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Abstract

There is a wide application of Bayesian nonparametric machine learn-

ing to a variety of fields, such as bioinformation, language processing,

computer vision, network analysis, economics and finance. In Bayesian

nonparametric models, Dirichlet process, Indian buffet process, Gaussian

process, and other priors are used to obtain an infinitely dimensional prior

distribution and hence to infer the dimensionality of parameter space in

a data-adaptive manner. In this thesis, I present a variational inference

framework for hierarchical Bayesian nonparametric models and develop

state-of-the-art models that combine Bayesian nonparametrics and deep

learning for graph data and sequential data.

First, I develop a novel inference method for the hierarchical Bayesian

nonparametric models, especially for the Dirichlet process model. Cur-

rent variational inference methods for hierarchical Bayesian nonparamet-

ric models can neither characterize the correlation structure among latent

variables due to the mean-field setting, nor infer the true posterior dimen-

sion because of the universal truncation. To overcome these limitations,

I propose the conditional and adaptively truncated variational inference

method (CATVI) by maximizing the nonparametric evidence lower bound

and integrating Monte Carlo into the variational inference framework.

CATVI enjoys several advantages over traditional methods, including a



smaller divergence between variational and true posteriors, reduced risk

of underfitting or overfitting, and improved prediction accuracy. Empiri-

cal studies on three large datasets reveal that CATVI applied in Bayesian

nonparametric topic models substantially outperforms competing models,

providing lower perplexity and clearer topic-words clustering.

Moreover, I develop a methodology of using Bayesian nonparametric to

improve the performance of deep graph neural networks. Training deep

graph neural networks (GNNs) poses a challenging task, as the perfor-

mance of GNNs may suffer from the number of hidden message-passing

layers. The literature has focused on the proposals of over-smoothing and

under-reaching to explain the performance deterioration of deep GNNs. I

propose a new explanation for such deteriorated performance phenomenon,

mis-simplification, that is, mistakenly simplifying graphs by preventing

self-loops and forcing edges to be unweighted. I show that such simplifying

can reduce the potential of message-passing layers to capture the struc-

tural information of graphs. In view of this, I propose a new framework,

edge enhanced graph neural network (EEGNN). EEGNN uses the struc-

tural information extracted from the proposed Dirichlet mixture Poisson

graph model, a Bayesian nonparametric model for graphs, to improve

the performance of various deep message-passing GNNs. Experiments

over different datasets show that our method achieves considerable per-

formance increase compared to baselines.

Finally, I present Deep Functional Factor Model (DF2M), a Bayesian non-

parametric model for analyzing high-dimensional functional time series.

The DF2M makes use of the Indian Buffet Process and the multi-task
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Gaussian Process with a deep kernel function to capture non-Markovian

and nonlinear temporal dynamics. Unlike many black-box deep learning

models, the DF2M provides an explainable way to use neural networks

by constructing a factor model and incorporating deep neural networks

within the kernel function. Additionally, I develop a computationally ef-

ficient variational inference algorithm for inferring the DF2M. Empirical

results from four real-world datasets demonstrate that the DF2M offers

better explainability and superior predictive accuracy compared to con-

ventional deep learning models for high-dimensional functional time series.
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Chapter 1

Introduction

Bayesian nonparametric models provide a flexible framework for modeling complex

patterns in datasets. Unlike parametric Bayesian methods, which assume a finite-

dimensional probability distribution for the priors in a particular format, Bayesian

nonparametric models place a prior distribution over an infinite-dimensional space

of functions (Ghosal and Van der Vaart, 2017). This allows for the modeling of

complex data without the need to specify a particular parametric form. Therefore,

Bayesian nonparametric models are widely used in various machine learning fields,

such as natural language processing, computer vision, graph and network modeling,

federated learning and sequential decision making (Sudderth and Jordan, 2009; Choi

and Kim, 2012; Williamson, 2016; Yurochkin et al., 2019). The commonly used

infinite-dimensional priors in Bayesian nonparametric models include the Dirichlet

process (Ferguson, 1973), Indian buffet process (Griffiths and Ghahramani, 2011)

and Gaussian process (Williams and Rasmussen, 2006), etc.

In particular, recent advances in Markov Chain Monte Carlo techniques and vari-

ational inference methods have facilitated their application to increasingly larger and

more complicated datasets (Kroese et al., 2011; Hoffman et al., 2013). For exam-

ple, nonparametric Bayesian deep learning, which combines the strengths of Bayesian

nonparametrics and deep learning, has opened up a new direction for research. In
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this example, nonparametric Bayesian methods are used to impose priors over the

parameters of deep learning models, enabling them to adapt their complexity to the

data, enhance their interpretability, and provide more robust prediction (Ghahra-

mani, 2015). Despite these advances, many challenges remain, such as developing

efficient nonparmetric inference algorithms and improving explainability and robust-

ness, making Bayesian nonparametric machine learning a vibrant and dynamic field

of research.

This thesis delves into the heart of Bayesian nonparametric models including the

Dirichlet process, Indian buffet process, and Gaussian process. It presents a novel

variational inference framework and introduces cutting-edge models that combine

Bayesian nonparametrics and deep learning for graph and sequential data. The thesis

first unravels Conditional and Adaptively Truncated Variational Inference (CATVI),

a new inference method for hierarchical Bayesian nonparametric models, especially

for the hierarchical Dirichlet process model, overcoming the limitations of current

variational inference methods. Further, it introduces a new framework, the Edge En-

hanced Graph Neural Network (EEGNN), exploring the enhancement of deep graph

neural networks performance using Bayesian nonparametrics. Finally, it discusses

the Deep Functional Factor Model (DF2M), a Bayesian nonparametric model for an-

alyzing high-dimensional functional time series, offering higher predictive accuracy

and better explainability compared to traditional deep learning models. This thesis

sheds light on the potential of Bayesian nonparametric models combined with modern

machine learning algorithms for the analysis of complex datasets.
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Chapter 2

Variational Inference for Bayesian
Nonparametric Models

This chapter is dedicated to an article published at the 25th International Conference

on Artificial Intelligence and Statistics, available online at https://proceedings.

mlr.press/v151/liu22d.html.

10

https://proceedings.mlr.press/v151/liu22d.html
https://proceedings.mlr.press/v151/liu22d.html


CATVI: Conditional and Adaptively Truncated Variational
Inference for Hierarchical Bayesian Nonparametric Models

Yirui Liu Xinghao Qiao Jessica Lam
London School of Economics London School of Economics JP Morgan Chase & Co.

Abstract

Current variational inference methods for
hierarchical Bayesian nonparametric models
can neither characterize the correlation struc-
ture among latent variables due to the mean-
field setting, nor infer the true posterior
dimension because of the universal trunca-
tion. To overcome these limitations, we pro-
pose the conditional and adaptively trun-
cated variational inference method (CATVI)
by maximizing the nonparametric evidence
lower bound and integrating Monte Carlo
into the variational inference framework.
CATVI enjoys several advantages over tra-
ditional methods, including a smaller diver-
gence between variational and true posteri-
ors, reduced risk of underfitting or overfit-
ting, and improved prediction accuracy. Em-
pirical studies on three large datasets re-
veal that CATVI applied in Bayesian non-
parametric topic models substantially out-
performs competing models, providing lower
perplexity and clearer topic-words clustering.

1 INTRODUCTION

Hierarchical Bayesian nonparametric (HBNP) models
are widely used in bioinfomatics, language processing,
computer vision and network analysis (Sudderth and
Jordan, 2009; Caron and Fox, 2017; Williamson, 2016;
Yurochkin et al., 2019). A major benefit of HBNP
models is their ability to relax the fixed dimension as-
sumption in parametric models. For example, in natu-
ral language processing, hierarchical Dirichlet process
(HDP) model (Teh et al., 2006) replaces the finite-
dimensional Dirichlet distribution in latent Dirichlet

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

allocation (LDA) with a countable-dimensional Dirich-
let process (DP). This is done by regarding the num-
ber of topics as a random variable that can be inferred
from the data, rather than as a parametric value (Blei
et al., 2003).

However, it is much harder to implement HBNP mod-
els than their parametric counterparts. In particular,
due to a HBNP model’s infinite-dimensional nature, a
finite-dimensional truncation is needed to approximate
the posterior. Yet, the selection of the optimal trun-
cation level poses several challenges. On one hand,
the traditional Markov chain Monte Carlo (MCMC)
methods (Teh et al., 2006) can produce an adaptive
selection of the truncated dimension, but they are not
computationally scalable especially for big data. On
the other hand, standard variational inference meth-
ods (Teh et al., 2008; Wang et al., 2011; Hoffman et al.,
2013; Roychowdhury and Kulis, 2015; Xu et al., 2019)
can accelerate the computation, but they suffer from a
universal selection of the truncation level by truncat-
ing the dimension of all latent variables to a prespec-
ified value. Using a prespecified value is problematic,
because a subjective selection of the fixed truncation
level can make the model prone to overfitting or un-
derfitting, leading to low predictive accuracy. These
existing challenges in universal truncation contradict
the motivation and advantages of using HBNP models.

In this paper, we propose a general framework, called
conditional and adaptively truncated variational in-
ference (CATVI), to infer HBNP models in the fol-
lowing steps. First, we convert the inference prob-
lem to an optimization task of maximizing our pro-
posed nonparametric evidence lower bound based on
finite partitions. Second, we introduce a conditional
setting when factorizing variational distributions by
conditioning variables in the middle layers on two ad-
jacent layers. Third, to handle big data, we develop a
stochastic variational inference framework (Blei et al.,
2017) under our conditional setting. Finally, we obtain
empirical distributions from Monte Carlo sampling of
local latent variables, which are then used to update
the variational parameters for the global latent vari-
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Figure 1: The HBNP models. The blue and red boxes
correspond to J and Nj replicates, respectively.

ables. This enables us to truncate the dimension of the
latent variational distributions to that of the empirical
distribution.

Our proposed method benefits from both the inferen-
tial accuracy of Monte Carlo sampling and the compu-
tational efficiency of variational inference. First, our
method rebuilds the correlation structure and hence
attains a smaller Kullback–Leibler (KL) divergence be-
tween the variational distribution and the true poste-
rior. Such procedure removes the unrealistic mean-
field assumption, and searches for an optimal varia-
tional distribution over a wider family. Second, it ad-
justs the dimension of variation distributions, which
converges to a stable level balancing the goodness-
of-fit and model complexity. With these advantages,
CATVI provides an adaptive selection of the trun-
cated dimension, reducing the risk of overfitting or
underfitting, while also enabling more accurate predic-
tions without sacrificing the computational efficiency.
Specific to the inference for the HDP model, CATVI
enjoys several advantages over existing methods (Teh
et al., 2006; Hoffman et al., 2013; Wang and Blei, 2012;
Bryant and Sudderth, 2012), see Section 6 for our de-
tailed discussion.

2 BACKGROUND: HBNP MODELS

As a subclass of Bayesian nonparametric models,
HBNP models extend the simplicity of using random
measures (see Appendix A) as priors to the following
hierarchical structure,

G0|H ∼ P (H), β|λ ∼ p(β|λ), Gj |G0 ∼ R(G0),

zji|Gj ∼ Gj , xji|zji ∼ f(xji|β, zji),
(1)

for j = 1, . . . , J, i = 1, . . . , Nj , as illustrated in Fig-
ure 1. In the top layer, G1, . . . , GJ are generated from
a random measure R with common base measure G0,
while in the bottom layer, G0 itself is a realization of
random measure P with base measure H. To ensure
exchangeability, G1, . . . , GJ are assumed to be identi-
cal and independent given G0. Each local latent vari-
able zji is sampled from Gj independently. Finally, the
global parameter β is assigned a prior p(β|λ), and the
observation xji is generated from a likelihood function

f, parameterized by both global latent variable β and
local latent variables zji.

In topic modelling, the HDP model (Teh et al., 2006)
uses a DP for both P and R in (1) as,

G0|H ∼ DP(αH), Gj |G0 ∼ DP(γG0), (2)

where α, γ are concentration parameters, and H,G0

are normalized based measures (see Appendix A). Sup-
pose a corpus has J documents, each document j has
Nj words, and each word is chosen from a vocabu-
lary with W terms. Specifically, G0 =

∑∞
k=1G0kδφk

is generated from the distribution DP(αH), and for
each document j, a topic proportion, defined as Gj =∑∞
k=1Gjkδφk

, is independently sampled from the dis-
tribution DP(γG0). For each topic k, the distribu-
tion of words over vocabulary is sampled from a W -
dimensional Dirichlet distribution parameterized by η,
βk = (βk,1, · · · , βk,W )T ∼ Dir(η). For each word i in
document j, a topic assignment zji = φk is chosen from
zji ∼ Multinomial(Gj), where φk represents topic k.
Finally, the observation xji is generated from the as-
signed topic and the corresponding within-topic word
distribution, xji|{zji = φk} ∼ Multinomial(βk).

The necessity to let G0 be atomic can be shown in
the HDP model. If G1, . . . , GJ are sampled from a
Dirichlet process with a diffuse base measure instead
of an atomic G0, G1, . . . , GJ will not share any support
almost surely, and thus none of the topics being shared
across the documents. However, for a general HBNP
model, as long as G0 is atomic, it is not necessary to
restrict the prior for G0 to be a Dirichlet process or a
probability random measure. For example, the ΓDP
model, which has the following structure,

G0|H ∼ ΓP(αH), Gj |G0 ∼ DP(G0), (3)

allows for more flexibility by removing the constraint
on the concentration parameter in the top layer. Other
choices of the prior for G0 include beta process, sta-
ble process and inverse Gaussian process (Ghosal and
Van der Vaart, 2017).

To infer the HBNP models, we set up the theoretical
foundations for nonparametric KL divergence and evi-
dence lower bound, and then propose a novel method-
ology in the following Sections 3 and 4.

3 NONPARAMETRIC EVIDENCE
LOWER BOUND

3.1 KL Divergence between Random
Measures

The object of variational inference is to minimize the
KL divergence between the variational distribution
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and the true posterior. For two infinite-dimensional
random measures, their KL divergence is well defined
even though an infinite-dimensional density function
does not exist in a conventional sense. Given two ran-
dom measures P and Q from (Θ,M) into (Ω,F), the
Radon–Nikodym derivative dQ/dP exits if Q is abso-
lutely continuous with respect to P . Their KL diver-
gence is defined as

KL(Q ‖ P ) =

∫

Θ

log(dQ/dP )dQ,

which is intractable due to the infinite-dimensional in-
tegral (Matthews et al., 2016). We have developed
a new approach to calculate it using the limit supe-
rior of the divergence between corresponding finite-
dimensional induced measures, that is,

KL(Q ‖ P ) = lim sup
Ω

KL(qΩ ‖ pΩ), (4)

where pΩ and qΩ are respectively induced measures
from P and Q on a finite partition Ω = (A1, . . . , An),
such that pΩ(Ai) = P (Ai) and qΩ(Ai) = Q(Ai) for
each Ai ∈ Ω. With an induced random variable
ZΩ : Θ → Rn, we can also denote the induced mea-
sures by p(ZΩ) and q(ZΩ). The result in (4) is justified
in Appendix C.1. We use the following two examples
to illustrate (4).

Example 1 For Poisson processes P = PP(Λ + bδφ)
and Q = PP(Λ+aδφ), where Λ is the intensity function
defined on Ω, a, b ∈ R+, and δφ is a Dirac function at
point φ ∈ Ω. Under partition Ω = (φ,Ω/φ), the limit
superior in (4) is achieved, that is,

KL(Q ‖ P ) = KL
(
Pois(a) ‖ Pois(b)

)
,

where Pois(a) is the Poisson distribution with intensity
a.

Example 2 For Dirichlet processes P = DP(αH +∑n
i=1 biδφi

) and Q = DP(αH +
∑n
i=1 aiδφi

), where H
is the base measure, α is the concentration parameter,
ai, bi ∈ R+ and φi ∈ Ω for i = 1, . . . n. Similarly, under
the partition Ω =

(
φ1, . . . , φn,Ω/{φi}ni=1

)
,

KL(Q ‖ P ) =

KL
(
Dir(α, a1, . . . , an) ‖ Dir(α, b1, . . . , bn)

)
,

where Dir(α, a1, . . . , an) is the Dirichlet distribution
with parameters α, a1, . . . , an.

With the KL divergence between random measures
represented under a finite partition, we can then de-
fine the nonparametric counterpart of evidence lower
bound below.

3.2 Nonparametric Evidence Lower Bound

The parametric variational inference algorithm uses a
finite-dimensional variational distribution to approxi-
mate the posterior by maximizing the evidence lower
bound (Blei et al., 2017). In contrast, HBNP models
uses a random measure for the variational distribu-
tion, due to the infinite dimensionality of latent vari-
ables. We propose a general inference framework for
HBNP models by maximizing the nonparametric ev-
idence lower bound (NPELBO), defined as the limit
inferior of the parametric evidence lower bound under
a finite partition, lim infΩ(ELBOΩ), that is

lim inf
Ω

{
Eq(ZΩ) log p(X,ZΩ)− Eq(ZΩ) log q(ZΩ)

}
, (5)

where p(X,ZΩ) and q(ZΩ) correspond to the induced
measures from the joint distribution and the varia-
tional distribution on Ω, and where Z and X are the
observations and latent variables, respectively. More-
over, given the KL divergence between random mea-
sures in (4), in Appendix C.2 we show that

KL
(
Q(Z) ‖ P (Z|X)

)
+ NPELBO = log p(X). (6)

This demonstrates the equivalence between maximiz-
ing the NPELBO in (5) and minimizing the KL diver-
gence between the variational distribution Q(Z) and
the true posterior P (Z|X). The task of maximizing
the NPELBO is general and can be applied broadly
within Bayesian nonparametrics. To simplify notation,
we will use p(·) and q(·) to denote the true and varia-
tional distributions, respectively, where the context is
clear. To infer HBNP models, we aim to maximize the
defined NPELBO, while truncating the dimension of
variational distribution adaptively as follows.

4 METHODOLOGY

CATVI adopts the stochastic variational inference
framework (Hoffman et al., 2013), where the compu-
tation is accelerated by selecting a small batch of data
and updating variational parameters with an unbiased
random gradient. We first build the foundation of con-
ditional variational inference as follows.

4.1 Conditional Variational Inference

Conditional setting HBNP models in (1) con-
tain global latent variable β, local latent variables z,
global prior G0, local priors G[J] and observations x,

where z = {zj}Jj=1, zj = {zji}Nj

i=1, x = {xj}Jj=1,

xj = {xji}Nj

i=1 and G[J] = {Gj}Jj=1. We aim to find
the variational distribution to maximize the NPELBO.
In contrast to traditional approaches under the mean-
field setting, we factorize the variational distribution
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as

q(β,z, G0,G[J]) = q(β)q(G0)

J∏

j=1

q(Gj |G0, zj)

Nj∏

i=1

q(zji),

(7)
in the sense of the probability law. Such conditional
design facilitates the recovery of the dependence struc-
ture among G0, G[J] and z.

Combing (5) and (7), we seek to maximize the follow-
ing NPELBO:

lim inf
Ω

{
Eq(β,z,GΩ

0,G
Ω

[J]
) log p(x, β, z, GΩ

0,G
Ω

[J])

−
J∑

j=1

Eq(GΩ
0)Eq(zj)Eq(GΩ

j |GΩ
0,zj) log q(GΩ

j |GΩ

0, zj)

−H
(
q(GΩ

0)
)
−H

(
q(β)

)
−

J∑

j=1

Nj∑

i=1

H
(
q(zji)

)}
,

(8)

where the entropy H
(
q(·)
)

= Eq(·) log q(·) and Ω is a
partition of the sample space Ω for G0 and G[J].

Conditional variational distribution To max-
imize the NPELBO in (8), we first compute the
optimal variational distribution of Gj given G0

and zj for each j. As p(x, β, z, GΩ

0,G
Ω

[J]) =

p(GΩ

0, z)p(x|z)
∏J
j=1 p(G

Ω

j |GΩ

0, zj), the non-constant
term in (8) with respect to q(Gj |G0, zj) is

lim inf
Ω

{ J∑

j=1

Eq(GΩ
0)Eq(zj)Eq(GΩ

j |GΩ
0,zj) log p(GΩ

j |GΩ

0, zj)

− log q(GΩ

j |GΩ

0, zj)
}
.

Note that the above expression can be viewed as
the negative of a KL divergence whose maximum is
zero. Therefore, to enable the NPELBO to reach the
maximum, the optimal conditional variational distri-
bution for Gj should be p(Gj |G0, zj). Consequently,
NPELBO in (8) does not contain any term related to
q(Gj |G0, zj). In Appendix C.3, we derive NPELBO
with respect to q(GΩ

0) as

lim inf
Ω

{ J∑

j=1

Eq(GΩ
0)Eq(zj) log Ep(GΩ

j |GΩ
0)p(zj |GΩ

j)

−KL
(
q(GΩ

0)‖p(GΩ

0)
)}

(9)

up to a constant. It is important to note that
Ep(GΩ

j |GΩ
0) is with respect to the prior p(GΩ

j |GΩ

0) instead

of the variational distribution q(GΩ

j |GΩ

0), and hence
this expectation can often be calculated analytically
in HBNP models due to the conjugacy.

4.2 Empirical Distribution and Evidence
Lower Bound

Within the conditional variational freamework, for the
task of adaptive truncation, CATVI integrates Monte
Carlo sampling to variational inference by iterating the
following steps till convergence, (i) using Monte Carlo
sampling to get an empirical optimal variational dis-
tribution for local variables z and (ii) updating the
variational distributions for global variables G0 and β.

Empirical distribution From the entire data x, we
randomly sample a subset {xs : xs ∈ x}Ss=1, where
S is the batch size with S � J . Given a partition
Ω in the current training iteration, we aim to up-
date the parameters for q(GΩ

0) conditional on q(β) and
{q(zs)}Ss=1. While standard stochastic variational in-
ference updates parameters analytically, we use Monte
Carlo sampling to draw Ts samples for each zs from
q(zs), thus constructing an empirical distribution,

q̂(zs) =
1

Ts

Ts∑

t=1

δẑs,t
, ẑs,t ∼ q(zs).

Empirical evidence lower bound Using the em-
pirical distribution q̂(zs), we obtain an empirical evi-

dence lower bound with respect to q(GΩ

0), ÊLBO
Ω

, by
replacing q(zs) in (9) with q̂(zs), that is,

S∑

s=1

Ts∑

t=1

J

STs
Eq(GΩ

0) log Ep(GΩ
s|GΩ

0)p(ẑs,t|GΩ

s)

−KL
(
q(GΩ

0)‖p(GΩ

0)
)

(10)

up to a constant. It is obvious that E(ÊLBO
Ω

) =
ELBOΩ, thus satisfying the key condition for stochastic
variational inference (Hoffman et al., 2013), that is, the
random gradient is unbiased. Therefore, according to
(10), we can use the random gradient generated from
ẑs = {ẑs,t}Ts

t=1 to update the parameters for q(GΩ

0).

Resampling We next present the procedure to get
the empirical distribution q̂(zs). As Gs is integrated
out, the local latent variables {zsi}Ns

i=1 can not be sam-
pled independently when we use Monte Carlo sam-
pling to draw ẑs given q(GΩ

0) and q(β). Therefore, we
propose the following Gibbs sampling approach to get
samples under optimal variational distributions. Con-
ditional on q(GΩ

0), q(β) and samples ẑs,i− = {ẑsl : l =
1, . . . , Ns, l 6= i}, it follows from (8) that the optimal
variational distribution of log q(zsi) is proportional to

Eq(GΩ
0)Ep(GΩ

j |GΩ
0)p(zsi, ẑs,i− |GΩ

s)

+Eq(β) log p(xsi|zsi, β).
(11)

Then we sample ẑsi ∼ q(zsi) for each i iteratively,
which constructs a Markov chain. Noting that q(zsi) is
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often multinomial, sampling from its logarithm is com-
monly used. After the convergence, we can resample
ẑs,1, . . . , ẑs,Ts

from the stable Markov chain to update
the parameters of q(GΩ

0) according to (10). Similarly,
we derive the empirical evidence lower bound with re-
spect to q(β) in Appendix B.1 and can update the
parameters for q(β) using ẑs,1, . . . , ẑs,Ts correspond-
ingly.

4.3 Adaptive Truncation

Finally, we seek to obtain the finite partition Ω that
could reach the limit inferior in NPELBO. Rather than
having Ω fixed on a universal truncation level, we en-
able the dimension of Ω to gradually adjust to a sta-
ble level. This partition or truncation is dependent
on data-fitting and embedded within the optimization
process, providing another key advantage of using a
Monte Carlo sampling scheme in the stochastic varia-
tional inference framework.

Partition refinement According to the structure
of HBNP models, ẑsi are sampled from the atomic
support of G0, {φk}∞k=1. Without loss of generality, we
assume that the current partition Ω consists of atomic
elements φ1, . . . , φK ∈ {φk}∞k=1 and their complement
φ0 = Ω/{φ1, . . . , φK}. Under this partition, q(zsi ∈
φ0) is positive given (11), and hence ẑsi can be sampled
within φ0, that is, ẑsi is a new sample, distinct from
φ1, . . . , φK . If this happens, we draw a new φK+1 and
refine the partition as

(
φ0, φ1, . . . , φK , φK+1

)
, where

φ0 is updated as Ω/{φ1, . . . , φK , φK+1}.

Remark: The partition refinement procedure
reaches the limit inferior of empirical evidence lower
bound as follows. Since there is no sampling within
φ0 after each update, to minimize the KL divergence,
the posterior should be proportional to the prior on
φ0, q

(
G0(φ0)

)
∝ p

(
G0(φ0)

)
. Moreover, if we further

partition φ0 into φ1
0 ∪ φ2

0, the KL divergence stays the

same. Thus, E(ÊLBO
Ω

) = ELBOΩ = NPELBO. See
Appendix C.5 for a justification.

We summarize the CATVI algorithm in Algorithm 1.

5 APPLICATIONS IN TOPIC
MODELS

5.1 CATVI for the HDP Model

We apply the proposed CATVI method to the HDP
model. Specifically, we factorize the variational dis-
tributions in the conditional setting and specify the
variational family as follows. First, the variational dis-
tribution of Gs for each s is given by q(Gs|G0, zs) =

Algorithm 1: CATVI Algorithm

Initialize the partition Ω, the parameters for
q(G0), q(β) and set up the step-size {ρτ}τ≥1.
repeat

Randomly select x1, . . . , xS from the dataset.
for s ∈ {1, . . . , S} do

repeat
for i ∈ {1, . . . , Ns} do

Sample ẑsi | q(G0), q(β), ẑs,i− .
if Sampling a new ẑsi then

Refine the partition Ω.
end if

end for
until convergence
Resample ẑs = {ẑs,t}Ts

t=1.
end for
Update parameters for q(G0) and q(β) given
samples {ẑs}Ss=1 using the step-size ρτ .

until convergence

DP
(∑∞

k=1 nskδφk
+ G0

)
, where nsk =

∑Ns

i=1 I(zsi =
φk) and I(·) is the indicator function. Second, q(βk)
for each topic k is set as a W -dimensional Dirich-
let distribution, q(βk) = Dirichlet(λk), where λk =
(λk1, . . . , λkW )T is the parameter of vocabulary dis-
tribution for topic k. The variational distribution
for topics without any observation remains the same
as the prior, hence q(β0) = Dirichlet(η). Third, we
specify the variational family for G0 using spike and
slab distributions (Andersen et al., 2017) as q(G0) =∑K
k=1mkδφk

+ m0DP(αH), such that
∑K
k=0mk =

1. Finally, following (11) we use Monte Carlo sam-
pling to obtain samples {ẑs}Ss=1, avoiding the need to
parametrize their variational distributions.

As different samples in {ẑs}Ss=1 are used to represent
different topic clusters in topic modelling, their exact
values in the sample space do not contain any sta-
tistical information. We can then simply index the
topics from 1 to K and denote the different clusters
by distinct points φ1, . . . , φK in Ω, and cluster 0 is
the topic without any observation. Given samples
{ẑs}Ss=1, we define the number of topics with obser-

vations by K =
∑∞
k=0 I(

∑S
s=1

∑Ts

t=1 n̂sk,t > 0), where

n̂sk,t =
∑Ns

i=1 I(ẑsi,t = φk). In Appendix C.4, we rely
on (10) to derive the empirical evidence lower bound
with respect to q(G0),

α logm0 −
K∑

k=0

logmk

+
S∑

s=1

K∑

k=1

Ts∑

t=1

J

STs
log

Γ(γmk + n̂sk,t)

Γ(γmk)

(12)
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up to a constant. According to Algorithm 1, we re-
peatedly select documents of a batch size S, sample
{ẑs}Ss=1, and update parameters for G0 and β iter-
atively until the empirical evidence lower bound con-
verges to its maximum. During Gibbs sampling, once a
document is sampled in cluster 0, we add a new cluster
K + 1, thus partitioning Ω to be (K + 1)-dimensional,
with K single points {φk}Kk=1 and one complement set
φ0 = Ω/{φk}Kk=1. During the training, this procedure
is repeated until Ω is optimized. See Appendix B.2 for
detailed steps on updating the variational parameters
and refining the partition.

5.2 CATVI for Generic HBNP Models

The CATVI algorithm can also be applied to a gen-
eral class of HBNP models, where the global prior G0

is generated from a completely random measure. In
these models, the concentration parameter for any Gj
is not fixed, and G0 is not restricted to be a prob-
ability measure. The corresponding inference algo-
rithm is similar to that of the HDP model, but re-
quires a new parameter µ to approximate G0(Ω). We
choose the variational family for the global prior G0

as q(G0) = µ
(∑K

k=1mkδφk
+ m0Ñ(αH)

)
, where Ñ

is the normalization of the corresponding completely
random measure and

∑K
k=0mk = 1. We provide the

corresponding empirical evidence lower bounds and al-
gorithms to infer more general HBNP models, includ-
ing ΓDP model, in Appendix B.3.

6 RELATIONSHIP TO RELATED
WORKS

In this section, we discuss several advantages of
CATVI compared with traditional methods (Hoffman
et al., 2013; Wang et al., 2011; Wang and Blei, 2012),
although these are specific to the inference for the HDP
model. First, CATVI replaces the unrealistic mean-
field assumption with the conditional setting to cap-
ture the correlation structure among latent variables.
Second, CATVI approximates the posterior group-
wisely instead of updating the stick-breaking parame-
ters sequentially, and hence avoids the gradient vanish-
ing problem. By contrast, Hoffman et al. (2013) and
Wang et al. (2011) perform inference separately over
each atomic location and weight of G0 using the stick-
breaking representation G0K = g0K

∏K−1
k=1 (1 − g0k),

where g0ks are the representation parameters. How-
ever, this may cause the gradient vanishing problem
of G0K if k is large, because

∏K−1
k=1 (1 − g0k) is close

to zero. Third, these traditional methods universally
truncate the dimension of G0 to a fixed level, contra-
dicting the motivation and advantages of using HBNP
models. Finally, CATVI is guaranteed to maximize

the NPELBO. By comparison, Wang and Blei (2012)
update parameters using the locally collapsed Gibbs
sampling, but their work leads to an approximation
that fails to maximize the ELBO, especially when the
variance of distributions is large.

From a computational perspective, CATVI inherits
the fast speed of stochastic variational inference, while
other methods that truncate the dimension in a truly
nonparametric way are very slow, such as the split-
merge variational inference (Bryant and Sudderth,
2012) and the pure Gibbs sampling (Teh et al., 2006).
To check the split-merge criterion, the split-merge vari-
ational inference requires calculating the likelihood be-
fore and after a split or merge, which is computation-
ally infeasible in practice. Moreover, the pure Gibbs
sampling is not scalable as well. As pure Gibbs sam-
pling does not have batch selection, the Markov chains
would converge very slowly when the sample size is
large. As a result, these methods cannot be used to
handle big data.

7 EXPERIMENTS

7.1 Datasets and Architectures

We apply the CATVI algorithm to three large
datasets, arXiv , NYT and Wiki , and compare the per-
formance of CATVI with the online variational infer-
ence (OVI) (Wang et al., 2011), the memorized online
variational inference (MOVI) (Hughes and Sudderth,
2013), the split-merge variational inference (SMVI)
(Bryant and Sudderth, 2012) and Gibbs sampling (GS)
(Teh et al., 2004).

arXiv The corpus contains descriptive metadata of
articles on arXiv up to September 1, 2019, resulting in
1.03M documents and 44M words from a vocabulary
of 7,500 terms.

NYT The corpus contains all articles published by
New York Times from January 1987 to June 2007
(Sandhaus, 2008), resulting in 1.56M documents and
176M words from a vocabulary of 7,600 terms.

Wiki The corpus contains entries from all English
Wikipedia websites on January 1, 2019, resulting in
4.03M documents and 423M words from a vocabulary
of 8,000 terms.

For the preprocessing, stemming and lemmatization
are used to clean the raw text, and then words with
too high or too low frequency, as well as common stop
words, are filtered out.

To evaluate the performance of CATVI, we set aside
a test set of 10,000 documents for each dataset and
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Figure 2: Left column: plots for the perplexity vs the
running time up to 5 hours, Right column: plots for
the number of topics vs the running time.

calculate the predictive perplexity as

perplexity = exp
{
−
∑
j∈Dtest

log p(xtest
j |xtrain

j ,Dtrain)∑
j∈Dtest

|xtest
j |

}
,

where Dtrain and Dtest represent the training and test
data, respectively, xtrain

j and xtest
j are the training and

test words in test document j, respectively, and |xtest
j |

is the number of words in xtest
j (Ranganath and Blei,

2018). The perplexity measures the uncertainty of fit-
ted models, where a lower perplexity will result in
a better language model with higher predictive like-
lihood. Since the perplexity can not be computed
exactly, the standard routine uses Dtrain to compute
the variational distribution for β and G0, then ob-
tains the variational distribution for Gj based on G0

and xtest
j , and then approximates the likelihood by

p(xtest
j |xtrain

j ) =
∏
w∈xtest

j

∑K
k=0Gjkβkw, where Gjk

and βkw are the variational expectations of Gjk and
βkw, respectively (Blei et al., 2003). Experiments are
run with the three datasets above using both the HDP
and ΓDP models. For the HDP model, we set the hy-
perparameters as α = γ = η = 5, where α and γ are

Table 1: A summary of predictive perplexity results.

Model Method arXiv NYT Wiki

HDP GS 3175 2635 1807
HDP MOVI 1901 2921 1876
HDP SMVI 1917 2866 1877
HDP OVI 1005 1681 1422
HDP CATVI 832 1569 1207
ΓDP CATVI 808 1536 1157

the concentration parameters for G0 and Gj respec-
tively, and η is the hyperparameter for the prior on
the distribution of words. The initial number of topics
is set to be 100. The parameters are then optimized
using stochastic gradient descent, with a batch size
of 256 and a linear decaying learning rate adopted in
Hoffman et al. (2010). For the ΓDP model, we use
the same settings but discard γ. In the experiments,
we remove clusters with fewer than 1 document during
the training.

7.2 Empirical Results

Predictive perplexity The top row of Figure 2
plots the predictive perplexity as a function of run-
ning time for the three comparison methods using the
three datasets. As MOVI, SMVI and GS provide much
higher perplexities, we do not plot their results in Fig-
ure 2. Table 1 reports numerical summaries for all
comparison methods. In particular, as GS can not
scale to large datasets, we use a subset with 500 docu-
ments to run the experiments. Several conclusions can
be drawn here. First, on all three datasets, CATVI
uniformly outperforms competing methods. The im-
provement is highly consequential, especially for arXiv
and Wiki. For NYT, there is moderate improvement,
likely due to the long length of documents in this cor-
pus. Second, for each dataset, the ΓDP model attains
a lower perplexity than the HDP model, consistent
with the fact that the ΓDP model removes a restriction
of the HDP model and hence is more flexible. Third,
CATVI is empirically shown to be computationally ef-
ficient, reaching the lowest perplexity within the same
training time. Although it involves Monte Carlo sam-
pling, the perplexity converges fast. This is because
the convergence of local Markov chains to assign words
to topics is accelerated by a clear topic-words cluster-
ing as the global variational distributions approach to
the optimal.

Number of topics The bottom row of Figure 2
plots the number of topics during the training process.
For OVI, the number of topics remains constant at the
prespecified value, while for CATVI, this value first
increases steeply and then converges to a stable level.
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For example, the number of topics in Wiki sharply
increase from 100 to around 190 for the HDP model
and around 200 for ΓDP model. The sharp increase is
driven by the data complexity, while the stable level
is achieved due to the dimension penalty effect from
the priors in HBNP models. Although the estimation
of the number of topics is not consistent, CATVI can
provide some useful information about topics in data.
For instance, the data from the arXiv corpus in these
experiments are limited to abstracts of scientific ar-
ticles, and thus it has the smallest number of topics.
By contrast, NYT is a compilation of all new articles
covering a wider range of areas, and hence consists of
more topics. Similarly, Wiki has the largest number of
topics as it contains almost every aspect of an encyclo-
pedia. It is important to note that we do not need to
set a fixed number of topics before the inference. In-
stead, CATVI starts from an initial value, for example
100 in our experiments, then automatically converges
to a stable optimal number of topics.

Topic-words clustering CATVI is shown to reveal
much better linguistic results. To compare CATVI
with OVI for the HDP model, we report the top 12
words in the top 10 topics with biggest weights for both
methods on arXiv and Wiki in Tables 2a and 2b, re-
spectively. We observe a few apparent patterns. First,
the topic-word clusters from CATVI hardly contains
replicated topics, whereas those from OVI results have
similar word components, such as those shown in blue
in columns 1-6 in the bottom part of Table 2a. An
ideal topic-word clustering should allocate these words
into just one topic. However, the prespecified num-
ber of topics is fixed at 150 in OVI, which is larger
than the ground truth, resulting in generating repli-
cated topics. By contrast, the topic-word clustering
by CATVI does not have such redundancy. It is ap-
parent that our top 10 topics are mostly distinct. Sec-
ond, CATVI leads to much clearer topic-word cluster-
ing. For both datasets, our results indicate that all of
our detected words within any column are highly rele-
vant and should intuitively be grouped into one cluster
with clear linguistic meaning. For example, column 7
of Table 2b for CATVI presents several words all re-
lated to military, but words in the same column for
OVI seem to be a mixture of several loosely connected
topics including ‘human, character, reveal, episode,
comic, voice’, ‘human, earth’ and ‘human, kill, attack,
fight, battle, doctor’. This mixture of topics makes
the topic-word clustering in this column ambiguous.
Furthermore, CATVI identifies a topic about popular
English given names in column 5 of Table 2b. Al-
though these given names are not shown in a single
document, CATVI can successfully discover that they
belong to one topic, while OVI fails. This is because

Table 2: Top 12 words in top 10 topics.

(a) arXiv

1 2 3 4 5 6 7 8 9 10

C
A

T
V

I

galaxy group network neutrino star gaug prove algorithm collision test
cluster algebra learn higg dwarf string bound optim product error
redshift construct train matter survey brane theorem converge decay samples
samples finit neural dark object symmetry finit solve hadron statist
luminos lie image decay binari dimension class linear jet uncertainties

formation categories deep standard variable couple position approximate transverse fit
survey prove dataset couple cluster action inequalities gradient gev systematic
agnes class feature mix stellar conform dimension minim lhc accuracy

lar complex task boson period construct converge matrix cross correct
star map object lepton photometr correspond continual iter section procedure

populated invariable convolut violate distanc dual regular spars quark improve
host manifold detect symmetry samples background compact constraint collid bias

O
V

I

galaxy galaxy star xray emiss galaxy higg star emiss radio
cluster redshift cluster emiss star line neutrino planet gammaray emiss
halo source abundance source region emiss decay period source galaxy
star survey galaxy accret line gas dark orbit grb source

stellar samples stellar kev gas star boson dwarf xray xray
formation cluster metal line dust redshift matter binari ray jet
velocity luminos age variable disk absorption standard detect detect line

dark agnes populated spectral molecular samples couple stellar burst region
gas xray ngc star cloud quasar gev transit flux cluster

matter radio dwarf flux detect luminos particle variable radio detect
profile star samples spectrum formation region mix light spectrum gas
disk optic giant detect galaxy detect symmetry companion jet star

(b) Wiki

1 2 3 4 5 6 7 8 9 10

C
A

T
V

I
tell increase band human james claim armies process polit album

tried effect album natur robert issue battle model parti chart
want case guitar tradition charles announce attack inform union song
friend process vocal term david critic troop effect communist track
leave measure track idea thomas controversi command problem movement video
ask caus rock view richard proposal soldier experience independence billboard
feel require drum word michael agreement military test social label

decide rate bass theorie frank polit fight example republic peak
turn example song philosophies peter allegation tanks research leader week
good reduce tour culture andrew statement brigade specific worker digitated
away possibilities studio believe brown agree german individual socialist hot

believe occur label conception henry minister capture object liberal remix

O
V

I

album episode actor album album episode character novel animal ship
band tell movi song song televis kill character episode navies
song character character band chart drama human love character class
track kill critic tour video actor earth poem voice boat
guitar friend cast love track comedies attack london movi naval
vocal leave review blue billboard actress reveal king video command
rock tried televis artist love movi episode tell air vessel
tour relationship episode rock label theatre comic fiction dvd submarine
chart need scene track version voice fight narrated televis gun
studio love theatre label week uncredit doctor friend ray fleet
bass reveal picture chart peak nominal battle mother blu sail
drum mother love singer remix cast voice critic song destroy

CATVI does not force the topics to merge together if
the prespecified number of topics is not large enough,
thus reducing the noise in the clusters.

We also perform sensitivity analysis of CATVI using
arXiv under the HDP model as an example. The left
and right panels of Figure 3 in Appendix E respectively
plot the results as the batch size varies from 128 to
1024 and the initial number of topics varies from 60 to
140. We observe that the performance is not sensitive
to the change of these hyperparameters. Moreover, the
best results are obtained for the case with a smaller
batch size and a larger initial number of topics.

8 DISCUSSION

CATVI can also be applied to other HBNP models in-
cluding, for example, hierarchical Pitman–Yor process
model (Teh and Jordan, 2010) and hierarchical beta
process model (Thibaux and Jordan, 2007). CATVI
will provide more advantages in these applications, be-
cause the hierarchical Pitman–Yor process, with heavy
tail behavior, and the hierarchical beta process, with
sparse structure, may suffer more from the universal
truncation.
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Supplementary Material:
CATVI: Conditional and Adaptively Truncated Variational
Inference for Hierarchical Bayesian Nonparametric Models

This supplementary material contains a short review of completely random measures in Appendix A, CATVI
algorithm and its applications to the HDP model and the ΓDP model in Appendix B, technical proofs and
derivations in Appendix C, computational complexity analysis and code in Appendix D and sensitivity analysis
results in Appendix E.

A A Short Review of Completely Random Measures

Suppose that (Ω,F) is a Polish sample space, Θ is the set of all bounded measures on (Ω,F) andM is a σ-algebra
on Θ. A random measure G on (Ω,F) is a transition kernel from (Θ,M) into (Ω,F) such that (i) G 7→ G(A)
is M-measurable for any A ∈ F and (ii) A 7→ G(A) is a measure for any realization of G (Ghosal and Van der
Vaart, 2017). For example, a Dirichlet process P with base measure P0 satisfies

(
P (A1), . . . , P (An)

)
∼ Dirichlet

(
P0(A1), . . . , P0(An)

)

for any partition Ω = (A1, . . . , An) of Ω, that is, a finite number of measurable, nonempty and disjoint sets
such that

⋃n
i=1Ai = Ω. The Dirichlet process is denoted by P ∼ DP(P0) or P ∼ DP(αH) with concentration

parameter α = P0(Ω) and center measure H = α−1P0. Moreover, a random measure is called a completely
random measure (Kingman, 1993) if it also satisfies the condition that (iii) P (Ai) is independent of P (Aj) for
any disjoint subsets Ai and Aj in Ω. Completely random measures and their normalizations (Ghosal and Van der
Vaart, 2017), for example, the Gamma process and Dirichlet process, respectively, are commonly used as priors
for infinite-dimensional latent variables in HBNP models, because their realizations are atomic measures with
countable-dimensional supports.

A completely random measure (Kingman, 1993) is characterized by its Laplace transform,

E
[
e−tP (A)

]
= exp

{
−
∫

A

∫

(0,∞]

(1− e−tπ)vc(dx, ds)
}
,

where A is any measurable subset of Ω and vc(dx, ds) is called the Lévy measure. If vc(dx, ds) = κ(dx)v(ds),
where κ(·) and v(·) are measures on Ω and (0,∞], respectively, the completely random measure is homogeneous
(Ghosal and Van der Vaart, 2017). In such a case, we call v(·) the weight intensity measure. We can view
completely random measure as a Poisson process on the product space Ω× (0,∞] using its Lévy measure as the
mean measure.

B CATVI Algorithm

B.1 Empirical ELBO for q(β) and q(zsi)

To maximize the NPELBO, we iterate the following three steps: (i) randomly select a small batch from the entire
data, (ii) sample {ẑs}Ss=1 by Monte Carlo method, and (iii) update q(GΩ

0) and q(β) in the stochastic variational
inference framework.

In an analogy to (9), the NPELBO with respect to q(β) is

lim inf
Ω

{ J∑

j=1

Eq(β)Eq(zj)logp(xj |zj , β)−KL
(
q(β)‖p(β)

)}
, (A.1)
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and the empirical evidence lower bound with respect to q(β), ÊLBO
Ω

, is,

S∑

s=1

Ts∑

t=1

J

STs
Eq(β) log p(xs|ẑs,t, β)−KL

(
q(β)|p(β)

)
(A.2)

up to a constant and then we can update its parameter with the corresponding random gradient in a similar
way. Moreover, the NPELBO with respect to q(zsi) is

lim inf
Ω

{
Eq(GΩ

0)Eq(zj) log Ep(GΩ
j |GΩ

0)p(zj |GΩ

j) + Eq(zj)Eq(β) log p(xj |zj , β)− Eq(zj) log q(zj)
}
. (A.3)

Factorizing Eq(zj) as Eq(zji)Eq(zj,i− ) leads to (11). We summarize the details of CATVI algorithm in Algorithm 1.

B.2 CATVI for the HDP Model

We repeatedly select documents of a batch size and update parameters iteratively according to the following
three steps, until the NPELBO attains its maximum.

Inference for G0. There is no closed-form expression for the parameters {mk}Kk=0 to attain the maximum in
(12). Moreover, the standard gradient descent algorithm fails in this case, because {mk}Kk=0 may easily exceed

the simplex during the updating procedure. Instead, given the parameters {m(τ)
k }Kk=0 in the τ -th iteration, we

first define

m∗k ∝
{
JS−1γ

∑S
s=1

{
T−1
s

∑Ts

t=1 Φ(γm
(τ)
k + n̂sk,t)− Φ(γm

(τ)
k )
}
m

(τ)
k − 1 k = 1, . . . ,K,

α− 1 k = 0,
(B.1)

where Φ(·) denotes the log-gamma function, such that
∑K
k=0m

∗
k = 1, and then we update the parameters by

m(τ+1) = (1 − ρt)m(τ) + ρτm
∗
k, where ρt is the step size defined in Algorithm 1. This updating algorithm is

consistent to the gradient descent after the inverse logit transformation. See Appendix C.6 for a justification. In
the process of updating, the condition

∑K
k=0m

∗
k = 1 always holds, and hence we eliminate the risk of exceeding

the simplex.

Inference for β. By (A.2), we update the parameters for q(β) using samples {ẑs}Ss=1. We define λ∗kw for topic
k and word w as,

λ∗kw = η +
S∑

s=1

Ts∑

t=1

Ns∑

i=1

J

STS
I(ẑsi,t = φk, xsi = w), (B.2)

and update the parameter λk by λ
(τ+1)
k = (1− ρt)λ(τ)

k + ρτλ
∗
k for each k, where λ∗k = (λ∗k1, . . . , λ

∗
kW )T.

Sampling for z. According to (11) we sample ẑsi conditional on q(G0) and ẑsi− by

q(zsi = φk) ∝
{

(γmk + n̂ks,i−) exp
(
Φ(λkxsi)− Φ(

∑W
w=1 λkw)

)
k = 1, . . . ,K,

γm0 exp
(
Φ(η)− Φ(Wη)

)
k = 0,

(B.3)

to construct the Markov chain, where n̂ks,i− =
∑

1≤l≤Ns,l 6=i I(ẑsl = φk). Whenever the sampled ẑsi is in φ0,

meaning ẑsi forms a new point not belonging to {φ1, . . . , φK}, we need to update the partition and add a new
topic indicated by φK+1. Otherwise the partition dimension remains the same. Iterating the sampling scheme
till convergence, we obtain the samples {ẑsi,t}1≤s≤S,1≤i≤Ns,1≤t≤Ts

and corresponding {n̂sk,t}1≤s≤S,1≤k≤K,1≤t≤Ts

for the selected chunk.

B.3 CATVI for the ΓDP Model

ΓDP releases the constraint of fixed concentration parameter γ in HDP. Therefore, the CATVI algorithm for
ΓDP inherits the steps in (B.1) and (B.3), except that a parameter µ replaces the concentration parameter γ in
both formulas.
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We derive the empirical evidence lower bound in Appendix C.7 with respect to q(G0) as,

K∑

k=1

log v(µmk) + log u(µm0) +

S∑

s=1

J

S
log

Γ(µ)

Γ(µ+Ns)
+

S∑

s=1

K∑

k=1

Ts∑

t=1

J

STs
log

Γ(µmk + n̂sk,t)

Γ(µmk)
+K logµ (B.4)

up to a constant, where v(·) is the weight intensity measure (see Appendix A) for the completely random measure,
and u(·) is the density function for G0(Ω) that can be derived using its Laplace transform. Therefore, we can
update {mk}Kk=0 in the same way as the HDP model.

Similar to (B.1), we update {mk}Kk=0 according to

m∗k ∝
{
JS−1µ

∑S
s=1

{
T−1
s

∑Ts

t=1 Φ(µm
(τ)
k + n̂sk,t)− Φ(µm

(τ)
k )
}
m

(τ)
k − 1 k = 1, . . . ,K,

α− 1 k = 0,
(B.5)

and m(τ+1) = (1− ρt)m(τ) + ρτm
∗
k. Moreover, in an analogy to (B.3), the probability to sample ẑsi is defined as

q(zsi = φk) ∝
{

(µmk + n̂ks,i−) exp
(
Φ(λkxsi

)− Φ(
∑W
w=1 λkw)

)
k = 1, . . . ,K,

µm0 exp
(
Φ(η)− Φ(Wη)

)
k = 0.

(B.6)

Finally, we apply the gradient ascent to update µ. In Appendix C.7, we derive the gradient of empirical evidence
lower bound with respect to µ as

g′(µ) =
α− 1

µ
− 1 +

J

S

S∑

s=1

{
Φ(µ)− Φ(µ+Ns) +

K∑

k=1

1

Ts

Ts∑

t=1

mk

(
Φ(µmk + n̂sk,t)− Φ(µmk)

)}
, (B.7)

and then update µ by µ(τ+1) = µ(τ) + ρτg
′(µ(τ)).

C Technical Proofs and Derivations

C.1 Proof for (4)

By definition of induced measure, qΩ(dΘ) = Q(dΘ) for any M-measurable dΘ , we have
∫

Θ

log
dqΩ

dpΩ
dqΩ =

∫

Θ

log
dqΩ

dpΩ
dQ.

It follows from lim sup
Ω
dqΩ/dpΩ = dQ/dP and the monotone convergence theorem that

lim sup
Ω

∫

Θ

log
dqΩ

dpΩ
dQ =

∫

Θ

log
dQ

dP
dQ.

Combining the above equations yields (4). Furthermore, suppose there exists a sequence of partition {Ωi}i≥1

such that lim supΩi = Ω, we have

lim sup
Ωi

∫

Θ

log
dqΩi

dpΩi
dqΩi = lim sup

Ωi

∫

Θ

log
dqΩi

dpΩi
dQ =

∫

Θ

log
dqΩ

dpΩ
dQ =

∫

Θ

log
dqΩ

dpΩ
dqΩ.

Hence lim sup
Ωi

KL(qΩi‖pΩi) = KL(qΩ ‖ pΩ), which will be used in Appendix C.4.

C.2 Proof for (6)

By p(X,Z) = p(Z|X)p(X), we have
∫

log
p(X,ZΩ)

q(ZΩ)
q(dZΩ) = log p(X) +

∫
log

p(ZΩ|X)

q(ZΩ)
q(dZΩ).

Taking the limit inferior on both sides, we have

lim inf
Ω

∫
log

p(X,ZΩ)

q(ZΩ)
q(dZΩ) = log p(X)− lim sup

Ω

{
−
∫

log
p(ZΩ|X)

q(ZΩ)
q(dZΩ)

}
.

Combing the above equation with the definition of NPELBO in (5) and the KL divergence in (4) yields (6).
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C.3 Derivation for (9)

By p(GΩ

0, {zj}Jj=1) =
∫
· · ·
∫
p
(
GΩ

0, {Gj}Jj=1, {zj}Jj=1

)
dG1dG2 · · · dGJ and the hierarchical generative structure,

the evidence lower bound under partition Ω with respect to q(GΩ

0) equals,

ELBOΩ

= Eq(GΩ
0)Eq({zj}Jj=1) log p(GΩ

0, {zj}Jj=1)− Eq(GΩ
0) log q(GΩ

0) + constant

= Eq(GΩ
0)Eq({zj}Jj=1) log q(GΩ

0)

J∏

j=1

∫
p(GΩ

j |GΩ

0)p(zj |GΩ

j)dGj − Eq(GΩ
0) log q(GΩ

0) + constant

=

J∑

j=1

Eq(GΩ
0)Eq(zj) log Ep(GΩ

j |GΩ
0)p(zj |GΩ

j) + Eq(GΩ
0) log p(GΩ

0)− Eq(GΩ
0) log q(GΩ

0) + constant.

Furthermore, based on the equation above, (8) can be expressed as NPELBO = lim infΩ ELBOΩ.

C.4 Derivation for (12)

By the formula of moments for Dirichlet-distributed random variables, we obtain

Ep(GΩ
s|GΩ

0)p(ẑs,t|GΩ

s) =
Γ(γ)

Γ(γ +Ns)

K∏

k=1

Γ(γG0k + n̂sk,t)

Γ(γG0k)
.

Based on the points {φk}Kk=1 defined in Section 5.1, we propose a sequence of partition {Ωc : Ωc =
⋃K
k=0Ωck}c≥1

to approach Ω, where Ωck = (φk − c−1, φk + c−1] for k = 1, . . . ,K and Ωc0 is the corresponding complement.
Under Ωc, q(G

Ωc
0 ) = dK+1

(
m−1

0 (GΩc
0 − MΩc)

)
and p(GΩc

0 ) = dK+1(GΩc
0 ), where dK+1(·) denotes the density

function for (K+1)-dimensional Dirichlet distribution, M =
∑K
k=1mkδφk

and MΩc is the corresponding induced
random variable. By (10), the empirical evidence lower bound under Ωc is

Eq(GΩc
0 )

{ K∑

k=1

(αHΩc

k − 1) log
m0G0k

(G0k −mk)
+ (αHΩc

0 − 1) logm0

+

S∑

s=1

K∑

k=1

Ts∑

t=1

J

STs
log

Γ(γG0k + n̂sk,t)

Γ(γG0k)

}
+ constant,

where HΩc

k = H(Ωck). Since (G0k−mk)/m0 ∼ Beta(HΩc

k ) under q(GΩc
0 ), the term Eq(GΩc

0 )(αH
Ωc

k −1) logm0(G0k−
mk)−1 is constant with respect to parameters {mk}Kk=0. Taking lim sup on both sides of the above equation with
lim sup

Ωc
Eq(GΩc

0 )(logG0k) = logmk, lim sup
Ωc
HΩc

k = 0 for k > 0 and lim sup
Ωc
HΩc

0 = 1, we obtain equation (12).

C.5 Justification for Section 4.3

In this section, we show that the empirical evidence lower bound achieves the limit inferior in NPELBO. With
the partition Ω = (φ0, φ1, . . . , φK) defined in Section 4.3, there is no sampling within φ0, and hence we have

q
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
∝ p
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
p
(
x | G0(φ1), · · · , G0(φK)

)
.

As the likelihood part p
(
x|G0(φ1), · · · , G0(φK)

)
does not contain G(φ0), by integrating both sides with respect

to G0(φ1), · · · , G0(φK), we can get q
(
G0(φ0)

)
∝ p
(
G0(φ0)

)
. Moreover, the KL divergence between the variational

distribution and true posterior is

KL
(
q(GΩ

0) ‖ p(GΩ

0 | x)
)

=

∫
log

q
(
G0(φ0), G0(φ1), · · · , G0(φK)

)

p
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
p
(
x | G0(φ1), · · · , G0(φK)

)dq
(
G0(φ0), G0(φ1), · · · , G0(φK)

)

= − logN ,
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because

q
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
= p
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
p
(
x | G0(φ1), · · · , G0(φK)

)
/N,

where N is the normalization constant,

N =

∫
· · ·
∫
p
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
p
(
x | G0(φ1), · · · , G0(φK)

)
dG0(φ1)dG0(φ1) · · · dG0(φK)

=

∫
p
(
x | G0(φ1), · · · , G0(φK)

)
dp
(
G0(φ0), G0(φ1), · · · , G0(φK)

)

=

∫
p
(
x | G0(φ1), · · · , G0(φK)

)
dp
(
G0(φ1), · · · , G0(φK)

)
.

It is obvious that N is independent of p
(
G0(φ0)

)
. Therefore, if we partition φ0 into φ1

0 ∪ φ2
0, the normalization

constant N will not change, that is, the KL divergence under Ω and Ω′ = (φ1
0, φ

2
0, φ1, . . . , φK) are the same.

Consequently, the partition Ω enables the limit superior of KL divergence to be reached. By (6), the limit inferior
of NPELBO is also attained.

C.6 Derivation for (B.1)

Consider the Lagrange multiplier of constrained optimization,

L′ = −
K∑

k=1

logmk + (α− 1) logm0 +
S∑

s=1

K∑

k=1

J

STs

Ts∑

t=1

log
Γ(γmk + n̂sk,t)

Γ(γmk)
− λ(

K∑

k=0

mk − 1),

its first order conditions satisfy,

{
JS−1γ

∑S
s=1

{
T−1
s

∑Ts

t=1 Φ(γmk + n̂sk,t)− Φ(γmk)
}
mk − 1 = mkλ, k = 1, . . . ,K,

α− 1 = m0λ, k = 0.

Dividing λ on both sides of the above equations, the definition of {m∗k}Kk=0 in (B.1) follows.

We next show that this updating is consistent with the gradient descent after the inverse logit transformation,
that is, transforming {mk}Kk=0 by mk = eθk/

∑K
l=0 e

θl to remove the constraint of
∑K
k=0mk = 1. By ∂mk/∂θk =

mk −m2
k, ∂ml/∂θk = −mkml for l 6= k, and the chain rule, we have

∂L

∂θk
=

{
JS−1γ

∑S
s=1

{
T−1
s

∑Ts

t=1 Φ(γmk + n̂sk,t)− Φ(γmk)
}
mk − 1− Λmk k = 1, . . . ,K,

α− 1− Λmk k = 0,

where L denotes ÊLBO
Ω

in (12) and

Λ = α− 1 +
K∑

k=1

[
JS−1γ

S∑

s=1

{
T−1
s

Ts∑

t=1

Φ(γmk + n̂sk,t)− Φ(γmk)
}
mk − 1

]
.

As ∂L/∂θk = Λ(m∗k −mk), (m∗k −mk) represents the gradient with respect to θk after the inverse logit transfor-
mation.

C.7 Derivation for (B.4)

For the HBNP model, we use an unnormalized random measure as the prior of G0. Given moments for Dirichlet-
distributed random variables, we obtain

log Ep(GΩ
s|GΩ

0)p(ẑs,t|GΩ

s) = log
Γ(
∑K
k=0G0k)

Γ(
∑K
k=0G0k +Ns)

K∏

k=1

Γ(G0k + n̂sk,t)

Γ(G0k)
,
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Figure 3: Plots for the perplexity vs running time for different batch sizes and initial numbers of topics.

In analogy to Appendix C.4, the empirical evidence lower bound under Ωc is

K logµ+ Eq(GΩc
0 )

{ K∑

k=1

log p(GΩc

0k) + log p(GΩc
00) +

J

S

S∑

s=1

K∑

k=1

T−1
s

Ts∑

t=1

log
Γ(γGΩc

0k + n̂sk,t)

Γ(γGΩc

0k)

}
,

up to a constant, where K logµ comes from the Jacob matrix from G0, G1, . . . , GK to µ,m1, . . . ,mK . As
the partition converges to single points and the corresponding complement, lim sup

Ωc
p(GΩc

0k) = v(GΩc

0k) and
lim sup

Ωc
p(GΩc

00) = u(GΩc
00). Therefore, we can obtain (B.4) by lim sup

Ωc
G0k = µmk for k 6= 0 and lim sup

Ωc
G00 =

µm0. Specially, for the ΓDP model, ÊLBO
Ω

takes the form of

µ−
K∑

k=1

logmk + (α− 1) logµm0 +
J

S

S∑

s=1

{
log

Γ(µ)

Γ(µ+Ns)
+

K∑

k=1

1

Ts

Ts∑

t=1

log
Γ(µmk + n̂sk,t)

Γ(µmk)

}
,

up to a constant and (B.7) is also attained.

D Computational Complexity Analysis, Data and Code

For CATVI, updating the global variables takes linear time, and the Monte Carlo step iteratively samples each zji
from K possible topics. Therefore, the computational complexity of Algorithm 1 is dominated by O(K+TsKNS),
where NS is the average number of words in a document, and Ts is the average of Ts defined in Algorithm 1.
To implement this algorithm, we conduct our experiments on a c5d.4xlarge instance on the AWS EC2 platform,
with 16 vCPUs and 32 GB RAM. It takes at most 5 hours to run all numerical experiments.

Python code for CATVI is available at https://github.com/yiruiliu110/ConditionalVI.We obtain the
arXiv and Wiki data from public open resources https://arxiv.org/help/bulk_data and https://dumps.

wikimedia.org, respectively. The NYT data are from Sandhaus (2008). For the comparison methods, we
implement OVI using the Python package ‘gensim.models.hdpmodel’ under GNU Lesser general public license
v2.1. Moreover, we implement MOVI and SMVI using the Python package ‘bnpy’ under 3-clause BSD li-
cense, which is available at https://github.com/bnpy/bnpy. Finally, the codes to run GS are available at
https://github.com/linkstrife/HDP.

E Sensitivity Analysis Results of CATVI

Figure 3a plots the sensitivity analysis with respect to the batch size varying from 128 to 1024. Figure 3b plots
the sensitivity analysis with respect to the initial number of topics varying from 60 to 140. We observe that the
performance is not sensitive to the change of these hyperparameters.
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Chapter 3

Bayesian Nonparametric for Graph
Data

This chapter is dedicated to an article published at the 26th International Conference

on Artificial Intelligence and Statistics, available online at https://proceedings.

mlr.press/v206/liu23a.
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Abstract

Training deep graph neural networks (GNNs)
poses a challenging task, as the performance of
GNNs may suffer from the number of hidden
message-passing layers. The literature has fo-
cused on the proposals of over-smoothing and
under-reaching to explain the performance dete-
rioration of deep GNNs. In this paper, we pro-
pose a new explanation for such deteriorated per-
formance phenomenon, mis-simplification, that
is, mistakenly simplifying graphs by preventing
self-loops and forcing edges to be unweighted.
We show that such simplifying can reduce the
potential of message-passing layers to capture
the structural information of graphs. In view
of this, we propose a new framework, edge en-
hanced graph neural network (EEGNN). EEGNN
uses the structural information extracted from the
proposed Dirichlet mixture Poisson graph model
(DMPGM), a Bayesian nonparametric model for
graphs, to improve the performance of various
deep message-passing GNNs. We propose a
Markov chain Monte Carlo inference framework
for DMPGM. Experiments over different datasets
show that our method achieves considerable per-
formance increase compared to baselines.

1 INTRODUCTION

Graph neural networks (GNNs) (Zhou et al., 2020; Wu et al.,
2020) are important tools for analyzing graph data, such as
social network (You et al., 2020), transportation network
(Chen et al., 2021a), molecular graph (Huang et al., 2020),
biological network (Zhang et al., 2021), financial transaction
network (Wang et al., 2021), academic citation graph (Xu

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

et al., 2021), and knowledge graph (Ji et al., 2021). GNNs
have become popular with their state-of-the-art performance
by applying deep learning methodologies to graphs. Among
them, message passing neural networks (MPNN) (Gilmer
et al., 2017) uses message-passing layers to compute node
embeddings. Examples of MPNNs include graph convo-
lutional neural networks (GCN) (Kipf and Welling, 2017),
GraphSAGE (Hamilton et al., 2017), graph attention net-
works (GAT) (Veličković et al., 2018), and gated graph
neural networks (GGNN) (Li et al., 2016). Similar to stan-
dard multi-layer perceptron (MLP) in deep learning, the
message passing layer in a GNN framework aggregates in-
formation from the local neighbors of each node, and then
transforms the information via an activation function into
the embedding (Hamilton, 2020). A node embedding can
aggregate information over N hop neighbors, in the form
of N hidden message-passing layers, thus incorporating
further reaches of the graph.

Although deeper layers in non-graph neural networks often
achieve better performance (Krizhevsky et al., 2012; He
et al., 2016), GNNs typically perform best with only 2 to
4 hop neighbors, that is, 2 to 4 hidden layers. In contrast,
using a larger number of layers, termed as deep stacking,
may lead to a substantial drop in the performance for GNNs
(Klicpera et al., 2019; Rong et al., 2019; Li et al., 2020;
Chen et al., 2020b). One explanation for this phenomenon
is the over-smoothing. By applying graph convolution re-
peatedly over many hidden layers, the representation of
the nodes will be indistinguishable. As a result, the over-
smoothing can jeopardize the performance of deep GNNs.
Another explanation is the under-reaching. When GNNs
aggregate messages over long paths, the information propa-
gation across distant nodes in the graph becomes difficult
because it is susceptible to bottlenecks (Alon and Yahav,
2020). This causes GNNs to perform poorly in predicting
tasks that require remote interaction (Singh et al., 2021;
Hwang et al., 2021).

Many efforts have been devoted to addressing these limita-
tions. To handle the over-smoothing, DropEdge (Rong et al.,
2019) and DropNode (Huang et al., 2021) were proposed to
randomly remove a certain number of edges or nodes from
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the input graph at each training epoch. These methods are
likened to Dropout (Srivastava et al., 2014), which randomly
drops hidden neurons in neural networks to prevent overfit-
ting. On the contrary, to address the under-reaching, virtual
edges (Gilmer et al., 2017), super nodes (Scarselli et al.,
2009; Hwang et al., 2021), or short-cut edges (Allamanis
et al., 2018) can be added to the original graph. However,
none of the aforementioned methods consider adding or
removing based on the structural information of the graph.
Instead, the pattern of deciding which nodes or edges to
be added or removed comes from an arbitrarily random se-
lection. Although dropout has been effective in non-graph
neural networks, its random removal and addition of nodes
can disturb the graph structure, thus compromising the per-
formance of GNNs that relies on the structure to propagate
information.

Different from the over-smoothing and under-reaching, we
propose a new explanation for performance deterioration of
deeper GNNs from the perspective of misusing edge struc-
tural information, mis-simplification, explained as follows.
Most observed graphs are recorded as simple graphs, where
self-loops are not allowed, and all edges are unweighted
and undirected (Shafie, 2015). In a natural way, GNNs are
designed for learning such simple graphs that can be con-
structed by collapsing multiple edges into a single edge as
well as removing self-loops. This approach, however, dis-
cards the information inherent in the original network. Take
one example, for a source node connected to many neigh-
boring target nodes (see node 1 in Figure 1a), its self-loop
has an equal weight to neighboring non-loop edge, which
may under-weigh the importance of this node. Take another
example, no matter how similar the two nodes are (see nodes
1 and 2 in Figure 1a), only one edge is allowed to connect
the pair of nodes, and as a result, the information passing
between both nodes is restricted. Furthermore, edge p1, 2q
should play a more important role in message passing than
edge p1, 3q, because node 2 is a key node with 3 sub-nodes
in total, while node 3 is just a sub-node of node 2. However,
typical GNNs treat these two edges indifferently as they are
equally weighted in the simple graph. Therefore, such mis-
simplification can reduce the potential of message-passing
layers to capture structural information in GNNs.

To solve this issue, we propose an edge-enhanced graph
neural network (EEGNN), which incorporates edge struc-
tural information in the message-passing layer. First, we
assume that there is an underlying virtual multigraph, al-
lowing for self-loops and for multiple edges between pairs
of nodes, and the observed graph model can be viewed as a
transformation of the virtual multigraph. As illustrated in
Figure 1, the above Figure 1ais the original observed sim-
ple graph, while the below Figure 1b is the corresponding
virtual graph. Second, to build the virtual multigraph that
can capture the edge structural information, we propose the
Dirichlet mixture Poisson graph model, a Bayesian non-

(a) The observed simple graph

(b) The corresponding virtual multigraph

Figure 1: The observed simple graph versus the virtual
multigraph. The red edges are virtual edges in the virtual
multigraph. In particular, the red circles are virtual self-
loops.

parametric model. Following Caron and Fox (2017), the
interactions between nodes are modelled by assigning a so-
ciability parameter to each node. Then, the counts of edges
are generated from a Poisson distribution, where the Poisson
rate is the product of sociability parameters of the nodes
in two ends. Finally, in the framework of EEGNN, we can
then replace the observed graph in a GNN with the virtual
multigraph. In this architecture, message-passing layers can
then assign weights proportionally to the importance of the
edges, thus passing the information from nodes to nodes in
a more reasonable manner.

The main contribution of our paper is fourfold.

• We outline a new explanation for the poor performance
of deep GNNs;

• We propose a new way to enhance existing GNN meth-
ods by utilizing the structural information of graphs;

• We propose a Bayesian nonparametric graph model
and its Monte Carlo Markov chain (MCMC) inference
procedure;

• We demonstrate the superior sample performance of
our proposal over existing methods through the experi-
ments on six real datasets and a financial application.
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2 Preliminaries

2.1 GNN and Message Passing Layer

We begin by introducing some notation. Let G “ pV,Eq
be a graph with node set V “ tv1, . . . , v|V |u and edge
set E “ te1, . . . , e|E|u, where |V | and |E| denote the
number of nodes and edges in G, respectively. The ad-
jacency matrix A P R|V |ˆ|V | is defined as Aij “ 1 if
pvi, vjq P E and 0 otherwise. The corresponding degree ma-
trix D P R|V |ˆ|V | is defined as D “ diagpD1, . . . , D|V |q,
where Di “ ř|V |

j“1Aij . We denote the data matrix by
X P Rmˆ|V |, whose j-th column corresponds to a m-
dimensional feature vector of node j.

GNN is a neural network model to process graphs for node
classification, edge prediction and graph classification (Gori
et al., 2005; Zhou et al., 2020; Wang et al., 2021). Within
various GNNs, information is exchanged between nodes and
is updated by neural networks via message passing layers
(Gilmer et al., 2017). Specifically, the initial representa-
tion, h0

i for node i, is generated by a function of this node’s
features. Then, the message passing layers update the rep-
resentation based on this node’s neighbors. The message
passing contains two steps: the aggregation step and the
update step. Denote the representation for node i in layer l
by hli. A message passing layer in GNN can be expressed as

hl`1
i “ UPDATEphli,AGGREGATEphlj | j PNiqq, (1)

where AGGREGATEp¨q denotes a permutation-invariant
function, such as the sum, mean, and maximum, to send
information from one node to another through edges, and
UPDATEp¨q denotes linear or nonlinear differentiable func-
tions such as MLP, Ni denotes the neighborhood of node i,
that is, the set of nodes directly connected to node i. For ex-
ample, the vanilla GCN uses hl`1

i “ σpř|V |j“1 P̃ijh
l`1
j W l |

j P Ni Y tiuq, or in matrix form, H l`1 “ σpP̃H lW lq
(Kipf and Welling, 2017), APPNP uses H l`1 “ p1 ´
αqP̃H l ` αH0 (Klicpera et al., 2019), and GCNII uses
H l`1 “ σ

`p1´αqP̃H l`αH0qpp1´βqIn`βW lq˘ (Chen
et al., 2020b), where P̃ “ pD ` Iq´ 1

2 pA` IqpD ` Iq´ 1
2 ,

H l is the representation for all nodes in layer l, σ and
W l are respectively the activation function and the cor-
responding weight in a neural network layer, and α and β
are hyperparameters. The formulas above show that the
GNN treats each edge with equal weight and hence leads to
mis-simplification. In order to solve this issue, we adopt a
Bayesian nonparametric sparse graph model to generate the
virtual edges and virtual multigraph.

2.2 Bayesian Nonparametric Sparse Graph Model

In contrast with other graph models that are based on
node feature embeddings, Caron and Fox (2017) repre-
sent the observed graph G as a point process on R2,

(a) Graph model in Caron and Fox (2017)

(b) Dirichlet mixture Poisson graph model (DMPGM)

Figure 2: Bayesian nonparametric graph model. Figure 2a
illustrates the model in Caron and Fox (2017), while Fig-
ure 2b illustrates the proposed graph model in this paper.
The left sub-figures show the proxy for nodes, θis, and the
number of edges among them. The right sub-figures dis-
play the corresponding multigraph. In Figure 2b, red and
blue are used to indicate two clusters in the edges. The
circles around nodes denote self-loops. Finally, the number
of circles or links denotes the multiplicity.

G “ ř
i,j zi,jδpθi,θjq, where Dirac function δpθi,θjq is equal

to 1 at pθi, θjq and equal to 0 elsewhere, zi,j is the multi-
plicity for edge pi, jq, and θi is a proxy for node i on the
real axis, as illustrated in Figure 2a. Note that the same
definition for node i is also applied to node j, but we omit
the explanation for node j to avoid redundancy. This repre-
sentation specifies the source and target nodes for each edge.
To model the possibility for two nodes constructing an edge,
a sociability parameter wi ą 0 is assigned to node i for each
i “ 1, . . . , |V |. Following Aldous (1997), the graph model
can be factorized as ppAij “ 1q “ 1 ´ expp´2wiwjq
for i ‰ j and ppAii “ 1q “ 1 ´ expp´w2

i q otherwise.
This is equivalent to modelling an unobserved integer-
valued multigraph as zij „ Poissonpwiwjq and setting
Aij “ 1zij`zjią0. To model the sparsity property in real
graphs, that is, |E| “ o

`|V |2˘, the sociability is generated
from a completely random measure with infinite activity
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(Caron and Fox, 2017), such as gamma process, stable pro-
cess and inverse Gaussian process (Ghosal and Van der
Vaart, 2017). See also Appendix A for a short review of
completely random measures. This model allows for self-
loop and multi-edges, and thus can be used to build a virtual
multigraph. However, as the Poisson intensity is factorized
as the outer product of a vector with itself, only one feature
for each node is considered, which restricts the capability
of this model in confronting real data. To address this issue,
we propose a novel model in Section 3.1 below.

3 METHODOLOGY

3.1 Dirichlet Mixture Poisson Graph Model

To adopt the latent community information among nodes
in the graph, mixed-membership stochastic block model
(Airoldi et al., 2008) associates each node with latent cluster
distributions. In an analogy, we add cluster-membership
features to each pair of edges instead of nodes. Specifically,
we extend the graph model in Caron and Fox (2017) by
proposing the following Dirichlet mixture Poisson graph
model (DMPGM),

π “ pπ1, π2, ¨ ¨ ¨ q „ GEMpαq,

W0 “
8ÿ

i“1

w0,iδθi „ CRMpκ, vq,

Wk “
8ÿ

i“1

wk,iδθi „ ΓPpW0q,

zij „ Poissonp
8ÿ

k“1

πkwk,i ˆ wk,jq,

Aij “ minpzij ` zji, 1q1i‰j ,

(2)

for i, j, k P N`, where GEMpαq is the distribution for
atom sizes of a Dirichlet process DPpαq and each atom
corresponds to a distinct cluster. Moreover, CRMpκ, vq de-
notes a completely random measure with vcpdw, dθq “
κpdθqvpdwq as its Levy measure, and ΓPpHq denotes
gamma process with the base measure H . See Appendix A
for details of these stochastic processes. We summarize
the probabilistic generative steps as follows. First, the clus-
ter distribution π is assigned with a prior GEMpαq, which
allows for infinitely many clusters. Second, we use a hierar-
chical structure to generate values for the node sociability
parameter in each cluster. W0, sampled from a completely
random measure, is used as the base measure in ΓPpW0q
for Wk such that wk,i belongs to gamma distribution param-
eterized by w0,i, wk,i „ Gammapw0,iq. This hierarchical
setting is designed to ensure the components in Wk share
atom locations (Teh et al., 2006; Liu et al., 2022). Finally,
following Caron and Fox (2017), an undirected multigraphř
i,j zijδpθi, θjq is generated from a Poisson process, where

zij is the Poisson-distributed multiplicity for edge pi, jq. By

aggregating multiple edges to a single edge for each pair
of nodes and removing self-loops, a simple graph is trans-
formed from the multigraph. The corresponding adjacent
matrix A “ pAijq to the observable simple graph can then
be generated. An example of DMPGM is illustrated in
Figure 2b.

DMPGM can be equivalently expressed under a mixture
model framework. Specifically, a set of edges in each cluster
is sampled from Poissonpπk sw2

kq, where swk “ ř8
i“1 wk,i.

As a consequence, this is equivalent to sampling the total
number of edges n from Poissonpλq with λ “ ř8

k“1 πk sw2
k,

and then assigning each edge a cluster membership from
Categorical

`π1 sw2
1

λ ,
π2 sw2

2

λ , . . .
˘
. Following the same method-

ology, for each edge, a pair of nodes is then sampled from
Categoricalpwk,1swk ,

wk,2
swk , . . . q in the cluster k. Hence, a re-

lationship between edges and nodes is constructed. We
summarise this equivalent expression for DMPGM as fol-
lows,

n „ Poissonp
8ÿ

k“1

πk sw2
kq,

k „ Categorical
`π1 sw2

1

λ
,
π2 sw2

2

λ
, . . .

˘
,

i, j „ Categorical
`wk,1

swk
,
wk,2
swk

, . . .
˘
,

(3)

where other structures in equation (2) remain the same. In
Appendix C, we show that DMPGM enjoys similar proper-
ties as the model in Caron and Fox (2017) in the following
theorem.

Theorem 1 The graph constructed by DMPGM is sparse if
CRM in (2) has infinite activity.

For example, using the gamma process as the completely
random measure leads to a sparse graph in the DMPGM,
which makes it more effective for modeling real-life data.

It is worth noting that DMPGM extends the model in Caron
and Fox (2017) by assuming that edges can belong to differ-
ent clusters. As a result, DMPGM is more flexible and ap-
plicable in modelling real data. We also note that DMPGM
is distinct from the overlapping communities graph model
(Todeschini et al., 2020) and graph Poisson factorization
(Zhou, 2015), because we assign a Dirichlet prior for the
clustering distribution, and hence can allow a nonparamet-
ric estimation of the number of edge clusters. Moreover,
Williamson (2016) uses the hierarchical Dirichlet process
(HDP) (Teh et al., 2006) to construct the graph. However,
as HDP only models the node distribution within a cluster,
the number of edges is ignored. As a result, this model
cannot be used for EEGNN framework. Finally, a genera-
tive model that shares some fundamental similarities with
DMPGM is proposed by Ricci et al. (2022). However, this
concurrent work does not investigate the use of a Bayesian
nonparametric graph model to improve GNNs.
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3.2 MCMC Inference Framework

We propose a detailed MCMC framework to infer the pos-
teriors for DMPGM in a nonparametric way. Following
Caron and Fox (2017) and Liu et al. (2022), the posterior
distribution for Wk “ ř8

i“1 wk,iδθi , k ě 0, are restricted
to the weights twk,iu because the locations tθiu of both ob-
served and unobserved nodes are not likelihood identifiable,
thus being ignored. Moreover, given the observed nodes
set V , the weights for each Wk are truncated to a p|V | `
1q-dimensional vector, wk “ pwk,0, wk,1, . . . , wk,|V |qT,
where wk,i corresponds to the weight on an observed node
i for 1 ď i ď |V |, and wk,0 is the sum of weights for
all unobserved nodes. Similarly, the posterior distribu-
tion for π is truncated to a pK ` 1q-dimensional vector,
π “ pπ0, π1, . . . , πKqT, where K is the truncated number
of clusters and is inferred adaptively in Step 4 below, and
π0 corresponds to the cluster without any observation. Con-
sequently, given the truncation levels |V | and K for W0

and π, respectively, DMPGM contains the following pa-
rameters to infer: π, twkukě0, z “ tzijuAij“1 and cluster
membership c “ tcijluAij“1,1ďlďzij .

We next propose a MCMC inference framework that can in-
fer the number of edge clusters in a Bayesian nonparametric
manner in the following steps.

Step 1 Update w0,1, . . . , w0,|V || sw0, z, c using Hamilto-
nian Monte Carlo (Kroese et al., 2011), where sw0 “ř|V |
i“0 w0,i with the log-posterior and its gradient pro-

vided in Appendix B.1.

Step 2 Update wk,1, . . . , wk,|V || swk, w0, z, c for k “
1, . . . ,K given the conjugacy, where swk “ ř|V |

i“0 wk,i.
We sample rwk,i „ Dirichletpν0, ν1, . . . , ν|V |q, where
νi “ w0,i`ř|V |

j“1 nk,i, nk,i “
ř|V |
j“1

řzij
l“1t1cijl“k`

1cjil“ku, and then compute wk,i “ swk rwk,i.

Step 3 Update π0, π1, . . . , πK |z, c using the con-
jugacy. Analogous to Step 2, we sam-
ple πk „ Dirichletpn0, n1, . . . , nkq, where
nk “ ř|V |

i“1

ř|V |
j“1

řzij
l“1 1cijl“k for k ą 0 and

n0 “ α.

Step 4 Update the latent edge cluster membership
cijl|twkukě0,π for each pair pi, jq such that Aij “ 1
and for l “ 1, . . . , zij . For each edge we sample from
the multinomial distribution ppcijl “ kq 9 πkwk,iwk,j
for k “ 0, 1 . . . ,K. In this step, if k “ 0 is sampled,
we add a new cluster (Teh et al., 2006; Bryant and
Sudderth, 2012; Liu et al., 2022), and increase the
truncated number of clusters from K to K ` 1.

Step 5 Update the unobserved zij | π,wk „
Truncated–PoissonpřK

k“0 πkwk,iwk,jq for each pair
pi, jq such that Aij “ 1, where truncated Pois-
son is a conditional probability distribution of a

Poisson-distributed random variable with strictly posi-
tive counts (Cohen, 1960).

Step 6 Update the swk and sw0 using Metropolis–Hastings
(Kroese et al., 2011) algorithm based on the log-
posterior provided in Appendix B.2.

We iterate over Steps 1–6 until convergence. For the MCMC
algorithm, the global variables are updated in linear time,
and the Monte Carlo step iteratively samples from K clus-
ters. Therefore, the computational complexity is dominated
by O

`
K maxt|V |, |E|u˘.

3.3 Edge Enhanced Message Passing

In conventional message passing layers built from a sim-
ple graph, information for node i is obtained from edges
connected to its neighboring nodes in Ni and from its self-
loop. In these layers, each edge pi, jq for j P Ni Y tiu
has equal weight, resulting in mis-simplification of the more
complex structural information for the GNN, as described in
Section 1. To overcome this mis-simplification, we sample
artificial edges given the estimated DMPGM, from which
we construct a virtual multigraph

G˚ “ pV,E, rq, r`pi, jq˘ “ zij , (4)

where the multiplicity-map r : E Ñ N` assigns to each
edge an integer to represent its multiplicity, and zij in
DMPGM is defined in (2) and is inferred from Step 5 in
Section 3.2. In this way, we can extract the edge structural
information, via the inferred multiplicity for each edge, us-
ing the DMPGM model to build the virtual multigraph. For
example, as illustrated in Figure 1, two artificial self-loops
are added to nodes 1, one artificial self-loop is added to
nodes 2, and the edge p1, 2q is assigned with multiplicity 2,
where the multiplicity is determined by z11 “ 2, z22 “ 1
and z12`z21 “ 2, respectively. We then replace the original
simple graph in the message passing layers by the generated
virtual multigraph, that is,

hl`1
i “UPDATElphli, rpi, iq,

AGGREGATElphlj , rpi, jq | j PNiqq.
(5)

For example, for GCN, APPNP and GCNII, we replace P̃
by P̂ , where P̂ is defined as

P̂ “D̂´ 1
2 ÂD̂´

1
2 , Â “ pÂij “ zijq,

D̂ “ diagpD̂i “
ÿ

j

zijq. (6)

In addition, as the virtual multigraph already contains self-
loops, there is no need to add the self-loops again to the
message passing layers. This is different from conventional
GNNs, where the self-loops are often added and forced
to be a single edge. Though GIN (Xu et al., 2019) and
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JKNet (Xu et al., 2018) also assign different weights for
self-loops empirically, we are the first to propose a method
to systematically determine the relative weights for self-
loops and other edges.

In summary, conditional on the updated parameters of
DMPGM in each iteration, we sample the multiplicity of
each edge. Then a set of multiedges and self-loops are gen-
erated from DMPGM, which can be used to build a virtual
graph and update GNN trainable parameters. We present
the proposed EEGNN algorithm in Algorithm 1.

Algorithm 1: EEGNN Algorithm
Iterate Step 1 to Step 6 in Section 3.2 till the MCMC
chains converge.
Set up initialization of trainable parameters in EEGNN.
repeat

1. Build the virtual graph and sample P̂ according to
(6),
2. Use P̂ to replace P̃ ,
3. Update GNN parameters using the gradient descent,
4. Obtain a new sampling for the parameters in
DMPGM by implementing Step 1 to Step 6,

until the convergence of the loss function of EEGNN

It is worth noting that we opted not to employ the stochastic
block model in our study as it produces only dense graphs
where the number of edges increases proportionally to the
square of the number of nodes, whereas real-world networks
tend to be sparse (Caron and Fox, 2017). Moreover, the
stochastic block model does not allow for constructing a
virtual multi-graph on edges. To build the virtual multi-
graph, it is needed to use a statistical model on edges instead
of on nodes.

3.4 Comparison with Other Methods

Our proposed method, EEGNN, addresses the performance
deterioration of deep GNNs by using the structural infor-
mation extracted from a Bayesian nonparametric graph
model, DMPGM, to improve the performance of various
deep message-passing GNNs. This is in contrast to rele-
vant methods such as the attention and edge-label guided
GNNs (Zhou et al., 2022) and edge-enhanced graph convolu-
tion networks (Cui et al., 2020), which focus on integrating
syntactic dependency or dependency label information into
GCN to perform event detection or named entity recogni-
tion, respectively. Edge-feature-enhanced GNNs (Gong and
Cheng, 2019), another competing method, focuses on inte-
grating edge features instead of extracting edge information
based on the observed graph in an unsupervised-learning
fashion. Our EEGNN framework differs from these meth-
ods as it addresses the issue of mis-simplification in deep
GNNs and uses structural information from DMPGM to
improve performance.

4 EXPERIMENTS

4.1 Datasets and Bayesian Estimation

In this section, we demonstrate through real data examples
that EEGNN can effectively use the edge structural infor-
mation to improve the performance for various GNNs. We
conduct empirical experiments to compare EEGNN with
representative baselines across six well-established network
datasets. First, Cora, Citeseer, and PubMed are standard
benchmark datasets for citation networks (Yang et al., 2016).
In these networks, nodes represent papers, and edges indi-
cate cross citations between papers. Node features are the
bag-of-words embedding of the contents, and node labels
are academic subjects. Second, Texas, Cornell, and Wis-
consin are webpage cross-link networks (Pei et al., 2020).
Their nodes represent web pages of universities, and edges
represent hyperlinks between them. Node features are bag-
of-words embedding of the websites. Node labels contain
five categories for the webs including students, projects,
courses, staff, and faculty. Statistics for these datasets are
summarized in in Table 1.

Table 1: Graph datasets statistics.

Dataset Cora Citeseer PubMed Texas Wisconsin Cornell

Nodes 2,708 3,327 19,717 183 183 183
Edges 5,429 4,732 44,338 309 499 295
Degrees 3.88 2.84 4.50 3.38 5.45 3.22
Features 1,433 3,703 500 1,703 1,703 1,703
Classes 7 6 3 5 5 5

Our experiments are implemented by using a gamma pro-
cess as the completely random measure in (2). Following
Section 3.2, we infer the parameters of DMPGM using
MCMC in the following way. We use population based
training (Jaderberg et al., 2017) to tune the hyperparame-
ters in DMPGM. For each dataset, we grow the MCMC
chain up to 50,000 epochs. Figures 3a and 3b display the
log-likelihood and number of clusters with respect to train-
ing epochs for the Texas dataset. (The training results for
the other datasets are shown in Appendix D.) Figure 3a
shows that the log-likelihood of Texas for the DMPGM
converges after 10,000 epochs. Moreover, benefiting from
the Bayesian nonparametric model, we can infer the num-
ber of edge clusters in a data-adaptive manner (Liu et al.,
2022). Figure 3b shows that the inferred number of edges
per node (termed as multiplicity of virtual edges per node)
rises from an initial value of 10 to 50 at the start of training
and then converges to around 35. The inferred edge multi-
plicity is displayed in the histograms in Figure 3c. These
histograms show that a large proportion of the edges in the
observed graph have underlying multi-edges, suggesting the
mis-simplification in the original observed graph.
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(a) The training log likelihood of DMPGM

(b) The inferred number of edge clusters

(c) Histogram of the expected multiplicity of virtual edges

Figure 3: The MCMC inference results for Texas.

4.2 Comparison with Baselines

With the inference results of DMPGM, following Sec-
tion 3.3, we implement the experiments to compare baseline
GNNs and their edge enhanced versions. For the baseline
GNNs, we chose SGC (Wu et al., 2019) and its variant,
including APPNP (Klicpera et al., 2019) and GCNII (Chen
et al., 2020a), and hence name their edge enhanced versions
as EE-SGC, EE-APPNP and EE-GCNII, respectively. To

make a fair comparison, we follow the settings of the ‘sweet
point’ GNN hyperparameter configuration in Chen et al.
(2021b) for all datasets. The details of these hyperparameter
settings are collected in Appendix E. For all experiments,
the GNNS are trained with a maximum of 1000 epochs and
an early stopping patience of 100 epochs. To analyze the ef-
fect of EEGNN with different numbers of layers, we run the
experiments for 2, 16, 32 and 64 layers. We randomly split
node features in each dataset into training and test sets, train
the baseline GNNs and the edge enhanced versions using
the same training set, and then compute the node clustering
accuracy on the test set. In the transductive learning frame-
work for GNNs, it is noted that the edge information is not
partitioned as described in Kipf and Welling (2017). We re-
peat this procedure 50 times for each model and dataset. The
mean predictive accuracy and the corresponding standard
deviation are reported in Table 2.

We observe a few apparent patterns. First, EEGNN can im-
prove the performance of the baseline models in most cases.
For example, SGC, the backbone GNN for various models,
performs poorly with 32 layers (see Table 2c). However,
with the aid of our EEGNN framework, the accuracy of the
SGC model is increased by more than 6% for Cora, and by
approximately 2% across other candidate datasets. More-
over, SGC performs even worse with 64 layers for Cora
and Pubmed (see Table 2d). EEGNNs largely improve the
prediction accuracy in both cases, by 9.89% and 23.30%,
respectively. It is worth noting that the improvements are
attained without changing any other settings. As using
virtual multigraph or observed simple graph brings in the
only difference, this provides strong evidence to reveal that
EEGNN can be used as a tool to enhance baseline GNNs by
alleviating the mis-simplification problem.

Second, for APPNP and GCNII, EEGNNs achieve similar
accuracies on the Cora, Citeseer and PubMed datasets, but
substantially improve the performance on Texas, Wisconsin
and Cornell. Especially, with 64 layers, EE-GCNII for Texas
leads to more than 6% improvement, and EE-APPNP for
Citeseer results in more than 10% increase in the predictive
accuracy. On the other hand, as APPNP and GCNII have
already reached relatively high accuracy (approximately
70% ´ 80%) on the Cora, Citeseer and PubMed, further
enhancement to higher accuracy tends to be difficult.

Finally, we observe that EEGNN has a larger impact on
the performance of deeper SGC on the Cora, Citeseer and
PubMed. With only 2 layers, edge enhanced versions behave
slightly worse than baseline models. However, with 32 or
64 layers, EEGNNs achieve considerable improvements.
This is because the mis-simplification applies to all layers.
Therefore, the distortion of edge structural information is
accumulated from the first to the last layer, resulting in
severe performance deterioration.
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Table 2: Results on real datasets: mean accuracy (%) ˘ standard deviation (%)

(a) Number of layers: 2

Cora Citeseer PubMed Texas Wisconsin Cornell

SGC 77.01˘0.34 69.18˘0.35 75.46˘0.28 56.16˘4.99 48.59˘6.59 57.84˘2.76
EE-SGC 76.78˘0.29 69.60˘0.37 75.80˘0.21 61.24˘6.48 53.45˘8.95 58.92˘3.55
APPNP 82.22˘0.39 71.73˘0.76 79.41˘0.48 61.41˘5.27 52.55˘7.44 57.73˘2.74
EE-APPNP 81.48˘0.47 71.45˘0.54 78.90˘0.52 66.80˘3.74 66.23˘2.93 60.17˘6.00
GCNII 82.21˘0.67 67.65˘0.96 77.91˘1.71 61.35˘8.18 72.51˘4.91 74.22˘8.75
EE-GCNII 81.94˘0.51 81.48˘0.59 77.30˘0.97 64.22˘9.02 70.94˘6.10 75.68˘9.78

(b) Number of layers: 16

Cora Citeseer PubMed Texas Wisconsin Cornell

SGC 73.11˘0.43 67.79˘0.56 70.45˘0.17 56.27˘4.92 48.63˘6.62 57.84˘2.76
EE-SGC 73.07˘0.34 68.55˘0.35 70.60˘0.25 59.96˘6.46 50.59˘8.72 57.84˘2.76
APPNP 83.70˘0.20 72.51˘0.52 80.42˘0.30 60.76˘5.05 53.29˘7.09 57.68˘2.79
EE-APPNP 83.47˘0.66 73.20˘0.92 77.90˘0.36 66.08˘4.62 66.08˘3.17 61.30˘7.18
GCNII 84.77˘0.37 72.30˘0.80 78.60˘0.52 66.38˘8.69 70.71˘2.40 74.49˘8.98
EE-GCNII 84.10˘0.57 72.50˘1.40 78.81˘0.66 73.30˘3.85 78.94˘4.90 75.24˘8.08

(c) Number of layers: 32

Cora Citeseer PubMed Texas Wisconsin Cornell

SGC 59.94˘0.56 66.17˘0.50 68.97˘0.19 56.16˘4.99 48.59˘6.59 57.84˘2.76
EE-SGC 66.46˘0.83 67.68˘0.44 70.68˘0.68 59.46˘6.16 50.59˘8.72 58.92˘3.15
APPNP 83.55˘0.50 72.11˘0.64 80.22˘0.34 61.57˘5.28 52.71˘7.34 57.78˘2.75
EE-APPNP 83.79˘0.39 72.47˘0.53 79.23˘0.27 66.00˘4.33 66.39˘3.09 61.84˘7.56
GCNII 85.34˘0.53 73.26˘0.86 79.89˘0.33 70.49˘5.48 69.06˘2.70 74.05˘8.56
EE-GCNII 85.70˘0.41 73.45˘1.40 79.72˘0.43 75.24˘3.72 79.37˘0.43 74.86˘7.84

(d) Number of layers: 64

Cora Citeseer PubMed Texas Wisconsin Cornell

SGC 25.65˘1.93 63.08˘0.52 40.98˘1.73 56.16˘4.99 48.55˘6.58 57.84˘2.76
EE-SGC 35.54˘1.36 65.42˘0.17 64.28˘0.82 59.46˘6.16 50.31˘8.42 58.92˘3.15
APPNP 83.58˘0.49 72.10˘0.48 80.42˘0.42 61.19˘5.29 53.06˘7.10 57.68˘2.74
EE-APPNP 83.76˘0.41 72.16˘0.65 79.94˘0.22 66.00˘4.08 66.63˘3.12 61.75˘7.43
GCNII 85.46˘0.31 73.44˘1.00 80.08˘0.37 69.57˘5.70 68.63˘1.05 73.19˘8.83
EE-GCNII 85.54˘0.59 72.24˘1.26 79.93˘0.46 75.62˘3.65 76.57˘3.89 73.26˘7.39

4.3 Application in Financial Data

GNN is widely used in the financial industry for the predic-
tion of stock and bond prices (Wang et al., 2021; Sharma
and Sharma, 2020; Feng et al., 2022). To evaluate the ef-
ficacy of EEGNN in real-world financial data, we conduct
an empirical study using EE-SGC to replace SGC in the
current literature and then make a comparison. We use the
component stocks from the ‘FTSE UK 50 index’ with high
capitalization and complete records between 2016-01-01
and 2017-12-31. We first construct the graph based on the
Pearson correlations between stock returns, by connecting
two stocks if their correlation is larger than 0.3. As shown in
Figure 4, stocks, indicated by nodes are connected accord-
ing to their pairwise correlation. Then, we build a learning

pipeline using a sequential model of a long short-term mem-
ory (LSTM) network, SGC/EE-SGC, and a fully-connected
layer. The model was trained using the data in 2016 and
tested on the data in 2017. Moreover, the historical returns
were used as input data, and the mean squared error be-
tween the model outputs and the realized next-day returns
was used as the loss function. The Long 20% strategy is
adopted to build the portfolio as described in Pacreau et al.
(2021). For each trading day, we build a long only portfolio
consisting of the top 20% stocks according to the predictive
returns. The accumulated returns of the portfolio are shown
in Figure 5, where the initial portfolio value is set to be
$100. The results show that the portfolio constructed using
EEGNN, which achieved better predictive accuracy, had
higher returns.

35



Yirui Liu, Xinghao Qiao, Liying Wang, Jessica Lam

Figure 4: The graph between FTSE UK 50 component
stocks. Nodes in green denote individual stocks with their
abbreviations in capital letters.

Figure 5: The comparison of cumulative returns using SGC
and EE-SGC.

5 CONCLUSION

This paper presents a novel explanation for the performance
deterioration of deeper GNNs: mis-simplification. We pro-
pose DMPGM, a Bayesian nonparametric graph model and
its MCMC inference framework. Using the information ob-
tained from DMPGM, we replace the original simple graph
by the virtual graph, and use the virtual graph to aggregate
the information in the graph. The experiments over various
real datasets demonstrate that EEGNN can improve the per-
formance of baseline GNN methods. Our paper paves a new
way to use information extracted by statistical graph mod-
elling to improve the performance of GNNs. One limitation
of our proposal is that EEGNN only adds the virtual edges
to the observed graph without removing edges according
to the structural information. It is left for future work to
develop a framework that allows to add and remove edges
with the structural information simultaneously.
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Supplementary Material for ‘EEGNN: Edge Enhanced Graph Neural Network
with a Bayesian Nonparametric Graph Model’

This supplementary material contains a short review of completely random measures in Appendix A, the details of MCMC
steps in Appendix B, technical proofs and derivations in Appendix C, the results of MCMC for several datasets in Appendix D,
hyperparameter settings in Appendix E, and computational complexity analysis and code in Appendix F.

A Completely Random Measure

Completely random measures (Ghosal and Van der Vaart, 2017), including gamma process, inverse Gaussian process and
stable process, are commonly used as priors for infinite-dimensional latent variables in Bayesian nonparametric models,
because their realizations are atomic measures with countable-dimensional supports. Suppose that pΩ,Fq is a Polish sample
space, Θ is the set of all bounded measures on pΩ,Fq and M is a σ-algebra on Θ. A complete random measure from
pΘ,Mq into pΩ,Fq can be characterized by its Laplace transform (Kingman, 1993),

E
“
e´tP pAq

‰ “ exp
!
´
ż

A

ż

p0,8s
p1´ e´tπqvcpdx, dsq

)
,

where A is any measurable subset of Ω and vcpdx, dsq is called the intensity measure. If vcpdx, dsq “ κpdxqvpdsq, where
κp¨q and vp¨q are measures on Ω and p0,8s, respectively, the completely random measure is homogeneous and vp¨q is called
the Lévy measure. If

ş8
0
vpdsq “ 8, the complete random measure is finite activity.

We can view this completely random measure as a Poisson process on the product space Ω ˆ p0,8s using the intensity
measure and denote this completely random measure as CRMpκ, vq. For example, the gamma process ΓPpκq has Lévy
measure vpdsq “ s´1e´sds such that QpAq „ ΓpκpAq, 1q if Q „ ΓPpκq, where Γpα, βq is a gamma distribution with
density βα

Γpαqx
α´1e´βx. Therefore, its normalization, Dirichlet process P „ DPpκq (Ferguson, 1973) satisfies

`
P pA1q, . . . , P pAnq

˘ „ Dirichlet
`
κpA1q, . . . , κpAnq

˘

for any partition Ω “ pA1, . . . , Anq, where
Ťn
i“1Ai “ Ω and Ai

Ş
Aj “ H for any i and j. Griffiths–Engen–McCloskey

(GEM) distribution, which is the distribution of the weights in a Dirichlet process. For pπ1, π2, ¨ ¨ ¨ q „ GEMpαq, it can be
sampled by πi “ gi

śi´1
l“1 gl, where gi „ Betap1, αq independently (Ghosal and Van der Vaart, 2017).

B MCMC technical details and derivations

B.1 Derivations for Step 1

With the setup of DMPGM in (2) and the formula of moments for Dirichlet-multinomial distribution, we obtain that

ppw0,1, . . . , w0,|V | | sw0, z, cq 9
Kź

k“1

Γp sw0q
Γp sw0 ` nkq

Nź

i“0

Γpw0,i ` nk,iq
Γpw0,iq ¨

Nź

i“1

vpw0,iq ¨ u
`
sw0 ´

|V |ÿ

i“1

w0,i

˘
,

where nk,i “ ř|V |
j“1

řzij
l“1t1cijl“k ` 1cjil“ku, vp¨q is the weight intensity measure for the complete random measure of

W0, and up¨q is the density function for W0pΩq that can be derived using its Laplace transform. To infer the posterior
distributions for these parameters, we present the gradient of the log-posterior with respect to w0, which will be used in
Hamiltonian Monte Carlo,

∇w0,i
log ppw0,1, . . . , w0,|V | | sw0, z, cq “

|V |ÿ

i“1

Kÿ

k“1

 
Φpnk,i ` w0,iq ´ Φpw0,iq

(

`
|V |ÿ

i“1

∇w0,i log vpw0,iq `∇w0,i log up sw0 ´
|V |ÿ

i“1

w0,iq,
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where Φ is the digamma function.

B.2 Derivations for Step 6

By the formulas of the densities for Poisson distribution and gamma distribution, we have that

ppĎwk | sw0,π, c, zq 9 pπk sw
2
kqnke´πk sw2

k

nk!
¨ 1

Γp sw0q sw
sw0´1
k e´ swk .

Therefore, the log-posterior with respect to swk is

log pp swk | sw0,π, c, zq “ p2nk ` sw0 ´ 1q log swk ´ swk ´ sw2
kπk ` constant.

Similarly, following Caron and Fox (2017) and Liu et al. (2022), we obtain that

pp sw0 | swk,π, c, zq 9
Kź

k“1

1

Γp sw0q sw
sw0´1
k e´ swk ¨ up sw0q.

and hence the corresponding log-posterior is

log pp sw0 | swk,π, c, zq “ log up sw0q ` sw0

Kÿ

k“1

logp swkq ´K log Γp sw0q ` constant.

C Technical Proofs and Derivations

C.1 Proof of Theorem 1

The proof for Theorems 3 and 4 in Caron and Fox (2017) can be directly adapted to DMPGM, Therefore, we only provide a
sketch of the proof. First, we show that Theorem 3 in Caron and Fox (2017) also holds for DMPGM. We use

D̃ij | tWku „ Poisson
`ÿ

k

πkWkpri´ 1, isqW prj ´ 1, jsq˘,

to replace (54) in Appendix C.2 of Caron and Fox (2017). Consequently, (55) holds because for any k we have

Wkpr0, αsq{W0pr0, αsq “ Op1q almost surely as αÑ8. (B.1)

Second, we show that Theorem 4 in Caron and Fox (2017) also holds for DMPGM. Specifically, (59) becomes

Xn | tW p2q
k u „ Poisson

”1

2
ψ
 
W pSp2qn q(

ı
,

so that (62) in (Caron and Fox, 2017) can be achieved by (B.1). Finally, we complete the proof of Theorem 1 for DMPGM
by keeping the remaining parts of the proof of Theorem 4 in Caron and Fox (2017) unchanged.

D Inference results for DMPGM

The log likelihood and the number of edge clusters in the training process are shown in Figure 6 and Figure 7, respectively.
The inferred edge multiplicity is shown in Figure 8.

E Hyperparameters

We list the hyperparameters used in our experiments in Table 3 below.

F Data and Code

We obtained the datasets from the publically available source https://pytorch-geometric.readthedocs.io/
en/latest/modules/datasets.html. All data do not contain personally identifiable information or offensive
content. We conducted our experiments on a c5d.4xlarge instance on the AWS EC2 platform, with 16 vCPUs and 32
GB RAM. The codes for training conventional GNNs are from https://github.com/VITA-Group/Deep_GCN_
Benchmarking under MIT license.
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(a) Cora (b) Citeseer (c) PubMed

(d) Texas (e) Wisconsin (f) Cornell

Figure 6: Log-likelihood over the course of the MCMC chain for each dataset.

(a) Cora (b) Citeseer (c) PubMed

(d) Texas (e) Wisconsin (f) Cornell

Figure 7: Number of clusters inferred by DMPGM over the course of the MCMC chain.
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(a) Cora (b) Citeseer (c) PubMed

(d) Texas (e) Wisconsin (f) Cornell

Figure 8: Histograms of the expected multiplicity of virtual edges formed in the EEGNN framework using each dataset.

Cora Citeseer PubMed Texas Wisconsin Cornell

dim_hidden 64 256 256 64 64 64
alpha 0.1 0.1 0.1 0.1 0.1 0.1
weight_decay 0.0005 0.0005 0.0005 0.0001 0.0005 0.0005
lr 0.01 0.01 0.01 0.01 0.01 0.01
dropout 0.6 0.7 0.6 0.5 0.5 0.5

(a) Hyperparameters for SGC and EE-SGC.

Cora Citeseer PubMed Texas Wisconsin Cornell

dim_hidden 64 64 64 64 64 64
alpha 0.1 0.1 0.1 0.1 0.1 0.1
lr 0.01 0.01 0.01 0.01 0.01 0.01
dropout 0. 0. 0. 0. 0. 0.
weight_decay1 0.005 0.005 0.005 0.005 0.005 0.005
weight_decay2 0. 0. 0. 0. 0. 0.
embedding_dropout 0.5 0.5 0.5 0.5 0.5 0.5

(b) Hyperparameters for APPNP and EE-APPNP.

Cora Citeseer PubMed Texas Wisconsin Cornell

dim_hidden 64 256 256 64 64 64
alpha 0.1 0.1 0.1 0.5 0.5 0.5
lamda 0.5 0.6 0.4 1.5 1.0 1.0
weight_decay1 0.01 0.01 0.0005 0.0001 0.0005 0.0001
weight_decay2 0.0005 0.0005 0.0005 0.0001 0.0005 0.0001
lr 0.01 0.01 0.01 0.01 0.01 0.01
dropout 0.6 0.7 0.6 0.5 0.5 0.5

(c) Hyperparameters for GCNII and EE-GCNII.

Table 3: Hyperparameters in the training.

42



Chapter 4

Bayesian Nonparametric for
Sequential Data

This chapter is dedicated to an article that has been submitted and is currently under

review. The article can be accessed online at https://arxiv.org/abs/2305.14543.
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Abstract

In this paper, we present Deep Functional Factor Model (DF2M), a Bayesian
nonparametric model for analyzing high-dimensional functional time series. The
DF2M makes use of the Indian Buffet Process and the multi-task Gaussian Process
with a deep kernel function to capture non-Markovian and nonlinear temporal
dynamics. Unlike many black-box deep learning models, the DF2M provides
an explainable way to use neural networks by constructing a factor model and
incorporating deep neural networks within the kernel function. Additionally, we
develop a computationally efficient variational inference algorithm for inferring
the DF2M. Empirical results from four real-world datasets demonstrate that the
DF2M offers better explainability and superior predictive accuracy compared to
conventional deep learning models for high-dimensional functional time series.

1 Introduction

Functional time series, which refers to a sequential collection of functional objects exhibiting temporal
dependence, has attracted increasing attention in recent years. With the advent of new data collec-
tion technology and enhanced computational power, high-dimensional datasets containing a large
collection of functional time series are becoming increasingly available. Examples include annual
age-specific mortality rates across different countries, daily energy consumption curves from different
households, and cumulative intraday return trajectories for hundreds of stocks, to list a few. Those
data can be represented as a p-dimensional functional time series Y t(·) =

(
Yt1(·), . . . , Ytp(·)

)T
,

t = 1, . . . , n, where each Ytj(·) is a random function defined on a compact interval U and the number
of functional variables p is comparable to, or even larger than, the number of temporally dependent
observations n. Analyzing high-dimensional functional time series poses a challenging task, as it
requires not only dimension reduction techniques to solve the high-dimensional problem, but also
functional approaches to handle the infinite-dimensional nature of the curve data, as well as time
series modeling to capture the temporal dependence structure. Several statistical methods have been
proposed to address these issues, as exemplified by [1, 2, 3]. However, these approaches often
assume the existence of a linear and Markovian dynamic over time, which may fail to characterize
the complex nonlinear or non-Markovian temporal dependence that is commonly encountered in
practical real-world scenarios.

On the other hand, although deep learning has achieved attractive results in computer vision and
natural language processing (NLP) [4, 5, 6, 7], the direct application of deep neural networks to
handle high-dimensional functional time series is rather difficult. For time series data, one major
problem is that deep neural networks are black-box models and lack explainability, making it hard
to understand the cross-sectionally and serially correlated relationships. However, explainability is
essential in many applications. For example, in finance, healthcare, and weather forecasting, the
accuracy and reliability of the model’s predictions have considerable impacts on business decisions,
patient outcomes, or people’s safety, respectively. Additionally, the non-stationarity of the data and
the large number of parameters in deep neural networks pose extra challenges for training.
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In this paper, we present an explainable approach, deep functional factor model (DF2M), with the
ability to discover nonlinear and non-Markovian dynamics in high-dimensional functional time
series. As a Bayesian nonparametric model, DF2M uses a functional version of factor model to
perform dimension reduction, incorporates an Indian buffet process prior in the infinite-dimensional
loading matrix to encourage column sparsity [8], utilizes a functional version of Gaussian process
dynamical model to capture temporal dependence within latent functional factors, and adopts deep
neural networks to construct the temporal kernel.

DF2M enjoys several advantages for analyzing high-dimensional functional time series. First, by
representing observed curve variables using a smaller set of latent functional factors, it allows for a
more intuitive understanding of the underlying structure in data, hence enhancing model explainability.
As a structural approach, DF2M not only offers a clear and interpretable mapping of relationships
between variables, but also provides a built-in guard against overfitting [9]. As a result, predictions
can be interpreted and understood in a meaningful way, which is critical for decision-making and
subsequent analysis. Second, DF2M can discover non-Markovian and nonlinear temporal dependence
in the functional latent factor space, and hence has the potential to predict future values more
accurately. Finally, DF2M provides a flexible framework that combines modern sequential deep
neural networks with a backbone Bayesian model, allowing for the use of sequential deep learning
techniques such as gated recurrent unit (GRU) [10], long short-term memory (LSTM) [11] and
attention mechanisms [6].

2 Preliminaries

2.1 Indian Buffet Process

The Indian buffet process (IBP) [12] is a probability distribution over a sparse binary matrix with
a finite number of rows and an infinite number of columns. The matrix Z, generated from the IBP
with parameter α, is denoted as Z ∼ IBP(α), where α controls the column sparsity of Z. IBP can be
explained using a metaphor that customers sequentially visit a buffet and choose dishes. The first
customer samples a number of dishes based on Poisson(α). Subsequent the i-th consumer, in turn,
samples each previously selected dish with a probability proportional to its popularity (mk/i for dish
k), and also tries new dishes following Poisson(α/i).

It is worth noting that the distribution remains exchangeable with respect to the customers, meaning
that the distribution is invariant to the permutations of the customers. The Indian buffet process
admits a stick-breaking representation as vj | α ∼ Beta(α, 1) independently for j = 1, 2, . . . ,
wk =

∏k
j=1 vj for k = 1, 2, . . . , and Zik | wk ∼ Bernoulli(wk) independently for i = 1, . . . , n, and

the IBP is then defined as Z = (Zik)1≤i≤n,k≥1. The stick-breaking representation is frequently used
in the inference for IBP.

2.2 Gaussian Process

A Gaussian process, X(·), defined on a compact interval U , is a continuous stochastic process charac-
terized by the fact that every finite collection of its values, X(u1), . . . , X(uL) with u1, . . . , uL ∈ U ,
belongs to an L-dimensional multivariate Gaussian distribution [13]. This means that a Gaussian
process is completely determined by its mean function m(u) = E

[
X(u)

]
and its covariance func-

tion κ(u, v) = Cov
(
X(u), X(v)

)
= E

[(
X(u) −m(u)

)(
X(v) −m(v)

)]
for any u, v ∈ U . The

covariance function, also known as the kernel function in machine learning literature, specifies
the correlation between values at distinct points. Examples include the squared exponential kernel
κ(u, v) = exp

(
− |u−v|2

2ℓ2

)
and the Ornstein–Uhlenbeck kernel κ(u, v) = exp

(
− |u−v|

ℓ

)
, where ℓ

is the length-scale parameter. Additionally, the kernel function can be made more complex using
the kernel trick [14] by rewriting it as κ(u, v) =

〈
ϕ(u), ϕ(v)

〉
, where ⟨·, ·⟩ denotes the inner product,

and the feature function ϕ(·) maps x into a feature space. As ϕ(·) can be an arbitrary function (linear
or nonlinear), the Gaussian process offers considerable flexibility in modeling complex patterns
in the data. Furthermore, a multi-task Gaussian process (MTGP) [15] can be employed to model
vector-valued random fields. It is defined as X(·) =

(
X1(·), . . . , XM (·)

)T
, whereX1(·), . . . , XM (·)

are M Gaussian processes defined on U . The covariance function between the l-th and k-th task is
given by Cov

(
Xl(u), Xk(v)

)
= Σlkκ(u, v), where Σ = {Σlk}1≤l,k≤M is a positive semi-definite
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Figure 1: Sparse functional factor model. For Z, the blue (or white) cells represent 1 (or 0). For A,
the darker (or lighter) shades of orange indicate larger (or smaller) values.

matrix encoding the similarities between pairs of tasks. The MTGP can effectively capture inter-task
correlations and improve predictions [16].

2.3 Sequential Deep Learning

Deep learning methods, widely used in computer vision, NLP, and reinforcement learning, have
become increasingly popular for time series prediction as well [17]. In particular, recurrent neural
networks (RNN) and attention mechanisms, commonly used for sequence prediction tasks in NLP,
can be adapted for temporal forecasting tasks in time series data. A multivariate time series can be
modeled recursively in RNN as xt = gdec(ht) and ht = genc(ht−1,xt−1), where ht is a latent
variable and gdec and genc are the decoder and encoder functions, respectively. Two renowned
RNN models, LSTM and GRU, are designed to learn long-range dependencies in a sequence.
For simplicity, we denote their encoder functions as ht = LSTM(x1:t) and ht = GRU(x1:t),
respectively, where x1:t = (x1, . . . ,xt). Moreover, attention mechanisms, which have achieved
state-of-the-art performance in NLP tasks, can also be utilized to model time series data. Unlike
RNNs, attention mechanisms directly aggregate information from multiple time steps in the past.
Attention mechanisms can be expressed as ht =

∑t−1
i=1 ω(kt, qτ )νt−τ , where key kt, query qt, and

value νt are intermediate representations generated by linear or nonlinear transformations of xt. We
denote such attention mechanisms as ht = ATTN(x1:t). See detailed structures for both RNNs and
attention mechanisms in Appendix A.

3 Deep Functional Factor model

3.1 Sparse Functional Factor Model

First, we propose a functional factor model from the Bayesian perspective,

Y t(·) = (Z ⊙A)Xt(·) + ϵt(·), t = 1, . . . , n (1)

where Y t(·) is the observed functional time series, Z is a binary matrix sampled from the
Indian buffet process, Z ∼ IBP(α), Hadamard (elementwise) product is represented by ⊙,
A is the loading weight matrix with Atr ∼ Normal(0, σ2

A) for any r ∈ N+ independently;
Xt(·) =

(
Xt1(·), Xt2(·), . . . , Xtr(·), . . .

)T
is a set of latent functional factor time series, ϵt(·)

is the idiosyncratic component with a Gaussian distributed white noise process on a scale σϵ. In
particular, we do not specify the number of latent factors. Instead, Y t(·), Z and A can be regarded
as a p × ∞ matrices, and Xt(·) is an infinite-dimensional vector of functions, or heuristically, a
∞×∞ matrix. The dimension reduction framework in equation (1) is illustrated in Figure 1. This
Bayesian nonparametric factor model allows for a potentially unlimited number of latent factors, so
we do not need to specify a fixed number for the dimension of the factor space. This nonparametric
approach introduces flexibility and provides a foundation for inferring the number of factors in the
posterior distribution, using the nonparametric inference framework, such as Gibbs sampling [18],
online variational inference [19], merge-split algorithm [20] and conditional and adaptively truncated
variational inference [21].

Moreover, the Indian buffet process can also provide column sparsity [22] to Z and hence also to
the loading matrix Z ⊙A. This means that most of the elements in each row are zeros, because wk

in the stick-breaking representation of the IBP goes to zero as k increases. In the factor model, this
column sparsity means that each factor has an impact on only a small fraction of functional variables
[8], equivalently that the factors are related to each other through a hierarchy [12].
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3.2 Gaussian Process Dynamical Model for Functional Data

Second, by projecting high-dimensional observations Y t(·) into low-dimensional latent functional
factors Xt(·), the sequential structure of the time series model can be captured via the factors.
To model such temporal dependence of Xt(·), we adopt a Gaussian process over time to encode
historical information. In particular, we design the covariance across factors r and l as follows. Let
Xt represent the historical information up to time t, and let X be the space containing {Xt}t∈N. For
any u, v ∈ U ,

Var
(
Xtr(u), Xsl(v)

)
= κX (Xt−1,Xs−1)κU (u, v)I(r = l), (2)

where t and s indicate two time stamps, κX and κU are the kernels defined on X and U , re-
spectively. I(r = l) is an indicator function that takes on the value of 1 if r = l and 0 oth-
erwise. κX is with respect to historical information on different periods and can be regarded
as a temporal kernel. In parallel, κU can be regarded as a spatial kernel. Therefore, Xr(·) =(
X1r(·), . . . , Xtr(·), . . . , Xnr(·)

)
belongs a multi-task Gaussian process [15] such that for any

u1, . . . , uL ∈ U , vec
(
Xr(u1, . . . , uL)

)
∼ Normal(0,ΣX ⊗Σu

U ), where ⊗ denotes the Kronecker
product, or equivalently Xr(u1, . . . , uL) ∼ MatrixNormal(0,Σu

U ,ΣX ) using the matrix normal dis-
tribution [23], where Xr(u1, . . . , uL) =

[
Xtr(uj)

]
1≤t≤n,1≤j≤L

, ΣX =
[
κX (Xt,Xs)

]
0≤t,s≤n−1

,

and Σu
U =

[
κU (ui, uj)

]
1≤i,j≤L

. In Appendix B, we demonstrate the detailed relationship between
the multi-task Gaussian process and the matrix normal distribution. In the context of literature, the
n-task Gaussian process is used to refer to the multiple outputs generated by the model, each of which
corresponds to a specific timestamp in our time series setting. For the convenience of expression, we
denote the presented multi-task Gaussian process as

Xr(·) ∼ MTGP
(
0, κU (·, ·), κX (·, ·)

)
. (3)

It is worth noting that the latent factors X1, . . . ,Xr, . . . are not mutually independent, because
they share the temporal kernel κX with respect to Xt−1 that contains common historical information
across factors till period t− 1. Therefore, the multi-task Gaussian process can measure the similarity
and dependence across periods. Moreover, in our setting, the temporal kernel used for prediction
depends solely on past information Xt−1 rather than current information Xt. This approach allows
for a forward-looking prediction framework based on historical data only.

The proposed model can be regarded as a functional version of the Gaussian process dynamical
model [24]. See their connections in Appendix C. There are several advantages of using the proposed
model to capture the temporal dependence of functional time series. First, the temporal kernel
and spatial kernel are separable, providing us with a closed form and computational convenience.
Moreover, since the temporal kernel is related to the entire historical information instead of the
latest state only, the model can be non-Markovian. For example, we can define the temporal kernel
as κ(Xt−1,Xs−1) = α1

∫
Xt−1(u)

TXs−1(u)du + α2

∫
Xt−2(u)

TXs−2(u)du, to incorporate
features from the last two periods. Finally, using the kernel trick, we can introduce nonlinearity by
setting a nonlinear kernel function. This paves the way for us to construct deep kernels, which will be
discussed in Section 3.3.

3.3 Deep Temporal Kernels

Finally, to capture the complicated nonlinear latent temporal structure, we employ deep neural
networks to construct the kernel function. However, in order to use deep kernels for functional
time series, we need two extra steps compared to standard deep kernels [25, 26, 27, 28, 29, 30]. (i)
As Xt(·) is a continuous process on U , a mapping function F : F → Rd is required to map the
infinite-dimensional Gaussian processes to d-dimensional vectors, where F is the space of continuous
functions defined on U . Various approaches can be used for this mapping function, including pre-
specified basis expansion, data-dependent basis expansion (such as functional principal component
analysis and its dynamic variants [31, 32]), adaptive functional neural network [33], or even simply
Xt(u0, . . . , uL) with u0, . . . , uL ∈ U . (ii) The d-dimensional vectors serve as inputs for deep
neural networks, and the outputs generated by these networks are then employed to construct kernel
functions. Specifically, we first transform the input vector as

ht = H
(
F (Xt−1), F (Xt−2), . . . )

)
, (4)

where Xt−1 =
(
Xt−1,1, . . . , Xt−1,r . . .

)T
, F is the mapping function, and H is a sequential deep

learning framework.Various deep neural network architectures can be utilized for this purpose, such
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as LSTM, GRU, and attention mechanisms, which have demonstrated their effectiveness in modeling
complex patterns and dependencies. Since the inputs for the temporal kernels are ordered sequences
from X0 to Xn−1, we should use unidirectional deep neural networks instead of bidirectional networks.
We then use the transformed representations ht and hs to construct a kernel function

κX (Xt−1,Xs−1) = κ(ht,hs), (5)

where κ(·, ·) is a suitable kernel function, such as the squared exponential kernel or the Ornstein–
Uhlenbeck kernel. We note that the temporal kernel is related to the historical values of all the
relevant factors and shared across factors.

In summary, using the functional version of the sparse factor model, sequential deep learning kernel,
and Gaussian process dynamical model presented above, we define a probabilistic generative model
for high-dimensional functional time series and name it as deep functional factor model, DF2M. To
mitigate overfitting, one can apply spectrum normalization, which effectively instills a Lipschitz
condition into the neural networks according to [34]. This suggests that the inputs for κ could reflect
the distance between Xt−1 and Xs−1.

4 Bayesian Inference for DF2M

4.1 Sparse Variational Inference

We adopt the variational inference framework to infer the proposed DF2M. This algorithm approxi-
mates the posterior probability by maximizing the evidence lower bound (ELBO), which is equivalent
to minimizing the Kullback–Leibler (KL) divergence between a variational distribution and true
posterior distribution [35]. For DF2M, with mean-field factorization assuming independence among
the variational distributions for latent variables, its ELBO can be expressed as

ELBO =Eq

[
log p(Z | α)p(A | σA)

n∏

t=1

p
(
Y t(·) | Xt(·),Z,A

)∏

r≥1

p
(
Xr(·) | κX , κU

)]

− Eq

[
log q(Z)q(A)

∏

r≥1

q
(
Xr(·)

)]
.

(6)

Using the stick-breaking representation of the Indian buffet process as in Section 2.1, we factorize
the variational distribution for Z as q(vj) = Beta(vj ; τ1j , τ

0
j ) and q(Ztj) = Bernoulli(Ztj ;mtj).

The corresponding variational distribution for A is factorized as q(Atj) = Normal(Atj ; ηtj , σ
2
A,tj).

To avoid singular matrix inversions and improve computational efficiency, we propose a sparse
variational inference approach for DF2M based on [36]. Our method introduces a set of inducing
variables representing the values of the latent function at a small subset of points in U . Moreover,
we adopt the approach of having common locations for the inducing variables across functional
factors, as suggested by [37]. In other words, we utilize the same set of inducing points for all tasks,
which can lead to further improvement in computational efficiency. Consequently, the variational
distribution for multi-task Gaussian process with inducing variables is defined as,

q
(
Xr(·)

)
= p

(
X1r(·), . . . , Xnr(·) | X1r(v), . . . , Xnr(v), κX , κU

) n∏

t=1

q
(
Xtr(v)

)
, (7)

where v = (v1, . . . , vK)T with v1, . . . , vK ∈ U and K is the number of inducing points. We
construct the variational distribution for inducing variables as q(Xtr(v)) = Normal(µtr,Str). It is
noteworthy that the conditional prior distribution for Xr(·), i.e., the first term on the right-hand-side
of equation (7), cannot be factorized as

∏n
t=1 p

(
Xtr(·) | Xtr(v)

)
, because they have temporal

dependence. However, benefiting from the setting of equation (7), the conditional prior distribution
appears both in variational and prior distributions and hence can be cancelled. In Appendix D.1, we
derive that the ELBO in equation (6) can be simplified as

ELBO =

n∑

t=1

Eq

[
log p

(
Y t(·) | Xt(·),Z,A

)]
− KL

[
q(Z) ∥ p(Z | α)

]

− KL
[
q(A) ∥ p(A | σA)

]
−

∑

r≥1

KL
[
q
(
Xr(v)

)
∥ p

(
Xr(v) | κX , κU

)]
,

(8)
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where Xr(v) =
(
X1r(v), . . . , Xnr(v)

)
withXtr(v) =

(
Xtr(v1), . . . , Xtr(vK)

)T
for t = 1, . . . , n.

Furthermore, using the formula of the KL divergence between two multivariate Gaussian distributions,
we derive a closed form of the last term as

2KL
[
q
(
Xr(v)

)
∥ p

(
Xr(v) | κX , κU

)]
= trace

(
(Σ−1

X ⊗Σvv
U

−1)
(
Sr + vec(µr)vec(µr)

T
))

+K log |ΣX |+ n log |Σvv
U | −

n∑

t=1

log |Str| − nK, (9)

where µr = (µ1r, . . . ,µnr), Sr = diag(S1r, . . . ,Snr), and Σvv
U =

[
κU (vj , vj)

]
1≤i,j≤K

. See
Appendix D.2 for the detailed derivation.

4.2 Sampling for Variational Distribution of Factors

To optimize the variational distributions, the automatic differentiation variational inference (ADVI)
algorithm [38, 35, 39] is adopted to maximize the ELBO in equation (8). To perform ADVI in our
model, we need to sample Xr(·) from its variational distribution as specified in equation (7). However,
though this distribution is Gaussian conditional on Xr(v), directly sampling from a nL× nL matrix
is computationally expensive. To address this issue, we take advantage of the separability of the
temporal and spatial kernels as described in Section 3.2, and propose the following method to
accelerate the computation of the ELBO. For any u = (u1, . . . , uL)

T with u1, . . . , uL ∈ U being the
observation points in U , we first partition the spatial covariance matrix for X(u,v) into a blockwise

matrix
[
Σuu

U Σuv
U

Σuv
U

T Σvv
U

]
, where Σuu

U =
[
κU (ui, uj)

]
1≤i,j≤L

, and Σuv
U =

[
κU (ui, vj)

]
1≤i≤L,1≤j≤K

.

Proposition 1 (Posterior Mean) The mean function of the posterior for Xtr(·) is solely dependent
on the variational mean of Xtr(v), the inducing variables at time t. That is, for any u

E
(
Xtr(u)

)
= Σuv

U Σvv
U

−1µtr. (10)

It means that for MTGP, the variational mean is independent of the inducing variables at timestamps
other than the current one. See also a similar proposition for Gaussian process regression in [15].

Proposition 2 (Posterior Variance) The variance function of the posterior for Xr(·) contains two
parts. For any u,

Varq

[
vec

(
Xr(u)

)]
= (I⊗Σuv

U Σvv
X

−1) diag(S1r, . . . ,Snr)+ΣX ⊗ (Σuu
U −Σuv

U Σvv
U

−1Σuv
U

T ).

The first part is solely dependent on the variational variance of Xtr(v), and the second part
is independent of the variational distributions of all inducing variables. In particular, the

first part corresponds to a group of independent Gaussian processes such that X̃
(1)

tr (u) ∼
Normal(Σuv

U Σvv
X

−1µtr,Σ
uv
U Σvv

X
−1Str) for any u, and X̃

(2)

r (·) is a zero-mean multi-task Gaussian

process such that X̃
(2)

r (u) ∼ MatrixNormal(0,Σuu
U −Σuv

U Σvv
U

−1Σuv
U

T ,ΣX ) for any u. Therefore,

benefiting from Propositions 1 and 2, we can decompose Xr(·) = X̃
(1)

r (·) + X̃
(2)

r (·) under the

variational distribution. X̃
(1)

r (·) can be efficiently sampled because it only depends on inducting
variables at the same period instead of all periods.

Proposition 3 (Irrelevance to ELBO) Conditional on ΣX and ΣU , sampling Xtr(·) from the dis-

tribution of X̃
(1)

r (·) does not alter the variational mean. Moreover, the corresponding ELBO of
DF2M in equation (8) is modified only by a constant term given by

1

2σ2
ϵ

∥Z ⊙A∥2F trace
[
ΣX

]
trace

[
Σuu

U −Σuv
U Σvv

U
−1Σuv

U
T
]
, (11)

where, for any matrix M = (Mij), we denote its Frobenius norm by ∥M∥F =
(∑

i,j M
2
ij

) 1
2 .

See Appendices D.3, D.4 and D.5 for the derivations of Proposition 1, 2 and 3, respectively.
Based on these propositions, we can sample Xtr(·) from the proxy variational distribution
Normal(Σuv

U Σvv
X

−1µtr,Σ
uv
U Σvv

X
−1Str), which relies solely on the variational distributions at time

t. This approach provides an efficient way of computing the ELBO compared to direct sampling,
which necessitates the complete Cholesky decomposition of the nL× nL matrix.
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Figure 2: A visualization of real datasets in the experiments. Rows 1 and 2 use a blue-to-red gradient
to denote time progression, with blue for older and red for recent data. Row 3 employs brightness
variations to represent covariance, with brighter areas indicating higher covariance.

4.3 Initialization, Training and Prediction

We use the technique of ADVI to train the variational parameters of the posteriors by computing
the gradient of the ELBO with respect to the parameters. The training process requires iterating
through the following steps until the ELBO converges. The steps of Bayesian inference for DF2M
are summarized in Algorithm 1 in Appendix E.

First, conditional on ΣX , we update the variational distribution parameters µtr and Str for inducing
variables Xtr(v) for all t and r, as well as other variational parameters including {τ1j , τ2j }1≤j≤M and
{mtj}1≤t≤n,1≤j≤M for India buffet process Z, {ηtj , σA

tj}1≤t≤n,1≤j≤M for loading weight matrix
A, the idiosyncratic noise scale σϵ, and the parameters in spatial kernel κU (·, ·). In this step, the
gradient of ELBO is accelerated by sampling Xtr(·) independently according to Proposition 3 and
the analytical expression for the KL divergence in equation (9).

Second, conditional on a sample of Xr(·), we update the trainable parameters in sequential deep
learning framework H that constructs the temporal kernels κX (·, ·), via the gradient of ELBO with
respect to ΣX . Although any mapping function F can be used in our model, it is natural to choose
F
(
Xt(·)

)
= Xt(v), such that there is no need to sample Xr(·) when computing the gradient.

This is inspired by the fact that the variational distribution of inducing variables can be regarded as
sufficient statistics of the Gaussian processes [36].

Once we have observed the data at time n, we use the trained model to generate a posterior distribution,
which captures our updated understanding of the underlying patterns in the data. Based on this
distribution, we make a prediction for the value of the data at the next time step, n+ 1. We present
the one-step ahead prediction as:

Ȳ n+1(u) = (Z̄ ⊙ Ā)X̄n+1(u), X̄n+1,r(u) = Σuv
U Σvv

U
−1µrΣ

−1
X Σn+1,1:n

X
T

, (12)

where Ȳ and X̄ represent the predictive means for the observations and factors, respectively. The
terms Z̄ and Ā are the posterior means of Z and A, respectively. The component Σn+1,1:n

X is a
1× n matrix given by Σn+1,1:n

X =
[
κX (Xn+1,X0), · · · , κX (Xn+1,Xn)

]
. See Appendix D.6 for the

derivations. By repeating this process iteratively, we can generate a sequence of predictions for future
time steps, forecasting the behavior of the system over time.
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5 Experiments

5.1 Datasets

We apply DF2M to four real-world datasets consisting of high-dimensional functional time series.
Japanese Mortality dataset contains age-specific mortality rates for 47 Japanese prefectures (p=47)
from 1975 to 2017, with 43 observations per prefecture (n=43). Energy Consumption dataset includes
half-hourly measured energy consumption curves for selected London households (p=40) between
December 2012 and January 2013 (n=55). Global Mortality dataset provides a broader perspective on
mortality rates by including age-specific mortality data across different countries (p=32) from 1960 to
2010 (n=50). Stock Intraday dataset comprises high-frequency price observations for the S&P 100
component stocks (we removed 2 stocks with missing values, so p=98) in 2017. The data includes 45
trading days (n=45), with ten-minute resolution prices and cumulative intraday return trajectories
[40]. For the preprocessing, each dataset is cleaned and transformed into an appropriate format for
analysis. See Appendix F for the details. We denote the data as

{
Ytj(uk)

}
1≤t≤n,1≤j≤p,1≤k≤K

,
where K is the number of observations per curve. We plot examples of functional time series for a
randomly selected j in Row 1 of Figure 2.

5.2 Experiment Setup and Metrics

Moreover, to assess the predictive accuracy of the proposed model, we split the data into a training
set with the first n1 periods and a test set with the last n2 periods. We use the training set to train
the parameters in the model following the steps in Section 4. Then for an integer h > 0, we make
the h-step-ahead prediction given the fitted model using the first n1 periods, and then repeatedly
move the training window by one period, refit the model, and make the h-step-ahead prediction. We
compute the mean absolute prediction error (MAPE) and mean squared prediction error (MSPE) by

MAPE(h)=
1

M

p∑

j=1

K∑

k=1

n∑

t=n1+h

∣∣Ŷtj(uk)−Ytj(uk)
∣∣, MSPE(h)=

1

M

p∑

j=1

K∑

k=1

n∑

t=n1+h

[
Ŷtj(uk)−Ytj(uk)

]2
,

where M = Kp(n2 − h+ 1). In our DF2M implementation, we incorporate three cutting-edge deep
learning modules: LSTM, GRU, and the self-attention mechanism. In the deep learning modules,
we employ a feedforward neural network equipped with ReLU activation functions to map inputs
into a designated hidden layer size. Subsequently, the transformed inputs are channeled through a
time-invariant full-connected neural network, LSTM, GRU, or self-attention mechanisms, and denote
them as DF2M-LIN, DF2M-LSTM, DF2M-GRU and G-ATTN, respectively. For DF2M, the outputs
of deep learning modules are passed to the kernel function, while in conventional deep learning,
they are converted to outputs via a linear transformation. We evaluate their performance against
conventional deep learning models under the same structural setting and regulations. The optimal
hyperparameters, along with a detailed description of the deep learning architecture, can be found in
Appendix G. The proposed inference algorithm is used to infer DF2M and make predictions.

5.3 Empirical Results

Explainability Firstly, Row 2 of Figure 2 shows the temporal dynamic of the largest factors in
the fitted models. We can observe a decreasing trend over time for the first three datasets. This
is particularly valuable as these factors exhibit a clear and smooth dynamic, which can be used to
explain the underlying reasons for changes over time and also to make robust predictions. Secondly,
the temporal covariance matrix (ΣX ) can be seen in Row 3 of Figure 2. It is evident that the first
three datasets exhibit stronger autocorrelation than the Stock Intraday dataset, which aligns with the
intuition that financial data is generally noisier and characterized by short-term dependencies.

Furthermore, both mortality datasets display a strong autoregressive pattern, as evidenced by the
large covariance values close to the diagonal. They also show a blockwise pattern, which indicates
the existence of change points in 1980s. Another interesting observation is the periodic pattern in the
Energy Consumption dataset, which reveals distinct patterns for weekdays and weekends during the
first 21 days. This data corresponds to the first 21 days in December. In contrast, the second half
of the time steps do not exhibit this pattern. This could be attributed to the Christmas holidays in
London, during which the differences between weekdays and weekends are relatively smaller, as
people are on holiday.
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Table 1: Comparision of DF2M to Standard Deep Learning Models. For formatting reasons, MAPEs
are multiplied by 10, and MSPEs are multiplied by 102, except for Energy Consumption dataset.

h
DF2M-LIN LIN DF2M-LSTM LSTM DF2M-GRU GRU DF2M-ATTN ATTN

MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE

Ja
pa

ne
se

M
or

ta
lit

y 1 4.707 1.539 7.808 2.092 3.753 1.205 4.989 1.447 4.092 1.318 8.800 1.691 3.608 1.119 13.44 3.166
2 4.567 1.446 8.774 2.227 4.164 1.322 5.597 1.523 4.395 1.402 8.552 1.809 3.839 1.203 14.85 3.363
3 5.623 1.635 9.228 2.313 4.513 1.427 6.501 1.684 4.898 1.537 10.41 1.865 3.985 1.264 16.17 3.546

E
ne

rg
y

C
on

sm
. 1 10.29 2.334 16.16 2.939 8.928 2.176 13.51 2.635 9.132 2.204 15.55 2.872 14.22 2.741 17.03 3.130

2 17.58 3.060 18.95 3.214 11.60 2.478 19.71 3.278 15.49 2.801 24.02 3.518 18.70 3.141 17.79 3.216
3 17.64 3.100 20.27 3.342 17.26 3.063 24.61 3.759 14.13 2.801 23.91 3.626 19.03 3.163 18.24 3.268

G
lo

ba
l

M
or

ta
lit

y 1 10.78 2.319 16.84 2.783 7.672 1.726 13.28 2.332 8.741 1.967 14.12 2.211 9.905 2.141 39.52 5.332
2 9.300 2.041 18.05 2.949 8.088 1.823 16.29 2.572 8.714 1.951 15.33 2.403 10.46 2.237 41.83 5.506
3 9.706 2.106 19.93 3.174 8.954 1.978 17.08 2.680 9.730 2.110 17.53 2.597 11.12 2.324 43.95 5.643

St
oc

k
In

tr
ad

ay 1 99.58 6.424 137.5 7.896 107.5 6.741 193.3 9.281 102.5 6.675 414.0 14.12 104.2 6.695 103.4 6.579
2 101.2 6.505 127.8 7.491 118.8 7.141 176.0 9.283 117.3 7.339 445.9 14.66 103.4 6.646 98.39 6.392
3 89.82 6.269 139.1 7.924 113.6 7.294 213.8 10.20 95.49 6.649 427.2 14.07 93.93 6.427 91.21 6.275

Predictive Accuracy Compared to standard deep learning models, the DF2M framework consistently
outperforms other models in terms of both MSPE and MAPE across all four datasets. The only
exception to this is the Stock Intraday dataset, where DF2M-ATTN and ATTN achieve similar
levels of accuracy. Specifically, the DF2M-LSTM model performs exceptionally well on the Energy
Consumption and Global Mortality datasets, while the DF2M-ATTN model exhibits the lowest
prediction error for the Japanese Mortality dataset. These results demonstrate that the integration of
an explainable structure with the nonlinearity of LSTM and attention mechanisms can significantly
improve the overall performance of the model.

On the other hand, the DF2M-LIN model outperforms both DF2M-LSTM and DF2M-GRU on the
Stock Intraday dataset. This can be attributed to the fact that, in the context of financial data, long-term
dependencies may not be present, rendering the Markovian model more suitable for capturing the
underlying dynamics. Consequently, the DF2M-LIN model emerges as a better choice for the Stock
Intraday dataset. Compared to standard deep learning models with multiple layers, DF2M achieves
better or comparable results, as shown in Appendix G. However, in such cases, standard deep learning
models sacrifice explainability due to their utilization of a large number of layers.

6 Related Works

In the literature concerning frequentist statistical methods for high-dimensional functional time
series, various approaches have been employed. For instance, [8] develop a finite-dimensional
functional factor model for dimension reduction, while [2] carry out autocovariance-based dimension
reduction, and [41] adopt segmentation transformation. However, all these methods use either a
vector autoregressive model (VAR) or functional VAR to describe the temporal dynamics, implying
linear and Markovian models. In contrast, our work is the first to propose a Bayesian model for
high-dimensional functional time series that can handle nonlinear and non-Markovian dynamics.
Moreover, [25, 26, 27, 28, 29, 30] use deep kernels in the Gaussian process for classification or
regression tasks. Differently, we pioneer a framework that employs a deep kernel specifically for
time series prediction. Lastly, [42, 24, 43] adopt MTGPs to model cross-sectional correlations among
static data. Contrarily, we apply a factor model to describe cross-sectional relationships, and the
temporal kernel is constructed based on the features of factors. This unique structure represents a
novel contribution to the current literature.

7 Conclusion

In this paper, we present DF2M, a novel deep Bayesian nonparametric approach for discovering
non-Markovian and nonlinear dynamics in high-dimensional functional time series. DF2M combines
the strengths of the Indian buffet process, factor model, Gaussian process, and deep neural networks
to offer a flexible and powerful framework. Our model effectively captures non-Markovian and
nonlinear dynamics while using deep learning in a structured and explainable way. A potential
limitation of our study lies in our reliance on simple spatial kernels, neglecting to account for the
intricate relationships within the observation space U . We leave this for future work.
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Appendix

A An Introduction for Sequential Deep Learning Modules

A.1 Recurrent Neural Networks

LSTM and GRU are both types of Recurrent Neural Networks (RNNs). They are designed to address
the problem of vanishing gradients of vanilla RNNs and to preserve long-term dependencies in the
sequential data.

LSTM, proposed by [11], is composed of memory cells and gates that control the flow of information
into and out of the memory cells. The standard structure of LSTM is composed of three types of
gates: input gate, output gate and forget gate. The input gate controls the flow of new information
into the memory cell, the output gate controls the flow of information out of the memory cell, and the
forget gate controls the information that is removed from the memory cell. The standard structure of
LSTM is defined as follows,

f t = σ(W f [ht−1,xt] + bf )

it = σ(W i[ht−1,xt] + bi)

c̃t = tanh(WC [ht−1,xt] + bc)

ct = f t ⊙ ct−1 + it ⊙ c̃t
ot = σ(W o[ht−1,xt] + bo)

ht = ot ⊙ tanh(c̃t),

where [ht−1,xt] is the stack of hidden state vector ht−1 and xt. f t, it, and ot are the activation
vectors for forget gate, update gate, and output gate, respectively. c̃t is cell input activation vector,
and ct is cell state vector, σ denotes sigmoid function. W s and bs refer to weight matrices and bias
vectors to be estimated.

GRU is a simplified version of LSTM. It has two gates: update gate and reset gate. The update gate
controls the flow of new information into the memory cell, while the reset gate controls the flow of
information out of the memory cell. The structure of GRU is defined as follows,

zt = σ(W z[ht−1,xt] + bz)

rt = σ(W r[ht−1,xt] + br)

h̃t = tanh(W h[rt ⊙ ht−1,xt] + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t,

where zt and rt are the activation vectors for update gate and reset gate, respectively, and h̃t is cell
input activation vector.

A.2 Attention Mechanism

Attention mechanism is a deep learning model that is especially effective for sequential data prediction.
It allows the model to assign different weights to different parts of the input, rather than treating them
all equally. This can improve the model’s ability to make predictions by allowing it to focus on the
most relevant parts of the input. The commonly used self-attention mechanism computes a weight for
each element of the input, and the final output is a weighted sum of the input elements, where the
weights are computed based on a query, a set of key-value pairs and a similarity function such as
dot-product or MLP. The structure of standard self-attention mechanism is shown as follows,

qt = xtWQ, kt = xtWK , vt = xtW V

at,s =
exp(qt · k⊤

s /
√
dk)∑T

i=1 exp(qt · k⊤
i /

√
dk)

, ht =
T∑

s=1

at,svs,

where qt, kt, and vt are query, key, and value vectors at time step t, respectively, at,s is the attention
value between time steps t and s, dk is the dimension of the key vector, and T is the total number of
time steps in the sequence.

56



Neural
Networks

Neural
Networks

Neural
Networks

Neural
Networks

Neural
Networks

Neural
Networks=RNN Layer

h1

x1

h2

x2

ht−1

xt−1

ht

xt

ht+1

xt+1

hn

xn

ht

x1:t . . . . . .

(a) RNN Layer

Query,
Keys,
Values

Query,
Keys,
Values

Query,
Keys,
Values

Query,
Keys,
Values

Query,
Keys,
Values

Query,
Keys,
Values

=Attention
Mechanism

h1

x1

h2

x2

ht−1

xt−1

ht

xt

ht+1

xt+1

hn

xn

ht

x1:t . . . . . .

. . .. . .

(b) Attention Mechanism

Figure A.1: The structures for sequential deep learning modules. In the attention mechanism, the
colored links demonstrate that the current state relies exclusively on past states, ensuring that the
model considers historical information without incorporating future data.

In particular, for time series modeling, the attention value should only depend on historical information
rather than future information. Therefore, the attention value should be revised as

at,s =
exp(qt · k⊤

s /
√
dk)1s≤t∑T

i=1 exp(qt · k⊤
i /

√
dk)1s≤t

,

We illustrate the differences between RNN and attention mechanisms in Figure A.1. In RNNs, the
current state depends on the most recent state, implying a sequential dependence on past states. By
contrast, attention mechanisms allow the current state to depend directly on all past states, providing
a more flexible and potentially more expressive way to capture the relationships between past and
current states in the time series.

B Multi-task Gaussian Process and Matrix Normal Distribution

We first provide a brief introduction of matrix normal distribution. A random matrix M ∈ Rm×n is
said to have a matrix normal distribution, denoted as M ∼ MatrixNormalm×n(M0,U ,V ), if its
probability density function is given by

p(M) =
exp

(
− 1

2 trace
[
V −1(M −M0)

⊤U−1(M −M0)
])

(2π)
mn
2 |U |n2 |V |m2 ,

where M0 ∈ Rm×n is the mean matrix, U ∈ Rm×m is a positive definite row covariance matrix, and
V ∈ Rn×n is a positive definite column covariance matrix. Moreover, the distribution of vec(M) is
given by

vec(M) ∼ Nmn (vec(M0),V ⊗U) ,

where Nmn(·, ·) represents a multivariate normal distribution with dimension mn. Here, vec(M0) is
the mean vector, and the covariance matrix is formed by the Kronecker product of the row covariance
matrix V and the column covariance matrix U .

For any u1, . . . , uL ∈ U , given equation (2), we have vec
(
Xr(u1, . . . , uL)

)
∼ Normal(0,ΣX ⊗

Σu
U ),

where

Xr(u1, . . . , uL) =

[
X1r(u1) · · · Xnr(u1)

· · · · · · · · · · · ·
X1r(uL) · · · Xnr(uL)

]
,

57



ΣX =

[
κX (X0,X0) · · · κX (X0,Xn−1)

· · · · · · · · · · · ·
κX (Xn−1,X0) · · · κX (Xn−1,Xn−1)

]
, and Σu

U =

[
κU (u1, u1) · · · κU (u1, uL)

· · · · · · · · · · · ·
κU (uL, u1) · · · κU (uL, uL)

]
.

Therefore, Xr(u1, . . . , uL) ∼ MatrixNormal(0,Σu
U ,ΣX ).

C Functional version of Gaussian Process Dynamical Model

Following [24], we consider a nonlinear function g with respect to historical information, achieved
by a linear combination of nonlinear kernel function ϕis,

Xt(·) = g(Xt−1) =
∑

i

ϕi(Xt−1)ai(·), (C.1)

where Xt−1 = {Xt−1,Xt−2, . . . } is the set of all historical factors till period t−1, ϕi is a nonlinear
basis function with respect to Xt−1, and ai(·) is a function defined on U . Equivalently, the equation
above can be presented as



Xt1(·)
· · ·

Xtr(·)
· · ·


 =

∑

i

ϕi(Xt−1)



a1i(·)
· · ·
ari(·)
· · ·


 ,

where ai(·) =
{
a1i(·), a2i(·), . . . , ari(·), . . . ,

}T
. This functional version of dynamical system cor-

responds to equation (3) in [24]. In analogy, the specific form of g(·) in equation (C.1), including the
numbers of kernel functions, is incidental, and therefore can be marginalized out from a Bayesian per-
spective. Assigning each ari(·) an independent Gaussian process prior with kernel κU , marginalizing
over g leads to equation (2), where κX (Xt−1,Xs−1) =

∑
i

〈
ϕi(Xt−1), ϕi(Xs−1)

〉
.

D Technical Derivations and Proofs

D.1 Derivations for Equation (8)

Using the variational seting in equation (7), the ELBO in equation (6) can be written as

ELBO =Eq

[
log p(Z | α)p(A | ΣA)

n∏

t=1

p
(
Y t(·) | Xt(·),Z,A

)∏

r≥1

p
(
Xr(·) | κX , κU

)]

− Eq

[
log q(Z)q(A)

∏

r≥1

q
(
Xr(·)

)]

=Eq

[
log p(Z | α)

]
− Eq

[
log q(Z)

]
+ Eq

[
log p(A | ΣA)

]
− Eq

[
log q(A)

]

+
n∑

t=1

Eq

[
log p

(
Y t(·) | Xt(·),Z,A

)]

+
∑

r≥1

Eq

[
log p

(
X1r(·), . . . , Xnr(·) | X1r(v), . . . , Xnr(v), κX , κU

)

p
(
X1r(v), . . . , Xnr(v) | κX , κU

)]

−
∑

r≥1

Eq

[
log p

(
X1r(·), . . . , Xnr(·) | X1r(v), . . . , Xnr(v), κX , κU

)

q
(
X1r(v), . . . , Xnr(v)

)]
.
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Next, we cancel the same items from the equation above to get:

ELBO =Eq

[
log p(Z | α)

]
− Eq

[
log q(Z)

]
+ Eq

[
log p(A | ΣA)

]
− Eq

[
log q(A)

]

+

n∑

t=1

Eq

[
log p

(
Y t(·) | Xt(·),Z,A

)]

+
∑

r≥1

Eq

[
log p

(
X1r(v), . . . , Xnr(v) | κX , κU

)
− log q

(
X1r(v), . . . , Xnr(v)

)]
.

Finally, equation (8) is obtained using the definition of KL divergence.

D.2 Derivations for Equation (9)

The Kullbuck–Leibler divergence between two k-dimensional multivariate Gaussian distribution
N0 = Normal(m0,Σ0) and N1 = Normal(m1,Σ1) is defined as,

KL (N0 ∥ N1) =
1

2

(
trace

(
Σ−1

1 Σ0

)
− k + (m1 −m0)

T
Σ−1

1 (m1 −m0) + log

(
detΣ1

detΣ0

))
.

In our settings, v = (v1, . . . , vK)T , the prior and variational distributions for Xr(v) are

p
(

vec
(
Xr(v)

))
= Normal(0,ΣX ⊗Σvv

U )

and

q
(

vec
(
Xr(v)

))
= Normal

([
µ1r
· · ·
µnr

]
, diag(S1r, . . . ,Snr)

)
,

respectively, where

ΣX =

[
κX (X0,X0) · · · κX (X0,Xn−1)

· · · · · · · · · · · ·
κX (Xn−1,X0) · · · κX (Xn−1,Xn−1)

]
, Σvv

U =

[
κU (v1, v1) · · · κU (v1, vK)

· · · · · · · · · · · ·
κU (vK , v1) · · · κU (vK , vK)

]
.

Let m0 =

[
µ1r
· · ·
µnr

]
, m1 = 0, Σ0 = diag(S1r, . . . ,Snr) and Σ1 = ΣX ⊗Σvv

U , we have

trace(Σ−1
1 Σ0) = trace

(
(Σ−1

X ⊗Σvv
U

−1)diag(S1r, . . . ,Snr)
)
,

det(Σ1) = |ΣX |M |Σvv
U |n, det(Σ0) =

n∏

t=1

|Str|,

and

(µ1 − µ0)
T
Σ−1

1 (µ1 − µ0) = trace(Σ−1
1 µ0µ

T

0 ) = trace
(
(Σ−1

X ⊗Σvv
U

−1)vec(µr)vec(µr)
T
)
.

Therefore,

2KL
(
q(vr) ∥ p(vr | κX , κU )

)
= trace

(
(Σ−1

X ⊗Σvv
U

−1)
(
Sr + vec(µr)vec(µr)

T
))

+K log |ΣX |+ n log |Σvv
U | −

n∑

t=1

log |Str| − nK,

where µr = (µ1r, . . . ,µnr) and Sr = diag(S1r, . . . ,Snr). Moreover, to get avoid of large matrix
computation, we can further simplify

trace
(
(Σ−1

X ⊗Σvv
U

−1)Sr

)
=

n∑

t=1

Σ−1
X t,ttrace(Σvv

U
−1Str),

where Σ−1
X t,t denotes the (t, t)-th entry of Σ−1

X and

trace
(
(Σ−1

X ⊗Σvv
U

−1)vec(µr)vec(µr)
T
)
= vec(µr)

T vec(Σ−1
X µrΣ

−1
U ) = trace(µT

rΣ
−1
U µrΣ

−1
X ).
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D.3 Proof for Proposition 1

For any u = (u1, . . . , uL)
T with u1, . . . , uL ∈ U , in the prior distribution, vec

(
Xr(u,v)

)
is also

normally distributed. We first partition the spatial covariance matrix as
[
Σuu

U Σuv
U

Σvu
U Σvv

U

]
,

where Σuu
U and Σvv

U correspond to the block covariance matrix of u and v, respectively, and Σuv
U

is the cross term. Based on this partition, using the formula of conditional multivariate Gaussian
distribution, we then have

Eq

[
vec

(
Xr(u)

)]
= Eq

[
Eq

[
vec

(
Xr(u)

)
|Xr(v)

]]

= Eq

[
Ep

[
vec

(
Xr(u)

)
|Xr(v)

]]

= (ΣX ⊗Σuv
U )(ΣX ⊗Σvv

U )−1 Eq

[
vec(Xr(v)

]

= (ΣX ⊗Σuv
U )(Σ−1

X ⊗Σvv
U

−1)vec(µr)

= (I ⊗Σuv
U Σvv

U
−1)vec(µr).

Therefore, Eq

[
vec

(
Xr(u)

)]
= Σuv

U Σvv
U

−1vec(µr), which means that conditional on ΣX and ΣU ,
the mean of variational distribution are mutually independent over factors.

D.4 Proof for Proposition 2

We first derive the variance for the variational distribution of Xr(u). Note that

Varq

[
vec

(
Xr(u)

)]
= Varq

[
Eq

[
vec

(
Xr(u)

)
| Xr(v)

]]
+ Eq

[
Varq

[
vec

(
Xr(u) | Xr(v)

)]]
.

The first term is obviously

(I ⊗Σuv
U Σvv

X
−1) diag(S1r, . . . ,Snr).

In an analogy of proof for Proposition 1, the second term equals to

ΣX ⊗Σuu
U − (ΣX ⊗Σuv

U )(ΣX ⊗Σvv
U )

−1
(ΣX ⊗Σuv

U )T

= ΣX ⊗Σuu
U − (ΣX ⊗Σuv

U )(Σ−1
X ⊗Σvv

U −1)(ΣX ⊗Σuv
U )T

= ΣX ⊗Σuu
U − (I ⊗Σuv

U Σvv
U

−1)(ΣX ⊗Σuv
U )T

= ΣX ⊗Σuu
U − (ΣX ⊗Σuv

U Σvv
U

−1Σuv
U

T ])

= ΣX ⊗ (Σuu
U −Σuv

U Σvv
U

−1Σuv
U

T ).

Therefore, the variance for Xr(u) with variational distribution is,

Varq

[
vec

(
Xr(u)

)]
= (I ⊗Σuv

U Σvv
X

−1)diag(S1r, . . . ,Snr) +ΣX ⊗ (Σuu
U −Σuv

U Σvv
U

−1Σuv
U

T ).

D.5 Proof for Proposition 3

Though the model is infinite-dimensional, the inference is conducted on a finite grid of observations.
Suppose {Y t(·)}1≤t≤n have observations at points u. Conditional on ΣX and ΣU , in equation (8)
we have
n∑

t=1

Eq

[
log p

(
Y t(·) | Xt(·),Z,A

)]

=
1

2σ2
ϵ

Eq

p∑

i=1

trace
[(
Y i(u)−

∑

r

βirXr(u)
)(
Y i(u)−

∑

r

βirXr(u)
)T

]
+ constant

=
1

2σ2
ϵ

Eq

p∑

i=1

∑

r,j

trace
[
βirβilXr(u)X l(u)

T

]
− 1

σ2
ϵ

Eq

p∑

i=1

∑

r

trace
[
βirXr(u)Y i(u)

T

]
+ constant,
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where βir = (Z ⊙ A)ir, Y i(u) =

[
Y1i(u1) · · · Yni(u1)
· · · · · · · · · · · ·

Y1i(uL) · · · Yni(uL)

]
, and Xr(u) =

[
X1r(u1) · · · Xnr(u1)

· · · · · · · · · · · ·
X1r(uL) · · · Xnr(uL)

]
. Using the above construction for Xr(·), we also have

Eq Xr(u)X l(u)
T =

{
Eq X̃

(1)

r (u)X̃
(1)

r (u)T + Eq X̃
(2)

r (u)X̃
(2)

r (u)T r = l,

Eq X̃
(1)

r (u)X̃
(1)

l (u)T otherwise.
and

Eq Xr(u)Y i(u)
T = Eq X̃

(1)

r (u)Y i(u)
T ,

because Eq X̃
(2)

r (u) = 0, where X̃
(1)

r (u) =



X̃

(1)
1r (u1) · · · X̃

(1)
nr (u1)

· · · · · · · · · · · ·
X̃

(1)
1r (uL) · · · X̃

(1)
nr (uL)


 and X̃

(2)

r (u) =



X̃

(2)
1r (u1) · · · X̃

(2)
nr (u1)

· · · · · · · · · · · ·
X̃

(2)
1r (uL) · · · X̃

(2)
nr (uL)


 .

Furthermore,

Eq trace
[
X̃

(2)

r (u)X̃
(2)

r (u)T
]
= trace[ΣX ]trace[Σuu

U −Σuv
U Σvv

U
−1Σuv

U
T ].

Given the above results, we obtain that
n∑

t=1

Eq

[
log p

(
Y t(·) | Xt(·),Z,A

)]

=
1

2σ2
ϵ

Eq

p∑

i=1

∑

r,j

trace
[
βirβilX

(1)
r (u)X

(1)
l (u)T

]
− 1

σ2
ϵ

Eq

p∑

i=1

∑

r

trace
[
βirX

(1)
r (u)Y i(u)

T

]

+
1

2σ2
ϵ

∥Z ⊙A∥2F trace[ΣX ]trace[Σuu
U −Σuv

U Σvv
U

−1Σuv
U

T ] + constant.

Therefore, conditional on ΣX and ΣU , ELBO is irrelevant to the inter-task component X(2)
r (u).

D.6 Derivations for Equation (12)

Ȳ t+1(u) = (Z̄ ⊙ Ā)X̄t+1(u) is obvious as the variational variables are assumed to be independent.

We first compute the predictive mean for the inducing variables at time n + 1, X̄n+1,r(v). In an
analogy to Proposition 1, as the spatial kernel and temporal kernel are separable, we have

X̄n+1,r(v)
T = Σn+1,1:n

X Σ−1
X µT

r ,

where Σn+1,1:n
X =

[
κX (Xn+1,X0), κX (Xn+1,X1), · · · , κX (Xn+1,Xn−1), κX (Xn+1,Xn)

]
∈

R1×n. Moreover, we can predict X̄n+1,r(u) by

X̄n+1,r(u) = Σuv
U Σvv

U
−1X̄n+1,r(v) = Σuv

U Σvv
U

−1µrΣ
−1
X Σn+1,1:n

X
T

E Algorithm of Inference

The steps of Bayesian inference for DF2M are summarized in Algorithm 1 below.

Algorithm 1: Bayesian Inference for DF2M
Set up initialization of trainable parameters in deep learning models.
repeat

1. Update variational distribution parameters µtr and Str for inducing variables
Xtr(v), along with other variational parameters,
2. Update trainable parameters in sequential deep learning framework H using the
gradient of ELBO with respect to ΣX ,

until the convergence of the ELBO in equation (8).
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F Dataset and Preprocessing

Japanese Mortality dataset is available at https://www.ipss.go.jp/p-toukei/JMD/index-en.
html. We use log transformation and only keep the data with ages less than 96 years
old. Energy Consumption dataset is available at https://data.london.gov.uk/dataset/
smartmeter-energy-use-data-in-london-households. After removing samples with too
many missing values, we randomly split the data into 40 groups and take the average to alleviate the
impact of randomness. Global Mortality dataset downloaded from http://www.mortality.org/
contains mortality data from 32 countries, we use log transformation as well and keep the data with
age less than 60 years old. Stock Intraday dataset is obtained from the Wharton Research Data
Services (WRDS) database.

G Deep Learning Structures and Hyperparameters

Our deep learning model structure begins with a layer normalization process, designed to standardize
the features within each individual sample in a given batch. Following this, the data is fed into a
custom linear layer that implements a fully-connected layer alongside a ReLU activation function.
The architecture then varies based on the specific model used, with the possibilities including a
fully-connected neural network with Relu activation, LSTM, GRU, or an attention mechanism. The
final component of the model is a linear layer that translates the output from the LSTM, GRU, or
attention mechanism into the final predictions with the desired output size. To ensure an unbiased
comparison between DF2M and conventional deep learning models, we configure both to have a
hidden_size of 15 and restrict them to a single layer. For the ATTN model, we also set it to use
one head.

We also run experiments using multiple layers and heads with Bayesian hyperparameter optimization
and compare the results in Table F.1. Compared to standard deep learning models with multiple
layers, DF2M achieves better or comparable results.

Table F.1: The comparison of DF2M to standard deep learning models with multiple layers. For
formatting reasons, the standard deviations for MAPEs are multiplied by 10, and the standard
deviations for MSPEs are multiplied by 102, except for Energy Consumption dataset.

DF2M Standard Deep learning

h=1 h=2 h=3 h=1 h=2 h=3

Japanese
Mortality

MSPE 3.608 3.839 3.958 3.786 4.159 4.341
MAPE 1.119 1.203 1.264 1.180 1.288 1.367

Energy
Consm.

MSPE 8.928 11.60 17.26 9.380 11.19 12.79
MAPE 2.176 2.478 3.063 2.230 2.440 2.651

Global
Mortality

MSPE 7.672 8.088 8.954 8.196 8.755 9.322
MAPE 1.726 1.823 1.978 1.639 1.753 1.857

Stock
Intraday

MSPE 99.58 101.2 89.82 100.0 95.68 88.52
MAPE 6.424 6.505 6.269 6.450 6.283 6.162

We employ Bayesian hyperparameter optimization to tune the key hyperparameters of our model.
The tuned hyperparameters are listed below. The best outcomes for Japanese Mortality are reached
through a 3-layer LSTM model, which utilizes a dropout rate of 0.07, a learning rate of 0.0008, a
weight decay coefficient of 0.0002, and a hidden size of 64. Similarly, for Energy Consumption,
a 3-layer GRU model providing the best results employs a dropout rate of 0.08, a learning rate of
0.0004, a weight decay coefficient of 0.00009, and a hidden layer size of 64. In the case of Global
Mortality, the best performance is achieved with a 2-layer GRU model that operates with a dropout
rate of 0.33, a learning rate of 0.001, a weight decay coefficient of 0.0002, and a hidden layer size
of 48. Lastly, for Stock Intraday, the best results are seen with a 5-layer model featuring a 3-head
attention mechanism, with a dropout rate of 0.10, a learning rate of 0.0007, a weight decay coefficient
of 0.0010, and a hidden layer size of 2.
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H Standard Deviation of the Results

In parallel to the computation of MAPE and MSPE, we calculate their associated standard deviations
by

MAPE-STD(h)=
( 1

n2 − h

n∑

t=n1+h

{ p∑

j=1

K∑

k=1

1

Kp

∣∣Ŷtj(uk)− Ytj(uk)
∣∣− MAPE(h)

}2
) 1

2

,

MSPE-STD(h)=
( 1

n2 − h

n∑

t=n1+h

{ p∑

j=1

K∑

k=1

1

Kp

[
Ŷtj(uk)− Ytj(uk)

]2 − MSPE(h)
}2

) 1
2

.

The findings are presented in Table H.1 below.

Table H.1: Standard deviation of DF2M and Standard Deep Learning Models. For formatting reasons,
the standard deviations for MAPEs are multiplied by 10, and the standard deviations for MSPEs are
multiplied by 102, except for Energy Consumption dataset.

h
DF2M-LIN LIN DF2M-LSTM LSTM DF2M-GRU GRU DF2M-ATTN ATTN

MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE
-STD -STD -STD -STD -STD -STD -STD -STD -STD -STD -STD -STD -STD -STD -STD -STD

Ja
pa

ne
se

M
or

ta
lit

y 1 1.794 0.179 3.909 0.757 1.687 0.168 2.180 0.197 1.988 0.198 6.578 0.608 1.780 0.178 1.017 0.107
2 1.737 0.173 4.788 0.864 1.717 0.171 2.833 0.200 2.066 0.206 5.746 0.457 1.449 0.144 1.043 0.116
3 3.841 0.384 5.150 0.915 1.728 0.172 3.040 0.316 2.577 0.257 7.320 0.568 1.735 0.173 0.763 0.077

E
ne

rg
y

C
on

sm
. 1 0.841 0.841 14.91 1.354 0.724 0.724 11.39 1.039 0.679 0.679 9.683 0.833 1.029 1.029 12.47 1.104

2 1.134 1.134 15.32 1.297 0.846 0.846 11.98 0.979 1.121 1.121 18.41 1.407 1.203 1.203 12.67 1.082
3 1.080 1.080 16.35 1.262 1.229 1.229 12.89 1.049 0.985 0.985 13.05 0.949 1.308 1.308 12.72 1.060

G
lo

ba
l

M
or

ta
lit

y 1 3.519 0.351 14.03 1.514 0.686 0.068 3.484 0.546 1.088 0.108 4.108 0.238 1.379 0.137 1.483 0.103
2 2.191 0.219 13.61 1.503 1.469 0.146 4.883 0.623 1.461 0.146 4.318 0.276 1.386 0.138 1.664 0.139
3 2.580 0.258 14.03 1.466 2.676 0.267 4.803 0.640 2.365 0.236 5.747 0.269 1.386 0.138 2.602 0.217

St
oc

k
In

tr
ad

ay 1 20.73 2.073 99.88 2.720 21.75 2.175 117.6 2.858 18.87 1.887 291.3 4.987 18.93 1.893 77.01 2.058
2 22.27 2.227 86.99 2.361 27.17 2.717 93.25 1.823 19.63 1.963 329.2 4.917 21.25 2.125 78.82 2.124
3 18.80 1.880 109.2 2.989 26.59 2.659 115.7 2.614 18.85 1.885 305.7 5.071 20.78 2.078 79.17 2.184

The results indicate that the DF2M-based methods exhibit a smaller or comparable standard deviation
compared to other competitors.
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Chapter 5

Conclusion

In conclusion, this thesis introduces innovative methods within Bayesian nonparamet-

ric machine learning to model complex datasets. It investigates three primary areas

of application: natural language processing, deep graph neural networks, and high-

dimensional functional time series. The methodologies proposed include Conditional

and Adaptively Truncated Variational Inference (CATVI) for hierarchical Bayesian

nonparametric models, the Edge Enhanced Graph Neural Network (EEGNN) for im-

proving deep graph neural networks, and a Bayesian nonparametric Deep Functional

Factor Model (DF2M) for analysing high-dimensional functional time series.

Overall, the examination of Bayesian nonparametric models alongside deep learn-

ing, as depicted in this thesis, shows the potential to tackle challenging issues such

as overfitting and high dimensionality. The inherent flexibility of Bayesian nonpara-

metric models, when combined with the predictive power of deep learning, presents

a promising approach for modeling complex datasets.
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