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Abstract

The three chapters of this thesis examine climate change policy from a macroeconomic
perspective, and how cross-country patterns of structural transformation are affected by
international trade.

Chapter 1 studies how demographic change affects optimal carbon taxation. The model
combines the standard climate-economy feedbacks from the climate economics literature with
an overlapping generations structure that admits changes in fertility rates and life expectancy.
I start by deriving the optimal tax-to-GDP ratio analytically, clearly illustrating the channels
through which demographic change affects the optimal carbon tax. Quantitatively, I find
that accounting for demographic change has a significant impact on the optimal carbon tax
and leads to large welfare gains.

Chapter 1 assumes a globally harmonised climate policy that is unconstrained by the
goals of the Paris Agreement. In contrast, Chapter 2 studies how carbon taxes should be set
at the country-level while remaining consistent with the Paris Agreement. To ensure this
consistency, each country in the model must comply with an exogenously imposed carbon
budget that the policymaker is able to allocate intertemporally by setting the path of carbon
taxes. I also assume that countries in my model are small and open, taking the path of climate
change and interest rates as given. Using this model, I quantify the optimal path of carbon
taxes and the associated output losses for a sample of 35 countries. In addition to examining
the optimal policy, I assess the consequences of suboptimal carbon tax policies that provide
sectoral carbon tax exemptions.

Chapter 3 examines why developing countries may be experiencing premature deindus-
trialisation (that is, deindustrialisation at lower levels of per capita income and with lower
manufacturing shares than has historically been the norm). I start by presenting the key
empirical facts, which suggest an important role for international trade. I then use a quant-
itative trade model to assess how the cross-country distribution of manufacturing shares
is affected by various dimensions of global integration (in particular, trade in agriculture,
manufacturing and services, and trade imbalances).

3



Dedication

To Amma and my parents, without whom this would not have been possible.

4



Acknowledgements

First and foremost, I would like to thank my supervisors, Professor Ricardo Reis and Pro-
fessor Thomas Sampson. I am deeply indebted to them for their guidance and support
throughout this process. They have greatly aided the formation of this thesis and my devel-
opment as an economist.

I am also extremely grateful to all of the staff and students at the LSE who have provided
me with support, encouragement and company. Special thanks go to the members of the
LSE Centre for Macroeconomics for the generosity of their time and the invaluable feedback
they provided, and to all the members of my PhD cohort who have shared this journey with
me.

I would also like to thank my teachers, supervisors and colleagues in the UK, South Africa,
Rwanda and Zanzibar who laid the foundations of my intellectual and professional develop-
ment prior to my arrival at the LSE. I am especially grateful to the staff at the University
of KwaZulu-Natal who first introduced me to the world of economics and who showed the
utmost faith in my ability to succeed.

Many thanks go to my friends and family for their constant support and encouragement,
especially my sister Clio and my uncles and aunts from Mobeni Heights.

Finally, to my wife Jess, thank you for always being patiently by my side.

5



Contents

1 Optimal Carbon Taxation and Demographic Change 12
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2 Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.3 Government . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.4 Carbon Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Optimal Carbon Taxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.1 Competitive Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.2 Laissez-Faire Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.3 Optimal Carbon Tax . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.2 Optimal Carbon Tax . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.4.3 Implications for Climate Change and Welfare . . . . . . . . . . . . . 39

1.5 Discounting and Optimal Carbon Taxation . . . . . . . . . . . . . . . . . . . 43
1.5.1 Intra- Versus Inter-Generational Time Preference . . . . . . . . . . . 43
1.5.2 The Fall in r∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2 Carbon Taxation in Small Open Economies 55
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2.1 Households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2.2 Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2.3 Government . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.3 Competitive Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6



2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.2 Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.3 Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4 Optimal Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4.1 Optimal Policy Problem . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.4.3 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.5 Suboptimal Policy: Sectoral Exemptions . . . . . . . . . . . . . . . . . . . . 81
2.5.1 Suboptimal Policy Problem . . . . . . . . . . . . . . . . . . . . . . . 81
2.5.2 Feasibility of the Emissions Constraint . . . . . . . . . . . . . . . . . 82
2.5.3 Tax and Output Implications of Sectoral Exemptions . . . . . . . . . 87

2.6 Expenditure Share Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 Premature Deindustrialisation and Global Integration 94
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2 Premature Deindustrialisation: Revisiting the Evidence . . . . . . . . . . . . 98
3.3 Premature Deindustrialisation: The Role of International Trade . . . . . . . 102

3.3.1 Total Trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3.2 Trade in Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3.3 Trade Imbalances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.4 Counterfactual Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.4.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.4.2 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.4.3 Counterfactual Results . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A Appendices to Chapter 1 126
A.1 Laissez-Faire Labour Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2 Lemma 1: Setup of Optimal Carbon Tax Problem . . . . . . . . . . . . . . . 129
A.3 Proposition 1: Derivation of Optimal Carbon Tax . . . . . . . . . . . . . . . 131
A.4 Rt and Demographic Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B Appendices to Chapter 2 137
B.1 Country and Sector Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7



B.2 Derivation of Sectoral Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
B.3 Derivation of Sales Share Expressions . . . . . . . . . . . . . . . . . . . . . . 141
B.4 Derivation of Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.5 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
B.6 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.7 Suboptimal Policy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
B.8 Additional Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

C Appendices to Chapter 3 157
C.1 Country and Sector Aggregation Scheme . . . . . . . . . . . . . . . . . . . . 158
C.2 Figure 3.9 and Table 3.3: Missing Data . . . . . . . . . . . . . . . . . . . . 159
C.3 Figure 3.8: Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
C.4 Baseline Data (2000-2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
C.5 Counterfactual Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
C.6 Regression on Model Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8



List of Tables

1.1 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.2 Percentage Difference in Optimal Tax from Representative Agent Benchmark 37
1.3 Welfare Gains from Carbon Taxation ($2015, Trillions) . . . . . . . . . . . . 42

2.1 Estimate of Global Carbon Budget (2020 Onwards, GtCO2) . . . . . . . . . 59
2.2 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.3 Maximum Sectoral Exemption (Percentage) . . . . . . . . . . . . . . . . . . 84
2.4 Energy Expenditure by Sector Relative to Maximum Feasible Exemptions . . 85

3.1 Regression Results - Manufacturing Share of Nominal VA (1970-2019) . . . . 99
3.2 Regression Results - Manufacturing Share of Real VA (1970-2019) . . . . . . 99
3.3 Regression Results - Trade Balance as a Share of GDP (1995-2019) . . . . . 110
3.4 Counterfactual Changes in Manufacturing Share of Nominal Value Added . . 117

B.1 Country Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.2 Sector Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.3 Optimal Policy by Country: Carbon Tax and Discounted Output Losses . . 154
B.4 Contribution to λe by Sector (Percentage) . . . . . . . . . . . . . . . . . . . 155
B.5 Standard Deviation of Sales/Factor Shares (Percentage Points, 2000-2014) . 156

C.1 Country/Region Aggregation Scheme . . . . . . . . . . . . . . . . . . . . . . 158
C.2 Sector Aggregation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.3 Eliminating Trade in Agriculture - Change in Value Added Shares by Sector 168
C.4 Eliminating Trade in Manufacturing - Change in Value Added Shares by Sector169
C.5 Eliminating Trade in Services - Change in Value Added Shares by Sector . . 169
C.6 Eliminating Trade Imbalances - Change in Value Added Shares by Sector . . 170
C.7 Interaction Effects - Change in Value Added Shares by Sector . . . . . . . . 170
C.8 Autarky - Change in Value Added Shares by Sector . . . . . . . . . . . . . . 171
C.9 Regression Results: Manufacturing Share of VA (1970-2019) . . . . . . . . . 172

9



List of Figures

1.1 Global Demographic Change (1950-2100) . . . . . . . . . . . . . . . . . . . . 13
1.2 Global Life Expectancy at Ages 30 and 60 (Years) . . . . . . . . . . . . . . . 32
1.3 Global Population (Billions) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4 Difference in Optimal Tax from Representative Agent Benchmark (%) . . . . 37
1.5 Projected Trends in Middle-Aged Survival Probability and Savings Rates . . 38
1.6 (1−st)

(1−ss) as a Function of ψs−1
s+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.7 Path of Emissions and Atmospheric Carbon Concentration . . . . . . . . . . 40
1.8 Path of Temperature Change and Climate Damages . . . . . . . . . . . . . . 41
1.9 Sensitivity of Optimal Tax to Time Preference (Percentage Change) . . . . . 44
1.10 Marginal Product of Capital and Optimal Carbon Tax . . . . . . . . . . . . 47

2.1 Global GHG Emission Share by Country (2010-2018 Average) . . . . . . . . 56
2.2 Self-Imposed Climate Damages by Country (2010-2018 Average) . . . . . . . 56
2.3 Average Share of Global GDP and Emissions by Country (2010-2018) . . . . 58
2.4 Average Optimal Carbon Tax in 2020 . . . . . . . . . . . . . . . . . . . . . . 80
2.5 Average Discounted Value of Output Losses from Optimal Carbon Tax . . . 80
2.6 Percentage Change in 2020 Carbon Tax due to Sectoral Exemptions . . . . . 86
2.7 Discounted Output Losses Relative to Optimal Policy (2020-2049, Percentage

Difference) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.8 Average Sales and Factor Share Changes (Percentage Points, 2000-2014) . . . 89

3.1 Manufacturing Value-Added Share Regression: Decade Fixed Effect Estimates 100
3.2 Manufacturing Share of Value Added (1970-2019) . . . . . . . . . . . . . . . 102
3.3 Total Trade as a Percentage of GDP (World, 1870-2017) . . . . . . . . . . . 104
3.4 Total Trade as a Percentage of GDP (1960-2021) . . . . . . . . . . . . . . . 104
3.5 Total Trade in Services as a Percentage of GDP (1970-2021) . . . . . . . . . 105
3.6 Percentage of Service Exports that are Digitally-Deliverable (2005-2020) . . 106
3.7 Ratio of Air Passengers Carried to World Population (1970-2020) . . . . . . 107
3.8 Tourism as a Percentage of Total Exports and ln GDP Per Capita by Country 107

10



3.9 Cross-Country Distribution of Trade Balances (% of GDP, 1995-2019 Average) 109
3.10 Change in Nominal Manufacturing Share from Eliminating Trade in Agriculture118
3.11 Change in Nominal Manufacturing Share from Eliminating Trade in Manu-

facturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.12 Change in Nominal Manufacturing Share from Eliminating Trade in Services 119
3.13 Change in Nominal Manufacturing Share from Eliminating Trade Imbalances 119
3.14 Change in Nominal Manufacturing Share from Interaction Effects . . . . . . 120
3.15 Change in Nominal Manufacturing Share from Eliminating all Trade . . . . . 120

C.1 Cross-Country Distribution of Missing Trade Balance Data (1995-2019) . . . 159
C.2 Cross-Country Distribution of Missing Regression Data (1995-2019) . . . . . 160
C.3 Cross-Country Distribution of Missing Tourism Receipts Data (1995-2019) . 161
C.4 Nominal Value Added by Sector (% of GDP) . . . . . . . . . . . . . . . . . . 162
C.5 Real Value Added by Sector (% of GDP) . . . . . . . . . . . . . . . . . . . . 163
C.6 Sectoral Employment Shares . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
C.7 Manufacturing Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
C.8 Trade Balance (% of GDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
C.9 Trade Balance by Sector (% of GDP) . . . . . . . . . . . . . . . . . . . . . . 167

11



Chapter 1

Optimal Carbon Taxation and
Demographic Change

1.1 Introduction

The world is in the midst of a major demographic transition. For a number of decades, world
life expectancy has increased while the fertility rate has declined. As a consequence, since
1970, the global population growth rate has steadily fallen while the median age has risen (see
Figure 1.1). These trends are forecasted to persist at least for the duration of the twenty first
century (United Nations, 2019). It has been widely recognised that this demographic shift
has significant economic implications1. Given the intergenerational nature of climate change,
it is natural to assume that accounting for demographics also has important implications for
climate policy. The aim of this chapter is to investigate how long run demographic change
affects one such policy: the optimal carbon tax.

Although demographic change may have implications for a wide range of policy instru-
ments, there are a number of reasons why it is natural to start by assessing the implications
for the optimal carbon tax. From a normative perspective, economists have favoured using
some combination of carbon pricing and/or targeted R&D incentives as the main instruments
for limiting carbon emissions2 (Acemoglu et al., 2016; Covert et al., 2016; Nordhaus, 2007;
Wall Street Journal, 2019). Moreover, carbon pricing measures have been widely implemen-

1Among other impacts, demographic change has been identified as an important determinant of capital
flows (Krueger and Ludwig, 2007), asset prices (Carvalho et al., 2016; Lisack et al., 2021), innovation and
growth (Acemoglu and Restrepo, 2022; Aksoy et al., 2019; Liang et al., 2018), and the sustainability of public
finances (Attanasio et al., 2007; Poterba, 2014). For an overview of this literature, see the Handbook of the
Economics of Population Aging (Piggott and Woodland, 2016).

2Although climate change is driven by a variety of different types of greenhouse gas (GHG) emissions,
CO2 emissions from fossil fuels are the major source of such emissions. Consequently, this chapter focuses
on the regulation of carbon emissions from fossil fuels.
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Figure 1.1: Global Demographic Change (1950-2100)

Notes: Solid black lines (1950-2020) represent historical estimates; dashed lines (2020-2100) are forecasts.
The light blue, dark blue, and purple dashed lines reflect the low, medium and high projection variants,
respectively.
Source: United Nations (2019).

ted in practice: as of March 2022, some form of carbon pricing was applied in 45 national
jurisdictions with more to follow3 (World Bank, 2022). In addition to these normative and
positive motivations, there are strong reasons to believe that accounting for demographic
change will have important implications for optimal carbon taxation. Firstly, the global
population is an important determinant of the causes and effects of climate change, since
humans drive climate change and suffer its consequences. It is, therefore, reasonable to
assume that changes in the global population size or structure will have a direct bearing
on how we should formulate carbon tax policies that make welfare tradeoffs across gener-
ations. Secondly, the general equilibrium effects of demographic change are also likely to
indirectly affect the optimal carbon tax. For example, a number of authors have suggested
that demographic change is responsible for the decline in real interest rates over recent dec-
ades (Carvalho et al., 2016; Rachel and Summers, 2019). It has further been argued that this
fall in the real interest rate should lower the discounting of the future cost of climate change,
thus implying that more aggressive climate policies in the form of higher carbon taxes are

3Carbon pricing typically takes two main forms - either price or quantity restrictions - which are closely
related and are exactly equivalent in an environment without uncertainty or policy adjustment frictions.
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optimal (Bauer and Rudebusch, 2021; Carleton and Greenstone, 2021; Gerlagh et al., 2022).
To examine these issues more carefully, I develop an integrated assessment model (IAM)

with overlapping generations that captures the salient features of both climate and demo-
graphic change4. The model combines the standard climate-economy feedbacks from the
IAM literature with an overlapping generations structure in which agents live for up to three
periods: childhood, middle age and retirement. Since only a fraction of each generation
transitions to the next stage of life, the model is able to accommodate the changes in fertil-
ity rates and life expectancy observed in the data and highlights the implications for optimal
carbon taxation in a transparent way.

The optimal carbon tax is set to internalise the present discounted value of current and
future climate-related damages that are caused by an additional unit of emissions today,
accounting for any interacting market failures. In my model, demographic change influences
the optimal carbon tax through four channels. First, the cost of climate change is increasing
in aggregate output. Aggregate output in turn depends on the size of the labour force and
the capital stock, both of which are functions of demographic parameters. Second, changes
in the population size and structure over time influence the discount rate used by the poli-
cymaker5. Loosely speaking, more weight is placed on periods with larger populations. Due
to differences in the intergenerational and intragenerational pure rates of time preference6,
however, the relevant measure of the aggregate population size is one in which each genera-
tion is weighed differently. Third, the policymaker’s discount rate is also affected by changes
in agents’ marginal utility of consumption. The marginal utility of consumption fluctuates
over time in part due to fluctuations in savings rates and aggregate output induced by demo-
graphic shifts. Fourth, the policymaker has preferences over intergenerational equity that
are not internalised by the market. When the policymaker lacks the additional instruments
needed to achieve the optimal distribution of consumption across agents, the optimal carbon

4Integrated assessment models (IAMs) are models that integrate the economy and climate in a unified
framework. There are a wide variety of such models, but those most commonly employed by macroeconom-
ists combine standard microfounded macroeconomic models with (a) a link between economic activity and
the flow of carbon emissions into the atmosphere, (b) a representation (often referred to as the carbon cycle)
of how the flow of emissions accumulates into a stock of atmospheric carbon concentration and (c) a repres-
entation (called a damage function) of how this stock affects economic activity and/or welfare directly. For
more details, see Nordhaus (2008) and Hassler et al. (2016).

5To avoid ambiguity, when I refer simply to “discounting” or the “discount rate”, I mean the rate used to
compare the lifetime utility value of units of consumption available at different points in time. In contrast,
when I refer to the “pure rate of time preference” (or “pure discount factor”), I mean the rate (or factor)
used to compare the lifetime utility value of instantaneous utility enjoyed at different periods in time.

6The pure rate of intragenerational time preference refers to the pure rate of time preference each in-
dividual has over instantaneous utility enjoyed over the different periods of their life. The pure rate of
intergenerational time preference refers to the policymaker’s pure rate of time preference over the welfare of
individuals born in different periods.
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tax will be second best. Relative welfare across generations will be affected by demographic
changes via agents’ savings rates and factor returns, which interact with the policymaker’s
distributional motivations in setting the carbon tax.

The key finding from the baseline calibration of the model is that accounting for demo-
graphic change raises the current level of the optimal carbon tax but reduces the rate at
which this tax should grow over time. In particular, the optimal carbon tax in the 2010-2040
period of the model is $66 per ton of CO2 (or $243 per ton of carbon) when accounting for
demographic change compared to an optimal carbon tax of $61 per ton of CO2 (or $222 per
ton of carbon) in a similarly calibrated representative agent setting, where both values are
express in 2015 US Dollar terms7. That is, accounting for baseline forecasts of demographic
change increases the current estimate of the optimal tax by 9.5%. The gap between the
optimal tax rate with and without demographic change narrows to 1.3% in the 2040-2070
period under the baseline calibration and then from 2070 onwards, the optimal tax is es-
sentially equivalent in both versions of the model (see Figure 1.4). These results are driven
primarily by the effect of the population growth rate on the discount rate used by the planner.
This result is intuitive: population growth implies that, all else equal, more weight should
be placed on the future than the present. This effect partially offsets the discounting of the
future due to pure rates of time preference and consumption growth present in representative
agent IAMs. Since most benefits of carbon taxation accrue in the future while the costs are
borne in the present, discounting the future less heavily implies that a higher carbon tax
should be set at any given point in time. As the demographic shift slows, however, and the
population size and structure stabilises, the optimal tax converges to the one implied by a
similarly calibrated representative agent model. This convergence means that the optimal
carbon tax with overlapping generations must grow less quickly than under the equivalent
representative agent framework. The fact that the discrepancies between my OLG model and
an equivalent representative agent framework are driven by the effect of population growth
on the policymaker’s discount rate is robust to the specification and calibration of the model
conditional on the functional forms chosen for the utility and damage functions. Because
marginal damages from emissions are proportional to aggregate output while agents’ mar-
ginal utility is inversely proportional to aggregate output, discounted future damages are not
a function of future aggregate output. This means that demographic changes cannot affect
the optimal carbon tax via aggregate output changes. In addition, although demographic
fluctuations do impact the savings rate/marginal propensity to consume and thus future
marginal utility, for any reasonable parameter values, these fluctuations are small due to

7Unless stated otherwise, it should be assumed that all US Dollar values reported in this chapter are in
2015 US Dollar terms.
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the non-linear nature of the function that maps demographic parameters into the marginal
propensity to consume. The second best adjustments to the optimal carbon tax also tend
to be small and diminish over time. Under the baseline calibration, the intergenerational
and intragenerational pure rates of time preference are equalised. Suboptimal capital ac-
cumulation (through the eyes of the policymaker) is, therefore, driven purely by the OLG
structure of the model. What matters for the optimal carbon tax is relative changes in this
suboptimality over time, since the carbon tax can partially offset this suboptimality through
intertemporal redistributions of output. As life expectancy and the population size converge
to their constant long-run levels, the degree of suboptimal capital accumulation also becomes
constant and no further second-best adjustments need to be made. In sum, this means that
the channel that operates directly via the adjusted population growth rate is the dominant
one, as the discounted damages in a given period are proportional to this growth rate.

The welfare effects of these carbon tax adjustments are significant. The increase in social
welfare from using the optimal carbon tax formula that accounts for demographic change
instead of the suboptimal representative agent formula is $148 Billion ($2015 lump-sum
aggregate consumption equivalent). These findings highlight the importance of properly ac-
counting for demographic change in IAMs that produce quantitative assessments of optimal
climate policy. Related to this point, the findings also illustrate that a key source of uncer-
tainty for policymakers relates to future demographic trends and in particular, assumptions
about the future path of the aggregate population size. In contrast to the above results from
the baseline calibration of the model, which uses the UN’s medium variant population projec-
tions, a model calibration using the low and high variant population projections delivers very
different results. Relative to the representative agent benchmark, the low variant projection
delivers an optimal carbon tax that is 9.3% lower in 2010-2040 and 16.5% lower in 2040-2070,
with the optimal tax only converging to the representative agent benchmark in 2160-2190.
Conversely, the model calibrated to the high variant projection delivers an optimal carbon
tax that is 36% higher that the representative agent benchmark in 2010-2040, with the gap
only converging to zero in 2160-2190 (see Figure 1.4). The welfare gains of using the optimal
carbon tax relative to the suboptimal representative agent formula also vary substantially
with the population projections: the welfare gains under the low and high variant projections
increase to $626 Billion and $2.2 Trillion, respectively ($2015 lump-sum aggregate consump-
tion equivalent). Much of the existing work around optimal climate policy and uncertainty
has focused on climate and economic risks such as climate tipping points or productivity
shocks within representative agent models (Brock and Hansen, 2018; Cai and Lontzek, 2019;
Lemoine and Traeger, 2014; Weitzman, 2009). The sensitivity of the optimal carbon tax to
different demographic scenarios suggests that accounting for demographic uncertainty should
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also be a key concern in formulating climate policy.

Related Literature. The work on climate-economy interactions within economics was
pioneered by Nordhaus, whose DICE (1993; 1994) and RICE (Nordhaus and Yang, 1996)
models were part of the first generation of IAMs8. IAMs have subsequently been extended
in two key ways that are of relevance to my chapter. First, there are a number of papers
that derive closed-form expressions for the optimal carbon tax, with these optimal carbon
tax formulae often depending on a small set of parameters (Bretschger and Karydas, 2018;
Dietz and Venmans, 2019; Gerlagh et al., 2022; Gerlagh and Liski, 2018; Lemoine and Rudik,
2017; Rezai and van der Ploeg, 2016; Traeger, 2015; Van den Bijgaart et al., 2016). Of these
papers, this chapter is most closely related to the work of Golosov et al. (2014) as the optimal
tax formula I derive nests theirs as a special case. This literature has proved valuable both
in making some of the key mechanisms behind optimal carbon taxation more transparent
and also in aiding quantification of the optimal carbon tax by restricting the data required
to calibrate these models.

Second, there is a literature that analyses the implications of moving away from repres-
entative agent IAMs to understand the interplay between demographics and climate policy.
Early contributions to this literature were made by Howarth (1996; 1998; 2000) who analysed
the conditions under which OLG and representative agent IAMs coincide in their policy im-
plications. More recent examples of such work include Gerlagh and van der Zwaan (2001);
Gerlagh et al. (2022); Karp and Rezai (2014); Kotlikoff et al. (2021); Quaas and Bröcker
(2016); von Below et al. (2013); Williams et al. (2015).

I contribute to the intersection of these two extensions of the IAM literature by developing
an OLG IAM where the optimal carbon tax to GDP ratio can be characterised in closed
form using a limited set of parameters and exogenous variables. In doing so, I am able to
provide a simple and transparent quantification of how two long-run demographic trends
(increasing life expectancy and decreasing fertility rates) affect the optimal carbon tax. My
chapter is almost identical to Gerlagh et al. (2022) in its motivation and model structure; our
results, however, are very different. While both Gerlagh et al. (2022) and myself find that
accounting for demographic change raises the current level of the optimal carbon tax under
baseline forecasts of demographic change, they find that moving away from a representative
agent framework also significantly raises the growth rate of the optimal carbon tax. This
implies a large divergence over time between our estimates of the optimal carbon tax, given
that my estimates of the optimal carbon tax converge with those from the representative
agent setting. Our results deviate for two reasons. First, by assuming that the government

8See Nordhaus and Boyer (2003) and Nordhaus (2008) for detailed and updated expositions of these
models with a wide range of applications.
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makes the necessary lump sum transfers across generations, Gerlagh et al. (2022) derive a
first-best optimal carbon tax. More importantly, we use different formulae for the optimal
carbon tax. Gerlagh et al. (2022) start with a representation of the optimal carbon tax
from the corresponding representative agent setting before quantifying this formula using
their calibrated OLG model. Instead, I derive the optimal carbon tax formula from first
principles within the context of my framework, producing an optimal carbon tax formula
and quantified results that are microfounded and internally consistent.

An additional benefit of using an overlapping generations structure is that I can address
important debates in the climate economics literature about the appropriate discount rate
in optimal carbon tax calculations. In particular, there is a long-standing dispute, most
notably between William Nordhaus and Nicholas Stern, regarding the correct pure rate of
time preference that should be applied to optimal carbon tax calculations. On one hand,
Nordhaus makes a positive argument for a pure rate of time preference informed by observed
asset returns and consumption growth (Nordhaus, 2008). In contrast, Stern takes a norm-
ative approach in arguing that we have little ethical reason to treat generations differently,
implying a much lower pure rate of time preference that is closer to zero (Stern, 2007).
Given the longterm impacts of climate policy, the optimal carbon tax is very sensitive to
the assumed pure rate of time preference and this debate has been one of the most quantit-
atively important sources of disagreement in the literature. Through the lens of my model,
Nordhaus and Stern are focusing on two separate parameters. Absent bequest motives,
observables can be mapped onto individuals’ pure rate of time preference exclusively over
their own lives. These observables are not informative, however, of how policymakers should
value welfare across generations. By introducing two pure time preference parameters in the
policymaker’s objective function (an intragenerational pure rate of time preference and an
intergenerational pure rate of time preference) my model is able to simultaneously accom-
modate both the Nordhaus and Stern world views. This chapter is, therefore, also related
to the climate economics literature that analyses the implications of differentiating between
private and social discount rates (Barrage, 2018; Belfiori, 2017, 2018; Goulder and Williams,
2012; Kaplow et al., 2010; Mier et al., 2021; von Below, 2012). In particular, I test the
sensitivity of optimal carbon tax to the two pure rates of time preference in my model. As
with Quaas and Bröcker (2016), I find that the optimal carbon tax is much more sensitive to
assumptions on the intergenerational rate than the intragenerational rate, implying that it is
difficult to derive climate policy recommendations that are robust to normative judgements.

Furthermore, the debate about discounting has recently been revisited in light of the
decline in real interest rates that occurred following the Great Recession. Real interest
rates on safe assets are now significantly lower than they were when the Nordhaus-Stern
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debate about discounting first emerged, with a number of authors arguing that optimal
carbon tax estimates should be revised upwards quite substantially (Bauer and Rudebusch,
2021; Carleton and Greenstone, 2021)9. My model shows that while these arguments are
intuitively appealing, they are potentially misleading. Since both the real interest rate and
the optimal carbon tax are endogenous objects that are simultaneously determined by the
primitives of the model, it is not sufficient to simply revise the discount rates used in the
optimal carbon tax formula while holding everything else constant. The underlying causes
of the real interest rate decline need to be modelled and the equilibrium implications for the
optimal carbon tax determined in a consistent manner. The real rate does indeed decline
significantly over time in my calibrated model as a result of the two demographic shifts I
focus on. First, increased life expectancy raises savings rates leading to a larger future capital
stock; second, lower fertility rates reduce the number of workers in the future. Both of these
effects lead to an increase in the capital-to-labour ratio, which pushes down returns10. While
it is true that this real interest rate decline occurs while the optimal carbon tax is also rising
in my model, this negative correlation is driven by the fact that my optimal carbon tax is
a non-stationary object, since it converges to an object that is proportional to GDP. When
analysing the optimal tax-to-GDP ratio, which is a stationary object, my model shows that
the demographic transition simultaneously lowers the real interest rate and the optimal tax-
to-GDP ratio. This implies that a decline in real interest rates caused by the demographic
transition captured in my model should, in some sense, be associated with less aggressive
climate policy than would have been the case absent the real rate decline.

Roadmap. The rest of the chapter is organised as follows. Section 2 outlines the
model. Section 3 characterises the optimal carbon tax. The policymaker must take the
competitive equilibrium constraints as given when choosing the carbon tax. Because the
policymaker has one instrument (the carbon tax) but two goals (internalising the externality
and redistributing income), the policy choice is second best. Section 4 of the chapter provides
the quantitative results for a calibrated version of the model. In addition to mapping out
the path of the optimal carbon tax, the implications for the optimal path of emissions,
warming and climate damages are examined along with the welfare gains of implementing
the optimal policy. Section 5 uses the model to address the debates in the literature regarding

9Strictly speaking, the papers mentioned here address the Social Cost of Carbon (SCC) rather than the
optimal carbon tax. The SCC is equal to the discounted value of all current and future externality damages
associated with emitting a unit of carbon today. The two are closely related, however, in that the optimal
carbon tax is simply the SCC when the climate externality is the only market failure.

10As there are no financial frictions in my model and I calibrate the model assuming all agents have
perfect foresight, the return on capital is equal in equilibrium to the real interest rate on a safe asset (such
as government bonds) in zero net supply.
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discounting. Section 6 concludes.

1.2 Model

This section outlines the model used in this chapter. The model combines a climate-economy
structure based on Golosov et al. (2014) with an overlapping generations structure inspired
by Gertler (1999) and Cipriani (2014). As in much of the IAM literature, the model is
global by nature and thus abstracts from potential frictions and distributional issues across
regions. There are two sectors of the economy: a final goods sector, which provides output
for consumption and investment, and an energy sector, which produces an intermediate
good used by the final goods sector. Within the energy sector, there are dirty and green
energy varieties. Consumption of dirty energy produces carbon emissions that accumulate in
the atmosphere and depreciate slowly over time. As the atmospheric carbon concentration
increases and the climate changes, this leads to output losses in the final goods sector in a
manner analogous to a reduction in total factor productivity (TFP). Firms take the path of
climate change as given when choosing their energy input, leading to a negative externality
and an inefficiently high level of emissions in the laissez-faire equilibrium. The aim of the
policymaker is to set a carbon tax on dirty energy use to maximise social welfare.

1.2.1 Households

Agents live for up to three periods. Children born in period t transition to middle age with
an exogenous probability given by ψtt+1. The middle aged in period t+ 1 then transition to
retirement with an exogenous probability given by ψtt+2. Letting N s

t denote the population
alive in period t who were born in period s, this implies that

N t
t+1 = ψtt+1N

t
t (1.1)

N t
t+2 = ψtt+2N

t
t+1 (1.2)

The young population grows exogenously at a net growth rate of nt such that

N t
t = (1 + nt)N t−1

t−1 (1.3)

The total population in period t is given by Nt ≡ N t
t +N t−1

t +N t−2
t . The expected lifetime

utility of an agent born in period t is given by

Et
[
U t
t

]
= ln ctt + ψtt+1β

(
Et
[
ln ctt+1

]
+ ψtt+2βEt

[
ln ctt+2

])
(1.4)
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where cts denotes the period s consumption of an agent born in period t, β is the agent’s
pure discount factor and Et is the expectation conditional on the time t information set. It
is assumed that an agent born in period t knows the transition probabilities ψtt+1 and ψtt+2

at time t. Agents are passive when young: they supply no labour and their consumption
is proportional to that of their parent, which they have no control over. The middle aged
inherit no assets and each supply one unit of labour inelastically. They use their labour
income to finance consumption for themselves and their children. In addition, they can
invest in capital that they rent to firms during retirement with any residual firm profits also
paid to retirees as dividends. Once retired, agents have no labour endowment and finance
their consumption from their savings leaving no bequests for subsequent generations. The
period budget constraints of the individual born in period t are therefore given by:

ctt = θyt c
t−1
t (1.5)

ch,t+1 + ktt+2 = wt+1 + dtt+1 (1.6)

ctt+2 = Rt+2

ψtt+2
ktt+2 + Πt+2

N t
t+2

+ dtt+2 (1.7)

where θyt is the exogenously determined factor of proportionality between the consumption
of parents and their children, ch,t+1 is the consumption of the whole middle-aged household,
wt+1 is the wage, ktt+2 is investment in the period t+ 2 capital stock, Rt+2 is the gross return
on capital net of depreciation, Πt+2 are total profits in the economy, and dts denotes the
period s lump sum transfers made to agents born in period t. The Rt+2

ψt
t+2

term in (1.7) reflects
the fact that there are perfect annuity markets through which the assets of those who die
before retirement are redistributed to all surviving retirees. Capital fully depreciates after
use and thus has no resale value, and consumption choices and capital holdings cannot be
negative.

1.2.2 Firms

Final goods production uses energy, capital and labour as inputs to a Cobb-Douglas produc-
tion function:

Yt = [1 −Dt (St)]Ay,tEν
y,tK

α
y,tL

1−ν−α
y,t (1.8)

Dt (St) is a damage function reflecting the impact of St (the atmospheric carbon concentra-
tion) on the economy. The damage function takes the form

1 −Dt (St) = e−γt(St−S̄) (1.9)
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where S̄ is the pre-industrial atmospheric carbon concentration. TFP in the final goods sector
(Ay,t) evolves exogenously. Ky,t and Ly,t refer to the capital and labour input, respectively,
of the final goods sector while Ey,t is the use of an energy composite.

The energy composite is supplied using a CES aggregator of dirty energy (Ed,t) and green
energy (Eg,t)

Ey,t =
(
ωdE

σe−1
σe

d,t + ωgE
σe−1

σe
g,t

)σe−1
σe

(1.10)

The dirty and green energy varieties are produced linearly from labour:

Ek,t = Ak,tLk,t k ∈ {d, g} (1.11)

where Lk,t is labour input and Ak,t is exogenously determined productivity.
The labour, capital, final goods and energy market clearing conditions, respectively, are

given by

Ly,t + Ld,t + Lg,t = N t−1
t (1.12)

Ky,t = kt−2
t N t−2

t−1 (1.13)

cttN
t
t + ct−1

t N t−1
t + ct−2

t N t−2
t + kt−1

t+1N
t−1
t = Yt (1.14)

Ey,t =
[
ωdE

σe−1
σe

d,t + ωgE
σe−1

σe
g,t

]σe−1
σe

(1.15)

Ek,t = Ak,tLk,t k ∈ {d, g} (1.16)

1.2.3 Government

The government can levy carbon taxes (τt) on the use of dirty energy. The revenue from
this tax is rebated lump sum to middle- and old-aged households such that the government
runs a balanced budget in each period:

τtEt = dt−1
t N t−1

t + dt−2
t N t−2

t (1.17)

where these transfers are restricted such that dst ≥ 0.

1.2.4 Carbon Cycle

Dirty energy use produces carbon emissions that are released into the atmosphere where
they depreciate slowly over time. The atmospheric carbon concentration evolves according
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to
St − S̄ =

t∑
i=0

(1 − di)Ed,t−i (1.18)

where 1 − di represents the amount of carbon released today that would be left in the
atmosphere i periods into the future, Ed,t is carbon emissions in period t, and period 0 in
the model is taken to be the first period in which there were industrial emissions11. The
functional form for atmospheric carbon depreciation is given by

1 − di = φL + (1 − φL)φ0 (1 − φ)i (1.19)

where φL ∈ [0, 1] is the share of carbon that will stay in the atmosphere indefinitely and
1 − φ0 ∈ [0, 1] is the share of transient emissions that will exit the atmosphere immediately.
The remaining share of transient emissions then decay geometrically at rate φ.

1.3 Optimal Carbon Taxation

This section first outlines the competitive equilibrium conditions of the economy before solv-
ing the laissez-faire equilibrium in which carbon taxes are set to zero. Due to the carbon
externality, too much dirty energy is produced and consumed in this equilibrium leading to
suboptimal outcomes. A second best carbon tax formula is then derived under the assump-
tion that the policymaker cannot use carbon tax revenues to alter distributional outcomes
contemporaneously and has no other policy instruments at their disposal. This assumption
is made for analytical tractability but is also a reasonable one given how many carbon tax
systems are designed in practice. The policymaker is still able to use climate policy to alter
distributional outcomes intertemporally, however, which means that the optimal carbon tax
is not set to simply internalise the carbon externality but is also set with the distribution of
intergenerational welfare in mind.

1.3.1 Competitive Equilibrium

A competitive equilibrium in this economy is formally defined as follows

Definition 1 : A competitive equilibrium consists of a sequence of allocations
{
ctt, c

t−1
t , ct−2

t ,

kt−1
t+1, Ey,t, Ky,t, Ly,t, Ed,t, Eg,t, Ld,t, Lg,t, St

}
, prices {pe,t, Rt, wt, pd,t,pg,t}

and policies
{
τt, d

t−1
t , dt−2

t

}
such that:

11The units of dirty energy are normalised such that one unit of dirty energy leads to one unit of emissions.
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1. the allocations solve the consumers’ utility maximisation problems and the firms’ profit
maximisation problems given prices, polices and the climate,

2. the government budget constraint is satisfied in every period,

3. atmospheric carbon concentration satisfies the carbon cycle constraint in every period,
and

4. markets clear.

The profit maximising first order conditions for the final goods firm are

ν
Yt
Ey,t

= pe,t (1.20)

α
Yt
Ky,t

= Rt (1.21)

(1 − ν − α) Yt
Ly,t

= wt (1.22)

where pe,t is the price paid for the energy composite. Similarly, the profit maximising first
order conditions for the firm producing the energy composite are

pe,tE
1

σe
y,tωdE

−1
σe
d,t = pd,t + τt (1.23)

pe,tE
1

σe
y,tωgE

−1
σe
g,t = pg,t (1.24)

where pk,t is the price paid for energy variety k ∈ {d, g}. Finally, for the labour market to
clear, the price of the energy varieties must be such that

pk,t = wt
Ak,t

k ∈ {d, g} (1.25)

As markets are competitive and all production functions are constant returns to scale, profits
in the economy are zero.

The middle aged choose their household consumption and savings such that their Euler
equation holds:

1
ct−1
t

=
(

1 + θyt
1 + nt
ψt−1
t

)
ψt−1
t+1βEt

[
Rt+1

ψt−1
t+1

1
ct−1
t+1

]
(1.26)

This Euler equation has the standard form - the marginal utility of consumption when
middle-aged is equated to the expected marginal utility of saving - but with some minor
adjustments. First, since each additional unit of middle aged consumption increases total
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household consumption by 1 + θyt
1+nt

ψt−1
t

, the return to saving on the right-hand side of the
Euler equation needs to be multiplied by this factor. 1 + θyt

1+nt

ψt−1
t

is increasing in the ratio
of child-to-parent consumption (θyt ) and the child-to-parent ratio (1+nt

ψt−1
t

). Additionally, since
the middle-aged survive to retirement with probability ψt−1

t+1, the benefits of saving need
to be weighted by this term. Finally, due to the presence of perfect annuity markets that
redistribute the assets of those who die before retirement, the return on capital conditional
on surviving to retirement is given by Rt+1

ψt−1
t+1

.

1.3.2 Laissez-Faire Equilibrium

The laissez-faire equilibrium is given by the competitive equilibrium in which τt = dt−1
t =

dt−2
t =0 in all periods. As shown in Section A.1 of the Appendix, the labour allocations are

solved as

Ly,t =
(1 − ν − α

1 − α

)
N t−1
t (1.27)

Lk,t =
(

ν

1 − α

)( ωσe
k A

σe−1
k,t

ωσe
d A

σe−1
d,t + ωσe

g A
σe−1
g,t

)
N t−1
t k ∈ {d, g} (1.28)

The allocation of labour across the final goods sector and the energy sector as a whole is
determined by the Cobb-Douglas parameters of the final goods production function. The
allocation of labour within the energy sector is determined by the weights on clean and dirty
energy (ωk), and relative productivity (Ag,t

Ad,t
) across the two energy types. Consequently,

when σ > 1 (as I assume in the calibrated version of my model), the labour allocation grows
(shrinks) in the energy sector with higher (lower) TGP growth.

The labour allocations then determine Ed,t, Eg,t and Ey,t. With St−1 given as a state
variable and Ed,t solved, (1.18) determines St. kt−2

t is given as a state variable, which
determines Ky,t. Aggregate output is then pinned down from (1.8). Combining the Euler
equation (1.26) and budget constraints of the middle aged (1.6 and 1.7), the consumption
and savings choices of the middle-aged households are given by

ch,t = 1
1 + ψt−1

t+1β
wt (1.29)

ct−1
t =

(
1 + θyt

1 + nt
ψt−1
t

)−1

ch,t (1.30)

ctt = θyt c
t−1
t (1.31)

kt−1
t+1 = ψt−1

t+1β

1 + ψt−1
t+1β

wt (1.32)
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while retiree consumption is
ct−2
t = Rt

ψt−2
t

kt−2
t (1.33)

The fact that middle-aged agents choose to save a fraction ψt−1
t+1β

1+ψt−1
t+1β

of their lifetime income
for retirement follows from the assumptions that their household’s consumption is propor-
tional to their individual consumption and that they have log utility preferences over their
individual consumption. As in a standard OLG model, the marginal propensity to save
out of household income is increasing in β. An increase in the life expectancy of retirees
(ψt−1

t+1) similarly increases the savings rate of middle-aged households by extending their ex-
pected time horizon. Factor prices (1.20)-(1.22) and the marginal propensity to consume of
middle-aged households (1.29) imply an aggregate savings rate given by

st ≡ Ky,t+1

Yt
= (1 − α)

(
ψt−1
t+1β

1 + ψt−1
t+1β

)
(1.34)

The aggregate savings rate is the weighted average of the saving rates of middle-aged house-
holds (given by ψt−1

t+1β

1+ψt−1
t+1β

) and retired households (who save nothing). The weight given to
the savings rate of middle-aged households is 1 −α, which is the labour share of income. An
increase in either the middle-aged savings rate or their income share increases the aggregate
savings rate.

1.3.3 Optimal Carbon Tax

This sub-section characterises the optimal carbon tax in a second best scenario in which the
policymaker is unable to use the lump sum rebates dst to alter the intratemporal distribution
of income across agents. That is, in any given period, the distribution of income between the
middle aged and retirees must remain unaltered. In the context of this model, this restriction
is equivalent to the restriction that the distribution of income between capital and labour
must remain unaltered by the carbon tax. The retiree income share is given by α in the
laissez-faire equilibrium. With climate policy, their income share is given by(

kt−2
t

Rt

ψt−2
t

+ dt−2
t

)
N t−2
t

Yt
= α + dt−2

t N t−2
t

Yt

This share is equal to α iff dt−2
t = 0 and the middle aged receive all revenues generated via

the carbon tax. This assumption is necessary for the derivation of a closed-form solution
of the optimal tax-to-GDP ratio, but is also not unreasonable given that carbon pricing
schemes are often formulated without specific distributional aims in mind with regards to
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the distribution of income across generations or capital and labour at a given point in time.
Despite this restriction, the policymaker is still able to affect the intergenerational distri-
bution of welfare given the intertemporal impacts of climate policy. This means that the
optimal carbon tax formula is second best: it partly reflects the desire to internalise the
climate externality and it partly reflects a desire to redistribute income across generations.

I assume that the policymaker has the following utilitarian social welfare function

Et [Ut] =

Et

(β
ϕ

)2

N t−2
t ln ct−2

t +
(
β

ϕ

)(
N t−1
t ln ct−1

t +N t−1
t+1β ln ct−1

t+1

)
+

∞∑
s=t

ϕs−t
2∑
i=0

N s
s+iβ

i ln css+i


(1.35)

That is, expected social welfare at time t is the sum of the expected lifetime welfare of
each generation, with lifetime utility across generations discounted using the pure discount
factor12 (ϕ). Thus, in addition to the pure intragenerational rate of time preference implied
by β ≤ 1 in individual preferences, there is a pure intergenerational rate of time preference
implied by ϕ ≤ 1 in the policymaker’s preferences. The objective of the policymaker is
to set carbon taxes and lump sum transfers to maximise Et [Ut] subject to the competitive
equilibrium constraints given by equations (1.20)-(1.26).

Lemma 1 : The policymaker’s problem in primal form is to choose a sequence of alloca-
tions

{
cs−1
s , ks−1

s+1, Ey,s, Ky,s, Ly,s, Ed,s, Eg,s, Ld,s, Lg,s, Ss
}

to maximise

∞∑
s=t

ϕs−tEt
[
Ñs ln cs−1

s

]
12Weighting the utility of the current middle aged and retired generations by β

ϕ and
(

β
ϕ

)2
has no sub-

stantive impact on the results but simplifies notation.
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subject to the following constraints:

cs−1
s N̄s +Ky,s+1 = e−γs(Ss−S̄)Ay,sEν

y,sK
α
y,sL

1−ν−α
y,s

cs−1
s N̄s = (1 − ss) e−γs(Ss−S̄)Ay,sEν

y,sK
α
y,sL

1−ν−α
y,s

Ey,s =
(
ωdE

σe−1
σe

d,s + ωgE
σe−1

σe
g,s

)σe−1
σe

Ek,s = Ak,sLk,s k ∈ {d, g}

N s−1
s = Ly,s + Ld,s + Lg,s

Ss − S̄ =
s∑
i=0

(1 − di)Ed,s−i

where Ñs ≡ N s
s +

(
β
ϕ

)
N s−1
s +

(
β
ϕ

)2
N s−2
s is an adjusted measure of population size.

Proof : See Section A.2 of the Appendix.

Proposition 1: The optimal carbon tax to GDP ratio is given by

τ ∗
t

Y ∗
t

=
∞∑
s=t

Et

(1 − ds−t) γs ϕs−t
Ñs

Ñt

(1 − st)
(1 − ss)

{
1 − (1−ss)Θs

Ñs

}
{
1 − (1−st)Et[Θt]

Ñt

}


where
Θs ≡

∞∑
i=s

(αϕ)i−s
(

si
1 − si

Ñi − ϕα

1 − si+1
Ñi+1

)

Proof : See Section A.3 of the Appendix.

Since Y ∗
t ≈ Yt, where Yt is GDP with the existing (suboptimal) carbon tax policy, we

get the nearly closed form solution13 for τ ∗
t in terms of observables and exogenous vari-

ables/parameters given by

τ ∗
t ≈ Yt

∞∑
s=t

Et

(1 − ds−t) γs︸ ︷︷ ︸
Output Damages

ϕs−t
Ñs

Ñt

(1 − st)
(1 − ss)︸ ︷︷ ︸

MRS

{
1 − (1−ss)Θs

Ñs

}
{
1 − (1−st)Et[Θt]

Ñt

}
︸ ︷︷ ︸

Second-Best Adjustment

 (1.36)

13I use this approximation formula for illustrative purposes. For computational purposes, I iteratively
solve the model to find the exact solution. I do so by first solving for τ∗

t using formula (1.36). I then solve
the time t equilibrium of the model conditional on this estimate of τ∗

t to obtain a new value of Yt consistent
with this policy. I then use this revised value of Yt to update my estimate of τ∗

t . I iterate this process
until the solution converges to a sufficient degree of precision. All optimal carbon tax computations in this
chapter are computed in a similar manner.
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The interpretation of this formula is intuitive. The optimal carbon tax is equal to the present
discounted value of the externality cost of emissions with an adjustment for the fact that the
resulting equilibrium is still second best. The percentage loss in output due to an additional
unit of atmospheric carbon concentration in period s is given by γs. Because carbon released
into the atmosphere depreciates over time, this term must be multiplied by 1 − ds−t, which
is the fraction of period t emissions still in the atmosphere in period s. To value this
output loss in present utility terms, these damages are discounted using the policymaker’s
intertemporal marginal rate of substitution. This marginal rate of substitution has three
components. First, the ϕs−t term reflects the policymaker’s pure rate of time preference
across generations. Second, Ñs

Ñt
is the growth rate of Ñs between period t and s. The

growth rate of Ñs is relevant since the social welfare function is an aggregate of individual
utility functions that have decreasing marginal utility in consumption. Consequently, all else
equal, output losses lead to a greater loss of social welfare when the economy is populated
by a greater number of agents due to the higher marginal utility of consumption at the
individual level. When Ñs

Ñt
is greater than one (that is, Ñs is growing), this pushes against

the discounting of the future due to the policymaker’s pure rate of time preference. When
β ̸= ϕ, the different generations alive in a given period are weighted differently by the
policymaker, meaning that Ñs ≡ N s

s +
(
β
ϕ

)
N s−1
s +

(
β
ϕ

)2
N s−2
s is the relevant measure of

population size14. Third, the marginal rate of substitution is determined by (1−st)
(1−ss) . This

reflects the fact that conditional on output, the marginal utility of consumption is positively
correlated with the aggregate savings rate. Periods with higher aggregate savings rates
are thus periods in which consumption is relatively more valuable, meaning climate-related
damages in these periods are given more weight. Finally, the expression 1 − (1−st)Et[Θt]

Ñt

shows up in the formula because the rate of capital accumulation in the economy is socially
inefficient according to the policymaker’s social welfare function. The term Θs is equal
to the discounted value of all current and future differences between the marginal product
of capital and the policymaker’s intertemporal marginal rate of substitution for aggregate
consumption. The optimal carbon tax responds to changes in Θs over time as the policymaker
can use the carbon tax to redistribute output to periods where consumption is undervalued
in the competitive equilibrium. If the degree of this suboptimality does not change over time
(that is, Θs is constant), there is no such rationale to adjust the carbon tax as consumption
is equally scarce (or abundant) relative the first-best scenario in all periods.

Aggregate output in period s (Ys) does not show up in the optimal tax formula because
the output losses due to climate change are proportional to Ys while the marginal utility
of consumption and second best adjustments are inversely proportional to Ys such that this

14In the special case when β = ϕ, Ñs = Ns
s +Ns−1

s +Ns−2
s = Ns.

29



term cancels out. Yt appears in the formula because the marginal utility of consumption and
second best adjustments in period t are proportional to Yt. When Yt is higher, the marginal
utility of consumption in period t is lower, meaning that the policymaker is relatively more
willing to substitute present consumption for future consumption. This is achieved by setting
a higher carbon tax such that present emissions and output are reduced to limit climate
change and increase future output.

Under the conditions that (i) ϕ = β, (ii) the demographic parameters are all constant
and population growth is equal to zero (ψtt+1 = ψ1, ψtt+2 = ψ2, nt = 0), and (iii) the
policymaker has an unrestricted ability to make lump sum transfers between agents and tax
capital holdings, the optimal tax formula reduces to the Golosov et al. (2014) formula as a
special case:

τ ∗
t ≈ Yt

∞∑
s=t

Et

(1 − ds−t) γs︸ ︷︷ ︸
Output Damages

βs−t︸ ︷︷ ︸
MRS

 (1.37)

1.4 Quantitative Analysis

This section discusses the results from the calibrated version of the model. In addition to
quantifying the optimal carbon tax and its evolution over time, I illustrate the implications
for climate change and welfare under the various policies. All results are derived under
the assumption of perfect foresight. To illustrate the potential impact of uncertainty about
future demographic change, I run all of my results using three different forecasts of the
population by age group provided by the United Nations (2019).

1.4.1 Calibration

One period in the model has a duration of thirty years. As a general note, where data exists
for a stock variable, it is mapped onto model periods by identifying the stock value at the
mid-point of the period (for example, the population level during the 1950-1980 period in
the model is set to the population level in 1965); where data exists for a flow variable, the
flow is aggregated over the thirty years of the model period to obtain the corresponding flow
value for that period (for example, the GDP level during the 1950-1980 period in the model
is set to the sum of GDP from 1950 to 1979).

Both the pure discount factors (β and ϕ) are set equal to 0.98530 in the baseline calibration
(see Section 1.5.1 for the implications of varying these two parameters independently). The
Cobb-Douglas production function shares are set to achieve an energy share in GDP of 5%
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and a 60%-40% pre-tax income split between labour and capital respectively. The production
function parameters of the energy composite are set based on the recent study by Papageor-
giou et al. (2017) and the values used in Golosov et al. (2014). Based on the average value of
the various estimates and assumptions across two papers, the weight on dirty energy (ωd) is
set to 0.5 while the elasticity of substitution between dirty and green energy (σe) is set to 1.3.

The parameters of the carbon cycle (φL, φ0, φ) and damage function (γ, S̄) are set in
line with those used in Golosov et al. (2014). Since Golosov et al. (2014) use a period length
of 10 years while I use a period length of 30 years, the carbon cycle parameters φ0 and φ

need to be adjusted accordingly. Letting objects with overlines denote the Golosov et al.
(2014) equivalents, I set φ0 and φ such that

1 − di = 1 − d̄1+3i

which implies

φ0 = φ̄0 (1 − φ̄)

(1 − φ) = (1 − φ̄)3

All demographic data is obtained from the United Nations (2019) World Population Pro-
spects. The initial population levels by age group in the 1950-1980 period are obtained by
aggregating the United Nations (2019) World Population Prospects data by age into the
relevant age categories, with all ages above 60 including those in the 90+ category aggreg-
ated into the 60-90 age group in the model. The survival probabilities of the young and
middle aged in a given period (ψtt+1 and ψt−1

t+1) are then imputed from the time series data for
life expectancies at ages 30 and 60, respectively. The UN provides projections for these life
expectancies up to 2100. These projections are extended by assuming that life expectancy
at 30 and 60 increase at a fixed growth rate to 60 and 30 respectively by 2200, from which
point they remain constant. Letting LE30,t refer to life expectancy at 30 at time t and LE60,t

be life expectancy at 60 at time t, I then set ψtt+1 and ψt−1
t+1 such that

ψt−1
t+1 = LE60,t

30
ψtt+1 = LE30,t

30 + LE60,t+1

Figure 1.2 illustrates the implied life expectancy paths. Unlike the other population data
I use, the UN only provides the medium variant projections for life expectancy at ages 30
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and 60. The results from Section 1.4.2 suggest that the optimal policy is robust to changes
in ψtt+1 and ψtt+2 conditional on nt, so only having one set of life expectancy projections to
work with does not seem to be major a constraint.

Figure 1.2: Global Life Expectancy at Ages 30 and 60 (Years)

Notes: The blue and black lines refer to life expectancy at ages 60 and 30, respectively. The solid portions
of the lines (1950-2020) represent historical estimates; the dotted portions (2020-2100) are the UN Medium
variant projections; and the dashed portions (2100-2250) are my own extrapolations of the UN projections.
Source: United Nations (2019); Author’s calculations.

The birth rate nt is then chosen to ensure that the total population size implied by the
initial population levels by age and the chosen values for nt, ψtt+1 and ψt−1

t+1 produces a time
series that matches the population size estimates and projections in the UN data. As with
the life expectancy data, the population data projections provided by the UN only run to
2100. To extend these projections, I assume that the projected gross growth rate of the
population in 2100 changes at a constant rate such that it equals 1 in 2200, after which I
assume the population remains constant. As the UN provides various projections for the
total population size, I do this exercise for the low, medium and high projection variants
and run all model results using these three extended projections. Figure 1.3 illustrates these
extended projections.

The ratio of young to middle-aged consumption (θyt ) is set equal to 1. Provided this ratio
is exogenously fixed, its level does not affect any of the results discussed in this chapter given
the other assumptions I make. In the absence of strong evidence to the contrary, I therefore
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Figure 1.3: Global Population (Billions)

Notes: The solid portions of the lines (1950-2020) represent historical estimates; the dotted portions (2020-
2100) are the various UN projections; and the dashed portions (2100-2250) are my own extrapolations of
these UN projections. The light blue, dark blue, and purple dashed lines reflect the Low, Medium and High
projection variants, respectively.
Source: United Nations (2019); Author’s calculations.

choose a value of unity as an intuitively reasonable benchmark.
To calibrate St−1, I follow Golosov et al. (2014) in expressing St as the sum of two

components: a permanent component (denoted by S1,t) and a transitory component (denoted
by S2,t). It follows from (1.18) and (1.19) and these definitions of S1,t and S2,t that we can
write these components recursively as

S1,t = S1,t−1 + φLEd,t (1.38)

S2,t = (1 − φ)S2,t−1 + (1 − φL)φ0Ed,t (1.39)

Using this recursive representation, I calculate the initial condition on St−1 by assuming that
all atmospheric carbon in the pre-industrial era is permanent (S̄1 = S̄ and S̄2 = 0) and then
running historical data on global CO2 emissions from fossil fuels from the Global Carbon
Project (2021) through equations (1.38) and (1.39) to arrive at an estimate for St−1 in the
relevant period15.

15Note that the data is measured in terms of CO2 emissions. Since emissions and carbon concentrations
in the model are expressed in terms of carbon, CO2 emissions are converted into carbon equivalents by using
the standard conversion factor of 12

44 . That is, one ton of CO2 is assumed to contain 12
44 tons of carbon. These

33



Finally, the TFP series (Ay,t, Ad,t, Ag,t) are calibrated as follows. For the first two periods
of the model (1950-1980 and 1980-2010), these three variables are pinned down by matching
the model output to the data on real GDP, aggregate emissions, and the relative price
between dirty and green energy assuming that no carbon taxes are active in the model. This
is done by starting with a target relative price between dirty and green energy. Equation
(1.25) for dirty and green energy implies that

p̄g,t
p̄d,t

= Ad,t
Ag,t

(1.40)

and thus pins down the relative TFP across the two types of energy. Plugging (1.40) into
(1.28) for the dirty energy sector implies

Ld,t =
(

ν

1 − α

) ωσe
d

ωσe
d + ωσe

g

(
p̄d,t

p̄g,t

)σe−1

N t−1
t (1.41)

Given a target value for dirty energy emissions Ēd,t, taken from the Global Carbon Project
(2021) databased on fossil fuel emissions, Ad,t is then pinned down by plugging (1.41) into
(1.11)

Ad,t =

( ν

1 − α

) ωσe
d

ωσe
d + ωσe

g

(
p̄d,t

p̄g,t

)σe−1

N t−1
t


−1

Ēd,t

Finally, I pin down Ay,t using global estimates of real GDP in 2015 US Dollar terms provided
by the World Bank (denoted here by Ȳt). Conditional on Ȳt, Ay,t is then pinned down from
(1.8) and (1.9) as

Ay,t =
[
e−γt(St−S̄)Eν

y,tK
α
y,tL

1−ν−α
y,t

]−1
Ȳt

The endogenous terms on the right hand side of this equation are calculated as follows. The
initial Ky,t=1 for the period 1950-1980 is estimated as

Ky,t=1 = st=1Ȳt=0 ≈ st=0Ȳt=0

where st is calculated from (1.34). Subsequent values of Ky,t are then determined as usual
by Ky,t = stYt. Ly,t is determined by (1.27). Ey,t is pinned down first by combining (1.40),
(1.28) and (1.11) to determine Eg,t, and then combining this with the Ēd,t target in (1.10).

For all subsequent periods of the model (that is, from the 2010-2040 period onwards), I

adjustments are used both in setting St−1 and also the emissions targets Ēd,t, discussed below. For more
details on conversion factors, see United States Environmental Protection Agency (2022).
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assume that Ad,t remains constant while Ag,t grows at a constant annual rate of 2%. Finally,
I calibrate Ay,t such that real GDP per capita would grow at an annual rate of 2% holding
fixed climate-related damages at their 1980-2010 level.

The details of the calibration are summarised below in Table 1.1

Table 1.1: Model Calibration
Parameter/Variable Description Value Target/Source

β Intragenerational discount factor 0.98530 Standard
ϕ Intergenerational discount factor 0.98530 Standard
Ay,t Aggregate TFP Real GDP
α Cobb-Douglas share on capital 0.40 Capital share
ν Cobb-Douglas share on energy 0.05 Energy share

Ad,t, Ag,t Dirty and Green Energy TFP pd,t

pg,t
, Carbon emissions

ωd Energy weight on dirty energy 0.50 Papageorgiou et al. (2017)
σe Energy elasticity of substitution 1.3 Papageorgiou et al. (2017)
γ Elasticity of damage function 5.30 × 10−5 Golosov et al. (2014)
S̄ Pre-industrial GtC concentration 581 Golosov et al. (2014)

φL, φ0, φ Carbon cycle parameters 0.20, 0.38, 0.07 Golosov et al. (2014)
θy

t Young consumption ratio 1 No prior
N1

1 , N0
1 , N−1

1 Initial population levels Population size
ψt

t+1, ψt−1
t+1 Survival probabilities Life expectancy

nt Birth rate Population size

Notes: Model periods are thirty years.

1.4.2 Optimal Carbon Tax

Figure 1.4, below, illustrates the extent to which the optimal carbon tax implied by the
model deviates from the representative agent benchmark. The solid lines show the per-
centage deviation between the optimal carbon tax implied by (1.36) and the representative
agent benchmark in (1.37) for the various UN population projection variants. The dashed
lines calculate the percentage difference with the representative agent benchmark using the
following equation:

τ ∗
t ≈ Yt

∞∑
s=t

Et

 (1 − ds−t) γs︸ ︷︷ ︸
Output Damages

ϕs−t
Ñs

Ñt︸ ︷︷ ︸
MRS

 (1.42)

The optimal carbon tax expression in (1.42) shuts down all demographic effects on the
optimal carbon tax other than the one operating directly through fluctuations in Ñs. The
results show that accounting for demographic change can have significant impacts on the
optimal carbon tax and that this impact is primarily accounted for by fluctuations in Ñs.
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The optimal carbon tax in the 2010-2040 period of the model using the representative agent
formula (1.37) is $61 per ton of CO2 (or $222 per ton of carbon). Using the full optimal tax
formula from this chapter (1.36), the optimal carbon tax is 9.3% lower than the representative
agent benchmark under the low variant population projection, and 9.5% and 36% higher
using the medium and high variant population projections, respectively. These gaps all
converge to zero over time as the model reaches a demographic steady state and starts
behaving as though the economy is populated by a representative agent. These results are
intuitive. Because the marginal utility of each agent is decreasing in their consumption,
a given level of aggregate consumption leads to higher social welfare when it is spread
across a larger population. When the global population is expected to grow, this means
that more weight should be placed on the future than the present, all else equal. This
effect partially offsets the discounting of the future due to pure rates of time preference and
consumption growth present in representative agent IAMs. Since most benefits of carbon
taxation accrue in the future while the costs are borne in the present, discounting the future
less heavily implies that a higher carbon tax should be set at any given point in time. As
the demographic shift slows, however, and the population size and structure stabilises, the
optimal tax converges to the one implied by a similarly calibrated representative agent model.
This convergence means that the optimal carbon tax with overlapping generations must grow
less quickly than under the equivalent representative agent framework. It is worth noting
here that with constant, positive population growth (nt = n > 0), constant life expectancy
(ψtt+1 = ψ1, ψtt+2 = ψ2), and β = ϕ, the optimal carbon tax is permanently n% higher
than the one implied by the representative agent formula. The declining wedge over time
between the two tax formulae in Figure 1.4 is therefore driven by the fact that the projected
population growth rates are initially non-zero and that they converge to zero.

The fact that the discrepancies between my OLG model and an equivalent representative
agent framework are driven by the effect of population growth on the policymaker’s discount
rate is robust to the calibration of the model conditional on the functional forms chosen for
the utility and damage functions. Because marginal damages from emissions are proportional
to aggregate output while agents’ marginal utility is inversely proportional to aggregate
output, discounted future damages are not a function of future aggregate output. This
means that demographic changes cannot affect the optimal carbon tax via aggregate output
changes. In addition, the impact of demographic changes on the optimal carbon tax via
savings rate fluctuations tends to be small. Increases in life expectancy over time increase
the savings rate (see Figure 1.5), pushing up future marginal utility for a given level of
output. This implies that the policymaker would like to set a higher carbon tax now, as
future output damages are more painful given the increased need to save induced by the

36



Figure 1.4: Difference in Optimal Tax from Representative Agent Benchmark (%)

Notes: The solid lines represent the percentage deviation between the optimal carbon tax implied by the
OLG formula (1.36) and the equivalent representative agent formula (1.37); the dashed lines represent the
percentage deviation between the OLG formula that accounts only for fluctuations in Ñs (1.42) and the
equivalent representative agent formula (1.37). The light blue, dark blue, and purple lines reflect the results
of calibrating the model to the low, medium and high United Nations (2019) population projection variants,
respectively.

Table 1.2: Percentage Difference in Optimal Tax from Representative Agent Benchmark
L Variant Projection M Variant Projection H Variant Projection

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

1950-1980 39.7 60.1 -0.7 -15.0 58.1 78.9 -0.7 -13.7 84.9 106.1 -0.7 -12.3
1980-2010 8.5 17.4 -1.0 -11.9 26.5 35.2 -1.0 -10.5 52.5 61.0 -1.0 -8.9
2010-2040 -9.4 -6.6 -1.5 -7.5 9.5 13.0 -1.5 -7.3 36.0 41.3 -1.5 -7.3
2040-2070 -16.5 -16.3 -1.6 -4.0 1.3 2.3 -1.6 -4.9 24.1 27.9 -1.6 -6.2
2070-2100 -16.2 -17.6 -1.5 -1.4 -1.3 -1.3 -1.5 -3.4 15.1 18.2 -1.5 -5.4
2100-2130 -10.4 -11.8 -1.1 -0.7 -1.3 -1.4 -1.1 -2.4 7.4 9.3 -1.1 -4.0
2130-2160 -4.6 -5.7 -0.6 -0.5 -0.8 -0.9 -0.6 -1.5 2.6 3.4 -0.6 -2.4
2160-2190 -0.9 -1.3 0.0 -0.1 -0.1 -0.2 0.0 -0.4 0.5 0.6 0.0 -0.6
2190-2220 0.6 0.7 0.5 0.5 0.7 0.8 0.5 0.4 0.7 0.8 0.5 0.4
2220-2250 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
2250-2280 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Notes: The L, M and H Variant Projection columns refer to calculations done using the extended Low,
Medium and High population size projections from the United Nations (2019). For each projection, column
(i) refers to the results using the full optimal carbon tax formula; column (ii) refers to results when only
adjusting for Ñt fluctuations; column (iii) refers to results when only adjusting for st fluctuations; column
(iv) refers to results when only making second-best adjustments.
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Figure 1.5: Projected Trends in Middle-Aged Survival Probability and Savings Rates

Figure 1.6: (1−st)
(1−ss) as a Function of ψs−1

s+1
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higher dependency ratio. The quantitative impact of this savings rate effect on the optimal
carbon tax is small, however, for any reasonable calibration of the model. It is the ratio
of the current to future marginal propensity to consume ( 1−st

1−ss
) that matters for how future

climate damages are discounted. As illustrated in Figure 1.6, the projected increases in ψs−1
s+1

over time do very little to alter this ratio. Moreover, the largest changes in this ratio occur
furthest into the future and are thus discounted most heavily by the pure intergenerational
discount factor ϕ.

In contrast, the optimal carbon tax is proportional to Ñs

Ñt
(rather than some non-linear

function of this ratio), which is furthest from 1 in the near future before converging to 1
over time. This means that the channel that operates directly via the adjusted population
growth rate dominates the one that operates through changes in life expectancy and savings
rates.

Columns (ii)-(iv) in Table 1.2 provide a precise breakdown of how each channel con-
tributes (in percentage point terms) to the wedge between the optimal carbon tax and the
representative agent carbon tax. The contribution of all interactions effects between the
three channels is given by the difference between column (i) and the sum of columns (ii)-
(iv). As shown by this table, the effects operating directly through the growth rate of Ñt,
captured by column (ii), are the primary contributor to the overall wedge between the two
tax rates in column (i).

1.4.3 Implications for Climate Change and Welfare

Figure 1.7 shows the evolution of carbon emissions (Ed,t) and atmospheric carbon concen-
tration (St) under various population projection and policy scenarios. For each population
projection, the figure illustrates the path of Ed,t and St with no policy, the suboptimal car-
bon tax implied by the representative agent formula (1.37), and the optimal carbon tax
(1.36). Absent policy, emissions continue to rise rapidly for a number of decades before nat-
urally peaking and then declining. This increase in emissions is larger and lasts longer for
population projections that forecast higher rates of population growth16. This decades-long
increase in emissions causes a significant increase in atmospheric carbon concentrations, with
St increasing to between 1,327 GtC and 2,175 GtC. In contrast, the introduction of a carbon
tax leads to a sharp and immediate reduction in emissions, with St stabilising at around
1,000 GtC in all population projection scenarios.

Figure 1.8 shows how these changes in Ed,t and St feed into temperature changes relative
16Cumulative emissions under all simulated scenarios remain well below the 5,000 GtC content of global

fossil fuel reserves estimated by Rogner (1997). As fossil fuel resources are not exhausted, they are sold at
the unit cost and do not earn a scarcity rent in the calibrated model.
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Figure 1.7: Path of Emissions and Atmospheric Carbon Concentration

Notes: These figures illustrate how carbon emissions and the atmospheric carbon concentration evolve when
there is (a) no carbon tax (b) the carbon tax that is optimal in the representative agent setting and (c) the
optimal OLG carbon tax. Within each figure, the solid line represents scenario (a), the dashed line scenario
(b), and the dotted line scenario (c). The three rows present the results using the low, medium and high
variant United Nations (2019) global population projections. All values are measured in Gigatons of Carbon
(GtC).

to pre-industrial levels (Tt) and climate-related damages (Dt). I follow Golosov et al. (2014)
in mapping St into Tt using the following formula

Tt = 3
ln
(
St

S̄

)
ln 2

This formula is a simple representation of the more complex relationships captured in climate
models and provides a good approximation of the relationship observed in the data. As shown
by Figure 1.8, the average global temperature change relative to pre-industrial levels is large
absent policy, ranging from 3.6 degrees Celsius in the low variant projection to 5.7 degrees
Celsius under the high variant projection. With carbon taxes in place, this temperature
increase is moderated, and always lies in the range of 2.4 to 2.9 degrees Celsius. It is
worth noting, however, that optimal warming under all population projections exceeds the
2 degree threshold for warming put in place by the Paris Agreement. In terms of climate-
related damages, these are forecasted to be substantial absent climate policy, rising to as
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much as 8.1% of global GDP at the end of the simulation period under the high variant
projection. With carbon taxes in place, damages are limited to the 2 to 3% range.

Figure 1.8: Path of Temperature Change and Climate Damages

Notes: These figures illustrate how the average global temperature change and climate damages evolve when
there is (a) no carbon tax (b) the carbon tax that is optimal in the representative agent setting and (c)
the optimal OLG carbon tax. Within each figure, the solid line represents scenario (a), the dashed line
scenario (b), and the dotted line scenario (c). The three rows present the results using the low, medium
and high variant United Nations (2019) global population projections. Temperature changes are measured
in the increase in average temperatures relative to the pre-industrial baseline, measured in degrees Celsius.
Damages represent the percentage reduction in global GDP relative to a world where there is no temperature
change.

Using the medium and high variants of the population projections, the optimal carbon
tax implied by (1.36) is higher than that suboptimal tax implied by the representative agent
formula (1.37). As a result, the optimal carbon tax leads to slightly lower emissions, temper-
ature increases and damages than the suboptimal tax. This difference is more pronounced in
the high variant simulation as the gap between the carbon taxes is larger. Conversely, under
the low variant population projection, the optimal carbon tax is lower than the one implied
by the representative agent formula, leading to higher emissions, temperature increases and
damages under the optimal tax.

I calculate the welfare gains from the optimal tax by backing out how much additional
aggregate consumption is required under a given suboptimal scenario to obtain a level of
social welfare equal to the one obtained under the optimal policy (which I term $2015 lump-
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sum aggregate consumption equivalent). Letting variables with stars denote outcomes under
the optimal policy and variables without starts denote suboptimal outcomes, I first identify
the required change in consumption of the middle aged in period t (∆c,t) such that

U∗
t = Ut (∆c,t)

Using the results from Appendix A.2, we can write

∆c,t = ct−1
t

[
exp

(
U∗
t − Ut

Ñt

)
− 1

]

Letting Ct denote aggregate consumption, it thus follows that the change in aggregate con-
sumption required to equate U∗

t and Ut (denoted by ∆C,t), is given by

∆C,t = Ct

[
exp

(
U∗
t − Ut

Ñt

)
− 1

]

The welfare gains associated with (i) moving from no carbon tax to the optimal carbon tax
(denoted by ∆1

C,t) and (ii) moving from the suboptimal carbon tax to the optimal carbon
tax (denoted by ∆2

C,t) are given in Table 1.3.

Table 1.3: Welfare Gains from Carbon Taxation ($2015, Trillions)

L Variant Projection M Variant Projection H Variant Projection

∆1
C,t 53.38 102.94 231.05

∆2
C,t 0.63 0.15 2.17

∆2
C,t

∆1
C,t

(%) 0.94 0.14 1.17

Notes: The L, M and H Variant Projection columns refer to calculations done using the extended low,
medium and high population size projections from the United Nations (2019). ∆1

C,t is the welfare gain from
implementing the optimal carbon tax relative to no tax; ∆2

C,t is the welfare gain from implementing the
optimal carbon tax relative to the suboptimal tax; the final row shows ∆2

C,t as a percentage of ∆1
C,t.

The results show that while most welfare gains of the carbon tax can be achieved by
using the suboptimal representative agent carbon tax, there are still significant welfare gains
associated with moving from the suboptimal tax to the optimal tax ($148 Billion to $2.17
Trillion). ∆2

C,t is largest under the high variant population projection for two reasons. First,
under both the low and high variant projections, the optimal carbon tax differs more from
the suboptimal tax than with the medium variant projection due to the larger and more
persistent projected changes in the population size. Consequently, the representative agent
tax formula is less precise and thus introduces larger policy mistakes. This explains why ∆2

C,t
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is smallest for the medium variant projection. In addition, as shown in Figures 1.7 and 1.8,
climate change is a larger issue the larger the projected increase in population size, making
policy instrument errors of a given size more costly. Since these two factors both push in the
same direction for the high variant projection, the welfare costs of the suboptimal carbon
tax are largest in this case.

1.5 Discounting and Optimal Carbon Taxation

This section explores two key debates related to discounting and optimal carbon taxation.
First, I revisit the longstanding Nordhaus-Stern debate regarding the appropriate pure rate
of time preference to be used in optimal carbon tax calculations. Second, I assess the
discounting debate in light of the more recent low interest rate environment.

1.5.1 Intra- Versus Inter-Generational Time Preference

One of the most notable sources of disagreement in the climate policy and optimal carbon
taxation literature has been about the appropriate choice of the pure rate of time preference.
Broadly speaking, two views have been put forward on this subject, often in opposition
to one another. On one hand, there are positivist arguments, most famously championed
by Nordhaus (2008), that argue for a pure rate of time preference informed by observed
asset returns and consumption growth. In contrast, one can take a normative approach
to discounting, as done by Stern (2007). According to this position, we have little ethical
reason to treat generations differently, implying that we should use a much lower pure rate
of time preference that is closer to zero. It is no surprise that the optimal carbon tax is very
sensitive to the assumed pure rate of time preference given that a unit of emissions today
produces output losses far into the future. The aim of this section of the chapter is not to
take a particular stance in terms of what the “correct” pure rate of time preference should
be; rather, I aim to show how this long-standing debate on discounting can be mapped to
my model to illustrate some of the insights gained by moving away from the representative
agent framework.

The setup of my model implies that there are two distinct pure time preference parameters
in the policymaker’s objective function: the intragenerational discount factor (β) and the
intergenerational discount factor (ϕ). By introducing two pure time preference parameters,
my model is able to simultaneously accommodate both the Nordhaus and Stern world views.
Given that agents do not have bequest motives when saving for retirement, observables such
as asset returns and consumption growth within my framework are informative about the
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pure intragenerational discount factor (β) but tell us nothing about how policymakers should
value welfare across generations. The pure intergenerational discount factor (ϕ) is, therefore,
a parameter that is free of positive implications (in the laissez-faire equilibrium, at least)
and can thus be thought of purely in normative terms. Given this separation, I can test the
robustness of the optimal policy to assumptions on each of these two parameters. Figure 1.9,
below, illustrates the percentage change in the optimal carbon tax when ϕ (β) is raised from
a minimum annualised value of 0.9 to a maximum annualised value of 0.999 for all values of
β (ϕ) within the corresponding range [0.9, 0.999].

Figure 1.9: Sensitivity of Optimal Tax to Time Preference (Percentage Change)

Notes: These figures illustrate how the optimal carbon tax changes as a result of variations in the inter-
and intra-generational pure discount factors (ϕ and β, respectively). Graphs on the left-hand side show
the percentage deviation in the optimal carbon tax between ϕ = 0.9 and ϕ = 0.999 as a function of β on
the horizontal axis; graphs on the right-hand side show the percentage deviation in the optimal carbon tax
between β = 0.9 and β = 0.999 as a function of ϕ on the horizontal axis. The three rows present the results
using the low, medium and high variant United Nations (2019) global population projections. All values for
ϕ and β are measured in annual equivalents; that is, the values used for the model results are given by the
reported values raised to the power of 30.

As with Quaas and Bröcker (2016), I find that the optimal carbon tax is much more
sensitive to assumptions on the intergenerational rate than the intragenerational rate: the
maximum variation in the optimal carbon tax induced by changes in β is 30% compared
to over 2000% for changes in ϕ. Changes in β and ϕ affect the optimal carbon tax in a
number of ways. Both parameters affect the Ñs

Ñt
ratio in equation (1.36) by affecting how the

different generations alive at a given point in time are weighted relative to each other in the
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policymaker’s social welfare function. When β increases, this shifts the weight towards the
old generation in Ñs; when ϕ increases, this shifts the weight towards the young generation
in Ñs. Although the previous section of the chapter illustrated that the optimal carbon tax
is sensitive to near-horizon changes in Ñs

Ñt
, Ñs

Ñt
itself tends not to be sensitive to changes in

β or ϕ given the forecasted patterns of demographic change. In particular, the asymmetries
between the growth rate of the old generation over time relative to the young generation
over time are not sufficiently large for this weighting effect to be significant in the context
of this analysis. In addition to this channel, changes in β affect the optimal carbon tax via
changes in savings rates, since higher values of β imply higher savings rates. What matters
for the optimal carbon tax, however, is not the level of the savings rate but how it evolves
over time. Conditional on the path of ψs−1

s+1, changes in β do not affect (1−st)
(1−ss) much. In

contrast, ϕ directly affects the policymaker’s intertemporal MRS so fluctuations in ϕ have
large impacts on the optimal carbon tax.

This sensitivity analysis illustrates that normative judgements about how to weight the
welfare of different generations are a key input into optimal carbon tax formulations. Optimal
carbon tax results are likely to be highly sensitive to these normative judgements, and
positive analysis is not necessarily a good substitute for such judgements.

1.5.2 The Fall in r∗

In addition to the normative-positive division, the debate about discounting has recently
been revisited in light of the decline in real interest rates that occurred following the Great
Recession. Real interest rates on safe assets are now significantly lower than they were
when the Nordhaus-Stern debate about discounting first emerged, with a number of authors
arguing that optimal carbon tax estimates should therefore be revised upwards quite sub-
stantially (Bauer and Rudebusch, 2021; Carleton and Greenstone, 2021). My model shows
that while these arguments are intuitively appealing, they are potentially misleading. Since
both the real interest rate and the optimal carbon tax are endogenous objects that are sim-
ultaneously determined by the primitives of the model, it is not sufficient to simply revise
the discount rates used in the optimal carbon tax formula while holding everything else con-
stant. The underlying causes of the real interest rate decline need to be modelled and the
equilibrium implications for the optimal carbon tax determined in a consistent manner.

My model accommodates two key mechanisms for the real interest rate decline: increased
life expectancy and lower fertility rates. An increase in the life expectancy of retirees pushes
up the savings rate, increasing the capital to labour ratio and pushing down returns. The
decline in fertility rates reduces future labour supply further increasing the capital to labour
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ratio. While increases in the proportion of children surviving to middle age partially offsets
the impact of lower fertility rates on labour supply, it does not completely offset it given
the projected magnitudes of these changes. Even with an overall reduction in the future
labour supply due to demographic change, there is an additional offsetting effect on the real
rate that operates through the climate externality as a smaller labour force implies lower
emissions. Less climate change in turn implies higher levels of productivity and thus higher
returns to capital. Appendix A.4 formalises these results. For reasonable parameter values,
however, the effect of higher life expectancies and lower birth rates pushes down real rates,
as is the case in all calibration scenarios that I run.

While it is true that this real interest rate decline occurs while the optimal carbon tax is
also rising in my model, this positive correlation is driven by the fact that my optimal carbon
tax is a non-stationary object, since it is proportional to GDP. When analysing the optimal
tax-to-GDP ratio, which is a stationary object, my model shows that the demographic trans-
ition simultaneously lowers the real interest rate and the optimal tax-to-GDP ratio. This
implies that a decline in real interest rates caused by the demographic transition captured in
my model should, in some sense, be associated with less aggressive climate policy than would
have been the case absent the real rate decline. Figure 1.10 illustrates this point in two ways.
First, for a given projection scenario, the optimal tax-to-GDP ratio is positively correlated
with the marginal product of capital in the time series. Second, the optimal tax-to-GDP
ratio is also positively correlated with the marginal product of capital across the various
projection scenarios, with the scenarios that project a more drastic demographic transition
delivering both lower returns to capital and a lower optimal tax-to-GDP ratio.
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Figure 1.10: Marginal Product of Capital and Optimal Carbon Tax

Notes: These figures illustrate how the marginal product of capital and the deviation between the optimal
carbon tax and the representative agent equivalent evolve over time. The light blue, blue and purple
lines present the results using the low, medium and high variant United Nations (2019) global population
projections.

1.6 Conclusion

In this chapter, I introduce demographic change into an integrated assessment model of
climate and the economy using a simple OLG structure. In doing so, I am able to derive in
closed-form an expression for the optimal carbon-tax-to-GDP ratio. This ratio depends on a
small number of parameters and exogenous variables, which can easily be pinned down from
the data and existing literature. My formula shows in a transparent way how accounting for
demographic change (in particular, changes in life expectancy and fertility rates) affects the
optimal carbon tax. I then quantify these effects on the optimal carbon tax, and what the
welfare effects of such policy adjustments are. Finally, I use my model to address some key
debates in the literature regarding discounting and optimal carbon taxation.
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The optimal carbon-tax-to-GDP ratio in my model depends on demographics via three
channels. First, the policymaker’s intertemporal marginal rate of substitution depends on
the (adjusted) population growth rate, due to the concavity of the individual utility function.
Second, this marginal rate of substitution also depends on changes in the aggregate savings
rate, which are a function of life expectancy after retirement. Third, the optimal ratio factors
in a second-best adjustment, which accounts for potentially suboptimal rates of capital
accumulation introduced by the OLG structure of the model. The representative agent
version of the model misses all three of these channels. By assuming log utility and an
exponential damage function, the optimal tax ratio is not a function of other endogenous
variables, such at the future level of output, which shuts down other demographic channels
that could potentially influence the optimal carbon tax.

Quantitatively, accounting for the United Nations (2019) demographic projections changes
the optimal carbon tax in the 2010-2040 period of the model by -9.3%, 9.5% and 36% relative
to the representative agent benchmark under the low, medium and high variant population
projections, respectively. These changes are largely driven by the effect of the adjusted pop-
ulation growth rate on the policymaker’s intertemporal rate of substitution. The fact that
this channel dominates the other two channels discussed in the previous paragraph is the
consequence of two factors. First, the optimal tax ratio is proportional to this growth rate.
Second, this growth rate is furthest from zero in the present before converging to zero over
time. This pattern of convergence means that the largest effects in terms of deviations from
the representative agent framework are the least heavily discounted. In contrast, the other
two channels via which demographic change affects the optimal tax ratio are either mediated
by non-linear functions that dampen their impact or are largest in the future when they are
most heavily discounted. Consequently, the effect of the population growth rate dominates.

The welfare effects of accounting for these adjustments to the optimal carbon tax formula
are also large. The gain in social welfare from adjusting the carbon tax such that is accounts
optimally for demographic change is $626 Billion, $148 Billion, and $2.2 Trillion ($2015 lump-
sum aggregate consumption equivalent) under the low, medium and high variant population
projections, respectively. The welfare gains are the largest for the high variant projection
for two reasons. First, the mistakes in setting the policy instrument by not accounting for
demographic change are the largest. Second, a given deviation in the policy instrument
from optimality is also more costly since climate change is a more acute issue with higher
rates of population growth and thus higher emissions. While these welfare gains are large,
it is worth noting that they are still small compared to the overall benefit of using carbon
taxes (at most, the demographic adjustments account for 1.17% of the overall welfare gains
associated with optimal carbon taxation).
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Finally, I use my model to address debates regarding discounting and optimal carbon
taxation. First, I show that when it comes to calibrating pure rates of time preference, it
is important to differentiate between the policymaker’s preferences and those of individual
agents. In my model, the optimal carbon tax is very sensitive to the policymaker’s pure rate
of time preference but doesn’t move much with individuals’ pure rate of time preference. This
suggests that optimal tax calculations will inherently have a strong normative component,
even when we attempt to discipline our models with data. These issues are not always dealt
with in a transparent manner in a representative agent setting, as it is natural in such models
to assume that there is a single pure rate of time preference for agents and policymakers.
Second, I show that reductions in the real interest rate do not automatically imply that
climate policy should be more stringent. In fact, through the lens of my model, the observed
demographic shifts over recent decades caused both a secular decline in real interest rates
and also a lower optimal carbon-tax-to-GDP ratio.

Taken together, these findings highlight the importance of properly accounting for demo-
graphic change in IAMs that produce quantitative assessments of optimal climate policy. I
have, however, made some strong assumptions on functional forms to incorporate key demo-
graphic mechanisms in a transparent and easily quantifiable manner. Future research is need
to generalise these assumptions and add demographic change to richer IAMs. In doing so,
the robustness of my quantitative results can be tested and new qualitative channels may
also emerge. Although I do not explicitly address issues around uncertainty, the sensitivity
of the results to the various population projections also highlights the fact that demographic
uncertainty is a key source of uncertainty for climate policy that must be accounted for. Ana-
lysing this uncertainty in a more systematic way is another key area of future research. More
generally, given the significant effects that the demographic transition and climate change
will have on the global economy and the extent to which these two issues are intertwined,
further research bringing together these two topics is much needed.

1.7 References

Acemoglu, D., Akcigit, U., Hanley, D., and Kerr, W. (2016). Transition to clean technology.
Journal of political economy, 124(1):52–104.

Acemoglu, D. and Restrepo, P. (2022). Demographics and automation. The Review of
Economic Studies, 89(1):1–44.

Aksoy, Y., Basso, H. S., Smith, R. P., and Grasl, T. (2019). Demographic structure and
macroeconomic trends. American Economic Journal: Macroeconomics, 11(1):193–222.

49



Attanasio, O., Kitao, S., and Violante, G. L. (2007). Global demographic trends and social
security reform. Journal of monetary Economics, 54(1):144–198.

Barrage, L. (2018). Be careful what you calibrate for: social discounting in general equilib-
rium. Journal of Public Economics, 160:33–49.

Bauer, M. D. and Rudebusch, G. D. (2021). The rising cost of climate change: evidence
from the bond market. The Review of Economics and Statistics, pages 1–45.

Belfiori, M. E. (2017). Carbon pricing, carbon sequestration and social discounting. European
Economic Review, 96:1–17.

Belfiori, M. E. (2018). Climate change and intergenerational equity: Revisiting the uniform
taxation principle on carbon energy inputs. Energy Policy, 121:292–299.

Bretschger, L. and Karydas, C. (2018). Optimum growth and carbon policies with lags in
the climate system. Environmental and Resource Economics, 70(4):781–806.

Brock, W. A. and Hansen, L. P. (2018). Wrestling with uncertainty in climate economic
models. University of Chicago, Becker Friedman Institute for Economics Working Paper,
(2019-71).

Cai, Y. and Lontzek, T. S. (2019). The social cost of carbon with economic and climate
risks. Journal of Political Economy, 127(6):2684–2734.

Carleton, T. and Greenstone, M. (2021). Updating the united states government’s social
cost of carbon. University of Chicago, Becker Friedman Institute for Economics Working
Paper, (2021-04).

Carvalho, C., Ferrero, A., and Nechio, F. (2016). Demographics and real interest rates:
Inspecting the mechanism. European Economic Review, 88:208–226.

Cipriani, G. P. (2014). Population aging and payg pensions in the olg model. Journal of
population economics, 27(1):251–256.

Covert, T., Greenstone, M., and Knittel, C. R. (2016). Will we ever stop using fossil fuels?
Journal of Economic Perspectives, 30(1):117–38.

Dietz, S. and Venmans, F. (2019). Cumulative carbon emissions and economic policy:
in search of general principles. Journal of Environmental Economics and Management,
96:108–129.

50



Gerlagh, R., Jaimes, R., and Motavasseli, A. (2022). Global demographic change and climate
policies. Working Paper.

Gerlagh, R. and Liski, M. (2018). Consistent climate policies. Journal of the European
Economic Association, 16(1):1–44.

Gerlagh, R. and van der Zwaan, B. C. (2001). The effects of ageing and an environmental
trust fund in an overlapping generations model on carbon emission reductions. Ecological
Economics, 36(2):311–326.

Gertler, M. (1999). Government debt and social security in a life-cycle economy. In Carnegie-
Rochester Conference Series on Public Policy, volume 50, pages 61–110. Elsevier.

Global Carbon Project (2021). Supplemental data of Global Carbon Project 2021 (1.0).
https://doi.org/10.18160/gcp-2021 Accessed on 31 July, 2022.

Golosov, M., Hassler, J., Krusell, P., and Tsyvinski, A. (2014). Optimal taxes on fossil fuel
in general equilibrium. Econometrica, 82(1):41–88.

Goulder, L. H. and Williams, R. C. (2012). The choice of discount rate for climate change
policy evaluation. Climate Change Economics, 3(04):1250024.

Hassler, J., Krusell, P., and Smith Jr, A. A. (2016). Environmental macroeconomics. In
Handbook of macroeconomics, volume 2, pages 1893–2008. Elsevier.

Howarth, R. B. (1996). Climate change and overlapping generations. Contemporary Eco-
nomic Policy, 14(4):100–111.

Howarth, R. B. (1998). An overlapping generations model of climate-economy interactions.
Scandinavian Journal of Economics, 100(3):575–591.

Howarth, R. B. (2000). Climate change and the representative agent. Environmental and
Resource Economics, 15(2):135–148.

Kaplow, L., Moyer, E., and Weisbach, D. A. (2010). The social evaluation of intergenerational
policies and its application to integrated assessment models of climate change. The BE
Journal of Economic Analysis & Policy, 10(2).

Karp, L. and Rezai, A. (2014). The political economy of environmental policy with overlap-
ping generations. International Economic Review, 55(3):711–733.

Kotlikoff, L., Kubler, F., Polbin, A., Sachs, J., and Scheidegger, S. (2021). Making carbon
taxation a generational win win. International Economic Review, 62(1):3–46.

51



Krueger, D. and Ludwig, A. (2007). On the consequences of demographic change for rates
of returns to capital, and the distribution of wealth and welfare. Journal of monetary
Economics, 54(1):49–87.

Lemoine, D. and Rudik, I. (2017). Steering the climate system: using inertia to lower the
cost of policy. American Economic Review, 107(10):2947–57.

Lemoine, D. and Traeger, C. (2014). Watch your step: optimal policy in a tipping climate.
American Economic Journal: Economic Policy, 6(1):137–66.

Liang, J., Wang, H., and Lazear, E. P. (2018). Demographics and entrepreneurship. Journal
of Political Economy, 126(S1):S140–S196.

Lisack, N., Sajedi, R., and Thwaites, G. (2021). Population aging and the macroeconomy.
International Journal of Central Banking, 68.

Mier, M., Adelowo, J., and Weissbart, C. (2021). Taxation of carbon emissions and air
pollution in intertemporal optimization frameworks with social and private discount rates.
Technical report, ifo Working Paper.

Nordhaus, W. D. (1993). Optimal greenhouse-gas reductions and tax policy in the "dice"
model. The American Economic Review, 83(2):313–317.

Nordhaus, W. D. (1994). Managing the global commons: the economics of climate change,
volume 31. MIT press Cambridge, MA.

Nordhaus, W. D. (2007). To tax or not to tax: Alternative approaches to slowing global
warming. Review of Environmental Economics and policy, 1(1).

Nordhaus, W. D. (2008). A question of balance. Yale University Press.

Nordhaus, W. D. and Boyer, J. (2003). Warming the world: economic models of global
warming. MIT press.

Nordhaus, W. D. and Yang, Z. (1996). A regional dynamic general-equilibrium model of
alternative climate-change strategies. The American Economic Review, 86(4):741–765.

Papageorgiou, C., Saam, M., and Schulte, P. (2017). Substitution between clean and dirty en-
ergy inputs: A macroeconomic perspective. Review of Economics and Statistics, 99(2):281–
290.

Piggott, J. and Woodland, A. (2016). Handbook of the economics of population aging. El-
sevier.

52



Poterba, J. M. (2014). Retirement security in an aging population. American Economic
Review, 104(5):1–30.

Quaas, M. F. and Bröcker, J. (2016). Substitutability and the social cost of carbon in
a solvable growth model with irreversible climate change. Technical report, Economics
Working Paper.

Rachel, Ł. and Summers, L. H. (2019). On secular stagnation in the industrialized world.
Brookings Papers on Economic Activity, page 1.

Rezai, A. and van der Ploeg, F. (2016). Intergenerational inequality aversion, growth, and
the role of damages: Occams rule for the global carbon tax. Journal of the Association of
Environmental and Resource Economists, 3(2):493–522.

Rogner, H.-H. (1997). An assessment of world hydrocarbon resources. Annual review of
energy and the environment, 22(1):217–262.

Stern, N. (2007). The economics of climate change: the Stern review. cambridge University
press.

Traeger, C. P. (2015). Closed-form integrated assessment and uncertainty. CESifo Working
Paper Series.

United Nations (2019). World population prospects 2019: Highlights. Technical report,
United Nations, Department of Economic and Social Affairs, Population Division.

United States Environmental Protection Agency (2022). Greenhouse Gases Equivalencies
Calculator - Calculations and References. https://www.epa.gov/energy/greenhouse-gases-
equivalencies-calculator-calculations-and-references Accessed on 22 April, 2022.

Van den Bijgaart, I., Gerlagh, R., and Liski, M. (2016). A simple formula for the social cost
of carbon. Journal of Environmental Economics and Management, 77:75–94.

von Below, D. (2012). Optimal carbon taxes with social and private discounting. In SURED
conference in Ascona, Switzerland.

von Below, D., Dennig, F., and Jaakkola, N. (2013). Consuming more and polluting less
today: Intergenerationally efficient climate policy. In EAERE conference in Toulouse,
pages 26–29.

Wall Street Journal (2019). Economists’ Statement on Carbon Dividends.
https://clcouncil.org/economists-statement/ Accessed on 3 February, 2022.

53



Weitzman, M. L. (2009). On modeling and interpreting the economics of catastrophic climate
change. The review of economics and statistics, 91(1):1–19.

Williams, R. C., Gordon, H., Burtraw, D., Carbone, J. C., and Morgenstern, R. D. (2015).
The initial incidence of a carbon tax across income groups. National Tax Journal,
68(1):195–213.

World Bank (2022). Carbon Pricing Dashboard. ht-
tps://carbonpricingdashboard.worldbank.org/ Accessed on 3 March, 2022.

54



Chapter 2

Carbon Taxation in Small Open
Economies

2.1 Introduction

Climate change is now widely recognised as a major policy issue, with the Paris Agreement
being ratified by every country in the world except Eritrea, Iran, Libya and Yemen (United
Nations Treaty Collection, 2022). Despite this global acceptance of the climate problem,
the response remains fragmented. For example, of the 65 carbon pricing schemes that were
in place as of April 2022, the vast majority operated at the national or sub-national level
(World Bank, 2022). Aside from the EU Emissions Trading System (EU ETS), there is little
international harmonisation of carbon pricing initiatives, and within most countries, carbon
prices are not fully harmonised across sectors and locations. Despite this patchwork of carbon
pricing initiatives, many models in the climate economics literature assume that climate
policy takes the form of a globally harmonised carbon price. Making such an assumption
fundamentally alters how optimal carbon pricing policies are formulated and what the welfare
consequences of climate policy are. To better reflect the current policymaking environment,
this chapter analyses the formulation and consequences of carbon pricing when such policies
are implemented at the country-level.

In shifting to a country-level analysis, I make three key modelling decisions that reflect
the policymaking reality faced by the typical economy: first, I assume a small, open economy;
second, I impose a carbon budget on the economy; and third, I model a sectorally disag-
gregated economy. The first key assumption, that countries are small and open, means that
all countries in my model take the path of climate change and international interest rates as
given. Both of these assumptions are reasonable approximations for the vast majority of
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Figure 2.1: Global GHG Emission Share by Country (2010-2018 Average)

Notes: The the vertical axis of this figure measures the average share of global GHG emissions by country
from 2010 to 2018, with countries organised by percentile on the horizontal axis. A total of 193 countries
are included in the sample, accounting for just under 97% of the average global GHG emissions share over
this period.
Source: Our World in Data (2022); Author’s calculations.

Figure 2.2: Self-Imposed Climate Damages by Country (2010-2018 Average)

Notes: This figure illustrates the distribution of each country’s self-imposed externality damages from their
GHG emissions as a percentage of their GDP. These values reflect an average over the 2010-2018 period.
The blue line shows the distribution assuming a SCC of $50; the red line shows the distribution assuming a
SCC of $250 (measured in 2015 US Dollar terms).
Source: Our World in Data (2022); Author’s calculations.
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countries. Figure 2.1 shows the distribution of greenhouse gas (GHG) emissions across
countries, which is highly skewed. Taking each country’s average contribution to global
emissions between 2010 and 2018, only countries above the 91st percentile of the distribution
contributed more than 1 percent of global emissions. Aside from India, the United States and
China, no country had an average contribution to global emissions above 5 percent during
this period.

To estimate the cost of these country-level emissions in terms of self-inflicted output
losses, I conduct the following back-of-the-envelope exercise. I multiply the average emissions
for each country between 2010 and 2018 by two estimates of the social cost of carbon (SCC)1

and divide this by the average value of global GDP over the same period. Assuming that
climate-related GDP losses are evenly distributed and countries use a common discount rate,
this figure provides an estimate of the discounted value of the current and future GDP losses
a country imposes on itself via its emissions expressed as a percentage of its GDP. As shown
by Figure 2.2, even assuming a SCC of $250 per ton of CO2, which is significantly higher
than most SCC estimates, self-imposed climate damages are trivial for almost all countries:
at the 90th percentile of this damage distribution, self-inflicted damages are still only 0.11
percent of GDP.

In addition to being small from a climate perspective, most countries are similarly small
from an economic perspective, producing just a tiny fraction of global GDP. Given the
correlation between emissions and output, the countries that tend to be the smallest emitters
also tend to produce the least output (see Figure 2.3). Consequently, the joint assumption
that countries take the path of climate change and global interest rates as given is a reasonable
one in most cases.

1The SCC is the discounted value of all current and future global output losses associated with emitting
a unit of carbon dioxide (CO2) into the atmosphere.
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Figure 2.3: Average Share of Global GDP and Emissions by Country (2010-2018)

Notes: For a list of country codes used in this chapter, see Appendix B.1. Observations highlighted in red
are those countries with GDP and Emission share contributions that are both above 1.5%.
Source: Our World in Data (2022); Author’s calculations.

The second key modelling assumption I make is that countries are given an exogenously
imposed emissions budget. In particular, I assume that each country has a fixed emissions
budget from 2020 to 2049 that they cannot exceed, a period that I refer to in the rest of this
chapter as the ‘transition period’. The climate policy problem at the country-level is then
how to allocate this budget over time. From 2050 onwards, I assume all countries become
carbon neutral, again reflecting the typical policy preference observed in most countries’
climate plans. I choose to impose an emissions budget for two reasons. From a modelling
perspective, the existence of a climate-related constraint (either an emissions budget or a
temperature limit) is necessary for a meaningful climate policy trade-off to emerge. In the
global analysis of optimal carbon pricing, it is possible to formulate an unconstrained policy
problem in which the policymaker must trade-off the desire to produce output (and thus
emissions) in the present, with the need to preserve the climate to avoid output or utility
losses in the future. For a country that takes the path of climate change as given, no such
trade-off exists, and the optimal climate policy would simply be to do nothing absent any
other market failures. Adding a binding emissions budget creates a different trade-off for
the policy maker in which they need to manage the depletion of a finite resource that the
market alone is unable to assign property rights to. In addition to being necessary from a
modelling perspective, the existence of an emissions budget also reflects the reality of climate
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agreements. The main goal of the Paris Agreement is to limit global warming to well below
2 ◦C above pre-industrial levels (and ideally less that 1.5 ◦C). As shown in Table 2.1, the
temperature limits specified by the Paris Agreement imply limits on how much more carbon
the world can emit.

Table 2.1: Estimate of Global Carbon Budget (2020 Onwards, GtCO2)

Temperature Limit
Likelihood of limiting global warming to temperature limit

17% 33% 50% 67% 83%

1.5 ◦C 900 650 500 400 300
1.7 ◦C 1450 1050 850 700 550
2.0 ◦C 2300 1700 1350 1150 900

Notes: The temperature limits are defined in terms of the maximum global warming allowed relative to the
1850–1900 global surface temperature. The budgets are expressed in terms of how much CO2 can be emitted
accounting for the expected global warming effect of non-CO2 emissions.
Source: IPCC (2021).

It follows that for individual countries’ policies to be consistent with the overall aim of
the Paris Agreement, country-level carbon budgets also need to be met. While a number of
countries have already put in place legally-binding carbon budgets2, international disagree-
ment on how the burden of climate policy should be shared remains a sticking point in the
development of national-level policies consistent with the goals of the Paris Agreement. I
side-step these issues by assuming that the global carbon budget is shared across countries
on a per capita basis using population levels from 2020. There are, of course, many differ-
ent methods that can be used to calculate what could be considered a fair distribution of
carbon budgets across countries, and these can be easily incorporated into the calibration of
the model presented in this chapter. There are also an interesting set of political economy
questions about why the typical small country does not simply choose to free ride on the
efforts of others when it comes to addressing climate change and how international climate
agreements are formed, but that is not the focus of this chapter. Rather, I simply take it
as given that in practice almost all countries in the world have now made pledges to reduce
their GHG emissions as part of a collective effort to address climate change and I analyse
the implications of these global-level agreements for country-level policymaking.

The third key modelling assumption that I make is to assume a sectorally disaggregated
model of the economy. The main purpose of this disaggregation is to allow the model to

2The UK, for example, was the first country to set a legally binding carbon budget that limits the total
amount of carbon that the UK can emit (UK Government, 2022). The budgets are set over a five year cycle
with the first budget covering the 2008-2012 period. The UK’s carbon budgets are agreed upon in advance
and budgets are currently in place up to 2037.
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accommodate sectorally targeted carbon policies. Most carbon pricing initiatives implemen-
ted to date impose different carbon prices across sectors or type of consumer. By using a
sectorally disaggregated model, I am able to match existing policy regimes when calibrating
the model using historical data and I can also assess the consequences of these sectorally
targeted policies through my model simulations. Although I make the simplifying assump-
tion in my quantitative exercises that all sectors are homogenous in the relative intensity
with which they use dirty and green energy absent regulation, the model also accommodates
sectoral heterogeneity in this dimension if needed.

In making these assumptions, I develop a tractable model of climate policy that can
easily be calibrated and simulated using readily available data. The simplicity of the model
also makes the relevant mechanisms transparent and easy to understand. The optimal policy
requires that carbon taxes are equalised across all sectors of the economy at a given time
and that these taxes grow over time at a rate equal to the real interest rate (the well-
known Hotelling rule). The initial level of the optimal carbon tax can be expressed as the
function of two reduced form objects: the ratio of laissez-faire emissions over the transition
period relative to the carbon budget (hereafter referred to in short as the ’emissions ratio’),
and the path of the laissez-faire dirty energy price. A higher emissions ratio implies a
greater need for regulation to switch demand from dirty to green energy, requiring a greater
shift in the relative price of these different energy varieties. Because energy varieties in
my model are combined using a CES aggregator, this switching effect is a function of the
percentage increase in the dirty energy price induced by the introduction of the carbon
tax. Consequently, the higher the laissez-faire cost of producing dirty energy, the larger the
carbon tax needs to be to achieve a given level of demand switching away from dirty energy.

Under my baseline calibration assumptions (notably, a real rate of 2%, a carbon budget
consistent with limiting global temperature change to less than 1.7 ◦C, and an elasticity of
substitution between dirty and green energy of 1.5), I find an average optimal carbon tax
value of $325 per ton of CO2 in 2020 for the 35 countries in my sample3. The average value
of the discounted output losses over the transition period associated with the optimal policy
is 2.1% relative to the no policy scenario. There is considerable variation in these results
across countries, however, with the optimal 2020 carbon tax values ranging from a low of $4
per ton of CO2 in Malta to a high of $749 per ton of CO2 in Taiwan. As the carbon budget
is relaxed and the elasticity of substitution across green and dirty energy is increased, the
average optimal carbon tax drops significantly at all points in time. In contrast, although
the value of the optimal carbon tax drops in the early part of the transition period as the

3This value is expressed in 2017 USD PPP terms, as are all other monetary values in this chapter unless
otherwise specified.
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real interest rate is raised, there is a large increase in future carbon taxes at some point
along the transition path. For the sample of countries studied, the optimal path of carbon
taxation is not sensitive to expected uncertainty around future labour force projections. This
insensitivity follows from the fact that for most of the countries in my sample, there is little
variation across the main United Nations (2019) demographic projections, with the average
working age population across countries expected to shrink slightly from 2020-2049.

The average output loss associated with the optimal policy moves in the same direction
as the optimal carbon tax given changes in the carbon budget, elasticity of substitution
and population projections. In contrast, the average output loss is not sensitive to the real
interest rate. This follows from the fact that the carbon tax in any given period reflects
the marginal output loss from climate policy in that period. Changes in the carbon budget,
elasticity of substitution and labour force projections change the cost of regulation, and thus
shift the entire path of carbon tax in the same direction as this change in costs is optimally
smoothed over the transition period. Changes in the real rate, on the other hand, do not
affect the costs of regulation at any given point, but rather affect how the policymaker wishes
to smooth these costs intertemporally. Thus, while the optimal tax value in 2020 is highly
sensitive to the path of real rates over the transition period, the welfare costs of policy are
not.

In addition to studying the optimal policy across countries, I examine suboptimal policies
involving sectoral exemptions. Most carbon pricing policies provide exemptions to certain
sectors of the economy. I show that under a set of simplifying assumptions (in particular,
that each sector’s demand for dirty energy relative to green energy is symmetric absent any
taxes), the welfare costs of providing sectoral tax exemptions are a function of the proportion
of energy expenditures accounted for by the exempt sectors. I also show that providing full
tax exemptions to a subset of sectors places an upper bound on the emissions reductions
that can be achieved relative to the laissez-faire equilibrium. This upper bound is equal to
the proportion of energy expenditures accounted for by the non-exempt sectors.

Quantitatively, I find that under the carbon budgets consistent with the 1.5 ◦C, 1.7
◦C and 2.0 ◦C temperature limits, the maximum share of energy expenditures that can be
feasibly exempt is 25.1%, 46.0% and 70.0%, respectively, on average across my sample. To
put these numbers into context, the average share of energy expenditure accounted for by
transport, manufacturing and final demand by households in my sample is 12.5%, 22.8%
and 36.3%, respectively, with the other nine non-energy sectors I aggregate the economy
into accounting for the remaining 28.3% of energy expenditures in a manner that is fairly
evenly distributed.

I then use my model to compute the tax implications and output losses when sectoral
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exemptions to the carbon tax are granted but the tax remains intertemporally optimised.
Under the baseline calibration scenario, the average path of carbon taxes increases by 59.6%
when 40% of the maximum possible exemptions are granted by a country and 333.1% when
80% of the maximum possible exemptions are granted by a country. In the limit, carbon taxes
approach infinity as 100% of possible exemptions are granted. The tax increase necessitated
by providing such sectoral exemptions is decreasing in the elasticity of substitution between
dirty and green energy as the non-exempt sectors of the economy are more responsive the
higher tax rates.

Turning to the welfare implications, 0.8% and 2.9% of discounted GDP over the transition
period is lost relative to the optimal policy when 40% and 80% of the maximum exemptions
are granted, respectively. The output losses associated with the sectorally inefficient policy
are higher when either the carbon budget or elasticity of substitution are lower. This follows
from the fact that a lower carbon budget or elasticity of substitution increases the average
gap between the optimal tax and the suboptimal tax in each sector, thus increasing the
distortions associated with the suboptimal tax policy.

These results are relevant to policy in that they provide guidance on how one of the
main climate policy instruments ought to be set. They also speak to the politically sensitive
issue of the welfare costs of such policies, and how the common practice of providing sectoral
exemptions to carbon taxation affects these welfare costs. The results suggest that the
output losses associated with meeting the targets of the Paris Agreement are relatively small
under most assumptions. The inefficiency cost of providing sectoral exemptions is initially
trivial, but as exemptions are increased towards their maximum level, the inefficiency costs
eventually become larger than the cost of the optimal policy itself.

Related Literature. This chapter contributes the extensive economics literature on
optimal carbon pricing (see for example, Barrage, 2020; Cai and Lontzek, 2019; Dietz et al.,
2018; Dietz and Venmans, 2019; Golosov et al., 2014; Lemoine and Rudik, 2017; Nordhaus,
2008; Stern, 2007; van der Ploeg, 2018). This literature has tended to focus on optimal
carbon pricing at the global-level absent any temperature or emissions constraints. Rather,
the optimal path of emissions (and associated carbon price) is solved to maximise global
welfare, irrespective of whether such a policy is consistent with the temperature constraints
stipulated by global climate agreements. It is often the case that optimal policies determined
within the context of these models overshoot the temperature limits imposed by international
agreements (Tol, 2013), limiting the policy applications of these results in a world where
countries have committed to temperature limits and emissions constraints.

While there are a number of studies that assess optimal carbon pricing under a tem-
perature or carbon budget constraint (Dietz and Venmans, 2019; Emmerling et al., 2019;
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Gollier, 2021; Lemoine and Rudik, 2017; Olijslagers et al., 2021; van der Ploeg, 2018), these
studies fail to incorporate all of my other key assumptions: that is, they do not take the
path of interest rates and climate change as given while also assuming a sectorally disag-
gregated economy. Sectorally disaggregated modelling, in particular, tends to be rare in
optimal carbon pricing studies within the economics literature. While there are a number
of papers that focus on carbon pricing in disaggregated economies, these tend not to study
policy formulation. Instead, they examine the impact on the economy of imposing some
predetermined policy (Cavalcanti et al., 2021; Devulder and Lisack, 2020; Frankovic, 2022;
King et al., 2019). The climate policy studies that do adopt all of my main assumptions to
derive optimal policy paths that are consistent with the temperature limits in global climate
agreements tend not to use the same fully specified macroeconomic models with competitive
markets found in the economics literature (Clarke et al., 2014). The aim of this chapter is,
therefore, to bridge this gap by developing a tractable, policy-relevant macroeconomic model
that can be easily taken to the data for a wide range of countries to provide guidance on
how carbon pricing policies should be implemented across sectors and over time.

Roadmap. The rest of the chapter is organised as follows. Section 2 outlines the model.
Section 3 characterises the competitive equilibrium. Section 4 of the chapter examines the
optimal carbon tax and welfare implications of this policy across a number of countries.
Section 5 uses the model to assess the tax and welfare implications of suboptimal policy
in the form of sectoral tax exemptions when the intertemporal aspect of policy remains
optimised. Section 6 assess the fit of the model with the data and what this implies for the
results. Section 7 concludes.

2.2 Model Setup

This section of the chapter outlines my model for a given small, open economy. The economy
is made up of N non-energy sectors and one energy sector that has dirty and green energy
varieties. Firms in the non-energy sectors produce output using capital, labour, energy and
intermediate inputs from other non-energy sectors. The economy is able to freely trade
an aggregate final good that is the composite of the N + 1 sectoral goods, and faces an
exogenously determined interest rate on foreign borrowing and lending. The government
levies carbon taxes on dirty energy consumption and rebates the proceeds lump sum to
households. For convenience, no notation is used to index the economy under consideration,
although the quantitative analysis simulates the model outlined in this section across a
number of different economies.
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Although this paper focuses on sectoral heterogeneity in climate policy, I setup a version
of the model here that also accommodates heterogeneity in each sector’s ability to use and
substitute between dirty and green energy. I shut down this heterogeneity in the model for
the purposes of calibration, but I illustrate how it can be incorporated as this is a potentially
important extension to my quantitative results.

2.2.1 Households

The economy is populated by an infinitely lived representative agent with lifetime utility in
period t given by

Wt =
∞∑
s=t

βs−tU (Cs) (2.1)

where Ct is the aggregate consumption good and U (.) is an instantaneous utility function
with the standard properties4. The agent is endowed with Lt units of labour in each period
t, which are supplied inelastically. The period budget constraint of the agent, specified in
real terms, is given by

Ct +Kt+1 +Bt+1 = wtLt + rk,tKt + πt + Tt + (1 − δ)Kt + (1 + rb,t)Bt (2.2)

wt is the agent’s wage, Kt is the agent’s capital holdings at time t, rk,t is the rental rate
for capital paid by firms, and δ is the depreciation rate. Bt are bond holdings at time t,
and rb,t is the exogenously determined return on these bonds. πt are aggregate profits in the
economy and Tt are lump sum transfers from the government to households.

2.2.2 Firms

Although the aggregate consumption good is aggregated via the representative agent’s utility
function, I assume that a firm exists that transforms output from various sectors into a scalar
measure of aggregate output via a production function. This assumption has no bearing on
the results but is notationally convenient. In particular, I assume that the aggregate output
producer has a production function given by:

Yt =
(
Ye,t
ωye

)ωye
[
N∏
i=1

(
Yi,t
ωyi

)ωyi
]

(2.3)

where Yi,t represent final goods from sector i, and Ye,t are final goods from the energy sector.
Abusing notation slightly, let N denote both the number of non-energy sectors and the set

4I assume U ′ (.) > 0 and U ′′ (.) < 0.
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of non-energy sectors: i ∈ {1, 2, ..., N}. The N sectoral producers have production functions
given by

Qi,t = Ai,t

(
Li,t
ωil

)ωil (Ki,t

ωik

)ωik (Zie,t
ωie

)ωie

 N∏
j=1

(
Zij,t
ωij

)ωij
 ∀ i ∈ N (2.4)

where Li,t is their labour input, Ki,t is their capital input, Zie,t is sector i’s use of energy as an
intermediate input, Zij,t is sector i’s use of intermediate inputs from sector j and Ai,t is the
exogenously determined sectoral TFP. Defining the set Ny as Ny ≡ N ∪ {y}, the production
function for the sector i ∈ Ny energy composite is given by

Qie,t = Aie,t

(
ωidQ

σie−1
σie

id,t + ωigQ
σie−1

σie
ig,t

) σie
σie−1

∀ i ∈ Ny (2.5)

where Qid,t and Qig,t are sector i’s respective use of dirty and green energy inputs, Aie,t is
exogenously determined energy efficiency, and σie is a sector-specific elasticity of substitution.
The dirty and green energy varieties are produced linearly from labour:

Qik,t = Aik,tLik,t k ∈ {d, g} , ∀ i ∈ Ny (2.6)

Aik,t are exogenously determined energy sector productivities, and the units of dirty
energy are normalised such that one unit of energy produces one unit of CO2 emissions and
one unit of green energy provides an equivalent amount of physical energy output as one
unit of dirty energy. The market clearing conditions for labour, capital, sectoral goods and
the energy market, respectively, are given by

Lt =
N∑
i=1

Li,t +
∑

k∈{d,g}

∑
i∈Ny

Lik,t (2.7)

Kt =
N∑
i=1

Ki,t (2.8)

Qi,t = Yi,t+
N∑
j=1

Zji,t ∀ i ∈ N (2.9)

Qie,t = Zie,t ∀ i ∈ N (2.10)

Qye,t = Ye,t (2.11)

The market clearing conditions combined with the capital accumulation equation Kt+1 =
It + (1 − δ)Kt also imply the aggregate goods market clearing condition

Yt = Ct + It +NXt (2.12)
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where NXt are net exports of the final good, which automatically adjust to ensure that
(2.12) holds. All markets are assumed to be perfectly competitive.

2.2.3 Government

The government is able to set carbon taxes on each sector i ∈ Ny (denoted by τi,t), which
absent uncertainty within a given period, is equivalent to setting the quantity of emissions
for each sector directly via a set of segmented emissions trading schemes. The government
returns the proceeds from these taxes to households in the form of a lump-sum rebate Tt.
The government’s policies must be such that it runs a balanced budget in all periods:

∑
i∈Ny

τi,tQid,t = Tt (2.13)

In addition to the balanced budget constraint, the government is also required to ensure
that from some period s to T , cumulative carbon dioxide emissions do not exceed a fixed
amount Q̄d (which denotes the carbon budget):

T∑
t=s

∑
i∈Ny

Qid,t ≤ Q̄d (2.14)

2.3 Competitive Equilibrium

This section of the chapter defines the competitive equilibrium of the economy and illustrates
how the competitive equilibrium of the economy is solved conditional on the carbon tax policy
in place. In addition, the response of emissions to sectorally-targeted tax changes is derived.
In particular, total emissions in the economy are decreasing in the value of the carbon tax
in any given sector of the economy, but there is a lower bound on the emissions that can
be achieved using carbon taxes on just a single sector. This lower bound is given by the
laissez-faire emissions of all sectors that face no carbon tax.

2.3.1 Definition

A competitive equilibrium in this economy is formally defined as follows

Definition 1: A competitive equilibrium consists of a sequence of allocations{
Ct, Kt+1, It, Yt, NXt, Bt+1, {Yi,t, Qie,t, Qid,t, Qig,t, Lid,t, Lig,t}i∈Ny

,{
Qi,t, Li,t, Ki,t, Zie,t, {Zij,t}j∈N

}
i∈N

}
,
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prices
{
rb,t, rk,t, wt, {pie,t, pid,t, pig,t}i∈Ny

, {pi,t}i∈N
}
, and policies

{
{τi,t}i∈Ny

, Tt
}

such that:

1. the allocations solve the consumers’ utility maximisation problems and the firms’ profit
maximisation problems given prices and polices,

2. the government budget constraint is satisfied in every period,

3. capital accumulates according to the capital accumulation equation, and

4. markets clear.

A competitive equilibrium that is consistent with the country’s climate targets is one in
which conditions 1-4 hold and the carbon budget (2.14) is also satisfied.

2.3.2 Prices

The no arbitrage condition on capital and bonds implies rk,t is pinned down by the exogen-
ously determined real rate on bonds and capital depreciation:

rk,t = rb,t + δ (2.15)

Given unit cost pricing and the tax policy, the price of dirty energy supplied to sector i is
given by

pid,t = wt
Aid,t

+ τi,t ∀ i ∈ Ny (2.16)

Defining ϕi,t ≡ 1 + τi,t
(
wt

Ad,t

)−1
, the dirty energy price for sector i can be expressed as

pid,t = wt
Aid,t

ϕi,t ∀ i ∈ Ny (2.17)

ϕi,t is therefore the sector i dirty energy price ratio with and without the tax. As shown later
in this section, ϕi,t is also a sufficient statistic for measuring the stringency of tax policy.
This follows from the fact that energy varieties are aggregated using a CES function. The
green energy price in sector i is given by

pig,t = wt
Aig,t

∀ i ∈ Ny (2.18)

Standard CES properties imply that the composite energy price in sector i is given by

pie,t = A−1
ie,t

(
ωσie
id p

1−σie
id,t + ωσie

ig p
1−σie
g,t

) 1
1−σie ∀ i ∈ Ny (2.19)
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Substituting (2.17) and (2.18) into (2.19) then implies

pie,t = A−1
ie,twt

(
ωσie
id A

σie−1
id,t ϕ1−σie

i,t + ωσie
ig A

σie−1
ig,t

) 1
1−σie ∀ i ∈ Ny (2.20)

Cobb-Douglas sectoral production gives the following sectoral output prices:

pi,t = A−1
i,t w

ωil
t rωik

k,t p
ωie
ie,t

 N∏
j=1

p
ωij

j,t

 ∀ i ∈ N (2.21)

I next define the standard Leontief Inverse ψ ≡ [IN − Ω]−1, where IN is the N ×N identity
matrix and Ω is the N × N matrix with Ωij = ωij. As shown in Appendix B.2, solving the
system of equations in (2.21) implies

pi,t =
 N∏
j=1

A
−ψij

j,t

w
(

N∑
j=1

ψijωjl

)
t r

(
N∑

j=1
ψijωjk

)
k,t

 N∏
j=1

p
ψijωje

je,t

 ∀ i ∈ N (2.22)

The aggregate price index (which will be normalised to one) is then given by

py,t = p
ωye

ye,t

(
N∏
i=1

p
ωyi

i,t

)
(2.23)

Before deriving an expression for py,t that implicitly pins down wt, it is useful to introduce
some additional notation. The sales share of each sector is defined as

λi,t ≡ pi,tQi,t

Yt
∀ i ∈ N (2.24)

λy ≡ 1 (2.25)

Given the Cobb-Douglas functional forms and market clearing conditions, the (time invari-
ant) equilibrium value of λi is given by (see Appendix B.3 for details)

λi,t =
N∑
j=1

ωyjψji ∀ i ∈ N (2.26)
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I then define the non-energy labour share, capital share, and energy shares as

λl,t ≡

N∑
i=1

wtLi,t

Yt
(2.27)

λk,t ≡

N∑
i=1

rk,tKi,t

Yt
(2.28)

λie ≡ pie,tQie,t

Yt
(2.29)

λe ≡
∑
i∈Ny

λie (2.30)

Again, these are time invariant objects in equilibrium given by (see Appendix B.3 for details)

λl =
N∑
i=1

λiωil (2.31)

λk =
N∑
i=1

λiωik (2.32)

λie = λiωie (2.33)

By combining the household budget constraint and aggregate goods market clearing condi-
tion, it also follows that (see Appendix B.3 for details)

λl + λk + λe = 1 (2.34)

Combining (2.20) and (2.22) with (2.23) then implies

py,t = A−1
t w1−λk

t rλk
k,t

 ∏
i∈Ny

(
ωσie
id A

σie−1
id,t ϕ1−σie

i,t + ωσie
ig A

σie−1
ig,t

) λie
1−σie

 (2.35)

where At ≡
(
N∏
i=1

Aλi
i,tA

λie
ie,t

)
is a measure of aggregate TFP (excluding TFP of the dirty and

green energy varieties).
Proposition 1: In any period t and for any set of carbon taxes {τi,t}i∈Ny

, there always
exists a unique set of prices

{
rb,t, rk,t, wt, {pie,t, pid,t, pig,t}i∈Ny

, {pi,t}i∈N
}

that satisfy the com-
petitive equilibrium conditions.

Proof : Conditional on wt and {τi,t}i∈Ny
, it has been shown that all prices exist and are
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uniquely determined. It thus suffices to show that a unique wt exists that satisfies the
competitive equilibrium conditions. Defining the function

Fp,t (wt) ≡ A−1
t w1−λk

t rλk
k,t

 ∏
i∈Ny

(
ωσie
id A

σie−1
id,t ϕ1−σie

i,t + ωσie
ig A

σie−1
ig,t

) λie
1−σie

 (2.36)

it follows that wt is implicitly determined from the normalising condition Fp,t (wt) = 1. Since

dFp,t (wt)
dwt

> 0

Fp,t (0) = 0

lim
wt→∞

Fp,t (wt) = ∞

there always exists a unique w∗
t such that Fp,t (w∗

t ) = 1 holds.

2.3.3 Quantities

Conditional on prices, all quantities can be determined in closed form. The full determination
of equilibrium quantities is outlined in Appendix B.4; I focus here on the determination of
dirty energy inputs Qid,t since this is the key quantity that the policymaker must control
when setting carbon taxes. Given the CES production function employed to produce the
composite energy good, these energy producers have dirty and green energy expenditure
shares given by

pid,tQid,t = αid,tpie,tQie,t ∀ i ∈ Ny (2.37)

pig,tQig,t = αig,tpie,tQie,t ∀ i ∈ Ny (2.38)

where

αid,t ≡
ωσie
id A

σie−1
id,t ϕ1−σie

i,t

ωσie
id A

σie−1
id,t ϕ1−σie

i,t + ωσie
ig A

σie−1
ig,t

∀ i ∈ Ny (2.39)

αig,t ≡
ωσie
ig A

σie−1
ig,t

ωσie
id A

σie−1
id,t ϕ1−σie

i,t + ωσie
ig A

σie−1
ig,t

∀ i ∈ Ny (2.40)
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All revenue generated by the green energy sector goes to labour, while the share of pid,tQid,t

paid to Lid,t is 1
ϕi,t

≤ 1. Together, these facts imply that the labour allocations are given by

Lid,t =


λieαid,t

ϕi,t

λl + ∑
j∈Ny

λjeαjd,t

ϕj,t
+ ∑

j∈Ny

λjeαjg,t

Lt ∀ i ∈ Ny (2.41)

Lig,t =

 λieαig,t

λl + ∑
j∈Ny

λjeαjd,t

ϕj,t
+ ∑

j∈Ny

λjeαjg,t

Lt ∀ i ∈ Ny (2.42)

Li,t =

 λiωil

λl + ∑
j∈Ny

λjeαjd,t

ϕj,t
+ ∑

j∈Ny

λjeαjg,t

Lt ∀ i ∈ Ny (2.43)

Dirty energy production is therefore given by

Qd,t =
∑
i∈Ny

Qid,t =


∑
i∈Ny

λieαid,t

ϕi,t
Aid,t

λl + ∑
i∈Ny

λieαid,t

ϕi,t
+ ∑

i∈Ny

λieαig,t

Lt (2.44)

Proposition 2 : If σie > 1 and Aid = Ad ∀ i ∈ Ny,

dQd,t

dτi,t
< 0

lim
τi,t→∞

Qd,t =


∑
j∈N0

λjeαjd,tAjd,t

λl + λe

Lt
Proof : See Appendix B.5.

Proposition 2 states that under the assumption that all elasticities of substitution between
dirty and green energy are greater than one and dirty energy TFP is the same across sectors,
raising carbon taxes in any single sector reduces economy-wide emissions. For the results in
the subsequent sections of the chapter, it is useful to understand the mechanisms underlying
this statement. Raising τi,t leads to an increase in ϕi,t (the ratio of the dirty energy price
with the tax relative to the price without the tax). This happens via the direct effect of
increasing τi,t and also the indirect effect of lowering real wages wt, both of which increase
the size of the tax faced by sector i relative to the cost of producing dirty energy. This
causes an increase in the price of dirty dirty energy relative to green energy for sector i,
leading to a substitution away from dirty energy. Although sectors j ̸= i do not see a direct
increase in the carbon tax they face, because their tax τj,t is held constant in real terms, the
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general equilibrium effect of lower real wages also raises the value of taxes in these sectors
relative to the cost of producing dirty energy provided τj,t > 0. This relative price increase
also leads these sectors to substitute away from dirty energy usage despite not being directly
affected by the carbon tax increase. Since these indirect substitution effects only operate
when τj,t > 0, it follows that the lower bound on emissions that can be achieved by raising
carbon taxes on one sector alone and holding taxes constant in real terms on all other sectors
is given by the total emissions in the laissez-faire equilibrium of all sectors facing a zero tax.

2.4 Optimal Policy

This section outlines the optimal carbon tax policy that satisfies the economy’s carbon budget
constraint. This policy is optimised across sectors (a static efficiency condition) and over
time (an intertemporal efficiency condition). The static efficiency condition dictates that a
common carbon tax should be applied to all sectors of the economy in a given period. The
intuition for this results follows from the fact that the price of emissions in a given sector
(τi,t) is equal to the marginal change in aggregate output from increasing emissions in that
sector. It follows that conditional on an aggregate emissions budget in a given period, output
is maximised when τi,t is equalised across all sectors. Similarly, the carbon tax applied to a
given period (τt) is equal to the marginal effect on output from increasing aggregate emissions
in that period. Given that emissions are a scarce and finite resource under a binding carbon
constraint, the Hotelling rule applies: the carbon tax should grow at a rate equal to the real
interest rate on international borrowing to maximise the discounted value of the economy’s
aggregate output over the transition period. This section first outlines the policy problem
and formally derives the efficiency conditions that characterise the optimal policy. I then
discuss how the model is calibrated to produce quantitative estimates of the optimal carbon
tax across a sample of 35 economies before turning to a presentation of these results.

2.4.1 Optimal Policy Problem

Given the small open economy assumption, maximising individual welfare over the transition
period is equivalent to maximising the present discounted value of GDP over this period.
The policymaker’s problem can therefore be written as

max{
{τi,t}i∈Ny

}T

t=1

∞∑
t=1

Yt
(
{τi,t}i∈Ny

)
Rt
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s.t.
T∑
t=1

∑
i∈Ny

Q̄id,t ≤ Q̄d

where I define

Rt ≡
t∏

s=2
(1 + rb,s)

Proposition 3:
A unique optimal policy

{{
τ ∗
i,t

}
i∈Ny

}T
t=1

always exists. When the emissions constraint is
non-binding, all carbon taxes are set to zero; when the emissions constraint is binding, the
optimal policy is characterised by the following conditions

τ ∗
i,t = τ ∗

t ∀ i ∈ Ny

τ ∗
t = Rtτ

∗
1

T∑
t=1

Qd,t (τ ∗
t ) = Q̄d

Proof : See Appendix B.6. Proposition 3 states that policy is intratemporally optimised
when tax rates on all sectors are equalised and intertemporally optimised when the tax rate
grows over time at a rate equal to the real interest rate. Both of these results are intuitive
and follow from the envelope theorem, which tells us that the marginal increase in output
from relaxing the emissions constraint on a given sector i at time t is equal to τ ∗

i,t. It therefore
follows that to maximise the static value of GDP, a common tax rate should be applied to all
sectors, and to maximise the discounted value of GDP over time, the tax rate should grow
at the real interest rate, the well-known Hotelling rule.

Corollary 1: It follows from Proposition 3 that when τ ∗
1 > 0

dτ ∗
t

dQ̄d

< 0 (2.45)

dτ ∗
t

dLt
> 0 (2.46)

dτ ∗
t

dAt
> 0 (2.47)

dτ ∗
1

drb,t
< 0 (2.48)

(2.45)-(2.47) state that the entire path of optimal carbon taxes increases when the carbon
budget is lower, the labour force in any given period is higher or At in any given period is
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higher. In discussing these results, it is useful to note that the path of the optimal carbon
tax depends on two reduced form objects: the ratio of unregulated emissions relative to the
economy’s carbon budget (Q0d

Q̄d
) and the path of the unregulated dirty energy price (p0d,t).

The larger the emissions ratio, the more the relative price of dirty to green energy has to
be altered to achieve the necessary substitution away from dirty energy. Conditional on
a required change in relative energy prices, a larger p0d,t requires a larger carbon tax. Of
course, a larger p0d,t, all else equal, would mean a substitution away from dirty energy in the
laissez-faire equilibrium, lowering the emissions ratio. The emissions ratio, however, depends
on the path of the dirty-to-green price ratio, so if a country were to experience a doubling of
p0d,t and p0g,t, for example, at all points in time, then there would be no change in Q0d

Q̄d
but

the carbon tax would have to double in all periods in real terms to keep emissions constant.
(2.45) and (2.46) follow from the fact that a decrease in Q̄d or an increase in Lt both push

up the emissions ratio. (2.47) follows from the fact that an increase in At (either in the form
of non-energy TFP improvements, Ai,t, or neutral energy efficiency increases, Aie,t) without
any change in Ad,t or Ag,t has no effect on laissez-faire emissions but pushes up p0d,t. The
emissions ratio is unaffected by At changes since this type of TFP change does not favour
the dirty or green energy sectors, leaving their laissez-faire relative price unaffected. It does,
however, push up wt, which increases p0d,t and requires a larger carbon tax to achieve the
same proportionate increase in dirty energy prices. In the case of (2.45), (2.46) and (2.47),
the entire path of carbon taxes moves in the same direction so that the necessary loosening
or tightening of policy is smoothed across all periods. An increase in rb,t (holding constant
rk,t), lowers τ ∗

1 , as the policymaker finds it optimal to postpone more output losses for the
future. Unlike the previous cases, however, the path of τ ∗

t pivots rather than shifts, and
taxes must increase at some point in the future to make up for the lower carbon taxes in the
present.

2.4.2 Calibration

From equations (2.35) and (2.44) we need measures of λk, λl, At, rk,t, Lt and
{λie, τi,t, ωid, ωig, σie, Aid,t, Aig,t}i∈Ny

and to pin down Qd,t.
λk and λie (along with all other Cobb-Douglas expenditure share parameters of the

model) are estimated using the 2016 release of the World Input-Output Tables (Timmer
et al., 2015). This data set covers 43 countries and 56 sectors from 2000 to 2014. The
Cobb-Douglas expenditure share parameters of the model are calibrated to match the time
average of the respective expenditure shares in the data. The 43 countries contained in the
data set roughly correspond to the OECD economies with the addition of nine of major
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developing economies. I drop eight countries5 from this set of 43 that are large in the
economic and/or climate sense6, leaving a subset of 35 economies that conform to the ’small
economy’ definition used in this chapter. I also aggregate the 56 sectors contained in the
original dataset to 11 sectors. This aggregation is done to facilitate the presentation of the
sectorally disaggregated results in a more compact manner, but one of the primary benefits
of the model is that it can readily accommodate more granularity as needed with little to
no increase in computational complexity. Appendix B.1 lists all countries and sectors used.

I treat all sectors symmetrically in terms of their energy parameters such that I only
need one set of parameter estimates for ωd, ωg, σe, Ad,t, Ag,t. This assumption means that
only aggregate data on the energy mix is needed to calibrate the model, but can easily be
relaxed to allow for sectoral heterogeneity in energy inputs provided sectorally disaggregated
data on dirty and green energy use can be obtained. The values for ωd, ωg, σe are set based
on the recent study by Papageorgiou et al. (2017). As baseline values, I set ωd = ωg = 0.5
and σe = 1.5, although I conduct sensitivity analysis of my main results with σe ∈ (1, 2).

rk,t and Lt are measured from the Penn World Table version 10.0, with complete time
series data for all countries in my sample from 1995 to 2019. rk,t is taken to be the real internal
rate of return in the data. I measure Lt as total hours of employment by multiplying the
total number of individuals engaged with the average hours worked per person engaged. I
then project these values forward for the 2020-2049 period as follows. rk,t is taken to be
constant over this period and equal to the country-level average for the 1995 to 2019 period.
To extend hours worked (Lt), I used the United Nations (2019) population projections for
the growth rate of the working age population (15 to 65 years old) for each country. I use
the medium variant projections as the values for the baseline calibration but also conduct
sensitivity analysis using the low and high variant projections.

Historical data on τi,t is provided by the World Bank (2022) Carbon Pricing Dashboard.
This dashboard provides time series data on carbon pricing across countries along with
information on the percentage of emissions coverage by each carbon pricing schemes in 20127.
I use this data to construct measures of τi,t and the corresponding λie for each country from
1995-2019. Since the tax price data is expressed in nominal terms, I use the Penn World
Table GDP deflator to convert these values into 2017 USD PPP terms.

This leaves At, Ad,t and Ag,t to be determined. To pin down historical values for these
variables from 1995-2019, I used targets for Qd,t, Qg,t

Qd,t
and Yt. I measure Qd,t using data

5Brazil, China, Germany, Indonesia, India, Japan, Russia and the United States.
6I exclude all countries with an average contribution to global output or emissions between 2010 and 2018

that is above 1.5%.
7Where multiple carbon prices are provided under one coverage data point, I take the average of all prices

to be the price at which that share of emissions is covered.

75



on CO2 emissions and Qg,t

Qd,t
from the renewable share of primary energy, both of which are

compiled by Our World in Data. I obtain Yt from the Penn World Table measure of real
GDP in 2017 International Dollars. With these three targets from the data, At, Ad,t and
Ag,t are then pinned down by

Qd,t =


∑
i∈Ny

λieαid,t

ϕi,t

λl + ∑
i∈Ny

λieαid,t

ϕi,t
+ ∑

i∈Ny

λieαig,t

Ad,tLt (2.49)

Qg,t

Qd,t

=


∑
i∈Ny

λieαig,t∑
i∈Ny

λieαid,t

ϕi,t

 Ag,t
Ad,t

(2.50)

Yt =
wtLt + ∑

i∈Ny

τi,tQid,t

1 − λk
(2.51)

For countries where no carbon pricing was active historically, At, Ad,t and Ag,t can be solved
analytically as

Ag,t
Ad,t

=
(
ωd
ωg

)(
Qg,t

Qd,t

) 1
σe

(2.52)

Ad,t =
(
λl + λe
λe

)ωσe
g

(
Ag,t

Ad,t

)σe−1
+ ωσe

d

ωσe
d

 Qd,t

Lt
(2.53)

Ag,t = Ad,t

(
Ag,t
Ad,t

)
(2.54)

At = rλk
k,t

(
ωσe
d A

σe−1
d,t + ωσe

g A
σe−1
g,t

) λe
(1−σe)

[
(1 − λk)

Yt
Lt

]1−λk

(2.55)

One major benefit of the Cobb-Douglas assumption for final demand and the sectoral
production functions is that fact that the Ai,t and Aie,t do not need to be separately estimated
and only the composite At term needs to be pinned down. This keeps the calibration (and
simulation) of the model tractable even when a large number of sectors are introduced in
the model.

My calibrated estimates of At, Ad,t and Ag,t are then extended as follows. I assume that
Ad,t remains constant for all countries from 2020 to 2049. Between 1995 and 2019, the average
annualised growth rate of my Ad,t estimates across all countries in the sample was -0.55%,
and it seems reasonable to assume that even without imposing local carbon taxes, global
shifts in R&D priorities along with an increasing dependence on more expensive fossil fuel
reserves will lead to stagnant Ad,t. Although I exclude the US from my analysis on account
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of its size, I do have data for the country and can thus go through the same calibration
process to pin down the 1995 to 2019 time series for Ag,t in the US. I then project the US
estimate for Ag,t forward at an annual rate of 2% and assume that percentage deviation in
Ag,t between each country in my sample and the US shrinks by 50% between 2019 and 2049
with Ag,t growing at a constant rate in each country over this period. Similarly, to project At
forward, I first project output per hour in the US forward from 2020 to 2049 by assuming it
grows at an annual rate of 1.5%. I then assume that the percentage difference in output per
hour between all countries in my sample and the US converges to 50% of the 2019 gap by
2049 by growing at a constant annual rate. I then back out the At values required to achieve
this growth of output per hour in the absence of any carbon taxes using (2.55). To solve
for the optimal carbon tax, I also need future projections of rb,t. I assume a baseline value
of rb,t = 2% for all countries but also conduct sensitivity analysis by assuming rb,t = 0%
and rb,t = 4%. Finally, I assume a global value for the carbon budget of 550 GtCO2 as of
2020. This value is consistent with restricting the global temperature increase to 1.7◦ with
83% probably according to IPCC estimates, as shown in Table 2.1. I also conduct sensitivity
analysis letting this budget equal 300 GtCO2 and 900 GtCO2, consistent with meeting the
1.5◦ and 2.0◦ temperature targets, respectively, with 83% probably. These carbon budgets
are then allocated to each country based on each country’s share of global population in
2019 using World Bank data. The details of this calibration are summarised below in Table
2.2.

Table 2.2: Model Calibration
Parameter/Variable Description Value Target/Source

ω, λ Expenditure share parameters WIOT
rk,t Marginal product of capital PWT
rb,t Interest rate on borrowing 2%
Lt Aggregate hours worked PWT and UN

λie, τi,t Carbon pricing and coverage World Bank
ωd, ωg Weight on dirty/green energy 0.50 Papageorgiou et al. (2017)
σe Energy elasticity of substitution 1.5 Papageorgiou et al. (2017)
Q̄d Global carbon budget 550 GtCO2 IPCC

At, Ad,t, Ag,t TFP Qd,t, Qg,t

Qd,t
, Yt

2.4.3 Quantitative Results

Table B.3 illustrates the optimal starting value for the carbon tax in 2020 (τ ∗
2020) for each

country under the baseline calibration assumptions. Two key points stand out from these
results. First, there is significant heterogeneity in the optimal carbon tax across countries,
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with the baseline estimates ranging from a $4 per ton of CO2 in Malta to $749 per ton
of CO2 in Taiwan. Table B.3 also provides the emissions ratio (Q0d

Q̄d
) and the unregulated

dirty energy price index in 2020 (p0d) for each country. It can be seen that a high optimal
carbon tax in 2020 is the result of a high emissions ratio and/or a high cost of dirty energy.
In some sense, variation in the emissions ratio is the more fundamental determinant of the
optimal carbon tax in that the carbon tax necessarily falls to zero once this ratio reaches
one. This fact is also reflected in the data with the raw correlation between τ ∗

2020 and Q0d

Q̄d

being stronger than the one between τ ∗
2020 and p0d, with the positive correlation between

τ ∗
2020 and p0d emerging when conditioned on Q0d

Q̄d
.

In addition to the significant variation in optimal carbon taxes, a second key point is
that the average optimal carbon tax value of $325 per ton of CO2 is significantly higher than
any currently implemented or proposed carbon pricing scheme. There are three possible
implications of this result. First, taking the results at face value would imply that countries
are not currently doing enough to meet the climate change targets set out in the Paris
Agreement. There are certainly political economy factors to suggest that climate action has
been inefficiently delayed, and a wide range of research also suggests that current climate
policy commitments are likely to be insufficient to limit warming to 1.7 ◦C (IPCC, 2021). A
second possibility is that the model is missing quantitatively important aspects of reality that
cause me to overestimate the level of carbon taxes required to meet the Paris Agreement.
Two key areas that could be of relevance here are the assumed elasticities of substitution
and the modelling of technology. In terms of elasticities of substitution, it is possible that
elasticities of substitution across either final demand or intermediate inputs are larger than
in my model, meaning that the required aggregate substitution away from dirty energy
towards green energy happens with a much lower level of carbon taxation. Although I test
the sensitivity of my results to assumptions on the elasticity of substitution between dirty
and green energy, I hold all other elasticities of substitution constant and equal to one. As
shown by the work of Baqaee and Farhi (2019), accounting for such changes in the production
network can have large impacts on how shocks affect the aggregate economy. In terms of
technology, altering the assumed growth rate of green energy productivity, expanding the
set of available technologies to include abatement or negative emissions technologies, or
letting technology respond endogenously to carbon taxes would also lead to a reduction
in the required level of carbon taxation. A third reading of these results is that while
existing carbon pricing initiatives alone will not be sufficient to meet the targets of the Paris
agreement, climate policy involves a suite of policy instruments such as R&D subsidies and
command and control regulation, the sum total of which may be sufficient for countries to
meet their climate commitments. The reality is likely to be a mix of all three. It is also
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worth noting my estimates of τ ∗
2020 are well in excess of most estimates in the literature of the

unconstrained optimal carbon tax or the social cost of carbon. Aside from methodological
differences between studies, this difference also reflects the fact that most of these studies
find an optimal value of global warming in excess of the 2.0 ◦C upper bound stipulated by
the Paris agreement.

As well as showing the values for τ ∗
2020 by country, Table B.3 shows the loss in discounted

GDP from implementing the optimal policy during the transition period (2020-2049). Given
that the path of carbon taxes captures the marginal output losses from emissions regulation,
it naturally follows that these output losses are closely correlated with τ ∗

2020. The average
value of these output losses across the sample is 2.1% under the baseline calibration, ranging
from 0% in Malta (rounded to two decimal places) to 6.2% in Korea.

To test the sensitivity of these results to my assumptions, I assess how the average
carbon tax and output loss in the sample evolves as a function of my assumptions on four
key parameters/exogenous variables: the elasticity of substitution between dirty and green
energy (σe), the real rate (rb,t), labour supply (Lt), and the carbon budget (Q̄d). The results
of this exercise are presented in Figure 2.4. As the carbon budget is relaxed, the real rate
raised, and the elasticity of substitution across green and dirty energy is increased, the
average τ ∗

2020 drops significantly. The links between Q̄d, rb and τ ∗
2020 are intuitive and have

been discussed in Corollary 1. The link between σe and τ ∗
2020 is worth discussing in a bit

more detail here as it is partly dependent on the assumed path of Ag,t

Ad,t
. Because I assume that

Ag,t

Ad,t
is growing for all countries along the transition path, a higher σe decreases the emissions

ratio, an effect that would be reversed if Ag,t

Ad,t
was declining. In addition, a higher σe always

means that a given carbon tax is more effective at reducing emissions. Under the assumption
that green technology improves relative to dirty technology along the transition path, both
of these effects mean that raising σe lowers τ ∗

2020 . The average output loss associated with
the optimal policy responds in a similar way as the optimal carbon tax to changes in the
carbon budget and elasticity of substitution, while the average output loss is not sensitive
to the real interest rate. This latter fact follows from the results discussed in Corollary 1:
changes in Q̄d, Lt and σe affect the non-discounted costs of regulation whereas changes in
rb do not. Consequently, the change in rb affects how the policymaker wishes to smooth the
costs of regulation intertemporally but has little impact on the discounted sum of these costs
over time. Thus, while the optimal tax value in 2020 is highly sensitive to the path of real
rates over the transition period, the welfare costs of policy are not.

For the sample of countries studied, the optimal path of carbon taxation and the output
cost of regulation are not sensitive to expected variation in future labour force projections.
This insensitivity follows from the fact that for most of the countries in my sample, there
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Figure 2.4: Average Optimal Carbon Tax in 2020

Notes: This figure illustrates the average optimal carbon tax in 2020 (τ∗
2020) as a function of the elasticity

of substitution between dirty and green energy (σe). The blue, orange and red lines refer to calibrations
consistent with the 1.5◦C, 1.7◦C and 2.0◦C temperature targets, respectively; the solid, dotted and dashed
lines refer to calibrations that use a value of rb equal to 0%, 2% and 4%, respectively.

Figure 2.5: Average Discounted Value of Output Losses from Optimal Carbon Tax

Notes: This figure illustrates the average discounted value of output losses over the transition period (as a
percentage of the laissez-faire value) as a function of the elasticity of substitution between dirty and green
energy (σe). The blue, orange and red lines refer to calibrations consistent with the 1.5◦C, 1.7◦C and 2.0◦C
temperature targets, respectively; the solid, dotted and dashed lines refer to calibrations that use a value of
rb equal to 0%, 2% and 4%, respectively.

80



is little variation across the main United Nations (2019) demographic projections, with the
average working age population across countries expected to shrink slightly from 2020-2049.
The biggest variation in the optimal carbon tax from moving from the low population pro-
jection scenario to the high one is 6.7%, while the equivalent variation in output losses is just
0.1%. Consequently, all results in Figure 2.4 are illustrated under the baseline assumption
that Lt changes in line with the medium variant projection.

2.5 Suboptimal Policy: Sectoral Exemptions

This section analyses the effects of introducing sectoral exemptions to carbon pricing. The
motivation for this exercise comes from the fact that most carbon pricing policies are imple-
mented with such exemptions, which are inefficient within the context of my model. While
there may be efficiency considerations missing from the model that motivate these policies,
it is also possible that they are made with political economy or distributional considera-
tions in mind. As a result, it is useful to assess the implications of such suboptimal policies
when they are implemented in a benchmark environment such as the one in this chapter to
understand how large the potential distortions may be.

I begin this section by characterising the suboptimal policy problem, which is to optimise
the carbon tax intertemporally while providing an exogenously determined set of exemptions
to specific sectors of the economy. I show that under the existing assumptions of the model
and provided the tax regime is such that sectors either pay the full carbon tax or are fully
exempt from the tax, there is a single dimension of suboptimality that is captured by the
proportion of energy expenditures that are taxed. Reducing the dimensionality of the sub-
optimal policy space in this way is useful given the many ways in which sectoral exemptions
can be implemented and the lack of harmonised cross-country data on these exemptions
in practice. I then show the limits on the proportion of energy expenditures that can be
feasibly exempt while still meeting the carbon budget, before assessing the tax and welfare
implications of providing these exemptions.

2.5.1 Suboptimal Policy Problem

Given that there are an infinite range of suboptimal policies to explore, I choose to focus
on one particular type of sectorally-differentiated policy: I assume that some subset of all
sectors, denoted by N0, face no carbon tax, while the remaining subset of sectors, denoted
Nτ , pay a common carbon tax τt > 0. The advantage of this assumption is that given the
previous assumptions of the model, there is a unique scalar measure of the extent to which
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policy deviates from the efficient benchmark discussed in Section 2.4. This measure of sub-
optimality turns out to be the proportion of energy expenditures that are tax exempt (see
Appendix B.7 for proof), given by

λ̂0e ≡ λ0e

λe
=

∑
i∈N0

λie

λe

Conditional on the degree of intratemporal sub-optimality, λ̂0e, the intertemporal policy
optimisation problem is then given by

max
{τt}T

t=1

∞∑
t=1

Yt
(
τt, λ̂0e

)
Rt

s.t.
T∑
t=1

Qd,t

(
τt, λ̂0e

)
≤ Q̄d

where τt is the carbon tax applied to the non-exempt sectors. Using the results established
in the proof of Proposition 3 (see Appendix B.6), it follows that intertemporal optimisation
still requires that the sectorally suboptimal carbon tax grows over time at a rate equal to
the real interest rate.

2.5.2 Feasibility of the Emissions Constraint

When the fully optimal policy is in place, any degree of emissions reductions is feasible since
aggregate emissions decline monotonically towards zero as the sectorally harmonised carbon
tax approaches infinity. In contrast, with the sectorally suboptimal policy considered here,
there is a lower bound on the emissions that can be attained by the carbon tax policy alone.
Taking a special case of Proposition 2 with τi,t = τt ∀ i ∈ Nτ , this lower bound on emissions
is given by

lim
τt→∞

Qd,t =
(

λ0e

λl + λe

)
α0d,tAd,tLt (2.56)

Combining (2.56) with (2.44) implies that the largest proportion of energy expenditures that
can be exempt from the carbon tax while still meeting the carbon budget (which I denote
by λ̄0e) is given by the inverse of the emissions ratio such that

λ̄0e = Q̄d

Q0d,t
(2.57)

Table 2.3 shows the value of λ̄0e by country under the baseline calibration assumptions
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and the various emissions constraints. Under the carbon budgets consistent with the 1.5 ◦C,
1.7 ◦C and 2.0 ◦C temperature limits, the maximum share of energy expenditures that can
be feasibly exempt is 25.1%, 46.0% and 70.0%, respectively, on average across my sample.
There is considerable variation around these average values, reflecting the fact that there is
a large degree of variation in the extent to which each country overshoots its carbon budget
in my calibrated model absent any policy intervention. In the case of the 2.0 ◦C emissions
budget, a number of countries are able to exempt 100% of energy expenditures. This follows
from the fact that these countries’ emissions constraints are no longer binding in this case.

To put these numbers into context, the average share of energy expenditure in my sample
accounted for by transport, manufacturing and final demand by households is 12.7%, 23.6%
and 35.4%, respectively, with the other nine non-energy sectors in my model accounting for
the remaining 28.3% of energy expenditures in a manner that is fairly evenly distributed.
Table 2.4 shows the energy expenditures in each sector as a percentage of the maximum
feasible exemptions consistent with the 1.7 ◦C temperature limit8. On average, final demand
alone or manufacturing combined with transport accounts for almost all possible exemptions
under the 1.7 ◦C carbon budget.

8Table B.4 in the appendix shows instead energy expenditures by sector as a percentage of total energy
expenditures (that is, λ̂ie) across countries.
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Table 2.3: Maximum Sectoral Exemption (Percentage)
λ̄0e

Country Code 1.5 ◦C 1.7 ◦C 2.0 ◦C

AUS 7.6 13.9 22.7
AUT 18.7 34.4 56.2
BEL 16.7 30.7 50.2
BGR 29.3 53.7 87.9
CAN 8.4 15.3 25.1
CHE 30.3 55.6 91.0
CYP 21.7 39.7 65.0
CZE 16.1 29.5 48.3
DNK 24.7 45.3 74.2
ESP 29.3 53.7 87.9
EST 16.7 30.7 50.2
FIN 16.2 29.7 48.6
FRA 28.4 52.0 85.2
GBR 23.8 43.6 71.4
GRC 26.2 48.0 78.6
HRV 35.9 65.9 100.0
HUN 34.0 62.4 100.0
IRL 15.6 28.6 46.8
ITA 27.3 50.1 81.9
KOR 13.4 24.7 40.3
LTU 39.4 72.2 100.0
LUX 7.9 14.4 23.6
LVA 44.2 81.0 100.0
MEX 42.4 77.7 100.0
MLT 54.3 99.5 100.0
NLD 16.6 30.4 49.7
NOR 14.1 25.8 42.3
POL 19.4 35.5 58.1
PRT 33.8 61.9 100.0
ROU 45.1 82.6 100.0
SVK 26.9 49.2 80.6
SVN 22.1 40.5 66.2
SWE 29.0 53.2 87.1
TUR 28.6 52.5 85.9
TWN 14.9 27.3 44.7

AVE 25.1 46.0 70.0
Notes: This table shows the maximum percentage of energy expenditures that can feasibly be exempt from
carbon taxation (λ̄0e) under the baseline calibration assumptions and for the various carbon budgets.
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Table 2.4: Energy Expenditure by Sector Relative to Maximum Feasible Exemptions
Sector Code

Country Code AGR MIN MAN UTL TRD TRN HSP ICT FIN OTH SOC FND

AUS 25.4 75.9 112.3 52.7 23.2 120.2 11.4 13.2 2.3 22.4 34.6 225.9
AUT 7.2 3.2 75.1 10.9 11.8 31.3 5.8 2.5 2.1 10.5 23.4 107.3
BEL 6.8 2.3 69.2 6.5 11.7 24.7 2.1 3.2 1.9 11.3 10.7 175.3
BGR 5.3 10.4 36.2 7.8 17.2 26.0 1.3 1.1 0.1 5.2 6.6 68.7
CAN 23.2 24.2 129.2 27.4 30.6 63.5 6.2 3.9 9.1 32.0 46.1 257.3
CHE 3.2 1.9 43.8 3.7 7.8 13.3 2.6 1.6 1.8 10.4 24.9 64.7
CYP 18.5 3.7 51.1 11.5 14.9 34.4 12.7 8.5 10.0 7.5 15.4 63.6
CZE 7.7 4.8 100.7 11.5 23.3 29.5 3.0 2.8 3.5 16.9 17.1 118.2
DNK 8.1 0.5 19.6 5.8 7.5 82.1 1.5 1.7 0.8 3.8 9.2 79.9
ESP 2.8 2.5 50.6 6.4 16.4 19.2 3.4 2.7 1.2 4.7 8.8 67.4
EST 20.1 3.8 59.8 17.8 16.3 71.4 3.6 2.5 1.0 14.9 24.6 90.1
FIN 8.8 4.4 79.9 11.0 10.2 44.8 2.0 2.7 2.7 42.3 20.2 107.4
FRA 5.4 0.8 40.8 6.0 12.0 18.0 1.7 5.3 1.2 7.3 10.3 83.5
GBR 4.3 1.8 50.5 6.4 12.7 13.7 3.6 4.0 4.1 8.1 13.0 107.0
GRC 10.1 0.3 19.2 4.4 7.3 16.0 2.8 1.8 0.5 3.3 6.7 135.8
HRV 4.2 3.4 23.7 8.1 14.3 12.1 5.9 4.3 2.2 9.9 14.1 49.7
HUN 6.5 1.6 51.9 4.6 9.0 17.5 1.4 1.5 0.8 5.8 7.4 52.3
IRL 6.4 13.3 72.0 16.2 28.4 14.5 3.6 21.3 11.6 38.9 32.6 91.4
ITA 4.7 1.0 48.9 9.0 16.8 18.2 3.8 1.7 1.3 6.6 13.1 74.7
KOR 5.6 3.2 150.2 13.4 14.7 49.1 4.9 3.5 2.9 15.0 26.2 116.9
LTU 6.2 0.5 11.4 2.6 2.2 9.9 0.5 0.5 0.4 2.6 5.4 96.2
LUX 7.4 0.8 217.6 16.5 27.7 112.4 10.8 12.8 80.6 64.7 39.7 101.8
LVA 11.4 0.6 22.5 6.0 8.5 25.6 1.2 1.5 0.7 8.9 9.1 27.8
MEX 2.8 2.1 27.7 4.3 7.2 25.7 3.1 0.9 0.5 5.5 7.3 41.7
MLT 2.5 0.3 19.2 3.2 7.6 21.9 4.7 0.8 1.5 6.0 2.5 30.3
NLD 11.1 6.0 59.4 7.5 13.5 33.9 3.6 1.8 1.9 9.3 13.1 168.0
NOR 12.0 10.3 54.7 10.5 13.7 42.6 2.8 2.8 1.0 11.3 29.7 196.0
POL 11.1 4.4 59.8 14.3 18.3 34.9 2.0 2.1 4.0 31.8 13.8 85.0
PRT 5.7 1.4 33.2 8.7 8.9 19.6 4.1 1.3 1.0 3.5 10.3 63.7
ROU 6.8 1.9 35.4 9.7 8.4 7.8 1.7 1.7 1.2 6.7 2.7 37.0
SVK 6.8 1.6 54.9 4.2 8.4 20.3 1.6 1.7 0.4 5.9 10.1 87.2
SVN 7.1 2.4 81.7 12.0 16.2 25.8 5.2 3.4 2.3 9.7 13.3 68.0
SWE 4.4 2.1 40.6 6.2 4.9 22.3 1.1 1.5 0.6 11.5 9.5 83.2
TUR 10.4 4.6 53.6 8.1 12.4 32.8 4.3 1.8 3.2 5.4 11.9 41.9
TWN 8.8 5.3 177.5 5.5 21.3 44.9 5.3 1.4 1.1 4.1 11.5 79.4

AVE 8.5 5.9 63.8 10.3 13.9 34.3 3.9 3.6 4.6 13.3 15.9 95.5
Notes: This table shows energy expenditure in each sector as a percentage of the total energy expenditures
that can be feasibly exempt in each country under the baseline calibration assumptions.
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Figure 2.6: Percentage Change in 2020 Carbon Tax due to Sectoral Exemptions

Notes: This figure illustrates the average percentage change in the 2020 carbon tax as a function of the
percentage of maximum sectoral tax exemptions that are granted. The blue, orange and red lines refer to
calibrations consistent with the 1.5◦C, 1.7◦C and 2.0◦C temperature targets, respectively; the circle-, cross-
and triangle-shaped markers refer to calibrations that use a value of σe equal to 1.1, 1.5 and 2, respectively.

Figure 2.7: Discounted Output Losses Relative to Optimal Policy (2020-2049, Percentage
Difference)

Notes: This figure illustrates the average increase in discounted output losses as a function of the percentage
of maximum sectoral tax exemptions that are granted. The blue, orange and red lines refer to calibrations
consistent with the 1.5◦C, 1.7◦C and 2.0◦C temperature targets, respectively; the circle-, cross- and triangle-
shaped markers refer to calibrations that use a value of σe equal to 1.1, 1.5 and 2, respectively.
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2.5.3 Tax and Output Implications of Sectoral Exemptions

To assess the implications of providing these sectoral exemptions, I examine what happens
across countries as each economy provides a given percentage of their maximum feasible
exemptions λ̄0e. Under the baseline calibration scenario, the average path of carbon taxes
increases by 59.6% when 40% of the maximum possible exemptions are granted by a country
and 333.1% when 80% of the maximum possible exemptions are granted by a country. In the
limit, carbon taxes approach infinity as 100% of possible exemptions are granted. The tax
increase necessitated by providing such sectoral exemptions is decreasing in the elasticity of
substitution between dirty and green energy as the non-exempt sectors of the economy are
more responsive the higher tax rates.

Turning to the welfare implications, 0.8% and 2.9% of discounted GDP over the transition
period is lost relative to the optimal policy when 40% and 80% of maximum exemptions are
granted, respectively. The output losses associated with the sectorally inefficient policy are
higher when the carbon budget and elasticity of substitution are lower. This follows from the
fact that a lower carbon budget or elasticity of substitution requires higher carbon taxes for
a given set of exemptions. This increase in carbon taxes increases the average gap between
the optimal tax and the suboptimal tax across all sectors, thus increasing the distortions
associated with the suboptimal tax policy. The marginal cost of these sectoral exemptions is
increasing as more exemptions are provided, starting at zero and eventually becoming larger
than the costs of efficient policy itself.

2.6 Expenditure Share Changes

A key assumption of the model used in this chapter is that all elasticities of substitution
other than the elasticity between dirty and green energy are equal to one. This implies
that expenditure shares in the model are constant with the exception of the share of energy
spending going to dirty and green energy. In reality, expenditure shares are not constant,
changing over the business cycle and long-term growth path. Hulten’s Theorem (Hulten,
1978) tells us that a model with fixed expenditure shares can be used to approximate up to
a first order the effects of shocks to a more general multi-sectoral model with intermediate
input linkages. Baqaee and Farhi (2019) show that the higher order effects of shocks depend
on how sales and factor shares change in response to these shocks. It follows that a key
consideration in assessing whether the model presented in this chapter is likely to provide
quantitatively reasonable results is the extent to which sales and factor shares are expected
to change along the transition path.
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Figure 2.8 shows the path of the sales and factor shares (λi,t, λe,t, λl,t, λk,t) in the data
when averaged over all countries. The sales/factor shares for each country are demeaned
before this averaging, showing the extent to which the data deviates from the calibrated
values used in the model. An inspection of this figure suggests that most of these expenditure
shares have remained relatively stable between 2000 and 2014 aside from a few notable
exceptions. First, the sales share of manufacturing shows more volatility than the other
sectors of the model in absolute terms. Given the large drop in the manufacturing sales
share in 2009, these changes could be correlated with the business cycle but do not seem to
illustrate a secular trend. Second, some sectors appear to show secular trends, most clearly
in the Other Services sector but also in Financial Services and Agriculture. These changes
are consistent with the broad patterns of structural transformation, with the agricultural
sector shrinking and the service sector growing in relative terms.

Table B.5 shows the cross country distribution of the standard deviation for each sec-
tor/factor share from 2000 to 2014. A key point that emerges from this table is that in the
Other Services and Financial Services sectors, a large share of the fluctuations over time have
been driven by a handful of small countries (Ireland, Luxembourg, and Malta) whose sectoral
shares changed in large part due to their special tax status and accounting-related changes in
economic statistics. The secular trends in these shares in the cross-country averages should,
therefore, be interpreted with caution. The volatility in the manufacturing sector observed
in Figure 2.8 is, however, widespread across countries rather than being driven by a smaller
number of outliers.

While it is difficult to make a precise assessment of the quantitative impact of these
fluctuations in the sales/factor shares on the results of the model, the data presented here
does provide some evidence to suggest that the assumptions of the model are not unreas-
onable. For the countries studied, the sales and factor shares are relatively constant over
a 15 year period (half of the transition period in the model). The period captured by the
data also included two recessions and significant energy price fluctuations. Given that most
of the countries in my sample are high-income countries that are relatively mature in their
process of structural transformation, assuming constant expenditure shares alongside a shift
in energy spending from dirty to green energy during the transition path could be a fairly
good approximation.

Although the evidence presented here is certainly not enough to be taken at face value,
it does suggest that the simplified framework presented in this chapter can provide useful
policy insights.
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Figure 2.8: Average Sales and Factor Share Changes (Percentage Points, 2000-2014)

Notes: This figure illustrates path of the demeaned sales and factor shares averaged across all economies.
LAB and CAP refer to the labour and capital shares, respectively (excluding value added in the energy
sector).
Source: Timmer et al. (2015); Author’s calculations.
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2.7 Conclusion

This chapter outlines how climate policy should be formulated in small open economies
that have committed to limiting themselves to a carbon budget. For the vast majority
of economies, it is reasonable to take the path of climate change and interest rates on
international borrowing as given. It thus follows that the optimal carbon tax is equalised
across all sectors of the economy and grows in line with the real interest rate over time.
There is significant variation in the optimal carbon tax across countries, with a corresponding
degree of variation in the welfare costs of the policy too. While the costs of optimal policy
are non-trivial, they also tend to be manageable under most assumptions, rarely exceeding
5% of the discounted value of GDP over the transition period.

By modelling a sectorally disaggregated economy, I am also able to assess the implications
of providing sectoral exemptions to the carbon tax. I make the simplifying assumptions that
sectors are homogenous in their use of energy inputs absent policy and either pay the full
carbon tax or are completely exempt from it. In this case, the maximum share of emissions
that can be exempt from the carbon tax is given by the inverse of the ratio of unregulated
emissions over the transition period to the carbon budget. As a country provides a greater
proportion of these maximum possible exemptions, the carbon tax required to meet its
climate commitments increases as do the inefficiency costs of providing such exemptions.
While the inefficiency costs of these exemptions are negligible to begin with, they eventually
become significant, with the total cost of the climate policy more than doubling as the
maximum feasible exemptions are granted. On average, final energy demand alone or energy
demand from the manufacturing and transport sectors combined is enough to exhaust almost
all the exemptions that can be feasibly granted by a country when it has a carbon budget
consistent with a 1.7 ◦C global temperature target.

Two extensions to this paper would be particularly useful in providing further guidance
to policy. First, while the structure of the model can accommodate variation in patterns
of energy use and substitution across sectors, I make the simplifying assumption that all
sectors are technologically homogenous in this regard. I do so to limit the data required to
calibrate the model. Consequently, the only sectoral heterogeneity in energy use is the result
of sectorally targeted policies. It would be interesting to allow for sectoral heterogeneity in
the CES energy aggregator that is set to match sectoral data on energy use. Such a change
would have potentially large implications for the results, particularly those in Sector 2.5 as
there may be important interactions between policies and technology at the sectoral level.

A second useful extension would be to relax the assumption of unitary elasticities in
non-energy sectors. These assumptions keep the model tractable and limit the calibration
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requirements, allowing the optimal policy to be easily simulated across a wide range of eco-
nomies. It is also easy to understand the mechanisms driving the model, and the quantitative
implications from adjusting a wide range of parameters and exogenous variables in the model
can quickly be assessed. Although the evidence presented in Section 2.6 suggests that the
framework used in this chapter may provide a quantitatively reasonable approximation to a
more general model, it is only by extending the framework and simulating the results that
this point can be formally assessed.
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Chapter 3

Premature Deindustrialisation and
Global Integration

3.1 Introduction

The stylised facts of structural transformation are now well established: as an economy
grows, the share of agriculture in the economy declines, the share of services increases, and
the share of manufacturing initially increases and then declines (Herrendorf et al., 2014). A
more recently documented fact is that the structural transformation process in high income
countries (HICs) and low and middle income countries (LMICs) appears to be qualitatively
similar but quantitatively different (Dasgupta and Singh, 2007; Felipe et al., 2019; Huneeus
and Rogerson, 2020; Palma et al., 2005; Palma, 2014; Rodrik, 2016; Sposi et al., 2021).
In particular, LMICs tend to have lower peak manufacturing shares (whether measured in
terms of employment, or nominal or real value added) that occur at lower levels of per capita
output than the early industrialising HICs, a shift referred to by Rodrik (2016) as ‘premature
deindustrialisation’.

The aim of this chapter is to understand the causes of this premature deindustrialisation.
To do so, I proceed in three steps. First, I show that the premature deindustrialisation
documented in the country-level data is less prevalent in the aggregated data for HICs and
LMICs. This discrepancy between the aggregate and average industrialisation trends for
these broad income groups is caused by the uneven distribution of manufacturing activity
across countries, pointing to the role of international trade as a potential cause of the shifting
patterns of structural transformation identified in the data. Second, I examine how the global
environment faced by early and late industrialisers is likely to have differed. There has been
a dramatic increase in total trade relative to GDP since the 1960s, with HICs and LMICs
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being similarly exposed to this unprecedented degree of global integration. In addition to
deepening trade in goods, recent decades have brought new opportunities for trade in services
that did not exist for early industrialisers at the beginning stages of their development. These
changes in the volume and composition of international trade have also coincided with many
LMICs running trade deficits that are persistent over time and large relative to the size
of their economies. These deficits have been financed by the substantial aid, remittance
and financial flows that are all features of the modern, globalised world. Both theory and
evidence suggest that these developments could play an important role in shaping the size
of the manufacturing sector in LMICs. The third and final part of the paper uses a multi-
sector Eaton and Kortum (2002) model to quantitatively assess the effect of these three
aspects of global integration (trade in goods, trade in services, and trade imbalances) on the
sectoral composition of GDP in nine LMICs and four regional aggregates that constitute the
remaining global economy economy1.

The results of these counterfactual exercises suggest that changing patterns of global
integration may be partly responsible for the observed patterns of premature deindustrial-
isation. Closing down trade has almost no effect on the global manufacturing share, but it
does lead to a more even cross-country distribution of manufacturing across the nine LMICs
I study. This is because most LMICs in the sample run trade deficits in manufacturing in
the baseline equilibrium. As trade is closed, domestic production is rebalanced to match do-
mestic demand and their manufacturing sectors expand. The two exceptions to this pattern
are China and to a lesser degree India, who both ran surpluses in manufacturing in 2014
and thus see their manufacturing sectors shrink absent any trade. Trade in both goods and
services play an important role in these reallocations, while the impact of trade imbalances is
significantly smaller. Although the counterfactual exercises are qualitatively consistent with
the notion that changing patterns of global integration have contributed to deindustrialisa-
tion pressures in LMICs, the effects tend to be small in magnitude. Across the LMICs in
my model, the average gain in manufacturing share is just 1.1 percentage points, suggesting
that either there are key mechanisms missing from the model and/or other driving forces of
deindustrialisation are at play.

Related Literature. Although there is an extensive literature on structural transform-
ation, much of the earlier literature focused on closed economy channels of structural trans-
formation, particularly those arising due to the ‘Baumol Effect’ (non-unitary elasticities of
substitution interacting with differential rates of productivity growth across sectors) and/or
the ‘Engel effect’ (different income elasticities across sectors due to non-homothetic prefer-

1The nine LMICs are Bulgaria, Brazil, China, Indonesia, India, Mexico, Romania, Russia, and Turkey.
See Appendix C.1 for details on the regional aggregates and sectoral aggregation scheme.
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ences) (Acemoglu and Guerrieri, 2008; Boppart, 2014; Buera and Kaboski, 2009; Duarte and
Restuccia, 2010; Foellmi and Zweimüller, 2008; Ngai and Pissarides, 2007). In focusing on
the influence of international trade on industrialisation, I contribute to the more recently de-
veloped strand of the literature that analyses structural transformation in an open economy
setting (Alessandria et al., 2021; Cravino and Sotelo, 2019; Lewis et al., 2022; Matsuyama,
2009, 2019; Sposi, 2019; Święcki, 2017; Teignier, 2018; Uy et al., 2013).

The literature around the question of premature deindustrialisation specifically is also a
relatively recent development within the broader study of structural transformation. Early
work by Palma (2005; 2014) and Dasgupta and Singh (2007) pointed to the existence of
changing patterns of industrialisation across countries, while Rodrik (2016) coined the phrase
‘premature deindustrialisation’ to refer to these trends and provided broader empirical sup-
port for their existence. While there has been some push-back against the notion of prema-
ture deindustrialisation, particularly in specific regions and/or periods (Kruse et al., 2021;
Nguimkeu and Zeufack, 2019), a number of subsequent studies have found that premature
deindustrialisation is an empirical regularity of the cross-country data (Felipe et al., 2019;
Huneeus and Rogerson, 2020; Sposi et al., 2021). I add to this evidence base by show-
ing that much of the documented premature deindustrialisation is happening due to the
cross-country distribution of manufacturing within HICs and LMICs rather than because
of changing patterns of structural transformation at the global level or between HICs and
LMICs as aggregate groups. The evidence I present is complementary to that of Haraguchi
et al. (2017) and Sposi et al. (2021) who show that the distribution of manufacturing output
across countries has become increasingly polarised over recent decades.

A few recent papers have used macro models to assess the causes of this premature
deindustrialisation. Fujiwara and Matsuyama (2020) develop a model of structural trans-
formation driven by the Baumol and Engel effects in which there are sectoral technology gaps
between countries due to a lag in the diffusion of technology improvements from the frontier
to follower countries. Although they do not take their model to the data, the authors show
that their model can generate the premature deindustrialisation observed in the data for
reasonable parameterisations. Similarly, Huneeus and Rogerson (2020) use a model of tech-
nology gaps across countries to generate cross-country differences in the process of structural
transformation. Taking their model to the data, they find that they are able to account for
the observed patterns of premature deindustrialisation. Aside from the exogenous diffusion
of technology across countries, Huneeus and Rogerson (2020) use a closed economy model
in which countries do not interact with each other. Wise (2021) extends these ideas to an
open economy setting. In particular, technology gaps in his model are generated by the fact
that while all countries have the same sequence of sectoral productivity growth rates over
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time, this common growth process is initiated in different countries at varying points in time.
Due to these different initial conditions and the presence of international trade, early and
late industrialisers face very different relative prices across sectors at a given point in their
growth process, implying different industrialisation experiences. This chapter is distinct
from these three papers in that I conduct a counterfactual exercise in which I shut down
various dimensions of international trade to assess how trade has influenced the distribution
of manufacturing shares across countries. By using the ‘exact hat algebra’ popularised by
Dekle et al. (2008), I am able to conduct these counterfactual exercises without making
any assumptions on the growth rates of sectoral TFP and how they vary across countries,
remaining agnostic on other potential drivers of structural transformation.

Sposi et al. (2021) quantitatively assess the forces that can account for changing patterns
of industrialisation across countries using a dynamic, open economy model of structural
transformation. They conduct a set of counterfactual exercises that involve shutting down
sectorally-biased productivity growth, shutting down international trade, and shutting down
both simultaneously. They show that the interaction of the two effects is able to account
for a significant proportion of the premature deindustrialisation observed in the data. My
chapter is most closely related to this paper in that I also consider the effect on the cross
country distribution of manufacturing shares of counterfactually shutting down international
trade. My work is distinct from theirs, however, in that I decompose the effects of trade
openness into four dimensions (trade in agriculture, manufacturing and services, and trade
imbalances) and I calibrate my model to a wider set of LMICs. A critical shortcoming of
most quantitative modelling on structural transformation is a focus on larger, higher-income
countries due to data limitations. This means that few, if any, low- and lower-middle-income
countries are included in this work. As I argue in Sections 3.2 and 3.3 of this chapter,
understanding the structural transformation of these rarely studied economies is likely to be
crucial for understanding the cross-country deindustrialisation trends observed in the data.
Adding Bulgaria, Romania and Russia to my sample of LMICs makes it more representative
in a number of key ways. By adding these economies to my model and decomposing the
various effects of trade on industrialisation, I am able to generate additional insights that
potentially shed light on the forces at play across other LMICs not in the model.

Roadmap. The rest of the chapter is organised as follows. Section 2 outlines and
interprets the existing evidence on premature deindustrialisation, pointing to the key role
of international trade. Section 3 provides evidence on the evolution of international trade
over time that is potentially of relevance to the process of structural transformation across
countries. Section 4 of the chapter outlines the quantitative model used to conduct the
various counterfactuals, discusses the calibration of this model and presents the results of
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the quantitative exercises. Section 5 concludes.

3.2 Premature Deindustrialisation: Revisiting the Evid-
ence

The baseline regression run by Rodrik (2016) to demonstrate the existence of premature
deindustrialisation takes the form

mit = β0+β1 ln popit+β2 (ln popit)2+β3 ln yit+β2 (ln yit)2+
∑
i

γiDi+
∑
T

φTPERT +ϵit (3.1)

where countries are indexed by i, years are indexed by t, mit is the labour/value added share
of manufacturing, popit is population, yit is GDP per capita, Di are country fixed effects, and
PERT are decade dummies. This regression is run using data from the Groningen Growth
and Development Centre’s 10-Sector Database (Timmer et al., 2015a), which provides an
unbalanced panel of sectoral labour and output shares for 42 economies running from the late
1940s to the early 2010s, combined with data from the Maddison Project and the World Bank
on population and GDP per capita. Rodrik (2016) finds that the estimated coefficients on
the decade dummies φT are significant and negative, and increasing in magnitude over time
(taking the 1940s and 1950s combined as the base period for the decade dummies). He also
finds that these deindustrialisation trends are most pronounced for the sectoral employment
share of manufacturing and least pronounced for the real value added share.

I take regression (3.1) as a starting point for my empirical analysis but rerun it using a
larger cross section of countries. The United Nations (2021) provides sectorally disaggregated
data on value added in real and nominal terms for almost all countries starting from 1970.
I combine this data with data on total population and per capita output (measured in 2017
International Dollars) from the Penn World Tables (Feenstra et al., 2015). Combining these
data sets, I construct a balanced panel of 182 countries over 50 years (1970 to 2019) with
the data required to run regression (3.1). Some of the countries in this sample either split
or combined during the sample period. For countries that split up (most notably, member
states of the former USSR and Yugoslavia), I impute their missing data by calculating their
average contribution to the parent state aggregates post independence and applying this to
the historical data from the parent state. For countries that have merged, I calculate the
missing historical data by aggregating the relevant data from the individual constituents.
Following this procedure, the countries missing from this final panel are almost exclusively
islands and city states with small populations (such as Tonga and Andorra), or fragile or
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Table 3.1: Regression Results - Manufacturing Share of Nominal VA (1970-2019)

World HICs/LMICs Country Level

ln population -119.23 (330.87) -221.66* (48.28) 7.59* (0.78)
ln population squared 2.46 (7.39) 4.71* (1.11) 0.00 (0.03)
ln GDP per capita -32.17 (72.68) 23.44* (7.19) 10.40* (1.00)
ln GDP per capita squared 1.67 (3.92) -1.19* (0.39) -0.50* (0.05)
1980s -0.85* (0.30) -0.58** (0.22) -2.03* (0.16)
1990s -1.78* (0.49) -1.45* (0.38) -5.52* (0.18)
2000s -2.99* (0.66) -2.09* (0.50) -8.48* (0.22)
2010s -2.36* (0.87) -2.10* (0.63) -11.12* (0.26)
Country/Region F.E. — Yes Yes
Countries/Regions 1 2 182
Observations 50 100 9100

Notes: Robust standard errors are reported in parentheses. Levels of statistical significance: *99%, **95%,
***90%. World, HICs/LMICs, and Country Level refer to the results from regression 3.1 aggregated at the
global level, high-income and low- and middle-income levels, and the country level, respectively.
Source: Feenstra et al. (2015); United Nations (2021); Author’s calculations.

Table 3.2: Regression Results - Manufacturing Share of Real VA (1970-2019)

World HICs/LMICs Country Level

ln population -397.62* (123.55) -205.86* (40.09) 4.65* (0.93)
ln population squared 8.85* (2.76) 4.82* (0.92) -0.10* (0.03)
ln GDP per capita 52.45*** (28.29) -7.17 (5.41) 13.19* (1.11)
ln GDP per capita squared -2.66*** (1.55) 0.45 (0.30) -0.61* (0.06)
1980s -0.37* (0.10) -0.60* (0.17) -0.23*** (0.12)
1990s -0.89* (0.18) -1.23* (0.23) -1.09* (0.14)
2000s -0.90* (0.24) -1.02* (0.30) -2.08* (0.16)
2010s -0.90*** (0.46) -1.20* (0.40) -3.51* (0.19)
Country/Region F.E. — Yes Yes
Countries/Regions 1 2 182
Observations 50 100 9100

Notes: See Table 3.1 notes.
Source: Feenstra et al. (2015); United Nations (2021); Author’s calculations.
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internationally isolated LMICs (such as Afghanistan and North Korea), Taiwan being the
notable exception. In total, this dataset covers over 98% of both the global population and
GDP for all years in the panel.

I run regression (3.1) on this data at three levels of aggregation: for the world as a whole,
for the world when split into two income groups (HICs and LMICs), and at the country-
level. Figure 3.1 shows the estimated decade dummies (relative to the baseline decade of
the 1970s), and Tables 3.1 and 3.2 present the full set of results from this exercise. Two
key points emerge from these results. First, the country-level findings from this broader
sample are consistent with those found by Rodrik (2016). A significant and progressively
increasing deindustrialisation trend is evident, and this trend is larger for nominal value
added than real value added. The magnitudes of the estimated effects are also broadly
consistent. Second, the results show that while there is evidence to suggest that there has
been downward pressure on manufacturing shares for the world as a whole since 1970, much
of the premature deindustrialisation observed in the cross country data is not due to changes
in the global manufacturing share or how manufacturing output is distributed between HICs
and LMICs, but rather how it is distributed within these two broad income groups.

Figure 3.1: Manufacturing Value-Added Share Regression: Decade Fixed Effect Estimates

Notes: This figure illustrates the estimated decade fixed effects (relative to the baseline period of the 1970s)
from running regression 3.1.
Source: Feenstra et al. (2015); United Nations (2021); Author’s calculations.

The effect of averaging rather than aggregating across countries within an income group-
ing can clearly be seen in Figure 3.2. This figure plots the manufacturing share of output
on the vertical axis and the log of GDP per capita on the horizontal axis for HICs and

100



LMICs. For both the nominal and real output share, I plot: (i) the aggregate manufacturing
share and aggregate GDP per capita for HICs and LMICs as a whole and (ii) the average
manufacturing share and average GDP per capita for countries within the HIC and LMIC
groupings2. When looking at the figures produced by the income group averages (which
reflect the same level of aggregation as the country-level regressions), the case for premature
deindustrialisation amongst LMICs is evident. In terms of the average value added share in
nominal terms, the LMIC curve is shifted down and to the left in comparison to the HIC
curve. As with the regression results, the average value added share in real terms appears
to have held up more in LMICs against this premature deindustrialisation trend. While
the average peak manufacturing share may be similar across the two groups in real terms,
however, the timing of this peak still appears to occur at much lower levels of income per
capita for LMICs.

In contrast, the scatter plots for the aggregate manufacturing share show a very different
picture. Although LMICs as a group are deindustrialising in nominal terms and this dein-
dustrialisation appears to have set in at a lower level of per capita income than for HICs as
a whole, there is no clear evidence to suggest they experienced a lower peak share of man-
ufacturing or that this share will be lower than the HIC share once they reach comparable
levels of per capita GDP. The change is even more dramatic when looking at the aggregated
data for the real value added share of manufacturing: LMICs as a group experienced five
decades of significant industrialisation from 1970 to 2019 and it is not clear that they have
yet reached their deindustrialisation phase. The current real share of manufacturing is also
significantly higher than the real share for the HIC aggregate at any period in the data,
although it is possible that the real share for HICs as an aggregate peaked before the start
period of the sample (1970).

Taken together, the evidence presented in this section suggests that premature deindus-
trialisation is not so much a phenomenon operating at the aggregate level of the global
economy or between LMICs and HICs, although there certainly may be contributing factors
operating at this level, but is rather a phenomenon that has been driven by changes in the
cross country distribution of manufacturing output within LMICs themselves. This reading
of the data is consistent with the findings of Haraguchi et al. (2017) and Sposi et al. (2021)
who both find that the polarisation of manufacturing activity has increased in recent dec-

2While Haraguchi et al. (2017) conduct a similar exercise, they present the time series of the relevant
manufacturing shares for LMICs and HICs. While it is somewhat instructive to see how the discrepancies
between the average and aggregate shares have evolved over time for LMICs and HICs, the key question
from the perspective of the structural transformation literature is whether the relationship between the
manufacturing share and GDP per capita is systematically different for HICs and LMICs. It is, therefore,
essential to condition the results relating to manufacturing share changes on the relevant measure of GDP
per capita, as I do in Figure 3.2.
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Figure 3.2: Manufacturing Share of Value Added (1970-2019)

Notes: This figure illustrates the manufacturing share of value added against the log of income per capita
(2017 PPP USD) for high income countries (HICs), low and middle income countries (LMICs) and the
world as a whole. Subplots in the first column show the results when aggregating across all countries in the
respective groups; subplots in the second column show the results when averaging across all countries in the
respective groups.
Source: Feenstra et al. (2015); United Nations (2021); Author’s calculations.

ades, with manufacturing output increasingly being concentrated in a relatively small set of
countries, many of which tend to have above average population sizes. It therefore follows
that any attempt to explain the premature deindustrialisation observed in the data should
take into consideration the role of international trade.

3.3 Premature Deindustrialisation: The Role of Inter-
national Trade

Broadly speaking, international trade may have contributed to premature deindustrialisation
in two ways. First, the trading partners of late industrialisers have different characteristics
than the trading partners of early industrialisers at comparative stages of their development.
By importing lower relative prices for manufactures through either technology diffusion or
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import competition (the Baumol effect) combined with higher demand for services from
higher income countries conditional on relative prices (the Engel effect), late industrialisers
face deindustrialisation pressures sooner than earlier industrialisers. These are the channels
emphasised in much of the existing work that attempts to account for premature deindus-
trialisation in LMICs (Fujiwara and Matsuyama, 2020; Huneeus and Rogerson, 2020; Wise,
2021). Second, conditional on a given set of trading partners and their characteristics, late
industrialisers are integrated with their trading partners in a very different manner than
earlier industrialisers were at the begging of their industrialisation process. The evidence
presented in Section 3.2 suggests that these changing patterns of global integration have
played an important role given that much of the premature deindustrialisation observed in
the data appears to be driven by the distribution of manufacturing activity across LMICs
rather than an aggregate loss of manufacturing activity in LMICs as a whole. To motivate the
counterfactual exercises I conduct in Section 3.4 of this chapter, I outline three key dimen-
sions of global integration that are likely to differ from the early period of industrialisation
in HICs.

3.3.1 Total Trade

In terms of the overall volume of trade, the typical LMIC is likely to be more globally
integrated than the typical HIC at a given stage in their industrialisation process. The total
volume of international trade (exports plus imports) relative to world GDP has increased
to historically unprecedented levels since the 1960s. The so-called first era of globalisation
lasted from the mid 1800s to the beginning of the first World War. As illustrated in Figure
3.3, global trade as a percentage of GDP peaked at just under 30% before the First World
War. While this peak was substantially higher than estimates of global trade openness in
preceding periods, it is still small relative to the contemporary era of globalisation that
started in the 1960s. The current wave of globalisation has lead to a doubling of trade flows
relative to the size of the global economy, with trade to GDP peaking at 61% before the
Great Recession in 2008.

Importantly, this significant increase in global integration has been experienced across
all income groups in the cross-country income distribution. As shown by 3.4, although HICs
have tended to have a slightly higher degree of openness than LMICs in the aggregate, any
dispersion in trade openness across income groups has been relatively small (especially from
1990 up to the 2008 recession). Given the historical measures of trade openness in Figure
3.3 at the global level, it is likely that the typical LMIC has been much more exposed to
global trade than the typical HIC at equivalent points in their respective industrialisation.
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Figure 3.3: Total Trade as a Percentage of GDP (World, 1870-2017)

Notes: This figure illustrates the sum of world exports and imports as a percentage of world GDP. The
estimates from 1870 to 1949 come from Klasing and Milionis (2014); the estimates from 1950 to 2017 come
from Feenstra et al. (2015).
Source: Our World in Data (2022)

Figure 3.4: Total Trade as a Percentage of GDP (1960-2021)

Notes: This figure illustrates the sum of exports and imports as a percentage of GDP by income group.
Income groups (as classified by the World Bank) are abbreviated as follows: High Income Countries (HICs),
Upper-Middle Income Countries (UMCs), Lower-Middle Income Countries (LMCs), Low Income Countries
(LICs).
Source: World Bank (2022)
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3.3.2 Trade in Services

In addition to a deepening of trade, there have also been significant changes in the compos-
ition of global trade over the last fifty years. One notable development has been the rise of
the trade in services. Figure 3.5 shows the large increase in global trade in services from
1975 to 2020. While HICs have been more exposed than average to this trend and there is
more substantial variation in the exposure to trade in services than trade in goods across
the broad income categories, LMICs have been meaningful participants in such trade.

Figure 3.5: Total Trade in Services as a Percentage of GDP (1970-2021)

Notes: This figure illustrates the sum of exports and imports of services as a percentage of GDP by income
group. Income groups (as classified by the World Bank) are abbreviated as follows: High Income Countries
(HICs), Upper-Middle Income Countries (UMCs), Lower-Middle Income Countries (LMCs), Low Income
Countries (LICs).
Source: World Bank (2022)

Many services have historically been non-tradable as they required the producer and
consumer to be physically present in the same location for the service to be delivered. Tech-
nological changes in recent decades, however, have facilitated the increase in the international
trade in services in two fundamental ways. First, technological development in the telecom-
munications sector has meant that many services that previously required physical proximity
can now be delivered remotely. Figure 3.6 shows the growth of services defined as ‘digitally
deliverable’ by UNCTAD3. These services form a substantial and growing share of total ser-
vice exports across all income groups (although some LMICs are still significantly less reliant

3Digitally-deliverable services are defined by UNCTAD STAT as ‘an aggregation of insurance and pension
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on such exports than HICs). While the data reflect the share of service exports that could be
digitally traded (‘digitally deliverable’) rather than those that are actually digitally traded
(‘digitally delivered’), these trends are still instructive. The data show that conditional on
the required ICT infrastructure being in place, many LMICs have the necessary comparative
advantage to export digital services to the world. Given the increasing penetration of ICT
infrastructure in LMICs, it stands to reason that the rise of ‘digitally deliverable’ services
has been accompanied by a rise in ‘digitally delivered’ service exports, and this trend is likely
to continue moving forward. To the extent that this is the case, the information technology
revolution has opened up opportunities for service exports that would have been unavailable
to the early industrialising HICs.

Figure 3.6: Percentage of Service Exports that are Digitally-Deliverable (2005-2020)

Notes: This figure illustrates the percentage of service exports that are classified as digitally-deliverable by
income group. Income groups (as classified by the World Bank) are abbreviated as follows: High Income
Countries (HICs), Upper-Middle Income Countries (UMCs), Lower-Middle Income Countries (LMCs), Low
Income Countries (LICs). Digitally-deliverable services are defined by UNCTAD STAT as ‘an aggregation
of insurance and pension services, financial services, charges for the use of intellectual property, telecommu-
nications, computer and information services, other business services and audiovisual and related services’.
Source: UNCTAD STAT (2022)

A second fundamental change to the non-tradability of services has followed from ad-
vances in the transportation sector, particularly the aviation industry, that have lead to the
development of a mass market for international travel. As shown by Figure 3.7, flights taken

services, financial services, charges for the use of intellectual property, telecommunications, computer and
information services, other business services and audiovisual and related services’.
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Figure 3.7: Ratio of Air Passengers Carried to World Population (1970-2020)

Notes: This figure illustrates the total number of air passengers carried globally (both domestic and inter-
national) divided by the total world population on an annual basis from 1970 to 2020.
Source: World Bank (2022); Author’s calculations.

Figure 3.8: Tourism as a Percentage of Total Exports and ln GDP Per Capita by Country

Notes: This figure illustrates average international tourism receipts as a percentage of total exports from
1995 to 2019 and the natural log of GDP per capita in 2019 (measured in 2017 PPP USD) by country. All
countries with at least one data point for tourism receipts between 1995 and 2019 are included (a total of
182 countries). Of these countries, 169 have data for all years between 1995 and 2019. See Figure C.3 in
Appendix C.3 for details on the missing data.
Source: World Bank (2022); Author’s calculations.
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per capita at the global level increased over sevenfold from 1970 to 2019 (the sharp decline
in 2020 representing the Covid shock). As discussed with other types of trade, the impact
of this rise of mass international travel has been felt across all income groups. Figure 3.8
shows average international tourism receipts as a percentage of exports between 1995 and
2019 by country as a function of each country’s log GDP per capita in 2019. It is clear
from this figure that there are a large number a LMICs who rely heavily on international
tourism for export revenue. Although no comparable data exists for the early era of HIC
industrialisation, it seems safe to assume that only a handful of economies, if any, would
have been similarly dependent on tourism as an export during this era given the fairly recent
emergence of mass tourism.

This rise in the tradability of services during the current era of globalisation has provided
opportunities for late industrialisers to exploit potential comparative advantage in service
sectors that would have not been available to early industrialisers. While it is still true
that export growth is a necessary condition of development for all but possibly the largest
of economies, the data presented above shows that the composition of exports can now be
much more tilted towards the service sector. This means that some LMICs can potentially
grow, diversify and integrate with the global economy by shifting resources directly from
agriculture to services without ever developing a large manufacturing base.

3.3.3 Trade Imbalances

A final dimension of the modern era of globalisation worth mentioning is the existence of
large and persistent trade imbalances across countries. Figure 3.9 shows the cross-country
distribution of average trade balances as a percentage of GDP between 1995 and 2019. The
median value of this distribution is -3.7% of GDP, with the average balance only reaching 0%
of GDP at the 65th percentile of the distribution. Amongst countries whose average balance
was negative, the cross-country average of the average balance was -14.2% of GDP; the
corresponding figure for countries whose average balance was positive was 9.7% of GDP. In
addition to the distribution of average trade balances relative to GDP being skewed in these
ways, deficit and surplus countries tended to have different characteristics. In particular,
countries that ran deficits on average also tended to be far smaller and poorer than surplus
countries, with an average population size of 23.9 million and average GDP per capita of
$7,624 (in 2017 International Dollars) compared to average values of 38.9 million and $27,138
for surplus countries, respectively. In sum, a relatively small number of larger, higher income
countries have persistently run trade surpluses that support the persistent trade deficits of
a relatively larger group of smaller, lower income countries, with the trade imbalances in
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the surplus countries tending to be smaller relative to the size of their economies than the
imbalances in the deficit countries. I further verify this result by running the following
regression

Balanceit = β0 + β1 ln yit + β2 ln Yit + β3Oilit+
2019∑
t=1996

φtY eart + ϵit (3.2)

where i indexes countries, t indexes years, Balanceit is country’s trade balance as a percent-
age of their GDP in year t, yit is GDP per capita, Yit is aggregate GDP, Oilit is a country’s
oil rents as a percentage of their GDP, and Y eart is a year fixed effect. The results from
running regression 3.2 show that within a given year, poorer and smaller countries tend to
run larger deficits relative to GDP.

Figure 3.9: Cross-Country Distribution of Trade Balances (% of GDP, 1995-2019 Average)

Notes: This figure illustrates the cross-country distribution of each country’s average trade balance as a
percentage of their GDP from 1995 to 2019. All countries with at least one data point for the relevant
period are included (a total of 190 countries). Of these countries, 157 have data for all years between 1995
and 2019. See Figure C.1 in Appendix C.2 for details on the missing data.
Source: World Bank (2022); Author’s calculations.
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Table 3.3: Regression Results - Trade Balance as a Share of GDP (1995-2019)

Unbalanced Panel Balanced Panel

ln GDP per capita 1.88* (0.14) 2.04* (0.15) 1.33* (0.13) 1.47* (0.13)
ln GDP 5.28* (0.21) 5.86* (0.22) 4.69* (0.21) 5.07* (0.22)
Oil Rents (% of GDP) 0.60* (0.02) — — 0.56* (0.03) — —
Year Fixed Effects Yes Yes Yes Yes
Country Fixed Effects No No No No
Countries/Regions 177 177 145 145
Observations 4,114 4,114 3,625 3,625

Notes: Robust standard errors are reported in parentheses. Levels of statistical significance: *99%, **95%,
***90%. See Figure C.2 in Appendix C.2 for details on data discrepancies between the unbalanced and
balanced panel.
Source: World Bank (2022); Author’s calculations.

LMICs have financed these persistent deficits using a mix of aid, remittances, and finan-
cial inflows, all of which have grown substantially during the current period of globalisation.
Trade deficits are relevant to the manufacturing share of the economy because they allow
for a lower level of tradable output for a given level of tradable consumption. To the ex-
tent that the agriculture and manufacturing sectors are more tradable than the services
sector (which the data suggests is still the case, despite the rise in trade in services men-
tioned previously4), this would imply that growing trade deficits could be associated with
the simultaneous shrinking of agriculture and manufacturing alongside the rise of services
in low income countries. This type of deficit driven deindustrialisation has theoretical and
empirical support from of the Dutch Disease literature (Acosta et al., 2009; Corden and
Neary, 1982; Lartey et al., 2012; Rajan and Subramanian, 2011), and the sectoral implica-
tions are also consistent with much of the evidence on premature deindustrialisation (Gollin
et al., 2016). Given that the trade deficit countries tend to be smaller, the proportionate
impact of these deficits on their sectoral composition is likely to be larger than the impact
on the surplus countries implying that this could lead to a shift in the average cross country
manufacturing share. While it is difficult to obtain data on trade balances and GDP for a
wide range of economies during the early era of industrialisation, it seems unlikely that the
early industrialisers would have sustained such large and persistent deficits when they were
industrialising.

Taken together, the evidence presented in this section suggests that there are three key
ways in which global integration has differed during early and late stage industrialisation:
trade linkages have deepened, the composition of exports has tilted towards the service sector

4See, for example, Lewis et al. (2022).
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for a substantial number of countries, and many countries now run large and persistent trade
deficits. The next section of the paper evaluates quantitatively the effect of these changes
on sectoral value added shares across countries.

3.4 Counterfactual Results

In this section of the chapter, I use a multi-sector version of the Eaton and Kortum (2002)
trade model developed by Caliendo and Parro (2015) to conduct a number of counterfactual
exercises that shut down various types of integration in the global economy. The first part of
the section presents the model and the equilibrium conditions. I then discuss how I calibrate
the model and take it to the data, before moving on to the results from the counterfactual
exercises that I run.

3.4.1 Model Setup

The world economy is made up of N countries that produce and consume goods and services
in J sectors. Each country n has a representative household with preferences given by

u (Cn) =
J∏
j=1

Cj
n
αj

n (3.3)

J∑
j=1

αjn = 1

where Cj
n is consumption in country n of final output from sector j. Household income (In)

in country n comes from two sources: households supply labour (Ln) for which they receive
wage income (wn), and they receive lump sum income transfers across countries in the form
of trade deficits (Dn). Both Ln and Dn are exogenously determined in the model.

A continuum of differentiated intermediate goods ωj ∈ [0, 1] is produced in each sector
j using labour and composite intermediate goods as inputs. The production function for
intermediate good ωj in sector j in country n is given by

qjn
(
ωj
)

= zjn
(
ωj
) [
ljn
(
ωj
)]γj

n
J∏
k=1

[
mk,j
n

(
ωj
)]γk,j

n (3.4)

J∑
k=1

γk,jn = 1 − γjn

where zjn(ωj) is TFP, ljn(ωj) is labour input, and mk,j
n (ωj) is a composite intermediate input

from sector k. The productivity term zjn(ωj) is drawn from a Fréchet distribution with
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a location parameter λjn and a shape parameter θj. The distribution of productivities is
assumed to be independent across goods, sectors and countries. Production is constant
returns to scale and markets are perfectly competitive, implying that firms price at unit
cost. It follows that prices can be expressed as

pjn
(
ωj
)

= cjn
zjn (ωj)

where cjn is the unit cost component common to all firms operating in sector j in country n.
The expression for cjn is given by

cjn =
(
wn

γjn

)γj
n J∏
k=1

(
P k
n

γk,jn

)γk,j
n

where P k
n is the price of the composite intermediate good from sector k in country n.

The supply of the composite good from sector j in country n is given by Qj
n. This good is

created at minimum cost by purchasing intermediate goods ωj from the lowest cost supplier
globally. The production technology for the composite is a CES aggregator:

Qj
n =

[∫
rjn(ωj)1−1/σj

dωj
]σj/(σj−1)

(3.5)

The composite Qj
n is sold to consumers and intermediate producers in country n at unit

cost. It is assumed that the elasticity of substitution (σj) and the Fréchet shape parameter
of the productivity distribution (θj) are such that 1 + θj > σj. Trade costs take the form
of standard iceberg trade costs, whereby djni > 1 units of the intermediate good in sector j
need to be produced in country i for one unit of the good to be delivered to country n. It is
assumed that djni = 1 and that djni < djnmd

j
mi for any three countries n, m and i.

Total expenditure on sector j goods in country n is denoted by Xj
n = P j

nQ
j
n. Expenditure

in country n on sector j goods imported from country i is given by Xj
ni. It follows that the

share of sector j expenditure in country n that is spent on goods originating in country i is
given by

πjni = Xj
ni

Xj
n

I proceed by solving for the equilibrium using the ‘exact hat algebra’ used by Dekle
et al. (2008). Eaton and Kortum (2002), Dekle et al. (2008), and Caliendo and Parro
(2015) provide detailed explanations of the derivation and solution of these conditions, so
I provide just a brief summary here. For any variable x in a baseline equilibrium, let x′

denote the value of that variable in a counterfactual equilibrium and x̂ = x′

x
be the relative
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change in the variable induced by moving from the baseline equilibrium to the counterfactual
one. I use the 2014 values for GDP and trade flows observed in the data to construct the
baseline equilibrium of the model. I then consider five counterfactual changes to this baseline:
separately eliminating trade in agriculture, manufacturing and services; eliminating trade
imbalances; and imposing autarky on all countries. Since these counterfactual changes are
implemented via exogenous shocks to trade costs and trade deficits, the equilibrium system
of equations in relative changes in all cases is given by:
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I ′
n = ŵnwnLn +D′

n (3.11)

Condition (3.6) is the change in unit costs in sector j of country n induced by the relevant
counterfactual. Since fundamental productivities are left constant, this change is common to
all intermediate variety producers in a given sector-country pair. (3.7) is the change in the
sectoral price index, and (3.8) is the change in bilateral trade shares. (3.9) is the expression
for total expenditure in country n on sector j goods in the counterfactual equilibrium, while
(3.10) is the trade balance equation (adjusting for the new trade deficit) in the counter-
factual equilibrium. Finally, (3.11) is an expression for total household income under the
counterfactual.

3.4.2 Model Calibration

The benefit of adopting this approach is that I can analyse the impact of various counter-
factual changes to global integration on the manufacturing share across countries without
having to estimate a number of parameters and exogenous variables (notably, productivities
and trade costs). To solve the equilibrium system of equations (3.6)-(3.11), I require data on
baseline trade flows (πjni) and GDP (wnLn), along with parameter estimates for consumer
expenditure shares (αjn), producer expenditure shares (γjn, γk,jn ), and the trade elasticities
(θj).
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I obtain values for πjni and wnLn in the baseline year of 2014 from the 2016 version of
the World Input Output Database (Timmer et al., 2015b). This database contains global
input-output tables for 56 sectors and 43 countries and an aggregate region for the rest of
the world. I aggregate this data into 13 countries/regions (including nine LMICs) and three
sectors: agriculture and mining (referred to just as agriculture in the rest of the paper), man-
ufacturing, and services. Appendix C.1 has further details on the aggregation scheme. I also
use the World Input Output Database to calibrate the consumer and producer expenditure
share parameters by setting them equal to the relevant expenditure shares observed in the
data in 2014. Finally, I use estimates of θj from Caliendo and Parro (2015). Caliendo and
Parro (2015) estimate θj for a number of sub-sectors within the sectors that I call agriculture
and manufacturing. To obtain estimates of θj that match my sectoral aggregation, I take
a weighted average of the disaggregated estimates using global GDP shares of the relevant
sub-sectors as weights. They set a single trade elasticity of 8.22 for all service sectors, so I
can map this directly to my model without having to do any aggregation.

I then implement the various counterfactuals as follows. Eliminating trade in sector k
involves letting d̂kni go to infinity for all n ̸= i and setting all other d̂jni = 1. Eliminating trade
imbalances involves setting D′

n = 0 for all n. Finally, imposing complete autarky involves
setting D′

n = 0 for all n, letting d̂jni go to infinity for all n ̸= i and setting d̂jni = 1 otherwise.
All data used to calibrate the model is in current price terms and the output of the model

is also in current price terms. Consequently, I discuss the impact of all counterfactual changes
in terms of the impact on nominal value added shares by sector. Given the assumptions of
a perfectly competitive labour market with a homogenous labour input and no adjustment
frictions, wages are equalised across all sectors. The fact that labour is the only factor of
production also implies that the labour share of value added is one in all sectors. It follows
that nominal value added shares in the model are also equal to sectoral employment shares,
which provides an addition reason to focus on the changes in nominal value added shares as
the relevant output of the model.

3.4.3 Counterfactual Results

This section outlines the results from the various counterfactual exercises. I begin by elimin-
ating trade in each of the three sectors of the model one at a time, while holding the ratio of
each economy’s trade deficit to global GDP constant. I then eliminate trade imbalances in
the model holding trade costs in all sectors constant. These are the four basic counterfactu-
als. I then consider the effect of imposing these four counterfactual changes simultaneously
(that is, imposing autarky on all economies). I also compute the value of the residual inter-
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action effect from imposing the four basic counterfactuals simultaneously as the difference
between the sum of the four changes from the individual counterfactuals and the effect of
moving to autarky. In all cases, I focus on sectoral reallocations in nominal value added,
with a particular focus on changes in the nominal value added share of manufacturing.

The aim of these exercises is to provide qualitative and quantitative insights on the effect
of global integration on manufacturing shares in LMICs. Of course, the process of deepening
and changing global integration since the 1960s described in Section 3.3 did not occur from
an initial equilibrium of autarky, with trade in goods and services and trade imbalances all
being features of the global economy even at that time. The counterfactual exercises do,
however, provide a sense of what the upper bounds on the relevant effects might be. The
advantage of imposing these counterfactuals is this that I do not have to estimate changes
in trade costs since the 1960s to derive my results.

Columns (i)-(iii) of Table 3.4 show the changes in the nominal share of value added in
manufacturing when eliminating all trade in agriculture, manufacturing and services, re-
spectively5. As shown in Figures 3.10, 3.11 and 3.12, the baseline sectoral trade balances
are closely correlated with the counterfactuals changes in manufacturing shares. In partic-
ular, trade surpluses in agriculture (services) are positively correlated with the change in
manufacturing share when trade in agriculture (services) is eliminated. Conversely, trade
surpluses in manufacturing are negatively correlated with the change in manufacturing share
when trade in manufacturing is eliminated. These results are intuitive. When trade in a
given sector is shut down, economies that run surpluses in that sector reallocate some of the
resources from that sector to the other two sectors of the economy, while economies that run
deficits in those sectors expand them at the expense of the other two sectors in the economy.

The slope of the regression line in Figures 3.10, 3.11 and 3.12 is less than one partly
because trade balances are measured in terms of total expenditures/revenue, while the man-
ufacturing share is measured in terms of value added. Because of the presence of intermediate
inputs in the model, changes in the total value of trade flows are larger than the associated
changes in value added from the reallocation of labour. The slope is also larger in absolute
value when trade in manufactures is shut down, as the manufacturing sector is hit directly
by the shock. In contrast, when trade in services is shut down, for example, countries that
were running services sector surpluses shrink their service sector and split the reallocation
of resources across both the agriculture and manufacturing sectors. Consequently, the re-
gression slopes are approximately equal in magnitude for the agriculture and service sector
counterfactuals, and roughly double the magnitude for the manufacturing sector counter-

5For a summary of the key features of the baseline equilibrium, see the relevant figures in Appendix C.4;
full details of sectoral reallocations associated with each counterfactual can be found in Appendix C.5.
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factual. These results show that while direct exposure to competition from manufacturing
imports has been a cause of deindustrialisation pressures in many countries, the direct effect
of trade in agriculture and services has potentially played a role than is of a similar order of
magnitude.

Romania and Bulgaria provide examples of two small open economies that are have
significant service export sectors. These economies ran substantial trade surpluses in services
relative to GDP in 2014 (12% and 10.1%, respectively) and shutting down trade in services
leads to 4.7 and 3.7 percentage point increases in their respective manufacturing shares. The
evidence presented in Subsection 3.3.2 suggests that a substantial number of LMICs may
run surpluses at least as large as these, a trend that may be further enhanced with future
technological change.

Column (iv) of Table 3.4 shows the changes in the nominal share of value added in
manufacturing when eliminating all trade imbalances in the global economy. As illustrated
in Figure 3.13, the change in the manufacturing share is negatively correlated with the size
of an economy’s trade balance. Countries that run trade deficits (surpluses) tend to see an
increase (decrease) in their manufacturing share and these effects are larger the bigger the
trade imbalance. Although these results provide qualitative support for the notion that trade
deficits in LMICs may be responsible for deindustrialisation pressures in these countries, the
magnitude of these effects is small relative to the size of the other counterfactual effects.
The two economies with the largest gain in manufacturing share were Bulgaria and the Rest
of World region at 0.8 and 0.7 percentage points, respectively. Their deficit to GDP ratios
in 2014 of -5.4% and -11.9%, respectively, are smaller than the average imbalance amongst
deficit economies (see Subsection 3.3.3), so it is possible that eliminating imbalances could
have a larger effect on the more extreme ends of the entire cross country distribution. That
said, the evidence presented here is not supportive of the fact that these effects alone would
be able to account for a large degree of deindustrialisation.

Column (vi) of Table 3.4 shows the changes in the nominal share of value added in man-
ufacturing when implementing counterfactuals (i)-(iv) together (that is, imposing autarky).
As illustrated in Figure 3.14, the change in the manufacturing share is negatively correlated
with the size of an economy’s trade balance in manufacturing. The only country that this
qualitative pattern doesn’t hold for is Turkey as it ran a surplus in all sectors in 2014; how-
ever, in this case, the sector with the smallest surplus is the one that shrunk. All LMICs
other than China and India ran trade deficits in manufacturing in 2014 and all of these coun-
tries see an increase in their manufacturing share by moving to autarky. China and India
are the only LMICs who lose manufacturing share by moving to autarky in this period.

Overall, the results of these counterfactuals provide qualitative support for the potential
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deindustrialisation mechanisms highlighted in Section 3.3. In the context of the model,
openness to trade in manufactures has lead to manufacturing output across the LMICs
being relatively more concentrated, while openness in agriculture and services has allowed
economies without a comparative advantage in manufacturing to expand production in these
sectors, further pulling resources away from manufacturing. Trade deficits have also added
marginally to these effects. Quantitatively, however, none of these effects are large relative
to the deindustrialisation trends observed in the data. For consistency, I run regression (3.1)
on the country/region aggregation scheme used to generate the results in Table 3.4 and I find
deindustrialisation trends of a similar magnitude to those in Section 3.2. In contrast, the
average change in the manufacturing share across all LMICs in the sample from imposing
autarky is just 1.1 percentage points (with none of the direct effects from the individual
counterfactual changes exceeding 1.0 percentage points).

Table 3.4: Counterfactual Changes in Manufacturing Share of Nominal Value Added
Baseline: VA Shares Baseline: Trade Bal. Change in Manufacturing Share

A M S A M S (i) (ii) (iii) (iv) (v) (vi)

BGR 7.8 16.5 75.7 -8.0 -7.5 10.1 -2.4 2.4 2.3 0.8 -1.1 1.9
BRA 8.8 14.6 76.6 2.5 -2.9 -1.7 0.8 1.1 -0.6 0.3 -0.7 0.9
CHN 14.9 30.1 55.0 -3.4 7.8 1.2 -1.0 -2.7 0.2 -0.7 2.0 -2.2
IDN 23.6 21.9 54.5 3.2 -1.5 -0.8 1.5 0.6 -0.5 0.0 -0.7 1.0
IND 16.7 16.6 66.7 -5.3 1.6 3.7 -1.5 -0.6 0.6 0.2 0.5 -0.7
MEX 10.4 18.7 70.9 3.8 -1.8 -1.4 1.7 0.9 -0.7 -0.1 -0.9 0.9
ROU 6.6 21.9 71.5 -4.2 -7.6 12.0 -1.1 3.3 4.3 0.3 -3.6 3.3
RUS 13.3 16.0 70.7 9.7 -9.8 6.7 3.1 4.3 1.1 -0.3 -3.1 5.1
TUR 9.8 18.6 71.6 0.3 0.5 1.8 0.2 -0.2 0.6 -0.6 0.1 0.1

LMIC Ave. 12.4 19.4 68.1 -0.2 -2.4 3.5 0.1 1.0 0.8 0.0 -0.8 1.1

EAP 3.2 20.2 76.6 -3.9 4.5 1.3 -1.4 -2.2 0.3 -0.2 1.4 -1.9
EUR 2.7 15.3 81.9 -1.1 2.9 3.2 -0.1 -1.3 1.3 -0.7 -0.1 -0.9
NAC 4.4 12.2 83.4 -0.5 -4.0 2.1 -0.1 1.9 0.8 0.6 -1.5 1.8
ROW 22.0 13.6 64.4 7.2 -6.3 -12.8 1.4 1.9 -2.5 0.7 -0.2 1.2

WLD 8.9 17.0 74.1 0.0 0.0 0.0 0.0 -0.2 0.2 0.0 0.0 0.1

Notes: The first set of columns show baseline nominal value added shares by sector (as percentages); the
second set of columns show the baseline trade balance by sector (as a percentage of GDP). The final set
of columns shows the percentage point change in the manufacturing share of value added associated with
the following counterfactuals: (i) no trade in agriculture; (ii) no trade in manufacturing; (iii) no trade in
services; (iv) no trade imbalances; (v) interaction effects from (i)-(iv); (vi) autarky. The row titled LMIC
Ave. presents the the average values across all LMICs for each column.
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Figure 3.10: Change in Nominal Manufacturing Share from Eliminating Trade in Agriculture

Notes: This figure plots each country/region’s trade balance in agriculture as a percentage of their GDP on
the horizontal axis against the percentage point change in the manufacturing share of nominal value added
on the vertical axis caused by the elimination of trade in agriculture.

Figure 3.11: Change in Nominal Manufacturing Share from Eliminating Trade in Manufac-
turing

Notes: This figure plots each country/region’s trade balance in manufacturing as a percentage of their GDP
on the horizontal axis against the percentage point change in the manufacturing share of nominal value
added on the vertical axis caused by the elimination of trade in manufacturing.
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Figure 3.12: Change in Nominal Manufacturing Share from Eliminating Trade in Services

Notes: This figure plots each country/region’s trade balance in services as a percentage of their GDP on the
horizontal axis against the percentage point change in the manufacturing share of nominal value added on
the vertical axis caused by the elimination of trade in services.

Figure 3.13: Change in Nominal Manufacturing Share from Eliminating Trade Imbalances

Notes: This figure plots each country/region’s trade balance as a percentage of their GDP on the horizontal
axis against the percentage point change in the manufacturing share of nominal value added on the vertical
axis caused by the elimination of trade imbalances.
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Figure 3.14: Change in Nominal Manufacturing Share from Interaction Effects

Notes: This figure plots each country/region’s trade balance in manufacturing as a percentage of their GDP
on the horizontal axis against the percentage point change in the manufacturing share of nominal value
added on the vertical axis caused by the interaction effects from shutting down each dimension of trade.

Figure 3.15: Change in Nominal Manufacturing Share from Eliminating all Trade

Notes: This figure plots each country/region’s trade balance in manufacturing as a percentage of their GDP
on the horizontal axis against the percentage point change in the manufacturing share of nominal value
added on the vertical axis caused by the elimination of all trade.
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3.5 Conclusion

The results presented in this chapter suggest that changing patterns of global integration
may be partly responsible for the observed patterns of premature deindustrialisation. While
closing down trade in the model has almost no effect on global manufacturing shares, it does
lead to reallocations of manufacturing output that increase the average manufacturing share
across the nine LMICs I study. Although the counterfactual changes are qualitatively in line
with the potential channels of deindustrialisation proposed in Section 3.3, the magnitude
of these changes tends to be small with an average gain in manufacturing share of just 1.1
percentage points across the nine LMICs from moving to autarky.

It is worth noting at least two caveats to these results. First, the model presented in this
chapter fails to admit two key closed economy channels of structural transformation: the
Baumol and Engel effects. There is reason to think that moving away from Cobb-Douglas
utility to a utility function with a lower elasticity of substitution in consumption across
sectors would amplify the changes in manufacturing shares in the counterfactual exercises.
A lower elasticity of substitution across sectors would mean that consumers are less willing
to absorb trade imbalances through changes in domestic consumption patterns when trade
is shut down, leading to larger reallocations across sectors. Indeed, the fact that China’s
nominal manufacturing share in autarky is predicted to be just 2.2 percentage points lower
than the baseline value of 30.1% in 2014 (see Table 3.4) is an example of a quantitatively
surprising implication of the model that could be resolved by such a change. For countries
that are deindustrialising due to income effects, adding non-homotheticities to the model
would lead to higher manufacturing shares when trade is shut down given the positive effect
of trade on incomes. Adding this effect could, therefore, also increase the magnitude of the
changes in manufacturing shares. It would be useful to extend the model to accommodate
these mechanisms so that these hypotheses can be formally tested.

A second caveat is that the LMICs studied in this chapter are not representative of all
LMICs given that the WIOD typically contains data for larger, more prosperous economies.
The three economies that saw the biggest gain in manufacturing share on average across the
counterfactual exercises were Bulgaria, Romania and Russia. These economies, particularly
Bulgaria and Romania, have been particularly exposed to a number of the globalisation
trends identified in Section 3.3: they are small, run large trade deficits relative to GDP,
and run large trade surpluses in services and large deficits in manufacturing. This suggests
that the magnitude of the effects may have been larger with a more representative sample
of economies. A general neglect of low- and lower-middle-income countries due to data con-
straints is a major shortcoming across the quantitative structural transformation literature.
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Assessing the industrialisation experiences of these countries at the more extreme end of the
cross country income distribution through the lens of our models is likely to be an important
part of making sense of the data presented in Section 3.2.

Finally, it is worth noting that in addition to being premature in a positive sense, Rodrik
(2016) also refers to LMIC deindustrialisation trends as being premature in a normative sense
given the view that the manufacturing sector has a special role to play in the development
process (Rodrik, 2008, 2013). While this may be the case, the theoretical framework I use
ascribes no special role to manufacturing. Moreover, there are no market imperfections in the
model and the decentralised equilibrium corresponds to the planner’s solution at the global
level. It thus follows that while the framework I use in this paper provides some insight
into the drivers of the industrialisation trends observed in LMICs, it provides few insights
into debates about the potential consequences and appropriate policy responses. Given
the concern that many academics and policymakers in LMICs have regarding premature
deindustrialisation, it would be useful to develop more models with the kinds of imperfections
that accommodate the possibility that industrialisation is a necessary condition for economic
development. Taking these models to the data would give more policy-relevant insights into
the consequences of the industrialisation trends discussed in this paper and how policymakers
ought to respond.
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A.1 Laissez-Faire Labour Allocation

The composite energy producer’s first order conditions for dirty and green energy demand
are given by

pe,tE
1

σe
y,tωkE

−1
σe
k,t = pk,t k ∈ {d, g}

For the dirty and green energy producers to demand a positive but finite amount of labour,
it must be the case that

pk,t = wt
Ak,t

k ∈ {d, g}

Combining the two first order conditions for the composite energy producer and the pricing
functions for dirty and green energy implies

Ek,t =
(
ωkAk,t
ωjAj,t

)σe

Ej,t

for j, k ∈ {d, g}. Plugging this expression into the production function for composite energy
give us

Ey,t = Γk,tEk,t k ∈ {d, g}
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] σe
σe−1 (ωkAk,t)−σe j ∈ {d, g}

The first order conditions for the final goods producer’s choice of labour and energy inputs
are

wt = (1 − ν − α) Yt
Ly,t

pe,t = ν
Yt
Ey,t

Combining these with the conditions above, we have
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Plugging in the expression for Ey,t and simplifying:
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Plugging this into the labour market clearing condition then gives us

Ly,t = 1 − ν − α
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A.2 Lemma 1: Setup of Optimal Carbon Tax Problem

The social welfare function can be rewritten as

Et [Ut] =
∞∑
s=t

ϕs−tEt

N s
s ln css +

(
β

ϕ

)
N s−1
s ln cs−1

s +
(
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ϕ

)2

N s−2
s ln cs−2

s


By assumption, css = θysc

s−1
s . Furthermore, given that the ratio of retiree to middle age

income is α
1−α and middle-aged households consume a fraction 1

1+ψs−1
s+1β

of their earnings, we
have

cs−2
s =

α
(
1 + ψs−1

s+1β
)
ψs−1
s (1 + ns−1)

(1 − α)ψs−2
s ψs−2

s−1
ch,s

from which it follows that

cs−2
s = θosc

s−1
s

θos ≡
α
(
1 + ψs−1

s+1β
)

(1 + ns−1) [ψs−1
s + θys (1 + ns)]

(1 − α)ψs−2
s ψs−2

s−1

The social welfare function is thus

Et [Ut] =
∞∑
s=t

ϕs−tEt
[
Ñs ln cs−1

s

]
+ Et [Ωt]

Ñs ≡ N s
s +

(
β

ϕ

)
N s−1
s +

(
β

ϕ

)2

N s−2
s

Ωt ≡
∞∑
s=t

ϕs−t

N s
s ln θys +

(
β

ϕ

)2

N s−2
s ln θos


We can then write the primal form of the policymaker’s problem by eliminating prices from
the relevant constraints and writing them purely in terms of the allocations. In particular, in
addition to the technological and market clearing constraints of the economy, the policymaker
is bound by the following competitive equilibrium conditions

css = θysc
s−1
s

cs−2
s = θosc

s−1
s

ks−1
s+1N

s−1
s = ssYs

ss = ψs−1
s+1β (1 − α)
1 + ψs−1

s+1β
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These conditions combined with the goods market clearing condition imply

(1 − ss)Ys = cs−1
s N̄s

N̄s ≡ θysN
s
s +N s−1

s + θosN
s−2
s

The optimal carbon tax problem in primal form is, therefore, for the policymaker to choose
a sequence of allocations

{
cs−1
s , ks−1

s+1, Ey,s, Ky,s, Ly,s, Ed,s, Eg,s, Ld,s, Lg,s, Ss
}

to maximise

∞∑
s=t

ϕs−tEt
[
Ñs ln cs−1

s

]

subject to

cs−1
s N̄s +Ky,s+1 = e−γs(Ss−S̄)Ay,sEν

y,sK
α
y,sL

1−ν−α
y,s

cs−1
s N̄s = (1 − ss) e−γs(Ss−S̄)Ay,sEν

y,sK
α
y,sL

1−ν−α
y,s

Ey,s =
(
ωdE

σe−1
σe

d,s + ωgE
σe−1

σe
g,s

)σe−1
σe

Ek,s = Ak,sLk,s k ∈ {d, g}

N s−1
s = Ly,s + Ld,s + Lg,s

Ss − S̄ =
s∑
i=0

(1 − di)Ed,s−i

Note that since Ωt, which measures the impact of intratemporal inequality between genera-
tions on social welfare, is not a function of any of the choice variables of the problem, this
term can be dropped from the objective function.
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A.3 Proposition 1: Derivation of Optimal Carbon Tax

The Lagrangian is then given by

∞∑
s=t

ϕs−tEt
[
Ñs ln cs−1

s − λy,s

{
cs−1
s N̄s +Ky,s+1 − e−γs(Ss−S̄)Ay,sEν

y,sK
α
y,sL

1−ν−α
y,s

}
− µs

{
cs−1
s N̄s − (1 − ss) e−γs(Ss−S̄)Ay,sEν

y,sK
α
y,sL

1−ν−α
y,s

}

− λe,s

Ey,s −
(
ωdE

σe−1
σe

d,s + ωgE
σe−1

σe
g,s

)σe−1
σe

−
∑

k∈{d,g}
λk,s {Ek,s − Ak,sLk,s}

−λl,s
{
Ly,s + Ld,s + Lg,s −N s−1

s

}
− εs

{
s∑
i=0

(1 − di)Ed,s−i −
(
Ss − S̄

)}]

The first order condition on cs−1
s is

Ñs
1
cs−1
s

= (λy,s + µs) N̄s

⇒ µs = Ñs

cs−1
s N̄s

− λy,s

⇒ λy,s+1 = Ñs+1

css+1N̄s+1
− µs+1

The first oder condition on Ky,s+1 is

λy,s = Es
[
ϕα

Ys+1

Ky,s+1
{λy,s+1 + µs+1 (1 − ss+1)}

]

Plugging the expression for λy,s into the one for µs and then plugging the expression for
λy,s+1 into the resulting equation gives us

µs = Ñs

cs−1
s N̄s

− Es
[
ϕα

Ys+1

Ky,s+1
{λy,s+1 + µs+1 (1 − ss+1)}

]
⇒ µs = Es [Λs+1] + Es [ηs+1µs+1]

Λs+1 ≡ Ñs

cs−1
s N̄s

− ϕα
Ys+1

Ky,s+1

Ñs+1

css+1N̄s+1

ηs+1 ≡ ϕα
Ys+1

Ky,s+1
ss+1

Assuming that

lim
i→∞

Es
[(

i−1∏
q=s

ηq+1

)
Λi+1

]
= 0
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the difference equation for µs then implies

µs =
∞∑
i=s

Es
[(

i−1∏
q=s

ηq+1

)
Λi+1

]

Plugging the expression for ηq+1 into the
(
i−1∏
q=s

ηq+1

)
term from the µs equation above implies

i−1∏
q=s

ηq+1 = (αϕ)i−s siYi
ssYs

Simplifying the equation for Λi+1

Λi+1 = 1
Yi

[
1

1 − si
Ñi − ϕα

si (1 − si+1)
Ñi+1

]

Plugging these expressions for
i−1∏
q=s

ηq+1 and Λi+1 into the equation for µs gives us

µs =
∞∑
i=s

Es
[{

(αϕ)i−s siYi
ssYs

} 1
Yi

{
1

1 − si
Ñi − ϕα

si (1 − si+1)
Ñi+1

}]

⇒ µs = Es [Θs]
ssYs

Θs ≡
∞∑
i=s

(αϕ)i−s
(

si
1 − si

Ñi − ϕα

1 − si+1
Ñi+1

)

µs represents the shadow value for the planner of relaxing the savings constraint imposed
in competitive equilibrium that requires Ky,s+1 = ssYs. When the planner is in a first best
scenario where they can optimise both the carbon tax and the aggregate savings rate, we
would have µs = 0 (since the savings constraint would not be binding), which happens when
Es [Λs+1] = 0. This result should be intuitive since Es [Λs+1] = 0 happens when

Ñs

cs−1
s N̄s

= Es
[
ϕα

Ys+1

Ky,s+1

Ñs+1

css+1N̄s+1

]

which would be the Euler equation on the choice of capital chosen by the planner in the first
best scenario.

Now consider the first order conditions on Ss and Ed,s:
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εs = λy,sγsYs + µs (1 − ss) γYs

λe,sE
1

σe
y,sωdE

−1
σe
d,s = λd,s+

∞∑
i=0

ϕiEs [ϵs+i (1 − di)]

Starting by simplifying the expression

∞∑
i=0

ϕiEs [ϵs+i (1 − di)]

Combining this with the expression for ϵs gives us

∞∑
i=0

ϕiEs [ϵs+i (1 − di)] =
∞∑
i=0

ϕiEs [(1 − di) γs+iYs+i {λy,s+i + µs+i (1 − ss+i)}]

From the first oder conditions on cs−1
s , we can write this as

∞∑
i=0

ϕiEs [(1 − di) γYs+i {λy,s+i + µs+i (1 − ss+i)}]

=
∞∑
i=0

ϕiEs [(1 − di) γs+iYs+i {λy,s+i + µs+i − µs+iss+i}]

=
∞∑
i=0

ϕiEs
[
(1 − di) γs+iYs+i

(
Ñs+i

css+iN̄s+i
− µs+iss+i

)]

=
∞∑
i=0

ϕiEs
[
(1 − di) γs+i

{
Ñs+i

(1 − ss+i)
− Θs+i

}]

From FOC on Ey,s, Ly,s and Ld,s

λe,s = [λy,s + µs (1 − ss)] ν
Ys
Ey,s

λl,s = [λy,s + µs (1 − ss)] (1 − ν − α) Ys
Ly,s

λl,s = λd,sAd,s
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Putting this together

[λy,s + µs (1 − ss)] ν
Ys
Ey,s

E
1

σe
y,sωdE

−1
σe
d,s = [λy,s + µs (1 − ss)]

(1 − ν − α)
Ad,s

Ys
Ly,s

+
∞∑
i=0

ϕiEs
[
(1 − di) γs+i

{
Ñs+i

(1 − ss+i)
− Θs+i

}]

ν
Ys
Ey,s

E
1

σe
y,sωdE

−1
σe
d,s = (1 − ν − α)

Ad,s

Ys
Ly,s

+ Ys
∞∑
i=0

ϕiEs

Ñs+i

Ñs

(1 − di) γs+i
(1 − ss)

(1 − ss+i)

{
1 − (1−ss+i)Θs+i

Ñs+i

}
{
1 − (1−ss)Es[Θs]

Ñs

}


This implies that the second best carbon tax to GDP ratio is given by

τ ∗
t

Y ∗
t

=
∞∑
s=t

ϕs−tEt

Ñs

Ñt

(1 − ds−t) γs
(1 − st)
(1 − ss)

{
1 − (1−ss)Θs

Ñs

}
{
1 − (1−st)Et[Θt]

Ñt

}

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A.4 Rt and Demographic Change

This appendix illustrates the sufficient conditions for demographic change (defined as rising
ψt−1
t and ψt−2

t along with falling nt−1) to lead to a fall in Rt in the laissez-faire equilibrium.
From the firm’s first order condition on capital choice,

Rt = α
Yt
Ky,t

The consumer and firm conditions imply that the capital stock is given by

Ky,t = (1 − α)
(

ψt−2
t β

1 + ψt−2
t β

)
Yt−1

The labour allocation to the final goods sector is

Ly,t =
(1 − ν − α

1 − α

)
N t−1
t

Using the labour allocations to the clean and dirty energy varieties, the composite energy
good can be written as

Ey,t =
(

ν

1 − α

)
N t−1
t

while the atmospheric carbon concentration can be written as

St = Υt + ∆tN
t−1
t

Υt ≡ S1,t−1 + (1 − φ)S2,t−1

∆t ≡ [φL + (1 − φL)φ0]
(

ν

1 − α

)( ωσe
d A

σe−1
d,t

ωσe
d A

σe−1
d,t + ωσe

g A
σe−1
g,t

)

where S1,t−1 is the permanent component of St−1 and S2,t−1 is the transitory component of
St−1. The real rate can then be written as

Rt = Ãy,te
−γ(Υt+∆tN

t−1
t −S̄)

[(
1 + ψt−2

t β

ψt−2
t β

)
N t−1
t

Yt−1

]1−α

where
Ãy,t ≡ αAy,t

(
ν

1 − α

)ν (1 − ν − α

1 − α

)1−ν−α
(1 − α)1−α

It follows that
dRt

dψt−2
t

< 0
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and

dRt

dN t−1
t

> 0 iff 1 − α

N t−1
t

> γ [φL + (1 − φL)φ0]
(

ν

1 − α

)( ωσe
d A

σe−1
d,t

ωσe
d A

σe−1
d,t + ωσe

g A
σe−1
g,t

)

Furthermore, since N t−1
t = ψt−1

t (1 + nt−1)N t−2
t−2 ,

dN t−1
t < 0 iff dψt−1

t

ψt−1
t

< − dnt−1

1 + nt−1
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Appendix B

Appendices to Chapter 2

137



B.1 Country and Sector Names

Table B.1: Country Names
Country Index Country Code Country Name

1 AUS Australia
2 AUT Austria
3 BEL Belgium
4 BGR Bulgaria
5 CAN Canada
6 CHE Switzerland
7 CYP Cyprus
8 CZE Czech Republic
9 DNK Denmark
10 ESP Spain
11 EST Estonia
12 FIN Finland
13 FRA France
14 GBR United Kingdom
15 GRC Greece
16 HRV Croatia
17 HUN Hungary
18 IRL Ireland
19 ITA Italy
20 KOR Korea, Rep.
21 LTU Lithuania
22 LUX Luxembourg
23 LVA Latvia
24 MEX Mexico
25 MLT Malta
26 NLD Netherlands
27 NOR Norway
28 POL Poland
29 PRT Portugal
30 ROU Romania
31 SVK Slovak Republic
32 SVN Slovenia
33 SWE Sweden
34 TUR Turkey
35 TWN Taiwan

36 AVE Sample Average
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Table B.2: Sector Names
Sector Index Sector Code Sector Name

1 AGR Agriculture, Hunting, Forestry and Fishing
2 MIN Mining and Quarrying
3 MAN Manufacturing
4 UTL Non-Electrical Utilities and Construction
5 TRD Trade
6 TRN Transport
7 HSP Accommodation and Food Services
8 ICT Information and Communication Services
9 FIN Financial Services
10 OTH Other Private Services
11 SOC Social and Public Services

ENG Energy
FND Final Demand

139



B.2 Derivation of Sectoral Prices

Setting price equal to unit cost, sectoral prices are given by

pi,t = A−1
i,t w

ωil
t rωik

k,t p
ωie
ie,t

 N∏
j=1

p
ωij

j,t

 ∀ i ∈ N

Let p
t
, p

e,t
, At, ωl, ωk and ωe denote the N × 1 column vectors with ith elements pi,t, pie,t,

Ai,t, ωil, ωik and ωie respectively. Taking logs, this implies the log-linear system of sectoral
pricing equations given by

ln p
t

= − lnAt + ωl lnwt + ωk ln rk,t + ωe ln p
e,t

+ Ω ln p
t

⇒ ln p
t

= ψ
[
− lnAt + ωl lnwt + ωk ln rk,t + ωe ln p

e,t

]

⇒ pi,t =
 N∏
j=1

A
−ψij

j,t

w
(

N∑
j=1

ψijωjl

)
t r

(
N∑

j=1
ψijωjk

)
k,t

 N∏
j=1

p
ψijωje

je,t

 ∀ i ∈ N
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B.3 Derivation of Sales Share Expressions

To derive the sales share expressions, first note that the Cobb-Douglas functional forms and
firm FOC imply

pi,tYi,t = ωyiYt ∀ i ∈ N

pye,tYe,t = ωyeYt

wtLi,t = ωilpi,tQi,t ∀ i ∈ N

rk,tKi,t = ωikpi,tQi,t ∀ i ∈ N

pie,tZie,t = ωiepi,tQi,t ∀ i ∈ N

pj,tZij,t = ωijpi,tQi,t ∀ i, j ∈ N

Plugging these into the goods market clearing condition for output from sector i

Qi,t = Yi,t+
N∑
j=1

Zji,t

⇒ pi,tQi,t = ωyiYt+
N∑
j=1

ωjipj,tQj,t

Letting pQ
t

and ωy denote the N × 1 column vectors with ith elements pi,tQi,t and ωyi,
respectively, this implies

pQ
t

= ψωyYt

⇒ pi,tQi,t =
 N∑
j=1

ωyjψji

Yt
⇒ λi =

N∑
j=1

ωyjψji
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Total expenditure on labour not employed by the energy sector is given by

N∑
i=1

wtLi,t =
N∑
i=1

ωilpi,tQi,t

⇒
N∑
i=1

wtLi,t =
(

N∑
i=1

ωilλi

)
Yt

⇒ λl =
N∑
i=1

λiωil

Similarly, aggregate capital expenditure is

N∑
i=1

rk,tKi,t =
N∑
i=1

ωikpi,tQi,t

⇒ rk,tKt =
(

N∑
i=1

ωikλi

)
Yt

⇒ λk =
N∑
i=1

λiωik

Aggregate energy expenditures are

N∑
i=1

pie,tZie,t + pye,tYe,t =
N∑
i=1

ωiepi,tQi,t + ωyeYt

⇒
N∑
i=1

pie,tZie,t + pye,tYe,t =
∑
i∈Ny

λiωie

⇒ λe =
∑
i∈Ny

λiωie

Since aggregate GDP is equal to factor income payments and transfers to households

Yt = wtLt + rk,tKt +
∑
i∈Ny

τi,tQid,t

⇒ Yt =
N∑
i=1

wtLi,t + rk,tKt +
∑
i∈Ny

[wt (Lid,t + Lig,t) + τi,tQid,t]

⇒ 1 =

N∑
i=1

wtLi,t

Yt
+ rk,tKt

Yt
+

∑
i∈Ny

pie,tQie,t

Yt

⇒ 1 = λl + λk + λe
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B.4 Derivation of Quantities

The first order conditions of the composite energy producers imply that

pid,tQid,t = αid,tpie,tQie,t ∀ i ∈ Ny

pig,tQig,t = αig,tpie,tQie,t ∀ i ∈ Ny

where sector i’s energy expenditure shares on dirty and green energy are given by

αid,t ≡
ωσie
id A

σie−1
id,t ϕ1−σie

i,t

ωσie
id A

σie−1
id,t ϕ1−σie

i,t + ωσie
ig A

σie−1
ig,t

∀ i ∈ Ny

αig,t ≡
ωσie
ig A

σie−1
ig,t

ωσie
id A

σie−1
id,t ϕ1−σie

i,t + ωσie
ig A

σie−1
ig,t

∀ i ∈ Ny

Given unit cost pricing by the dirty and green energy producers, it also follows that

wtLid,tϕi,t = pid,tQid,t ∀ i ∈ Ny

wtLig,t = pig,tQig,t ∀ i ∈ Ny

Combining these conditions with the first order conditions of the sectoral producers and the
results on equilibrium sales shares implies

wtLi,t = ωilλiYt ∀ i ∈ N

wtLid,t = αid,tλie
ϕi,t

Yt ∀ i ∈ Ny

wtLig,t = αig,tλieYt ∀ i ∈ Ny

We can thus relate all labour allocations to the allocation of labour to dirty energy production
for sector j ∈ Ny

Li,t = ϕj,tλiωil
λjeαjd,t

Ljd,t ∀ i ∈ N

Lid,t =
ϕj,t

λieαid,t

ϕi,t

λjeαjd,t
Ljd,t ∀ i ∈ Ny

Lig,t = ϕj,tλieαig,t
λjeαjd,t

Ljd,t ∀ i ∈ Ny
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Plugging these expressions into the labour market clearing condition implies

Lid,t =


λieαid,t

ϕi,t

λl + ∑
j∈Ny

λjeαjd,t

ϕj,t
+ ∑

j∈Ny

λjeαjg,t

Lt ∀ i ∈ Ny

Lig,t =

 λieαig,t

λl + ∑
j∈Ny

λjeαjd,t

ϕj,t
+ ∑

j∈Ny

λjeαjg,t

Lt ∀ i ∈ Ny

Li,t =

 λiωil

λl + ∑
j∈Ny

λjeαjd,t

ϕj,t
+ ∑

j∈Ny

λjeαjg,t

Lt ∀ i ∈ Ny

The energy allocations are then determined as

Qid,t =


λieαid,t

ϕi,t

λl + ∑
j∈Ny

λjeαjd,t

ϕj,t
+ ∑

j∈Ny

λjeαjg,t

Aid,tLt ∀ i ∈ Ny

Qig,t =

 λieαig,t

λl + ∑
j∈Ny

λjeαjd,t

ϕj,t
+ ∑

j∈Ny

λjeαjg,t

Aig,tLt ∀ i ∈ Ny

Qie,t = Aie,t

(
ωidQ

σie−1
σie

id,t + ωigQ
σie−1

σie
ig,t

) σie
σie−1

∀ i ∈ Ny

The size of the aggregate capital stock is then pinned down by the fact that capital earns λk
fraction of total income and GDP is given by

Yt = wtLt + rk,tKt +
∑
i∈Ny

τi,tQid,t

Combining these two facts along with the expression for Qid,t gives us

Kt =
(

λk
1 − λk

)
wt
rk,t

Lt

 λl + λe

λl + λe + ∑
i∈Ny

(
1−ϕi,t

ϕi,t

)
λieαid,t


The allocation of the aggregate capital stock across sectors is pinned down by combining each
sector’s first order condition on capital choice with the capital market clearing condition,
which implies

Ki,t = λiωik
λk

Kt
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All other allocations can be solved in a straightforward manner from prices, the value of Yt
and the expenditure share implications of the firm’s Cobb-Douglass first order conditions.
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B.5 Proof of Proposition 2

Let the set of carbon taxes be denoted by τt ≡ {τi,t}i∈Ny
. To sign the derivative dQd,t

dτi,t
, first

note that total emissions can be written as a function of ϕt ≡ {ϕi,t}i∈Ny
since

Qd,t (ϕt) =
∑
i∈Ny

Qid,t =


∑
i∈Ny

Aid,t
λieαid,t(ϕi,t)

ϕi,t

λl + ∑
i∈Ny

λieαid,t(ϕi,t)
ϕi,t

+ ∑
i∈Ny

λieαig,t (ϕi,t)

Lt
where I have made explicit the dependence of αid,t and αig,t on ϕi,t. In addition, note that each
ϕi,t is a function of τt since ϕi,t = 1 + τi,t

wt(τt) . From the normalising equation Fy,t (wt, τt) = 1,
it can be shown that dwt

dτi,t
< 0 holding constant all other τj,t ∈ Ny from which it follows that

dϕj,t

dτi,t
> 0 ∀ j ∈ Ny. Assuming that σie > 1 and Aid,t = Ad,t ∀ i ∈ Ny, it follows that

dQd,t

dτi,t
∝ d

dτi,t


∑
j∈Ny

λjeαjd,t(ϕj,t(τi,t))
ϕj,t(τi,t)

λl + ∑
j∈Ny

λjeαjd,t(ϕj,t(τi,t))
ϕj,t(τi,t) + ∑

j∈Ny

λjeαjg,t (ϕj,t (τi,t))


⇒ dQd,t

dτi,t
∝

 d

dτi,t

∑
j∈Ny

λjeαjd,t (ϕj,t (τi,t))
ϕj,t (τi,t)

λl +
∑
j∈Ny

λjeαjd,t
ϕj,t

+
∑
j∈Ny

λjeαjg,t


−

 ∑
j∈Ny

λjeαjd,t
ϕj,t

 d

dτi,t

λl +
∑
j∈Ny

λjeαjd,t (ϕj,t (τi,t))
ϕj,t (τi,t)

+
∑
j∈Ny

λjeαjg,t (ϕj,t (τi,t))


⇒ dQd,t

dτi,t
∝

 d

dτi,t

∑
j∈Ny

λjeαjd,t (ϕj,t (τi,t))
ϕj,t (τi,t)

λl +
∑
j∈Ny

λjeαjg,t


−

 ∑
j∈Ny

λjeαjd,t
ϕj,t

 d

dτi,t

∑
j∈Ny

λjeαjg,t (ϕj,t (τi,t))
 < 0

since

d

dτi,t

(
αjd,t (ϕj,t (τi,t))

ϕj,t (τi,t)

)
< 0

d

dτi,t
αjg,t (ϕj,t (τi,t)) > 0
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which follow from

dϕj,t
dτi,t

≥ 0

dαjd,t
dϕj,t

< 0

dαjg,t
dϕj,t

> 0

Note that one implication of these results is that raising τi,t to cause a shift in αig,t also
raises αjg,t in any sector with τj,t > 0 since the tax-to-wage ratio increases in sector j (note
that this effect is absent when τj,t = 0 and also note that the taxes are all specified in real
terms here such that raising τi,t in real terms while holding τj,t fixed in real terms would
mean nominal tax changes when the price level is changing). Letting N0 denote the subset
of Ny with zero carbon taxes, it follows that

lim
τi,t→∞

ϕj,t = ∞ if j /∈ N0

lim
τi,t→∞

ϕj,t = 1 if j ∈ N0

from which it follows that

lim
τi,t→∞

Qd,t =


∑
j∈N0

Ajd,tλjeαjd,t

λl + λe

Lt
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B.6 Proof of Proposition 3

Given the small open economy assumption, maximising individual welfare over the transition
period is equivalent to maximising the present discounted value of GDP over this period.
The policymaker’s problem can therefore be written as

max{
{τi,t}i∈Ny

}T

t=1

∞∑
t=1

Yt
(
{τi,t}i∈Ny

)
Rt

s.t.
T∑
t=1

∑
i∈Ny

Q̄id,t ≤ Q̄d

where I define

Rt ≡
t∏

s=2
(1 + rb,s)

To build intuition, it helps to start tackling this problem by deriving the first order conditions
for the optimal path of the quantity of emissions before translating these into the first order
conditions for the optimal carbon tax.

To solve this problem in a compact way, note that we can express real GDP (Yt) as
a reduced form function of the sectoral emissions constraints (where I let Q̄id,t denote the
quantity of emissions permits allocated to sector i in period t)1:

Yt = Gt

({
Q̄id,t

}
i∈Ny

)

It follows that the planner’s optimal policy problem can then be written as

max{
{Q̄id,t}

i∈Ny

}T

t=1

∞∑
t=1

Gt

({
Q̄id,t

}
i∈Ny

)
Rt

s.t.
T∑
t=1

∑
i∈Ny

Q̄id,t ≤ Q̄d

Assuming a binding constraint on emissions, it follows that the optimal solution satisfies the
1As shown in Subsections 2.3.2 and 2.3.3, the reduced form production function always exists and is

unique.

148



following conditions

dGt

dQ̄id,t

= dGt

dQ̄jd,t

∀ t and i, j ∈ Ny

dGt

(
Q̄id,t

)
dQ̄id,t

= 1
1 + rt+1

dGt+1
(
Q̄id,t+1

)
dQ̄id,t+1

∀ t and i

T∑
t=1

∑
i∈Ny

Q̄id,t = Q̄d

The first condition is a static efficiency condition: within a given period, emissions should be
allocated across sectors such that their marginal impact on GDP is equalised. The second
condition is a dynamic efficiency condition: across periods, the marginal impact of emissions
on GDP should grow at a rate equal to the real interest rate. We can then use the envelope
theorem to relate these conditions on quantities to an equivalent set of conditions on prices.
Letting variables with stars denote the static competitive equilibrium outcomes conditional
on policy choice

{
Q̄id,t

}
i∈Ny

, factor endowment Lt, and capital rental rate rk,t, we can write
the aggregate production function as

Gt

(
Lt, rk,t,

{
Q̄id,t

}
i∈Ny

)

=
(
Y ∗
e,t

ωye

)ωye
[
N∏
i=1

(
Y ∗
i,t

ωyi

)ωyi
]

−
N∑
i=1

p∗
i,t

Y ∗
i,t+

N∑
j=1

Z∗
ji,t − Ai,t

(
L∗
i,t

ωil

)ωil
(
K∗
i,t

ωik

)ωik
(
Z∗
ie,t

ωie

)ωie
 N∏
j=1

(
Z∗
ij,t

ωij

)ωij


−
N∑
i=1

p∗
ie,t

Z∗
ie,t − Aie,t

(
ωidQ

∗ σie−1
σie

id,t + ωigQ
∗ σie−1

σie
ig,t

) σie
σie−1


− p∗

ye,t

Y ∗
e,t − Aye,t

(
ωydQ

∗ σye−1
σye

yd,t + ωygQ
∗ σye−1

σye

yg,t

) σye
σye−1


−

∑
k∈{d,g}

∑
i∈Ny

p∗
ik,t

{
Q∗
ik,t − Aik,tL

∗
ik,t

}
− w∗

t


N∑
i=1

L∗
i,t+

∑
k∈{d,g}

∑
i∈Ny

L∗
ik,t − Lt


− rk,t

{
N∑
i=1

K∗
i,t −K∗

t

}
−
∑
i∈Ny

τ ∗
it

{
Q∗
id,t − Q̄id,t

}

where the fact that all competitive equilibrium variables are functions of
{
Q̄id,t

}
i∈Ny

, Lt, and
rk,t has not been made explicit for notational convenience. Differentiating both sides of this
expression by Q̄id,t and plugging in the competitive equilibrium conditions from Subsections
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2.3.2 and 2.3.3 leaves us with

dGt

(
Lt, rk,t,

{
Q̄id,t

}
i∈Ny

)
dQ̄id,t

= τ ∗
it

This result follows from the standard envelope theorem intuition: the increase in GDP
associated with a marginal increase in the quantity of emissions allocated to sector i is equal
to the price put on emissions in that sector. Combining this result with the characterisation
of the optimal quantities implies that the optimal carbon tax policy must satisfy the following
conditions

τi,t = τj,t ∀ t and i, j ∈ Ny

τi,t = 1
1 + rt+1

τi,t+1 ∀ t and i

T∑
t=1

∑
i∈Ny

Qid,t (τi,t) = Q̄d

The first condition states that within a period, carbon prices should be equalised across
sectors. The second condition gives us the Hotelling rule: the price of emissions (a scarce
and exhaustible resource) should optimally grow at a rate equal to the real interest rate. To
show that the solution to these conditions exists and is unique, define the excess emissions
function as

H
({

{τi,t}i∈Ny

}T
t=1

)
≡

T∑
t=1

∑
i∈Ny

Q∗
id,t (τi,t) − Q̄d

It follows that under the optimal carbon tax policy, this excess emissions can be expressed
solely as a function of the period 1 carbon tax common across all sectors:

H (τ1) =
T∑
t=1

Qd,t (Rtτ1) − Q̄d

A direct corollary of Proposition 2 is that

dH (τ1)
dτ1

< 0

and
lim
τ1→∞

H (τ1) < 0

Furthermore, given the assumption that the carbon budget is a binding constraint, H (0) > 0.
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It thus follows that a unique τ ∗
1 exists such that H (τ ∗

1 ) = 0. Given the uniqueness and
existence of τ ∗

1 , it follows from the condition that τ ∗
t = τ∗

1
Rt

that the sequence {τ ∗
t }Tt=1 also

exists and is unique.
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B.7 Suboptimal Policy Problem

Let N0 denote the subset of all sectors that face no carbon tax and Nτ denote the subset of
all sectors that face a common carbon tax τt > 0. Furthermore, define the sales shares of
exempt and non-exempt energy as

λ0e =
∑
i∈N0

λie

λτe =
∑
i∈Nτ

λie

Equation (2.36) then becomes

Fp,t (wt) ≡ A−1
t w1−λk

t rλk
k,t

[(
ωσe
d A

σe−1
d,t + ωσe

g A
σe−1
g,t

)λ0e
λe
(
ωσe
d A

σe−1
d,t ϕ1−σe

t + ωσe
g A

σe−1
g,t

) 1−λ0e
λe

] λe
1−σe

As a special case of Proposition 1, this equation implies that wt is a function of τt and
λ̂0e ≡ λ0e

λe
. Equation (2.44) then implies that Qd,t is also a function of τt and λ̂0e. The

sub-optimal policy problem can thus be written as

max
{τt}T

t=1

∞∑
t=1

Yt
(
τt, λ̂0e

)
Rt

s.t.
T∑
t=1

Qd,t

(
τt, λ̂0e

)
≤ Q̄d

Using the results established in the proof of Proposition 3 (see Appendix B.6), it follows that
intertemporal optimisation still requires that the sectorally suboptimal carbon tax grows over
time at a rate equal to the real interest rate. Because dQd,t

dλ̂0e
> 0, it follows that dτ∗

t

dλ̂0e
> 0.
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B.8 Additional Tables
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Table B.3: Optimal Policy by Country: Carbon Tax and Discounted Output Losses
Country τ ∗

2020 %∆Y Q0d

Q̄d
p0d

TWN 749 -5.17 3.7 47
KOR 713 -6.23 4.1 38
BEL 674 -4.37 3.3 54
CZE 585 -4.92 3.4 40
AUS 545 -5.47 7.2 18
LUX 533 -3.71 6.9 18
NLD 496 -2.90 3.3 39
POL 490 -4.06 2.8 41
EST 473 -4.20 3.3 33
CAN 436 -4.48 6.5 17
FIN 435 -2.89 3.4 34
SVK 410 -2.53 2.0 56
BGR 399 -2.28 1.9 59
NOR 340 -1.86 3.9 27
AUT 328 -1.75 2.9 32
DNK 320 -1.06 2.2 48
LTU 304 -0.69 1.4 100
IRL 295 -1.27 3.5 25
GBR 288 -1.06 2.3 36
HUN 286 -0.96 1.6 62
SWE 270 -0.77 1.9 53
SVN 263 -1.49 2.5 28
ESP 260 -0.96 1.9 48
ITA 256 -1.11 2.0 41
FRA 249 -0.83 1.9 45
CHE 243 -0.42 1.8 55
GRC 240 -1.57 2.1 31
CYP 216 -1.86 2.5 21
TUR 201 -1.31 1.9 33
PRT 190 -0.57 1.6 43
HRV 141 -0.37 1.5 36
ROU 140 -0.21 1.2 84
LVA 119 -0.19 1.2 64
MEX 89 -0.23 1.3 33
MLT 4 0.00 1.0 100

AVE 325 -2.1 2.6 42
Notes: Column two of the table provides the value of optimal carbon tax in 2020 measured in 2017 PPP
$ (τ∗

2020). Column three is the reduction in the present value of real GDP between 2020 and 2049 from
implementing the optimal policy (%∆Y ). Column four is the ratio of emissions with a zero carbon tax to
each country’s emissions budget from 2020-2049 ( Q0d

Q̄d
). Column five is the 2020 value for the unregulated

dirty energy price indexed to the maximum price in the sample (p0d). All calculations are done under the
baseline calibration values.
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Table B.4: Contribution to λe by Sector (Percentage)
Sector Code

Country Code AGR MIN MAN UTL TRD TRN HSP ICT FIN OTH SOC FND

AUS 3.5 10.6 15.6 7.3 3.2 16.7 1.6 1.8 0.3 3.1 4.8 31.4
AUT 2.5 1.1 25.8 3.8 4.0 10.7 2.0 0.8 0.7 3.6 8.0 36.9
BEL 2.1 0.7 21.2 2.0 3.6 7.6 0.6 1.0 0.6 3.5 3.3 53.8
BGR 2.9 5.6 19.5 4.2 9.3 14.0 0.7 0.6 0.0 2.8 3.6 36.9
CAN 3.6 3.7 19.8 4.2 4.7 9.7 0.9 0.6 1.4 4.9 7.1 39.4
CHE 1.8 1.1 24.4 2.1 4.3 7.4 1.5 0.9 1.0 5.8 13.9 36.0
CYP 7.3 1.5 20.3 4.6 5.9 13.6 5.0 3.4 4.0 3.0 6.1 25.3
CZE 2.3 1.4 29.7 3.4 6.9 8.7 0.9 0.8 1.0 5.0 5.1 34.9
DNK 3.7 0.2 8.9 2.6 3.4 37.2 0.7 0.8 0.3 1.7 4.2 36.2
ESP 1.5 1.3 27.2 3.5 8.8 10.3 1.8 1.5 0.7 2.5 4.8 36.2
EST 6.2 1.2 18.4 5.5 5.0 21.9 1.1 0.8 0.3 4.6 7.6 27.7
FIN 2.6 1.3 23.8 3.3 3.0 13.3 0.6 0.8 0.8 12.6 6.0 31.9
FRA 2.8 0.4 21.2 3.1 6.3 9.4 0.9 2.8 0.6 3.8 5.4 43.4
GBR 1.9 0.8 22.0 2.8 5.5 6.0 1.6 1.7 1.8 3.5 5.7 46.7
GRC 4.8 0.1 9.2 2.1 3.5 7.7 1.4 0.9 0.3 1.6 3.2 65.2
HRV 2.8 2.2 15.6 5.3 9.4 8.0 3.9 2.8 1.4 6.5 9.3 32.7
HUN 4.1 1.0 32.4 2.8 5.6 10.9 0.8 1.0 0.5 3.6 4.6 32.6
IRL 1.8 3.8 20.6 4.6 8.1 4.1 1.0 6.1 3.3 11.1 9.3 26.1
ITA 2.4 0.5 24.5 4.5 8.4 9.1 1.9 0.8 0.6 3.3 6.6 37.4
KOR 1.4 0.8 37.0 3.3 3.6 12.1 1.2 0.9 0.7 3.7 6.5 28.8
LTU 4.5 0.4 8.2 1.9 1.6 7.2 0.4 0.3 0.3 1.9 3.9 69.5
LUX 1.1 0.1 31.4 2.4 4.0 16.2 1.6 1.9 11.6 9.3 5.7 14.7
LVA 9.2 0.5 18.2 4.8 6.8 20.7 1.0 1.2 0.5 7.2 7.3 22.5
MEX 2.2 1.7 21.5 3.3 5.6 19.9 2.4 0.7 0.4 4.3 5.7 32.4
MLT 2.5 0.3 19.1 3.2 7.6 21.8 4.6 0.8 1.5 5.9 2.5 30.2
NLD 3.4 1.8 18.1 2.3 4.1 10.3 1.1 0.5 0.6 2.8 4.0 51.1
NOR 3.1 2.7 14.1 2.7 3.5 11.0 0.7 0.7 0.3 2.9 7.7 50.6
POL 4.0 1.6 21.2 5.1 6.5 12.4 0.7 0.7 1.4 11.3 4.9 30.2
PRT 3.5 0.9 20.5 5.4 5.5 12.2 2.5 0.8 0.6 2.2 6.4 39.4
ROU 5.6 1.6 29.2 8.0 7.0 6.4 1.4 1.4 1.0 5.6 2.3 30.5
SVK 3.3 0.8 27.0 2.1 4.1 10.0 0.8 0.9 0.2 2.9 5.0 42.9
SVN 2.9 1.0 33.0 4.9 6.6 10.5 2.1 1.4 0.9 3.9 5.4 27.5
SWE 2.4 1.1 21.6 3.3 2.6 11.9 0.6 0.8 0.3 6.1 5.0 44.3
TUR 5.5 2.4 28.1 4.3 6.5 17.2 2.3 0.9 1.7 2.8 6.2 22.0
TWN 2.4 1.4 48.5 1.5 5.8 12.3 1.4 0.4 0.3 1.1 3.1 21.7

AVE 3.3 1.6 22.8 3.7 5.4 12.5 1.5 1.3 1.2 4.6 5.7 36.3
Notes: This table shows each sector’s contribution to overall energy expenditures in the economy as a
percentage of total energy spending.
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Table B.5: Standard Deviation of Sales/Factor Shares (Percentage Points, 2000-2014)
Sectors Factors

AGR MIN MAN UTL TRD TRN HSP ICT FIN OTH SOC ENG LAB CAP

AUS 1.3 3.4 5.8 2.5 1.4 0.5 0.4 0.7 0.9 1.3 0.7 0.4 1.1 1.3
AUT 0.2 0.3 2.6 1.0 0.4 0.7 0.2 0.3 0.2 1.8 0.7 1.0 1.4 1.0
BEL 0.4 0.4 5.5 2.3 2.2 0.7 0.2 0.7 0.8 1.7 1.1 1.6 1.3 1.1
BGR 4.2 1.3 5.2 5.1 1.4 2.5 0.1 0.8 1.9 2.0 2.1 1.3 3.1 3.1
CAN 0.5 1.5 5.0 1.4 0.5 0.2 0.2 0.2 0.2 0.6 0.7 0.4 1.0 0.7
CHE 0.3 0.1 2.3 0.4 0.6 0.7 0.4 0.4 1.2 1.4 1.0 0.2 1.9 1.9
CYP 0.8 0.1 2.9 3.2 0.8 4.1 1.0 1.1 2.3 1.7 1.4 1.1 1.6 1.6
CZE 0.9 0.3 7.5 1.5 1.3 0.4 0.4 0.3 0.3 1.7 1.2 0.9 1.0 1.6
DNK 0.6 0.3 2.8 0.7 0.8 2.2 0.1 0.4 0.9 2.0 1.1 1.4 1.4 1.7
ESP 0.8 0.2 4.5 7.5 0.5 0.3 0.3 0.3 0.5 1.4 2.1 1.4 1.6 0.8
EST 1.3 0.2 6.9 2.2 1.2 1.9 0.1 0.5 0.5 1.2 1.4 1.2 2.4 2.8
FIN 0.3 0.4 6.3 0.8 0.5 0.5 0.1 0.7 0.3 2.8 2.3 1.6 1.6 2.9
FRA 0.4 0.1 4.4 0.7 0.4 0.2 0.2 0.2 0.7 1.3 0.8 0.8 1.0 1.4
GBR 0.1 0.2 3.2 0.8 1.5 0.5 0.3 0.4 1.4 1.7 1.6 1.0 1.1 0.8
GRC 1.3 0.2 2.5 4.4 2.2 1.2 0.7 0.5 0.4 1.4 1.2 2.5 2.5 2.7
HRV 1.5 0.8 3.2 2.8 1.9 0.8 0.5 0.2 0.6 2.1 1.3 1.0 3.4 2.6
HUN 2.0 0.3 5.8 1.3 0.4 1.0 0.2 0.5 0.5 1.1 1.2 1.5 2.0 1.2
IRL 0.9 0.4 10.3 6.0 1.4 1.0 1.1 3.2 6.0 4.5 1.5 0.4 2.5 2.7
ITA 0.3 0.3 3.0 1.0 1.0 0.2 0.1 0.6 0.5 0.7 1.1 0.8 1.1 1.6
KOR 0.8 0.7 9.1 0.9 0.6 0.5 0.2 0.7 0.6 0.7 1.0 2.6 2.6 0.8
LTU 1.0 0.2 1.8 2.6 0.9 1.9 0.2 1.1 0.5 1.2 2.6 2.2 2.9 2.0
LUX 0.2 0.1 4.8 0.5 4.1 0.9 0.4 2.9 18.9 8.8 2.3 0.4 2.1 2.1
LVA 0.9 0.2 3.8 4.7 1.0 3.0 0.3 0.7 0.5 3.8 1.3 1.4 2.9 3.2
MEX 0.3 0.7 3.1 0.5 0.6 0.4 0.5 0.2 0.6 0.9 0.6 0.9 2.0 1.3
MLT 0.3 0.2 8.1 1.1 0.8 5.3 0.8 2.1 12.0 5.8 4.9 1.1 1.4 1.7
NLD 0.9 0.8 4.5 1.4 0.9 0.3 0.2 0.5 0.5 0.5 1.1 1.4 1.8 1.1
NOR 0.5 2.1 2.3 1.7 0.5 0.9 0.2 0.5 0.7 1.4 1.3 0.4 1.9 1.8
POL 0.6 0.3 5.4 1.8 2.5 0.9 0.1 0.5 0.3 1.0 0.9 1.1 2.8 2.0
PRT 0.5 0.2 4.8 3.8 1.0 0.7 0.1 0.5 0.7 0.8 1.0 1.5 2.8 1.5
ROU 5.0 0.6 2.4 4.9 3.2 1.7 0.5 0.8 0.8 2.6 1.2 1.0 2.1 2.0
SVK 1.5 0.2 11.1 1.6 1.2 2.5 0.2 0.3 0.4 1.1 1.3 0.9 1.2 1.0
SVN 0.7 0.1 3.7 2.5 0.9 1.1 0.2 0.5 0.4 1.0 1.1 0.7 1.4 1.4
SWE 0.2 0.3 6.0 0.8 0.9 0.5 0.2 0.2 0.3 1.0 0.9 1.1 1.1 1.5
TUR 1.5 0.6 3.4 0.6 0.9 0.7 0.2 0.3 2.7 2.2 0.5 0.6 1.1 0.8
TWN 0.3 0.4 11.0 0.2 0.5 0.4 0.3 0.4 0.9 0.4 1.6 2.5 2.7 0.6

AVE 1.0 0.5 5.0 2.1 1.2 1.2 0.3 0.7 1.7 1.9 1.4 1.1 1.9 1.7
SD 1.0 0.6 2.5 1.8 0.8 1.1 0.2 0.7 3.6 1.6 0.8 0.6 0.7 0.7

Notes: This table shows the standard deviation in sales and factor shares for each country between 2000 and
2014. The LAB and CAP columns refer to the labour and capital shares, respectively (excluding value added
in the energy sector). The AVE and SD rows are the average and standard deviations across all countries,
respectively.
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Appendix C

Appendices to Chapter 3
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C.1 Country and Sector Aggregation Scheme

Table C.1: Country/Region Aggregation Scheme
Index Code Name Constituent Country Codes (for Aggregate Regions)

1 BGR Bulgaria N/A
2 BRA Brazil N/A
3 CHN China N/A
4 IDN Indonesia N/A
5 IND India N/A
6 MEX Mexico N/A
7 ROU Romania N/A
8 RUS Russia N/A
9 TUR Turkey N/A

10 EAP East Asia and Pacific AUS, JPN, KOR, TWN
11 EUR Europe AUT, BEL, CHE, CYP, CZE, DEU, DNK, ESP, EST, FIN,

FRA, GBR, GRC, HRV, HUN, IRL, ITA, LTU, LUX, LVA,
MLT, NLD, NOR, POL, PRT, SVK, SVN, SWE

12 NAC North America CAN, USA
13 ROW Rest of the World (Countries not mentioned above)

14 WLD World (All countries)
Notes: Country codes are consistent with those used in the 2016 version of the WIOD.

Table C.2: Sector Aggregation Scheme
Sector Index Sector Name Corresponding WIOD 2016 Sector

1 Agriculture and Mining 1-4
2 Manufacturing 5-22
3 Services 23-56

Notes: Sector numbers are consistent with those used in the 2016 version of the WIOD.
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C.2 Figure 3.9 and Table 3.3: Missing Data

Figure C.1: Cross-Country Distribution of Missing Trade Balance Data (1995-2019)

Notes: This figure illustrates the cross-country distribution of missing trade balance data between 1995 and
2019.
Source: World Bank (2022); Author’s calculations.
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Figure C.2: Cross-Country Distribution of Missing Regression Data (1995-2019)

Notes: This figure illustrates the cross-country distribution of missing observations between 1995 and 2019
from regression (3.2).
Source: World Bank (2022); Author’s calculations.
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C.3 Figure 3.8: Missing Data

Figure C.3: Cross-Country Distribution of Missing Tourism Receipts Data (1995-2019)

Notes: This figure illustrates the cross-country distribution of missing observations between 1995 and 2019
from Figure 3.8.
Source: World Bank (2022); Author’s calculations.
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C.4 Baseline Data (2000-2014)

Figure C.4: Nominal Value Added by Sector (% of GDP)

Notes: This figure illustrates nominal value added by sector as a percentage of GDP from 2000 to 2014 for
each country/region in the model. The green, red and purple lines represent the share of the Agriculture,
Manufacturing and Service sectors, respectively.
Source: Timmer et al. (2015); Author’s calculations.
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Figure C.5: Real Value Added by Sector (% of GDP)

Notes: This figure illustrates real value added by sector as a percentage of GDP from 2000 to 2014 for
each country/region in the model. The green, red and purple lines represent the share of the Agriculture,
Manufacturing and Service sectors, respectively. See Tables C.1 and C.2 in Appendix C.1 for details on
country/region codes and sectoral aggregation.
Source: Timmer et al. (2015); Author’s calculations.
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Figure C.6: Sectoral Employment Shares

Notes: This figure illustrates the sectoral employment shares from 2000 to 2014 for each country/region
in the model. The green, red and purple lines represent the share of the Agriculture, Manufacturing and
Service sectors, respectively. See Tables C.1 and C.2 in Appendix C.1 for details on country/region codes
and sectoral aggregation.
Source: Timmer et al. (2015); Author’s calculations.
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Figure C.7: Manufacturing Share

Notes: This figure illustrates three measures of the manufacturing share from 2000 to 2014 for each coun-
try/region in the model. The solid, dotted and dashed lines represent the nominal value added share as
a percent of GDP, the real value added share as a percent of GDP, and the sectoral employment share,
respectively. See Tables C.1 and C.2 in Appendix C.1 for details on country/region codes and sectoral
aggregation.
Source: Timmer et al. (2015); Author’s calculations.
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Figure C.8: Trade Balance (% of GDP)

Notes: This figure illustrates trade balance as a percent of GDP from 2000 to 2014 for each country/region
in the model. From 2000 to 2008, Bulgaria (BGR) had a trade deficit that ranged from a minimum of 23.4%
to a maximum of 31.6% of GDP; these values are omitted from the first panel of the figure due to scaling
issues. See Tables C.1 and C.2 in Appendix C.1 for details on country/region codes and sectoral aggregation.
Source: Timmer et al. (2015); Author’s calculations.
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Figure C.9: Trade Balance by Sector (% of GDP)

Notes: This figure illustrates the trade balance by sector as a percentage of GDP from 2000 to 2014 for each
country/region in the model. The green, red and purple lines represent the trade balance of the Agriculture,
Manufacturing and Service sectors, respectively. See Tables C.1 and C.2 in Appendix C.1 for details on
country/region codes and sectoral aggregation.
Source: Timmer et al. (2015); Author’s calculations.
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C.5 Counterfactual Results

The following tables show the changes in the nominal share of value added by sector caused
by imposing the various counterfactual exercises. The first six columns of each table are
the same. The first three columns show the baseline nominal value added share by sector
expressed as a percentage. The next set of three columns shows the baseline trade balance
by sector expressed as a percentage of GDP. The final three columns in each table shows
the percentage point changes in the nominal value added share of each sector for the various
counterfactual exercises. Table C.3 shows the results from shutting down trade in agriculture.
Table C.4 shows the results from shutting down trade in manufacturing. Table C.5 shows the
results from shutting down trade in services. Table C.6 shows the results from shutting down
trade imbalances. Table C.7 shows the results of the interactions effects from imposing all
of the previously mentioned counterfactuals simultaneously (that is, the interaction effects
from moving to autarky). Table C.8 shows the results from moving to autarky. In all tables,
A, M and S are abbreviations for agriculture, manufacturing and services, respectively.

Table C.3: Eliminating Trade in Agriculture - Change in Value Added Shares by Sector
Baseline: VA Shares Baseline: Trade Bal. Change in VA Shares

A M S A M S A M S

BGR 7.8 16.5 75.7 -8.0 -7.5 10.1 0.1 0.8 -0.9
BRA 8.8 14.6 76.6 2.5 -2.9 -1.7 0.4 0.3 -0.7
CHN 14.9 30.1 55.0 -3.4 7.8 1.2 -0.5 -0.7 1.2
IDN 23.6 21.9 54.5 3.2 -1.5 -0.8 -0.4 0.0 0.3
IND 16.7 16.6 66.7 -5.3 1.6 3.7 -0.1 0.2 -0.1
MEX 10.4 18.7 70.9 3.8 -1.8 -1.4 -0.1 -0.1 0.2
ROU 6.6 21.9 71.5 -4.2 -7.6 12.0 -0.2 0.3 -0.1
RUS 13.3 16.0 70.7 9.7 -9.8 6.7 -1.5 -0.3 1.8
TUR 9.8 18.6 71.6 0.3 0.5 1.8 -0.3 -0.6 0.9

LMIC Ave. 12.4 19.4 68.1 -0.2 -2.4 3.5 -0.2 -0.2 0.4

EAP 3.2 20.2 76.6 -3.9 4.5 1.3 -0.2 -0.7 0.9
EUR 2.7 15.3 81.9 -1.1 2.9 3.2 0.2 0.6 -0.8
NAC 4.4 12.2 83.4 -0.5 -4.0 2.1 1.2 0.7 -1.9
ROW 22.0 13.6 64.4 7.2 -6.3 -12.8 0.0 0.0 0.0

WLD 8.9 17.0 74.1 0.0 0.0 0.0 0.0 -0.2 0.2
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Table C.4: Eliminating Trade in Manufacturing - Change in Value Added Shares by Sector
Baseline: VA Shares Baseline: Trade Bal. Change in VA Shares

A M S A M S A M S

BGR 7.8 16.5 75.7 -8.0 -7.5 10.1 -0.7 2.4 -1.8
BRA 8.8 14.6 76.6 2.5 -2.9 -1.7 -0.8 1.1 -0.3
CHN 14.9 30.1 55.0 -3.4 7.8 1.2 0.6 -2.7 2.1
IDN 23.6 21.9 54.5 3.2 -1.5 -0.8 -0.3 0.6 -0.3
IND 16.7 16.6 66.7 -5.3 1.6 3.7 0.5 -0.6 0.1
MEX 10.4 18.7 70.9 3.8 -1.8 -1.4 -0.2 0.9 -0.7
ROU 6.6 21.9 71.5 -4.2 -7.6 12.0 -0.2 3.3 -3.1
RUS 13.3 16.0 70.7 9.7 -9.8 6.7 -3.0 4.3 -1.4
TUR 9.8 18.6 71.6 0.3 0.5 1.8 0.3 -0.2 0.0

LMIC Ave. 12.4 19.4 68.1 -0.2 -2.4 3.5 -0.4 1.0 -0.6

EAP 3.2 20.2 76.6 -3.9 4.5 1.3 0.5 -2.2 1.7
EUR 2.7 15.3 81.9 -1.1 2.9 3.2 0.1 -1.3 1.2
NAC 4.4 12.2 83.4 -0.5 -4.0 2.1 -0.1 1.9 -1.8
ROW 22.0 13.6 64.4 7.2 -6.3 -12.8 -0.1 1.9 -1.8

WLD 8.9 17.0 74.1 0.0 0.0 0.0 -0.1 -0.2 0.2

Table C.5: Eliminating Trade in Services - Change in Value Added Shares by Sector
Baseline: VA Shares Baseline: Trade Bal. Change in VA Shares

A M S A M S A M S

BGR 7.8 16.5 75.7 -8.0 -7.5 10.1 2.8 2.3 -5.0
BRA 8.8 14.6 76.6 2.5 -2.9 -1.7 -0.3 -0.6 0.9
CHN 14.9 30.1 55.0 -3.4 7.8 1.2 0.4 0.2 -0.6
IDN 23.6 21.9 54.5 3.2 -1.5 -0.8 0.0 -0.5 0.4
IND 16.7 16.6 66.7 -5.3 1.6 3.7 1.7 0.6 -2.4
MEX 10.4 18.7 70.9 3.8 -1.8 -1.4 -0.3 -0.7 0.9
ROU 6.6 21.9 71.5 -4.2 -7.6 12.0 1.8 4.3 -6.1
RUS 13.3 16.0 70.7 9.7 -9.8 6.7 2.8 1.1 -3.9
TUR 9.8 18.6 71.6 0.3 0.5 1.8 0.4 0.6 -1.0

LMIC Ave. 12.4 19.4 68.1 -0.2 -2.4 3.5 1.0 0.8 -1.9

EAP 3.2 20.2 76.6 -3.9 4.5 1.3 0.4 0.3 -0.7
EUR 2.7 15.3 81.9 -1.1 2.9 3.2 0.4 1.3 -1.7
NAC 4.4 12.2 83.4 -0.5 -4.0 2.1 0.5 0.8 -1.3
ROW 22.0 13.6 64.4 7.2 -6.3 -12.8 -3.6 -2.5 6.1

WLD 8.9 17.0 74.1 0.0 0.0 0.0 0.0 0.2 -0.2
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Table C.6: Eliminating Trade Imbalances - Change in Value Added Shares by Sector
Baseline: VA Shares Baseline: Trade Bal. Change in VA Shares

A M S A M S A M S

BGR 7.8 16.5 75.7 -8.0 -7.5 10.1 0.1 0.8 -0.9
BRA 8.8 14.6 76.6 2.5 -2.9 -1.7 0.4 0.3 -0.7
CHN 14.9 30.1 55.0 -3.4 7.8 1.2 -0.5 -0.7 1.2
IDN 23.6 21.9 54.5 3.2 -1.5 -0.8 -0.4 0.0 0.3
IND 16.7 16.6 66.7 -5.3 1.6 3.7 -0.1 0.2 -0.1
MEX 10.4 18.7 70.9 3.8 -1.8 -1.4 -0.1 -0.1 0.2
ROU 6.6 21.9 71.5 -4.2 -7.6 12.0 -0.2 0.3 -0.1
RUS 13.3 16.0 70.7 9.7 -9.8 6.7 -1.5 -0.3 1.8
TUR 9.8 18.6 71.6 0.3 0.5 1.8 -0.3 -0.6 0.9

LMIC Ave. 12.4 19.4 68.1 -0.2 -2.4 3.5 -0.3 0.0 0.3

EAP 3.2 20.2 76.6 -3.9 4.5 1.3 -0.2 -0.2 0.4
EUR 2.7 15.3 81.9 -1.1 2.9 3.2 -0.2 -0.7 0.9
NAC 4.4 12.2 83.4 -0.5 -4.0 2.1 0.2 0.6 -0.8
ROW 22.0 13.6 64.4 7.2 -6.3 -12.8 1.2 0.7 -1.9

WLD 8.9 17.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0

Table C.7: Interaction Effects - Change in Value Added Shares by Sector
Baseline: VA Shares Baseline: Trade Bal. Change in VA Shares

A M S A M S A M S

BGR 7.8 16.5 75.7 -8.0 -7.5 10.1 -0.4 -1.1 1.5
BRA 8.8 14.6 76.6 2.5 -2.9 -1.7 0.7 -0.7 0.0
CHN 14.9 30.1 55.0 -3.4 7.8 1.2 -0.7 2.0 -1.3
IDN 23.6 21.9 54.5 3.2 -1.5 -0.8 0.5 -0.7 0.3
IND 16.7 16.6 66.7 -5.3 1.6 3.7 -1.6 0.5 1.1
MEX 10.4 18.7 70.9 3.8 -1.8 -1.4 0.4 -0.9 0.5
ROU 6.6 21.9 71.5 -4.2 -7.6 12.0 -0.7 -3.6 4.3
RUS 13.3 16.0 70.7 9.7 -9.8 6.7 2.1 -3.1 0.9
TUR 9.8 18.6 71.6 0.3 0.5 1.8 -0.3 0.1 0.2

LMIC Ave. 12.4 19.4 68.1 -0.2 -2.4 3.5 0.0 -0.8 0.8

EAP 3.2 20.2 76.6 -3.9 4.5 1.3 -0.7 1.4 -0.7
EUR 2.7 15.3 81.9 -1.1 2.9 3.2 -0.4 -0.1 0.4
NAC 4.4 12.2 83.4 -0.5 -4.0 2.1 -0.1 -1.5 1.6
ROW 22.0 13.6 64.4 7.2 -6.3 -12.8 2.0 -0.2 -1.8

WLD 8.9 17.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0
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Table C.8: Autarky - Change in Value Added Shares by Sector
Baseline: VA Shares Baseline: Trade Bal. Change in VA Shares

A M S A M S A M S

BGR 7.8 16.5 75.7 -8.0 -7.5 10.1 5.2 1.9 -7.2
BRA 8.8 14.6 76.6 2.5 -2.9 -1.7 -1.4 0.9 0.5
CHN 14.9 30.1 55.0 -3.4 7.8 1.2 1.4 -2.2 0.8
IDN 23.6 21.9 54.5 3.2 -1.5 -0.8 -2.1 1.0 1.1
IND 16.7 16.6 66.7 -5.3 1.6 3.7 4.0 -0.7 -3.2
MEX 10.4 18.7 70.9 3.8 -1.8 -1.4 -2.6 0.9 1.7
ROU 6.6 21.9 71.5 -4.2 -7.6 12.0 2.9 3.3 -6.1
RUS 13.3 16.0 70.7 9.7 -9.8 6.7 -5.2 5.1 0.2
TUR 9.8 18.6 71.6 0.3 0.5 1.8 -0.1 0.1 0.0

LMIC Ave. 12.4 19.4 68.1 -0.2 -2.4 3.5 0.2 1.1 -1.4

EAP 3.2 20.2 76.6 -3.9 4.5 1.3 2.0 -1.9 -0.1
EUR 2.7 15.3 81.9 -1.1 2.9 3.2 0.6 -0.9 0.3
NAC 4.4 12.2 83.4 -0.5 -4.0 2.1 0.8 1.8 -2.5
ROW 22.0 13.6 64.4 7.2 -6.3 -12.8 -4.4 1.2 3.2

WLD 8.9 17.0 74.1 0.0 0.0 0.0 -0.1 0.1 0.0
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C.6 Regression on Model Sample

Table C.9: Regression Results: Manufacturing Share of VA (1970-2019)

Nominal Share Real Share

ln population 66.96* (21.04) 2.33 (18.87)
ln population squared -1.46** (0.58) 0.10 (0.52)
ln GDP per capita 63.24* (8.52) 38.75* (7.23)
ln GDP per capita squared -3.56* (0.49) -2.02* (0.41)
1980s -1.70** (0.73) -1.31** (0.65)
1990s -8.30* (0.89) -2.80* (0.77)
2000s -11.35* (1.08) -2.83* (0.94)
2010s -12.30* (1.56) -3.94* (1.29)
Country/Region F.E. Yes Yes
Countries/Regions 13 13
Observations 650 650

Notes: This table shows the results of running the regression specification in (3.1) using the country/region
aggregation scheme used in the calibrated model (see Table 158 for details).
Source: Feenstra et al. (2015); United Nations (2021); Author’s calculations.
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