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Abstract

In this thesis, we study stochastic differential utility of Epstein—Zin type in a general semimartingale
setting. We show that the traditional characterization using the transversality condition identifies an
incorrect Epstein—Zin utility in the empirical relevant parameter case. Instead, we present an original
characterisation of Epstein—Zin utility in an infinite time horizon and provide sufficient conditions for
its existence and uniqueness. In the second half of the thesis, we study an infinite horizon optimal
consumption-investment problem in an incomplete, Brownian-driven market for an investor whose

preferences are governed by Epstein—Zin utility.
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CHAPTER 1

INTRODUCTION

In classic portfolio optimisation frameworks, the representative agent is assumed to have a time-additive
von Neumann-Morgenstein utility. In such a model, the relative risk aversion parameter, denoted vy,
is forced to be equal to reciprocal of Elasticity of Intertemporal Substitution (EIS), denoted . The
former parameter measures the agent’s attitude towards risk, and the latter his willingness to substitute
consumption over time. This reciprocal relation turns out to be an advantage and disadvantage. On
the one hand, this relationship has the attractive feature of mathematical tractability. On the other
hand, this inflexibility causes time-additive models to perform poorly empirically. For example, a
time-additive model suggests that the investor has to be implausibly risk-averse to justify the high
average equity premium observed [59], a phenomenon known as the equity premium puzzle (see also
[63]). Other asset pricing puzzles observed empirically include the risk free rate puzzle [63], excess

volatility puzzle [58][44] and credit spread puzzle [14][18].

An alternative to time-additive utility is the so-called recursive utility, which dates back to the
seminal papers of Kreps & Porteus [42],[43], Epstein & Zin [23], and Weil [64], who studied recursive
utility in a discrete time setting. Its continuous time counterpart was developed by Duffie & Epstein
[20] and shown to be the limit of the discrete model as the time grid converges to 0 by Kraft &

Seifried [38]. Given a consumption plan ¢ on the finite horizon [0, T], the stochastic differential



utility associated with it is defined as the solution of the Backwards Stochastic Differential Equation
(BSDE)':
T
Vi=E(Uter)+ [ senvods). relo.T] 1.
t

where f is an aggregator function and U a bequest utility function. Recursive utility generalises its
time-additive counterpart in several ways. Firstly, it allows for the separation between risk aversion
and EIS, which now can be parametrised individually. Secondly, it introduces the notion of resolution
of uncertainty. An agent’s temporal preference for information can be thought of as the result of two
competing forces: first, his perhaps irrational aversion of future consequences, and thus delaying bad
news, and second, the ability to plan ahead by using early information (cf. [60]). In the time additive

case, the agent is indifferent.

In recent years, interest in recursive utility has been sparked by progresses towards explaining asset
pricing puzzles, begun with the long-run risk model (LRRM) proposed by Bansal and Yaron [3][2],
which explores the equity premium and risk-free rate puzzles and utilises a discrete time Epstein—Zin
utility model in a critical way. In their settings, both risk aversion and EIS are calibrated to be greater
than 1, indicating a preference for early resolution of uncertainty. Long run consumption growth risk
becomes quantitatively important as a result, and stipulates an additional risk premium. Such a quantity
is not present in the classical paradigm, where the agent is indifferent towards the moment in time
where uncertainty is resolved. Other applications of recursive utility in explaining the aforementioned
puzzles include [5] for the excess volatility puzzle and [6] for the credit spread puzzle. Motivated by
these developments, we investigate the question of existence and uniqueness of stochastic differential
utility of Epstein—Zin type, as well as the related portfolio optimisation problem, both of which are in

infinite horizon.

The formal notion of Epstein—Zin utility in infinite horizon has not been satisfactorily established
in the literature. Early work in stochastic differential utility (e.g. [20]) assumes the Lipschitz property
for the aggregator, which is violated in the Epstein—Zin parametrisation. Similarly, Duffie et. al’s work
on infinite horizon (Appendix C [20]) stipulates the so-called uniform sector condition, which does
not apply to the Epstein—Zin aggregator. Duffie & Lion [21] also studied stochastic differential utility
for consumptions following a Markovian diffusion, using PDE methods. However, in the empirically

relevant setting where y, ¥ > 1,> uniqueness becomes a delicate issue and requires ¢ to be bounded

! All mathematical notions in the introduction will be defined formally later in the thesis.
2Corresponding to the case u < —1 in their paper.



from above and away from 0. A more recent treatment that addresses specifically Epstein—Zin utility
is offered by Melnyk et. al [47]. However, the question of existence is not treated and, when y > ¥,
uniqueness is tied to the condition that long-term consumption cannot exceed current consumption.
On the finite horizon, Schroder & Schiadas [55] studied Epstein—Zin utility’s existence and uniqueness
question with no terminal consumptions. Seiferling & Seifried [57] studied the same problem, but with
terminal consumptions and extra parameter restrictions, under which the aggregator is either convex
or concave. Xing [66] studied the case where y, ¢ > 1 and the filtration is generated by a Brownian

Motion.

The existing literature on infinite horizon BSDE also does not readily answer the questions of
existence and uniqueness for Epstein—Zin utility. An infinite horizon Epstein—Zin utility process V is

can be defined by the equation:

T
vV, = E(VT +/ Fles, Vs)ds
t

sf,) forall0 <7 < T < co. (1.2)

Such a BSDE can be thought of as one with stopping terminal time 7 such that P(t = o) = 1. Darling
& Pardoux [17], Briand & Hu [8] studied BSDEs with random but almost surely finite terminal time.
Royer [54] allowed for infinite terminal time, but the question of uniqueness was only treated when
P(t < o0) = 1. Existing results whose scope includes the case P(t = o) = 1 have experienced
setbacks when applied to the Epstein—Zin aggregator. For instance, results attained by Bahlali et. al [1],
Hu & Tessitore [30] and Confortola & Briand [15] assume either linear growth or uniform Lipschitz
condition in v. More recently, Papapantoleon et. al [49] studied random terminal time BSDEs with
jumps under a so-called stochastic Lipschitz condition (condition (F3) therein). All these conditions

are violated by the Epstein—Zin aggregator.

One contribution of this thesis is in our original method of characterising the Epstein—Zin utility
process in infinite horizon. In the finite horizon case, Seifried & Seiferling [57] established the
relationship between Epstein—Zin and additive utilities (cf. Section 2.3). In the referenced paper,
they characterised the utility process V by equation (1.1). Then, if U” and UY " are additive utility

processes of an agent with risk aversion y and ¢ ~!, respectively, then:

U < v < g (1.3)



In extending to infinite horizon, our method is based on two observations. Firstly, as (1.3) displays a
relationship between Epstein—Zin utility and different levels of risk aversion, it is desirable to preserve
this ordering in an infinite horizon extension. Secondly, while extending V to infinite horizon might be
tricky, it is relatively straightforward and intuitive to extend the definitions U” and U¥ “'. Therefore, we
incorporate an infinite horizon version of (1.3) into the definition of Epstein—Zin utility. We essentially
reverse the procedure: we take the inequalities (1.3) as given and use them to deduce the existence
of Epstein—Zin utility. This a priori bound is utilised in answering both existence and uniqueness
questions in infinite horizon. In this method, an existence result is obtained when the consumption
process satisfies E(fooo de~%lcPdt) < oo for p=2(1-7y),2(1 -y 1) and 2(y 1 - y), where § > 0 is

the agent’s discounting rate.

In infinite horizon, the uniqueness question poses another challenge. In the literature on BSDEs
with monotone driver and random terminal time, when d,, f (¢, V) is bounded above by k, one might

consider a transversality condition of the type:
Jim E(e* |vr]) =0, (1.4)

which helps to circumvent the absence of a terminal condition (e.g. Appendix C of [20], see also
Section 2.6). However, in certain parametrisations where % < 0, (1.4) forces the unique transversal
solution to equation (1.2) to be identically zero. Not only is it trivial and not open to any economic
interpretation, it also excludes the solution implied by our existence theorem. We overcome this
problem by proposing a limit condition in ¢, named the uniqueness criterion (cf. Theorem 2.4.2),
under which the solution according to our characterisation is unique. An advantage of our formulation
is that existence and uniqueness issues can be resolved by studying the consumption process. This

condition can be considered a generalisation of (1.4) and overlaps in parts with the result of [47],

which is discussed in detail in Section 2.6.

The portfolio and consumption for additive utility in finite time has been studied extensively,
starting from Merton’s 1971 paper [48], which utilised optimal control theory to study the investment
decisions of a rational, utility-maximising investor. A martingale (duality) approach was introduced
by by Pliska [52], Cox & Huang [16], Karatzas et al. [31], Karatzas et. al [32], and He & Pearson
[29] (see also [40],[41] and [34]). As recursive utility allows one to break the relation y = W‘l and
model the investor’s rationale more closely, a natural evolution for the portfolio optimisation problem

is to consider investors whose preferences are described by Epstein—Zin utility. In this direction, this



problem has been studied by Schroder & Skiadas [55], [56], Chacko & Viceira [13], Kraft et al. [39],
Kraft et al. [37] and Xing [66], utilizing stochastic control techniques. This approach often involves
a Hamilton-Jacobi-Bellman (HJB) partial differential equation in the Markovian case or a BSDE in
the non-Markovian case. Recently, Matoussi & Xing [46] also introduced a duality approach, which
bypasses certain technical difficulties from the non-standard HIB equation. In the infinite horizon, the
time-additive utility case has been considered by Hata & Sheu [27][28] and Guasoni & Wang [26]. To
the best of our knowledge, however, the portfolio optimisation for Epstein—Zin utility in an infinite

time horizon remains a gap in the literature, and this thesis will contribute to filling in that gap.

We tackled this problem through the method of stochastic control. In infinite horizon, the HIB
equation is an elliptic quasilinear partial differential equation without boundary conditions. This
absence of boundary data is the principal challenge in approaching this equation. However, in the
presence of sub- and super-solution to the HJB equation, a solution can be established which is
sandwiched between the sub- and super-solution. This is the main content of our existence theorem.
We also provide technical conditions which furnish the required sub- and super-solutions to the HIB
equation. In this approach, our method is an extension to recursive utility from the additive utility

results in [27] and [26].

Regarding the question of verification, the classic technique in stochastic control is to establish
the solution of the HIB equation as an upper bound, then verify the candidate control implied by
said solution as a maximiser. This often involves extra regularity conditions. On the finite horizon,
examples in the literature include the use of utility gradient by Kraft et. al [36] and BSDE comparison
results by Kraft et. al [39] and Xing [66]. On the infinite horizon, verification for additive utilities

were achieved by direct calculations in [28] and [26].

In our framework, finding the optimal Epstein—Zin utility process requires two ingredients: firstly,
finding a candidate process that satisfies the dynamics (1.1), and secondly, verifying that it satisfies the
power utility bounds (1.3). The second ingredient provides above turns out to also verify optimality of
the candidate solution amongst a set of permissible strategies (cf. Theorem 5.2.2). The convenience
of our result is that, the characterisation of the candidate solution also characterises its optimality.
Moreover, confirming this second ingredient can be achieved by a limit condition on the candidate

solution (cf. Lemma 5.2.1).



The thesis is structured as follows. The first half of the thesis concerns with a careful construction
and treatment of Epstein—Zin stochastic differential utility. In Chapter 2, we present the characterisation
of infinite horizon Epstein—Zin utilities, as well as the main existence and uniqueness result. The newly
established results will be demonstrated in two consumption models in Chapter 3. Having established
the concept of Epstein—Zin utility in infinite horizon, we address the question of portfolio optimisation
in the second half. We formulate the problem and derive the HIB equation in Chapter 4, and solve it in

Chapter 5. Some examples and numerical implementation are provided in Chapter 6.



CHAPTER 2

EPSTEIN-ZIN STOCHASTIC DIFFERENTIAL UTILITY IN INFINITE
HORIZON: FORMULATION, EXISTENCE AND UNIQUENESS

2.1 Preliminaries & Notations

We consider a filtered probability space (Q, ¥, {F };et,P). Here, T is a time index set, which is
equal to [0, T] for some T > 0 in the finite horizon setting, and [0, o) in the infinite horizon setting.
Moreover, when the time horizon is finite, we assume that the filtration {F }, 7 satisfies the usual
conditions of completeness and right continuity. In the infinite horizon, we assume that for any 7 > 0,
the restriction {#;};¢[0,r] satisfies the usual conditions. The usual conditions are standard in finite
horizon. In particular, they were assumed in [57] & [66], whose work we build upon. However,

{F }1er is not necessarily the augmentation of a filtration generated by a Brownian Motion.

Regarding probabilistic conventions, all adaptedness properties henceforth will be stated in relation
to this filtration. For the rest of the thesis, we shall drop the ‘almost sure’ clarification whenever it is
clear from the context. Moreover, when we compare two stochastic processes {X; }se1 and {Y; }seT,
unless otherwise specified, it will always be in the ’pointwise’ sense. Thatis, X > Y if forall ¢t € T,

X 2 Y.



A consumption process or consumption plan in a finite time horizon [0, T'] consists of a continu-
ously indexed stream of progressively measurable and positive instantaneous consumption {c; }e[0,7)
and a positive, Fr-measurable terminal lump sum ¢z . On the time horizon [0, T], an agent’s prefer-
ences over the space of consumption plans can be described by his stochastic differential utility (SDU).
Let us describe the components necessary for its characterisation. Let 6 > 0 be the deterministic
discounting rate, 0 < y # 1 the relative risk aversion, and 0 < ¢ # 1 the Elasticity of Intertemporal
Substitution (EIS). By (1 — y)R*, we mean the positive half line [0, o) when y < 1 and the negative
half line (—co, 0] for y > 1. It is also customary to denote by ¢ = ¢! the reciprocal of EIS and
0 =(1-v)/(1—¢). The Epstein—Zin aggregator f : (0, c0) X (1 — y)R* — R is defined by:

0

- _¢cl_¢[(1 — W] - sov. @.1)

flev) =

This is a standard parametrisation, which was used by in [19], [24], [11], amongst others. Hence-
forth we will reserve the letter f for the Epstein—Zin aggregator, unless specified otherwise. Next,

for p satisfying p > O and p # 1, let u), : dom(p) — (1 — p)R* be a CRRA (constant relative risk

(P
1-p

aversion) utility function, i.e. u,(-) = where dom(p) = (0, 0) when p > 1 and [0, o) when
p < 1. This subsumes the additive utility case, as when y = ¢!, this reduces to the additive utility
aggregator of a agent with CRRA utility function with risk aversion y. The bequest utility function is

given by U(-) = u,(-), i.e. the CRRA utility function with parameter y.!

Definition 2.1.1. Let ¢ be a consumption plan in the finite horizon [0, T]. The associated Epstein—Zin

utility process is defined as the unique solution of the equation below:

Ve = Et(/T Fles, VE)ds + U(cT)) te[0,T]. 2.2)

In an infinite horizon, a consumption process is a stream of progressively measurable and positive
instantaneous consumption over the positive half-line: {c¢;};>0. We wish to extend Definition 2.1.1

into the infinite horizon setting. A generalisation thereof can be:

'Some authors, e.g. [57] define the bequest utility as U(x) = uy (€x), where € > 0 is the weight on terminal consumption.
We set € = 1 firstly for the sake of notational simplicity, and secondly in the treatment of infinite horizon case, the value of €
is irrelevant. In the finite horizon case, the strategy is the same for 0 < € # 1.



Pre-Definition 2.1.1. Let ¢ be a consumption plan in the infinite horizon [0, c0). The associated

Epstein—Zin utility process is defined as the unique solution of the equation:

T
ye :E(/ Flex Vs +VE)  forall 051 <T < oo, (23)
t

This extension will be inadequate for our purpose (hence the phrase ‘Pre-Definition’). In the
sections that will follow, we will explore the drawbacks and challenges faced by existing works towards

solving equation (2.3). After that, another definition will be proposed for Epstein—Zin utility.

Moreover, for the rest of this thesis, without rementioning, we focus on parametrisations of y and

¥ that satisfy either:

v, >1 or yp, ¥ <1, 2.4)

which was used in [57]. It overlaps with the context of Theorem 1 in [55], which requires either
y>1,0<y¢y <lor0<vy<1,¢¥ > 1. It also overlaps with the settings of [47], where v > 1 and
v # ¢~ 1. Tt also covers the empirically relevant configurations vy, > 1 studied by Bansal & Yaron [3]

and Xing [66].

2.2 Existing Results: An Overview

In this section, we explore attempts to resolve the question of existence and uniqueness for Stochastic
Differential Utility, and the extent to which they apply to the Epstein—Zin case. The earliest work
addressing SDU, although not of Epstein—Zin type, in infinite horizon is by Duffie, Epstein & Skiadas
in Appendix C of [20]. Therein, the issue of existence is solved by repeatedly solving the following
finite horizon BSDE:

T
Vt(T):E,(/ f(cS,VS(T))ds), te[0,T]. (2.5)

The solution in infinite horizon is achieved by taking the limit V; £ limp _,c V,(T). Although construc-
tion in the upcoming sections will bear some of this flavour, namely the method of localisation, the
generalisation to Epstein—Zin case is not straightforward. Firstly, in configurations where y > 1, the

terminal value of V7 being nil is equivalent to an infinitely large terminal consumption. Secondly,



even if we settled for such an untenably large terminal consumption, this would imply that the truncated
processes V(T are identically zero when < 0. A more serious issue is in the regularity assumptions

of the aggregator.
Assumption 2.2.1. The following assumptions on the aggregator f were assumed in Appendix C of
[20]:
1. f satisfies linear growth in consumption. That is, there exists constants k; and kg for which
|f(c,0)| < k1 + kalc].

2. f satisfies the so-called uniform sector condition in utility. That is, there exist real constants

—k < —v such that, for 2 € R and (¢, v) € (0,00) X R:

k< fle,v+h) = f(c,v) <y

7 (2.6)

The second assumption is violated by the Epstein—Zin aggregator, which involves an a power term
with exponent 1 — 1/6 in v. Under the parameter restriction (2.4), this power is either negative or

strictly greater than 1, and thus f has unbounded partial derivative in v.

The way in which uniqueness issue was addressed in [20] also faces another challenge. In order to

circumvent the absence of terminal data, the following transversality condition was used:
lim E(e™7|Vr|) = 0, .7
T —o0

where —v is an upper bound in equation (2.6). In settings where 6 < 0, the value of —v is positive,
which turns (2.7) into a decay condition, which forces the unique transversal solution to be identically

zero. This is discussed at length in Section 2.6.

Another paper, which also dates back to the early 90s, that addresses infinite horizon SDU is that of
Duffie & Lions [21]. Our formulation relates to theirs as follows. Suppose that {(V;, Z;) };>0 satisfies
the following dynamics:

th = —f(c,,Vt)dt + ZldBt’ t>0. (28)

1
If we define (V;,Z;) = (V,?, (1 - ¢)[(1 - y)V,]%_th) for ¢t > 0, then (V, Z) satisfies:

AV, = —[sc1? _sv, 4 L z
(= =|oe, " =8V, +5(0- )5 |di +ZedB;, 120, (2.9)
t

10



In the notation of Duffie & Lions, u(c) = 6¢'™% and u = 6§ — 1 < 0. The scope of their results, in
several ways, do not encompass our settings. Firstly, they worked with a Brownian filtration and the
consumption process is assumed to be a Markovian diffusion. By employing BSDE instead of PDE
methods, we can establish Epstein—Zin utilities in infinite horizon without both of these assumptions.
Secondly, their uniqueness results require u to be bounded from above (Theorem 8 therein) or below
(Theorem 9 therein). In terms of ¢, this would translate into uniform boundedness conditions, which is

unsatisfactory.

We also briefly review existing results in finite horizon concerning existence and uniqueness of
Epstein—Zin utility. Schroder & Skiadas [55] and Seiferling & Seifreid [57] studied the existence of
Epstein—Zin utility under integrability conditions of the type E( fOT cf} dt + cg) < oo forall B € R.
Xing [66] also addressed the issue of existence under a more satisfactory integrability condition:
E( fOT c} a4 c;_y) < oo, which was achieved by focusing on configurations where y, iy > 1. As
part of the roadmap towards solving the infinite horizon case, we will also review and refine these

finite horizon results in a way suitable for our purpose.

The collection of existing results regarding the infinite horizon case in the literature is sparse, and
does not characterise Epstein—Zin utility for an adequately wide class of consumption processes. This
presents a gap in the literature, which the content of this chapter aims to fill. The limitations observed
in existing results suggest two main difficulties: firstly, the question of characterising a BSDE without
terminal data, and secondly, determining an alternative to the transversality condition. In the case of
negative 6, the problem is exacerbated by the presence of trivial solutions, which naturally satisfy
transversality conditions. These issues can be solved by imposing additional growth structures on
solutions of equation (2.3). In the next section, we shall discuss how said structures arise naturally in

the finite horizon, which both motivates and justifies our method.

2.3 Motivation From Finite Horizon Settings.

Let us motivate our theory with an informal consideration of discrete time recursive preferences with

finitely many periods. Let {c;,7 = 0,1, .., N} be an adapted discrete time consumption process. Then,

11



the recursive preference of Epstein—Zin type (cf. [23]) of a representative agent is given by:

1-—

Uy = (1= 6)c ™% + 6[E (U ™) T3, 1=0,.,N-1,

t+1

<

(2.10)
UT =Cr.

For concreteness of the following example, let us consider the empirically relevant setting, where
¢ <1 < y. Assume additionally that 6 < 1. In this case, we can express U; as sub- and super-solution

of linear difference equations, as follows:

1—

- - —y iz
U= (1-6)c, ? +6E,(U )T

t+1
@2.11)
< (1-8)e, ? +6E.(U' ).
1-¢ 1-yy 122 1-y 122
U " =0-09)(c, ") +0E U, ;1™
2.12)

1-¢
> [(1=8)e, 7 +6E U1

The inequality of (2.11) follows from conditional Jensen’s inequality, and (2.12) follows from Jensen’s
inequality applied to a two-point discrete distribution with probability masses 1 — ¢ and 6. We observe
that the recursion in (2.11) and (2.12) are the difference dynamics of time-additive utilities for an agent
with relative risk aversion ¢ and vy, respectively. (2.11) and (2.12) can be solved backwards in time

with terminal condition Ur = cr, resulting in the following discrete Power Utility Bounds:

E,[iéi_tuy(ci)] < uy(Uy) < uy oy (Et[i(si_tu,b(ci)]) (2.13)

This provides a natural bounds for recursive utility, which are expressible in terms of the more
tractable additive utilities. This relationship has been extended to continuous time settings in [57]. We

summarise their results below.

Theorem 2.3.1. Suppose that c is a consumption process in a finite horizon [0, T'] such that E( fOT c’f dt+
c’[Tg) < oo forall B € R. Then, there exists a unique semimartingale V¢ that satisfies E(sup,co 1 |Vf %) <

oo for all B € R that solves equation (2.2). Moreover, V€ satisfies:

UV (c) <VE<U?(c), (2.14)
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where:

T
T =B [ ey (e) + e Ty (o).
t
T (2.15)
UeT (¢); = iy o u(—pl{Et(‘/ (56_6‘3‘14(75(6'5) + e—é(T—t)u¢(CT))}, t €[0,T].
t

From the discussions above, we make two observations. Firstly, as the Power Utility Bounds
hold for both discrete and continuous time in finite horizon, this suggests on a fundamental level the
relationship between Epstein—Zin SDU and the classical time-additive utility at different levels of risk
aversions. Thus, we expect any reasonable extension of this theory into infinite horizon to obey an
analogous relationship. Therefore, we propose to incorporate an infinite horizon version of (2.14) into
the definition of Epstein—Zin utility in infinite horizon. This will assist with its characterisation and
rule out oddities such as identically zero solutions of (2.3). Secondly, an inspection of the proof of
Theorem 2.3.1 [57] suggest that the stipulated integrability conditions are too stringent, and can be
improved. As our approach will involve solving finite time approximations, a refinement of Theorem
2.3.1 will allow us to apply our construction to a wide class of consumption plans. These observations

will be developed presently in the next section.

2.4 Epstein—Zin Utility in Infinite Horizon: The Main Results

As discussed in previous sections, the crux of our method is to explicitly demand an infinite horizon
version of (2.14) as part of the Definition of Epstein—Zin utility. In order to do that, we first need a
rigorous definition of our specified space of consumption plans, in both finite and infinite horizons, as

well as power utility processes.

Definition 2.4.1. i. Given T > 0, we define the space C” as the space of consumption processes ¢

on the time interval [0, T'] that satisfy E( fOT cPds + c?) < oo for all of the following values of p:

p=2(1-¢),2(1-y)and p =2(¢ —7y).

ii. On the infinite horizon, we define the space C™ as the space of infinite horizon consumption

processes ¢ that satisfy E(fooo de~%"cPdt) < oo for all of the following values of p: p = 2(1 —

$),2(1 —y)and p = 2(¢ —y).
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Definition 2.4.2. Let u,, : (1 - p)R* — R be the CRRA utility function with relative risk aversion

parameter p. For every ¢ € CT, where T > 0 is finite, we define the additive utility process as follows:
T
YPT(¢), = E, [/ 6e_6(“'_t)up (cp)+ e_é(T_’)uy(cT)], t € [0,T]. (2.16)
t

For each ¢ € C™, its infinite horizon version is defined by:

YP®(c), = Et[/ 66_‘5Sup(cs)ds], t>0. 2.17)
t
Moreover, in both cases where T' < oo and T = oo, define:

UVT(e)=Y"T(c) and U?T(c)= Uy o u;f [Y?T (¢)]. (2.18)

The processes UP>T and YPT for p = y and ¢, including the case T = co, will henceforth be referred

to collectively as Power Utility Processes.

Before we are ready to state our definition of Epstein—Zin utility in infinite horizon, we need one

more element: the space of potential solutions, which is defined below.

Definition 2.4.3. Given finite T > 0, we define V7 as the space of semimartingales {Vi}ieo,1 such
that E(fOT [V: 2319 dt + supo. 71 [Vi]?) < oo. On the infinite horizon, define V> as the space of

semimartingales {V; },>o such that the for all finite 7" > 0, the restriction {V;};¢[0,7] belongs to V T,

The integrability conditions in Definition 2.4.1 for p = 2(1 — y) and 2(1 — ¢) ensure that for any ¢
within CT, U”"T (¢) and U?T (c), including the T = oo case, are well-defined. In fact, it establishes
them as square-integrable semi-martingales. The last assumption for p = 2(¢ — ) is a technical
assumption used to ensure that they are confined within the correct solution space (cf. Lemma 2.7.3).
The solution space V7, loosely speaking, is designed to ensure that our power utility processes,
and by extension, candidate Epstein—Zin utility processes, will possess certain desirable integrability

conditions, which are sufficient for limit-based arguments to go through .

We will now present our proposed definition of Epstein—Zin utility in infinite horizon.
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Definition 2.4.4. Let ¢ be an infinite horizon consumption plan in C*°, a semi-martingale V = V¢ € VYV

is said to be a value process, or Epstein—Zin utility process associated with c if it satisfies the BSDE:
T
ve =E/|v + / Fles,VE)ds|  as. forall0 <7< T < oo, (2.19)
t
and the power utility bounds:

U7 (c), < VE < U>(¢), as. forallr > 0. (2.20)

We will devote the rest of this chapter to the development of an infinite horizon Epstein—Zin utility
process, the culmination of which is the following theorems concerning its existence and uniqueness.
The development of Theorem 2.4.1 will be presented in Section 2.5, and a discussion and comparison

between Theorem 2.4.2 and the transversality condition (2.7) will be included in Section 2.6.
Theorem 2.4.1. Every consumption plan c in C* has an Epstein—Zin utility process associated with it.

Theorem 2.4.2. Let ¢ be a C™ consumption plan. Then:

i. If0 € (0,1), then its Epstein—Zin utility process is unique.

ii. If0 < 0, then uniqueness holds under the additional uniqueness criterion:

T
lim E(exp( / o, f(cs,U¢’°°(c)s)ds)|U7’°°(c)T|) - 0. 2.21)
T —c0 0

Remark 2.4.5. The limit condition (2.21) can be equivalently expressed as:

T o0
lim E(em—")/o (1-s)ds / 5e‘5sc§‘7ds) =0, (2.22)
T

T —>c

1-¢
Ct

E ([~ 6e006-0cl%ds)”

(2.22) as the uniqueness criterion.

where ©; = As this is somewhat more explicit, we shall henceforth refer to

Having settled the existence and uniqueness issues, we state below the few basic properties of
Epstein—Zin utility. These properties have been established in, for instance, [57]. We extend them to

our relaxed setting in finite horizon, as well as the infinite horizon setting.

Proposition 2.4.3. Let ¢ and ¢ be consumption plans in CT. If T = oo and 6 < 0, then assume

additionally that they satisfy the criterion (2.22). Then, the following holds:
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i. (Homotheticity) For every 1 > 0, Ac belongs to the class CT and, in the case T = oo and 6 < 0,

satisfies the criterion (2.21). Moreover, yAe = pl-vye,
ii. (Monotonicity) If ¢ > c, then V¢ > V€.

iii. (Concavity) Ifa € (0,1) and ac + (1 — a)¢ belongs to CT and satisfies (2.22) when T = oo and
0 < 0, then V¥c+(1-a)¢ > qyc 4 (1 — @)VE.

2.5 Existence of Epstein—Zin utility in Infinite Horizon.

In this section, we present our development of Theorem 2.4.1. This is achieved by a localised
construction. Given a consumption plan ¢ € C*, we will define its local truncations in C” for finite
T. The associated truncated value processes then can be shown to converge pointwise monotonically
to a process in V. We then verify that this limiting process is the desired solution in the sense of
Definition 2.4.4. We will make extensive use of the following result, which is a generalisation of

Theorem 2.3.1:

Proposition 2.5.1. For any consumption process ¢ € CT, there exists a unique value process V¢ € VT
that satisfies:

T
Ve =E, (u'y(CT) +/ f(cs,Vsc)ds) asfor0<t<T, (2.23)
t

Moreover, this value process satisfies the power utility bounds (2.14).

We explain the heuristics of localising consumption plans here. Given ¢ € C®, equation (2.19)
can be expressed as: V; = E[u, o u;l(VT) + ft T f(cs, Vs)ds]. From a finite horizon point of view, the
representative agent consumes at rate ¢, up until time 7', where he decides to terminate continuous
consumption and consume the certainty equivalent of the ’look-ahead’ value of the remaining utility.
Since this remaining Epstein—Zin utility is, of course, unavailable, we shall approximate it with

remaining power utilities. The formal definition is given below:

Definition 2.5.1. Let ¢ be a consumption plan in C*. Its time T upper-truncation ¢7) is defined by:

¢, t€[0,7)
™ el (2.24)

—1(p7PNY, _
uy (Uy ), t=T.

16



We also define the lower-truncation E,(T) with the same instantaneous stream on [0, T), but terminal

consumption 5(TT) = u;l(U}ﬁV%w)'

(T)

T and 5(T)

Due to the power utility bounds (2.20), we expect ¢ T

to represent the maximal and
minimal look-ahead values, respectively. Therefore, the time T truncations will provide upper and
lower bounds for the solution we will construct. Because these upper and lower truncations hold for
all T, we will take limit in T later. We collect some of their desirable properties in Proposition 2.5.2
below. The first point states that the truncations ¢) and ¢7) are consistent with our setting in finite

horizon, which allows us to freely define the localised Epstein—Zin utility processes. The second and

third points establish the integrability properties and ordering of the power utility processes.

Proposition 2.5.2. Let ¢ be a consumption plan in C®. For each T > 0, let ¢T) and éT) be the time
T upper and lower truncation of c, respectively. Let UV>* = UY**(c¢) and U%* = U?*(c) be power

utility processes associated with c (cf. Definition 2.4.2). Then:

i. ¢T) and éT) belong to the class CT .

ii. ForanyT > 0, the restrictions {Utyw’w}ze[oj] and {Ul?/v¢’oo}t€[0’T] are equal to U1 (¢(T))
and UYV T (¢1)), respectively. Therefore, the (U} eetor) {U?’Oo}te[o,r] belong to the semi-

martingale class VT and U™ and U®* belong to the semimartingale class V.

iii. Foranyt >0, U;ﬁvy’oo < Utmy’OO almost surely.

Having established ¢”) and ¢7) as CT consumption plans, we can apply Proposition 2.5.1 and

define their associated Epstein—Zin utilities via the following BSDEs:

T
Vt(T):E,(U;f’M’OO+/ f(cs,va>)ds) te€[0,T],
’T (2.25)
VD =B (Uf e [ e as) e o,
t

We wish to take the limit of V{T) and V() as T diverges. The next proposition shows that these
truncations are actually monotone in 7', which allows for a simple and convenient way to achieve the

desired convergence.
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Proposition 2.5.3. Let V\T) and V) be defined by equation (2.25). Then, they satisfy the following

infinite horizon version of the power utility bounds:
Ul < v <y <y e [0,1]. (2.26)

In particular, the upper and lower bound processes are independent of T. Moreover, fort € [0,T] and

S>T, Vt(S) < VZ(T) and Vt(s) > V,(T) almost surely.

We conclude this section with a result concerning taking limit of the localised value processes.
The following result ensures that the limit processes belong to the correct solution space and solve the
targeted BSDE. Moreover, they also form a natural bound for any potential Epstein—Zin utility process.

With this result, we attain Theorem 2.4.1.

Proposition 2.5.4. The limits V; = limp Vt(T) and V, = limy o0 Vt(T>

are well-defined and belong
to the class V. Moreover, they are Epstein—Zin utility processes associated with c, in the sense of

Definition (2.4.4). Moreover, if v is another Epstein—Zin utility process, then:

V<v<V. (2.27)

2.5.1 The Case of Brownian Filtration.

In the problem of portfolio optimisation of an agent with Epstein—Zin preference, most popular market
models are driven by a Brownian Motion (see, for instance, [39], [66],[37] and the applications therein).
In a Brownian filtration, the standard formulation for a BSDE is of the form (El Karoui et al. has a
survey paper [22]):
T T
Vi=Vr +/ f(cs,Vy)ds +/ ZsdBg, t<T. (2.28)
t t

The existence of the Z component in (2.28) is an application of the Martingale Representation Theorem
in a Brownian setting (Theorem 3.4.15 [33]). This result is made straightforward by the fact that the
aggregator f is independent of Z, and thus no continuity property of f is required the Martingale

Representation Theorem. A construction of Z, however, is not generally available.

Theorem 2.5.5. Suppose that the filtration {F; }+0 is the augmentation of a filtration generated by
an R?-valued Brownian Motion. Let ¢ be a consumption plan in C* and V € V> be an Epstein—-Zin

utility process associated with it. Then, there exists an R%-valued progressively measurable process
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{Z;};>0 such that for all T > 0, fOT Z2ds < oo almost surely and:

T T
V, = Vr +/ f(cs,VS)ds+/ ZsdB;, t<T. (2.29)
t t

2.6 Uniqueness of Epstein—Zin Utility in Infinite Horizon.

This proof of Theorem 2.4.2 is relatively straightforward, and will be deferred to Section 2.8.6. In this
section, we shall heuristically describe its motivation behind our uniqueness result, and the way in
which it refines the transversality condition in [20]. Since the partial derivative d,, f(c, v) is uniformly
bounded from above by? —36, one might consider imposing the condition:

lim E(e-59T|VT|) - 0. (2.30)

T >0

This is manifestly unnecessary when 6 € (0, 1), where uniqueness of the solution holds without
extra assumptions other than those of C® (see Theorem 2.4.2.1.). Moreover, this transversality condition
can be naturally thought of as a growth condition on the value process. However, when 8 < 0, this is a
decay condition, which requires the value process to vanish exponentially fast, which excludes even
trivial cases such as constant consumption3. In fact, it excludes all cases of interest, as the result below

shows:

Proposition 2.6.1. Suppose that 6 < 0. Let ¢ be a C™ consumption plan and suppose thatV € V=

satisfies the following BSDE for all positive constants t < T':

T
Ve =B (vr + / FlesVds). 231)

If V satisfies the transversality condition (2.30), then it is identically zero.

Therefore, solutions satisfying (2.30) are not open to economic interpretation and exclude all

processes sandwiched between U?** and U?#*. Upon close inspection of the proof, uniqueness can

2See discussion following Definition 2.7.2b

3For example, if ¢; = ¢ > 0, then one can verify directly that VE = uy(c) is the associated Epstein—Zin utility process.
In this case, U?>*(c) and U?>*(c) are both constant and equal to uy(c), implying that V¢ is the unique solution according
to Definition 2.4.4
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be achieved by constructing a process @ that simultaneously satisfies:

a; (V; — Vz) > f(ci, Vi) = flcys Vz)’ (2.32a)

T 1
exp( / a/sds)lVrl L. (2.32b)
0

(2.32a) requires « to be sufficiently large so as to achieve an upper bound on 9, f (cf. equation
(2.75)). However, if « is too large, exp( fOT asds)|Vr| will not converge, as required in (2.32b).
The choice @ = —d6 is an example that satisfies the first, but not the second requirement. The
uniform, deterministic upper bound is not sharp enough. Therefore, we can think of the choice

a =0, f(c,U?*(c)) as a dynamic generalisation of the transversality condition (2.30).

We will now discuss, in the case 6 < 0, a class of consumption processes for which uniqueness is

achieved. Let us recall the uniqueness criterion

T (o]
Tim B[00 4 (-0 / se el ds) =0, (2.33)
—00 T

A1-¢
St

E ([~ 6e-06-0cl P ds

where @, = ;- Intuitively, the decay of (2.33) is the result of two competing

T [e9) —_
forces: the fluctuation of e®(1=0) Jy (1-®sds)ds and the decay rate of fT de= 98 c; Yds. Therefore,

uniqueness is attained if the first factor is bounded from above. One such situation is when ct1 “?isa

super-martingale, as in this case:

1-¢ 1-¢
¢ Ct

= 2~ -
ftmée“s(s")Et(c}_‘ﬁ)ds ft 6e‘5(s")ct1 ?ds

c

0N =1. (2.34)

We draw comparison with the work in infinite horizon of Melnyk et. al [47], who, in the case

where ¢ < vy, restricts their studies to consumption processes that satisfy (Definition 3.1 therein):

VE <uy(c;) forallz > 0. (2.35)

In the empirically relevant case ¢ < 1 < v, the intuition behind conditions (2.34) and (2.35) are similar:
uniqueness holds when future consumption is not ‘too good’ in comparison to current consumption. In
fact, our method of acquiring uniqueness encompasses theirs in the following way. If we restrict our
studies to consumption plans and Epstein—Zin processes satisfying (2.35), then, by using u,,(c;) as an

upper bound instead of U?**(c) as an upper bound, we could have selected @; = 8, f (cs, uy(cs)) in

20



(2.32a). In this case, the (2.32b) reduces to:
—6T L'
e V| — 0, (2.36)

which is their transversality condition.

2.7 Proofs of Finite Horizon Results.

2.7.1 Preliminary: Monotonicity of BSDEs and a Comparison Principle.

Below, we will recall a few mathematical devices that will come in handy in our proofs. The
fundamental concept that underlies our theory is a sub- and super-solution for a backward stochastic

differential equation with monotone generator.

Definition 2.7.1. Let g : QX [0,T]xR — R be G®B(R)-measurable, where G denotes the progressive
o-field. Moreover let £ € L'(P) and suppose X is a semimartingale with E[ /OT lg(t, X;)|dt +

supeqo,r] [ Xr|] < co. Xiis called a subsolution (resp. supersolution) of the BSDE(g, ) if:
dX; = —g(t, Xy)dt + dM, — dA;, Xy < & (resp. Xp = &).

where M is a martingale and A a decreasing (resp. increasing) right-continuous process such that

Ag = 0. Moreover, X is a solution of BSDE(g, ¢) if it is both a subsolution and a supersolution.

Definition 2.7.2. (Monotonicity). Let g : Q X [0,T] X R — R be G ® B(R)-measurable. g is said
to satisfy the monotonicity condition if there exists a constant k such that for dP ® dr-almost all

(w,1) € Q% [0,T]:
glw,t,x) —g(w,t,y) <k(x—y) forallwe Qandx,y e Rwithx >y (2.37)

The constant & is referred to as the constant of monotonicity of g.
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We consider the partial derivative in v of the aggregator: 9, f(c,v) = dc'=?(6-1)[(1-y)v] -5 -60.

Moreover, the restrictions (2.4) on y and ¢ can be categorised further into:

p<y<l,=0<60<1; l<y<¢p,>0<0<1

p<l<y,=80<0; y<l1l<¢,=60<0.

In all cases, # < 1 and 9, f(c,v) < —d6. Therefore, the Epstein—Zin aggregator is monotone with

constant of monotonicity —d6.

The monotonicity condition can be thought of as a weaker version of the Lipschitz condition: the
difference quotient is bounded above but not below. This condition has been utilised extensively in
the BSDE literature, for instance, in [51], [8], [50] and [54]. It should be noted that, in the context of
random terminal time, these authors formulated the monotonicity condition with negative values of k.
Such a condition is violated by the Epstein—Zin aggregator when 6 < 0. Its effects on the uniqueness

issues in infinite horizon is discussed Section 2.6.

We now state a comparison theorem, courtesy of Seiferling & Seifried [57].

Theorem 2.7.1. Suppose that X is a sub-solution of BSDE(g, &) and Y a super-solution of BSDE(h, 1),
in the sense of definition 2.7.1. Suppose also that ¢ < n. Then, for eacht > 0, X; < Y; almost surely if

either of the following holds:
i. glw,t,Y;) < flw,t,Y;) for dP®dt-almost all (w,t) € Q® [0, T] and g satisfies the monotonicity
condition; or
ii. glw,t,X;) < fw,t,X;) for dP®dt-almost all (w,t) € Q® [0, T] and f satisfies the monotonicity

condition.

An immediate corollary of Theorem 2.7.1 is the following monotonicity result of the Epstein—
Zin value process. Intuitively, it states what one would expect: a dominating level of consumption

corresponds to an accordingly dominating level of utility.

Corollary 2.7.2. Let ¢V, i = 1,2 be consumption processes in CT . Suppose that V) i = 1,2 belong
to VT and satisfy:

v =, u,,(c(l))+/ F(e, VS("))ds), te[0,T]. (2.38)
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If ct(l) < c,(Q) dP @ dt- almost everywhere, then Vt(l) < V,(Q) almost surely for all t. As a consequence,

if c € CT, then its associated value process is unique in V7 .

Proof. Denote f)(t,-) = f(c,(i), -). We assert that V() is a solution of BSDE( f?), uy(c(Ti))), in
the sense of definition 2.7.1. Indeed, sup,c[o ] |Vt(i) | is square integrable, thanks to its membership in

VT . Moreover, by Holder’s inequality:

T T . . )
E(/ |f(i)(S,VS)|dS) < KE(/ [(Cgl))2(1_¢) + |Vs(l)|2(1—1/0) + |VS(1)|]dS), (2.39)
0 0

where K is a constant depending on 6,7,y and ¢.

By considering the first partial derivatives of the aggregator, a% fle,v)y =6c?[(1—yw]'1P >0
and %f(c, v)=6(0-1D[(1- y)v]_% — 86 < —60 (Note that in all considered configurations, 6 < 1).
Therefore f is increasing in ¢ and satisfies the monotone condition with constant —96. We can therefore

apply Theorem 2.7.1 to obtain the conclusion of this corollary.

2.7.2 Proofs of Proposition 2.5.1.

Let us prove our result concerning existence and uniqueness of Epstein—Zin utility in finite time. We
state below a lemma concerning the integrability of power utility processes that will be useful in the

main result. Its proof will be deferred until after that of the main Proposition.
Lemma 2.7.3. Given finite T > 0 and a consumption process ¢ € CT, the power utility processes
UT(¢) and U?T (c) belong to VT .

Proof of Theorem 2.5.1. The uniqueness of Epstein—Zin utility is resolved in Corollary 2.7.2.

Regarding its existence, we divide the proof into three parts with increasing levels of generality.

Part I. ¢ is bounded above and away from 0. This case falls within the scope of Theorem 2.3.1,

and the conclusion is immediate.

Part II. ¢ is bounded away from 0. Now, suppose ¢ € CT is a consumption process that is bounded

away from 0 but not above, then ¢ = ¢An is a pointwise increasing sequence of bounded consumption
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processes that converges upwards to ¢. Moreover, thanks to Part I, there exists a unique V" € V7
such that:

T
v<">=E,(u7(c(T"))+ / f(ci"),vs("))ds) te[0,T]. (2.40)
t

Moreover, by Theorem 2.5.1 for consumption processes bounded above and away from zero, the

following inequality holds almost surely for all ¢ € [0, TT:

U7 (cMy, < U7 (™), < v < U (™), < U (c),. (2.41)

By Corollary 2.7.2, n — Vt(") is monotone increasing, and the inequality (2.41) implies that the
limit is finite. Therefore we can define V = lim, V,("). A consequence of (2.41) is that V € VT,
By Lemma 2.7.3. We wish to take pass the limit through the expectation in (2.40). As |uy(c(T"))| <
|uy(c(Tl))| + |uy, (cr)|, the first term follows readily from conditional dominated convergence theorem
(DCT). The second term follows from conditional DCT, too, where the dominating random variable is

provided by:

2(1-1/0)

Fe vy < (S oo (@ PO oo @ PO U (@B + U (el

(2.42)

Denote by U, the process on the right hand side above. By membership of ¢ in CT and Lemma
2.7.3, we have E(/tT Usds) < oo, and thus ftT Usds < oo almost surely. This justifies the following
application of DCT on a set of probability 1:

T T T
lim [ f(ci™,vi)ds = / lim £(c™,v{)ds = / f(cs, Vs)ds. (2.43)
t n—0o0 t

n—oo

By conditional DCT, with fz d U,ds as the dominating random variable, we have:

T T
Iim B, / £ Vi) ds) = B, lim / £ VM ds). (2.44)
t t

Combinining equations (2.40), (2.43) and (2.44), we see that V¢ satisfies the limit BSDE:

T
Ve =Et(uy(cr) +/ f(cs,VSC)ds). (2.45)
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Lastly, by conditional monotone convergence, we can take the limit as n — oo in (2.41) to obtain

the power utility bounds (2.14).

Part I11. ¢ is any process in C” . If ¢ is an arbitrary member of process in CT', then ¢ = ¢V (1/n)

is a pointwise decreasing sequence of consumption processes, each of which is bounded away from
zero. From Part II, each ¢ has a unique associated utility process V" in VT, which, by corollary

2.7.2, is monotone decreasing in n. Moreover, for ¢ € [0, T7]:

U7 (), < UV (c™), <V < UM (™), < U (), (2.46)

Again, by monotonicity of the value process, we can define VS = lim,_, V,("), which thanks to

the power utility bounds (2.46) belongs to V7. Similar to Part II, we want to pass to the limit in:

T
VO =i s [ pevias), (2.47)
t

The argument for exchanging limit and conditional expectation is exactly the same as in Part II.
Therefore, V¢ is the utility process associated to c¢. To obtain the power utility bounds, let n — oo in

(2.46), which is justified by conditional dominated convergence.

Proof of Lemma 2.7.3. For simplicity of notation, we drop the T superscript and ¢ argument from
the power utility processes. In our calculations, we will use K to denote a generic constant that might

change from line to line.

Part 1. UY € VT . Under the restrictions (2.4), we have either 1 — 1/8 < 0 when 6 € (0, 1) or

1—-1/6 < 0 when 6 < 0. In both cases, the mapping x — x2(1=1/9) is convex for x > 0.

T B _\12(1-1/6)
|Uty|2(1—1/9) _ K[]Et(/ 56—5@—:)6% 7ds+e‘5(T")c; 7)]
t

(2.48)

T 2(1-1/6)
< KE; [(/ Se 06D Y gg e_é(T_t)c;_y) ]
t

T
< K]Et(/ 6e—5(s—t)cz(¢_7)ds +€_6(T_I)C§~(¢_y)).
t
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Above, the second inequality follows from the fact that §e~ ) ds + ¢~ 4T~ g, where 67 is the

Dirac delta at point 7, is a probability measure on [¢, T]. Thus, we have:

T T T
E(/ IUZI2(1‘1/9)6”) < K/ E[/ c§(¢_7)ds+c;(¢_7)]dt
0 0 0

, (2.49)
< KT(E[/O c§(¢‘7)ds] +E(c§(¢‘7))) < oo,
In order to prove that sup,c[o 1] |U7| is square integrable, we first observe that:
T
(1-yU) =E, [/ 66‘6(s_t)ci_7ds + e_‘s(T_t)c;_y]
t
(2.50)

T
< E; [/ 66_5(S_l)ci_yds + e_‘s(T_’)c;_y].
0

As E( [fOT Se 06DV ds + e“S(T_t)c;_y]2) < E(fOT 5060 207 g 4 e“S(T_’)ciu_w) < o0,
the stochastic process M, £ E, [ /OT Se 06Dl ggq o0 (T-1) c;_y] is a square-integrable martingale.

By Doob’s maximal inequality, E(sup,c[o 7] |M;]?) < oo, and consequently, E[sup;efo,7] |Ut7|2] < o0,

Part 2. U? € VT . This part’s calculations are similar the Part I. Here, we utilise the convexity of

the mapping x — x2(¢=1),

#12(1-1/6 g 1-¢ T-1) 1-¢]0V
IUt | (1-1/6) =KEt[/ 56—5(S—l)cs ds + e~ 9( —t)CT ]
! i 2.51)
< KE,[/ 66—6(s—t)cz(¢’—7)ds+e—d(T—t)ci(flb—Y)].
t
Thus, we obtain the following estimate for the expectation of the time integral of |U?|:
T T T
E(/ |Ut¢|2(1‘1/9)dt) < K/ E[/ ng—wdﬁciw—w]dt
0 0 0
(2.52)

T
< KT(E[/ c§<¢‘7>ds] +E(c§(¢‘7))) < oo
0
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We now turn our attention to the last estimate, sup,¢jo 77 |U, f’ |. Suppose that 6§ € (0, 1), then there

exist constants Ay, By such that |x|? < Ag + By|x|. Thus:

sup |Ut¢| =K sup |Yt¢|9 < Ag+ By sup |Yt¢|. (2.53)
t€[0,T] t€[0,T] t€[0,T]

Analogous to U”, sup;¢(q, 1] |Yt¢| belongs to L?(P), and thus so does SUP;efo,7] |Ut¢|. When 6 < 0,

we apply Jensen’s inequality to obtain:

T 0
|Ut¢| = KE,(/ 6@‘5(5_’)c§_¢ds + e_‘S(T_t)c;_"))

t

T
< KB / ds + k) (2.54)
t

T
SKEt(/ c}_yds+c;_7).
0

By the same Doob’s maximal inequality argument as Part I, we conclude that sup, ¢ 1} |Ut¢ | €

L?(P).

2.8 Proofs of Infinite Horizon Results.

2.8.1 Proof of Proposition 2.5.2

For the sake of concreteness, let us assume in Part i. and Part ii. below that y > ¢. The case when

¢ < vy is proved similarly.

Part i. Due to the membership of ¢ in C*, E(fOT [cgr)]”ds) = E(/OT c?ds) < oo for the values

(1)
T

of p required by CT. Therefore, it remains only to show that the terminal condition c,. ’ satisfies

E([C(TT)]P) < ooforp=2(1-7),2(1 - ¢) and 2(¢ — y). With K denoting a generic constant:

(e 1207 = K (27| /

[Se] 2 [Se]
66_5(S_T)ci_7ds]) < Ey (/ 66—6(S—T)Cz(1—7)ds) e L(P). (2.55)
T T
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Above, we used Jensen’s inequality twice, firstly through the conditional expectation and secondly

through the Lebesgue integral.

Next, we estimate [c(TT)]2(1‘¢) and [c(TT)]2(¢‘7), using also Jensen’s inequality in a manner
similar to (2.55). We use below the fact that for any non-zero 6 < 1, the mapping x — x%/¢ and

x — x20-1/9) are convex on (0, o).

oo 2 (o)
[C(TT)]2(1_¢’) = (ET [/ 66_5(S_T)ci_yds]) ‘< ET(/ 66_5(S_T)c§(1_7)/0ds)
r T (2.56)
=Er (/ 66‘5(S_T)c?(1_¢)ds) € L(P).
T

2(9-y)

©0 _ ~ o0 _ 2(1-1/0)
[c(TT)]2(¢‘7) = (ET[/ 58_5(S_T)Ci yds]) oz (ET [/ (Se_‘S(S_T)ci yds])
T T

< ET(/ 66‘5(S_T)c?(¢_7)ds) € L(P).
T

2.57)

We have shown that ¢() belong to the class CT. Similarly, we need only to show that the termi-
nal consumption é(TT) satisfies E( [E(TT)]p) < oo for p =2(1-7y),2(1-¢) and 2(¢—7). We observe that
[E(TT)]2(1_¢) = K(Er [/Too 66‘5(S_T)c;_¢ds] )2 and [5(TT)]2(¢_7) = K(Er [/Too 66_5(S_T)ci_¢ds])2(9_1).
These quantities can be shown to be integrable using estimates similar to equations (2.55) and (2.56).
Lastly, [E(TT)]2(1‘7) = K(Er [fToo 66‘5(5‘T)c§_¢ds] )29. If 6 < 0, the same convexity argument as in
equation (2.56) shows that [E(TT)]QO‘V) is integrable. If 6 € (0, 1), then there exists constants Ag, By
such that:

[5(TT)]2(1_7) <Ay +BH(ET[/

o0 2
66_5(S_T)c§_¢ds])
T

i (2.58)
< Ag +BQET(/ 5e—5<s—”c§“‘¢’ds) e L1(P).
T

Part ii. For positive constants ¢t < T, we can decompose the process U”** the following way, using

the tower property of conditional expectation:

ur® = Et[/ 56_6(‘9_’)u7(cs)ds
t
(2.59)
T )
=]E,[f 66_5(3_’)u7(cs)ds+e_6(T_’)ET(/ 6e_5(S_T)uy(cs)ds)].
' T
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This can be interpreted as the finite horizon power utility process associated with the upper
truncation ¢ ). Specifically, Ui }iefor) = U T (¢™). In part i, we have proved that ¢(7) €
CT. As aresult, the restriction {U”*(¢)t }ref0,1] belongs to VT thanks to Lemma 2.7.3. The process

U?** has a similar decomposition:

ths,oo =uy o ujﬁl [E,(/zoo 66_5(s_t)u¢(cs)ds)]
(2.60)

T )
=uyo u%l {Et(/ §e Dy y(cy)ds +e T Er [/ 66_6(S_T)u¢(cs)ds])}.
t T

Similar to U?>*, the restriction on [0,7] of U%™ can also be interpreted as a finite horizon
power utility process. In particular, {U?*},cf0.r) = U?® (™). As éT) € CT, by Lemma 2.7.3,
{U?’w},e[oj] belongs to V7.

Part iii. Lastly, we show that the ordering between power utility processes is preserved when
we extend to infinite horizon, i.e. Ufbvy’m < U:b’/\’y’oo for all + > 0. Recall that th)’oo = U, o

u;l (E; ft “ 696Dy 4(cy)ds). Consider the second derivative:

d2
2y o g () = (¢ =M1 -¢)x]"72 (2.61)

which is concave on (1 — @)R* if ¢ < y and convex on (1 — @)R* if ¢ > y. Therefore, we can apply

Jensen’s inequality to obtain:
Ut¢’°° =, o0 u;f (Et [ /°° 56_5(S_t)u¢(cs)ds])
t
> (resp. <) E,[/m Se 6y o U, o u¢(cs)ds] (2.62)
t
=U;”,

when ¢ < y (resp. ¢ > y). This concludes the lemma.
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2.8.2 Proof of Proposition 2.5.3

Proof. For brevity, we will prove the result when ¢ < y. The other cases where y > ¢ can be proved
similarly. By Proposition 2.5.2, U?*®(c) and U%®(c) restricted on [0, T] is equal to U"T (¢T)) and
U®T (¢M), respectively. Therefore, by Power Utility Bounds in finite horizon (cf. Proposition 2.5.1),

fort <T:

v\ <t (D), =u?(c),, and
(2.63)
v 2 vt (@), =Ur(e.

As VT(T) > VT<T), the ordering V, > V, for t < T is a straightforward consequence of a comparison
principle (see Theorem 2.7.1). For the last statement, let V) and V(5 be defined by equation (2.25),
with S in place of T. Then, similar to inequalities (2.26), we have:

GV _ (S) _ (S) L oAy.es
g < v < <ughre (2.64)

On the the restricted horizon [0, T7], V) and V) has the same BSDE driver as (2.25), but with
terminal conditions V;S) and VT(S), respectively. Thus, we can combine inequalities (2.64) with

Theorem 2.7.1 to attain the last statement of this proposition.

2.8.3 Proof of Proposition 2.5.4

Proof. 1t follows from the Proposition 2.5.3 that for ¢ < T, Vt(T) > Vt(TH) > Utmy’oo. As the
lower bounding process is independent of 7', we can define the downwards limit V; =] limy_, V,(T).
Similarly, we can define V; £7 limy_, Vt(T) , the upwards limit of its localisations. By construction,
both V and V are sandwiched between U%Y?>* and U%#"Y-*. From Proposition 2.5.2, both U%*® and

U”® belong to the semimartingale class V', whence it follows that V and V belong to the same class.

30



Having constructed two candidate solutions in the appropriate semimartingale classes, we now

verify that they satisfy the target BSDE. Let S > T be two positive constants, then:
T
v =, (V;S) + / flcs, VS(S))ds). (2.65)
t

Using the fact that U?V7® < V(S) < U7 for all S, Proposition 2.5.2.ii. and conditional dominated

convergence, we can pass to the limit* and obtain:

T
V, = E (VT + / f(cS,Vs)ds). (2.66)

Equation (2.66) with V in place of V can be obtained using the same argument.

We will now prove the last statement. Since v satisfies the power utility bound, it belongs to
V®. Forany T > 0, vy < U;My’oo, and thus by comparison principle (Theorem 2.7.1), v, < Vt(T)
(cf. equation (2.25)) for all r < T. Letting T diverge, we obtain the upper bound in (2.27). The other

inequality is proved similarly.

2.8.4 Proof of Theorem 2.5.5

Proof. By martingale representation theorem (Theorem 3.4.15 [33]), there exists an R?-valued

progressively measurable process {Z")}, < such that fOT ||ZS(T) |2ds < oo and:

T T
V,=Vr + / fles, Vs)ds + / 7z aB,. (2.67)
t t

This representation is consistent across different horizon lengths, in the sense that the Z component

in a longer horizon can also serve as the representing process for a shorter horizon. More specifically,

4See also Lemma 2.7.3, Part I1. for a similar argument
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for positive constants t < T < S:
s S
v, =V5+/ f(cs,Vs)ds+/ 7> B,
t t
s s T T
= Vs + / f(cs, Vy)ds + / 5 dB, + / f(cs, Vy)ds + / 75 dB, (2.68)
T T t t

T T
:VT+/ f(cs,VS)ds+/ A
t t

Therefore, fot ZS(T)dBS = fot Zﬁs)st almost surely for # < T. By Lemma 2.8.1 below, Z") and
ZS) coincide dP ® dr-almost everywhere on [0, T] x Q. Thus, we can identify a process {Z; };>0 by
defining Z, = Z" for 1 < T, which satisfies the following BSDE:

T T
V, = Vr +/ f(cs,Vs)ds+/ Z.dBs, t<T. (2.69)
t t

O

Lemma 2.8.1. Suppose the R%-valued progressively measurable processes Z and Z are such that
fOT ||Z||?ds + /OT ||Z||?ds < oo almost surely, and that {fot ZsdBg}iep0,1] and {fot stBs},e[o,T] are

indistinguishable, then Z = Z dP ® dt-almost everywhere on [0,T] ® Q.
Define the stopping times 7 2 inf{r > O,fot | Z||2ds v fot | Z||2ds > k} A T. Then we have:

t IATK IATE _ t
/ Zls<r, dWs = / ZsdWg = / ZsdWy = / Zls<r dWs, t<T. (2.70)
0 0 0 0

By Itd’s isometry for square integrable martingales:

5( [ 1= 2t an) =5([ [ - Ztanam]) =0 @

It follows that, almost surely, Z; (w) = Z;(w) on [0, 7x (w)]. By letting k — oo we have that Z, = Z,

fort < T dt ® dP-almost everywhere.
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2.8.5 Proof of Proposition 2.6.1.

Suppose that V and V are solutions of equation (2.31) that belong to ‘V* and satisfy the transversality

condition (2.30). Then, V has the BSDE representation:
T
Vt = VT +/ f(CSa Vs)ds + (MT - Mt)a (272)
t

where M; = B, (Vr + /OT f(cs, Vi)ds), a martingale. By Martingale Regularisation Theorem (Theorem
67.7, [65]), M has a cadlag modification. Therefore, we can consider the cadlag modification of
V. M is defined analogously and likewise, we also consider cadlag versions of V and M. Let us
denote AV =V —V,AM = M — M and Af = f(c,V) — f(c,V). By Tanaka’s formula for general

semimartingales (Theorem 66, [53]), we have:

T
e P9 AV,| = e 0T | AV | +/ e 005 [66|AVs| + g (AVy)Afy]ds

t

(2.73)
T T
—/ e“wsg’(AVs)dAMs—/ e %94dAs,
t t

where g(x) £ |x| and g’ (x) = Ix>0—Iy<q is its left-derivative, and dA; = (AV;—AV;-)—g’ (AV;-) (AV; —
AV,-) is cadlag non-decreasing. As the aggregator is monotone with —d6 being its constant of
monotonicity, the Lebesgue integral above has a non-negative integrand. Moreover, the stochastic
integral is a true martingale, as its integrand is uniformly bounded. Therefore, by taking expectation
on both sides of (2.73):

E[e °?|AV,|| < E[e °?T|AVr]]. (2.74)

The right hand side of (2.74) vanishes as 7" diverges by transversality condition (2.30), which
implies that |AV;| = 0 almost surely. We have demonstrated uniqueness of solutions satisfying the
transversality condition. We observe also that when 8 < 0, V = 0 is a V' solution that satisfies (2.30).

Therefore, all transversal solutions must be identically 0.
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2.8.6 Proof of Theorem 2.4.2

Proof of Theorem 2.4.2. Suppose that ¢ is a consumption plan in C*. Let V and V denote the solutions
constructed in Section 2.5. By Proposition 2.5.4, these actually define upper and lower bounds for all
potential Epstein—Zin utility processes. Therefore, in order to prove uniqueness, it is sufficient to show

that V =V.

Let {a;};>0 be a progressively measurable process that shall be determined later. Define M; =
E,(Vr + fOT flcs, Vi) fort <T. M, is defined analogously with V. Denote by AV, the non-negative
process V; — Vt, and by AM, the difference M, — M,. The dynamics of exp( fot ayds)AV; can be

obtained by Itd’s Lemma for non-continuous semimartingales (i.e. Theorem 1.4.57 of [53]):

deh ISAY, = el @45 (0, AV, = [ f(c,, V) = f(er, V) ])dt + el 95 dAM,. (2.75)

By mean value theorem, f(c;,V;) — f(ci,V;) = 8y f(ci, K)(V; = V;) for some K € [V,,V,].
Moreover, by considering the second derivative 02, f(c,v) = ¢ =% (y—¢)[(1-y)v]* "¢, we observe
that 9, f is increasing in v when y > ¢ and decreasing when vy < ¢. In both cases, 9, f(c;, K) <
oy f(cy, Uf’ "*). Therefore, if we set a; = f, (c;, U;p *®), the drift term in equation (2.75) is non-negative
and exp( fot asds)AV; is a local submartingale. Moreover, as d,, f (¢, v) < —d0, the exponential factor
is locally bounded. exp( fol asds)AV; is thus of class (DL) and a true submartingale. For any positive
constants t < T

Eleh =dAV,] < B[eh adavy]. (2.76)

As AV is non-negative, in order to show that AV, = 0, it is sufficient to show that the right hand

side of inequality (2.76) vanishes as T diverges. We consider two separate cases.

Case 1: 0 < 6 < 1. This covers the two cases ,¢ <y < 1and < 1 <y < ¢. In both cases, we have

from the power utility bounds:

0<(1-y)Vr < (ET [ /00 e—‘s“—”ci“"ds])g. 2.77)

T
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Therefore:
B exp ( /0 Cofe U )ds)I(1-y)Vvrl)

E( exp(‘/OT MCB)ET[/Tooée_‘s(s_”ci_‘ﬁds])e (2.78)

IA

slow( [ o(t-2) 10 -t iha - o) | [ ese et eas)|”
T

As 6 € (0,1), the term 6(1 — 1/6)[(1 — y)U*]71/¢ is non-positive. It then follows from the

previous inequality that:

E(exp (/OT dy f(cs. U;b""’)ds)|(1 - )/)VTI) < E( /tmae—ésci‘%s)e. (2.79)

We note that ¢ satisfies E(/OOo 66‘55c?(1_¢)ds) < oo by its membership in C®. ¢!~ can be
interpreted as belonging to the square-integrable space L?(Q x R*), with probability measure dP ®
Se~%!dt. Since this is a finite measure space, ¢!~ also belongs to L' (Q x R*) with the same measure,
which implies E(foOO 66‘5sci_¢ds) < co. Thus, as T diverges, fToo 5e‘5sci_¢ converges to 0 almost

surely and in L', by dominated convergence. It therefore implies that:

lim E(exp (/OT y flcs, Uf’oo)ds)lVTl) - 0. (2.80)

The same result holds with V in place of V, whence we conclude that the right hand side of (2.76)

vanishes at infinity, which concludes Case 1.

Case 2: 8 < 0. This covers the two remaining configurations, ¢ < 1 <y andy < 1 < ¢. In both

configurations, |V;| and |V;| are bounded above by |U”°|. Therefore:

E( exp (/OT 0, f(cs, Usgb’m)ds)|VT|)

< IliﬂE(exp (/UT avf(cs,Uf""’)ds)ET[/Tmae—ésci‘yds]) (2.81)

= iylE(exp (‘/OT dy f(cs, Uf’“’)ds)ET ‘/Too 56_5sc;_7ds),
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which vanishes at infinity by the hypothesis of the theorem. The same result holds for V in place of V,

which concludes Case 2.

2.8.7 Proof of Proposition 2.4.3.

Proof of Proposition 2.4.3. We will now prove the properties of homotheticity, monotonicity and

concavity of Epstein—Zin utilities, in both finite and infinite horizon.

Part I.1. Homotheticity, T < co. We can verify straightforwardly that if V¢ solves equation (2.23),

then:

T
ATVe — R, (uy(/lcT) + / f(/lcs,/ll‘VVf)ds), 0<t<T, (2.82)
t
which confirms the homotheticity of Epstein—Zin utilities.

Part .2. Homotheticity, T = co. We can verify directly that the mappings C* — V= : ¢ —» U"*

and ¢ — U%* are homothetic, i.e. U¥®(Ac) = AYUY"°(c) and U (Ac) = AYUP>(c).
Therefore:

VD (ac) = A7 v T (), (2.83)

where V) (¢) and VT (Ac) are constructed via equation (2.25). As we take limit 7 — oo, this
homotheticity property is preserved by the limit process. We observe also that the quantity @ in (2.22)

is invariant through scaling. Therefore Ac satisfies the uniqueness criterion.

Part II. Monotonicity. When T' < co, monotonicity of the mapping CT — VT : ¢ — V¢ is the

result of Corollary 2.7.2. When T’ = oo, U”>*(¢) > U”>*(c) when ¢ > c¢. By the comparison principle
2.7.1:
v (e >vD (). (2.84)

Letting T — oo, we attain the desired result.

Part III.1 Concavity, T < oo. From the proof of Proposition 2.5.1, V¢ can be obtained as the

following limit:
(eviam

Vi =lim lim V,
n—00 Mm—00

(2.85)
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(cV %) Am and (¢ V %) A m are bounded above and away from zero, and thus so are their convex

combinations. This falls within the scope of Theorem 3.3 [57], whence we have:

V(z(cv%)/\m+(1—(1)(5v%)/\m < aV(cv%)/\m_i_(l _Q)va%)/\m' (2.86)

Letting m,n — oo, we obtain the concavity of the mapping ¢ — V¢ in finite horizon.

Part I11.2. Concavity, T = co. Lastly, we observe that the mapping ¢ — U”>™ is concave, a conse-

quence of concavity of CRRA utility functions. Therefore, the terminal condition of V") in equation

(2.25) is concave in c¢. Therefore, by concavity in finite horizon:
VD (ac+ (1-a)é) = aV D () + (1 -a)V T (o). (2.87)

Letting T — oo, we attain concavity of infinite horizon Epstein—Zin utilities.
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CHAPTER 3

APPLICATIONS

3.1 Example I - Geometric Brownian Motion Consumption.

We consider a simple model where the consumption follows Geometric Brownian Motion (GBM)
dynamics:

dc; = beidt + oc;dB;, c¢g € (0, 00), (3.1

where b and o are constants, o is positive, and B is an R-valued, {¥; }-Brownian Motion. One virtue
of this simple model is that every quantity of interest can be calculated explicitly. In particular, the
integrability conditions of C*™ and the uniqueness criterion (2.21) can be reduced to a set of easily

verifiable inequalities.

Theorem 3.1.1. Let ¢ be a consumption process with Geometric Brownian Motion dynamics as defined

in (3.1). It belongs to the class C* if and only if the following system of inequalities hold:

[\

21 - ¢)(b - %) +2(1 - ¢)%02 <6, (3.22)
2

2(1 - y)(b - %) +2(1-9)202 <, (3.2b)
2

2 — y)(b - %) +2(s - y)20? < 6. (3.2¢)

]
=]



Moreover, when 0 < 0, the uniqueness criterion (2.21) is satisfied if and only if the following additional

inequality holds:

1 1 1
(1- ¢)(b - 5(72) +5(=9) A=t + S (1-7)%0? <5, (3.3)

3.2 Example II - Long Run Risk Model

We will now consider our adaptation of the so-called Long Run Risk Model (LRRM) developed by

Bansal & Yaron [3][2]. The model specification is given below:

dlog(c;) = (u+ X,)dt +\vdB;, c¢o >0,
dX, = —aX,dt + bdW,, Xo=0, (3.4)

dv, = k(n —v,)dt + I\v;dB;, vy €R",

where a, b, k,1n, A are positive constants, u is a real number and W, B and B+ are mutually independent

R-valued Brownian Motions.

The dynamics of log consumption contains a long-run component X, which models random
fluctuations in the state of the economy that alter expected growth of log consumption. This long run
component is modelled by an Ornstein-Uhlenbeck (OU) process with stationary mean 0, representing
the 'neutral’ state of the economy. There is no loss of generality in letting X have zero long term mean,
since it can always be adjusted via an affine shift. In Bansal & Yaron’s model, random shocks have a
long-lasting impact on the expected growth of log consumption. This persistence is modelled via the

mean-reverting speed a.

There are a few aspects in which we deviate from their model in order to simplify the technical
details incurred by continuous time. In their specification, up to scaling constants, the same stochastic
volatility process is used for X, log(c) and an additional dividend process. First, we focus on
establishing the associated Epstein—Zin utility rather than asset pricing, and thus we do not model
dividends explicitly. Secondly, stochastic volatility only appears in the log consumption dynamics,
which helps to avoid some technical challenges in estimating the moment generating function of X.
Lastly, we model v with a Cox-Ingersoll-Ross (CIR) square-root process instead of an OU process to

ensure positivity of volatility and at the same time keep the mean-reverting behaviour.
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Similar to the case of Geometric Brownian Motion consumption, admissibility and uniqueness of

Epstein—Zin utiltiy in an LRRM can be sufficed by a set of inequalities.

Theorem 3.2.1. In the context of the Long Run Risk Model 3.4, the consumption process therein

belongs to the class C* if the following inequalities hold:

2
K
(1= (1=-¢)° (p-7)7° < ¥EL (3.52)
2(1_¢)“+2(1_¢)2a_+_ Kk — VK2 —422(1 - ¢)?) < 6, (3.5b)
2(1 —y)u +2(1 - )2—+—(K—\/K2 422(1 - y)2) < 6, (3.5¢)
b®> «n
29 =M+ 2Ap =)+ (k=K = 42($ = 7)?) < 6. (3.5d)

The LRRM subsumes the Geometric Brownian Motion model (3.1) as a degenerate case. Heuristi-
cally, if we increase the mean-reverting velocity and decrease the volatility of a mean-reverting process,
we suppress its variation and force it to behave more closely to a constant process. Therefore, if we
vary the parameters so that g and % converge to 0, it stands to reason that X and v converge to their
long term mean and the consumption process behave more closely to a Geometric Brownian Motion.
Let us define the limiting consumption process by the equation:

1
de; = ¢ (u + 5;7) +idB;, ¢y > 0. (3.6)

The inequality system (3.5a)-(3.5d), in an appropriate sense, also converges to the system (3.2a)-

(3.2b). Indeed, inequality (3.5a) is trivially satisfied when ’El — 0. Moreover, as ’;l — 0, & = (k-

V&2 = 422(1 - ¢)2) — 2(1-¢)?n (See Lemma 3.4.3). If 2 converges to 0 additionally, then inequality
(3.5b) becomes 2(1 — ¢)u +2(1 — ¢)%y < 6. This is simply inequality (3.2a) of Theorem 3.1.1 applied
for the limiting consumption process (3.6). In the same way, inequalities (3.5¢) & (3.5d) correspond
to (3.2b) & (3.2¢). We have demonstrated the consistency in the integrability conditions of the two

models. Let us now state the uniqueness criterion for the LRRM.

Theorem 3.2.2. Consider a LRRM such that the model constraints of Theorem 3.2.1 are satisfied and

that < 0. Let T'(z) £ Vk?% — 242z. Define:

_ 21,2
¢ = (1—¢)ﬂ+%+g( —T((1-¢)%/2)). (3.7)
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Then, the uniqueness criterion (2.21) holds if there exists a constant m > 0 and Holder’s conjugates

P, q with p > 2 such that the following parameter restriction holds:

—69—%[1+1og(1’(5‘4;)1(1—9))_ |1—¢|]+%(a_\/a2_2b2m|1—¢|)

4a a

K1) m(1 - ¢)? q*(1-9)*b?  «n q*[1-~]?
+W(K_\/KQ_WM(%H_M)+<1_W+_W (L)

(3.9)

Theorem 3.2.2 appears quite obtuse with intertwining relationships between model parameters.

The constant m was introduced by a parametrised family of lower bounds used in an estimate (cf.

equation (3.39)). In principles, so as to assist with verifying the relation (3.8) and sharpen this bound,
we could attempt to minimise in its left hand side in m and p. The first order condition, however,
is unlikely to yield a closed-form solution for the turning point. Therefore, we shall choose m that

simplifies inequality (3.8) and allows us to interpret it qualitatively.

Similar to the exposition following Theorem 3.2.1, we shall examine how inequality (3.8) subsumes

(3.3) as a special case. Letting a, k — oo and b, 4 — 0, the left hand side of (3.8) becomes:

—59—T[1+1og(w)] fopus Loy, (3.9)
p m 2q

where £ = (1 — ¢)u + %n(l — ¢)?. In particular, the third and fourth term of (3.8) vanish as we take
limit (Lemma 3.4.3, Part ii.). Choosing m = p(6 — £)(1 — 6) in (3.9), when p is sufficiently large, the

uniqueness criterion is reduced to:

1 1
(L= g+ 5y =)=+ (1=’ <6, (3.10)

which is simply Theorem 3.1.1 applied to the limit consumption process (3.6).

We shall study also how the inequality (3.8) can be simplified under special configurations of the

preference parameters y and ¢. Firstly, we shall consider the case where ¢ approaches 1, i.e. the unit
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EIS case. Choosing m = p(6 — ¢)(1 — 6) and let ¢ — 1, (3.8) simplifies to (Lemma 3.4.3, part iii.):

1-yly, 1 \/2 202psly — 1]\ q(1-y)%% Ky q*[1 -]
—6(1— 1a )+%(a— as — P )+ 52 +W K—F(—2 )]<0.

3.11)

The first term in (3.11) is the only potential negative term. Therefore, for (3.11) to hold, we require
a > |1 —y|/4. If such is the case, then, we observe that the reduced uniqueness criterion holds when
0 is large and either a is sufficiently large or b is sufficiently small. If we further let y — 1, then it
reduces to the trivial inequality 6 > 0. This is unsurprising, as the limiting case y, ¢ — 1 correspond

to the log utility case, where the investor is myopic.

3.3 Proofs for Section 3.1

Proof of Theorem 3.1.1. To verity the assumptions of C*, let us calculate E( fooo e %' cPdr) directly as

follows:

E(/ 6e_6tcf’dt):/ Se %'B[cP)dr
0 0

- 3.12)
B / Ge0tePB=FIHIF 1 gy
0

This integral is finite if and only if p(b — %2) +1p20? < 6. Substituting 2(1 — ¢),2(1 — y) and
2(¢ — y) for p, we attain inequalities (3.2a)-(3.2c). For the uniqueness criterion, we rewrite ¢'~¢ in a

more convenient form:
— — 2
1-¢ — C(l] ¢e(l—¢)(b—0' /Z)te(l—(b)O'B,

¢

= (L (1m0 (b=0? 215 (1-0) )1, (1-9) T Bi=F (1-9) s (.13)
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where M, denotes the exponential martingale e(1=#)0Bi=3(1-0)*0’t 4pd ) denotes the constant (1-

¢)(b— "72) + %(1 — ¢)?02. By conditional Fubini’s theorem:

c(l]_ﬁbe/ltMt Mt
ftoo E, [c(l)_q)e/lsMs]56—5(‘€")ds ftw eAs=D M, 5e=9(s=1) g

@,

(3.14)
1 _5-2

- fooo Se(-0)sgs O

We have calculated the explicit value for @ for the case of constant coefficients. The uniqueness
criterion is estimated below:

E(e(s(l—a) fOT(l—d)S)ds/ooée—ésci—)’ds) _ e(l—@)xlTE(/ooée—dsci—?’ds)
T T

_ spll-0ur /W SN (-0t (1-9)202-08)s 4 (3.15)
T

= §5e(1-AT L((1=) (b-30)+5(1-y)? = &)T /m (11 (b=50)+5(1-9)202=8)s 4
0
which vanishes at infinity when (1 — )4+ (1 —y)(b — %(72) + % — 0 < 0. Substituting in the

value of A, we obtain the conclusion of the theorem.

3.4 Proofs for Section 3.2

In our calculations, we will make extensive use of the following result regarding the moment generating
function (MGF) of the time integral of a CIR process. A result on its characteristic function can be
found in Section 3 of [12]. Alternatively, a result on the joint conditional MGF of ( fs ! v,dr,v;) can be

found in Theorem 4.8 of [9]. We state here an simplified result that suits our purpose:

Lemma 3.4.1. Let v be the CIR process defined in the LRRM model specification (3.4). Then, its

moment generating function is given by:

K2

o (3.16)

E[exp (z‘/ot vsds)] = A(t,z) exp(B(t,z)vg), forz<
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where

K2nt

exp(—-)
A(t,z) = z =,
() K (T(2)ey )\ 2K
(cosh( 5 )+msmh( 5 ))
2 (3.17)
B(t,7) = ¢

k +T(z) coth (F21)°

2
I'(z) = V&2 —242%z.

3.4.1 Proof of Theorem 3.2.1

Proof of Theorem 3.2.1. The consumption process can be solved explicitly, which yields:

t t
ct:c()exp(/o (,u+XS)a’s+/0 \/v_sst). (3.18)

We observe that X and v are strong solutions of their respective SDEs, which are driven by W and B*.
Moreover, the Brownian Motions W, B and B+ are mutually independent. Thus exp( fot (u+ Xs)ds)
and exp( fOt \/v,-dB,) are also independent. This allows us to split the expectation of product in the

following:

t t
E(c?) = cgE(exp [p'/O (u+ X;)ds +p‘/0 \/ﬂst])
(3.19)

= cg]E( exp [p ‘/Ot(,u + Xs)ds])E(exp [p /Ot \/v_sdBS]).

These expectations can be estimated by Lemma 3.4.2, which is deferred until after this proof.

Combining equation (3.19) and Lemma 3.4.2, we have:

212

* -ot .p . _ P b ﬂ _ 2
]E(/O seotc! dt) sK/O 6exp( o1+ put + S+ Tk = T(p /2))t)a’t, (3.20)

where I is defined in Lemma 3.4.1. The integral on the right hand side is finite if and only if:

p2b2

2a2

P+ + ;—Z(K —T(p%/2)) < 6. (3.21)
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Substituting 2(1 —1vy), 2(1 — ¢) and 2(¢ —y) for p, we obtain inequalities (3.5b)-(3.5d) of Theorem
3.2.1. Moreover, for I'(p?/2) and thus the MGF of the time integral of v to be well defined, we require

also p?/2 < «k?/242, which is the inequality (3.5a).
O

Lemma 3.4.2. i. Letv be the CIR process defined in the LRRM model specification (3.4). Then, for

p < % and some positive constant K :
t K77
]E[exp (p/ v,dr)] < Kexp [F(K - F(p))t] (3.22)
0

ii. Additionally, let B be an R-valued Brownian Motion independent of v. Then, for p2 < fl—z, t>0,

the following holds for some positive constant K :

E[exp (p'/ot\/WdBr)] < Kexp [;—Z(K—F[%z])t] (3.23)

iii. Let X be the Ornstein-Uhlenbeck process defined in (3.4), then, for any exponent p € R, the

following estimate holds:

2b2

E[exp (p/Othds)] < exp(an2 t). (3.24)

Proof. Part i. For brevity, let us denote I' = I'(p). We shall now examine the behaviour of A and B
(cf. Lemma 3.4.1) as ¢ diverges. First, | lim,_,o coth(I't/2) = 1, for all positive #, B(f) < B(c0) = 22

K+L
Secondly, we estimate the denominator of A(z, p):
I't I't
cosh (5) + lé sinh (?)

1 k\y rr 1 K\ _rt

=31 )t g(i-g)e

3.25

) ) (3.25)
2 2

K\ Lt It
(1——)e2 =e2,

where the inequality follows from the fact that 1 — x/I" < 0. An estimate for A(z) can be achieved:

2

A(t,p) < exp (K/l—gt) exp (_I;ZFI) = exp (Z—Z(K - F(p))t). (3.26)
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Therefore, we achieve the final estimate for the moment generating function of fol veds:

E[exp (p ‘/Ot \/WdBr)] < Kexp [;—Z(K - F(p))t] = A(t, p) exp (B(t,p)vo)

< exp (K+2—1£)(p)v0) exp (;—Z(K - F(p))t).

3.27)

Part ii. We exploit the independence between {Vv;};e[0,00) and {B;};¢[0,00) by conditioning the
integral /Ot \/vsdBs on the path {v,},.,. Heuristically, the added information on v tells us nothing
new about B, and B remains a Brownian Motion. When v is known, fot \/vsdBs can be thought of
as a stochastic integral with deterministic integrand, the distribution of which is well understood.

Mathematically:
t t
E(exp(p/ \/WdB,)):E(E(exp(pf \irdB,)
0 0

=5(en (% [ vear))

which can be bounded using the result attained in Part i., directly yielding the estimate (3.23).

o{vs,s < t}))
(3.28)

Part iii. The exact distribution of the time integral fot X,ds is known and given in equation (1.8.4),

Chapter 7.1, Part II of [7]. In particular, it is a Gaussian variable with mean zero and variance:

! 2 20002 1
E[(/ err) ] = b—Q(t+ Semd - —gm2al _ i)
0 a a 2a 2a

2
_ b_(t N (le—ar _ l) N (le—az _ L2 i)) (3.29)
a2 a a a 2a 2a
b2

1 1 b2
—(t S (1 ey - (e - 1)2) <24
a 2a a?

a2

Therefore, for any real number p:

»2b2

E(eP b Xrdr) < o' ", (3.30)
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3.4.2 Proof of Theorem 3.2.2

Proof of Theorem 3.2.2. We recall below the definition of the uniqueness criterion for the convenience

of the reader:

lim E(e—éﬁTeé(l—Q) s —<I>Sds/

® o _8(s=T) 1y ):
Jim A oe cy 'ds 0, (3.31)

where ®, = ct1_¢ (E ftoo 6e‘5<s_t)ci_¢ds)_l. Let ®r denote the expectation above, p, g be Holder’s

conjugate, p > 2, we have:

0 = e—aerE(eau—e)/oT —CDSds/OO

66—6(S—T)Ci_’yds)
T

(3.32)

< e—éGTE(epé(l—H)fOT —¢Sds),},E([/oo

1
66—5(S—T)c;_7ds]q) a .
T

As 8¢~ 96-T) dg defines a probability measure on [T, o), we can apply Jensen’s inequality to bound

the second expectation in (3.32):

Q=

O < e—éOTE(epé(l—B)fOT —npsds)j,E(/ 66—5(s—T)C?(1—y)ds) (3.33)

T

Part a. We begin by rewriting the form of ®; in a more workable form:

@,

(m2] [ derotontmomten -0 [ g0 i ] )

t

(/m56—6<s—z>e<1—¢>u<s—r>Et [e<1—¢>> ) Xpdr ,(1-9) [ \/WdBr]dS)‘l (3.34)

t

- ( / " 5000 1= 0 u(s—g, [eu—m /terdr]Et [6(1_@ I \/WdBr] ds)—l
t

Above, the second line follows from conditional Fubini’s theorem and the third line from conditional

independence.

Conditional on ¥; (or, due the Markovian property of X, it is equivalent to condition on X;),
{X;}re[s,s] 1s an Ornstein-Uhlenbeck process with initial data X;. Therefore, given 7, the distribution
of /t * X, dr is a Gaussian distribution with conditional mean X, /t * ¢7a(r=1) gr and conditional variance

that is bounded above above by Z—;(s — 1) (cf. Lemma 3.4.2). The conditional MGF of ft * X, dr is
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bounded as follows:
E, (=% In Xpdry _ o (1=®Ee ([ Xrdr)+5 (1-¢)* Var, ([ X,dr)

02,2
< o0 [ e 0arX, St (s1) (3.35)

A-o)Xe| (=0120% ()

<e e 2a?

Similarly, by conditioning on %7, {v, }¢[/,s] is a CIR process starting from v;. We can use the same
trick in Lemma 3.4.2, where we condition additionally on the path {v, },e[s,s]- Let o (vy,t < u < s)
be the o-algebra generated by v between time [¢, s], and F; V 0 (v,,t < u < s) be the smallest

o -algebra containing #; and o (v,,t < u < s), we have:
]E,(e(l_¢) A ‘/WdB’) = E; (E[e(l_"’)fts \/WdBfW-"t Vot <u< s)])
a-¢)? rs
=E(e * vrdr| ) (3.36)

= A(s=1, S e (s, S22,

An estimate for the growth rate of A is provided by equation (3.26). B is bounded above by
(1-¢)?/(k+T(1(1—-¢)?)). For brevity, we shall denote I' = T'((1 — ¢)?):

e

By (17O By < e (Sl (k= D) (s = 1) +
A k+T

3.37)

Combining equation (3.34) and inequalities (3.35) & (3.37), we achieve the following estimate for

(I)l‘:
D, > {e‘“’ﬁ)x"eiu;?%t /OO66—6(s—t)e(1—¢)#(s—t)e(1_2(2221)2 (s—z)e%(K—f)(s—z)ds}_l
t
0 1a-e)x| a-¢)? -1
={5_§e “ear ] (3.38)
_0-{ ( (1-¢) X, (1-¢)* )
= exp| — — — V¢ .
o a k+T
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where 7 = (1 - @)u + (-9 ';—’27(/( —T). As a consequence of inequality (3.5b), £ < &, which

24

ensures finiteness of the integral in (3.38). ®, can be estimated further by the following inequality':
e*>e “(l+e€)—e “x, Ve,x€R, (3.39)
which leads to the following estimate:

- _ T
eP8(1-0) [; —®dr exp ( —p(6-0)1 -0 (1+e)T+p(6-0)(1 - 9)€_€|1a—¢| / par;
0

2
sp-01-0d=? f?/o vid).

(3.40)

To ease the notation, let us define m = p(§ — ) (1 — )e™ €, which reduces this inequality to:

eP0(-0) [\ —@dr _ exp ( _ m[l +log (w) mil - ¢l / | X, |dt
-2 rT
+ —m(l ?) / tht).
k+T 0

It is difficult to obtain the distribution of /0 | X;|, or indeed even an upper bound for its moment

3.41)

generating function. However, the distribution of /0 X2dt is known?. Using the inequality |x| < x? +%1

for all real x, we obtain:

oPS(1-0) [ ~®dr _ exp(—m[1+log (P(fs—{ni(l—e)) |1—¢|]T

_ T 2 T
+ M/ X2dt + M/ v,dt).
a 0 k+T 0

IThe right hand side of (3.39) is the tangent line of e~ at the point (e, e~ €). The inequality follows from convexity of
the mapping x — e™*.

2By 1t6’s formula: dX,2 = 2a(% - X,2)dt +2b /deW;, Xg = 0. Therefore, it is a CIR process.

(3.42)
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The expectation of the right hand side above can be computed readily by bounding the MGF of the

time integral of a CIR process (cf. Lemma 3.4.1 and Lemma 3.4.2).

E(epé(l-e)/f ~®udt) < oxpy ( —m[l +log (P(5— é;)l(l - 9)) - ¢|]T)x

4a
B exp (214 /OTxgdt)]E[exp("ﬂ%ﬂQ /0 )|

SKexp(—m[1+log(p(6_i)1(1_9)) - |1_¢|]T+%(a—\/a2—2b2m|1_¢|)T

4a a

(3.43)

k+T

+ ﬂ(K - \/K2 _opmU =" _?)2)T).

Part b. The second expectation in equation (3.33) is bounded from above by combining equation

(3.19) and Lemma 3.4.2:

([ s oot < k [ e n gt o202
T T

2(1.412p2 212
— Keq(l—y)yT+7q (2a72) T+%(K+F[7q (27) ])T

[o] 2 2.2 2 2 (344)
o / o= 0(s=T) La(1=y)(s=T)+ U (5= T)+ 54 (s [ 0522 ] ) (s-1) g
T

q%(1-y)2p2 7 q%(1-9)?
_ Keq(l—y)uT+[TT+;—2 (K+F [[f] )T ]

Above, the second equality follows from a change of variable, which implies that the integral in the

second line is independent of 7.

Final Estimate of ©7: We are now ready to obtain the final upper bound of ®7. Combining the

estimates (3.33), (3.43) and (3.44), we see that @7 is of the form & | where R equals:

- 060 — %[1+10g (p(é—gn)q(l _0)) - |14_a¢|] + %(a - \/aZ _2b2m|1a_ ¢|)

K (| g m(1=¢) ~ A=y  «kp L q’[1-y]°
- \/ L e A e ]

(3.45)
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3.4.3 Proof of Lemma 3.4.3

Lemma 3.4.3. Let k and A be positive constants, then:

i lima_, /%(K - VK2 —-2127) = z;

ii. if h(k, ) satisfies limy_ 00 10 h(k, A) = 0, then:

lim i(K — K 2222 (x, a)) - 0; (3.46)

Kk—00,1—0 A2

i, limg_1 {(1 - ®)~Y, where ¢ is defined in Theorem 3.2.2.

Part i. The proof follows from an observation that the desired limit can be re-expressed as the

difference quotient of a certain function, which allows use of calculus results:

1-4J1-272
lim %(K ~ VK2 - 2127) = lim ————
i

I

d (3.47)
= E V1 - 2lex:O
= Z‘

Partii. Let € > 0 be arbitrarily small. Then, for sufficiently large x and small A, h(4,«) < €.

Therefore:

0 < limsup ;—Q(K — VK2 =222h(k, /l)) < lim i(K - Vk? — 2/126) = €. (3.48)

K—00,1—0 k—00,1—0 /12

As € is arbitrary, the limit superior above is just a limit and equal to 0.

Part iii. The convergence of the first two terms of £ is obvious. As for the last term:

V2 — 2.2 _
lim i(K 21 ¢)2)(1 —¢)l= —% lim YK — A7~k

— 2 —
914 0 € (3.49)
d
- _d_\/KQ “ %2, =0
X
O
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CHAPTER 4

PORTFOLIO OPTIMISATION: AN OVERVIEW

4.1 Preliminaries, Problem Formulation & Notations

Consider a stochastic basis (Q, F, {F; }+»0, P), where {F; };>0 is the usual augmentation of the filtration
generated by B, an R"**-valued Brownian Motion. Let us denote by W and W+ the first k and last n

dimensions of B, respectively.

We work with a financial market model consisting of a riskless asset S and an n-tuple of risky

assets S = (S, ..., S"). Their dynamics are given by the stochastic differential equations:

ds? = sVr(v,)dt,
dS; = diag(S,) [(r(Yi)1, + u(Y;))dt + o (Y;)dW? |, 4.1)

dYth(Yt)dt+a(Y,)dW,, YOZyGE.
Above, diag(S;) is an n-dimensional diagonal matrix with (S}, ..., S) along the diagonal, 1, is an
n-dimensional vector with value 1 in every entry. W¥ is an R"-valued defined by W¥ = fol p(Ys)dWs +

fo. p*t(Yy)dWE, where p : R¥ — R™¥ and p* : R¥ — R™" are correlation functions satisfying

pp’ + pr(pr) = 1,xn, the n X n-identity matrix. By construction, W* admits p as its instantaneous
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correlation-matrix with W. Moreover, Y is the state process valued in an open domain E C R¥. Lastly,
the model coefficients are the following functions: r : E > R,u: E >R, 0 : E > R b: E —

R¥ and a : E — R**. We also denote: A = aa’,X =o'’ and Y = opa’.

An agent with initial wealth x invests in this financial market on an infinite horizon by choosing
a progressively measurable investment-consumption strategy (7, /;);>0 (formally defined later in
Definition 4.1.4). Here, r; = (x}, .., 77") is the proportion of his wealth invested in the n risky assets at
time ¢, and ¢; = [; X, is the instantaneous consumption rate. The quantity /, will henceforth be referred
to as the consumption-wealth ratio. The resulting wealth process is given by:

X[ = X (g + e = 1) di + w0y d W], X7 = x. +2)

Given a strategy (, [), the agent’s derived utility from it is given by the Epstein—Zin utility of the
consumption process ¢ = [X™!. In particular, let V™! denote this utility process, it is defined as the

solution to the infinite-horizon BSDE:
T
Vt”’l =F, (VT”’I +/ f(cS,VS”’l)ds), 0<t<T, 4.3)
t

which also satisfies the Power Utility Bounds (cf. Definition 2.4.4). If we restrict our studies only to
strategies that admit a unique Epstein—Zin value process (cf. Theorem 2.4.1 & 2.4.2), then Epstein—Zin
utility provides the agent with a method to rank different investment strategies. The agent, therefore,

aims to maximising his derived utility by finding a strategy (7", [*) such that:

V(’)k _ Von*’l* — Sup VOﬂ',C, (4‘4)
(m,l)eA

where A is a suitable admissible class of investment-consumption strategies, which is defined formally

in Definition 4.1 .4.

Before we start approaching problem (4.4), let us define below the relevant real analysis notations,

as well as the assumptions that will apply throughout.

Definition 4.1.1. For d € Z* and O C R4, let C"(E, Q) be the space of m-times continuously
differentiable functions from E to O. Moreover, let C"*(E, Q) be the subspace of C"*(E, O) such
that all member functions and their partial derivatives up to m-th order are locally @-Holder continuous.

When the the co-domain is clear from the context, we suppress O for notational simplicity.
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Assumption 4.1.2. Throughout the rest of the thesis, we assume that these model coefficients and

preference parameters satisfy the following assumptions:

i. For some a € (0,1),r € CL2(E,R¥), b € CL2(E,R¥), u € CH¥(E,R"), A € C>¥(E;R¥*K),
T e CHY(E;R™™),and Y € C%>%(E;R™¥). Moreover, assume that A and X are strictly positive

definite forall y € E.

ii. The factor process Y exists globally and does not escape its domain E in finite time.

iii. Let p and p denote the minimum and maximum eigenvalues for pp’, respectively. Assume that
they satisfy the following inequality:

plOly(L-p)+y¢p(1-p)+y(p-p) 2 0. (4.5)

iv. Lastly, we focus on the empirically relevant case where ¢ < 1 < vy.

Remark 4.1.3. Assumption iii. above regarding the instantaneous correlation matrix p is naturally

satisfied in the case k = 1, as in this case p = p.

Let us now formally define investment-consumption strategies (or simply strategies for short) and

their admissible class.

Definition 4.1.4. A pair of progressively measurable stochastic processes {(x;,[;),t > 0} is said to be

a strategy if the following holds:

i. Forallt > 0, fot

ﬂ;,us|ds < 00, fotlls|ds and fot i Xsmgds < co P-almost surely.

ii. /; > 0forall # > 0 almost surely.
A strategy (m, 1) is said to belong to the admissible class A if the following holds:

iii. Forallz >0, X' > 0.

iv. The resulting consumption process belongs to C* and satisfies the uniqueness criterion (2.22) of

Epstein—Zin utility.
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The first condition ensures that all integrals in the wealth process is well-defined. The second and
third condition together ensure that consumption remains non-negative. This implies that the strategy is
self-financing and consumption is well-defined within the Epstein—Zin framework. The third condition
implies that the investor can not employ a doubling strategy or consume without investing and remain
in debt indefinitel, which is a standard admissibility requirement employed throughout the portfolio
optimisation literature. The last condition ensures that the resulting Epstein—Zin utility process is

always defined and unique (cf. Theorem 2.4.1 & Theorem 2.4.2).

In the next section, we will outline the method of deriving a candidate optimal strategy (7%, [*) via
solving the associated Hamilton-Jacobi-Bellman equation. After that, this candidate will be verified to

ensure that it is indeed admissible and optimal within a subset of the admissible class.

4.2 Deriving the Hamilton-Jacobi-Bellman equation

We will solve the optimisation problem (4.4) through a Dynamic Programming & Verification approach.
First, we make an ansatz for the solution and heuristically derive the HIB equation. Once we confirm
the existence of a solution. the candidate optimal strategy is then derived based on this solution and its

derivative. Then we will formally verify that this candidate is indeed the optimal strategy.

Let us now derive the HIB equation in the Epstein—Zin case via a heuristic argument. First, we

define the optimal value function v(x,y) : (0, 00) X E — R via the following relation:

v(x,y) = sup E(Von’l
(m,l)eA

Xo=x,Yo = y). (4.6)

We will need v to be sufficiently regular for the next argument. Heuristically, let us assume that it
is twice continuously differentiable in all of its arguments. Let (i, /) be an admissible strategy and
X7 ! be the resulting wealth process. The Dynamic Programming Principle suggests that v(X7™/, Y) +
/0. f(cy, v(X,”’l, Y;))dt is a supermartingale for arbitrary strategies, and a martingale for the optimal

one. For brevity, we write v, for v(Xt”’l, V) and we suppress the time subscript as well as the

55



dependence on Y; of the model coefficients. Then, the drift term of v + fo' f(cs,vs)ds is:

1 1
DowX™ (r+n'u—1)+ (Dyv)'b + 3 tr(ADzyv) + i(X”’l)Qﬂ’Zﬂszv + X”’I(nyv)’Y’ﬂ + f(c,v).

4.7

By the homotheticity property of Epstein—Zin utility, we speculate that v takes the form v(x,y) =

(E, (0, 00)). This homothetic decomposition is widely applied, some-

times with a different functional form in place of our g(y)??, for the stochastic control approach

towards the portfolio optimisation problem (see, for instance, [39] , [66] and [26]). Substituting

the derlvatlves of this conjectured v into equation (4.7), we obtain the drift of <— g(V)?9 +
fo f(cs, (X g(Y )?9)ds, as follows (time subscript and Y; argument are suppressed for brevity):
0vVg'b 0(¢p0 — 1)Vg'AV
(Xz"’l)1_7g¢9{r+7r'u—l—Zn’2n+ POVg +¢ (¢ ) g2 8
2 (1-7)¢ 2(1-v)g
(4.8)
0 tr(AD?g)

Vg’ 1- o
+ O~ Y7+ —2 19 ¢——}
2(1-v)g ¢ g 1- ¢ ¢ 1-¢

From the heuristics discussed above, we expect this drift to be non-positive for arbitrary (r,[) and

zero for the optimal pair, leading to the following equation:

) #0Vg'b  ¢0(p0 —1)Vg’'AVg  ¢p0tr(AD?g)
+ + +
-1 (1-vy)g 2(1-1y)g? 2(1-7y)g

%7‘[127‘( L ¢ll_¢g_¢ - l} =0.

r+
4.9)

Vg
+ sup {71 U+ ¢97T'Y
(m.0)

Under the parameter configuration ¢ < 1 < vy, the optimisation problem in (4.9) is strictly concave

globally and admits a maximiser in the interior, which is given by the first order condition:

1 6
==ty sy
4 4

\Y
T8 progvel (4.10)

8
Substituting the first order conditions into (4.9), we attain the PDE for g, which henceforth we
shall refer to as the Epstein—Zin HJB equation. Due to the role of g in the value function, we will
consider only positive solution(s). Given a classical C2(E, (0, o)) solution g, we will henceforth refer

to the derived pair (7%, [*) in (4.10) as the candidate optimal strategy. We also introduce the notation
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for the Epstein—Zin HJB equation below:

.1 Vg’ 1=y, 1Vg’
H™(y,8,Vg,D*glp,y) =Yg 1+?(b+TY2 1#)"‘5?{((!59—1)14

1- Vg tr(AD? 5 'Yy 1 -
+¢6(—Y)Y’Z‘1Y —g+M+(r+ + £ ﬂ)( e
Y g 2g $-1 2y

We also remark that in equation (4.7), if we conjectured the form v(x, y) = ﬁl_f(: g?(y) and replaced
the Epstein—Zin aggregator f with the mapping f(?) : (0, 0) x (0, 0) — R, f(®)(c,v) = 6(3:; - v),

it will lead to the following equation:
1 tr(AD?%g) Vg’ 1-
HORRA(y ¢ Vg Dlg) = 545~ + LALE) —g(b ¢YZ_1,U)

+—
2g é

o
1f¢+ﬂzz¢#)(1¢¢)

(4.12)
1-¢ Vg’

2

v
(A-Y3E'7)<E (r - - 0.
g

This equation corresponds the portfolio optimisation problem of an agent following CRRA utility with

parameter ¢. Henceforth, we shall refer to this equation as the CRRA HJB equation. '

Remark 4.2.1. We make the following remarks regarding the notation used for the rest of the thesis.

* We retain the superscripts in *% and H REA at all time to emphasise the type of HIB equations

being considered.

* For brevity, we shall abbreviate HY(y, g, Vg, D?g|¢,y) to H*%(y, g, Vg, D%g) when it is
clear from the context. In later sections, when we need to transform the agent’s preference
parameters, we will make it explicit in the arguments of H*%. This and the previous point
will be important, as in the proofs of Chapter 5, we will be comparing utilities of agents with

different aggregator functions and parameters.

* When we consider constant strategies, we will identify the constant stochastic process (7, 1)

with a point in R"*1,

ISee [26] for an example of the CRRA HJB equation in infinite horizon. Here, ¢ plays the role of the risk aversion
parameter, which is typically denoted y. For our purpose, though, we will need to re-parametrise this risk aversion to ¢ (cf.
the development of the supersolution in Chapter 5).
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4.2.1 Existing Results: An Overview

In this section, let us survey existing results in the literature towards portfolio optimisation with
Epstein—Zin utility in finite horizon, and the difficulties encountered in generalising them to infinite
horizon. In the finite horizon case, the HJB equation is a semi-linear parabolic PDE in time and space,
with boundary data at termination. Kraft et. al [39] studies this problem under an additional parameter
restriction y = 2 —y + % (condition (H) therein), which helps to linearise the HIB equation
and facilitate a Feynman—Kac representation of the solution. Beside the obvious disadvantage of
additional model constraints, this also excludes the empirically relevant case i.e. y,¥ > 1. A more
satisfactory approach is offered by Kraft et. al [37], where semi-linearity is resolved by combining
traditional Feynman—Kac method for linear parabolic PDEs with a system of FBSDEC(s) (see also
[51] for the general method). This was achieved at the cost of boundedness of model coefficients.
However, equation (4.11) poses a different challenge in comparison to its finite-horizon counterparts.
The extension from finite to infinite horizon fundamentally changes the class of equations it belongs to.
In this case, terminal data is removed and we are facing a boundary-free elliptic quasilinear equation

in an open domain, which renders the aforementioned methods inapplicable.

From a BSDE perspective, in finite horizon, Xing [66] derives an Epstein—Zin HJIB BSDE which
parallels the HJB equation seen in [39] and [37]. An improvement over the [37] is that [66] allowed
for models with unbounded coefficients, which encompass the Heston model and Kim & Ongberg
model. However, if we were to generalise the method of [66], it would involve a strictly infinite horizon
BSDE, which also removes its terminal data. One might consider repeatedly solving the Epstein—Zin
BSDE with increasing horizon length and take limit. However, theoretically, it is unclear whether the
finite horizon solution would converge when we let the horizon length T diverge; numerically, Xing
remarked that in the empirically relevant setting, the convergence from finite to infinite horizon can
be extremely slow, suggesting that finite horizon optimal strategies can substantially differ from their

infinite horizon analogue.

Another approach that we have explored is the method of duality, which was studied by Matoussi &
Xing [46] for finite horizon Epstein—Zin utility. The main idea therein is to show that, for an admissible
class of consumption, Epstein—Zin utilities are bounded above by the so-called stochastic differential
dual (SDD), and verify that certain strategy attains this upper bound and closes the duality gap. There

are at least several difficulties with this approach. First, defining infinite horizon SDD, similar to
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Epstein—Zin SDU, involves solving an infinite horizon BSDE with non-Lipschitz and non-monotone
driver. The approach in Chapter 2 is not applicable, since we no longer have a priori bounds (power
utility bounds, cf. Definition 2.4.4). Secondly, verification in this method requires optimising both the

Epstein—Zin SDU and SDD, which requires too much regularity in infinite horizon.
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CHAPTER 5

PORTFOLIO OPTIMISATION: MAIN RESULTS

5.1 Existence of Solutions to the HJB Equation

In the construction of Epstein—Zin utility in infinite horizon, we have overcome this absence of
boundary by imposing additional structures, namely the power utility bounds. A similar strategy
is adapted and employed for the Epstein—Zin HIB partial differential equation'. We will tackle the
question of existence by constructing a sub-solution and super-solution, through an appropriately
chosen strategy (mr,/) and risk premium 7 for unhedgeable risk. These sub- and super-solution
will provide a basis for a sandwich-type construction. Let us begin with the definition of sub- and

super-solution of a PDE.

Definition 5.1.1. Consider a boundary-free PDE of the form:
Qg=0, ye€E, (5.1

where E is an open domain and Q an elliptic quasilinear differential operator of the form Qg =

%tr(ADQg) + B(y,g,Dg). A function g (resp. 8): E — R is said to be a supersolution (resp.

'Our approach towards solving equation (4.11) is inspired by the work in time-additive setting of Hata & Sheu [27] and
Guasoni & Wang [26] and can be considered a generalisation of the methods therein.
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subsolution) of 5.1 if it is C?(E) and:

Qg <0 (resp. 0g > 0), yekE. (5.2)

Moreover, if g(y) > 8 (y) for all y € E, we say that they are an ordered pair of sub- and super-solution.

Moreover, if a function g is both a subsolution and a supersolution, it is a solution.

Definition 5.1.2. Let Q be the differential operator considered in Definition 5.1.1 and suppose that E

is an open bounded domain. Consider the boundary value problem:

0g=0, yE€Ey;
(5.3)

g=g, YyE€EOIE.

A function g (resp. g): E — R is said to be a supersolution (resp. subsolution) of (5.3) if it is C%(E)

and:

Qg <0 (resp.Qg=>0), yE€eE,
B (5.4)

§2g (resp.g<g), y€dE.

Moreover, if g(y) > g (y) for all y € E, we say that they are an ordered pair of sub- and supersolution.

Moreover, if a function g is both a subsolution and a supersolution, it is a solution.

Remark 5.1.3. In the context of the Epstein—Zin HIB equation (4.11), we will only consider positive

sub- and super-solutions.

We will now develop the sub- and super-solutions required for our sandwich argument. We first
heuristically formulate two candidate functions, then facilitate the technical conditions under which
they can be verified as sub- and super-solutions. Let (r, /) be an admissible control, X™! be the
resulting wealth process and ¢ = [X™! the resulting consumption process. Denote by U (¢) the
utility process derived by an agent with additive power utility with risk aversion y (cf. Definition 2.4.2).
By Definition 2.4.4, UY>*(c) is a lower bound for V™! and consequently, U?>*(c)q < V- Thus, if we

defined g; as follows:

x=

a0 =B [ oeuyedsfra = ). 55
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x1r
1-y

then: g1(y)?? < ’i—_;g"”’(y), and thus g1(y) < g(y). And therefore, we expect g; to be a

sub-solution of the Epstein—Zin HIB equation.

Before we proceed further, we briefly review the following concepts. Let & denote the stochastic
exponential. That is, if Z is a local martingale, then E(X) = exp (X — %[X 1). For every progressively
measurable, R¥-valued process 7, referred to as the risk-premium for unhedgeable risk, MS is a local

martingale, where:

/R e b rsdsc‘}(/ (W'xt +n;Y’Z_1)0'dW§)+/ n;adWS) . (5.6)
0 0 t
From Lemma A.1 of [26], we have, for any 1 and admissible control (7, [):
0o 1-¢ 1-¢ oo o1 &
E(/ et <1 dt) <2 E(/ Me‘%f(Mt”)Tdt) . (5.7)
0 1-¢ I-¢ \Jo

The left hand side quantity above is but Y- (¢), the power utility of an agent with risk aversion
parameter ¢ (cf. Definition 2.4.2). Also, by Power Utility Bounds (cf. Definition 2.4.4), V™! <
Uy 0 u;l (Y?->). This, combined with the fact that (7, [) was arbitrary, gives an upper bound to the

optimisation problem:

1-y o é-1 60
sup Vol < = (/ Me‘%f(M,")Tdt) . (5.8)
0
Therefore, if we define go as follows:
. T DI
g20) 2B [ e T arfty =], (59)
0

then g(y) < g2(y) and we conjecture that g is a super-solution to equation (4.11). These heuristic

notions are made formal in the following result.

Lemma 5.1.1. Assume that there exists | € C*(E,R*), 7 € C*(E,R") and n € C*(E,RF) such that:

’

-5 I
L s +7nu 5 l+r >0,

5 _ . wE g (AY'S'p
-¢ T 2¢

ii. > 0, and

iii. The functions g1 and g5 defined in (5.5) and (5.9) are finite and continuous for all y € E.
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Then, the following hold for y € E:

H"(y, g2, Vga, Dgald,y) < HORRA(y, g5, Vo, D?gs|¢p) < 0 (5.10a)
H"(y, 1, Vg1, D?g114,7) > 0, and (5.10b)
g2 2 81- (5.10¢)

Condition i. is satisfied by choosing 7 so that 7’ is sufficiently large. Condition ii. is satisfied
if the interest rate and market price of risks are both bounded from above and ¢ is sufficiently large.
Having facilitated the existence of appropriate sub- and super-solutions, we are now ready to state the
main existence result for the Epstein—Zin HIB equation. Although our approach here is inspired by
[26], the technical differences between additive and recursive utilities necessitate various modifications

in the proof. Thus, a detailed proof will be provided in the Appendix.

Theorem 5.1.2. Suppose that g, € C?(E, (0, )) is a subsolution to the Epstein—Zin HIB equation
and g5 € C?(E, (0,00)) is a supersolution to the CRRA HJB equation. Assume additionally that
g1(y) < go(y) forall y € E. Then, there exists a twice continuously differentiable function g : E —

(0, 00) that solves the Epstein—Zin HIB equation (4.11). Moreover, g satisfies g1 < g < go.

5.2 Verification

In the last section, we have asserted the existence of a classical solution g to the Esptein-Zin HIB
equation (4.11) under the presence of sub- and super-solutions. Moreover, we also provided technical
conditions which furnish the sub- and super-solutions necessary for this existence result. The candidate
optimal strategy (7%, [*) can then be expressed in terms of g via the first order condition (4.10). In this

section, we will derive the conditions under which we can verify that (7%, [*) solves (4.4).

[ ) 1—
Let us denote X* = X™ /" and V* = % g(¥;)??, the candidate optimal value process. From
the Epstein—Zin HJB equation (4.11) and Dynamic Programming Principle, it is evident that the V*
satisfies the dynamics of the Epstein—Zin BSDE?. However, this is not sufficient to characterise V*

as the value process associated with 1*X*.3 In order to verify V* as the correct utility process, we

2The candidate solution V{ is an It6 process whose drift component equals — f(cy, V;*)dt, where f is the Epstein—Zin
aggregator.

3Especially in the empirically relevant case, where 8 < 0. See Section 2.6 for an example of non-unique solutions and
the difficulties related to negative 6.
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need to: i. confirm that (7%, [*) belongs to the admissible class A, and ii. confirm that V* satisfies
the appropriate power utility bounds. A by-product achieved by confirming these two points is the
sufficient regularity conditions for verifying optimality of (x*, [*) amongst a subset of A. Let us name

this subset of the set of permissible strategy and define it below.
Definition 5.2.1. Given a strictly positive solution g to equation (4.11), a strategy (x,[) € A is said to
be permissible with respect to g, denoted (rr,1) € P(g), if the following holds:

1-y
U7’°°(c),< 1 ) L~ e(¥)?? <U%*(c);, as. forallt>0. (5.11)

Assuming that the strategy (7%, ") is admissible, then V* is the Epstein—Zin utility associated with
c¢* £ I*X* if and only if (7%, [*) belongs to the class $(g). The scope of our verification argument
will depend on the ability to verify permissibility of (7*,[*) as well as arbitrary strategies. This

question will be addressed to some capacity in the next lemma, which suggests that a strategy (, [)
X ) i

is permissible if 2'9)¢6 does not grow or vanish too fast in regards to the agent’s discount

factor 6.

Lemma 5.2.1. Let g be a solution of the Epstein—Zin HIB equation (4.11), (n,1) € A be an admissible
strategy and denote U™! = uy(X”’l)g‘/’H(Y). Moreover, let us define the following process (time

subscript and Y; arguments are suppressed for brevity):

yr'En  $0Vg'b ¢0(p0 —1)Vg’'AVg ¢0tr(AD?g) Vg', 6ll_¢g_¢_ )

™l = r+n’ u-1- + + + + T+ .
2 (1-vg 2(1-y)g? 2(1-7)g g l-¢ 1-¢
(5.12)
Then:
i. If\U™!| is of class (DL) and satisfies:
n;ggma”w;i =0, (5.13)

then U™ > UY*(c).
ii. IflU”’llé is of class (DL) and satisfies:

¢> Vg'AVg L 20 Ve
(1-¢)2 g2 1-¢ g

1
nf’l+§(y—¢)(7r'27r+ )>0 as. forallt >0, (5.14a)

lim nf E(e~9T [UF!|7) = (5.14b)
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then, U™! < U%>(c).

iti. If g is bounded above and away from zero, then the limit conditions (5.13) & (5.14b) hold for any
(m, 1) € A.

Condition (5.14a) can be equivalently written as:

n7r,l + (7 - ¢)

——d(U™'); 20 as. forallz > 0. (5.15)
"2l -pur'?

We recall from equation (4.8) and the discussion that follows that, n, s negative for arbitrary
admissible strategies, and vanishes for the optimal pair. In our setting where y > 1 > ¢, therefore,
(5.14a) is naturally satisfied for (7*,[*). Thus, under mild integrability conditions, we can verify
permissibility of (%, ") and non-emptiness of #(g). Part iii. of Lemma 5.2.1 provides a further

simplification to the question of permissibility when g is sufficiently well-behaved.

Having addressed the question of permissibility for (%, [*), we can now state our main verification

result, which verifies its optimality amongst (g) strategies:

Theorem 5.2.2. Let g be a solution of the Epstein—Zin HIB equation (4.11) and (n*,1*) be defined by

the first order condition (4.10). Then, for every strategy (1) € P(g):

xt7
I-y

g > vl (5.16)

Moreover, if (1%, 1) also belongs to the class P(g), then it is optimal amongst P (g) strategies, i.e.:

xr

g(y)?? = V(;T*’l* = sup Voﬂ’l. (5.17)
I-vy (m.l)eP(g)

5.3 Proofs from Section 5.1

The following ordering property between CRRA and Epstein—Zin HJB equations will be useful

throughout the proofs of this chapter.

Lemma 5.3.1. Under assumption 4.1.2.iii, for all (y, g, z, p) € E x (0, 00) x R¥ x RK*k we have:

HORRA(y 0,2, plo) = HY (v, 8,2, pld,y). (5.18)
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Proof. For the convenience of the reader, let us recall below the relevant HIB equations:

4 7 1-¢_,_
HOMEA(y, 8,2, plo) = 6% 1+§(b+7¢Y2 1#)

L@ DAY ir(Ap)
2g2 2g

(G g )

I 17 1-
H(y, g, 2, pld,y) = 6¥g ™" + Z—(b + —yY’Z‘l,u) + o2 lgh-1)A+ ¢9(—7)Y’2—1Y z
g Y 2g Y 8
+tr(Ap) +(r+ 0 +,u’2‘1/1)(1—¢)
2g p-1 2 ¢ )
(5.19)

In order to prove the relation (5.18), we will show that H"%(y, g, z, p|é, y)-HCERA(y, g, z, plo) <
0. By substituting % with 7 in this difference, we see that the desired result is achieved by proving that

the following mapping is non-positive for all € R¥:

(1-¢)(p—yu'Eu
2¢%y '

_ /Y/Z—l 1
n— (¢ —v)n p1

e 2n’((¢9—1)A+[¢9(17_7)

—(1—¢)]Y’2—1Y)n+
(5.20)

We first begin by simplifying the quadratic coefficient, which readily shows that it is negative

definite:

0(1 —y)
Y

%[(¢0—¢)A+[ -1 —¢)]Y'Z_1Y]

= %a i(¢9 = ) ixk + [_‘/59(1)/— v _ (1- ¢)]pp’]a’

5.21)

= %a :¢9(Ik><k + ypp') — ¢lixk — (1= ¢).0,0']a'

1T 1
= 5d ¢>9(pl(pl)’ + —pp’) — Pl — (1 - ¢>)pp’]a’-
- y

A negative quadratic function of the form n — %U'AU + Bn + C admits a global maximum value

of —%B’A‘lB + C. The lemma is therefore sufficed by showing that:

(¢ —y)?
2022 ©

l-y 2 _A-de-y),

) — oI - (1 - ’ nn} tu>o0,
pp) ¢l —(1=P)pp"| p 267y xn (0 H

//(0")_1{ [¢0(1+

(5.22)
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or, equivalently:

u’(a’)‘l{gbylp[w(l " 1_77pp’) gl (L-d)pp’| - (1~ Dlixafo ™ 0. (523)

Denote by p and p the maximum and minimum eigenvalues, respectively, of the positive semidef-
inite matrix pp’. Then, they are bounded in the interval [0, 1], a direct consequence of the relation
pp +pt(pt)’ = 1,xn. Moreover, the eigenvalues of the matrix ?p[gb@(l + 1_77pp’) - ¢l —(1-

-1
$)pp’| p’ are bounded above by:

-y p ‘
Y ogo(1+52) -0 - (1-9)p

(5.24)

Therefore, inequality (5.23) holds if the quantity in (5.24) is bounded above by (1 — ¢). We will

simplify this relation. Below, every inequality is equivalent to each other.

(¢—v)p <1
pO(y+ (L —y)p) —y¢—y(1-¢)p ~

_¢’

(1-6)p <1, (5.25)
PlOl(y + (L =y)p) +yd+y(1-¢)p

¢l0ly(1—p) +yp(1-p)+y(p-p) 20,

which has been assumed in assumption 4.1.2.iii.

5.3.1 Proof of Lemma 5.1.1.

Proof. From the proof of Lemma 3.1 in [26], conditions i. and iii. imply that u(y) = E( fooo e %! uy(c;)dr)

satisfies the partial differential equation:

5 'S Vu'b tr(AD? Iy
(——+7ry—yﬂ ﬂ—l+r)u+ O AYVu+ x( u)+
1-y l-y 20-vy) 1-vy

=0, yeE. (526)
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1 . .
Since g1 = (6u) 49, we can verify that g, satisfies:

S pOVgib  $0(p0 —1)Vg{AVgy L ¢ tr(AD2%g)) .\ { . yn'inm
7T —

r+ + + 5
y-1 (1-y& 2(1-v)g; 21-y)& 2
(5.27)
Vo' 1-y ,—¢0
+ ¢9ﬁY’7r+ L S l} =0.
g1 I-vy

1

By Corollary A.2 of [57], f(c,v) = 6(6__; —v)when¢ <1 < vyforc > 0andv < 0. Upon

1

setting ¢ = x/ and v = %g¢9(y), we have:

S11-v g9 5 <511—¢g—¢ 5
-y -y~ 1-¢ 1-¢

(5.28)

x1v
1-y

Note that, since we only consider g > 0, this ensures that v = 2(y)?? has the correct sign needed

to derive equation (5.28).

Combining (5.27) and (5.28), we have:

) pOVgib  ¢0(p0 —1)VgiAVg1r  ¢Otr(AD%gy) N {ﬂ, _yn'Ex

r+ + + 5 +
-1 (1-y)& 2(1-y)g; 21-y)& 2
. (5.29)
Vg! [1=Po=9¢
+¢0ﬁY’n+ LU S l} > 0.
g1 1-¢

Taking supremum in (7, 1), we obtain H"%(y, g1, Vg1, D?g1) > 0, thus confirming g; as a

subsolution of equation (4.11).

Also, in Lemma 3.1 [26], under conditions ii. and iii., g2 is shown to satisfy the following partial

differential equation:

\Y 1- 1- "(A-Y'TlY Vg,
g2 é ¢ 2¢ g2
) . (5.30)
t - ¥
+r(ADg2)+1 ¢(r+ 0 +'u2 M):O, yeE.
289 ¢ ¢-1 2¢
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S . . . "(A=Y's1 Vg,
We can minimise the quadratic term in 77 as follows: inf,, g« {W + % (Y=Y -

¢
’ _y’y-1
A)n} = SALSL 2222 D82 This yields:
2
Vo! 1— ~ 1)V, (A-Y'2"')Vgy tr(AD?
6¢g51+ﬁ(b+ ¢Y’Z‘1u)+ (¢ - 1)Vgi( ! )Vg2 N 1(AD*g>)
82 ¢ 2¢g5 2g2

(5.31)

(S50 5y

which confirms that go is a supersolution of the CRRA HJB equation, i.e. HCRRA(y, g9, Vgo, D2go|¢) <
0. By Lemma 5.3.1, it also satisfies H"%(y, g2, Vg2, D?g2|6,y) < 0.

5.3.2 Proof of Theorem 5.1.2

For the convenience of the reader, let us recite the existence theorem for the HIB equation here:

Theorem 5.3.2. Suppose that g1 € C%(E, (0, o)) is a subsolution to the Epstein—Zin HIB equation
and go € C?(E, (0,)) is a supersolution to the CRRA HIB equation. Assume additionally that
g1(y) < go(y) for all y € E. Then, there exists a twice continuously differentiable function g : E —

(0, 00) that solves the Epstein—Zin HJB equation (4.11). Moreover, g satisfies g1 < g < go.

Proof. We first observe that, if g is a solution to (4.11) then the transform u = ¢8 In(g) satisfies

the equation below*:

o 1- 1 1-
G¥%(y,u, Vu, D?u|,y) £ ¢06%e 7 + Vu'(b + —yY’Z_l,u) + §Vu'(A + —yY'Z_lY)Vu
Y Y
tr(AD? S 'zt
+u+(r+—+’u M)(l—y):O.
2 ¢-1 2y
(5.32)
We observe also that, if we define u; = ¢01n(g;),i = 1, 2, then they satisfy the inequality:
G % (y.ur, Vur, D’ui|$.y) < 0 < G%*(y. ua, Vuz, D?us|. ). (5.33)

1-y

4This is the resulting equation from parametrising the optimal value function as v(x, y) = = e“(Y) This approach has
been studied by Hata & Sheu (cf. [27] & [28]) for the additive utility case, and Xing for the Epstein—Zin utility case ([66]).
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Moreover, if we found a solution u such that G¥%(y, u, Vu, D?u|¢,y) = 0in E and us < u < u,
then g = exp(#) is the solution required by the theorem. We will approach this equation by solving
a local version of it, and apply Arzela—Ascoli theorem to find a uniformly convergent subsequence

which then solves (5.32).

For each n € N, since A is positive definite and continuous, its eigenvalues are bounded and
bounded away from 0 on compact sets. Thus there exists 4, < A, such that forall x e R and y € E,,
L, lIxI1% < Zi; Aij(v)xix; < A,llx]|%. By Lemma 5.3.3 below, there exists a solution 4" in E, to the

boundary value problem:

gEz(y,u(”),Vu("),D2u(”)|¢, y)=0, yekE,
(5.34)

u™ =y, y € 0E,.

Since u2 < uj, by Comparison Theorem (Theorem 10.1 [25]), we have us < u™ < uyin E,. The

same holds for m > n, and thus {u(m) }mz” are bounded uniformly in E,,.

We now derive a Holder estimate for the gradient of {u("™},,,. By Theorem 13.6 [25], there

exists @’ € (0, 1] and C such that:

vum|  <c, (5.35)
o E,
where C and @’ depend only on supy,cf, ., |u(m) }, A, and A,p1,and [gl o5, = SUDy, v/ eE,iy#y” %

Without loss of generality, assume a = a A o, for if it is not, we can reset the value of a to @ A @’.

Consider (™ as the solution to the following linear problem:
Ly, u™, vu™ D>y = £,(y), (5.36)

where:

1- 1
L(y,u™ vy p?(m) = (Vu(m))'(b + —YY’Z_I,u) +35 tr(AD%u'™),
Y
L, m)
Jm(y) = —¢8exp ( Yl

- (r+ ¢f 1 + /1’221;1#)(1 -v).

1 1-
) - §(Vu(m))’(A + —yY’Z_lY)Vu('") (5.37)
y
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The Schauder interior estimates (Corollary 6.3 [25]) imply that for m > n, with d = dist(E,, 0E;+1)

and a constant D, where D is independent of m and the source term f,,,:

d max

En

Vu(m)| +d? max

n

D2u(m)| +d* [D2u(m)] < D( sup|u

Env1

(m)| + Sllplf | + [fm]a’ En+l)
(5.38)

a,E,

The next step is to remove the dependence on m on the right hand side of (5.38). To this end, it is

sufficient to find a bound for the gradient !Vu(m) |m>n. By Theorem 15.5 [25], the following holds:
’Vu(m) (y)’ < K(1+dist(y, 0E,is1) "), (5.39)

where ¥ is a constant in the structural conditions (cf. condition 15.3 [25]), and K is independent of m.

Due to the assumptions on the nested domains, miny .z dist(y, dEn+1) > 0, and therefore:

sup ‘Vu(m)‘ < K(1 + max dist(y, (?E,Hl)_%) form > n+1. (5.40)
veE, YeE,

Combine this with the estimate (5.38), we have:

d max Vu(’")’ + d? max Dzu(’”)‘ +d2+a[D2u(m)] <
" n o, E,
(5.41)
D( sup fu1(y)| V [u2(y)| + sup Ifm(y)|+bup[fm]aE,,+1) = oo
yEEn+1 m>n
yEEn+1
The estimates (5.35) and (5.41) imply that the the sequences {u(’")}m {vu(m)}m>n nd

{Dzu(’”)} are bounded and equi-continuous in E,. By Arzela—Ascoli Theorem, by passing
m>n

to a subsequence, they converge uniformly to u, lim V™ and lim D?u("™, respectively. Due to
the uniformity of convergence, u is twice continuously differentiable and Vu = lim Vu™ and

D2y = lim D%u(™,

Lemma 5.3.3. There exists a solution to the following boundary value problem:

QEZ()/,M,VM,D2M|¢,‘)/):O, yEEn,
(5.42)

u(y) =u2, yeoE,.
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Proof. We adapt the strategy of Hata & Sheu ([27]) to our setting of Epstein—Zin utility. By
Theorem 3.4 therein, it is sufficient to prove boundedness of solutions of a parameterised class of

PDEs.

Define y(7) = (1 —7) + 7y, and ¢(7) = (1 — 7) + 7. We observe that, firstly, y* and ¢7 still

T(1-y) _ g
i) = 018

independent of 7. By Theorem 3.4 [27], it is sufficient to prove that solutions to the following BVPs

follow the general configuration, i.e. for 7 > 0, y(7) > 1 > ¢(7), and secondly, 6(7) =

are bounded uniformly in 7 € [0, 1].

G (y,u", VuT, D*uT|$(7), (7)) = 0
(5.43)

u'(y) =1¢01In(g2), y € IE,,

and:

tr(AD?u)

u ].
— 1(96%7 +Vu'b + SV AV - 59) —0, yeE,

(5.44)
u=0, yedE,.

We start with the BVP (5.44). In the case where ¢ < 1, we observe that iz = 0 is a super-solution
and u = —0(1—-y) In(9) is a sub-solution, and thus are the required lower and upper bound, respectively,
for any solution of (5.44). Bounding the solutions of (5.43) requires more involved calculations, and is

stated separately in Lemma 5.3.4.

|
Lemma 5.3.4. Ifu” is a solution to the following boundary value problem:
G (v, u" VuT, D*uT|9(1),y(1) =0,y € En,
(5.45)
MT()’) = TMQ(y)’ Y€ aEn,
then it admits the following bounds:
0l {rgd(n) + (1= 1)} <u” < glo/In ( € _y 1)+ supllne? G, (546
¢|9|5¢ veE,

1271
where C,, = SUP7¢[0,1],y€E, (7” + ”27(751)(1 - y(7)) = 96.
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Proof. We start with the upper bound. Define the function, where the constant C,, is defined in the

lemma:

(5.47)

\% 1) + sup 'ln(g

C
i, = 6] ln( n
¢|9|61// yeE,

For any 7 € [0, 1], u,, is a sub-solution, and therefore u™ < i,,.

Next, we will show that it is bounded from below. The scheme of the proof is as follows: firstly,

we will show that, for (x, y) € (0,00) X E, and us = ¢ In(g2):

U@t — 1 xl-deuz 1

< (5.48)
w(1-9) 1-¢
Once this is established, we can simply set x = 1 to obtain:
le% — l < eu2()’) 1
T T
T <71e?™ 4+ (1-1)1, and thus (5.49)

u® > 61In {ng +(1 —T)l}.

We will obtain the relation (5.48) by contradiction. We will derive a relationship that is known to hold,

and show that such a relationship cannot be true without (5.48).

Step 0. Review of the time-additive case. Before we proceed, we recollect some facts from the

additive utility case and establish some notations. Suppose that the agent’s utility is defined by a

e . . o . . 1- . .
CRRA utility function with relative risk aversion ¢, i.e. ug : x — ’i ? and the optimal value function

g(y)¢ then the associated HIB equation is (see also [26]):

¢
1 2
g g
P (5.50)
¢Vg 1 AV A
5 g AT Y) (_1—¢+ 2 )( ) )‘0‘
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On the other hand, if we let the agent have utility function u 4 but parametrise the optimal value

. 1- . L
function as %e“(y ), then the resulting HIB equation is:

GERRA(y y Yy, D2u|g) = p6¥e b + %tr(ADQM) + %Vu’(A b1 ; ¢Y’2‘1Y)Vu
- 5 - (5.51)
’ - rv—1 H H _
+Vu(b+TYZ ,u)+(r—1_¢+ 5 )(1—¢)_0.

Moreover, these two parametrisations are equivalent in the sense that, if we set u = ¢ In(g), then
HORRA(y o Ve D2glg) = %QCRRA (v, u, Vu, D?u|¢). Moreover, we have shown in Lemma 5.3.1

that under assumption 4.1.2.iii, for all (y, g,z, p) € E x (0, 00) x Rk x Rk>*k ¢{CRRA(y, ¢ 7 p|g) >
HY(y, 8,2, pl¢ 7).

Step 1. Derive a relation for contradiction.

Now, let u, be defined by equation (5.45) and g7 by the relation ¢ = (g7)?(7)? then g7 satisfies

the Epstein—Zin HJB equation parametrised by ¢(7) and y(7) in the domain E,,. More specifically:

HY(y, g7, Vg™, D?g"|p(1),y(7)) =0, y€E,. (5.52)

Using the relationship HERRA (g (1)) > HPZ(-|p(1),y(1)) (see Lemma 5.3.1), we achieve
the relation HORRA(y, ¢7, Vg™, D%g7|¢(1)) > 0. Thus, the mapping ¢(7) In(g7) = % satisfies the

relation:
u®™ Vu® D*uT
GURRA(y, T, = 18(1) 2 0. (5.53)
If we define V7 = %eu e , then the following holds:
tr(AD3 V7) 2

+D,(V")'b+ (sug {DxVTx(r +r'u—1)+ %n'ZﬂszVT +xD, (V) Y'n
" (5.54)

c(1-0)
+5(:(1—_¢) - VT)} > 0.
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On the other hand, we know that g, satisfies HCRRA(y, g0, Vigo, D2g5]¢p) < 0. If we define us by:

ug = ¢1n(gs), then GCRRA(y, uy, Vug, D%us|p) < 0. Now, let us define V = X% puz | we have:

1=
tr(AD?’yV) ’ ’ X2 ’ 2 '
— + DyV'b + sup {DxVx(r +n'u-10)+ 57 YXnD V+xD 2V Y'n
N
() (5.55)
cl=¢
+ 6( - V)} <0.
1-¢

By choosing (7, ) that attains the supremum in equation (5.54), we attain the following relationship

between V7' and V:

tr(AD?’y(VT_V)) T ’ T ’ ’ X2 ’ 2 T
5 +Dy (VT =V)'b+ D, (V" -V) x(r+zr,u—l)+§ﬂ XaDL, (VT =V)+

CT(1_¢) B Cl_¢
t1-¢) 1-¢

xD2, (V7 —V)’Y’zr+6( )—5(\/’ ~V) >0.

(5.56)

We observe that the mapping 8 — 87! (c# —1) is increasing for 8 > 0. Therefore, iz(ll__;’; - Cll__; <
7(1;—45) - ﬁ This, combined with inequality (5.56) yields the following:
tr(AD2 (VT - V)) 2
”2 +Dy(VE = V) b+ Dy (VT = VYx(r+n'u—1)+ %n’zwix(v’ —V)+
xD2_ (V7 —V)’Y’n+6( L )—6(VT V)20
© r1-9) 1-¢ -
(5.57)

We can simplify equation (5.57) by absorbing the constant term ﬁ - ﬁ in an affine trans-

xT(l_d’)e%—l _ xl=%eua_q . . .
O and Vy = = Combine this with

inequality (5.57), one can verify straightforwardly that V" and V; satisfies the relation (5.58) below.

formation. To achieve that, we define V| =

We will use this inequality to set up our contradiction argument in Step 2.
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tr(AD3, (V§ = Vo))
2

2
+ Dy (VE = Vo) b+ Dy(VE = Vo)x(r+n'u— 1) + %n’Znsz(vg —Vo)+

xD3, (V= Vo) Y'm+=6(V§ = Vo) > 0.
(5.58)

Step 2. Contradiction step. We are now ready to prove relation (5.48), i.e. Vy > V for all (x,y) €

(0, 00) X E,,. We will show below that if (5.48) does not hold, it would violate relation (5.58) derived

in the previous step. For the sake of a contradiction, let us assume the opposite, i.e.:

sup (Vg = Vo) > 0. (5.59)
(x,y)€(0,00)XE,

We make the following observation on the boundary, using again the fact that 8 — 7' (cf — 1) is

increasing in 8 for § > O and ¢ > 0: fory € 0E,:

xT(1—¢)eT'42()’) — 1 x1_¢eu2(y) — 1

-9 = 1= "y (5.60)

Vo (x,y) =

Moreover, for any y € E,, we have V (x,y) < Vo(x, y) for either x = 0 or x large enough. These
observations on the boundary behaviour imply that the supremum in (5.59) is attained at an interior
point. Specifically, there exists some (xo,yo) € (0,00) X E} such that V (xo,y0) > Vo(xo,y0),
D Vg (x0.30) = DxVo(xo. ¥0). DyVg (x0.y0) = DyVo(xo. yo) and DX(V§ = Vo) is a negative semi-
definite matrix. These facts, however, would imply that the left hand side of (5.58) is strictly negative,

a contradiction.
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5.4 Proofs from Section 5.2

5.4.1 Proof of Lemma 5.2.1

For the proof of Lemma 5.2.1, we will need the following lemma concerning the growth rate of power

utility processes.

Lemma 5.4.1. Let ¢ be a consumption plan in C* and U”>*(c) and Y 9 (c) be its associated power

utility processes (cf. Definition 2.4.2). Then:

Jim E(e °TU"*(c)r) = Jim E(e °TY?>(c)r) = 0. (5.61)

Proof. By definition E[e~®T U"*(c)r] = E(fToo 6e‘5tct1_7dt). As ¢ € C%, ¢'77 is a square
integrable random variable on the product space (Q x R*, ¥ ® B8(R")) with probability measure
dP ® Se~°"dt. Since this product space is a finite measure space, ¢! =7 is also integrable in the product
L' norm, i.e. E(fooo 6e“”ct1_7dt) < co. By Dominated Convergence Theorem with fooo 6e‘5’ct1_7dt
as the dominating random variable:

lim E se % ar| =0, (5.62)
T —>o0 T 4

which concludes the first convergence of the lemma. The second convergence can be proved similarly,

using square integrability of ¢!~ % instead.

O
Proof of Lemma 5.2.1.
Part I. Show that U™-! > U?-*(¢). Following from equation (4.8), U™ satisfies the dynamics:
dU™ = —f(c;, UPDdt + (1 = y)UF'n™dr + (1 = y) UM |2’ cdW? + %dwt . (5.63)

We shall denote the local martingale term above more succinctly by M*. On the other hand, the

dynamics of U?"*°(¢) satisfies:

dU}™ = =6(uy(c;) = UV (c),)dt + dM?, (5.64)
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where M? is a local martingale. By product rule, we can compute the dynamics of e~ % (V;" — Ur®) as

follows:

dle S (U = UY™)] = e %' (f(cr, UFY) = 6[uy (c;) = U )dr + e 1 (1 — y) U n dr
— 60N (UM —UY®)dt + e (M} — dM?)
= —e " [f(cr, UM = 8(uy () = U] dt

+e 9" (1=y) U™ n™dt + 79" (dM} — dM?).
(5.65)

When y¢ > 1, f(c,v) = 6(uy(c) —v) forall ¢ > 0 and (1 —y)v > 0 (Corollary A.2 in [57]).
Because g satisfies the Epstein—Zin HIB equation (see Dynamic Programming Principle after equation
(4.8)), n™! is non-positive for arbitrary strategies. Therefore, e o1 (uUf - U}>") has non-positive drift
component and is a local supermartingale. Let {7, },>0 be a reducing sequence of stopping times and
t < T be positive constants, we have:

e O (URL —UNT) 2 B, (e °TA (UL - UTT ). (5.66)

tATh tAT, TAT, “TAth

The hypothesis of this lemma states that U™/ is of class (DL). Moreover, since (7, 1) is assumed to
be admissible, ¢ belongs to the class C™ and as a result U”>*(c) belongs to the class V> (Proposition
2.5.2). Thus, U” ™ belongs to class (DL) as well. Therefore, we can apply Proposition 5.4.2 below to
take the limit n — oo on the right hand side of (5.66). The left hand side limit follows simply from

continuity. We have:

U - U (0)y) 2 By [e T (U = U ()r)]. (5.67)

By the limit condition (5.13) in the hypothesis of the lemma, there exists a divergent sequence
T,, such that lim,,_, e‘T"E(U;rn’l) = (0. Combine this observation with lemma 5.4.1, the right hand
side of (5.67) also converges to 0 in L' along {T},}. By passing to a fast convergent subsequence, also
denoted {7}, it converges almost surely, too. Taking limit of (5.67) along this subsequence implies

that U,”’l > U”"*(c), almost surely.
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Part II. Show that U,”’l < U?*(c),. Since the mapping y — uy o u;,l (y) is increasing for y < 0,

it is sufficient to show that Y™ 2 4, o u;l(U”’l) <Yy®e,

dy[' = —5(ug(c,) =Y ")dr + dm}
1 ¢>  Vg'AV 2¢ Vg’ (5.68)

1y Ly g'AVg gy
A =UT e+ 5 O 2t a2 14 s ”)]dt’

where the last term above is non-negative by assumption (5.14a). Let us denote this term by p; for

brevity. On the other hand, where M? is a local martingale:

dY?®®(c), = =6(ug(cr) = Y*(c),)dt + dM?. (5.69)

Following similar calculations to Part I, we have:
d(e ' (Y®™(c); = Y) = e % d(M} — M?) — =% p,dt. (5.70)

Therefore, e~ (Y% (c) — Yt"’l) is a local supermartingale. The same argument in Part I can be

applied here to show that Y,"’l < Y% (c), almost surely for all > 0.

Part I1I. The special case of bounded g. If the solution g is bounded above and away from zero,

then there exists a constant K for which |U/ ’l| < Kct1 “Y. As c'77 is belongs to the product space

L?(Q x R*) endowed with the probability measure dP ® e~ %'dt, it is L', too. Therefore:

/Ooée_ét]E[(ct)l_y]dt =E(/m66_5t(c,)l_7dt) < oo, (5.71)

0 0

Thus for Lebesgue-almost all 1 > 0, E(e= %) [¢,,;]'™7) — 0 as n — oo (Theorem 1 of [45]).
Therefore, e“s(”t)E(U,Z’l) vanishes as n — oo for almost all t > 0, too. The result for |U”’l|% follows

a similar argument, utilising instead the integrability of (c)!~%.
i

Proposition 5.4.2. IfV is a continuous and adapted stochastic process and of class (DL) and {7, }n>0

is an increasing sequence of stopping time such that T, — oo almost surely, then:

E(Vrar, | Fine,) = E(Vr|F),  in L' (5.72)
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Proof. We have the following L' estimate:

||E(VT/\Tn |7—;/\Tn) - E(VT |7_;) ”L1 < HE(VT/\T,, |7—;/\Tn) - E(VT |7_;/\Tn) ||L1
(5.73)

+E(Vr |Finr,) —EVr|F)ll

The first term above is bounded above by ]E(|VT ATy = VT|). Asn — oo, Vrpar, —V; — 0 almost
surely due to continuity. Thanks to the (DL) property, we can apply Dominated Convergence Theorem
to conclude that it converges in L' too. The second term also vanishes, following from Martingale

Convergence Theorem.

5.4.2 Proof of Theorem 5.2.2

(thr,l 1
1

Proof. Denote U e )y - g(¥;)??. Following from the Epstein—Zin HIB equation (see equation

(4.8) and the discussion that follows), as (r, ) is an arbitrary strategy, U™/ is a super-solution of the

Epstein—Zin BSDE, in the sense that:
dUu™ = —f(c;, U™Ydt + ZV dB, - p,dt, t > 0; (5.74)

for some positive, progressive process p, and progressive ZU. On the other hand, denote by V" ! the

value process associated with ¢ = [X 7! which satisfies the BSDE:

v = —f(c,,v*dt + z"dB,, 1> 0. (5.75)

For a progressively measurable process {a;,t > 0} which will be defined later, the dynamics of

elo asds (y, — Vt”’l) is:

d(efo ast(Utﬂ,l _ th,l)) — —6/0 asds [f(ct, U;r,l) _ f(Cta th,l) _ a,t(Utn,l _ th,l)]dt
(5.76)
+elo @ds(zU — 77 aB, — el ¥ p,dr.

f (e, UFY=F (e, V,

By setting o, = ATy
t t

m,l
)H{Utn,z¢vtn,z} + f'(cq,s Uf’l)]I{Utn,z:th,z}, the first drift term

t
vanishes and thus e/ "-‘d“'(Ut’r A Vt”’l) is a local supermartingale. Let {0} },>0 be a reducing
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sequence for the stochastic integral, then:

T Aon
Uér’l _ Voﬂ’l > E[efo ast(Uﬂ,l _yml )] (5.77)

TAop T Aoy

By Mean Value theorem, a; = f, (c;, &) for some & € [U! AV, U™ v V'], We recall that
0y f(c,v) < =66 uniformly (see discussion after Definition 2.7.2). Therefore, the exponential factor
in (5.77) is locally bounded. Moreover, U™ L and V™! are of class (DL) since they are sandwiched
between UY>* and U %>, both of which are (DL) processes. Therefore, we can let n — oo in (5.77) to
obtain:

T
Uér,l _ V07r,l > E(e/O (Z“dS(U;f’l _ V;f’l))- (5.78)

We assert that the right hand side of (5.78) vanishes as 7 — co. By considering the second
derivative of f: 92, f(c,v) = 6(y — ¢)c'=?[(1 - y)v]"1-Y0, 8 f, is increasing in v when y > .
Therefore, the application of Mean Value Theorem above implies a; < 8, f(c;, U] Ly V,”’l) <

0, f(c;, U?*(c);). Then, by uniqueness criterion (2.21), we achieve the estimate:

E(e'/OT asds U77f',l ) < E(e‘/(‘)T avf(CS,U¢’OO(C)x>dS|U;:’OO|) e O as T — oo. (579)

The same convergence to 0 holds for V7 in place of U™, Letting T diverge in (5.78), we obtain an

upper bound for permissible strategies:

xl—y »0 n,l n,l
1_7g(y) =ur = v (5.80)

Lastly, if (7%, [*) belongs to the permissible class, then V* = U™ /" is verified as the Epstein—Zin
utility associated with ¢* = /*X™ ", thanks to the Power Utility Bounds (5.11) in Definition 5.2.1. It

is trivial to confirm that V{j = u, (x) 2(»)?9, which attains the upper bound for P (g) strategies.

81



CHAPTER 6

EXAMPLES

6.1 Example I - Geometric Brownian Motion Price.

We will demonstrate the results developed in previous sections in certain market models. Similar to
Chapter 4, we also start with the Merton’s model as a baseline, where the factor process is constant.
This is subsumed as a degenerate case of our factor model by setting y = 1, b(y) = 0 and a(y) = 0.

We also denote g, 7, u, o for g(1),r(1), u(1) and o (1) respectively. Equation (4.11) reduces to:

HY(y,g,Vg,D?g) =6%g™ 1 + (r + 2502_2)(1_—¢) - g =0. 6.1

This yields directly the solution for the candidate optimal strategy:

_ S-r(l-¢) (1-¢)u?
= 5 I"=6%g p Sydo? (6.2)

In this simple model, the admissibility and permissibility of the candidate optimal strategy can be
reduced to a set of inequalities. Moreover, this is the only case where we can derive a necessary and

sufficient condition for verification of the candidate solution.
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Proposition 6.1.1. We consider a market model with Geometric Brownian Motion price. Let (m,1)

be a constant strategy. Then, for any exponent p € R, the resulting consumption process c satisfies

]E(/OOo Se % cPds) < oo if:

2 _
o—p(r=10)—pru— %ﬂ%ﬂ > 0. (6.3)

Moreover, it satisfies the uniqueness criterion (2.21) if and only if:

_-Dy-¢(r=9) 5 o

6-(1-¢)(r=0—-(1-¢)u 5

> 0. (6.4)

As a corollary, the candidate optimal strategy (n*, I*) defined by (6.2) belongs to A if and only if the

following system of inequalities hold:

20=¢)(6=7) [(1=¢\(1 1-=2¢p+vy\u?

0+ ) - ( Y )(5 + T); > 0, (65&)
200-y)(6-1) (d—y\(1 2¢-y-1\p?

§-(1-¢)r [(1-9¢) (y—¢)*1u°
et |5 >0 (6.5¢)

A by-product of Proposition 6.1.1 is that it also shows the permissible set £ (g) is non-empty and
non-trivial. Let us recall from Lemma 5.2.1, when g is bounded from above and below, a strategy

(m, 1) is permissible if it belongs to A and satisfies:
1
nf’l + E(y — )02 >0 forallr > 0. (6.6)

Provided that u > 0, the left hand side above is strictly positive at (%, [*). Because of joint continuity
of the mapping (x,1) — n™! + $(y — ¢)n’Zn, there exists an open set O C R? containing (7%, [*),
such that for all (7r,1) € O, relation (6.6) is satisfied. Similarly, if inequalities (6.5a), (6.5b) & (6.5¢)
hold, then there exists an open neighbourhood around it, also denoted O, where such that all constant

strategies are permissible.

The verification result in this market model can be summarised as follows:
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Theorem 6.1.2. We consider a market model with Geometric Brownian Motion price and constant
factor process. Let (n*,1%) be defined by (6.2). Then, if the system of inequalities (6.5a), (6.5b) &

(6.5¢) hold, it belongs to the permissible class P(g) and is optimal within it.

6.2 Example II - Models With Bounded Coefficients.

We build upon the general results obtained in previous sections by imposing boundedness additional
conditions on the coefficients and their derivatives. Roughly speaking, these additional assumptions
will enable us to derive uniform boundedness for the candidate optimal control (x*,[*), which in turn

translates to more-or-less explicit conditions for its admissibility.

For convenience, let us briefly recall the market model here. The financial market model consists
of a riskless asset S” and an n-tuple of risky assets S = (S%, ..., §"). Their dynamics are given by the

following equations:

ds? = SO (v,)dt,
ds; = diag(S)[(r(Y) L + p(¥y))dt + o (Y,)dWY ], ©.7
dYt =b(Yt)dt+a(Y,)dW,, YOZyGE.

We refer the reader to chapter 4.1 for a detailed discussion of the smoothness assumptions of the
coefficients. In additional to the assumptions already made there, we also impose the following

additional assumptions for the remainder of section 6.2.

Assumption 6.2.1.

i. The domain E is the real space R¥;

ii. (uniform ellipticity) there exists 4 > 0 such that the matrices A and X satisfy, for all y € E and

& eRFandp e R™:

2 A& = el 3 i = Al 68)
ij

i

84



iii. the coefficients are globally bounded, i.e.:

suplr|,  sup |u;l, sup |bi| < oo;
yeE yeE yeE
i=l..n i=1l..n
(6.9)
sup |Clij| < 00, sup |0'ij| < 00,
yeE yeE
i,j=1.k i,j=1..n
iv. the coefficients have bounded derivatives, i.e.:
sup|D;a;;(y)|, sup|D;oij ()|, sup|D;r|, sup|Djp;|, sup| Db | < e, 6.10)
yeE yeE ye.E y.EE y_eE .

i,j,l i,j,l i i, i,J

v. and finally, the interest rate is bounded away from 0: inf,cg r(y) > 0.

In what follows, we will derive bounds for the solution g of the HIB equation and its derivative,
which will translate into uniform bounds for the optimal strategy (7, [*). Regarding bounding g, this
is achieved by making an appropriate choice for g; and g2, the sub- and super-solution constructed in
Section 5.1. Theorem 5.1.2 asserts a solution g sandwiched between g; and go. Therefore, if g5 is
bounded above and g; away from zero, g will inherit these boundedness properties. We will choose
g1 and g in such a way that helps to ease the calculations. For g1, we choose the strategy where the
investor ceases his trading activities and consumes the earnings from interest rate. Specifically, we
set 1, = 0 and [, = r;, in which case, X, = x. For g, we simply set ;, = 0. Bounding g; and go will
help to bound /*. It is more challenging to prove the uniform boundedness of 7*. From the first order
condition (4.10) and the boundedness of model coefficients, it follows that uniform boundedness of 7*
would follow from that of the ratio %. This can be derived from interior gradient bounds of an elliptic

quasilinear PDE (cf. Chapter 15 of [25]). We state the result formally below.

Theorem 6.2.1. 1. Define g1(y) and go(y) by:

XY e ® e st
g (y) =E( de uy(rtx)d[’YO =y), (6.11a)
1-vy 0
& _éﬂ,ﬂft ds ' 1 %
22(y) :E(/ e o “a(—/ o) awe) 7 v =), (6.11b)
0 0 t

Suppose that the following conditions hold:

6
y-1

. 12—1 ©
i — e plle 5
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ii. 22— |7l

I E e
-9 20 >0,

iii. g1 and gy are continuous in RX.

Then, g and g5 are bounded in R*. Moreover, g1 is bounded away from zero. Consequently, a

solution g exists for the equation (4.11) that is bounded above and away from zero. Moreover, it

Ve(y)
g8(y)

satisfies Supy cpk “ < oo,

2. Let (n*,1") be defined by the first order condition (4.10). Then, I* is bounded above and away

from zero and ||7*|| is bounded above.

The next result concerns the admissibility of the candidate strategy (7*,[*). We have chosen
to report this result for the special case where the factor process is one-dimensional. The chosen
dimensionality helps ease the notations in our calculations. The methods remain virtually unchanged
when Y has dimension greater than 1. From the point of view of applications, this does not present a
serious handicap, as most popular models of the financial market employs a one-dimensional factor

process.

Proposition 6.2.2. Suppose that assumption 6.2.1 and the conditions of Theorem 6.2.1 hold. Assume
additionally that ¢ > % Let g1, g2 be defined by equation (6.11a) and (6.11b), respectively and g
be the solution to the HJB equation (4.11) sandwiched between g1 and go, which is facilitated by
Theorem 5.1.2. Denote g = infy ek 81(y) and § = supycpr g2(y). Let (7%, 1") be defined by the first
order condition (4.10) and c* be the resulting consumption process. Then, c¢* belongs to the class C®

if the following system of inequalities hold:

-y (24 -1 21 |2¢6(¢p —y)(2¢6 —y - D)p||V
20~ y)(inf r - o)+ LD )nylf[%H e g ”"Hf”wn‘gnm
- (6.12a)
- ) (20 - 2y — 1)9%62 ||| Vg |12
L@-n( ¢727 )¢ H?gHm'|“”g°<5’
1-¢)(2y —2¢+1 2
2(1—¢)(81€1£r—6‘”g_1)+( ) ;/2 o+ )sup [%]
g g (6.12b)
L2200 -y +1-24)p HE“ 1“4 < 6
2 g o’ o ' :

Y
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Moreover, c* satisfies the uniqueness criterion if the following additional inequality holds:

(1-0) [5 - (§)¢_1(5 - R)] +60-06%g™" 6 <0, where

R Rl - S T

(6.13)

Remark 6.2.2. The inequality system attained in Proposition 6.2.2 subsumes that obtained in Proposi-
tion 6.1.1. If we set g and all model coefficients as constant, Vg = 0 and g = g = g, then inequalities

(6.12a),(6.12b) and (6.13) reduce to (6.5a), (6.5b) and (6.5¢).

Remark 6.2.3. The bounds attained in Proposition 6.2.2 are very crude bounds. They key message
that we want to demonstrate here is that there exist verifiable inequalities with which we can confirm
our verification result, even if the inequalities are somewhat convoluted. This is demonstrated in the
next section, where we numerically solve the Epstein—Zin HJB equation in a non-trivial market model.

A refinement of these bounds can be a direction for potential future research.

Theorem 6.2.1 and Proposition 6.2.2 can be combined to yield the following verification result in a

model with bounded coefficients.

Theorem 6.2.3. Consider a one-dimensional market model satisfying assumption 6.2.1 and the
conditions of Theorem 6.2.1, which implies a solution g for the Epstein—Zin HIB equation. Suppose
¢ > % and the system of inequalities (6.12a), (6.12b) & (6.13) hold, then the strategy (n*,1*) defined
by the first order condition (4.10) belongs to the permissible class P(g) and is optimal within this

class.

6.3 Numerical Implementation of A Linear Diffusion Model

6.3.1 Introduction & Market Model

When it comes to implementing the theory we have developed to market models, there are several
technical hurdles. The solution of the HJB equation (4.11) that we constructed in Section 5.1 is
furnished by an abstract subsequence. That is, it is an existential rather than constructive proof.

Therefore, estimates related to g and its derivatives can be difficult to obtain. The problem of upper
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and lower bounds of g can be mitigated by certain choices of g; and g2 in equations (6.11a)-(6.11b).
However, boundedness of the ratio % is obtained via an abstract argument (cf. Theorem 15.5 [25])

and an explicit form is unlikely to be available.

In this section, we propose a truncation scheme for an adaptation of the linear diffusion factor
model, and solve it numerically. Estimates concerning the solution g, in particular the ratio % will
also be obtained numerically, too, and the inequalities of Proposition 6.2.2 will be verified based on
numerical estimates. In the model considered below, the risky asset’s volatility is constant but its return
depends on the factor process, which itself follows a mean-reverting Ornstein-Uhlenbeck dynamics.
This model specification has been studied by Kim & Ongberg [35], Wachter [62] in the time separable
utility settings, Campbell & Viceira [10] in a recursive utility, discrete time setting, and Xing [66] for

continuous time Epstein—Zin utility in finite horizon. The precise model specification is:

ds
S—’ = (r(Y;) + u(Yy))dt + cdW?,
! (6.14)

dYt = b(Yt)dt + ath,
where y € R, r(y) = ro +r1y, u(y) = (o + 41y) and b(y) = =boy.

Remark 6.3.1. There is no loss of generality in defining 1o = 0, since the constant term of y(y) can
be incorporated by the interest rate term. Specifically, we could define r(y) = (rg + 00 dg) + r1y. For

simplicity, however, we shall define r; = 0. We use the numerical values from [4], [62] and [66]:

ro=0.02, r1 =0, 0=0.0436, 4=0, A1 =1, byg=0.0226, a=0.0189. (6.15)

6.3.2 Numerical Output: Optimal Strategy

We present below the numerical output for the optimal strategy (7", [*) for different value combinations
of y and ¢. The algorithm and method of truncation is reported in section 6.3.3. The resulting strategies

are reported in Figure 6.1 and Figure 6.2.

We first observe how this representative agent responds to the state of the economy. The general
shape of n* suggests that when y > 0 (resp. y < 0), the risky asset is performing better (resp.
worse) than inflation, and the agent enters a long (resp. short) position in order to benefit from that

discrepancy. Similarly, when y diverges from 0 in either direction, the consumption-wealth ratio
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decreases. Therefore, whenever the economy departs from its neutral state, it represents an investment

opportunity and the agent trades his current consumption for the prospect of future earning.

Secondly, we observe how the candidate optimal strategies change in response to changes in the
preference parameters. With everything else being equal, for larger values of y, 7* has flatter slope and
[* increases. At a greater level of risk aversion, the agent reacts by reducing the proportion of wealth
invested in the risky asset, either in long or short position. The consumption-wealth ratio also goes
up, suggesting that he increases immediate consumption to counteract his dislike of late resolution of

uncertainty.

On the other hand, higher values of ¢ imply lower EIS. In this case, the agent becomes less patient.
He prefers immediate consumption instead of substituting it for investment opportunities. This is
portrayed in Figure 6.2, where consumption-wealth ratio is increasing in ¢. However, for differing
values of ¢ and everything else equal, the numerical result suggests that it exerts little effect, if at all,
on the investment-wealth ratio. This insensitivity of 7* with respect to the EIS parameter is explicit in
the GBM model (cf. equation (6.2)). The same phenomenon has been observed by Xing [66], who
observed that in a finite-horizon Heston model, the optimal investment-wealth ratio is insensitive to
¢. Intuitively, this is consistent with the fact that investment decision is governed by risk aversion
v. Since this phenomenon is observed across multiple different market models, we conjecture that
this might hold for a wider class of market models. However, as of the time of writing this thesis,
no result in this direction has been established, even in finite horizon. If this conjecture were true, it
would help to disentangle the effects of preference parameters on the investor’s behaviour: while both
risk aversion and EIS determine how much wealth is consumed immediately, only the risk aversion

parameter affects the allocation of the invested fund.
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Fig. 6.1 Optimal Strategies for different values of y. In all cases, ¢ = 2/3 and ¢ = 0.02.
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Fig. 6.2 Optimal Strategies for different values of ¢. In all cases, ¥ = 5 and ¢ = 0.02.
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6.3.3 Truncation of the HJB equation
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It is more convenient to work with the exponential parametrisation of the value function. Let us recall

that, if g is the solution to equation (4.11), then the transform u = ¢8 In(g) satisfies the equation:

1- 1 1-
G¥% (y,u,u’,u") = $06Y exp ( - %) + u’(b + _}/@) + i(u')2a2(1 + —pr) +—a’u”
o Y

S 2
LA
2yo?

Y

)(1—')/):(), yeR.

(6.16)
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The idea behind the truncation we propose is simple. We let the factor process starts at its long
term mean (0 in this case) and allow it to perturb in a small region around it. As it leaves its permitted
region, we immediately terminate its dynamics. More specifically, for a cut-off value K > 0, let us

define the truncated coefficients:

ey =l AK) V(K] 1Sy =uly AK) vV (=K)],
(6.17)

a® (y) =alyekx)y DG = blye-k.k))-

The truncated HIB equation is obtained by replacing the model coefficients in (6.16) with their
truncated versions. Outside the permitted region, all derivative terms in equation (6.16) vanish, which

allows us to explicitly determine the following boundary data:

9o’
— 2
5= (1—g)r - F2LL0

o

u(K) =u(-K) = ¢61n (6.18)

By defining u; = u and us = u’, equation (6.16) can be reduced to the following first-order,

non-linear ODE for y € [-K, K] with boundary data (6.18):

Mi()’) = ua,

, 2¢6 uy 2u9 1—vypuap 1 1-vy
us(y) = —a—25w exp ( - @) - ?(b(y) + 77) - 5“%(1 + Y PQ) (6.19)

_20-y) 5, # )

+
a? (r ¢—1 2’}/0'2

The solving of the above boundary value problem is implemented with the package deSolve in R

[61], which is built upon Fortran routines. There are a few points to note:

* The numerical stipulates initial conditions of u; and u9 at y = —K. However, the truncation only
provides boundary data for #; at y = —K and y = K. We circumvent this problem as follows.
The numerics suggest that u; (K) is increasing with respect to the initial value us(—K). We take
advantage of this by using an simple interval bisection algorithm to determine numerically the
appropriate value for uo(—K), so that u1 (K) matches the terminal data in (6.18) We use a simple
interval bisection algorithm to determine the appropriate value for u5(0) so that u; (K) matches

the terminal data in (6.18).
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Algorithm 6.3.1. An interval bisection algorithm/pseudo-code for solving equation of the type

g(x) = 0 for a continuous, increasing function g is presented below.

Step 1. Initilisation: Select values ag and by such that ag < by and g(ag) < 0 < g(by).

Step 2. Iterative step: At n-th iteration, we should have lower and upper bounds a,, < b,, such
that g(a,) < 0 < g(by). Ifg(%) < 0, then let apy1 = % and b,y = b,. If

an+by,

b
g(#522) > 0, let apy1 = an and by = %

an+by,

Step 3. If |g(%)| < € for a predetermined error level €, stop the iteration and report <“5=" as

the numerical solution.

* For the boundary data in (6.18) to be well-defined, the denominator within logarithm has to be

strictly positive. This gives an upper bound to the cut off value:

2, o
K < —7(— _ r) 2 Cut-off limit. (6.20)
2\ -¢

We characterize K by what we shall name the cut-off factor, defined as follows:
K = cut-off factor x cut-off limit. (6.21)

As the cut-off factor approaches 1, K approaches its upper bound and the boundary data (6.18)
diverges. In particular, the algorithm becomes unstable and highly sensitive with respect to

u2(—K) as the cut-off factor grows.

6.3.4 Numerical Output: Truncation Level Selection

The numerical results reported below suggest that there exists a threshold for the cut-off factor, under

(resp. over) which the truncated model satisfies (resp. fails) inequalities (6.12a),(6.12b) and (6.13) of

Theorem 6.2.2. Let us collectively refer to these inequalities as the Sufficiency condition. Given a set

of model parameters, we let the cut-off factor increase in steps of 0.005 until it no longer passes the

sufficiency check. In section 6.3.3, for each configuration of y and ¢, we select the maximal cut-off

factor using this procedure.

One way to assess the goodness of the truncation K is by comparing it to the long-term standard

deviation of the factor process. In particular, the Ornstein-Uhlenbeck process Y has a Gaussian
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asymptotic distribution with zero mean and standard deviation % Therefore, we also report the ratio
K /+Ja?/2bg in our findings. In table 6.1, we report our findings under baseline parameters given in

(6.15) and preference parameters suggested in [3].

Table 6.1 Model parameters: rg = 0.02,7; = 0,0 = 0.0436,4 = 0,4; = 1, by = 0.0226,a = 0.0189.
Preference paramaters: y = 5, ¢ = 2/3,6 = 0.02.

Cut Off Factor | K K/,/%O us(—K) | Sufficiency

0.2000 0.1265 | 1.4229 | 2.3199
0.2050 0.1297 | 1.4584 | 24778
0.2100 0.1328 | 1.4940 | 2.6421
0.2150 0.1360 | 1.5296 | 2.8129
0.2200 0.1391 | 1.5652 | 2.9903
0.2250 0.1423 | 1.6007 | 3.1744

XX XSS

Table 6.2 Model parameters are the same as Table 6.1. Preference parameters: y = 1.2, ¢ = 0.9 and
6 =0.02.

Cut Off Factor K K/ /% us(—K) | Sufficiency

0.4300 0.2826 | 3.1792 | 8.9243
0.4350 0.2859 | 3.2162 | 9.3025
0.4400 0.2892 | 3.2531 9.6939
0.4450 0.2925 | 3.2901 | 10.0991
0.4500 0.2958 | 3.3271 | 10.5185

SEENENEN

The uniqueness criterion is more forgiving for y and ¢ both close to 1, in the sense that we can
now achieve a truncation over three times the asymptotic standard deviation of the factor process (see
Table 6.2). This makes intuitive sense, because as y — 17 and ¢ — 17, we are approximating the
case of a myopic investor with logarithmic utility. We can also raise the ratio K/ % if the factor
process is more "tempered’, i.e. when b is large and « is small. By halving the constant a, we achieve
a maximum ratio of approximately 2.561. If we additionally double b, this ratio only raises slightly to

2.817.
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6.4 Proofs for Section 6.1

Proof of Proposition 6.1.1. Given a constant strategy (7, ), let us estimate the growth rate of ¢ For any

generic exponent p € R:

f = oMK

; 5 , (6.22)
- P =P 2 2
:617‘/’8 Pexp(/ [p(r—l)+p7r,u+—7r o ]ds)S(p/ 7r0')
0 2 0 t
Therefore, E( [~ 6¢=0¢~") (c;)Pd?) is finite if and only if:
p?-p
—S5+p(r—1)+pru+ r’o? < 0. (6.23)

Setting p = 2(¢ —y) and p = 2(1 — ¢) and substituting the formula of 7* and [* (see equation
(6.2)) into (6.23), we obtain inequalities (6.5a) and (6.5b). Moreover, in the considered configuration
where ¢ < 1 <y, L2~ (R* x Q) c L2~V (R* x Q), where the product space is endowed with

the probability measure dP ® §e~%! dt. Therefore, the integrability of (¢*)2(¢~) also implies that of

(c*)2(-7),

Next, we estimate the uniqueness criterion of c. For the convenience of the reader, let us recall the

uniquness criterion of a given consumption process ¢ € C™ (see equation (2.22)):

o0 1-¢
- _ c
lim E|e?(1-0) fr (-0 dr / e % ¢y Vds| =0, where @, = s (6.24)
T —eo T E,(ft Se=00=)¢, % ds)

In the special case of constant (7, [), the quantity @, in the uniqueness criterion can be computed

explicitly as follows:

q)t—]. — Et[/mée_é(s_t) [&]1_¢ds]
t Ct

:E,{/mée“s“") eXp(/s [(1—¢)(r—l)+(1—¢)mu— @nzﬁ]ds)a(p/o.nadwp)”}

= 5(5 —1=-9)r—-0)-1-¢)mu+ @Hc?)_l.

(6.25)
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Therefore, the first exponential factor in the uniqueness criterion is:

000 [y (1=00dt _ o) ([(7 o) (r =D+ (y - ¢)mu - @H&]T). (6.26)

Moreover:

E( '/T‘X’ e_ésci_yds) = /T00 Y7 7716705 oxp ([(1 -y (r=-D+ A -y)ru+ @n%‘ﬂs)ds

= Kexp([—(5+ 1=-vr-D+Q—-y)nu+ @FQO'Q]T)

(6.27)

where K = ¢¥(1-7) g7-1 fom exp ([-6+(1=y)(r—=D+(1—y)mu+ WWgcﬁ]s)ds. Combining the
growth rates of (6.26) and (6.27), we conclude that the uniqueness criterion is satisfied if and only if:

(y=Dy-9¢(y—9) 2202

—5+ (L= 9= D)+ (1 - G+ 5

<0, (6.28)

which yields inequality (6.5¢) for the candidate optimal control (7%, [*).

6.5 Proofs for Section 6.2

6.5.1 Proof of Theorem 6.2.1

Part 1. Simplifying equation (6.11a) leads to g;(y)?? = E( fooo 5e‘5’rt1_7dt’Yo = y), whence we
1-¢

¢
)

1-¢
obtain the estimate inf,cg 7(y) ¢ < g1(y) < ||l

For go(y), the integrand can be simplified as follows:

#-1
4

exp(—%t+ 1;¢'/Otrsds)cﬁ(—/o.u(o")_lde)l

= exp ( - gt + '/Ot (177¢rs + 12;;5/,12_1;1)615)8(%71 '/0. u'(o")_lde)t.

(6.29)
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We can exchange expectation and integral in (6.11b) and evaluate the upper bound directly. The

strengthened assumption ii. ensures that the integral below is finite:

DO o 1- 1-
A e R

; 757 IS wllo s

) (6.30)

5= (1= @)lIrlleo - SNz plleo

Part 2. We work with the exponential parametrisation of the HIB equation. As remarked in he
proof of Theorem 5.1.2, the transform u = ¢0 In(g) satisfies equation (5.32). It is sufficient to show
that Vu is bounded uniformly in E. If it is, then so is % and consequently 7*. We can achieve this with
Theorem 15.5 [25], a result on the interior gradient bound of an elliptic PDE. Below, we will state and
prove a preliminary result which facilitates the necessary structural requirement for applying Theorem

15.5 [25], and then an abbreviated version of this Theorem which is sufficient for our purpose.

Proposition 6.5.1. Define the mapping B(y, z,p) : E X R x R — R by, where all model coefficients

have argument y:

N 1- 1 1-
B(y,z,p) = ¢85Ye %0 + p'(b + —7Y’z—1y) + 5p’(A + yY’Z_lY)p
y
: (6.31)
5 'y
+(r+ +’u M)(l—y).
$-1 2y

Moreover, define the differential operators: 8; = D,,,6 £ ¥ p;0; and 52D, +|p|™? 2. PiDy,.
Denote also by A and A the minimum and maximum eigenvalue of A, respectively. Then, under

assumption 6.2.1, the quasilinear PDE operator:

1
G"(y.u, Vu, D?uly) = 5 " A ()Diju+ B(y,u, Vu) (6.32)
i

satisfies the following sets of structural conditions for 9 € (0,1):

A, (5 +1)d" 64", |p|? dka = 0(1); (6.33a)

B.|p|”8;B,6B,5B = 0(A|p|?). (6.33b)
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Proof. The first set of structural conditions (6.33a) follow straightforwardly from the fact that 4
is bounded away from zero, as assumed in 6.2.1, and that @'/ and its partial derivatives are bounded

uniformly. In particular, we note that dya’’/ = 0.

The second set of structural conditions (6.33b) follows from the quadratic structure of B with

respect to p and the boundedness of the model coefficients and their derivatives.

O

Theorem 6.5.2. Let u € C?(E) be a solution to the equation (5.32) and Q be a subdomain of E.

Under assumption 6.2.1, the following gradient bound for u holds:
IDu(y)| < C(1 +dist(y, 0Q)"7), yeQ, (6.34)

where C depends on the quantities of in the structural conditions and supy,cqlu(y)| only. As a corollary,

|Du(y)| is bounded uniformly.

Proof. In proposition 6.5.1, we have furnished sufficient regularity to apply Theorem 15.5 of [25],
which immediately yields (6.34). For z € R¥ and d > 0, let us define B4(z) as the open balls centred
around z with respect to the Euclidean norm: {y € R¥, ||y — z|]| < d}. For any point y € R¥, we
consider n sufficiently large so that y € B, (0). We consider u as the solution of (5.32) in the larger
domain B,,,1(0). By construction, By/2(y) C B,+1(0). Combine this and inequality (6.34), we attain
[Du(y)| < C(1+ (1/2)~Y?), which concludes the result.

6.5.2 Proof of Proposition 6.2.2.

Part I. Integrability. Using the same argument as in Part I of the proof of Proposition 6.1.1, to verify

the membership of ¢* = [*X™ " in C*, it is sufficient to show that ¢* € LP (R* x Q) for p = 2(1 — ¢)

and 2(¢—1). Since [* is bounded above and away from zero, it is equivalent to confirm the integrability
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of X;. For a generic exponent p, the form of (X;)” can be written as:

(X)) =exp(/0t(p(r—l )+ p(ayu+ ZL Pe- P xy2o 2)ds)a( /O.ﬂ*(r)t

=exp(/t [p(r—l*)+[p P ],uZ ’u+¢9(p+pz_—p)Vg Y=y (6.35)
0 2y? Y Y 8
A ;§;¢292%Y’2_1Y%]ds)8(p‘/0'n*@)t.

Forp =2(¢—7vy) < O:

(¢-»Q2p-1) p*
,},2

o2

(X)X = exp(/ot [2(¢—y)(r ~ )+

L 200(¢ - 7)(2¢ Y=g uap  (¢-y)(2¢ -2y - 1)¢*¢? (8_’)2a2p2]ds). (6.36)
g

g o %
&(26 - y)/w

The specification ¢ < 1 < v is not sufficient to determine the sign of the oz term.

(¢— 7)(2¢ D p?
¥?
In the hypothesis of the theorem, we assumed that ¢ > 1, which is consistent with the empirically
relevant values of ¢. In this case:
(p-v(2¢-1). [#2]
—— “inf|—
y

(G0 < exp ({200 =7 (inf r =687 + =7

s ’2¢9(¢ - 7);22¢ —y-Dp | 1 i (6.37)
1\ 4202
D& el o) x (200 [ wo)

For p = 2(1 — ¢) > 0: The form of the optimal wealth process is:

(1-¢)2y-2¢+1) p*

2 o2

(X720 = exp ( / -9 -1+
0

L2060 -Y)(y+1-2¢) ¢ pap $*(1-7)%(1-2¢) (g L
y? g o " Y2(1 - ¢) ( ) '02)8(2(1 B ¢)‘/0 d O-)t
(6.38)
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Again, the specification ¢ < 1 < 7y is not sufficient to determine the sign of the quadratic term in

Vg in the above equation. It is negative under the extra assumption ¢ > 5 though Thus:

(1-¢)(2y —2¢+1) p[u_g]

(X:)2(1_¢) < exp ({2(1 —¢)(supr—-6¥gH + 5 5
yeE Y o

(6.39)

N ‘2¢(1 -y)(y+1-2¢)p
,),2

=INY 2(1—¢>/ xo)

For both exponents, p = 2(¢ —y) and p = 2(1 — ¢), the growth rate of (X;)? take the form of
eR'M,, where R € R and M is a martingale. Consequently, by taking expectation through the Lebesgue
integral, E(foOO de 01 (X*)Pdt) = fooo 6e=+R) ¢ which is finite when R < 6. By replacing R with

the appropriate growth rates obtained in (6.37) & (6.39), we attain inequalities (6.12a) and (6.12b).

Part II. Uniqueness. We recall that, for ¢* to satisfy the uniqueness criterion, we need to verify the

limit condition:

T [Se]
Tlim e_‘mTE[e‘s(l_g)fo _(Dsds/ 66_5S(C;)1_7ds =0, where
—00 T

P, = Ez(/oo (56_6(5_[) [C_E]l_¢)_1.
t ¢

(6.40)

. . . . _ (o] —5(s— c; 1- -1 . .
Firstly, we begin by estimating ®, = (E; [ft Se= 90 ’)(E) ¢ds])~!. Under assumption 6.2.1, it

is possible to bound the ratio (%)1‘45 from above with exponential growth rate, as follows:
t

*

[62]1—¢ (g txH?
Cy

il T (g(r)IxH1-¢

G11-¢ s oW A=p)2y-¢) > d(Ll-y)(y-9¢) g
S[é] eXp(/, [(1—¢)(§1€11E)r—l)+ 2727 %+ 7727 %MZP

. ;jfl__;;;j(%’)?azpﬂdu)a( /0 A-orodwg)

s[i?]l“bexp(/,s[<1—¢><§2£r—”g*> S A

|ua“ du /(1—¢)7r O'de)

’¢(1 7)(7 P)p

t,s

(6.41)
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Let R be the constant defined in the statement of the theorem (equation (6.13)), then B, ([c%/c¥]'=%) <

[g] 1-¢ exp (R(s —1)). This gives a deterministic bound for ®:

[ * 1_¢ o 1_¢
o7 = 5 / 6000 S ) < |87 2 (6.42)
¢ Ct 5 0—R

Secondly, we shall now estimate the integral involving (c*)'~” in the uniqueness criterion. By

substituting the relation In(g(¥,)) - In(g(y) = f;' (&2 + “(‘*2’;29 - TEETE)ds + [} TE4dW, into

the form of X* in equation (6.35), we have:

ol-y _ 11— g(y) 12¢ ! o -1
(X)) =xt —gm)] exp (6 /0 (6 - 6 g(¥y) " )ds)
(6.43)

’

Vg'a

dWS) .

t

x8((1—7)‘/0t(7r*)'0'de+¢0/

t
0
This allows for the following estimate for ¢*, where K is a generic constant that may change

between lines:

B( / e~ () dr) < KB / e~ (X' dr
T T
< K/me—5t+50t—96¢g_1tdt (6 44)
0

o0
(5= Y ,—1 (5= ¥ ,-1
_ go-(6-06+05%g )T/ o (6-86+05%g )1 4,
0

The final estimate for the uniqueness criterion is attained by combining estimates (6.42) and (6.44):

E(eé(l—é)) fOT(l—GD,)dt/

se % (ci)l_”ds)
T

<o (5(1 o [5 - (g/g)z—l(é - R)]T)E( /"" 56_&(6;)1_%) (6.45)
T
< Kexp ((1 —0)[6-(g/g)* (5 - R)]T) exp ( —(5-660+ 96‘/’5‘1)T),

which vanishes at infinity if the relation (6.13) holds.
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