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Abstract

In the thesis we study two topics in graph theory.

The first one is concerned with the famous conjecture of Hadwiger that every graph

G without a minor of a complete graph on t + 1 vertices can be coloured with t

colours. We investigate how large an induced subgraph of G can be, so that the

subgraph can be coloured with t colours. We show that G admits a t-colourable

induced subgraph on more than half of its vertices. Moreover, if such graph G on

n vertices does not contain any triangle, we show it admits a t-colourable induced

subgraph on at least 4n/5 vertices and show even better bounds for graphs with

larger odd girth.

The second topic is a variant of a well-known two player Maker-Breaker connec-

tivity game in which players take turns choosing an edge in each step in order to

achieve their respective goals. While a complete characterisation is known for the

connectivity game in which both players choose a single edge, much less is known

in all other cases. We study the variant in which both players choose two edges, or

more generally, the variant in which the first player decides whether both players

choose one or two edges in the next round.
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1
Introduction

1.1 Chapters 2 and 3: around Hadwiger’s conjecture

In the next two chapters we discuss results related to a well-known conjecture in

graph theory that connects proper vertex colourings with existence of minors of

complete graphs:

Conjecture 1.1 (Hadwiger [1943]). Every graph G without a minor of Kt+1 can

be coloured with t colours.

Hadwiger [1943] showed the conjecture to be true for t ≤ 3. Wagner [1937] showed

that the case t = 4 is equivalent to the Four Colour Theorem later proved by Appel

and Haken [1976]. Robertson, Seymour, and Thomas [1993] proved the conjecture

for t = 5. Despite serious effort, the conjecture remains open for t ≥ 6.

Consider a graph G and a (proper) vertex colouring of G that uses χ(G) colours.

Each subset of vertices coloured by the same colour forms an independent set;

consequently, its size is at most α(G). Hence we have |V (G)| ≤ α(G)χ(G). Com-

bining this inequality with Hadwiger’s conjecture we get the following.

Conjecture 1.2. Every Kt+1-minor-free graph G satisfies |V (G)| ≤ α(G) · t, or

equivalently α(G)≥ |V (G)|
t

.

This conjecture is also wide open. However, there are classes of graphs for which

Conjecture 1.2 is true while Hadwiger’s conjecture remains undecided. For exam-
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Chapter 1. Introduction

ple, Fradkin [2012] showed that the family of claw-free graphs of independence

number at least 3 is one such class.

Consider the following result of Duchet and Meyniel [1982], which is only a con-

stant factor away from Conjecture 1.2.

Theorem 1.3. Every Kt+1-minor-free graph G satisfies α(G)≥ |V (G)|
2t

.

There have been several improvements of this bound. Most notably, Fox [2010]

used the theory of claw-free graphs and decreased the constant factor 2, for the

first time, to 2− c for c =
29−

√
813

28
≈ 0.017. Later, Balogh and Kostochka

[2011] used a similar approach and optimized the constants to get the currently

best bound.

Theorem 1.4. Every Kt+1-minor-free graph G satisfies

α(G)≥ |V (G)|
(2− c)t

for c =
80−

√
5392

126
≈ 0.05214.

We use these results in pursuit of yet another question:

Question 1.5. Let G be a Kt+1-minor-free graph on n vertices. What is the maxi-

mum fraction of vertices of G that spans a t-colourable induced subgraph?

Consider the following greedy algorithm on our graph G. Find an independent set

I of maximum size in G and colour vertices in I with a single colour. Then find

an independent set of maximum size in G− I and colour it with a different colour.

Repeat t times, and colour some vertices of G with t colours. Intuitively, it may

seem that using Theorem 1.4 to bound the size of each independent set yields a

colouring of at least t
n

(2− c)t
=

n
2− c

vertices of G. But this assumes the sizes of

independent sets we choose in our algorithm do not decrease, or that we gain at the

beginning more than we lose at the end. We do not attempt to analyse this greedy

approach.

Seymour [2016] pointed out that the same proof as the one used for Theorem 1.3

also shows there always exists a t-colourable induced subgraph on at least n/2

vertices in a Kt+1-minor-free graph G on n vertices. In Chapter 2 we show this

proof, improve the bound, and show the following.
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Chapter 1. Introduction

Theorem 2.5. For every t ≥ 4 and a Kt+1-minor-free graph G on n vertices, there

is a t-colourable induced subgraph H of G such that

|V (H)| ≥
(

1
2
+

1
(2− c)t

− 1
2(2− c)2t2

)
n where c =

80−
√

5392
126

≈ 0.05214.

In Chapter 3 we further restrict the Kt+1-minor-free graph G by forbidding all short

odd cycles, or all short cycles.

Theorem 3.6. For every c ≥ 0 and every Kt+1-minor-free graph G with odd girth

g = 2q+1 > 3, there is a (t + c)-colourable induced subgraph H of G such that

|V (H)|>

(
1−
(

g+3
2

+(c+1)
(⌊

g+1
8

⌋
+

⌊
g+3

8

⌋))−1
)
|V (G)|.

Moreover, if G has girth g, there is a (t + c)-colourable induced subgraph H of G

such that

|V (H)|> (c+2)(g−3)/2−1
(c+2)(g−3)/2 |V (G)|.

We conclude the chapter by showing:

Theorem 3.9. For every ε,δ > 0 there exists t0 such that for every t > t0, every

triangle-free and Kt+1-minor-free graph G admits a (1+ δ )t-colourable induced

subgraph on at least (1− ε)|V (G)| vertices.

1.2 Chapter 4: Maker-Breaker connectivity game

An (a,b) Maker-Breaker connectivity game is a game of two players, Maker and

Breaker, in which both players take turns claiming previously unclaimed edges of

a given (multi)graph G. Breaker plays first, in each turn he claims b edges, and

then Maker claims a edges. The game ends when Maker wins by claiming all edge

of some spanning tree of G, or when Breaker wins by claiming all edges of some

edge cut. Note that these conditions are mutually exclusive and we can say that

Breaker wins if he can prevent Maker from winning.

There are other versions of the game, for example the Hamiltonicity game in which

Maker needs to claim a Hamiltonian subgraph to win, or versions played on hyper-

graphs. In this thesis we only consider the above defined connectivity game. While
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Chapter 1. Introduction

the game is sometimes studied for simple graphs (no loops or parallel edges), the

results we mention generalise naturally for multigraphs and we therefore use them.

One possible line of work studies the following questions. What is the smallest n

such that Maker has a winning strategy for Kn in the (a,b) game? For fixed a and

n, what is the smallest threshold b0 such that Breaker has a winning strategy for

Kn in the (a,b0) game? The initial results of this kind can be found in Chvátal and

Erdős [1978]. The threshold was asymptotically determined for the (1,b) game

by Gebauer and Szabó [2009], and further studied for the general (a,b) game by

Hefetz, Mikalački, and Stojaković [2012].

We study the following question.

Question 1.6. Given a multigraph G, which player wins the game if they both play

optimally?

This turns out to be tightly connected with the number of edge-disjoint spanning

trees in G. A complete characterisation for the (1,1) game on matroids is given by

Lehman [1964] and Edmonds [1965]. The version for multigraphs builds on work

by Nash-Williams [1961], Tutte [1961].

Theorem 1.7. Maker has a winning strategy for a graph G in the (1,1) game if

and only if G contains 2 edge-disjoint spanning trees.

It is not difficult to generalise the strategy-stealing argument, and show that if

Maker has a winning strategy for a multigraph G in the (1,b) game, then G contains

b+1 edge-disjoint spanning trees. The converse implication does not hold. As re-

marked by Chvátal and Erdős [1978], Bondy observed that there are multigraphs

G with an arbitrary large number of edge-disjoint spanning trees and yet such that

Breaker can win even the (1,2) game. One such example is a long enough path on

n vertices with each edge of multiplicity k.

Even less is known for the (a,b) game with a > 1. This has been studied for

other games by Beck [2008], Gebauer [2012]. While the natural next step is to

solve the (2,2) game, for convenience, we study an intermediary version we call

(1/2,1/2) game. The game is played on a multigraph G, and Breaker plays first.

In each round Breaker first chooses a constant c ∈ {1,2}. Then Breaker claims c

previously unclaimed edges, and Maker claims c unclaimed edges. Maker wins if

10



Chapter 1. Introduction

the edges she claimed throughout the game form a connected spanning subgraph

of G; otherwise, Breaker wins.

In Chapter 4 we investigate for which multigraphs Maker has a winning strategy,

but provide no characterisation. Rather, we discuss some directions in which this

problem can be considered.

1.3 Notation and preliminaries

A graph is defined by a finite set of vertices and a set of pairs of vertices called

edges. We do not allow edges of the form {u,v} with u = v (usually called loops).

Only in Chapter 4 we allow multiple edges between the same pair of vertices (par-

allel edges), in which case we consider edges to form a multiset, and we then speak

of a multigraph.

For a given (multi)graph G, we denote by V (G) its vertex set, and by E(G) its edge

(multi)set. We say that vertices v,u ∈V (G) are adjacent or that v is a neighbour of

u if {u,v} ∈ E(G), and abbreviate this by uv ∈ E(G). The vertex v is incident with

e ∈ E(G) if v ∈ e. The degree of a vertex in a (multi)graph is the number of edges

incident with the vertex.

In the following, let G = (V,E) and H be graphs, X ,Y ⊆ V be subsets of vertices

of G, F ⊆ E be a subset of its edges, u,v ∈V be two vertices of G and e ∈ E be an

edge of G. For a set S we denote by 2S the set of all subsets of S, and denote by
(S

2

)
the set of all subsets of S of size 2.

We denote by G− e the graph created from G by deleting the edge e from its edge

set, and refer to this operation as edge deletion. We denote by G− v the graph

created from G by deleting the vertex v from its vertex set together with all edges

e ∈ E(G) such that v ∈ e. This operation is called a vertex deletion. Iteratively, we

define G\X to be the graph created from G by deleting each vertex in X , and G\F

to be the graph created from G by deleting each edge in F .

The graph H is a subgraph of the graph G if H can be obtained from G by a

sequence of vertex and edge deletions, and it is an induced subgraph of G if H can

be obtained form G by a sequence of vertex deletions. The graph G is H-free if H

is not an induced subgraph of G. We say there is a (copy of) graph H in the graph

11



Chapter 1. Introduction

G if H is a subgraph of G.

The complete graph on n vertices, denoted by Kn, is the graph on n vertices where

each pair of distinct vertices forms an edge. The cycle on n> 2 vertices, denoted by

Cn, is the graph in which we have a linear order on vertices V (Cn) = {v1,v2, . . . ,vn}
and E(Cn) = {vi−1vi | 2≤ i≤ n}∪{vnv1}. The path on n vertices, denoted by Pn,

is a graph in which we have a linear order on its vertices V (Pn) = {v1,v2, . . . ,vn}
and E(Pn) = {vi−1vi | 2 ≤ i ≤ n}. We call vertices v1,vn the endpoints of Pn. The

length of a path and cycle is the number of edges it contains.

We say there is a path from u to v in G if there is a path P as a subgraph in G such

that u and v are the endpoints of P. The distance of u and v is the length of the

shortest path from u to v, 0 for u = v, and infinity if there is no such path. The

distance of u and X is the minimum length of a path from u to any v ∈ X , and the

distance between X and Y is the minimum length of a path from any u ∈ X to any

v∈Y . A cycle or path is odd if it has odd length, and it is even if it has even length.

The girth of a graph G is the length of the shortest cycle in G, and the odd girth of

G is the length of the shortest odd cycle in G.

We say that G is connected if there is a path from u to v for every u,v ∈ V . We

denote by G[X ] the graph with vertex set X and edge set {e ∈ E(G) | e ∈
(X

2

)
},

and say that G[X ] is the graph induced by X . The set X is connected if G[X ] is

a connected graph, and it is a (connected) component of G if it is a maximal (in

inclusion) connected set. We say that X is an independent set if G[X ] has an empty

edge set. The set X is a dominating set if each vertex either belongs to X or has a

neighbour in X . The set X is a vertex cut set if G\X is not connected, and F is an

edge cut set if G\F is not connected. Notice that if G is not connected then every

subset of its edges is an edge cut set.

A contraction of an edge uv ∈ E is an operation in which we add to G an edge

uw for every vertex w adjacent to v where w 6= u, and delete the vertex v from

the graph. Unless we allow multigraphs in our context we also delete all created

parallel edges (multiple edges between the same pair of vertices). The graph H is a

minor of G if it can be obtained from G by a sequence of vertex and edge deletions

and edge contractions. The graph G is H-minor-free if H is not a minor of G.

We denote by G/X the graph obtained from G by contracting all edges in E(G[X ]).
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Chapter 1. Introduction

If X is connected, then we call this operation contracting X into a single vertex.

We can alternatively say that H is a minor of G if there is a model of H in G, that is,

an assignment m : V (H)→ 2V (G) satisfying that for all u,v ∈V (H) such that u 6= v:

(1) m(v) is connected, (2) sets m(u) and m(v) are disjoint and (3) if uv ∈ E(H),

then there are u′ ∈ m(u),v′ ∈ m(v) such that u′v′ ∈ E(G). In other words H is a

subgraph of a graph created from G by contracting each m(v) to a single vertex.

We denote by α(G) the independence number of G, that is, the maximum size of

an independent set in G. We denote by ω(G) the clique number of G, that is, the

maximum size of a set X such that G[X ] is a complete graph.

A partial (proper vertex) colouring of G is an assignment of colours to some ver-

tices of G such that each pair of vertices u,v that are assigned the same colour sat-

isfies uv 6∈ E. A (proper vertex) colouring of G is a partial colouring that colours

all vertices of G. We say that G is k-colourable if there is a colouring of G that uses

at most k distinct colours. We denote by χ(G) the chromatic number of G, that is,

the minimum k such that G is k-colourable.

A tree is a connected graph without any cycle. A spanning tree of G is a subgraph

of G that is a tree and contains all vertices of G. If G is not connected, it has

no spanning tree. The graph G has k edge-disjoint spanning trees if there are k

spanning trees T1, . . . ,Tk in G such that each e ∈ E(G) belongs to at most one Ti for

1≤ i≤ k.

13



2
Colouring graphs without large
clique minors

Let G be a Kt+1-minor-free graph and H be an induced subgraph of G which can be

properly vertex coloured with t colours. We are interested in the maximum number

of vertices of such graph H; or, in other words, the maximum fraction of vertices

of G that induce a t-colourable graph.

We first investigate a result of Duchet and Meyniel [1982] that establishes a rela-

tionship between t and the size of the maximum independent set in G. We then

show two different lower bounds for the size of H, both based on induction, and

combine them together. Lastly, we use that Hadwiger’s conjecture holds for t < 6,

and use yet another inductive argument to get the best bound of this chapter.

2.1 Introducing βt

Definition 2.1. For t ≥ 1 let βt be the maximum positive real number such that for

every Kt+1-minor-free graph G there exists a t-colourable induced subgraph H of

G satisfying |V (H)| ≥ βt |V (G)|.

For any fixed t ≥ 1 and n ≥ 1 the candidate for βt comes from a graph on n ver-

tices that allows a t-colourable subgraph on the minimum number of vertices. The

minimum over these candidates over all values of n is either attained for a fixed n0,

14



Chapter 2. Colouring graphs without large clique minors

or in the limit. In both cases βt is well defined.

While Hadwiger [1943] conjectured that the answer is βt = 1 for all t ≥ 1, the

currently best known bound for general t comes from the proof technique used in

the proof of Theorem 1.3. This was pointed out in the survey by Seymour [2016]

and we include the proof for completeness.

Lemma 2.2. Every connected graph G = (V,E) contains a connected dominating

set A such that α(G[A])>
|A|
2

.

Proof. We describe how to find sets A0, . . . ,Al = A such that all sets are con-

Figure 2.1: An example of step-by-step construction of set A. Red vertices form

an independent set and bold edges maintain connectivity.

nected, satisfy α(G[Ai]) > |Ai|/2 and A is dominating in G. We start by setting

A0 := {w} for any w ∈V . This set A0 is connected and α(G[A0]) = |A0|.

Consider a set Ai for i ≥ 0. If there exists a pair of vertices u,v ∈ V such that

uv ∈ E, u is adjacent to a vertex in Ai and v is not adjacent to any vertex in Ai,

we let Ai+1 := Ai∪{u,v}. Set Ai+1 is connected. Because v is not adjacent to any

vertex in Ai, we have

α(G[Ai+1]) = 1+α(G[Ai])> 1+
|Ai|
2

=
|Ai+1|

2
.

See Figure 2.1 for a step-by-step construction. If there is no such pair u and v, then

Ai is a dominating set we were looking for.

In the paper by Duchet and Meyniel [1982] a lower bound for the size of A is also

given, but we do not need it in our proofs, and so we omit it. Using the lemma it is

now easy to show the following bound:

Theorem 2.3. Every Kt+1-minor-free graph G admits a t-colourable induced sub-

graph H such that |V (H)|> |V (G)|
2

.
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Chapter 2. Colouring graphs without large clique minors

Proof. Let us first assume G is connected. We proceed by induction on t. For

t = 1 the graph G has no edges and it can be coloured with 1 colour.

For t > 1, Lemma 2.2 gives us a connected dominating set A in G such that

α(G[A]) >
|A|
2

. Assume G \A contains a minor of Kt . Because A dominates G,

every vertex in G \A is adjacent to some vertex in A. We can contract A to a sin-

gle vertex and get a Kt+1 minor in G, which is a contradiction. Therefore, G \A

is Kt-minor-free. By the induction hypothesis it contains a (t− 1)-colourable in-

duced subgraph H ′ satisfying |V (H ′)|> |V (G−A)|
2

=
|V (G)|

2
− |A|

2
. Let H be the

subgraph of G induced by the vertices in H ′ and vertices in the independent set of

maximum size in G[A]. Since H ′ is (t−1)-colourable, H is t-colourable. We have

|V (H)|> |V (H ′)|+ |A|
2

>
|V (G)|

2
− |A|

2
+
|A|
2

=
|V (G)|

2
.

If G is not connected, we find a t-colourable induced subgraph for each connected

component, and let H be their union.

The same bound can also be achieved using the decomposition we introduce in

Chapter 3.

Since Hadwiger’s conjecture is known for small t, we have βt = 1 for t ≤ 5. Theo-

rem 2.3 then implies

βt ≥

1 1≤ t ≤ 5

1/2 5 < t.

2.2 Improving bounds for βt

Consider a Kt+1-minor-free graph G = (V,E). By Lemma 2.2 there is a connected

dominating set A of G such that α(G[A])>
|A|
2

. We denote any fixed independent

set of maximum size in G[A] by AI , and consider 2 methods of partially colouring

G with t colours.

2.2.1 Induction on t

The first method completely follows the induction in the proof of Theorem 2.3.

Since A is a connected dominating set, G \A is Kt-minor-free and we can colour
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Chapter 2. Colouring graphs without large clique minors

βt−1 fraction of its vertices using t−1 colours. Putting one extra colour on AI , the

number of vertices we colour with t colours is at least βt−1(|V |− |A|)+ |AI|. With

Lemma 2.2 we have

βt |V | ≥ βt−1(|V |− |A|)+ |AI|> βt−1|V |+ |AI|(1−2βt−1). (2.1)

2.2.2 Induction on |V |

The graph G \AI remains Kt+1-minor-free and its vertex set is smaller so we can

use the induction hypothesis to obtain a t-colouring of a βt fraction of its vertices.

By the pigeon hole principle one of the colours is used on at most
βt(|V |− |AI|)

t
vertices. We alter the colouring by using the least used colour on AI instead. This

gives a partial t-colouring of at least
t−1

t
βt(|V |−|AI|)+ |AI| vertices of G. So we

have

βt |V | ≥
t−1

t
βt(|V |− |AI|)+ |AI|. (2.2)

2.2.3 The best of both worlds

It holds that βt ≥ 0.5 and βt ≥ βt+1 for all t ≥ 1, so following the induction on t

gives a good bound when AI has a small size while the induction on |V | works well

when AI is big.

Let 1 ≥ γt ≥ 0.5 for t ≥ 1 be defined as the minimum solution of recurrences 2.1,

2.2 and γ1 = 1, that is

γt |V |= max
(

βt−1|V |+ |AI|(1−2βt−1),
t−1

t
βt(|V |− |AI|)+ |AI|

)
for t > 1,

γ1 = 1.

Clearly, we have βt ≥ γt for all values of t. Let us find the size of AI for which both

methods intersect:

γt−1|V |+ |AI|(1−2γt−1) =
t−1

t
γt(|V |− |AI|)+ |AI|

|AI|= |V | tγt−1− tγt + γt

2tγt−1− tγt + γt
.
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Chapter 2. Colouring graphs without large clique minors

We can substitute for |AI| to Inequality 2.1:

γt |V | ≥ |V |
(

γt−1 +
tγt−1− tγt + γt

2tγt−1− tγt + γt
(1−2γt−1)

)
γ

2
t (1− t)+ γt(tγt−1 + γt−1 + t−1)− tγt−1 ≥ 0

We find the discriminant D = γ2
t−1(t

2 +2t +1)+ γt−1(−2t2 +4t−2)+ t2−2t +1

and have

γt =
tγt−1 + γt−1 + t−1±

√
D

2(t−1)
=

1
2
+ γt−1

t +1
2(t−1)

±
√

D
2(t−1)

. (2.3)

Using induction on t, we show γt > 0.5 for all t ≥ 1. For t = 1 we have γ1 = 1. Let

1≥ γt−1 > 0.5 and consider the middle term of the discriminant above.

γt−1(−2t2 +4t−2)<
1
2
(−2t2 +4t−2)

D < γ
2
t−1(t

2 +2t +1)− t2 +2t−1+ t2−2t +1 = γ
2
t−1(t +1)2

γt−1
t +1

2(t−1)
≥

√
γ2

t−1(t +1)2

2(t−1)
>

√
D

2(t−1)

Finally, we substitute in 2.3 and get

γt =
1
2
+ γt−1

t +1
2(t−1)

±
√

D
2(t−1)

>
1
2
.

Some numeric values of γt can be found in Table 2.1. Even though the lower

bounds on βt ≥ γt produced by this approach can be further analysed, we omit this

as the following approach gives a better bound for all t > 10.

2.3 Improving bounds for βt differently, mostly better

We first prove a stronger version of Theorem 2.3

Theorem 2.4. For every t ≥ 4 and a Kt+1-minor-free graph G, there is a (t− 2)-

colourable induced subgraph H such that |V (H)| ≥ |V (G)|
2

.
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Chapter 2. Colouring graphs without large clique minors

Proof. We proceed by induction on t. For t = 4 Hadwiger’s conjecture is true and

so there is a 4-colouring of every K5-minor-free graph. If we only consider the 2

most frequent colours, we have a partial 2-colouring of at least half of V (G). For

t > 4, Lemma 2.2 gives us a connected dominating set A of G such that α(G[A])>
|A|
2

. We use the induction hypothesis on a Kt-minor-free G\A to obtain a (t−3)-

colouring of
|V (G)|− |A|

2
of its vertices. We extend this partial colouring in G by

using a single extra colour on the maximum independent set in A to obtain a partial

(t− 2)-colouring of at least
|V (G)|− |A|

2
+
|A|
2

=
|V (G)|

2
vertices of G and let H

be induced by coloured vertices.

Now that we only need t − 2 colours to cover half of the graph, we can use two

extra colours on the two largest independent sets to get a good bound.

Theorem 2.5. For every t ≥ 4 and a Kt+1-minor-free graph G on n vertices, there

is a t-colourable induced subgraph H such that

|V (H)| ≥
(

1
2
+

1
(2− c)t

− 1
2(2− c)2t2

)
n where c =

80−
√

5392
126

.

Proof. Let I be an independent set of maximum size in G and let J be an inde-

pendent set of maximum size in G− I. By Theorem 1.4 we have |I| ≥ n
(2− c)t

and |J| ≥ n−|I|
(2− c)t

where c =
80−

√
5392

126
. From Theorem 2.4 there is a (t− 2)-

colourable induced subgraph H ′ of (G− I)− J on at least half of its vertices. We

let H be a subgraph of G induced by vertices in H ′ and vertices in sets I and J.

Clearly H is a t-colourable induced subgraph of G. We have

|V (H)|= |V (H ′)|+ |I|+ |J| ≥ n−|I|− |J|
2

+ |I|+ |J|= n+ |I|+ |J|
2

≥

≥ n+ |I|
2

+
n−|I|

2(2− c)t
= n

(
1
2
+

1
2(2− c)t

)
+ |I|

(
1−
(

1
2
+

1
2(2− c)t

))
≥

≥ n
(

1
2
+

1
2(2− c)t

)
+

n
(2− c)t

(
1
2
− 1

2(2− c)t

)
.

Graph H has at least n
(

1
2
+

1
(2− c)t

− 1
2(2− c)2t2

)
vertices and we are done.

See Table 2.1 for some approximate values of lower bounds for βt produced by

both discussed approaches.
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Chapter 2. Colouring graphs without large clique minors

t First approach Second approach

6 0.710102051443 0.581903427145

7 0.628353792429 0.570651174471

8 0.589311750665 0.562113933139

9 0.566651761211 0.555415751763

10 0.552027207871 0.550020600646

11 0.541922961806 0.545582183773

100 0.500471669149 0.505120663553

1000 0.500004750282 0.500513252390

10000 0.500000047545 0.500051337099

100000 0.500000000476 0.500005133829

1000000 0.500000000012 0.500000513384

Table 2.1: A table with lower bounds on βt for some values of t produced by

both approaches

2.4 Conclusion

We showed several lower bounds for the maximum number of vertices in a t-

colourable induced subgraph of a Kt+1-minor-free graph on n vertices. In particular

we showed βt satisfies

βt ≥


1 0 < t ≤ 5
1
2
+βt−1

t +1
2(t−1)

−
√

D
2(t−1)

5 < t ≤ 10

1
2
+

1
(2− c)t

− 1
2(2− c)2t2 10 < t,

for D = β 2
t−1(t

2+2t +1)+βt−1(−2t2+4t−2)+ t2−2t +1 and c =
80−

√
5392

126
.

As t grows, unfortunately the bound decreases to 0.5. While it may be too ambi-

tious to proof βt = 1 for all t ≥ 1, could the following open questions be answered?

Question 2.6. Is there δ > 0 such that for all t ≥ 1 it holds βt ≥ 0.5+δ?

Question 2.7. Can we prove better bounds for βt for small t > 5?
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3
Colouring graphs without large
clique minors and large (odd)
girth

Let G be a Kt+1-minor-free graph with large odd girth g, and let H be an induced

subgraph of G that is colourable with t colours. Like in Chapter 2 we want to

maximize the number of vertices of H.

The additional condition that G has high odd girth g means that there is no induced

odd cycle in G on less than g vertices. To avoid rounding errors, we always consider

g to be an odd number. We will see that forbidding short odd cycles already helps

a lot. If we also forbid short even cycles, we get even stronger results, but as this is

quite a strong condition, we leave it as a separate case in our statements.

We state the results in this chapter in a very general way. Given constants c,g, t and

a Kt+1-minor-free graph G having (odd) girth g, we search for a maximum sized

induced subgraph that can be coloured with (t + c) colours. We show:

Theorem 3.6. For every c ≥ 0 and every Kt+1-minor-free graph G with odd girth

g = 2q+1 > 3, there is a (t + c)-colourable induced subgraph H of G such that

|V (H)|>

(
1−
(

g+3
2

+(c+1)
(⌊

g+1
8

⌋
+

⌊
g+3

8

⌋))−1
)
|V (G)|.

Moreover, if G has girth g, there is a (t + c)-colourable induced subgraph H of G
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such that

|V (H)|> (c+2)(g−3)/2−1
(c+2)(g−3)/2 |V (G)|.

Even though we want to only use t colours, we use a parameter c≥ 0 throughout the

chapter to quantify the number of extra colours we are allowed to use in addition

to t. For simplicity, we can imagine c = 0, in which case we really only colour

vertices with t colours. At the end of the chapter, we use this parameter c to show

that with big enough t, we can colour all but δ |V (G)| vertices of G with (1+ ε)t

colours, for any δ > 0 and ε > 0.

We follow a graph decomposition approach used by Reed and Seymour [1998] to

show that every Kt+1-minor-free graph has fractional chromatic number at most 2t.

Later, van den Heuvel and Wood [2018] also used it to show that every Kt+1-minor-

free graph has clustered chromatic number 2t and defective chromatic number t.

Our aim is to find a decomposition of our graph into disjoint sets we call blobs.

Our decomposition has many useful properties both for the structure of each blob,

and for the way blobs touch each other.

Definition 3.1. For a graph G = (V,E) let U,W ⊆ V be disjoint subsets of its

vertices and u ∈ V a vertex such that u 6∈W. We say that u touches W if there is

a vertex v ∈W such that uv ∈ E. More generally, U touches W if there is a vertex

u ∈U that touches W.

Each blob consists of three parts, where two of them form an independent set and

can be coloured by a single colour each. The third part does not have this property,

but we keep its size small.

The decomposition orders the blobs is such a way that every blob touches at most

t− 1 blobs that precede it. Since we can use two colours to colour almost every-

thing in each blob, a greedy algorithm (use lowest unused colour in the given order

of blobs) gives us immediately a 2t-colouring of most of the graph. We instead use

a bit more complicated way to colour the vertices, which yields a colouring of all

these vertices with only t colours.
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3.1 Definitions and notation

Definition 3.2. A blob B in a graph G is a connected subset of vertices of G which

consists of three disjoint sets BC (covered), BI (independent), BW (wasted) such

that BC and BI are independent sets.

Note that every connected subset of vertices of a graph is a blob, as we can always

place all vertices in BW . While a path on 4 vertices is certainly a blob, there are

many ways to split its vertices among BC,BI and BW . In the rest of the chapter we

will always try to keep BW small.

As said, our final goal is to colour G with t + c colours. Clearly, if there is any

vertex v in G which is adjacent to less than t + c other vertices, we can ignore it,

colour all other vertices first, and then greedily colour v. In our decomposition we

need to keep these low-degree vertices aside, which we do in a set S (vertices Safe

for final colouring). Moreover, we also place in S vertices that do not necessarily

have low degree, as long as they can also be ignored and coloured when all of their

neighbours are already coloured.

Definition 3.3. Let B1,B2, . . . ,Bl be disjoint blobs in a graph G and v ∈ V (G) be

a vertex such that v 6∈ Bi for 1≤ i≤ l. Let Iv be the number of blobs Bi such that v

touches BI
i , and let Nv be the number of neighbours of v in G\

⋃l
i=1(B

I
i ∪BW

i ). We

say that v is (t + c)-safe for G and blobs B1, . . . ,Bl if Iv +Nv < t + c.

In other words, if we consider a partial (t + c)-colouring of G, in which all ver-

tices in BI
i are coloured by a single colour for each 1 ≤ i ≤ l then a (t + c)-safe

vertex neighbours at most t +c−1 vertices of distinct colours and so it can also be

coloured with one of the t + c colours.

3.2 The decomposition

We first state a lemma that we use when building a decomposition into blobs.

Lemma 3.4. For every connected graph G with odd girth g = 2q+ 1 ≥ 5, every

vertex v ∈ V (G), every c ≥ 0 and every 0 < d <
g−1

2
, there are disjoint sets

A,B⊆V (G) such that
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1. A and B are independent sets,

2. G[A∪B] is connected,

3. every vertex u ∈V (G) at distance at most d from v belongs to A or B, and

4. B does not touch V (G\A).

Moreover, if there exists a vertex at distance d from v, and all vertices at distance

less than d from v have degree at least c+3, then

|A∪B| ≥ d +2+(c+1)
(⌊

d +2
4

⌋
+

⌊
d +3

4

⌋)
.

If in addition to all above G has girth g, then |A∪B| ≥ (c+2)d .

Proof. We say that a vertex u is at odd distance from v if the distance between the

vertices is an odd number, and it is at even distance from v if the distance between

them is an even number. Every vertex is at even distance 0 from itself.

If d is odd, let A be the set of all vertices in G at odd distance at most d from v, and

let B be the set of all vertices in G at even distance at most d from v. Otherwise, if

d is even, we let A be the set of all vertices in G at even distance at most d from v,

and let B be the set of all vertices in G at odd distance at most d from v.

For contradiction with Property 1 assume there is an edge uu′ ∈ E(G[A]). Clearly,

u and u′ are at the same distance 0 < d′ ≤ d from v. Consider any fixed paths of

minimum length from u to v and from u′ to v. Figure 3.1 shows that together with

uu′ they give us an odd cycle of length at most 2d′+ 1 ≤ 2d + 1 < g, which is a

contradiction with G having odd girth g. Hence, A is independent, and by the same

argument B is also an independent set.

The graph G[A∪B] consists exactly of vertices at distance at most d from v, and

so it is connected. Only vertices at distance d from v can have neighbours outside

A∪B, and because all these belong to A, B has no neighbours in V (G\A).

Assume there is a vertex u at distance d from v and that every vertex at distance

less than d from v has degree at least c+3. The graph G[A∪B] contains a path P

of length d + 1 between u and v. Because v has c+ 3 neighbours, there are c+ 2

more vertices in G[A∪B] that do not belong to P. Each vertex on P at distance
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v

u

u′

1 2 3 d′0

Figure 3.1: An odd cycle of length less than g when A is not independent.

1≤ 4k < d or 1≤ 4k+1 < d from v has c+1 more neighbours outside P. In total

|V (G[A∪B])| ≥ d +1+(c+1)
⌊

d +2
4

⌋
+(c+1)

⌊
d +3

4

⌋
+1 =

= d +2+(c+1)
(⌊

d +2
4

⌋
+

⌊
d +3

4

⌋)
.

See Figure 3.2 for the case c = 0.

0 1 2 3 4 5 6 7 8 9 d10

Figure 3.2: An example of G[A∪B] with the minimum number of vertices.

Assume additionally that G has girth g. Because G[A∪B] contains no cycles, it

forms a tree. Vertex v has c+3 neighbours, each of them has c+2 more neighbours

and so on. Therefore,

|V (G[A∪B])| ≥ 1+
d−1

∑
i=0

(c+3)(c+2)i = 1+(c+3)
(c+2)d−1

c+1
≥ (c+2)d .

Next, we construct a decomposition into blobs.

Theorem 3.5. For every c ≥ 0 and every Kt+1-minor-free graph G with odd girth

g = 2q + 1 > 3, there exists a decomposition into a sequence of disjoint blobs

B1, . . . ,Bb and an ordered set S with the following properties:

25



Chapter 3. Colouring graphs without large clique minors and large (odd)
girth

1. For every 1≤ i≤ |S| and si ∈ S, there exists b′ ≤ b such that si is (t +c)-safe

for G\
⋃i−1

j=1{s j} and B1, . . . ,Bb′ .

2. For every 1≤ i < j < k≤ b, if Bk touches both Bi and B j then Bi touches B j.

3. For every 1≤ i, j ≤ b, BC
i does not touch BC

j .

4. For every 1 ≤ i ≤ b, every vertex in BC
i touches less than t blobs from

B1, . . . ,Bb.

5. For every 1≤ i≤ b,
|BW

i |
|Bi|

<

(
g+3

2
+(c+1)

(⌊
g+1

8

⌋
+

⌊
g+3

8

⌋))−1

.

Moreover, if G has girth g, then for every 1≤ i≤ b, |BW
i |/|Bi|< (c+2)−(g−3)/2.

Proof. We iteratively extend a partial decomposition B1, . . . ,Bl,S by one of four

operations. We apply the operations in order, that is, we attempt to apply the second

operation only if the first one cannot be used. At the end we show that if none of

the operations can be used, then our decomposition covers the whole graph.

We begin by setting

l := 1, BI
1 := {w}, BC

1 := /0, BW
1 := /0, S := /0,

for some vertex w ∈V (G).

Consider any partial decomposition B1, . . . ,Bl,S. We maintain the Invariant that

every maximal connected component C of G\
(

S∪
⋃l

i=1 Bi

)
satisfies the following.

If C touches blobs Bi,B j for 1≤ i< j≤ l then Bi touches B j. It follows directly that

C touches at most t− 1 blobs; otherwise, C and the blobs touched by C induce a

model of Kt+1, which is a contradiction with G being Kt+1-minor-free. Let us refer

to the blobs among B1, . . . ,Bl touched by C simply by C-touched blobs. Clearly,

the Invariant is satisfied for l = 1 because C touches the only blob B1.

For the rest of the proof, let C be any fixed maximal connected component of

G\
(

S∪
⋃l

i=1 Bi

)
.

I. Put safe vertices in S

Firstly, if there exists a vertex in C that is (t + c)-safe for G \ S and B1, . . . ,Bl , we

add it in S. Notice that by placing some vertex v1 in S, and creating S′ = S∪{v1},
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it may happen that another vertex v2 becomes (t +c)-safe for G\S′ and B1, . . . ,Bl ,

even if v2 is not (t + c)-safe for G\S and B1, . . . ,Bl .

Because we place vertices to S only when they are (t + c)-safe for the current par-

tial decomposition, Property 1 follows trivially. None of the remaining conditions

or the Invariant are concerned with S.

II. Create a trivial blob

If there is a vertex v ∈C that touches all C-touched blobs, we create a new blob

BI
l+1 := {v}, BC

l+1 := /0, BW
l+1 := /0.

Consider a maximal connected component C′ of G′ := G \
(

S∪
⋃l+1

i=1 Bi

)
. If C′

is disjoint from C, the Invariant for C′ remains unchanged. Otherwise, we have

C′ ⊆ C. From v ∈ C \C′ it follows that C′ is a proper subset of C. We need to

check that for each 1≤ i≤ l, if C′ touches both Bi and Bl+1, then Bi touches Bl+1.

This is true because C′ only touches C-touched blobs and the new blob Bl+1, while

Bl+1 = {v} touches all C-touched blobs. Property 2 follows directly from the In-

variant for C. Properties 3,4 and 5 are trivial because both BC
l+1 and BW

l+1 are empty.

III. Create a non-trivial blob

For a vertex v ∈ C and a blob Bi touched by C let the C-distance from v to Bi be

the minimum length of a path from v to any vertex in Bi which only uses vertices

in C as their inner points (vertices that are not end-points of the path). Since C

is connected, C-distance from any vertex in C to any C-touched blob is a finite

number.

If there is a vertex v ∈C at C-distance at most d := g−1
2 from each C-touched blob,

we again create a new blob Bl+1. Let A,B be the sets from Lemma 3.4 used with

G[C],g,v,c,d−1. We set

BI
l+1 := A, BC

l+1 := B, BW
l+1 := /0.

Because Bl+1 touches each C-touched blob, the Invariant and Property 2 follow by

the same arguments as in the previous case. Because of properties of B, no vertex

v ∈ BC
l+1 can touch any later created or extended blob, and Property 3 holds. If
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some vertex of BC
l+1 touches all C-touched blobs, we create a trivial blob instead;

otherwise, it touches at most t−2 C-touched blobs and Bl+1, so Property 4 is sat-

isfied. Properties 5 is still trivial, as BW
l+1 is empty.

IV. Extend a blob

We can assume no vertex of C is at C-distance at most d from each C-touched

blob. Let u be any vertex of C at C-distance at least 2 and less than g from Bi

for some 1 ≤ i ≤ l, and let P be the shortest path in G[C∪Bi] between u and any

vertex in Bi. If u touches t− 2 of the remaining C-touched blobs besides Bi, then

the middle vertex on P is at distance at most d from all C-touched blobs, which is

a contradiction. So any such vertex u touches at most t− 3 C-touched blobs, and

because it is not (t + c)-safe, it has at least c+3 neighbours in C.

Let v be a vertex at C-distance exactly d + 1 from Bi for some 1 ≤ i ≤ l, and let

A,B be the sets from Lemma 3.4 used with G[C],g,v,c,d−1. We replace blob Bi

with B̄i

B̄I
i := BI

i ∪A, B̄C
i := BC

i ∪B, B̄W
i := BW

i ∪{w},

where w is any vertex of C at C-distance d from v that touches Bi.

Consider a vertex sk ∈ S that is (t + c)-safe for G \
⋃k−1

j=1 s j and B1, . . . ,Bi, . . . ,Bl .

It is possible that some of its neighbours in C are moved to B̄, but the number

of its neighbours cannot increase, so sk remains (t + c)-safe for G \
⋃k−1

j=1 s j and

B1, . . . , B̄i, . . . ,Bl , and Propery 1 holds.

Notice that B̄i and Bi touch the same blobs in B1, . . . ,Bl , because of the Invariant

for C. This implies that both the Invariant and Property 2 are satisfied. Because of

properties of B, no vertex v ∈ B̄C
i can touch any later created or extended blob, and

Property 3 holds. Every vertex in B̄C
i \BC

i only touches the C-touched blobs, and

we have at most t−1 of these, so Property 4 is satisfied.

Consider Property 5. Every time we extend blob Bi, we have |B̄W
i |= |BW

i |+1 and

from Lemma 3.4

|B̄i|= |Bi|+ |A∪B|+1≥ |Bi|+d +2+(c+1)
(⌊

d +1
4

⌋
+

⌊
d +2

4

⌋)
=

= |Bi|+
g+3

2
+(c+1)

(⌊
g+1

8

⌋
+

⌊
g+3

8

⌋)
.
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Let us consider how B̄i comes to existence. It is first created, at which point we

have no vertices in B̄i
W . Then it is extended x times. Over these x extensions, we

add x vertices to B̄i
W and at least x(|A∪B|+ 1) vertices to the whole B̄i. So the

ratio between the wasted part and total number of vertices in the blob always stays

below (|A∪B|+1)−1. As a result:

|B̄W
i |
|B̄i|

<
1

|A∪B|+1
≤
(

g+3
2

+(c+1)
(⌊

g+1
8

⌋
+

⌊
g+3

8

⌋))−1

Now assume G has girth g. According to Lemma 3.4 we have

|A∪B|+1≥ (c+2)d−1 and
|B̄W

i |
|B̄i|

<
1

(c+2)(g−3)/2 .

It remains to show that if none of the four opearations can be performed then we

have a full decomposition. But this is straightforward, because if there still exists

any maximal connected component C of G \
(

S∪
⋃l

i=1 Bi

)
then there is a vertex

v ∈ C at C-distance at most d from all C-touched blobs, or all vertices are at C-

distance at least d + 1 from some C-touched blob. In the former case we create a

non-trivial blob. In the latter case we consider any vertex v and blob Bi that is at

C-distance at least d+1 from v. Let p be a shortest path in C∪Bi connecting v with

Bi and let w be the vertex on p at C-distance t + 1 from Bi. Then we can extend

blob Bi using w.

For g = 3, the odd girth imposes no condition, but we also cannot use the quanti-

tative part of Lemma 3.4, and we only get
|BW

i |
|BI|

≤ 1
2

. This leads to the same result

as in Theorem 2.3.

The bound we get on the ratio between the sizes of BW
i and Bi is much better if

G has large girth. In that case Lemma 3.4 gives sets A,B of size exponential in g,

which is a huge improvement over the linear bound we get for graph with large

odd girth but low girth. We point out here that an even stronger result holds once

C4 is forbidden as an induced subgraph. Kühn and Osthus [2003] showed that all

C4-free graphs with large enough chromatic number satisfy Hadwiger’s conjecture.

29



Chapter 3. Colouring graphs without large clique minors and large (odd)
girth

3.3 Colouring

We use the decomposition from Theorem 3.5 to properly vertex colour a big in-

duced subgraph of our graph G with t + c colours.

Theorem 3.6. For every c ≥ 0 and every Kt+1-minor-free graph G with odd girth

g = 2q+1 > 3, there is a (t + c)-colourable induced subgraph H of G such that

|V (H)|>

(
1−
(

g+3
2

+(c+1)
(⌊

g+1
8

⌋
+

⌊
g+3

8

⌋))−1
)
|V (G)|.

Moreover, if G has girth g, there is a (t + c)-colourable induced subgraph H of G

such that

|V (H)|> (c+2)(g−3)/2−1
(c+2)(g−3)/2 |V (G)|.

Proof. From Theorem 3.5, we have a decomposition of G into a sequence of blobs

B1, . . . ,Bb and a set S.

In order of increasing 1 ≤ i ≤ b we first colour the independent sets BI
i , using

one colour for each independent set. Assume that for some 1 ≤ l ≤ b, the sets

BI
i for 1 ≤ i < l are coloured and we want to colour BI

l . By Property 2 of the

decomposition, all preceding blobs touched by Bl touch each other, and because G

is Kt+1-minor-free, BI
l touches at most t−1 of the blobs. Each of them is coloured

by a single colour, so there is a remaining colour for BI
l+1. We only need t colours

in this step.

Next, we colour the independent sets BC
i , which can be coloured independently,

thanks to Property 3. For all 1 ≤ i ≤ b, each vertex v ∈ BC
i touches at most t− 1

sets from BI
1, . . . ,B

I
b by Property 4, each of those is coloured by a single colour, so

we can use a remaining colour to also colour v. We still only need t colours.

Last, we colour all vertices in S = {s1, . . . ,s|S|} in the reverse order of the one in

which we added them. From Property 1, for every 1≤ i≤ |S| vertex si ∈ S is (t+c)-

safe for G \ S′ and B1, . . . ,Bl for some 0 < l ≤ b and S′ = {s j | j < i}. Assume si

touches Isi of sets BI
1, . . . ,B

I
l . Then it also touches less than t + c− Isi vertices in

G\
⋃l

j=1(B
I
j ∪BW

j ). Therefore, it sees less than t + c colours on its neighbours and

there is at least 1 more colour that we can use.

We use t + c colours to colour all vertices of G except those that belong to BW
i for

some 1≤ i≤ b. It remains to show that the graph H induced by coloured vertices
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has many vertices. We have

|V (H)|= |V (G)|−
b

∑
i=1
|BW

i |>

> |V (G)|−
(

g+3
2

+(c+1)
(⌊

g+1
8

⌋
+

⌊
g+3

8

⌋))−1 b

∑
i=1
|Bi| ≥

≥

(
1−
(

g+3
2

+(c+1)
(⌊

g+1
8

⌋
+

⌊
g+3

8

⌋))−1
)
|V (G)|.

If G has girth g, Theorem 3.5 gives us

|V (H)|= |V (G)|−
b

∑
i=1
|BW

i |> |V (G)|− 1
(c+2)(g−3)/2

b

∑
i=1
|Bi|

≥ (c+2)(g−3)/2−1
(c+2)(g−3)/2 |V (G)|.

A triangle-free graph is a graph that contains no K3 as a subgraph. As a special

case of Theorem 3.6 for c = 0 and g = 5 we have:

Corollary 3.7. For every triangle-free graph G without a minor of Kt+1 there is a

t-colourable induced subgraph H of G such that |V (H)| ≥ 4
5 |V (G)|.

In the same settings, Dvořák and Yepremyan [2019] recently showed the following.

Theorem 3.8. For every positive 0< ε < 1/26 there exists a positive integer t0 such

that for every t ≥ t0, if G is a triangle-free graph on n vertices with no Kt-minor

then α(G)≥ n
t1−ε .

As discussed in the Introduction, we can t times pick the maximum independent

set and colour it with a single colour. This could lead to an improvement of Corol-

lary 3.7 and better understanding of results mentioned in Chapter 2, but we do not

investigate this direction here.

For c = 0, Theorem 3.6 gives a lower bound on the maximum sized t-colourable

induced subgraph of a Kt+1-minor-free graph with (odd) girth g. But we can also

use a small number of additional colours to cover almost the whole graph.
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Theorem 3.9. For every ε,δ > 0 there exists t0 such that for every t > t0, every

triangle-free and Kt+1-minor-free graph G admits a (1+ δ )t-colourable induced

subgraph on at least (1− ε)|V (G)| vertices.

Proof. Given ε,δ , let us choose

c :=
1
ε
−5; t0 :=

c
δ
.

Since G is triangle-free, it has odd girth 5, and from Theorem 3.6 we have an

induced subgraph H coloured by t + c colours. We have

t + c =
(

1+
c
t

)
t <
(

1+
c
t0

)
t = (1+δ )t.

Graph H has at least
(

1− 1
c+5

)
|V (G)|= (1− ε)|V (G)| vertices.

3.4 Conclusion

We used a rather technical, but fairly simple and constructive method of finding a

blob decomposition to prove that we can colour a big fraction of vertices of every

Kt+1-minor-free graph on n vertices with (odd) girth g.

The parameter g improves the ratio of covered vertices as it grows. Moreover, for

a fixed value of g, we can leverage a small number of additional colours to colour

almost the whole graph. Triangle-free graphs are the simplest object in this chapter,

and because they are well known, there is a hope we can do significantly better for

them than in general case.

Question 3.10. Can we prove that there is a constant β ≥ 1 such that every

triangle-free graph without a Kt+1 minor can be coloured with β · t colours?
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4
Maker-Breaker on multigraphs

In this chapter, by a graph we mean a multigraph, i.e. multiple edges between any

pair of vertices are allowed. For simplicity of our proofs we forbid loops, that is,

there is no edge with both endpoints in the same vertex. While this is non-standard,

in the games we investigate, it is never useful for any player to pick a loop in their

turn, so we may just assume there are no loops in the first place. Additionally, our

definition of edge contracting does not create any loops.

Definition 4.1. A contraction of an edge uv ∈ E(G) is an operation in which we

add to G an edge uw for every vertex w adjacent to v where w 6= u, and delete the

vertex v from the graph.

4.1 The (2,2) game

A (2,2) Connectivity Maker-Breaker game is a game of two players, Maker and

Breaker, in which both players take turns claiming previously unclaimed edges of

a given (multi)graph G. Breaker plays first, and in each turn he first claims 2 edges,

and then Maker claims 2 edges. If the edges Maker claims throughout the game

form a spanning connected subgraph of G, she wins; otherwise, Breaker wins.

Notice that if Breaker wins, it is because he claimed all edges of some edge cut set.

If both players play optimally and Maker has a winning strategy, we say that the

graph is Maker’s win; otherwise, it is Breaker’s win.
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Chapter 4. Maker-Breaker on multigraphs

The problem is well known as stated. For convenience we alter what players do

in their steps, but immediately observe that it does not change the outcome of the

game. Instead of claiming 2 edges in his turn, Breaker deletes 2 edges. Instead

of claiming 2 edges in her turn, Maker contracts 2 edges. If the graph becomes

disconnected, Breaker wins, and if it is contracted into a single vertex, Maker wins.

Observation 4.2. Every graph G is Maker’s win if and only if Maker has a winning

strategy in the corresponding contraction/deletion game.

Proof. If G is Maker’s win, Maker can claim edges to end up with a spanning

connected subgraph of G. If instead of claiming edges she contracts them, she

ends up with the whole graph contracted into a single vertex.

If G is Breaker’s win, Breaker can claim edges to end up with a subgraph containing

an edge cut set of G. If instead of claiming edges he deletes them, he disconnects

the graph.

The notions of contraction and deletion of edges is more suitable for our proofs

and we stick to it.

Similar to other versions mentioned in Chapter 1, also the (2,2) game is tightly

connected to the number of edge-disjoint spanning trees.

Proposition 4.3. For every graph G, if G has 3 edge-disjoint spanning trees, then

G is Maker’s win.

Proof. We proceed by induction on n, the number of vertices in G. If n= 1, Maker

wins trivially, and if n = 2, there are at least 3 parallel edges between the 2 vertices

of G, so Breaker can delete at most 2 in his step, and Maker wins by contracting

the remaining one.

Let n> 2 and let T1,T2,T3 be 3 edge-disjoint spanning trees in G. If Breaker deletes

no edge from any of T1,T2, and T3, Maker can contract any 2 edges and finish with

graph G′. Because T1,T2,T3 (possibly with some contracted edges) are still 3 edge-

disjoint spanning trees of G′, Maker wins by the induction hypothesis. So it is not

useful for Breaker to choose any edge not belonging to any of the trees.

Assume, without loss of generality, that Breaker deletes 2 edges from T1. This

disconnects T1 into 3 disjoint sets V1,V2,V3 such that V1 ∪V2 ∪V3 = V (G), and
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T1[V1],T1[V2] and T1[V3] are connected graphs. Because T2 is a spanning tree, there

are edges e, f ∈ E(T2) such that, up to symmetry, e = v1v2 for v1 ∈ V1 and v2 ∈
V2, and f = v′2v3 for v′2 ∈ V2 and v3 ∈ V3. Maker contracts e and f . After this

contraction, the edges of T1,T2,T3 that survived the deletion and contraction still

form 3 edge-disjoint spanning trees, and Maker wins by the induction hypothesis.

For the last case, assume, without loss of generality, that Breaker deletes an edge

from T1 and an edge from T2. It disconnects T1 into sets V1,V2 and T2 into sets V3,V4.

Because T3 is a spanning tree, there are edges e, f ∈ E(T3) such that e = v1v2 for

v1 ∈V1 and v2 ∈V2, and f similarly connects V3 with V4. Maker contracts e, f and

we again have a graph with less vertices and 3 edge-disjoint spanning trees.

On the other hand, 3 edge-disjoint spanning trees are not necessary for a graph to

be Maker’s win. Let K4 have vertices v1,v2,v3,v4 and add edges v1v2 and v3v4. It is

a simple case analysis that this graph is Maker’s win. But it only has 8 edges, while

we need at least 9 to have 3 disjoint-spanning trees. Even though 3 edge-disjoint

spanning trees are not necessary, having exactly 2 of them is not sufficient.

Proposition 4.4. For all n > 1, if G has n vertices and at most 2(n−1) edges, then

G is Breaker’s win.

Proof. We proceed by induction on n. If n = 2 then G has 2 edges, Breaker can

delete both and win. If n = 3, a vertex of G only has 2 edges incident with it,

Breaker deletes both and disconnects the graph.

Let n > 3. In each single round, Breaker deletes 2 edges and Maker contracts 2

edges. This decreases the number of vertices by 2 and the number of edges by at

least 4. The number of edges is at most 2(n−1)−4 = 2(n−3), so we can use the

induction hypothesis, making Breaker win.

We move away from spanning trees, and consider a family of graphs with an unfor-

tunate property related to Maker-Breaker games. Let Gk for k≥ 0 be the following

graph on k + 2 vertices. There are 2 special vertices u1 and u2 connected by 2

edges (an edge of multiplicity 2), and each remaining vertex v is connected to u1

by a single edge and to u2 by 2 edges.
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Lemma 4.5. For every even k, Gk is Breaker’s win.

Proof. We proceed by induction on even values of k. If k = 0 then Breaker deletes

both edges u1u2 and disconnects the graph.

For k > 0, see Figure 4.1 and consider 2 different vertices v1,v2 ∈ V \{u1,u2}. If

Breaker deletes edges u1v1 and u1v2, both v1 and v2 only have 2 edges incident

with them. If Maker does not contract at least 1 edge incident with v1 (and v2)

in her next step, Breaker deletes both remaining edges, and disconnects the graph.

Therefore, Maker has to contract both u2v1 and u2v2. The resulting graph is Gk−2,

which is Breaker’s win by the induction hypothesis.

G4 G2

B M MB

Figure 4.1: Breaker’s win graphs G4 and G2 together with Breaker’s winning

strategy.

The following is a simple observation which we only state here to simplify the later

proofs.

Observation 4.6. If G is a connected graph where each edge has multiplicity at

least three then G is Maker’s win.

Proof. We proceed by induction on the number of vertices. If there is only 1

vertex, Maker wins by default. If there are 2 vertices, there are at least 3 parallel

edges between them, Breaker can only delete 2 in his turn and Maker wins by

contracting the last edge.

If the number of vertices is at least 3, Breaker either deletes 2 edges between the

same pair vertices, in which case Maker contracts a third edge and any other edge

in the graph, decreasing the number of vertices by 2, and wins by the induction

hypothesis. Otherwise, Breaker deletes edges uv,u′v′ but then Maker contracts

uv,u′v′ and achieves the same outcome as in the previous case.
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Lemma 4.7. For every odd k, Gk is Maker’s win.

Proof. We proceed by induction on odd values of k. For each Breaker’s choice of

edges to delete, see Figure 4.2, we describe Maker’s counter-play:

1. Breaker deletes uiv1 and u jv2 for 1≤ i, j ≤ 2:

Maker contracts any edge incident with v1 and any edge incident with v2.

This yields a graph Gk−2 with some additional multiedges u1u2 that can only

help Maker and she wins by induction.

2. Breaker deletes uiv1 and u2v1, or uiv1 and u1u2 for 1≤ i≤ 2:

Maker contracts an edge incident with v1 and an edge u1u2. After this opera-

tion the graph is connected and only consists of edges of multiplicity at least

three and by Observation 4.6 Maker wins.

3. Breaker deletes u1u2 and u1u2:

Maker contracts edges u1v1 and u2v1 for any v1 ∈V \{u1,u2}. This de facto

contracts u1u2 and yields a graph that is connected and only consists of edges

of multiplicity at least three, which is by Observation 4.6 Maker’s win.

M M M

1 2 3

Figure 4.2: Maker’s win graphs G5 after Breaker’s turn, and Maker’s turn.

These lemmata together give us the following:

Theorem 4.8. Graph Gk is Maker’s win if and only if k is odd.

The deletion of a vertex is not a monotone operation for Gk with respect to be-

ing Maker’s or Breaker’s win. The deletion of a vertex is not even monotone for

the game in which both players only claim (delete/contract) 1 edge in their turn.

Consider any Maker’s win graph G and add a new vertex u connected to any other
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vertex v by a single edge. This graph G+u+uv is Breaker’s win, but deleting ver-

tex u makes it Maker’s win. On the other hand, a graph on 3 vertices v1,v2,v3 and

edges v1v2,v1v2,v1v3,v1v3,v2v3 is Maker’s win, but deleting the vertex v1 makes it

Breaker’s win.

4.2 The (1/2,1/2) game

Even more unfortunate is that if we take 2 graphs G3 and connect them by a vertex

(take a vertex of each graph and unify them), we get a Breaker’s win graph despite

both copies of G3 being Maker’s win. We introduce a variant of the (2,2) game

that addresses this last downfalls.

A (1/2,1/2) Connectivity Maker-Breaker game is a game of two players, Maker

and Breaker, played on a graph G. Breaker goes first and in each turn he chooses

the value c ∈ {1,2}. Then he deletes c edges, and Maker contracts c edges. The

game ends when the graph becomes disconnected, in which case Breaker wins and

G is Breaker’s win, or the graph becomes contracted into a single vertex, in which

case Maker wins and G is Maker’s win.

In the rest of the chapter we only consider the (1/2,1/2) game and properties of

being Maker’s or Breaker’s win as stated here.

It is easy to see that if Breaker wins the (2,2) game, he also wins the (1/2,1/2)

game. Consequently, Proposition 4.4 follows without change. The proof of Propo-

sition 4.3 can be slightly modified to show that even for this game, if we have a

graph with 3 edge-disjoint spanning trees, then it is Maker’s win.

The ability to choose how many edges both players claim in a step gives Breaker

more power and Gk becomes Breaker’s win even for odd values of k, because he

can switch from the odd case to the even case by choosing to remove only one edge

in his first turn and follow his winning strategy for even k afterwards.

Even if deleting vertices can change which player wins, the property of being

Maker’s win or Breaker’s win is monotone under other operations.

Observation 4.9. Let G = (V,E) be Breaker’s win. Then for every subset E ′ ⊆ E

it holds that G′ = (V,E ′) is Breaker’s win.
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Proof. For contradiction assume G′ is Maker’s win for some E ′ ⊆ E. We show

how Maker can adapt her strategy for G′ to also win on G.

Let e, f ∈ E be edges chosen by Breaker in his turn. Let e′ = e in case e ∈ E ′;

otherwise, let e′ be any edge in E ′ not yet chosen by either player. Similarly,

let f ′ = f in case f ∈ E ′; otherwise, let f ′ be any edge in E ′ not yet chosen by

either player. Maker can assume Breaker deleted all edges e,e′, f , f ′, exactly two of

which belong to G′. She can then follow her strategy for G′ and react to Breaker’s

move. If Breaker only chooses a single edge in his turn, we can consider previous

case with e = f , in which case we also get e′ = f ′, so edges e,e′, f , f ′ have exactly

one edge from G′ among them. Maker never deviates from her winning strategy

for G′, so she contracts the whole graph into a single vertex, and wins the game.

Observation 4.10. Let G be Maker’s win. Then for every graph H obtained from

G by contracting edges it holds that H is Maker’s win.

Proof. For contradiction assume H is Breaker’s win. Then Breaker can follow

the same strategy (delete the same edges) also for G and disconnect it, which is a

contradiction with G being Maker’s win.

The proof of the following proposition is an example of splitting the gameplay.

Proposition 4.11. Let H be a subgraph of G and let H be Maker’s win. Then G is

Maker’s win if and only if G/H is Maker’s win.

Proof. Let G/H be Maker’s win and consider Maker’s winning strategies for both

G/H and H. We describe a winning strategy for Maker on G as follows. If in some

turn Breaker only deletes a single edge, or two edges both in either G/H or H,

Maker follows her winning strategy for the respective graph. Otherwise, Breaker

chooses edges e, f from G/H and H respectively. Maker behaves as if Breaker

only deleted the edge e according to her strategy for G/H, and then as if Breaker

only deleted f according to her winning strategy for H. Neither on G/H nor H

Maker deviates from her winning strategy and so she wins on both, contracting the

whole G into a single vertex.

The other implication follows from Observation 4.10.
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4.3 Vertex connectivity

Assume a graph G has a vertex cut set of size 1 (an articulation). Then it can be

split into graphs G1,G2 such that these intersect in a single vertex and each edge of

G belongs to either G1 or G2. We show that deciding whether it is Maker’s win or

Breaker’s win can be done by solving for each subgraph independently.

Theorem 4.12. Let graphs G,G1,G2 be as above. Then G is Maker’s win if and

only if both G1 and G2 are Maker’s win.

Proof. If G1 (or G2) is a Breaker’s win, in G Breaker can delete only edges

belonging to G1 and disconnect the graph.

If G1 and G2 are Maker’s win, consider Maker’s winning strategies for both graphs.

We describe a winning strategy for Maker on G as follows. If in some turn Breaker

only deletes edge(s) in either G1 or G2, Maker follows her winning strategy for

the respective graph. Otherwise, Breaker chooses edges e1,e2 from G1 and G2

respectively. Maker behaves as if Breaker only deleted the edge e1 according to

her strategy for G1, and then as if Breaker only deleted e2 according to her winning

strategy for G2. Neither on G1 nor G2 Maker deviates from her winning strategy

and so she wins on both, contracting the whole G into a single vertex.

Assume G has a vertex cut set of size 2. Then it can be split into graphs G1 and G2

such that these intersect in vertices u,v with u 6= v, and each edge of G belongs to

either G1 or G2. Even in this case we can observe some Maker-Breaker properties

induced by the game properties for G1 and G2. If there is an edge uv∈ E(G) we do

not mind very much if this edge ends up in G1 or G2, but in our case analysis we

sometimes add an additional edge uv to G1 or G2 in which case we denote these

graphs as G+
1 and G+

2 respectively.

In the rest of this section we let G,G1,G+
1 ,G2,G+

2 ,u and v be as above.

We introduce graphs M and B which we use in the case analysis later in this section.
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M

a

d

c

b

a a

cc
M1 M2 M+

1 M+
2

b d b d

Figure 4.3: A Maker’s win graph M with a vertex cut set of size 2 that can be

split, as suggested, to Breaker’s win graphs.

Proposition 4.13. See Figure 4.3. The graphs M and M+
1 are Maker’s win. The

graphs M1,M2 and M+
2 are Breaker’s win.

Proof. Let us first consider M+
1 and any move of Breaker. Up to symmetry,

Breaker can only choose to delete the edge ab, both ab edges, or edges ab and ac.

In no case Breaker disconnects the graph, so if Maker has 2 moves, she contracts

the graph into a single vertex and wins. If Breaker only deletes an edge ab, Maker

contracts the other ab edge which results in a graph on 2 vertices and 4 parallel

edges, which is Maker’s win by Observation 4.6.

Consider the graph M. If Breaker only deletes 1 edge, Maker can always contract

an edge to end up with M+
1 , or M+

1 with an additional edge. Both are Maker’s win.

If Breaker deletes 2 edges, Maker can always contract edges to end up with a graph

on 2 vertices and 4 parallel edges, which is Maker’s win by Observation 4.6.

The graph M1 can be won by Breaker by deleting ac. After Maker’s move we

have a graph on 2 vertices and 2 parallel edges, and Breaker can delete both to

disconnect the graph. The graph M+
2 is the same as M1, so it is also Breaker’s win.

The graph M2 is the same as M1 without an edge and by Observation 4.9, it is

Breaker’s win.

Proposition 4.14. The graph B+
1 in Figure 4.4 is Maker’s win. The graphs B,B1,B2

and B+
2 are Breaker’s win.

Proof. Consider the graph B+
1 . If Breaker deletes both edges ac, Maker contracts

ab and bd leading to a graph on 2 vertices and 3 parallel edges which is Maker’s

win by Observation 4.6. If he deletes both edges bd, Maker contracts ab and ad

resulting in a Maker’s win graph on 2 vertices and 5 parallel edges. If Breaker
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B

a

b

c

d

e

f

B1
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B+
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d

e

f

B2 B+
2

Figure 4.4: A Breaker’s win graph B with a vertex cut set of size 2 that can be

split, as suggested, to Breaker’s win graphs.

deletes any other 2 edges, Maker contracts ac and bd which also leads to a Maker’s

win graph on 2 vertices and at least 3 parallel edges. We leave the case when

Breaker only deletes one edge as an exercise.

Consider a vertex v that has at most 2 incident edges. If it is Breaker’s turn, he can

delete both these edges and disconnect the graph. As a result, if it is Maker’s turn,

she has to contract at least one of the edges not to lose in the next turn.

Let us consider the graph B1. Breaker deletes ab and ad. Maker has to contract ac

and bd, but then e only has 2 incident edges and Breaker wins. By Observation 4.9

B2 and B+
2 are also Breaker’s win.

For the graph B, Breaker can delete ab and ad after which Maker has to contract

ac and bd. Then Breaker deletes c f and e f , Maker has to contract ce and d f , only

to leave c with 2 incident edges, so Breaker wins.

In order for Breaker to win, he needs to disconnect the graph. When playing on G

it may happen that he disconnects G1, but Maker contracts G2 together with both

disconnected components of G1. This cannot occur if Breaker can disconnect G1

in such a way that there is a connected component containing no cut vertex.

Definition 4.15. A graph G with u,v∈V (G) is uv-broken if Breaker has a winning

strategy in which he disconnects the graph into nonempty V1,V2 ⊂V (G) such that

u,v 6∈V1.

We are ready to investigate what can be deduced about the game for G if we know

the outcome for both G1 and G2.
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Theorem 4.16. Let G,G1,G2,u,v be as above:

1. If G1 is Maker’s win and G2 is Maker’s win, then G is Maker’s win.

2. If G1 is Maker’s win and G2 is Breaker’s win, then G is Breaker’s win if and

only if G2 is uv-broken.

3. If G1 is Breaker’s win and G2 is Maker’s win, then G is Breaker’s win if and

only if G1 is uv-broken.

4. If G1 is Breaker’s win and G2 is Breaker’s win, then G can be Maker’s or

Breaker’s win.

Proof.

1. Maker has winning strategies S1 for G1 and S2 for G2. We show how to

combine them into a winning strategy for G. If in his step Breaker only

deletes edge(s) from G1 (or G2), then Maker responds by following S1 (S2)

in her step. If Breaker deletes edges e1 ∈ E(G1) and e2 ∈ E(G2), Maker

behaves as if Breaker only deleted the edge e1 according to her strategy S1,

and then as if Breaker only deleted e2 according to her winning strategy S2.

Neither on G1 nor G2 Maker deviates from S1 or S2 respectively, and she

contracts both, and indeed the whole G, into a single vertex.

2. If G2 is uv-broken, Breaker follows his winning strategy also on G to win by

disconnecting some component from both u and v. If G2 is not uv-broken,

let Maker follow her winning strategy for G1 and the strategy that does not

allow G2 to be uv-broken for G2 as in the previous case. She contracts G1

into a single vertex, so vertices u,v become one. In G2, each vertex is either

contracted to u or to v and so the whole graph is contracted to a single vertex.

3. Same as 2. with G1 and G2 swapped.

4. By Proposition 4.14, B is a Breaker’s graph win with both B1 and B2 being

Breaker’s win. By Proposition 4.13, M is a Maker’s win graph with both M1

and M2 being Breaker’s win.
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Theorem 4.17. Let G,G+
1 ,G2,u,v be as above:

1. If G+
1 is Maker’s win and G2 is Maker’s win, then G is Maker’s win.

2. If G+
1 is Maker’s win and G2 is Breaker’s win, then G can be Maker’s or

Breaker’s win.

3. If G+
1 is Breaker’s win and G2 is Maker’s win, then G is Breaker’s win if and

only if G+
1 is uv-broken.

4. If G+
1 is Breaker’s win and G2 is Breaker’s win, then G can be Maker’s or

Breaker’s win.

Proof.

1. By Observation 4.10, the graph G′1 created from G+
1 by contracting the edge

uv is Maker’s win. Maker has winning strategies S1 and S2 for G′1 and G2

respectively. If Breaker chooses an edge or both edges from G2 in his step,

Maker responds according to S2. It follows that G2, and in particular u and

v, will be contracted into a single vertex. Therefore, Maker can play as if the

game is played on G′1 and G2 and since he wins on both, he wins on G.

2. By Proposition 4.14, B is a Breaker’s win graph with B+
1 being Maker’s win

and B2 being Breaker’s win. By Proposition 4.13, M is a Maker’s win graph

with M+
1 being Maker’s win and M2 being Breaker’s win.

3. If G+
1 is uv-broken, Breaker can follows his winning strategy also on G to

win by disconnecting some component from both u and v. If G+
1 is not uv-

broken, let Maker follow her winning strategy for G2 and the strategy S1 that

does not allow G+
1 to be uv-broken for G+

1 . She contracts G2 into a single

vertex, so vertices u,v become one. If at some turn, Maker is supposed to

contract the extra edge uv in G+
1 . She can rely on this being done in G2

and contract any other edge instead. At the end, each vertex in G+
1 is either

contracted to u or to v and so the whole graph is contracted to a single vertex.

4. By Proposition 4.14, B is a Breaker’s win graph with both B+
2 and B1 being

Breaker’s win. By Proposition 4.13, M is a Maker’s win graph with both M+
2

and M1 being Breaker’s win.
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Theorem 4.18. Let G,G+
1 ,G

+
2 ,u,v be as above:

1. If G+
1 is Maker’s win and G+

2 is Maker’s win, then G is Maker’s win.

2. If G+
1 is Maker’s win and G+

2 is Breaker’s win, then G can be Maker’s or

Breaker’s win.

3. If G+
1 is Breaker’s win and G+

2 is Maker’s win, then G can be Maker’s or

Breaker’s win.

Proof.

1. Maker has winning strategies S1 for G+
1 and S2 for G+

2 . Because of symme-

try, we only consider the gameplay for G1. If Breaker chooses an edge from

G1, Maker chooses an edge according to S1. The only problem occurs when

Maker’s response is to play the artificial edge uv which appears in G+
1 , but

not in G1. In that case, Maker instead behaves as if Breaker played the edge

uv in G+
2 and contracts the edge that she would play according to S2. That

way no player chooses uv in G+
2 so the remaining game on the remainder of

G2 is Maker’s win and u,v is contracted into a single vertex. Knowing that,

we can assume that on the remainder of G1 vertices u,v will become unified

and continue as if Maker really contracted uv. Following the rest of the turns

according to S1 and S2 deems G Maker’s win.

2. By Proposition 4.14, B is a Breaker’s win graph with B+
1 being Maker’s win

and B+
2 being Breaker’s win. By Proposition 4.13, M is a Maker’s win graph

with M+
1 being Maker’s win and M+

2 being Breaker’s win.

3. Same as 2. with G+
1 and G+

2 swapped.

In the first case of Theorem 4.18 it is feasible for both G1 and G2 to be Breaker’s

win in a Maker’s win graph G. What makes this possible is that once Maker looses

on G1 he has an extra move on G2 thanks to which she actually wins there and
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contracts u and v into a single vertex, also contracting the components of G1. This

feature of Maker’s play prevents us from establishing the behaviour of the only un-

determined case: when both G+
1 and G+

2 are Breaker’s win it remains open whether

G can be Maker’s win.

4.4 Simulations

To help us in our research we developed a computer program (Kučera [2019]).

For a given graph it answers whether it is Maker’s win or Breaker’s win (and pro-

vides a winning strategy) for the (1/2,1/2) game. Because it is mostly brute force,

we are only able to use it on rather small graphs. With the help of a database of

non-isomorphic simple graphs (no loops or parallel edges) by McKay and Piperno

[2014], we established the minimum number of edges m a Maker’s win simple

graph on n vertices can have and computed the number of such graphs. See ta-

ble 4.1.

n 2 3 4 5 6 7 8 9 10

m 3 6 8 10 13 15 17 20 22

# 1 2 18 48 ≥ 4732 ≥ 3

Table 4.1: The minimum number of edges m in Maker’s win graphs on n vertices

and the number of non-isomorphic simple graphs of that size.

4.5 Conclusion

We studied 2 variants of the Maker-Breaker connectivity game. The second allows

Breaker to choose whether both players claim 1 or 2 edges for each coming round.

We noted there are several operations that maintain winning strategies for Maker

or Breaker, and attempted to simplify the game for graphs with a vertex cut set of

size at most 2. It may be useful for getting a deeper understanding of the problem

to answer the only completely unsolved (and unstated) case of Theorem 4.18.

Question 4.19. If G,G+
1 ,G

+
2 ,u and v are as in Section 4.3, and both G+

1 ,G
+
2 are

Breaker’s win, can G be Maker’s win?
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Both variants are connected with the number of edge-disjoint spanning trees. To

allow Maker’s win, 3 are enough, while 2 are not. This implies that any graph

on n vertices that is Maker’s win and minimizes the number of edges m, satisfies

2(n−1)< m≤ 3(n−1). Figure 4.5 shows minimum Maker’s win graphs for each

small, fixed number of vertices.

Figure 4.5: Examples of Maker’s win graphs on the minimum number of edges.

Using the few values of m from Table 4.1, we can hope the game fits a pattern:

Question 4.20. Is the minimum number of edges of a Maker’s win graph on n > 1

vertices equal to 2n+
⌊

n−3
3

⌋
?

47



Bibliography

K. Appel and W. Haken. Every planar map is four colorable. Bull. Amer. Math.

Soc., 82(5):711–712, 1976.

J. Balogh and A. V. Kostochka. Large minors in graphs with given independence

number. Discrete Math., 311(20):2203–2215, 2011.

J. Beck. Combinatorial games, volume 114 of Encyclopedia of Mathematics and

its Applications. Cambridge University Press, Cambridge, 2008.
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