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Abstract

In the first part of this thesis, we study a continuous-time principal-agent model
without precommitment. The agent runs an economic project on behalf of the
principal. To this end, the agents apply effort that is costly to them and unobservable
by the principal. In return, the agent receives compensation from the principal. The
agent is strictly risk-averse and their objective is to maximize their expected utility
of compensation minus their expected disutility of effort. The principal is risk-
neutral and their objective is to maximize their expected utility of income generated
by the project minus the compensation paid to the agent. The optimal contract
should maximize the principal’s expected utility subject to the constraint that it
should induce a contractual environment in which it is optimal for the agent to
always be truthful. To exclude the requirement of precommitment, the contract
allows for costly renegotiation. The optimal contract is fully determined by deriving
the explicit solution to a suitable control problem that combines regular stochastic
control with singular stochastic control.

In the second part of this thesis, we present a study of two-dimensional strong
Markov processes whose second component is the running maximum of the first one.
The study of such processes has been motivated by recent development in financial
mathematics, such as the introduction and the analysis of the π and the watermark
options. We first introduce a suitable concept of regularity that generalises the
standard regularity assumption of the theory of one-dimensional diffusions/strong
Markov process to the two-dimensional setting that we study. Next, we characterise
the class of scale functions, namely, the functions that yield local martingales when
composed with a Markov process in the family we study. We then show that such
a process in natural scale can be represented as a time-changed Brownian motion
and its running maximum. Finally, we present a study of associated r-invariant
functions. Our analysis makes heavy use of the standard theory of one-dimensional
diffusions. The main difficulties arise from the behaviour of the processes on the
diagonal where their two components coincide.
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Chapter 1

Introduction and Literature
Review

Principal-agent problems study the interaction between a principal and an agent.
The principal hires the agent to accomplish a project and receives the output, while
the agent receives compensation from the principal and makes effort until the termi-
nation of the project. The principal chooses a contract which incentivises the agent
to accept and work until termination. The agent maximizes over his actions while
the principal maximizes over admissible contracts based on the agent’s incentives.
In the second best setting, the action of the agent is not directly observable by the
principal due to the noise in the output, which is observable only by the agent.

The first principal-agent problem model in continuous time setting was studied
by Holmstrom and Milgrom [15]. The principal pays the agent at the terminal time
T . The agents try to maximize their expected utility function of terminal payment
from the principal minus their own effort cost, while the principal try to maximize
a utility function of final output minus her terminal payment to the agent. This
problem can be solved either via first order methods or a BSDE comparison principle
(see also Cvitanic and Zhang [8]). Later, Cvitanic, Wan and Zhang [7] studied
a similar problem of Holmstrom and Milgrom [15] using FBSDE and stochastic
maximum principle (see also Cvitanic and Zhang [8]). Early seminal papers in
continuous time setting are due to DeMarzo and Sannikov [12] and Sannikov [27].
They represent the agent’s continuation value as a stochastic process and solve both
of the agent’s and principal’s problems using standard HJB equation approach. The
former paper considers the situation where the agent is able to steal from the output
process without being discovered by the agent. The agent is offered a continuous
contract payment from the principal and tries to maximize this payment plus the
stole benefit. On the other hand, the principal tries to maximize her cashflow
minus the contract payment and the stolen loss. The latter paper consider the
situation when the agent receives continuous payment from the principal and the
principal benefits from the agent’s continuous effort. The agents try to maximize
their discounted utility stream from the payment minus the discounted disutility
stream from their efforts. On the other hand, the principals try to maximize their
discounted effort stream minus the discounted payment stream.

With the exception of DeMarzo and Sannikov [12], all of the above mentioned
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papers are based on the so called ”weak formulation” in which the agent determines
the drift of the output process SDE by choosing an equivalent probability measure.
Evans, Miller and Yang [13] revisited the problem of Sannikov [27] in the strong
formulation in which strong solutions to the output process’ SDE are considered
and the agent chooses a controlled process that affects the drift. This paper makes
suitable convexity assumptions and solves the resulting control problem by means
of PDE techniques.

Anderson and Zervos [2] also adopted a strong formulation. So far, all models
allow the agent to control the drift of the output process SDE. It is worth noting that
Cvitanic, Possamai and Touzi [9], [10] also studied the problem in which the agent
can control the volatility of the output process SDE using the theory of quadratic
BSDE.

In the first chapter of the thesis, we consider the problem of Sannikov [27] in the
strong formulation. On the top of that, we add two new features: 1) we allow for
an exit option for the principal. 2) we allow for costless or costly renegotiation to
take place. Renegotiation is defined as an update of current contract between the
agent and the principal. From economical point of view, the two parties will happily
accept the renegotiation if it benefits them both, possibly with a (proportional) cost.
Therefore, it makes sense to consider only renegotiations that are beneficial to both.
As we saw from Sannikov’s solution in [27], the slope at 0 of the value function
could be strictly positive. This means that if renegotiation is costless, with possible
renegotiation between the agent and the principal, both of them could be better off.
In some cases, it might not be optimal to renegotiate due to the cost, while in the
costless case, the slope of the value function is nonpositive to exclude a better off
situation for both parties.

To the best of our knowledge, this model is the very first one that studies a
principal-agent problem with renegotiation. Our main contributions include solving
the Sannikov’s problem in this new setting and filling some details and gaps in
Sannikov’s original paper. (Sannikov’s results are correct but several steps are not
explicitly proved.)

One possible future continuing work could be to consider a fixed cost along with
the already existing proportional cost. This extension is very practical in the real
world applications and would give rise to an impulse control problem.

The theory of one-dimensional regular diffusions has been comprehensively stud-
ied by many contributors: Itô and McKean [16] and Roger Williams [26] are standard
references for the theory. The law and boundary behaviours of these processes are
fully determined by their scale function p and their speed measure m. The pro-
cess p(X) can be written as a time change of a Brownian motion on a possibly
enriched probability space by a PCHAF (perfect continuous homogeneous additive
functional) that depends on the speed measure m (see Theorem V.41.1 of Roger
and Williams [26]). In other words, every one-dimensional regular diffusion can be
obtained by time-changing a standard one-dimensional Brownian motion and then
composing the resulting process with a scale function.

The notion of r-invariant functions and resolvents can then be introduced. These
play important roles in solving several optimal stopping and the stochastic control
problems. In Alvarez [1], a singular control problem of one-dimensional diffusion is

6



studied. In Karatzas and Dayanik [11], the value functions of optimal stopping prob-
lems involving one-dimensional diffusions are characterised by r-excessive functions
that are the smallest majorants of the terminal payoffs. The papers by Johnson
and Zervos [17], Lamberton and Zervos [19] exploit solutions of some ODEs which
are measures to solve optimal stopping problems and price some exotic derivatives
related to one-dimensional diffusion.

In the second chapter of the thesis, we investigate the two-dimensional continuous
strong Markov processes (X,S) whose second component is the running maximum
of the first one on the state space E. This class includes those (X,S) where X
is a one-dimension continuous strong Markov processes. Moreover, it also includes
the Azema-Yor process which can be characterised as a solution to the Bachelier
equation

dXt = u(St)dMt,

where 1
u

is locally integrable and M is a continuous local martingale (see Obloj
[23]). The Azema-Yor process can be used to solve Skorokhod problem and provide
bounds for the law of running maximum process S according to Obloj and Yor [22].
It is also related to drawdown equation where the constraint X ≥ κ(S) is satisfied
for some Borel functions κ such that κ(s) < s for all s. The drawdown equation has
application in stochastic control and portfolio optimization where we require (X,S)
satisfy a similar constraint according to Carraro, El Karoui and Obloj [5]. Note that
our class of two-dimensional continuous strong Markov processes contains the class
Azema-Yor process as a proper subclass and the problem of its characterisation is
interesting in its own right.

Our first objective is to show that such processes can also be obtained by time-
changing a standard one-dimensional Brownian motion and its running maximum
and then composing the resulting processes with a scale function. We start by
defining a notion of regularity in our two dimensional setting for the strong Markov
processes (X,S). In order to use probability tools such as Itô-Tanaka’s formula or
its extension, we introduce the family of (one to one) scale functions p : E → R2

such that the process (p(Xt, St), p(St, St)) is also strong Markov while p(Xt, St) is
a local martingale. Then, we present an extended version of Itô-Tanaka formula
by Lamberton and Zervos [20] concerning a continuous semimartingale X and its
running maximum S. With the aid of this formula, we can show that after composing
with a scale function, the process (X,S) can be identified as a time-changed of
Brownian motion and its running maximum by a PCHAF. The PCHAF depends
on the speed measure m(·; s) of the process X while it makes an excursion with
running maximum s as well as a measure λ that is a kind of speed measure of
process X while the process (X,S) is on the line {x = s} in x-s plane. Hence, the
law of (X,S) is completely determined by its scale function p, the speed measure
m and λ similar to one-dimensional diffusion case. Finally, we consider the r-
invariant functions corresponding to the two dimensional process (X,S) and derive
a differential equation which they satisfy as in one dimensional diffusion case.

To the best of our knowledge, this is the first article characterising two-
dimensional continuous strong Markov processes (X,S) whose second component is
the running maximum of the first one. The main difficulties lie in how to construct
scale functions in this two-dimensional setting and verify that all auxiliary functions
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we use do satisfy the requirements of our extension of Itô-Tanaka’s formula.
The study of this family of stochastic processes has partly been motivated by

some recent development in financial mathematics, in particular pricing derivatives
involving running maximums, such as the introduction and the analysis of π options
(Guo and Zervos [14]) and the watermark options (Rodosthenous and Zervos [25]).
Similar solution to a PDE that are measures horizontally and diagonally analogous
to one-dimensional case in Johnson and Zervos [17] may be established in the future
work.
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Chapter 2

A Continuous-Time
Principal-Agent Problem with
Costly Renegotiation

This chapter is based on joint work with Professor Mihail Zervos.

2.1 Outline

In this chapter, we study a continuous-time principal-agent model without precom-
mitment. The agent runs an economic project on behalf of the principal. To this
end, the agent applies effort that is costly to them and unobservable by the prin-
cipal. In return, the agent receives compensation from the principal. The agent
is strictly risk-averse and their objective is to maximize their expected utility of
compensation minus their expected disutility of effort. The principal is risk-neutral
and their objective is to maximize their expected utility of income generated by the
project minus the compensation paid to the agent. The optimal contract should
maximize the principal’s expected utility subject to the constraint that it should
induce a contractual environment in which it is optimal for the agent to always be
truthful. To exclude the requirement of precommitment, the contract allows for
costly renegotiation. The optimal contract is fully determined by deriving the ex-
plicit solution to a suitable control problem that combines regular stochastic control
with singular stochastic control.

The chapter is organised as follows. In Section 2.2, we set up the maximization
problems (without renegotiation) for both the agent and the principal. We make
assumptions on relevant constants, utility and disutility functions that are very
standard. Then, we define the concept of contracts. In Section 2.3, we introduce
the notion of a renegotiation process, which can be discrete or continuous. In Section
2.4, we give a representation of the agent’s continuation value process and motivate
the definition of dynamic contract. We solve the agent problem by restricting the
principal to choose from a class of incentive compatible contracts, which we refer to
admissible contracts. Then, we state the optimisation problem of the principal and
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the corresponding HJB equation. In Section 2.5, we construct the solution to the
HJB equation associated with the value function of the principal. In Section 2.6, we
state the value function of the principal and we discuss the optimal contract for the
principal under different cases. Then, we use a verification theorem to conclude our
results.

2.2 The principal-agent problem model without

renegotiation

We fix a complete probability space (Ω,F ,P) supporting a standard one-dimensional
Brownian motion W . We denote by (Ft) the natural filtration of W . Here, as well
as throughout the chapter, we refer to the filtration satisfying the usual conditions
that is obtained by rendering right-continuous natural filtration of a given process
and augmenting it by the P-negligible sets in F simply as the process’ “natural
filtration”.

The agent runs an economic project on behalf of the principal. The project
generates the cashflow process Y given by

dYt = At dt+ σ dWt, (2.1)

where σ > 0 is a constant and A is a R+-valued process modelling the agent’s effort
in running the project. To compensate the agent’s effort, the principal pays the
agent at a rate modelled by an R+-valued process C. We assume that the agent’s
application of effort is unobservable by the principal, namely, the principal observes
only the reported cashflow Y . Accordingly, the compensation process C is adapted
to the natural filtration (Gt) of Y . The contractual agreement between the principal
and the agent also involves a discretionary time τ at which the project is liquidated.
This is a (Gt)-stopping time.

The agent is risk-averse with limited liability and his objective is to maximize
expected utility of compensation minus expected disutility of effort. In particular,
the agent aims to maximize the performance criterion

Ia(C, τ, A) = E
[∫ τ

0

e−rs[u(Cs)− k(As)] ds

]
, (2.2)

where the discount rate r > 0 is a constant and u, k satisfy the following assumption

Assumption 2.2.1. The utility function u : R+ → R+ is C2, strictly concave,

u(0) = 0, lim
c→∞

u(c) =∞, lim
c→∞

u′(c) = 0, lim
c→0

u′(c) =∞

and lim inf
q↑0

d

dq
u ◦ (u′)−1

(
−1

q

)
> −∞.

The disutility function k : R+ → R+ is C3 strictly convex,

k(0) = 0, k′(0) = γ and k′′′(x) ≥ 0 for all x > 0,

where γ > 0 is a constant.
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Remark 2.2.1. The setting we have considered up to this point, including Assump-
tion 2.2.1, is the same as in Sannikov [27].

Remark 2.2.2. The concavity of u and −k reveal that the agent is risk-averse.
The C2 differentiability and boundary conditions at 0 and ∞ ensure the existence of
C1 \ {0}, locally Lipschitz minimizer c? and maximizer z? to be defined later. We
will see that these conditions guarantee that a specific ODE has a unique solution
and a specific SDE has a unique strong solution. In turn, these results will ensure
that the value function is C1 and the optimal contract exist.

Definition 2.2.1. An R+-valued (Ft)-progressively measurable process A is admis-
sible if

E
[∫ ∞

0

e−rs[k(As) + A2
s]ds

]
<∞.

We denote by A the family of all admissible effort processes.

Remark 2.2.3. Here, the integrability conditions are imposed to make sure all in-
tegrals exist. They are the same as in Chapter 5 of Cvitanic and Zhang [8] and are
implicitly assumed by Sannikov [27].

The principal is risk-neutral and their objective is to maximize the expected
income generated by the project minus the expected compensation paid to the agent.
In particular, the principal aims to maximize the expected payoff

Ip(C, τ, A) = E
[∫ τ

0

e−rs dYs −
∫ τ

0

e−rsCsds+ e−rτL

]
= E

[∫ τ

0

e−rs(As − Cs)ds+ e−rτL

]
(2.3)

over all compensation processes C and liquidation times τ . Here, the discounting
rate r > 0 and the liquidation payoff L ≥ 0 are given constants.

The following definition, which involves no renegotiation, provides a first step to
formalising the contractual environment we consider.

Definition 2.2.2. A contract without renegotiation Γ = (C, τ) is a function mapping
each process A in the set of admissible effort processes A to a pair (C(A), τ(A)),
where C(A) is an R+-valued (Gt)-progressively measurable process and τ(A) is a
(Gt)-stopping time, where (Gt) = (Gt(A)) is the natural filtration of the process Y
given by (2.1).

We need to impose suitable integrability conditions to the compensation processes
C(A) for the optimisation problems we consider to be well-defined. We will address
such issues in the more specific context of Section 4.

In light of this definition, the problem of determining an optimal contract in the
absence of renegotiation can be viewed as a Stackelberg game:

Agent: Given a contract Γ, the agent chooses an effort strategy A? = A?(Γ) that
maximizes their expected payoff Ia(C(A), τ(A), A) given by (2.2) subject to

1{t<τ}E

[∫ τ

t

e−r(s−t)[u(Cs)− k(As)]ds
∣∣∣Gt] ≥ 0 for all t.
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Principal: Given the optimal response A?(Γ) of the agent to each contract Γ,
the principal chooses a contract Γ? that maximizes their expected payoff
Ip(C, τ, A?(Γ)) given by (2.3).

2.3 The principal-agent problem model with rene-

gotiation

We introduce the possibility of renegotiation in the contractual environment. To
this end, we first consider a sequence of functions Tj : A → [0,∞], j ≥ 0, such that

T0(A) = 0, Tj(A) < Tj+1(A) on {Tj(A) <∞}

and Tj(A) is a Gt ≡ Gt(A)-stopping time for all j ≥ 0 and all A ∈ A. We assume that
renegotiation takes place at each of the times Tj, j ≥ 1, and a contract Γj = (Cj, τj)
in the sense of Definition 2.2.2 prevails over the period [Tj−1, Tj[, for j ≥ 1.

We can define a single contract Γ = (C, τ) in the sense of Definition 2.2.2 that
represents the sequence of contracts arising from renegotiation as follows. First, we
define

Ct(A) =
∞∑
j=1

Cj,t(A)1{Tj−1(A)≤t<Tj(A)}, (2.4)

for t ≥ 0 and A ∈ A. Next, we define recursively the functions ξj : A → [0,∞],
j ≥ 1, by

ξ1 = τ11{τ1<T1} +∞1{τ1≥T1}

and

ξj+1 = ξj1{ξj<∞} + τj+11{τj+1∈[Tj ,Tj+1[}∩{Tj<ξj}

+∞1({ξj<∞}∪({τj+1∈[Tj ,Tj+1[}∩{Tj<ξj}))c ,

for j ≥ 1, where we have dropped the dependence as A ∈ A to simplify the notation.
Finally, we define

τ(A) =
∞∧
j=1

ξj(A), for A ∈ A. (2.5)

In other words, this synthesized contract makes the payments and follows the ter-
mination strategy of the j-th contract between the renegotiation times Tj−1 and
Tj.

Lemma 2.3.1. Given sequences of renegotiation times (Tj) and contracts Γj as
above, (2.4) and (2.5) defines a contract without renegotiation in the sense of Defi-
nition 2.2.2.

Proof. Throughout the proof, we consider an effort process A ∈ A fixed and we
drop it from the notation to simplify the formulas.
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The process C defined by (2.4) is (Gt)-measurable because the process Cj, j ≥ 1,
are (Gt)-measurable and the times Tj, j ≥ 0 are (Gt)-stopping times, we can show
that ξj , j ≥ 1 are (Gt)-stopping times by induction as follows. Given any t ≥ 0,

{ξ1 ≤ t} = {τ1 ≤ t} ∩ {τ1 < T1}
= {τ1 < T1 ≤ t} ∪ ({τ1 ≤ t} ∩ {t < T1}) ∈ Gt

which proves that ξ1 is a (Gt)-stopping time. Assuming that ξj is a (Gt)-stopping
time, we can see that, given any t ≥ 0,

{ξj+1 ≤ t} = {ξj ≤ t} ∪ ({Tj ≤ τj+1 ≤ t} ∩ {Tj < ξj}) ∈ Gt,

because

{Tj < ξj} ∈ GTj ⇒ {Tj < ξj} ∩ {Tj ≤ t} ∈ Gt
and {Tj ≤ τj+1} ∈ GTj ⇒ {Tj ≤ τj+1} ∩ {τj+1 ≤ t} ∈ Gt.

The claim that ξj+1 is a (Gt)-stopping time follows. Finally, the time τ defined by
(2.5) is a (Gt)-stopping time by Exercise (4.17) in Chapter I of Revuz and Yor [24]
because (Gt) is right-continuous.

To proceed further, we define

P(t, C, τ, A) = 1{t<τ(A)}E

[∫ τ(A)

t

e−r(s−t)[u(C(As))− k(As)]ds
∣∣∣Gt],

for t ≥ 0, where (C, τ) is any contract in the sense of Definition 2.2.2 and A is any
admissible effort process. We next consider a sequence of contracts Γj = (Cj, τj),
j ≥ 1, arising from renegotiation at a sequence of renegotiation times Tj, j ≥ 0, as
well as the effective contract Γ = (C, τ) that is as in the previous lemma. In this
context, the agent’s running promise Pt associated with the contract prevailing at
time t is given by

Pt = P(t, Cj, τj, A) on {Tj−1 ≤ t < τj ∧ Tj}. (2.6)

On the other hand, the agent’s effective promise P̄t that reflects the effect of future
renegotiations is given by

P̄t = P(t, C, τ, A).

In view of these definitions and the fact that

Ct = Cl+1,t for all t ∈ [Tl, Tl+1[ and {Tl ≤ τ < Tl+1} = {Tl ≤ τl+1 < Tl+1},
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on the event {Tj−1 ≤ t < Tj} ∩ {t < τ}, we can see that

P̄t =E

[∫ τj∧Tj

t

e−r(s−t)[u(Cj,s)− k(As)]ds

+
∞∑
l=j

1{Tl<τ}

∫ τl+1∧Tl+1

Tl

e−r(s−t)[u(Cl+1,s)− k(As)]ds
∣∣∣Gt]

=E

[∫ τj

t

e−r(s−t)[u(Cj,s)− k(As)]ds

+
∞∑
l=j

1{Tl<τ}e
−r(Tl−t)E

[∫ τl+1

Tl

e−r(s−Tl)[u(Cl+1,s)− k(As)]ds

−
∫ τl

Tl

e−r(s−Tl)[u(Cl,s)− k(As)]ds
∣∣∣GTl]∣∣∣Gt

]

=Pt + E

[
∞∑
l=j

1{Tl<τ}e
−r(Tl−t)∆RTl

∣∣∣Gt]

=Pt + E

[∫
]t,τ ]

e−r(s−t)dRs

∣∣∣Gt], (2.7)

where R is the piece-wise constant process

Rt =
∞∑
i=1

∆RTi1{Ti≤t}

=
∞∑
i=1

1{Ti<τ∧t}E
[∫ τi+1

Ti

e−r(s−Ti)[u(Ci+1,s)− k(As)]ds

−
∫ τi

Ti

e−r(s−Ti)[u(Ci,s)− k(As)]ds
∣∣∣GTl]∣∣∣Gt

]

=
∞∑
i=1

(PTi − PTi−)1{Ti≤t}.

In summary, we have seen that the agent’s running promise process admits the
expression

Pt = 1{t<τ}E

[∫ τ

t

e−r(s−t)[u(Cs)− k(As)]ds−
∫

]t,τ ]

e−r(s−t)dRs

∣∣∣Gt] (2.8)

= P̄t − 1{t<τ}E

[∫
]t,τ ]

e−r(s−t)dRs

∣∣∣Gt],
where the renegotiation process R captures all changes to the agent’s running
promise resulting from renegotiation.
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At the renegotiation time Tj, the agent will be agreeable to replacing their current
contract Γj with the new one Γj+1 if and only if this results in an increase of their
running promise, namely, if and only if

∆PTj = ∆RTj ≥ 0.

Furthermore, we allow for continuous renegotiation. In particular, we allow for R to
be any increasing process representing the cumulative increase of the agent’s running
promise resulting from renegotiation.

Definition 2.3.1. A contract with renegotiation Γ = (C, τ, R) is a function mapping
each admissible effort process A to a triplet (C(A), τ(A), R(A)), where C(A) is an
R+-valued (Gt)-progressively measurable process, τ(A) is a (Gt)-stopping time and
R(A) is an R+-valued (Gt)-adapted process with increasing sample paths.

Given such a contract, the agent’s objective is to maximize the performance
criterion

Ia(C, τ, R,A) = P0 = E
[∫ τ

0

e−rs
[
u(Cs)− k(As)

]
ds−

∫
]0,τ ]

e−rsdRs

]
(2.9)

subject to

Pt ≥ 0 for all t. (2.10)

Remark 2.3.1. The performance criterion (2.9) is the agent’s running promise at
time 0. Dynamic programming suggests that an optimality for the agent’s contract
should remain optimal at any later time. Accordingly, a contract that maximizes
the performance criterion (2.9) should maximize the agent’s running promise at all
times. By focusing on maximizing their running rather than their effective pay-
off, this setting assumes that the agent is “myopic”. In practice, it would be more
appropriate to consider the agent maximizing the performance criterion

Îa(C, τ, R,A) = P̄0 = E
[∫ τ

0

e−rs
[
u(Cs)− k(As)

]
ds

]
, (2.11)

which is their effective promise at time 0. We discuss such issues further in Section
2.7.

Renegotiation leading to the increases of the agent’s running promise may be
costly for the principal. We assume that such costs are proportional to the increases
of the agent’s running promise. Therefore, given a contract in the sense of Definition
2.3.1, the principal’s objective is to maximize the performance index

Ip(C, τ, R,A) = E
[∫ τ

0

e−rs(As − Cs)ds− κ
∫

]0,τ ]

e−rsdRs + e−rτL

]
, (2.12)

where κ ≥ 0 is a constant. Note that we allow for the possibility of costless renego-
tiation, which corresponds to the value κ = 0.

We conclude this section with the statement of the Stackelberg game whose
solution can determine an optimal contract in the presence of renegotiations:
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Agent: Given a contract Γ, the agent chooses an effort strategy A? = A?(Γ) that
maximizes their expected payoff Ia(C(A), τ(A), R(A), A) given by (2.9) sub-
ject to (2.10).

Principal: Given the optimal response A?(Γ) of the agent to each contract Γ,
the principal chooses a contract Γ? that maximizes their expected payoff
Ip(C, τ, R,A?(Γ)) given by (2.12).

2.4 State space representation of contracts with

renegotiation

The purpose of this section is to determine a class of contracts admitting a state
space representation. To this end, we follow the standard approach to continu-
ous time principal-agent theory that was pioneered by Sannikov [27]. The starting
point is Lemma 2.4.1, which provides stochastic dynamics for the agent’s (running)
promise process P under the assumption that the agent is truthful to the principal.
This result motivates restricting attention to contracts characterized by the state
space representation given by (2.14). In turn, this representation motivates the class
of contracts given by Definition 2.4.1 and characterized by the state process given
by (2.16). The next step is motivated by Lemma 2.4.2, which provides sufficient
conditions for a contract in the sense of Definition 2.4.1 to be incentive compatible,
namely, to be such that it is optimal for the agent to be truthful to the principal.
This result motivates restricting attention to the class of contracts introduced by
Definition 2.4.2. The principal-agent problem then reduces to choosing the con-
tract among the ones in Definition 2.4.2 that maximizes the principal’s payoff. It
is worth noting that this approach restricts the original class of contracts twice. To
the best of our knowledge, there are no results in the literature on how “severe”
such restrictions might be.

Lemma 2.4.1. Consider a contract Γ = (C, τ, R) in the sense of Definition 2.3.1
and suppose that the agent adopts an effort process A that is observable by the
principal, so that (Gt) = (Ft). There exists a (Gt)-progressively measurable process
Z satisfying suitable integrability conditions such that the agent’s running promise
process P , which is given by (2.8), satisfies the stochastic equation

dPt = (rPt − u(Ct) + k(At) ) dt+ dRt + σZt dWt. (2.13)

Proof. Since (Ft) is the natural filtration of the Brownian motion W , the martingale
representation theorem implies that there exists an (Ft)-progressively measurable
process Z satisfying suitable integrability conditions such that

E

[∫ τ

0

e−rs [(u(Cs)− k(As) ) ds−
∫

]0,τ ]

e−rsdRs

∣∣∣Gt] = P0 + σ

∫ t

0

e−rsZs dWs,

This identity and (2.8) imply that

e−rtPt = P0 −
∫ t

0

e−rs[u(Cs)− k(As)] ds+

∫
]0,t]

e−rs dRs + σ

∫ t

0

e−rsZs dWs.
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The stochastic dynamics (2.13) follow from this representation and an application
of the integration by parts formula.

This lemma suggests the possibility of characterising a contract by means of a
state process X with dynamics

dXt =[rXt − u(Ct) + k(At) ] dt+ dRt + σZt dWt

=[rXt − u(Ct) + k(At)− AtZt ] dt+ dRt + Zt dYt. (2.14)

Instead of making a choice (C, τ, R) and determining the agent’s running promise
process P using (2.8), such contracts make a choice (C, τ, R, Z) and then determine
the agent’s running promise process P by identifying it with the solution X to the
SDE (2.14). For such an identification, the definition (2.8) of the agent’s running
process implies that

Xτ+t = 0 for all t ≥ 0. (2.15)

To develop this new perspective in a way that makes the agent’s optimisation
problem in the Stackelberg game straightforward to solve, we need to introduce an
additional element in the contract. This is a recommended effort process E that
the principal would accept as the agent’s effort process. Later, we will restrict the
principal to focus on contracts that induce the agent to follow the recommended
effort process, which makes the problem tractable.

Definition 2.4.1. A dynamic contract D = (C, τ, R, Z,E) is a function mapping
each admissible effort process A ∈ A to a quintuple (C(A), τ(A), R(A), Z(A), E(A)),
where E is called the recommended effort, with the following properties (here we drop
the explicit dependence on A for notational simplicity):

• C is an R+-valued (Gt)-progressively measurable process such that

E
[ ∫ ∞

0

e−rsu(Cs) ds
]
<∞.

• τ is a (Gt)-stopping time.

• R is an R+-valued (Gt)-adapted process with increasing càdlàg sample paths
such that

R0 = 0 and E
[ ∫

]0,∞[

e−rs dRs

]
<∞.

• Z is an R-valued (Gt)-progressively measurable process such that

E
[ ∫ ∞

0

e−rsZ2
s ds

]
<∞.

• E is an R+-valued (Gt)-progressively measurable process such that

E
[∫ ∞

0

e−rs[k(Es) + E2
s ] ds

]
<∞.
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The reason for introducing the recommended effort process in the contract is
because the actual effort process A may be unobservable by the principal, in which
case, the solution to (2.14) is not adapted to the reported information flow that is
modelled by the filtration (Gt). On the other hand, the family of dynamic contracts
introduced by the previous definition are associated with the state process X given
by

dXt = [rXt − u(Ct) + k(Et)− EtZt ]dt+ dRt + Zt dYt, X0 = x > 0, (2.16)

which is adapted to the filtration (Gt). Notice that equation (2.16) is exactly (2.14)
when A = E.

Assumption 2.2.1 implies that the function R 3 a 7→ az − k(a) has a unique
maximum for each fixed z ∈ R and

α(z) = arg max
a∈R+

{az − k(a)} =

{
(k′)−1(z) > 0 , for z > γ,

0 , for z ≤ γ.
(2.17)

The following result shows that, if the recommended effort E identifies with α(Z),
then the contract is incentive compatible, namely, it is optimal for the agent to
adopt the recommended effort.

Lemma 2.4.2. Given a dynamic contract in the sense of Definition 2.4.1, the cor-
responding solution to the SDE (2.16) is well-defined. Furthermore, if the contract
is such that

E(A) = α(Z(A)) for all A ∈ A, (2.18)

there exists A? ∈ A such that
A? = α(Z(A?)) (2.19)

and the associated solution to the SDE (2.16) satisfies

Xτ(A)+t(A)1{τ(A)<∞} = 0 for all t ≥ 0 and lim
T→∞

E[e−rTXT (A)1{T<τ}] = 0 (2.20)

then

sup
A∈A
Ia(C(A), τ(A), R(A), A) = Ia(C(A?), τ(A?), R(A?), A?) = X0 (2.21)

Proof. Given a dynamic contract D as in the statement of the lemma, we denote by
C, τ, Z,R,E its valuation at any given A ∈ A, and we drop the explicit dependence
on A itself for notational simplicity. In view of integrability conditions in Definition
2.2.1, 2.4.1 and Hölder’s inequality, we can see that

E
[∫ ∞

0

e−rsAs|Zs| ds
]
≤
(
E
[∫ ∞

0

e−rsA2
s ds

]) 1
2
(
E
[∫ ∞

0

e−rsZ2
s ds

]) 1
2

and

E
[∫ ∞

0

e−rsEs|Zs| ds
]
≤
(
E
[∫ ∞

0

e−rsE2
s ds

]) 1
2
(
E
[∫ ∞

0

e−rsZ2
s ds

]) 1
2

.
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We can then define process (e−rtXt) as a stochastic integral

e−rtXt = X0 +

∫ t

0

e−rs(−u(Cs) + k(Es)−EsZs ) ds+

∫
[0,t]

e−rs dRs +

∫ t

0

e−rsZs dYs,

which is (Gt)-adapted. By integration by parts, X is the solution to (2.16). Re-
arrange, we can see that

e−r(T∧τ)XT∧τ = X0 −
∫ T∧τ

0

e−rs[(EsZs − k(Es))− (AsZs − k(As))] ds

−
∫ T∧τ

0

e−rs[u(Cs)− k(As)] ds+

∫
]0,T∧τ ]

e−rs dRs

+

∫ T∧τ

0

σe−rsZs dWs (2.22)

Now suppose that the contract is such that (2.18)-(2.20) hold true. The expression
(2.17) and (2.22) imply that∫ T∧τ

0

e−rs[u(Cs)− k(As)]ds−
∫

]0,T∧τ ]

e−rsdRs

≤X0 − e−rTXT1{T<τ} +

∫ T∧τ

0

σe−rsZsdWs

with equality if A = α(Z). The integrability condition on Z in Definition 2.4.1
implies that the stochastic integral is a martingale. In view of this observation and
the relevant integrability conditions in Definition 2.4.1, we can take expectation and
pass to the limit as T → ∞ using the monotone convergence theorem to obtain
(2.21).

In view of the previous result, we now restrict attention to incentive compatible
dynamic contracts such that the recommended effort E identifies with α(Z) and
(2.20) holds. Such contracts are associated with the state process

dXt = [rXt − u(Ct) + k(α(Zt))− α(Zt)Zt] dt+ dRt + Zt dYt

= [rXt − u(Ct) + k(α(Zt))] dt+ dRt + σZt dWt. (2.23)

The following definition summarises the discussion and analysis of the section thus
far.

Definition 2.4.2. An incentive compatible dynamic contract D = (C, τ, R, Z) is a
function mapping each effort process A ∈ A to (C(A), τ(A), R(A), Z(A)) with the
following properties (here we drop the explicit dependence on A for simplicity):

• The processes C,R,Z and random time τ are as in Definition 2.4.1.

• The solution to (2.23) is such that

Xτ+t1{τ<∞} = 0 for all t ≥ 0 and lim
T→∞

E[e−rTXT1{T<τ}] = 0.
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We now restrict attention to admissible controls in the sense of Definition
2.4.2. Given such a contract, Lemma 2.4.2 implies that the agent will choose
A? = α(Z(A?)) as their effort process. This effort process is fully observable by
the principal. Therefore, its associated reported information flow (Gt) identifies
with the Brownian filtration (Ft). We are faced with the state process

dXt = [rXt − u(Ct) + k(α(Zt))] dt+ dRt + σZt dWt, X0 = x ≥ 0. (2.24)

In this context, the principal’s performance index given by (2.12) takes the form

Jp(C, τ, R, Z) = E
[∫ τ

0

e−rs(α(Zs)− Cs) ds− κ
∫

]0,τ ]

e−rs dRs + e−rτL

]
. (2.25)

To determine the optimal incentive compatible dynamic contracts, we need to solve
the stochastic control problem defined by (2.24) and (2.25). In particular, we need
to maximize the performance criterion given by (2.25) over all admissible controls.

Thus, we are faced with a control problem with mixed regular stochastic control
and singular stochastic control. The value function of this problem is defined by

V (x) = sup
(C,τ,R,Z)∈C

Jp(C, τ, R, Z). (2.26)

In view of standard stochastic control theory, we expect that the problem’s value
function should identify with a suitable solution to the HJB equation

max

{
max
c≥0,z∈R

{
1

2
σ2z2f ′′(x) + (rx− u(c) + k(α(z)))f ′(x)

− rf(x) + α(z)− c
}
, f ′(x)− κ

}
= 0. (2.27)

where u and k are defined in Assumption 2.2.1 and α is defined in (2.17).
To derive the solution to this HJB equation that identifies with value function,

we need suitable boundary conditions. Depending on parameter values, we will
encounter three different cases, each corresponding to a different optimal strategy
of the principal.

In any of the three cases, we will later show that it is optimal to follow a de-
terministic strategy that requires 0 effort from the agent, involves no renegotiation
and delivers the initial promise x to the agent if x is sufficiently large. Indeed, for
all x in a closed neighbourhood of ∞, it is optimal to choose

C?
t = c†(x) and Z?

t = R?
t = 0 for all t ≥ 0,

where c†(x) is such that

x =

∫ ∞
0

e−rtu(c†(x))dt ⇔ rx = u(c†(x))

These choices imply that the agent’s promise process

dXt = (rXt − u(c†(Xt))dt = 0

so that Xt = x for all t ≥ 0. Accordingly, the closed half-infinite interval in which
this strategy is optimal acts as an “absorbing” part of the state space. In this
interval, the value function identifies with the function H we consider first in the
next section.
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2.5 The Construction of a Solution to the HJB

Equation

In view of the discussion at the end of the previous section, we start our analysis
with the function H : R+ →]−∞, 0] that is defined by

H(x) = −u
−1(rx)

r
. (2.28)

We can check that

H ′(x) = − 1

u′
(
u−1(rx)

) < 0, lim
x→∞

H ′(x) = −∞,

H is strictly concave and

min
c≥0

{
rH(x) +H ′(x)

(
u(c)− rx

)
+ c
}

=rH(x) +H ′(x)
[
u(c†(x))− rx

]
+ c†(x) = 0, (2.29)

where

c†(x) = (u′)−1
(
− 1

H ′(x)

)
= u−1(rx) = −rH(x), for x > 0. (2.30)

H also represents the principal’s payoff if he pays constant c†(x) to the agent for 0
effort forever because∫ ∞

0

e−rt(−c†(x))dt = −1

r
c†(x) = −u

−1(rx)

r
= H(x).

There exists a unique straight line that passes through the point (0, L) and is tangent
to H. To see that, consider the line

ly(x) = H ′(y)(x− y)

for any y ≥ 0. It is the line tangent to H at (y,H(y)). We know y 7→ ly(0) =
−yH ′(y) is continuous and strictly increasing from 0 to ∞. Therefore there exist y0

such that L = ly0(0). We choose this line ly0(x) and represent it as

lmin(x) = qx+ L, (2.31)

where q and xmin are the unique solution to the system of equations

H ′(xmin) = q and H(xmin)− L = H ′(xmin)xmin. (2.32)

Note that q = q(L) is a function mapping R+ to ] −∞, 0]. Since H takes negative
values and L ≥ 0,

0 ≤ xmin, q ≤ 0 and 0 = xmin ⇔ q = 0 and L = 0. (2.33)
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To simplify the notation, we also define

cmin = u−1(rxmin) = −rH(xmin). (2.34)

We also note that the second identity in (2.32) can be rewritten as

−cmin

r
− L = − 1

u′(cmin)

u(cmin)

r
,

which is equivalent to

u(cmin)− u′(cmin)(rL+ cmin) = 0. (2.35)

In our analysis, we will also need to consider the line

lγ(x) = −1

γ
(x− xγ) +H(xγ). (2.36)

where γ > 0 is as in Assumption 2.2.1 and

xγ :=
u ◦ (u′)−1(γ)

r
, (2.37)

Furthermore, we note that that

H ′(xγ) = −1

γ
(2.38)

and we define

Lγ := lγ(0) = −H ′(xγ)xγ +H(xγ). (2.39)

Lemma 2.5.1. The following equivalences hold true:

q < −1

γ
⇔ xmin > xγ ⇔ L > Lγ

and q > −1

γ
⇔ xmin < xγ ⇔ L < Lγ (2.40)

Proof. In view of the identity H ′(xγ) = − 1
γ

and the strict concavity of H, we can
see that

H ′(xmin) = q < −1

γ
= H ′(xγ) ⇔ xmin > xγ.

If we define

Λ(x) = −xH ′(x) +H(x)

then Λ is strictly increasing because

Λ′(x) = −xH ′′(x) > 0 for all x > 0

Combining this observation with the identities L = Λ(xmin) and Lγ = Λ(xγ), which
follow from (2.32) and (2.39), we obtain

xmin > xγ ⇔ L > Lγ.

We can establish the equivalences involving the reverse inequalities similarly.
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Remark 2.5.1. When q = − 1
γ
⇔ xmin = xγ ⇔ L = Lγ, the corresponding line lmin

is lγ.

In the study of further properties of H as well as in several other proofs, we will
need the properties of functions k and α summarised in the following result.

Lemma 2.5.2. The function k is such that

sup
a≥0

{
a+ qk(a)

}{= 0, if q ≤ − 1
γ
,

∈]0,∞[, if − 1
γ
< q < 0.

(2.41)

The function α is C2 on R \ {γ}. Furthermore, it satisfies the following properties:

lim inf
z→∞

−α(z)

z
> −∞ and lim inf

z→∞

−k(α(z))

z2
> −∞, (2.42)

α′(z) =

{
1

k′′◦(k′)−1(z)
> 0, for z > γ, and limz↓γ α

′(z) = 1
k′′(0)

0, for z < γ,
(2.43)

α′′(z) =

{
− k′′′◦(k′)−1(z)

(k′′◦(k′)−1(z))3 ≤ 0, for z > γ,

0, for z < γ.
(2.44)

Proof. Notice that (2.41), (2.43) and (2.44) follow from straightforward differenti-
ation.

The first limit in (2.42) follows from the concavity of α. To derive the second
one, we use the integration by parts to obtain

k(α(z)) = k(0) +

∫ z

γ

sα′(s)ds = zα(z)−
∫ z

γ

α(s)ds

≤ zα(z) for all z ≥ γ (2.45)

This calculation and the first limit in (2.42) imply the second limit in (2.42).

Proposition 2.5.3. Let xmin and xγ be the points given by (2.32) and (2.37). The
function H defined by (2.28) satisfies the HJB equation inside the interval [xγ,∞[.
Furthermore,

H(x) = sup
c≥c†(x)

{
L− rL+ c

u(c)
x

}
for all x ≥ xmin. (2.46)

where the function c† is defined in (2.30).

Proof. The strict concavity of H and (2.38) imply that

H ′(x) ≤ −1

γ
for all x ≥ xγ. (2.47)

In view of this inequality and (2.41), we obtain

sup
a≥0
{a+H ′(x)k(a)} = 0
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Combining this result with (2.29) and the strict concavity of H, we can see that

max
c≥0,z∈R

{
1

2
σ2z2H ′′(x) +

[
rx− u(c) + k(α(z))

]
H ′(x)− rH(x) + α(z)− c

}
= 0

(2.48)

for all x ≥ xγ.

By (2.47) and (2.48), it follows that H satisfies the HJB equation (2.27) inside the
interval [xγ,∞[.

To establish (2.46), we first note that the expressions (2.30) for c† imply that

H(x) = L−
(
L+

c†(x)

r

)
= L− (rL+ c†(x))x

u(u−1(rx))
= L− ζ(c†(x))x (2.49)

for all x > 0, where

ζ(c) =
rL+ c

u(c)
, for c > 0.

Combining (2.35) and the fact that

d

dc

[
u(c)− u′(c)(rL+ c)

]
= −u′′(c)(rL+ c) > 0,

We obtain

u(c)− u′(c)(rL+ c) > 0 for all c > cmin.

Therefore,

ζ ′(c) =
u(c)− u′(c)(rL+ c)

u(c)2
> 0 for all c > cmin

In view of this result, the fact that c†(x) ≥ cmin for all x ≥ xmin and (2.49), we can
see that

H(x) = L− ζ(c†(x))x = sup
c≥c†(x)

{
L− ζ(c)x

}
for all x ≥ xmin.

So (2.46) follows.
In view of the calculation

∂

∂c

{
rp+ q

[
u(c)− rx− k(α(z))

]
− α(z) + c

}
= qu′(c) + 1, for c > 0,

and the strict concavity of u, we can see that

rp+ q
[
u(c?(q))− rx− k(α(z))

]
− α(z) + c?(q)

1
2
σ2z2

= inf
c≥0

rp+ q
[
u(c)− rx− k(α(z))

]
− α(z) + c

1
2
σ2z2


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where

c?(q) =

{
0, for q ≥ 0,

(u′)−1
(
−1
q

)
, for q < 0.

(2.50)

We define

Q(x, p, q) = rp+ q[u(c?(q))− rx] + c?(q), for (x, p, q) ∈ [0,∞[×R× R. (2.51)

Notice that Q is differentiable on [0,∞[×R×R\{0} and the left and right derivative
exists along q = 0, hence it is locally Lipschitz.

Lemma 2.5.4. The function Q is such that

Q(0, L, q)

{
= 0, if q = q,

≥ 0, if q ∈]q,∞[,

where q ≤ 0 is as in (2.32) (see also (2.33)). Furthermore,

Q(x,H(x), H ′(x)) = 0 for all x ≥ 0, (2.52)

Q(x, lmin(x), l′min(x)) = Q(xmin, H(xmin), H ′(xmin)) = 0 for all x ≥ 0

and Q(x, lγ(x), l′γ(x)) = Q(xγ, H(xγ), H
′(xγ)) = 0 for all x ≥ 0, (2.53)

where the functions lmin and lγ are defined by (2.31) and (2.36).

Proof. To simplify the notation, we define g(q) = Q(0, L, q). For q ≥ 0, c?(q) = 0
and

g(q) = rL (2.54)

To proceed further, we may assume that q < 0. In view of (2.29) and the system of
equations (2.32), we can see that

0 = min
c≥0

{
rH(xmin) +H ′(xmin)(u(c)− rxmin) + c

}
= min

c≥0

{
rL+ qu(c) + c

}
= g(q).

(2.55)

On the other hand,

g′(q) = u ◦ (u′)−1

(
−1

q

)
> 0 for all q < 0 (2.56)

Combining this result with (2.54) and (2.55), we conclude g(q) > 0 for all q ∈]q, 0[.
Finally, (2.52) follows from a comparison of the definition of Q and (2.28), while
(2.53) follows from straightforward calculation.

We define

Ix,p,q(z) =
Q(x, p, q)− qk(α(z))− α(z)

1
2
σ2z2

(2.57)

for (x, p, q) ∈ [0,∞[×R2 and z ∈ R \ {0}, as well as

K(x, p, q) = inf
z≥γ

Ix,p,q(z). (2.58)

It is well defined due to (2.42) of Lemma 2.5.2. Also, we consider the domain

D = {(x, p, q) ∈ [0,∞[×R2
∣∣K(x, p, q) < 0}.
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Lemma 2.5.5. The following statements hold true:

(i) [0,∞[×R× R+ ⊂ D.

(ii) Given any point (x, p, q) ∈ D, there exists a unique z? = z?(x, p, q) ∈ [γ,∞[
such that

K(x, p, q) = Ix,p,q(z
?).

where z? is C1 in D with bounded derivative up to ∂D and K is locally Lipschitz
in D in the sense that for any positive integer m, the restriction on [0,m] ×
[−m,m]2 ∩D is Lipschitz.

(iii) If (x, p, q) ∈ D and Q(x, p, q) ≥ 0,

K(x, p, q) = inf
z∈R\{0}

Ix,p,q(z).

(iv) When q ≤ − 1
γ
⇔ xmin ≥ xγ ⇔ L ≥ Lγ,

K(x, lmin(x), l′min(x)) = 0

for all x ∈ [0,∞[.

Proof of (i). If q ≥ 0, notice that limz→∞ α(z) =∞, we have K(x, p, q) < 0. Hence
the result.
Proof of (ii). Now for any (x, p, q) ∈ D, we use the identity k′(α(z)) = z, which is
true for all z > γ to calculate,

d

dz
Ix,p,q(z) =

1
1
2
σ2z3

Lx,p,q(z),

where

Lx,p,q(z) = q
[
2k(α(z))− z2α′(z)

]
+ 2α(z)− zα′(z)− 2Q(x, p, q).

Furthermore
d

dz
Lx,p,q(z) = α′(z)− zα′′(z)(1 + qz).

Viewing Lx,p,q(z) as a multivariable function L(x, p, q, z), we further compute

∂L

∂z
=

d

dz
Lx,p,q(z) = α′(z)− zα′′(z)(1 + qz), (2.59)

∂L

∂x
= 2rq,

∂L

∂p
= −2r,

∂L

∂q
=

{
0, if q ≥ 0,

2[k(α(z))− u ◦ (u′)−1(−1
q
) + rx]− z2α′(z), if q < 0.

(2.60)

Now we face three cases:
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Case 1. q ≥ 0
If this is the case, then the inequality in (2.44) implies that

d

dz
Lx,p,q(z) ≥ α′(z) > 0 for all z > γ, (2.61)

which implies

lim
z→∞

Lx,p,q(z) =∞ (2.62)

because limz→∞ α(z) =∞. We now have two sub-cases.

Sub-case 1.1 The first arise if limz↓γ Lx,p,q(z) ≥ 0, which is equivalent to

Q(x, p, q) ≤ −α′+(γ)(γ+qγ2)

2
, where α′+ denotes the right derivative. In this case,

(2.61) implies that the minimizer is at z? = z?(x, p, q) = γ.

Sub-case 1.2 The second case arises if limz↓γ Lx,p,q(z) < 0, which is equivalent to

Q(x, p, q) > −α′+(γ)(γ+qγ2)

2
. In this case, (2.62) and intermediate theorem imply that

there exists z? = z?(x, p, q) > γ such that Lx,p,q(z
?) = 0 and it is unique by (2.61).

We proceed to argue our z? is locally bounded. Consider the function

z̄(x, p, q) = inf{z ≥ γ
∣∣α(z) + Lx,p,q(γ) ≥ 0},

which is finite as limz→∞ α(z) = ∞ and it is also continuous. Then by (2.61), we
will have Lx,p,q(z) ≥ α(z) +Lx,p,q(γ) for z ≥ γ. Hence, z?(x, p, q) ≤ z̄(x, p, q), which
is locally bounded on [0,∞[×R×R+. By (2.59) and the implicit function theorem,
we deduce that z?(x, p, q) is C1 on{

(x, p, q) ∈]0,∞[×R2
∣∣Q(x, p, q) > −

α′+(γ)(γ + qγ2)

2

}
,

with

∂z?

∂x
(x, p, q) = −

(∂L
∂z

)−1∂L

∂x

(
x, p, q, z?(x, p, q)

)
,

∂z?

∂p
(x, p, q) = −

(∂L
∂z

)−1∂L

∂p

(
x, p, q, z?(x, p, q)

)
,

∂z?

∂q
(x, p, q) = −

(∂L
∂z

)−1∂L

∂q

(
x, p, q, z?(x, p, q)

)
, (2.63)

and these derivatives are bounded as (x, p, q) tends to the boundary of{
(x, p, q)|Q(x, p, q) > −

α′+(γ)(γ + qγ2)

2

}
.
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Case 2. − 1
γ
< q < 0.

The fact that K(x, p, q) < 0 implies that

max
z≥γ
{qk(α(z)) + α(z)} > Q(x, p, q),

where the maximum is attained at −1
q
> γ. Furthermore, as

Ix,p,q(z) > Ix,p,q

(
−1

q

)
for all z > −1

q
,

we can see that minimizer of Ix,p,q(z) over z ≥ γ exists and belongs to[γ,−1
q
]. Notice

that

d

dz
Lx,p,q(z) = α′(z)− zα′′(z)(1 + qz) > 0 for all z ∈]γ,−1

q
],

we have the minimizer z? of Ix,p,q(z) is unique. Again, we have two sub-cases

Sub-case 2.1 The first case is when

lim
z↓γ

Lx,p,q(z) ≥ 0⇔ Q(x, p, q) ≤ −
α′+(γ)(γ + qγ2)

2
,

then the minimizer is at z? = γ.

Sub-case 2.2 The second case is when

lim
z↓γ

Lx,p,q(z) < 0⇔ Q(x, p, q) > −
α′+(γ)(γ + qγ2)

2
,

then z? ∈]γ,−1
q
]. By (2.59) and the implicit function theorem, we deduce that

z?(x, p, q) is C1 on

{(x, p, q) ∈]0,∞[×R2
∣∣Q(x, p, q) > −

α′+(γ)(γ + qγ2)

2
},

and these derivatives (2.59) are bounded as (x, p, q) tends to the boundary of

{(x, p, q)|Q(x, p, q) > −α′+(γ)(γ+qγ2)

2
}.

Case 3. q < − 1
γ
.

Then the minimizer is at z? = γ.
To sum up, we can see that z? is C1 in D with bounded derivative up to ∂D.
Suppose now we have (x1, p1, q1) ∈ [0,m] × [−m,m]2, (x2, p2, q2) ∈ [0,m] ×

[−m,m]2 ∩D and K(x1, p1, q1) ≥ K(x2, p2, q2), we can see that

|K(x1, p1, q1)−K(x2, p2, q2)| = K(x1, p1, q1)−K(x2, p2, q2)

≤ Ix1,p1,q1

(
z?(x2, p2, q2)

)
− Ix2,p2,q2

(
z?(x2, p2, q2)

)
≤ C (|x1 − x2|+ |p1 − p2|+ |q1 − q2|) , (2.64)

for some constant C. Hence local Lipschitz is established.
Proof of (iii). This is because for Q(x, p, q) ≥ 0, and any z ∈] −∞, γ] \ {0}, we
have Ix,p,q(z) ≥ 0.
Proof of (iv). This is due to (2.41), (2.53) and the definition of K.
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Remark 2.5.2. The set D∪∂D may be a strict subset of [0,∞[×R2 or the identity
D ∪ ∂D = [0,∞[×R2 may be true, depending on the choice of k. To see this claim,
first we choose L such that q < − 1

γ
. Then we have Q(0, L,− 1

γ
) > 0.

1. For k(a) = a2 + γa, we have

α(z) =

{
z−γ

2
, for z > γ,

0, for z < γ,
(2.65)

and

k(α(z)) =


(
z−γ

2

)2

+ γ
(
z−γ

2
), for z > γ,

0, for z ≤ γ,
(2.66)

Now we can see that I0,L,− 1
γ
(z) > 0 for all z ≥ γ and limz→∞ I0,L,− 1

γ
(z) = 1

4γ
>

0. Hence K(0, L,− 1
γ
) > 0, D ∪ ∂D is a strict subset of [0,∞[×R2.

2. Let k(a) = a3 + γa, we have

α(z) =


(
z−γ

3

) 1
2
, for z > γ,

0, for z ≤ γ,
(2.67)

and

k(α(z)) =


(
z−γ

3

) 3
2

+ γ
(
z−γ

3

) 1
2
, for z > γ,

0, for z ≤ γ,
(2.68)

Now we can see that limz→∞ Ix,p,q(z) = 0 so that K(x, p, q) ≤ 0 and D∪∂D =
[0,∞[×R2.

Lemma 2.5.6. Given L, suppose that q = q(L) > − 1
γ

, where q is as in (2.32) and
γ is as in Assumption 2.2.1. Let

q̄ = q̄(L) = inf{q > q|K(0, L, q) = 0}.

Then for any q ∈ [q, q̄] ∩ R, the ODE

F ′′(x) = K(x, F (x), F ′(x)) (2.69)

with initial conditions

F (0) = L, F ′(0) = q (2.70)

has a unique concave solution Fq :]0, κq[→ R, where [0, κq[ is the largest neighbour-
hood for the existence and uniqueness of solution to the initial value problem.

Furthermore, there exists q? ∈ [q, q̄] ∩ R such that κq? = ∞, Fq? ≥ H on [0,∞[
and xc = inf{x > 0;Fq?(x) = H(x)} ≤ xγ with F ′q?(xc) = H ′(xc).
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Proof.
Step.1 Existence and uniqueness of a solution Fq to the ODE (2.69) with K replaced
by K̃. Set

K̃(x, p, q) =

{
K(x, p, q), if (x, p, q) ∈ D,
0, if (x, p, q) ∈ Dc.

We observe that K̃ is locally Lipschitz. To show it, it is enough to consider
points (x1, p1, q1) ∈ [0,m] × [−m,m]2 and (x1, p1, q1) ∈ [0,m] × [−m,m]2 ∩D with
K(x1, p1, q1) ≥ K(x2, p2, q2). We know∣∣∣K̃(x1, p1, q1)− K̃(x2, p2, q2)

∣∣∣ ≤ K(x1, p1, q1)−K(x2, p2, q2)

≤ C (|x1 − x2|+ |p1 − p2|+ |q1 − q2|)

by equation (2.64). Hence the result. Because of this, we can solve (2.69) with
K replaced by K̃ given any initial condition at 0. In particular, for initial condi-
tion (2.70), there exists a unique solution Fq on [0, κq[, where [0, κq[ is the largest
neighbourhood for the existence and uniqueness.
Step.2 Given any q ∈ [q, q̄] ∩ R, we show that F ′′q (x) < 0 for all x ∈ [0, κq[.

In the presence of the assumption q > − 1
γ
, we can see that (2.41), (2.55) and

the definition of K (2.58) imply that

K(0, L, q) < 0,

for q = q as well as for all q ≥ 0. It follows that either q̄ ∈]q, 0[ or q̄ =∞.
We have F ′′q (0) < 0 for any q ∈ [q, q̄[. From this, we further obtain F ′′q (x) < 0

for x ∈ [0, κq[. To see this claim, we argue by contradiction and assume that

xl := inf{x > 0|F ′′q (x) = K̃(x, F (x), F ′(x)) = 0} < κq

Since both K and K̃ are locally Lipschitz thus continuous on R+ × R2, together
with the fact that K and K̃ coincide in D, we have K = K̃ on the closure of D. In
particular, K(xl, F (xl), F

′(xl)) = K̃(xl, F (xl), F
′(xl)) = 0

In view of the fact that

F ′′(xl) = K̃(xl, F (xl), F
′(xl))

= K(xl, F (xl), F
′(xl))

= inf
c≥0,z≥γ

rF (xl) + F ′(xl)(u(c)− rxl − k(α(z)))− α(z) + c
1
2
σ2z2

= 0,

we can see that if we define

l(x) = Fq(xl) + F ′q(xl)(x− xl),

then l satisfies the ODE (2.69) with K replaced by K̃ in the domain ]0,∞[⊃]0, κq[.
Combing this observation with the fact that Fq is the unique solution of the
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ODE(2.69) with K replaced by K̃, l(xl) = Fq(xl) and l′(xl) = F ′q(xl) in the neigh-
borhood [0, xl], we have Fq(x) = l(x) on [0, xl] which contradicts that F ′′q (x) < 0 in
]0, xl[.

Now as K̃(x, Fq(x), F ′q(x)) = K(x, Fq(x), F ′q(x)) < 0 for all q ∈ [q, q̄[ and x ∈
[0, κq[, we conclude Fq(x) is the unique concave solution to (2.69).
Step.3 Some comparison result.

We first show that given any real number q1, q2 such that

q ≤ q1 < q2 ≤ q̄,

we have

Fq1(x) < Fq2(x) for all x ∈]0, κq1 ∧ κq2 [. (2.71)

In the case that q2 = q̄ <∞, we can check that

Fq2(x) = q2x+ L.

Therefore the concave function Fq1(x) < Fq2(x) for all x ∈]0, κq1 [.
Now assume that we are in the case q2 < q̄. In the view of the observations that

Fq1(0) = Fq2(0) = L and F ′q1(0) = q1 < q2 = F ′q2(0),

we can see that (2.71) will follow if we show that

xl := inf{x ∈]0, κq1 ∧ κq2 [|F ′q1(x) ≥ F ′q2(x)} ∧ κq1 ∧ κq2 = κq1 ∧ κq2 . (2.72)

To this end, we argue by contradiction and we assume that xl < κq1 ∧ κq2 . We
already know that F ′′qi(xl) is strictly negative for i = 1, 2, so that

K(xl, Fqi(xl), F
′
qi

(xl)) = Ixl,Fqi (xl),F ′qi (xl)

(
z?(xl, Fqi(xl), F

′
qi

(xl))
)

for i = 1, 2.

The identities Fq1(xl) < Fq2(xl) and F ′q1(xl) = F ′q2(xl) imply that

F ′′q1(xl) = Ixl,Fq1 (xl),F ′q1 (xl)

(
z?(xl, Fq1(xl), F

′
q1

(xl))
)

≤ Ixl,Fq1 (xl),F ′q1 (xl)

(
z?(xl, Fq2(xl), F

′
q2

(xl))
)

< Ixl,Fq2 (xl),F ′q2 (xl)

(
z?(xl, Fq2(xl), F

′
q2

(xl))
)

= F ′′q2(xl).

However, this inequality contradicts the definition of xl.
Next we show that for q ∈ [q, q̄[ such that Fq satisfies the ODE (2.69) with

F (x0) = lγ(x0), F ′(x0) > −1

γ
, for some x0 ∈ [0, κq[,

then κq =∞ and Fq(x) > lγ(x) for all x > x0, where lγ is defined in (2.36).
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To prove this, it is enough to show F ′q(x) > − 1
γ

for all x ∈ [x0, κq[. If this is not
the case, we have that

xl := inf{x > x0|F ′q(x) ≤ −1

γ
} < κq.

But then,

F ′′q (xl) = K(xl, Fq(xl),−
1

γ
) = Ixl,Fq(xl),− 1

γ
(γ)

> Ixl,lγ(xl),− 1
γ
(γ) = 0,

which is a contradiction. So F ′q(x) > − 1
γ

for all x ∈ [x0, κq[.

From concavity, the fact that Fq(x) > lγ(x) for all x ∈]0, κq[, we have κq = ∞
due to the continuation of ODE result in Chapter 1 Section 4 of Coddington and
Levinson [6].
Step.4 We will show that given any q ∈ [q, q̄[,

χ(q) := inf{x ∈ [0, κq[|Fq(x) ≤ H(x)} ∈]0, xγ[∪{∞}, (2.73)

and in particular,

χ(q) ∈ [0, xγ[. (2.74)

In view of the strict concavity of Fq and the initial conditions Fq(0) = L ≥ 0,
F ′q(0) = q, we can see that Fq(x) < lmin(x) for all x > 0, where lmin is the straight

line defined by (2.31). Combining this observation with the facts

xmin < xγ and lmin(xmin) = H(xmin),

which follow from (2.40) and the definition of lmin, respectively, we obtain (2.74).
To show (2.73), we argue by contradiction. To this end, we assume that there

exists q such that χ(q) ∈ [xγ,∞[. Such assumption, the definition of χ(q) and the
definition of lγ imply that

Fq(xγ) ≥ H(xγ) = lγ(xγ).

On the other hand the definition of (2.40) and lγ imply that

Fq(0) = L < Lγ = lγ(0).

In view of these inequalities and the strict concavity of the function Fq − lγ, we can
see that there exists a unique point x̃ ∈]0, xγ[ such that

Fq(x̃) = lγ(x̃) and F ′q(x̃) > l′γ(x̃).

By the second comparison result we developed in Step 3, we can see that

Fq(x) > lγ(x) ≥ H(x)∀x > x̃,
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which contradicts the assumption χ(q) ∈ [xγ,∞[.
Step.5 There exists a slope q† ∈]q, q̄] ∩ R such that Fq†(x) > H(x) for all x > 0.

We first observe that from concavity, for q such that Fq(x) > H(x) for all x ∈
]0, κq[, we have κq =∞ due to the continuation of ODE result in Chapter 1 Section
4 of Coddington and Levinson [6].

If q̄ <∞, note that F ′′q̄ (0) = 0, we deduce that

Fq̄(x) = q̄x+ L

is a solution to the ODE (2.69) on [0,∞[.
Notice that since q̄ > q, we have the line

Fq̄(x) > L+ qx ≥ H(x),

for any x ∈]0,∞[. So q† := q̄ will do.
Now suppose that q̄ =∞. Given any q > 0 fixed, we define

χ̄(q) := inf{x > 0|F ′q(x) =
q

2
} > 0.

If χ̄(q) =∞, then we can take the value of q we consider for q† because the inequality
F ′q(x) > q

2
for all x > 0 and the initial condition Fq(0) = L imply that Fq(x) > L ≥

0 > H(x) for all x > 0. So, we may assume that χ̄(q) <∞.
Given any x ∈ [0, χ̄(q)],

rFq(x)− rF ′q(x)x ≥ rFq(0) = rL

and c?(F ′q(x)) = 0 (see also 2.50). Combining these observations with the estimates
given by Lemma 2.5.2, we obtain

F ′′q (x) ≥ min
z≥γ

rL− qk(α(z))− α(z)
1
2
σ2z2

≥ −C(q + 1).

Using this estimate, we calculate

q

2
= F ′q(0)− F ′q(χ̄(q)) = −

∫ χ̄(q)

0

F ′′q (y)dy ≤ C(q + 1)χ̄(q),

so that

χ(q) > χ̄(q) ≥ q

2C(q + 1)
>

1

4C
,

for q ≥ 1. In view of this inequality and the definition of χ̄(q), we can see that

Fq(
1

4C
) = Fq(0) +

∫ 1
4C

0

F ′q(y)dy

> L+
q

8C
.

It follows that, if we choose any q† > 8Clγ(
1

4C
), then Fq†(

1
4C

) > lγ(
1

4C
) where lγ is

defined by (2.36). By comparison, we have Fq†(x) > lγ(x) > H(x) for all x ∈] 1
4C
,∞[.
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We also know Fq†(x) > L > H(x) for all x ∈]0, 1
4C

] ⊂]0, χ̄(q)]. Together, we have
established the result.
Step.6 Existence and Uniqueness of q? ∈]q, q̄ ∧ q†[ such that Fq? ≥ H for all x ≥ 0
and χ(q?) ∈]0, xγ[, where χ is defined by (2.73).

Define S = {q ∈ [q, q̄] ∩ R | χ(q) ∈ [0, xγ]} and note that S is nonempty thanks
to (2.74).

Given any q ∈ S, the comparison result we established in Step 3 implies that
[q, q] ⊂ S. Therefore, S is an interval. The required point is given by

q? = supS ≤ q†.

To show q? ∈ S, we consider any strictly increasing sequence (qn) such that
limn→∞ qn = q?. The corresponding sequence (χ(qn)) is increasing and bounded
by xγ by Step 3 and 4. Therefore xc := limn→∞ χ(qn) exists in ]0, xγ]. In view of the
continuous dependence of a solution to an ODE with respect to initial parameters
(see Theorem 7.5 in Chapter 1, Coddington and Levinson [6]), we can see that the
identities Fqn(χ(qn)) = H(χ(qn)) imply in the limit that Fq?(xc) = H(xc).

We now consider any strictly decreasing sequence (qn) such that limn→∞ qn = q?.
The definition of S implies that κqn = ∞ and Fqn(x) > H(x) for all x > 0 and
n ≥ 1. By passing to the limit as n → ∞, we obtain κq? = ∞ and Fq?(x) ≥ H(x)
for all x > 0.

From now on, F will denote the solution to ODE(2.69) with initial slope q?.

Lemma 2.5.7. Suppose that q? > κ, where q? refers to that of Lemma 2.5.6 and
κ refers to (2.12), then for some Lκ ∈]L,Lγ[ and x̃c > xc, there exists F̃ on [0,∞[
satisfying the ODE (2.69) such that F̃ ≥ H on [0,∞[ and

F̃ (0) = Lκ, F̃
′(0) = κ,

F̃ (x̃c) = H(x̃c), F̃
′(x̃c) = H ′(x̃c).

Proof. For any l ∈ [L,Lγ], we denote Fl to be the solution to ODE (2.69) such that
Fl ≥ H on [0,∞[,

Fl(0) = l, F (xlc) = H(xlc) and F ′(xlc) = H ′(xlc),

for some xlc ∈ [0, xγ[. The existence and uniqueness of the family of concave solutions
on [0,∞[ follows directly from Lemma 2.5.6 and the ODE continuation result in
Chapter 1 Section 4 of Coddington and Levinson [6]. By the comparison result whose
proof is similar to Step 3 of Lemma 2.5.6, we also have that [L,Lγ] 3 l 7→ F ′l (0) is
strictly decreasing and continuous. The fact that F ′L(0) > κ and F ′Lγ (0) < 0 implies

that there exists Lκ such that F ′Lκ(0) = κ. We set F̃ = FLκ and x̃c = xLκc will do.

Lemma 2.5.8. Let f be a concave solution to ODE (2.69) on [0,∞[ such that for
some xc > 0, we have

f(xc) = H(xc), f
′(xc) = H ′(xc)

f(x) > H(x) for all x ∈ [x0, xc[.

Suppose further that Q(0, f(0), f ′(0)) ≥ 0, then we have

Q(x, f(x), f ′(x)) ≥ 0 for all x ∈ [0, xc].
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Proof. Note that Q(xc, f(xc), f
′(xc)) = Q(xc, H(xc), H

′(xc)) = 0.
We argue by contradiction that if there exists x′ ∈]0, xc[ such that

Q(x′, f(x′), f ′(x′)) < 0.

Note that since

Q(x, f(x), f ′(x)) = rf(x) + f ′(x)
(
u(c?(f ′(x)))− rx

)
+ c?(f ′(x)),

Q is a continuous function in x. Without loss of generality, suppose Q(x, f(x), f ′(x))
attains minimum at x′ in ]0, xc[.

If f ′(x′) ≥ 0 so that c?(f ′(x′)) = 0, we would have

Q(x′, f(x′), f ′(x′)) = rf(x′)− rxf ′(x′) < 0.

But by concavity of f ,

rf(x′)− rx′f ′(x′) ≥ rf(0)

= Q(0, f(0), f ′(0))

≥ 0,

which is a contradiction.
Else if f ′(x′) < 0 so that c?(f ′(x′)) > 0 is differentiable at x′. Differen-

tiate Q(x, f(x), f ′(x)) at x′, we have f ′′(x′)
(
u(c?(f ′(x′))) − rx′

)
= 0 implies

u
(
c?(f ′(x′))

)
= rx′. Plug this back,

Q(x′, f(x′), f ′(x′)) = rf(x′) + c?(f ′(x′)) = rf(x′) + u−1(rx′) < 0,

which is a contradiction to f(x) > H(x),∀x ∈]0, xc[.

Remark 2.5.3. In particular, we have Q(x, F (x), F ′(x)) ≥ 0 for all x ∈ [0, xc] and
Q(x, F̃ (x), F̃ ′(x)) ≥ 0 for all x ∈ [0, x̃c].

2.6 The solution to the HJB equation that iden-

tifies with the value function

We now use the solution to the HJB equation that we derived in the previous section
to derive the solution to the principal’s optimisation problem. To this end, we need
to consider three different cases that are determined by the points q and q?, which
are as in (2.32) and as in Lemma 2.5.6, respectively.

If q ≤ − 1
γ
, then we define

S0(x) =

{
L+ qx, for x ∈ [0, xmin[,

H(x), for x ∈ [xmin,∞[,
(2.75)

where xmin is as in (2.32) and H is defined by (2.28).
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If q > − 1
γ

and q? ≤ κ, then we define

S1(x) =

{
F (x), for x ∈ [0, xc[,

H(x), for x ∈ [xc,∞[,
(2.76)

where xc is as in Lemma 2.5.6 and F = Fq? .
If q > − 1

γ
and q? > κ, then we define

S2(x) =

{
F̃ (x), for x ∈ [0, x̃c[,

H(x), for x ∈ [x̃c,∞[,
(2.77)

where x̃c and F̃ are defined in Lemma 2.5.7.

Theorem 2.6.1. Consider the stochastic control problem defined by (2.24)-(2.25)
and suppose that the functions u, k satisfy the conditions in Assumption 2.2.1. The
following cases hold true.

Case 1. If q ≤ − 1
γ

, then V = S0 and the optimal admissible control is deterministic
and given by

C?
t =

{
cmin, if X?

t ∈ [0, xmin[,

u−1(rx), if X?
0 = x ≥ xmin,

τ ? =

{
1
r

ln(1 + rx
u(cmin)−rx), if X?

0 = x ∈ [0, xmin[,

∞, if X?
0 = x ≥ xmin,

and Z?
t = R?

t = 0.

Case 2. If q > − 1
γ

and q? ≤ κ, then V = S1 and the optimal admissible control is given
by

C?
t = c?(F ′(X?

t ))1{X?
t ∈[0,xc[} + u−1(rX?

t )1{X?
t ∈[xc,∞[},

τ ? = inf{t | X?
t = 0},

Z?
t = z?(X?

t , S1(X?
t ), S ′1(X?

t ))1{X?
t ∈[0,xc[},

R?
t = 0, where c? is as in (2.50) and z? is as in Lemma 2.5.5.

Case 3. If q > − 1
γ

and q? > κ, then V = S2 and the optimal control is given by

C?
t = c?(F̃ ′(X?

t ))1{X?
t ∈[0,x̃c[} + u−1(rX?

t )1{X?
t ∈[x̃c,∞[},

τ ? =∞,
Z?
t = z?(X?

t , S2(X?
t ), S ′2(X?

t ))1{X?
t ∈[0,x̃c[}

and R?
t is the minimum process that reflects X? at 0 in the positive direction.

To prove this result, we will use a mix of a verification argument with the fol-
lowing result.
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Lemma 2.6.2. Let xb = xmin∨xγ, where xmin and xγ are given by (2.32) and (2.37)
respectively. Then we have

V (x) = sup
c≥c†(x)

{
L− rL+ c

u(c)
x
}

= H(x) for all x ≥ xb,

where c† is as in (2.30). Furthermore, the choice C?
t = u−1(rx), τ ? = ∞ and

R?
t = Z?

t = 0 for all t ≥ 0 is the optimal admissible control for every initial x ≥ xb.

Proof. For all x ≥ xb, we choose any admissible control (C, τ, R, Z) ∈ C and let X
be the solution to the SDE (2.24) . Also, we define

cx = u−1
( x

E[
∫ τ

0
e−rtdt]

)
(2.78)

and we note that the inequality

x = E
[∫ τ

0

e−rtu(cx)dt

]
≤ E

[∫ τ

0

e−rtu(cx)dt+ e−rτx

]
= x+

(
u(cx)−rx

)
E
[ ∫ τ

0

e−rtdt
]

implies that

cx ≥ u−1(rx) = c†(x). (2.79)

Therefore,

u′(cx) ≤ u′ ◦ u−1(rx) ≤ u′ ◦ u−1(rxγ) = γ. (2.80)

Using the integration by parts formula, we can see that

e−r(T∧τ)XT∧τ = x−
∫ T∧τ

0

e−rs[u(Cs)− k(α(Zs))]ds+

∫
]0,T∧τ [

e−rsdRs

+

∫ T∧τ

0

σe−rsZsdWs

Using admissibility conditions in Definition 2.4.1 and the monotone convergence
theorem, we can take expectations and pass to the limit as T →∞ to obtain

x = E
[∫ τ

0

e−rs[u(Cs)− k(α(Zs))]ds−
∫

]0,τ [

e−rsdRs

]
(2.81)

The concavity of u implies that

u(Ct) ≤ u(cx) + u′(cx)(Ct − cx)

Similarly, the convexity and the other assumptions on k implies that

−k(α(Zt)) ≤ −k′(0)α(Zt) = −γα(Zt)
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In view of these inequalities, (2.78) and the fact R is an increasing process, we can
see that (2.81) implies that

x ≤ E
[∫ τ

0

e−rt
(
u(cx) + u′(cx)(Ct − cx)− γα(Zt)

)
dt− e−rtdRt

]
≤ x− u′(cx)

{
E
[∫ τ

0

e−rt(α(Zt)− Ct)dt+ e−rτL

]
−
(
L− (rL+ cx)E

[∫ τ

0

e−rtdt

])}
.

It follows that

Jp(C,R,Z) ≤ E
[∫ τ

0

e−rt(α(Zt)− Ct)dt+ e−rτL

]
≤ L− (rL+ cx)E

[∫ τ

0

e−rtdt

]
= L− rL+ cx

u(cx)
x.

In view of (2.79) and Lemma 2.5.3, these inequalities imply that

Jp(C,R,Z) ≤ sup
c≥c†(x)

{L− rL+ c

u(c)
x} = H(x).

It follows that V (x) ≤ H(x) for all x ≥ xb. On the other hand, it’s straightforward
to check that the choices (C?, R?, Z?) as in the statement of the lemma are such
that Jp(C?, R?, Z?) = H(x) for every initial promise x ≥ xb.
Proof of Theorem 2.6.1. We first note that, in each of the cases, the candidate
value functions are smooth solutions to the HJB equation 2.27.

Case 1. By construction, the concave function S0 : R+ → R is C1 and its re-
striction in R+ \ {xmin} is C2. For x ∈ [xmin,∞[, we have V (x) = H(x) = S0(x)
satisfying (2.27) by Proposition 2.5.3. For x ∈ [0, xmin], we have S ′0(x) = q ≤ − 1

γ
.

By (2.41), we have

max
z∈R

{
α(z) + S ′0(x)k(α(z))

}
= 0,

and by (2.53), we have

Q(x, S0(x), S ′0(x)) = 0.

Thus, S0 satisfies

max
c≥0,z∈R

{1

2
σ2z2f ′′(x) +

[
rx− u(c) + k(α(z))

]
f ′(x)− rf(x) + α(z)− c

}
= 0

and the HJB equation (2.27).
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Case 2. By construction, the concave function S1 : R+ → R is C1 and its re-
striction in R+ \ {xc} is C2. We would like to check that S1 satisfies the HJB
equation (2.27). For x ∈ [xγ,∞[, we have V (x) = H(x) = S1(x) satisfying (2.27) by
Proposition 2.5.3.

For x ∈ [0, xc], we have by construction of F ,

max
c≥0,z≥γ

{1

2
σ2z2F ′′(x) + F ′(x)

(
rx+ k

(
α(z)

)
− u(c)

)
− rF (x) + α(z)− c

}
= 0,

where the maximizer is attained at z = z?(x, f(x), f ′(x)) as in Lemma 2.5.6.
From Lemma 2.5.4, we have that Q(0, L, q?) ≥ 0. Together with the fact that
Q(xc, F (xc), F

′(xc)) = 0, we have that by Lemma 2.5.8,

Q(x, F (x), F ′(x)) ≥ 0 for all x ∈ [0, xc].

Then we have

max
z≥γ

{1

2
σ2z2F ′′(x) + F ′(x)k(α(z)) + α(z)

}
= max

z∈R

{1

2
σ2z2F ′′(x) + F ′(x)k(α(z)) + α(z)

}
≥ 0 for all x ∈ [0, xc],

so that the HJB equation (2.27) holds for x ∈ [0, xc]. For x ∈ [xc, xγ], we have
S1(x) = H(x). Let Fl be as in Lemma 2.5.7, we know for any x ∈ [xc, xγ], x = xlc
for some l ∈ [L,Lγ]. The facts that Fl(x

l
c) = H(xlc), F

′
l (x

l
c) = H ′(xlc) and F ′′l (xlc) ≥

H ′′(xlc) imply that

0 = max
z∈[γ,∞]

{1

2
σ2z2F ′′l (xlc) + F ′l (x

l
c)k(α(z)) + α(z)

}
= max

z∈R

{1

2
σ2z2F ′′l (xlc) + F ′l (x

l
c)k(α(z)) + α(z)

}
≥ max

z∈R

{1

2
σ2z2H ′′(xlc) +H ′(xlc)k(α(z)) + α(z)

}
≥ 0.

Together with (2.29), we have that the HJB equation (2.27) holds for x ∈ [xc, xγ].

Case 3. By construction, the concave function S2 : R+ → R is C1 and its restric-
tion in R+ \ {x̃c} is C2. S2 satisfies the HJB equation (2.27) by the same argument
as in Case 2 after replacing L by Lκ, xc by x̃c, F by F̃ and S1 by S2.

In each of the three cases, Lemma 2.6.2 implies that the restrictions of the
functions Sj, j = 0, 1, 2, in [xb,∞[ identify with the restriction of the value function
in [xb,∞[ and corresponding expressions for (C?, τ ?, R?, Z?) in the statement of the
theorem provide an optimal admissible control.

To establish the theorem, we can therefore restrict to initial promise x ∈ [0, xb[.
We use f to stand for S0, S1 or S2, depending on the case. Given a fixed initial
promise x ∈ [0, xb[ , we consider any admissible control (C, τ, R, Z) ∈ C and let X
be the associated solution to (2.24) and Txb be the first hitting time of [xb,∞[. The
existence and uniqueness of the strong solution to the SDE follows from the fact
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u(c?(f ′(x))) = u ◦ (u′)−1(− 1
f ′(x)

) and z?(x, f(x), f ′′(x)) are Lipschitz on [0, xb] (See

Assumption 2.2.1 and Lemma 2.5.5).
The observation that

Xt ∈ [0, xb] for all t ≤ T ∧ τ ∧ Txb .

Itô’s isometry, and the admissibility conditions on Z imply that

E

[(∫ T∧τ∧Txb

0

e−rtσZtf
′(Xt)dWt

)2
]

=E
[∫ T

0

1{t<τ∧Txb}e
−rtσ2Z2

t (f ′)2(Xt)dt

]
≤σ2 sup

s∈[0,xb]

(f ′)2(s)E
[∫ ∞

0

e−rtZ2
t dt

]
<∞.

We use Itô’s formula with generalised derivatives (See Krylov [18]) to obtain

e−r(T∧τ∧Txb )f(XT∧τ∧Txb )

=f(x) +

∫ T∧τ∧Txb

0

e−rt
(

1

2
σ2Z2

t f
′′(Xt) + (rXt − u(Ct) + k(α(Zt))f

′(Xt)− rf(Xt)

)
dt

+

∫ T∧τ∧Txb

0

e−rtf ′(Xt) dR
c
t +

∑
0≤t≤T∧τ∧Txb

e−rt(f(Xt)− f(Xt−))

+

∫ T∧τ∧Txb

0

e−rtσZtf
′(Xt) dWt.

Rearranging terms, we can see that this expression implies that∫ T∧τ

0

e−rt(α(Zt)− Ct)dt− κ
∫ T∧τ

0

e−rtdRt + e−r(T∧τ)L

= f(x) +

∫ T∧τ∧Txb

0

e−rt
(1

2
σ2Z2

t f
′′(Xt) + (rXt − u(Ct) + k(α(Zt))f

′(Xt)

− rf(Xt) + α(Zt)− Ct
)
dt

+

∫ T∧τ∧Txb

0

e−rt(f ′(Xt)− κ) dRc
t +

∑
t≤T∧τ∧Txb

e−rt (f(Xt)− f(Xt−)− κ∆Rt)

+

[∫ T∧τ

T∧τ∧Txb

e−rt(α(Zt)− Ct)dt− κ
∫ T∧τ

T∧τ∧Txb

e−rtdRt + e−r(T∧τ)L

− e−r(T∧τ∧Txb )f(XT∧τ∧Txb )

]
+

∫ T∧τ∧Txb

0

e−rtσZtf
′(Xt) dWt.

Using the relevant admissibility condition on (C, τ, R, Z) and the monotone as well
as the dominated convergence theorem, we can pass to the limit as T →∞ in this
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inequality to obtatin

Jp(C,R,Z) ≤ f(x) + E
[ ∫ τ∧Txb

0

e−rt
(1

2
σ2Z2

t f
′′(Xt) + (rXt − u(Ct) + k(α(Zt))f

′(Xt)

− rf(Xt) + α(Zt)− Ct
)
dt
]

+ E
[ ∫ τ∧Txb

0

e−rt(f ′(Xt)− κ) dRc
t +

∑
t≤τ∧Txb

e−rt (f(Xt)− f(Xt−)− κ∆Rt)
]

+ E
[
1{Txb<τ}

∫ τ

Txb

e−rt(α(Zt)− Ct)dt− κ
∫ τ

Txb

e−rtdRt + e−r(T∧τ)L

− e−rTxpf(XTxb
)
]

+ E[1{τ<Txb}e
−rτ (L− f(Xτ ))] (2.82)

In view of Lemma 2.6.2, it follows that

Jp(C,R, τ) ≤ f(x).

To prove the reverse inequality and establish the optimality of the controls in the
statement of the theorem, we need that, in each of the three cases, the controls
are such that all of the inequalities of (2.82) hold with equality. Furthermore, it
is straightforward to check that these controls are admissible: to this end, it is
important to notice that the optimal controlled state process is confined in the
bounded interval [0, xc] and [0, x̃c] in case 2 and 3.

2.7 More realistic extensions of the model

The model that we have studied in this chapter assumes that the agent is “myopic”
and maximizes their running rather than their effective promise (see Remark 2.3.1).
The more realistic version of the problem in which the agent maximizes their ef-
fective promise is mathematically much more challenging. In particular, devising
“incentive compatible” contracts that induce the agent to follow the principal’s rec-
ommended strategy should involve a structure of recommended strategies that is
most substantially complicated than the ones in Lemma 2.4.2. I have made great
effort to develop the corresponding theory, which should replace (2.18) by

E(A) = β(X(A), Z(A))

for some function β such that β(·, z) is not constant, and suitable other changes in
Lemma 2.4.2. It turns out that determining the function β cannot be uncoupled
from the principal’s optimization problem but is an integral part of it. So far, this
remains an open question and I hope to address it in the future.

Designing renegotiation-proof contracts by following the approach briefly dis-
cussed in Section IV.B of DeMarzo and Sannikov [12] is another line of future re-
search. Such contracts should involve randomized termination of the contract. In
the setting of Section 2.2-2.4, we would have to introduce an extra (Gt)-adapted pro-
cess that will represent the controlled hazard process of the random time at which
the contract may be terminated, which is straightforward. The principal’s stochastic
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control problem would then involve this extra process. The objective would then
be to determine the optimal contract subject to the extra constraint that the choice
R = 0 is optimal, which would force the agent’s running payoff to be identical to the
agent’s effective payoff. As conjectured by DeMarzo and Sannikov [12], the optimal
contract may involve a minimal value x for the agent’s promise and the optimal
hazard process will reflect the agent’s promise in x in the positive direction. The
solution to the resulting control problem’s HJB equation is a very straightforward
adaption of the analysis in Section 2.5, which makes this research direction very
appealing. I shall certainly pursue it in the future.
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2.8 Graphs and Interpretations

We choose a positive L, r = 0.1, κ = 0, u(c) =
√
c and k(a) = 0.5a2 + 0.4a here.

Below are Case 1, 2 and 3 in Theorem 2.6.1.
Case 1.

0 5 10 15

-25

-20

-15

-10

-5

0

5

10

15

20

H(x)

F (x)

This is when principal’s liquidation gain dominates the gain from agent’s effort.
The principal will recommend the agent to do nothing until the agent’s running
promise reaches 0. There is no renegotiation involved in this case.
Case 2.

0 1 2 3 4 5 6 7 8 9 10

-10

-8

-6

-4

-2

0

2

4

H(x)

F (x)

This is when principal’s liquidation gain and gain from agent’s effort are both
important. For x large, the agent is recommended to do nothing and enjoy constant
compensation forever. For x is not so large, the agent follows a positive recommended
effort until his running promise reaches 0. There is no renegotiation involved in this
case.
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Case 3.

0 1 2 3 4 5 6 7 8 9 10
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H(x)

F (x)

F̃ (x)

This is when the gain from agent’s effort dominates principal’s liquidation gain.
For x large, the agent is recommended to do nothing and enjoy constant compen-
sation forever. For x is not so large, the agent follows a positive recommended
effort and the principal is always going to renegotiate when the agent’s running
promise reaches 0. The consequence is that the contract will never terminate and
the principal receives higher payoff at x = 0 than the liquidation gain L.
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Chapter 3

A Class of Two-dimensional
Strong Markov Processes

This chapter is based on joint work with Professor Mihail Zervos.

3.1 Outline

In this chapter, we present a study of two-dimensional strong Markov processes
whose second component is the running maximum of the first one. The study of
such processes has been motivated by recent developments in financial mathematics,
such as the introduction and the analysis of the π and the watermark options. We
first introduce a suitable concept of regularity that generalises the standard regular-
ity assumption of the theory of one-dimensional diffusions to the two-dimensional
setting that we study. Next, we characterise the class of scale functions, namely,
the functions that yield local martingales when composed with a Markov process
in the family we study. We then show that such a process in natural scale can be
represented as a time-changed Brownian motion and its running maximum. Finally,
we present a study of associated r-invariant functions. Our analysis makes heavy
use of the standard theory of one-dimensional diffusions. The main difficulties arise
from the behaviour of the processes on the diagonal where their two components
coincide.

The chapter is organised as follows. In Section 3.2, we set up the notations,
definitions and assumptions, and we prove some preliminary results. In Section
3.3, we extend the notion of scale function of one dimensional diffusion to our two
dimensional case. In Section 3.4, we characterise the time change of the process to
a standard Brownian motion and its running maximum. In Section 3.5, we collect
and present illustrative examples. In Section 3.6, we introduce and characterise
the corresponding two dimensional r-invariant functions and we derive a differential
equation associated with them.
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3.2 Set up

We let I be an interval with either I =]α, β[ or I = [α, β[, where −∞ ≤ α < β ≤ ∞
are constants. We fix a Borel-measurable function κ : I → R ∪ {−∞} such that

κ(s) < s and inf
s∈[a,b]

{
s− κ(s)

}
> 0 for all α < a < b < β. (3.1)

We set Is =]κ(s), s] or Is = [κ(s), s] for all s ∈ I and assume that the sets

{s ∈ I | Is =]κ(s), s]},
C∞ = {s ∈ I | Is =]−∞, s]},
C1 = {s ∈ I \ C∞ | Is =]κ(s), s]},
C2 = {s ∈ I \ C∞ | Is = [κ(s), s]} (3.2)

are Borel-measurable. Also, we assume that −∞ < κ(s) for all s ∈ C2. The state
space of the process we study is

E = {(x, s) ∈ R2 | x ∈ Is and s ∈ I}.

We denote
E = {A ∈ B(R2) | A ⊂ E}.

Lemma 3.2.1. E is in B(R2).

Proof. Consider the sets C∞, C1 and C2 defined in (3.2) and the B(R× I)/B(R)-
measurable function f defined by f(x, s) = x − κ(s) for all x ∈ R and s ∈ I.
Then

E =
(
f−1(]0,∞[) ∪ (f−1({0}) ∩ C2)

)
∩ {(x, s) ∈ R2 | x ≤ s}

is in B(R2).
We consider the canonical measurable space (Ω,F), where Ω is the family

C(R+,R2) of all continuous paths ω = (ω1, ω2), F = σ ((ω1(t), ω2(t)), t ≥ 0) and

Ft =
⋂
ε>0

σ ((ω1(u), ω2(u)), u ≤ t+ ε) for t ≥ 0

is a right continuous filtration. We denote (X,S) the coordinate process defined by

Xt = ω1(t) and St = ω2(t) for all ω = (ω1, ω2) ∈ Ω and t ≥ 0.

Furthermore, we denote by {θt, t ≥ 0} the family of shift operators, which are defined
by

θt(ω)(u) = ω(u+ t) for ω ∈ Ω and t ≥ 0.

Definition 3.2.1. A process and its running maximum that are jointly strong
Markov (PRM-JSM) with state space E is a family of probability measures {Px,s; (x, s) ∈
E} on (Ω,F) such that

(i) (x, s) 7→ Px,s(C) is E/B([0, 1])measurable for all C ∈ F ,
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(ii) Px,s((X0, S0) = (x, s)) = 1 for all (x, s) ∈ E,

(iii) Px,s((Xt, St) ∈ E) = 1 for all t ≥ 0, (x, s) ∈ E, PRM-JSM

(iv) Px,s(St = s ∨ (sup0≤u≤tXu)) = 1 for all t ≥ 0, (x, s) ∈ E,

(v) the strong Markov property holds true, namely,

Ex,s
[
Z ◦ θT | FT

]
1{T<∞} = EXT ,ST

[
Z
]
1{T<∞}

for all bounded random variables Z, all points (x, s) ∈ E and all (Ft)- stopping
times T.

Example 1 in Section 3.5 provides an example of a PRM-JSM.
Given (x, s) ∈ E and a locally bounded Borel-measurable function χ such that

κ(s) ≤ χ(s) < s, we denote by

Tx,s = inf{t ≥ 0 | (Xt, St) = (x, s)}
Ts = inf{t ≥ 0 | (Xt, St) = (s, s)}

and Tχ = inf{t ≥ 0 | Xt = χ(St)}.

Definition 3.2.2. We say χ is accessible if it is Borel measurable, locally bounded
and

(i) Px,s(Tb < Tχ) > 0 for all s ∈ I and χ(s) < x ≤ s ≤ b < β,

(ii) Px,s(Tχ(s),s <∞) > 0 for all s ∈ I and χ(s) ≤ x < s < β,

(iii) Ps,s(Tχ < Tb) > 0 for all s ∈ I and χ(s) ≤ s < b < β.

There are examples where any of these conditions fail to hold. See Example 2 in
Section 3.5.

Given constants α < a < b < β, and an accessible function χ, we will use the
notation

Eχ = {(x, s) ∈ E | s ∈ I and χ(s) ≤ x ≤ s},
E̊χ = {(x, s) | s ∈ I and χ(s) < x < s},
Ea,χ = {(x, s) ∈ E | a ≤ s ∈ I and χ(s) ≤ x ≤ s},
Eb
χ = {(x, s) | χ(s) ≤ x ≤ s and I 3 s < b},

and Ea,b,χ = {(x, s) ∈ E | a ≤ s ≤ b and χ(s) ≤ x ≤ s}.

Definition 3.2.3. A PRM-JSM with state space E is regular if there exists a se-
quence {χn}∞n=1 of accessible functions on I such that

κ(s) ≤ χn+1(s) ≤ χn(s) < s and Is =
⋃
n

[χn(s), s] for all s ∈ I, n ≥ 1.

Remark 3.2.1. For a regular PRM-JSM with state space E with {χn}∞n=1 as in
Definition 3.2.3, we have E =

⋃
nEχn.
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From now on, we assume the PRM-JSM with state space E that we consider are
regular.

Lemma 3.2.2. Given a PRM-JSM with state space E,

Ps,s
(
Ts1 <∞ and lim

s2>s1,s2→s1
Ts2 = Ts1

)
= Ps,s(Ts1 <∞) for all s ≤ s1 ∈ I.

(3.3)
Furthermore,

Ps,s (St > s for all t > 0) = 1. (3.4)

Proof. The definition of shift operators implies that{
ω ∈ Ω | Ts1(ω) <∞ and lim

s2>s1,s2→s1
Ts2(ω) = Ts1(ω)

}
=

{
ω ∈ Ω | Ts1(ω) <∞ and

(
lim

s2>s1,s2→s1
Ts2

)
◦ θTs1 (ω) = (Ts1 ◦ θTs1 )(ω) = 0

}
.

This observation, the strong Markov property and the tower property of conditional
expectation imply that

Ps,s
({

ω ∈ Ω | Ts1(ω) <∞ and lim
s2>s1,s2→s1

Ts2(ω) = Ts1(ω)

})
=Es,s

[
Ps,s

((
lim

s2>s1,s2→s1
Ts2

)
◦ θTs1 = 0 | FTs1

)
1{Ts1<∞}

]
=Es,s

[
Ps1,s1

(
lim

s2>s1,s2→s1
Ts2 = 0

)
1{Ts1<∞}

]
=Ps1,s1(Λ)Ps,s(Ts1 <∞), (3.5)

where Λ = {lims2>s1,s2→s1 Ts2 = 0}. The right continuity of Ft implies that Λ ∈ F0.
Therefore, Ps1,s1(Λ) = 0 or 1 by Blumenthal’s 0-1 law. It follows that Ps1,s1(Λ) = 1.
To see this claim, we let T = lims2>s1,s2→s1 Ts2 so that Λc = {T > 0}. Notice that

0 = Es,s
[
1Λc ◦ θT1{T<∞}

]
= Es,s

[
Ps1,s1(Λc)1{T<∞}

]
= Ps1,s1(Λc)Ps,s(T <∞).

This is only possible for Ps1,s1(Λc) = 0 because Ps,s(T < ∞) > 0 by the regularity
of the strong Markov process (see Definition 3.2.2 (i) in particular). Combine this
with (3.5), we have that (3.3) holds.

Combining the identity Ps,s(lims2>s,s2→s Ts2 = Ts) = 1, which follows from (3.3),
with the observation that{

ω ∈ Ω | lim
s2>s,s2→s

Ts2 = 0

}
= {ω ∈ Ω | St > s for all t > 0},

we obtain (3.4).

Corollary 3.2.3. Ps,s (lims2→s1 Ts2 = Ts1) = 1 for all s ≤ s1 ∈ I.
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Proof. By continuity of paths, we have

Ps,s
(

lim
s2<s1,s2→s1

Ts2 = Ts1

)
= 1.

Combine this and Lemma 3.2.2, we have the result.
On Is × {s}, one can check that the PRM-JSM (X,S) satisfies the regularity

assumption as in one dimensional case. Namely for all x ∈ I̊s (interior of Is) and
y ∈ Is, we have

Px,s(Ty,s <∞) > 0.

Given a function p : E → R , we note that p(·, s) : Is → R is a scale function on
Is if it is continuous and strictly increasing such that, for all κ(s) < a ≤ x ≤ b ≤ s
and s ∈ I, we have

p(x, s)− p(a, s)
p(b, s)− p(a, s)

= Px,s(Tb,s < Ta,s) (3.6)

holds, or equivalently, p(Xt∧Ta,s∧Tb,s , St∧Ta,s∧Tb,s) is a Px,s uniformly integrable mar-
tingale.

For any s ∈ I, J = [a, b] ⊆]κ(s), s] and x ∈ J , we define the function hJ(·; s) by

hJ(x; s) = Ex,s[Ta,s ∧ Tb,s] <∞. (3.7)

If X is a local martingale, then hJ(·; s) is concave which induces a positive measure

m(dz; s) = −1

2
h′′J(dz; s) on [a, b], (3.8)

which can be extended throughout Is independent of J . Furthermore,

0 < m([a, b[; s) <∞, for all κ(s) < a < b < s. (3.9)

This measure m(·; s) which depends on s is precisely the speed measure on Is as in
the one dimensional case.

Next, we state the classification of left endpoint of Is×{s} which is exactly the
same as in the one dimensional case. Indeed, all of the claims follow from V.44-
47 of Roger and Williams [26]. The end point (κ(s), s) of the interval Is × {s} is
called inaccessible if κ(s) /∈ Is. If κ(s) ∈ Is, the point (κ(s), s) is called absorbing if
Pκ(s),s(Ty,s <∞) = 0 for all y ∈ Is \{κ(s)} and the point (κ(s), s) is called reflecting
if Pκ(s),s(Ty,s <∞) > 0 for some y ∈ Is \ {κ(s)}.

We will be working with functions defined using m(·; s) and we need joint mea-
surability of these functions. For any Borel-measurable χ such that κ(s) < χ(s) < s
for all s ∈ I, let TE̊χ be the exit time of the process (X,S) from E̊χ, and define gχ
to be the function

gχ(x, s) = Ex,s[TE̊χ ] for all (x, s) ∈ {(x, s) ∈ R2 | x ≤ s}.

We have that the map (x, s) 7→ gχ(x, s) is finite by (3.7) and is jointly measurable by
(i) of Definition 3.2.1. Furthermore, if X is a local martingale, from one dimension
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theory, we know that the function gχ(x, s) is concave in x variable for x ∈ [χ(s), s],
with

m([a, b[; s) = −1

2
[(gχ)x−(b, s)− (gχ)x−(a, s)] for all χ(s) < a < b ≤ s, (3.10)

where m(·; s) is defined in (3.8) and (gχ)x− is the left derivative of gχ with respect
to x variable.

Let us define
Gχ(s) = sup

x∈[χ(s),s]

gχ(x, s), (3.11)

which is finite since gχ(·, s) is continuous on [χ(s), s]. Note that for any constant c,
the set

{s ∈ I | ∃x ∈ Is s.t. gχ(x, s) > c} =
⋃
x∈Q

{s ∈ I | s ≥ x and gχ(x, s) > c}

is measurable. Therefore, the finite function Gχ(s) is measurable. We also define

Mχ(s) = (s− χ(s))m(]χ(s), s[; s). (3.12)

Notice that

m(]χ(s), s[; s) = −1

2

[
(gχ)x−(s, s)− lim

a↓χ(s)
(gχ)x−(a, s)

]
is measurable as a function of s. By (3.12), so is Mχ(s). Moreover, we know from
VII Theorem 3.6 of Revuz and Yor [24] that if X is a local martingale so that we
can choose p(x, s) = x, for

Kχ =


(x−χ(s))(s−y)

s−χ(s)
, if χ(s) ≤ x ≤ y ≤ s,

(y−χ(s))(s−x)
s−χ(s)

, if χ(s) ≤ y ≤ x ≤ s,

0, otherwise,

we have

gχ(s) = Ex,s[TE̊χ ]

=

∫
Kχ(x, z)m(dz; s)

≤
∫

(s− χ(s))m(dz; s)

= (s− χ(s))m(]χ(s), s[; s),

so that Gχ(s) ≤Mχ(s) for all accessible χ and s ∈ I.

Remark 3.2.2. For PRM-JSM (X,S) with X a local martingale, the measurable
set {s ∈ I | m([x, s[; s) < ∞ for all x ∈ Is} might be nonempty, see Example 3 in
Section 3.5.
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Remark 3.2.3. For PRM-JSM (X,S), we can time change (X,S) in a way such
that the measurable set {s ∈ I | m([x, s[; s) < ∞ for all x ∈ Is} = ∅ and the
time changed process remains a regular PRM-JSM. Let p be the function defined in
Lemma 3.3.1 and Lemma 3.3.2. Let {si}i∈Z be a strictly increasing in i such that
∪i∈Z[si, si+1] = I. Let Ni ≥ 1 be such that

1

Ni

< inf
s∈[si,si+1]

(
s− κ(s)

)
.

For s ∈ [si, si+1], by regularity (See V.51 Theorem 2 of Roger and Williams [26]) we
have that ∫

]s− 1
Ni
,s[

(p(s, s)− p(x, s))m(dx; s) <∞,

so that
∞∑

n=Ni

(
p(s, s)− p(s− 1

n
, s)

)
m(]s− 1

n
, s− 1

n+ 1
[; s) <∞.

We let

Ct =
∑

i∈Z,j≥0

∫
[0,t]

(
1 +

1

p(s, s)− p(s− 1
Ni+j

, s)
1{St∈[si,si+1[}∩{Xt∈[St− 1

Ni+j
,St− 1

Ni+j+1
[}

)
du

and set X̃t = XCt , S̃t = SCt and F̃t = FCt. We can introduce a new family of
probability measures {P̃x,s} satisfying

P̃x,s = Px,s(X̃, S̃)−1.

We know from III.21 of Roger and Williams [26] that {P̃x,s} is a PRM-JSM. Let us
denote

T̃x,s = inf{t ≥ 0 | (X̃t, S̃t) = (x, s)} and T̃χ = inf{t ≥ 0 | X̃t = χ(S̃t)}.

Notice that

Px,s(Tb < Tχ) = Px,s(T̃b < T̃χ) = P̃x,s(Tb < Tχ),

Px,s(Tχ(s),s <∞) = Px,s(T̃χ(s),s <∞) = P̃x,s(Tχ(s),s <∞),

Ps,s(Tχ < Tb) = Ps,s(T̃χ < T̃b) = P̃s,s(Tχ < Tb),

we have that the regularity of {P̃ x,s} inherits from the regularity of {P x,s}. One can
check the corresponding speed measure satisfies

m̃([s− 1

n
, s− 1

n+ 1
[; s) =

(
p(s, s)− p(s− 1

n
, s)

)
m([s− 1

n
, s− 1

n+ 1
[; s)

for all n ≥ Ni and s ∈ [si, si+1[,

m̃([a, b[; s) = m([a, b[; s) for all [a, b[⊂]κ(s), s− 1

Ni

[ and s ∈ [si, si+1[

so that

m̃([s− 1

Ni

, s[; s) =
∞∑

n=Ni

(
p(s, s)− p(s− 1

n
, s)

)
m([s− 1

n
, s− 1

n+ 1
[) <∞ ∀s ∈ [si, si+1[.
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Assumption 3.2.1. From now on, except in Lemma 3.3.1 and Lemma 3.3.2, we
assume our regular PRM-JSMs satisfy

m([x, s[; s) <∞ for all x ∈ Is.

Lemma 3.2.4. Consider a regular PRM-JSM {Px,s, (x, s) ∈ E}. There exists a
sequence {χn} such that

(i) χn is accessible for all n ≥ 1,

(ii) Gχn(s) is locally bounded on I,

(iii) and
⋃∞
n=1Eχn = E.

Proof. let {χ̃n} be accessible sequence in the sense of Definition 3.2.3. We define

χqn =

{
χ̃n(s), if q = 0,

χ̃n(s) ∨ (s− 1
q
), if q ≥ 1.

If we define
Aq,kn = {s | Gχqn(s) ≤ k}, for q ≥ 0 and k ≥ 1,

Aq,kn is measurable and
∞⋃
q=0

Aq,kn = I

due to Assumption 3.2.1. Let us define

χn,k = 1{s∈A0,k
n }χ

0
n(s) +

∑
q≥1

1{s∈Aq,kn \Aq−1,k
n }χ

q
n(s).

We have that
∞⋃
n=1

∞⋃
k=1

Eχn,k = E.

Let {si}i∈Z be a strictly increasing in i such that si+1−si > 0 and ∪i∈Z[si, si+1] = I.
Now for every n, there exists Ki

n large enough and increasing with respect to n such
that Psi,si(Tsi+1

< Tχ
n,Kin

) > 0. Now set

χn(s) =
∑
i∈Z

1s∈[si,si+1[χn,Ki
n
(s).

By a diagonal argument, we can see that

∞⋃
n=1

Eχn = E.

We can check accessibility of the sequence {χn}∞n=1 and conclude the sequence sat-
isfies the conditions in Definition 3.2.3 as follows. Given κ(s) < χn(s) ≤ x < s ≤ b,
we will have s ∈ [si1 , si1+1] and b ∈ [si2 , si2+1] for some i1 and i2. Combine this with
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the fact that Psi,si(Tsi+1
< Tχn) > 0 for all i, we have Px,s(Tb < Tχn) > 0. We also

have
Px,s(Tχn(s),s <∞) > 0

and
Ps,s(Tχn < Tb) ≥ Ps,s(Tχ̃n < Tb) > 0

hold.

Corollary 3.2.5. Under Assumption 3.2.1, Lemma 3.2.4 holds with G replaced by
M.

Proof. The proof follows from the same line as in Lemma 3.2.4.

Lemma 3.2.6. Consider any accessible function χ and any constants a < b ∈ I.
Also, suppose that there exists a constant K > 0 such that Gχ(s) ≤ K for all
s ∈ [a, b], where Gχ is given by (3.11). If we define

D = Ea,b,χ and FD(x, s) = Ex,s[Tb ∧ Tχ] for (x, s) ∈ D, (3.13)

then the function FD is finite. Furthermore, given any s ∈ [a, b], if X is a local
martingale, the function FD(·, s) is concave, its second derivative (FD)xx(·, s) in the
sense of of distributions is a negative measure such that

−1

2
(FD)xx(·, s) = m(·; s) on (]χ(s), s[,B(]χ(s), s[)) for all s ∈ [a, b].

where m(·; s) is defined by (3.8).

Proof. From the regularity assumption, there exist v1, δ1 > 0 such that Pa,a(Tb ≤
v1) > δ1. We have

δ1 ≤ Pa,a(Tb ≤ v1) = Pa,a(Tb ≤ v1, Ts < Tb)

= Ea,a[1{Ts+Tb◦θTs≤v1}1{Ts<Tb}]

≤ Ea,a[1{Tb◦θTs≤v1}] = Ps,s(Tb ≤ v1) for all s ∈ [a, b].

The definition of (3.11) implies that

Ex,s[Ts ∧ Tχ] ≤ Gχ(s) ≤ K for all (x, s) ∈ D. (3.14)

By Markov inequality, we have

Px,s(Ts ∧ Tχ ≥ v2) ≤ K

v2

for any v2 > 0. We can then choose v2 ≥ v1 such that

Px,s(Ts ∧ Tχ ≤ v2) ≥ 1

2
for all (x, s) ∈ Ea,b,χ.

Now we have

Px,s(Tb ∧ Tχ ≤ 2v2) = Px,s(Ts ∧ Tχ + (Tb ∧ Tχ) ◦ θTs∧Tχ ≤ 2v2)

≥ Px,s((Tb ∧ Tχ) ◦ θTs∧Tχ ≤ v2, Ts ∧ Tχ ≤ v2)

= Ex,s[1{Ts∧Tχ≤v2}PXTs∧Tχ ,STs∧Tχ (Tb ∧ Tχ ≤ v2)]

≥ δ1Px,s(Ts ∧ Tχ ≤ v2) for all (x, s) ∈ Ea,b,χ.
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Set v = 2v2 and δ = 1
2
δ1, we have that

Px,s(Tb ∧ Tχ ≤ v) ≥ δ for all (x, s) ∈ Ea,b,χ. (3.15)

Notice that

Px,s(Tb ∧ Tχ ≥ nv) = Ex,s[1{Tb∧Tχ≥nv}]
= Ex,s[1{Tb∧Tχ≥(n−1)v}1{(n−1)v+(Tb∧Tχ)◦θ(n−1)v≥nv}]

= Ex,s[1{Tb∧Tχ≥(n−1)v}1{(Tb∧Tχ)◦θ(n−1)v≥v}]

= Ex0,s0 [1{Tb∧Tχ≥(n−1)v}PX(n−1)v ,S(n−1)v(Tb ∧ Tχ ≥ v)]

for all (x, s) ∈ D. (3.16)

We observe on {(n− 1)v ≤ Tb ∧ Tχ}, by (3.15),

PX(n−1)v ,S(n−1)v(Tb ∧ Tχ ≥ v) ≤ 1− δ,

so that by induction on (3.16),

Px,s(Tb ∧ Tχ ≥ nv) ≤ (1− δ)n−1 for all (x, s) ∈ D,

which implies
Ex,s[Tb ∧ Tχ] <∞ for all (x, s) ∈ D. (3.17)

The remaining follows the same line of argument in the proof of (47.10) in Roger
and Williams [26].

Remark 3.2.4. We note that the result might not hold for accessible χ without
restricting the speed measure. See Example 3 in Section 3.5.

Lemma 3.2.7. Fix any accessible function χ such that Gχ : I → R+ is locally
bounded, where G is defined by (3.11). There exists a kernel µrχ for any r ≥ 0 such
that

Es,s[e−rTχf(STχ)1{Tχ<∞}] =

∫
I
f(u)µrχ(du; s) (3.18)

for all s ∈ I and all measurable integrable functions f : I → R. Furthermore, this
kernel is such that, given any s ≤ s1 < s2 ∈ I,

µrχ([s1, s2[; s) > 0 and µrχ({s1}; s) = 0.

Proof. Fix any accessible function χ satisfying the requirement of the lemma.
Also, consider any f ∈ Cb(I), where Cb(I) is the set of all bounded continuous
functions on I. We first show that the function I 3 s 7→ Es,s[e−rTχf(STχ)1{Tχ<∞}] is
continuous. Lemma 3.2.6 implies that Ts∧Tχ <∞, Ps0,s0- a.s, for any points s0 < s
in I. In view of this result and the strong Markov property, we obtain

Es0,s0 [e−rTχf(STχ)1{Tχ<∞}] = Es0,s0
[
e−rTχf(STχ)1{Tχ<∞}

(
1{Ts<Tχ<∞} + 1{Tχ<Ts}

)]
= Es0,s0 [e−rTs1{Ts<Tχ<∞}]Es,s[e−rTχf(STχ)1{Tχ<∞}]

+ Es0,s0 [e−rTχf(STχ)1{Tχ<Ts}].
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By Corollary 3.2.3, we can see that the functions s 7→ Es0,s0 [e−rTs1{Ts<Tχ<∞}] > 0
and s 7→ Es0,s0 [e−rTχf(STχ)1{Tχ<Ts}] are continuous on [s0, β[. Combining these ob-
servations, we can see that the function s 7→ Es,s[e−rTχf(STχ)1{Tχ<∞}] is continuous
on [s0, β[ and the required continuity follows because s0 ∈ I has been arbitrary.
The mapping Cb(I) 3 f 7→ Es,s[e−rTχf(STχ)1{Tχ<∞}] is a positive linear functional
mapping from Cb(I) to Cb(I). Therefore, Theorem X.11 in Meyer [21] implies that
there exists a kernel µrχ(; s) such that

Es,s[e−rTχf(STχ)1{Tχ<∞}] =

∫
I
f(u)µrχ(du; s)

for all s ∈ I and all measurable integrable functions f : I → R.
Given any points s ≤ s1 ≤ s2 in I, (3.18) implies that

µrχ([s1, s2[; s) = Es,s[e−rTχ1{Ts1<Tχ<Ts2}] > 0, (3.19)

the inequality following by regularity of the strong Markov process (in particular, see
Definition 3.2.2 (iii)). Furthermore, (3.3) in Lemma 3.2.2, (3.19) and the dominated
convergence theorem imply that µrχ({s1}; s) = 0.

Lemma 3.2.8. Given χ an accessible function on I such that Gχ is locally bounded,
for any locally bounded measurable χ̃ : I → R such that κ(s) ≤ χ̃ ≤ χ(s) < s with
κ(s) = χ̃(s) possible only on s ∈ C2 defined in Lemma 3.2.1, we have that χ̃ is
accessible. In particular, for any d : I → R locally bounded away from 0 such that
s− κ(s) > d(s) for all s ∈ I, we have χ̃ = χ(s) ∧ (s− d(s)) is accessible.

Proof. To check (i) of Definition 3.2.2, we note that

Px,s(Tb < Tχ̃) ≥ Px,s(Tb < Tχ) > 0.

for any χ̃(s) ≤ χ(s) < x ≤ s ≤ b. Notice that Px,s(Ts < Tχ̃(s),s) > 0 by regularity
and the property of χn. Now, we have

Px,s(Tb < Tχ̃) = Px,s(Ts < Tχ̃(s),s)Ps,s(Tb < Tχ̃) ≥ Px,s(Ts < Tχ̃(s),s)Ps,s(Tb < Tχ) > 0

for χ̃(s) < x ≤ χ(s) ≤ s ≤ b.
(ii) in Definition 3.2.2 follows from

Px,s(Tχn(s),s) > 0 and χn(s)→ κ(s) as n→∞.

for any χn(s) ≤ x < s where {χn} are as in Definition 3.2.2.
As for (iii) in Definition 3.2.2, we notice that

Ps,s(Tχ̃ < Tb) = Es,s[1{Tχ̃<Tb}]
= Es,s

[
1{Tχ<Tb}1{Tχ̃<Tb}

]
= Es,s

[
1{Tχ<Tb}1{Tχ̃◦θTχ<Tb◦θTχ}

]
= Es,s

[
1{Tχ<Tb}P

χ(STχ ),STχ (Tχ̃ < Tb)
]

>

∫
[s,b[

Pχ(u),u(Tχ̃(u),u < Tu)µ
0
χ(du; s)

> 0,

where the last line follows from the fact µ0
χ(du; s) is a positive measure and

Pχ(u),u(Tχ̃(u),u < Tu) > 0 for u ∈ [s, b[.
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3.3 The scale function

In this section, we introduce the notion of scale function of the regular PRM-JSM
defined in the previous section.

Definition 3.3.1. A function p : E → R is called a scale function for the regular
PRM-JSM {Px,s, (x, s) ∈ E} with coordinate process (X,S) if and only if

(i) the map (x, s) 7→ (p(x, s), p(s, s)) is one-to-one, the maps Is 3 x 7→ p(x, s)
and I 3 s 7→ p(s, s) are continuous,

(ii) given any (x, s) ∈ E, the process p(Xt∧Tκ , St∧Tκ) is a (Ft,Px,s)-local martingale.

Lemma 3.3.1. Given α < a < b < β and an accessible function χ, define

D = Ea,b,χ and pD(x, s) = Px,s(Tb < Tχ), for all (x, s) ∈ D, (3.20)

then pD is measurable and the following statements hold true:

(i) Given any (x, s) ∈ D, the process (pD(Xt∧Tb∧Tχ , St∧Tb∧Tχ), t ≥ 0) is a (Ft,Px,s)
uniformly integrable martingale, in particular,

pD(Xt∧Tb∧Tχ , St∧Tb∧Tχ) = Px,s(Tb < Tχ | Ft).

(ii) The function D 3 (x, s) 7→ (pD(x, s), pD(s, s)) is one-to-one,

pD(x, s) < pD(y, s) for all s ∈ [a, b] and χ(s) ≤ x < y ≤ s (3.21)

and pD(s1, s1) < pD(s2, s2) for all a ≤ s1 < s2 ≤ b. (3.22)

(iii) The function [χ(s), s] 3 x 7→ pD(x, s) is continuous for all s ∈ [a, b]. And the
function [a, b] 3 s 7→ pD(s, s) is continuous.

Proof. We first note that the definition of the shift operators imply that{
ω ∈ Ω | Tb(ω) < Tχ(ω)

}
=
{
ω ∈ Ω | Tb ◦ θt∧Tb∧Tχ(ω) < Tχ(ω) ◦ θt∧Tb∧Tχ

}
.

In view of this observations and the strong Markov property (iii) in Definition 3.2.1,
we can see that

pD(Xt∧Tb∧Tχ , St∧Tb∧Tχ) = PXt∧Tb∧Tχ ,St∧Tb∧Tχ (Tb < Tχ)

= Ex,s[1{Tb<Tχ} ◦ θt∧Tb∧Tχ | Ft∧Tb∧Tχ ]

= Ex,s[1{Tb<Tχ} | Ft∧Tb∧Tχ ]

= Ex,s[1{Tb<Tχ}1{t≤Tb∧Tχ} | Ft] + 1{Tb<Tχ}1{Tb∧Tχ≤t}

= Ex,s[1{Tb<Tχ} | Ft],

and (i) follows.
Fix any points s ∈ [a, b] and χ(s) ≤ x < y ≤ s. The inequality (3.21) follows

trivially if x = χ(s), because pD(x, s) = 0 and property (i) in Definition 3.2.2
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implies that pD(y, s) = Py,s(Tb < Tχ) > 0. We therefore assume that χ(s) < x in
what follows. The definition of the shift operators implies that{
ω ∈ Ω | Tb(ω) < Tχ(ω)

}
=
{
ω ∈ Ω | (Ty,s + Tb ◦ θTy,s)(ω) < (Ty,s + Tχ ◦ θTy,s)(ω)

}
Also, property (ii) in Definition 3.2.2 implies that Px,s(Ty,s < Tχ) < 1. In view

of this observation and the strong Markov property (iii) in Definition 3.2.1, we can
see that

pD(x, s) = Ex,s
[
1{Ty,s<Tχ}1{Tb◦θTy,s<Tχ◦θTy,s}

]
= Ex,s

[
Ex,s

[
1{Tb◦θTy,s<Tχ◦θTy,s} | FTy,s

]
1{Ty,s<Tχ}

]
= Ex,s

[
EXTy,s ,STy,s

[
1{Tb<Tχ}

]
1{Ty,s<Tχ}

]
= Py,s(Tb < Tχ)Px,s(Ty,s < Tχ)

= pD(y, s)Px,s(Ty,s < Tχ) (3.23)

< pD(y, s).

Property (iii) of Definition 3.2.2 implies that

Ps1,s1(Ts2 < Tχ) ≤ 1− Ps1,s1(Tχ < Ts2) < 1.

Using these inequalities we can derive (3.22) by following exactly the same reasoning
as in the proof of (3.21).

The continuity of [χ(s), s] 3 x 7→ pD(x, s) follows from (3.23) and the fact
y 7→ Px,s(Ty,s < Tχ) is continuous for y ∈ [x, s] and x ∈ [χ(s), s[ is arbitrary. For
s ∈ [a, b[, notice that

Pa,a(Tb < Tχ) = Pa,a(Ts < Tχ)Ps,s(Tb < Tχ).

The continuity of [a, b] 3 s 7→ pD(s, s) follows from the fact s 7→ Pa,a(Ts < Tχ) is
continuous for s ∈ [a, b].

We now extend pD to a function p on E that is a scale function.

Lemma 3.3.2. Let {Px,s, (x, s) ∈ E} be a regular PRM-JSM with coordinate process
(X,S). Then there exists a function p : E → R that is a scale function for (X,S)
in the sense of Definition 3.3.1.

Proof. Fix any a, b ∈ R such that α ≤ a < b ≤ β, and let {χn} be a sequence of
accessible functions in the sense of Definition 3.2.2. Let Dn and pDn : Dn → R+ be
defined by (3.20) with χn in place of χ.

The expression (3.6) with χn in place of a and s in place of b imply that given
any 1 ≤ n, there exist functions αn, βn : [a, b] 7→ R such that

pD1(x, s) = αn(s)pDn(x, s) + βn(s) for all s ∈ [a, b] and x ∈ [χ1(s), s]. (3.24)

Given any s ∈ [a, b], we define

pa,b(x, s) =

{
pD1(x, s), if x ∈ [χ1(s), s] and s ∈ [a, b],

αn(s)pDn(x, s) + βn(s), if x ∈ [χn(s), χn−1(s)[ and s ∈ [a, b].

(3.25)
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In view of (3.24), we can see that

pa,b(x, s) = α1n(s)pDn(x, s) + β1n, if x ∈ [χn(s), s] and s ∈ [a, b].

We now proceed to check that pa,b(Xt∧Tb∧Tκ , St∧Tb∧Tκ) is a local martingale for
(X,S) starting from (x, s) ∈]κ(s), s]× [a, b[.

For x < s, the process pa,b(Xt∧Tκ∧Ts , St∧Tκ∧Ts) starting from (x, s) is a local
martingale as in the one dimensional case. And for (X,S) starting from (s, s) ∈ Dn,
the process pa,b(Xt∧Tχn∧Tb , St∧Tχn∧Tb) is a local martingale by Lemma 3.3.1. Now let
us define a sequence of stopping times,

R0 = inf{t ≥ 0 | Xt = St} ∧ Tκ;
R2n−1 = inf{t ≥ R2n−2 | (Xt, St) = (χn(St), St))} ∧ Tb , for n ≥ 1;

R2n = inf{t ≥ R2n−1 | Xt = St} ∧ Tκ, for n ≥ 1,

we have that Rn ↑ Tb ∧ Tκ and pa,b(Xt∧Rn , St∧Rn) is a local martingale for all n.
Hence pa,b(Xt∧Tb∧Tκ , St∧Tb∧Tκ) is also a local martingale.

Now let {[an, bn[}n∈Z be a sequence of disjoint intervals such that an = bn−1 for
all n ∈ Z and

⋃
n∈Z[an, bn[= I.

Notice pan,bn(s, s) is non-vanishing for s ∈ [an, bn[, we can scale pan,bn such that,
upon renaming, we have

pan,bn(bn, bn) = pan+1,bn+1(bn, bn).

Now we define

p(x, s) = pan,bn(x, s) for x ∈ Is and s ∈ [an, bn[.

By construction, one can check p is a scale function. Also note that p is measurable
since all αmn, βmn and pDm are measurable.

Definition 3.3.2. We say the PRM-JSM (X,S) is in the natural scale if X·∧Tκ is
a local martingale, or equivalently, p(x, s) = x is a scale function.

Lemma 3.3.3. Given{Px,s, (x, s) ∈ E} a regular PRM-JSM with state space E and
a scale function p. Let π be the map π(x, s) = (p(x, s), p(s, s)), Ẽ = {π(x, s) |
(x, s) ∈ E} and Ẽ = Ẽ ∩ B(R2). We have the bijection π : E → Ẽ and its inverse
π−1 : Ẽ → E are E/Ẽ and Ẽ/E measurable respectively. And for the probability
measure defined by

P̃π(x,s)((Xt, St) ∈ π(A)) = Px,s((Xt, St) ∈ A) for all (x, s) ∈ E and A ∈ E , (3.26)

we have (Ω,F ,Ft, X, S, P̃x,s) is a regular, canonical strong Markov process on Ẽ.

Proof. The map π : E → Ẽ defined by π(x, s) = (p(x, s), p(s, s)) is one-one and
such that given any set of the form A = ∪s∈[s1,s2][a, s] × {s} ∩ E, which generates

E , we have π(A) = {π(x, s) | (x, s) ∈ A} belongs to Ẽ because p(x, s) is measurable.
Thus, we know π−1 : Ẽ → E is Ẽ/E measurable. A symmetrical argument shows
that π is E/Ẽ measurable.
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We prove that {P̃x,s, (x, s) ∈ Ẽ} is a regular, canonical strong Markov process
with respect to Ẽ. (i) of Definition 3.2.1 follows from that for all C = {(Xt, St) ∈ A},
we have (x, s) 7→ P̃x,s(C) is E/B([0, 1]) measurable by (3.26) and measurability
results proved in previous paragraph. (ii)-(iv) can be checked directly. It remains
to prove (v). Given a bounded measurable function f , let us define a function

Ψf (x, s) = Ex,s[f(Xt, St)] = Ẽπ(x,s)[f(π−1(Xt, St))].

To prove strong Markov property of {Px,s}, we want to show for all bounded mea-
surable function f , all bounded stopping time T and some fixed t > 0, the function
Ψf satisfies

Ex,s[f(XT+t, ST+t) | FT ] = Ψf (XT , ST ).

By Lemma 1.3.3 of Stroock and Varadhan [28], we know FT = σ(Xu∧T , u ≥ 0),
which can be generated by

∏
i 1{(Xti∧T ,Sti∧T s)∈A} by continuity of paths. For

Z = Ẽπ(x,s)[f(π−1(XT+t, ST+t)) | FT ],

we have

Ẽπ(x,s)

[
Z
∏
i

1{(Xti∧T ,Sti∧T )∈π(A)}

]
= Ẽπ(x,s)

[
f(π−1(XT+t, ST+t))

∏
i

1{(Xti∧T ,Sti∧T )∈π(A)}

]

= Ex,s
[
f(XT+t, sT+t)

∏
i

1{(Xti∧T ,Sti∧T )∈A}

]

= Ex,s
[

Ψf (XT , ST )
∏
i

1{(Xti∧T ,Sti∧T )∈A}

]

= Ẽπ(x,s)

[
Ψf (π

−1(XT , ST ))
∏
i

1{(Xti∧T ,Sti∧T )∈π(A)}

]

so that

Ẽπ(x,s)[f(π−1(XT+t, ST+t)) | FT ] = Ψf (π
−1(XT , ST ))

= Eπ−1(XT ,ST )[f(Xt, St)]

= ẼXT ,ST [f(π−1(Xt, St))].

The result follows from last expression if we replace f ◦ π−1 by f . The regularity
can be easily checked.

We now give a brief characterisation of the family of scale functions.
We define the function

νg,χ(s, s1, s2) = g(s1)Ps,s(Ts1 < Tχ)− g(s2)Ps,s(Ts2 < Tχ) for all s ≤ s1 ≤ s2 ∈ I.

Definition 3.3.3. An function g : I → R is called scale-generating if

(i) it is continuous, strictly increasing and
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(ii) for every accessible χ such that Gχ is locally bounded, there exists a function
fg,χ : I → R for all s ∈ I such that

νg,χ(s, s1, s2) =

∫
]s1,s2[

fg,χ(u)µ0
χ(du; s) for all s ∈ I and s ≤ s1 < s2 ∈ I,

where µ0
χ is defined in Lemma 3.2.7.

Remark 3.3.1. Any two such functions fg,χ are equal µχ(·; s) almost surely for all
s ∈ I.

Theorem 3.3.4. Consider any strong Markov process, the following statements hold
true:

(i) If p is a scale function, then the function I 3 s 7→ p(s, s) is scale-generating.

(ii) Given any scale-generating function g, there exists a scale function p of the
strong Markov process such that p(s, s) = g(s) for all s ∈ I.

Proof. Let χ be accessible such that Gχ is locally bounded. The existence of such
χ follows from Assumption 3.2.1 and Lemma 3.2.4. By Lemma 3.2.6 (notice the fact
that Gχ is locally bounded), we have Ps,s(Tb ∧ Tχ) = 1 for all s ≤ b ∈ I.

If p is a scale function, we know p(s, s) is continuous and strictly increasing.
Moreover, by optional sampling theorem, we have for all s ≤ s1 < s2 ∈ I,

p(s, s) = Ps,s(Tsi < Tχ)p(si, si) + Es,s[1{Tχ<Tsi}p(XTχ , STχ)] for i = 1, 2.

Subtracting, we obtain

p(s1, s1)Ps,s(Ts1 < Tχ)− p(s2, s2)Ps,s(Ts2 < Tχ) = Es,s[1{Ts1<Tχ<Ts2}p(XTχ , STχ)]

=

∫
]s1,s2[

p(χ(u), u)µχ(du; s).

So for g(s) = p(s, s), we can set fg,χ(s) = p(χ(s), s) < g(s) for all s ∈ I.
Conversely, given any scale-generating function g and the corresponding fg,χ, we

have

νg,χ(s, s1, s2) =

∫
]s1,s2[

fg,χ(u)µχ(du; s) = Es,s[1{Ts1<Tχ<Ts2}fg,χ(STχ)]

for all s ∈ I̊ and α < s ≤ s1 < s2 < β.

Notice that

νg,χ(s, s, b) = g(s)− Ps,s(Tb < Tχ)g(b) = Es,s[1{Tχ<Tb}fg,χ(STχ)] for all s < b.
(3.27)

By the monotonicity of g, we would have

Es,s[1{Tχ<Tb}fg,χ(STχ)] = g(s)−Ps,s(Tb < Tχ)g(b) < Es,s[1{Tχ<Tb}g(STχ)] for all s < b ∈ I.

which implies fg,χ < g, µχ(; s) almost surely. We then choose a version of fg,χ such
that fg,χ < g.
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We define for (x, s) ∈ Eb
χ a function

pb,χ(x, s) = g(b)Px,s(Tb < Tχ) + Ex,s[1{Tχ<Tb}fg,χ(STχ)]. (3.28)

By (3.27), we have pb,χ(s, s) = g(s) for all s < b.
Next we show pb,χ(Xt∧Tb∧Tχ , St∧Tb∧Tχ) is a uniformly integrable martingale. It

is enough to show the second term of the right hand side of (3.28) is a uniformly
integrable martingale.

EXt∧Tb∧Tχ ,St∧Tb∧Tχ [1{Tχ<Tb}f(STχ)]

=Ex,s[1{Tχ◦θt∧Tb∧Tχ<Tb◦θt∧Tb∧Tχ}f(STχ◦θt∧Tb∧Tχ ) | Ft∧Tb∧Tχ ]

=Ex,s[1{Tχ<Tb}f(STχ) | Ft∧Tb∧Tχ ]

=Ex,s[1{Tχ<Tb}f(STχ)1{t≤Tb,b∧Tχ} | Ft] + 1{Tχ<Tb<t}f(STχ)

=Ex,s[1{Tχ<Tb}f(STχ) | Ft].

We can also check for b1 < b2, pb1,χ and pb2,χ agree on Eb1
χ by the definition (3.28),

the fact that pb,χ(s, s) = g(s) for all s < b ∈ I and the local martingale property.
Thus we can extend p to Eχ by defining pχ(x, s) = pb,χ(x, s) for any (x, s) ∈ Eχ.

We can then extend pχ to a scale function p on E following the same manner as
in Lemma 3.3.2, see (3.25).

3.4 Time change characterisation

In this and subsequent section, we can work in natural scale assuming that X is
a local martingale, (X,S) is regular with respect to E with {χn} satisfying the
condition of Corollary 3.2.5. We show that under some characterised time change,
(X,S) becomes (B, B̄), a Brownian motion and its running maximum. We then
conclude with boundary behaviours in E are similar as in one dimensional case.

Lemma 3.4.1. Given D and FD as in Lemma 3.2.6, the following statements hold
true:

(i) The function FD,d defined by

FD,d(s) = FD(s, s), for s ∈ [a, b]

is continuous and of bounded variation.

(ii) Suppose there exists a constant K > 0 such that

sup
s∈[a,b]

Mχ(s) ≤ K and inf
s∈[a,b]

{s− χ(s)} ≥ d > 0, (3.29)

where Mχ is the function defined by (3.12). The left derivative of FD with
respect to x, [a, b] 3 s 7→ (FD)x−(s, s), is bounded.

(iii) The process M defined by

Mt = t ∧ Tb ∧ Tχ + FD(Xt∧Tb∧Tχ , St∧Tb∧Tχ)

is a uniformly integrable (Ft)-martingale.

61



Proof of (i). Given a ≤ s ≤ b, we use the strong Markov property and the fact
that Ts ∧ Tχ <∞, Pa,a almost surely to obtain

FD,d(a) = Ea,a[Ts ∧ Tχ] + Pa,a(Ts < Tχ)FD,d(s).

It follows that

FD,d(s) ≤
1

Pa,a(Ts < Tχ)
FD,d(a) ≤ 1

Pa,a(Tb < Tχ)
FD,d(a) := C for all s ∈ [a, b]

which establishes the boundedness of FD,d. On the other hand, combining (3.30)
with the fact that Ea,a[Ts ∧ Tχ] and Pa,a(Ts < Tχ) are continuous as functions of
s ∈ [a, b] (See Corollary 3.2.3), we obtain the continuity of FD,d.

Now consider any a = s0 < s1 < · · · < sN = b, and define

q−1 = 1 and pi = 1− qi = Psi,si(Tχ < Tsi+1
) for i = 0, · · · , N − 1.

In view of the regularity condition (i) of Definition 3.2.3, the strong Markov property
and a simple inductive argument, we can see that

0 < Pa,a(Tb < Tχ) = Pa,a(Ts1 < Tχ, Tb < Tχ)

= Pa,a(Ts1 < Tχ, Tb ◦ θTs1 < Tχ ◦ θTs1 )

= Pa,a(Ts1 < Tχ)Ps1,s1(Tb < Tχ)

=
N−1∏
k=0

Psk,sk(Tsk+1
< Tχ)

=
N−1∏
k=−1

qk =: r < 1. (3.30)

On the other hand, we can use the strong Markov property and (3.30) to obtain

Ea,a[Tb ∧ Tχ] = Es0,s0 [Ts1 ∧ Tχ] + q0Es1,s1 [Tb ∧ Tχ]

=
N−1∑
i=0

Esi,si [Tsi+1
∧ Tχ]

i−1∏
k=−1

qk

≥ r
N−1∑
i=0

Esi,si [Tsi+1
∧ Tχ]. (3.31)

Furthermore, the arithmetic mean- geometric mean inequality implies that

N−1∑
i=0

pi = N −
N−1∑
i=0

qi ≤ N −N
( N∏
k=0

qk

) 1
N

= N(1− r
1
N ) for all N ∈ N.
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Using (3.30) with a replaced by si, s replaced by si+1, (3.31) and (3.32) we obtain

N−1∑
i=0

|FD,d(si+1)− FD,d(si)| ≤
N−1∑
i=0

Esi,si [Tsi+1
∧ Tχ]

+
N−1∑
i=0

Psi,si(Tχ < Tsi+1
)FD,d(si+1)

≤
N−1∑
i=0

Esi,si [Tsi+1
∧ Tχ] + C

N−1∑
i=0

pi

≤ 1

r
Ea,a[Tb ∧ Tχ] + CN(1− r

1
N ). (3.32)

This result and the fact that limN→∞N(1 − r
1
N ) = − ln r imply that FD,d is of

bounded variation because a = s0 < s1 < · · · sN = b has been arbitrary.
Proof of (ii). Given s ∈ [a, b] and x ∈]χ(s), s[, the concavity of FD(·, s) implies
that that (FD)x−(x, s) is finite. In view of this observation, Lemma 3.2.6 and (3.29),
we can see that

(FD)x−(s, s) = (FD)x−(x, s) + (FD)x,x([x, s[; s) = (FD)x−(x, s)− 2m([x, s[; s) > −∞

for all s ∈ [a, b]. Furthermore,

FD(s, s) = FD(s, s)− FD(χ(s), s)

= (FD)x−(s, s)(s− χ(s)) + 2

∫ s

χ(s)

m([u, s[; s)du for all s ∈ [a, b].

It follows that

|(FD)x−(s, s)| =
∣∣∣∣ 1

s− χ(s)

(
(FD)(s, s)− 2

∫ s

χ(s)

2m([u, s[; s)du
)∣∣∣∣

≤ 1

d
(C + 4K) <∞ for all s ∈ [a, b],

and the result follows.
Proof of (iii). By the definition of FD and strong Markov property, we have

Mt = t ∧ Tb ∧ Tχ + FD(Xt∧Tb∧Tχ , St∧Tb∧Tχ) = Ex,s[Tb ∧ Tχ | Ft]

is a (Ft)-uniformly integrable martingale.

Remark 3.4.1. Without the condition s−χ(s) ≥ d > 0 for all s ∈ [a, b], (FD)x−(s, s)
will explode in [a, b]. See Example 4.

We now quote a result from Lamberton and Zervos [20] and apply it to obtain
the time change. For an interval J ⊂ R, denote

l(J) = inf J and r(J) = sup J.
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Theorem 3.4.2. For any measurable χ : I → R such that s−χ(s) is locally bounded
away from 0, that is, for any [a, b] ⊂ I, we have

inf
s∈[a,b]

(
s− χ(s)

)
> 0, (3.33)

consider any measurable function F : E → R that satisfy
(1) the function Is 3 x 7→ F (x, s) is the difference of two convex functions for any
s ∈ I,
(2) the function I 3 s 3 Fx−(s, s) is locally bounded and Borel measurable.
(3) and given any x0 < a < b ∈ I, there exists a constant K = K(x0, a, b) > 0 such
that

|Fx−(x, s)| ≤ K, ∀x ∈ [x0, s] and s ∈ [a, b].

Then for (X0, S0) ∈ Eχ, the Itô-Tanaka-Meyer formula

F (Xt ∧ Tχ, St ∧ Tχ) =F (X0, S0) + F (St ∧ Tχ, St ∧ Tχ)− F (S0, S0)−
∫ t∧Tχ

0

Fx−(Su, Su)dSu

+
1

2
AFt∧Tχ +

∫ t∧Tχ

0

Fx−(Xu, Su)dXu

holds, where AF is of finite variation with

AFt =
∑
J∈J

{∫
(α,Sl(J))

(Lzt∧l(J) − Lzt∧r(J))Fxx(dz, Sl(J))
}

and J is the collection of pairwise disjoint intervals such that

{t ≥ 0|Xt < St} =
⋃
J∈J

J =
⋃
J∈J

]l(J), r(J)[.

Theorem 3.4.3. Let {Px,s, (x, s) ∈ E} be a regular PRM-JSM in natural scale
corresponding to accessible functions {χn}∞n=1 as in Corollary 3.2.5. In addition, we
suppose that s − χ1 is locally bounded away from 0, that is, for any [a, b] ⊂ I, we
have

inf
s∈[a,b]

(
s− χ1(s)

)
> 0 (3.34)

and

Mχn(s) ≤ K for any s ∈ [a, b] and some constant K = K(a, b, n) > 0. (3.35)

Given an initial point (x, s) ∈ E, there exists {Ω, F̃ , F̃t, Bt, B̄t, P̃x,s}, a filtered prob-
ability space with coordinate map Bt a (F̃t)- Brownian motion B along with B̄ such
that B0 = x and B̄t = sup0≤u≤tBu ∨ s, P̃x,s almost surely. Also denote by lat the
jointly continuous version of local time of B. There exists a positive measure m(·; s)
on Is for all s ∈ I that satisfies

0 < m([a, b[; s) <∞ for all κ(s) < a < b ≤ s,

m({(κ(s), s)}; s) ∈ [0,∞] if (κ(s), s) ∈ E,
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and is such that the law of (X,S) under Px,s coincides with the law of the process
(Bγ, B̄γ) under P̃x,s where γ is the right-continuous inverse to an increasing [0,∞]-
valued process A given by,

At = λ(s, B̄t) +
∑
J∈J

{∫
]κ(B̄l(J)),B̄l(J)[

(lzt∧r(J) − lzt∧l(J))m(dz; B̄l(J))
}
,

where J is the collection of pairwise disjoint intervals such that

{t ≥ 0|Bt < B̄t} =
⋃
J∈J

J =
⋃
J∈J

]l(J), r(J)[,

λ is a function that takes s1 ≤ s2 ∈ I to R that satisfies

λ(s1, s2) = −Fn(s2, s2) + Fn(s1, s1) +

∫ s2

s1

Fn,x−(u, u)du (3.36)

for all n such that s1 ≤ s2 ≤ bn, where Fn(x, s) = Ex,s[Tbn∧Tχn ] for (x, s) ∈ Es0,bn,χn
and (bn)∞n=1 is any fixed sequence tending to β.

Proof. Let ηn be a sequence of stopping times with

η0 = 0,

η2n+1 = inf{t ≥ η2n | Xt = κ(St)} for all n ≥ 0,

and η2n = inf{t ≥ η2n−1 | Xt = St} for all n ≥ 1.

Let Ãt = inf{s | [X]s = t} and note that Ã : [0, [X]∞[→ R+.
We know on {η2n−1 ≤ t}, Xt∧η2n is a submartingale (see (47.24) in V.47 of Roger

and Williams [26]). Itô-Tanaka lemma implies that

Xt∧η2n −Xη2n−1 = Xt∧η2n − κ(Sη2n−1)

=
(
Xt∧η2n − κ(Sη2n−1)

)+

=

∫ t∧η2n

η2n−1

1{Xu>κ(Su)}dXu + L
κ(Sη2n−1 )

t∧η2n
− Lκ(Sη2n−1 )

η2n−1 ,

where Lxt is the local time of X. On the other hand, on {η2n ≤ t}

Xt∧η2n+1 −Xη2n =

∫ t∧η2n+1

η2n

1{Xu>κ(Su)}dXu.

Then we obtain that,

Xt = x+ Zt + L̃t,

where

Zt =

∫ t

0

1{Xu>κ(Su)}dXu
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is a continuous local martingale (see (47.25) in V.47 of Roger and Williams [26])
and

L̃t =
∞∑
n=1

(
L
κ(Sη2n−1 )

t∧η2n
− Lκ(Sη2n−1 )

t∧η2n−1

)
is an increasing process. On some enrichment of (Ω,F ,Px,s), there exists a Brownian
motion W such that Zt = W ([Z]t). We can define a local submartingale

B̃t = x+Wt + l̃t,

where l̃t = L̃Ãt . The fact that B̃t is a local martingale with d[B̃]t = dt for all

t ∈ [[X]η2n , [X]η2n+1 [, n ≥ 0 implies B̃t is a Brownian motion for t ∈ [[X]η2n , [X]η2n+1 [

and n ≥ 0. We have also that B̃t − B̃[X]η2n−1
behaves like a reflecting Brownian

motion for t ∈ [[X]η2n−1 , [X]η2n [ and n ≥ 1.
Without loss of generality, we assume (x0, s0) ∈ E1. Consider Fn(x, s) :=

Ex,s[Tbn ∧ Tχn ] for (x, s) ∈ En, by (iii) of Lemma 3.4.1, we have the

Mn
t := t ∧ Tbn ∧ Tχn + Fn(Xt∧Tbn∧Tχn , St∧Tbn∧Tχn ) = Ex,s[Tbn ∧ Tχn | Ft]

is a (Ft)-uniformly integrable martingale. After time change, we have that

M̃n
t := Mn

Ãt
= Ãt∧[X]Tbn

∧[X]Tχ
+ Fn(B̃t∧[X]Tbn

∧[X]Tχ
, ¯̃Bt∧[X]Tbn

∧[X]Tχ
)

is a (FÃt)-uniformly integrable martingale.
Notice that the condition (1)-(3) for Theorem 3.4.2 are satisfied for Fn, n ≥ 1 by

Lemma 3.2.6. So we can apply Theorem 3.4.2 to get

M̃n
t∧[X]Tbn

∧[X]Tχn
− M̃n

0 = Ãt∧[X]Tbn
∧[X]Tχn

+ Fn( ¯̃Bt∧[X]Tbn
∧[X]Tχn

, ¯̃Bt∧[X]Tbn
∧[X]Tχn

)− Fn(s, s)

+

∫ t∧[X]Tbn
∧[X]Tχn

0

Fn,x−( ¯̃Bu,
¯̃Bu)d

¯̃Bu

−
∫ t∧[X]Tbn

∧[X]Tχn

0

Fn,x−(B̃u,
¯̃Bu)dB̃u

−
∑
J∈J̃

{∫
]κ( ¯̃Bl(J)),

¯̃Bl(J)[

(l̃zt∧r(J)∧[X]Tbn
∧[X]Tχn

− l̃zt∧l(J)∧[X]Tbn
∧[X]Tχn

)

·m(dz; B̄l(J))
}
,

where J̃ is the collection of pairwise disjoint intervals such that

{t ≥ 0 | B̃t <
¯̃Bt} =

⋃
J∈J̃

J =
⋃
J∈J̃

]l(J), r(J)[,

and l̃zt is the local time of process B̃t.
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We can apply the Doobs-Meyer decomposition theorem to identify the finite
variation part,

Ãt∧[X]Tbn
∧[X]Tχn

=− Fn( ¯̃Bt∧[X]Tbn
∧[X]Tχn

, ¯̃Bt∧[X]Tbn
∧[X]Tχn

) + Fn(s, s)

+

∫ t∧[X]Tbn
∧[X]Tχn

0

Fn,x−( ¯̃Bu,
¯̃Bu)d

¯̃Bu

+
∑
J∈J̃

{∫
]κ( ¯̃Bl(J)),

¯̃Bl(J)[

(l̃zt∧r(J)∧[X]Tbn
∧[X]Tχn

− l̃zt∧l(J)∧[X]Tbn
∧[X]Tχn

)

·m(dz; ¯̃Bl(J))
}
.

Notice that(
− Fm( ¯̃B[X]Ts∧[X]Tχm

, ¯̃B[X]Ts∧[X]Tχm
) + Fm(s0, s0) +

∫ [X]Ts∧[X]Tχm

0

Fm,x−( ¯̃Bu,
¯̃Bu)d

¯̃Bu

)
=
(
− Fn( ¯̃B[X]Ts∧[X]Tχm

, ¯̃B[X]Ts∧[X]Tχm
) + Fn(s0, s0) +

∫ [X]Ts∧[X]Tχm

0

Fn,x−( ¯̃Bu,
¯̃Bu)d

¯̃Bu

)
for all s0 ≤ s ≤ bm ≤ bn. Multiply 1{[X]Ts<[X]Tχm } on both sides, apply change of
variable formula to the integral terms and take expectations, it follows that

−Fm(s, s)+Fm(s0, s0)+

∫ s

s0

Fm,x−(u, u)du = −Fn(s, s)+Fn(s0, s0)+

∫ s

s0

Fn,x−(u, u)du

for all s0 ≤ s ≤ bm ≤ bn. Hence we can define λ consistently as in (3.36).
As [X]Tbn ∧ [X]Tχn → [X]η1 , we have that

Ãt∧[X]η1
= λ( ¯̃Bt∧[X]η1

, s0)+
∑
J∈J̃

{∫
]κ( ¯̃Bl(J)),

¯̃Bl(J)[

(l̃zt∧r(J)∧[X]η1
−l̃zt∧l(J)∧[X]η1

)m(dz; B̄l(J))
}
.

(3.37)
Combining result from V47.1 of Roger and Williams [26] with (3.37), we obtain

Ãt∧[X]η2
=λ( ¯̃Bt∧[X]η2

, s0) +
∑
J∈J̃

{∫
[κ( ¯̃Bl(J)),

¯̃Bl(J)[

(l̃zt∧r(J)∧[X]η2
− l̃zt∧l(J)∧[X]η2

)m(dz; ¯̃Bl(J))
}
.

By induction and the fact that [X]ηn → [X]∞ as n→∞, we have

Ãt∧[X]∞ = λ( ¯̃Bt∧[X]∞ , s0)+
∑
J∈J̃

{∫
[κ( ¯̃Bl(J)),

¯̃Bl(J)[

(l̃zt∧r(J)∧[X]∞−l̃
z
t∧l(J)∧[X]∞)m(dz; ¯̃Bl(J))

}
.

We define γ̃t to be the right continuous inverse of Ãt. It follows that Xt = B̃γ̃t .
For any {Ω̃, F̃ , F̃t, Bt, B̄t, P̃x,s}, where B is a Brownian motion under P̃x,s. Let

Nt =
∫ t

0
1{Bu≥κ(B̄u)}du and Γt be the right continuous inverse of Nt. Then we have

B̃t = BΓt and l̃zt = lzΓt . We define

At = λ(B̄t, s) +
∑
J∈J

{∫
]κ(B̄l(J)),B̄l(J)[

(lzt∧r(J) − lzt∧l(J))m(dz; B̄l(J))
}
,
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where J is the collection of pairwise disjoint intervals such that

{t ≥ 0 | Bt < B̄t} =
⋃
J∈J

J =
⋃
J∈J

]l(J), r(J)[,

γt and γ̃t are the right continuous inverse of At and Ãt respectively. Then we have
that

Ãt = AΓt ⇔ Γt = γAΓt
= γÃt ⇔ Γγ̃t = γÃγ̃t

= γt.

From this, it follows that
B̃γ̃t = BΓγ̃t

= Bγt .

Remark 3.4.2. For the case that the PRM-JSM is regular but does not satisfy (3.34)
or (3.35). We can proceed as follows. We consider {Px,s} on E and {χn} satisfy
the assumptions in Corollary 3.2.5. Let d and χ̃ be as in Lemma 3.2.8. Notice that

Mχ̃n(s) = Mχn(s) ∨m([s− d(s), s[; s)d(s)

We are not sure if Mχ̃n is locally bounded.
What we could do is that we time change to X̃t = XCt , S̃t = SCt and F̃t = FCt

where

Ct =

∫ t

0

(m([s− d(s), s[; s)d(s) ∨ 1)1{Xt∈[St−d(St),St]} + 1{Xt /∈[St−d(St),St]}dt

is (Ft)-adapted. We can define a new PRM-JSM as in Remark 3.2.3 with the new
Ct here. Now one can check that both (3.34) and (3.35) hold.

3.5 The Examples

Example 1. Let Ω1 be the family C(R+, I) of continuous path ω1, G = σ
(
ω1(t), t ≥

0
)

and

Gt =
⋂
ε>0

σ
(
ω1(u), u ≤ t+ ε

)
, for t ≥ 0.

We denote the coordinate process

Xt = ω1(t) for all ω1 ∈ Ω1 and t ≥ 0.

and {θt, t ≥ 0} the family of shift operators, which are defined by

θt(ω1)(u) = ω1(u+ t) for ω1 ∈ Ω1 and t ≥ 0.

We first consider the case where I = R and {Px} are Wiener measures on (Ω1,G)
for x ∈ I. The map (X, s∨ (sup0≤u≤·Xu)) : Ω1 → Ω is G/F measurable. We define
a family of probability measure {Px,s} on (Ω,F) by

Px,s = Px ◦
(
X, s ∨ ( sup

0≤u≤·
Xu)

)−1
. (3.38)
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We can now prove that {Px,s} is a canonical strong Markov process with respect to⋃
s∈I Is×{s}. To prove (i) of Definition 3.2.1 , we know for any bounded continuous

f , the map
(x, s) 7→ Ex[f(Xt, s ∨ ( sup

0≤u≤t
Xu))]

is jointly measurable with respect to x and continuous with respect to s. Hence, the
map is jointly measurable. As the set of bounded continuous functions are dense in
L1, passing to the limit, we have the map for any A ∈ E,

(x, s) 7→ Px((Xt, s ∨ ( sup
0≤u≤t

Xu)) ∈ A) = Px,s((Xt, St) ∈ A)

is measurable. (ii), (iii) and (iv) can be checked directly from the definition of
{Px,s}. To prove (v), it suffices to show for all bounded measurable function f ,
(x, s) ∈ {(x, y) ∈ R2 | x ≤ y}, t ∈ R+ and Ft- stopping time T ,

Ex,s[f(XT+t, ST+t) | FT ] = EXT ,ST [f(Xt, St)] (3.39)

Recall EXT ,ST [f(Xt, St)] is the function Ψf (x, s) = Ex,s[f(Xt, St)] with (XT , ST ) in-
serted in place of (x, s). To this end, it suffices to prove a more general assertion
that if g(x, y, s, z) is a bounded measurable function, then

Ex,s[g(XT , XT+t −XT , ST , sup
0≤u≤t

(XT+u −XT )) | FT ] = Φg(XT , ST ), (3.40)

where

Φg(x, s) :=

∫ ∞
0

∫ z

−∞
g(x, y, s, z)

2(2z − y)√
2πt3

exp(
−2(2z − y)2

2t
)dydz.

The equality (3.39) follows from this if we set g(x, y, s, z) = f(x + y, s ∨ (x + z)).
By monotone class theorem, it suffice to prove (3.40) for g of the special form
g(x, y, s, z) = g1(x)g2(y)g3(s)g4(z). Under this assumption, the left hand side of
(3.40) is equal to

g1(XT )g3(ST )Ex,s[g2(XT+t −XT )g4( sup
0≤u≤t

(XT+u −XT )) | FT ]. (3.41)

Note that Wt := XT+t −XT is a Brownian motion independent of FT with running
maximum W̄t = sup0≤u≤tWt = sup0≤u≤t(XT+u −XT ). Thus, (3.41) equals to

g1(XT )g3(ST )

∫ ∞
0

∫ z

−∞
g2(y)g4(z)

2(2z − y)√
2πt3

exp(
−2(2z − y)2

2t
)dydz = Φg(XT , ST )

and we are done in this case.
For the general case where Px is strong Markov, we know Px = P̃x ◦ Z−1, where

P̃x is a standard Wiener measure and Z is a time substitution of X by a right
continuous inverse of a PCHAF. We can define a family probability measure Px,s =
P̃x ◦ (Z, s ∨ sup0≤u≤· Zu)

−1. By the result of III.21 in Roger and Williams [26], we
have that {Px,s} is strong Markov.
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We let I =] −∞,∞[ for Example 2, I = [0,∞[ for Example 3, 4 and 5, E =
∪s∈I ]−∞, s]×{s} and (Ω1,G,Gt,Wt,Px) be as in Example 1, with Wt the coordinate
mapping and Px the Wiener measure on I. Let (Zt, Z̄t) be a process on the filtered
space (Ω1,G,Gt) such that Z0 = x and Z̄t = s ∨ sup0≤u≤t Zt, Px almost surely. For
(Ω,F ,Ft, Xt, St), we can define a family of probability measures Px,s = P0◦(Z, Z̄)−1.

Example 2. (i) For (b, b) ∈ E, for

Zt =

{
b− (b− x) exp(Wt), for Z̄t < b,

x+Wt, for Z̄t ≥ b.

Then Px,s is strong Markov. Now, for χ(u) = u−1 for all u ∈ I and x < s < b,
we have

Px,s(Tb < Tχ) = 0.

(ii) Fix some (x?, s?) ∈ E◦, for

Zt =

{
x+Wt, for t < Tx?,s? ,

x?, for t ≥ Tx?,s? ,

where Tx?,s? = inf{t ≥ 0 | (Zt, Z̄t) = (x?, s?)}. Then Px,s is strong Markov.
Now, for χ such that χ(s?) < x?, we have for all x? < x < s?,

Px,s?(Tχ(s?),s? <∞) = 0.

(iii) For (b, b) ∈ E,
Zt = x+ t,

then Px,s is strong Markov. Now, for χ(u) = u−1 for all u ∈ I and x ≤ s < b,
we have

Ps,s(Tχ < Tb) = 0.

Example 3. Take χ(s) = −5 for all s ∈ R+, for the process with dynamic

dZt = (St − Zt)
1
2dWt,

Z0 = x,

where W is a Brownian motion. One calculate to see that

m(]− 5, s[; s) =

∫
]−5,s[

1

s− u
du =∞.

for all s ∈ R+.

Example 4. Let a, b be constants and {sk}∞k=0 be a strictly increasing such that
a < s0 and limk→∞ sk = b. Consider the process Z with dynamic

dZt =
∞∑
n=0

1{Z̄t∈[sn,sn+1[}σndWt + 1{Z̄t∈[b,∞[}dWt,

Z0 = x,
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where σn, b > 0 for all n ≥ 0. Then we can conclude Px,s is strong Markov. We set
χ(s) = a for all s ∈ [s0,∞[. We denote Ts = inf{t; Z̄t ≥ s} and Tχ = inf{t;Zt =
χ(Z̄t)}. We will now check that the PRM-JSM is regular. We first check that χ1 is
accessible, (i) of Definition 3.2.2 is because

Px,s(Ty,y < Tχ1) =
x− a
b− a

> 0 for all a ≤ x ≤ s ≤ y,

(ii) and (iii) follow directly from the properties of Brownian motion. Hence the
regularity holds as ∪nEχn = E. Now if we set

s0 = 0, sn+1 − sn =
1

3n
and σn =

1

2n
for all n ≥ 0,

we have b = 3
2

and

Es0,s0 [Tb ∧ Tχ] = Es0,s0 [Ts1 ∧ Tχ] +
s0 − a
s1 − a

Es1,s1 [Tb ∧ Tχ]

= Es0,s0 [Ts1 ∧ Tχ] +
s0 − a
s1 − a

[
Es1,s1 [Ts2 ∧ Tχ] +

s1 − a
s2 − a

Es1,s1 [Tb ∧ Tχ]
]

≥
∞∑
n=0

s0 − a
sn − a

Esn,sn [Tsn+1,sn+1 ∧ Tχ]

=
∞∑
n=0

(s0 − a)(sn+1 − sn)

σ2
n

,

which diverges by our choice.

Example 5. Let a, b, c be constants, {an}∞n=0 and {sn}∞n=0 be a strictly increasing
such that a ≤ an < sn < b < c and limk→∞ sk = b. Set

χ(s) =
∞∑
n=0

1{s∈[sn,sn+1[}an + 1{s∈[b,∞[}a for all s ∈ I

Consider the process Z defined by

dZt =
∞∑
n=0

1{Z̄t∈[sn,sn+1[}σndWt + 1{Z̄t∈[b,∞[}dWt,

Z0 = x.

If we set a = −1

s0 = 0, ∆n := sn+1 − sn =
1

22n(2n − 1)
, σn =

1

2n
and an = sn − σ2

n for all n ≥ 0,

we have

m([χ(s), s[; s) = 2 (3.42)
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for s ∈ [s0, b[. Notice then,

Ps0,s0(Tb < Tχ) =
∞∏
n=0

Psn,sn(Tsn+1,sn+1 < Tχ)

=
∞∏
n=0

sn − an
sn+1 − an

=
∞∏
n=0

σ2
n

σ2
n + ∆n

=
∞∏
n=0

(1− 1

2n+1
)

:= r > 0.

We can use this and the properties of Brownian motions to prove that χ is accessible.
Notice that by Lemma 3.2.6, we have for D = Es0,c,χ, FD(x, s) = Ex,s[Tc ∧ Tχ] <∞.
We can choose c large enough such that

Eb,b[Tc ∧ Tχ] = (c− b)(b− a) ≥ 1

r
.

Then

FD(sn, sn) = Esn,sn [Tb ∧ Tχ] + Psn,sn(Tb < Tχ)Eb,b[Tc ∧ Tχ]

≥ Ps0,s0(Tb < Tχ)Eb,b[Tc ∧ Tχ]

≥ 1. (3.43)

Equation (3.42) and (3.43) and the fact that an = sn − σ2
n imply

(FD)x−(sn, sn) =
−2
∫
m([u, sn[; sn)du

sn − an
+
FD(sn, sn)

sn − an
≥ −4 +

1

σ2
n

↑ ∞

and Fx−(s, s) is not locally bounded.

3.6 The r-invariant functions

In this section, we will introduce the notion of an r-invariant function for PRM-JSM.
The term invariant follows from chapter 2 of Borodin and Salminen [3].

Definition 3.6.1. We say a nonnegative function φ on E is a left r-invariant func-
tion if for any accessible function χ such that Gχ : I → R+ is locally bounded, we
have

φ(x, s) = Ex,s[e−rTχφ(XTχ , STχ)1{Tχ<∞}] for all (x, s) ∈ Eχ. (3.44)

We say a nonnegative function ψ on E is a right r-invariant function if

ψ(x, s) = ψ(z, z)Ex,s[e−rTz1{Tz<∞}] for all (x, s) ∈ E and z such that x ≤ s ≤ z.
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We will now prove the existence of r-invariant function. For any continuous
function g : I → R+, we define

νrg,χ(s, s1, s2) := g(s1)Es,s[e−rTs1 1{Ts1<Tχ}]− g(s2)Es,s[e−rTs2 1{Ts2<Tχ}] (3.45)

for all α ≤ s ≤ s1 ≤ s2 < β.

Definition 3.6.2. We call a continuous function g : I → R+ is invariant-generating
if for every accessible χ such that Gχ is locally bounded,

(i) limz→∞ g(z)Es,s[e−rTz1{Tz<Tχ}] = 0 for all s ∈ I,

(ii) there exists an integrable function fg,χ : I → R for all s ∈ I such that

νrg,χ(s, s1, s2) =

∫
]s1,s2[

fg,χ(u)µrχ(du; s) > 0 for all s ≤ s1 < s2 ∈ I. (3.46)

Lemma 3.6.1. Let f be any measurable integrable function on χ ∪ {b} and T be
Tχ, Tz or Tz ∧ Tχ. Consider the function defined as

u(x, s) := Ex,s[e−rT f(XT , ST )1{T <∞}]

for (x, s) ∈ Eχ. We have e−r(t∧T )u(Xt∧T , St∧T ) is a martingale.

Proof. For any bounded stopping time H, by definition of u and strong Markov
property, we have

u(x, s) = Ex,s[e−rT f(XT , ST )1{T <∞}]

= Ex,s[e−r(H∧T )e−rT ◦θH∧T f(XT ◦θH∧T , ST ◦θH∧T )1{T ◦θH∧T <∞}]

= Ex,s
[
e−r(H∧T )EXH∧T ,SH∧T [e−rT f(XT , ST )1{T <∞}]

]
= Ex,s[e−r(H∧T )u(XH∧T , SH∧T )].

Hence the result.

Corollary 3.6.2. Both e−r(t∧T )φ(Xt∧T , St∧T ) and e−r(t∧T )ψ(Xt∧T , St∧T ) are a local
martingale, where φ and ψ are left and right r-invariant functions repesectively.

Theorem 3.6.3. Consider any strong Markov process, the following statements hold
true:

(i) If φ is a left r-invariant generating function. Then, the function I 3 s 7→
φ(s, s) is invariant generating.

(ii) Given any invariant generating function g : I → R+, there exists a left r-
invariant function such that φ(s, s) = g(s) for all s ∈ I.
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Proof. Let χ be accessible such that Gχ is locally bounded. By Lemma 3.2.6 we
have Ps,s(Tz ∧ Tχ) = 1 for all s ≤ z ∈ I. By this result, strong Markov property
and definition of φ, we have

φ(s, s) = Es,s[e−rTχφ(XTχ , STχ)1{Tχ<∞}]

= Es,s[e−rTχφ(XTχ , STχ)1{Tχ<∞}(1{Tz<Tχ} + 1{Tχ<Tz})]

= Es,s[e−rTze−rTχ◦θTzφ(XTχ◦θTz , STχ◦θTz )1{Tχ<∞}1{Tz<Tχ}]

+ Es,s[e−rTχφ(XTχ , STχ)1{Tχ<Tz}]

= φ(z, z)Es,s[e−rTz1{Tz<Tχ}] + Es,s[e−rTχφ(XTχ , STχ)1{Tχ<Tz}] (3.47)

for all s ≤ z ∈ I. Continuity of the map I 3 z 7→ φ(z, z) follows from (3.47), the
fact that z 7→ Es,s[e−rTz1{Tz<Tχ}] > 0 and z 7→ Es,s[e−rTχφ(XTχ , STχ)1{Tχ<Tz}] are
continuous as a function of z ∈ [s, β[. By (3.47) and the dominated convergence
theorem, we have

lim
z→∞

φ(z, z)Ex,s[e−rTz1{Tz<Tχ}] = 0.

Again by (3.47), we have

Es,s[e−rTχφ(XTχ , STχ)1{Ts1<Tχ<Ts2}]

=φ(s1, s1)Es,s[e−rTs1 1{Ts1<Tχ}]− φ(s2, s2)Es,s[e−rTs2 1{Ts2<Tχ}] (3.48)

for all s ≤ s1 ≤ s2 ∈ I. Hence it suffice to take fg,χ = φ(χ(s), s).
Conversely, fix a choice of χ and a version of fg,χ, we can define

φ(x, s) = Ex,s[e−rTχfg,χ(STχ)1{Tχ<∞}] for all (x, s) ∈ Eχ.

By (3.45) and (3.46), let s = s1 and s2 →∞ in (3.46), we have

φ(s, s) = Es,s[e−rTχfg,χ(STχ)1{Tχ<∞}] = g(s) for all (x, s) ∈ Eχ.

By Lemma 3.6.1, we can see that e−r(t∧Tχ)φ(Xt∧Tχ , Xt∧Tχ) is a local martingale on
Eχ. Let {zn}∞n=0 be a sequence of decreasing functions on I such that z0(s) = χ(s)
and limn→∞ zn(s) = κ(s) for all s ∈ I. We can define function φn on Ezn by

φn(s, s) = φ(s, s) = g(s),

φn(zn(s), s) =
1

Eχ(s),s[e−rTzn(s),s1{Tzn(s),s<Ts}]

[
fg,χ(s)− g(s)Eχ(s),s[e−rTs1{Ts<Tzn(s),s}]

]
and

φn(x, s) = Ex,s[e−rTzn(s),s1{Tzn(s),s<Ts}φn(zn(s), s) + e−rTs1{Ts<Tzn(s),s}g(s)].

By Lemma 3.6.1, one can check that e−r(t∧Ts∧Tzn )φn(Xt∧Ts∧Tzn , Xt∧Ts∧Tzn ) is a uni-
formly integrable martingale for all n ≥ 0. Combine this with the fact that for all
m ≤ n,

φm(zm(s), s) = φn(zm(s), s) and φm(s, s) = φn(s, s) = g(s), for all s ∈ I,
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we can conclude that φm = φn on Ezm . Therefore, one can extend φ to E by defining
φ = φn on Ezn . Let us define a sequence of stopping times,

R0 = inf{t ≥ 0 | Xt = St} ∧ Tκ;
R2n−1 = inf{t ≥ R2n−2 | Xt = χ(St)} for n ≥ 1;

R2n = inf{t ≥ R2n−1 | Xt = St} ∧ Tκ for n ≥ 1.

Upon localising with this sequence of stopping times, we can check that e−rtφ(Xt∧Tκ , St∧Tκ)
is a local martingale. Then

φ(x, s) = Ex,s
[
e−r(Tz∧Tχ)φ(XTz∧Tχ , STz∧Tχ)(1{Tz<Tχ} + 1{Tχ<Tz})

]
holds for all χ such that Gχ is locally bounded. Let z →∞, by dominated conver-
gence theorem we obtain (3.44).

Lemma 3.6.4. Both φ(·, s) and ψ(·, s) are convex on ]κ(s), s[, where φ and ψ are
left and right r-invariant functions repesectively.

Proof. For x ∈ Is, we choose a and b such that κ(s) < a < x < b ≤ s. Then we
have

φ(x, s) = Ex,s[e−r(Ta,s∧Tb,s)e−rTχ◦θTa,s∧Tb,sφ(XTχ◦θTa,s∧Tb,s , STχ◦θTa,s∧Tb,s )]

= Ex,s[e−r(Ta,s∧Tb,s)(1{Ta,s<Tb,s}φ(a, s) + 1{Tb,s<Ta,s}φ(b, s))]

≤ b− x
b− a

φ(a, s) +
x− a
b− a

φ(b, s)

and the convexity follows for x ∈]κ(s), s[.
For a < x < b ≤ s ≤ z, we can repeat the above argument with Tχ replaced by

Tz and φ replaced by ψ. Then we obtain the convexity of ψ(·, s) on ]κ(s), s[.

Lemma 3.6.5. The functions I 3 z 7→ φ(z, z) and I 3 z 7→ ψ(z, z) are continuous.

Proof. The continuity of z 7→ φ(z, z) was proved in Theorem 3.6.3. The continuity
of z 7→ ψ(z, z) follows directly from

ψ(s, s) = ψ(z, z)Es,s[e−rTz1{Tz<∞}]

and Es,s[e−rTz1{Tz<∞}] is a positive continuous function of z.

Theorem 3.6.6. Suppose the left r-invariant function φ is such that φ(χ(s), s) is
locally bounded for some accessible χ with s−χ(s) locally bounded away from 0 and
Mχ(s) also locally bounded. We have that φ solves the differential equation:

φxx(dx, s)− rφ(x, s)m(dx, s) = 0, (3.49)

dφ(s, s)− φx−(s, s)ds− rφ(s, s)dλ(s, s0) = 0 for all s ≥ s0. (3.50)

Proof. Fix s. For any κ(s) < a < x < b < s, the process(
e−r(t∧Ta,s∧Tb,s)φ(Xt∧Ta,s∧Tb,s , St∧Ta,s∧Tb,s), t ≥ 0

)
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is a uniformly integrable martingale as in one dimensional case. Apply Itô-Tanaka’s
formula and equate the finite variation part, we obtain (3.49).

One can see that our assumptions on φ enables us to apply Theorem 3.4.2 with
φ in place of F . Integration by parts implies that

e−r(t∧Tκ)φ(Xt∧Tκ , St∧Tκ) =φ(X0, S0) +

∫ t∧Tκ

0

e−ruφx−(Xu, Su)dXu

+

∫ t∧Tκ

0

e−ru
(
dφ(Su, Su)− φx−(Su, Su)dSu

)
+

∫ t∧Tκ

0

1

2

∑
J∈J

e−ruφxx(dx, Sl(J))(dL
x
u∧r(J) − dLxu∧l(J))

−
∫ t∧Tκ

0

re−ruφ(Xu, Su)du, (3.51)

where Lxt is the local time for X.
Recall the PCHAF A, (B, B̄) and l are defined in Theorem 3.4.3, we can see that∫ t∧Tκ

0

e−ruφ(Xu, Su)du =

∫ γt∧Tκ

0

e−rAuφ(Bu, B̄u)dAu

=

∫ γt∧Tκ

0

e−rAuφ(Bu, B̄u)
1

2

∑
J∈J

m(dx, B̄l(J))(dl
x
u∧r(J) − dlxu∧l(J))

+

∫ γt∧Tκ

0

e−rAuφ(B̄u, B̄u)dλ(B̄u, s0)

=

∫ t∧Tκ

0

e−ruφ(Xu, Su)
1

2

∑
J∈J

m(dx, Sl(J))(dL
x
u∧r(J) − dLxu∧l(J))

+

∫ t∧Tκ

0

e−ruφ(Su, Su)dλ(Su, s0).

Plug this back into (3.51), use Doobs Meyer decomposition theorem and the fact
(3.49), we can see that∫ t∧Tκ

0

e−ru
(
dφ(Su, Su)− φx−(Su, Su)dSu − rφ(Su, Su)dλ(Su, s0)

)
= 0.

This further implies that

φ(St∧Tκ , St∧Tκ)− φ(s0, s0)−
∫ t∧Tκ

0

φx−(Su, Su)dSu−
∫ t∧Tκ

0

rφ(Su, Su)dλ(Su, s0) = 0.

We replace t by Ts, multiply both sides by 1{Ts<Tχ} and take expectations, it follows
that (3.50) holds.

Remark 3.6.1. Itô We take χ = χ1 in Theorem 3.4.3 and prescribe φ(χ(s), s) = 1.
Then the left r-invariant function φ defined via the same procedure as in Theorem
3.6.3 satisfies the assumption of this theorem.

Remark 3.6.2. The right r-invariant function ψ satisfies the same differential equa-
tions following the same line of proof replacing φ by ψ.
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function, Journal of Applied Probability, vol.43, pp.984-996.

[5] Laurent Carraro, Nicole El Karoui, and Jan Obloj, 2012. On Azema-Yor pro-
cesses, their optimal properties and the Bachelier-drawdown equation, Ann.
Probab., Volume 40, Number 1 (2012), 372-400.

[6] E. Coddington and N. Levinson, 1955. Theory of Ordinary Differential Equa-
tions, Krieger Pub Co.

[7] J. Cvitanic, X. Wan, and J. Zhang, 2009. Optimal compensation with hidden
action and lump-sum payment in a continuous-time model, Applied Mathe-
matics and Optimization 59, pp.99146.

[8] J. Cvitanic and J. Zhang, 2013. Contract theory in continuous-time models,
Springer.

[9] J. Cvitanic, D. Possamai and N. Touzi, 2017. Moral hazard in dynamic risk
management, Management Science 63, pp.3328-3346.

[10] J. Cvitanic, D. Possamai and N. Touzi, 2018. Dynamic programming approach
to principal-agent problems, Finance and Stochastics, 22, pp.1-37.

[11] S. Dayanik and I. Karatzas, 2003. On the optimal stopping problem for one-
dimensional diffusions, Stochastic Processes and Applications 107, pp. 173-
212.

[12] P. De Marzo and Y. Sannikov, 2006. Optimal Security Design and Dynamic
Capital Structure in a Continuous-Time Agency Model, Journal of Finance 61,
pp.2681-2724.

77



[13] L.C. Evans, C.W. Miller, and I. Yang. Convexity and optimality conditions for
continuous time principal agent problems, preprint.

[14] X. Guo and M. Zervos, 2010. π options, Stochastic Processes and their Appli-
cations, vol.120, pp.1033-1059.

[15] B. Holmstrom and P. Milgrom, 1987. Aggregation and Linearity in the Provi-
sion of Intertemporal Incentives, Econometrica, Vol. 55, No. 2, pp. 303-328.
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