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Abstract

In the first part of this thesis, we study a continuous-time principal-agent model
without precommitment. The agent runs an economic project on behalf of the
principal. To this end, the agents apply effort that is costly to them and unobservable
by the principal. In return, the agent receives compensation from the principal. The
agent is strictly risk-averse and their objective is to maximize their expected utility
of compensation minus their expected disutility of effort. The principal is risk-
neutral and their objective is to maximize their expected utility of income generated
by the project minus the compensation paid to the agent. The optimal contract
should maximize the principal’s expected utility subject to the constraint that it
should induce a contractual environment in which it is optimal for the agent to
always be truthful. To exclude the requirement of precommitment, the contract
allows for costly renegotiation. The optimal contract is fully determined by deriving
the explicit solution to a suitable control problem that combines regular stochastic
control with singular stochastic control.

In the second part of this thesis, we present a study of two-dimensional strong
Markov processes whose second component is the running maximum of the first one.
The study of such processes has been motivated by recent development in financial
mathematics, such as the introduction and the analysis of the 7 and the watermark
options. We first introduce a suitable concept of regularity that generalises the
standard regularity assumption of the theory of one-dimensional diffusions/strong
Markov process to the two-dimensional setting that we study. Next, we characterise
the class of scale functions, namely, the functions that yield local martingales when
composed with a Markov process in the family we study. We then show that such
a process in natural scale can be represented as a time-changed Brownian motion
and its running maximum. Finally, we present a study of associated r-invariant
functions. Our analysis makes heavy use of the standard theory of one-dimensional
diffusions. The main difficulties arise from the behaviour of the processes on the
diagonal where their two components coincide.
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Chapter 1

Introduction and Literature
Review

Principal-agent problems study the interaction between a principal and an agent.
The principal hires the agent to accomplish a project and receives the output, while
the agent receives compensation from the principal and makes effort until the termi-
nation of the project. The principal chooses a contract which incentivises the agent
to accept and work until termination. The agent maximizes over his actions while
the principal maximizes over admissible contracts based on the agent’s incentives.
In the second best setting, the action of the agent is not directly observable by the
principal due to the noise in the output, which is observable only by the agent.

The first principal-agent problem model in continuous time setting was studied
by Holmstrom and Milgrom [15]. The principal pays the agent at the terminal time
T. The agents try to maximize their expected utility function of terminal payment
from the principal minus their own effort cost, while the principal try to maximize
a utility function of final output minus her terminal payment to the agent. This
problem can be solved either via first order methods or a BSDE comparison principle
(see also Cvitanic and Zhang [8]). Later, Cvitanic, Wan and Zhang [7] studied
a similar problem of Holmstrom and Milgrom [15] using FBSDE and stochastic
maximum principle (see also Cvitanic and Zhang [8]). Early seminal papers in
continuous time setting are due to DeMarzo and Sannikov [12] and Sannikov [27].
They represent the agent’s continuation value as a stochastic process and solve both
of the agent’s and principal’s problems using standard HJB equation approach. The
former paper considers the situation where the agent is able to steal from the output
process without being discovered by the agent. The agent is offered a continuous
contract payment from the principal and tries to maximize this payment plus the
stole benefit. On the other hand, the principal tries to maximize her cashflow
minus the contract payment and the stolen loss. The latter paper consider the
situation when the agent receives continuous payment from the principal and the
principal benefits from the agent’s continuous effort. The agents try to maximize
their discounted utility stream from the payment minus the discounted disutility
stream from their efforts. On the other hand, the principals try to maximize their
discounted effort stream minus the discounted payment stream.

With the exception of DeMarzo and Sannikov [12], all of the above mentioned



papers are based on the so called ”weak formulation” in which the agent determines
the drift of the output process SDE by choosing an equivalent probability measure.
Evans, Miller and Yang [13] revisited the problem of Sannikov [27] in the strong
formulation in which strong solutions to the output process’ SDE are considered
and the agent chooses a controlled process that affects the drift. This paper makes
suitable convexity assumptions and solves the resulting control problem by means
of PDE techniques.

Anderson and Zervos [2] also adopted a strong formulation. So far, all models
allow the agent to control the drift of the output process SDE. It is worth noting that
Cvitanic, Possamai and Touzi [9], [10] also studied the problem in which the agent
can control the volatility of the output process SDE using the theory of quadratic
BSDE.

In the first chapter of the thesis, we consider the problem of Sannikov [27] in the
strong formulation. On the top of that, we add two new features: 1) we allow for
an exit option for the principal. 2) we allow for costless or costly renegotiation to
take place. Renegotiation is defined as an update of current contract between the
agent and the principal. From economical point of view, the two parties will happily
accept the renegotiation if it benefits them both, possibly with a (proportional) cost.
Therefore, it makes sense to consider only renegotiations that are beneficial to both.
As we saw from Sannikov’s solution in [27], the slope at 0 of the value function
could be strictly positive. This means that if renegotiation is costless, with possible
renegotiation between the agent and the principal, both of them could be better off.
In some cases, it might not be optimal to renegotiate due to the cost, while in the
costless case, the slope of the value function is nonpositive to exclude a better off
situation for both parties.

To the best of our knowledge, this model is the very first one that studies a
principal-agent problem with renegotiation. Our main contributions include solving
the Sannikov’s problem in this new setting and filling some details and gaps in
Sannikov’s original paper. (Sannikov’s results are correct but several steps are not
explicitly proved.)

One possible future continuing work could be to consider a fixed cost along with
the already existing proportional cost. This extension is very practical in the real
world applications and would give rise to an impulse control problem.

The theory of one-dimensional regular diffusions has been comprehensively stud-
ied by many contributors: It6 and McKean [16] and Roger Williams [26] are standard
references for the theory. The law and boundary behaviours of these processes are
fully determined by their scale function p and their speed measure m. The pro-
cess p(X) can be written as a time change of a Brownian motion on a possibly
enriched probability space by a PCHAF (perfect continuous homogeneous additive
functional) that depends on the speed measure m (see Theorem V.41.1 of Roger
and Williams [26]). In other words, every one-dimensional regular diffusion can be
obtained by time-changing a standard one-dimensional Brownian motion and then
composing the resulting process with a scale function.

The notion of r-invariant functions and resolvents can then be introduced. These
play important roles in solving several optimal stopping and the stochastic control
problems. In Alvarez [1], a singular control problem of one-dimensional diffusion is



studied. In Karatzas and Dayanik [11], the value functions of optimal stopping prob-
lems involving one-dimensional diffusions are characterised by r-excessive functions
that are the smallest majorants of the terminal payoffs. The papers by Johnson
and Zervos [17], Lamberton and Zervos [19] exploit solutions of some ODEs which
are measures to solve optimal stopping problems and price some exotic derivatives
related to one-dimensional diffusion.

In the second chapter of the thesis, we investigate the two-dimensional continuous
strong Markov processes (X, .S) whose second component is the running maximum
of the first one on the state space E. This class includes those (X,S) where X
is a one-dimension continuous strong Markov processes. Moreover, it also includes
the Azema-Yor process which can be characterised as a solution to the Bachelier
equation

dX; = u(Sy)dM,

where % is locally integrable and M is a continuous local martingale (see Obloj

[23]). The Azema-Yor process can be used to solve Skorokhod problem and provide
bounds for the law of running maximum process S according to Obloj and Yor [22].
It is also related to drawdown equation where the constraint X > x(S) is satisfied
for some Borel functions x such that x(s) < s for all s. The drawdown equation has
application in stochastic control and portfolio optimization where we require (X, S)
satisfy a similar constraint according to Carraro, El Karoui and Obloj [5]. Note that
our class of two-dimensional continuous strong Markov processes contains the class
Azema-Yor process as a proper subclass and the problem of its characterisation is
interesting in its own right.

Our first objective is to show that such processes can also be obtained by time-
changing a standard one-dimensional Brownian motion and its running maximum
and then composing the resulting processes with a scale function. We start by
defining a notion of regularity in our two dimensional setting for the strong Markov
processes (X, .S). In order to use probability tools such as It6-Tanaka’s formula or
its extension, we introduce the family of (one to one) scale functions p : E — R?
such that the process (p(Xi, St),p(St, St)) is also strong Markov while p(Xy, S;) is
a local martingale. Then, we present an extended version of Ito-Tanaka formula
by Lamberton and Zervos [20] concerning a continuous semimartingale X and its
running maximum .S. With the aid of this formula, we can show that after composing
with a scale function, the process (X,S) can be identified as a time-changed of
Brownian motion and its running maximum by a PCHAF. The PCHAF depends
on the speed measure m(-;s) of the process X while it makes an excursion with
running maximum s as well as a measure A\ that is a kind of speed measure of
process X while the process (X, S) is on the line {x = s} in z-s plane. Hence, the
law of (X,S) is completely determined by its scale function p, the speed measure
m and A similar to one-dimensional diffusion case. Finally, we consider the r-
invariant functions corresponding to the two dimensional process (X, S) and derive
a differential equation which they satisfy as in one dimensional diffusion case.

To the best of our knowledge, this is the first article characterising two-
dimensional continuous strong Markov processes (X, .S) whose second component is
the running maximum of the first one. The main difficulties lie in how to construct
scale functions in this two-dimensional setting and verify that all auxiliary functions



we use do satisfy the requirements of our extension of Ito-Tanaka’s formula.

The study of this family of stochastic processes has partly been motivated by
some recent development in financial mathematics, in particular pricing derivatives
involving running maximums, such as the introduction and the analysis of 7 options
(Guo and Zervos [14]) and the watermark options (Rodosthenous and Zervos [25]).
Similar solution to a PDE that are measures horizontally and diagonally analogous
to one-dimensional case in Johnson and Zervos [17] may be established in the future
work.



Chapter 2

A Continuous-Time
Principal-Agent Problem with
Costly Renegotiation

This chapter is based on joint work with Professor Mihail Zervos.

2.1 Outline

In this chapter, we study a continuous-time principal-agent model without precom-
mitment. The agent runs an economic project on behalf of the principal. To this
end, the agent applies effort that is costly to them and unobservable by the prin-
cipal. In return, the agent receives compensation from the principal. The agent
is strictly risk-averse and their objective is to maximize their expected utility of
compensation minus their expected disutility of effort. The principal is risk-neutral
and their objective is to maximize their expected utility of income generated by the
project minus the compensation paid to the agent. The optimal contract should
maximize the principal’s expected utility subject to the constraint that it should
induce a contractual environment in which it is optimal for the agent to always be
truthful. To exclude the requirement of precommitment, the contract allows for
costly renegotiation. The optimal contract is fully determined by deriving the ex-
plicit solution to a suitable control problem that combines regular stochastic control
with singular stochastic control.

The chapter is organised as follows. In Section 2.2, we set up the maximization
problems (without renegotiation) for both the agent and the principal. We make
assumptions on relevant constants, utility and disutility functions that are very
standard. Then, we define the concept of contracts. In Section 2.3, we introduce
the notion of a renegotiation process, which can be discrete or continuous. In Section
2.4, we give a representation of the agent’s continuation value process and motivate
the definition of dynamic contract. We solve the agent problem by restricting the
principal to choose from a class of incentive compatible contracts, which we refer to
admissible contracts. Then, we state the optimisation problem of the principal and



the corresponding HJB equation. In Section 2.5, we construct the solution to the
HJB equation associated with the value function of the principal. In Section 2.6, we
state the value function of the principal and we discuss the optimal contract for the
principal under different cases. Then, we use a verification theorem to conclude our
results.

2.2 The principal-agent problem model without
renegotiation

We fix a complete probability space (2, F,P) supporting a standard one-dimensional
Brownian motion W. We denote by (F;) the natural filtration of W. Here, as well
as throughout the chapter, we refer to the filtration satisfying the usual conditions
that is obtained by rendering right-continuous natural filtration of a given process
and augmenting it by the P-negligible sets in F simply as the process’ “natural
filtration”.

The agent runs an economic project on behalf of the principal. The project
generates the cashflow process Y given by

dY; = A, dt + o dW,, (2.1)

where ¢ > 0 is a constant and A is a R, -valued process modelling the agent’s effort
in running the project. To compensate the agent’s effort, the principal pays the
agent at a rate modelled by an R, -valued process C'. We assume that the agent’s
application of effort is unobservable by the principal, namely, the principal observes
only the reported cashflow Y. Accordingly, the compensation process C' is adapted
to the natural filtration (G;) of Y. The contractual agreement between the principal
and the agent also involves a discretionary time 7 at which the project is liquidated.
This is a (G;)-stopping time.

The agent is risk-averse with limited liability and his objective is to maximize
expected utility of compensation minus expected disutility of effort. In particular,
the agent aims to maximize the performance criterion

Z.(C,7,A) =E UOT e " [u(Cy) — k(A,)] ds} , (2.2)

where the discount rate r > 0 is a constant and u, k satisfy the following assumption

Assumption 2.2.1. The utility function u : R, — R, is C?, strictly concave,

o . . . / o . / .
u(0) =0, Cliglo u(c) = oo, Cli}r?ou (c) =0, (1:1_r>r(1)u (¢) =00
I d n—1 1
and liminf —u o (u') —— | > —o0.
qt0  dg q

The disutility function k : Ry — R is C? strictly conver,
k(0)=0, K (0)=~ and K"(x)>0 forallz >0,

where v > 0 is a constant.

10



Remark 2.2.1. The setting we have considered up to this point, including Assump-
tion 2.2.1, is the same as in Sannikov [27].

Remark 2.2.2. The concavity of u and —k reveal that the agent is risk-averse.
The C? differentiability and boundary conditions at 0 and oo ensure the existence of
CY\ {0}, locally Lipschitz minimizer ¢* and mazimizer z* to be defined later. We
will see that these conditions guarantee that a specific ODE has a unique solution
and a specific SDE has a unique strong solution. In turn, these results will ensure
that the value function is C* and the optimal contract exist.

Definition 2.2.1. An R, -valued (F;)-progressively measurable process A is admis-
sible if

E UOOO T (Ay) + AZds| < oo.

We denote by A the family of all admissible effort processes.

Remark 2.2.3. Here, the integrability conditions are imposed to make sure all in-
tegrals exist. They are the same as in Chapter 5 of Cvitanic and Zhang [8] and are
implicitly assumed by Sannikov [27].

The principal is risk-neutral and their objective is to maximize the expected
income generated by the project minus the expected compensation paid to the agent.
In particular, the principal aims to maximize the expected payoft

7,(C,7,A) =E {/ e "dYs — / e "Cds + e”L]
0 0

_E l /0 e (A, — C)ds + e‘”L} (2.3)

over all compensation processes C' and liquidation times 7. Here, the discounting
rate r > 0 and the liquidation payoff L > 0 are given constants.

The following definition, which involves no renegotiation, provides a first step to
formalising the contractual environment we consider.

Definition 2.2.2. A contract without renegotiation I' = (C, T) is a function mapping
each process A in the set of admissible effort processes A to a pair (C(A),7(A)),
where C(A) is an Ry-valued (Gi)-progressively measurable process and 7(A) is a
(Gy)-stopping time, where (G;) = (Gi(A)) is the natural filtration of the process Y
given by (2.1).

We need to impose suitable integrability conditions to the compensation processes
C(A) for the optimisation problems we consider to be well-defined. We will address
such issues in the more specific context of Section 4.

In light of this definition, the problem of determining an optimal contract in the
absence of renegotiation can be viewed as a Stackelberg game:

Agent: Given a contract I', the agent chooses an effort strategy A* = A*(T') that
maximizes their expected payoft Z,(C(A),7(A), A) given by (2.2) subject to

1ynE G:| > 0 for all t.

/tT e st [u(Cs) — k(Ag)]ds

11



Principal: Given the optimal response A*(I') of the agent to each contract T',
the principal chooses a contract I'* that maximizes their expected payoff

Z,(C, 7, A*(T)) given by (2.3).

2.3 The principal-agent problem model with rene-
gotiation

We introduce the possibility of renegotiation in the contractual environment. To
this end, we first consider a sequence of functions 7j : A — [0, 00], 7 > 0, such that

To(A) =0, Ty(A) < Ty4a(A) on {Ty(4) < oo}

and T;(A) is a G, = G;(A)-stopping time for all j > 0 and all A € A. We assume that
renegotiation takes place at each of the times 7}, j > 1, and a contract I'; = (C}, 75)
in the sense of Definition 2.2.2 prevails over the period [Tj_,T}[, for j > 1.

We can define a single contract I' = (C, 7) in the sense of Definition 2.2.2 that
represents the sequence of contracts arising from renegotiation as follows. First, we
define

ZCN 1{T7 1(A)<E<T;(A)}s (2.4)

for t > 0 and A € A. Next, we define recursively the functions &; : A — [0, o0,
Jj =1, by
&= T11{71<T1} + OO]-{nZTl}

and

§ir1 = §ilig <o) + Tit1lir i emy Ty 30{Ty <65}

+ 00 1 (¢, <o0U({r) 41 €115 Ty 41 Ty <€ 1)

for 7 > 1, where we have dropped the dependence as A € A to simplify the notation.
Finally, we define

A) = jo(A), for A € A. (2.5)

In other words, this synthesized contract makes the payments and follows the ter-
mination strategy of the j-th contract between the renegotiation times 7;_; and
T.

ge

Lemma 2.3.1. Given sequences of renegotiation times (1;) and contracts T'; as
above, (2.4) and (2.5) defines a contract without renegotiation in the sense of Defi-
nition 2.2.2.

Proof. Throughout the proof, we consider an effort process A € A fixed and we
drop it from the notation to simplify the formulas.

12



The process C' defined by (2.4) is (G;)-measurable because the process C;, j > 1,
are (Gy)-measurable and the times 7}, j > 0 are (G,)-stopping times, we can show
that £ , j > 1 are (G;)-stopping times by induction as follows. Given any ¢ > 0,

(G <ty={n<t}n{n <}
={n<Th<tyu({n <tIn{t<Ti}) €G

which proves that & is a (G;)-stopping time. Assuming that &; is a (G;)-stopping
time, we can see that, given any t > 0,

{Gn < ={§ < U{T) <7 <3N H{T; < §}) € Ge,
because

{T; <&} eGr, = AT <§IN{T; <t} € G,
and {T; < 7511} € G, = {T; <71 N {741 <t} €G;.

The claim that & is a (G;)-stopping time follows. Finally, the time 7 defined by
(2.5) is a (G;)-stopping time by Exercise (4.17) in Chapter I of Revuz and Yor [24]
because (G;) is right-continuous. ]
To proceed further, we define
gt] ’

for t > 0, where (C,7) is any contract in the sense of Definition 2.2.2 and A is any
admissible effort process. We next consider a sequence of contracts I'; = (C}, 75),
J > 1, arising from renegotiation at a sequence of renegotiation times 7}, j > 0, as
well as the effective contract I' = (C, 1) that is as in the previous lemma. In this
context, the agent’s running promise P, associated with the contract prevailing at
time ¢ is given by

T(A)
Pt,C,7, A) = Liper B / eI u(C(AL)) — k(AL ds
t

Pt = P(t, Cj,Tj,A) on {7}_1 <t< Tj N T‘]} (26)

On the other hand, the agent’s effective promise P, that reflects the effect of future
renegotiations is given by

B ="P(tC, 1 A).

In view of these definitions and the fact that

Cy=Cpy forall t € [T, T4 and {T) <7 <Tip1} = {1 < 11 <1141},

13



on the event {T;_y <t < T;} N {t <7}, we can see that

Tj/\Tj
P —E / eTEDu(Cy ) — k(AL)ds
t

Ti41A T4
+§Zlm<@/ﬁ e u(Crn) — (A, )ds

=K

ﬂwe’“tmwawm—MAows

o Ti41
+ E 1{Tl<T}e_T(Tl_t)E[/ e_T(S_Tl)[u(C’HLS) — k(Ay)]ds
I=j T

G|

_/Tle " (Cs) = k(AS)]ds|Gr | |Ge

T

:Pt + ]E Z 1{’]"l<7}€_r(n_t)AR’I‘l

Ll=j

=P +E / e TG NAR,
Jt,7]

G

Gel, (2.7)

where R is the piece-wise constant process

Rt — Z ARTil{TiSt}

i=1

T,L+1
= Z Lin <y B [/ e "I [w(Cy s) — K(A,)]ds

4

In summary, we have seen that the agent’s running promise process admits the
expression

B /n e T [y(CL) — k‘(AS)]dS‘ng}

T;

Z (Pr, = Pr, )lir.<s).

Py =14nE / e " u(Cy) — k(A,))ds — / e "EVAR, (2.8)
t ]tvﬂ

/ 6—r(s—t)dRS
1t.7]

where the renegotiation process R captures all changes to the agent’s running
promise resulting from renegotiation.

=P — 1B G

Y

14



At the renegotiation time 77, the agent will be agreeable to replacing their current
contract I'; with the new one I';;; if and only if this results in an increase of their
running promise, namely, if and only if

APp, = ARz, > 0.

Furthermore, we allow for continuous renegotiation. In particular, we allow for R to
be any increasing process representing the cumulative increase of the agent’s running
promise resulting from renegotiation.

Definition 2.3.1. A contract with renegotiation I = (C, 7, R) is a function mapping
each admissible effort process A to a triplet (C(A), 7(A), R(A)), where C(A) is an
R, -valued (G;)-progressively measurable process, T(A) is a (G;)-stopping time and
R(A) is an R -valued (G;)-adapted process with increasing sample paths.

Given such a contract, the agent’s objective is to maximize the performance
criterion

T.(C, 7, R,A) = Py =E [ /0 T [u(CS) - k(AS)} ds — A) . e”SdRs] (2.9)

subject to
P, >0 for all ¢. (2.10)

Remark 2.3.1. The performance criterion (2.9) is the agent’s running promise at
time 0. Dynamic programming suggests that an optimality for the agent’s contract
should remain optimal at any later time. Accordingly, a contract that maximizes
the performance criterion (2.9) should maximize the agent’s running promise at all
times. By focusing on maximizing their running rather than their effective pay-
off, this setting assumes that the agent is “myopic”. In practice, it would be more
appropriate to consider the agent mazximizing the performance criterion

T(C.r R, A)= Py —E [/0 e [u(C) — KA, ds} , (2.11)

which is their effective promise at time 0. We discuss such issues further in Section
2.7.

Renegotiation leading to the increases of the agent’s running promise may be
costly for the principal. We assume that such costs are proportional to the increases
of the agent’s running promise. Therefore, given a contract in the sense of Definition
2.3.1, the principal’s objective is to maximize the performance index

Z,(C,m,R,A) =E [/ e " (As — Cy)ds — li'/ e dRs+e "L |, (2.12)
0 10.7]

where k > 0 is a constant. Note that we allow for the possibility of costless renego-
tiation, which corresponds to the value k = 0.

We conclude this section with the statement of the Stackelberg game whose
solution can determine an optimal contract in the presence of renegotiations:

15



Agent: Given a contract ', the agent chooses an effort strategy A* = A*(I") that
maximizes their expected payoff Z,(C(A),7(A), R(A), A) given by (2.9) sub-
ject to (2.10).

Principal: Given the optimal response A*(I") of the agent to each contract T,
the principal chooses a contract I'* that maximizes their expected payoff

Z,(C, 1, R, A*(T")) given by (2.12).

2.4 State space representation of contracts with
renegotiation

The purpose of this section is to determine a class of contracts admitting a state
space representation. To this end, we follow the standard approach to continu-
ous time principal-agent theory that was pioneered by Sannikov [27]. The starting
point is Lemma 2.4.1, which provides stochastic dynamics for the agent’s (running)
promise process P under the assumption that the agent is truthful to the principal.
This result motivates restricting attention to contracts characterized by the state
space representation given by (2.14). In turn, this representation motivates the class
of contracts given by Definition 2.4.1 and characterized by the state process given
by (2.16). The next step is motivated by Lemma 2.4.2, which provides sufficient
conditions for a contract in the sense of Definition 2.4.1 to be incentive compatible,
namely, to be such that it is optimal for the agent to be truthful to the principal.
This result motivates restricting attention to the class of contracts introduced by
Definition 2.4.2. The principal-agent problem then reduces to choosing the con-
tract among the ones in Definition 2.4.2 that maximizes the principal’s payoff. It
is worth noting that this approach restricts the original class of contracts twice. To
the best of our knowledge, there are no results in the literature on how “severe”
such restrictions might be.

Lemma 2.4.1. Consider a contract I' = (C, 1, R) in the sense of Definition 2.3.1
and suppose that the agent adopts an effort process A that is observable by the
principal, so that (G;) = (F;). There exists a (Gy)-progressively measurable process
Z satisfying suitable integrability conditions such that the agent’s running promise
process P, which is given by (2.8), satisfies the stochastic equation

AP, = (rP, — u(Cy) + k(A;) ) dt + dR; + 0 Z, dW;. (2.13)

Proof. Since (F;) is the natural filtration of the Brownian motion W, the martingale
representation theorem implies that there exists an (F;)-progressively measurable
process Z satisfying suitable integrability conditions such that

E

¢
G| ="k —i—a/ e " ZydWs,
0

/0 e (L) — k(AL ) ds — A) eman,

This identity and (2.8) imply that

t t
P, — Py — / T u(CL) — k(AL ds + / e AR 4 o / I
0 0

10,2]
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The stochastic dynamics (2.13) follow from this representation and an application
of the integration by parts formula. ]

This lemma suggests the possibility of characterising a contract by means of a
state process X with dynamics

dX; =[rX; —u(Cy) + k(Ay) | dt + dR, + 0 Zy AW,

Instead of making a choice (C, 7, R) and determining the agent’s running promise
process P using (2.8), such contracts make a choice (C, 7, R, Z) and then determine
the agent’s running promise process P by identifying it with the solution X to the
SDE (2.14). For such an identification, the definition (2.8) of the agent’s running
process implies that

Xyt =0 forallt>0. (2.15)

To develop this new perspective in a way that makes the agent’s optimisation
problem in the Stackelberg game straightforward to solve, we need to introduce an
additional element in the contract. This is a recommended effort process E that
the principal would accept as the agent’s effort process. Later, we will restrict the
principal to focus on contracts that induce the agent to follow the recommended
effort process, which makes the problem tractable.

Definition 2.4.1. A dynamic contract D = (C, 7, R, Z, E) is a function mapping
each admissible effort process A € A to a quintuple (C(A),7(A), R(A), Z(A), E(A)),
where E is called the recommended effort, with the following properties (here we drop
the explicit dependence on A for notational simplicity):

e Cis an R, -valued (G;)-progressively measurable process such that

]E[/ e "u(Cy) ds| < 0.
0

T s a (Gy)-stopping time.

R is an Ry -valued (G;)-adapted process with increasing cadlag sample paths

such that
Ry=0 and E[/
10

Z is an R-valued (G;)-progressively measurable process such that

E[/ e 72 ds] < 00.
0

E is an Ry -valued (G;)-progressively measurable process such that

e " dRs} < 00.

700[

E UOOO e "lk(E,) + E?] ds] < 00.
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The reason for introducing the recommended effort process in the contract is
because the actual effort process A may be unobservable by the principal, in which
case, the solution to (2.14) is not adapted to the reported information flow that is
modelled by the filtration (G;). On the other hand, the family of dynamic contracts
introduced by the previous definition are associated with the state process X given

by
dXt = [’I"Xt — U(Ct) + k(Et) — EtZt ]dt + th + Zt d}/t, X() =T > O, (216)

which is adapted to the filtration (G;). Notice that equation (2.16) is exactly (2.14)
when A = F.

Assumption 2.2.1 implies that the function R 3 a +— az — k(a) has a unique
maximum for each fixed z € R and

a(z) = arageglax {az — k(a)} =

{(k’)_l(z) >0, forz>n, 217)

0, forz < ~.

The following result shows that, if the recommended effort E identifies with «(Z7),
then the contract is incentive compatible, namely, it is optimal for the agent to
adopt the recommended effort.

Lemma 2.4.2. Given a dynamic contract in the sense of Definition 2.4.1, the cor-
responding solution to the SDE (2.16) is well-defined. Furthermore, if the contract
15 such that

E(A) =«a(Z(A)) forall A€ A, (2.18)

there exists A* € A such that
A" = a(Z(AY)) (2.19)

and the associated solution to the SDE (2.16) satisfies

XT(A)+t<A)1{T(A)<oo} =0 forallt>0 and lim E[e_TTXT(A)l{T<T}] =0 (2.20)

T—o00

then

sup Z,(C(A), 7(A), R(A), A) = T,(C(A*), 7(A*), R(A), A) = X, (2.21)

AcA

Proof. Given a dynamic contract D as in the statement of the lemma, we denote by
C, 7,7, R, E its valuation at any given A € A, and we drop the explicit dependence
on A itself for notational simplicity. In view of integrability conditions in Definition
2.2.1, 2.4.1 and Holder’s inequality, we can see that

1

E UOOO e A Zy| ds] < <IE UOOO e A2 ds] )% (E UOOO e " Z; dsD 2
o[ i) o[ el o[ )
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We can then define process (e7"X;) as a stochastic integral
t t
e "X, = X, —|—/ e " (—u(Cy) + k(Es) — EZy ) ds +/ e " dR, +/ e " Z,dYs,
0 [0,1] 0

which is (G;)-adapted. By integration by parts, X is the solution to (2.16). Re-
arrange, we can see that

TNAT
eiT(T/\T)XT/\T = XO o / eiTS[(EsZs - k(ES)) - (ASZS - k(AS>)] ds
TNAT ’
B / e u(C) — B(AL)] ds + / e dR,
0 10,TAT]
TNAT
+ / O_e—TSZS dWs (222)
0

Now suppose that the contract is such that (2.18)-(2.20) hold true. The expression
(2.17) and (2.22) imply that

TAT
/ e "lu(Cy) — k(Ay)]ds — / e "PdR;
0 10,TAT]
TAT
SXQ — G_TTXT]_{T<T} + / UG_TSZSCZWS
0

with equality if A = «(Z). The integrability condition on Z in Definition 2.4.1
implies that the stochastic integral is a martingale. In view of this observation and
the relevant integrability conditions in Definition 2.4.1, we can take expectation and
pass to the limit as T — oo using the monotone convergence theorem to obtain
(2.21). ]

In view of the previous result, we now restrict attention to incentive compatible
dynamic contracts such that the recommended effort E identifies with a(Z) and
(2.20) holds. Such contracts are associated with the state process

dX: = [rXe —u(Cy) + k(a(Zy)) — a(Zy) Zy] dt + dRy + Z, dY;
= [rX; — u(Cy) + k(a(Zy))| dt + dRy + o Zy dW,. (2.23)

The following definition summarises the discussion and analysis of the section thus
far.

Definition 2.4.2. An incentive compatible dynamic contract D = (C, 7, R, Z) is a
function mapping each effort process A € A to (C(A),7(A), R(A),Z(A)) with the
following properties (here we drop the explicit dependence on A for simplicity):

o The processes C, R, Z and random time 7 are as in Definition 2.4.1.

e The solution to (2.23) is such that

Xetilireoy = 0 for all t >0 and lim Ele " Xrlgr<n] = 0.
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We now restrict attention to admissible controls in the sense of Definition
2.4.2. Given such a contract, Lemma 2.4.2 implies that the agent will choose
A* = a(Z(A*)) as their effort process. This effort process is fully observable by
the principal. Therefore, its associated reported information flow (G;) identifies
with the Brownian filtration (F;). We are faced with the state process

dXt = [TXt — U(Ct) + k(@(Zt))] dt + th + O'Zt th, XO =X Z 0. (224)

In this context, the principal’s performance index given by (2.12) takes the form
J(C, 1R, Z) =E [/ e (a(Zs) — Cy)ds — H/ e dRs+e "L |. (2.25)
0 ]OvT]

To determine the optimal incentive compatible dynamic contracts, we need to solve
the stochastic control problem defined by (2.24) and (2.25). In particular, we need
to maximize the performance criterion given by (2.25) over all admissible controls.
Thus, we are faced with a control problem with mixed regular stochastic control
and singular stochastic control. The value function of this problem is defined by
V(z)= sup J,(C,7,R,Z). (2.26)
(C,7,R,Z)eC
In view of standard stochastic control theory, we expect that the problem’s value
function should identify with a suitable solution to the HJB equation

max{ max {%o—w F1(@) + (e — u(e) + k(a(2)) f'(z)

c>0,zeR

—rf(x)+a(z) — c}, f(z) — K} =0. (2.27)

where u and k are defined in Assumption 2.2.1 and « is defined in (2.17).

To derive the solution to this HJB equation that identifies with value function,
we need suitable boundary conditions. Depending on parameter values, we will
encounter three different cases, each corresponding to a different optimal strategy
of the principal.

In any of the three cases, we will later show that it is optimal to follow a de-
terministic strategy that requires 0 effort from the agent, involves no renegotiation
and delivers the initial promise x to the agent if z is sufficiently large. Indeed, for
all x in a closed neighbourhood of oo, it is optimal to choose

Cr=cl(r) and ZF =Ry =0 forallt>0,

where ¢f(z) is such that

x = / e tu(cl(x))dt & re=u(c(2))
0
These choices imply that the agent’s promise process
dX, = (rX; —u(c'(Xy))dt = 0

so that X; = x for all ¢ > 0. Accordingly, the closed half-infinite interval in which
this strategy is optimal acts as an “absorbing” part of the state space. In this
interval, the value function identifies with the function H we consider first in the
next section.
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2.5 The Construction of a Solution to the HJB
Equation

In view of the discussion at the end of the previous section, we start our analysis
with the function H : R, —] — 00, 0] that is defined by

H(z) = — . (2.28)

H is strictly concave and

min{rH(x) + H'(x) <u(c) — m) + c}

c>0

=rH(z) + H'(x) [u(cT(x)) — m] +cf(x) =0, (2:29)

where

c'(z) = (u’)_1< — H’l(x)> =u '(rx) = —rH(z), forz>0. (2.30)

H also represents the principal’s payoff if he pays constant ¢'(z) to the agent for 0
effort forever because

1 u(rz)

/OOO (et (@))dt = — et () = — — H).

r T

There exists a unique straight line that passes through the point (0, L) and is tangent
to H. To see that, consider the line

ly(z) = H'(y)(r — y)

for any y > 0. It is the line tangent to H at (y, H(y)). We know y — [,(0) =
—yH'(y) is continuous and strictly increasing from 0 to co. Therefore there exist yo
such that L = [,,(0). We choose this line /,,(x) and represent it as

Inin(7) = qz + L, (2.31)
where q and ., are the unique solution to the system of equations
H' (zwin) = q and H(zmn)— L= H' (2 min) Trmin- (2.32)

Note that ¢ = ¢(L) is a function mapping Ry to ] — 00,0]. Since H takes negative
values and L > 0,

0<Tymn, ¢<0 and 0=z, < g¢g=0and L=0. (2.33)
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To simplify the notation, we also define

Conin = U (PZmin) = =7 H (Tmin). (2.34)
We also note that the second identity in (2.32) can be rewritten as
i
which is equivalent to
u(Cmin) — W (Cmin) (rL 4 Cmin) = 0. (2.35)

In our analysis, we will also need to consider the line
1
@) =~ =)+ @), (2.36)

where v > 0 is as in Assumption 2.2.1 and

_uo(u)'(y)

Ty 1= (2.37)
Furthermore, we note that that
, 1
H'(z,) =—— (2.38)
8
and we define
L,:=1,0)=—-H'(zy)x,+ H(z,). (2.39)
Lemma 2.5.1. The following equivalences hold true:
1
< —— & Tpn>T, & L>L,
- Y
1
and ¢>—— & Tyn<z, & L<L, (2.40)
- v
Proof. In view of the identity H'(x,) = —% and the strict concavity of H, we can
see that
1
H(tmm) =q¢<——=H(z,) < Tmn > 2.
- Y
If we define

Az) = —zH'(x) + H(x)
then A is strictly increasing because
N(z)=—zH"(z) >0 forall z>0

Combining this observation with the identities L = A(2in) and L, = A(z,), which
follow from (2.32) and (2.39), we obtain

Tmin > T, & L>1L,.

We can establish the equivalences involving the reverse inequalities similarly. [
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Remark 2.5.1. When ¢ = —1 & 2z = x, & L = L., the corresponding line Iy
4 ¥
i8 1y .

In the study of further properties of H as well as in several other proofs, we will
need the properties of functions k£ and o summarised in the following result.

Lemma 2.5.2. The function k is such that

sup{a+qk‘(a)} {;0’ Fas -3, (2.41)

a>0 0, oo, if—%<q<0.

The function « is C* on R\ {v}. Furthermore, it satisfies the following properties:

~a(2) Kal2)

lim inf > —0o0 and liminf — 5 —00, (2.42)
2—00 z Z—00 z
1 - _ 1
(o) = LT 2 0 fora>aand limp dG) =g g
0, forz <7,
. k"’o(k')fl(z)
o(z) = 4w e <0 Jorz >, (2.44)
0, forz <.

Proof. Notice that (2.41), (2.43) and (2.44) follow from straightforward differenti-
ation.

The first limit in (2.42) follows from the concavity of a. To derive the second
one, we use the integration by parts to obtain

k(a(z)) = k(0) +/ sdl(s)ds = za(z) — / a(s)ds
gl g
< za(z) forall z >~ (2.45)
This calculation and the first limit in (2.42) imply the second limit in (2.42). ]

Proposition 2.5.3. Let z,, and ., be the points given by (2.32) and (2.37). The
function H defined by (2.28) satisfies the HJB equation inside the interval [z, ocol.
Furthermore,

L
H(xz)= sup {L bt Cx} for all x > Tyn. (2.46)

c>ct(x) U(C)
where the function c' is defined in (2.30).
Proof. The strict concavity of H and (2.38) imply that

1
H'(z) < - for all x > .. (2.47)

In view of this inequality and (2.41), we obtain

sup {a + H'(z)k(a)} = 0

a>0
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Combining this result with (2.29) and the strict concavity of H, we can see that

1
max {50222}]”@) + |rz —u(e) + k(a(2))|H' () —rH(z) + a(z) — c} =0
c20,ze
(2.48)

for all x > z,.
By (2.47) and (2.48), it follows that H satisfies the HJB equation (2.27) inside the
interval [z.,, col.

To establish (2.46), we first note that the expressions (2.30) for ¢ imply that

H)=1— (L+ CT(x))

”
(rL +c'(z))x
S T L — C(ef 2.49
L (2.49)
for all z > 0, where
L
((c) = Tu(—ci-)c’ for ¢ > 0.
Combining (2.35) and the fact that
d
T [u(c) —u'(c)(rL+c¢)| = —u"(c)(rL +¢) > 0,
We obtain
u(c) —u'(c)(rL+¢) >0 for all ¢ > cypp.
Therefore,

C/(C) _ u(c) — 2;/522(7”[’ +0) >0 forall ¢ > cpin

In view of this result, the fact that c(z) > cp, for all 2 > 7, and (2.49), we can
see that

H(z) =L —{(c"(2))z = sup {L - C(c)x} for all > zpn.

c>cl(z)

So (2.46) follows. B
In view of the calculation

%{rp + q[u(c) —rx — k(a(z))} —a(z) + c} =qu'(c)+1, forec>0,

and the strict concavity of u, we can see that

rp+q|u(e(@)) = rz — k(a(2)| - a(2) + ()

15222
rp+q [u(c) —rr — k(oz(z))] —afz)+c
=inf il
>0 50222
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where

#(q) = 0, for ¢ > 0, (250)
V= (/)71 (—%) , forg<0. '

We define
Q(z,p,q) = rp+ qlu(c*(q)) —rz] + c*(q), for (z,p,q) € [0,00[xR x R. (2.51)

Notice that @ is differentiable on [0, co[xR xR\ {0} and the left and right derivative
exists along ¢ = 0, hence it is locally Lipschitz.

Lemma 2.5.4. The function Q) is such that
=0, g¢=g
Qo Lg {11
>0, ifq€lg o0,
where ¢ < 0 is as in (2.92) (see also (2.83)). Furthermore,
Q(x,H(x),H' (z)) =0 forallx >0, (2.52)
Q@ lin(2), [nin (7)) = Q(@min, H (Tin), H' (Train)) = 0 for all 2 >0
and  Q(z,1,(x), I} (x)) = Q(zy, H(x,), H'(xy)) =0 for all x > 0, (2.53)
where the functions lyin and L, are defined by (2.31) and (2.36).

Proof. To simplify the notation, we define g(q) = Q(0,L,q). For ¢ > 0, ¢*(q) =0
and

9(q) =rL (2.54)

To proceed further, we may assume that ¢ < 0. In view of (2.29) and the system of
equations (2.32), we can see that

0 = min {rH(xmin) + H' (xmin) (u(c) — rZmin) + c}

c>0

(2.55)
= Icnzl(l)l {TL + gu(c) + C} = g(g)
On the other hand,
1
d(q) =uo (u)™? (—5> >0 forallg<0 (2.56)

Combining this result with (2.54) and (2.55), we conclude g(q) > 0 for all ¢ €]q,0].
Finally, (2.52) follows from a comparison of the definition of @) and (2.28), while

(2.53) follows from straightforward calculation. ]
e deline Qa.p.9) — gka() — a2
x,p,q) — qk(a(z)) —a(z
50’ z
for (z,p,q) € [0,00[xR? and 2z € R\ {0}, as well as
K(0p,0) = 0 Ly (2) (2.58)

It is well defined due to (2.42) of Lemma 2.5.2. Also, we consider the domain
D = {(z,p,q) € [0, 00[xR?|K (2, p, q) < 0}.
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Lemma 2.5.5. The following statements hold true:
(1) [0,00[xR x RT C D.

(i) Given any point (x,p,q) € D, there exists a unique z* = z*(x,p,q) € [y, 0]
such that

K(Iap7 Q) = ]a:,p,q(Z*)~

where z* is C1 in D with bounded derivative up to 0D and K is locally Lipschitz
in D in the sense that for any positive integer m, the restriction on [0, m| X
[—m,m]*> N D is Lipschitz.

(iii) If (x,p,q) € D and Q(x,p,q) >0,

K(z,p,q) = ZE}RI{EO} [x,p,q(z)

(iv) When q< —% S Tin > Ty & L > Loy,

K(xﬂlmin(x)al;nin(x)) =0
for all x € [0, ool.

Proof of (i). If ¢ > 0, notice that lim, ., a(z) = oo, we have K(z,p,q) < 0. Hence
the result.

Proof of (ii). Now for any (z,p,q) € D, we use the identity k'(a(z)) = z, which is
true for all z > v to calculate,

d 1
%[x,p,q(z) = WLLZMI(Z)?
where
Ly pq(2) = q|2k(a(2)) — 2%/ (2) | +2a(2) — 20/(2) — 2Q(x,p, q)-
Furthermore g
EL%Z,’(I(Z) = a/(z) — za"(2)(1 + q2).
Viewing L, ,,(%) as a multivariable function L(z,p,q, z), we further compute
oL d
5 = EL%M(Z) =ad/(z) — za"(2)(1 4 qz2), (2.59)
oL
IE _ o
ax TQ7
oL
TE_ 9
op "
oL 0, ifg >0,
oL _ L , na= (2.60)
dq 2[k(a(z)) —uo (W) (=y) +ra] — 2%/ (z), ifg<O.

Now we face three cases:
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Casel. ¢>0
If this is the case, then the inequality in (2.44) implies that

d
ELW,[](Z) >a'(z) >0 forall z> 7, (2.61)

which implies

lim L, ,,(2) = o0 (2.62)

Z—00

because lim,_,,, a(z) = co. We now have two sub-cases.

Sub-case 1.1 The first arise if lim,, L,,,(2) > 0, which is equivalent to

! 2
Q(z,p,q) < —w, where o/, denotes the right derivative. In this case,

(2.61) implies that the minimizer is at z* = z*(x, p, q) = 7.

Sub-case 1.2 The second case arises if lim, |, L, ,, ,(2) < 0, which is equivalent to

() (+ar?) : . : .
Q(z,p,q) > —————. In this case, (2.62) and intermediate theorem imply that

there exists z* = z*(x,p,q) > ~y such that L, ,,(2*) = 0 and it is unique by (2.61).
We proceed to argue our z* is locally bounded. Consider the function

Z(z,p,q) = inf{z > 7|a(z) + Lape(7) > 0},

which is finite as lim, ,,, a(z) = oo and it is also continuous. Then by (2.61), we
will have L, ,,(2) > a(z) + L, 4(7) for z > 7. Hence, 2*(z,p,q) < Z(x, p, q), which
is locally bounded on [0, co[xR x RT. By (2.59) and the implicit function theorem,
we deduce that 2*(z,p, q) is C* on

o (V) (y + g7
{(wp.0) €0, ol g) > -,
with

02+ OLN 0L .

%($ap7 Q) = _<E> %<x>p7Qaz ('Iap> Q)>>

o2+ OLN 0L .

8]) (xapa Q) - _<£> a_p<x7p7Qaz ($,p, Q)>>

0z* OLN\-10L .

a_q(xapa Q) - _<&> a_q(x7p7Qaz (xapa Q)>7 (263)

and these derivatives are bounded as (z, p, q) tends to the boundary of

(N +a7?)
S

{(m,p, 9|Q,p,q) > -+
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Case 2. —% <q<O.
The fact that K(z,p,q) < 0 implies that

max{gk(a(2)) + a(2)} > Q(z,p,q).

where the maximum is attained at —% > ~v. Furthermore, as

1 1
Iw,p,q(z) > Ix,p,q <—5) for all z > —57

we can see that minimizer of I, ,,(z) over z > ~ exists and belongs to[7, —é]. Notice

that

d / i ]'

d—LLp,q(z) =a/(z) —2a"(2)(1+qz) >0 forall z €]y, ——],
< q

we have the minimizer 2* of I, ,(#) is unique. Again, we have two sub-cases

Sub-case 2.1 The first case is when

lim Ly 4(2) 2 0 Q(2,p,q) < —a;m(g i qu2)7
then the minimizer is at z* = ~.
Sub-case 2.2 The second case is when

Egl L;pq(2) <0& Q(z,p,q) > _O/Jr(V)(; + CD’2>7

then z* €]y, —%]. By (2.59) and the implicit function theorem, we deduce that
2*(x,p,q) is C! on

{(r.p.0) €10.00[xB2| Q. p.g) > -+ Oy

and these derivatives (2.59) are bounded as (z,p,q) tends to the boundary of
{(2.9,0)|Q(z,p, q) > — =G0y,

Case 3. ¢< —%.
Then the minimizer is at 2* = 7.
To sum up, we can see that z* is C' in D with bounded derivative up to 9D.
Suppose now we have (x1,p1,q1) € [0,m] X [—=m,m]?, (z2,p2,q2) € [0,m] X
[=m,m]* N D and K(z1,p1,q1) > K(z2,p2,q), we can see that

‘K($1,P1,Q1) - K($2,p2,CI2)‘ = K(ﬂfl,pl,fh) - K($27P2>Q2)
S [901 ,P1,q1 (Z*(x2>p2> CI2)) - Ixz,pg,qg (Z*($27p27 QQ))
< C(|oy — x| + |p1 — po| + |1 — @2]) (2.64)

for some constant C. Hence local Lipschitz is established.

Proof of (iii). This is because for Q(x,p,q) > 0, and any z €] — c0,7] \ {0}, we
have I, ,(z) > 0.

Proof of (iv). This is due to (2.41), (2.53) and the definition of K. ]
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Remark 2.5.2. The set DUOD may be a strict subset of [0, 0co[xR? or the identity
DUOD = [0,00[xR? may be true, depending on the choice of k. To see this claim,
first we choose L such that q < _%r' Then we have Q(0, L, —%) > 0.

1. For k(a) = a* + va, we have

z—" >
alz)=1¢ 27 Jorz>7, (2.65)
0, forz <7y,
and
z=1) =y
k(a(z)) = (=) +2 (59, fore>n, (2.66)
0, forz <,
Now we can see that Iy ; 1(z) >0 for all 2 > v and lim, o [y, _1(2) = ﬁ >
0. Hence K(0, L, —%) >0, DUID is a strict subset of [0, c00[xR2.
2. Let k(a) = a® + va, we have
z— %
a =4 (F)7 forz>a (27
0, Jorz <7,
and
3 1
z—y\ 2 z—y )2
k(a(z)) = ( 3 ) +7< 3 ) , Jorz>, (2.68)
0, forz <,

Now we can see that im,_,oo I, 4(2) = 0 so that K(z,p,q) <0 and DUOD =
[0, co[ xR

Lemma 2.5.6. Given L, suppose that ¢ = q(L) > _%r’ where q is as in (2.52) and
v is as in Assumption 2.2.1. Let

q=q(L) = inf{q > q|K(0, L, q) = 0}.

Then for any q € [q,q] N R, the ODE

F'(z) = K(z, F(x), F'(x)) (2.69)
with initial conditions
F()=L, F'(0)=gq (2.70)

has a unique concave solution Fy :]0, k,[— R, where [0, k,[ is the largest neighbour-
hood for the existence and uniqueness of solution to the initial value problem.

Furthermore, there exists ¢* € [q,q] N R such that kg = 0o, Fpr > H on [0, 00]
and z, = inf{z > 0; Fj () = H(z)} < 2, with Fl(2.) = H'(z.).
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Proof.
Step.1 Eristence and uniqueness of a solution I to the ODE (2.69) with K replaced
by K. Set

R(l’p q): K(l‘,p,Q), lf (x>p7Q> EDa
o 0, if (x,p,q) € D°.

We observe that K is locally Lipschitz. To show it, it is enough to consider
points (z1,p1,q1) € [0,m] x [=m,m|* and (x1,p1,q1) € [0,m] x [-=m,m]*> N D with
K(x1,p1,q1) > K(22,p2,¢2). We know

K(l'hpl’(h) - K(x27p27QQ) < K(Ibpl,%) - K($27P27Q2)
< C(|lzg — xo| + [p1 — p2| + |1 — @2)

by equation (2.64). Hence the result. Because of this, we can solve (2.69) with
K replaced by K given any initial condition at 0. In particular, for initial condi-
tion (2.70), there exists a unique solution Fj on [0, k,[, where [0, x,[ is the largest
neighbourhood for the existence and uniqueness.
Step.2 Given any q € [q,q] N R, we show that F;/(x) <0 for all x € [0, ky[.

In the presence of the assumption ¢ > —%, we can see that (2.41), (2.55) and
the definition of K (2.58) imply that

K(0,L,q) <0,

for ¢ = q as well as for all ¢ > 0. It follows that either g €]g, 0] or g = oo.
We have F}'(0) < 0 for any ¢ € [g,q[. From this, we further obtain F}'(z) < 0
for z € [0, ky[. To see this claim, we argue by contradiction and assume that

xp = inf{x > 0|F] (z) = K(x, F(z), F'(z)) = 0} < A,

Since both K and K are locally Lipschitz thus continuous on R* x R2, together
with the fact that K and K coincide in D, we have K = K on the closure of D. In

particular, K(z;, F(x;), F'(x;)) = K(xy, F(x;), F'(2;)) =0
In view of the fact that

F'(x)) = f((ﬁl, F(x), F' (1))
= K(x;, F(zy), F'(x))
rF(z;) + F' () (u(c) —1 rog — k(a(z))) —afz) +c

152,2
20’2

= inf
¢>0,2>y
— 07
we can see that if we define

l(w) = Fy(m) + Fy(w)(x — ),

then [ satisfies the ODE (2.69) with K replaced by K in the domain ]0, 00[2]0, #,|.
Combing this observation with the fact that Fj is the unique solution of the
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ODE(2.69) with K replaced by K, I(z;) = F,(x;) and I'(x;) = F/(z;) in the neigh-
borhood [0, ], we have Fy(x) = I(z) on [0, 2;] which contradicts that F/(z) < 0 in
]0, $l[.

Now as f((m,Fq(x),Fé(x)) = K(x, Fy(v), Fj(z)) < 0 for all ¢ € [¢g,q[ and = €
[0, Kq[, we conclude Fy(z) is the unique concave solution to (2.69).
Step.3 Some comparison result.

We first show that given any real number ¢;, ¢ such that

I=n <@ =g
we have
F, () < Fy,(x) for all x €]0, kg N Ky, |- (2.71)
In the case that ¢ = ¢ < 0o, we can check that
F,(x) = gz + L.

Therefore the concave function Fy, (z) < F,(x) for all  €]0, K, |[.
Now assume that we are in the case ga < ¢. In the view of the observations that

Fu(0) = Fp,(0) = L and  F (0) = q1 < @2 = F,(0),
we can see that (2.71) will follow if we show that
xp = inf{x €]0, kg, A kg [|Fy (1) > F, ()} A Kigy N Kgy = Figy N K. (2.72)

To this end, we argue by contradiction and we assume that x; < kg A Kg,. We
already know that F}’(z;) is strictly negative for i = 1,2, so that

K (21, Fy, (), Fo, (1)) = Loy 7y ), (00) <z*(xl, Fo (), F;(xl))) fori=1,2.
The identities Fy, (7;) < Fy,(z;) and F, (z;) = F},(2;) imply that
Ft;/1 (a:l) = [iz,Fql (z1),Fy, (1) (Z*(xla Fy (xl>7 Fél (xl)>)

< Iﬂcthl (@), Fy, (1) (Z*(xlv Fq2 (xl)a Féz (CL’[)))

< Ixz,qu(fEl)vFég (z1) (Z*(xl’ qu (:Bl)7 F(;g (1‘1)))

However, this inequality contradicts the definition of x;.
Next we show that for ¢ € [g, g[ such that F; satisfies the ODE (2.69) with

1
F(x0) = l,(x0), F'(z0) > —;,for some xg € [0, Ky,

then k, = oo and F,(z) > I,(z) for all x > xy, where [, is defined in (2.36).
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To prove this, it is enough to show F}(x) > —% for all x € [z, ky[. If this is not
the case, we have that

1
xp = inf{x > 0| F () < —;} < Kq.

But then,

1
Fy (1) = K, Fy(a), =) = Lapyen-2(0)

> le,lw(wl),fi(fy) = 07

which is a contradiction. So Fj(z) > —% for all z € [z, ky[.

From concavity, the fact that F,(x) > [,(x) for all z €]0, k,[, we have k, = oo
due to the continuation of ODE result in Chapter 1 Section 4 of Coddington and
Levinson [6].

Step.4 We will show that given any q € g, q|,

x(q) = inf{z € [0, ky[| Fy(z) < H(x)} €]0, 2, [U{o0}, (2.73)
and in particular,

x(q) € [0, 24]. (2.74)

In view of the strict concavity of Fy, and the initial conditions Fy(0) = L > 0,
F(0) = g, we can see that Fy(z) < lnin(z) for all x > 0, where [y, is the straight
line defined by (2.31). Combining this observation with the facts

Tmin < Ty and lmin(-rmin) = H(xmin)>

which follow from (2.40) and the definition of ., respectively, we obtain (2.74).

To show (2.73), we argue by contradiction. To this end, we assume that there
exists ¢ such that x(q) € [z, 00[. Such assumption, the definition of x(¢) and the
definition of [, imply that

Fy(xy) 2 H(zy) = 1,(,).
On the other hand the definition of (2.40) and [, imply that
F,(0) =L < L, =1,(0).

In view of these inequalities and the strict concavity of the function F, — [, we can
see that there exists a unique point & €0, z,[ such that

Fy(z) =1,(z) and F (%) > l;(i)
By the second comparison result we developed in Step 3, we can see that
Fy(z) > l,(x) > H(z)Vx > Z,
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which contradicts the assumption x(q) € [z, o0].
Step.5 There exists a slope q' €]q, q] "R such that Fy (x) > H(x) for all x > 0.
We first observe that from concavity, for ¢ such that F,(z) > H(z) for all z €
10, k4], we have k, = oo due to the continuation of ODE result in Chapter 1 Section
4 of Coddington and Levinson [6].
If ¢ < oo, note that F7(0) = 0, we deduce that

is a solution to the ODE (2.69) on [0, ool.
Notice that since ¢ > ¢, we have the line

Fy(z) > L+ qx > H(v),

for any x €]0, 0o[. So ¢' := g will do.
Now suppose that § = co. Given any g > 0 fixed, we define

X(q) == inf{z > 0|F (z) = g} > 0.

If ¥(q) = oo, then we can take the value of ¢ we consider for ¢' because the inequality
Fy(z) > § for all z > 0 and the initial condition F}(0) = L imply that F,(z) > L >
0> H(x) for all z > 0. So, we may assume that x(q) < oo.

Given any z € [0, x(q)],

rF,(z) — rFé(x)x > rFy,(0) =rL

and ¢*(F;(z)) = 0 (see also 2.50). Combining these observations with the estimates
given by Lemma 2.5.2, we obtain

1L —qk(a(z)) — a(z)
F‘;/@) = Iglzlg %0222

> —Clg+1).

Using this estimate, we calculate

q / o x(q) ., B
2= Fy(0) — Fj(X(@)) = _/0 F/(y)dy < C(q+1)x(q),

so that

_ q 1

x(q) > x(q) > 200+ 1) el

for ¢ > 1. In view of this inequality and the definition of y(¢), we can see that

1

1 ic
Fie) = R0+ [ Fay
q
L =
> L+ RO

It follows that, if we choose any ¢! > 8C1,(35), then i(35) > 1,(35) where 1, is

q
defined by (2.36). By comparison, we have FT(LU) l,(z) > H(z) for all z €] 55, 00l
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We also know Fi(x) > L > H(x) for all x €]0, ;5] CJ0, x(¢)]. Together, we have
established the result.
Step.6 Ewxistence and Uniqueness of ¢* €]q,q A q'| such that F. > H for all z > 0
and x(q*) €]0, z,[, where x is defined by (2.73).

Define S = {q € [¢,g) "R | x(¢) € [0,z,]} and note that S is nonempty thanks
to (2.74). -

Given any ¢ € S, the comparison result we established in Step 3 implies that
[q,q] C S. Therefore, S is an interval. The required point is given by

¢ =supS<q'.

To show ¢* € S, we consider any strictly increasing sequence (g,) such that
lim, 00 g = ¢q*. The corresponding sequence (x(g¢,)) is increasing and bounded
by x, by Step 3 and 4. Therefore z, := lim,_,o x(gy) exists in |0, z,]. In view of the
continuous dependence of a solution to an ODE with respect to initial parameters
(see Theorem 7.5 in Chapter 1, Coddington and Levinson [6]), we can see that the
identities Fy, (x(¢n)) = H(x(gyn)) imply in the limit that Fi«(z.) = H(x.).

We now consider any strictly decreasing sequence (g,,) such that lim, . ¢, = ¢*.
The definition of S implies that x,, = oo and F,, (x) > H(x) for all z > 0 and
n > 1. By passing to the limit as n — 0o, we obtain kg = oo and Fi«(z) > H(x)
for all x > 0. [

From now on, F’ will denote the solution to ODE(2.69) with initial slope g¢*.

Lemma 2.5.7. Suppose that ¢* > k, where q* refers to that of Lemma 2.5.6 and
K refers to (2.12), then for some L, €]L, L,[ and T. > ., there exists F' on [0, 00|
satisfying the ODE (2.69) such that F' > H on [0, 00] and

F(0) = Ly, F'(0) = &,

F(i,) = H(Z,), F'(&.) = H'(&.).
Proof. For any [ € [L, L,|, we denote F; to be the solution to ODE (2.69) such that
F, > H on [0, 00|,

Fi(0) =1, F(xg) = H(xp) and F'(x;) = H'(z),

[

for some 2, € [0, x,[. The existence and uniqueness of the family of concave solutions
on [0, 00| follows directly from Lemma 2.5.6 and the ODE continuation result in
Chapter 1 Section 4 of Coddington and Levinson [6]. By the comparison result whose
proof is similar to Step 3 of Lemma 2.5.6, we also have that [L, L,] 3 I — F/(0) is
strictly decreasing and continuous. The fact that F7(0) > x and F}_(0) < 0 implies

that there exists L, such that F} (0) = k. We set F =Fp, and &, = 2%~ will do. g

Lemma 2.5.8. Let f be a concave solution to ODE (2.69) on [0, 00| such that for
some x. > 0, we have

flae) = H(xe), ['(xe) = H'(x)
flz) > H(x) for all x € [xg, x.].
(

>
Suppose further that Q(0, f(0), f'(0)) > 0, then we have
Q(z, f(x), f'(z)) >0 forall x € [0,z.].
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Proof. Note that Q(z, f(z.), f'(x.)) = Q(z¢, H(z.), H (x.)) = 0.
We argue by contradiction that if there exists x’ €]0, x| such that

Q' f(2"), f'(z")) < 0.

Note that since
Qa. f(x), /(@) = rf(@) + ['(x) (ule" (f'(@)) = rz) + (/' (@),

@ is a continuous function in x. Without loss of generality, suppose Q(z, f(x), f'(z))
attains minimum at 2’ in |0, z.|.
If f'(z") > 0 so that ¢*(f'(2")) = 0, we would have

Q(l‘/, f(x,)v f,($/)) = Tf(xl) - Tl'f/($,) < 0.

But by concavity of f,

which is a contradiction.
Else if f'(z') < 0 so that ¢*(f'(z')) > 0 is differentiable at a’. Differen-

tiate Q(z, f(x), f'(x)) at a’, we have f”(x’)(u(c*(f’(x’))) - rac’) = 0 implies
u(c*(f’(x’))) = rz’. Plug this back,

Q. f(2'), f'(x)) = rf(a’) + ¢ (f'(a")) = 7 f(2') +u™' (ra') <0,
which is a contradiction to f(x) > H(z),Vz €0, z.]. ]

Remark 2.5.3. In particular, we have Q(z, F(z), F'(x)) > 0 for all x € [0, 2] and
Q(z, F(z), F'(x)) >0 for all z € [0,Z.].

2.6 The solution to the HJB equation that iden-
tifies with the value function

We now use the solution to the HJB equation that we derived in the previous section
to derive the solution to the principal’s optimisation problem. To this end, we need
to consider three different cases that are determined by the points ¢ and ¢*, which
are as in (2.32) and as in Lemma 2.5.6, respectively. -

Ifg < —%, then we define

So(l’) =

{ L+gqr, for z € [0, Tmnl, (2.75)

H(z), for x € [Tmin, 00|,
where Ty, is as in (2.32) and H is defined by (2.28).
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If ¢ > —% and ¢* < k, then we define

F f 0, x.,

Si(x) = (x), for x €0,z (2.76)
H(z), for z € [z, 00,

where . is as in Lemma 2.5.6 and F' = Fi.
If g > —% and ¢* > k, then we define

F f 0, Z.|,

o) = 4 T, for we 0,3 (2.77)
H(z), for z € [Z., 00,

where T, and F are defined in Lemma 2.5.7.

Theorem 2.6.1. Consider the stochastic control problem defined by (2.24)-(2.25)

and suppose that the functions u, k satisfy the conditions in Assumption 2.2.1. The
following cases hold true.

Case 1. If ¢ < —%, then V. = Sy and the optimal admissible control is deterministic
and given by

Or — Cmin, Zf X; € [Oaxmin[a
! urz), if XF=2 > T,

D 1 e e M AR G A (RSN E
00, Zf Xa =X 2 Lmins

and Z; = Ry = 0.

Case 2. If q > —% and ¢~ < k, then V = S and the optimal admissible control is given
by

Ct = (F' (X)L xzeoeen +u (rX7) L xpefrecol)
7 =inf{t | X} =0},
Zf = 25(XY, S1(X7), SUXD))  xzeoeelys

Ry =0, where ¢* is as in (2.50) and z* is as in Lemma 2.5.5.

Case 3. If ¢ > _“ly and ¢~ > Kk, then V=S5 and the optimal control is given by

Cr = (P (XN xzepoaay + U (P X)) Lix; efpesolys
T = 00,
Zy = 21 (X7, S52(X7), S5(X7)) Lixz el
and Ry s the minimum process that reflects X* at 0 in the positive direction.

To prove this result, we will use a mix of a verification argument with the fol-
lowing result.
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Lemma 2.6.2. Let 1, = Tpin V 2, where T and x., are given by (2.52) and (2.37)
respectively. Then we have

L
V(z) = sup {L It Cx} = H(x) for all x> xy,
c>ct(z) u(c)
where ¢ is as in (2.30). Furthermore, the choice C; = u™'(rz), 7 = oo and

Rf =Z; =0 for all t > 0 is the optimal admissible control for every initial x > xy,.

Proof. For all x > z3,, we choose any admissible control (C, 7, R, Z) € C and let X
be the solution to the SDE (2.24) . Also, we define

Cp = U (W) (2.78)

and we note that the inequality

r=E { /0 ' e‘”u(cx)dt} <E [ /O " e tu(e)d + e—”x] = o+t <u(cx)—rx>E[ /0 ' e‘”dt]

implies that
ez > u " (rz) =l (x). (2.79)
Therefore,
u(c,) <uou(rz) <uout(ra,) = 1. (2.80)

Using the integration by parts formula, we can see that
TNAT
e "IN X = o — / e lu(Cy) — k(a(Zy))]ds + / e "*dR;
0 10,TAT|

TAT
+ / oe " ZdW,
0

Using admissibility conditions in Definition 2.4.1 and the monotone convergence
theorem, we can take expectations and pass to the limit as 7' — oo to obtain

z=E UO e [u(Cy) — k(a(Z,))]ds — /

e_”dRS] (2.81)
J0,7(

The concavity of u implies that
w(Cy) < ufey) +u'(e)(Cr — o)
Similarly, the convexity and the other assumptions on k& implies that

—k(a(Z)) < —K(0)a(Z) = —ya(Z)
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In view of these inequalities, (2.78) and the fact R is an increasing process, we can
see that (2.81) implies that

r<E [ /0 T (ulea) + /()€ — ) = yalZ) ) dt — e—rtht]
<2 —(cs) {IE [ /0 "o Zh) — Ot + e-”L] - (L —(rL + ¢,)E { /0 ' e—”dtD } .

It follows that
T(C.R,Z) <E [ /0 "t a(Z) — O + e”L}

<L-(rL+c)E V ertdtl
0
rL + ¢,
— x

u(cx)

In view of (2.79) and Lemma 2.5.3, these inequalities imply that

TC R Z) < sup {L— "2 00— H(a).
c>ct(x) U(C)

It follows that V(x) < H(z) for all x > 3. On the other hand, it’s straightforward
to check that the choices (C*, R*, Z*) as in the statement of the lemma are such
that J,(C*, R*, Z*) = H(x) for every initial promise x > x,. ]
Proof of Theorem 2.6.1. We first note that, in each of the cases, the candidate
value functions are smooth solutions to the HJB equation 2.27.

Case 1. By construction, the concave function Sy : R, — R is C! and its re-
striction in RT \ {@yin} is C%. For x € [Ty, o[, we have V(z) = H(z) = Sy(x)
satisfying (2.27) by Proposition 2.5.3. For z € [0, |, we have Si(x) = ¢ < —%.
By (2.41), we have

max {a<z) + Sg<x)k(a(z>)} —0,

z€R

and by (2.53), we have
Q(x, So(x), Sy(x)) = 0.

Thus, Sy satisfies

max {%O’QZQf”(QZ) + |re —u(e) + k(a(2)| f/(x) — rf(z) + az) — c} =0

c>0,z€eR

and the HJB equation (2.27).
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Case 2. By construction, the concave function S; : R, — R is C! and its re-
striction in R* \ {x.} is C?. We would like to check that S; satisfies the HJB
equation (2.27). For x € [z, 00|, we have V (z) = H(z) = S;(z) satisfying (2.27) by
Proposition 2.5.3.

For x € [0, z.], we have by construction of F

1
max {50222F"(1’) + F'(z) <m: + k(a(z)) — u(c)) —rF(z) + a(z) — c} =0,
c2U,z27y

where the maximizer is attained at z = z*(z, f(z), f'(z)) as in Lemma 2.5.6.
From Lemma 2.5.4, we have that Q(0,L,q*) > 0. Together with the fact that
Q(z., F(x.), F'(x.)) = 0, we have that by Lemma 2.5.8,

Q(z,F(z), F'(x)) >0 forall z € [0, z.].

Then we have

max {%02z2F"(x) + F'(x)k(a(z)) + oz(z)}

z2>7y

= max {%022217”(:6) + F'(x)k(a(z)) + a(z)} >0 forall z €0,z

z€R

so that the HJB equation (2.27) holds for z € [0,z.. For z € [z.,z,], we have
Sy(z) = H(x). Let F) be as in Lemma 2.5.7, we know for any = € [z.,z,], = 2!
for some [ € [L, L,]. The facts that Fy(z!) = H(2!), F/(2!) = H'(z%) and F/(z!) >

H"(zl) imply that

0= max { 0% K () + Fi(ak(a(2) + a(2)

z€[,00]

= max { 50?2 K/ (o) + K (e)ha(2)) + al2)}

z€R
1 2. 211 (.10 !
> max {50 2*H"(x,) + H'(z,)k(a(2)) + Oz(z)}
> 0.

Together with (2.29), we have that the HJB equation (2.27) holds for z € [z., z,].

Case 3. By construction, the concave function S, : R, — R is C' and its restric-
tion in R\ {Z.} is C?. S, satisfies the HJB equation (2.27) by the same argument
as in Case 2 after replacing L by Ly, 2. by &., F by F and S; by Ss.

In each of the three cases, Lemma 2.6.2 implies that the restrictions of the
functions S;, 7 =0, 1,2, in [z}, 0o identify with the restriction of the value function
in [xp, 00| and corresponding expressions for (C*, 7%, R*, Z*) in the statement of the
theorem provide an optimal admissible control.

To establish the theorem, we can therefore restrict to initial promise z € [0, ][
We use f to stand for Sy, S; or Sy, depending on the case. Given a fixed initial
promise x € [0, ;[ , we consider any admissible control (C,7, R, Z) € C and let X
be the associated solution to (2.24) and Ty, be the first hitting time of [z}, oo[. The
existence and uniqueness of the strong solution to the SDE follows from the fact
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u(c*(f'(x))) =wuo (u’)_l(—ﬁ) and z*(z, f(x), f"(x)) are Lipschitz on [0, x| (See
Assumption 2.2.1 and Lemma 2.5.5).
The observation that
Xy €[0,a2p) forallt <TATAT,,.

[to’s isometry, and the admissibility conditions on Z imply that

TATAT:, 2
</ €_TtO'th,(Xt)th>
0

T
:E |:/ 1{t<TAsz}6_TtO-2Zt2(f,)2(Xt)dt:|
0

E

<o? sup (f)*(s)E {/O@ e‘”ZEdt} < 00.
0

S€[0,zp]
We use It6’s formula with generalised derivatives (See Krylov [18]) to obtain

e,r(T/\T/\T;tb)f(XT/\T/\sz )

=f(x) —I—/O o e "t (%O'QZEfH(Xt) + (rX; —u(Cy) + k(a(Zy) f(Xy) — rf(Xt)> dt

" / Cerpxgars S e - F(X)

0<t<TATAT:,

T/\T/\sz
"‘/ eirtO'th,(Xt) th
0

Rearranging terms, we can see that this expression implies that

TNAT TNT
/ e "a(Zy) — Cy)dt — m/ e dR, + e "IN
0 0

1

@)+ [ (G2 + (X = ) + Ka(Z) (X

—rf(X) +a(Z) — Ct>dt

[ ey =R+ 3D e () — F(Xi) ~ RAR)

t<TATATy,

TAT TAT
+ / e "a(Z;) — Cydt — li/ e " dR, + e "IN

T/\T/\sz T/\T/\sz

- e—T'(T/\T/\Txb)f(XT/\T/\wa)

T/\T/\ngb
+ / e_TtUth/(Xt) th
0

Using the relevant admissibility condition on (C, 7, R, Z) and the monotone as well
as the dominated convergence theorem, we can pass to the limit as 7" — oo in this
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inequality to obtatin

Tp(C, R, Z) < f(x) + E[ /0 o e‘”(%o?fo”(Xt) + (rX, — u(Cy) + k(a(Z)) f(X,)

(X)) + alZ) — Ct)dt]

VB[ [ ) R Y 00 - S5 - kAR

tST/\sz
+E [1{sz<7} / e_rt(a(Zt) — Cy)dt — li/ e " dR, + e "IN T
T, T,
=T f(X,)] 4 ElLar, (L~ (X)) 282

In view of Lemma 2.6.2, it follows that
jp(C, R7 T) S f($)

To prove the reverse inequality and establish the optimality of the controls in the
statement of the theorem, we need that, in each of the three cases, the controls
are such that all of the inequalities of (2.82) hold with equality. Furthermore, it
is straightforward to check that these controls are admissible: to this end, it is
important to notice that the optimal controlled state process is confined in the
bounded interval [0, z.] and [0, Z.] in case 2 and 3. ]

2.7 More realistic extensions of the model

The model that we have studied in this chapter assumes that the agent is “myopic”
and maximizes their running rather than their effective promise (see Remark 2.3.1).
The more realistic version of the problem in which the agent maximizes their ef-
fective promise is mathematically much more challenging. In particular, devising
“incentive compatible” contracts that induce the agent to follow the principal’s rec-
ommended strategy should involve a structure of recommended strategies that is
most substantially complicated than the ones in Lemma 2.4.2. T have made great
effort to develop the corresponding theory, which should replace (2.18) by

E(A) = B(X(A), Z(4))

for some function § such that 5(-, z) is not constant, and suitable other changes in
Lemma 2.4.2. It turns out that determining the function S cannot be uncoupled
from the principal’s optimization problem but is an integral part of it. So far, this
remains an open question and I hope to address it in the future.

Designing renegotiation-proof contracts by following the approach briefly dis-
cussed in Section IV.B of DeMarzo and Sannikov [12] is another line of future re-
search. Such contracts should involve randomized termination of the contract. In
the setting of Section 2.2-2.4, we would have to introduce an extra (G;)-adapted pro-
cess that will represent the controlled hazard process of the random time at which
the contract may be terminated, which is straightforward. The principal’s stochastic
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control problem would then involve this extra process. The objective would then
be to determine the optimal contract subject to the extra constraint that the choice
R = 0 is optimal, which would force the agent’s running payoff to be identical to the
agent’s effective payoff. As conjectured by DeMarzo and Sannikov [12], the optimal
contract may involve a minimal value x for the agent’s promise and the optimal
hazard process will reflect the agent’s promise in z in the positive direction. The
solution to the resulting control problem’s HJB equation is a very straightforward
adaption of the analysis in Section 2.5, which makes this research direction very
appealing. I shall certainly pursue it in the future.
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2.8 Graphs and Interpretations

We choose a positive L, r = 0.1, k = 0, u(c)
Below are Case 1, 2 and 3 in Theorem 2.6.1.

Case 1.

20

20 |

-25

Ve and k(a) = 0.5a% + 0.4a here.

This is when principal’s liquidation gain dominates the gain from agent’s effort.
The principal will recommend the agent to do nothing until the agent’s running
promise reaches 0. There is no renegotiation involved in this case.

Case 2.

This is when principal’s liquidation gain and gain from agent’s effort are both
important. For x large, the agent is recommended to do nothing and enjoy constant
compensation forever. For x is not so large, the agent follows a positive recommended
effort until his running promise reaches 0. There is no renegotiation involved in this

case.
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Case 3.

This is when the gain from agent’s effort dominates principal’s liquidation gain.
For z large, the agent is recommended to do nothing and enjoy constant compen-

sation forever.

For z is not so large, the agent follows a positive recommended

effort and the principal is always going to renegotiate when the agent’s running
promise reaches 0. The consequence is that the contract will never terminate and
the principal receives higher payoff at x = 0 than the liquidation gain L.
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Chapter 3

A Class of Two-dimensional
Strong Markov Processes

This chapter is based on joint work with Professor Mihail Zervos.

3.1 Outline

In this chapter, we present a study of two-dimensional strong Markov processes
whose second component is the running maximum of the first one. The study of
such processes has been motivated by recent developments in financial mathematics,
such as the introduction and the analysis of the 7 and the watermark options. We
first introduce a suitable concept of regularity that generalises the standard regular-
ity assumption of the theory of one-dimensional diffusions to the two-dimensional
setting that we study. Next, we characterise the class of scale functions, namely,
the functions that yield local martingales when composed with a Markov process
in the family we study. We then show that such a process in natural scale can be
represented as a time-changed Brownian motion and its running maximum. Finally,
we present a study of associated r-invariant functions. Our analysis makes heavy
use of the standard theory of one-dimensional diffusions. The main difficulties arise
from the behaviour of the processes on the diagonal where their two components
coincide.

The chapter is organised as follows. In Section 3.2, we set up the notations,
definitions and assumptions, and we prove some preliminary results. In Section
3.3, we extend the notion of scale function of one dimensional diffusion to our two
dimensional case. In Section 3.4, we characterise the time change of the process to
a standard Brownian motion and its running maximum. In Section 3.5, we collect
and present illustrative examples. In Section 3.6, we introduce and characterise
the corresponding two dimensional r-invariant functions and we derive a differential
equation associated with them.
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3.2 Set up

We let Z be an interval with either Z =|«, 5[ or Z = [, B[, where —oco < o < f < 0
are constants. We fix a Borel-measurable function x : Z — R U {—o00} such that

k(s)<s and inf {s—k(s)}>0foralla<a<b<p. (3.1)

s€la,b
We set Z; =|k(s), s] or Zs = [k(s), s] for all s € Z and assume that the sets
{s € T|Z, =r(s),s]},
Co={s€T|Z;=] — 0,sl|},
Cr={seZ\Cx| Zs =|k(s), s]},
Co={se€T\Cx| Zs = [k(s),s]} (3.2)
(

are Borel-measurable. Also, we assume that —oo < k(s) for all s € Cy. The state
space of the process we study is

E={(z,s) € R*| z €7, and s € T}.

We denote
52{A€B(R2)|ACE}.

Lemma 3.2.1. F is in B(R?).

Proof. Consider the sets Cy, C7 and Cy defined in (3.2) and the B(R x Z)/B(R)-
measurable function f defined by f(x,s) = = — k(s) for all x € R and s € Z.
Then

E = (f71(0,00) U (f7'({0}) N C2)) N {(z,5) €R* | & < s}

is in B(R?). ]
We consider the canonical measurable space (€2, F), where ) is the family
C(R*,R?) of all continuous paths w = (wy,ws), F = o ((wi(t),wa(t)),t > 0) and

F, = ﬂa((wl(u),wg(u)),u <t+e fort>0

e>0
is a right continuous filtration. We denote (X, S) the coordinate process defined by
Xy =wi(t) and Sy =wy(t) forall w= (wy,ws) € Q and t > 0.

Furthermore, we denote by {6;,t > 0} the family of shift operators, which are defined
by
O (w)(u) =w(u+t) forweQandt>0.

Definition 3.2.1. A process and its running mazximum that are jointly strong

Markov (PRM-JSM) with state space E is a family of probability measures {P**; (x,s) €

E} on (Q, F) such that
(i) (z,s) — P>*(C) is £/B([0, 1])measurable for all C' € F,
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(11) P**((Xo, S0) = (z,8)) =1 for all (z,s) € E,
(1ii) P**((Xy,S:) € E) =1 for allt >0, (x,s) € E, PRM-JSM
(iv) P**(S; = 5V (Suppecy<; Xu)) = 1 for allt >0, (z,5) € E,
(v) the strong Markov property holds true, namely,
E*° [Z ofr | F T} Loy = BT [Z} L{7<oo}

for all bounded random variables Z, all points (x,s) € E and all (F;)- stopping
times T.

Example 1 in Section 3.5 provides an example of a PRM-JSM.
Given (z,s) € FE and a locally bounded Borel-measurable function y such that
k(s) < x(s) < s, we denote by

T.s=inf{t > 0| (Xt,S) = (z,5)}
To=inf{t > 0| (X:,St) = (s,9)}
and 7, =inf{t > 0| X; = x(S:)}.

Definition 3.2.2. We say x is accessible if it is Borel measurable, locally bounded
and

(i) P*5(T, < Ty) >0 foralls € T and x(s) <x <s<b<p,
(ii) P**(Ty(s),s < 00) >0 forall s € L and x(s) <z <s<f3,
(111) P*(T, <Tp) >0 for all s € T and x(s) <s<b<p.

There are examples where any of these conditions fail to hold. See Example 2 in
Section 3.5.

Given constants a < a < b < (3, and an accessible function x, we will use the
notation

E,.={(z,s) € E|seZand x(s) <z < s},

B, ={(z,5)|s€Zand x(s) <z < s},

Eoy={(z,s) e E|la<seTandx(s) <z <s},
b

By ={(z,5) | x(s) <x <sand T > s < b},

and Eup, ={(z,s) e E|a<s<band x(s) <z < s}

Definition 3.2.3. A PRM-JSM with state space E is regular if there exists a se-
quence {xn}o, of accessible functions on I such that

K(S) < Xnt1(8) < xn(s) < s and Iy = U[Xn(s),s] foralls € Z,n > 1.

n

Remark 3.2.1. For a reqular PRM-JSM with state space E with {x,}:2, as in
Definition 3.2.3, we have E =, E,,, .
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From now on, we assume the PRM-JSM with state space E/ that we consider are
regular.

Lemma 3.2.2. Given a PRM-JSM with state space F,

p## (Ts1 <ooand lim T, = Tsl) =P(Ts, <o00) foralls<s €.

$2>81,82—S1
(3.3)

Furthermore,
P** (Sy > s for all t > 0) = 1. (3.4)

Proof. The definition of shift operators implies that

{w €Q|T,(w) <occand lim Ty (w) =T, (w)}

8$2>81,52—S1

$2>81,82—>S1

- {w € Q| T, (w) < 0o and ( lim TSQ) 00z, (w) = (T, 0 0r,, )(w) = 0} :

This observation, the strong Markov property and the tower property of conditional
expectation imply that

psss ({w €Q|T,(w) <ocand lim Ty(w)= T31(w)})

$2>51,52—S1

o (ot ) oo <0170 ) 10

_ss |:]P;81,81 ( lim zﬁs2 = O) 1{T51<Oo}:|

8§2>81,52—S1

=P (AP (T, < 00), (3.5)

where A = {lim,~s, 5,5 Ts, = 0}. The right continuity of F; implies that A € Fq.
Therefore, P*»**(A) = 0 or 1 by Blumenthal’s 0-1 law. It follows that P***1(A) = 1.
To see this claim, we let T' = limg,~s, 5,55, Is, S0 that A° = {T" > 0}. Notice that

0=E>* [1AC o QTl{T<oo}]
— E&S I:IP)ShSl (Ac)l{T<oo}:|
= P05 (AP (T < 0).
This is only possible for P*1*1(A¢) = 0 because P**(T" < 0o) > 0 by the regularity
of the strong Markov process (see Definition 3.2.2 (i) in particular). Combine this
with (3.5), we have that (3.3) holds.

Combining the identity P**(limg,~s s,—s Is, = Ts) = 1, which follows from (3.3),
with the observation that

{w€Q| lim TSQZO}:{w69\5t>sforallt>0},

82>5,50—S
we obtain (3.4). i
Corollary 3.2.3. P*° (limg, s, Ty, = T,) = 1 for all s < s; € T.
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Proof. By continuity of paths, we have

P < lim T, = Tsl> =1.

5§2<81,52—81

Combine this and Lemma 3.2.2, we have the result. [
On Z, x {s}, one can check that the PRM-JSM (X, S) satisfies the regularity
assumption as in one dimensional case. Namely for all z € Z, (interior of Z,) and
y € Z,, we have
P**(T, s < 00) > 0.

Given a function p : F — R |, we note that p(-,s) : Z, — R is a scale function on
T, if it is continuous and strictly increasing such that, for all k(s) <a <x <b<s
and s € Z, we have

p(z,s) —pla,s) .
p(b,s) —pla,s) F

(Tys < Ths) (3.6)

holds, or equivalently, p(Xiar, .1, StaT, .aTy,) 18 @ P©° uniformly integrable mar-
tingale.
For any s € Z, J = [a,b] C]k(s), s] and = € J, we define the function h,(-;s) by

hy(z;s) = E** [T, s NTh 5] < 0. (3.7)
If X is a local martingale, then h;(-;s) is concave which induces a positive measure
m(dz; s) = —%hf}(dz;s) on [a, b], (3.8)

which can be extended throughout Z, independent of J. Furthermore,

0 <m([a,b];s) < oo, forall k(s)<a<b<s. (3.9)

This measure m(+; s) which depends on s is precisely the speed measure on Z, as in
the one dimensional case.

Next, we state the classification of left endpoint of Z; x {s} which is exactly the
same as in the one dimensional case. Indeed, all of the claims follow from V.44-
A7 of Roger and Williams [26]. The end point (k(s),s) of the interval Z x {s} is
called inaccessible if x(s) ¢ Z,. If k(s) € Z,, the point (k(s), s) is called absorbing if
Pr)3(T, o < 00) = 0 for all y € Z,\ {«(s)} and the point (k(s), s) is called reflecting
if P*):3(T, , < 00) > 0 for some y € Z, \ {x(s)}.

We will be working with functions defined using m(-; s) and we need joint mea-
surability of these functions. For any Borel-measurable x such that x(s) < x(s) < s
for all s € Z, let T}, be the exit time of the process (X, S) from EX, and define g,
to be the function

gx(@,s) =E*°[Tg ] for all (z,s) € {(z,5) € R? | 2 < s}.

We have that the map (z, s) — g, (z, s) is finite by (3.7) and is jointly measurable by
(i) of Definition 3.2.1. Furthermore, if X is a local martingale, from one dimension
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theory, we know that the function g, (z, s) is concave in x variable for x € [x(s), s],
with

m(la,b;s) = —% [(gy)a—(b,5) — (gy)a—(a,s)] forall x(s)<a<b<s, (3.10)

where m(+;s) is defined in (3.8) and (gy),— is the left derivative of g, with respect
to x variable.
Let us define
G (s) = sup gy(z,s), (3.11)

z€[x(s),s]

which is finite since g, (-, s) is continuous on [x(s), s]. Note that for any constant c,
the set

{seT|3xest. g (z,s)>c} = U{SEI| s > x and gy (z,s) > c}
z€Q

is measurable. Therefore, the finite function &, (s) is measurable. We also define

D, (5) = (s = x(s))m(x(s), ). .12
Notice that
mlx(s)5659) = =5 [ (90)a-(5:5) = lim (9. (a,5)

is measurable as a function of s. By (3.12), so is 9, (s). Moreover, we know from
VII Theorem 3.6 of Revuz and Yor [24] that if X is a local martingale so that we
can choose p(z,s) = x, for

LXEE) i x(s) <@ <y <,
K, = %, if x(s)<y<uz<s,
0, otherwise,

we have

so that ®,(s) <9, (s) for all accessible x and s € 7.

Remark 3.2.2. For PRM-JSM (X, S) with X a local martingale, the measurable
set {s € T| m([z,s];s) < oo for all x € I} might be nonempty, see Example 3 in
Section 3.5.
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Remark 3.2.3. For PRM-JSM (X, S), we can time change (X,S) in a way such
that the measurable set {s € T | m([z,s];s) < oo forallz € I,} = 0 and the
time changed process remains a reqular PRM-JSM. Let p be the function defined in
Lemma 3.3.1 and Lemma 3.3.2. Let {s;}icz be a strictly increasing in i such that
Uiez[8i, siv1] = Z. Let N; > 1 be such that

1 .
¥ < it )

For s € [s;, $iv1], by reqularity (See V.51 Theorem 2 of Roger and Williams [26]) we
have that

[1 [(P(s, s) — p(z, s)) m(dz; s) < oo,

N’
so that

S (pls.9) —pls— L)) mlls — L - L pg) <

s,8) —p(s——,8) | m(ls— —,s— ;S 0.

et b P n n n+1

We let
1
Cy = / (1+ L, crsns, IS 5,1 )du
ie;jzo 0.4 p(& s) —p(s _ ﬁﬂ‘, s) {Se€lsissiv1 D{Xe€lSe— x5St — w7 [}

and set Xt = Xct,§t~: Se, and ]:"t = Fe,. We can introduce a new family of
probability measures {P™*} satisfying
pr,s _ Px,s(j{" S«)—I‘
We know from II1.21 of Roger and Williams [26] that {P**} is a PRM-JSM. Let us
denote
Tps=inf{t > 0| (X;,S;) = (x,5)} and T,, = inf{t > 0| X, = x(S))}.

Notice that

P™* (T, < Ty) = P*3(Ty, < Ty,) = P™*(T}, < T),

Px’s(TX(S)’S < OO) = Px’s(TX(S)’S < OO) = I@’x’s(TX(S)VS < OO),

]P)S’S(7;< < Tb) = ]P)S’S(TX < Tb) = ]P’s’s(,]; < Tb);

we have that the reqularity of {P**} inherits from the regularity of {P**}. One can
check the corresponding speed measure satisfies

s = s = glio) = (0o = pls = ) mlls = s -

n n+1 n nt+1v
for all n > N; and s € [s;, Si11],

m([a,b[; s) = m([a,bl;s) for all [a,b[C|k(s),s— %[ and s € [s;, Sit1]

so that

rh([s—%,s[; s) = Z (p(s,s) —p(s — l,s)) m([s—l,s— ! [) <oo Vs € [si,Sit1]-

i n
v TL:Ni
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Assumption 3.2.1. From now on, except in Lemma 3.3.1 and Lemma 3.3.2, we
assume our reqular PRM-JSMs satisfy

m([z, s[;s) < oo for all x € .

Lemma 3.2.4. Consider a reqular PRM-JSM {P%* (z,s) € E}. There exists a
sequence {xn} such that

(i) Xn is accessible for alln > 1,
(ii) &, (s) is locally bounded on T,
(iii) and ), Ey, = E.
Proof. let {x,} be accessible sequence in the sense of Definition 3.2.3. We define
. ) Xa(s), if ¢=0,
n = {)Zn(s) Vis—1), ifg>1

If we define
AP = {s| ®a(s) <k}, for ¢>0and k > 1,

A%* is measurable and
oo
-
=
q=0

due to Assumption 3.2.1. Let us define

Xnk = 1{3€A2’k}X91(8) + Z 1{s€A%’k\A?fl’k}X?1(S)'
g1

We have that o =
UUE..=E
n=1k=1

Let {s;}icz be a strictly increasing in i such that s;11 —s; > 0 and U;ez[s;, sit1] = Z.
Now for every n, there exists K large enough and increasing with respect to n such
that P (T, <7, ) > 0. Now set

7
n

XTL(S) - Z 1SE[Si,Si+1[Xn,K%(S)'

1€EZ

By a diagonal argument, we can see that

G E,, =E.
n=1

We can check accessibility of the sequence {x,}52, and conclude the sequence sat-
isfies the conditions in Definition 3.2.3 as follows. Given k(s) < xn(s) <z < s < b,
we will have s € [s;,, si,+1] and b € [s4,, Si,+1] for some 4; and i5. Combine this with
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the fact that P (T,

5o < Ty,) > 0 for all 4, we have P**(T, < T,,) > 0. We also
have

P** (T (s),s < 00) >0

and
P**(Ty, <Tp) > P**(T;, <Tp) >0

hold. |

Corollary 3.2.5. Under Assumption 3.2.1, Lemma 3.2.4 holds with & replaced by
m.

Proof. The proof follows from the same line as in Lemma 3.2.4. [

Lemma 3.2.6. Consider any accessible function x and any constants a < b € T.
Also, suppose that there exists a constant K > 0 such that &,(s) < K for all
s € [a,b], where &, is given by (3.11). If we define

D=FE., and Fp(x,s)=E[T,NT,| for(z,s)eD, (3.13)

then the function Fp is finite. Furthermore, given any s € |a,b], if X is a local
martingale, the function Fp(-,s) is concave, its second derivative (Fp)q.(+,s) in the
sense of of distributions is a negative measure such that
1
_§<FD)II(7 8) = m(7 5) on (]X(S>7 5[7 B(]X(S)a SD) fOT’ all s € [CL, b]
where m(+; s) is defined by (3.8).
Proof. From the regularity assumption, there exist v1,d; > 0 such that P%*(T, <
v1) > ;. We have
0y < PY(T, < wvp) =P(Ty <1, Ty < T)
- IECMl[1{T5+T509T5Svl}l{Ts<Tb}]
< B[00, <ony] = P¥(Ty, < v1)  for all s € [a, b].

The definition of (3.11) implies that

E*T, AT <6,(s) <K forall (z,s) € D. (3.14)
By Markov inequality, we have
K
Px’S(TS A 7;( > UQ) < —
Vg

for any vy > 0. We can then choose vy > v; such that
1
P (Ts ATy < wg) > 3 for all (z,s) € Eqp,x-
Now we have
P> (Ty ATy, < 2v2) = P (Ty ATy + (Ty ATy) 0 O a7, < 202)

> P ((Ty ATy) © Ot < 02, Ts ATy < )
= B (L n i P ST (T A T, < )
> 5P (Ts ATy < wg) forall (z,5) € Eqpy-
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Set v = 2vy and § = %(51, we have that
P (T, ATy <wv)>9d forall (x,5) € Egpy- (3.15)
Notice that

Px,s(Tb A 7;( > nv) = Ew’s[l{Tb/\uznv}]
= E* [Lmintiz 10} 1ot (AT 08001y, 200}
= B L n 72 (n-1)0} L@AT )00 10203 ]
= E™* [L{g,a7 2 (- PO 005000 (T, ATy > 0)]
for all (z,s) € D. (3.16)

We observe on {(n — 1)v < T, AT}, by (3.15),
PXe-veSe-ve (T AT, > v) < 1— 6,
so that by induction on (3.16),
P> (Ty AT, > nv) < (1—6)""" forall (z,5) € D,
which implies

E** [T, ATy < oo for all (z,s) € D. (3.17)

The remaining follows the same line of argument in the proof of (47.10) in Roger
and Williams [26]. B

Remark 3.2.4. We note that the result might not hold for accessible x without
restricting the speed measure. See Example 3 in Section 3.5.

Lemma 3.2.7. Fiz any accessible function x such that &, : T — R is locally
bounded, where & is defined by (3.11). There exists a kernel ji, for any r >0 such
that

Bl (S o] = [ Flu) (i) (3.15)

for all s € T and all measurable integrable functions f : I — R. Furthermore, this
kernel is such that, given any s < 51 < s9 € L,

we([s1,82[;8) >0 and pl ({s1};8) = 0.

Proof. Fix any accessible function y satisfying the requirement of the lemma.
Also, consider any f € Cy(Z), where Cy(Z) is the set of all bounded continuous
functions on Z. We first show that the function Z 3 s +— E**[e™" 7 f(S7, ) 1{7, <oc}] I8
continuous. Lemma 3.2.6 implies that T5 AT, < oo, P*%- a.s, for any points sy < s
in Z. In view of this result and the strong Markov property, we obtain

[E50:50 [€_T7;(f(57’>(>1{7;<<oo}] — [Es0:50 |:€—7“Txf(S7'X)1{TX<oo} (1{T5<7;(<OO} + 1{7;(<T5})]
= 0% [E_TTS1{T5<7;(<oo}]]Es’s[e_rTXf(STx)l{TX<OO}]
+ B[ (ST ) L <my)-
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By Corollary 3.2.3, we can see that the functions s — 5050 [e‘rﬁl{TS(rx@o}] > 0
and s — E*0*0[e~"Tx f(ST )17, <1,}] are continuous on [sg, 3. Combining these ob-
servations, we can see that the function s — E**[e™"7x f (S, )1{7, <o}] is continuous
on [sg, 3] and the required continuity follows because sq € Z has been arbitrary.
The mapping Cy(Z) > f — E**[e7" ™ f(S1, )17, <00} is a positive linear functional
mapping from Cy(Z) to Cy(Z). Therefore, Theorem X.11 in Meyer [21] implies that
there exists a kernel y (; s) such that

B ™ f(S7) 1 {Tco0)] = /If(u)ui(du; )

for all s € Z and all measurable integrable functions f : Z — R.
Given any points s < 57 < $5 in Z, (3.18) implies that

p([s1, 82[;8) = Es’s[efrﬂrxl{:&1<7;<:&2}] >0, (3.19)

the inequality following by regularity of the strong Markov process (in particular, see
Definition 3.2.2 (iii)). Furthermore, (3.3) in Lemma 3.2.2, (3.19) and the dominated
convergence theorem imply that i ({s:};s) = 0. ]

Lemma 3.2.8. Given x an accessible function on I such that &, is locally bounded,
for any locally bounded measurable x : T — R such that k(s) < x < x(s) < s with
k(s) = x(s) possible only on s € Cy defined in Lemma 3.2.1, we have that X is
accessible. In particular, for any d : T — R locally bounded away from O such that
s — Kk(s) > d(s) for all s € Z, we have x = x(s) A (s — d(s)) is accessible.

Proof. To check (i) of Definition 3.2.2, we note that
P**(T, < Ty) > P**(T}, < T) > 0.

for any x(s) < x(s) < < s < b. Notice that P**(T; < Ty(s),s) > 0 by regularity
and the property of x,. Now, we have

P**(Ty < Ty) = PO%(Ts < Ty(e),s) Py < T) = P (T < Tys),s) P (T < 1) > 0

for X(s) <z < x(s) <s<b.
(ii) in Definition 3.2.2 follows from

P**(Ty(s),s) >0 and  xn(s) = k(s) as n — oo.

for any x,(s) < < s where {x,} are as in Definition 3.2.2.
As for (iii) in Definition 3.2.2, we notice that

P (Ty < Ty) = E*[Lir.<n,)]
=E>* (17«1 L{7e<ms}]
= E** [1{@<Tb}1{ﬁzoea<Tb°9Tx}}
= E*° (1<) PX 57 (T < T3)]
> /[ bl P Ty < Tt (dus; 5)

> 0,

where the last line follows from the fact ,u?c(du; s) is a positive measure and
PX (T < Ty) > 0 for u € [s,0]. N
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3.3 The scale function

In this section, we introduce the notion of scale function of the regular PRM-JSM
defined in the previous section.

Definition 3.3.1. A function p : E — R is called a scale function for the reqular
PRM-JSM {P** (z,s) € E} with coordinate process (X, S) if and only if

(1) the map (x,s) — (p(x,s),p(s,s)) is one-to-one, the maps I, > x +— p(zx,s)
and L > s — p(s, s) are continuous,

(i1) given any (x,s) € E, the process p(Xint., Sint.) is a (Fy, P™*)-local martingale.
Lemma 3.3.1. Given a < a < b <  and an accessible function x, define
D =FE. and pp(z,s) =P (T, <T,), for all (x,s) € D, (3.20)
then pp is measurable and the following statements hold true:

(i) Given any (x,s) € D, the process (pp(Xiaryaty» Staryats ).t > 0) is a (Fy, P™°)
uniformly integrable martingale, in particular,

pD(Xt/\Tb/\TX, St/\Tb/\TX) = IPm’s(Tb < 7;( | ]:t)

(i) The function D > (z,s) — (pp(z, s),pp(s, s)) is one-to-one,

pp(z,s) <pp(y,s) foralls€[a,b] and x(s) <z <y<s (3.21)
and  pp(s1,s1) < pp(sa, s2)  for all a < 51 < s9 < b. (3.22)

(11i) The function [x(s),s] 2 x +— pp(z,s) is continuous for all s € [a,b]. And the
function [a,b] 5 s — pp(s,s) is continuous.

Proof. We first note that the definition of the shift operators imply that
{w €| Ty(w) < ﬁ(w)} = {w € Q| Tyobpar,(w) < Ty(w)o 9tATb/\TX}-

In view of this observations and the strong Markov property (iii) in Definition 3.2.1,
we can see that

X S
pD(Xt/\TbATX,StATb/\@) = PAATpA TN A TX (Tb 7;)

*Lr<tiy © Oentnty | Fertnts

=E™°
= E"*[Ln,<7y | Featints]

=E* s[l{Tb<7;<}1{t<Tbm} | Fi] + Lin <y Lmam<ny
=E™°

and (7) follows.
Fix any points s € [a,b] and x(s) < & < y < s. The inequality (3.21) follows
trivially if # = x(s), because pp(z,s) = 0 and property (i) in Definition 3.2.2
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implies that pp(y,s) = P¥*(T, < T,) > 0. We therefore assume that x(s) < z in
what follows. The definition of the shift operators implies that

{w € Q| Th(w) < 7;(@0)} = {w €Q | (Tys+Tyobp,,)(w) < (Tys + Ty oQTy’s)(w)}

Also, property (i) in Definition 3.2.2 implies that P**(T, ; < Ty) < 1. In view
of this observation and the strong Markov property (ii7) in Definition 3.2.1, we can
see that

Pp = E™*[1iz, . <7y Lityo0r, , <Trotr, .}
=K []Ex’s [1{Tb°9Ty s <Txo01, s} | ]:Ty s} 1{Ty,s<7—x}]
= E" B 0 "os [Lgy o7y | Lz, 7
=P (T, < TP (Tys < Ty)
= po(y, $)P"*(T,s < Ty) (3.23)
< pp(y, s).

Property (iii) of Definition 3.2.2 implies that
P (T, < Ty) <1 =P (T, < Ty,) < 1.

Using these inequalities we can derive (3.22) by following exactly the same reasoning
as in the proof of (3.21).

The continuity of [x(s),s] © = — pp(z,s) follows from (3.23) and the fact
y — P»5(T, s < T,) is continuous for y € [z,s] and = € [x(s), s[ is arbitrary. For
s € [a, b, notice that

P (T, < Ty) = P"(Ts < T)P**(T}, < Ty).

The continuity of [a,b] 3 s — pp(s,s) follows from the fact s — P**(T, < T,) is
continuous for s € [a, b]. ]
We now extend pp to a function p on E that is a scale function.

Lemma 3.3.2. Let {P**, (x,s) € E} be a regular PRM-JSM with coordinate process
(X,S). Then there ezists a function p : E — R that is a scale function for (X, 5)
in the sense of Definition 3.3.1.

Proof. Fix any a,b € R such that « < a < b < 3, and let {x,,} be a sequence of
accessible functions in the sense of Definition 3.2.2. Let D,, and pp, : D, — RT be
defined by (3.20) with x,, in place of .

The expression (3.6) with y,, in place of a and s in place of b imply that given
any 1 < n, there exist functions «a,, 8, : [a,b] — R such that

pp, (2, 8) = an(s)pp, (x,8) + Bu(s) for all s € [a,b] and x € [x1(s),s]. (3.24)
Given any s € [a, b], we define
Pon(, s) = {pp1<l’,8), if x € [x1(s),s] and s € [a, b],
¢ an(s)pp, (z,8) + Buls), if = € [xn($), xn-1(s)[ and s € [a, b].
(3.25)
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In view of (3.24), we can see that
Pap(T, ) = a1n(s)pp, (%, s) + Pin, if = € [xn(s),s] and s € [a,b].

We now proceed to check that p,p(XianyaT.s Siamya7.) s @ local martingale for
(X, S) starting from (z,s) €]k(s), s] x [a, b].

For x < s, the process puo(XiaTnr,, SitaToar,) starting from (x,s) is a local
martingale as in the one dimensional case. And for (X, S) starting from (s, s) € D,
the process pas( X, ATys SiaTs, a1y) 18 a local martingale by Lemma 3.3.1. Now let
us define a sequence of stopping times,

Ron—1 = inf{t > Rop o [ (Xi, 1) = (Xn(St), Sp))} ATy forn > 1;
RQn = 1nf{t 2 Rgn_l | Xt = St} A 7;, for n 2 ].,

we have that R, T T, A T, and pop(Xiag,, Star,) is a local martingale for all n.
Hence py b (XiaryaTs, SiamyaTs,) is also a local martingale.

Now let {[an, b,[}nez be a sequence of disjoint intervals such that a, = b,_; for
all n € Z and J, .5 [0n, bn[= T.

Notice pa, b, (s, s) is non-vanishing for s € [a,, b,[, we can scale p,, 5, such that,
upon renaming, we have

Pan, by (bny bn) = Pani1,bni (bna bn)

Now we define
p(z,8) = pa, b, (x,s) for x€Z;and s € [ay, by

By construction, one can check p is a scale function. Also note that p is measurable
since all a,,p, Bmn and pp,, are measurable. [

Definition 3.3.2. We say the PRM-JSM (X, S) is in the natural scale if X nr. is
a local martingale, or equivalently, p(x,s) = x is a scale function.

Lemma 3.3.3. Given{lP**, (z,s) € E} a reqular PRM-JSM with state space E and
a scale function p. Let w be the map w(z,s) = (p(z,s),p(s,s)), E = {n(z,s) |
(z,5) € EY and £ = ENB(R?). We have the bijection 7 : E — E and its inverse
1 E = E are S/S~ and 5~/5 measurable respectively. And for the probability
measure defined by

P @) ((X,,5,) € m(A)) = P™*((Xy, S;) € A) for all (z,5) € E and A€ E, (3.26)
we have (0, F,F, X, S, If”“) is a reqular, canonical strong Markov process on E.

Proof. The map 7 : E — E defined by n(z,s) = (p(z,s),p(s,s)) is one-one and
such that given any set of the form A = U,c[s, ,)(a, 5] x {s} N E, which generates
E, we have m(A) = {n(x,s) | (z,s) € A} belongs to € because p(z, s) is measurable.
Thus, we know 77! : B — Eis € /€ measurable. A symmetrical argument shows
that 7 is £/€ measurable.
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We prove that {]f’””’s, (x,s) € E} is a regular, canonical strong Markov process
with respect to E. (i) of Definition 3.2.1 follows from that for all C' = {(X,, S;) € A},
we have (z,s) — P*5(C) is £/B([0,1]) measurable by (3.26) and measurability
results proved in previous paragraph. (ii)-(iv) can be checked directly. It remains
to prove (v). Given a bounded measurable function f, let us define a function

Uy(z,s) = E°[f(Xy, Sp)] = E" @[ f (71 (X, Sh)).

To prove strong Markov property of {P**}, we want to show for all bounded mea-
surable function f, all bounded stopping time 7" and some fixed ¢t > 0, the function
U, satisfies

E**[f (X1, STt) | Fr] = Yy (X7, Sr).

By Lemma 1.3.3 of Stroock and Varadhan [28], we know Fr = o(Xyar,u > 0),
which can be generated by [, 14 )eay by continuity of paths. For

Xti/\T,Sti/\Ts
Z =B f(n~ (Xrpr, Sra)) | Frl,

we have

E* N Z T Lo nrsinnrenay | = B [f (7 (Xge, St [ | 1{<XtMT,stiAT>ew<A>}]

=E"° | f(X7ue, ST41) H 1{(Xti/\T’Sti/\T)eA}]

= Ex78 gIf()(Ta ST) H 1{(Xti/\TvSti/\T)€A}]

Up(n " (Xr, S7) [ ] 1{(XtiAT,stiAT>ew<A)}]

so that

E ) [ f(r ™ (Xpge, Sre)) | Fr] = Up(n~(Xr, Sr))
=E" mI[f(X,, S)]
= BT [f(n (X4, 8)))-

The result follows from last expression if we replace f o #=! by f. The regularity
can be easily checked. ]
We now give a brief characterisation of the family of scale functions.
We define the function

Vg (8,81, 82) = g(s1)P*(Ty, < Ty) — g(s2)P**(Ty, < Ty,) forall s <s3 <syel.
Definition 3.3.3. An function g : T — R is called scale-generating if

(1) it is continuous, strictly increasing and
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(i1) for every accessible x such that &, is locally bounded, there exists a function
fox : L — R for all s € T such that

Vg (8, 51,82) = / fonc (WS (dus s)  forall s €T and s < s1 < s, €T,
Js1,82]

where ,ug)c s defined in Lemma 3.2.7.

Remark 3.3.1. Any two such functions f,, are equal p,(-;s) almost surely for all
sel.

Theorem 3.3.4. Consider any strong Markov process, the following statements hold
true:

(i) If p is a scale function, then the function T 35 s — p(s,s) is scale-generating.

(1) Given any scale-generating function g, there exists a scale function p of the
strong Markov process such that p(s,s) = g(s) for all s € .

Proof. Let x be accessible such that &, is locally bounded. The existence of such
X follows from Assumption 3.2.1 and Lemma 3.2.4. By Lemma 3.2.6 (notice the fact
that &, is locally bounded), we have P**(T, AT,) =1 for all s <b e 7.

If p is a scale function, we know p(s,s) is continuous and strictly increasing.
Moreover, by optional sampling theorem, we have for all s < s; < s9 € Z,

p(s.5) = B*(T,, < Tp(sssi) + B (L r p(Xr, S5)] for i = 1,2
Subtracting, we obtain
p(s1,51)P" (T, < Ty) — p(s2, 52)P (T, < Ty) = E¥*[1yr, <7, <1,y P( X7, ST )]
= [ P ).

So for g(s) = p(s, s), we can set f,,(s) = p(x(s),s) < g(s) for all s € 7.
Conversely, given any scale-generating function g and the corresponding f, ., we
have

Vg,x(sa S1, 32) = /} [fg,x(u):ux(du? 3) = ES?S[l{Tsl<7§<<T32}fg,x(STX)]
51,52
forallsefanda<3§sl<32<ﬁ.
Notice that

Vox(5,8,0) = g(s) = P**(T} < Ty)g(b) = E**[1i1, <11 fox (S7,)]  for all s < b.
(3.27)
By the monotonicity of g, we would have

E** 17, <n) fox (S7)] = 9(8)=P** (T}, < Ty)g(b) < E**[1y7,<1,9(S1.)] foralls <beZ.

which implies f,, < g, p,(; s) almost surely. We then choose a version of f,, such
that f,, <g.
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We define for (z,s) € EY a function

o, 5) = g(O)P*(Ty < Ty) + B (17 <my fox (73] (3.28)

By (3.27), we have py, (s, s) = g(s) for all s <.

Next we show pb7X(Xt/\Tb/\TX s SINTL AT, ) is a uniformly integrable martingale. It
is enough to show the second term of the right hand side of (3.28) is a uniformly
integrable martingale.

EXAT AT STy ATy [1{7;<<Tb}f(373<)]
EZ S

E"*[Lr<ny f(S7) | Featnms]

[
[
E** (17, <m f (ST i<, oari b | Fil + Lim<n<ey f (ST3)
E** 1 <ny f(S7,) | Fil-

We can also check for by < ba, py,  and py, , agree on Efcl by the definition (3.28),
the fact that p,,(s,s) = g(s) for all s < b € T and the local martingale property.
Thus we can extend p to E, by defining p,(z,s) = py(z, s) for any (x,s) € E,.

We can then extend p, to a scale function p on E following the same manner as
in Lemma 3.3.2, see (3.25). ]

LT o0unry nr <Toobunty w7} (STobinaynr, ) | Fenmnts]

3.4 Time change characterisation

In this and subsequent section, we can work in natural scale assuming that X is
a local martingale, (X,S) is regular with respect to F with {x,} satisfying the
condition of Corollary 3.2.5. We show that under some characterised time change,
(X, S) becomes (B, B), a Brownian motion and its running maximum. We then
conclude with boundary behaviours in E are similar as in one dimensional case.

Lemma 3.4.1. Given D and Fp as in Lemma 3.2.6, the following statements hold
true:

(i) The function Fp 4 defined by
Fpa(s) = Fp(s,s), fors € [a,b]
is continuous and of bounded variation.
(11) Suppose there exists a constant K > 0 such that

sup My (s) <K and inf {s—x(s)} >d >0, (3.29)

s€la,b] s5€[a,b]

where M, is the function defined by (3.12). The left derivative of Fp with
respect to x, [a,b] 5 s — (Fp).—(s,s), is bounded.

(111) The process M defined by
My =t NT, AT, + FD(Xt/\Tb/\TX> St/\Tb/\TX)

is a uniformly integrable (F;)-martingale.
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Proof of (i). Given a < s < b, we use the strong Markov property and the fact
that Ts AT, < oo, P** almost surely to obtain

Fpg(a) = E* Ty AT + P (Ts < Ty)Fpa(s).

It follows that

1 1

< S Bea( =T
Fpa(s) < Pae(T, < ﬁ)FD,d(a) = Poo(T, < T)

Fp4(a) :=C for all s € [a,b

which establishes the boundedness of Fp 4. On the other hand, combining (3.30)
with the fact that E“*[T; A T,] and P**(T, < 7T,) are continuous as functions of
s € [a,b] (See Corollary 3.2.3), we obtain the continuity of Fp 4.

Now consider any a = sy < 1 < -+ < sy = b, and define

¢g-1=1 and pi=1—¢ =P (T, <T.

Si+1

) fori=0,---,N—1.

In view of the regularity condition (i) of Definition 3.2.3, the strong Markov property
and a simple inductive argument, we can see that

0<P*(T, < Ty) =P Ty, < Ty, T, < Ty)
= Pa’a(Tsl < 7;, Tb o QTSI < 7;( o QTSI)
=P"(T, < TP (T, < Ty)

N-1

= H P (T5k+1 < 7;)

=[[a=r<1 (3.30)

On the other hand, we can use the strong Markov property and (3.30) to obtain

BTy A Ty) = B0 [Ty, A Ty] + qOEsl’Sl [Ty ATy

_ZESZSl Sz+1/\T qu

k=-1

N—
Z Ty, ATl (3.31)

1=0

Furthermore, the arithmetic mean- geometric mean inequality implies that

N—
Z _N— qugN N(qu> N1 —r¥) forall N €N.

=0
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Using (3.30) with a replaced by s;, s replaced by s;11, (3.31) and (3.32) we obtain

N-1 N-1
> | Fpalsipr) = Fpa(si)| < Y BT, AT
=0 =0

N-—1
+ Z [psi-se (7;( < T8¢+1)FD7d(Si+1)
i=0

N-1 N-1
< Z [Esi-si [T8i+1 A 7;(] +C Zpi
i=0 1=0
1
< ZE“[Ty ATy] + CN(1 — 7). (3.32)
-
This result and the fact that limy_ o, N(1 — r%) = —Inr imply that Fp,4 is of

bounded variation because a = sy < 1 < ---sy = b has been arbitrary.

Proof of (ii). Given s € [a,b] and = €]x(s), s[, the concavity of Fp(-,s) implies
that that (Fp),—(x,s) is finite. In view of this observation, Lemma 3.2.6 and (3.29),
we can see that

(Fp)e—(s,5) = (Fp)e—(7,8) + (Fp)aa(lz, s[; ) = (Fp)a (2, 5) — 2m([x, s[; 5) > —00
for all s € [a,b]. Furthermore,
FD(S7 S) = FD(‘Sv S) - FD(X(S)v S)

= (Fp)s—(s,8)(s — x(s)) + 2/ m([u, s[; s)du for all s € [a,b].

x(s)

It follows that

s

|(Fp)a—(s, )| = S_;M«Fp)(s,s) — 2/( | 2m([u, s|; s)du>
< %Z(C+4K) < oo forall s € [a,b],

and the result follows.
Proof of (iii). By the definition of Fp and strong Markov property, we have

Mt =tA Tb A 7;( + FD(Xt/\Tb/\TX7 St/\Tb/\TX) = EI’S[Tb A 7;( | ]:t]
is a (F;)-uniformly integrable martingale. ]

Remark 3.4.1. Without the condition s—x(s) > d > 0 forall s € [a,b], (Fp).—(s, s)
will explode in [a,b]. See Example 4.

We now quote a result from Lamberton and Zervos [20] and apply it to obtain
the time change. For an interval J C R, denote

[(J)=inf J and r(J) = sup J.
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Theorem 3.4.2. For any measurable x : T — R such that s—x(s) is locally bounded
away from 0, that is, for any [a,b] C I, we have

inf (s —x(s)) >0, (3.33)

s€la,b]

consider any measurable function F : E — R that satisfy

(1) the function Iy 5 x — F(x,s) is the difference of two convex functions for any
seT,

(2) the function T > s> F,_(s,s) is locally bounded and Borel measurable.

(3) and given any xo < a < b € I, there exists a constant K = K(xg,a,b) > 0 such
that

|Fo(z,8)| < K, YV € [x0,s] and s € [a,b].

Then for (Xo, So) € Ey, the Ito-Tanaka-Meyer formula
ATy
F(X: ATy, St NTy) =F(Xo, S0) + F(Se ATy, Se AN'Ty) — F(So, So) — / F, (S, S.)dS,
0

1 tATx
+ §AfATX +/0 F, (Xu, S.)dX,
holds, where AY is of finite variation with

(Linigs) = Line(n) Feald2, Sic) §
Jeg ~ J(aSi)

and J 1is the collection of pairwise disjoint intervals such that

{t>0x. <53 ={J 7= U@L

JeJ JeJ

Theorem 3.4.3. Let {P** (x,s) € E} be a reqular PRM-JSM in natural scale
corresponding to accessible functions {x,}>2, as in Corollary 3.2.5. In addition, we
suppose that s — x1 1is locally bounded away from 0, that is, for any [a,b] C Z, we
have

inf (s—x1(s)) >0 (3.34)

s€la,b]
and
M., (s) <K foranys € [a,b] and some constant K = K(a,b,n) > 0. (3.35)

Given an initial point (x,s) € E, there exists {€), F,F, By, B, I@x’s}, a filtered prob-
ability space with coordinate map B; a (.7:})- Brownian motion B along with B such
that By = x and B, = supye,<; By V s, P™* almost surely. Also denote by [ the
jointly continuous version of local time of B. There exists a positive measure m(-; )

on Zs for all s € T that satisfies

0 <m(la,bf;s) <oo forall k(s) <a<b<s,
m({(r(s),s)}; s) € [0,00] if (k(s5),5) € E,
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and is such that the law of (X, S) under P™* coincides with the law of the process
(By, B,) under P** where v is the right-continuous inverse to an increasing |0, 0o]-
valued process A given by,

Ay = A(s, By) + Z {/ _ _ (lfmu) - lfAZ(J))m(dzé BI(J))}7
Jeg 16(By1y)Bi(nl
where J is the collection of pairwise disjoint intervals such that
{t>0B, < B} =J 7= JU),r()],
JeJg JeJg

A is a function that takes s; < sy € Z to R that satisfies

52
A(s1,82) = —Fu(s9, 89) + Fy(s1, $1) —I—/ Fo e (u, u)du (3.36)

S1

for all n such that s; < sy < by, where F,(x,s) = E**[T,, AT,,] for (z,8) € Esypnn
and (b,)22, is any fived sequence tending to 5.

Proof. Let 1, be a sequence of stopping times with

o = O)
Nont1 = inf{t > na, | Xy = k(Sy)} for all n > 0,
and 79, = inf{t > 19,1 | Xy = S;} for all n > 1.

Let A, = inf{s | [X], = t} and note that A : [0, [X]o[— R*.
We know on {n2,-1 < t}, Xinp,, is a submartingale (see (47.24) in V.47 of Roger
and Williams [26]). [t6-Tanaka lemma implies that

Xt/\772n - X772n—1 = Xt/\'rIQn - I{(Sn?n—l)

= (Xt/\mn - ’{(Snznq))Jr

t/\nQn
5(Sngn_1) £(Sngp_1)
- / Lyt X + L) — [i5es)

Mm2n—1

where L7 is the local time of X. On the other hand, on {7y, < t}

tAN2n+1
Xt/\n2n+1 - X"]Qn - / l{XU>’i(Su)}qu

mn2n

Then we obtain that,
Xt =+ Zt + it,

where

t
Zt:/ 1, >r(5.)1d X0
0
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is a continuous local martingale (see (47.25) in V.47 of Roger and Williams [26])
and

== (S 1) (S )
L= Z (Lmngi U Lo, )
n=1

is an increasing process. On some enrichment of (2, F,P¥*), there exists a Brownian
motion W such that Z, = W ([Z];). We can define a local submartingale

B =xz+W,+1,

where [, = L 4,- The fact that B, is a local martingale with d[B]t = dt for all
t € [[X]nons [X]iansa [, n = 0 implies B, is a Brownian motion for ¢ € [[X],,., [X]po 1
and n > 0. We have also that Bt - B[X]n2 _ behaves like a reflecting Brownian
motion for ¢ € [[X],,, ., [X]y,[ and n > 1.

Without loss of generality, we assume (zg,59) € E;. Consider F,(z,s) =
E**[T}, ATy,] for (x,s) € E,, by (iili) of Lemma 3.4.1, we have the

M =tN\NT,, NT,, + Fn(Xt/\Tbn/\Em St/\Tbn/\ﬁm) =E"*[Ty, ATy, | Fi

is a (F;)-uniformly integrable martingale. After time change, we have that

NI i= M3, = Aings, aixin, + Fu(Benixin, At Binixin, axiz)

is a (Fj,)-uniformly integrable martingale.
Notice that the condition (1)-(3) for Theorem 3.4.2 are satisfied for F,,,n > 1 by
Lemma 3.2.6. So we can apply Theorem 3.4.2 to get

M X1z, Xz, — Mo = Ainixin, A, + Fo(Binixin, aixin,, » Binixin, aixin,, ) = Fals, )

tAX]r,, AX]7, S
+ / Fpo_(By, B,)dB,
0

tAX]T, AXI7y,, . = N
_ / Fo (Bu, Bu)dB,

-2 / e nixin,, AiXl,, — lnnxn, A,
Jed Bl(J)) Bl(J)[

m(dz; Bl(J))},
where j is the collection of pairwise disjoint intervals such that

{t>0|B,<B}y=J 7= rl

JeJg JeJg

and l~f is the local time of process B;.
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We can apply the Doobs-Meyer decomposition theorem to identify the finite
variation part,

At/\[X]Tbn/\[X]TXn =— Fn(Bt/\[X}Tbn/\[X}TXn : Bt/\[X]Tbn/\[X]TXn) + Fo(s,5)

t/\[X}Tbn/\[X}TXn - - -
+ / F,. (B, B,)dB,

+ / UinrniXln, AT, — lntenaiXls, AXIr,)
Jed w(By)),Bucnl

m(dz; Bl(J))}.

Notice that
= = X1 AX T, - = -
( - Fm(B[X]TS/\[X]TXm ) B[X}TS/\[X]TXm) + Fin(s0, 50) + / Fr iz (Bu, Bu>dBu)
0

= = [X]TS A [X]TXm = = =
:( - F"(B[X}TSA[X]TX"L ’ B[X}TSA[X]TX,”) + Fu(s0, s0) + / Ey o (Bu, Bu)dBu)
0

for all sg < s < b, < b,. Multiply 1{[X}Ts<[X]TXm} on both sides, apply change of
variable formula to the integral terms and take expectations, it follows that

S

—Fm(s,s)—i—Fm(so,so)—l—/ Foo—(u,u)du = —Fn(s,s)—l—Fn(So,so)—f—/ F oz (u,u)du

S0 S0

for all sy < s <b,, <b,. Hence we can define A consistently as in (3.36).
As [ X, A [X]7, = [X];, we have that

m»

flm[x} = X( Bm[xm, +Z /

t/\r(J)/\[X} lfAz(J)/\[X]m)m(dZ§BZ(J))}-

(Bz (1))s BZ(J)[
(3.37)
Combining result from V47.1 of Roger and Williams [26] with (3.37), we obtain
AM[X} )\<BM [X]ny»> S ) + Z / tZAr(J)/\[X],,2 - ZtZ/\l(J)/\[X}W)m(dZ; Bl(J))}'
Jed Bl(J) Bzu)

By induction and the fact that [X],, — [X]«x as n — oo, we have

At/\[X] )\ Bt/\[X]oov +Z /

[5(Buc)) Bi

tAr(J)A[X]oo_ltZAz(J)A[X}OO)m(d23 BI(J))}'

We define 4; to be the right continuous inverse of At It follows that X; = B
For any {Q F,Fy, B, B, P®s }, where B is a Brownian motion under IED‘“ Let
N; = fo 1(p,>r(B,)ydu and 'y be the right continuous inverse of N;. Then we have

B, = By, and [7 = It,. We define

A= A(Bt, s) + Z {/ _ _ (lf/\ru) - tZAZ(J))m(dZ§ BI(J))}7
Jeg 16(By1y)Bi(nl
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where J is the collection of pairwise disjoint intervals such that

{t=0]B<B}=J =N rl

JeJ JeJ

~; and 7, are the right continuous inverse of 4; and A, respectively. Then we have

that .
Ay =Ar, & Ty =74, =74, o 5, =74, =1
From this, it follows that )
B;, = Br,, = B,,.

Remark 3.4.2. For the case that the PRM-JSM is reqular but does not satisfy (3.34)
or (3.35). We can proceed as follows. We consider {P™*} on E and {x,} satisfy
the assumptions in Corollary 3.2.5. Let d and x be as in Lemma 3.2.8. Notice that

My, (s) = My, () Vm(ls — d(s), s[; s)d(s)

We are not sure if My, is locally bounded. 3 3 )
What we could do is that we time change to Xy = X¢,, Sy = S¢, and Fy = Fe,
where

t
Cy = / (m([s —d(s), s[; 8)d(s) V 1)Lix,e(5,-d(s,).50 + Lixig[si—d(s:),503 A
0

is (Fy)-adapted. We can define a new PRM-JSM as in Remark 3.2.3 with the new
Cy here. Now one can check that both (3.34) and (3.35) hold.

3.5 The Examples

Example 1. Let Qy be the family C(Ry,Z) of continuous path wy, G = U(u)l (t),t >
O) and

G, = (o (wi(w),u < t+e),for t > 0.

e>0

We denote the coordinate process
Xy =wi(t) forallw, € Qy andt > 0.
and {0;,t > 0} the family of shift operators, which are defined by
Or(wr)(u) =wi(u+t) forw € Qy andt > 0.

We first consider the case where T = R and {P*} are Wiener measures on (Q1,G)
forx € Z. The map (X, sV (supgc,<. Xu)) : 1 — Q is G/F measurable. We define
a family of probability measure {P**} on (2, F) by

P** = P¥o (X, sV (sup X,)) . (3.38)

0<u<-
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We can now prove that {P**} is a canonical strong Markov process with respect to
User Zs x{s}. To prove (i) of Definition 3.2.1 , we know for any bounded continuous
f, the map
(x,8) = E*[f(X;,sV (sup X,))]
0<u<t

15 jointly measurable with respect to x and continuous with respect to s. Hence, the
map is jointly measurable. As the set of bounded continuous functions are dense in
L', passing to the limit, we have the map for any A € &,

(x,8) = P*((Xy, sV (sup X)) € A) =P"*((Xy, S;) € A)

0<u<t

is measurable. (i), (iii) and (iv) can be checked directly from the definition of
{P=*}.  To prove (v), it suffices to show for all bounded measurable function f,
(z,5) € {(z,y) e R? | x <y}, t € Ry and F;- stopping time T,

E“* [ f( Xttt Srit) | Fr| = EXT57 [f (X, 5)] (3.39)

Recall EXT57[f(X,,S,)] is the function U (x,s) = E¥*[f(X,, S;)] with (Xr, St) in-
serted in place of (x,s). To this end, it suffices to prove a more general assertion
that if g(x,y, s, z) is a bounded measurable function, then

E**[g(X7, X141 — X7, S7y 8Up (X740 — X7)) | Fr] = ®4(X7, ST), (3.40)

0<u<t

where

<[ 22z —y) =202z —y)°
®,(x,s):= T,Y, 8,2 ex dydz.
o(,5) /0 /Oog( Y., %) Nores pl——, )y

The equality (3.39) follows from this if we set g(x,y,s,z) = f(z +y,s V (x + 2)).
By monotone class theorem, it suffice to prove (3.40) for g of the special form
9(x,y,8,2) = q1(x)g2(y)g3(s)ga(z). Under this assumption, the left hand side of
(3.40) is equal to

91(X7)g5(ST)E™*[92(X71t — X7) 94 ( SUP (X740 — X)) | Fr]. (3.41)

0<u<t

Note that W_/t := Xpyt — X7 1s a Brownian motion independent of Fr with running
mazimum Wy = supgc,<; Wi = supgcy<i(Xrpu — X7). Thus, (3.41) equals to

91(X7)g5(57) /Ooo /_ 0o ()ga(2) 2 Y) (222 0)°

27Tt3 o )dydz = (I)g(XT, ST)

and we are done in this case.

For the general case where P* is strong Markov, we know P* = P* o Z~1, where
P* is a standard Wiener measure and Z is a time substitution of X by a right
continuous inverse of a PCHAF. We can define a family probability measure P*° =
P 0 (Z,5 V sUpgey<. Zu)~'. By the result of II1.21 in Roger and Williams [26], we
have that {P**} is strong Markov.

69



We let Z =| — 00, 00| for Example 2, Z = [0, oo[ for Example 3, 4 and 5, F =
Usez] —00, 8] x{s} and (21, G, G;, W}, P?) be as in Example 1, with W, the coordinate
mapping and P* the Wiener measure on Z. Let (Z;, Z;) be a process on the filtered
space (Q1,G,G;) such that Zy = z and Z; = sV sSupge,<; Z¢, P* almost surely. For
(Q, F, Fi, X, S;), we can define a family of probability measures P** = P00 (Z, Z)~*.

Example 2. (i) For (b,b) € E, for

g _ b—(b—2x)exp(W,), for Z, <b,
b x + W, for Z, > b.

Then P*5 is strong Markov. Now, for x(u) =u—1 forallu € T andx < s < b,

we have
P*(T, < Ty) = 0.

(i1) Fix some (z,, s,) € E°, for

Z . x+Wt7 folr t<Tl‘*,8*’
e, for t > T, .,

where Ty, 5, = inf{t > 0 | (Z;, Z;) = (24,5,)}. Then P>* is strong Markov.
Now, for x such that x(s.) < x4, we have for all x, < x < s,,

PE5* (TX(S*%S* < OO) =0.

(i11) For (b,b) € E,

then P™* is strong Markov. Now, for x(u) =u—1 for allu € T and x < s < b,
we have

P (T, < T) = 0.
Example 3. Take x(s) = —5 for all s € RT, for the process with dynamic

dZ, = (S, — Z,)2dW,,
ZO =,

where W is a Brownian motion. One calculate to see that

m(]—5,5[;s)—/]_ L i = oo

5,8[ S—Uu

forall s € Ry.

Example 4. Let a,b be constants and {si}3, be a strictly increasing such that
a < So and limy_, s = b. Consider the process Z with dynamic

47, — Z L Zicisnsnia1Tn@We + iz, cp. 00y AW,

n=0

Z():l’,
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where a,,b >0 for alln > 0. Then we can conclude P** is strong Markov. We set
x(8) = a for all s € [sg,00[. We denote Ty = inf{t; Z, > s} and T, = inf{t; Z, =
x(Z:)}. We will now check that the PRM-JSM is reqular. We first check that x1 is
accessible, (i) of Definition 3.2.2 is because

r—a

P (Tyy < Tyy) = b—a

>0 foralla<zx<s<uy,

(i1) and (iii) follow directly from the properties of Brownian motion. Hence the
reqularity holds as U, E,, = E. Now if we set

1 1
S0 =0,8,41 — Sp = — andan:2—n for alln >0,

3n
we have b = % and
E**0[Ty A Ty] = B0 [Ty, ATy ] + %ES““ [Ty ATy
L —
= BTy ATy 4 [EP [Ty AT+ 2 B (AT
S1—a S2 —a

(o]
Sop— a
2 Z L ES”“S” [T3n+175n+1 A 7;(]

n=0 Sn — @
_ - (50 — a)(Snt1 — Sn)
= 2 ,
n=0 n

which diverges by our choice.

Example 5. Let a,b,c be constants, {a,}2, and {s,}°>, be a strictly increasing
such that a < a, < s, < b < c and limy_,o s, = b. Set

X(S) = Z 1{s€[sn,sn+1[}an + 1{56[()700[}@ fOT a/ll S € I

n=0

Consider the process Z defined by

oo
dZ = Z 1{Zt€[3n78n+1[}‘7"dwt + 1{Zte[b,oo[}th7
n=0

ZOI.T.

If we set a = —1

1
, O0pn=— and a, = s, — 0> for alln >0,

0= Sl T T an(gn — 1) on

we have

m([x(s),s[; s) =2 (3.42)
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for s € [sg,b]. Notice then,

P00 (T}, < T),) HIP’“”“ I (Tyrismes < Ty)

00
Sp — Qp

n=0 Sn+1 — An

g e
H 2n+1

=0
:7’>0.

We can use this and the properties of Brownian motions to prove that x s accessible.
Notice that by Lemma 3.2.6, we have for D = Eg, ., Fp(x,s) = E**[T. NT,] < 00
We can choose c large enough such that

E"[T.AT\] = (c — b)(b—a) >

ﬂl»—t

Then

Ep(sn, sn) = E* [T, AT\ | + P (T}, < T)E" [T A T,]
> P50 (Ty, < Ty )EP[T. A T,]
> 1. (3.43)

Equation (3.42) and (3.43) and the fact that a,, = s, — o2 imply

(FD):E— (Snv Sn) =

and F,_(s,s) is not locally bounded.

3.6 The r-invariant functions

In this section, we will introduce the notion of an r-invariant function for PRM-JSM.
The term invariant follows from chapter 2 of Borodin and Salminen [3].

Definition 3.6.1. We say a nonnegative function ¢ on E is a left r-invariant func-
tion if for any accessible function x such that &, : T — R* is locally bounded, we
have

p(x,s) = E™*[e " ¢( X1, ST,)LiTcoey] for all (z,s) € E,. (3.44)
We say a nonnegative function b on E is a right r-invariant function if

Y(,s) = P(z, 2)E"*[e " 1. coy]  for all (x,5) € E and z such that x < s < z.
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We will now prove the existence of r-invariant function. For any continuous
function g : Z — R, we define

vy (8,51, 80) 1= g(s1)E**[e T L, o] = g(s2) B[ T2 1yr, o] (3.45)
for all a < s <51 <89 <f.

Definition 3.6.2. We call a continuous function g : T — R is invariant-generating
if for every accessible x such that &, is locally bounded,

(i) lim, o0 g(2)E>* e =1y 73] = 0 for all s € Z,

(ii) there exists an integrable function f,, : Z — R for all s € T such that

vy (8,51,82) = / fox (W), (du; s) >0 for all s < sy < sy €Z. (3.46)
Js1,52]

Lemma 3.6.1. Let [ be any measurable integrable function on x U {b} and T be
Ty, T, or T, NT,. Consider the function defined as

u(z,s) == E“* e (X7, S7)1{T<00)]
for (x,s) € E,. We have e """ Du(Xn1, SinT) is a martingale.

Proof. For any bounded stopping time H, by definition of v and strong Markov
property, we have

u(z, s) = E"*[e”"7 f( X7, S7)1{T<00}]

— RS [e—T(H/\T) e_TTOGHATf(XTOGH/\T7 STOGHAT) 1{7—09H/\T<00}]

— ™5 [e—r(H/\T)EXHAT,SH/\T [e—rTf(XT’ ST)]-{T<OO}H

= Ex’s[e_T(HAT)U(XH/\Ta Sunt)]-

Hence the result. [ |

Corollary 3.6.2. Both e """ ¢(X a7, Sinr) and e "D ( X, Syar) are a local
martingale, where ¢ and v are left and right r-invariant functions repesectively.

Theorem 3.6.3. Consider any strong Markov process, the following statements hold
true:

(1) If ¢ is a left r-invariant generating function. Then, the function T > s
®(s, 8) is invariant generating.

(i) Given any invariant generating function g : T — R*, there exists a left r-
invariant function such that ¢(s,s) = g(s) for all s € L.
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Proof. Let x be accessible such that &, is locally bounded. By Lemma 3.2.6 we
have P**(T, ANT,) = 1 for all s < z € Z. By this result, strong Markov property
and definition of ¢, we have

o(s,s) = B>*[e " ¢( X7, S7,) L (7, <00}
=E>*[e" 7 ¢(X7,, S7) 17 <00t (L{mocri) + Liz<ry)]
= E>*[e e (X7 0y, STro6r. ) 1iT<o0) Limo <)
+E e (X1, St iz <1y
= ¢(z,2)E** e " Lip o] + Bl (X1, S ) 1(7< )] (3.47)

for all s < z € Z. Continuity of the map Z 3 z — ¢(z, z) follows from (3.47), the
fact that z — E**[e™™1i 73] > 0 and z — E**[e”"x¢(X7,, S7,) 17 <1.}] are
continuous as a function of z € [s,f]. By (3.47) and the dominated convergence
theorem, we have

lim ¢(z, z)Eﬁ’s[e*TTzl{Tzd—X}] =0.

Z—00

Again by (3.47), we have
E>*[e”" ™ ¢( X7, S7,) L {1y, <To< T, })
=¢($1, Sl)ES’S [e—rTsl 1{T51<TX}] _ ¢(82, SQ)ES,S [G—TTSQ 1{T52<TX}] (3‘48)

for all s < s; < sy € Z. Hence it suffice to take f,, = ¢(x(s),s).
Conversely, fix a choice of x and a version of f,,, we can define

p(z,8) = E™ e f, (ST.)l{Ticooy] for all (z,s) € E,.
By (3.45) and (3.46), let s = 51 and so — oo in (3.46), we have

¢(s,8) = E*[e” ™ f, \ (ST)1(T,<00}) = g(s) for all (z,s) € E,.

By Lemma 3.6.1, we can see that e"“(tAR)gb(XMTX,XMTX) is a local martingale on
E,. Let {z,}22, be a sequence of decreasing functions on Z such that zy(s) = x(s)
and lim,,_, 2,(s) = K(s) for all s € Z. We can define function ¢,, on E, by

¢n(87 S) = ¢(87 8) - g<5)7

bulnls), ) !

- EX(S),S [e_TTZn(S)ﬂs ]_{

[fgy)((s) - g(s)EX(S)’S [e_TTS 1{TS<Tzn(s),s}]]
Tzn(s),s<TS}]

and
On(z,5) = E"* [e_TTZ”<S>’S1{Tz”<s>,s<T5}¢n(Zn(3)a s)+ e_TTS1{T5<T2n(s),s}9(5)]'

By Lemma 3.6.1, one can check that e "ATsA =) g (X ap, AL, > XeaT, AT, ) 1S & uni-
formly integrable martingale for all n > 0. Combine this with the fact that for all
m < n,

Gm(2m(8),8) = dn(zm(s), s) and ¢ (s, s) = dn(s,s) = g(s), forall s €Z,
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we can conclude that ¢, = ¢, on E, . Therefore, one can extend ¢ to E by defining
¢ = ¢, on E, . Let us define a sequence of stopping times,

R mf{t >0 ‘ Xt St} A 7;,
Ry =1inf{t > Ro, o | Xt = x(S¢)} forn > 1;
Rgn = Hlf{t 2 Rgn_l | Xt = St} A 7; for n Z 1.

Upon localising with this sequence of stopping times, we can check that e "¢ (X7, SiaTs)
is a local martingale. Then

d(x,5) = B [e "X pry, Srar,) (Lireryy + Lizer.y)]

holds for all x such that &, is locally bounded. Let z — oo, by dominated conver-
gence theorem we obtain (3.44). ]

Lemma 3.6.4. Both ¢(-,s) and (-, s) are convex on |k(s), s[, where ¢ and ¢ are
left and right r-invariant functions repesectively.

Proof. For z € Z,, we choose a and b such that x(s) < a < x < b < s. Then we
have

xT,s8 a,s s TT OUTq,s A
¢( ) E [e T /\Tb ) X O ,sN\Tp g ¢(X7—X00Ta,s/\Tb,s ; S7;<09Ta,s/\Tb7S )]
— & [efr(Ta,s/\Tb,s)<1{Ta o<Th, S}(b(@’ S) + 1{Tb,s<Ta,S}¢(b7 S))]

b—=x
< b—a¢(a S)+b—¢(b s)

and the convexity follows for = €]x(s), s[.
For a <z < b < s < z, we can repeat the above argument with 7, replaced by
T, and ¢ replaced by ¢. Then we obtain the convexity of (-, s) on |k(s), s|. ]

Lemma 3.6.5. The functions I 3 z — ¢(z,2) and I > z — (2, z) are continuous.

Proof. The continuity of z — ¢(z, z) was proved in Theorem 3.6.3. The continuity
of z — (z, z) follows directly from

(s, s) = ¥(z, 2)E* e 1z <o)
and E%*[e™""* 17, oy] is a positive continuous function of z. ]

Theorem 3.6.6. Suppose the left r-invariant function ¢ is such that ¢(x(s),s) is
locally bounded for some accessible x with s — x(s) locally bounded away from 0 and
M, (s) also locally bounded. We have that ¢ solves the differential equation:

Gpz(dx,s) —ro(z, s)m(dx, s) =0, (3.49)
do(s,s) — ¢u—(8,8)ds — ro(s, s)dA(s,s0) =0 for all s > sq. (3.50)

Proof. Fix s. For any (s) < a < x < b < s, the process
(e*T(MT‘Z’SATb’S)<Z5(XtATa,S/\Tb,S7 SiATa ATy )s T2 0)
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is a uniformly integrable martingale as in one dimensional case. Apply [to6-Tanaka’s
formula and equate the finite variation part, we obtain (3.49).

One can see that our assumptions on ¢ enables us to apply Theorem 3.4.2 with
¢ in place of F. Integration by parts implies that

tATr
e—r(t/\ﬁ)¢(Xt/\77{’ Sint.) =0(Xo, So) + / e " pp (X, Su)dX,
0
tA T
+ / e ™ (d¢<sw SU) - ¢~’C—(SU’ S“)dsu)
0

tAT,
" 1 —Tru X X
+/ ) E e ¢a::c(dx>sl(J))(dLu/\r(J) - dLuAl(J))
0 Jeg

ATy
— / re " o(Xy, Sy)du, (3.51)
0

where L7 is the local time for X.
Recall the PCHAF A, (B, B) and [ are defined in Theorem 3.4.3, we can see that

tATw VEATw B
/ e "o(Xy, Sy)du :/ e_TA“ng(Bu, B.,)dA,
0 0

VtATw . _ 1 _ - -
:/0 € Au(b(Bua BU>§ Z m(dx, Bl(J))<dlu/\r(J) - dlu/\l(J))
JeJg

TtATw _ - _
+ / e " p(By, B,)dN( By, so)
0

tATx
" —Tru 1 X xr
:/0 € ¢(Xu75u)§ E :m(dx, SZ(J))(dLu/\r(J) _dLu/\l(J))
JeJ

AT
+ / e P(Su, Su)dA(Su, So)-
0

Plug this back into (3.51), use Doobs Meyer decomposition theorem and the fact
(3.49), we can see that

tA Tk
/ e T (d(b(su’ Su) — (bmf (Su, Su)dsu - T(b(sw SU)d)‘(Sua 30)) = 0.
0

This further implies that

tATw tA T
(S Sum) = dsnso) = [ 0 (S SdSu— [ r0(Su. SIANSues0) =0
0 0
We replace t by T, multiply both sides by 1(7, <7;} and take expectations, it follows
that (3.50) holds. B

Remark 3.6.1. It6 We take x = x1 in Theorem 3.4.3 and prescribe ¢(x(s),s) = 1.
Then the left r-invariant function ¢ defined via the same procedure as in Theorem
3.6.3 satisfies the assumption of this theorem.

Remark 3.6.2. The right r-invariant function v satisfies the same differential equa-
tions following the same line of proof replacing ¢ by 1.
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