.471	0.436	-1.081	0.28
Prefer not to say – Female	13.589	308.356	0.044	0.965
Children in the home	-0.008	0.048	-0.158	0.875

Note. Estimates represent the log odds of "Worry = Yes" vs. "Worry = No"

4650 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4651

Stone -- Sad

Predictor	Estimate	SE	Z	p
Intercept	-0.987	0.127	-7.764	< .001
Day of week:				
Tuesday – Monday	-0.175	0.182	-0.959	0.337

Wednesday – Monday	-0.276	0.184	-1.502	0.133
Thursday – Monday	-0.268	0.186	-1.438	0.15
Friday – Monday	-0.259	0.19	-1.368	0.171
Saturday – Monday	-0.06	0.187	-0.319	0.75
Sunday – Monday	-0.492	0.197	-2.497	0.013*

Note. Estimates represent the
log odds of "Sad = Yes" vs.
"Sad = No"

4652 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4653

Stone -- Sad

Predictor	Estimate	SE	Z	p
Intercept	-0.942	0.22	-4.28	< .001
Day of week:				
Tuesday – Monday	-0.186	0.183	-1.016	0.31
Wednesday – Monday	-0.279	0.184	-1.516	0.129
Thursday – Monday	-0.273	0.187	-1.457	0.145
Friday – Monday	-0.262	0.19	-1.377	0.169
Saturday – Monday	-0.075	0.188	-0.399	0.69
Sunday – Monday	-0.509	0.198	-2.577	0.01*
Age	0.002	0.004	0.394	0.693
Gender				
Male – Female	-0.107	0.107	-1.003	0.316
Non-binary / third gender – Female	0.351	0.463	0.758	0.448

Prefer not to say – Female	0.575	1.23	0.468	0.64
Children in the home	-0.116	0.059	-1.97	0.049*

Note. Estimates represent the log odds of "Sad = Yes" vs. "Sad = No"

4654 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4655

Stone -- Stress

Predictor	Estimate	SE	Z	p
Intercept	-0.251	0.114	-2.199	0.028
Day of week:				
Tuesday – Monday	-0.005	0.16	-0.03	0.976
Wednesday – Monday	0.099	0.159	0.625	0.532
Thursday – Monday	0.063	0.161	0.394	0.694
Friday – Monday	0.037	0.164	0.223	0.823
Saturday – Monday	-0.243	0.168	-1.444	0.149
Sunday – Monday	-0.412	0.168	-2.449	0.014*

Note. Estimates represent the log odds of "Stress = Yes" vs. "Stress = No"

4656 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4657

Stone -- Stress

Predictor	Estimate	SE	Z	p
Intercept	0.663	0.195	3.404	<.001

Day of week:

Tuesday – Monday	0.004	0.162	0.022	0.982
Wednesday – Monday	0.082	0.161	0.51	0.61
Thursday – Monday	0.056	0.163	0.341	0.733
Friday – Monday	0.02	0.166	0.12	0.905
Saturday – Monday	-0.248	0.171	-1.454	0.146
Sunday – Monday	-0.401	0.17	-2.358	0.018*
Age	-0.02	0.003	-5.865	<.001***
Gender				
Male – Female	-0.238	0.092	-2.585	0.01*
Non-binary / third gender – Female	-0.108	0.428	-0.253	0.8
Prefer not to say – Female	0.704	1.23	0.573	0.567
Children in the home	0.051	0.048	1.071	0.284

Note. Estimates represent the log odds of "Stress = Yes" vs. "Stress = No"

4658 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4659

Stone -- Anger

Predictor	Estimate	SE	Z	p
Intercept	-2.138	0.184	-11.618	<.001
Day of week:				
Tuesday – Monday	-0.141	0.266	-0.529	0.597
Wednesday – Monday	-0.032	0.258	-0.126	0.9

Thursday – Monday	0.007	0.26	0.028	0.978
Friday – Monday	-0.102	0.271	-0.375	0.707
Saturday – Monday	-0.415	0.296	-1.401	0.161
Sunday – Monday	-0.365	0.288	-1.268	0.205

Note. Estimates represent the
log odds of "Anger = Yes" vs.
"Anger = No"

4660 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4661

Stone -- Anger

Predictor	Estimate	SE	Z	p
Intercept	-1.617	0.32	-5.058	< .001
Day of week:				
Tuesday – Monday	-0.133	0.266	-0.498	0.618
Wednesday – Monday	-0.038	0.259	-0.148	0.883
Thursday – Monday	0.005	0.261	0.02	0.984
Friday – Monday	-0.106	0.272	-0.391	0.696
Saturday – Monday	-0.458	0.301	-1.519	0.129
Sunday – Monday	-0.352	0.289	-1.217	0.224
Age	-0.012	0.006	-2.109	0.035*
Gender				
Male – Female	-0.153	0.156	-0.976	0.329
Non-binary / third gender – Female	-0.265	0.752	-0.352	0.725
Prefer not to say – Female	-12.512	509.46	-0.025	0.98

Children in the home	0.086	0.076	1.139	0.255
----------------------	-------	-------	-------	-------

Note. Estimates represent the log
odds of "Anger = Yes" vs. "Anger =
No"

4662 [* $p < 0.05$; ** $p < 0.01$, *** $p < 0.001$]

4663

4664 **Paper 4**

4665 SUPPLEMENTARY MATERIALS

4666 S1. Demographic information

Day of Week	N
Monday	313
Tuesday	323
Wednesday	332
Thursday	311
Friday	291
Saturday	277
Sunday	291

4667

4668 To test for significance in sample sizes across days of the week, Chi square
4669 goodness of fit test was used: $\chi^2(6, N = 2134) = 7.62, p = 0.27$ and revealed
4670 no significant differences.

Day of the week	Female	Male	Non-binary / third gender	Prefer not to say
Monday	198	114	1	0
Tuesday	191	129	3	0
Wednesday	188	138	5	1
Thursday	183	121	6	1
Friday	165	121	4	1

Saturday	161	115	1	0
Sunday	180	108	3	0

4671

4672 To test for a difference in gender proportions across days of the week, a
 4673 contingency table and Chi-square test was used [$\chi^2(18, N = 2127) = 13.98, p =$
 4674 0.73] and revealed no significant differences.

Day of week	Average Age	Age Range	Standard Error
Monday	42.74	19-71	0.7060
Tuesday	42.98	18-80	0.7776
Wednesday	41.64	19-88	0.7462
Thursday	42.57	18-86	0.7753
Friday	41.75	19-74	0.7904
Saturday	42.5	20-79	0.7825
Sunday	43.93	21-78	0.8387

4675

4676 To test for difference in age across days of the week, ANOVA was used [$F(6,$
 4677 $1086) = 0.99, p = 0.34$] and revealed no significant differences.

4678

4679 *S2: Post-hoc comparisons of all categories of heuristic (EVmax, mini-max) and*
 4680 *category of decision (affect-rich, affect-poor) groups.*

Post Hoc Comparisons - Heuristic \times Category of Decision

Comparison

Heuristic	Category of Decision	Heuristic	Category of Decision	Mean Difference	SE	df	t	p _{tukey}
MiniMax	Affect-poor	-	MiniMax	Affect-rich	-0.0655	0.0077	1832.0000	-8.4897 <.001
		-	EV	Affect-poor	-0.3451	0.0071	1832.0000	-48.6374 <.001
		-	EV	Affect-rich	-0.1528	0.0076	1832.0000	-20.2078 <.001
	Affect-rich	-	EV	Affect-poor	-0.2796	0.0067	1832.0000	-41.6561 <.001
		-	EV	Affect-rich	-0.0873	0.0070	1832.0000	-12.3961 <.001
	EV	Affect-poor	-	EV	0.1923	0.0054	1832.0000	35.6926 <.001

4681

4682 *S3: Correlation matrix between the composite affect score and percentage of*
 4683 *preference reversals between affect-rich and affect-poor decisions as well as*
 4684 *the proportion of decisions made using mini-max or EVmax in affect-rich or*
 4685 *affect-poor choices. Note: NA denotes “affect-poor” and A denotes “affect-rich.”*

Correlation Matrix

	Preference Reversals	Composite_Affe ct	Weekend	NA_%EVMa x	NA_%MinMa x	A_%EVMa x	A_%MinMa x
Preference Reversals	Pearson's r	—					
	p-value	—					
Composite_Affe ct	Pearson's r	0.021	—	0.020	-0.043	-0.029	-0.000
	p-value	0.332	—	0.389	0.068	0.205	0.991
Weekend	Pearson's r	0.013	0.068 **	—	0.030	0.009	-0.004
							0.017

	p-value	0.540	0.002	—	0.186	0.692	0.875	0.438
NA_%EVMax	Pearson' s r	-0.170 ** *	0.020	—	—	—	—	—
	p-value	< .001	0.389	—	—	—	—	—
NA_%MinMax	Pearson' s r	-0.048 * *	-0.043	0.050 * *	—	—	—	—
	p-value	0.040	0.068	0.034	—	—	—	—
A_%EVMax	Pearson' s r	-0.631 ** *	-0.029	0.098 *** ***	-0.027	—	—	—
	p-value	< .001	0.205	< .001	0.239	—	—	—
A_%MinMax	Pearson' s r	0.158 ** *	-0.000	-0.047 * *	0.149 *** ***	-0.014	—	—
	p-value	< .001	0.991	0.040	< .001	0.531	—	—

Note. * p < .05, ** p < .01, *** p < .001