

The London School of Economics and Political Science

Essays on the Economics of Conflict

Tillman Hönig

A thesis submitted to the Department of Economics of the London School of
Economics and Political Science for the degree of Doctor of Philosophy

London, May 2021

Declaration

I certify that the thesis I have presented for examination for the PhD degree of the London School of Economics and Political Science is solely my own work.

The copyright of this thesis rests with the author. Quotation from it is permitted, provided that full acknowledgement is made. In accordance with the Regulations, I have deposited an electronic copy of it in LSE Theses Online held by the British Library of Political and Economic Science and have granted permission for my thesis to be made available for public reference. Otherwise, this thesis may not be reproduced without my prior written consent.

I warrant that this authorisation does not, to the best of my belief, infringe the rights of any third party.

I declare that my thesis consists of approximately 32,900 words.

Statement of Inclusion of Previous Work

I confirm that chapter 4 is a revised version of previous work I submitted for obtaining a Master of Research degree from the London School of Economics and Political Science in June 2017.

Acknowledgements

First and foremost, I am extremely grateful to my supervisor Tim Besley for his immensely valuable guidance, support and patience with all the research I worked on. I am also deeply indebted to Gharad Bryan and Daniel Sturm who were close advisors for my research projects and sacrificed a lot of their time to support me, in particular during the intense final year. I enjoyed the countless intellectually stimulating conversations I had with all of them and benefited greatly from their inspiring mentorship.

Many other academics in the department and beyond gave me helpful feedback and ideas that shaped my research. I thank in particular Oriana Bandiera, Robin Burgess, Maitreesh Ghatak, Rocco Macchiavello, Rachael Meager, Gerard Padró i Miquel, Leonard Wantchekon and Stephane Wolton.

I am also very grateful to my PhD colleagues and friends Nicolas Chanut, Alexandre Desbuquois, Nicola Fontana, Jay Lee, Gabriel Leite-Mariente, Will Parker, Derek Pillay, Chen Qiu, Bhargavi Sakthivel, Martina Zanella and Céline Zipfel. I benefited not only greatly from their valuable comments but also thoroughly enjoyed sharing many moments on the whole PhD journey together. Noémie Chomet and Musa Kpaka helped me a lot in understanding Sierra Leone as a country better and provided constant encouragement.

I would like to thank the professional services team in our department for providing their helping hand with many organizational matters, in particular Lubala Chibwe, Sharon Peate, Lakmini Staskus, Emma Taverner and Mark Wilbor.

The UK Economic and Social Research Council and the German National Academic Foundation provided funding that enabled me to pursue the PhD. I gratefully acknowledge their financial support.

Last but not least, my profound gratitude goes to my family and friends who I owe a lot. I thank my parents for making my whole education possible. Many friends outside of academia were a great source of encouragement. I am particularly grateful to Lukas Falcke, Jörn George, Kai George, Dorian Henning and Leon Zehner who had a sympathetic ear for me and (hopefully) kept me sane during the most challenging moments of the PhD journey.

Abstract

This thesis explores the economic consequences of violent conflict in two African countries: Sierra Leone and Nigeria. The first chapter establishes that civil war in Sierra Leone has important local economic effects. Almost twenty years after the end of the war, greater conflict intensity in a chiefdom leads to a higher share of agricultural workers, fewer educated workers and lower income.

In order to explicitly account for general equilibrium effects such as selective migration in response to the war, the second chapter develops an economic geography model. The model sheds light on different mechanisms through which conflict affects *aggregate* income: Changes in education, firm productivity and individual productivity have both direct effects on income and indirect effects by changing the allocation of labor across sectors and locations. Changes in amenities also affect the spatial allocation of labor. I leverage the structure of the model along with observed income information and migration flows to identify firm productivities, amenities and average individual productivities. The model is used to perform counterfactual simulations. Aggregate income in Sierra Leone is estimated to be 32% lower today as a result of the civil war. Importantly, despite having received little attention in conflict research so far, firm productivity losses can explain most of the decrease. Selective migration in response to the war also seems to play an important role and implies that local reduced-form effects are misleading when trying to estimate aggregate effects.

The third chapter exploits a peace policy that the Nigerian government implemented in the Niger Delta region in 2009 to evaluate the effects of conflict reduction. I construct a synthetic control region from the states that are not part of the Niger Delta region and therefore unaffected by the policy as a within-country counterfactual to the Niger Delta region. I find that peace following the policy increased household expenditures by 19% four years later. Uncovering potential mechanisms behind this economic upturn, I find an increase in self-employment income by 67% and in education by 0.5 years of schooling. In line with the findings from Sierra Leone, these results highlight the important link between conflict and business activity.

Contents

1	General Introduction	10
2	The Legacy of Conflict: Local Effect Estimates from Sierra Leone	13
2.1	Introduction	13
2.2	The Civil War in Sierra Leone	16
2.3	Empirical Design	17
2.3.1	Data	17
2.3.2	Identification Strategy	19
2.4	Reduced-form Results	25
2.4.1	Main Results	25
2.4.2	Identification Tests and Robustness	30
2.5	Conclusion	31
3	The Legacy of Conflict: Aggregate Evidence from Sierra Leone	33
3.1	Introduction	33
3.2	Model Theory	38
3.2.1	Basic setup	39
3.2.2	Equilibrium and Conflict Impact	45
3.3	Model Estimation	50
3.3.1	Step 1: Estimating Productivity Dispersion θ	50
3.3.2	Step 2: Estimating Wage Rates w_d^S , Education Returns ϕ^S and Average Individual Productivities \overline{q}_{ec}	51
3.3.3	Step 3: Computing Labor Supply L_d^S and Firm Productivity A_d^S	52
3.3.4	Step 4: Estimating Amenities a_d and Migration Cost τ_{ecd}^S .	53
3.4	Estimation Results	55
3.4.1	Model Parameters and Validation	55

3.4.2	Conflict Effect on Parameters	60
3.5	Counterfactual Simulations	63
3.5.1	Main Results	65
3.5.2	Selective Migration	69
3.5.3	Limitations	71
3.6	Conclusion	73
4	The Impact of Peace: Evidence from Nigeria	75
4.1	Introduction	75
4.2	Context	79
4.3	Theoretical Considerations	81
4.4	Data	83
4.4.1	Data Sources	83
4.4.2	Relevant Measures	84
4.5	Empirical Design	86
4.5.1	The Synthetic Control Method	86
4.5.2	Interpretation and Identification	91
4.5.3	Differences with Other Approaches	93
4.6	Results	94
4.6.1	Conflict Reduction	94
4.6.2	Main Results on Economic Outcomes	96
4.7	Robustness	99
4.7.1	Difference-in-differences Estimation	99
4.7.2	Spillover Effects	101
4.8	Conclusion	103
References		106
Appendices		118
A	Tables	118
B	Figures	124
C	Proofs	130
D	Extensions	132
D.1	Trade Cost	132
D.2	Endogenous Education	132

E	Numerical Solution Algorithm	134
---	--	-----

List of Tables

2.1	Summary Statistics	20
2.2	Correlation of Instrument with Pre-war Observables	24
2.3	First Stage	25
2.4	Expenditures per Worker	26
2.5	Sector Allocation	28
2.6	Years of Schooling	29
2.7	Primary Education	29
3.1	Model Parameters	56
3.2	Effect of Conflict on Model Parameters	62
3.3	Population Change and Conflict	71
4.1	Synthetic Control Creation Results	89
4.2	Main Results for the Synthetic Control Method (SCM)	96
4.3	Difference-in-differences Estimation (DID) Results	100
4.4	Migration Flows	103
A2	Further Results: Education	118
A1	Sector Allocation including Unemployed Individuals	119
A3	Robustness: Exclusion of Chiefdoms with Direct Border	120
A4	Robustness: Household Expenditures	120
A5	Robustness: Expenditures per Adult Equivalent	121
A6	Robustness: Exclusion of Freetown	122
A7	Conflict Reduction in the Niger Delta Region	123

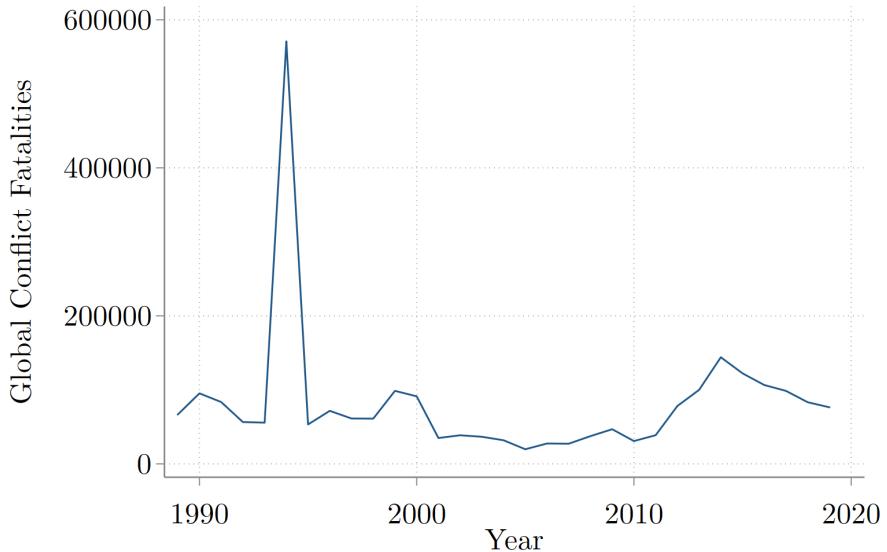
List of Figures

1.1	Global Conflict	11
2.1	Variation of the Victimization Index	21
3.1	Worker Selection	44
3.2	Key Mechanisms in the Model	48
3.3	Migration Cost and Distance	57
3.4	Correlates with Firm-level Productivities	58
3.5	Correlates with Average Individual Productivities	59
3.6	Correlates with Amenities	60
3.7	Aggregate Income Effect	66
3.8	Aggregate Agricultural Employment Effect	67
3.9	Aggregate Income Effect in Simulations and Reduced Form	70
4.1	Niger Delta and Synthetic Control Region	88
4.2	Synthetic Control Creation Results for Further Characteristics	90
4.3	Conflict Levels Before and After 2009	95
4.4	Education Results	96
4.5	Self-employment Income Results	97
4.6	Household Expenditures Results	98
B1	Map of Sierra Leone in West Africa	124
B2	ISIC Sector Classification	124
B3	First Stage Within Districts	125
B4	Sector Shift	125
B5	Distribution of Labor Unit Wage Rates	126
B6	Distribution of Firm-level Productivities	126
B7	Distribution of Average Individual Productivities	127
B8	Distribution of Amenities	127

B9	Parameter Changes	128
B10	Aggregate Income Changes by Chiefdom	128
B11	Robustness to Different σ Values: Aggregate Income	129
B12	Robustness to Different σ Values: Employment in Agriculture . .	129

Chapter 1

General Introduction


Pax Europaea – the period of relative peace in Europe since World War II – is considered one of the most fundamental drivers of economic prosperity on the continent for the last 70 years or so. By contrast, many countries in the world have experienced periods of war and civil conflict since the second half of the 20th century began. While the world has made enormous progress in reducing extreme poverty in the last few decades, the lack of a downward trend in global conflict is particularly concerning. Figure 1.1 displays the total number of conflict fatalities over the last three decades. With the exception of two peaks in the mid-1990s (Rwandan genocide) and more recently in 2014 (Syrian civil war), the global death toll has stayed fairly constant in this time period. As almost a million people have died in violent conflict in the last decade alone, it remains one of the largest global challenges.

What is more, extreme poverty is increasingly concentrated in countries affected by conflict. By 2030, two third of the world's extreme poor are projected to live in fragile and conflict-affected situations ([World Bank, 2020](#)). While studying the causes and consequences of conflict has become a major field of inquiry within economics over the last few decades,¹ there is still a major gap in our understanding of the impact of war on the economy in two dimensions. First, while a growing literature documents the economic impact of conflict on affected places, we have little evidence on the *aggregate* consequences in the long run. Investigating the aggregate impact on an economy requires taking into account general equilibrium effects. By its very nature, within-country analyses that compares more and less

¹[Blattman & Miguel \(2010\)](#) provide an excellent review of the literature.

Figure 1.1: Global Conflict

Note – Data based on the UCDP GED version 20.1 that covers 1989-2019 ([Pettersson & Öberg, 2020](#)).

conflict affected places fail to account for such effects. Second, analyses that investigate mechanisms of how conflict affects livelihoods have largely focused on the human capital channel. In particular, structural labor market and firm activity effects have received little attention. This is not surprising given how commonly education and health outcomes are observed in surveys while there is often a lack of data on firms.

This thesis makes advances on both fronts, making use of the 1991-2001 civil war in Sierra Leone and more recent regional conflict in Nigeria as case studies. I make three core contributions. First, I develop and estimate a general equilibrium model of the Sierra Leonean economy and the impact of conflict on it in chapter 3. A counterfactual simulation of the economy without war allows me to estimate the aggregate impact of conflict since the simulation takes account of both direct effects of conflict on places where it took place and general equilibrium changes. The analysis finds that aggregate income today is 32% lower as a result of the civil war that ended about twenty years ago.

Second, this thesis explores mechanisms that have received little attention so far but turn out to be of major importance both in Sierra Leone and Nigeria. Chapter 2 shows that the sector of employment changes significantly with increased conflict in Sierra Leone. Workers are much more likely to work in agriculture in locations that are more heavily affected by the civil war. This motivates

including firm productivities in each sector in the model developed in chapter 3. Although not directly observed in the data, these parameters can be estimated using the structure of the model and income information. Indeed, I find that a loss in non-agricultural firm productivity is the most important driver of changes in the economy-wide sector composition of workers and the aggregate income reduction. They almost entirely drive the employment sector result and account for more than half of the aggregate income loss. While most papers have focused on human capital effects as a channel of how conflict affects the economy, they only play a limited role for changes in the sector composition and aggregate income in Sierra Leone. The analysis of the benefits of peace in Nigeria in chapter 4 yields similar findings. Household expenditures increase by 19% and a revitalization of business activity seems to be a key driver behind this improvement in livelihoods. In particular, self-employment income increases by 67%.

The third contribution is methodological. Chapter 3 introduces general equilibrium modelling to the study of conflict. To the best of my knowledge, it is the first piece of analysis that develops and estimates a general equilibrium model to understand the aggregate consequences of civil war. The model also allows for the estimation of mechanisms that are not directly observed in the data. Going beyond Sierra Leone, such a structure may find application in other contexts where conflict has been studied to analyse aggregate effects and unobserved mechanisms. Indeed, the large majority of papers that study the consequences of conflict has been reduced-form in nature and exploited within-country variation in conflict intensity, typically in difference-in-differences or instrumental variable identification strategies, to estimate local effects of conflict. While [Abadie & Gardeazabal \(2003\)](#) have introduced the synthetic control method, this has only been used to estimate effects of conflict on overall economic performance so far. Chapter 4 expands its application to the study of two important drivers of a conflict impact on the economy: education and self-employment income.

This thesis is organized in three chapters. Chapter 2 and 3 shed light on the long-run consequences of the 1991-2001 civil war in Sierra Leone. Chapter 2 provides estimates of the local impact of conflict on affected places and sets the stage for the general equilibrium analysis in chapter 3. Chapter 4 turns to Nigeria and exploits a peace policy that was implemented by the Nigerian government in the Niger Delta region in 2009 to estimate the effects of conflict reduction.

Chapter 2

The Legacy of Conflict: Local Effect Estimates from Sierra Leone

2.1 Introduction

This chapter is a reduced-form analysis of the long-run local effects of civil war in Sierra Leone. The analysis shows that conflict alters the economy in major ways and motivates key elements of the general equilibrium model I develop and estimate in the next chapter. Drawing mainly on household survey data from 2018, I observe workers' income, sector choice and education in Sierra Leone. I measure conflict intensity as the average victimization households experience within a chiefdom, the lowest level of government in the country.¹

Since conflict is not randomly placed I use distance to the Liberian border as an instrument. This is motivated by the fact that Liberian rebels were heavily involved in the Sierra Leonean civil war, in particular in the beginning. In fact, Liberia experienced a civil war that started just a few years earlier. As a result of Liberian involvement, distance to the border strongly predicts conflict intensity. At the same time, chiefdoms close to and far from the border within small districts can plausibly be assumed to be comparable before the war. A number of checks lends credibility to this assumption. First, trade with Liberia only played a negligible role before the war. Second, distance to the Liberian border is largely uncorrelated with a range of pre-war observable chiefdom characteristics. Third, geographic characteristics that matter for economic outcomes and could vary

¹There are 159 chiefdoms in the country of which sufficient information is observed in 151 that are used in the analysis.

with distance to the border are held constant in the analysis. These include distance to a major urban center as well as properties of the land such as slope, texture and drainage. Fourth, a placebo test on education effects for people above school age when the war started yields a zero result which speaks in favor of the instrument's orthogonality with pre-war outcomes. Therefore, the instrument creates exogenous variation of conflict within districts that can be exploited to identify the local effect of civil war.

A key result emerging from the reduced-form analysis is that workers living in chiefdoms hit by conflict experience substantial income losses, even twenty years after the end of the war. Moving from chiefdoms with relatively low conflict intensity (at the 25th percentile of the conflict distribution) to chiefdoms with relatively high conflict intensity (at the 75th percentile of the conflict distribution) leads to a drop in income by 38%. A look at the sector allocation of workers reveals an important driver behind this income loss: reverse structural transformation. Workers are 23 percentage points more likely to work in the lower paying agricultural sector in chiefdoms that experience high conflict intensity relative to those with low conflict intensity.

The education results are similarly strong. Moving from low to high conflict intensity reduces the average education obtained by 1.2 years of schooling. To the extent that human capital affects income, this directly contributes to the income drop. At the same time, education obtained and sector choice are highly correlated in Sierra Leone. Therefore, the education loss can also be a driver of the sector shift observed.

The results are robust to three types of checks. First, including different sets of controls does not significantly change the results. Second, outcome variables can be measured in different ways with similar results. Third, the sample can be restricted in various ways to check whether specific chiefdoms drive the results with potential implications for the empirical validity of the approach. For example, if trade with Liberia posed a threat to the validity of the instrument, we would expect to see different results when excluding chiefdoms that directly border Liberia since trade effects are arguably particularly important for those chiefdoms. However, the main results hold up to all sample restrictions carried out.

The reduced-form analysis establishes important economic differences between

more and less affected chiefdoms, even almost twenty years after the end of the war. Even though the estimates, in particular on income, represent large effects, they are broadly in line with other studies that have considered the relationship between conflict and economic performance (e.g. [Abadie & Gardeazabal, 2003](#); [Blattman & Annan, 2010](#); [Serneels & Verpoorten, 2015](#)). Yet, while the estimates show that there is important economic divergence between more and less affected areas by conflict, there are two important shortcomings of the results. First, these income differences do not necessarily reflect *aggregate* income effects. In general equilibrium, people move. Therefore, spatial income differences capture both the direct effect of conflict and the reallocation of labor. Second, the analysis only allows us to look at mechanisms that are actually observed in the data, such as education. However, the magnitude of the income effect and the sector shift observed are unlikely only to be due to the education loss observed. Both these shortcomings are addressed in chapter 3 which develops a general equilibrium model that accounts for more mechanisms than education and allows for the estimation of aggregate effects.

The core contribution of this chapter is to set the stage for that analysis and shed light on a channel of the impact of conflict that has received little attention so far and motivates some key elements of the model developed in chapter 3: reverse structural transformation. Only few studies consider firm or sector allocation outcomes and these are typically short-run analyses ([Bozzoli et al., 2012](#); [Camacho & Rodriguez, 2013](#); [Collier & Duponchel, 2013](#)). Yet, I show that the link between conflict and the sector of employment in the long run is very strong in Sierra Leone. By contrast, the literature on human capital effects of conflicts is large.² While this chapter also demonstrates evidence on human capital losses, the other results suggest that the drivers and implications of a sector shift as a result of the war deserve more exploration.

The remainder of the chapter is organized as follows. Section 2.2 provides a brief overview of the Sierra Leonean civil war that motivates it as an empirical setting. Section 2.3 discusses the empirical design of this study and section 2.4 presents reduced-form results. Finally, section 2.5 concludes.

²Focusing on civil war and long-run outcomes at least 10 years after the end of war, these include [Akbulut-Yuksel \(2014\)](#); [Akresh & De Walque \(2011\)](#); [Galdo \(2013\)](#); [La Mattina \(2018\)](#); [Leon \(2012\)](#); [Saing & Kazianga \(2020\)](#).

2.2 The Civil War in Sierra Leone

Sierra Leone suffered an atrocious civil war between 1991 and 2002 that caused some 70,000 casualties, displacement of roughly half the population and left many people injured, maimed and raped (UNDP, 2006). While the war was extremely brutal, the country has experienced a long period of sustained peace since it ended in early 2002. This provides an ideal setting to investigate long-run effects of the war today.

The civil war started as an insurgency by the Revolutionary United Front (RUF) under Foday Sankoh in 1991 entering the country from Liberia in the southeastern part of the country.³ The RUF was a small rebel group at the onset of war with the political goal of overthrowing the ruling one-party regime, led by the All People's Congress (APC) party under Joseph Saidu Momoh (Richards, 1996). Their insurgency was supported by the National Patriotic Front for Liberia (NPFL) led by Charles Taylor and involved in the ongoing Liberian civil war. In fact, the RUF had started their fighting activities in Liberia along with the NPFL when the war broke out in the neighboring country in 1989. Foday Sankoh and Charles Taylor had met each other and worked and trained together before. The RUF remained mainly active and the fighting concentrated in the southern parts of Sierra Leone bordering Liberia between 1991 and 1995 until it eventually spread to other parts of the country. This involvement with Liberia means that distance to the Liberian border is highly predictive of conflict intensity and motivates its use as an instrumental variable.

As Richards (1996) argues, political grievances played an important role as a cause of the civil war. In particular young people were discontent with a patrimonial system in which a small group of patrons rules and decides on the allocation of opportunities and transfers arbitrarily. They felt disenfranchised and robbed of education and other opportunities. The RUF's ideological roots lied in an idea of egalitarianism which initially helped in recruiting disenfranchised youth. However, as knowledge of the atrocities committed by the group spread, recruitment by capture became more necessary and common.

One of the atrocious features of the Sierra Leonean civil war was the extreme degree of violence against civilians, in particular all the community looting opera-

³Figure B1 displays the location of Sierra Leone and Liberia in West Africa.

tions as well as the raping, killing and maiming that characterized the war. Quite tellingly, such operations were called “Operation Pay Yourself” or “Operation No Living Thing”. These acts of violence were not only committed by the RUF, but also by the Sierra Leonean Army (SLA) throughout the war, often by so-called “Sobels” who were soldiers by day and rebels by night, taking on an identity under which it was more legitimate and less consequential to engage in these activities. With such violent activities characterizing how households were affected by the war, Sierra Leone provides a unique data environment for the study of conflict. The Sierra Leonean Integrated Household Survey 2011 contains direct information on how households were victimized as a result of the war. This information can be used as a measure for conflict intensity that captures the effect of the civil war well.

The opportunistic behavior of fighters demonstrates that there was an element of “greed” to the civil war that also became increasingly prevalent in the illicit mining or smuggling of diamonds.⁴ The diamond wealth resulting from these activities helped funding the war and provided incentives to prolong it (Keen, 2005; Richards, 2004). Therefore, throughout the war, economic motives became increasingly important in the rebels’ decision to engage in fighting.

Another interesting feature is the lack of ethnic or religious divisions as a key driver of war, as Bellows & Miguel (2009) point out. No ethnic group appeared to be disproportionately victimized and there seems to be no evidence that violence against a particular civil community was more pronounced if the community and the fighting group have largely differing ethnicity.

2.3 Empirical Design

2.3.1 Data

The main source of data for this study is the Sierra Leonean Integrated Household Survey (IHS) 2011 and 2018 which are general representative individual-level surveys (Statistics Sierra Leone, 2018). I use detailed questions on economic activity in 2018 to construct the following outcome variables. First, as a proxy

⁴The literature on the causes of consequences broadly distinguishes between economic opportunism and political grievances – coined the “greed” and “grievances” routes to conflict in the seminal work by Collier & Hoeffler (2004).

for worker income, I use household expenditure information on food and non-food items and divide this by the number of working people in a household.⁵ The reason for using information on expenditures rather than income directly is that the expenditure data is much more complete and highly likely to be more reliable. It is recorded in weekly visits by enumerators during which households indicate the items they bought and at which price they did so. Such information is significantly easier to remember than providing information on different income sources over the past year in a setting where most workers are subsistence farmers or engage in small business activities without any bookkeeping.

Second, the main sector that individuals work in is constructed according to the ISIC classification (see Figure B2). For all main results, a simple binary distinction between agriculture and non-agriculture (manufacturing and services) is made.

Third, education outcomes are recorded directly. From information on completed grades, I use years of schooling and an indicator for having finished primary education.

Regarding conflict data, the 2011 survey contains a section with a number of questions on the impact of conflict on individuals and households that I make use of. As a conflict measure, I follow [Bellows & Miguel \(2009\)](#) in constructing a victimization index. This index is the share of “yes” answers to eight binary questions in the survey that cover how households were affected by the war along the following dimensions: (1) whether the household lost property or assets; (2) whether the house was burnt; (3) whether household members were killed; (4) whether relatives were killed; (5) whether household members lost limbs; (6) whether household members were molested or raped; (7) whether household members were displaced; (8) whether the war had any other effect on the household.⁶ Given that the extreme degree of violence against civilians was a feature of the Sierra Leonean civil war, a victimization index seems to be a sensible measure of the intensity of conflict.

For my analysis and in line with [Bellows & Miguel \(2009\)](#), I aggregate the

⁵The division by the number of workers is done to reflect worker income. However, all my IV analyses can be performed on related measures such as total household expenditures or expenditures per adult equivalent. All main findings go through in this robustness exercise as demonstrated in section 2.4.2.

⁶[Bellows & Miguel \(2009\)](#) use very similar questions in a survey carried out by the Institutional Reform and Capacity Building Project (IRCBP) to construct their victimization index.

household-level victimization experience at the chiefdom level to construct conflict measures at that level. For ease of interpretation, the measure is standardized. With five chiefdoms missing in the household survey 2018 and three different ones missing in the household survey 2011, I observe 150 chiefdoms in addition to the capital Freetown in 2018. Chiefdoms are the lowest level of administration. At the next higher level, Sierra Leone is administered in 14 districts, the level of my fixed effects in the empirical analysis. The aggregation and subsequent treatment of conflict at the chiefdom level serves to capture potentially large within-chiefdom spillovers of conflict.

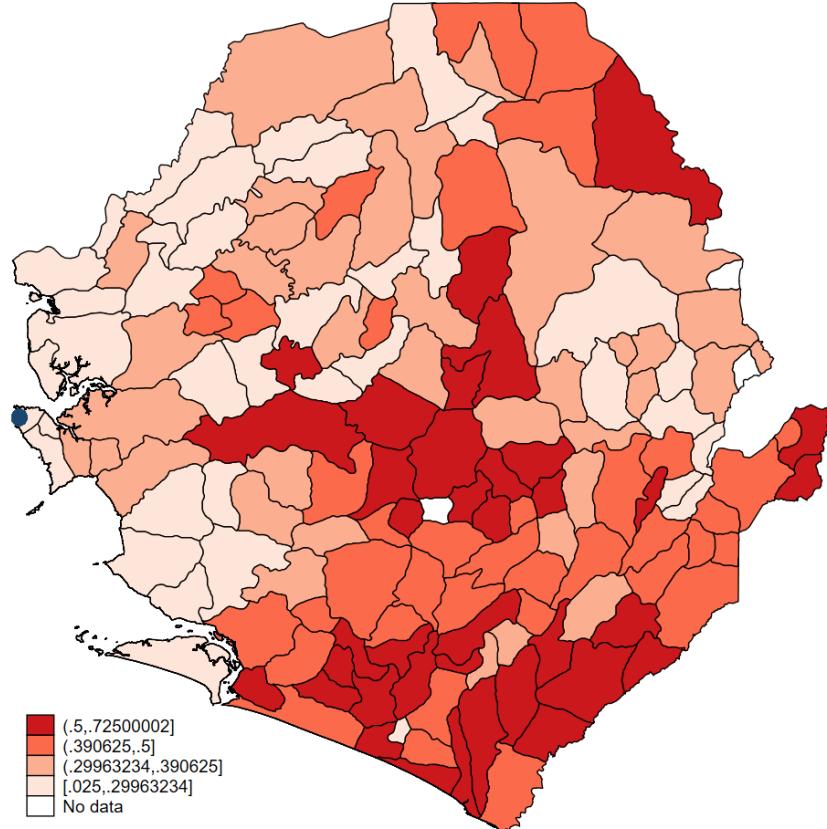
Furthermore, the 2018 survey contains detailed information on migration. In particular, the chiefdom of birth as well as the chiefdom of residence and the year of moving are recorded for each individual. This information is crucial when estimating the model. The estimation requires knowledge of both origin and destination for all individuals.

In addition to socio-economic control variables from the IHS data, I use data from [Glennerster et al. \(2013\)](#) for some land characteristics as controls and census data from 1963, 1985 and 2015.⁷ I also use geographic information to compute the distance of a chiefdom centroid from the Liberian border which serves as an instrumental variable in my analysis. In order to test whether this instrument correlates with pre-war characteristics, I draw on census data as well as data used in [Bellows & Miguel \(2009\)](#) and [Acemoglu et al. \(2014\)](#). They provide information on economic outcomes before the war, albeit partially incomplete, including education and expenditure in 1989 as well as historic tax and trade variables. Summary statistics for all variables used are provided in Table 2.1.

2.3.2 Identification Strategy

My main specification to estimate the effect of conflict on outcomes is an instrumental variable (IV) specification using the distance to the Liberian border as an instrument for conflict. Given the interlinkages between the civil wars in Liberia and Sierra Leone and the fact that fighting originated and concentrated in the border area for a long time, distance to the Liberian border is strongly correlated with conflict intensity. As Figure 2.1 depicts clearly, while fighting spread to most

⁷I only have aggregate information at the chiefdom level for the 1963 and 1985 census and excerpts for the 2015 wave of the census.


Table 2.1: Summary Statistics

	N	Mean	Std. Dev.
<i>Individual Level</i>			
Female dummy	21407	0.54	0.50
Household size	21407	7.27	3.75
Age	21407	36.5	16.3
Religion is Christianity	21407	0.23	0.42
Religion is Islam	21407	0.76	0.42
Years of schooling	21396	5.19	5.44
Finished primary school	21397	0.47	0.50
<i>Worker Level</i>			
Main sector is agriculture	14482	0.54	0.50
Main sector is manufacturing	14482	0.090	0.29
Main sector is services	14482	0.37	0.48
20 day expenditures per worker (in USD)	14355	60.3	61.9
<i>Chiefdom Level</i>			
Conflict	163	0.21	1.01
Distance to border	166	114.9	80.0
Vector ruggedness measure, (3x3 window)	166	0.37	0.081
Average Elevation (km)	166	0.17	0.15
% of chiefdom w/ slope between 2-8%	166	58.5	14.8
% of chiefdom w/ slope between 8-30%	166	19.8	15.3
% of chiefdom w/ slope between 30-45%	166	3.31	5.04
School attendance 1989	76	0.28	0.20
School enrollment 1989	76	0.30	0.20
Log p.c. expend. 1989	76	7.94	0.68
Log pop. density 1985	159	3.79	0.78
19th Cen. trading route	154	20.0	19.7
Mining permission 1930	154	0.18	0.38
Hut Tax/Area 1900	89	0.94	1.42
Hut Tax/Pop. 1900	88	0.028	0.030
Population 1963	153	13712.0	9961.6

Note – The individual sample consists of all individuals in 2018 who were born before the end of the war in 2001. The worker sample is restricted to the working population. All monetary values are in 2018 USD and the top 1% is truncated.

parts of the country throughout the war, the highest conflict levels are experienced by areas bordering Liberia in the Southeast and in the corridor between the border and the capital Freetown in the very West towards which the rebels progressed.

Figure 2.1: Variation of the Victimization Index

Note – Standardized victimization index for all chiefdoms of Sierra Leone. The south-eastern border on the map is the border with Liberia. The blue dot in the western part of the country marks the capital Freetown. Missing conflict information in three chiefdoms.

My IV-2SLS specification is characterized by the following equations:

$$y_{ic} = \alpha_{district} + \beta \widehat{conflict}_c + \mathbf{X}_{ic}'\mu + \epsilon_{ic} \quad (\text{Second Stage}) \quad (2.1)$$

$$\widehat{conflict}_c = \hat{\alpha}_{district}^{FS} + \hat{\gamma}^{FS} distance_c + \mathbf{X}_{ic}'\hat{\mu}^{FS} \quad (\text{First Stage}) \quad (2.2)$$

where y_{ic} is the outcome of interest for individual i in chiefdom c , $distance_c$ is the instrument and $\alpha_{district}$ capture district-level fixed effects. The vector of controls includes a set of socio-economic controls as well as characteristics of the land. Importantly, in all specifications, I control for distance to one of the five largest cities in Sierra Leone (Freetown, Bo, Kenema, Koidu, Makeni). These five cities are well known as urban and regional economic centres and the only large cities of the

country with a population exceeding 100,000 inhabitants. Controlling for distance to these cities ensures that any potential mechanical relationship between border distance and distance to large cities does not act as a confounder. The underlying reason for a potentially confounding relationship is that economic development can have a highly geographic component. Growth in an area can subsequently lead to economic development around that area (Felkner & Townsend, 2011).⁸

While different regions within Sierra Leone differ not only in their distance to the Liberian border but also in terms of other characteristics that are correlated with economic outcomes, performing the analysis within districts is crucial to satisfy the exclusion restriction. The identification assumption is therefore that, within districts and conditional on the set of control variables used, distance to the Liberian border only affects outcomes after the war through inducing variation in conflict, but not through any other channel.

One potential concern with this assumption is that distance to the Liberian border is naturally related to trade. Even within the same district, chiefdoms that are located closer to the border may have been more active in trading before the war and therefore at a different level of economic development. This would lead to a violation of the identification assumption. However, I argue that such a violation is unlikely to play a major role for three reasons.

First, trade with Liberia is only of negligible size relative to the total trade volumes of Sierra Leone before the war. Exports to Liberia as a share of total exports are less than 0.1% before the war.⁹ The main trading partners of Sierra Leone are Europe and the US and trade with these partners would not go through Sierra Leone but rather through their main port in Freetown. Distance to Freetown as one of the major urban centres is controlled for in all specifications.

Second, I provide a test against the hypothesis of trade as a major confounder by excluding chiefdoms directly bordering Liberia and repeating my main IV analysis on worker income as an outcome. To the extent that chiefdoms with a direct border would especially benefit from trade, this should lead to results that

⁸In addition, the full set of controls contains the following variables. Socio-economic controls are household head's sex, age, age squared, religion as well as household size. The land characteristics are a vector ruggedness measure, the average elevation in a chiefdom, the share of chiefdom terrain with slope between 2-8%, 8-30% and 30-45%, the share of chiefdom terrain with coarse texture and with medium texture, as well as the share of chiefdom soil with poor drainage and with excessive drainage.

⁹Information from the UN Comtrade Database (United Nations, 2020). The most recent year with information on trade in Sierra Leone before the war started is 1986.

differ from the main results on the full sample. However, the results with the restricted sample are very comparable to the main results.

Third, districts are small. Sierra Leone as a whole country is as large in area as the Netherlands and Belgium together and subdivided into 13 rural districts, excluding Freetown. The average rural district's area is therefore only 5000 square kilometers. While location likely matters for trade at the country level, it is implausible that it would play an important role within these small districts.

Another concern pertaining in particular to the sector allocation as an outcome of interest may be differences in the quality of the land that are related to the border distance. This is the main reason behind including a variety of land characteristics as a set of control variables in the analysis. In fact, the inclusion of these controls leads to stronger IV results. Therefore, choosing the sparser and more precisely estimated specification without land controls as my preferred specification is a conservative approach which means that the results can be interpreted as a lower bound on the true effect.

Further to these considerations, I also use pre-war characteristics drawing on data used in [Bellows & Miguel \(2009\)](#) and [Acemoglu et al. \(2014\)](#) to test whether distance to the Liberian border has predictive power for economic outcomes before the war within districts. The results are shown in Table 2.2. Distance to the border within districts has no significant predictive power (at the conventional 5% level) for any outcome. In fact, only one outcome has a significant coefficient at the 10% level which can easily arise by chance when testing nine outcomes. Given these results on observable variables, it seems very unlikely that the instrument is related to post-war outcomes through other unobservable channels.

Considering the first stage, results of a formal test are shown in Table 2.3.¹⁰ I include Kleibergen-Paap F statistics that allow for the cluster structure of my error term and are still comfortably above the conventional threshold of 10.¹¹ In addition to these F statistics, I follow [Andrews et al. \(2019\)](#) and report weak-IV robust p -values based on the Anderson-Rubin statistic. For all main results, they are close to the classic p -values and do not change conclusions about inference.

For the analysis of education outcomes, the fact that education is usually

¹⁰Figure B3 graphically displays the correlation between my standardized conflict measure and distance to the Liberian border within districts.

¹¹Note that Kleibergen-Paap F statistics are equivalent to Montiel-Pflueger F statistics in the weak IV test in the just identified case with one endogenous regressor and one instrument.

Table 2.2: Correlation of Instrument with Pre-war Observables

	(1)	(2)	(3)
Distance to border	School attendance 1989 0.00140 (0.00119)	School enrollment 1989 0.00128 (0.00126)	Log p.c. expend. 1989 0.00673 (0.00659)
N	76	76	76
R^2	0.511	0.438	0.326
District FE	✓	✓	✓
	(4)	(5)	(6)
Distance to border	Log pop. density 1985 0.00401* (0.00235)	19th Cen. trading route -0.0652 (0.0492)	Mining permission 1930 0.00109 (0.00128)
N	159	154	154
R^2	0.280	0.571	0.208
District FE	✓	✓	✓
	(7)	(8)	(9)
Distance to border	Hut Tax/Area 1900 0.000485 (0.00629)	Hut Tax/Pop. 1900 0.0000284 (0.000140)	Population 1963 0.954 (24.33)
N	89	88	153
R^2	0.332	0.416	0.199
District FE	✓	✓	✓

Note – All specifications include district fixed effect. Clustered standard errors at the chiefdom level are reported in parentheses. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

Table 2.3: First Stage

	(1) Conflict	(2) Conflict	(3) Conflict	(4) Conflict
Distance to border (km)	-0.0128*** (0.00264)	-0.0114*** (0.00292)	-0.0120*** (0.00272)	-0.0104*** (0.00292)
Sample	Individuals	Individuals	Workers	Workers
N	21407	21407	14482	14482
R^2	0.738	0.748	0.714	0.728
F (KP)	23.59	15.34	19.47	12.67
Socio-econ. Controls	✓	✓	✓	✓
Land Controls		✓		✓
District FE	✓	✓	✓	✓

Note – Clustered standard errors at the chiefdom level in parentheses. Kleibergen-Paap cluster-robust F statistic reported. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

obtained during a particular age provides me with additional cohort variation that I can exploit for a placebo test of the identification assumption. I split the sample and run the IV analysis separately for people who were at school age when the war started and those who were already old enough to have finished their education. I use a generous definition of school age with age 30 at the beginning of the war as a cut-off point.¹² If the instruments does not satisfy the exclusion restriction in a way that is relevant for education as an outcome, this should become visible in the analysis of the old cohort. I show that conflict only affects people at school age but there is no effect for the old cohort. This lends further support to the exogeneity of the instrument.

2.4 Reduced-form Results

2.4.1 Main Results

Table 2.4 demonstrates the results of an OLS regression and the IV specification for worker income, as proxied for by expenditures per worker, for different sets of control variables. The effect of conflict is large. Based on the more parsimonious specification in column (3), an additional standard variation of conflict intensity reduces income by 30% twenty years after the end of the war. This means that workers living in chiefdoms that are at the 75th percentile of the conflict distribution (high conflict intensity) have 38% lower income than households living in

¹²The results are robust to using different cut-off points, for example anyone aged 18 or older at the beginning of the war.

chiefdoms at the 25th percentile of the conflict distribution (low conflict intensity). The results suggest substantially lower livelihoods in more affected chiefdoms as a result of the war.

Table 2.4: Expenditures per Worker

	Log household expenditures per worker			
	(1)	(2)	(3)	(4)
Conflict	-0.0674* (0.0348)	-0.0797** (0.0358)	-0.306** (0.129)	-0.479** (0.187)
N	14355	14355	14355	14355
R ²	0.356	0.367	0.322	0.282
Estimation Method	OLS	OLS	IV	IV
First Stage F (KP)			19.33	12.64
AR p-value			0.012	0.001
Socio-econ. Controls	✓	✓	✓	✓
Land Controls		✓		✓
District FE	✓	✓	✓	✓

Note – Outcome variable: Log total expenditures per worker. Conflict standardized and instrumented with distance to border. Clustered standard errors at the chiefdom level in parentheses. Kleibergen-Paap cluster-robust F statistic and p-value for weak instrument robust Anderson-Rubin test of $H_0 : \beta = 0$ reported. Stars refer to standard t-tests. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

Two observations that apply to this and further results on economic outcomes are noteworthy. First, the specification including land controls (column 4) delivers a stronger result. This could be the case because of bias when not controlling for land characteristics of the chiefdoms. Considering the first stage results and the large size of the effect even without land controls, however, this could also plausibly reflect the strength of the instrument conditional on the whole set of socio-economic and land controls. The relevant F statistic drops from 19.33 to 12.64 when including land controls. In the spirit of a cautious interpretation of the results, I would therefore consider the specification without land controls as the more reliable one and take it as a more reasonable estimate of the effect of civil war.

Second, the IV results are stronger than the OLS results. The difference between IV and OLS results is consistent with a positive selection into conflict in the sense that conflict takes place in areas that are richer to begin with. In light of the fact that economic considerations played a key role in the rebels' decision to engage in conflict this is plausible.¹³ At the individual level, many

¹³In their analysis of Rwanda, [Justino & Verwimp \(2013\)](#) also find that richer households were targeted.

young people were easily recruited by the rebel movement because engagement in looting communities was economically more attractive than alternative ways to make a living. At the collective level, the rebel movement aimed at controlling and generating revenue from diamond mines as a source of income.¹⁴

A large sector shift in economic activity may be a key driver of these income effects. The results on the main sector of work are shown in Table 2.5 (and graphically displayed in Figure B4 for the preferred specification with socio-economic controls only). With a standard deviation increase in conflict intensity, workers are 18.5 percentage points more likely to work in agriculture and correspondingly less likely to engage in non-agricultural activities. This means that workers in high conflict chiefdoms (at the 75th percentile of the conflict distribution) are 23 percentage points more likely to work in agriculture than those in low conflict chiefdoms (25th percentile). The employment share in agriculture in the whole country is 55%. Such increases in areas experiencing more conflict constitute a large shift in the sector allocation. Both the manufacturing and services sector experience a loss of workers.¹⁵ Since pay in the agricultural sector is on average just above one third of what it is in the non-agricultural sector in Sierra Leone, a sector shift into agricultural work can be an important driving force of lower average income.¹⁶

To the extent that education and the sector of employment are correlated, human capital loss as a result of the war may be the reason for the sector shift. Indeed, the correlation between education and employment in agriculture is strong. While 68% of workers without primary school education are employed in agriculture, this share drops to 27% for workers who finished primary school.¹⁷ The estimation results of the effect of conflict on education are presented in Table 2.6 and 2.7. In the preferred specification in column (3), individuals are 10 percent-

¹⁴This may raise an endogeneity concern if the location of diamond mines at the beginning of the war is correlated with the instrument. Unfortunately, no information on the location of diamond mines in 1991 is available. Using information on their location in 2002 from [Bellows & Miguel \(2009\)](#), however, I can establish that the instrument is uncorrelated with distance to diamond mines in 2002. Furthermore, controlling for distance to diamond mines does not change any results in the IV analysis.

¹⁵This pattern of results holds up when we consider all individuals, including the unemployed, and not only workers. The results can be found in Table A1.

¹⁶In 2018, expenditures per worker in 20 days were on average 34 USD for agricultural workers and 91 USD for non-agricultural workers.

¹⁷This correlation can be the result of lower returns to education in agriculture. Differential returns by sector are a key part in the model that generates a correlation between education and sector choice. In line with the given correlation, the structural estimation of the model estimates returns to education in the non-agricultural sector to be substantially larger than returns in agriculture.

Table 2.5: Sector Allocation

		Work in Agriculture				Work in Non-agriculture			
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Conflict		0.0601** (0.0236)	0.0715*** (0.0237)	0.185** (0.0799)	0.312*** (0.111)	-0.0601** (0.0236)	-0.0715*** (0.0237)	-0.185** (0.0799)	-0.312*** (0.111)
N	14482	14482	14482	14482	14482	14482	14482	14482	14482
R^2	0.369	0.386	0.347	0.312	0.369	0.386	0.347	0.312	
Estimation Method	OLS	OLS	IV	IV	OLS	OLS	IV	IV	
First Stage F (KP)			19.47	12.67			19.47	12.67	
AR p -value			0.028	0.002			0.028	0.002	
Socio-econ. Controls	✓	✓	✓	✓	✓	✓	✓	✓	
Land Controls	✓	✓	✓	✓	✓	✓	✓	✓	
District FE	✓	✓	✓	✓	✓	✓	✓	✓	
		Work in Manufacturing				Work in Services			
		(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Conflict	-0.0152* (0.00907)	-0.0140 (0.00873)	-0.0712*** (0.0236)	-0.0979*** (0.0362)	-0.0449** (0.0203)	-0.0575*** (0.0197)	-0.113* (0.0638)	-0.214** (0.0832)	
N	14482	14482	14482	14482	14482	14482	14482	14482	14482
R^2	0.0740	0.0769	0.0604	0.0494	0.297	0.314	0.290	0.280	
Estimation Method	OLS	OLS	IV	IV	OLS	OLS	IV	IV	
First Stage F (KP)			19.47	12.67			19.47	12.67	
AR p -value			0.002	0.001			0.090	0.006	
Socio-econ. Controls	✓	✓	✓	✓	✓	✓	✓	✓	
Land Controls	✓	✓	✓	✓	✓	✓	✓	✓	
District FE	✓	✓	✓	✓	✓	✓	✓	✓	

Note – Outcome variables: Indicator variables for sector of work. Conflict standardized and instrumented with distance to border. Clustered standard errors at the chiefdom level in parentheses. Kleibergen-Paap cluster-robust F -statistic and p -value for weak instrument robust Anderson-Rubin test of $H_0 : \beta = 0$ reported. Stars refer to standard t -tests. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

age points less likely to finish primary school as conflict intensity increases by one standard deviation; or correspondingly 13 percentage points less likely when moving from low conflict to high conflict chiefdoms (25th to 75th percentile). Alternatively measured, individuals lose one year of schooling per standard deviation of conflict (correspondingly 1.2 years as you move from low to high conflict chiefdoms). Relative to the country-wide share of primary educated workers of 47% and an average education of 5.2 years, these are substantial losses.

Table 2.6: Years of Schooling

	Years of Schooling			
	(1)	(2)	(3)	(4)
Conflict	-0.318** (0.156)	-0.392** (0.163)	-0.991* (0.537)	-1.758*** (0.660)
N	21396	21396	21396	21396
<i>R</i> ²	0.355	0.363	0.350	0.343
Estimation Method	OLS	OLS	IV	IV
First Stage <i>F</i> (KP)			23.59	15.33
AR <i>p</i> -value			0.065	0.003
Socio-econ. Controls	✓	✓	✓	✓
Land Controls		✓		✓
District FE	✓	✓	✓	✓

Note – Outcome variable: Years of schooling. Conflict standardized and instrumented with distance to border. Clustered standard errors at the chiefdom level in parentheses. Kleibergen-Paap cluster-robust *F* statistic and *p*-value for weak instrument robust Anderson-Rubin test of $H_0 : \beta = 0$ reported. Stars refer to standard *t*-tests. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

Table 2.7: Primary Education

	Primary Education			
	(1)	(2)	(3)	(4)
Conflict	-0.0317** (0.0137)	-0.0361** (0.0141)	-0.102** (0.0462)	-0.164*** (0.0580)
N	21397	21397	21397	21397
<i>R</i> ²	0.332	0.339	0.326	0.319
Estimation Method	OLS	OLS	IV	IV
First Stage <i>F</i> (KP)			23.59	15.33
AR <i>p</i> -value			0.031	0.002
Socio-econ. Controls	✓	✓	✓	✓
Land Controls		✓		✓
District FE	✓	✓	✓	✓

Note – Outcome variable: Indicator for having finished primary school. Conflict standardized and instrumented with distance to border. Clustered standard errors at the chiefdom level in parentheses. Kleibergen-Paap cluster-robust *F* statistic and *p*-value for weak instrument robust Anderson-Rubin test of $H_0 : \beta = 0$ reported. Stars refer to standard *t*-tests. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

2.4.2 Identification Tests and Robustness

These results pass an important placebo test for the exogeneity of the instrument and are robust to a number of robustness checks. First, it is reassuring to see that the education effect only materializes for young people who were actually at school age when the war started while there is no significant effect for those old enough to have finished their education by that time. Table A2 demonstrates these results. Columns (1) and (3) present the education effect for individuals at school age when the war starts. The effect is slightly stronger than the main effect for everyone. By contrast, columns (2) and (4) show the effect for people above school age for both education outcomes. The coefficients are close to zero and insignificant.

Second, the main results on worker expenditures are robust to the exclusion of chiefdoms directly bordering Liberia. Table A3 provides the results for the restricted sample. The effect of conflict is a 33.8% reduction in expenditures per worker as conflict increases by one standard deviation in the preferred specification in column (3). The coefficient is very close to the corresponding effect for all chiefdoms (30.6%) and statistically indistinguishable. Other specifications and OLS results are also very similar. This suggests that trade with Liberia is unlikely to be a threat to identification.

Third, the main results on worker expenditures are robust to using different variations of household expenditures measures. The division by the number of workers is not driving the result. Table A4 and A5 show the results for total household expenditures and total household expenditures per adult equivalent, respectively. While the IV coefficients for both alternative measures are a bit smaller than the ones reported in the main results, they are still sizeable and significant. The reduction is around 17% per standard deviation of conflict increase in both alternative specifications.

Fourth, the results on all outcomes are robust to the exclusion of the capital Freetown. [Bellows & Miguel \(2009\)](#) argue that the capital's local institutions and history are quite different from the rest of the country. However, any such differences do not seem to be driving my results since the outcomes without Freetown are very comparable to my main results with Freetown. Table A6 shows the results on expenditures per worker, employment in agriculture, years of

schooling and primary education when the sample excludes the capital Freetown. All OLS and IV coefficients are very close to the ones in the main specifications including Freetown.

2.5 Conclusion

This chapter investigates the local impact of civil war in Sierra Leone. To this end, I use information from a 2018 representative household survey about income, sector of work as well as education of individuals as long-run outcomes. Since the extent to which conflict occurs in different chiefdoms is not random, I exploit the distance to the Liberian border as an instrument for conflict intensity. While chiefdoms that are close to or far from the Liberian border are comparable within small districts before the war, the heavy involvement of Liberia in the beginning of the civil war means that border distance is highly predictive of conflict intensity.

With the valid instrument in hand, I establish that civil war has strong local effects on the livelihoods of households that live in affected chiefdoms. A loss of human capital has direct implications for worker income and can be a reason for a shift in the sector of employment to the extent that lower education is correlated with employment in agriculture. Workers are a lot more likely to work in agriculture as a result of their chiefdom being hit by conflict. Since pay in agriculture is lower than in the non-agricultural sector, such a shift is a driving force for lower income in chiefdoms that are more heavily affected by conflict.

The presented estimates identify spatial differences. The results are essentially generated by comparing more and less affected areas by the civil war (with the variation generated exogenously by the instrument). If productive resources are reallocated across space as a result of the war, however, spatial differences do not only capture the direct effect of conflict but also the reallocation of resources. In particular, we may be concerned about labor supply changing in locations when people move in response to the war.

The 2011 survey indicates that around 50% of all households were displaced at some point during or after the war. Even considering migration in the long run, migration rates in the 2015 census and 2018 household survey are between 25% and 30%. It is quite plausible that the selection of migrants changes as a result of the war. For example, if more productive non-agricultural workers leave conflict

areas during or after the war and stay in less affected areas, my estimate would also capture this type of selective migration. The fact that income is higher in less affected areas after the war would be partly due to the changing type of movers to these areas. As a result, spatial income differences would overstate the aggregate income effect of conflict. In order to understand the aggregate income effect, the following chapter develops a model that explicitly takes into account general equilibrium effects of the war such as selective migration. Structural estimation of the model and counterfactual simulations allow me to estimate the aggregate income effect of the civil war in Sierra Leone.

Further to estimating the aggregate income effect, the development and estimation of the model also allows me to shed light on *unobserved* mechanisms of the economic impact of civil war. While education is observed, there are other important determinants of productivity that could be affected by the war and a driver of the sector shift and income effects. A simple back-of-the-envelope calculation of the observed effects suggests that education is unlikely to be the only driving force of income effects. Individuals lose on average one year of schooling while the loss in earnings is about 30% of workers' income as conflict increases by one standard deviation in their chiefdom. If education was the only channel leading to income reductions, the returns to education for an additional year of schooling would need to be 30% to generate these findings. This is an order of magnitude larger than the typical estimates ranging between 7% and 9%.¹⁸ In the model, other determinants of the sector shift and income effects are captured by sector-specific firm productivities and average individual productivities beyond education. Using the structure of the model, I can estimate these objects and evaluate the impact that conflict has on them.

¹⁸For reviews on worldwide returns to an additional year of schooling, see for example Peet et al. (2015) and Psacharopoulos & Patrinos (2018).

Chapter 3

The Legacy of Conflict: Aggregate Evidence from Sierra Leone

3.1 Introduction

This chapter builds on the preceding analysis which establishes large income differences between more and less affected chiefdoms. However, spatial income differences do not necessarily reflect *aggregate* income effects. In general equilibrium, people move. Therefore, spatial income differences reflect both the direct effect of conflict and the reallocation of labor.

One purpose of the general equilibrium model I develop in this chapter is to address this issue. The general equilibrium structure allows me to estimate aggregate income effects. Another purpose is to provide a theoretical framework and estimation of the underlying mechanisms. Importantly, I can include mechanisms that are not directly observed in the data but which I can identify in a structural estimation of the model. The basic setup is an economic geography model with 151 locations reflecting the chiefdoms of Sierra Leone. To capture population movement and a sector shift in response to the war, the model features labor mobility across these locations and two sectors, agriculture and non-agriculture. Individuals are heterogeneous in individual productivities for each destination and sector as well as exogenous education realizations. In a Roy (1951) fashion, this gives rise to worker sorting into a destination and sector. Locations differ in amenities such as local public goods and services and firm-level productivities in each sector.

Conflict is assumed to affect four sets of parameters with both direct and indirect implications for aggregate income: (i) (observed) education, (ii) (unobserved) firm-level productivities, (iv) (unobserved) individual productivities and (iii) (unobserved) amenities. Structural estimation identifies the model parameters. In particular, I use observed incomes and migration flows to estimate firm and individual productivities as well as location amenities. To estimate the causal impact of conflict on these parameters, I use the same IV strategy as in chapter 2. With these estimates in hand, I perform counterfactual simulations which estimate the aggregate income effect of conflict. The simulations take into account general equilibrium changes.

The general equilibrium model highlights how conflict affects income and sector allocation. Education, firm productivity, individual productivity and amenities can change in response to conflict. This has direct effects in the locations affected and indirect effects in general equilibrium when people move and market wages change. Increasing conflict leads to a reduction of the share of primary school educated people by 6.9 percentage points. Returns to education are estimated to be higher in non-agriculture than in agriculture which implies that education losses harm the non-agricultural sector more and can lead to a sector shift into agriculture. Lower human capital also directly decreases income in both sectors. As for firm productivities, I show that conflict affects the sectors differentially. While there is no effect on agricultural firm productivity, non-agricultural firm productivity reduces by 28.4% per standard deviation of conflict. Naturally, a firm productivity loss in non-agriculture is also consistent with the sector shift into agricultural work and income losses in non-agriculture. Average individual productivities decrease by 12.2% per standard deviation of conflict, but only among the uneducated. This reduces income of workers born in chiefdoms affected by conflict.

Beyond these direct effects, education losses, non-agricultural firm productivity reductions and a decrease in individual productivity among the uneducated have important general equilibrium implications. People move in response to these changes. Workers are assumed to be mobile subject to a migration cost that is specific to their level of education and their sector of work. Three forces governing how migration changes are worth highlighting. First, the sector shift leads to changed relative wages between the sectors in affected locations

which has an impact on the composition of in- and out-migrants. Second, lower non-agricultural firm productivity in chiefdoms hit by conflict generally encourages non-agricultural workers to leave those locations. Third, the composition of migrants changes in response to lower education in affected chiefdoms since migration cost is higher for uneducated workers than for educated workers in agriculture. The composition of stayers in conflict affected chiefdoms will therefore consist of more uneducated agricultural workers which tend to have lower productivity and work in the less productive sector.

Since amenities are not sector-specific and are a component of utility but not of income, any amenity changes would only result in aggregate income effects through general equilibrium effects of worker movement. However, the estimated effect of conflict on amenities is small and insignificant. In the long run, amenities seem to remain unaffected by the civil war.

General equilibrium effects imply that the observed sector allocation and income difference between more and less affected chiefdoms by conflict reflects not only the direct effect of conflict but also selective migration. In particular, the changes in the spatial allocation of labor in response to the war described above would suggest a positive selection of migrants out of high conflict chiefdoms. Therefore, the spatial divergence in income may overstate the aggregate income effect. To address this issue, I use the model to simulate counterfactual scenarios that reverse conflict and all general equilibrium effects associated with it. In the first simulation, I consider a full reversal of the war. In this scenario, the education, non-agricultural firm productivity and individual productivity loss among the uneducated are reverted. A second set of simulations serves to assess the quantitative importance of the channels. I revert the effect on the three sets of parameters separately.

The first scenario estimates an aggregate income loss of 31.6% in the Sierra Leonean economy today relative to a simulated peace economy. The aggregate share of agricultural workers is 20.8 percentage points higher than it would be in the absence of war. An effect of conflict on non-agricultural firm productivity alone would lead to an aggregate income reduction by 17.8%. By contrast, an effect on average individual productivity among the uneducated or on education only would lead to an aggregate income reduction by 10.5% or 3.7%, respectively. Therefore, firm productivity losses seem to be the most important driver of the

civil war impact on the Sierra Leonean economy.

While the estimate on the full war effect is large, it is still substantially lower than what the reduced-form evidence on spatial divergence suggests. If we were to take the reduced-form estimate and calculate a country-wide weighted average by conflict intensity and chiefdom population we would arrive at a 46% aggregate income loss. This suggests that general equilibrium forces such as selective migration play a major role in generating spatial income differences between more and less affected chiefdoms by conflict.

This chapter makes two main contributions. First, it provides estimates of the long-run aggregate income effect of civil war that explicitly take into account general equilibrium forces. While early cross-country macro studies (Alesina & Perotti, 1996; Barro, 1991; Collier, 1999) show a clear negative link between conflict and aggregate economic performance, establishing causality from these correlations is difficult.¹ A great number of institutional and economic differences between war-torn countries and countries at peace may drive the result. On the other hand, micro-empirical within-country studies that compare more and less affected households or locations such as Miguel & Roland (2011), Besley & Reynal-Querol (2014), Serneels & Verpoorten (2015) and Abadie & Gardeazabal (2003) are similar in nature to the reduced-form analysis presented in the previous chapter. As Blattman & Miguel (2010) note, even with a solid identification strategy, this approach cannot account for general equilibrium effects. I combine the best of both worlds. Using a within-country identification strategy in combination with a general equilibrium model allows me to estimate aggregate effects that can causally be attributed to the civil war. To the best of my knowledge, this is the first study to estimate a general equilibrium model in the analysis of conflict.²

The model I develop is an economic geography model that draws on Bryan & Morten (2019), Hsieh et al. (2019) and Eaton & Kortum (2002).³ In particular, civil war typically leads to the reallocation of labor across space with important

¹Cerra & Saxena (2008) is similar to these analyses but broader in scope since it considers not only civil war but also financial crises. The authors estimate impulse response functions using a panel of many countries over several decades.

²Dal Bó & Dal Bó (2011) use a general equilibrium model in their analysis of conflict. However, their paper is about the causes of conflict and not about the general equilibrium consequences of it. It is also purely theoretical. They do not make use of data, let alone carry out structural estimation.

³The model also has similarities with elements in Allen & Arkolakis (2014), Redding (2016) and Lagakos & Waugh (2013).

general equilibrium implications. This concerns not only the size of population movement but also the selection. Indeed, [Davis & Weinstein \(2002\)](#) and [Brakman et al. \(2004\)](#) find that city growth is unaffected by bombing intensity. However, this does not speak to the selection of migrants. In this study, I also find that the number of migrants is unaffected by conflict but the selection of migrants seems to play a major role in accounting for spatial differences in income as a result of the war.⁴

The second contribution of this chapter is to shed light on a channel of the impact of conflict that has received little attention so far: reverse structural transformation, in particular as fuelled by decreases in non-agricultural firm productivity. This can capture a variety of elements that could be affected by war such as market access or electricity connection. My model features labor as the only input into production. Immobile physical capital would enter the model in the same way as firm-level productivity. Therefore, reductions in the latter could also capture physical capital reductions such as the destruction of local buildings or machines.

While there are few analyses of firm or sector allocation outcomes of conflict, human capital outcomes have received much more attention.⁵ Yet, I show that the role of human capital losses in explaining persistent aggregate income effects is limited relative to the role of firm productivity reductions in Sierra Leone. Depending on which factors are the main drivers behind persistent consequences of conflict for economic welfare, the implications for post-war policy differ greatly. My analysis suggests that restoring firm productivity deserves greater policy focus.

The remainder of the chapter is organized as follows. In section 3.2, I develop the model in theory while I discuss its estimation strategy in section 3.3. Section 3.4 presents the results of the model estimation, followed by the presentation and discussion of counterfactual simulations in section 3.5. Finally, section 3.6 concludes.

⁴This result is also in line with other papers that highlight the importance of selective migration in explaining spatial income differences such as [Young \(2013\)](#).

⁵See chapter 2.1 for a brief overview of the relevant papers.

3.2 Model Theory

The model is a static general equilibrium economic geography model. The basic setup draws on [Bryan & Morten \(2019\)](#) and [Hsieh et al. \(2019\)](#) and contains elements that are similar to other work in quantitative economic geography, in particular [Eaton & Kortum \(2002\)](#), [Allen & Arkolakis \(2014\)](#) and [Redding \(2016\)](#). In order to capture basic characteristics of the Sierra Leonean economy and the key pathways how conflict affects the economy, the model contains the following principal features that are motivated by the reduced-form results.

First, the high migration rate in Sierra Leone with movement potentially responding to conflict motivate an economic geography setup with endogenous location choice. Workers choose locations on the basis of an individual location-specific productivity and subject to migration cost. Furthermore, locations differ in aggregate firm productivities and amenities, both of which can be affected by conflict. In this way, conflict can change the spatial allocation of labor.

Second, the reduced-form results indicate that the sector allocation is an important pathway how conflict affects the economy. Therefore, the model features an agricultural and non-agricultural sector. Workers sort into sectors on the basis of individual sector-specific productivities. Firm productivities are also sector-specific and govern sector choice. A differential effect of conflict on firm productivities by sectors can be one mechanism how conflict affects sector allocation.

Third, education and employment in the non-agricultural sector are highly correlated in Sierra Leone. This could be the result of differing returns to education across sectors. With sector-specific returns to education, an education loss resulting from conflict can have both direct effects on income and indirect effects through a change in the sector composition. To capture this mechanism, the model features education with differential returns by sector.

This structure⁶ allows me to lay out both the direct effects of conflict and the indirect effects through a change in the sector composition and spatial allocation of labor. By explicitly taking into account general equilibrium forces, I am able to estimate aggregate income effects when estimating the model in a next step.

⁶The structure of labor mobility under movement cost and destination choice based on individual productivity draws is comparable to the core structure in [Bryan & Morten \(2019\)](#). Conceptually similar to the industries in [Hsieh et al. \(2019\)](#), I have two sectors and sector-specific individual productivity draws. I also introduce human capital with differential returns to education by sector. Relevant to my context, this gives rise to worker sorting across sectors on the basis of both (firm and individual) productivities and education.

While the reduced-form results identify spatial income differences, aggregate income effects may be very different if there is a strong spatial reallocation of labor in response to the war. In addition, estimating unobserved parameters such as firm and average individual productivities as well as amenities using the structure of the model allows me to consider potential mechanisms of a conflict impact on income that are not directly observed in the data.

3.2.1 Basic setup

Economic environment. The economy consists of 151 locations (chiefdoms) with the set of them denoted by \mathcal{K} and comprises a continuum of individuals indexed by i . They are born in an origin chiefdom $c \in \mathcal{K}$ and can decide to move to destination chiefdom $d \in \mathcal{K}$ where they work in a particular sector $S \in \{A, N\}$, either agriculture or non-agriculture. Movement is costly and differs by sector and education level. Movement cost is denoted by τ_{ecd}^S and enters as a utility cost.

In an [Armington \(1969\)](#) fashion, each location produces a unique agricultural and non-agricultural good that is consumed everywhere. This structure serves as a dispersion force. In order to keep the model as simple as possible, I abstract from trade cost and assume that goods are traded costlessly across space.⁷ Locations differ in the firm productivities in each sector A_d^S and amenities a_d .

In the spirit of [Roy \(1951\)](#), workers are heterogeneous in their productivity which is specific to both the sector and the destination they choose to work in (or the sectoral product that is produced in that destination). Workers are also endowed with an exogenous education level e .⁸

Preferences. Individuals have CES preferences over all goods produced in each sector and destination. They consume quantity c_{id}^S of the good produced in sector S and destination d . Their utility is also influenced by amenities in their destination a_d and the cost of moving to that destination and choosing their sector to work in τ_{ecd}^S . The utility function is therefore

⁷Empirically, a lack of sufficient data on trade between chiefdoms or price differences across chiefdoms also prevent the estimation of a model featuring trade cost. Appendix [D.1](#) outlines briefly what the introduction of trade cost in the model would mean. Section [3.5.3](#) discusses the implications for my results.

⁸Education is assumed to be exogenous for the sake of simplicity. Conflict is assumed to affect education directly as an exogenous parameter. However, making education endogenous and considering conflict as a shock to an exogenous education *cost* parameter delivers results that are conceptually equivalent to the model with exogenous education. An extension with endogenous education choice and exogenous education cost is outlined in Appendix [D.2](#).

$$U_{id}^S = a_d(1 - \tau_{ecd}^S) \left(\sum_d (c_{id}^A)^{\frac{\sigma-1}{\sigma}} + (c_{id}^N)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} \quad (3.1)$$

where σ denotes the elasticity of substitution. In line with standard economic geography models, amenities can be thought of to capture elements such as natural beauty, the availability of local public goods and services and the quality of housing. In the particular context of this conflict study, an additional way to think of what amenities capture would be the safety of a place. They enter multiplicatively in the utility function.

Like migration cost, they play a key role in workers' location choice. I model migration cost τ_{ecd}^S as the share of income that workers with education e lose when moving from c to d and choosing sector S . Migration cost can be thought of in several ways. One is the actual physical cost of moving away from home. Beyond that and potentially much more importantly, however, this parameter captures the cost of integration into a new community in order to be able to work there. In the Sierra Leonean context, chiefdoms still have traditional chiefdom administrations and strong local governance structures. Traditional chiefs who are members of locally well-known and respected so-called "ruling families" govern many parts of public life. In this context, integration into a new community is an important factor to be able to live and work there.

This cost τ_{ecd}^S is assumed to be both education- and sector-specific. The motivation behind this is threefold. First, this is the most general type of moving cost the model could allow for. I am able to estimate this cost non-parametrically and therefore let the data decide to what extent moving cost may actually differ across sectors and education levels. Second, a growing theoretical and empirical literature suggests that moving cost may differ by education level.⁹ Reasons cited here are, for example, a better state of information about opportunities in different places among more educated people or greater availability of valuable job matches. Third, with sector dependence this parameter captures any friction of entering the non-agricultural sector. This may be due to the necessity of moving to a larger town within the same location for non-agricultural employment. This could also embody the fact that non-agricultural work requires connections or fixed investments for people born in rural areas where agricultural work is the

⁹See, for example, [Amior \(2015\)](#); [Kennan & Walker \(2011\)](#); [Wozniak \(2010\)](#).

default option. Empirically, it turns out that such frictions are quite real. Given the estimated large wage differences between workers in agriculture and non-agriculture (even accounting for selection on individual productivities), such a friction can rationalize the relatively high number of workers in agriculture.

Costless trade of goods results in common prices for each good p_d^S and a common CES price index P for the entire economy across all destinations:

$$P = \left(\sum_d (p_d^A)^{1-\sigma} + (p_d^N)^{1-\sigma} \right)^{\frac{1}{1-\sigma}} \quad (3.2)$$

Workers supply l_{id}^S effective units of labor in the sector and destination of their choice and are getting paid at the wage rate w_d^S . Their nominal income is therefore $m_{id}^S = w_d^S l_{id}^S$. Standard CES utility maximization results in indirect utility as a linear function of worker income:

$$V_{id}^S = \frac{a_d(1 - \tau_{ecd}^S)w_d^S l_{id}^S}{P} \quad (3.3)$$

Productivities and labor supply. Workers draw individual productivities for each sector and destination z_{id}^S from a Fréchet distribution. The average productivity draw is different for each sector and destination and it also varies by origin and education level. For workers from origin c with education level e , the average productivity draw for sector S and destination d is captured in the scale parameter q_{ecd}^S . Along with independence, this results in the following multivariate distribution from which productivities are drawn:

$$F_{ec}(\mathbf{z}) = \exp \left(- \sum_d \sum_S \left(\frac{z_{id}^S}{q_{ecd}^S} \right)^{-\theta} \right) \quad (3.4)$$

where \mathbf{z} denotes the vector of productivity draws and the shape parameter θ governs the dispersion of productivities. A high realization of θ means low dispersion, that is, productivities for the goods produced in different destinations are close to each other. One interpretation of this would be a high degree of similarity across products produced in different destinations.

In this formulation, workers from origin c with education e are, on average, the same in the sense that they draw from the same productivity distribution. Let $q_{ecd}^S = \bar{q}_{ec} \epsilon_{ecd}^S$, that is, average productivity draws are made up of a common

component \bar{q}_{ec} for all workers from origin chiefdom c with education e and some variation across sectors and destination with mean 1. This common component essentially captures the average individual productivity draw that someone *from* origin c with education e has. While the remaining variation of the scale parameter ϵ_{ecd}^S is assumed to be random, the common component \bar{q}_{ec} may well be a function of chiefdom's characteristics. These are characteristics that shape how productive people will be who are born and grow up in an origin chiefdom c with education e . Differences in the common component \bar{q}_{ec} across origins and education levels therefore capture the idea that some origins have better capabilities to produce high-productivity individuals, e.g., better healthcare, quality of schooling, childcare, etc.

Apart from productivities, workers also differ in the exogenous realization of their education level e which determines human capital in a standard Mincerian way. Let ϕ^S be the sector-specific returns to education. Human capital for workers with education e is exogenous and assumed to be

$$h_e^S = \exp(\phi^S e) \quad (3.5)$$

Human capital is combined with a worker's productivity draw to determine their effective individual amount of labor supplied in the market:

$$l_{id}^S = h_e^S z_{id}^S \quad (3.6)$$

Sector and destination choice. Using the expression for labor supply 3.6 in the indirect utility function 3.3, we can rewrite indirect utility as

$$V_{id}^S = \frac{v_{ecd}^S z_{id}^S}{P} \quad (3.7)$$

where $v_{ecd}^S := a_d(1 - \tau_{ecd}^S)w_d^S h_e^S$. This essentially captures the wage rate in destination-sector (d, S) adjusted for amenities, movement cost and human capital. From the distribution of productivities, it follows that indirect utility for workers from origin c with education e across sectors and destinations follows a Fréchet distribution with scale parameter $\frac{v_{ecd}^S q_{ecd}^S}{P}$. Based on this distribution, we can characterize workers' sector and destination choice. The probability that a worker with education level e from origin c chooses sector S in destination d is

$$\pi_{ecd}^S := \Pr \left[V_{id}^S > V_{id'}^{S'} \forall d', S' \right] = \frac{(v_{ecd}^S \epsilon_{ecd}^S)^\theta}{\sum_{d'} \sum_{S'} (v_{ecd'}^{S'} \epsilon_{ecd'}^{S'})^\theta} \quad (3.8)$$

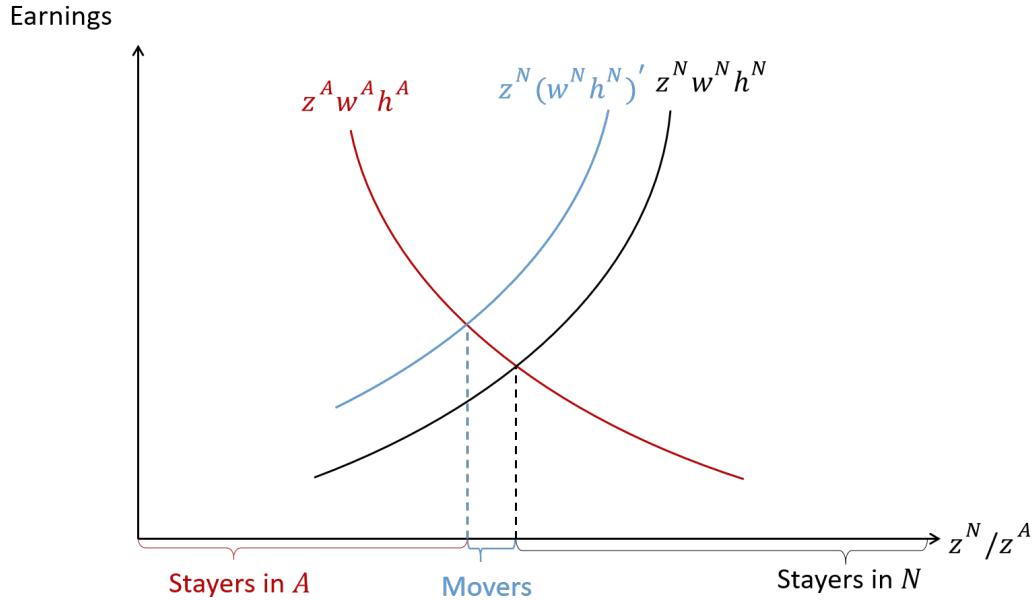
This equation describes worker sorting behavior. If the adjusted wage rate in a particular chiefdom and sector is high relative to all other chiefdoms and sectors, the chiefdom and sector are attractive to work in.

In a similar way, properties of the Fréchet distribution give rise to the following characterization of the average productivity of workers *choosing* sector S and destination d :

$$E [z_i | i \in M_{ecd}^S] = (\pi_{ecd}^S)^{-1/\theta} q_{ecd}^S \Gamma \left(\frac{\theta - 1}{\theta} \right) \quad (3.9)$$

where $\Gamma(\cdot)$ is the Gamma function.¹⁰ Average productivity in a destination-sector (d, S) depends negatively on the share of workers choosing that destination d and sector S . This reflects a selection mechanism. The marginal migrant who chooses to make that move is the one drawn from the leftmost part of the distribution with the lowest productivity. This selection mechanism is displayed graphically for sector choice in Figure 3.1. The negative relationship between the share of workers choosing (d, S) and average productivity in that destination-sector pair giving rise to this selection mechanism is a result of alignment of comparative and absolute advantage. Graphically, this is represented by the upward sloping curves in the figure. This assumption of alignment is hard-baked into the model by using independent Fréchet draws. Heckman & Honore (1990) refer to this as the standard case and it is intuitively appealing that those workers who have a comparative advantage for working in a particular destination-sector pair would also absolutely perform better there.¹¹

This formulation of average productivities is useful to represent the relationship between average income and average productivity:


$$\overline{m_{ecd}^S} = w_d^S h_e^S (\pi_{ecd}^S)^{-1/\theta} q_{ecd}^S \Gamma \left(\frac{\theta - 1}{\theta} \right) \quad (3.10)$$

¹⁰Derivations of equation 3.8 and 3.9 are provided in the Appendix, section C.

¹¹Lagakos & Waugh (2013) and Adao (2016) expand on this notion more formally. Lagakos & Waugh (2013) also provide an alternative multivariate characterization of the Fréchet distribution using the Frank copula and arbitrary correlation between productivity draws. This version does *not* automatically generate alignment between comparative and absolute advantage. The aim of their analysis is indeed to allow for different cases and let the data in their global cross-country analysis decide whether they find evidence of such alignment. This turns out to be the case.

Figure 3.1: Worker Selection

Note – This graph shows the sector choice response within a location as wages change. A higher wage in non-agriculture implies more people choosing to work in this sector. As a result of comparative and absolute advantage being aligned (both curves upward sloping), the average productivity of the movers is lower than that of the stayers in N . Therefore, overall average productivity in that sector must go down.

Since average productivity determines average income in a sector S and destination d for all workers from c with education e , the same negative relationship with the share of workers manifests here. The strength of this negative relationship is governed by the size of $1/\theta$. Lower productivity dispersion (high θ) leads to a small size of $1/\theta$ and therefore little reactivity of average income to the share of workers from c with education e choosing (d, S) . This is intuitively appealing. Low productivity dispersion implies that the marginal migrant worker is very similar to previous migrants in terms of their productivity.

Equation 3.8 and 3.10 are the key estimating equations to determine parameters of the model. The estimation exploits the fact that migration flows π_{ecd}^S and average incomes $\overline{m_{ecd}^S}$ are observed in the data.

Production. Production is linear in the sole input of production, labor L_d^S . Within sectors and destinations, perfectly competing firms are identical and the representative firm deploys firm-level productivity A_d^S .¹² Therefore, production

¹²The Armington structure gives rise to this productivity term that is specific to the unique good produced in sector S and destination d . An alternative way of modelling, similar to Tombe & Zhu (2019), would have the production of two aggregate final goods in the economy, agricultural and non-agricultural, that are both made up of a continuum of intermediate goods. In each location, any number of varieties of the intermediate good can be produced and traded and all chiefdoms have location- and product-specific productivity draws for the production of

of the unique good in sector S and destination d is

$$Y_d^S = A_d^S L_d^S \quad (3.11)$$

Denote the set of workers with education level e from origin c choosing to live in destination d and work in sector S by M_{ecd}^S . The labor force in a particular sector is the accumulation of individual sector-specific productivities:

$$L_d^S = \sum_c \sum_e \int_{i:i \in M_{ecd}^S} l_{id}^S dF_{ec}(z_{id}^S) \quad (3.12)$$

Firms are paying the wage rate w_d^S per effective unit of labor supplied. Perfect competition among firms within a sector and destination implies that prices equal marginal cost:

$$p_d^S = \frac{w_d^S}{A_d^S} \quad (3.13)$$

3.2.2 Equilibrium and Conflict Impact

Market clearing and equilibrium. Market clearing implies that total production equals total consumption for each unique sectoral good in a destination:

$$A_d^S L_d^S = C_d^S = \frac{(p_d^S)^{-\sigma}}{P^{1-\sigma}} GDP \quad (3.14)$$

where C_d^S denotes total consumption of the good produced in destination d and sector S and GDP denotes GDP or total income in the economy. The second equality comes from CES preferences over all goods.

Using the definition of individual labor supply 3.6 and the characterization of average productivity in a destination-sector 3.9, we can reformulate total labor supply in a destination-sector as a function of labor movement across space π_{ecd}^S and exogenous parameters only:

$$L_d^S = \sum_c \sum_e \overline{N_{ec}} (\pi_{ecd}^S)^{1-\frac{1}{\theta}} h_e^S q_{ecd}^S \Gamma \left(\frac{\theta-1}{\theta} \right) \quad (3.15)$$

intermediate goods. As a result, chiefdoms specialize in the goods that they are most productive at. While conflict is assumed to affect A_d^S in the provided model, it would be a shock to the average productivity draw in the alternative setting (e.g. the scale parameter on a Fréchet distribution). Conceptually, all results discussed here would still go through. The Armington structure simply provides a stronger dispersion force such that labor mobility in response to conflict effects would be stronger in the alternative setting.

where \overline{N}_{ec} is the birth population in origin c with education level e . Noting that the movement probabilities π_{ecd}^S are itself a function of exogenous parameters and endogenous wage rates w_d^S , substituting equation 3.13 in for prices and taking the ratio of the market clearing conditions across a sector or destination, the model can be solved as the following system of equations in endogenous destination-sector labor unit wage rates:

$$\left(\frac{w_d^S}{w_f^T}\right)^\sigma = \left(\frac{A_d^S}{A_f^T}\right)^{\sigma-1} \frac{L_f^T}{L_d^S} \quad \forall S, T \in \{A, N\} \quad \forall d, f \in \mathcal{K} \quad (3.16)$$

The impact of conflict. Even though the way conflict affects an economy is a dynamic phenomenon, we can analyze it by considering comparative statics in the provided (primarily) static model that does not explicitly feature time periods. Conflict can be modelled as a change to the fundamental parameters, in response to which people choose destination and sectors of work. This model structure has an implicit timing assumption. The empirical analysis focuses on outcomes in 2018 and is limited to individuals who were born before the end of the war in 2001 (and therefore working-age adults in 2018). Consider 1991 as the initial situation of the economy before the war. The war between 1991 and 2001 affects four sets of parameters: (i) education realizations of those from affected (origin) chiefdoms, (ii) firm productivities in (destination) chiefdoms, (iii) individual productivities of those from affected (origin) chiefdoms, and (iv) amenities in (destination) chiefdoms. As a function of the parameter values in the war economy, individuals decide on destinations and sectors. We observe the post-war equilibrium in 2018. Essentially, we therefore require the moving decision to take place after the shock of the war and after education has realized. This is largely borne out in the data. The median age at migration is 19 years with 79% of the sample moving after the age of 12 which is the typical age of finishing primary school.¹³ The median moving year in the observed sample is 2003 with 82% of migrants having moved after the war has started.

The effect of conflict on the four sets of parameters can be thought of in the following way. First, consider the effect on education. The destruction of schools

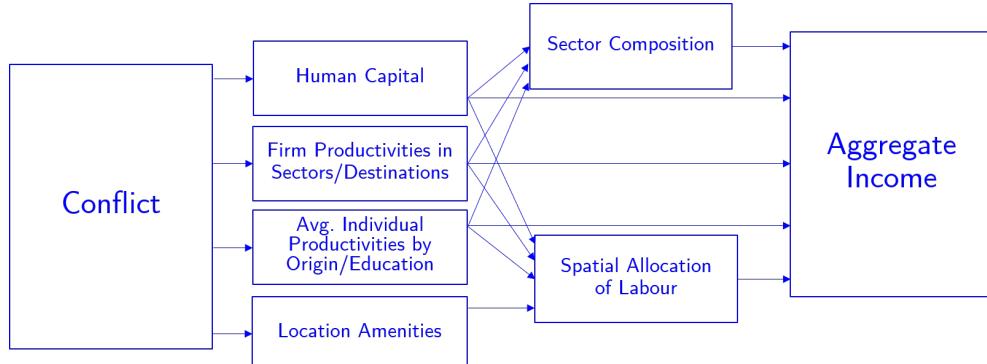
¹³The empirical identification in section 3.3 considers a simple binary indicator for having obtained primary school education as the education realization e . This keeps the model relatively simple and reflects the fact that primary education is still the main educational qualification for a large part of the population. Less than 10% of the sample have secondary or higher education.

and killings of teachers can plausibly result in individuals losing out on education in their chiefdom of origin. If individuals have a worse realization of education e , this directly translates into lower human capital $h_e^S = \exp(\phi^S e)$. To what extent sector-specific human capital suffers from the education reduction is governed by the returns to education in each sector ϕ^S .

Second, conflict may affect firm-level productivities A_d^S in each sector and destination. In the model, this parameter would essentially capture any sector-specific determinant of productivity. For example, it could entail the destruction of essential infrastructure for production in a sector. It could also capture immobile physical capital. I do not model physical capital here explicitly. To the extent that physical capital is immobile, however, this would enter the model in exactly the same way as A_d^S . Any destruction of physical capital without reconstruction in the long run would therefore be captured by a reduction of A_d^S .

Third, conflict may affect average individual productivity draws \bar{q}_{ec} for people from origin chiefdom c with education e . Conceptually distinct from the effect on firm productivities A_d^S that affect everyone who chooses to work in a particular sector and destination (irrespective of where they are from), the idea of this effect is that it harms all individuals who are born and grow up in a certain origin c and have education e (irrespective of where they choose to live and work). A change in \bar{q}_{ec} due to conflict captures any effect that the war has on chiefdom characteristics shaping such origin productivities. This may include an effect on the state of healthcare, in particular for newborns and infants, or the quality of education (given the level of education e which enters the model separately).¹⁴

Fourth, conflict may have an impact on the amenities of a chiefdom a_d . If fighting leads to the destruction of local public goods or a generally risky environment to live in, this would be captured by the amenities in the model.


Changes to these parameter have direct implications for income of workers and indirect implications by changing the allocation of labor across sectors and space. Figure 3.2 shows these relationships in a diagram. Provided that σ is large,¹⁵ the market clearing condition 3.16 reveals that changes to firm-level productiv-

¹⁴Indeed, the working-age population considered in 2018 is quite young when the war starts. This is necessary for interpreting changes in \bar{q}_{ec} due to conflict as shocks in early life. The median age of individuals at the start of the war is 6 years with 36% of the sample being born during the war.

¹⁵As discussed in section 3.3.3, I set $\sigma = 4$ in the model estimation and discuss the relevant literature that suggests at least such a large value.

ties have a first-order impact on labor unit wage rates. By contrast, changes to education, average individual productivities and amenities only affect wages through the general equilibrium channel by affecting labor supply in each sector and destination. This means that shocks to firm-level productivities have first-order impacts on income as well as sector and destination choice through their direct impact on wage rates.¹⁶

Figure 3.2: Key Mechanisms in the Model

Note – This diagram depicts the key mechanisms how conflict affects income both directly and indirectly in the model.

The effect on income is straightforward. Worker income is a direct function of the sector-destination wage rate w_d^S , human capital h_e^S and average individual productivities \bar{q}_{ec} . Hence, reductions in education, firm productivities and average individual productivities directly decrease income.

For the effect on sector and destination choice, it is instructive to consider the ratio of π_{ecd}^S across sectors and locations to see how conflict changes the labor allocation across sectors and space:

$$\frac{\pi_{ecd}^A}{\pi_{ecd}^N} = \left(\frac{w_d^A \exp(\phi^A e)(1 - \tau_{ecd}^A) \epsilon_{ecd}^A}{w_d^N \exp(\phi^N e)(1 - \tau_{ecd}^N) \epsilon_{ecd}^N} \right)^\theta \quad (3.17)$$

$$\frac{\pi_{ecd}^S}{\pi_{ecc}^S} = \left(\frac{a_d w_d^S (1 - \tau_{ecd}^S) \epsilon_{ecd}^S}{a_c w_c^S (1 - \tau_{ecc}^S) \epsilon_{ecc}^S} \right)^\theta \quad (3.18)$$

By equation 3.17, any changes in firm-level productivities affect sector choice to the extent that one sector is hit harder than the other through the first-order impact of A_d^S on wage rates w_d^S . If non-agricultural firm productivity decreases to a greater extent than agricultural firm productivity, this leads to a decrease

¹⁶The intuition for this positive first-order impact of A_d^S on w_d^S is straight-forward. Consider an increase in A_d^S . As a result, marginal cost decreases and the price drops. Demand rises and the wage adjusts on the labor market to enable increased production.

in the relative wage w_d^N/w_d^A with the implication that individuals move out of sector N into sector A .

Education has a direct impact on sector choice within a location to the extent that returns to education differ by sector. In particular, if $\phi^N > \phi^A$, workers are more likely to work in agriculture as conflict negatively affects their education since education losses translate into a greater human capital loss in sector N .

A countervailing general equilibrium force that softens this shift in the sector allocation is the wage rate reaction. By the equilibrium condition 3.16, an increase in non-agricultural workers puts downward pressure on wages in that sector.

Changes in average individual productivities have an impact on sector choice only through such a general equilibrium effect on wage rates to the extent that wage rates across sectors are affected differentially. This is true if average individual productivities are differentially changed by education level since differential returns to education across sectors generate a correlation between education level and sector of employment. In particular, if average individual productivities decrease among the uneducated to a greater extent than among the educated, the agricultural sector that employs relatively more uneducated workers experiences a greater loss in labor supply. This translates into a relative wage increase in agriculture through the equilibrium condition 3.16 which subsequently leads to a sector shift into agriculture.

Changes in amenities do not have any direct or indirect effect on the sector composition since amenities are not sector-specific but they affect location choice. Equation 3.18 represents the probability of leaving relative to the probability of staying at home within a given sector S . Considering a conflict effect at origin, as a_c decreases workers are more likely to leave. Similarly, if firm productivities at home go down wage rates w_c^S decrease which encourages leaving.

General equilibrium changes in wage rates in response to education or average individual productivity changes affect the spatial allocation of labor. In particular, if education or average individual productivity decreases, labor supply decreases which puts upward pressure on wage rates and encourages staying. Education losses can also lead to *direct* effects on location choice if moving cost differs by education level. In particular, if moving is more costly for the uneducated, $\tau_{0cd}^S > \tau_{1cd}^S$, a decrease in education encourages more stayers.

Apart from potentially changing the number of movers, the interplay of ed-

ucation, firm productivity, average individual productivity and amenity changes as a result of conflict may also change the composition of movers. How the composition changes depends on the existence and strengths of the effects discussed above. This is, among others, shaped by parameter realizations such as differential returns to education by sector, differential moving cost by education and the extent to which conflict affects the parameters of the model.

3.3 Model Estimation

This section describes how the parameters of the model and the extent to which they are affected by conflict are estimated. While education outcomes are observed in the data, firm-level productivities, average individual productivities and amenities are not. The structure of the model allows for a recursive estimation strategy in four steps, similar to the estimation strategy used by [Bryan & Morten \(2019\)](#). First, I use a measure of observed income variance to identify the Fréchet shape parameter θ that captures the dispersion of individual productivities. Second, the variation of income across sectors, space and education levels identifies labor unit wage rates w_d^S , returns to education ϕ^S and the common component of the Fréchet scale parameter by origin and education \bar{q}_{ec} which measures average individual productivities. The model definition of average incomes (equation 3.10) is used as a regression equation in this step. Third, from estimated wage rates in each location and sector w_d^S I can infer firm-level productivities A_d^S using the market clearing conditions. Fourth, I make use of the fact that location and sector choice depend on amenity and wage rate differences across space and sectors as well as migration cost (equation 3.8). Conditional on estimated wage rates w_d^S , observed migration flows and sector choices identify amenities a_d and migration cost τ_{ecd}^S .

3.3.1 Step 1: Estimating Productivity Dispersion θ

The Fréchet distribution permits the following expression of moments of average income:

$$\frac{var[m_{ecd}^S]}{\overline{m_{ecd}^S}^2} = \frac{\Gamma(\frac{\theta-2}{\theta})}{\Gamma(\frac{\theta-1}{\theta})^2} - 1 \quad (3.19)$$

To use this and further relationships from the model in the estimation, I construct a dataset in which the unit of observation is a (c, e, d, S) cell on the migration matrix. Throughout, the education realization is a simple binary variable indicating whether workers have finished primary school or not. For each origin-education pair (151 origin chiefdoms \times 2 education levels), I consider outcomes in each destination-sector pair (151 destination chiefdoms \times 2 sectors).¹⁷

The left-hand side of equation 3.19 is the squared coefficient of variation of income. How income varies within a destination-sector for people sharing the same origin and education level identifies the dispersion of individual productivities. The intuition is that this group of workers faces the same wage rates, human capital and average individual productivity and is selected in the same way. Therefore, the only element that can explain how their income varies is variation in their individual productivities.

Using the observed moment on the left-hand side in each (c, e, d, S) cell, I perform a general method-of-moment estimation of θ . For the second moment on the Fréchet distribution to exist, θ needs to exceed 2. In this admissible range of θ values greater than 2, the function has a unique solution.

3.3.2 Step 2: Estimating Wage Rates w_d^S , Education Returns ϕ^S and Average Individual Productivities \overline{q}_{ec}

Taking the logarithm of equation 3.10 yields the following regression equation:

$$\ln \overline{m_{ecd}^S} = \underbrace{\ln \Gamma \left(\frac{\theta - 1}{\theta} \right) w_d^S}_{\text{Destination-sector FE}} - \frac{1}{\theta} \ln \pi_{ecd}^S + (\phi^A - \phi^N)(e \times I^A) + \underbrace{\phi^N e + \ln \overline{q}_{ec}}_{\text{Origin-education FE}} + \ln \epsilon_{ecd}^S \quad (3.20)$$

where I^A is a dummy variable for the agricultural sector. Average income for workers with origin-education (c, e) who choose destination-sector (d, S) is determined by the wage rate in that destination-sector, their human capital and the average individual productivity draw $q_{ecd}^S = \overline{q}_{ec} \epsilon_{ecd}^S$. The share of workers π_{ecd}^S with origin c and education e who choose destination d and sector S enters

¹⁷The 151 chiefdoms consist of 146 observed chiefdoms (5 missing in the 2018 household data, 3 missing in the 2011 household data with conflict information) in all but the Western Region, the four chiefdoms in the Western Rural District and taking the capital Freetown as one chiefdom.

as a selection term: The more people make that choice, the lower the average productivity (see discussion above and Figure 3.1).

Observing π_{ecd}^S and having estimated θ , we can fully control for this selection mechanism by plugging this information into the equation. Taking $\ln \epsilon_{ecd}^S$ with mean 0 as an error term,¹⁸ a regression¹⁹ of $\ln \overline{m_{ecd}^S} + \frac{1}{\theta} \ln \pi_{ecd}^S$ on destination-sector fixed effects, origin-education fixed effects and observed education realization times sector choice identifies the wage rates w_d^S , origin-education component of the average individual productivity $\overline{q_{ec}}$, and differential returns to education in the two sectors $\phi^A - \phi^N$.²⁰ Intuitively, controlling for the selection into a destination and sector, variation in income across space, sector and education levels identifies the wage rates, average individual productivities and returns to education.²¹ Using the θ estimates from Step 1, I can recover estimates of w_d^S from the destination-sector fixed effects.

3.3.3 Step 3: Computing Labor Supply L_d^S and Firm Productivity A_d^S

Using estimates from the previous steps and observed origin populations by education level $\overline{N_{ec}}$ allows me to compute labor supply in each destination and sector as stated in equation 3.15. Having computed labor supplies and drawing on my w_d^S estimates from Step 2, I only need an estimate of the elasticity of substitution σ to proceed with the identification of firm-level productivities A_d^S . I borrow the

¹⁸The motivation for taking $\ln \epsilon_{ecd}^S$ as an error term is that this is assumed to be random variation in the average individual productivities, after taking out the origin-education common component $\overline{q_{ec}}$. Conceptually, assuming randomness here is innocuous. If people were particularly productive in some sectors or destinations (across all origins or education levels), the estimation here essentially loads this onto the sector-destination fixed effects which are used in the next step to identify firm productivities A_d^S . Roughly speaking, when observing high income in a particular sector-destination, this means that I cannot disentangle whether this comes from high individual productivity draws for that sector-destination or because firms in that sector-destination are very productive. Taking $\ln \epsilon_{ecd}^S$ as a random error term, the estimation strategy always identifies this as firm productivity. However, conceptually, this distinction does not seem relevant. If all individuals working for firms in a particular sector-destination are particularly productive, this can be interpreted as high firm productivity.

¹⁹In order to be able to make use of information when $\pi_{ecd}^S = 0$ and deal with potential heteroskedasticity issues introducing bias in this log-specification, I follow [Silva & Tenreyro \(2006\)](#) and make use of Poisson pseudo-maximum likelihood (PPML) estimation for this equation.

²⁰With sector-origin fixed effects, I am not able to separately identify ϕ^A , ϕ^N and $\overline{q_{ec}}$. Instead, I can identify $\phi^A - \phi^N$, $\ln \overline{q_{0c}}$ for the uneducated and $\phi^N + \ln \overline{q_{1c}}$ for the educated. For all further estimations and simulations, however, this information suffices since average individual productivities $\overline{q_{ec}}$ and human capital $\exp(\phi^S e)$ only enter jointly in these calculations.

²¹Destination-sector fixed effects and origin-education fixed effects are only identified up to scale relative to each other since origins and destinations are the same locations. As a normalization, I choose the origin-education fixed effect of Freetown to be 0 with the implication that $\exp(\phi^N) \overline{q_{1,Freetown}} = 1$. Therefore, all other origin scale parameter average estimates $\overline{q_{ec}}$ are evaluated relative to the distribution for educated people in the capital.

value from the literature and set $\sigma = 4$.²²

With these values in hand, firm-level productivities are identified up to scale in the market clearing conditions 3.16, restated here for ease of reference:

$$\left(\frac{w_d^S}{w_f^T}\right)^\sigma = \left(\frac{A_d^S}{A_f^T}\right)^{\sigma-1} \frac{L_f^T}{L_d^S} \quad \forall S, T \in \{A, N\} \quad \forall d, f \in \mathcal{K} \quad (3.21)$$

I normalize $A_{Freetown}^N \equiv 1$ and can then recover A_d^S for each destination and sector one-by-one. The normalization essentially implies that all values of A_d^S are measured relative to non-agricultural firm productivity in the capital.²³

3.3.4 Step 4: Estimating Amenities a_d and Migration Cost

$$\tau_{ecd}^S$$

In order to estimate amenities and movement cost across sectors and destinations, I consider the share of leavers within a sector relative to stayers. This yields the following equations (the logarithm of equation 3.18):

$$\begin{aligned} \frac{\ln \pi_{ecd}^S - \ln \pi_{ecc}^S}{\theta} &= \ln a_d - \ln a_c + \ln w_d^S - \ln w_c^S \\ &+ \ln(1 - \tau_{ecd}^S) - \ln(1 - \tau_{ecc}^S) + \ln \epsilon_{ecd}^S - \ln \epsilon_{ecc}^S \end{aligned} \quad (3.22)$$

Using estimated θ, w_c^S and observed migration flows across sectors and destinations π_{ecd}^S , equation 3.22 identifies amenities up to scale. I treat the whole expression on the bottom involving τ and ϵ as a residual in a regression. The amenities are coefficients on the regressor $I_{d=k} - I_{c=k}$ which is a destination minus an origin dummy variable. Intuitively, controlling for wage rate differences across space, migration flows are governed by amenity differences between locations and migration cost.

Under the assumption of symmetric migration cost, amenity differences and migration cost can be identified separately. In this case, amenity differences

²²I follow papers that make use of a similar elasticity of substitution. [Bryan & Morten \(2019\)](#) and [Allen & Arkolakis \(2014\)](#) consider an elasticity of substitution of Armington goods across space within a country but do not have a sector dimension. They use a value of 8 for the elasticity. [Hsieh et al. \(2019\)](#) and [Bernard et al. \(2003\)](#) use values between 3 and 4 for the substitution between goods across industries and countries, respectively. Conceptually, the fact that the good I consider varies across both sectors and space makes it most comparable to the notion of different industries. I therefore choose a value of 4 but discuss robustness of my main results to values of σ between 4 and 8 in section 3.5.3.

²³An introduction of trade cost in the classic iceberg format would have an implication for the estimation of A_d^S in this step. This is briefly outlined in Appendix D.1.

shape migration flows asymmetrically while migration cost affects migration flows symmetrically. If amenities in location d are much larger than in location c , few people move from d to c while many people make the opposite move. If migration cost between the two locations is large, few people move both ways.²⁴

In the same spirit as before with firm-level productivities, I normalize everything against the capital and set $a_{Freetown} \equiv 1$. For the same reasons as before in step 2, I make use of Poisson pseudo-maximum likelihood (PPML) estimation for this equation.

Using the symmetry assumption of migration cost, adding equation 3.22 for the flow from c to d and the flow from d to c yields an expression of bi-directional migration flows that is only a function of migration cost, random variation and the already estimated parameter θ :

$$\ln \frac{\pi_{ecd}^S \pi_{edc}^S}{\pi_{ecc}^S \pi_{edd}^S} = 2\theta \ln(1 - \tau_{ecd}^S) - \theta \ln(1 - \tau_{ecc}^S) - \theta \ln(1 - \tau_{edd}^S) + \theta \ln \frac{\epsilon_{ecd} \epsilon_{edc}}{\epsilon_{ecc} \epsilon_{edd}} \quad (3.23)$$

Focusing on the τ elements, this expression picks up precisely how the symmetric element of migration flows is governed by migration cost. If few people move *both ways* between c and d relative to those who stay at home, this must be driven by high migration cost.

The τ expression on the right hand side uncovers migration cost between two locations relative to the cost of staying at home in both locations. The cost to enter a particular sector at home may be different for agriculture and non-agriculture. In particular, suppose it is costless for people to stay at home and work in agriculture, that is, $\tau_{ecc}^A = 0$. In this case, τ_{ecc}^N captures the cost to enter the non-agricultural sector. This may be driven by the fixed cost to set up a business or the need to move to an urban area (even within the same chiefdom) to engage in non-agricultural work. In order to capture this cost, I use the sector share differential within a location (the logarithm of equation 3.17):

²⁴Asymmetries in migration cost between two locations, that is $\tau_{ecd}^S \neq \tau_{edc}^S$, would be loaded onto the amenity estimate. Since amenities are the same across education levels and sectors within a location while migration cost is education- and sector-specific, the amenity estimate would be a composite of amenities and the average asymmetry in migration cost across education and sectors. This would only affect the interpretation of the estimate, but not any substantial results in counterfactual simulations performed below.

$$\begin{aligned} \frac{\ln \pi_{ecc}^A - \ln \pi_{ecc}^N}{\theta} &= \ln w_c^A - \ln w_c^N + (\phi^A - \phi^N)e \\ &+ \ln(1 - \tau_{ecc}^A) - \ln(1 - \tau_{ecc}^N) + \ln \epsilon_{ecc}^A - \ln \epsilon_{ecc}^N \end{aligned} \quad (3.24)$$

Abstracting again from the ϵ terms and under the assumption $\tau_{ecc}^A = 0$, this equation identifies the cost to enter the non-agricultural sector at home τ_{ecc}^N , given observed movement flows between the sectors, estimated wage rate differences and estimated human capital differences. Intuitively, if we observe few people working in the non-agricultural sector and many people working in agriculture in a given origin chiefdom c , even after controlling for wage and human capital differences between the two sectors, this must be driven by some friction to enter the non-agricultural sector. On average, I estimate a substantial friction. It is estimated to be 0.4, that is, workers have to forgo 40% of their utility to work in non-agriculture.²⁵ We can use the estimate of τ_{ecc}^N (and τ_{edd}^N) to identify τ_{ecd}^N from the estimate coming out of equation 3.23.²⁶

3.4 Estimation Results

3.4.1 Model Parameters and Validation

Table 3.1 shows the estimated model parameters. The dispersion parameter θ is estimated to be 4.729. In relation to [Bryan & Morten \(2019\)](#) who estimate

²⁵Put differently, the difference between wages in agriculture and non-agriculture is much larger than what human capital differences and the sector composition would suggest. In order to discipline the model to predict a relatively low share of workers in non-agriculture given the large wage differences, we need a substantial cost to enter that sector. This cost parameter relates to the literature on the agricultural productivity gap (see for example [Gollin et al., 2014](#); [Hicks et al., 2020](#); [Lagakos et al., 2020](#); [Young, 2014](#)). My estimate of a large friction is broadly in line with this literature.

²⁶To fix ideas, I have assumed $\tau_{ecc}^A = 1 \forall c$ and abstracted from the ϵ elements which are random variations with a mean of 1. In fact, what I identify with the described estimation procedure is in its exponentiated form a combination of τ and ϵ terms:

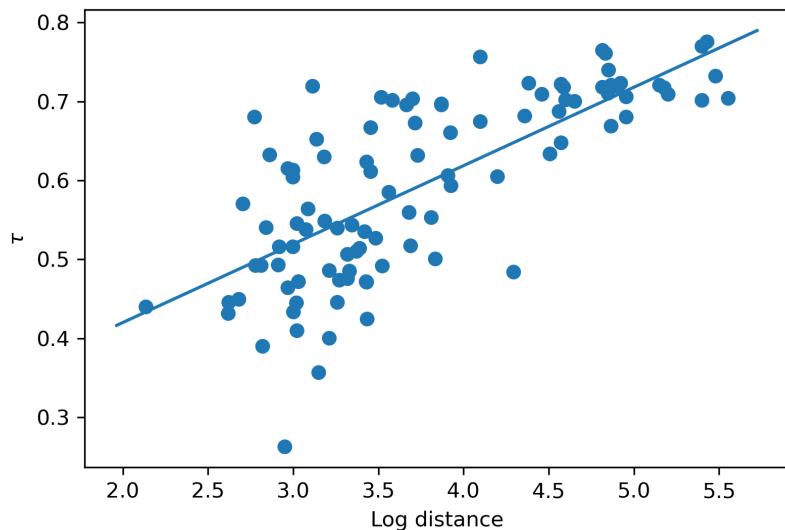
$$\frac{(1 - \tau_{ecd}^S) \sqrt{\epsilon_{ecd}^S \epsilon_{edc}^S}}{\sqrt{(1 - \tau_{ecc}^S)(1 - \tau_{edd}^S) \epsilon_{ecc}^S \epsilon_{edd}^S}} \quad (3.25)$$

In some sense, assuming $\tau_{ecc}^A = 1 \forall c$ is just a normalization. The weaker assumption we require is simply that the cost to enter the agricultural sector at home is the same in each location. Setting it to 1 is simply a normalization. While the friction to enter the non-agricultural sector relative to agriculture seems plausible (and empirically real), there is no good reason to believe that there are differential frictions to enter the (default) agricultural sector at home in different chiefdoms. Regarding the ϵ terms, as long as they are random with a mean of 1, our expression above identifies the correct migration cost on average.

this object as well, I find parameters that compare plausibly to theirs. Their equivalent estimate of θ is 3.18 for Indonesia and 2.69 for the US. The degree of productivity dispersion this measures can be interpreted as the degree of similarity of goods produced in different locations. It would therefore be expected that less developed countries with a smaller range of varied goods produced would have a smaller degree of dispersion which is reflected in a higher θ realization.

Table 3.1: Model Parameters

Parameter	Description	Value	Source
θ	Fréchet dispersion	4.729	Estimation
$\phi^N - \phi^A$	Difference in education returns	0.247	Estimation
σ	Elasticity of substitution	4	Literature
A_d^A	Agricultural firm productivity	0.054	Estimation
A_d^N	Non-agricultural firm productivity	0.113	Estimation
a_d	Amenities	0.902	Estimation
\bar{q}_{0c}	Avg. individual productivity for uneducated	1.005	Estimation
$\exp(\phi^N)\bar{q}_{1c}$	Avg. individual productivity for educated	1.435	Estimation
τ_{0cd}^A	Migration cost for uneducated in A	0.490	Estimation
τ_{0cd}^N	Migration cost for uneducated in N	0.666	Estimation
τ_{1cd}^A	Migration cost for educated in A	0.406	Estimation
τ_{1cd}^N	Migration cost for educated in N	0.687	Estimation
N_{0c}	Origin population of uneducated	1204	Observed
N_{1c}	Origin population of educated	425	Observed


Note – Normalizations: $A_{Freetown}^N = a_{Freetown} = \exp(\phi^N)\bar{q}_{1,Freetown} = 1$. Parameters $\theta, \phi^N - \phi^A$ and σ are defined at the country level. For all other parameters, the mean at the country level is reported.

The returns to education estimates show a great differential by sector. This estimate stems from regression equation 3.20 with log wage as an outcome variable and can therefore be interpreted as a relative return. Returns to primary school education in non-agriculture exceed returns to education in agriculture by 25 percentage points.

Considering migration cost by sector and education level, there is a significant difference by sector. It turns out to be much more costly for people to enter the non-agricultural sector and move somewhere than the agricultural sector. Relative to [Bryan & Morten \(2019\)](#) who find 39% migration cost in Indonesia, I find generally higher migration cost in Sierra Leone. The average across both education levels and sectors is 56%. Like in their case, I find a strong positive correlation between my estimate of τ and log distance between two places. Figure 3.3 displays the strong positive relationship with distance which suggests that the

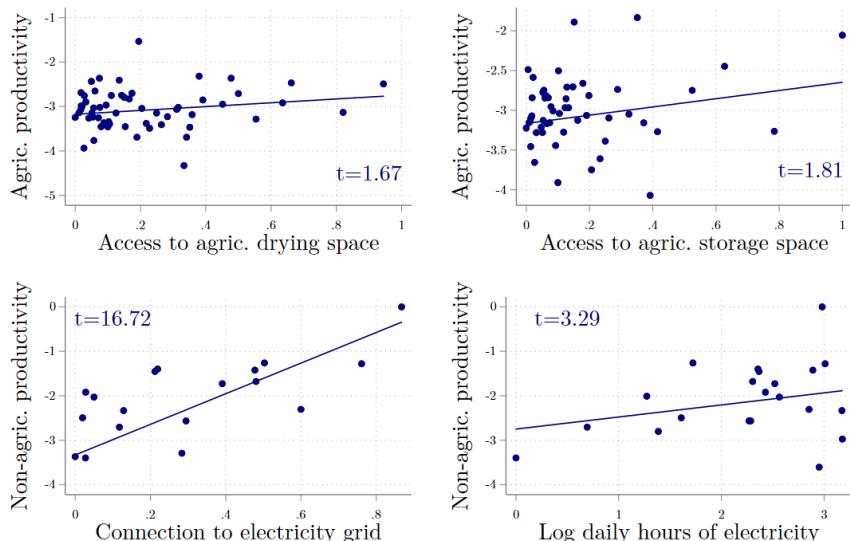
estimated parameters capture something real about the cost of moving.

Figure 3.3: Migration Cost and Distance

Note – Binscatter of the relationship between migration cost and log distance between locations. The line is the OLS line of best fit.

Another interesting fact about estimated moving cost is that there is a clear differential by education level in the agricultural sector. Uneducated people have to forego 8.4 percentage points more of their income when leaving one's origin than educated people in that sector. There is no (strong) differential by education level in non-agriculture. This could reflect a dissimilarity in crops across space whereby educated farmers are better able to adapt to different crops. Alternatively, this may also be due to an information barrier or the degree of connections to other chiefdoms. Educated farmers may be better informed about crops or opportunities for agricultural work elsewhere or better connected to farmers away from home. Since integration into a new chiefdom in Sierra Leone is important in order to work there, this could be a key driver of the education differential.

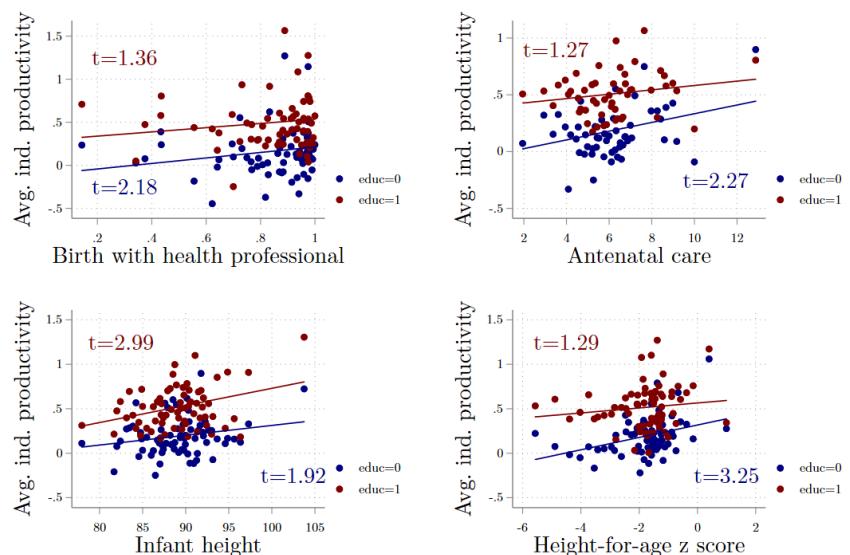
The estimates of labor unit wage rates by sector are shown in Figure B5 relative to the distribution of observed income. In line with the income distribution, labor unit wage rates in non-agriculture are higher than in agriculture. Interestingly, their variation is also greater. Generally, there is substantial variation in wage rates. The highest wage rates differ from the lowest wage rates by a factor of more than ten.


Firm-level productivities vary similarly substantially.²⁷ Average agricultural

²⁷Their distribution by sector is shown in Figure B6.

firm productivity is 5% of the non-agricultural firm productivity in the capital and average non-agricultural firm productivity is 11% of non-agricultural firm productivity in the capital. To assess whether these estimates are capturing something real about firm productivities in Sierra Leone, I correlate them with observed variables in the data that could plausibly be related to firm productivities: Access to agricultural drying and storage space, connectivity to the electricity grid and the number of hours electricity is available in a chiefdom. Importantly, these are variables that are *not* used anywhere in the estimation strategy. Figure 3.4 demonstrates the result. Agricultural productivity estimates are strongly positively correlated with access to agricultural drying or storage space. Similarly, non-agricultural productivity estimates are highly positively correlated with measures of the existence and extent of electricity connection.

Figure 3.4: Correlates with Firm-level Productivities


Note – Binscatter plots with line of best fit of the relationship between \log (non-)agricultural firm-level productivity $\ln A_d^A$ ($\ln A_d^N$) and various outcomes on the x -axis.

In a similar exercise, I consider the estimates of average individual productivities²⁸ and their relationship with information in the data that could plausibly capture them but is not used anywhere in the estimation strategy itself. These parameters are estimated off origin-education fixed effects and essentially capture the average productivity that people from a certain origin and education level possess irrespective of which destination they end up living and working in. Education and the health environment at a young age are arguably important

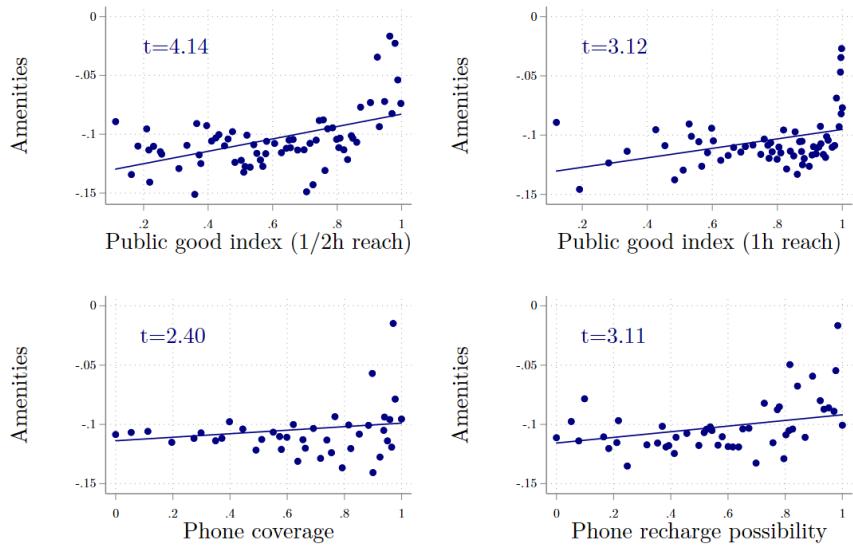
²⁸Their distribution by education level is shown in Figure B7.

drivers of such origin productivities. There is indeed a growing literature that suggests that the state of healthcare at a very young age (in utero or as an infant) can play a very important role for life outcomes.²⁹ Education is explicitly controlled for, albeit in quite a coarse way, when average individual productivities are estimated. Therefore, I consider four variables that capture the state of healthcare at birth in a chiefdom and correlate these with the estimated average individual productivities as a plausibility check: (i) the probability that a health professional is present at birth, (ii) how many times antenatal care pregnant women receive on average, (iii) the average height of infants, and (iv) the average height-for-age z score. The results are shown in Figure 3.5. The estimated average individual productivities are clearly positively correlated with all the four outcomes and significant at conventional levels in most cases.³⁰

Figure 3.5: Correlates with Average Individual Productivities

Note – Binscatter plots with line of best fit of the relationship between log average individual productivity among the uneducated (educated) $\ln \bar{q}_{0c}$ ($\ln \bar{q}_{1c}$) and various outcomes on the x-axis.

Finally, consider the estimates of amenities.³¹ In a similar exercise as before,


²⁹See for example Almond (2006); Almond & Currie (2011a,b); Maccini & Yang (2009). Since early-life health shocks can have important long-run implications, the literature analyzing the effect of conflict on health outcomes typically focuses on health at a very young age as well (e.g. Akbulut-Yuksel, 2014; Akresh et al., 2012a,b; Bundervoet et al., 2009; Galdo, 2013; Islam et al., 2016; Kesternich et al., 2014; Saing & Kazianiga, 2020). To the extent that the average individual productivities \bar{q}_{ec} capture the state of health at birth, the estimates of how conflict affects \bar{q}_{ec} relate to this literature.

³⁰When considering workers today, the relevant education and health environment that may be a key element of \bar{q}_{ec} is the environment when they were young. Due to lack of accurate earlier data, however, I still consider the state of healthcare in 2018. For this sense check to work, the implicit assumption is that there is some stationarity in the state of healthcare within chiefdoms over time.

³¹Figure B8 displays the distribution of amenities across space. Compared to wage rates,

I also test the plausibility of these estimates by correlating them with observed variables in the data that plausibly reflect amenities. From information on access to eight public goods and services, I construct two public good indices. In particular, the public goods indices measure whether the following public goods and services are within 30 or 60 minute reach: (i) supply of drinking water, (ii) a food market, (iii) public transportation, (iv) a primary school, (v) a secondary school, (vi) a health clinic, (vii) a hospital, and (viii) an all year motorable road. I also consider phone coverage and recharge possibilities within chiefdoms. With all these measures, amenities are strongly positively correlated as Figure 3.6 shows.

Figure 3.6: Correlates with Amenities

Note – Binscatter plots with line of best fit of the relationship between $\ln a_d$ and various outcomes on the x -axis. The public good index is the average of eight binary variables indicating whether the following public goods/services are within 30 (60) minutes reach: (i) supply of drinking water, (ii) food market, (iii) public transportation, (iv) primary school, (v) secondary school, (vi) health clinic, (vii) hospital, (viii) all year motorable road

3.4.2 Conflict Effect on Parameters

With these parameter estimates in hand, we can proceed to estimate the impact of conflict on firm productivities, location amenities and average individual productivities directly. For this exercise, I need to take a stance on the specific relationship between conflict and the parameters of the model. For all relevant continuous parameters of the model $par_c \in \{A_c^A, A_c^N, a_c, \bar{q}_{0c}, \bar{q}_{1c}\}$, I assume a log-

firm-level productivities and average individual productivities, amenities vary considerably less across space. Relative to the capital Freetown, average amenities are 13% smaller.

linear relationship between the current parameter value and conflict:

$$\ln \underline{par}_c = \ln \underline{par}_c + \eta \ conflict_c \quad (3.26)$$

where \underline{par}_c is today's counterfactual value of the parameter in the absence of conflict and c is a chiefdom index. In this relationship, η captures the long-run (semi-)elasticity of the key parameters of the economy with respect to conflict and subsequently determines to what extent conflict persistently affects the economy as discussed in section 3.2.2. For the primary education outcome e , I assume that the probability to be educated is linearly affected by conflict. At the chiefdom level, denoting the share of primary educated individuals by e_c , the above relationship holds in levels, that is, the outcome is e_c and the counterfactual value \underline{e}_c .

In order to simulate what the economy would look like today, we are interested in finding the counterfactual firm productivities, amenities and average individual productivities. If the elasticities η can be estimated, an estimate of the counterfactual values would simply be given by their current value minus the estimated effect of conflict:

$$\ln \widehat{\underline{par}_c} = \ln \underline{par}_c - \hat{\eta} \ conflict_c \quad (3.27)$$

Essentially, we would reverse the effect of conflict on the parameters. For this calculation, we need to estimate η . Returning to equation 3.26, let us assume that the counterfactual parameter values $\ln \underline{par}_c$ are made up of some observable and unobservable characteristics of chiefdoms. Using the same observable characteristics as in the reduced-form estimation in section 2.3.2, equation 3.26 can be rewritten as a regression equation:

$$\ln \underline{par}_c = \alpha_{district} + \mathbf{X}_c' \mu + \eta \ conflict_c + u_c \quad (3.28)$$

This equation can be estimated for all parameters of interest $A_c^A, A_c^N, a_c, \overline{q_{0c}}, \overline{q_{1c}}$ (and the equivalent level version for e_c). However, since conflict variation is not exogenous, a simple OLS regression would yield inconsistent results. In particular, the reduced-form results from section 2.4 suggest that conflict intensity is higher in places that have higher income to begin with since the OLS results are considerably weaker than the IV results. In the context of the model, higher

initial income in locations that experience conflict is plausibly related to better parameter values, e.g. larger productivity of firms, in such places before the war. Therefore, when investigating the effect of conflict on firm productivities, a simple OLS estimate would suffer from selection bias.

However, I can employ the same IV identification strategy as in the reduced-form analysis. Using distance to the Liberian border as an instrument for conflict intensity, I can identify the elasticity of firm productivities, amenities and average individual productivities with respect to conflict. Table 3.2 shows the results at the chiefdom level.³²

Table 3.2: Effect of Conflict on Model Parameters

	(1) $\ln A_c^A$	(2) $\ln A_c^N$	(3) $\ln a_c$	(4) e_c	(5) $\ln \bar{q}_{0c}$	(6) $\ln \bar{q}_{1c}$
Conflict	-0.0290 (0.143)	-0.284 (0.260)	0.00470 (0.00596)	-0.0690** (0.0316)	-0.122* (0.0734)	-0.0314 (0.0811)
N	150	138	151	151	151	151
R^2	0.526	0.745	0.824	0.803	0.465	0.432
Estimation Method	IV	IV	IV	IV	IV	IV
First Stage F (KP)	18.71	22.52	18.91	17.23	17.23	17.23
AR p -value	0.929	0.367	0.149	0.032	0.088	0.576
Socio-econ. Controls	✓	✓	✓	✓	✓	✓
District FE	✓	✓	✓	✓	✓	✓

Note – Outcome variables at the chiefdom level: Log firm-level productivity in agriculture and non-agriculture, log amenities, share of primary school educated people and log average individual productivity for uneducated and educated. Conflict standardized and instrumented with distance to border. Heteroskedasticity-robust standard errors at the chiefdom level in parentheses. Kleibergen-Paap robust F statistic and p -value for weak instrument robust Anderson-Rubin test of $H_0 : \beta = 0$ reported. Stars refer to standard t -tests. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

The effect of conflict on agricultural firm productivity (column 1), amenities (column 3) and average individual productivity among the educated (column 6) is small and insignificant.³³ By contrast, there is a clear and strong negative impact on average individual productivity for the uneducated \bar{q}_{0c} . The estimate suggests that a one standard deviation increase in conflict intensity leads to a reduction in average individual productivity draws of uneducated people born in

³²Some firm productivities cannot be estimated since no one actually works in that sector and destination. Hence, we do not have any income information for those sector-destinations. This applies to one location in agriculture and 13 locations in non-agriculture. These chiefdoms are excluded from the analysis of firm productivities here. In the simulations, the firm productivity for those sector-destinations is set equal to zero to rationalize no worker choosing them.

³³While \bar{q}_{1c} for the educated cannot be identified separately from the human capital term $\exp(\phi^S)$ this does not matter in the log-level relationship between parameters and conflict. The human capital term is constant at the country level and enters additively in the logarithmic expression. Thus, it shows up in the constant term and does not change the slope coefficient of interest reported here.

the affected location by 12.2%. The fact that the uneducated seem to be affected while the educated are not may reflect that educated workers are better able to deal with the conflict shock in terms of their individual productivity. They may have had access to better opportunities for recovery and (re)training after the war than the uneducated.

The estimate on average education at the chiefdom level also suggests a strong effect. Across all people born in a particular chiefdom, the share of people obtaining primary school education goes down by 6.9 percentage points as the chiefdom experiences one more standard deviation of conflict.³⁴ The results further suggest that there is a very large effect on non-agricultural firm productivity (column 2). Firm productivities in that sector decrease by 28.4% as locations experience an increase in conflict intensity by one standard deviation. While the latter estimate is not significant at any conventional level, given its non-trivial size and a potentially imprecise IV estimation on the limited sample of 138 chiefdoms, I am cautious not to simply dismiss this result as a zero effect. In the following section, I provide counterfactual simulations both with and without considering effects on non-agricultural firm productivity. On the basis of some results arising in these different scenarios, I will discuss why I consider a real effect of conflict on non-agricultural firm productivity indeed plausible.

3.5 Counterfactual Simulations

Drawing on the estimated model parameters and their elasticity with conflict, I can perform counterfactual simulations.³⁵ These simulations serve two purposes. First, by simulating away the conflict in the whole economy, I can generate a true counterfactual of what the entire Sierra Leonean economy would look like today in the absence of civil war. This allows for the estimation of *aggregate*

³⁴Note that this estimate differs from the estimate presented in the reduced-form analysis. The reason is twofold. First, this analysis is carried out at the chiefdom level whereby chiefdom averages of control variables that vary across individuals are used. This implies that individual and chiefdom-level regressions do *not* mechanically generate the same result. Second, and more importantly, the result presented here considers the share of primary educated people in *origin* chiefdoms. The implicit timing assumption of the model is that people obtain education before moving (see section 3.2.2). To assess the effect of conflict on education before sector and destination choices are made therefore requires considering origin chiefdoms. By contrast, the reduced-form analysis compares education outcomes of workers across destinations. The fact that education differences across destinations with differing conflict intensity is greater than differences across origin chiefdoms speaks in favor of the kind of selective migration discussed in further detail in section 3.5.2: Educated people are leaving conflict locations at a higher rate than the uneducated.

³⁵On a technical level, the model is solved numerically using the iterative procedure described in Appendix E.

effects. Second, by considering the effects that conflict has on the different parameters of the model separately, simulations allow me to make an assessment of the quantitative importance of different *mechanisms*.

In order to generate a no-war counterfactual of the Sierra Leonean economy, the first simulation reverts all effects that the war has on model parameters. I identify three such effects: first, a reduction in education, second, a decrease in firm productivity in the non-agricultural sector, and third, a reduction in average individual productivity among the uneducated. The IV estimates inform the size of the conflict effect.³⁶ By reverting the effect of the war, chiefdoms that experienced conflict have a larger educated population, greater non-agricultural firm productivity and higher average individual productivity for uneducated people born in that chiefdom in the simulated peace counterfactual.

Unlike a partial equilibrium exercise in which everything else is kept constant, the simulation generates a new counterfactual in general equilibrium. The model traces through both the direct implications of these parameter changes for aggregate income as well as the indirect implications by changing the allocation of labor across sectors and space. In theory, changes in non-agricultural firm productivities, education and average individual productivities among the uneducated have different implications for the sectoral and spatial distribution of labor that I consider in turn. First, through their strong direct relationship with non-agricultural wages, lower non-agricultural firm productivities in affected chiefdoms lead to an outflow of non-agricultural workers into the agricultural sector and other chiefdoms.

Second, with higher returns to education in sector N than A , a less educated workforce is a greater harm to the non-agricultural sector. This implies that education losses also translate into a shift into agriculture. A counterforce to this effect is a general equilibrium effect through prices. Since human capital is harmed more in the non-agricultural sector as a result of education losses, the workforce in that sector becomes relatively less productive. In general equilibrium, a less productive workforce in a sector implies higher prices and wages. This is essentially a demand channel. Since people demand all local goods produced in the whole economy, a workforce productivity shock implies that more workers

³⁶Figure B9 displays how this scenario changes the underlying distribution of educated origin populations, non-agricultural firm productivity and average individual productivity among the uneducated.

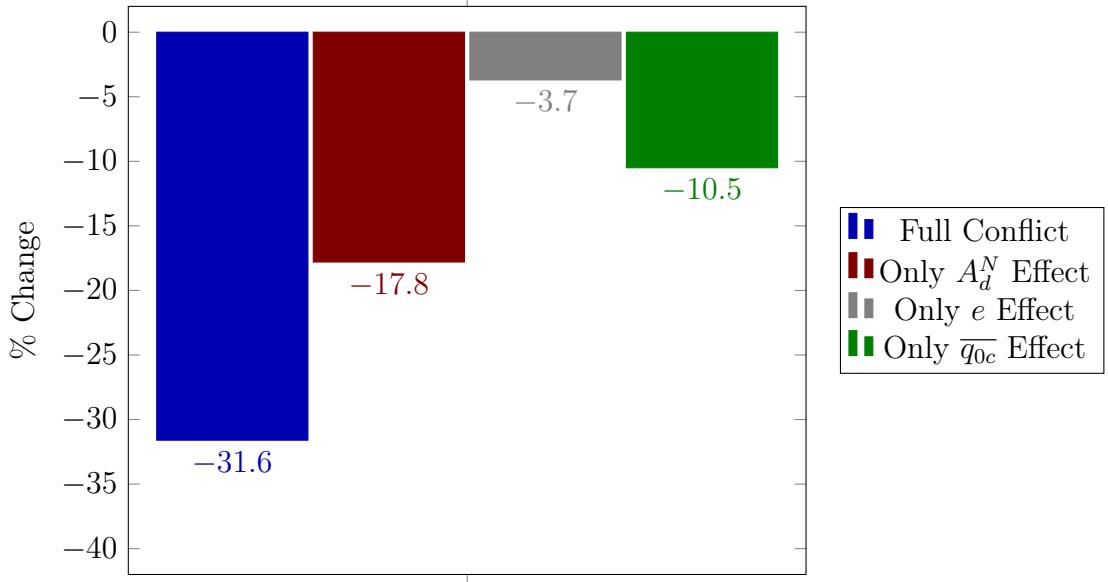
are needed to produce the same amount of the good. This results in an increase in wages and prices and subsequently an inflow of workers into the sector. Empirically, the former direct effect dominates the general equilibrium channel such that affected chiefdoms experience a growth in the agricultural labor force.³⁷

In terms of migration, the same general equilibrium effect as discussed above would encourage workers in locations that experience education losses to stay and migrants to flow in with higher wages. Similarly, larger moving cost for uneducated workers in agriculture leads to more stayers in such chiefdoms.

Third, a reduction in average individual productivities among the uneducated only has a general equilibrium effect through prices and wages. Conceptually, the effect is the same as the general equilibrium effect of human capital changes described above. As the workforce is less productive in a particular sector and location, wage rates increase which leads to an inflow of workers into that sector and location. Since uneducated workers tend to work in the agricultural sector, the agricultural sector is affected by a drop in average individual productivity among the uneducated to a larger extent than the non-agricultural sector. Therefore, such a reduction in individual productivity leads to more agricultural workers staying and more in-migration into affected locations, in particular in agriculture.

Having simulated a peace economy by reverting the effect of conflict on all affected parameters, a second set of simulations serves the purpose of assessing different mechanisms. To this end, relative to the peace economy, I simulate three different partial war scenarios. First, I simulate an effect on non-agricultural firm productivity only. Second, I simulate an effect on education only. Third, I simulate an effect on average individual productivity among the uneducated only.

3.5.1 Main Results

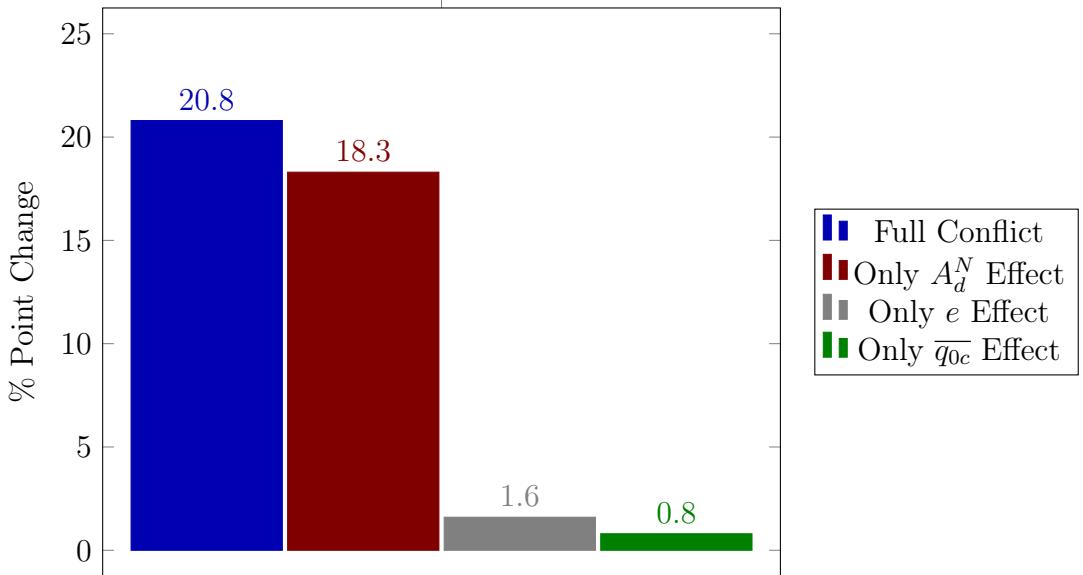

The results for the first simulation are generated by comparing the (baseline calibrated) war economy to the (simulated) peace economy. The results on separate

³⁷Note that this human capital effect at the individual level is conceptually distinct from the *firm* productivity effect. Formally, the difference can be seen in equation 3.16 that characterizes the equilibrium of the economy. Through perfect competition which governs that prices equal marginal cost, a firm productivity decrease in sector N (A_d^N going down) leads to a strong direct effect on wage rates since firm productivity reductions increase marginal cost. The human capital effect is a change in labor supply L_d^N . The negative relationship between wage rates w_d^N and labor supply in the same sector and location L_d^N shown in the equation reflects the general equilibrium effect described.

mechanisms are generated by comparing the (simulated) peace economy to (simulated) partial war scenarios. Figures 3.7 and 3.8 display the results for aggregate income and the aggregate employment share in agriculture.

Figure 3.7: Aggregate Income Effect

Note – Changes in aggregate income in four simulations relative to the peace economy: Full conflict effect on education, firm productivities and average individual productivities (blue), only an effect of conflict on firm productivities (red), only an effect of conflict on education (grey), only an effect of conflict on average individual productivities (green)


The first result to note is that the aggregate income effect of conflict is substantial. Income today is almost 32% lower today than it would be in the absence of the war. With lower pay in agriculture, an aggregate sector shift seems to be an important driver of this result. The economy-wide share of people in agriculture is almost 21 percentage points higher.³⁸

Beyond the total effect, the next three simulation results highlight the relative importance of different mechanisms. If conflict only affected non-agricultural firm productivities but left education and average individual productivities unchanged, the income loss would be almost 18%. Similarly, if it only affected education or average individual productivities, the income losses would be 3.7% or 10.5%, respectively. This highlights that a drop in non-agricultural firm productivity is the most important driver of a long-run impact of civil war on the Sierra Leonean economy.

The results are in sharp contrast to the attention firms and business activity

³⁸These results mask substantial heterogeneity. Considering the full reversal of the war, Figure B10 displays the aggregate income changes in each chiefdom with the largest losers experiencing a 64% reductions in income.

Figure 3.8: Aggregate Agricultural Employment Effect

Note – Changes in aggregate employment share in agriculture in four simulations relative to the peace economy: Full conflict effect on education, firm productivities and average individual productivities (blue), only an effect of conflict on firm productivities (red), only an effect of conflict on education (grey), only an effect of conflict on average individual productivities (green)

receive in the analysis of consequences of conflict in the literature, in particular relative to the amount of analyses considering education as a mechanism. Yet, in the case of Sierra Leone, the education effect of conflict alone can only account for a small part of the full conflict effect. Even along with other individual productivity losses such as health that would be captured in the parameter estimate \bar{q}_{0c} , firm productivity losses remain the most important pathway of the conflict impact on the economy.

It is noteworthy that there do not seem to be important complementarities between the three mechanisms. The income effects from the three separate simulations by mechanism almost perfectly add up to the simulation which considers all of them jointly.

Interpreted more broadly, the difference between the effect driven by firm and average individual productivities including human capital capture essentially the difference between destination and origin productivities. In the data, the parameters A_d^S and $\bar{q}_{ec} \exp(\phi^S e)$ are estimated off destination(-sector) and origin(-education) fixed effects of income, after controlling for selection.³⁹ Following

³⁹This is a slightly simplified characterization of how firm productivities A_d^S are estimated. As section 3.3.3 explains in detail, the destination-sector fixed effects actually only identify wage rates w_d^S and the estimation of A_d^S makes use of these wage rate estimates along with the general equilibrium conditions of the model. However, since there is a strong direct relationship

this interpretation, the results imply the following. As a result of civil war, affected locations in Sierra Leone suffer from a location-level productivity decrease. Everyone who chooses to live in these locations (destinations) experiences this productivity reduction, regardless of where they are from. At the same time, individuals who are *from* locations where war took place suffer in their individual productivity by virtue of being born or growing up in conflict affected (origin) locations. No matter where they move, they carry this productivity loss with them. Both types of productivity effects have sizeable consequences for aggregate productivity. In relation to each other, the destination productivity effect is somewhat more important.

The results on the aggregate agricultural employment share for the three simulations by mechanism differ drastically. A sector shift seems to be almost entirely driven by reductions in non-agricultural firm productivity. Relative to that, education losses or average individual productivity decreases play a negligible role for the sector shift.

Given the large size of the sector shift in the reduced form, these results strongly suggest that the effect of conflict on non-agricultural firm productivity is real. In the absence of it, a sector shift in the aggregate can basically not be generated by the model. As discussed previously, the reduced-form results only identify a spatial difference and may partially capture spatial divergence between more and less affected chiefdoms by conflict. However, for the reduced-form results and the (aggregate) simulation results to be consistent in the absence of an effect of conflict on A_d^N , it would need to be true that there is an extreme degree of sector sorting across space in response to conflict without a meaningful *aggregate* change in the (total) number of agricultural workers. The reduced-form estimate suggests that a chiefdom experiencing high conflict (at the 75th percentile of the conflict intensity distribution) has 23 percentage point more agricultural workers than a chiefdom experiencing low conflict (at the 25th percentile). Therefore, this spatial difference would have to be almost entirely driven by agricultural workers sorting into high conflict locations and non-agricultural workers sorting into low conflict locations with only a slight change in the total share of agricultural workers. Even with large migration flows, this seems implausible. It is much

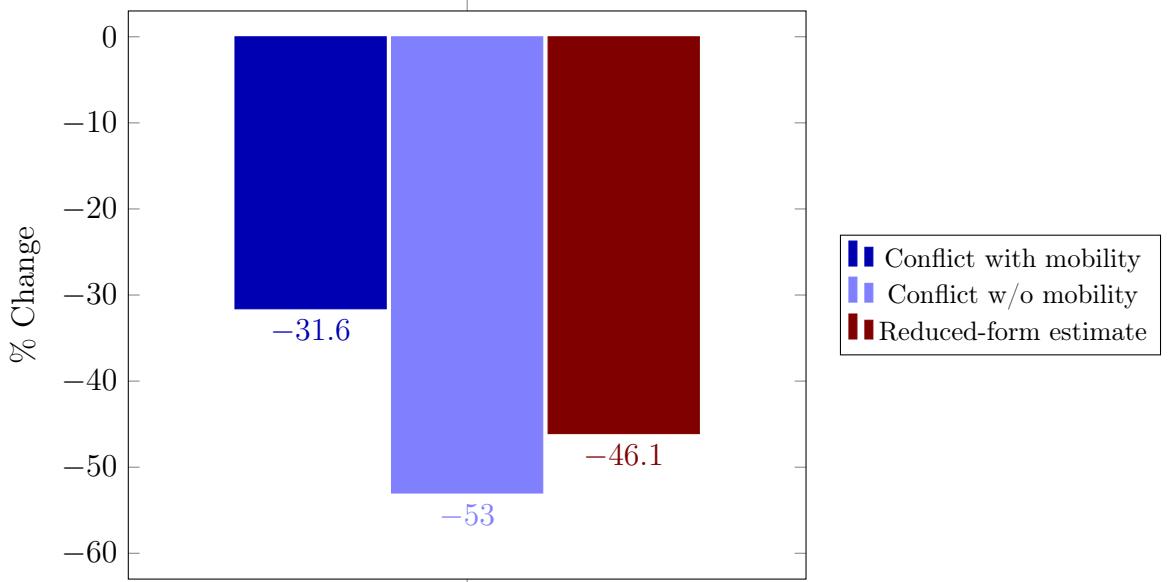
between wage rates w_d^S and firm productivities A_d^S in general equilibrium, it turns out that the estimates of the latter do not drastically differ from the former. To fix ideas, it is therefore a fair approximation to think of A_d^S estimates as destination-sector fixed effects.

more plausible that the total number of agricultural workers increases as a result of civil war and this contributes to a spatial difference in agricultural workers between high and low conflict chiefdoms. This is the case in the first simulation that takes into account an effect of conflict on non-agricultural firm productivity which gives rise to a strong increase in the aggregate share of agricultural workers by 18.3 percentage points.

3.5.2 Selective Migration

While the aggregate income effect of civil war is sizeable, it is substantially smaller than what the reduced-form estimates would suggest. If we were to take the reduced-form estimate and calculate a country-wide weighted average by conflict intensity and chiefdom population we would arrive at a 46% aggregate income loss. The fact that spatial income differences markedly exceed the aggregate income difference suggests that selective migration in response to conflict matters a great deal.

In order to get a sense of the potential importance of migration, I simulate an economy without labor mobility. In particular, relative to the peace economy, the full conflict scenario can be simulated without allowing labor movement.⁴⁰ The results of this simulation are shown in Figure 3.9. The aggregate income effect in this simulation is a 53% reduction which is dramatically different from the 32% reduction in the economy with labor mobility. This suggests that migration plays a large role for the aggregate effect of the war and cannot be ignored when analyzing the consequences of conflict. In particular, it is plausible that a migration response to the civil war in Sierra Leone implies that the spatial income difference between more and less affected chiefdoms is large relative to the aggregate income effect of the war. Positive selection out of conflict zones would generate such a result.


It is therefore worth considering the nature of this migration response. The full conflict scenario actually fails to generate a correlation between conflict intensity and population change in a chiefdom.⁴¹ Table 3.3 shows the result in column (2). The coefficient is very close to zero and insignificant. Interestingly, this slope

⁴⁰On a technical level, this is implemented by setting the cost of migration equal to 1, that is, a mover would keep 0% of their income. In equilibrium, no one moves.

⁴¹This result is in line with [Davis & Weinstein \(2002\)](#) who find that population densities of Japanese cities are unaffected by bombing in the long run.

Figure 3.9: Aggregate Income Effect in Simulations and Reduced Form

Note – Changes in aggregate income in two simulations and in the reduced form. The first simulation corresponds to the original full conflict scenario above. The second simulation implements a full conflict scenario *without* labor mobility.

coefficient is extremely similar to the relationship that can actually be observed in the data. Column (1) shows the result of a regression of conflict changes between 1985 before the war and 2015 after the war on conflict.

By contrast, a conflict simulation that does not account for an effect on non-agricultural firm productivity generates a markedly different result. Albeit marginally insignificant ($p = 0.128$), the coefficient for the same relationship between population change and conflict intensity in that scenario is strongly positive (column 3).⁴² The fact that the relationship between population change and conflict intensity in the data is much better matched in the full conflict scenario is another piece of support for taking the effect of conflict on non-agricultural firm productivity seriously.

While the first simulation including a non-agricultural firm productivity effect suggests that the migration flows are unaffected by the war, it does not speak to the *composition* of movers that may change as a result of the war. Three facts that come from the parameter estimates would indeed indicate that the selection of migrants out of conflict zones changes with conflict in a way that out-migrants

⁴²Note that this coefficient is an economically meaningful effect. It means that a one standard deviation increase in conflict implies population growth by almost 1%. The sign of the relationship is perfectly in line with the labor movement response to education and average individual productivity changes discussed above. Larger movement cost for the uneducated in agriculture and a general equilibrium effect through prices and wages gives rise to population growth in chiefdoms that are more heavily affected by conflict.

are more positively selected on productivity grounds. First, the strong reduction in non-agricultural firm productivity leads non-agricultural workers who are typically more productive and educated than agricultural workers to leave.

Second, more affected chiefdoms by conflict have a larger uneducated workforce. Uneducated workers tend to work in agriculture and migration cost is larger for uneducated agricultural workers. This implies that there are more uneducated agricultural workers who tend to be less productive among the stayers. These two effects can be interpreted as conflict opening up a local poverty trap. It leads to lower education and pushes more people into agriculture while it is relatively harder for those people to leave.

Third, the general equilibrium implication of lower average individual productivity among the uneducated implies higher wages, in particular in the agricultural sector that employs more uneducated workers. This is another selection mechanism that leads to more uneducated workers among the stayers in high conflict chiefdoms.

Table 3.3: Population Change and Conflict

Population Change			
	(1)	(2)	(3)
Conflict	-0.0349 (0.0439)	-0.030 (0.730)	0.855 (0.558)
Constant	0.681*** (0.0436)	0.310 (0.713)	0.375 (0.545)
Source	Data	Full Conflict Simulation	Simulation w/o A_d^N Effect
N	151	151	151
R^2	0.00423	0.000	0.015

Note – Outcome variable: Population change in %. Conflict measure standardized. First column: Relationship in the data. Population change is measured between 2015 and 1985. Second column: Relationship from simulated data. Population change is the relative difference between the simulated peace economy and baseline calibrated war economy. Third column: Relationship from simulated data. Population change is the relative difference between the simulated peace economy and a simulated war economy whereby the simulation only takes into account the effect of conflict on education and average individual productivity among the uneducated. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

3.5.3 Limitations

There are four limitations to this analysis that qualify the results. First, the identification of aggregate effects implicitly assumes that some chiefdoms are

not at all affected by the war. The identification of how conflict affects key parameters of the model rests on within-country comparisons of chiefdoms that are closer to or farther from the Liberian border and therefore experience conflict to varying degrees. In the counterfactual analysis, chiefdoms that are very far from the border with a zero realization on the conflict measure are assumed not to experience any effect of civil war. If those chiefdoms also suffer in some way from the war, my estimates would be an underestimate of the true aggregate effect.

Second, the estimate captures the net effect of civil war in the long run after post-conflict interventions between the end of the war and 2018. Since the international community was engaged in reconstruction work after the war, the aggregate effects I present are not the pure effect of civil war but rather how the economy still suffers after taking into account reconstruction efforts. The pure effect of the war would therefore be weakly greater than my estimate.⁴³

Third, if one were to relax the assumption of costlessly tradable goods across space, the actual effect of conflict on firm productivities may be smaller and my aggregate income effect thus overestimated. With trade cost, my estimates of firm productivities would capture a combination of these productivities and market access of a location. Market access is the weighted sum of all other locations' real GDP where the weights are inverse trade cost (cf. equation D1 in Appendix D.1). Part of the conflict effect on firm productivities that I estimate could stem from a reduction in market access. If market access is lower because trade cost increased as a result of the war, my estimate of the aggregate income effect is not necessarily different but the mechanisms driving this result are – part of the effect would be due to increased trade cost rather than reduced firm productivity. However, if market access is lower because economic performance

⁴³Another potential concern surrounding reconstruction is spatially asymmetric reconstruction that favors certain areas over others depending on their ties to the post-war government. If the extent to which chiefdoms potentially get favorable treatment is systematically related to distance to the Liberian border, this could lead to bias in the estimates of the conflict effect on parameters such as firm productivities which feed into the simulation results. The estimates would capture the effect of the war and the extent of patronage towards certain areas. While it is hard to find evidence on how and where reconstruction took place, existing writings and critiques of post-war reconstruction efforts do not seem to comment on any patronage with implications for the spatial distribution of reconstruction activities. Two important post-war policies and institutional changes were the Disarmament, Demobilization and Reintegration (DDR) program and the decentralization process that involved the reinstatement of local councils at the district level. Both were rolled out in and inherently affected the whole country. While being criticized on a number of grounds such as failing to achieve reintegration of fighters or limited progress in establishing good governance at the local level, there is typically no mention of geographic favoritism in the implementation of these programs (e.g. [Sesay & Suma, 2009](#); [Solomon & Ginifer, 2008](#); [Zhou, 2009](#)).

in close chiefdoms with low trade cost contracted, this contraction should not be loaded on a reduction in the firm productivity parameter. As a result, the actual effect on firm productivities would be less pronounced and the aggregate income effect would be smaller. However, the market access term would contaminate the firm productivity estimates for both agriculture and non-agriculture. Since I do not find any effect of conflict on agricultural firm productivity it is unlikely that the latter channel plays a major role. Therefore, any potential upward bias from assuming free trade across chiefdoms is likely to be small.

Fourth, the simulation results depend on the size of the elasticity of substitution σ . However, both the aggregate income and aggregate sector results are reasonably robust to different values of σ . Figures B11 and B12 show the aggregate income and sector shift changes for alternative σ values of 6 and 8. These alternative values reflect that the relevant literature uses values between 4 and 8.⁴⁴ Both the sector shift and aggregate income effect are stronger for higher values of σ . This is intuitive since the elasticity of substitution governs the trade-off between two competing effects of productivity changes on the sector allocation. As productivity in sector N decreases relative to sector A , the non-agricultural good gets more expensive which leads to lower demand. Hence, production in that sector goes down. At the same time, lower productivity implies that the labor input needed to produce a given amount is larger. The elasticity of substitution determines the strength of the first effect. The larger the elasticity, the stronger the substitution effect and the more people shift sector to accommodate changing demand.⁴⁵

3.6 Conclusion

This chapter investigates the general equilibrium impact of civil war in Sierra Leone. To this end, I develop an economic geography model. To keep track of population movement and its general equilibrium implications in response to the war, labor mobility under migration cost is a key feature of the model. Besides

⁴⁴See a brief discussion in section 3.3.3.

⁴⁵As long as the $\sigma > 1$, the first effect always dominates the second effect and the precise value of σ just determines the extent to which it does. Hence, the result on the sector shift only change quantitatively. If $\sigma < 1$, the first effect is weaker than the second effect and a productivity decrease in sector N implies more people working in that sector. This is indeed Baumol's cost disease argument and shown formally in Ngai & Pissarides (2007). However, empirically, the relevant literature for the elasticity of substitution used in my context suggests values that are considerably larger than 1.

their destination, individuals choose their sector of work subject to an individual productivity draw and firm productivities for each sector and destination. Since returns to education are sector-specific, their education realization also shapes this decision. Conflict can change education, firm productivities, average individual productivities and amenities. This affects aggregate income both directly and indirectly by changing the sector composition and spatial allocation of labor.

The key parameters of the model can be estimated in a simple recursive procedure. In particular, observed income and migration flows identify firm productivities, average individual productivities as well as location amenities. Education outcomes are directly observed in the data. Having estimated all parameters, I can assess the effect of conflict on education, firm productivities, average individual productivities and amenities. I find that education, average individual productivity among the uneducated and firm productivity in the non-agricultural sector are persistently and strongly affected by the war while amenities, agricultural firm productivity and average individual productivity among the educated are not.

Finally, these results can be taken forward for counterfactual simulations of the Sierra Leonean economy in the absence of the war. A full reversal of the war scenario involves reverting the human capital loss, non-agricultural firm productivity drop and reductions in average individual productivity among the uneducated. Comparing this simulation to the observed economy that experienced civil war, I find that Sierra Leonean aggregate income is 31.6% lower today and the economy-wide share of workers in agriculture 20.8 percentage points higher as a result of the war. Running conflict simulations in which I consider the effect on education, firm productivities and average individual productivities separately allows me to assess the quantitative importance of these different mechanisms. Firm productivity losses can account for the largest part of aggregate income reductions with income decreasing by 17.8% due to this mechanism alone. By contrast, while having received much more attention as a mechanism, the impact of conflict on education alone would only lead to a 3.7% reduction in aggregate income. Identifying exactly the relevant elements for firm productivity that are potential drivers behind this and using a similar model structure to learn about the aggregate effect and mechanisms of conflict impact in other settings are left as promising avenues for future research.

Chapter 4

The Impact of Peace: Evidence from Nigeria

4.1 Introduction

This chapter exploits a regional peace policy in Nigeria to shed light on consequences of conflict. Specifically, I ask two questions. First, does peace follow the policy in the Niger Delta region where it was carried out? Second, having established peace, what is the impact of it on overall economic performance, self-employment income and education?

The two key contributions of this analysis are the following. First, on the mechanisms front, while the link between conflict and business activity has received little attention so far, I highlight that this can be an important channel. Indeed, my quantitatively strongest result establishes that there is a large peace dividend¹ for the self-employed. Second, and methodologically, I employ the synthetic control method (SCM) in my evaluation. The method was developed by [Abadie & Gardeazabal \(2003\)](#) in the analysis of conflict on economic performance in the Basque Country in Spain. It has since been used rarely in similar evaluations but this is the first study, to the best of my knowledge, to apply it in the analysis of other outcomes than overall economic performance. This is an important advancement in the literature on the mechanisms of a conflict impact because the method can overcome common pitfalls of alternatively used method-

¹The term “peace dividend” is used in the literature to refer either generally to benefits of newly established peace or, in a different and much more specific context, the potential gains generated by shifting government resources from military expenditures to other uses. Henceforth, I refer to the first notion when using the expression.

ologies. In particular, the commonly used DID approach requires a parallel trend between areas affected by conflict and those that are not. Using data during and after the conflict in Nigeria, I can show that this assumption is violated in my context.

The peace policy analyzed in this study is the Presidential Amnesty Program (PAP) that the Nigerian government implemented in the southeastern Niger Delta region in 2009. The program was a response to resistance activism in the region which turned violent in 2006 and escalated into intense conflict within a few years. In the context of the amnesty program, ex-militants were granted pardon and joined a “Disarmament, Demobilization and Reintegration” (DDR) program in return for surrendering their weapons. In a first step, I document that a period of peace follows the program in the Niger Delta region for at least four years.²

Along with the fact that other parts of Nigeria experience conflict between 2009 and 2013, this provides a unique quasi-experimental setting for the second and main step of my analysis: Estimating the benefits of peace. The empirical strategy is to create a synthetic control region as a weighted average of other states outside the Niger Delta region. The weights are chosen in a way that the synthetic control region resembles the Niger Delta region in all outcome variables closely before the policy is put in place. Serving as a counterfactual, this allows me to estimate the peace dividend by simply comparing the Niger Delta region and its synthetic control region four years later.

As a measure of the overall economic performance, I consider household expenditures. To shed light on some mechanisms that could potentially drive an effect on economic performance in the medium or long run, I also consider education and self-employment income as outcome variables. While education has received a lot of attention in the literature already, there is, to the best of my

²While such a simple time series analysis does not conclusively prove that peace can (only) be attributed to the amnesty program implemented, it would certainly strongly suggest that the policy had a role to play. In any case, for my main analysis of the economic benefits of peace, documenting a period of peace between 2009 and 2013 is sufficient, no matter whether it was (fully) due to the peace policy or not. Indeed, the success of demobilization programs is far from guaranteed. Some papers on such programs in particular (D'Aoust et al., 2018; Gilligan et al., 2012; Humphreys & Weinstein, 2007) or the link between development programs and conflict more generally (Beath et al., 2011; Berman et al., 2013, 2011; Crost et al., 2014, 2016) deliver ambiguous results. Both for repeat violence and economic outcomes, positive, zero and negative effects are found in the literature. The only common theme that seems to emerge to some extent, elaborated on both theoretically and empirically particularly in Berman et al. (2011), is that locally specific programs tend to have a higher probability of success. As opposed to the national DDR programs discussed in the literature, the one I consider is carried out only in the Niger Delta region and in this sense somewhat more local. My finding of conflict reduction in the region following the policy broadly fits within the emerging theme of local success.

knowledge, only one study that analyzes self-employment income as an outcome of conflict ([Velásquez, 2020](#)). Yet, the effect I find for this outcome is the largest one among the three outcomes.

My main findings on economic outcomes are that peace increases household expenditures at the median by 19%, generates 0.5 more years of schooling on average and increases self-employment income at the median by 67% four years later. These results are robust to the alternative DID specification for education where the parallel trend assumption holds and deviate from the specification exactly in the direction of the parallel trend deviation where said assumption is violated. I provide further robustness against migration driving this result in an analysis concerning potential spillover effects from population movement. As a general caveat, however, it is worth noting that my standard errors and other measures imply that there is a substantial degree of uncertainty around my average effects, so that none of my findings should be taken as very precise point estimates.

The effect on household expenditures is indeed large but consistent with most closely comparable studies that evaluate the impact of conflict using the synthetic control method in other contexts ([Abadie & Gardeazabal, 2003](#); [Dorsett, 2013](#); [Gong & Rao, 2016](#); [Matta et al., 2016](#)). More broadly, the result is also in line with an (older) macroeconomic literature that establishes a negative link between conflict experience and economic performance, at least in the short and medium run ([Alesina & Perotti, 1996](#); [Barro, 1991](#); [Cerra & Saxena, 2008](#); [Collier, 1999](#)).³

An important driver of increased economic prosperity as a result of peace seems to be improved (small) business activity in the Niger Delta region. As the Niger Delta is an oil-rich region, it may however be plausible to have such large effects. With oil production picking up as a consequence of peace ([Walls & During, 2020](#)), not only will small businesses surrounding the oil industry benefit, but also all other kinds of businesses that use oil or derivative products as key inputs.

³To what extent such effects persist in the long run or whether there is convergence in line with the logic of the Solow model is not clear. While some estimates suggest there is convergence, other studies find evidence for the opposite. In particular, some direct evidence on GDP ([Chen et al., 2008](#); [Gates et al., 2012](#); [Miguel & Roland, 2011](#)) and on city size ([Brakman et al., 2004](#); [Davis & Weinstein, 2002](#)) suggest convergence. By contrast, other direct evidence on GDP ([Akbulut-Yuksel, 2014](#); [Galdo, 2013](#); [Islam et al., 2016](#)) find no convergence. The below mentioned range of studies on education outcomes that should affect economic performance according to standard theory would also suggest that there is no convergence, at least not within a lifetime of those affected by conflict.

There are only few studies that analyze the effect of peace or conflict on business activity (Bozzoli et al., 2012; Camacho & Rodriguez, 2013; Collier & Duponchel, 2013; Deininger, 2003; Velásquez, 2020). This is partly owed to the problem of identification. Existing papers almost exclusively employ time and conflict variation for identification which requires both pre- and post-conflict observations. In particular for longer conflicts, this is a non-trivial data requirement.⁴ With the exception of Velásquez (2020), all studies consider the extensive margin only and find that conflict reduces the probability of running a business. Using average self-employment income allows me to capture both the extensive and intensive margin of (small) business activity. On the extensive margin, it captures the extent to which more productive business owners enter the market in a more conducive environment of peace as well as how their entry may induce more competition which crowds out low-productivity competitors and engenders higher average income in more productive businesses. On the intensive margin, it captures the extent to which already existing business owners increase their business activity. Another important contribution is expanding the methodological portfolio. This study is the first one to use the synthetic control method for the analysis of business outcomes.

With regards to the effect of conflict on education, the majority of papers employs a DID approach that exploits school age (cohort) variation and geographic conflict variation within a country (Akbulut-Yuksel, 2014; Akresh & De Walque, 2011; Chamarbagwala & Morán, 2011; Islam et al., 2016; Kesternich et al., 2014; Leon, 2012; Márquez-Padilla et al., 2015; Merrouche, 2011; Pivovarova & Swee, 2015; Saing et al., 2017; Shemyakina, 2011; Swee, 2015; Valente, 2014).⁵ In light of the fact that the DID approach is predominantly used, it is not clear whether many of these studies suffer from systematic bias arising because of a potential violation of the parallel trend assumption or spillover effects. Using cohort variation, the parallel trend assumption would be violated if control cohorts in conflict areas are affected by conflict as well. Indeed, some studies that focus on primary education take younger people (older than 16 or 18) who could still reasonably

⁴Collier & Duponchel (2013) only have post-conflict data in their analysis of firm activity in Sierra Leone and make use of an instrument for identification. However, instrumental variable estimation strategies require a valid instrument for conflict which is typically hard to find as well.

⁵A notable exception is Blattman & Annan (2010) who can make use of a quasi-experimental setting with plausibly random “recruitment” abductions by rebels in Uganda.

be in secondary or tertiary education as control cohorts although they might also suffer in their educational outcomes as a result of the war.

I address both issues by using the synthetic control method and delivering robustness checks against relevant spillover effects, in particular around migration. Unlike the cohort variation used in DID approaches, the synthetic control procedure in my setting exploits pre- and post-peace data. The fact that I use the variation in actual time periods covering both conflict and peace enables me to much more clearly test the pre-trend on years before the peace-generating amnesty policy.⁶ The fact that I find an effect that is broadly in line with the set of estimates found in the literature, ranging between a 0.2 and 1 year loss of schooling as a result of conflict, provides further credibility to a strong effect of conflict on education. This is an important finding because it speaks in favor of a long-run effect of conflict on life outcomes such as earnings through the human capital channel.

The remainder of the chapter is organized as follows. Section 4.2 provides some contextual background to the Niger Delta amnesty policy, section 4.3 informally explores potential theoretical channels involved in the consequences of conflict for education, self-employment income and household expenditures while section 4.4 describes the data. Section 4.5 explains and discusses the empirical design of my study in more detail, section 4.6 presents the results and section 4.7 delivers some relevant robustness checks. Finally, section 4.8 concludes.

4.2 Context

After independence from the British in 1960, a civil war in the late 1960s and almost thirty years of military rule following the civil war, Nigeria has been under the rule of democratically elected governments and presidents since 1999. However, different parts of Nigeria have still experienced various degrees of conflict after democratization. A particularly important region of Nigeria where this happened is the Niger Delta region.

This region is an oil rich region in the southeastern part of Nigeria. Since

⁶Few DID studies can convincingly address parallel trend and spillover concerns, mainly because it is much harder to address such concerns in a DID setting with cohort variation. For example, the typical placebo tests fails to show an effect if control cohorts are indeed affected positively but in a similar way. In addition, many studies do not seriously consider migration during times of conflict which could be a main driver of spillover effects.

oil revenues account for a large part of the government's fiscal budget, it has traditionally been a very important region for policymakers (Abazie-Humphrey, 2014; Obi, 2014). As Obi (2014) lays out, the government has taken over federal control over oil in the 1960s and since then sharply decreased revenue derivation, that is, the share flowing into regional budgets. This has created tensions in the Niger Delta region and resistance activists have become a key actor since the late 1990s. In particular, the "Movement for the Emancipation of the Niger Delta" (MEND) has emerged and became violent from 2006, marking "an escalation from uncoordinated protests and conflicts into a trans-Delta insurgency." Their violent activities were characterized by oil worker abductions, attacks of government forces and oil installation sabotages which led to a conflict involving a rapid decrease in oil production and increase in fatalities.⁷

By the time Umaru Yar'Adua got elected as president in April 2007, the Niger Delta conflict has become a pressing issue for the government to solve due to its dependency on oil revenues. He announced an amnesty program on 25 June 2009 and established the "Niger Delta Peace and Conflict Resolution Committee" (NDPCRC) in July. The amnesty program targeted ex-militants and granted "unconditional pardon to all persons who have directly participated in the commission of offences associated with militant activities in the Niger Delta" in return for surrendering their weapons, renouncing the use of violence and taking part in a government-sponsored "Disarmament, Demobilization and Reintegration" (DDR) program (Obi, 2014). In fact, the DDR program was a key and hugely expensive element of the program.⁸ Ex-militants participating in the program received a monthly stipend of 65,000 NGN (Nigerian Naira, approx. 440 USD in 2009), support and vocational training to facilitate their reintegration into society. The amnesty program took effect on 6 August 2009 and militants had a period of 60 days to sign up (The Guardian, 2009). 20,192 rebels signed up during this period. However, further militants were still approved after the deadline which accumulated the total number of participants to 30,000 after all (Oluduro & Oluduro, 2012; Premium Times, 2012).

⁷In fact, as can be seen below, the number of reported fatalities drastically escalates only in 2009. From 2006 to 2008, therefore, the conflict seems to have manifested itself rather in great uncertainty, pipeline explosions, and threat of terror.

⁸According to Abazie-Humphrey (2014) who refers to a press conference with Kingsley Kuku, the chairman of the amnesty program, annual budgets for the program up until 2014 amounted to more than 1.8 billion US dollar.

The statistics on post-2009 fatalities show and analysts generally agree that the program was effective in establishing peace in the region, at least for a couple of years (Abazie-Humphrey, 2014; Obi, 2014; Oluduro & Oluduro, 2012; Oluwaniyi, 2011).⁹ Abazie-Humphrey (2014) argues that peace in the region served as a condition for development and growth through a more stable business environment and the completion of infrastructure project. In a simple analysis comparing mean outcomes for the artisan fishing industry, Achoja et al. (2013) find some suggestive evidence of an improved business situation. Therefore, it seems worthwhile to exploit the amnesty program as a policy shock generating peace to investigate its effect on a range of outcomes.

4.3 Theoretical Considerations

For each of the outcomes I consider, there are multiple channels how peace may affect them. Since the direction of the effect is usually clear, I resort to a brief verbal discussion of the possible mechanisms involved without a formal model. After all, the empirical exercise is mainly about the quantification of these effects. In addition, I focus on a discussion of the converse effect, namely the channels how conflict affects my outcomes of interest, in order to stay in line with the vast majority of the literature regarding and estimating the issue from this angle. The effect of peace naturally operates in the opposite direction.

As for GDP or general economic performance, Collier (1999) provides an overview of potential channels. Conflict leads to the destruction of resources, physical and human capital as well as infrastructure, disruption of order, diversion of public expenditure from output-enhancing activities, dissaving, increased uncertainty and decreased foreign investment. From this macro perspective, such effects should all lead to a reduction in economic performance. Conversely, peace as a reversion of these effects should lead to increased economic performance, especially in the medium and long run. However, related to the idea of a rapacity effect as a cause of conflict (Dube & Vargas, 2013), if there is conflict over a val-

⁹These authors are, however, sceptical as to whether the policy is able to generate lasting peace. They generally criticize it for not addressing fundamental causes of the conflict in spite of the government's rhetoric viewing the policy as a pathway to sustainable peace. Indeed, some increases in conflict can be observed in the region from 2015, but in light of the Boko Haram insurgency affecting the whole country, it is difficult to causally link this to a failed amnesty policy. In any case, my analysis focuses on outcomes in 2013 and the data shows a period of peace between 2009 and 2013.

able resource (which is the case with oil in the Niger Delta), rebels benefit from resource theft and revenues. Therefore, for those households involved in conflict, peace may mean a drop in their economic performance, at least in the short run.¹⁰ Nonetheless, it is plausible to expect the reversion of the above effects as peace unfolds to operate on a larger scale, be relevant for all households and therefore dominate potential immediate economic losses from resource theft in the medium and long run.

The effect on self-employment activity or income is partly related to general economic performance effects. The obvious link is that any changes in households' income translate into demand changes. A demand reduction translates into contraction of businesses providing the goods demanded. Other than through this link, conflict also directly affects self-employment. Destruction of infrastructure and increased uncertainty mean higher cost of production.¹¹ In the specific case of conflict over a natural resource, engaging in militant activity and resource theft also becomes an alternative supply of labor and some households may shift some labor into this activity which also reduces labor supplied to self-employment activity. Taken together, a contraction of self-employment businesses and higher cost of operation should lead to a reduction in self-employment income. Conversely, peace operates in the opposite direction of these effects and should lead to an increase in self-employment income.¹²

With regards to education, three channels are usually discussed in the literature. First, demand side factors may reduce the amount of schooling obtained during conflict. If conflict reduces financial resources, an income effect would lead to a reduction in (the consumption of) education since schooling is costly. Furthermore, especially in the context of developing countries and poor communities, if the reduction in financial resources pushes households below or close to the subsistence level, a substitution between education and income-generating work

¹⁰This is reflected in the findings by [Guidolin & La Ferrara \(2007\)](#).

¹¹[Seiermann \(2012\)](#) and [Ksoll et al. \(2016\)](#) provide specific examples. The former explores the infrastructure channel explicitly in Peru. She argues that destroyed infrastructure, in particular roads, leads to higher cost of market access for self-employed people who need to get to the next market to sell their products. The latter consider flower exporters in Kenya during times of electoral violence. They find that firms had to face increased labor absenteeism and pay higher wages as a compensation for coming to work in times of conflict. Although they consider (larger) firms, the mechanism is equivalent for self-employed businesses that employ labor.

¹²Self-employment activity may increase both on the intensive and extensive margin as a response to peace which both lead to higher self-employment income. On the intensive margin, business owners who invest more time and effort into their existing businesses generate more income. On the extensive margin, more businesses being set up result in more competition and crowding-out of the least productive businesses which would also result in higher income on average.

may kick in. Apart from this chosen education-labor substitution, involuntary education-labor substitution also occurs in incidences of child soldiering through forced recruiting or military draft. Second, supply side factors may reduce schooling. This includes the destruction of schools or conflict-related deaths of teachers. Third, a general situation of increased uncertainty and insecurity means that it is more dangerous to leave the house to attend public institutions.¹³ When peace starts, the reversion of all these effects should lead to an increase in education.

4.4 Data

4.4.1 Data Sources

I use two different sources of data for this study. The first is the Nigerian General Household Survey (GHS) with socio-economic data on Nigerian households. I use survey rounds 2006, 2007, 2008 and 2012 ([National Bureau of Statistics Nigeria, 2012](#)). These surveys provide measures for the three outcomes considered: education, self-employment income and household expenditures. The data collection of GHS survey round in year y is actually carried out early in year $y + 1$, more precisely, typically between February and July of the following year. Therefore, the GHS rounds 2006, 2007 and 2008 with data on the first halves of 2007, 2008 and 2009 are used for the optimization procedure to create the synthetic control region. This procedure creates a synthetic control region that closely corresponds to the Niger Delta region in all outcome variables in 2009 and for a short pre-trend of two years. Earlier rounds are not available. The GHS round 2012 provides data on outcome variables in the first half of 2013 that is used to measure the effects of the peace policy four years later.

Using data from 2013 seems to strike a good balance between capturing meaningful medium-run consequences after peace has been established and not capturing any other effects with the end of the amnesty program in 2015 and heavily increased violent activities due to Boko Haram in some Nigerian states from 2014. The amnesty program established a period of peace in the Niger Delta region lasting at least four years, but it took a year for low levels of violent conflict

¹³Strictly speaking, this is a demand side factor as well but the focus here is on the substitution effect towards other goods arising from an increase in the cost of education. By contrast, the first channel focuses on the mere income effect from a reduction in financial resources. Therefore, this is often considered to be a conceptually distinct channel.

to materialize. Hence, using data from 2010 that would be alternatively available is likely to be too early and would not capture the arguably more meaningful medium-run outcomes. On the other hand, 2015 is the year when the amnesty program ended, conflict increased to some extent again and some Nigerian states were so badly affected by Boko Haram activities that they may not represent a valid counterfactual any more. Therefore, alternatively available data from 2015 also seems inappropriate.

For measures of conflict, I make use of data provided by the Armed Conflict Location & Event Data Project ([ACLED, 2015](#)). This is a very rich data source covering all conflict events with precise location data in many developing states from 1997. In particular, I use the data on Nigeria from 2006 to 2009 for the optimization procedure. In addition, I use conflict data before 2006 and between 2010 and early 2013. The pre-2006 data is used to verify that the conflict development is similar in the synthetic control and Niger-Delta region over a longer time horizon before 2006. The post-2009 data is used to assess whether the synthetic control method indeed produces a counterfactual that displays sustained post-2009 high levels of conflict relative to the Niger Delta region in which conflict goes down.

4.4.2 Relevant Measures

As a measure for conflict, I consider fatalities in a conflict event. In particular, I use the sum of fatalities in violent events in a particular state and year as a measure of the degree of conflict. Following the definition of ACLED regarding political violence, I include the following event types: Battles (“Battle – No change of territory”, “Battle – Non-state actor overtakes territory”, “Battle – Government regains territory”), “Remote violence” and “Violence at civilians”. The predominant reason for the inclusion of these events is that they involve violence and variation in the number of fatalities. However, even if other event types are included that are typically associated with no or very few fatalities (e.g. “Strategic development”), the results do not change dramatically.

The main reason for using the sum of fatalities as opposed to other measures of conflict is that it captures both the *extent* and *intensity* of conflict. As a demonstrating example, consider the following two scenarios of conflict a state

could undergo: Very few events involving enormous amounts of fatalities vs. an extremely large amount of events with relatively few fatalities each. In my simple categorization, the former is rare, but quite intense conflict while the latter means extensive, but low-intensity conflict. It is unclear whether one scenario represents more conflict than the other or not. Taking the average number of fatalities in an event would, for example, capture only the intensity of conflict, but disregard the extent and give the first scenario a much higher score. Taking the number of incidents as a measure would, on the other hand, capture the extent, but disregard the intensity and give the second scenario a much higher conflict rating. Therefore, it seems reasonable to use the sum of fatalities as a measure in order to capture both elements.

As an education measure, I use a standard measure: Years of schooling. This is observed in great sample size at the state level.

In order to capture overall economic capacity or welfare, I use a measure of household expenditures. Although this does not capture savings, I prefer this measure over household income for several reasons. First, household income is imprecisely measured. For the GHS 2008 survey, the monthly income is only measured in 1000s of NGN (1000 NGN were approximately 6.80 USD in 2009) which – although this seems to be a fairly small inaccuracy in absolute terms – may have non-negligible implications given the fact that 25% of the population report to have an income below 6000 NGN. For the 2012 survey, the income question is on the last payment and not for a specific time period. In light of the high irregularity of income flows that is common for many people in developing countries, it is unclear how informative and accurate such a measure is. Second, key quantiles in the distribution of monthly income and household expenditures in the GHS 2008 survey that are used to create a synthetic control region to the Niger Delta region are very similar. It does not seem to be the case that large amounts of constant saving disguise the true welfare of household. Third, and relatedly, household expenditures also capture the ability of households to smooth out consumption. While income measures for the last month may be due to high degrees of fluctuation, expenditures are much more smooth and provide a clearer picture of the household's economic welfare situation. Indeed, the distribution of expenditures for the GHS 2008 survey looks considerably more smooth than the one for income.

As another measure of economic activity that may be an important driver of changes in overall economic capacity or welfare, I consider self-employment income on non-farm businesses. As is typical for many developing countries, self-employment activity is of major importance in the economy. In 2012, 62% of workers report being self-employed in a non-farm business while only 11% of workers report working for someone else for a wage. Regarding *income* as a measure as opposed to a mere measure of whether household members own a business or not, this captures the extent of self-employment activity arguably better. It reflects any additional time and effort going into one's business as well as success through a more conducive environment. In addition, it captures an increase in the number of businesses indirectly since this would translate into more competition, crowding-out of low-productivity businesses, and therefore higher income on average.

In order to capture the average in a meaningful way for both household expenditures and self-employment income, I use the median as opposed to the mean for standard reasons.¹⁴ The mean is subject to high volatility for such measures coming from changes in the extreme top part of the distribution. This is a potentially particularly severe issue in my context where I only have data on monthly expenditures and self-employment income in the month preceding the survey interview.

4.5 Empirical Design

4.5.1 The Synthetic Control Method

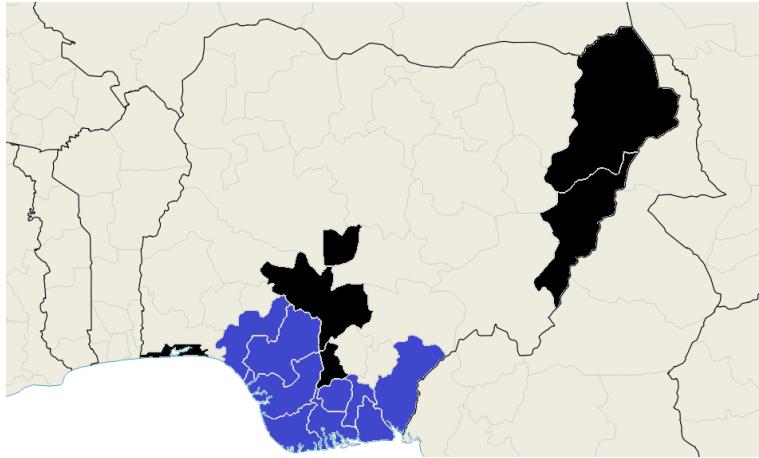
In order to get a valid counterfactual region that the Niger Delta region can be compared to after the policy implementation, I use the same method as [Abadie & Gardeazabal \(2003\)](#) for their investigation of the economic cost of conflict in the Basque region, Spain, in the late 1960s. I construct a synthetic control region from the states that are outside the Niger Delta region and thus unaffected by the policy. There 28 states outside the Niger Delta region (denote the number of non-Niger Delta states $N_{NND} = 28$). The key idea is to use a weighted average

¹⁴While I observe expenditures at the household level, I observe self-employment income at the enterprise level within a household. Most households have one (small) business but around a third have more than one. I therefore consider median household expenditures and median enterprise incomes for states.

of these 28 states that is comparable to the (population weighted) average of the nine Niger Delta states prior to the policy implementation. Since I investigate the impact of the policy on education, household expenditures and self-employment activity, it seems appropriate to make the synthetic control region comparable to the Niger Delta region in these characteristics before the policy change. I use the data on these outcome variables in all survey rounds up until 2009 for creating the synthetic control region. As an additional characteristic to be similar between the Niger Delta and synthetic control region, I consider conflict for the period between 2006 and 2009.¹⁵

To introduce some notation for this procedure, let the matrix \mathbf{X} capture the four variables on which the synthetic control region is supposed to closely resemble the Niger Delta region in all available time periods: 2007-2009 measures of education, self-employment income and household expenditures and 2006-2009 measures of conflict. These are 13 variables for each of the 9 states in the Niger Delta region (denote the number of Niger Delta states $N_{ND} = 9$), so \mathbf{X} is of dimension (13×9) . Similarly, let the matrix \mathbf{Y} of dimension (13×28) capture the same measures for the 28 states outside of the Niger Delta region.¹⁶ Furthermore, let \mathbf{v} be a (9×1) vector of population weights for the Niger Delta states and \mathbf{w} be a (28×1) vector of *some* weights for the non-Niger Delta states. For the 13 characteristics considered and some vector of weights \mathbf{w} , the difference $\mathbf{Xv} - \mathbf{Yw}$ captures the simple distance between the population weighted average outcome in the Niger Delta region and a \mathbf{w} weighted average of the non-Niger Delta states. The goal of the synthetic control method is to minimize the squared distance by choosing weights \mathbf{w} , that is, the optimal weights arise as the solution to the following optimization problem:

$$\begin{aligned} \min_w \quad & (\mathbf{Xv} - \mathbf{Yw})'(\mathbf{Xv} - \mathbf{Yw}) \\ \text{s. t.} \quad & w_s \geq 0 \quad \forall s, \\ & \sum_{s=1}^{28} w_s = 1 \end{aligned}$$



¹⁵This period is chosen because it captures the same time horizon as the GHS surveys and because the MEND group, one of the largest militant groups in the Niger Delta, became violently active in 2006 which marks a sharp increase in conflict before the amnesty program was started in 2009.

¹⁶In order to guarantee comparability in the scale of the different measures, I actually use constructed z scores of each measure by standardizing on the 28 non-Niger Delta control states. However, the non-standardized values are reported for ease of interpretation.

where w_s denotes the weight on non-Niger Delta state s . The resulting optimal vector \mathbf{w}^* has non-zero weights for only six of the 28 non-Niger Delta states (denote the number of states in the synthetic control region $N_{SC} = 6$): Abuja (4%), Adamawa (20%), Anambra (12%), Borno (14%), Kogi (27%) and Lagos (23%). The Niger Delta and synthetic control states are displayed in Figure 4.1.¹⁷

Figure 4.1: Niger Delta and Synthetic Control Region

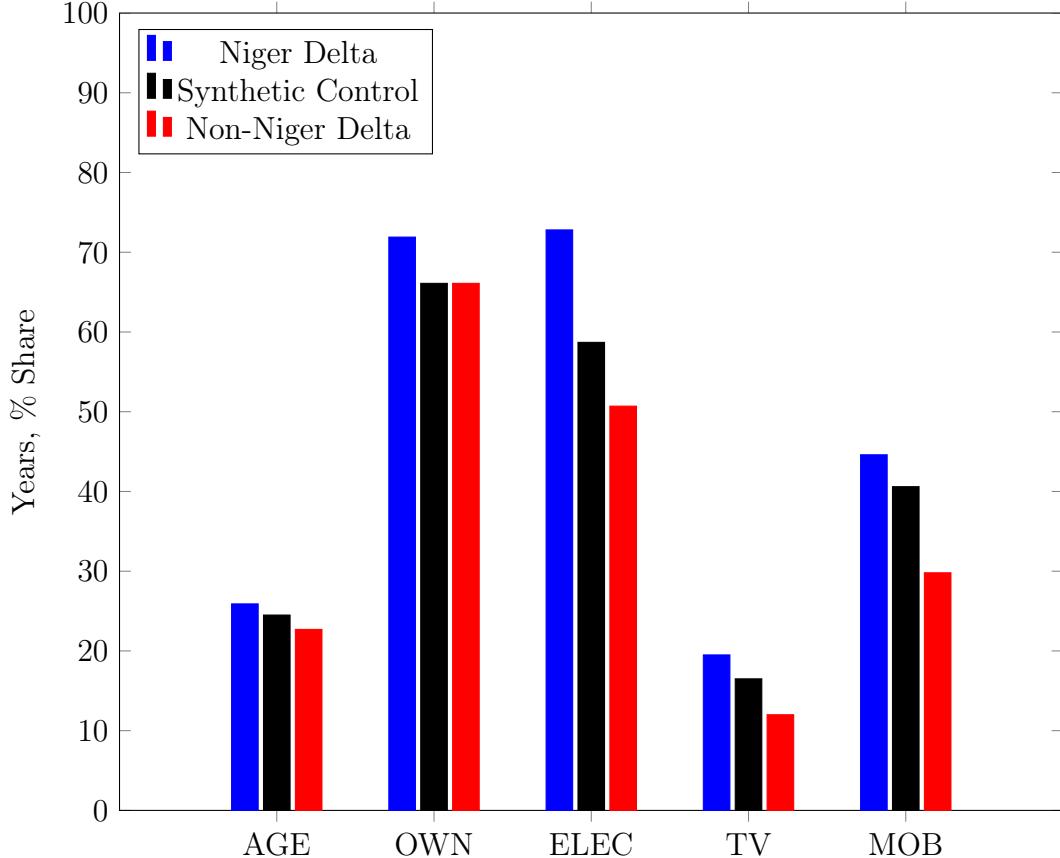
Note – Niger Delta states are displayed in blue. Synthetic control states are displayed in black.

The synthetic control region overcomes the substantial gap between the average of Niger Delta states and an average across all states outside the Niger Delta region before the policy change. A simple comparison between these two regions would be subject to selection bias and lead to overestimation of the effects since the non-Niger Delta states perform systematically worse than the Niger Delta states in all relevant characteristics. However, the synthetic control constructed using the weights \mathbf{w}^* is comparable to the Niger Delta region. In addition, in order to provide some confidence that \mathbf{w}^* actually provides a valid counterfactual region, I check how it performs on some indicative socio-economic characteristics relative to the Niger-Delta region that can be found in the GHS 2009 survey: Average age, the share of own account workers among all working people as well as the share of individuals with electricity supply, ownership of at least one TV and ownership of at least one mobile phone. Table 4.1 provides the results for

¹⁷The shares are rounded to the nearest integer. All other states have a weight of zero rounded to the nearest integer. It is not unusual that only a minority of potential control states has a non-zero weight. [Abadie & Gardeazabal \(2003\)](#), [Gong & Rao \(2016\)](#) and [Matta et al. \(2016\)](#) similarly get that only fewer than five control states or countries out of a considerably larger set have non-zero weights. Four out of six states making up the synthetic control region are indeed spatially close to the Niger Delta region. Section 4.7.2 deals with potential spillover concerns.

both the variables used in the optimization procedure and further characteristics. Focusing on the period between 2007 and 2009, Figures 4.3, 4.4, 4.5 and 4.6 display the results for the outcome variables graphically and Figure 4.2 shows the results for further characteristics.

Table 4.1: Synthetic Control Creation Results


	Niger Delta (ND)	non-Niger Delta (<i>p</i> -value Δ ND)	Synthetic Control (<i>p</i> -value Δ ND)
<i>Pre-Policy Outcomes</i>			
Fatalities 2006	2.9	3.2 (n/a)	6.7 (n/a)
Fatalities 2007	16.9	11.7 (n/a)	14.8 (n/a)
Fatalities 2008	16.2	4.4 (n/a)	14.5 (n/a)
Fatalities 2009	163.7	28.7 (n/a)	100.7 (n/a)
Years of Schooling 2007	7.68	6.88 (0.00)	7.89 (0.10)
Years of Schooling 2008	7.28	6.59 (0.00)	7.22 (0.56)
Years of Schooling 2009	7.60	6.85 (0.00)	7.54 (0.48)
Self-emp. Income 2007	72.65	65.52 (0.08)	68.30 (0.35)
Self-emp. Income 2008	107.60	90.32 (0.05)	101.11 (0.59)
Self-emp. Income 2009	94.81	62.98 (0.00)	86.67 (0.10)
HH Expenditures 2007	96.10	69.98 (0.00)	82.76 (0.01)
HH Expenditures 2008	154.61	123.95 (0.00)	166.76 (0.13)
HH Expenditures 2009	100.30	89.00 (0.00)	105.01 (0.08)
<i>Further Characteristics (2009)</i>			
Age	26.0	22.7 (0.00)	24.5 (0.00)
Own Account Workers (%)	71.9	66.1 (0.00)	66.1 (0.00)
Electricity Supply (%)	72.8	50.7 (0.00)	58.6 (0.00)
TV Ownership (%)	19.5	12.0 (0.00)	16.5 (0.00)
Mobile Phone Owner (%)	44.6	29.8 (0.00)	40.6 (0.00)

Note – Both self-employment income and household expenditures are reported in USD. *p*-values for mean differences with the Niger Delta region are based on two-sided *t* tests with $\min\{N_{ND}, N_{NNND}\} - 1 = 8$ d.o.f. for the difference between Niger Delta and non-Niger Delta states and $\min\{N_{ND}, N_{SC}\} - 1 = 5$ d.o.f. for the difference between Niger Delta and Synthetic Control. Since the measure for conflict is aggregate data on the universe of conflict, typical standard errors are not available.

As the graphs show clearly, the conflict trend between 2006 and 2009 as well as the developments for education, self-employment income and household expenditures in the Niger Delta region are well matched by the synthetic control region. While there are considerable differences between all non-Niger Delta states and the Niger Delta region, the synthetic control region closes this gap.¹⁸ All but

¹⁸It also becomes clear that there is no linear or uni-directional trend for education, self-employment income and household expenditures. There are several important developments that may be reasons for the patterns observed: General elections in 2007, a sharp food price hike in 2008 and the financial crisis in 2008. Multiple channels are conceivable. Sharply increasing food prices from 2007 to 2008 (UNFAO, 2009) may have increased expenditures mechanically, but may also have resulted in substitution away from children's education towards income-generating activity through lower income. The crisis may have hit Nigeria throughout 2008

Figure 4.2: Synthetic Control Creation Results for Further Characteristics

Note – Characteristics are age in years and shares of individuals who are own account workers (among all working people), have electricity supply, own TVs and own mobile phones. All data is from 2009.

one difference are statistically indistinguishable at the 5% level and the magnitudes of differences are usually not very sizeable. As for further characteristics for which the distance between the Niger Delta and synthetic control region is not minimized in the process of the optimization, the synthetic control region still manages to substantially close the gap between the Niger Delta region and the simple average of all non-Niger Delta states for most variables.¹⁹ Lastly, it is notable that the pre-2006 conflict trend in the Niger Delta region (which is not part of the optimization) is more closely followed by the synthetic control region than by the trend in all non-Niger Delta states.

and resulted in worse economic performance in 2009, in particular in the Niger Delta region suffering from oil price drops (CBN, 2009). The new president's policy may have had its own effect on education and economic performance. Irrespective of what combination of key events or developments may explain these patterns, however, what matters for identification is that the synthetic control region closely corresponds to the Niger Delta region in this trend. This seems to be the case.

¹⁹It is indeed true that for all characteristics, the difference between the Niger Delta region and the synthetic control region is still statistically highly significant. However, this is due to the fact that there is a very large number of observations at the individual level for these characteristics and averages are therefore extremely precisely estimated – even small differences, consider for example mean age, would show up statistically highly significant. However, they are not necessarily economically meaningful.

4.5.2 Interpretation and Identification

This analysis takes the unusual approach of evaluating peace in the Niger Delta region relative to continued conflict in other Nigerian states serving as counterfactual. Most studies conversely evaluate either ongoing conflict relative to peace or the consequences of a period of conflict some time after the conflict has ended (with greatly varying time horizons) by comparing areas that were affected by conflict to counterfactual areas that did not experience conflict in the past. I evaluate peace relative to continued conflict because the amnesty policy in the Niger Delta region and conflict in other Nigerian states after 2009 provide a unique (quasi-experimental) setting for this estimation.

Conflict in the period between 2009 and early 2013, especially the later part of this period, happens in a number of Nigerian states mainly – but not exclusively – in the northeastern part of the country.²⁰ In this sense, the results I find can also be interpreted as the contemporaneous impact of continued conflict in some parts of the Nigeria (represented by the synthetic control region) relative to peace in a comparable Niger Delta region. However, I prefer to interpret them conversely as the benefits of peace in the Niger Delta region relative to what would have happened counterfactually in the same region had the policy not been implemented. This is essentially an estimate of a peace dividend, an evaluation of the potential damage the amnesty policy prevented.

The estimate may even be a lower bound of the true peace dividend since the counterfactual displays (only) sustained levels of conflict which are very comparable to the ones in 2009. It is not clear whether conflict levels would have been sustained or further escalated in the absence of the amnesty policy. Given long underlying tensions and violent conflict that sparked shortly before 2009, it may be reasonable to think that an escalation of conflict would provide a more realistic counterfactual.

The key identifying assumption for the estimation of the peace dividend is that the Niger Delta region would have had the same development as the synthetic control region after 2009 in the absence of the amnesty policy. Relatedly, one may wonder why an amnesty policy was carried out as a response to conflict

²⁰For example, the state Borno lies in this part of Nigeria and is one of the states making up the synthetic control region. Conflict in Borno is partly driven by Boko Haram's activities in that region.

in the Niger Delta region and not in other states of Nigeria that experienced ongoing conflict and – more importantly – whether the underlying reasons pose a threat to identification. Clearly, the fact that the Niger Delta region is an oil rich region and that the oil production is a main determinant of the government’s fiscal resources plays a role. However, I argue that this is not a concern for bias and internal validity and, if anything, affects external validity.

First of all, any relevant influence of systematic differences in oil production between the Niger Delta region and the synthetic control region should show up in differences in the pre-2009 trend which actually closely resemble each other. Furthermore, oil production decreased in the Niger Delta region before 2009 ([Abazie-Humphrey, 2014](#); [OPEC, 2010](#)). Any concern (in the sense of an omitted variable) around oil production picking up before 2009 when the policy happened to be put in place with the implication that observed effects would be confounded with positive effects of already increasing oil production before 2009 is inconsistent with such a decrease. Much to the contrary, it seems likely that the policy was put in place precisely because of massive losses from decreased oil production due to conflict. However, this means that the effects of peace (partly) operate *through* increased oil production after 2009 which is not a source of endogeneity but just a channel through which peace operates.²¹ Therefore, my results just provide a reduced-form effect of peace from all possible channels.

Naturally, the Niger Delta’s oil richness implies that we may expect peace to generate particularly large benefits in the region. This is an issue of external validity, related to the idea of “site selection” in randomized controlled trials ([Allcott, 2015](#)). As a consequence, and as usual, my results should first and foremost be interpreted as the effect generated in the specific context of conflict in the Niger Delta region. To assess to what extent external validity may be compromised, it is then instructive to regard them in light of findings from different settings.

Another identification concern is that the synthetic control method is generally unable to distinguish the effect of the analyzed policy from the potential effect of other policies or developments over the same time horizon in the same area. In this case, the peace effects cannot be isolated from any other political or economic

²¹Note that the synthetic counterfactual displays sustained levels of conflict reflecting a counterfactually sustained low oil production. Again, if anything, it seems reasonable to assume that conflict may actually have escalated further and induced further drops in fiscal revenues from oil production, in which case the results are lower bounds.

development between 2009 and 2013 that affects the Niger Delta region. One such rather prominent development is the election of President Goodluck Jonathan in 2010 who comes from the Niger Delta region. Given Nigeria's clientelistic nature of government, it is not far-fetched to believe that his policies may have benefited the Niger Delta region relative to other parts of the country in the outcomes of interest. While I cannot perfectly exclude any such effects, considering the outcomes in the state Bayelsa that Goodluck Jonathan is from separately from the entire Niger Delta region suggests that this is not a major concern. For all three outcomes, Bayelsa exhibits a lower value in 2013 than the average of the Niger Delta region and the difference is substantial. Furthermore, the development over time in Bayelsa is not better than for the other states of the Niger Delta region. Indeed, while it is comparable for education, it is actually considerably *worse* for self-employment income and household expenditures.

4.5.3 Differences with Other Approaches

Comparing the synthetic control method to standard regression techniques (involving in particular DID regression methods that are commonly used in the micro-empirical literature on the effects of conflict), three distinct advantages of the former method emerge. First, while it can be shown that a regression-based estimator would essentially also produce a weighted average of potential control states with the weights summing up to one, the weights may lie outside the unit interval (Abadie et al., 2015). Therefore, regression techniques allow for extrapolation and hence potential extrapolation problems whereby the extent of extrapolation is typically unknown to the empirical analyst since the weights are usually not computed in practice.

Second, and especially relevant to this multi-outcome analysis, a regression-based analysis would not produce the *same* counterfactual for all the outcomes while the synthetic control method does and successfully matches not only 2009 outcomes, but also the pre-trend. This may yield more convincing estimates of the causal effects of peace.

Third, the commonly used DID techniques do not allow to control for time-varying fixed effects in different regions while the synthetic control method does.²²

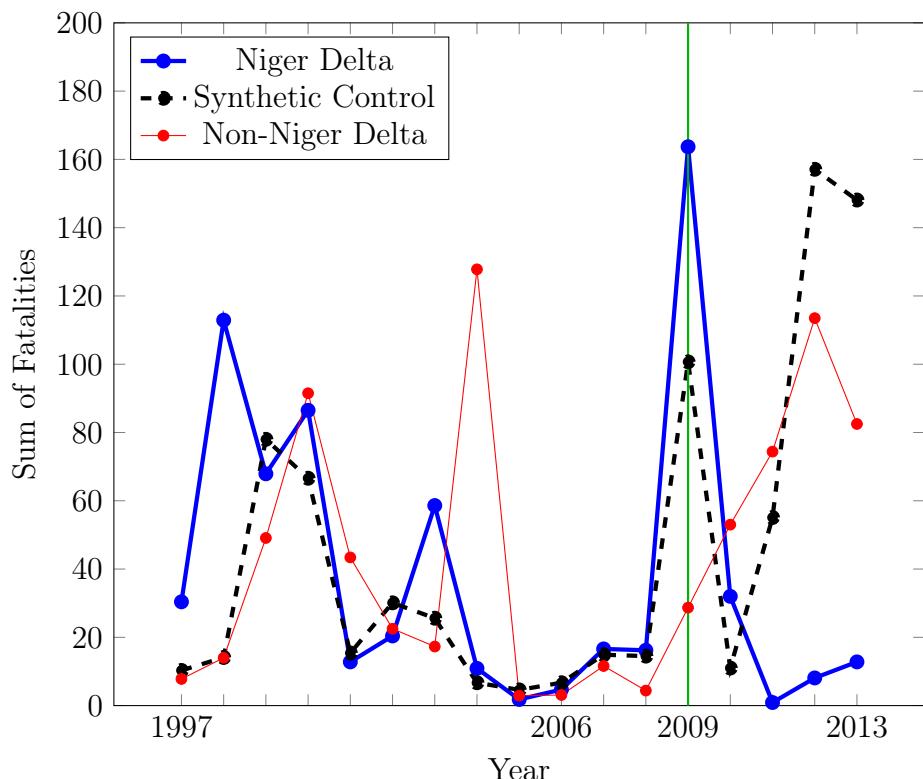
²²While it is possible to control specifically for potentially confounding observable variables (past realizations of outcome variables could for example be controlled for) and hence capture

Abadie et al. (2010) prove that the synthetic control method is essentially a generalization of the usual DID model in precisely the way that it allows unobserved characteristics to vary with time.²³ The key common trend assumption in DID analyses which basically assumes away that unobserved characteristics in treatment and control units are time-varying can actually be verified in my data. Since my data allows me to observe how the treatment and control states evolve with regards to the outcomes of interest in the two years preceding the policy implementation in 2009, it can actually be observed how the common trend fails between 2008 and 2009 for self-employment income and household expenditures. The reduction in the former variable is considerably more pronounced in the non-Niger Delta states. It amounts to 27.34 USD in non-Niger Delta states while it is only 12.79 USD in Niger Delta states. Household expenditures show the reverse pattern; they decrease more strongly in Niger Delta states (by 54.31 USD vs. a 34.95 USD reduction in non-Niger Delta states). A close look at the trend in Figures 4.5 and 4.6 between 2008 and 2009 identifies this differential pattern graphically. In fact, implementing a simple DID procedure as a robustness check in section 4.7.1, I show that the DID results deviate from the results coming out of the synthetic control method in exactly the direction of the violations of the common trend assumption.

4.6 Results

4.6.1 Conflict Reduction

While the sharp conflict trend was stopped and reversed in the Niger Delta region as a consequence of the policy from 2010, the synthetic control region continues to show high conflict levels after the policy implementation. Figure 4.3 depicts this relationship very clearly. The synthetic control region maintains high conflict levels relative to both the Niger Delta region and the non-Niger Delta states after



their time-varying effects within regions, this does not solve the problem entirely. First of all, there may still be *unobserved* characteristics that vary in time. In fact, including past outcome variables in the DID regressions that I carried out as robustness checks does not change the results substantially. In addition, this still imposes a linear relationship between the observed control variables that are included while the synthetic control method does not make such a parametric assumption. Finally, including past outcome variables as control variables engenders the standard problem of putting the assumption of no correlation between the error term and regressors at risk since any degree of autocorrelation in the error term would result in a violation of the assumption.

²³The idea is essentially that the synthetic control method is likely to match time-varying unobserved heterogeneity when it matches a sufficient number of observable characteristics.

the amnesty policy implementation in 2009. Although there is a sharp drop in the synthetic control region in 2010, conflict levels are high again and comparable to the 2009 Niger Delta levels from 2011 to 2013. It is particularly relevant for the peace dividend estimation that conflict levels are very similar in the synthetic control in early 2013 and in the Niger Delta region in 2009 since the estimation is based on outcomes in early 2013. By contrast, the average across all states outside the Niger Delta region does not correspond to these conflict levels.²⁴

Figure 4.3: Conflict Levels Before and After 2009

Note – In 2009, the peace policy was implemented. For 2013, only January to July are included as the data collection for outcome variables in 2013 ended in July.

The following analysis estimates the benefits of post-2009 peace in the Niger Delta region. The time series does not conclusively prove but strongly suggest that the amnesty policy played a role in generating peace in the region. Therefore, I interpret the peace dividend as the result of the amnesty policy. This interpretation ceases to hold up if the amnesty policy does not cause peace in the region. Importantly, however, for the estimation of the peace dividend (irrespective of how peace came about), documenting a period of peace between 2009 and

²⁴Table A7 shows these results formally in a regression. Focusing on the violent period immediately preceding the policy from 2006, I consider both how the fatalities change on average (column 1) and how the trend in violence changes (column 2). There is both a significant reduction in fatalities in the Niger Delta region after 2009 and also a significant trend break with violence increasing up until 2009 and decreasing after.

2013 is sufficient.

4.6.2 Main Results on Economic Outcomes

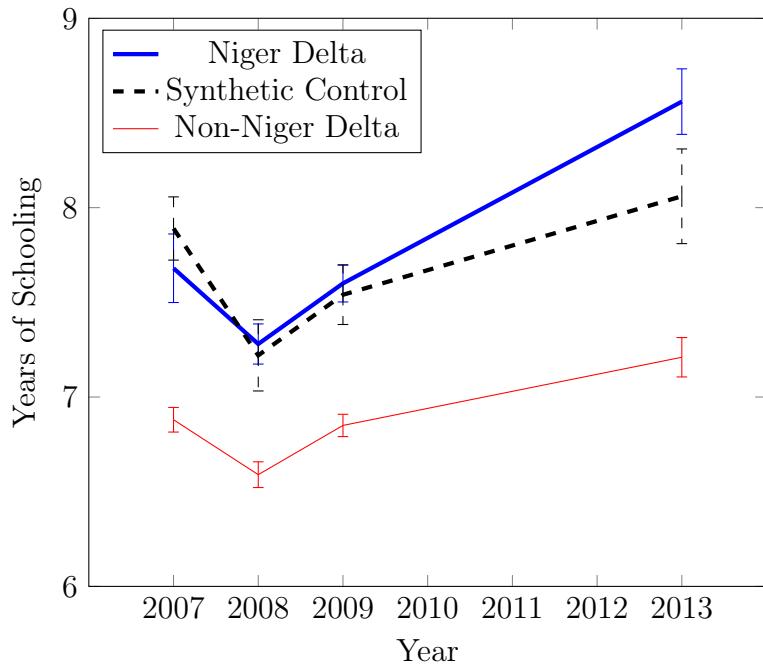
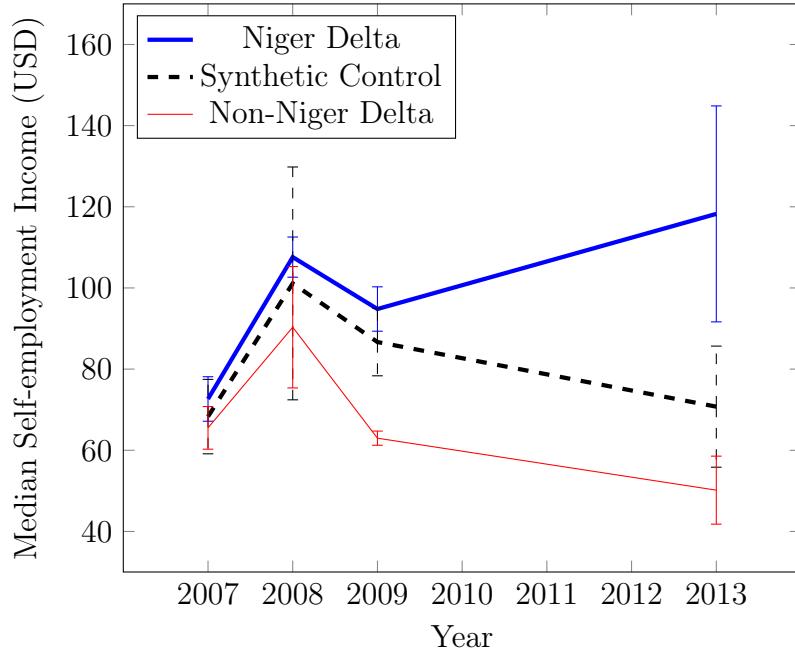

Comparing the Niger Delta region to its synthetic control region in early 2013, the effect of peace in the Niger Delta region on education, self-employment income and household expenditures is considered in this section. Table 4.2 and Figures 4.4 to 4.6 summarize the main findings.

Table 4.2: Main Results for the Synthetic Control Method (SCM)

	Years of Schooling	Self-emp. Income	HH Expenditures
Niger Delta	8.56 (0.08)	118.25 (11.54)	193.47 (5.40)
Synthetic Control	8.06 (0.10)	70.75 (5.80)	162.49 (4.97)
SCM Estimator	0.50*** (0.12)	47.49** (12.91)	30.98*** (7.34)

Note – Self-employment income and household expenditures are reported in USD. Standard deviations/errors are reported in parentheses. Standard deviations for median self-employment income and median household expenditures are bootstrapped with 500 replications at the state level. On the basis of one-sided t tests with $\min\{N_{ND}, N_{SC}\} - 1 = 5$ d.o.f., * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

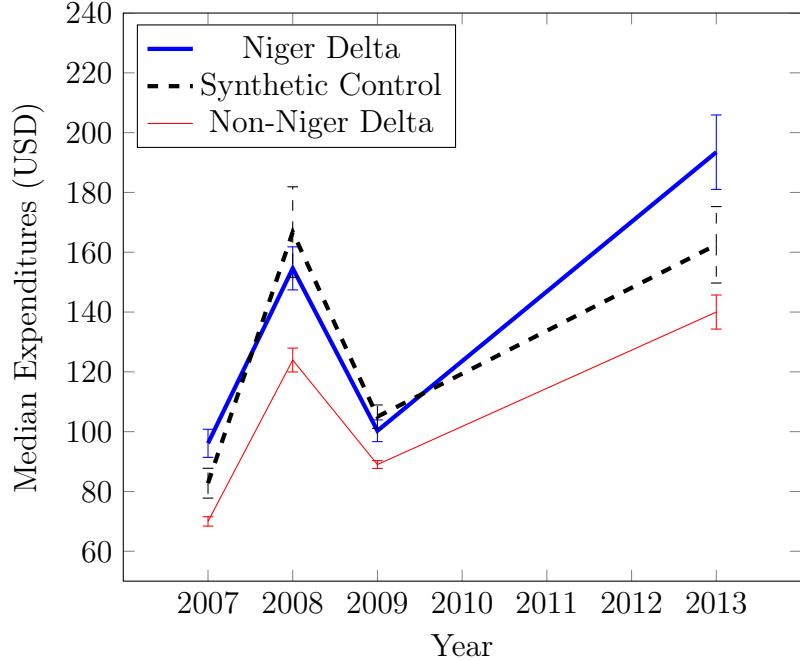

Figure 4.4: Education Results

Note – Vertical bars indicate 95% confidence intervals.

The results represent a peace dividend over a period of four years. All results are statistically significant at the 5% level at least. The substantial magnitude

Figure 4.5: Self-employment Income Results

Note – Vertical bars indicate 95% confidence intervals.


of the results suggests that there are considerable benefits from peace or, conversely, severe consequences of conflict. Average education increases by 0.5 years of schooling which is broadly in line with what the literature finds in other countries. Typical estimates range between a reduction by 0.2 and 1 year(s) of schooling.²⁵ According to estimates by [Aromolaran \(2006\)](#) and [Schultz \(2004\)](#), returns to primary and secondary schooling in Nigeria range between 2% and 7% and are even higher for post-secondary education (10%-15.5%).²⁶ Given these estimates, even if we were to ignore the potentially overestimated returns for post-secondary education which only about 10% of the Nigerian population enjoyed in 2013, an average increase by half a year of schooling has a meaningful long-term economic effect on the labor market.

With regards to both measures for economic activity, I find substantial effects. In the Niger Delta region, self-employment income is 47.49 USD higher than in the synthetic control region at the median and household expenditures exceed its counterfactual by 30.98 USD at the median. The relative effects are enormous.

²⁵This is based on the comprehensive set of studies cited in the introduction.

²⁶Even though these authors merely run OLS regressions on household survey data, they argue that the potential upward bias from omitted socio-economic factors may very well be offset by downward bias from measurement error, referring to [Card \(1999\)](#) and [Ashenfelter & Krueger \(1994\)](#). In particular for primary and secondary education, the quality of education measurements in the household surveys would suggest that this is quite likely to be the case or that the bias from measurement error may even be larger in which case, if anything, their return estimates provide lower bounds.

Figure 4.6: Household Expenditures Results

Note – Vertical bars indicate 95% confidence intervals.

Given the counterfactual median values, these differences represent 67% and 19% increases, respectively.

Since the initial levels for both variables are not exactly the same for the Niger Delta and synthetic control region in 2009, one might be concerned about bias of the estimator. However, even if we take the initial differences in 2009 into account and subtract them from the outcome difference in 2013, we would still have sizeable effects. For self-employment income, the effect would be 39.35 USD (or 56%) and it would amount to an increase by 35.69 USD (or 22%) for household expenditures.²⁷

In relation to the existing literature, the results on household expenditures are indeed large but in line with what the most closely comparable literature finds. Studies that exploit the synthetic control method to estimate the effect of conflict on economic performance a couple of years following its onset generally find effects ranging between -5% and -20% (Abadie & Gardeazabal, 2003; Dorsett, 2013; Gong & Rao, 2016; Matta et al., 2016).

Going beyond an estimation of the peace dividend for a measure of households' overall livelihood, my results for self-employment income shed light on an important driving force behind these benefits of peace. The activity of (small) busi-

²⁷Using the information in Table 4.1 and 4.2, $39.35 = 47.49 - (94.81 - 86.67)$ and $35.69 = 30.98 - (100.3 - 105.01)$.

nesses seems to be revitalized. With 62% of workers engaged in self-employment, this is an important economic activity. Yet, the mechanism has been largely overlooked so far. There is one comparable study in Mexico that considers how self-employment income is affected by violent conflict ([Velásquez, 2020](#)). She finds considerably smaller effects. However, this is not necessarily surprising as the Niger Delta region is a setting in which we may expect to find large economic benefits for businesses. In the oil-rich region, peace may lead to a quick and strong rebound of business activity in the oil industry and spin-off businesses. Indeed, [Walls & During \(2020\)](#) find that oil production increases by 40% in response to the peace policy in the Niger Delta region. Beyond the oil industry itself, oil and any derivative materials may be key inputs for many other businesses that make use of generators or cars. Therefore, it is entirely plausible that peace has a strong effect on productivity of businesses which translates into increased income.

With regards to the theoretical considerations, the results are in line with what peace is expected to generate. In particular, the effect on household expenditure, taken as a measure of overall economic performance, is strongly positive. Clearly, the medium-run benefits of peace significantly dominate any potential immediate economic losses from diminished militant activity and oil theft. We also observe that the increase in self-employment income are relatively larger than the increase in overall economic performance which may reflect that some labor supply shift from military activity and oil theft into non-farm business activity has indeed taken place. Of course, alternative explanations may be that not all additional income is spent, but part of it is saved, or that self-employment activity has increased relatively more strongly than waged labor supply as a response to peace.

4.7 Robustness

4.7.1 Difference-in-differences Estimation

As a first robustness check, I perform a simple difference-in-differences (DID) analysis as an alternative method for the outcomes education, self-employment income and household expenditures. The simple comparison is essentially just a comparison of two differences in means. In regression format, the DID estimator

would be the coefficient δ in:

$$y_{it} = \alpha + \beta \text{ND}_i + \gamma \text{T2013}_t + \delta(\text{ND}_i \times \text{T2013}_t) + u_{it}$$

where y_{it} and u_{it} are the outcome and error term in state i and year t respectively, ND_i is a dummy variable indicating whether state i is in the Niger Delta region or not and T2013_t is a dummy taking the value 1 if the year is 2013.²⁸

I can demonstrate that the DID results are in line with my previous results for outcomes for which the parallel trend assumption holds and deviate from the results in the expected direction for outcomes for which the pre-2009 trend for the non-Niger Delta states deviates from the Niger Delta and synthetic control region. Table 4.3 presents the results in the format of simple two-way differences.

Table 4.3: Difference-in-differences Estimation (DID) Results

	Years of Schooling		Self-emp. Income		HH Expenditures	
	2009	2013	2009	2013	2009	2013
Niger Delta	7.60 (0.04)	8.56 (0.08)	94.81 (2.37)	118.25 (11.54)	100.30 (1.58)	193.47 (5.40)
non-Niger Delta	6.85 (0.03)	7.21 (0.05)	62.98 (0.86)	50.17 (4.08)	89.00 (0.64)	140.00 (2.78)
DID Estimator		0.59*** (0.10)		36.24** (12.49)		42.17*** (6.30)
SCM Estimator		0.50*** (0.12)		47.49** (12.91)		30.98*** (7.34)
Pre-trend Deviation		0		+		-

Note – Self-employment income and household expenditures are reported in USD. Pre-trend Deviation is a DID estimator for outcomes between 2008 and 2009. Standard deviations/errors are reported in parentheses. Standard deviations for median self-employment income and median household expenditures are bootstrapped with 500 replications at the state level. On the basis of one-sided t tests with $\min\{N_{ND}, N_{NND}\} - 1 = 8$ d.o.f. for the DID estimator and $\min\{N_{ND}, N_{SC}\} - 1 = 5$ d.o.f. for the SCM estimator, * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

Comparing them with the results from the synthetic counterfactual procedure, it should first of all be noted that the two estimators are not significantly different for any of the three outcome variables (the lowest p -value on the three difference tests is 0.24 – for median household expenditures). As for education, the difference between the two estimators is very small. This is consistent with the fact

²⁸Most DID approaches are finer in the sense that they control for regional fixed effects by taking a dummy variable for each region instead of a coarser distinction between Niger Delta states and non-Niger Delta states only. However, which set of dummies is used does not make a difference for the magnitude of the DID estimator δ . Furthermore, if past values of the outcome variables are included as additional controls, the results do not change much. The simple version of the DID is therefore reported here.

that the parallel trend assumption strongly appears to be satisfied. Graphically, Figure 4.4 demonstrates this clearly.

With regards to self-employment income and household expenditures, however, the fact that the two estimators are statistically indistinguishable may not necessarily be a result of the two estimators in fact coinciding, but of large standard errors. Nevertheless, considering the point estimates, the direction of the DID estimator's deviation is perfectly in line with pre-trend differences between the Niger Delta states and those outside the Niger Delta region. Figures 4.5 and 4.6 demonstrate this point graphically. It seems that the two regions follow a similar trend between 2007 and 2008 and have different trends between 2008 and 2009 – as discussed in section 4.5.1, the magnitude of these trend deviations is not negligible. Therefore, the direction of the common trend assumption's violation can be well captured by a simple DID estimation between 2009 and 2008. As for median self-employment income, this trend deviation is positive. Therefore, we would expect the DID estimator to underestimate. In the case of median household expenditures, the trend deviation is negative and we would expect the DID estimator to overestimate.²⁹ Relative to the estimator using the synthetic counterfactual, these are exactly the bias directions that we observe.³⁰ This should place further confidence in the main results based on the synthetic counterfactual.

4.7.2 Spillover Effects

Since four of the six states that are part of the synthetic control region are quite close to the Niger Delta region, one might be concerned about spillover effects. Any effect of peace in the Niger Delta region on states outside it would form a violation of the Stable Unit Treatment Value Assumption (SUTVA) and bias the results. There are potential spillover effects in two directions that would bias the results in opposite ways.

First, there may be spillover effects from peace on other states that would form a positive impact on them, for example through increased trade with neigh-

²⁹As for education, this way of estimating a pre-trend deviation gives a precisely estimated zero. The estimate is 0.05 ($p = 0.46$).

³⁰With regards to the magnitude of bias, the standard errors are very large which makes it impossible to make precise statements as to whether the magnitude of the bias reflects the actual difference observed between the two different estimators. Indeed, the point estimates are close and statistically indistinguishable in both cases. For median self-employment income, the estimator difference is 11.25 and the trend deviation is 14.55; for median household expenditures, the estimator difference is -11.17 and the trend deviation is -19.36.

boring states if economic activity improves in the Niger Delta region or through infrastructure extending into neighboring states. Such effects would imply that states outside the Niger Delta region are also “treated” and their outcomes would show up more *positively* than the true counterfactual. Therefore, these effects go against my results and would mean that I underestimate with the true effect being even larger than what I find.

Second, posing more reason for concern, peace may attract people from other states into the Niger Delta region. In this case, outcomes of states outside the Niger Delta region would show up more *negatively* than the true counterfactual and I would overestimate the true effect. Typically, and plausibly, these effects would be stronger for states that are closer to the treatment region which is what I exploit to test for spillover effects.

As a first piece of evidence against the presence (or dominance of) one type of spillovers, consider the above DID results again. The particular spillover concern with the synthetic control region is that four out of the six states that in it are very close to the Niger Delta region. The DID approach, however, takes all 28 non-Niger Delta states as part of the counterfactual. Since spillovers are expected to be stronger in states closer to the treatment region, with sizeable spillovers we would expect the DID results to be systematically different from the main results using the synthetic control region. This is not the case. The DID results are not only statistically indistinguishable from the SCM results but the former also deviate from the latter in *different* directions across the outcomes self-employment income and household expenditures. They do not jointly indicate the presence or dominance of one type of spillover. Much rather, as discussed above, these differences can be explained by pre-trend deviations.

Migration flows, taken from the GHS 2012 survey, serve as a second piece of evidence against the presence (or dominance of) one type of spillovers. The particular spillover concern in terms of migration flows is that there may be a large inflow of (especially highly economically contributing) people into the Niger Delta region from the synthetic control region relative to the opposite flow in times of peace or that peace generally attracts in-migration. In this case, states closer to the Niger Delta region should show more migration into that region than states further away. Table 4.4 demonstrates that both these concerns do not seem to apply.

Table 4.4: Migration Flows

	Move from SC (Std. Err.)	Move from NS (Std. Err.)	Move from NND (Std. Err.)	Move from ND (Std. Err.)
Move to SC				2.18% (0.0023)
Move to NS				0.89% (0.0014)
Move to NND	8.99% (0.0011)	12.45% (0.0012)	7.75% (0.0006)	3.05% (0.0027)
Move to ND	0.28% (0.0011)	0.40% (0.0012)	0.45% (0.0006)	13.02% (0.0027)
Total Migration	11.05% (0.0041)	12.84% (0.0043)	8.20% (0.0018)	16.06% (0.0045)

Note – SC: Synthetic Control region; NS: States directly neighboring the Niger Delta region; NND: non-Niger Delta states; ND: Niger Delta region.

In fact, the migration flow of people from synthetic control states into the Niger Delta region is very small in absolute terms and considerably (as well as statistically significantly) lower than the opposite migration flow.³¹ In addition, both the migration flow from states directly neighboring the Niger Delta region (NS)³² and from the synthetic control region into the Niger Delta region are very close to the general migration flow from non-Niger Delta states into the Niger Delta region.³³ Therefore, the data do *not* suggest that the migration flow from states that are closer to the Niger Delta region is over-representative of the general migration flow into the Niger Delta region which is what we would expect to see if the second type of spillover effects was at play.

4.8 Conclusion

This study investigates the benefits of peace for education, self-employment income and household expenditures in the Niger Delta region in Nigeria. For the estimation, I make use of the “Presidential Amnesty Program” carried out by the

³¹The same result holds when comparing the *share of migrants* from the synthetic control region who move into the Niger Delta region and vice versa. Using the information in the table, the share of out-migrants from the synthetic control region moving into the Niger Delta region is $0.28/11.05 = 2.1\%$ while the share of out-migrants from the Niger Delta region moving into the synthetic control region is $2.18/16.06 = 13.6\%$.

³²These eight states have a common border with at least one of the Niger Delta states and are thus defined to be the neighboring states: Anambra, Benue, Ebonyi, Ekiti, Enugu, Kogi, Ogun, Osun.

³³If anything, the flow from SC or NS into ND is smaller than the flow from NND into ND but the estimates are statistically indistinguishable. Again, similar results arise when comparing shares of migrants.

Nigerian government in the region in 2009. The program granted ex-militants pardon as well as money and required them to undergo “Disarmament, Demobilization and Reintegration” in return for surrendering their weapons. It can be viewed as a policy shock and it was followed by a period of regional peace for a few years. This provides a unique setting to estimate a peace dividend by comparing the Niger Delta region to a synthetic within-country counterfactual in the spirit of [Abadie & Gardeazabal \(2003\)](#). The synthetic control region closely resembles the Niger Delta region before 2009 and the estimation results are robust to several checks.

I find that peace in the Niger Delta region resulted in a 19% increase in household expenditures at the median four years later. A key component of this improvement in household livelihoods seems to be revitalized self-employment activity. Over the same time horizon, self-employment income increased by 67% at the median. Education increases by half a year. Beyond being a desirable outcome itself, the education increase also suggests that there are likely positive peace benefits for school-aged people on the labor market in the long run.

The results are to be interpreted as the peace dividend generated by the amnesty policy in the Niger Delta region relative to a counterfactual of sustained conflict in the region. Although suffering from a considerable degree of uncertainty around the point estimates, they may even provide a lower bound to the true effects of peace if we assume (not unrealistically) that violent conflict in the Niger Delta region would not have remained constant, but further escalated in the absence of the amnesty program. The large effects are relevant in Nigeria’s current context of continuous violent activities by Boko Haram. They suggest that there are important economic benefits to be reaped from finding a way to sustained peace.

The estimates give us an idea of how large and varied the effects of peace – or conversely, conflict – potentially are for different outcomes of economic importance and provoke two exciting questions for further research. First, what are the consequences of conflict for different elements of economic activity beyond general economic performance? Given the extraordinarily large effect I find for self-employment income and the fact that there is only little research exploring this link, it seems worthwhile trying to dissect effects on overall economic performance into its various components. In addition, the strong results deserve fur-

ther research to try and understand precisely why business activity is so strongly linked to conflict and such an important driver of the overall economic effects of it. Second, do these large effects persist long into the future or do affected regions or countries converge back to their non-conflict counterfactual eventually? Although there is some literature exploring effects in the long run, the results are inconclusive. More research employing a broad array of methods including the synthetic control approach that identify both the overall effects and mechanisms in the long run seems necessary to find an answer to this question.

References

- Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. *Journal of the American Statistical Association*, 105(490), 493–505. [Cited on page 94.]
- Abadie, A., Diamond, A., & Hainmueller, J. (2015). Comparative politics and the synthetic control method. *American Journal of Political Science*, 59(2), 495–510. [Cited on page 93.]
- Abadie, A. & Gardeazabal, J. (2003). The economic costs of conflict: A case study of the Basque country. *The American Economic Review*, 93(1), 113–132. [Cited on pages 12, 15, 36, 75, 77, 86, 88, 98, and 104.]
- Abazie-Humphrey, M. (2014). Engaging the Nigerian Niger Delta ex-agitators: The impacts of the Presidential Amnesty Program to economic development. *14th EADI Conference, Bonn*. [Cited on pages 80, 81, and 92.]
- Acemoglu, D., Reed, T., & Robinson, J. A. (2014). Chiefs: Economic development and elite control of civil society in Sierra Leone. *Journal of Political Economy*, 122(2), 319–368. [Cited on pages 19 and 23.]
- Achoja, F., Idoge, D., Ukwaba, S., & Ariyoh, L. (2013). Economic impact of amnesty policy intervention on artisanal fishing agribusiness in Niger-Delta, Nigeria. *IOSR Journal of Agriculture and Veterinary Science*, 2(6), 12–16. [Cited on page 81.]
- ACLED (1997-2015). Armed Conflict Location & Event Data Project. www.acleddata.com. [Cited on page 84.]
- Adao, R. (2016). Worker heterogeneity, wage inequality, and international trade. *Working Paper, University of Chicago*. [Cited on page 43.]

- Akbulut-Yuksel, M. (2014). Children of war: The long-run effects of large-scale physical destruction and warfare on children. *Journal of Human Resources*, 49(3), 634–662. [Cited on pages 15, 59, 77, and 78.]
- Akresh, R., Bhalotra, S., Leone, M., & Osili, U. O. (2012a). War and stature: Growing up during the Nigerian civil war. *The American Economic Review, Papers & Proceedings*, 102(3), 273–277. [Cited on page 59.]
- Akresh, R. & De Walque, D. (2011). Armed conflict and schooling: Evidence from the 1994 Rwandan genocide. *World Bank Policy Research Working Paper*. [Cited on pages 15 and 78.]
- Akresh, R., Lucchetti, L., & Thirumurthy, H. (2012b). Wars and child health: Evidence from the Eritrean–Ethiopian conflict. *Journal of Development Economics*, 99(2), 330–340. [Cited on page 59.]
- Alesina, A. & Perotti, R. (1996). Income distribution, political instability, and investment. *European Economic Review*, 40(6), 1203–1228. [Cited on pages 36 and 77.]
- Allcott, H. (2015). Site selection bias in program evaluation. *The Quarterly Journal of Economics*, 130(3), 1117–1165. [Cited on page 92.]
- Allen, T. & Arkolakis, C. (2014). Trade and the topography of the spatial economy. *The Quarterly Journal of Economics*, 129(3), 1085–1140. [Cited on pages 36, 38, and 53.]
- Almond, D. (2006). Is the 1918 influenza pandemic over? Long-term effects of in utero influenza exposure in the post-1940 US population. *Journal of Political Economy*, 114(4), 672–712. [Cited on page 59.]
- Almond, D. & Currie, J. (2011a). Human capital development before age five. *Handbook of Labor Economics*, 4, 1315–1486. [Cited on page 59.]
- Almond, D. & Currie, J. (2011b). Killing me softly: The fetal origins hypothesis. *Journal of Economic Perspectives*, 25(3), 153–172. [Cited on page 59.]
- Amior, M. (2015). Why are higher skilled workers more mobile geographically? the role of the job surplus. *Working Paper, LSE*. [Cited on page 40.]

- Andrews, I., Stock, J. H., & Sun, L. (2019). Weak instruments in instrumental variables regression: Theory and practice. *Annual Review of Economics*, 11, 727–753. [Cited on page 23.]
- Armington, P. S. (1969). A theory of demand for products distinguished by place of production. *IMF Staff Papers*, 16(1), 159–178. [Cited on page 39.]
- Aromolaran, A. B. (2006). Estimates of mincerian returns to schooling in Nigeria. *Oxford Development Studies*, 34(2), 265–292. [Cited on page 97.]
- Ashenfelter, O. & Krueger, A. (1994). Estimates of the economic return to schooling from a new sample of twins. *The American Economic Review*, 84(5), 1157–1173. [Cited on page 97.]
- Barro, R. J. (1991). Economic growth in a cross section of countries. *The Quarterly Journal of Economics*, 106(2), 407–443. [Cited on pages 36 and 77.]
- Beath, A., Christia, F., & Enikolopov, R. (2011). Can development programs counter insurgencies? Evidence from a field experiment in Afghanistan. *Working Paper*. [Cited on page 76.]
- Bellows, J. & Miguel, E. (2009). War and local collective action in Sierra Leone. *Journal of Public Economics*, 93(11), 1144–1157. [Cited on pages 17, 18, 19, 23, 27, and 30.]
- Berman, E., Felter, J. H., Shapiro, J. N., & Troland, E. (2013). Modest, secure, and informed: Successful development in conflict zones. *The American Economic Review*, 103(3), 512–17. [Cited on page 76.]
- Berman, E., Shapiro, J. N., & Felter, J. H. (2011). Can hearts and minds be bought? The economics of counterinsurgency in Iraq. *Journal of Political Economy*, 119(4), 766–819. [Cited on page 76.]
- Bernard, A. B., Eaton, J., Jensen, J. B., & Kortum, S. (2003). Plants and productivity in international trade. *The American Economic Review*, 93(4), 1268–1290. [Cited on page 53.]
- Besley, T. & Reynal-Querol, M. (2014). The legacy of historical conflict: Evidence from Africa. *American Political Science Review*, 108(02), 319–336. [Cited on page 36.]

- Blattman, C. & Annan, J. (2010). The consequences of child soldiering. *The Review of Economics and Statistics*, 92(4), 882–898. [Cited on pages 15 and 78.]
- Blattman, C. & Miguel, E. (2010). Civil war. *Journal of Economic Literature*, 48(1), 3–57. [Cited on pages 10 and 36.]
- Bozzoli, C., Brück, T., & Wald, N. (2012). Self-employment and conflict in Colombia. *Journal of Conflict Resolution*, 57(1), 117–142. [Cited on pages 15 and 78.]
- Brakman, S., Garretsen, H., & Schramm, M. (2004). The strategic bombing of cities in Germany in World War II and its impact on city growth. *Journal of Economic Geography*, 4(1), 201–218. [Cited on pages 37 and 77.]
- Bryan, G. & Morten, M. (2019). The aggregate productivity effects of internal migration: Evidence from Indonesia. *Journal of Political Economy*, 127(5), 2229–2268. [Cited on pages 36, 38, 50, 53, 55, and 56.]
- Bundervoet, T., Verwimp, P., & Akresh, R. (2009). Health and civil war in rural Burundi. *Journal of Human Resources*, 44(2), 536–563. [Cited on page 59.]
- Camacho, A. & Rodriguez, C. (2013). Firm exit and armed conflict in Colombia. *Journal of Conflict Resolution*, 57(1), 89–116. [Cited on pages 15 and 78.]
- Card, D. (1999). The causal effect of education on earnings. *Handbook of Labor Economics*, 3, 1801–1863. [Cited on page 97.]
- CBN (2009). Global financial and economic crisis: How vulnerable is Nigeria? *Central Bank of Nigeria Presentation by the Governor*. [Cited on page 90.]
- Cerra, V. & Saxena, S. C. (2008). Growth dynamics: The myth of economic recovery. *The American Economic Review*, 98(1), 439–57. [Cited on pages 36 and 77.]
- Chamarbagwala, R. & Morán, H. E. (2011). The human capital consequences of civil war: Evidence from Guatemala. *Journal of Development Economics*, 94(1), 41–61. [Cited on page 78.]
- Chen, S., Loayza, N. V., & Reynal-Querol, M. (2008). The aftermath of civil war. *The World Bank Economic Review*, 22(1), 63–85. [Cited on page 77.]

- Collier, P. (1999). On the economic consequences of civil war. *Oxford Economic Papers*, 51(1), 168–183. [Cited on pages 36, 77, and 81.]
- Collier, P. & Duponchel, M. (2013). The economic legacy of civil war: Firm-level evidence from Sierra Leone. *Journal of Conflict Resolution*, 57(1), 65–88. [Cited on pages 15 and 78.]
- Collier, P. & Hoeffler, A. (2004). Greed and grievance in civil war. *Oxford Economic Papers*, 56(4), 563–595. [Cited on page 17.]
- Crost, B., Felter, J., & Johnston, P. (2014). Aid under fire: Development projects and civil conflict. *The American Economic Review*, 104(6), 1833–56. [Cited on page 76.]
- Crost, B., Felter, J. H., & Johnston, P. B. (2016). Conditional cash transfers, civil conflict and insurgent influence: Experimental evidence from the Philippines. *Journal of Development Economics*, 118, 171–182. [Cited on page 76.]
- Dal Bó, E. & Dal Bó, P. (2011). Workers, warriors, and criminals: Social conflict in general equilibrium. *Journal of the European Economic Association*, 9(4), 646–677. [Cited on page 36.]
- D'Aoust, O., Sterck, O., & Verwimp, P. (2018). Who benefited from Burundi's demobilization program? *The World Bank Economic Review*, 32(2), 357–382. [Cited on page 76.]
- Davis, D. R. & Weinstein, D. E. (2002). Bones, bombs, and break points: The geography of economic activity. *The American Economic Review*, 92(5), 1269–1289. [Cited on pages 37, 69, and 77.]
- Deininger, K. (2003). Causes and consequences of civil strife: Micro-level evidence from Uganda. *Oxford Economic Papers*, 55(4), 579–606. [Cited on page 78.]
- Dorsett, R. (2013). The effect of the troubles on GDP in Northern Ireland. *European Journal of Political Economy*, 29, 119–133. [Cited on pages 77 and 98.]
- Dube, O. & Vargas, J. F. (2013). Commodity price shocks and civil conflict: Evidence from Colombia. *The Review of Economic Studies*, 80(4), 1384–1421. [Cited on page 81.]

- Eaton, J. & Kortum, S. (2002). Technology, geography, and trade. *Econometrica*, 70(5), 1741–1779. [Cited on pages 36 and 38.]
- Felkner, J. S. & Townsend, R. M. (2011). The geographic concentration of enterprise in developing countries. *The Quarterly Journal of Economics*, 126(4), 2005–2061. [Cited on page 22.]
- Galdo, J. (2013). The long-run labor-market consequences of civil war: Evidence from the Shining Path in Peru. *Economic Development and Cultural Change*, 61(4), 789–823. [Cited on pages 15, 59, and 77.]
- Gates, S., Hegre, H., Nygård, H. M., & Strand, H. (2012). Development consequences of armed conflict. *World Development*, 40(9), 1713–1722. [Cited on page 77.]
- Gilligan, M. J., Mvukiyehe, E. N., & Samii, C. (2012). Reintegrating rebels into civilian life: Quasi-experimental evidence from Burundi. *Journal of Conflict Resolution*, 57(4), 598–626. [Cited on page 76.]
- Glennerster, R., Miguel, E., & Rothenberg, A. D. (2013). Collective action in diverse Sierra Leone communities. *The Economic Journal*, 123(568), 285–316. [Cited on page 19.]
- Gollin, D., Lagakos, D., & Waugh, M. (2014). The agricultural productivity gap. *The Quarterly Journal of Economics*. [Cited on page 55.]
- Gong, X. & Rao, M. (2016). The economic impact of prolonged political instability: A case study of Fiji. *Policy Studies*, 37(4), 370–386. [Cited on pages 77, 88, and 98.]
- Guidolin, M. & La Ferrara, E. (2007). Diamonds are forever, wars are not: Is conflict bad for private firms? *The American Economic Review*, 97(5), 1978–1993. [Cited on page 82.]
- Heckman, J. J. & Honore, B. E. (1990). The empirical content of the Roy model. *Econometrica*, (pp. 1121–1149). [Cited on page 43.]
- Hicks, J. H., Kleemans, M., Li, N. Y., & Miguel, E. (2020). Reevaluating agricultural productivity gaps with longitudinal microdata. *Journal of the European Economic Association*. [Cited on page 55.]

- Hsieh, C.-T., Hurst, E., Jones, C. I., & Klenow, P. J. (2019). The allocation of talent and US economic growth. *Econometrica*, 87(5), 1439–1474. [Cited on pages 36, 38, and 53.]
- Humphreys, M. & Weinstein, J. M. (2007). Demobilization and reintegration. *Journal of Conflict Resolution*, 51(4), 531–567. [Cited on page 76.]
- Islam, A., Ouch, C., Smyth, R., & Wang, L. C. (2016). The long-term effects of civil conflicts on education, earnings, and fertility: Evidence from Cambodia. *Journal of Comparative Economics*, 44(3), 800–820. [Cited on pages 59, 77, and 78.]
- Justino, P. & Verwimp, P. (2013). Poverty dynamics, violent conflict, and convergence in Rwanda. *Review of Income and Wealth*, 59(1), 66–90. [Cited on page 26.]
- Keen, D. (2005). *Conflict and Collusion in Sierra Leone*. James Currey. [Cited on page 17.]
- Kennan, J. & Walker, J. R. (2011). The effect of expected income on individual migration decisions. *Econometrica*, 79(1), 211–251. [Cited on page 40.]
- Kesternich, I., Siflinger, B., Smith, J. P., & Winter, J. K. (2014). The effects of World War II on economic and health outcomes across Europe. *The Review of Economics and Statistics*, 96(1), 103–118. [Cited on pages 59 and 78.]
- Ksoll, C., Macchiavello, R., & Morjaria, A. (2016). Guns and roses: Flower exports and electoral violence in Kenya. *Working Paper*. [Cited on page 82.]
- La Mattina, G. (2018). How persistent is the effect of conflict on primary education? Long-run evidence from the rwandan genocide. *Economics Letters*, 163, 32–35. [Cited on page 15.]
- Lagakos, D., Marshall, S., Mobarak, A. M., Vernot, C., & Waugh, M. E. (2020). Migration costs and observational returns to migration in the developing world. *Journal of Monetary Economics*, 113, 138–154. [Cited on page 55.]
- Lagakos, D. & Waugh, M. E. (2013). Selection, agriculture, and cross-country productivity differences. *The American Economic Review*, 103(2), 948–80. [Cited on pages 36 and 43.]

- Leon, G. (2012). Civil conflict and human capital accumulation: The long-term effects of political violence in Perú. *Journal of Human Resources*, 47(4), 991–1022. [Cited on pages 15 and 78.]
- Maccini, S. & Yang, D. (2009). Under the weather: Health, schooling, and economic consequences of early-life rainfall. *The American Economic Review*, 99(3), 1006–26. [Cited on page 59.]
- Márquez-Padilla, F., Pérez-Arce, F., & Rodríguez-Castelán, C. (2015). The (non-) effect of violence on education: Evidence from the ‘war on drugs’ in Mexico. *World Bank Policy Research Working Paper*. [Cited on page 78.]
- Matta, S., Appleton, S., & Bleaney, M. (2016). The impact of the Arab Spring on the Tunisian economy. *The World Bank Economic Review*. [Cited on pages 77, 88, and 98.]
- Merrouche, O. (2011). The long term educational cost of war: Evidence from landmine contamination in Cambodia. *Journal of Development Studies*, 47(3), 399–416. [Cited on page 78.]
- Miguel, E. & Roland, G. (2011). The long-run impact of bombing Vietnam. *Journal of Development Economics*, 96(1), 1–15. [Cited on pages 36 and 77.]
- National Bureau of Statistics Nigeria (2006-2012). General Household Survey Nigeria. www.nigerianstat.gov.ng/nada. [Cited on page 83.]
- Ngai, L. R. & Pissarides, C. A. (2007). Structural change in a multisector model of growth. *The American Economic Review*, 97(1), 429–443. [Cited on page 73.]
- Obi, C. (2014). Oil and the Post-Amnesty Programme (PAP): What prospects for sustainable development and peace in the Niger Delta? *Review of African Political Economy*, 41(140), 249–263. [Cited on pages 80 and 81.]
- Oluduro, O. & Oluduro, O. F. (2012). Nigeria: In search of sustainable peace in the Niger Delta through the amnesty programme. *Journal of Sustainable Development*, 5(7), 48. [Cited on pages 80 and 81.]
- Oluwaniyi, O. (2011). Post-amnesty programme in the Niger Delta: Challenges and prospects. *Conflict Trends*, (4), 46–54. [Cited on page 81.]

OPEC (2010). Annual report 2009. *Organisation of Petroleum Exporting Countries*. [Cited on page 92.]

Peet, E. D., Fink, G., & Fawzi, W. (2015). Returns to education in developing countries: Evidence from the living standards and measurement study surveys. *Economics of Education Review*, 49, 69–90. [Cited on page 32.]

Pettersson, T. & Öberg, M. (2020). Organized violence, 1989-2019. *Journal of Peace Research*, 57(4). [Cited on page 11.]

Pivovarova, M. & Swee, E. L. (2015). Quantifying the microeconomic effects of war using panel data: Evidence from Nepal. *World Development*, 66, 308–321. [Cited on page 78.]

Premium Times (2012). Nigeria enlists 30,000 ex-militants in Presidential Amnesty Programme, says Kuku. <http://www.premiumtimesng.com/news/112493-nigeria-enlists-30000-ex-militants-in-presidential-amnesty-programme-says-kuku.html>. [Cited on page 80.]

Psacharopoulos, G. & Patrinos, H. A. (2018). Returns to investment in education: A decennial review of the global literature. *World Bank Policy Research Working Paper*. [Cited on page 32.]

Redding, S. J. (2016). Goods trade, factor mobility and welfare. *Journal of International Economics*, 101, 148–167. [Cited on pages 36 and 38.]

Richards, P. (1996). *Fighting for the Rain Forest: War, Youth & Resources in Sierra Leone*. James Currey. [Cited on page 16.]

Richards, P. (2004). The political economy of internal conflict in Sierra Leone. *Working Paper*. [Cited on page 17.]

Roy, A. D. (1951). Some thoughts on the distribution of earnings. *Oxford Economic Papers*, 3(2), 135–146. [Cited on pages 33 and 39.]

Saing, C. H. & Kazianga, H. (2020). The long-term impacts of violent conflicts on human capital: Us bombing and, education, earnings, health, fertility and marriage in Cambodia. *The Journal of Development Studies*, 56(5), 874–889. [Cited on pages 15 and 59.]

- Saing, C. H., Kazianga, H., et al. (2017). The long-term impacts of violent conflicts on human capital: US bombing and, education, earnings, health, fertility and marriage in Cambodia. *Working Paper*. [Cited on page 78.]
- Schultz, T. P. (2004). Evidence of returns to schooling in africa from household surveys: Monitoring and restructuring the market for education. *Journal of African Economies*, 13(suppl 2), ii95–ii148. [Cited on page 97.]
- Seiermann, J. (2012). Conflict, road insecurity and self-employed shopkeepers in rural Peru. *Working Paper*. [Cited on page 82.]
- Serneels, P. & Verpoorten, M. (2015). The impact of armed conflict on economic performance: Evidence from Rwanda. *Journal of Conflict Resolution*, 59(4), 555–592. [Cited on pages 15 and 36.]
- Sesay, M. G. & Suma, M. (2009). Transitional justice and DDR: The case of Sierra Leone. *International Center for Transitional Justice (June 2009)*. [Cited on page 72.]
- Shemyakina, O. (2011). The effect of armed conflict on accumulation of schooling: Results from Tajikistan. *Journal of Development Economics*, 95(2), 186–200. [Cited on page 78.]
- Silva, J. S. & Tenreyro, S. (2006). The log of gravity. *The Review of Economics and statistics*, 88(4), 641–658. [Cited on page 52.]
- Solomon, C. & Ginifer, J. (2008). Disarmament, demobilisation and reintegration in Sierra Leone. *Centre for International Cooperation and Security*, (pp. 1–52). [Cited on page 72.]
- Statistics Sierra Leone (2011, 2018). Integrated Household Survey Sierra Leone. <https://www.statistics.sl/index.php/surveys/completed-surveys.html>. [Cited on page 17.]
- Swee, E. L. (2015). On war intensity and schooling attainment: The case of Bosnia and Herzegovina. *European Journal of Political Economy*, 40, 158–172. [Cited on page 78.]

- The Guardian (2009). Nigeria begins amnesty for Niger Delta militants. <https://www.theguardian.com/world/2009/aug/06/niger-delta-militants-amnesty-launched>. [Cited on page 80.]
- Tombe, T. & Zhu, X. (2019). Trade, migration, and productivity: A quantitative analysis of China. *The American Economic Review*, 109(5), 1843–72. [Cited on page 44.]
- UNDP (2006). Case study Sierra Leone: Evaluation of UNDP assistance to conflict-affected countries. *Report*. [Cited on page 16.]
- UNFAO (2007-2009). Food price index of the UN Food and Agricultural Organisation. <http://www.fao.org/worldfoods situation/foodpricesindex/en/>. [Cited on page 89.]
- United Nations (2020). UN Comtrade Database. <https://comtrade.un.org/>. [Cited on page 22.]
- Valente, C. (2014). Education and civil conflict in Nepal. *The World Bank Economic Review*, 28(2), 354–383. [Cited on page 78.]
- Velásquez, A. (2020). The economic burden of crime: Evidence from Mexico. *Journal of Human Resources*, 55(4), 1287–1318. [Cited on pages 77, 78, and 99.]
- Walls, W. & During, A. (2020). The presidential amnesty programme of 2009 and Nigerian oil production: a disaggregate econometric analysis. *OPEC Energy Review*, 44(1), 27–42. [Cited on pages 77 and 99.]
- World Bank (2020). *Strategy for Fragility, Conflict, and Violence 2020-2025*. [Cited on page 10.]
- Wozniak, A. (2010). Are college graduates more responsive to distant labor market opportunities? *Journal of Human Resources*, 45(4), 944–970. [Cited on page 40.]
- Young, A. (2013). Inequality, the urban-rural gap, and migration. *The Quarterly Journal of Economics*, 128(4), 1727–1785. [Cited on page 37.]
- Young, A. (2014). Structural transformation, the mismeasurement of productivity growth, and the cost disease of services. *The American Economic Review*, 104(11), 3635–67. [Cited on page 55.]

Zhou, Y. (2009). *Decentralization, Democracy, and Development: Recent Experience from Sierra Leone*. The World Bank. [Cited on page 72.]

Appendices

A Tables

Table A2: Further Results: Education

	Years of Schooling		Primary Education	
	(1)	(2)	(3)	(4)
Conflict	-1.083*	-0.149	-0.113**	-0.0235
	(0.572)	(0.407)	(0.0501)	(0.0333)
N	18690	2656	18691	2656
R^2	0.321	0.299	0.295	0.293
Estimation Method	IV	IV	IV	IV
First Stage F (KP)	24.31	14.16	24.31	14.16
AR p -value	0.058	0.710	0.026	0.466
Sample	Young	Old	Young	Old
Socio-econ. Controls	✓	✓	✓	✓
District FE	✓	✓	✓	✓

Note – Outcome variables: Years of schooling (columns 1 and 2) and indicator for having finished primary school (columns 3 and 4). Samples: ‘Old’ are all individuals born before 1961, ‘Young’ are all individuals born after 1961. Conflict standardized and instrumented with distance to border. For the old sample, conflict is measured in birth chiefdom; for the young sample, it is measured in chiefdom of residence in 2018. Clustered standard errors at the chiefdom level in parentheses. Kleibergen-Paap cluster-robust F statistic and p -value for weak instrument robust Anderson-Rubin test of $H_0 : \beta = 0$ reported. Stars refer to standard t -tests. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

[\[Back to main\]](#)

Table A1: Sector Allocation including Unemployed Individuals

		Work in Agriculture				Work in Non-agriculture			
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Conflict		0.0555*** (0.0205)	0.0653*** (0.0210)	0.167** (0.0721)	0.267*** (0.0916)	-0.0401*** (0.0147)	-0.0473*** (0.0134)	-0.109** (0.0460)	-0.191*** (0.0631)
N		21407	21407	21407	21407	21407	21407	21407	21407
R^2		0.315	0.329	0.297	0.275	0.171	0.179	0.163	0.149
Estimation Method		OLS	OLS	IV	IV	OLS	OLS	IV	IV
First Stage F (KP)				23.59	15.34			23.59	15.34
AR p -value				0.028	0.001			0.025	0.001
Socio-econ. Controls		✓	✓	✓	✓	✓	✓	✓	✓
Land Controls		✓	✓	✓	✓	✓	✓	✓	✓
District FE		✓	✓	✓	✓	✓	✓	✓	✓
		Work in Manufacturing				Work in Services			
		(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Conflict		-0.0104* (0.00588)	-0.00995* (0.00542)	-0.0458*** (0.0146)	-0.0614*** (0.0217)	-0.0296*** (0.0140)	-0.0373*** (0.0122)	-0.0632* (0.0369)	-0.130*** (0.0478)
N		21407	21407	21407	21407	21407	21407	21407	21407
R^2		0.0503	0.0527	0.0429	0.0385	0.143	0.152	0.141	0.138
Estimation Method		OLS	OLS	IV	IV	OLS	OLS	IV	IV
First Stage F (KP)				23.59	15.34			23.59	15.34
AR p -value				0.002	0.001			0.102	0.003
Socio-econ. Controls		✓	✓	✓	✓	✓	✓	✓	✓
Land Controls		✓	✓	✓	✓	✓	✓	✓	✓
District FE		✓	✓	✓	✓	✓	✓	✓	✓

Note – Sample includes unemployed individuals. Outcome variables: Indicator variables for sector of work. Conflict standardized and instrumented with distance to border. Clustered standard errors at the chiefdom level in parentheses. Kleibergen-Paap cluster-robust F statistic and p -value for weak instrument robust Anderson-Rubin test of $H_0 : \beta = 0$ reported. Stars refer to standard t -tests. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$ [Back to main]

Table A3: Robustness: Exclusion of Chiefdoms with Direct Border

	Log household expenditures per worker			
	(1)	(2)	(3)	(4)
Conflict	-0.0840** (0.0348)	-0.0979*** (0.0361)	-0.338** (0.132)	-0.514*** (0.189)
N	13586	13586	13586	13586
R^2	0.358	0.369	0.321	0.280
Estimation Method	OLS	OLS	IV	IV
First Stage F (KP)			20.80	14.03
AR p -value			0.008	0.001
Socio-econ. Controls	✓	✓	✓	✓
Land Controls		✓		✓
District FE	✓	✓	✓	✓

Note – The sample is restricted to chiefdoms that do not have a direct border with Liberia. This excludes 10 chiefdoms from the analysis. Outcome variables: Log total expenditures per worker. Conflict standardized and instrumented with distance to border. Clustered standard errors at the chiefdom level in parentheses. Kleibergen-Paap cluster-robust F statistic and p -value for weak instrument robust Anderson-Rubin test of $H_0 : \beta = 0$ reported. Stars refer to standard t -tests. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$ [\[Back to main\]](#)

Table A4: Robustness: Household Expenditures

	Log household expenditures			
	(1)	(2)	(3)	(4)
Conflict	-0.0573** (0.0259)	-0.0670** (0.0278)	-0.168** (0.0810)	-0.286** (0.113)
N	21158	21158	21158	21158
R^2	0.450	0.459	0.440	0.421
Estimation Method	OLS	OLS	IV	IV
First Stage F (KP)			23.40	15.28
AR p -value			0.039	0.002
Socio-econ. Controls	✓	✓	✓	✓
Land Controls		✓		✓
District FE	✓	✓	✓	✓

Note – Outcome variable: Log total household expenditures. Conflict standardized and instrumented with distance to border. Clustered standard errors at the chiefdom level in parentheses. Kleibergen-Paap cluster-robust F statistic and p -value for weak instrument robust Anderson-Rubin test of $H_0 : \beta = 0$ reported. Stars refer to standard t -tests. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$ [\[Back to main\]](#)

Table A5: Robustness: Expenditures per Adult Equivalent

	Log expenditures per adult equivalent			
	(1)	(2)	(3)	(4)
Conflict	-0.0597** (0.0258)	-0.0688** (0.0279)	-0.175** (0.0819)	-0.286** (0.112)
N	21158	21158	21158	21158
R^2	0.415	0.424	0.402	0.384
Estimation Method	OLS	OLS	IV	IV
First Stage F (KP)			23.40	15.28
AR p -value			0.035	0.002
Socio-econ. Controls	✓	✓	✓	✓
Land Controls		✓		✓
District FE	✓	✓	✓	✓

Note – Outcome variable: Log total expenditures per adult equivalent. Conflict standardized and instrumented with distance to border. Clustered standard errors at the chiefdom level in parentheses. Kleibergen-Paap cluster-robust F statistic and p -value for weak instrument robust Anderson-Rubin test of $H_0 : \beta = 0$ reported. Stars refer to standard t -tests. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$ [Back to main]

Table A6: Robustness: Exclusion of Freetown

	Log household expenditures per worker				Work in Agriculture			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Conflict	-0.0877** (0.0369)	-0.107*** (0.0380)	-0.306*** (0.129)	-0.543*** (0.206)	0.0668** (0.0261)	0.0882*** (0.0268)	0.183** (0.0796)	0.344*** (0.119)
N	12194	12194	12194	12194	12263	12263	12263	12263
R^2	0.181	0.214	0.144	0.0901	0.207	0.242	0.184	0.152
Estimation Method	OLS	OLS	IV	IV	OLS	OLS	IV	IV
First Stage F (KP)			19.35	12.53			19.49	12.54
AR p -value			0.012	0.000			0.028	0.000
Socio-econ. Controls	✓	✓	✓	✓	✓	✓	✓	✓
Land Controls			✓	✓	✓	✓	✓	✓
District FE	✓	✓	✓	✓	✓	✓	✓	✓
	Years of schooling				Primary Education			
	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Conflict	-0.291* (0.175)	-0.429** (0.203)	-0.970* (0.530)	-2.070*** (0.723)	-0.0305** (0.0154)	-0.0413** (0.0181)	-0.0988** (0.0454)	-0.187*** (0.0630)
N	16944	16944	16944	16944	16945	16945	16945	16945
R^2	0.306	0.320	0.299	0.289	0.293	0.303	0.285	0.276
Estimation Method	OLS	OLS	IV	IV	OLS	OLS	IV	IV
First Stage F (KP)			23.46	14.93			23.46	14.93
AR p -value			0.067	0.001			0.032	0.001
Socio-econ. Controls	✓	✓	✓	✓	✓	✓	✓	✓
Land Controls			✓	✓	✓	✓	✓	✓
District FE	✓	✓	✓	✓	✓	✓	✓	✓

Note – The capital Freetown is excluded from the analysis. Outcome variables: Log total expenditures per worker; indicator variable for work in agriculture; years of schooling; indicator variable for having primary education. Conflict standardized and instrumented with distance to border. Clustered standard errors at the chiefdom level in parentheses. Kleibergen-Paap cluster-robust F statistic and p -value for weak instrument robust Anderson-Rubin test of $H_0 : \beta = 0$ reported. Stars refer to standard t -tests. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$ [Back to main]

Table A7: Conflict Reduction in the Niger Delta Region

	(1)	(2)
	Fatalities	Fatalities
After 2009	-34.07** (14.67)	97.09*** (32.56)
Year		36.66*** (12.83)
After 2009 \times Year		-40.09*** (13.03)
Constant	44.78*** (14.46)	-59.48** (25.69)
N		
R^2	0.0879	0.297

Note – Outcome variable: Fatalities in a violent conflict event involving at least five fatalities. Heteroskedasticity-robust standard errors in parentheses. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$. [\[Back to main\]](#)

B Figures

Figure B1: Map of Sierra Leone in West Africa

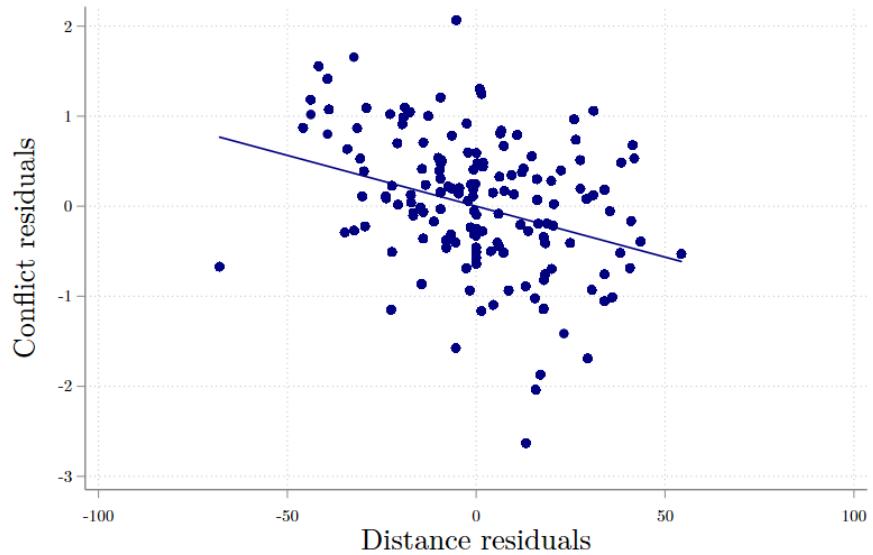

Note – Freetown is the capital of Sierra Leone. Source: Open Street Map. [\[Back to main\]](#)

Figure B2: ISIC Sector Classification

Section	Divisions	Description	
A	01–03	Agriculture, forestry and fishing	Agriculture
B	05–09	Mining and quarrying	
C	10–33	Manufacturing	Manufacturing
D	35	Electricity, gas, steam and air conditioning supply	
E	36–39	Water supply; sewerage, waste management and remediation activities	
F	41–43	Construction	
G	45–47	Wholesale and retail trade; repair of motor vehicles and motorcycles	
H	49–53	Transportation and storage	
I	55–56	Accommodation and food service activities	
J	58–63	Information and communication	
K	64–66	Financial and insurance activities	
L	68	Real estate activities	
M	69–75	Professional, scientific and technical activities	
N	77–82	Administrative and support service activities	
O	84	Public administration and defence; compulsory social security	
P	85	Education	
Q	86–88	Human health and social work activities	
R	90–93	Arts, entertainment and recreation	
S	94–96	Other service activities	
T	97–98	Activities of households as employers; undifferentiated goods- and services-producing activities of households for own use	
U	99	Activities of extraterritorial organizations and bodies	

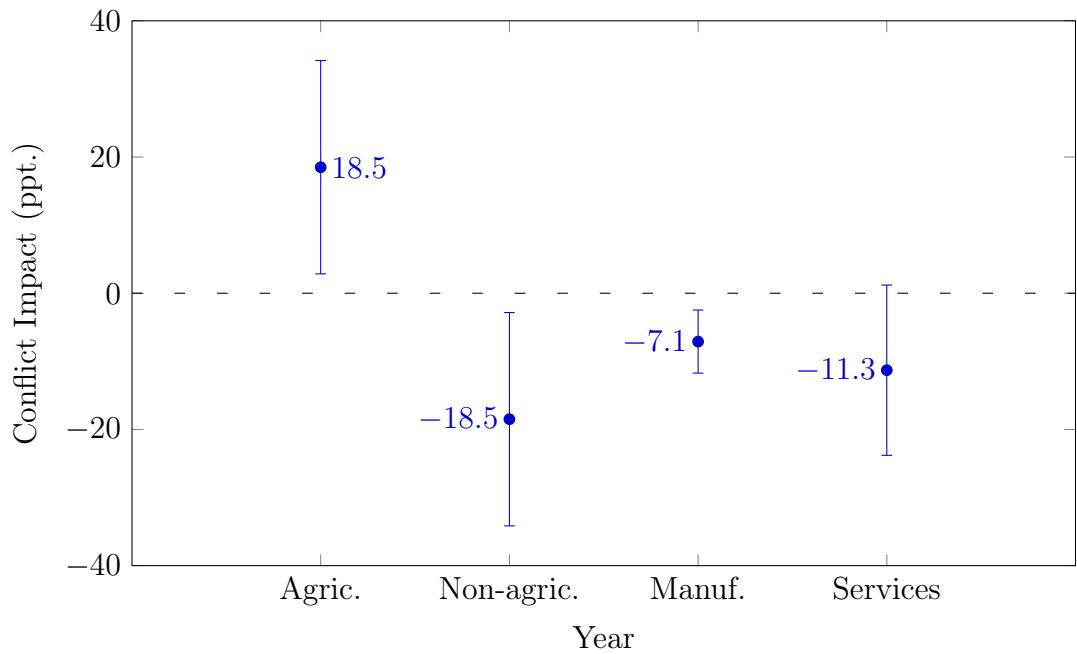

Note – From information on the ISIC section of their main professional activity, workers are classified to work in one of the three sectors according to the above figure. [\[Back to main\]](#)

Figure B3: First Stage Within Districts

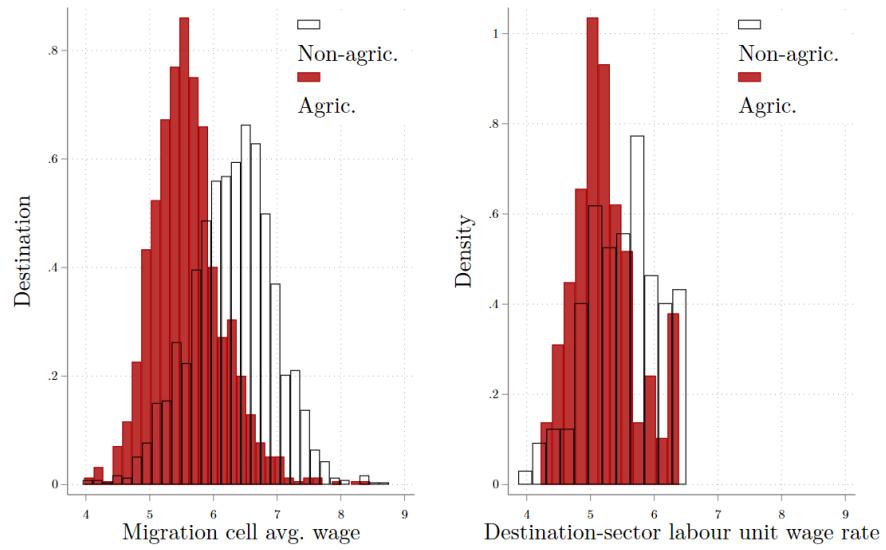

Note – The conflict measure is standardized and distance is measured in km.
The straight line presents an OLS line of best fit. [\[Back to main\]](#)

Figure B4: Sector Shift

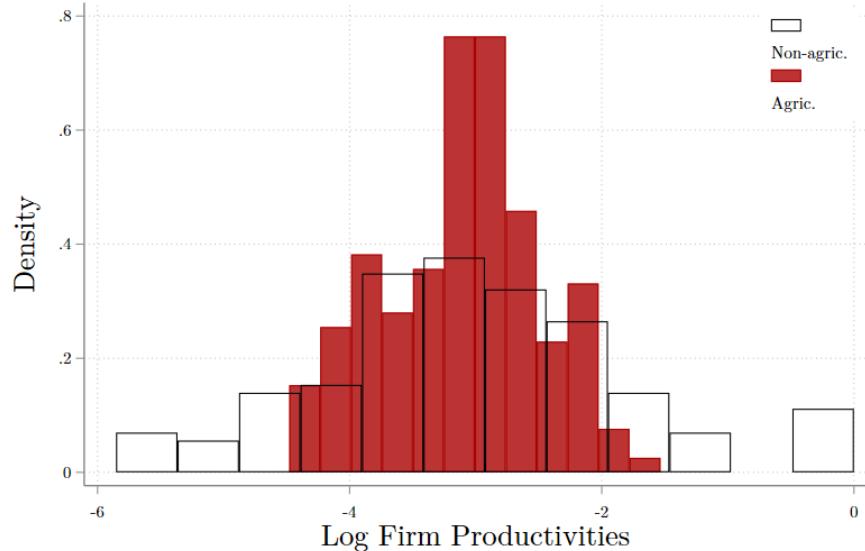

Note – IV coefficients depicted for specification with socio-economic controls, district fixed effects and minimum distance to large cities controlled for. 95% confidence intervals based on clustered standard errors at the chiefdom level. [\[Back to main\]](#)

Figure B5: Distribution of Labor Unit Wage Rates

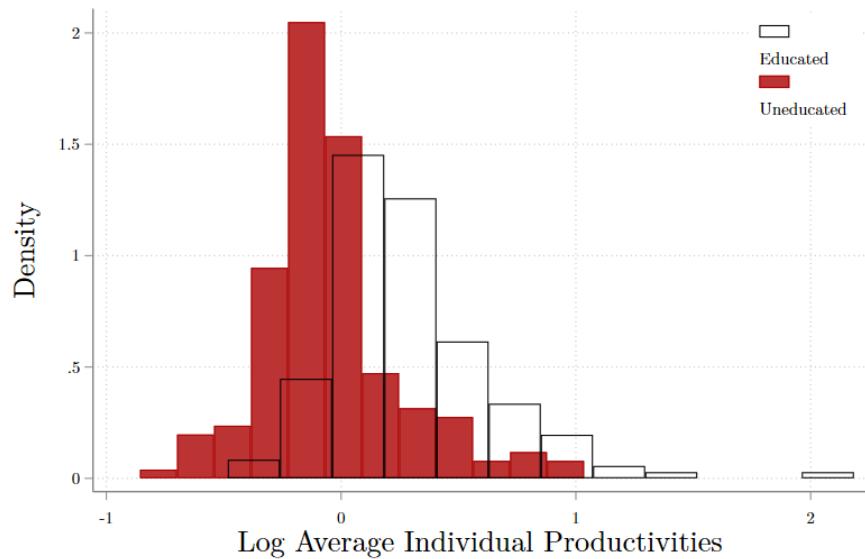

Note – Histograms of observed log income in the data $\ln \overline{m_{ecd}^S}$ and estimated log labor unit wage rates $\ln \overline{w_d^S}$ by sector. [\[Back to main\]](#)

Figure B6: Distribution of Firm-level Productivities

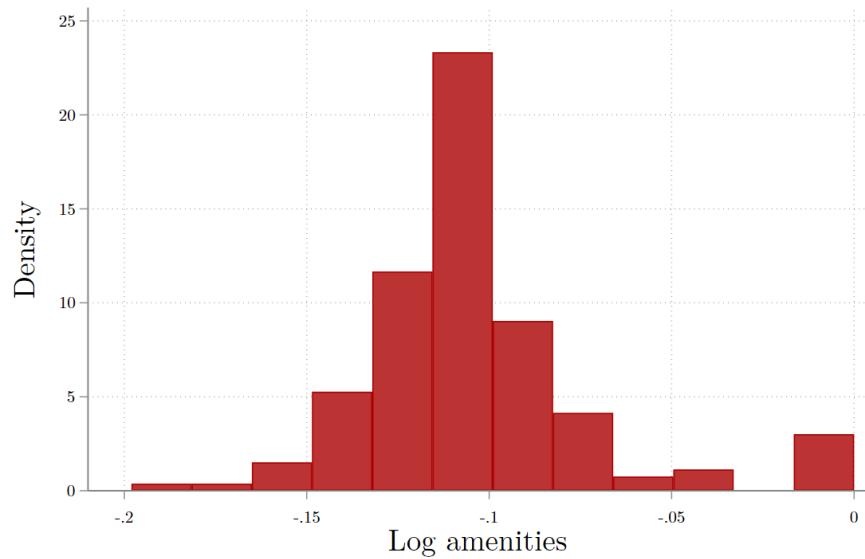

Note – Histograms of log firm-level productivities by sector. [\[Back to main\]](#)

Figure B7: Distribution of Average Individual Productivities

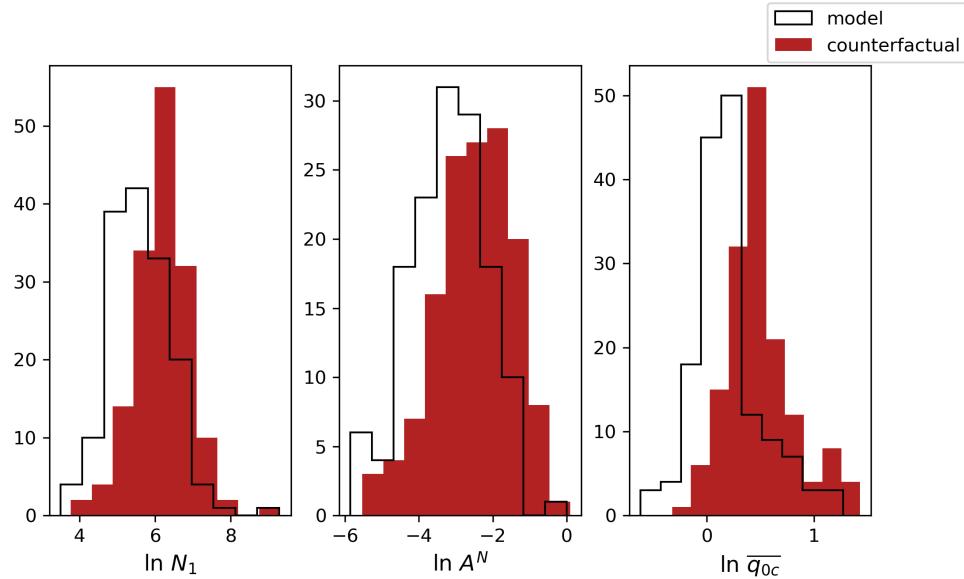

Note – Histograms of log average individual productivities by education level.
[\[Back to main\]](#)

Figure B8: Distribution of Amenities

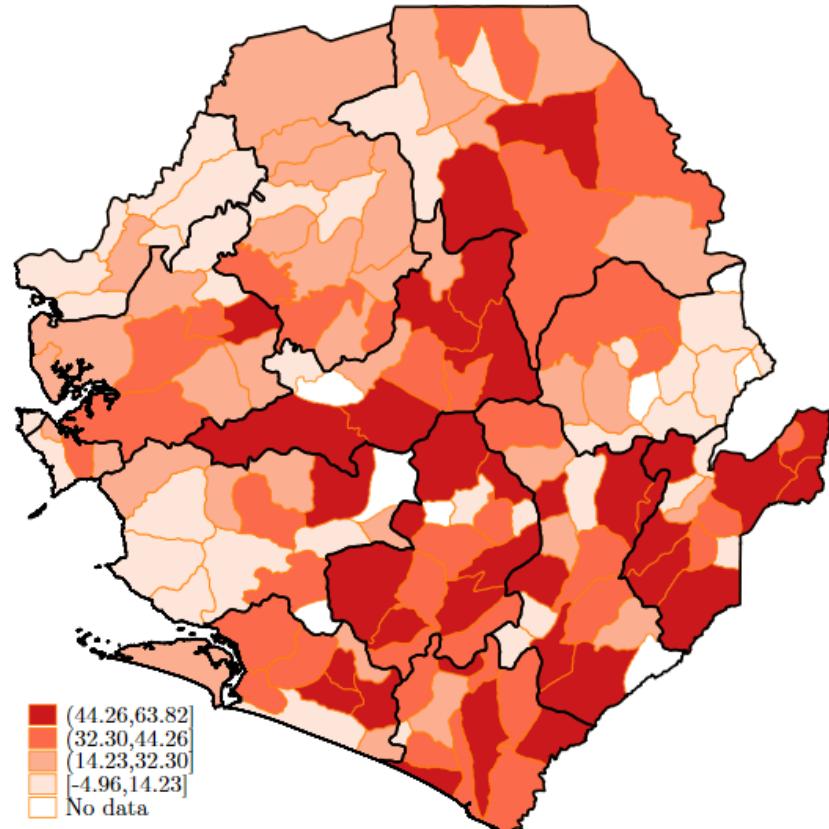

Note – Histograms of log amenities. [\[Back to main\]](#)

Figure B9: Parameter Changes

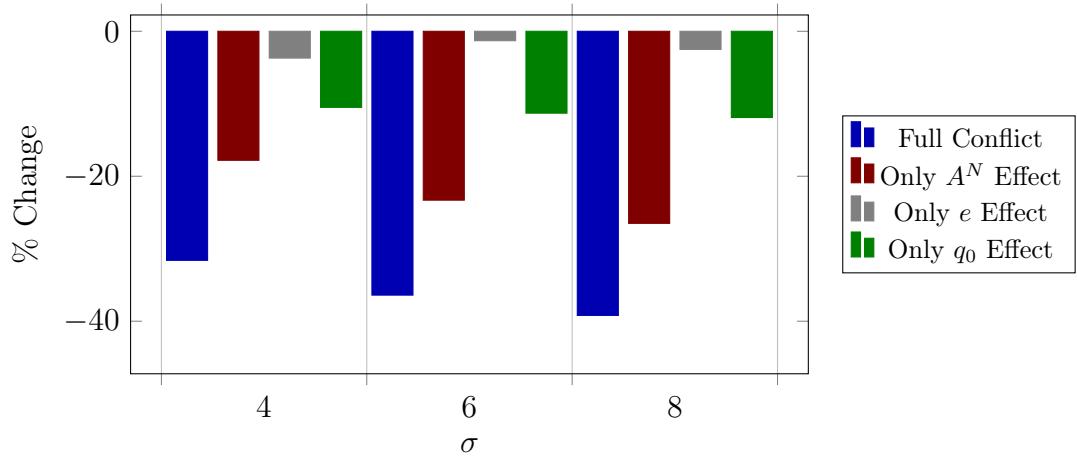

Note – Distributions of log origin populations of individuals with primary school education $\ln N_1$, log non-agricultural firm productivities $\ln A_d^S$ and log average individual productivities among the uneducated $\ln \bar{q}_{oc}$. The black histogram displays the original distributions and the red histogram displays the counterfactual distributions. [\[Back to main\]](#)

Figure B10: Aggregate Income Changes by Chiefdom

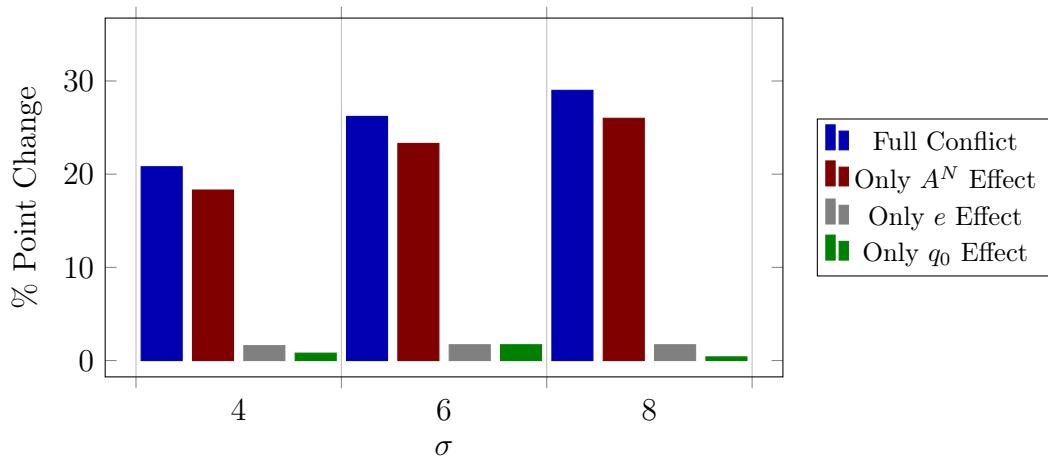

Note – Absolute value of aggregate income reductions (in %) in each chiefdom as a result of the civil war relative to a no-war scenario. Full conflict simulation considered. Estimates stem from model simulation. Missing data: 5 chiefdoms unobserved in households survey 2018; 3 chiefdoms without conflict information. [\[Back to main\]](#)

Figure B11: Robustness to Different σ Values: Aggregate Income

Note – Aggregate income changes for different values of the elasticity of substitution σ .
[\[Back to main\]](#)

Figure B12: Robustness to Different σ Values: Employment in Agriculture

Note – Changes in the economy-wide size of the agricultural sector for different values of the elasticity of substitution σ .
[\[Back to main\]](#)

C Proofs

Proof of equation 3.8. Recall that individual productivity draws z_{id}^S for destination d and sector S are independently Fréchet distributed:

$$F_{ec}(z_{id}^S) = \exp \left(- \left(\frac{z_{id}^S}{q_{ecd}^S} \right)^{-\theta} \right) \quad (C1)$$

Consider the indirect utility distribution of workers *choosing* destination d and sector S , that is, the distribution of $\bar{V}_{id}^S := V_{id}^S | i \in M_{ecd}^S = \max_{d', S'} \{V_{id'}^{S'}\}$. Using the fact that $V_{id}^S = \frac{v_{ecd}^S z_{id}^S}{P}$, we have

$$\begin{aligned} F_{\bar{V}_{id}^S}(u) &= \Pr \left[V_{id'}^{S'} < u \forall d', S' \right] \\ &= \exp \left(- \sum_{d'} \sum_{S'} \left(\frac{uP}{v_{ecd'}^{S'} q_{ecd'}^{S'}} \right)^{-\theta} \right) \\ &= \exp \left(-u^{-\theta} \sum_{d'} \sum_{S'} \left(\frac{v_{ecd'}^{S'} q_{ecd'}^{S'}}{P} \right)^\theta \right) \\ &= \exp \left(- \left(\frac{u}{\left(\sum_{d'} \sum_{S'} \left(\frac{v_{ecd'}^{S'} q_{ecd'}^{S'}}{P} \right)^\theta \right)^{\frac{1}{\theta}}} \right)^{-\theta} \right) \end{aligned} \quad (C2)$$

Therefore, the distribution of \bar{V}_{id}^S is Fréchet itself with scale parameter

$$t_{ec} := \left(\sum_{d'} \sum_{S'} \left(\frac{v_{ecd'}^{S'} q_{ecd'}^{S'}}{P} \right)^\theta \right)^{\frac{1}{\theta}} \quad (C3)$$

The probability that someone chooses d and sector S is

$$\begin{aligned} \pi_{ecd}^S &= \Pr \left[V_{id}^S > V_{id'}^{S'} \forall d', S' \neq d, S \right] \\ &= \int_0^\infty \Pr \left[V_{id'}^{S'} < u \forall d', S' \neq d, S \right] dF_{V_{id}^S}(u) \\ &= \int_0^\infty \frac{F_{\bar{V}_{id}^S}(u)}{F_{V_{id}^S}(u)} \theta u^{-1-\theta} \left(\frac{v_{ecd}^S q_{ecd}^S}{P} \right)^\theta F_{V_{id}^S}(u) du \\ &= \left(\frac{v_{ecd}^S q_{ecd}^S}{P} \right)^\theta t_{ec}^{-\theta} \int_0^\infty \underbrace{\theta u^{-1-\theta} t_{ec}^\theta F_{\bar{V}_{id}^S}(u)}_{f_{\bar{V}_{id}^S}(u)} du \\ &= \frac{(v_{ecd}^S \epsilon_{ecd}^S)^\theta}{\sum_{d'} \sum_{S'} (v_{ecd'}^{S'} \epsilon_{ecd'}^{S'})^\theta} \end{aligned} \quad (C4)$$

where the last step makes use of the decomposition of $q_{ecd}^S = \overline{q}_{ec} \epsilon_{ecd}^S$ into an origin-education average and remaining variation.

Proof of equation 3.9. Using the distribution of \overline{V}_{id}^S , we have that $z_i|i \in M_{ecd}^S = \frac{\overline{V}_{id}^S P}{v_{ecd}^S}$ also follows a Fréchet distribution with scale parameter

$$\frac{t_{ec} P}{v_{ecd}^S} = \left(\frac{\sum_{d'} \sum_{S'} (v_{ecd'}^{S'} q_{ecd'}^{S'})^\theta}{(v_{ecd}^S)^\theta} \right)^{\frac{1}{\theta}} \quad (\text{C5})$$

It follows that

$$\begin{aligned} E[z_i | i \in M_{ecd}^S] &= \frac{t_{ec} P}{v_{ecd}^S} \Gamma \left(\frac{\theta - 1}{\theta} \right) \\ &= \left(\frac{\sum_{d'} \sum_{S'} (v_{ecd'}^{S'} q_{ecd'}^{S'})^\theta}{(v_{ecd}^S)^\theta} \right)^{\frac{1}{\theta}} \Gamma \left(\frac{\theta - 1}{\theta} \right) \\ &= (\pi_{ecd}^S)^{-1/\theta} q_{ecd}^S \Gamma \left(\frac{\theta - 1}{\theta} \right) \end{aligned} \quad (\text{C6})$$

D Extensions

D.1 Trade Cost

An introduction of trade cost in the classic iceberg format would have an implication for the estimation of A_d^S in step 3 of the estimation (section 3.3.3). Denote the iceberg trade cost by $\eta_{dg}^S \geq 1$ as the amount of good produced in d that would need to be bought in any other location g to consume one unit of that good in g . The market clearing conditions would contain a market access term:

$$\left(\frac{w_d^S}{w_f^T}\right)^\sigma = \left(\frac{A_d^S}{A_f^T}\right)^{\sigma-1} \frac{\sum_g (\eta_{dg}^S)^{-\sigma} GDP_g / P_g^{1-\sigma} L_f^T}{\sum_g (\eta_{fg}^S)^{-\sigma} GDP_g / P_g^{1-\sigma} L_d^S} \quad (D1)$$

Market access is the weighted sum of real GDP in all buying locations of a good that is produced in d or f where the weights are the inverse trade cost. With trade cost, therefore, my estimates of firm productivities A_d^S are in fact a composite of firm productivities and market access. Section 3.5.3 discusses the implications for the results in counterfactual simulations and the estimation of the aggregate effects of civil war.

D.2 Endogenous Education

As a simple extension of the model with endogenous education choice, consider the individual productivity shock that workers draw to be sector-, destination-, and education-specific. Workers draw the shock z_{ied}^S for each sector S , destination d , and education level e from independent Fréchet distributions with scale parameter q_{ecd}^S . Denote the origin-specific cost of getting education level e by k_{ec} satisfying $k_{0c} = 1$ and $k_{1c} > 1$. It is assumed to enter as a denominator in your income. Therefore, workers who choose education e , sector S and destination d have indirect utility

$$\hat{V}_{ied}^S = \frac{v_{ecd}^S z_{ied}^S}{k_{ec} P} \quad (D2)$$

Workers maximise utility to choose their education level, sector and destination. Similar considerations as before give that the probability of choosing education level e , destination d and sector S is

$$\hat{\pi}_{ecd}^S := Pr \left[V_{ied}^S > V_{ie'd'}^{S'} \ \forall e', d', S' \right] = \frac{(v_{ecd}^S q_{ecd}^S / k_{ec})^\theta}{\sum_{e'} \sum_{d'} \sum_{S'} (v_{e'cd'}^{S'} q_{e'cd'}^{S'} / k_{e'c})^\theta} \quad (D3)$$

As a result, education choice can be described by the ratio of the probability to become educated and the probability to stay uneducated within a sector-destination:

$$\frac{\hat{\pi}_{1cd}^S}{\hat{\pi}_{0cd}^S} = \left(\frac{\exp(\phi^S)(1 - \tau_{1cd}^S)q_{1cd}^S}{k_{1c}(1 - \tau_{0cd}^S)q_{0cd}^S} \right)^\theta \quad (D4)$$

In this setting, the effect of conflict on education operates through an effect on the cost of education. The destruction of schools and killings of teachers in origin c make it more costly for individuals born there to get educated, that is, k_{1c} increases. Clearly, fewer people will get educated as a result. The implications of this and conflict effects on firm productivities and location amenities for sector and destination choice are the same as in the original model.

E Numerical Solution Algorithm

All simulations described in section 3.5 require model solutions. Given parameter values $\{\theta, \phi^N - \phi^A, A_d^A, A_d^N, a_d, \bar{q}_{0c}, \exp(\phi^N)\bar{q}_{1c}, \tau_{0cd}^A, \tau_{0cd}^N, \tau_{1cd}^A, \tau_{1cd}^N, N_{0c}, N_{1c}\}$, the model solution is numerically found using the following recursive procedure.

Step 1. For the initial iteration $i = 0$, guess initial movement matrices $[\pi_{ecd}^S]_{i=0}$.

Step 2. In iteration i , given origin populations \bar{N}_{ec} and the movement matrices, the workforce in each sector and destination can be computed.

Step 3. Given the workforce in each sector and destination, labor supply is determined according to equation 3.15 as:

$$L_d^S = \sum_c \sum_e \bar{N}_{ec} (\pi_{ecd}^S)^{1-\frac{1}{\theta}} h_e^S q_{ecd}^S \Gamma \left(\frac{\theta-1}{\theta} \right) \quad (\text{E1})$$

Note that this object can be identified even without separate identification of ϕ^S and \bar{q}_{ec} since the two only enter multiplicatively. For the uneducated, \bar{q}_{0c} is known. For the educated in non-agriculture, $\exp(\phi^N)\bar{q}_{1c}$ is known. For the educated in agriculture, $\exp(\phi^A)\bar{q}_{1c} = \exp(\phi^N)\bar{q}_{1c} \times \exp(\phi^A - \phi^N)$ can be computed using the known parameter values above.

Step 4. Given labor supply L_d^d and firm productivities A_d^S in each sector and destination, wage rates can be determined up to scale. Using the estimated non-agricultural wage rate in Freetown $w_{Freetown}^N$ as a normalization, all other wage rates are determined one by one using the equilibrium condition 3.21:

$$\left(\frac{w_d^S}{w_{Freetown}^N} \right)^\sigma = \left(\frac{A_d^S}{A_{Freetown}^N} \right)^{\sigma-1} \frac{L_{Freetown}^N}{L_d^S} \quad \forall S \in \{A, N\} \quad \forall d \in \mathcal{K} \quad (\text{E2})$$

Step 5. Given wage rates w_d^S , compute v_{ecd}^S and find the optimal sector and destination choice of workers according to equation 3.8:

$$[\pi_{ecd}^S]_n = \frac{(v_{ecd}^S \epsilon_{ecd}^S)^\theta}{\sum_{d'} \sum_{S'} (v_{ecd'}^{S'} \epsilon_{ecd'}^{S'})^\theta} \quad (\text{E3})$$

Step 6. Update your guess of movement matrices as a convex combination (with weight $\delta = 0.9$) of the guess from the previous iteration and the computed movement matrices:

$$[\pi_{ecd}^S]_{i+1} = \delta [\pi_{ecd}^S]_i + (1 - \delta) [\pi_{ecd}^S]_n \quad (\text{E4})$$

Step 7. Iterate from step 2 until the distance between $[\pi_{ecd}^S]_i$ and $[\pi_{ecd}^S]_{i+1}$ is sufficiently small for all movement matrices.