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Abstract

Combinatorial geometry is the study of combinatorial properties of geometric objects. In

this thesis we consider several problems in this area.

1. We determine the maximum number of paths with k edges in a unit-distance graph in
the plane almost exactly. It is only for £ = 1 (mod 3) that the answer depends on the
maximum number of unit distances in a set of n points which is unknown. This can be
seen as a generalisation of the Erd&s unit distance problem, and was recently suggested
to study by Palsson, Senger and Sheffer (2019). We also obtain almost sharp results for

even k in dimension 3.

2. Finding the smallest d for which a given graph can be represented as a unit-distance
graph in dimension d is an important problem, that is NP-hard in general. It is closely
related to orthonormal representations of graphs, which has many combinatorial and al-
gorithmic applications. Answering questions of Erdés and Simonovits (1980), we show
)

that any graph with less than ( or with maximum degree d can be represented as a

unit-distance graph in dimension d.

3. We propose an approach that might lead to a human-verifiable proof of the recent
theorem of de Grey that the chromatic number of the plane is at least 5. Our ideas are
based on finding so-called almost-monochromatic sets. Motivated by its connections to the
chromatic number of the plane, we study questions about finding almost-monochromatic
similar copies of a given set in colourings of various base sets under some restrictions on

the colouring.

4. We study an approximate version of k-distance sets. We compare its maximum car-
dinality with the maximum cardinalities of k-distance sets. It turns out that for fixed &
and large dimension the two quantities are the same, while for fixed dimension and large
k they are very different. We also address a closely related Turan-type problem, studied
by Erdos, Makai, Pach, and Spencer: given n points in the d-dimensional space, at most
how many pairs of them form a distance that is very close to k given distances, if any two

points in the set are at distance at least 1 apart?

5. A set in a normed space is an equilateral set if the distance between any two of its points
is the same. It is wide open conjecture that any normed space of dimension d contains an
equilateral set of cardinality d + 1. We find large equilateral sets in a specific family of
normed spaces. As a corollary, we confirm the conjecture for those normed spaces whose

unit ball is a polytope with at most % opposite pairs of facets.
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Chapter 1

Introduction

In this thesis we consider several problems in combinatorial geometry. Some of these
problems are related to unit-distance graphs, while others are related to sets that span
only few different distances. All the problems we study are in the setting of Euclidean

space, with the exception of one which is about other normed spaces.

In the d-dimensional Euclidean space, a graph is a unit-distance graph if its vertices are
points of the space, and its edges are some pairs of points at distance 1 apart. Unit-
distance graphs are in the focus of many important questions in combinatorial geometry.

Three of these are the following.

1. What is the maximum number of edges of a unit-distance graph in the d-dimensional

space on n vertices?

2. What is the lowest dimension d for which a given graph is a unit-distance graph in

the d-dimensional space?

3. How large can be the chromatic number of a unit-distance graph in the plane?

In Chapter [2] we consider a generalisation of the first question about the maximum number
of paths in unit distance graphs. In Chapter 3] we investigate the second question in terms
of the maximum degree and the number of edges. In Chapter |4| we propose an approach

to find a lower bound on the chromatic number of the plane.

It is not hard to see that in the d-dimensional Euclidean space the maximum cardinality
of a set having an equal distance between any two of its points is d + 1. However, the

following questions are much more difficult.
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4. What is the maximum cardinality of a set in the d-dimensional Euclidean space,

whose points span at most k different (positive) distances?

5. What is the maximum cardinality of a set having an equal distance between any two

of its points in a given normed space of dimension d?

A set having the property described in the fourth question is called a k-distance set. In
Chapter [5| we investigate an approximate version of this notion, and consider some related
questions. A set having the property described in the fifth question is called an equilateral
set. In Chapter [6] we find equilateral sets of large cardinality in a specific family of normed

spaces.

1.1 Notation

Unless stated otherwise, ||p — ¢|| denotes the Euclidean distance of p, ¢ € R?.

We denote by [d] the set {1,...,d}, and by (SL ) the set of all subsets of S of cardinality
m. ForjeRand S, T CRlet j+S={j+s:s€Stand S+T ={s+t :s€S,teT}.

By a subspace of R? we mean a linear subspace. For a subspace X C R? we denote by X+
the orthogonal complement of X. We write span (ay, ..., ay) for the subspace spanned by

ai,...,a; € RY.

We use the notation f(n) = O(g(n)) if there exists a constant C' so that f(n)/g(n) < C for
every sufficiently large n. We write f(n) = Q(g(n)) if g(n) = O(f(n)), and f(n) = ©(g(n))
if f(n) = O(g(n)) and g(n) = O(f(n)). We use the notation f(n) = o(g(n) if f(n)/g(n) — 0
as n — oo. Further we write f(n) = O(g(n)) if there exist positive constants C' and ¢ such
that f(n)/g(n) < C'log®n for every sufficiently large n, f(n) = Q(g(n)) if g(n) = O(f(n)),
and f(n) = O(g(n) if F(n) = O(g(n)) and g(n) = O(f(n).

1.2 Discrete chains

We prove the results from this section in Chapter [2 which is based on [30].

The first question can also be phrased as asking for the maximum number u4(n) of unit
distance pairs determined by a set of n points in R?. The planar version, determining
ug2(n), is also known as the Erd6s unit distance problem. The question dates back to 1946,

and despite its long history, the best known upper and lower bounds are still very far
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apart. For some constants C, ¢ > 0, we have
nlJrc/loglogn < UQ(TL> < CTL4/3,

where the lower bound is due to Erdés [14] and the upper bound is due to Spencer,

Szemerédi and Trotter [63].

As in the planar case, the best known upper and lower bounds in the 3-dimensional case

are also far apart. For every € > 0 there are some ¢, C' > 0, such that
en*3loglogn < ug(n) < Cn2P/197+ (1.1)

where the lower bound is due to Erdés [I5], and the upper bound is due to Zahl [68].
The latter is a recent improvement upon the upper bound O(n%/?) by Kaplan, Matousek,
Safernova, and Sharir [41], and Zahl [69].

A possible way to generalise this problem is to ask for the maximum number of paths
of a fixed length in a unit-distance graph on n vertices. Surprisingly, in many cases
this question turns out to be more approachable than the original. We consider a slight
modification of this problem, that was recently proposed by Palsson, Senger and Sheffer
[54]. Let 6 = (d1,...,0k) be a sequence of k positive reals. A (k + 1)-tuple (p1,...,Pk+1)
of distinct points in R? is called a (k,§)-chain if ||p; — pip1|| = 6; for all i = 1,... k.
For every fixed k determine C¢(n), the maximum number of (k,d)-chains that can be
spanned by a set of n points in R¢, where the maximum is taken over all §. Note that
Cé(n) = ug(n). In the planar case, the following upper bounds were found in [54] in terms

of the maximum number of unit distances.

Proposition 1.1 ([54]).
O (n - ua(n)*/3) if k=0 (mod 3),
Ci(n) =<0 (uz(n)*+2)/3) if k=1 (mod 3),
O (n?- uQ(n)(k_2)/3) if k=2 (mod 3).

If ug(n) = O(n'*+) for any e > 0, which is conjectured to hold, then the upper bounds in
the proposition above almost match the lower bounds given in Theorem (1.2} However, as
we have already mentioned, determining the order of magnitude of uz(n) is very far from
being done, and in general it proved to be a very hard problem. Thus, it is interesting to
obtain “unconditional” bounds, that depend on the value of uz(n) as little as possible. In

[54], the following “unconditional” upper bounds were proved in the planar case.
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Theorem 1.2 ([54]). C3(n) = ©(n?), and for every k > 3 we have
CR(m) = @ (nlte+0/311)

and
C2(n) = O (n2k/5+1+wk> ’

1

where v < 15,

4
and vk — = as k — oo.

We determine the value of CZ(n) up to a small error term in two thirds of the cases
independently of the value of uz(n), by matching the lower bounds given in Theorem
Further, we show that in the remaining cases determining C’,%(n) essentially reduces to

determining ua(n).
Theorem 1.3. For every integer k > 1 we have

C2(n) = © (nK’fH)/BJ“) if k= 0,2 (mod 3),
and for any € > 0 we have

C%n) =Q (n(k_l)/?’uQ(n)) and C2(n) = O (n(k_l)/3+5uQ(n)> if k=1 (mod 3).

As for the 3-dimensional case, the following was proved in [54].

Theorem 1.4 ([54]). For any integer k > 2, we have

C’,z’(n) =0 (n“‘;/?JH) ,

and
O (n2k/3+1) if k=0 (mod 3),
Ci(n) = § O (n2¥/3+23/33+¢) if | = 1 (mod 3),
O (n2k/3+2/3) if k =2 (mod 3).

We improve this upper bound and essentially settle the problem for even k.

Theorem 1.5. For any integer k > 2 we have

C3(n) =0 (nk/QH) .
Furthermore, for even k we have

C(n) =06 (nk/QH) .

10
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We note that for d > 4 we have C(n) = ©(n*T1), thus both the unit distance problem
and the generalisation to paths is the most interesting for the d = 2,3 cases. Indeed, we
clearly have C&(n) = O(n*T1). To see that C(n) = Q(n**1), take two circles of radius
1/ V2 centred at the origin in two orthogonal planes, and place n/2 points on each of
them. The constant factor for d > 4 can be improved by using more than two pairwise
orthogonal circles. For even d > 4 Swanepoel [64] determined the exact value of C{(n) for

sufficiently large n.

1.3 Unit-distance embeddings

We prove the results from this section in Chapter |3, which is based on [32].

We say that a graph G is realizable in a subset X of RY, if there exists a unit-distance
graph G’ in R?% on a set of vertices Xy C X, which is isomorphic to G. We will use this
notion for X = R? and for X = S%~!, where S~ is the sphere of radius 1/v/2 with centre
in the origin. Note that the reason for choosing this particular radius is that the distance
of two points on a sphere of radius 1v/2 is one if and only if the corresponding vectors are

orthogonal.

Erdds, Harary and Tutte [24] introduced the concept of Euclidean dimension dim G of a
graph G. The Euclidean dimension dim G (spherical dimension dimg G) of a graph G is
equal to the smallest integer k such that G is realizable in R* (on S¥=! c R¥).

For example, for the complete graph K  on d vertices we have dim Ky = d—1. Indeed, it is
not hard to see that that Ky is not realizable in R9=2 (we will prove this in Lemma [3.14)).
At the same time, the vertices of a regular unit simplex provide a realization of K in

R, Similarly, we have dimg K, = d.

It is also well known that K33 cannot be realized in R3. However, the dimension of any
bipartite graph G is at most 4. Indeed, let S; and So be circles of radius 1/v/2 centred at
the origin, in orthogonal planes. Then the distance between any two points of S; and S is
1. Thus placing every vertex of the first class on S; and every vertex of the second class on
So is a realization of G. Note that, for this example, it is important that in our definition
of a unit distance graph we do not require the edge set to contain all unit-distance pairs.
If we had require that, we would arrive to the definition of faithful realizations and faithful
dimension. Some differences between these two types of realizations were investigated by

Alon and Kupavskii in [2]. Among other results, they prove that for every d there is a

11
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bipartite graph that does not admit a faithful realization in R¢.

In general, it is NP-hard to determine the dimension of a graph [59]. However, there are
upper bounds on the dimension, in terms of certain graph parameters. We consider upper

bounds in terms of the maximum degree and the number of edges of a graph.

Erdds and Simonovits [25] showed that if G has maximum degree d then dimg G < d + 2,
which implies dim G < d + 2. In Theorem [3.1]and Proposition[1.7]we improve these results.

Theorem 1.6. Let d > 1 and let G = (V, E) be a graph with mazimum degree d. Then G

is a unit distance graph in R? except if d = 3 and G contains K 33

Proposition 1.7. Let d > 2. Any graph G = (V, E) with maximum degree d — 1 has

spherical dimension at most d.

Note that, since dim K441 = d and and dimg K4y = d, the two results above are best

possible.

Let f(d) denote the least number for which there is a graph with f(d) edges that is not

realizable in RY.

There are some natural upper bounds on f(d). Since Ky is not realizable in R, we have
fd) < (d'f). Further, since K33 cannot be realized in R?, we have f(3) < 9 < (352).
In [25], Erd6s and Simonovits asked if f(d) = (d;r?) for d > 3. House [39] proved that
f(3) = 9, and that K33 is the only graph with 9 edges that can not be realized in R.
Chaffee and Noble [§] showed that f(4) = (4”;2) = 15, and there are only two graphs, Ks
and K331, with 15 edges that can not be realized in R* as a unit distance graph. Recently,
they showed [9] that f(5) = (552) = 21, and that K7 is the only graph with 21 edges that
cannot be realized in R as a unit distance graph. We answer the above-mentioned question

of Erdds and Simonovits as part of the following result.

Theorem 1.8. Let d > 3. Any graph G with less than (df) edges can be realized in R?.

If G moreover does not contain Ky.o — K3 or Kqyq, then it can be realized in S*1.

It is necessary to forbid K 49— K3 and K41 in the second statement of the above theorem
as they cannot be realized in S%~!; see Lemma

Ramsey-type questions about unit distance graphs have been studied in [2], and also by
Kupavskii, Raigorodskii and Titova [46]. In [2] the first of the following quantities was
introduced. Let fp(s) denote the smallest possible d, such that for any graph G on s

vertices, either G or its complement G can be realized as a unit distance graph in R%.

12



Chapter 1. Introduction

Similarly, we define fgp(s) to be the smallest possible d, such that for any graph G on s

vertices, either G or its complement G can be realized as a unit distance graph in S%1.

In [2] it is shown that fp(s) = (3 + o(1))s. We determine the exact value of fsp(s) and

give almost sharp bounds on fp(s).

Theorem 1.9. For any d,s > 1, fsp(s) =[(s+1)/2] and [(s —1)/2] < fp(s) < [s/2].

1.4 The chromatic number of the plane

We prove the results and discuss the details of the approach introduced in this section in
Chapter 4] which is based on [29].

A colouring of a set X is a function ¢ : X — A for some finite set A. A k-colouring of X
is a function ¢ : X — A with |A| = k. For a graph G = (V, E) a colouring ¢ : V— Ais a
proper colouring of G if (x,y) € E implies ¢(x) # ¢(y), and it is a proper k-colouring, if
in addition |A| = k. The chromatic number x(G) of a graph G is the smallest k for which

there exists a proper k-colouring of G.

The chromatic number of the plane, denoted by x(R?), is the chromatic number of the
graph (R, E) where E = {(z,y) : |[# — y|| = 1}. Determining the exact value of x(R?),

also known as the Hadwiger-Nelson problem, is a long standing open problem.

In 2018 de Grey [I1] showed that x(R?) > 5, improving the long standing previous lower
bound x(R?) > 4 which was first noted by Nelson (see [60]). The best known upper bound
x(R?) < 7 was first observed by Isbell (see [60]), and it is conjectured that x(R?) = 7. For

history and related results see Soifer’s book [60)].

It is easy to see that for any unit-distance graph G we have y(R?) > x(G). However,
a stronger statement is also true. According to the de Bruijn-Erdés theorem [I0] the
chromatic number of any infinite graph is attained by a finite subgraph. Thus, to determine
x(R9) it is sufficient to determine the maximum chromatic number of a finite unit distance

graph.

De Grey constructed a unit-distance graph G on 1581 vertices, and checked that x(G) > 5
by a computer program. Following his breakthrough, a polymath project, Polymath16
[12] was launched with the main goal of finding a human-verifiable proof of y(R?) > 5.
Following ideas proposed in the Polymathl6 project by Palvolgyi [56], we present an
approach that might lead to a human-verifiable proof of x(R?) > 5.

13
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We call a collection of unit circles C' = Cy U - -- U C, having a common point O a bouquet
through O. For a given colouring of R?, the bouquet C' is smiling if there is a colour, say
blue, such that every circle C; has a blue point, but O is not blue. We make the following

conjecture.

Conjecture 1.10. For every bouquet C, every colouring of the plane with finitely many

but at least two colours contains a smiling congruent copy of C'.

We show that the statement of Conjecture [1.10| would provide a human-verifiable proof
of x(R?) > 5, and we prove the conjecture for a specific family of bouquets for proper

colourings.

Theorem 1.11. Let C = C1 U ---UC), be a bouquet through O and for every i et O; be
the centre of C;. If O and Oy, ...,0, are contained in Q2, further O is an extreme point
of {O,01,...,0,}, then Conjecture is true for C for proper colourings of (R?, E).

The proof of Theorem [I.11] is through the study of almost-monochromatic sets, which we

shall introduce below.

Almost monochromatic sets

Let S C R? be a finite set with |S| > 3, and let sp € S. In a colouring of R? we call
S monochromatic, if every point of S has the same colour. A pair (5,sp) is almost-

monochromatic if S\ {so} is monochromatic but S is not.

Two sets S and T are similar, if there is an isometry f of R? and a constant A\ € R,
A # 0 with T = Af(S). A (one way) infinite arithmetic progression in R? is a similar copy
of N. A colouring is arithmetic progression-free if it does not contain a monochromatic
infinite arithmetic progression. Motivated by its connections to the chromatic number of

the plane, we propose to study the following problem.

Problem 1.12. Characterise those pairs (S,so) with S C R? and with sy € S for
which it is true that every arithmetic progression-free colouring of R® contains an almost-

monochromatic similar copy of (S, sg).

Note that finding an almost-monochromatic congruent copy of a given pair (S, sg) was
studied by Erdds, Graham, Montgomery, Rothschild, Spencer, and Strauss [19]. We solve
Problem in the case when S C Z?. A point sg € S is called an extreme point of

14
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S if so ¢ conv(S \ {so}). From now on we will use the abbreviations AM for almost-

monochromatic and AP for arithmetic progression.

Theorem 1.13. Let S C Z¢ and so € S. Then there is an AP-free colouring of R¢ without
an AM similar copy of (S, s0) if and only if |S| > 3 and sg is not an extreme point of S.

Problem is related to and motivated by Euclidean Ramsey theory, a topic introduced
by Erdés, Graham, Montgomery, Rothschild, Spencer, and Strauss [I8]. Its central ques-
tion asks for finding those finite sets S C RY for which the following is true. For every
k if d is sufficiently large, then every colouring of R% using at most k colours contains a
monochromatic congruent copy of S. Characterising sets having the property described
above is a well-studied difficult question, and is in general wide open. For a comprehensive

overview see Graham’s survey [34].

T is a homothetic copy (or homothet) of a S, if there is a vector v € R? and a constant
A€R (A#0) with T =v+ \S. T is a positive homothetic copy (or positive homothet)
of a .S, if moreover A > 0. The nature of the problem significantly changes if instead of a
monochromatic congruent copy we ask for a monochromatic similar copy, or a monochro-
matic homothetic copy. Gallai proved that if S C R? is a finite set, then every colouring of
R? using finitely many colours contains a monochromatic positive homothetic copy of S.
This statement first appeared in the mentioned form in the book of Graham, Rothschild,
and Spencer [35].

A direct analogue of Gallai’s theorem for AM sets is not true: there is no AM similar
copy of any (S, sg) if the whole space is coloured with one colour only. However, there
are pairs (.S, s9) for which a direct analogue of Gallai’s theorem is true for colourings of Q

with more than one colour. In particular, we prove the following result.

Theorem 1.14. Let S = {0,1,2} and sy = 0. Then every finite colouring of Q with more

than one colour contains an AM positive homothet of (S, so).

In general, we could ask whether every non-monochromatic colouring of R? contains an
AM similar copy of every (S, so). This, however, is false, as shown by the following example
from [19]. Let S = {1,2,3} and sg = 2. If Ry is coloured red and R< is coloured blue, we
obtain a colouring of R without an AM similar copy of (5, sg). Restricting the colouring
to N, using the set of colours {0,1,2} and colouring every n € N with n modulo 3, we
obtain a colouring without an AM similar copy of (S, sg). However, notice that in both

examples each colour class contains an infinite monochromatic AP.

15
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ANCE I 3 4 5 6 7 8
2 5 6 10 16 27 29 45
3 7 12 16 | >24| >40| >65|>121
4 9 13| >25|>41| >73|>127 | >241
5 |12 >20|>35|>66 | >112 | > 168 | > 252
6 | 13| >21|>40|>96|>141 | >281 | > 505

Table 1.1: Lower bounds on my(d).

Therefore, our reason, apart from its connections to the Hadwiger-Nelson problem, for
finding AM similar copies of (S,sp) in AP-free colourings was to impose a meaningful

condition to exclude ‘trivial’ colourings.

1.5 Nearly k-distance sets

We prove the results from this section in Chapter [5, which is based on [31].

Let us denote by my(d) the cardinality of the largest k-distance set in RY. We already
mentioned that mj(d) = d + 1, and it is also easy to see that my(1) = k + 1. In 1947,
Kelly [42] (answering a question of Erdds) showed that mgo(2) = 5. Table taken from
a paper of Szollési and Ostergard [26], summarises the best known lower bounds on (and

in some cases exact values of) my(d) for small values of k and d.

If d is large compared to k, then the best general bounds are

<dzl> < my(d) < (dzk). (1.2)

The upper bound is by Bannai, Bannai, and Stanton [5], and the lower bound for k£ < d+1,
follows from the following construction. Take all vectors in {0, 1}%+! with exactly k& many
1’s. Then they lie on a sphere in the hyperplane ) z; = k and determine only k& distinct

scalar products (and thus only & distinct distances).

For fixed d, asking for the maximum cardinality of a k-distance set is the inverse of
the Erdés distinct distances problem, which asks for the minimum number of disctinct
distances determined by a set of n points in R?. Erdés [I4] conjectured that my(2) =
O(k'*¢) and showed that my(2) = Q(k+/log k), which is still the best general lower bound.
The upper bound my(2) = O(klog k) is a recent break-through of Guth and Katz [37]. The
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best upper bounds by Solymosi and Vu [62] for d = 3 is my(3) = O(k*/3*+°()) and for d > 3
is my(d) = O(k(@+d-2)/2d)+0(1)) Tn general, it is conjectured that my(d) = O(k%/2+<),

We study two related quantities. The first is the maximum cardinality of sets where all
the distances spanned are very close to k given one. The second is the maximum number

of pairs in a set of n points whose distance is very close to k given distances.

A set of points S C R? is called an e-nearly k-distance set if there exist 1 <1 < ... <ty
such that
lp—qll € [t1,t1 + €] U... Ultg, ty + €]

for all p # g € S. We study
My(d) := lir% max{|S| : S is an e-nearly k-distance set in R%}.
E—

Note that the ¢; > 1 assumption is important, otherwise we would have My (d) = oc.
We clearly have My(d) > my(d). The difficulty of relating the maximal cardinalities of
k-distance sets and nearly k-distance sets more precisely lies in the fact that, in nearly
k-distance sets distances of different order of magnitude may appear. If we additionally
assume 75%1 < K for some universal constant K in the definition of nearly k-distance
sets, a compactness argument would imply that my(d) equals this modified My(d). An
expression equivalent to My (d) appears in a paper of Erdés, Makai and Pach [21, page 19],
where they speculate that “for k fixed, d sufficiently large probably My (d) = my(d).” We

confirm this.

Theorem 1.15. For a fized positive integer k we have My(d) = my(d) if either d > d(k)
ork <3.

On the other hand, for fixed d and large k the two quantities are very different. We
determine the order of magnitude of Mj,(d) in this setting. We show that My(d) = © (k%)
holds for any fixed d > 2. Since by [62] we have my(d) = O (kgH)’ we obtain that
My (d) > my(d) if k is sufficiently large compared to d. We will also find examples of small
k and d for which My (d) > mg(d).

We call a set S C R? separated if the distance between any two of its points is at least 1.
Let My (d,n) denote the maximum M, such that there exist numbers 1 < ¢; < ... < ¢t
and a separated set S of n points in R? with at least M pairs of points at a distance that

falls into [t1,¢1 + 1 U--- U [tg, tx + 1].

This quantity was studied by Erdés, Makai, Pach and Spencer [20] 21, 22, [50]. Their
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constructions can easily be generalised to show that for any d > 2, kK > 1 we have
Mi(d,n) > T(n,mp(d—1)) = <1 — 1) n—Q +0(1), (1.3)
mg(d—1)/) 2
where T'(n,m) denotes the number of edges in a balanced complete m-partite graph on
n vertices. Regarding upper bounds, they considered the planar case, and the case of 1
or 2 distances. In these cases, they matched, or closely matched from above. In

particular, they proved the following results.

e In [22], they showed that

Mi(d,n) < T(my(d —1),n) < <1 - ;) ”22

holds for sufficiently large n.

e In [20] they proved that for every v > 0 if n is sufficiently large, then
1
My (2,m) < T(mi (1), m) + yn? < (1 - 27) w (1.4)

e Recently, in [21], they proved that for every v > 0 if n is sufficiently large, then
2

My(d,n) < T(ma(d —1),n) 4+ yn* < <1 - m2(;_1) + 27) % (1.5)

Moreover, for d # 4,5 they removed the yn? error term.

It is interesting to investigate how My (d,n) changes if in its definition we modify the
intervals [t;,t; + 1] to [t;,t; + f(n)] for some function f = f;. It turns out that the
threshold for essential changes is fg(n) = ©(n'/9). It was shown in [20] that inequality
remains true with intervals of the form [t;,t; + ¢/n] for some constant ¢ = c(k, ).
Similarly, it was shown in [21] that inequality remains true for d # 4,5 without the

yn? error term with intervals of the form [t;, t; + cn'/4] for some constant ¢ > 0.

On the other hand, M (d,n) becomes (g) if f(n) = Cn'/? for sufficiently large C. Indeed,
a standard volume argument shows that one can find a separated set of n points in R? in
a ball of radius Cn!/<.

Our main result about My (d,n) is an extension of (|L.5)).

Theorem 1.16. Let k > 1 be fized. If either k < 3 or d > d(k), then for sufficiently large
n we have
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Moreover, the same holds if in the definition of My(d,n) we change the intervals to be of
the form [t;, t; + en'/?) with some constant ¢ = ¢(k,d) > 0.

It would be interesting to determine M (d,n) in terms of my(d — 1) for all k£ and d.

However, as we will show below, we have
T(My(d — 1),n) < My(d,n) < T(My(d),n), (1.6)

which gives the impression that the “right quantity” to relate My (d,n) to might rather be
M(d —1).

Proof sketch of (1.6). The lower bound on Mjy(d,n) for all k > 1, d > 2 is shown by
the following construction, which is similar to those that appeared in the work of Erdss,
Makai, Pach and Spencer. Embed a %-nearly k-distance set S C R~ of size My(d — 1)
and with distances 2n? < t; < --- < t; in a hyperplane H in R%. Replace each point
p € S by an arithmetic progression A, of length |n/My(d —1)] or [n/My(d —1)] and of
difference 1, in the direction orthogonal to H. One can easily check that in J,cg 4y there
are at least T'(My(d — 1), n) pairs forming a distance in [t1,¢1 + 1] U -+~ U [tg, tg + 1].

For proving the upper bound on M(d,n), by a volume argument we may assume that
t; = Q(n'/?). This, together with Turdn’s theorem and the definition of My (d) implies

It might be that for for every k and d, if n is sufficiently large, then we have
My (d,n) = T(Mg(d —1),n). (1.7)

Motivated by the goal of determining My (d,n) in a quantity similar to My (d), we will
introduce a more technical notion that we call a flat nearly k-distance set, and denote its
maximum possible cardinality in R? by Nj(d). We prove that a relation similar to
holds with an additive o(n?) error term if we replace My(d — 1) by Ni(d).

1.6 Equilateral sets

We prove the results from this section in Chapter @ which is based on [2§].

Let (X, || -||) be a normed space. A set S C X is called c-equilateral if ||x — y|| = ¢ for all
distinct x,y € S. S is called equilateral if it is c-equilateral for some ¢ > 0. The equilateral
number e(X) of X is the cardinality of the largest equilateral set of X. Petty [55] made

the following conjecture regarding lower bounds on e(X).
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Conjecture 1.17 ([55]). For all normed spaces X of dimension d, e(X) > d+ 1.

It is easy to see for d = 2 (Golab [33] and Kelly [43]). Petty [55] proved Conjecture
for d = 3, and Makeev [51] for d = 4. For d > 5 the conjecture is still open, except for
some special classes of norms. The best general lower bound is e(X) > exp(Q(y/logd)),
proved by Swanepoel and Villa [66]. Regarding upper bounds on the equilateral number, a
classical result of Petty [55] and Soltan [61] shows that e(X) < 2¢ for any X of dimension
d, with equality if and only if the unit ball of X is an affine image of the d-dimensional

cube. For more background on the equilateral number see Section 3 of the survey [65].

The norm || - || of € R? is defined as ||7|| = max;<;<q|7i|, and ¢4, denotes the normed
space (R, || - ||so). In [45] Kobos studied subspaces of £% of codimension 1, and proved
the lower bound e(X) > 2L%J, which in particular implies Conjecture for these spaces
for d > 6.

In the same paper he proposed as a problem to prove Petty’s conjecture for subspaces of £4,
of codimension 2. In Theorem [1.18| we prove exponential lower bounds on the equilateral
number of subspaces of égo of codimension k. This, in particular, solves Kobos’ problem
from [45] if d > 9.

Theorem 1.18. Let X be a (d — k)-dimensional subspace of £%,. Then

2d—k
e(X) = ma (1.8)
L
e(X)>1+ % ; (d _71M> for every 1 < ¢ <d/(k+1), and (1.9)
l
e(X)>1+ ; <d _7“2[%) for every 1 <€ <d/(2k+1). (1.10)

Note that none of the three bounds follows from the other two in Theorem [1.18 and
therefore none of them is redundant. Comparing and , for fixed k£ we have
maxg Y 1 <,.<p (dffké) = 0(2¢) for some ¢ < 1, while % = 9d—k—klog(d—k) — gd—o(d)
On the other hand, when we let k& vary, it can be as large as Q(d) in to still give
a non-trivial estimate, while k£ can only be chosen up to O(d/logd) for to be non-
trivial. Finally, is beaten by and in most cases, however for k£ = 2,3 and

for small values of d ((1.9) gives the best bound.

For two d-dimensional normed spaces X,Y we denote by dpy(X,Y) = infp{|T|||| T}

their Banach-Mazur distance, where the infimum is taken over all linear isomorphisms
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T:X — Y. Note that the Banach-Mazur distance is not a metric. However, taking its
logarithm, we obtain a metric space, called the Banach-Mazur compactum, on the isometry
classes of normed spaces. It is not hard to see that e(X) is upper semi-continuous on the
Banach-Mazur compactum. This, together with the fact that any convex polytope can
be obtained as a section of a cube of sufficiently large dimension (see for example Page
72 of Griinbaum’s book [36]) implies that it would be sufficient to prove Conjecture [L.17]
for k-codimensional subspaces of E‘io forall 1 <k <d—4and d > 5. (This was also
pointed out in [45].) Unfortunately, our bounds are only non-trivial if d is sufficiently

large compared to k. However, we deduce an interesting corollary.

Corollary 1.19. Let P be an origin-symmetric convez polytope in R% with at most

4d 1++/8d+9 d
?_%:%_O(d)

with P as a unit ball, then e(X) > d+ 1.

opposite pairs of facets. If X is a d-dimensional normed space

There have been some extensions of lower bounds obtained on the equilateral number of
certain normed spaces to other norms that are close to them according to the Banach-
Mazur distance. These results are based on using the Brouwer Fixed-Point Theorem, first

applied in this context by Brass [6] and Dekster [13]. We prove the following.

Theorem 1.20. Let X be an (d — k)-dimensional subspace of (%, and Y be an (d — k)-

002
dimensional normed space such that dpp(X,Y) < 1 + m for some integer

1<< 922k Thene(Y) >d— k(24 ¢).
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Discrete chains

2.1 Introduction

Recall that ug(n) is the maximum possible number of pairs at distance 1 apart in a set
of n points in R%. Let § = (d1,...,8;) be a sequence of k positive reals. A (k + 1)-tuple
(p1,...,prs1) of distinct points in RY is a (k, §)-chain if ||p; —piy1|| = 6; foralli = 1,... k.
For fixed k we denote by C¢(n), the maximum number of (k, §)-chains that can be spanned
by a set of n points in R%, where the maximum is taken over all §. The main results of

this chapter are the following.

Theorem 2.1. For every integer k > 1 we have
C2(n) =© (nL(Hl)/?’JH) if k=0,2 (mod 3),
and for any € > 0 we have
Ci(n) =Q (n(kfl)/:)’uz(n)) and C3(n) = O (n(kfl)/?’%uQ(n)) if k=1 (mod 3).
Theorem 2.2. For any integer k > 2 we have
C¥(n) =0 (nk/2+1> .
Furthermore, for even k we have

C3(n) = O (nWH) :

We also improve the lower bound from Theorem [1.4]for odd k. Let us3(n) be the maximum
possible number of pairs at unit distance apart in X x Y, where X is a set of n points in

R3 and Y is a set of n points on a sphere in R3.
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Proposition 2.3. Let k > 3 odd. Then we have

C3(n) = Q <max { “;,5”}? , u33(n)n(k_1)/2}> :

By using stereographic projection we obtain that uss(n) equals the maximum number of

incidences between a set of n points and a set of n circles (not necessarily of the same

radii) in the plane. Thus we have
en'3 < ussz(n) =0 (n15/11> .

(For the lower bound see [53], and for the upper bound see [I], 3, 52]). Therefore, in general
we cannot tell which of the two bounds in Proposition is better. However, for large k
the second term is larger than the first due to (|1.1)).

2.2 Preliminaries

We denote by ug(m,n) the maximum number of incidences between a set of m points and
n sphere of fixed radius in R%. In other words, ug(m,n) is the maximum number of
red-blue pairs spanning a given distance in a set of m red and n blue points in R?. By the

result of Spencer, Szemerédi and Trotter [63], we have

ug(m,n) =0 (m%n% +m+ n) . (2.1)

For given r and § we say that a point p is r-rich with respect to a set P C R? and to
distance 9§, if the sphere of radius 6 around p contains at least r points of P. If P C R?
and |P| = n”, then (2.1 implies that the number of points that are n®-rich with respect

to P and to a given distance ¢ is

O (n3% 4 7o) (2.2)

The bound

ug(m,n) =0 (m%n% +m+ n) (2.3)
is due to Zahl [68] and Kaplan, Matousek, Safernové, and Sharir [41]. It implies that for
P C R3 with |P| = n® the number of points that are n®-rich with respect to P and to a

given distance 9 is
3z—4a T—o
O (n +n"). (2.4)

Leircles, if d = 2

23



Chapter 2. Discrete chains

2.3 Bounds in R?

For 6 = (01,...,0;) and Pp,..., Py 1 € R? we denote by C,‘:(Pl,...,Pk) the family of
(k + 1)-tuples (p1,...,pr+1) with p; € P; for all i € [k + 1], ||pi — pi+1]| = d; for all i € [k]
and with p; # p; for i # j. Let CO(Pi,..., Pot1) = |C2(P1,. .., Pey1)| and

Ck(m, ceey nk+1) = Imax C;:(Pl, ceey Pk+1),

where the maximum is taken over all choices of § and sets Py, ..., Py subject to | P;| < n;

for all i € [k + 1].

We have CZ(n) < Ci(n,...,n) < C#((k+1)n). Indeed, for the lower bound choose
P; = P for every 1 <i < k+1, and for the upper bound note that |PU- - -UPy1| < (k+1)n.
Since we are only interested in the order of magnitude of C%(n) for fixed k, we are going
to bound Ck(n,...,n) instead of C%(n).

In Section [2.3.1], we are going to prove the lower bounds in Theorem [1.18] In Section 2.3.2]
we are going to prove an upper bound on Ck(n,...,n), which is almost tight for k£ = 0, 2
(mod 3). The case k = 1 (mod 3) is significantly more complicated. We will treat the
k = 4 case separately in Section [2.3.3] and then the general case in Section [2.3.4]

2.3.1 Lower bounds

For completeness, we present constructions for all congruence classes modulo 3. For
k = 0,2 they were described in [54].

First, note that Cyp(n) = n and Ci(n,n) = uz(n,n) = O(uz(n)). For k =2, let Py = {z}
for some point z, and let P, P; be disjoint sets of n points on the unit circle around
z. Tt is easy to see that C¢(Py, Py, P3) = n? with § = (1,1), implying the lower bound
Ca(n,n,n) = Q(n?). To obtain lower bounds in Theorem it is thus sufficient to show
that

Crys(n,...,n) > nCg(n,...,n).

To see this take, a construction with k 4+ 1 parts Py,..., Pyy1 of size n that contains
Ck(n,...,n) many (k,d)-chains for some § = (d1,...,0;5). Next, fix an arbitrary point
2 on the plane and choose distances 01,012 to be sufficiently large so that x can be
connected to each of the points in Py4; by a 2-chain with distances d;+2 and dx4+;1. Set
Pyr3 = {z} and let Py o be the set of intermediate points of the 2-chains described above.

Finally, let dx4+3 = 1, and P14 be a set of n points (disjoint from Pg9) on the unit circle
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around z. Since every (k,d)-chain from P; X -+ x P11 can be extended to a (k + 3, 9)-
chain in at least n different ways, we obtain that the number of (k + 3,d)-chains with

0 =(01,...,0k+3) In P X -+ X Pyyyis at least nCk(n).

Note that we can modify this construction in a straightforward way to show that for any
given & there is a set of n points with Q(n*/3+1) many (k, §)-chains if k£ = 0 (mod 3) and
with Q(n**+4/3) many (k, §)-chains if k = 2 (mod 3). However, for k = 1 (mod 3), our
construction to find sets of n points with Q(n*~1/3uy(n)) many (k, §)-chains only works

if 47 is much smaller than d9 and d3.

2.3.2 Upper bound for the k =0,2 (mod 3) cases

We fix § = (d1,...,0;) throughout the remainder of Section and leave & out of the

notation. All logs are base 2.

Theorem 2.4. For any fized integer k > 0 and x,y € [0, 1], we have
Cry(n®,n,...,n,nY) = 0 (nf(k)gﬁy) ,
where f(k) =k+2 if k=2 (mod 3) and f(k) =k + 1 otherwise.

Theorem implies the upper bounds in Theorem for kK = 0,2 (mod 3) by taking
x =y = 1. It is easier, however, to prove this more general statement than the upper
bounds in Theorem directly. Having varied sizes of the first and the last groups of

points allows for a seamless use of induction.

Proof of Theorem[2.4) The proof is by induction on k. Let us first verify the statement
for k < 2. (Note that, for k£ = 0, we should have = = y.) We have

Co(nx) <n®*=0 <n1+§+y> 7
Ci(n*,nY) <wuz(n®,nY) =0 (n%(z+y) +n® + ny) =0 (n%gﬂ) , (2.5)
Cay(n*,n,nY) < 2n"nY =0 (n4+§+y) , (2.6)

where ([2.5)) follows from (2.1) and (2.6) follows from the fact that each pair (p1,ps) can
be extended to a 2-chain (pi, p2, p3) in at most 2 different ways.

Next, let k > 3. Take Pi,..., P.y1 C R? with |P| = n%, |Piy1| = nY, and |P;| = n for
2 < i < k. Denote by Ps* C P» the set of those points in P that are at least n“®-rich
but at most 2n®-rich with respect to P; and §;. Similarly, we denote by P,f C Py the set
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of those points in P, that are at least n®-rich but at most 2n®-rich with respect to Py
and (51C

Applying a standard dyadic decomposition argument twice implies that

Co(P1, Pa..., Py, Pyi1) = Uck(P17P2a7P37 s Poo1, Pl Py,
a7ﬂ

where the union is taken over all «a, 8 € {loén :1=0,...,[logn] } Since the cardinality

of the latter set is at most logn+ 2, it is sufficient to prove that for every a and 5 we have

(2.7)

~ f(k)+=
C(PL, PSPy Pyt P Pryn) = O (5.

To prove this, we consider three cases.

Case 1: o > 3. By (2.2) we have |P$| = O(n"~%). Therefore the number of pairs
(p1,p2) € P1 x Ps with ||p1 —p2| = 61 is at most O(n”). Since every pair (p1,p2) € Pi X P§'
and every (k—3)-chain (pa,...,pg+1) € Pax--- X Pkﬁ X P41 can be extended to a k-chain

(P1, .- sDk+1) € P X -+ X Pryq in at most two different ways, we obtain

Cp(P1, P,..., Pl Ppiy) <40(n®)Ch_3(Py,..., P, Peia).

By induction we have

~ f(k=3)+1+
Ck_3(P4,...,P£,Pk+1) :O<n 3 y) .

These two displayed formulas and the fact that f(k —3) = f(k) — 3 imply (2.7).
Case 2: 3 > % By symmetry, this case can be treated in the same way as Case 1.

Case 3: a < £ and 8 < ¥. By (2.2) we have |Pg| = O (n**~3%) and |Pk’8| = O (n?v=35).
The number of (k — 2)-chains in P x Py x - - x Py x P_ is C_o(P§, Ps, ..., Po_1, P),
and every (k —2)-chain (pa,...,px) € P x Py X --- X Pp_; X P,f can be extended at most
4notB ways to a k-chain in P x P3* X -+ X Pk'B X Pg41. Thus

Ce(P1, P, Pl Pyiy) < 4n®tPC, o(Ps, ..., PP).

By induction we have

Cha(PS,....PHYy=0 (n

f(k—2)+2z—3a+2y—38 )
3
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For k = 0,2 (mod 3) we have f(k) > f(k —2) + 2, and thus

~ f(k—2)+2z—3a+2y—38
Ck(Pl,Pzaw--,P;f,PkH):O(”aJrﬂ” 3 )
~ [ fk)—242a42y ~ [ fltaty
=0 (n 3 > =0 (n 3 ) .

If k=1 (mod 3) then f(k) < f(k — 2)+ 2, and thus the argument above does not work.
However, we then have f(k) = f(k —1) + 1, and we can use the bound

C(P1, P, Pl Poiy) < 2n°Ch 1 (PS, Ps, ..., Pry1),
obtained in an analogous way. This gives

Cw(P1, P8, Ps,..., Ppy) = O (nan

f(k—1)+2z—3a+y>
3

=0(n

f(’f)—1+21+y>
3

~ f(k)+xty
=0 (n 3 ) .

O

Remark 2.5. The proof above is not sufficient to obtain an almost sharp bound in the
k =1 (mod 3) case for two reasons. First, for these k any analogue of Theorem
would involve taking maximums of two expressions, where one contains us(n®,n) and the
other contains uz(n¥,n). However, due to our lack of good understanding of how ug(n®,n)

changes as x is increasing, this is difficult to work with.

Second, on a more technical side, while Case 1 and Case 2 in the above proof would go
through with any reasonable inductive statement, Case 3 would fail. The main reason
for this is that C} as a function of k makes jumps at every third value of k, and remains
essentially the same, or changes by u(n,n)/n for the other values of k. Thus one would
need to remove three vertices from the path to make the induction work. However, the
path has only two ends, and removing vertices other than the endpoints turns out to be

intractable.

2.3.3 Upper bound for k£ = 4

In this section we prove the upper bound in Theorem for k = 4. Let Py,..., Ps be five

sets of n points. We will show that Cy(Px,. .., Ps) = O(ua(n)n), which is slightly stronger
than what is stated in Theorem [L.I8l

Instead of (2.2)) we need the following more general bound on the number of rich points.
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Observation 2.6 (Richness bound). Let n¥ be the mazximum possible number of points

that are n®-rich with respect to a set of n® points and some distance §. Then we have

¥t < ug(n®, nY), (2.8)
or, equivalently
o ug(n®,nY)
= ’[’Ly .

The proof of ([2.8)) follows immediately from the definition of n®-richness and ua(n®, n¥).

Let A := { L i=0,..., [logn]}4. For any o = (a2, a3, a4, 05) € A let Qf = P; and

logn

for i = 2,...,5 define recursively Q¢ to be the set of those points in F; that are at least

n®-rich but at most 2n%-rich with respect to Q;_1 and ;.

Applying a standard dyadic decomposition argument 4-times implies

C4(P17"'3P5): UC4(Q?,,Q?)

acN

We have |A| = O(1) and thus, in order to prove the theorem, it is sufficient to show that

for every a € A we have
C’4 (Q?7 . aQ?) =0 (n ' UQ(TL, n)) .

From now on, fix a = (ag,...,as5), and denote Q; = Q. Choose z; € [0,1] so that

|Q;] = n®. Then we have
Ci(Q1,...,Q5) = O (nmohastastastaz) (2.9)

Indeed, each chain (py,...,ps) with p; € Q; can be obtained in the following five steps.
e Step 1: Pick ps € Q5.
e Step i (2<i<5): Pick a point pg_; € Q¢—; at distance dg—; from p7_;.

In the first step we have n®5 choices, and for ¢ > 2 in the i-th step we have at most 2n®6—i
choices. Further, by Observation for each i > 2 we have

ug (n¥i-1, n®)

n% < — (2.10)
Combining (2.9 and (2.10)), we obtain
uz(n®3,n") ug(n®2,n"?) ug(n®, n*?)
Cy(Q1,...,Q5) =0 (W(nn,n%) o v s (2.11)
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By (2.1)) we have

UQ(anl,nxi) =0 (max {n%(xﬂrmi*l)’ nil?z" n¥i-1 }) )

Note that the maximum is attained on the second (third) term iff z;—y < % (z; < Z51).

To bound Cy(Q1,...,Q5) we consider several cases depending on which of these three

terms the maximum above is attained on for different 7.

Case 1: For all 2 < i <5 we have ug(n*-1,n%) = O (n%(“ﬂ”*l)). Then

T4 x5 x3 x4 o x3
uz(n®, n )UQ(TL ;N )ug(n™2,n ) -0 n%xﬁ-%u-ﬁ-%m—%m
nr2+r3+r4

and
ug(n®3, n™ )ug(n®2, n®3 )ug(n®, n*2)

nT2+r3+x4

-0 (n*%x4+%r3+§x2+§w1> ]

Substituting each of these two displayed formulas into (2.11]) and taking their product, we

obtain
Ca(Qu . Qa)? = O (sl ™2 (™ n7) - 37 3755555) Z 0 (un(m,m)? - n?)

which concludes the proof in this case.

Case 2: There is an 2 <14 < 5 such that

1
min{z;_1,x;} < 5 max{z;_1,2;} and thus wua(n®™',n") = 0O (max{n®-',n"}).
(2.12)

We distinguish three cases based on for which ¢ holds.

Case 2.1: (2.12)) holds for i = 2 or 5. In particular, this implies that ug(n™,n*?) = O(n)

or ug(n*,n*) = O(n). The following lemma finishes the proof in this case.

Lemma 2.7. Let Ry, ..., Rs C R? such that |R;| < n for everyi € [5]. Ifua(R1, Ry) = O(n)
or ug(Ra, Rs) = O(n) holds, then Cy(Ry,...,R5) = O (n-uz(n,n)).

Proof. We have

Cy(Ri, ..., R5) < 2ug(Ry, R2)ua(Ry, R5) = O (n-uz(n,n)).

Indeed, every 4-tuple (r1,79,74,75) with r; € R; can be extended in at most two different
ways to a 4-chain (r1,...,75) € Ry X -+ X R5. At the same time, the number of 4-tuples
with ||r1 — ra|| = 61, ||ra — 75]| = d4 is at most ua(R1, Ra)ua(Ry, Rs). O
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Case 2.2: (2.12) holds for ¢ = 4. Note that if x4 < % < %, then ug(n®,n*) = O(n), and
we can apply Lemma [2.7]to conclude the proof in this case. Thus we may assume that x3 <

£t and hence uz(n™,n*3) = O(n®). This means that n® = O(1) by Observation 2.6l

Thus, to finish the proof of this case, it is sufficient to prove the following claim.

Claim 2.8. Let Ry, ..., Rs C R? such that |R;| < n for all i € [5] and every point of R4
is O(1) rich with respect to R3 and d3. Then C4(R1,...,R5) = O (n-ua(n,n)).

Proof. Every 4-chain (r1,...,r5) can be obtained in the following steps.

e Pick a pair (r4,75) € R4 X Rs with ||y — rs5|| = da.
e Choose 3 € R3 at distance d3 from r4.

e Pick a point | € Ry.

e Extend (r1,73,74,75) to a 4-chain.

In the first step, we have at most ua(n,n) choices, in the third at most n choices, and in

the other two steps at most O(1). O

Case 2.3 ([2.12) holds for i = 3 only. Arguing as in Case 2.2, we may assume that

uz(n®3,n*?) = O(n*?). Then we have

Cy(Q1,...,Q5) =0 (Uz(”“an%)

u2 (N, n*) ug(n*2, n®3) ug(n®t, n"2) >

nt4 nTs nt2
-0 (uZ(nx17na:2) . n%(a:4+w5)+§(a:3+x4)—x4—x3) =0 (uz(n,n) . n) ,

which finishes the proof.

2.3.4 Upper bound for £k =1 (mod 3)

We will prove the upper bound in Theorem for k = 1 by induction. The k = 1 case
follows from the definition of ua(n,n), thus we may assume that & > 4. For the rest of the
section fix ¢/ > 0, and sets Py,..., Py C R? of size n, further let ¢ = %. We are going
to show that Ci(Py, ..., Pri1) = O(n*—D/3+y,(n)).

30



Chapter 2. Discrete chains

The first step of the proof is to find a certain covering of Py X - -+ X Py11, which resembles
the one used for the k£ = 4 case, although is more elaborateE] (The goal of this covering
is to make the corresponding graph between each of the two consecutive parts ‘regular in

both directions’ in a certain sense.)

Az{is:izO,...,EJ}kH.

We cover the product P = Py x - -+ X Py by fine-grained classes P}’ x ... x P,;y .1 encoded

Let

by the sequence v = (y,~4%,...) of length at most (k + 1)e~! + 1 with 49 € A for each
j=1,2,.... One property that we shall have is

P1x---kaJrl:UPl'yx...ngH.
¥

To find the covering, first we define a function D that receives a parity digit 7 € {0,1}, a
product set R := Ry x ... X Rgy1 and a (k + 1)-tuple e € A, and outputs a product set
D(j,R,a) =R(a) = Ri(a) x ... X Rgp1(ax).

Definition of D

o If j =1 then let Ri(ax) := Ry and for i = 2,...,k + 1 define R;(cx) iteratively to be
the set of points in R; that are at least n®, but at most n®™*-rich with respect to
Ri_l(a) and 5i—1~

e If j = 0 then apply the same procedure, but in reverse order. More precisely, let
Rii1(a) = R4y and for i = k,k —1,...,1 define R;(a) iteratively to be the set of
points in R; that are at least n® but at most n®*¢-rich with respect to R;i1(c)
and 6;.

Note that

R= ] R(a) (2.13)

ac
For a sequence v = (y%,~2,...) with 49 € A, we define P7 recursively as follows. Let
PY := P, and for each j > 1 let

PO ) Z D(j (mod 2), PO 4d),

2This covering brings in the e-error term in the exponent, that we could avoid in the k = 4 case.
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We say that a sequence « is stable at j if

}P('Yl:-urvj)‘ > |P(717~-~77j_1)‘ .nE.

Otherwise -~ is unstable at j.

Definition 2.9. Let T be the set of those sequences v that are stable at their last coordi-

nate, but are not stable for any previous coordinate, and for which P7Y is non-empty.

The set T has several useful properties, some of which are summarised in the following

lemma.

Lemma 2.10. 1. Any v € Y has length at most (k4 1)e=! + 1.
2. |T| = 0.(1).
3. P =, P.

Proof. 1. If ~ is unstable at j then
|P(71,...r/j)‘ < ’P(wl,-..ﬂj’l)‘ 3
Since |P| = n**! and |P7Y| > 1, we conclude that -~ is unstable at at most (k-+1)e~"
indices j.

2. It follows from part 1 by counting all possible sequences of elements from the set A
of length at most (k + 1)e~* + 1. (Note that [A| = O-(1).)

3. For a nonnegative integer j let AS7 be the set of all sequences of length at most j of

elements from A. Let
T := (T N Agj) UW;, where W, := {’y € A : 4 is not stable for any £ < j}.

By part 1 of the lemma, Y; = Y for j > (k + 1)e~!. We prove by induction on j
that P =)oy P7.

Ty consists of an empty sequence, thus the statement is clear for j = 0. Next,

assume that the statement holds for j. We have

p=(JP" = (J PU|J P

‘YETJ‘ fyeAﬁj "‘/G\I/j
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By (2.13) we have that P7 = U'y’ P holds for any v € VU, where the union is
taken over the sequences from A7T! that coincide with 4 on the first j entries. This,

together with 4/ € (YT NA/*!) U ¥, when P is nonempty finishes the proof.

O]

Parts 2 and 3 of Lemma imply that in order to complete the proof of the k = 1 (mod 3)

case, it is sufficient to show that for any v € T we have

Ck(P’y, R ,P]Z_H) =0 (uQ(n) . n%+4ks> ' (2‘14)

From now on fix v € Y. Foreach i = 1,...,k+1let R; := P" and Q; := P?l, where v/ is
obtained from -« by removing the last element of the sequence. Without loss of generality,

assume that the length ¢ of «v is even. For each ¢ = 1,...,k + 1, choose x;, y; such that
‘Qz| :nmi, ‘RZ’:nyl

1

Let oy := fyf_ and f; := 'yf . By the definition of P we have that each point in Q); is at

least n®-rich but at most n®*e-rich with respect to ;1 and &;_1, and each point in R;

is at least nPi-rich but at most n®te-rich with respect to R;+1 and §;.
By Observation [2.6] we have

wp(n®, ) pf < ) ua(n® nti)

n% <
- nTi nYi - nvri—¢

(2.15)

The last inequality follows from two facts: first us(n¥, n¥i+1) < ug(n®i, n*+!) and, second,

since 7y is stable at its last coordinateﬂ we have n¥ = |R;| > |Q;| - n~¢ = n""°.

In the same fashion as in the beginning of Section [2.3.3] we can show that
Ck(Rl, R 7Rk+1) Snylnﬂ1+~~+ﬂk+kg’ and
Ck(Rla e 7Rk+1) S Ck(Ql, ceey Qk)+1) Snwk+1nak+1+ak+"'+a2+k€‘

Combining the first of these displayed inequalities with (2.15]), we have

Ti o Tit1l
Ck(Rl, cee 7Rk:+1) < uQ(n“,n“) H Mn—;ﬁ)nm%.
2<i<k "
Recall that
ug(n®, n**1) =0 (max{n%($i+‘”"+1),nxi,n““}) . (2.16)

3This is the only place where we use the stability of v directly.

33



Chapter 2. Discrete chains

To bound Ck(Ry,. .., Rgt+1), we consider several cases based on which of these three terms

can be used to bound ug(n®, n*i+1) for different values of i.

Case 1: Either ua(n®',n"?) = O(n) or ua(n®,n*+1) = O(n) holds. As in the proof of
Lemma we have

Ck;(Rl, e ,Rk+1)

< min {2u2(ny1 ,nY2)Cr_3(Ry, ..., Rpy1), 2ug(n¥* , nY+1)Cy_3(Ry,. .., Rk_g)}.

By induction we obtain Cy_3(Ry, ..., Rg+1),Cr—3(R1,...,Rx_2) = O (nk3;4+€ . ug(n)>
Together with the assumption of Case 1, and the fact that ug(n¥', n¥?) < us(n®',n*?) and
ug(nYk n¥k+1) < ug(n® nTk+1) this implies (2.14)) and finishes the proof.

Case 2: For somei=1,...,(k—1)/3, one of the following holds:

o Uy (nTHil pTsit2) = O(max{n$3i+1 , nﬂf3i+2});
o ug(n®-1, N = O(n*3i-1);
® up(n®3, nPitl) = O(n*3i+).

We will show how to conclude in the first case. The other cases are very similar and we
omit the details of their proofs. If ug(n®3i+! n®si+2) = O(n*3+2) then n®+2 = O(1) by
(2.15). Every chain (ry,...,7x1+1) € Cp(Q1, ..., Qk+1) can be obtained as follows.

1. Pick a (3¢ — 2)-chain (rq,...,73,—1) with r; € Q; for every j.

2. Pick a (k — 3¢ — 1)-chain (r3i12,73i+3, ..., Tk+1) With ; € Q; for every j.
3. Extend (T3i+27 T3i4+3y - - - ,Tk+1) to a (k -3t — 2) chain (T’gi_;,_l, 7342, - - - ,TkJrl).
4. Connect (71,...,7r3i—1) and (73,4+1,73i+2, . .,Tk+1) to obtain a k-chain.

In the first step, we have O n 5o e u2(n)) choices by induction on k. In the second

k—3i+2

step, we have O <n 3 ) choices by the £k = 0 (mod 3) case of Theorem [1.18] In the

third step, we have at most n®¥+27¢ = O(n) choices. Finally, in the fourth step we have
at most 2 choices. Thus the number of k-chains is at most

3i—3

1) (n 3 Te. UQ(TL)) o) (n%) -0O(nf)-2=0 <n%+36 . uz(n)> ,
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finishing the proof of the first case.

If ug(n®3i+1 n®3i+2) = O(n®3i+1) then nP*+1 = O(n®) by lb We proceed similarly in
this case, but we count the k-chains now in Ry X ... X Rj,1 instead in Q1 X ... X Q11

(and get an extra factor of n® in the bound). In all cases, we obtain ([2.14)).

Case 3: Neither the assumptions of Case 1 nor that of Case 2 hold. We define four sets
S, S, S, and S’ of indices in {2,...,k} as follows. Let

S = {z D ug(n® nTitl) = O(n%(‘”i+mi‘1)) and ug(n®*1 n®) = O(n%(‘”i+1+‘”i))} ,

Si= {z tug(n® n®it) = O(n%(l’#x"*l)) and ug(n®*t,n*) = O(n"), or

uz(n, n*1) = O(n") and ua(n"+, n") = O(n%(xi“““))},
/ : Ti o Ti— T; T; T; T;
SL, = {z tug(n®, n® 1) = O(n*) and ua(n®*,n") = O(n Z)}, and

S = {z tug(n®, ntil) = O(n%(x”r“"*l)) and ua(n®*t, n*) = O(n**1), or

uz(n®,n"-1) = O(n"') and ug(n™ ', n") = O(n%($i+1+xi))}.

Since the conditions of Case 2 are not satisfied, we have
{2,...,k}CSUS, US,  US.

Indeed, for each i € {2,...,k}, there are 9 possible pairs of maxima in with 7,7+ 1.
The four sets above encompass 6 possibilities. In total, there are 4 possible pairs of maxima
with only the two last terms from used. For i = 1,2 (mod 3), any of those 4 are
excluded due to the first condition in Case 2 (in fact, then i € S’US”). If i =0 (mod 3),
then the second and the third condition in Case 2 rule out all possibilities but the one
defining 57, .
From these it directly follows that if i € S, |, then ¢ —1,i4+ 1 € S’ , while if i € S’, then
one of i —1,i+1isin S”. (Recall that i € S’ U S’ only if i = 0 (mod 3).) These
together imply

1S4 4218 | < IS (2.17)

We partition {2,...,k} as follows: let S_ = S",5 =5"\5,5, =5\ (5. US) and
Sit=1{2,...,k}\SLUS US’.. Note that the analogue of (2.17) holds for the new sets.

4This is the key application of (2.15)), and the reason why we needed a decomposition with regularity

in both directions between the consecutive parts.
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That is, we have
S|+ 2|84 < |5

Recall that
Ti pyTit1
Cr(Ry, ..., Rip1) S up(n™,n™) ] u (7, mP) ke (2.18)

2<i<k e
Since the assumptions of Case 1 and 2 do not hold, we have 2,k € S. Indeed, 2,k # 0
(mod 3) and thus 2,k ¢ Sy, Sy . Further, if say k € S_ = S’ then by the definition of
S” we either have ug(n®+1 n*) = O(n), or uz(n™, n*-1) = O(n*1). The first case

cannot hold since the assumption of Case 1 does not hold. Further, the second case cannot

1
2

hold either, since it would imply zj, < 5=+ <

2,k € S and expanding ([2.18)), we obtain

meaning ug(n*k+1, n) = O(n). Using

Ck;(Rl, e 7R]€+1)

1y, 2 1, 2, : 1,
< nFeuy(n®, n®)n " 3%2n 5%k | | n3vi | | n3® | | n"t I | n~ 3% (2.19)
€S, €S54 €S+ 1€S_
i#2

and

Cr(Ry, ..., Riq1)
< aneuQ(n”,n””’““)n_%x’“n%“ Hnél’l H n3%i H n"i H n=3%. (2.20)

€S, iES+ iES++ 1€ES_
ik

Taking the product of (2.19) and (2.20) we obtain

Ck(Rl7 sy Rk+1)2 <

2
4ke T, T2 T o Tht1 o 2 (214+THa1) Lz 22 T; —1g
n=e - ug(n®t, n"? )ug(n®F, nTE1)n3 + ||n31||n3’||n1||n31
i€S, 1€S €S €S
Sk + ++

2,1 2 2(k—1)
S n4k6 . u2(n’ n)2 . n2(3+3|S\{27k}‘+3|s+‘+|s++|) — u2(n’ n)2 -n 3 +4k5

The last equality follows from |S4|+2[S4+4| < |S_|, which is equivalent to %|S+\ +[S14] <
$(IS¢| + |S++4| + [S=]), and from the fact that S, Sy,S4, and S_ partition {2,...,k}.
This finishes the proof.
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2.4 Bounds in R3

Similarly as in the planar case, for § = (d1,...,6;) and Pi..., Pyy1 C R3 we denote by
Cg"s(Pl, ..., Py) the family of (k 4+ 1)-tuples (p1,...,pgs+1) with p; € P, for all i € [k + 1]
and with ||p; — pi+1]| = 0; for all ¢ € [k]. Let Cz’J(Pl, coy Peyr) = \Ci”é(Pl, ooy Pey1)] and

3,0
C’,‘E(nl, e ,le+1) = maka’ (Pl, ce 7Pk+1),

where the maximum is taken over all choices of § and sets Pi, ..., Py subject to |P;| < n;

for all i € [k + 1].

Similarly to the planar case, we have Cj(n) < C3(n,...,n) < C} ((k+ 1)n). Since we are
only interested in the order of magnitude of C’g’ (n) for fixed k, sometimes we are going to

work with C3(n,...,n) instead of C3(n).

2.4.1 Lower bounds

For completeness, we recall the constructions from [54] for even k£ > 2. For every even
2 < i<k, let P, ={p;} be a single point such that the unit spheres centred at p; and
Pi+2 intersect in a circle. Further, let P; and Px,1 be a set of n points contained in the
unit sphere centred at po and pg respectively. Finally, for every odd 3 < i < k — 1, let
P; be a set of n points contained in the intersection of the unit spheres centred at p;_1
and p;y1. Then P} X -+ X P41 contains ns+l many (k,d)-chains for § = (1,...,1), since

every element of P; X -+ X Pyyq is a (k,d)-chain, and |P; X -+ X Pyiq| = nstl,

Next, we prove the lower bounds for odd k& > 3 given in Proposition

k
Proof of Proposition[2.3. First we show that C3(n) = Q (us,@l ) Take a set P’ C R3 of
size n that contains ug(n) point pairs at unit distance apart. It is a standard exercise in
graph theory to show that since u3(n) is superlinear, there is P C P’ such that § < |P| <n
uz(n)
4n

and for every p € P there are at least points p’ € P at distance 1 from p. Then P

contains 2 <M) many (k,d)-chains with § = (1,...,1).

nk
To prove C}(n) = Q (us;:,(n)n('“_l)/Q), we modify and extend the construction used for k—1
as follows. Let Py, ..., P;_1 be as in the construction for (k—1)-chains (from the even case).
Further, let Py be a set of n points on the unit sphere around pg_1, and Pyy1 be a set of n
points such that us(Pg, Pr+1) = uss(n). Since every (p1,...,pr+1) € P1 X -+ X Pyyq with
Pk —pr+1]| = 1is a (k, §)-chain, we obtain that Py x - - - x Pj1 contains © (us3(n)n*~1/2)
many (k,d)-chains with 6 = (1,...,1). O
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2.4.2 Upper bound

We again fix § = (d1,...,dx) throughout the section and, omit it from the notation. The
following result with z = 1 implies the upper bound in Theorem

Theorem 2.11. For any fized integer k > 0 and x € [0, 1], we have

C¥n®m,....,n)=0 (nw) .

Proof. The proof is by induction on k. For k£ = 0 the bound is trivial, and for k£ = 1 it
follows from ([2.3)).

For k > 2 let Pi,...,Pyr1 € R3 be sets of points satisfying |P;| = n®, and |P;| = n for
2 <n <k + 1. Denote by Ps* C P; the set of those points in P, that are at least n“-rich

but at most 2n%-rich with respect to P; and 6.

A standard dyadic decomposition argument implies
CH(PL,Py...,Pra) = | CH(PL, PS, Ps,... Prya),
aEA
where A := {@ i =0,1,...,logn]}. Since |A] = O(1), it is sufficient to prove that,

for every o € A, we have

~ k T
C3(Py, PS,Ps,..., Prp1) = O (n Ea ) .

Assume that |Ps'| = nY. The number of (k — 1)-chains in P§* x P3 X --- X Pi41 is at most

C3_,(n¥,n,...,n), and each of them may be extended in 2n* ways. By induction, we get

k+y

C3(Py, PS,Py,..., Pot) = O (na : nT> :

and we are done as long as
20+k+y<k+1+uz. (2.21)

To show this, we consider several cases depending on the value of a. Note that o < z.

o If v > %1’, then by (2.4) we have y < x — «, and the LHS of (2.21]) is at most

at+k+z<14+k+zx

o If § <ac< %” then by (2.4) we have y < 3z — 4a. The LHS of (2.21)) is at most
k+3z—-2a<k+2x<k+1+zx.

o If o < § then we use a trivial bound y < 1. The LHS of (2.21)) is at most 2a+k+1 <
z+k+1.
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2.5 Further problems

We can generalise the problem of determining the maximum number of chains to determine
the maximum number of copies of a fixed tree as follows. Let T = (V, E) be a tree on
k + 1 vertices V. = {v1,...,vx41}, and with edges E = {ey,...,ex}. For a sequence
8 ={61,...,6,} a (k+1)-tuple of disjoint points (p1,...,prs1) in R? is a (T, §)-tree, if for
every edge ey = (v;,v;) we have ||p; — p;|| = 6,. What is the maximum possible number
C4(n) of (T,8)-trees in a set of n points, where the maximum is taken over all §7 We

make the following conjecture.

Conjecture 2.12. For every tree T there are integers m, £ such that Cp(n) = ©(n™uz(n)t).

One of the simplest trees to consider are subdivisions of stars with one vertex of degree 3.
Let Ty 3 be tree on 3¢ + 1 vertices, with one (central) vertex of degree 3, and 3 paths on
£ vertices joined to the central vertex. The problem even for these trees turns out to be
more difficult than the problem about chains, and for tackling it new ideas are needed.
It is easy to see that for T = T3 we have Cr(n) = Q(n?®) (by fixing the central vertex),

however finding matching upper bounds seems challenging.

Problem 2.13. Is it true that Cp(n) = ©(n?) for T =Th 37

For T' = T3 3 by generalising the constructions in from Section in two different ways,
we obtain that C7(n) = Q(uz(n)?) (by fixing the central vertex) and Cr(n) = Q(n‘*!) (by
fixing the vertices that are the neighbours of the leaves). This example shows that even if
Conjecture [2.12] is true, we might not be able to determine the value of m and ¢ in some

cases, as they can depend on the value of uz(n).

Problem 2.14. Is it true that Cr(n) = ©(max{n ™ us(n)}) for T = T3 37
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Unit-distance embeddings

3.1 Introduction

A graph G = (V, E) is a unit-distance graph in Euclidean space R?, if V' c R? and
EC{(z,y) 12,y eV, [z -yl =1}.

(Remember that we do not require the edge set of a unit distance graph to contain all
unit-distance pairs.) A graph G is realizable in a subset X of R?, if there exists a unit

distance graph G’ in R¢ on a set of vertices Xy C X, which is isomorphic to G.

We denote by S~! the sphere of radius 1/v/2 in R? with centre in the origin. The
Euclidean dimension dim G (spherical dimension dimg G) of a graph G is equal to the

smallest integer k such that G is realizable in R* (on S¥~! ¢ RF).

We prove the following results.

Theorem 3.1. Let d > 1 and let G = (V, E) be a graph with mazximum degree d. Then G

is a unit distance graph in R? except if d = 3 and G contains K 33

Proposition 3.2. Let d > 2. Any graph G = (V, E) with maximum degree d — 1 has

spherical dimension at most d.

Theorem 3.3. Let d > 3. Any graph G with less than (d'f) edges can be realized in R?.

If G moreover does not contain Kgyo — K3 or K411, then it can be realized in Se-1,

We also consider the following Ramsey-type notion. Let fp(s) be the smallest possible d

such that for any graph G on s vertices, either G or its complement G can be realized as
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a unit distance graph in R?. Similarly, fsp(s) is be the smallest possible d, such that for
any graph G on s vertices, either G or its complement G can be realized as a unit distance

graph in S

Theorem 3.4. For any d,s > 1, fsp(s) =[(s+1)/2] and [(s —1)/2] < fp(s) < [s/2].

3.2 Maximum degree

We use the following lemma of Lovasz in the proofs of the results on bounded maximum

degrees.

Lemma 3.5 ([47]). Let G = (V, E) be a graph with mazimum degree k and let ki, ..., kq
be non-negative integers such that ky + --- + ko = k — o+ 1. Then there is a partition
V=V1U---UV, of the vertex set into « parts such that the mazimum degree in G[V;] is

at most ki, i =1,..., .
The proof of Proposition [3.2]is a simple induction.

Proof of Proposition[3.9 The proof is by induction on d. For d = 2 and d = 3 the theorem
is easy to verify. (Note that for d = 3 it also follows from Proposition below.) Let
V = V1 U V; be a partition as in Lemma for a =2, k1 = L%j, and ko = [%}
Then by the induction hypothesis, G[V;] can be represented on a S*i in R¥it!, Represent
G[Vi1] and G[V;] on S¥t and S*¥2 in orthogonal subspaces of dimension k; + 1 and kg + 1,
respectively. Since the distance between any point in S¥' and any point in S*2 is 1, and

both spheres are subspheres of S*~!, we obtain a representation of G in S 1. O

In the proof of Theorem [3.1] we use Lemma [3.6] which is a strengthening of a special case
of Lemma [3.5] and Proposition which gives an embedding of cycles in sufficiently

general position on the 2-sphere.

Lemma 3.6. Let d > 4 and let G = (V, E) be a graph with mazimum degree at most d.

If d is even, then there is a partition V- = V1 U---UVy/ such that the mazimum degree of
G[Vi] is at most 1 for 1 <i < d/2, the mazimum degree of G[Vy,] is at most 2, and any
v € Vg of degree 2 in G[Vyo]| has exactly 2 neighbours in each V;.

If d is odd, then there is a partition V- = ViU---UV(4_1)/2 such that the mazimum degree of
G[Vi] is at most 1 for 1 < i < (d—3)/2, the maximum degree of G[V(4_3) /2] and G[V(4_1)2]
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1s at most 2, any degree 2 verter in G[V(d,g)ﬂ] has exactly 2 neighbours in each V; for
i < (d—5)/2 and evactly 3 neighbours in Vi4_1)/2, and any degree 2 verter of G[V(4_1)2]
has at least 2 neighbours in each Vi fori < (d—3)/2 and at most 3 neighbours in Viq_s) /s

Proof. dis even: Let V.=V, U---UVy/5 be a partition for which fol e(G[V;]) is minimal,
where e(G[V;]) denotes the number of edges in G[V;]. For such a partition, each v € V; is
joined to at most 2 vertices in V;, otherwise we could move v into some other part V; to
decrease the sum of the e(G[V;]). Similarly, any v € V; joined to exactly 2 other vertices
in V; has exactly 2 neighbours in each V;. Hence we can move each degree 2 vertex of
G[Vi] one by one to V;/, without changing Zfli 21 e(G[Vi]), thus preserving the above two

properties.

dis odd: Let V = V1 U---UV(4_1)/3 be a partition for which Zgi}l)ﬂ e(G[V;]) is minimal.
Again, for such a partition each v € V; is joined to at most 2 vertices in V;. If v € V} is
joined to exactly 2 other vertices in V;, then it has at most 3 neighbours in one of the Vj’s
and exactly 2 neighbours in all the others. So we can move each degree 2 vertex of G[V}]
one by one to V(4_3)/2 or to V(4_1)/2, keeping Zfﬁ e(G[V;]) unchanged. To obtain the
final partition, we move the degree 2 vertices of G[V(4_3)/2] to Vi4_1)/2, except for those
with 3 neighbours in V(4_;)/o. Finally, note that a vertex of degree 2 in G[V(4_1)/2] is
joined to at least 2 vertices in each V; (i < (d —3)/2), hence is joined to at most 3 vertices

in ‘/(dfg)/Q. O

The following proposition states that paths and cycles can be realized on S? in sufficiently
general position. Note that when a 4-cycle is realized on S?, there is always a pair of

non-adjacent points that are diametrically opposite on the sphere.

Proposition 3.7. Any graph with mazimum degree 2 can be realized on S? such that the

following two properties hold:

1. For no 3 distinct vertices a, b, and ¢, does there exist a vertex at distance 1 from all

three.

2. No 4 vertices are on a circle, unless the 4 vertices consist of two pairs of diametrically

opposite points coming from two distinct 4-cycles.

In the proof of the proposition we use ideas from the correction [49] to the paper [48] of
Lovész, Saks and Schrijver. A graph G = (V| E) is called k-degenerate if any subgraph of

G has a vertex of degree at most k.
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Let G = (V, E) be a (d — 1)-degenerate graph, and label its vertices as V' = {vy,...,v,}
such that |{v; : j <iand vv; € E}| < d — 1 for all i. We realize G in S9! using a
random process. For any linear subspace A of R? of dimension at least 1, there is a
unique probability measure on the subsphere A N S*~! that is invariant under orthogonal
transformations of A, namely the Haar measure p4. Given the Haar measure p on S 1,
pa on AN S can be obtained as the pushforward of u by the normalized projection
Fa: ST\ AL 5 ANST given by 7a(z) = (V2|ma(z)]) " 'ra(x), where ma: R — A is

the orthogonal projection onto A.

We now embed G as follows. We first choose u; distributed uniformly from S?~! (that
is, according to p). Then for each i = 2,...,n, we do the following sequentially. Let
L; = span{u; : j < i and v;v; € E}, and choose u; uniformly from L NS! (according

to py 1) and independently of {u; : j < i}.

Since each L; has dimension at most d — 1, this process is well defined. If G has maximum
degree at most d — 1, then for any permutation o of [n], the ordering (vo(1), - -,V (n)) has

the property that | {v 1 < and v,y ve(j) € E}| <d—1for all i, and we can follow

a(4)
the above random process to embed G, thus obtaining a probability distribution v, on
the collection of realizations of G in S?~!. As pointed out in [49], for different o we may
obtain different probability distributions v,. Nevertheless, as shown in [49], if G does not
contain a big complete bipartite graph, then any two such measures are equivalent, that is,
they have the same sets of measure 0, or equivalently, the same sets of measure 1. We say
that an event A holds almost surely (a.s.) with respect to some probability distribution

if it holds with probability 1.

Lemma 3.8 ([49]). For any graph G = (V, E) that does not contain a complete bipartite
graph on d + 1 vertices, for any two permutations o and T of {1,...,n}, the distributions

vy and v, are equivalent.

This lemma is used in [49] to show that under the same condition, the above random
process gives a realization of the graph such that the points are in general position almost

surely.

Theorem 3.9 ([49, 48]). For any graph G = (V, E) that does not contain a complete
bipartite graph on d 4+ 1 wvertices, the above random process gives a realization of G such

that for any set of at most d vertices of G, the embedded points are linearly independent.

We now apply Lemma [3.8] and Theorem [3.9] to prove Proposition
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Proof of Proposition[3.7]. Note that G is a disjoint union of paths and cycles. If we remove
a vertex from each 4-cycle, we obtain a graph G’ = (V' E’) with V' = {vy,...,v,} CV
that does not contain a complete bipartite graph on 4 vertices (that is, a 4-cycle or Kj 3).
Take a random realization of G’ as described above, and then add back the removed
vertices as follows. If a was removed from the cycle av;vjv, with this cyclic order, then
embed a as the point —v; opposite v;. We also denote a by —v;. We claim that this

realization satisfies the conditions of the proposition almost surely.

We want to avoid certain configurations on some small number of vertices. By Lemma[3.§]
it is always enough to show that if we start with these few vertices then almost surely they

do not form a prohibited configuration.

First we have to see that after adding back the removed vertices, we have a unit distance
realization of G almost surely. By Theorem [3.9] we have a realization of G’ almost surely,
and for any ¢ with neighbours b and d, we have that b # +d a.s. and that no point is
diametrically opposite c. By adding back a = —c, we then also have b and d at distance

1 from a.

Suppose next that some vertex v is at distance 1 to a, b, and c. If any of these vertices
are in V' \ V', we may replace them by their diametrically opposite point which is in V,
and we still have that v is at distance 1 to a, b, and ¢, and v,a,b,c € V'. Since v is not
adjacent to all three in G’, we may assume without loss of generality that va ¢ E’. If we
then randomly embed G’ using an ordering that starts with v and a, we obtain a.s. that
|lv — a|| # 1, which is a contradiction (by Lemma [3.8]). Therefore, no vertex of G is at

distance 1 to three distinct vertices of G.

We next show that no 4 distinct vertices wi,ws,ws,ws € V of G will be realized on a
circle a.s., where w; = g;v; for some ¢; € {£1} and v; € V', i = 1,2,3,4, unless we have
w1 = —wo and wg = —wy after relabelling. Suppose first that vy, va, v3, v4 are distinct, and
let H := G[v1,v2,v3,v4] and H' = G[wy, wa, w3, wy]. Note that v; — w; is an isomorphism
from H to H'. Since G does not contain a 4-cycle or K 3, di(v;) < 1 for some i = 1,2, 3,4.
Without loss of generality, dy(v4) = dp/(ws) < 1, and if dgy(vg4) = 1, then vsvy € E’. Then
dim Li > 2, and it follows that after choosing us, the fourth point u4 and —uy will a.s.
not be on the circle through eu;, eaus, e3us, since the great circle of S? orthogonal to us

intersects each of the 8 circles through any of +wy, fuo, fus in at most 2 points.

Next suppose that vy, vs, v3, v4 consist of exactly 3 distinct vertices, say with ws = v3 = vy

and wq = —v3 = —vy. Since uq, ug, ug are linearly independent a.s., none of the 8 triples
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{e1u1, eous, e3u3} where (£1,¢e9,e3) € {£1}3, lie on a great circle a.s., hence wy is not on

the circle through wi, we, w3 a.s.

The only remaining case is where vy, vo,v3, v4 consist of exactly 2 distinct vertices, say
with wq; = —w9 = v1 and w3 = —w4 = ve. It follows that w; and wo are embedded as

opposite points on S?, and w3 and wy are too. ]

Proof of Theorem[3.1l For d = 1 and d = 2, the theorem is trivial. For d = 3, we use
Proposition as follows. First we remove vertices of degree 3 in G from V one by one.
Let W C V be the set of removed vertices. Each w € W has exactly 3 neighbours in V,
W is an independent set of G, and the maximum degree in G[V \ W] is at most 2. Now we
represent G[V \ W] on S? as in Proposition Finally, we embed the removed vertices
in W one by one as follows. For any circle on S?, there are exactly 2 points at distance 1
from the circle. (They are not necessarily on the sphere.) For any w € W, we choose one
of these two points determined by the circle through the 3 neighbours of w. It remains to
show that there are at most 2 vertices in W that determine the same circle. First note
that at most 2 vertices in W can have the same set of neighbours, because G does not
have K33 as a component. Also, if w; € W and wy € W have different sets of neighbours,
then their neighbours span different circles on S?. Otherwise, if the neighbours of w; and
wsy lie on the same circle C, then by Proposition wi and we have a common neighbour

v on C that lies on a 4-cycle in G[V \ W], so v will have degree 4 in G, a contradiction.

For d > 3 we consider two cases depending on the parity of d.

Case 1: diseven. Let V = ViU---UVy/5 be a partition as in Lemma Remove vertices
of degree 2 in G[Vy/o] from V5 until the maximum degree of each remaining vertex in Vo
is at most 1 in G[Vy/]. Let W C V5 be the set of removed vertices. Then W is an inde-
pendent set of G, any w € W has exactly 2 neighbours in V5, and the maximum degree of
a vertex in G[Vy/o \ W] is at most 1. Hence G[V \ W] = G[V1 U+ U V(g/9)-1 U (Vgso \ W)
can be represented on S9! as follows. As G[V;] for 1 < i < d/2 and G[Vy/5 \ W] have
maximum degree 1, they can be realized on circles of radius 1/v/2 and centre the origin
o in pairwise orthogonal 2-dimensional subspaces of R%. We can also ensure that no two

vertices are diametrically opposite on a circle.

Then we add the vertices of W one by one to this embedding. Each vertex w € W has
exactly 2 neighbours on each circle, so the set N(w) of d neighbours of w span an affine
hyperplane H not passing through o, hence they lie on a subsphere of S*! of radius less
than 1/4/2. It follows that there are exactly 2 points in R?\ S%~! at distance 1 from N (w),
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both on the line through o orthogonal to H. We choose one of these points to embed w.

It remains to show that there are at most two w € W that determine the same subsphere,
and that two different subspheres determine disjoint pairs of points at distance 1. There
are no 3 vertices in W with the same set of neighbours, since the maximum degree in Vg5
is at most 2. If some two vertices wy; and wy from W have different sets of neighbours
N(wy) # N(ws), then they have different pairs of neighbours on at least one of the
orthogonal circles, so the affine hyperplanes H; and Hj spanned by N(w;) and N (wz) are
different. If H; and H, are parallel, then the two subspheres Hi N S41 and Hy N S41
have different radii, and the pair of points at distance 1 from H; NS¢ ! are disjoint from
the pair of points at distance 1 from Ho NS 1. If H; and Hs are not parallel, the pairs
of points at distance 1 from H; NS ! and from Hy N S?! lie on different lines through
o (and none can equal 0), and so are also disjoint. Therefore, all points from W can be

placed.

Case 2: disodd. Let V=V U---UV(4_3)/2UV(4_1)/2 be a partition as in Lemma
First we embed V'\ Vi4_g)/2 = V1U---UV(4_5)2UV(4-1)/2 On S9=3 as follows. As each G[Vj]
for 1 <i < (d —5)/2 has maximum degree 1, the G[V;] can be realized on circles of radius
1/v/2 and with centre in the origin o in pairwise orthogonal 2-dimensional subspaces of
R?. We can also ensure that from V; U --- U V(d—5)/2 no two vertices are diametrically
opposite on a circle. Since the maximum degree of G[V(d_l)/Q] is at most 2, V(4_1)/ can
be embedded on a 2-sphere S of radius 1/4/2 and centre o in a subspace orthogonal to the
subspace spanned by = Vi U---UV(4_5) /2, as described in Proposition We will denote
by C the circle of radius 1/v/2 and with centre o in the plane orthogonal to the subspace
spanned by S%3.

Before treating the general case, we show that we can add V(4_3)/2 to the embedding,
assuming that Vi4_1)/o is embedded in S in general position in the sense that no four
points of V(4_1)/7 lie on the same circle and no three points of V(4_1)/ lie on a great circle
of S. With this assumption, embedding V(4_3)/2 is very similar to the embedding of Vg,
in the even case. First we find an independent set W C V(4_3)/o such that the maximum
degree of G [V(d,g) 2\ W] is at most 1, and each w € W has exactly two neighbours in
Via—3)/2- Then we embed V{4_3)/o \ W on C such that no two vertices are in opposite
positions. Note that V' \ W is embedded in S%1. Finally, we embed the vertices of W one
by one. Each vertex w € W has exactly two neighbours in V; for 1 < i < (d —3)/2 and
three neighbours in V(4_1)/3. By the general position assumption the affine hyperplane

spanned by the set of neighbours N(w) of w does not contain the origin. Thus there are
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exactly 2 points in R?\ S¢~1 at distance 1 from N(w). We choose one of these points
to embed w. An argument similar to the one that was used in the even case shows that
there are at most two w € W that determine the same hyperplane, and two different

hyperplanes determine disjoint pairs of points.

We now turn to the general case. As before, we would like to choose an independent set
W C V(4_3)/2 such that the maximum degree of G[V{4_3)/2 \ W] is at most 1 and each
w € W has exactly two neighbours in V{4_3)/o. However, this is not enough: Note that if
V(a—1)/2 1s not in general position, then it is possible that there is a vertex w € V(4_3)/2
for which Ny(w) := N(w) N V(4_1)/2 spans a great circle on S. Hence the points that are
at distance 1 from N(w) are the poles of the circle spanned by Nj(w) on S. In addition,
in this case the points that are at distance 1 from N(w) are determined by Nj(w). Thus
if for wy,we € W we have N(w1) # N(wz) but Ni(w;) and Nj(wsz) span the same great
circle on S, then the pair of points where w; and wy can be embedded, are the same.

Thus, we have to impose some more properties on the independent subset W.

Recall that V(4_1)/2 is embedded on the 2-sphere S as in Proposition Therefore, three
vertices a,b,c € V(g_1)/2 can only span a great circle if two of them are opposite vertices
of a 4-cycle that are embedded in antipodal points. We assign an ordered triple (a, b, c)
to a, b, ¢ if they span a great circle with a and b being antipodal. By the properties of the
embedding of V(4_1)/2 on S, we have that (a,b,c) and (e, f,g) span the same great circle

if and only if one of the following two statements hold.

L. {a,b} = {e, f}, c = g, and no vertex from V(4_)/o is embedded in the point antipodal
to ¢ = g. (That is, ¢ = g is not part of a pair of opposite vertices of a 4-cycle that

was embedded in an antipodal pair.)

2. {a,b,c,e, f,g} = {h,i,7,k} consist of two pairs of points {h,i} and {j, k} that are

opposite vertices of two 4-cycles.

If for wy,wy € V(d,;g)/g, Ni(wq) and Nj(ws) are as in the first statement, they span the
same great circle if and only if Nj(wi) = Ni(w2) = {a,b,c}. Since a and b have degree
2 in G[V(4-1)/2], by Lemma they are each joined to at most 3 vertices in Vi4_3) /s,
hence there are at most three vertices w1, w2, w3 € Vi4_3) /o for which Ni(w1) = N1(w2) =

Ni(ws) = {a,b,c}. We will call such a triple {wy,ws, w3} a conflicting triple.

If for w1, w2 € Vig_3)/2, N1(w1) and Ni(ws) are as in the second statement, they span the
same great circle in S if and only if Ny (w1), Ni(w2) C {h,1,j,k}. By Lemma any ver-
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tex from {h, i, j, k} has at most three neighbours in V(d—3)/2, and so there are at most four
vertices wy, w2, w3, wy € V(g_3)/o for which Ny(w1), Ni(wz2), N1(ws), N1(ws) C {h,i,j,k}.
If there are 4 such vertices we will call them a conflicting 4-tuple, while if there are 3, we

will also call them a conflicting triple.

We will also call both a conflicting triple and a conflicting 4-tuple a conflicting set. Note
that any two different conflicting sets are disjoint. Recall that by the properties of the
embedding of V(4_1)/2 given by Proposition if three vertices on S span a great circle,
no vertex from V(4_1) /7 is embedded in the poles of this circle. It follows that it is sufficient

for an embedding to find W C V(4_3)/» with the following properties.

1. W is an independent set.

2. If w € W, then w has exactly two neighbours in Vi4_3/» (in order for w to have

ezactly 3 neighbours in Vig_1)/2).

3. Vig—3)/2 \ W can be embedded on C, such that if a,b € V{4_3)/2 \ W are neighbours
of some w € W, then a and b are not in opposite positions (in order to guarantee
that if for w1, we € W the neighbour sets Ni(wy) and Ni(ws) span different circles,
then N(w1) and N(ws) define different hyperplanes.)

4. W contains at most two points of any conflicting set (in order to guarantee that the

neighbours of at most two vertices from W can define the same hyperplane).

Once we find such a W, we can proceed as in the particular case considered above. In the

remaining part of the proof we construct such a W.

Note that the connected components of G [V(d_g) /2] are paths and cycles. We embed paths
of length at most 3 and cycles of length 4 on C. Let H be the set of the remaining

connected components of G[V(4_3)/2]. We need the following simple claim.

Claim 3.10. Let H € H be a cycle of length not equal to 4 or a path of length at least 4.
Then V(H) can be partitioned into sets Ay and By, so that:

1. H[By] is a matching containing only vertices of degree 2 in H (that is, not containing
endpoints of P).

2. For any mazimal independent set W' C By the graph H[Ay U W'] has connected

components of size < 4.
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Proof. Such a partition is very easy to achieve — simply choose the edges in By “greedily”,

in the path case starting from a vertex next to the endpoint of a path. O

For each H € ‘H we denote the partition given by Claim as V(H) = Ay U By, and
select a maximal independent Wy from each By, H € H, in a specific way to be explained
below, and put W := (Jycy Wa. First, let us verify that for any choice of W, we can
make sure that the properties 1-3 are satisfied. First, clearly, W is an independent set.
Second, by the choice of B in each component H € H, each vertex in W has degree 2.
Third, since each connected component of H \ W, H € H', has size at most 4, it can be
realized on the circle C' such that vertices from different connected components are not
in opposite position. Thus, if w € W has neighbours in different connected components
of H\ W, then the property 3 is satisfied for w. If both neighbours of w are in the same
component of H \ W, then H is a cycle of length 3 or 5, and H\ W = H \ {w} is a path
of length 1 or 3. In both cases the neighbours of w form an angle of 7/2 and thus are not

in opposite positions.

To conclude the proof, it remains to choose W in such a way that property 4 is also
satisfied. Recall that G[M] is a matching, where M := |Jycy By, and W C M has
exactly 1 vertex from each edge of G[M]. The vertices from M may belong to several
conflicting sets, but, since different conflicting sets are disjoint, each vertex belongs to at

most one of them.

We add some new edges to G[M] to obtain G’ as follows. For each conflicting triple, we add
an edge between two of its vertices that were not connected before, and for each conflicting
4-tuple we add two vertex disjoint edges that connect two-two of its vertices that were not
connected before. It is clear that finding such edges is possible. Moreover, the added set
of edges forms a matching. Thus, the graph G’ is a union of two matchings, and therefore
does not have odd cycles. Hence, G’ is bipartite, and it has an independent set W which
contains exactly one vertex from each edge in G’. This is the desired independent set, since

no independent set in G’ intersects a conflicting group in more than two vertices. O

3.3 Number of edges

In this section we prove Theorem after some preparation.

Lemma 3.11. Let d > 2 and let x be a vertex of degree at most d — 2 in a graph G. If

G — x can be realized on S as a unit distance graph, then G can also be represented on
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Se-1.

Proof. The neighbours of x span a linear subspace of dimension at most d — 2, so there is

a great circle from which to choose . O

Corollary 3.12. Any (d — 2)-degenerate graph has spherical dimension at most d.

The above corollary also follows from the proof of [25, Proposition 2].

In the proof of Theorem [3.3] we need the following simple lemma.

Lemma 3.13. If the complement of a graph H on d+ k vertices has a matching of size k,
then H can be realized on S*~1. In particular, the graph of the d-dimensional cross-polytope

can be realized on S%1.

Proof. Let vy,...,vq+1 be the vertices of H, labelled so that v; is not joined to vg4;
(i =1,...,k). Let vectors e, ea,...,eq € ST form an orthogonal basis. Map v; to e;
and vgy; to —e; (i =1,..., k). This is the desired realization: e; is at distance 1 from =e;

whenever j # i. O

Proof of Theorem[3.3. Define ¢g(2) = 3, g(3) = 8 and g(d) = (d'f) —1ford > 4. We
show by induction on d > 2 that if G = (V, E) has at most g(d) edges, then G can be
embedded in R?, and if G furthermore does not contain Ky, or K4 9 — K3, then G can
be embedded in the sphere S¢~! of radius 1/+/2. This is easy to verify for d = 2. From

now on, assume that d > 3, and that the statement is true for dimension d — 1.

Remove vertices of degree at most d — 2 one by one from G until this is not possible
anymore. If nothing remains, Corollary gives that G can be embedded in S¥~!. Thus,
without loss of generality, a subgraph H of minimum degree at least d — 1 remains. We

first show that if H contains K4.; or K4.9 — K3, then G can be embedded in RY.

Suppose that H contains Kz — K3. Then H cannot have more than d 4 2 vertices,
otherwise, since each vertex of H has degree at least d—1, |E(H)| > (d;ﬂ) —3+d—1 > g(d),
a contradiction. Therefore, H is contained in Kgi9 — e, which can be embedded in R
as two regular d-simplices with a common facet. Note that this embedding has diameter
\/m < 2. There are at most two edges of G that are not in H. Then the degrees of
the vertices in V(G) \ V(H) are at most 2, so they can easily be embedded in RY.

Suppose next that H contains K41 but not K410 — K3. If H has more than one vertex
outside K411, then |E(H)| > (d;rl) +d—14+d—2> g(d), a contradiction. If H has a
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vertex outside K411, then this vertex is joined to at least d — 1 vertices of K411, and it
follows that H contains Kg,2 — K3, a contradiction. Therefore, H = K4,1. There are at
most g(d) — (d;rl) < d edges between V(H) and V(G) \ V(H). Therefore, some v € H is
not joined to any vertex outside H. Then H — v = K, can be embedded in S%~!, hence
by Lemma G — v can be embedded in S?!. Since v is only joined to the d vertices
in V(H — v), we can embed it in R?\ S¢~! so that it has distance 1 to all its neighbours.

We may now assume that H does not contain K411 or K410 — K3. It will be sufficient to
show in this case that H can be embedded in S*~!, as it then follows by Lemma that

G can also be embedded in S%I.

If H has at most d + 1 vertices, then H is a proper subgraph of K;.1, and we are done
by Lemma [3.13

Suppose next that H has d + 2 vertices. Then the complement H has maximum degree
at most 2. If H does not have two independent edges, then its edges are contained in a
K3, and H contains K49 — K3, a contradiction. Therefore, H has two independent edges,

and we are done by Lemma [3.13

Thus without loss of generality, H has at least d+3 vertices. Let v be a vertex of maximum
degree in H. If v is adjacent to all other vertices of H, then v has degree at least d + 2,
hence |E(H —v)| < g(d) — (d + 2) < g(d — 1), and, since H does not contain Kyq or
K9 — K3, the graph H — v does not contain Ky or K441 — K3. Therefore, by induction,
H —v is embeddable in a subsphere S¥~2. We then embed v as a point on S%~! orthogonal
to this S%2,

Thus without loss of generality, each vertex v of maximum degree A has a non-neighbour
w. We may also assume that A > d, otherwise Proposition gives that H is embeddable
in S~ Then |[E(H —v —w)| < g(d) — A —(d—1) < g(d) —d—(d—1) < g(d —1).
By induction, either H — v — w is embeddable in S*! N H, where H is a hyperplane
passing through the origin, and then v and w can be embedded as the two points on S

orthogonal to H, or H — v — w contains a K4 or a Kg11 — K3.

Case 1: For any v of maximum degree and any w that is non-adjacent to v, H — v — w
contains a d-clique K. Since H does not contain K;,1, v has a non-neighbour z in K.
Then H — v — x contains another d-clique K'. If K and K’ intersect in at most d — 2
vertices, then K U K’ has at least (d;2) — 4 edges, hence |E(H)| > d+ (dJ2r2) —4>g(d), a
contradiction. Therefore, K and K’ intersect in exactly d — 1 vertices, and K U K’ has at

least (dgl) —1 edges. Since H has at least d+ 3 vertices, there exists a vertex y # v not in

o1



Chapter 3. Unit-distance embeddings

KUK'. Then |E(H)| > deg(v) +deg(y) — 1+ (*51) =1 > d+(d—1) - 1+ () =1 > g(d),

a contradiction.

Case 2: Some vertex v € H of maximum degree A > d has a non-neighbour w such that
H — v —w contains a K411 — K. Then |[E(H)| > A 4 deg(w) + (d;ﬂ) —3 > g(d). Since
also |[E(H) < g(d), it follows that H —v —w = K411 — K3, v has degree A = d, and w has
degree d—1. Let vy, v2, v3 be the pairwise non-adjacent vertices in H —v —w. If v is joined
to at most 2 of the v; and w is joined to at most 1 of the v;, i = 1,2, 3, then the components
of H[v,w, vy, vs,vs3] are paths of length at most 3, hence can be realized on a great circle
C of S%~1 and the remaining K;_» can be realized on the subsphere orthogonal to C.
Otherwise, either v is joined to all of vq,vo, v3, or w is joined to at least two of them. Note
that v has a non-neighbour other than w in H, and w has at least 2 non-neighbours other
than v in H. Tt follows that there are two different vertices wi,wy € V(H) \ {v,w} such
that vw; and wwy are non-adjacent pairs and |[{wy, w2} N {v1,v2,v3}| < 1. Thus, we can

find three disjoint pairs of non-adjacent vertices in H and apply Lemma [3.13] O

3.4 Ramsey results

Lemma 3.14. The graphs Kqio and Kg13 — K3 cannot be embedded in R?. The graphs

Kg11 and K10 — K3 cannot be embedded in Sé-1,

Proof. Embeddability 1n S?! reduces to statements about orthonormal vectors, since
S?1 has radius 1/v/2, hence the endpoints of an edge of a unit-distance graph on S%~!
are orthogonal when viewed as unit vectors. It is then immediate that K41 cannot be

realized in S4-1.

We next show by induction on d that G = K49 — K3 cannot be realized on a sphere of
any radius in R¢. This is easy to see for d = 1 and 2. For d > 3, choose a v € G that is
joined to all other vertices. Then G — v is contained in the intersection of the sphere with
the unit sphere centred at v. This gives an embedding of K441 — K3 in a subsphere on a

hyperplane of R?, which contradicts the induction hypothesis.
This also implies that K43 — K3 cannot be embedded in R%.

Suppose that K, can be embedded in R?. Without loss of generality, we then have unit

vectors vy, ..., v, such that the distance between any two v; is 1. It then follows from
the identity 350, 3701 Ajllvi — vjll* = 20300, X)) 207 Adlleall? — 2[1 225, Aiwil|® that
v1,..., U, are linearly independent, hence n < d. ]
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Proof of Theorem[3.4 Consider the graph G on 2d vertices which is a union of a K4, and
d—1 isolated vertices. Then G contains K41 and G contains Ky 2 — K3. By Lemma
neither of these graphs can be embedded in S~!. It follows that fsp(s) > [(s+1)/2].

To prove fsp(s) < [(s+1)/2], we show that if the edges of the complete graph on 2d — 1
vertices are coloured with red and blue, then either the graph spanned by the red (denoted

by G,) or the graph spanned by the blue edges (denoted by G}) can be embedded on S,

The proof is by induction on d. It is easy for d = 1,2. For d > 2: If the maximum degree
of G, or Gy is at most d — 1, we are done by Proposition So we may assume that
there are two vertices, v, and vy, of degree at least d in G, and G} respectively. By the
induction we may assume that G,.[V — v, — v] is realizable on S%~2. If the edge (v,,v})
is blue, we put v, and v, in the poles of the (d — 2)-sphere on which G, [V — v, — vy is
embedded. Otherwise v, has at most d — 3 neighbours in G,[V — v,]. In this case we first
add v on the (d — 2)-sphere (on which G, [V — v, —v] is embedded), and then we can put
vy in one of the poles of the (d — 2)-sphere.

To obtain the lower bound on fp(s)[(s—1)/2], consider the graph G which is the union of
K449 and d isolated vertices. Then G contains Ky and G contains K4,3 — K3. Neither
of these can be embedded in R? by Lemma

To prove fp(s) < [s/2], we show that if the edges of the graph on 2d vertices are coloured
with red and blue, then either G, or Gy can be embedded in R?. For any vertex v € V
we have dg, (v) + dg, (v) = 2d — 1, so either dg, < d—1 or dg, < d — 1. Hence we may
assume that there are at most d vertices that have degree larger than d — 1 in G,.. Let W
be the set of vertices v € V' with dg, (v) < d—1. |[V\W| < d, so we can embed G,(V) on
S%1. Then we add the vertices of W to this embedding one by one as follows. If w € W
has a neighbour in W, then it has at most d — 2 neighbours in V' \ W, thus we remove it
from W and embed it on S*~!. We repeat this until W is an independent set. Now for
each vertex w € W there is at least a circle (which is not necessarily contained in S9—1)

in which we can embed w, so we embed them one by one. O

3.5 Additional questions
In Theorem we proved that any graph with maximum degree d can be embedded in

R? unless d = 3 and G has K33 as a component. We suspect that a slightly stronger

statement holds.
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Problem 3.15. Is it true that for d > 3 any graph with mazximum degree d, except Kiy1,

has spherical dimension at most d?

This is false for d = 3: the 3-cube (even the 3-cube with a vertex removed) cannot be
embedded on S?; neither can the graphs on the vertices a1, ..., an, b1, ..., b, with edge set

{(a;,b5) : j=1—1,4,i+ 1 mod n} where n > 3 odd.

The lower and upper bound on fp(s) in Theorem are very close, but it still does not

give the exact value of fp(s). We conjecture that the lower bound is sharp.

Problem 3.16. Is it true that for any graph G on 2d + 1 vertices, either G or G has

dimension at most d?
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Chapter 4

The chromatic number of the

plane

4.1 Introduction

A colouring of a set X is a function ¢ : X — A for some finite set A. A k-colouring of X
is a function ¢ : X — A with |S| = k. For any graph G = (V, E) a colouring ¢ : V — A is
a proper colouring of G if (z,y) € E implies p(z) # ¢(y), and it is a proper k-colouring,
if in addition |A| = k. The chromatic number x(G) of a graph G is the smallest k for
which there exists a proper k-colouring of G. We present an approach that might lead
to a human-verifiable proof of x(R?) > 5, following ideas proposed by Pélvolgyi [56]. A
collection of unit circles C'= C1 U- - -UC), having a common point O a bouquet through O.
For a given colouring of R?, the bouquet C is smiling if there is a colour, say blue, such

that every circle C; has a blue point, but O is not blue. We make the following conjecture.

Conjecture 4.1. For every bouquet C, every colouring of the plane with finitely many

but at least two colours contains a smiling congruent copy of C'.

In Section we show that the statement of Conjecture 4.1 would provide a human-
verifiable proof of y(R?) > 5. We prove the conjecture for a specific family of bouquets

for proper colourings of the plane.

Theorem 4.2. Let C = C1U---UC, be a bouquet through O and for every i et O; be the
centre of C;. If O and Oy, ...,0, are contained in Q2, further O is an extreme point of
{0,0,...,0,}, then Conjecture is true for C for proper colourings.
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Chapter 4. The chromatic number of the plane

In Section [4.5.2] we prove a more general statement which implies Theorem We also
prove a statement similar to that of Conjecture [4.1]for concurrent lines. We call a collection
of lines L = L1 U---U L, with a common point O a pencil through O. The pencil L is
smiling if there is a colour, say blue, such that every line L; has a blue point, but O is not
blue.

Theorem 4.3. For every pencil L, every colouring of the plane with finitely many but at

least two colours contains a smiling congruent copy of L.

4.1.1 Almost-monochromatic sets

Let S C R? be a finite set with [S| > 3, and let sg € S. In a colouring of R? we call
S monochromatic, if every point of S has the same colour. A pair (5,sp) is almost-

monochromatic if S\ {so} is monochromatic but S is not.

Two sets S and T are similar, if there is an isometry f and a constant A € R A\ # 0 with
T = Af(S). An infinite arithmetic progression in R? is a similar copy of N. A colouring
is arithmetic progression-free if it does not contain a monochromatic infinite arithmetic
progression. We use abbreviations AM for almost-monochromatic and AP for arithmetic

progression.

Motivated by its connections to the chromatic number of the planeE we propose to study

the following problem.

Problem 4.4. Characterise those pairs (S, sg) with S C R? and with sy € S for which
it is true that every arithmetic progression-free finite colouring of R¢ contains an almost-

monochromatic similar copy of (S, so).

We solve Problem in the case when S C Z%. A point so € S is called an extreme point
of S if sg ¢ conv(S \ {so}).

Theorem 4.5. Let S C Z% and so € S. Then there is an AP-free colouring of R® without
an AM similar copy of (S, s0) if and only if |S| > 3 and sg is not an extreme point of S.

We prove Theorem [4.5[in full generality in Section The ‘only if’ direction follows
from a stronger statement, Theorem [£.16] In Section 2 we consider the 1-dimensional case.
We prove some statements similar to Theorem for d = 1, and illustrate the ideas that

are used to prove the theorem in general.

IThe connection is described in details in the the proof of Theorem
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Chapter 4. The chromatic number of the plane

T is a homothetic copy (or homothet) of a S, if there is a vector v € R% and a constant
A€ER (A#0) with T'= v+ AS. T is apositive homothetic copy (or positive homothet) of
a S, if moreover X\ > 0. We prove the following result in Section

Theorem 4.6. Let S = {0,1,2} and so = 0. Then every finite colouring of Q with more

than one colour contains an AM positive homothet of (S, so).

4.2 The line

In this section we prove a statement slightly weaker than Theorem for d = 1. The
main goal of this section to illustrate some of the ideas that we use to prove Theorem
but in a simpler case. Note that in R the notion of similar copy and homothetic copy is

the same.

Theorem 4.7. Let S C7Z and so € S. Then there is an AP-free colouring of N and of R
without an AM positive homothetic copy of (S, so) if and only if |S| > 3 and sg is not an

extreme point of S.

To prove Theorem [4.7] it is sufficient to prove the ‘if” direction only for R and the ‘only if’
direction only for N. Thus it follows from the three lemmas below, that consider cases of

Theorem depending on the cardinality of S and on the position of sg.

Lemma 4.8. If sq is an extreme point of S, then every finite AP-free colouring of N

contains an AM positive homothetic copy of (S, so).

Lemma 4.9. If |S| = 3, then every AP-free finite colouring of N contains an AM positive
homothetic copy of (S, so).

Lemma 4.10. If S C R, |S| > 3 and sg is not an extreme point of S, then there is an

AP-free finite colouring of R without an AM positive homothetic copy of (S, so).

Before turning to the proofs, recall Van der Waerden’s theorem [67] and a corollary of it.

A colouring is a k-colouring if it uses at most k colours.

Theorem 4.11 (Van der Waerden [67]). For every k,¢ € N there is an N(k,¢) € N such

that every k-colouring of {1,...,N(k,€)} contains an {-term monochromatic AP.

Corollary 4.12 (Van der Waerden [67]). For every k,¢ € N and for every k-colouring of
N there is a t < N(k,l) such that there are infinitely many monochromatic £-term AP of

the same colour with difference t.
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Proof of Lemmal[f.8 Let S = {p1,...,pn} with 1 < p; < --- < p,, and ¢ be an AP-free

colouring of N. If sy is an extreme point of .S, then either so = p1 or sg = py,.

Case 1: sy = p,. By Theorem [I.11] ¢ contains a monochromatic positive homothet
M+ X([1,pn) NN) of [1,p,) NN of colour, say, blue. Observe that since ¢ is AP-free
there is a ¢ € M + A([pn, 00) N N) which is not blue. Let M + ¢\ be the smallest non-blue
element in M + A([pn,00) NN). Then (A(¢ — pn) + M + AS, M + A\g) is an AM homothet
of (S, s0).

Case 2: sy = p1. By Corollary there is a A € N such that ¢ contains infinitely
many monochromatic congruent copies of A((1,p,] N N), say of colour blue. Without
loss of generality, we may assume that infinitely many of these monochromatic copies are
contained in AN. Since ¢ is AP-free, AN is not monochromatic, and thus there is an ¢ such
that ¢\ and (¢ + 1)\ are of different colours. Consider a blue interval M + A((1,p,] NN)
such that M + X\ > i), and let ¢ be the largest non-blue element of [1, M + A) N AN. This
largest element exists since Ai and (i + 1) are of different colour. Then (¢ — Ap1 + AS, q)
is an AM homothet of (.5, s¢). O

Proof of Lemmal[{.9 Let S = {p1,p2,p3} with 1 < p; < p2 < p3 and ¢ be an AP-free

colouring of N. We may assume that sy = py, otherwise we are done by Lemma [4.8

There is an r € Q¢ such that {qi,¢2,¢q3} is a positive homothet of S if and only if
@ =7rq1+ (1 —r)gs. Fix an M € N for which Mr € N. We say that I is an interval of
¢+ AN of length ¢ if there is an interval J C R such that I = J N (c+ AN) and |I| = ¢.

Proposition 4.13. Let I; and I3 be intervals of AN of length 2M and M respectively
such that max i < minlg. Then there is an interval Is C AN of length M such that
max [1 < max Iy < max I3, and for every qo € Iy there are q1 € I1 and q3 € I3 such that

{q1,92,q3} is a positive homothetic copy of S.

Proof. Without loss of generality we may assume that A = 1. Let I be the set of the M
smallest elements of I;. By the choice of M for any g3 € N the interval rI¥ + (1 — r)qs
contains at least one natural number. Let g3 be the smallest element of I3 and ¢g; € If
such that rq1 + (1 —r)gs € N. Then Iy = {r(q1 +i) + (1 —=r)(gzs +i) : 0<i < M} is an
interval of N of length M satisfying the requirements, since g1 +¢ € I; and g3+t € I3. [

We now return to the proof of Lemma Let I be an interval of N of length 2M. By
Theorem there is a A € N such that ¢ contains infinitely many monochromatic copies
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of AI of the same colour, say of blue. Moreover, by the pigeonhole principle there is a
¢ € N such that infinitely many of these blue copies are contained in ¢ + AN, and without

loss of generality we may assume that ¢ = 0.

Consider a blue interval [a\, aX + 2MX — A\] of AN of length 2M. Since ¢ is AP-free,
[aX + 2M X, 00) N AN is not completely blue. Let gA be its smallest element which is not
blue and let I} = [gA — 2M A\, (¢ — 1)A\] N AN. Let I3 be the blue interval of length M in
AN with the smallest possible min I3 for which max Iy < min I3. Then Proposition 4.13
provides an AM positive homothet of (S, sp).

Indeed, consider the interval I» given by the proposition. There exists a go € Is which
is not blue, otherwise every point of Iy is blue, contradicting the minimality of min /3.
But then there are q1 € I1, g3 € I3 such that ({q1,¢2,q3}, ¢2) is an AM homothet copy of
(S, s0). O

Proof of Lemma[4.10. S contains a set S’ of 4 points with sy € S” such that sp is not an
extreme point of S’. Thus we may assume that S = {p1, p2, p3, p4} with p; < pa < p3 < p4
and that sg = p2 or so = p3. We construct the colouring for these two cases separately.
First we construct a colouring ¢ of R-g for the case of sg = ps, and a colouring 2 of

R>q for the case of sy = pa. Then we extend the colouring in both cases to R.

Construction of ¢; (sp = p3) : Fix K such that K > % + 1 and let {0,1,2} be
the set of colours. We define ¢ as follows. Colour (0,1) with colour 2, and for every
i € NU{0} colour [K?, K*™!) with i modulo 2. The colouring o1 defined this way is AP-
free, since it contains arbitrarily long monochromatic intervals of colours 1 and 2. Thus

we only have to show that it does not contain an AM positive homothet of (S, sq).

Consider a positive homothet ¢ + AS = {r1,re, 73,74} of S with r; < ro < r3 < rs. If
{ri,r9,73,74} N [0,1) # 0, then {ry,re,r3,74} cannot be AM. Thus we may assume that
{Th r2,T3, 7/‘4} N [0’ 1) = @

Note that by the choice of K we have

Kry >r2+p4—p2r2:rz+p4—p2

P2 —Pp1 P2 —p1

(A(p2 —p1) +7r1) > 12+ A(pa — p2) = 74

Hence {rq,r3,74} is contained in the union of two consecutive intervals of the form
[K?, K1), This means that ({rq,...,74},73) cannot be AM since either {rq,r3,7r4} is

monochromatic, or ro and r4 have different colours.

Construction of ¢z (sp = p2): Fix K such that K > ;j;‘%ﬁf +1,let L=K- [%—‘ and
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let {0,...,2L} be the set of colours. We define @9 as follows. For each odd i € NU {0},
divide the interval [L - K* L - K't!) into L equal half-closed intervals, and colour the j-th
of them with colour j. For even i € NU {0} divide the interval [L - K*,L - K*!) into L
equal half-closed intervals, and colour the j-th of them with colour L + j. That is, for
j=1,...,L we colour [L-K'+ (j — 1)(K*' — K%),L - K’ + j(K"*! — K*)) with colour
j if i is odd, and with colour j + L if i is even. Finally, colour the points in [0, L) with

colour 0.

9 defined this way is AP-free, since it contains arbitrarily long monochromatic intervals
of colours 1,...,2L. Thus we only have to show it does not contain an AM positive

homothetic copy of (.S, sp).

Consider a positive homothet ¢ + AS = {r1,re, 73,74} of S with r; < ro < rg < ry. If
{r1,re, 3,74} N[0, L) # O, then ({r1,r2,73,74},72) cannot be AM, thus we may assume
that {ry,72,73,74} N[0, L) = (). Note that by the choice of K we again have

Pa — P2 P4 — P2
ro =12+
p2 —p1 P2 —p1

Kry > ro + (A(p2 —p1) +71) 212+ AN(pa — p2) = 74

This means that {rq, 73,74} is contained in the union of two consecutive intervals of the
form [L - K% L - K'*!), which implies that if ({ry,r2,73,74},72) is AM, then {rs,r4} is
contained in an interval [L - K* 4 (j — 1)(K'T! — K%), L - K 4+ j(K't! — K?)) for some
1 < j < L. However, then by the choice of L we have that r; is either contained in the
interval [L - K%, L - K*!) or in the interval [L - K'~! L - K*). Indeed,

rg —1r1 < Fﬂ?’ _Tl-‘ (rg —m3) < [7‘3 _rl—‘ (K™ — K"
T4 — T3 rq — T3
- F‘”’ _pﬂ (K — k') = L(K' — K'Y,
P4 — P3

Thus, if r1 has the same colour as r3 and r4, then 71 is also contained in the interval
[L-Ki4 (j — 1)(K* — KY), L- K+ j(K™! — KY)), implying that ({r1,ro,73,74},72) is

monochromatic.

We now extend the colouring to R in the case of s9 = p3. Let ¢} be a colouring of R>g
isometric to the reflection of p9 over 0. Then ¢f contains no AM positive homothet of
(S, s0). If further we assume that ¢ and ¢} use disjoint sets of colours then the union
of p1 and ¢}, is an AP-free colouring of R containing no AM positive homothet of (S, s¢).

We can extend the colouring similarly in the case of sg = ps. O
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4.3 Higher dimensions

In this section we prove Theorem

4.3.1 Proof of the ‘if’ direction of Theorem [4.5|

Let S C RY such that |S| > 3 and s is not an extreme point of S. To prove the ‘if’
direction of Theorem we prove that there is an AP-free colouring of R? without an
AM similar copy of (S, sg). (Note that for the proof of Theorem [4.5] it would be sufficient
to prove this for S C Z4.)

Recall that C' C R? is a convex cone if for every =,y € C and «, 8 > 0, the vector ax + Sy
is also in C. The angle of C is sup, yecn (o} £(2,Y)-

We partition R? into finitely many convex cones Cy U --- U C,,, each of angle at most
a = a(d,S), where a(d, S) will be set later. We colour the cones with pairwise disjoint
sets of colours as follows. First, we describe a colouring ¢ of the closed circular cone

1 — ... = 2% Then for each i we define a colouring

C = C(«a) of angle o around the line x
w; of C; using pairwise disjoint sets of colours in a similar way. More precisely, let f; be

an isometry with f;(C;) C C, and define ¢; such that it is isometric to ¢ on f;(C;).

It is not hard to see that it is sufficient to find an AP-free colouring ¢ of C' without an
AM similar copy of (5, s¢). Indeed, since the cones C; are coloured with pairwise disjoint

sets of colours, any AP or AM similar copy of (.S, s¢) is contained in one single C;.

We now turn to describing the colouring ¢ of C. Note that by choosing « sufficiently
small we may assume that C' C }Rgo. For x € R? let ||z||; = |2'|+---+|z%. Then for any
z € R? we have

[l < [lfly < V|- (4.1)

Let S = {p1,...,pn} and fix K such that

K >1+2Vd max M
Ppipj 1P ESpi#D; ||Pi — by |
For a sufficiently large L, to be specified later, we define ¢ : C' — {0,1,...,2L} as

(

0 if HmHl <L
J if for some even i € N and j € [L] we have
plx) = |zl € [L- K"+ (j — 1)(K™! — K'), L K' + j(K'*! — KY))

L+ j if for some odd i € N and j € [L] we have
€ [L- K"+ (j — 1)(K'"™ — K'),L- K"+ j(K""! — K")).
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@ is AP-free since any half-line in C' contains arbitrarily long monochromatic sections of
colours 1,...,2L. Thus we only have to show that it does not contain an AM similar copy

of (S,s0). Let ({r1,...,mn},qo) be a similar copy of (5, sg), with
[rifls < flrafl < - < lralla- (4.2)

Claim 4.14. {||r2||1,...,||rnll1} is contained in the union of two consecutive intervals of
the form [L - K7, L - KJT1),

Proof. For any r; with ¢ > 2 we have

il < [lrally + [lrs — rallx

< lrall + Vdlrs = 72| by ([@.1)
Ti—T
= frall + Va2,
[[r2 = 71|
K-1 .
< ||ra|lx + — e — 1| by the definition of K
K—-1 . . .
< |lre|l1 + T(HTQH + ||m1])) by the triangle inequality
K-—-1
< lrells + —5—(llr2lls + lI1ll1) by (4.1)
< Kr2lh by (@4.2).
]

Assume now that ({ry,...,7,},q0) is AM. Note that ||z||; is v/d times the length of the
projection of z on the z' = ... = z% line for z € R%o' Thus for any similar copy
¥(S) of S we have |[¢(so)]|1 € conv{||p|l1 : p € ¥(S\{s0})}, and we may assume that
qo # 71,7n. This means that ¢(r1) = ¢(r,), and there is exactly one i € {2,...,n — 1}
with ¢(r;) # ¢(r1). This, by Claim and by the definition of ¢, is only possible if
i = 2 and there are ¢ € N and j € [L] such that

73l lrnallh € [L- K+ (G = DT = KY), L K + (K™ — KY)).

The following claim finishes the proof.

Claim 4.15. If L is sufficiently large and « is sufficiently small, then ||r1||1 is contained
in [L- K™YL -KY)U[L- K L- K™Y,
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LK + (j + 1)K — Ki)

ViH, 2(sina) (LK + (j + 1) (K = K7))

e}
K+l K

Figure 4.1: TN C(w)

The claim indeed finishes the proof. By the definition of ¢ then ¢(r1) = ¢(r,) implies
il € [L- KT+ (G = )(K™ = K7), L K' + (K™ = K7)).

But then we have
Irally € [L+ K*+ (= )(K™ = K'), L K"+ j (K™ = K7))

as well, contradicting p(r2) # ¢(r1).

Proof of Claim[{.15. Tt is sufficient to show that |r,—1]1 — [|r1]li < LK — LK. We

have

lrn—1—mnll K-1
T < ||t — || ——
||Tn _ TanH || n n” 2 I

lra—1lly = il < Vdlira—y —rill = Vdllra — -]
by (4.1) and by the definition of K. Let H; and Hs be the hyperplanes orthogonal to the
line 2! = --- = 27 at distance %(L-Ki%—(j—l)(K”'l—Ki)) and —=(L-K'+j(K™ - K%))

from the origin respectively. Since

1
ol

Il Irnally € [L- K* + (j = 1)(K™ = K*),L- K' + j(K"*" — K")),
rn and r,_1 are contained in the intersection T' of C'(«) and the slab bounded by the
hyperplanes H; and Ho.

Thus ||rp—1 — || is bounded by the length of the diagonal of the trapezoid which is
obtained as the intersection of T" and the 2-plane through r,, r,—1 and the origin. Scaled
by v/d, this is shown in Figure
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From this, by the triangle inequality we obtain

1 ) . ) ) )
|71 — o < 7 (K™ — K' 4+ 2(sina) (LK' + (j + 1)(K"™™ — K7)))

where the last inequality holds if « is sufficiently small. Combining these inequalities and
choosing L = KTZ we obtain the desired bound ||r,_1||1 — ||rn|li < LK® — LK*~!, finishing
the proof of the claim. O

4.3.2 Proof of the ‘only if’ direction of Theorem [4.5

The ‘only if’ direction follows from Theorem [4.7]in the case of d = 1, and from the following

stronger statement for d > 2 (since in this case sp is an extreme point of .S).

Theorem 4.16. Let S C Z% and so € S be an extreme point of S. Then for every k
there is a constant A = A(d, S, k) such that the following is true. Every k-colouring of 7¢
contains either an AM similar copy of (S, so) or a monochromatic similar copy of Z¢ with

an integer scaling ratio 1 < A < A.

Before the proof we need some preparation.

Lemma 4.17. There is an R > 0 such that for any ball D of radius at least R the following
is true. For every p € Z% outside D and is at distance at most 1 from D there is a similar
copy (S',s}) of (S, s0) in Z such that sy =p and S'\ {s)} C D.

Let Qn = {% :a,b€Z,b< N} C Q.

Proof. Since sy is an extreme point of S, there is a hyperplane that separates sy from
S\ {s0}. Thus if R is sufficiently large, there is an ¢ > 0 with the following property. If p
is outside D and is at distance at most 1 from D, then there is a congruent copy (S”, s(;)
of (S, s9) with s{j = p and such that every point of S”\ {s{j} is contained in D at distance

at least 2¢ from the boundary of D.

Let Qn = {% ca,beZ,b< N} C Q. We use the fact that O(R%) N Q¥*?, the set of
rational rotations, is dense in O(RY) (see for example [58]). This, together with the
compactness of balls implies that we can find an N = N(e) € N and (S*, sj*) in Q4, which
is a rotation of (S”,s()) around p, e-close to (S”, s(;). With this S* \ {s{} is contained in
D. Moreover, if R is sufficiently large, then enlarging (S*, sj*) from sjx by NI, 8"\ {s(}
is contained in D N Z. O
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The proof of the following variant of Gallai’s theorem can be found in the Appendix.

Theorem 4.18 (Gallai). Let S C Z% be finite. Then there is a \(d, S, k) € Z such that
every k-colouring of Z¢ contains a monochromatic positive homothet of S with an integer
scaling ratio bounded by A(d, S, k).

Proof of Theorem[{.16. Let R be as in Lemma and let H be the set of points of Z¢
contained in a ball of radius R. By Theorem there is a monochromatic, say blue,
homothetic copy Hy = ¢+ AH of H for some integer A < \(d, H, k). Without loss of
generality we may assume that Hy = B(O, AR) N AZ% for some O € Z¢, where B(O, AR)
is the ball of radius AR centred at O.

Consider a point p € MZ%\ H being at distance at most A from Hy. If p is not blue then
using Lemma we can find an AM similar copy of (S, sp). Thus we may assume that
any point p € \Z¢ \ Hp which is A close to Hy is blue as well.

By repeating a similar procedure, we obtain that there is either an AM similar copy of
(S, s0), or every point of H; = B(O, AR +i\) N A\Z% is blue for every i € N. But the latter

means AZ? is monochromatic, which finishes the proof. O

4.3.3 Finding an almost-monochromatic positive homothet

The following statement shows that it is not possible to replace an AM similar copy of
(S, s0) with a positive homothet of (.S, sg) in the ‘only if’ direction of Theorem

Proposition 4.19. Let S C Z% such that S is not contained in a line and sog € S. Then
there is an AP-free colouring of R® without an AM positive homothet of (S, sg).

Proof. We may assume that |S| = 3 and thus S C R?. Since the problem is affine invariant,
we may further assume that S = {(0,1),(1,1),(1,0)} with so = (1,1), s; = (0,1) and

s9 = (1,0). First we describe a colouring of R? and then we extend it to R

For every i € N let ; be the square [—4%, 4°71] x [—4% 471 and Qo = 0. Further let H,
be the open half plane < y and H_ be the closed half plane 2 > 3. We colour R? using
four colours, green, blue, red and yellow as follows (see also Figure .

e Green: For every odd i € N colour (Q; \ Qi—1) N H4 with red.

e Blue: For every even i € N colour (Q; \ Q;—1) N Hy with yellow.
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Figure 4.2: A 4-colouring avoiding AM homothets of (.5, sg).

e Red: For every odd i € N colour (Q; \ @Q;—1) N H_ with green.

e Yellow: For every even i € N colour (Q; \ Q;—1) N H_ with blue.

A similar argument that we used before shows that this colouring o1 is AP-free. Thus
we only have to check that it contains no AM positive homothet of (S, sp). Let S’ be a
positive homothet of S. First note that we may assume that S’ is contained in one of the
half planes bounded by the x = y line, otherwise it is easy to see that it cannot be AM.
Thus by symmetry we may assume that s; € Q; \ Q-1 N H for some i € N.

If the y-coordinate of s, is smaller than —4°~1 then s} € @Q;\Qi—1, and hence S’ cannot be
AM. On the other hand, if the y-coordinate of s, is at least —4'~1, then ||s{, —s}|| < 247~ 1.
This means that the y-coordinate of s} is at least — (4=t +2-49"1) > —4% Thus, in this

case s, is contained in ] € Q; \ Q;—1, and hence S’ cannot be monochromatic.

To finish the proof, we extend the colouring to R%. Let T =2 R% 2 be the orthogonal
complement of R?. Fix an AP-free colouring ¢ of T using the colour set {1,2}. Further
let 3 be a colouring of R? isometric to o1, but using a disjoint set of colours. For every
t € T colour R? + ¢ by translating ¢; if ¢(¢) = i. This colouring is AP-free and does not
contain any AM positive homothet of (S, sg). O
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4.4 Colouring Q

Before proving Theorem note that we could not replace S = {0, 1,2}, s = 0 with any
arbitrary pair (5, sg) where sg is an extreme point of S. For example, let S = {0,1,2,3,4},
sop = 0, and colour Q as follows. Write each non-zero rational as 2’5% where p and ¢ are odd,
and colour it red if ¢ is even and blue if ¢ is odd. This colouring is non-monochromatic,

but does not contain any AM homothet of (.5, sp) (in fact not even similar copies).

Indeed, let c+AS = {ry,ro, 73,74, 75} = {r1, 71+ A, r1+2X,r1+3X,r1 +4A} be a homothet
of S. Note that for any z,y,a € Q we have that = and y are of the same colour if and
only if ax and ay have the same colour. That is, multiplying each r; with the same «
does not change the colour pattern. Thus we may assume that 7y = 2% and \ = 2¢p for

some a,t € N and odd integers b, p.

If a < t, then {ri,r9,rs, 74,75} is monochromatic, thus we may assume that ¢t < a and
divide by 2¢, to obtain {297%b,297th + p, 297tb + 2p, 297 h + 3p, 297 tb + 4p} C Z. But then
two of 2¢7th + p, 297tb + 2p, 297th + 3p, 297b + 4p are odd, and one of them is 2 mod 4,
implying that {2470 + p, 297th + 2p, 297 b + 3p, 2%~ 'b + 4p} cannot be monochromatic.

To prove Theorem [4.6] we need the following lemma.

Lemma 4.20. If a k-colouring ¢ of Z does not contain an AM positive homothet of (.S, s¢)
then every colour class is a two-way infinite AP. Moreover, there is an F = F (k) such

that ¢ is periodic with F'.

Proof of Theorem[].6 Let ¢g be a colouring of Q without an AM positive homothet of
(S,s0). For any x € Q, we define a colouring ¢ of Z as ¢(n) = @@(%). Applying
Lemma for ¢ implies that ¢g(0) = ¢(0) = ¢(F(k)) = ¢g(z). this means 0 and x

have the same colour in ¢q. d

Proof of Lemma[{.20. We first prove that if a and a + d for some d > 0 have the same
colour, say red, then every point in the two-way infinite AP {a + id | i € Z} is also red.

For this first we show that {a —id | i € N} is red. Indeed, if it is not true, let j € N be
the smallest such that a — jd is not red. But then {a — jd,a — (j — 1)d,a — (j — 2)d} is

AM, a contradiction.

Second, we show that {a + id | i € N} contains at most one element of any other colour.

Assume to the contrary that there are at least two blue elements in {a + id | i € N}, and

67



Chapter 4. The chromatic number of the plane

let a + jd, a + kd be the two smallest with j < k. But then since a + jd — (k — j)d is red,
we have that {a + jd — (k — j)d,a + jd,a + kd} is AM, a contradiction.

Finally we show that every element {a + id | i € N} is red. Assume that (a + jd) is the
largest non-red element. (By the previous paragraph this largest j exists.) But then, since
a+(j+1)d and a+ (j + 2)d are red, we obtain that {a + jd,a+ (j + 1)d,a + (j + 2)d} is

AM, a contradiction.

If d is the smallest difference between any two red numbers, this shows that the set of red
numbers is a two-way infinite AP. Thus to finish the first half of the claim, we only have
to show that if a colour is used once, then it is used at least twice. But this follows from
the fact that the complement of the union of finitely many AP is either empty or contains

an infinite AP.

In order to prove the second part, it is sufficient to show that there is an Nj depending
on k such that the following is true. If Z is covered by k disjoint AP, then the difference
of any of these AP’s is at most Ni. Thus, by considering densities, the following claim

finishes the proof of Lemma |4.20

Claim 4.21. There is an Ni such that if for x1,...,z; € N we have Zi?:l xi =1, then
;i < Ng forall1 <i<k.

Proof. We prove by induction on k that for every ¢ € RT there is a number Nj(c) such
that if we have SF L = ¢, then z; < Ny(c) for all 1 < i < k. For k = 1 setting

i=1 77

Ni(c) = 1] is a good choice.

C

For k£ > 1 notice that the smallest number whose reciprocal is in the sum is at most {%j

1%)

Thus we obtain Ni(c) < max; ] (max(i; Ny_1(c — 1)). O
This finishes the proof of Lemma and thus also of Theorem O

It would be interesting to find a complete characterisation of those pairs (.5, sg) for which
Theorem [4.6] holds.

Question 4.22. For which (S, so) does the statement similar to that of Theorem[{.6 holds?

4.5 Smiling bouquets and the chromatic number of the plane

For a graph G = (V, E) with a given origin (distinguished vertex) vy € V' a colouring ¢
with ¢ : V\ {vg} — (Uf}) and p(vg) € (Ug}) is a proper k-colouring with bichromatic origin
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Figure 4.3: A 34 vertex graph without a 4-colouring if the origin is bichromatic.

vo, if (v,w) € E implies p(v) N (w) = (). There are unit-distance graphs with not too
many vertices that do not have a 4-colouring with a certain bichromatic origin. Figure [£.3]
shows such an example, the 34-vertex graph Gs4, posted by Hubai [40] in Polymathl6.
Finding such graphs has been motivated by an approach to find a human-verifiable proof
of x(R?) > 5, proposed by the Palvolgyi [56] in Polymath16.

G'34 is the first example found whose chromatic number can be verified quickly without
relying on a computer. To see this, note that the vertices connected to the central vertex
have to be coloured with two colours, and they can be decomposed into three 6-cycles.
Using this observation and the symmetries of the graph, we obtain that there are only
two essentially different ways to colour the neighbourhood of the central vertex. In both
cases, for the rest of the vertices a systematic back-tracking strategy shows in a few steps

that there is no proper colouring with four colours.

Theorem with G = (i34 shows that a human-verifiable proof of Conjecture for
colourings of the plane with 4 colours would provide a human-verifiable proof of x(R?) > 5.
Note that G34 was found by a computer search, and for finding other similar graphs one
might rely on a computer program. Thus, the approach we propose is human-verifiable,

however it might be computer-assisted.

For a graph G with origin vy let {C1,...,C,} be the set of unit circles whose centres are

the neighbours of vy, and let C(G,vg) = C1 U --- U C), be the bouquet through vy.

Theorem 4.23. If there is a unit-distance graph G = (V, E) with vy € V which does

not have a proper k-colouring with bichromatic origin vy, and Conjecture is true for
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C(G, ), then x(R?) >k + 1.

Proof of Theorem[].23. Assume for a contradiction that there is a proper k-colouring ¢ of

the plane. Using ¢ we construct a proper k-colouring of G with bichromatic origin vy € V.

Let v1,...,v, be the neighbours of the origin vg, and C; be the unit circle centred at v;.
Then C' = C; U---UC, is a bouquet through vy. If Conjecture [4.1] is true for ¢, then
there is a smiling congruent copy ¢’ = C} U...C}, of C through v|. That is, there are
points py € C1,...,pp € Oy, with £ = @(p1) = -+ = ¢(pn) # (7).

For i € [n] let v] be the centre of C]. We define a colouring ¢’ of G as ¢'(vo) = {p(v(), £}
and ¢'(v;) = p(v]) for v € V' \ {vg}. We claim that ¢’ is a proper k-colouring of G with a

bichromatic origin vg, contradicting our assumption.

Indeed, if v; # vo # v; then for (v;,v;) € E we have ¢'(v;) # ¢'(v;) because p(v;) # ¢(v)).
For (vo,v;) € E, we have ¢'(v;) # p(vg) because ¢(v]) # ¢(v}), and ¢'(v;) # ¢ because
©(v}) # € since |v] — p;|| = 1. This finishes the proof of Theorem [1.23] O

4.5.1 Smiling pencils

In this section we prove Theorem [£.3] We start with the following simple claim.

Claim 4.24. For every pencil L through O there is an € > 0 for which the following is
true. For any circle C' of radius R if a point p is at distance at most eR from C, then

there is a congruent copy L' of L through p such that every line of L' intersects C.

Proof. 1t is sufficient to prove the following. If C' is a unit circle and p is sufficiently close
to C, then there is a congruent copy L’ of L through p such that every line of L’ intersects
C.

Note that if p is contained in the disc bounded by C, clearly every line of every congruent

copy L' of L through p intersects C. Thus we may assume that p is outside the disc.

Let 0 < a < 7 be the largest angle spanned by lines in L. If p is sufficiently close to C,
then the angle spanned by the tangent lines of C' through p is larger than «. Thus, any
congruent copy L’ of L through p can be rotated around p so that every line of the pencil

intersects C. OJ

Proof of Theorem[].3 Assume for contradiction that ¢ is a colouring using at least two

colours, but there is a pencil L such that there is no congruent smiling copy of L.
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First we obtain a contradiction assuming that there is a monochromatic, say red, circle
C of radius r. We claim that then every point p inside the disc bounded by C is red.
Indeed, translating L to a copy L’ through p, each line L} will intersect C, and so have a

red point. Thus p must be red.

A similar argument together with Claim [4.24] shows that if there is a non-red point at
distance at most er from C', we would find a congruent smiling copy of L through p. Thus
there is a circle C' of radius (1 + ¢)r concentric with C, such that every point of the disc
bounded by C’ is red. Repeating this argument, we obtain that every point of R? is red

contradicting the assumption that ¢ uses at least 2 colours.

To obtain a contradiction, we prove that there exists a monochromatic circle. For 1 <i <n
let a; be the angle of L; and L;y;. Fix a circle C, and let aq,...,a, € C be points such
that if ¢ € C'\ {a1, ..., a,}, then the angle of the lines connecting ¢ with a; and ¢ with a;;
is ;. By Gallai’s theorem there is a monochromatic (say red) set {a},...,a,} similar to
{a1,...,ap}. Let C’ be the circle that contains {a},...,a),}. Then C’ is monochromatic.
Indeed, if there is a point p on C’ for which ¢(p) is not red, then by choosing L;- to be the

line connecting p with a’; we obtain L' = L3 U---U Lj,, a smiling congruent copy of L. [

4.5.2 Conjecture for lattice-like bouquets

Using the ideas from the proof of Theorem [4.16] we prove Conjecture for a broader

family of bouquets.

Lattices

A lattice L in the plane generated by two linearly independent vectors vy and wve is the
set L = L(v1,v2) = {n1v1 + nava : n1,ne € Z}. We call a lattice £ rotatable if for every
0 < a1 < ag < 7 there is an angle o3 < o < ag and scaling factor A = A(ag, 1) such
that Aa(L) C L, where a(L) is the rotated image of £ by angle o around the origin. For
example, Z?, the triangular grid, and {ni(1,0) + n2(0,v2) : n1,ny € Z} are rotatable,
but £ = {ni(1,0) +na(0,7) : ni,ne € Z} is notE|

The rotatability of £ allows us to extend Lemma from Z? to L£. This leads to an

extension of Theorem .16 to rotatable lattices.

Theorem 4.25. Let L be a rotatable lattice, S C L be finite and so be an extreme point

2For another characterization of rotatable lattices, see https://mathoverflow.net/a/319030/955,
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of S. Then for every k € N there exists a constant A = A(L, S, k) such that the following
is true. In every k-colouring of L there is either an AM similar copy of (S, so) with a
positive scaling factor bounded by A, or a monochromatic positive homothetic copy of L

with an integer scaling factor 1 < X\ < A.

The proof of extending Lemma to rotatable lattices is analogous to the original one,
so is the proof of Theorem to the proof of Theorem Thus, we omit the details.

Lattice-like bouquets

Let C = C1 U---UC, be a bouquet through O, and for i € [n] let O; be the centre
of C;. We call C lattice-like if O is an extreme point of {O,0q,...,0,} and there is a
rotatable lattice £ such that {O,Oq,...,0,} C L. Similarly, we call a unit-distance graph
G = (V, E) with an origin vy € V' lattice-like if there is a rotatable lattice £ such that vy

and its neighbours are contained in £, and vy is not in the convex hull of its neighbours.
Since Z? is a rotatable lattice, Theorem is a direct corollary of the result below.

Theorem 4.26. If C is a lattice-like bouquet, then every proper k-colouring of R? contains

a smiling congruent copy of C.

This implies the following, similarly as Conjecture .1 implied Theorem [4.23

Theorem 4.27. If there exists a lattice-like unit-distance graph G = (V, E) with an origin

vo that does not admit a proper k-colouring with bichromatic origin vo, then x(R?) > k+1.

In the proof of Theorem we need a simple geometric statement.

Proposition 4.28. Let C = C1U- - -UC,, be a bouquet through O, and let O = {01, ...,0y},
where Oj is the centre of Cj. Then for every 0 < A < 2 there are n points Py, ..., P, such
that P; € Cj and {Py, ..., P,} is congruent to AO.

Proof. For A = 2 let P; be the image of O reflected in O;. Then P; € Cj, and {1, ..., P,}
can be obtained by enlarging O from O with a factor of 2. For A < 2, scale {Py, ..., P,} by
3 from O obtaining {7}, ..., P,}. Then there is an angle a such that rotating {P}, ..., P,}
around O by «, the rotated image of each P]' is on Cj. O

Proof of Theorem[{.26, Let C = C1U---UC, be the lattice-like bouquet through O, O; be
the centre of C; for ¢ € [k], and L be the rotatable lattice containing S = {0, O1,...,0,}.
Consider a proper k-colouring ¢ of R? and let 6 € Q to be chosen later.
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By Theorem the colouring ¢ either contains an AM similar copy of (S, sp) with a
positive scaling factor bounded by A(L, S, k), or a monochromatic similar copy of £ with

an integer scaling factor bounded by A(L, S, k).

If the first case holds and ¢ is chosen so that (L, S, k) < 2, Proposition provides a
smiling congruent copy of C. Now assume for contradiction that the first case does not

hold. Then there is a monochromatic similar copy £’ of §£ with an integer scaling factor A

bounded by A(L, S, k). However, if we choose § = m, then for any 1 < A < A(L, S, k)
we have 0\ = NLA for some N, € N. But this would imply that there are two points in the

infinite lattice A\0L at distance 1, contradicting that ¢ is a proper colouring R2. O

4.6 Further problems and concluding remarks

We mainly focused on finding AM sets similar to a given one. However, it is also interesting
to find AM sets congruent to a given one. In this direction, Erdés, Graham, Montgomery,

Rothschild, Spencer and Straus made the following conjecture.

Conjecture 4.29 (Erdés et al. [19]). Let so € S C R?, |S| = 3. There is a non-
monochromatic colouring of R? that contains no AM congruent copy of (S, so) if and only

if S is collinear and sy is not an extreme point of S.

As noted in [19], the ‘if’ part is easy; colour (z,y) € R? red if y > 0 and blue if y < 0. In
fact, this colouring also avoids AM similar copies of such S. Conjecture was proved
in [19] for the vertex set S of a triangle with angles 120°,30°, and 30° with any so € S. It
was also proved for any isosceles triangle in the case when sq is one of the vertices on the

base, and for an infinite family of right-angled triangles.

Much later, the same question was asked independently in a more general form by the
Palvolgyi [57]. In a comment to this question on the MathOverflow site, a counterexample
(to both the MathOverflow question and Conjecture was pointed out by user ‘fedja’
[27], which we sketch below.

Let S = {0,1,s0} where so ¢ [0,1] is a transcendental number. Then there is a field
automorphism 7 of R over Q such that 7(sg) € (0,1). Colour x red if 7(x) > 0 and blue
if 7(z) < 0. Suppose that there is an AM similar copy {a,a + b,a + bsp} of (S, sg). Then
these points are mapped by 7 to 7(a), 7(a)+7(b) and 7(a)+7(b)7(s0). Since 7(sg) € (0,1),
we have 7(a) < 7(a) + 7(b)7(s0) < 7(a) + 7(b), so {a,a + b,a + bsp} cannot be an AM
copy.
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Straightforward generalisations of our arguments from Section [4.5 would also imply lower
bounds for the chromatic number of other spaces. For example, if C' is a lattice-like
bouquet of spheres, then every proper k-colouring of R? contains a smiling congruent copy
of C. This implies that if one can find a lattice-like unit-distance graph with an origin vy
that does not admit a proper k-colouring with bichromatic origin vy, then x(R%) > k + 1.
Possibly one can even strengthen this further; in R? it could be even true that there is a
d-smiling congruent copy of any bouquet C', meaning that there are d colours that appear
on each sphere of C. This would imply x(R?) > k + d — 1 if we could find a lattice-
like unit-distance graph with an origin vy that does not admit a proper k-colouring with

d-chromatic origin vy.

In our AP-free colourings that avoid AM similar copies of certain sets, we often use many
colours. It would be interesting to know if constructions with fewer colours exist, particu-
larly regarding applications to the Hadwiger-Nelson problem. In Lemmam (and also in
the colouring used for proving the ‘if” direction of Theorem the number of colours we
use is not even uniformly bounded. Are there examples with uniformly bounded number

of colours?

On of our main questions is about characterising those pairs (S, sg) for which in every
colouring of R? we either find an AM similar copy of (S, sg) or an infinite monochromatic
AP. However, regarding applications to the Hadwiger-Nelson problem the following, weaker
version would also be interesting to consider: Determine those (5, sg) with S C R? and
sg € S for which there is a D = D(k, S) such that the following is true. For every n in
every k-colouring of R” there is an AM similar copy of (S, sg) or an n-term monochromatic
AP with difference t € N bounded by D. Note that there are pairs for which the property
above does not hold when colouring Z. For example let S = {-2,-1,0,1,2}, so = 0, and
colour ¢ € Z red if |i/D] = 0 mod 2 and blue if |i/D]| =1 mod 2.
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Chapter 4. The chromatic number of the plane

4.A Appendix

For completeness, we prove the stronger version of Gallai’s theorem, Theorem We
use the Hales-Jewett theorem, following the proof from [35].

N'is a a collection of n points, pi,...,pn, such that for some

A combinatorial line in [n]
fix I C [N] for every i € I the coordinate (p;); is the same for every j, while for i ¢ I the

coordinate (p;); = j for every j.

Theorem 4.A.1 ([38]). For every n and k there is an N such that every k-colouring of

)V contains a monochromatic combinatorial line.

Proof of Theorem[{.18 Suppose that we want to find a monochromatic positive homothet
of some finite set S = {s1,...,5,} from Z? in a k-colouring of Z?. Choose an N that
satisfies the conditions of the Hales-Jewett theorem for n and k. Choose an injective
embedding of [n]V into Z¢ given by ¥(z1,...,2N) = vazl Aisz;, where the A;’s are to be
specified later. Then every combinatorial line is mapped into a positive homothet of S,

with scaling > . _; A\; for some non-empty I C [N]. Therefore, applying the Hales-Jewett

iel
theorem for the pullback of the k-colouring of our space gives a monochromatic homothet

of S.

We still have to specify how we choose the numbers ;. For ¥ to be injective, we need
that Zf\il Ni(Sz;, — sx;) £ 0 if 2 # 2/. These can be satisfied for some 1 < \; < nV by
choosing them sequentially. This means that the scaling of the obtained monochromatic

homothet is at most sz\i L Ai < NnP. O

Note that the proof above works in every abelian group of sufficiently large cardinality,
thus Z% in Theorem can be replaced with R? or any lattice £.
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Nearly k-distance sets

5.1 Introduction

For k> 1,d > 0 aset S C R? is a k-distance set in R? if | {||p —q|| : p,q € S,p # ¢} | < k.
We denote by my(d) the cardinality of the largest k-distance set in R%. For k > 1,d > 0
a set S C R? is an e-nearly k-distance set if there exist 1 <1 < ... <t such that
lp—qll € [tr.t1 +e]U... Ut t + €]
forall p#q € S. Let
My(d) :== lir% max{|S| : S is an e-nearly k-distance set in Rd}
E—r
Note that the ¢; > 1 assumption is important, otherwise we would have My (d) = co.

A set S is separated if the distance between any two of its points is at least 1. Let
My (d,n) denote the maximum M, such that there exist numbers 1 <¢; < ... <{; and a
separated set S of n points in R? with at least M pairs of points at a distance that falls
into [ty,t + 1] U--- U [t t + 1].

In this chapter we will prove the following results.

Theorem 5.1. For every integer k > 1 there exist d(k) such that My(d) = my(d) if
d > d(k). Moreover d(k) =1 if k < 3.

We denote by T'(m,n) the number of edges in a complete balanced m-partite graph on n

vertices. Note that T'(m,n) = (1 — 1) %2 + O(1) for fixed m.

INote that the case of d = 0 is trivial, as we have my(0) = My (0) = 1 for any k. However it will be

convenient to use it later in the proofs.
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Theorem 5.2. Let k > 1 be fized. If either k < 3 or d > d(k), then for sufficiently large
n we have

Mk(d, TL) = T(mk(d — 1), n)

Moreover, the same holds if in the definition of My (d,n) we change the intervals to be of
the form [t;, t; + cn'/4] with some constant ¢ = c(k,d) > 0.

Overview

In Section we compare my(d) and My (d). We give a lower bound on Mj(d) in terms
of some my,(d;) for some k; < k and d; < d. We also describe concrete examples that

show my(d) = My (d) does not always hold.

In Section [5.1.2] we introduce the more technical notion of flat sets and flat nearly k-

distance sets.

In Section [5.1.3| we state the main results involving the maximum cardinalities of flat nearly

k-distance sets. We explain how do they imply the results stated in the Introduction.

In section [5.2| we prove the results stated in Section [5.1.3

5.1.1 Comparing k-distance sets and nearly k-distance sets

In this subsection, we relate the quantities My (d) and my(d). The difficulty of relat-
ing them lies in the fact that in nearly k-distance sets, distances of different orders
of magnitude may appear. In Proposition we exploit this fact. However, if we

< K for some universal constant K in the definition of

additionally assume that t;—fl

nearly k-distance sets, a compactness argument would imply that my(d) equals this mod-

ified My(d) (see Lemma later).

For d > 0 and k£ > 1 let us define

S

M} (d) := max{Hmki(di) DY ki=kY d; :d}. (5.1)
=1 =1

=1

Conjecture 5.3. M (d) = M} (d) holds for all but finitely many pairs k,d > 1.

We do not have have any examples with Mj,(d) > M (d). However, there are constructions,
that we will describe later, that suggest there could be some. In Theorem we show
that the conjecture holds for every k and sufficiently large d.
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NG 2 3 4 5 6 7 8
2 ) 10 16 27 29 45
3 7 12 16 | >24 | >40| >65| > 121
4 9 131225 | 241 | >73 | >127 | > 241
) 121 >20| >35 | 266 | > 112 | > 168 | > 252
6 131 >21|>40 | >96 | > 141 | > 281 | > 505

Table 5.1: Bounds on my(d) from [26].

Proposition 5.4. M (d) > M| (d) holds for every 1 < k,d.

Proof. Let >7 ki =k and >_;_; d; = d. Then there is an e-nearly k-distance set in R¢
of cardinality [];_; my,(d;) given by the following construction. For each i let S; be a
k;-distance set in R% of cardinality my,(d;) and such that the distances in S; are much
larger (in terms of ¢) than the distances in S;_;. Then S; x - - - x Sy is a e-nearly k-distance

set in R? of cardinality [[5_; my, (d;). O

Examples with fixed k or d. It is not true that My(d) = mg(d) holds for every k and
d. There are several examples of k and d for which we need more than one multiplicative
term to maximise (5.1]), and hence My(d) > M} (d) > my(d). Some of these examples we
list below. When needed, we rely on the information from Table

e In R? the largest cardinality of a 6-distance set is 13, while the product of two
arithmetic progressions of length 4 (dy = da = 1, k1 = ko2 = 3 in (5.1)) gives an
e-nearly 6-distance sets of cardinality 16. Thus Mg(2) > Mg(2) > 16 > ma(6).

e In R? the cardinality of the largest 4-distance set is 13, while we can construct an
e-nearly 4-distance set of cardinality 15 = 3-5 as a product of arithmetic progression
of length 3 and a 2-distance set on the plane of cardinality 5 (d; = 1, d2 = 2, k; = 2,
k2 =21in (5.1)) . Thus My(3) > M;(3) > 15 > my(3).

e In R? the cardinality of a k-distance set is O,/ (k%s’> by [37], while the product of
two arithmetic progressions of length (|k/2| + 1) and of length ([k/2] + 1) gives an
e-nearly k-distance set of cardinality (|k/2] + 1)([k/2] + 1) > k?/4.
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e In R? for any £y > the cardinality of a k-distance set is O (k‘%ﬂ) by [62] and [37].
On the other hand, the product of d arithmetic progressions of size |k/d] + 1 gives
an e-nearly k-distance set of cardinality (|k/d| + 1)¢ > (k/d)<.

The largest 5-distance set in R? is of cardinality 12. We may construct an e-nearly
b-distance set using product-type constructions as described in the list above, also of
cardinality 12. In addition, we can construct an e-nearly 5-distance set of size 12 that is
not of this product construction, and neither does it have the structure of a 5-distance
set. Take a large equilateral triangle, and in each of its vertices put a rhombus of a much
smaller size with angles 30° and 60° such that the angle of the corresponding sides of the
rhombus and the triangle is 90° as shown on Figure [5.1 This example makes us suspect
that there could be some exceptions to Conjecture Though we also believe that there
are only finitely many examples with M (d) points that are not products of k;-distance

sets.

Figure 5.1: An e-nearly 5-distance set in R? that is not product-type

5.1.2 Flat sets

The angle between a vector v and subspace A is the minimum of the angles between v and

the vectors w € A.

For 1 < d < d' we say that a set of vectors V C R? is (d, o)-flat if there exists a subspace
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A dimension d such that the angle between any v € V and A is at most a. If A is such a
subspace, we say that V is (d, )-flat with respect to A. A set P C R? is (p,d, a)-flat (for
some p € P)if {p—q :q€ P} is (d,a)-flat. We call aset P (d,a)-flat if P is (p,d, o)-flat
for every p € P. We say P is globally (d,«)-flat if {p — q : p,q € P} is (d, a)-flat. We also
say that P is (p,0,a)-flat (for any p € P), and (0, a)-flat if |P| < 1.

Note that, for any d > 2 and 8 < arcsind /2, (d, )-flatness for any « does not in
general imply global (d,3)-flatness. This is shown for example for d = 2 by the set
{(0,0,1),(0,0,0), (K,0,0), (K,1,0)}, where K = K(«, () is sufficiently large. However, if
for some universal constant K a set S is (p, d, a)-flat for some p € S and H < K for
each p1,p2,q1 # g2 € S, then S is globally (d,y«a)-flat, where « is a constant depending

on K and d. (See Lemma later.)

For 0 < d < d' let Ni(d',d) be the largest number N such that for every e,a > 0 there
exists a (d, o)-flat e-nearly k-distance set in R of cardinality N. Note that Ny (d’,0) = 1.
For d > 1 we denote Ni(d) := Ni(d,d —1). Then we have My(d — 1) < Ni(d) < M(d).
Indeed, any e-nearly k-distance set in R4! is a (d — 1,0)-flat e-nearly k-distance set in
R%,

The main reason for introducing the notion of flatness is that the behaviour of M (d,n) is
asymptotically determined by the value of Nj(d). We suspect though that Ny (d) = My(d)

for every k and d.

Note the following essential difference between “flat” and “globally flat” constructions. It
is not true in general that for any g if a, & > 0 are sufficiently small then any (d— 1, «)-flat

e-nearly k-distance S of cardinality Ni(d) is globally (d — 1, §)-flat.

Indeed, for example, for any a we can construct (3,«)-flat e-nearly 2-distance sets of
cardinality No(4) = 6 in R* as follows. Consider an equilateral triangle {p1,p2,ps} in
R* of side length K spanning an affine subspace H of dimension 2. For each i € [3] let
pi — ¢; be any vector of length 1 orthogonal to p; — pi, {i,4,k} = [3]. It is not hard to
check that P = {p1,p2,p3,q1,q2,q3} is a (3, a)-flat e-nearly 2-distance set if K = K(a,¢)
is sufficiently large. However, if p; — ¢; and py — g2 are orthogonal, then P is not globally
(3,7/6)-flat.

Almost flat sets

We need the following more technical variant of a-flatness, which is however crucial for
proving Theoremn For d > 0 we say that P is almost (d, «)-flat if P is (p,d, a)-flat for
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all but at most two p € P. Note that this means if P is almost (0, «)-flat then |P| < 2.
Let Ag(d’,d) denote the largest number N such that for any e, > 0 there exists an

almost (d, o)-flat e-nearly k-distance set in R? of cardinality N. For d > 1 we denote
Ak(d) = Ak(d, d— 1). Note that Ak(d,, 0) = 2.

Let us summarise the trivial inequalities between the different parameters we introduced:
my(d) < My(d) < Mg(d) < Ni(d',d) < A(d',d) < My(d'), (5.2)

for any d' > d > 0.

5.1.3 Main results

Let us stress that all the sets that we consider are separated, which we assume tacitly for
the rest of the chapter. Theorem below implies Theorem 5.1}

Theorem 5.5. For any d > d > 1 we have Ay(d',d) = Ni(d + 1) = My(d) = my(d) if
one of the following holds.

(i) If d > d(k), where d(k) is some constant depending on k.

(i) If k < 3.

For fixed d and large k& we prove the following simple estimate.

Theorem 5.6. We have My(d) = © (k%) and Ny(d) = © (k%) for any fized d > 2.

We conjecture that if k = rd 4 ¢ for 0 < ¢ < d and k is sufficiently large compared to d,
then My(d) = ([k/d] + 1) 9(|k/d] + 1)? = (k/d)? + o(k?).
Another main result of the chapter is the following theorem, that concerns the relation of

Ni(d) and My(d,n).

Theorem 5.7. For anyd > 2, k> 1, v > 0 there exists ng, such that for any n > ng we

have

T(n, Ni(d)) < My(d,n) < T(n, Ni(d)) + yn? (5.3)

Moreover, (5.3|) remains valid if in the definition of My (d,n) we change the intervals of the
form [t;, t; + 1] to intervals of the form [t;, t; + cnl/d] for some constant ¢ = c¢(k,d,~v) > 0.

Theorem combined with Theorem already gives the value of Ma(d,n), Ms(d,n)
and My(d,n) for d > dy(k) asymptotically in terms of ma(d), ms(d) and mg(d).
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The sharp values in Theorem [5.2]follow from Theorem [5.8 and the lower bound in Theorem
combined with the fact that Ag(d) = mi(d — 1) in the cases covered in Theorem [5.2

Theorem 5.8. For any d > 2 and k > 1 there exists ng, such that for any n > ng we

have

n2
Mi(d,n) < T(n, Ag(d)) < (1 - Akl( d)> 3 (5.4)

Moreover, (5.4]) remains valid if in the definition of My(d,n) we change the intervals of
the form [t;, t; + 1] to intervals of the form [t;, t; + cn/?] for some constant ¢ = c(k, d).

As we mentioned in the Introduction of the thesis, My (d,n) < T'(n, My(d)) follows easily
from Turdn’s theorem. Hence the difficulty in proving Theorem lies in bounding
My (d,n) by the maximal cardinality of (d — 1, «)-flat nearly k-distance sets. Similarly,
the difficulty in proving Theorem is bounding My (d,n) by the maximal cardinality of

k-distance sets in the one dimension smaller space.

5.2 Proofs

We start with proving some auxiliary results, the first of which is a simple statement

implied by the triangle inequality.

Lemma 5.9. Let S C R? a finite set and assume that the pairs of points {pi,pa},
p1,p2 € S, are coloured in red and blue, such that the distance between the points in any
blue pair is strictly more than 3 times as big as the distance between any red pair. If B
is a largest blue clique in S then S can be partitioned into |B| vertex-disjoint red cliques

Ry, ..., Rp| satisfying the following properties.

1. Each R; shares exactly one vertex with B.

2. Ifpe R, g € Rj, i # j, then {p,q} is blue.

Proof. Take a largest blue clique B = {vy,...,v}. Construct R; by including in it v; and
all the points that form a red pair with v;. By the triangle inequality each R; is a red
clique. Further, by the maximality of B, each point from S forms a red distance with at
least one point in B, and thus R1,..., R, cover S. Next, they are disjoint: if v € R; N R;,
then both {v,v;} and {v,v;} are red, which by triangle inequality implies that either i = j
or that {v;,v;} is red (but the second possibility contradicts the definition of B). Finally,
if v e R, w € Rj, i # j, then {v,w} must be blue by the triangle inequality: otherwise
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lvi —vj|| < [Jvi —v|| + |lv — w|| + ||w — v;||, and if all the pairs on the right are red, then
{vi, v} is red. O
The next lemma follows by a standard compactness argument.

Lemma 5.10. Let S1,59,... be a sequence such that S; is an €;-nearly k-distance set in

R with distances 1 <tin <o <ty and with ¢; — 0. Then the following is true.

1) If there is a K such that sup, maxj<;.g iitl < K then lim sup;, Si| < my(d).
? Sy 1—00

ti;
If additionally there is a 0 < d < d' such that for every i the set S; is (p;,d,e;)-flat
for some p; € S, then limsup,_, |Si| < mg(d).

(ii) If there is a K such that sup; maxi<j<j Liitl < K and for some1 <r <k—1 we

ti
tir+1
ti,r

S; is (pi,d,ei)-flat for some p; € S;, then limsup;_,  |Si| < mg_1(d).

=1, then limsup;_, o |Si| < mg_1(d"). If additionally for every i

have lim; o

Proof. We only give details of the proof of (ii), the rest can be done similarly. We start with
the first part of the statement. Take any sequence S, S, ..., satisfying the conditions and

scale each S; by i Abusing the notation, we denote the new sets by .S; as well. Then the

condition sup; maxi<;< tit?ﬂ < K implies that there is an absolute R > 0 such that each
< .

S; is contained in a ball B of radius R. A volume argument implies that there exist an My
such that |S;| < Mg for all i. Take an infinite subsequence of Si,S2 ... in which all sets

have fixed cardinality M < M. Using the compactness of B x ... x B we can select out
S —

M times
of it a subsequence S;,, S, . . . that point-wise converges to the set S := {Py,..., Py} C B

with distances 17, ..., T}, and where T; = lim,_, o t?S’i . Note that S'is indeed of cardinality
> tir+1

ti,r

M, since each S; is separated. Due to the assumption lim;_ o =1wehave T, 11 =1T,,

thus S is a (k — 1)-distance set, and so M = |S| < my_1(d).

Let us next show the second part of the statement. Taking the set S as above, we obtain
that it must additionally be (d,0)-flat, which means that S lies in an affine subspace of
dimension d, thus M = [S| < my_1(d). O
The statement below allows us to get a grip on Mp(d).

Lemma 5.11. For any 1 <k, and 0 < d < d we have

Ni(d',d) < f(d, k) :maX{Hmki(d) : Zk:k:}

i=1 =1

In particular My(d) < oo.
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Note the difference in the definition of Mj (d) and the function f above.

Proof. First note that f satisfies f(d, k1 + ko) > f(d, k1) f(d, ke) for any 1 < ki, ko. For

each d we induct on k.

Let S be an e-nearly (d, a)-flat k-distant set in R? with distances 1 < t; < --- < t;. We
need to show that |S| < f(d, k).

If tf—il < 3 holds for every 1 < i < k (or if £ = 1), then by Lemma (i) we have
|S| < mg(d) < f(d, k). Otherwise, let i be the largest index such that tf—il > 3. Colour
a pair {p1,p2} with p1,pas € S blue if ||p1 — p2|| > t; and with red otherwise. Let B be
the largest blue clique in this colouring. By induction |B| < f(d,k —i+ 1) if a and € are
sufficiently small. Next, by Lemma S can be covered by | B| vertex disjoint red cliques
Ry,..., R By induction again, the cardinality of any red clique is at most f(d,i — 1),
and thus
S| < fldk—i+1)f(d,i—1) < f(d,F).

O

The next four statements describe some cases when S-flatness with respect to different
subspaces can be “combined” into a-flatness with respect to a smaller-dimensional sub-

space.

Lemma 5.12. For any o > 0 there exists 5y > 0 such that the following is true for every
B < Bo. Let Ai,...,Apm C R? be subspaces of dimension d — 1, and j be the smallest
integer for which the set of their unit normal vectors V = {vy,..., v} is (j, 37)-flat with
respect to some subspace Ap of dimension j. If the angle between a vector v and A; is at

most ¢ for every i € [m], then the angle between v and A := (Ap)* is at most c.
Since the proof of Lemma [5.12]is a technical calculation, we postpone it to the Appendix.

Lemma immediately implies the following.

Corollary 5.13. For any o > 0 there exist By > 0 such that the following is true for every
B < Bo. Let A1,..., Ay € R be (d — 1)-dimensional subspaces, and let j be the lowest
dimension for which the set of their unit normal vectors V = {vy,...,vn} is (j, 37)-flat
with respect to a subspace Ag. For every p € S if S is (p,d — 1, f%)-flat with respect to A;
for every i € [m], then S is (p,d — j, a)-flat with respect to A = (Ap)™ .

We call two subspaces A1, Ay C R? almost-orthogonal, if there exists a basis {vy,...,v4}

of R?, where for some 0 < a < b < ¢ < d the vectors vy, ..., v, form an orthogonal basis
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of Ay, the vectors vgy1,...,v. form an orthogonal basis of Ay such that the following is
true. For any vector v from the subspace spanned by {v; ...,v,} the angle between v and
Ag lies in [7/2 — 0.01,7/2 4+ 0.01], and for any vector w from the subspace spanned by
{vps1,...,vc} the angle between w and A; lies in [7/2 — 0.01,7/2 4+ 0.01]. The proof of

the next lemma is a technical calculation, thus we postpone it to the Appendix.

Lemma 5.14. If A1, Ay C R? are almost-orthogonal subspaces and the angle between some
vector v and each of the two subspaces A1, Ao is at most « for some 0 < a < %, then the

angle between v and A1 N As is at most 10a.

Lemma 5.15. For any d' and a > 0 there exist K, 3’ > 0 such that the following is true
for any 8/ > B> 0. Let S = BUR C RY with {b} = RN B be a separated set that satisfies

the following conditions.

1. For any ry # ro € R and by # by € B we have K ||r1 — rof|| < ||b1 — ba]|.

2. For any by # b € B there is a distance t such that ||by — r|| € [t,t + BT for any
r e R.

Further, let j be the lowest dimension such that B is (b, j, 37)-flat with respect to a subspace
Ap of dimension j. Then putting A := (Ap)* we have the following.

(i) R is (r,d — j,a)-flat with respect to A for any r € R.

(i1) If for some r € R and sufficiently small &/ < « the set S is (r,d,a’)-flat with respect
to a d-dimensional subspace A, then R is (r,d — j, 10«)-flat with respect to AN A,.

Proof. (i) Let r1,79 € R, b; € B with b # b;, and [y as in Corollary - If B < By is

sufficiently small and K is sufficiently large, then Zb;rire € [§ — 2 - + 8 ] otherwise
we would obtain |||b; — | — [|b; — 72| > BT, contradlctlng condition 2. Further, by
condition 1, if K is sufficiently large, then Zbb;r; < 82 . Thus, the angle of r; — ro and

b — b; is contained in [Zb;jrire — £Lbbiry, Zbirire + ébbirﬂ C 5 — Bz 5+ B ]. In other
words, R is (r1,d —1, ﬂdl)—ﬂat with respect to the (d — 1)-dimensional subspace A, whose
normal vector is b — b;. Since j is the lowest dimension such that {b—b; : b; € B} is
(4, 87)-flat with respect to a j-dimensional subspace Ag, by Corollary we obtain that
R is (r1,d — j, a)-flat with respect to A.

(ii) It suffices to show that A, and A are almost-orthogonal if K is sufficiently large and
is sufficiently small, since then the statement is a direct corollary of Lemma applied
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to every vector r; — r with 1 € R\ {r}. The almost-orthogonality follows from the fact
that if o’ is sufficiently small, we may assume that Ap is a subspace of A,, and that R is
(r,d" — j,a')-flat with respect to A (the orthogonal complement of Ag) if 3 is sufficiently
small and K is sufficiently large. O

The proof of the following lemma is a simple calculation, that we postpone again to the

Appendix.

Lemma 5.16. Let S C RY be a set such that ||py — pa|| < K|lq1 — q2|| holds for any
P1,D2,q1,q2 with g1 # qo. Then if S is (p,J,a)-flat for some p € S, then S is globally
(4, 20( K ) '/2)-flat.

5.2.1 Fixed k: Proof of Theorem (i)

We will prove that for any d’ > d > 1 we have Ag(d’,d) = my(d) if d is sufficiently large
compared to k. This is sufficient in view of . We induct on k. The case £k = 1
is implied by Lemma [5.10] (i). Assume that the statement of Theorem is true for
k' < k —1 with d > Di_;. We shall prove the statement for k and d > D, where the

quantity Dy is chosen later.

For an e-nearly k-distance set S with distances 1 <t} < --- <t and K > 0, let gs(K) be
the largest index 1 < ¢ < k such that tj > K and, if max; /%~ < K, then let ¢s(K) = 1.

ti—-1 — ti—1

The proof for fixed k is by (backwards) induction on k—1, given in the form of the following

lemma. The lemma applied with ¢ = 1 implies the theorem. In the proof we will use the

bound
<d—£1) < mp(d) < (d;k) (5.5)

from [5].

Lemma 5.17. If € and o/ are sufficiently small and d > D, then the following is true.
For each 1 < i < k there are K; with K;—1 > K; such that if S is an almost (d,a’)-flat
e-nearly k-distance set in R with qs(K;) > i, then |S| < my(d).

Proof. The proof is by induction on k —¢. We start by showing that the statement is true
for ¢ = k with some sufficiently large K > 4.

Assume ¢g(K}j) = k and colour each pair {pi, p2} in S with blue if ||p1 — pa| € [tk, tr + €]
and with red otherwise. Let B be the largest blue clique in S. Then S can be covered
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by |B| disjoint red cliques Ry, ... , R p| by Lemma Let R be a largest red clique and
RN B = {b}. We will apply Lemma to RU B with a sufficiently small a > o’ to be
chosen later to bound |R)|.

Apply Lemma with d,a and take K > 2K,e < B%¥*!, where K,B%*! are as in
Lemma [5.15] Then the conditions 1,2 are satisfied automatically. Let j, A be as in the
lemma. Thus R is (d’ — j, «)-flat with respect to A by Lemma (i). Further, if for
some r € R we have that RU B C S is (r,d,«)-flat, then R is (r,d — j, 10«)-flat by
Lemma (ii).

Since R U B is (r,d, a)-flat for all but at most two r € R, we obtain that R is almost
(d — j,10a)-flat. Thus if « is sufficiently small we have |R| < Ay_1(d',d — j). Note also
that |B| < mi(j) = j + 1 by Lemma (i) and the fact that o and e are sufficiently
small. These imply

[SI<[Ril+ -+ [Rp| < (5 + 1) Ap-a(d, d — j).
We separate two cases in order to bound (j + 1)Ax_1(d’,d — 7).

Case 1: d—j > Dj_1. In this case we obtain

d—j+k—1\ _ (d+1
< <
k1 )-( k >—m’“(d)’

where the first inequality is true by induction and by (5.5)), and the second is true if d is

Gt DAxa(dd— ) < G+ 1)(

sufficiently large.
Case 2: d—j < Dy_1. In this case we have Ay_1(d',d—j) <2+ Ni_1(d',d— j), which is
according to Lemma bounded by a constant Cj depending on k and Dy_; and hence
only on k. Thus

if d is sufficiently large.

We now turn to the induction step. Assume that the statement holds for all ¢/ > i, and
let us prove it for i. Again colour a pair {p;1,p2} in S in blue if ||p; — p2|| > ¢; and in red
otherwise. Let B be the largest blue clique in S. Then S can be covered by |B] red cliques
Ry,...,Rp asin Lemma@

We may assume that ¢(K;+1) < i, otherwise we are done by induction. It implies that

Max;<j<k t:—il < K41 by the choice of i. Thus, by Lemma |5.10| (ii) we may assume that

there exists a constant ¢ > 1 such that the following is true for sufficiently small «;, e:

t4
if min —2 < ¢, then |B| < my_;(d). (5.6)
1<j<k tj_l
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Set K| = max{cz—l,KHl}. We are ready to verify the statement of the lemma for
sufficiently large K; > 2K|. We separate two cases.
t

Case 1: min; < t]—il < ¢. If R is the largest red clique then using (5.6)), the induction

hypothesis for fewer distances and (5.5 we have
k—i+d\[i—1+d d+1
1< BIR) < mi A < () (1T < (1) < mua,

where the second to last inequality holds for all sufficiently large d.

%> ¢ Let R be the largest red clique and RN B = {b}.

41
Apply Lemma with d,a, and take K; > 2K,e < B¥*1 where K,B%*! are as in

Lemma [5.15] Then condition 1 is satisfied automatically. Condition 2 is satisfied as well,

Case 2: min; <k

as long as “all the distances from a point in B to R fall in one interval”, i.e., as long as we
can show that it is impossible to have j1 > jo > ¢ and points b # V' € B, 1,75 € R, such
that ||/ — 71| € [tj,,t5, +e€l, |V — 72| € [t),,t), +€]. If that would have been the case,
then, by the triangle inequality ¢;, < || —r1|| < ||V —ra|| +||r1 —r2|| < tj, +tim1 + 2¢, but
on the other hand ¢;, —t;, > (c—1)t; > (c—1)Kjti—1 > (c—1) Z5ti1 > 2ti—1 > t;—1 +2e,

a contradiction.

Let j, A be as in the lemma. Thus R is (d’ — j, «)-flat with respect to A by Lemma (i).
Further, if RUB C S is (r,d,a)-flat for some r € R, then R is (r,d — j, 10a)-flat by
Lemma (ii).

Since RU B is (r,d, a)-flat for all but at most two r € R, we obtain that R is almost
(d — j,«)-flat. Thus if « is sufficiently small we have |R| < A;_1(d’,d — j). Note also that
max;<j<p

|B| < mg_i+1(j) by Lemma (i). We obtain that

< K1, and thus, by making € and o/ < « sufficiently small, we get that

S| < RI|B| < mk—i1(j)Aia(d', d — j).

We separate two cases in order to bound my_;1(j)Ai—1(d',d — 7).

Case 2.1: d—j > D;_1. In this case we obtain

mp—it1(f)Ai—1(d',d — j) < my_ip1(G)mi—1(d — j) <
Gak—it 1\ (d—j+i-1\ _[(d+1
< <
(k:—i+1 >< i1 >—< g ) ST

where the first two inequalities are true by induction, and the third is true if d is sufficiently

large.
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Case 2.2: d — j < D;_; In this case we have A;_1(d',d — j) <2+ N;_1(d',d — j), which
is by Lemma bounded by a constant C; depending on ¢ and D;_; and hence only on
7. Thus

mpg—i+1(3)Aic1(d'd — 5) < mp—ir1(5)Ci < me(d)

if d is sufficiently large. O

5.2.2 k =2 and k = 3: Proof of Theorem [5.5| (ii)

We will prove that for any d’ > d and k = 2,3 we have Ay (d’,d) = my(d). This is sufficient
in view of (5.2]).

Let us first prove that As(d’,d) = ma(d). Let e,a > 0 be sufficiently small and S be
an almost (d, a)-flat e-nearly 2-distance set in R? with distances t; < t3. Then S is
(p,d,a)-flat with respect to some d-dimensional subspace A, for all but at most two
p € S. Let K > 3 be a sufficiently large constant to be specified later. We may assume
that % > K, otherwise we have |S| < ma(d) by Lemma (i). Colour a pair {p1,p2}
(p1,p2 € S) with blue if ||p1 — p2|| > t2 and with red otherwise. Let B be the largest blue
clique in S. Then S can be partitioned into |B| red cliques Ry, ..., R|p| as in Lemma

Let j be the dimension of the affine subspace Ap spanned by B. Note that, since B is an
almost 1-distance set, B is very close to a regular simplex, and hence there is an absolute
~ > 0 such that, for any b € B, the set B is not (b, j — 1, v)-flat if € is sufficiently small. We
apply Lemma to RU B, where R is a red clique, and obtain that R is (d’ — j, a)-flat.
Moreover, since S is (p,d, a)-flat for all but at most two p € S, for all but at most two
(say R; and R;) red cliques R we have that R is (p,d — j, 10«)-flat for some p € R, and
|R;| + |R;| < 2. Now Lemma (i) implies that for a red clique R # R;, R; we have
R <mi(d—j)=d—j+1

Noting further that |B| = j + 1 we obtain
S| = [Ra| + -+ [Rypy| < max{(j +1)(d = j +1),j(d—j+1)+2}.

Then either d =j or (j+1)(d—j+1) > j(d—j+ 1)+ 2 holds. In the first case, we have
S| < d+2 < (*5') < ma(d) ifd >3, and |S| < d+2 < ma(d) for d = 1,2 since mo(1) = 3
and mg(2) = 5. In the second case [S| < (j+1)(d—j7+1) < (%)2 < (dgl) < mg(d) if
d>4,and |S| < (j+1)(d—j+1) <ma(d) if d = 2,3 since m2(2) =5 and ma(3) = 6 (see
Table [5.1]).
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Next we prove As(d’,d) = ms(d). Let e, > 0 be sufficiently small and S be an e-nearly
almost (d, «)-flat 3-distance set in R? with distances 1 < t3 < t3. Let K > 3 be a
sufficiently large constant. We may assume that i—f > K or i—; > K holds, otherwise we
have |S| < ms(d) by Lemma (i). We will analyse these two cases.

Case 1: i—; > K. Colour a pair {p1,p2} (p1,p2 € S) with blue if ||p1 — p2|| > t3 and with
red otherwise. Let B be the largest blue clique in S. Then S can be covered by |B| red
cliques Ry,..., R|p as in Lemma Let j be the dimension of the affine subspace Ap
spanned by B. Note that, since B is an almost 1-distance set, B is very close to a regular
simplex, and hence there is an absolute constant v > 0 such that, for any b € B, the set
B is not (b,j — 1,v)-flat if € is sufficiently small. We apply Lemma (i) to RU B,
where R is a red clique, and obtain that R is (d’ — j, «)-flat. Moreover, S is (p, d, «)-flat
for all but at most two p € S, and thus, by Lemma (ii), each red clique R is almost
(p,d — j,10c)-flat.

Using that |B| = j + 1 we obtain
S| =[Ril+ -+ R < (j +1)Ax(d', d — j, 10a).

For sufficiently small o and a red clique R, we have |R| < 2 if d = j. If j < d then
|R| < ma(d—j) by the k = 2 case of the theorem. In the first case, |S| < 2(d+1). Ford > 4
we have |S| <2(d+1) < (d'gl) < mg(d) and for d = 1,2,3 we have |S| < 2(d+1) < mg3(d)
given that mg(1) = 4, m3(2) = 7 and m3(3) = 12 (see Table[5.1)). In the second case, for
d>9 we have (j + 1)ma(d —j) < (j + 1)(d7%+2) < (d;’rl) < mg(d). For d < 8, using the

known values and bounds of ms(d) and ms(d), we check in the Appendix that

(J + Dma(d - j) < ms(d). (5.7)

Case 2: % > K > i—; Colour a pair {p1,p2} (p1,p2 € S) with blue if ||p1 — p2|| > t2 and
with red otherwise. Let B be the largest blue clique in S. Using Lemma [5.9] partition the

set S into |B| red cliques Ry,..., R|p|.

Case 2.1: i—; > 1+ % Let R be one of the red cliques and R N B = {b}. Apply
Lemma to R U B with a sufficiently small 8 < ’. Let j be the smallest number
such that B is (b, j, 37)-flat. Note that j < d and that, for any p1,ps € R, b # by € B, if
Ip1 — bi| € [ti,ts + €] and |p2 — by| € [t;,t; + €], then by the triangle inequality I = i. By
Lemma (i) we obtain that R is (d' — j, «)-flat. Moreover if for some p € R we have
that S is (p, d, a)-flat, then R is (p,d — j, 10«)-flat by Lemma (ii). Further, note that

the same is true for any red clique R with the same j. Indeed, since 1% < K, Lemma
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implies that if 3 is sufficiently small, then there is a j such that B is (b1, j, 3/)-flat for any
by € B, but it is not (by,j — 1, 37~1)-flat for any by € B. This and Lemmam (i) imply
that for all but at most two red cliques R we have |R| < mi(d —j) = d — j + 1. Moreover,
if the two potential exceptions are R;, Ry, then |R;| + |R;| < 2.

Note that |B| < ma(j). We obtain
S| < |Ba| + -+ + [Ryp)| < max{ma(j)(d — j + 1), (m2(j) — 1)(d —j + 1) +2}.

Then either d = j or ma(j)(d—j+1) > (ma(j)—1)(d—j+1)+2 holds. In the first case, we
have |S| < ma(d) + 1 < (“32) +1 < (*5) <my(d) if d > 6 and |S| < ma(d) + 1 < mg(d)
for 1 < g < 5 since ma(1) = 3, ma(2) = 5, m2(3) = 6, ma(4) = 10, ma(5) = 16 and
mg(1) =4, m3(2) =7, mz(3) = 12, m3(4) = 16, mz(5) > 24 (see Table [5.1). Finally, in

the second case we do the same analysis as in the end of Case 1.

Case 2.2: i—g <1+ % For a sufficiently small 5 > 0 let j be the lowest dimension
such that B is (j,37)-flat. Then by Lemma we may assume that j is the lowest
dimension for any b; € B such that B is (1b,j, 37)-flat. By Lemma (i), if 2 is suf-
ficiently small, then |B| < mi(d) = d + 1. Further, any red clique R is almost (d, «)-flat,
thus either there is no p € R for which R is (p,d, «)-flat, or by Lemma (i) we have
|R| < mi(d) =d+ 1. These two imply |R| < max{2,m1(d)} < mi(d) =d+ 1. We obtain
S| = |Ri|+ -+ [Rp|| < (d+1)(d+1) < (d+1)* < mgy(d) if d > 7. Indeed, it follows
from ms(8) > 121 > (8+1)2, m3(7) > 65 > (7+1)2, and m3(d) > (*£) > (d+1)2, where
the first inequality is by and the second is true if if d > 9. Therefore, in the rest of

the proof we may assume that d < 6.

Case 2.2.1: t; > K"!(t3 — t3). First we will show that in this case any red clique R is
(d —j+ 1, a)-flat, provided g is sufficiently small and K is sufficiently large.

Let RN B = {b} and B be (b, j, 37)-flat with respect to Ag. Further let v,w € R and
for b # by € B let Sy, S3 be spheres centred at by and of radii to and t3 respectively (see
Figure 2). Then w is e-close to one of them, w.l.o.g. to Sz, and v is e-close to Sy or Ss.
Let A; be the (d’ — 1)-dimensional subspace through orthogonal to by — w. If v is e-close
to So, then for some absolute constant ¢; the vector v — w has an angle at most ¢; /K
with Aj. If v is e-close to S3, then, since |v — w| € [t1,t1 +¢] and t; > K%!(t3 — t3), and
because the radius of S3 is much bigger than ¢;, v — w has an angle at most c3/K%?! with

A1, where ¢y is some absolute constant. Thus we can conclude that if K is sufficiently

91



Chapter 5. Nearly k-distance sets

Figure 5.2

large, then v — w has an angle at most S9! with A;.

Since the above conclusion is true for any b # b; € B, Corollary implies that R is
(b,d’ — j,3a)-flat with respect to A = (Ag)*t. Moreover, if S is (r,d, a)-flat with respect
to A, for some r € R, then Lemma implies that R is (r,d — j, 10a)-flat: indeed, the
subspaces A and A, are almost orthogonal. Thus either there is no r € R for which R is
(r,d,o)-flat, in which case |R| < 2, or by Lemma [5.10] (i) we have |R| < m1(d — j). These
two imply |R| < max{2,mi(d — j)}. We obtain that |S| < (j + 1)(d —j + 1) < mg3(d),

where the second inequality was already checked in the previous cases.

Case 2.2.2: t; < K%'(t3 —t3). Fori=1,...,|B|, put {b;} := BN R; and, for j = 2,3,

let S;(i) be the sphere of radius ¢; with centre in b;. We need the following claim.

Claim 5.18. Assume that for some i # | € [|B|] there are points from R; in the e-neighbourhoods
of both Sa(l) and Ss(l). Then Ry is contained in the e-neighbourhood of either Sa(i) or

S3(7).

Proof. Assume the contrary. We may assume that |b; — b;| € [t2,t2 + €] (the case with t,
replaced by ts3 is treated similarly). Then there are points v € R;, w € R; such that v is
in the e-neighbourhood of S3(I), and w is in the e-neighbourhood of S3(i) (see Figure 3).
Let v',w’ denote the projections of v,w on the line e passing through b; and b;, and let
u; and u; denote the points of intersection of e and spheres S3(1), S3(¢) respectively. Note
that ||u; — w|| > t3 + (t3 — t2).

We claim that |Ju; — ¢'||, [Ju; — w'|] < (t3 — t2)/10. This would imply that ||w — v| >

|w = || > [Ju; — w| — &(ts — ta) > t3 + ¢, which is a contradiction. Let us only prove
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‘ S3(i)
53(0) So(1) Sa(i)

v Iw
e L L W

Figure 5.3

||lug — w'|| < (t3 — t2)/10, since the other inequality is proved in the same way. Due to
our condition on tz, we have |ju; — w|| < |lu; — byl + ||y — w| < 2¢; + 26 < 3K%L(t3 — ta).
Since we have t3 — to < 2t3/K, and w lies in the e-neighbourhood of S5(i), the angle ~y

_ 0.1 _
between w — u; and the line e satisfies 2 cosy = HZJl wl| o 3K t(t3 t2) < 3K799. Therefore,

=bi|l = 3
lug — w'|| = |lu; — wl|| cosy < 3/ K8 < (t3 — t2)/10 for sufficiently large K. O
Since each of B and Ry,..., R|p| are nearly-regular simplices, the following lemma is

applicable to S. Note that the third condition in its formulation is satisfied for S due to
Claim The conclusion of the lemma is that |S| < ms(d), which finishes the proof.

1Bl

i1 R © RY be an almost (d,a)-flat set for which the

Lemma 5.19. Letd <6 and S =

following is true.

e B is the vertex set of a nearly-regular simplex of dimension j.

e Fach R; is the vertex set of a nearly-reqular simplex (of dimension at most d) such

that any edge-length in B is at least K times larger than any edge-length R;.

e For every pair b;,by € B, one of R;, Ry, say R;, lies in the e-neighbourhood of the
sphere S;(€) for j = 2 or 3, and the other (i.e., Ry) lies in the e-neighbourhood of
Sa(i) U S3(i).

Then |S| < mg(d) if a is sufficiently small.

Proof. Let Ap be j-flat spanned by B. Assign an ordered pair (p1, p2) to each ordered pair
(1,€), i # £, if R; can be covered by the e-neighbourhood of p; spheres out of Sa(l), S5(¢),
and Ry by the e-neighbourhood of p2 spheres out of S3(i),S3(i). By Claim we
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have (p1,p2) € {(1,1),(2,1),(1,2)}. If there are m(i) indices I*,...,"™® € B\ {i} such
that we assigned (1,2) or (1,1) to (i,¢), then R; is contained in the intersection of the
e-neighbourhood of m(i) spheres of radii ¢ or t3 (and having centres in by, ..., bym)). Let
A denote the m;-dimensional subspace spanned by the vectors b; — bys, s = 1,...,m(i).
Corollary implies that R; is (r,d’ — m(i), a)-flat with respect to A; := (A})* for
each v € R;, provided ¢ is sufficiently small. Moreover, if for r € R; we have that S
is (r,d, a)-flat with respect to A,, then A; and A, are almost orthogonal (if K is suffi-
ciently large and ¢ sufficiently small). Hence, by Lemma [5.14] m we obtain that R; is almost

(d —m(i), 10a)-flat. Moreover, since each pair of vertices contributes at least 1 to one of
m(i), we remark that Zl’:l m(i) > (“23') = (3451)‘

Recall that S is (7, d, «)-flat for all but at most 2 of its vertices. Thus, for all but at most
two (say, Ry or Ri, Rg) sets R; we have |R;| < d —m(i) + 1 by Lemma (i). If in all
R; there is an r such that R is (7, d, «)-flat, then we obtain

|B] |B|

1S|=> IR < (j+1)(d+1) - Zm 1)(d+1)—(j;1>§m3(d). (5.8)

=1

Otherwise, repeating the same argument for S’ := U' R; or for S := Ulﬂ% R; and using
|R1| <2 or |Ri| + |R2| < 2 we obtain

|B]

18] =3[Rl < j(d+1) - @) 12 < ms(d). (5.9)

i=1
In both (5.8]) and (5.9)) the last inequality follows from mg(2) = 7, m3(3) = 12, m3(4) = 16,
m3(5) > 24, m3(6) > 40 (see Table [5.1). O

5.2.3 Fixed d: Proof of Theorem [5.6]

We start with introducing the following spherical version of Ny (d). Let NSk (d) denote the
largest number M such that for any «, e > 0 there is an e-nearly (d — 1, «)-flat k-distance
set of cardinality M on a (d — 1)-sphere S“! ¢ R?. Note that NSi(d) < Ni.(d) holds for
any d.

To see that My(d) = Q (k%) and Ni(d) = Q (k?"!) consider the product of k-distance
sets in R as in the examples in Section For the lower bound it is sufficient to prove
Ni(d+1) = O (k%), since any set in R? is 0-flat in R4+,
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First we prove NSi(d+1) = O (k%~!). We induct on d. The statement is clearly true for

d = 1. Assuming it is true for d’ < d, we prove it for d.

Let «,e > 0 be sufficiently small and T be a (d, «)-flat e-nearly k-distance set on a sphere
S?% in R! with distances 1 < t; < --- < t3, and let v € T. Define T} := T N S.(v,t;),
where S;(v,t;) is the e-neighbourhood of the sphere S(v,t;) of radius t; centred at v.
Then T = Ule T; and each T; is a (d, a)-flat e-nearly k-distance set, contained in the
e-neighbourhood of the (d — 1)-sphere S% N S(v, ;).

Moving each point of T; by a distance at most e, we obtain a (d,2«)-flat 3e-nearly k-
distance set T} on the sphere S(v,t;) with |T;| = |T}|. If T} is (p, d, 2a)-flat with respect
to some d-dimensional subspace A,, and A is the subspace containing S(v,t;), then A,
and A are almost orthogonal. Hence T is (p,d — 1,20«)-flat by Lemma Thus
T;| = |T}| < NSk(d) = O(k%2) by induction, and overall we obtain |T| = 1 +Zf:1 |T5| <
k-O(k?2) = O(k41).

We now turn to the proof of Ni(d+1) = O (kd). For sufficiently small € and «, let T" be a
(d,o)-flat e-nearly k-distance set in R4T! with distances 1 <t; < --- < t;, and let v € T..
Define T; = T'NS.(v,t;), where where S.(v, t;) is the e-neighbourhood of the sphere S(v, t;)
of radius t; centred at v. Then T' = Ule T;, and each T; is a (d, o)-flat e-nearly k-distance
set, contained in the e-neighbourhood of the (d—1)-sphere S?NS(v, ;). Similarly as in the
first half of the proof, we obtain |T;| < NSk(d + 1) = O(k%1) by induction, and overall
we obtain [T] =1+ Y% | |Ti| < k- O(k%1) = O(k9).

5.2.4 Many nearly-equal distances: Proof of Theorem [5.8

Let £ := Ag(d) + 1 and «a,e > 0 be fixed such that there exists no almost a-flat e-nearly
k-distance set in R? of cardinality ¢. Assume on the contrary that for every ¢ > 0 and ng

there is an n > ng, there are k distances t; < --- < t;, and a set S” C R? of n points for
which

‘ {(p, q) €8x S" : |p—ql € [t ti + en*/9] for some i € [k]} } > T'(n, Ak(d)).

Our goal is to derive a contradiction by constructing an almost a-flat e-nearly k-distance

set of cardinality /.

In the proof, we shall use a hierarchy of “small” constants given below. We say that u < v

if 11 is a certain (positive, but typically quickly tending to 0) function, depending on v
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only. Thus, the arrows indicate the order of choosing the parameters from the right to the
left below. (For consistency, one only needs to check that every condition we impose on a
constant in the hierarchy only depends on the constants that are to the right from it and

is of the form “it is sufficiently small compared to some of the constants to the right”).
/<K Kl/C<Ll/m<1/M,d,co,v<1/d,1/k, e (5.10)

We recommend the reader to refer to this chain of dependencies throughout the proof.

We need the following simple claim.

Claim 5.20. For any k > 0, we have Ni(d) < Agy1(d).

Proof. Take a construction S of a (d — 1, u)-flat pu-nearly k-distance set in R? with all
distances of order at least 1/u. Pick any =z € S, and let A be a (d — 1)-dimensional
subspace such that S is (z,d — 1, u)-flat with respect to A. Let y € R? be a point at
distance 1 apart from x such that x — y is orthogonal to A. Then it is easy to see that

S U {y} is an almost (d — 1,3u)-flat 3u-nearly k 4 1-distance set in R O

Using this claim, we may assume that ¢; > con'/9. Indeed, assume the contrary. Since
S” is separated, a volume argument implies that, for each vertex v € S”, the number of
vertices in S” at distance at most con'/? from v is at most (4cg)*n. Thus, removing all
edges from G” that correspond to such distances, we only remove at most (4c)%n? edges.
At the same time, we reduce the size of the set of possible intervals by 1. Hence we apply
Theorem with v playing the role of ¢ and using the hierarchy we obtain

Mk(d, n) < (402)dn2 + Mk_l(d, n)

< (402)dn2+n; (1— Nkllwl)w) < 7;2 (1— Akl(d)>'

We note here that in the proof of Theorem this step of the proof is automatic since

the removal of edges corresponding to small distances only change the potential value of e.
Our first goal is to obtain a sufficiently structured subset of S”. We need the following

result of Erdos.

Theorem 5.21 ([I7]). Every n-vertex graph with at least T'(n,¢ — 1) + 1 edges contains
an edge that is contained in 6n'=2 cliques of size {, where § > 0 is a constant that depends

only on £.
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Consider the graph G” = (5", E), where the set of edges consist of all pairs of points

p1,p2 € S” that satisfy
k

lp1 — p2|l € U[ti,ti + ent/9).
i=1

Using the theorem above, we shall prove the following lemma.

Lemma 5.22. For any fixzed m, there exists a choice of ¢c1 = c¢1(m) such that G" contains
a complete (-partite subgraph Ki 1 m,...m with the distances between any two of its vertices

strictly bigger than cint/?.

Proof. We construct this multipartite graph in three steps.

Step 1. Using Theorem we find an edge e = {v1,v2} that is contained in dn‘2
cliques of size £. Let E” be the set of those edges of the /-cliques, that are not incident to
v1 or v, and F' be the set of £ — 2-tuples formed by the £ — 2 vertices of the cliques that
are different from v; and vs. The vertices of e form the first two parts of the multipartite

graph. In what follows, we shall work with the graph G” induced on S” \ {v1,v2} by E”.

Step 2. We select a set Sy of C vertices of G’ at random, and define a hypergraph H’
on Sy as follows. Recall that ¢; < 1/C < 8,1/¢,1/m (see (5.10); the exact dependency
of C on §,m and of ¢; on C shall be clear later) and consider the induced subgraph
G’ = G"[Sy|. S” is separated, and hence a volume argument implies that any vertex in
S"\ {v1,v2} is at distance strictly bigger than ¢;n'/¢ from all but at most (4¢;)®n vertices
of S”\ {v1,v2}. The number of vertices in S”\ {v1,v2} is n— 2, and so by the union bound

the following is true.

(i) With probability at least 1 — (g) (4c1)%n/(n —2) > 1 — ¢, every pair of

vertices in Sy is at distance bigger than ¢;n'/¢ from each other.

Indeed, the total number of pairs of vertices is (g), and for each pair the probability that
it is at distance < ¢;n!'/? is at most (4c1)%n/(n — 2). The inequality in (i) is possible to
satisfy by fixing £, C' and choosing ¢; to be sufficiently small.

Next, we consider the (¢ — 2)-uniform hypergraph H” = (S \ {v1,v2}, F). The following

is an easy consequence of a Markov inequality-type argument.

(ii) With probability at least 6 /2, the edge density of the hypergraph H' = H"[Sy]|
is at least 0/2.
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Indeed, the average density of cliques should be the same as of H”, i.e., at least §. But if
(ii) does not hold, then the average density is at most (1—§/2)-6/246/2-1 = §—62/4 < 6,

a contradiction.

If we choose ¢; < §/2 then with positive probability both the property in (i) and in (ii)
hold. Pick a subset S C S\ {v1,v2} that satisfies both.

Step 3. We apply the following hypergraph generalisation of the Kévari-Sés—Turdn due
to Erdos.

Theorem 5.23 ([16]). For any ¢ >4, m > 1,6 > 0 there is a constant C(¢, m,d) such that
the following holds for any C > C'(¢,m,6). Any (¢ — 2)-uniform hypergraph on C vertices
of edge density at least g contains a copy of a complete (¢ — 2)-partite (£ — 2)-uniform

hypergraph with parts of size m.

Applying the theorem to the (¢ — 2)-hypergraph H’, we obtain a complete (¢ — 2)-partite
(¢ — 2)-uniform hypergraph with parts of size m. This complete multipartite hypergraph
corresponds to a complete (¢ — 2)-partite graph in G with parts of size m and with all

1/d

distances between points being at least cyn/¢. Together with the edge e, this gives the

desired ¢-partite subgraph Ki 1m, .. m- ]

Let the ¢ parts of the Ki1m...m in G” be S7,...,5), with Sy = {vi}, S2 = {v2} and
|S3| = -+ =|S;| = m, further set S’ = S;U---US;. S’ has much more structure than the
original set S”. However, for any fixed i,j € [¢] (i # j) distances from several intervals
from [t1,t; + en'/9, ... [tn, tn + cn'/?) may appear between the vertices of S/ and S}. To
reduce it to one interval between any two parts, we will do a second “preprocessing” step

using the following version of the Kovari—-Sés—Turan theorem.

Theorem 5.24 ([44]). For any ( > 0 and r > 1 there exists ng, such that for any n > ng
we have the following. Any graph on n vertices with at least C(g) edges contains K, , as

a subgraph.
Take S’ and set i := 1. Then do the following procedure.

L. Set ji=i+1. Ifi=1,j=2,set j:=7+1

2. Take the subgraph of G’ induced between S} and 5. Choose an index f = f(i, j) € [k]
such that
m’
k 9

[{(vi,v;) : vi € S}, 05 € S, [vi —vy| € [ty,t7 + en'/ U]} >
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where o = 1 if ¢ € {1,2} and o = 2 otherwise. Set G;; to be the graph between S
and S;- with the set of edges specified in the displayed formula above.

3. If i € {1,2}, let S/ be the set of neighbours of p; in G;;. If i ¢ {1,2} apply
Theorem to Gy and find sets S}’ C S}, S] C 57, each of size 1 < m’ < m, such
that the graph G;; between S’ and S7 is complete bipartite.

5. Set S/ := S/, S} = S,

then set ¢ := i+ 1. If ¢ > k, then terminate, otherwise go to Step 1.

m:=m', j:=7+1. If j <k then go to Step 2. If j > k

Clearly, if m in the beginning of the procedure was large enough, then at the end of the
procedure m is still larger than some sufficiently large M. By running a procedure similar
to the one above, we can shrink the parts .S;’s further such that for any p; € 5; and
pi.q; € S; (5 ¢ {1,2}) the angle Zp;p;q; is at most «. If M is sufficiently large (see the
hierarchy (5.10)), then at the end of this second procedure each S; (i ¢ {1,2}) has at least
2 points. Thus we obtain a subset S C S’, such that G := G"[S] is complete multipartite
with parts S1, ..., S, such that [S1| = |S2| =1 and |S3| = - - - = |S¢| = 2, moreover for any
two parts S;, Sj there is an f(4,j) € [k] such that

for any p; € Si, pj,q; € S; we have ||p; — pjll € [tfa ), tra ) + cnl/d]
and lpjpiqj < a. (511)

For each 3 <1i < /let S; = {pi,q;}. We will show that P = m%/d{pl, ...,pe} is an almost

a-flat e-nearly k-distance set and obtain the desired contradiction.

First, we show that P is an e-nearly k-distance set with distances 1 <t} < --- < ¢}, where

! t;
t’L — CQTLl/d .
Indeed, note that t; > coynl/¢, therefore t) = 02:1711/01 > 1. Further, by (5.11) for any

pi € Si and p; € S; we have |p; — pj|l € [tpuj) trig) + en'/?), which implies that
a7 IPi =il € [y s Uiy + /2l = [y gy + €

Second, we show that P is almost a-flat. We prove that Zg;pip; € [§ — o, 5 4+ a] for j # i
and ¢ ¢ {1,2}. Take the point ¢, on the line through p;, p; such that |l¢; — p;|| = ||¢; — pjl|-
Then, first, Zg;q/p; € [(m — «)/2, /2] since Zg;p;p; < o and triangle ¢;¢;p; is equilateral

1/d Since llgi—pill > cini/d

and, second, ||¢;—pi|| < cn , we may assume that Zq¢jgip; < /2,
thus Zgipip; € (7 — a)/2 — Z4}qipi, 7/2 + Zqiqipi] C [1/2 — o, m/2 + o]. Hence for every
i ¢ {1,2} we can choose A, to be the (d — 1)-dimensional subspace orthogonal to p; — g;.

This finishes the proof of Theorem
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5.2.5 Many nearly-equal distances: Proof of Theorem [5.7]

First we prove the lower bound.

Let a,e > 0 be sufficiently small, and ¢; > 2n?. Consider a (d — 1,a)-flat e-nearly
k-distance set S’ C R? with distances t; < --- < t;, of cardinality Nj(d). For each v € S’
let A, be a hyperplane with normal vector m, of unit length such that for any w € S’ the
angle of v — w and A, is at most «. For simplicity assume that Ni(d)|n. Replace each

point v € S’ with an arithmetic progression A, = {v +tmy it € {1,..., ‘Nkn(d) }}

If [cos(§ — )] < %, then the distances between any point from A, and any point from
Ay (v # w) is within 1/2 from the distance between v and w. The set S = |J A, has

cardinality n, and the graph with edges between its points that are at a distance closer

ves’

than 1 to a distance in the set S’ is a complete Ny (d)-partite graph with equal parts. By
definition its number of edges is T'(n, Ni(d)). This argument can easily be modified to
deal with the case when Ni(d) fn.

As the proof of the upper bound on My(d,n) is very similar to those of Theorem we

only sketch it, pointing out the differences.

Let £ := Ni(d) + 1 and a, e > 0 be fixed such that there exists no (d — 1, «)-flat e-nearly
k-distance set in R? of cardinality ¢. Assume on the contrary that for every ¢ > 0 and ng

there is an n > ng, there are k distances t; < --- < t;, and a set S” C R? of n points for
which

‘ {(p, ) € 8" % S" : |lp—q|| € [ts, t: + en /4] for some i € [k]} ] > T(Ny,(d), n) + yn?.

Our goal is to derive a contradiction by constructing an a (d—1, «)-flat e-nearly k-distance

set of cardinality £.

After including « in the hierarchy of constants on the same level as «, the proof is the
same as that of (5.8)) up to the point of Lemma Instead of Lemma we will use
the following.

Lemma 5.25. For any fivzed m there exists a choice ¢c; = ¢1(m, ) such that G" contains a
complete (-partite subgraph K, . m such that the distance between any two of its vertices
is bigger than cin'/?.

The proof of Lemma [5.25|is very similar to the proof of Lemma [5.22] except that instead

of Theorem we use a result of Erdés and Simonovits [23] about the supersaturation
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of (-cliques. (And then work with ¢-uniform hypergraphs instead of £ — 2.) Therefore we

only give an outline of the proof.

Theorem 5.26 ([23]). For any £,y > 0 there is a § such that if a graph G on n vertices

has at least T(n,{) +yn? edges, then it contains at least on’ cliques of size (.

Sketch of proof of Lemma[5.25. We construct this multipartite graph in three steps.

Step 1. Using Theorem we find 6n’ cliques of size ¢. Let E” be the set of the
{-cliques, and F' be the set of the ¢-tuples. In what follows, we shall work with the graph
G" induced on S” by E".

Step 2. Select C vertices of G” at random, where ¢; < 1/C < 6,1/¢,1/m. Denote by
S the set of C vertices that we chose and consider the induced subgraph G’ := G"[Sg].

A similar calculation as in the proof of Lemma [5.22] implies the following.

(i) With probability at least > 1 —c¢1, every pair of vertices in Sp is at distance

bigger than ¢;n!/? from each other.

Next, we consider the ¢-uniform hypergraph H” = (S”,F). As before we obtain the

following,.

(ii) With probability at least 0/2, the edge density of the hypergraph H' =
H"[Sy] is §/2.

If we choose ¢; < ¢/2 then with positive probability both the property in (i) and in (ii)
hold. Pick a subset S C S that satisfies both.

Step 3. Applying Theorem to the (-hypergraph H’, we obtain a complete /-partite
f-uniform hypergraph with parts of size m. This complete multipartite hypergraph cor-
responds to a complete f-partite graph in G with parts of size m and with all distances

between points being at least ¢n'/<. O

Let the ¢ parts of the K, ., in G” be S,...,5), with |S1| = --- = |S)| = m further set
S’ =8, U---US,. Running a similar procedure as before we obtain a subset S C S’, such
that G := G"[S] is complete multipartite with parts Sy, ..., Sy with [S1| = -+ = |S,| = 2.
Moreover, for any two parts S;, S; there is an f(i,j) € [k] such that

for any p; € Si, pj,q; € S; we have ||p; — p;|| € [tr(.5)-tra ) + en'’Y
and Zp;piq; < a.
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For each 1 < i < ¢ let S; = {pi,¢;}. Then we can show that P = m%/d{pl,...,pg} is a

(d — 1, a)-flat e-nearly k-distance set, and obtain a contradiction.

5.3 Concluding remarks

Let us list some of the intriguing open problems that arose in our studies. One important
step forward would be to get rid of the (almost-)flatness in the relationship between
nearly k-distance sets and the quantity My(d,n) that appears in Theorems and
In particular, it would be desirable to prove the first equality in Conjecture [5.3] and, more

generally, show the following.

Problem 5.27. Show that Ax(d+ 1,d) = Ni(d + 1) = My(d) holds for any k,d.

In fact, even showing the first equality would imply that the value of My(d,n) for large n
is determined ezactly by the value of Ni(d + 1).

Another interesting question that looks approachable is to determine the value of M (d) on
the part of the spectrum opposite to that of Theorem for any fixed d and k sufficiently
large. Note that the order of magnitude of My (d) in this regime is easy to find, as it is
shown in Theorem [5.6

Problem 5.28. Determine My(d) for any fized d and sufficiently large k.

If resolved, then with some effort it would most likely be possible to determine the value

of My(d,n) for large n in this regime as well.
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5.A Appendix

Proof of Lemmal[5.19 Indirectly, assume that for any [y there is a 3 < By such that the
angle between v and A is larger than . We will show that then V is (j — 1, 8/~1)-flat

with respect to Ag Nvt, contradicting the minimality of j. We may assume that ||v|| = 1.
Let {b1,...,bs} be an orthonormal basis of RY where additionally {b;,...,b;_1} is an
(orthonormal) basis of Ag Nvt, {by,...,b;} is a basis of Ag, and {bj41,...,ba} is a basis
of A.

Then v can be written as v = y;b; + - - - + yqbg, where |y;| > sin «, since v forms an angle

larger than o with A. Next, any v; € V can be written as y1b1 + - - - + ygbg, where
Vi 47 > cos*(B),
since v; has an angle at most 47 with Ag. Further, we have
(03, 0)| = 1595 + V01941 - -+ vayal < B

since the angle of v and v; is in [§ — B, 5+ 9. By the Cauchy-Schwarz inequality we

have

Yjs1¥je1 + - - + vayal < HUH\/%?H +...+92 < \/1 — cos2(f7) = sin(B?) < 4.

Combining the previous two inequalities, we get
vivil < gy 4 -+ Yayal + sy Yayal < 267

This implies |v;| = |vjy;]/|y;] < 287/sina < 7795, if B < % and thus if 3 is sufficiently
small, then
il ] 2 cos?(87) = BT > cos® (8771,

where the last inequality follows from the fact that cosy = 1 — (3 + o(1))y? for small ~.
This means that the angle between v; and Ag N v’ is at most 47! Since this is valid
for any i = 1,...,m, we conclude that V is (j — 1, 377 1)-flat with respect to Agp Nv+, a

contradiction. O

Proof of Lemma[5.14, We may assume that ||v|| = 1, and will use the notation from the
definition above. First note that the length of the projection of v on Az is at most

sina < a.
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Next we prove that the length of the projection of v on the subspace spanned by {v1,...,v,}
is at most 2. Indeed, if it is of length larger than 2« then, using the fact that this pro-
jection forms an angle in [7/2 —0.01,7/2 + 0.01] with A9, we get that the projection of v
on (As)* has length larger than o, and thus the angle that v forms with As is larger than

a, contradicting the first observation.

Noting further that the length of the projection of v on Af is at most sin @ < «, we obtain

that the projection of v on A; N Ay has length at most 2a + o = 3a. Indeed, this follows

since A; N Ay is the subspace spanned by the union of {v,...,v,} and A{, further the
subspace spanned by {vi,...,v,} and Af- are orthogonal. We conclude that v forms an
angle at most arcsin(3a) < 10 with A N As. O

Proof of Lemmal[5.16 Let S be (p, j, a)-flat with respect to A and let g € S (¢ # p). We
will show that for any r € S (r # p, q) there is a vector v € A such that the angle between
q —r and v is at most 20(K«)/?, implying that S is (g, 7, 20(K a)'/?)-flat.

Let vy, v, € A such that the angle between p — g and v, and the angle between p —r and v,
is 2a, further ||p — ¢|| = ||vg|| and ||p — || = ||v,||. We will show that the angle 8 between
v =1y — v € A and ¢ — 7 is at most 20(K «)'/2, which finishes the proof.

Let 81 = Zqrq and B2 = Zrg’r’. Then B < 1 + B2 thus it is sufficient to show that
B, Ba < 1O(Ka)1/2. We will prove it for B, for ;1 it can be done similarly. By the low of

cosines we have . ) . . )
vos gy = 18 =TI+ 1 =2~ r 12|
2[lg" = rllllg" — Il
Using [l —rll = llg=dll < ¢ =7l < llg=rl+lla=dll, lg=rll = lla =l = [Ir = '] <
lg" ="l < llg =7l +llg =l + llr =7l la = ¢l = 2sinalp —ql| < 2aK]lg -],

|r — || = 2sina|lp — || < 2aK||qg — ||, and denoting ||g — r|| = z, these imply

2(z — 4aKz)? — 4(aK z)?

1-— <1-
cos Pz < 2(z + daKz)?

< 25aK.

Combining with %% <1 — cos 39 we obtain [y < 10(aK)1/2. O

Proof of (5.7). Using the known values of ma(d) and bounds on ms(d), we obtain the

following.

d =8 max{(j + )ma(d —j) : j = 0,...,8} = max{45,2-29,3-27,4-16,5 - 10,6 - 6,
7-5,8:3,9-1} = 81 < 121 < mg(8);
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d =7 max{(j+1)ma(d—j):j =0,...,7} = max{29,2-27,3-16,4-10,56,6-5,7-3,8-1} =
54 < 65 < m3(7);

d=6: max{(j+ 1)ma(d—75):5=0,...,6} = max{27,2-16,3-10,4-6,5-5,6-3,7-1} =
32 < 40 < my(6);

d =5: max{(j+1)ma(d—j) : j =0,...,5} = max{16,2-10,3-6,4-6,5-3,6-1} = 24 < ms(5);

d=4: max{(j+ 1)ma(d—j):j=0,...,4} = max{10,2-6,3-5,4-3,5-1} =15 <16 <
m3(4);

d=3: max{(j + )ma(d—75):5=0,...,3} =max{6,2-5,3-3,4-1} = 10 < 12 < m3(3);
d=2: max{(j+ 1)ma(d —7):j =0,1,2} = max{5,2-3,3-1} = 6 < 7 < m3(2);

d=1: max{(j + 1)ma(d —j) : 7 =0,1} = max{3,2-1} =3 <4 <mg(1). O
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Equilateral sets

6.1 Introduction

In a normed space (X, ||-]|) a set S C X is called c-equilateral if ||z —y|| = c for all distinct
x,y € 5. S is called equilateral if it is c-equilateral for some ¢ > 0. The equilateral number

e(X) of X is the cardinality of the largest equilateral set of X.

The norm || - || of z € R? is defined as ||7||c = maxj<i<q|zi|, and ¢4, denotes the normed

space (R, || - [loo).

We prove lower bounds on the equilateral number of subspaces of £ of small codimension.

Theorem 6.1. Let X be a (d — k)-dimensional subspace of {4 . Then

Qdfk
e(X) = d—R)F (6.1)
l
e(X)>1+ % ; (d ;M) for every1 < ¢ <d/(k+1), and (6.2)
L (d—2ke
e(X)>1+ ; <d TQk ) for every 1 <€ <d/(2k +1). (6.3)

According to Petty’s conjecture [55], for every normed space X of dimension d we have
e(X) > d+1. As a corollary of inequality (6.3) we confirm the conjecture, if the unit ball
of X is a polytope with few facets.
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Corollary 6.2. Let P be an origin-symmetric convex polytope in R™ having at most

4n  14+/nF9 _ 4n
3 6 E

with P as a unit ball, then e(X) > n+ 1.

o(n) opposite pairs of facets. If X is a n-dimensional normed space

For two d-dimensional normed spaces X,Y we denote by dpy(X,Y) = inf{||T||[| T}
their Banach-Mazur distance, where the infimum is taken over all linear isomorphisms

T:X — Y. We prove the following.

Theorem 6.3. Let X be an (d — k)-dimensional subspace of %, and Y be an (d — k)-

dimensional normed space such that dpy(X,Y) < 1+ m for some integer
1<< 922k Thene(Y) >d—k(2+1).

6.2 Norms with polytopal unit ball and small codimension

We recall the following well known fact to prove Corollary (For a proof, see for
example [4].)

Lemma 6.4. Any centrally symmetric conver n-polytope with f > n opposite pairs of

facets is a n-dimensional section of the f-dimensional cube.

Proof of Corollary[6.4 By Lemma P can be obtained as an n-dimensional section of
the (4771 B 1+\/8n+9> dn _14VBnd0 y_ 9 p _ n _ ntyBnid

3 6 3 6 , 3 6
and apply inequality (6.3) from Theorem This yields e(X) > n + 1. O

-dimensional cube. Choose d =

To confirm Petty’s conjecture for subspaces of Ego of codimension 2 and 3 when d > 9 and
respectively d > 15, apply inequality (6.2)) from Theorem [6.1] with ¢ = 2.

6.3 Large equilateral sets

Notation

In this chapter, we denote the i-th coordinate of a vector a € R? by a’. We treat vectors
by default as column vectors. We denote by 24 the set of all subsets of [d], and by ( <€n )
the set of all non-empty subsets of S of cardinality at most m. 0 denotes the vector

(0,...,0) € R% For two vectors a and b, let a-b = 2?21 a’b’ be their scalar product.
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Idea of the constructions

For two vectors x,y € X we have ||x — y||oc = ¢ if and only if the following hold.

There is an 1 < i < d such that |z° — y'| = ¢, and (6.4)

|z —yf| < cforall 1 <i<d. (6.5)

In our constructions of c-equilateral sets S C X, we split the index set [d] of the coordinates
into two parts [d] = N1 U Na. In the first part N7, we choose all the coordinates from the
set {0,1,—1}, so that for each pair from S there will be an index in N; for which
holds with ¢ =1 or 2, and is not violated by any index in Nj. We use N to ensure
that all of the points we choose are indeed in the subspace X. For each vector, this will
lead to a system of linear equations. The main difficulty will be to choose the values of the
coordinates in N7 so that the coordinates in Ns, obtained as a solution to those systems

of linear equations, do not violate ((6.5]).

Proof of Theorem [6.1]

For vectors vy, ...,vy € RF let B(vy,...,vi) € R¥** be the matrix whose i-th column is

kak

v;. For a matrix B € , a vector v € R¥ and an index i € [k], we denote by B(i,v)

the matrix obtained from B by replacing its i-th column by v.

Let {a; : 1 <14 <k} be a set of k linearly independent vectors in R? spanning X+. That
is, x € X if and only if a; - x = 0 for all 1 < i < k. Further, let A € R¥*? be the matrix

whose i-th row is a!, and let b; = (a] ...,ai) be the j-th column of A. For I C [d] and
for o € {:l:l}d let by = Zie] b; and b[7a- = Zie] Jibi.

2d7k

Proof of (6.1). We will construct a 2-equilateral set of cardinality - Let B =
B(bg_k+1,bid—g+2,--.,bg). We may assume without loss of generality that |detB| >
|detB(bj,,...,b;, )| for all possible choices of i1,...,i; € [d]. The vectors {a; : i € [k]}
are linearly independent, hence detB # 0. The first part of the indices (N1) now will be
[d — k], and for these indices we choose coordinates from the set {1,—1}. For J C [d — k]
we define the first n — k coordinates of the vector w(J) € R? as
, 1 ifieJ
w(J)" =
-1 ifield—Ek\J.
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To ensure that w(J) € X we must have Aw(.J) = 0. This means (w(J)¥ 1 ... w(J)9)

is a solution of

Bx = b[d—k]\] - bJ. (66)
By Cramer’s rule x = (2!, ..., 2%) with
i — 3etB( b —bJ)
B detB

is a solution of (6.6). Thus we obtain that w(J), defined by

1 ified
w(J) =< ~1 ificld—Fk\J
det B(i—d+k,brg_ppn y—b o
(bbbl ip i e [d)\ [d - )

is in X. By the multilinearity of the determinant we have
detB(i —d+k,byg_gs—bs) = Y detB(i—d+kb;)—> detB(i—d+kb;).
JEld—KN\J =2

Thus by the maximality of |detB| and by the triangle inequality:
‘detB(i —d+ k,b[d_k]\J — bJ)| < (d — k)|detB|.
This implies that for each J and i € [d] \ [d — k] we have —(d — k) < w(J)" < d — k.

Consider the set W = {W(J ) J € Q[d_k}}. W is not necessarily 2-equilateral, because
for Jy, Jo € 2147 and for i € [d] \ [d — k] we only have that |w(J;)" — w(J2)!| < 2(d — k).

However, we can find a 2-equilateral subset of W that has large cardinality, as follows.

First we split W into d — k parts such that if w(J;) and w(J2) are in the same part, then
|w(J1)4F T — w(Jy)4* 1| < 2, and keep the largest part. Then we split the part we

d—k+2

kept into two parts again similarly, based on w(J) , and keep the largest part. We

continue in the same manner for w(J)4*+3 .. w(J)%

More formally, for each vector s € {—(d — k), (—d — k) +2,...,d — k —2}F = T* let W(s)

be the set of those vectors w(.J) for which

w(J)F e s st + 2] for every i € k.

2d7k

We have W C (Jgeqr W(s), and hence there is an s for which [W(s)| > =

It is not hard to check that W(s) is 2-equilateral. Indeed, for every Ji, Jo € W (s), we

have |w'(J;) —w'(Jz)| < 2 for i € [d]\ [d— k] by the definition of W (s), and for i € [d — k]
by the definition of w(.J). Further, by the definition of w(.J) there is an index j € [d — k]
for which {w(J1)?,w(J2)?} = {1, —1} (assuming J; # J3). O
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Proof of (6.2)). Fix some 1 < ¢ < d/(k + 1). We will construct a l-equilateral set of
cardinality 21@%1 Zlgrgé (d;kg) + 1. Let Iy,...,I; C ([<d]e) and o € {£1}¢ be such that
the determinant of B = B(by, 4,...,br, o), is maximal among all possible choices of k

disjoint Il,'--Ik([d]

) and o € {£1}9. Note that detB > 0 since the vectors ay, ..., ay, are

linearly independent. Let I = ;e /i and |I| = m. By re-ordering the coordinates, we

may assume that I = [d] \ [n —m].

The first part of the indices now will be [d — m], and for these indices we choose all
the coordinates from the set {—1,0,1}. For a set J € ([dzzl]) we define the first d — m
coordinates of the vector w(J) € R? as
. —ot ifieJ
w(J)' =
0 ifield—m]\J.

To ensure that w(.J) € X we must have Aw(J) = 0. That means (w(J)4™F!, ... w(J)?9)

has to be a solution of
B(bdferla bg_mi2,.-- 7bd)x = bJ,o- (67)

We will find a solution of of a specific form, where for each j € [k, if 41,42 € I}, then

ohixht = g%g%, For this, let y = (y', 4%, ...,y") be a solution of
By = bJ,Ga

and for each j € [k] and i € I; let 2° = o'y, Then (x4=™+1 ... 29) is a solution of (6.7),

and by Cramer’s rule we have y/ = %. Thus we obtained that w(J), defined as
—o' ified
w(J) =<0 ificld—m]\J
7aidet£%bj"’) if i € I; for some j € [k],

is in X. Note that B(j,bj,) = B(bj, o, .., by, ») for some disjoint sets Ji, ..., Ji, hence
by the maximality of detB we have

\w(J)i| <1 foreach1<1q<d. (6.8)
Consider the set W = {W(J ) J € ([dzﬁ)}. W is not a l-equilateral set, because for
Ji,J2 € ([d;zn]) and for some i; € [;U- - -UI;_; we only know that w(J1)%, w(J2) € [~1,1],

and thus |w(J;)" — w(J2)¢| < 2. However we can find a l-equilateral subset of W that has

large cardinality.
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First note that we may assume that for any j € [d—m] we have det B(k,07b;) > 0. Indeed,
we can ensure this by changing the first d —m coordinates of o if necessaryE This we may
do, since in the definition of B we only used the last m coordinates of o. Together with

the multilinearity of the determinant, this implies that for for i € I we have

oy — 4Bk D) detB(k,Yjc;0/bj) Y, detB(k,o7b;)
o'w = = =

= > 0. .
detB detB detB =0 (6.9)

Next we split W into two parts such that if w(J1) and w(J3) are in the same part, then
for i € I, w(J1)" and w(J2)" have the same sign, and we keep the largest part. Then we
split that part into two parts again similarly, based on I, and keep the largest part. We

continue in the same manner for I3, ..., [_1.

More formally, for each vector s € {£1}¥~! let W(s) C W be the set of those vectors
w(J) € W for which

shw(J)'o" >0 for each i € [y U---U I}y, where j € [k — 1] is such that i € I;.

Then Ugeqgqye-1 Wi(s) is a partition of W, hence there is an s for which [W(s)| =
FTIW| = 55 Y 1crer () > ST Y o1<r<t (“F. W(s) is a l-equilateral set, be-

7 - 7

cause for any two vectors wi, wg € W (s), there is an index i € [d — m] for which either
{wi,wh} ={0,—1} or {w},wi} = {0,1}, and for all i € [d] we have |w} —wh| < 1 by (6.8),
by the definition of W (s) and by . Finally, it is not hard to see that we can add 0 to
W (s). Thus W(s) U{0} is a 1-equilateral set of the promised cardinality. O

Proof of (6.3)). Fix some 1 < ¢ < d/(2k + 1) and let N = d — 2k¢. We will construct a
l-equilateral set of cardinality ;.- (]X) + 1. For 1 <i <20 let

U=@G—-Dk+[k={G-Dk+1,G—-1Dk+2,...,ik}

and
Bi = B(bN4(i—1)k+1> PN4(i—1)k+2 - - - » PN yik)-

By working from 2¢ down to 1, we may assume without loss of generality that for 1 <7 < 2/
|detB;| > |detB;(j, by)| for all j € [k] and r < N + (i — 1)k. (6.10)

Assume now that
|detB;| > 0 for all 1 <7 < 2¢. (6.11)

LThis is the only reason why we took the maximum also over o at the beginning of the proof.
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We will handle the case when this assumption does not hold at the end of the proof.

The first part of the indices now will be [N]. We will obtain vectors (denoted by y(.J))
whose coordinates corresponding to the first part are from the set {0,—1}, and whose
coordinates from the second part have absolute value at most % We do not construct
them directly, but as the sum of some other vectors w(J,i),z(J,i) € X, whose coordinates

in the first part are from {0, —3}.

For a set J = {j1,..., s} € ([ive]) with ji < .- < jjj, and for 1 < < |J] let us define
the first N coordinates of w(J,i) € R? and z(J,i) € R? as

—g ifj =i
0 ifje [N\ {4}

w(J, i) = z(J,3) =

To ensure that w(J,7) and z(J,4) are in X, we must have Aw(J,i) = Az(J,7) = 0.
Hence both (w(J,9)N T, w(J,i)N 2. w(J,i)?) and (2(J, i)V 2(J, )N 2.0 2(J,0)9)

are solutions of

Bx — %bﬁ, (6.12)

where B = (by41,bn2,...,bg).
By Cramer’s rule we have that x = (z!, 22 ..., 2?*) with

, 0 if j € [2k0] \ Uy;

) = detBQi(j;;?;;il)kébji) if 7 € Uy

is a solution of .
We obtain that w(J,7) defined as

-3 if j = Ji

w(J,i)? = {0 if j e [d\ ({ji} U (N + U2i))

AtBaulgN_CEDRaL) if e N Uy,
is in X.
Similarly, by Cramer’s rule we have that x = (2!, 22 ..., z?*) with

- o if § & [2k0)\ Usi_y
R SR I N R

is a solution of (6.12]).
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We obtain that z(J, ) defined as

-3 if j =g
2(Jyi)) =0 if j € [d]\ ({7} U (N + Uzi-1))
B i— N —(2i— 71 - .
detBQz_l(Jdejthﬁl QLELD if €N+ Uy 1

isin X.
Therefore y(J) = >21 ;<5 (W(J, 1) +2(J,4)) € X. Note that by assumption (6.10) and by
the multilinearity of the determinant we have |w(J,i)7],[2(J,i)/| < L forall 1 <j <n. It

is not hard to check that by the construction we have
y(J)=—-1 ifielJ
if i € [N]\ J,

if i € [d] \ [N].

Thus, for any two distinct Jy, Jo € ([<Ng), thereis ani € [N] with {y(J1)%,y(J2)"} = {0, -1},
and for all 1 <4 < n we have |y(J1)" — y(J2)!| < 1. This means |[y(J1) — y(J2)||co = 1,
and {y(J) :Je ([i\g)} U {0} is a l-equilateral set of cardinality ), -, (]X) + 1

To finish the proof it is only left to handle the case when assumption does not
hold. For S = {s1,...,8} C [d] with s; < -+ < s, and T = {¢t1,...,tn} C [k] with
] <o <ty let

bl bl

B(S,T)=1 : . = [eR™™

bim ... blm
We recursively define m; € N, B; € R™*™i for ¢ € [2¢] U {0}, and M; € N for i € [2/] as
follows. Let my =k, My =0, M; = my and By = B([d] \ [d — ma], [k]). By changing the
order of A, we may assume that

|detB1| > |detB(S, [k])| for all S € <7[g]1> (6.13)

Assume now that we have already defined m;_1, M;_1 and B;_1. If m;_1 > 0, then let
m; = rank B([d — M;_1], [k]), otherwise let m; = 0. If m; > 0, then let S; C (%) such
that rank B([d — M;_1], S;) = m;, and let B; = B([d — M;_1] \ [d — M;], S;). Further, let
M; = M;_1 +m; = ngi m,. If m; > 0, then again, by re-indexing the first d — M;_1
columns of A, we may assume that

et B;| > |detB(S, S;)| for all S C <[d - M"—”). (6.14)

my;

113



Chapter 6. Equilateral sets

Finally define b;(i) = B({j}, S;) € R™.

We now redefine U; as
Uy=[d— M;_1]\ [d— M;],

and redefine w(J,i) and z(J, 1) as

—3 if j = Jji
w(J,i)) =40 if j € [d]\ ({i} U U2)
i(j—n+Ma;,1b; (2i e .
detBa; (j d;g{; 3P (2 )) if J € U2i7
and
-3 if j = Ji
2(J,i)? =<0 if j € [d]\ ({ji} U U2i-1)

detBo;_1(j—n+Ma;_1,2b. (2i—1 .

: l(j detB;—l1 : ]2( )) lf‘j < U2i_1'

If mg; = 0 (mo;_1 = 0), then w(J,i)? = 0 (2(J,i)? = 0) for every j # j;, since Uy; = 0
(Uzi—1 = 0). Further, m; = rank B([d — M;_1], [k]) = rank B([d — M;_1] \ [d — M;], S;)
implies span{(a;, . .,aj_Mi_l) Lj € [k‘]} = span{(ajl-, e ,a?_Mi”) 1 j € 5’2}. This
means that if v € R? is a vector for which v/ = 0if j > d — M;_1, then v - a; = 0 for all

j € S; implies v € X.

Therefore w(J,i),2(J,1) € X for all i, J, thus y(J) = 32, ;< (w(J,7) + 2(J,4)) € X. By
(6:13), (6.14), and by the multilinearity of the determinant we have |w(J,4)7,|2(J,4)7| < §
for all 1 < j < d. The argument that was used under assumption now gives that
{y(J) S ([dfﬂ])} U {0} is a l-equilateral set of cardinality > ..o, (di?ke) +1 =

T

Zl§r§€ (JX) + 1. O

. . d
6.4 Equilateral sets in spaces close to subspaces of £7_

The construction we use is similar to the one from [66]. Let us fix 1 < ¢ < %, and

let N=d—k(2+/¢), and ¢ = m > 0. We assume that the linear structure of Y is

identified with the linear structure of X, and the norm || - ||y of Y satisfies

zlly < llzlloo < (1 +o)[z]ly

114



Chapter 6. Equilateral sets

for each z € X. Let M = {(i,j) : 1 <i<j < N}. For every € = (6;) €0, M
(1,5)eM

and j € N we will define a vector p;(e) € R? € Y such that
pi(e)t=—1 ifi=j, (6.15)
pi(e)' =¢5 ifi<j, (6.16)
pi(e)' =0 ifie[N]\[j], (6.17)

TR S

pj(e)'] < 5 ifi€ ] \[N]. (6.18)

Conditions (6.15])—(6.18]) imply that ||ps(e) — pt(€)|loc =1+ &f for every 1 < s <t < N.
Define ¢ : [0,c]M — RM by

pi(e) = 1+¢5 — pile) — pj(e)lly,

for every 1 <i < j < N. From

0=1+¢;—[pi(e) = Pi(e)lo < ¥je) = 1 +¢5 — [pi(e) — pi(e)ly
<1+e— 1+ pile) — pi(e) < ¢

it follows that the image of ¢ is contained in [0, c]M . Since ¢ is continuous, by Brouwer’s
fixed point theorem [7] ¢ has a fixed point g9 € [0,¢]™. Then {pj(eo) : j € [N]} is a
1-equilateral set in Y of cardinality N =d — k(2 + /).
To finish the proof, we only have to find vectors p;(e) that satisfy conditions (/6.15])—(6.18)).
We construct them in a similar way as the equilateral sets in the proof of Theorem
For 1 <i<2474let
and
Bi = B(bg—ik+1,Pd—ik+2; - -, Pa—(i—1)k)-

By working from 2 + ¢ down to 1 we may assume without loss of generality that for
1<i<244

|detB;| > |detB(bj,, ..., b, )| (6.19)
for all choices of 1 < 4; < -+ < iy < d—(i—1)k for which [{i1,...,i} N ([d] \ [d — 2¢])| < 1.
Assume now that

|detB;| > 0 forall 1 <i <2+ /(.
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We can handle the case when this assumption does not hold in a similar way as the case
in the proof of inequality (6.3) in Theorem [6.1] when assumption ( - did not hold.

Therefore we omit the details.

We construct p;(e) as a sum of 2+ ¢ other vectors pj(e, 1), pj(e,2),...,p;(e,2+£), where
p;j(e, 1) is defined as follows.

For m € {1,2} let

—1 if i = j
pi(e,m)" =<0 if i € [d]\ ({7} UN +Un)
i N—km.L1b,
deth(ZdeZSmk ) e N4 U,
and for m € {3,...,2+4 ¢} let
o ifi<j
pi(e;m)’ =40 if i € [d]\ ([j — JUN + Uy,)
detBnL(i_d].Zt?kav_s(evj)) lf 7 c N + Um

where s(e,j) = Z,Kj + b As before, by Cramer’s rule we have p;(e)(m) € Y for all
m € [2+ (], and thus p;(e) = X, ,cpq Pj(e,m) € Y. It follows immediately that p;(e)

satisfies conditions (6.15[)—(6.17]).

Further, by the multilinearity of the determinant, , and the triangle inequality for
m € {1,2} we have

detB,, (z — N —km, %bj)
detB,,

Ipj(e,m)'| = <

l\')\»—l

and for every m € {3,...,2+ [} we have

‘pj(&m)i‘ =

detB,,(i — N — km, —s(e, j)) - €j detBy, (i — N — km, —by)
detB,, - ‘ f detB,,
r<J
detB,, (i — N — km, —by,)
detB,,

<>

r<j

5; c 1
SZYS(N_”Z_Q
r<j

This implies that condition (6.18]) holds for p;(e) as well, finishing the proof.
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