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Abstract

In this thesis, we study stochastic differential utility of Epstein–Zin type in a general semimartingale

setting. We show that the traditional characterization using the transversality condition identifies an

incorrect Epstein–Zin utility in the empirical relevant parameter case. Instead, we present an original

characterisation of Epstein–Zin utility in an infinite time horizon and provide sufficient conditions for

its existence and uniqueness. In the second half of the thesis, we study an infinite horizon optimal

consumption-investment problem in an incomplete, Brownian-driven market for an investor whose

preferences are governed by Epstein–Zin utility.
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CHAPTER 1

INTRODUCTION

In classic portfolio optimisation frameworks, the representative agent is assumed to have a time-additive

von Neumann-Morgenstein utility. In such a model, the relative risk aversion parameter, denoted 𝛾,

is forced to be equal to reciprocal of Elasticity of Intertemporal Substitution (EIS), denoted 𝜓. The

former parameter measures the agent’s attitude towards risk, and the latter his willingness to substitute

consumption over time. This reciprocal relation turns out to be an advantage and disadvantage. On

the one hand, this relationship has the attractive feature of mathematical tractability. On the other

hand, this inflexibility causes time-additive models to perform poorly empirically. For example, a

time-additive model suggests that the investor has to be implausibly risk-averse to justify the high

average equity premium observed [59], a phenomenon known as the equity premium puzzle (see also

[63]). Other asset pricing puzzles observed empirically include the risk free rate puzzle [63], excess

volatility puzzle [58][44] and credit spread puzzle [14][18].

An alternative to time-additive utility is the so-called recursive utility, which dates back to the

seminal papers of Kreps & Porteus [42],[43], Epstein & Zin [23], and Weil [64], who studied recursive

utility in a discrete time setting. Its continuous time counterpart was developed by Duffie & Epstein

[20] and shown to be the limit of the discrete model as the time grid converges to 0 by Kraft &

Seifried [38]. Given a consumption plan 𝑐 on the finite horizon [0, 𝑇], the stochastic differential
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utility associated with it is defined as the solution of the Backwards Stochastic Differential Equation

(BSDE)1:

𝑉𝑡 = E𝑡

(
𝑈 (𝑐𝑇 ) +

∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠
)
, 𝑡 ∈ [0, 𝑇] (1.1)

where 𝑓 is an aggregator function and 𝑈 a bequest utility function. Recursive utility generalises its

time-additive counterpart in several ways. Firstly, it allows for the separation between risk aversion

and EIS, which now can be parametrised individually. Secondly, it introduces the notion of resolution

of uncertainty. An agent’s temporal preference for information can be thought of as the result of two

competing forces: first, his perhaps irrational aversion of future consequences, and thus delaying bad

news, and second, the ability to plan ahead by using early information (cf. [60]). In the time additive

case, the agent is indifferent.

In recent years, interest in recursive utility has been sparked by progresses towards explaining asset

pricing puzzles, begun with the long-run risk model (LRRM) proposed by Bansal and Yaron [3][2],

which explores the equity premium and risk-free rate puzzles and utilises a discrete time Epstein–Zin

utility model in a critical way. In their settings, both risk aversion and EIS are calibrated to be greater

than 1, indicating a preference for early resolution of uncertainty. Long run consumption growth risk

becomes quantitatively important as a result, and stipulates an additional risk premium. Such a quantity

is not present in the classical paradigm, where the agent is indifferent towards the moment in time

where uncertainty is resolved. Other applications of recursive utility in explaining the aforementioned

puzzles include [5] for the excess volatility puzzle and [6] for the credit spread puzzle. Motivated by

these developments, we investigate the question of existence and uniqueness of stochastic differential

utility of Epstein–Zin type, as well as the related portfolio optimisation problem, both of which are in

infinite horizon.

The formal notion of Epstein–Zin utility in infinite horizon has not been satisfactorily established

in the literature. Early work in stochastic differential utility (e.g. [20]) assumes the Lipschitz property

for the aggregator, which is violated in the Epstein–Zin parametrisation. Similarly, Duffie et. al’s work

on infinite horizon (Appendix C [20]) stipulates the so-called uniform sector condition, which does

not apply to the Epstein–Zin aggregator. Duffie & Lion [21] also studied stochastic differential utility

for consumptions following a Markovian diffusion, using PDE methods. However, in the empirically

relevant setting where 𝛾, 𝜓 > 1,2 uniqueness becomes a delicate issue and requires 𝑐 to be bounded

1All mathematical notions in the introduction will be defined formally later in the thesis.
2Corresponding to the case 𝜇 < −1 in their paper.
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from above and away from 0. A more recent treatment that addresses specifically Epstein–Zin utility

is offered by Melnyk et. al [47]. However, the question of existence is not treated and, when 𝛾 > 𝜓,

uniqueness is tied to the condition that long-term consumption cannot exceed current consumption.

On the finite horizon, Schroder & Schiadas [55] studied Epstein–Zin utility’s existence and uniqueness

question with no terminal consumptions. Seiferling & Seifried [57] studied the same problem, but with

terminal consumptions and extra parameter restrictions, under which the aggregator is either convex

or concave. Xing [66] studied the case where 𝛾, 𝜓 > 1 and the filtration is generated by a Brownian

Motion.

The existing literature on infinite horizon BSDE also does not readily answer the questions of

existence and uniqueness for Epstein–Zin utility. An infinite horizon Epstein–Zin utility process 𝑉 is

can be defined by the equation:

𝑉𝑡 = E
(
𝑉𝑇 +

∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠
���F𝑡 ) for all 0 ≤ 𝑡 ≤ 𝑇 < ∞. (1.2)

Such a BSDE can be thought of as one with stopping terminal time 𝜏 such that P(𝜏 = ∞) = 1. Darling

& Pardoux [17], Briand & Hu [8] studied BSDEs with random but almost surely finite terminal time.

Royer [54] allowed for infinite terminal time, but the question of uniqueness was only treated when

P(𝜏 < ∞) = 1. Existing results whose scope includes the case P(𝜏 = ∞) = 1 have experienced

setbacks when applied to the Epstein–Zin aggregator. For instance, results attained by Bahlali et. al [1],

Hu & Tessitore [30] and Confortola & Briand [15] assume either linear growth or uniform Lipschitz

condition in 𝑣. More recently, Papapantoleon et. al [49] studied random terminal time BSDEs with

jumps under a so-called stochastic Lipschitz condition (condition (F3) therein). All these conditions

are violated by the Epstein–Zin aggregator.

One contribution of this thesis is in our original method of characterising the Epstein–Zin utility

process in infinite horizon. In the finite horizon case, Seifried & Seiferling [57] established the

relationship between Epstein–Zin and additive utilities (cf. Section 2.3). In the referenced paper,

they characterised the utility process 𝑉 by equation (1.1). Then, if 𝑈𝛾 and 𝑈𝜓
−1

are additive utility

processes of an agent with risk aversion 𝛾 and 𝜓−1, respectively, then:

𝑈𝛾∨𝜓
−1 ≤ 𝑉 ≤ 𝑈𝛾∧𝜓−1

. (1.3)
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In extending to infinite horizon, our method is based on two observations. Firstly, as (1.3) displays a

relationship between Epstein–Zin utility and different levels of risk aversion, it is desirable to preserve

this ordering in an infinite horizon extension. Secondly, while extending 𝑉 to infinite horizon might be

tricky, it is relatively straightforward and intuitive to extend the definitions𝑈𝛾 and𝑈𝜓
−1

. Therefore, we

incorporate an infinite horizon version of (1.3) into the definition of Epstein–Zin utility. We essentially

reverse the procedure: we take the inequalities (1.3) as given and use them to deduce the existence

of Epstein–Zin utility. This a priori bound is utilised in answering both existence and uniqueness

questions in infinite horizon. In this method, an existence result is obtained when the consumption

process satisfies E(
∫ ∞
0
𝛿𝑒−𝛿𝑡𝑐𝑝𝑡 𝑑𝑡) < ∞ for 𝑝 = 2(1 − 𝛾), 2(1 − 𝜓−1) and 2(𝜓−1 − 𝛾), where 𝛿 > 0 is

the agent’s discounting rate.

In infinite horizon, the uniqueness question poses another challenge. In the literature on BSDEs

with monotone driver and random terminal time, when 𝜕𝑣 𝑓 (𝑐,𝑉) is bounded above by 𝑘 , one might

consider a transversality condition of the type:

lim
𝑇→∞

E
(
𝑒𝑘𝑇 |𝑉𝑇 |

)
= 0, (1.4)

which helps to circumvent the absence of a terminal condition (e.g. Appendix C of [20], see also

Section 2.6). However, in certain parametrisations where 1−𝛾
1−𝜓−1 < 0, (1.4) forces the unique transversal

solution to equation (1.2) to be identically zero. Not only is it trivial and not open to any economic

interpretation, it also excludes the solution implied by our existence theorem. We overcome this

problem by proposing a limit condition in 𝑐, named the uniqueness criterion (cf. Theorem 2.4.2),

under which the solution according to our characterisation is unique. An advantage of our formulation

is that existence and uniqueness issues can be resolved by studying the consumption process. This

condition can be considered a generalisation of (1.4) and overlaps in parts with the result of [47],

which is discussed in detail in Section 2.6.

The portfolio and consumption for additive utility in finite time has been studied extensively,

starting from Merton’s 1971 paper [48], which utilised optimal control theory to study the investment

decisions of a rational, utility-maximising investor. A martingale (duality) approach was introduced

by by Pliska [52], Cox & Huang [16], Karatzas et al. [31], Karatzas et. al [32], and He & Pearson

[29] (see also [40],[41] and [34]). As recursive utility allows one to break the relation 𝛾 = 𝜓−1 and

model the investor’s rationale more closely, a natural evolution for the portfolio optimisation problem

is to consider investors whose preferences are described by Epstein–Zin utility. In this direction, this
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problem has been studied by Schroder & Skiadas [55], [56], Chacko & Viceira [13], Kraft et al. [39],

Kraft et al. [37] and Xing [66], utilizing stochastic control techniques. This approach often involves

a Hamilton-Jacobi-Bellman (HJB) partial differential equation in the Markovian case or a BSDE in

the non-Markovian case. Recently, Matoussi & Xing [46] also introduced a duality approach, which

bypasses certain technical difficulties from the non-standard HJB equation. In the infinite horizon, the

time-additive utility case has been considered by Hata & Sheu [27][28] and Guasoni & Wang [26]. To

the best of our knowledge, however, the portfolio optimisation for Epstein–Zin utility in an infinite

time horizon remains a gap in the literature, and this thesis will contribute to filling in that gap.

We tackled this problem through the method of stochastic control. In infinite horizon, the HJB

equation is an elliptic quasilinear partial differential equation without boundary conditions. This

absence of boundary data is the principal challenge in approaching this equation. However, in the

presence of sub- and super-solution to the HJB equation, a solution can be established which is

sandwiched between the sub- and super-solution. This is the main content of our existence theorem.

We also provide technical conditions which furnish the required sub- and super-solutions to the HJB

equation. In this approach, our method is an extension to recursive utility from the additive utility

results in [27] and [26].

Regarding the question of verification, the classic technique in stochastic control is to establish

the solution of the HJB equation as an upper bound, then verify the candidate control implied by

said solution as a maximiser. This often involves extra regularity conditions. On the finite horizon,

examples in the literature include the use of utility gradient by Kraft et. al [36] and BSDE comparison

results by Kraft et. al [39] and Xing [66]. On the infinite horizon, verification for additive utilities

were achieved by direct calculations in [28] and [26].

In our framework, finding the optimal Epstein–Zin utility process requires two ingredients: firstly,

finding a candidate process that satisfies the dynamics (1.1), and secondly, verifying that it satisfies the

power utility bounds (1.3). The second ingredient provides above turns out to also verify optimality of

the candidate solution amongst a set of permissible strategies (cf. Theorem 5.2.2). The convenience

of our result is that, the characterisation of the candidate solution also characterises its optimality.

Moreover, confirming this second ingredient can be achieved by a limit condition on the candidate

solution (cf. Lemma 5.2.1).
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The thesis is structured as follows. The first half of the thesis concerns with a careful construction

and treatment of Epstein–Zin stochastic differential utility. In Chapter 2, we present the characterisation

of infinite horizon Epstein–Zin utilities, as well as the main existence and uniqueness result. The newly

established results will be demonstrated in two consumption models in Chapter 3. Having established

the concept of Epstein–Zin utility in infinite horizon, we address the question of portfolio optimisation

in the second half. We formulate the problem and derive the HJB equation in Chapter 4, and solve it in

Chapter 5. Some examples and numerical implementation are provided in Chapter 6.
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CHAPTER 2

EPSTEIN–ZIN STOCHASTIC DIFFERENTIAL UTILITY IN INFINITE

HORIZON: FORMULATION, EXISTENCE AND UNIQUENESS

2.1 Preliminaries & Notations

We consider a filtered probability space (Ω, F , {F }𝑡 ∈T, P). Here, T is a time index set, which is

equal to [0, 𝑇] for some 𝑇 > 0 in the finite horizon setting, and [0,∞) in the infinite horizon setting.

Moreover, when the time horizon is finite, we assume that the filtration {F }𝑡 ∈T satisfies the usual

conditions of completeness and right continuity. In the infinite horizon, we assume that for any 𝑇 > 0,

the restriction {F𝑡 }𝑡 ∈[0,𝑇 ] satisfies the usual conditions. The usual conditions are standard in finite

horizon. In particular, they were assumed in [57] & [66], whose work we build upon. However,

{F }𝑡 ∈T is not necessarily the augmentation of a filtration generated by a Brownian Motion.

Regarding probabilistic conventions, all adaptedness properties henceforth will be stated in relation

to this filtration. For the rest of the thesis, we shall drop the ‘almost sure’ clarification whenever it is

clear from the context. Moreover, when we compare two stochastic processes {𝑋𝑡 }𝑡 ∈T and {𝑌𝑡 }𝑡 ∈T,

unless otherwise specified, it will always be in the ’pointwise’ sense. That is, 𝑋 ≥ 𝑌 if for all 𝑡 ∈ T,

𝑋𝑡 ≥ 𝑌𝑡 .
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A consumption process or consumption plan in a finite time horizon [0, 𝑇] consists of a continu-

ously indexed stream of progressively measurable and positive instantaneous consumption {𝑐𝑡 }𝑡 ∈[0,𝑇 )
and a positive, F𝑇 -measurable terminal lump sum 𝑐𝑇 . On the time horizon [0, 𝑇], an agent’s prefer-

ences over the space of consumption plans can be described by his stochastic differential utility (SDU).

Let us describe the components necessary for its characterisation. Let 𝛿 > 0 be the deterministic

discounting rate, 0 < 𝛾 ≠ 1 the relative risk aversion, and 0 < 𝜓 ≠ 1 the Elasticity of Intertemporal

Substitution (EIS). By (1 − 𝛾)R+, we mean the positive half line [0,∞) when 𝛾 < 1 and the negative

half line (−∞, 0] for 𝛾 > 1. It is also customary to denote by 𝜙 = 𝜓−1 the reciprocal of EIS and

𝜃 = (1 − 𝛾)/(1 − 𝜙). The Epstein–Zin aggregator 𝑓 : (0,∞) × (1 − 𝛾)R+ → R is defined by:

𝑓 (𝑐, 𝑣) = 𝛿

1 − 𝜙𝑐
1−𝜙 [(1 − 𝛾)𝑣]1− 1

𝜃 − 𝛿𝜃𝑣. (2.1)

This is a standard parametrisation, which was used by in [19], [24], [11], amongst others. Hence-

forth we will reserve the letter 𝑓 for the Epstein–Zin aggregator, unless specified otherwise. Next,

for 𝑝 satisfying 𝑝 > 0 and 𝑝 ≠ 1, let 𝑢𝑝 : dom(𝑝) → (1 − 𝑝)R+ be a CRRA (constant relative risk

aversion) utility function, i.e. 𝑢𝑝 (·) = ( ·)1−𝑝
1−𝑝 , where dom(𝑝) = (0,∞) when 𝑝 > 1 and [0,∞) when

𝑝 < 1. This subsumes the additive utility case, as when 𝛾 = 𝜓−1, this reduces to the additive utility

aggregator of a agent with CRRA utility function with risk aversion 𝛾. The bequest utility function is

given by𝑈 (·) = 𝑢𝛾 (·), i.e. the CRRA utility function with parameter 𝛾.1

Definition 2.1.1. Let 𝑐 be a consumption plan in the finite horizon [0, 𝑇]. The associated Epstein–Zin

utility process is defined as the unique solution of the equation below:

𝑉𝑐𝑡 = E𝑡

( ∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑐𝑠 )𝑑𝑠 +𝑈 (𝑐𝑇 )
)

𝑡 ∈ [0, 𝑇] . (2.2)

In an infinite horizon, a consumption process is a stream of progressively measurable and positive

instantaneous consumption over the positive half-line: {𝑐𝑡 }𝑡≥0. We wish to extend Definition 2.1.1

into the infinite horizon setting. A generalisation thereof can be:
1Some authors, e.g. [57] define the bequest utility as𝑈 (𝑥) = 𝑢𝛾 (𝜖𝑥), where 𝜖 > 0 is the weight on terminal consumption.

We set 𝜖 = 1 firstly for the sake of notational simplicity, and secondly in the treatment of infinite horizon case, the value of 𝜖
is irrelevant. In the finite horizon case, the strategy is the same for 0 < 𝜖 ≠ 1.

8



Pre-Definition 2.1.1. Let 𝑐 be a consumption plan in the infinite horizon [0,∞). The associated

Epstein–Zin utility process is defined as the unique solution of the equation:

𝑉𝑐𝑡 = E𝑡

( ∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑐𝑠 )𝑑𝑠 +𝑉𝑐𝑇
)

for all 0 ≤ 𝑡 ≤ 𝑇 < ∞. (2.3)

This extension will be inadequate for our purpose (hence the phrase ‘Pre-Definition’). In the

sections that will follow, we will explore the drawbacks and challenges faced by existing works towards

solving equation (2.3). After that, another definition will be proposed for Epstein–Zin utility.

Moreover, for the rest of this thesis, without rementioning, we focus on parametrisations of 𝛾 and

𝜓 that satisfy either:

𝛾𝜓, 𝜓 > 1 or 𝛾𝜓, 𝜓 < 1, (2.4)

which was used in [57]. It overlaps with the context of Theorem 1 in [55], which requires either

𝛾 > 1, 0 < 𝜓 < 1 or 0 < 𝛾 < 1, 𝜓 > 1. It also overlaps with the settings of [47], where 𝛾 > 1 and

𝛾 ≠ 𝜓−1. It also covers the empirically relevant configurations 𝛾, 𝜓 > 1 studied by Bansal & Yaron [3]

and Xing [66].

2.2 Existing Results: An Overview

In this section, we explore attempts to resolve the question of existence and uniqueness for Stochastic

Differential Utility, and the extent to which they apply to the Epstein–Zin case. The earliest work

addressing SDU, although not of Epstein–Zin type, in infinite horizon is by Duffie, Epstein & Skiadas

in Appendix C of [20]. Therein, the issue of existence is solved by repeatedly solving the following

finite horizon BSDE:

𝑉
(𝑇 )
𝑡 = E𝑡

( ∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉 (𝑇 )
𝑠 )𝑑𝑠

)
, 𝑡 ∈ [0, 𝑇] . (2.5)

The solution in infinite horizon is achieved by taking the limit 𝑉𝑡 ≜ lim𝑇→∞𝑉
(𝑇 )
𝑡 . Although construc-

tion in the upcoming sections will bear some of this flavour, namely the method of localisation, the

generalisation to Epstein–Zin case is not straightforward. Firstly, in configurations where 𝛾 > 1, the

terminal value of 𝑉 (𝑇 ) being nil is equivalent to an infinitely large terminal consumption. Secondly,
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even if we settled for such an untenably large terminal consumption, this would imply that the truncated

processes 𝑉 (𝑇 ) are identically zero when 𝜃 < 0. A more serious issue is in the regularity assumptions

of the aggregator.

Assumption 2.2.1. The following assumptions on the aggregator 𝑓 were assumed in Appendix C of

[20]:

1. 𝑓 satisfies linear growth in consumption. That is, there exists constants 𝑘1 and 𝑘2 for which

| 𝑓 (𝑐, 0) | ≤ 𝑘1 + 𝑘2 |𝑐 |.

2. 𝑓 satisfies the so-called uniform sector condition in utility. That is, there exist real constants

−𝑘 < −𝜈 such that, for ℎ ∈ R and (𝑐, 𝑣) ∈ (0,∞) × R:

− 𝑘 ≤ 𝑓 (𝑐, 𝑣 + ℎ) − 𝑓 (𝑐, 𝑣)
ℎ

≤ −𝜈. (2.6)

The second assumption is violated by the Epstein–Zin aggregator, which involves an a power term

with exponent 1 − 1/𝜃 in 𝑣. Under the parameter restriction (2.4), this power is either negative or

strictly greater than 1, and thus 𝑓 has unbounded partial derivative in 𝑣.

The way in which uniqueness issue was addressed in [20] also faces another challenge. In order to

circumvent the absence of terminal data, the following transversality condition was used:

lim
𝑇→∞

E(𝑒−𝜈𝑇 |𝑉𝑇 |) = 0, (2.7)

where −𝜈 is an upper bound in equation (2.6). In settings where 𝜃 < 0, the value of −𝜈 is positive,

which turns (2.7) into a decay condition, which forces the unique transversal solution to be identically

zero. This is discussed at length in Section 2.6.

Another paper, which also dates back to the early 90s, that addresses infinite horizon SDU is that of

Duffie & Lions [21]. Our formulation relates to theirs as follows. Suppose that {(𝑉𝑡 , 𝑍𝑡 )}𝑡≥0 satisfies

the following dynamics:

𝑑𝑉𝑡 = − 𝑓 (𝑐𝑡 , 𝑉𝑡 )𝑑𝑡 + 𝑍𝑡𝑑𝐵𝑡 , 𝑡 ≥ 0. (2.8)

If we define (V𝑡 ,Z𝑡 ) = (𝑉
1
𝜃

𝑡 , (1 − 𝜙) [(1 − 𝛾)𝑉𝑡 ]
1
𝜃
−1𝑍𝑡 ) for 𝑡 ≥ 0, then (V,Z) satisfies:

𝑑V𝑡 = −
[
𝛿𝑐

1−𝜙
𝑡 − 𝛿V𝑡 +

1

2
(𝜃 − 1)

Z2𝑡
V𝑡

]
𝑑𝑡 + Z𝑡𝑑𝐵𝑡 , 𝑡 ≥ 0. (2.9)
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In the notation of Duffie & Lions, 𝑢(𝑐) = 𝛿𝑐1−𝜙 and 𝜇 = 𝜃 − 1 < 0. The scope of their results, in

several ways, do not encompass our settings. Firstly, they worked with a Brownian filtration and the

consumption process is assumed to be a Markovian diffusion. By employing BSDE instead of PDE

methods, we can establish Epstein–Zin utilities in infinite horizon without both of these assumptions.

Secondly, their uniqueness results require 𝑢 to be bounded from above (Theorem 8 therein) or below

(Theorem 9 therein). In terms of 𝑐, this would translate into uniform boundedness conditions, which is

unsatisfactory.

We also briefly review existing results in finite horizon concerning existence and uniqueness of

Epstein–Zin utility. Schroder & Skiadas [55] and Seiferling & Seifreid [57] studied the existence of

Epstein–Zin utility under integrability conditions of the type E(
∫ 𝑇
0
𝑐
𝛽
𝑡 𝑑𝑡 + 𝑐

𝛽

𝑇
) < ∞ for all 𝛽 ∈ R.

Xing [66] also addressed the issue of existence under a more satisfactory integrability condition:

E(
∫ 𝑇
0
𝑐
1−1/𝜓
𝑡 𝑑𝑡 + 𝑐1−𝛾

𝑇
) < ∞, which was achieved by focusing on configurations where 𝛾, 𝜓 > 1. As

part of the roadmap towards solving the infinite horizon case, we will also review and refine these

finite horizon results in a way suitable for our purpose.

The collection of existing results regarding the infinite horizon case in the literature is sparse, and

does not characterise Epstein–Zin utility for an adequately wide class of consumption processes. This

presents a gap in the literature, which the content of this chapter aims to fill. The limitations observed

in existing results suggest two main difficulties: firstly, the question of characterising a BSDE without

terminal data, and secondly, determining an alternative to the transversality condition. In the case of

negative 𝜃, the problem is exacerbated by the presence of trivial solutions, which naturally satisfy

transversality conditions. These issues can be solved by imposing additional growth structures on

solutions of equation (2.3). In the next section, we shall discuss how said structures arise naturally in

the finite horizon, which both motivates and justifies our method.

2.3 Motivation From Finite Horizon Settings.

Let us motivate our theory with an informal consideration of discrete time recursive preferences with

finitely many periods. Let {𝑐𝑡 , 𝑡 = 0, 1, .., 𝑁} be an adapted discrete time consumption process. Then,
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the recursive preference of Epstein–Zin type (cf. [23]) of a representative agent is given by:

𝑈𝑡 =
(
(1 − 𝛿)𝑐1−𝜙𝑡 + 𝛿[E𝑡 (𝑈1−𝛾

𝑡+1 )]
1−𝜙
1−𝛾

) 1
1−𝜙 , 𝑡 = 0, .., 𝑁 − 1,

𝑈𝑇 = 𝑐𝑇 .

(2.10)

For concreteness of the following example, let us consider the empirically relevant setting, where

𝜙 < 1 < 𝛾. Assume additionally that 𝛿 < 1. In this case, we can express𝑈𝑡 as sub- and super-solution

of linear difference equations, as follows:

𝑈
1−𝜙
𝑡 = (1 − 𝛿)𝑐1−𝜙𝑡 + 𝛿E𝑡 (𝑈1−𝛾

𝑡+1 )
1−𝜙
1−𝛾

≤ (1 − 𝛿)𝑐1−𝜙𝑡 + 𝛿E𝑡 (𝑈1−𝜙
𝑡+1 ).

(2.11)

𝑈
1−𝜙
𝑡 = (1 − 𝛿) (𝑐1−𝛾𝑡 )

1−𝜙
1−𝛾 + 𝛿E𝑡 [𝑈1−𝛾

𝑡+1 ]
1−𝜙
1−𝛾

≥
[
(1 − 𝛿)𝑐1−𝛾𝑡 + 𝛿E𝑡 [𝑈1−𝛾

𝑡+1 ]
] 1−𝜙

1−𝛾
.

(2.12)

The inequality of (2.11) follows from conditional Jensen’s inequality, and (2.12) follows from Jensen’s

inequality applied to a two-point discrete distribution with probability masses 1 − 𝛿 and 𝛿. We observe

that the recursion in (2.11) and (2.12) are the difference dynamics of time-additive utilities for an agent

with relative risk aversion 𝜙 and 𝛾, respectively. (2.11) and (2.12) can be solved backwards in time

with terminal condition𝑈𝑇 = 𝑐𝑇 , resulting in the following discrete Power Utility Bounds:

E𝑡

[ 𝑁∑︁
𝑖=𝑡

𝛿𝑖−𝑡𝑢𝛾 (𝑐𝑖)
]
≤ 𝑢𝛾 (𝑈𝑡 ) ≤ 𝑢𝛾 ◦ 𝑢−1𝜙

(
E𝑡

[ 𝑁∑︁
𝑖=𝑡

𝛿𝑖−𝑡𝑢𝜙 (𝑐𝑖)
] )

(2.13)

This provides a natural bounds for recursive utility, which are expressible in terms of the more

tractable additive utilities. This relationship has been extended to continuous time settings in [57]. We

summarise their results below.

Theorem 2.3.1. Suppose that 𝑐 is a consumption process in a finite horizon [0, 𝑇] such that E(
∫ 𝑇
0
𝑐
𝛽
𝑡 𝑑𝑡+

𝑐
𝛽

𝑇
) < ∞ for all 𝛽 ∈ R. Then, there exists a unique semimartingale𝑉𝑐 that satisfies E(sup𝑡 ∈[0,𝑇 ] |𝑉𝑐𝑡 |𝛽) <

∞ for all 𝛽 ∈ R that solves equation (2.2). Moreover, 𝑉𝑐 satisfies:

𝑈𝛾∨𝜙 (𝑐) ≤ 𝑉𝑐 ≤ 𝑈𝛾∧𝜙 (𝑐), (2.14)
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where:

𝑈𝛾,𝑇 (𝑐)𝑡 = E𝑡
( ∫ 𝑇

𝑡

𝛿𝑒−𝛿𝑠𝑢𝛾 (𝑐𝑠) + 𝑒−𝛿 (𝑇 −𝑡)𝑢𝛾 (𝑐𝑇 )
)
,

𝑈𝜙,𝑇 (𝑐)𝑡 = 𝑢𝛾 ◦ 𝑢−1𝜙

{
E𝑡

( ∫ 𝑇

𝑡

𝛿𝑒−𝛿𝑠𝑢𝜙 (𝑐𝑠) + 𝑒−𝛿 (𝑇 −𝑡)𝑢𝜙 (𝑐𝑇 )
)}
, 𝑡 ∈ [0, 𝑇] .

(2.15)

From the discussions above, we make two observations. Firstly, as the Power Utility Bounds

hold for both discrete and continuous time in finite horizon, this suggests on a fundamental level the

relationship between Epstein–Zin SDU and the classical time-additive utility at different levels of risk

aversions. Thus, we expect any reasonable extension of this theory into infinite horizon to obey an

analogous relationship. Therefore, we propose to incorporate an infinite horizon version of (2.14) into

the definition of Epstein–Zin utility in infinite horizon. This will assist with its characterisation and

rule out oddities such as identically zero solutions of (2.3). Secondly, an inspection of the proof of

Theorem 2.3.1 [57] suggest that the stipulated integrability conditions are too stringent, and can be

improved. As our approach will involve solving finite time approximations, a refinement of Theorem

2.3.1 will allow us to apply our construction to a wide class of consumption plans. These observations

will be developed presently in the next section.

2.4 Epstein–Zin Utility in Infinite Horizon: The Main Results

As discussed in previous sections, the crux of our method is to explicitly demand an infinite horizon

version of (2.14) as part of the Definition of Epstein–Zin utility. In order to do that, we first need a

rigorous definition of our specified space of consumption plans, in both finite and infinite horizons, as

well as power utility processes.

Definition 2.4.1. i. Given 𝑇 > 0, we define the space C𝑇 as the space of consumption processes 𝑐

on the time interval [0, 𝑇] that satisfy E(
∫ 𝑇
0
𝑐
𝑝
𝑠 𝑑𝑠 + 𝑐𝑝𝑇 ) < ∞ for all of the following values of 𝑝:

𝑝 = 2(1 − 𝜙), 2(1 − 𝛾) and 𝑝 = 2(𝜙 − 𝛾).

ii. On the infinite horizon, we define the space C∞ as the space of infinite horizon consumption

processes 𝑐 that satisfy E(
∫ ∞
0
𝛿𝑒−𝛿𝑡𝑐𝑝𝑡 𝑑𝑡) < ∞ for all of the following values of 𝑝: 𝑝 = 2(1 −

𝜙), 2(1 − 𝛾) and 𝑝 = 2(𝜙 − 𝛾).
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Definition 2.4.2. Let 𝑢𝑝 : (1 − 𝑝)R+ → R be the CRRA utility function with relative risk aversion

parameter 𝑝. For every 𝑐 ∈ C𝑇 , where 𝑇 > 0 is finite, we define the additive utility process as follows:

𝑌 𝑝,𝑇 (𝑐)𝑡 = E𝑡
[ ∫ 𝑇

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑢𝑝 (𝑐𝑡 ) + 𝑒−𝛿 (𝑇 −𝑡)𝑢𝛾 (𝑐𝑇 )
]
, 𝑡 ∈ [0, 𝑇] . (2.16)

For each 𝑐 ∈ C∞, its infinite horizon version is defined by:

𝑌 𝑝,∞(𝑐)𝑡 = E𝑡
[ ∫ ∞

𝑡

𝛿𝑒−𝛿𝑠𝑢𝑝 (𝑐𝑠)𝑑𝑠
]
, 𝑡 ≥ 0. (2.17)

Moreover, in both cases where 𝑇 < ∞ and 𝑇 = ∞, define:

𝑈𝛾,𝑇 (𝑐) = 𝑌 𝛾,𝑇 (𝑐) and 𝑈𝜙,𝑇 (𝑐) = 𝑢𝛾 ◦ 𝑢−1𝜙 [𝑌 𝜙,𝑇 (𝑐)] . (2.18)

The processes𝑈 𝑝,𝑇 and 𝑌 𝑝,𝑇 for 𝑝 = 𝛾 and 𝜙, including the case 𝑇 = ∞, will henceforth be referred

to collectively as Power Utility Processes.

Before we are ready to state our definition of Epstein–Zin utility in infinite horizon, we need one

more element: the space of potential solutions, which is defined below.

Definition 2.4.3. Given finite 𝑇 > 0, we define V𝑇 as the space of semimartingales {𝑉𝑡 }𝑡 ∈[0,𝑇 ] such

that E(
∫ 𝑇
0

|𝑉𝑡 |2(1−1/𝜃)𝑑𝑡 + sup[0,𝑇 ] |𝑉𝑡 |2) < ∞. On the infinite horizon, define V∞ as the space of

semimartingales {𝑉𝑡 }𝑡≥0 such that the for all finite 𝑇 > 0, the restriction {𝑉𝑡 }𝑡 ∈[0,𝑇 ] belongs to V𝑇 .

The integrability conditions in Definition 2.4.1 for 𝑝 = 2(1 − 𝛾) and 2(1 − 𝜙) ensure that for any 𝑐

within C𝑇 , 𝑈𝛾,𝑇 (𝑐) and 𝑈𝜙,𝑇 (𝑐), including the 𝑇 = ∞ case, are well-defined. In fact, it establishes

them as square-integrable semi-martingales. The last assumption for 𝑝 = 2(𝜙 − 𝛾) is a technical

assumption used to ensure that they are confined within the correct solution space (cf. Lemma 2.7.3).

The solution space V𝑇 , loosely speaking, is designed to ensure that our power utility processes,

and by extension, candidate Epstein–Zin utility processes, will possess certain desirable integrability

conditions, which are sufficient for limit-based arguments to go through .

We will now present our proposed definition of Epstein–Zin utility in infinite horizon.
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Definition 2.4.4. Let 𝑐 be an infinite horizon consumption plan in C∞, a semi-martingale𝑉 = 𝑉𝑐 ∈ V∞

is said to be a value process, or Epstein–Zin utility process associated with 𝑐 if it satisfies the BSDE:

𝑉𝑐𝑡 = E𝑡

[
𝑉𝑐𝑇 +

∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑐𝑠 )𝑑𝑠
]

a.s. for all 0 ≤ 𝑡 ≤ 𝑇 < ∞, (2.19)

and the power utility bounds:

𝑈𝜙∨𝛾,∞(𝑐)𝑡 ≤ 𝑉𝑐𝑡 ≤ 𝑈𝜙∧𝛾,∞(𝑐)𝑡 a.s. for all 𝑡 ≥ 0. (2.20)

We will devote the rest of this chapter to the development of an infinite horizon Epstein–Zin utility

process, the culmination of which is the following theorems concerning its existence and uniqueness.

The development of Theorem 2.4.1 will be presented in Section 2.5, and a discussion and comparison

between Theorem 2.4.2 and the transversality condition (2.7) will be included in Section 2.6.

Theorem 2.4.1. Every consumption plan 𝑐 in C∞ has an Epstein–Zin utility process associated with it.

Theorem 2.4.2. Let 𝑐 be a C∞ consumption plan. Then:

i. If 𝜃 ∈ (0, 1), then its Epstein–Zin utility process is unique.

ii. If 𝜃 < 0, then uniqueness holds under the additional uniqueness criterion:

lim
𝑇→∞

E
(
exp

( ∫ 𝑇

0
𝜕𝑣 𝑓 (𝑐𝑠,𝑈𝜙,∞(𝑐)𝑠)𝑑𝑠

)
|𝑈𝛾,∞(𝑐)𝑇 |

)
= 0. (2.21)

Remark 2.4.5. The limit condition (2.21) can be equivalently expressed as:

lim
𝑇→∞

E
(
𝑒𝛿 (1−𝜃)

∫ 𝑇

0
(1−Φ𝑠)𝑑𝑠

∫ ∞

𝑇

𝛿𝑒−𝛿𝑠𝑐1−𝛾𝑠 𝑑𝑠

)
= 0, (2.22)

where Φ𝑡 =
𝑐
1−𝜙
𝑡

E𝑡 (
∫ ∞
𝑡
𝛿𝑒−𝛿 (𝑠−𝑡 ) 𝑐1−𝜙𝑠 𝑑𝑠)

. As this is somewhat more explicit, we shall henceforth refer to

(2.22) as the uniqueness criterion.

Having settled the existence and uniqueness issues, we state below the few basic properties of

Epstein–Zin utility. These properties have been established in, for instance, [57]. We extend them to

our relaxed setting in finite horizon, as well as the infinite horizon setting.

Proposition 2.4.3. Let 𝑐 and 𝑐 be consumption plans in C𝑇 . If 𝑇 = ∞ and 𝜃 < 0, then assume

additionally that they satisfy the criterion (2.22). Then, the following holds:
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i. (Homotheticity) For every 𝜆 > 0, 𝜆𝑐 belongs to the class C𝑇 and, in the case 𝑇 = ∞ and 𝜃 < 0,

satisfies the criterion (2.21). Moreover, 𝑉𝜆𝑐 = 𝜆1−𝛾𝑉𝑐 .

ii. (Monotonicity) If 𝑐 ≥ 𝑐, then 𝑉𝑐 ≥ 𝑉𝑐 .

iii. (Concavity) If 𝛼 ∈ (0, 1) and 𝛼𝑐 + (1 − 𝛼)𝑐 belongs to C𝑇 and satisfies (2.22) when 𝑇 = ∞ and

𝜃 < 0, then 𝑉 𝛼𝑐+(1−𝛼)𝑐 ≥ 𝛼𝑉𝑐 + (1 − 𝛼)𝑉𝑐 .

2.5 Existence of Epstein–Zin utility in Infinite Horizon.

In this section, we present our development of Theorem 2.4.1. This is achieved by a localised

construction. Given a consumption plan 𝑐 ∈ C∞, we will define its local truncations in C𝑇 for finite

𝑇 . The associated truncated value processes then can be shown to converge pointwise monotonically

to a process in V∞. We then verify that this limiting process is the desired solution in the sense of

Definition 2.4.4. We will make extensive use of the following result, which is a generalisation of

Theorem 2.3.1:

Proposition 2.5.1. For any consumption process 𝑐 ∈ C𝑇 , there exists a unique value process 𝑉𝑐 ∈ V𝑇

that satisfies:

𝑉𝑐𝑡 = E𝑡

(
𝑢𝛾 (𝑐𝑇 ) +

∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑐𝑠 )𝑑𝑠
)

a.s for 0 ≤ 𝑡 ≤ 𝑇, (2.23)

Moreover, this value process satisfies the power utility bounds (2.14).

We explain the heuristics of localising consumption plans here. Given 𝑐 ∈ C∞, equation (2.19)

can be expressed as: 𝑉𝑡 = E[𝑢𝛾 ◦ 𝑢−1𝛾 (𝑉𝑇 ) +
∫ 𝑇
𝑡
𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠]. From a finite horizon point of view, the

representative agent consumes at rate 𝑐𝑡 up until time 𝑇 , where he decides to terminate continuous

consumption and consume the certainty equivalent of the ’look-ahead’ value of the remaining utility.

Since this remaining Epstein–Zin utility is, of course, unavailable, we shall approximate it with

remaining power utilities. The formal definition is given below:

Definition 2.5.1. Let 𝑐 be a consumption plan in C∞. Its time 𝑇 upper-truncation 𝑐 (𝑇 ) is defined by:

𝑐
(𝑇 )
𝑡 ≜


𝑐𝑡 , 𝑡 ∈ [0, 𝑇)

𝑢−1𝛾 (𝑈𝜙∧𝛾,∞
𝑇

), 𝑡 = 𝑇.

(2.24)

16



We also define the lower-truncation 𝑐 (𝑇 )𝑡 with the same instantaneous stream on [0, 𝑇), but terminal

consumption 𝑐 (𝑇 )
𝑇

= 𝑢−1𝛾 (𝑈𝜙∨𝛾,∞
𝑇

).

Due to the power utility bounds (2.20), we expect 𝑐 (𝑇 )
𝑇

and 𝑐 (𝑇 )
𝑇

to represent the maximal and

minimal look-ahead values, respectively. Therefore, the time 𝑇 truncations will provide upper and

lower bounds for the solution we will construct. Because these upper and lower truncations hold for

all 𝑇 , we will take limit in 𝑇 later. We collect some of their desirable properties in Proposition 2.5.2

below. The first point states that the truncations 𝑐 (𝑇 ) and 𝑐 (𝑇 ) are consistent with our setting in finite

horizon, which allows us to freely define the localised Epstein–Zin utility processes. The second and

third points establish the integrability properties and ordering of the power utility processes.

Proposition 2.5.2. Let 𝑐 be a consumption plan in C∞. For each 𝑇 > 0, let 𝑐 (𝑇 ) and 𝑐 (𝑇 ) be the time

𝑇 upper and lower truncation of 𝑐, respectively. Let𝑈𝛾,∞ = 𝑈𝛾,∞(𝑐) and𝑈𝜙,∞ = 𝑈𝜙,∞(𝑐) be power

utility processes associated with 𝑐 (cf. Definition 2.4.2). Then:

i. 𝑐 (𝑇 ) and 𝑐 (𝑇 ) belong to the class C𝑇 .

ii. For any 𝑇 > 0, the restrictions {𝑈𝛾∧𝜙,∞𝑡 }𝑡 ∈[0,𝑇 ] and {𝑈𝛾∨𝜙,∞𝑡 }𝑡 ∈[0,𝑇 ] are equal to𝑈𝛾∧𝜙,𝑇 (𝑐 (𝑇 ) )

and𝑈𝛾∨𝜙,𝑇 (𝑐 (𝑇 ) ), respectively. Therefore, the {𝑈𝛾,∞𝑡 }𝑡 ∈[0,𝑇 ] {𝑈𝜙,∞𝑡 }𝑡 ∈[0,𝑇 ] belong to the semi-

martingale class V𝑇 and𝑈𝛾,∞ and𝑈𝜙,∞ belong to the semimartingale class V∞.

iii. For any 𝑡 ≥ 0,𝑈𝜙∨𝛾,∞𝑡 ≤ 𝑈𝜙∧𝛾,∞𝑡 almost surely.

Having established 𝑐 (𝑇 ) and 𝑐 (𝑇 ) as C𝑇 consumption plans, we can apply Proposition 2.5.1 and

define their associated Epstein–Zin utilities via the following BSDEs:

𝑉
(𝑇 )
𝑡 = E𝑡

(
𝑈
𝜙∧𝛾,∞
𝑇

+
∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉 (𝑇 )
𝑠 )𝑑𝑠

)
𝑡 ∈ [0, 𝑇],

𝑉
(𝑇 )
𝑡 = E𝑡

(
𝑈
𝜙∨𝛾,∞
𝑇

+
∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉 (𝑇 )
𝑠 )𝑑𝑠

)
𝑡 ∈ [0, 𝑇] .

(2.25)

We wish to take the limit of 𝑉 (𝑇 ) and 𝑉 (𝑇 ) as 𝑇 diverges. The next proposition shows that these

truncations are actually monotone in 𝑇 , which allows for a simple and convenient way to achieve the

desired convergence.
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Proposition 2.5.3. Let 𝑉 (𝑇 ) and 𝑉 (𝑇 ) be defined by equation (2.25). Then, they satisfy the following

infinite horizon version of the power utility bounds:

𝑈
𝜙∨𝛾,∞
𝑡 ≤ 𝑉 (𝑇 )

𝑡 ≤ 𝑉 (𝑇 )
𝑡 ≤ 𝑈𝜙∧𝛾,∞𝑡 , 𝑡 ∈ [0, 𝑇] . (2.26)

In particular, the upper and lower bound processes are independent of 𝑇 . Moreover, for 𝑡 ∈ [0, 𝑇] and

𝑆 > 𝑇 , 𝑉 (𝑆)
𝑡 ≤ 𝑉 (𝑇 )

𝑡 and 𝑉 (𝑆)
𝑡 ≥ 𝑉 (𝑇 )

𝑡 almost surely.

We conclude this section with a result concerning taking limit of the localised value processes.

The following result ensures that the limit processes belong to the correct solution space and solve the

targeted BSDE. Moreover, they also form a natural bound for any potential Epstein–Zin utility process.

With this result, we attain Theorem 2.4.1.

Proposition 2.5.4. The limits 𝑉𝑡 = lim𝑇→∞𝑉
(𝑇 )
𝑡 and 𝑉𝑡 = lim𝑇→∞𝑉

(𝑇 )
𝑡 are well-defined and belong

to the class V∞. Moreover, they are Epstein–Zin utility processes associated with 𝑐, in the sense of

Definition (2.4.4). Moreover, if 𝑣 is another Epstein–Zin utility process, then:

𝑉 ≤ 𝑣 ≤ 𝑉. (2.27)

2.5.1 The Case of Brownian Filtration.

In the problem of portfolio optimisation of an agent with Epstein–Zin preference, most popular market

models are driven by a Brownian Motion (see, for instance, [39], [66],[37] and the applications therein).

In a Brownian filtration, the standard formulation for a BSDE is of the form (El Karoui et al. has a

survey paper [22]):

𝑉𝑡 = 𝑉𝑇 +
∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠 +
∫ 𝑇

𝑡

𝑍𝑠𝑑𝐵𝑠, 𝑡 ≤ 𝑇. (2.28)

The existence of the 𝑍 component in (2.28) is an application of the Martingale Representation Theorem

in a Brownian setting (Theorem 3.4.15 [33]). This result is made straightforward by the fact that the

aggregator 𝑓 is independent of 𝑍 , and thus no continuity property of 𝑓 is required the Martingale

Representation Theorem. A construction of 𝑍 , however, is not generally available.

Theorem 2.5.5. Suppose that the filtration {F𝑡 }𝑡≥0 is the augmentation of a filtration generated by

an R𝑑-valued Brownian Motion. Let 𝑐 be a consumption plan in C∞ and 𝑉 ∈ V∞ be an Epstein–Zin

utility process associated with it. Then, there exists an R𝑑-valued progressively measurable process
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{𝑍𝑡 }𝑡≥0 such that for all 𝑇 > 0,
∫ 𝑇
0
𝑍2
𝑠 𝑑𝑠 < ∞ almost surely and:

𝑉𝑡 = 𝑉𝑇 +
∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠 +
∫ 𝑇

𝑡

𝑍𝑠𝑑𝐵𝑠, 𝑡 ≤ 𝑇. (2.29)

2.6 Uniqueness of Epstein–Zin Utility in Infinite Horizon.

This proof of Theorem 2.4.2 is relatively straightforward, and will be deferred to Section 2.8.6. In this

section, we shall heuristically describe its motivation behind our uniqueness result, and the way in

which it refines the transversality condition in [20]. Since the partial derivative 𝜕𝑣 𝑓 (𝑐, 𝑣) is uniformly

bounded from above by2 −𝛿𝜃, one might consider imposing the condition:

lim
𝑇→∞

E
(
𝑒−𝛿𝜃𝑇 |𝑉𝑇 |

)
= 0. (2.30)

This is manifestly unnecessary when 𝜃 ∈ (0, 1), where uniqueness of the solution holds without

extra assumptions other than those of C∞ (see Theorem 2.4.2.i.). Moreover, this transversality condition

can be naturally thought of as a growth condition on the value process. However, when 𝜃 < 0, this is a

decay condition, which requires the value process to vanish exponentially fast, which excludes even

trivial cases such as constant consumption3. In fact, it excludes all cases of interest, as the result below

shows:

Proposition 2.6.1. Suppose that 𝜃 < 0. Let 𝑐 be a C∞ consumption plan and suppose that 𝑉 ∈ V∞

satisfies the following BSDE for all positive constants 𝑡 < 𝑇:

𝑉𝑡 = E𝑡

(
𝑉𝑇 +

∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠
)
. (2.31)

If 𝑉 satisfies the transversality condition (2.30), then it is identically zero.

Therefore, solutions satisfying (2.30) are not open to economic interpretation and exclude all

processes sandwiched between𝑈𝛾,∞ and𝑈𝜙,∞. Upon close inspection of the proof, uniqueness can

2See discussion following Definition 2.7.2b
3For example, if 𝑐𝑡 ≡ 𝑐 > 0, then one can verify directly that 𝑉𝑐𝑡 ≡ 𝑢𝛾 (𝑐) is the associated Epstein–Zin utility process.

In this case,𝑈𝜙,∞ (𝑐) and𝑈𝛾,∞ (𝑐) are both constant and equal to 𝑢𝛾 (𝑐), implying that 𝑉𝑐 is the unique solution according
to Definition 2.4.4
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be achieved by constructing a process 𝛼 that simultaneously satisfies:

𝛼𝑡 (𝑉𝑡 −𝑉𝑡 ) ≥ 𝑓 (𝑐𝑡 , 𝑉𝑡 ) − 𝑓 (𝑐𝑡 , 𝑉𝑡 ), (2.32a)

exp
( ∫ 𝑇

0
𝛼𝑠𝑑𝑠

)
|𝑉𝑇 |

𝐿1

−−→ 0. (2.32b)

(2.32a) requires 𝛼 to be sufficiently large so as to achieve an upper bound on 𝜕𝑣 𝑓 (cf. equation

(2.75)). However, if 𝛼 is too large, exp(
∫ 𝑇
0
𝛼𝑠𝑑𝑠) |𝑉𝑇 | will not converge, as required in (2.32b).

The choice 𝛼 ≡ −𝛿𝜃 is an example that satisfies the first, but not the second requirement. The

uniform, deterministic upper bound is not sharp enough. Therefore, we can think of the choice

𝛼 = 𝜕𝑣 𝑓 (𝑐,𝑈𝜙,∞(𝑐)) as a dynamic generalisation of the transversality condition (2.30).

We will now discuss, in the case 𝜃 < 0, a class of consumption processes for which uniqueness is

achieved. Let us recall the uniqueness criterion

lim
𝑇→∞

E
(
𝑒𝛿 (1−𝜃)

∫ 𝑇

0
(1−Φ𝑠)𝑑𝑠

∫ ∞

𝑇

𝛿𝑒−𝛿𝑠𝑐1−𝛾𝑠 𝑑𝑠

)
= 0, (2.33)

where Φ𝑡 =
𝑐
1−𝜙
𝑡

E𝑡 (
∫ ∞
𝑡
𝛿𝑒−𝛿 (𝑠−𝑡 ) 𝑐1−𝜙𝑠 𝑑𝑠)

. Intuitively, the decay of (2.33) is the result of two competing

forces: the fluctuation of 𝑒𝛿 (1−𝜃)
∫ 𝑇

0
(1−Φ𝑠𝑑𝑠)𝑑𝑠 and the decay rate of

∫ ∞
𝑇
𝛿𝑒−𝛿𝑠𝑐1−𝛾𝑠 𝑑𝑠. Therefore,

uniqueness is attained if the first factor is bounded from above. One such situation is when 𝑐1−𝜙𝑡 is a

super-martingale, as in this case:

Φ𝑡 =
𝑐
1−𝜙
𝑡∫ ∞

𝑡
𝛿𝑒−𝛿 (𝑠−𝑡)E𝑡 (𝑐1−𝜙𝑠 )𝑑𝑠

≥
𝑐
1−𝜙
𝑡∫ ∞

𝑡
𝛿𝑒−𝛿 (𝑠−𝑡)𝑐1−𝜙𝑡 𝑑𝑠

= 1. (2.34)

We draw comparison with the work in infinite horizon of Melnyk et. al [47], who, in the case

where 𝜙 < 𝛾, restricts their studies to consumption processes that satisfy (Definition 3.1 therein):

𝑉𝑐𝑡 ≤ 𝑢𝛾 (𝑐𝑡 ) for all 𝑡 ≥ 0. (2.35)

In the empirically relevant case 𝜙 < 1 < 𝛾, the intuition behind conditions (2.34) and (2.35) are similar:

uniqueness holds when future consumption is not ‘too good’ in comparison to current consumption. In

fact, our method of acquiring uniqueness encompasses theirs in the following way. If we restrict our

studies to consumption plans and Epstein–Zin processes satisfying (2.35), then, by using 𝑢𝛾 (𝑐𝑡 ) as an

upper bound instead of𝑈𝜙,∞(𝑐) as an upper bound, we could have selected 𝛼𝑡 = 𝜕𝑣 𝑓 (𝑐𝑠, 𝑢𝛾 (𝑐𝑠)) in

20



(2.32a). In this case, the (2.32b) reduces to:

𝑒−𝛿𝑇 |𝑉𝑇 |
𝐿1

−−→ 0, (2.36)

which is their transversality condition.

2.7 Proofs of Finite Horizon Results.

2.7.1 Preliminary: Monotonicity of BSDEs and a Comparison Principle.

Below, we will recall a few mathematical devices that will come in handy in our proofs. The

fundamental concept that underlies our theory is a sub- and super-solution for a backward stochastic

differential equation with monotone generator.

Definition 2.7.1. Let 𝑔 : Ω×[0, 𝑇]×R→ R be G⊗B(R)-measurable, where G denotes the progressive

𝜎-field. Moreover let 𝜉 ∈ 𝐿1(P) and suppose 𝑋 is a semimartingale with E[
∫ 𝑇
0

|𝑔(𝑡, 𝑋𝑡 ) |𝑑𝑡 +

sup𝑡 ∈[0,𝑇 ] |𝑋𝑡 |] < ∞. X is called a subsolution (resp. supersolution) of the BSDE(𝑔, 𝜉) if:

𝑑𝑋𝑡 = −𝑔(𝑡, 𝑋𝑡 )𝑑𝑡 + 𝑑𝑀𝑡 − 𝑑𝐴𝑡 , 𝑋𝑇 ≤ 𝜉 (resp. 𝑋𝑇 ≥ 𝜉).

where M is a martingale and A a decreasing (resp. increasing) right-continuous process such that

𝐴0 = 0. Moreover, 𝑋 is a solution of BSDE(𝑔, 𝜉) if it is both a subsolution and a supersolution.

Definition 2.7.2. (Monotonicity). Let 𝑔 : Ω × [0, 𝑇] × R → R be G ⊗ B(R)-measurable. 𝑔 is said

to satisfy the monotonicity condition if there exists a constant 𝑘 such that for 𝑑P ⊗ 𝑑𝑡-almost all

(𝜔, 𝑡) ∈ Ω × [0, 𝑇]:

𝑔(𝜔, 𝑡, 𝑥) − 𝑔(𝜔, 𝑡, 𝑦) ≤ 𝑘 (𝑥 − 𝑦) for all 𝜔 ∈ Ω and 𝑥, 𝑦 ∈ R with 𝑥 ≥ 𝑦 (2.37)

The constant 𝑘 is referred to as the constant of monotonicity of 𝑔.

21



We consider the partial derivative in 𝑣 of the aggregator: 𝜕𝑣 𝑓 (𝑐, 𝑣) = 𝛿𝑐1−𝜙 (𝜃−1) [(1−𝛾)𝑣]−
1
𝜃 −𝛿𝜃.

Moreover, the restrictions (2.4) on 𝛾 and 𝜓 can be categorised further into:

𝜙 < 𝛾 < 1,⇒ 0 < 𝜃 < 1; 1 < 𝛾 < 𝜙,⇒ 0 < 𝜃 < 1

𝜙 < 1 < 𝛾,⇒ 𝜃 < 0; 𝛾 < 1 < 𝜙,⇒ 𝜃 < 0.

In all cases, 𝜃 < 1 and 𝜕𝑣 𝑓 (𝑐, 𝑣) ≤ −𝛿𝜃. Therefore, the Epstein–Zin aggregator is monotone with

constant of monotonicity −𝛿𝜃.

The monotonicity condition can be thought of as a weaker version of the Lipschitz condition: the

difference quotient is bounded above but not below. This condition has been utilised extensively in

the BSDE literature, for instance, in [51], [8], [50] and [54]. It should be noted that, in the context of

random terminal time, these authors formulated the monotonicity condition with negative values of 𝑘 .

Such a condition is violated by the Epstein–Zin aggregator when 𝜃 < 0. Its effects on the uniqueness

issues in infinite horizon is discussed Section 2.6.

We now state a comparison theorem, courtesy of Seiferling & Seifried [57].

Theorem 2.7.1. Suppose that 𝑋 is a sub-solution of BSDE(𝑔, 𝜉) and 𝑌 a super-solution of BSDE(ℎ, 𝜂),

in the sense of definition 2.7.1. Suppose also that 𝜉 ≤ 𝜂. Then, for each 𝑡 ≥ 0, 𝑋𝑡 ≤ 𝑌𝑡 almost surely if

either of the following holds:

i. 𝑔(𝜔, 𝑡,𝑌𝑡 ) ≤ 𝑓 (𝜔, 𝑡,𝑌𝑡 ) for 𝑑P⊗ 𝑑𝑡-almost all (𝜔, 𝑡) ∈ Ω⊗ [0, 𝑇] and g satisfies the monotonicity

condition; or

ii. 𝑔(𝜔, 𝑡, 𝑋𝑡 ) ≤ 𝑓 (𝜔, 𝑡, 𝑋𝑡 ) for 𝑑P⊗ 𝑑𝑡-almost all (𝜔, 𝑡) ∈ Ω⊗ [0, 𝑇] and f satisfies the monotonicity

condition.

An immediate corollary of Theorem 2.7.1 is the following monotonicity result of the Epstein–

Zin value process. Intuitively, it states what one would expect: a dominating level of consumption

corresponds to an accordingly dominating level of utility.

Corollary 2.7.2. Let 𝑐 (𝑖) , 𝑖 = 1, 2 be consumption processes in C𝑇 . Suppose that 𝑉 (𝑖) , 𝑖 = 1, 2 belong

to V𝑇 and satisfy:

𝑉
(𝑖)
𝑡 = E𝑡

(
𝑢𝛾 (𝑐 (𝑖)𝑡 ) +

∫ 𝑇

𝑡

𝑓 (𝑐 (𝑖)𝑠 , 𝑉 (𝑖)
𝑠 )𝑑𝑠

)
, 𝑡 ∈ [0, 𝑇] . (2.38)
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If 𝑐 (1)𝑡 ≤ 𝑐 (2)𝑡 𝑑P ⊗ 𝑑𝑡- almost everywhere, then 𝑉 (1)
𝑡 ≤ 𝑉 (2)

𝑡 almost surely for all 𝑡. As a consequence,

if 𝑐 ∈ C𝑇 , then its associated value process is unique in V𝑇 .

Proof. Denote 𝑓 (𝑖) (𝑡, ·) = 𝑓 (𝑐 (𝑖)𝑡 , ·). We assert that 𝑉 (𝑖) is a solution of BSDE( 𝑓 (𝑖) , 𝑢𝛾 (𝑐 (𝑖)𝑇 )), in

the sense of definition 2.7.1. Indeed, sup𝑡 ∈[0,𝑇 ] |𝑉
(𝑖)
𝑡 | is square integrable, thanks to its membership in

V𝑇 . Moreover, by Hölder’s inequality:

E
( ∫ 𝑇

0
| 𝑓 (𝑖) (𝑠,𝑉𝑠) |𝑑𝑠

)
≤ 𝐾E

( ∫ 𝑇

0

[
(𝑐 (𝑖)𝑠 )2(1−𝜙) + |𝑉 (𝑖)

𝑠 |2(1−1/𝜃) + |𝑉 (𝑖)
𝑠 |

]
𝑑𝑠

)
, (2.39)

where 𝐾 is a constant depending on 𝛿, 𝑇, 𝛾 and 𝜙.

By considering the first partial derivatives of the aggregator, 𝜕
𝜕𝑐
𝑓 (𝑐, 𝑣) = 𝛿𝑐−𝜙 [(1− 𝛾)𝑣]1−1/𝜃 ≥ 0

and 𝜕
𝜕𝑣
𝑓 (𝑐, 𝑣) = 𝛿(𝜃 − 1) [(1 − 𝛾)𝑣]− 1

𝜃 − 𝛿𝜃 ≤ −𝛿𝜃 (Note that in all considered configurations, 𝜃 < 1).

Therefore 𝑓 is increasing in 𝑐 and satisfies the monotone condition with constant −𝛿𝜃. We can therefore

apply Theorem 2.7.1 to obtain the conclusion of this corollary.

□

2.7.2 Proofs of Proposition 2.5.1.

Let us prove our result concerning existence and uniqueness of Epstein–Zin utility in finite time. We

state below a lemma concerning the integrability of power utility processes that will be useful in the

main result. Its proof will be deferred until after that of the main Proposition.

Lemma 2.7.3. Given finite 𝑇 > 0 and a consumption process 𝑐 ∈ C𝑇 , the power utility processes

𝑈𝛾,𝑇 (𝑐) and𝑈𝜙,𝑇 (𝑐) belong to V𝑇 .

Proof of Theorem 2.5.1. The uniqueness of Epstein–Zin utility is resolved in Corollary 2.7.2.

Regarding its existence, we divide the proof into three parts with increasing levels of generality.

Part I. 𝑐 is bounded above and away from 0. This case falls within the scope of Theorem 2.3.1,

and the conclusion is immediate.

Part II. 𝑐 is bounded away from 0. Now, suppose 𝑐 ∈ C𝑇 is a consumption process that is bounded

away from 0 but not above, then 𝑐 (𝑛) = 𝑐∧𝑛 is a pointwise increasing sequence of bounded consumption
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processes that converges upwards to 𝑐. Moreover, thanks to Part I, there exists a unique 𝑉 (𝑛) ∈ V𝑇

such that:

𝑉 (𝑛) = E𝑡
(
𝑢𝛾 (𝑐 (𝑛)𝑇

) +
∫ 𝑇

𝑡

𝑓 (𝑐 (𝑛)𝑠 , 𝑉
(𝑛)
𝑠 )𝑑𝑠

)
𝑡 ∈ [0, 𝑇] . (2.40)

Moreover, by Theorem 2.5.1 for consumption processes bounded above and away from zero, the

following inequality holds almost surely for all 𝑡 ∈ [0, 𝑇]:

𝑈𝜙∨𝛾 (𝑐 (1) )𝑡 ≤ 𝑈𝜙∨𝛾 (𝑐 (𝑛) )𝑡 ≤ 𝑉 (𝑛)
𝑡 ≤ 𝑈𝜙∧𝛾 (𝑐 (𝑛) )𝑡 ≤ 𝑈𝜙∧𝛾 (𝑐)𝑡 . (2.41)

By Corollary 2.7.2, 𝑛→ 𝑉
(𝑛)
𝑡 is monotone increasing, and the inequality (2.41) implies that the

limit is finite. Therefore we can define 𝑉𝑐𝑡 = lim𝑛→∞𝑉
(𝑛)
𝑡 . A consequence of (2.41) is that 𝑉 ∈ V𝑇 ,

By Lemma 2.7.3. We wish to take pass the limit through the expectation in (2.40). As |𝑢𝛾 (𝑐 (𝑛)𝑇
) | ≤

|𝑢𝛾 (𝑐 (1)𝑇 ) | + |𝑢𝛾 (𝑐𝑇 ) |, the first term follows readily from conditional dominated convergence theorem

(DCT). The second term follows from conditional DCT, too, where the dominating random variable is

provided by:

𝑓 (𝑐 (𝑛)𝑠 , 𝑉
(𝑛)
𝑠 ) ≤ 𝐾

(
𝑐
2(1−𝜙)
𝑠 +

��𝑈𝜙∨𝛾 (𝑐1)𝑡 ��2(1−1/𝜃) + ��𝑈𝜙∧𝛾 (𝑐)𝑡 ��2(1−1/𝜃) + ��𝑈𝜙∨𝛾 (𝑐1)𝑡 �� + ��𝑈𝜙∧𝛾 (𝑐)𝑡 ��) .
(2.42)

Denote by 𝑈𝑡 the process on the right hand side above. By membership of 𝑐 in C𝑇 and Lemma

2.7.3, we have E(
∫ 𝑇
𝑡
𝑈𝑠𝑑𝑠) < ∞, and thus

∫ 𝑇
𝑡
𝑈𝑠𝑑𝑠 < ∞ almost surely. This justifies the following

application of DCT on a set of probability 1:

lim
𝑛→∞

∫ 𝑇

𝑡

𝑓 (𝑐 (𝑛)𝑠 , 𝑉
(𝑛)
𝑠 )𝑑𝑠 =

∫ 𝑇

𝑡

lim
𝑛→∞

𝑓 (𝑐 (𝑛)𝑠 , 𝑉
(𝑛)
𝑠 )𝑑𝑠 =

∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠. (2.43)

By conditional DCT, with
∫ 𝑇
𝑡
𝑈𝑠𝑑𝑠 as the dominating random variable, we have:

lim
𝑛→∞
E𝑡

( ∫ 𝑇

𝑡

𝑓 (𝑐 (𝑛)𝑠 , 𝑉
(𝑛)
𝑠 )𝑑𝑠

)
= E𝑡

(
lim
𝑛→∞

∫ 𝑇

𝑡

𝑓 (𝑐 (𝑛)𝑠 , 𝑉
(𝑛)
𝑠 )𝑑𝑠

)
. (2.44)

Combinining equations (2.40), (2.43) and (2.44), we see that 𝑉𝑐 satisfies the limit BSDE:

𝑉𝑐𝑡 = E𝑡

(
𝑢𝛾 (𝑐𝑇 ) +

∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑐𝑠 )𝑑𝑠
)
. (2.45)
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Lastly, by conditional monotone convergence, we can take the limit as 𝑛 → ∞ in (2.41) to obtain

the power utility bounds (2.14).

Part III. 𝑐 is any process in C𝑇 . If 𝑐 is an arbitrary member of process in C𝑇 , then 𝑐 (𝑛) = 𝑐∨ (1/𝑛)

is a pointwise decreasing sequence of consumption processes, each of which is bounded away from

zero. From Part II, each 𝑐 (𝑛) has a unique associated utility process 𝑉 (𝑛) in V𝑇 , which, by corollary

2.7.2, is monotone decreasing in 𝑛. Moreover, for 𝑡 ∈ [0, 𝑇]:

𝑈𝜙∨𝛾 (𝑐)𝑡 ≤ 𝑈𝜙∨𝛾 (𝑐 (𝑛) )𝑡 ≤ 𝑉 (𝑛)
𝑡 ≤ 𝑈𝜙∧𝛾 (𝑐𝑛)𝑡 ≤ 𝑈𝜙∧𝛾 (𝑐1)𝑡 (2.46)

Again, by monotonicity of the value process, we can define 𝑉𝑐𝑡 = lim𝑛→∞𝑉
(𝑛)
𝑡 , which thanks to

the power utility bounds (2.46) belongs to V𝑇 . Similar to Part II, we want to pass to the limit in:

𝑉
(𝑛)
𝑡 = E𝑡

(
𝑢𝛾 (𝑐𝑛𝑇 ) +

∫ 𝑇

𝑡

𝑓 (𝑐𝑛𝑠 , 𝑉
(𝑛)
𝑠 )𝑑𝑠

)
. (2.47)

The argument for exchanging limit and conditional expectation is exactly the same as in Part II.

Therefore, 𝑉𝑐 is the utility process associated to 𝑐. To obtain the power utility bounds, let 𝑛→ ∞ in

(2.46), which is justified by conditional dominated convergence.

□

Proof of Lemma 2.7.3. For simplicity of notation, we drop the 𝑇 superscript and 𝑐 argument from

the power utility processes. In our calculations, we will use 𝐾 to denote a generic constant that might

change from line to line.

Part 1. 𝑈𝛾 ∈ V𝑇 . Under the restrictions (2.4), we have either 1 − 1/𝜃 < 0 when 𝜃 ∈ (0, 1) or

1 − 1/𝜃 < 0 when 𝜃 < 0. In both cases, the mapping 𝑥 → 𝑥2(1−1/𝜃) is convex for 𝑥 > 0.

|𝑈𝛾𝑡 |2(1−1/𝜃) = 𝐾
[
E𝑡

( ∫ 𝑇

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑐1−𝛾𝑠 𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)𝑐1−𝛾
𝑇

)]2(1−1/𝜃)
≤ 𝐾E𝑡

[( ∫ 𝑇

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑐1−𝛾𝑠 𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)𝑐1−𝛾
𝑇

)2(1−1/𝜃) ]
≤ 𝐾E𝑡

( ∫ 𝑇

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑐2(𝜙−𝛾)𝑠 𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)𝑐2(𝜙−𝛾)
𝑇

)
.

(2.48)
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Above, the second inequality follows from the fact that 𝛿𝑒−𝛿 (𝑠−𝑡)𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)𝛿𝑇 , where 𝛿𝑇 is the

Dirac delta at point 𝑇 , is a probability measure on [𝑡, 𝑇]. Thus, we have:

E
( ∫ 𝑇

0
|𝑈𝛾𝑡 |2(1−1/𝜃)𝑑𝑡

)
≤ 𝐾

∫ 𝑇

0
E
[ ∫ 𝑇

0
𝑐
2(𝜙−𝛾)
𝑠 𝑑𝑠 + 𝑐2(𝜙−𝛾)

𝑇

]
𝑑𝑡

≤ 𝐾𝑇
(
E
[ ∫ 𝑇

0
𝑐
2(𝜙−𝛾)
𝑠 𝑑𝑠

]
+ E(𝑐2(𝜙−𝛾)

𝑇
)
)
< ∞.

(2.49)

In order to prove that sup𝑡 ∈[0,𝑇 ] |𝑈
𝛾
𝑡 | is square integrable, we first observe that:

(1 − 𝛾)𝑈𝛾𝑡 = E𝑡

[ ∫ 𝑇

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑐1−𝛾𝑠 𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)𝑐1−𝛾
𝑇

]
≤ E𝑡

[ ∫ 𝑇

0
𝛿𝑒−𝛿 (𝑠−𝑡)𝑐1−𝛾𝑠 𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)𝑐1−𝛾

𝑇

]
.

(2.50)

As E( [
∫ 𝑇
0
𝛿𝑒−𝛿 (𝑠−𝑡)𝑐1−𝛾𝑠 𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)𝑐1−𝛾

𝑇
]2) ≤ E(

∫ 𝑇
0
𝛿𝑒−𝛿 (𝑠−𝑡)𝑐2(1−𝛾)𝑠 𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)𝑐2(1−𝛾)

𝑇
) < ∞,

the stochastic process 𝑀𝑡 ≜ E𝑡 [
∫ 𝑇
0
𝛿𝑒−𝛿 (𝑠−𝑡)𝑐1−𝛾𝑠 𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)𝑐1−𝛾

𝑇
] is a square-integrable martingale.

By Doob’s maximal inequality, E(sup𝑡 ∈[0,𝑇 ] |𝑀𝑡 |2) < ∞, and consequently, E[sup𝑡 ∈[0,𝑇 ] |𝑈
𝛾
𝑡 |2] < ∞.

Part 2. 𝑈𝜙 ∈ V𝑇 . This part’s calculations are similar the Part I. Here, we utilise the convexity of

the mapping 𝑥 → 𝑥2(𝜃−1) .

|𝑈𝜙𝑡 |2(1−1/𝜃) = 𝐾E𝑡
[ ∫ 𝑇

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑐1−𝜙𝑠 𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)𝑐1−𝜙
𝑇

]2(𝜃−1)
≤ 𝐾E𝑡

[ ∫ 𝑇

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑐2(𝜙−𝛾)𝑠 𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)𝑐2(𝜙−𝛾)
𝑇

]
.

(2.51)

Thus, we obtain the following estimate for the expectation of the time integral of |𝑈𝜙 |:

E
( ∫ 𝑇

0
|𝑈𝜙𝑡 |2(1−1/𝜃)𝑑𝑡

)
≤ 𝐾

∫ 𝑇

0
E
[ ∫ 𝑇

0
𝑐
2(𝜙−𝛾)
𝑠 𝑑𝑠 + 𝑐2(𝜙−𝛾)

𝑇

]
𝑑𝑡

≤ 𝐾𝑇
(
E
[ ∫ 𝑇

0
𝑐
2(𝜙−𝛾)
𝑠 𝑑𝑠

]
+ E(𝑐2(𝜙−𝛾)

𝑇
)
)
< ∞.

(2.52)
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We now turn our attention to the last estimate, sup𝑡 ∈[0,𝑇 ] |𝑈
𝜙
𝑡 |. Suppose that 𝜃 ∈ (0, 1), then there

exist constants 𝐴𝜃 , 𝐵𝜃 such that |𝑥 |𝜃 ≤ 𝐴𝜃 + 𝐵𝜃 |𝑥 |. Thus:

sup
𝑡 ∈[0,𝑇 ]

|𝑈𝜙𝑡 | = 𝐾 sup
𝑡 ∈[0,𝑇 ]

|𝑌 𝜙𝑡 |𝜃 ≤ 𝐴𝜃 + 𝐵𝜃 sup
𝑡 ∈[0,𝑇 ]

|𝑌 𝜙𝑡 |. (2.53)

Analogous to 𝑈𝛾 , sup𝑡 ∈[0,𝑇 ] |𝑌
𝜙
𝑡 | belongs to 𝐿2(P), and thus so does sup𝑡 ∈[0,𝑇 ] |𝑈

𝜙
𝑡 |. When 𝜃 < 0,

we apply Jensen’s inequality to obtain:

|𝑈𝜙𝑡 | = 𝐾E𝑡
( ∫ 𝑇

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑐1−𝜙𝑠 𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)𝑐1−𝜙
𝑇

) 𝜃
≤ 𝐾E𝑡

( ∫ 𝑇

𝑡

𝑐
1−𝛾
𝑠 𝑑𝑠 + 𝑐1−𝛾

𝑇

)
≤ 𝐾E𝑡

( ∫ 𝑇

0
𝑐
1−𝛾
𝑠 𝑑𝑠 + 𝑐1−𝛾

𝑇

)
.

(2.54)

By the same Doob’s maximal inequality argument as Part I, we conclude that sup𝑡 ∈[0,𝑇 ] |𝑈
𝜙
𝑡 | ∈

𝐿2(P).

□

2.8 Proofs of Infinite Horizon Results.

2.8.1 Proof of Proposition 2.5.2

For the sake of concreteness, let us assume in Part i. and Part ii. below that 𝛾 > 𝜙. The case when

𝜙 < 𝛾 is proved similarly.

Part i. Due to the membership of 𝑐 in C∞, E(
∫ 𝑇
0
[𝑐 (𝑇 )𝑠 ] 𝑝𝑑𝑠) = E(

∫ 𝑇
0
𝑐
𝑝
𝑠 𝑑𝑠) < ∞ for the values

of 𝑝 required by C𝑇 . Therefore, it remains only to show that the terminal condition 𝑐 (𝑇 )
𝑇

satisfies

E( [𝑐 (𝑇 )
𝑇

] 𝑝) < ∞ for 𝑝 = 2(1 − 𝛾), 2(1 − 𝜙) and 2(𝜙 − 𝛾). With 𝐾 denoting a generic constant:

[𝑐 (𝑇 )
𝑇

]2(1−𝛾) = 𝐾
(
E𝑇

[ ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝛾𝑠 𝑑𝑠

] )2
≤ E𝑇

( ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐2(1−𝛾)𝑠 𝑑𝑠

)
∈ 𝐿 (P). (2.55)
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Above, we used Jensen’s inequality twice, firstly through the conditional expectation and secondly

through the Lebesgue integral.

Next, we estimate [𝑐 (𝑇 )
𝑇

]2(1−𝜙) and [𝑐 (𝑇 )
𝑇

]2(𝜙−𝛾) , using also Jensen’s inequality in a manner

similar to (2.55). We use below the fact that for any non-zero 𝜃 < 1, the mapping 𝑥 → 𝑥2/𝜃 and

𝑥 → 𝑥2(1−1/𝜃) are convex on (0,∞).

[𝑐 (𝑇 )
𝑇

]2(1−𝜙) =
(
E𝑇

[ ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝛾𝑠 𝑑𝑠

] ) 2
𝜃 ≤ E𝑇

( ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐2(1−𝛾)/𝜃𝑠 𝑑𝑠

)
= E𝑇

( ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐2(1−𝜙)𝑠 𝑑𝑠

)
∈ 𝐿 (P).

(2.56)

[𝑐 (𝑇 )
𝑇

]2(𝜙−𝛾) =
(
E𝑇

[ ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝛾𝑠 𝑑𝑠

] ) 2(𝜙−𝛾)
1−𝛾

=

(
E𝑇

[ ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝛾𝑠 𝑑𝑠

] )2(1−1/𝜃)
≤ E𝑇

( ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐2(𝜙−𝛾)𝑠 𝑑𝑠

)
∈ 𝐿 (P).

(2.57)

We have shown that 𝑐 (𝑇 ) belong to the class C𝑇 . Similarly, we need only to show that the termi-

nal consumption 𝑐 (𝑇 )
𝑇

satisfies E( [𝑐 (𝑇 )
𝑇

] 𝑝) < ∞ for 𝑝 = 2(1−𝛾), 2(1−𝜙) and 2(𝜙−𝛾). We observe that

[𝑐 (𝑇 )
𝑇

]2(1−𝜙) = 𝐾
(
E𝑇

[ ∫ ∞
𝑇
𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝜙𝑠 𝑑𝑠

] )2 and [𝑐 (𝑇 )
𝑇

]2(𝜙−𝛾) = 𝐾 (E𝑇
[ ∫ ∞
𝑇
𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝜙𝑠 𝑑𝑠

]
)2(𝜃−1) .

These quantities can be shown to be integrable using estimates similar to equations (2.55) and (2.56).

Lastly, [𝑐 (𝑇 )
𝑇

]2(1−𝛾) = 𝐾
(
E𝑇

[ ∫ ∞
𝑇
𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝜙𝑠 𝑑𝑠

] )2𝜃 . If 𝜃 < 0, the same convexity argument as in

equation (2.56) shows that [𝑐 (𝑇 )
𝑇

]2(1−𝛾) is integrable. If 𝜃 ∈ (0, 1), then there exists constants 𝐴𝜃 , 𝐵𝜃

such that:

[𝑐 (𝑇 )
𝑇

]2(1−𝛾) ≤ 𝐴𝜃 + 𝐵𝜃
(
E𝑇

[ ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝜙𝑠 𝑑𝑠

] )2
≤ 𝐴𝜃 + 𝐵𝜃E𝑇

( ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐2(1−𝜙)𝑠 𝑑𝑠

)
∈ 𝐿1(P).

(2.58)

Part ii. For positive constants 𝑡 < 𝑇 , we can decompose the process𝑈𝛾,∞ the following way, using

the tower property of conditional expectation:

𝑈
𝛾,∞
𝑡 = E𝑡

[ ∫ ∞

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑢𝛾 (𝑐𝑠)𝑑𝑠
]

= E𝑡

[ ∫ 𝑇

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑢𝛾 (𝑐𝑠)𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)E𝑇
( ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑢𝛾 (𝑐𝑠)𝑑𝑠
)]
.

(2.59)
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This can be interpreted as the finite horizon power utility process associated with the upper

truncation 𝑐 (𝑇 ) . Specifically, {𝑈𝛾,∞(𝑐)𝑡 }𝑡 ∈[0,𝑇 ] = 𝑈
𝛾,𝑇 (𝑐 (𝑇 ) ). In part i, we have proved that 𝑐 (𝑇 ) ∈

C𝑇 . As a result, the restriction {𝑈𝛾,∞(𝑐)𝑡 }𝑡 ∈[0,𝑇 ] belongs to V𝑇 thanks to Lemma 2.7.3. The process

𝑈𝜙,∞ has a similar decomposition:

𝑈
𝜙,∞
𝑡 = 𝑢𝛾 ◦ 𝑢−1𝜙

[
E𝑡

( ∫ ∞

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑢𝜙 (𝑐𝑠)𝑑𝑠
)]

= 𝑢𝛾 ◦ 𝑢−1𝜙
{
E𝑡

( ∫ 𝑇

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑢𝜙 (𝑐𝑠)𝑑𝑠 + 𝑒−𝛿 (𝑇 −𝑡)E𝑇
[ ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑢𝜙 (𝑐𝑠)𝑑𝑠
] )}

.

(2.60)

Similar to 𝑈𝛾,∞, the restriction on [0, 𝑇] of 𝑈𝜙,∞ can also be interpreted as a finite horizon

power utility process. In particular, {𝑈𝜙,∞𝑡 }𝑡 ∈[0,𝑇 ] = 𝑈
𝜙,∞(𝑐 (𝑇 ) ). As 𝑐 (𝑇 ) ∈ C𝑇 , by Lemma 2.7.3,

{𝑈𝜙,∞𝑡 }𝑡 ∈[0,𝑇 ] belongs to V𝑇 .

Part iii. Lastly, we show that the ordering between power utility processes is preserved when

we extend to infinite horizon, i.e. 𝑈𝜙∨𝛾,∞𝑡 ≤ 𝑈
𝜙,∧,𝛾,∞
𝑡 for all 𝑡 ≥ 0. Recall that 𝑈𝜙,∞𝑡 = 𝑢𝛾 ◦

𝑢−1
𝜙
(E𝑡

∫ ∞
𝑡
𝛿𝑒−𝛿 (𝑠−𝑡)𝑢𝜙 (𝑐𝑠)𝑑𝑠). Consider the second derivative:

𝑑2

𝑑𝑥2
(𝑢𝛾 ◦ 𝑢−1𝜙 (𝑥)) = (𝜙 − 𝛾) [(1 − 𝜙)𝑥] 𝜃−2, (2.61)

which is concave on (1 − 𝜙)R+ if 𝜙 < 𝛾 and convex on (1 − 𝜙)R+ if 𝜙 > 𝛾. Therefore, we can apply

Jensen’s inequality to obtain:

𝑈
𝜙,∞
𝑡 = 𝑢𝛾 ◦ 𝑢−1𝜙

(
E𝑡

[ ∫ ∞

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑢𝜙 (𝑐𝑠)𝑑𝑠
] )

≥ (resp. ≤) E𝑡
[ ∫ ∞

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑢𝛾 ◦ 𝑢−1𝜙 ◦ 𝑢𝜙 (𝑐𝑠)𝑑𝑠
]

= 𝑈
𝛾,∞
𝑡 ,

(2.62)

when 𝜙 < 𝛾 (resp. 𝜙 > 𝛾). This concludes the lemma.

□
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2.8.2 Proof of Proposition 2.5.3

Proof. For brevity, we will prove the result when 𝜙 < 𝛾. The other cases where 𝛾 > 𝜙 can be proved

similarly. By Proposition 2.5.2,𝑈𝛾,∞(𝑐) and𝑈𝜙,∞(𝑐) restricted on [0, 𝑇] is equal to𝑈𝛾,𝑇 (𝑐 (𝑇 ) ) and

𝑈𝜙,𝑇 (𝑐 (𝑇 ) ), respectively. Therefore, by Power Utility Bounds in finite horizon (cf. Proposition 2.5.1),

for 𝑡 < 𝑇 :

𝑉
(𝑇 )
𝑡 ≤ 𝑈𝜙,𝑇 (𝑐 (𝑇 ) )𝑡 = 𝑈𝜙,∞(𝑐)𝑡 , and

𝑉
(𝑇 )
𝑡 ≥ 𝑈𝛾,𝑇 (𝑐 (𝑇 ) )𝑡 = 𝑈𝛾,∞(𝑐)𝑡 .

(2.63)

As 𝑉 (𝑇 )
𝑇

≥ 𝑉 (𝑇 )
𝑇

, the ordering 𝑉𝑡 ≥ 𝑉𝑡 for 𝑡 < 𝑇 is a straightforward consequence of a comparison

principle (see Theorem 2.7.1). For the last statement, let 𝑉 (𝑆) and 𝑉 (𝑆) be defined by equation (2.25),

with 𝑆 in place of 𝑇 . Then, similar to inequalities (2.26), we have:

𝑈
𝜙∨𝛾,∞
𝑇

≤ 𝑉 (𝑆)
𝑇

≤ 𝑉 (𝑆)
𝑇

≤ 𝑈𝜙∧𝛾,∞
𝑇

. (2.64)

On the the restricted horizon [0, 𝑇], 𝑉 (𝑆) and 𝑉 (𝑆) has the same BSDE driver as (2.25), but with

terminal conditions 𝑉 (𝑆)
𝑇

and 𝑉 (𝑆)
𝑇

, respectively. Thus, we can combine inequalities (2.64) with

Theorem 2.7.1 to attain the last statement of this proposition.

□

2.8.3 Proof of Proposition 2.5.4

Proof. It follows from the Proposition 2.5.3 that for 𝑡 < 𝑇 , 𝑉 (𝑇 )
𝑡 ≥ 𝑉

(𝑇 +1)
𝑡 ≥ 𝑈

𝜙∧𝛾,∞
𝑡 . As the

lower bounding process is independent of 𝑇 , we can define the downwards limit 𝑉𝑡 ≜↓ lim𝑇→∞𝑉
(𝑇 )
𝑡 .

Similarly, we can define 𝑉𝑡 ≜↑ lim𝑇→∞𝑉
(𝑇 )
𝑡 , the upwards limit of its localisations. By construction,

both 𝑉 and 𝑉 are sandwiched between𝑈𝜙∨𝛾,∞ and𝑈𝜙∧𝛾,∞. From Proposition 2.5.2, both𝑈𝜙,∞ and

𝑈𝛾,∞ belong to the semimartingale class V∞, whence it follows that 𝑉 and 𝑉 belong to the same class.
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Having constructed two candidate solutions in the appropriate semimartingale classes, we now

verify that they satisfy the target BSDE. Let 𝑆 > 𝑇 be two positive constants, then:

𝑉
(𝑆)
𝑡 = E𝑡

(
𝑉

(𝑆)
𝑇

+
∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉 (𝑆)
𝑠 )𝑑𝑠

)
. (2.65)

Using the fact that𝑈𝜙∨𝛾,∞ ≤ 𝑉 (𝑆) ≤ 𝑈𝜙∧𝛾,∞ for all 𝑆, Proposition 2.5.2.ii. and conditional dominated

convergence, we can pass to the limit4 and obtain:

𝑉𝑡 = E𝑡

(
𝑉𝑇 +

∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠
)
. (2.66)

Equation (2.66) with 𝑉 in place of 𝑉 can be obtained using the same argument.

We will now prove the last statement. Since 𝑣 satisfies the power utility bound, it belongs to

V∞. For any 𝑇 > 0, 𝑣𝑇 ≤ 𝑈
𝜙∧𝛾,∞
𝑇

, and thus by comparison principle (Theorem 2.7.1), 𝑣𝑡 ≤ 𝑉
(𝑇 )
𝑡

(cf. equation (2.25)) for all 𝑡 < 𝑇 . Letting 𝑇 diverge, we obtain the upper bound in (2.27). The other

inequality is proved similarly.

□

2.8.4 Proof of Theorem 2.5.5

Proof. By martingale representation theorem (Theorem 3.4.15 [33]), there exists an R𝑑-valued

progressively measurable process {𝑍 (𝑇 ) }𝑡≤𝑇 such that
∫ 𝑇
0

∥𝑍 (𝑇 )
𝑠 ∥2𝑑𝑠 < ∞ and:

𝑉𝑡 = 𝑉𝑇 +
∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠 +
∫ 𝑇

𝑡

𝑍
(𝑇 )
𝑠 𝑑𝐵𝑠 . (2.67)

This representation is consistent across different horizon lengths, in the sense that the 𝑍 component

in a longer horizon can also serve as the representing process for a shorter horizon. More specifically,

4See also Lemma 2.7.3, Part II. for a similar argument
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for positive constants 𝑡 < 𝑇 < 𝑆:

𝑉𝑡 = 𝑉𝑆 +
∫ 𝑆

𝑡

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠 +
∫ 𝑆

𝑡

𝑍
(𝑆)
𝑠 𝑑𝐵𝑠

= 𝑉𝑆 +
∫ 𝑆

𝑇

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠 +
∫ 𝑆

𝑇

𝑍
(𝑆)
𝑠 𝑑𝐵𝑠 +

∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠 +
∫ 𝑇

𝑡

𝑍
(𝑆)
𝑠 𝑑𝐵𝑠

= 𝑉𝑇 +
∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠 +
∫ 𝑇

𝑡

𝑍
(𝑆)
𝑠 𝑑𝐵𝑠 .

(2.68)

Therefore,
∫ 𝑡
0
𝑍
(𝑇 )
𝑠 𝑑𝐵𝑠 =

∫ 𝑡
0
𝑍
(𝑆)
𝑠 𝑑𝐵𝑠 almost surely for 𝑡 ≤ 𝑇 . By Lemma 2.8.1 below, 𝑍 (𝑇 ) and

𝑍 (𝑆) coincide 𝑑P ⊗ 𝑑𝑡-almost everywhere on [0, 𝑇] ×Ω. Thus, we can identify a process {𝑍𝑡 }𝑡≥0 by

defining 𝑍𝑡 = 𝑍
(𝑇 )
𝑡 for 𝑡 ≤ 𝑇 , which satisfies the following BSDE:

𝑉𝑡 = 𝑉𝑇 +
∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠 +
∫ 𝑇

𝑡

𝑍𝑠𝑑𝐵𝑠, 𝑡 ≤ 𝑇. (2.69)

□

Lemma 2.8.1. Suppose the R𝑑-valued progressively measurable processes 𝑍 and 𝑍 are such that∫ 𝑇
0

∥𝑍 ∥2𝑠𝑑𝑠 +
∫ 𝑇
0

∥𝑍 ∥2𝑠𝑑𝑠 < ∞ almost surely, and that {
∫ 𝑡
0
𝑍𝑠𝑑𝐵𝑠}𝑡 ∈[0,𝑇 ] and {

∫ 𝑡
0
𝑍𝑠𝑑𝐵𝑠}𝑡 ∈[0,𝑇 ] are

indistinguishable, then 𝑍 = 𝑍 𝑑P ⊗ 𝑑𝑡-almost everywhere on [0, 𝑇] ⊗ Ω.

Define the stopping times 𝜏𝑘 ≜ inf{𝑡 ≥ 0,
∫ 𝑡
0
∥𝑍 ∥2𝑠𝑑𝑠 ∨

∫ 𝑡
0
∥𝑍 ∥2𝑠𝑑𝑠 ≥ 𝑘} ∧ 𝑇 . Then we have:∫ 𝑡

0
𝑍𝑠I𝑠≤𝜏𝑘 𝑑𝑊𝑠 =

∫ 𝑡∧𝜏𝑘

0
𝑍𝑠𝑑𝑊𝑠 =

∫ 𝑡∧𝜏𝑘

0
𝑍𝑠𝑑𝑊𝑠 =

∫ 𝑡

0
𝑍𝑠I𝑠≤𝜏𝑘 𝑑𝑊𝑠, 𝑡 ≤ 𝑇. (2.70)

By Itô’s isometry for square integrable martingales:

E
( ∫ 𝑇

0
∥(𝑍𝑡 − 𝑍𝑡 )I𝑡≤𝜏𝑘 ∥2𝑑𝑡

)
= E

( [ ∫ 𝑇

0
(𝑍𝑡 − 𝑍𝑡 )I𝑡≤𝜏𝑘 𝑑𝑊𝑡

]2)
= 0. (2.71)

It follows that, almost surely, 𝑍𝑡 (𝜔) = 𝑍𝑡 (𝜔) on [0, 𝜏𝑘 (𝜔)]. By letting 𝑘 → ∞ we have that 𝑍𝑡 = 𝑍𝑡

for 𝑡 ≤ 𝑇 𝑑𝑡 ⊗ 𝑑P-almost everywhere.

□
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2.8.5 Proof of Proposition 2.6.1.

Suppose that 𝑉 and 𝑉 are solutions of equation (2.31) that belong to V∞ and satisfy the transversality

condition (2.30). Then, 𝑉 has the BSDE representation:

𝑉𝑡 = 𝑉𝑇 +
∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠 + (𝑀𝑇 − 𝑀𝑡 ), (2.72)

where 𝑀𝑡 = E𝑡 (𝑉𝑇 +
∫ 𝑇
0
𝑓 (𝑐𝑠, 𝑉𝑠)𝑑𝑠), a martingale. By Martingale Regularisation Theorem (Theorem

67.7, [65]), 𝑀 has a càdlàg modification. Therefore, we can consider the càdlàg modification of

𝑉 . 𝑀̃ is defined analogously and likewise, we also consider càdlàg versions of 𝑉 and 𝑀̃. Let us

denote Δ𝑉 = 𝑉 − 𝑉,Δ𝑀 = 𝑀 − 𝑀̃ and Δ 𝑓 = 𝑓 (𝑐,𝑉) − 𝑓 (𝑐,𝑉). By Tanaka’s formula for general

semimartingales (Theorem 66, [53]), we have:

𝑒−𝛿𝜃𝑡 |Δ𝑉𝑡 | = 𝑒−𝛿𝜃𝑇 |Δ𝑉𝑇 | +
∫ 𝑇

𝑡

𝑒−𝛿𝜃𝑠
[
𝛿𝜃 |Δ𝑉𝑠 | + 𝑔′(Δ𝑉𝑠)Δ 𝑓𝑠

]
𝑑𝑠

−
∫ 𝑇

𝑡

𝑒−𝛿𝜃𝑠𝑔′(Δ𝑉𝑠−)𝑑Δ𝑀𝑠− −
∫ 𝑇

𝑡

𝑒−𝛿𝜃𝑑𝐴𝑠,

(2.73)

where 𝑔(𝑥) ≜ |𝑥 | and 𝑔′(𝑥) = I𝑥>0−I𝑥≤0 is its left-derivative, and 𝑑𝐴𝑡 = (Δ𝑉𝑡−Δ𝑉𝑡−)−𝑔′(Δ𝑉𝑡−) (Δ𝑉𝑡−

Δ𝑉𝑡−) is càdlàg non-decreasing. As the aggregator is monotone with −𝛿𝜃 being its constant of

monotonicity, the Lebesgue integral above has a non-negative integrand. Moreover, the stochastic

integral is a true martingale, as its integrand is uniformly bounded. Therefore, by taking expectation

on both sides of (2.73):

E
[
𝑒−𝛿𝜃𝑡 |Δ𝑉𝑡 |

]
≤ E

[
𝑒−𝛿𝜃𝑇 |Δ𝑉𝑇 |

]
. (2.74)

The right hand side of (2.74) vanishes as 𝑇 diverges by transversality condition (2.30), which

implies that |Δ𝑉𝑡 | = 0 almost surely. We have demonstrated uniqueness of solutions satisfying the

transversality condition. We observe also that when 𝜃 < 0, 𝑉 ≡ 0 is a V∞ solution that satisfies (2.30).

Therefore, all transversal solutions must be identically 0.

□
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2.8.6 Proof of Theorem 2.4.2

Proof of Theorem 2.4.2. Suppose that 𝑐 is a consumption plan in C∞. Let 𝑉 and 𝑉 denote the solutions

constructed in Section 2.5. By Proposition 2.5.4, these actually define upper and lower bounds for all

potential Epstein–Zin utility processes. Therefore, in order to prove uniqueness, it is sufficient to show

that 𝑉 = 𝑉 .

Let {𝛼𝑡 }𝑡≥0 be a progressively measurable process that shall be determined later. Define 𝑀𝑡 =

E𝑡 (𝑉𝑇 +
∫ 𝑇
0
𝑓 (𝑐𝑠, 𝑉𝑠)) for 𝑡 < 𝑇 . 𝑀̃𝑡 is defined analogously with 𝑉 . Denote by Δ𝑉𝑡 the non-negative

process 𝑉𝑡 − 𝑉𝑡 , and by Δ𝑀𝑡 the difference 𝑀𝑡 − 𝑀̃𝑡 . The dynamics of exp(
∫ 𝑡
0
𝛼𝑠𝑑𝑠)Δ𝑉𝑡 can be

obtained by Itô’s Lemma for non-continuous semimartingales (i.e. Theorem I.4.57 of [53]):

𝑑𝑒
∫ 𝑡

0
𝛼𝑠𝑑𝑠Δ𝑉𝑡 = 𝑒

∫ 𝑡

0
𝛼𝑠𝑑𝑠

(
𝛼𝑡Δ𝑉𝑡 − [ 𝑓 (𝑐𝑡 , 𝑉𝑡 ) − 𝑓 (𝑐𝑡 , 𝑉𝑡 )]

)
𝑑𝑡 + 𝑒

∫ 𝑡

0
𝛼𝑠𝑑𝑠𝑑Δ𝑀𝑡 . (2.75)

By mean value theorem, 𝑓 (𝑐𝑡 , 𝑉𝑡 ) − 𝑓 (𝑐𝑡 , 𝑉𝑡 ) = 𝜕𝑣 𝑓 (𝑐𝑡 , 𝐾) (𝑉𝑡 − 𝑉𝑡 ) for some 𝐾 ∈ [𝑉𝑡 , 𝑉𝑡 ].

Moreover, by considering the second derivative 𝜕2𝑣𝑣 𝑓 (𝑐, 𝑣) = 𝛿𝑐1−𝜙 (𝛾−𝜙) [(1−𝛾)𝑣]1−1/𝜃 , we observe

that 𝜕𝑣 𝑓 is increasing in 𝑣 when 𝛾 > 𝜙 and decreasing when 𝛾 < 𝜙. In both cases, 𝜕𝑣 𝑓 (𝑐𝑡 , 𝐾) ≤

𝜕𝑣 𝑓 (𝑐𝑡 ,𝑈𝜙,∞𝑡 ). Therefore, if we set 𝛼𝑡 = 𝑓𝑣 (𝑐𝑡 ,𝑈𝜙,∞𝑡 ), the drift term in equation (2.75) is non-negative

and exp(
∫ 𝑡
0
𝛼𝑠𝑑𝑠)Δ𝑉𝑡 is a local submartingale. Moreover, as 𝜕𝑣 𝑓 (𝑐, 𝑣) ≤ −𝛿𝜃, the exponential factor

is locally bounded. exp(
∫ 𝑡
0
𝛼𝑠𝑑𝑠)Δ𝑉𝑡 is thus of class (DL) and a true submartingale. For any positive

constants 𝑡 < 𝑇 :

E
[
𝑒
∫ 𝑡

0
𝛼𝑠𝑑𝑠Δ𝑉𝑡

]
≤ E

[
𝑒
∫ 𝑇

0
𝛼𝑠𝑑𝑠Δ𝑉𝑇

]
. (2.76)

As Δ𝑉 is non-negative, in order to show that Δ𝑉𝑡 = 0, it is sufficient to show that the right hand

side of inequality (2.76) vanishes as 𝑇 diverges. We consider two separate cases.

Case 1: 0 < 𝜃 < 1. This covers the two cases ,𝜙 < 𝛾 < 1 and < 1 < 𝛾 < 𝜙. In both cases, we have

from the power utility bounds:

0 ≤ (1 − 𝛾)𝑉𝑇 ≤
(
E𝑇

[ ∫ ∞

𝑇

𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝜙𝑠 𝑑𝑠

] ) 𝜃
. (2.77)
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Therefore:

E
(
exp

(∫ 𝑇

0
𝜕𝑣 𝑓 (𝑐𝑠,𝑈𝜙,∞𝑠 )𝑑𝑠

)
| (1 − 𝛾)𝑉𝑇 |

)
≤ E

(
exp

( ∫ 𝑇

0

𝜕𝑣 𝑓 (𝑐𝑠,𝑈𝜙,∞𝑠 )
𝜃

𝑑𝑠

)
E𝑇

[ ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝜙𝑠 𝑑𝑠

] ) 𝜃
= E

{
exp

( ∫ 𝑇

0
𝛿

(
1 − 1

𝜃

)
[(1 − 𝛾)𝑈𝜙,∞𝑡 ]− 1

𝜃 𝑑𝑡 − 𝛿𝑇
)
E𝑇

[ ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝜙𝑠 𝑑𝑠

]} 𝜃
.

(2.78)

As 𝜃 ∈ (0, 1), the term 𝛿(1 − 1/𝜃) [(1 − 𝛾)𝑈𝜙,∞𝑡 ]−1/𝜃 is non-positive. It then follows from the

previous inequality that:

E
(
exp

(∫ 𝑇

0
𝜕𝑣 𝑓 (𝑐𝑠,𝑈𝜙,∞𝑠 )𝑑𝑠

)
| (1 − 𝛾)𝑉𝑇 |

)
≤ E

( ∫ ∞

𝑡

𝛿𝑒−𝛿𝑠𝑐1−𝜙𝑠 𝑑𝑠

) 𝜃
. (2.79)

We note that 𝑐 satisfies E(
∫ ∞
0
𝛿𝑒−𝛿𝑠𝑐2(1−𝜙)𝑠 𝑑𝑠) < ∞ by its membership in C∞. 𝑐1−𝜙 can be

interpreted as belonging to the square-integrable space 𝐿2(Ω × R+), with probability measure 𝑑P ⊗

𝛿𝑒−𝛿𝑡𝑑𝑡. Since this is a finite measure space, 𝑐1−𝜙 also belongs to 𝐿1(Ω ×R+) with the same measure,

which implies E(
∫ ∞
0
𝛿𝑒−𝛿𝑠𝑐1−𝜙𝑠 𝑑𝑠) < ∞. Thus, as 𝑇 diverges,

∫ ∞
𝑇
𝛿𝑒−𝛿𝑠𝑐1−𝜙𝑠 converges to 0 almost

surely and in 𝐿1, by dominated convergence. It therefore implies that:

lim
𝑇→∞

E
(
exp

(∫ 𝑇

0
𝜕𝑣 𝑓 (𝑐𝑠,𝑈𝜙,∞𝑠 )𝑑𝑠

)
|𝑉𝑇 |

)
= 0. (2.80)

The same result holds with 𝑉 in place of 𝑉 , whence we conclude that the right hand side of (2.76)

vanishes at infinity, which concludes Case 1.

Case 2: 𝜃 < 0. This covers the two remaining configurations, 𝜙 < 1 < 𝛾 and 𝛾 < 1 < 𝜙. In both

configurations, |𝑉𝑡 | and |𝑉𝑡 | are bounded above by |𝑈𝛾,∞𝑡 |. Therefore:

E
(
exp

(∫ 𝑇

0
𝜕𝑣 𝑓 (𝑐𝑠,𝑈𝜙,∞𝑠 )𝑑𝑠

)
|𝑉𝑇 |

)
≤ 1

|1 − 𝛾 |E
(
exp

(∫ 𝑇

0
𝜕𝑣 𝑓 (𝑐𝑠,𝑈𝜙,∞𝑠 )𝑑𝑠

)
E𝑇

[ ∫ ∞

𝑇

𝛿𝑒−𝛿𝑠𝑐1−𝛾𝑠 𝑑𝑠

] )
=

1

|1 − 𝛾 |E
(
exp

(∫ 𝑇

0
𝜕𝑣 𝑓 (𝑐𝑠,𝑈𝜙,∞𝑠 )𝑑𝑠

)
E𝑇

∫ ∞

𝑇

𝛿𝑒−𝛿𝑠𝑐1−𝛾𝑠 𝑑𝑠

)
,

(2.81)
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which vanishes at infinity by the hypothesis of the theorem. The same result holds for 𝑉 in place of 𝑉 ,

which concludes Case 2.

□

2.8.7 Proof of Proposition 2.4.3.

Proof of Proposition 2.4.3. We will now prove the properties of homotheticity, monotonicity and

concavity of Epstein–Zin utilities, in both finite and infinite horizon.

Part I.1. Homotheticity, 𝑇 < ∞. We can verify straightforwardly that if 𝑉𝑐 solves equation (2.23),

then:

𝜆1−𝛾𝑉𝑐 = E𝑡
(
𝑢𝛾 (𝜆𝑐𝑇 ) +

∫ 𝑇

𝑡

𝑓 (𝜆𝑐𝑠, 𝜆1−𝛾𝑉𝑐𝑠 )𝑑𝑠
)
, 0 ≤ 𝑡 ≤ 𝑇, (2.82)

which confirms the homotheticity of Epstein–Zin utilities.

Part I.2. Homotheticity, 𝑇 = ∞. We can verify directly that the mappings C∞ → V∞ : 𝑐 → 𝑈𝛾,∞

and 𝑐 → 𝑈𝜙,∞ are homothetic, i.e. 𝑈𝛾,∞(𝜆𝑐) = 𝜆1−𝛾𝑈𝛾,∞(𝑐) and 𝑈𝜙,∞(𝜆𝑐) = 𝜆1−𝛾𝑈𝜙,∞(𝑐).

Therefore:

𝑉 (𝑇 ) (𝜆𝑐) = 𝜆1−𝛾𝑉 (𝑇 ) (𝑐), (2.83)

where 𝑉 (𝑇 ) (𝑐) and 𝑉 (𝑇 ) (𝜆𝑐) are constructed via equation (2.25). As we take limit 𝑇 → ∞, this

homotheticity property is preserved by the limit process. We observe also that the quantity Φ in (2.22)

is invariant through scaling. Therefore 𝜆𝑐 satisfies the uniqueness criterion.

Part II. Monotonicity. When 𝑇 < ∞, monotonicity of the mapping C𝑇 → V𝑇 : 𝑐 → 𝑉𝑐 is the

result of Corollary 2.7.2. When 𝑇 = ∞,𝑈𝛾,∞(𝑐) ≥ 𝑈𝛾,∞(𝑐) when 𝑐 ≥ 𝑐. By the comparison principle

2.7.1:

𝑉 (𝑇 ) (𝑐 ≥ 𝑉 (𝑇 ) (𝑐). (2.84)

Letting 𝑇 → ∞, we attain the desired result.

Part III.1 Concavity, 𝑇 < ∞. From the proof of Proposition 2.5.1, 𝑉𝑐 can be obtained as the

following limit:

𝑉𝑐𝑡 = lim
𝑛→∞

lim
𝑚→∞

𝑉
(𝑐∨ 1

𝑛
)∧𝑚

𝑡 . (2.85)
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(𝑐 ∨ 1
𝑛
) ∧ 𝑚 and (𝑐 ∨ 1

𝑛
) ∧ 𝑚 are bounded above and away from zero, and thus so are their convex

combinations. This falls within the scope of Theorem 3.3 [57], whence we have:

𝑉 𝛼(𝑐∨
1
𝑛
)∧𝑚+(1−𝛼) (𝑐∨ 1

𝑛
)∧𝑚 ≤ 𝛼𝑉 (𝑐∨ 1

𝑛
)∧𝑚 + (1 − 𝛼)𝑉 (𝑐∨ 1

𝑛
)∧𝑚. (2.86)

Letting 𝑚, 𝑛→ ∞, we obtain the concavity of the mapping 𝑐 → 𝑉𝑐 in finite horizon.

Part III.2. Concavity, 𝑇 = ∞. Lastly, we observe that the mapping 𝑐 → 𝑈𝛾,∞ is concave, a conse-

quence of concavity of CRRA utility functions. Therefore, the terminal condition of 𝑉 (𝑇 ) in equation

(2.25) is concave in 𝑐. Therefore, by concavity in finite horizon:

𝑉 (𝑇 ) (𝛼𝑐 + (1 − 𝛼)𝑐) ≥ 𝛼𝑉 (𝑇 ) (𝑐) + (1 − 𝛼)𝑉 (𝑇 ) (𝑐). (2.87)

Letting 𝑇 → ∞, we attain concavity of infinite horizon Epstein–Zin utilities.

□
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CHAPTER 3

APPLICATIONS

3.1 Example I - Geometric Brownian Motion Consumption.

We consider a simple model where the consumption follows Geometric Brownian Motion (GBM)

dynamics:

𝑑𝑐𝑡 = 𝑏𝑐𝑡𝑑𝑡 + 𝜎𝑐𝑡𝑑𝐵𝑡 , 𝑐0 ∈ (0,∞), (3.1)

where 𝑏 and 𝜎 are constants, 𝜎 is positive, and 𝐵 is an R-valued, {F𝑡 }-Brownian Motion. One virtue

of this simple model is that every quantity of interest can be calculated explicitly. In particular, the

integrability conditions of C∞ and the uniqueness criterion (2.21) can be reduced to a set of easily

verifiable inequalities.

Theorem 3.1.1. Let 𝑐 be a consumption process with Geometric Brownian Motion dynamics as defined

in (3.1). It belongs to the class C∞ if and only if the following system of inequalities hold:



2(1 − 𝜙)
(
𝑏 − 𝜎2

2

)
+ 2(1 − 𝜙)2𝜎2 < 𝛿, (3.2a)

2(1 − 𝛾)
(
𝑏 − 𝜎2

2

)
+ 2(1 − 𝛾)2𝜎2 < 𝛿, (3.2b)

2(𝜙 − 𝛾)
(
𝑏 − 𝜎2

2

)
+ 2(𝜙 − 𝛾)2𝜎2 < 𝛿. (3.2c)
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Moreover, when 𝜃 < 0, the uniqueness criterion (2.21) is satisfied if and only if the following additional

inequality holds:

(1 − 𝜙)
(
𝑏 − 1

2
𝜎2

)
+ 1

2
(𝛾 − 𝜙) (1 − 𝜙)𝜎2 + 1

2
(1 − 𝛾)2𝜎2 < 𝛿. (3.3)

3.2 Example II - Long Run Risk Model

We will now consider our adaptation of the so-called Long Run Risk Model (LRRM) developed by

Bansal & Yaron [3][2]. The model specification is given below:

𝑑 log(𝑐𝑡 ) = (𝜇 + 𝑋𝑡 )𝑑𝑡 +
√
𝑣𝑡𝑑𝐵𝑡 , 𝑐0 > 0,

𝑑𝑋𝑡 = −𝑎𝑋𝑡𝑑𝑡 + 𝑏𝑑𝑊𝑡 , 𝑋0 = 0,

𝑑𝑣𝑡 = 𝜅(𝜂 − 𝑣𝑡 )𝑑𝑡 + 𝜆
√
𝑣𝑡𝑑𝐵

⊥
𝑡 , 𝑣0 ∈ R+,

(3.4)

where 𝑎, 𝑏, 𝜅, 𝜂, 𝜆 are positive constants, 𝜇 is a real number and𝑊, 𝐵 and 𝐵⊥ are mutually independent

R-valued Brownian Motions.

The dynamics of log consumption contains a long-run component 𝑋 , which models random

fluctuations in the state of the economy that alter expected growth of log consumption. This long run

component is modelled by an Ornstein-Uhlenbeck (OU) process with stationary mean 0, representing

the ’neutral’ state of the economy. There is no loss of generality in letting 𝑋 have zero long term mean,

since it can always be adjusted via an affine shift. In Bansal & Yaron’s model, random shocks have a

long-lasting impact on the expected growth of log consumption. This persistence is modelled via the

mean-reverting speed 𝑎.

There are a few aspects in which we deviate from their model in order to simplify the technical

details incurred by continuous time. In their specification, up to scaling constants, the same stochastic

volatility process is used for 𝑋 , log(𝑐) and an additional dividend process. First, we focus on

establishing the associated Epstein–Zin utility rather than asset pricing, and thus we do not model

dividends explicitly. Secondly, stochastic volatility only appears in the log consumption dynamics,

which helps to avoid some technical challenges in estimating the moment generating function of 𝑋 .

Lastly, we model 𝑣 with a Cox-Ingersoll-Ross (CIR) square-root process instead of an OU process to

ensure positivity of volatility and at the same time keep the mean-reverting behaviour.
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Similar to the case of Geometric Brownian Motion consumption, admissibility and uniqueness of

Epstein–Zin utiltiy in an LRRM can be sufficed by a set of inequalities.

Theorem 3.2.1. In the context of the Long Run Risk Model 3.4, the consumption process therein

belongs to the class C∞ if the following inequalities hold:



(1 − 𝛾)2, (1 − 𝜙)2, (𝜙 − 𝛾)2 < 𝜅2

4𝜆2
, (3.5a)

2(1 − 𝜙)𝜇 + 2(1 − 𝜙)2 𝑏
2

𝑎2
+ 𝜅𝜂
𝜆2

(𝜅 −
√︁
𝜅2 − 4𝜆2(1 − 𝜙)2) < 𝛿, (3.5b)

2(1 − 𝛾)𝜇 + 2(1 − 𝛾)2 𝑏
2

𝑎2
+ 𝜅𝜂
𝜆2

(𝜅 −
√︁
𝜅2 − 4𝜆2(1 − 𝛾)2) < 𝛿, (3.5c)

2(𝜙 − 𝛾)𝜇 + 2(𝜙 − 𝛾)2 𝑏
2

𝑎2
+ 𝜅𝜂
𝜆2

(𝜅 −
√︁
𝜅2 − 4𝜆2(𝜙 − 𝛾)2) < 𝛿. (3.5d)

The LRRM subsumes the Geometric Brownian Motion model (3.1) as a degenerate case. Heuristi-

cally, if we increase the mean-reverting velocity and decrease the volatility of a mean-reverting process,

we suppress its variation and force it to behave more closely to a constant process. Therefore, if we

vary the parameters so that 𝑏
𝑎

and 𝜆
𝜅

converge to 0, it stands to reason that 𝑋 and 𝑣 converge to their

long term mean and the consumption process behave more closely to a Geometric Brownian Motion.

Let us define the limiting consumption process by the equation:

𝑑𝑐𝑡 = 𝑐𝑡

(
𝜇 + 1

2
𝜂

)
+ √

𝜂𝑑𝐵𝑡 , 𝑐0 > 0. (3.6)

The inequality system (3.5a)-(3.5d), in an appropriate sense, also converges to the system (3.2a)-

(3.2b). Indeed, inequality (3.5a) is trivially satisfied when 𝜆
𝜅
→ 0. Moreover, as 𝜆

𝜅
→ 0, 𝜅 𝜂

𝜆2
(𝜅 −√︁

𝜅2 − 4𝜆2(1 − 𝜙)2) → 2(1−𝜙)2𝜂 (See Lemma 3.4.3). If 𝑏
𝑎

converges to 0 additionally, then inequality

(3.5b) becomes 2(1− 𝜙)𝜇 + 2(1− 𝜙)2𝜂 < 𝛿. This is simply inequality (3.2a) of Theorem 3.1.1 applied

for the limiting consumption process (3.6). In the same way, inequalities (3.5c) & (3.5d) correspond

to (3.2b) & (3.2c). We have demonstrated the consistency in the integrability conditions of the two

models. Let us now state the uniqueness criterion for the LRRM.

Theorem 3.2.2. Consider a LRRM such that the model constraints of Theorem 3.2.1 are satisfied and

that 𝜃 < 0. Let Γ(𝑧) ≜
√
𝜅2 − 2𝜆2𝑧. Define:

𝜁 ≜ (1 − 𝜙)𝜇 + (1 − 𝜙)2𝑏2
2𝑎2

+ 𝜅𝜂
𝜆2

(𝜅 − Γ((1 − 𝜙)2/2)). (3.7)
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Then, the uniqueness criterion (2.21) holds if there exists a constant 𝑚 > 0 and Hölder’s conjugates

𝑝, 𝑞 with 𝑝 ≥ 2 such that the following parameter restriction holds:

− 𝛿𝜃 − 𝑚

𝑝

[
1 + log

( 𝑝(𝛿 − 𝜁) (1 − 𝜃)
𝑚

)
− |1 − 𝜙 |

4𝑎

]
+ 1

2𝑝

(
𝑎 −

√︂
𝑎2 − 2𝑏2

𝑚 |1 − 𝜙 |
𝑎

)
+ 𝜅𝜂

𝑝𝜆2

(
𝜅 −

√︄
𝜅2 − 2𝜆2

𝑚(1 − 𝜙)2

𝜅 + Γ( 12 [1 − 𝜙]2)

)
+ (1 − 𝛾)𝜇 + 𝑞

2(1 − 𝛾)2𝑏2
2𝑞𝑎2

+ 𝜅𝜂

𝑞𝜆2

[
𝜅 − Γ

(𝑞2 [1 − 𝛾]2
2

)]
< 0.

(3.8)

Theorem 3.2.2 appears quite obtuse with intertwining relationships between model parameters.

The constant 𝑚 was introduced by a parametrised family of lower bounds used in an estimate (cf.

equation (3.39)). In principles, so as to assist with verifying the relation (3.8) and sharpen this bound,

we could attempt to minimise in its left hand side in 𝑚 and 𝑝. The first order condition, however,

is unlikely to yield a closed-form solution for the turning point. Therefore, we shall choose 𝑚 that

simplifies inequality (3.8) and allows us to interpret it qualitatively.

Similar to the exposition following Theorem 3.2.1, we shall examine how inequality (3.8) subsumes

(3.3) as a special case. Letting 𝑎, 𝜅 → ∞ and 𝑏, 𝜆 → 0, the left hand side of (3.8) becomes:

−𝛿𝜃 − 𝑚

𝑝

[
1 + log

( 𝑝(𝛿 − 𝜁) (1 − 𝜃)
𝑚

)]
+ (1 − 𝛾)𝜇 + 𝑞

2

2𝑞
(1 − 𝛾)2𝜂, (3.9)

where 𝜁 = (1 − 𝜙)𝜇 + 1
2𝜂(1 − 𝜙)

2. In particular, the third and fourth term of (3.8) vanish as we take

limit (Lemma 3.4.3, Part ii.). Choosing 𝑚 = 𝑝(𝛿 − 𝜁) (1 − 𝜃) in (3.9), when 𝑝 is sufficiently large, the

uniqueness criterion is reduced to:

(1 − 𝜙)𝜇 + 1

2
(𝛾 − 𝜙) (1 − 𝜙)𝜂 + 1

2
(1 − 𝛾)2𝜂 < 𝛿, (3.10)

which is simply Theorem 3.1.1 applied to the limit consumption process (3.6).

We shall study also how the inequality (3.8) can be simplified under special configurations of the

preference parameters 𝛾 and 𝜙. Firstly, we shall consider the case where 𝜙 approaches 1, i.e. the unit
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EIS case. Choosing 𝑚 = 𝑝(𝛿 − 𝜁) (1 − 𝜃) and let 𝜙 → 1, (3.8) simplifies to (Lemma 3.4.3, part iii.):

−𝛿
(
1 − |1 − 𝛾 |

4𝑎

)
+ 1

2𝑝

(
𝑎 −

√︂
𝑎2 − 2𝑏2𝑝𝛿 |𝛾 − 1|

𝑎

)
+ 𝑞(1 − 𝛾)

2𝑏2

2𝑎2
+ 𝜅𝜂

𝑞𝜆2

[
𝜅 − Γ

(𝑞2 [1 − 𝛾]2
2

)]
< 0.

(3.11)

The first term in (3.11) is the only potential negative term. Therefore, for (3.11) to hold, we require

𝑎 > |1 − 𝛾 |/4. If such is the case, then, we observe that the reduced uniqueness criterion holds when

𝛿 is large and either 𝑎 is sufficiently large or 𝑏 is sufficiently small. If we further let 𝛾 → 1, then it

reduces to the trivial inequality 𝛿 > 0. This is unsurprising, as the limiting case 𝛾, 𝜙 → 1 correspond

to the log utility case, where the investor is myopic.

3.3 Proofs for Section 3.1

Proof of Theorem 3.1.1. To verify the assumptions of C∞, let us calculate E(
∫ ∞
0
𝑒−𝛿𝑡𝑐𝑝𝑡 𝑑𝑡) directly as

follows:

E
( ∫ ∞

0
𝛿𝑒−𝛿𝑡𝑐𝑝𝑡 𝑑𝑡

)
=

∫ ∞

0
𝛿𝑒−𝛿𝑡E[𝑐𝑝𝑡 ]𝑑𝑡

=

∫ ∞

0
𝛿𝑒−𝛿𝑡𝑒𝑝 (𝑏−

𝜎2

2 )𝑡+ 𝑝2𝜎2

2 𝑡𝑑𝑡.

(3.12)

This integral is finite if and only if 𝑝(𝑏 − 𝜎2

2 ) + 1
2 𝑝

2𝜎2 < 𝛿. Substituting 2(1 − 𝜙), 2(1 − 𝛾) and

2(𝜙 − 𝛾) for 𝑝, we attain inequalities (3.2a)-(3.2c). For the uniqueness criterion, we rewrite 𝑐1−𝜙 in a

more convenient form:

𝑐
1−𝜙
𝑡 = 𝑐

1−𝜙
0 𝑒 (1−𝜙) (𝑏−𝜎

2/2)𝑡𝑒 (1−𝜙)𝜎𝐵𝑡

= 𝑐
1−𝜙
0 𝑒 ( (1−𝜙) (𝑏−𝜎

2/2)+ 1
2 (1−𝜙)

2𝜎2)𝑡𝑒 (1−𝜙)𝜎𝐵𝑡− 1
2 (1−𝜙)

2𝜎2𝑡

≜ 𝑐1−𝜙0 𝑒𝜆𝑡𝑀𝑡 ,

(3.13)
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where 𝑀𝑡 denotes the exponential martingale 𝑒 (1−𝜙)𝜎𝐵𝑡− 1
2 (1−𝜙)

2𝜎2𝑡 and 𝜆 denotes the constant (1 −

𝜙) (𝑏 − 𝜎2

2 ) + 1
2 (1 − 𝜙)

2𝜎2. By conditional Fubini’s theorem:

Φ𝑡 =
𝑐
1−𝜙
0 𝑒𝜆𝑡𝑀𝑡∫ ∞

𝑡
E𝑡 [𝑐1−𝜙0 𝑒𝜆𝑠𝑀𝑠]𝛿𝑒−𝛿 (𝑠−𝑡)𝑑𝑠

=
𝑀𝑡∫ ∞

𝑡
𝑒𝜆(𝑠−𝑡)𝑀𝑡𝛿𝑒−𝛿 (𝑠−𝑡)𝑑𝑠

=
1∫ ∞

0
𝛿𝑒 (𝜆−𝛿)𝑠𝑑𝑠

=
𝛿 − 𝜆
𝛿

.

(3.14)

We have calculated the explicit value for Φ𝑠 for the case of constant coefficients. The uniqueness

criterion is estimated below:

E
(
𝑒𝛿 (1−𝜃)

∫ 𝑇

0
(1−Φ𝑠)𝑑𝑠

∫ ∞

𝑇

𝛿𝑒−𝛿𝑠𝑐1−𝛾𝑠 𝑑𝑠

)
= 𝑒 (1−𝜃)𝜆𝑇 E

( ∫ ∞

𝑇

𝛿𝑒−𝛿𝑠𝑐1−𝛾𝑠 𝑑𝑠

)
= 𝛿𝑒 (1−𝜃)𝜆𝑇

∫ ∞

𝑇

𝑒 ( (1−𝛾) (𝑏−
1
2 𝜎

2)+ 1
2 (1−𝛾)

2𝜎2−𝛿)𝑠𝑑𝑠

= 𝛿𝑒 (1−𝜃)𝜆𝑇 𝑒 ( (1−𝛾) (𝑏−
1
2 𝜎

2)+ 1
2 (1−𝛾)

2𝜎2−𝛿)𝑇
∫ ∞

0
𝑒 ( (1−𝛾) (𝑏−

1
2 𝜎

2)+ 1
2 (1−𝛾)

2𝜎2−𝛿)𝑠𝑑𝑠,

(3.15)

which vanishes at infinity when (1 − 𝜃)𝜆 + (1 − 𝛾) (𝑏 − 1
2𝜎

2) + (1−𝛾)2𝜎2

2 − 𝛿 < 0. Substituting in the

value of 𝜆, we obtain the conclusion of the theorem.

3.4 Proofs for Section 3.2

In our calculations, we will make extensive use of the following result regarding the moment generating

function (MGF) of the time integral of a CIR process. A result on its characteristic function can be

found in Section 3 of [12]. Alternatively, a result on the joint conditional MGF of (
∫ 𝑡
𝑠
𝑣𝑟𝑑𝑟, 𝑣𝑡 ) can be

found in Theorem 4.8 of [9]. We state here an simplified result that suits our purpose:

Lemma 3.4.1. Let 𝑣 be the CIR process defined in the LRRM model specification (3.4). Then, its

moment generating function is given by:

E
[
exp

(
𝑧

∫ 𝑡

0
𝑣𝑠𝑑𝑠

)]
= 𝐴(𝑡, 𝑧) exp(𝐵(𝑡, 𝑧)𝑣0), for 𝑧 <

𝜅2

2𝜆2
, (3.16)
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where

𝐴(𝑡, 𝑧) =
exp( 𝜅

2𝜂𝑡

𝜆2
)(

cosh
( Γ (𝑧)𝑡

2

)
+ 𝜅

Γ (𝑧) sinh
( Γ (𝑧)𝑡

2

) )2𝜅 𝜂/𝜆2 ,
𝐵(𝑡, 𝑧) = 2𝑧

𝜅 + Γ(𝑧) coth
( Γ (𝑧)𝑡

2

) ,
Γ(𝑧) =

√︁
𝜅2 − 2𝜆2𝑧.

(3.17)

3.4.1 Proof of Theorem 3.2.1

Proof of Theorem 3.2.1. The consumption process can be solved explicitly, which yields:

𝑐𝑡 = 𝑐0 exp
( ∫ 𝑡

0
(𝜇 + 𝑋𝑠)𝑑𝑠 +

∫ 𝑡

0

√
𝑣𝑠𝑑𝐵𝑠

)
. (3.18)

We observe that 𝑋 and 𝑣 are strong solutions of their respective SDEs, which are driven by𝑊 and 𝐵⊥.

Moreover, the Brownian Motions𝑊, 𝐵 and 𝐵⊥ are mutually independent. Thus exp(
∫ 𝑡
0
(𝜇 + 𝑋𝑠)𝑑𝑠)

and exp(
∫ 𝑡
0

√
𝑣𝑟𝑑𝐵𝑟 ) are also independent. This allows us to split the expectation of product in the

following:

E(𝑐𝑝𝑡 ) = 𝑐
𝑝

0E
(
exp

[
𝑝

∫ 𝑡

0
(𝜇 + 𝑋𝑠)𝑑𝑠 + 𝑝

∫ 𝑡

0

√
𝑣𝑠𝑑𝐵𝑠

] )
= 𝑐

𝑝

0E
(
exp

[
𝑝

∫ 𝑡

0
(𝜇 + 𝑋𝑠)𝑑𝑠

] )
E
(
exp

[
𝑝

∫ 𝑡

0

√
𝑣𝑠𝑑𝐵𝑠

] )
.

(3.19)

These expectations can be estimated by Lemma 3.4.2, which is deferred until after this proof.

Combining equation (3.19) and Lemma 3.4.2, we have:

E
( ∫ ∞

0
𝛿𝑒−𝛿𝑡𝑐𝑝𝑡 𝑑𝑡

)
≤ 𝐾

∫ ∞

0
𝛿 exp

(
− 𝛿𝑡 + 𝑝𝜇𝑡 + 𝑝2𝑏2

2𝑎2
𝑡 + 𝜅𝜂

𝜆2

(
𝜅 − Γ(𝑝2/2)

)
𝑡

)
𝑑𝑡, (3.20)

where Γ is defined in Lemma 3.4.1. The integral on the right hand side is finite if and only if:

𝑝𝜇 + 𝑝2𝑏2

2𝑎2
+ 𝜅𝜂
𝜆2

(𝜅 − Γ(𝑝2/2)) < 𝛿. (3.21)
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Substituting 2(1−𝛾), 2(1−𝜙) and 2(𝜙−𝛾) for 𝑝, we obtain inequalities (3.5b)-(3.5d) of Theorem

3.2.1. Moreover, for Γ(𝑝2/2) and thus the MGF of the time integral of 𝑣 to be well defined, we require

also 𝑝2/2 < 𝜅2/2𝜆2, which is the inequality (3.5a).

□

Lemma 3.4.2. i. Let 𝑣 be the CIR process defined in the LRRM model specification (3.4). Then, for

𝑝 ≤ 𝜅2

2𝜆2
and some positive constant 𝐾:

E
[
exp

(
𝑝

∫ 𝑡

0
𝑣𝑟𝑑𝑟

)]
≤ 𝐾 exp

[ 𝜅𝜂
𝜆2

(
𝜅 − Γ(𝑝)

)
𝑡

]
(3.22)

ii. Additionally, let 𝐵 be an R-valued Brownian Motion independent of 𝑣. Then, for 𝑝2 ≤ 𝜅2

𝜆2
, 𝑡 ≥ 0,

the following holds for some positive constant 𝐾:

E
[
exp

(
𝑝

∫ 𝑡

0

√
𝑣𝑟𝑑𝐵𝑟

)]
≤ 𝐾 exp

[ 𝜅𝜂
𝜆2

(
𝜅 − Γ

[ 𝑝2
2

] )
𝑡

]
. (3.23)

iii. Let 𝑋 be the Ornstein-Uhlenbeck process defined in (3.4), then, for any exponent 𝑝 ∈ R, the

following estimate holds:

E
[
exp

(
𝑝

∫ 𝑡

0
𝑋𝑠𝑑𝑠

)]
≤ exp

( 𝑝2𝑏2
2𝑎2

𝑡

)
. (3.24)

Proof. Part i. For brevity, let us denote Γ = Γ(𝑝). We shall now examine the behaviour of 𝐴 and 𝐵

(cf. Lemma 3.4.1) as 𝑡 diverges. First, ↓ lim𝑡→∞ coth(Γ𝑡/2) = 1, for all positive 𝑡, 𝐵(𝑡) ≤ 𝐵(∞) = 2𝑝
𝜅+Γ .

Secondly, we estimate the denominator of 𝐴(𝑡, 𝑝):

cosh
(Γ𝑡
2

)
+ 𝜅

Γ
sinh

(Γ𝑡
2

)
=
1

2

(
1 + 𝜅

Γ

)
𝑒

Γ𝑡
2 + 1

2

(
1 − 𝜅

Γ

)
𝑒−

Γ𝑡
2

≥ 1

2

(
1 + 𝜅

Γ

)
𝑒

Γ𝑡
2 + 1

2

(
1 − 𝜅

Γ

)
𝑒

Γ𝑡
2 = 𝑒

Γ𝑡
2 ,

(3.25)

where the inequality follows from the fact that 1 − 𝜅/Γ < 0. An estimate for 𝐴(𝑡) can be achieved:

𝐴(𝑡, 𝑝) ≤ exp
( 𝜅2𝜂𝑡
𝜆2

)
exp

(−𝜅𝜂Γ𝑡
𝜆2

)
= exp

( 𝜅𝜂
𝜆2

(
𝜅 − Γ(𝑝)

)
𝑡

)
. (3.26)
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Therefore, we achieve the final estimate for the moment generating function of
∫ 𝑡
0
𝑣𝑠𝑑𝑠:

E
[
exp

(
𝑝

∫ 𝑡

0

√
𝑣𝑟𝑑𝐵𝑟

)]
≤ 𝐾 exp

[ 𝜅𝜂
𝜆2

(
𝜅 − Γ(𝑝)

)
𝑡

]
= 𝐴(𝑡, 𝑝) exp

(
𝐵(𝑡, 𝑝)𝑣0

)
≤ exp

( 2𝑝

𝜅 + Γ(𝑝) 𝑣0
)
exp

( 𝜅𝜂
𝜆2

(
𝜅 − Γ(𝑝)

)
𝑡

)
.

(3.27)

Part ii. We exploit the independence between {𝑣𝑡 }𝑡 ∈[0,∞) and {𝐵𝑡 }𝑡 ∈[0,∞) by conditioning the

integral
∫ 𝑡
0

√
𝑣𝑠𝑑𝐵𝑠 on the path {𝑣𝑠}𝑠≤𝑡 . Heuristically, the added information on 𝑣 tells us nothing

new about 𝐵, and 𝐵 remains a Brownian Motion. When 𝑣 is known,
∫ 𝑡
0

√
𝑣𝑠𝑑𝐵𝑠 can be thought of

as a stochastic integral with deterministic integrand, the distribution of which is well understood.

Mathematically:

E
(
exp

(
𝑝

∫ 𝑡

0

√
𝑣𝑟𝑑𝐵𝑟

))
= E

(
E
(
exp

(
𝑝

∫ 𝑡

0

√
𝑣𝑟𝑑𝐵𝑟

) ���𝜎{𝑣𝑠, 𝑠 ≤ 𝑡}) )
= E

(
exp

( 𝑝2
2

∫ 𝑡

0
𝑣𝑟𝑑𝑟

))
,

(3.28)

which can be bounded using the result attained in Part i., directly yielding the estimate (3.23).

Part iii. The exact distribution of the time integral
∫ 𝑡
0
𝑋𝑠𝑑𝑠 is known and given in equation (1.8.4),

Chapter 7.1, Part II of [7]. In particular, it is a Gaussian variable with mean zero and variance:

E
[( ∫ 𝑡

0
𝑋𝑟𝑑𝑟

)2]
=
𝑏2

𝑎2

(
𝑡 + 2

𝑎
𝑒−𝑎𝑡 − 1

2𝑎
𝑒−2𝑎𝑡 − 3

2𝑎

)
=
𝑏2

𝑎2

(
𝑡 +

( 1
𝑎
𝑒−𝑎𝑡 − 1

𝑎

)
+

( 1
𝑎
𝑒−𝑎𝑡 − 1

2𝑎
𝑒−2𝑎𝑡 − 1

2𝑎

))
=
𝑏2

𝑎2

(
𝑡 − 1

𝑎
(1 − 𝑒−𝑎𝑡 ) − 1

2𝑎
(𝑒−𝑎𝑡 − 1)2

)
≤ 𝑏2

𝑎2
𝑡.

(3.29)

Therefore, for any real number 𝑝:

E
(
𝑒𝑝

∫ 𝑡

0
𝑋𝑟𝑑𝑟

)
≤ 𝑒

𝑝2𝑏2

2𝑎2
𝑡
. (3.30)

□
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3.4.2 Proof of Theorem 3.2.2

Proof of Theorem 3.2.2. We recall below the definition of the uniqueness criterion for the convenience

of the reader:

lim
𝑇→∞

E
(
𝑒−𝛿𝜃𝑇 𝑒𝛿 (1−𝜃)

∫ 𝑇

0
−Φ𝑠𝑑𝑠

∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝛾𝑠 𝑑𝑠

)
= 0, (3.31)

where Φ𝑡 = 𝑐
1−𝜙
𝑡

(
E

∫ ∞
𝑡
𝛿𝑒−𝛿 (𝑠−𝑡)𝑐1−𝜙𝑠 𝑑𝑠

)−1. Let Θ𝑇 denote the expectation above, 𝑝, 𝑞 be Hölder’s

conjugate, 𝑝 ≥ 2, we have:

Θ𝑇 = 𝑒−𝛿𝜃𝑇 E
(
𝑒𝛿 (1−𝜃)

∫ 𝑇

0
−Φ𝑠𝑑𝑠

∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝛾𝑠 𝑑𝑠

)
≤ 𝑒−𝛿𝜃𝑇 E

(
𝑒𝑝𝛿 (1−𝜃)

∫ 𝑇

0
−Φ𝑠𝑑𝑠

) 1
𝑝E

( [ ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐1−𝛾𝑠 𝑑𝑠

]𝑞) 1
𝑞

.

(3.32)

As 𝛿𝑒−𝛿 (𝑠−𝑇 )𝑑𝑠 defines a probability measure on [𝑇,∞), we can apply Jensen’s inequality to bound

the second expectation in (3.32):

Θ𝑇 ≤ 𝑒−𝛿𝜃𝑇 E
(
𝑒𝑝𝛿 (1−𝜃)

∫ 𝑇

0
−Φ𝑠𝑑𝑠

) 1
𝑝E

( ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐𝑞 (1−𝛾)𝑠 𝑑𝑠

) 1
𝑞

. (3.33)

Part a. We begin by rewriting the form of Φ𝑡 in a more workable form:

Φ𝑡 =

(
E𝑡

[ ∫ ∞

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑒 (1−𝜙)𝜇 (𝑠−𝑡)𝑒 (1−𝜙)
∫ 𝑠

𝑡
𝑋𝑟𝑑𝑟 𝑒 (1−𝜙)

∫ 𝑠

𝑡

√
𝑣𝑟𝑑𝐵𝑟 𝑑𝑠

] )−1
=

( ∫ ∞

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑒 (1−𝜙)𝜇 (𝑠−𝑡)E𝑡
[
𝑒 (1−𝜙)

∫ 𝑠

𝑡
𝑋𝑟𝑑𝑟 𝑒 (1−𝜙)

∫ 𝑠

𝑡

√
𝑣𝑟𝑑𝐵𝑟

]
𝑑𝑠

)−1
=

( ∫ ∞

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑒 (1−𝜙)𝜇 (𝑠−𝑡)E𝑡
[
𝑒 (1−𝜙)

∫ 𝑠

𝑡
𝑋𝑟𝑑𝑟

]
E𝑡

[
𝑒 (1−𝜙)

∫ 𝑠

𝑡

√
𝑣𝑟𝑑𝐵𝑟

]
𝑑𝑠

)−1
.

(3.34)

Above, the second line follows from conditional Fubini’s theorem and the third line from conditional

independence.

Conditional on F𝑡 (or, due the Markovian property of 𝑋 , it is equivalent to condition on 𝑋𝑡 ),

{𝑋𝑟 }𝑟 ∈[𝑡 ,𝑠] is an Ornstein-Uhlenbeck process with initial data 𝑋𝑡 . Therefore, given F𝑡 , the distribution

of
∫ 𝑠
𝑡
𝑋𝑟𝑑𝑟 is a Gaussian distribution with conditional mean 𝑋𝑡

∫ 𝑠
𝑡
𝑒−𝑎 (𝑟−𝑡)𝑑𝑟 and conditional variance

that is bounded above above by 𝑏2

𝑎2
(𝑠 − 𝑡) (cf. Lemma 3.4.2). The conditional MGF of

∫ 𝑠
𝑡
𝑋𝑟𝑑𝑟 is
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bounded as follows:

E𝑡 (𝑒 (1−𝜙)
∫ 𝑠

𝑡
𝑋𝑟𝑑𝑟 ) = 𝑒 (1−𝜙)E𝑡 (

∫ 𝑠

𝑡
𝑋𝑟𝑑𝑟 )+ 1

2 (1−𝜙)
2 Var𝑡 (

∫ 𝑠

𝑡
𝑋𝑟𝑑𝑟 )

≤ 𝑒 (1−𝜙)
∫ 𝑠

𝑡
𝑒−𝑎 (𝑟−𝑡 )𝑑𝑟𝑋𝑡 𝑒

(1−𝜙)2𝑏2
2𝑎2

(𝑠−𝑡)

≤ 𝑒
| (1−𝜙)𝑋𝑡 |

𝑎 𝑒
(1−𝜙)2𝑏2

2𝑎2
(𝑠−𝑡)

.

(3.35)

Similarly, by conditioning on F𝑡 , {𝑣𝑟 }𝑟 ∈[𝑡 ,𝑠] is a CIR process starting from 𝑣𝑡 . We can use the same

trick in Lemma 3.4.2, where we condition additionally on the path {𝑣𝑢}𝑢∈[𝑡 ,𝑠] . Let 𝜎(𝑣𝑢 , 𝑡 ≤ 𝑢 ≤ 𝑠)

be the 𝜎-algebra generated by 𝑣 between time [𝑡, 𝑠], and F𝑡 ∨ 𝜎(𝑣𝑢 , 𝑡 ≤ 𝑢 ≤ 𝑠) be the smallest

𝜎-algebra containing F𝑡 and 𝜎(𝑣𝑢 , 𝑡 ≤ 𝑢 ≤ 𝑠), we have:

E𝑡
(
𝑒 (1−𝜙)

∫ 𝑠

𝑡

√
𝑣𝑟𝑑𝐵𝑟

)
= E𝑡

(
E
[
𝑒 (1−𝜙)

∫ 𝑠

𝑡

√
𝑣𝑟𝑑𝐵𝑟 |F𝑡 ∨ 𝜎(𝑣𝑢 , 𝑡 ≤ 𝑢 ≤ 𝑠)

] )
= E𝑡

(
𝑒

(1−𝜙)2
2

∫ 𝑠

𝑡
𝑣𝑟𝑑𝑟

��F𝑡 )
= 𝐴

(
𝑠 − 𝑡, (1 − 𝜙)

2

2

)
exp

(
𝐵

[
𝑠 − 𝑡, (1 − 𝜙)

2

2

]
𝑣𝑡

)
.

(3.36)

An estimate for the growth rate of 𝐴 is provided by equation (3.26). 𝐵 is bounded above by

(1 − 𝜙)2/(𝜅 + Γ( 12 (1 − 𝜙)
2)). For brevity, we shall denote Γ̃ = Γ( 12 (1 − 𝜙)

2):

E𝑡 (𝑒 (1−𝜙)
∫ 𝑠

𝑡

√
𝑣𝑟𝑑𝐵𝑟 ) ≤ exp

( 𝜅𝜂
𝜆2

(𝜅 − Γ̃) (𝑠 − 𝑡) + (1 − 𝜙)2

𝜅 + Γ̃
𝑣𝑡

)
. (3.37)

Combining equation (3.34) and inequalities (3.35) & (3.37), we achieve the following estimate for

Φ𝑡 :

Φ𝑡 ≥
{
𝑒

| (1−𝜙)𝑋𝑡 |
𝑎 𝑒

(1−𝜙)2
𝜅+Γ̃ 𝑣𝑡

∫ ∞

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)𝑒 (1−𝜙)𝜇 (𝑠−𝑡)𝑒
(1−𝜙)2𝑏2

2𝑎2
(𝑠−𝑡)

𝑒
𝜅𝜂

𝜆2
(𝜅−Γ̃) (𝑠−𝑡)

𝑑𝑠

}−1
=

{ 𝛿

𝛿 − 𝜁 𝑒
| (1−𝜙)𝑋𝑡 |

𝑎 𝑒
(1−𝜙)2
𝜅+Γ̃ 𝑣𝑡

}−1
=
𝛿 − 𝜁
𝛿

exp
(
− |(1 − 𝜙)𝑋𝑡 |

𝑎
− (1 − 𝜙)2

𝜅 + Γ̃
𝑣𝑡

)
.

(3.38)
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where 𝜁 ≜ (1 − 𝜙)𝜇 + (1−𝜙)2𝑏2
2𝑎2

+ 𝜅 𝜂

𝜆2
(𝜅 − Γ̃). As a consequence of inequality (3.5b), 𝜁 < 𝛿, which

ensures finiteness of the integral in (3.38). Φ𝑡 can be estimated further by the following inequality1:

𝑒−𝑥 ≥ 𝑒−𝜖 (1 + 𝜖) − 𝑒−𝜖 𝑥, ∀𝜖, 𝑥 ∈ R, (3.39)

which leads to the following estimate:

𝑒𝑝𝛿 (1−𝜃)
∫ 𝑇

0
−Φ𝑡𝑑𝑡 ≤ exp

(
− 𝑝(𝛿 − 𝜁) (1 − 𝜃)𝑒−𝜖 (1 + 𝜖)𝑇 + 𝑝(𝛿 − 𝜁) (1 − 𝜃)𝑒−𝜖 |1 − 𝜙 |

𝑎

∫ 𝑇

0
|𝑋𝑡 |𝑑𝑡

+ 𝑝(𝛿 − 𝜁) (1 − 𝜃) (1 − 𝜙)
2

𝜅 + Γ̃

∫ 𝑇

0
𝑣𝑡𝑑𝑡

)
.

(3.40)

To ease the notation, let us define 𝑚 = 𝑝(𝛿 − 𝜁) (1 − 𝜃)𝑒−𝜖 , which reduces this inequality to:

𝑒𝑝𝛿 (1−𝜃)
∫ 𝑇

0
−Φ𝑡𝑑𝑡 ≤ exp

(
− 𝑚

[
1 + log

( 𝑝(𝛿 − 𝜁) (1 − 𝜃)
𝑚

)]
𝑇 + 𝑚 |1 − 𝜙|

𝑎

∫ 𝑇

0
|𝑋𝑡 |𝑑𝑡

+ 𝑚(1 − 𝜙)2

𝜅 + Γ̃

∫ 𝑇

0
𝑣𝑡𝑑𝑡

)
.

(3.41)

It is difficult to obtain the distribution of
∫ 𝑇
0
|𝑋𝑡 |, or indeed even an upper bound for its moment

generating function. However, the distribution of
∫ 𝑇
0
𝑋2
𝑡 𝑑𝑡 is known2. Using the inequality |𝑥 | ≤ 𝑥2+ 1

4

for all real 𝑥, we obtain:

𝑒𝑝𝛿 (1−𝜃)
∫ 𝑇

0
−Φ𝑡𝑑𝑡 ≤ exp

(
− 𝑚

[
1 + log

( 𝑝(𝛿 − 𝜁) (1 − 𝜃)
𝑚

)
− |1 − 𝜙|

4𝑎

]
𝑇

+ 𝑚 |1 − 𝜙 |
𝑎

∫ 𝑇

0
𝑋2
𝑡 𝑑𝑡 +

𝑚(1 − 𝜙)2

𝜅 + Γ̃

∫ 𝑇

0
𝑣𝑡𝑑𝑡

)
.

(3.42)

1The right hand side of (3.39) is the tangent line of 𝑒−𝑥 at the point (𝜖, 𝑒−𝜖 ). The inequality follows from convexity of
the mapping 𝑥 → 𝑒−𝑥 .

2By Itô’s formula: 𝑑𝑋2
𝑡 = 2𝑎( 𝑏22𝑎 − 𝑋2

𝑡 )𝑑𝑡 + 2𝑏
√︃
𝑋2
𝑡 𝑑𝑊𝑡 , 𝑋

2
0 = 0. Therefore, it is a CIR process.
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The expectation of the right hand side above can be computed readily by bounding the MGF of the

time integral of a CIR process (cf. Lemma 3.4.1 and Lemma 3.4.2).

E(𝑒𝑝𝛿 (1−𝜃)
∫ 𝑇

0
−Φ𝑡𝑑𝑡 ) ≤ exp

(
− 𝑚

[
1 + log

( 𝑝(𝛿 − 𝜁) (1 − 𝜃)
𝑚

)
− |1 − 𝜙 |

4𝑎

]
𝑇

)
×

E
[
exp

(𝑚 |1 − 𝜙|
𝑎

∫ 𝑇

0
𝑋2
𝑡 𝑑𝑡

)]
E
[
exp

(𝑚(1 − 𝜙)2

𝜅 + Γ̃

∫ 𝑇

0
𝑣𝑡

)]
≤ 𝐾 exp

(
− 𝑚

[
1 + log

( 𝑝(𝛿 − 𝜁) (1 − 𝜃)
𝑚

)
− |1 − 𝜙|

4𝑎

]
𝑇 + 1

2

(
𝑎 −

√︂
𝑎2 − 2𝑏2

𝑚 |1 − 𝜙|
𝑎

)
𝑇

+ 𝜅𝜂
𝜆2

(
𝜅 −

√︄
𝜅2 − 2𝜆2

𝑚(1 − 𝜙)2

𝜅 + Γ̃

)
𝑇

)
.

(3.43)

Part b. The second expectation in equation (3.33) is bounded from above by combining equation

(3.19) and Lemma 3.4.2:

E
( ∫ ∞

𝑇

𝛿𝑒−𝛿 (𝑠−𝑇 )𝑐𝑞 (1−𝛾)𝑠 𝑑𝑠

)
≤ 𝐾

∫ ∞

𝑇

𝑒−𝛿 (𝑠−𝑇 )𝑒𝑞 (1−𝛾)𝜇𝑠+
𝑞2 (1−𝛾)2𝑏2

2𝑎2
𝑠+ 𝜅𝜂

𝜆2

(
𝜅+Γ

[
𝑞2 (1−𝛾)2

2

] )
𝑠

= 𝐾𝑒
𝑞 (1−𝛾)𝜇𝑇 + 𝑞2 (1−𝛾)2𝑏2

2𝑎2
𝑇 + 𝜅𝜂

𝜆2

(
𝜅+Γ

[
𝑞2 (1−𝛾)2

2

] )
𝑇

×
∫ ∞

𝑇

𝑒−𝛿 (𝑠−𝑇 )𝑒𝑞 (1−𝛾)𝜇 (𝑠−𝑇 )+
𝑞2 (1−𝛾)2𝑏2

2𝑎2
(𝑠−𝑇 )+ 𝜅𝜂

𝜆2

(
𝜅+Γ

[
𝑞2 (1−𝛾)2

2

] )
(𝑠−𝑇 )

𝑑𝑠

= 𝐾𝑒
𝑞 (1−𝛾)𝜇𝑇 + 𝑞2 (1−𝛾)2𝑏2

2𝑎2
𝑇 + 𝜅𝜂

𝜆2

(
𝜅+Γ

[
𝑞2 (1−𝛾)2

2

] )
𝑇
.

(3.44)

Above, the second equality follows from a change of variable, which implies that the integral in the

second line is independent of 𝑇 .

Final Estimate of Θ𝑇 : We are now ready to obtain the final upper bound of Θ𝑇 . Combining the

estimates (3.33), (3.43) and (3.44), we see that Θ𝑇 is of the form 𝑒𝑅𝑇 , where 𝑅 equals:

− 𝛿𝜃 − 𝑚

𝑝

[
1 + log

( 𝑝(𝛿 − 𝜁) (1 − 𝜃)
𝑚

)
− |1 − 𝜙 |

4𝑎

]
+ 1

2𝑝

(
𝑎 −

√︂
𝑎2 − 2𝑏2

𝑚 |1 − 𝜙 |
𝑎

)
+ 𝜅𝜂

𝑝𝜆2

(
𝜅 −

√︄
𝜅2 − 2𝜆2

𝑚(1 − 𝜙)2

𝜅 + Γ( 12 [1 − 𝜙]2)

)
+ (1 − 𝛾)𝜇 + 𝑞

2(1 − 𝛾)2𝑏2
2𝑞𝑎2

+ 𝜅𝜂

𝑞𝜆2

[
𝜅 − Γ

(𝑞2 [1 − 𝛾]2
2

)]
.

(3.45)

□
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3.4.3 Proof of Lemma 3.4.3

Lemma 3.4.3. Let 𝜅 and 𝜆 be positive constants, then:

i. lim 𝜆
𝜅
→0

𝜅
𝜆2
(𝜅 −

√
𝜅2 − 2𝜆2𝑧) = 𝑧;

ii. if ℎ(𝜅, 𝜆) satisfies lim𝜅→∞,𝜆→0 ℎ(𝜅, 𝜆) = 0, then:

lim
𝜅→∞,𝜆→0

𝜅

𝜆2

(
𝜅 −

√︁
𝜅2 − 2𝜆2ℎ(𝜅, 𝜆)

)
= 0; (3.46)

iii. lim𝜙→1 𝜁 (1 − 𝜙)−1, where 𝜁 is defined in Theorem 3.2.2.

Part i. The proof follows from an observation that the desired limit can be re-expressed as the

difference quotient of a certain function, which allows use of calculus results:

lim
𝜆
𝜅
→0

𝜅

𝜆2
(𝜅 −

√︁
𝜅2 − 2𝜆2𝑧) = lim

𝜆
𝜅
→0

1 −
√︃
1 − 2𝑧 𝜆

2

𝜅2

𝜆2

𝜅2

=
𝑑

𝑑𝑥

√
1 − 2𝑧𝑥 |𝑥=0

= 𝑧.

(3.47)

Part ii. Let 𝜖 > 0 be arbitrarily small. Then, for sufficiently large 𝜅 and small 𝜆, ℎ(𝜆, 𝜅) ≤ 𝜖 .

Therefore:

0 ≤ lim sup
𝜅→∞,𝜆→0

𝜅

𝜆2

(
𝜅 −

√︁
𝜅2 − 2𝜆2ℎ(𝜅, 𝜆)

)
≤ lim
𝜅→∞,𝜆→0

𝜅

𝜆2

(
𝜅 −

√
𝜅2 − 2𝜆2𝜖

)
= 𝜖 . (3.48)

As 𝜖 is arbitrary, the limit superior above is just a limit and equal to 0.

Part iii. The convergence of the first two terms of 𝜁 is obvious. As for the last term:

lim
𝜙→1

𝜅

𝜆2

(
𝜅 −

√︁
𝜅2 − 𝜆2(1 − 𝜙)2

)
(1 − 𝜙)−1 = − 𝜅

𝜆2
lim
𝜖→0

√
𝜅2 − 𝜆2𝜖2 − 𝜅

𝜖

= − 𝑑

𝑑𝑥

√
𝜅2 − 𝜆2𝑥2 |𝑥=0 = 0.

(3.49)

□
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CHAPTER 4

PORTFOLIO OPTIMISATION: AN OVERVIEW

4.1 Preliminaries, Problem Formulation & Notations

Consider a stochastic basis (Ω, F , {F𝑡 }𝑡≥0, P), where {F𝑡 }𝑡≥0 is the usual augmentation of the filtration

generated by 𝐵, an R𝑛+𝑘-valued Brownian Motion. Let us denote by𝑊 and𝑊⊥ the first 𝑘 and last 𝑛

dimensions of 𝐵, respectively.

We work with a financial market model consisting of a riskless asset 𝑆0 and an 𝑛-tuple of risky

assets 𝑆 = (𝑆1, ..., 𝑆𝑛). Their dynamics are given by the stochastic differential equations:

𝑑𝑆0𝑡 = 𝑆
0
𝑡 𝑟 (𝑌𝑡 )𝑑𝑡,

𝑑𝑆𝑡 = diag(𝑆𝑡 )
[
(𝑟 (𝑌𝑡 )1𝑛 + 𝜇(𝑌𝑡 ))𝑑𝑡 + 𝜎(𝑌𝑡 )𝑑𝑊𝜌

𝑡

]
,

𝑑𝑌𝑡 = 𝑏(𝑌𝑡 )𝑑𝑡 + 𝑎(𝑌𝑡 )𝑑𝑊𝑡 , 𝑌0 = 𝑦 ∈ 𝐸.

(4.1)

Above, diag(𝑆𝑡 ) is an 𝑛-dimensional diagonal matrix with (𝑆1𝑡 , ..., 𝑆𝑛𝑡 ) along the diagonal, 1𝑛 is an

𝑛-dimensional vector with value 1 in every entry. 𝑊𝜌 is an R𝑛-valued defined by𝑊𝜌 ≜
∫ ·
0
𝜌(𝑌𝑠)𝑑𝑊𝑠 +∫ ·

0
𝜌⊥(𝑌𝑠)𝑑𝑊⊥

𝑠 , where 𝜌 : R𝑘 → R𝑛×𝑘 and 𝜌⊥ : R𝑘 → R𝑛×𝑛 are correlation functions satisfying

𝜌𝜌′ + 𝜌⊥(𝜌⊥) ′ = 1𝑛×𝑛, the 𝑛 × 𝑛-identity matrix. By construction,𝑊𝜌 admits 𝜌 as its instantaneous
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correlation-matrix with𝑊 . Moreover, 𝑌 is the state process valued in an open domain 𝐸 ⊆ R𝑘 . Lastly,

the model coefficients are the following functions: 𝑟 : 𝐸 → R, 𝜇 : 𝐸 → R, 𝜎 : 𝐸 → R𝑛×𝑛, 𝑏 : 𝐸 →

R𝑘 and 𝑎 : 𝐸 → R𝑘×𝑘 . We also denote: 𝐴 = 𝑎𝑎′, Σ = 𝜎𝜎′ and Υ = 𝜎𝜌𝑎′.

An agent with initial wealth 𝑥 invests in this financial market on an infinite horizon by choosing

a progressively measurable investment-consumption strategy (𝜋𝑡 , 𝑙𝑡 )𝑡≥0 (formally defined later in

Definition 4.1.4). Here, 𝜋𝑡 = (𝜋1𝑡 , .., 𝜋𝑛𝑡 ) is the proportion of his wealth invested in the 𝑛 risky assets at

time 𝑡, and 𝑐𝑡 ≜ 𝑙𝑡𝑋𝑡 is the instantaneous consumption rate. The quantity 𝑙𝑡 will henceforth be referred

to as the consumption-wealth ratio. The resulting wealth process is given by:

𝑑𝑋
𝜋,𝑙
𝑡 = 𝑋

𝜋,𝑙
𝑡 [(𝑟𝑡 + 𝜋′𝑡𝜇𝑡 − 𝑙𝑡 )𝑑𝑡 + 𝜋′𝑡𝜎𝑡𝑑𝑊

𝜌
𝑡 ], 𝑋

𝜋,𝑙

0 = 𝑥. (4.2)

Given a strategy (𝜋, 𝑙), the agent’s derived utility from it is given by the Epstein–Zin utility of the

consumption process 𝑐 = 𝑙𝑋 𝜋,𝑙. In particular, let 𝑉 𝜋,𝑙 denote this utility process, it is defined as the

solution to the infinite-horizon BSDE:

𝑉
𝜋,𝑙
𝑡 = E𝑡

(
𝑉
𝜋,𝑙

𝑇
+

∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉 𝜋,𝑙𝑠 )𝑑𝑠
)
, 0 ≤ 𝑡 ≤ 𝑇, (4.3)

which also satisfies the Power Utility Bounds (cf. Definition 2.4.4). If we restrict our studies only to

strategies that admit a unique Epstein–Zin value process (cf. Theorem 2.4.1 & 2.4.2), then Epstein–Zin

utility provides the agent with a method to rank different investment strategies. The agent, therefore,

aims to maximising his derived utility by finding a strategy (𝜋∗, 𝑙∗) such that:

𝑉∗
0 = 𝑉

𝜋∗,𝑙∗

0 = sup
(𝜋,𝑙) ∈A

𝑉
𝜋,𝑐

0 , (4.4)

where A is a suitable admissible class of investment-consumption strategies, which is defined formally

in Definition 4.1.4.

Before we start approaching problem (4.4), let us define below the relevant real analysis notations,

as well as the assumptions that will apply throughout.

Definition 4.1.1. For 𝑑 ∈ Z+ and O ⊆ R𝑑 , let 𝐶𝑚(𝐸,O) be the space of 𝑚-times continuously

differentiable functions from 𝐸 to O. Moreover, let 𝐶𝑚,𝛼 (𝐸,O) be the subspace of 𝐶𝑚(𝐸,O) such

that all member functions and their partial derivatives up to 𝑚-th order are locally 𝛼-Hölder continuous.

When the the co-domain is clear from the context, we suppress O for notational simplicity.
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Assumption 4.1.2. Throughout the rest of the thesis, we assume that these model coefficients and

preference parameters satisfy the following assumptions:

i. For some 𝛼 ∈ (0, 1), 𝑟 ∈ 𝐶1,𝛼 (𝐸,R𝑘), 𝑏 ∈ 𝐶1,𝛼 (𝐸,R𝑘), 𝜇 ∈ 𝐶1,𝛼 (𝐸,R𝑛), 𝐴 ∈ 𝐶2,𝛼 (𝐸 ;R𝑘×𝑘),

Σ ∈ 𝐶2,𝛼 (𝐸 ;R𝑛×𝑛), and Υ ∈ 𝐶2,𝛼 (𝐸 ;R𝑛×𝑘). Moreover, assume that 𝐴 and Σ are strictly positive

definite for all 𝑦 ∈ 𝐸 .

ii. The factor process 𝑌 exists globally and does not escape its domain 𝐸 in finite time.

iii. Let 𝜌 and 𝜌 denote the minimum and maximum eigenvalues for 𝜌𝜌′, respectively. Assume that

they satisfy the following inequality:

𝜙 |𝜃 |𝛾(1 − 𝜌) + 𝛾𝜙(1 − 𝜌) + 𝛾(𝜌 − 𝜌) ≥ 0. (4.5)

iv. Lastly, we focus on the empirically relevant case where 𝜙 < 1 < 𝛾.

Remark 4.1.3. Assumption iii. above regarding the instantaneous correlation matrix 𝜌 is naturally

satisfied in the case 𝑘 = 1, as in this case 𝜌 = 𝜌.

Let us now formally define investment-consumption strategies (or simply strategies for short) and

their admissible class.

Definition 4.1.4. A pair of progressively measurable stochastic processes {(𝜋𝑡 , 𝑙𝑡 ), 𝑡 ≥ 0} is said to be

a strategy if the following holds:

i. For all 𝑡 > 0,
∫ 𝑡
0

��𝜋′𝑠𝜇𝑠 ��𝑑𝑠 < ∞,
∫ 𝑡
0
|𝑙𝑠 |𝑑𝑠 and

∫ 𝑡
0
𝜋′𝑠Σ𝑠𝜋𝑠𝑑𝑠 < ∞ P-almost surely.

ii. 𝑙𝑡 ≥ 0 for all 𝑡 ≥ 0 almost surely.

A strategy (𝜋, 𝑙) is said to belong to the admissible class A if the following holds:

iii. For all 𝑡 ≥ 0, 𝑋 𝜋,𝑙𝑡 ≥ 0.

iv. The resulting consumption process belongs to C∞ and satisfies the uniqueness criterion (2.22) of

Epstein–Zin utility.
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The first condition ensures that all integrals in the wealth process is well-defined. The second and

third condition together ensure that consumption remains non-negative. This implies that the strategy is

self-financing and consumption is well-defined within the Epstein–Zin framework. The third condition

implies that the investor can not employ a doubling strategy or consume without investing and remain

in debt indefinitel, which is a standard admissibility requirement employed throughout the portfolio

optimisation literature. The last condition ensures that the resulting Epstein–Zin utility process is

always defined and unique (cf. Theorem 2.4.1 & Theorem 2.4.2).

In the next section, we will outline the method of deriving a candidate optimal strategy (𝜋∗, 𝑙∗) via

solving the associated Hamilton-Jacobi-Bellman equation. After that, this candidate will be verified to

ensure that it is indeed admissible and optimal within a subset of the admissible class.

4.2 Deriving the Hamilton-Jacobi-Bellman equation

We will solve the optimisation problem (4.4) through a Dynamic Programming & Verification approach.

First, we make an ansatz for the solution and heuristically derive the HJB equation. Once we confirm

the existence of a solution. the candidate optimal strategy is then derived based on this solution and its

derivative. Then we will formally verify that this candidate is indeed the optimal strategy.

Let us now derive the HJB equation in the Epstein–Zin case via a heuristic argument. First, we

define the optimal value function 𝑣(𝑥, 𝑦) : (0,∞) × 𝐸 → R via the following relation:

𝑣(𝑥, 𝑦) = sup
(𝜋,𝑙) ∈A

E
(
𝑉
𝜋,𝑙
0

���𝑋0 = 𝑥,𝑌0 = 𝑦) . (4.6)

We will need 𝑣 to be sufficiently regular for the next argument. Heuristically, let us assume that it

is twice continuously differentiable in all of its arguments. Let (𝜋, 𝑙) be an admissible strategy and

𝑋 𝜋,𝑙 be the resulting wealth process. The Dynamic Programming Principle suggests that 𝑣(𝑋 𝜋,𝑙, 𝑌 ) +∫ ·
0
𝑓 (𝑐𝑡 , 𝑣(𝑋 𝜋,𝑙𝑡 , 𝑌𝑡 ))𝑑𝑡 is a supermartingale for arbitrary strategies, and a martingale for the optimal

one. For brevity, we write 𝑣𝑡 for 𝑣(𝑋 𝜋,𝑙𝑡 , 𝑉𝑡 ) and we suppress the time subscript as well as the
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dependence on 𝑌𝑡 of the model coefficients. Then, the drift term of 𝑣 +
∫ ·
0
𝑓 (𝑐𝑠, 𝑣𝑠)𝑑𝑠 is:

𝐷𝑥𝑣𝑋
𝜋,𝑙 (𝑟 + 𝜋′𝜇 − 𝑙) + (𝐷𝑦𝑣) ′𝑏 +

1

2
tr(𝐴𝐷2

𝑦𝑦𝑣) +
1

2
(𝑋 𝜋,𝑙)2𝜋′Σ𝜋𝐷2

𝑥𝑥𝑣 + 𝑋 𝜋,𝑙 (𝐷𝑥𝑦𝑣) ′Υ′𝜋 + 𝑓 (𝑐, 𝑣).

(4.7)

By the homotheticity property of Epstein–Zin utility, we speculate that 𝑣 takes the form 𝑣(𝑥, 𝑦) =
𝑥1−𝛾

1−𝛾 𝑔(𝑦)
𝜙𝜃 for some 𝑔 ∈ 𝐶2(𝐸, (0,∞)). This homothetic decomposition is widely applied, some-

times with a different functional form in place of our 𝑔(𝑦)𝜙𝜃 , for the stochastic control approach

towards the portfolio optimisation problem (see, for instance, [39] , [66] and [26]). Substituting

the derivatives of this conjectured 𝑣 into equation (4.7), we obtain the drift of (𝑋 𝜋,𝑙)1−𝛾
1−𝛾 𝑔(𝑌 )𝜙𝜃 +∫ ·

0
𝑓 (𝑐𝑠, (𝑋

𝜋,𝑙)1−𝛾𝑠

1−𝛾 𝑔(𝑌𝑠)𝜙𝜃 )𝑑𝑠, as follows (time subscript and 𝑌𝑡 argument are suppressed for brevity):

(𝑋 𝜋,𝑙𝑡 )1−𝛾𝑔𝜙𝜃
{
𝑟 + 𝜋′𝜇 − 𝑙 − 𝛾

2
𝜋′Σ𝜋 + 𝜙𝜃∇𝑔′𝑏

(1 − 𝛾)𝑔 + 𝜙𝜃 (𝜙𝜃 − 1)∇𝑔′𝐴∇𝑔
2(1 − 𝛾)𝑔2

+ 𝜙𝜃 tr(𝐴𝐷
2𝑔)

2(1 − 𝛾)𝑔 + 𝜙𝜃∇𝑔
′

𝑔
Υ′𝜋 + 𝛿

1 − 𝜙 𝑙
1−𝜙𝑔−𝜙 − 𝛿

1 − 𝜙

}
.

(4.8)

From the heuristics discussed above, we expect this drift to be non-positive for arbitrary (𝜋, 𝑙) and

zero for the optimal pair, leading to the following equation:

𝑟 + 𝛿

𝜙 − 1
+ 𝜙𝜃∇𝑔′𝑏
(1 − 𝛾)𝑔 + 𝜙𝜃 (𝜙𝜃 − 1)∇𝑔′𝐴∇𝑔

2(1 − 𝛾)𝑔2 + 𝜙𝜃 tr(𝐴𝐷
2𝑔)

2(1 − 𝛾)𝑔

+ sup
(𝜋,𝑙)

{
𝜋′𝜇 + 𝜙𝜃𝜋′Υ∇𝑔

𝑔
− 𝛾

2
𝜋′Σ𝜋 + 𝛿

1 − 𝜙 𝑙
1−𝜙𝑔−𝜙 − 𝑙

}
= 0.

(4.9)

Under the parameter configuration 𝜙 < 1 < 𝛾, the optimisation problem in (4.9) is strictly concave

globally and admits a maximiser in the interior, which is given by the first order condition:

𝜋∗ =
1

𝛾
Σ−1𝜇 + 𝜙𝜃

𝛾
Σ−1Υ

∇𝑔
𝑔
, 𝑙∗ = 𝛿𝜓𝑔−1. (4.10)

Substituting the first order conditions into (4.9), we attain the PDE for 𝑔, which henceforth we

shall refer to as the Epstein–Zin HJB equation. Due to the role of 𝑔 in the value function, we will

consider only positive solution(s). Given a classical 𝐶2(𝐸, (0,∞)) solution 𝑔, we will henceforth refer

to the derived pair (𝜋∗, 𝑙∗) in (4.10) as the candidate optimal strategy. We also introduce the notation
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for the Epstein–Zin HJB equation below:

HEZ(𝑦, 𝑔,∇𝑔, 𝐷2𝑔 |𝜙, 𝛾) = 𝛿𝜓𝑔−1 + ∇𝑔′
𝑔

(
𝑏 + 1 − 𝛾

𝛾
Υ′Σ−1𝜇

)
+ 1

2

∇𝑔′
𝑔

{
(𝜙𝜃 − 1)𝐴

+ 𝜙𝜃
(1 − 𝛾
𝛾

)
Υ′Σ−1Υ

}
∇𝑔
𝑔

+ tr(𝐴𝐷2𝑔)
2𝑔

+
(
𝑟 + 𝛿

𝜙 − 1
+ 𝜇

′Σ−1𝜇

2𝛾

) (1 − 𝜙
𝜙

)
= 0, 𝑦 ∈ 𝐸.

(4.11)

We also remark that in equation (4.7), if we conjectured the form 𝑣(𝑥, 𝑦) = 𝑥1−𝜙

1−𝜙 𝑔
𝜙 (𝑦) and replaced

the Epstein–Zin aggregator 𝑓 with the mapping 𝑓 (𝜙) : (0,∞) × (0,∞) → R, 𝑓 (𝜙) (𝑐, 𝑣) = 𝛿
(
𝑐1−𝜙

1−𝜙 − 𝑣
)
,

it will lead to the following equation:

HCRRA(𝑦, 𝑔,∇𝑔, 𝐷2𝑔 |𝜙) = 𝛿
1
𝜙 𝑔−1 + tr(𝐴𝐷2𝑔)

2𝑔
+ ∇𝑔′

𝑔

(
𝑏 + 1 − 𝜙

𝜙
ΥΣ−1𝜇

)
− 1 − 𝜙

2

∇𝑔′
𝑔

(𝐴 − Υ′Σ−1Υ) ∇𝑔
𝑔

+
(
𝑟 − 𝛿

1 − 𝜙 + 𝜇Σ
−1𝜇

2𝜙

) (1 − 𝜙
𝜙

)
= 0.

(4.12)

This equation corresponds the portfolio optimisation problem of an agent following CRRA utility with

parameter 𝜙. Henceforth, we shall refer to this equation as the CRRA HJB equation. 1

Remark 4.2.1. We make the following remarks regarding the notation used for the rest of the thesis.

• We retain the superscripts in HEZ and HCRRA at all time to emphasise the type of HJB equations

being considered.

• For brevity, we shall abbreviate HEZ(𝑦, 𝑔,∇𝑔, 𝐷2𝑔 |𝜙, 𝛾) to HEZ(𝑦, 𝑔,∇𝑔, 𝐷2𝑔) when it is

clear from the context. In later sections, when we need to transform the agent’s preference

parameters, we will make it explicit in the arguments of H𝐸𝑍 . This and the previous point

will be important, as in the proofs of Chapter 5, we will be comparing utilities of agents with

different aggregator functions and parameters.

• When we consider constant strategies, we will identify the constant stochastic process (𝜋, 𝑙)

with a point in R𝑛+1.
1See [26] for an example of the CRRA HJB equation in infinite horizon. Here, 𝜙 plays the role of the risk aversion

parameter, which is typically denoted 𝛾. For our purpose, though, we will need to re-parametrise this risk aversion to 𝜙 (cf.
the development of the supersolution in Chapter 5).
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4.2.1 Existing Results: An Overview

In this section, let us survey existing results in the literature towards portfolio optimisation with

Epstein–Zin utility in finite horizon, and the difficulties encountered in generalising them to infinite

horizon. In the finite horizon case, the HJB equation is a semi-linear parabolic PDE in time and space,

with boundary data at termination. Kraft et. al [39] studies this problem under an additional parameter

restriction 𝜓 = 2 − 𝛾 + (1−𝛾)2𝜌2
𝛾

(condition (H) therein), which helps to linearise the HJB equation

and facilitate a Feynman–Kac representation of the solution. Beside the obvious disadvantage of

additional model constraints, this also excludes the empirically relevant case i.e. 𝛾, 𝜓 > 1. A more

satisfactory approach is offered by Kraft et. al [37], where semi-linearity is resolved by combining

traditional Feynman–Kac method for linear parabolic PDEs with a system of FBSDE(s) (see also

[51] for the general method). This was achieved at the cost of boundedness of model coefficients.

However, equation (4.11) poses a different challenge in comparison to its finite-horizon counterparts.

The extension from finite to infinite horizon fundamentally changes the class of equations it belongs to.

In this case, terminal data is removed and we are facing a boundary-free elliptic quasilinear equation

in an open domain, which renders the aforementioned methods inapplicable.

From a BSDE perspective, in finite horizon, Xing [66] derives an Epstein–Zin HJB BSDE which

parallels the HJB equation seen in [39] and [37]. An improvement over the [37] is that [66] allowed

for models with unbounded coefficients, which encompass the Heston model and Kim & Ongberg

model. However, if we were to generalise the method of [66], it would involve a strictly infinite horizon

BSDE, which also removes its terminal data. One might consider repeatedly solving the Epstein–Zin

BSDE with increasing horizon length and take limit. However, theoretically, it is unclear whether the

finite horizon solution would converge when we let the horizon length 𝑇 diverge; numerically, Xing

remarked that in the empirically relevant setting, the convergence from finite to infinite horizon can

be extremely slow, suggesting that finite horizon optimal strategies can substantially differ from their

infinite horizon analogue.

Another approach that we have explored is the method of duality, which was studied by Matoussi &

Xing [46] for finite horizon Epstein–Zin utility. The main idea therein is to show that, for an admissible

class of consumption, Epstein–Zin utilities are bounded above by the so-called stochastic differential

dual (SDD), and verify that certain strategy attains this upper bound and closes the duality gap. There

are at least several difficulties with this approach. First, defining infinite horizon SDD, similar to
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Epstein–Zin SDU, involves solving an infinite horizon BSDE with non-Lipschitz and non-monotone

driver. The approach in Chapter 2 is not applicable, since we no longer have a priori bounds (power

utility bounds, cf. Definition 2.4.4). Secondly, verification in this method requires optimising both the

Epstein–Zin SDU and SDD, which requires too much regularity in infinite horizon.
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CHAPTER 5

PORTFOLIO OPTIMISATION: MAIN RESULTS

5.1 Existence of Solutions to the HJB Equation

In the construction of Epstein–Zin utility in infinite horizon, we have overcome this absence of

boundary by imposing additional structures, namely the power utility bounds. A similar strategy

is adapted and employed for the Epstein–Zin HJB partial differential equation1. We will tackle the

question of existence by constructing a sub-solution and super-solution, through an appropriately

chosen strategy (𝜋, 𝑙) and risk premium 𝜂 for unhedgeable risk. These sub- and super-solution

will provide a basis for a sandwich-type construction. Let us begin with the definition of sub- and

super-solution of a PDE.

Definition 5.1.1. Consider a boundary-free PDE of the form:

𝑄𝑔 = 0, 𝑦 ∈ 𝐸, (5.1)

where 𝐸 is an open domain and 𝑄 an elliptic quasilinear differential operator of the form 𝑄𝑔 =

1
2 tr(𝐴𝐷

2𝑔) + 𝐵(𝑦, 𝑔, 𝐷𝑔). A function 𝑔 (resp. 𝑔): 𝐸 → R is said to be a supersolution (resp.

1Our approach towards solving equation (4.11) is inspired by the work in time-additive setting of Hata & Sheu [27] and
Guasoni & Wang [26] and can be considered a generalisation of the methods therein.
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subsolution) of 5.1 if it is 𝐶2(𝐸) and:

𝑄𝑔 ≤ 0 (resp. 𝑄𝑔 ≥ 0), 𝑦 ∈ 𝐸. (5.2)

Moreover, if 𝑔(𝑦) ≥ 𝑔(𝑦) for all 𝑦 ∈ 𝐸 , we say that they are an ordered pair of sub- and super-solution.

Moreover, if a function 𝑔 is both a subsolution and a supersolution, it is a solution.

Definition 5.1.2. Let 𝑄 be the differential operator considered in Definition 5.1.1 and suppose that 𝐸

is an open bounded domain. Consider the boundary value problem:

𝑄𝑔 = 0, 𝑦 ∈ 𝐸𝑛;

𝑔 = 𝑔, 𝑦 ∈ 𝜕𝐸.
(5.3)

A function 𝑔 (resp. 𝑔): 𝐸 → R is said to be a supersolution (resp. subsolution) of (5.3) if it is 𝐶2(𝐸)

and:

𝑄𝑔 ≤ 0 (resp. 𝑄𝑔 ≥ 0), 𝑦 ∈ 𝐸,

𝑔 ≥ 𝑔 (resp. 𝑔 ≤ 𝑔), 𝑦 ∈ 𝜕𝐸.
(5.4)

Moreover, if 𝑔(𝑦) ≥ 𝑔(𝑦) for all 𝑦 ∈ 𝐸 , we say that they are an ordered pair of sub- and supersolution.

Moreover, if a function 𝑔 is both a subsolution and a supersolution, it is a solution.

Remark 5.1.3. In the context of the Epstein–Zin HJB equation (4.11), we will only consider positive

sub- and super-solutions.

We will now develop the sub- and super-solutions required for our sandwich argument. We first

heuristically formulate two candidate functions, then facilitate the technical conditions under which

they can be verified as sub- and super-solutions. Let (𝜋, 𝑙) be an admissible control, 𝑋 𝜋,𝑙 be the

resulting wealth process and 𝑐 = 𝑙𝑋 𝜋,𝑙 the resulting consumption process. Denote by 𝑈𝛾,∞(𝑐) the

utility process derived by an agent with additive power utility with risk aversion 𝛾 (cf. Definition 2.4.2).

By Definition 2.4.4,𝑈𝛾,∞(𝑐) is a lower bound for 𝑉 𝜋,𝑙 and consequently,𝑈𝛾,∞(𝑐)0 ≤ 𝑉∗
0 . Thus, if we

defined 𝑔1 as follows:

𝑥1−𝛾

1 − 𝛾 𝑔1(𝑦)
𝜙𝜃 = E

( ∫ ∞

0
𝛿𝑒−𝛿𝑠𝑢𝛾 (𝑐𝑠)𝑑𝑠

���𝑌0 = 𝑦) , (5.5)
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then: 𝑥1−𝛾

1−𝛾 𝑔1(𝑦)
𝜙𝜃 ≤ 𝑥1−𝛾

1−𝛾 𝑔
𝜙𝜃 (𝑦), and thus 𝑔1(𝑦) ≤ 𝑔(𝑦). And therefore, we expect 𝑔1 to be a

sub-solution of the Epstein–Zin HJB equation.

Before we proceed further, we briefly review the following concepts. Let E denote the stochastic

exponential. That is, if 𝑍 is a local martingale, then E(𝑋) = exp
(
𝑋 − 1

2 [𝑋]
)
. For every progressively

measurable, R𝑘 -valued process 𝜂, referred to as the risk-premium for unhedgeable risk, 𝑀 𝜂𝑆 is a local

martingale, where:

𝑀
𝜂
𝑡 ≜ 𝑒

−
∫ 𝑡

0
𝑟𝑠𝑑𝑠E

( ∫ ·

0
(𝜇′Σ−1 + 𝜂′𝑠Υ′Σ−1)𝜎𝑑𝑊𝜌

𝑠 +
∫ ·

0
𝜂′𝑠𝑎𝑑𝑊𝑠

)
𝑡
. (5.6)

From Lemma A.1 of [26], we have, for any 𝜂 and admissible control (𝜋, 𝑙):

E
( ∫ ∞

0
𝛿𝑒−𝛿𝑡

𝑐
1−𝜙
𝑡

1 − 𝜙𝑑𝑡
)
≤ 𝑥1−𝜙

1 − 𝜙E
( ∫ ∞

0
𝛿𝜓𝑒

− 𝛿
𝜙
𝑡 (𝑀 𝜂

𝑡 )
𝜙−1
𝜙 𝑑𝑡

) 𝜙
. (5.7)

The left hand side quantity above is but 𝑌 𝜙,∞(𝑐), the power utility of an agent with risk aversion

parameter 𝜙 (cf. Definition 2.4.2). Also, by Power Utility Bounds (cf. Definition 2.4.4), 𝑉 𝜋,𝑙 ≤

𝑢𝛾 ◦ 𝑢−1𝜙 (𝑌 𝜙,∞). This, combined with the fact that (𝜋, 𝑙) was arbitrary, gives an upper bound to the

optimisation problem:

sup
(𝜋,𝑙) ∈A

𝑉
𝜋,𝑙

0 ≤ 𝑥1−𝛾

1 − 𝛾

( ∫ ∞

0
𝛿𝜓𝑒

− 𝛿
𝜙
𝑡 (𝑀 𝜂

𝑡 )
𝜙−1
𝜙 𝑑𝑡

) 𝜙𝜃
. (5.8)

Therefore, if we define 𝑔2 as follows:

𝑔2(𝑦) ≜ E
[ ∫ ∞

0
𝑒
− 𝛿

𝜙
𝑡 (𝑀 𝜂

𝑡 )
𝜙−1
𝜙 𝑑𝑡

���𝑌0 = 𝑦] , (5.9)

then 𝑔(𝑦) ≤ 𝑔2(𝑦) and we conjecture that 𝑔2 is a super-solution to equation (4.11). These heuristic

notions are made formal in the following result.

Lemma 5.1.1. Assume that there exists 𝑙 ∈ 𝐶𝛼 (𝐸,R+), 𝜋 ∈ 𝐶𝛼 (𝐸,R𝑛) and 𝜂 ∈ 𝐶𝛼 (𝐸,R𝑘) such that:

i. 𝛿
𝛾−1 + 𝜋′𝜇 − 𝜇′Σ−1𝜇

2 − 𝑙 + 𝑟 ≥ 0,

ii. 𝛿
1−𝜙 − 𝑟 − 𝜇′Σ−1𝜇+𝜂′ (𝐴−Υ′Σ−1Υ)𝜂

2𝜙 ≥ 0, and

iii. The functions 𝑔1 and 𝑔2 defined in (5.5) and (5.9) are finite and continuous for all 𝑦 ∈ 𝐸 .
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Then, the following hold for 𝑦 ∈ 𝐸:


HEZ(𝑦, 𝑔2,∇𝑔2, 𝐷2𝑔2 |𝜙, 𝛾) ≤ HCRRA(𝑦, 𝑔2,∇𝑔2, 𝐷2𝑔2 |𝜙) ≤ 0 (5.10a)

HEZ(𝑦, 𝑔1,∇𝑔1, 𝐷2𝑔1 |𝜙, 𝛾) ≥ 0, and (5.10b)

𝑔2 ≥ 𝑔1. (5.10c)

Condition i. is satisfied by choosing 𝜋 so that 𝜋′𝜇 is sufficiently large. Condition ii. is satisfied

if the interest rate and market price of risks are both bounded from above and 𝛿 is sufficiently large.

Having facilitated the existence of appropriate sub- and super-solutions, we are now ready to state the

main existence result for the Epstein–Zin HJB equation. Although our approach here is inspired by

[26], the technical differences between additive and recursive utilities necessitate various modifications

in the proof. Thus, a detailed proof will be provided in the Appendix.

Theorem 5.1.2. Suppose that 𝑔1 ∈ 𝐶2(𝐸, (0,∞)) is a subsolution to the Epstein–Zin HJB equation

and 𝑔2 ∈ 𝐶2(𝐸, (0,∞)) is a supersolution to the CRRA HJB equation. Assume additionally that

𝑔1(𝑦) ≤ 𝑔2(𝑦) for all 𝑦 ∈ 𝐸 . Then, there exists a twice continuously differentiable function 𝑔 : 𝐸 →

(0,∞) that solves the Epstein–Zin HJB equation (4.11). Moreover, 𝑔 satisfies 𝑔1 ≤ 𝑔 ≤ 𝑔2.

5.2 Verification

In the last section, we have asserted the existence of a classical solution 𝑔 to the Esptein-Zin HJB

equation (4.11) under the presence of sub- and super-solutions. Moreover, we also provided technical

conditions which furnish the sub- and super-solutions necessary for this existence result. The candidate

optimal strategy (𝜋∗, 𝑙∗) can then be expressed in terms of 𝑔 via the first order condition (4.10). In this

section, we will derive the conditions under which we can verify that (𝜋∗, 𝑙∗) solves (4.4).

Let us denote 𝑋∗ = 𝑋 𝜋
∗,𝑙∗ and 𝑉∗ =

(𝑋∗
𝑡 )1−𝛾
1−𝛾 𝑔(𝑌𝑡 )𝜙𝜃 , the candidate optimal value process. From

the Epstein–Zin HJB equation (4.11) and Dynamic Programming Principle, it is evident that the 𝑉∗

satisfies the dynamics of the Epstein–Zin BSDE2. However, this is not sufficient to characterise 𝑉∗

as the value process associated with 𝑙∗𝑋∗.3 In order to verify 𝑉∗ as the correct utility process, we

2The candidate solution 𝑉∗
𝑡 is an Itô process whose drift component equals − 𝑓 (𝑐∗𝑡 , 𝑉∗

𝑡 )𝑑𝑡, where 𝑓 is the Epstein–Zin
aggregator.

3Especially in the empirically relevant case, where 𝜃 < 0. See Section 2.6 for an example of non-unique solutions and
the difficulties related to negative 𝜃.
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need to: i. confirm that (𝜋∗, 𝑙∗) belongs to the admissible class A, and ii. confirm that 𝑉∗ satisfies

the appropriate power utility bounds. A by-product achieved by confirming these two points is the

sufficient regularity conditions for verifying optimality of (𝜋∗, 𝑙∗) amongst a subset of A. Let us name

this subset of the set of permissible strategy and define it below.

Definition 5.2.1. Given a strictly positive solution 𝑔 to equation (4.11), a strategy (𝜋, 𝑙) ∈ A is said to

be permissible with respect to 𝑔, denoted (𝜋, 𝑙) ∈ P(𝑔), if the following holds:

𝑈𝛾,∞(𝑐)𝑡 ≤
(𝑋 𝜋,𝑙𝑡 )1−𝛾

1 − 𝛾 𝑔(𝑌𝑡 )𝜙𝜃 ≤ 𝑈𝜙,∞(𝑐)𝑡 , a.s. for all 𝑡 ≥ 0. (5.11)

Assuming that the strategy (𝜋∗, 𝑙∗) is admissible, then 𝑉∗ is the Epstein–Zin utility associated with

𝑐∗ ≜ 𝑙∗𝑋∗ if and only if (𝜋∗, 𝑙∗) belongs to the class P(𝑔). The scope of our verification argument

will depend on the ability to verify permissibility of (𝜋∗, 𝑙∗) as well as arbitrary strategies. This

question will be addressed to some capacity in the next lemma, which suggests that a strategy (𝜋, 𝑙)

is permissible if (𝑋 𝜋,𝑙)1−𝛾
1−𝛾 𝑔 (𝑦)𝜙𝜃 does not grow or vanish too fast in regards to the agent’s discount

factor 𝛿.

Lemma 5.2.1. Let 𝑔 be a solution of the Epstein–Zin HJB equation (4.11), (𝜋, 𝑙) ∈ A be an admissible

strategy and denote 𝑈 𝜋,𝑙 = 𝑢𝛾 (𝑋 𝜋,𝑙)𝑔𝜙𝜃 (𝑌 ). Moreover, let us define the following process (time

subscript and 𝑌𝑡 arguments are suppressed for brevity):

𝑛𝜋,𝑙 = 𝑟+𝜋′𝜇−𝑙−𝛾𝜋
′Σ𝜋

2
+ 𝜙𝜃∇𝑔

′𝑏

(1 − 𝛾)𝑔+
𝜙𝜃 (𝜙𝜃 − 1)∇𝑔′𝐴∇𝑔

2(1 − 𝛾)𝑔2 +𝜙𝜃 tr(𝐴𝐷
2𝑔)

2(1 − 𝛾)𝑔 +𝜙𝜃∇𝑔
′

𝑔
Υ′𝜋+𝛿𝑙

1−𝜙𝑔−𝜙

1 − 𝜙 − 𝛿

1 − 𝜙 .

(5.12)

Then:

i. If |𝑈 𝜋,𝑙 | is of class (DL) and satisfies:

lim inf
𝑇→∞

E(𝑒−𝛿𝑇 |𝑈 𝜋,𝑙

𝑇
|) = 0, (5.13)

then𝑈 𝜋,𝑙 ≥ 𝑈𝛾,∞(𝑐).

ii. If |𝑈 𝜋,𝑙 | 1𝜃 is of class (DL) and satisfies:

𝑛
𝜋,𝑙
𝑡 + 1

2
(𝛾 − 𝜙)

(
𝜋′Σ𝜋 + 𝜙2

(1 − 𝜙)2
∇𝑔′𝐴∇𝑔
𝑔2

+ 2𝜙

1 − 𝜙
∇𝑔′
𝑔

Υ′𝜋
)
≥ 0 a.s. for all 𝑡 ≥ 0, (5.14a)

lim inf
𝑇→∞

E(𝑒−𝛿𝑇 |𝑈 𝜋,𝑙

𝑇
| 1𝜃 ) = 0, (5.14b)
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then,𝑈 𝜋,𝑙 ≤ 𝑈𝜙,∞(𝑐).

iii. If 𝑔 is bounded above and away from zero, then the limit conditions (5.13) & (5.14b) hold for any

(𝜋, 𝑙) ∈ A.

Condition (5.14a) can be equivalently written as:

𝑛
𝜋,𝑙
𝑡 + (𝛾 − 𝜙)

2[(1 − 𝛾)𝑈 𝜋,𝑙
𝑡 ]2

𝑑⟨𝑈 𝜋,𝑙⟩𝑡 ≥ 0 a.s. for all 𝑡 ≥ 0. (5.15)

We recall from equation (4.8) and the discussion that follows that, 𝑛𝜋,𝑙𝑡 is negative for arbitrary

admissible strategies, and vanishes for the optimal pair. In our setting where 𝛾 > 1 > 𝜙, therefore,

(5.14a) is naturally satisfied for (𝜋∗, 𝑙∗). Thus, under mild integrability conditions, we can verify

permissibility of (𝜋∗, 𝑙∗) and non-emptiness of P(𝑔). Part iii. of Lemma 5.2.1 provides a further

simplification to the question of permissibility when 𝑔 is sufficiently well-behaved.

Having addressed the question of permissibility for (𝜋∗, 𝑙∗), we can now state our main verification

result, which verifies its optimality amongst P(𝑔) strategies:

Theorem 5.2.2. Let 𝑔 be a solution of the Epstein–Zin HJB equation (4.11) and (𝜋∗, 𝑙∗) be defined by

the first order condition (4.10). Then, for every strategy (𝜋, 𝑙) ∈ P(𝑔):

𝑥1−𝛾

1 − 𝛾 𝑔(𝑦)
𝜙𝜃 ≥ 𝑉 𝜋,𝑙0 . (5.16)

Moreover, if (𝜋∗, 𝑙∗) also belongs to the class P(𝑔), then it is optimal amongst P(𝑔) strategies, i.e.:

𝑥1−𝛾

1 − 𝛾 𝑔(𝑦)
𝜙𝜃 = 𝑉

𝜋∗,𝑙∗

0 = sup
(𝜋,𝑙) ∈P (𝑔)

𝑉
𝜋,𝑙
0 . (5.17)

5.3 Proofs from Section 5.1

The following ordering property between CRRA and Epstein–Zin HJB equations will be useful

throughout the proofs of this chapter.

Lemma 5.3.1. Under assumption 4.1.2.iii, for all (𝑦, 𝑔, 𝑧, 𝑝) ∈ 𝐸 × (0,∞) × R𝑘 × R𝑘×𝑘 , we have:

HCRRA(𝑦, 𝑔, 𝑧, 𝑝 |𝜙) ≥ HEZ(𝑦, 𝑔, 𝑧, 𝑝 |𝜙, 𝛾). (5.18)
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Proof. For the convenience of the reader, let us recall below the relevant HJB equations:

HCRRA(𝑦, 𝑔, 𝑧, 𝑝 |𝜙) = 𝛿𝜓𝑔−1 + 𝑧
′

𝑔

(
𝑏 + 1 − 𝜙

𝜙
Υ′Σ−1𝜇

)
+ (𝜙 − 1)𝑧′(𝐴 − Υ′Σ−1Υ)𝑧

2𝑔2
+ tr(𝐴𝑝)

2𝑔

+
(1 − 𝜙
𝜙

) (
𝑟 + 𝛿

𝜙 − 1
+ 𝜇

′Σ−1𝜇

2𝜙

)
,

HEZ(𝑦, 𝑔, 𝑧, 𝑝 |𝜙, 𝛾) = 𝛿𝜓𝑔−1 + 𝑧
′

𝑔

(
𝑏 + 1 − 𝛾

𝛾
Υ′Σ−1𝜇

)
+ 1

2

𝑧′

𝑔

{
(𝜙𝜃 − 1)𝐴 + 𝜙𝜃

(1 − 𝛾
𝛾

)
Υ′Σ−1Υ

}
𝑧

𝑔

+ tr(𝐴𝑝)
2𝑔

+
(
𝑟 + 𝛿

𝜙 − 1
+ 𝜇

′Σ−1𝜇

2𝛾

) (1 − 𝜙
𝜙

)
.

(5.19)

In order to prove the relation (5.18), we will show that HEZ(𝑦, 𝑔, 𝑧, 𝑝 |𝜙, 𝛾)−HCRRA(𝑦, 𝑔, 𝑧, 𝑝 |𝜙) ≤

0. By substituting 𝑧′

𝑝
with 𝜂 in this difference, we see that the desired result is achieved by proving that

the following mapping is non-positive for all 𝜂 ∈ R𝑘 :

𝜂 → (𝜙 − 𝛾)𝜂′Υ′Σ−1𝜇

𝜙𝛾
+ 1

2
𝜂′

(
(𝜙𝜃−1)𝐴+

[𝜙𝜃 (1 − 𝛾)
𝛾

− (1−𝜙)
]
Υ′Σ−1Υ

)
𝜂+ (1 − 𝜙) (𝜙 − 𝛾)𝜇′Σ−1𝜇

2𝜙2𝛾
.

(5.20)

We first begin by simplifying the quadratic coefficient, which readily shows that it is negative

definite:

1

2

[
(𝜙𝜃 − 𝜙)𝐴 +

[𝜙𝜃 (1 − 𝛾)
𝛾

− (1 − 𝜙)
]
Υ′Σ−1Υ

]
=
1

2
𝑎

[
(𝜙𝜃 − 𝜙)𝐼𝑘×𝑘 +

[𝜙𝜃 (1 − 𝛾)
𝛾

− (1 − 𝜙)
]
𝜌𝜌′

]
𝑎′

=
1

2
𝑎

[
𝜙𝜃

(
𝐼𝑘×𝑘 +

1 − 𝛾
𝛾

𝜌𝜌′
)
− 𝜙𝐼𝑘×𝑘 − (1 − 𝜙)𝜌𝜌′

]
𝑎′

=
1

2
𝑎

[
𝜙𝜃

(
𝜌⊥(𝜌⊥) ′ + 1

𝛾
𝜌𝜌′

)
− 𝜙𝐼𝑘×𝑘 − (1 − 𝜙)𝜌𝜌′

]
𝑎′.

(5.21)

A negative quadratic function of the form 𝜂 → 1
2𝜂

′𝐴𝜂 + 𝐵𝜂 + 𝐶 admits a global maximum value

of −1
2𝐵

′𝐴−1𝐵 + 𝐶. The lemma is therefore sufficed by showing that:

𝜇′(𝜎′)−1
{ (𝜙 − 𝛾)2

2𝜙2𝛾2
𝜌

[
𝜙𝜃

(
𝐼 + 1 − 𝛾

𝛾
𝜌𝜌′

)
− 𝜙𝐼 − (1 − 𝜙)𝜌𝜌′

]−1
𝜌′ − (1 − 𝜙) (𝜙 − 𝛾)

2𝜙2𝛾
𝐼𝑛×𝑛

}
𝜎−1𝜇 ≥ 0,

(5.22)
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or, equivalently:

𝜇′(𝜎′)−1
{𝜙 − 𝛾

𝛾
𝜌

[
𝜙𝜃

(
𝐼 + 1 − 𝛾

𝛾
𝜌𝜌′

)
− 𝜙𝐼 − (1 − 𝜙)𝜌𝜌′

]−1
𝜌′ − (1 − 𝜙)𝐼𝑛×𝑛

}
𝜎−1𝜇 ≤ 0. (5.23)

Denote by 𝜌 and 𝜌 the maximum and minimum eigenvalues, respectively, of the positive semidef-

inite matrix 𝜌𝜌′. Then, they are bounded in the interval [0, 1], a direct consequence of the relation

𝜌𝜌 + 𝜌⊥(𝜌⊥) ′ = 1𝑛×𝑛. Moreover, the eigenvalues of the matrix 𝜙−𝛾
𝛾
𝜌

[
𝜙𝜃

(
𝐼 + 1−𝛾

𝛾
𝜌𝜌′

)
− 𝜙𝐼 − (1 −

𝜙)𝜌𝜌′
]−1

𝜌′ are bounded above by:

𝜙 − 𝛾
𝛾

𝜌

𝜙𝜃

(
1 + 1−𝛾

𝛾
𝜌

)
− 𝜙 − (1 − 𝜙)𝜌

. (5.24)

Therefore, inequality (5.23) holds if the quantity in (5.24) is bounded above by (1 − 𝜙). We will

simplify this relation. Below, every inequality is equivalent to each other.

(𝜙 − 𝛾)𝜌
𝜙𝜃 (𝛾 + (1 − 𝛾)𝜌) − 𝛾𝜙 − 𝛾(1 − 𝜙)𝜌 ≤ 1 − 𝜙,

(1 − 𝜃)𝜌
𝜙|𝜃 | (𝛾 + (1 − 𝛾)𝜌) + 𝛾𝜙 + 𝛾(1 − 𝜙)𝜌 ≤ 1,

𝜙|𝜃 |𝛾(1 − 𝜌) + 𝛾𝜙(1 − 𝜌) + 𝛾(𝜌 − 𝜌) ≥ 0,

(5.25)

which has been assumed in assumption 4.1.2.iii.

□

5.3.1 Proof of Lemma 5.1.1.

Proof. From the proof of Lemma 3.1 in [26], conditions i. and iii. imply that 𝑢(𝑦) ≜ E(
∫ ∞
0
𝑒−𝛿𝑡𝑢𝛾 (𝑐𝑡 )𝑑𝑡)

satisfies the partial differential equation:

(
− 𝛿

1 − 𝛾 + 𝜋𝜇 − 𝛾𝜋′Σ𝜋

2
− 𝑙 + 𝑟

)
𝑢 + ∇𝑢′𝑏

1 − 𝛾 + 𝜋′Υ∇𝑢 + tr(𝐴𝐷2𝑢)
2(1 − 𝛾) + 𝑙1−𝛾

1 − 𝛾 = 0, 𝑦 ∈ 𝐸. (5.26)
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Since 𝑔1 = (𝛿𝑢)
1
𝜙𝜃 , we can verify that 𝑔1 satisfies:

𝑟 + 𝛿

𝛾 − 1
+
𝜙𝜃∇𝑔′1𝑏
(1 − 𝛾)𝑔1

+
𝜙𝜃 (𝜙𝜃 − 1)∇𝑔′1𝐴∇𝑔1

2(1 − 𝛾)𝑔21
+ 𝜙𝜃 tr(𝐴𝐷

2𝑔1)
2(1 − 𝛾)𝑔1

+
{
𝜋′𝜇 − 𝛾𝜋′Σ𝜋

2

+ 𝜙𝜃
∇𝑔′1
𝑔1

Υ′𝜋 + 𝛿𝑙
1−𝛾𝑔−𝜙𝜃

1 − 𝛾 − 𝑙
}
= 0.

(5.27)

By Corollary A.2 of [57], 𝑓 (𝑐, 𝑣) ≥ 𝛿( 𝑐1−𝛾1−𝛾 − 𝑣) when 𝜙 < 1 < 𝛾 for 𝑐 > 0 and 𝑣 < 0. Upon

setting 𝑐 = 𝑥𝑙 and 𝑣 = 𝑥1−𝛾

1−𝛾 𝑔
𝜙𝜃 (𝑦), we have:

𝛿𝑙1−𝛾𝑔−𝜙𝜃

1 − 𝛾 − 𝛿

1 − 𝛾 ≤ 𝛿𝑙1−𝜙𝑔−𝜙

1 − 𝜙 − 𝛿

1 − 𝜙 . (5.28)

Note that, since we only consider 𝑔 > 0, this ensures that 𝑣 = 𝑥1−𝛾

1−𝛾 𝑔(𝑦)
𝜙𝜃 has the correct sign needed

to derive equation (5.28).

Combining (5.27) and (5.28), we have:

𝑟 + 𝛿

𝜙 − 1
+
𝜙𝜃∇𝑔′1𝑏
(1 − 𝛾)𝑔1

+
𝜙𝜃 (𝜙𝜃 − 1)∇𝑔′1𝐴∇𝑔1

2(1 − 𝛾)𝑔21
+ 𝜙𝜃 tr(𝐴𝐷

2𝑔1)
2(1 − 𝛾)𝑔1

+
{
𝜋′𝜇 − 𝛾𝜋′Σ𝜋

2

+ 𝜙𝜃
∇𝑔′1
𝑔1

Υ′𝜋 + 𝛿𝑙
1−𝜙𝑔−𝜙

1 − 𝜙 − 𝑙
}
≥ 0.

(5.29)

Taking supremum in (𝜋, 𝑙), we obtain HEZ(𝑦, 𝑔1,∇𝑔1, 𝐷2𝑔1) ≥ 0, thus confirming 𝑔1 as a

subsolution of equation (4.11).

Also, in Lemma 3.1 [26], under conditions ii. and iii., 𝑔2 is shown to satisfy the following partial

differential equation:

𝛿𝜓𝑔2 +
∇𝑔2
𝑔2

(
𝑏 + 1 − 𝜙

𝜙
Υ′Σ−1𝜇

)
+ 1 − 𝜙

𝜙

{𝜂′(𝐴 − Υ′Σ−1Υ)𝜂
2𝜙

+
∇𝑔′2
𝑔2

(Υ′Σ−1Υ − 𝐴)𝜂
}

+ tr(𝐴𝐷2𝑔2)
2𝑔2

+ 1 − 𝜙
𝜙

(
𝑟 + 𝛿

𝜙 − 1
+ 𝜇

′Σ−1𝜇

2𝜙

)
= 0, 𝑦 ∈ 𝐸.

(5.30)
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We can minimise the quadratic term in 𝜂 as follows: inf 𝜂∈R𝑘 {
𝜂′ (𝐴−Υ′Σ−1Υ)𝜂

2𝜙 + ∇𝑔′2
𝑔2

(Υ′Σ−1Υ −

𝐴)𝜂} = − 𝜙∇𝑔′2 (𝐴−Υ
′Σ−1Υ) ∇𝑔2

2𝑔22
. This yields:

𝛿𝜓𝑔−12 +
∇𝑔′2
𝑔2

(
𝑏 + 1 − 𝜙

𝜙
Υ′Σ−1𝜇

)
+
(𝜙 − 1)∇𝑔′2(𝐴 − Υ′Σ−1Υ)∇𝑔2

2𝑔22
+ tr(𝐴𝐷2𝑔2)

2𝑔2

+
(1 − 𝜙
𝜙

) (
𝑟 + 𝛿

𝜙 − 1
+ 𝜇

′Σ−1𝜇

2𝜙

)
≤ 0,

(5.31)

which confirms that 𝑔2 is a supersolution of the CRRA HJB equation, i.e. HCRRA(𝑦, 𝑔2,∇𝑔2, 𝐷2𝑔2 |𝜙) ≤

0. By Lemma 5.3.1, it also satisfies HEZ(𝑦, 𝑔2,∇𝑔2, 𝐷2𝑔2 |𝜙, 𝛾) ≤ 0.

□

5.3.2 Proof of Theorem 5.1.2

For the convenience of the reader, let us recite the existence theorem for the HJB equation here:

Theorem 5.3.2. Suppose that 𝑔1 ∈ 𝐶2(𝐸, (0,∞)) is a subsolution to the Epstein–Zin HJB equation

and 𝑔2 ∈ 𝐶2(𝐸, (0,∞)) is a supersolution to the CRRA HJB equation. Assume additionally that

𝑔1(𝑦) ≤ 𝑔2(𝑦) for all 𝑦 ∈ 𝐸 . Then, there exists a twice continuously differentiable function 𝑔 : 𝐸 →

(0,∞) that solves the Epstein–Zin HJB equation (4.11). Moreover, 𝑔 satisfies 𝑔1 ≤ 𝑔 ≤ 𝑔2.

Proof. We first observe that, if 𝑔 is a solution to (4.11) then the transform 𝑢 = 𝜙𝜃 ln(𝑔) satisfies

the equation below4:

GEZ(𝑦, 𝑢,∇𝑢, 𝐷2𝑢 |𝜙, 𝛾) ≜ 𝜙𝜃𝛿𝜓𝑒−
𝑢
𝜙𝜃 + ∇𝑢′

(
𝑏 + 1 − 𝛾

𝛾
Υ′Σ−1𝜇

)
+ 1

2
∇𝑢′

(
𝐴 + 1 − 𝛾

𝛾
Υ′Σ−1Υ

)
∇𝑢

+ tr(𝐴𝐷2𝑢)
2

+
(
𝑟 + 𝛿

𝜙 − 1
+ 𝜇

′Σ−1𝜇

2𝛾

)
(1 − 𝛾) = 0.

(5.32)

We observe also that, if we define 𝑢𝑖 = 𝜙𝜃 ln(𝑔𝑖), 𝑖 = 1, 2, then they satisfy the inequality:

GEZ(𝑦, 𝑢1,∇𝑢1, 𝐷2𝑢1 |𝜙, 𝛾) ≤ 0 ≤ GEZ(𝑦, 𝑢2,∇𝑢2, 𝐷2𝑢2 |𝜙, 𝛾). (5.33)

4This is the resulting equation from parametrising the optimal value function as 𝑣(𝑥, 𝑦) = 𝑥1−𝛾
1−𝛾 𝑒

𝑢 (𝑦) . This approach has
been studied by Hata & Sheu (cf. [27] & [28]) for the additive utility case, and Xing for the Epstein–Zin utility case ([66]).
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Moreover, if we found a solution 𝑢 such that GEZ(𝑦, 𝑢,∇𝑢, 𝐷2𝑢 |𝜙, 𝛾) = 0 in 𝐸 and 𝑢2 ≤ 𝑢 ≤ 𝑢1,

then 𝑔 = exp( 𝑢
𝜙𝜃

) is the solution required by the theorem. We will approach this equation by solving

a local version of it, and apply Arzelà–Ascoli theorem to find a uniformly convergent subsequence

which then solves (5.32).

For each 𝑛 ∈ N, since 𝐴 is positive definite and continuous, its eigenvalues are bounded and

bounded away from 0 on compact sets. Thus there exists 𝜆
𝑛
< 𝜆𝑛 such that for all 𝑥 ∈ R𝑘 and 𝑦 ∈ 𝐸𝑛,

𝜆
𝑛
∥𝑥∥2 ≤ ∑

𝑖, 𝑗 𝐴𝑖 𝑗 (𝑦)𝑥𝑖𝑥 𝑗 ≤ 𝜆𝑛∥𝑥∥2. By Lemma 5.3.3 below, there exists a solution 𝑢 (𝑛) in 𝐸𝑛 to the

boundary value problem:

GEZ(𝑦, 𝑢 (𝑛) ,∇𝑢 (𝑛) , 𝐷2𝑢 (𝑛) |𝜙, 𝛾) = 0, 𝑦 ∈ 𝐸𝑛

𝑢 (𝑛) = 𝑢2, 𝑦 ∈ 𝜕𝐸𝑛.
(5.34)

Since 𝑢2 ≤ 𝑢1, by Comparison Theorem (Theorem 10.1 [25]), we have 𝑢2 ≤ 𝑢 (𝑛) ≤ 𝑢1 in 𝐸𝑛. The

same holds for 𝑚 ≥ 𝑛, and thus
{
𝑢 (𝑚)}

𝑚≥𝑛 are bounded uniformly in 𝐸𝑛.

We now derive a Hölder estimate for the gradient of {𝑢 (𝑚) }𝑚≥𝑛. By Theorem 13.6 [25], there

exists 𝛼′ ∈ (0, 1] and 𝐶 such that: [
∇𝑢 (𝑚)

]
𝛼′,𝐸𝑛

≤ 𝐶, (5.35)

where𝐶 and 𝛼′ depend only on sup𝑦∈𝐸𝑛+1

��𝑢 (𝑚) ��, 𝜆
𝑛+1 and 𝜆𝑛+1, and [𝑔]𝛼,𝐸𝑛

≜ sup𝑦,𝑦′∈𝐸𝑛;𝑦≠𝑦′
𝑔 (𝑦)−𝑔 (𝑦′)
|𝑦−𝑦′ |𝛼 .

Without loss of generality, assume 𝛼 = 𝛼 ∧ 𝛼′, for if it is not, we can reset the value of 𝛼 to 𝛼 ∧ 𝛼′.

Consider 𝑢 (𝑚) as the solution to the following linear problem:

L(𝑦, 𝑢 (𝑚) ,∇𝑢 (𝑚) , 𝐷2𝑢 (𝑚) ) = 𝑓𝑚(𝑦), (5.36)

where:

L(𝑦, 𝑢 (𝑚) ,∇𝑢 (𝑚) , 𝐷2𝑢 (𝑚) ) = (∇𝑢 (𝑚) ) ′
(
𝑏 + 1 − 𝛾

𝛾
Υ′Σ−1𝜇

)
+ 1

2
tr(𝐴𝐷2𝑢 (𝑚) ),

𝑓𝑚(𝑦) = −𝜙𝜃 exp
(
− 𝑢 (𝑚)

𝜙𝜃

)
− 1

2
(∇𝑢 (𝑚) ) ′

(
𝐴 + 1 − 𝛾

𝛾
Υ′Σ−1Υ

)
∇𝑢 (𝑚)

−
(
𝑟 + 𝛿

𝜙 − 1
+ 𝜇

′Σ−1𝜇

2𝛾

)
(1 − 𝛾).

(5.37)
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The Schauder interior estimates (Corollary 6.3 [25]) imply that for 𝑚 > 𝑛, with 𝑑 = dist(𝐸𝑛, 𝜕𝐸𝑛+1)

and a constant 𝐷, where 𝐷 is independent of 𝑚 and the source term 𝑓𝑚:

𝑑max
𝐸𝑛

���∇𝑢 (𝑚)
��� + 𝑑2max

𝐸𝑛

���𝐷2𝑢 (𝑚)
��� + 𝑑2+𝛼 [

𝐷2𝑢 (𝑚)
]
𝛼,𝐸𝑛

≤ 𝐷

(
sup
𝐸𝑛+1

���𝑢 (𝑚)
��� + sup

𝐸𝑛+1
| 𝑓𝑚 | + [ 𝑓𝑚]𝛼,𝐸𝑛+1

)
.

(5.38)

The next step is to remove the dependence on 𝑚 on the right hand side of (5.38). To this end, it is

sufficient to find a bound for the gradient
��∇𝑢 (𝑚) ��

𝑚>𝑛
. By Theorem 15.5 [25], the following holds:

���∇𝑢 (𝑚) (𝑦)
��� ≤ 𝐾 (1 + dist(𝑦, 𝜕𝐸𝑛+1)−

1
𝜗 ), (5.39)

where 𝜗 is a constant in the structural conditions (cf. condition 15.3 [25]), and 𝐾 is independent of 𝑚.

Due to the assumptions on the nested domains, min𝑦∈𝐸𝑛
dist(𝑦, 𝜕𝐸𝑛+1) > 0, and therefore:

sup
𝑦∈𝐸𝑛

���∇𝑢 (𝑚)
��� ≤ 𝐾 (1 +max

𝑦∈𝐸𝑛

dist(𝑦, 𝜕𝐸𝑛+1)−
1
𝜃 ) for 𝑚 ≥ 𝑛 + 1. (5.40)

Combine this with the estimate (5.38), we have:

𝑑max
𝐸𝑛

���∇𝑢 (𝑚)
��� + 𝑑2max

𝐸𝑛

���𝐷2𝑢 (𝑚)
��� + 𝑑2+𝛼 [

𝐷2𝑢 (𝑚)
]
𝛼,𝐸𝑛

≤

𝐷

(
sup
𝑦∈𝐸𝑛+1

|𝑢1(𝑦) | ∨ |𝑢2(𝑦) | + sup
𝑚>𝑛
𝑦∈𝐸𝑛+1

| 𝑓𝑚(𝑦) | + sup
𝑚>𝑛

[ 𝑓𝑚]𝛼,𝐸𝑛+1

)
< ∞.

(5.41)

The estimates (5.35) and (5.41) imply that the the sequences
{
𝑢 (𝑚)}

𝑚>𝑛
,

{
∇𝑢 (𝑚)}

𝑚>𝑛
and{

𝐷2𝑢 (𝑚)}
𝑚>𝑛

are bounded and equi-continuous in 𝐸𝑛. By Arzelà–Ascoli Theorem, by passing

to a subsequence, they converge uniformly to 𝑢, lim∇𝑢 (𝑚) and lim𝐷2𝑢 (𝑚) , respectively. Due to

the uniformity of convergence, 𝑢 is twice continuously differentiable and ∇𝑢 = lim∇𝑢 (𝑚) and

𝐷2𝑢 = lim𝐷2𝑢 (𝑚) .

□

Lemma 5.3.3. There exists a solution to the following boundary value problem:

GEZ(𝑦, 𝑢,∇𝑢, 𝐷2𝑢 |𝜙, 𝛾) = 0, 𝑦 ∈ 𝐸𝑛,

𝑢(𝑦) = 𝑢2, 𝑦 ∈ 𝜕𝐸𝑛.
(5.42)
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Proof. We adapt the strategy of Hata & Sheu ([27]) to our setting of Epstein–Zin utility. By

Theorem 3.4 therein, it is sufficient to prove boundedness of solutions of a parameterised class of

PDEs.

Define 𝛾(𝜏) ≜ (1 − 𝜏) + 𝜏𝛾, and 𝜙(𝜏) ≜ (1 − 𝜏) + 𝜏𝜙. We observe that, firstly, 𝛾𝜏 and 𝜙𝜏 still

follow the general configuration, i.e. for 𝜏 > 0, 𝛾(𝜏) > 1 > 𝜙(𝜏), and secondly, 𝜃 (𝜏) = 𝜏 (1−𝛾)
𝜏 (1−𝜙) = 𝜃 is

independent of 𝜏. By Theorem 3.4 [27], it is sufficient to prove that solutions to the following BVPs

are bounded uniformly in 𝜏 ∈ [0, 1].

GEZ(𝑦, 𝑢𝜏 ,∇𝑢𝜏 , 𝐷2𝑢𝜏 |𝜙(𝜏), 𝛾(𝜏)) = 0

𝑢𝜏 (𝑦) = 𝜏𝜙𝜃 ln(𝑔2), 𝑦 ∈ 𝜕𝐸𝑛,
(5.43)

and:

tr(𝐴𝐷2𝑢)
2

+ 𝜏
(
𝜃𝛿𝜓𝑒−

𝑢
𝜃 + ∇𝑢′𝑏 + 1

2
∇𝑢′𝐴∇𝑢 − 𝛿𝜃

)
= 0, 𝑦 ∈ 𝐸𝑛

𝑢 = 0, 𝑦 ∈ 𝜕𝐸𝑛.
(5.44)

We start with the BVP (5.44). In the case where 𝛿 ≤ 1, we observe that 𝑢 = 0 is a super-solution

and 𝑢 = −𝜃 (1−𝜓) ln(𝛿) is a sub-solution, and thus are the required lower and upper bound, respectively,

for any solution of (5.44). Bounding the solutions of (5.43) requires more involved calculations, and is

stated separately in Lemma 5.3.4.

□

Lemma 5.3.4. If 𝑢𝜏 is a solution to the following boundary value problem:

GEZ(𝑦, 𝑢𝜏 ,∇𝑢𝜏 , 𝐷2𝑢𝜏 |𝜙(𝜏), 𝛾(𝜏)) = 0, 𝑦 ∈ 𝐸𝑛,

𝑢𝜏 (𝑦) = 𝜏𝑢2(𝑦), 𝑦 ∈ 𝜕𝐸𝑛,
(5.45)

then it admits the following bounds:

𝜃 ln
{
𝜏𝑔

𝜙

2 (𝑦) + (1 − 𝜏)
}
≤ 𝑢𝜏 ≤ 𝜙 |𝜃 | ln

( 𝐶

𝜙 |𝜃 |𝛿𝜓 ∨ 1
)
+ sup
𝑦∈𝐸𝑛

���ln(𝑔𝜙𝜃2 (𝑦))
���, (5.46)

where 𝐶𝑛 = sup𝜏∈[0,1],𝑦∈𝐸𝑛

(
𝑟 + 𝜇′Σ−1𝜇

2𝛾 (𝜏)

)
(1 − 𝛾(𝜏)) − 𝛿𝜃.
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Proof. We start with the upper bound. Define the function, where the constant 𝐶𝑛 is defined in the

lemma:

𝑢𝑛 = 𝜙 |𝜃 | ln
( 𝐶𝑛

𝜙 |𝜃 |𝛿𝜓 ∨ 1
)
+ sup
𝑦∈𝐸𝑛

���ln(𝑔𝜙𝜃2 (𝑦))
���, (5.47)

For any 𝜏 ∈ [0, 1], 𝑢𝑛 is a sub-solution, and therefore 𝑢𝜏 ≤ 𝑢𝑛.

Next, we will show that it is bounded from below. The scheme of the proof is as follows: firstly,

we will show that, for (𝑥, 𝑦) ∈ (0,∞) × 𝐸𝑛 and 𝑢2 = 𝜙 ln(𝑔2):

𝑥𝜏 (1−𝜙)𝑒
𝑢𝜏

𝜃 − 1

𝜏(1 − 𝜙) ≤ 𝑥1−𝜙𝑒𝑢2 − 1

1 − 𝜙 . (5.48)

Once this is established, we can simply set 𝑥 = 1 to obtain:

1

𝜏
𝑒

𝑢𝜏

𝜃 − 1

𝜏
≤ 𝑒𝑢2 (𝑦) − 1

𝑒
𝑢𝜏

𝜃 ≤ 𝜏𝑒𝑢2 (𝑦) + (1 − 𝜏)1, and thus

𝑢𝜏 ≥ 𝜃 ln
{
𝜏𝑔

𝜙

2 + (1 − 𝜏)1
}
.

(5.49)

We will obtain the relation (5.48) by contradiction. We will derive a relationship that is known to hold,

and show that such a relationship cannot be true without (5.48).

Step 0. Review of the time-additive case. Before we proceed, we recollect some facts from the

additive utility case and establish some notations. Suppose that the agent’s utility is defined by a

CRRA utility function with relative risk aversion 𝜙, i.e. 𝑢𝜙 : 𝑥 → 𝑥1−𝜙

1−𝜙 and the optimal value function

is parametrised by 𝑥1−𝜙

1−𝜙 𝑔(𝑦)
𝜙, then the associated HJB equation is (see also [26]):

HCRRA(𝑦, 𝑔,∇𝑔, 𝐷2𝑔 |𝜙) = 𝛿
1
𝜙 𝑔−1 + tr(𝐴𝐷2𝑔)

2𝑔
+ ∇𝑔′

𝑔

(
𝑏 + 1 − 𝜙

𝜙
ΥΣ−1𝜇

)
− 1 − 𝜙

2

∇𝑔′
𝑔

(𝐴 − Υ′Σ−1Υ) ∇𝑔
𝑔

+
(
𝑟 − 𝛿

1 − 𝜙 + 𝜇Σ
−1𝜇

2𝜙

) (1 − 𝜙
𝜙

)
= 0.

(5.50)
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On the other hand, if we let the agent have utility function 𝑢𝜙 but parametrise the optimal value

function as 𝑥1−𝜙

1−𝜙 𝑒
𝑢 (𝑦) , then the resulting HJB equation is:

GCRRA(𝑦, 𝑢,∇𝑢, 𝐷2𝑢 |𝜙) = 𝜙𝛿𝜓𝑒−
𝑢
𝜙 + 1

2
tr(𝐴𝐷2𝑢) + 1

2
∇𝑢′

(
𝐴 + 1 − 𝜙

𝜙
Υ′Σ−1Υ

)
∇𝑢

+ ∇𝑢′
(
𝑏 + 1 − 𝜙

𝜙
Υ′Σ−1𝜇

)
+

(
𝑟 − 𝛿

1 − 𝜙 + 𝜇Σ
−1𝜇

2𝜙

)
(1 − 𝜙) = 0.

(5.51)

Moreover, these two parametrisations are equivalent in the sense that, if we set 𝑢 = 𝜙 ln(𝑔), then

HCRRA(𝑦, 𝑔,∇𝑔, 𝐷2𝑔 |𝜙) = 1
𝜙
GCRRA(𝑦, 𝑢,∇𝑢, 𝐷2𝑢 |𝜙). Moreover, we have shown in Lemma 5.3.1

that under assumption 4.1.2.iii, for all (𝑦, 𝑔, 𝑧, 𝑝) ∈ 𝐸 × (0,∞) × R𝑘 × R𝑘×𝑘 , HCRRA(𝑦, 𝑔, 𝑧, 𝑝 |𝜙) ≥

HEZ(𝑦, 𝑔, 𝑧, 𝑝 |𝜙, 𝛾).

Step 1. Derive a relation for contradiction.

Now, let 𝑢𝜏 be defined by equation (5.45) and 𝑔𝜏 by the relation 𝑒𝑢
𝜏

= (𝑔𝜏)𝜙 (𝜏) 𝜃 , then 𝑔𝜏 satisfies

the Epstein–Zin HJB equation parametrised by 𝜙(𝜏) and 𝛾(𝜏) in the domain 𝐸𝑛. More specifically:

HEZ(𝑦, 𝑔𝜏 ,∇𝑔𝜏 , 𝐷2𝑔𝜏 |𝜙(𝜏), 𝛾(𝜏)) = 0, 𝑦 ∈ 𝐸𝑛. (5.52)

Using the relationship HCRRA(·|𝜙(𝜏)) ≥ HEZ(·|𝜙(𝜏), 𝛾(𝜏)) (see Lemma 5.3.1), we achieve

the relation HCRRA(𝑦, 𝑔𝜏 ,∇𝑔𝜏 , 𝐷2𝑔𝜏 |𝜙(𝜏)) ≥ 0. Thus, the mapping 𝜙(𝜏) ln(𝑔𝜏) = 𝑢𝜏

𝜃
satisfies the

relation:

GCRRA
(
𝑦,
𝑢𝜏

𝜃
,
∇𝑢𝜏
𝜃
,
𝐷2𝑢𝜏

𝜃
|𝜙(𝜏)

)
≥ 0. (5.53)

If we define 𝑉 𝜏 = 𝑥𝜏 (1−𝜙)

𝜏 (1−𝜙) 𝑒
𝑢𝜏 (𝑦)

𝜃 , then the following holds:

tr(𝐴𝐷2
𝑦𝑦𝑉

𝜏)
2

+ 𝐷𝑦 (𝑉 𝜏) ′𝑏 + sup
(𝜋,𝑙)

{
𝐷𝑥𝑉

𝜏𝑥(𝑟 + 𝜋′𝜇 − 𝑙) + 𝑥
2

2
𝜋′Σ𝜋𝐷2

𝑥𝑥𝑉
𝜏 + 𝑥𝐷𝑥𝑦 (𝑉 𝜏) ′Υ′𝜋

+ 𝛿
( 𝑐𝜏 (1−𝜙)
𝜏(1 − 𝜙) −𝑉

𝜏
)}

≥ 0.

(5.54)
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On the other hand, we know that 𝑔2 satisfies HCRRA(𝑦, 𝑔2,∇𝑔2, 𝐷2𝑔2 |𝜙) ≤ 0. If we define 𝑢2 by:

𝑢2 = 𝜙 ln(𝑔2), then GCRRA(𝑦, 𝑢2,∇𝑢2, 𝐷2𝑢2 |𝜙) ≤ 0. Now, let us define 𝑉 = 𝑥1−𝜙

1−𝜙 𝑒
𝑢2 , we have:

tr(𝐴𝐷2
𝑦𝑦𝑉)

2
+ 𝐷𝑦𝑉

′𝑏 + sup
(𝜋,𝑙)

{
𝐷𝑥𝑉𝑥(𝑟 + 𝜋′𝜇 − 𝑙) +

𝑥2

2
𝜋′Σ𝜋𝐷2

𝑥𝑥𝑉 + 𝑥𝐷𝑥𝑦𝑉 ′Υ′𝜋

+ 𝛿
( 𝑐1−𝜙
1 − 𝜙 −𝑉

)}
≤ 0.

(5.55)

By choosing (𝜋, 𝑙) that attains the supremum in equation (5.54), we attain the following relationship

between 𝑉 𝜏 and 𝑉 :

tr(𝐴𝐷2
𝑦𝑦 (𝑉 𝜏 −𝑉))
2

+ 𝐷𝑦 (𝑉 𝜏 −𝑉) ′𝑏 + 𝐷𝑥 (𝑉 𝜏 −𝑉) ′𝑥(𝑟 + 𝜋′𝜇 − 𝑙) +
𝑥2

2
𝜋′Σ𝜋𝐷2

𝑥𝑥 (𝑉 𝜏 −𝑉)+

𝑥𝐷2
𝑥𝑦 (𝑉 𝜏 −𝑉) ′Υ′𝜋 + 𝛿

( 𝑐𝜏 (1−𝜙)
𝜏(1 − 𝜙) −

𝑐1−𝜙

1 − 𝜙

)
− 𝛿(𝑉 𝜏 −𝑉) ≥ 0.

(5.56)

We observe that the mapping 𝛽 → 𝛽−1(𝑐𝛽 −1) is increasing for 𝛽 > 0. Therefore, 𝑐
𝜏 (1−𝜙)

𝜏 (1−𝜙) −
𝑐1−𝜙

1−𝜙 ≤
1

𝜏 (1−𝜙) −
1

1−𝜙 . This, combined with inequality (5.56) yields the following:

tr(𝐴𝐷2
𝑦𝑦 (𝑉 𝜏 −𝑉))
2

+ 𝐷𝑦 (𝑉 𝜏 −𝑉) ′𝑏 + 𝐷𝑥 (𝑉 𝜏 −𝑉) ′𝑥(𝑟 + 𝜋′𝜇 − 𝑙) +
𝑥2

2
𝜋′Σ𝜋𝐷2

𝑥𝑥 (𝑉 𝜏 −𝑉)+

𝑥𝐷2
𝑥𝑦 (𝑉 𝜏 −𝑉) ′Υ′𝜋 + 𝛿

( 1

𝜏(1 − 𝜙) −
1

1 − 𝜙

)
− 𝛿(𝑉 𝜏 −𝑉) ≥ 0.

(5.57)

We can simplify equation (5.57) by absorbing the constant term 1
𝜏 (1−𝜙) −

1
1−𝜙 in an affine trans-

formation. To achieve that, we define 𝑉 𝜏0 = 𝑥𝜏 (1−𝜙)𝑒
𝑢𝜏

𝜃 −1
𝜏 (1−𝜙) and 𝑉0 = 𝑥1−𝜙𝑒𝑢2−1

1−𝜙 . Combine this with

inequality (5.57), one can verify straightforwardly that 𝑉 𝜏0 and 𝑉𝜏 satisfies the relation (5.58) below.

We will use this inequality to set up our contradiction argument in Step 2.
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tr(𝐴𝐷2
𝑦𝑦 (𝑉 𝜏0 −𝑉0))

2
+ 𝐷𝑦 (𝑉 𝜏0 −𝑉0) ′𝑏 + 𝐷𝑥 (𝑉 𝜏0 −𝑉0) ′𝑥(𝑟 + 𝜋′𝜇 − 𝑙) +

𝑥2

2
𝜋′Σ𝜋𝐷2

𝑥𝑥 (𝑉 𝜏0 −𝑉0)+

𝑥𝐷2
𝑥𝑦 (𝑉 𝜏0 −𝑉0) ′Υ′𝜋 + −𝛿(𝑉 𝜏0 −𝑉0) ≥ 0.

(5.58)

Step 2. Contradiction step. We are now ready to prove relation (5.48), i.e. 𝑉0 ≥ 𝑉 for all (𝑥, 𝑦) ∈

(0,∞) × 𝐸𝑛. We will show below that if (5.48) does not hold, it would violate relation (5.58) derived

in the previous step. For the sake of a contradiction, let us assume the opposite, i.e.:

sup
(𝑥,𝑦) ∈(0,∞)×𝐸𝑛

(𝑉 𝜏0 −𝑉0) > 0. (5.59)

We make the following observation on the boundary, using again the fact that 𝛽 → 𝛽−1(𝑐𝛽 − 1) is

increasing in 𝛽 for 𝛽 > 0 and 𝑐 > 0: for 𝑦 ∈ 𝜕𝐸𝑛:

𝑉 𝜏0 (𝑥, 𝑦) =
𝑥𝜏 (1−𝜙)𝑒𝜏𝑢2 (𝑦) − 1

𝜏(1 − 𝜙) ≤ 𝑥1−𝜙𝑒𝑢2 (𝑦) − 1

1 − 𝜙 = 𝑉0(𝑥, 𝑦). (5.60)

Moreover, for any 𝑦 ∈ 𝐸𝑛, we have 𝑉 𝜏0 (𝑥, 𝑦) ≤ 𝑉0(𝑥, 𝑦) for either 𝑥 = 0 or 𝑥 large enough. These

observations on the boundary behaviour imply that the supremum in (5.59) is attained at an interior

point. Specifically, there exists some (𝑥0, 𝑦0) ∈ (0,∞) × 𝐸𝑛 such that 𝑉 𝜏0 (𝑥0, 𝑦0) > 𝑉0(𝑥0, 𝑦0),

𝐷𝑥𝑉
𝜏
0 (𝑥0, 𝑦0) = 𝐷𝑥𝑉0(𝑥0, 𝑦0), 𝐷𝑦𝑉 𝜏0 (𝑥0, 𝑦0) = 𝐷𝑦𝑉0(𝑥0, 𝑦0) and 𝐷2(𝑉 𝜏0 − 𝑉0) is a negative semi-

definite matrix. These facts, however, would imply that the left hand side of (5.58) is strictly negative,

a contradiction.

□
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5.4 Proofs from Section 5.2

5.4.1 Proof of Lemma 5.2.1

For the proof of Lemma 5.2.1, we will need the following lemma concerning the growth rate of power

utility processes.

Lemma 5.4.1. Let 𝑐 be a consumption plan in C∞ and𝑈𝛾,∞(𝑐) and 𝑌 𝜙,∞(𝑐) be its associated power

utility processes (cf. Definition 2.4.2). Then:

lim
𝑇→∞

E(𝑒−𝛿𝑇𝑈𝛾,∞(𝑐)𝑇 ) = lim
𝑇→∞

E(𝑒−𝛿𝑇𝑌 𝜙,∞(𝑐)𝑇 ) = 0. (5.61)

Proof. By definition E[𝑒−𝛿𝑇𝑈𝛾,∞(𝑐)𝑇 ] = E(
∫ ∞
𝑇
𝛿𝑒−𝛿𝑡𝑐1−𝛾𝑡 𝑑𝑡). As 𝑐 ∈ C∞, 𝑐1−𝛾 is a square

integrable random variable on the product space (Ω × R+, F ⊗ B(R+)) with probability measure

𝑑P ⊗ 𝛿𝑒−𝛿𝑡𝑑𝑡. Since this product space is a finite measure space, 𝑐1−𝛾 is also integrable in the product

𝐿1 norm, i.e. E(
∫ ∞
0
𝛿𝑒−𝛿𝑡𝑐1−𝛾𝑡 𝑑𝑡) < ∞. By Dominated Convergence Theorem with

∫ ∞
0
𝛿𝑒−𝛿𝑡𝑐1−𝛾𝑡 𝑑𝑡

as the dominating random variable:

lim
𝑇→∞

E
[ ∫ ∞

𝑇

𝛿𝑒−𝛿𝑡𝑐1−𝛾𝑡 𝑑𝑡

]
= 0, (5.62)

which concludes the first convergence of the lemma. The second convergence can be proved similarly,

using square integrability of 𝑐1−𝜙 instead.

□

Proof of Lemma 5.2.1.

Part I. Show that𝑈 𝜋,𝑙 ≥ 𝑈𝛾,∞(𝑐). Following from equation (4.8),𝑈 𝜋,𝑙 satisfies the dynamics:

𝑑𝑈
𝜋,𝑙
𝑡 = − 𝑓 (𝑐𝑡 ,𝑈 𝜋,𝑙

𝑡 )𝑑𝑡 + (1 − 𝛾)𝑈 𝜋,𝑙
𝑡 𝑛

𝜋,𝑙
𝑡 𝑑𝑡 + (1 − 𝛾)𝑈 𝜋,𝑙

𝑡

[
𝜋′𝜎𝑑𝑊𝜌

𝑡 + 𝜙∇𝑔′𝑎
(1 − 𝜙)𝑔 𝑑𝑊𝑡

]
. (5.63)

We shall denote the local martingale term above more succinctly by 𝑀1. On the other hand, the

dynamics of𝑈𝛾,∞(𝑐) satisfies:

𝑑𝑈
𝛾,∞
𝑡 = −𝛿(𝑢𝛾 (𝑐𝑡 ) −𝑈𝛾,∞(𝑐)𝑡 )𝑑𝑡 + 𝑑𝑀2

𝑡 , (5.64)
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where 𝑀2 is a local martingale. By product rule, we can compute the dynamics of 𝑒−𝛿𝑡 (𝑉∗
𝑡 −𝑈

𝛾,∞
𝑡 ) as

follows:

𝑑 [𝑒−𝛿𝑡 (𝑈 𝜋,𝑙
𝑡 −𝑈𝛾,∞𝑡 )] = −𝑒−𝛿𝑡 ( 𝑓 (𝑐𝑡 ,𝑈 𝜋,𝑙

𝑡 ) − 𝛿[𝑢𝛾 (𝑐𝑡 ) −𝑈𝛾.∞𝑡 ])𝑑𝑡 + 𝑒−𝛿𝑡 (1 − 𝛾)𝑈 𝜋,𝑙
𝑡 𝑛

𝜋,𝑙
𝑡 𝑑𝑡

− 𝛿𝑒−𝛿𝑡 (𝑈 𝜋,𝑙
𝑡 −𝑈𝛾,∞𝑡 )𝑑𝑡 + 𝑒−𝛿𝑡 (𝑑𝑀1

𝑡 − 𝑑𝑀2
𝑡 )

= −𝑒−𝛿𝑡 [ 𝑓 (𝑐𝑡 ,𝑈 𝜋,𝑙
𝑡 ) − 𝛿(𝑢𝛾 (𝑐𝑡 ) −𝑈 𝜋,𝑙

𝑡 )]𝑑𝑡

+ 𝑒−𝛿𝑡 (1 − 𝛾)𝑈 𝜋,𝑙
𝑡 𝑛

𝜋,𝑙
𝑡 𝑑𝑡 + 𝑒−𝛿𝑡 (𝑑𝑀1

𝑡 − 𝑑𝑀2
𝑡 ).

(5.65)

When 𝛾𝜓 > 1, 𝑓 (𝑐, 𝑣) ≥ 𝛿(𝑢𝛾 (𝑐) − 𝑣) for all 𝑐 > 0 and (1 − 𝛾)𝑣 > 0 (Corollary A.2 in [57]).

Because 𝑔 satisfies the Epstein–Zin HJB equation (see Dynamic Programming Principle after equation

(4.8)), 𝑛𝜋,𝑙 is non-positive for arbitrary strategies. Therefore, 𝑒−𝛿𝑡 (𝑈 𝜋,𝑙
𝑡 −𝑈𝛾,∞𝑡 ) has non-positive drift

component and is a local supermartingale. Let {𝜏𝑛}𝑛≥0 be a reducing sequence of stopping times and

𝑡 < 𝑇 be positive constants, we have:

𝑒−𝛿 (𝑡∧𝜏𝑛) (𝑈 𝜋,𝑙
𝑡∧𝜏𝑛 −𝑈

𝛾,∞
𝑡∧𝜏𝑛) ≥ E𝑡∧𝜏𝑛

(
𝑒−𝛿 (𝑇∧𝜏𝑛) (𝑈 𝜋,𝑙

𝑇∧𝜏𝑛 −𝑈
𝛾,∞
𝑇∧𝜏𝑛)

)
. (5.66)

The hypothesis of this lemma states that𝑈 𝜋,𝑙 is of class (DL). Moreover, since (𝜋, 𝑙) is assumed to

be admissible, 𝑐 belongs to the class C∞ and as a result𝑈𝛾,∞(𝑐) belongs to the class V∞ (Proposition

2.5.2). Thus,𝑈𝛾,∞ belongs to class (DL) as well. Therefore, we can apply Proposition 5.4.2 below to

take the limit 𝑛 → ∞ on the right hand side of (5.66). The left hand side limit follows simply from

continuity. We have:

𝑒−𝛿𝑡 (𝑈 𝜋,𝑙
𝑡 −𝑈𝛾,∞(𝑐)𝑡 ) ≥ E𝑡 [𝑒−𝛿𝑇 (𝑈 𝜋,𝑙

𝑇
−𝑈𝛾,∞(𝑐)𝑇 )] . (5.67)

By the limit condition (5.13) in the hypothesis of the lemma, there exists a divergent sequence

𝑇𝑛 such that lim𝑛→∞ 𝑒−𝑇𝑛E(𝑈 𝜋,𝑙

𝑇𝑛
) = 0. Combine this observation with lemma 5.4.1, the right hand

side of (5.67) also converges to 0 in 𝐿1 along {𝑇𝑛}. By passing to a fast convergent subsequence, also

denoted {𝑇𝑛}, it converges almost surely, too. Taking limit of (5.67) along this subsequence implies

that𝑈 𝜋,𝑙
𝑡 ≥ 𝑈𝛾,∞(𝑐)𝑡 almost surely.
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Part II. Show that𝑈 𝜋,𝑙
𝑡 ≤ 𝑈𝜙,∞(𝑐)𝑡 . Since the mapping 𝑦 → 𝑢𝜙 ◦ 𝑢−1𝛾 (𝑦) is increasing for 𝑦 < 0,

it is sufficient to show that 𝑌 𝜋,𝑙 ≜ 𝑢𝜙 ◦ 𝑢−1𝛾 (𝑈 𝜋,𝑙) ≤ 𝑌 𝜙,∞.

𝑑𝑌
𝜋,𝑙
𝑡 = −𝛿(𝑢𝜙 (𝑐𝑡 ) − 𝑌 𝜋,𝑙𝑡 )𝑑𝑡 + 𝑑𝑀1

𝑡

+ [(1 − 𝛾)𝑈 𝜋,𝑙
𝑡 ] 1

𝜃

[
𝑛𝑡 +

1

2
(𝛾 − 𝜙)

(
𝜋′Σ𝜋 + 𝜙2

(1 − 𝜙)2
∇𝑔′𝐴∇𝑔
𝑔2

+ 2𝜙

1 − 𝜙
∇𝑔′
𝑔

Υ′𝜋
)]
𝑑𝑡,

(5.68)

where the last term above is non-negative by assumption (5.14a). Let us denote this term by 𝑝𝑡 for

brevity. On the other hand, where 𝑀2 is a local martingale:

𝑑𝑌 𝜙,∞(𝑐)𝑡 = −𝛿(𝑢𝜙 (𝑐𝑡 ) − 𝑌 𝜙,∞(𝑐)𝑡 )𝑑𝑡 + 𝑑𝑀2
𝑡 . (5.69)

Following similar calculations to Part I, we have:

𝑑 (𝑒−𝛿𝑡 (𝑌 𝜙,∞(𝑐)𝑡 − 𝑌 𝜋,𝑙𝑡 )) = 𝑒−𝛿𝑡𝑑 (𝑀1
𝑡 − 𝑀2

𝑡 ) − 𝑒−𝛿𝑡 𝑝𝑡𝑑𝑡. (5.70)

Therefore, 𝑒−𝛿𝑡 (𝑌 𝜙,∞(𝑐) − 𝑌 𝜋,𝑙𝑡 ) is a local supermartingale. The same argument in Part I can be

applied here to show that 𝑌 𝜋,𝑙𝑡 ≤ 𝑌 𝜙,∞(𝑐)𝑡 almost surely for all 𝑡 ≥ 0.

Part III. The special case of bounded 𝑔. If the solution 𝑔 is bounded above and away from zero,

then there exists a constant 𝐾 for which |𝑈 𝜋,𝑙
𝑡 | ≤ 𝐾𝑐

1−𝛾
𝑡 . As 𝑐1−𝛾 is belongs to the product space

𝐿2(Ω × R+) endowed with the probability measure 𝑑P ⊗ 𝛿𝑒−𝛿𝑡𝑑𝑡, it is 𝐿1, too. Therefore:∫ ∞

0
𝛿𝑒−𝛿𝑡E[(𝑐𝑡 )1−𝛾]𝑑𝑡 = E

( ∫ ∞

0
𝛿𝑒−𝛿𝑡 (𝑐𝑡 )1−𝛾𝑑𝑡

)
< ∞. (5.71)

Thus for Lebesgue-almost all 𝑡 > 0, E(𝑒−𝛿 (𝑛𝑡) [𝑐𝑛𝑡 ]1−𝛾) → 0 as 𝑛 → ∞ (Theorem 1 of [45]).

Therefore, 𝑒−𝛿 (𝑛𝑡)E(𝑈 𝜋,𝑙
𝑛𝑡 ) vanishes as 𝑛→ ∞ for almost all 𝑡 > 0, too. The result for |𝑈 𝜋,𝑙 | 1𝜃 follows

a similar argument, utilising instead the integrability of (𝑐)1−𝜙.

□

Proposition 5.4.2. If 𝑉 is a continuous and adapted stochastic process and of class (DL) and {𝜏𝑛}𝑛≥0
is an increasing sequence of stopping time such that 𝜏𝑛 → ∞ almost surely, then:

E
(
𝑉𝑇∧𝜏𝑛 |F𝑡∧𝜏𝑛

)
→ E

(
𝑉𝑇 |F𝑡

)
, in 𝐿1. (5.72)
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Proof. We have the following 𝐿1 estimate:

∥E(𝑉𝑇∧𝜏𝑛 |F𝑡∧𝜏𝑛) − E(𝑉𝑇 |F𝑡 )∥𝐿1 ≤ ∥E(𝑉𝑇∧𝜏𝑛 |F𝑡∧𝜏𝑛) − E(𝑉𝑇 |F𝑡∧𝜏𝑛)∥𝐿1

+ ∥E(𝑉𝑇 |F𝑡∧𝜏𝑛) − E(𝑉𝑇 |F𝑡 )∥𝐿1

(5.73)

The first term above is bounded above by E(
��𝑉𝑇∧𝜏𝑛 −𝑉𝑇 ��). As 𝑛 → ∞, 𝑉𝑇∧𝜏𝑛 − 𝑉𝑡 → 0 almost

surely due to continuity. Thanks to the (DL) property, we can apply Dominated Convergence Theorem

to conclude that it converges in 𝐿1 too. The second term also vanishes, following from Martingale

Convergence Theorem.

□

5.4.2 Proof of Theorem 5.2.2

Proof. Denote𝑈 𝜋,𝑙
𝑡 ≜

(𝑋 𝜋,𝑙
𝑡 )1−𝛾
1−𝛾 𝑔(𝑌𝑡 )𝜙𝜃 . Following from the Epstein–Zin HJB equation (see equation

(4.8) and the discussion that follows), as (𝜋, 𝑙) is an arbitrary strategy,𝑈 𝜋,𝑙 is a super-solution of the

Epstein–Zin BSDE, in the sense that:

𝑑𝑈
𝜋,𝑙
𝑡 = − 𝑓 (𝑐𝑡 ,𝑈 𝜋,𝑙

𝑡 )𝑑𝑡 + 𝑍𝑈𝑡 𝑑𝐵𝑡 − 𝑝𝑡𝑑𝑡, 𝑡 ≥ 0; (5.74)

for some positive, progressive process 𝑝𝑡 and progressive 𝑍𝑈𝑡 . On the other hand, denote by 𝑉 𝜋,𝑙𝑡 the

value process associated with 𝑐 = 𝑙𝑋 𝜋,𝑙, which satisfies the BSDE:

𝑑𝑉
𝜋,𝑙
𝑡 = − 𝑓 (𝑐𝑡 , 𝑉 𝜋,𝑙𝑡 )𝑑𝑡 + 𝑍 𝜋,𝑙𝑡 𝑑𝐵𝑡 , 𝑡 ≥ 0. (5.75)

For a progressively measurable process {𝛼𝑡 , 𝑡 ≥ 0} which will be defined later, the dynamics of

𝑒
∫ 𝑡

0
𝛼𝑠𝑑𝑠 (𝑈𝑡 −𝑉 𝜋,𝑙𝑡 ) is:

𝑑
(
𝑒
∫ 𝑡

0
𝛼𝑠𝑑𝑠 (𝑈 𝜋,𝑙

𝑡 −𝑉 𝜋,𝑙𝑡 )
)
= −𝑒

∫ 𝑡

0
𝛼𝑠𝑑𝑠

[
𝑓 (𝑐𝑡 ,𝑈 𝜋,𝑙

𝑡 ) − 𝑓 (𝑐𝑡 , 𝑉 𝜋,𝑙𝑡 ) − 𝛼𝑡 (𝑈 𝜋,𝑙
𝑡 −𝑉 𝜋,𝑙𝑡 )

]
𝑑𝑡

+ 𝑒
∫ 𝑡

0
𝛼𝑠𝑑𝑠 (𝑍𝑈𝑡 − 𝑍 𝜋,𝑙𝑡 )𝑑𝐵𝑡 − 𝑒

∫ 𝑡

0
𝛼𝑠𝑑𝑠𝑝𝑡𝑑𝑡.

(5.76)

By setting 𝛼𝑡 =
𝑓 (𝑐𝑡 ,𝑈 𝜋,𝑙

𝑡 )− 𝑓 (𝑐𝑡 ,𝑉 𝜋,𝑙
𝑡 )

𝑈
𝜋,𝑙
𝑡 −𝑉 𝜋,𝑙

𝑡

I{𝑈 𝜋,𝑙
𝑡 ≠𝑉

𝜋,𝑙
𝑡 } + 𝑓 ′(𝑐𝑡 ,𝑈 𝜋,𝑙

𝑡 )I{𝑈 𝜋,𝑙
𝑡 =𝑉

𝜋,𝑙
𝑡 }, the first drift term

vanishes and thus 𝑒
∫ 𝑡

0
𝛼𝑠𝑑𝑠 (𝑈 𝜋,𝑙

𝑡 − 𝑉 𝜋,𝑙𝑡 ) is a local supermartingale. Let {𝜎𝑛}𝑛≥0 be a reducing
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sequence for the stochastic integral, then:

𝑈
𝜋,𝑙

0 −𝑉 𝜋,𝑙0 ≥ E
[
𝑒
∫ 𝑇∧𝜎𝑛

0
𝛼𝑠𝑑𝑠 (𝑈 𝜋,𝑙

𝑇∧𝜎𝑛
−𝑉 𝜋,𝑙

𝑇∧𝜎𝑛
)
]
. (5.77)

By Mean Value theorem, 𝛼𝑡 = 𝑓𝑣 (𝑐𝑡 , 𝜉) for some 𝜉 ∈ [𝑈 𝜋,𝑙
𝑡 ∧ 𝑉 𝜋,𝑙𝑡 ,𝑈

𝜋,𝑙
𝑡 ∨ 𝑉 𝜋,𝑙𝑡 ]. We recall that

𝜕𝑣 𝑓 (𝑐, 𝑣) ≤ −𝛿𝜃 uniformly (see discussion after Definition 2.7.2). Therefore, the exponential factor

in (5.77) is locally bounded. Moreover, 𝑈 𝜋,𝑙 and 𝑉 𝜋,𝑙 are of class (DL) since they are sandwiched

between𝑈𝛾,∞ and𝑈𝜙,∞, both of which are (DL) processes. Therefore, we can let 𝑛→ ∞ in (5.77) to

obtain:

𝑈
𝜋,𝑙
0 −𝑉 𝜋,𝑙0 ≥ E

(
𝑒
∫ 𝑇

0
𝛼𝑠𝑑𝑠 (𝑈 𝜋,𝑙

𝑇
−𝑉 𝜋,𝑙

𝑇
)
)
. (5.78)

We assert that the right hand side of (5.78) vanishes as 𝑇 → ∞. By considering the second

derivative of 𝑓 : 𝜕2𝑣𝑣 𝑓 (𝑐, 𝑣) = 𝛿(𝛾 − 𝜙)𝑐1−𝜙 [(1 − 𝛾)𝑣]−1−1/𝜃 , 𝜕 𝑓𝑣 is increasing in 𝑣 when 𝛾 > 𝜙.

Therefore, the application of Mean Value Theorem above implies 𝛼𝑡 ≤ 𝜕𝑣 𝑓 (𝑐𝑡 ,𝑈 𝜋,𝑙
𝑡 ∨ 𝑉 𝜋,𝑙𝑡 ) ≤

𝜕𝑣 𝑓 (𝑐𝑡 ,𝑈𝜙,∞(𝑐)𝑡 ). Then, by uniqueness criterion (2.21), we achieve the estimate:

E
(
𝑒
∫ 𝑇

0
𝛼𝑠𝑑𝑠

���𝑈 𝜋,𝑙

𝑇

���) ≤ E
(
𝑒
∫ 𝑇

0
𝜕𝑣 𝑓 (𝑐𝑠 ,𝑈 𝜙,∞ (𝑐)𝑠)𝑑𝑠

��𝑈𝛾,∞
𝑇

��) → 0 as 𝑇 → ∞. (5.79)

The same convergence to 0 holds for 𝑉 𝜋,𝑙 in place of𝑈 𝜋,𝑙. Letting 𝑇 diverge in (5.78), we obtain an

upper bound for permissible strategies:

𝑥1−𝛾

1 − 𝛾 𝑔(𝑦)
𝜙𝜃 = 𝑈

𝜋,𝑙

0 ≥ 𝑉 𝜋,𝑙0 . (5.80)

Lastly, if (𝜋∗, 𝑙∗) belongs to the permissible class, then 𝑉∗ = 𝑈 𝜋∗,𝑙∗ is verified as the Epstein–Zin

utility associated with 𝑐∗ = 𝑙∗𝑋 𝜋
∗,𝑙∗ , thanks to the Power Utility Bounds (5.11) in Definition 5.2.1. It

is trivial to confirm that 𝑉∗
0 = 𝑢𝛾 (𝑥)𝑔(𝑦)𝜙𝜃 , which attains the upper bound for P(𝑔) strategies.

□
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CHAPTER 6

EXAMPLES

6.1 Example I - Geometric Brownian Motion Price.

We will demonstrate the results developed in previous sections in certain market models. Similar to

Chapter 4, we also start with the Merton’s model as a baseline, where the factor process is constant.

This is subsumed as a degenerate case of our factor model by setting 𝑦 = 1, 𝑏(𝑦) ≡ 0 and 𝑎(𝑦) ≡ 0.

We also denote 𝑔, 𝑟, 𝜇, 𝜎 for 𝑔(1), 𝑟 (1), 𝜇(1) and 𝜎(1) respectively. Equation (4.11) reduces to:

HEZ(𝑦, 𝑔,∇𝑔, 𝐷2𝑔) = 𝛿𝜓𝑔−1 +
(
𝑟 + 𝜇2

2𝛾𝜎2

) (1 − 𝜙
𝜙

)
− 𝛿

𝜙
= 0. (6.1)

This yields directly the solution for the candidate optimal strategy:

𝜋∗ =
𝜇

𝛾𝜎2
, 𝑙∗ = 𝛿𝜓𝑔−1 =

𝛿 − 𝑟 (1 − 𝜙)
𝜙

− (1 − 𝜙)𝜇2
2𝛾𝜙𝜎2

. (6.2)

In this simple model, the admissibility and permissibility of the candidate optimal strategy can be

reduced to a set of inequalities. Moreover, this is the only case where we can derive a necessary and

sufficient condition for verification of the candidate solution.
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Proposition 6.1.1. We consider a market model with Geometric Brownian Motion price. Let (𝜋, 𝑙)

be a constant strategy. Then, for any exponent 𝑝 ∈ R, the resulting consumption process 𝑐 satisfies

E(
∫ ∞
0
𝛿𝑒−𝛿𝑡𝑐𝑝𝑠 𝑑𝑠) < ∞ if:

𝛿 − 𝑝(𝑟 − 𝑙) − 𝑝𝜋𝜇 − 𝑝2 − 𝑝
2

𝜋2𝜎2 > 0. (6.3)

Moreover, it satisfies the uniqueness criterion (2.21) if and only if:

𝛿 − (1 − 𝜙) (𝑟 − 𝑙) − (1 − 𝜙)𝜋𝜇 − (𝛾 − 1)𝛾 − 𝜙(𝛾 − 𝜙)
2

𝜋2𝜎2 > 0. (6.4)

As a corollary, the candidate optimal strategy (𝜋∗, 𝑙∗) defined by (6.2) belongs to A if and only if the

following system of inequalities hold:



𝛿 + 2(1 − 𝜙) (𝛿 − 𝑟)
𝜙

−
(1 − 𝜙
𝛾

) ( 1
𝜙
+ 1 − 2𝜙 + 𝛾

𝛾

) 𝜇2
𝜎2

> 0, (6.5a)

𝛿 + 2(𝜙 − 𝛾) (𝛿 − 𝑟)
𝜙

−
(𝜙 − 𝛾

𝛾

) ( 1
𝜙
+ 2𝜙 − 𝛾 − 1

𝛾

) 𝜇2
𝜎2

> 0, (6.5b)

𝛿 − (1 − 𝜙)𝑟
𝜙

−
[ (1 − 𝜙)

2𝛾𝜙
+ (𝛾 − 𝜙)2

2𝛾2

] 𝜇2
𝜎2

> 0. (6.5c)

A by-product of Proposition 6.1.1 is that it also shows the permissible set P(𝑔) is non-empty and

non-trivial. Let us recall from Lemma 5.2.1, when 𝑔 is bounded from above and below, a strategy

(𝜋, 𝑙) is permissible if it belongs to A and satisfies:

𝑛
𝜋,𝑙
𝑡 + 1

2
(𝛾 − 𝜙)𝜋2𝜎2 ≥ 0 for all 𝑡 ≥ 0. (6.6)

Provided that 𝜇 > 0, the left hand side above is strictly positive at (𝜋∗, 𝑙∗). Because of joint continuity

of the mapping (𝜋, 𝑙) → 𝑛𝜋,𝑙 + 1
2 (𝛾 − 𝜙)𝜋′Σ𝜋, there exists an open set O ⊆ R2 containing (𝜋∗, 𝑙∗),

such that for all (𝜋, 𝑙) ∈ O, relation (6.6) is satisfied. Similarly, if inequalities (6.5a), (6.5b) & (6.5c)

hold, then there exists an open neighbourhood around it, also denoted O, where such that all constant

strategies are permissible.

The verification result in this market model can be summarised as follows:
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Theorem 6.1.2. We consider a market model with Geometric Brownian Motion price and constant

factor process. Let (𝜋∗, 𝑙∗) be defined by (6.2). Then, if the system of inequalities (6.5a), (6.5b) &

(6.5c) hold, it belongs to the permissible class P(𝑔) and is optimal within it.

6.2 Example II - Models With Bounded Coefficients.

We build upon the general results obtained in previous sections by imposing boundedness additional

conditions on the coefficients and their derivatives. Roughly speaking, these additional assumptions

will enable us to derive uniform boundedness for the candidate optimal control (𝜋∗, 𝑙∗), which in turn

translates to more-or-less explicit conditions for its admissibility.

For convenience, let us briefly recall the market model here. The financial market model consists

of a riskless asset 𝑆0 and an 𝑛-tuple of risky assets 𝑆 = (𝑆1, ..., 𝑆𝑛). Their dynamics are given by the

following equations:

𝑑𝑆0𝑡 = 𝑆
0
𝑡 𝑟 (𝑌𝑡 )𝑑𝑡,

𝑑𝑆𝑡 = diag(𝑆𝑡 )
[
(𝑟 (𝑌𝑡 )1𝑛 + 𝜇(𝑌𝑡 ))𝑑𝑡 + 𝜎(𝑌𝑡 )𝑑𝑊𝜌

𝑡

]
,

𝑑𝑌𝑡 = 𝑏(𝑌𝑡 )𝑑𝑡 + 𝑎(𝑌𝑡 )𝑑𝑊𝑡 , 𝑌0 = 𝑦 ∈ 𝐸.

(6.7)

We refer the reader to chapter 4.1 for a detailed discussion of the smoothness assumptions of the

coefficients. In additional to the assumptions already made there, we also impose the following

additional assumptions for the remainder of section 6.2.

Assumption 6.2.1.

i. The domain 𝐸 is the real space R𝑘 ;

ii. (uniform ellipticity) there exists 𝜆 > 0 such that the matrices 𝐴 and Σ satisfy, for all 𝑦 ∈ 𝐸 and

𝜉 ∈ R𝑘 and 𝜂 ∈ R𝑛:

∑︁
𝑖 𝑗

𝐴𝑖 𝑗 (𝑥)𝜉𝑖𝜉 𝑗 ≥ 𝜆 |𝜉 |2,
∑︁
𝑖 𝑗

Σ𝑖 𝑗 (𝑥)𝜂𝑖𝜂 𝑗 ≥ 𝜆 |𝜂 |2. (6.8)
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iii. the coefficients are globally bounded, i.e.:

sup
𝑦∈𝐸

|𝑟 |, sup
𝑦∈𝐸
𝑖=1..𝑛

|𝜇𝑖 |, sup
𝑦∈𝐸
𝑖=1..𝑛

|𝑏𝑖 | < ∞;

sup
𝑦∈𝐸

𝑖, 𝑗=1..𝑘

��𝑎𝑖 𝑗 �� < ∞, sup
𝑦∈𝐸

𝑖, 𝑗=1..𝑛

��𝜎𝑖 𝑗 �� < ∞.
(6.9)

iv. the coefficients have bounded derivatives, i.e.:

sup
𝑦∈𝐸
𝑖, 𝑗,𝑙

��𝐷𝑙𝑎𝑖 𝑗 (𝑦)��, sup
𝑦∈𝐸
𝑖, 𝑗,𝑙

��𝐷𝑙𝜎𝑖 𝑗 (𝑦)��, sup
𝑦∈𝐸
𝑖

|𝐷𝑖𝑟 |, sup
𝑦∈𝐸
𝑖, 𝑗

��𝐷𝑖𝜇 𝑗 ��, sup
𝑦∈𝐸
𝑖, 𝑗

��𝐷𝑖𝑏 𝑗 �� < ∞, (6.10)

v. and finally, the interest rate is bounded away from 0: inf 𝑦∈𝐸 𝑟 (𝑦) > 0.

In what follows, we will derive bounds for the solution 𝑔 of the HJB equation and its derivative,

which will translate into uniform bounds for the optimal strategy (𝜋∗, 𝑙∗). Regarding bounding 𝑔, this

is achieved by making an appropriate choice for 𝑔1 and 𝑔2, the sub- and super-solution constructed in

Section 5.1. Theorem 5.1.2 asserts a solution 𝑔 sandwiched between 𝑔1 and 𝑔2. Therefore, if 𝑔2 is

bounded above and 𝑔1 away from zero, 𝑔 will inherit these boundedness properties. We will choose

𝑔1 and 𝑔2 in such a way that helps to ease the calculations. For 𝑔1, we choose the strategy where the

investor ceases his trading activities and consumes the earnings from interest rate. Specifically, we

set 𝜋𝑡 ≡ 0 and 𝑙𝑡 = 𝑟𝑡 , in which case, 𝑋𝑡 ≡ 𝑥. For 𝑔2, we simply set 𝜂𝑡 ≡ 0. Bounding 𝑔1 and 𝑔2 will

help to bound 𝑙∗. It is more challenging to prove the uniform boundedness of 𝜋∗. From the first order

condition (4.10) and the boundedness of model coefficients, it follows that uniform boundedness of 𝜋∗

would follow from that of the ratio ∇𝑔
𝑔

. This can be derived from interior gradient bounds of an elliptic

quasilinear PDE (cf. Chapter 15 of [25]). We state the result formally below.

Theorem 6.2.1. 1. Define 𝑔1(𝑦) and 𝑔2(𝑦) by:

𝑥1−𝛾

1 − 𝛾 𝑔
𝜙𝜃

1 (𝑦) = E
( ∫ ∞

0
𝛿𝑒−𝛿𝑡𝑢𝛾 (𝑟𝑡𝑥)𝑑𝑡

���𝑌0 = 𝑦) , (6.11a)

𝑔2(𝑦) = E
( ∫ ∞

0
𝑒
− 𝛿

𝜙
𝑡+ 1−𝜙

𝜙

∫ 𝑡

0
𝑟𝑠𝑑𝑠E

(
−

∫ ·

0
𝜇(𝜎′)−1𝑑𝑊𝜌

𝑠

) 𝜙−1
𝜙

𝑡

���𝑌0 = 𝑦) . (6.11b)

Suppose that the following conditions hold:

i. 𝛿
𝛾−1 − ∥𝜇′Σ−1𝜇 ∥∞

2 ≥ 0,
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ii. 𝛿
1−𝜙 − ∥𝑟 ∥∞ − ∥𝜇′Σ−1𝜇 ∥∞

2𝜙 > 0,

iii. 𝑔1 and 𝑔2 are continuous in R𝑘 .

Then, 𝑔1 and 𝑔2 are bounded in R𝑘 . Moreover, 𝑔1 is bounded away from zero. Consequently, a

solution 𝑔 exists for the equation (4.11) that is bounded above and away from zero. Moreover, it

satisfies sup𝑦∈R𝑘



 ∇𝑔 (𝑦)
𝑔 (𝑦)




 < ∞.

2. Let (𝜋∗, 𝑙∗) be defined by the first order condition (4.10). Then, 𝑙∗ is bounded above and away

from zero and ∥𝜋∗∥ is bounded above.

The next result concerns the admissibility of the candidate strategy (𝜋∗, 𝑙∗). We have chosen

to report this result for the special case where the factor process is one-dimensional. The chosen

dimensionality helps ease the notations in our calculations. The methods remain virtually unchanged

when 𝑌 has dimension greater than 1. From the point of view of applications, this does not present a

serious handicap, as most popular models of the financial market employs a one-dimensional factor

process.

Proposition 6.2.2. Suppose that assumption 6.2.1 and the conditions of Theorem 6.2.1 hold. Assume

additionally that 𝜙 > 1
2 . Let 𝑔1, 𝑔2 be defined by equation (6.11a) and (6.11b), respectively and 𝑔

be the solution to the HJB equation (4.11) sandwiched between 𝑔1 and 𝑔2, which is facilitated by

Theorem 5.1.2. Denote 𝑔 = inf 𝑦∈R𝑘 𝑔1(𝑦) and 𝑔 = sup𝑦∈R𝑘 𝑔2(𝑦). Let (𝜋∗, 𝑙∗) be defined by the first

order condition (4.10) and 𝑐∗ be the resulting consumption process. Then, 𝑐∗ belongs to the class C∞

if the following system of inequalities hold:



2(𝜙 − 𝛾) ( inf
𝑦∈𝐸

𝑟 − 𝛿𝜓𝑔−1) + (𝜙 − 𝛾) (2𝜙 − 1)
𝛾2

inf
𝑦

[ 𝜇2
𝜎2

]
+

����2𝜙𝜃 (𝜙 − 𝛾) (2𝜙 − 𝛾 − 1)𝜌
𝛾2

����


∇𝑔𝑔 



∞
∥ 𝜇𝑎
𝜎

∥∞

+
���� (𝜙 − 𝛾) (2𝜙 − 2𝛾 − 1)𝜙2𝜃2

𝛾2

����


∇𝑔𝑔 


2
∞
∥𝑎∥2∞ < 𝛿,

(6.12a)

2(1 − 𝜙) (sup
𝑦∈𝐸

𝑟 − 𝛿𝜓𝑔−1) + (1 − 𝜙) (2𝛾 − 2𝜙 + 1)
𝛾2

sup
𝑦

[ 𝜇2
𝜎2

]
+

����2𝜙(1 − 𝛾) (𝛾 + 1 − 2𝜙)𝜌
𝛾2

����


∇𝑔𝑔 



∞
∥ 𝜇𝑎
𝜎

∥∞ < 𝛿.

(6.12b)
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Moreover, 𝑐∗ satisfies the uniqueness criterion if the following additional inequality holds:

(1 − 𝜃)
[
𝛿 −

(𝑔
𝑔

) 𝜙−1
(𝛿 − 𝑅)

]
+ 𝛿𝜃 − 𝜃𝛿𝜓𝑔−1 − 𝛿 < 0, where

𝑅 = (1 − 𝜙) (sup
𝑦∈𝐸

𝑟 − 𝛿𝜓𝑔−1) + (1 − 𝜙) (2𝛾 − 𝜙)
2𝛾2




 𝜇2
𝜎2





∞
+

����𝜙(1 − 𝛾) (𝛾 − 𝜙)𝜌𝛾2

����


∇𝑔𝑔 



∞




𝜇𝑎
𝜎





∞
.

(6.13)

Remark 6.2.2. The inequality system attained in Proposition 6.2.2 subsumes that obtained in Proposi-

tion 6.1.1. If we set 𝑔 and all model coefficients as constant, ∇𝑔 = 0 and 𝑔 = 𝑔 = 𝑔, then inequalities

(6.12a),(6.12b) and (6.13) reduce to (6.5a), (6.5b) and (6.5c).

Remark 6.2.3. The bounds attained in Proposition 6.2.2 are very crude bounds. They key message

that we want to demonstrate here is that there exist verifiable inequalities with which we can confirm

our verification result, even if the inequalities are somewhat convoluted. This is demonstrated in the

next section, where we numerically solve the Epstein–Zin HJB equation in a non-trivial market model.

A refinement of these bounds can be a direction for potential future research.

Theorem 6.2.1 and Proposition 6.2.2 can be combined to yield the following verification result in a

model with bounded coefficients.

Theorem 6.2.3. Consider a one-dimensional market model satisfying assumption 6.2.1 and the

conditions of Theorem 6.2.1, which implies a solution 𝑔 for the Epstein–Zin HJB equation. Suppose

𝜙 > 1
2 and the system of inequalities (6.12a), (6.12b) & (6.13) hold, then the strategy (𝜋∗, 𝑙∗) defined

by the first order condition (4.10) belongs to the permissible class P(𝑔) and is optimal within this

class.

6.3 Numerical Implementation of A Linear Diffusion Model

6.3.1 Introduction & Market Model

When it comes to implementing the theory we have developed to market models, there are several

technical hurdles. The solution of the HJB equation (4.11) that we constructed in Section 5.1 is

furnished by an abstract subsequence. That is, it is an existential rather than constructive proof.

Therefore, estimates related to 𝑔 and its derivatives can be difficult to obtain. The problem of upper
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and lower bounds of 𝑔 can be mitigated by certain choices of 𝑔1 and 𝑔2 in equations (6.11a)-(6.11b).

However, boundedness of the ratio ∇𝑔
𝑔

is obtained via an abstract argument (cf. Theorem 15.5 [25])

and an explicit form is unlikely to be available.

In this section, we propose a truncation scheme for an adaptation of the linear diffusion factor

model, and solve it numerically. Estimates concerning the solution 𝑔, in particular the ratio ∇𝑔
𝑔

will

also be obtained numerically, too, and the inequalities of Proposition 6.2.2 will be verified based on

numerical estimates. In the model considered below, the risky asset’s volatility is constant but its return

depends on the factor process, which itself follows a mean-reverting Ornstein-Uhlenbeck dynamics.

This model specification has been studied by Kim & Ongberg [35], Wachter [62] in the time separable

utility settings, Campbell & Viceira [10] in a recursive utility, discrete time setting, and Xing [66] for

continuous time Epstein–Zin utility in finite horizon. The precise model specification is:

𝑑𝑆𝑡

𝑆𝑡
= (𝑟 (𝑌𝑡 ) + 𝜇(𝑌𝑡 ))𝑑𝑡 + 𝜎𝑑𝑊𝜌

𝑡 ,

𝑑𝑌𝑡 = 𝑏(𝑌𝑡 )𝑑𝑡 + 𝑎𝑑𝑊𝑡 ,
(6.14)

where 𝑦 ∈ R, 𝑟 (𝑦) = 𝑟0 + 𝑟1𝑦, 𝜇(𝑦) = 𝜎(𝜆0 + 𝜆1𝑦) and 𝑏(𝑦) = −𝑏0𝑦.

Remark 6.3.1. There is no loss of generality in defining 𝜆0 = 0, since the constant term of 𝜇(𝑦) can

be incorporated by the interest rate term. Specifically, we could define 𝑟 (𝑦) = (𝑟0 + 𝜎𝜆0) + 𝑟1𝑦. For

simplicity, however, we shall define 𝑟1 = 0. We use the numerical values from [4], [62] and [66]:

𝑟0 = 0.02, 𝑟1 = 0, 𝜎 = 0.0436, 𝜆 = 0, 𝜆1 = 1, 𝑏0 = 0.0226, 𝑎 = 0.0189. (6.15)

6.3.2 Numerical Output: Optimal Strategy

We present below the numerical output for the optimal strategy (𝜋∗, 𝑙∗) for different value combinations

of 𝛾 and 𝜙. The algorithm and method of truncation is reported in section 6.3.3. The resulting strategies

are reported in Figure 6.1 and Figure 6.2.

We first observe how this representative agent responds to the state of the economy. The general

shape of 𝜋∗ suggests that when 𝑦 > 0 (resp. 𝑦 < 0), the risky asset is performing better (resp.

worse) than inflation, and the agent enters a long (resp. short) position in order to benefit from that

discrepancy. Similarly, when 𝑦 diverges from 0 in either direction, the consumption-wealth ratio
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decreases. Therefore, whenever the economy departs from its neutral state, it represents an investment

opportunity and the agent trades his current consumption for the prospect of future earning.

Secondly, we observe how the candidate optimal strategies change in response to changes in the

preference parameters. With everything else being equal, for larger values of 𝛾, 𝜋∗ has flatter slope and

𝑙∗ increases. At a greater level of risk aversion, the agent reacts by reducing the proportion of wealth

invested in the risky asset, either in long or short position. The consumption-wealth ratio also goes

up, suggesting that he increases immediate consumption to counteract his dislike of late resolution of

uncertainty.

On the other hand, higher values of 𝜙 imply lower EIS. In this case, the agent becomes less patient.

He prefers immediate consumption instead of substituting it for investment opportunities. This is

portrayed in Figure 6.2, where consumption-wealth ratio is increasing in 𝜙. However, for differing

values of 𝜙 and everything else equal, the numerical result suggests that it exerts little effect, if at all,

on the investment-wealth ratio. This insensitivity of 𝜋∗ with respect to the EIS parameter is explicit in

the GBM model (cf. equation (6.2)). The same phenomenon has been observed by Xing [66], who

observed that in a finite-horizon Heston model, the optimal investment-wealth ratio is insensitive to

𝜙. Intuitively, this is consistent with the fact that investment decision is governed by risk aversion

𝛾. Since this phenomenon is observed across multiple different market models, we conjecture that

this might hold for a wider class of market models. However, as of the time of writing this thesis,

no result in this direction has been established, even in finite horizon. If this conjecture were true, it

would help to disentangle the effects of preference parameters on the investor’s behaviour: while both

risk aversion and EIS determine how much wealth is consumed immediately, only the risk aversion

parameter affects the allocation of the invested fund.
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Fig. 6.1 Optimal Strategies for different values of 𝛾. In all cases, 𝜙 = 2/3 and 𝛿 = 0.02.

Fig. 6.2 Optimal Strategies for different values of 𝜙. In all cases, 𝛾 = 5 and 𝛿 = 0.02.

6.3.3 Truncation of the HJB equation

It is more convenient to work with the exponential parametrisation of the value function. Let us recall

that, if 𝑔 is the solution to equation (4.11), then the transform 𝑢 = 𝜙𝜃 ln(𝑔) satisfies the equation:

GEZ(𝑦, 𝑢, 𝑢′, 𝑢′′) = 𝜙𝜃𝛿𝜓 exp
(
− 𝑢

𝜙𝜃

)
+ 𝑢′

(
𝑏 + 1 − 𝛾

𝛾

𝜇𝑎𝜌

𝜎

)
+ 1

2
(𝑢′)2𝑎2

(
1 + 1 − 𝛾

𝛾
𝜌2

)
+ 1

2
𝑎2𝑢′′

+
(
𝑟 + 𝛿

𝜙 − 1
+ 𝜇2

2𝛾𝜎2

)
(1 − 𝛾) = 0, 𝑦 ∈ R.

(6.16)
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The idea behind the truncation we propose is simple. We let the factor process starts at its long

term mean (0 in this case) and allow it to perturb in a small region around it. As it leaves its permitted

region, we immediately terminate its dynamics. More specifically, for a cut-off value 𝐾 > 0, let us

define the truncated coefficients:

𝜎 (𝐾 ) (𝑦) = 𝜎[(𝑦 ∧ 𝐾) ∨ (−𝐾)], 𝜇 (𝐾 ) (𝑦) = 𝜇[(𝑦 ∧ 𝐾) ∨ (−𝐾)],

𝑎 (𝐾 ) (𝑦) = 𝑎I{𝑦∈(−𝐾,𝐾 ) }, 𝑏 (𝐾 ) (𝑦) = 𝑏I{𝑦∈(−𝐾,𝐾 ) } .

(6.17)

The truncated HJB equation is obtained by replacing the model coefficients in (6.16) with their

truncated versions. Outside the permitted region, all derivative terms in equation (6.16) vanish, which

allows us to explicitly determine the following boundary data:

𝑢(𝐾) = 𝑢(−𝐾) = 𝜙𝜃 ln
(

𝜙𝛿𝜓

𝛿 − (1 − 𝜙)𝑟 − 1−𝜙
2𝛾

𝜇2 (𝐾 )
𝜎2

)
. (6.18)

By defining 𝑢1 = 𝑢 and 𝑢2 = 𝑢′, equation (6.16) can be reduced to the following first-order,

non-linear ODE for 𝑦 ∈ [−𝐾, 𝐾] with boundary data (6.18):

𝑢′1(𝑦) = 𝑢2,

𝑢′2(𝑦) = −2𝜙𝜃
𝑎2

𝛿𝜓 exp
(
− 𝑢1

𝜙𝜃

)
− 2𝑢2
𝑎2

(
𝑏(𝑦) + 1 − 𝛾

𝛾

𝜇𝑎𝜌

𝜎

)
− 1

2
𝑢22

(
1 + 1 − 𝛾

𝛾
𝜌2

)
− 2(1 − 𝛾)

𝑎2

(
𝑟 + 𝛿

𝜙 − 1
+ 𝜇2

2𝛾𝜎2

)
.

(6.19)

The solving of the above boundary value problem is implemented with the package deSolve in R

[61], which is built upon Fortran routines. There are a few points to note:

• The numerical stipulates initial conditions of 𝑢1 and 𝑢2 at 𝑦 = −𝐾 . However, the truncation only

provides boundary data for 𝑢1 at 𝑦 = −𝐾 and 𝑦 = 𝐾. We circumvent this problem as follows.

The numerics suggest that 𝑢1(𝐾) is increasing with respect to the initial value 𝑢2(−𝐾). We take

advantage of this by using an simple interval bisection algorithm to determine numerically the

appropriate value for 𝑢2(−𝐾), so that 𝑢1(𝐾) matches the terminal data in (6.18) We use a simple

interval bisection algorithm to determine the appropriate value for 𝑢2(0) so that 𝑢1(𝐾) matches

the terminal data in (6.18).
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Algorithm 6.3.1. An interval bisection algorithm/pseudo-code for solving equation of the type

𝑔(𝑥) = 0 for a continuous, increasing function 𝑔 is presented below.

Step 1. Initilisation: Select values 𝑎0 and 𝑏0 such that 𝑎0 < 𝑏0 and 𝑔(𝑎0) < 0 < 𝑔(𝑏0).

Step 2. Iterative step: At n-th iteration, we should have lower and upper bounds 𝑎𝑛 < 𝑏𝑛 such

that 𝑔(𝑎𝑛) < 0 < 𝑔(𝑏𝑛). If 𝑔( 𝑎𝑛+𝑏𝑛2 ) < 0, then let 𝑎𝑛+1 =
𝑎𝑛+𝑏𝑛

2 and 𝑏𝑛+1 = 𝑏𝑛. If

𝑔( 𝑎𝑛+𝑏𝑛2 ) > 0, let 𝑎𝑛+1 = 𝑎𝑛 and 𝑏𝑛+1 =
𝑎𝑛+𝑏𝑛

2 .

Step 3. If |𝑔( 𝑎𝑛+𝑏𝑛2 ) | < 𝜖 for a predetermined error level 𝜖 , stop the iteration and report 𝑎𝑛+𝑏𝑛2 as

the numerical solution.

• For the boundary data in (6.18) to be well-defined, the denominator within logarithm has to be

strictly positive. This gives an upper bound to the cut off value:

𝐾 <

√︄
2𝛾

𝜆21

( 𝛿

1 − 𝜙 − 𝑟
)
≜ Cut-off limit. (6.20)

We characterize 𝐾 by what we shall name the cut-off factor, defined as follows:

𝐾 = cut-off factor × cut-off limit. (6.21)

As the cut-off factor approaches 1, 𝐾 approaches its upper bound and the boundary data (6.18)

diverges. In particular, the algorithm becomes unstable and highly sensitive with respect to

𝑢2(−𝐾) as the cut-off factor grows.

6.3.4 Numerical Output: Truncation Level Selection

The numerical results reported below suggest that there exists a threshold for the cut-off factor, under

(resp. over) which the truncated model satisfies (resp. fails) inequalities (6.12a),(6.12b) and (6.13) of

Theorem 6.2.2. Let us collectively refer to these inequalities as the Sufficiency condition. Given a set

of model parameters, we let the cut-off factor increase in steps of 0.005 until it no longer passes the

sufficiency check. In section 6.3.3, for each configuration of 𝛾 and 𝜙, we select the maximal cut-off

factor using this procedure.

One way to assess the goodness of the truncation 𝐾 is by comparing it to the long-term standard

deviation of the factor process. In particular, the Ornstein-Uhlenbeck process 𝑌 has a Gaussian
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asymptotic distribution with zero mean and standard deviation 𝑎2

2𝑏0
. Therefore, we also report the ratio

𝐾/
√︁
𝑎2/2𝑏0 in our findings. In table 6.1, we report our findings under baseline parameters given in

(6.15) and preference parameters suggested in [3].

Table 6.1 Model parameters: 𝑟0 = 0.02, 𝑟1 = 0, 𝜎 = 0.0436, 𝜆 = 0, 𝜆1 = 1, 𝑏0 = 0.0226, 𝑎 = 0.0189.
Preference paramaters: 𝛾 = 5, 𝜙 = 2/3, 𝛿 = 0.02.

Cut Off Factor K 𝐾/
√︃

𝑎2

2𝑏0
𝑢2(−𝐾) Sufficiency

0.2000 0.1265 1.4229 2.3199 ✓
0.2050 0.1297 1.4584 2.4778 ✓
0.2100 0.1328 1.4940 2.6421 ✓
0.2150 0.1360 1.5296 2.8129 X

0.2200 0.1391 1.5652 2.9903 X

0.2250 0.1423 1.6007 3.1744 X

Table 6.2 Model parameters are the same as Table 6.1. Preference parameters: 𝛾 = 1.2, 𝜙 = 0.9 and
𝛿 = 0.02.

Cut Off Factor K 𝐾/
√︃

𝑎2

2𝑏0
𝑢2(−𝐾) Sufficiency

0.4300 0.2826 3.1792 8.9243 ✓
0.4350 0.2859 3.2162 9.3025 ✓
0.4400 0.2892 3.2531 9.6939 ✓
0.4450 0.2925 3.2901 10.0991 X

0.4500 0.2958 3.3271 10.5185 X

The uniqueness criterion is more forgiving for 𝛾 and 𝜙 both close to 1, in the sense that we can

now achieve a truncation over three times the asymptotic standard deviation of the factor process (see

Table 6.2). This makes intuitive sense, because as 𝛾 → 1+ and 𝜙 → 1−, we are approximating the

case of a myopic investor with logarithmic utility. We can also raise the ratio 𝐾/
√︃

𝑎2

2𝑏0
if the factor

process is more ’tempered’, i.e. when 𝑏 is large and 𝑎 is small. By halving the constant 𝑎, we achieve

a maximum ratio of approximately 2.561. If we additionally double 𝑏, this ratio only raises slightly to

2.817.
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6.4 Proofs for Section 6.1

Proof of Proposition 6.1.1. Given a constant strategy (𝜋, 𝑙), let us estimate the growth rate of 𝑐 For any

generic exponent 𝑝 ∈ R:

𝑐
𝑝
𝑡 = 𝛿𝑝𝜓𝑔−𝑝 (𝑋 𝜋,𝑐𝑡 ) 𝑝

= 𝛿𝑝𝜓𝑔−𝑝 exp
( ∫ 𝑡

0

[
𝑝(𝑟 − 𝑙) + 𝑝𝜋𝜇 + 𝑝2 − 𝑝

2
𝜋2𝜎2

]
𝑑𝑠

)
E
(
𝑝

∫ ·

0
𝜋𝜎

)
𝑡

(6.22)

Therefore, E(
∫ ∞
0
𝛿𝑒−𝛿 (𝑠−𝑡) (𝑐∗𝑡 ) 𝑝𝑑𝑡) is finite if and only if:

− 𝛿 + 𝑝(𝑟 − 𝑙) + 𝑝𝜋𝜇 + 𝑝2 − 𝑝
2

𝜋2𝜎2 < 0. (6.23)

Setting 𝑝 = 2(𝜙 − 𝛾) and 𝑝 = 2(1 − 𝜙) and substituting the formula of 𝜋∗ and 𝑙∗ (see equation

(6.2)) into (6.23), we obtain inequalities (6.5a) and (6.5b). Moreover, in the considered configuration

where 𝜙 < 1 < 𝛾, 𝐿2(𝛾−𝜙) (R+ × Ω) ⊆ 𝐿2(𝛾−1) (R+ × Ω), where the product space is endowed with

the probability measure 𝑑P ⊗ 𝛿𝑒−𝛿𝑡𝑑𝑡. Therefore, the integrability of (𝑐∗)2(𝜙−𝛾) also implies that of

(𝑐∗)2(1−𝛾) .

Next, we estimate the uniqueness criterion of 𝑐. For the convenience of the reader, let us recall the

uniquness criterion of a given consumption process 𝑐 ∈ C∞ (see equation (2.22)):

lim
𝑇→∞

E
[
𝑒𝛿 (1−𝜃)

∫ ∞
𝑇

(1−Φ𝑡 )𝑑𝑡
∫ ∞

𝑇

𝑒−𝛿𝑠𝑐1−𝛾𝑠 𝑑𝑠

]
= 0, where Φ𝑡 =

𝑐
1−𝜙
𝑡

E𝑡
( ∫ ∞
𝑡
𝛿𝑒−𝛿 (𝑠−𝑡)𝑐1−𝜙𝑡 𝑑𝑠

) . (6.24)

In the special case of constant (𝜋, 𝑙), the quantity Φ𝑡 in the uniqueness criterion can be computed

explicitly as follows:

Φ−1
𝑡 = E𝑡

[ ∫ ∞

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)
[ 𝑐𝑠
𝑐𝑡

]1−𝜙
𝑑𝑠

]
= E𝑡

{ ∫ ∞

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡) exp
( ∫ 𝑠

𝑡

[
(1 − 𝜙) (𝑟 − 𝑙) + (1 − 𝜙)𝜋𝜇 − 𝜙(1 − 𝜙)

2
𝜋2𝜎2

]
𝑑𝑠

)
E
(
𝑝

∫ ·

0
𝜋𝜎𝑑𝑊𝜌

)
𝑡 ,𝑠

}
= 𝛿

(
𝛿 − (1 − 𝜙) (𝑟 − 𝑙) − (1 − 𝜙)𝜋𝜇 + 𝜙(1 − 𝜙)

2
𝜋2𝜎2

)−1
.

(6.25)
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Therefore, the first exponential factor in the uniqueness criterion is:

𝑒𝛿 (1−𝜃)
∫ 𝑇

0
(1−Φ𝑡 )𝑑𝑡 = exp

( [
(𝛾 − 𝜙) (𝑟 − 𝑙) + (𝛾 − 𝜙)𝜋𝜇 − 𝜙(𝛾 − 𝜙)

2
𝜋2𝜎2

]
𝑇

)
. (6.26)

Moreover:

E
( ∫ ∞

𝑇

𝑒−𝛿𝑠𝑐1−𝛾𝑠 𝑑𝑠

)
=

∫ ∞

𝑇

𝛿𝜓 (1−𝛾)𝑔𝛾−1𝑒−𝛿𝑠 exp
( [
(1 − 𝛾) (𝑟 − 𝑙) + (1 − 𝛾)𝜋𝜇 + (𝛾 − 1)𝛾

2
𝜋2𝜎2

]
𝑠

)
𝑑𝑠

= 𝐾 exp
( [

− 𝛿 + (1 − 𝛾) (𝑟 − 𝑙) + (1 − 𝛾)𝜋𝜇 + (𝛾 − 1)𝛾
2

𝜋2𝜎2
]
𝑇

)
(6.27)

where 𝐾 = 𝛿𝜓 (1−𝛾)𝑔𝛾−1
∫ ∞
0

exp
(
[−𝛿 + (1− 𝛾) (𝑟 − 𝑙) + (1− 𝛾)𝜋𝜇 + (𝛾−1)𝛾

2 𝜋2𝜎2]𝑠
)
𝑑𝑠. Combining the

growth rates of (6.26) and (6.27), we conclude that the uniqueness criterion is satisfied if and only if:

− 𝛿 + (1 − 𝜙) (𝑟 − 𝑙) + (1 − 𝜙)𝜋𝜇 + (𝛾 − 1)𝛾 − 𝜙(𝛾 − 𝜙)
2

𝜋2𝜎2 < 0, (6.28)

which yields inequality (6.5c) for the candidate optimal control (𝜋∗, 𝑙∗).

6.5 Proofs for Section 6.2

6.5.1 Proof of Theorem 6.2.1

Part 1. Simplifying equation (6.11a) leads to 𝑔1(𝑦)𝜙𝜃 = E
( ∫ ∞

0
𝛿𝑒−𝛿𝑡𝑟1−𝛾𝑡 𝑑𝑡

���𝑌0 = 𝑦

)
, whence we

obtain the estimate inf 𝑦∈𝐸 𝑟 (𝑦)
1−𝜙
𝜙 ≤ 𝑔1(𝑦) ≤ ∥𝑟 ∥

1−𝜙
𝜙

∞ .

For 𝑔2(𝑦), the integrand can be simplified as follows:

exp
(
− 𝛿

𝜙
𝑡 + 1 − 𝜙

𝜙

∫ 𝑡

0
𝑟𝑠𝑑𝑠

)
E
(
−

∫ ·

0
𝜇(𝜎′)−1𝑑𝑊𝜌

𝑠

) 𝜙−1
𝜙

𝑡

= exp
(
− 𝛿

𝜙
𝑡 +

∫ 𝑡

0

(1 − 𝜙
𝜙

𝑟𝑠 +
1 − 𝜙
2𝜙2

𝜇Σ−1𝜇
)
𝑑𝑠

)
E
(𝜙 − 1

𝜙

∫ ·

0
𝜇′(𝜎′)−1𝑑𝑊𝜌

𝑠

)
𝑡
.

(6.29)
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We can exchange expectation and integral in (6.11b) and evaluate the upper bound directly. The

strengthened assumption ii. ensures that the integral below is finite:

𝑔2(𝑦) ≤
∫ ∞

0
exp

(
− 𝛿

𝜙
+ 1 − 𝜙

𝜙
∥𝑟 ∥∞ + 1 − 𝜙

2𝜙2
∥𝜇Σ−1𝜇∥∞

)
𝑑𝑠

=
𝜙

𝛿 − (1 − 𝜙)∥𝑟 ∥∞ − 1−𝜙
2𝜙 ∥𝜇Σ−1𝜇∥∞

.

(6.30)

Part 2. We work with the exponential parametrisation of the HJB equation. As remarked in he

proof of Theorem 5.1.2, the transform 𝑢 = 𝜙𝜃 ln(𝑔) satisfies equation (5.32). It is sufficient to show

that ∇𝑢 is bounded uniformly in 𝐸 . If it is, then so is ∇𝑔
𝑔

and consequently 𝜋∗. We can achieve this with

Theorem 15.5 [25], a result on the interior gradient bound of an elliptic PDE. Below, we will state and

prove a preliminary result which facilitates the necessary structural requirement for applying Theorem

15.5 [25], and then an abbreviated version of this Theorem which is sufficient for our purpose.

Proposition 6.5.1. Define the mapping 𝐵(𝑦, 𝑧, 𝑝) : 𝐸 × R × R𝑘 → R by, where all model coefficients

have argument 𝑦:

𝐵(𝑦, 𝑧, 𝑝) = 𝜙𝜃𝛿𝜓𝑒−
𝑧
𝜙𝜃 + 𝑝′

(
𝑏 + 1 − 𝛾

𝛾
Υ′Σ−1𝜇

)
+ 1

2
𝑝′

(
𝐴 + 1 − 𝛾

𝛾
Υ′Σ−1Υ

)
𝑝

+
(
𝑟 + 𝛿

𝜙 − 1
+ 𝜇

′Σ−1𝜇

2𝛾

)
(1 − 𝛾).

(6.31)

Moreover, define the differential operators: 𝜕𝑖 ≜ 𝐷 𝑝𝑖 , 𝛿 ≜
∑
𝑖 𝑝𝑖𝜕𝑖 and 𝛿 ≜ 𝐷𝑧 + |𝑝 |−2 ∑

𝑖 𝑝𝑖𝐷𝑦𝑖 .

Denote also by 𝜆 and Λ the minimum and maximum eigenvalue of 𝐴, respectively. Then, under

assumption 6.2.1, the quasilinear PDE operator:

GEZ(𝑦, 𝑢,∇𝑢, 𝐷2𝑢 |𝜙, 𝛾) = 1

2

∑︁
𝑖 𝑗

𝐴𝑖 𝑗 (𝑦)𝐷𝑖 𝑗𝑢 + 𝐵(𝑦, 𝑢,∇𝑢) (6.32)

satisfies the following sets of structural conditions for 𝜗 ∈ (0, 1):

Λ, (𝛿 + 1)𝑎𝑖 𝑗 , 𝛿𝑎𝑖 𝑗 , |𝑝 |𝜗𝜕𝑘𝑎𝑖 𝑗 = 𝑂 (𝜆); (6.33a)

𝐵, |𝑝 |𝜗𝜕𝑖𝐵, 𝛿𝐵, 𝛿𝐵 = 𝑂 (𝜆 |𝑝 |2). (6.33b)
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Proof. The first set of structural conditions (6.33a) follow straightforwardly from the fact that 𝜆

is bounded away from zero, as assumed in 6.2.1, and that 𝑎𝑖 𝑗 and its partial derivatives are bounded

uniformly. In particular, we note that 𝜕𝑘𝑎𝑖 𝑗 ≡ 0.

The second set of structural conditions (6.33b) follows from the quadratic structure of 𝐵 with

respect to 𝑝 and the boundedness of the model coefficients and their derivatives.

□

Theorem 6.5.2. Let 𝑢 ∈ 𝐶2(𝐸) be a solution to the equation (5.32) and Ω be a subdomain of 𝐸 .

Under assumption 6.2.1, the following gradient bound for 𝑢 holds:

|𝐷𝑢(𝑦) | ≤ 𝐶 (1 + dist(𝑦, 𝜕Ω)− 1
𝜗 ), 𝑦 ∈ Ω, (6.34)

where𝐶 depends on the quantities of in the structural conditions and sup𝑦∈Ω |𝑢(𝑦) | only. As a corollary,

|𝐷𝑢(𝑦) | is bounded uniformly.

Proof. In proposition 6.5.1, we have furnished sufficient regularity to apply Theorem 15.5 of [25],

which immediately yields (6.34). For 𝑧 ∈ R𝑘 and 𝑑 > 0, let us define 𝐵𝑑 (𝑧) as the open balls centred

around 𝑧 with respect to the Euclidean norm: {𝑦 ∈ R𝑘 , ∥𝑦 − 𝑧∥ < 𝑑}. For any point 𝑦 ∈ R𝑘 , we

consider 𝑛 sufficiently large so that 𝑦 ∈ 𝐵𝑛 (0). We consider 𝑢 as the solution of (5.32) in the larger

domain 𝐵𝑛+1(0). By construction, 𝐵1/2(𝑦) ⊆ 𝐵𝑛+1(0). Combine this and inequality (6.34), we attain

|𝐷𝑢(𝑦) | ≤ 𝐶 (1 + (1/2)−1/𝜗), which concludes the result.

□

6.5.2 Proof of Proposition 6.2.2.

Part I. Integrability. Using the same argument as in Part I of the proof of Proposition 6.1.1, to verify

the membership of 𝑐∗ = 𝑙∗𝑋 𝜋
∗,𝑙∗ in C∞, it is sufficient to show that 𝑐∗ ∈ 𝐿 𝑝 (R+ ×Ω) for 𝑝 = 2(1 − 𝜙)

and 2(𝜙−𝛾). Since 𝑙∗ is bounded above and away from zero, it is equivalent to confirm the integrability
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of 𝑋∗
𝑡 . For a generic exponent 𝑝, the form of (𝑋∗

𝑡 ) 𝑝 can be written as:

(𝑋∗
𝑡 ) 𝑝 = exp

( ∫ 𝑡

0

(
𝑝(𝑟 − 𝑙∗) + 𝑝(𝜋∗)𝜇 + 𝑝2 − 𝑝

2
(𝜋∗)2𝜎2)𝑑𝑠)E (

𝑝

∫ ·

0
𝜋∗𝜎

)
𝑡

= exp
( ∫ 𝑡

0

[
𝑝(𝑟 − 𝑙∗) +

[ 𝑝
𝛾
+ 𝑝2 − 𝑝

2𝛾2

]
𝜇Σ−1𝜇 + 𝜙𝜃

𝛾

(
𝑝 + 𝑝2 − 𝑝

𝛾

) ∇𝑔′
𝑔

Υ′Σ−1𝜇

+ (𝑝2 − 𝑝)𝜙2𝜃2
2𝛾2

∇𝑔′
𝑔

Υ′Σ−1Υ
∇𝑔
𝑔

]
𝑑𝑠

)
E
(
𝑝

∫ ·

0
𝜋∗𝜎

)
𝑡
.

(6.35)

For 𝑝 = 2(𝜙 − 𝛾) < 0:

(𝑋∗
𝑡 )2(𝜙−𝛾) = exp

( ∫ 𝑡

0

[
2(𝜙 − 𝛾) (𝑟 − 𝑙∗) + (𝜙 − 𝛾) (2𝜙 − 1)

𝛾2
𝜇2

𝜎2

+ 2𝜙𝜃 (𝜙 − 𝛾) (2𝜙 − 𝛾 − 1)
𝛾2

𝑔′

𝑔

𝜇𝑎𝜌

𝜎
+ (𝜙 − 𝛾) (2𝜙 − 2𝛾 − 1)𝜙2𝜃2

𝛾2

(𝑔′
𝑔

)2
𝑎2𝜌2

]
𝑑𝑠

)
.

× E
(
2(𝜙 − 𝛾)

∫ ·

0
𝜋∗𝜎

)
𝑡
.

(6.36)

The specification 𝜙 < 1 < 𝛾 is not sufficient to determine the sign of the (𝜙−𝛾) (2𝜙−1)
𝛾2

𝜇2

𝜎2 term.

In the hypothesis of the theorem, we assumed that 𝜙 > 1
2 , which is consistent with the empirically

relevant values of 𝜙. In this case:

(𝑋∗
𝑡 )2(𝜙−𝛾) ≤ exp

({
2(𝜙 − 𝛾) ( inf

𝑦∈𝐸
𝑟 − 𝛿𝜓𝑔−1) + (𝜙 − 𝛾) (2𝜙 − 1)

𝛾2
inf
𝑦

[ 𝜇2
𝜎2

]
+

����2𝜙𝜃 (𝜙 − 𝛾) (2𝜙 − 𝛾 − 1)𝜌
𝛾2

����


𝑔′𝑔 



∞
∥ 𝜇𝑎
𝜎

∥∞

+
���� (𝜙 − 𝛾) (2𝜙 − 2𝛾 − 1)𝜙2𝜃2

𝛾2

����


𝑔′𝑔 


2
∞
∥𝑎∥2∞

}
𝑡

)
× E

(
2(𝜙 − 𝛾)

∫ ·

0
𝜋∗𝜎

)
𝑡
.

(6.37)

For 𝑝 = 2(1 − 𝜙) > 0: The form of the optimal wealth process is:

(𝑋∗
𝑡 )2(1−𝜙) = exp

( ∫ 𝑡

0
2(1 − 𝜙) (𝑟 − 𝑙∗) + (1 − 𝜙) (2𝛾 − 2𝜙 + 1)

𝛾2
𝜇2

𝜎2

+ 2𝜙(1 − 𝛾) (𝛾 + 1 − 2𝜙)
𝛾2

𝑔′

𝑔

𝜇𝑎𝜌

𝜎
+ 𝜙

2(1 − 𝛾)2(1 − 2𝜙)
𝛾2(1 − 𝜙)

(𝑔′
𝑔

)2
𝑎2𝜌2

)
E
(
2(1 − 𝜙)

∫ ·

0
𝜋∗𝜎

)
𝑡
.

(6.38)
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Again, the specification 𝜙 < 1 < 𝛾 is not sufficient to determine the sign of the quadratic term in
∇𝑔
𝑔

in the above equation. It is negative under the extra assumption 𝜙 > 1
2 , though. Thus:

(𝑋∗
𝑡 )2(1−𝜙) ≤ exp

({
2(1 − 𝜙) (sup

𝑦∈𝐸
𝑟 − 𝛿𝜓𝑔−1) + (1 − 𝜙) (2𝛾 − 2𝜙 + 1)

𝛾2
sup
𝑦

[ 𝜇2
𝜎2

]
+

����2𝜙(1 − 𝛾) (𝛾 + 1 − 2𝜙)𝜌
𝛾2

����


𝑔′𝑔 



∞
∥ 𝜇𝑎
𝜎

∥∞
}
𝑡

)
E
(
2(1 − 𝜙)

∫ ·

0
𝜋∗𝜎

)
𝑡
.

(6.39)

For both exponents, 𝑝 = 2(𝜙 − 𝛾) and 𝑝 = 2(1 − 𝜙), the growth rate of (𝑋∗
𝑡 ) 𝑝 take the form of

𝑒𝑅𝑡𝑀𝑡 , where 𝑅 ∈ R and 𝑀 is a martingale. Consequently, by taking expectation through the Lebesgue

integral, E(
∫ ∞
0
𝛿𝑒−𝛿𝑡 (𝑋∗) 𝑝𝑡 𝑑𝑡) =

∫ ∞
0
𝛿𝑒 (−𝛿+𝑅)𝑡𝑑𝑡, which is finite when 𝑅 < 𝛿. By replacing 𝑅 with

the appropriate growth rates obtained in (6.37) & (6.39), we attain inequalities (6.12a) and (6.12b).

Part II. Uniqueness. We recall that, for 𝑐∗ to satisfy the uniqueness criterion, we need to verify the

limit condition:

lim
𝑇→∞

𝑒−𝛿𝜃𝑇 E
[
𝑒𝛿 (1−𝜃)

∫ 𝑇

0
−Φ𝑠𝑑𝑠

∫ ∞

𝑇

𝛿𝑒−𝛿𝑠 (𝑐∗𝑠)1−𝛾𝑑𝑠
]
= 0, where

Φ𝑡 = E𝑡

( ∫ ∞

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)
[ 𝑐∗𝑠
𝑐∗𝑡

]1−𝜙)−1
.

(6.40)

Firstly, we begin by estimating Φ𝑡 = (E𝑡 [
∫ ∞
𝑡
𝛿𝑒−𝛿 (𝑠−𝑡) ( 𝑐

∗
𝑠

𝑐∗𝑡
)1−𝜙𝑑𝑠])−1. Under assumption 6.2.1, it

is possible to bound the ratio ( 𝑐
∗
𝑠

𝑐∗𝑡
)1−𝜙 from above with exponential growth rate, as follows:

[ 𝑐∗𝑠
𝑐∗𝑡

]1−𝜙
=

(𝑔(𝑌𝑠)−1𝑋∗
𝑠 )1−𝜙

(𝑔(𝑌𝑡 )−1𝑋∗
𝑡 )1−𝜙

≤
[𝑔
𝑔

]1−𝜙
exp

( ∫ 𝑠

𝑡

[
(1 − 𝜙) (sup

𝑦∈𝐸
𝑟 − 𝑙∗) + (1 − 𝜙) (2𝛾 − 𝜙)

2𝛾2
𝜇2

𝜎2
+ 𝜙(1 − 𝛾) (𝛾 − 𝜙)

𝛾2
𝑔′

𝑔

𝜇𝑎𝜌

𝜎

− 𝜙3(1 − 𝛾)2
2(1 − 𝜙)𝛾2

(𝑔′
𝑔

)2
𝑎2𝜌2

]
𝑑𝑢

)
E
( ∫ ·

0
(1 − 𝜙)𝜋∗𝜎𝑑𝑊𝜌

𝑢

)
𝑡 ,𝑠

≤
[𝑔
𝑔

]1−𝜙
exp

( ∫ 𝑠

𝑡

[
(1 − 𝜙) (sup

𝑦∈𝐸
𝑟 − 𝛿𝜓𝑔−1) + (1 − 𝜙) (2𝛾 − 𝜙)

2𝛾2




 𝜇2
𝜎2





∞

+
����𝜙(1 − 𝛾) (𝛾 − 𝜙)𝜌𝛾2

����


𝑔′𝑔 



∞




𝜇𝑎
𝜎





∞

]
𝑑𝑢

)
E
( ∫ ·

0
(1 − 𝜙)𝜋∗𝜎𝑑𝑊𝜌

𝑢

)
𝑡 ,𝑠
.

(6.41)
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Let 𝑅 be the constant defined in the statement of the theorem (equation (6.13)), then E𝑡 ( [𝑐∗𝑠/𝑐∗𝑡 ]1−𝜙) ≤[ 𝑔
𝑔

]1−𝜙
exp

(
𝑅(𝑠 − 𝑡)

)
. This gives a deterministic bound for Φ:

Φ−1
𝑡 = E𝑡

( ∫ ∞

𝑡

𝛿𝑒−𝛿 (𝑠−𝑡)
[ 𝑐∗𝑠
𝑐∗𝑡

]1−𝜙
𝑑𝑠

)
≤

[𝑔
𝑔

]1−𝜙 𝛿

𝛿 − 𝑅 . (6.42)

Secondly, we shall now estimate the integral involving (𝑐∗)1−𝛾 in the uniqueness criterion. By

substituting the relation ln(𝑔(𝑌𝑡 )) − ln(𝑔(𝑦)) =
∫ 𝑡
0

( ∇𝑔′𝑏
𝑔

+ tr(𝐴𝐷2𝑔)
2𝑔 − ∇𝑔′𝐴∇𝑔

2𝑔2

)
𝑑𝑠 +

∫ 𝑡
0

∇𝑔′𝑎
𝑔
𝑑𝑊𝑠 into

the form of 𝑋∗ in equation (6.35), we have:

(𝑋∗
𝑡 )1−𝛾 = 𝑥1−𝛾

[ 𝑔(𝑦)
𝑔(𝑌𝑡 )

] 𝜙𝜃
exp

(
𝜃

∫ 𝑡

0
(𝛿 − 𝛿𝜓𝑔(𝑌𝑠)−1)𝑑𝑠

)
× E

(
(1 − 𝛾)

∫ 𝑡

0
(𝜋∗) ′𝜎𝑑𝑊𝜌

𝑠 + 𝜙𝜃
∫ 𝑡

0

∇𝑔′𝑎
𝑔

𝑑𝑊𝑠

)
𝑡
.

(6.43)

This allows for the following estimate for 𝑐∗, where 𝐾 is a generic constant that may change

between lines:

E
( ∫ ∞

𝑇

𝑒−𝛿𝑡 (𝑐∗𝑡 )1−𝛾𝑑𝑡
)
≤ 𝐾E

( ∫ ∞

𝑇

𝑒−𝛿𝑡 (𝑋∗
𝑡 )1−𝛾𝑑𝑡

)
≤ 𝐾

∫ ∞

0
𝑒
−𝛿𝑡+𝛿𝜃𝑡−𝜃 𝛿𝜓𝑔−1𝑡

𝑑𝑡

= 𝐾𝑒
−(𝛿−𝛿𝜃+𝜃 𝛿𝜓𝑔−1)𝑇

∫ ∞

0
𝑒
−(𝛿−𝛿𝜃+𝜃 𝛿𝜓𝑔−1)𝑡

𝑑𝑡

(6.44)

The final estimate for the uniqueness criterion is attained by combining estimates (6.42) and (6.44):

E
(
𝑒𝛿 (1−𝜃)

∫ 𝑇

0
(1−Φ𝑡 )𝑑𝑡

∫ ∞

𝑇

𝛿𝑒−𝛿𝑠 (𝑐∗𝑠)1−𝛾𝑑𝑠
)

≤ exp
(
𝛿(1 − 𝜃)

[ 𝛿 − (𝑔/𝑔)𝜙−1(𝛿 − 𝑅)
𝛿

]
𝑇

)
E
( ∫ ∞

𝑇

𝛿𝑒−𝛿𝑠 (𝑐∗𝑠)1−𝛾𝑑𝑠
)

≤ 𝐾 exp
(
(1 − 𝜃) [𝛿 − (𝑔/𝑔)𝜙−1(𝛿 − 𝑅)]𝑇

)
exp

(
− (𝛿 − 𝛿𝜃 + 𝜃𝛿𝜓𝑔−1)𝑇

)
,

(6.45)

which vanishes at infinity if the relation (6.13) holds.

□
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