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Abstract

Our work is based on the model proposed in the paper “Optimal Use of Communication Re-

sources” by Olivier Gossner, Penélope Hernández and Abraham Neyman, [6]. We propose two

models that consider an alteration of the payoff function in [6]. The general setup is as follows. A

repeated game is played between a team of two players, consisting of a forecaster and an agent, and

nature. We assume that the forecaster and the agent share the same payoff function. The forecaster,

contrary to the agent, is able to observe future states of nature that have an impact on the team’s

payoff. A given pair of strategies for the players induces a sequence of actions and thus implements

an average distribution on the actions of interest, i.e., on those actions that determine the payoff. We

let the team’s stage payoff not only depend on actions played in one stage, but on actions played

in two consecutive stages. We introduce two models that vary w.r.t. the specification of the payoff

function and the actions played by nature, with the aim of characterizing the implementable average

distributions. This characterization is achieved through an information inequality based on the en-

tropy function, called the information constraint. It expresses a key feature of the strategies of the

players, namely the fact that the information used by the agent cannot exceed the amount of infor-

mation sent by the forecaster. In each model we develop an information constraint that characterizes

the implementable distributions as follows. On the one hand, we show that every implementable

distribution fulfills the information constraint. And on the other hand, we prove that a certain set of

distributions that fulfill the designated information constraint is implementable.
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Chapter 1

Introduction

In this work we consider a repeated game with an asymmetry of information among the players who

share a markovian payoff function. The theory of repeated games took shape in the second half of the

twentieth century. An excellent coverage of the area, in particular of the classic results, is provided by

the work of Mertens, Sorin and Zamir, see [10]. One particular field in the theory of repeated games,

that focuses on the information of the players, originated at the height of the Cold War, namely during

the negotiations between the United States and the Soviet Union about mutual reductions in their nuclear

arsenals. At that time, no party had concrete information about the other’s arsenals. So the United States

Arms Control and Disarmament Agency (ACDA) turned to the most well-known game theorists of their

time to help with the strategic issues in these negotiations. It was during and after these negotiations that

the first papers on repeated games with an asymmetry of information among the players were written. In

1986, Aumann and Maschler, [1], published their seminal work on this topic. In the model they present,

one player lacks information about the state of nature, whereas the other player is informed about it.

This paper has motivated many research directions. One direction focused on the problem of strategic

information transmission between players with unequal information about states of nature and has been

well studied since. Two notable examples are the papers by Crawford and Sobel, [3], and by Forge, [5].

Both papers present models in which an informed player needs to signal her (private) knowledge about

states of nature to an uninformed second player, whose actions then influence both players’ payoff. The

informed player’s signal to the uninformed player, however, does not directly influence the two players’

payoff. In other words, the signal containing information about the state of nature is costless.
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The first paper that proposed a model which takes into consideration that sending information can be

costly in many circumstances (see, e.g., [13] in the case of organizations) was presented by Gossner,

Hernández and Neyman in [6]. Here, the better informed player - called forecaster - can transmit her

knowledge about the states of nature to the less informed player - called the agent - through her actions,

which also affect the payoff of the players. Hence, sending information in this model is costly in the

sense that the forecaster has to weigh up the pros and cons of the information transmission with respect

to her payoff.

The research we present in this work is directly motivated by [6] and considers a particular alteration of

the payoff function in the respective model. In order to formulate our research questions, let us briefly

introduce the central features of the model in [6]. A repeated game between a team, consisting of a

forecaster and an agent, and nature takes place. The sequence of the states of nature is assumed to be

i.i.d. In each stage of the game, the team members are able to observe the past actions played and the

past states of nature. In addition, unlike the agent, the forecaster is able to observe all future states

of nature. The team receives a payoff in every stage, which depends on the current state of nature, as

well as on the actions of the forecaster and the agent, which we call action triple in the following. The

strategies of the team players induce an infinite sequence of random action triples and hence a limiting

average distribution, Q, of an action triple. A distribution that is induced in such a way is also called an

implementable distribution. The authors in [6] prove two important theorems that characterise the set

of implementable distributions. This characterization involves an information theoretic inequality that

applies the Shannon entropy function (see [15]), which is called the information constraint. This con-

straint can be interpreted as the fact that the amount of information used by the agent cannot be greater

than the information she actually receives from the forecaster. The first result in [6] states that every

implementable distribution fulfills the information constraint. For the second result the authors show

that for every distribution Q that fulfills the information constraint, there exist strategies of the forecaster

and of the agent that implement Q.

Inspired by these two results, we set out to investigate the following. Assume that the payoff of the team

in one stage not only depends on the current actions of the players and on the state of nature, but also

on the actions and states of nature of the preceding stage. That is, we consider two consecutive stages
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whose actions and states of nature influence the payoff. Note that depending on the precise payoff struc-

ture, we are interested in finding implementable distributions which depend on those actions and states

of nature that influence the payoff of the team. The question that naturally arises can be formulated as

follows: Can we develop similar (adapted) information constraints as in [6] to characterise the set of

implementable distributions?

The reader should note that we only focus on the search for which distributions are implementable.

This analysis is independent of the payoff maximization problem (which searches for the optimal im-

plementable distribution w.r.t. maximizing the payoff). However, the results we present in this thesis

present an optimal basis for research problems like these.

We present two different models that take this model setting with an altered payoff structure into ac-

count and analyze the implementable distributions. The following provides a short overview of these

two models. Let us start with the second model. It is closer in structure to [6] than the first model we

present in the sense that only the payoff function changes. In particular, we assume that the team payoff

in one stage depends on the current state of nature and on the current action of the agent, as well as

on the agent’s action in the previous stage. Hence, the actions of the forecaster in this model do not

influence the payoff (they are hence costless).

The first model we present not only differs from [6] in regards of the payoff function, but also regarding

the assumption on the dynamics of the states of nature. More precisely, in this model we let nature react

to past action triples, so that the sequence of the states of nature is not i.i.d. This assumption allows us

to consider a stage payoff function that depends on the complete action triple of the current, as well as

on the previous stage. The first model is therefore more complex and richer in details, and hence takes

up the central part of this thesis.

For both models we are able to formulate an information constraint with a similar interpretation as in

[6], that characterises the respective implementable distribution as follows. We present two main re-

sults for both models. In the first main result we show that every implementable distribution satisfies

the information constraint. The second main result states that every distribution with certain properties

that satisfies the information constraint can be implemented. Note, that the second main results are a

little bit more restrictive than the second main result in [6], since we can only consider a certain set of
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distributions that are implementable if they satisfy the information constraint.

In order to prove the first main theorem for both models, we can apply a useful lemma on the concavity

of the entropy function which is stated in [6]. The proof of the first main theorem for the first model

requires an additional result we present on the entropy of an induced random sequence of action triples.

We can prove this lemma with probabilistic tools such as the Hoeffding inequality.

In order to prove the second main theorems we need to construct strategies of the players that implement

a given distribution. These constructions constitute most of the work of this thesis and hence consist of

the majority of our contributions. Let us first briefly summarise the main ideas of the strategy construc-

tion for the first model. We provide a new conceptualization of a certain typical sequence which we term

Locally Typical Sequence, and introduce the so-called Splicing Algorithm. With the help of these new

concepts and their useful properties we develop, we establish the following mechanism. Let P denote

the distribution we would like to implement. The strategies we construct first induce a set of locally

typical sequences which in turn serves as an input set for the Splicing Algorithm. Then, this algorithm

outputs a sequence of action triples that implements our desired probability distribution, P.

Let us now turn to the construction of the strategies of the second model. Even though this construc-

tion is less complex than the previous one, it applies the methods of [6] in an elegant way, using a new

concept we develop, called Block Distributions. The idea is as follows. We first construct a markov

chain with a transition matrix derived from the distribution we intend to implement, P. Next, we define

a block distribution, Q, of a sequence of random variables drawn from the markov chain. We show that

if Q satisfies the information constraint given in [6], then P is implementable.

The results and the new techniques we present provide novel and thorough insights into the complexity

of strategic information transmission when the players are faced with a markovian payoff function. Note

that that our results not only generalise the setting in [6], but also add a planning problem to the model:

If present action choices also affect future rewards or payoffs, we have a non-trivial planning problem.

Such planning problems appear, for instance, in dynamic pricing models (see, e.g., the seminal work

by Rao and Bass, [14]). These models study, among others, the question of how setting a price today

influences future sales or competitors’ prices. Considering a markovian payoff function and thus adding
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a planning problem to the model of [6] hence increases the scope of its application. Furthermore, the

results we provide can offer an ideal starting point for future research directions that directly build upon

our results. In particular, it provides the basis for the analysis of the optimal payoff of the team, or for

the characterization of the set of equilibrium payoffs.

Most of the tools we employ in this work are information theoretic techniques. In particular, we apply

the Shannon entropy function and its properties, as well as the concept of typical sequences. These

techniques are reviewed in the preliminaries. The remaining sections of the thesis are divided into two

parts. The first part is dedicated to the first model. Chapter 1 in part I describes the model, defines the

implementable distributions and introduces the two main theorems. In chapter 2 of part I, we prove the

first main theorem. As indicated, this proof requires an additional lemma to estimate the entropy of an

induced sequence of random action triples. Chapter 3 of part I contains the preparation and the proof of

the second main theorem. It is the most elaborate chapter of the thesis. We begin with the introduction

of the Splicing Algorithm and provide examples to demonstrate the functioning of this algorithm. We

then continue with the definition of locally typical sequences and explain why this concept is needed for

the construction of the strategies. In the remaining sections of chapter 3 we derive the strategies with

the help of the concepts introduced earlier. We provide one section that explains the functioning of the

strategies in an intuitive way, followed by a section that looks at the details of the strategy construction.

In the last section we prove the second main theorem of the first model. The second part of the thesis is

dedicated to the second model and consists of two chapters. Chapter 1 of part II introduces the model

and defines the implementable distributions. In chapter 2 we prove the two main theorems. The proof

of the second main theorem also requires some preparation, in particular the construction of a markov

chain and the introduction of block distributions, which are also included in chapter 2.
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Chapter 2

Preliminaries

In this section we present the key techniques and methods we will employ in part I and in part II.

Notation 1. Given a finite set A, we denote by ∆(A) the set of categorical distributions over A. That

is, every p ∈ ∆(A) is a discrete probability distribution that describes the probability of observing one

possible outcome in A. Throughout this paper, we will be dealing with discrete random variables, which

are denoted by bold or capital letters. We write x∼ p to denote that the probability mass function (pmf)

of the random variable x is p. �

2.1 Entropy

From a very intuitive point of view, entropy is a measure of chaos, where chaos is considered to be a

state of some system. Whenever the elements in the system are spread equally (think of the distance of

particles in a container), the entropy of that system is maximal. Lower entropy occurs, if the elements

are ordered in certain ways (e.g., by equal properties or parameter values). If we consider the entropy

of a random variable, we often interpret it as a measure of uncertainty, or information - which is not so

different from our intuitive notion. For instance, if we wanted to guess the outcome of a random experi-

ment, then our uncertainty about this outcome is the average amount of information, or entropy, that we

don’t have, in order to be certain of the outcome. Now, whenever the outcomes of a random experiment

have equal probability, it is of course much harder to guess the outcome. This is the case of maximal

entropy. The more unequal the probabilities of the outcomes are, the lower the entropy becomes and the

easier for us to guess the outcome. The concept of entropy as a measure of information was first prop-
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erly defined by Claude Shannon in his groundbreaking work, “A Mathematical Theory of Information”,

see [15], as the Shannon entropy function. It will play an important role in this work, especially for

the formalization of the information constraints. Below, we review the most important definitions w.r.t.

entropy and its elementary properties. A good introduction to the Shannon entropy function is given, for

instance, in [2] or [9].

Definition (Entropy of Discrete Random Variables). The entropy of a discrete random variable x with

x∼ p is given by

H(x) =−∑
x

p(x) log(p(x)).

Equally, the entropy of two discrete random variables x,y with (x,y)∼ q is given by

H(x,y) =−∑
x,y

q(x,y) log(q(x,y)),

and is called joint entropy. �

Definition (Conditional Entropy). The conditional entropy of y given x, with (x,y)∼ q, is given by

H(y|x) = ∑
x

q(x)H(y|x = x)

=−∑
x

q(x)∑
y

q(y|x) log(q(y|x))

=−∑
x,y

q(x,y) logq(y|x).

The conditional entropy can be thought of as the average uncertainty of y when we observe x. �

Elementary Properties of Entropy

The above defined quantities have the following properties:

• Non-negativity: The entropy of a random variable is always non-negative; H(x)≥ 0, and we have

H(x) = 0 only, iff x is deterministic.

• Monotonicity: Conditioning reduces entropy; H(y|x)≤ H(y).

• Maximum Entropy: If x takes values in a finite set A, then H(x) ≤ log2 |A|. The maximum

entropy is reached, if and only if x is uniformly distributed.
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• Non-increasing under functions: For every (deterministic) function f (x) of x, it holds that

H( f (x))≤ H(x).

• Chain Rule: Given a sequence of n random variables (x1,x2, . . .xn), the chain rule tells us that we

can decompose the joint entropy of the n random variables as follows:

H(x1,x2, . . .xn) =
n

∑
i=1

H(xi|xi−1, . . .x1).

For two variables, (x,y) this becomes

H(x,y) = H(x|y)+H(y) = H(y|x)+H(x).

Notation 2. Occasionally, we write Hp(x) (Hq(y|x)), if we need to highlight that x ∼ p ((x,y) ∼ q).

Moreover, instead of Hp(x), we sometimes also write H(p), if the context demands it. �

Relative Entropy

Related to the concept of entropy is the relative entropy, also known as Kullback-Leibler distance. It is

a measure of how much one probability distribution differs from another, where a lower relative entropy

points to similar behavior.

Definition. Let P and Q denote two distributions in ∆(A). The Kullback-Leibler distance between P

and Q (or short: KL-distance), is defined as follows:

D(P||Q) = ∑
a∈A

P(a) log
P(a)
Q(a)

.

�

The KL-distance has the following basic properties:

• Non-Negativity: D(P||Q)≥ 0 and D(P||Q) = 0 iff P = Q.

• Convexity: D(P||Q) is convex in (P,Q).
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2.2 Types and Typical Sequences

Let us first give a small overview of how typical sequences have grown in importance in Information

Theory. It was again Claude Shannon, who introduced typical sequences (in a more intuitive than tech-

nical sense) as a powerful tool to establish his Information Theory. One of his key discoveries (in a

simplified version) was the following. Consider a distribution, p, over a finite alphabet A. Shannon

connected typical sequences with the entropy of p, by observing that the negative logarithm of the prob-

ability of a typical sequence of length n, that is drawn i.i.d. from p, divided by n is close to H(p).

Furthermore, for n large enough, the (total) probability of all non-typical sequences is arbitrarily small.

Consequently, Shannon concluded, for large n, typical sequences happen frequently, even though there

are few of them in An (approximately 2nH(X)). These key discoveries are known today as the AEP, the

Asymptotic Equipartition Theorem, and form the basis for Shannon’s famous Coding Theorems (which

won’t be discussed here).

So far, we described important properties of typical sequences, without providing a proper definition.

Typical sequences have been defined in various forms, from weakly typical sequences, to (ε-) strongly

typical sequences. In the following, we first follow the method of types, first introduced in [4], to define

typical sequences, and the results below are taken from [2], if not otherwise stated.

2.2.1 First Order Types

Definition (First Order Type). Let A be a finite set. For a given integer n ∈ N, let xn be a sequence in

An. For every a ∈ A, denote by N(a|xn) the number of occurrences of element a in xn. The first order

type of xn is given by the empirical distribution of xn, defined by

emp(xn)[a] = 1
n N(a|xn) for all a ∈ A. (2.1)

�

Remark. The set of all types with denominator n is denoted by Pn, for which we have an upper bound:

|Pn| ≤ (n+1)|A|. (2.2)
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�

Definition (First Order Type Set). Let P ∈Pn. The set of all sequences xn ∈ An with first order type P

is given by

Tn(P) = {x ∈ An : emp(x) = P} , (2.3)

and we call every sequence in Tn(P) typical w.r.t. P. �

Remark (The Size of a First Order Type Set). The lower and upper bounds of the size of Tn(P) are well

known:
1

(n+1)|A|
2nH(P) ≤ |Tn(P)| ≤ 2nH(P). (2.4)

(See Theorem 11.1.3 on page 350 in [2].) �

2.2.2 Second Order Types

Second order types are related to the relative frequency of pairs in a sequence xn ∈ An. Before we begin,

we present some notation.

Notation 3. Let P2 denote a distribution over a finite set A×A = A2. If P2 has full support, then for

every pair (a,b) ∈ A2, P2(b|a) denotes the conditional probability of b given a. �

Definition (Second Order Type). Consider a sequence xn ∈ An. For every pair (a,b) ∈ A2, N(a,b|xn)

denotes the number of occurrences of the pair (a,b) in xn. The empirical distribution over pairs in xn,

denoted by emp2(xn), is given by the relative frequency of pairs in xn:

emp2(xn)[a,b] = 1
n−1 N(a,b|xn) for all (a,b) ∈ A2, (2.5)

and we call emp2(xn) the second order type of xn. �

Definition (Second Order Type Set). Let P2 ∈ ∆(A2). The set of all sequences xn ∈ An with second order

type P2 is called the second order type set and we write

T 2
n (P2) = {x ∈ An : emp2(xn) = P2} . (2.6)

If T 2
n (P2) 6= /0, then a sequence xn ∈ T 2

n (P2) is called 2-typical w.r.t. P2. �
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In the following remark we look at the marginal distribution of a second order type:

Remark 1. Let xn ∈ T 2
n (P2) 6= /0 and denote by x(1) = (x1, . . . ,xn−1) the sequence of the first n− 1

elements of xn and by x(2) = (x2, . . . ,xn) the sequence of the last n−1 elements of xn. Let P(1) and P(2)

denote the first order type of x(1) and x(2) respectively. Obviously, P(1) and P(2) only differ if x1 6= xn.

Moreover, observe that

∑
a∈A

P2(a,b) = ∑
a∈A

emp(xn)[a,b]

= 1
n−1 ∑

a∈A
N(a,b|xn)

= 1
n−1 N(b|x(2))

= emp(x(2))[b]

= P(2)(b),

and similarly, ∑b∈A P2(a,b) = P(1)(a). For n→ ∞, we set P(1) → P and P(2) → P, and we call P the

(asymptotically) unique marginal distribution of P2 on A. �

We now develop a new set of sequences that we term conditional subsequences. These sequences will

exclusively be of use in part 1, however, due to their relation to second types, we introduce them here.

Definition 1 (Conditional Subsequences). Let xn ∈ An and let x(1) and x(2) be given as in Remark 1. For

every a ∈ A, define the following subsequence of xn:

xn
a = (xn

a,1,x
n
a,2, . . . ,x

n
a,N(a|xn

(1))
),

where for every i∈ (1, . . . ,N(a|xn
(1))), xn

a,i is the element in xn that succeeds the ith occurrence of element

a in xn. We call xn
a the conditional subsequence of xn w.r.t a. �

The following example demonstrates the intuitive concept behind a conditional subsequence:

Example 1. Let A = {0,1} and let xn = (0,1,1,0,0,1,1,1). Then,

xn
0 = (1,0,1)

xn
1 = (1,0,1,1)

17



�

The following definition establishes the link between conditional subsequences and second order types.

Definition 2 (Typical Conditional Subsequences). Let P2 be a second order type with T 2
n (P2) 6= /0 and

with full support. For every xn ∈ T 2
n (P2) there are |A| conditional subsequences of xn, {xn

a : a ∈ A}, which

we call typical conditional subsequences. �

Let us now deduce important properties of typical conditional subsequences:

Remark 2. We continue with the notation of Definition 2. If n is large, then by Remark 1, P2 has

an (asymptotically) unique marginal distribution P ∈ ∆(A). Then, for every xn ∈ T 2
n (P2), every typical

conditional subsequence of xn has length (n−1)P(a) and has first order type P2(·|a). This can be easily

seen as follows. We know from Remark 1 that for every a ∈ A, 1
(n−1)N(a|x(1)) = P(a). Therefore, the

length of every typical conditional subsequence xn
a of xn is given by N(a|x(1)) = (n−1)P(a) (recall the

notation of x(1) and x(2) as introduced in Remark 1 - the choice of x(1) and not x(2) is important here).

Furthermore, the first order type of a typical conditional subsequence is derived below,

emp(xn
a)[b] =

1
(n−1)P(a)N(b|xn

a)

= 1
(n−1)P(a)N(a,b|xn)

= 1
(n−1)P(a)(n−1)P2(a,b)

= P2(b|a).

�

2.2.3 ε-Typical Sequences

In this section we present the concept of ε-typical sequences and sets. In the literature, this is also

sometimes termed as Strongly Typical Sequences and Sets. ε-typical sequences prove to be a useful

alternative to typical sequences if we can live with the fact that a first order type of a (sufficiently long)

sequence is not exactly equal to a true distribution, but only close to it. Similar to typical conditional

subsequence, ε-typical sequences will solely occur in part 1, but appear here due to the connection to

typical sequences. In the following sections we adopt the notation from Chapter 14 in [16].

18



In the following, denote by P ∈ ∆(A) the true distribution over the elements of a finite set A and let

X1,X2, . . . denote a sequence of i.i.d. random variables with Xi ∼ P, ∀i≥ 1.

Definition (The ε-typical set T ε
n (P)). Let ε > 0. The ε-typical set w.r.t. a distribution P∈ ∆(A), denoted

by T ε
n (P), is given by the set of sequences whose first order type is ε-close to P in the following sense:

T ε
n (P) =

xn : ∀a ∈ A,


∣∣1

n N(a|xn)−P(a)
∣∣< ε, if P(a)> 0

1
n N(a|xn) = 0, else.

 (2.7)

�

ε-typical sequences and sets have many useful properties, the one of interest to us is stated below.

Remark (The Probability of an ε-Typical Sequence Occurring). Let Xn = (X1, . . .Xn) denote an i.i.d.

sequence with law P and let Pn denote the product distribution over An derived from P. Furthermore, let

c =−∑a∈A logP(a). Denote by xn ∈ In a realization of Xn. If xn ∈ T ε
n (P(a)), then

2−n(H(X)+cε) ≤ Pn(xn)≤ 2−n(H(X)−cε). (2.8)

(See Property 14.7.4 on page 424 in [16].) �

The concept of ε-typical sequences can be extended to conditional ε-typical sequences:

Definition (The Conditional ε-Typical Set). Let A and B be two finite sets and denote by PA×B a distri-

bution over elements in A×B with marginal PA on A and PB on B. Let xn ∈ Xn be an ε-typical sequence

in T ε
n (PA). The conditional ε-typical set w.r.t. xn and PA×B, denoted by T ε

n (PA×B|xn), consists of all those

sequences yn ∈ Bn such that for every pair (a,b) ∈ A×B, N(a,b|xn,yn) (the number of occurrences of

the pair (a,b) ∈ X ×Y in the sequence of pairs (xn,yn) = ((x1,y1),(x2,y2), . . . ,(xn,yn)) ∈ (A×B)n) is

close to the product of 1
n N(a|xn) with the true conditional distribution PA×B(b|a) as follows:

T ε
n (PA×B|xn) ={yn ∈ Bn : ∀(a,b) ∈ A×B,

|N(a,b|xn,yn)−PA×B(b|a)N(a|xn)|< nε, if PA×B(b|a)> 0

N(a,b|xn,yn) = 0,else.


(2.9)

�
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Similar to the probability of an ε-typical sequence occurring, there exists an equivalent on the probability

of a conditional ε-typical sequence occurring:

Remark (The Probability of a Conditional ε-Typical Sequence Occurring). We follow the notation in

the definition of a conditional ε-typical set. Let xn ∈ T ε
n (PA) and let Y n = (Y1, . . . ,Yn) denote a sequence

of n independent random variables in Bn distributed according to {PA×B(·|a) : a ∈ A} and xn, i.e., Pr(Yj =

b) = PA×B(b|x j), for every j ∈ (1, . . . ,n). Denote by yn a realization of Y n. If yn ∈ T ε
n (PA×B|xn), then

2−n(H(b|a)+2c′ε) ≤ Pn(yn|xn)≤ 2−n(H(b|a)−2c′ε), (2.10)

where Pn(yn|xn) = ∏
n
j=1 PA×B(y j|x j) and c′ = ∑(a,b)∈A×B(logPA×B(b|a)− PA×B(b|a) log(PA×B(b|a))).

�

2.2.4 The Random Empirical Distribution

Finally, let us consider the concept of a random empirical distribution.

Definition. Let Xn be a sequence of random variables Xn = (X1, . . . ,Xn) (not necessarily i.i.d), that

takes values in An. Let Pn ∈ ∆(An) denote the pmf of Xn. Denote by Pi the marginal distribution of Pn

on coordinate i, i.e., Pi(a) = ∑xn∈An,xi=a Pn(xn). Furthermore, consider the indicator random variables

1{X1=a},1{X2=a}, . . . ,1{Xn=a}. The random empirical distribution of Xn at a ∈ A is the sample mean of

these indicator random variables,

1
n

n

∑
i=1

1{Xi=a} = emp(X)[a] = 1
n N(a|Xn). (2.11)

�

Remark. Note, that E[1{Xi=a}] = Pi(a), hence the expected empirical distribution is the average of the

marginal distributions of Pn:

E[emp(X)] = 1
n

n

∑
i=1

Pi. (2.12)

Furthermore, if Xn is a sequence of i.i.d. random variables with law µ , then the above equality simplifies

to

E[emp(X)] = µ. (2.13)

�
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Part I

Model 1
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Chapter 1

Properties of the Model and Main Results

1.1 Features of Model 1

Let us now introduce the features of the first model. Many assumptions we make below are similar to

the model in [6], the major differences are our assumptions on the payoff function and on nature’s play.

We begin with the action sets.

Denote by I, J and K the action sets of nature, forecaster and agent respectively. Again, the forecaster

and the agent form a team. We analyze a repeated game between the team and nature. In each stage

t ≥ 0, denote by xt , yt and zt the actions played by nature, forecaster and agent, respectively. We call

at = (xt ,yt ,zt) an action triple and assume that a0 is chosen arbitrarily.

In each stage t > 0, the team is assigned a stage payoff, described by gt . This function not only depends

on an action triple played in stage t, but also on the action triple played in the previous stage, i.e.,

gt : (I× J×K)2→ R.

In a repeated game, we allow nature to react to action triples as follows. Let µ ∈ ∆(I). Prior to the

start of the game, for every a ∈ I× J×K, nature draws independent µ-distributed and I-valued random

variables ua
1,u

a
2,u

a
3, . . .= (ua

t )t≥1. For every a ∈ A, we refer to (ua
t )t≥1 as nature’s conditional sequence

w.r.t. a. Furthermore, denote by U the random matrix with rows {(ua
t )t≥1 : a ∈ A}, and we write Ur to

denote a realization of U . We interpret a matrix element ua
l in Ur to be nature’s choice of action in the
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repeated game after the lth occurrence of action triple a in the past play. More precisely: at stage t = 0,

we let nature choose an action arbitrarily. In every following stage t ≥ 1 in the repeated game, nature

first observes the previous action triple at−1, and then counts its number of occurrences, l, in the entire

past play. In stage t, nature plays xt = uat−1
l .

We assume that the forecaster observes a realization, Ur, of U before the game starts and that she is fully

informed about the entire history of the play in every stage of the repeated game. Her (pure) strategy at

stage t, denoted by σt , therefore depends on Ur and on the history of action triples

σt : (Ur× It−1× Jt−1×Kt−1)→ J,

and her strategy for the repeated game, σ , is given by the sequence (σt) = σ . The agent has no further

knowledge other than the history of action triples in the repeated game. Therefore, her strategy at stage

t is given by a function

τt : (It−1× Jt−1×Kt−1)→ K,

and her strategy of the entire game, τ , is given by the sequence (τt) = τ .

The random matrix U together with the strategies (σ ,τ) induce a random sequence of action triples

a1,a2, . . .. We denote the corresponding probability distribution over (I× J×K)N by PU,σ ,τ .

Notation 4. Denote by Pt
U,σ ,τ the marginal distribution of PU,σ ,τ over stage t’s action triple, at , and

denote by Pt;2
U,σ ,τ the marginal distribution over 2 consecutive action triples, (at ,at+1). Let Qt

U,σ ,τ =

1
t ∑

t
t ′=1 Pt ′

U,σ ,τ be the average distribution up to stage t, and let Qt;2
U,σ ,τ = 1

t−1 ∑
t
t ′=1 Pt ′;2

U,σ ,τ be the average

distribution over 2 consecutive action triples up to stage t (we also refer to the latter as the expected

2-step empirical distribution). �

Definition 3 (Implementable Distribution). Similar to [6], we call a distribution Q ∈ ∆((I× J×K)2)

implementable (t-implementable), if there is a strategy pair, (σ ,τ), that implements (t-implements) the

distribution Q, i.e., if Qt;2
U,σ ,τ → Q as t → ∞ (Qt;2

U,σ ,τ = Q). We denote by Q (respectively, Q(t)) the set

of implementable (respectively, t-implementable) distributions. �
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Remark 3. It should be pointed out that an implementable distribution Q is the limit of an expected 2-

step empirical distribution, Qt;2
U,σ ,τ . In other words, if an expected 2-step empirical distribution, Qt;2

U,σ ,τ ,

converges to Q, then we call Q implementable. �

One important property of the sets Q and Q(t) which is used in the proof of Theorem 2 is stated below.

Remark 4. Every distribution Q ∈Q(t) is implementable, i.e., Q(t) is contained in Q. �

(The proof of this remark is provided in the Appendix.)

1.2 Main Results

Our aim in this part is two-fold. On the one hand, we would like to describe the set of implementable

distributions, Q, in terms of an information constraint. On the other hand, we would like to specify

distributions that are implementable - if possible - with the same information constraint. The results

we produce in this paper achieve this goal - albeit under some restrictive assumptions. The information

constraint we developed is given as follows.

Notation 5. Let i, i′ be I-, j, j′ be J- and k, k′ be K- valued random variables respectively. We write

(i′, j′,k′, i, j,k)∼ P2 ∈ ∆((I×J×K)2) to denote that the first random triple (i′, j′,k′) precedes the second

random triple, (i, j,k). �

Information Constraint

A distribution P2 ∈ ∆((I× J×K)2) is said to fulfill the information constraint if

HP2(i,j|k, i′, j′,k′)≥ HP2(i|i′, j′,k′). (1.1)

Equivalently, the information constraint can be stated as follows:

HP2(j|k, i′, j′,k′)≥ HP2(i|i′, j′,k′)−HP2(i|k, i′, j′,k′).

In this form one can interpret the information constraint as the fact that the information used by the agent

(right-hand side) cannot be greater than the information she receives from the forecaster (left-hand side),

which is similar to the interpretation of the information constraint in [6].
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In the first result we are able to show that every implementable distribution Q ∈ ∆((I×J×K)2) satisfies

the information constraint. In the second result we describe distributions, such that if they satisfy the

information constraint, they are indeed implementable.

Lemma 1. Every t- implementable distribution P2 ∈ ∆((I× J×K)2) fulfills the information constraint

asymptotically, i,e., HP2(i,j|k, i′, j′,k′)≥ HP2(i|i′, j′,k′)−δ (t), where δ (t)→ 0 as t→ ∞.

Theorem 1. Every implementable distribution P2 ∈ ∆((I× J×K)2) fulfills the information constraint.

Theorem 2. Let P2 be a distribution over (I× J×K)2 with the following properties:

• The marginal distribution of P2 on the first and the second coordinates is identical, i.e., with

(i, i′, j, j′,k,k′)∼ P2, then (i′, j′,k′)∼ (i, j,k)∼ P.

• i is independent of (i′, j′,k′), i.e., i∼ i|(i′, j′,k′)∼ µ .

• P2 fulfills the information constraint.

Then, P2 is implementable.

Remark 5. The second property in Theorem 2 is a technical requirement in the proof of this Theorem,

as we will see later on. Note that assuming i to be independent of (i′, j′,k′) does not entirely reflect

our assumption on nature’s play in the game. As outlined in the model, the occurrance of an action

triple (i′, j′,k′) in one stage, t, of the game may affect the probability of nature’s action, i, in the next

stage, t +1. This possible dependence can hence not be depicted in the implementable distributions of

Theorem 2. �
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Chapter 2

Proof of Theorem 1

Theorem 1 follows directly from Lemma 1. The proof of Lemma 1 requires two additional Lemmas. In

the first one, we show that the limiting average entropy of a random sequence of action triples is close

to the entropy H(µ). The second result we need is the Concavity Lemma which is stated as Lemma 1 in

[6]. Both lemmas are stated below.

Lemma 2. Let a = (a1,a2, . . .an) be a random sequence of action triples taking values in An = (I×J×

K)n, induced by strategies (σ ,τ) and the random matrix U. Then,

1
n H(a)≥ H(µ)−δ (n),

where δ (n)→ 0 as n→ ∞

Lemma (Concavity-Lemma). Let X and Y be finite sets. The function Q 7→ HQ(y|x) is concave on the

set of probability measures on X×Y .

The result in Lemma 1 can now be derived as follows:

Proof of Lemma 1. Let a = (a1,a2, . . .an) = (i1, j1,k1, . . . , in, jn,kn) be a random sequence of action

triples induced by strategies (σ ,τ) and the random matrix U with a∼ PU,σ ,τ .

Let Qn;2
U,σ ,τ =

1
n ∑

n
t=1 Pt;2

U,σ ,τ denote the respective expected 2-step empirical distribution, as introduced in

Notation 4. Applying the Concavity Lemma from GHN, we get

HQn;2
U,σ ,τ

(i, j|k, i′, j′,k′)≥ 1
n

n

∑
t=1

HPt;2
U,σ ,τ

(i, j|k, i′, j′,k′).
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Furthermore, we have

1
n

n

∑
t=1

H(it , jt |kt , it−1, jt−1,kt−1) =
1
n

n

∑
t=1

H(it , jt ,kt |kt , it−1, jt−1,kt−1)

≥ 1
n

n

∑
t=1

H(it , jt ,kt |kt , it−1, jt−1,kt−1, . . . , i1, j1,k1) (2.1)

≥ 1
n

n

∑
t=1

H(it , jt ,kt |it−1, jt−1,kt−1, . . . , i1, j1,k1) (2.2)

=
1
n

H(i1, j1,k1, . . . , in, jn,kn) (2.3)

=
1
n

H(a),

where inequality (2.1) follows since conditioning reduces entropy, inequality (2.2) is due to the fact that

kt is a function of (i1, j1,k1, . . . , it−1, jt−1,kt−1) and equality (2.3) is an application of the chain rule.

Together with Lemma 2, we can conclude

H(µ)−δ (n)≤ 1
n

H(a)≤ 1
n

n

∑
t=1

HPt;2
U,σ ,τ

(i, j|k, i′, j′,k′),

and therefore

HQn:2
Uσ ,τ

(i, j|i′, j′,k,k′)≥ H(µ)−δ (n).

Let us now go back to Lemma 2. Before we look at the proof, we need to mention two important concepts

that we are going to employ. The first one is Hoeffding’s inequality, which provides a probability bound

for the distance of a random variable to its expected value. From [7], we cite the following Theorem and

Corollary:

Theorem. (Hoeffding) Let X1,X2, . . . ,Xn be i.i.d. random variables with 0≤ Xi ≤ 1 (i = 1, . . . ,n). Fur-

thermore, let X̄ = 1
n ∑

n
i=1 Xi and µ = EX̄ . Then, for every t > 0:

Pr(X̄−µ ≥ t)≤ exp(−2nt2).
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Corollary. Let X1,X2, . . . ,Xn be i.i.d. random variables as in Theorem (2). Then, for every t ≥ 0:

Pr(|X̄−µ| ≥ t)≤ 2exp(−2nt2). (2.4)

Second, we introduce the concept of a region:

Definition 4. [Region of U] Let A = I× J×K and let b ∈Pn(A) denote a first order type with denom-

inator n. By definition, for every a ∈ A, nb(a) ∈ N. A region in the random matrix U specified by b,

defines, for every a ∈ A, the segment of the first nb(a) elements of the row sequence (ua
k)k in U . We

write xn
b = (x1,x2, . . . ,xn) to denote the joined sequence of nature’s actions in a region. The order of the

elements in xn
b follows the order of the rows in U , i.e., we first add the elements of of the first row of the

specified region in U to xn
b, then the elements of the second row, and so on. By construction, the length

of xn
b is n. �

Remark 6. Since a region is solely specified by a type in Pn(A), the sequence of nature in such a region

is i.i.d. with law µ . �

We now have all the tools at hand to prove Lemma 2:

Proof of Lemma 2. Let ā denote the (random) empirical distribution of a. Further, let ua be the ran-

dom sequence of nature’s actions in a. Note that ua is a function of a, hence we have H(a) ≥ H(ua).

Therefore, it is sufficient to prove

1
n H(ua)≥ H(µ)−δ (n).

Let ua ∼ ρn ∈ ∆(In). Recall, that Pn(A) denotes the set of empirical distributions over A. Let ub be

the (random) action sequence of nature given ā = b with b ∈Pn(A) and we set ub ∼ ρn
b . Further, let

µn = µ×µ×·· ·µ denote the product measure on In.

We will make use of the following operator, introduced in [12]. For a distribution q that is absolutely

continuous1 w.r.t a distribution p define the following linear operator:

Lp(q) := H(q)+D(q||p) =−∑
i

log(pi)qi.

1q is absolutely continuous w.r.t p if p(x) = 0→ q(x) = 0 for all x.

28



Now,

H(ua)≥ H(ua|ā)

= ∑
b∈Pn(A)

Pr(ā = b)H(ua|ā = b)

= ∑
b∈Pn(A)

Pr(ā = b)H(ub)

= ∑
b∈Pn(A)

Pr(ā = b)H(ρn
b )

= ∑
b∈Pn(A)

Pr(ā = b)(Lµn(ρn
b )−D(ρn

b ||µn))

= ∑
b∈Pn(A)

Pr(ā = b)Lµn(ρn
b )− ∑

b∈Pn(A)
Pr(ā = b)D(ρn

b ||µn)) (2.5)

The remaining proof is split into two claims that focus on the sums in equation (2.5):

Claim 1. For all δ > 0 there is Nδ s.t. for all n≥ Nδ :

∑
b∈Pn(A)

Pr(ā = b)Lµn(ρn
b )≥ n(H(µ)−δ ).

Claim 2.

∑
b∈Pn(A)

Pr(ā = b)D(ρn
b ||µn))≤ O(log(n))

We prove Claim 1 as follows: Since Lµn(ρn
b ) is a linear operator in ρn

b , we get:

∑
b∈Pn(A)

Pr(ā = b)Lµn(ρn
b ) = Lµn

(
∑

b∈Pn(A)
Pr(ā = b)ρn

b

)
= Lµn(ρn).

Now, we show

Lµn(ρn)≥
n

∑
j=1

Lµ(ρ
j), (2.6)

where ρ j denotes the marginal distribution of ρn on coordinate j, i.e., for a ∈ I

ρ
j(a) = ∑

xn∈In

x j=a

ρ
n(x).

Recall, that for xn ∈ In we have µn(xn) = ∏
n
j=1 µ(x j), hence
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Lµn(ρn) =− ∑
xn∈In

log(µn(xn))ρn(xn)

=− ∑
xn∈In

n

∑
j=1

log(µ(x j))ρ
n(xn)

=−
n

∑
j=1

∑
xn∈In

log(µ(x j))ρ
n(xn)

=−
n

∑
j=1

∑
a∈I

∑
xn∈In

x j=a

log(µ(x j))ρ
n(xn)

=−
n

∑
j=1

∑
a∈I

∑
xn∈In

x j=a

log(µ(a))ρn(xn)

=−
n

∑
j=1

∑
a∈I

log(µ(a)) ∑
xn∈In

x j=a

ρ
n(xn)

=−
n

∑
j=1

∑
a∈I

log(µ(a))ρ j(a)

=
n

∑
j=1

Lµ(ρ
j), (2.7)

which proves (2.6). Now, recall that Lµ(ρ
j) is linear in ρ j, therefore, we can simplify the expression in

(2.7) to
n

∑
j=1

Lµ(ρ
j) = n

(
1
n

n

∑
j=1

Lµ(ρ
j)

)
= n

(
Lµ

(
1
n

n

∑
j=1

ρ
j

))
,

where 1
n ∑

n
j=1 ρ j is the expected empirical distribution of nature’s actions ua. Note, that if ūa denotes the

(random) empirical distribution of ua, we have 1
n ∑

n
j=1 ρ j = E[ūa] (recall, that ūa takes values in Pn(I)).

The result in (2.6) is therefore equivalent to

Lµn(ρn)≥ nLµ(E[ūa]). (2.8)

Now, we show

‖E[ūa]−µ‖→ 0 as n→ ∞. (2.9)

First, recall that by Definition 4 and by Remark 6 every fixed type b ∈Pn(A) corresponds to a region

in the random matrix U , in which the sequence of nature, xn
b = (x1,x2, . . . ,xn) is i.i.d. with law µ . Let

x̄n
b denote the (random) empirical distribution of xn

b which takes values in Pn(I). Now, let ε > 0 and
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fix b ∈Pn(A). Denote by Eb,ε the event that the L1-distance between x̄n
b and µ is larger than ε , i.e.,∥∥x̄n

b−µ
∥∥> ε . Hence, the union of these events,

⋃
b∈Pn(A) Eb,ε , depicts the event that there exists at least

one type b ∈Pn(A), with
∥∥x̄n

b−µ
∥∥> ε . Applying the Hoeffding inequality, we get

Pr(Eb,ε) = Pr(|x̄n−µ|> ε)≤ 2exp(−2nε
2),

and

Pr(
⋃

b∈Pn(A)

Eb,ε)≤ ∑
b∈Pn(A)

Pr(Eb,ε)

≤ (n+1)|A|2exp(−2nε
2).

Therefore,

Pr(
⋃

b∈Pn(A)

Eb,ε)→ 0, as n→ ∞. (2.10)

Now, by the law of total expectation, letting Eε =
⋃

b∈Pn(A) Eb,ε , and applying (2.10), it holds that

‖E[ūa]−µ‖= ‖E[ūa|Eε ]Pr(Eε)+E[ūa|Ec
ε ](1−Pr(Eε))− (µPr(Eε)+µ(1−Pr(Eε)))‖

= ‖(E[ūa|Eε ]−µ)Pr(Eε)+(E[ūa|Ec
ε ]−µ)(1−Pr(Eε))‖

≤ Pr(Eε)‖E[ūa|Eε ]−µ‖+(1−Pr(Eε))‖E[ūa|Ec
ε ]−µ‖

≤ ε for n large enough,

since ‖E[ūa|Ec
ε ]−µ‖ ≤ ε and ‖E[ūa|Eε ]−µ‖ is bounded by 2. Hence, since this holds for all ε > 0, the

result in (2.9) follows:

‖E[ūa]−µ‖→ 0 as n→ ∞.

We can now finalise the proof of Claim 1. Note, that the linear operator Lµ is continuous and therefore

Lipschitz continuous (continuity and Lipschitz continuity are equivalent for linear operators). Hence,

there exists µ∗ > 0 (in fact, µ∗ = mini∈I µi) such that

∣∣Lµ(E[ūa])−Lµ(µ)
∣∣≤ µ

∗ ‖E[ūa]−µ‖→ 0 as n→ ∞.
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Therefore, for all δ > 0 there is Nδ , s.t. for all n > Nδ :

Lµ(E[ūa])≥ Lµ(µ)−δ .

This completes the proof of Claim 1, since Lµ(µ) = H(µ).

Let us now turn to the proof of Claim 2. Let pb = (Pr(ā = b),Pr(ā 6= b)) denote a binary distribution.

Further, define ρn
bc =

µn−ρn
b Pr(ā=b)

Pr(ā6=b) s.t.

µ
n = Pr(ā = b)ρn

b +Pr(ā 6= b)ρn
bc .

Applying Proposition 3 in the Appendix, we get

Pr(ā = b)D(ρn
b ||µn)+Pr(ā 6= b)D(ρn

bc ||µn)≤ H(pb),

hence,

∑
b∈Pn(A)

Pr(ā = b)D(ρn
b ||µn)≤ ∑

b∈Pn(A)
H(pb).

Now, letting k = |Pn(A)| we show

1
k ∑

b∈Pn(A)
H(pb)≤ H(1

k ). (2.11)

Since the entropy is a concave function in pb, we have

1
k ∑

b∈Pn(A)
H(Y b)≤ H(1

k ∑
b∈Pn(A)

pb).

With p = 1
k ∑b∈Pn(A) pb, p is a Bernoulli distribution with support in {0,1} and with

p = 1
k ∑

b∈Pn(A)
Pr(ā = b) = 1

k .

Hence, the inequality in (2.11) follows.
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Finally, we can deduce

∑
b∈Pn(A)

H(Y b)≤ kH(1
k )

=−k(1
k log(1

k )+(1− 1
k ) log(1− 1

k ))

=−(− log(k)+ log(1− 1
k )

k−1)

= O(log(n)),

where the last equality follows since log(1− 1
k )

k−1 is bounded by − 1
ln2 as k→ ∞ and k ≤ (n+ 1)|A|.

This concludes the proof of Claim 2.

Claim 1 and Claim 2 now imply the result in Lemma 2.
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Chapter 3

Proof of Theorem 2

The proof of Theorem 2 is more complex than the proof of Theorem 1 and requires substantial prepa-

ration. We begin with the motivation of our proof idea, followed by a general outline of our approach.

These introductions will facilitate the understanding of the subsequent sections.

3.1 Motivation for the Proof of Theorem 2

Some of the key ideas that we are going to apply in the proof of Theorem 2 originate from the proof of

Theorem 2 in [6], which is stated below for completeness.

Theorem (Theorem 2 in [6]). Any distribution Q∈ ∆(I×J×K) that satisfies the information constraint

(HQ(i, j|k)> HQ(i)) and has marginal µ on I is implementable.

We now explain how this result influenced our proof idea. To this end, let us compare our model with

the model in [6]. One major difference between the two models is the assumption on the sequence of

nature’s actions. While in [6] the sequence of nature is assumed to be i.i.d., in our model nature’s ac-

tions played in one stage depend on the actions played of all players in the previous stages. Only the

conditional sequences of nature are assumed to be i.i.d. The general approach in [6] to implement a

distribution Q was to construct strategies that induce a sequence of action triples with a first order type

close to Q. This approach led us to the following idea. Let P′2 ∈ ∆((I× J×K)2) be a distribution with

the same properties as in Theorem 2, and for a ∈ A, let P′2(·|a) denote a conditional distribution of P′2.

With the help of the results in [6], we know how to implement P′2(·|a). I.e., we need to construct strate-

gies that induce a sequence with first order type P′2(·|a). However, we not only want to implement one
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conditional distribution P′2(·|a), the aim is to construct strategies such that for every a ∈ A a sequence

with first order type P′2(·|a) is induced. Then, in a next step, we need to construct a mechanism to join

these sequences together appropriately, so that they yield a sequence with second order type close to P′2.

Note, however, that for some a ∈ A, P′2(·|a) may not be defined, which may cause problems inducing

sequences with such a type. However, by Lemma 16 in the Appendix, we can find a distribution P2 ∈

∆((I× J×K)2) that is close to P′2, satisfies the conditions stated in Theorem 2, and, in addition, has full

support, so that for every a ∈ A the conditional distribution P2(·|a) is well-defined.

3.2 The General Approach

Let us now first outline the basic set up for the proof, before we specify the proof idea outlined above a

little bit more. The aim is to construct strategies for the forecaster and for the agent that together with

nature’s actions induce a certain game with the following properties. Given a specified integer n∈N, we

first divide the stages of the game into blocks of length n. The strategies will be designed in such a way,

that in each block k > 1 and dependent on the actions of nature, they induce action sequences for the

forecaster and for the agent, that will be combined into a sequence of action triples αn ∈ (I× J×K)n.

We will show that in almost every block k > 1, αn has a second order type close to the distribution we

intend to implement.

If P′2 is the distribution we want to implement, let us now choose a distribution P2 that is close to P′2 with

the same properties as stated in Theorem 2 and with full support. Following the idea in the previous

section, our approach to prove Theorem 2 is to induce a sequence αn ∈ (I× J×K)n in every block

k > 1, that has a second order type close to P2, via first inducing |A| sequences with first order type

P2(·|a), for every a ∈ A. An important question that arises is concerned with the length of these |A|

sequences, if we have a fixed block length, n. The following observation provides some insights on this

question.

Observation 1. Let A = I× J×K and let P2 ∈ ∆(A2) be a distribution that has full support. Fix n ∈ N,

such that P2 has a non-empty second order type set w.r.t. length n+ 1, i.e., T 2
n+1(P2) 6= /0. Let αn+1 ∈

T 2
n+1(P2). Then, by Remark 2, for every a ∈ A, the typical conditional subsequence αn+1

a of αn+1 has

length nP(a) and has first order type P2(·|a). �
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Remark 7. The strategies we are going to construct in the proof of Theorem 2 actually produce a

sequence αn+1 = (α0,α1, . . . ,αn) of length n+ 1 per block k > 0, with the property that α0 is the last

element played in the previous block. We will assume n to be large in our proof, therefore, the difference

in the second order type of the sequences αn+1 and αn is negligible. �

With the help of Observation 1, we now present the general approach which summarises our first (in-

tuitive) idea of how to induce a sequence αn ∈ (I× J×K)n that has a second order type close to P2.

This approach should be considered as a guideline that will undergo a process of amendments until we

eventually arrive at the actual approach that we take in the proof of Theorem 2.

The General Approach

Step 1: (Sequence Induction) At the beginning of block k > 1, we induce a set of sequences{
αnP(a) ∈ TnP(a)(P2(·|a)) : a ∈ A

}
(note that every sequence in this set has the same properties as

the typical conditional subsequences of a sequence αn+1 ∈ T 2
n+1(P2)).

Step 2: (Sequence Splicing) We combine the sequences from Step 1 into a sequence αn, s.t. its second

order type is close to P2.

In the section that follows we will focus on Step 2. We will test whether the splicing can be accom-

plished with the given set of sequences given in Step 1. For this, we provide an algorithm that uses these

sequences as input and combines them into one sequence with the aim of maintaining the correct transi-

tion frequencies stipulated by {P2(·|a) : a ∈ A}. We will then come across several problems concerning

the length and the second order type of the output sequence. These issues will force us to make changes

to the set of (input-) sequences in Step 1, which will be highlighted at the end of the relevant paragraphs.

3.3 Sequence Splicing

3.3.1 The Splicing Algorithm

Definition 5 (Input Set). Fix n∈N and let A be a finite set (|A| ≥ 2). Furthermore, let P2 be a distribution

over A2 with full support, unique marginal distribution P ∈ ∆(A), and non-empty second order type set

T 2
n+1(P2) 6= /0. For every a ∈ A, denote the marginal distributions by ρa = P2(·|a). Since P2 has full

support, then by Remark 2 there are |A| first order type sets of the form
{

TnP(a)(ρ
a) : a ∈ A

}
. Denote by
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S a choice of |A| sequences, one from each set TnP(a)(ρ
a), a ∈ A:

S =
{

α
nP(a) ∈ TnP(a)(ρ

a) : a ∈ A
}
.

We call S an input set for the Splicing Algorithm w.r.t. n and P2. �

Notation 6. In order to ease notation we sometimes abbreviate the sequence αnP(a) ∈ S to αa for every

a ∈ A if the associated distribution P2 is known. �

We now introduce the so-called Splicing Algorithm (in Pseudo Code) that takes the set S as input and

combines its sequences into one sequence, α , while maintaining, as best as possible, the correct transi-

tion frequencies specified by {ρa : a ∈ A}:

Algorithm 1 The Splicing Algorithm

Require: An input set S =
{

αa ∈ TnP(a) : a ∈ A
}

w.r.t n and P2 (given as a set of lists); an initial value
α0 ∈ A

Ensure: A finite sequence α = (α0,α1, . . .) (unspecified length)
start a list α with α = list(α0).
for j ≥ 1 do

l = last element added to α (l ∈ A)
if α l not empty then

α j = α l[1]
α.append(α j)
del(α l[1]) (delete the element just added to α from α l)

else {algorithm terminates}
end if

end for

The following example demonstrates the mechanism of the Splicing Algorithm.

Example 2. Let A = {a,b} and let P2 = (1
4 ,

1
4 ,

1
4 ,

1
4) so that ρa = ρb = (1

2 ,
1
2). Fix n = 8. Let α0 = a and

S =
{

αa ∈ T4(ρ
a),αb ∈ T4(ρ

b)
}

, with

α
a = (a,b,b,a)

α
b = (b,a,b,a).

The Splicing Algorithm applied to S and α0 builds up a sequence α as follows: initiated by α0 = a, in

the first step we identify a as the last element added to α , add the first element of the sequence αa, a,

to α and delete a (i.e. the first element) from αa. After the first step we have α = (a,a) and a reduced
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sequence αa = (b,b,a). In the second step, we identify a as the last element added to α , add the first

element from the reduced sequence αa, b, to α and delete b from αa. Hence, we have α = (a,a,b) and a

further reduced sequence αa = (b,a), etc. We summarise the steps of the Algorithm in the table below.

Step αa αb α

start (a,b,b,a) (b,a,b,a) (a)
1 (b,b,a) (b,a,b,a) (a,a)
2 (b,a) (b,a,b,a) (a,a,b)
3 (b,a) (a,b,a) (a,a,b,b)
4 (b,a) (b,a) (a,a,b,b,a)
5 (a) (b,a) (a,a,b,b,a,b)
6 (a) (a) (a,a,b,b,a,b,b)
7 (a) /0 (a,a,b,b,a,b,b,a)
8 /0 /0 (a,a,b,b,a,b,b,a,a)

Table 3.1: Application of the Algorithm to Example 2

Hence, the Algorithm produces a sequence α = (a,a,b,b,a,b,b,a,a) of length 9 with second order type

P2. �

Definition 6. The sequence α produced by the Splicing Algorithm is called the output sequence. If

α ∈ An+1, i.e., if α has full length, then the algorithm exhausted all elements from the input sequences

in S, and we call α an optimal output sequence. �

Note, that the output sequence in Example 2 is optimal. Every input sequence has been exhausted

completely by the end of the algorithm. However, this is not always the case, as shown in the next

example.

Example 3. As before, let A = {a,b}, P2 = (1
4 ,

1
4 ,

1
4 ,

1
4) and ρa = ρb = (1

2 ,
1
2). Again, fix n = 8 and

α0 = a. Consider the set S =
{

αa ∈ T4(ρ
a),αb ∈ T4(ρ

b)
}

with

α
a = (a,a,b,b)

α
b = (a,a,b,b)

Running the Algorithm on this Example yields α = (a,a,a,b,a,b,a) ∈ A7 as shown in Table 3.2. One

can see that the sequence αb is not exhausted when the Algorithm ends. This happens since the sequence

αa is exhausted too early. �

We can observe from the two examples above that for a given n, a set of sequences S, and an initial value

α0, if the algorithm does not run until all sequences in S are exhausted, it only produces a sequence α of
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Step αa αb α

start (a,a,b,b) (a,a,b,b) (a)
1 (a,b,b) (a,a,b,b) (a,a)
2 (b,b) (a,a,b,b) (a,a,a)
3 (b) (a,a,b,b) (a,a,a,b)
4 (b) (a,b,b) (a,a,a,b,a)
5 /0 (a,b,b) (a,a,a,b,a,b)
6 /0 (b,b) (a,a,a,b,a,b,a)

Table 3.2: Application of the Algorithm to Example 3

length < n+1.

To resolve this problem, we are now going to use longer input sequences with certain properties, so that

the output sequence has a guaranteed length n+ 1. In order to do so, we now introduce another set of

sequences, a so-called set of tails, T , that we add to a given input set S. We then show that running the

algorithm on the appended sets S and T will produce a sequence α of length at least n+1.

Definition 7 (Set of Tails). Let S be an input set of the Splicing Algorithm w.r.t n and P2 as introduced

in Definition 5. Let m ∈ N s.t. for all a ∈ A, TmP(a)(ρ
a) 6= /0. We call

T =
{

tmP(a) ∈ TmP(a)(ρ
a) : a ∈ A

}

a set of tails for the input set S w.r.t. m and P2 �

Notation 7. Given an input set S and a set of tails T w.r.t. n, m and P2, we denote by S⊕T the set of the

coupled sequences in S and T , i.e.,

S⊕T =
{

α
nP(a)⊕ tmP(a) ∈ T(n+m)P(a)(ρ

a) : a ∈ A
}
,

with αnP(a)⊕ tmP(a) = (α1, . . . ,αnP(a), t1, . . . , tmP(a)). Furthermore, similar as above, if clear from the

context, then for every a ∈ A we abbreviate the sequence αnP(a)⊕ tmP(a) ∈ S⊕T to αa⊕ ta. �

Let us now run the Splicing Algorithm on an input set S that is coupled with a set of tails, T :

Example 4. We continue with Example 3 by coupling the following tails to the input set S: for m = 4,
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let T =
{

ta = (a,b), tb = (a,b)
}

. Then, S⊕T consists of the two sequences

α
a⊕ ta = (a,a,b,b,a,b)

α
b⊕ tb = (a,a,b,b,a,b).

Running the Algorithm on S⊕T with initial value α0 = a yields

α = (a,a,a,b,a,b,a,a,b,b,b,a) ∈ A12,

as shown in Table 3.3.

Step αa⊕ ta αb⊕ tb α

start (a,a,b,b,a,b) (a,a,b,b,a,b) (a)
1 (a,b,b,a,b) (a,a,b,b,a,b) (a,a)
2 (b,b,a,b) (a,a,b,b,a,b) (a,a,a)
3 (b,a,b) (a,a,b,b,a,b) (a,a,a,b)
4 (b,a,b) (a,b,b,a,b) (a,a,a,b,a)
5 (a,b) (a,b,b,a,b) (a,a,a,b,a,b)
6 (a,b) (b,b,a,b) (a,a,a,b,a,b,a)
7 (b) (b,b,a,b) (a,a,a,b,a,b,a,a)
8 /0 (b,b,a,b) (a,a,a,b,a,b,a,a,b)
9 /0 (b,a,b) (a,a,a,b,a,b,a,a,b,b)

10 /0 (a,b) (a,a,a,b,a,b,a,a,b,b,b)
11 /0 (b) (a,a,a,b,a,b,a,a,b,b,b,a)

Table 3.3: Application of the Splicing Algorithm to S⊕T

This example shows that adding a set of tail sequences T to a given input set S prompts the Splicing

Algorithm to run for 12 stages and does not lead to a break up before stage 8 is reached. �

The above example motivates the following Lemma:

Lemma 3. Given an input set S w.r.t. n and P2 and a set of tails T w.r.t. m and P2, then for every initial

value α0, applying the Splicing Algorithm to S⊕T produces a sequence α of length at least n+1 (i.e.,

the algorithm does not break up before reaching stage n).

Remark 8. It is not necessary to provide the proof of this Lemma here, since we are going to prove a

variant of this Lemma at a later stage (which will also be essential for the proof of Theorem 2, whereas

the result above won’t). �
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First Amendment to General Approach

Let us now compare the results so far with Step 2 in the general approach. For a given integer n ∈ N,

a distribution P2 with full support and an input S =
{

αnP(a) ∈ TnP(a)(P2(·|a)) : a ∈ A
}

, our aim was to

produce a sequence of length n+ 1, that has a second order type equal or close to P2. The Splicing

Algorithm indeed produces a sequence αn+1, but only if we add a set of tails, T , to the input set S. Even

though this addition of T preserves the first order type of the input sequences (observe, that for every

a∈ A, the input sequence αa⊕ta has - by construction - first order type ρa), we have to extend the length

of the input sequences from nP(a) to (n+m)P(a), for every a ∈ A. Therefore, the first amendment we

have to make to our general approach applies to step 1:

Step 1: - First Amendment: Let n,m ∈N, then at the beginning of each block k > 1, we need to induce

a set of sequences of the form

S⊕T =
{

α
nP(a)⊕ tmP(a) ∈ T(n+m)P(a)(ρ

a) : a ∈ A
}

where S is an input set w.r.t. n and P2 and T is a set of tails w.r.t. m and P2.

So far, we have not yet analyzed the second order type of an output sequence of the Splicing Algorithm

applied to an extended input set S⊕T . We will see that, unfortunately, we cannot ensure that such an

output sequence has a second order type equal or close to P2.

Definition 8 (n-stage Output Sequence). Let α be the output sequence of the Splicing Algorithm applied

to S⊕T and an initial value α0. Let αn+1 denote the first n+ 1 elements of α (which is the sequence

produced after the nth stage in the algorithm). We call αn+1 the n-stage output sequence of the algorithm.

Furthermore, the conditional subsequences of αn+1 (see Definition 1) are denoted by αn+1
a , for every

a ∈ A. �

Observation 2. The reader should observe, that the n-stage output sequence may have subsequences

with first order types that differ widely from the desired conditional distributions {ρa : a ∈ A}. This can

happen, since it is not guaranteed that all elements of the sequences in S⊕T are added to the output

sequence, αn+1. In particular, it may be the case that some input sequences αa⊕ ta in S⊕T are skewed

in such a way, that the subsequence of αa⊕ ta that is eventually added to αn+1, is not typical w.r.t.
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ρa. �

The above Observation shows, that we need to impose more assumptions on the input sequences in S⊕T

in order to produce an n-stage output sequence αn+1 with second order type P2. In particular, we would

like our input sequences in S⊕T to have a certain “locally typical” structure, s.t. for every a ∈ A, the

conditional subsequence αn+1
a of αn+1 - no matter its length - has a first order type close to ρa. The

property we are looking for in the input sequences is called Local Typicality which will be the topic of

the next section.

3.3.2 Local Typicality

Notation 8. As before, we set A = I×J×K and denote by P2 a distribution on A2 with full support and

with (identical) marginal distribution P ∈ ∆(A). Furthermore, for all a ∈ A, let {ρa : a ∈ A} denote the

conditional distributions of P2. Note, that we don’t require P2 to have a non-empty second order type set

anymore. �

Given a distribution P over a finite set A, locally typical sequences w.r.t. P not only have a first order

type close to P, but also possess contiguous subsequences with first order type close to P. Locally typ-

ical sequences hence have the structure our input sequences in the previous section lacked so far. We

will introduce a new input set of sequences that are locally typical w.r.t. the conditional distributions

{ρa : a ∈ A}. We will then show that the Splicing Algorithm applied to this new input set produces an

n-stage output sequence αn+1 that has a second order type close to P2.

Recall that sequences with first order type close to a distribution P are called ε-typical sequences. Let

us now properly define locally typical sequences:

Definition 9 (Local Typicality). Let P be a distribution over a finite set A and let N, l ∈ N. Given a

sequence xN ∈ AN , denote by xN
t,l a subsequence of l successive elements of xN starting at index t. For

every ε > 0 we call xN l-locally typical w.r.t. P, if for every t ∈ {1,2, . . . ,N− l}, xN
t,l ∈ T ε

l (P), where

T ε
l (P) denotes the ε-typical set of length l w.r.t. P. We denote the set of all l-locally typical sequences

by T ε
N,l(P). �

The following useful result states that if N is large enough, then the empirical distribution of an l-locally

typical sequence xN w.r.t. P is also close to P:
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Lemma 4. If N > 2l
ε

, then every l-locally typical sequence xN ∈ T ε
N,l(P) is 2ε-typical w.r.t P, i.e.,

| 1N N(a|xN)−P(a)|< 2ε ∀a ∈ A.

Proof. See Appendix C.2.

Another important concept we will need in later sections is the concept of locally conditional typical

sequences, defined below.

Definition 10 (Local Conditional Typicality). Let A = I×K be a finite set and let P ∈ ∆(A) be a distri-

bution with full support and with marginals PI on I and PK on K. Furthermore, for every i ∈ I, denote by

ρ i a conditional distribution on K derived from P, i.e., for every k ∈ K, ρ i(k) = P(k|i). Let n ∈ N and

fix a locally typical sequence, xn ∈ T ε
n,l(PI). A sequence yn ∈ Kn is called locally conditional typical, if

for every t ∈ {1,2, . . . ,n− l}: yn
t,l ∈ T ε

l (P|xn), where again yn
t,l is a subsequence of yn of l consecutive

elements starting at index t and T ε
l (P|xn) is the conditional ε-typical set w.r.t. P and xn. The set of all

locally conditional typical sequences is denoted by T ε
n,l(P|xn). �

We now define a (new) set of input sequences for the Splicing Algorithm. The reader may observe that

the idea of adding tail sequences, as in the previous paragraphs, is incorporated into this new input set.

Definition 11 (Locally Typical Input Set S ). Fix ε > 0 and let P2 ∈ ∆(A2) be a distribution as in

Notation 8. Let n,m, l be integers that satisfy the following properties:

nP(a),mP(a) ∈ N,∀a ∈ A (3.1)

min
a∈A

nP(a)> 2l
ε

(3.2)

min
a∈A

mP(a)> 2l
ε

(3.3)

Setting na = nP(A), ma = mP(a) and ra = na +ma, we call every set of l-locally typical sequences of

the form

S =
{

xra ∈ T ε
ra,l(ρ

a) : a ∈ A
}

a locally typical input set w.r.t. n,m, l and P2. �

Remark 9. Note, that the properties imposed on the parameters n,m and l in the above definition ensure

that the input sequences in S are 2ε-typical as stated in Lemma 4. �
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Similar to the previous section, we now want to show that the Splicing Algorithm applied to locally

typical sequences produces a sequences of length at least n+1:

Lemma 5 (The Splicing Algorithm applied to Locally Typical Sequences). Let S be a locally typical

input set w.r.t. n,m, l and P2 and let α0 ∈ A. Fix ε > 0 and let p2 = min(a,b)∈A2 P2(a,b). Then, if

n
m < p

4ε
− 2, then Splicing Algorithm applied to α0 and S yields an output sequence of length at least

n+1.

The proof of this Lemma makes use of the following notation:

Notation 9. In order to ease readability, we call for every a ∈ A an input sequence xra ∈S the row w.r.t

a, or simply row(a). Every row in S can be written as row(a) = xna⊕ xma . We call xna the body and xma

the tail of row(a) . We summarise the bodies and the tails of the rows of S in two different sets:

the set of bodies is denoted by

B =
{

xna ∈ T ε
na,l(ρ

a) : a ∈ A
}
,

and the set of tails by

T =
{

xma ∈ T ε
ma,l(ρ

a) : a ∈ A
}
,

so that

S = B⊕T.

Note, that by assumption, each body in B and each tail in T is also 2ε-typical.

Furthermore, for every pair (a,b) ∈ A2, we say that an element a in row(b) is a reference to row(a) from

row(b). If α0 = a, then α0 is also called a reference to row(a). Note that the total number of references

to row(a) from row(b) is given by N(a|xrb), and since xrb is 2ε-typical, we have

N(a|xrb)≤ rb(ρ
b(a)+2ε). (3.4)

Similarly, an upper bound of the number of references to row(a) from the tail of row(b) is given by

N(a|xma)≤ mb(ρ
b(a)+2ε). (3.5)

�

Proof of Lemma 5. Let α denote the output sequence of the algorithm. Towards a contradiction, assume
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that the algorithm stops before it has reached n stages, i.e., before it has added at least n elements to α .

This means that for some a∈ A, the algorithm has exhausted all elements of row(a) (i.e., it has added the

last element of row(a) to the output sequence) at some stage k, and at a later stage k′ ≥ k the algorithm

terminated by adding element a to α and k′ < n (since row(a) is exhausted, the algorithm cannot add

anymore elements from row(a) to α).

Now, let us count the maximal number of references to row(a) in α . First, note that by assumption it

is not possible that the Algorithm exhausted all elements of the bodies from each row of S ; since for

every a∈ A, the body of row(a) has na elements, the algorithm would have otherwise added ∑a∈A na = n

elements to the output sequence.

Therefore, we assume that there is at least one element a∗ ∈ A, such that the body of the correspond-

ing row has not been completely exhausted by the algorithm. This means that from row(a∗) we can

maximally count N(a|xna∗ ) references to row(a). From every other row(b), b 6= a∗, there are maximally

N(a|xrb) references to row(a) present in the output sequence α .

Finally, recall that possibly α0 is also a reference to row(a). Therefore, the maximal number of refer-

ences to row(a) that can be counted in α (denoted by maxre f (a)), is given by

maxre f (a)≤ 1+ ∑
a∗ 6=b∈A

N(a|xrb)+N(a|xna∗ )

= 1+ ∑
b∈A

N(a|xrb)−N(a|xma∗ )

≤ 1+ ∑
b∈A

rb(ρ
b(a)+2ε)−ma∗(ρ

a∗(a)−2ε)

= 1+ ∑
b∈A

(n+m)P(b)(ρb(a)+2ε)−mP(a∗)(ρa∗(a)−2ε)

= 1+(n+m)

(
∑
b∈A

P2(a,b)+ ∑
b∈A

P(b)2ε

)
−m(P2(a,a∗)−P(a∗)2ε)

= 1+(n+m)(P(a)+2ε)−m(P2(a,a∗)−P(a∗)2ε),

where the second inequality is due to the inequalities in (3.4) and (3.5). By assumption, the maximal

number of references to row(a) must be larger than the number of elements of row(a) (otherwise, the
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Algorithm would not terminate as assumed). I.e., it must hold that

(n+m)P(a)< maxre f (a)

≤ 1+(n+m)(P(a)+2ε)−m(P2(a,a∗)−P(a∗)2ε),

which is equivalent to

mP2(a,a∗)−1 < ((n+m)+mP(a∗))2ε

or
mP2(a,a∗)−1

2((n+m)+mP(a∗))
< ε. (3.6)

However, inequality (3.6) cannot be verified if n
m < p

4ε
−2 holds, which we assume in the Lemma. We

can therefore conclude, that the Splicing Algorithm applied to α0 and S produces a sequence of length

at least n+1.

In the following section we can finally show that the Splicing Algorithm applied to locally typical se-

quences produces an output sequences (of length n+1) with a second order type close to P2.

3.3.3 The Second Order Type of a Typical Output Sequence

Notation 10 (n-stage Typical Output Sequence). Let S be a locally typical input set w.r.t. the integers

n,m, l and P2, that satisfy the conditions in Lemma 5. Let α denote the output sequence of the Splicing

Algorithm applied to S and an initial value α0 and denote by αn+1 the first n+ 1 elements of α . We

call αn+1 the n-stage typical output sequence and for every a ∈ A we denote by αn+1
a the conditional

subsequences of αn+1. �

Remark 10. [The Difference of Rows and Conditional Subsequences] Given an n-stage typical output

sequences, αn+1, a conditional subsequence αn+1
a of αn+1 is a prefix of row(a) (an input sequence of

the locally typical input set S ). More precisely, if the algorithm added all elements from row(a) to

αn+1, then row(a) = αn+1
a . Otherwise, αn+1

a is equal to the first elements in row(a) that were added to

αn+1. �

The last Remark raises the question of how many elements from each row of a locally typical input set

S are at least added to an n-stage typical output sequences αn+1, which we discuss in the following.
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Lemma 6. Let S be a locally typical input set w.r.t. n,m, l and P2. For every a ∈ A, the length of a

conditional subsequence αn+1
a of an n-stage typical output sequence αn+1 is given by N(a|αn+1). If

m
n > mina P(a), then

N(a|αn+1)≥ (n+m)P(a)−m.

Proof. Given an element a∗ ∈ A, let’s assume that all but one row(a∗) are exhausted in the n-stage

typical output sequence αn+1, i.e., for every a 6= a∗, row(a) is the conditional subsequence of αn+1,

row(a)=αn+1
a . Note that this situation describes the most extreme case in which the number of elements

from row(a∗) that are added to the output sequence is minimal. In any other situation, we would have at

least two rows (row(a∗) inclusive) that are not entirely exhausted in the output sequence. In these cases

the number of elements added from row(a∗) to the output sequence would only but increase, compared

to the situation first described. Hence, assuming that all but one row(a∗) are exhausted in the output

sequence is sufficient for our analysis. Every row(a) has length (n+m)P(a), therefore, the following

must hold for the length of αn+1

n+1 = ∑
a∈A,a6=a∗

(n+m)P(a)+N(a∗|αn+1)+1,

equivalently,

N(a∗|αn+1) = (n+m)P(a)−m.

Since m
n > mina P(a), we have N(a∗|αn+1)> 0.

Observation 3. [Conditional Subsequences are Typical] Observe, that for an n-stage typical output se-

quence αn+1 that corresponds to a locally typical input set S w.r.t. n,m, l and P2, if m
n > mina P(a), then

it holds that for every a ∈ A, (n+m)P(a)−m > mP(a). Furthermore, since mP(a) > 2l
ε

by Definition

11, it follows from Lemma 6 and Lemma 4 that every conditional subsequence αn+1
a of αn+1 has a

first order type close to ρa, ∀a ∈ A. This is an important property of the conditional subsequences of

an n-stage typical output sequence. Recall, that this property was not inherent in the conditional sub-

sequences of an n-stage output sequence in the previous section, which is why we introduced locally

typical sequences. �

With the above observation, we can now finally conclude this section and show that n-stage typical

output sequences have a second order type that is close to P2.
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Theorem 3. Let αn+1 be an n-stage typical output sequence of the Splicing Algorithm applied to a

locally typical input set S w.r.t. n,m, l and P2. Then, for all ε > 0, it holds that

∥∥emp2(α
n+1)−P2

∥∥
TV < δ (ε),

where ‖·‖TV denotes the total variation distance1 and δ (ε) is a function with δ (ε)→ 0 as ε → 0.

In order to prove the above Theorem, we first use the fact that the function that maps a strictly positive

stochastic matrix to its (unique) stationary distribution is continuous (see Lemma below). This function

helps bounding the distance of the the stationary distribution of P2 and emp2(α
n+1). Furthermore, as

noted in Observation 3, the empirical distributions of the conditional subsequences of αn+1 are 2ε- close

to the conditional probabilities of P2. These two relations will then be used to show that the distance of

emp2(α
n) and P2 is close.

Lemma 7. Let A be a finite set and denote by M the set of all strictly positive stochastic matrices over

A. The mapping f : M → ∆(A), with f (P) = π , where P ∈M with (unique) stationary distribution π ,

is continuous.

Remark 11. Note that the function f is well-defined since f maps every strictly positive stochastic

matrix to its unique stationary distribution. �

The proof of the above Lemma is added in the Appendix.

Proof of Theorem (3). Let P be the stochastic matrix derived from P2 where the rows display the condi-

tional distributions {ρa : a ∈ A}. We denote the entries of P by p(a,b) = ρa(b), for every a,b ∈ A2.

Furthermore, denote by P̃ another stochastic matrix that we derive from the n-stage typical output

sequence αn+1: the rows of P̃ represent the empirical distributions of the conditional subsequences{
αn+1

a : a ∈ A
}

, hence the entries of P̃ are denoted by p̃(a,b) = emp(αn+1
a )[b] for every pair (a,b)∈ A2.

As seen in Observation 3, the conditional subsequences of αn+1 are 2ε close to the conditional distribu-

tions of P2, i.e.,

|emp(αn+1
a )−ρ

a|< 2ε,

or, in matrix notation:

|p(a,b)− p̃(a,b)|< 2ε.

1Given two probability distributions p,q ∈ ∆(A), the total variation distance between p and q, denoted ‖p−q‖TV , is
given by maxa∈A |p(a)−q(a)|
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Let us now derive the stationary distributions of P and P̃:

First, the probability vector π with π(a) = P(a) = ∑b∈A P2(a,b), ∀a ∈ A is obviously the unique station-

ary distribution of P.

Denote by π̃ the stationary distribution of P̃. Let αn
(1) denote the sequence of αn+1 reduced by the last

element, αn, and let αn
(2) be the sequence of αn+1 reduced by the first element α0. Assuming n large, we

set N(a|αn
(1)) = N(a|αn

(2)) for every a ∈ A. Setting π̃(b) = 1
n N(b|αn

(2)) for every b ∈ A, yields π̃ = π̃P̃ as

shown below:

π̃P̃(b) = ∑
a∈A

1
n

N(a|αn
(2))p̃(a,b)

=
1
n ∑

a∈A
N(a|αn

(2))emp(αn+1
a )[b]

=
1
n ∑

a∈A
N(a|αn

(2))
N(b|αn+1

a )

N(a|αn
(1))

=
1
n ∑

a∈A
N(b|αn+1

a )

=
1
n

N(b|αn
(2))

= π̃(b).

Therefore, for all (a,b) ∈ A2, we have

P2(a,b) = π(a)p(a,b), and

emp2(α
n+1)[a,b] = π̃(a)p̃(a,b).

Now, by Lemma 21, with sufficiently small ε , we have for all δ > 0 and for all (a,b) ∈ A2,

|p(a,b)− p̃(a,b)|< 2ε ⇒ |π(a)− π̃(a)|< δ ,

and thus

emp2(α
n+1)[a,b]−P2(a,b) = π̃(a)p̃(a,b)−π(a)p(a,b) (3.7)

< (π(a)+δ )(p(a,b)+2ε)−π(a)p(a,b) (3.8)

< 2ε +δ +2δε (3.9)
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similarly,

P2(a,b)− emp2(α
n+1)[a,b]< 2ε +δ +2δε.

Letting δ = ε completes the proof.

Second Amendment to General Approach

With the application of the Splicing Algorithm on locally typical sequences we are able to achieve an

output sequence of length at least n+ 1 that also has a second order type close to P2, as desired. Step

2 in the general approach can therefore be achieved, if we make the necessary changes in Step 1 of the

general approach:

Step 1 - Second Amendment Fix ε > 0 and let n,m, l be integers with 1
p < n

m < p2
4ε
− 2, where p =

mina P(a) and p2 = mina,bP2(a,b). At the beginning of each block k > 1 we need to induce a locally

typical input set S w.r.t. n,m, l and P2.

In the following sections, we will therefore focus on this amended Step 1.

3.4 Sequence Induction

In the previous sections, we developed which sequences need to be induced, so that they can be spliced

to produce a sequence with a second order type that is close to P2. In these upcoming sections, we show

how these sequences can be induced, i.e., how the strategies of the players need to be constructed to

induce these sequences.

In the following, we will refer to a distribution P2 with properties stated below. Even though this notation

has been used in the previous sections, we only add additional properties to (the former) P2, and hence

the results in the previous sections also hold for this distribution.

Notation 11. Let ε > 0. Denote by P2 a distribution over A2, A = I× J×K, with full support that

satisfies the properties stated in Theorem 2. That is,

• The marginal of P2 on the first and the second coordinates is identical and given by P ∈ ∆(A).
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• For every a ∈ A, the marginal of the conditional distribution P2(·|a) on I is µ .

• P2 fulfills the following information constraint: HP2(i, j|k, i′, j′,k′)−HP2(i)≥ ε ,

where (i, j,k, i′, j′,k′)∼ P2.

Furthermore, we denote by {ρa : a ∈ A} the conditional distributions of P2, i.e., for all a ∈ A, P2(·|a) =

ρa. The marginal distribution of ρa on I, K, I×K, etc., are denoted by ρa
I , ρa

K , ρa
I×K , respectively. �

The strategies we are going to construct will implement a distribution P2 as denoted above.

Remark 12. Recall, that by Lemma 16 in the Appendix, for a given distribution P′2 ∈ ∆((I× J×K)2)

which satisfies the properties stated in Theorem 2, for every ε > 0 there exists a distribution P2 ∈ ∆((I×

J×K)2) with full support and equal properties as P′2, such that ‖P′2−P2‖ < 2ε . If we can show that

such a distribution P2 is implementable, then P′2 is also implementable, since the set of implementable

distributions is closed by Remark 25. �

3.4.1 Strategy Outline

In the following paragraphs we only provide an outline of the strategies that will implement P2. The

details of the strategy construction will be discussed in the subsequent section.

First of all, we divide the game that is induced by the strategies of the players and by the actions of

nature, into blocks of a given length n. We associate to every such block k an input set, denoted by S [k].

Such an input set consists of an input set for nature, SI[k], forecaster, SJ[k] and agent, SI[k], such that

S [k] = SI[k]×SJ[k]×SK [k].

Denote by αn[k] = (x[k],y[k],z[k]) ∈ (I× J×K)n the actual elements played by the players in block k.

We want this sequence of action triples to have a second order type close to P2. We can accomplish this

with the following approach:

We construct strategies, such that for given integers n,m, l ∈N and ε > 0, in asymptotically almost every

block k > 1, an input set S [k] is induced that is locally typical w.r.t. n,m, l and P2 according to Definition

11. Once this is accomplished, we run the Splicing Algorithm on S [k]. By Lemma 5, this produces a
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typical n-stage output sequence for block k of length n+1, which we denote by

α
n+1[k] = (α0[k],α1[k], . . . ,αn[k]).

We set α0[k] = αn[k− 1], i.e., α0[k] is the last element of the sequence in block k− 1. For every

j ∈ [0, . . .n], we write α j[k] = (x j[k],y j[k],z j[k]) ∈ I × J ×K to denote the actions of the individual

players in stage j in block k.

Recall, that by Theorem 3, the second order type of αn+1[k] gets arbitrarily close to P2 in the total vari-

ation norm as n→ ∞.

For the above approach to work, the sequences in S [k] need to satisfy certain requirements. First of all,

the parameters n,m, l ∈ N and ε need to be chosen such that they satisfy the properties in Definition 11

and in Lemma 5. Moreover, the sequences in the input set S [k] must be ε-typical w.r.t. the conditional

distributions of P2, {ρa : a ∈ A}. In order to achieve this, we impose the following conditions on the

input sets of nature, forecaster and agent:

Conditions on the Input Sets

Let ε > 0. For every a ∈ A, setting ra = (n+m)P(a), the following conditions must hold on the input

set of nature, of the forecaster and of the agent:

SI[k] 3 xra ∈ T ε
ra,l(ρ

a
I ) (3.10)

SK [k] 3 zra ∈ T ε
ra,l(ρ

a
I×K |xra) for xra ∈SI[k] (3.11)

SJ[k] 3 yra ∈ T ε
ra,l(ρ

a|xra ,zra) for xra ∈SI[k],zra ∈SK [k]. (3.12)

Note that the input sequences of the forecaster are assumed to be locally conditional typical sequences

according to Definition (10), and so it must hold that for every sequence (xra ,yra ,zra)∈ (SI[k]×SJ[k]×

SK [k]),

(xra ,yra ,zra) ∈ T ε
ra,l(ρ

a).

The reader should observe that the concept of local conditional typicality keeps ε fix, i.e., there is no

need for any change on ε . Therefore, the input set S [k] = (SI[k]×SJ[k]×SK [k]) that satisfies the
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conditions in (3.10), (3.11) and in (3.12) indeed satisfies all properties of a locally typical input set ac-

cording to Definition 11. Moreover, by Lemma 5, there is an n-stage output sequence αn+1[k] of the

Splicing Algorithm applied to S [k], that has a second order type close to P2 according to Theorem 3.

The strategies we will construct are designed such that the input set of the agent and of the forecaster,

SK [k] and SJ[k], have the properties stated in (3.11) and (3.12). Note, that the input set of nature may

not always have the desired property in (3.10).

Remark 13. [Nature’s Input Set] The sequences in SI[k] are segments from nature’s conditional se-

quences which are fixed from the beginning of the play. Obviously, we cannot guarantee that nature

will play xra ∈ T ε
ra,l(ρ

a
I ) for every a ∈ A, as in (3.10). However, we know that this happens with high

frequency throughout the game by Lemma 18 in the Appendix. We will later discuss what we do in case

nature does not play as in (3.10). �

So far, we have outlined what the strategies of the players need to achieve, namely the induction of

an input set S [k] w.r.t. n,m, l and P2. As announced, we will provide the detailed construction of the

strategies in the upcoming section. In the remaining part of this section, we take a step ahead and present

a simplified overview of how the players act under the strategies we are about to construct. The purpose

of this proceeding is to introduce the key features of the strategies in an informal way. Thereby, the

reader is given an idea of the strategies, before we immerse into the details of their construction.

How the Players Act

In the following, let us assume that a play is initiated by the strategies of the players, that can induce a

locally typical input set S [k] with properties stated in (3.10),(3.11) and (3.12) in every block (note, that

this is an idealised assumption, since by Remark 13, property (3.10) may not always be satisfied).

First, recall that at the beginning of the play, the agent has no knowledge about future states of nature,

nor of the future play of the forecaster, whereas the forecaster has complete knowledge about all future

states of nature’s conditional sequences. Note, however, that the agent (as well as the forecaster) can

observe the complete history of the play at any stage in the game.
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In order to know her input set SK [k] at the beginning of a block k > 1, the agent has to rely on her obser-

vation of the past play. Since we want SK [k] to be chosen in dependence of SI[k] as in (3.11), it is the

task of the forecaster to send the necessary information in block k−1 to the agent. More precisely, the

forecaster conditions her actions in block k−1 on nature’s actions in block k in such a way, that it will

transmit sufficient information to the agent to know SK [k] at the beginning of the block. At the same

time, the forecaster also conditions her actions in SJ[k−1] on SI[k−1] and on SK [k−1] as indicated

in (3.12), such that the input set S [k−1] is locally typical as desired.

We refer to information transmission as the process of sending and receiving information about future

states of nature. More precisely, we say that information transmission from block k−1 to block k from

the forecaster to the agent is possible, if the forecaster is able to send enough information to the agent

in block k− 1, so that the agent knows SK [k] at the beginning of block k, while at the same time the

forecaster can match nature’s and agent’s actions in block k−1, so that the input set S [k−1] is induced.

Hence, information transmission is the key feature of the strategies of the players. Let us now shortly

demonstrate that in order for the information transmission to work, the information constraint plays a

vital role.

First, we will see that the information transmission process is formalised with the introduction of a Mes-

sage Set of the forecaster and a Set of Action Plans of the agent, which we will properly define in the

upcoming sections. Next, we show that the information transmission process can only work, if the mes-

sage set is larger in size than the set of action plans. Only then it is possible for the forecaster to send

enough information about future states of nature to the agent, so that the agent can deduce the desired

actions. Finally, we will see that the information constraint can guarantee that the relative sizes of the

message set and the set of action plans are as required.

In the next paragraphs, we intend to provide a first idea of the functioning of a message and of an action

plan.

A message of the forecaster in block k−1 is a subset of the input set of the forecaster, SJ[k−1]. It has

the property that every element in the message appears in the output sequence, αn+1[k−1], so that at the

beginning of the next block, k, the agent is able to observe the message. In every block k−1, k > 1, the

forecaster sends a message to the agent, that entails information about a so-called Hypothetical Input Set

54



of Nature of block k, which we denote by I [k]. This set consists of those segments of the conditional

sequences of nature, that contain the sequences of the actual input set of nature, SI[k]. More precisely,

every sequence in SI[k] is a middle segment of a sequence in I [k]. Hence, the forecaster sends more

information in her message to the agent, than what will actually be needed. Let us illustrate this idea

with the two figures below:

Figure 3.1: Input Sequences

Every row in Figure 3.1 represents an input sequence of the locally typical input set S [k−1]. In every

such row we add an orange suffix and a green pointer. To understand these additions, recall that when

applying the Splicing Algorithm to a locally typical input set, not necessarily every element of an input

sequence is eventually added to the output sequence. However, Lemma 6 informs us of the minimal

number of elements from an input sequence that are added to the output sequence ((n+m)P(a)−m).

Now, the orange suffix marks those elements that are potentially not added to the output sequence, i.e.,

there are exactly (n+m)P(a)−m elements to the left of the orange suffix. Now, the the green pointer

can only move in the orange suffix and indicates exactly the number of elements that are added to the

output sequence, i.e., all elements to the left of the green pointer. The elements to the right of the pointer

do not appear in the output sequence of block k−1. The green pointers also marks the beginning of the

next block, k. I.e., it marks the starting points for the input sequences of S [k].

Figure 3.2 focuses on one single row from Figure 3.1 (with two additional dashed boxes added) and

demonstrates the procedure of the Information Transmission. As before, the row represents an input

sequence from the input set S [k−1], this time it is divided into the three sequences of nature, forecaster

and agent (in that order). Here, we can see, that the message (i.e., an element of the message) of the

forecaster is placed before the orange suffix. It includes information about the hypothetical input set of

nature (a sequence of the same), which begins right after the minimal length of the sequence of the input

set of nature in S [k− 1] (marked as a blue dashed box). Then, at the beginning of block k (indicated
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Figure 3.2: Information Transmission

by the green pointers), the agent observes the message of the forecaster in block k− 1, as well as the

complete history of the play (not included in the figures above). From that, she deduces a so-called

action plan, which is a set of sequences that contains her input set SK [k] for block k. In Figure 3.2

we marked one sequence of the action plan (the red dashed box). The action plan has the property that

it matches the hypothetical input set of nature in the same way as the agent’s input set SK [k] matches

nature’s set SI[k] as stated in (3.11). With the help of her observation of the past play, the agent is then

able to extract her input set from her action plan.

This outline of how the players act is certainly not exhaustive, as indicated before. The following section

will now add the details to this mechanism.

3.4.2 Information Transmission

In this section we look at the features of the strategies introduced in the previous passages in more

depths. In particular, we define the hypothetical input set of nature, as well as the the message set of the

forecaster and the set of action plans of the agent. We begin with the definition of a set of parameters

that we are going to employ.

Definition 12. [Fit Parameters] Let A = I×J×K and let ε > 0. Let P2 be a distribution over A2 as given

in Notation 11. We call the set {P2,ε,n,m, l} a set of fit parameters, if the following holds:

• mina∈A nP(a)> 2l
ε

• mina∈A mP(a)> 2l
ε
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• l > ln(2n|A|)
2ε2

• 1
p < n

m < p2
4ε
−2

where p = mina∈A P(a) and p2 = mina,b∈A2 P2(a,b).

�

Definition 13. We say that a set of fit parameters {P2,ε,n,m, l} behaves asymptotically appropriately,

if there exists a function v(ε) with v(ε)→ 0 as ε → 0 and

m
n < v(ε).

�

Remark 14. Note, that a set of fit parameters as given in Definition 12 obviously exists whenever n,m

are assumed to be sufficiently large. Furthermore, one can find a set of fit parameters, {P2,ε,n,m, l}, that

behaves asymptotically appropriately with v(ε) = γε , where γ ∈ R is sufficiently large (γ > 4
p2−8ε

). �

Next, we need to introduce some notation regarding the structure of a play:

Notation 12. We say that a game induced by the strategies of the players and nature is an induced play.

In an induced play, denote by αk−1 the entire past sequence of actions played up until the beginning

of (and not including) block k. Furthermore, denote by N(a|αk−1) the number of occurrences of a in

αk−1. �

In the following sections, we will often refer to an induced play, without having specified the strategies

of the players yet. The reader should observe, however, that in doing so, we do not presuppose cer-

tain features of the strategies and only need to describe the correct setting, that is independent of the

strategies.

The Hypothetical Input Set of Nature

Nature’s Conditional Sequences: First, recall that at the beginning of a game, nature draws for every

a ∈ A and according to µ , an infinite conditional sequence (xa
1,x

a
2, . . .) of states, which the forecaster

observes. Remember, that if at stage t in the course of a game, element a is played, i.e., (xt ,yt ,zt) = a,

then nature plays xt+1 = xa
i , if a has occurred i times in the history of the game up until stage t.
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Remark 15. At the beginning of each block k ≥ 1 in an induced play, the forecaster can observe the

entire past sequence of actions played by nature, forecaster and agent, αk−1. For every a ∈ A, she can

also work out N(a|αk−1). Therefore, the forecaster knows nature’s input set in block k, SI[k], since she

can observe all the elements nature will play after the upcoming occurrences of elements a ∈ A, i.e.,

forecaster observes

SI[k] 3 xra [k] = (x1[k], . . . ,xra [k]) = (xa
N(a|αk−1),x

a
N(a|αk−1)+1, . . . ,x

a
N(a|αk−1)+ra−1).

�

To be precise, the forecaster not only knows SI[k], but the entire future conditional sequences of nature.

However, this is not what she will transmit to the agent (this is obviously too much information). The

forecaster restricts her knowledge that she transmits to the so-called hypothetical input set of nature:

Definition 14 (The Hypothetical Input Set of Nature). Let {P2,ε,n,m, l} be a set of fit parameters. Let

k be a block in an induced play, such that S [k] is a locally typical input set w.r.t. n,m, l and P2. The

hypothetical input set of nature of block k+1, denoted by I [k+1], is a set of |A| segments of nature’s

conditional sequences {xa : a ∈ A}, with the property that for every a ∈ A, a segment has length ra +m

and is locally typical w.r.t. µ:

S [k+1] =
{

ι
ra+m[k+1] ∈ T ε

ra+m,l(µ) : a ∈ A
}
,

where for every a ∈ A, the segment ιra+m[k+1] ∈I [k+1] has the following start and end points:

ι
ra+m[k+1] =

(
xa

minN(a|αk), . . . ,x
a
maxN(a|αk)+ra

)
,

where minN(a|αk) = N(a|αk−1)+ ra−m and maxN(a|αk) = N(a|αk−1)+ ra. �

It should be observed that the hypothetical input set of nature contains locally typical sequences w.r.t.

µ . Again, it is not guaranteed that nature’s conditional sequences are of these types, but if they are,

it will be this set which the forecaster informs the agent about. The following remark provides some

motivation and further explanation for the introduction of a hypothetical input set.

Remark 16. Let αn+1[k] be the n-stage output sequence of the Splicing Algorithm applied to a locally

typical input set S [k]. For every a ∈ A, the length of a subsequence αn+1
a [k] of αn+1[k], denoted by
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L(αn+1
a [k]), is given by

ra−m≤ L(αn+1
a [k])≤ ra, with ra = (n+m)P(a), (3.13)

by Lemma 6 (recall, that L(αn+1
a [k]) = N(a|αn+1[k]) for all a ∈ A). As noted in Remark 10, we can

see here again that a conditional subsequence αn+1
a [k] of αn+1 is not necessarily equal to the respec-

tive input sequence αra [k] ∈S [k]. αn+1
a [k] is only a prefix of αra [k]. Hence, since the lengths of the

subsequences
{

αn+1
a [k] : a ∈ A

}
can vary in between the interval (3.13), and since these lengths (equiva-

lently, the numbers N(a|αn+1[k]), for a∈ A) determine nature’s actions in block k+1, we introduced the

hypothetical input set of nature, that takes into account the shortest possible lengths of the conditional

subsequences of the output sequence in block k. Finally, note, that obviously the input set of nature is a

subset of the hypothetical input set of nature in block k+1, i.e., SI[k+1]⊂I [k+1]. �

Observation 4 (Elements Added and Elements Discarded). Since not all elements from each sequence

in S [k] are added to the output sequence αn+1[k], the question arises of what to do with unused elements,

i.e., elements of sequences in S [k] that are not added to αn+1[k]. Given the bounds of a conditional

subsequence (3.13), there may be up to m unused, or unadded elements of every locally typical input

sequence αra [k] ∈S [k]. While we can simply discard the unused elements of forecaster and agent, and

then start anew in a locally typical input set in the next block, we cannot simply discard the unused

elements of nature. In other words, unused elements of nature in the input sequences in S [k] have to

reappear in the input set in the next block, S [k+1], while unused elements of forecaster and agent can

be discarded. �

The Set of Action Plans of the Agent

Let us now look at the concept of an action plan of the agent in more detail. As indicated in the outline

of the strategies, the action plan is a set of |A| sequences of length ra +m for every a ∈ A, that matches

a given hypothetical input set of nature, I [k] in block k (that is only observed by the forecaster in the

previous block) in the following sense. If κra+m denotes a sequence in the action plan, then for every

a ∈ A, it holds that

(ιra+m[k],κra+m) ∈ T ε
ra+m,l(ρ

a
I×K), for every a ∈ A,
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where ιra+m[k] ∈ I [k]. The action plan can hence be regarded as an extension of the input set of the

agent for block k. In fact, an important feature of the action plan is that upon observing the past play

until block k, the agent is able to extract her input set SK [k] from the action plan. Let us now properly

define the set of action plans for the agent. The reader may observe the similarity to the Definition of

the set of action plans in [6].

Definition 15 (The Set of Action Plans of the Agent). Let {n,m, l,ε,P2} be a set of fit parameters. Given

a ∈ A, we say that the set of action plans w.r.t. a, denoted by APa, is a subset of T ε
ra+m,l(ρ

a
K) of minimal

size, s.t. for all x ∈ T ε
ra+m,l(ρ

a
I ), there exists an element z ∈ APa, with (x,z) ∈ T ε

ra,l(ρ
a
I×K). The (total) set

of action plans is given by AP, with

AP = ×
a∈A

APa.

Elements of AP will be denoted by K . �

The size of the set of action plans for the agent plays an important role in the construction of the strate-

gies, which is stated below.

Lemma 8. [The Size of the Set of Action Plans] Let {n,m, l,ε,P2} be a set of asymptotically fit param-

eters. Let a denote a random triple in A = I× J×K, and let (i, j,k,a) denote two random triples in A2

with (i, j,k,a)∼ P2. Further, let λ (ε) be a function of ε with λ (ε)→ 0 as ε → 0. Then,

|AP| ≤ 2(1+λ (ε))n(H(k|a)−H(k|i,a)+ξ (ε)),

for ξ (ε) = 3c̃ε , with c̃ =−∑k∈K logPK(k).

Proof. Let (ia,ka) denote a pair of random variables distributed according to ρa
I×K . By Theorem 7 in

the Appendix, for every a ∈ A and for every ξ > 2c̃ε , there exists a set of action plans w.r.t element a of

size

|APa|= 2na(1+λa)(H(ka)−H(ka|ia)+ξ ),

with λa = m
n (1+

1
P(a)). Since m

n < v(ε), we have λa < v(ε)(1+ 1
p), with p = mina∈A P(a). Setting

ξ = ξ (ε) = 3c̃ε ,

|APa|= 2na(1+λa)(H(ka)−H(ka|ia)+ξ (ε))

< 2na(1+λ (ε))(H(ka)−H(ka|ia)+ξ (ε)).
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Since AP =×a∈A APa, we have |AP|= ∏a∈A |APa| and

∏
a∈A
|APa|< ∏

a∈A
2na(1+λ (ε))(H(ka)−H(ka|ia)+ξ (ε)) (3.14)

= 2n(1+λ (ε))(H(k|a)−H(k|i,a)+ξ (ε)). (3.15)

We now show that at the beginning of every block k > 1, the agent is able to deduce an input set SK [k]

from her observation of the past play, and, in particular, from her observation of an action plan.

Remark 17. In the later construction of the strategies we will see that if the agent is able to deduce

an action plan K ∈ AP from her observation of the past play at the beginning of some block k, then

this must have been possible due to the forecaster’s ability to observe a hypothetical input set in block

k, I [k] (and her transmission of information of the same to the agent). This remark is vital for the

following lemma. �

Lemma 9. Assume, that in block k−1, k > 1, the forecaster and the agent are able to induce a locally

typical input set S [k− 1]. Moreover, assume that the agent can deduce an action plan K ∈ AP from

her observation of the past play. Then, the agent is able to construct an input set S [k] from K for block

k, that satisfies property (3.11).

Proof. Recall, that given the assumptions stated in the current lemma, the action plan K , received by

the agent at the beginning of block k, corresponds to a hypothetical input set of nature, that was observed

by the forecaster in block k−1. Observe, that since every κra+m ∈K is locally conditional typical, i.e.,

κra+m ∈ T ε
ra+m,l(ρ

a
I×K |ιra+m[k]) for every a ∈ A, then by Definition 10, every subsequence of ra con-

secutive elements of κra+m is also locally conditional typical. Hence, the only thing the agent needs

to do, is to determine the correct segment in κra+m of length ra for every a ∈ A, which will constitute

the set SK [k]. For this, the agent needs to observe the ending points of each conditional subsequence

αn+1
a [k− 1] of the output sequence αn+1[k− 1]. These ending points determine the starting points for

the sequences in the input set S [k] of block k (these ending points are equivalent to the green pointers

in Figures 3.1 and 3.2).

In order to compute the exact ending points of each conditional subsequence, she needs to observe, for
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every a ∈ A, the number of occurrences of a in the past play up to block k− 1, N(a|αk−2), as well as

the number of occurrences of element a in block k− 1, given by L(αn+1
a [k− 1]). Inequality (3.13) in

Remark 16 tells us that

ra−m≤ L(αn+1
a [k−1])≤ ra.

The sequence in the action plan and in the hypothetical input set start right after the minimal length of

L(αn+1
a [k− 1]), as was demonstrated in Figures 3.1 and 3.2. Therefore, if L(αn+1

a [k− 1]) > ra−m,

the agent needs to cut the first L(αn+1
a [k− 1])− (ra −m) elements of the prefix of κra+m, for ev-

ery a ∈ A. Since for every a ∈ A a sequence in SK [k] has ra elements, we need to make sure that

redundant elements at the end of κra+m are also cut off. This means that the agent needs to cut

ra +m−
(
L(αn+1

a [k−1])− (ra−m)
)

elements in the suffix of κra+m.

Note, that nature proceeds in exactly the same way. The resulting sequences, denoted by (ιra [k],κra),

have the desired length ra. Hence, {ιra [k] : a ∈ A} are the sequences of nature’s input set, SI[k], and

{κra : a ∈ A}, are the desired sequences of agent’s input set, SK [k].

The Message Set of the Forecaster

Before we define the message set of the forecaster, let us give an overview of the main properties of a

message:

A message of the forecaster in block k consists of a set of sequences, one for every a ∈ A. Every such

sequence is of length ra−m, and is therefore shorter than a sequence in the forecaster’s input set, SJ[k].

However, one important feature of a message is its extendability, i.e., a message can be extended into

an input set SJ[k], that satisfies the property stated in (3.12). Another important feature of a message is

its ability to transmit the forecaster’s knowledge of the hypothetical input set I [k+1] to the agent. The

following paragraphs will look at these properties now in more detail.

Let us first introduce the concept of extendability:

Definition 16 (Extendable Locally Conditional Typical Sequence). Let P ∈ ∆(I× J) be a distribution

with marginal distribution PI ∈ ∆(I). Furthermore, let n,m, l ∈ N be integers with n,m > l and let

xn+m ∈ T ε
n+m,l(PI) be a locally typical sequence. Note, that the sequences of the first n and of the last
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m elements of xn+m, denoted by xn and xm, respectively, are also locally typical w.r.t. PI . We say

that a locally conditional typical sequence yn ∈ T ε
n,l(P|xn) is m-extendable, if there exists a sequence

ym ∈ T ε
m,l(P|xm), s.t. the concatenation of yn and ym, yn⊕ym, is an element of T ε

n+m,l(P|xn+m). We denote

the set of m-extendable locally conditional typical sequences by T ε
n,l(P|xn,ext(m)). �

The message set of the forecaster is an extendable locally conditional typical set in the following sense:

Definition 17 (The Message Set of the Forecaster). Let {P2,ε,n,m, l} be a set of fit parameters that

behaves asymptotically appropriately. Furthermore, let SI[k] and SK [k] denote the input sets of nature

and of the agent in block k, that satisfy the properties stated in (3.10) and in (3.11), respectively. For

every a ∈ A, set ra = (n+m)P(a) and denote by (xra−m,zra−m) the prefix of the first ra−m elements of

(xra ,zra) ∈SI[k]×SK [k]. The message set of the forecaster w.r.t. an element a ∈ A, denoted by Ma
k , is

then given by the m-extendable locally conditional typical set

Ma
k = T ε

ra−m,l(ρ
a|(xra−m,zra−m),ext(m)).

The (total) message set, Mk, is given by

Mk = ×
a∈A

Ma
k .

�

Remark 18 (Length of a Message). Note, that for every a ∈ A, a sequence in a message is of length

ra−m. This is no coincidence. Recall, the minimal length of a conditional subsequence αn+1
a of the

output sequence αn+1 has the same length, as stated in (3.13). A message of length ra−m hence ensures

that it will appear in the output sequence (any message of a longer length might not fully appear in the

output sequence). �

Remark 19. [Extending a Message to a Locally Typical Input Set] By Definition 16, for every a ∈ A

and for every pair (xra ,zra) ∈SI[k]×SK [k], a sequence yra−m ∈ Ma
k can be m-extended to a sequence

yra ∈ T ε
ra,l(ρ

a|(xra ,zra)). The set of these m-extended sequences is exactly the conditional locally typical

input set SJ[k] stated in (3.12). �

With the help of Corollary 10 in the Appendix, we can now derive the size of the message set.

Lemma 10 (The Size of the Message Set). Let ε > 0 and let δ (ε) be a function of ε such that δ (ε)→ 0 as

ε → 0. Furthermore, with a = (i′, j′,k′), denote by (a, i, j,k) two triples of random variables distributed
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according to P2 Then, for every δ > 0 and for n sufficiently large,

|Mk| ≥ 2(1−δ (ε))n(H(j|i,k,a)−2εd−δ ),

with d = ∑a∈A H(j|i,k,a = a)

Proof. By Corollary 10 (in the Appendix), with d = ∑a∈A H(j|i,k,a = a), we can bound the message

set of the forecaster with respect to an element a ∈ A as follows:

|Ma
k |> 2(ra−m)(H(j|i,k,a)−2εd−δ ).

Now, since we assumed that the set of fit parameters {P2,ε,n,m, l} behaves asymptotically appropriately,

there exists a function v(ε) with v(ε)→ 0 for ε → 0. Setting δ (ε) = v(ε)
mina∈A P(a) and na = nP(a), note

that we can deduce the following bound for ra−m for every a ∈ A:

ra−m = (n+m)P(a)−m

= na(1+ m
n −

m
nP(a))

> na(1− m
nP(a))

> na(1− v(ε)
mina∈A P(a))

= na(1−δ (ε)).

Therefore,

|Mk|= ∏
a∈A
|Ma

k |

> ∏
a∈A

2(ra−m)(H(j|i,k,a)−2εd−δ )

> 2∑a∈A na(1−δ (ε))(H(j|i,k,a)−2εd−δ )

= 2n(1−δ (ε))∑a∈A P(a)(H(j|i,k,a)−2εd−δ )

= 2n(1−δ (ε))(H(j|i,k,a)−2εd−δ ).
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The Role of the Information Constraint

The information constraint is a vital element in the construction of the strategies of the players. Only

with the help of the information constraint we can show that information transmission from the fore-

caster to the agent is possible. We elaborate on this in the following paragraphs.

In the following Corollary we introduce the so-called transmission function:

Corollary 1. Let {P2,ε,n,m, l} be a set of fit parameters that behaves asymptotically appropriately.

Given a message set for block k, Mk, and given the set of action plans, AP, there exists a surjective

mapping fk : Mk→ AP, as ε → 0. We call fk the transmission function w.r.t. block k.

Proof. We show that |Mk| ≥ |AP| as ε → 0.

Let a = (i′, j′,k′) and let (i, j,k,a)∼ P2.. As stated in Notation 11, P2 satisfies the following information

constraint:

H(i, j|k,a)≥ H(i)+ ε. (3.16)

Now, by Lemma 8, we have

|AP| ≤ 2(1+λ (ε))n(H(k|a)−H(k|i,a)+ξ (ε)),

with λ (ε)→ 0 and ξ (ε)→ 0 as ε → 0.

Further, setting δ = ε in Lemma 10, we get

|Mk| ≥ 2(1−δ (ε))n(H(j|i,k,a)−2εd−ε).

We now show that

H(j|i,k,a)− ε ≥ H(k|a)−H(k|i,a). (3.17)

First, applying the chain rule, we get

H(j|i,k,a)− ε = H(i, j|k,a)−H(i|k,a)− ε (3.18)
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Next, since by assumption, H(i|a) = H(µ) = H(i), we have

H(k|a)−H(k|i,a) = H(k|a)− (H(k, i|a)−H(i|a))

=−(H(k|a)+H(i|k,a)−H(k|a))+H(i)

= H(i)−H(i|k,a). (3.19)

Therefore, by equations (3.18) and (3.19), the inequality in (3.17) is equivalent to

H(i, j|k,a)−H(i|k,a)− ε ≥ H(i)−H(i|k,a),

which is equivalent to the information constraint stated in (3.16).

The result follows by setting ε → 0.

Our aim is to describe the process of the the information transmission in detail. In order to do so, we

need the transmission function and the action plan function, which we denote in the following:

Notation 13. By the construction of the set of action plans, AP, we can define the following surjective

function,

fAP : HI→ AP,

where HI =×a∈A T ε
ra+m,l(µ), i.e., HI includes all possible hypothetical input sets of nature. �

Definition 18 (Information Transmission-Process). Let {P2,ε,n,m, l} denote a set of parameters that

behaves asymptotically appropriately. Let us assume that there exist strategies, that together with na-

ture’s actions, induce a play. Denote by k and k+ 1 two consecutive blocks in the play, s.t. in block k

the players are able to induce a locally typical input set S [k] w.r.t. n,m, l and P2. We call the sending

and the receiving of information, as outlined below, the information transmission-process:

Sending Information:

1. At the beginning of block k, the forecaster observes the hypothetical input set of nature of block

k+1, I [k+1].
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2. The forecaster then computes the corresponding action plan for the agent using the action plan

function, i.e., fAP(I [k+1]) = κ ∈ AP.

3. This information is sent to the agent in block k via the transmission function, i.e., the forecaster

chooses a message Mk ∈ f−1
k (κ)⊂Mk.

Receiving Information:

1. At the beginning of block k+1, the agent observes the past play up to and including block k, αk.

In particular, she observes the message Mk in the output sequence αn+1[k].

2. The agent receives her action plan by applying the transmission function to the message, i.e.,

fk(Mk) = K .

�

Corollary 2 (Inducing P2). Given the assumptions in Definition 18, the information transmission pro-

cess over two consecutive blocks k and k+ 1 defines strategies for the players such that in block k+ 1

distribution P2 is induced via a locally typical input set S [k+1].

Proof. First of all, the hypothetical input set of nature in block k+1, I [k+1], satisfies property (3.10),

since the sequences in I [k+ 1] are locally typical w.r.t. µ . Moreover, as described in Definition 18,

at the beginning of block k + 1, the agent receives an action plan fk(Mk) = K that was sent to her

by a message from the forecaster, Mk, in block k. By Lemma 9, the agent can extract an input set

SK [k+1] from her action plan K that satisfies property (3.11). The actions of the forecaster depend on

her observation of nature’s actions: If the forecaster observes a hypothetical input set for the upcoming

block, I [k+ 2], she first computes the corresponding action plan for the agent, fAP(I [k+ 2]) = K ′

and then chooses a message Mk+1 ∈ f−1
k+1(K

′) ⊂ Mk+1. By Remark 19, the forecaster then extends

Kk+1 into an input set SJ[k+1], that satisfies property (3.12). Otherwise, if the the forecaster does not

observe a hypothetical input set for the upcoming block, she can directly choose an input set SJ[k+1]

as in (3.12) (which does not contain a message).

Hence, by construction, the set

SI[k+1]×SJ[k+1]×SK [k+1] = S [k+1]

constitutes a locally typical input set w.r.t. n,m, l and P2.
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Observation 5. The reader should observe that for the information transmission process to work, it is

necessary that the forecaster indeed observes a hypothetical input set of nature. In particular, this means

that the sequences in I [k+ 1] are locally typical w.r.t. µ . Otherwise, the forecaster is unable to find

an action plan for the agent and the players cannot induce a locally typical input set S [k+ 1] in block

k+1. �

Notation 14. If, as described in the above observation, the forecaster cannot observe a hypothetical

input set of nature in block k+1, then we say that the information transmission failed and block k+1 is

then called a lost block. �

Restarting after a Lost Block

If the players have encountered a lost block, it is not the end of the world. First, we know that by Lemma

18 in the Appendix, this does not happen frequently, and second, it is possible to resume the information

transmission process. Obviously, this only depends on nature’s conditional sequences. Once they are

locally typical again, the players can restart. However, since the information transmission has failed

before, the players cannot immediately induce the desired distribution P2 (since the agent does not have

the necessary information). More precisely, we need a recovery process of at least two blocks: if a

block k is lost, then the earliest block in which the players can induce a distribution P2 again is block

k+ 2 (assuming nature plays typical). To see that, it is important to note that in a lost block we don’t

have a mechanism (such as the Splicing Algorithm) that helps us to control the length of the conditional

subsequences in that block. Therefore, it is impossible for the forecaster with the tools at hand to send

any information of future states of nature in the lost block to the agent (so that they are able to induce

a distribution P2 in the block following a lost block). Instead, if nature plays locally typical again after

a lost block, we show that a different distribution, Q2, can be induced in the block after a lost block

(for which no previous information transmission is needed) which enables the information transmission

process to work again (to induce P2) thereafter.

The following Lemma focuses on the first block after a lost block in which the players can induce such

a distribution Q2.

Lemma 11. Let Q = µ×UJ , where UJ denotes the uniform distribution over J. Fix z ∈ K, set Ã = I×

J× z and denote by Q2 = Q×Q a distribution over Ã2. Furthermore, let {P2,ε,n,m, l} be a set of fit pa-
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rameters, such that nQ(ã),mQ(ã)∈N, for all ã∈ Ã. Set rã = (n+m)Q(ã). Finally, let k∗ denote the first

block after a lost block in which SI[k∗] satisfies property (3.10), i.e., SI[k∗] =
{

xrã ∈ T ε
rã,l(µ) : ã ∈ Ã

}
.

Then, the players are able to induce Q2 in block k∗.

Proof. We show that the players can induce a locally typical input set S [k∗] w.r.t. n,m, l and Q2, such

that the corresponding output sequence of the Splicing Algorithm applied to S [k∗] has a second order

type close to Q2. To this end, we need {Q2,ε,n,m, l} to be a set of fit parameters (note, that we only

replaced P2 by Q2 in the above set of fit parameters), which we demonstrate below:

Denote by
{

λ ã : ã ∈ Ã
}

the conditional distributions of Q2. Note, that by assumption, Q2 has full

support and for every ã ∈ Ã, it holds that the marginal of λ ã on I, λ ã
I , is equal to µ . Furthermore, if

minã∈Ã Q(ã)> mina∈A P(a) and minã,b̃∈Ã2 Q(ã, b̃)> mina,b∈A2 P(a,b), then {Q2,ε,n,m, l} is a set of fit

parameters.

Indeed, for all a = i, j,k ∈ A, we have

min
(i, j,k)∈A

P(i, j,k) = min
(i, j,k)∈A

P( j|k, i)P(k|i)µ(i)

< 1
|J|min

i∈I
µ(i)

= min
ã∈Ã

Q(ã).

In the same way, one can show minã,b̃∈Ã2 Q(ã, b̃) > mina,b∈A2 P(a,b), hence {Q2,ε,n,m, l} satisfies the

properties of a set of fit parameters.

It remains to specify the actions the players need to play in order to induce a locally typical input set

S [k∗]: The input set of nature is assumed to be

SI[k∗] =
{

xrã ∈ T ε
rã,l(µ) : ã ∈ Ã

}
. (3.20)

If the agent plays a sequence of the fixed element z, i.e.,

SK [k∗] =
{

zrã = (z,z, . . . ,z) ∈ Krã : ã ∈ Ã
}
, (3.21)
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and the agent matches nature and agent, i.e.,

SJ[k∗] =
{

yrã ∈ T ε
rã,l(λ

ã|xrã ,zrã) : ã ∈ Ã
}
, (3.22)

then for every (xrã ,yrã ,zrã) ∈SI[k∗]×SJ[k∗]×SK [k∗] = S [k∗] it holds that

(xrã ,yrã ,zrã) ∈ T ε
rã,l(λ

ã),

which completes the proof.

Now, if the players are able to induce a distribution Q2 in a block k∗, then the information transmission

process can be resumed if the forecaster observes a hypothetical input set of nature in the following

block, k∗+ 1. However, we need to be precise here. We have to adapt the hypothetical input set of

nature to the fact that the players induced a distribution Q2 in block k∗ instead of the distribution P2

(compare with Definition 14). The sequences in the adapted hypothetical input set need to have slightly

different start and end indices, but the length of each sequence remains ra +m, for all a ∈ A. This stems

from the fact that Ã, the set on which Q2 is defined, is only a subset of A. Hence, for some elements

a ∈ A, the conditional subsequences αn+1
a of the output sequence in block k∗ are empty. The following

Definition clarifies these statements.

Definition 19 (Q-adapted Hypothetical Input Set of Nature). Let k∗ denote a block in the play in which

the distribution Q, as introduced in Lemma 11, is induced. Furthermore, denote by {P2,ε,n,m, l} a set

of fit parameters. The Q-adapted hypothetical input set of nature, denoted by IQ[k∗+ 1] is a set of A

segments of nature’s conditional sequences {xa : a ∈ A}, with the property that a segment ιra+m[k∗+1]

has length ra +m and is locally typical w.r.t. µ:

IQ[k∗+1] =
{

ι
ra+m[k∗+1] ∈ T ε

ra+m,l(µ) : a ∈ A
}
,

and for every a ∈ A,

ι
ra+m[k∗+1] = (xa

minN(a|αk∗ )
, . . . ,xa

maxN(a|αk∗ )+ra
),

where minN(a|αk∗) = N(a|αk∗−1)+ rã−m and N(a|αk∗) = N(a|αk∗−1)+ rã.

Note, that for a given element a = (i, j,k) ∈ A in the above equations for the indices, ã is only defined if

k = z. If k 6= z, then we set rã = 0. �
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Note, that since the length of the sequences in the Q-adapted hypothetical input sets of nature hasn’t

changed, the set of action plans for the agent does also not change. However, we need to adapt the

message set of the forecaster to a block k∗ in which distribution Q is induced:

Definition 20 (The Q-adapted Message Set of the Forecaster). Let Q be a distribution as introduced in

Lemma 11 and let {Q2,ε,n,m, l} be a set of fit parameters that behaves asymptotically appropriately.

As before, denote by
{

λ ã :∈ ∆(Ã) : ã ∈ Ã
}

the set of conditional distributions of Q2. Furthermore,

let SI[k∗] and SK [k∗] denote the input sets of nature and of the agent in block k∗, that satisfy the

properties stated in (3.20) and in (3.21), respectively. For every ã ∈ Ã, set rã = (n+m)Q(ã) and denote

by (xrã−m[k∗],zrã−m[k∗]) the prefix of the first rã−m elements of (xrã [k∗],zrã [k∗])∈SI[k∗]×SK [k∗]. The

message set of the forecaster w.r.t. an element ã ∈ Ã, denoted by Mã
k∗ , is then given by the m-extendable

locally conditional typical set

Mã
k∗ = T ε

rã−m,l(λ
ã|(xrã−m[k∗],zrã−m[k∗]),ext(m)).

The (total) message set, Mk∗ , is given by

Mk∗ = ×
ã∈Ã

Mã
k∗ .

�

The size of the Q-adapted message set of the forecaster can now be directly deduced from Lemma 10:

Corollary 3 (The Size of the Q-adapted Message Set). Let δ (ε) be a function of ε such that δ (ε)→ 0

as ε → 0. Then, for n sufficiently large,

|Mk∗ | ≥ 2(1−δ (ε))n(log2 |J|−2ε d̃−ε),

with d̃ = |Ã| log2 |J|.

Proof. The proof follows directly from Lemma 10.

Observation 6. Observe, that log2 |J|> H(j|i,k,a), and hence |Mk∗ |> |Mk|> |AP|. Therefore, Corol-

lary 1 can be applied to a Q-adapted message set of the forecaster, i.e., there exists a surjective mapping

fk∗ : Mk∗ → AP, which we also refer to as the transmission function w.r.t. block k∗. Moreover, there still
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exists the action plan function fAP : HI→ AP, so that the information transmission process as outlined in

Definition 18 can be directly adapted to blocks k∗ and k∗+1, where distribution Q2 is induced in block

k∗. �

3.5 Proof of Theorem 2

We now have all the tools at hand to finally proof Theorem 2:

Proof of Theorem 2. Let A = (I× J×K) and let P′2 ∈ ∆(A2) be a distribution that satisfies the assump-

tions in Theorem 2. For all ε > 0, we know by Lemma 16 that there exists a distribution P2 ∈ ∆(A2) with

properties stated in Notation 11. In particular, it holds that

∥∥P2−P′2
∥∥

1 ≤ 2ε. (3.23)

Furthermore, let Q2 ∈ ∆(Ã2), with Ã = I×J× z and z ∈ K, denote the distribution introduced in Lemma

11.

Fix ε > 0 and let l,n,m ∈ N be integers where n,m are chosen sufficiently large, so that the following

holds:

• nQ(ã),mQã ∈ N for all ã ∈ Ã

• {P2,ε,n,m, l} is a set of fit parameters that behaves asymptotically appropriately.

We show that there exist strategies (σ ,τ) that together with nature induce a sequence of random vari-

ables, (xt ,yt ,zt), t ≥ 1, s.t. the expected empirical distribution over two action triples after t = nw stages

(for w ∈ N sufficiently large), denoted by Pnw
2 , is close to P2, i.e.,

‖Pnw
2 −P2‖< 2ε +δ (ε), (3.24)

where δ (ε) is a function of ε with δ (ε)→ 0 as ε → 0.

Note, that Pnw is an nw-implementable distribution, and by Remark 25, Pnw is also implementable. By
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equations (3.23) and (3.24) one can then conclude that

∥∥Pnw
2 −P′2

∥∥≤ 4ε +δ (ε),

and since the set of implementable distributions is closed (also by Remark 25), Theorem 2 follows. We

will henceforth focus on the proof of inequality (3.24).

A pair of strategies and nature’s actions induce a play, i.e., a sequence of action triples, which we divide

into blocks of length n. We first show that there exist strategies, (σ ,τ), such that in asymptotically almost

every block k > 1, distribution P2 is induced via a locally typical input set S [k]. To be precise, P2 is not

directly induced by the strategies, but a distribution close to P2. I.e., in every block, the strategies induce

a sequence of action triples, denoted by αn+1[k] (we apply the same notation as introduced in section

3.4.1 (Strategy Outline)), with the property that

∥∥emp2(α
n+1[k])−P2

∥∥< δ (ε).

In the following, when stating that P2 is induced, we think of the induction in the sense of the above

inequality.

Recall that in Corollary 2 and in Lemma 11 we have already developed strategies for singled-out sce-

narios in an induced play. Observe that the above assumptions on the parameters ε,n,m, l and on the

distributions P2 and Q2 are the same as in those scenarios. Therefore, we can now assemble these strate-

gies for an entire play.

In block k = 1 we have n+ 1 stages. We assume that in the first stage of block 1, the players play

arbitrarily. Now, if nature’s input set, SI[1], is typical, i.e., satisfies property (3.10), the players can

induce the distribution Q2 as outlined in Lemma 11. If, in addition, the forecaster observes a Q-adapted

hypothetical input set of nature, IQ[2] for block 2, then the players can induce P2 in block 2 (this follows

directly from Observation 6 and from Corollary 2).

Whenever the players are able to induce a distribution P2 in a block k ≥ 2 and if the forecaster observes

73



a hypothetical input set I [k+1] at the beginning of block k, they are able to induce P2 in block k+1.

Again, this is outlined in Corollary 2.

If, in block k = 1, nature’s input set, SI[1], is not typical, i.e., does not satisfy property (3.10), then we

consider the first block as a lost block and the forecaster cannot transmit any information about future

states of nature. If this happens, the agent still plays a fixed element z and the forecaster plays a random

sequence. In this case, the strategies of the players for block 2 are the same as in block 1: if nature’s

input set, SI[2], satisfies property (3.10), the players can induce Q2 in block 2, etc.

Finally, if in a block k ≥ 1 the players have either induced Q2 or P2 and the forecaster is not able to

observe a (Q-adapted) hypothetical input set of nature for the upcoming block k+1, then P2 cannot be

induced in block k+ 1 and no information can be transmitted from the forecaster to the agent. Hence,

block k+1 is a lost block. Also, observe that in this case no information is sent to the agent in block k,

i.e., the forecaster does not send a message to the agent (nevertheless, the forecaster’s input set SJ[k] still

has property (3.12)). In the lost block k+1, the agent again plays a fixed sequence z and the forecaster

plays a random sequence. In block k+ 2 after the lost block k+ 1, the strategies of the players are the

same as in block 1, i.e., they start anew.

Denote by (xt ,yt ,zt), 1≤ t ≤ n ·w, w ∈N, a sequence of random triples induced by the strategies (σ ,τ)

and by nature’s actions. Furthermore, denote by (x[k],y[k],z[k]) =ααα[k] the kth block of n random triples,

with 1 ≤ k ≤ w. Now, recall, that we call a block k > 1 a lost block, if the players cannot induce P2.

In particular, in a lost block it holds that ‖emp2(ααα[k])−P2‖> δ (ε), where δ (ε) is a function of ε with

δ (ε)→ 0 as ε → 0. Denote by LB the event of such a lost block. In a lost block, at least one of nature’s

conditional sequences is not locally typical w.r.t. µ . Now, recall, that it depends on the observation of

the (possibly Q-adapted) hypothetical input set of nature in block k, whether that block is lost or not.

More precisely, if, for every a ∈ A, the sequences in the hypothetical input set are locally typical w.r.t.

µ , block k is not lost. Now, by Lemma 18, it holds that for every a ∈ A, and for every segment of ra +m

elements in nature’s (random) conditional sequence (note, that ra +m is the length of a sequence in the

hypothetical input set),

Pr(xra+m ∈ T ε
ra+m,l(µ))→ 1 as n→ ∞.
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It directly follows that for the complement of LB, which we call a good block, or GB,

PR(GB) = PR(‖emp2(ααα[k])−P2‖ ≤ δ (ε))→ 1 as n→ ∞.

Therefore, it is indeed the case that in asymptotically almost every block k > 1 the strategies induce a

good block.

We conclude the proof by showing that the expected empirical distribution over pairs of the random

sequence (xt ,yt ,zt), denoted by Pnw
2 , is close to P2, i.e., we prove

‖Pnw
2 −P2‖< δ (ε)+2ε. (3.25)

First, by the law of total expectation, and for every k > 1, we have

E[emp2(ααα[k])] = E[emp2(ααα[k])|GB]PR(GB)+E[emp2(ααα[k])|LB]PR(LB),

therefore, for n sufficiently large,

‖E[emp2(ααα[k])]−P2‖< ‖E[emp2(ααα[k])|GB]−P2‖+ ε

< δ (ε)+ ε.

It follows, that if w is sufficiently large,

‖Pnw
2 −P2‖= ‖E[emp2(xt ,yt ,zt)]−P2‖

=
1
w

∥∥∥∥∥E
[

w

∑
k=1

emp2(ααα[k])

]
−wP2

∥∥∥∥∥
=

1
w

∥∥∥∥∥ w

∑
k=1

E [emp2(ααα[k])]−wP2

∥∥∥∥∥
≤ 1

w
‖E [emp2(ααα[1])]−P2‖+

1
w

w

∑
k=2
‖E[emp2(ααα[k])]−P2‖

≤ δ (ε)+2ε,

which completes the proof.
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Part II

Model 2
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Chapter 1

The Properties of Model 2

We now introduce a second model that is more closely related to the model in [6]. The reader will

notice that other than in the first model, the forecaster’s actions do not influence the players’ payoff. The

forecaster’s only task is to submit her knowledge about future states of nature. The structure of the payoff

function hence reduces the complexity of the proofs of the main theorems to an extent. Nevertheless, we

cannot adapt the methods from [6] to this model one to one. The key idea here is to introduce another

concept, called block distributions, that prove to be useful in applying the results from [6], especially in

the proof of the second main theorem.

1.1 The Description of the Model

Let us first present the features of the new model. As before, we denote the action sets of nature, fore-

caster and agent by I, J and K respectively. We will consider a repeated game, and in each stage t ≥ 1,

the actions played by nature, forecaster and agent are denoted by xt ∈ I, yt ∈ J and zt ∈ K, respectively.

Just like in Model 2, the team, that again consists of the forecaster and the agent, is assigned a payoff

per stage. This time, it does not depend on the forecaster’s actions, but only on agent’s and on nature’s

actions in the current stage, as well as on the agent’s actions in the previous stage. Hence, the stage-

payoff function is given as follows:

gt : K× I×K→ R.

The assumptions on the knowledge of the players are similar to the model in [6]. At the beginning of
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a repeated game, the forecaster can observe all future states of nature. She can also observe the past

play during the game. The agent, on the other hand, does not have any knowledge at the beginning of

the game and in every stage t > 1, she can only observe the past play. More precisely, the forecaster’s

strategy, denoted by σ = (σt)t , is expressed in dependence of her observation of nature’s sequence of

actions, and of her observation of the past play. That is, in every stage t > 1,

σt : IN× Jt−1×Kt−1→ J

describes the action of the forecaster, yt , in stage t. The agent’s strategy, given by τ = (τt)t , is expressed

in dependence of the past play, i.e., for every stage t > 1,

τt : It−1× Jt−1×Kt−1→ K

describes the action of the agent, zt in stage t.

The assumptions on nature are also identical to the model in [6]: at the beginning of the play, nature

draws a realisation x = x1,x2, . . . ,∈ IN of an i.i.d. sequence i = i1, i2, . . . with law µ .

A pair of strategies (σ ,τ) together with µ induce a sequence of random action triples a1,a2, . . . with

at = (it , jt ,kt), for t ≥ 1. The corresponding induced probability distribution over (I×J×K)N is denoted

by Qµ,σ ,τ .

1.2 Implementable Distributions

In this section, we introduce 2 types of implementable distributions that will be of interest in the up-

coming sections. We will first denote two important distribution that can be deduced from an induced

probability distribution Qµ,σ ,τ .

Notation 15. Denote by Q(t−1,t)
K×(I×K) the marginal distribution of Qµ,σ ,τ on K×(I×K) in stages ((t−1), t).

The average distribution up to stage T ≥ 1 of these distributions is written as

QT
K×(I×K) =

1
T

T

∑
t=2

Q(t−1,t)
K×(I×K),
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and we refer to this distribution as the expected empirical 2-stage distribution. Let us now divide the

stages into consecutive blocks l = 1,2, . . ., each of size T (i.e., we have T stages in each block). Denote

by Q(l;T )
µ,σ ,τ the marginal of Qµ,σ ,τ on block l and denote by

Q̄(r;T )
µ,σ ,τ =

1
r

r

∑
l=1

Q(l;T )
µ,σ ,τ

the average of these marginal distributions up to block r. We call this distribution the expected empirical

T -block distribution. �

Given the above notation, we can now introduce two types of implementable distributions:

Definition 21. A distribution P ∈ ∆(K× (I×K)) is implementable, if there exists a pair of strategies

(σ ,τ), s.t. QT
K×(I×K) → P, for T → ∞. P is called T - implementable, if QT

K×(I×K) = P. The set of

this type of implementable (respectively, T -implementable) distributions is denoted by P (respectively,

P(T )). �

Definition 22. A distribution Q ∈ ∆(IT × JT ×KT ) is implementable, if there exists a pair of strategies

(σ ,τ), s.t. Q̄(r;T )
µ,σ ,τ → Q as r→ ∞. We call Q r- implementable if Q̄(r;T )

µ,σ ,τ = Q. The set of this type of

implementable (respectively, r-implementable) distributions is denoted by Q (respectively, Q(r)). �

Below, we state properties of the sets P and P(t) which directly follow from Remark 1 and Remark 2

in [6]:

Remark 20. [Properties of Sets of Implemebtable Distributions]

• The set of implementable distribution P as denoted in Definition 21 is closed.

• The set of T -implementable distributions, P(T ), is contained in P .

�

1.3 The Information Constraint

Let P be a distribution over K× (I×K), and denote by (k′, i,k) a triple of random variables distributed

according to P. We say that P fulfills the information constraint, if

log |J| ≥ H(k|k′)−H(k|k′, i).
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Equivalently, one can write

log |J| ≥ H(i|k′)−H(i|k,k′).

We can interpret the left-hand side as the information sent from the forecaster to the agent and the right-

hand side as the information used by the agent. The latter is the reduction of uncertainty that k gives

on the conditional random variables i|k′. Note, that the right-hand side is also known as the conditional

mutual information of the random variabes (k, i,k′).
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Chapter 2

Results

We will prove two major results. In the first one, the information constraint defines the set of imple-

mentable distributions:

Theorem 4. Let P ∈ ∆(K × (I×K)) be an implementable distribution with (k′, i,k) ∼ P and i ∼ µ .

Then, P fulfills the information constraint

log |J| ≥ H(i|k′)−H(i|k,k′).

In the second result, we characterise distributions P ∈ ∆(K× (I×K)) that are implementable:

Theorem 5. Let P ∈ ∆(K× (I×K)) be a distribution with full support and with marginal distribution

PI = µ on I and with unique marginal distribution PK on K. Denote by (k′, i,k) a random triple with

(k′, i,k)∼P and let i be independent of k′. If P fulfills the the information constraint, P is implementable.

Remark 21. The assumption in 5 that i is independent of k′ is a necessary technical assumption as we

will see later on in the proof of the Theorem. It reduces the information constraint to

log |J| ≥ H(i)−H(i|k).

Note, that assuming J to be larger in size than I would directly imply this information constraint (since

then log |J| ≥ log |I| ≥ H(i)). The independence assumption, however, does not immediately lead to

the information constraint to be fulfilled (at least not without further assumptions). Hence, however

restrictive this independence assumption may appear regarding the set of distributions we want to de-
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scribe as implementable, it does not restrict the sizes of the action sets and hence does not imply a trivial

(immediate) fulfilment of the information constraint. �

2.1 Proof of Theorem 4

Proof. First, we prove the Theorem for every T -implementable distribution P ∈ ∆(K× (I×K)):

By Lemma 1 in [6] the function f : ∆(K× (I×K))→ R, f (Q) = HQ(i|k,k′) is concave. Recall, that

every T -implementable distribution P ∈ ∆(K × (I ×K)) can be expressed as the expected empirical

distribution of 2-step triples (kt−1, it ,kt) in an induced game up to stage T ≥ 1, P = 1
T ∑

T
t=1 Qt−1,t

K×(I×K).

Therefore, we get

HP(i|k′,k)≥
1
T

T

∑
t=1

HQt−1,t
K×(I×K)

(i|k′,k).

Furthermore,

T

∑
t=1

HQt−1,t
K×(I×K)

(i|k′,k) =
T

∑
t=1

H(it |kt ,kt−1)

=
T

∑
t=1

H(it ,kt |kt ,kt−1)

≥
T

∑
t=1

H(it ,kt |i1, . . . , it−1, j1, . . . jT ,k1, . . . ,kt−1,kt) (2.1)

=
T

∑
t=1

H(it ,kt |i1, . . . , it−1, j1, . . . , jT ,k1, . . . ,kt−1) (2.2)

= H(i1, . . . , iT ,k1, . . . ,kT |j1, . . . , jT )

= H(i1, j1,k1, . . . , iT , jT ,kT )−H(j1, . . . , jT )

≥ H(i1, . . . , iT )−T log |J|

= T (H(i)− log |J|),

where inequality (2.1) follows from the monotonicity property of the entropy (conditioning reduces en-

tropy) and equality (2.2) is due to the fact that kt is a deterministic function of the past. In the remaining

rearrangements the chain rule is applied, as well as the property of maximum entropy. Finally, note that

the last equality results from the assumption that nature’s sequence i1, . . . , iT is i.i.d.
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Hence, we have

T HP(i|k′,k)≥ T (H(i)− log |J|) (2.3)

≥ T (HP(i|k′)− log |J|). (2.4)

We have thus shown that every T -implementable distribution fulfills the information constraint.

Now, recall that every implementable distribution P′ ∈P is the limiting distribution of a T -implementable

distribution. Since the mappings P 7→ HP(i|k,k′), and P 7→ HP(i|k′) are uniformly continuous, we can

conclude that the Information Constraint must also hold for all implementable distributions.

2.2 Proof of Theorem 5

The proof consists of several steps. The rough outline is as follows. We first define a so-called block

distribution Q̃ of a sequence of random variables with transition probabilities derived from P. We can

then use the results in [6] to show that Q̃ is implementable if P (as given in Theorem 5) satisfies the

information constraint. In a final step we will then show that the strategies that implement Q̃ also

implement P.

Notation 16. Let P denote a distribution over K× (I×K) with identical properties as in Theorem 5.

Furthermore, for every (z′,x,z) ∈ K× (I×K), we write

P(k′, i,k = z′,x,z) = P(z′,x,z),

P(i,k = x,z) = PI×K(x,z),

P(k = z) = PK(z),

P(i = x) = µ(x), and

P(i,k = x,z|k′ = z′) = P(x,z|z′) = P(z′,x,z)
PK(z′)

.

�

We will now define a markov chain with a transition matrix derived from P:

Definition 23. Denote by ((it ,kt); t ∈ N) a time-homogeneous markov chain with state space I×K,
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initial distribution PI×K and with the following property: for every n ≥ 1 and for every sequence

((x1,z1), . . . ,(xn−2,zn−2),(x′,z′),(x,z)) ∈ (I×K)n, let

P(in,kn = x,z|(i1,k1 = x1,z1), . . . ,(in−2,kn−2 = xn−2,zn−2),(in−1,kn−1 = x′,z′))

= P(in,kn = x,z|in−1,kn−1 = x′,z′)

= P(in,kn = x,z|kn−1 = z′)

= P(x,z|z′)

The transition matrix of this markov chain is given by

Pt : (I×K)× (I×K)→ [0,1],

with Pt(x′,z′;x,z) = P(x,z|z′), ∀x′,∈ I.

�

Properties of the Markov Chain

Proposition 1. The markov chain ((it ,kt); t ∈ N) with transition matrix Pt is stationary with stationary

distribution PI×K .

Proof. First, since P has full support, the transition matrix Pt has full support and thus the markov chain

has a unique stationary distribution. Further, consider PI×K as a stochastic row vector of length |I×K|.

We show

PI×KPt = PI×K .

84



For every (x,z) ∈ I×K, we have

∑
(i,k)∈I×K

PI×K(i,k)Pt(i,k;x,z) = ∑
(i,k)∈I×K

PI×K(i,k)P(x,z|k)

= ∑
k∈K

P(x,z|k)∑
i∈I

PI×K(i,k)

= ∑
k∈K

P(x,z|k)PK(k)

= ∑
k∈K

P(k,x,z)

= PI×K(x,z)

Proposition 2. For n ∈N+ let in = i1, . . . , in be a sequence of random variables drawn from the markov

chain ((it ,kt); t ∈ N) with transition matrix Pt . Then, in is an i.i.d. sequence with it ∼ µ , t ∈ (1, . . . ,n).

Proof. Let (x1, . . . ,xn)∈ In. To simplify the notation, we replace P(i1 = x1, . . . , in = xn) by P(x1, . . . ,xn).

We will show P(x1, . . . ,xn) = ∏
n
t=1 µ(xt).

For t ∈ (1, . . . ,n) and for any integer j, 1≤ j < t, we have

P(xt |xt−1, . . . ,xt− j) = ∑
z′∈K

P(xt |xt−1, . . . ,xt− j,kt−1 = z′)P(kt−1 = z′|xt−1, . . . ,xt− j)

= ∑
z′∈K

P(xt |z′)P(kt−1 = z′|xt−1, . . . ,xt− j)

= ∑
z′∈K

P(xt)P(kt−1 = z′|xt−1, . . . ,xt− j)

= P(xt) = µ(xt),

where the third equality is due to the fact that i is independent of k′. Hence,

P(x1, . . . ,xn) = P(x1)
n

∏
t=2

P(xt |xt−1, . . . ,x1)

=
n

∏
t=1

P(xt)

=
n

∏
t=1

µ(xt).
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Information Constraint of a block distribution Q̃

We now define a block distribution Q̃ ∈ ∆(IT × JT ×KT ) that is derived from the above markov chain:

Definition 24. Let T be a fixed integer and let (iT ,kT ) = (i1,k1, . . . , iT ,kT ) be a sequence of random

variables drawn from the markov chain ((it ,kt); t ∈ N) with transition matrix Pt . Set (iT ,kT ) ∼ P̃ ∈

∆(IT ×KT ). Furthermore, let jT = (j1, . . . , jT ) be an i.i.d. sequence with jt ∼ UJ , where UJ denotes the

uniform distribution over J. We write jT ∼U⊗T
J and we let jT to be independent of iT and kT . The block

distribution Q̃ ∈ ∆(IT × JT ×KT ) derived from the markov chain ((it ,kt); t ∈ N) is then defined as the

product distribution of P̃ and U⊗T
J , i.e.

Q̃ = P̃×U⊗T
J .

�

Remark 22. As an immediate consequence from Proposition 2, the block distribution Q̃ defined above

has the marginal distribution Q̃I = µ⊗T on IT . �

The following result introduces the information constraint on block distributions and can be directly

inferred from [6].

Lemma 12. For every T ∈ N, let Q denote a distribution over IT × JT ×KT , with marginal QI = µ⊗T

on IT . If Q satisfies the following inequality

HQ(iT , jT |kT )≥ HQ(iT ), (2.5)

then Q is implementable. We will refer to inequality 2.5 as the GHN- information constraint, or simply

the GHN IC.

The next Lemma establishes the link between the information constraint defined in this paper and the

GHN IC:

Lemma 13. Let Q̃ ∈ ∆(IT × JT ×KT ) be defined as in Definition 24. If P satisfies the information

constraint

log |J| ≥ H(k|k′)−H(k|k′, i),
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then Q̃ satisfies the GHN IC

HQ̃(i
T , jT |kT )≥ HQ̃(i

T ).

Proof. Since jT is assumed to be independent of iT and kT , we have

HQ̃(i
T , jT |kT ) = HQ̃(i

T |jT ,kT )+HQ̃(j
T |kT )

= HQ̃(i
T |kT )+T H(UJ).

Now,

HQ̃(i
T |kT ) = HP̃(i

T |kT ) = HP̃(i
T ,kT )−HP̃(k

T )

=
T

∑
t=1

HP̃(it ,kt |it−1,kt−1, . . . , i1,k1)−
T

∑
t=1

HP̃(kt |kt−1, . . . ,k1)

=
T

∑
t=1

HP̃(it ,kt |it−1,kt−1)−
T

∑
t=1

HP̃(kt |kt−1)

=
T

∑
t=1

HP(it ,kt |kt−1)−
T

∑
t=1

HP(kt |kt−1)

= T (HP(i,k|k′)−HP(k|k′))

= T (HP(i|k,k′)+HP(k|k′)−HP(k|k′))

= T HP(i|k).

Furthermore, note, that since we assumed i to be independent of k′, the information constraint of P

reduces to

log |J| ≥ HP(i)−HP(i|k).

Also, note that H(UJ) = log |J|, hence

T H(UJ)≥ T (HP(i)−HP(i|k)).
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Therefore, it follows that

HQ̃(i
T |kT )+T H(UJ)≥ T HP(i|k′)+T (HP(i)−HP(i|k))

≥ T HP(i)

= HQ̃(i
T ),

where the last equality follows due to Proposition 2.

Lemma 12 and Lemma 13 can be combined into the following Corollary:

Corollary 4. Let Q̃ be the distribution as constructed in Definition (24). If P satisfies the information

constraint

log |J| ≥ H(k|k′)−H(k|k′, i),

then Q̃ is implementable.

Even though the Corollary follows immediately from Lemma 12 and from Lemma 13, we nevertheless

sketch the proof of this Corollary (which is not intended to be exhaustive). The approach is exactly the

same as in [6], but since Q̃ is a block distribution, we first have to adjust some of the applied notation

and concepts. We then provide an outline of the construction of the strategies (σ ,τ) that implement Q̃.

Since we will (later) deduce that the strategies that implement Q̃ also implement P, many of the concepts

and notations that we establish in the following will be applied in the proof of the implementation of P.

Let us first introduce empirical T -block distributions:

Definition 25 (Empirical T-Block Distribution). Let A be a finite set and let n,T ∈ N, such that n is a

multiple of T , i.e., we write n = pT , for p > 0. Let an = a1,a2, . . . ,an denote a sequence in An, which

can also be written as blocks of length T :

an = a1,a2, . . . ,ap with al = a(l−1)T+1, . . . ,alT , l ∈ (1, . . . , p) .

Given a (block-) element αT ∈ AT , we define the block-wise relative frequency of αT in a sequence an

as follows:

empT (an)[αT ] = 1
p

∣∣∣{l ≥ 1 : al = α
T
}∣∣∣ .
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We call empT (an) the empirical T-block distribution of an. �

Remark 23. Note, that by block-wise relative frequency of a block-element αT ∈ AT in an we mean the

relative number of times the block-element αT appears in the fixed blocks a1,a2, . . . ,ap. This definition

needs to be distinguished from the relative frequency of a block-element in an, which accounts for

the relative number of appearances of a block-element throughout the whole sequence an, irrespective

of fixed blocks. The block-wise empirical frequency can hence be treated as the block-version of the

relative frequency of a single element α ∈ A in a given sequence an. �

Notation 17. [Actions played in Long Blocks] For given integers r,m,T ∈ N with m = rT , we call a

block of length m that consists of r blocks of T stages a long block. The sequences played by nature,

forecaster and agent in a long block l are denoted by x[l],y[l] and z[l] respectively. For every long block

l, the sequence in l can either be given as a sequence of (stage) action triples, denoted by

(x[l],y[l],z[l]) = (x1[l],y1[l],z1[l], . . . ,xm[l],ym[l],zm[l]),

with (xt [l],yt [l],zt [l]) ∈ I× J×K, ∀t ∈ (1, . . . ,m), or as a sequence of r (small) blocks of action triples

of length T , denoted by

(x[l],y[l],z[l]) = (xT
1 [l],y

T
1 [l],z

T
1 [l], . . . ,x

T
r [l],y

T
r [l],z

T
r [l]),

with (xT
1 [l],y

T
1 [l],z

T
1 [l]) ∈ XT ×Y T ×ZT , ∀b ∈ (1, . . . ,r). �

Definition (Stage-and Block-Hamming Distance with Empirical T -Block Distributions). Let m denote

the length of a long block as in Notation 17, i.e., set m = rT . Let Q̃I ∈ ∆(In) and let xm ∈ In and

x̃m ∈ T T
m (Q̃I) 6= /0. Recall that both sequences can be written as sequences of blocks of length T as in

Definition 25. We define the block hamming distance of (xm, x̃m) as the number of blocks 1≤ b≤ r with

xT
b 6= x̃T

b , where xT
b (x̃T

b ) denotes block b in xm (x̃m). The block hamming distance of (xm, x̃m) needs to

be distinguished from the usual (stage-) hamming distance of (xm, x̃m), which is given by the number of

stages 1≤ t ≤ rT with xm
t 6= x̃m

t . �

We are now able to provide an outline of the construction of strategies (σ ,τ) that implement a distribu-

tion Q̃ as stated in Corollary 4:
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Implementing Q̃

We divide the stages of the game into long blocks of length m with m = rT as in Notation 17, s.t. every

long block consists of r blocks of T stages. W.l.o.g., we assume that T T
m (Q̃) 6= /0.

The Strategies: The strategies (σ ,τ) are based on the following mechanism. Before the start of each

long block l > 0, the forecaster observes the sequence played by nature in the next long block l + 1,

x[l+1]. She then chooses a sequence x̃[l+1]∈ T T
m (Q̃I) (note that since T T

m (Q̃) 6= /0, we have T T
m (Q̃I) 6= /0)

in such a way, so that it minimises the block- hamming distance to x[l +1], as well as the (stage-) ham-

ming distance to x[l+1] (the minimization of the (stage-) hamming distance is not a requirement for the

implementation of Q̃, however, this additional assumption simplifies the proof of the implementation of

P). Since Q̃ satisfies the GHN IC, in each block l ≥ 1, the forecaster is able to play a sequence y[l], that

entails a message to the agent about what to play in the subsequent long block [l +1]. In block l +1 the

forecaster and agent are then able to play sequences that together with the slightly changed sequence of

nature, x̃[l +1], induce Q̃, i.e., (x̃[l],y[l],z[l]) ∈ T T
m (Q̃), ∀l > 1.

The Expected Empirical Distribution: Let us now consider a long game with n long blocks, i.e., let

N = nrT denote the length of the long game. Following the proof of Theorem 2 in [6], the strategies

(σ ,τ) implement a sequence of random variables (xt ,yt ,zt)t , where (xt)t is the i.i.d. sequence of nature

with xt ∼ µ , as well as the sequence (x̃t ,yt ,zt)t , for 1≤ t ≤ N (note, that a realization of (x̃t)t in a long

block is an element in T T
m (µ⊗T ). We can also denote these sequences as sequences of block sequences,

i.e.,

(xt ,yt ,zt)t = (xT
b ,y

T
b ,z

T
b )b, (2.6)

and

(x̃t ,yt ,zt)t = (x̃T
b ,y

T
b ,z

T
b )b, (2.7)

for 1 ≤ b ≤ n. Observe, that by construction, every realization of (x̃T
b ,y

T
b ,z

T
b )b has the property that in

every long block after the first, it is T-block typical w.r.t. Q̃. Hence, the expected empirical distribution

of a long block in (x̃T
b ,y

T
b ,z

T
b )b is Q̃:

E[empT (x̃[l],y[l],z[l])] = Q̃ ∀l > 1.
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It will be useful to observe the following (equivalent) notation. If (x̃T
b ,y

T
b ,z

T
b )∼ QT

b , we have

1
r

r

∑
b=1

QT
b = Q̃. (2.8)

To finalise the sketch of the proof of Corollary 4, one can follow the exact same steps as in the proof of

Theorem 2 in [6], to come to the conclusion that the strategies (σ ,τ) implement Q̃.

Observe, that we assumed that T T
m (Q̃) 6= /0. In the following remark, one can see that this assumptions is

not restrictive, since even if T T
m (Q̃) = /0, we can approximate Q̃ by a distribution Q̄, such that T T

m (Q̄) 6= /0.

Remark 24. If T T
m (Q̃) = /0, then by Lemma 4 in [6], it holds that for all ε > 0 there exists a distribution

Q̄ ∈ ∆(IT × JT ×KT ), s.t. T T
m (Q̃) 6= /0 with the following properties:

•
∥∥Q̄− Q̃

∥∥< 7ε

•
∥∥Q̄I−µ⊗T

∥∥< 7ε

•
∥∥P̄− P̃

∥∥< 7ε

•
∥∥P̄t−1;t −P

∥∥< 7ε , ∀t ∈ (1, . . . ,T −1)

and

• HQ̄(i
T , jT |kT )−HQ̄(i

T )≥ ε ,

where P̄ denotes the marginal of Q̄ on IT ×KT and P̄t−1;t denotes the marginal of P̄ on (K× (I×K)) at

stages (t−1; t). �

Implementation of P

Let us quickly recap our approach so far. We started off with a distribution P ∈ ∆(K× (I×K)) that

satisfies the properties in Theorem 5. In the previous paragraphs we constructed a (block-) distribution

Q̃ ∈ ∆(IT × JT ×KT ) which we derived from P in Definition 24 and we were able to show that Q̃ is

implementable if P satisfies the information constraint. In the following, we will show that the strategies

that implement Q̃ in Corollary 4 also implement P. An important step in this proof is the next Theorem.

Theorem 6. Fix ε > 0. Let P ∈ ∆(K× (I×K)) be a distribution that satisfies the properties in Theorem

5. Let (σ ,τ) be the strategies that implement Q̃ from Definition 24 and set n,r, t ∈ N with N = nrT .
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Furthermore, let (xt ,yt ,zt)t , 1 ≤ t ≤ N denote the sequence of random actions induced by (σ ,τ) and

by nature’s i.i.d. sequence (xt)t . If PN
µ,σ ,τ denotes the expected empirical 2-stage distribution over

(K× (I×K)) of (xt ,yt ,zt)t , then PN
µ,σ ,τ is close to P in the L1-norm i.e.,

∥∥PN
µ,σ ,τ −P

∥∥< 19ε.

We will split the proof of Theorem 6 into several Lemmas. First, consider the following.

Lemma 14. Let P̃m
µ,σ ,τ denote the expected empirical 2-stage distribution over (K× (I×K)) in a long

block l > 1 of length m = rT of the sequence (x̃t ,yt ,zt)t , which is induced by the strategies (σ ,τ) of the

players that implement Q̃. Then,

P̃m
µ,σ ,τ → P as T → ∞.

Proof. Fix a long block l > 1, and for 1≤ t ≤m = rT denote by Pt−1;t ∈ ∆(K× (I×K)) the distribution

of the random triple (zt−1, x̃t ,zt). Furthermore, for a (small) block b in l with 1≤ b≤ r denote by Pt−1;t
b

the distribution of the random 2-stage triple (zt−1
b , x̃t

b,z
t
b), where 1 ≤ t ≤ T . (the reader should observe

that these distributions are not different from each other, they just differ w.r.t. the notation of a random

triple in a (small) block, b, or in a long block. Furthermore, recall that the marginal of Q̃ on IT ×KT

is given by P̃, and by Definition 24, the marginal of P̃ on K× (I×K) at stages (t− 1, t) is P for every

t ∈ (2, . . . ,T ). Let P̃t−1;t denote the marginal of P̃ on (K× (I×K)) at stages (t−1; t).

Now, if T T
m (Q̃) 6= /0, then by equation (2.8), it holds that

1
r

r

∑
b=1

Pt−1;t
b = P̃t−1;t = P. (2.9)

and

P̃rT
µ,σ ,τ =

1
rT

rT

∑
t=2

Pt−1;t

= 1
rT

(
T−1

∑
t=2

Pt−1;t +
2T−1

∑
t=T+1

Pt−1;t + . . .+
rT−1

∑
t=(r−1)T+1

Pt−1;t +
r

∑
b=1

PT−1;T
b

)

= 1
rT

(
T−1

∑
t=2

Pt−1;t
1 +

T−1

∑
t=2

Pt−1;t
2 + . . .+

T−1

∑
t=2

Pt−1;t
r +

r

∑
b=1

PT ;T−1
b

)

= 1
rT

(
T−1

∑
t=2

r

∑
b=1

Pt−1;t
b +

r

∑
b=1

PT−1;T
b

)
.
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Therefore, by substituting equation (2.9) into the last equation above, we can conclude that

P̃rT
µ,σ ,τ =

1
rT

(
(T −2)rP+

r

∑
b=1

PT−1;T
b

)
→ P for T → ∞.

The computation of P̃rT
µ,σ ,τ changes slightly if T T

m (Q̃) = /0, but the result is not affected. By Remark 24,

we know that for all ε > 0 there exists a distribution Q̄ ∈ ∆(IT × JT ×KT ) with T T
m (Q̄) 6= /0 that is close

to Q̃ and has marginal P̄ on IT ×KT . Hence, the result in (2.8) changes to

1
r

r

∑
b=1

QT
b = Q̄,

and we have to replace equation (2.9) by

1
r

r

∑
b=1

Pt−1;t
b = P̄t−1;t ,

where P̄t−1;t denotes the marginal of P̄ on stages (t−1, t). Then, since
∥∥P̄t−1;t −P

∥∥< 7ε , ∀t ∈ (2, . . . ,T ),

we can deduce that

1
rT

T−1

∑
t=2

P̄t−1;t → P as T → ∞.

So far, we have shown that the expected empirical distribution over triples (zt−1, x̃t ,zt) in (x̃t ,yt ,zt)t in

every long block l after the first is arbitrarily close to P. One can summarise the result in the following

Corollary:

Corollary 5. For N = nrT , if P̃N
µ,σ ,τ denotes the expected empirical 2-stage distribution over (K× (I×

K)) of the sequence (x̃t ,yt ,zt)t for 1≤ t ≤ N, then, assuming T large enough,

∥∥P̃N
µ,σ ,τ −P

∥∥< ε.

In the final Lemma, we connect the expected empirical 2-stage distribution over (K× (I×K)) of the

sequence (x̃t ,yt ,zt)t with the expected empirical 2-stage distribution over (K× (I×K)) of the sequence

(xt ,yt ,zt)t :

Lemma 15. Fix ε > 0. Let N = rnT and let r > |I|2
ε3 . Let PN

µ,σ ,τ be given as in Theorem 6 and let P̃N
µ,σ ,τ
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be given as in Lemma 14. Then, ∥∥P̃N
µ,σ ,τ −PN

µ,σ ,τ

∥∥< 18ε.

Proof. The proof of this Lemma can be deduced from the proof of Theorem 2 and from Corollary 2,

both in [6]. The ideas from [6] only need to be adapted to 2− stage empirical distributions. In particular,

we make use of the following notation.

For (xn,ym) ∈ (I×K)m, we write empK×(I×K)
2 (xn,yn) to denote the following 2- stage empirical distri-

bution:

emp2(xn,yn)[k′, i,k] = 1
n−1 N(k′, i,k|xn,yn), ∀(k′, i,k) ∈ K× (I×K).

Now, in a first step, we show that for every large block l > 0:

∥∥∥empK×(I×K)
2 (x̃[l],z[l])− empK×(I×K)

2 (x[l],z[l])
∥∥∥≤ 2

rT

rT

∑
t=1

1x̃t [l]6=xt [l].

To simplify the notation, we write (x̃,z) and (x,z) instead of (x̃[l],z[l]) and (x[l],z[l]), with (x̃,z),(x,z) ∈

(I×K)rT . Furthermore, let B∗ ⊂ K× (I×K), s.t. emp2(x̃,z)[k′, i,k]> emp2(x,z)[k′, i,k], ∀(k′, i,k) ∈ B∗,

and let B∗I denote the respective subset on I. Then,

∥∥∥empK×(I×K)
2 (x̃[l],z[l])− empK×(I×K)

2 (x[l],z[l])
∥∥∥= ∑

(k′,i,k)
∈K×(I×K)

∣∣emp2(x̃,z)[k′, i,k]− emp2(x,z)[k′, i,k]
∣∣

≤ 2 ∑
(k′,i,k)∈B∗

∣∣emp2(x̃,z)[k′, i,k]− emp2(x,z)[k′, i,k]
∣∣

≤ 2
rT ∑

i∈B∗I

(|{t ≥ 1 : x̃ = i}|− |{t ≥ 1 : xt = i}|)

= 2
rT

rT

∑
t=1

1x̃t 6=xt

Now, applying Corollary 2 from [6], we have

P(
rT

∑
t=1

1x̃t [l]6=xt [l] ≥ 8rT ε)≤ |I|
2

ε2rT
,

and hence, due to the choice of r, P(∑rT
t=11x̃t [l]6=xt [l] ≥ 8rT ε) ≤ ε . With this, we can then conclude that
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for 1≤ t ≤ N,

∥∥P̃N
µ,σ ,τ −PN

µ,σ ,τ

∥∥= ∥∥∥E[empK×(I×K)
2 (x̃t ,zt)t ]−E[empK×(I×K)

2 (xt ,zt)t ]
∥∥∥

≤ 2
rT

E
rT

∑
t=1

1x̃t 6=xt

=
2

rT

rT

∑
j=1

P(
rT

∑
t=1

1x̃t 6=xt ≥ j)

≤ 2
rT

(8εrT + εrT )

= 18ε,

where we use the fact that the sum ∑
rT
t=11x̃t 6=xt is minimised.

One can now immediately observe that Theorem 6 follows from the results in Corollary 5 and in Lemma

15 by applying the triangle inequality.

Proof of Theorem 5

Let us now conclude this section with the proof of Theorem 5, which is a Corollary of Theorem 6.

Proof of Theorem 5. Let P ∈ (K× (I×K)) denote a distribution that satisfies the properties in Theorem

5. By Theorem 6, we know that there exist strategies (σ ,τ) that N-implement a distribution PN
µ,σ ,τ

(the expected empirical 2-stage distribution over (K× (I×K))), where PN
µ,σ ,τ is close to P in the L1-

norm. The result now follows, since by Remark 20, the set of implementable distributions is closed and

contains the set of N-implementable distributions.

95



Appendix A

Complementary Results for Chapter 1 in

Part 1

Remark 25. Every distribution Q ∈Q(t) is implementable, i.e., Q(t) is contained in Q. �

Proof. Let Q be a t-implementable distribution, i.e., following Notation 4, there exist strategies (σ ,τ),

s.t.

Q = 1
t−1

t−1

∑
t ′=1

Pt ′:2
U,σ ,τ .

We will show that there are strategies (σ ′,τ ′), s.t.

1
t−1

t−1

∑
t ′=1

Pt ′:2
U,σ ′,τ ′ → Q as t→ ∞.

Consider the following game. Assume that the first t stages are induced by the strategy pair (σ ,τ), so

that in those first t stages Q is implemented. After the first t stages we repeat the same strategy, i.e., we

induce the stages t +1, t +2, . . . ,2t with the same strategy pair, (σ ,τ). We repeat this process n times,

i.e., we construct blocks of t stages, such that in each block the random sequences of action triples are

induced by the strategy pair (σ ,τ). Hence, if we consider each block seperately, we t-implement distri-

bution Q in each such block.

Now, denote by (σ ′,τ ′) the strategy pair that implements the first tn stages of the game we just described.

We can think of (σ ′,τ ′) as the n-times repeated strategy pair (σ ,τ). The average distribution, Q′, which

is implemented after the first tn stages of the game and which is induced by (σ ′,τ ′) can be written as
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follows:

Q′ = 1
nt−1

nt

∑
t ′=1

Pt ′:2
U,σ ′,τ ′ . (A.1)

The sum in the above equation can be rewritten as follows:

nt

∑
t ′=1

Pt ′:2
U,σ ′,τ ′ =

t−1

∑
t ′=1

Pt ′:2
U,σ ,τ +

2t−1

∑
t ′=1

Pt ′:2
U,σ ,τ + . . .+

nt−1

∑
t ′=1

Pt ′:2
U,σ ,τ (A.2)

+Pt:2
U,σ ′,τ ′+P2t:2

U,σ ′,τ ′+ . . .+P(n−1)t:2
U,σ ′,τ ′ (A.3)

= n(t−1)Q+
n−1

∑
b=1

Pbt:2
U,σ ′,τ ′ . (A.4)

Note that every term in ∑
n−1
b=1 Pbt:2

U,σ ′,τ ′ denotes the distribution of two consecutive action triples at a tran-

sition point from one block of t stages to the next.

We can now show for every n ∈ N that the distance between Q and Q′ in the L1-norm converges to zero

as t→ ∞:

Since

Q′ = n(t−1)
nt−1 Q+ 1

nt−1

n−1

∑
b=1

Pbt:2
U,σ ′,τ ′ ,

we have ∥∥Q−Q′
∥∥≤(1−

n− n
t

n− 1
t

)
‖Q‖+ 1

nt +1

∥∥∥∥∥n−1

∑
b=1

Pbt:2
U,σ ′,τ ′

∥∥∥∥∥ .
Hence, since both terms on the right-hand side in the expression above converge to 0 as t→∞, the result

follows.
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Appendix B

Complementary Results for Chapter 2 in

Part 1

Proposition 3. Let µ ∈ ∆(I) be a convex combinations of two distributions µ0,µ1 ∈ ∆(I), i.e., µ =

β0µ0 +β1µ1 and let X ∼ µ . Furthermore, denote by Y a binary indicator variable with the following

property: let X ∼ µ0, if Y = 0 and let X ∼ µ1, if Y = 1. Then,

β0D(µ0||µ)+β1D(µ1||µ)≤ H(Y )

with D(·||·) denoting the Kullback-Leibler distance.
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Proof.

β0D(µ0||µ)+β1D(µ1||µ) = β0 ∑
x∈I

µ0(x)(log(µ0(x))− log(µ(x)))

+β1 ∑
x∈I

µ1(x)(log(µ1(x))− log(µ(x)))

=−∑
x∈I

(β0µ0 +β1µ1)(x) log(µ(x))

+β0 ∑
x∈I

µ0(x) log(µ0(x))+β1 ∑
x∈I

µ1(x) log(µ1(x))

=−∑
x∈I

µ(x) log(µ(x))−β0H(µ0)−β1H(µ1)

= H(X)−H(X |Y )

= H(Y )−H(Y |X)

≤ H(Y )
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Appendix C

Complementary Results for Chapter 3 in

Part 1

C.1 Approximation of Probabilities

Lemma 16. Let µ ∈ ∆(I) be a distribution with full support. For all ε > 0 and for all P′2 ∈ ∆(A2)

(A = I × J×K) with P′2(i|a) = µ(i), for all i ∈ I and a ∈ A, identical marginals P′ on A, and with

HP′2
(i, j|k, i′, j′,k′)≥ HP′2

(µ), ∃P2 ∈ δ (A2) with full support, s.t.

HP2(i, j|k, i′, j′,k′)−H(µ)≥ ε (C.1)

and ∥∥P2−P′2
∥∥

1 ≤ 2ε (C.2)

Proof. Fix ε > 0. Denote by PI the marginal of P on I. Observe, that since P′2(i|a) = µ(i), it also holds

that the marginal of P′ on I, PI , is equal to µ .

Let R = (P′I ×UJ×UK) and R2 = R×R, where UJ and UK denote the uniform distribution on J and K

respectively, define P2 = εR2 +(1− ε)P′2. Observe, that P2 has full support (since R2 has full support)

and it holds that P2(i|a) = µ(i), for all i ∈ I and a ∈ A.
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Now, by the concavity of the entropy function P2 7→ HP2(i, j|k, i′, j′,k′), it holds that

HP2(i, j|k, i′, j′,k′)≥ εHR2(i, j|k, i′, j′,k′)+(1− ε)HP′2
(i, j|k, i′, j′,k′)

≥ εHR2(i)+ ε log2 |J|+(1− ε)H(µ)

= ε +H(µ).

Hence, it follows that

HP2(i, j|k, i′, j′,k′)−H(µ)≥ ε.

Furthermore,

∥∥P2−P′2
∥∥

1 =
∥∥εR2 +(1− ε)P′2−P′2

∥∥ (C.3)

= ε
∥∥R2−P′2

∥∥ (C.4)

≤ 2ε. (C.5)

C.2 Locally Typical Sequences

Lemma 17. If N > 2l
ε

, then every l-locally typical sequence xN ∈ T ε
N,l(P) is 2ε-typical, i.e.,

| 1N N(a|xN)−P(a)|< 2ε ∀a ∈ A.

Proof. Let xN ∈ T ε
N,l(P). First, let N = ql, 1≤ q ∈ N. Then, for every a ∈ A:

|N(a|xN)−NP(a)|=

∣∣∣∣∣q−1

∑
t=0

(N(a|xN
tl+1,l)− lP(a))

∣∣∣∣∣
≤

q−1

∑
t=0
|N(a|xN

tl+1,l)− lP(a)|

< qlε,

where the last inequality follows directly from the definition of l-locally typical sequences.
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Now, let N = ql + ld , with 0 < ld < l. Denote by xql the first ql coordinates and by xld the last ld

coordinates of xN . Then,

|N(a|xN)−nP(a)|= |N(a|xql)−qlP(a)+N(a|xld )− ldP(a)|

≤ |N(a|xql)−qlP(a)|+ |N(a|xld )− ldP(a)|. (C.6)

From above, we know that |N(a|xql)−qlP(a)|< qlε . Furthermore, we have

|N(a|xld )− ldP(a)|< l(1+ 1
ε
)ε,

since for every t ∈ (1, . . . ,N− l),

N(a|xld )− ldP(a)≤ N(a|xN
t,l)

< l(P(a)+ ε)

< l(1+ ε)

= l(1+ 1
ε
)ε,

and

N(a|xld )− ldP(a)>−ldP(a)

>−l

>−l(1+ 1
ε
)ε.

Returning to inequality (C.6), we conclude

|N(a|xN)−NP(a)|< qlε + l(1+ 1
ε
)ε,

and for N large enough, i.e., N > l(1+ 1
ε
), or, more generously, for N > 2l

ε
, we have

|N(a|xn)−NP(a)|< 2Nε.
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The following Corollary follows directly from the above Lemma C.2 and from the property of ε-typical

sequences (stated in the Preliminaries):

Corollary 6. Let Xn = (X1,X2, . . . ,Xn) be an i.i.d. sequence with Xi ∼ P. Denote by xn a realization of

Xn. If xn ∈ T ε
n,l(P), and if n > 2l

ε
, then

2−n(H(X)+2cε) ≤ Pn(xn)≤ 2−n(H(X)−2cε),

where Pn denotes the product distribution derived from P and c =−∑a∈A logP(a).

Lemma 18. Let X1,X2, . . . be drawn i.i.d according to P ∈ ∆(A) and let Xn = (X1, . . . ,Xn). Then, for

every l > ln(2n|A|)
2ε2 , we have

lim
n→∞

Pr(Xn ∈ T ε
n,l(P)) = 1.

Proof. First, note that

Pr(Xn ∈ T ε
n,l(P)) = Pr(∀t ∈ (1, . . . ,n− l) : Xn

t,l ∈ T ε
l (P))

= 1−Pr(∃t ∈ (1, . . . ,n− l) : Xn
t,l /∈ T ε

l (P))

= 1−Pr(
n−l⋃
t=1

Xn
t,l /∈ T ε

l (P))

≥ 1−
n−l

∑
t=1

Pr(Xn
t,l /∈ T ε

l (P))

Furthermore, for every t ∈ (1, . . . ,n− l),

Pr(Xn
t,l /∈ T ε

l (P)) = Pr(∃a ∈ A : |1l N(a|xn
t,l)−P(a)| ≥ ε)

= Pr(
⋃
a∈A

|1l N(a|xn
t,l)−P(a)| ≥ ε)

≤ ∑
a∈A

Pr(|1l N(a|xn
t,l)−P(a)| ≥ ε)

≤ |A|2exp(−2lε2),

where the last inequality is a direct application of Hoeffding’s inequality.
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Therefore,

n−l

∑
t=1

Pr(Xn
t,l /∈ T ε

n,l(P))≤
n−l

∑
t=1
|A|2exp(−2lε2)

= (n− l)|A|2exp(−2lε2)

→ 0 as n→ ∞,

and the last expression goes to 0 as n→∞ for every l >
√

n, or, in dependence of ε , for every l > ln(2n|A|)
2ε2 .

This completes the proof.

Corollary 7. Let X ∼ P and set c =−∑a∈A logP(a). Let n, l be integers with n > 2l
ε

and l > ln(2n|A|)
2ε2 . If

n is sufficiently large, then

(1−δ )2n(H(X)−2cε) ≤ |T ε
n,l(P)| ≤ 2n(H(X)+2cε),

for every δ > 0.

Proof. Since

Pr(Xn ∈ T ε
n,l(P)) = ∑

xn∈T ε
n,l(P)

Pn(xn),

with

2−n(H(X)+2cε) ≤ Pn(xn)≤ 2−n(H(X)−2cε)

(by Corollary 6), we get

∑
xn∈T ε

n,l(P)
2−n(H(X)+2cε) ≤ Pr(Xn ∈ T ε

n,l(P))≤ ∑
xn∈T ε

n,l(P)
2−n(H(X)−2cε),

equivalently,

2−n(H(X)+2cε)|T ε
n,l(P)| ≤ Pr(Xn ∈ T ε

n,l(P))≤ 2−n(H(X)−2cε)|T ε
n,l(P)|.

By Lemma 18, we know that for n sufficiently large the following relation holds for every δ > 0:

1−δ ≤ Pr(Xn ∈ T ε
n,l(P))≤ 1,

and so the result follows.
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C.3 Results on Locally Conditional Typical Sequences

We derive a couple of very helpful properties of locally conditional typical sequences.

Lemma 19. Let xn ∈ T ε
n,l(PI). Then, if n > 2l

ε
, every locally conditional typical sequence yn ∈ T ε

n,l(P|xn)

is conditionally 2ε-typical, i.e., for every (i,k) ∈ I×K the following holds:

|N(i,k|xn,yn)−ρ
i(k)N(i|xn)|< 2nε.

Remark 26. Observe that in Definition 10 we assumed P to have full support. This assumptions sim-

plifies the Definition of conditional ε-typical sequences slightly, since for all (i,k) ∈ I×K, it holds that

ρ i(k)> 0. �

Proof of Lemma 19. The proof of Lemma 19 is very similar in structure to the proof of Lemma 4. There-

fore, we only provide a sketch of the proof and highlight the parts that slightly differ.

Let xn ∈ T PI
n,l . Recall, that this means that for every t ∈ (1, . . . ,(n− l)) and for every i ∈ I the following

inequality holds:

N(i|xn
t,l)< l(ε +PI(i)). (C.7)

Similar to the proof of Lemma 4, we first assume n = ql, with q ∈ N and q ≥ 1. It then trivially holds,

that for all (i,k) ∈ I×K,

|N(i,k|xn,yn)−ρ
i(k)N(i|xn)|< nε. (C.8)

We now set n = ql + ld with 0 < ld < l and denote by (xql,yql) the first ql coordinates and by (xld ,yld )

the last ld coordinates of (xn,yn). By the triangle inequality, we have for all (i,k) ∈ I×K

|N(i,k|xn,yn)−ρ
i(k)N(i|xn)| ≤ |N(i,k|xql,yql)−ρ

i(k)N(i|xql)|

+ |N(i,k|xld ,yld )−ρ
i(k)N(i|xld )|.

Since by inequality C.8 we have

|N(i,k|xql,yql)−ρ
i(k)N(i|xql)|< qlε,

it remains to bound |N(i,k|xld ,yld )−ρ i(k)N(i|xld )|.
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In the same manner as in the proof of Lemma 4 and taking into account inequality C.7, we can show

|N(i,k|xld ,yld )−ρ
i(k)N(i|xld )|< l(2+ 1

ε
)ε.

From here, we can directly deduce the desired lower bound for |N(i,k|xn,yn)− ρ i(k)N(i|xn)| for n >

2l
ε

.

Similar to Corollary 6, the following corollary can now be directly deduced from Lemma 19 and from

the remark about conditional ε-typical sequences occurring, stated in the Preliminaries:

Corollary 8. Let xn ∈ T ε
n,l(PI) and let Y1,Y2, . . . be random variables in Kn distributed according to{

ρ i : i ∈ I
}

and xn, i.e., Pr(Yj = k) = ρx j(k), for every j ≥ 1. Denote by yn a realization of Y n =

(Y1, . . . ,Yn). If yn ∈ T ε
n,l(P|xn) and c′ = ∑(i,k)∈I×K(logρ i(k)−ρ i(k) logρ i(k)), and if n > 2l

ε
, then

2−n(H(k|i)+2c′ε) ≤ Pn(yn|xn)≤ 2−n(H(k|i)−2c′ε),

where Pn(yn|xn) = ∏
n
j=1 ρx j(y j).

Again, similar to Lemma 18, we can make the following statement about a random sequence Y n that is

distributed according to
{

ρ i : i ∈ I
}

and xn:

Lemma 20. Let xn ∈ T ε
n,l(PI) and let Y1,Y2, . . . be independent random variables distributed according

to
{

ρ i : i ∈ I
}

and xn. Let Y n = (Y1, . . . ,Yn), then, for every l > ln(2n|A|)
2ε2 ,

lim
n→∞

Pr(Y n ∈ T ε
n,l(P|xn)) = 1.

Proof. The proof of this lemma is similar in structure to the proof of Lemma 18. It remains to show the

following: let Y l = Y1, . . . ,Yl denote a subsequence of Y n of length l, and let xl ∈ T ε
l (PI). Then,

Pr(Y l /∈ T ε
l (P|xl))≤ |I||J|2exp(−2lε2). (C.9)

To prove the above inequality, we first order the sequence xl according to the set I, i.e., we write

xl = x1, . . . ,x1,︸ ︷︷ ︸
N(x1|xl)

x2, . . . ,x2,︸ ︷︷ ︸
N(x2|xl)

. . .x|I|, . . . ,x|I|,︸ ︷︷ ︸
N(x|I||xl)

.
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Now, according to the order of xl , we group together those random variables in Y l , that have the same

conditioning event, i.e.,

Y l = Y N(x1|xl),Y N(x2|xl), . . . ,Y N(x|I||xl),

where for every x ∈ I, Y N(x|xl) = Y x
1 , . . . ,Y

x
N(x|xl)

is now an i.i.d. sequence with Y x
k ∼ P(·|x), for all

k ∈ (1, . . . ,N(x|xl)). Now, the event Y l ∈ T ε
l (P|xl) is equivalent to the event that for all x ∈ I, Y N(x|xl) ∈

T ε

N(x|xl)
(P(·|x)). Therefore, the following holds:

Pr(Y l /∈ T ε
l (P|xl)) = Pr

(
∃(x,y) ∈ I× J :

∣∣∣∣∣N(y|Y N(x|xl))

N(x|xl)
−P(y|x)

∣∣∣∣∣≥ ε

)

≤ ∑
x,y∈I×J

Pr

(∣∣∣∣∣N(y|Y N(x|xl))

N(x|xl)
−P(y|x)

∣∣∣∣∣≥ ε

)

≤ |I||J|2exp(−2lε2),

where the last inequality is again a direct application of the Hoeffding inequality. This can be easily seen

as follows. Since
N(y|Y N(x|xl))

N(x|xl)
=

1
N(x|xl)

N(x|xl)

∑
k=1

1{Y x
k =y},

and since Y x
1 , . . . ,Y

x
N(x|xl)

is an i.i.d. sequence with law P(·|x),

E

[
1

N(x|xl)

N(x|xl)

∑
k=1

1{Y x
k =y}

]
= P(y|x),

the result follows from the Hoeffding inequality.

Finally, we can deduce the following result w.r.t. a conditional ε-typical set:

Corollary 9. Let xn ∈ T ε
n,l(PI) and let n > 2l

ε
. For n sufficiently large,

(1−δ
′)2n(H(k|i)−2c′ε) ≤ |T ε

l,n(P|xn)| ≤ 2n(H(k|i)+2c′ε),

for every δ ′ > 0 and with c′ = ∑(i,k)∈I×K(logρ i(k)−ρ i(k) logρ i(k)).

Proof. The proof follows the exact same structure as the proof of Corollary 7.
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C.4 Mapping a Strictly Positive Stochastic Matrix to its unique Station-

ary Distribution

In this section we add the proof of Lemma 21, which is stated below for completeness.

Lemma 21. Let A be a finite set and denote by M the set of all strictly positive stochastic matrices over

A. The mapping f : M → ∆(A), with f (P) = π , where P ∈M with (unique) stationary distribution π ,

is continuous.

Proof. Let P denote a strictly positive stochastic matrix and let {Xk}=X0,X2, . . . be a markov chain with

transitions according to P and with initial distribution ν ∈ ∆(A) (given as a column probability vector),

i.e., X0 ∼ ν . For every k > 0, let gν
k be a function from M , the set of all strictly positive stochastic

matrices, to ∆(A), with gν
k (P) = νTPk (where νT denotes the transpose of ν). Note, that gν

k (P) describes

the distribution of the kth coordinate of the markov chain {Xk}, since Xk ∼ νTPk. Furthermore, it is well

known that for every distribution ν ∈ ∆(A) and for every P ∈M it holds that

lim
k→∞

gν
k (P) = f (P)

(see, for instance, Chapter 1.8 in [11]). With f being the limit of the functions
{

gν
k

}
k, it is sufficient to

show that the functions
{

gν
k

}
k converge uniformly to f in a neighborhood of P. Since each function gν

k

is continuous, it then follows from the uniform limit theorem that f is continuous. Hence, it is sufficient

to show the following claim:

Claim 3. For every distribution ν ∈ ∆(A) and for every P ∈M with stationary distribution π , we have

for every k > 0,

‖gν
k (P)− f (P)‖TV ≤ (1− p)k,

where p = mini, j∈A p(i, j).

We prove the claim via a coupling argument (coupling methods are introduced e.g., in Chapter 4 in [8]):

in addition to {Xk}, let {Yk} denote another markov chains with transition matrix P. We have X0 ∼ ν and

we set Y0 ∼ π , where π is the stationary distribution of P. Define a coupling {Xk,Yk}k of these chains as

follows. Let t ≥ 0 denote the first time the two markov chains meet. Then, for all k ≥ t, let Xk = Yk and

for all k ≤ t, assume Xk and Yk to be independent. Obviously, the bivariate chain {Xk,Yk}k is a Markov
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Chain over state space A×A that has a transition matrix Q with entries q((a′,b′),(a,b)) that satisfy

q((a′,b′),(a,b)) =


p(a′,a)p(b′,b) if a′ 6= b′

p(a′,a) if a′ = b′ and a = b

0 if a′ = b′ and a 6= b.

Recall, that Xk ∼ νTPk and we write νTPk(a) = Pr(Xk = a), for all a ∈ A. Furthermore, since π is the

stationary distribution of P, Yk ∼ π for every k ≥ 0. Therefore, for all a ∈ A,

ν
TPk(a)−π(a) = Pr(Xk = a)−Pr(Yk = a)

= Pr(Xk = a, t ≤ k)+Pr(Xk = a, t > k)

− (Pr(Yk = a, t ≤ k)+Pr(Yk = a, t > k))

= Pr(Xk = a, t > k)−Pr(Yk = a, t > k)

≤ Pr(t > k)

= Pr(Xk 6= Yk),

where the third equality follows since Xk = Yk for all t ≤ k.

Since νTPk = gν
k (P), our results so far summarize to

‖gν
k (P)−π‖TV ≤ Pr(Xk 6= Yk). (C.10)

Now, by construction of the coupling, Pr(Xk 6= Yk|Xk−1 = Yk−1) = 0, hence,

Pr(Xk 6= Yk) = Pr(Xk−1 6= Yk−1)Pr(Xk 6= Yk|Xk−1 6= Yk−1).
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Furthermore, for every (b,c) ∈ A2, b 6= c,

Pr(Xk = Yk|Xk−1 = b,Yk−1 = c) = ∑
a∈A

q((b,c),(a,a))

= ∑
a∈A

p(b,a)p(c,a)

> p,

and thus Pr(Xk = Yk|Xk−1 6= Yk−1)> p.

The claim now follows from

Pr(Xk 6= Yk)< Pr(Xk−1 6= Yk−1)(1− p)

< (1− p)k

and from inequality (C.10).

C.5 The Existence and the Size of the Set of Action Plans - with Locally

Typical Sequences

The next Theorem provides the key to prove the size of the set of action plans of the agent in Lemma 8:

Theorem 7. Let P ∈ ∆(I×K) be a distribution with marginals PI on I and PK on K. Let (i,k) denote

a pair of random variables distributed according to P. For any fixed ξ > 0, let M = 2N(H(k)−H(k|i)+ξ )

and let S = {s1,s2, . . .sM} be a set of i.i.d. random variables uniformly distributed in T ε
n,l(PK). Now, the

probability that for every locally typical sequence xn ∈ T ε
N,l(PI), there is at least one element s ∈ S, s.t.

(x,s) ∈ T ε
N,l(P) goes to 1 as n→ ∞, i.e.,

lim
n→∞

Pr(∀xn ∈ T ε
n,l(PI)∃s ∈ S : (x,s) ∈ T ε

l,n(P)) = 1

Proof. We show

lim
n→∞

Pr(∃xn ∈ T ε
n,l(PI) : ∀s ∈ S : (x,s) /∈ T ε

n,l(P)) = 0.
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First, applying the union bound, we have

Pr(∃xn ∈ T ε
n,l(PI) : ∀s ∈ S : (xn,s) /∈ T ε

n,l(P)) = Pr(
⋃

xn∈T ε
n,l(PI)

∀s ∈ S : (xn,s) /∈ T ε
n,l(P))

≤ ∑
xn∈T ε

n,l(PI)

Pr(∀s ∈ S : (xn,s) /∈ T ε
n,l(P))

= ∑
xn∈T ε

n,l(PI)

Pr(
M⋂

i=1

si /∈ T ε
n,l(P|xn))

= ∑
xn∈T ε

n,l(PI)

M

∏
i=1

Pr(si /∈ T ε
n,l(P|xn))

= ∑
xn∈T ε

n,l(PI)

M

∏
i=1

(
1−Pr(si ∈ T ε

n,l(P|xn)
)
)

< |T ε
n,l(PI)|

(
1−Pr(s1 ∈ T ε

n,l(P|x̄n)
)
)M,

where the last inequality holds since Pr(si ∈ T ε
n,l(P|xn)) is identical for all i ∈ (1, . . . ,M) and x̄n =

argmaxxn∈T ε
n,l(PI) ∏

M
i=1

(
1−Pr(si ∈ T ε

n,l(P|xn))
)

. Now, observe that for any 0 < α < 1, we have (1−

α)
1
α < e−1. Furthermore, recall that from Corollary 7, |T ε

n,l(PI)| ≤ 2n(H(i)+2cε) with c =−∑i∈I logPI(i)

hence with α = Pr(s1 ∈ T ε
n,l(P|x̄n)) we have

|T ε
n,l(PI)|

(
1−Pr(s1 ∈ T ε

n,l(P|x̄n)
)
)M = |T ε

n,l(PI)|(1−α)M

= |T ε
n,l(PI)|

(
(1−α)

1
α

)αM

< |T ε
n,l(PI)|exp(−αM)

< 2n(H(i)+2cε) exp(−αM).

Since

α = Pr(s1 ∈ T ε
n,l(P|x̄n)) =

|T ε
n,l(P|x̄n)|
|T ε

n,l(PK)|
,

we can apply Corollaries 7 and 9 with c′ = ∑i,k∈I×K logρ i(k)(1−ρ i(k)) and c̃ =−∑k∈K logPK(k) to get

α =
|T ε

n,l(P|x̄n)|
|T ε

n,l(PK)|
≥ (1−δ ′)2n(H(k|i)−2c′ε)

2n(H(k)+2c̃ε)

= (1−δ
′)2n(H(k|i)−H(i)−2ε(c′+c̃))

> (1−δ
′)2n(H(k|i)−H(i)−2ε c̃)
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(note that c′ < 0).Hence, with M = 2n(H(k)−H(k|i)+ξ ) for ξ > 2ε c̃,

αM ≥ (1−δ
′)2n(H(k|i)−H(i)−2ε(c′+c̃))2n(H(k)−H(k|i)+ξ )

= (1−δ
′)2n(ξ−2ε c̃),

therefore

2n(H(i)+2cε) exp(−αM)→ 0 as n→ ∞,

and hence

lim
n→∞

Pr(∃x ∈ T ε
n,l(PI) : ∀s ∈ S : (x,s) /∈ T ε

n,l(P)) = 0.

This completes the proof.

C.6 m-Extendable Locally Conditional Typical Sequences

In the following, we prove important properties of m-extendable locally typical conditional sequences

which play an important role for the size of the message set of the forecaster.

First, consider the following observation that applies Lemma 20 to m-extendable locally typical condi-

tional sequences:

Observation 7. Let n,m, l ∈ N be integers with n,m > l and let xn+m ∈ T ε
n+m,l(PI). Assume Y n+m =

(Y1, . . . ,Yn+m) is a sequence of independent random variables with Yi ∼ P(·|xi) for every i ∈ (1, . . . ,n+

m). We refer to Y n = (Y1, . . . ,Yn) as the prefix of Y n+m. Then, for every l ∈ N with l > ln(2n|A|)
2ε2 and l >

ln(2m|A|)
2ε2 , the probability that the prefix of Y n+m is an m-extendable locally conditional typical sequence

converges to 1, i.e., it holds that

lim
n→∞

Pr(Y n ∈ T ε
n,l(P|xn,ext(m))) = 1.

�

The following Theorem applies Lemma 20 and Observation 7 and provides a vital result to deduce the

size of an m-extendable locally typical set.

Theorem 8. Let (X ,Y )∼ P, fix ε > 0 and xn ∈ T ε
n,l(PI). Let the integers n,m, l and the random sequence

Y n+m have the same properties as in Observation 7. Denote by EXT the event that the prefix of Y n+m is
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extendable, i.e., EXT = Y n ∈ T ε
n,l(P|xn,ext(m)). Then,

1
n H(Y n|EXT )→ H(Y |X)−2εd, as n→ ∞,

with d = ∑a∈I H(Y |X = a).

Proof. First, we show

H(Y n)> n(H(Y |X)−2εd).

Since Y n is a sequence of independent random variables, it holds that

H(Y n) =
n

∑
i=1

H(Yi)

=
n

∑
i=1

(−∑
y∈J

P(y|xi) logP(y|xi))

=
n

∑
i=1

H(Y |X = xi), (C.11)

where xi ∈ I is the i-th element in the locally typical sequence xn ∈ T ε
n,l(PI). Since P has full support, it

also holds that for every element a ∈ I, we have N(a|xn) > n(P(a)− 2ε). Now, we group the last sum

(C.11) into sums of entropies with the same conditioning event:

n

∑
i=1

H(Y |X = xi) = ∑
a∈I

∑
i:xi=a

H(Y |X = xi)

= ∑
a∈I

N(a|xn)H(Y |X = a)

> ∑
a∈I

n(P(a)−2ε)H(Y |X = a)

= n

(
∑
a∈I

P(a)H(Y |X = a)−2ε ∑
a∈I

H(Y |X = a)

)

= n(H(Y |X)−2ε ∑
a∈I

H(Y |X = a)),

which completes the first part of the proof.

Next, let 1{EXT} denote a random indicator function with Pr(1{EXT} = 1) = Pr(EXT ) and Pr(1{EXT} =
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0) = Pr(EXT c), where EXT c denotes the complement of EXT , i.e., Y n /∈ T ε
n,l(P|xn,ext(m)). Then,

H(Y n|1{EXT}) = Pr(EXT )H(Y n|1{EXT} = 1)+Pr(EXT c)H(Y n|1{EXT} = 0)

= Pr(EXT )H(Y n|EXT )+Pr(EXT c)H(Y n|EXT c).

Furthermore, by the chain rule of conditional entropy, we have

H(Y n|1{EXT}) = H(Y n,1{EXT})−H(1{EXT}),

therefore,

Pr(EXT )H(Y n|EXT ) = H(Y n,1{EXT})−H(1{EXT})−Pr(EXT c)H(Y n|EXT c).

Now, since H(1{EXT})≤ log2 2 = 1, H(Y n|EXT c)≤ n log |J| and

H(Y n,1{EXT})≥ H(Y n), we get

1
n H(Y n|EXT )≥ H(Y n)

nPr(EXT )
− (1+Pr(EXT c)n log |J|)

nPr(EXT )

>
(H(Y |X)−2εd)

Pr(EXT )
− (1+Pr(EXT c)n log |J|)

nPr(EXT )
.

By Observation 7, Pr(EXT )→ 1 as n→ ∞, hence we can conclude that

1
n H(Y n|EXT )→ H(Y |X)−2εd as n→ ∞.

Corollary 10 (The Size of T ε
n,l(P|xn,ext(m))). Let ε > 0. Then, for every δ > 0 and n sufficiently large,

we have

|T ε
n,l(P|xn,ext(m))|> 2n(H(Y |X)−2εd−δ )

Proof. The statement follows immediately from Theorem 8 and from the fact that

H(Y n|EXT )≤ log2 |T ε
n,l(P|xn,ext(m))|.

114



115



Bibliography

[1] Robert J. Aumann and Michael Maschler. “Repeated Games of Incomplete Information: The Zero-

Sum Extensive Case”. Mathematica, Inc Report ST-143, 37-116, Princeton, 1968.

[2] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, New Jersey, 2006.

[3] Vincent P. Crawford and Joel Sobel. “Strategic Information Transmission.” Econometrica, Vol. 50,

No.6, 1431-1451, 1982.

[4] Imre Csiszár. “The Method of Types.” IEEE Transactions on Information Theory, Vol. 44, No. 6,

1998.

[5] Françoise Forges. “Non-Zero-Sum Repeated Games and Information Transmission.” Essays in

Game Theory in Honor of Michael Maschler, Springer Verlag, No. 6, 65-95, 1994.

[6] Olivier Gossner, Penélope Hernández, Abraham Neyman. “Optimal Use of Communications Re-

sources.” Econometrica, Vol.74, No.6, 1603-1636, 2006.

[7] Wassily Hoeffding. “Probability Inequalities for Sums of Bounded Random Variables.” Journal of

the American Statistical Association, Vol. 58, No. 301, 13-30, 1963

[8] David A. Levin, Yuval Peres, Elizabeth L. Wilmer. Markov Chains and Mixing Times. American

Mathematical Society, 2009.

[9] David J.C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge Univer-

sity Press, Cambridge, 2005.

[10] Jean-François Mertens, Sylvain Sorin, Shmuel Zamir. Repeated Games. Cambridge University

Press, Cambridge, 2015

[11] James R. Norris. Markov Chains. Cambridge University Press, Cambridge, 2012

116



[12] Ron Peretz. “The Strategic Value of Recall.” Games and Economic Behavior, No. 74, 332-351,

2012.

[13] Roy Radner. “The Organization of Decentralized Information Processing.” Econometrica, Vol. 61,

No. 5, 1109-1146, 1993.

[14] Ram C. Rao and Frank M. Bass. “Competition, Strategy and Price Dynamics: A Theoretical and

Empirical Investigation.” Journal of Marketing Research, Vol. 22, No. 3, 283-296, 1985.

[15] Claude E. Shannon. “A Mathematical Theory of Communication.” The Bell System Technical

Journal, Vol. 27, No. 3, 379-423, 623-656, 1948.

[16] Mark M. Wilde. Quantum Information Theory. Cambridge University Press, Cambridge, 2017.

117


	Abstract
	Declaration
	Acknowledgements
	Introduction
	Preliminaries
	Entropy
	Types and Typical Sequences
	First Order Types
	Second Order Types
	-Typical Sequences
	The Random Empirical Distribution


	I Model 1
	Properties of the Model and Main Results
	Features of Model 1
	Main Results

	Proof of Theorem 1
	Proof of Theorem 2
	Motivation for the Proof of Theorem 2
	The General Approach
	Sequence Splicing
	The Splicing Algorithm
	Local Typicality
	The Second Order Type of a Typical Output Sequence

	Sequence Induction
	Strategy Outline
	Information Transmission

	Proof of Theorem 2


	II Model 2
	The Properties of Model 2
	The Description of the Model
	Implementable Distributions
	The Information Constraint

	Results
	Proof of Theorem 4
	Proof of Theorem 5


	Appendix
	Complementary Results for Chapter 1 in Part 1
	Complementary Results for Chapter 2 in Part 1
	Complementary Results for Chapter 3 in Part 1
	Approximation of Probabilities
	Locally Typical Sequences
	Results on Locally Conditional Typical Sequences
	Mapping a Strictly Positive Stochastic Matrix to its unique Stationary Distribution
	The Existence and the Size of the Set of Action Plans - with Locally Typical Sequences
	m-Extendable Locally Conditional Typical Sequences


	Bibliography

