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Abstract

In this thesis, I develop new econometric techniques to measure and understand the sources

of economic risks in equity markets.

The first chapter studies frequency-dependent risks in the factor zoo. My approach gen-
eralizes canonical principal component analysis (PCA) by exploiting frequency-dependent
information in asset returns. Empirically, the linear stochastic discount factor (SDF) com-
posed of the first few low-frequency principal components (PCs) capture all the risk premia
in asset returns. It also explains well the cross-section of characteristic-sorted portfolios.
In contrast, high-frequency and canonical PCA have inferior performance since they fail to
identify slow-moving information in asset returns. Moreover, I decompose the low-frequency
SDF into two orthogonal priced components. The first component is constructed by high-
frequency or traditional PCA. It is almost serially uncorrelated and relates to discount-rate
news, intermediary factors, jump risk, and investor sentiment. The second component is
slow-moving and captures business-cycle risks related to consumption and GDP growth.
Hence, only low-frequency PCA identifies the second persistent component emphasized by

many macro-finance models.

The second chapter (with Svetlana Bryzgalova and Christian Julliard) proposes a novel
framework for linear asset pricing models: simple, robust, and applicable to high-dimensional
problems. For (potentially misspecified) standalone models, it provides reliable estimates of
risk prices for both tradable and non-tradable factors and detects those weakly identified. For
competing factors and (possibly non-nested) models, the method automatically selects the
best specification — if a dominant one exists — or provides a Bayesian model averaging (BMA-
SDF) if there is no clear winner. We analyse 2.25 quadrillion models generated by a large

set of factors and find that the BMA-SDF outperforms existing models in- and out-of-sample.

The third chapter (with Ran Shi) develops a Bayesian approach to quantify model uncer-
tainty about linear SDF's, defined as the entropy of posterior model probabilities. We show
that model uncertainty displays massive fluctuations over time, and high model uncertainty
coincides with major market events. These observations hold not only in US markets but
also in European and Asian Pacific equity markets. Moreover, positive model uncertainty
shocks relate to sharp outflows from US equity mutual funds but significant inflows to gov-
ernment bond funds, with effects persisting for three years. In survey data, investors tend to

be more pessimistic about equity performance during periods of higher model uncertainty.
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Chapter 1

Frequency Dependent Risks in the

Factor Zoo

Jiantao Huang?

1.1 Introduction

Explaining the cross-section of expected returns has been an important challenge in asset
pricing literature. Researchers have acknowledged that the consumption-based capital asset
pricing model (CCAPM)? provides little explanatory power, which has inspired a wide variety
of new models. Some models introduce slow-moving components into the stochastic discount
factor (SDF), such as the surplus consumption ratio in Campbell and Cochrane (1999)
and the stochastic mean and variance of consumption growth in Bansal and Yaron (2004).
In other models, the SDF consists only of fast-moving components, e.g., output jumps in
Barro (2006), the intermediary’s consumption growth in He and Krishnamurthy (2013),
and sentiment-driven demand shocks in Kozak, Nagel, and Santosh (2018). Identifying the
key determinants of the SDF, particularly the slow-moving components that are notoriously
difficult to measure (see Alvarez and Jermann (2005)), remains an open question. This paper
addresses this question through the lens of frequency-dependent risks. In addition, I seek to
understand the frequency-specific drivers of expected returns and explore the role of distinct

asset pricing models at different frequencies.

! Any errors or omissions are my responsibility. I thank Thummim Cho, Ian Martin, Cameron Peng, Ran
Shi, Dimitri Vayanos, and seminar participants at the London School of Economics, Tsinghua University
PBC School, Chinese University of Hong Kong, University of British Columbia, Peking University HSBC
Business School, and University of Hong Kong for helpful comments, discussions, and suggestions. I am
particularly grateful to Christian Julliard, Dong Lou, and Svetlana Bryzgalova for their invaluable guidance
and support.

2] refer to earlier versions of CCAPM developed by Rubinstein (1976), Lucas (1978), and Breeden (1979).
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This paper generalizes canonical principal component analysis (PCA) to construct latent
factors that explain the cross-section of monthly expected returns. The key novelty of my
approach is that I exploit frequency-dependent information of asset returns to estimate latent
factors. Using standard Fourier transform, I decompose the covariance matrix of monthly
returns into high- and low-frequency components and estimate systematic factors in each
frequency interval. I denote them as high- and low-frequency principal components (PCs)
and use them as monthly tradable proxies for short- and long-term systematic risks.

When do frequency-dependent risks matter? I show that when asset returns are inde-
pendent, high- and low-frequency latent factors are precisely identical to the canonical PCs.
In other words, only when asset returns deviate from the independence assumption we need
to study frequency-dependent risks. Empirically, low-frequency PCs contain a persistent
element missed by high-frequency and conventional PCs. Moreover, this persistent missing
part is essential in explaining expected returns and reflects business-cycle risks.

Asset pricing models often make parametric assumptions enforcing whether fast- or slow-
moving economic shocks drive the SDF. Rather than assuming the existence of fast- or slow-
moving elements, this paper lets the data speak and suggests that both two components
are priced but reflect different economic fundamentals. The key for detecting the slow-
moving component is the rich persistent information in the factor zoo. For example, Gupta
and Kelly (2019) find that 48 of 65 investment anomalies have significantly positive AR(1)
coefficients.> The low-frequency PCA boosts the signal of persistent information in the
factor zoo and combines the factors’ persistence into a few low-frequency PCs. Instead, the
high-frequency or conventional PCA fails to detect them.

My empirical results are based on a large cross-section of 78 portfolios.* I divide the whole
sample equally into two subsamples. I estimate the factor compositions and risk prices
of frequency-specific PCs in the first subsample and examine their out-of-sample (OOS)
performance in the second subsample. In the main analysis, the LF interval is between three
and ten years, and I interpret it as the business-cycle frequency interval. In contrast, the
HF interval is between zero and three years. The empirical findings are fourfold.

First, the SDF is sparse only in the space of low-frequency PCs. The low-frequency SDF
comprising the seven largest low-frequency PCs is the “proper” benchmark: It yields an
OOS Sharpe ratio of around 0.37 per month. Additional low-frequency PCs are redundant.
In contrast, I need more than 20 high-frequency or canonical PCs to gain a comparable
Sharpe ratio. Since high-frequency components account for 94% of time-series variations in

asset returns, the large canonical PCs are virtually equivalent to the high-frequency latent

3The other 11 have positive yet insignificant coefficients. No factor has significantly negative coefficients.
4Test assets are long and short legs sorted by 39 firm features in Kozak, Nagel, and Santosh (2020).
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factors. I also split the whole high-frequency interval into a few subintervals, but the SDF
is dense even in the space of highly fast-moving factors (with a cycle length shorter than
three months). Past research (e.g., Kozak, Nagel, and Santosh (2018, 2020)) often uses
the first few PCs of single-period returns (identical to high-frequency PCs in the data) to
construct the SDF. My paper shows that this standard practise can be improved by exploiting
frequency-dependent information in asset returns.

Second, the low-frequency SDF cannot be explained by the high-frequency SDF or cele-
brated factor models in Fama and French (1993, 2015), Carhart (1997), and Hou, Xue, and
Zhang (2015). Monthly alphas of the low-frequency SDF are significantly greater than 0.6%.
In contrast, the low-frequency SDF can entirely span the high-frequency one. This evidence
provides further justification for using the low-frequency SDF as the benchmark.

Third, I decompose the low-frequency SDF into fast- and slow-moving components. The
first component is the optimal portfolio composed of high-frequency PCs. This SDF compo-
nent is nearly identical to the SDF constructed by Kozak, Nagel, and Santosh (2018, 2020).
I observe that the high-frequency SDF is almost serially uncorrelated and yields a monthly
Sharpe ratio of 0.29, so I denote it as the fast-moving component. However, it still misses an
essential slow-moving element. I project the low-frequency SDF into the space of the high-
frequency SDF and extract an orthogonal part, denoted as the missing-SDF. This missing
part, displaying a persistent dynamic according to the variance ratio test, explains 30% of
the time-series variation of the low-frequency SDF and earns a monthly Sharpe ratio of 0.24.

Fourth, fast- and slow-moving components of the low-frequency SDF embody entirely
different sources of economic risks. Precisely, the high-frequency SDF is correlated with
market discount-rate news in Campbell and Vuolteenaho (2004), intermediary factors in He,
Kelly, and Manela (2017), market jump risk proxied by the VXO index, and the sentiment-
driven demand shocks from Baker and Wurgler (2006) investor sentiment. Instead, the slow-
moving part of the SDF is related to consumption and GDP growth. It also predicts the
next quarter economic growth. Hence, the missing-SDF reflects slow-moving business-cycle
risks.

My empirical findings have implications for asset pricing models, which link the SDFs to
different economic fundamentals. Macro-finance models often use persistent shocks to macro
variables, such as the stochastic mean of consumption growth, to magnify their prominence
in the SDF. My paper confirms that asset returns carry useful persistent information re-
lated to macro fundamentals, but I can identify them only at low frequencies. My paper
also reconciles the disconnection between asset returns and some macro fundamentals. For
example, asset returns and consumption growth are almost uncorrelated at the quarterly

frequency, so asset pricing seems to disconnect with the macroeconomy in short horizons.
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My paper confirms that the large PCs of short-horizon returns are unrelated to consumption
growth. After removing high-frequency variations from asset returns, the remaining slow-
moving component strongly correlates with macro fundamentals. Therefore, identifying the
slow-moving component is salient for understanding and testing macro-finance models.

Furthermore, macro risks are insufficient to explain the cross-section. The fast-moving
component of the benchmark SDF commands a significant price of risk but is orthogonal
to macro risks. Instead, the demand shocks from sentiment investors, the shocks to the
intermediary sector, and market discount-rate news are essential in understanding the fast-
moving component of the SDF (high-frequency SDF). Hence, different asset pricing models
explain either fast- or slow-moving components of the SDF but not both.

There are two appealing benefits to studying asset returns at different frequencies. First,
it helps to explore the dynamics of state variables in the SDF. I decompose the variance of an
SDF (equivalently, the maximal achievable Sharpe ratio) into frequency-specific components.
Also, I prove that if the SDF has a larger variance at high (low) frequencies, state variables
entering the SDF are, on average, more fast-moving (slow-moving). Since a sparse low-
frequency SDF embodies a significantly higher Sharpe ratio than a high-frequency one, slow-
moving state variables are empirically more prominent than fast-moving ones.?

Second, frequency-dependent PCA strengthens the signal of some systematic factors.
Generally, a slow-moving (fast-moving) latent factor has a stronger signal at low (high)
frequencies. Suppose a weak latent factor explains a tiny proportion of single-period returns.®
In that case, the canonical PCA fails to identify it. However, frequency-specific PCA can
recover this weak factor if its variance is large enough in a specific frequency interval. This
paper shows that the low-frequency PCA recovers some essential priced weak factors with
strong enough signals only at low frequencies. Instead, the high-frequency and canonical
PCA identify them as idiosyncratic noises, so many small high-frequency and canonical PCs
are needed to attain the same Sharpe ratio as a sparse low-frequency SDF.

It is worth noting that economic theory predicts the sparsity of latent factor models. The
absence of near-arbitrage opportunities in Kozak, Nagel, and Santosh (2018) argues that only
the largest PCs enter the SDF. However, this paper observes some small high-frequency (also
canonical) PCs bringing nontrivial risk premia, so the absence of near-arbitrage opportuni-
ties fails. One explanation is that some economic shocks, such as the stochastic mean of
consumption growth, are slow-moving and explain only a tiny fraction of single period re-

turns. Hence, traditional PCA fails to detect these small but persistent shocks. Suppose

>The importance of a state variable X; comes from the variance of X; and its risk price squared (b%). In
latent factor models, I can identify only Var(X;)b% rather than Var(X;) and b% individually.

6Onatski (2012) and Lettau and Pelger (2020a) assume that the variance of a weak factor does not grow
as the number of test assets converges to infinity.
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market participants have Epstein-Zin preferences as in the long-run risk model. In that case,
persistent shocks to economic fundamentals command sizable risk premia and constitute
a considerable part of the SDF. Since the low-frequency PCA successfully captures these

slow-moving elements, we observe the sparsity of the low-frequency SDF.

1.1.1 Related Literature

This paper mainly contributes to two strands of literature. The first closely related branch
of literature is the study of asset pricing models at different frequencies. We have known for
a long time that both CAPM and CCAPM have better performance in the long horizon. For
example, Handa, Kothari, and Wasley (1989) show that the size effect becomes statistically
insignificant when the market beta is estimated using annual returns. Parker and Julliard
(2005) measure ultimate consumption risk at a horizon of three years and document that
it explains a large proportion of expected returns. Brennan and Zhang (2020) derive the
CAPM with a stochastic investor horizon, and their estimates show that the probability
distribution of investor horizons puts a massive weight on the interval between 8 and 20
months. Chernov, Lochstoer, and Lundeby (2022) test asset pricing models using multi-
horizon returns and report that single-period estimates of those models typically do a poor
job of explaining long-term returns.

However, all the above papers study factor models at a specific frequency instead of
in a frequency interval. A few recent papers adopt spectral analysis to study frequency-
dependent risks. First, Dew-Becker and Giglio (2016) study frequency-dependent risk prices
in consumption-based models and show that only the long-run risk model can explain asset
returns. Instead, my paper does not make a parametric assumption of the SDF. I construct
the SDF using latent factors of asset returns and find that the SDF contains a huge fast-
moving component that the consumption risk cannot explain.

Second, Bandi, Chaudhuri, Lo, and Tamoni (2021) use a Wold representation of the
CAPM beta. Only the business cycle components within the frequency interval between 32
and 64 months can price the cross-sections. One key feature of their approach is assuming
a vector autoregressive (VAR) process for state variables. In contrast, my paper takes a
nonparametric point of view and is more robust to the model misspecification of the state
vector dynamics. In addition, we have different economic interpretations. Their paper claims
that the business-cycle component of the market beta captures delayed price adjustments to
new information in the market portfolio. Instead, my paper finds low-frequency systematic
factors capture business-cycle risks, but short-term factors miss them.

Last but not least, Neuhierl and Varneskov (2021) decompose the covariance between

asset returns and pricing factors via the Fourier transform and study the frequency-dependent
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risks. My paper improves their framework in a few aspects. Their paper studies factors
individually, and their framework cannot handle the factor zoo. Instead, the framework in
my paper is more suitable for the high-dimensional case. Also, they do not explore whether
high- or low-frequency factors can explain the cross-section of average returns. Unlike their
paper, I show that low-frequency latent factors are salient for cross-sectional asset pricing.
The decomposition of the SDF into fast- and slow-moving components also improve our
understanding of economic risks in the factor zoo.

The second branch of related literature is the abundant study of latent factor models
after Ross (1976). Early empirical applications include Chamberlain and Rothschild (1983),
Connor and Korajezyk (1986), Connor and Korajczyk (1988). Kozak, Nagel, and Santosh
(2020) use PCA to estimate latent factors of a large cross-section of characteristic-managed
portfolios and then estimate their risk prices via an elastic-net algorithm. Kelly, Pruitt, and
Su (2019) propose the instrumented PCA to model both pricing errors and factor loadings
as functions of firm characteristics, and they find that four IPCA factors explain the cross-
section of individual stock returns. Lettau and Pelger (2020a) and Lettau and Pelger (2020Db)
generalize PCA by including a penalty term on the pricing errors in expected returns. Their
method can identify weak factors with high Sharpe ratios, even when the canonical PCA
omits them. This paper differs from previous literature in that I estimate latent factors
using frequency-dependent information in asset returns. As I show in Sections 1.2 and 1.3,
the importance of latent factors can change across frequencies, and the frequency-dependent
PCA can also strengthen a factor’s signal if it is not independent. Giglio and Xiu (2021)
and Giglio, Xiu, and Zhang (2021) show that we can project a nontradable factor into the
space of the largest several PCs of single-period returns. The risk premium of a nontradable
factor is the expected return of its mimicking portfolio composed of the largest several PCs
of single-period returns.

Nevertheless, I do not intend to develop a method that can outperform all previous
forms of PCA. Instead, I aim to provide a novel framework that is suitable for analyzing
frequency-dependent risks in the factor zoo. Moreover, my frequency-dependent PCA can
also be integrated with other PCA methods. For example, we can construct the factor-
mimicking portfolio composed of frequency-specific PCs and use the three-pass procedure in

Giglio and Xiu (2021) to estimate the risk premium of nontradable factors.

1.2 Methodology

Notation. E[-], Var|-], and Cov[:] are the expectation, variance, and covariance operators.

Suppose that X; is an arbitrary N x 1 vector of covariance-stationary random variables. px,
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E, 1[X¢], and X; denote the unconditional, conditional, and sample mean of X;. X x(h) is
the autocovariance matrix with lag h: Xx (h) = E[ X4, X:]| —E[X:1n|E[X,] . Particularly,
¥ x(0) is the unconditional covariance matrix, simply denoted by Xx. 3x (h) is the sample
estimate of X x (h). Tr [A] is the trace of a matrix A.

1.2.1 Asset Pricing Models

Suppose that there are N test assets, denoted by Ry = (Ryy,. .., Ry¢)', and the sample size
is T'. This paper considers empirical applications in which both N and 7' are reasonably
large, in particular, % — ¢ < 1. Motivated by the arbitrage pricing theory (APT) developed
by Ross (1976), this paper studies an approximate factor pricing model, where the excess
return on asset n, R,;, is driven by a systematic component captured by K (K < N) latent

factors and an idiosyncratic shock,

Rt+1 = o + ,3 Ft_|_1 + €tt1, (11)
—_—— N A
Nx1 Nx1  NxK Kx1 Nx1

where a denotes a vector of potential mispricings, BF; 1 is a vector of common components
that are the product of factor loadings 3 and latent factors Fyyq, and esyq is a vector of
idiosyncratic shocks. I further require 8F;11 and esy1 to be orthogonal. Empirically, I need
to estimate the common component and cannot identify B8 and Fy, separately.

Moreover, I require only systematic risks, proxied by F;i1, to enter the SDF. In other
words, this paper assumes a strong form of APT, whereas unsystematic risks e;11 earn zero

risk premia. Specifically, M, is linear in factors Fy 1,
My =1=b"(Fy1 — pr), (1.2)

where p g is the unconditional expectation of latent factors, and b is the vector of risk prices
for systematic factors, capturing the compensation for bearing systematic risks. According
to the Hansen and Jagannathan (1991) (HJ) bound, if F,,, are tradable factors, b' F, is
the mean-variance efficient (MVE) portfolio. Therefore, constructing the linear SDF is the
equivalent of finding the MVE portfolio in the cross-section of test assets.

According to the fundamental asset pricing equation,

EM1Ret1] = E{Re11[1 = b' (Fis1 — pr)]} = On (1.3)

"I consider only excess returns in this paper, so the unconditional mean of M, is unidentified. Without
loss of generality, I normalize its mean to be one.
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— E[Rt+1] = COV(Rt+1, FtJr]_)b, (14)

so systematic risks, quantified by the covariance matrix, fully explain the cross-section of
expected returns.

Past research documents the deviation of the independently and identically distributed
(IID) assumption for asset returns. For instance, Chernov, Lochstoer, and Lundeby (2022)
calculate the variance ratio of the mean-variance efficient portfolios in notable factor models.
According to their results, factor returns are far from IID. In addition, Haddad, Kozak, and
Santosh (2020) show that the first few principal components of asset returns are predictable
by their own portfolio-level log book-to-market ratio. Motivated by their findings, this paper
deviates from the IID assumption of R;; by assuming that latent factors subsume all the
time-series dependency. Specifically, [ assume that a p x 1 vector of mean-zero “latent” state

variables X, can predict factors F;,; as follows:

Fiii= pr + Sx Xi + fiqa, (1.5)
Kx1 Kx1 Kxp px1 Kx1

where pp is the unconditional mean of latent factors, ®xX; captures the time-varying
conditional mean of latent factors, fi11 is conditionally uncorrelated: E[fiy1] = Ei[fiy1] =
Ox. Similarly, idiosyncratic shocks e;y; are conditionally uncorrelated. Chamberlain and
Rothschild (1983) also model idiosyncratic components as being cross-sectionally but not
serially correlated. Since pricing errors are poorly predictable, such an assumption can be

viewed as a good first-order approximation. I further plug equation (1.5) into the SDF,
My =1-b"fii1 —bx Xy, (1.6)

where by = b'®x, and by X; drives the conditional mean of the SDF, capturing its full
conditional dynamics. The formula for M, in equation (1.6) relates to previous studies that
decompose the SDF into permanent and transitory components (see Alvarez and Jermann
(2005) and Hansen and Scheinkman (2009)).

In addition, Hansen, Heaton, and Li (2008) study parametric models of state variables,
modelling them using a stationary vector autoregressive (VAR) model. Instead, this paper is
agnostic about the state vector X;. X; can be firm characteristics and macro indicators, such
as book-to-market ratio and cay (see Lettau and Ludvigson (2001a)). By decomposing asset
returns into frequency-dependent components, this paper can infer whether state variables
critical in pricing the cross-section, on average, are more important at high or low frequencies.

The next subsection introduces the Fourier transform as the non-parametric solution.
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1.2.2 Frequency Domain Analysis

This paper uses the techniques in frequency domain analysis to model the time-series de-
pendence of asset returns and decompose an empirical series into its repetitive or regular
components. [ start by motivating why the Fourier transform is a natural approach to study
long-horizon asset returns. Suppose that an excess return process x; follows an AR(1) pro-
Cess, Tiy1 = PrTi+ Maxnaj,tﬂ, where p, is the AR(1) coefficient, o2 is the unconditional

. iid
variance, and 7, 441 ~

N(0,1). When p, is zero (negative, positive), the asset return follows
an 11D (fast-moving, slow-moving) process. When p, is more positive, the asset return tends
to be more persistent.

Figure 1.A.1 plots the cumulative returns in a 24-month rolling window for three AR(1)
processes: p, € {—0.5,0,0.5}. No matter how persistent the time series is, its long-horizon

return always exhibits a cyclical pattern. Hence, it is natural to project the long-horizon

return on the sine and cosine functions: 2401 = ag + arsin(3g) + az cos(2E) + e 4.
Note that the deterministic processes sin(%%) and cos(%%) complete a cycle in 48 months, or

equivalently, it has a cycle length of 48 months. Motivated by this observation, I can study
the cyclical pattern of long-horizon asset returns by projecting them on the space of sine and
cosine functions, and an M-month cumulative return corresponds to a cycle length of 2M.
The frequency-domain analysis is the natural solution. Technically speaking, the Fourier
transform decomposes a time series into orthogonal components at different frequencies. In
the language of regression, it regresses the original time series into a sequence of sines and
cosines functions.®

This paper uses w to denote the frequency of a time-series process, which quantifies the
number of cycles that this process completes per unit of time. Of equal interest is the period
(or cycle length) of a time series, defined as the number of time points in a cycle: 7 = %
For instance, if w is 0.1 in monthly data, the time series will finish 0.1 cycles in a month.
Equivalently, it will take this process 10 months to complete one cycle.”

The spectral density matrix of Ry is defined as the Fourier transform of its auto-covariance
matrices,

fr(w) = Z Y r(h) exp{—2mihw}.

h=—00

8 According to the spectral representation theorem in Hannan (2009), a covariance-stationary time series
can be approximated by a sum of sine and cosines random variables with different variances across frequencies.
(see appendix 1.A.1.1).

9In addition, the absolute value of w is no larger than 0.5 since any time series spends at least two months
completing a cycle.
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Through inverse Fourier transform, I can reverse engineer the auto-covariance matrix,

N

ER(h):/_ exp{2mihw} fr(w)dw.

N|=

In the study of asset pricing models, such as finding the tangency portfolio, investors focus

on the covariance matrix of asset returns, that is, h = 0,

1

Cov(Ry) = Sg = R(fr(w))dw. (1.7)
—3

The Fourier transform of R; decomposes asset returns as an equally weighted average of
orthogonal components at different frequencies, so the covariance matrix of R; equals the
integral of the covariance matrix of its frequency-w component, fr(w), as in equation (1.7).
In Appendix A1, I further show that only the real part of the spectral density matrix plays
a role in estimating PCs. Hence, I focus on R(fr(w)), the real part of the spectral density.
Equation (1.7) also implies that R(fr(w)) is the contribution to the covariance matrix from
the frequency-w component. If test asset returns are 11D, the spectral density matrix of asset
returns is constant across frequencies; that is fr(w) = X g for every w.

Why should we study the frequency-specific covariance matrices of asset returns? One
reason is that the single-period covariance matrix often fails to capture systematic risks
critical in explaining risk premia. For example, Brennan and Zhang (2020) show that yearly
CAPM beta, which equals the covariance between annualized asset returns and the market
portfolio, can explain the cross-section of 25 Fama-French size-B/M monthly portfolios. In
contrast, the monthly CAPM beta entirely fails. Therefore, the single-period covariance, like
the single-period CAPM beta, possibly misspecifies actual systematic risks, rendering the
estimation of risk prices difficult or even impossible. This observation calls for the study of
frequency-dependent systematic risks.

I estimate the spectral density matrix via discrete Fourier transform (DFT).1% A simple
example is in Figure 1.A.3, where a deterministic time series x; in panel (c) consists of two
components. The first component in panel (a) is slow-moving, with a frequency equal to
0.05, which completes a cycle every 20 periods. Another component of x; in panel (b) is fast-
moving, spending only two periods repeating a cycle. As in panel (d), DFT decomposes the
variance of x; into two parts contributed by low-frequency and high-frequency fluctuations.

Like other non-parametric estimation methods, the DF'T estimate of the spectral density
matrix at a particular frequency is susceptible to significant uncertainties. To reduce the

variance, I divide the frequency intervals into three groups and estimate the spectral density

0Details about DFT can be found in Appendix 1.A.1.2.
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matrix in each frequency interval.

What are the ideal cutoff points of the entire frequency interval? Past research can give
some hints on this question. Dew-Becker and Giglio (2016) derive a closed-form solution to
frequency-specific risk prices of parametric CCAPMs. They observe that only the long-run
risk with cycles more prolonged than the business cycle is priced in the cross-section. In
addition, Bandi, Chaudhuri, Lo, and Tamoni (2021) use the orthogonal Wold decomposition
of CAPM’s beta, and they find that only the business-cycle component of CAPM beta in
the frequency interval between 32 and 64 months is priced. These observations motivate the
following division of frequency intervals.

More specifically, I consider the following divisions of frequency intervals: (1) 7 = % < 36
months (high-frequency, denoted as HF), (2) 7 = % € [36, 120] months (low-frequency, or
business cycle frequency, denoted as LF), and (3) 7 = £ > 120 months (Above-LF, or A-
LF). This paper considers the second frequency interval as being closely related to business
cycles. Generally, the covariance matrix in the third group, with a cycle length greater than
120 months, is difficult to estimate non-parametrically. In later analysis, I also divide the
HF interval into several sub-intervals. In addition, I consider alternative LF intervals in the

robustness check. With the above division, I decompose the covariance matrix of Ry,

Sp = /  R(fafe))ds + / R+ / R(fa)do  (18)

weEQA_LF

= Qur|EZR" + |Qr[ SR+ 1Qu e[ BE (1.9)

where Qpr, Qrr, and Q4_rr denote the set of HF, LF, and Above-LF, with lengths |Qgp|,
1Qrp| and |Qa—rr| (|Qar|+ |Qr| + |Qa-rr| = 1).

Proposition 1.1 (Decomposition of asset returns’ spectral density matrix) [ assume
that et+1 and fi11 are conditional uncorrelated, and they are orthogonal. Then the spectral
density matrices of exy1 and fiy1 are constant across frequencies and equal to their uncondi-
tional covariance matrices 3. and X, respectively. Moreover, I can decompose the spectral

density matriz of Ry as,

fR(w) = /BfF(w)/HT + Ee = Bzfﬁ—r + 2e + BXfX(w)B;rO (1'10)

where fr(w) and fx(w) are the spectral density matrices of latent systematic factors and

state variables, and Bx = BPx.

A simple derivation of proposition 1.1 is in Appendix 1.A.2.1. A key observation in equa-

tion (1.10) is that only the last component related to state variables is frequency-dependent,
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as e;y1 and fiyq are conditionally uncorrelated. Furthermore, if I estimate latent factors
of asset returns at different frequencies, I can study the difference between HF and LF sys-
tematic risks. More precisely, equation (1.10) indicates that the dynamics of state variables
entirely drive the difference between HF and LF systematic risks. Similarly, I also decompose
the SDF into frequency-dependent components and illustrate how the maximal Sharpe ratio

implied by the SDF varies across frequencies.

Proposition 1.2 (Spectral density function of the SDF) [ normalize latent state vari-
ables Xy such that they are uncorrelated. Define risk prices of X; as bx = ®xb: bx =

(bx1,---,bxp) . Then the unconditional variance of the SDF is
1P
Var(M;1) =b'Ssb + / Zbgczsz (w)dw, (1.11)
1
—3 j=1

and the spectral density function of My, is

faa(w) =b"Spb+ ) b, fx, (W), (1.12)

j=1
where fx,(w) is the spectral density function of the i-th state variable X;.

I derive proposition 1.2 in Appendix 1.A.2.2. Since state variables are latent, I can
always normalize them such that they are uncorrelated. An alternative interpretation of
the normalization of X; is that latent state variables are PCs of conditional expectations
of factors. The above derivation shows that the maximal Sharpe ratio of the economy is
frequency dependent. Moreover, the spectral density function of M;,, denoted by fa(w),
varies across frequencies only due to the second term Z§:1 b%m fx,;(w). Iinterpret this quan-
tity as the weighted-average spectral density function of latent state variables, with weights
proportional to the squared risk prices of state variables. If, on average, 1;:1 b%w fx,(w)
is larger at high (low) frequencies, it implies that high (low) frequency information is more
prominent in this cross-section of asset returns.!' In addition, the spectral decomposition of
M4 can only identify the state variable with a non-zero price of risk bx ;.

Similar to this paper, Neuhierl and Varneskov (2021) use the Fourier transform to study
the dynamics of state variables driving asset returns. They also show how to map their SDF
into some canonical consumption-based asset pricing models. While the spectral density

function of the SDF in IID CCAPM is constant across frequencies, other candidate models

' The prominence of a state variable X; comes from two sources: the variance of X; and its risk price
squared (b%). Since I use PCs as factors and state variables are latent, I can identify only Var(X;)b% rather
than Var(X;) and b% individually.
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such as the long-run risk model in Bansal and Yaron (2004) have persistent SDFs. From the
theoretical point of view, the LF component is more critical than the HF one in the SDF.
A limitation of Neuhierl and Varneskov (2021) is that they consider only a single factor and
explore how its risk premium varies across frequency. Differently, this paper aims to handle a
factor zoo and extract frequency-dependent systematic risks in the large cross-section using

the techniques introduced in the following subsections.

Remark 1.3 (Interpretation of the Frequency) The frequency is different from the turnover
of a factor strateqy. Let us consider two value strategies: the first is the monthly rebalanced
HML, or HML dewil, from the AQR library. The second strateqy is the yearly rebalanced HML
from Ken French library. FEven though these two strategies have different turnovers, their
correlation 1s as high as 0.9. Furthermore, I compute their autocorrelations and variance

ratios — these two HML strategies have pretty similar patterns.

1.2.3 Estimation of Risk Factors

Under the assumption that Fii; and e;41 are orthogonal, I can represent the covariance

matrix of asset returns as following:
YR=83r B + .. (1.13)

Systematic factors Fyyq are not directly observable, so I aim to estimate tradable proxies for
them. A common way to estimate model (1.1) is the Principal Component Analysis (PCA),

which relies on the eigendecomposition of ¥ g,
Yr=QAQ", with A = diag{\;,..., \n}, (1.14)

where @ is the matrix of eigenvectors (Q'Q = Iy), and A is the diagonal matrix of
eigenvalues in a descending order. A common practice of PCA is to estimate 3 as the first
K columns of @, denoted by Q. Moreover, the estimates of K principal components (PC)
are Fy = Qj R, uncorrelated by construction.

This paper uses the normalization 8'3 = Ik and Xp = diag{o},,... 0%} in all
following analyses, with exceptions unless stated. Furthermore, I allow for a mixture of
strong and weak factors. In fact, most of asset pricing studies, as in this paper, use diversified
portfolios as test assets, and the number of test assets is not truly infinite. In this paper, I
differentiate strong and weak factors based on their variances.

Bai (2003) proves the asymptotic consistency of PCA when all factors are strong factors,

which affect an increasing number of test asset returns as N goes to infinity. Mathematically,
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T T
Zt:l# — X and BTT’G — XN, where both ¥ and X are positive definite matrices.

Bai and Ng (2002) make the same assumption and propose an asymptotically consistent
algorithm to determine the number of latent factors in model (1.1). Under the normalization
chosen by this paper, the above assumption is the equivalent of explosive eigenvalues of .
That is to say, the largest K eigenvalues of X g and X g will go to infinity as N — oc.

In addition, Bai (2003), like other papers, allows the idiosyncratic terms e; to be only
weakly correlated both cross-sectionally and over time. Furthermore, idiosyncratic shocks

explain a finite amount of time-series variations in asset returns; that is

lim sup max eval(Ee) < 00,
N,T—00
where max eval(A) denotes the maximal eigenvalue of matrix A.

In empirical applications, however, it is uncommon to come across the ideal case in which
we can clearly separate large eigenvalues related to latent factors from small eigenvalues rep-
resenting idiosyncratic shocks. A few papers have documented that PCA cannot consistently
estimate model (1.1) when some latent factors are weak (see Onatski (2012), Lettau and Pel-
ger (2020a)). Contrary to a strong factor, a weak one explains a relatively smaller fraction
of time-series variations in asset returns. Alternatively, we can interpret a weak factor as
having a finite variance or a relatively small variance in a finite sample.

Some weak factors are necessary to explain the cross-section of asset returns. For example,
Lettau and Pelger (2020b) show that the omission of weak factors with a high Sharpe ratio
can deteriorate the performance of latent factor models. However, the question is, when will
PCA ignore the weak factors?

Benaych-Georges and Nadakuditi (2011) shed light on this question. Suppose that the
covariance matrix of asset returns can be decomposed into the sum of two matrices as in
equation (1.13), and one of them, such as X, has bounded eigenvalues. Under this setup,
the k-th (k < K) eigenvalue of X g, representing the k-th systematic factor Fj, is identified
if the k-th eigenvalue of 8 Xr BT, equal to 012% under the normalization, is greater than a
certain threshold; that is

)\k (/8 EF IBT) = U%‘,k > )\crih

where A\, (A) denotes the k-th largest eigenvalue of matrix A, and A..; is related to the limit
of % and the upper bound of eigenvalues for 3. Otherwise, a phenomenon called eigenvalue
phase transition occurs, and the factor £ is no longer identified. Now let us look at a simple

example.

Example 1.4 (Single-factor model) Suppose that there is only one systematic factor in

model (1.1), and the idiosyncratic vector e; has a covariance matriz o*In (02 < o). I
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further normalize the factor loadings such that 873 = 1, and the variance of F; is o2

(02 < o00). As & — ¢ < 1, the distribution of eigenvalues for Var(e;) converges to the

T
Marchenko—Pastur distribution, with lower and upper bounds o*(1 — \/c)? and o*(1 + /c)?.
According to corollary 2 in Lettau and Pelger (2020a), when o% < \/ca?, the top eigen-
value converges to o(1 + /c)®. Consequently, PCA can no longer identify Fy, and the

correlation between true factor Fy and the PCA estimate F, converges to zero.

A strong factor has a variance that is much more considerable than the critical point
at all frequencies, so it is always identifiable. However, there are some “marginal factors”
whose signals are strong enough only at high or low frequencies. It depends on the dynamics
of state variables driving this factor. Suppose that a weak factor in example 1.4 has a
variance slightly less than the critical value y/co?, but it follows an AR(1) process: F; =
prFi 1+ /1= phers, ery " N(0,0%). If pp is more positive (negative), F} is more slow-
moving (fast-moving). The spectral density of F} is in Figure 1.A.2. For instance, when pp
is 0.5, the variance of F}; at low frequencies is roughly four times the unconditional variance.
It is possible that a weak factor is unidentified by canonical PCA but stands out at low
frequencies if its signal is persistent and strong enough in the long horizon. This observation

also motivates the frequency-dependent PCA.

Definition 1.1 (Frequency-dependent PCA) Suppose that SHF  SEF and X475F qare
high-, low-, and above-low-frequency covariance matrices of the N-dimensional random vec-
tor Ry. The eigendecomposition of ¥4, Z € {HF, LF, A-LF}, is

S% = Q*A%(Q7)", with A? = diag{\/,..., N%},

where Q7 are eigenvectors of X%, that is, (Q?)'Q? = In, and AZ is the diagonal ma-
trix of eigenvalues in descending order. Define the latent factors in the frequency Z €

{HF,LF, A-LF} as FZ = (Q%)"R,.

Intuitively, I rotate the space of canonical PCs to target the short-term and long-term
common variations in asset returns. In other words, frequency-dependent PCA aims to select
monthly proxies for short-term and long-term systematic risks. A special case is when asset
returns are IID. Since ¥% are identical in this case, PCA, HF-PCA, and LF-PCA will deliver

the exact estimates across frequencies.

1.2.4 Estimation of Risk Prices

This paper always uses principal components of asset returns as systematic factors, Fy =
(Q?)" Ry, Z € {HF,LF, A-LF}. Since F; are always tradable, estimating the linear SDF in
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equation (1.2) is the same as finding the optimal portfolio weights, b, such that b" F} is the
MVE portfolio. If the SDF prices the cross-section of asset returns, it also prices all tradable

factors, so I can rewrite equation (1.4) as follows:

I can solve the risk prices from equation (1.15), b = X' up. Therefore, risk prices b are
proportional to the MVE portfolio weights. In a finite sample, I need to estimate both X
and pp. Past research have shown that a naive estimator such as b = f]}lﬁ‘t does not
perform well in real datasets. For example, Tu and Zhou (2011) show that the estimated
Markowitz (1952) portfolio not only underperforms the naive 1/N rule, in which investors
invest equally across N assets, but also earns negative risk-adjusted returns. Kozak, Nagel,
and Santosh (2020) argue that the majority of uncertainty comes from the estimation of
factor means pr and propose a simple Bayesian procedure to estimate b.

To compare with Kozak, Nagel, and Santosh (2020), this paper adopts a similar strategy,
which assumes that the covariance matrix of factor returns, X, is known and focuses on
the modelling of mean factor returns. Furthermore, equation (1.15) does not hold exactly
in finite sample, so I include pricing errors e on the right-hand side of equation (1.15):
pr = Xpb+ a, a ~ N(Oy, %EF) Finally, I assign a normal prior for risk prices:
b ~ N(0k, “;IK), T="Tr [EF] Under such a prior distribution, the prior expectation on

the squared Sharpe ratio of factor returns is equal to

2
Eprior [SEE] = Epion [bT Spb] = = Tr [Sp] = 5%
T

Also, the posterior distribution of b, conditional on (ur, XF), is
T Ty —1 T 47T
p(b| pr Er) < expy =3 [(pr — Zrb) 25 (pr — Srb) + ol b ¢
Therefore, the posterior mode of b is the solution to the below objective function I,

mbin{(up —Xpb) S (ur — Zpb) + vngb}, (1.16)

%. A detailed derivation of equation (1.16) is in Appendix 1.A.2.3.

For simplicity, I will denote \/Epior[SR%] as S Rpyrior, or simply call it the prior Sharpe ratio.

However, due to Jensen’s inequality, Eprior[SRr] < \/Eprior[SR%|, 80 SRyrior 18 an upper

where vy =

bound on the expected Sharpe ratio under prior distribution. Objective function I is to

26



minimize squared Sharpe ratio of pricing errors (or equivalently maximize R%; ), subject to
Lo-penalty. In addition, I include factors into the model based on their ability of explaining
time-series variations. That is to say, I include the first K largest PCs into analysis when I
consider a K —factor model.

Kozak, Nagel, and Santosh (2020) extends equation (1.16) by including the L;-penalty,

IIlblH{(p,F — pr)TE;wl(lI,F - pr) + 2U1|b|1 + UQbTb}. (117)
Since the principal components are uncorrelated by constructions, its covariance matrix 3 g

is diagonal with elements equal to eigenvalues of the covariance matrix of test assets. The

closed-form solution to optimization problem (1.17) is

KF,i—V1 .

o 7 if ppi > vy

Nigns = TRt 7 (1.18)
0, if pUri < V1,

so the above algorithm selects a certain factor j whenever it has a mean greater than v;. In
other words, v; controls the sparsity of factor models. Moreover, factors with small variances
are shrunk more heavily by the Lo-penalty. This makes sense as those factors are more likely
to be idiosyncratic risks that should not command sizeable risk premia.

This paper shows the empirical results using both objective functions (1.16) and (1.17).
Suppose systematic factors that explain a large amount of time-series variations can capture
most of the risk premium. In that case, estimates by (1.16) or (1.17) should be largely
similar. It also implies that we can find a sparse factor model consisting of large PCs of
asset returns. Finally, I emphasize that I also assume there is only one true SDF. One of
this paper’s main objectives is to determine whether the SDF comprised of canonical, HF,

or LF PCs is a better approximation to the tangency portfolio.

1.3 Empirics

I now proceed to the empirical studies. The first step is to estimate frequency-specific
risk factors using the techniques introduced in Section 1.2 and to investigate whether the
SDF composed of HF or LF factors is a better approximation to the tangency portfolio.
Next, I explore whether some celebrated factor models proposed in the literature, such as
Fama-French three factors, can explain these SDFs. Finally, I attempt to understand the
economic fundamentals behinds SDFs. I begin this section with the analysis of 25 Fama-

French portfolios to show how the factor structure of asset returns varies across frequencies.

27



I then carry out the main analysis in a large cross-section of portfolios, studying which

frequency is salient for the cross-sectional asset pricing.

1.3.1 Sample and Data

My primary data source comes from the characteristic-managed portfolios in Kozak, Nagel,
and Santosh (2020). The definition of firm characteristics and the data are on Serhiy Kozak’s
website. There are 51 firm characteristics in Kozak, Nagel, and Santosh (2020),'2 but I select
39 of them to ensure the sample size large enough to estimate the low-frequency covariance
matrix of asset returns.

In the benchmark analysis, I split the sample from August 1963 to December 2019 into two
halves and focus on the out-of-sample performance, which imposes additional challenges on
the estimation due to the smaller subsamples. Firm characteristics can be further categorized
into eight groups, as in Table 1.A.2. Kozak, Nagel, and Santosh (2020) also exclude stocks
with market equity below 0.01% of the aggregate US market cap, alleviating the impact of
microcaps. Each month, individual stocks are sorted into 10 portfolios based on each of the
39 firm characteristics. They construct portfolios with weights equal to cross-sectional ranks
of a given stock’s characteristic, which is centered and normalized by the sum of absolute
values of all ranks in the cross-section.

I also use the Fama-French 25 size and book-to-market (total variance) portfolios in
Section 1.3.2. T download the data from Ken French’s library. In succeeding analysis, I sup-
plement the main dataset with additional economic variables. Detailed variable definitions

and data sources are provided in Table 1.A.1.

1.3.2 Starting Examples: 25 Fama-French Portfolios

To illustrate how the factor structures vary across frequencies, I start with the 25 Fama-
French size and book-to-market portfolios. The numbers in Figure 1.1 are 25 portfolios’
factor loadings, equivalently their portfolio weights. The sample spans from August 1963
to December 2019. In each graph, the x-axis shows five buckets of book-to-market ratio,
whereas the y-axis plots five levels of firm size. For instance, ME1 represents small firms,
and BM5 means high book-to-market portfolios. Since PC1 is always the level (identically
market) factor, I will display only the second and third PCs. In addition, I note that PCs
and HF-PCs are almost identical; therefore, I will focus on explaining the difference between
HF-PCs and LF-PCs.

12T thank the authors for sharing the data on their website. A more specific description of how to construct
this dataset can be found on Serhiy Kozak’s website: https://sites.google.com/site/serhiykozak/data.
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Figure 1.1: 25 Fama-French Size-Value Portfolios: 2nd and 3rd PCs

This figure shows the factor loadings of the second and third principal components in the cross-section of
25 Fama-French size-value portfolios. I estimate the factor loadings using the canonical PCA, HF-PCA, and
LF-PCA. See Definition 1.1 for the algorithm. The sample is from August 1963 to December 2019.
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First of all, let us look at Panel (c¢): In each column, the second HF-PC positively loads
on all large portfolios in ME5 but negatively on small portfolios in ME1. Therefore, HF-PC2
is a size factor. Next, in Panel (d), the portfolio weights of all five portfolios in BM5 (BM1)
are always positive (negative), so HF-PC3 is a value factor. Overall, the size factor is more
important than the value factor at high frequencies.

On the contrary, I observe the opposite at low frequencies. The heat-map in Panel (e)
reveals that the second most crucial LF-PC is the value factor, while the size factor becomes
the third-largest LF-PC, as is evident in Panel (f). This observation is largely compatible
with the economic theory because the value factor often captures the business-cycle risk at
low frequency. For example, Lettau and Ludvigson (2001b) point out that value stocks are
more highly correlated with consumption growth in bad economic states than growth stocks,
so they earn higher average returns. In short, the example in Figure 1.1 shows that the

relative importance of latent factors can vary across frequencies.

1.3.3 Simple Simulation

In this section, I design a simple simulation to illustrate how the frequency-dependent PCA
can recover the conditional information in asset returns. I assume that each asset return
is driven by an IID systematic component (strong factor), a persistent state variable (weak

factor), and an idiosyncratic element,

Rijy = pr+BrFii + Bati + ery1, BrBr=1, B.B:=1, BpB=0.  (1.19)

iid iid
Fi1 ~ N(0,07), ewp1 ~N(On,0%In), Fiilzilegy,
iid
Tip1 = P Tp + 1— ,03; Ox Neit+1s Nep+1 N(Ov 1)' (1'20)

In the above model, only the state variable x; can predict asset returns, and it follows an
AR(1) process. Examples of x; include (1) the time-varying mean and variance of consump-
tion growth in the long-run risk model (Bansal and Yaron (2004)), (2) the systemic- and
stock-specific resilience in the recovery following a disaster in the disaster model (Gabaix
(2012)), (3) the surplus consumption ratio in Campbell and Cochrane (1999), and (4)
portfolio-level book-to-market ratio (Haddad, Kozak, and Santosh (2020)). Idiosyncratic
shocks are homogeneous and have an identical variance o2.

According to example 4, the conditional information B,x; is asymptotically unidentified
if 02 < y/lim &2, Factor returns are weakly predicted, so the assumption for a relatively

T
small 02 is reasonable. Furthermore, Fy,; and z; are priced in the cross-section, so they
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enter the linear SDF,
Mg =1—bp-Fpq — by - 2y, (1.21)

where bp and b, are risk prices of Fi,; and x;. The expected returns are determined by the

fundamental asset pricing equation E[M; 1 R¢11] = On, which implies
KR = _COV(MtJrl, Rt+1> = bFﬁFO'% -+ blﬂmai (122)

F,.1 and z; are latent, so I extract their tradable proxies. Specifically, I project them into

the space of asset returns and find factor-mimicking portfolios with the highest Sharpe ratio:

_ _ _ b2 02
FooiFpg= /BlTF‘R't+1> E[Fi ] = bFa%N Var(Fy41) = 012rr + 02> SR} = 1 L 27
~ T ~ ~ b20.2
Tt - Xt_|_1 = ﬁm .Rt_|_17 E[Xt+1] = sz'i, Var(Xt+1) = O'i + 0'2, SRi = 1 j_ :2 s
)

Oz

where Ftﬂ and Xt+1 are tradable proxies for F},; and x; and are orthogonal by construction.

Regarding the simulation setup, I estimate the first PC in the cross-section of 78 test
assets and assume that B is equal to its factor loadings and the volatility of F},; (o) is 8.3
Also, the idiosyncratic shocks have a unit variance (0> = 1). In addition, the weak factor
x; has an identical factor loading (B,) as the second PC. However, its variance is small,
02 = 0.5; in other words, the weak factor explains a tiny fraction of time-series variations in
single-period returns. In the cross-section of 78 test assets and 338 monthly observations, the
canonical PCA has difficulty in identifying this factor: The critical value, 4/lim %aQ ~ (.48,
is close to the variance of weak factor. According to past literature, state variables that
can predict asset returns tend to be extremely persistent, such as those in the long-run risk
model, so I set p to be 0.9. Finally, I choose the Sharpe ratio of Ft—H and Xt+1 to be 0.25 and
0.30 per month, and their risk prices can be reverse-engineered: bp = 0.032 and b, = 0.735.

Suppose I simulate factors and asset returns using the above model setup. I estimate the
latent factors using canonical PCA, HF-PCA and LF-PCA. Figure 1.2 is one such example.
The blue solid lines are “true” tradable factors BpRsy1 and B Ryi1, and the red dotted
lines show the estimates of factors. As is evident in Panels (a), (c), and (e), I can always
identify the first latent factor. Equivalently, the first latent factor explains the largest fraction

of time-series variations in both short-horizon and long-horizon asset returns.

131 assume a relatively large o to make sure that it is a strong factor that is always identified by (HF-
or LF- or canonical) PCA. The simulation results are robust to other op € {3,5,10}. In the data, the first
three - five latent factors often have sizable eigenvalues (volatility) compared to the idiosyncratic volatility,
so this assumption for the strong factor is reasonable.
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Figure 1.2: Starting example: first two latent factors from canonical, HF-, and LF-PCA

I simulate one sample path of systematic factors and asset returns using the model setup described in the
main text. This graph plots the time series of the first two “true” tradable factors (blue solid lines) and their
estimates (red dotted lines) from canonical PCA (Panels (a) and (b)), HF-PCA (Panels (c¢) and (d)), and
LF-PCA (Panels (e) and (f)). In addition, corr. refers to the correlation between the true tradable factor
and its estimate. I standardize all time series to have unit variance.
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On the contrary, the weak factor is difficult to identify. Panels (b) and (d) show that
neither canonical PCA and HF-PCA can recover the weak factor related to x;, and the
second PC or HF-PC has an almost zero correlation with the true factor-mimicking portfolio
of x;. The maximal Sharpe ratio implied by the first two PCs or HF-PCs is 0.276. However,
the persistence of the state variables z; magnifies its signal at low frequencies and allows me
to detect it empirically. Panel (f) plots the second LF-PC, which closely tracks the “true”
factor and has a correlation of 0.88. Moreover, the maximal Sharpe ratio implied by the first
two LF-PCs is 0.321. Intuitively, as Figure 1.A.2 displays, the low-frequency variance of the

persistent factor is much more considerable than its unconditional variance, so the signal of

N
T

Table 1.1 reports the simulation results of estimation using canonical PCA, HF-PCA, and

this factor passes the critical value {/lim Y02 at low frequencies and becomes identified.
LF-PCA in 1,000 simulations. The time-series sample size is 338. For each statistic, I show
its Hth, 25th, 50th, 75th, 95th, mean, and mode. Panel (A) displays the correlation between
the second true factor and estimated PC2 from canonical PCA, HF-PCA, and LF-PCA.
Ideally, the correlation is 1. I focus on the second PC since the first PC is always identified,
so there is no difference among different types of PCAs. The most important observation
is that the LF-PC2 has a much more significant correlation with the true second factor.
Specifically, the average correlation between LF-PC2 and the true factor 2 is 0.754, whereas
they are only 0.176 and 0.434 for HF-PC2 and canonical PC2, respectively. Hence, studying
the LF components asset returns recovers a huge part of the persistent state variable.

In panel (B), I construct the MVE portfolios consisting of the first two latent factors:
MVE; = ﬂ;f];,lFt, where F} is either the first two PCs, HF-PCs, or LF-PCs. Since the
LF-PCA recovers the persistent priced state variable, the LF-MVE portfolio has a greater
Sharpe ratio than the other two portfolios. Panel (C) further reports the correlation among
the HF-MVE, canonical- MVE, and LF-MVE portfolios. The MVE portfolios composed
of the HF- and canonical PCs are highly correlated, with an average correlation of 0.937.
However, the PCA can identify the state variable x; in some simulations when the HF-PCA
fails, so their MVE portfolios have correlations less than 0.746 in 5% of these simulations.

Finally, I decompose MVEX? and MVEX" in Panel (D),

MVEX = AAPMVEFT + MVE]"™ MVE[" = /IFMVEL + MVE}7"?,

I report the Sharpe ratio of MVE]"**" and MVE""“? and also their correlation coeffi-
cients with the second factor. On average, the missing-MVE portfolio (MVE]"**) has a
correlation of 0.666 with the second true factor and yields a Sharpe ratio of 0.193. It implies
that the HF-PCA misses important conditional information z;. On the contrary, the un-

priced MVE portfolio (MVE™"“?) has a negative correlation with the second true factor,
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but its Sharpe ratio is almost zero. Hence, the LF-MVE portfolio can be decomposed into
two components: The first component, which is linear in the HF-MVE portfolio, identifies
the IID shock driving a large proportion of common variations in asset returns, and the
second component is the missing-part, mainly reflecting the slow-moving state variable.

In short, the simulation results confirm that both canonical PCA and HF-PCA often fail
to identify the weak factor. However, if the weak factor is slow-moving, its signal can soar

at low frequencies so that the LF-PCA can identify it.

Table 1.1: Simulation Results

5th 25th  50th  75th ~ 95th  Mean Mode

Panel (A). Correlation between 2nd true factor and its estimate
corr(B) Ruq1, (BEC)TRyyq)  0.041 0228 0449 0.640 0.798 0.434  0.556
corr(B) Req1, (BEF)TRy1)  0.012  0.069 0.154 0.257 0431 0.176  0.053
corr(B] Reyy, (BEF) T Ry1) 0451 0.706  0.791  0.847  0.900 0.754 0.831

Panel (B). Sharpe ratio of MVE portfolios

Sharpe ratio of MVE! 0.179 0.232 0272 0313 0374 0.274 0.264

Sharpe ratio of MVE?” 0.163 0.218 0.254 0.292 0.347 0.255 0.249

Sharpe ratio of MVELY 0210 0.279 0.325 0.378 0.473 0.330 0.332
Panel (C). Correlation between MVE portfolios

corr(MVE!? MVEHF) 0.746  0.919 0971 0.993 0.999 0.937 0.992

corr(MVEFfF MVELF) 0.497 0.665 0.789 0.899 0.979 0.770 0.917

corr(MVE!Y MVEL) 0.599 0.771 0.868 0.937 0.985 0.840 0.943

Panel (D). Difference between MVE?" and MVEX"
Sharpe ratio of MVE"**™ 0035 0.114 0.189 0.260 0.363 0.193  0.199
Sharpe ratio of MVEX™ 0001  0.003 0.008 0.019 0.055 0.015 0.004
corr(B) Repr, MVE™™) 0197 0.623 0.740 0.812 0.881 0.666 0.788
corr(B] Ryp1, MVE™7) 0741 -0.627 -0.514 -0.392 -0.087 -0.475 -0.520

This table reports the simulation results in 1,000 simulations. I estimate the systematic factors using
canonical PCA, HF-PCA, and LF-PCA. For each statistic, I show its 5th, 25th, 50th, 75th, 95th, mean,
and mode. In Panel (A), I consider the correlation between the second true factor and estimated PC2
from canonical PCA, HF-PCA, and LF-PCA. Ideally, the correlation should be 1. In Panel (B), I construct

the mean-variance efficient (MVE) portfolios consisting of the first two latent factors: MVE; = ﬂ;f];.lFt,
where Fy is either the first two canonical PCs, HF-PCs, or LF-PCs. Panel (c) reports the correlation between
MVE?Y MVEP?  and MVEFY . Next, T decompose MVETF and MVELY in Panel (D) as follows:

MVEM = /HEMVERT  MVE]"*5"™9,
MVE;" = /HPMVELF + MVE; "7,

Finally, I report the Sharpe ratio of MVE/"**""9 and MVE""""**d and their correlation coefficients with
the second factor.
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1.3.4 Out-of-Sample Performance: 78 Test Assets

In this section, I examine a large cross-section of 39 firm characteristics from Kozak, Nagel,
and Santosh (2020). Following the past literature such as Lettau and Pelger (2020b), I include
both the short and long legs into my analysis, so there are 78 test assets. I focus only on
two extreme portfolios for two reasons. First, if I consider all 10 sorted portfolios for each
characteristic, there are 390 portfolios. This large cross-section is particularly challenging
for the LF-PCA, which uses only long-run components of asset returns in estimation. It
implies a trade-off between signaling extraction and estimation noise, so I include only two
extreme portfolios to control estimation errors. Also, when I include all 10 sorted portfolios,
the portfolio weights are often the most enormous for portfolios in deciles 1 and 10. In other
words, most of the relevant information comes from two extreme portfolios.

The entire sample is from August 1963 to December 2019. I further split the whole sample
into two equal subsamples. Subsample 1 has 339 monthly observations, spanning from Au-
gust 1963 to October 1991, and I treat it as the in-sample. Subsample 2 is the out-of-sample
(OOS), which is from November 1991 to the end of the sample. As I show in Section 1.2,
estimating a linear SDF composed of asset returns is identical to finding the MVE portfolio
with the highest achievable Sharpe ratio. It requires me to focus on the OOS performance
of asset pricing models, as the in-sample estimate often exaggerates the attainable Sharpe
ratio in the real world. For instance, the annualized Sharpe ratio of 78 test assets is higher
than 3 in the full sample, which is unreasonably large, according to the good deal bounds in
Cochrane and Saa-Requejo (2000). In addition, McLean and Pontiff (2016) document the
declining performance of many anomalies post-publication, and Kozak, Nagel, and Santosh
(2018) also show that the average returns of 15 factors decrease considerably in the second
subsample. Motivated by the previous papers, this paper estimates the PCs and their risk

prices using data in the first subsample and evaluates the OOS performance in subsample 2.

HF vs. LF Time-Series Variations

First, I look at the time-series variations (TSVs) explained by different frequency-specific
components in the in-sample. The results in the second subsample are largely similar (see
Figure 1.A.4). T estimate the spectral density matrix fr(w) via the DFT described in

Appendix 1.A.1.2, where the algorithm estimates only at frequencies %, h e {1,...,180}.

Specially, the HF component corresponds to the cycle length shorter than 36 months, that

360

is, % < 36, whereas the LF part has a cycle period between 36 and 120 months, that is,
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36 < 3%0 < 120. Therefore, the sample estimates of X4 and XL are as follows:

1 180 h 1 10 h
SHE g v S\LF _ g o v
7= 1 ;R(fR(%O)), SH =3 ;R(fR( 260)):

I further define the fraction of time-series variations explained by HF and LF components

as follows:
180 £ /. h 10 £ /»h
HF _ tr[Zh:ll fR(%)} LF _ tr[Zh:?, fR(%)}
TSVHE = TR and TSV = % F RO
tr [ D ohet fR(%)} tr[ h=1 fR(ﬁ)}
If returns are uncorrelated, the spectral density matrix is approximately constant across
frequencies, so the HF (LF, or above-LF) component accounts for % = 94.5% (%0 = 4.4%,

or 25 = 1.1% ) of time-series variations. Empirically, however, this LF part explains 5.1% of
time-series variations, so this slow-moving component is slightly more important than that
predicted by the uncorrelated assumption (see Figure 1.3(a)).

I further compare Tr [EAJIL%F | to Tr [f]gF | and find that the former is around 1.2 times as
the latter, which means the LF risk is slightly higher than the HF risk. Next, Figure 1.3(b)
computes the ratio of LF-eigenvalues over HF-eigenvalues. An interesting observation is that
the top 10 eigenvalues of the LF covariance matrix are 1.5 to 2.5 times as those of the HF

one, except for the PC1. Therefore, the LF component has a clearer factor structure.
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Figure 1.3: Time-series variations in 78 assets, subsample 1
Panel (a) plots the fraction of time-series variations in 78 asset returns explained by the HF, LF, and above-

LF components. Panel (b) plots the ratio of the first 15 low-frequency eigenvalues over high-frequency
eigenvalues. The sample is from August 1963 to October 1991.
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Out-of-Sample Sharpe Ratio

With the eigendecomposition of the frequency-dependent covariance matrix of asset re-
turns, I construct OOS latent factors following definition 1.1: FP95 = (Q™)T R99S where
Q" is the eigenvector of the frequency-dependent covariance matrix estimated in the first
subsample, and R?9¥ denotes asset returns in the out-of-sample. In addition, I estimate risk
prices b for different prior Sharpe ratios in the in-sample, with the estimate denoted as bV,
In the benchmark case, I use the objective function in equation (1.16) and include latent
factors into the regression based on their eigenvalues. In other words, latent factors that
drive more common movements among asset returns enter the SDF first. Next, I construct
the OOS MVE portfolio, MVEZ9S = (p/N)T 005,

Figure 1.4 is the heat-map of the OOS Sharpe ratio. I present only the HF- and LF-PCA
results to save space, while the graphs of above-LF-PCA and PCA are in the appendix.
In each panel, the x-axis denotes the prior Sharpe ratio of factor models, corresponding to
different levels of Lo-shrinkage vy in equation (1.16). If I choose a larger prior Sharpe ratio,
I impose a gentler shrinkage to risk prices b. The y-axis is the number of PCs included in
the SDF. In addition, different colors represent different OOS Sharpe ratios. For example,
the red color represents the “nearly” maximal monthly Sharpe ratio that these factor models
can achieve in the out-of-sample, around 0.35 - 0.38 in the data.

Panel (a) in Figure 1.4 and Panel (b) in Figure 1.A.5 show the results of HF-PCA and
canonical PCA respectively — they have almost identical heat-maps. Generally, the first six
or seven canonical or high-frequency PCs deliver an OOS Sharpe ratio of 0.28-0.29 across a
wide range of prior Sharpe ratios. However, this low-dimensional (HF-)PC model still ignores
an important priced component in the SDF. For example, when the prior Sharpe ratio is
0.4 or 0.5, in Figure 1.5, the OOS Sharpe ratio increases gradually from 0.28 to 0.37 as
more (HF-)PCs enter the SDF. Besides, a substantial Ly-shrinkage helps reduce the required
number of latent factors. Especially when SR, = 0.2, I need 20-25 (HF-)PCs to reach
the nearly optimal OOS Sharpe ratio. The factor model composed of the extremely low-
frequency PCs has a similar observation, as is indicated in Panel (a) in Figure 1.A.5. Since
the above-LF-component is moving considerably slowly, estimating the covariance matrix is
challenging, so I compare the HF and LF systematic factors and the SDFs composed of them
in the following analysis.

Panel (b) plots the OOS Sharpe ratio of LF-PCs. A distinguishing feature is the sparsity
in the space of LF-PCs. In Figure 1.5, the first seven LF-PCs are almost sufficient to achieve
the optimal OOS Sharpe ratio, at around 0.37 per month. In other words, seven systematic
factors that explain the most LF common variations in asset returns can span the whole asset

space in the out-of-sample. Moreover, this observation is not sensitive to the choice of prior
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Sharpe ratio. With a wide range of reasonable prior, such as SR, € [0.3,0.8], the SDF
constructed by the first seven LF-PCs is always nearly optimal in the out-of-sample. Last but
not least, since PCs are no more than linear transformations of original test asset returns
R;, they contain almost identical information. Therefore, the MVE portfolios consisting
of HF-PCs, LF-PCs, and original PCs earn just about the same OOS Sharpe ratio as the

number of factors entering the SDF approximates V.
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Figure 1.4: OOS Sharpe ratio of HF- vs. LF-PCA, 78 test assets

This graph plots the heat-maps of the OOS Sharpe ratio of HF- vs. LF-PCA in the cross-section of 78 test
assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is the
number of PCs included in the SDF. In addition, different colors represent different levels of OOS Sharpe
ratios. I include the PCs into the SDF based on their ability to explain time-series variations.

Out-of-Sample R,

In addition to the OOS Sharpe ratio, I also investigate the GLS R-squared of factor
models, denoted by Rgls. With the in-sample estimate of risk prices, I compute the OOS
pricing errors predicted by a factor model, a@%5 = R9S — Cov(R295, FPO%)b'N | where
Cov(RP95, FPO5) is the sample covariance matrix between OOS asset returns R29S and

0O0S factors fPO5, RO9S is the sample average of OOS asset returns. Rgls is defined as

R2 L (agOS)T(E(I%OS)—lagOS

gls (ROOS)T(3908)-1 ROOS’ (1.23)

Rgzs has a few satisfying properties. First, R;ls has a straightforward economic inter-

pretation: It quantifies the proportion of the squared Sharpe ratio of test assets explained

2

by a factor model. Also, the objective function in equation (1.16) is to maximize RJ..

Therefore, it is natural to compare R; in the out-of-sample, consistent with my objective

2
gls

ls

function. Last but not least, RZ,, is invariant to any non-singular linear transformation of
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Figure 1.5: Zoom in OOS Sharpe ratio, SRyior € {0.4,0.5}

This graph zooms in the OOS Sharpe ratio of PCA, HF-PCA, and LF-PCA. Different from figure 1.4, this
figure shows the estimates using two prior Sharpe ratios, SRppior € {0.4,0.5}.

the original asset space. Specifically, for an arbitrary transformation of asset returns, such

as Y,005 = PTRO9S where P is nonsingular, Rfﬂs of pricing ¥;299 is exactly identical to

that of R295. By focusing on R;ls, there is no need to choose whether the SDF should price

original asset returns or their transformation, such as PCs.
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Figure 1.6: OOS R_?;ls of HF- vs. LF-PCA, 78 test assets
This graph plots the heat-maps of the OOS R;ls of HF- vs. LF-PCA in the cross-section of 78 test assets.
In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is the number

of PCs included in the SDF. In addition, different colors represent different levels of OOS Rgl 5+ Linclude the

PCs into the SDF based on their ability to explain time-series variations.

Figure 1.6 plots the heat-maps of OOS R?;, of HF- and LF-PCA. Related plots of above-
LF-PCA and original PCA can be found in Figure 1.A.6. Similar to the OOS Sharpe ratio,
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the PCA and HF-PCA share similar patterns — I need many latent factors to obtain the
optimal OOS Rgls. On the contrary, I can choose a relatively parsimonious SDF consisting of
LF-PCs. For instance, when SR, ;o is between 0.5 and 0.8, the OOS Rf]ls of a 7 LF-factor-
model is around 18% — 20%. Overall, the exploration of R?, provides further evidence on

Is
the sparsity of LF-SDF. At the same time, the HF-SDF al\i/ays needs more than 30 latent
factors to achieve a nearly optimal OOS R?,.
Zoom in High-Frequency Intervals

In the previous analysis, I define the HF interval as 777 € [2,36) and find the sparsity
of latent factor models only at low frequencies. However, the definition of the HF interval
is probably too wide to capture certain pricing information at a specific high frequency. For
instance, the short-term reversal in Jegadeesh (1990) manipulates extremely fast-moving
information in predicting future stock returns. To explore whether the performance of latent
factor models varies significantly under alternative definitions of HF intervals, I consider a
further division of 7" € [2,36): (1) [2,3), (2) [3,6), (3) [6,12), and (4) [12,36). Next, I will
examine the OOS Sharpe ratio of latent factor models in these four HF intervals.

Figure 1.7 plots the heat-maps of the OOS Sharpe ratio of latent factor models composed
of PCs in these four HF intervals. Clearly, I always need more than 20 latent factors to achieve
the optimal OOS Sharpe ratio. In addition, the performance of factor models is sensitive to
the choice of the Lo-penalty — a significant penalty or a small prior Sharpe ratio is necessary
to ensure a decent OOS performance. Hence, the sparsity of latent factor models only exists
in the LF frequency interval [36, 120).

The previous empirical results shed light on the dynamics of priced state variables in
the cross-section of 78 test assets. According to Proposition 1.2, the maximal Sharpe ratio
implied by the SDF is frequency-dependent only due to state variables X;. More impor-
tantly, it implies that 7, b3, fx,(w), the second term in the spectral density function of
the SDF, is on average larger at low frequencies. While either the canonical or HF-PCA
fails to identify this persistent state variable, the LF-PCA recovers it as one of the largest
factors explaining time-series variations in long-horizon asset returns. This conditional in-
formation is also priced in the cross-section. In the language of ICAPM (Merton (1973)),
stock market participants have the incentive to hedge some slow-moving state variables, as
those state variables can predict the future stock returns and economic environments and
therefore affect investors’ future investment opportunity set. Because of the hedging de-
mand, the state variables command non-zero risk prices, so a valid SDF should not omit
them. Finally, the fast-moving state variables are not essential in the monthly data. As Fig-

ure 1.7 indicates, the SDF is similarly dense in the space of extremely HF systematic factors.
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Figure 1.7: Robustness Check: OOS Sharpe ratio of 78 test assets, different HF intervals

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA, where I divide the HF intervals into four
sub-intervals: [2,3), [3,6), [6,12) and [12,36). In each panel, the x-axis denotes the prior Sharpe ratio of the
factor model, while the y-axis is the number of PCs included in the SDF.

Kozak, Nagel, and Santosh (2020) Estimation: Imposing Model Sparsity

As previous empirical results indicate, an SDF composed of (HF-)PCs cannot be parsi-

2
gls*

factor models? In this part, I follow the Kozak, Nagel, and Santosh (2020) procedure, de-

scribed in equation (1.17), that includes L; shrinkage. According to the closed-form solution

monious in terms of either the OOS Sharpe ratio or R%_. What if I impose the sparsity of

in equation (1.18), this procedure selects PCs with higher in-sample average returns first.
Also, a larger v; renders more factors to have zero risk prices, so this algorithm enforces the
sparsity of factor models.

I show the OOS Sharpe ratio of the MVE portfolios from the Kozak, Nagel, and Santosh
(2020) estimation in Figure 1.8. First, 15 PCs or 20 HF-PCs and canonical PCs can deliver
the nearly optimal Sharpe ratio, so the SDF does become sparser. However, it must be

the case that the objective function chooses some small PCs that have essential pricing
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information. At the same time, the Kozak, Nagel, and Santosh (2020) procedure can still
discover a sparse LF-SDF, with the first seven LF-PCs commanding a 0.4 monthly Sharpe
ratio. According to the heat-maps of OOS Sharpe ratio in Figure 1.A.7, the LF-SDF is
always sparse when the prior Sharpe ratio that I use to estimate the risk prices of LF latent

factors is greater than 0.3.
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Figure 1.8: OOS Sharpe ratio, Kozak, Nagel, and Santosh (2020) estimation

This graph zooms in the OOS Sharpe ratio of the canonical PCA, HF-PCA, and LF-PCA. The prior monthly
Sharpe ratio is set to be 0.4 in Panel (a) and 0.5 in Panel (b). I estimates risk prices using the Kozak, Nagel,
and Santosh (2020) algorithm described in equation (1.17). Latent factors are PCs of 78 test asset returns.

Factor models that have been proposed in past literature are mostly sparse, such as the
Fama-French three-factor model. However, there is no particular reason why a factor model
must be sparse, even though people often pursue parsimonious models. Giannone, Lenza,
and Primiceri (2021a) call this “the illusion of sparsity.” Moreover, it is almost unlikely
to select a few firm characteristics, such as size and book-to-market ratio, and use them
to span the whole asset space. For instance, Kozak, Nagel, and Santosh (2020) show that
characteristics-sparse SDF's formed from a few factors cannot appropriately explain the cross-
section of expected stock returns in the out-of-sample. In addition, Bryzgalova, Huang, and
Julliard (2021) use a continuous spike-and-slab Bayesian prior to study 51 observable tradable
and nontradable factors, and they find that within a wide range of reasonable prior Sharpe
ratios of the SDF, 95% posterior credible intervals of the number of factors in the true model
are between 16 and 32.

Why do we desire the sparsity of latent factor models? According to Kozak, Nagel, and
Santosh (2018), the absence of near arbitrage opportunities implies that factors capturing
the most systematic common variations in asset returns are non-diversifiable, so market

participants earn non-zero risk premia for taking these risks. However, I observe some small
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(HF-)PCs bringing nontrivial risk premia. These factors explain less than 0.1% of the time-
series variation, which implies that they are idiosyncratic shocks. Accordingly, they should
not command sizable risk premia; otherwise, arbitrageurs can include those small PCs into
their portfolio without increasing their investment risk significantly — instead, the sparsity
of LF-SDF solves this puzzle to some extent.

How should we interpret the sparsity of the LF-SDF? On the one hand, it makes economic
sense to observe a sparse LF-SDF. Suppose investors are buy-and-hold investors who pay
more attention to the long-term trade-off between risk and returns, or investors have Epstein-
Zin preference and are particularly risk-averse to the long-run uncertainty. Under these
scenarios, the LF-SDF should imply a higher Sharpe ratio than the HF-SDF', because those
LF systematic factors are the most risky in the long horizon. On the other hand, some
persistent state variables explain a small fraction of common variations in single-period
returns, but they are much more prominent in the long horizon. Hence, the LF-PCA boosts

the signal of this persistent conditional information and recovers them partially or wholly.

1.3.5 Do Celebrated Models Explain HF and LF Risks?

This section further compares the OOS MVE portfolios of latent factors with the following
benchmark models: (1) CAPM, (2) Fama and French (1993) three factors (FF3), (3) Fama
and French (2015) five factors (FF5), (4) Carhart (1997) four factors (Carhart4), and (5) Hou,
Xue, and Zhang (2015) four factors (Q4). First of all, I examine whether these five sparse
factor models can explain HF- and LF-MVE portfolios by running time-series regressions as

follows: 14

MVE? =a+8"B, +mn, Z < {HF,LF},

where By is one of the five benchmark models mentioned before. I report three test-statistics
in Table 1.2: (1) a, (2) t-statistics of o, and (3) the adjusted R-squared, denoted as Rg.
To control for the serial dependence of pricing errors, I use Newey and West (1987) standard
errors with both 36 lags (t-stat I) and 12 lags (t-stat II). In Table 1.2, I estimate risk prices
of PCs under the prior Sharpe ratio equal to 0.4. To enhance interpretability, I normalize
all MVE portfolios to have the same volatility as the market factor.

The first panel in Table 1.2 examines CAPM. Not surprisingly, the market factor alone
entirely fails to explain neither HF- nor LF-MVE portfolios. The pricing errors are enormous,
always greater than 1% per month. Moreover, LF-MVE portfolios always have higher alphas

and t-statistics than HF ones; hence, they are more difficult ro explain. Interestingly, I

14 Empirically, the MVE portfolios composed of the first several HF or canonical PCs are almost identical.
Specifically, their correlation coefficients are around 98 — 99%. Therefore, I focus on comparing HF- and
LF-MVE portfolios.

43



observe relatively low Ridj, less than 10% in all columns. Since the first PC in the cross-
section is always a level factor that is highly correlated with the market factor, the low dej
in CAPM implies that the SDF loads heavily on other lower-order latent factors.

FF3 extends CAPM by including the size and value factors. Compared to CAPM, FF3
slightly reduces the pricing errors and significantly increases Ridj, particularly in the regres-
sion of HF-MVE portfolios. However, FF3 still fails to explain the OOS MVE portfolios of
latent factors.

Carhart4 includes the momentum factor into FF3. Intriguingly, the alphas of MVE
portfolios reduce by more than 40% compared to the previous two regressions, although all
remain significantly positive. Moreover, the inclusion of the momentum factor improves the
time-series fit dramatically. For example, Carhart4 explains 52% of time-series variation in

the MVE portfolio of seven LF-PCs, while R, in FF3 is just 16%.

Table 1.2: Do celebrated models explain HF and LF risks?

Panel (A). MVEF” Panel (B). MVEL"
7PCs 8PCs 9PCs 10PCs 7PCs 8PCs 9PCs 10 PCs
CAPM  « 1.03% 1.00% 1.16% 1.18% 1.39% 1.38% 1.38% 1.41%

t-stat T (2.89)  (2.47) (2.83)  (2.99) (357)  (372) (3.72)  (3.76)
t-stat T (3.05) (2.72) (3.16) (3.28) (4.48)  (4.60)  (4.60)  (4.60)
R, 8.02% 5.55%  0.30%  0.44% 741% 6.38%  5.76%  4.36%
FF3 a 080% 0.77%  0.94%  0.98% 127%  1.21% 1.21%  1.29%
t-stat I (4.87) (3.91) (4.20) (4.44) (4.45)  (4.65) (4.65)  (4.75)
t-stat II  (4.76)  (4.13)  (4.60) (4.73) (5.82) (5.95) (5.97) (6.05)
R, 40.97% 38.39% 31.92% 26.44%  15.84% 14.24% 13.06% 12.05%
Carhartd o 044% 0.39%  0.57%  0.59% 083% 0.82% 0.81%  0.84%
t-stat I (3.18)  (2.61) (3.09) (3.18) (3.75)  (3.88) (3.87) (3.91)
t-stat I (2.81)  (2.39) (3.08) (3.14) (4.40)  (446)  (4.45)  (4.44)
R, 65.13% 65.62% 57.00% 53.91%  52.36% 51.2% 51.81% 50.21%
FF5 a 043% 0.43%  0.48%  0.53% 087% 0.84% 0.83%  0.84%
t-stat I (2.55)  (2.36)  (2.87)  (3.11) (3.15)  (3.17) (3.12) (3.13)
t-stat I (243)  (242) (3.24) (3.43) (3.94) (3.88) (3.81) (3.87)
R, 49.98% 48.09% 48.77% 41.91%  27.95% 28.02% 27.52% 27.26%
Q4 a 0.32% 0.23% 0.26% 0.33% 0.76% 0.73%  0.71%  0.72%
t-stat I (2.07)  (1.30) (1.47) (1.81) (2.77)  (282) (2.75)  (2.81)
t-stat I (1.60)  (1.10)  (1.30)  (1.61) (3.25) (322) (3.14) (3.24)
R? 42.81% 39.87% 44.7% 4047%  31.31% 31.35% 31.71% 31.16%

adj

This table tests whether five sparse factor models proposed in past literature can explain the MVE portfolios
composed of latent factors. I construct the MVE portfolios using the first seven to 10 latent factors following
the same steps as in the section 1.3.4. I estimate the factors’ risk prices under the prior Sharpe ratio of 0.4.
The five benchmark models include (1) CAPM, (2) Fama and French (1993) three factors (FF3), (3) Fama
and French (2015) five factors (FF5), (4) Carhart (1997) four factors (Carhart4), and (5) Hou, Xue, and
Zhang (2015) four factors (Q4). I report three test-statistic in table 1.2: (1) «, (2) t-statistics of «, and (3)

adjusted R-squared, denoted as R? 4~ 10 control for the serial dependence of pricing errors, I use Newey and
West (1987) standard errors with both 36 lags (t-stat I) and 12 lags (t-stat II).

In the last two panels, I consider two models with both investment and profitability

44



factors in them. Simply speaking, FF5 differs from Q4 in the additional value factor in
FF5, and they adopt a slightly distinct approach to construct factors. In addition, Q4 is
better at explaining the MVE portfolios than FF5. Notably, pricing errors of HF-MVE
portfolios are remarkably smaller, declining to around 0.3% per month, and are no longer
significant, except for t-statistic I in the column of seven HF-PCs . On the other hand,
LF-MVE portfolios still have sizable and statistically significant pricing errors, at around
0.7% per month. I have similar empirical findings under another prior Sharpe ratio equal to
0.5 (see Table 1.A.3 in the appendix).

In short, none of the five benchmark models can explain LE-MVE portfolios, while the
Q4 model in Hou, Xue, and Zhang (2015) is capable of rationalizing the abnormal returns
of the HF-MVE portfolios.

Next, I test whether LF-MVE portfolios can explain HF-MVE ones or whether the oppo-
site is valid. Similarly, I run time-series regressions, but the benchmark model B; becomes
cither MVERY or MVELX?. Table 1.3 reports the results under the prior Sharpe ratio 0.4.

In Panel (a), I regress MVEXY on MVEXY both of which are constructed by the first
seven, eight, nine, and 10 PCs. First, pricing errors are almost zeros in the statistical sense
and less than 0.1% per month. In other words, the LF-MVE portfolios can span the HF-
MVE portfolios. On the other hand, I regress MVEX on MVEX* in Panel (b). Unlike
Panel (a), pricing errors are always significantly positive, implying that the HF-MVE ignores
an essential priced component of LF-MVE.

To sum up, the evidence in Tables 1.2 and 1.3 indicates that MVE portfolios, or SDFs,
consisting of LF-PCs, should be the right benchmark. The first few LF-PCs can construct
an LF-SDF that yields nearly optimal OOS Sharpe ratio, and none of the five notable factor
models proposed in the past literature or HF-MVE portfolios can explain them. At the same
time, they can fully explain HF-MVE portfolios in the out-of-sample.

Table 1.3: Which benchmark? HF vs. LF Tangency Portfolios

Panel (A): Panel (B):
MVEf! = o 4+ SBMVEH + ¢, MVEM = o + BMVEAY ¢,
7PCs 8PCs 9PCs 10 PCs 7TPCs 8PCs 9PCs 10 PCs
o -0.10% -0.10% 0.10%  0.00% 0.60%  0.60% 0.70%  0.60%

t-stat I (-0.74)  (-0.62) (0.51) (-0.08)  (3.29) (4.19) (2.79)  (2.70)
t-stat 1T (-0.63) (-0.52) (0.44) (-0.07)  (4.01) (4.50) (3.04)  (3.06)
R2 68.89% 62.68% 53.86% 63.23%  68.89% 62.68% 53.86% 63.23%

adj

This table tests whether the LF-MVE portfolio can explain the HF-MVE or whether the opposite is valid.
I construct the MVE portfolios using the first 7 — 10 latent factors following the same steps as in Section
1.3.4. T estimate the factors’ risk prices under the prior Sharpe ratio of 0.4. I report three test-statistic in
Table 1.2: (1) v, (2) t-statistics of «, and (3) adjusted R-squared, denoted as Rgdj. To control for the serial
dependence of pricing errors, I use Newey and West (1987) standard errors with both 36 lags (t-stat I) and
12 lags (t-stat II).

45



1.3.6 Origins of Economic Risks in SDF's

Why do I observe the sparsity of latent factor models only in the space of LF-PCs? Why
do sparse LF-MVE portfolios earn higher Sharpe ratios than those composed of the first
few HF or canonical PCs? Do they represent different sources of economic fundamentals?
This section attempts to answer these questions by studying the economic drivers behind
the linear SDF's consisting of HF' and LF systematic factors.

I consider the SDFs composed of the first seven HF-PCs or LF-PCs. 1 denote them
as the HF-SDF and LF-SDF, respectively. From the heat-maps in Figure 1.4, the first
seven LF-PCs can generate nearly optimal OOS Sharpe ratios under a wide range of prior
distributions. In addition, the inclusion of extra PCs into the SDF adds enormous unpriced
noises but minimal additional pricing information. Last but not least, the space of the first
seven HF-PCs is almost identical to that of the first seven canonical PCs, so I focus on
comparing the HF-SDF' to LF-SDF.

Past literature often uses the first several largest PCs of single-period returns, which are
empirically identical to HF-PCs, to construct the linear SDF. However, my previous empirical
findings indicate that such SDF's can neglect a vast priced component. Hence, I decompose
the LF-SDF'® (M[¥) into two components, the first of which is perfectly correlated with
the HF-SDF (M[¥) and another of which is the orthogonal part as follows:

MfF — ﬁHFMfF + M:nissing7 Mf{F_LM:msszng (124)

Similarly, I project the HF-SDF into the linear space of the LF-SDF and extract an uncor-

unpriced

related component, denoted by M, )
MtHF _ /BLFMtLF + M?npriced’ MtLFJ_M;anriced. (125>

Table 1.4 reports the correlation matrix and Sharpe ratios implied by ME MHAE,

missing and Ml As mentioned before, MEF implies a higher Sharpe ratio than
MHEEand both SDFs imply statistically significant Sharpe ratios with t-statistics greater
than 4. Moreover, M accounts for only 69% of the time-series variation of M but
misses a considerable component M} that earns a monthly Sharpe ratio of around 0.2
and has a t-statistic equal to 4.6. In the following tables, I call M["**"" the missing-SDF,
which means that the traditional PCA or HF-PCA misses a huge priced component of the
LF-SDF'. Not surprisingly, the part of HF-SDF orthogonal to LF-SDF has almost zero Sharpe

ratio, so this is an unpriced component. Hence, I will call MY™"“? the unpriced-SDF.

15Tn this paper, the SDF is equal to one minus the MVE portfolio: M; = 1 — MVE,. Hence, it is
equivalent to studying the MVE portfolios.
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Table 1.4: Correlation among MEF, MIEF | M9 and MimPriecd

Corr. MEE - MPrieed s pMEE S M9 SR tostat (36 lags)
MEF 1.00 0.376 6.22
unpriced ) 0 1.00 0.037 0.67
MBE 0.83 0.56 1.00 0.292 4.71
M 056 -0.83 0.00 1.00  0.240 4.56

This table plots the correlation matrix and Sharpe ratio (SR) of the following four variables: MEF MHEF,

MESIng and MEPTieed - pMLE and MEF are 00S MVE portfolios composed of the first seven HF- or
LF-PCs, and they are constructed by the procedures in Section 1.3.4 under the prior Sharpe ratio 0.4. The
last column reports the t-statistics of Sharpe ratio using the Newey and West (1987) standard errors with
36 lags. The out-of-sample period spans from November 1991 to December 2019.

The findings in Table 1.4 also relate to literature that attempts to denoise the tradable
factor. For instance, Golubov and Konstantinidi (2019) decompose the market-to-book ra-
tio into market-to-value and value-to-book components — the market-to-value component
drives nearly all the risk premium of the value strategy. In addition, Daniel, Mota, Rottke,
and Santos (2020) document that unpriced components explain a reasonably large amount of
Fama-French five factors, and they propose a novel way to hedge the unpriced components.
By focusing on the long-term comovement of asset returns, the LF-SDF significantly reduces

the unpriced component.

Dynamics of SDFs: Variance Ratio Test

Theoretically, the LF-PCA has a better finite sample performance than the HF-PCA
and canonical PCA because studying the long-horizon returns boosts the signal of some
persistent conditional information driving the asset returns and detects them empirically.
If the previous argument is valid, the LF-SDF must capture some conditional information
ignored by the HF-SDF, so LF-SDF should have a different dynamic across multiple horizons.

To explore the dynamics of SDFs, I resort to the variance ratio test, which is calculated as

_ Var(My 1+ - + Mypn—1,640)
h x Var(./\/lt,tﬂ) 7

VR(h) (1.26)
where M, 4, is the single-period SDF. I can also rewrite the variance ratio as a weighted
average of the autocorrelations of M,;;.1. A useful benchmark is the IID case, where the
variance ratio test equals 1 at any horizon.

Figure 1.9 displays the variance ratios for MEF, MHEE M9 and ME™7? . The
blue dotted lines are 95% confidence intervals of the variance ratios. If the solid red line

crosses the dotted blue lines, I can reject the null hypothesis of the IID assumption. Panels
(a) and (b) show the variance ratios for the HF-SDF and LF-SDF, respectively. While
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Figure 1.9: Variance Ratio of the SDF Components

This graph plots the variance ratios of MEF | MHEE A5 ang pumPriced caleulated as

VR(h)

_ Var(/\/lt,tﬂ + -+ Mt+h71,t+h)

h x Var(/\/ltﬂg_s_l) ’

where My ;1 is the single-period SDF. The HF-SDF and LF-SDF consist of the largest seven HF- and
LF-PCs. The prior (monthly) Sharpe ratio used to estimated the risk prices is set to be 0.4. The blue dotted
lines are 95% confidence intervals of the variance ratios. If the red solid line crosses the blue dotted lines, I
can reject the null hypothesis of the IID assumption for the linear SDF's.
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the HF-SDF exhibits limited autocorrelation over time, the LF-SDF displays a remarkable
deviation from the IID assumption. For example, a five-year investor holding the LF-MVE
portfolio is subject to double the variance of an investor with a monthly holding period. In
addition, the variance ratio of the LF-SDF peaks between the six- and seven-year horizon,
but it starts to decrease slowly after the seven-year horizon. Intuitively, the LF-SDF is riskier
than HF-SDF from the perspective of long-term investors, so it should command a higher
Sharpe ratio to compensate for bearing additional low-frequency risks.

Clearly, there are essential persistent components in the dynamic of the LF-SDF. Panel
(c) further plots the variance ratio for the missing-SDF, which manifests a similar dynamic
as the LF-SDF. Combining the evidence in Panels (a), (b), and (c), I conjecture that the
LF-SDF, which is the suitable benchmark and captures the highest attainable Sharpe ratio,
contains two components: (1) the first component is spanned by the HF-SDF, which mainly
captures the short-term information in asset returns and is roughly conditionally uncorre-
lated over time, and (2) the second component is ignored by canonical PCA, which identifies
some persistent information that commands sizable risk premium. Panel (d) also presents
the variance ratio for the unpriced-SDF'. I confirm that this component mainly reflects short-

horizon information, with a decreasing variance ratio after two years.

Cumulative Returns of MVE Portfolios

Next, I examine the cumulative performance from the perspective of an investor of the
LF-MVE, HF-MVE, missing-MVE, and the market portfolio. To increase interpretability, I
normalize all portfolio returns to have the same volatility as the market portfolio, about 4.2%
per month. The portfolio weights of the MVE portfolios are determined by the data in the
first subsample, so there is no looking-forward bias. Figure 1.10 plots the log of cumulative
excess returns from November 1991 to December 2019 (OOS). The solid red line indicates
that the LF-MVE portfolio has the best long-horizon performance, with a log cumulative
excess return of around 5. As a comparison, the investor earns cumulative log-returns of
3.83 and 2.03 in the HF-MVE portfolio (solid blue line) and the market portfolio (solid green
line), respectively. Another surprising fact is that investors of the MVE portfolios do not
lose money during the dot-com bubble, while the market portfolio experiences a -40% return.
However, the market values of all portfolios plummet during the 2008 global financial crisis.

The missing-MVE portfolio (solid orange line) is the component of the LE-MVE that is
uncorrelated with the HF-MVE portfolio, and its behaviors are different from the HF-MVE
portfolio. For instance, the missing-MVE portfolio has an extraordinary performance in the
late 1990s, while the HF-MVE portfolio has an almost zero excess return during the same

period.
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Figure 1.10: Log Cumulative Excess Returns of the MVE Portfolios

This graph plots the log of cumulative excess returns of the LF-MVE, HF-MVE, Missing-MVE (from table
1.4), and market portfolios. I normalize the LF-MVE, HF-MVE, Missing-MVE portfolios to have the same
monthly volatility as the market portfolio. The sample spans from November 1991 to December 2019. Shaded
areas denote the NBER recession periods: (1) 2001/03 —2001/11 and (2) 2007/12 — 2009/06.

With the decompositions of SDFs in equations (1.24) and (1.25), I examine how each
component in Table 1.4 relates to economic risks. Specifically, I regress each economic vari-
able on different SDF components and conduct statistical tests on the correlation coefficients
between each economic variable and SDF's.

There are two primary objectives for these regressions. First, I attempt to understand the
economics behind SDFs. For example, the LF-SDF implies a higher Sharpe ratio than the
HF-SDF. However, the extra Sharpe ratio earned by the missing-SDF (M["**"9) is probably
the compensation for bearing economic risks that the HF-SDF does not load on. Moreover,
given the LF-SDF as the proper benchmark, I desire to learn whether different economic
risks drive the HF component (8gp M) and the persistent component (M}***™9).

Second, it helps study the risk premium of a nontradable economic factor. As Cochrane
(2009) indicates, we can define its risk premium as —Cov(Y;, M), where Y; is the nontrad-
able factor. Similarly, Giglio and Xiu (2021) show that we should project a nontradable
factor into the space of the largest principal components of a huge cross-section of test as-
sets. However, Section 1.3.4 points out that the SDF constructed by either PCs or HF-PCs
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potentially ignore an important priced component of the true SDF. According to equation
(1.24), Cov(Yy, MF) = By pCov(Y:, MIT) 4 Cov(Y;, MJ"**"™). An economic variable can
be uncorrelated with MHPF but significantly correlated with the missing part, M]"*"9,
Hence, the study of LF latent factors provides additional insights into nontradable economic
risks.

Table 1.5 reports the results. I consider eight economic variables, whose definitions are
in Table 1.A.1. I standardize both dependent and independent variables so that readers can
interpret all coefficient estimates as correlations. Similar to previous tables, I report two
t-statistics using Newey and West (1987) standard errors with (1) 36 lags (t-stat I) and (2)
12 lags (t-stat II). Since macro variables are sometimes extremely persistent, I also report
dependent variables’ first-order autoregressive (AR(1)) coefficients (p). For example, if p is
close to 1, the economic variable is virtually a random walk process, making all statistical
inference based on asymptotic normality invalid.

In Panel (A), I regress each nontradable economic variable Y; on MF and M9,
while in Panel (B), I regress Y; on M and M ™"“? " Since past literature often uses
canonical PCs, which are almost identical to HF-PCs, it is intriguing to compare the co-
efficient estimates of M and MZE. Also, if their coefficients are hugely different, the
missing-SDF M™**™ or the unpriced-SDF M¥™"*? should explain the difference. In Ta-
ble 1.5, T estimate the risk prices of factors under the prior Sharpe ratio 0.4. I consider a
robustness check by adopting another prior Sharpe ratio 0.5, and Table 1.A.6 presents the
related results. Overall, the results in Table 1.5 are not considerably different from those in
1.A.6.

Quarterly Real Consumption Growth

First, I consider the textbook CCAPM, which predicts a negative correlation between
consumption growth and SDFs. However, past research (e.g., Kan and Zhang (1999a))
find that the quarterly real nondurable consumption growth, commonly used in the past
literature, is not strongly correlated with test assets. In other words, the risk premium of
consumption risk is zero, contradicting the standard textbook prediction.

Column (1) in Table 1.5 presents the coefficient estimate of quarterly real consumption
growth. Theoretically, when the consumption growth is low in bad economic states, marginal
utility of investors, proxied by the SDF, should be higher, so economic theory predicts
negative correlations. However, the correlation between consumption growth and the HF-
SDF is only marginally negative, with a t-statistic of —0.4. However, Panel (B) shows
that the consumption growth is closely associated with the LF-SDF, with a much higher

correlation coefficient —0.15. The t-statistic (optimal lags) equals —1.2; so I cannot reject
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Table 1.5: Economic Fundamentals related to HF- vs. LF-SDF's

Y, : Crd ) GDP, GDP,, NFF NPE HKM HEM" VX0t BWg!
Panel (A): Y, = By + BiMPE + oM 4 ¢
MU -0.037  0.148  -0.175  0.037  -0.123  -0.299  -0.238  -0.293  0.238  -0.147
t-stat 1 (-0.410)  (1.396) (-0.761) (0.347) (-0.909) (-2.926) (-2.423) (-2.484) (2.525) (-2.540)
t-stat 11 (-0.412) (1.396) (-0.815) (0.387) (-0.805) (-2.557) (-2.315) (-2.410) (2.557) (-2.716)
missing -0.218  -0.229  -0.180  -0.223  -0.112  -0.043 0.136 0.168 -0.040  -0.013
t-stat 1 (-1.846) (-3.953) (-1.583) (-2.203) (-1.425) (-0.610) (1.467)  (1.581) (-0.826) (-0.171)
t-stat 11 (-1.940) (-3.953) (-1.759) (-2.484) (-1.431) (-0.591)  (1.460)  (1.572) (-0.800) (-0.171)
Panel (B): Y; = By + BIMFF + Bo M7 4 ¢,
MLE -0.147  0.004  -0.244  -0.088  -0.164 -0.272  -0.122  -0.149  0.175  -0.130
t-stat (-1.156)  (0.044) (-1.003) (-0.780) (-1.425) (-2.925) (-1.420) (-1.550) (2.125) (-1.922)
t-stat 11 (-1.139)  (0.044) (-1.063) (-0.833) (-1.426) (-3.119) (-1.564) (-1.631) (2.249) (-1.921)
Mpmpriced 0.165 0272  0.059  0.209  0.025 -0.131  -0.246  -0.303  0.166  -0.071
t-stat (3.023)  (3.513) (0.733)  (2.300) (0.201) (-1.399) (-2.328) (-2.368) (2.556) (-1.074)
t-stat 11 (2.634)  (3.410) (0.939) (2.683) (0.195) (-1.223) (-2.140) (-2.270) (2.325) (-1.081)
p 0.153  0.153 0352  0.352  -0.189  -0.108 0.061 0.104 0.116 0.105
R?,; 491%  743%  6.30%  5.11%  2.76%  9.13%  7.51%  11.38%  5.80% = 2.19%
Sample size 112 111 112 111 338 338 338 338 338 326

This table reports the results of the regressions in which I regress eight economic variables on different
components of SDFs. The dependent variables include (1) and (2) current and one-period ahead quarterly
real nondurable consumption growth, (3) and (4) current and one-period ahead quarterly real GDP growth,
(5) cash-flow news, (6) discount-rate news, (7) nontradable intermediary factor, (8) tradable intermediary
factor, (9) the AR(1) shock in VXO index, and (10) the AR(1) shock in investor (Baker and Wurgler (2006))
sentiments. The SDFs are composed of the first seven principal components of asset returns, and their risk
prices are estimated under the prior Sharpe ratio equal to 0.4. I standardize both dependent and independent
variables so that readers can interpret all coefficient estimates as correlations. I report two t-statistics using
Newey and West (1987) standard errors with (1) 36 lags (t-stat I) and (2) 12 lags (t-stat II). In addition,
I report dependent variables’ first-order autocorrelation coefficients (p). The monthly (quarterly) out-of-
sample runs from November 1991 to December 2019 (Q1 1992 — Q4 2019).

the null hypothesis of zero correlation.

What can explain this huge difference? The missing-SDF is the key, and its correlation
with consumption growth is —0.22 and statistically significant. Suppose that a state variable
predicts future consumption growth and portfolio returns, but it is relatively persistent. The
standard PCA, which is virtually equivalent to HF-PCA, fails to identify the components
related to this state variable; hence, the HF-SDF is not correlated with the consumption
growth. However, the focus on the long-horizon asset returns recovers the identification
of consumption risk. In short, the M["**™ is significantly and negatively correlated with
consumption growth, which implies a positive risk premium of consumption risk.

Campbell (1999) suggest an alternative timing convention to calculate the correlation be-
tween consumption growth and asset returns. Specifically, the consumption during a quarter
is a flow. If we think of the consumption observed at quarter t as the consumption level

at the beginning of this quarter, we should use the next-period consumption to compute
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consumption growth at quarter t. In other words, I should estimate the correlation between
C’t”fl and M,;. Column (2) in Table 1.5 displays the results. The missing-SDF is still signif-

icantly correlated with the next-period consumption growth, and its t-statistic is around -4.

Quarterly Real GDP Growth

Liew and Vassalou (2000) show that HML and SMB positively predict future real GDP
growth. Motivated by this finding, I study whether the quarterly real GDP growth correlates
with SDFs. Intriguingly, only the coefficient estimate of M["**" is significantly negative,
with a t-statistic around —1.8 (see t-statistic II) in Column (3) of Table 1.5. Although the
correlation coefficients of both M and M are not trivial, around —0.2, their standard
errors are so enormous that I cannot reject the null hypothesis of zero correlation. The high
autocorrelation coefficient, equal to 0.35, and small sample size, potentially contribute to
the notable estimation uncertainty.

In Column (4), I explore whether the SDFs can predict GDP growth in the next quarter.
While both the HF-SDF and LF-SDF have almost zero prediction power, the missing-SDF
negatively predicts the GDP growth. The coefficient estimate is —0.22 and has a t-statistic
around —2. In other words, if the MVE portfolio implied by the missing-SDF experiences
a negative return (or the missing-SDF increases) at quarter t, it predicts that the future
GDP growth will decrease over the next quarter. This finding indicates that persistent state
variables contained in asset returns can predict GDP growth. The missing-SDF captures

this persistent predictor, so it is closely related to GDP growth.

Cash-Flow vs. Discount-Rate News
Campbell and Vuolteenaho (2004) decompose the shocks in the market portfolio into

16 In their language, cash-flow news is bad, for

cash-flow news and discount-rate news.
investors’ wealth decreases and the future investment opportunity set is unchanged. On the
contrary, discount-rate news is good since future investment opportunities, quantified by
expected returns, improve.

Campbell and Vuolteenaho (2004) include four state variables: (1) the excess log return
on the market, (2) the term yield spread that is the yield difference between 10-year and
short-term constant-maturity taxable bonds, (3) the pricing-earnings ratio (PE) from Shiller

2000), and (4) the small-stock value spread that is the difference between log(2£) of the
ME

16Campbell and Vuolteenaho (2004) estimate cash-flow and discount-rate news using a first-order VAR
model: Z;4q1 = a+T'Z; + weg1, where Zyyq is a m-by-1 state vector with the log market excess return
as its first entry. After estimating the VAR(1) model via OLS, they define cash-flow and discount-rate
news as follows: NS5 = [e{ + ef pI'(Im, — pT') " ugq1 and NEF = ef pI' (I, — pT') "'y 1, where ef =
(1,0,...,0)".
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small high-book-to-market portfolio and log(%) of the small low-book-to-market portfolio.
However, the term yield spread that they used originally is no longer updated, so I replace it
with the difference between the log yield on the 10-year U.S. Constant Maturity Bond and
the log yield on the three-month U.S. Treasury bill, as in Campbell, Giglio, and Polk (2013).
Campbell, Giglio, and Polk (2013) additionally include as a state variable the default spread
(DEF), defined as the difference between the log yield on Moody’s BAA and AAA bonds.

In the monthly data, I find that the default spread does not predict the market portfolio,
so I stick to the four-state-variable VAR regression in Campbell and Vuolteenaho (2004).
Moreover, I estimate the VAR model using monthly data from December 1928 to December
2019 and extract cash-flow and discount-rate news from November 1991 to December 2019.
In Columns (5) and (6) of Table 1.5, I report the correlation coefficients between SDFs and
two sources of shocks in the market portfolio.

Cash-flow news is negatively correlated with MAF M7 and MEF| but none of
their coefficients is statistically significant. The LF-SDF is slightly more relevant to cash-
flow news than the HF-SDF'. Overall, the statistical power of these tests is not strong enough
to make decisive conclusions.

Differently, discount-rate news is strongly and negatively correlated with both MZ and
MULF | with correlation coefficients around —0.3 and t-statistics around —3. In other words,
discount-rate news earns a significantly positive risk premium. The time-series R?, equal to
9% in column (6), is also considerably higher than in the regression of cash-flow news.

As a robustness check, I also estimate cash-flow and discount rate news by including the
default spread as the fifth state variable in the VAR(1) regression. Columns (1) and (2) of
Table 1.A.5 present similar results. The coefficient estimates in the regression are almost
unchanged. In short, not only does discount-rate news explain most of the time-series vari-
ation in return news (see Campbell (1990)), but it is also more critical than cash-flow news

as a source of economic risk for which investors in stock markets require risk compensation.

Intermediary Factor

He, Kelly, and Manela (2017) show that their intermediary factor can price many asset
classes and conclude that financial intermediaries are important marginal investors and key
to understanding asset prices. Their paper defines the intermediary capital ratio as the
aggregate value of market equity divided by aggregate market equity plus aggregate book
debt of primary dealers active. The intermediary capital risk factor, H K M"" is the AR(1)
innovation to the market-based capital ratio of primary dealers. He, Kelly, and Manela
(2017) also define a tradable intermediary factor, denoted as HKM;]". As predicted by
intermediary asset pricing theory, such as He and Krishnamurthy (2013), the SDF of financial
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intermediaries is higher when a negative shock hits them, so the correlation between their
SDF and the intermediary factor is expected to be negative.

Column (7) in Table 1.5 studies the nontradable intermediary factor. Panel (A) shows
that the HF-SDF has a significant negative correlation with H K M" equal to around —0.24
with a t-statistic of —2.4. However, the LF-SDF has a smaller correlation (—0.12) in absolute
terms, and its t-statistic is only —1.4. Hence, I am on the edge of rejecting the null hypothesis
of zero correlation between HK M and MELF. More surprisingly, M is positively
associated with the intermediary factor, which implies that it hedges the intermediary risk
in the HF-SDF. In other words, the intermediary factor cannot explain the high Sharpe ratio
of M["*¥™ or makes it even more puzzling.

Column (8) in Table 1.5 runs similar regressions but uses the tradable intermediary
factor. The observations are largely compatible with those in Column (7). I also report
the correlation between SDFs and quarterly intermediary factors in Columns (3) and (4) of
Table 1.A.5, and the empirical patterns are virtually identical.

Even though I do not discover a significant correlation coefficient between the LF-SDF
and the intermediary factor, it does not imply that financial intermediaries do not play an
important role in understanding asset prices. On the one hand, the intermediary factor is
significantly correlated with the HF-SDF', especially its unpriced component, so the inter-
mediary factor, at the very least, drives the common variations in asset returns. On the
other hand, the risk premium of the nontradable factor in He, Kelly, and Manela (2017)
is not statistically different from zero in the monthly regression of stock portfolios, which
is consistent with the insignificant correlation between the LF-SDF and the intermediary
factor. Also, financial intermediaries should be more important in other asset markets, such

as CDS and derivative markets, in which they get involved actively.

Jump Risk

Investors require compensation for bearing downside risk (e.g., Ang, Chen, and Xing
(2006)). While there is no consensus on which variable represents downside risk, I use the
VXO index as the proxy, since it is commonly accepted as the fear index in the industry.
Specifically, the VXO index is the risk-neutral entropy of the market excess return and is
particularly sensitive to the left tail of the return distribution.

It is problematic to regress the VXO index on SDFs. The VXO index is highly persistent,
with an AR(1) coefficient of around 0.9, so standard errors of coefficient estimates are enor-
mous. In other words, the high persistence makes the statistical inference almost impossible
in small samples. Hence, I extract the shock in the VXO index via an AR(1) regression,

Y, = a+ pY;_1 + ny, and jump risk is defined as the AR(1) innovation Y; — a — pY;_;.
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Column (9) of Table 1.5 reports the correlation between SDFs and jump risk. Both the
HF-SDF and LF-SDF have significantly positive correlations (0.18 — 0.24) with jump risk.
Interestingly, coefficient estimates of the HF-SDF and LF-SDF in Table 1.5 are similar to
those in Table 1.A.5, in which I regress the original VXO index on SDFs. Hence, it can
increase the power of statistical tests to focus on the much less persistent AR(1) innovation.

Intuitively, when investors are particularly fearful, the SDF's, proxying for their marginal
utility functions, are likewise high. In other words, investors are willing to pay a positive risk
premium to hedge jump risk. Nevertheless, the missing-SDF is almost unrelated to jump

risk, so jump risk does not explain the risk premium of M}

Investor Sentiment

Rational economic models cannot always explain economic phenomena that we observe
in the real world, such as the tech stock bubble in the late 1990s and the housing bubble
in 2008. Instead, investor sentiments are also essential in understanding asset prices. For
instance, De Long, Shleifer, Summers, and Waldmann (1990) build a theoretical model in
which the presence of noise traders with stochastic beliefs can create a source of risk that
requires a positive risk premium. Kozak, Nagel, and Santosh (2018) show that if the demand
from sentiment investors drives a large proportion of asset returns’ common variations, their
demand shocks, or investor sentiments, should enter the SDF as well.

Motivated by these papers, I go on to explore how SDFs extracted purely from asset
returns correlate with the proxy for investor sentiments. First of all, I use the BW sentiment
index in Baker and Wurgler (2006), which estimate the first principal component of six
variables: the closed-end fund discount, the NYSE share turnover, the number and average
first-day returns on IPOs, the equity share in new issues, and the dividend premium.

The AR(1) coefficient of the BW index is close to 1, so I extract its AR(1) shock following
the same steps as for the VXO index. The last column of Table 1.5 demonstrates that the
HF-SDF is negatively correlated with the investor sentiment, with a t-statistic of around
—2.6. The LF-SDF has a similar coefficient estimate (—0.13), and its t-statistic is about
—1.9. Column (6) of Table 1.A.5 reports the correlation between SDF's and the original BW
sentiment. Even though the magnitudes of coefficient estimates are extremely similar, their
t-statistics are much lower due to the persistence of the BW sentiment index. Last but not
least, the missing-SDF is virtually unrelated to the BW sentiment index. Overall, Table
1.5 indicates that only macro risk, such as consumption and GDP growth, can potentially
explain the risk premium of M},

Huang, Jiang, Tu, and Zhou (2015) modify the BW sentiment index using the partial

least squares method. Precisely, they extract the most important component that can simul-

o6



taneously predict the future market return and explain time-series variations of the original
six proxies. I call their sentiment index HJTZ sentiment. Columns (7) and (8) of Table 1.A.5
show that only the HF-SDF is weakly correlated with the AR(1) shock of HJTZ sentiment.
On the contrary, its correlation with the LF-SDF is only —0.07, compared to —0.14 for BW
sentiment. Overall, the HJTZ sentiment is less correlated with SDF's than the BW sentiment.

Summary

The findings in Table 1.5 deepen our understanding of the economics behind the factor
z0o. One potential reason for the existence of the factor zoo is that factors are noisy proxies
for economic fundamentals and therefore do not span each other. For example, Liew and
Vassalou (2000) report that both the value and size factors can predict GDP growth, but
they are never comprehensive predictors and cannot replace each other. This paper further
shows that the importance of economic risks varies at different frequencies. In Table 1.5, I
confirm that a sparse LF-SDF, earning a nearly optimal Sharpe ratio, captures two elements:
(1) the first one is perfectly linear in the HF-SDF and almost uncorrelated over time, which is
statistically associated with discount-rate news of the market excess return, the intermediary
factor, jump risk, and investor sentiment, whereas (2) the second one is neglected by the
HF-SDF and captures some persistent state variables, reflecting business-cycle risks related

to consumption and GDP growth.

1.4 Additional Robustness Checks

In this part, I present a few of the robustness checks of Section 1.3. Specifically, I investigate
whether the sparsity of the LF-SDF is robust (1) when I consider only long-short portfolios,
(2) if T impose the CAPM, or (3) if I slightly modify the definition of the LF interval.

1.4.1 39 Long-Short Portfolios

Until now, I have included long and short portfolios separately for each firm characteristic
in Section 1.3. However, many papers in cross-sectional asset pricing literature handle long-
short portfolios, such as the size factor in FF3. To confirm the robustness of the main results,
I further analyze long-short portfolios of 39 firm characteristics.

Figure 1.11 plots the OOS Sharpe ratio of PCA, HF-PCA and LF-PCA under prior
Sharpe ratios € {0.4,0.5}. A more comprehensive heat-map is in Figure 1.A.8. First,
the maximal Sharpe ratio is around 0.35, slightly less than that in the cross-section of 78
portfolios. Second, I can still discern a parsimonious factor model composed of low-frequency

PCs. Particularly, a six-factor LF-PC model delivers an optimal OOS Sharpe ratio, and this
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finding is robust across a wide range of Lo-penalty, as I observe in Figure 1.A.8. On the
contrary, latent-factor models constructed by canonical and high-frequency PCs are dense,
consistent with my observations in Section 1.3.4. Overall, the sparsity of LF-PC models is
robust in the cross-section of 39 long-short portfolios. In the following robustness analyses,

I stick to the original cross-section of 78 test assets.
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Figure 1.11: Zoom in OOS Sharpe ratio of 39 long-short portfolios, SR.ior € {0.4,0.5}

This graph zooms in the OOS Sharpe ratio of PCA, HF-PCA, and LF-PCA. The cross-section of test assets
is 39 long-short portfolios. Different from figure 1.A.8, this figure shows the estimates using two prior Sharpe
ratios, SRyrior € {0.4,0.5}.

1.4.2 Imposing the CAPM

Since the introduction of the CAPM by Sharpe (1964) and Lintner (1965), the market factor
has become the most influential factor in cross-sectional asset pricing. For example, Barillas
and Shanken (2018a) use the market factor as the anchor to compare a few famous factor
models via Bayes factors. Also, Kozak, Nagel, and Santosh (2020) extract the CAPM « of
50 long-short anomalies and estimate other systematic factors via the eigendecomposition of
the CAPM «. Following the past literature, I turn to study the CAPM a.

Here is my empirical strategy. First, I regress R; on the market factor using the in-
sample observations: RN = BN + BINRIN + eV and the CAPM « is defined as: afN =
RIN — BINRIN Next, I decompose the covariance matrix of af™V into frequency-dependent
components and estimate frequency-dependent PCs as in definition 1.1. When I mention a
K-factor model, the SDF consists of the market factor and the first K PCs of afV: M; =
1—bp (RN — 11,,) —bp(Fy — pp). Finally, I estimate risk prices (b, by.) " using the objective

function in equation (1.16). To evaluate the OOS performance, I use the in-sample estimate
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of market loadings 3%V to construct the OOS CAPM a:: aP95 = RP9S — 3N ROOS Then
I construct the OOS latent factors and MVE portfolio as before.

Figure 1.12 plots the Sharpe ratio of the OOS MVE portfolio following the procedures
described in the previous paragraph. The prior monthly Sharpe ratio is set to be 0.4 in
Panel (a) and 0.5 in Panel (b). Like the benchmark case, the MVE portfolio consisting of
the market factor and another 6 LF-PCs can earn a virtually optimal OOS Sharpe ratio,
around 0.37 monthly. HF-PCA |, however, needs much more PCs, literally more than 60, to
reach the highest point, and PCA has almost an identical pattern. In short, a seven LF

factor model can nearly span the whole asset space in the out-of-sample.
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Figure 1.12: Imposing CAPM: OOS Sharpe ratio of 78 portfolios, SRpior € {0.4,0.5}

This graph zooms in the OOS Sharpe ratio of PCA, HF-PCA, and LF-PCA after imposing the CAPM. This
figure shows the estimates using two prior Sharpe ratios, SRprior € {0.4,0.5}.

1.4.3 Alternative Cutoffs of the LF Interval

Earlier, I define the low-frequency component of an asset return as the part with a cycle
length between 36 and 120 months. This section investigates whether the sparsity of LF
factor models is particularly sensitive to alternative cutoffs of the LF intervals.

Panel (a) in Figure 1.13 defines the period of the LF component between 24 and 120
months. The OOS MVE portfolios of HF-PCA and PCA are identical to previous ones.
The LF-MVE portfolios, however, are still more parsimonious. For example, The LF-MVE
portfolio composed of the first seven LF-PCs earns a monthly Sharpe ratio of 0.35 in the
out-of-sample. In addition, Figure 1.A.9 plots the heat-map for LF-PCA, whose pattern is
virtually identical to that of Figure 1.4.
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Bandi, Chaudhuri, Lo, and Tamoni (2021) decompose the CAPM g into frequency-
dependent components, and they discover that only the component in the LF frequency
with a period between 32 and 64 months can price conventional Fama-French portfolios.
Motivated by their results, I define the period of the LF (HF) component as 7% € [32, 64]
months (7% € [2,32)). Panel (b) in Figure 1.13 shows that the monthly Sharpe ratio of
a seven LF factor model is slightly higher than 0.37, whereas I still demand many HF-PCs
to span the asset space of 78 test assets in the out-of-sample. In short, the sparsity of the

LF-SDF is not sensitive to alternative definitions of the LF interval.
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Figure 1.13: Robustness Check: OOS Sharpe ratio of 78 portfolios, SR, ior = 0.4

This graph shows additional robustness checks of the OOS Sharpe ratio of PCA, HF-PCA, and LF-PCA. I
estimate risk prices under the prior Sharpe ratio 0.4. The low-frequency (LF) interval is equal to (1) panel
(a): 7HE € [2,24) and 7L € [24,120], and (2) panel (b): 7HE € [2,32) and 75 € [32,64].

1.5 Conclusions

I use frequency-dependent risks to dissect the factor zoo and answer fundamental questions
about what is salient for cross-sectional asset pricing. As a first step, I propose a new
approach to quantify frequency-dependent risks and deliver monthly proxies for short-term
and long-term systematic factors. Empirically, the SDF is sparse only in the space of low-
frequency systematic factors. An economic interpretation of this finding is that investors are
more risk-averse to low-frequency persistent systematic factors that drive a vast majority of
long-run movements of asset returns, probably because they have long investment horizons or
Epstein-Zin preference that imposes a considerable risk aversion to the long-run uncertainty.
Hence, the first few largest LF latent factors capture almost the entire Sharpe ratio of the
true SDF.
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In addition, I confirm that none of the celebrated sparse factor models, such as the
Fama-French three-factor model, or HF-SDF can explain the LF-SDF. At the same time,
the LF-SDF can span the HF-SDF. Therefore, I conjecture that the SDF composed of the
first several low-frequency factors is the proper benchmark SDF.

Furthermore, my paper deepens our understanding of the economics behind the factor
zoo. It is common to use the largest several canonical PCs to construct the SDF. This SDF,
virtually identical to the HF-SDF is almost uncorrelated over time and captures economic
risks related to discount-rate news of the market excess return, intermediary factors, jump
risk, and investor sentiment. However, the HF-SDF still ignores an economically important
component of the LF-SDF. This missing component commands a sizable monthly Sharpe
ratio of about 0.2 and displays a persistent conditional dynamic, as the variance ratio test
shows. More importantly, it reflects only business-cycle risks related strongly to consumption
and GDP growth, and it can also predict consumption and GDP growth over the next
quarter.

Traditional macro-finance models emphasize persistent conditional information and use
them to rationalize the asset pricing puzzles. What I observe in this paper confirms that asset
returns indeed contain useful conditional information related to macro variables, but they
can be identified only at low frequencies. At the same time, the tail risk, behavioral finance,
and intermediary asset pricing models are also essential in understanding asset returns, but

they are more relevant in short horizons.
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1.A.1 Additional Details on Frequency Domain Anal-
ysis
1.A.1.1 Spectral Representation Theorem

Theorem 1.A.1 (Spectral Representation Theorem, Hannan (2009)) Suppose x; is
a mean-zero covariance stationary process, with the spectral distribution function F(w) such

that its auto-covariance function ¥,(h) can be expressed as

(h) = /_ ? exp{2miwh}dF(w),

SIS

where F(w) is non-decreasing, F(—3) = 0 and F(3) = $,(0). Then there exists a complex-
value stochastic process z(w), w € [—%, %], having stationary uncorrelated increments, such

that x; can be written as the stochastic integral

1
xt:/ exp{ —2miwt }dz(w),

N|=

where Var|z(ws) — z(w1)] = F(ws) — F(w1). Furthermore, the Spectral Representation Theo-

rem can be extended to multivariate case.

Suppose that x;(w) satisfies the differential equation: z;(w)dw = exp{—2miwt}dz(w). The
Spectral Representation Theorem implies that x;(w) is uncorrelated at different frequencies,
1

and x; is decomposed as an equally weighted average of ;(w), i.e., 2y = [? 24(w)dw. There-
2

fore, 1 can represent the variance of x; as Var(x;) = fi Var[z;(w)]dw, where Var[z,(w)] is
the contribution from the frequency-w component. i

Suppose that X; is a two-dimensional time series, for example, X; = (214, 29;) ", with
the auto-covariance matrix Xx(h). According to the Spectral Representation Theorem,
the cross-spectrum f, ., (w) that satisfies dFia(w) = fi, 2, (w)dw can be interpreted as the
covariance between the frequency-w components of z;; and xo;. Next, I will consider a linear

transformation of X;. Let a and b be arbitrary real numbers, and define y; as y; = azy 1+bxa,.
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The spectral density function of ¥, is

fy(w> = Z Cov(Yesn, yr) exp{ —2mihw}

h=—o0

= Z Cov(azy trn + bxopyn, axy s + brey) exp{—2mihw}
h=—o0

— Z [aQVar(:Bl,t) + bQVar(xg,t) + abCov(xy t4n, T2yr) + abCov(xy 4, :1727t+h)] exp{—2mihw}

h=—o0

= G/inﬁl(w) + b2fa:2 (W) + abfe, 2, (W) + abfey 2, (W)
= % fo, (W) + 0 foy (W) + 20DR [ fo o, (w)],

where the last equality makes use of the fact that f,, ,,(w) = fu,2 (—w) and fy, 2, (w) +
fg .z, (—w) = 2R[fsy 25 (w)]. There are two implications. First, I can interpret the real part
of the cross-spectrum as the covariance between the frequency-w components of x;; and g ;.
Second, I need to focus only on the real part of the cross-spectrum. This paper aims to
extract PCs at different frequencies. For example, the largest PC chooses a unitary linear

transformation of X; such that its variance is maximized.

1.A.1.2 Discrete Fourier Transform (DFT)

Given data Ry, ..., Rp, DFT and its inverse (IDFT) are defined as

T :
1 ‘ J .
d(wj) = — ZR,texp{—%mwjt}, wj==,7=01,...,T—-1, (27)
VT 5 T
| T
Rt = ﬁ d(wJ) exp{27r2'wjt}, t= 1, c 7T'. (28)

Il
=}

J
Let’s define the frequency-w; component of asset returns: R¢(w;) = \/Lfd(wj) exp{2miw;t}.
A distinguishing feature of the aforementioned decomposition is that two components from

distinct frequencies are uncorrelated by construction; that is, Covy (R¢(wj)R¢(wk)T) =

Onxn ifj £k, or fR(wj) if j = k. The intuition is that DFT decomposes R; into orthogonal
frequency-dependent parts.

Moreover, d(w;)d(w;)* = Z;l—(n—l) S r(h) exp{—2miw;h} = fr(w,), where d(w,)* is the
conjugate transpose operation of d(w;). Therefore, we can estimate the frequency density
matrix of asset returns via DFT. In practice, researchers often use a fast Fourier transform

(FFT) algorithm to compute the transformations in replace of DFT rapidly. Figure 1.A.3
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is a simple example of DFT.

1.A.2 Proofs

1.A.2.1 Proof of Proposition 1.1

Since e;41 is conditionally independent, its conditional expectation is always zero: For
h >0, Elesyrn | 1] = 0, where I; denotes the conditional information at time ¢. If h > 0, the

auto-covariance matrix of esyq is
Se(h) = E(errne; ) = E[E(ersne; |1)] = E[E(etn [ T)e; ] = Onxn,

which implies that the spectral density matrix of e,y is

[e.e]

few) = ) Se(h)exp{—2mihw} = E(0) = Ze.

h=—00
Therefore, even though e;41 and f; 11 can follow stochastic volatility processes, their spectral
density matrices are constant across frequencies.
In addition, Fy and e; are orthogonal, so I can represent the covariance matrix of R;

as Xgp = BXrB" + X.. Suppose that fr(w) is the spectral density matrix of Fy: Xp =
1
J?: fr(w)dw. This implies the following spectral decomposition of X g:

Zn— [ Bfe(w)8Tdo+ To= [ [Bfew)BT + B]do

Due to the uniqueness of the spectral density matrix, the spectral density matrix of Ry is
Fr(w) = Bfr(w)B" + X.. Similarly, I show that fr(w)=X;+ ®x fx(w)®%. Therefore, I

rewrite the spectral density matrix of Ry as follows:

fr(w) = BEfIBT + 3. + Bx fx(w)Bx, Bx =PPx.
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1.A.2.2 Proof of Proposition 1.2

I can derive the unconditional variance of the linear SDF as follows:

Var(M,;1) = b Var(fy11)b +b' ®x Var(X;)® b
=b'"Var(fyy1)b+ b}Var(Xt)bX

= b Var(fi41) b+Zb Var(X ;)

7j=1
= b Var(fi11) b+/ Zb

2]1

where the third equality uses the fact that state variables are assumed to be uncorrelated,
and the last step uses the spectral decomposition of each state variable X;. Since the spectral
density function is unique, fa(w) = b Var(fiy1)b+ 35 bx i fx, (w).

1.A.2.3 Derivation of Equation (1.16)

This section derives the objective function in equation (1.16) under a more general distri-
butional assumption for pricing errors and risk prices. I consider only the cross-sectional

regression, conditional on the observed expectation and covariance of F; as follows:
HF = pr+ o, « NN(ON,O'2EF).

Therefore, the only unknowns are b and o2. Pdstor and Stambaugh (2000) and Barillas and
Shanken (2018a) also make a similar distributional assumption for c. Intuitively, o2 reflects
investors’ uncertainty about mispricing: When o is close to zero, the asset pricing model is
almost correct. In contrast, if o2 is infinity, the factor model is useless, as it entirely fails to
explain risk premia.

Furthermore, I assign a normal prior for risk prices: b ~ N (Og, @IK), T="Tr [EF],
and b is uncorrelated with ae. Under such a prior distribution, the prior expectation on the

squared Sharpe ratio of factor returns implied by the asset pricing model is equal to

K
g
Eprior[SRE] = Eprior[b' Brb] = Z o5k Boprior (7] = w— Tr [ZF| = ¢o’.

k=1
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Next, I decompose the expected squared Sharpe ratio of factor returns as follows:

Eprior [pE 5 105] = Eprio(Erb + @) T3 (Srb + )]
= Eprior [bTEFb] + ]Eprior [angla]
= o’ + No* = (¢ + N)o*;

therefore, B, ior[tpX5 pr] is the sum of B, [bTXpb] and E, .. [a" S5 ], where the
former is the contribution from the SDF. Also, I derive the expected squared Sharpe ratio
of the SDF as follows:

Y

Eprior[SRE] = JEN

Eprior [N;E;«"l H'F] ;

so a larger v implies higher prior Sharpe ratio of the SDF. Under the above assumptions,

the posterior distribution of b, conditional on (pp, X ), is

1
p(b| pur, Xr) x exp{——2 5
o

Tyl T 3T

1 T
scoxp{ =0z (e — Seb) 27 (um  2r6) 4 T67] .

7'0'2

Now let vy = i = 5.5 Therefore, the posterior mode of b is the solution to the
prior F

objective function in equation (1.16).

To compare with Kozak, Nagel, and Santosh (2020), this paper adopts a similar strategy,

hich m 2 -1 =1 = —T
which assumes o T> SO Uy ” TXE, 1o [SFZ]
2

0° = % changes only the prior Sharpe ratio implied by the SDF. In this paper, I show the

Last but not least, the assumption of
empirical results across a wide range of prior Sharpe ratios. More importantly, empirical

results are robust when I estimate the model with reasonable prior monthly Sharpe ratios,

for example, between 0.3 and 0.6.
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1.A.3 Additional Tables

Table 1.A.1: Definition of Variables

Variable Definition

Data Source

R, Monthly market excess return

TY, Monthly term yield spread, the difference between the log yield on
the 10-year U.S. Constant Maturity Bond and the log yield
on the three-month U.S. treasury bills

PE, Monthly pricing-earnings ratio (PE) from Shiller (2000)
VS, Small-stock value spread that is the difference in log(%) between the small
high-book-to-market portfolio and the small low-book-to-market portfolio
DEF, Monthly default spread, the difference between the log yield
on Moody’s BAA and AAA bonds
C[‘d Quarterly real nondurable consumption growth per capita
GDP; Quarterly real GDP growth per capita
NEF Monthly cash-flow news in Campbell and Vuolteenaho (2004)
Four state variables in VAR(1): (log(Ry), TY;, PE;, V' St)
NPE Monthly discount-rate news in Campbell and Vuolteenaho (2004)

Four state variables in VAR(1): (log(Ru), TY;, PE;, V.S;)
NEE? Monthly cash-flow news in Campbell, Giglio, and Polk (2013)

Five state variables in VAR(1): (log(Rmt),TY:, PE:, VS, DEF;)

f Monthly discount-rate news in Campbell, Giglio, and Polk (2013)

Five state variables in VAR(1): (log(R),TY;, PE, VS, DEF))
HEK M} Monthly nontradable intermediary factor in He, Kelly, and Manela (2017)
HKM  Monthly tradable intermediary factor in He, Kelly, and Manela (2017)
HKM, th Quarterly nontradable intermediary factor in He, Kelly, and Manela (2017)
HK ]V[lftl Quarterly tradable intermediary factor in He, Kelly, and Manela (2017)

VXO, the VXO index

BW, Sentiment index in Baker and Wurgler (2006)

HITZ, Sentiment index in Huang, Jiang, Tu, and Zhou (2015)
VXOit  AR(1) shock in VXO;: VXO; —px VX0,

Bwgr AR(1) shock in BW,: BW, — p x BW,_;

HJTZe  AR(1) shock in HITZ,: HITZ, — p x HITZ,_,

CRSP database
FRED

Robert Shiller’s website
Ken French’s website

FRED

Table 7.1 in BEA
Table 7.1 in BEA
Estimated by this paper

Estimated by this paper
Estimated by this paper
Estimated by this paper

Author’s website
Author’s website
Author’s website
Author’s website
WRDS database
Dashan Huang’s website
Dashan Huang’s website
Estimated by this paper
Estimated by this paper
Estimated by this paper

Table 1.A.2: 39 Firm Characteristics in Kozak, Nagel, and Santosh (2020)

Category Characteristics

Reversal Irrev, strev, indmomrev, indrrev, indrrevlv
Momentum mom, moml12, indmom, momrev

Value value, valuem, divp, ep, cfp, sp
Investment inv, invcap, igrowth, growth, noa
Profitability prof, roaa, roea, gmargins

Value interaction
Trading frictions
Others

valmom, valmomprof, valprof
ivol, shvol, aturnover

size, price, accruals, ciss, lev, season, sgrowth, nissa, dur
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Table 1.A.3: Do celebrated models explain HF and LF risks? (SRpior = 0.5)

Panel (A). MVE" Panel (B). MVEF

7PCs 8PCs 9PCs 10PCs 7TPCs 8PCs 9PCs 10PCs

CAPM « 1.08% 1.03% 1.15% 1.18% 1.47% 1.46% 1.45% 1.47%
t-stat T~ (2.98) (2.49) (2.91) (3.03) (3.66) (3.84) (3.83) (3.88)

t-stat II  (3.15)  (2.75) (3.20)  (3.33) (4.69) (4.84) (4.84) (4.83)

Rgdj 3.89% 229% 0.13%  0.07% 2.79%  2.06% 1.63% 0.83%

FF3 « 0.85% 0.80%  0.95%  0.99% 1.37% 1.37% 1.36% 1.38%
t-stat T (4.87) (3.79) (4.12)  (4.27) (4.31)  (452) (451) (4.62)

t-stat T (4.79)  (4.05)  (4.44)  (4.58) (5.75)  (5.90) (5.92)  (6.00)

dej 36.19% 33.64% 29.11% 23.11% 8.85%  7.56%  6.53%  6.19%

Carhartd o 047% 041%  0.59%  0.61% 0.92% 091% 0.90%  0.92%
t-stat I~ (3.28)  (2.57) (3.01) (3.10) (3.66) (3.80) (3.78)  (3.83)

t-stat I (2.89)  (2.37)  (3.02)  (3.09) (4.43)  (4.50)  (4.49)  (4.48)

R(dej 62.35% 62.3% 53.52% 50.1% 46.84% 45.86% 46.91% 45.52%

FF5 e 0.47%  045%  0.49%  0.55% 0.95% 0.92% 0.90% 0.90%
t-stat T (2.62) (2.37) (2.80) (3.04) (3.12)  (3.15) (3.09) (3.10)

t-stat I (2.53)  (2.48) (3.23) (3.42) (4.02)  (3.98) (3.90) (3.95)

dej 45.98% 44.58% 46.93% 39.31% 21.81% 224% 22.17% 22.69%

Q4 « 0.35%  0.24% 0.27%  0.34% 0.84% 0.81% 0.78%  0.79%
t-stat I (2.17)  (1.29) (1.42)  (1.75) (2.73)  (279) (2.71)  (2.77)

t-stat I (1.69)  (1.11)  (1.29)  (1.61) (3.34)  (3.33)  (3.24) (3.33)

R? 39.04% 36.74% 44.05% 39.22% 25.73% 26.12% 26.91% 27.12%

adj

This table tests whether five sparse factor models proposed in past literature can explain the MVE portfolios
composed of latent factors. I construct the MVE portfolios using the first seven to 10 latent factors following
the same steps as in the section 1.3.4. I estimate the factors’ risk prices under the prior Sharpe ratio of 0.5.
The five benchmark models include (1) CAPM, (2) Fama and French (1993) three factors (FF3), (3) Fama
and French (2015) five factors (FF5), (4) Carhart (1997) four factors (Carhart4), and (5) Hou, Xue, and
Zhang (2015) four factors (Q4). I report three test-statistic in table 1.2: (1) «, (2) t-statistics of «, and (3)
adjusted R-squared, denoted as dej. To control for the serial dependence of pricing errors, I use Newey and

West (1987) standard errors with both 36 lags (t-stat I) and 12 lags (t-stat II).

Table 1.A.4: Correlation among ME, MHEE M9 and M7 SR e = 0.5

Corr. MEE - pumericed  AfHE - p\qmissing QR t_stat (optimal lags)
MLF 1.00 0.378 6.24
unpriced ) 0 1.00 0.014 0.25
MIE 0.79 0.61 1.00 0.290 4.65
Mg 61 -0.79 0.00 1.00  0.244 4.62

This table tests whether the LF-MVE portfolio can explain the HF-MVE or whether the opposite is valid.
I construct the MVE portfolios using the first 7 — 10 latent factors following the same steps as in Section
1.3.4. T estimate the factors’ risk prices under the prior Sharpe ratio of 0.5. I report three test-statistic in
Table 1.2: (1) v, (2) t-statistics of «, and (3) adjusted R-squared, denoted as Ridj. To control for the serial
dependence of pricing errors, I use Newey and West (1987) standard errors with both 36 lags (t-stat I) and
12 lags (t-stat II).
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Table 1.A.5: Economic Properties of HF- vs. LF-SDFs 11

Y, : NP ONPR O HKMpr HKME VX0,  BW, HITZ, HITZ"
Panel (A): Y, = By + SiM{E + Bo M + ¢

M -0.134  -0278  -0.301  -0.344 0215  -0.193  -0.162  -0.125

t-stat I (-1.125) (-2.931) (-2.642) (-2.843) (1.309) (-1.641) (-1.030) (-1.658)

t-stat I (-0.952) (-2.426) (-2.466) (-2.695) (1.383) (-1.523) (-0.912) (-1.695)

pEY 0,099 -0.048 0206 0193 -0.053  -0.085  -0.076  0.054

t-stat I (-1.427) (-0.695)  (1.480)  (1.398) (-0.724) (-1.743) (-1.272) (0.665)

t-stat 1T (-1.325) (-0.696)  (1.562)  (1.572) (-0.669) (-1.791) (-1.164) (0.787)

Panel (B): Y, = By + BiMEE 4 gyMumvriced o ¢,
MEE -0.167  -0.257  -0.146 -0.189  0.148  -0.209  -0.177  -0.074
t-stat (-1.560) (-2.861) (-1.522) (-1.726) (0.939) (-1.861) (-1.116) (-0.965)
t-stat 11 (-1.570) (-2.929) (-2.177)  (-2.547) (0.947) (-1.740) (-0.991) (-1.000)
unpriced 0.007  -0.115  -0.334  -0.346  0.164  -0.037  -0.027  -0.114

t-stat I (0.062) (-1.244) (-2.258) (-2.271) (1.956) (-0.557) (-0.426) (-1.393)
t-stat 11 (0.059) (-1.144)  (-2.006) (-2.153) (2.125) (-0.578) (-0.427) (-1.671)
p 0173 -0.114  -0.023  0.024  0.888 0951 0985  0.408
R2, 278%  7.96%  13.30%  15.54%  4.90%  4.50%  321%  1.85%
Sample size 338 338 112 112 338 326 326 326

This table reports the results of regressing economic variables on different components of SDFs. It differs
from Table 1.5 in following aspects: (1) I estimate cash-flow and discount-rate news including five state
variables into VAR(1) regression, as in Campbell, Giglio, and Polk (2013); (2) I use quarterly intermediary
factors rather than monthly ones; (3) I use the original time-series of VXO index and Baker and Wurgler
(2006) sentiment index, rather than AR(1) shocks in these variables. In addition, I consider the sentiment
index in Huang, Jiang, Tu, and Zhou (2015) in the last two columns.

Specifically, the dependent variables include (1) cash-flow news, (2) discount-rate news, (3) the
quarterly nontradable intermediary factor, (4) the quarterly tradable intermediary factor, (5) the VXO
index, (6) the Baker and Wurgler (2006) sentiment index, (7) the Huang, Jiang, Tu, and Zhou (2015)
sentiment index, and (8) the AR(1) shock in the Huang, Jiang, Tu, and Zhou (2015) sentiment.

The SDFs are composed of the first seven principal components of asset returns and their risk prices
are estimated under the prior Sharpe ratio equal to 0.4. I standardize both dependent and independent
variables so that readers can interpret all coefficient estimates as correlations. I report two t-statistics using
Newey and West (1987) standard errors with (1) 36 lags (t-stat I) and (2) 12 lags (t-stat II). In addition,
I also report dependent variables’ first-order autocorrelation coefficients (p). The monthly (quarterly)
out-of-sample is from November 1991 to December 2019 (Q1 1992 — Q4 2019).
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Table 1.A.6: Economic Fundamentals related to HF- vs. LF-SDFs, SR, = 0.5

Y, : cpd crd, GDP, GDP,, NFF NPE HEKMM HKMP VXOFT BW!
Panel (A): Y, = By + SiME + oM 4 ¢
MHAF -0.011  0.169  -0.147  0.062  -0.062 -0.227  -0.173  -0.221 0.182  -0.152
t-stat I (-0.113)  (1.707) (-0.650) (0.635) (-0.454) (-2.299) (-1.879) (-1.931) (2.154) (-2.618)
t-stat 11 (-0.128)  (1.707) (-0.693) (0.694) (-0.412) (-2.004) (-1.709) (-1.863) (2.128) (-2.772)
missing -0.192  -0209  -0.158  -0.192  -0.081  -0.004 0.162 0200  -0.080  -0.014
t-stat I (-1.614) (-3.304) (-1.511) (-1.985) (-1.057) (-0.054) (1.769)  (1.893) (-1.629) (-0.188)
t-stat 1T (-1.864) (-3.304) (-1.594) (-2.209) (-1.056) (-0.051) (1.721)  (1.857) (-1.635) (-0.188)
Panel (B): Y; = o + BiMEE 4 oMt g,
MEF -0.123  0.013  -0.212  -0.064 -0.099  -0.181 -0.037 -0.052 0.094  -0.129
t-stat 1 (-1.009)  (0.147) (-0.925) (-0.613) (-0.895) (-2.077) (-0.429) (-0.538) (1.351) (-1.876)
t-stat II (-0.995)  (0.149) (-0.965) (-0.664) (-0.896) (-2.207) (-0.475) (-0.567) (1.409) (-1.871)
Mympriced 0.149 0269  0.040 0.192 0.025  -0.137  -0.234  -0.294  0.175  -0.082
t-stat I (3.217)  (3.264) (0.415) (2.138) (0.201) (-1.443) (-2.252) (-2.332) (2.592) (-1.296)
t-stat II (2.856)  (3.281) (0.497) (2.418) (0.195) (-1.259) (-2.050) (-2.228) (2.421) (-1.304)
) 0.153  0.153  0.352 0.352  -0.189  -0.108 0.061 0.104 0.116 0.105
R, 4.91%  743%  6.30%  511%  2.76%  9.13%  7.51%  11.38%  5.80%  2.19%
Sample size 112 111 112 111 338 338 338 338 338 326

This table differs from Table 1.5 only in the prior Sharpe ratio that I use to estimate risk prices of latent
factors. Specifically, this table sets SR,ior to be 0.5. See the footnote in Table 1.5 for details.
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1.A.4 Additional Figures
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Figure 1.A.1: Cumulative returns in a 24-month rolling window

This graph plots the cumulative returns in a 24-month rolling window. I consider three AR(1) processes for
monthly (demeaned) asset returns: z¢y1 = pa¢ + /1 — p2047u 141, where o2 = 4.5%, p, € {—0.5,0,0.5}.
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Figure 1.A.2: Spectral density function of AR(1) processes

This graph plots the spectral density functions of three AR(1) processes: Zi11 = pzTt + \/1 — P20g 141,

where 7, 411 Swn (0,1). When p,, is positive (negative), this time series is slow-moving (fast-moving).
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Figure 1.A.3: Example: decompose a deterministic time series via DFT
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Figure 1.A.4: Time-series variations in 78 assets, subsample 2
Panel (a) plots the fraction of time-series variations in 78 asset returns explained by the HF, LF, and above-

LF components. Panel (b) plots the ratio of the first 15 LF-eigenvalues over HF-eigenvalues. The sample
starts from November 1991 to December 2019.
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Figure 1.A.5: OOS Sharpe ratio of Above-LF-PCA and PCA, 78 test assets

This graph plots the heat-maps of the OOS Sharpe ratio of Above-LF-PCA and PCA in the cross-section of
78 test assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is
the number of PCs included in the SDF. In addition, different colors represent different OOS Sharpe ratios.
I include the PCs into the SDF based on their ability to explain time-series variations.
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Figure 1.A.6: O0S R}, of Above-LF-PCA and PCA, 78 test assets

This graph plots the heat-maps of the OOS Rfﬂs of Above-LF-PCA and PCA in the cross-section of 78 test
assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is the
number of PCs included in the SDF. In addition, different colors represent different OOS Rfﬂ - Linclude the

PCs into the SDF based on their ability to explain time-series variations.
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Figure 1.A.7: OOS Sharpe ratio using Kozak, Nagel, and Santosh (2020), 78 test assets

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA, LF-PCA, Above-LF-PCA and PCA in
the cross-section of 78 test assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor
model, while the y-axis is the number of PCs included in the SDF. In addition, different colors represent
different OOS Sharpe ratios. The risk prices and the number of PCs entering the SDFs are determined by
the Kozak, Nagel, and Santosh (2020) objective function in equation (1.17).
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Figure 1.A.8: OOS Sharpe ratio of 39 test assets

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA, LF-PCA, Above-LF-PCA and PCA in the
cross-section of 39 long-short portfolios. In each panel, the x-axis denotes the prior Sharpe ratio of the factor
model, while the y-axis is the number of PCs included in the SDF. In addition, different colors represent
different OOS Sharpe ratios. I include the PCs into the SDF based on their ability to explain time-series
variations of 39 long-short portfolios.
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Figure 1.A.9: Robustness Check: OOS Sharpe ratio of 78 test assets, 710 € [24, 120]

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA and LF-PCA in the cross-section of 78
test assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is
the number of PCs included in the SDF. In addition, different colors represent different OOS Sharpe ratios.
I include the PCs into the SDF based on their ability to explain time-series variations. The LF frequency

interval is defined as 2% € [24,120].
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Figure 1.A.10: Robustness Check: OOS Sharpe ratio of 78 test assets, 75" € [32, 64]

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA and LF-PCA in the cross-section of 78
test assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is
the number of PCs included in the SDF. In addition, different colors represent different OOS Sharpe ratios.
I include the PCs into the SDF based on their ability to explain time-series variations. The LF frequency

interval is defined as 7 € [32,64].
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Chapter 2

Bayesian Solutions for the Factor Zoo:
We Just Ran Two Quadrillion Models

Svetlana Bryzgalova, Jiantao Huang, and Christian Julliard!

2.1 Introduction

In the last decade or so, two observations have come to the forefront of the empirical asset
pricing literature. First, thanks to the factor zoo phenomenon, in the near future we might
have as many empirically “priced” sources of risk as stock returns. Second, the so-called
weak factors (i.e., factors whose true covariance with asset returns is asymptotically zero)
are likely to both appear empirically relevant and invalidate inference on the true sources
of risk (see, e.g., Gospodinov, Kan, and Robotti (2019), and Kleibergen and Zhan (2020)).
Nevertheless, to the best of our knowledge, no general method has been suggested to date
that: ¢) is applicable to both tradable and non-tradable factors, ii) can handle the entire
factor zoo, iii) remains valid under misspecification, iv) is robust to the weak inference
problem, and, importantly, v) delivers an empirical pricing kernel that outperforms (in- and

out-of-sample) popular models (with either observable or latent factors). And that is exactly

'For helpful comments, discussions and suggestions, we thank Caio Almeida, Doron Avramov, Mikhail
Chernov, Pierre Collin-Dufresne, Aureo de Paula, Marcelo Fernandes, Stefano Giglio, Rodrigo Guimaraes,
Raymond Kan, Bryan Kelly, Lars Lochstoer, Albert Marcet, Marcelo Medeiros, Alexander Michaelides,
Olivier Scaillet, Chris Sims, George Tauchen, Fabio Trojani, Dacheng Xiu, Motohiro Yogo, Irina Zviadadze,
and seminar and conference participants at HBS, Princeton University, Carnegie Mellon, Cambridge Judd,
ICEF Moscow, Goethe University Frankfurt, University College London, University of Lugano, London Busi-
ness School, London School of Economics, Second David Backus Memorial Conference on Macro-Finance,
SITE Summer Workshops, SoFiE seminar, SITE workshop on Asset Pricing, Macro Finance, and Com-
putation, AFA 2021, Fourth International Workshop in Financial Econometrics, SOFIE virtual seminar,
Virtual Finance Workshop, and CEPR Advanced Forum in Financial Economics, NBER Asset Pricing 2021,
Brazilian Finance Society.
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what we provide.

We develop a unified framework for tackling linear asset pricing models. In the case of
stand-alone model estimation, our method provides reliable price of risk estimates, hypoth-
esis testing, and confidence intervals for these parameters, as well as all other objects of
interest — alphas, R?’s, Sharpe ratios, etc. Furthermore, even when all the pricing kernels
are misspecified and non-nested, our approach delivers factor selection — if a dominant mo-
del exists — or model averaging, if there is no clear winner given the data. The method is
numerically simple, fast, easy to use, and can be feasibly applied to literally quadrillions of
candidate factor models.

Empirically, we find that the Stochastic Discount Factor (SDF) constructed as the
Bayesian Model Averaging (BMA) over the space of 2.25 quadrillion models, prices a wide
cross-section of anomalies better than both celebrated (observable) factor models and the
latent factor approach of Kozak, Nagel, and Santosh (2020). This outperformance arises not
only in sample but also out-of-sample in both time series and cross-sectional dimensions.?
There are three key drivers of this performance. First, our method reliably identifies a small
subset of observable factors that should be included in any SDF with high probability. Sec-
ond, although these factors alone are already sufficient to outperform notable (observable)
factor models, they do not fully characterize the SDF. The latter, as we show, is dense in the
space of observable factors. As a result, the BMA optimally (in the predictive density sense)
aggregates multiple imperfect measures of the same sources of risk. Third, our method relies
on a novel prior that is fully driven by the researcher’s belief about the Sharpe ratio in the
economy, and that effectively controls potential overfitting. The BMA-SDF neither requires
arbitrary tuning parameters nor separates factor extraction and aggregation. Instead, unlike
most of the existing literature, it delivers an SDF in one step, driven by transparent and
economically motivated priors.

As stressed by Harvey (2017) in his AFA presidential address, the factor zoo naturally
calls for a Bayesian solution — and we develop one. Furthermore, we show that factor
proliferation and spurious inference are tightly connected problems, and a naive Bayesian
model selection fails in the presence of weak factors. We develop a reliable solution focused
on the SDF representation, since the key question posed by the factor zoo lies in whether
candidate risk factors have non-zero price of risk. Our Bayesian SDF formulation (B-SDF)
is intuitively similar to the standard frequentist OLS/GLS estimation that imposes the self-
pricing of tradable factors when they are part of the test assets. However, it is robust to

identification failure, allows us to easily compare and aggregate non-nested models, and

2In cross-sectional out-of-sample exercises, we first estimate the BMA-SDF in a baseline cross-section,
and then use it to price several other cross-sections without any further parameter estimation.
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provides robust inference for all the quantities of interest within stand-alone models and
across the whole model space. Remarkably, unlike the frequentist alternatives, the B-SDF
estimator performs well in both small and large samples, even with fairly large cross-sections.

Our empirical results are based on what is arguably a representative cross-section of test
assets: 60 portfolios based on a large number of firm-specific characteristics. We examine
51 factors proposed in the previous literature, yielding a total of 2.25 quadrillion possible
models to analyze. We find that only a handful of factors proposed in the literature are
robust explanators of the cross-section of returns, and a three (at most six) most likely factor
model easily outperforms canonical reduced-form benchmarks. Nevertheless, there is no clear
“winner” across the whole space of potential models: Hundreds of possible specifications that
combine tradable and non-tradable factors, none of which has been examined in the previous
literature, are virtually equally likely to price the cross-section of returns.

Furthermore, we find that the “true” latent SDF is dense in the space of observable
factors; that is, a large subset of variables is needed to fully capture its pricing implications.?
Nonetheless, the SDF-implied maximum Sharpe ratio in the economy is not unrealistically
high, suggesting substantial commonality among the risks spanned by the factors in the
zoo. BMA, therefore, emerges naturally as an optimal way of aggregating models that
load on the same set of underlying risks: It aggregates all the possible factors and models
based on their likelihood to have generated the data. Crucially, this approach allows for
both selection and aggregation based on the posterior probabilities of the factors being part
of the pricing kernel, and allows the data to decide on the optimal structure of the SDF.
Empirically, we find that the BMA-SDF performs well both in- and out-of-sample (OOS). Its
OOS performance is stable across subsamples (going both into the future and into the past),
and, most importantly, it prices well cross-sections not used for its construction, including
the notoriously challenging 49 industry portfolios.

Our contribution is fourfold. First, we develop a very simple Bayesian estimator for linear
SDFs with both traded and non-traded factors. This approach makes weak factors easily
detectable in finite sample, while providing valid inference on the strong factors’ price of
risk, measures of cross-sectional fit, and other objects of interest. Our robust approach is
very simple to implement and use, and it does not require pre-testing or pre-estimation.

Second, we provide a method for inference on the entire factor zoo with model (and factor)
posterior probabilities. However, as we show, model and factor selection based on marginal
likelihoods (i.e., on posterior probabilities or Bayes factors) is unreliable under a flat prior

for the price of risk: Asymptotically, weakly identified factors are selected with probability

3Interestingly, the SDF remains dense even when we include either the five principal components or the
five RP-PCs of Lettau and Pelger (2020b).
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one even if they have zero price of risk.? This observation, however, not only illustrates
the nature of the problem; it also suggests how to restore inference: use suitable, non-
informative — but yet non-flat — priors. Building upon the literature on predictor selection
(see, e.g., Ishwaran, Rao, et al. (2005) and Giannone, Lenza, and Primiceri (2021b)), we
provide a novel (continuous) “spike-and-slab” prior that restores the validity of model and
factor selection based on posterior model probabilities and Bayes factors. It is uninformative
(the “slab”) for strong factors but shrinks away (the “spike”) the weak ones. This prior also:
i) makes it computationally feasible to analyze quadrillions of alternative factor models, i)
allows the researcher to encode prior beliefs (or lack thereof) about the sparsity of the true
SDF without imposing hard thresholds, #ii) restores the validity of hypothesis testing, and
iv) performs well in numerous simulation settings. The prior is entirely pinned down by
economic quantities: It maps into beliefs about the Sharpe ratio of the risk factors. We
regard this approach as a solution for the high-dimensional inference problem generated by
the factor zoo.?

Third, we provide a new way of selecting robust observable factors. Indeed, we find a new
3-6 observable factor model, combining variables from different papers, that dominates all
the popular reduced-form benchmarks. However, even that model would be strongly rejected
by the data: No sparse factor model is among the most likely 2000 data-generating processes
that we consider. Furthermore, a unique best performing combination of the factors (sparse
or dense in observables) does not seem to exist: Hundreds of possible models, never proposed
in the previous literature, deliver almost equivalent performance, which indicates fragility
of conventional model selection and horse races, popular among reduced-form sparse factor
models.

Fourth, our results do not rely on ex ante unverifiable assumptions of existence, unique-
ness, and sparsity of the true SDF representation among the candidate models (unlike LASSO
and other popular frequentist methods). When a dominant model for the SDF does not arise
in the data (as in our analysis), our method does not stop at selection. Instead, it efficiently
aggregates pricing information from (potentially) the entire factor zoo. Interestingly, we show
that solely extracting leading standard latent factors from a wide range of predictors using
PCA or RP-PCA, is not sufficient to characterize the SDF. In fact, we find that observable

and (some) leading latent factors are complementary for such a characterization. Therefore,

4This is similar to the effect of “weak instruments” in IV estimations, as discussed in Sims (2007).

5Despite a seemingly prohibitive dimension of the model space, the estimation is numerically simple and
computationally feasible. Our Markov Chain, used to evaluate the whole space of 2.25 quadrillions of models
and deliver all the baseline results from the paper, takes about four hours on a 3.0GHz 10-core Intel Xeon
W processor and 128 GB of RAM. Furthermore, we formally test its convergence and establish that the
posterior distributions converge already after less than one fifth of the Markov Chain draws, making our
method easily applicable for most researchers.
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our results indicate that there is scope for both more efficient latent factor extraction and
better aggregation informed by economic fundamentals.

The remainder of the paper is organized as follows. In the next subsection we review
the most closely related literature and our contribution to it. Section 2.2 provides a brief
overview of the benchmark frequentist approach, while Section 2.3 outlines the Bayesian
SDF estimation and its properties for inference, selection, and model aggregation. Section
2.4 provides simulation evidence on both small- and large-sample behavior of our method.
Section 2.5 presents our empirical results. Finally, Section 2.6 discusses potential extensions

of our procedure and concludes.

2.1.1 Related Literature

There are numerous strands of literature relying on Bayesian tools, especially for asset al-
location (for an excellent overview, see Avramov and Zhou (2010)), model selection (e.g.,
Chib, Zeng, and Zhao (2020)), and performance evaluation (Baks, Metrick, and Wachter
(2001), Pastor and Stambaugh (2002), and Harvey and Liu (2019)). Therefore, we aim to
provide only an overview of the literature that is most closely related to our paper.
Shanken (1987) and Harvey and Zhou (1990) are probably the first to use the Bayesian
framework in portfolio choice and develop GRS-type tests (cf. Gibbons, Ross, and Shanken
(1989)) for mean-variance efficiency. While Shanken (1987) is the first to examine the pos-
terior odds ratio for portfolio alphas in the linear factor model, Harvey and Zhou (1990) set
the benchmark by imposing priors on the deep model parameters. Interestingly, we show
that there is a tight link between using the most popular, diffuse, priors for the price of risk
and the failure of the standard estimation techniques in the presence of weak factors.
Pastor and Stambaugh (2000) and Péstor (2000) assign a prior distribution to the vector
of pricing errors e, & ~ N (0, kX g), where X g is the variance-covariance matrix of returns
and k € R, and apply it to portfolio choice. This prior imposes a degree of shrinkage on
the alphas: When factor models are misspecified, pricing errors cannot be too large a priori.
This prior effectively places a bound on the Sharpe ratio achievable in this economy.
Barillas and Shanken (2018a) extend the aforementioned prior and derive a closed-form
solution for the Bayes factor when all the risk factors are tradable and use it to compare
different linear factor models exploiting the time series dimension of the data. Chib, Zeng,
and Zhao (2020) show that the improper prior specification of Barillas and Shanken (2018a)
is problematic and propose a new class of priors that leads to valid comparison for traded
factor models.
There is a general close connection between the Bayesian approach to model selection

and parameter estimation and the shrinkage-based one. Garlappi, Uppal, and Wang (2007)
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impose a set of different priors on expected returns and the variance-covariance matrix and
find that the shrinkage-based analogue leads to superior empirical performance. The ridge-
based approach to recovering the SDF of Kozak, Nagel, and Santosh (2020) can also be
interpreted from a Bayesian perspective with priors on the expected returns distribution.

To the best of our knowledge, our paper is the first attempt to develop a general Bayesian
approach for both tradable and non-tradable factors, capable of imposing tradable restric-
tion on the price of risk when needed. Flat priors for the price of risk, we show, lead to
erroneous model selection in the presence of weak factors. Hence, we develop a novel one
that depends on the degree of parameter identification. This prior is heterogenous among
factors, depending on the correlation between test assets and the factor itself. In the spirit
of Pastor and Stambaugh (2000), our prior directly maps into beliefs about the Sharpe ratio
achievable in the economy, yet without imposing a hard threshold on it. Not only does it
restore the validity of model selection, but it also allows for sharp inference in small sample
on all the economic quantities of interest.

Our paper naturally contributes to the literature on weak identification in asset pricing.
Starting from the seminal papers of Kan and Zhang (1999a.,b), identification of risk premia
has been shown to be challenging for traditional estimation procedures. Kleibergen (2009)
demonstrates that the two-pass regression of Fama-MacBeth lead to biased estimates of the
risk premia and spuriously high significance levels. Moreover, useless factors often crowd out
the impact of the true sources of risk in the model and lead to seemingly high levels of cross-
sectional fit (Kleibergen and Zhan (2015)). Gospodinov, Kan, and Robotti (2014, 2019)
demonstrate that most of the estimators used to recover risk premia in the cross-section are
invalidated by the presence of useless factors, and they propose alternative procedures that
effectively eliminate the impact of these factors. We build upon the intuition developed in
these papers and formulate the Bayesian solution to the problem by providing a prior such
that when the vector of correlation coefficients between asset returns and a factor is close
to zero, the prior variance for the price of risk also goes to zero, effectively shrinking the
posterior toward zero.

Our method does not require any pretesting, works well in small and large time-series
and cross-sectional dimensions. Furthermore, due to its hierarchical structure, it can be
feasibly extended to handle time variation in the factor exposure and asset risk premia,
and it accommodates both observable and latent factors. Most importantly, our approach
provides a robust unified framework for evaluation of stand-alone models, factor and model
selection, as well as aggregation, even when all the potential models are misspecified.

Naturally, our paper also contributes to the active (and growing) body of work that criti-

cally re-evaluates existing findings in the empirical asset pricing literature and develop robust
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inference methods. There is ample empirical evidence that most linear factor models are mis-
specified (e.g., Chernov, Lochstoer, and Lundeby (2022), and He, Huang, and Zhou (2018)).
Following Harvey, Liu, and Zhu (2016), a large body of literature has tried to understand
which of the existing factors (or their combinations) drive the cross-section of asset returns.
Gospodinov, Kan, and Robotti (2014) develop a general approach for misspecification-robust
inference, while Giglio and Xiu (2021) exploit the invariance principle of the PCA and re-
cover the price of risk of a given factor from the projection on the span of latent factors
driving a cross-section of returns. Similarly, Uppal, Zaffaroni, and Zviadadze (2018) recover
latent factors from the residuals of an asset pricing model, effectively completing the span of
the SDF. Feng, Giglio, and Xiu (2020) combine cross-sectional asset pricing regressions with
the double-selection LASSO of Belloni, Chernozhukov, and Hansen (2014) to provide valid
uniform inference on the selected sources of risk when the true SDF is sparse. Huang, Li,
and Zhou (2018) use a reduced rank approach to select from not only the observable factors
but their total span, effectively allowing for sparsity in both factors and their combinations.

We do not take a stand on the origin of the factors, the “unique” true model being
among the candidate specifications, and a priori SDF sparsity. Instead, we consider the
whole universe of potential models that can be created from a wide set of factors proposed
in the empirical literature (observable and latent) and let the data speak. We find that the
cross-sectional likelihood across many best-performing (dense) models is flat. Hence, the
data seem to call for aggregation, rather than selection.

Avramov (2002, 2004) are the first formal studies that bring model uncertainty to the
forefront of asset pricing. Building on these seminal papers, Anderson and Cheng (2016)
develop a BMA approach to portfolio choice that, with formal recognition of model uncer-
tainty, delivers robust asset allocation and superior out-of-sample performance. Similarly,
we find that there is a large degree of model uncertainty in cross-sectional asset pricing, sug-
gesting a large degree of model misspecification and rendering canonical selection unreliable.
We therefore develop a BMA method that explicitly targets cross-sectional pricing of asset
returns. The resulting averaging over the space of SDFs delivers superior pricing in- and
out-of-sample.

In reality, the BMA-SDF has — endogenously — elements of both selection and aggregation:
While a small subset of factors delivers large individual contributions to the SDF, other
factors are efficiently bundled together to deliver the best predictive density of the cross-
sectional pricing kernel. In the recent literature, model selection (see, e.g., Feng, Giglio, and
Xiu (2020)) or aggregation (see, e.g., Kozak, Nagel, and Santosh (2020)) of pricing factors,
have been largely mutually exclusive alternatives. Our framework, instead, successfully

combines both.
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2.2 Frequentist Estimation of Linear SDF's

This section introduces the notation and reviews the basics of linear SDF models as well
as related (frequentist) Generalized Method of Moments (GMM) estimation. Suppose that
there are K factors, f; = (fi;... fx:)', t = 1,...T, which could be either tradable or non-
tradable. The returns of N test assets, which are long-short portfolios, are denoted by R, =
(Ry; ... Rn;)". Throughout the paper, E[X] or ux denotes the unconditional expectation of
arbitrary random variable X and X denotes the sample mean operator.

Consider linear stochastic discount factors (M), that is models of the form M, = 1 —
(fi — E[fi])"As. In the absence of arbitrage opportunities E[M;R;] = Opn, which implies
that expected returns are given by pgr = E[R;] = CyAs, where C} is the covariance matrix
between R, and f; and Ay € RX denotes the vector of prices of risk associated with the

factors. The latter can therefore be estimated via the cross-sectional regression:
uR:AclN—l—Cf}\f—i—a:CA—l—a, (2.1)

where C = (1n,Cy), AT = (A, )\;), A is a scalar average mispricing (equal to zero under
the null of the model being correctly specified), 1y denotes an N-dimensional vector of ones,
and a € RY is the vector of pricing errors in excess of \. (also equal to zero under the null
of the model).

Such a model is usually estimated via GMM (see Hansen (1982)) with the following

moment conditions:

Ry — A\ 1N — R(f: — A 0
Blg0 O\ Ar, )] =E< T f) - (02) 22

with corresponding sample analogue function gr(A., A, py) = % ZtT:l gt(Ae; Ag, pg). Com-
bining the latter with a weighting matrix W yields the GMM estimates as the minimizer of

the following objective function:

{)\cv Afa I'/I’f} = irgAmin gT(ACa Af? I-‘l’f)TWgT(Aw Af7 I-‘l’f)
A F

Different weighting matrices deliver different point estimates. Following (Cochrane, 2009,

pp. 256-258), two popular choices are

I 0 2o
Wols _ N NXK : and ngs _ R NxK ’
Oxxn klk, kxN klk
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where X g is the covarince matrix of returns, and x > 0 is a large constant so that piy =

% Zle ft. These weighting matrices yield, respectively, the following prices of risk estimates:

~

Aots = (CTC)'C"R, and (2.3)

Ais = (CTE3'C)'C 4R, (2.4)

where C = (1, CA’f) and éf = %Zthl Ri(fi—ps)'.

GMM provides valid inference on the price of risk under a set of well-known assumptions
(Newey and McFadden (1994)). In particular, equations (2.3) and (2.4) make it clear that
OLS and GLS (but also GMM more generally) require the matrix of factor exposures C' to
have full rank — that is, the price of risk to be identified. However, there is a growing body
of literature that finds this assumption to be often empirically violated.® Most famously,
this problem arises in the case of a weak factor f; that does not have enough comove-
ment with any of the assets but is nonetheless considered to be a part of the SDF, that is
C;; ~O(T~Y?), i€1...N. Insuch a model, the price of risks are no longer identified and
their estimates diverge with the sample size, leading to wrong inference for both strong and
weak factors (Kan and Zhang (1999a)). Another widespread example of weak identification
arises with the inclusion of a level factor, f;, characterized by a lack of cross-sectional spread
in factor exposures, that is, Y~ (Ci; — Cj)? ~ O(T~), where C; = = "N O

Identification problems arise not only when using the GMM in estimating linear SDF
models but equally so in Fama-MacBeth regressions (Kan and Zhang (1999b), Kleibergen
(2009)) and Maximum Likelihood Estimation (Gospodinov, Kan, and Robotti (2019)). In
addition to creating inference problems for model parameters, weak identification also tends
to inflate the standard measures of cross-sectional fit (Kleibergen and Zhan (2015)). Con-
sequently, several papers have attempted to develop alternative statistical procedures that
are robust to the presence of weak factors and general cases of rank deficiency of the matrix
C. In particular, Kleibergen (2009) proposes several novel statistics whose large sample
distributions are unaffected by the failure of the identification condition. Gospodinov, Kan,
and Robotti (2014) derive robust standard errors for GMM estimates of factor risk prices
in the linear stochastic discount factor framework and prove that t-statistics calculated us-
ing their standard errors are robust even when the model is misspecified and a weak factor
is included. Bryzgalova (2015) introduces a LASSO-like penalty term that identifies weak
factors and eliminates their impact on the model. Finally, since factor strength depends on
the choice of returns used in the estimation, Giglio, Xiu, and Zhang (2021) recently devel-

oped an iterative procedure for constructing a cross-section of model-specific test assets that

6For recent applications, see Kleibergen and Zhan (2020) and Gospodinov and Robotti (2021a,b).
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specifically addresses the problem of weak factors.

In this paper, we provide a Bayesian inference and model selection framework that 7) can
be easily used for robust inference in the presence, and detection, of weak and level factors
(section 2.3) and 4i) can be used for both model selection and model averaging, even in the
presence of a very large number of candidates (traded or non-traded, and possibly weak)
risk factors — that is, the entire factor zoo.

Although we focus on the estimation of linear SDF representations, our approach can be
adapted (with minimal adjustments) to deliver a robust Bayesian version of the canonical
Fama-MacBeth estimation approach (see Fama and MacBeth (1973) and Fama and French
(1993)).

2.3 Bayesian Analysis of Linear SDF's

This section introduces our hierarchical Bayesian estimation of linear SDF models, B-SDF.
A more detailed derivation is presented in Appendix 2.A.1.1.

Consider first the time-series dimension of the estimation problem. Let f; = (fi¢... f Kt)T,
t =1,...T denote a vector of factors. Without loss of generality, we order the K; tradable
factors first ( ft(l)), followed by K> non-tradable factors (£*)), hence, f = ( ()T t(2)’T)T
and k1 + ko = K.

Let Y; denote the union of factors and returns, that is, Y; = f; U R;, where Y; is a
p-dimensional vector. If one requires the tradable factors to price themselves (as we do in
our empirical applications), then ;" = (R}, £"")7 and p = N + K».

We assume that {Y;}7_, follows an iid multivariate Gaussian distribution, that is, Y; Y
N(py, Xy ), where py and Xy denote, respectively, the unconditional means vector and the
unconditional covariance matrix. This modeling choice can easily be modified to accommo-
date different distributional assumptions, predictability, and time-varying volatility, albeit
at the cost of losing analytical solutions in most cases. In particular, as discussed in Section
2.6, we could accommodate time-varying means and variances, as well as autocorrelations.

The resulting likelihood function for the time-series layer of our hierarchical modeling is

}, 29

where Y = {Y;}L,. For simplicity, we use the diffuse prior: m(py, Xy ) |Ey|_p7+1. This

S5y ) (Y- py) (Y —py)'

t=1

1
p(Y|IJ’Ya 2Y> X |Zy|_% exp {_EtT

implies the following posterior distribution of (py, Xy ):
H’Y‘EY’Y ~ N(I]‘Y> EY/T) ) (26)
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T
Ey[Y ~ W (T -1 Z (Y: — py) (Y — ﬁY)T> : (2.7)
t=1

where fiy = %Zthl Y; and W is the inverse-Wishart distribution (a multivariate general-
ization of the inverse-gamma distribution). Note that the above posterior distribution is well
defined even in the presence of weak factors, since the time-series layer does not depend on
the strength of the factors or their tradability. Furthermore, the above posterior is analogous
to the canonical t-distribution result for the parameters of a linear regression model.

The Normal-inverse-Wishart posterior in equations (2.6)—(2.7) implies that we can sample
the distribution of the parameters (py, Xy) by first drawing the covariance matrix 3y from
the inverse-Wishart distribution conditional on the data, and then by drawing py from a
multivariate normal distribution conditional on the data and the draw of Xy

If the SDF is correctly specified, in the sense that all true factors are included, expected
asset returns should be fully explained by their risk exposure, C, and the prices of risk A,
that is, pr = CA, where pug is the sub-vector of puy corresponding to asset returns and
C is the corresponding covariance sub-matrix of 3y. Therefore, we can define our first
estimator.” In Appendix 2.A.1.1 we show formally that it arises, under the assumption of

correct specification, as a particular case of our general posterior presented in equations

(2.11)-(2.12) below.

Definition 2.2 (Bayesian SDF (B-SDF) Estimates) Conditional on py, Xy and the
data Y = {Y;}L,, under the null of unique correct SDF specification® and any diffuse prior,
the posterior distribution of X is a Dirac distribution (that is, a constant) at (CTC)"*C" ug.
Therefore, conditional on only the data Y = {Y;}[_, and the null, the posterior distribution

of X can be sampled by drawing py,;) and Xy, from the Normal-inverse-Wishart (2.6)-
~1
(2.7) and computing the draw X = (C&)C(j)> C(Z)“’Rv(ﬂ')‘

The posterior distribution of A, defined above, accounts for both the uncertainty about
expected returns — via the sampling of pgr — and the uncertainty about the factor loadings
— via the sampling of Cy. Note that for completeness in the above we have allowed for a
common cross-sectional intercept, A.. However, this can be readily constrained to be equal

to zero, and we consider this case in our empirical analysis.

"The B-SDF estimator, and its GLS version, as shown in Appendix 2.A.1.1, are particular cases of the more
general posterior characterizations in equations (2.11)—(2.12) and (2.13)—(2.14). For expositional purposes
we focus on the particular OLS- and GLS-like Bayesian estimators. Nevertheless, for any conformable matrix
A such that AC is invertible, we have that under the null of unique correct specification, A has (under any
non-dogmatic prior) a degenerated posterior at (AC)~!Augr conditional on A, C, and pug.

8That is, ur = C holds for a unique value of X as assumed in standard frequentist estimation.
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From the B-SDF definition, it is intuitive why we expect posterior inference to detect
weak factors in finite sample. For such factors, the near singularity of (C(;) C(;)) " will cause
the draws for A(;) to diverge from zero (as in the frequentist point estimate). Nevertheless,
the posterior uncertainty about factor loadings and asset risk premia will cause C(E)u R,(j) to
switch sign across draws, causing the posterior distribution of A to put substantial probability
mass on both values above and below zero. Hence, centered posterior credible intervals will
tend to include zero with high probability.

In addition to risk prices A, we are also interested in estimating the cross-sectional fit
of the model, that is, the cross-sectional R?. Once we obtain the posterior draws of the
parameters, we can easily obtain the posterior distribution of the cross-sectional R?, defined

" (1r — CN) (g — CA)

R, =1- - = - :
(ur — irIN) T (LR — fRIN)

ols

(2.8)

where fig = + va pri. That is, for each posterior draw of (g, C, A), we can construct
the corresponding draw for the R? from equation (2.8), hence, tracing out its posterior
distribution. Equation (2.8) can be thought of as the population R?, where ug, C, and A
are unknown. After observing the data, we infer the posterior distribution of pug, C, and A
, and from these we can recover the distribution of the R2.

Often the cross-sectional step of the frequentist estimation is performed via GLS rather
than least squares. In our setting, under the null of the model, this leads to the following

GLS estimator (see Appendix 2.A.1.1 for a formal derivation).

Definition 2.3 (Bayesian SDF GLS (B-SDF-GLS)) Conditional on py, 3y and the

data Y = {Y3}_,, under the null of unique correct SDF specification and any diffuse prior,

the posterior distribution of X is a Dirac distribution (that is, a constant) at (CTERZ'C)'CTER ug.
Therefore, conditional on only the data Y = {Y;}[_, and the null, the posterior distribution

of X can be sampled by drawing py,;) and Xy, from the Normal-inverse-Wishart (2.6)-

(2.7) and computing X = (C(E)EI_i%(j)C(j)>_1C(E)2E(j)“37(j)'

From the posterior sampling of the parameters in the definition above, we can also obtain

the posterior distribution of the cross-sectional GLS R2, defined as

(kR — CX) 25 (kR — CA)

R2 — 1 - — T 1 _ .
(kR — prIN)"ER (bR — fiR1N)

gls

(2.9)

Once again, we can think of equation (2.9) as the unknown population GLS R?, which is

a function of the unknown quantities pg, C, and A. Since after observing the data we infer

2

the posterior distribution of the parameters, we obtain the posterior distribution of the Ry,

as well.
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Realistically, models are rarely true. Therefore, we now allow for the presence of model-
implied average pricing errors, a.? This can be easily accommodated within our Bayesian
framework since in this case the data-generating process in the cross-section becomes pugr =
CA + a. Adding an assumption on the cross-sectional distribution of the pricing errors
yields a Bayesian hierarchical structure to the estimation that naturally separates the time
series and cross-sectional dimensions of the inference problem. To continue the analogy with
OLS and GLS estimators, we consider two distributional assumptions for the average pricing
errors Q.

First, we consider the case of spherical cross-sectional errors, that is, a; s A (0,0?),
in the spirit of OLS. Under this assumption, the cross-sectional likelihood function (i.e.,

conditional on the time-series parameters pg and C) is

1
p(data|X, 0?) = (2#02)_% exp {—@

(1 — CN) (pir — c»} @)

In the cross-sectional regression, the “data” are the expected risk premia, pugr, and the
factor loadings, C. These quantities are not directly observable to the researcher but can
be sampled from the Normal-inverse-Wishart posterior distribution in equations (2.6)—(2.7).
Conceptually, this is not very different from the Bayesian modeling of latent variables. In
the benchmark case, we assume a diffuse prior'® for (X, 0?): 7(X,0?) o< 072, In Appendix
2.A.1.1, we show that the posterior distribution of (A, 0?) is then

o2 pugr, C NN((C’TC)_lCTp,R, UQ(CTC’)_1> and (2.11)
X BY

(2.12)

N—-K-1 (pr—CXN)(pr — Cj\))
2 ’ 2 7

o?|pur,C ~IG (
where ZG denotes the inverse-Gamma distribution. The conditional distribution in equation
(2.11) makes it clear that the posterior takes into account both the uncertainty about prices
of risk stemming from the time series parameters C and pg (that are drawn from the
Normal-inverse-Wishart posterior in equations (2.6)—(2.7)) and the random pricing errors o
that have the conditional posterior variance distribution given in equation (2.12). If test
assets’ expected excess returns are fully explained by C, there are no pricing errors and

o?(CTC)! converges to zero; otherwise, this layer of uncertainty always exists. Similarly,

9As we show in the next section, this natural assumption is essential for model selection.

10As shown in the next subsection, in the presence of weak factors, such a prior is not appropriate for
model selection based on Bayes factors and posterior probabilities, since it does not lead to proper marginal
likelihoods. Therefore, we introduce therein a novel prior for model selection.
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if one assumes that the cross-sectional model is correctly specified, that is, 0> — 0, we are
back to the B-SDF estimator in Definition 2.2.!1

The OLS assumption ignores the fact that average pricing errors could be cross-sectionally
correlated, which motivates our second, non-spherical, cross-sectional distributional assump-
tion for ae. Suppose that the model is correctly specified, that is, By = A 1n + CrAp + €,
where €, G N (0N, XR). Since Ep[Ry] = A\:1n + CgA s + Er[e], the pricing error a should
be equal to Er[es].'? Hence, in the spirit of the central limit theorem, a natural distributional
assumption for the pricing errors is a | g ~ N (O, %E r). However, since we allow for
mispricing, and its degree is endogeously determined by the observed data, a scaling of the
covariance matrix is desirable. Therefore, we assign the following distributional assumption
for a: a ~ N (On,0*ER). We call this the GLS assumption. Recall that X g is the covari-
ance matrix of returns R;. Hence, the difference between the OLS and GLS assumption is
that non-diagonal elements are non-zeros in the latter case. Since all models are misspecified
to a certain degree, we would expect that the estimated o2 to be larger than 1/7.

The posterior distribution of (XA, 0?) under the GLS distributional assumption, and con-

ditional on pgr, ¥ g and C, is then (see derivation in Appendix 2.A.1.1)

o2, data ~ N ((Cnglc)lcngluR, aQ(Cngch) and (2.13)
X BS

(2.14)

— _ . I\ Twoe—1 _ ~
a2ldata~zg(N K—1 (br—CA) Eg (kR CA))_

2 ’ 2
And once again pugr, X, and C can be sampled from the the Normal-inverse-Wishart

posterior in equations (2.6)-(2.7). Furthermore, as before, by setting 02 — 0 we recover the
B-SDF-GLS in Definition 2.3.

Remark 2.2 (Generated factors) Often factors are estimated, as, for example, in the
case of principal components (PCs) and factor-mimicking portfolios (albeit the latter are not
needed in our setting). This generates an additional layer of uncertainty normally ignored in
empirical analysis due to the associated asymptotic complexities. Nevertheless, thanks their
hierarchical structure, it is relatively easy to adjust the above-defined Bayesian estimators
to account for this uncertainty. In the case of a mimicking portfolio, under a diffuse prior
and Normal errors, the posterior distribution of the portfolio weights follow the standard

Normal-inverse-Gamma of Gaussian linear regression models (see, e.g., Lancaster (2004)).

'When pricing errors a are assumed to be exactly zero under the null, the posterior distribution of A
in equation (2.11) collapses to a degenerate distribution, where A equals (CTC)~'C " ugr with probability
one.

12\Where E is the sample analog of the unconditional expectation operator.

92



Similarly, in the case of principal components as factors, under a diffuse prior, the covariance
matriz from which the PCs are constructed follows an inverse- Wishart distribution.'> Hence,
the posterior distributions in Definitions 2.2 and 2.3 can account for the generated factors
uncertainty by first drawing from an inverse- Wishart the covariance matrixz from which PC's
are constructed, or from the Normal-inverse-Gamma posterior of the mimicking portfolios

coefficients, and then sampling the remaining parameters as explained above.

Note that while we focus on the case of linear SDF models, our method can be easily
extended to the estimation of beta representations of the fundamental pricing equation used

in the two-pass procedure, such as Fama-MacBeth regressions.

2.3.1 Model Selection and Aggregation

In the previous subsection we have derived simple Bayesian estimators that deliver, in a finite
sample, credible intervals robust to the presence of weak factors and avoid over-rejecting the
null hypothesis of zero prices of risk for such factors.

However, given the plethora of risk factors that have been proposed in the literature, a
robust approach for model selection, across not necessarily nested models, that can handle
a very large universe of possible models, as well as both traded and non-traded factors, is
of paramount importance for empirical asset pricing. The canonical way of selecting models
and testing hypotheses within the Bayesian framework is through Bayes factors and posterior
probabilities, which is the approach we present in this section. This is, for instance, the
approach suggested by Barillas and Shanken (2018a) for tradable factors. The key elements
of novelty of the proposed method are that: i) our procedure is robust to the presence of
weak factors, ii) it is directly applicable to both traded and non-traded factors, and iii) it
selects models based on their cross-sectional performance (rather than on the time series),
that is, on the basis of the risk prices that the factors command.

Our approach hinges upon the introduction of suitable and economically driven priors
that deliver valid marginal likelihoods and posterior model probabilities. With valid pos-
terior probabilities, our framework allows to also aggregate multiple candidate factors and
specifications into the most likely, given the data, representation of the true unknown SDF
(via BMA).' Hence, our method endogenously selects a dominant subset of factors — if
such a set exists uniquely — and instead aggregates factors optimally, if no dominant low-

dimensional representation arises. But, unlike the canonical dichotomy of observable factors

13Based on these two observations, Allena (2019) proposes a generalization of the Barillas and Shanken
(2018a) model comparison approach for these type of factors.

1See, e.g., Raftery, Madigan, and Hoeting (1997), and Hoeting, Madigan, Raftery, and Volinsky (1999).
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selection versus pure aggregation (e.g., principal component and entropy methods), our ap-
proach combines both. In a sense, it jointly delivers model selection and “smart” latent
factor extraction.

In this subsection, we show first that flat priors for risk prices are not suitable for model
selection in the presence of weak factors. Given the close analogy between frequentist testing
and Bayesian inference with flat priors, this is not too surprising. But the novel insight is
that the problem arises exactly because of the use of flat priors and can therefore be fixed
by using non-flat, yet non-informative, priors. Second, we introduce “spike-and-slab” priors
that are robust to the presence of weak factors. These priors allow us to test hypotheses using
valid Bayes factors and model probabilities. Furthermore, they are particularly powerful in
high-dimensional model selection, that is, when one wants, as in our empirical application,
to consider all the factors in the zoo. Finally, we show how, as a by-product of the estimation

and selection method, factors and models can be optimally aggregated.

2.3.1.1 Pitfalls of Flat Priors for Risk Prices

We start this section by discussing why flat priors for prices of risk are not suitable for model
selection. Since we want to focus on and select models based on the cross-sectional asset
pricing properties of the factors, for simplicity we retain flat (in the sense of Jeffreys) priors
for the time-series parameters (py, Xy ).

In order to perform model selection, we relax the (null) hypothesis that models are
correctly specified and allow instead for the presence of cross-sectional pricing errors. That
is, we consider the cross-sectional representation pgr = C\ + a. For illustrative purposes,
we focus on spherical cross-sectional errors (i.e., the case analogous to the GMM-OLS).
Nevertheless, all the results in this and following subsections are also generalized to the
non-spherical error setting (i.e., the case analogous to the GMM-GLS).

To model variable selection, we introduce a vector of binary latent variables v =
(Y0, M1 ---,VK), where 7; € {0,1}. When ~; = 1, factor j (with associated loadings Cj)
should be included into the model and vice versa. Therefore, the number of included factors
is p, = ZJI'(:() v; - Note that we always include the intercept, that is, 79 = 1 always. The
notation C = [Cj]%:l represents a p.-columns sub-matrix of C.

When testing whether the risk price of factor j is zero, the null hypothesis is Hy : A; = 0.
In our notation, this null hypothesis can be expressed as Hy : 7; = 0, while the alternative
is Hy : ; = 1. This is a small but important difference relative to the canonical frequentist
testing approach: For weak factors, risk prices are not identified; hence, testing whether
they are equal to any given value is problematic per se. Nevertheless, as we show in the next

section, with appropriate priors, whether a factor should be included or not is a well-defined

94



question even in the presence of weak factors.

In the Bayesian framework, the prior distribution of parameters under the alternative
hypothesis should be carefully specified. Generally speaking, the priors for nuisance param-
eters, such as py, Xy and o2, do not greatly influence the cross-sectional inference. But, as
we are about to show, this is not the case for the priors about risk prices.

Recall that when considering multiple models, say, without loss of generality model ~

and model v/, by Bayes theorem we have that the posterior probability of model - is

p(dataly)
(data|y) + p(dataly’)’

Pr(~v|data) =
(v|data) p

where we have given equal prior probability to each model and p(data|vy) denotes the marginal
likelihood of the model indexed by ~. In Appendix 2.A.1.2 we show that, when using a flat

prior for A, the marginal likelihood is

(=52

NG2Z\ N-py 7
2
2

p(dataly) o (21) 7 |CIC, |2 (2.15)

where 62 = (”Rfc"j‘“’);(”’rc“’j‘“’), A, = (C]C,)7'C] g, and T denotes the Gamma func-
tion.

Therefore, if model « includes a weak factor (whose Cj; asymptotically converges to
zero), the matrix C_: C, is nearly singular and its determinant goes to zero, sending the
marginal likelihood in (2.15) to infinity. As a result, the posterior probability of the model
containing the weak factor goes to one.!® Consequently, under a flat prior for risk prices,
the model containing a weak factor will always be selected asymptotically. However, the
posterior distribution of A for the weak factor is robust, and particularly disperse, in any
finite sample.

Moreover, it is highly likely that conclusions based on the posterior coverage of A contra-
dict those arising from Bayes factors. When the prior distribution of \; is too diffuse under
the alternative hypothesis Hy, the Bayes factor tends to favor the null Hy, even though the
estimate of \; is far from 0. The reason is that even though H, seems quite unlikely based
on posterior coverages, the data are even more unlikely under H;. Therefore, a disperse
prior for A\; may push the posterior probabilities to favor Hy and make it fail to identify true

factors.!6

15Note that a similar problem also arises when using mimicking portfolios of weak factors. In this case the
singularity in the determinant in equation (2.15) would be generated by the projection of the non-tradable
factors on the space of returns.

16 This phenomenon is known as the Bartlett Paradox (see Bartlett (1957)).
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Note also that flat (hence improper) priors for risk prices are not appropriate, since they
render the posterior model probabilities arbitrary. Suppose that we are testing the null
Hy : A; = 0. Under the null hypothesis, the prior for (A,0?) is A\; = 0 and m(A_;,0?) x 2.
However, the prior under the alternative hypothesis is w(\j, A_;, 0?) % Since the marginal
likelihoods of the data, p(data|Hy) and p(data|H;), are both undetermined, we cannot define
% (as stressed in, e.g., Chib, Zeng, and Zhao (2020)). In contrast,
for nuisance parameters such as o2, we can continue to assign improper priors. Since both

the Bayes’ factor

hypotheses Hy and H; include o2, the prior for it will be offset in the Bayes factor and
in the posterior probabilities. Therefore, we can only assign improper priors for common
parameters.!” Similarly, we can still assign improper priors for gy and Xy in the first
time-series step.

The final reason why it might be undesirable to use a flat prior for risk prices is that
it does not impose any shrinkage on the parameters. This is problematic, given the large
number of members of the factor zoo, while we have only limited time-series observations of
both factors and test asset returns.

In the next subsection, we propose an appropriate prior for risk prices that is both robust
to weak factors and can be used for model selection, even when dealing with a very large

number of potential models.

2.3.1.2 Spike-and-Slab Prior for Risk Prices

To ensure that the integration of the marginal likelihood is well-behaved, we propose a novel
prior specification for the factors’ risk prices A} = (A1, ..., A\g). Since the inference in time-
series regression is always valid, we only modify the priors of the cross-sectional regression
parameters.

This prior belongs to the so-called spike-and-slab family. For illustrative purposes, in this
section we consider a Dirac spike and show analytically its implications for model selection.
In the next subsection we generalize the method to a “continuous spike” prior and study its
finite sample performance in our simulation setup.

In particular, we model the uncertainty underlying the model selection problem with a
mixture prior, (X, 02, 7) < 7(Alo?,y)7(c?)7(y). When 7; = 1, and, hence, the factor
should be included in the model, the prior (the “slab”) follows a normal distribution, given
by A\jlo?,v; =1 ~ N(0,0%);), where 1, is a (crucial) quantity that we define below. When
instead v; = 0, and the corresponding risk factor should not be included in the model, the

prior (the “spike”) is a Dirac distribution at zero. For the cross-sectional variance of the

17See Kass and Raftery (1995) (and also Cremers (2002)) for a more detailed discussion.
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pricing errors we keep the canonical diffuse prior:'® 7(0?) oc 072

Let D denote a diagonal matrix with elements ¢, 97", -+ ¥', and D., the sub-matrix
of D corresponding to model 4, where ¢ is a small positive number corresponding to the
common cross-sectional intercept (A.). The prior for the prices of risk (A,) of model - is
then

A, o2,y ~ N(0,0° D).

~

Given this prior, we sample the posterior distribution by sequentially drawing from the
conditional distributions of the parameters (i.e., we use a Gibbs sampling approach)® pre-

sented in the following proposition.

Proposition 2.3 (B-SDF OLS Posterior with Dirac Spike-and-Slab) The posterior
distribution of (\y,02,v) under the assumption of Dirac spike-and-slab prior and spherical
a (OLS), conditional on the draws of pwy and Xy from equations (2.6)-(2.7), is given by

the following conditional distributions:

Xy ldata, 0%,y ~ N (A, 6% (X)), (2.16)
N
o?|data, v ~ IG (E, SS2R7) , and (2.17)
D.|: 1
plo | data) oc ——2A - (2.13)
|IC;C, + D,|> (SSR,/2)2

where Ay = (CJCy + D)7 'C pg, 6*(Xy) = 0*(C]Cy + D,)Y, and SSR, = pLur —
H;C‘Y(C‘IC‘Y + D‘Y)_IC——YFNR = minx {(tr — C3 X)) " (1R — CyA,) + )‘:yrD'r)"y} and 1G

denotes the inverse-Gamma distribution.

Proposition 2.4 (B-SDF GLS Posterior with Dirac Spike-and-Slab) The posterior
distribution of (\,,c0%,~) under the assumption of Dirac spike-and-slab prior and and non-
spherical o (GLS), conditional on the draws of py and Xy from equations (2.6)-(2.7), is

giwen by the following conditional distributions:

A~

Xy ldata, 0%,y ~ N (A, 6% (X)), (2.19)

IBNote that since the parameter o is common across models and has the same support in each model,
the marginal likelihoods obtained under this improper prior are valid and comparable (see Proposition 1 of
Chib, Zeng, and Zhao (2020)).

19We do not standardize Y in the time-series regression. In the empirical implementation, after obtaining
posterior draws for py and Xy, we calculate pr and C as the standardized expected returns of test assets
and correlation between test assets and factors. Then C' is a matrix containing a vector of ones and Cy.
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N
o?|data,y ~ IG (5, SLS;RW) , and (2.20)

D, ! 1

- T
|CJER'Cy + D, (SSR, /2)
where Ay = (CIER'Cy +D.) 'CI R pr, 62(A,) = 0*(CIER'Cy+D,)7, and SSR, =
HRER B — BEER Cy(CYER Cy + Dy) 'CIEE ur = miny {(ur — CoX) 2R (kR —
C,\y) + A—:Dv)‘v} and IG denotes the inverse-Gamma distribution.

p(y | data) o (2.21)

N
2

The above propositions are proved, respectively, in Appendices 2.A.1.3 and 2.A.1.4.

Note that SSR, is the minimized sum of squared errors under the spherical pricing
errors assumption, and is instead the minimized squared Sharpe ratio of pricing errors in the
non-spherical case, where the term )\ID.,)\A, is akin to a generalized ridge regression penalty.

Our prior modeling is analogous to introducing a Tikhonov-Phillips regularization (see
Tikhonov, Goncharsky, Stepanov, and Yagola (1995) and Phillips (1962)) in the cross-
sectional regression step, and has the same rationale: delivering a well-defined marginal
likelihood in the presence of rank deficiency (which, in our setting, arises in the presence of
weak factors).

The key element and novelty of our method is that the “shrinkage” applied to the factors is
endogenously heterogeneous and designed to target weak factors: It leverages the correlation

between factors and returns by setting ¢; as

v =1 X p;p;, (2.22)

where p; is an N x 1 vector of correlation coefficients between factor j and the test assets, and
Y € Ry is a tuning parameter that controls the degree of shrinkage over all factors.?’ But,
unlike tuning parameters in frequentist inference, as we show below, ¢ is uniquely pinned
down by the researcher’s beliefs about Sharpe ratios being achievable in the economy.

When the correlation between fj; and Ry is very low, as in the case of a weak factor, the
penalty for \;, which is the reciprocal of ijT P = ({D,,}jj)_l, is very large and dominates
the sum of squared errors.

Equation (2.16) (and, similarly, equation (2.19)) makes clear why this Bayesian formu-
lation is robust to weak factors. When C' converges to zero, (C,I C, + D) is dominated

by D., so the identification condition for the prices of risk no longer fails. When a factor

20 Alternatively, we could have set 1; = 1 x C'JTC'J-7 where C is a N x 1 vector of covariances of the test
assets with factor j. However, p; has the advantage of being invariant to the units in which factors are
measured. Furthermore, in the empirical analysis the cross-sectional step is implemented using returns and
factors scaled by their standard deviations, making the distinction immaterial.
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is weak, its correlation with test assets converges to zero; hence, the penalty for this factor,
wj_l, goes to infinity. As a result, the posterior mean of A, 5\7 = (C’JC’,7 + D,y)*lc’,juR,
is shrunk toward zero, and the posterior variance term 62(\) approaches 0’DZ'. Conse-
quently, the posterior distribution of A for a weak factor is nearly the same as its prior. In
contrast, for a normal factor that has non-zero covariance with test assets, the information
contained in C dominates the prior information, since in this case the absolute size of D,

is small relative to C,j C,.

Remark 2.5 (Level Factors) Identification failure of factors’ risk prices can arise in the
presence of “level factors,” that is factors to which asset returns have non-zero exposure but
lack cross-sectional spread. These factors help explain the average level of returns but not
their cross-sectional dispersion, and, hence, are collinear with the common cross-sectional
intercept. Our approach can handle this case by using variance standardized variables in the

cross-sectional part of the estimation and replacing the penalty in (2.22) with

Wi = X p; p;, (2.23)

where p; = p; — (% Zf\il Pj,i) X 1N 1is the cross-sectionally demeaned vector of factor j

correlations with asset returns.

When comparing two models, using posterior model probabilities for specification selec-
tion is equivalent to simply using the ratio of the marginal likelihoods, that is, the Bayes

factor, which is defined as

BF, = p(dataly)/p(dataly’),

where we have given equal prior probability?' to model 4 and model ~’.
Corollary 2.1 shows that, unlike in the flat prior case discussed earlier, under the Dirac
spike, the Bayes factors (and posterior probabilities) are well-defined even in the presence of

weak factors. Therefore, they can be used for model selection and hypotheses testing.

Corollary 2.1 (Model Selection via the Bayes Factor) Consider two nested linear fac

tor models, v and v'. The only difference between v and ' is vy,: 7, equals 1 in model ~y
but 0 in model v'. Let v_, denote a K x 1 vector of model index excluding v,: v' = ( jp, 1)

and ' = ( Ip,O) where, without loss of generality, we have assumed that the factor p is

ordered last.

21The corollary can be trivially extended to the case of different prior probabilities for the two models,
since in this case the Bayes factor is simply the ratio of marginal likelihoods multiplied by the prior odds.
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Under the spherical assumption for ac (OLS), the Bayes factor is

SSR.
BF’Y:‘Y/ = (SSRW
o~

=

) 2 (1 + pr; [IN - C’y’(CﬂI’C'r’ + D‘V’)ilc’j’} Cp) (2'24)

where SSRy = pppr—ppCr(C, Cy+ D) 'Cl pp = miny {(ur—CyAy) T (pr—CyAy)+
)\ID.Y)\.,}. Under the non-spherical assumption for o (GLS), the Bayes factor is

N

Bl = <§i§z’> 2 1+1,[C, 35 Cp — C, B5 Cy (CvT’E;%lCV’ - D‘r')_l CWT'ZI?CP}
(2.25)

where SSR, = pRSp ur — ppYyE Cy(CIEE'Cy + D)) 'CI X pr = miny {(pr —

AT

S (e — CyAy) + AT DAL},

The proof can be found in Appendix 2.A.1.5.

Since C, [In — C,Y/(C,I,C,y/ + Dvl)_lC,I,]C'p is always positive, 1, plays an important
role in variable selection. For a strong and useful factor that can substantially reduce pricing
errors, the first term in equation (2.24) dominates, and the Bayes factor will be much greater
than 1, hence, providing evidence in favor of model ~.

Recall that SSR, = minx, {(er — CyAy) " (g — CyA,) + A Dy AL}, hence, we always
have SSR, < SSR, in sample. There are two effects of increasing 1,: i) when 1, is large,
the penalty for ), is small, hence, it is easier to minimize SSR,, and SSR. /SSR., becomes
much larger than 1; ii) large 1, decreases the second term in equation (2.24), lowering the
Bayes factor, and acting as a penalty for dimensionality.

A particularly interesting case is when the factor added by model v is weak: C), converges
to zero, but the penalty term 1/1, < 1/p] pp goes to infinity. On the one hand, the first
term in equation (2.24) will converge to 1; on the other hand, since v, ~ 0 in large sample,
the second term in equation (2.24) will also be around 1. Therefore, the Bayes factor for
a weak factor will go to 1 asymptotically.?? In contrast, a useful factor should be able to
greatly reduce the sum of squared errors SSR,, so the Bayes factor will be dominated by
SSR,, yielding a value substantially above 1.

Note that since our prior restores the validity of the marginal likelihood, any hypothesis
on the parameters (e.g., whether the pricing errors are jointly zero) can be tested via pos-
terior probabilities or, equivalently, Bayesian p-values. In particular, we obtain closed-form

solutions for testing hypothesis about prices of risk by centering the Dirac spike at the null

22But in finite sample it may deviate from its asymptotic value, so we should not use 1 as a threshold
when testing the null hypothesis Hy : vy, = 0.
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value rather than at zero.

Corollary 2.2 (Hypothesis Testing for Risk Prices (Bayesian p-values)) Suppose that
we want to test the point hypothesis A_, = 5\_,7 and as before we have the prior Ay|o?,~ ~
N(O,UQD,;l) in model 7. In this case, the posterior distributions in Propositions 2.3 and
2.4 still hold with SS R, therein replaced by SSR.,, defined below.

Under the spherical assumption for a (OLS),

ggﬁ)v = (kR — C—’YS\—‘Y)T(M’R —C_A)—
(kR — C—’YX—’Y)TC’Y(C:/FC’Y + Dv)_IC—I(NR ~C_A)
= H}‘in{(ﬂR —Cy2) (AR — CyA,) + A:ly—D’Y)"Y}v

where ir = PR — C_.YS\_., denotes the vector of cross-sectional residual expected returns
that are unexplained by factors f_., with prices of risk 5\_7.

Under the non-spherical assumption for o (GLS),

§§1/-27 = (kg — C—’YS‘—’Y)TEI_{l(“R - C—"/S‘—’Y)_
(1R — C—‘YS‘—'y)TE}_%lC'V(CyTE}_le'V + D‘V)ileTE}_{l (LR — C—'yj‘—‘y)
= n}\in{(ﬁR — CyAy) ' 2F (Br — Co ) + )‘:yrD‘YA‘Y}v
A Bayesian p-value for the null hypothesis is then constructed by integrating 1—p(y | data)
in equation (2.18) (equation (2.21) in the case of spherical (non-spherical) pricing errors),
with respect to the Normal-inverse- Wishart in equations (2.6)—(2.7).

The proof of the corollary follows the same steps as the proofs of Propositions 2.3 and 2.4
in Appendices 2.A.1.3 and 2.A.1.4.

Corollary 2.2 can be used for joint hypothesis testing within the Bayesian framework
(e.g., building confidence intervals), and it is very similar in spirit to the standard frequentist

identification-robust inference.

2.3.1.3 Continuous Spike

We extend the Dirac spike-and-slab prior by encoding a continuous spike for A;, when «;
equals 0. While the closed-form solutions obtained with a Dirac spike allow to feasibly eval-
uate millions of models, this extension allows to efficiently sample quadrillions of alternative
specifications.

Following the literature on Bayesian variable selection (see, e.g., George and McCulloch
(1993, 1997) and Ishwaran, Rao, et al. (2005)), we model the uncertainty underlying model
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selection with a mixture prior w(X, 02, v, w) = w(X | 02, 4)7(0?)7(y | w)7(w), where
Nj 15,07 ~ N0, 7(75)50°). (2.26)

Note the introduction of two new elements, r(y;) and 7(w), in the prior. When the factor
should be included, r(y; = 1) = 1, hence we have the same “slab” as before. When the factor
should not be in the model 7(y; = 0) = r < 1. Hence the Dirac “spike” is replaced by a
Gaussian spike, which is extremely concentrated at zero (we set » = 0.001 in our empirical
analysis). Note that in this case ¢; has an effect on the spike, but given a small value for r
this effect is virtually immaterial. As we explain below, the additional prior 7(w) encodes
our ex ante beliefs about the sparsity of the true model in terms of observable factors.

We now redefine D as a diagonal matrix with elements ¢, (r(y1)i1) ", ..., (r(vg)vr) ",
where 1; is given as before by equation (2.22). In matrix notation, the prior for A is therefore:
Ao,y ~ N(0,6°D™1). The term r(v;)1; in D! is set to be small or large, depending on
whether v; = 0 or 7; = 1. In the empirical implementation, we set 7 to a value much smaller
than 1 since we intend to shrink A; toward zero when ~; is 0. Hence, the spike component
concentrates the posterior mass of A around zero, whereas the slab component allows A to
take values over a much wider range. Therefore, the posterior distribution of A is very similar
to the case of a Dirac spike in section 2.3.1.2.

Furthermore, this prior encodes beliefs about the fraction of the total Sharpe ratio of
the test assets ascribable to the factors and to the pricing errors. To see this, consider the
case in which (as in our empirical applications) both factors and returns are standardized.
It then follows that

E-[SR} | ~,07] _ Sy () _ Uiy () B P
E.[SRE, [ 07] N N |

(2.27)

where SRy and SR, denote, respectively, the Sharpe ratios of all factors®® (f;) and of the
pricing errors of all assets (), and E, denotes prior expectations. In the baseline sample
of our empirical applications, S n | 5] pr/N ~ 3.22.2* Hence, for ¢ in the 1-5 range, if,
say, 50% of the factors are selected, our prior expectation is that the factors should explain
about 62%-89% of the squared Sharpe ratio of test assets.

The prior m(w) not only gives us a way of sampling from the space of potential models,

23The squared Sharpe ratio implied by the SDF is A;Zf)\f. Since Ay are assumed to be independently
distributed in the prior level, E-[SR% | 7, 0?] is equal to Ele Ex[A2 | vk, 02].

2Note that in our previous study (where the cross-section was 25 Fama-French size and B/M portfolios
plus 30 industry portfolios) Zszl pi pr/N ~ 0.51. In that case, for 1 in the 10-20 range, if, say, 50% of the

factors are selected, our prior expectation is that the factors should explain about 71%-83% of the squared
Sharpe ratio of test assets.
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but also encodes belief about the sparsity of the true model using the prior distribution

7(7v; = l|lw;) = w;. Following the literature on predictors selection, we set:
(v, = llw;) = wj, wj ~ Beta(ay,,b,).

Different hyper-parameters a,, and b,, determine whether one a priori favors more parsimo-
nious models or not.?> Furthermore, a, and b, can be chosen to encode prior beliefs about
the Sharpe ratio achievable in the economy since E-[SR} | 0?] = %410 S BL P as
r — 0.

The considerations above imply that an agent’s expectations about the Sharpe ratio
achievable i) with only one factor, ii) with all the factors jointly, and éi7) the sparsity of the
“true” model, uniquely determine the parameters v, a,, b,,.2

When wj; is constant and equal to 0.5 and 7 converges to 0, the continuous spike-and-
slab prior is equivalent to the one with Dirac spike in Section 2.3.1.2. Instead, treating w
(hence, 7;), as a parameter to be sampled is particularly useful in high-dimensional cases.
For instance, suppose that there are 30 candidate factors. With the Dirac spike-and-slab
prior we have to calculate the posterior model probabilities for 23° different models. Given
that we update (g, Cy) at each sampling round, posterior probabilities for all models are
re-computed for every new draw of these quantities, rendering the computational cost very
large. In contrast, with the continuous spike-and-slab approach one can simply use the
posterior mean of 7; to estimate the posterior marginal probability of the j-th factor, since
they are the same quantity.

Similar to the Dirac spike-and-slab case, we use sequential sampling from the conditional
distributions of the parameters (A, w,o?) and, most importantly, 7, as presented in the

following propositions.

Proposition 2.6 (B-SDF OLS Posterior with Continuous Spike-and-Slab) The pos-
terior distribution of (X,v,w,d?) under the assumption of continuous spike-and-slab prior
and spherical o (OLS), conditional on the draws of pwy and Xy from equations (2.6)-(2.7),

1s given by the following conditional distributions:

A|data, o?, ~, w NN(S\,&Q(S\)), (2.28)

25The prior expected probability We set a, = b, = 1 in the
benchmark case; that is, each factor has an ex ante expected probablhty of being selected equal to 50%.
However, we could for instance, set a,, = 1 and b,, >> 1 in order to favor a sparser model.

26For a discussion on the importance of using priors on observables and economic quantities, rather than
deep model parameters, see Jarociriski and Marcet (2019).

103



p(y; = ldata, A, w, 0%, v—5) _ w; p(A\ly =1,07)

= ; 2.29
p(v; = 0ldata, A, w,02,v_;) 1—w;p(N\|y; =0,02) ( )
wjldata, X, vy, ~ Beta (v; + ay, 1 —; +b,), and (2.30)
N+ K+1 — T —CA ™D
02|dam7w7)wfvzg( +2 + 7(#3 C)\) (u32 C\) +A A)) (2.31)

where XA = (CTC + D)"'CT pg and 6*(X) = 0*(CTC + D)™

Proposition 2.7 (B-SDF GLS Posterior with Continuous Spike-and-Slab) The pos-
terior distribution of (X\,v,w,c?) under the assumption of continuous spike-and-slab prior
and non-spherical o (GLS), conditional on the draws of py and Xy from equations (2.6)-
(2.7), differs from ones in Proposition 2.6 only for the posterior distributions of (X, c?):

Adata,o?,v,w ~ N (X,6%(X)), and (2.32)

. (2.33)

o2|data,w, A,y ~ IG (N+§+1’ (br — CA)Eg (ZR CA) + A DA)

where A = (CTEHC + D) '\CTE5 ug and 6*(\) = 0*(CTIZRZC + D)!

The proofs of the above propositions are reported in Appendix 2.A.1.6.

2.3.1.4 Selection vs. Aggregation

The posterior probabilities of models and factor obtained above with spike-and-slab priors,
can be used not only for model selection but also efficient aggregation using all possible
specification.

If we are interested in some quantity A that is well-defined for every model m =1, ...,m
(e.g., price of risk, risk premia, and maximum Sharpe ratio), from the Bayes theorem we

have

E [A]|data] = Z E [Aldata, model = m] Pr (model = m|data) , (2.34)
m=0

where E [A]data, model = m] = limy 0 + > 12, A(6"™) and {Hl(m)}lL X denote L draws from
the posterior distribution of the parameters of model m. That is, the BMA expectation of
A, conditional on only the data is simply the weighted average of the expectation in every
model, with weights equal to the models’ posterior probabilities (see, e.g., Raftery, Madigan,
and Hoeting (1997), and Hoeting, Madigan, Raftery, and Volinsky (1999)).

The BMA efficiently aggregates information about A over the space of all models, rather
than conditioning on a particular model. At the same time, if a dominant model exists —

hence it has posterior probability approaching one — the BMA will use that model alone.
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For each model « that one could construct with the universe of factors, we have the cor-
responding SDF: M., = 1—(fy: — E[f%t])T A,. Therefore, one can construct a BMA of the
SDF using the model posterior probabilities derived in the previous sections. Note that these
probabilities are based upon the ability of the factors and models to explain the cross-section
of asset return; that is, they explicitly target the key property of a valid SDF. Aggregation is
particularly appealing when multiple candidate factors load on the same underlying sources
of risk (plus factor-specific noise). Crucially, BMA creates a weighted average that endoge-
nously maximizes the SDF signal-to-noise ratio for cross-sectional pricing.

The BMA is the optimal aggregation procedure for a very wide spectrum of optimality
criteria, and, in particular, it is optimal under the quadratic loss function and is “optimal on
average”, that is, no alternative estimator can beat the BMA for all values of the true un-
known parameters (see, e.g., Raftery and Zheng (2003), and Schervish (1995)). Furthermore,
the BMA predictive distribution minimizes the Kullback-Leibler information divergence rel-
ative to the true unknown data generating process. Hence, it delivers the most likely SDF
given the data, and the estimated density is as close as possible to the true unknown one,
even if all the models considered are misspecified.

A powerful feature of the BMA method is that equation (2.34) can be evaluated by
generating a Markov Chain over the space of possible models. This is exactly what the
continuous spike-and-slab method allows us to do: We sample models in the unrestricted
space of 2.25 quadrillion specifications, computing all the desired quantities of interest for
each specification sampled, and then aggregate the results. The Markov Chain endogenously
over-samples the more likely specifications and under-samples the ones that are less likely
to have generated the observed data. The Markov Chain can then be stopped when the
posterior means of interest have converged according to the standard tests. We use as a
convergence criterion the Separate Partial Mean test (see, e.g., Geweke (2005)) for each
factor specific parameter (i.e., posterior probability and price of risk).

Recent literature has usually pursued either selection (see, e.g., Feng, Giglio, and Xiu
(2020)) or aggregation (see, e.g., Kozak, Nagel, and Santosh (2020)) of pricing factors. Our
approach, instead, combines both. The BMA-SDF includes both factors that are clear drivers
of asset returns, that is, factors with posterior probability of inclusion (Pr[y; = 1|datal) ap-
proaching 1, and also an optimal combination of factors that are, given the data, individually

less salient.
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2.4 Simulation

We build a simple setting for a linear factor model that includes both strong and weak factors
and allows for potential model misspecification.

The cross-section of asset returns mimics the empirical properties of 25 Fama-French
portfolios sorted by size and value. We generate both factors and test asset returns from
normal distributions, assuming that HML is the only useful factor. A misspecified model also
includes pricing errors from the GMM-OLS estimation, which makes the vector of simulated
expected returns equal to their sample mean estimates of 25 Fama-French portfolios. Finally,
a useless factor is simulated from an independent normal distribution with mean zero and

standard deviation 1%. In summary,

iid iid AR 2R Chmi
ft,useless ~ N( 1% 7 ~ ~9 ) and
t,hml f hml hml O hml

hy 6’ /): umrL, if the model is correct, and
KR =
R, if the model is misspecified,

where factor loadings, risk prices, and variance-covariance matrix of returns and factors are
equal to their sample estimates from the time series and cross-sectional regressions of the
GMM-OLS procedure, applied to 25 size-and-value portfolios and HML as a factor. All the
model parameters are estimated on monthly data from July 1963 to December 2017.

To illustrate the properties of the frequentist and Bayesian approaches, we consider three
estimation setups: (a) the model includes only a strong factor (HML), (b) the model includes
only a useless factor as a stylized example for a weak factor, and (c¢) the model includes both
strong and useless factors. Fach setting can be correctly or incorrectly specified, with the
following sample sizes: T = 100, 200, 600, 1,000, and 20,000. We compare the performance
of the OLS/GLS standard frequentist and Bayesian SDF estimators (GMM and B-SDF,
respectively) with the focus on risk prices recovery, testing, and identification of strong and

useless factors for model comparison.

2.4.1 B-SDF Estimation of Risk Prices

In this section we focus on the most realistic (and challenging) model setup, which includes
both useless and strong factors and allows for model misspecification. We found similar
performance of the B-SDF approach in a wide range of alternative simulation settings (e.g.,

considering correctly specified models and cross-sections of different dimensions).?”

2"These additional results are reported in Appendix 2.A.3.
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Table 2.1 compares the performance of frequentist and Bayesian estimators of the price
of risk and reports their empirical test size and confidence intervals for cross-sectional R?. In
the case of the Bayesian estimation we report results for both the flat and normal priors for
the price of risk (the latter, in a single stand-alone model case, corresponds to the spike-and-
slab approach). Since the model is misspecified, true cross-sectional R* has the population
value of 43.87% (6.69%) for OLS (GLS)). In the case of the standard GMM approach, tests
are constructed using standard t-statistics, and in the case of the B-SDF we rely on the
quantiles of the posterior distribution to form the credible confidence intervals. The last two
columns also report the quantiles of the posterior distribution of the R? mode across the
simulations, corresponding to the peak of the cross-sectional likelihood.

As expected, in the conventional frequentist estimation, the useless factor is often found
to be a significant predictor of the asset returns: Its OLS (GLS) t-statistic would be above
a b%-critical value in more than 60% (87%) of the simulations in the asymptotic case of
T = 20,000. On the contrary, the Bayesian confidence intervals detect the useless factor and
reject the null of zero price of risk attached to the useless factor with frequency asymptotically
approaching the size of the tests independently from the prior.

The presence of useless factors can also bias parameter estimates for the strong ones and
often leads to their crowding out from the model. Panel A in Table 2.1 serves as a good
illustration of this possibility, with the GMM price of risk estimates for the strong factor
clearly biased due to the weak identification problem. In this case B-SDF provides reliable,
albeit conservative in the case of the flat prior, confidence bounds for model parameters
effectively restore statistical inference. Note that the empirical size of the B-SDF (normal
prior) credible confidence intervals is very close to the nominal one even for relatively small
sample sizes.

Why does the Bayesian approach work while the frequentist one fails? The argument is
probably best illustrated by Figure 2.1, which plots posterior distributions of B-SDF A for
both strong and useless factors from one of the simulations, along with their pseudo-true
values of the price of risk (defined as 0 for the useless factor).

In this particular simulation, GMM estimates of A eess imply significant price of risk
for both OLS and GLS versions of the weight matrix, with traditional hypothesis testing
rejecting the null of Ayseess = 0, even at 1% significance level. Instead, the B-SDF posteriors
(blue lines in Figure 2.1) of the useless factor price of risk are diffuse and centered around 0.
Intuitively, the main driving force behind it is the fact that in B-SDF, C' (the covariance of
factors with returns) is updated continuously: When C is close to zero, the posterior draws
of C will be randomly positive or negative, which implies that the conditional expectation

of A in equation 2.11 will also switch sign from draw to draw. As a result, the posterior
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Table 2.1: Price of risk tests in a misspecified model with useless and strong factors

)\n )‘strong )\useless R(Qld]
T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS
GMM-Wg, 100 0.083 0.033 0.007 0.065 0.03 0.005 0.082 0.029 0.004 -4.35% 70.21%

200  0.084 0.039 0.006 0.058 0.025 0.003 0.119 0.047 0.006 -2.38% 69.17%
600  0.075 0.034 0.009 0.074 0.032 0.005 0.255 0.140 0.024 8.42% 67.27%
1000 0.078 0.03 0.004 0.070 0.031 0.001 0.311 0.181 0.048 16.85% 65.40%
20000 0.066 0.019 0.001 0.052 0.022 0.001 0.752  0.585 0.288 36.92% 58.64%

B-SDF, flat prior 100 0.037 0.015 0.001 0.032 0.007 0.001 0.003 0.001 0.000 16.62% 49.24%
200 0.054 0.021 0.002 0.036 0.013 0.001 0.006 0.001 0.000 13.54% 54.05%

600  0.053 0.027 0.005 0.047 0.015 0.002 0.019 0.006 0.001 14.72% 58.72%

1000 0.059 0.027 0.004 0.050 0.018 0.000 0.040 0.013 0.002 19.57% 58.85%

20000 0.015 0.005 0.000 0.010 0.003 0.000 0.089 0.043 0.009 39.19% 52.86%

B-SDF, normal prior 100  0.062 0.029 0.005 0.047 0.019 0.002 0.003 0.001 0.000 7A47T%  43.43%
200 0.084 0.04 0.008 0.067 0.031 0.005 0.006 0.002 0.000 3.66% 48.19%

600  0.087 0.048 0.018 0.093 0.044 0.010 0.019 0.006 0.001 4.87™% 54.33%

1000 0.094 0.052 0.011 0.106 0.051 0.010 0.040 0.013 0.002 9.64% 54.13%

20000 0.100 0.050 0.011 0.102 0.052 0.009 0.088 0.043 0.009 34.47% 46.84%

Panel B: GLS

GMM-Wy;, 100  0.095 0.048 0.007 0.076  0.035 0.004 0.146  0.070 0.012 -7.66%  20.08%
200 0.104 0.051 0.008 0.086 0.045 0.007 0.235 0.142 0.031 -6.97% 19.19%

600  0.090 0.045 0.009 0.105 0.047 0.008 0433 0.326 0.163 -4.81%  20.93%

1000 0.096 0.044 0.010 0.106 0.054 0.008 0.535 0.444 0.273 -3.38% 19.52%

20000 0.084 0.034 0.006 0.091 0.037 0.009 0.889 0.865 0.807 1.42%  19.32%

B-SDF, flat prior 100 0.114 0.061 0.011 0.046 0.020 0.001 0.029 0.009 0.000 -1.99%  9.64%
200 0.094 0.050 0.012 0.056 0.023 0.003 0.034 0.012 0.001 -3.04% 10.27%

600  0.090 0.045 0.008 0.066 0.028 0.004 0.068 0.029 0.004 -2.31%  12.68%

1000 0.080 0.036 0.007 0.071 0.026 0.002 0.075 0.035 0.007 -1.10%  12.98%

20000 0.017 0.002 0.000 0.013 0.004 0.002 0.105 0.050 0.011 3.43% 12.65%

B-SDF, normal prior 100  0.133 0.070 0.014 0.054 0.023 0.002 0.029 0.008 0.000 -3.50%  7.72%
200 0.111 0.057 0.018 0.075 0.033 0.006 0.034 0.012 0.001 -5.08%  7.24%

600  0.105 0.061 0.013 0.093 0.047 0.008 0.068 0.029 0.004 -5.30%  7.85%

1000 0.108 0.055 0.014 0.099 0.049 0.010 0.075 0.035 0.007 -4.42%  7.86%

20000 0.090 0.046 0.010 0.113 0.057 0.009 0.105 0.050 0.011 0.62%  4.10%

The table shows the frequency of rejecting the null hypothesis Hy : A\; = A for pseudo-true values of \.
and Agtrongs Miseress = 0 in a misspecified model with an intercept, a strong and a useless factor. The true

value of the cross-sectional RZ,; is 43.87% (6.69%) for the OLS (GLS) estimation. B-SDF estimates credible
intervals of risk prices under (1) a flat prior or (2) a normal prior b; ~ N (0, agwﬁ;r p;T%), where d is chosen

to be 0.5, while 1 is equal to 5. The normal prior corresponds to a (annualized) prior SR of the factor model
equal to 1.239, 1.305, 1.386, 1.413, and 1.497 for T' € {100, 200, 600, 1, 000, and 20, 000}.

distribution of A\, seess is centered around 0, and so is its confidence interval. The same logic
applies to both OLS and GLS B-SDF formulations. Note that the Bayesian prior does not
have any significant impact on the price of risk estimation of strong factors: In the case of
well-identified sources of risk (Figure 2.1, panels (b) and (d)), the Bayesian and frequentist
approach give very similar results.

Our setting also allows us to perform formal hypothesis testing via posterior probabilities
and Bayes factors, following Corollary 2.2, even as T" — oo, using the spike-and-slab prior
of Section 2.3.1.2. We report corresponding simulation results for the Bayesian p-value

in Appendix 2.A.3.2. Figure 2.A.1 shows that useless factors are easily detected (their
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Figure 2.1: Distribution of the price of risk estimates.

Posterior distribution of the price of risk (blue dashed line) from B-SDF estimation of a misspecified one-
factor model based on a single simulation with 7" = 1000 and asymptotic distribution of the frequentist GMM
estimate (red solid line). The dotted line corresponds to the pseudo-true value of the parameter (defined
to be 0 for a useless factor). Panels (a) and (c) correspond to the estimation of a model including a single
useless factor. Panels (b) and (d) correspond to the case of including a single strong, well-identified factor.

p—values, as expected, are sharply concentrated around the prior inclusion probability of
50% for any sample size), while true sources of risk are successfully selected with probability

fast approaching 1.

2.4.1.1 Evaluating Cross-Sectional Fit

Weak identification notoriously affects not only parameter estimates but also conventional
measures of fit, such as cross-sectional R? (Kleibergen and Zhan (2015)). We now show that
the B-SDF approach restores not only inference on the price of risk but also the validity of
the measures of cross-sectional fit.

Figure 2.2 shows the distribution of cross-sectional R? across a large number of simu-

lations for the asymptotic case of T" = 20,000 and a misspecified process for returns. For
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Figure 2.2: Cross-sectional distribution of OLS Ridj in a model with a useless factor.

Empirical distribution of cross-sectional R? achieved by a misspecified model with a useless factor across
2,000 simulations of sample size T' = 20,000. Blue dashed lines correspond to the distribution of the
posterior mode for Rfl i while red solid lines depict the pointwise sample distribution of R? ,. evaluated at

adj
the frequentist GMM estimates. The grey dotted line stands for the true value of Rgdj.

brevity, we focus on the most illustrative case of a single useless factor in the model. In
this case frequentist estimation yields an extremely spreadout distribution of R? across sim-
ulations, which makes the researcher likely to conclude that the useless factor actually has
significant explanatory power in the cross-section of returns.?® This unfortunate property of
the frequentist approach is not shared by our hierarchical Bayesian approach: The mode of
the posterior distribution is tightly concentrated (across simulations) in the proximity of the
true R? value.

However, the pointwise distribution of cross-sectional R? across the simulations is only
part of the story, as it does not reveal the in-sample estimation uncertainty and whether the
confidence intervals are credible in reflecting it. While B-SDF incorporates this uncertainty
directly into the shape of its posterior distribution, one needs to rely on bootstrap-like
algorithms to build a similar analogue in the frequentist case. As a frequentist benchmark,
we use the approach of Lewellen, Nagel, and Shanken (2010) to construct the confidence
interval.

Figure 2.3 presents the posterior distribution of cross-sectional R? for a model that con-
tains a useless factor and contrasts it with the frequentist values and their confidence inter-
vals. The true adjusted R? is marginally negative, yet not only are its frequentist estimates
economically large (29% and 19% for the OLS and GLS estimation types, respectively), but
also the standard approach of Lewellen, Nagel, and Shanken (2010) yields extremely wide

28Gospodinov, Kan, and Robotti (2019) show examples of perfect fit obtainable with artificially generated
useless factors and a family of one-step estimators.
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Figure 2.3: The estimation uncertainty of cross-sectional R?.

Posterior densities of cross-sectional Ridj in one representative simulation with centered 90% confidence

interval (shaded area). The blue dashed line denotes the true R? qj- The red dashed-dotted line depicts FM

R?,; estimate with 90% Lewellen, Nagel, and Shanken (2010) confidence intervals (red dotted lines).

a

confidence intervals. Interestingly, they include a level of fit up to 100%, but not the true
value. In contrast, while there is still considerable estimation uncertainty, the posterior dis-
tribution of the adjusted R? peaks in the proximity of 0 and is concentrated on much lower
values. As shown in the last two columns of Table 2.1, this is a general property of the

B-SDF estimation across simulation designs, sample sizes, and types of prior.

The B-SDF estimator performed well in a wide range of additional simulations that we
have conducted. In particular, in Section 2.A.3.1 of the Appendix we show that the B-SDF-
based inference stays reliable even in the presence of what is typically considered a large
cross-section (100 portfolios). This is reassuring, as it implies that our estimator does not
require any specific adjustments for applications with either small time-series dimension or

a large cross-sectional one (unlike popular frequentist alternatives).

2.4.2 Selection via Bayes Factors

How well do flat and spike-and-slab priors work empirically in selecting relevant and detecting
useless factors in the cross-section of asset returns? We revisit the theoretical results from
Section 2.3 using the same simulation design therein.

We consider a misspecified model with both strong and useless factors and compute Bayes
factors, corresponding to each of the potential sources of risk. Table 2.2 reports the empirical
frequency of variable retention in the model across 2,000 simulations of different sample sizes
(T = 200, 600, and 1,000). We first report the probability of retaining a factor under a flat

prior, which is standard in the literature. Second, we use the continuous spike-and-slab prior
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Table 2.2: The probability of retaining risk factors using Bayes factors

T 55% 57% 59% 61% 63% 65% 55%  57% 59% 61% 63% 65%
Panel A: Flat prior

200 forong: 0.636  0.602 0.570 0.538 0.509 0.470 fuseiess: 0.980 0.950 0.856 0.724 0.581 0.437

600 0.821 0.802 0.784 0.764 0.733 0.710 0.996 0.983 0.970 0.932 0.878 0.791

1,000 0.880 0.850 0.840 0.840 0.800 0.800 1.000 1.000 0.990 0.980 0.940 0.910

Panel B: Spike-and-Slab, prior of \/IE7r [SR} | 0] = 0.295
200 forong: 0.815 0.761 0.721 0.675 0.630 0.581  fyseess: 0.004 0.000 0.000 0.000 0.000 0.000

600 0.974 0.961 0.954 0.943 0.926 0.899 0.000  0.000 0.000 0.000 0.000 0.000
1,000 0.980 0.970 0.970 0.960 0.960 0.940 0.000  0.000 0.000 0.000 0.000 0.000

Panel C: Spike-and-Slab, prior of \/EW[SRQf | 02] = 0.807
200 farong: 0.527 0.489 0.449 0.412 0.381 0.349  fusetess: 0.041 0.007 0.004 0.000 0.000 0.000

600 0.859 0.832 0.811 0.774 0.734 0.690 0.001  0.000 0.000 0.000 0.000 0.000
1,000 0.910 0.910 0.870 0.850 0.830 0.820 0.000 0.000 0.000 0.000 0.000 0.000

Frequency of retaining risk factors using BF for different samples size (T=200, 600, and 1,000) across 2,000
simulations of a misspecified model with strong and useless factors. A factor is retained if its posterior
probability, Pr(y; = 1|data), is greater than a given threshold: 55%, 57%, 59%, 61%, 63%, and 65%.
Returns and factors are standardized. Panel A reports results for the flat prior. Panels B and C use the
spike-and-slab approach of Section 2.3.1.3 with demeaned correlations, » = 0.001 and ¢ = 1 or 10, mapping

into the corresponding monthly Sharpe ratios, ,/E,[S R?e | 02], listed in the table. The prior for each factor

inclusion in Panels B and C is a Beta(1,1), yielding a prior expectation for factor inclusion of 50%.

for the price of risk and compute the marginal probability of each factor as the posterior
mean of ;. The decision rule is based on a range of critical values, 55%-65%, such that
when the posterior factor probability (Pr[y; = 1|data]) is above a particular threshold, we
retain the factor.

The difference generated by the two priors is drastic in the presence of useless factors. As
discussed in Section 2.3.1.1, under a flat prior for the price of risk, the posterior probability
of including a useless factor in the model converges to 1 asymptotically. Table 2.2 makes it
clear that the same holds even for a very short sample, making the overall process of model
selection completely invalid. In turn, factor selection via spike-and-slab prior approach of
Section 2.3.1.3 is reliable in both retaining strong factors and excluding useless ones (even
with a very small sample size). As Panels B and C indicate, our results also remain robust
to different prior values for the factor Sharpe ratio.

Overall, we find the behavior of the spike-and-slab prior very encouraging for variable
and model selection: It successfully eliminates the impact of the useless factors from the

model and identifies the true sources of risk.

2.5 Empirical Analysis

In this section we apply our hierarchical Bayesian method to a large set of factors proposed
in the previous literature. First, we consider 51 tradable and non-tradable factors, yielding

more than two quadrillion possible models, and employ our spike-and-slab priors to compute
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factors’ posterior probabilities and implied prices of risk (Section 2.5.1). Second, based
on the results of this estimation, in Section 2.5.2 we construct an SDF via Bayesian Model
Averaging and show its superior asset pricing properties. Following Martin and Nagel (2021),
we consider not only in-sample but also out-of-sample performance (both in the time-series
and cross-sectional dimension) and compare the BMA-SDF with both notable reduced-form
models and the shrinkage-based approach to factor aggregation (Kozak, Nagel, and Santosh
(2020)). Finally, in Sections 2.5.3 and 2.5.4 we study whether one can achieve an accurate
representation of the SDF with low-dimensional (observable) factor models, and show that
such conjecture is not supported by the data. Strikingly, our results indicate that there is

scope for both selection and aggregation in linear factor models.

2.5.1 Sampling Two Quadrillion Models

We now turn our attention to a large cross-section of candidate asset pricing factors. In
particular, we focus on 51 (both tradable and non-tradable) monthly factors available from
October 1973 to December 2016 (i.e. 7'~ 600). Factors are described in Table 2.A.1 in the
Appendix, with additional details available in Table OA13 of the Online Appendix.

As test assets we consider a cross-section of 60 asset returns that are meant to capture
well-documented cross-sectional anomalies. These include all the (34) tradable (long-short)
factors in Table 2.A.1 and additional 26 long-short portfolios based on the univariate sorting
of the characteristics listed in Table 2.A.2 of Appendix 2.A.2. The inclusion of the tradable
factors among the test assets and the usage of the non-spherical pricing error formulation
(i.e., GLS) also imposes (asymptotically) the restriction of factors pricing themselves.?

Since we do not restrict the maximum number of factors to include, all the possible
combinations of factors give us a total of 2°! possible specifications, that is 2.25 quadrillion
models. We use the continuous spike-and-slab approach of Section 2.3.1.3 with non-spherical
errors, since it easily handles a very large number of possible models while remaining valid
in the presence of the most common identification failures. We report both posterior prob-
abilities (given the data) of each factor (i.e., E[y;|data], Vj) as well as the posterior means
of the factors’ price of risk (i.e., E[);|data], Vj) computed as the Bayesian Model Average
(BMA) across the universe of models. We use the formulation of the penalty term ; in
equation (2.23) in order to also handle identification failures of factors’ price of risk caused
by level factors (see Remark 2.5).3

29Note that we could also have enforced this pricing restriction in finite sample using an ad hoc prior for
these factors — which is analogous to estimating the model via the GLS version of the beta representation of
expected returns, and then inverting the estimates to obtain the price of risk of the SDF formulation.

30In Appendix 2.A.4 we report results based on the formulation in equation (2.22)). The findings therein
are very similar to the ones discussed below. Table 2.A.15 reports the values of the squared correlations,
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Figure 2.4: Posterior factor probabilities.

Posterior probabilities of factors, E [y;|data], computed using the continuous spike-and-slab approach of
Section 2.3.1.3 and 51 factors described in Table 2.A.1 of the Appendix. Sample: 1973:10-2016:12. Test
assets: 60 anomaly portfolios. Prior distribution for the j-th factor inclusion is a Beta(1l,1), yielding a 0.5

prior expectation for 7;. Posterior probabilities for different values of the prior Sharpe ratio, /E.[S Rfc | o2,

annualized.

The posterior evaluation is performed and reported over a wide range for the parameter
¥ (in equation (2.23)) that regulates the degree of shrinkage of potentially useless factors.
This parameter controls the prior belief about the Sharpe ratio achievable with the pricing
factors. We tabulate the results in units of Sharpe ratio prior defined as /EL[SR3 | 02,
since this is a natural metric of beliefs. The lower value that we consider, a prior SR of 1,
generates a strong shrinkage (small ¢)), while the highest value reported, a prior SR of 3.5,
makes the shrinkage virtually irrelevant. Since our prior gives non-zero probability to any
SR value, these are not hard constraints.

The prior probability for each factor inclusion is drawn from a Beta(1,1) (i.e., a uniform
on [0, 1]), yielding a prior expectation for ; equal to 50%. That is, a priori we have maximum

uncertainty about whether a factor should be included or not.?!

and their cross-sectionally demeaned version, of factors and test assets.

31'We obtain virtually identical results using a Beta(2,2), which still implies a prior probability of factor
inclusion of 50% but lower probabilities for very dense and very sparse models. Furthermore, using a prior in
favor of more sparse factor models (a Beta(1,9)), the empirical findings are very similar to the ones reported.
These additional results are reported in Section 2.A.4 of the Appendix.
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Figure 2.4 plots the posterior probabilities of the 51 factors as a function of the maximum
SR in the 95% prior support. The corresponding values are reported in Table 2.3.

First, there is particularly strong evidence for including the BEH_PEAD factor of Daniel,
Hirshleifer, and Sun (2020), or (behavioral) post-earnings announcement drift anomaly, as
the source of priced risk in the SDF. This factor is meant to capture investors’ limited
attention. The posterior probability of this factor being part of the SDF is over 70% for
most prior values. This might not be too surprising, given that many anomaly portfolios
seem to be associated with short-term market inefficiencies.

Second, the excess return on the market (MKT) appears as a likely source of priced risk
posterior probability in excess of 60% across prior specifications. This is both surprising
and reassuring. Surprising, since the market return is rarely found to be significant for
cross-sectional asset pricing. It is reassuring because Giglio and Xiu (2021) show that once
inference is corrected for potential misspecification, the market factor appears to be priced.
In our setting, estimation across all the universe of possible models is meant exactly to
address the misspecification problem, and it seems to do so successfully.

Third, CMA* factor of Daniel, Mota, Rottke, and Santos (2020) shows a non-trivial
increase in the posterior probability of being part of the SDF. This is the investment factor
of Fama and French (2015) without its unpriced component.

Fourth, there are three more factors (RMW*, STRev, and RMW*, described in Table
2.A.1) for which the posterior probability estimate provide some (albeit not strong) support.

Fifth, there is a substantial set of factors for which the posterior probability stays roughly
equal to the prior one. That is, these factors are likely to be weakly identified at best. Finally,
there is a large set of factors that is unlikely to be part of the SDF pricing our data (e.g.,
long-short portfolios sorted by the Ohlson O-score, long-term reversal, and asset growth).

Interestingly, the results are not very sensitive to the choice of prior maximum Sharpe
ratio unless there is almost no shrinkage, that is, there is no protection against weakly
identified factors. In this latter case, weakly identified factors seem to drive out the statistical
support for likely components of the true SDF, which is consistent with the findings of
Gospodinov, Kan, and Robotti (2014) for the frequentist estimation of linear factor models.

In addition to the posterior probabilities of the factors, Table 2.3 reports the posterior
means of the price of risk computed as Bayesian Model Average (BMA), that is, the weighted
average of the posterior means in each possible factor model specification, with weights equal
to the posterior probability of each specification being the true data-generating process (see,
e.g., Roberts (1965), Geweke (1999), and Madigan and Raftery (1994)).

Several observations are in order. First, the price risk estimates for factors that are more

likely to be part of the SDF (top three to six factors), the estimates are relatively stable

115



Table 2.3: Posterior factor probabilities, E [v;|data], and risk prices: 2.25 quadrillion models

Factor inclusion prob., E [v;|data] Price of risk, E [\;|data]
Total prior SR Total prior SR

Factors: 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5

BEH_PEAD 0.555 0.618 0.704 0.779 0.853 0.811 0.018 0.043 0.085 0.146 0.231 0.278
MKT 0.505 0.539 0.578 0.613 0.630 0.508 0.017 0.040 0.073 0.114 0.170 0.186
CMA* 0.510 0.529 0.544 0.571 0.597 0.488 0.011 0.023 0.041 0.067 0.106 0.117
STRev 0.496 0.511 0.535 0.555 0.572 0.428 0.007 0.018 0.036 0.060 0.093 0.090
RMW* 0.499 0.502 0.522 0.546 0.569 0.417 0.009 0.020 0.038 0.065 0.105 0.099
BW_ISENT 0.502 0.509 0.512 0.520 0.538 0.568 0.002 0.005 0.009 0.016 0.035 0.122
ROE 0.513 0.522 0.516 0.503 0.467 0.301 0.021  0.039 0.056 0.075 0.093 0.077
DIV 0.503 0.504 0.502 0.503 0.509 0.548 0.000 0.001 0.002 0.004 0.009 0.042
DEFAULT 0.501 0.501 0.502 0.505 0.501 0.500 0.000 0.001 0.001 0.003 0.006 0.022
TERM 0.501 0.498 0.498 0.500 0.505 0.520 0.000 -0.001 -0.002 -0.004 -0.008 -0.037
HJTZ_ISENT 0.499 0.503 0.500 0.501 0.499 0.470 0.001  0.002 0.003 0.005 0.009 0.029
IPGrowth 0.501 0.501 0.500 0.496 0.498 0.494 0.000  0.000 -0.001 -0.002 -0.004 -0.014
PE 0.497 0.497 0.500 0.498 0.500 0.500 0.000 -0.001 -0.002 -0.003 -0.007 -0.029
FIN_.UNC 0.494 0.491 0.500 0.500 0.505 0.495 0.001  0.002 0.003 0.007 0.016 0.050
NONDUR 0.494 0.493 0.495 0.499 0.501 0.500 0.001 0.001 0.003 0.005 0.012 0.051
UNRATE 0.496 0.494 0.496 0.495 0.497 0.507 0.000 0.001 0.002 0.003 0.008 0.038
SERV 0.493 0.495 0.494 0.495 0.495 0.488 0.000  0.000 0.001 0.001 0.003 0.018
REAL_UNC 0.496 0.495 0.493 0.492 0.495 0.480 0.000 0.000 0.001 0.002 0.005 0.010
QMJ 0.492 0.484 0.493 0.496 0.506 0.360 0.016 0.030 0.050 0.081 0.132 0.128
MACRO_UNC 0.496 0.493 0.495 0.491 0.496 0.478 0.000 0.000 0.001 0.001 0.003 0.001
DeltaSLOPE 0.494 0.495 0.493 0.490 0.497 0.488 0.000 0.001 0.001 0.002 0.004 0.016
Oil 0.498 0.495 0.493 0.490 0.491 0.467 0.000 0.000 0.001 0.002 0.005 0.021
MKT* 0.502 0.502 0.500 0.490 0.462 0.358 0.007 0.015 0.024 0.034 0.043 0.057
LIQNT 0.492 0.493 0.493 0.491 0.481 0.408 0.000  0.001  0.000 -0.002 -0.010 -0.026
HML_DEVIL 0.471 0.463 0.466 0.490 0.543 0.403 0.008 0.017 0.036 0.073 0.152 0.163
BAB 0.513 0.516 0.496 0.474 0.419 0.284 0.015 0.027 0.037 0.046 0.052 0.049
SKEW 0.493 0.494 0.488 0.478 0.455 0.279 0.013  0.027 0.043 0.061 0.082 0.061
INTERM_CAP_RATIO 0.496 0.491 0.486 0.478 0.452 0.342 0.006 0.013 0.021 0.027 0.028 0.016
MGMT 0.498 0.494 0.479 0.469 0.427 0.264 0.020 0.032 0.044 0.061 0.077 0.062
HML* 0.503 0.497 0.485 0.469 0.410 0.248 0.010  0.020 0.031 0.041 0.045 0.033
PERF 0.489 0.489 0.478 0.466 0.436 0.272 0.012  0.022 0.034 0.047 0.065 0.053
NetOA 0.502 0.495 0.485 0.462 0.413 0.265 0.006 0.013 0.019 0.026 0.030 0.027
LIQ.-TR 0.494 0.490 0.481 0.466 0.415 0.262 0.003 0.007 0.012 0.018 0.023 0.019
ACCR 0.491 0.480 0.473 0.460 0.433 0.271 0.004 0.008 0.016 0.028 0.041 0.034
IA 0.503 0.486 0.466 0.432 0.379 0.224 0.018 0.028 0.037 0.044 0.051 0.041
INV_IN_ASS 0.495 0.489 0.464 0.431 0.365 0.205 0.009 0.015 0.021 0.025 0.026 0.018
UMD 0.486 0.475 0.456 0.424 0.386 0.254 0.007 0.010 0.011 0.011 0.015 0.023
SMB* 0.487 0.476 0.455 0.426 0.377 0.224 0.005 0.009 0.014 0.019 0.025 0.020
DISSTR 0.474 0.459 0.451 0.435 0.392 0.241 -0.002 -0.009 -0.020 -0.034 -0.047 -0.040
SMB 0.476 0.466 0.446 0.417 0.358 0.199 0.010  0.019 0.029 0.036 0.037 0.025
CMA 0.484 0.459 0.435 0.400 0.349 0.204 0.011  0.012 0.009 0.000 -0.015 -0.015
STOCK_ISS 0.488 0.466 0.437 0.404 0.330 0.182 0.011  0.017 0.021 0.024 0.021 0.015
RMW 0.471 0.455 0.432 0.403 0.363 0.221 0.005 0.005 0.002 -0.006 -0.023 -0.019
GR_PROF 0.475 0.454 0.434 0.406 0.352 0.198 0.001 0.002 0.004 0.006 0.007 0.001
BEH_FIN 0.480 0.459 0.437 0.396 0.338 0.191 0.014 0.018 0.020 0.018 0.012 0.012
HML 0.470 0.443 0.422 0.394 0372 0.232 0.005 0.001 -0.006 -0.019 -0.044 -0.042
ROA 0.472 0.457 0.432 0.400 0.333 0.186 0.009 0.013 0.015 0.014 0.009 0.003
COMP_ISSUE 0.477 0.457 0.425 0.384 0.319 0.174 0.006  0.007 0.007 0.005 0.002 0.004
A _Growth 0.474 0.452 0.421 0.378 0.312 0.168 0.007  0.008 0.006 0.002 -0.002 -0.003
LTRev 0.473 0.451 0.417 0.379 0.313 0.167 0.004 0.005 0.005 0.004 0.001 0.001
O_SCORE 0.472 0.450 0.417 0.378 0.311 0.168 -0.004 -0.006 -0.006 -0.005 -0.007 -0.005

Posterior probabilities of factors, E[y;|data], and posterior mean of factors’ risk prices, E[\;|data] ,are
computed using the continuous spike-and-slab approach of Section 2.3.1.3 and 51 factors yielding 2°! ~ 2.25
quadrillion models. The prior for each factor inclusion is a Beta(1,1), yielding a prior expectation for ~;
equal to 50%. The 51 factors considered are described in Table 2.A.1 of the Appendix. Test assets: 34
tradable factors plus 26 investment anomalies, sampled monthly, 1973:10 to 2016:12. Results are tabulated

for different values of the prior Sharpe ratio, |/Er[SR} | 02].
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for non-extreme values of the prior maximum SR. Second, for factors that are likely to be
at best weakly identified the estimated price of risk is very close to zero but becomes large
when the prior SR is very high, and therefore the estimation is no more robust to the weak
factors. This is to be expected given the frequentist results on this issue. Third, for factors
for which there is clear evidence that they should not be part of the SDF, the estimates of
the price of risk are stably around zero. Furthermore, for these factors they are very close
to zero even conditional on the factors being included in the SDF. This quantity can be
easily computed by dividing the posterior mean of the price of risk by the factor posterior
probability — both reported in Table 2.3.

As a reality check on the results in Table 2.3, in Table 2.5 of Section 2.5.3 below, we
expand our set of candidate priced factors to include artificially generated weak factors and
show that our procedure successfully singles them out. Furthermore, in the above estimation
we have allowed for a common cross-sectional intercept due to allowing for an average level
of mispricing. In Tables 2.A.17-2.A.18 of the Appendix we repeat the estimation imposing
a zero common intercept and obtain virtually identical results.3?

Finally, since we sample the space of 2 quadrillion models instead of estimating them
one-by-one, one might wonder whether the estimation is accurate. We address this formally
with the standard Separated Partial Means test (see, e.g., Geweke (2005)) for both posterior
probabilities and prices of risk, which clearly indicates fast and accurate convergence of the
Markov Chain-based estimates.??

A natural question is whether the posterior probabilities and prices of risk estimates,

summarized in Table 2.3, deliver a good representation of the true latent SDF.

2.5.2 Cross-Sectional Performance

We now focus on the cross-sectional asset pricing performance of our BMA estimates of the
Stochastic Discount Factor (BMA-SDF), both in- and out-of-sample, and compare it with
traditional popular reduced-form factor models. Table 2.4 reports root mean squared pricing
error (RMSE), mean absolute pricing errors (MAPE), and OLS and GLS cross-sectional R?

32The fact that imposing the zero intercept restriction leaves the results virtually unchanged is not too
surprising since, across all our estimates, the posterior mean of the common intercept is about 0.02-0.03
in monthly SR unit. Hence, since the average monthly variance of the baseline test assets is about 4.5%,
the posterior mean of the common intercept is about 0.09%-0.135% in monthly returns units i.e. it is quite
small.

33To implement the test we drop the first 50,000 draws and split our Markov Chain in five subsets. We
compute the average frequency of rejection of posterior probability of factor inclusion and price of risk being
the same for all the subsets for different values of the test size (i.e., 95%, 90%, and 80%). The corresponding
empirical frequencies of rejection are 6.0%, 9.9%, and 20.2% for the posterior probability of factor inclusion
and 4.1%, 9.1%, and 20.4% for the price of risk. In addition, we have estimated the model, increasing the
number of draws by a factor of 10, and found virtually identical parameter estimates.
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for a variety of models and test assets. For a benchmark comparison, we consider the CAPM,
Fama-French five-factor model, Carhart four-factor model, and the q4 model of Hou, Xue,
and Zhang (2015). Finally, we also present results for the 51 factor model that includes all
the candidate risk factors considered in our analysis, as well as the shrinkage-based approach
of Kozak, Nagel, and Santosh (2020) (KNS) with the optimal shrinkage level and number
of factors chosen by three-fold cross-validation.® Results for the Bayesian (GLS) SDFs are
reported for a wide range of SR priors. All the frequentist SDFs are estimated via a GLS
version of the GMM (i.e., imposing the tradability restriction on the model-implied price of

risk, whenever factors are tradable).

Table 2.4: Cross-sectional asset pricing

R2

gls

Model RMSE MAPE R?

ols

Model RMSE MAPE R? R?

ols gls
Panel A: In-sample pricing, test assets: 60 anomalies

BMA-SDF: SR, =1 0.287  0.227  392% 24.2% 51 factors  0.041  0.022 98.1% 97.7%

SR,-=15 0253 0.197 49.8% 30.3% CAPM 0.418  0.338 -29.4% 16.8%

SRy =2 0.223  0.170  59.1% 37.4% FF5 0.301  0.223 24.5% 23.2%
SR,-=25 0193 0.148 682% 45.5% Carhart  0.317  0.244 21.5% 21.2%
SRy, =3 0.162  0.128 76.6% 54.7% q4 0.267  0.189 37.5% 28.1%

SR, =35 0.157 0.128 784% 58.8% KNSev, 0296 0.237 53.7% 19.6%
Panel B: Cross-sectional out-of-sample pricing, test assets: 25 size-value portfolios

BMA-SDF: SR, =1 0.108 0.082 42.1% 17.5% 51 factors  0.200 0.163 -98.5%  -1653%
SR, =15 0.094 0.070  55.7% 24.5% CAPM 0.145 0.112 -4.6% 5.2%

SRy, =2 0.085  0.063 64.5% 30.2% FF5 0.079  0.059 69.2% 28.0%
SR, =25 0.077 0.058 705% 34.9% Carhart  0.086  0.063 63.2% 27.1%
SRy =3 0.073  0.054 73.9% 38.4% q4 0.083  0.065 66.1% 28.2%

SR,-=35 0075 0.055 723% 36.8% KNSecv,  0.096  0.074 54.4% 28.0%

Panel C: Cross-sectional out-of-sample pricing, test assets: 49 industry portfolios
BMA-SDF: SR, =1 0.097  0.080 15.6% 11.8% 51 factors  0.420  0.310 -1474.3% -1694%
SR, =15 0.097 0.082 153% 12.8% CAPM 0.111  0.082 -10.6% 20.9%

SRy =2 0.097 0.082 15.7% 15.8% FF5 0.123  0.103 -35.8% 3.6%
SR,-=25 0.098 0.081 14.9% 185% Carhart  0.117  0.089 -22.1% 13.7%
SRy =3 0.100  0.083 10.9% 19.7% q4 0.134  0.105 -60.5%  -10.9%

SR, =35 0.100 0.083 11.5% 20.9% KNS¢y,  0.100  0.082 10.9% 14.0%

This table compares in-sample and cross-sectional out-of-sample asset pricing performance of the B-SDF
and notable frequentist factor models. We use GMM-GLS to estimate factor prices of risk for the CAPM,
FF5 model of Fama and French (2015), Carhart (1997) model, g4 model of Hou, Xue, and Zhang (2015),
and the model including all 51 factors. KNS stands for the SDF estimation of Kozak, Nagel, and Santosh
(2020), with tuning parameter and number of factors chosen by three-fold cross-validation. For the B-SDF,

we report results with risk prices under a range of prior ,/E,T[SR% | 02] € {1-3.5}. In the cross-sectional

OOS the models are first estimated using the baseline test assets of Panel A and then used to price (without
additional parameters estimation), the test assets listed in Panels B and C. All the data is standardized,
that is, pricing errors are in SR units. We show the annualized RMSE and MAPE. The out-of-sample
performance relies on the SDF estimates obtained from 60 anomaly portfolios as test assets and is then used
to price other cross-sectionally demeaned test assets without re-estimating the SDF.

34When applied to our sample of 60 portfolios, three-fold CV selects a model with 11 factors and the root
expected SR? of 1.2.

35We have also obtained virtually identical results using time-series regressions (with tradable factors)
instead of GMM, as well as other cross-sections not reported in Table 2.4. Results are available upon
request.

118



Panel A reports in-sample asset pricing statistics for the baseline set of assets used in
our estimation (60 anomaly portfolios).? It is striking that the Bayesian SDF tends to
outperform conventional models across a wide range of metrics, and this result is stable
across the whole set of SR priors. Furthermore, unlike the benchmark models, the BMA-
SDF delivers cross-sectional OLS and GLS R? measures that are consistent with each other
— without explicitly targeting any of them at the SDF estimation stage. The only model that
seems to perform better than the BMA-SDF is the one using 51 factors to price 60 assets
and is very likely to be overfitting the cross-section (as we show below). One might wonder
whether part of the Bayesian SDF success could also be due to overfitting. We address this
issue by analyzing its OOS performance, in both cross-sectional and time-series dimensions.

Panels B and C summarize the performance of SDF's estimated on a set of 60 anomaly
portfolios (]\Z) but then used to price a different cross-section — 25 portfolios sorted by size
and value (Panel B), and 49 industry portfolios (Panel C). Since we shrink away level factors
in the BMA-SDF, to put different models on equal footing we focus on cross-sectionally
demeaned pricing errors. Our findings make it clear that the superior performance of the
BMA-SDF observed in-sample is not due to overfitting. While the 51-factor model has a
disastrous cross-sectional OOS performance, this is not the case for the BMA-SDF. Consis-
tent with our in-sample results, the performance of the Bayesian SDF is stable across priors
and metrics. Furthermore, it is either on par with that of the best reduced-form benchmark
model (the FF5 model when focusing on size-value portfolios) or better. The BMA-SDF
pricing ability is particularly striking in the case of industry portfolios that have long been
considered a challenge for asset pricing and often advocated as an appropriate testing ground
for models (e.g., Lewellen, Nagel, and Shanken (2010), and Daniel and Titman (2012)).

Figure 2.5 further illustrates the performance of different SDF's estimated on the baseline
cross-section and then used to price the 49 industry portfolios. The BMA-SDF is the only
model that generates predicted Sharpe ratios close to the observed ones and has positive
(OLS and GLS) cross-sectional R?s. Note that while some of the models yield predictions
that have positive correlation with the actual return realizations, they are still characterized
by a substantially negative R? since we impose the theoretical pricing restriction of E[R;] =
—Cov(M;, Ry) (using the innocuous normalization E[M;] = 1).

We now turn to the time-series out-of-sample performance of the BMA-SDF.3" According

36The table reports the following measures: RMSE = \/%Zg\; o?, MAPE = + fil lovi|, R%, =
(a—%aTlN)T(a—%aTlN)

(Mr—wreIN)T (LR—FBRIN)’

aTZELla

37We follow the approach canonical in the literature of performing time series OOS via a split-sample
approach (see, e.g., Linnainmaa and Roberts (2018), Chen, Pelger, and Zhu (2019), Gu, Kelly, and Xiu
(2020)). Nevertheless, ideally, one might want to focus on the post publication sample of the factors. This
is unfortunately unfeasible in our empirical setting since a large share of the factors that we analyze have

and R2

1— 91351_
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Figure 2.5: Out-of-sample cross-sectional pricing of 49 industry portfolios.

For each model, the figure depicts the out-of-sample performance of the SDF', obtained by using 60 anomaly
portfolios as test assets, and applied to pricing 49 industry portfolios without re-estimation. All the data
are standardized; that is, pricing errors are in SR units. The 45-degree line corresponds to the theoretical
relationship of E[R:] = —Cov(M, Rt), where SDFs are normalized to have unit mean.

been only very recently documented.
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to Table 2.4, only the shrinkage-based approach of Kozak, Nagel, and Santosh (2020) comes
close to matching the performance of our Bayesian approach overall. Hence, we use it as
a benchmark model for the time-series out-of-sample performance. Figure 2.6 reports out-
of-sample model performance, based on the time-series difference between estimation and
prediction periods. Following Martin and Nagel (2021), we use half of the time-series sample
for the model estimation and SDF recovery and evaluate its cross-sectional pricing ability on
the other subsample. Thus, we consider out-of-sample performance of the model, going into
both future and past, without re-estimating any of the parameters. For the same value of
the prior SR, BMA-SDF tends to outperform the cross-validated estimates (C'V3) of KNS,
despite the fact that cross-validation was carried out on the full data sample. Furthermore,
for a wide range of prior SR, our Bayesian approach performs either as well as the ex-post
best combination of tuning parameters in KNS or better. This is particularly evident when

recent data is used as the evaluation subsample.

2.5.3 Model Uncertainty: Selection or Aggregation?

In the previous section we have shown that averaging across the space of possible models
yields an accurate representation of the SDF. A natural question is whether in the universe
of models there is a single best model.

For consistency, frequentist model selection demands the existence of a unique first-best
model that can be reliably distinguished from the alternatives. This is a key assumption
underlying reliable factor selection via t- and x2- tests, LASSO, and many other approaches.

In contrast, the existence of such a dominant model can be formally assessed within the
Bayesian paradigm. For instance, Giannone, Lenza, and Primiceri (2021b) study the sparsity
assumption in popular empirical economic applications (using, like us, a spike-and-slab prior
approach for model and variable selection). They find that the posterior distribution does
not typically concentrate on a single sparse model but rather supports a wide set of models
that often include a large number of predictors.

Our framework is ideally suited for evaluating the assumption of sparsity (in observable
factors) in cross-sectional asset pricing, since we can compute posterior model probabili-
ties for each possible specification generated by our 51 factors (i.e., about 2.25 quadrillion
models).

Figure 2.7 presents the model posterior probabilities of the 2,000 most likely specifications
(with a prior SR of 2). The first thing to notice is that even the most likely specification(s)
is not a clear winner within the set of all possible models — its posterior probability is only
about 0.011%. This is a remarkable improvement relative to the prior model probability

that is of the order of 10716, but it clearly does not represent a substantial resolution of
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Figure 2.6: Out-of-sample cross-sectional pricing (different time samples).

The figure depicts out-of-sample performance of the SDF (R2,, and R?,,), obtained by using both BMA and
Kozak, Nagel, and Santosh (2020) approaches using a time series subsample of 60 anomaly portfolios. We
use half of the time-series sample for the model estimation and SDF recovery and evaluate its cross-sectional
pricing ability on the other subsample. Results are reported for a range of SR prior, and in the case of KNS
(2020) for different number of PCs used, as well as the optimal combination of tuning parameters chosen by
a three-fold cross-validation applied to the estimation period.

model uncertainty. Furthermore, we have 10 specifications with basically the same posterior
probability, and the posterior model probability decays very slowly as we move down the list
of most likely models: Moving from the best model, it takes more than a thousand models
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Figure 2.7: Posterior model probabilities, prior SR = 2.

Posterior model probabilities of the 2,000 most likely models computed using the continuous spike-and-slab
of Section 2.3.1.3 and 51 factors. The horizontal axis uses a log scale. Sample: 1973:10-2016:12. Test assets:
34 tradable factors plus 26 investment anomalies, sampled monthly, 1973:10 to 2016:12.

to reach the relative odds of 2:1 (i.e., to reduce the posterior probability by 50%). That is,
to a first-order approximation, the frequentist likelihood ratio test of the best performing
model versus the 1000** one would yield a p-value of 30% at best (and a p-value of 15% after
2,000 models).

But how many of the factors proposed in the literature does it really take to price the
cross-section? Thanks to our Bayesian method, even this question can be easily answered.
In particular, by using our estimations of about 2.25 quadrillion models and their posterior
probabilities, we can compute the posterior distribution of the dimensionality of the “true”
model. That is, for any integer number between one and 51, we can compute the posterior
probability of the linear factor model being a function of that number of factors.

Figure 2.8a reports the posterior distributions of the model dimensionality for various
values of prior SR. These distributions are also summarized in Table 2.A.19 of Appendix
2.A 4.

For the most salient values of the prior SR (1-3), the posterior mean of the number of
factors in the true model is in the 23-25 range, and the 95% posterior credible intervals
are contained in the 16-32 factors range. That is, there is substantial evidence that the
SDF is dense in the space of observable factors: Given the factors at hand, a relative large
number of them is needed to provide an accurate representation of the “true” model. Since
most of the literature has focused on very low-dimensional linear factor models, this finding

suggests that most empirical results therein have been affected by a very large degree of
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Figure 2.8: Posterior densities of model dimensionality and its implied Sharpe ratio.

Left panel: posterior density of the true model having the number of factors listed on the horizontal axis.
Right panel: posterior density of the (annualized) Sharpe ratio implied by the linear factor model for various
values of SRyrior € [1, 3.5]. Sample: 1973:10-2016:12. Test assets: 34 tradable factors plus 26 investment
anomalies, sampled monthly, 1973:10 to 2016:12. The prior for each factor inclusion is a Beta(1,1), yielding
a prior expectation for 7; equal to 50%. The 51 factors considered are described in Table 2.A.1 of the
Appendix.

misspecification.

It is worth noticing that, as Figure 2.8a shows, for very large prior SR, that is, with
basically a flat prior for factors’ price of risk, the posterior dimensionality is reduced. This
is due to two phenomena we have already outlined. First, if some of the factors are useless
(and our analysis points in this direction), under a flat prior they tend to have a higher
posterior probability and drive out the true sources of priced risk. Second, a flat prior for
the price of risk can generate a “Bartlett Paradox” (see the discussion in Section 2.3.1.1).

Note that if the factors proposed in the literature were to capture different and uncor-
related sources of risk, one might worry that a dense model in the space of factors could
imply unrealistically high Sharpe ratios (see, e.g., the discussion in Kozak, Nagel, and San-
tosh (2020)). Since, given a model, the SDF-implied maximum Sharpe ratio is merely a
function of the factors’ price of risk and covariance matrix, our Bayesian method allows us
to construct the posterior distribution of the maximum Sharpe ratio for each of the 2.25
quadrillion models considered. Therefore, using the posterior probabilities of each possi-
ble model specification, we can actually construct the (BMA) posterior distribution of the
SDF-implied maximum Sharpe ratio (conditional on the data only).

Figure 2.8b (and Table 2.A.19b in Appendix 2.A.4) reports the posterior distribution
of the SDF-implied maximum Sharpe ratio (annualized) for several values of the prior SR.

Except when a very strong shrinkage (small prior SR) is imposed (hence, Sharpe ratios
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are shrunk) the posterior distributions of the Sharpe ratio are quite similar for all prior
values. Furthermore, despite the model being dense in the space of factors, the posterior
maximum Sharpe ratio does not appear to be unrealistically high: For example, for a prior
SR € [1.5, 3] its posterior mean is about 1.17-2.19, and the 95% posterior credible intervals
are in the 0.70-2.96 range.

Note that a model that is dense in the space of observable factors might be in principle
sparse in the space of latent factors, for example, principle components. We address this
issue by directly including principal components in the set of candidate factors. In particular,
we consider the first five principal components of our cross-section of test assets, followed by
a set of five “Risk Premia” principal components (RP-PC) of Lettau and Pelger (2020b). In
addition, to confirm that our method successfully handles weak identification, we add two
artificially generated useless factors (independent of returns and i.i.d. distributed). Table
2.5 reports our findings.

Panel A of Table 2.5 shows that the first five principal components do not seem to capture
priced risk: Their posterior probability is substantially lower than their prior probability,
and their estimated market price of risk is zero (despite them explaining 61% of the time-
series variation of returns). This is quite expected since standard principal components are
not designed to capture cross-sectional pricing information.

(Clearly, the artificially generated useless factors are successfully handled by the estimation
procedure: As expected, their posterior probability remains at the prior level (50%), and
their estimated price of risk is basically zero.

In Panel B we replace the canonical PCs with RP-PCs. We find strong support for two of
them (first and third) capturing priced risk, while the other three have posterior probability
below the prior value and prices of risk close to zero. Interestingly, even though some of the
RP-PCs seem to successfully aggregate pricing information from the cross-section of returns
(and factors, since the tradable ones are part of the test assets), they do not drive out
the relevance of the robust stand-alone factors we identified earlier: BEAH PEAD, CMA*,
RMW~, among others. Consequently, the underlying SDF would be best described by a
combination of both observable factors and (some) latent variables. Hence, the results in
Panel B highlight that, in the quest of describing the sources of priced risk, there is scope
for both selection and aggregation. This is confirmed by Figure 2.A.2 in Appendix 2.A 4,
which shows that the most likely SDF is dense in the combined space of observable factors

and principal components.
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Table 2.5: Observable factors versus Principal Components

Factor inclusion prob., E [y;|data] Price of risk, E [A;]|data]
Total prior SR Total prior SR
Factors: 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5

Panel A: Principal Components as Factors
BEH_PEAD 0.547 0.602 0.678 0.766 0.840 0.814 0.015 0.036 0.073 0.132 0.220 0.287

MKT 0.508 0.542 0.573 0.598 0.607 0.504 0.015 0.035 0.064 0.100 0.149 0.182
CMA~* 0.509 0.523 0.539 0.564 0.597 0.516 0.009 0.020 0.037 0.061 0.101 0.124
BW_ISENT 0.499 0.502 0.509 0.514 0.528 0.555 0.002 0.004 0.008 0.014 0.030 0.105
RMW* 0.500 0.499 0.514 0.537 0.568 0.450 0.007  0.017 0.032 0.057 0.097 0.107
STRev 0.495 0.503 0.522 0.546 0.555 0.435 0.006 0.016 0.030 0.052 0.083 0.089
Useless 1 0.499 0.499 0.501 0.498 0.498 0.497 0.000  0.000 0.000 0.000 0.001 0.006
Useless 11 0.496 0.495 0.495 0.494 0.498 0.500 0.000  0.000 0.001 0.001 0.002 0.010
PC5 0.489 0.490 0.488 0.482 0.459 0.336 0.000  0.000 0.000 0.000 0.000 0.000
PC4 0.497 0.487 0.480 0.471 0.451 0.322 0.000  0.000 0.000 0.000 0.000 0.000
PC3 0.483 0.477 0.467 0.449 0.420 0.280 0.000  0.000 0.000 0.000 0.000 0.000
PC1 0.478 0.467 0.457 0.437 0.399 0.248 0.000  0.000 0.000 0.000 -0.001 0.000
PC2 0.473 0.455 0.444 0.429 0.397 0.249 0.000  0.000 0.000 0.000 0.000 0.000
LTRev 0.477 0.464 0.437 0.402 0.347 0.204 0.003  0.005 0.004 0.002 -0.002 -0.003
COMP_SSUE 0.485 0.462 0.438 0.399 0.338 0.191 0.006  0.007 0.008 0.007 0.003 0.002
A_Growth 0.481 0.462 0.436 0.399 0.337 0.189 0.007 0.008 0.006 0.003 -0.002 -0.003

O_SCORE 0.473 0.450 0.425 0.385 0.323 0.186 -0.003 -0.005 -0.004 -0.002 -0.002 -0.003
Panel B: RP-Principal Components (Lettau and Pelger (2020b)) as Factors

RP-PC1 0.600 0.631 0.640 0.634 0.592 0.448 -0.016 -0.030 -0.043 -0.056 -0.066 -0.067
RP-PC3 0.548 0.597 0.645 0.661 0.651 0.529 -0.004 -0.009 -0.017 -0.024 -0.032 -0.035
BEH_PEAD 0.540 0.585 0.628 0.681 0.709 0.630 0.014 0.032 0.058 0.097 0.149 0.185
CMA* 0.510 0.523 0.542 0.571 0.616 0.531 0.009 0.020 0.037 0.062 0.104 0.129
RMW* 0.500 0.504 0.517 0.547 0.583 0.466 0.007 0.017 0.033 0.059 0.101 0.112
MKT 0.507 0.518 0.525 0.516 0.493 0.391 0.013 0.028 0.044 0.061 0.081 0.103
Useless 1 0.499 0.499 0.500 0.500 0.499 0.497 0.000  0.000 0.000 0.000 0.001 0.007
Useless 11 0.495 0.495 0.495 0.498 0.496 0.499 0.000  0.000 0.000 0.001 0.002 0.010
RP-PC5H 0.481 0.487 0.488 0.484 0.459 0.338 0.001  0.003 0.005 0.008 0.011 0.012
RP-PC4 0.494 0.487 0.479 0.459 0.433 0.303 0.002 0.003 0.004 0.005 0.005 0.005
RP-PC2 0.479 0.464 0.458 0.439 0.403 0.267 0.000 -0.001 -0.001 -0.001 -0.001 0.000

COMP_ISSUE 0.483 0.464 0.438 0.406 0.338 0.193 0.006  0.008 0.010 0.009 0.004 0.002

A_Growth 0.483 0.466 0.443 0.396 0.337 0.196 0.007  0.007 0.005 0.000 -0.005 -0.007
LTRev 0.483 0.461 0.438 0.404 0.358 0.222 0.003  0.003 0.000 -0.006 -0.014 -0.015
O_SCORE 0.472 0.456 0.426 0.38 0.331 0.189 -0.003 -0.002 0.001 0.005 0.005 0.001

Posterior probabilities of factors, E [y;|data], and posterior mean of factors’ risk prices, E[);|data], are
computed using the continuous spike-and-slab approach of Section 2.3.1.3 and 59 factors yielding 2°° models.
The factors included are the 51 factors described in Table 2.A.1 of the Appendix plus two artificial i.i.d.
useless factors, and five principal components. Panel A uses simple time-series principal components while
Panel B uses the RP-PCs of Lettau and Pelger (2020b). Test assets: 34 tradable factors plus 26 investment
anomalies, sampled monthly, 1973:10 to 2016:12. Results tabulated for different values of the prior Sharpe
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2.5.4 A Quest for Sparsity

The previous subsections suggest that only a small number of observable factors - BEH_PEAD,
MKT, CMA*, and, to a lesser extent, STRev, RMW* and BW_ISENT — are likely stand-
alone explanators of the cross-section of asset returns. A natural question is whether the
Bayesian factor posterior probabilities of Table 2.3 can help identify a low-dimensional bench-
mark model for pricing asset returns. We answer this question by comparing the performance
of a three-factor model with HML, MKT*, and SMB* as factors, to the one of several notable
factor models.

Table 2.6 reports the model posterior probabilities, that is, the probability of any of these
models being the true data-generating process, for the SDF's built with the most likely factors
and notable linear factor models. Posterior model probabilities (for all models) are computed
using the closed-form solutions for the Dirac spike-and-slab prior method of Section 2.3.1.2,
giving us very precise estimates.

Strikingly, for any value of SR,,, the best performing model is the one based on the
most likely factors: Just three most likely factors (see Panel A), BEH_ PEAD, MKT, and
CMA*, are enough to outperform the most widely used empirical SDFs. This outperformance
becomes even more pronounced when we consider the six most likely factors (see Panel B).
Note that this drastic difference in performance understates the true power of our Bayesian
approach to factor and model selection. Indeed, a subset of the most (individually) likely
factors does not necessarily create the most likely model. Luckily, our approach can also be
used to select the most likely model of any dimension. In particular, in Panel C we run the
horse race between the most likely five-factor model that emerges using the Dirac Spike-and-
Slab approach of Section 2.3.1.2. Clearly, for all the values of prior SR, the best five-factor
model outperforms not only all the notable models but also the combination of six overall
most likely factors (from Panel B). While different prior SR may lead to different most likely
low-dimensional models, the subset of selected factors is quite stable: All the specifications
include BEH_PEAD and CMA*, while RMW* and BAB are selected four times out of five,
and STRev is part of the most likely model three times out of five.

Our approach can also be used to formally evaluate the space of sparse factor models. In
particular, in Table 2.7 we consider the universe of all the possible models that include no
more than five factors, that is, 2.6 mln models. We evaluate all of those models individually,
computing each of their marginal likelihoods following the Dirac spike-and-slab approach of
Section 2.3.1.2 (instead of sampling models, as in Section 2.5.1). The table reports both
posterior probabilities of the factor inclusion and their posterior price of risk. For simplicity,
we consider the prior probability of a factor being included into the model being equal to

9.58% (since we have 51 factors total and each model with up to five factors is given equal
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Table 2.6: Posterior probabilities of notable models versus most likely factors

Panel A: 3 most likely factors Panel B: 6 most likely factors Panel C: Most likely 5-factor model
model: SRy 1 1.5 2 2.5 3 1 1.5 2 2.5 3 1 1.5 2 2.5 3
Most likely factors 17.5% 24.9% 36.0% 48.8% 59.1% 17.8% 27.0% 44.0% 66.5% 83.7% 23.0% 35.3% 57.0% 77.6% 88.1%
CAPM 12.7% 12.5% 11.8% 11.3% 13.1% 127% 121% 10.3%  7.3%  5.2% 11.9% 10.8% 8.0% 5.0% 3.9%
FF3 103% 7.9% 53% 32% 1.7% 103% 7.7% 47% 21% 0.7% 9.6% 6.8% 3.6% 1.4% 0.5%
FF5 9.9% 7.0% 42% 21% 0.7% 9.8% 6.8% 3.7% 13% 0.3% 92% 6.0% 28% 09% 0.2%
Carhart 102% 78%  52% 2.9% 1.3% 10.2% 7.6% 4.6% 1.9% 0.5% 9.6% 6.7% 35% 13% 0.4%
q4 15.7% 17.8% 17.9% 14.9% 9.6% 15.6% 17.3% 15.7% 9.9% 3.9% 14.6% 153% 11.9% 6.4% 2.7%
Lig-CAPM 12.5% 12.0% 10.9% 9.6%  9.0% 125% 11.7% 95% 6.2%  3.6% 11.7% 104% 74% 4.3% 2.7%
FF3-QMJ 11.2% 10.1% 88% 7.4% 5.5% 11.1%  98% 7.7% 4.8% 2.1% 10.4% 8.6% 58% 3.1% 1.5%

Posterior model probabilities for the specifications in the first column, for different prior Sharpe ratio values,
computed using the Dirac spike-and-slab prior method of Section 2.3.1.2. Panel A includes the factors
BEH_PEAD, MKT, CMA*, while Panel B considers in addition STRev, RMW?*, and BW_ISENT. Panel
C uses the most likely 5-factor model according to the posterior probability. Factors are: MKT, MGMT,
BAB, BEH_.PEAD, CMA* for SR, = 1; STRev, BAB, BEH_.PEAD, RMW*, CMA* for SR, = 1.5 to
2.5; BW_ISENT, BEH_.PEAD, MKT*, RMW*, CMA* for SR,, = 3. Factors are described in Table 2.A.1
of the Appendix. Lig-CAPM stands for the liquidity-adjusted model of Péstor and Stambaugh (2003) and
FF3-QMJ corresponds to the 4-factor model of Asness, Frazzini, and Pedersen (2019). Sample: 1973:10 to
2016:12. Test assets: 60 anomaly portfolios.

ex ante probability).

First, three factors clearly stand out in Table 2.7: BEH_PEAD, BW_SENT, CMA*, all
of which were also among the most likely factors in the SDF identified in the whole model
space of Table 2.3. Second, and strikingly, there is a large set of factors that have poste-
rior probability of inclusion above the prior, providing support for them being included in
a low-dimensional model. This group includes not only the other robust factors identified
in Section 2.5.1 but also 40% of both tradable and nontradable macro-factors, such as non-
durable consumption, unemployment, and industrial production growth. This second finding
is consistent with our results in Section 2.5.3, where we showed that many factors seem to
load on the same underlying sources of economic risks: Sparse models, therefore, tend to rely
on them almost interchangeably. This is further illustrated in Figure 2.A.3 of the Appendix,
which depicts posterior probabilities for the top 2,000 sparse models under the SR prior of
2. Similar to our findings in Section 2.5.3, the space of best performing models is quite flat,
with their corresponding posterior probability decaying slowly. In fact, up to a first-order
approximation, the frequentist likelihood ratio test of the best performing model versus the
100™ (1000*") specification would yield a p-value of 19.0% (9.2%) at best.

Our findings indicate that all the low-dimensional models with observable factors are
likely to be severely misspecified, and in many cases reflect noisy measures of the same
underlying economic risks. While some of the factors still stand alone as significant drivers
of the cross-section of asset returns, the true latent SDF is still best approximated by an
efficient aggregation of many underlying variables, provided by the BMA. To further validate
this point, we have performed an OOS analysis (in both time-series and cross-sectional

dimension) of the BMA versus the best low-dimensional models and found that the former
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Table 2.7: Posterior factor probabilities, E [y;|data], and risk prices: 2.6 million models

Factor inclusion prob., E [v;|data] Price of risk, E [\;|data]
Total prior SR: Total prior SR:

Factors: 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

BEH_PEAD 0.124 0.206 0.309 0.389 0.430 0.421 0.005 0.024 0.059 0.095 0.122 0.130
BW_ISENT 0.099 0.109 0.128 0.161 0.225 0.343 0.001 0.002 0.007 0.016 0.041 0.111
CMA* 0.104 0.122 0.136 0.141 0.137 0.120 0.003 0.010 0.017 0.023 0.026 0.025
BAB 0.112 0.133 0.140 0.136 0.125 0.105 0.006 0.014 0.021 0.024 0.025 0.022
DIV 0.097 0.102 0.109 0.121 0.141 0.183 0.000  0.000 0.001 0.002 0.005 0.016
HJTZISENT 0.097 0.102 0.109 0.119 0.134 0.156 0.000 0.001 0.002 0.005 0.010 0.021
NONDUR 0.097 0.101 0.108 0.118 0.133 0.161 0.000 0.001 0.002 0.004 0.008 0.020
TERM 0.097 0.101 0.108 0.118 0.133 0.161 0.000  0.000 -0.001 -0.002 -0.005 -0.012
PE 0.097 0.101 0.108 0.117 0.132 0.160 0.000  0.000 -0.001 -0.002 -0.004 -0.012
FIN_UNC 0.097 0.101 0.108 0.117 0.131 0.149 0.000 0.001 0.002 0.004 0.008 0.017
UNRATE 0.097 0.101 0.107 0.116 0.130 0.154 0.000 0.000 0.001 0.002 0.005 0.013
DeltaSLOPE 0.097 0.101 0.107 0.116 0.129 0.154 0.000  0.000 0.001 0.002 0.003 0.010
IPGrowth 0.097 0.101 0.107 0.115 0.127 0.148 0.000  0.000 0.000 -0.001 -0.002 -0.006
DEFAULT 0.097 0.101 0.107 0.115 0.127 0.146 0.000 0.000 0.001 0.001 0.003 0.007
SERV 0.096 0.101 0.106 0.114 0.126 0.146 0.000  0.000 0.000 0.001 0.002 0.006
REAL_UNC 0.096 0.100 0.106 0.114 0.125 0.141 0.000 0.000 0.000 0.001 0.002 0.004
STRev 0.095 0.098 0.105 0.116 0.123 0.109 0.001  0.005 0.010 0.016 0.022 0.022
MACRO_UNC 0.096 0.100 0.106 0.113 0.122 0.136 0.000  0.000 0.000 0.000 0.001 0.000
Oil 0.096 0.100 0.105 0.111 0.119 0.129 0.000  0.000 0.000 0.000 0.001 0.002
MKT* 0.097 0.101 0.104 0.105 0.103 0.105 0.002 0.005 0.009 0.013 0.015 0.020
RMW~ 0.096 0.098 0.102 0.106 0.103 0.083 0.002 0.006 0.011 0.015 0.018 0.016
LIQNT 0.096 0.098 0.100 0.102 0.101 0.096 0.000 0.000 0.001 0.001 0.002 0.003
MKT 0.094 0.099 0.103 0.103 0.095 0.080 0.003 0.009 0.014 0.018 0.020 0.018
ROE 0.107 0.113 0.106 0.093 0.078 0.060 0.006 0.013 0.016 0.017 0.015 0.012
MGMT 0.109 0.109 0.101 0.092 0.080 0.061 0.007 0.014 0.017 0.018 0.017 0.013
NetOA 0.098 0.102 0.101 0.094 0.084 0.068 0.002 0.005 0.008 0.010 0.010 0.009
IA 0.108 0.108 0.099 0.089 0.077 0.060 0.006 0.013 0.015 0.016 0.015 0.012
HML* 0.099 0.101 0.096 0.087 0.075 0.058 0.003 0.007 0.010 0.011 0.011 0.009
LIQ-TR 0.095 0.095 0.093 0.087 0.078 0.063 0.001  0.002 0.004 0.006 0.006 0.005
INTERM_CAP_RATIO 0.093 0.090 0.087 0.083 0.075 0.062 0.001  0.004 0.006 0.008 0.009 0.008
INV_IN_ASS 0.098 0.097 0.090 0.079 0.067 0.051 0.003 0.006 0.009 0.009 0.008 0.007
PERF 0.096 0.091 0.082 0.071 0.059 0.044 0.003  0.007 0.009 0.009 0.008 0.006
STOCK_ISS 0.098 0.092 0.081 0.070 0.058 0.043 0.004 0.008 0.009 0.009 0.008 0.006
ACCR 0.093 0.087 0.079 0.070 0.060 0.048 0.001  0.002 0.004 0.004 0.004 0.004
BEH_FIN 0.099 0.089 0.077 0.067 0.057 0.043 0.005 0.009 0.010 0.010 0.009 0.007
QMJ 0.095 0.086 0.076 0.066 0.055 0.040 0.004 0.008 0.010 0.010 0.009 0.007
UMD 0.094 0.087 0.076 0.065 0.055 0.043 0.002 0.004 0.005 0.005 0.004 0.003
SMB* 0.092 0.083 0.073 0.063 0.052 0.039 0.001  0.003 0.004 0.004 0.004 0.003
HML_DEVIL 0.085 0.073 0.067 0.066 0.062 0.050 0.002 0.004 0.006 0.009 0.011 0.010
CMA 0.095 0.084 0.071 0.059 0.049 0.037 0.004 0.007 0.007 0.006 0.005 0.004
SKEW 0.089 0.081 0.071 0.060 0.048 0.036 0.002 0.005 0.006 0.006 0.005 0.004
ASS_Growth 0.093 0.081 0.068 0.057 0.047 0.035 0.003  0.005 0.0056 0.005 0.004 0.003
COMP_ISSUE 0.091 0.077 0.065 0.055 0.046 0.034 0.003 0.004 0.005 0.004 0.004 0.003
LTRev 0.089 0.076 0.064 0.053 0.043 0.032 0.001  0.003 0.003 0.003 0.003 0.002
RMW 0.088 0.074 0.062 0.052 0.043 0.032 0.002 0.003 0.004 0.004 0.003 0.003
ROA 0.089 0.075 0.062 0.051 0.041 0.030 0.002 0.004 0.004 0.004 0.003 0.002
GR_PROF 0.087 0.073 0.061 0.0561 0.042 0.031 0.000 0.001 0.000 0.000 0.000 0.000
SMB 0.086 0.073 0.061 0.051 0.040 0.029 0.002 0.004 0.004 0.004 0.004 0.002
DISSTR 0.084 0.069 0.059 0.051 0.043 0.033 0.001  0.000 -0.001 -0.002 -0.003 -0.002
HML 0.086 0.070 0.057 0.048 0.039 0.030 0.002 0.003 0.003 0.003 0.003 0.002
O_SCORE 0.084 0.069 0.056 0.045 0.036 0.027 -0.001 -0.002 -0.002 -0.002 -0.001 -0.001

Posterior probabilities of factors, E [y;|data], and posterior mean of factors’ risk prices, E[);|data], are
computed using the the Dirac spike-and-slab approach of Section 2.3.1.2 and 51 factors described in Table
2.A.1 of Appendix. Sample: 1973:10-2016:12. Test assets: 34 tradable factors and 26 investment anomalies.
Prior probability of a factor being included is about 9.58% since we give each possible model equal prior
probability and a factor could be included in a model with up to four other variables. Posterior probabilities
are plotted for prior Sharpe ratio € [0.5, 3].
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strongly outperforms the latter.?®

2.6 Conclusions and Extensions

We develop a novel (Bayesian) method for the analysis of linear factor models in asset
pricing. This approach can handle quadrillions of models generated by the zoo of traded and
non-traded factors and delivers inference that is robust to the common identification failures
caused by weak and level factors.

We apply our approach to the study of more than 2 quadrillion factor model specifications
and find that: 1) only a handful of factors seem to be robust explanators of the cross-
sections of asset returns; 2) jointly, the three to six robust factors provide a model that
substantially outperforms notable benchmarks; 3) nevertheless, with very high probability
the “true” latent SDF is dense in the space of factors proposed in the previous literature,
likely containing 23-25 observable factors; and 4) a BMA over the universe of possible models
delivers an SDF that presents a novel benchmark for in- and out-of-sample empirical asset
pricing.

Our method can be feasibly extended to accommodate several salient extensions. First,
one might want to bound the maximum price of risk (or the maximum Sharpe ratios) as-
sociated with the factors. This can be achieved by replacing the Gaussian distributions
in our spike-and-slab priors with (rescaled and centred) Beta distributions, since the latter
have bounded support. Furthermore, for the sake of expositional simplicity and closed-form
solutions, we have focused on regularizing spike-and-slab priors with exponential tails. Nev-
ertheless, our approach, which shrinks weak (and level) factors based on their correlation
with asset returns, could also be implemented using polynomial tailed (i.e., heavy-tailed)
mixing priors (see Polson and Scott (2011) for a general discussion of priors for regulariza-
tion and shrinkage).?® The rationale for heavy-tailed priors is that when the likelihood has
thick tails while the prior has a thin tail, if the likelihood peak moves too far from the prior,
the posterior eventually reverts toward the prior. Nevertheless, note that this mechanism
(first pointed out in Jeffreys (1961)) is actually desirable in our settings in order to shrink
the price of risk of useless factors toward zero."

Second, thanks to its hierarchical structure, our approach can formally handle the statisti-

38These additional results are available upon request.

39For example, albeit alternative distributions with desirable properties exist, our spike-and-slab could be
implemented using a Cauchy prior with location parameter set to zero and scale parameter proportional to
1;, as defined in equations (2.22) and (2.23).

40Gince useless factors tend to generate heavy-tailed likelihoods (in the limit, the likelihood is an improper
“uniform” on R), with peaks for price of risk that deviate toward infinity, the posterior price of risk of such
factors is shrunk toward the prior (zero) mean if the prior has thin tails.
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cal uncertainty caused by generated factors, for example, mimicking portfolios, and provides
valid inference in their presence. Furthermore, it can accommodate a wide range of both
priced and unpriced latent factors.

Third, thanks to the hierarchical structure of our method, time-varying expected returns
and SDF factor loadings could be accommodated by adopting the time-varying parame-
ter approach of Primiceri (2005). Furthermore, although this would significantly increase
the numerical complexity of the cross-sectional inference step, the time-varying parameters

formulation could also be used for the modelling time-varying factor price of risk.
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2.A.1 Additional Derivations and Proofs

2.A.1.1 Derivation of the Posterior Distributions in Section 2.3

Let’s consider first the time series layer of our hierarchical model. We assume that Y; S

N(py,Xy). The likelihood function of the observed time-series data Y = {Y;}L, is

p(Y|py, Xy) o ’2Y|7§e’%t’"[2§1 S (Ye—py ) (Ye—py) ]

T 1 -1 T ~ ~ T —1 ~ N T
o |Ey|_56_5”[21’ Y= (Ye—py)(Ye—fy) +TEy (by —fy)(ky —Ay) ']

Y

p+1

where fiy = ZtT:1 Y;. After assigning a diffuse prior for (uy, Xy ), 7(py, Xy) x |2y | 2,
the posterior distribution function of (py, Xy ) is

p(NYa EY|Y) o |2Y|—%e—%”[2§1 ZtT:1(Yt—ﬁY)(Yt—ﬂY)T-i-Tz}l(uy—ﬂY)(My—ﬁY)T]7

Hence, the posterior distribution of gy conditional on Y and Xy is

Py Y, Sy) o e 23y (wy =y ) (wy —iiy) 1]

and the above is the kernel of the multivariate normal in equation (2.6). If we further
integrate out py, it is easy to show that p(Zy|Y) o [Sy |~ 2" e 2By Xima (V) (Yi—fy) 7]
Therefore, the posterior distribution of X is the inverse-Wishart in equation (2.7).

Recall that C = (1n, Cg), A" = (A, Af). Assuming o; ~ iid N(0,0%), the cross-
sectional likelihood function conditional on the time-series parameters (puy and Xy-), p(data|X, 0?),
is given in equation (2.10), where “data” in this cross-sectional (second) step include the ob-
served time-series Y = {Y;}L_, as well as gy and Xy drawn from the time-series step.

Assuming the diffuse prior m(A, 02) oc 072, the posterior distribution of (X, 0?) is

PN, 0?|data) ox (o%)~ "% ¢ zz nONTn=ON) _ (52) =42 o~ (= CX+OR-N)T un-CX+OA-)

Nt2 1 —_c\7T _CN -1 2x_\NTCcT -
(02)—7 7,2 (MR—CA) (LR—CA)—5 5 (A=) " C C(A >‘)7 and

=) TeTenxn-%)
2

. p(A|o?, data) x e 20 ,

where A = (CTC)'CT pug, 62 = (“R_CS‘)L(“R_CS‘). Note that sending 02 — 0 the posterior

p(A|o?, data) is proportional to a Dirac at A as per Definition 2.2. For non-degenerate values

of 02, the conditional posterior of X is instead the one in equation (2.11). We derive the

posterior of 6% by integrating out A in the joint posterior, p(o?|data) = [ p(X, o?|data)dX

_ 52
(02) 5 e %7, hence, obtaining equation (2.12).

Under the GLS distributional assumption, o ~ N (0n, 02X g), where g is the covari-
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ance matrix of returns Ry, the posterior of (A, 0?) is then

p(X, 0?|data) o (02)_¥e_ﬁ(“R_CA)Tzﬁl(uR—CA)

1 < < 1 .
_ (02)7¥67ﬁ(uR70A)T2R (HrR—CXN) -5z (A-X)TCTzy C(A»\)’ and
a-3TeTsplon-%)

. p(Ao?, data) < e~ 207 :

where A = (CTEZ'C) " 'CTE ;" ug and the above is the kernel of a Gaussian distribution.
Note that sending 0? — 0, the posterior p(A|o?,data) is proportional to a Dirac at A
as per Definition 2.3. For non-degenerate values of o2 the conditional posterior of X is
instead the one in equation (2.13). Further integrating out X, we obtain p(c?|data) =
[ p(X, o?|data)d (02)_N7§+1e_ﬁ(“R_CS‘)TEI_?l(“R_CS‘). Hence, the posterior of o is as

in equation (2.14).

2.A.1.2 Formal Derivation of the Flat Prior Pitfall for Risk Prices

Following the derivation in Section 2.A.1.1, the cross-sectional likelihood is given by equa-
tion (2.10). Assigning a flat prior to the parameters* (X, 0?), the marginal cross-sectional

likelihood function conditional on model index = is

_ N+42

p(dataly) = //p(data|’y,)\,cr2)7r()\, o?|y)dAdo? o« //(02) 552 02 (HRm Oy A (R =Cy2) ) 752

N&2 Ay =3 T Cy (A —3n)
_N+2 _ %y Y 2l vy =Y \NMY Y
://(02) 2 e 22e 202 ddo?

_N—py+2 NG

— @0 F|C]oy [0 F e at = e ¥ o0y

(™)

N2\ N-py?
—) 72
2

where 5\7 = (C,ICA/)*lCATMR’ &3 _ (NR_C"/S\W);(NR—C‘YS\,Y

tion.

) and T denotes the Gamma func-

*More precisely, the priors for (X, 0?) are m(Ay,0?) x 25 and A_y = 0.
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2.A.1.3 Proof of Proposition 2.3

Sampling \,. From Bayes’ theorem we have that

p(Mdata, 0?,) o< p(data|X, 0%, y)m(A|o?, )

x (27) 77| Dy |3 (02) 2 e RO T(HRr=Ca2) $25 Doy

Ay =3) T (€T Cy+ D) (Ay—An)
= (277)_%|D7|%(02)_N+2p7€_ e 6_52561?,

where SSR, = pppur—prCy(C, Cy+D.)'C] pr = miny {(nr—CyA,) " (Lr—CyA,)+
AT DA} Hence, defining A, = (C] C + D,)*C] pg and 6*(X,) = 0*(C] C,, + D.) ",
we obtain the posterior distribution in (2.16).

Using our priors and integrating out X yields

1
Ly Dy s
2

T€
C7Cy+ D}

pldatalo? ) = [ pldatal,0% (" )X o ()

Sampling o2. From Bayes theorem, the posterior of o2 is p(c?|data, v) o< p(data|o?, v)w(c?) o
SSR
(62)~2 e~ 252 . Hence, the posterior distribution of o2 is the inverse-Gamma in (2.17).
Finally, we obtain the marginal likelihood of the data in (2.18) by integrating out o2 as

follows:

D, } 1
CTC,+ Dyt (SSR,/2)

Y

p(datalvy) = /p(data!az,'y)ﬂ(az)dch x

w2

where SSR, = ppir — ,uIT%C.Y(C,IC.Y + D.Y)_lC,Ip,R.

2.A.1.4 Proof of Proposition 2.4

Sampling A,. From Bayes’ theorem we have that

p(A|data, 0?,v) o< p(data|X, 0%, v)m(A|o?,7)

x (27T)J?77 |D,| 2 (0%)” = o~ 357 [(BR=Cy A7) TSR (LR —Cy Ay)+A] Dy Ay

oy 1, g Ntmy =3y BR Oy +Dy)Ay=Ry)  SsR,
= (2m)" 2 |D4|2(c%)” 2 e 207 e 27

where SSR, = minx, {(ur — C4Ay) 'S5 (kR — CyA,) + A DA, }. Hence, defining A, =
(CTER'Cy + D)) 'CIE R ur, 62(A,) = 02(CIER'C, + D.) !, we obtain the posterior
distribution in (2.19).
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Using our priors and integrating out X yields

1
N D, |3 _ssny
2

cispo, o
YR Y vy

pldatalo?, ) = [ pldatal o, 3)7(Ao, 1)dA x (%)

Obviously, the posterior distribution of o is identical to that in equation (2.20).
Finally, we obtain the marginal likelihood of the data in (2.21) by integrating out o2 as

follows:

D2 1
|CISE'Cy + D, |2 (SSR, /2)

p(dataly) = /p(data|02,7)7r(02)d02 x

M\Z

2.A.1.5 Proof of Corollary 2.1
To begin with, we introduce the following matrix notations:

D, 0
C"/:(C"//?CP)7 D’Y: ( 7 _ )7
0 djpl

where 0 denotes conformable matrices of zeros.

Under the spherical (OLS) distributional assumption for pricing errors «,

T T
C:ly—C'y + D’y = (C'V’ C7, - D'V’ C’Y' Cp )

cjc,  CJC,+vy!

]CWTC’., + D, | = ]C’_:,Cvf + D./| x |C;C’p + w;l — C;C,Y/(C_:,Cy + Dﬁ,/)_IC,:,CpL and
D.| = |D./| x ;! Equipped with the above, we have by direct calculation
vy vy p

N
2

pldataly; = 1,v-;) _ |Dyf? / Dy} !
pldataly; =0.v—5)  |CTC, +D7|2 SSRW/Q (C}Cy + Dyl (SSR, /2)

B SSRWI 2 1/1—%
-\ SSR, P

_ (SSRy
~ \SSR,

-1
'-c,C, (CLCy+Dy)  CLC,

)ZZV (1 + Gy [IN Cy (CI’C"/’ + D’V')_l C‘I’] Cp) ’

where CJ [IN - C,(CLCy + D.,,)—lcj,] C, = miny{(C,—C4b)T(Cp—C.b)+b" Db}

is the minimal value of the penalized sum of squared errors when we use C,+ to predict C,,.
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Similar to the above, in the non-spherical (GLS) pricing errors case we have

Ty-1 T y1—1
C ER'Cy+ D,y = (CV'ER Cy+Dy  CuEpCy ) ,

CyXRp'Cy  ClXR'Cp+,!

|CIER'Cy + D,| = |CLERCy + Dy | X |Cp 2R Cp + - — CBE Co (CL SR Cy + Dy) ' CLER Gy, and
|Dy| = |[Dy/| X ! Equipped with the above, we have by direct calculation

S

pldataly; = 1,v-5) D, |2 1 / Dy |? 1
N
2

pldataly; = 0,7-5)  |CIEF'C, + D, (SSR,/2)% | |CLEE'Cyp + Dyl? (SSR,/2)

_ SSR’Y/ ];]’QD;
~ \ SSR, g

 (SSR,\*®
~ \SSR,

-1
where CJ X3'Cp,—CJ S5 Cy (Cﬁj,z;;c,,, + DA,,) C 2R Cp = miny{(Cp,—C.b) TS (Cp—

C,b) + bTDvlb}, which is the minimal value of the penalized sum of squared errors when

NI

1 _
C TR Cy+ o cyzhc, (Cl=gc, + D) CLERC,

p

1
2
)

L+ 1y [C;E;Cp - CITE;;C‘YI (C'I’Z;Zlc‘v’ + D'Y’)il C'I’Eﬁlcp}

we use C4s to predict Cp, but the prediction errors are weighted by 2;21.

2.A.1.6 Proof of Propositions 2.6 and 2.7

Sampling A,. Combining the likelihood and the prior for A we have the following:

p(Aldata, 0, ) o p(data| X, 0%, y)p(Alo?, ) oc ¢~ 2z N (CTCHPA=ATC Tur]
Therefore, defining A = (CTC 4+ D) 'CT pg and 62(A) = 62(CTC + D), we have the
posterior in equation (2.28).

Sampling {7;},. Given a wj, the conditional Bayes factor for the j-th risk factor is*?

p(%' = 1|data7>‘7w’02”7—j) Wi p(/\j”}/j - 1702)

p(v; = 0|data, A, w, 0%, v_;) 1 —w;p(\|y =0,02)

Sampling w. From Bayes’ theorem we have p(w;|data, A, vy, %) o< m(w;)7(yj|w;) o< w}j(l —

oy - _ i+aw—1 i _ . . . .
wy) Wi "1 — wj)bt o w1 — w;) el Therefore, the posterior distribution

of w; is the Beta in equation (2.30).

2 CNEREL g = [(up-CN) T (s~ CN)+AT DA

Sampling o2. Finally, p(c?|data,w,A,v) x (0?)

Hence, the posterior distribution of o2 is the inverse-Gamma in equation (2.31). The proof

p(\jlv=1,07)

421f we had instead imposed w; = 0.5, as in Section 2.3.1.2, the Bayes factor would simply be PO =0.07) "
J1 1
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of Proposition 2.7 follows the same identical steps, and is therefore omitted for brevity.
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2.A.2 Data

Table 2.A.1: List of factors for cross-sectional asset pricing models

Factor ID Reference Factor ID Reference
MKT Sharpe (1964, Journal of Finance), Lintner (1965, HML_DEVIL Asness and Frazzini (2013, Journal of Portfolio
Journal of Finance) Management)

SMB Fama and French (1992, Journal of Finance) QMJ Asness, Frazzini, and Pedersen (2019, Review of
Accounting Studies)

HML Fama and French (1992, Journal of Finance) FIN_UNC Jurado, Ludvigson, and Ng (2015, American Econ-
omy Review), Ludvigson, Ma, and Ng (2019, AEJ:
Macroeconomics)

RMW Fama and French (2015, Journal of Financial Eco- REAL_UNC Jurado, Ludvigson, and Ng (2015, American Econ-

nomics) omy Review), Ludvigson, Ma, and Ng (2019, AEJ:
Macroeconomics)
CMA Fama and French (2015, Journal of Financial Eco- MACRO_UNC Jurado, Ludvigson, and Ng (2015, American Econ-
nomics) omy Review), Ludvigson, Ma, and Ng (2019, AEJ:
Macroeconomics)
UMD Carhart (1997, Journal of Finance), Jegadeesh and TERM Chen, Ross and Roll (1986, Journal of Business),
Titman (1993, Journal of Finance) Fama and French (1993, Journal of Financial Eco-
nomics)

STRev Jegadeesh and Titman (1993, Journal of Finance) DELTA _SLOPE Ferson and Harvey (1991, Journal of Political
Economy)

LTRev Jegadeesh and Titman (2001, Journal of Finance) CREDIT Chen, Ross and Roll (1986, Journal of Business),
Fama and French (1993, Journal of Financial Eco-
nomics)

qIA Hou, Xue, Zhang (2015, Review of Financial Stud- DIV Campbell (1996, Journal of Political Economy)

ies)

q-ROE Hou, Xue, Zhang (2015, Review of Financial Stud- PE Basu (1977, Journal of Finance), Ball (1978, Jour-

ies) nal of Financial Economics)
LIQNT Pastor and Stambaugh (2003, Journal of Political BW_INV_SENT Baker and Wurgler (2006, Journal of Finance)
Economy)

LIQ-TR Pastor and Stambaugh (2003, Journal of Political HJTZ_INV_SENT  Huang, Jiang, Tu, and Zhou (2015, Review of Fi-
Economy) nancial Studies)

MGMT Stambaugh and Yuan (2016, Review of Financial BEH_PEAD Daniel, Hirshleifer, and Sun (2019, Review of Fi-
Studies) nancial Studies)

PERF Stambaugh and Yuan (2016, Review of Financial BEH_FIN Daniel, Hirshleifer, and Sun (2019, Review of Fi-
Studies) nancial Studies)

ACCR Sloan (1996, Accounting Review) MKT* Daniel, Mota, Rottke, and Santos (2020, Review
of Financial Studies)

DISSTR Campbell, Hilscher, and Szilagyi (2008, Journal of SMB* Daniel, Mota, Rottke, and Santos (2020, Review

Finance) of Financial Studies)

A_Growth Cooper, Gulen, and Schill (2008, Journal of Fi- HML* Daniel, Mota, Rottke, and Santos (2020, Review

nance) of Financial Studies)

COMP_ISSUE Daniel and Titman (2006, Journal of Finance) RMW* Daniel, Mota, Rottke, and Santos (2020, Review
of Financial Studies)

GR_PROF Novy-Marx (2013, Journal of Financial Eco- CMA* Daniel, Mota, Rottke, and Santos (2020, Review

nomics) of Financial Studies)

INV_IN_ASSETS Titman, Wei, and Xie (2004, Journal of Financial SKEW Langlois (2019, Journal of Financial Economics)

and Quantitative Analysis)

NetOA Hirshleifer, Kewei, Teoh, and Zhang (2004, Jour- NONDUR Chen, Ross and Roll (1986, Journal of Business),

nal of Accounting and Economics) Breeden, Gibbons, and Litzenberger (1989, Jour-
nal of Finance)

OSCORE Ohlson (1980, Journal of Accounting Research) SERV Breeden, Gibbons, and Litzenberger (1989, Jour-
nal of Finance), Hall (1978, Journal of Political
Economy)

ROA Chen, Novy-Marx, and Zhang (2010, working pa- UNRATE Gertler and Grinols (1982, Journal of Money,

per) Credit, and Banking)

STOCK_ISS Ritter (1991, Journal of Finance), Fama and IND_PROD Chan, Chen, and Hsieh (1985, Journal of Financial

French (2008, Journal of Finance) Economics), Chen, Ross and Roll (1986, Journal
of Business)

INTERM_CR He, Kelly, and Manela (2017, Journal of Financial OIL Chen, Ross and Roll (1986, Journal of Business)

Economics)
BAB Frazzini and Pedersen (2014, Journal of Financial

Economics)

The table presents the list of factors used in Section 2.5.1.

For each of the variables, we present their

identification index, the nature of the factor, and the source of data for downloading and/or constructing
the time series. Full description of the factors, sources, and references can be found in Table OA13 of the
Online Appendix.
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Table 2.A.2: List of additional anomalies used for the construction of test assets

Anomaly ID Reference Anomaly ID Reference

CashAssets Palazzo (2012, Journal of Financial Economics) Volume Garfinkel (2009, Review of Accounting Studies)

FCFBook Hou, Karolyi, and Kho (2011, Review of Financial SGASales Freyberger, Neuhierl, and Weber (2020, Review of
Studies) Financial Studies)

CFPrice Desai, Rajgopal, and Venkatachalam (2004, Ac- Q Kaldor (1996, Review of Economic Studies)
counting Review)

CapTurnover Haugen and Baker (1996, Journal of Financial IVolCAPM Ang, Hodrick, Xing, and Zhang (2006, Journal of
Economics) Finance)

Caplntens Gorodnichenko and Weber (2016, American Eco- IVoIFF3 Ang, Hodrick, Xing, and Zhang (2006, Journal of
nomic Review) Finance)

DP_tr Litzenberger and Ramaswamy (1979, Journal of DayVariance Ang, Hodrick, Xing, and Zhang (2006, Journal of
Financial Economics) Finance)

PPE delta Lyandres, Sun, and Zhang (2008, Review of Finan- ProfMargin Soliman (2008, Accounting Review)
cial Studies)

Lev Lewellen (2015, Critical Finance Review) PriceCostMargin Bustamante and Donangelo (2017, Review of Fi-

nancial Studies)

SalesPrice Lewellen (2015, Critical Finance Review) OperLev Novy-Marx (2011, Review of Finance)
IntermMom Novy-Marx (2012, Journal of Financial Eco- FixedCostSale D’Acunto, Liu, Pflueger, and Weber (2018, Jour-
nomics) nal of Financial Economics)

YearHigh George and Hwang (2004, Journal of Finance) LTMom Bondt and Thaler (1985, Journal of Finance)
PE_tr Basu (1983, Journal of Financial Economics) NetSalesNetOA Soliman (2008, Accounting Review)
BidAsk Chung and Zhang (2014, Journal of Financial Mar- AssetsMarket Bhandari (1988, Journal of Finance)

kets)

The table presents the list of anomalies, which, together with the tradable factors from Table 2.A.1, form
a cross-section of test assets used in Section 2.5.1. For each of the variables, we present their identification
index, the nature of the factor, and the source of data for downloading and/or constructing the time series.
Full description of the factors, sources, and references can be found in the Table OA14 of the Online Appendix.
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2.A.3 Additional Simulation Results: N = 25

Table 2.A.3: Price of risk tests in a misspecified model with a strong factor

>\c /\st'rong Rgdj
T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS

100 0.109 0.058 0.014 0.082 0.039 0.008 -3.92% 65.58%

200 0.107 0.053 0.011 0.084 0.041 0.006 -3.33% 65.60%

GMM 600  0.099 0.055 0.017 0.098 0.048 0.009 5.87% 64.16%
1000 0.098 0.054 0.011 0.108 0.052 0.010 13.23% 61.49%

20000 0.102 0.051 0.011 0.103 0.048 0.007 37.62% 49.45%

100 0.064 0.029 0.006 0.047 0.019 0.002 8.14% 43.29%

200 0.086 0.041 0.007 0.067 0.033 0.004 6.54% 49.57%

B-SDF, flat prior 600 0.087 0.050 0.018 0.097 0.046 0.009 8.72% 56.19%
1000 0.092 0.052 0.011 0.104 0.053 0.010 13.65% 56.14%

20000 0.099 0.052 0.010 0.104 0.051 0.009 37.36% 49.18%

100  0.064 0.029 0.006 0.049 0.020 0.002 8.13% 43.27%

200 0.086 0.040 0.008 0.069 0.033 0.004 6.53% 49.56%

B-SDF, normal prior 600  0.088 0.049 0.018 0.098 0.047 0.009 8.72% 56.18%
1000 0.092 0.052 0.011 0.106 0.056 0.011 13.65% 56.14%

20000 0.099 0.052 0.010 0.102 0.051 0.009 37.36% 49.18%

Panel B: GLS

100  0.105 0.051 0.009 0.082 0.041 0.007 -3.96% 16.32%

200 0.109 0.055 0.010 0.097 0.048 0.009 -3.43% 16.10%

GMM 600 0.104 0.057 0.014 0.121 0.067 0.015 -1.65% 14.80%
1000 0.109 0.058 0.012 0.124 0.067 0.015 -0.37% 13.53%

20000 0.096 0.050 0.012 0.140 0.082 0.016 4.88%  8.44%

100 0.140 0.078 0.017 0.056 0.024 0.003 -0.64% 9.35%

200 0.116 0.059 0.017 0.074 0.036 0.005 -1.70% 9.80%

B-SDF, flat prior 600 0.104 0.061 0.014 0.096 0.048 0.008 -1.08% 11.34%
1000 0.107 0.057 0.014 0.099 0.048 0.011 -0.09% 11.55%

20000 0.092 0.049 0.011 0.112 0.059 0.008 4.96% 8.28%

100 0.139 0.078 0.017 0.059 0.023 0.004 -0.65%  9.34%

200 0.116 0.060 0.017 0.075 0.037 0.005 -1.70% 9.79%

B-SDF, normal prior 600  0.104 0.061 0.014 0.093 0.048 0.007 -1.08% 11.34%
1000 0.106 0.057 0.014 0.101 0.047 0.010 -0.09% 11.54%

20000 0.092 0.049 0.011 0.115 0.060 0.009 4.96%  8.28%

Frequency of rejecting the null hypothesis Hy : A\; = A} for pseudo-true values of A} in a misspecified model
with an intercept and a strong factor. Last two columns: 5th and 95th percentiles of cross-sectional dej
across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior mean for B-SDF.
The true value of the cross-sectional dej is 43.87% (6.69%) for the OLS (GLS) estimation. B-SDF estimates
credible intervals of risk prices under (1) a flat prior or (2) a normal prior b; ~ N(0,0%p] p;T?), where d
is chosen to be 0.5, while v is equal to 5. The normal prior corresponds to a prior SR of the factor model
equal to 1.239, 1.305, 1.386, 1.413, and 1.497, for T' € {100, 200, 600, 1,000, and 20, 000}.
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Table 2.A.4: Price of risk tests in a misspecified model with a useless factor

)\intercept /\useless Ridj
T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A. OLS

100 0.079 0.039 0.009 0.095 0.033 0.001 -4.28% 39.58%
200 0.088 0.041 0.006 0.151 0.054 0.004 -4.27% 43.35%
GMM 600  0.092 0.041 0.007 0.332 0.176 0.023 -4.26% 40.40%
1000 0.097 0.046 0.007 0.429 0.254 0.043 -4.28% 38.52%
20000 0.193 0.114 0.040 0.832 0.674 0.279 -4.28% 39.93%

100 0.045 0.018 0.003 0.003 0.001 0.000 6.45% 18.00%

200 0.064 0.023 0.004 0.016 0.003 0.000 4.91% 20.19%

B-SDF, flat prior 600 0.072 0.033 0.005 0.041 0.019 0.003 3.56% 20.78%
1000 0.080 0.031 0.006 0.059 0.027 0.003 3.23% 21.46%

20000 0.068 0.019 0.002 0.103 0.052 0.010 2.74% 22.95%

100 0.073 0.034 0.006 0.003 0.001 0.000 -2.92% 8.17%

200 0.101 0.051 0.011 0.016 0.003 0.000 -3.91% 2.43%

B-SDF, normal prior 600 0.125 0.064 0.022 0.041 0.019 0.003 -4.27% -2.74%
1000 0.139 0.083 0.025 0.059 0.027 0.003 -4.31% -3.59%

20000 0.693 0.577 0.340 0.103 0.052 0.010 -4.35% -4.34%

Panel B. GLS

100 0.096 0.047 0.007 0.144 0.073 0.008 -4.06% 12.88%

200 0.105 0.056 0.008 0.239 0.154 0.039 -3.95% 12.69%

GMM 600 0.115 0.060 0.012 0.444 0.353 0.190 -3.53% 14.05%
1000 0.127 0.068 0.015 0.546 0.456 0.281 -3.41% 12.88%

20000 0.367 0.270 0.111 0.886 0.862 0.801 -2.85% 13.80%

100 0.117 0.058 0.014 0.026 0.007 0.000 -0.16% 6.83%

200  0.096 0.044 0.013 0.040 0.016 0.002 -0.89% 5.65%

B-SDF, flat prior 600  0.093 0.047 0.007 0.067 0.025 0.005 -1.36% 6.31%
1000 0.094 0.049 0.007 0.070 0.030 0.008 -1.38% 6.21%

20000 0.206 0.084 0.006 0.101 0.052 0.012 -0.88% 7.40%

100 0.127 0.071 0.016 0.026 0.007 0.000 -1.50% 4.62%

200 0.106 0.054 0.016 0.040 0.016 0.002 -2.76% 1.59%

B-SDF, normal prior 600  0.117 0.061 0.015 0.067 0.025 0.005 -3.74% -0.54%
1000 0.126  0.068 0.016 0.070 0.030 0.008 -3.86% -1.19%

20000 0.661 0.527 0.307 0.101 0.052 0.012 -3.20% -2.40%

*

Frequency of rejecting the null hypothesis Hy : A; = A} for pseudo-true value of Ac and X} .., = 0in a
misspecified model with an intercept and a useless factor. Last two columns: 5th and 95th percentiles of
cross-sectional R? q; across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior
mean for B-SDF. The true value of R? is 0%. B-SDF estimates credible intervals of risk prices under (1) a
flat prior or (2) a normal prior b; ~ N(0, azzbﬁ;ﬁde), where d is chosen to be 0.5, while 1 is equal to 5.
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Table 2.A.5: Price of risk tests in a correctly specified model with a strong factor

)‘intercept A HML R2d7
T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A. OLS

100 0.110 0.057 0.014 0.081 0.039 0.009 -3.69% 77.22%

200 0.107 0.054 0.011 0.084 0.043 0.007 -2.37% 82.54%

GMM 600 0.101 0.055 0.017 0.098 0.045 0.010 27.73% 91.62%
1000 0.099 0.054 0.012 0.109 0.053 0.009 51.47% 93.90%

20000 0.101 0.049 0.011 0.102 0.049 0.007 97.50% 99.61%

100 0.064 0.028 0.006 0.048 0.018 0.002 10.87% 48.55%

200 0.087 0.042 0.007 0.072 0.031 0.005 11.45% 59.80%

B-SDF, flat prior 600 0.087 0.048 0.018 0.096 0.043 0.009 22.39% 76.64%
1000 0.092 0.051 0.011 0.103 0.054 0.009 38.42% 83.06%

20000 0.098 0.051 0.011 0.103 0.050 0.008 96.39% 98.57%

100 0.064 0.029 0.006 0.050 0.018 0.002 10.86% 48.53%

200 0.088 0.042 0.007 0.074 0.032 0.005 11.44% 59.79%

B-SDF, normal prior 600 0.086 0.049 0.018 0.095 0.045 0.009 22.39% 76.63%
1000 0.092 0.051 0.011 0.103 0.055 0.010 38.42% 83.06%

20000 0.099 0.050 0.011 0.104 0.051 0.009 96.39% 98.57%

Panel B. GLS

100  0.107 0.052 0.009 0.059 0.029 0.004 -3.87% 23.28%

200 0.113 0.056 0.009 0.072 0.032 0.006 -3.44% 32.06%

GMM 600 0.106 0.053 0.014 0.088 0.044 0.008 3.14% 50.57%
1000 0.111 0.058 0.012 0.097 0.047 0.008 13.68% 60.17%

20000 0.099 0.052 0.012 0.111 0.051 0.007 88.68% 95.75%

100 0.136 0.071 0.014 0.055 0.026 0.003 0.00% 12.64%

200 0.125 0.065 0.015 0.074 0.037 0.007 -0.51% 16.42%

B-SDF, flat prior 600  0.109 0.057 0.016 0.095 0.045 0.008 2.56% 29.66%
1000 0.110 0.056 0.012 0.104 0.050 0.009 7.90% 38.25%

20000 0.098 0.050 0.013 0.117 0.053 0.008 82.06% 89.50%

100 0.136 0.071 0.014 0.056 0.027 0.003 0.00% 12.63%

200 0.125 0.064 0.015 0.075 0.040 0.007 -0.51% 16.41%

B-SDF, normal prior 600  0.109 0.058 0.016 0.095 0.044 0.008 2.56% 29.66%
1000 0.110 0.056 0.012 0.105 0.051 0.008 7.90% 38.25%

20000 0.099 0.050 0.013 0.117 0.052 0.009 82.06% 89.49%

Frequency of rejecting the null hypothesis Hy : A; = A} for pseudo-true values of A} in a correctly specified
model with an intercept and a strong factor. Last two columns: 5th and 95th percentiles of cross-sectional
Ridj across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior mean for
B-SDF. The hypothetical true value of R? is 100%. B-SDF estimates credible intervals of risk prices under
(1) a flat prior or (2) a normal prior b; ~ N (0, azwﬁ;rﬁde), where d is chosen to be 0.5, while 9 is equal to
5. The normal prior corresponds to a prior SR of the factor model equal to 1.239, 1.305, 1.386, 1.413, and
1.497 for T € {100, 200, 600, 1,000, and 20,000}.
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Table 2.A.6: Price of risk tests in a correctly specified model with a useless factor

)\intercept /\useless Ridj
T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A. OLS

100 0.076 0.038 0.010 0.069 0.019 0.002 -4.25% 45.71%
200 0.081 0.036 0.006 0.105 0.033 0.000 -4.29% 52.03%
GMM 600 0.086 0.038 0.008 0.269 0.112 0.008 -4.20% 55.98%
1000  0.091 0.041 0.006 0.365 0.184 0.013 -4.22% 57.63%
20000 0.174 0.104 0.036 0.842 0.683 0.266 -4.10% 62.61%

100 0.041 0.017 0.003 0.002 0.000 0.000 7.76% 19.56%

200 0.060 0.021 0.004 0.013 0.002 0.000 6.88% 22.42%

B-SDF, flat prior 600 0.067 0.033 0.003 0.038 0.015 0.003 7.28% 27.84%
1000 0.076 0.024 0.004 0.058 0.026 0.004 7.49% 31.19%

20000 0.054 0.011 0.000 0.093 0.049 0.009 8.01% 38.97%

100 0.072 0.033 0.006 0.002 0.000 0.000 -2.77% 9.52%

200 0.101 0.051 0.010 0.013 0.002 0.000 -3.84% 3.54%

B-SDF, normal prior 600 0.125 0.064 0.021 0.038 0.015 0.003 -4.24% -2.04%
1000 0.139 0.083 0.025 0.058 0.026 0.004 -4.29% -3.13%

20000 0.692 0.574 0.340 0.093 0.049 0.009 -4.35% -4.33%

Panel B. GLS

100 0.094 0.045 0.008 0.069 0.025 0.001 -4.14% 13.29%

200 0.109 0.056 0.009 0.091 0.038 0.004 -4.19% 12.99%

GMM 600 0.120 0.067 0.015 0.139 0.072 0.012 -4.13% 13.82%
1000 0.140 0.075 0.017 0.157 0.086 0.014 -4.19% 11.77%

20000 0.569 0.442 0.228 0.658 0.588 0.427 -4.28% 11.85%

100 0.119 0.061 0.010 0.011 0.002 0.000 0.35% 7.84%

200 0.111 0.053 0.012 0.012 0.005 0.000 -0.25% 5.56%

B-SDF, flat prior 600  0.108 0.057 0.010 0.017 0.003 0.000 -0.70% 4.65%
1000 0.118 0.070 0.016 0.013 0.005 0.000 -0.95% 4.06%

20000 0.567 0.415 0.178 0.080 0.037 0.008 -2.01% 5.38%

100 0.132 0.068 0.013 0.011 0.002 0.000 -1.17% 6.15%

200 0.119 0.061 0.012 0.012 0.005 0.000 -2.52% 2.30%

B-SDF, normal prior ~ 600  0.120 0.065 0.015 0.017 0.003 0.000 -3.56% -1.09%
1000 0.136  0.077 0.020 0.013 0.005 0.000 -3.81% -2.00%

20000 0.692 0.569 0.338 0.080 0.037 0.008 -4.29% -4.03%

*

Frequency of rejecting the null hypothesis Hy : A; = A} for pseudo-true value of Ac and X} .., = 0in a
correctly specified model with an intercept and a useless factor. Last two columns: 5th and 95th percentiles of
cross-sectional R? q; across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior
mean for B-SDF. The true value of R? is 0%. B-SDF estimates credible intervals of risk prices under (1) a
flat prior or (2) a normal prior b; ~ N(0, azzbﬁ;ﬁde), where d is chosen to be 0.5, while 1 is equal to 5.
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Table 2.A.7: Price of risk tests in a correctly specified model with useless and strong factors

)\inte'rcept /\HML )\useless dej
T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th
Panel A. OLS

100 0.085 0.038 0.007 0.065 0.031 0.003 0.036 0.008 0.000 -2.65% 79.55%

200 0.090 0.037 0.004 0.062 0.023 0.003 0.031 0.008 0.000 3.19% 84.45%

GMM 600  0.075 0.035 0.010 0.069 0.033 0.005 0.041 0.012 0.000 35.99% 92.46%
1000 0.083 0.040 0.006 0.077 0.035 0.004 0.039 0.005 0.000 57.55% 94.54%

20000 0.073 0.038 0.006 0.072 0.032 0.003 0.035 0.007 0.001 97.95% 99.64%

100 0.035 0.013 0.001 0.033 0.008 0.000 0.002 0.000 0.000 20.39% 54.29%

200  0.057 0.021 0.002 0.044 0.016 0.001 0.002 0.001 0.000 20.05% 63.99%

B-SDF, flat prior 600  0.059 0.025 0.007 0.055 0.025 0.004 0.005 0.002 0.000 30.94% 79.15%
1000 0.069 0.033 0.005 0.065 0.029 0.002 0.004 0.000 0.000 45.76% 85.03%

20000 0.066 0.031 0.005 0.070 0.026 0.002 0.007 0.002 0.000 96.99% 98.73%

100 0.062 0.028 0.005 0.049 0.020 0.002 0.002 0.000 0.000 10.50% 48.47%

200 0.084 0.039 0.007 0.070 0.030 0.005 0.002 0.001 0.000 9.12% 58.83%

B-SDF, normal prior 600  0.087 0.047 0.018 0.090 0.044 0.009 0.005 0.002 0.000 19.32% 75.71%
1000 0.093 0.052 0.011 0.105 0.052 0.009 0.004 0.000 0.000 35.52% 82.38%

20000 0.099 0.050 0.011 0.103 0.050 0.009 0.006 0.002 0.000 96.23% 98.51%

Panel B. GLS

100 0.099 0.046 0.007 0.059 0.025 0.003 0.067 0.027 0.001 -7.36% 25.68%

200 0.105 0.050 0.009 0.068 0.030 0.004 0.069 0.029 0.002 -6.57% 34.26%

GMM 600 0.098 0.049 0.012 0.077 0.035 0.006 0.077 0.036 0.003 1.52% 52.00%
1000 0.106 0.052 0.010 0.085 0.040 0.007 0.075 0.030 0.003 12.51% 60.51%

20000 0.089 0.045 0.010 0.095 0.051 0.007 0.092 0.033 0.001 88.59% 95.77%

100 0.118 0.056 0.010 0.045 0.019 0.003 0.012 0.002 0.000 -0.92% 12.91%

200 0.109 0.056 0.012 0.059 0.029 0.004 0.010 0.004 0.000 -1.28% 16.54%

B-SDF, flat prior 600 0.101 0.049 0.012 0.076 0.034 0.005 0.009 0.001 0.000 2.31% 29.64%
1000 0.101 0.052 0.010 0.088 0.041 0.006 0.005 0.001 0.000 7.30% 38.35%

20000 0.090 0.041 0.007 0.096 0.045 0.008 0.005 0.000 0.000 82.07% 89.53%

100 0.131 0.064 0.013 0.054 0.023 0.003 0.012 0.002 0.000 -2.53% 10.97%

200 0.122 0.066 0.015 0.073 0.038 0.006 0.010 0.004 0.000 -3.64% 14.15%

B-SDF, normal prior 600  0.109 0.056 0.015 0.090 0.046 0.009 0.009 0.001 0.000 -1.37% 26.96%
1000 0.107 0.058 0.013 0.102 0.050 0.010 0.004 0.001 0.000 3.92% 35.71%

20000 0.100 0.048 0.012 0.113 0.054 0.009 0.005 0.000 0.000 81.20% 89.00%

Frequency of rejecting the null hypothesis Hg : A; = A} for pseudo-true values of A and Asirong, Aligeress = 0
in a misspecified model with an intercept, a strong, and a useless factor. Last two columns: 5th and 95th
percentiles of cross-sectional R? q; across 2,000 simulations, evaluated at the point estimates for GMM and at
the posterior mean for B-SDF. The true value of the cross-sectional R? is 100%. B-SDF estimates credible
intervals of risk prices under (1) a flat prior or (2) a normal prior b; ~ N(0, agwﬁ} p;T%), where d is chosen
to be 0.5, while 1 is equal to 5. The normal prior corresponds to a prior SR of the factor model equal to
1.239, 1.305, 1.386, 1.413, and 1.497 for T € {100, 200, 600, 1,000, and 20,000}.
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Table 2.A.8: Price of risk tests in a misspecified model with useless and strong factors,
robustness check: 1 € {2,10}

/\c )\str(mg Auseless Rgdj
T 100% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS

100 0.062 0.029 0.005 0.050 0.020 0.002 0.002 0.001 0.000 5.98% 42.02%

B-SDF, normal prior 200  0.087 0.040 0.008 0.073 0.031 0.006 0.006 0.002 0.000 3.01% 47.81%
P =2 600  0.087 0.048 0.018 0.096 0.044 0.009 0.020 0.006 0.001 4.76% 54.20%
1000 0.095 0.052 0.011 0.106 0.052 0.009 0.040 0.011 0.002 9.55% 54.10%

20000 0.100 0.050 0.010 0.105 0.053 0.009 0.089 0.043 0.009 34.47% 46.84%

100 0.060 0.027 0.005 0.047 0.019 0.002 0.003 0.001 0.000 8.98% 44.71%

B-SDF, normal prior 200  0.084 0.039 0.008 0.066 0.031 0.005 0.006 0.001 0.000 4.48% 48.88%
=10 600 0.085 0.048 0.017 0.093 0.043 0.010 0.019 0.006 0.001 4.99% 54.37%
1000 0.095 0.052 0.011 0.105 0.051 0.010 0.040 0.013 0.002 9.71% 54.16%

20000 0.100 0.050 0.011 0.102 0.050 0.009 0.089 0.043 0.009 34.47% 46.84%

Panel B: GLS

100 0.133 0.071 0.014 0.059 0.026 0.003 0.029 0.008 0.000 -4.19% 6.71%

B-SDF, normal prior 200 0.113 0.058 0.019 0.076 0.036 0.006 0.035 0.013 0.001 -5.64% 6.48%
P =2 600 0.106 0.061 0.013 0.096 0.049 0.011 0.068 0.029 0.004 -553% 7.62%
1000 0.107 0.055 0.013 0.101 0.049 0.011 0.075 0.036 0.007 -4.55% 7.69%

20000 0.090 0.045 0.010 0.114 0.057 0.008 0.105 0.050 0.011 0.62% 4.10%

100 0.129 0.068 0.013 0.051 0.022 0.002 0.029 0.009 0.000 -2.88% 8.49%

B-SDF, normal prior 200  0.108 0.057 0.018 0.073 0.032 0.006 0.034 0.012 0.001 -4.48% 8.14%
Y =10 600  0.106 0.061 0.013 0.089 0.045 0.008 0.068 0.029 0.004 -5.00% 8.18%
1000 0.107 0.056 0.014 0.101 0.045 0.009 0.075 0.035 0.007 -4.19% 8.02%

20000 0.091 0.046 0.010 0.111 0.058 0.008 0.105 0.050 0.011 0.63% 4.10%

The table shows the frequency of rejecting the null hypothesis Hy : A\; = A} for pseudo-true values of \.
and Astrongs Mmseress = 0 in a misspecified model with an intercept, a strong and a useless factor. The

true value of the cross-sectional Rgdj is 43.87% (6.69%) for the OLS (GLS) estimation. B-SDF estimates

credible intervals of risk prices under a normal prior b; ~ N(0, agwﬁ;-rﬁde), where d is chosen to be 0.5,
while ¢ is equal to 2 or 10. When ¢ = 2, the normal prior implies a prior SR of the factor model equal
to 1.009, 1.104, 1.235, 1.285, and 1.459 for T' € {100, 200,600, 1,000, and 20,000}. Similarly, if ¢ = 10,
the normal prior implies a prior SR of the factor model equal to 1.359, 1.402, 1.450, 1.465, and 1.510 for
T € {100,200, 600, 1,000, and 20,000}
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2.A.3.1 Large N behavior

In this section we investigate the properties of the B-SDF procedure in estimating price of
risk and measure of fit, as well as successfully identifying irrelevant factors in the model,
when applied to a large cross-section.

We consider the same simulation design as described at the beginning of Section 2.4,
except for the choice of the cross-section of test assets, which time series and cross-sectional
features we mimic. In our baseline case in the previous subsections, we built a cross-section
to emulate the 25 Fama-French portfolios, sorted by size and value. Now instead we consider

the properties of the following composite cross-sections to simulate returns:
(a) N = 55: 25 Fama-French portfolios, sorted by size and value and 30 industry portfolios;

(b) N =100: 25 Fama-French portfolios, sorted by size and value, 30 industry portfolios,
25 profitability and investment portfolios, 10 momentum portfolios, and 10 long-term

reversal portfolios.

The rest of the simulation design stays unchanged; that is, the strong factor mimics the

behavior of HML, with its betas and risk premia corresponding to their in-sample values,

2

aq» Dortfolio average returns, and variance of the residuals.

cross-sectional R
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Table 2.A.9: Price of risk tests in a misspecified model with a strong factor (N

>\c /\st'rong Rgdj
T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS

100  0.113 0.059 0.010 0.072 0.032 0.004 -1.82% 30.72%
200 0.103 0.0561 0.012 0.085 0.037 0.004 -1.83% 30.92%
GMM 600 0.092 0.045 0.008 0.090 0.040 0.006 -1.70% 27.37%
1000 0.106 0.050 0.009 0.099 0.047 0.009 -1.29% 25.41%
20000 0.108 0.0563 0.013 0.106 0.057 0.014 6.44% 14.05%

100 0.053 0.016 0.001 0.002 0.001 0.000 -0.85% 0.81%

200 0.069 0.033 0.006 0.029 0.012 0.001 -1.27% 9.42%
B-SDF, flat prior 600 0.084 0.037 0.007 0.071 0.032 0.005 -1.52% 19.54%
1000 0.100 0.047 0.009 0.088 0.038 0.006 -1.55% 20.65%
20000 0.105 0.056 0.014 0.104 0.060 0.014 6.20% 13.73%

100  0.053 0.016 0.001 0.002 0.001 0.000 -0.85% 0.81%

200 0.069 0.032 0.006 0.030 0.012 0.001 -1.27% 9.42%
B-SDF, normal prior 600 0.084 0.037 0.007 0.072 0.032 0.005 -1.52% 19.54%
1000 0.100 0.047 0.009 0.087 0.038 0.006 -1.55% 20.65%
20000 0.105 0.056 0.014 0.104 0.058 0.014 6.20% 13.73%

Panel B: GLS

100  0.127 0.073 0.019 0.073 0.032 0.003 -1.07% 21.51%
200 0.112 0.061 0.016 0.102 0.054 0.005 -0.44% 22.63%
GMM 600 0.123 0.055 0.014 0.123 0.067 0.014 3.01% 21.13%
1000 0.124 0.065 0.015 0.141 0.074 0.014 4.43% 20.17%
20000 0.111 0.049 0.014 0.148 0.081 0.025 11.28% 15.27%
100 0.283 0.201 0.085 0.035 0.012 0.001 -0.48% 24.04%
200 0.174 0.106 0.036 0.068 0.029 0.006 -0.79% 19.81%
B-SDF, flat prior 600 0.119 0.065 0.018 0.083 0.039 0.005 1.27% 18.44%
1000 0.115 0.065 0.020 0.095 0.043 0.006 3.00% 18.57%
20000 0.103 0.047 0.009 0.111 0.059 0.012 11.04% 15.23%
100 0.283 0.201 0.085 0.037 0.013 0.001 -0.48% 24.04%
200 0.174 0.106 0.036 0.069 0.031 0.006 -0.79% 19.81%
B-SDF, normal prior 600 0.119 0.065 0.018 0.085 0.039 0.006 1.27% 18.44%
1000  0.115 0.065 0.020 0.096 0.045 0.006 3.00% 18.57%
20000 0.103 0.047 0.009 0.111 0.058 0.012 11.04% 15.23%

Frequency of rejecting the null hypothesis H
with an intercept and a strong factor. Last two columns: 5th and 95th percentiles of cross-sectional dej

across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior mean for B-SDF.
is 10.18% (13.34%) for the OLS (GLS) estimation. B-SDF estimates

The true value of the cross-sectional R2

adj

: Ai = A} for pseudo-true values of A} in a misspecified model

55)

credible intervals of risk prices under (1) a flat prior or (2) a normal prior b; ~ N'(0,0%¢p] p;T?), where d

is chosen to be 0.5, while v is equal to 5. The normal prior corresponds to a prior SR of the factor model

equal to 1.528, 1.636, 1.773, 1.822, and 1.978 for T' € {100, 200, 600, 1,000, and 20,000}.
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Table 2.A.10: Price of risk tests in a misspecified model with a useless factor (N = 55)

)\intercept /\useless Rgdj
T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A. OLS

100 0.096 0.045 0.010 0.091 0.033 0.004 -1.87% 18.05%

200 0.102 0.052 0.011 0.130 0.060 0.011 -1.87% 15.10%

GMM 600  0.101 0.051 0.011 0.258 0.158 0.030 -1.86% 13.29%
1000 0.128 0.064 0.014 0.342 0.239 0.084 -1.88% 14.23%

20000 0.288 0.200 0.083 0.821 0.775 0.662 -1.87% 12.69%

100 0.055 0.014 0.002 0.000 0.000 0.000 -1.02% -0.48%

200 0.084 0.034 0.007 0.002 0.000 0.000 -1.33% -0.54%

B-SDF, flat prior 600 0.102 0.050 0.011 0.012 0.003 0.001 -1.50% -0.45%
1000 0.121 0.064 0.014 0.030 0.010 0.000 -1.55% -0.28%

20000 0.264 0.154 0.029 0.090 0.037 0.008 -1.64% 0.10%

100 0.058 0.019 0.002 0.000 0.000 0.000 -1.09% -0.52%

200 0.087 0.043 0.007 0.002 0.000 0.000 -1.53% -0.81%

B-SDF, normal prior 600 0.108 0.054 0.014 0.012 0.003 0.001 -1.82% -1.35%
1000 0.130 0.075 0.016 0.030 0.009 0.000 -1.85% -1.56%

20000 0.443 0.316 0.143 0.090 0.037 0.008 -1.89% -1.88%

Panel B. GLS

100  0.125 0.071 0.019 0.104 0.056 0.005 -1.33% 21.50%

200 0.104 0.052 0.014 0.202 0.120 0.032 -1.01% 22.14%

GMM 600 0.118 0.062 0.013 0.410 0.320 0.186 0.99% 19.94%
1000 0.129 0.070 0.016 0.510 0.437 0.294 2.33% 19.23%

20000 0.253 0.162 0.053 0.892 0.863 0.816 7.70% 15.65%

100 0.283 0.199 0.084 0.057 0.026 0.002 -0.42% 25.52%

200 0.178 0.109 0.038 0.041 0.009 0.001 -0.83% 19.54%

B-SDF, flat prior 600  0.128 0.077 0.021 0.059 0.027 0.004 -0.76% 17.53%
1000 0.129 0.080 0.025 0.068 0.030 0.005 0.43% 17.23%

20000 0.175 0.093 0.019 0.094 0.046 0.009 7.61% 12.41%

100 0.285 0.200 0.084 0.057 0.026 0.002 -0.43% 25.51%

200 0.180 0.110 0.038 0.041 0.009 0.001 -0.85% 19.47%

B-SDF, normal prior 600  0.139 0.079 0.024 0.059 0.027 0.004 -0.98% 16.90%
1000 0.145 0.089 0.027 0.068 0.030 0.005 -0.43% 16.27%

20000 0.342 0.234 0.095 0.094 0.046 0.009 6.86% 11.26%

*

Frequency of rejecting the null hypothesis Hy : A\; = A] for pseudo-true value of A\, and A} _ ;... = 0 in a
misspecified model with an intercept and a useless factor. Last two columns: 5th and 95th percentiles of

cross-sectional R(QL a; across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior
mean for B-SDF. The true value of R? is 0%. B-SDF estimates credible intervals of risk prices under (1) a
flat prior or (2) a normal prior b; ~ N(0, O'QQZJﬁ;»rﬁde), where d is chosen to be 0.5, while ¢ is equal to 5.
For the uncorrelated useless factor, the normal prior implies a prior SR of 0 as the sample size T' goes to

infinity.
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Table 2.A.11: Price of risk tests in a misspecified model with useless and strong factors

(N = 55)
)\c /\strong /\useless RZdj
T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS

100 0.102 0.047 0.010 0.058 0.027 0.004 0.090 0.035 0.003 -2.92% 34.26%

200 0.096 0.050 0.010 0.074 0.032 0.004 0.138 0.056 0.009 -2.99% 34.31%

GMM 600  0.088 0.039 0.006 0.084 0.038 0.005 0.257 0.167 0.040 -2.19% 30.22%
1000 0.101 0.050 0.010 0.089 0.040 0.005 0.344 0.243 0.084 -1.72% 28.88%

20000 0.113 0.059 0.015 0.080 0.033 0.006 0.816 0.773 0.654 5.92% 21.54%

100 0.049 0.013 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.23% 4.87™%

200 0.065 0.025 0.004 0.024 0.006 0.000 0.002 0.000 0.000 -1.13% 18.26%

B-SDF, flat prior 600  0.072 0.031 0.006 0.059 0.020 0.003 0.016 0.003 0.000 -1.95% 22.44%
1000 0.080 0.036 0.008 0.064 0.026 0.003 0.030 0.008 0.001 -2.13% 23.23%

20000 0.041 0.017 0.002 0.023 0.010 0.001 0.086 0.040 0.006 5.78% 14.89%

100  0.051 0.014 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.08%  4.36%

200 0.071 0.030 0.004 0.030 0.008 0.001 0.002 0.000 0.000 -1.63% 16.04%

B-SDF, normal prior 600 0.083 0.034 0.007 0.070 0.031 0.004 0.017 0.003 0.000 -2.84% 19.26%
1000 0.094 0.049 0.010 0.085 0.039 0.007 0.030 0.008 0.001 -3.13% 19.08%

20000 0.107 0.054 0.015 0.104 0.061 0.012 0.086 0.040 0.006 4.36% 12.19%

Panel B: GLS

100 0.125 0.070 0.018 0.069 0.034 0.003 0.099 0.050 0.007 -2.13% 22.64%

200 0.104 0.055 0.014 0.101 0.047 0.006 0.196 0.114 0.027 -1.28% 22.85%

GMM 600 0.119 0.056 0.012 0.112 0.059 0.012 0.404 0.312 0.184 2.27% 21.91%
1000 0.113 0.059 0.013 0.134 0.068 0.014 0.512 0.431 0.292 3.65% 21.31%

20000 0.096 0.046 0.008 0.112 0.059 0.012 0.877 0.854 0.801 10.13% 17.8"%

100 0.278 0.197 0.084 0.028 0.008 0.001 0.053 0.027 0.003 -1.63% 24.93%

200 0.167 0.102 0.034 0.064 0.027 0.003 0.038 0.009 0.001 -1.61% 19.05%

B-SDF, flat prior 600  0.113 0.061 0.015 0.077 0.033 0.005 0.059 0.028 0.003 0.81% 18.53%
1000 0.111 0.060 0.016 0.082 0.038 0.005 0.068 0.031 0.004 247% 18.70%

20000 0.049 0.018 0.000 0.036 0.015 0.001 0.092 0.042 0.009 10.02% 14.64%

100 0.280 0.197 0.084 0.031 0.009 0.001 0.052 0.027 0.003 -1.64% 24.99%

200 0.169 0.105 0.034 0.067 0.029 0.003 0.039 0.009 0.001 -1.67% 19.50%

B-SDF, normal prior ~ 600  0.120 0.067 0.019 0.082 0.041 0.006 0.058 0.028 0.003 0.34% 17.73%
1000 0.119 0.068 0.019 0.095 0.043 0.006 0.068 0.031 0.004 1.68% 17.45%

20000 0.100 0.050 0.012 0.109 0.061 0.013 0.092 0.042 0.009 9.29% 13.60%

The table shows the frequency of rejecting the null hypothesis Hp : A\; = A} for pseudo-true values of A\, and
Astrong, Mseless = 0 il a misspecified model with an intercept, a strong, and a useless factor. The true value
of the cross-sectional RZdj is 10.18% (13.34%) for the OLS (GLS) estimation. B-SDF estimates credible
intervals of risk prices under (1) a flat prior or (2) a normal prior b; ~ N (0, ogwﬁ;rﬁde), where d is chosen
to be 0.5, while 1 is equal to 5. The normal prior corresponds to a prior SR of the factor model equal to
1.528, 1.636, 1.773, 1.822, and 1.978 for T' € {100, 200, 600, 1,000, and 20,000}.
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Table 2.A.12: Price of risk tests in a misspecified model with a strong factor (N = 100)

Ae Astrong dej
T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS
200 0.106 0.062 0.014 0.085 0.040 0.007 -0.98% 24.46%
GMM 600 0.101 0.048 0.013 0.097 0.045 0.010 -0.70% 23.52%

1000 0.101 0.058 0.012 0.097 0.048 0.014 -0.21% 20.38%
20000 0.091 0.043 0.009 0.103 0.051 0.010 6.23% 11.74%

200 0.082 0.039 0.006 0.022 0.006 0.000 -0.36% 1.74%

B-SDF, flat prior 600  0.089 0.043 0.008 0.065 0.032 0.004 -0.71% 17.12%
1000 0.094 0.048 0.013 0.079 0.041 0.011 -0.74% 16.60%

20000 0.092 0.042 0.010 0.098 0.047 0.011 6.02% 11.56%

200 0.082 0.039 0.006 0.022 0.006 0.000 -0.36% 1.74%

B-SDF, normal prior ~ 600  0.090 0.043 0.008 0.064 0.033 0.004 -0.71% 17.12%
1000 0.094 0.048 0.013 0.079 0.041 0.011 -0.74% 16.60%

20000 0.092 0.042 0.010 0.098 0.047 0.011 6.02% 11.56%

Panel B: GLS
200  0.097 0.055 0.014 0.110 0.056 0.010 -0.19% 18.33%
GMM 600 0.121 0.071 0.015 0.163 0.101 0.025 1.68% 17.64%

1000 0.115 0.066 0.013 0.170 0.098 0.028 2.95% 16.54%
20000 0.104 0.054 0.013 0.177 0.105 0.036 8.37% 11.75%

200 0.194 0.123 0.039 0.089 0.039 0.002 0.04% 10.53%

B-SDF, flat prior 600 0.123 0.067 0.018 0.122 0.065 0.015 0.16% 13.30%
1000 0.109 0.062 0.012 0.119 0.066 0.016 1.26% 13.48%

20000 0.088 0.040 0.010 0.095 0.046 0.010 8.07% 11.73%

200  0.194 0.123 0.039 0.089 0.040 0.002 0.04% 10.53%

B-SDF, normal prior 600  0.123 0.067 0.018 0.126 0.067 0.016 0.16% 13.30%
1000 0.109 0.062 0.012 0.121 0.066 0.017 1.26% 13.48%

20000 0.088 0.040 0.010 0.094 0.045 0.010 8.07% 11.73%

Frequency of rejecting the null hypothesis Hy : A; = A} for pseudo-true values of A} in a misspecified model
with an intercept and a strong factor. Last two columns: 5th and 95th percentiles of cross-sectional dej
across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior mean for B-SDF.
The true value of the cross-sectional Ridj is 8.98% (10.11%) for the OLS (GLS) estimation. B-SDF estimates

credible intervals of risk prices under (1) a flat prior or (2) a normal prior b; ~ N(0, 021#;3;'—5de)7 where d
is chosen to be 0.5, while ¢ is equal to 5. The normal prior corresponds to a prior SR of the factor model
equal to 1.858, 2.010, 2.210, 2.285, and 2.529 for T' € {100, 200, 600, 1,000, and 20,000}.
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Table 2.A.13: Price of risk tests in a misspecified model with a useless factor (N = 100)

)‘interce])t /\’u,seless R?Ld]‘
T 10% 5% 1% 10% 5% 1% 5th 95th
Panel A. OLS
200 0.108 0.060 0.015 0.206 0.117 0.031 -1.01% 13.30%
GMM 600 0.116 0.064 0.014 0.406 0.296 0.130 -1.01% 13.39%

1000 0.130 0.070 0.020 0.477 0.383 0.219 -1.00% 12.64%
20000 0.357 0.251 0.110 0.875 0.841 0.764 -1.00% 12.49%

200  0.105 0.051 0.007 0.000 0.000 0.000 -0.54% -0.07%

B-SDF, flat prior 600 0.129 0.069 0.013 0.026 0.009 0.001 -0.72% 0.33%
1000 0.135 0.076 0.017 0.047 0.017 0.003 -0.75% 0.45%

20000 0.312 0.176 0.023 0.093 0.051 0.009 -0.79% 1.78%

200 0.105 0.054 0.008 0.000 0.000 0.000 -0.58% -0.11%

B-SDF, normal prior 600  0.142 0.077 0.019 0.026 0.009 0.001 -0.88% -0.20%
1000 0.153 0.087 0.025 0.047 0.017 0.003 -0.95% -0.39%

20000 0.623 0.500 0.274 0.093 0.051 0.009 -1.02% -1.00%

Panel B. GLS
200 0.101 0.055 0.014 0.158 0.095 0.030 -0.59% 17.85%
GMM 600 0.119 0.070 0.015 0.399 0.312 0.166 0.42% 16.67%

1000 0.118 0.068 0.013 0.506 0.416 0.282 1.20% 15.96%
20000 0.261 0.181 0.064 0.874 0.846 0.807 6.01% 11.11%

200 0.200 0.129 0.043 0.020 0.007 0.001 -0.09% 10.29%

B-SDF, flat prior 600 0.122 0.069 0.016 0.063 0.026 0.003 -0.43% 12.94%
1000 0.113 0.065 0.014 0.077 0.034 0.006 -0.25% 12.98%

20000 0.178 0.098 0.023 0.100 0.057 0.011 5.89% 9.84%

200 0.202 0.129 0.043 0.020 0.007 0.001 -0.10% 10.28%

B-SDF, normal prior 600  0.122 0.069 0.017 0.063 0.026 0.003 -0.48% 12.81%
1000 0.119 0.064 0.016 0.077 0.034 0.006 -0.39% 12.70%

20000 0.252 0.165 0.048 0.100 0.057 0.011 5.33% 9.07%

*

Frequency of rejecting the null hypothesis Hy : A; = A} for pseudo-true value of Ac and X} .., =0in a
misspecified model with an intercept and a useless factor. Last two columns: 5th and 95th percentiles of
cross-sectional dej across 2,000 simulations, evaluated at the point estimates for GMM and at the posterior
mean for B-SDF. The true value of R? is 0%. B-SDF estimates credible intervals of risk prices under (1) a
flat prior or (2) a normal prior b; ~ N(0,0%9p] p;T%), where d is chosen to be 0.5, while ¢ is equal to 5.
For the uncorrelated useless factor, the normal prior implies a prior SR of 0 as the sample size T' goes to
infinity.
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Table 2.A.14: Price of risk tests in a misspecified model with useless and strong factors
(N =100)

>\c )\strong /\useless Ridj
T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS
200 0.104 0.054 0.012 0.074 0.034 0.006 0.216 0.131 0.035 -1.26% 27.78%
GMM 600  0.101 0.051 0.012 0.099 0.041 0.004 0.403 0.302 0.146 -0.73% 26.62%

1000 0.095 0.056 0.008 0.094 0.040 0.009 0.488 0.398 0.231 0.22% 24.92%
20000 0.104 0.056 0.010 0.098 0.048 0.006 0.866 0.841 0.778 6.33% 19.62%

200 0.080 0.036 0.005 0.016 0.005 0.000 0.000 0.000 0.000 0.40% 9.23%

B-SDF, flat prior 600 0.081 0.040 0.007 0.060 0.024 0.002 0.023 0.005 0.001 -0.58% 19.69%
1000 0.085 0.041 0.008 0.062 0.030 0.005 0.042 0.017 0.001 -0.59% 19.47%

20000 0.024 0.004 0.001 0.020 0.003 0.001 0.087 0.042 0.009 6.16% 13.07%

200 0.084 0.037 0.005 0.018 0.005 0.000 0.000 0.000 0.000 0.31% 8.57%

B-SDF, normal prior ~ 600  0.092 0.043 0.009 0.070 0.033 0.003 0.023 0.005 0.001 -1.02% 17.83%
1000 0.094 0.049 0.011 0.077 0.040 0.010 0.043 0.017 0.001 -1.23% 16.73%

20000 0.091 0.042 0.009 0.099 0.049 0.012 0.087 0.042 0.009 5.04% 10.68%

Panel B: GLS
200 0.101 0.056 0.014 0.108 0.051 0.009 0.161 0.099 0.033 -0.73% 18.64%
GMM 600 0.117 0.072 0.014 0.158 0.095 0.023 0.391 0.306 0.161 1.37% 17.53%

1000 0.120 0.064 0.014 0.158 0.089 0.023 0.502 0.410 0.273 2.76% 16.73%
20000 0.103 0.053 0.012 0.152 0.089 0.021 0.875 0.849 0.801 7.77% 12.81%

200 0.191 0.124 0.039 0.084 0.034 0.003 0.024 0.009 0.001 -0.33% 10.58%

B-SDF, flat prior 600 0.122 0.064 0.016 0.122 0.061 0.017 0.059 0.024 0.002 -0.10% 12.80%
1000 0.108 0.061 0.014 0.110 0.058 0.015 0.076 0.033 0.004 1.10% 13.36%

20000 0.056 0.025 0.004 0.051 0.017 0.002 0.100 0.052 0.010 7.72% 11.56%

200 0.193 0.123 0.040 0.087 0.036 0.003 0.024 0.009 0.001 -0.37% 10.57%

B-SDF, normal prior 600  0.121 0.064 0.017 0.127 0.064 0.019 0.059 0.024 0.002 -0.21% 12.75%
1000 0.111 0.064 0.015 0.117 0.063 0.015 0.076 0.033 0.004 0.82% 13.12%

20000 0.085 0.039 0.011 0.096 0.046 0.011 0.100 0.052 0.010 7.15% 10.81%

The table shows the frequency of rejecting the null hypothesis Hy : A\; = A for pseudo-true values of \.
and Aggrongs Aseless = 0 in a misspecified model with an intercept, a strong, and a useless factor. The true
value of the cross-sectional Rde is 8.98% (10.11%) for the OLS (GLS) estimation. B-SDF estimates credible

intervals of risk prices under (1) a flat prior or (2) a normal prior b; ~ N (0, UQwﬁ;rﬁde), where d is chosen
to be 0.5, while v is equal to 5. The normal prior corresponds to a prior SR of the factor model equal to
1.858, 2.010, 2.210, 2.285, and 2.529 for T' € {100,200, 600, 1,000, and 20, 000}.
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2.A.3.2 Bayesian p-values
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Figure 2.A.1: Distribution of the Bayesian p-values for testing factor risk prices

Bayesian p-value, 1 — Pr[y = 1|datal, of Hy : A = A\pseudo—true, in misspecified models with both useless and
strong factors, computed with the spike-and-slab prior of Section 2.3.1.2, as per Corollary 2.2, for different

sample sizes. We set ¢ = 1 in the estimation (which corresponds to a prior of | /E-[SR} | 0] = 0.295) and

r = 0.001.
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2.A.4 Additional Results on the Main BMA Applica-

tion

Table 2.A.15: Values of p py and g, py, for each factor

Factor Plow Pipn  Factor  pips pibe  Factor  pipw Bioe
LIQNT 0.754 0.744 MKT 5.719 5.419 GR_PROF 5.01 4.84
INTERM_CAP_RATIO 3.407 3.233 SMB 7.087 7.087 INV_IN_ASS 4.007 3.683
FIN_UNC 0.353 0.339 HML 9.216 &8.814 NetOA 2.252  2.103
REAL_UNC 0.137 0.137 RMW 7.575 7.031 O_SCORE 6.735 6.672
MACRO_UNC 0.162 0.162 CMA 8.757 8.157 ROA 8.002 7.533
TERM 0.155 0.155 UMD 4.133 3.8 STOCK_ISS 6.785 6.039
DEFAULT 0.145 0.144 STRev 2573 2.51 BAB 4.439  3.981
DIV 0.108 0.108 LTRev 4.992 4908 HML_DEVIL 8.024 8.014
UNRATE 0.226 0.224 TIA 836 7.779 QMJ 9.555 8.879
PE 0.158 0.158 ROE 7.408 6.97 BEH_PEAD 2.604 2.466
BW_ISENT 0.736  0.575 LIQ_TR 1.3 1.28 BEH_FIN 10.223  9.292
HJTZ_ISENT 0.516  0.42 MGMT 9.603 &8.714 MKT* 2.267 2.25
NONDUR 0.337 0.336 PERF 6.444 5.942 SMB* 3.426  3.321
SERV 0.152 0.152 ACCR 2.284 2.281 HML* 3.802  3.756
IPGrowth 0.116 0.115 DISSTR 7.553 6.954 RMWH* 3.235 3.194
Oil 0.325 0.307 ASS_Growth 6.904 6.398 CMA* 2.869 2.673
DeltaSLOPE 0.167 0.164 COMP_ISSUE 7.455 6.72 SKEW 6.268 6.264

Values of p;] px and p] p for each factor k, where pg (pg) is an N x 1 vector of (demeaned) correlation
between factor k and test assets. Sample: 1973:10 to 2016:12. Test assets: cross-section of 34 tradable
factors and 26 other investment anomalies. The 51 factors considered are described in Table 2.A.1.
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Table 2.A.16: Posterior factor probabilities, E [y;|datal, and risk prices: 2.25 quadrillion
models, robustness check: w; ~ Beta(1,9)

Factor inclusion prob., E [y;|data] Price of risk, E [\;|data]
Total prior SR: Total prior SR:

Factors: 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5

BEH_PEAD 0.179 0.231 0.252 0.244 0.196 0.121 0.020 0.043 0.059 0.066 0.061 0.067
BW_ISENT 0.108 0.120 0.129 0.162 0.189 0.141 0.002 0.006 0.012 0.027 0.055 0.063
CMAx 0.124 0.122 0.112 0.092 0.064 0.030 0.009 0.014 0.017 0.017 0.015 0.026
FIN_.UNC 0.113 0.113 0.104 0.102 0.095 0.067 0.001 0.002 0.003 0.006 0.009 0.013
DIV 0.104 0.101 0.113 0.111 0.130 0.145 0.000 0.001 0.002 0.004 0.011 0.038
NONDUR 0.106 0.108 0.102 0.108 0.097 0.072 0.001 0.001 0.003 0.006 0.010 0.016
PE 0.107 0.106 0.102 0.107 0.107 0.097 0.000 -0.001 -0.002 -0.003 -0.007 -0.018
BAB 0.119 0.118 0.103 0.080 0.048 0.018 0.012 0.017 0.018 0.016 0.014 0.027
UNRATE 0.097 0.105 0.106 0.103 0.104 0.081 0.000 0.001 0.002 0.004 0.008 0.015
MACRO_UNC 0.103 0.098 0.108 0.100 0.092 0.066 0.000 0.000 0.001 0.001 0.001 -0.001
HJTZ_ISENT 0.099 0.099 0.102 0.108 0.105 0.069 0.001 0.002 0.004 0.008 0.013 0.014
TERM 0.100 0.100 0.098 0.102 0.098 0.098 0.000 -0.001 -0.002 -0.004 -0.007 -0.021
0il 0.103 0.101 0.098 0.091 0.084 0.057 0.000 0.000 0.000 0.001 0.001 0.004
REAL_UNC 0.100 0.099 0.096 0.097 0.092 0.076 0.000 0.000 0.001 0.001 0.002 0.004
SERV 0.100 0.101 0.092 0.099 0.092 0.078 0.000 0.000 0.001 0.002 0.004 0.009
DeltaSLOPE 0.089 0.098 0.096 0.103 0.104 0.095 0.000 0.001 0.001 0.003 0.007 0.017
IPGrowth 0.091 0.094 0.096 0.095 0.101 0.086 0.000  0.000 -0.001 -0.002 -0.004 -0.011
DEFAULT 0.093 0.090 0.092 0.098 0.090 0.074 0.000 0.000 0.001 0.002 0.004 0.009
LIQNT 0.093 0.093 0.087 0.078 0.062 0.032 0.000 0.000 0.001 0.001 0.002 0.001
STRev 0.097 0.088 0.090 0.073 0.049 0.022 0.005 0.008 0.011 0.012 0.010 0.020
RMWx 0.100 0.093 0.079 0.064 0.041 0.019 0.006 0.009 0.010 0.010 0.009 0.021
ROE 0.109 0.092 0.072 0.054 0.036 0.018 0.012 0.014 0.013 0.012 0.014 0.039
MKT* 0.095 0.087 0.080 0.063 0.049 0.025 0.005 0.007 0.009 0.009 0.010 0.019
NetOA 0.101 0.089 0.075 0.057 0.039 0.018 0.005 0.007 0.008 0.007 0.007 0.013
MKT 0.096 0.086 0.075 0.055 0.041 0.030 0.008 0.011 0.013 0.011 0.013 0.045
TIA 0.102 0.084 0.069 0.051 0.032 0.013 0.011 0.012 0.012 0.011 0.013 0.028
INV_IN_ASS 0.100 0.080 0.068 0.048 0.032 0.013 0.006 0.007 0.008 0.007 0.007 0.014
MGMT 0.093 0.080 0.062 0.049 0.032 0.014 0.011 0.013 0.012 0.012 0.014 0.031
ACCR 0.093 0.077 0.063 0.049 0.031 0.015 0.003 0.003 0.004 0.004 0.003 0.010
LIQ-TR 0.087 0.076 0.064 0.052 0.036 0.017 0.002 0.003 0.004 0.004 0.004 0.007
INTERM_CAP_RATIO 0.087 0.079 0.061 0.050 0.035 0.018 0.003 0.005 0.005 0.005 0.005 0.015
PERF 0.096 0.076 0.061 0.045 0.029 0.014 0.007 0.008 0.008 0.007 0.008 0.022
HMLx* 0.086 0.073 0.065 0.050 0.032 0.015 0.006 0.007 0.008 0.008 0.008 0.020
STOCK_ISS 0.088 0.070 0.057 0.041 0.027 0.011 0.007 0.007 0.007 0.007 0.007 0.017
UMD 0.087 0.071 0.054 0.043 0.030 0.012 0.004 0.005 0.005 0.004 0.005 0.010
BEH _FIN 0.086 0.071 0.053 0.039 0.024 0.010 0.008 0.009 0.008 0.008 0.010 0.019
QMJ 0.086 0.068 0.053 0.038 0.025 0.013 0.008 0.009 0.009 0.008 0.010 0.032
SMBx 0.082 0.064 0.052 0.040 0.024 0.011 0.003 0.003 0.004 0.003 0.003 0.008
SKEW 0.081 0.064 0.050 0.037 0.024 0.014 0.005 0.006 0.005 0.005 0.006 0.029
CMA 0.085 0.064 0.049 0.034 0.023 0.010 0.006 0.006 0.006 0.005 0.007 0.011
LTRev 0.077 0.066 0.049 0.034 0.022 0.010 0.002 0.003 0.003 0.003 0.003 0.005
HML_DEVIL 0.073 0.063 0.052 0.038 0.026 0.012 0.003 0.005 0.006 0.006 0.007 0.020
ASS_Growth 0.078 0.058 0.047 0.034 0.020 0.009 0.004 0.004 0.004 0.004 0.005 0.005
COMP_ISSUE 0.075 0.060 0.046 0.034 0.020 0.010 0.004 0.004 0.004 0.004 0.004 0.007
RMW 0.073 0.061 0.046 0.033 0.021 0.010 0.003 0.004 0.003 0.004 0.005 0.007
GR-PROF 0.073 0.058 0.042 0.032 0.020 0.010 0.001 0.001 0.000 0.000 0.000 0.002
ROA 0.075 0.054 0.041 0.031 0.020 0.010 0.004 0.003 0.004 0.003 0.005 0.013
HML 0.073 0.055 0.042 0.030 0.018 0.008 0.003 0.003 0.003 0.003 0.004 0.000
DISSTR 0.068 0.052 0.042 0.032 0.020 0.011 0.000 -0.001 -0.001 -0.001 -0.002 -0.012
O_SCORE 0.070 0.053 0.038 0.028 0.017 0.009 -0.002 -0.002 -0.002 -0.002 -0.002 -0.007
SMB 0.063 0.055 0.041 0.030 0.019 0.010 0.003 0.004 0.003 0.004 0.005 0.021

Posterior probabilities of factors, E [v;|data], and posterior mean of factors’ risk prices, E[);|data], are
computed using the continuous spike-and-slab approach of Section 2.3.1.3 and 51 factors yielding 2°! ~ 2.25
quadrillion models. The prior for each factor inclusion is a Beta(1,9), yielding a prior expectation for ~;
equal to 10%. The data is monthly, 1973:10 to 2016:12. The 51 factors considered are described in Table
2.A.1 of the Appendix. Test assets: 34 tradable factors plus 26 investment anomalies.
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Table 2.A.17: Posterior factor probabilities, E [y;|datal, and risk prices: 2.25 quadrillion
models with zero common intercept.

Factor inclusion prob., E [y;|data) Price of risk, E [\;|data]
Total prior SR: Total prior SR:

Factors: 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5

BEH_PEAD 0.552 0.625 0.705 0.790 0.866 0.840 0.020 0.047 0.092 0.159 0.252 0.311
MKT 0.531 0.579 0.634 0.676 0.714 0.626 0.023 0.055 0.099 0.154 0.231 0.278
CMAx 0.518 0.534 0.560 0.595 0.632 0.553 0.012 0.027 0.048 0.080 0.126 0.151
STRev 0.505 0.519 0.552 0.589 0.615 0.480 0.010 0.023 0.045 0.076 0.115 0.113
RMWx« 0.502 0.516 0.533 0.574 0.610 0.492 0.011 0.024 0.045 0.079 0.128 0.135
HML_DEVIL 0.477 0.476 0.496 0.553 0.632 0.548 0.012 0.027 0.055 0.112 0.227 0.291
SKEW 0.504 0.517 0.529 0.540 0.533 0.376 0.018 0.038 0.062 0.091 0.124 0.110
QMJ 0.500 0.496 0.511 0.533 0.569 0.467 0.020 0.037 0.063 0.105 0.181 0.213
ROE 0.523 0.527 0.528 0.520 0.490 0.344 0.024 0.044 0.065 0.087 0.110 0.101
BW_ISENT 0.505 0.507 0.512 0.522 0.539 0.571 0.002 0.005 0.010 0.018 0.037 0.126
FIN_UNC 0.501 0.500 0.504 0.509 0.519 0.516 0.001 0.002 0.005 0.009 0.020 0.063
UNRATE 0.503 0.503 0.502 0.504 0.508 0.514 0.000 0.001 0.002 0.004 0.009 0.038
DIV 0.501 0.501 0.499 0.502 0.508 0.541 0.000 0.001 0.002 0.004 0.009 0.042
DEFAULT 0.498 0.498 0.500 0.503 0.506 0.505 0.000 0.001 0.001 0.003 0.007 0.023
MKT* 0.504 0.510 0.514 0.508 0.466 0.373 0.009 0.019 0.030 0.041 0.049 0.064
PE 0.498 0.501 0.500 0.497 0.503 0.498 0.000 -0.001 -0.001 -0.002 -0.006 -0.022
TERM 0.496 0.498 0.498 0.501 0.504 0.507 0.000 -0.001 -0.002 -0.003 -0.008 -0.031
HJTZ_ISENT 0.501 0.500 0.496 0.500 0.491 0.464 0.001 0.002 0.003 0.004 0.006 0.019
Oil 0.503 0.501 0.498 0.494 0.491 0.466 0.000 0.000 0.000 0.001 0.003 0.017
REAL_UNC 0.496 0.495 0.498 0.497 0.499 0.492 0.000 0.000 0.001 0.002 0.005 0.010
DeltaSLOPE 0.498 0.496 0.498 0.494 0.497 0.489 0.000 0.001 0.001 0.002 0.003 0.012
SERV 0.495 0.497 0.496 0.497 0.494 0.500 0.000 0.001 0.001 0.002 0.004 0.023
MACRO_UNC 0.497 0.498 0.495 0.493 0.494 0.480 0.000 0.000 0.001 0.002 0.005 0.006
NONDUR 0.492 0.493 0.496 0.495 0.499 0.491 0.001 0.002 0.003 0.006 0.012 0.048
IPGrowth 0.490 0.489 0.490 0.490 0.494 0.485 0.000 0.000 0.000 -0.001 -0.002 -0.003
INTERM_CAP_RATIO 0.497 0.504 0.499 0.485 0.462 0.358 0.008 0.017 0.027 0.034 0.035 0.019
LIQNT 0.492 0.490 0.488 0.482 0.480 0.424 0.000 0.000 0.000 -0.004 -0.013 -0.038
HMLx* 0.506 0.506 0.501 0.483 0.427 0.272 0.013 0.024 0.038 0.049 0.054 0.043
ACCR 0.489 0.485 0.486 0.479 0.475 0.329 0.005 0.012 0.023 0.038 0.058 0.053
PERF 0.504 0.495 0.490 0474 0.439 0.289 0.015 0.027 0.039 0.053 0.068 0.058
BAB 0.511 0.511 0.498 0.463 0.413 0.285 0.017 0.029 0.039 0.045 0.051 0.051
MGMT 0.511 0.494 0.488 0.468 0.431 0.280 0.022 0.035 0.049 0.064 0.081 0.068
LIQ-TR 0.499 0.494 0.492 0479 0.428 0.274 0.004 0.009 0.015 0.023 0.028 0.022
NetOA 0.499 0.496 0.482 0.467 0.411 0.269 0.008 0.015 0.023 0.030 0.033 0.030
IA 0.506 0.489 0.473 0437 0.384 0.227 0.021 0.031 0.040 0.048 0.053 0.040
SMB 0.488 0.486 0.472 0.448 0.386 0.226 0.015 0.030 0.043 0.052 0.052 0.036
UMD 0.492 0.482 0.458 0.437 0.405 0.308 0.009 0.014 0.016 0.019 0.031 0.055
INV_IN_ASS 0.499 0.490 0.467 0435 0.372 0.214 0.010 0.018 0.025 0.030 0.031 0.021
SMB* 0.486 0.473 0.456 0.435 0.390 0.246 0.007 0.012 0.018 0.025 0.032 0.029
STOCK_ISS 0.490 0.478 0.449 0.411 0.340 0.186 0.013 0.020 0.025 0.027 0.023 0.015
DISSTR 0.470 0.454 0.438 0.418 0.372 0.227 0.001 -0.004 -0.012 -0.022 -0.029 -0.025
GR_PROF 0.477 0.459 0.443 0.410 0.357 0.212 0.004 0.007 0.012 0.016 0.018 0.010
ROA 0.482 0.467 0.441 0.406 0.342 0.197 0.012 0.018 0.021 0.021 0.015 0.005
RMW 0.472 0.458 0.434 0.402 0.371 0.252 0.008 0.009 0.006 -0.004 -0.028 -0.038
HML 0.471 0.450 0.424 0.399 0.388 0.281 0.008 0.006 -0.002 -0.018 -0.053 -0.071
BEH_FIN 0.487 0.462 0.439 0.402 0.341 0.200 0.017 0.021 0.022 0.019 0.010 0.006
CMA 0.483 0.457 0.431 0.397 0.348 0.206 0.013 0.014 0.011 0.003 -0.014 -0.017
COMP_ISSUE 0.483 0.459 0.433 0.392 0.324 0.182 0.008 0.010 0.010 0.008 0.003 0.002
LTRev 0.479 0.458 0.427 0.380 0.317 0.173 0.007 0.009 0.009 0.006 0.001 0.001
ASS_Growth 0.477 0.452 0.424 0.382 0.317 0.173 0.009 0.010 0.008 0.004 -0.001 -0.003
O_SCORE 0.467 0.447 0.421 0.377 0.316 0.176 0.000 0.001 0.005 0.008 0.006 0.002

Posterior probabilities of factors, E [v;|data], and posterior mean of factors’ risk prices, E[);|data], are
computed using the continuous spike-and-slab approach of Section 2.3.1.3 and 51 factors yielding 2°! ~ 2.25
quadrillion models. The prior for each factor inclusion is a Beta(1,1), yielding a prior expectation for ~;
equal to 50%. The data is monthly, 1973:10 to 2016:12. The 51 factors considered are described in Table
2.A.1 of the Appendix. Test assets: 34 tradable factors plus 26 investment anomalies.
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Table 2.A.18: Posterior factor probabilities, E [y;|datal, and risk prices: 2.25 quadrillion
models with zero common intercept and non-demeaned correlations

Factor inclusion prob., E [y;|data] Price of risk, E [\;|data]
Total prior SR: Total prior SR:

Factors: 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5

BEH_PEAD 0.556 0.621 0.701 0.793 0.863 0.838 0.020 0.047 0.091 0.158 0.250 0.310
MKT 0.529 0.579 0.631 0.682 0.718 0.630 0.023 0.055 0.099 0.156 0.232 0.279
CMAx 0.517 0.532 0.561 0.595 0.636 0.554 0.013 0.027 0.049 0.080 0.127 0.151
STRev 0.500 0.518 0.549 0.587 0.617 0.484 0.009 0.023 0.044 0.075 0.113 0.113
RMW% 0.507 0.508 0.532 0.571 0.618 0.492 0.010 0.023 0.044 0.077 0.127 0.134
HML_DEVIL 0.481 0.477 0.493 0.545 0.638 0.553 0.011 0.026 0.053 0.107 0.225 0.293
SKEW 0.505 0.516 0.529 0.537 0.532 0.389 0.017 0.037 0.060 0.088 0.122 0.114
BW_ISENT 0.506 0.508 0.515 0.525 0.550 0.583 0.003 0.006 0.012 0.022 0.045 0.142
QMJ 0.499 0.498 0.511 0.527 0.568 0.472 0.020 0.037 0.062 0.103 0.181 0.216
ROE 0.520 0.528 0.526 0.518 0.495 0.347 0.024 0.044 0.064 0.086 0.111 0.103
FIN_UNC 0.500 0.501 0.506 0.504 0.511 0.512 0.001 0.002 0.005 0.009 0.019 0.061
UNRATE 0.504 0.504 0.502 0.503 0.504 0.513 0.000 0.001 0.002 0.004 0.009 0.037
DIV 0.501 0.501 0.500 0.501 0.509 0.540 0.000 0.001 0.002 0.004 0.009 0.040
DEFAULT 0.499 0.499 0.502 0.502 0.505 0.501 0.000 0.001 0.001 0.003 0.007 0.022
MKT%* 0.503 0.508 0.517 0.507 0.470 0.381 0.008 0.018 0.029 0.040 0.049 0.065
HJTZISENT 0.501 0.502 0.503 0.500 0.495 0.462 0.001 0.002 0.003 0.005 0.007 0.018
TERM 0.495 0.498 0.500 0.500 0.506 0.510 0.000 -0.001 -0.001 -0.003 -0.007 -0.030
PE 0.498 0.498 0.501 0.498 0.501 0.503 0.000 -0.001 -0.001 -0.002 -0.006 -0.021
Oil 0.501 0.501 0.503 0.498 0.491 0.468 0.000 0.000 0.000 0.001 0.003 0.017
DeltaSLOPE 0.498 0.497 0.497 0.501 0.495 0.493 0.000 0.001 0.001 0.002 0.003 0.012
REAL_UNC 0.496 0.495 0.498 0.497 0.501 0.491 0.000 0.000 0.001 0.002 0.004 0.010
MACRO_UNC 0.497 0.496 0.493 0.494 0.497 0478 0.000 0.000 0.001 0.002 0.004 0.005
SERV 0.495 0.496 0.494 0.496 0.492 0.496 0.000 0.001 0.001 0.002 0.004 0.022
NONDUR 0.491 0.494 0.497 0.495 0.495 0.490 0.001 0.001 0.003 0.005 0.012 0.046
INTERM_CAP_RATIO 0.497 0.501 0.502 0.491 0.466 0.357 0.008 0.017 0.027 0.035 0.035 0.019
IPGrowth 0.489 0.489 0.488 0.490 0.491 0.486 0.000 0.000 0.000 -0.001 -0.002 -0.002
LIQNT 0.492 0491 0489 0.482 0.479 0.421 0.000 0.000 0.000 -0.003 -0.013 -0.037
ACCR 0.489 0.488 0.485 0.489 0.481 0.335 0.005 0.011 0.022 0.038 0.058 0.054
HMLx 0.505 0.502 0.498 0.478 0.426 0.275 0.012 0.024 0.037 0.048 0.053 0.043
LIQ-TR 0.500 0.499 0.494 0.480 0.431 0.276 0.004 0.009 0.015 0.022 0.027 0.022
MGMT 0.511 0.501 0.488 0.468 0.430 0.274 0.023 0.036 0.050 0.065 0.081 0.067
PERF 0.500 0.494 0.484 0.468 0.440 0.286 0.015 0.027 0.039 0.052 0.068 0.056
BAB 0.514 0.513 0.491 0.461 0.407 0.278 0.017 0.030 0.039 0.046 0.051 0.049
NetOA 0.498 0.494 0.487 0.466 0.405 0.267 0.008 0.015 0.023 0.029 0.032 0.029
SMB 0.484 0.490 0.481 0.454 0.394 0.230 0.015 0.029 0.042 0.052 0.053 0.035
TIA 0.508 0.488 0.470 0.442 0.378 0.225 0.021 0.031 0.040 0.048 0.052 0.041
UMD 0.493 0.479 0.458 0.432 0.402 0.306 0.009 0.014 0.016 0.019 0.030 0.055
INV_IN_ASS 0.498 0.489 0.464 0.433 0.370 0.212 0.011  0.018 0.025 0.030 0.031 0.021
SMB»* 0.489 0.475 0.459 0.437 0.391 0.248 0.007 0.012 0.018 0.025 0.032 0.028
DISSTR 0.471 0.454 0439 0.418 0.373 0.224 0.001 -0.005 -0.013 -0.022 -0.029 -0.025
STOCK_ISS 0.490 0.471 0.448 0.406 0.332 0.182 0.014 0.020 0.025 0.027 0.023 0.015
RMW 0.479 0.458 0.430 0.404 0.373 0.254 0.008 0.009 0.006 -0.003 -0.029 -0.039
GR_PROF 0.478 0.458 0.441 0.411 0.355 0.210 0.004 0.007 0.011 0.016 0.018 0.010
ROA 0.482 0.465 0.440 0.403 0.346 0.195 0.012 0.018 0.021 0.020 0.014 0.006
HML 0.472 0.443 0.423 0.403 0.387 0.284 0.008 0.005 -0.002 -0.017 -0.052 -0.072
BEH_FIN 0.485 0.463 0.435 0.398 0.337 0.196 0.017 0.021 0.022 0.019 0.009 0.006
CMA 0.479 0.461 0.431 0.399 0.348 0.207 0.013 0.014 0.011 0.002 -0.014 -0.017
COMP_ISSUE 0.486 0.459 0.429 0.384 0.322 0.177 0.009 0.010 0.010 0.008 0.003 0.003
LTRev 0.478 0.455 0.430 0.384 0.319 0.177 0.006 0.009 0.009 0.006 0.001 0.000
ASS_Growth 0.478 0.458 0.426 0.382 0.317 0.172 0.009 0.010 0.008 0.004 -0.001 -0.003
O_SCORE 0.468 0.444 0.420 0.383 0.324 0.179 -0.001 0.001 0.005 0.008 0.006 0.002

Posterior probabilities of factors, E [v;|data], and posterior mean of factors’ risk prices, E[);|data], are
computed using the continuous spike-and-slab approach of Section 2.3.1.3 and 51 factors yielding 2°! ~ 2.25
quadrillion models. The prior for each factor inclusion is a Beta(1,1), yielding a prior expectation for ~;
equal to 50%. The data is monthly, 1973:10 to 2016:12. The 51 factors considered are described in Table
2.A.1 of the Appendix. Test assets: 34 tradable factors plus 26 investment anomalies.
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Table 2.A.19: Posterior model dimensionality and its implied Sharpe ratio

(a) Number of factors (b) Model-implied Sharpe ratio
Total prior SR: Total prior SR:
1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5

mean 25.14 2493 2462 2412 23.02 1791 0.85 1.17 1.47 1.80 219 270
median 25 25 25 24 23 18 082 1.15 1.46 1.78 2.18 2.69

2.5% 18 18 18 17 16 11 047 0.70 093 1.17 146 1.75
5% 19 19 19 18 17 12 0.52 0.76 1.00 1.27 1.58 1.89
95th 31 31 31 30 29 24 1.26 1.65 2.00 237 2.83 3.57

97.5th 32 32 32 31 30 25 136 1.76 212 249 296 3.75

Summary statistics for posterior number of the factors included in the model and the model-implied Sharpe
ratio. Both are summarized for values of total prior Sharpe ratio € [1, 3.5]. All the parameters are estimated
over the 1973:10-2016:12 sample using a cross-section of 34 tradable factors plus 26 investment anomalies,
computed using the continuous spike-and-slab approach of Section 2.3.1.3 and 51 factors yielding 2°! ~ 2.25
quadrillion models. The prior for each factor inclusion is a Beta(1,1), yielding a prior expectation for ~;
equal to 50%. The 51 factors considered are described in Table 2.A.1 of the Appendix.

0.100 - ™ 0.100 - Qs

T N R
/ [y /,.-.l \'\‘s / [y /I.} \ ‘.‘\
0.075 / }\ '_}'I \'\-_\ 0.075 / )‘S'J' \ 1
/I / .} -\ [ / . ‘ \ ‘_\
%‘ ) 1. ‘\ \ \-\ %‘ / /.I.; \ \“‘\
S 0.050 / I\ \'v S 0.050 / 1y A
5] I~I \ [0 / . \
o) ' /. \ vl Qa ’ y \ W
/ V5 AN A N N
0.025 / / ,/:4 . \ ™\ 0.025 /' /.4 . \-}
, 5 . . \
oy R VDTS AN
’ s N. N . /2 N, )
0.000 se—m——a ~ e S 0.000] e——————ts” —_—— —
20 30 40 20 30 40
Number of factors Number of factors
Prior SR: Prior SR:
1 = = 15 «++ 2 += 25 =—=: 3 ==— 35 1 = = 15 «++ 2 += 25 ===+ 3 ==— 35
(a) Model dimensionality with PCs (b) Model dimensionality with RP-PCs

Figure 2.A.2: Model dimensionality with principal components added to the space of
factors

Posterior density of the true SDF having the number of factors listed on the horizontal axis computed
using the continuous spike-and-slab approach of Section 2.3.1.3 and 59 factors yielding 2°° models. The
factors included are the 51 factors described in Table 2.A.1 of the Appendix, plus two i.i.d. useless factors,
and five principal components. Panel A uses simple time series principal components, while Panel B uses
the RP-PCs of Lettau and Pelger (2020b). Test assets: 34 tradable factors plus 26 investment anomalies,
sampled monthly, 1973:10 to 2016:12. Results are tabulated for different values of the prior Sharpe ratio,

JE[SR% | 0?).
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2.A.5 Additional Results on Sparse Models
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Figure 2.A.3: Posterior model probabilities, 2.6 mln sparse models

Posterior model probabilities of the 2,000 most likely models computed using the Dirac spike-and-slab of
Section 2.3.1.2 and 51 factors. The horizontal axis uses a log scale. Sample: 1973:10-2016:12. Test assets:
34 tradable factors plus 26 investment anomalies, sampled monthly, 1973:10 to 2016:12. Results are reported

for the prior Sharpe ratio, |/Ex[SR} | 0] = 2.
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Chapter 3

Model Uncertainty in the Cross

Section

Jiantao Huang and Ran Shi !

3.1 Introduction

Recent literature has provided a wide spectrum of real and financial uncertainty measures.?

They display pronounced time-series variations, and their innovations appear to be associated
with business cycle fluctuations and investment decisions.

Uncertainty has ambiguous implications for investors’ asset allocation decisions in equity
markets. The conventional wisdom of flight-to-safety and flight-to-liquidity® claims that
investors respond to uncertainty by curtailing risk exposures. However, uncertainty may
arise in periods of “Schumpeterian growth,” during which investors chase glamour stocks
(which tend to be riskier) in search of the new El Dorado.*

Existing equity market uncertainty measures focus on second-moment uncertainty, such
as realized /implied volatilities of major index returns and prediction uncertainty of economic

indicators (e.g., financial uncertainty in Ludvigson, Ma, and Ng (2021)). These uncertainty

"'We thank Svetlana Bryzgalova, Thummim Cho, Vicente Cufat, Christian Julliard, Péter Kondor, Dong
Lou, Ian Martin, and Cameron Peng for their comments.

2Bloom (2009) measures macroeconomic uncertainty using jumps in the VIX index and investigates their
real impacts. Ludvigson, Ma, and Ng (2021) and Jurado, Ludvigson, and Ng (2015) construct and compare
real and financial uncertainty indices. Baker, Bloom, and Davis (2016) develop economic policy uncertainty
indices based on news coverage. Manela and Moreira (2017) use textual analysis of the Wall Street Journal
articles to construct long-history uncertainty measures.

3Many theoretical papers study such phenomena, including Vayanos (2004), Caballero and Krishnamurthy
(2008), Brunnermeier and Pedersen (2009), etc.

4This argument relates to growth options theories of uncertainty. Examples include Abel (1983), Segal,
Shaliastovich, and Yaron (2015), Kraft, Schwartz, and Weiss (2018), etc.
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measures do not take into account a crucial challenge equity investors face, a phenomenon
dubbed the “factor zoo.” If we interpret existing uncertainty measures as time-series uncer-
tainty, a vital dimension they neglect is the cross-section.

We attempt to bridge this gap by creating a cross-sectional uncertainty measure and
exploring its implications for investors’ asset allocation decisions. Specifically, we take the
perspective of Bayesian investors adopting linear stochastic discount factor (SDF) models to
price assets. Investors are not clairvoyant as they do not know the “true” model. Instead,
they “learn” both model parameters and specifications through Bayesian updating.

The first key innovation is that we generalize the g-prior of Zellner (1986), from which
Bayesian investors update their posterior beliefs. As originally exposited in Zellner (1986),
the g-prior is a natural outcome from an uninformative prior in a sequential decision-making
setup. In the meantime, it induces well-defined posteriors conformative to the criteria empha-
sized by Chib, Zeng, and Zhao (2020). Under this prior, posterior model probabilities have
simple closed-form solutions, which increase with model-implied Sharpe ratios and decrease
with model dimensions. The result crystallizes two competing forces when forming beliefs
regarding one particular model: higher in-sample profits (on paper) and model simplicity.

We define cross-sectional uncertainty regarding linear SDF models as the entropy of
posterior model probabilities. The intuition is straightforward. Suppose that there are only
two candidate factor models, and we are uncertain about which one is true ex-ante. One
extreme case is that the first model dominates the other with a high posterior probability,
i.e.; 99%. Under this scenario, entropy is close to its lower bound zero (and we are clearly
facing low uncertainty). On the contrary, if the two models’ posterior probabilities are 50-50,
the entropy reaches its maximum (a coin-tossing exercise is needed to pick one model). To
sum up, the higher the entropy is, the more uncertain Bayesian investors are about the factor
models.

We document four sets of empirical findings based on our cross-sectional model uncer-
tainty measures, summarized as follows.

First, we measure uncertainty regarding 14 popular factor strategies in the US stock
market. Model uncertainty displays considerable time-series variations and exhibits counter-
cyclical behaviours, as in Figure 3.1. Particularly, model uncertainty increases before stock
market crashes and peaks under tumultuous market conditions. It reaches its upper bound
at the bust of the dot-com bubble and the 2008 global financial crisis. In other words, poste-
rior model probabilities are almost equalized during these two periods: all models are wrong
(or right, which does not make any difference). Under extreme market conditions, investors
do not only face higher second-moment (volatility) and third-moment (skewness) risk but

they are also confronted with higher (if not the highest) model uncertainty, i.e., they are
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Figure 3.1: Time-Series of Model Uncertainty (3-Year Rolling Window)

The figure plots the time-series of model uncertainty about the linear stochastic discount factor (SDF). We
consider 14 prominent factors from the past literature (see Section 3.3 for details). At the end of each month,
we compute the posterior model probabilities using the daily factor returns in the past three years. We use
the entropy of model probabilities to quantify model uncertainty in the cross-section. The sample ranges
from July 1972 to December 2020. Since we use a three-year rolling window, the model uncertainty index
starts from June 1975. The red line and green lines show the lower (0) and upper bounds (1) of model
uncertainty. Shaded areas are NBER-based recession periods for the US.

incredibly uncertain about which model can help navigate them out of the storm.

We repeat the exercise in European and Asian Pacific stock markets. While the time-
series pattern in Europe is roughly the same as the US stock market, the Asian Pacific equity
market displays certain unique behaviours. For example, model uncertainty in this market
is exceptionally high during the 1997 Asian financial crisis.

Second, we show the time-varying importance of Bayesian model averaging (BMA) in
portfolio choice. Following past literature (e.g., Barillas and Shanken (2018a)), we use as
the criterion the out-of-sample (OOS) Sharpe ratio implied by factor models. We split the
full sample into three equal subsamples based on model uncertainty and denoted them as
low, middle, and high model uncertainty dates. In particular, we compare BMA with the
top one model ranked by posterior model probabilities. The critical observation is that BMA
outperforms the top model only in high model uncertainty dates, whereas they have almost
identical performance in other periods. Therefore, when model uncertainty is relatively high,
investors are better off if they aggregate the information over the space of all models instead
of selecting a specific high probability model.

Third, model uncertainty is a crucial determinant of mutual fund flows, regardless of being
an exogenous cause or a merely propagating mechanism. We adopt the canonical Vector

Autoregression (VAR) model to study the dynamic responses of fund flows to uncertainty
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shocks. Most strikingly, model uncertainty innovations induce sharp outflows from the US
equity funds and inflows to US government bond funds, with effects persisting for around
three years. These outflows mainly come from small-cap and style funds but not large-cap
or sector funds. In addition, we do not observe significant inflows to money market funds,
so there is little evidence of “flight-to-liquidity” following high model uncertainty. Hence,
investors’ asset allocation decisions tend to respond to our uncertainty measure consistent
with the conventional wisdom of “flight-to-safety”: Facing high cross-sectional uncertainty,
they reduce risky asset positions, especially in small-cap stocks and actively-managed (style)
funds, and reallocate proceeds into safe assets such as government bonds.

It is also worth noting that similar fund flows patterns do not emerge when using
volatility-driven uncertainty indices such as VXO and financial uncertainty. We document
some evidence that VXO and financial uncertainty innovations relate to future inflows to
money market funds, consistent with “flight-to-liquidity.” However, dynamic responses of
fund flows to these two uncertainty measures tend to be transitory and sensitive to identifi-
cation assumptions, while those to model uncertainty shocks are very persistent and robust.

Fourth, we find that high cross-sectional model uncertainty is associated with investors’
expectations and confidence about the stock market. We quantify investors’ expectations
using surveys from the American Association of Individual Investors (AAII) and their con-
fidence levels using the Investor Behavior Project at Yale University. When our uncertainty
measure goes up, both individual and institutional investors become more pessimistic about
the stock market. More intriguingly, individual investors tend to “react” more aggressively

(in terms of pessimism) to our cross-sectional uncertainty measure.

3.1.1 Related Literature

This article mainly relates to two strands of literature. First, there is an increasing interest
in developing uncertainty measures of both asset markets and economic activities. Bloom
(2009) identifies 17 jumps in stock market volatility (VIX/VXO index) and uses them as
proxies for uncertainty shocks. He further shows in a VAR analysis that a positive uncertainty
shock predicts declining industrial production, productivity, and employment over the next
several years. Jurado, Ludvigson, and Ng (2015) measure macroeconomic uncertainty and
show that their indices spike up in major economic recessions, but there is no apparent
increase in macro uncertainty during some market crashes, such as the 1987 flash crash.
Ludvigson, Ma, and Ng (2021) further propose real and financial uncertainty indices. These
two papers use the conditional volatility of prediction errors as proxies for uncertainty, so
they belong to volatility-based measures. Finally, Baker, Bloom, and Davis (2016) develop

economic policy uncertainty indices based on news coverage.
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Unlike their measures, our goal is to quantify how uncertain investors are about the
true model in the cross-section. Our regression analysis shows that model uncertainty is
positively correlated with financial uncertainty and the VXO index but almost orthogonal
to real, macro, and economic policy uncertainty mentioned above. Moreover, we detect
persistent dynamic responses of mutual fund flows following model uncertainty shocks. In
contrast, traditional volatility-based measures such as VXO and financial uncertainty do
not have similar implications for the portfolio choice decisions of mutual fund investors.
Therefore our measure is conceptually and empirically novel. Our entropy-based measure
also enjoys a distinct property: its lower and upper bounds are always known and allow
straightforward interpretations. This property makes our measure more like a barometer
(which always comes with a range).

Second, our paper contributes to the literature on Bayesian inference for factor models
and Bayesian portfolio choice. The main idea behind our g-prior is the implied “imaginary”
prior sample with the size related to g. Similar ideas of specifying priors are adopted in past
finance and economics literature (e.g. Kandel and Stambaugh (1996) and Avramov (2002)).
However, we also point out the potential Barlett’s paradox (see Bartlett (1957)) in g-prior.
We avoid Barlett’s paradox by proposing a hyper-prior on g, following Liang, Paulo, Molina,
Clyde, and Berger (2008). According to our knowledge, we are the first paper to adopt this
prior in finance literature.

Some other papers, such as Barillas and Shanken (2018a), Chib, Zeng, and Zhao (2020),
and Bryzgalova, Huang, and Julliard (2021), also develop Bayesian methods to estimate
factor models. Unlike their papers, we aim to propose a direct measure of model uncertainty
and investigate its implications for portfolio choice. Although past literature has introduced
model uncertainty under the portfolio choice specification (e.g., Avramov (2002), Barillas

and Shanken (2018b)), we have different motivations in the first place.

3.2 Methodology

Throughout our analysis, we focus on excess returns and study their risk premia in the
cross-section. Denote by R, a random vector of dimension NN, the excess returns under
consideration®. Out of these excess returns, some would be regarded as factors in a linear
factor model. Common examples include the market excess return in the CAPM and long-

short portfolios in empirical multi-factor asset pricing models. In terms of notation, we

5Our definition of excess returns is in a relatively broader sense, which means that they can be returns
on assets less the risk-free rate, and more generally, returns on long-short portfolio positions with zero initial
costs.
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denote by f, a subset of R with dimension p, the factors under consideration®. A linear

factor model for these excess returns in the discount factor form can be written as (see
Chapter 13 of Cochrane (2009) for a detailed exposition):

m=1—(f—E[f])'b, (3.1)
E[R x m| =0, (3.2)

or equivalently
E[R] = Cov[R, f]b, (3.3)

where m is the stochastic discount factor that prices assets, i.e., it is such that the prices of
excess returns all equal zero. Since the pricing equation (3.2) is scale-invariant, we normalize
the constant term in the SDF to one. The covariance term, Cov[R, f], is an N X p matrix.”
Its entry in the ¢th row and jth column is the covariance between excess return R; and factor
f-

Remark. Linear factor characterization of SDFs relates to the results of Hansen and
Jagannathan (1991): Assuming no arbitrage, an SDF within the space spanned by all the

excess returns under consideration can be written as
m=1-(R—E[R])" (Var[R]) ' E[R].

Clearly, the equation E[m x R] = 0 always holds under the specification above. This
corresponds to the case where factors under consideration are all the excess returns, i.e.,
f =R and b = (Var[R]) ' E[R] in equation (3.3).

3.2.1 A Simple Framework for Incorporating Model Uncertainty

Now we would like to formalize our notion of model uncertainty. In practice, we do not know
exactly which factors contribute to the pricing of assets given the other ones. From a model
choice perspective, we are uncertain about which subset of factors to include into our linear
SDF specification. Under our setting, given the p factors f = [fi,..., f,], a total number
of 2P models for the linear SDF are possible candidates. To capture uncertainty regarding
this pool of models, we index the whole set of 27 models using a p-dimensional vector of
T

indicator variables v = [y1,...,7,] ", with 7; = 1 representing that factor f; is included into

the linear SDF, while with ; = 0 meaning that f; is excluded. This vector 4 thus defines a

6We intentionally let the factors f be a subset of excess returns R to make sure that factors themselves
are correctly priced, that is, their price being zero, by the factor models we write down next.

"Cov[R, f] =E [(R-E[R])(f -E[f])"] =E[R(f - E[f])"].
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model for the SDF®, denoted by M., as follows: Under M., the linear SDF is
my =1 (f, —E[£,) by, (3.4
and the expected excess returns are such that
E[R] = Cov[R, f,]b,, (3.5)

where f is a p,-dimensional vector that contains all the factors included under the current
model;? b, is a p,-dimensional vector of nonzero factor loading; Cov[R, f,] is now an N X
p~ covariance matrix. The two equations above are counterparts of (3.1) and (3.3) after
introducing model uncertainty.

Models in economics and finance set restrictions on variables under investigation, most
commonly through moment conditions. The linear factor SDF under model M., does so for
the distribution of all excess returns R (conditional on vector 7y), according to equation (3.5).
The expectations of this random vector R are linked to a block of its variance-covariance
matrix, namely Cov[R, f,]'°, through a vector of coefficients b.,.

We choose to study model uncertainty under the linear SDF specification mainly for
three reasons. First, this specification enables us to focus only on the cross section of
expected excess returns. Adding in the time-series dimension, model uncertainty has been
introduced to panel regressions of realized returns on multiple factors in the literature (see
Avramov (2002) and Barillas and Shanken (2018a)). Factor models in these panel regressions
are purely statistical, just as they are assumptions (instead of results) in Ross’s arbitrage
pricing theory Ross (1976). Bringing in the no arbitrage condition using a linear SDF imposes
moment restrictions for the expected excess returns as (3.5). What we would like to explore
is model uncertainty after imposing these sensible restrictions, not model uncertainty based
only statistical assumptions.

Second, linear factor models in the SDF form enable us to ask the following question:
Does one set of factors drive out another? To understand which set of factors survive
in presence of the others in terms of explaining the cross sectional variations, we should

study whether the parameters in vector b are zeros or not. The latent variable v for model

“

8For notation simplicity, we use “—+” to denote the set of factors that are excluded from now on. That
is, it is always the case that elements in vector f are unions of elements in f. and f_-, and the intercept of
elements in f, and f_. is empty.

Ipy = ?:1 I[y; = 1] is the total number of factors that are included under model M.,.

10Recall that under our setting, factors are a predetermined subset of excess returns, that is, fFCFfCR
Thus Cov[R, f,] is a sub-block of the full N x N variance-covariance matrix Var[R]. It is in fact an N x p,
matrix consisting of p, columns of Var[R]. These columns are ones such that the corresponding elements in
~ are equal to one, just as what we have done for indexing the vector b.
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uncertainty should be introduced to elements in b, not the factor risk premia or the factor

loadings (those betas). This is because, given the other factors, we may not need to include

one new factor (its b is zero) even if it is priced (its market price of risk A is not zero).
Specifically, if elements in f are all regarded as “common risk factors” a la Fama and

French (1993), the vector b, is related to market prices of risk, because from equation (3.5)

E[R] = Cov[R, f,{Var[f,]}~'Var[£,]b,
=B\,

where B, = {Var[f,]} 'Cov|f,, R] are the “beta” risks and A, = Var[f,]b. are the factors’
risk premia.

Noticing the link between by and Ay, one may consider introducing the latent variable ~
for the risk premia instead of for the coefficients in b like we do. However, this specification
can lead to outcomes that are hard to interpret. If we arrange f as f' = | ,YT , f_Tv], then

from equation (3.5),

Ay
Cov[f_, f]by

Y

E[R] = B' [

where B = {Var[f]} 'Cov[f, R]. As a result, if we let AT = [A], b]Cov|[fy, f—,]], it is
always the case that E[R] = BT regardless of which model M., is under consideration.
That is, the full model including all factors always holds. Thus, we introduce the latent
model index parameter for the coefficients in vector b, which can help distinguish among
different linear SDF models without ambiguity.

The third reason is due to parameter stability concerns. In equilibrium models, the vector
b tends to concatenate deep structural parameters, while parameters such as factor loadings
(the “beta”s) and factor risk premia are more likely to be driven by additional variables that
could be time-varying. For example, under the setting of the CAPM, this coefficient equals
the risk premium on the tangency portfolio over its variance. With a representative agent
holding the market, this ratio is the risk-aversion parameter in the mean-variance utility.
Thus, the b coefficient in this single factor model can be regarded as the (average) level of
risk aversion. Another example looks at the consumption-based models with the Epstein-Zin
preferences. According to the results in Epstein and Zin (1991), the linear SDF for this type
of models can be approximated (using one plus the log SDF) as

;_ 1[log consumption growth] + J _?/117

m =~ constant + [log return on wealth],
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where v and ¢ are the relative risk aversion and elasticity of intertemporal substitution
parameters respectively. In this case, the two ratios, (y —1)/(¢» — 1) and (1 —¢y) /(¢ — 1),
consist the vector b, which is determined only by parameters in the preference, and is not

changing across time.

3.2.2 Prior Specification and Empirical Bayes Inference

We now present a Bayesian framework to understand and quantify model uncertainty in the
cross-section of expected stock returns, under the linear SDF setting. With observed data
for excess returns, denoted by D = {R;}._,, our primary goal is to evaluate the probability
of each model M., given the observed data p[M, | D]. Bayesian inference offers a natural
way of computing these posterior model probabilities.
We (as have many others) assume that the observed excess returns are generated from a
multivariate Gaussian distribution:
iid
R,,....Rr ~ N, X). (3.6)
The linear SDF model M., then sets a restriction on this distribution through the following

moment condition:

p = Cyb,, (3.7)

where C, = Cov|[R, f,] consists of a subset of columns in 3. We adopt an empirical
Bayes strategy by treating the variance-covariance matrix 3 as known initially to derive the
posterior model probability p[M., | D], and then substituting this matrix with a moment
estimator.!!

Now we proceed to assign priors for b,. Our prior specification is motivated by the g-prior
proposed by Arnold Zellner (see Zellner (1986)). We assume that conditional on choosing
model M.,

by | My ~ N (0, % (cjzrlc.,)*l) . >0 (3.8)

where T' is the sample size for the observed excess returns. The parameter g is related to
the effective sample size or level of uncertainty for an “conceptual or imaginary sample”
according to Zellner (1986).

Following the reasoning of Zellner (1986), we generalize the original g-prior and adapt

HUEmpirical Bayes approaches use data to facilitate prior assignments. Here although the matrix X is
a likelihood parameter, it also enters the prior for b., as will become clear next when we introduce our
prior specification. Thus we are still using data to pin down (hyper)parameters in the priors. The use of
moment estimators to replace parameters in the prior distributions dates all the way back to the seminal
James-Stein estimator (James and Stein (1961)). For a monograph on modern empirical Bayes methods, see
Efron (2012).
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it to our specific setting. Before making inference about different linear SDF models using
the observed excess return data D, we consider an “imaginary” sample of size T”, denoted
by D' = {R)}I",, where the sample size is allowed to be different from T by a scalar g such
that 7" = T'/g. This parameter g also governs level of uncertainty about our imaginary
sample relative to the data sample we have.'? Under model M., excess returns observed
in this sample are distributed as follows: RY,..., R/, SN (Cyb,, X). Assigning a non-
informative prior on b,, which is flat everywhere,'® we can derive the “posterior” of b, given
this conceptual data sample as [by | My, D] ~ N (bi,, g/T x (C,IE*ICQ)*? , where the
posterior mean b, is related to the particular hypothetical data set D’ in mind, while the
posterior variance is not (a celebrated result for conditional normal distributions). This
leaves the posterior mean b; largely undetermined for we can have infinite degrees of freedom
“imagining” the data set D'. If we would like to use this posterior as our prior for b, resorting
to the Bayesian philosophy that “today’s posterior is tomorrow’s prior” in Lindley (2000),
we at lease need to find a way of determining b, the current posterior mean.

Zellner (1986) relies on the rational expectation hypothesis to pin down b.,. Suppose that

a
v’

D’ (as well as the initial diffuse prior for b,). The rational expectation hypothesis says that

we have an anticipatory value for b,, denoted by b2, in addition to the imaginary sample
bS = E[b, | M., D'l = b.,. Now we have a reference informative prior distribution that does

not depend on the hypothetical sample, which is
o« 9 T — -1
by | My ~ N (b5, Z(crz7c) ).

To determine whether a model M., is sensible or not, we are basically testing Hy : b, = 0
versus H; : b, € RP7. These tests help us distinguish between different models as model M.,
already imposes the condition that b_,, = 0. Following the suggestion of Zellner (1986), we

set bS = 0, that is, the anticipatory expectations are the values under the null. This finally

12Tn Zellner (1986), the scalar g is used to capture the fact that the variance of the hypothetical sample
can be different from the variance of the sample under study. These two arguments (effective sample size v.s.
variance of the hypothetical data set) are isomorphic because they will lead to the same g-prior specification.
Our sample-size based arguments echo the ideas of factional and intrinsic Bayes factor in the mid 90’s (see
O’Hagan (1995) and Berger and Pericchi (1996)), which aim to “transform” improper priors to proper ones.
Similar ideas for specifying priors are adopted in the paper by Shmuel Kandel and Robert F. Stambaugh in
the finance literature to discipline the specification of informative priors Kandel and Stambaugh (1996).

13This flat prior is non-informative in the sense that it is a Jeffreys prior, a common notion of prior
objectiveness or non-informativeness in Bayesian analysis Jeffreys (1946). Under our setting, we treat X as
known. As a result, Jeffreys prior for b, is proportional to a constant, i.e., it is flat. Of remark, this flatness
outcome is not true if the covariance matrix is unknown, under which the Jeffreys prior would specify that
the joint density of m(b~, 3) is proportional to »-"3*. Some existing work (e.g. Barillas and Shanken
(2018a)) specifies a prior such that m(by, ) 3", which is the so-called independence Jeffreys prior
(not the original Jeffreys-rule prior) imposing the assumption that b, and ¥ are independent at the prior
level.
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gives us the prior specification in (3.8).

Remark. One might attempt to assign an objective prior, such as the Jeffreys prior, to
b,. In this case, it is an improper flat prior as we have discussed early on. This would be
desirable without model uncertainty, for it will lead to proper posterior distributions. How-
ever, with model uncertainty, improper priors can only be assigned to common parameters
across models, which is clearly not the case for b,. Otherwise, posterior model probability
would be indeterminate. This is a well-known result in Bayesian statistics and has also been
pointed out in the finance literature (e.g., Cremers (2002)).

Our g-prior specification in (3.8) leads to a surprisingly simple expression for the variance

of the SDF, which is summarized in Proposition 3.1.

Proposition 3.1 Under model M., in which my =1 — (fy — E[fw})T b, the g-prior spec-
ification for by implies that
gD~

Var[m | g] = T

According to Proposition 3.1, volatility of the SDF (= /gp,/T) under a certain model is
determined by the conditionality of that model, at least at the prior level. The renowned
Hansen-Jagannathan bound states that this volatility (times the gross risk-free rate) sets
an upper bounds on any achievable Shape ratios in the economy Hansen and Jagannathan
(1991); Cochrane and Saa-Requejo (2000) regards portfolio positions with high Sharpe ratios
as deals that are too good to be realized in the market. These arguments imply that models
with too many factors are not likely to be realistic a priori.

The g-prior offers us an analytically tractable framework to make posterior inference.
Under the g-prior, we can integrate out b, and calculate the marginal likelihood of observing
the excess return data D based on each model. All these marginal likelihoods are available

in closed form and results are collected in Proposition 3.2.

Proposition 3.2 The marginal likelihood of observing excess return data D under model

M, is
T-1 ~ T g (1+9)7
D M, = eX {— tr (X 15 __(Sanax_—SRQ)} NT T
where
1 T
_ B T
S_—T_1§ (R-—R)(R-R),

t=1
is the in-sample variance-covariance matriz for the excess returns; SRZ,. is the mazimal

squared Sharpe ratio achievable from forming portfolios using all excess returns under con-

sideration; SR,QY is the maximal squared Sharpe ratio from combining all factors under model
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M., These two Sharpe ratios are both in-sample values and it is always the case that
SR2 < SR?, for all .

Proposition 3.2 has a couple of implications. To begin with, we can calculate the marginal
likelihood for a very special model, the null model, in which 4 = 0. SDF m,, in this case is a
constant, characterizing a risk-neutral market. Under this setup, p, equals zero because no
factors are included, and the maximal squared Sharpe ratio SR,QY is also zero. Plugging these
two quantities into the expression in Proposition 3.2, we have p[D | My, g] = p[D | Mo,
because the posterior marginal likelihood under the null model does not depend on the scalar
g. The Bayes factor that compares model M, with the null model My is defined as the

ratio between marginal likelihoods under two different models; that is,

- p[D ‘ M‘Y’ g]

B S S
= exp { 0+ g>SR7 5 log(1 + g)} . (3.9)

This Bayes factor can be regarded as evidence of model M., against the null model. To

further compare two arbitrary models M., and M., we can calculate the Bayes factor

= exp {2(1T—_€g) (SRZ —SR2)) — Z% log(1 + g)} , (3.10)
which is, by definition, the (marginal) likelihood ratio p[D | M., ¢]/p[D | M/, g]. A large
Bayes factor BF,, ,/(g) lends evidence to favor model M., against model M.,

A first observation based on equation (3.10) is that although the marginal likelihood in
Proposition 3.2 depends on the test assets (the pre-specified set of excess returns that define
R), the Bayes factors do not. The Bayes factors are only determined by the in-sample time
series of the factors that enter the linear SDF, through the model-implied Sharpe ratios
(SRy) and the number of factors. A key assumption driving this outcome is that factors
are a subset of the testing assets. In other words, the linear factor SDF model must price
the factors themselves correctly. This finding is reminiscent of the observation that, when
estimating factor risk premia in linear factor models, the efficient GMM objective function
assigns zero weights to the testing assets except for the factors entering the SDF (See for
example, (Cochrane, 2009, Page 244-245)).

The Bayes factor above illustrates a clear trade-off when comparing models. With the
number of factors fixed, models in which factors can generate larger in-sample Sharpe ratios

are always preferred. This echoes the intuitions behind the GRS tests in Gibbons, Ross, and
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Shanken (1989), which show the link between time-series tests of the factor models and the
mean-variance efficiency of factor portfolios. Under our setting, when the factor portfolios
deliver large maximal Sharpe ratios, it is evidence that they are more likely to span the
excess return space, thus favoring the linear SDF constructed from these factors. On the
other hand, it is a simple mechanical phenomenon that maximal Sharpe ratio SR., increases
as additional assets are added into the factor portfolio. Thus the penalty term on model
dimensionality p, imposed by the g-prior plays an key role in preventing the Bayes factor
to favor large models blindly. In order to properly penalize large models, g cannot be too
small, as SR, always increases after one augments the linear SDF.

Perhaps the most desirable feature of our Bayes factor calculation in equation (3.10)
is that it helps us understand the aforementioned trade-off quantitatively. When model
dimension is increased by one (p, — py = 1), the maximal squared Sharpe ratio (times the
sample size T) of the factor portfolio has to increase by at least (1 + g)/g x log(1 + g) to

lend support to the augmented model, that is,
1
T (SR2 —SR2)) > Lt log(1 + g).
g

However, it is always the case that T’ (SR?7 — SR,QY,) < TSR? .. Then for g large enough, the
inequality above will always be violated, as the function (14g)/g xlog(1+g) is monotonically
increasing and unbounded. As a result, smaller models will always be supported by the
Bayes factor. Under the extreme case that ¢ — oo, from equation (3.9), BF,(g) — 0.
Paradoxically, the most favorable model will always be the null model. The case under
which g — oo corresponds to the conventional diffuse priors; and the fact that, with model
uncertainty, diffuse priors always support the null model is sometimes called the Bartlett’s
paradox (Bartlett (1957)). Of note, this paradox poses another refutation to the use of
improper diffuse priors under model uncertainty, in addition to posterior indeterminacy that

has been pointed out earlier.

3.2.3 A Prior for the Parameter g

Discussions above point to the subtlety of choosing the parameter g. Instead of plugging
in particular numbers for g, a natural way under our Bayesian framework is to integrate
out g with a proper prior for it. A prior on g, namely 7[g], is equivalent to assigning a
scale-mixture of g priors for b,. This idea is adapted from Liang, Paulo, Molina, Clyde, and

Berger (2008), who argues that this type of mixture priors provides more robust posterior
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inference. As a result, our g prior specification will be modified to

m[by | M) /OOON (ba, ‘ 0, % (C’,IE_ICA,)_I) 7[g] dg, (3.11)

where the prior for g is such that

a—2 _a
mlg] = 5 (14+g)72, g>0.

This prior 7[g] is improper when a < 2. A special case when a = 2 corresponds to the
Jeffreys prior according to Liang, Paulo, Molina, Clyde, and Berger (2008). Because the
marginal likelihood of the null model does not depend on g (recall that p[D | Mo, g] = p[D |

M,)), improper priors will lead to indeterminacy in the ratio

Jo pID | My, glmlg]dg
fo D ’ MO W[g] dg
9]

_ [F9D| My g)

up to an arbitrary constant, which is the Bayes factor under the new mixture of ¢ prior

BF, =

specification. Thus we force a > 2.

This additional prior on g also leads to refinements on the volatility of the SDF. Based
on the result from Proposition 3.1, the unconditional volatility of the SDF for model M,
must satisfy

Varlm,] > E[Varfm, | g]] = Z2E[g].

The prior 7[g] is such that E[g] = oo if @ < 4, and that E[g] = 2/(a — 4) if a > 4. To
make sure that the variance of the SDF does not explode, we need a > 4. And if we follows
the argument of Cochrane and Saa-Requejo (2000) to set an upper limit on the maximal

achievable Sharpe ratio in the economy'*, denoted by SRe, then

2p

R?SR?XJ = Var[m,| > E[Var[m,, | ¢]] = m,

where Ry represents the risk-free rate. For the investor in the economy to be not risk-neutral,
the SDF must include at least one factor, that is, p, > 1 (for example, under the CAPM

1 Note that this must be larger than the maximal in-sample Sharpe ratio of portfolios formed using excess
returns under our consideration, denoted by SRy ax in Proposition 3.2.
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world). As a result, we will require that

2
>4
“ =T TRISR

Another way of looking at our prior for ¢ is that it is equivalent to

a

LNBeta(l, ——1).
1+g 2

This ratio is crucial in that it determines the contribution of data evidence when making

posterior inferences. It is sometimes referred to as the “shrinkage factor.” To see this more

clearly, we can calculate the posterior of the cross-sectional expected return p = C,b,,

which is given as follows

Elp | My, g, D]:—C {Var[fy]}~ ( Zf%) :

Under all models, the posterior mean of expected returns are scaled by a fixed factor ¢g/(1+
g) € (0,1). Our prior specification is equivalent to a Beta distribution for this shrinkage

factor, and the prior mean for it is

[ g }_2< 1
I+g] @~ 24 (TRSRY) ™

In order to give enough credit to the data-driven estimates and avoid over-shrinkage, we
choose the smallest possible a such that E[g/(1 + ¢g)] is as large as possible a priori; that
is, we pick a =44 2/(T R?SRiO). Under this choice, the prior expectation for the shrinkage
factor is still strictly smaller than one half, but can be very close (the ratio 2/ (TR?SRzO) is

usually very small).

3.2.4 Posterior Probability of Models

We next integrate out the parameter g according to equation (3.12) to find the Bayes factors

under the mixture of g-priors. Proposition 3.3 presents the results.

Proposition 3.3 The Bayes factor for comparing model M., with the null model Mg is
a—2 T . 5 T, 5\ "7 T . 5
BF’Y = ( 5 ) exp (§SR‘)’) (ESRV) E (8»7, ESR,Y> s
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where

f(s,x):/ ttemtdt
0

is the lower incomplete Gamma function (Abramowitz and Stegun, 1965, Page 263); the

scalar s~ is defined as
_ Py ta

Sy = 5

— 1.
This Bayes factor is always increasing in SRg always decreasing in p .

The Bayes factor that compares any two models can be computed as

BF,

BF77,7/ = W7
~

which is the same as what we have done earlier. Bayes factors decide the posterior odds of

one model against another:

pIM, | D] 7lMy)
pMy | D] T[My/]

X BF777/ .

Equivalently, the posterior odds give us the posterior model probabilities: for model M.,

its posterior probability given the excess return data is

BF, w[M,]
S, B, a[M,]

pIMy | D] =

which is a direct outcome of the Bayes’ rule. We can then define a model uncertainty measure

as the entropy of the posterior model probabilities:
M D] = Y loxlM | Dol | D) (313)

Roughly speaking, larger entropy corresponds to higher model uncertainty. For example,
suppose that we have only two candidate models. If one of them has a posterior model
probability of 99%, we should be confident about this high-probability model. Actually, the
model uncertainty is almost zero in this scenario. However, if the posterior probability of
each model is around 50%, then choosing the true model is equivalent to flipping a fair coin.

In this case, model uncertainty in equation (3.13) is maximized.

176



3.3 Data Description

In our primary empirical implementation, we combine 14 prominent factors from the past
literature and measure model uncertainty in this small zoo of factors. First, we include
notable Fama-French five factors (Fama and French (2015)) plus the momentum factor (Je-
gadeesh and Titman (1993)). In addition, we consider the g-factor model from Hou, Xue,
and Zhang (2015) and include their size, investment, and profitability factors. The factor
models mentioned earlier are based on rational asset pricing theory. Taking the insights
from behavioural models, Daniel, Hirshleifer, and Sun (2020) propose a three-factor model
consisting of the market factor, the short-term behavioural factor (PEAD), and the long-
term behavioural factor (FIN). Finally, we include the HML devil, the quality-minus-junk
factor, and the betting-against-beta factor from the AQR library. Appendix 3.A.1 presents
the detailed description of these factors.

Table 3.A.1 reports the annualised mean returns and Sharpe ratios of 14 factors. First,
most of them (except for two size factors) have enormous Sharpe ratios in the full sample
from July 1972 to December 2020. In particular, the short-term behavioural factor (PEAD)
seems to be the most profitable historically. Furthermore, I split the entire sample into two
equal subsamples. Consistent with past literature (e.g., McLean and Pontiff (2016)), the
performance of many factor strategies decline significantly from subsample one to two. Most
strikingly, the annualised Sharpe ratio of the value factors has plunged from above 0.9 to
nearly zero in the second subsample. This observation suggests that we should focus on the
out-of-sample instead of the in-sample Sharpe ratio in evaluating factor models.

With the estimate of model uncertainty, we next compare it with other uncertainty
measures and economic variables. Bloom (2009) uses the jumps in VXO/VIX indices as the
stock market uncertainty shock. We download the time-series of VXO/VIX indices from
Wharton Research Data Services (WRDS). Baker, Bloom, and Davis (2016) develop indices
of economic policy uncertainty (EPU), which can be downloaded from Nick Bloom’s website.
Other uncertainty measures that we use include the macro, real and financial uncertainty
measures in Ludvigson, Ma, and Ng (2021) and Jurado, Ludvigson, and Ng (2015). We
download them from the authors’ websites. In addition, we compare our model uncertainty
with the intermediary factor from He, Kelly, and Manela (2017), the term yield spread (the
yield on ten-year government bonds minus the yield on three-month treasury bills), and the
credit spread (the yield on BAA corporate bonds minus the yield on AAA corporate bonds).
We download the intermediary factor from the authors’ websites and the bond yields from
the Federal Reserve Bank of St. Louis.

Moreover, we obtain mutual fund data from the Center for Research in Security Prices

(CRSP) survivorship-bias-free mutual fund database. In particular, we are interested in
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monthly mutual fund flows, so we download the monthly total net assets, monthly fund
returns, and the codes of fund investment objectives. To normalise the aggregate fund
flows, we divide the equity (fixed-income) fund flows across all funds within a particular
investment objective by the total market capitalisation of all listed companies in CRSP
(2021) (US GDP). In addition, we download the total market value of all US-listed stocks
from CRSP.

Finally, we study the relationship between our model uncertainty measure and investors’
expectations about future stock market performance. In our paper, we use the survey data
from the American Association of Individual Investors (AAII) survey and Shiller’s survey
conducted by the International Center for Finance at the University of Yale. We download

the related data from their official websites.

3.4 Measuring Model Uncertainty

We now adopt the perspective of Bayesian investors and construct the time series of model
uncertainty. At the end of each month, we use all daily factor returns in the past three years
to estimate the posterior model probabilities, p[M, | D], and compute the entropy as in
equation (3.13). We choose the hyper-parameter a to be four in the benchmark case. We
also present the results obtained from alternative rolling windows and other choices of a in
robustness checks (see Section 3.8).

The behavioural factors in Daniel, Hirshleifer, and Sun (2020) are available only from July
1972, and we use 36-month data in the estimation, so the model uncertainty measure starts
from June 1975. Since some factors are highly correlated, we consider models that contain at
most one version of the factors in each of the following categories: (a) size (SMB or ME); (b)
profitability (RMW or ROE); (c) value (HML or HML Devil); (d) investment (CMA or IA).
We refer to size, profitability, value, and investment as categorical factors. Therefore, there
are ten effective factors, including market, size, profitability, value, investment, short-term
and long-term behavioural factors, momentum, QMJ, and BAB.

The blue line in Figure 3.1 plots the time series of model uncertainty of linear SDF's, and
the sample period spans from June 1975 to December 2020. The red and green dotted lines
show the lower and upper bounds of model uncertainty, respectively. The lower entropy
bound is always zero, i.e., when there is one dominant model with the posterior model
probability of 100%. On the contrary, uncertainty is maximized when the posterior model
probabilities are equalized across all models. Because we have 14 factors, and only one of the

categorical factors could be selected into the true model, there are 5,184 different candidate
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models.!> The upper bound of model uncertainty is around 8.55.16 To normalize the model
uncertainty index, we divide it by 8.55. Hence, the upper bound is one in Figure 3.1.

The model uncertainty index has several interesting features that could shed light on
the nature of uncertainty about the linear SDF. First, we observe a surprisingly high level
of model uncertainty. Specifically, the average (median) model uncertainty is around 0.70
(0.75), with the first and third quartiles equal to 0.53 and 0.87, respectively. Hence, most
of the time, Bayesian investors are not confident about the true SDF model. Second, model
uncertainty fluctuates significantly over time. In particular, the index varies from the lowest
value of 0.27 to the highest 0.99, representing economic states in which Bayesian investors
find it almost unlikely to determine the true SDF model. The standard deviation of the index
is 0.21. Overall, model uncertainty is a dynamic phenomenon. Finally, model uncertainty
is persistent by construction since we use a rolling window of 36 months in the estimation.
The first-order autocorrelation is 0.98, and the autocorrelation coefficients strictly decrease
in time lags, with insignificant autocorrelations after 30 lags.

Figure 3.1 also suggests the countercyclical nature of model uncertainty. In particular,
the 1990s was a remarkable period: it was remembered as a period of strong economic
growth, low inflation and unemployment rate, and high stock returns. During the 1990s,
model uncertainty is the lowest across our sample. As the orange dots in Figure 3.2 suggest,
posterior probabilities of the top two models are significantly larger than others. Hence,
investors are relatively confident about the true SDF model.

In addition, peaks in model uncertainty tend to coincide with major events in the US
stock markets and economy. Important examples include the dot-com crash in 2000 and
the global financial crisis in 2008 when model uncertainty almost touches its upper bound.
Specifically, the blue dots in Figure 3.2 show that posterior probabilities of the top 50
models, in December 2007, are almost equalized. In other words, it is virtually infeasible to
distinguish models based on the observed data. The 2008 crisis is noteworthy because model
uncertainty stays at a high level for a prolonged period. In contrast, it declines shortly after
other crises/recessions. In the recent five years, model uncertainty has slowly increased from
0.7 to 1 at the end of 2020.

Interestingly, we do not observe a spike in model uncertainty during the 1987 flash crash.
The potential reason is that the 1987 market crash was not long-lasting. Even though S&P

500 index declined by more than 20% in one day, the crisis was not caused by any economic

15The model in our framework is indexed by 7: v; € {0,1} and ~; = 1 implies that the factor j should be
included into true SDF. We do not have restrictions on the market, short-term reversal, long-term reversal,
momentum, QMJ, and BAB, so the number of models for these 6 factors is 26. For SMB and ME, we only
allow three cases: (0,0), (1,0) or (0,1). Therefore, each categorical factor has 3 (instead of 4) possibilities.
The total number of candidate models equals 26 x 3* = 5184.

upper bound = — > =51 X log(s757) = log(5184) ~ 8.55..
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recession, and the market recovered rapidly. Instead, the leading cause was synchronous
program trading, illiquidity in the market, and the subsequent market panic. Since our
uncertainty measure is based on past-three-year daily data, the impact of short-term market
chaos is averaged out.

In conclusion, our model uncertainty measure displays considerable time-series variations:
it is particularly sizable in bad economic states. The stock market crash that lasts only for a
short period, such as the 1987 flash crash, is not captured by our model uncertainty measure.
Furthermore, the cyclical behaviours of model uncertainty imply another layer of investment
risk: when investors experience bear stock markets, they are also the most uncertain about
the true model in the cross-section, or equivalently, which portfolio of factor strategies they
should hold. This further motivates us to study how model uncertainty relates to investors’

portfolio choices and expectations. We investigate these topics in section 3.5 and 3.6.
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Figure 3.2: Posterior Probabilities of Top 50 models: High vs. Low Model Uncertainty

The figure plots the posterior probabilities of the top 50 models ranked by their posterior probabilities. At
the end of each month, we compute the posterior model probabilities using the daily factor returns in the
past three years. We use the entropy of model probabilities to quantify model uncertainty in the cross-
section. We observe low model uncertainty in February 1994 (orange diamonds) but high model uncertainty
in December 2007 (blue dots).

3.4.1 Does Model Uncertainty Matter?

Should investors take into account model uncertainty in the cross-section? A natural hypoth-
esis is that model uncertainty plays a more critical role when it is more sizable. The logic is

as follow. When model uncertainty is relatively low, the factor model with the highest model
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probability dominates others, such as the orange diamonds in Figure 3.2. Hence, investors
are more willing to trust the top model ranked by the Bayesian posterior probabilities. In
contrast, the top model is not informative if model uncertainty is relatively high, such as
during market crashes. In this case, they may prefer to aggregate the information over the
space of all models.

The Bayesian model averaging (BMA) is one common approach to aggregating models.
It enables us to flexibly model investors’ uncertainty about potentially relevant factors. In
the SDF model, we are interested in the risk prices, b. The BMA of b is defined as

bima = E[b| D] = Y E[b| M,, D] x P(M, | D). (3.14)

~

Rather than considering the expectation of b conditional on a specific model, we take the
weighted average of the model-implied expectations, where the weights are posterior model
probabilities. Intuitively, models with high probabilities are more influential in BMA.

BMA deviates sharply from the traditional model selection, in which researchers always
use a particular criterion (e.g., adjusted R2, model probabilities, etc.) to select a single model
and presume that the selected model is correct. Past literature also shows the importance
of model averaging in asset pricing (e.g., Avramov (2002), Bryzgalova, Huang, and Julliard
(2021), Avramov, Cheng, Metzker, and Voigt (2021)).

We now compare the performance of BMA with the top Bayesian model. The perfor-
mance metric that we use is the out-of-sample (OOS) Sharpe ratio of factor models. We also
compare our Bayesian procedure with several candidate models: (1) All 14 factors (All), (2)
Carhart (1997) four-factor model (Carhart4), (3) Fama and French (2015) five-factor model
(FF5), (4) Hou, Xue, and Zhang (2015) g-factor model (HXZ4), and (5) Daniel, Hirshleifer,
and Sun (2020) behavioural factor model (DHS3).

For each factor model « in month ¢, we estimate the risk prices of f, via the standard
GMM estimation: b, = (Var] )7 S°7, f4t), where the covariance matrix and mean
returns of f, are estimated using the data from month ¢ — 35 to month ¢, consistent with
Figure 3.1. The tangency portfolio conditional on model ~ is BI f~41, and the BMA
tangency portfolio is b, fi11.17 We update the tangency portfolio each month.'®

We also test the null hypothesis that BMA and the model 4 have an identical Sharpe
ratio, i.e., Hy : SRZ == SR?W using the non-parametric Bootstrap. Under Hy, the expected
return of the tangency portfolio implied by the model ~ is linear in that of BMA: E[R]] =
E[R'™ o (R))/o(RP™). We adjust the average return of R} using the previous equality and

"For model ~, we scale the tangency weights 5., each month such that the target monthly portfolio
volatility is 1% based on historical data from month ¢ — 35 to month ¢.

8Moreover, the top Bayesian model (with the highest model probability) is time-varying.
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draw 100,000 sample paths of { R}., Ri™*}L _, with replacement, where T is the sample size
in the observed dataset. If the difference in Sharpe ratios between BMA and model v in
the observed dataset is larger than 90% (95%, 99%) of those in simulated datasets, we claim
that Hy is rejected by the data at 10% (5%, 1%) significance level.!?

Table 3.1: Out-of-Sample Model Performance

1 2 0 (4) G) 6 (7
BMA Top1l All Carhart4 FF5 HXZ4 DHS3

Full Sample: 07/1975 - 12/2020 1.818 1.750 1.772 0.736 0.938 1.135 1.639

_ *% } *xk *xk *okk _

Subsample I: 07/1975 - 08/1990 2.327 2226 2.293 1.014 1.589 1.853 2.142
_ Kk . KKk koK * _

Subsample II: 09/1990 - 10/2005 2.094 2.145 2.095 0.927 0.916 1.222 2.072
- _ i} Kok *okk Kok _

Subsample III: 11/2005 - 12/2020 1.106 0.940 0.986 0.317 0.452 0.517  0.795
- *% } Kok *okk *x *

Low Model Uncertainty 2.572 2.565 2.568 1.288 1.624 1.829 2.282
_ _ } *xk *xk *k% _

Middle Model Uncertainty 1.717 1.653 1.771 0.450 0.677 1.232 1.818
_ _ } *xk *xk *x }

High Model Uncertainty 1.251 1.125 1.106 0.564 0.584 0.552 0.897
* * *oxk *oxk KoKk *%

This table reports the out-of-sample (annualised) Sharpe ratio of (1) BMA: the Bayesian model averaging of
factor models, (2) Top 1: the top Bayesian model ranked by posterior model probabilities, (3) All: include
all 14 factors, (4) Carhart4: Carhart (1997) four-factor model, (5) FF5: Fama and French (2015) five-factor
model, (6) HXZ4: Hou, Xue, and Zhang (2015) g-factor model, and (7) DHS3: the market factor plus two
behavioural factors in Daniel, Hirshleifer, and Sun (2020). We also report the results on testing the null
hypothesis that the Sharpe ratio of BMA is equal to the model ~, i.e., Hy : SRima = SR?y. We use the
non-parametric Bootstrap to test the null hypothesis. *, ** and *** denote significance at the 90%, 95%,
and 99% level, respectively.

We start with describing the full-sample performance, as shown in the first row of Table
3.1. First, our Bayesian procedure successfully selects the model that outperforms traditional
factor models in the out-of-sample. The top Bayesian model (see column (2)) has an OOS
Sharpe ratio of 1.75, which is virtually comparable to the model composed of all 14 factors
(see column (3)). Second, BMA beats the top Bayesian model. The outperformance is
statistically significant, but its economic magnitude is not substantial.

One may be concerned that these 14 factors are data-mined, so choosing the top model

only reflects data snooping rather than the outperformance of our Bayesian procedure. We

19Tn other words, we calculate the approximate achieved significance level, AS Lo, by
SE L s
n=1 ~{SR(RY**)~SR(R7,)>SR(R}™*)~SR(R})}
B

where B is the number of Bootstraps (B = 100,000). If ASLpet is smaller than 10% (5%, 1%), we claim
that Hy is rejected by the data at 10% (5%, 1%) significance level.

ASLboot =
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further split the whole sample into three equal subsamples to tackle this concern. Consis-
tent with past literature, the performance of factor models tends to decline over time, and
the drops in Sharpe ratios are particularly enormous from subsample II (September 1990 -
October 2005) to subsample III (November 2005 - December 2020). In addition, BMA is
more valuable in the third subsample: its Sharpe ratio (1.106) is significantly higher than
other models except for the one composed of all 14 factors.

Whether the performance of factor models is related to model uncertainty? The short
answer is yes. On average, the performance of factor models declines as model uncertainty
increases. Specifically, when model uncertainty is low, both the top model and BMA have
similar Sharpe ratios of around 2.57, which are exceptionally high. In other words, investors
should be confident about the top model chosen by our Bayesian procedure in low uncertainty
states. On the contrary, it is particularly beneficial to incorporate model uncertainty into
portfolio choice when model uncertainty is high. As the last row suggests, BMA has an OOS
Sharpe ratio of 1.25, significantly larger than any other specifications.

In summary, there are two takeaways from Table 3.1. First, our Bayesian procedure
is competent to pick the model that has satisfactory OOS performance. Second, model
uncertainty matters and is particularly noteworthy when it is relatively high. In this scenario,
BMA, which aggregates the information across all models, is salient for real-time portfolio

choice.

3.4.2 Decomposing Model Uncertainty

The posterior model probabilities (see Proposition 3.3) are closely related to the model-
implied squared Sharpe ratio, SR>. As we include more factors, the in-sample SR? always
rises. Only when a few factor models dominate others can we be confident about the true
model. In other words, when the distances in S R% are sizable across different factor models,
we can easily differentiate them and observe low model uncertainty. In contrast, when factor
models have similar S R?w model uncertainty tends to be high.

Figure 3.3 plots the time-series of distances in S Rf,. More precisely, we show the difference
between the maximal SR,QY and the 90th-quantile of SR?W as well as the difference between
the maximal SR? and medium SR?2. Strikingly, the difference in SR? decreases obviously
before the stock market crashes and remains at a low level during the bear markets. For
example, the distance between the highest and medium in-sample S R'27 is close to 0.2 (daily)
between 1997 and 1998, but it plunges to almost 0 from 1998 to 2000. After the tech bubble,
factor models have been becoming more similar in terms of in-sample S R?Y.

Theoretically, S R?y is determined by mean returns of factors and their covariance matrix.

We further analyze SR?y by dipping into three parts: (a) average daily factors returns in
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Figure 3.3: Time-Series of Model-Implied Squared Sharpe Ratio (3-Year Rolling Window)

The figure plots the time series of distances in S’Rg, from June 1975 to December 2020. We present the

difference between the highest SRE, and the 90th-quantile of SR,Q,/, as well as the difference between the

highest SRE, and medium SR?Y, SR% is the model-implied squared Sharpe ratio, Ex [f7]TV7_1ET [f+]- Ev[fy]
and V., are estimated using the daily factor returns in the past 36 months.

the past three years; (b) average daily factor volatility in the past three years; (c) average
pairwise correlation among daily factor returns in the past three years. Figure 3.4 plots these
time series.

In Figure 3.4a, we show that the average daily return of all 14 factors is incredibly volatile.
The average daily return also exhibits cyclical patterns. Specifically, it declines during the
run-ups of stock markets. However, it plummets to the bottom during the market crash and
recovers gradually after the bear markets. In the recent three most influential market crashes
(dot-com bubble, 2008 global financial crisis, and the Covid-19), the average factor returns
decline to near zeros. In the past decade, the profitability of these 14 factors is no longer
comparable to their historical performance. One potential reason is that more investors
implement the same investment strategies after the publication of these factors (see McLean
and Pontiff (2016)).

Figure 3.4b plots the average volatility of 14 factors. Even though the average factor
volatility increases in the bear markets, the factor returns before the dot-com bubble are not
as volatile as after 2000. Typically, the average standard deviation of 14 factors is between
0.2% and 0.4%. During the dot-com bubble and recent global financial crisis, it surges to
higher than 1% daily. However, it is evident from figure 3.4b that model uncertainty does
not have the same time-series pattern as the average factor volatility.

During market crashes, it is highly likely that arbitrageurs who invest in these factor

strategies will exit the market simultaneously, thus driving up comovements among factors.
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Figure 3.4: Decomposing the Model Uncertainty

The figures plot the time-series of (a) average daily returns of factors, (b) average daily factor volatility,
and (c) average pairwise (absolute) correlation among daily factor returns in the past three years, and these

statistics are estimated using the daily factor returns in the past 36 months.
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Since the correlation matrix of factors determines the extent to which investors can diversify
their investment, it could potentially influence the distances in S R?y. To illustrate this point,

20 The average

we plot the time series of the average pairwise correlation of 14 factors.
correlation exhibits a similar cyclical pattern as model uncertainty. However, there are two
key differences: (a) the average correlation decreases before the 2008 crisis while our model
uncertainty starts to climb up from 2006, and (b) model uncertainty increases from 2015 to
2019, while the average correlation among factors declines during the same period.

To sum up, model uncertainty is high when the distances in S REY among different factor
models are low. Since the in-sample S R?y always increases with more factors included, we are
uncertain about whether to include an additional factor if the benefit of including it is only
marginal. Furthermore, model uncertainty about linear SDFs increases dramatically during
the run-ups and stands at the peak during bear markets because different factor models are

highly analogous.

3.4.3 Correlation with Other Economic Variables

Figure 3.1 indicates that model uncertainty increases during times of extreme uncertainty in
the financial markets and economy. A natural question is how our model uncertainty index
correlates with a number of key financial and macroeconomic variables known as capturing
critical financial and economic fluctuations.

There are several notable uncertainty measures in the literature. The first measure is
VXO/VIX index?' (used in Bloom (2009)), which quantifies forward-looking market volatil-
ity. Subsequent to Bloom (2009), Ludvigson, Ma, and Ng (2021) and Jurado, Ludvigson, and
Ng (2015) develop the real, macro and financial uncertainty measures by exploiting a large
set of macro and financial variables.? Baker, Bloom, and Davis (2016) use the coverage of
economic or policy-related keywords in the media as proxies for economic policy uncertainty.

In addition to uncertainty measures, we compare model uncertainty with the intermediary

factor from He, Kelly, and Manela (2017), the term yield spread (the yield on ten-year

20At the end of each month ¢, we use daily factor returns from month ¢ — 35 to month ¢ to compute the
pairwise correlation between any two factors, denoted as p;;. The average is computed as m > £ |pijl-

21VIX and VXO index are essentially the same: the correlation between them is higher than 0.98.

22They quantify the h-period ahead uncertainty by the extent to which a particular set of economic vari-
ables (either real, macro, or financial) become more or less predictable from the perspective of economic
agents. Suppose there is a set of economic indicators, Y; = (y1,...,yz¢)". For each variable, they find the
conditional volatility of the prediction errors: wj¢(h) = \/E[(yj.t+n — E[yje+n|l])?[I:]. The aggregate un-
certainty is quantified by the average conditional volatility of the prediction error of each economic indicator:
ug(h) = Zle wju;i(h), where w; is the weight on the j-th economic indicator. The detailed econometric
framework could be found in the original papers. Our paper considers their one-period ahead uncertainty
measures.
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government bonds minus the yield on three-month treasury bills), and the credit spread (the
yield on BAA corporate bonds minus the yield on AAA corporate bonds).

We report in Table 3.2 the results from the regression of model uncertainty on its one-
period lag and some contemporaneous economic variables. By running these regressions, we
do not intend to study the causal relationship between model uncertainty and other economic
variables. Instead, our objective is to describe the contemporaneous relation between them.
We also want to point out that model uncertainty is persistent?® since it is constructed in a
rolling window of 36 months. Therefore, we need to be careful in statistical inference. In all
following tables, we use Newey-West standard errors (see Newey and West (1987)) with 36
lags in the regressions involving model uncertainty.

As Table 3.2 shows, a number of economic variables are significantly related to model
uncertainty, even after we control one-period lagged entropy in the regressions. For exam-
ple, model uncertainty is positively correlated with financial uncertainty and the VXO index
but almost orthogonal to real, macro, and two economic policy uncertainty measures. This
finding is intuitive since model uncertainty mainly refines information in financial markets.
In addition, the intermediary factor and term yield spread negatively relate to model uncer-
tainty. In column (10), we run horse racing among the VXO index, the intermediary factor,
and term yield spread: While the coefficient estimates of the VXO index and term yield
spread still remain significant, the intermediary factor becomes inconsequential.

Comments. Conceptually, our model uncertainty index quantifies a different layer of
uncertainty from other measures. The stock market volatility, proxied by the VXO index,
measures the second-moment investment risk. Three uncertainty measures in Ludvigson,
Ma, and Ng (2021) and Jurado, Ludvigson, and Ng (2015) are essentially volatilities of
prediction errors. In other words, they measure the dispersion of unexpected changes in
economic indicators. Two economic policy uncertainty indices in Baker, Bloom, and Davis
(2016) are to quantify public attention to economic policy. In contrast, our paper quantifies
model uncertainty about linear SDFs. Since we know the lower and upper bounds of en-
tropy, we can easily detect the degree of model uncertainty in the cross-section. For example,
model uncertainty reaches its upper bound in some periods, implying that different models’
posterior probabilities are almost identical. In short, our model uncertainty index is comple-
mentary to other uncertainty measures developed in the past literature. More importantly,

ours provides a new angle of analyzing and understanding investment uncertainty.

23Strong persistence of the time-series process is ubiquitous in other uncertainty measures. Table 3.A.2
shows the AR(1) coefficients of the other six uncertainty sequences, and we find that the real, macro and
financial uncertainty measures also have AR(1) coefficients less than but close to 1. It is well-known that
the volatility of asset returns tends to cluster. When we run the AR(1) for the VXO index, the coefficient
estimate of p is 0.812. Only the second economic policy uncertainty measure (EPUs;) suffers less from
massive autocorrelations.
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Table 3.2: Regressions of Model Uncertainty on Contemporaneous Variables

(1) (2) 3) (4) () (6) (7) (8) (9) (10)

Lagged Entropy 0.979**  0.982** 0.983** 0.985*** 0.983** 0.983** 0.986**  0.985"**  (0.986™* (.983"**
(128.85) (142.76) (146.97) (106.55) (105.75) (129.25) (161.37) (150.06) (154.04) (131.19)
Financial Uncertainty — 0.212*

(1.95)
Macro Uncertainty 0.174
(1.53)
Real Uncertainty 0.140
(1.20)
EPU I 0.000
(0.33)
EPU II 0.000
(1.07)
VXO 0.005** 0.004**
(2.20) (2.34)
Intermediary Factor -0.503** -0.196
(-2.01) (-0.71)
Term Spread -0.034* -0.033**
(-3.44) (-2.44)
Default Spread -0.003
(-0.09)
Sample size 546 546 546 432 432 420 546 546 546 420

The table reports the results from the regression of model uncertainty on its one-period lag and some
contemporaneous economic variables (X;y1):

Entropyi11 = Bo + P1Entropy; + pXir1 + €141-

X471 include a) financial, macro, and real uncertainty measures from Ludvigson, Ma, and Ng (2021) and
Jurado, Ludvigson, and Ng (2015) in columns (1) - (3), b) two economic policy uncertainty (EPU) indices
from Baker, Bloom, and Davis (2016) in columns (4) and (5), ¢) VXO index in column (6), d) the intermediary
factor from He, Kelly, and Manela (2017) in column (7), e) term spread in column (8), f) default spread in
column (9), and g) VXO index, the intermediary factor, and the term spread in column (10). The t-statistics
are computed using Newey-West standard errors with 36 lags. *, ** and *** denote significance at the 90%,
95%, and 99% level, respectively.

3.5 Mutual Fund Flows

If investors consider model uncertainty a crucial source of investment risk, a natural predic-
tion is that their portfolio choice decisions are related to our model uncertainty measure.
The difficulty in empirical tests arises due to the lack of observations in their complete port-
folio choice. To tackle this issue, we rely on mutual fund flows, which have been studied
extensively by the past literature due to their availability. Also, the mutual fund sector is
one of the largest financial intermediaries through which individual investors participate in
the US stock markets. Hence, we use mutual fund flows as proxies for investors’ portfolio
rebalancing and study how mutual fund investors react to model uncertainty shocks.

The data is available on CRSP survivor-bias-free US mutual fund database. The database

includes investment style or objective codes from three different sources over the whole life
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of the database.? The CRSP style code consists of up to four letters. For example, a fund
with the style “EDYG” means that i) this fund mainly invests in domestic equity markets (E
= Equity, D = Domestic), and ii) it has a specific investment style “Growth” (Y = Style, G
= Growth).? The quality of data before 1991 is low because the CRSP investment objective
code is incomplete. For example, only domestic equity “style” funds and mixed fixed income
and equity funds are recorded before 1991. Also, the market values of institutional holdings
proportional to the total market value of all stocks (in CRSP) were tiny. Therefore, we focus
on the sample from January 1991 to December 2020.

To begin with, we define the aggregate mutual fund flows. Following the literature (see

Lou (2012)), we calculate the net fund flows to each fund ¢ in period ¢ as
FlO'LUi,t = TNAZ‘7t - TNAi,t—l X (1 + REEJ) <315)

where TN A, , and RET;; are total net assets and gross returns of fund ¢ in period ¢. Next,
we aggregate individual fund flows in each period across all funds in a specific group (e.g.
all large-cap funds) and scale the aggregate flows by the lagged total market capitalization
of all stocks in CRSP:

ZieY F lowi,t

Flows) = 3.16
ows CRSP-Market-Cap,_;’ (3.16)

where Y specifies a certain investment objective, such as small-cap funds.

We use the canonical Vector Autoregression (VAR) model to study the dynamic responses
of fund flows to model uncertainty shocks. Specifically, we consider the following reduced-
form VAR(!) model:

Y, =By +B1Y;_1+ -+ BYs + uy, (3.17)

where [ denotes the lag order, Y; is a k x 1 vector of economic variables, u; is a k X 1 vector
of reduced-form innovations with the covariance matrix ¥,,, and (Byg, By, ..., B)) are the
coefficient matrices.

Past literature often relates reduced-form innovations to structural shocks, i.e., u; = Sey,
where S is a k£ X k non-singular matrix, and €; is a k x 1 vector of structural shocks, which
are orthogonal to each other by definition. We use the Cholesky decomposition to identify
the dynamic responses to uncertainty shocks, so the ordering of economic variables in Y; is

equivalent to different identification assumptions, which are specified below.

24From 1962 to 1993, Wiesenberger objective codes are used. Strategic insight objective codes are pop-
ulated between 1993 and 1998. Lipper objective codes start in 1998. Instead of using the three measures
mentioned above directly, CRSP builds its objective codes based on them.

25More details are in the handbook of CRSP survivor-bias-free US mutual fund database.
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3.5.1 Aggregate Equity vs Fixed-Income Funds

Since our model uncertainty measure is based on factors in the US, we delete all foreign
mutual funds. In the baseline analysis, we consider the aggregate mutual fund flows to the
entire equity and fixed-income markets. That is, we study the VAR regression in equa-
tion (3.17), where Y," = (Entropy,, Flows!", Flows’™"). We next use impulse response
functions (IRFs) to better understand the dynamic effects and propagating mechanisms of
uncertainty shocks.

IRFs greatly depend on the identification assumption, i.e., whether model uncertainty is
an exogenous source of fluctuations in fund flows or an endogenous response. In the first
case, model uncertainty is a cause of fund flows, while it acts as a propagating mechanism in
the latter case. Without taking a strong stance on the identification assumption, we aim to
investigate the dynamic relationship between fund flows and several uncertainty measures,
either as a cause or propagating mechanism. To make as few assumptions as possible, we
focus only on the dynamic responses to uncertainty shocks and are silent on how innovations
in fund flows affect model uncertainty. This simplification allows us to ignore the ordering
of other economic variables beyond model uncertainty.

In the benchmark case, we place model uncertainty first in the VAR. Hence, the implicit
identification assumption is that fund flows react to the contemporaneous uncertainty shocks,
while model uncertainty does not respond to the shocks to mutual funds in the current period.
We consider a different identification assumption in robustness checks in Section 3.8; that
is, we put model uncertainty as the last element in Y;. As shown below, the IRFs to model
uncertainty shocks are essentially robust to the alternative identification strategy, whereas
the IRF's to other uncertainty measures are not.

Table 3.3 reports the results from the VAR estimation. The sample ranges from January
1991 to December 2020. The lag is chosen by BIC and equals one. In addition, we standardize
all economic variables such that they have unit variances. We also include the lagged market
return and VXO index as control variables in each regression. The reported t-statistics
are based on the Newey-West estimate of the covariance matrix with 36 lags. First, model
uncertainty only relates to its lag. Second, the VXO index positively predicts the aggregate
flows to fixed-income funds: one standard deviation increase in VXO predicts 0.17 standard
deviation inflows to fixed-income funds. Third, model uncertainty negatively forecasts equity
fund flows, and the coefficient estimate is sizable in both economic and statistical senses.
In particular, one standard deviation increase in model uncertainty implies 0.34 standard
deviation equity fund outflows. Although we cannot interpret the regression results as causal,
we still find that investors in domestic equity mutual funds tend to decrease their exposures

when model uncertainty increases.
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Table 3.3: VAR Estimation of Monthly Entropy, Flows to Domestic Equity Funds, and
Flows to Domestic Fixed-Income Funds

Entropy.1 Flows{} Flows, ™
Coeflicient  t-statistic Coeflicient t-statistic Coeflicient t-statistic
Intercept 0.042 1.266 -0.064 -0.259 1.615%** 8.197
Entropy: 0.985*** 140.610 -0.012 -0.178 -0.344%*%* 8,106
Flows!! 0.009 1.198 0.247*** 3.856 -0.081 -1.329
Flowsfq“ity -0.003 -0.331 -0.093 -1.500 0.240%%* 4.044
MKT, -0.008 -0.980 -0.054 -0.642 0.062 0.970
VX0, 0.006 0.483 0.170** 2.115 -0.010 -0.251

This table reports the results from the VAR estimation in equation (3.17), where Y, =

(Entropys, FlowsET, FlowsP™"). Entropy, is the model uncertainty measure, and FlowsE! (Flows ")

is the aggregate flows to the domestic fixed-income (equity) mutual funds, normalized by the lagged total
market capitalization of all stocks in CRSP (see equation (3.16)). The lag is chosen by BIC and equals one.
In addition, we standardize all economic variables such that they have unit variances. We also control for the
lagged market return (M KT;) and VXO index (VXOy) in each regression. The sample spans from January
1991 to December 2020. We report both coefficient estimates and t-statistics, calculated using Newey-West
standard errors with 36 lags. *, ** and *** denote significance at the 90%, 95%, and 99% level, respectively.

Figure 3.5 shows the dynamic responses of fund flows to model uncertainty shocks in
VAR-1. Most strikingly, model uncertainty innovations sharply induce fund outflows from
the US equity market, with the effects persisting even after 36 months, as depicted in Panel
(a). The impulse response functions (IRFs) start from around -0.6 in period zero and slowly
decline to -0.35 in period 36, significantly negative based on the 90% standard error bands.

In contrast, model uncertainty has negligible effects on fixed-income fund flows (see Panel

(b))-

3.5.2 Different Equity Mutual Funds

We further study the heterogeneous responses of different equity mutual funds to model
uncertainty shocks. In particular, we split equity mutual funds into four categories: (a) style
funds that specialize in factor investing, (b) sector funds that invest in specific industries
(e.g., gold, oil, etc.), (c) small-cap funds that invest in relatively small stocks,?® and (d)
large-cap funds that invest in large stocks.

Table 3.4 reports the results from the VAR estimation in equation (3.17), where Y," =
(Entropy,, Flows:™, Flows:*®" Flows:™ ! Flows.""¢). The lag of VAR is chosen by BIC
and equals one. Since the cap-based investment objective code is available after 1997, the
sample begins in January 1998. First, after controlling its lag, model uncertainty is negatively

predicted by large-cap fund flows and small-cap fund returns. Second, model uncertainty

26When we mention small funds, we refer to the funds with the CRSP investment objective codes equal
“EDCM”, “EDCS”, and “EDCI”.
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Figure 3.5: Impulse Responses of Equity and Fixed-Income Mutual Fund Flows using
Entropy as Uncertainty

This figure shows the dynamic impulse response functions (IRFs) of fund flows to model uncertainty shocks
in VAR-1. The shaded area denotes the 90 percent standard error bands. We consider mutual fund flows to
aggregate equity and fixed-income markets in the US. We normalize the IRF's such that the model uncertainty
shock increases one standard deviation model uncertainty. We place model uncertainty first in the VAR.
Hence, the implicit identification assumption is that fund flows react to the contemporaneous uncertainty
shocks, while model uncertainty does not respond to the shocks to mutual funds in the current period. The
data are monthly and span the period 1991:01 - 2020:12.

negatively forecasts style and small-cap fund flows, and the coefficients are sizable. Specifi-
cally, if model uncertainty rises by one standard deviation, style (small-cap) fund flows tend
to drop by 0.26 (0.12) standard deviation over the next period. On the contrary, we do not
discover a significant relationship between model uncertainty and sector (large-cap) fund
flows.

Different from model uncertainty, the traditional volatility-based uncertainty measure
(VXO) plays a limited role in the VAR regression. It can marginally predict small-cap fund
flows, but the sign of coefficient estimate is counter-intuitive: when uncertainty goes up,
investors tend to invest more in small-cap funds. Instead, we observe a negative response
of small-cap funds when using entropy as the uncertainty measure. Therefore, we argue
that our model uncertainty index captures an essential source of investment risk for equity
investors, which is omitted by the traditional VXO index.

Figure 3.6 shows the dynamic responses of four different types of equity fund flows to
model uncertainty shocks in VAR-1. Consistent with Table 3.4, model uncertainty shocks
reduce future style fund flows, and the effects are long-lasting (see Panel (a)). This obser-
vation is intuitive. Style funds refer to the growth, income, growth & income and “hedged”
funds, so they are more likely to rely on the factor strategies used in constructing model
uncertainty. Therefore, the outflows from style equity funds are remarkably enormous when

the model uncertainty is high.
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Table 3.4: VAR Estimation of Monthly Entropy and Flows to Domestic Equity Funds with
Different Investment Objectives

Entropys41 Flows™/* Flowsgsqer Flowsg Flowsk8*
Coefficient  t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic
Intercept 0.268*** 3.270 1.582%** 5.195 0.180 0.974 0.533 1.525 0.347 0.746
Entropy; 0.952%%* 67.064 -0.261%%* 5672 -0.021 -0.525 -0.121%* -1.967 -0.014 -0.209
Flou,rsityle -0.012 -1.048 0.211%%* 2.936 -0.056 -1.034 -0.003 -0.054 0.003 0.034
Flowse*r  0.031 1.553 -0.056 -1.089 0.254* 1.686 -0.059 -0.664 -0.123%* -2.266
Flowsfma” -0.001 -0.035 0.010 0.169 0.039 0.541 0.424%%* 6.081 0.089 1.225
Flowsiame 0.019* 1.682 0.062 1.181 -0.043 -0.661 -0.107* -1.731 0.092 1.164
thyle 0.191 0.987 0.627 0.682 0.401 0.944 -0.192 -0.215 -1.891* -1.652
waor 0.043 0.900 0.121 0.956 0.367 0.957 -0.210 -1.115 0.010 0.056
Rfm“” -0.165%* -2.566 -0.212 -0.983 -0.126 -0.363 0.535%* 1.967 0.383 1.527
Ri‘"ge -0.099 -0.741 -0.437 -0.576 -0.605 -1.610 -0.022 -0.034 1.468* 1.653
VXO, 0.006 0.510 -0.027 -0.467 0.067 1.022 0.093* 1.957 -0.013 -0.151

This table reports the results from the VAR estimation in equation (3.17), where Y, =
(Entropyt,Flowsftyle,Flowsfecwr,Flowsfm“”,Flowsim'ge). Entropy; is the model uncertainty measure,
and Flows;™'" (Flows*“t", Flowsi™™! Flows\"™9) is the aggregate flows to the domestic style (sector,
small-cap, large-cap) mutual funds, normalized by the lagged total market capitalization of all stocks in
CRSP (see equation (3.16)). The lag is chosen by BIC and equals one. In addition, we standardize all
economic variables such that they have unit variances. We also control for the lagged fund returns of each
type and VXO index in each regression. The sample spans from January 1998 to December 2020. We report
both coefficient estimates and t-statistics, calculated using Newey-West standard errors with 36 lags. *, **
and *** denote significance at the 90%, 95%, and 99% level, respectively.

Moreover, we observe significantly negative IRFs of small-cap funds (see Panel (c)),
although the effects are not as persistent as in style funds. This observation is reasonable
since we include two size factors in model uncertainty. On the contrary, sector and large-cap
funds almost do not respond to model uncertainty shocks. One potential explanation is that
these two types of funds are primarily passive-investing funds, but model uncertainty mainly

affects actively-managed funds.

3.5.3 Different Fixed-Income Mutual Funds

Similar to the previous section, we divide all fixed-income mutual funds into four categories:
(a) government bond funds, (b) money market funds, (c¢) corporate bond funds, and (d)
municipal bond funds. This subsection repeats a similar VAR estimation and investigates
the dynamic responses of fixed-income fund flows to model uncertainty shocks.

Table 3.5 shows the results from the VAR-1 regression. According to columns (3) and
(4), model uncertainty positively predicts the aggregate fund flows in US government bonds.
US government bonds are notable for their superior safety over other asset classes. Hence,
investors tend to allocate more wealth to safe assets when model uncertainty is more sub-
stantial. In contrast, model uncertainty negatively forecasts corporate fund flows, so mutual
fund investors reduce their exposure to corporate bonds following high model uncertainty.

Next, we report the IRFs of different fixed-income funds to entropy shocks in Figure
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Figure 3.6: Impulse Responses of Equity Fund Flows with Different Investment Objective
Codes using Entropy as Uncertainty

This figure shows the dynamic impulse response functions (IRFs) of fund flows to model uncertainty shocks
in VAR-1. The shaded area denotes the 90 percent standard error bands. We consider equity fund flows
with different investment objective codes (style, sector, small-cap, and large-cap). We normalize the IRFs
such that the model uncertainty shock increases one standard deviation model uncertainty. We place model
uncertainty first in the VAR. Hence, the implicit identification assumption is that fund flows react to the
contemporaneous uncertainty shocks, while model uncertainty does not respond to the shocks to mutual
funds in the current period. The data are monthly and span the period 1998:01 - 2020:12.
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Table 3.5: VAR Estimation of Monthly Entropy and Flows to Domestic Fixed-Income
Funds with Different Investment Objectives

Entropy 1 Flows])| Flows;, 1" Flows (T Flowsy™
Coefficient  t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic
Intercept 0.381%** 2.812 -0.574%%F  3.305 -0.191 -0.724 1.033%** 4.198 -0.132 -0.576
Entropy, 0.983%** 97.964 0.182%* 2.535 -0.049 -0.816 -0.189*%*%*  -2.712 0.093 1.621
Flows]” 0.016** 2.407 0.341%%* 4.580 0.090 1.325 0.094 1.448 0.136** 1.991
Flows;""™ 0.011 1.528 -0.017 -0.369 0.252%+%* 3.125 -0.064 -1.072 0.016 0.299
Flows””  -0.012 -0.990 0.008 0.235 0.029 0.709 0.161%* 2.264 0.166%** 2.591
Flows™ ™ -0.022%* -2.067 0.131%** 2.064 -0.095 -1.380 0.200 1.455 0.193 1.336
VXO, 0.006 0.590 0.044 0.623 0.191%* 2.298 -0.007 -0.084 -0.094 -1.422

This table reports the results from the VAR estimation in equation (3.17), where Y, =

(Entropys, Flows{’’, Flows; ", Flows{"'", Flows{™*""). Entropy; is the model uncertainty measure, and

Flows?®" (Flows;"""®, Flows;""?, Flows"") is the aggregate flows to the domestic government bond

(money market, corporate bond, and municipal bond) mutual funds, normalized by the lagged total market
capitalization of all stocks in CRSP (see equation (3.16)). The lag is chosen by BIC and equals one. In
addition, we standardize all economic variables such that they have unit variances. We also control for the
VXO index in each regression. The sample spans from January 1998 to December 2020. We report both
coefficient estimates and t-statistics, calculated using Newey-West standard errors with 36 lags. *, ** and
*** denote significance at the 90%, 95%, and 99% level, respectively.

3.7. Not surprisingly, we document sharp dynamic inflows to government bond funds. As
Panel (a) suggests, one standard deviation increase in model uncertainty corresponds to
more than 0.7 standard deviation increase in government bond fund inflows at time zero,
and the dynamic response persists for more than 36 periods. On the contrary, the IRFs of
other fixed-income fund flows are not significant.

In addition, it is worth noting that we do not observe a significant relationship between
model uncertainty and money market funds. The difference between money market and
government bond funds is that the first type has a smaller duration and more liquid, while
the latter consists of government bonds of different maturities. Unlike model uncertainty, the
VXO index significantly predicts positive inflows to money market funds. We interpret these
facts as evidence that high model uncertainty induces “flight to safety”, whereas high VXO
implies “flight to liquidity”. Combined with the previous analyses, we conclude that mutual
fund investors transfer their wealth from style and small-cap equity funds to government

bonds, which are famous for their superior safety.

3.5.4 Comparison with Other Uncertainty Measures

One major concern about the previous analyses is that model uncertainty is correlated with
other uncertainty indicators, so the dynamic responses of mutual fund flows to model un-
certainty shocks are confounded by them. Hence, we study how other uncertainty measures
affect mutual fund flows in this section and compare their dynamic responses with the previ-

ous results. We consider the VXO index and financial uncertainty in Jurado, Ludvigson, and
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Figure 3.7: Impulse Responses of Fixed-Income Fund Flows with Different Investment
Objective Codes using Entropy as Uncertainty

This figure shows the dynamic impulse response functions (IRFs) of fund flows to model uncertainty shocks
in VAR-1. The shaded area denotes the 90 percent standard error bands. We consider fixed-income fund
flows with different investment objective codes (government bonds, money market, corporate bonds, and
municipal bonds). We normalize the IRFs such that the model uncertainty shock increases one standard
deviation model uncertainty. We place model uncertainty first in the VAR. Hence, the implicit identification
assumption is that fund flows react to the contemporaneous uncertainty shocks, while model uncertainty
does not respond to the shocks to mutual funds in the current period. The data are monthly and span the
period 1991:01 - 2020:12.
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Ng (2015) since these two measures are significantly associated with our model uncertainty
measure, as we show in Table 3.2.

Figure 3.8 plots the dynamic responses of four different types of equity fund flows to
VXO or financial uncertainty shocks in VAR-1. Consistent with the previous identification
assumption, We place VXO or financial uncertainty first in the VAR. We also control the
lagged model uncertainty in each regression. First, as Panels (a) and (b) indicate, style funds
experience massive outflows when VXO or financial uncertainty increases. However, these
effects are temporary; that is, the IRFs of fund flows reverse back to zeros immediately after
time zero. On the contrary, model uncertainty shocks are followed by persistent outflows
from style funds even beyond 36 periods. Similarly, the dynamic responses of fund flows to
sector /small-cap/large-cap funds are also transitory and not significant (except for Panel (c)
at period zero).

We further consider the dynamic responses of fixed-income funds in Figure 3.9. When
VXO or financial uncertainty goes up, government bond funds tend to experience massive
inflows, although these effects are less than 50% of those following model uncertainty shocks
(see Figure 3.7(a)). Most strikingly, we document massive inflows to money market funds
after positive VXO and financial uncertainty shocks. In contrast, model uncertainty does
not play a part in money market funds. In other words, model uncertainty shocks primarily
induce “flight to safety”, while other volatility-based uncertainty measures are mainly related
to “fHlight to liquidity”.

In summary, our model uncertainty measure captures some unique dynamic responses
of fund flows, and notably, they are different from traditional volatility-based measures,
such as VXO and financial uncertainty. In particular, we observe significant fund inflows
to government bond funds and outflows from style and small-cap equity funds. In contrast,
VXO and financial uncertainty shocks fail to generate similar dynamic responses. Finally, as
we will show in Section 3.8, the IRFs of fund flows to model uncertainty shocks are virtually
robust to an alternative identification assumption, whereas the effects of VXO or financial

uncertainty shocks tend to be fairly sensitive.

3.6 Investors’ Expectations

This section investigates whether our model uncertainty measure correlates with investors’
expectations of the stock markets. The first measure is from the American Association of
Individual Investors (AAII). The survey is completed weekly by registered members of AAII,
and it asks the investors whether they are bearish, neutral, or bullish on the stock market

for the next six months. Since our model uncertainty measure is of monthly frequency, we
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Figure 3.8: Impulse Responses of Equity Fund Flows with Different Investment Objective
Codes using VXO and Financial Uncertainty as Uncertainty Measures

This figure shows the dynamic impulse response functions (IRFs) of equity fund flows to VXO and financial
uncertainty shocks in VAR-1. Other details can be found in the footnote of Figure 3.6.
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Figure 3.9: Impulse Responses of Fixed-Income Fund Flows with Different Investment
Objective Codes using VXO and Financial Uncertainty as Uncertainty Measures

This figure shows the dynamic impulse response functions (IRFs) of fixed-income fund flows to VXO and
financial uncertainty shocks in VAR-1. Other details can be found in the footnote of Figure 3.7.



use the expectation measures in the last week of each month.

We also consider Robert Shiller’s stock market confidence indices from the survey con-
ducted by the International Center for Finance at the University of Yale. Our paper focuses
on the US one-year confidence index and US crash confidence index. Specifically, the one-
year confidence index is the percentage of the individual or institutional investors expecting
an increase in the Dow in a year. In contrast, the crash confidence index is the percentage of
individual or institutional investors who believe the probability of a catastrophic stock mar-
ket crash in the next six months is lower than 10%. Roughly speaking, the higher the indices
are, the more confident individual or institutional investors are about the stock market.

We consider the following time-series regression:
Expii1 = Po + vEntropy: + v Xi + €41 (3.18)

where Exp;,, is the one-period ahead expectation measure, Entropy; is the model uncer-
tainty measure in period ¢, and X; includes other control variables up to time ¢, such as
lagged expectation indices, VXO and etc. Since all expectation indices are autocorrelated,
we control their one and two-period lags in all regressions.?” We further control lagged mar-
ket returns (S&P 500 index) in the regression for investors’ expectations on the market are
extrapolative (see Greenwood and Shleifer (2014)).

In table 3.6(a), we regress AAII sentiment indices on model uncertainty to explore how
individual investors change their attitudes towards the stock market in response to variations
in model uncertainty. To increase the interpretability of our results, we standard model
uncertainty to have unit variance, so coefficient estimates of Entropy, are interpreted as
the increases in the percentages of bullish /neutral /bearish investors when model uncertainty
grows by one standard deviation.

In columns (1) and (2), Entropy; cannot predict the next-period percentage of bullish
investors. Specifically, the average investors become less bullish if model uncertainty in the
cross-section goes up, but this prediction is not sharp. Columns (3) and (4) regress the
percentage of neutral investors on lagged model uncertainty: If model uncertainty increases
by one standard deviation, the fraction of neutral investors declines by 0.605% or 0.434%,
depending on the regression setup.

The next question is, in which direction do bullish investors change their attitudes?
Columns (5) and (6) indicate that investors are more likely to be bearish following an increase
in model uncertainty. Our interpretation is that some neutral investors become bearish after

observing a higher level of model uncertainty. Finally, we regress the difference between

2"The coefficient estimate of 3-period lagged variable is close to zero and insignificant, so we include only
the first two lags.
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fractions of bullish and bearish investors on entropy. The coefficient estimate of entropy is
negative and significant at the 10% level. Overall, when model uncertainty goes up, market

participants tend to be more pessimistic about the future stock market performance.

Table 3.6: Investors’ Expectations, Confidence Indices, and Model Uncertainty

Panel (a). AAII Sentiment Index

Expi = Bullish Neutral Bearish Bullish - Bearish
0 2) 3) (4) (5) (6) (7) (8)
Entropy, -0.280 -0.374 -0.605%*  -0.434%*  1.043*%*  1.036***  -1.511*  -1.574**
(-0.683)  (-1.122)  (-2.121)  (-2.102) (2.499) (2.656) (-1.826)  (-2.127)
VXO, 0.022 0.079 0.016 -0.009 -0.008 -0.034 0.016 0.118
(0.311) (1.500) (0.211) (-0.161)  (-0.169)  (-0.500) (0.157) (1.060)
Exp, 0.418%%*F  0.373%F*  (0.487F*F*  (0.452%F*F  (.367***F  0.335%F*  0.373*F*  (.331%**
(8.593) (6.954) (9.709) (10.249) (9.238) (7.155) (7.325) (5.983)
Exp,_4 0.098**  0.158%**  0.213%*k  (.253%%k  (.182%FF  (.208%FF  0.118%FF  (.160%**
(2.434) (3.531) (6.103) (6.209) (5.676) (5.850) (3.151) (3.623)
Lagged Market Returns NO YES NO YES NO YES NO YES
Sample Size 400 396 400 396 400 396 400 396
Ry, 21.76% 22.53% 43.11% 44.98% 27.24% 26.79% 20.92% 21.01%
Panel (b). Shiller’s Confidence Indices
Expiyy = 1-Year Confidence 1-Year Confidence Crash Confidence Crash Confidence
Index - Institution Index - Individual Index - Institution Index - Individual
(1) (2) (3) (4) () (6) (7) (8)
Entropy, -0.365%**  -0.379%F*F  _0.546***F  -0.682%**  -0.562%F*  -0.635%F**  -0.754%*F (. 754FFF
(-2.727)  (-2.952)  (-2.733)  (-5.405)  (-3.265)  (-3.335)  (-5.790)  (-6.048)
VXO, 0.025* 0.030 0.044*  0.080***  -0.058** -0.034  -0.046***  -0.001
(1.767) (0.829) (1.705) (4.204) (-2.153)  (-1.066)  (-2.712)  (-0.047)
Exp, 1.133FF%  1.165%**  0.931%%F  0.949%*F  1.068***  1.065%**  1.086™**  1.071%**
(16.820)  (18.984)  (11.730)  (15.898)  (19.165) (21.126) (16.459)  (13.272)
Exp; 1 -0.270%**  -0.304***  -0.015 -0.045  -0.217FFF  _0.219%FF  _0.241%FF*  -0.208%**
(-3.603)  (-4.449)  (-0.212)  (-0.823)  (-3.540)  (-4.000)  (-4.268)  (-3.078)
Lagged Market Returns NO YES NO YES NO YES NO YES
Sample Size 232 228 232 228 232 228 232 228
R? 82.70% 83.38% 93.17% 93.25% 87.44% 87.01% 92.24% 92.82%

adj

The table reports empirical results in regression: Exp;11 = By + vEntropy: + ¥ X¢ + €141, where Exp;1q is
the one-period ahead expectation/confidence index, Entropy: is the model uncertainty measure in period ¢,
and X; includes other control variables up to time ¢, such as lagged expectation/confidence indices, VXO
and etc. Since all expectation/confidence indices are autocorrelated, we control their one and two-period lags
(Ezp; and Exp;_1) in all regressions. We further control lagged market returns in the regression (we include
six lags). In Panel (a), expectation indices come from the survey conducted by the American Association of
Individual Investors (AAII). The survey is completed weekly by registered members of AAII, and it asks the
investors whether they are bearish, neutral or bullish on the stock market for the next six months. Therefore,
we have the data regarding the percentages of bearish, neutral or bullish respondents each week. Since our
model uncertainty measure is monthly, we use the expectation index in the final week of each month. In
Panel (b), confidence indices come from Shiller’s survey. We focus on the US one-year confidence index and
US crash confidence index. The one-year confidence index is the percentage of the individual or institutional
investors expecting an increase in the Dow in a year. In contrast, the crash confidence index is the percentage
of individual or institutional investors who think that the probability of a catastrophic stock market crash
in the next six months is lower than 10%. The t-statistics are computed using Newey-West standard errors
with 36 lags. *, ** and *** denote significance at the 90%, 95%, and 99% level.

Table 3.6(b) regresses Shiller’s confidence indices on entropy. Unlike the AAII sentiment
index, we also observe the expectations of institutional investors. The results are generally

similar to table 3.6: Investors tend to be more pessimistic about the stock market when model
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uncertainty increases. They also believe that a market crash is more likely to occur following
higher model uncertainty. One interesting empirical fact is that the coefficient estimates
of Entropy,; in the regressions of individual investors’ confidence indices are always more
negative than institutional investors. Hence, individual investors react more dramatically to
the changes in model uncertainty than institutional ones.

In short, we conclude that higher model uncertainty generally predicts that investors in
the survey, be it individual or institutional, will become more pessimistic about the future

stock market performance.

3.7 Evidence in European and Asian Pacific Markets

This section presents the time series of model uncertainty in European and Asian Pacific
stock markets. Instead of using all 14 factors in the US stock market, we include only
nine of them because of the limited data availability. Specifically, short-term and long-term
behavioural factors are excluded because they are unavailable in international markets. For
the same reason, we ignore the size (ME), profitability (ROE), and investment (IA) in Hou,
Xue, and Zhang (2015), and we believe that the Fama-French five factors capture similar
systematic risks. Finally, we end up with nine candidates: MKT, SMB, HML, RMW, CMA,
MOM, QMJ, BAB, and HML devil. Either HML or HML devil can enter the true SDF.
Since the AQR library only provides the QMJ factor from July 1993, and we use a three-year
rolling window, our model uncertainty measure starts from June 1996.

Figure 3.10a plots the time series of model uncertainty in the European stock market
from June 1996 to December 2020. Several results stand out. The time-series patterns in
European markets?® are remarkably similar to the US stock market. In particular, model
uncertainty increases from 1999 and reaches its first peak between 2000 and 2001 because of
the dot-com bubble burst. During these periods, model uncertainty almost touches its upper
bound. After 2002, model uncertainty declines gradually and remains relatively low until the
start of the 2008 global financial crisis. During this long-lasting economic and stock market
crisis, model uncertainty stays close to the upper bound from 2008 to 2012 and only declines
gradually after 2012. Finally, the uncertainty index shoots up again after 2015, similar to
what we observe in the US market.

We next turn to discuss the findings in Asian Pacific markets.?® It is worth noting that we

observe some unique time-series variations in Asian stock markets. According to figure 3.10b,

28European markets include the following countries: Austria, Belgium, Switzerland, Germany, Denmark,
Spain, Finland, France, UK, Greece, Ireland, Italy, Netherlands, Norway, Portugal, and Sweden.

29By saying the Asian Pacific market, we refer to the stock markets in Australia, Hong Kong, New Zealand,
and Singapore.
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Figure 3.10: Model Uncertainty in European and Asian Pacific Markets

The figure plots the time series of model uncertainty about the linear stochastic discount factor (SDF) in
European and Asian Stock Markets. The construction of model uncertainty is the same as in figure 3.1 except
that we use only nine factors to calculate the posterior model probabilities. Details about used factors could
be found in section 3.7. The sample ranges from July 1993 to December 2020. Since we use 3-year rolling
window, the model uncertainty index starts from June 1996. The red line and green lines in the figure show
the lower (0) and upper bounds (1) of model uncertainty.

model uncertainty is high starting from 1997 due to the profound 1997 Asian financial crisis.
Asian stock markets were over-heated, and market crashes appeared in almost every Asian
country. The dot-com bubble in 2000 led to another peak in model uncertainty, which almost
reaches the upper bound. However, the Asian markets recovered quickly after 2000, so the
model uncertainty index declines afterwards. Another steady increase in model uncertainty
appears before and during the 2008 crisis, but the entropy is not as high as in the late 1990s
and drops immediately from 2009. This particular pattern is unlike the US and European
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markets, in which we observe higher model uncertainty of the 2008 crisis than the dot-com
bubble.

Another steady increase in model uncertainty appears before and during the 2008 crisis,
but the entropy is not as high as in the late 1990s and drops immediately from 2009. This
particular pattern is unlike the US and European markets, in which we observe higher model
uncertainty of the 2008 crisis than the dot-com bubble. One potential explanation is that
the 1997 Asian financial crisis, combined with the burst of the dot-com bubble in 2000,
was more destructive than the 2008 financial crisis. There is a short-term upward jump in
model uncertainty between 2011 and 2012 when the US government bonds were downgraded.
Similar to US and European markets, model uncertainty surges from the beginning of 2015.

In short, the international market evidence in this section lends further support to the
time-varying nature of model uncertainty. First, model uncertainty is high in many periods,
way above its lower bound. Second, it fluctuates significantly over time and coincides with
major events in corresponding asset markets. However, model uncertainty is not all alike.
For example, Asian markets display unique behaviours that distinguish them from the US

and European markets.

3.8 Robustness Checks

This section considers several robust checks, including alternative hyper-parameter a in es-
timating factor models, alternative rolling windows in constructing the time series of model
uncertainty, and a different identification assumption under which we re-estimate the dy-

namic responses of fund flows to uncertainty shocks.

3.8.1 Alternative Hyper-Parameter a

One important choice in our Bayesian inference is the value of hyper-parameter a. In the
benchmark case, we assign a to be 4. Just as Section 3.2 shows, a higher a implies a stronger
shrinkage for factors’ risk prices, b.

Figure 3.A.2 plots the time series of model uncertainty using different values of a, includ-
ing 3, 8, 16. Several findings stand out. First, we find that the time-series patterns in model
uncertainty are not sensitive to the choice of a. In fact, the sequences under different values
of a are virtually identical. Second, model uncertainty is increasing in a. This observation is
not surprising since a larger a mechanically shrinks all candidate models to the null model,

rendering factor models to become more similar and driving up model uncertainty.

204



3.8.2 Alternative Rolling Windows

There is a trade-off in choosing the length of the rolling window. On the one hand, we prefer
a larger time-series sample to achieve higher precision in estimating model parameters. The
one-year or two-year daily sample is insufficient since estimating factors’ expected returns
and their covariance matrix is challenging. On the other hand, larger sample size is not
always desirable since it implicitly assumes that factor models remain constant and robust
over a long period. As many research (e.g. McLean and Pontiff (2016)) suggest, factors’
performances deteriorate post-publication. Moreover, a long estimation period of 10 or 20
years will average valuable information concerning factors’ cyclical behaviours.

Motivated by the above discussion, we consider four-year and five-year rolling windows in
Figure 3.A.3. There is one tiny difference: Model uncertainty tends to be smoother in longer
rolling windows, especially the five-year window. Beyond that, the time-series properties are

similar to those found in a three-year rolling window.

3.8.3 Alternative Identification Assumption in VAR

Another robustness check concerns the identification assumption in our VAR analysis. In
Section 3.5, we put uncertainty measures first in Y;. We now consider an alternative setup, in
which uncertainty measures are the last variables in Y;. In other words, we allow uncertainty
measures to correlate with contemporaneous shocks to mutual fund flows, but uncertainty
shocks do not affect mutual fund flows simultaneously. Although model uncertainty is an
endogenous response to innovations in fund flows under this assumption, it is still worth
investigating whether model uncertainty is a key player to propagate those exogenous shocks
over a long-lasting period.

Figures 3.A.5 and 3.A.6 plot the IRF's of fund flows to three uncertainty measures. Under
the current assumption, the IRFs are zeros at period zero by construction. The first column
shows the dynamic responses to model uncertainty shocks. Similar to the observations in
Figures 3.6 and 3.7, an increase in model uncertainty relates to persistent outflows from
style and small-cap funds but sharp inflows to government bond funds. The dynamic effects
are bounded well away from zero even beyond 36 months, although they decline slowly over
time. Hence, the main results in Figures 3.6 and 3.7 are largely robust.

The second and third columns show the IRFs of fund flows using VXO and financial
uncertainty. Surprisingly, VXO shocks imply positive inflows to small-cap funds. On average,
one standard deviation increase in the VXO index corresponds to more than 0.1 standard
deviation fund inflows, and these positive dynamic responses last for around 20 months.

However, the 90% confidence interval of IRF's covers zero effects, so they are on the edge of
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being consequential. Beyond that, the IRFs in other panels are virtually zeros, so there is
little evidence that mutual fund investors react to VXO or financial uncertainty shocks.

Finally, we observe significant inflows to money market funds following positive VXO
shocks, and the dynamic responses have similar economic sizes to those in Figure 3.9. The
key difference under the new identification assumption is that the IRFs of money market
funds to financial uncertainty shocks are no longer significant. In other words, the dynamic
responses to financial uncertainty shocks in Figure 3.9 are driven mainly by the identification
assumption.

To conclude, model uncertainty has robust and persistent effects on mutual fund flows,
particularly the style, small-cap, and government bond funds. We argue that model uncer-
tainty is a crucial determinant of mutual fund flows, regardless of being an exogenous cause
or a merely propagating mechanism. On the contrary, the dynamic responses of fund flows
to volatility-based measures, be it VXO or financial uncertainty, are more or less sensitive to
different identification assumptions. In fact, there is little evidence that equity mutual fund

investors respond to VXO or uncertainty shocks.

3.9 Conclusions

We develop a new measure of model uncertainty in the cross-sectional asset pricing under the
linear SDF specification. Roughly speaking, the measure is based on the entropy of Bayesian
posterior probabilities for all possible factor models. The critical observation is that model
uncertainty is countercyclical: it begins to climb up right before the stock market crashes
and remains at its peaks during bear markets. Since we can calculate the lower and upper
bound of entropy, we can easily discern when model uncertainty is abnormally high or low. In
contrast, other uncertainty measures in past literature do not have this satisfactory property.
We find that model uncertainty almost touches its upper bounds in the burst of the dot-com
bubble and the 2008 financial crisis.

If investors consider model uncertainty as another source of investment risk, their port-
folio choice and expectations of the stock market should be naturally related to model un-
certainty. Our second key observation is that model uncertainty can predict the next-period
mutual fund flows, even after controlling past fund flows, VXO, and the past performance of
mutual funds. In particular, investors seem to reduce their investment in style and small-cap
mutual funds but allocate more of their wealth to safer US government bond funds. Model
uncertainty is also closely related to investors’ expectations and confidence. We document
that investors in the survey, no matter individual or institutional investors, are more pes-

simistic about the stock market when confronted with higher model uncertainty. We find
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similar countercyclical behaviours of model uncertainty in European and Asian Pacific stock
markets.

As model uncertainty in the cross-section is an important source of investment risk,
future theoretical research on portfolio choice should incorporate it into the model. Even
though a few partial equilibrium models have considered model uncertainty of mean-variance
portfolios, no such a general equilibrium model exists, at least according to our knowledge.
Future research could attempt to endogenize model uncertainty in the general equilibrium

model and explain its countercyclical behaviours.

207



Appendices

208



3.A.1 Description of Factors

CAPM. The CAPM in Sharpe (1964) and Lintner (1965) is the pioneer of linear factor
models. The only factor in CAPM is the excess return on the market portfolio (MKT). The
data comes from Ken French’s website.

Fama-French Five-factor model. Fama and French (1993) extend CAPM by introducing
SMB and HML, where SMB is the return difference between portfolios of small and large
stocks, and HML is the return difference between portfolios of stocks with high and low book-
to-market ratios. Fama and French (2015) further include a profitability factor (RMW) and
one investment factor (CMA). Again, the data comes from Ken French’s website.

Momentumn. Jegadeesh and Titman (1993) find that stocks that perform well or poorly
in the past three to 12 months continue their performance in the next three to 12 months.
Therefore, investors can outperform the market by buying past winners and selling past
losers. We download the momentum (MOM) factor from Ken French’s data library.

q-factor model. Hou, Xue, and Zhang (2015) introduce a four-factor model that includes
market excess return (MKT), a new size factor (ME), an investment factor (IA), and finally,
the profitability factor (ROE).

Behavioral Factors. Daniel, Hirshleifer, and Sun (2020) propose a three-factor model
consisting of the market factor and two theory-based behavioural factors. The short-term
behavioural factor is based on the post-earnings announcement drift (PEAD) and captures
the underreaction to quarterly earnings announcements in the short horizon. Instead, the
long-term behavioural factor (FIN) is based on the one-year net and five-year composite
share issuance.

Quality-minus-junk. Asness, Frazzini, and Pedersen (2019) groups the listed companies
into the quality and junk stocks. They find that a quality-minus-junk (QMJ) strategy
generate high positive abnormal returns. We download the QMJ factor from the AQR data
library.

Betting-against-beta. One of the most prominent failures of CAPM is that the security
market line is too flat, so the risk premia of high-beta stocks are not as substantial as
CAPM suggests. Frazzini and Pedersen (2014) constructs market-neutral betting-against-
beta (BAB) factor that longs the low-beta stocks and shorts high-beta assets. We download
the BAB factor from the AQR data library.

HML Devwil. Asness and Frazzini (2013) propose an alternative way to construct the value
factor, which relies on more timely market value information. We download the HML Devil
factor from the AQR data library.
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3.A.1.1 Additional Tables

Table 3.A.1: Summary Statistics of 14 Factors

Full Sample Subsample I Subsample IT

Mean (%) SR Mean (%) SR Mean (%) SR
MKT 7.36 0.43 5.54 0.40 9.18 0.47
ME 1.97 0.22 1.79 0.23 2.16 0.21
IA 3.92 0.66 6.36 1.38 1.48 0.21
ROE 6.21 0.91 8.50 1.72 3.92 0.47
SMB 1.24 0.14 0.89 0.12 1.58 0.16
HML 3.39 0.37 6.30 1.03 0.48 0.04
RMW 3.26 0.52 2.77 0.73 3.74 0.47
CMA 3.42 0.59 4.76 1.05 2.07 0.30
MOM 6.89 0.55 8.94 1.22 4.85 0.30
QMJ 4.31 0.63 3.76 0.94 4.85 0.55
BAB 10.10 1.00 11.99 1.81 8.21 0.65
HML devil 3.03 0.30 5.80 0.90 0.27 0.02
FIN 8.47 0.73 11.67 1.36 5.28 0.38
PEAD 7.57 1.30 9.34 2.00 5.80 0.85

This table reports the annualised mean returns and annualised Sharpe ratios of 14 factors listed in Appendix
3.A.1. The full sample starts from July 1972 to December 2020. We further split the entire sample into two
equal subsamples.

Table 3.A.2: Summary of First-Order Autoregression

(1) (2) (3) (4) (5) (6) (7)
Entropy Financial Macro Real EPU, EPU, VXO

AR(1) 0.986***  0.977**  0.985** (0.984** 0.844** 0.700*** 0.812***
(158.08)  (98.78)  (73.92) (46.84) (24.64) (14.30) (23.40)

Sample size 546 546 546 546 431 431 419

R? 0.9697 0.9523 0.9667  0.9514  0.6929  0.5945  0.6586

t statistics in parentheses: * p < 0.1, ** p < 0.05, *** p < 0.01

The table reports empirical results in the first-order autoregression of seven uncertainty measures: y;r1 =
a+ pys + €,41. Entropy is our model uncertainty measure. Financial, macro and real uncertainty measures
come from Ludvigson, Ma, and Ng (2021) and Jurado, Ludvigson, and Ng (2015). EPU; and EPU, are two
economic policy uncertainty sequences from Baker, Bloom, and Davis (2016). VXO is the forward-looking
market volatility traded in CME. The t-statistics are computed using Newey-West standard errors with 36
lags. *, ** and *** denote significance at the 90%, 95%, and 99% level, respectively.

3.A.1.2 Additional Figures
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Figure 3.A.1: Time Series of Posterior Factor Probabilities
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Figure 3.A.1: Time Series of Posterior Factor Probabilities (Continued)

The figures plot the time series of posterior marginal probabilities of 14 factors. At the end of each month,
we estimate models using the daily factor returns in the past three years. The sample ranges from July 1972
to December 2020. Since we use a three-year rolling window, the time series of factor probabilities start from
June 1975. Shaded areas are NBER-based recession periods for the US.
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Figure 3.A.3: Alternative Rolling Windows
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Figure 3.A.4: Robustness Check: Impulse Responses of Equity and Fixed-Income Fund
Flows under Alternative Identification Assumption

This figure shows the dynamic impulse response functions (IRFs) of equity and fixed-income fund flows to
uncertainty shocks in VAR-1. We identity the IRFs by putting uncertainty last in VAR.
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Figure 3.A.5: Robustness Check: Impulse Responses of Equity Fund Flows with Different
Investment Objective Codes under Alternative Identification Assumption

This figure shows the dynamic impulse response functions (IRFs) of equity fund flows to uncertainty shocks
in VAR-1. We identity the IRFs by putting uncertainty last in VAR.
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Figure 3.A.6: Robustness Check: Impulse Responses of Fixed-Income Fund Flows with
Different Investment Objective Codes under Alternative Identification Assumption

This figure shows the dynamic impulse response functions (IRFs) of fixed-income fund flows to uncertainty
shocks in VAR-1. We identity the IRF's by putting uncertainty last in VAR.
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3.A.2 Proofs

Lemma 3.A.1 Suppose that the vector of test assets, R, includes all candidate factors,
f. Let V,, = Var[f,]|, Cy = Cov[R, f,], and X denotes the covariance matriz of R. The

following two equalities always hold:

I
¥iC, = < p” ) : (19)
Ov—p,)

c,x'C, =V, (20)
Proof. Without loss of generality, the vector R;, t =1,...,T, can be arranged as

Tt
Rt = f—*y,t
'rf

where r{ is a vector of test assets excluding candidate factors f;. Under this specification,

V., U/ V-
z:wwm:<5’vv),ca20wmjw=<ﬁj,
Y - Y

where
V, = Var[f,], V_,=Var <f_:)] , U, =Cov [(‘f—€7> , f7] .
T r
Then
w1l ( (V'v o U'YTV—_'le'y)_l _V—y_lU—yT<V—'7 - UVV—_wlU—yT)_1> .
VULV, - UV (Ve — U,V U)

or equivalently

== ( V, UV Uy (V- Uy ‘f;lU.,)—lUJv_;)
V- UVIUD Y (Ve - TV
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Thus
g GUIVIUS U e v [
—(V_, - U, VU 'U, Vv, (V,-U, v, 'uj)! U,
(VG UVEUL) Y, — (V- UV, VT,
(V4 — U, VIIUD) U, + (Vo — U, V. 'UT) U,

(& )
O(v-p,)

which directly implies that C’I >C, =V, =u

3.A.2.1 Proof of Proposition 3.1

Proof. As in section 3.2.2, we assign g-prior for b.: by | M, g ~ N <0, 4 (C’JEACW)A).
From lemma 3.A.1, C,I >71C, = V,, so the prior distribution for b, is simplified as
N (0, :%ij_l). Thus, the variance of linear SDF m.,, conditioned that g and V,, are known,

is

Var[m,| = [Var [ fy—E] f,y]) | b,YH + Var [E [1 —(fy — E[fw])T b, | bw“
= [tr (bTV b )} + Var [1 - OTb,y}
tr (V,E [b b)])+0

tr( V)

T

This completes the proof of Proposition 3.1. m

3.A.2.2 Proof of Proposition 3.2 and 3.3

Proof. Now we prove proposition 2 and 3. We assume that the observed excess returns are

generated from a multivariate Gaussian distribution:
iid
Ry,....,Rr | M, b, g~ N(C,b,, X). (21)

The likelihood function of observed data D = {R;}L; is

T
NT T ].
PID | My b, gl = (2m)" = [B] 77 exp{— > (R~ Cyby) TS (R, — Cyby)}. (22)

t=1
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In order to find the posterior model probabilities, we need to derive the marginal likeli-
hood of data D conditional on model M.,. First of all, we find p[D | M., g] by integrating
out by. We assign g-prior for by: by | My ~ N <0, z (C.IZ_lC,y)_1>, thus

plD | M., g] = /p[D | My, b, g]7[by | My, g]db,
T

NT T 1
_ /(27r)—2\2]]‘2 exp{—5 D (R, — Cyby) TS (R, — Cyb,)}
t=1
Py _ 1 T B
(2#)_7]% (C,IE—ICA/) 1 |72 exp{ - %b:'; (C,IE 107) bv}db,y
1 1«
= @n) T BT (C]270)  Ten { -5 Y RIT TR
t=1

T 1 —
/exp{ - 5[%@ (c;x7'C,) by — 26 C 7' R] }db,,

where R = 1 ST R, Let

A~ _1 R
b, = T + p (cy=7'cy) C;E7'R,
~ 1 _ -1
Eb == ?F (CTE IC»-Y) B

so the posterior distribution of b conditional on (D, g, M,) is
b'v | D7 g, M'y NN(B'yaib)a

b_, | D, g, My =0.

We further simplify the integral term in p[D | M., g]:
T 1 —
/ eap{ - 5[—2 —=b! (C;=7'C,) by —2b]C X' R]}db,
g

N 1 N .
= exp{—bggblbw}/exp{_i(bv - b’y)TEbl(bw — by)}db,

R's'C, (CI='C,) CIZ'R}(2r) 7 |52

R'>'c, (CIs'Cc,) CTS 'R}

+9)
(QW)%|1 j]_ (CT 1C’) | exp{ 211 g7 )

oy Py _ -1,1 T —1_ _ =
—(1+9)F@n% |T(CJ2 'c,) |Qexp{2<1‘q+g)R s-'c, (cl='c,) CI= 'R}
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where RTZ”C',7 (C,IE*CA,) C,IE”E = T;V{1T7 = SR?W the in-sample maximal squared
Sharpe ratio that can be achieved by investing in the factors under model M,,. Plug it into

the expression of p[D | M., g] above, we have

(1+g9)" = Ty -1 9T =T Ts—1 Ty—1
p[D’M"”g]:@W)%—H ZR R, + (Hg)Rz c, (c]=7'c,) CI= 'R}
(1+g) = -3 Ty-1 9T 2
= ~-S"R/S 'R, + SR
et Z g

To make p[D | M., g] more transparent, we rewrite Y., | R] X' R

T

=tr(2'Y (R~ R)(R,— R)") + TSR

mazx
t=1

Finally, we end up with the formula in Proposition 3.2, that is,

LT B o 1497
p[D | My, g =exp{ = Str(S! Y (RR-R)(R-R)) - (SR?naX 1.4 i gSR3> }—((QW)N?)|E|€
t=1

T-1 ~ g (1+9)" 7
eXp{ 9 I'( ) 2 < max 1+g ~y (27‘(‘)T|2’5

(23)

However, when we compare different models, the common factor unrelated to (M., g) can

be ignored, so we simplify the marginal likelihood of data as following:

D | My gl (1-4.9)F exp { s | (24)

An equivalent way to think about equation (24) is to treat it as the Bayes factor of

model M., relative to M. One amazing fact is that p[D | My, g] does not depend on ¢*°

O0p[D | Mo, g = 2m) "2 |27 % exp { - TF2tr (2718) — TSRZ,, }.

max
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Therefore, the Bayes factor could be defined as

p{ID | M'ya g] _Py { gT 2}
PE17v I (14 9) 3 SR
p[D | My, g] (LHg)"= exp 2(1+g) 7

The prior for g is such that 7[g] = 252(1+ g)~2. We calculate the marginal likelihood of

BF,(g) =

data only conditional on model M., by integrating out ¢ in equation (24).

a—2 [ _pyta g T o
p[D | M| 5 / (1+9) eXp{1+g[28R“’}}dg
G_2 o0 _pyta 1 T
= (1 ———  |=SR?
5 €XP SR /0 +g) 2 exp{ T g [QSRA/]} dg

r

2

T pPy+a T 2
ESR }/0 k eXp{ —k [§SR,J} dk
L

2

pyta T ap?2

1—
SR?Y (gSRQ) / tp'v-&-a ) 7tdt

~
0

a—2 T T o T

where ['(s, ) = fom t5~1e~" dt is the lower incomplete Gamma function; the scalar s. is defined

as Sy = ’”TM — 1. We have proved the formula of Bayes factor BF, in Proposition 3. To

prove that the Bayes factor is always increasing in SR,QY always decreasing in p., we use the

original representation of Bayes Factor, that is,

a—2 [ _pyta qgT 9
BF, = 1
T2 / L+ eXp{2<1+g>SR’*}dg

Take the first-order derivative with respect to SR,ZY and p.:

OBF, a-2 /°° qgT _py+ta { g ) }
= 1+ 2 SRZ ¢ dg > 0,
BE 2 Jy 2t T T P g g Y
OBF, a—2 [* log(l+g) _pyta g )
— _ el T 9) R2 Y q
Op~y 2 /0 2 (L+g) = exp 2(1+ g)S vy 49 <0,

This completes the proof of Proposition 3. m
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