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Abstract

This thesis discusses applications of random rotations in machine learning.
Rotations of the feature space can lead to more diverse ensembles, better
predictions, less complex classifiers and smoother decision boundaries.

In Chapter 1 of this thesis, the feature space is randomly rotated and one or
more independent base learner is constructed on each rotation. In the case
of classification, each base learner receives one vote in the final ensemble
prediction; for regressions, predictions are averaged. An empirical study
demonstrates the efficacy of random rotations.

Observing that not all rotations are equally effective, Chapter 2 is dedicated
to the analysis of what makes a rotation effective and whether it is possible to
emphasize such rotations in the final ensemble prediction. It is demonstrated
that focusing on rotations that lead to simpler base learners leads to more
compact ensembles and often increases predictive accuracy. In this chapter,
predictions are aggregated in a parametric fashion, providing more weight to
less complex predictors in the final ensemble. Multiple parametric forms are
explored.

Instead of constructing one or more predictor for each rotation, it is also
possible to provide multiple rotations of the feature space to a single predic-
tor. This effectively provides a single predictor with multiple simultaneous
viewpoints on the same feature space. The first half of Chapter 3 explores
this idea. A great benefit of this approach, when compared to the methods
described in the earlier chapters, is that the aggregation of the predictions
across multiple rotations becomes part of the training algorithm of the classi-
fier, rather than being constructed exogenously. This also makes the approach
viable for ensemble architectures with an interdependence between the base
learners, such as boosting. Finally, an importance measure can be used not
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only to select the most salient features but also to determine the most helpful
rotations.

A different method of combining multiple rotations is to form a meta- or
stacking predictor that leverages the base predictions on each rotation as
inputs. This results in a generalization of the results of Chapter 2, whereby
the aggregation becomes nonparametric in nature and local with respect to
the decision boundary. In this context, extra care must be taken to avoid data
snooping biases. A repeated, nested cross-validation technique is described
in the second half of Chapter 3 to facilitate this process. The procedure
directly answers the question if rotations are helpful for a specific data set
and provides an avenue for selecting effective rotations.

Chapter 4 is concerned with the impact random rotations have had on
the scientific literature and open source software community since their
introduction with the publication of our initial paper on the topic.
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1Random Rotation
Ensembles

„Where you stand determines what you see
and what you do not see; it determines also
the angle you see it from; a change in where
you stand changes everything.

— Steve de Shazer
(Author, psychotherapist)

1.1 Introduction

Modern statistical learning algorithms combine the predictions of multiple

base learners to form ensembles, which typically achieve better aggregate

predictive performance than the individual base learners (Rokach, 2010).

This approach has proven to be effective in practice and some ensemble

methods rank among the most accurate general-purpose supervised learning

algorithms currently available. For example, a large-scale empirical study

(Caruana and Niculescu-Mizil, 2006) of supervised learning algorithms found

that decision tree ensembles consistently outperformed traditional single-

predictor models on a representative set of binary classification tasks. Data

mining competitions also frequently feature ensemble learning algorithms

among the top ranked competitors (Abbott, 2012).

The main findings of this chapter are based on Blaser and Fryzlewicz (2016), originally
published in the Journal of Machine Learning Research.
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Achieving a good balance between the accuracy of the individual predic-

tors and the diversity of the full ensemble is of critical importance: if the

individual predictors are accurate but highly correlated, the benefits of com-

bining them are modest; injecting randomness into the predictors reduces

the correlation and promotes diversity but often does so at the expense of

reduced accuracy for the individual predictors (Elghazel et al., 2011). A

number of techniques have been devised to manage this trade-off and to

promote diversity in learning ensembles in a constructive fashion; some

methods merely perturb the training data, while others modify the internal

structure of the predictors themselves. We now mention some key examples.

In bootstrap aggregation (Breiman, 1996), bootstrap replicates are used

to construct multiple versions of a base predictor, which are subsequently

aggregated via averaging or majority vote. This approach was found to be

particularly effective for predictor classes that are unstable, in the sense that

small variations of the input data lead to the construction of vastly different

predictors (Hastie et al., 2009). Output smearing or flipping (Breiman, 2000)

adds a different noise component to the dependent variable of each base

predictor, which has a smoothing effect on the resulting decision boundary,

leading to improved generalization performance. Boosting (Freund and

Schapire, 1996) is an iterative procedure, where base learners are added

sequentially in a forward stagewise fashion. By reweighting the data set at

each iteration, later base learners are specialized to focus on the learning

instances that proved the most challenging to the existing ensemble. In

contrast to bootstrap aggregation, where each bootstrap sample is generated

independently, boosting therefore does not lend itself naturally to parallel

processing. Random decision forests (Ho, 1995; Ho, 1998) randomly select a

feature subspace a priori and train a base learner in the chosen subspace us-

ing all available data. Instead of randomizing the training data, the structure
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of each predictor is altered by only including the chosen subset of predictors.

Random forests (Breiman, 1999; Breiman, 2001) combine bootstrap aggre-

gation with the random projection method. At each tree node, a subset of

the available predictors is randomly selected and the most favorable split

point is found among these candidate predictors. This approach differs from

random decision forests, where the selection of predictors is only performed

once per tree. More generally, the framework also offers the possibility of

using random linear combinations of two or more predictors. A summary

of recent enhancements and applications of random forests can be found in

Fawagreh et al. (2014). Perfect random tree ensembles (Cutler and Zhao,

2001), extremely random trees / extra trees (Geurts et al., 2006), and com-

pletely random decision trees (F. T. Liu et al., 2005; Fan et al., 2006) take

randomization even further by not only selecting random predictor(s), as

in random forests, but by also selecting a random split point, sometimes

deterministically chosen from a small set of random candidate split points.

Some of the ensemble methods described specifically require the base learn-

ers to be decision trees. This is because decision trees are efficient to create

(by recursive binary splitting), the models are straightforward to aggregate,

and the individual trees can easily be turned into weak learners (which

perform only slightly better than random) by restricting their depth (Kuhn

and Johnson, 2013). Furthermore, decision trees exhibit a high variance

and this inherent instability is beneficial to the diversity of the ensemble. In

addition, decision trees contain a number of desirable features for general

purpose data mining, including robustness to outliers and an ability to handle

input variables of mixed type and scale, such as continuous and categorical

variables, and even missing values (Hastie et al., 2009). However, a decision

tree is merely an efficient representation for a set of hyper-rectangles that

partition the decision space. For ordinary decision trees, each hyper-rectangle
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is aligned with at least one of the axes of the chosen coordinate system, re-

sulting in axis parallel decision boundaries. This results in very characteristic

piecewise constant stair shapes, even when the number of trees in the en-

semble is large, as can be observed visually in low dimensional graphical

examples. As a consequence, a much greater number of trees is needed

to accurately approximate an oblique decision boundary than a decision

boundary that is axis aligned with standard tree ensembles. In order to over-

come this limitation, nonlinear boosting projections (García-Pedrajas et al.,

2007) provide a different, nonlinear view of the data to each base learner

and oblique random forests (Menze et al., 2011) use linear discriminative

models or ridge regression to select optimal oblique split directions at each

tree node. Another approach that is related to but different from the method

proposed in this chapter is embodied by rotation forests (Rodriguez et al.,

2006; Kuncheva and Rodriguez, 2007), which take a subset of features and

a bootstrap sample of the data and perform a principal component analysis

(PCA), rotating the entire feature space before building the next base predic-

tor. In addition to PCA, Kuncheva and Rodriguez (2007) experimented with

nonparametric discriminate analysis (NDA) and sparse random projections

and in De Bock and Van den Poel (2011), independent component analysis

(ICA) is found to yield the best performance.

The premise of the present chapter is that it makes sense to rotate the feature

space in ensemble learning, particularly for decision tree ensembles, but

that it is neither necessary nor desirable to do so in a structured way. This

is because structured rotations reduce diversity. Instead, we propose to

rotate the feature space randomly before constructing the individual base

learners. The random rotation effectively generates a unique coordinate

system for each base learner, which we show increases diversity in the

ensemble without a significant loss in accuracy. In addition to rotation, affine
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transformations also include translation, scaling, and shearing (non-uniform

scaling combined with rotation). However, only transformations involving

rotation have an impact on base learners that are insensitive to monotone

transformations of the input variables, such as decision trees. Furthermore,

a key difference between random rotation and random projection is that

rotations are reversible, implying that there is no loss of information.

The remainder of this chapter is structured as follows. Section 1.3 provides a

motivational example for the use of random rotations using a well-known

data set. In Section 1.4 we formally introduce random rotations and provide

guidance as to their construction. Section 1.6 evaluates different applica-

tion contexts for the technique and performs experiments to assesses its

effectiveness. Conclusions are discussed in Section 1.7.

Random rotations provide an intuitive, optional enhancement to a number

of existing machine learning techniques. For this reason, we also provide

random rotation code in C/C++ and R in this chapter, which can be used as

a basis for enhancing existing software packages. A full implementation of

the methods described in this thesis in the form of an open source R package

called random.rotation is introduced in Chapter 5. The package contains

a reference implementation of random rotations, including the weighting-

and regularisation methods described in later chapters. The package can be

downloaded from GitHub without registration. The easiest way to accomplish

this is directly within an R command-line shell:

library("devtools")

install_github("randomrotation/random.rotation")
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1.2 Recent literature

The attentive reader will have noticed that most of the literature references

in this chapter stop at around 2014. This is because the material in this

chapter was originally published as Blaser and Fryzlewicz (2016). All of

Chapter 4 is dedicated to the impact this paper has had in the field, including

a detailed analysis of the publications referencing this work. The aim of

the present section is merely to bring to the attention of the reader a few

recent developments that have taken place since the initial publication and

independently of our paper. For example, there are a number of more recent

studies that have reiterated the efficacy of ensemble learning for specific

areas of application, including Delgado et al. (2014), Nawar and Mouazen

(2017) and Treboux et al. (2018).

Data science competitions also continue to be won by tree-based ensembles,

particularly since the introduction of XGBoost in Chen and Guestrin (2016).

At the end of 2016 the CEO of the Kaggle competition revealed in a blog post

(Goldbloom, 2016) that since 2014, ensembles of boosted trees as well as

neural networks were far more likely to win the competition than any other

supervised learning algorithms.

One of the most relevant trends in machine learning over the course of the

past decade has been the success of deep learning, particular in the areas

of natural language processing as well as image- and video analysis. In

the case of structured tabular data, tree-based ensembles still outperform

state-of-the-art specialized neural networks. However, the latest research is

even challenging this notion. For example, Badirli et al. (2020) discusses a
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combination of regularization techniques for neural networks leading to an

architecture that outperforms XGBoost on 40 structured data sets.

It should also be noted that there is no inherent requirement for using tree-

based models for ensemble learning. Just like decision trees, neural networks

are known to exhibit a high model variance: small changes to the weight

initialization or network architecture (e.g. the number of hidden layers, the

type of activation function, or the number of units deployed) can lead to vastly

different networks. Combined with accurate, low-bias predictions, neural

networks are therefore well suited for ensemble learning. This has been

known for decades but computational resources proved to be a bottleneck.

In recent years, this area of research as proven to be fruitful. For example,

in Kadra et al. (2021) the authors use gradient boosting of shallow neural

networks to achieve performance comparable to deep neural networks for

specific tasks but with much shorter training times and a more compact model.

Goodfellow et al. (2016) also make an argument for using model averaging

in the context of deep learning because differences in hyperparameters and

training batches cause different members of the ensemble to make partially

independent errors.

1.3 Motivation

Figure 1.1 motivates the use of random rotations on the binary classification

problem from Chapter 2 of Hastie et al. (2009). The goal is to learn the

decision boundary, which separates the two classes, from a set of training

points. In this example, the training data for each class came from a mixture

of ten low-variance Gaussian distributions, with individual means themselves
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distributed as Gaussian. Since the data is artificially generated, the optimal

decision boundary is known by construction.

In this motivational example, we compare two approaches: (1) a standard

random forest classifier and (2) a random forest classifier in which each

tree is generated on a randomly rotated feature space. It is evident that

the random feature rotation has a significant impact on the resulting data

partition: despite using the same sequence of random numbers in the tree

induction phase of the random forest algorithm – resulting in the same

bootstrap samples and related feature subset selections at each decision

branch for the two trees – the resulting tree is not merely a rotated version

of the unrotated tree but is, in fact, a very different tree altogether, with a

different orientation and a vastly different data partition. This demonstrates

the power of the method; diversity is achieved with only a modest loss of

information. However, the real benefit is illustrated on the bottom row of

Figure 1.1 and arises from the aggregation of multiple randomly rotated

trees. The rotated ensemble exhibits a visibly smoother decision boundary

and one that is very close to optimal for this problem. The decision boundary

is uncharacteristically smooth for a tree ensemble and is reminiscent of a

kernel method, such as a k-nearest neighbor method or a support vector

machine. In contrast, even with 10000 trees, the decision boundary for the

standard random forest is still notably rectangular shaped. Another striking

feature of the random rotation ensemble is the existence of a nearly straight

diagonal piece of the decision boundary on the far left. This would be difficult

to achieve with an axis-parallel base learner without rotation and it agrees

well with the true decision boundary in this example.
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(a) RF (ntree=1, mtry=1) (b) RR-RF (ntree=1, mtry=1)

(c) RF (ntree=10000, mtry=1) (d) RR-RF (ntree=10000, mtry=1)

Fig. 1.1: Comparison of the decision boundary for the standard random forest
algorithm (RF, left column) and the modified version with randomly
rotated feature space for each tree (RR-RF, right column) on the binary
classification task of Chapter 2 of Hastie et al. (2009). The top row
illustrates a typical decision boundary for a single tree, while the bottom
row depicts a fully grown ensemble comprised of 10000 trees in each
case. Ntree is the total number of trees in the forest, mtry the number of
randomly selected features considered at each decision node.
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1.4 Random Rotations

In this section, we formally introduce random rotations and describe two

practical methods for their construction.

A (proper) rotation matrix R is a real-valued n×n orthogonal square matrix

with unit determinant, that is

RT =R−1 and |R|= 1. (1.1)

Using the notation from Diaconis and Shahshahani (1987), the set of all

such matrices forms the special orthogonal group SO(n), a subgroup of

the orthogonal group O(n) that also includes so-called improper rotations

involving reflections (with determinant −1). More explicitly, matrices in

SO(n) have determinant |R|= 1, whereas matrices in O(n) may have deter-

minant |R|= d, with d ∈ {−1,1}. Unless otherwise stated, the notation O(n)

always refers to the orthogonal group in this chapter and is not related to the

Bachman-Landau asymptotic notation found in complexity theory.

In order to perform a random rotation, we uniformly sample over all feasible

rotations. Randomly rotating each angle in spherical coordinates does not

lead to a uniform distribution across all rotations for n > 2, meaning that

some rotations are more likely to be generated than others. It is easiest to

see this is in 3 dimensions: suppose we take a unit sphere, denoting the

longitude and latitude by the two angles λ ∈ [-π, π] and φ ∈ [-π/2, π/2]. If

we divide the surface of this sphere into regions by dividing the two angles

into equal sized intervals, then the regions closer to the equator (φ= 0) are

larger than the regions close to the poles (φ=±π/2). By selecting random

angles, we are equally likely to arrive in each region but due to the different
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(a) Uniformly random rotations (b) Naive random rotations

Fig. 1.2: Comparison of correctly executed uniformly random rotation (left) in
three dimensions versus naive method of selecting two random angles in
spherical coordinates (right). 10000 random rotations of the same starting
vector were generated for each method and distances were computed
between each pair of rotations to produce a rank-based gradient, with
green dots representing those vectors with the lowest sums of distances.

sizes of these regions, points tend to cluster together at the poles. This is

illustrated for n = 3 in Figure 1.2, where the undesirable concentration of

rotation points near the two poles is clearly visible for the naive method. In

this illustration, the spheres are tilted to better visualize the areas near the

poles.

The group O(n) does have a natural uniform distribution called the Haar

measure, which offers the distribution we need. Using the probabilistic

notation from Diaconis and Shahshahani (1987), the random matrix R is said

to be uniformly distributed if P (R ∈ U) = P (R ∈ ΓU) for every U ⊂O(n) and

Γ ∈O(n). Several algorithms exist to generate random orthogonal matrices

distributed according to the Haar measure over O(n), some of which are

documented in Anderson et al. (1987), Diaconis and Shahshahani (1987),

Mezzadri (2007), and Ledermann and Alexander (2011). We will focus on

two basic approaches to illustrate the concept.

1.4 Random Rotations 11



1. (Direct Method) One method of obtaining random rotations involves

selecting random points on the unit n-sphere directly (Knuth, 1997).

This can be accomplished by drawing n independent random normal

N(0,1) variates {v1,v2, ...,vn} and normalizing each by the square root

of the sum of squares of all n variates, that is, xi = vi/
√
v2

1 +v2
2 + . . .+v2

n

for i ∈ {1,2, . . . ,n}. Note that x is a unit vector pointing to a random

point on the n-sphere. This construction takes advantage of spherical

symmetry in the multivariate Normal distribution. The method is

asymptotically faster than the QR approach of the indirect method

below and an implementation named gsl_ran_dir_nd is available in the

GNU Scientific Library (Galassi, 2009). The most direct way to obtain

the rotation matrix from the more compact random vector notation is

by applying Rodrigues’ rotation formula (O. Rodrigues, 1840).

2. (Indirect Method) Starting with an n×n square matrix A, consisting of

n2 independent univariate standard normal random variates, a House-

holder QR decomposition (Householder, 1958) is applied to obtain

a factorization of the form A = QR, with orthogonal matrix Q and

upper triangular matrix R with positive diagonal elements. The result-

ing matrix Q is orthogonal by construction and can be shown to be

uniformly distributed. In other words, it necessarily belongs to O(n).

Unfortunately, if Q does not feature a positive determinant then it is not

a proper rotation matrix according to definition (1.1) above and hence

does not belong to SO(n). However, if this is the case then we can flip

the sign on one of the (random) column vectors of A to obtain A+ and

then repeat the Householder decomposition. The resulting matrix Q+

is identical to the one obtained earlier but with a change in sign in the

corresponding column and |Q+|= 1, as required for a proper rotation

matrix.
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1.5 Generation of Random Rotations

Generating random rotations in software for problems involving fewer than

1000 dimensions is straightforward and fast, even using the simple algorithm

described above. Listing 1.1 provides an example implementation of both the

indirect and direct method in R. Listing 1.2 shows an example of the indirect

method in C++. Both listings are presented without error checking or

optimizations. The C++ code takes less than 0.5 seconds on a single core of

an Intel Xeon E5-2690 CPU to generate a 1000x1000 random rotation matrix.

It uses the Eigen template library (Guennebaud, Jacob, et al., 2010) and a

Mersenne Twister (Matsumoto and Nishimura, 1998) pseudorandom number

generator. Larger rotation matrices can be computed with GPU assistance

(Kerr et al., 2009) and may be pre-computed for use in multiple applications.

In addition, for problems exceeding 1000 dimensions it is practical to only

rotate a random subset of axes in order to reduce the computational overhead.

We recommend that a different random subset is selected for each rotation in

this case.

For categorical variables, rotation is unnecessary and ill defined. Intuitively,

if a category is simply mapped to a new rotated category, there is no benefit

in performing such a rotation. However, other randomization strategies, such

as randomly combining subsets of the categories, are possible but not further

addressed in this thesis.

The following listings provide illustrations in two commonly used program-

ming languages for the generation of a random rotation matrix using the

methods described in Section 1.4 above. The code is kept simple for il-
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lustrative purposes and does not contain error checking or performance

optimizations.

Listing 1.1: Random Rotation in R
# gene ra t e random member o f or thogona l group O(n)

random_ r o t a t i o n _matrix_ i n c l _ f l i p <− function (n) {

QR <− qr ( matrix (rnorm(n^2), ncol=n)) # A = QR

return ( qr .Q(QR) %*% diag ( sign ( diag ( qr .R(QR) ) ) ) ) # diag (R) > 0

}

# gene ra t e random member o f s p e c i a l o r thogona l group SO(n)

random_ r o t a t i o n _matrix <− function (n) {

M <− random_ r o t a t i o n _matrix_ i n c l _ f l i p (n)

i f ( det (M)<0) M[ ,1] <− −M[ ,1] # de t (M) = +1

return (M)

}

# d i r e c t method o f g en e r a t i ng random member o f O(n)

random_ r o t a t i o n _matrix_ d i r e c t <− function (n) {

a <− rnorm(n ) ; a <− a / sqrt (sum(a^2))

b <− c (1 , rep (0 ,n−1))

M <− 2* (a+b) %*% t (a+b) / sum(( a+b)^2) # Rodr igue s

return (M − diag (1 ,n , n ))

}

Listing 1.2: Random Rotation in C++ using Eigen
#include " MersenneTwister . h "

#include <Eigen /Dense>

#include <Eigen /QR>

using namespace Eigen ;

// C++: gene ra t e random n x n r o t a t i o n matr ix

void random_rotat ion_matr ix ( MatrixXd& M, in t n) {

MTRand mtrand ; // t w i s t e r with random seed

MatrixXd A(n , n ) ;

const VectorXd ones ( VectorXd : : Ones (n ) ) ;

for ( in t i =0; i<n ; ++i )

for ( in t j =0; j<n ; ++j )

A( i , j ) = mtrand . randNorm (0 ,1) ;

const HouseholderQR<MatrixXd> qr (A) ;

const MatrixXd Q = qr . householderQ ( ) ;

M = Q * ( qr . matrixQR ( ) . d iagonal ( ) . ar ray ()

< 0) . s e l e c t (−ones , ones ) . asDiagonal ( ) ;

i f (M. determinant () < 0)

for ( in t i =0; i<n ; ++i )

M( i , 0 ) = −M( i , 0 ) ;

}
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1.6 Rotations and tree-based classifiers

Random rotations complement standard learning techniques and are easily

incorporated into existing algorithms. Algorithm 1 shows a simple implemen-

tation in pseudo code. In Line 4, the random rotation matrices are computed

and stored. In Line 5, the base learners are trained on the rotated data.

During out-of-sample predictions, the data needs to be rotated using the

same sequence of rotations. Therefore, the rotations are retrieved, applied

and used for the predictions in Line 13, leveraging the stored base learners.

Finally, in Line 15, the predictions made by the base learners on each rotation

are combined, for example via averaging.

Algorithm 1 Random Rotation Ensemble (Pseudocode)
1: procedure RANDOM_ROTATION_ENSEMBLE(R,Xtrain) . R: #rotations, Xtrain: normalized training data
2: ensemble← rotations← ()
3: for i← 1 to R do
4: rotations[i]← generate_random_rotation(dim(Xtrain))
5: ensemble[i]← train_base_learner(rotate_data(Xtrain, rotations[i]))
6: end for
7: return (ensemble, rotations)
8: end procedure
9:

10: procedure RANDOM_ROTATION_ENSEMBLE.PREDICT(ensemble, rotations, R,Xtest)
11: predictions← ()
12: for i← 1 to R do
13: predictions[i]← ensemble[i].predict(rotate_data(Xtest, rotations[i]))
14: end for
15: return combine_predictions(predictions)
16: end procedure

In order to examine the benefit of random rotations to ensemble performance,

we modified three standard tree ensemble implementations to incorporate

random rotations before the tree induction phase. The necessary modifica-

tions are illustrated in pseudo code in Listing 1.3 below.

All methods tested use classification or regression trees that divide the pre-

dictor space into disjoint regions Gj, where 1≤ j ≤ J , with J denoting the
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total number of terminal nodes of the tree. Extending the notation in Hastie

et al. (2009), we represent a tree as

T (x;θ,Ω) =
J∑
j=1

cjI(R(x) ∈Gj), (1.2)

with optimization parameters Ω = {Gj , cj}J1 , random parameters θ = {R,ω},

where R is the random rotation associated with the tree and ω represents

the random sample of (x,y) pairs used for tree induction; I(·) is an indicator

function. Each randomly rotated input R(x) is thus mapped to a constant cj ,

depending on which region Gj the input belongs to.

For regression, cj is typically just the average or median of all yj in region

Gj . If we let |Gj | denote the cardinality of Gj , this can be written as

cj = 1
|Gj |

∑
R(xk)∈Gj

yk. (1.3)

For classification trees, one of the modes is typically used instead.

Given a loss function L(yi,f(xi)), for example exponential loss for classifi-

cation or squared loss for regression, a tree-induction algorithm attempts

to approximate the optimization parameters for which the overall loss is

minimized, that is

Ω̂ = argmin
Ω

J∑
j=1

∑
R(xi)∈Gj

L(yi,f(R(xi))) = argmin
Ω

J∑
j=1

∑
R(xi)∈Gj

L(yi, ci). (1.4)

This optimization is performed across all parameters Ω but the rotation is

explicitly excluded from the search space (R ∈ θ, but R 6∈ Ω) because we are

advocating a random rotation in this chapter. However, conceptually it would

be possible to include the rotation in the optimization in an attempt to focus

on the most helpful rotations. Indeed, in Chapters 2 and 3 we will attempt
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to find the best rotations for a given data set and, more generally, the best

method to combine predictions from multiple different rotations.

Listing 1.3: Testing Random Rotations (Pseudo Code)

Inputs : − t r a i n i n g f ea tu re matr ix X

− t e s t i n g f ea tu re matr ix S

− t o t a l number of c l a s s i f i e r s M

− standard base l ea rne r B

− aggregat ion weights w

(A) Sca le or rank numeric p r e d i c t o r s x ( see 1 . 6 . 2 ) :

e . g . x′ := (x−Qk(x))/(Q1−k(x)−Qk(x))

(B) For m ∈ {1,2, . . . ,M} do

(1) generate random parameters : θm := {Rm,ωm}

(2) t r a i n standard l ea rne r B on Rm(x) :

Ω̂m = argminΩ
∑J
j=1

∑
R(xi)∈Gj

L(yi,f(Rm(xi)))

(3) compute t e s t or out−of−bag p r e d i c t i o n s

T (x,θm,Ωm), x ∈Rm(S)

(C) Aggregate p r e d i c t i o n s ( vote or average )

fM (x) =
∑M
m=1wmT (x;θm,Ωm)

In all algorithms considered in this chapter, the tree-induction is performed

using standard greedy, top-down recursive binary partitioning. This ap-

proach will generally not arrive at the globally optimal solution to (1.4) but

constructs a reasonable approximation quickly (Hastie et al., 2009).
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The (regression) tree ensemble fM (x) can then be written as a weighted sum

of the individual trees, that is

fM (x) =
M∑
m=1

wmT (x;θm,Ωm), (1.5)

where M denotes the total number of trees in the ensemble. For classification

ensembles, a vote is typically taken instead. It should be noted that a separate

rotation is associated with each tree in this notation but the same rotation

could theoretically be associated with an entire group of trees. In particular,

we can recover the standard setting without random rotation by setting Rm

to the identity rotation for all m.

The difference between non-additive ensemble methods like random forests

(Breiman, 2001) or extra trees (Geurts et al., 2006) and additive ensembles

like boosted trees (Freund and Schapire, 1996) arises in the formulation

of the joint model for multiple trees. As we will see, this difference makes

testing random rotation with existing additive ensemble libraries much more

difficult than with non-additive ensemble libraries. Specifically, random

forests and extra trees place an equal weight of wm = 1/M on each tree, and

trees are constructed independently of each other, effectively producing an

average of M independent predictions:

Ω̂m = argmin
Ωm

J∑
j=1

∑
R(xi)∈Gj

L(yi,T (xi;θm,Ωm)). (1.6)

In contrast, boosted trees use wm = 1 and each new tree in the sequence is

constructed to reduce the residual error of the full existing ensemble fm−1(x),

that is

Ω̂m = argmin
Ωm

J∑
j=1

∑
R(xi)∈Gj

L(yi,fm−1(xi) +T (xi;θm,Ωm)). (1.7)
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There are other differences between the two approaches: for example, J , the

number of leaf nodes in each tree is often kept small for boosting methods in

order to explicitly construct weak learners, while non-additive methods tend

to use large, unpruned trees in an effort to reduce bias, since future trees are

not able to assist in bias reduction in this case.

We mainly focus on random forest and extra tree ensembles in this chapter

because both of these algorithms rely on trees that are constructed inde-

pendently of each other. This provides the advantage that the original tree

induction algorithm can be utilized unmodified as a black box in the rotated

ensemble, ensuring that any performance differences are purely due to the

proposed random rotation and are not the result of any subtle differences (or

dependencies) in the construction of the underlying trees.

1.6.1 Data Sets & Preprocessing

For our comparative study of random rotation, we selected UCI data sets

(Bache and Lichman, 2013) that are commonly used in the machine learning

literature in order to make the results easier to interpret and compare. Table

1.1 summarizes the data sets, including relevant dimensional information.

Some algorithms tested were not able to handle categorical input variables

or missing values and we performed the following automatic preprocessing

steps for each data column:

1. Any column (predictors or response) with at least 10 distinct numeric

values was treated as numeric and missing values were imputed using

the column median.

1.6 Rotations and tree-based classifiers 19



2. Any column with fewer than 10 distinct values (numeric or otherwise)

or with mostly non-numeric values was treated as categorical, and a

separate category was explicitly created for missing values.

3. Categorical predictors with C categories were converted into (C− 1)

0/1 dummy variables, with the final dummy variable implied from the

others to avoid adding multicollinearity.

Note that after evaluating these three rules, all predictors were either numeric

without missing values or categorical dummy variables, with a separate

category for missing values.

1.6.2 Variable Scaling

Rotation can be sensitive to scale in general and outliers in particular. In order

to avoid biasing the results, we tested three different scaling methods, all of

which only use in-sample information to calibrate the necessary parameters

for out-of-sample scaling:

1. (Basic Scaling) Numeric values were scaled to [0,1] using the in-sample

min and max values, that is x′= min(1,max(0,(x−min(xis))/(max(xis)−

min(xis)))). This scaling method deals with scale but only avoids out-

of-sample outliers. Outliers are dealt with in a relatively crude fashion

by applying a fixed cutoff.

2. (Quantile Scaling) Numeric values were linearly scaled in such a way

that the 5th and 95th percentile of the in-sample data map to 0 and 1
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Tab. 1.1 Description of UCI datasets used to perform the detailed tests of
random rotations. The the total number of available instances, as
well as the number of available predictor variables after preprocess-
ing (including dummy variables for categories) is shown for each
data set. The tests use a random 70% of the available instances as
training set and the remaining 30% as a test set.

name cases preds
anneal 798 51
audiology 200 85
balance 625 16
breast-w 699 80
breast-y 286 34
chess 28056 34
cleveland 303 22
credit-a 690 14
flare 1066 21
glass 214 9
hayes-roth 132 4
hepatitis 155 29
horse-colic 300 80
ionosphere 351 33
iris 150 4
led24 3200 24
liver 345 44
lymph 148 18
nursery 12960 19
pima 768 167
segmentation 210 19
solar 323 22
sonar 208 60
soybean 307 97
threeOf9 512 9
tic-tac-toe 958 18
votes 435 32
waveform 5000 21
wine 178 13
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respectively, that is x′ = (x−Q5(xis))/(Q95(xis)−Q5(xis)). In addition,

any values that exceed these thresholds were nonlinearly winsorized by

adding/subtracting 0.01× log(1 + log(1 + ∆)), where ∆ is the absolute

difference to the in-sample bounds Q5(xis) or Q95(xis). This robust

scaling has a breakdown point of 5% and maintains the order of inputs

that exceed the thresholds.

3. (Relative Ranking) In-sample numeric values vi were augmented with

{−∞,+∞} and ranked as R(vi), such that R(−∞) maps to 0 and

R(+∞) maps to 1. Out-of-sample data was ranked relative to this in-

sample map. To accomplish this, the largest vi is found that is smaller

or equal to the out-of-sample data vo (call it vmaxi ) and the smallest vi is

found that is greater or equal to the out-of-sample data vo (vmini ). The

out-of-sample rank is then 0.5×R(vmini ) + 0.5×R(vmaxi ). In this way,

test elements that match in-sample elements obtain the same rank, test

elements that fall in between two elements obtain a rank in between,

and because the in-sample values are augmented with infinity, it is

never possible to encounter test elements that cannot be mapped. This

is the most robust approach to outliers that was tested.

1.6.3 Method & Evaluation

In order to collect quantitative evidence of the effect of random rotations, we

built upon the tree induction algorithms implemented in the widely used R

packages randomForest (Liaw and Wiener, 2002) and extraTrees (Simm and

de Abril, 2013). For comparison, we also used an implementation of rotation

forests (Rodriguez et al., 2006): https://github.com/ajverster/RotationForest.

22 Chapter 1 Random Rotation Ensembles



Prior to the tests, all data sets were preprocessed and scaled using each of

the three techniques described in the previous section (basic scaling, quantile

scaling, and ranking).

Random forest and extra trees were tested with and without random rotation

(for each scaling), while rotation forests included their own deterministic PCA

rotation but were also run for each scaling method. Random rotations were

tested with and without flip rotations. The combination of tree induction

algorithms, scalings, and rotation options resulted in a total of 21 distinct

experiments per data set.

For each experiment we performed a random 70-30 split of the data; 70%

training data and the remaining 30% served as testing data. The split was

performed uniformly at random but enforcing the constraint that at least

one observation of each category level had to be present in the training data

for categorical variables. This constraint was necessary to avoid situations,

where the testing data contained category levels that were absent in the

training set. Experiments were repeated 100 times (with different random

splits) and the average performance was recorded.

In all cases we used default parameters for the tree induction algorithms,

except that we built 5000 trees for each ensemble in the hope of achieving

full convergence.

To evaluate the performance of random rotations, we ranked each method

for each data set and computed the average rank across all data sets. This

allowed us to compare performance of each method across scaling methods

and tree induction algorithms in a consistent, nonparametric fashion. In

addition, we determined the number of data sets for which each method
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performed within one cross-sectional standard deviation of the best predictor

in order to obtain a measurement of significance. This approach is advocated

in (Kuhn and Johnson, 2013) and it can be more informative when there is a

cluster of strong predictors that is distinct from the weaker predictors and

which would not get detected by simple ranking.

1.6.4 Results

Table 1.6 displays the raw results of the detailed testing. As indicated in the

previous section, we opted to compare ranks – with low ranks indicating

better performance – in order to avoid the problem of comparing problems

of different difficulty or comparing regression with classification problems.

This is illustrated in Table 1.2.

In this table, we have omitted flip rotations because their performance was

comparable to the simple random rotation, with flip rotations outperforming

in 36% of cases, simple rotations outperforming in 45% of cases and ties in

the remaining 19% of cases.

The best overall average rank of 6.10 (of 15) was achieved by the ran-

dom rotation random forest algorithm with simple scaling, followed by the

same algorithm with complex scaling (6.48) and ranking (6.55). This algo-

rithm outperformed regardless of scaling. The next lowest rank of 6.72 was

achieved by random rotation extra trees using quantile scaling.

It is interesting to note that the average ranks for each scaling type were 7.50

for the complex scaling, 7.65 for the simple scaling and 7.81 for ranking. This

indicates that the scaling method was less influential than the selection of

the algorithm. In particular, the new method often improved on the original
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Tab. 1.2 Ranked performance comparision between random forest with and
without random rotation (rf, rrrf), extra trees with and without
random rotation (et, rret), and rotation trees (rot). For all data sets
(left-hand side), the comparison is performed over the three scaling
methods described in the text as basic scaling (b-scale), quantile
scaling (q-scale), and ranking (ranked). The values represent ranks
of the classification errors for classification problems and the ranks
of the RMSE for regression problems. Values that are within one
cross-sectional standard deviation of the minimum error are in bold.

B-SCALE Q-SCALE RANKED
NAME rf rrrf et rret rot rf rrrf et rret rot rf rrrf et rret rot
anneal 11 7 1 6 14 10 11 1 1 9 8 11 5 1 15
audiology 10 8 1 6 13 9 7 5 1 14 12 10 3 3 15
balance 6 8 14 14 1 7 4 13 10 2 8 5 10 12 2
breast-w 4 1 9 4 14 2 4 9 8 15 7 3 9 9 13
breast-y 1 6 9 10 15 1 4 10 8 12 5 1 7 12 14
chess 10 7 5 2 13 9 11 4 3 15 12 8 1 6 13
cleveland 6 2 10 5 14 8 4 9 1 15 10 7 10 2 13
credit-a 3 9 13 15 12 1 5 11 14 8 1 6 7 10 4
flare 1 1 10 11 1 1 1 13 13 1 1 1 11 15 1
glass 1 12 4 11 13 3 9 6 7 14 2 8 5 9 15
hayes-ro 10 7 1 1 14 9 10 1 1 13 7 10 1 1 14
hepatitis 5 2 14 15 7 1 4 10 10 8 6 3 13 10 9
horse-c 7 3 13 10 1 6 5 13 11 1 8 9 15 12 4
ionosph 8 1 5 3 13 10 2 6 4 14 11 9 7 12 15
iris 14 7 10 9 2 15 7 10 6 1 13 3 12 4 5
led24 2 6 9 8 15 1 3 7 10 13 5 4 12 11 14
liver 7 10 14 15 6 2 4 13 12 5 3 1 11 9 8
lymph 15 5 10 8 1 14 5 12 4 3 13 8 11 5 2
nursery 8 11 1 1 15 9 9 4 5 14 12 7 3 6 13
pima 8 1 15 14 3 7 2 10 11 4 6 9 12 13 5
segment 4 10 2 9 14 6 12 3 11 13 4 8 1 6 15
solar 4 8 10 12 1 7 5 12 12 3 9 5 11 12 2
sonar 10 7 1 5 13 9 12 2 6 14 10 3 3 8 15
soybean 12 7 6 5 14 11 7 1 1 13 9 10 3 3 15
threeOf9 9 7 1 3 14 10 12 3 1 13 7 11 3 3 15
tic-tac-toe 9 8 1 3 15 12 7 4 1 13 11 9 6 4 14
votes 8 5 1 12 13 1 8 10 10 14 5 5 1 1 14
waveform 11 1 7 2 13 12 3 8 5 15 10 4 9 6 14
wine 5 10 1 8 14 5 11 3 8 15 4 12 1 5 13

method even when only the ranks of the data were considered. We believe

this to be an interesting result because it indicates that even rotating ranks

can improve performance. Obviously, ranked data is completely robust to

scaling effects and outliers.
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The best average rank across scalings was achieved by random rotation

random forests with 6.38, followed by extra trees (7.06), random forests

(7.20), random rotation extra trees (7.26), and rotation forests (10.38).

In our tests, rotation forests underperformed overall but showed strong per-

formance in some particular cases. The problem here was that when rotation

forests did not excel at a problem, they often were the worst performer by a

large margin, which had an impact on the average rank. In contrast, random

rotation random forests rarely displayed the very best performance but often

were among the top predictors. This insight led us to consider predictors that

were within one cross-sectional standard deviation of the best predictor for

each data set.

Random rotation random forests were within one standard deviation of the

best result (highlighted in bold in Table 1.2) in 67.8% of cases, random

forests without rotation in 64.3% of cases, extra trees (with and without

rotation) in 49.4% of cases, and rotation forests in 27.6%. It appears to

be clear that random rotation can improve performance for a variety of

problems and should be included as a user option for standard machine

learning packages.

Random rotation appears to work best when numerical predictors outnumber

categorical predictors, which are not rotated, and when these numerical pre-

dictors exhibit a relatively smooth distribution (rather than a few pronounced

clusters). An example of a suitable dataset is Cleveland, with more than

half of the variables continuous and spread out evenly. In contrast, Balance

is an example of a dataset for which we cannot expect random rotation to

perform well. However, in general it is difficult to judge the utility of rotation

in advance and we recommend running a small test version of the problem
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with and without rotation to decide which to use: when the approach is

successful, this tends to be apparent early. A more robust approach to this

challenge is described in Chapter 3.

Constructing a random rotation matrix using the indirect method described

above requires of the order of p3 operations, where p is the number of

predictors to be rotated (time complexity of QR factorization). Multiplying

the resulting random rotation matrix with an input vector requires of the

order of p2 operations. During training, this step needs to be performed k

times, where k is the number of instances in the training data, for a total of

k×p2 operations. All but one of the UCI datasets contained fewer than 100

predictors, and it takes less than a millisecond to compute a 100x100 random

rotation matrix. Hence, with 5000 trees in each ensemble, the additional

computational overhead was at most a few seconds. However, as indicated

above, for larger problems it does make sense to restrict the number of

rotated predictors to maintain adequate performance.

Next, we consider the question of robustness.

1.6.5 Parameter Sensitivity and Extensions

In addition to the full tests described above, we also ran a few smaller

examples to examine the sensitivity of random rotation to the choice of

parameters in the underlying base learners. For this, we used the well known

UCI iris data set (4 numeric predictors, 3 classes, 150 rows). Table 1.3

compares the performance of the standard random forest algorithm (RF) and

a modified version including random feature rotation (RR-RF) on this data

set.
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Tab. 1.3 Performance comparison of the standard random forest algorithm
(RF) and a modified version with randomly rotated feature space
for each tree (RR-RF) on the iris data set. Ntree is the total number
of trees in the forest, mtry the number of randomly selected features
considered at each decision node. Statistically significant differences
in mean error percentage and win percentage at the 1% level are
denoted in bold.

Random Forest Comparison (iris)
parameters % error % wins per method
ntree mtry RF RR-RF RF RR-RF Ties

50 1 5.269 4.464 16.98 53.40 29.62
2 5.011 4.237 15.80 50.20 34.00
3 4.960 4.155 16.14 51.10 32.76
4 4.963 4.077 15.30 52.75 31.95

500 1 5.246 4.414 11.76 52.98 35.26
2 4.981 4.226 13.53 48.41 38.06
3 4.904 4.144 14.90 49.22 35.88
4 4.944 4.096 13.80 51.53 34.67

5000 1 5.227 4.385 10.29 52.52 37.19
2 4.975 4.196 13.48 49.57 36.95
3 4.860 4.133 15.23 47.76 37.01
4 4.964 4.132 14.22 51.14 34.64

As in the detailed tests, both classifiers made use of the same tree induction

algorithm, implemented in the randomForest R package, but the feature

space was randomly rotated prior to the construction of each tree for the

RR-RF algorithm. Since the iris data set only includes 4 predictors, the

number of randomly selected features at each decision node (mtry) only

has feasible values in 1-4, allowing for an exhaustive comparison. For each

parameter setting, we selected 50% of the data (75 cases) at random as

the learning data set, while the other half served as the test data set. The

experiment was repeated 10000 times for each parameter setting and we

kept track of the average error percentage of each method, as well as the

percentage of times each method outperformed the other. Once completed,

a Wilcoxon signed-rank test was performed to compare the classification
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error percentage and win percentage of the original method with that of the

modified classifier and to ascertain statistical significance at the 1% level.

The modified ensemble featuring random rotation appears to universally

outperform the original classifiers on this data set, regardless of parameter

settings and in a statistically significant manner. However, it should be

noted that the goal of this experiment was not to demonstrate the general

usefulness of random rotations – this is achieved by the detailed experiments

in the previous section – but rather to show the robustness to parameter

changes for a specific data set.

Table 1.4 shows the analogous results for extra trees, which select both

the split feature and the split point at random. Here we used the tree

induction algorithm implemented in the extraTrees R package. In theory,

there exist an infinite number of feasible split points (ncut) that could be

chosen but for simplicity, we have only attempted ncut values in the range 1-4,

meaning that at most 4 random split points were considered in the tests. The

improvement due to rotation is again universal and statistically significant.

For reasonable parameters (e.g. ntree ≥ 50), the new method matches or

outperforms the original method in over 94% of the randomly generated

cases and the performance improvement is 21.7% on average. This is again a

very encouraging result, as it demonstrates that the results above are robust,

even if non-default parameters are used for the base learners. It is also

interesting to note that randomly rotated extra tree ensembles outperform

randomly rotated random forests here and they tend to do best with lower

ncut values, indicating that more randomness (via rotation, feature selection,

and split selection) is helpful for this particular problem.
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Tab. 1.4 Performance comparison of the standard extra trees algorithm (ET)
and a modified version with randomly rotated feature space for
each tree (RR-ET) on the iris data set. Ntree is the total number of
trees in the ensemble, ncut the number of randomly selected split
points considered at each decision node. Statistically significant
differences in mean error percentage and win percentage at the 1%
level are denoted in bold.

Extra Tree Ensemble Comparison (iris)
parameters % error % wins per method
ntree ncut ET RR-ET ET RR-ET Ties

50 1 5.335 3.994 7.18 66.11 26.71
2 5.281 4.101 7.84 63.04 29.12
3 5.183 4.078 8.41 60.69 30.90
4 5.238 4.152 8.86 60.14 31.00

500 1 5.244 3.971 4.09 66.02 29.89
2 5.157 4.045 4.75 60.85 34.40
3 5.118 4.056 5.16 59.67 35.17
4 5.114 4.111 5.54 57.68 36.78

5000 1 5.257 4.044 4.73 66.09 29.18
2 5.175 4.003 3.32 60.86 35.82
3 5.038 4.079 4.71 56.20 39.09
4 5.046 4.053 5.55 56.92 37.53

Table 1.5 shows comparable results with a gradient boosting machine from

the gbm R package (Ridgeway, 2013). Since boosting is an additive proce-

dure, where later trees have an explicit dependence on earlier trees in the

ensemble, the comparison of the two methods is not as straightforward. More

specifically, step (B).(2) in Listing 1.3 cannot be performed without knowing

(and being able to reuse) fm−1 in the case of boosting. Unfortunately, the

most common software packages for boosting (and gbm in particular) do not

provide an interface for this. Of course, we could have implemented our own

boosting library but then it would not be obvious that the improvement in

predictive performance was entirely due to the rotation. For this reason, we

opted to demonstrate boosting with a widely used package but on groups of

trees, with one rotation per group of 50 trees. The rationale for this choice

of group size was that the first few boosting iterations often lead to rapid

improvements. In this case, we compared the original method, consisting of
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Tab. 1.5 Performance comparison of the standard gradient boosting machine
(GBM) and a modified version with randomly rotated feature space
for each sub-forest of 50 trees (RR-GBM) on the iris data set. A
classifier was trained for each parameter setting on a random half of
the data and tested on the remaining half. Ntree is the total number
of trees in the ensemble, expressed as the product of the number of
generated sub-forests (each on a randomly rotated feature space)
times the number of trees in each sub-forest. The procedure was
repeated 10000 times. Statistically significant differences in mean
error percentage and win percentage at the 1% level are denoted in
bold. For the robust rank only version, a ranking of each predictive
variable was performed using the train data, while the test vectors
received an interpolated ranking based solely on relative order
information with respect to the train data.

Gradient Boosting Comparison (iris)
parameters performance

rank only type ntree shrinkage %error %wins
no GBM 1x5000 0.0005 5.063 9.62
no RR-GBM 100x50 0.0500 3.831 57.26
yes GBM 1x5000 0.0005 5.063 22.97
yes RR-GBM 100x50 0.0500 4.385 46.17

5000 trees in a single ensemble, to a modified version with 100 sub-forests

of 50 trees each, whereby each sub-forest was created on a randomly rotated

feature space. In other words, the 50 trees in each sub-forest had a depen-

dency, whereas the sub-forests themselves were independent of each other.

The final classification was achieved through voting. As is evident from Table

1.5, randomly rotated gradient boosting machines even outperformed ran-

dom forests and extra trees on this data set in terms of percentage error. Even

when we handicapped the new method by only providing it with relative

ranks of the data it outperformed the original (unrotated) method, although

not by the same margin.
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1.6.6 Derivation of Diversity

In this section we will closely follow Breiman (2001) to derive an ensemble

diversity measure that is applicable to the case of random rotation ensembles.

In particular, we show that just like for random forests we can express the

average correlation of the raw margin functions across all classifiers in the

ensemble in terms of quantities we can easily estimate, specifically

ρ̄(·) = Vx,y[Ψ(x,y)]
Eθ1,θ2 [σ(ψ(x,y,θ))]2 . (1.8)

That is, average correlation ρ̄ is the variance of the margin across instances

Vx,y[Ψ(x,y)], divided by the expectation of the standard deviation σ of the

raw margin across (randomized) classifiers squared.

We start by defining for a given input vector x, the label of the class to which

classifier fM (x) assigns the highest probability, save for the correct label y, to

be jMmax, that is

jMmax := argmax
j 6=y

P (fM (x) = j). (1.9)

Using this definition, we denote the raw margin function ψ(x,y) for a classifi-

cation tree ensemble fM (x) as

ψ(x,y,θ) = I(fM (x) = y)− I(fM (x) = jMmax), (1.10)

with indicator function I(·). This expression evaluates to +1 if the classifi-

cation is correct, -1 if the most probable incorrect class is selected, and 0

otherwise. The margin function Ψ(x,y) is its expectation, that is

Ψ(x,y) = Eθ[ψ(x,y,θ)]

= P (fM (x) = y)−P (fM (x) = jMmax). (1.11)
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The margin function Ψ(x,y) represents the probability of classifying an input

x correctly minus the probability of selecting the most probable incorrect

class.

If we denote the out-of-bag instances for classification tree T (x;θm,Ωm)

as Om, then these probabilities can be estimated as

P̂ (fM (x) = k) =
∑M
m=1 I(T (x;θm,Ωm) = k∧ (x,y) ∈Om)∑M

m=1 I((x,y) ∈Om)
, (1.12)

where the denominator counts the number of base learners for which (x,y)

is out-of-bag. If we were to use a separate testing data set S, as we do in our

examples, this can be further simplified to

P̂ (fM (x) = k) = 1
M

M∑
m=1

I(T (x;θm,Ωm) = k), (1.13)

where any instance (x,y) must be selected from S. From this, the expected

margin can be estimated as

Êx,y[Ψ(x,y)] = Êx,y[P̂ (fM (x) = y)− P̂ (fM (x) = jMmax)] (1.14)

and its variance as

V̂x,y[Ψ(x,y)] = Êx,y[(P̂ (fM (x) = y)− P̂ (fM (x) = jMmax))2]− Êx,y[Ψ(x,y)]2.

(1.15)

The expectations are computed over the training set for the out-of-bag esti-

mator or the testing data set respectively, depending on which approach is

used.
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Using Chebyshev’s inequality, we can derive a bound for the probability of

achieving a negative margin, a measure of the generalization error:

P (Ψ(x,y)< 0) ≤ P (|Ex,y[Ψ(x,y)]−Ψ(x,y)| ≥ Ex,y[Ψ(x,y)])

≤ Vx,y[Ψ(x,y)]
Ex,y[Ψ(x,y)]2 , (1.16)

which can be estimated from equations (1.14) and (1.15). Clearly, this

inequality is only useful if the expected margin is positive because otherwise

the classification is no better than random.

We now follow Breiman’s argument for obtaining a measure of ensemble

diversity in terms of the random classifier parameters θ, which in our case

include the random rotation in addition to the bootstrap samples. First,

we note that for independent and identically distributed (i.i.d.) random

parameters θ1 and θ2, we have

Eθ1,θ2 [ψ(x,y,θ1)×ψ(x,y,θ2)] = Eθ1 [ψ(x,y,θ1)]×Eθ2 [ψ(x,y,θ2)]

= Ψ(x,y)×Ψ(x,y)

= Ψ(x,y)2. (1.17)

Therefore, the variance of Ψ(x,y) can be reformulated as

Vx,y[Ψ(x,y)] = Ex,y[Ψ(x,y)2]−Ex,y[Ψ(x,y)]2

= Ex,y[Eθ1,θ2 [ψ(x,y,θ1)×ψ(x,y,θ2)]] (1.18)

−Ex,y[Eθ1 [ψ(x,y,θ1)]]×Ex,y[Eθ2 [ψ(x,y,θ2)]]

= Eθ1,θ2 [Ex,y[ψ(x,y,θ1)×ψ(x,y,θ2)] (1.19)

−Ex,y[ψ(x,y,θ1)]×Ex,y[ψ(x,y,θ2)]]

= Eθ1,θ2 [Covx,y[ψ(x,y,θ1),ψ(x,y,θ2)]]
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= Eθ1,θ2 [ρ(ψ(x,y,θ1),ψ(x,y,θ2))]×Eθ1,θ2 [σ(ψ(x,y,θ1))×σ(ψ(x,y,θ2))]

= Eθ1,θ2 [ρ(ψ(x,y,θ1),ψ(x,y,θ2))]×Eθ1,θ2 [σ(ψ(x,y,θ))]2. (1.20)

This result allows us to express the average correlation of the raw margin

functions across all classifiers in the ensemble in terms of quantities we can

easily estimate, specifically

ρ̄(·) = Vx,y[Ψ(x,y)]
Eθ1,θ2 [σ(ψ(x,y,θ))]2 , (1.21)

where we can use (1.15) as an estimate of the numerator. In other words, cor-

relation represents the variance of the margin across instances, divided by the

expectation of the standard deviation of the raw margin across (randomized)

classifiers squared.

To estimate the denominator across all random parameters θ – i.e. the

individual base learners and rotations – we can use

Eθ1,θ2 [σ(x,y,θ)] = 1
M

M∑
m=1

√
P (fm(x) = y) +P (fm(x) = jmmax)−

(P (fm(x) = y)−P (fm(x) = jmmax))2, (1.22)

where the probabilities are calculated for each individual classifier across all

instances (x,y) in the out-of-bag or test set respectively, i.e. in the case of a

test set S we would use

P̂ (fm(x) = k) = 1
|S|

∑
(xi,y)∈S

I(T (xi;θm,Ωm) = k), (1.23)

with |S| denoting the cardinality of S.
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As an example of the usefulness of this correlation measure, we estimated ρ̄

with mtry = {1,4} on the iris example and achieved a correlation of 0.32 and

0.61, respectively. Clearly, the random split selection decorrelates the base

learners. We then performed the same calculation including random rotation

and achieved 0.22 and 0.39, respectively. In both cases, the correlation

decreased by approximately one third. In contrast, the expected margin only

decreased by 3.5%, meaning that the accuracy of the individual base learners

was only very modestly affected.

1.7 Conclusion

Random rotations provide a natural way to enhance the diversity of an

ensemble with minimal or no impact on the performance of the individual

base learners. Rotations are particularly effective for base learners that

exhibit axis parallel decision boundaries, as is the case for all of the most

common tree-based learning algorithms. The application of random rotation

is most effective for continuous variables and is equally applicable to higher

dimensional problems.

The numerical evaluation of random rotations in this chapter confirms that

the random rotations reduce the correlation of the base learners and result

in ensembles that exhibit competitive performance across a wide range of

test data sets.

A generalization of random rotations only uses a subset of rotations for out

of sample predictions. This subset is chosen by observing the out-of-bag

performance of each rotation in sample. Initial tests revealed that dropping

the least effective decile of all random rotations generally improved out of
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sample performance. This and related techniques are discussed in Chapter 2

of this thesis.

Random rotations may also prove to be useful for image analysis. For example,

axis-aligned methods for image processing, such as wavelet smoothing, may

benefit from repeated random rotations to ensure that the methods become

axis-independent.

While random rotations are certainly not a panacea, they are helpful fre-

quently enough that we contend standard data mining packages should

provide users the option to randomly rotate the feature space prior to induc-

ing each base learner.
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2
Regularizing axis-aligned

ensembles via data

rotations that favor simpler

learners

„There are no wrong answers only different

perspectives. With that being said, some

perspectives are certainly better than others.

— Amanda Mosher

(Author and psychotherapist)

2.1 Introduction

Feature rotations are ubiquitous in modern machine learning algorithms –

from structured rotations, such as PCA, to random rotations and projections.

For example, in computer vision, local image rotations are routinely used

to obtain high-quality rotation-invariant features (e.g. Takacs et al., 2013).

In the context of axis-aligned ensemble learning, rotations – and random

projections, which can be decomposed into a random rotation and an axis-

The main findings of this chapter are based on Blaser and Fryzlewicz (2021), originally
published in the Springer Journal Statistics and Computing.
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aligned projection – can make the difference between a highly successful

classifier and an average classifier (e.g. Durrant and Kaban, 2013).

Rodriguez et al. (2006) introduced rotation forests after demonstrating that

repeated PCA-rotations of random subsets of the feature space significantly

improved classification performance of random forests (Breiman, 1999) and

other tree ensembles. In Chapter 1 we showed that rotation forests can be

outperformed using unstructured random rotations of the feature space prior

to inducing the base learners. While random rotations are used with classifiers

designed for high-dimensional settings, Cannings and Samworth (2017)

presented a random projection ensemble, in which the high-dimensional

feature space is first projected into a lower-dimensional space before applying

a classifier designed for low-dimensional settings.

An important insight from Chapter 1 and the literature described in Chapter 4

is that the vast majority of rotations are unhelpful in improving out-of-sample

classifier performance. Instead, most of the benefit of these ensembles is

derived from a small number of rotations that are particularly well-suited for

the specific classification problem.

In this chapter we investigate the efficacy of rotations more closely and

attempt to answer the question of how we can identify or construct rotations

that explicitly improve classifier performance. We hypothesise that the most

beneficial rotations are those that align significant segments of the decision

boundary with one of the axes and thus result in simpler and more compact

base learners: we call it rotation to simplicity. We also conjecture the converse

to be true: those rotations that produce less complex base learners positively

impact ensemble performance. Supporting evidence for this assertion is

provided in Section 2.5.

40 Chapter 2 Regularizing axis-aligned ensembles via data rotations that favor

simpler learners



The remainder of the chapter is organized as follows: in Section 2.2, we

introduce the basic ensemble notation, as well as an extended loss function

which takes into consideration the complexity of the base learners. This is

similar to loss functions in linear regression that include penalties on the

regression coefficients. In Section 2.3, we introduce a low-cost regularization

technique, which explicitly favors rotations that are expected to produce

simple base learners. Section 2.4 takes a step back and illustrates why

certain rotations are better than others for axis-aligned learners and how

these rotations differ from analytic methods, such as PCA. Next, we present

performance results on a sample of well-known UCI data sets in Section 2.5

and conclude with our final thoughts.

2.2 Motivation

A decision tree divides the predictor space into disjoint regions Gj , where 1≤

j ≤ J , with J denoting the total number of leaf nodes of the tree. Borrowing

the notation from Hastie et al. (2009), the binary decision tree is represented

as

T (x;Ω) =
J∑
j=1

cj I(x ∈Gj), (2.1)

where Ω = {Gj , cj}J1 are the optimisation- or tuning parameters and I(·) is

an indicator function. Inputs x are mapped to a constant cj, depending on

which region Gj they are assigned to. A tree ensemble consisting of M trees

can then be written as

EM (x) =
M∑
m=1

T (x; Ωm). (2.2)

In this chapter, we assume that trees are grown independently and that

no co-dependence exists between the tuning parameters of different trees.
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This restriction implicitly excludes boosted tree ensembles (Friedman, 2001).

We will lift this restriction in Chapter 3. Our goal is then to optimise the

tuning parameters Ωm for each tree in such a way as to minimise a given loss

function, L(yi,f(xi)), that is

Ω̂m = argmin
Ωm

N∑
i=1

L(yi,T (xi;Ωm)). (2.3)

It should be noted that the general tree-induction optimization problem in

equation (2.3) is NP-complete (Hyafil and Rivest, 1976) even for two-class

problems in low dimensions (Goodrich et al., 1995) and an axis-aligned,

greedy tree induction algorithm such as CART (Breiman et al., 1984) is

typically used to find a reasonable approximation.

At this point we depart from the standard tree ensemble setting in two

aspects: (1) we add a penalty P to the loss function in order to penalize

complex base learners and (2) we add rotations Rk to the input data such

that groups of trees are constructed on different rotations of the input space.

Hence, the loss function takes the form

L(yi,f(xi)) = V (yi,f(Rk(xi)))︸ ︷︷ ︸
accuracy

+P (Rk(xi))︸ ︷︷ ︸
complexity

, (2.4)

where the regularisation term P (·) penalises rotations that lead to more com-

plex base learners. V (yi,f(xi)) is a typical loss function – such as squared-,

hinge-, or logistic loss – which does not take model complexity into account

(see e.g. James et al., 2013). Minimizing this combined loss function resem-

bles constrained regression problems, such as Ridge- or Lasso-regressions

(Tibshirani, 1996), but instead of constraining coefficients, we actively regu-

larize the base learners. Lastly, the subscript k denotes the specific rotation;
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we typically grow multiple trees per rotation, depending on the efficacy of

the rotation: this is described in detail in Section 2.3.

With the addition of the regularisation term, we have made the problem even

more challenging to solve. Since tree induction was already NP-complete to

begin with, we discuss an algorithm in the following section, which strictly

separates the weighting of favorable rotations that reduce model complexity

from the tree induction optimization, thereby improving accuracy. Using this

approach, we implicitly assume that simpler models do not lead to lower

prediction accuracy, a hypothesis we show to be empirically valid in Section

2.5.

2.3 Regularization

In this section, we introduce our proposed algorithm for generating an

ensemble that optimizes the use of available rotations.

Given a set of R feature rotations, we would like to build an ensemble

consisting of M base learners. In order to accomplish this, the algorithm

first builds tiny micro-forests of U unconstrained trees on each rotation, a

low-cost operation because U �M and U <M/R. Based on the statistical

properties of these micro-forests, the full ensemble is constructed. Here we

present the generic algorithm; in Section 2.5 we demonstrate several ways of

leveraging the available statistics. For tree-based ensembles, the trees in the

micro-forests can frequently be reused for the full ensemble, further reducing

the amortized cost of building the micro-forests.

Algorithm 2 describes the regularized rotation procedure in detail. The

integer inputs denote the desired total number of trees M in the complete
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Algorithm 2 Regularized Rotation Ensemble (Pseudocode)
1: procedure REG_ROT(M,R,U) . M : ensemble size, R: #rotations, U : trees per µ-forest
2: rotations← obtain_rotations(R)
3: for i← 1 to R do
4: rotations[i].forest← create_unconstrained_µ-forest(U)
5: rotations[i].complexity← compute_complexity(rotations[i].forest)
6: end for
7: rotations← sort(rotations, complexity)
8: for i← 1 to R do
9: rotations[i].numtrees← compute_numtrees(M , rotations)

10: rotations[i].forest← add_trees(rotations[i].forest, max(rotations[i].numtrees - U,0))
11: end for
12: for i← 1 to R do
13: for j← 1 to rotations[i].numtrees do
14: ensemble.forest← extend_forest(ensemble.forest, rotations[i].forest[j])
15: end for
16: end for
17: return ensemble
18: end procedure

ensemble, the number of available (or generated) rotations R, and the

number of trees U created for each micro-forest.

In line 2 of Algorithm 2, the available rotations are stored in an array named

rotations. It is important to include the identity rotation here to make sure the

procedure returns high-quality results when the problem is already optimally

rotated to begin with. If too few rotations are available, the procedure can

generate random rotations in addition to the identity rotation (Anderson

et al., 1987).

In lines 4-5, an unconstrained, unpruned micro-forest consisting of U trees

is grown. The recommended default value of U is of the order of 10-20

trees. The purpose of these trees is merely to obtain a reliable estimate of

the median complexity of a representative tree that will be grown on the

particular rotation, with minimal interference from outliers.

Our main proposal in this chapter is to apply a complexity measure for base

learners and use it to rank the obtained rotations from the best one, which

corresponds to the least complex learners, to the worst one that corresponds

to the most complex learners. In the case of tree ensembles, we suggest a
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complexity measure C(·) whereby trees with a smaller number of decision

nodes (#nodes) are considered less complex and, among trees with the same

number of nodes, more shallow trees (depth) are considered less complex,

that is

C(T (x;Ωm)) = #nodes+depth/N, (2.5)

where #nodes= 2J−1 and depth≤ J for binary decision trees, both depend-

ing on Ωm. N is the number of data points and J the number of leaf nodes

in the tree. It is clear that 1≥ depth/N and, consequently, that depth merely

acts as a tie-breaker for trees of equal size. We further discuss tree complexity

in Section 2.4.1. Up to this step, only model complexity was used to quantify

rotations and no performance metrics were considered; this corresponds to

the right-most section of formula (2.4).

The sorting procedure in line 7 of Algorithm 2 arranges the rotations into

ascending order of complexity C. At this point, there are several ways of

using this information. In section 2.3.1 we apply a parametric, non-increasing

family of curves with a tuning parameter h and use the out-of-bag (OOB)

errors of the micro-forests to determine the optimal parameter in a grid

search. However, as we will show in Section 2.5, it is also possible to use

the ranking on its own, without combining it with predictive performance.

The key point here is that whatever procedure we use, it will determine the

number of base learners that need to be created for each rotation. This is

accomplished in line 9 of Algorithm 2.

Should additional trees (beyond the U already available trees on each rota-

tion) be needed, these are generated and added to the rotation in line 10.

Typically, these need to be added to the most favorable rotations.
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Finally, the equal-weighted ensemble is constructed from the trees on the

different rotations. It is important to note that while the individual trees

are equal-weighted in the ensemble, more trees are used from favorable

rotations and hence the rotations are not equal-weighted. Also note that∑R
i=1 rotations[i].numtrees =M .

2.3.1 Weighting of rotations

Given an ordered sequence of R rotations (r = 1 for the most favorable

rotation and r = R for the least attractive rotation) and a specified total

number of base learners M in the ensemble, we need to determine how

many base learners to train on each rotation. This corresponds to line 9 in

Algorithm 2 above. We now discuss the details of this procedure.

Any sensible (percentage) weighting scheme will have the following three

properties:

1. w(r)≥ 0,∀r

2. w(r)≥ w(r+ 1)

3.
∑R
r=1w(r) = 1

We consider two parametric weighting schemes that meet these criteria:

• Select the first h rotations from the ordered list and generate a fraction

of exactly w(r) = 1/h of the required M base learners on each of these

rotations;
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• Use an exponential family of curves with decay parameter h to deter-

mine the percentage of base learners that should be trained on each

rotation.

Fig. 2.1: Two parametric families of weight functions: top-h (left) and exponential
(right).

The first scheme corresponds to selecting the h rotations that are expected to

produce the lowest complexity base learners and equal-weight the trees on

these rotations. The second scheme includes the possibility of including trees

on more different rotations but at much smaller weights. In both cases, h acts

as a tuning parameter that can be inferred from the data via a simple grid

search, the details of which will be described at the end of this section.

In the first case, the weighting follows the formula

wcut(R,h;r) = I(r ≤ h)/h, (2.6)

where h is an integer tuning parameter in [1,R], representing a cut-off value

and I(·) is the indicator function. Note that the sum of the weights is 1, as

expected. For the second case, we use the following family of exponential

curves:

wexp(R,h;r) = 2−r/h(21/h−1)
(1−2−R/h)

, (2.7)
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where R is the total number of rotations and h is a positive, real tuning

parameter. In both cases, r is the sorted (integer) rotation number, as

described above. In both cases, small values of h result in large weights for

the top rotations and small (or zero) weights for less favorable rotations. By

contrast, large h eventually lead to the equal-weighting of rotations.

Figure 2.1 compares the two weighting schemes. A simple method for

obtaining a good tuning parameter h is to use the out-of-bag error estimates

of the micro-forests on each rotation and compute the sum product of these

errors with the weight vectors using different values of h – effectively a grid

search. Since the rotations are in complexity-sorted order and because the

weighting schemes are non-increasing, the resulting weighting will differ

significantly from a weighting based solely on out-of-bag predictive accuracy.

In Section 2.5 we show that weightings based solely on out-of-bag predictive

accuracy produce base learners that are more complex on average, without a

corresponding out-of-sample performance gain. It should also be noted that

in line 9 of Algorithm 2, the weights are multiplied with the ensemble size

N and need to be rounded to integer values, since we cannot grow partial

trees. In this process, it is possible due to rounding that the sum of the

computed number of trees does not add up to N anymore. If this is the case,

we automatically add any missing trees to the top rotation or analogously

subtract additional trees starting from the worst rotation.

2.4 Defining useful rotations

The goal of this section is to provide an intuitive understanding of which

rotations are useful in the context of axis-aligned learners. The discussion

applies to higher-dimensional problems but is illustrated in two dimensions.
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One visual indication betraying axis-aligned learners, such as decision tree

ensembles, is their rugged ("stair-shaped") decision boundary. When a seg-

ment of the true decision boundary is not axis-aligned, such learners are

forced to approximate the local boundary using a number of smaller steps.

The greatest number of such steps is required when the true boundary occurs

at a 45-degree angle to one of the axes.

A natural strategy to overcome this predicament is to rotate the space by

45-degrees, such that the decision boundary becomes axis-aligned. After

the rotation, only a single hyperplane is necessary to represent the very

segment that required many steps prior to rotation. Unfortunately, while

rotating the feature space might improve classification locally, it may actually

have a negative effect overall, as other segments of the decision boundary

might have been well-aligned with the axes prior to rotation but are now

poorly-aligned after rotation. For this reason, rotations need to be examined

globally and jointly.

To better illustrate the argument, we artificially construct the 2-dimensional,

two-class classification problems depicted in Figure 2.2. For simplicity of the

Fig. 2.2: Three illustrative classification problems with known decision boundaries:
(a) y = x, (b) y = 0.5 + max(x−0.75), (c) y = 0.5 + max(x−0.5)

argument, no class overlap is created but the conclusion will be unaffected.

The problem on the left-hand side (a) corresponds to the situation where the

2.4 Defining useful rotations 49



decision boundary is at a 45-degree angle to both axes. For this problem, we

expect a 45-degree (or equivalent) rotation to be optimal.

For the middle problem (b), the decision boundary is flat and axis-aligned

but there is a small segment that protrudes at a 45-degree angle to the axes.

A zero-degree rotation (or equivalent) seems ideal for the longer segment but

a 45-degree rotation appears preferable for the smaller segment. Note that

since we are running an ensemble of trees, it would be perfectly acceptable to

combine one forest trained without rotation with another (perhaps smaller or

down-weighted) forest on the rotated space. The question is: which approach

produces a better-performing ensemble?

In the final classification problem on the right-hand side (c), the portion

of the decision boundary at a 45-degree angle is slightly longer than the

axis-aligned section. Here, rotation is likely preferred again. But is it better

to rotate by 45-degrees to aid classification near the longer segment or

perhaps just by 20-degrees, in such a way that the maximum slope of the

decision boundary is reduced at the expense of constructing a problem that

is completely unaligned to any axis? In order to answer these questions,

we need to define a metric to quantify the value-add provided by a given

rotation.

2.4.1 Tree Complexity

The number of steps required – and hence the average number of nodes

required to form a decision tree – generally increases as the boundary be-

comes less aligned with the axis. This is because the tree construction is done

recursively and a new level of the tree is built whenever the local granularity
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of the tree is insufficient to fully capture the details of the local decision

boundary.

For this reason, we propose to use the expected median size of a decision

tree as our metric of utility for a given rotation. Rotations that result in

smaller, shallower trees on average are considered better rotations. Not only

does the metric in Formula (2.5) assist in creating streamlined trees with

fewer spurious splits, it also reduces the computational burden of actually

generating and running the full forest. In addition, once we apply Metric

(2.5) to all generated rotations, we are in a position to obtain a ranking of

the relative usefulness of each rotation.

In order to compute a reliable and consistent (across rotations) estimate of the

proposed metric, we generate a micro-forest for each rotation. It is necessary

to create multiple trees to counteract the randomness that is injected in the

tree-induction process. For each micro-forest we then compute the median

number of nodes used. We use the median in order to actively ignore trees

that are artificially inflated by poor (random) variable selections. These

operations are computationally efficient when compared to generating a

full-blown tree ensemble for each rotation and can generate a stable estimate

of the true median. Based on our experiments, the complexity rankings

computed on the basis a 10-20-tree forest is very similar to the complexity

ranking computed on the basis of a full forest. Hence, the metric is highly

predictive and useful.

2.4.2 Illustration

To demonstrate the usefulness of the proposed metric, we have generated

100 random rotations for each of the two dimensional classification problems
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listed in Figure 2.2 above. Figures 2.3, 2.4 and 2.5 illustrate cases (a), (b)

and (c), respectively, ranked by tree complexity. Note that the sorting is

entirely based on the tree complexity and, importantly, does not make use of

the predictive performance of these trees. Despite this, it is interesting to see

that the sort reflects our intuition: in Figures 2.3 and 2.4, those rotations for

which one of the feature boundaries is aligned with one of the axis achieve

the best scores, while diagonal boundaries achieve the worst scores. This

allows us to find useful rotations without resorting to structured rotations

(such as PCA) commonly used in other approaches.

Fig. 2.3: Rotations of classification problem (a) in Figure 2.2, sorted by expected
tree height, as described in the text. Top left is the best rotation, bottom
right represents the worst rotation. The small number on the top right of
each image is the unique rotation number.

However, if all of the top rotations were chosen solely on the basis of the

largest segment of the decision boundary that is axis-aligned, important

secondary segments might get neglected, ultimately leading to a worse

overall prediction. Figure 2.5 demonstrates that this is not the case. In this

case, the best five rotations again aligned the longer segment to one of the

axis, as expected. However, the 6th rotation aligned the shorter segment to

the y-axis. This illustrates the point that it may be useful to include multiple
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rotations in an ensemble, since different rotations can specialize on specific

sub-features or decision boundary segments. These results are intuitive and

demonstrate the usefulness of the tree-based ranking. What is also striking is

that the best rotations do not at all resemble a PCA rotation. This is because

the rotation is optimized for alignment of the decision boundary with the

tree rather than for the variance of the covariates. This is what sets random

rotations apart from rotation forests.

Fig. 2.4: Rotations of classification problem (b) in Figure 2.2, sorted by expected
tree height, as described in the text. The top panel shows the twenty best
ranked rotations from top left to bottom right, the bottom panel represents
the twenty worst ranked rotations from bottom right to top left. The small
number on the top right of each image is the unique rotation number.

Fig. 2.5: Rotations of classification problem (c) in Figure 2.2, sorted by expected
tree height, as described in the text. the top panel shows the twenty best
ranked rotations from top left to bottom right, the bottom panel represents
the worst ranked rotations from bottom right to top left. The small number
on the top right of each image is the unique rotation number.

Up to this point, we examined some very simple two-dimensional toy prob-

lems with high signal-to-noise ratios (SNRs). In each case, both dimensions

were highly informative and contained minimal noise. This setup is ideal

for illustrating the method but is not representative of most real-world chal-

lenges. Therefore, an important question is how the method performs when
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we increase the dimensionality or decrease the SNR. To answer this ques-

tion, we start again with the triangular base shape (a) but incrementally

add uniform noise dimensions to the problem before applying the proposed

method. In this setting, it is more difficult to visualize the results but we can

still demonstrate alignment of the decision boundary with one of the axes by

projecting the rotated problem onto the two-dimensional planes formed by

the axes – the coordinate surfaces – before plotting. It is important to note

that these are different projections of the same rotation, rather than different

rotations.

Figure 2.6 demonstrates that the proposed approach is still successful in

higher dimensions and with lower signal-to-noise ratios. In these figures,

each row represents an exhaustive list of projections onto the coordinate

surfaces for a single rotation in p dimensions. The first two dimensions

are always the signal dimensions, while the remaining p−2 dimensions are

random noise dimensions. For example, in the second row of Figure 2.6

we started with the two original signal dimensions plus one random noise

dimension (p = 3). We then generated 100 rotations and selected the one

rotation that was ranked best according to the metric described in Section

2.3. The row shows the three two-dimensional projections of this best ranked

rotation onto the (x,y), (x,z) and (z,y) planes, respectively. It is very apparent

that the best rotation aligns the decision boundary with the third axis (the

z-coordinate) in this case.

Even when the number of noise dimensions exceeds the number of signal

dimensions, as is the case for p= 5, the alignment of the decision boundary

with one of the axes is still very consistent for the best rotation.
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In contrast, Figure 2.7 shows that the worst ranked rotations are not aligned

with any axis, regardless of the dimensionality of the problem and that there

is a considerable overlap in the two classes at the decision boundary, making

it extremely difficult to produce a successful classifier. These examples very

clearly show the value of finding high-quality rotations.

Fig. 2.6: Alignment of the decision boundary of the best ranked rotation in p di-
mensions with each axis. In p dimensions, there are exactly p(p− 1)/2
coordinate surfaces, meaning two-dimensional planes formed by the p
coordinate axes. In this figure, each row depicts the projections of the
best rotation in p dimensions onto all available coordinate surfaces. The
numbers on the top right of each sub-figure indicate the two axes used to
form the specific coordinate surface. For p = 2, the signal-to-noise ratio
(SNR) is high because only the two signal dimensions were used. For
p > 2 a total of p−2 noise dimensions were added, decreasing the SNR
accordingly. Highlighted projections indicate strong alignment with one of
the axes.

2.5 Performance

In order to test our hypothesis that it is possible to rotate to simplicity

without a corresponding performance penalty, we implemented the following

weighting schemes:

(a) RRE: Random rotation ensemble, same number of trees on each rota-

tion: M/R.
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Fig. 2.7: Alignment of the decision boundary of the worst ranked rotation in p
dimensions with each axis. In p dimensions, there are exactly p(p−1)/2
coordinate surfaces, meaning two-dimensional planes formed by the p
coordinate axes. In this figure, each row depicts the projections of the
worst rotation in p dimensions onto all available coordinate surfaces. The
numbers on the top right of each sub-figure indicate the two axes used to
form the specific coordinate surface. For p = 2, the signal-to-noise ratio
(SNR) is high because only the two signal dimensions were used. For
p > 2 a total of p−2 noise dimensions were added, decreasing the SNR
accordingly. No alignment is apparent with any of the axes for the worst
ranked rotation.

(b) CUT: Same number of trees on the top-h rotations in terms of com-

plexity (h is chosen using grid search on OOB performance per section

2.3.1).

(c) EXP: Exponential weighting with half-life h in terms of complexity (h is

chosen using grid search on OOB performance per section 2.3.1).

(d) BST: All N trees on the lowest complexity (best) rotation (equivalent

to CUT with h= 1.

(e) NEW: Same number of trees on all rotations that are ranked higher

than or equal to the identity rotation.

(f) LIN: linearly decreasing number of trees: k on lowest complexity rota-

tion, k−1 on second lowest, . . . 1 on highest complexity.
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(g) OOB: linearly decreasing number of trees: k on lowest OOB error

rotation, k−1 on second lowest, . . . 1 on highest OOB error.

(h) JNT: linearly decreasing number of trees: k on lowest joint ranking

of complexity and OOB error, . . . 1 on highest joint ranking rotation:

rank(rank(OOB error) + rank(complexity)).

For comparison, we also tested a standard Linear Discriminant Analysis (LDA),

as well as three non-linear classifiers: a simple K-Nearest Neighbor classifier

(KNN-5), a Support Vector Machine (SVM), and a Gaussian Process classifier

(GPR). We have applied the competing methods (GPs and SVMs) with default

parameters available from publicly available software implementations.

For KNN, we used the R implementation in the class package with k=5

and for LDA the implementation in MASS. For the SVM, we used the R

implementation in the e1071 package with default parameters, that is we used

type C-classification with a radial basis function (RBF) kernel and a default

gamma of 1/N, which was adjusted to reflect the number of data dimensions

and added noise dimensions, where applicable. The cost parameter (or

C-parameter in SVM parlance) was set to 1.0. For the GPR, we used the

R implementation gausspr in the kernlab package. Here we too used the

problem type classification with a RBF kernel (rbfdot) and took advantage

of the built-in automatic sigma estimation (sigest). We did not attempt to

manually- or otherwise tune the meta-parameters of these methods, unless

a built-in auto-tuning feature was available, just like we did not tune any

parameters in the proposed tree-based methods with the exception of the

rotation selection that is the subject of this thesis chapter. The overarching

goal was to compare methods with sensible default parameters across a
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Tab. 2.1 Description of UCI Datasets

UCI Name Dim (p) Rows (N)

BREAST 10 699
ECOLI 8 336
GLASS 10 214
IONO 34 351
IRIS 4 150
LIVER 7 345
WINE 13 178
WAVE 21 5000

number of problem sets in order to determine how to best make use of

rotations with axis-parallel learners.

The test procedure generated a random subset of 70% of the data for training

purposes and all classifiers were tested on the remaining 30% of the data.

This is consistent with the procedure described in Chapter 1. The process

was repeated 100 times and averages are reported.

With the exception of the identity rotation, all rotations were generated

uniformly at random from the Haar distribution. As our base case RRE,

we implemented a random rotation ensemble, which does not differentiate

between rotations. The only other weighting scheme that does not consider

tree complexity at all is OOB, which only takes advantage of out-of-bag

errors across the different rotations. Our expectation would be for OOB

to outperform in terms of predictive accuracy but with high complexity

ensembles. We would also expect BST to produce the lowest complexity

ensemble but at the cost of lower predictive performance. In terms of

methodology, we first generated 100 random rotations, including one identity

rotation. These same rotations were then used by all weighting schemes

before the entire process was repeated. In each case, we generated an

ensemble with exactly M = 5000 trees in total. The dimensionality and
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Tab. 2.2 Classification error on test data (lower is better). Each rotation
weighting method RRE, CUT, EXP, BST, NEW, LIN, OOB, JNT, as described in
the text, was applied to the data sets listed under UCI Name. Strikethrough
represents a performance number that was more than one cross-sectional
standard deviations above (worse than) the minimum.

UCI Name LDA SVM GPR KNN-5 RRE CUT EXP BST NEW LIN OOB JNT

BREAST 0.0472 0.0386 0.0407 0.0410 0.0347 0.0348 0.0349 0.0354 0.0348 0.0349 0.0345 0.0347
ECOLI 0.1209 0.1265 0.1305 0.1365 0.1217 0.1233 0.1251 0.1445 0.1448 0.1208 0.1212 0.1207
GLASS 0.3805 0.3157 0.3213 0.3587 0.3001 0.2729 0.2400 0.2395 0.2378 0.2977 0.2994 0.3001
IONO 0.1381 0.0609 0.1317 0.1587 0.0514 0.0535 0.0544 0.0704 0.0706 0.0519 0.0510 0.0512
IRIS 0.0240 0.0407 0.0502 0.0416 0.0467 0.0451 0.0453 0.0456 0.0460 0.0467 0.0462 0.0464
LIVER 0.3318 0.3064 0.3162 0.3981 0.3116 0.3050 0.3135 0.3191 0.3089 0.3097 0.3079 0.3099
WAVE 0.1423 0.1383 0.1320 0.1815 0.1352 0.1380 0.1422 0.1435 0.1432 0.1352 0.1350 0.1351
WINE 0.0161 0.0206 0.0180 0.0433 0.0250 0.0176 0.0165 0.0172 0.0150 0.0222 0.0224 0.0232

number of data points for each data set is listed in table 2.1. The lowest-

dimensional problem with 4 predictors is IRIS and the highest-dimensional

problem with 34 predictors is IONO. We refer the reader to Dheeru and

Taniskidou (2017) for a detailed description of the UCI data sets we used for

testing. Before running the classification algorithms, we scaled all numeric

predictors to [0,1].

Table 2.2 shows the names of the data sets, together with the classification

error resulting from applying the different weighting schemes to the rota-

tions. Interestingly, algorithm OOB did not perform quite as well as we had

anticipated. For three of the data sets, the scheme performed more than one

cross-sectional standard deviation above (worse than) the minimum error. In

fact, this appears to be a common pattern among these methods, except for

CUT and EXP described in Section 2.3.1, which are competitive on most of

these data sets. One interesting exception was the IRIS data set, for which

LDA outperformed all variants of the rotation-based ensembles and indeed

all non-linear classifiers. This is an example of where the proposed method

does not work as well as expected.

In Table 2.3 we can confirm that BST really does produce the most compact

ensembles. However, unfortunately performance suffers accordingly. A good
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Tab. 2.3 Tree complexity on test data (lower is better, only relevant for
tree-based classifiers). Each rotation weighting method RRE, CUT, EXP, BST,
NEW, LIN, OOB, JNT, as described in the text, was applied to the data sets
listed under UCI Name. Strikethrough represents a complexity number that
was more than one cross-sectional standard deviations above (worse than)
the minimum.

UCI Name RRE CUT EXP BST NEW LIN OOB JNT

BREAST 54.69 52.08 51.68 51.11 52.94 53.66 54.42 54.63
ECOLI 76.82 71.67 69.08 44.52 44.56 75.23 76.68 76.59
GLASS 81.68 73.69 67.42 66.93 66.95 80.84 81.14 81.39
IONO 61.58 60.24 60.02 57.58 58.20 61.16 61.51 61.60
IRIS 20.98 16.52 15.86 15.36 18.67 19.44 20.30 20.98
LIVER 115.48 112.14 111.18 110.84 114.06 114.64 114.94 115.51
WAVE 1368.76 1332.53 1310.13 1303.26 1303.29 1359.99 1365.58 1368.30
WINE 36.21 32.52 31.02 30.88 31.21 35.42 35.42 36.15

compromise is EXP, which shows significant reductions in complexity without

suffering from performance problems.

For the IRIS data set, EXP resulted in an ensemble that outperformed RRE

despite a 24.4% decrease in complexity. Similarly, a 17.5% decrease in

complexity was achieved in the GLASS data set. The smallest improvement of

merely 2.5% decrease in complexity occured on the IONO data set, for which

RRE actually outperformed EXP, although not in a statistically significant

manner.

Tables 2.4 and 2.5 show the performance of a set of baseline classifiers (SVM,

GPR, KNN-5) and the various rotation variants after adding noise dimensions

to the data sets IRIS and IONO. It is evident that the performance of the

rotation-based classifiers deteriorates relative to other classifiers as the signal-

to-noise ratio decreases. This is a known limitation of the method, further

described in the following section. At the same time, it can be observed that

LDA performance is very problem dependent, while KNN and SVM classifiers

actually became more competitive in a relative sense with decreasing SNR.
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2.6 Limitations

It was empirically demonstrated in Tomita, Maggioni, et al. (2017) that in

situations where the signal is contained in a subspace that is small relative to

the dimensionality of the feature space, random rotation ensembles tend to

underperform ordinary random forests. This is because such a setup renders

most rotations unhelpful. By overweighting the most successful rotations, as

we propose in this chapter, this effect is somewhat mitigated but not entirely

eliminated.

Even in the illustrations in Figure 2.6 it is clear that the quality of the most

successful rotations decreases marginally as the number of noise dimensions

is increased. The alignment with the axes are not perfect and the noise

around the decision boundaries increases visibly. Nonetheless, the rotated

features lead to better (axis-aligned) classifiers than the those trained on the

unrotated space.

The underlying issue is that rotations in the direction of uninformative

noise dimensions do not improve predictions and when the number of noise

dimensions is large relative to the signal dimensions, the likelihood of rotating

in uninformative directions increases. Note that the same is not necessarily

true when the SNR is decreased without increasing the dimensionality of the

problem. In this case, random rotations and the ideas in this thesis do not

underperform ordinary random forests in our experience.

One important consideration when introducing rotations into a classifier is

that features need to be of comparable scale. We do not explicitly mention

this in this chapter but a section on recommended scaling mechanisms can
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Tab. 2.4 Classification error on test data (lower is better). Each rotation
weighting method and control classifier was applied to the UCI data set IRIS.
The first (NOISE) column indicates the number of noise dimensions added to
the original data set, from which an upper bound to the signal-to-noise ratio
can be estimated as SNR (dB) ≤ 10× log(4/NOISE) by assuming that the
original data set is noise free. In the table, SNR represents this upper bound.

NOISE SNR LDA SVM GPR KNN-5 RRE CUT EXP BST NEW LIN OOB JNT

1 6.02 0.0258 0.0578 0.0658 0.0507 0.0516 0.0489 0.0516 0.0560 0.0524 0.0507 0.0524 0.0516
2 3.01 0.0258 0.0533 0.0898 0.0480 0.0569 0.0551 0.0551 0.0587 0.0613 0.0569 0.0604 0.0578
4 0.00 0.0240 0.0827 0.1164 0.0871 0.0853 0.0693 0.0631 0.0640 0.0640 0.0853 0.0889 0.0853
8 -3.01 0.0267 0.1591 0.1680 0.1467 0.1316 0.1093 0.0960 0.0996 0.1013 0.1333 0.1289 0.1289

16 -6.02 0.0533 0.1591 0.1822 0.1200 0.1458 0.1396 0.1511 0.1671 0.1440 0.1440 0.1449 0.1422
32 -9.03 0.0569 0.1618 0.1724 0.1458 0.1591 0.1636 0.1733 0.1724 0.1618 0.1609 0.1644 0.1671
64 -12.04 0.1280 0.2222 0.2516 0.2249 0.2124 0.2116 0.2204 0.2364 0.2151 0.2151 0.2116 0.2133

128 -15.05 0.1618 0.2951 0.3484 0.2596 0.2640 0.2676 0.2684 0.2898 0.2729 0.2658 0.2791 0.2676

Tab. 2.5 Classification error on test data (lower is better). Each rotation
weighting method and control classifier was applied to the UCI data set IONO.
The first (NOISE) column indicates the number of noise dimensions added to
the original data set, from which an upper bound to the signal-to-noise ratio
can be estimated as SNR (dB) ≤ 10× log(34/NOISE) by assuming that the
original data set is noise free. In the table, SNR represents this upper bound.

NOISE SNR LDA SVM GPR KNN-5 RRE CUT EXP BST NEW LIN OOB JNT

1 15.31 0.1479 0.0675 0.1423 0.1725 0.0600 0.0604 0.0600 0.0721 0.0706 0.0596 0.0592 0.0592
2 12.30 0.1234 0.0551 0.1294 0.1509 0.0521 0.0558 0.0589 0.0702 0.0691 0.0528 0.0521 0.0517
4 9.29 0.1577 0.0725 0.1464 0.1675 0.0675 0.0683 0.0702 0.0868 0.00875 0.0679 0.0698 0.0683
8 6.28 0.1506 0.0668 0.1408 0.1706 0.0668 0.0660 0.0717 0.0808 0.0815 0.0664 0.0668 0.0679

16 3.27 0.1438 0.0634 0.1362 0.1672 0.0657 0.0615 0.0747 0.0789 0.0785 0.0649 0.0664 0.0642
32 0.26 0.1642 0.0792 0.1638 0.1864 0.0864 0.0808 0.0879 0.0906 0.0838 0.0860 0.0857 0.0842
64 -2.75 0.1951 0.1155 0.2257 0.1898 0.1521 0.1408 0.1385 0.1423 0.1442 0.1525 0.1498 0.1528

128 -5.76 0.2921 0.1479 0.2687 0.2083 0.2230 0.2242 0.2200 0.2208 0.2211 0.2238 0.2245 0.2242

be found in Chapter 1. We do not recommend using any rotation-based

ensembles without prior scaling or ranking for practical problems.

2.7 Computational Considerations

When compared to random rotation ensembles, there is an additional compu-

tational cost for regularizing the ensemble. Given the desired total number

of trees M , the algorithm requires the generation of micro-forests of size U

for each of the R rotations. These micro-forests are essential for estimating

the relative efficacy of each rotation. However, depending on the weighting
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scheme employed, only a subset of the rotations is actually included in the

final model.

More specifically, in the initial step, U ×R trees are constructed. However, if

the weighting scheme only involves the top r rotations, then (R−r)×U trees

subsequently get discarded. This, in turn, implies that M − r×U additional

trees need to be induced within the r selected rotations to end up with M

trees in total within the selected rotations. Expressed as a percentage, we

know that (R−r)×U/(M−r×U+R×U) percent of the initially constructed

trees get subsequently discarded, resulting in computational overhead when

compared to random rotation ensembles, where all trees are used.

In order to obtain a bound on this expression, note that R×U <=M . This is

because it is not practical to generate more trees in the micro-forests than

are needed in total. Hence, in the worst case (R− r)/(2R− r) percent of

the initially constructed trees get subsequently discarded, a quantity that is

smaller than 1/2 because r is in [1,R] and R is in [1,M ]. This expression is

maximized when only the best rotation is selected (r = 1) and minimized

when all rotations are selected (r =R). Therefore, in terms of computational

overhead, the worst case is that nearly twice as many trees need to be

constructed when the ensemble is regularized than for standard random

rotation ensembles.

In practice, this bound is unrealistically high and the magnitude of the

overhead can be influenced by selecting sensible parameters. For example,

using M = 5000, R = 50 and U = 10 and utilizing the top r = 10 rotations,

we achieve a computational overhead of merely (50−10)×10/(5000−10×

10 + 50×10) = 2/27, or less than 7.41%. In addition, it should be noted that

this overhead gets partially offset by the fact that only R rotations need to be
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generated with our method instead of M for random rotation ensembles. In

the current example, that number is 50 instead of 5000.

Besides these rather modest effects, the computational complexity of our

method is equivalent to that of random rotation ensembles, regardless of the

number of training samples or data dimensions.

2.8 Software

As indicated in the introduction to Chapter 1, an R package called ran-

dom.rotation is provided in the public domain on GitHub. The weighting- and

regularisation methods described in this chapter are also part of this package.

A detailed introduction to this software package is provided in Chapter 5.
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3
Multi-rotation classifiers

and rotation stacking

„It is better to solve the right problem

approximately than to solve the wrong

problem exactly.

— John Tukey

Statistician

3.1 Background

In Chapter 1 on Random Rotation Ensembles, we concluded that random

rotations can have a significant impact on the performance of ensembles of

axis-aligned classifiers. To take advantage of this insight, it was proposed

to rotate the feature space prior to inducing each base learner. From this

work, we also learned that the best rotations are those that align the largest

quasi-linear decision boundary segment with one of the axes.

In Chapter 2, it was conjectured that only a very small number of rotations

actually aligned large segments of the decision boundary with one of the axes

and were therefore effective. On the surface, the other rotations appeared

counter-productive and a method was proposed to overweight effective

rotations and underweight unsuccessful rotations. The results were mixed:

On the one hand, we could confidently show that focusing on rotations
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that produced simpler base learners did not have a negative impact on

performance, a fact that in and of itself is useful because it enabled us to

produce smaller classifiers without decreasing performance. On the other

hand, the performance improvements, while observable, were relatively

modest in general.

In the present chapter, we leverage random rotations in two novel ways:

• In Section 3.2, multiple rotations are generated for each classifier. This is a

notable departure from earlier chapters, where one or more classifiers

were generated on each rotation. In fact, instead of generating a

separate random rotation prior to inducing each base learner, we pre-

generate all random rotations and then use the entire collection of these

rotations as an input when inducing each base learner. The benefit of

this approach is that classifiers can theoretically use the best available

rotation at every local segment of the decision boundary, rather than

only emphasizing those rotations that are best aligned in a global sense,

as was the case in the procedures described in Chapters 1 and 2.

• In Section 3.3, we return to the standard setting with one or more classifiers

per rotation. However, instead of using a global weighting scheme to

combine these predictions, the outputs of the individual classifiers are

combined using a meta- or stacking classifier. In contract to Section

3.2, it is not the rotations that are combined in a non-linear fashion but

the actual predictions on these rotations, again achieving a combined

predictions that is local in nature. Extra care must be taken in this

case to avoid data snooping biases when training multiple levels of

predictors. This is solved using a repeated, nested cross-validation.
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We show evidence of performance improvements that can be achieved with

these local approaches over their global counterparts and in a number of

settings. At the same time, we demonstrate that the resulting classifiers are

consistently more compact than those created in Chapters 1 and 2. These

improvements appear stable across a range of test setups.

3.2 Multi-Rotation Classifiers

In Random Rotation Ensembles, each tree T in the ensemble was represented

as follows:

T (x;θ,Ω) =
J∑
j=1

cjI(R(x) ∈Gj), (3.1)

where each randomly rotated input R(x) was mapped to a constant cj,

depending on which region Gj the input belonged to. J represented the total

number of regions or, equivalently, terminal nodes of the tree. Ω represented

the deterministic tuning parameters cj and Gj, whereas θ represented the

random parameters used to induce the tree, including the bootstrap sample

and the random inputs to the split variable and threshold selection. It is

evident that each tree was exactly associated with one rotation and there

were multiple such trees in the ensemble.

In the present section, an array of rotations is first created and the input is

augmented by its K−1 random rotations, which also forces the region G to

become higher dimensional. The indicator function I still only tests if the

augmented point lies in the extended region, that is

T (x;θ,Ω) =
J∑
j=1

cjI(|x|R1(x)|R2(x)|...|RK(x)| ∈Gj). (3.2)
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The vertical lines in Formula 3.2 indicate that the columns of the original

feature space are extended by all of the columns of each of the rotated

versions of the feature space. This can also be thought of as a binary operation

that merges the columns of two matrices and is then generalized to a n-ary

operation. In the software implementation, this is accomplished using a

standard left-join operation.

In the proposed setup, the trees are always induced on an extended set of

features that includes the original unrotated features, plus K−1 randomly

rotated versions of these very same features. Including the unrotated features

affords the classifier the theoretical opportunity to never underperform a

standard tree ensemble; in practice, the random nature of the induction

process makes an unfavorable outcome possible nonetheless.

3.2.1 Intuition

At first glance, it might appear that not much is gained from loading the

classifiers with multiple rotated versions of the same original features and

thereby effectively increasing the dimensionality of the problem. However,

there is a clear intuition behind it, particularly for axis-aligned learners:

when multiple rotations of the problem are available at each variable split

then the classifier can always select the rotation that orients that particular

subproblem best with one of the boundaries. This approach is a lot more

powerful than attempting to select one best rotation for the entire tree. It is

also expected to produce smaller trees on average.

To illustrate these points, we revisit the introductory example from Chapter

1. Figure 3.1 illustrates that it is possible to achieve very complex oblique

decision boundaries from a single tree simply by providing the classifier with
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(a) Single tree, no feature rotations (b) Single tree, 20 feature rotations

Fig. 3.1: Comparison of the decision boundary for a single tree with only the original
features and no rotations with a single tree built on top of 20 rotations of
the original features

additional rotations of the original features. Indeed, the right-hand side of

the figure does not have the characteristic shape of a traditional tree-based

ensemble, much less of a single decision tree. In fact, it looks more like

an entire random rotation ensemble. This illustrates the potential of the

multi-rotation approach.

One potential downside of the proposed approach is that during the decision

tree induction, many additional split variables need to be considered and

evaluated at each split decision. This is because ifK is the number of rotations

passed to the classifier, there are K times as many features available to the

classifier, when compared to the setting where each classifier is induced on a

single rotation. Depending on how the randomness is controlled during the

induction, it could therefore take a maximum of K times as many operations

to induce each tree. Of course, this is offset by the fact that the resulting

trees tend to be significantly smaller, as we will demonstrate, and that the

split decisions are often randomized anyway, making this a rather theoretical

upper bound.
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However, in the following section we do not account for these mitigating

factors and simply assume that the computational work required to induce a

Random Forest with 500 trees is comparable to a multi-rotation ensemble of

500/K trees. Surprisingly, the new method is competitive even under these

unrealistically unfavorable assumptions.

3.2.2 Evaluation

Our own random.rotation R package described in Chapter 5 was used to

compare the performance of a standard random forest with that of a multi-

rotation classifier ensemble. As in previous chapters, all variables were scaled

to [0,1] in order to make sure that rotations were not penalized if the scales

of the variables were incompatible.

The tests were performed on eight standard UCI data sets: iris, wine, breast,

ecoli, glass, ionosphere, liver and wave. In each case, half of the data set

was selected at random as the training set and the other half was used as the

test set. Initially, 500 trees were built for both methods and later the number

of trees for the new method was reduced to 500/K in order to compare

performance with a similar training effort. The tests were repeated 100 times

to minimize the impact of poorly selected random training splits.

The reason the training efforts of the two methods is assumed to be compara-

ble is because if the number of predictors is doubled, this also doubles the

number of predictors that need to be considered and hence the number of

split points that need to be evaluated. As explained in the previous section,

this is a rather conservative assumption.
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(a) 500 vs 500 trees

(b) 17 vs 500 trees

Tab. 3.1: The table compares the multi-rotation classifier with the unrotated clas-
sifier. In the top figure, the multi-rotation classifier contains the same
number of trees as the unrotated classifier. In the bottom figure, the
number of trees was reduced proportionally to the number of number
of input features. Column heading ’new’ is the number of times (out of
100) where the new method outperformed, ’tie’ indicates the number of
times they performed the same, while ’old’ represents the number of times
a plain random forest outperformed. Column header ’old h’ shows the
height of the median tree in the plain random forest, while ’new h’ - the
height of the median tree for the multi-rotation classifier.
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We then tabulated the number of times the new method performed better

than the standard random forest, the number of ties, and the number of times

the random forest outperformed the new method. In addition, we kept track

of the median tree size, here defined in terms of the height of the individual

trees.

The results are interesting: in both cases, the multi-rotation classifier with

multiple rotations per base learner considerably outperformed the existing

method, while consistently generating smaller trees. The full results are listed

in part (a) of Table 3.1

In the iris example, there were 48 cases where the new method outperformed,

37 cases where there was a tie and only 15 cases where the standard ver-

sion outperformed. This means when there was no tie, the new method

outperformed in 76.19 percent of cases. At the same time, the tree size was

5.67 on average, 30 percent lower than the average tree size of the standard

method.

In the wine example, there were 62 cases where the new method outper-

formed, 14 cases where there was a tie and only 24 cases where the standard

version outperformed. This means when there was no tie, the new method

outperformed in 72 percent of cases. At the same time, the tree size was 6.41

on average for the new method and 9.54 for the standard method. In other

words, the trees were smaller by one third in the new method on average.

Equally interesting is the fact that the largest tree in the new method was

smaller than even the first quartile of the standard method.

Only in one quarter of the test data sets did the unrotated version outperform

the version based on multi-rotation classifiers. This occurred for data sets
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glass and ionosphere. These occasional negative results reinforce the point

that random rotations should be offered as an optional add-on for tree-based

methods, rather than as the only available option.

In the second test, the multi-rotation classifier ensembles were severely

penalized by restricting the ensemble size to only d500/30e= 17 trees. This is

a harsh penalty for three reasons: (1) we know from Chapters 1 and 2 that

many rotations are not helpful for much of the decision boundary, (2) tree-

sizes for multi-rotation classifiers were just shown to be significantly smaller

than their unrotated counterparts, and (3) from experience, it is unreasonable

to assume we can achieve full convergence with only 17 trees.

Despite these challenging conditions, the new method held up reasonably

well in the comparison, still outperforming in half of the data sets and

producing trees that were smaller on average in every problem instance. This

is illustrated in part (b) of Figure 3.1. It is notable that the unrotated version

with thirty times more trees and larger trees on average did not outperform

in these tests.

3.2.3 Discussion

By extending the feature space via linear rotations and thereby taking the

problem to a higher dimension, the effect of multi-rotation appears to be

comparable to that of a kernel. It enables the classifier to find decision

boundaries that are oblique to the original coordinate system and specialized

to each local sub-part of the problem. On average, the biggest benefit in

the form of a greater degree of freedom comes from the first rotation and

the benefit slowly tapers off as additional rotations are added. Naturally,

the exact marginal behavior depends on the natural fit of the generated
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random rotation to the problem at hand. The problem of finding the optimal

rotations for a given data set is not tractable in general and random rotations

are a convenient and useful mechanism to quickly converge to a set of

transformations that can be efficiently leveraged by a classifier.

Just like for standard tree ensembles, the resulting classifiers exhibit a low

bias because they are based on unpruned trees. However, the presented

multi-rotation classifiers accomplishes this goal with fewer and much more

compact trees on average.

It is also important to note that unlike for the methods described in Chapter

2, there is no need to select the best set of rotations a priori for multi-rotation

classifiers. Instead, the induction algorithm of the classifier automatically

selects the most suitable rotations at each decision point, for example when

deciding on a variable split in a decision tree. Incorporating this decision into

the classifier also extends the usefulness of the built-in importance metrics,

making it possible to not only assess the importance of the individual predic-

tors but also their rotations ex post. In this way, the classifier can optionally

be retrained with only the rotations that were deemed most helpful.

Finally, because all rotations are pre-generated and passed in as a collection,

the method is equally suitable to classifiers that have an inter-tree dependency,

such as gradient boosting approaches.

3.3 Stacking Classifiers

In this section we discuss a second method for taking advantage of multiple

random rotations: model stacking. The idea behind this approach is to gen-

erate a classifier on each random rotation, as we have done in the earlier
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chapters. However, instead of applying a global parametric weighting func-

tion, we use the predictions of each of these base (or Level-0) classifiers as an

input into a newly introduced meta (or Level-1) classifier. This meta classifier

determines for each region of the decision boundary, which rotations - or

more precisely: which combination of rotated base classifiers - is best suited

locally.

Let Lx.y denote an index into the yth base classifier of a Level-x ensemble

classifier. In this section, we restrict x and y as follows: x ∈ {0,1} and

y ∈ {0,1, . . . ,K}. Later, we will briefly touch on the idea of a classifier with

x > 1, that is, a multi-stage classifier. In the following, if we omit y then

we refer to the entire Level-x ensemble classifier, including all of its base

classifiers. With this notation, a tree-based meta (Level-1) ensemble classifier

TL1 can be expressed as follows in terms of the predictions of the individual

tree-based base (Level-0) classifiers TL0.0...TL0.K:

TL1(x;θ,Ω) =
J∑
j=1

cjI( |TL0.0(x;θL0.0,ΩL0.0)

|TL0.1(R1(x);θL0.1,ΩL0.1)

|TL0.2(R2(x);θL0.2,ΩL0.2)

|...

|TL0.K(RK(x);θL0.K ,ΩL0.K)|

∈Gj). (3.3)

As in the previous section, we use the vertical lines to denote a column-based

augmentation of the inputs.

At first sight, this Formula 3.3 looks very different from Formula 3.2 in the

previous section. However, the two are actually closely related: instead

of aggregating the raw, rotated predictors into a single input, the new for-
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mulation aggregates the predictions from the Level-0 classifiers, which are

themselves trees. Also note that each Level-0 tree includes its own set of

random and deterministic parameters θ and Ω, which is also the reason

each tree specification uses a matching superscript L0.0 to L0.K for these

parameter sets.

The main challenge with a two-stage approach is to ensure that the Level-0

base classifiers are not trained on the same data points as the Level-1 stacking

classifier. If we do not control for this, the Level-1 classifier ends up relying

on the in-sample performance of the Level-0 classifiers. This predictably leads

to a selection of the Level-0 classifiers with the best in-sample performance,

rather than a true meta-classifier that takes advantage of local properties of

the feature space and base predictions.

One way to accomplish this data separation is to randomly divide the data into

three disjoint partitions, use the first partition to train the Level-0 classifiers,

the second partition to train the Level-1 classifier and the third partition for

out-of-sample validation of the Level-1 stacking classifier. However, this is

a very inefficient use of data: the base classifiers are only exposed to one

third of the full data set during training. To make matters worse, for data

sets that are imbalanced, such a naive approach could mean that a randomly

generated training partition does not contain any (or very few) instances of

one of the class labels, especially in the absence of a carefully-implemented

stratification strategy. A better approach is to use data folds and cross-

validation. In this procedure, each data partition becomes the out-of-sample

partition in one instance, leading to a much better utilization of the available

data. In addition, by using more than three folds, the percentage of training

data available to the base classifiers can be controlled with precision and
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Fig. 3.2: High-level overview of the nested cross validation procedure required to
properly tune and evaluate a stacking predictor. The depicted case relies
on five cross validation folds F1-F5.

carefully traded off against the the cost of the corresponding computational

overhead. In the next section, we will discuss this approach in detail.

3.3.1 Repeated Nested Cross-Validation

Traditional cross-validation divides the data into F Folds, then uses F −1 of

these folds to create a model, and finally leverages the remaining (holdout)

fold to test the model out of sample. This procedure results in a good single-

step model. However, it suffers from the same data snooping issues described

above in the case of a two-stage or multi-stage stacking model. For this

reason, a nested cross-validation is necessary in this case to address these

challenges.
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Nested, in this context, means that we use F − 1 folds to create a Level-1

stacking model but to create the Level-0 base predictors and any potential

tuning of these models we only use F − 2 folds, essentially performing a

cross-validation within a cross validation. Figure 3.2 shows an illustration of

this approach in the case where the data is divided into 5 folds.

In the general case, we have F −2 folds available to train the base classifiers.

There are exactly C(F,F −2) =C(F,2) = F (F −1)/2 such arrangements. For

each of these, we need to train a Level-0 base classifier and the out-of-sample

predictions can be made on either of the two holdout folds. For this reason,

the total number of possible fold arrangements is F (F − 1). In Figure 3.2,

F = 5 and, therefore, the number of possible arrangements is 5×4 = 20.

It is important to note that in a first step, groups of F −1 arrangements are

used to make out-of-sample predictions (orange) on the entire data set except

for the holdout fold (red). All of these out-of-sample predictions are then

combined to train the Level-1 stacking predictor and that, in turn, is then

used to make an out-of-sample prediction on the holdout fold.

In general, F −2 folds (or in percentage terms (F −2)/F percent of the data)

are used to train the Level-0 classifiers and F − 1 folds (or in percentage

terms (F −1)/F percent of the data) are used to train the Level-1 classifiers.

With the number of folds, this percentage increases gradually. For example,

with 3 folds only (3− 2)/3 = 1/3 of the data is used to train the Level-0

classifiers and (3−1)/3 = 2/3 of the data to train the Level-1 classifiers. With

5 folds, these numbers already increase to (5−2)/5 = 3/5 and (5−1)/5 = 4/5

respectively. The two upward sloping green curves in Figure 3.3 provide

an illustration of the data utilization for the Level-0 and Level-1 classifiers,
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Fig. 3.3: The number of required function evaluations of each predictor increases
with the square of the number of folds used. The declining dashed orange
line shows the number of repeats that can theoretically be performed if the
number of evaluations are to be kept constant at 500, while the number
of folds is changed. The light green increasing line shows the percentage
of the data that is used to construct each level-0 predictor as a function
of the number of folds, while the dark green line shows the percentage of
the data that is used to construct the level-1 (stacking) predictor.

respectively. If our goal is to use more than 50% of the data to train the base

classifiers, we need to use at least 5 folds.

According to this analysis, it would be preferable to maximize the number

of folds for optimal data utilization. However, there is a second effect that

needs to considered: computational costs. In the general case, we need to

build F (F −1) versions of the base models plus F versions of the stacking

model in order to perform an out-of-sample evaluation on the full data. In

other words, we need to generate F 2 predictive models in total. This means

the computational costs increase by the square of the number of folds.
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To make matters worse, the entire process needs to be repeated multiple

times in order to account for the variance introduced by partitioning the

data at random. For example, some random partitions may produce better

classifiers simply because the different classes are better distributed across the

partitions - purely by chance. In order to isolate this effect, the experiment

needs to be repeated. The downward sloping dashed line in Figure 3.3 shows

how many times we can repeat the experiment with a given number of folds

at a constant number of total classifiers that need to be built for a full model

evaluation. The line drops off rather sharply from 20 possible repeats with 5

folds to merely 5 repeats with 10 folds with the same computational effort.

Hence, if our goal is to repeat the experiment at least 5 times, we cannot use

more than 10 folds.

From these calculations, it becomes clear that a sensible number of folds in

terms of a reasonable trade-off between data utilization and computational

effort is in the range of 5 ≤ F ≤ 10. In the following section, we will use

5 folds with 20 repeats, emphasizing additional repeats over higher data

utilization. This allows us to make a more accurate evaluation of the models

and corresponds exactly to the setup in Figure 3.2.

Measuring the variance of the procedure across the different randomly gen-

erated fold groups is valuable but even more important, in the context of

random rotations, is to determine the impact of a specific set of random

rotations: what happens if we replace a given set of random rotations with a

different set of random rotations? To answer this question, the experiment

needs to be repeated with multiple sets of random rotations. However, we

would like to do so with the same fold groups in each case, in order to cleanly

delineate the variance resulting from the different fold assignments from that
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Fig. 3.4: The testing procedure uses 20 different fold groups and 20 different
rotation groups. Each fold groups represents a random partition of the
data into five disjoint folds. Each rotation group represents a set of multiple
random rotations. Each row of the matrix uses the same fold group but
different rotation groups and each column of the matrix uses the same
rotation group but different fold groups. Darker squares in the heatmap
correspond to higher out-of-sample errors (worse performance), lighter
squares correspond to lower out-of-sample errors (better performance).
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caused by the use of different rotations. A general procedure to accomplish

this is presented in the next section.

3.3.2 A general evaluation procedure

We now describe a general evaluation procedure for random rotations, illus-

trated by a specific experiment.

In a first step, N groups of random rotations and M groups of folds are

generated. Each of the N groups of random rotations contains exactly K

rotations, while each of the M fold groups contains exactly F disjoint folds,

whose union is always the entire data set. The pre-generation of these

rotation- and fold-groups makes it possible to evaluate a given classifier on

all N ×M combinations, allowing us to perform an analysis of variance on

the result matrix. For each entry in the test matrix, a nested cross-validation

of the classifier is performed.

In Figure 3.4 the test setup is illustrated for the case of N = M = K = 20

and F = 5, the parameters we will continue to use for the remainder of this

chapter. In this case, we have generated 20 different sets of rotations and 20

different fold groups for a total of 20×20 = 400 entries in the test matrix. We

then applied a nested cross-validation on each of the 400 rotation group /

fold group combinations. Since the nested cross-validation is repeated 400

times in total, it is a repeated nested cross-validation. The out-of-sample

test error of each entry in the test matrix is illustrated in the form of a heat

map, where lighter squares indicate smaller test errors (better results), while

darker squares indicate greater test errors (worse results). Two examples

of the underlying cross-validations are shown on the left-hand side of the

figure; each pixel of the heat map corresponds to a separate cross-validation
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procedure. It should also be noted that each row of the heat map uses the

same fold group (but different rotation groups), while each column of the

heat map uses the same rotation group (but different fold groups).

Once the repeated nested cross-validation is complete, the result matrix can

be analyzed: If the variance of the out-of-sample test errors is small across

rotation groups then this means the method is not particularly sensitive to

the choice of rotation. Furthermore, if the variance across rotation groups is

small even compared to the variance across fold groups then the rotations

do not add significant value to the classifier. In this specific case, the local

methods described in this chapter do not provide a great advantage over

the global methods described in earlier chapters. On the other hand, if the

variance across rotation groups is high, this implies that a judicious selection

of the rotation is helpful for that specific problem. And finally, if the variance

across fold groups is very high then the classifier is unstable or the data set is

too small to properly evaluate the classifier.

One particularly useful metric for comparing different classifiers is to infer

a histogram of the test errors from the results matrix, across the different

rotation- and fold-groups. An example of this process is shown in Figure 3.5,

again with N = M = K = 20 and F = 5. Particular care must be taken to

scale the heatmaps and histograms properly when comparing two competing

classifiers.
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3.3.3 Real-world examples of the evaluation

procedure

We compared a stacked random rotation ensemble with a random forest

base learner (S-RRE/RF) with a standard random forest (RF), a regular

random rotation ensemble (RRE), a stacked random rotation ensemble with

a XGBoost base learner (S-RRE/XGB) and a plain XGBoost model (XGB).

It should be noted, however, that the goal of this chapter was not to perform

a comprehensive comparison of these methods but rather to highlight on

some salient examples how stacking ensembles can be rigorously tested on

real data sets using the analysis described in the previous section. The easiest

way to accomplish this is by re-examining three data sets from Table 3.1 in

Section 3.2. There, we found that rotations were somewhat helpful for the

iris data set, not helpful for the glass data set and very helpful for the wave

data set. We now revisit these examples using the newly developed tools.

Figure 3.6 shows the complete results of the procedure for the stacked

random rotation classifier (S-RRE). On the right-hand side of the figure, the

names of the fold groups (FG-01 to FG-20) are presented, along with an

average error in this fold group across all rotations. On the bottom side, the

names of the rotation groups (RG-01 to RG-20) are presented, along with

an average error in this rotation group across all fold groups. These figures

allow us to sort the heat map by rotation group and fold group from lowest

to highest average error, providing us with an indication how much impact

the various rotation groups have on the outcome and how much variance

is due to the random data split in the various fold groups. These sorts are
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Fig. 3.5: A total of 400 different out-of-sample tests are performed for each predic-
tor: one for each combination of the 20 fold groups and the 20 rotation
groups. In addition to evaluating the performance of the predictor on the
different rotation groups, the procedure also implies a histogram of the out-
of-sample prediction errors. In this example, only very few tests resulted
in an error smaller than 0.24 (the very lightest squares in the heatmap and
the very left bars of the histogram) and only a few test resulted in an error
greater than 0.32 (the very darkest squares in the heatmap and the very
right bars of the histogram). This implied histogram can be subsequently
be used to directly compare the performance of different predictors on the
same data set.

provided in Figures 3.7 and 3.8, respectively. Naturally, the histograms do

not change from simply sorting the heat maps.

One interesting outcome from looking at Figure 3.7 is that we can actually

use this procedure as a method to find good rotations. For example, rotation

group RG-16 resulted in significantly lower out-of-sample errors than RG-01,

independently of the fold group (0.0307 vs 0.0487). This illustrates that

rotations are useful for this data set and that we have a clear path to find good

rotations. The process could be extended by creating a classifier that, for

example, only includes the top 5 rotation groups (100 rotations in total).

Next, we look at the same dataset, the same rotation groups and the same

fold groups but this time in the context of a plain random forest. This

configuration is depicted in Figure 3.9. Rotation groups should not have an

impact on the performance of a plain random forest because no rotations
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Fig. 3.6: UCI iris dataset, S-RRE
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Fig. 3.7: UCI iris dataset, S-RRE, sorted from best to worst rotation group
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Fig. 3.8: UCI iris dataset, S-RRE, sorted from best to worst fold group
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Fig. 3.9: UCI iris dataset, RF

are involved. For this reason, the figure shows more or less horizontal lines

of equal color (and error figures). The minor visible artifacts stem from the

fact that there is also randomness in the creation of these random forests,

for example in the form of random feature selections at each tree branch.

However, it is clear from the Figure that across the entire ensemble the impact

of this internal randomization is significantly lower than the impact of the

random data partitions on the overall out-of-sample error.

One important point to repeat is that we should always keep the scale of

the Figures identical across methods to ensure that the color gradients of

the different heat maps match exactly across methods. This allows us to

then compare the methods directly, as we have done in Figure 3.10. In this

case, both figures are sorted from best (top) to worst (bottom) fold groups.
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Fig. 3.10: UCI iris dataset, S-RRE (left) vs RF (right), both sorted from best to worst
fold group

Just looking at the colors it is clear that S-RRE significantly outperforms RF

across a wide range of parameters for this data set. The difference becomes

even more obvious when we examine the resulting histograms. Most of

the bars for the S-RRE classifier are in the yellow to orange section of the

spectrum, whereas the RF classifier has most of the density in the orange and

red section. Of course, this also corresponds well with the computed means

on these data sets.

A comparison between the S-RRE classifier and plain XG Boost in Figure 3.11

shows a similar result. Here it is interesting to see that we do not observe

any artifacts in this figure for the XGB classifier. This has to do with the

specific parameters used and the more stable implementation of the boosting

algorithm deployed.

We now move on to the glass dataset, which has previously provided us with

some challenges for rotations. Figure 3.12 compares the S-RRE classifier
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Fig. 3.11: UCI iris dataset, S-RRE (left) vs XGBoost (right), both sorted from best to
worst fold group

with a plain random forest. In this case, the random forest significantly

outperforms our new stacking classifier. Not only that but we cannot find

very large differences across the rotation groups and there is no rotation

group that outperforms the plain random forest. It thus becomes obvious

that rotations are not an effective way to improve predictive performance for

this data set.

For comparison, we also provide a run using plain XG Boost in Figure 3.13.

Performance of this classifier is again independent of the rotation group and

we see that the results are somewhere in between S-RRE and RF.

For the wave dataset we only show the final histograms of each method in

Figure 3.14. In every instance, the rotation-based classifiers outperformed

the unrotated classifiers, regardless if the underlying base learner was based

on a random forest or an XGBoost classifier.
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Fig. 3.12: UCI glass dataset, S-RRE (left) vs RF (right), both sorted from best to
worst fold group

Fig. 3.13: UCI glass dataset, XGB, sorted from best to worst fold group
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Fig. 3.14: UCI wave dataset, comparison of histograms of 5 different methods.
The classifiers on the left-hand side do not use random rotations, while
the classifiers on the right-hand side all use random rotations. Adding
random rotations appears very beneficial for this problem instance and
the selected base learners.

3.4 Observations and future research

In the present chapter we provided an overview of some previously unex-

plored and unpublished areas of random rotations. We described a general

technique based on a repeated, nested cross-validation for determining the

efficacy of random rotations for a particular problem instance, along with a

clear path to select groups of helpful rotations.

We now discuss some high-level observations, connections, extensions and

experimental musings that may lead to future research.
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3.4.1 Grid searches

The first observation is that the repeated, nested cross-validation is not only

useful to create meta-predictors that do not exhibit a data snooping bias but

can simultaneously be used to perform grid searches of the hyper-parameters

of the base classifiers without introducing data leakage.

Referring back to Figure 3.2, when the Level-0 training folds (blue) are used

to predict the Level-1 training fold (orange), it is helpful to first perform a grid

search in which out-of-bag data is leveraged to determine a good parameter

set. This process can be used to predict each of the Level-1 training folds and

again during the training of the Level-1 classifier.

Obviously, this process is computationally more demanding but produces

better predictors. Perhaps less obviously, it also leads to base classifiers that

use different tuning parameter settings. However, this is not an issue if we

take a modeling pipeline view of the process: the parameter search is simply

part of the process and is repeated in the same way for each fold and again

to produce the final model. In a way, the search is part of our model and

consistently used across the pipeline.

3.4.2 Multi-stage classifiers

The second observation is that the repeated, nested cross-validation can

easily be extended to more than two stages: in each stage we perform out-

of-sample predictions that are used as inputs for the next stage. Such an

architecture starts to resemble that of a deep neural network, especially

block-based and modular neural networks. There are two main differences
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between these approaches: (a) neural networks are typically trained via

backpropagation, whereas such a sequence of trees is trained in a forward-

only fashion and (b) the initial layers of neural networks are often used to

transform and restructure the input data and only later layers assemble the

actual prediction, whereas a sequence of decision trees does not exhibit such

a specialization.

3.4.3 Combining linear with nonlinear transforms

The third observation is also related to neural networks: it is very interesting

to note that neural networks apply a nonlinear activation function with a

linear weighting scheme (and do so repeatedly, layer for layer), whereas

random rotation ensembles combine nonlinear decision trees with a linear

rotation operation. The interplay between these two operations is essential

for good performance in both approaches.

In fact, it is a very common theme in statistics and machine learning to resort

to carefully chosen combinations of linear and nonlinear approaches. For

example, even in the case of linear regression, it is now common to include

nonlinear penalties to an otherwise linear model (e.g. Tikhonov / Ridge

regularization, Lasso regularization, Elastic Net, etc). Random rotation adds

a linear perturbance to an otherwise nonlinear (but axis-aligned) model.

The interplay between linear and nonlinear approaches, as well as the simi-

larities between tree-based approaches and neural networks would make for

interesting future research areas.
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4Impact and Discussion

„Artificial intelligence is the science of making

machines do things that would require

intelligence if done by men.

— Marvin Minsky

(Computer scientist and AI researcher)

The core material of Chapter 1 was first introduced as a working paper in

2015 and eventually led to the publication of Blaser and Fryzlewicz (2016).

Since then, a full five years have passed and the pace of new research has

been nothing short of astonishing.

During this time, our paper was cited numerous times. At the same time, at

least five different publicly available software implementations of random

rotation ensembles - including a module for the highly popular scikit-learn

machine learning library - have been created by talented third party develop-

ers.

In this chapter, we will review the impact these original ideas on random

rotations have had on the literature, examine the main themes of recent

research and provide an outlook for future research.

At a high level, there are five main themes that can be gleaned from scientific

literature in relation to random rotations and we will examine each of them

in turn.
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Probably the lowest hanging fruit are the numerous applications of random

rotations in various fields from neuroscience and heart medicine to naval

propulsion systems and intrusion detection. It is rewarding to see that

random rotations have had a positive impact on so many different fields.

There are also papers that directly use the ideas and code from the paper

to generate uniformly random rotations in other machine learning contexts,

such as clustering or even robotic motion planning, rather than strictly as

part of a random rotation ensemble. Some of these applications are quite

ingenious.

The second category are direct extensions of random rotation ensembles, for

example making them applicable to boosting trees, adding additional sources

of randomness or using a structured approach in an attempt to find the most

effective rotations. This last topic is also the subject of our second paper in

this series, which is covered in Chapter 2 of this thesis. The recently emerging

field of privacy-preserving approaches is somewhat orthogonal to random

rotations but can still be viewed or at least implemented as an extension and

we therefore optimistically subsume them in this category as well.

The third category are variations on oblique trees and forests thereof. Random

rotations provide a natural way of generating decision boundaries that are

not axis-aligned but there are a number of other ways to accomplish this and

the authors of these papers noted the connection.

The fourth category are ensemble aggregation and weighting schemes de-

signed to increase the diversity of the ensemble and the quality of the predic-

tion.
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And finally, there are a number of approaches and papers based on random

projections in machine learning. Random projections can be viewed as a

random rotation followed by an axis-aligned projection. For this reason, the

two approaches are actually very closely related. Random rotations cleanly

separate the alignment of the feature space from the actual classifier, whereas

random projections serve as a computationally efficient and theoretically

sound dimension reduction technique prior to applying the actual classifier.

In addition, there are also summary articles that mention random rotations,

sometimes among many other options, and we will mention a few of these in

this chapter too.

From a qualitative standpoint it can be said that some of the citing papers

demonstrated an explicit theoretical or empirical benefit in using random

rotations. None of the papers cited the approach as a negative example

or bad performer and the worst reported outcome was that no statistically

significant improvement was observed on the data set in question. In the best

case, statistically significant improvements were demonstrated. In summary,

it is likely beneficial to users of axis-aligned classifiers, such as tree-based

models, to at least be provided with the option of randomly rotating the

feature space.

We now examine each of these categories in more detail.

4.1 Applications of random rotations

There are a number of papers that were inspired by random rotations to

improve upon a particular, often industry-specific application of machine

learning. In some cases, the paper directly leads to better classification, while

4.1 Applications of random rotations 99



in other cases random rotations are simply listed as additional, optional

enhancements or variations.

Desai et al. (2016) use ensemble classifiers to detect fatal cardiac abnormali-

ties and leverage elements of our approach to randomize one of their model

parameters. A different medical application is discussed in Paramanik et al.

(2021), where decision forests are used for Parkinson’s detection. In this case,

random rotations are only mentioned as a variation of a random forest.

Cipollini et al. (2018b) and Cipollini et al. (2018a) successfully apply su-

pervised learning to naval propulsion systems and describe random rotation

ensembles as a "popular state-of-the-art and widely adapted method" and

note that the approach can be adapted to both regression and classification

problems. The method is also used in Oneto, Cordaddu, et al. (2017), where

the crash stop maneuvering performance of ships – one of the key indicators

of vessel safety – is predicted in the preliminary design stages, rather than

when the vessel is already built. This paper uses our algorithm and shows

that it outperforms regular random forests in their context. It also shows that

their own extension, which leverages random rotations plus their own tuning

algorithm for the hyperparameters, outperforms both versions.

One particularly interesting application of random rotations is discussed in

Andrews et al. (2017), where the authors use X-ray images to provide non-

intrusive inspection for freight shipping containers. They directly leverage

our work to introduce a randomly rotated version of their algorithm and

show that the detection performance is improved when the feature values

are randomly rotated, along with an additional enhancement.
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Poona et al. (2016) use tree-based ensembles for the classification of hyper-

spectral data. They show that univariate orthogonal splits lead to "staircase

or box-like decision boundaries" and discuss approaches to avoid this. A

different paper addressing hyperspectral image classification is Zhang and

Cao (2020), which explicitly introduces space transformations (including

rotations) to increase diversity and improve accuracy. They also discuss

accuracy-guided pruning of the trees in the ensemble.

Ani et al. (2017) use a rotation forest ensemble for medical diagnosis in

decision support systems. The authors attempt to use structured rotations

and show that rotations based on LDA outperform the PCA-based rotations

in the original rotation forest paper for their application.

Lefevre et al. (2018) is an example of a paper that does not use random

rotation ensembles but leverages our code to produce random rotations and

cites our work to show that a competing paper is producing biased results

due to non-uniform rotations. The paper introduces a spectral clustering

framework in neuroscience (for individual and group parcellation of cortical

surfaces in lobes).

Another application is covered in Farayola et al. (2018), where the goal is

to extract maximum power from photovoltaic (PV) systems using machine

learning.

Further applications are discussed in Pohjalainen (2017), where service

contract churn is predicted with decision tree models and Oneto, Siri, et al.

(2017), where university student dropout is predicted. In the first case, the

paper states that "The fact that decision trees are limited to splitting the

space into rectangular areas can be a hindrance, especially in the case when
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the true decision boundary does not follow such a shape." They cite random

rotations as a remedy.

Foundjem (2017) tackles a problem in virtualized cloud computing: pre-

dicting process migration failures (across physical machines). The paper

does not actually implement random rotations but rather uses our work as a

justification for using decision forests in the first place.

The estimation of thermal resistance from aerial thermal imagery is covered in

Alshatshati and Hallinan (2017), which estimates building energy efficiency

(R-value) from thermal images. The paper cites our work but does not discuss

it in detail.

In BrainSpace – a Python/Matlab toolbox to detect and visualize cortical

gradients – the authors of de Wael et al. (2020) reused our code for sampling

from the set of rotations uniformly at random.

4.2 Extensions of random rotation

ensembles

The authors of Lulli et al. (2019) and Lulli et al. (2017) have created a

distributed (scalable) random forest implementation called ReForeSt. They

explicitly state that "a recently proposed improved random forest formulation

called random rotation ensembles can be used in conjunction with model

selection to automatically tune the random forest hyperparameters". They

demonstrate convincingly that their implementation, even when compared to

state-of-the-art alternatives, such as MLlib, is "less computationally intensive,

more memory efficient, and more effective". The authors include an entire
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section on random rotations, including an algorithm in pseudocode. They

are also able to confirm the effectiveness of this approach and provide figures

to demonstrate this. In fact, in half of their data sets (which differ from the

ones we tested), they showed an improvement when using random rotation

when compared to using a plain random forest without rotations. This again

suggests that users should be given a choice to rotate.

A cluster of Russian papers including Kitov (2016), Mikhailovich (2018),

and Sergeyevich (2017) discuss random rotations in the context of Boosting.

The reason this is a worthwhile endeavour is that Boosting introduces a

dependency between the different decision trees (and hence the different

rotations), making the implementation more technically challenging. In

Chapter 3, we show a remedy for this but the original approach discussed

in Chapter 1 is less practical in this sense. The papers confirm that random

rotations are effective in this context and, in the case of the first paper the

conclusion was as follows: "It was found that the advantage of the proposed

approach (in the case of Boosting) is greatest with large training sample

size, small feature dimensions and with lower noise levels. The method

provides clear advantages for classes that are linearly or piecewise linearly

separable, as well as cases where symmetry is present" and "The method is

less preferred for cases where classes are separated by shapes that have as

the axis of symmetry one of the axes of the original feature space".

In Cyarnowski and Jedryejowicz (2018) the authors apply various techniques,

including stacking, rotation and agent population learning techniques and

explicitly state that "the rotation-based techniques are used to increase the

heterogeneity of the stacking ensembles".
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Taxi fare prediction in New York City is covered in the term paper Antoniades

et al. (2016) from Stanford University. The student authors cite our work,

noting that "with the hypothesis that the avenue or street could explain

some of the effect of the location, transforming the coordinates so that the

splits in the random forest algorithm made aligned and perpendicularly to

the avenues and streets, could potentially yield better predictions". In a

limited way, this citation indicates that the publication of our paper may have

inspired others to consider looking at a problem from different viewpoints.

In the French paper Genuer and Poggi (2017) the authors examine the

concepts of feature importance and variable selection in traditional and

oblique decision trees. Random rotations are shown as an approach to

overcome the intrinsically axis-parallel nature of tree-based methods. The

authors later also published a very insightful book on the topic (Genuer and

Poggi, 2020).

Joly (2016) mentions random rotations along with other oblique methods as

an "input-based randomization" rather than an "output-based randomization"

where the outputs of the model are perturbed, for example with Gaussian

noise.

Kazllarof et al. (2019) applies rotation to multiclass classification problems

but with emphasis on structured rotations.

An application of random transformations applied to ensemble clustering

is discussed in G. Rodrigues et al. (2020). This work was later also made

available in thesis format. It combines different clustering algorithms to

reduce noise and sensitivety to outliers. The paper extends our work by also

considering Mahalanobis distance (distorting the dataset by multiplying the
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data matrix by a random covariance matrix) and density proximity (attracts

or repulses data points using cluster centroids as references) in addition to

random rotation matrices. Random rotations make it into the top 5 low-

dimensional and high-dimensional empirical test results but the injection

of randomness based on their Mahalanobis distance model show the best

overall performance.

Yang et al. (2019) is a business research paper that addresses the measure-

ment error problem by combining machine learning with econometric analy-

sis. They mention our work as "future research directions worth pursuing"

and also hint at some of the work described in Chapter 2.

Robotic motion planning is the subject of Wuelker et al. (2019). In the words

of the authors the goal is to "develop an alphabet of basic motions from which

discrete words that capture the essence of a continous motion/action are con-

structed. Throughout the literature, discretization of motions has attracted

significant interest, where the Euclidean group is one of the popular ones. In

particular, uniform sampling of rotations, either random or deterministic, has

a wide range of applications". The paper cites seven such papers, including

our own.

Hang et al. (2019), Cai et al. (2020) and Hang (2019) extend random

rotations (via rotation matrixR) with random stretchings (diagonal stretching

matrix S) and random translations (translation vector b) to a complete

transformation vector (R,S,b). The complete histogram transform, as it is

called in the paper, is H(x) =R ·S ·x+ b in matrix notation. The first paper

contains different versions of partitions: naive subdivision of space (NHTE),

kernel histogram transform (KHTE), and the adaptive kernel histogram

transform ensemble (AKHTE), which includes data-dependent partitions with
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more splits where more data points are available. The other papers apply the

same approach to regression and density estimation.

In Zhou et al. (2018) the authors combined random forests with partial least

squares (and the Buckley-James estimator, which extends least-squares to

cover the case of censored dependent variables). First they take random

subspaces (similar to rotation forests) and then they censor the survival

times using Buckley-James and then apply partial least squares. This paper

incorrectly groups our work into the "rotation forest based approach" and then

claims that "prediction accuracy and additional data diversity are obtained via

reconstructing covariates through keeping all principal components extracted

from a group of bagged variable subsets". While this is true for rotation

forests, it is not at all the case for random rotation ensembles. This, in

turn, leads to the misleading conclusion that "In these PCA rotation-based

approaches, the objective of orthogonal linear combinations are constructed

so as to maximize the variance of the linear combinations of covariates.

However, in high dimensional survival data, this optimization may become

problematic for prediction since the obtained principal components exploit

only the covariate matrix". Again, the statement may be true for rotation

forests but is clearly incorrect for random rotation ensembles.

A slightly different application of partial least squares is presented in Li et al.

(2020).

Another creative use of random rotation ensembles is described in Ghose

and Ravindrani (2020), a paper that attempts to increase interpretability

by building smaller models (smaller trees, etc). They use transforms to get

around the problem of boundaries that are not axis aligned.
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As indicated in the introduction, a number of approaches have recently

been proposed that focus on data privacy during the analysis. For example,

Differential Privacy (DP) is a system for publicly sharing information about

a dataset by describing the patterns of groups within the dataset while

withholding information about individuals in the dataset.

Two such papers are Oneto, Cipollini, et al. (2018) and Oneto, Donini, et al.

(2020), which focus on Differential Privacy algorithms and demonstrates

that non-private algorithms tend to generalize better but at the cost of

privacy. They implement and analyze versions of different decision tree

ensembles, including random forests and random rotation ensembles, that are

differentially private. Their findings show that on average the generalization

performance of the different methods are quite similar but with random

forests and random rotation ensembles slightly outperforming. In one dataset

(101 dimensions, 1212 data points), random rotation ensembles only exhibit

1/3 of the generalization error of the other methods.

In Oneto, Siri, et al. (2017) student dropouts are predicted under privacy

constraints and compared to non-private predictors. They explicitly state that

"the purpose is to understand how much the privacy constraints affect our

ability of building an effective data driven model". The empirical results show

that "comparing the performance of the three algorithms, it can be easily

seen that, in the non-private framework, random rotation ensembles show a

slightly greater accuracy than random forests" and it is further demonstrated

that the privacy-enhanced version is outperformed by both of these methods,

as expected.

Applications in software fault prediction and South African forest fires can be

found in Moosavi and Mohebbi (2020) and Buthelezi (2020), respectively.
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Finally, out own paper Blaser and Fryzlewicz (2021), which forms the basis of

Chapter 2 in this thesis, is also an extension of the original paper on random

rotation ensembles.

4.3 Oblique trees and forests

Rainforth and Wood (2015) builds oblique hyperplanes at each tree node,

taking advantage of local correlation of the features. The paper leverages our

procedure for sampling rotations uniformly at random but does so at each

split, rather than only once for the entire tree. In Chapter 3 we independently

came to the conclusion that there are advantages to this approach.

The authors acknowledge the limitations of axis-aligned decision tree splits

and note that oblique approaches - specifically including random rotations

- can "improve the ensemble diversity, alleviate sensitivity to rotation, and

improve performance for many datasets".

In Tomita, Maggioni, et al. (2017), the authors build robust oblique forests

and mention our paper in their literature review, stating "while all of these

recent approaches deal with rotational invariance, they fail to address several

important issues that random forests can natively handle: (1) scale invariance,

(2) efficiency, (3) data corruption, (4) sparsity". They also contest that

"however, random rotations of the feature space imply that in general splits

will not be sparse (i.e. oblique splits are linear combinations of all features

rather than a subset of features)" and "therefore, we conjecture that random

rotation ensembles will perform increasingly poorly as the ratio of the number

of irrelevant features to the number of relevant features becomes larger" and

"furthermore, we suspect that linearly combining features will lead to higher
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sensitivity to data corruption". Unfortunately, no proof or empirical study

is performed to confirm these conjectures. In our own studies, which were

part of Chapter 2, we have shown that that it is true that the efficacy of the

approach reduces then the signal-to-noise ratio becomes very low and that it

makes sense to focus on rotations that are helpful.

An interesting paper Balestriero (2017) targets the "synergistic melting of

neural networks and decision trees". The authors deploy an independent

multilayer perceptron at each layer of the decision tree. This leads to arbitrary

nonlinear decision functions at each layer. They cite our paper, together with

random projection trees and PCA trees as a related approach to address the

fact that decision trees are not rotation invariant.

Majumder (2020) discusses ensembles of oblique decision trees in great

detail in the form of a PhD thesis. The numerical tests again show that

random rotations are a worthwhile addition to decision tree learners. One

interesting finding is that "for shallower trees, oblique tree-based algorithms

do not consistently outperform standard tree learners. The expectation that

oblique splits are more representative and expressive and can produce good

performance with shallower depths is not apparent in the bagging context".

Guided random forests (Gupta et al., 2019) extend the idea of building

oblique decision trees with localized partitioning. In a first step, data points

are randomly sub-spaced, then a random (oblique) hyperplane is introduced

as a split and the partition with the highest impurity is used to apply the split.

The paper claims that "this process of tree construction eventually bridges the

gap between boosting and decision trees, where every tree represents a high

variance instance". It looks like a promising approach for future research.
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Decision splits in trees are either found via exhaustive search or randomly.

In Wang et al. (2020), the authors use PCA to make the split decisions.

They claim that this is faster than exhaustive search and more accurate

than random splits. The approach sounds similar to rotation forests (which

they also cite in their paper) but rotation forests don’t use PCA to make the

split decisions but rather to find useful subspaces, so the application of the

structured rotation is different.

4.4 Aggregation and weighting schemes

Verma (2019) uses error correcting output codes to improve the adversar-

ial robustness of deep neural networks. They state that "promoting diver-

sity across the constituent learners is crucial and is generally a priority in

ensemble-based methods" and indicate that randomly rotating the feature

space is one way to accomplish this. They also suggest training each ensemble

member (in their case a deep neural network) on different rotations or with

distinct architectures.

Armano and Tamponi (2018) propose to use different ensemble components

on different regions of the sample space ("local trees"). They state "in the

proposed algorithm, the diversity between the components of the ensemble

is increased by forcing them to become experts on different regions of the

sample space". Random rotations are mentioned as a "feature manipulation"

technique, along with 5 others.

A different local approach is presented in Kannao and Guha (2015). The au-

thors state that while "other ensemble frameworks have used fixed weights to

determine the influence of each of the component classifiers on the ensemble

110 Chapter 4 Impact and Discussion



decision" it is the case that "in practice base classifiers usually have expertise

in local regions of the feature space". We confirm this hypothesis in Chapter

3, where we show that it is useful to have access to different rotations of the

feature space at the same time in order to leverage the best rotation for each

local region.

Dynamic ensemble selection (DES) is described in Narassiguin (2018) as

an approach where "different models have different areas of expertise in

the instance space". They propose two novel DES approaches: ST-DES (for

decision trees): prunes trees using internal supervised tree-based metric

(rather than Euclidean distance, which suffers from the curse of dimensional-

ity and PCC-DES (multi-label learning). A nice figure on page 15 shows how

random rotations in the case of a spiral decision boundary provides a visibly

smoother boundary and "rotating the training set can sometimes give better

generalization abilities to the ensemble learning process".

T. Nguyen, M. Nguyen, et al. (2018) introduces a framework for combining

multiple classifiers in an ensemble system. In this approach, uncertainty in

the predictions of the base classifiers on training observations is captured as

an interval-based representation. Out-of-sample, the distance of each class

prototype to the input is determined and then the label with the shortest

distance is selected. In their paper, the authors differentiate between three

different research areas on ensemble methods: (1) design of new ensemble

systems (they consider random rotations to be in this category), (2) enhance-

ments to existing ensemble methods (for example boosting, bagging, and

random subspaces) and (3) study on properties of the ensemble (for example,

different measures of diversity, margin, generalization or error bounds).
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Barabec and Machlica (2018) applies decision forests for network intrusion

detection. This problem is particularly tricky because the amount of data is

vast, while specific patterns of network attacks are rare. For this reason, the

most important decision class is heavily underrepresented in the test data.

They use a Bayesian-based aggregation of decision trees in an ensemble for

classification with samples significantly skewed toward one of the classes.

A different application of tree-based ensembles for malware detection is

discussed in Euh et al. (2020), where a set of low-dimensional features is

proposed and evaluated with a number of different tree-based ensembles. The

authors also implement Python-based models in the scikit-learn framework.

The authors of Junior et al. (2018) present heuristics for a multiagent re-

inforcement learning system. The paper cites our work in relation to the

difficulty in combining multiple learners.

4.5 Random projections

As indicated in the introduction, random projections are closely related to

random rotations. One big advantage of random projections is that they

can be generated very time and space efficiently when compared to random

rotations and can be combined easily into a basis for an aggregate classifier.

This is related to the ideas in Chapter 3 of this thesis.

For example, Cannings and Samworth (2017) and Cannings (2020) use

groups of random projections and apply an arbitrary base classifier on these

groups, selecting the projections that yield the smallest estimate of the test

error. The latter paper includes a very interesting theoretical background on

the use of low-dimensional projections for the analysis of high-dimensional

112 Chapter 4 Impact and Discussion



distributions and the different approaches of using random projections (en-

semble methods vs sketching and hashing). More detail on how this paper

relates to our own approach is provided in the next section.

Another example of this is Tomita, Browne, et al. (2020), which uses sparse

random projections. They state that "many recent extensions to decision

forests are based on axis-oblique splits. Unfortunately, these extensions forfeit

one or more of the favorable properties of decision forests based on axis-

aligned splits, such as robustness to many noise dimensions, interpretability,

or computational efficiency". Unfortunately, they do not explicitly state which

of the above mentioned properties is forfeited by each method.

An interesting classifier is described in Tian and Feng (2021), which aggre-

gates many weak learners, whereby each learner is a base classifier trained in

a subspace optimally selected from a collection of random subspaces. They

propose algorithm called Random subspace ensemble classification (RaSEn)

and have created a very useful R package of the same name. The authors

note that in high-dimensional settings, a large number of random subspaces

need to be generated but this effect can be reduced with the introduction of

an iterative version of their algorithm.

T. Nguyen, Dang, et al. (2019) introduces a weighted multiple classifier

framework based on random projection. They generate random projections

to lower dimensional spaces they call "training sets" and then apply decision

trees on each set and combine the results linearly using least-squares.

In Tasoulis and Vrahatis (2018) multiple random projections are used to visu-

alize high-dimensional single-cell RNA-sequencing data. For this application,
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projections make much more sense than rotations, which retain the original

dimensionality of the data set.

It should also be noted that the efficiency of random projections as a prepro-

cessing step for classification comes at a cost because information is lost as

part of the dimension reduction, independently of which classifier is used.

More specifically, the dimension reduction is not coordinated with the clas-

sification and may even interfere with the classification in the worst case.

In addition, most random projections are not helpful to the classification,

leading to the same trade-offs we have demonstrated for random rotations.

Examples of summary articles include Sagi and Rokach (2018), Antoniades

et al. (2017), Pretorius (2016) and Gonzales et al. (2020)

One notable example of a highly innovative approach that cites our work

but does not fit into any of the above categories is presented in Y. Liu

and Yin (2019). In this paper, the authors introduce the Delaunay triangu-

lation learner (DTL), which partitions the feature space into a series of p-

dimensional simplices and then proceed by finding a linear model within each

simplex. The result is a very interesting approximator of low-dimensional

smooth functionals that is nonparametric, differentiable and geometrically

optimal. The paper also includes some insightful comparative images of

Delaunay triangulation versus tree-based learners and MARS.

4.5.1 Comparing rotations with projections

A shortened version of this section was published in the Journal of the Royal

Statistical Society, Statistical Methodology, Series B in 2017 as an invited
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discussion of a third party paper. We reprint it here as a high-level comparison

our method of Chapter 1 with the work in Cannings and Samworth (2017).

In our own work on random rotation ensembles we focused on the random

rotation of the feature space prior to applying a classifier designed for use

in high-dimensional settings. In contrast, the authors of Cannings and Sam-

worth (2017) propose to first project the high-dimensional feature space into

a lower dimensional space prior to applying a classifier designed for use in

low-dimensional settings. The two strategies are closely related.

In their paper, the authors propose that projections are performed randomly

under the Haar measure in the general case, while a particular embodi-

ment with axis-aligned random projections – really random feature selec-

tions – is mentioned as well. In our opinion, combining random rotations

with axis-aligned projections effectively results in random projection ensem-

bles. Indeed, such a hierarchical decomposition into random rotations (as a

feature-preserving linear operation to change the viewpoint) and axis-aligned

projections (as a feature selection operation that is delegated to the classifier)

might prove to be valuable for future research, as it streamlines mathematical

analysis. In particular, the decomposition might address the question, if

the benefit of a particular random projection arises from an advantageous

viewpoint at the problem due to the rotation or from an effective dimension

reduction due to the feature selection, as the two operations can be analysed

separately.

Since we advocated the use of classifiers that perform axis-aligned projections

in our own papers – such as random forests or other tree-based ensemble clas-

sifiers – we would expect random rotation ensembles and random projection

ensembles to perform similarly well in practice.
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Other attempts have been made in the past to use random projections for

dimension reduction in classification problems but the present paper sets

itself apart through a clean and well-structured approach. The derived

algorithm is clearly original, though it should be noted that neither the idea

of dimension reduction prior to analysis, nor random projections applied to

classification problems are entirely novel concepts.

However, there are two key areas where the authors provide interesting addi-

tional insights: (1) the selection of projections using a two-stage procedure

and (2) the data-driven selection of the optimal voting threshold. We would

like to discuss these now.

The authors note that most of the random projections are not very helpful in

classification because they do not assist in the separation of the classes. In

our work on random rotations we noticed a similar pattern: some rotations

are extremely helpful but the vast majority — depending on the problem

setting - do not improve classification. Hence, a natural question to ask is

how we can identify (or explicitly generate) only the most helpful rotations

or projections.

The most obvious way to address this issue is by performing a large number

of candidate rotations or projections and retaining only the S most successful

candidates. In our paper we mentioned dropping the least successful decile

of rotations but other approaches are possible, as discussed in Chapters 2

and 3 of this thesis. We adopted a conservative approach to avoid needing to

generate a much larger number of rotations but at the cost of retaining fewer

good candidates. In contrast, it is possible to use analytical methods, such

as PCA to determine successful rotations. The authors of Rodriguez et al.

(2006) used this approach but for random subsets of the features.
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The authors of the discussed paper use a two step approach: at each stage,

B2 projections are generated but only the most successful of these projections

is retained. This algorithm is repeated B1 times. Since the learners in the

paper are not additive, this two-stage procedure is very similar to producing

B1 × B2 projections and only retaining the best B1 candidates. However, in

a more general setting, the two-stage procedure could be valuable because

the selection of each additional projection could depend on the marginal

performance improvement of the ensemble, conditional on the previously

selected projections.

An uncomfortable reality with random rotations (and hence random projec-

tions) is that different rotations often prove useful at different subsets of the

data. For non-linear decision boundaries this is quite evident. Hence, it might

be possible to produce an ensemble classifier that divides the feature space

into smaller blocks, each of which is rotated independently. This approach is

explored in Chapter 3 of this thesis.

The authors also suggest a data-driven selection of the optimal voting thresh-

old within the ensemble. In our view, this is an excellent contribution,

although it is not straight-forward to generalise to multi-class problems.
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5Software

„The purpose of computing is insight, not

numbers.

— Richard Hamming

(Mathematician)

The R-Package randomrotation/random.rotation was created to make the

ideas in this thesis accessible and reproducible by others and to make the tools

available in the public domain via GitHub. No warranties are expressed or

implied and the package should not be used for any commercial purposes.

This chapter provides a brief introduction to the package in the form of a

usage example.

Note: to install the package, please follow these steps:

> library("devtools")
> install_github("randomrotation/random.rotation")

Note: The example uses the IRIS data set from the UCI Machine Learning

Repository: http://archive.ics.uci.edu/ml/datasets.php

# EXAMPLE

library(random.rotation) # load the R package
library(randomForest) # random forest classifier

set.seed(42) # reproducible results
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NUM_ROTA <- 20 # number of rotations to create
NUM_TREE <- 20 # number of trees per rotation

First, the data set is read and pre-processed. Type conversions are performed

automatically for string columns with many numeric entries. Columns with

too many unique string- or factor values are removed, as these are essentially

keys into the data. Columns with extreme duplication are also removed,

as these tend not to add much predictive value. No scaling or rotation is

performed here.

pre <- pre_sample_preprocessing(iris, "Species")
X_pre <- pre[[1]] # pre-processed X matrix
Y_pre <- pre[[2]] # pre-processed Y vector

Next, we pre-create an array of NUM_ROTA - 1 random rotation matrices plus

the identity rotation. It would also be possible to generate these one-by-one

inside of the test loop but creating them here keeps the code more flexible.

mArray <- create_random_rotation_matrix_array(NUM_ROTA-1,
length(numeric_cols(X_pre)))

We proceed by dividing the input data into random, disjoint training (70%)

and testing (30%) data rows

r_train <- generate_training_row_indices(nrow(X_pre), 0.7)
r_test <- generate_testing_row_indices(nrow(X_pre), r_train)

Then the already pre-processed input data is further processed by scaling

numeric columns to [0,1] and imputing missing numeric values to the median

of the in-sample values. Both of these operations are performed with only

in-sample inputs to ensure no out-of-sample data can have an impact.
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X <- post_sample_preprocessing(X_pre, Y_pre, r_train, r_test)
Y <- Y_pre

Working now on scaled numeric values, we can finally apply the rotations.

As discussed in the paper, there are many ways to scale the data but it is

definitely not advisable to perform rotations on unscaled input data. We

create an array of transformed predictors, one entry for each rotation.

tArray <- df_apply_random_rotations(X, mArray)

Now that we have the rotated predictors nicely lined up, it is time to apply a

classifier to each set of rotated predictors. In this case, we take advantage

of the excellent randomForest R package to create an array of classifiers.

Obviously, only training data is used.

cArray <- lapply(1:NUM_ROTA,
function(i) randomForest(x=tArray[[i]][r_train,],

y=Y[r_train],
ntree=NUM_TREE))

Here we get to the meat of the paper: our goal is to find those rotations that

produced classifiers with the lowest complexity. On page 3 of the paper in

formula (5), we define complexity in terms of the median number of nodes

of the trees in the forest plus a tie-breaker based on the depth of the trees.

Obviously, other measures are possible here but let’s stick with this one.

nodes <- sapply(1:NUM_ROTA,
function(i) median(cArray[[i]]$forest$ndbigtree))

depth <- sapply(1:NUM_ROTA,
function(i) mean(sapply(1:NUM_TREE,

function(x) tree_height(cArray[[i]]$forest$treemap[,,x]))))

xArray <- nodes + depth/length(r_train) # complexity

121



At this point, we know the average complexity of the trees in each of the

NUM_ROTA rotations. Instead of equal-weighting all predictors across the

different rotations, we want to over-weight those predictors that benefit from

favorable rotations. For this reason, we will sort all rotations by complexity.

In addition, we look at the out-of-bag error but only to help us decide how

many of the least complex rotations we should consider and how much

weight we should put on each rotation. In either case, rotations with lower

complexity scores always carry a weight that is at least as high as rotations

with higher complexity scores.

oArray <- as.numeric(sapply(1:NUM_ROTA,
function(i) cArray[[i]]$err.rate[NUM_TREE,1]))

With the out-of-bag error known, we can now proceed with actually com-

puting the weights of each rotation. In the present example, we use the

exponential weighting function described on pages 4-5 of the paper. In a

first step, the tuning parameter h is optimized, as described in the previous

comment above. Then the weight function is applied to obtain a weight for

the predictors of each rotation.

h <- compute_tuning_parameter(xArray, oArray, weights_exp,
min_step=0.1, step_size=0.1)

wArray <- weights_exp(NUM_ROTA, h)

In the paper we describe the possibility of adding more trees to each rotation,

depending on the computed weights and the total number of desired trees in

the ensemble. For the sake of clarity, we omit this step in this example but

the number of required trees on each rotation can be computed using the

function num_trees_per_rot in the package.
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And finally, let’s investigate the out-of-sample performance of the ensemble

by applying the now weighted ensemble to the test data. First we obtain

a vector of out-of-sample predictions and corresponding errors and then

we tabulate the weighted votes from different rotations to obtain a merged

prediction.

pArray <- lapply(1:NUM_ROTA,
function(i) predict(cArray[[i]], newdata=tArray[[i]][r_test,]))

v1 <- Reduce(’+’, lapply(1:NUM_ROTA,
function(i) sapply(levels(Y), function(x)

wArray[i]*(pArray[[i]]==x))))

v2 <- levels(Y)[(apply(v1,1,max)==v1) %*% (1:length(levels(Y)))]

The resulting ensemble prediction error is then given by

sum(Y[r_test]!=v2)/length(r_test)
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