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Abstract

Our work is based on the model proposed in the paper “Optimal Use of Communication Re-
sources” by Olivier Gossner, Penélope Herndndez and Abraham Neyman, [6]. We propose two
models that consider an alteration of the payoff function in [6]. The general setup is as follows. A
repeated game is played between a team of two players, consisting of a forecaster and an agent, and
nature. We assume that the forecaster and the agent share the same payoff function. The forecaster,
contrary to the agent, is able to observe future states of nature that have an impact on the team’s
payoff. A given pair of strategies for the players induces a sequence of actions and thus implements
an average distribution on the actions of interest, i.e., on those actions that determine the payoff. We
let the team’s stage payoff not only depend on actions played in one stage, but on actions played
in two consecutive stages. We introduce two models that vary w.r.t. the specification of the payoff
function and the actions played by nature, with the aim of characterizing the implementable average
distributions. This characterization is achieved through an information inequality based on the en-
tropy function, called the information constraint. It expresses a key feature of the strategies of the
players, namely the fact that the information used by the agent cannot exceed the amount of infor-
mation sent by the forecaster. In each model we develop an information constraint that characterizes
the implementable distributions as follows. On the one hand, we show that every implementable
distribution fulfills the information constraint. And on the other hand, we prove that a certain set of

distributions that fulfill the designated information constraint is implementable.
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Chapter 1

Introduction

In this work we consider a repeated game with an asymmetry of information among the players who
share a markovian payoff function. The theory of repeated games took shape in the second half of the
twentieth century. An excellent coverage of the area, in particular of the classic results, is provided by
the work of Mertens, Sorin and Zamir, see [10]. One particular field in the theory of repeated games,
that focuses on the information of the players, originated at the height of the Cold War, namely during
the negotiations between the United States and the Soviet Union about mutual reductions in their nuclear
arsenals. At that time, no party had concrete information about the other’s arsenals. So the United States
Arms Control and Disarmament Agency (ACDA) turned to the most well-known game theorists of their
time to help with the strategic issues in these negotiations. It was during and after these negotiations that
the first papers on repeated games with an asymmetry of information among the players were written. In
1986, Aumann and Maschler, [1]], published their seminal work on this topic. In the model they present,
one player lacks information about the state of nature, whereas the other player is informed about it.
This paper has motivated many research directions. One direction focused on the problem of strategic
information transmission between players with unequal information about states of nature and has been
well studied since. Two notable examples are the papers by Crawford and Sobel, [3], and by Forge, [5]].
Both papers present models in which an informed player needs to signal her (private) knowledge about
states of nature to an uninformed second player, whose actions then influence both players’ payoff. The
informed player’s signal to the uninformed player, however, does not directly influence the two players’

payoff. In other words, the signal containing information about the state of nature is costless.



The first paper that proposed a model which takes into consideration that sending information can be
costly in many circumstances (see, e.g., [13] in the case of organizations) was presented by Gossner,
Hernandez and Neyman in [[6]. Here, the better informed player - called forecaster - can transmit her
knowledge about the states of nature to the less informed player - called the agent - through her actions,
which also affect the payoff of the players. Hence, sending information in this model is costly in the
sense that the forecaster has to weigh up the pros and cons of the information transmission with respect

to her payoff.

The research we present in this work is directly motivated by [6] and considers a particular alteration of
the payoff function in the respective model. In order to formulate our research questions, let us briefly
introduce the central features of the model in [6]. A repeated game between a team, consisting of a
forecaster and an agent, and nature takes place. The sequence of the states of nature is assumed to be
i.i.d. In each stage of the game, the team members are able to observe the past actions played and the
past states of nature. In addition, unlike the agent, the forecaster is able to observe all future states
of nature. The team receives a payoff in every stage, which depends on the current state of nature, as
well as on the actions of the forecaster and the agent, which we call action triple in the following. The
strategies of the team players induce an infinite sequence of random action triples and hence a limiting
average distribution, Q, of an action triple. A distribution that is induced in such a way is also called an
implementable distribution. The authors in [6] prove two important theorems that characterise the set
of implementable distributions. This characterization involves an information theoretic inequality that
applies the Shannon entropy function (see [15]]), which is called the information constraint. This con-
straint can be interpreted as the fact that the amount of information used by the agent cannot be greater
than the information she actually receives from the forecaster. The first result in [6] states that every
implementable distribution fulfills the information constraint. For the second result the authors show
that for every distribution Q that fulfills the information constraint, there exist strategies of the forecaster

and of the agent that implement Q.

Inspired by these two results, we set out to investigate the following. Assume that the payoff of the team
in one stage not only depends on the current actions of the players and on the state of nature, but also

on the actions and states of nature of the preceding stage. That is, we consider two consecutive stages



whose actions and states of nature influence the payoff. Note that depending on the precise payoff struc-
ture, we are interested in finding implementable distributions which depend on those actions and states
of nature that influence the payoff of the team. The question that naturally arises can be formulated as
follows: Can we develop similar (adapted) information constraints as in [6] to characterise the set of
implementable distributions?

The reader should note that we only focus on the search for which distributions are implementable.
This analysis is independent of the payoff maximization problem (which searches for the optimal im-
plementable distribution w.r.t. maximizing the payoff). However, the results we present in this thesis

present an optimal basis for research problems like these.

We present two different models that take this model setting with an altered payoff structure into ac-
count and analyze the implementable distributions. The following provides a short overview of these
two models. Let us start with the second model. It is closer in structure to [6]] than the first model we
present in the sense that only the payoff function changes. In particular, we assume that the team payoff
in one stage depends on the current state of nature and on the current action of the agent, as well as
on the agent’s action in the previous stage. Hence, the actions of the forecaster in this model do not
influence the payoff (they are hence costless).

The first model we present not only differs from [6] in regards of the payoff function, but also regarding
the assumption on the dynamics of the states of nature. More precisely, in this model we let nature react
to past action triples, so that the sequence of the states of nature is not i.i.d. This assumption allows us
to consider a stage payoff function that depends on the complete action triple of the current, as well as
on the previous stage. The first model is therefore more complex and richer in details, and hence takes

up the central part of this thesis.

For both models we are able to formulate an information constraint with a similar interpretation as in
[6], that characterises the respective implementable distribution as follows. We present two main re-
sults for both models. In the first main result we show that every implementable distribution satisfies
the information constraint. The second main result states that every distribution with certain properties
that satisfies the information constraint can be implemented. Note, that the second main results are a

little bit more restrictive than the second main result in [[6], since we can only consider a certain set of



distributions that are implementable if they satisfy the information constraint.

In order to prove the first main theorem for both models, we can apply a useful lemma on the concavity
of the entropy function which is stated in [6]. The proof of the first main theorem for the first model
requires an additional result we present on the entropy of an induced random sequence of action triples.

We can prove this lemma with probabilistic tools such as the Hoeffding inequality.

In order to prove the second main theorems we need to construct strategies of the players that implement
a given distribution. These constructions constitute most of the work of this thesis and hence consist of
the majority of our contributions. Let us first briefly summarise the main ideas of the strategy construc-
tion for the first model. We provide a new conceptualization of a certain typical sequence which we term
Locally Typical Sequence, and introduce the so-called Splicing Algorithm. With the help of these new
concepts and their useful properties we develop, we establish the following mechanism. Let P denote
the distribution we would like to implement. The strategies we construct first induce a set of locally
typical sequences which in turn serves as an input set for the Splicing Algorithm. Then, this algorithm
outputs a sequence of action triples that implements our desired probability distribution, P.

Let us now turn to the construction of the strategies of the second model. Even though this construc-
tion is less complex than the previous one, it applies the methods of [6] in an elegant way, using a new
concept we develop, called Block Distributions. The idea is as follows. We first construct a markov
chain with a transition matrix derived from the distribution we intend to implement, P. Next, we define
a block distribution, Q, of a sequence of random variables drawn from the markov chain. We show that

if O satisfies the information constraint given in [[6], then P is implementable.

The results and the new techniques we present provide novel and thorough insights into the complexity
of strategic information transmission when the players are faced with a markovian payoff function. Note
that that our results not only generalise the setting in [6]], but also add a planning problem to the model:
If present action choices also affect future rewards or payoffs, we have a non-trivial planning problem.
Such planning problems appear, for instance, in dynamic pricing models (see, e.g., the seminal work
by Rao and Bass, [14]). These models study, among others, the question of how setting a price today

influences future sales or competitors’ prices. Considering a markovian payoff function and thus adding
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a planning problem to the model of [6] hence increases the scope of its application. Furthermore, the
results we provide can offer an ideal starting point for future research directions that directly build upon
our results. In particular, it provides the basis for the analysis of the optimal payoff of the team, or for

the characterization of the set of equilibrium payoffs.

Most of the tools we employ in this work are information theoretic techniques. In particular, we apply
the Shannon entropy function and its properties, as well as the concept of typical sequences. These
techniques are reviewed in the preliminaries. The remaining sections of the thesis are divided into two
parts. The first part is dedicated to the first model. Chapter [T]in part [[ describes the model, defines the
implementable distributions and introduces the two main theorems. In chapter [2| of part[[, we prove the
first main theorem. As indicated, this proof requires an additional lemma to estimate the entropy of an
induced sequence of random action triples. Chapter [3| of part[l|contains the preparation and the proof of
the second main theorem. It is the most elaborate chapter of the thesis. We begin with the introduction
of the Splicing Algorithm and provide examples to demonstrate the functioning of this algorithm. We
then continue with the definition of locally typical sequences and explain why this concept is needed for
the construction of the strategies. In the remaining sections of chapter |3| we derive the strategies with
the help of the concepts introduced earlier. We provide one section that explains the functioning of the
strategies in an intuitive way, followed by a section that looks at the details of the strategy construction.
In the last section we prove the second main theorem of the first model. The second part of the thesis is
dedicated to the second model and consists of two chapters. Chapter [I] of part [l introduces the model
and defines the implementable distributions. In chapter [2] we prove the two main theorems. The proof
of the second main theorem also requires some preparation, in particular the construction of a markov

chain and the introduction of block distributions, which are also included in chapter 2]
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Chapter 2

Preliminaries

In this section we present the key techniques and methods we will employ in part[|and in part[[]

Notation 1. Given a finite set A, we denote by A(A) the set of categorical distributions over A. That
is, every p € A(A) is a discrete probability distribution that describes the probability of observing one
possible outcome in A. Throughout this paper, we will be dealing with discrete random variables, which
are denoted by bold or capital letters. We write X ~ p to denote that the probability mass function (pmf)

of the random variable X is p. o

2.1 Entropy

From a very intuitive point of view, entropy is a measure of chaos, where chaos is considered to be a
state of some system. Whenever the elements in the system are spread equally (think of the distance of
particles in a container), the entropy of that system is maximal. Lower entropy occurs, if the elements
are ordered in certain ways (e.g., by equal properties or parameter values). If we consider the entropy
of a random variable, we often interpret it as a measure of uncertainty, or information - which is not so
different from our intuitive notion. For instance, if we wanted to guess the outcome of a random experi-
ment, then our uncertainty about this outcome is the average amount of information, or entropy, that we
don’t have, in order to be certain of the outcome. Now, whenever the outcomes of a random experiment
have equal probability, it is of course much harder to guess the outcome. This is the case of maximal
entropy. The more unequal the probabilities of the outcomes are, the lower the entropy becomes and the

easier for us to guess the outcome. The concept of entropy as a measure of information was first prop-
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erly defined by Claude Shannon in his groundbreaking work, “A Mathematical Theory of Information”,
see [15], as the Shannon entropy function. It will play an important role in this work, especially for
the formalization of the information constraints. Below, we review the most important definitions w.r.t.
entropy and its elementary properties. A good introduction to the Shannon entropy function is given, for

instance, in [2] or [9]].

Definition (Entropy of Discrete Random Variables). The entropy of a discrete random variable x with
X ~ p is given by

H(x) = =} p(x)log(p(x)).

X

Equally, the entropy of two discrete random variables x,y with (X,y) ~ ¢ is given by

H(x,y) = — Y q(x,y)log(q(x,y)),
X,y

and is called joint entropy. o

Definition (Conditional Entropy). The conditional entropy of y given x, with (x,y) ~ g, is given by

H(y|x) = ZQ(X)H(Y‘X =X)
==Y a(x) ) q(ylx)log(q(ylx))
X y

=—Y q(x,y)logq(ylx).

x?y

The conditional entropy can be thought of as the average uncertainty of y when we observe x. o

Elementary Properties of Entropy

The above defined quantities have the following properties:

e Non-negativity: The entropy of a random variable is always non-negative; H(x) > 0, and we have

H(x) = 0 only, iff x is deterministic.
e Monotonicity: Conditioning reduces entropy; H(y|x) < H(y).

e Maximum Entropy: If x takes values in a finite set A, then H(x) < log,|A|. The maximum

entropy is reached, if and only if x is uniformly distributed.

13



e Non-increasing under functions: For every (deterministic) function f(x) of x, it holds that

H(f(x)) < H(x).

e Chain Rule: Given a sequence of n random variables (X;,Xz, . ..X;), the chain rule tells us that we

can decompose the joint entropy of the n random variables as follows:

n

H(X],Xz,...Xn) = ZH(Xi‘Xi_l,...XO.
i=1

For two variables, (x,y) this becomes
H(x,y) = H(x|y) +H(y) = H(y[x) + H(x).

Notation 2. Occasionally, we write H,(x) (H,(y|x)), if we need to highlight that x ~ p ((x,y) ~ ¢).
Moreover, instead of H,(x), we sometimes also write H(p), if the context demands it. o
Relative Entropy

Related to the concept of entropy is the relative entropy, also known as Kullback-Leibler distance. It is
a measure of how much one probability distribution differs from another, where a lower relative entropy

points to similar behavior.

Definition. Let P and Q denote two distributions in A(A). The Kullback-Leibler distance between P

and Q (or short: KL-distance), is defined as follows:

Do) = L P(@ loggij}).

The KL-distance has the following basic properties:
e Non-Negativity: D(P||Q) > 0 and D(P||Q) = 0iff P = Q.

e Convexity: D(P||Q) is convex in (P, Q).

14



2.2 Types and Typical Sequences

Let us first give a small overview of how typical sequences have grown in importance in Information
Theory. It was again Claude Shannon, who introduced typical sequences (in a more intuitive than tech-
nical sense) as a powerful tool to establish his Information Theory. One of his key discoveries (in a
simplified version) was the following. Consider a distribution, p, over a finite alphabet A. Shannon
connected typical sequences with the entropy of p, by observing that the negative logarithm of the prob-
ability of a typical sequence of length n, that is drawn i.i.d. from p, divided by n is close to H(p).
Furthermore, for n large enough, the (total) probability of all non-typical sequences is arbitrarily small.
Consequently, Shannon concluded, for large n, typical sequences happen frequently, even though there
are few of them in A” (approximately 2"#(X)). These key discoveries are known today as the AEP, the
Asymptotic Equipartition Theorem, and form the basis for Shannon’s famous Coding Theorems (which

won’t be discussed here).

So far, we described important properties of typical sequences, without providing a proper definition.
Typical sequences have been defined in various forms, from weakly typical sequences, to (&-) strongly
typical sequences. In the following, we first follow the method of types, first introduced in [4], to define

typical sequences, and the results below are taken from [2[, if not otherwise stated.

2.2.1 First Order Types

Definition (First Order Type). Let A be a finite set. For a given integer n € N, let x" be a sequence in
A". For every a € A, denote by N(a|x") the number of occurrences of element a in x". The first order

type of x" is given by the empirical distribution of x", defined by

emp(x")[a] = 1N(a|x") for all a € A. 2.1

Remark. The set of all types with denominator 7 is denoted by &2, for which we have an upper bound:

| P < (n+ 1)1, 2.2)

15



Definition (First Order Type Set). Let P € &7,. The set of all sequences x* € A" with first order type P
is given by

T,(P)={x € A" : emp(x) = P}, (2.3)
and we call every sequence in 7, (P) typical w.r.t. P. o

Remark (The Size of a First Order Type Set). The lower and upper bounds of the size of 7,,(P) are well

known:
1
mzn’”@ < [Ty (P)| < 2P, (2.4)
(See Theorem 11.1.3 on page 350 in [2].) o

2.2.2 Second Order Types

Second order types are related to the relative frequency of pairs in a sequence x" € A". Before we begin,

we present some notation.

Notation 3. Let P> denote a distribution over a finite set A x A = A%, If P, has full support, then for

every pair (a,b) € A%, P»(b|a) denotes the conditional probability of b given a. o

Definition (Second Order Type). Consider a sequence x" € A”. For every pair (a,b) € A%, N(a,b|x")
denotes the number of occurrences of the pair (a,b) in x". The empirical distribution over pairs in x",

denoted by emp;(x"), is given by the relative frequency of pairs in x":
emp(x")[a,b] = —L-N(a,b|x") for all (a,b) € A*, (2.5)

and we call emp;(x") the second order type of x". o

Definition (Second Order Type Set). Let P, € A(A?). The set of all sequences x”" € A" with second order

type P, is called the second order type set and we write
T2(Py) = {x € A" : empy(x") = Py }. (2.6)

If T2(P,) # 0, then a sequence x" € T>(P,) is called 2-typical w.r.t. P5. o

16



In the following remark we look at the marginal distribution of a second order type:

Remark 1. Let x" € T,2(P,) # 0 and denote by x(j) = (x1,...,x,—1) the sequence of the first n — 1
elements of x" and by x(3) = (x2,...,x,) the sequence of the last n — 1 elements of x". Let P(1y and Py)
denote the first order type of x(;) and x(,) respectively. Obviously, ;) and P only differ if x; 7 x;.

Moreover, observe that

Y Py(a,b) =Y emp(x")[a,b]

acA acA

=L Y N(a,b|x")
acA
= N (blx()
= emp(x(2))[b]
= Pp)(b),
and similarly, Y.,cq P2(a,b) = Pjy(a). For n — oo, we set P(j) — P and P5) — P, and we call P the

(asymptotically) unique marginal distribution of P, on A. o

We now develop a new set of sequences that we term conditional subsequences. These sequences will

exclusively be of use in part 1, however, due to their relation to second types, we introduce them here.
Definition 1 (Conditional Subsequences). Let x" € A" and let x(;) and x(2) be given as in Remarkm For

every a € A, define the following subsequence of x":

n __ n
= (b1 Koz o, )

where forevery i€ (1,...,N (a]xz’l))), x) ; is the element in x" that succeeds the ith occurrence of element
a in x"*. We call x! the conditional subsequence of x" w.r.t a. o
The following example demonstrates the intuitive concept behind a conditional subsequence:

Example 1. Let A = {0,1} and let x" = (0,1,1,0,0,1,1,1). Then,

xp=(1,0,1)

x1 = (1,0,1,1)

17



The following definition establishes the link between conditional subsequences and second order types.

Definition 2 (Typical Conditional Subsequences). Let P; be a second order type with T,?(P;) # 0 and
with full support. For every x € T.?(P) there are |A| conditional subsequences of X", {x : a € A}, which

we call typical conditional subsequences. o
Let us now deduce important properties of typical conditional subsequences:

Remark 2. We continue with the notation of Definition 2| If n is large, then by Remark [, P, has
an (asymptotically) unique marginal distribution P € A(A). Then, for every x* € T2(P,), every typical
conditional subsequence of x" has length (n — 1)P(a) and has first order type P»(-|a). This can be easily
seen as follows. We know from Remark |1|that for every a € A, (nlfl)N (alx(1)) = P(a). Therefore, the
length of every typical conditional subsequence x; of x" is given by N(alx(;)) = (n—1)P(a) (recall the
notation of x(j) and x(,) as introduced in Remark (1| - the choice of x(;) and not x(,) is important here).

Furthermore, the first order type of a typical conditional subsequence is derived below,

emp(xy) [b] (n711)p(a)N(b|xZ)

= mN(a,b\xn)

(n_11)p<a) (n—1)Py(a,b)

= Py(bla).

2.2.3 &-Typical Sequences

In this section we present the concept of e-typical sequences and sets. In the literature, this is also
sometimes termed as Strongly Typical Sequences and Sets. €-typical sequences prove to be a useful
alternative to typical sequences if we can live with the fact that a first order type of a (sufficiently long)
sequence is not exactly equal to a true distribution, but only close to it. Similar to typical conditional
subsequence, e-typical sequences will solely occur in part 1, but appear here due to the connection to

typical sequences. In the following sections we adopt the notation from Chapter 14 in [[16].
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In the following, denote by P € A(A) the true distribution over the elements of a finite set A and let

X1,X>, ... denote a sequence of i.i.d. random variables with X; ~ P, Vi > 1.

Definition (The e-typical set 7,7 (P)). Let € > 0. The e-typical set w.r.t. a distribution P € A(A), denoted

by T.F(P), is given by the set of sequences whose first order type is €-close to P in the following sense:

[1N(alx") — P(a)| < €, if P(a) >0
TE(P)=<x":Va€A, 2.7

n
1 _
“N(alx") =0, else.

e-typical sequences and sets have many useful properties, the one of interest to us is stated below.

Remark (The Probability of an e-Typical Sequence Occurring). Let X" = (Xi,...X,) denote an i.i.d.
sequence with law P and let P" denote the product distribution over A” derived from P. Furthermore, let

¢=—Y,calogP(a). Denote by x" € I" a realization of X". If x* € T.¢(P(a)), then
2—n(H(X)+c€) < Pn(xn) < 2—”(H(X)_C€). (2.8)

(See Property 14.7.4 on page 424 in [[16]].) o
The concept of e-typical sequences can be extended to conditional e-typical sequences:

Definition (The Conditional e-Typical Set). Let A and B be two finite sets and denote by Py« p a distri-
bution over elements in A X B with marginal P4 on A and Pp on B. Let x* € X" be an &-typical sequence
in TE(P4). The conditional e-typical set w.r.t. X" and Py g, denoted by T,¢ (P4« 5|x"), consists of all those
sequences y" € B" such that for every pair (a,b) € A x B, N(a,b|x",y") (the number of occurrences of
the pair (a,b) € X x Y in the sequence of pairs (x",y") = ((x1,y1), (x2,2)s- -+, (Xn,¥n)) € (A X B)") is

close to the product of 1 N(a|x") with the true conditional distribution Ps5(b|a) as follows:

TE(Paxplx") ={y" € B" :V(a,b) € A x B,
IN(a,b|x",y") — Paxp(bla)N(a|x")| < ne, if Paxg(bla) >0 (2.9)

N(a,b|x",y") = 0,else.
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Similar to the probability of an e-typical sequence occurring, there exists an equivalent on the probability

of a conditional e-typical sequence occurring:

Remark (The Probability of a Conditional €-Typical Sequence Occurring). We follow the notation in
the definition of a conditional e-typical set. Let x* € TE(P4) and let Y = (Y1,...,Y,) denote a sequence
of n independent random variables in B" distributed according to {Py«p(-|a) : a € A} and x", i.e., Pr(Y; =

b) = Pyxp(blxj), for every j € (1,...,n). Denote by y" a realization of Y”. If y" € T,¥ (Paxp|x"), then
zfn(H(b|a)+20’£) < Pn<yn|xn) < 27n(H(b|a)72c’£), (2.10)

where P"(y"|x") = [T}-; Paxs(y;|x;) and ¢ = Y(ap)caxs(10gPaxp(bla) — Paxp(bla)log(Paxp(bla))).

o
2.2.4 The Random Empirical Distribution

Finally, let us consider the concept of a random empirical distribution.

Definition. Let X" be a sequence of random variables X" = (Xy,...,X,) (not necessarily i.i.d), that

takes values in A”. Let P" € A(A") denote the pmf of X”. Denote by P; the marginal distribution of P"
on coordinate i, i.e., P;(a) = Y nean y,—a P"(x"). Furthermore, consider the indicator random variables
Tix,=a}s Lixo=a}s-- -+ L{x,—a}- The random empirical distribution of X" at a € A is the sample mean of

these indicator random variables,

. ; Lix—ay = emp(X)[a] = IN(alX"). @.11)

<

Remark. Note, that E[1x,_,] = Pi(a), hence the expected empirical distribution is the average of the
marginal distributions of P":

Elemp(X)] = %ipi. (2.12)
i=1

Furthermore, if X" is a sequence of i.i.d. random variables with law u, then the above equality simplifies
to

Elemp(X)] = u. (2.13)
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Part 1

Model 1
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Chapter 1

Properties of the Model and Main Results

1.1 Features of Model 1

Let us now introduce the features of the first model. Many assumptions we make below are similar to
the model in [6], the major differences are our assumptions on the payoff function and on nature’s play.

We begin with the action sets.

Denote by I, J and K the action sets of nature, forecaster and agent respectively. Again, the forecaster
and the agent form a team. We analyze a repeated game between the team and nature. In each stage
t > 0, denote by x;, y, and z; the actions played by nature, forecaster and agent, respectively. We call

a; = (x;,yr,z;) an action triple and assume that ag is chosen arbitrarily.

In each stage ¢ > 0, the team is assigned a stage payoff, described by g;. This function not only depends

on an action triple played in stage ¢, but also on the action triple played in the previous stage, i.e.,
g (IxJxK)? =R,

In a repeated game, we allow nature to react to action triples as follows. Let u € A(I). Prior to the
start of the game, for every a € I x J x K, nature draws independent u-distributed and /-valued random
variables uf,uj,u§,... = (uf),>. For every a € A, we refer to (u);> as nature’s conditional sequence
w.r.t. a. Furthermore, denote by U the random matrix with rows {(uf);>; : a € A}, and we write U, to

denote a realization of U. We interpret a matrix element uj in U, to be nature’s choice of action in the
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repeated game after the /th occurrence of action triple a in the past play. More precisely: at stage t = 0,
we let nature choose an action arbitrarily. In every following stage ¢+ > 1 in the repeated game, nature
first observes the previous action triple a,—1, and then counts its number of occurrences, /, in the entire

past play. In stage 7, nature plays x, = u;""".

We assume that the forecaster observes a realization, U,, of U before the game starts and that she is fully
informed about the entire history of the play in every stage of the repeated game. Her (pure) strategy at

stage t, denoted by oy, therefore depends on U, and on the history of action triples
o (U x I I K =

and her strategy for the repeated game, o, is given by the sequence (0;) = . The agent has no further
knowledge other than the history of action triples in the repeated game. Therefore, her strategy at stage
t is given by a function

T (I x I x KT S K,

and her strategy of the entire game, 7, is given by the sequence (7;) = 7.
The random matrix U together with the strategies (o, 7) induce a random sequence of action triples

a;,a,,.... We denote the corresponding probability distribution over (I x J x K)N by Py

Notation 4. Denote by P}, ; . the marginal distribution of Py s ; over stage ¢’s action triple, a;, and

denote by P2 _ the marginal distribution over 2 consecutive action triples, (a;,a;41). Let Q, 5 . =
. /.

%Zf,zl PL’//,G./T be the average distribution up to stage ¢, and let Q;ftm = ;—%Zi’:l P{]fm be the average

distribution over 2 consecutive action triples up to stage ¢ (we also refer to the latter as the expected

2-step empirical distribution). o

Definition 3 (Implementable Distribution). Similar to [6], we call a distribution Q € A((I x J x K)?)
implementable (t-implementable), if there is a strategy pair, (0, 7), that implements (t-implements) the
distribution Q, i.e., if Qt;2 —Qast— oo (Q) 2 = Q). We denote by 2 (respectively, 2(r)) the set

U,o,7 U,0,7T

of implementable (respectively, t-implementable) distributions. o
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Remark 3. It should be pointed out that an implementable distribution Q is the limit of an expected 2-

;2
U,o,7°

12

step empirical distribution, Q U.c.o

In other words, if an expected 2-step empirical distribution, Q

converges to O, then we call Q implementable. o
One important property of the sets 2 and 2(¢) which is used in the proof of Theorem 2 is stated below.
Remark 4. Every distribution Q € 2(¢) is implementable, i.e., 2(¢) is contained in 2. o

(The proof of this remark is provided in the Appendix.)

1.2 Main Results

Our aim in this part is two-fold. On the one hand, we would like to describe the set of implementable
distributions, 2, in terms of an information constraint. On the other hand, we would like to specify
distributions that are implementable - if possible - with the same information constraint. The results
we produce in this paper achieve this goal - albeit under some restrictive assumptions. The information

constraint we developed is given as follows.

Notation 5. Let i, i’ be I-, j, j’ be J- and k, k' be K- valued random variables respectively. We write
({,j K i,j,K) ~ P, € A((I xJ x K)?) to denote that the first random triple (i,j’,k’) precedes the second

random triple, (i,j,k). o

Information Constraint

A distribution P, € A((I x J x K)?) is said to fulfill the information constraint if

sz(i,j|k,i/,j/,k/) ZHPz(i‘ilvjlvk/)' (1.1)

Equivalently, the information constraint can be stated as follows:

Hp, (jlk,i,j k') > Hp,(i[{,j/,K') — Hp, (i]k,¥,j , K).

In this form one can interpret the information constraint as the fact that the information used by the agent
(right-hand side) cannot be greater than the information she receives from the forecaster (left-hand side),

which is similar to the interpretation of the information constraint in [|6].
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In the first result we are able to show that every implementable distribution Q € A((I x J x K)?) satisfies
the information constraint. In the second result we describe distributions, such that if they satisfy the

information constraint, they are indeed implementable.

Lemma 1. Every t- implementable distribution P, € A((I x J x K)?) fulfills the information constraint

asymptotically, i,e., Hp, (ij|k,i'.j k') > Hp, (i|i’ j',k') — 8(t), where (t) — 0 as t — oo.
Theorem 1. Every implementable distribution P> € A((I x J x K)?) fulfills the information constraint.
Theorem 2. Let P> be a distribution over (I x J x K)? with the following properties:

o The marginal distribution of P> on the first and the second coordinates is identical, i.e., with

(i,i'j.j k,k') ~ P, then (i’ j k') ~ (i,j,k) ~ P.
e iis independent of (i',j ,k'), i.e., i ~i|(i',j . k') ~ L.
o P, fulfills the information constraint.
Then, P, is implementable.

Remark 5. The second property in Theorem [2]is a technical requirement in the proof of this Theorem,
as we will see later on. Note that assuming i to be independent of (i’,j’,k’) does not entirely reflect
our assumption on nature’s play in the game. As outlined in the model, the occurrance of an action
triple (i’,j',k’) in one stage, ¢, of the game may affect the probability of nature’s action, i, in the next
stage, t + 1. This possible dependence can hence not be depicted in the implementable distributions of

Theorem o
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Chapter 2

Proof of Theorem (1

Theorem [I] follows directly from Lemma|[I] The proof of Lemma [I| requires two additional Lemmas. In
the first one, we show that the limiting average entropy of a random sequence of action triples is close
to the entropy H (1 ). The second result we need is the Concavity Lemma which is stated as Lemma 1 in

[6]]. Both lemmas are stated below.

Lemma 2. Leta = (a;,ay,...a,) be a random sequence of action triples taking values in A" = (I X J x

K)", induced by strategies (0, ) and the random matrix U. Then,

where d(n) — 0 asn — oo

Lemma (Concavity-Lemma). Let X and Y be finite sets. The function Q — Hy(y|x) is concave on the

set of probability measures on X X Y.
The result in Lemma [Tl can now be derived as follows:

Proof of Lemmall] Let a = (aj,az,...a,) = (i1,j;,K1,..-,1.J,,K,) be a random sequence of action
triples induced by strategies (o, 7) and the random matrix U with a ~ Py ¢ 1.

Let Of .= 1yr P

Vor=rn o ¢ denote the respective expected 2-step empirical distribution, as introduced in

Notation 4} Applying the Concavity Lemma from GHN, we get
Hpyo (iaj’ka i/7j/7k/)'

P

U,o,7T

(ngE

Hy (ki3 K) > L

t=1
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Furthermore, we have

LS e o o s L e s L
o ZH(ltaJt|ktvlt717Jt—17kt71) == ZH(lz,Jt,kt|kz,1171,Jt,1,kt,1)
= 3
1
Z;ZH(ilajtukt‘khit—l7jt—17kl‘—17'"7i17j17k1) (21)
t=1
12
> = Y Hi g kel 1dio Koo i Ki) 2.2)
3
| R .
= ZH(llu]lvkl?' .. 71n7.]mkn) 2.3)
1
=-H
LHi(a),

where inequality (2.1]) follows since conditioning reduces entropy, inequality (2.2) is due to the fact that
k, is a function of (i,j;,Ki,...,i—1,j,_;,k—1) and equality (2.3)) is an application of the chain rule.

Together with Lemma[2] we can conclude

HPltJ;,ZG‘T (i7j ’k7 il?j/’ k/)’

=
R

IN
S| =
I

and therefore

HQ%J(i,j\i’,j’,k,k’) >H(u)—38(n).
O

Let us now go back to Lemma[2] Before we look at the proof, we need to mention two important concepts
that we are going to employ. The first one is Hoeffding’s inequality, which provides a probability bound
for the distance of a random variable to its expected value. From [[/], we cite the following Theorem and

Corollary:

Theorem. (Hoeffding) Let X1,X3,...,X, be i.i.d. random variables with0 < X; <1 (i=1,...,n). Fur-

thermore, let X = 1 ¥ | X; and p = EX. Then, for everyt > 0:

Pr(X —pu >1) < exp(—2nt?).
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Corollary. Let X;,Xs,...,X, be i.i.d. random variables as in Theorem (). Then, for every t > 0:
Pr(|X —u| >1) < 2exp(—2nt?). (2.4)

Second, we introduce the concept of a region:

Definition 4. [Region of U] Let A =1xJ x K and let b € &, (A) denote a first order type with denom-
inator n. By definition, for every a € A, nb(a) € N. A region in the random matrix U specified by b,
defines, for every a € A, the segment of the first nb(a) elements of the row sequence (uf); in U. We
write X, = (X,X2,...,X,) to denote the joined sequence of nature’s actions in a region. The order of the
elements in x; follows the order of the rows in U, i.e., we first add the elements of of the first row of the
specified region in U to x;,, then the elements of the second row, and so on. By construction, the length

of X is n. o

Remark 6. Since a region is solely specified by a type in &Z,(A), the sequence of nature in such a region

is i.i.d. with law u. o
We now have all the tools at hand to prove Lemma |2}

Proof of Lemmal[2] Let a denote the (random) empirical distribution of a. Further, let u, be the ran-
dom sequence of nature’s actions in a. Note that u, is a function of a, hence we have H(a) > H(u,).
Therefore, it is sufficient to prove

LH(ua) > H() — 8(n).

Let uy ~ p" € A(I"). Recall, that &7,(A) denotes the set of empirical distributions over A. Let u, be
the (random) action sequence of nature given a = b with b € &2,(A) and we set u, ~ p;. Further, let

U= u x ux---u denote the product measure on I”.

We will make use of the following operator, introduced in [12]. For a distribution ¢ that is absolutely

continuou w.r.t a distribution p define the following linear operator:

Ly(q) :=H(q) +D(ql|p) = —}_log(pi)q:.

14 is absolutely continuous w.r.t p if p(x) = 0 — g(x) = O for all x.
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Now,

H(uy) > H(u,|a)

= ) Prla=b)H(ula=0)
be 2, (A)

— Y Pra=b)H(u,)

beZ,(A)

= Z Pr(a

be Py(A)

= Y Pr@a=>b)(Lu(pp)—D(pyllu"))
be 2, (A)

= ), Pr@=b)Lw(py)— ), Pr(@a=b)D(py|lu")
bEWV,(A) beyn(A)

b)H(py)

The remaining proof is split into two claims that focus on the sums in equation (2.5):

Claim 1. For all d > 0 there is Ng s.t. for alln > Ng:

Y Pr@=0b)Lu(p) > n(H(p) - ).
be P, (A)

Claim 2.

Y, Pr@@=b)D(p;||ln") < O(log(n))
be 2,(A)

We prove Claim 1 as follows: Since Ly« (p;') is a linear operator in pj, we get:

beZ,(A) beZ,(A)

Now, we show

Ly (p") > Y Lu(p?),
i=1

where p/ denotes the marginal distribution of p” on coordinate j, i.e., fora € I

pl(a)="Y p"(x).
£

Recall, that for x" € I" we have u"(x") = [Tj_, u(x;), hence
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Lun(p") = — ¥ log(u"(<"))p" (")

- z log(k(x;))p" (")

. zl X toslus)p" ()

_ zl L X loelus))p" ()

_ z L ¥ loelu@)p" )

_ _jé;glog(u(a))xn;ﬂp”(x”)

- zl L log((@)p’(@

_ JZI La(o), 2.7

which proves (2.6). Now, recall that L, (p/) is linear in p/, therefore, we can simplify the expression in

2.7) to
;L#(Pj) =n <,1l ;Lu(Pj)) =n (Lu (,1 ;P])) )

where % Z;?: | P/ is the expected empirical distribution of nature’s actions u,. Note, that if i, denotes the
(random) empirical distribution of u,, we have %Z?:] p/ = E[ii] (recall, that @1, takes values in 2, (1)).

The result in is therefore equivalent to

Now, we show

IE[0a] — u|| — 0 as n — oo. (2.9

First, recall that by Definition E] and by Remark @ every fixed type b € &2,(A) corresponds to a region
in the random matrix U, in which the sequence of nature, X} = (X1,X2,...,X,) is i.i.d. with law u. Let

X}, denote the (random) empirical distribution of x} which takes values in &7,(I). Now, let € > 0 and
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fix b € #,(A). Denote by Ej . the event that the L;-distance between X, and u is larger than g, i.e.,
HXZ —u H > €. Hence, the union of these events, {yc ,(4) Eb,e. depicts the event that there exists at least

one type b € P,(A), with ||X} — || > &. Applying the Hoeffding inequality, we get

Pr(Epe) = Pr(|%" — pi| > €) < 2exp(—2ne?),

and
Pr( U Epe) < Z Pr(Epe)
beP,(A) beZy(A)
< (n+1)"2exp(—2ne?).
Therefore,
Pr( | Epe)—0,asn— oo, (2.10)
beZ,(A)

Now, by the law of total expectation, letting Ee = Upc 5, (4) Ep.e- and applying (2.10), it holds that

[E[0a] — pf| = [E[0a|Ee]Pr(Ee) + E[ua| Eg)(1 — Pr(Ee)) — (1Pr(Ee) + p(1 — Pr(Ee)))|
= [|(E[#a| Ee] — u)Pr(Ee) + (E[0a|Eg] — p)(1 — Pr(Ee))]|
< Pr(Ee) |E[0a|Ee] — ]| + (1= Pr(Ee)) [[E[0a| E¢] — u|]

< & for n large enough,

since ||E[0,|ES] — || < € and ||E[@a|E¢] — p|| is bounded by 2. Hence, since this holds for all € > 0, the
result in (2.9) follows:

|E[ita] — ]| — 0 as n — .

We can now finalise the proof of Claim 1. Note, that the linear operator Ly, is continuous and therefore
Lipschitz continuous (continuity and Lipschitz continuity are equivalent for linear operators). Hence,

there exists u* > 0 (in fact, u* = min,¢; y;) such that

L (E[8a)) — L ()] < | Ela] — 1| >0 as n oo
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Therefore, for all 6 > 0 there is N, s.t. for all n > Nj:
Ly(E[0a]) > Ly (1) — 9.

This completes the proof of Claim 1, since Ly, (1) = H(u).

Let us now turn to the proof of Claim 2. Let p, = (Pr(a = b),Pr(a # b)) denote a binary distribution.

_ W'—pyPr(a=b)

Further, define p;,. = Prazh) St

u" = Pr(a=>b)p, +Pr(a b)py.

Applying Proposition [3|in the Appendix, we get

Pr(a=b)D(p}||u") +Pr(a # b)D(pit||u") < H(ps),

hence,

Y, pPr@a=b)D(pyl|ln") < Y, H(py)
beP,(A) bePy(A)

Now, letting k = |22, (A)| we show

Y, H(py) <H(}). (2.11)
be P, (A)

Since the entropy is a concave function in p;, we have

oY HOY")<HG ), )

beZ,(A) beZy(A)

With p = %Zbe 2,(A) P> P is a Bernoulli distribution with support in {0, 1} and with

beZ,(A)

Hence, the inequality in (2.11]) follows.
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Finally, we can deduce

where the last equality follows since log(1 — %)kil is bounded by —ﬁ as k — oo and k < (n+ 1)|A‘.

This concludes the proof of Claim 2.

Claim 1 and Claim 2 now imply the result in Lemma 2]
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Chapter 3

Proof of Theorem 2

The proof of Theorem [2|is more complex than the proof of Theorem |1| and requires substantial prepa-
ration. We begin with the motivation of our proof idea, followed by a general outline of our approach.

These introductions will facilitate the understanding of the subsequent sections.

3.1 Motivation for the Proof of Theorem

Some of the key ideas that we are going to apply in the proof of Theorem [2] originate from the proof of

Theorem 2 in [6], which is stated below for completeness.

Theorem (Theorem 2 in [6]). Any distribution Q € A(I x J x K) that satisfies the information constraint

(Hp(i, jlk) > Hp(i)) and has marginal p on I is implementable.

We now explain how this result influenced our proof idea. To this end, let us compare our model with
the model in [6]. One major difference between the two models is the assumption on the sequence of
nature’s actions. While in [6] the sequence of nature is assumed to be i.i.d., in our model nature’s ac-
tions played in one stage depend on the actions played of all players in the previous stages. Only the
conditional sequences of nature are assumed to be i.i.d. The general approach in [[6] to implement a
distribution Q was to construct strategies that induce a sequence of action triples with a first order type
close to Q. This approach led us to the following idea. Let Py € A((I x J x K)?) be a distribution with
the same properties as in Theorem [2} and for a € A, let P5(-|a) denote a conditional distribution of P;.
With the help of the results in [6], we know how to implement P5(-|a). Le., we need to construct strate-

gies that induce a sequence with first order type P;(-|a). However, we not only want to implement one
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conditional distribution P;(-|a), the aim is to construct strategies such that for every a € A a sequence
with first order type P;(-|a) is induced. Then, in a next step, we need to construct a mechanism to join

these sequences together appropriately, so that they yield a sequence with second order type close to P.

Note, however, that for some a € A, P}(-|a) may not be defined, which may cause problems inducing
sequences with such a type. However, by Lemma [T6]in the Appendix, we can find a distribution P, €
A((I x J x K)?) that is close to P}, satisfies the conditions stated in Theorem and, in addition, has full

support, so that for every a € A the conditional distribution P, (-|a) is well-defined.

3.2 The General Approach

Let us now first outline the basic set up for the proof, before we specify the proof idea outlined above a
little bit more. The aim is to construct strategies for the forecaster and for the agent that together with
nature’s actions induce a certain game with the following properties. Given a specified integer n € N, we
first divide the stages of the game into blocks of length n. The strategies will be designed in such a way,
that in each block £ > 1 and dependent on the actions of nature, they induce action sequences for the
forecaster and for the agent, that will be combined into a sequence of action triples " € (I x J x K)".
We will show that in almost every block k£ > 1, " has a second order type close to the distribution we

intend to implement.

If Pé is the distribution we want to implement, let us now choose a distribution P» that is close to Pz’ with
the same properties as stated in Theorem [2] and with full support. Following the idea in the previous
section, our approach to prove Theorem [2] is to induce a sequence a” € (I x J x K)" in every block
k > 1, that has a second order type close to P», via first inducing |A| sequences with first order type
P>(-|a), for every a € A. An important question that arises is concerned with the length of these |A|
sequences, if we have a fixed block length, n. The following observation provides some insights on this

question.

Observation 1. Let A =1 x J x K and let P, € A(A?) be a distribution that has full support. Fix n € N,

such that P, has a non-empty second order type set w.r.t. length n+ 1, i.e., Tn2+1 (P) #0. Let o' €

TZ

i1 (P2). Then, by Rema.rk for every a € A, the typical conditional subsequence o/*! of a"*! has

length nP(a) and has first order type Ps(-|a). o

35



Remark 7. The strategies we are going to construct in the proof of Theorem [2| actually produce a
sequence o" ! = (o, ..., ) of length n+ 1 per block k > 0, with the property that o is the last
element played in the previous block. We will assume 7 to be large in our proof, therefore, the difference

in the second order type of the sequences o" ! and " is negligible. o

With the help of Observation [I| we now present the general approach which summarises our first (in-
tuitive) idea of how to induce a sequence o € (I x J x K)" that has a second order type close to P;.
This approach should be considered as a guideline that will undergo a process of amendments until we

eventually arrive at the actual approach that we take in the proof of Theorem [2|

The General Approach

Step 1: (Sequence Induction) At the beginning of block k > 1, we induce a set of sequences
{a"@) € T,p(P2(-|a)) : a € A} (note that every sequence in this set has the same properties as

the typical conditional subsequences of a sequence o' ! € Tnz+1 (Py)).

Step 2: (Sequence Splicing) We combine the sequences from Step 1 into a sequence &”, s.t. its second

order type is close to Ps.

In the section that follows we will focus on Step 2. We will test whether the splicing can be accom-
plished with the given set of sequences given in Step 1. For this, we provide an algorithm that uses these
sequences as input and combines them into one sequence with the aim of maintaining the correct transi-
tion frequencies stipulated by {P>(-|a) : a € A}. We will then come across several problems concerning
the length and the second order type of the output sequence. These issues will force us to make changes

to the set of (input-) sequences in Step 1, which will be highlighted at the end of the relevant paragraphs.

3.3 Sequence Splicing

3.3.1 The Splicing Algorithm

Definition 5 (Input Set). Fix n € N and let A be a finite set (JA| > 2). Furthermore, let P, be a distribution
over A2 with full support, unique marginal distribution P € A(A), and non-empty second order type set

T2

i1(P2) # 0. For every a € A, denote the marginal distributions by p = P»(-|a). Since P, has full

support, then by Remarkthere are |A| first order type sets of the form {Tnp(a) (p*) :a € A}. Denote by
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S a choice of |A| sequences, one from each set T,,p(,)(P?), a € A:
S= {Ot”P(“) € Tp)(P?) 1 a EA}.

We call S an input set for the Splicing Algorithm w.r.t. n and P». o

Notation 6. In order to ease notation we sometimes abbreviate the sequence o’”@) € S to a for every

a € A if the associated distribution P is known. o

We now introduce the so-called Splicing Algorithm (in Pseudo Code) that takes the set S as input and
combines its sequences into one sequence, ¢, while maintaining, as best as possible, the correct transi-

tion frequencies specified by {p*:a € A}:

Algorithm 1 The Splicing Algorithm

Require: An input set § = {Oc“ €Tpa) :ac A} w.r.t n and P, (given as a set of lists); an initial value
a’cA
Ensure: A finite sequence @ = (®, ¢, ...) (unspecified length)
start a list a with o = list (o).
for j > 1do
[ = last element added to & (I € A)
if o/ not empty then
o = o'[1]
a.append (o)
del(a![1]) (delete the element just added to o from o)
else {algorithm terminates }
end if
end for

The following example demonstrates the mechanism of the Splicing Algorithm.
Example 2. Let A = {a,b} and let P, = (}, 1,1, 1) so that p¢ = p? = (1,1). Fixn = 8. Let @ = a and

S={a € Ty(p?),ab € Tu(p”)}, with

o = (a,b,b,a)

al = (b,a,b,a).

The Splicing Algorithm applied to S and o builds up a sequence o as follows: initiated by oy = a, in
the first step we identify a as the last element added to o, add the first element of the sequence o, a,

to o and delete a (i.e. the first element) from a“. After the first step we have & = (a,a) and a reduced
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sequence o* = (b,b,a). In the second step, we identify a as the last element added to ¢, add the first
element from the reduced sequence a?, b, to @ and delete b from a“. Hence, we have a = (a,a,b) and a

further reduced sequence a“ = (b,a), etc. We summarise the steps of the Algorithm in the table below.

’ Step ‘ a‘ ‘ ab ‘
start | (a,b,b,a) | (b,a,b,a) | (a)
1 (b,b,a) | (b,a,b,a) | (a,a)
2 (b,a) | (b,a,b,a) | (a,a,b)
3 (b,a) (a,b,a) | (a,a,b,b)
4 (b,a) (b,a) | (a,a,b,b,a)
5 (a) (b,a) | (a,a,b,b,a,b)
6 (a) (a) | (a,a,b,b,a,b,b)
7 (a) 0 | (a,a,b,b,a,b,b,a)
8 0 0 | (a,a,b,b,a,b,b,a,a)

Table 3.1: Application of the Algorithm to Example

Hence, the Algorithm produces a sequence o = (a,a,b,b,a,b,b,a,a) of length 9 with second order type

Pz. <

Definition 6. The sequence o produced by the Splicing Algorithm is called the output sequence. If
a € A" ie., if o has full length, then the algorithm exhausted all elements from the input sequences

in S, and we call o an optimal output sequence. o

Note, that the output sequence in Example [2| is optimal. Every input sequence has been exhausted
completely by the end of the algorithm. However, this is not always the case, as shown in the next

example.
Example 3. As before, let A = {a,b}, P, = (},1,1,%) and p® = p® = (1,3). Again, fix n =8 and

s
o = a. Consider the set S = {a® € Tu(p®),a” € Tu(p®)} with

o’ = (a,a,b,b)

o’ = (a,a,b,b)

Running the Algorithm on this Example yields & = (a,a,a,b,a,b,a) € A7 as shown in Table One
can see that the sequence o is not exhausted when the Algorithm ends. This happens since the sequence

a“ is exhausted too early. o

We can observe from the two examples above that for a given n, a set of sequences S, and an initial value

Qy, if the algorithm does not run until all sequences in S are exhausted, it only produces a sequence ¢ of
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| Step | o | o | a
start | (a,a,b,b) | (a,a,b,b) | (a)
1 (a,b,b) | (a,a,b,b) | (a,a)
2 (b,b) | (a,a,b,b) | (a,a,a)
3 (b) | (a,a,b,b) | (a,a,a,b)
4 (b) (a,b,b) | (a,a,a,b,a)
5 0 (a,b,b) | (a,a,a,b,a,b)
6 0 (b,b) | (a,a,a,b,a,b,a)

Table 3.2: Application of the Algorithm to Example

length < n+1.

To resolve this problem, we are now going to use longer input sequences with certain properties, so that
the output sequence has a guaranteed length n+ 1. In order to do so, we now introduce another set of
sequences, a so-called set of tails, 7, that we add to a given input set S. We then show that running the

algorithm on the appended sets S and 7 will produce a sequence o of length at least n+ 1.

Definition 7 (Set of Tails). Let S be an input set of the Splicing Algorithm w.r.t » and P, as introduced

in Definition[5] Let m € N s.t. for all a € A, T,,p(4)(p*) # 0. We call

T = {th(“) € Tup(a) (p?) 1 a eA}

a set of tails for the input set S w.r.t. m and P, o
Notation 7. Given an input set S and a set of tails 7 w.r.t. n, m and P», we denote by S&@ T the set of the
coupled sequences in S and 7', i.e.,

SeT = {anP(u) @ mPl@) ¢ Tl tm)P(a) (p“):ac A} :
with a"P@) @ ") = (oy,..., 0yp(a),11,- - - mp(q))- Furthermore, similar as above, if clear from the
context, then for every a € A we abbreviate the sequence o’ @@ € SBT to a® & 1°. o
Let us now run the Splicing Algorithm on an input set S that is coupled with a set of tails, 7'

Example 4. We continue with Example [3|by coupling the following tails to the input set S: for m = 4,
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let T = {1 = (a,b),t’

= (a,b)}. Then, S& T consists of the two sequences

ottt =

a’ e’ =

(a,a,b,b,a,b)

(a,a,b,b,a,b).

Running the Algorithm on S @ T" with initial value o = a yields

as shown in Table[3.3]

o = (a,a,a,b,a,b,a,a,b,b,b,a) €

A12,

’Step‘ a“@t“‘ al o \ a
start | (a,a,b,b,a,b) | (a,a,b,b,a,b) | (a)
1 (a,b,b,a,b) | (a,a,b,b,a,b) | (a,a)
2 (b,b,a,b) | (a,a,b,b,a,b) | (a,a,a)
3 (b,a,b) | (a,a,b,b,a,b) | (a,a,a,b)
4 (b,a,b) (a,b,b,a,b) | (a,a,a,b,a)
5 (a,b) (a,b,b,a,b) | (a,a,a,b,a,b)
6 (a,b) (b,b,a,b) | (a,a,a,b,a,b,a)
7 (b) (b,b,a,b) | (a,a,a,b,a,b,a,a)
8 0 (b,b,a,b) | (a,a,a,b,a,b,a,a,b)
9 ] (b,a,b) | (a,a,a,b,a,b,a,a,b,b)
10 0 (a,b) | (a,a,a,b,a,b,a,a,b,b,b)
11 0 (b) | (a,a,a,b,a,b,a,a,b,b,b,a)

Table 3.3: Application of the Splicing Algorithm to ST

This example shows that adding a set of tail sequences 7" to a given input set S prompts the Splicing

Algorithm to run for 12 stages and does not lead to a break up before stage 8 is reached.

The above example motivates the following Lemma:

Lemma 3. Given an input set S w.r.t. n and P> and a set of tails T w.r.t. m and P, then for every initial
value 0, applying the Splicing Algorithm to S T produces a sequence o, of length at least n+ 1 (i.e.,

the algorithm does not break up before reaching stage n).

Remark 8. It is not necessary to provide the proof of this Lemma here, since we are going to prove a
variant of this Lemma at a later stage (which will also be essential for the proof of Theorem [2] whereas

the result above won’t).
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First Amendment to General Approach

Let us now compare the results so far with Step 2 in the general approach. For a given integer n € N,
a distribution P, with full support and an input S = {o"” O Tp(a)(P2(-|a)) - a € A}, our aim was to
produce a sequence of length n+ 1, that has a second order type equal or close to P,. The Splicing
Algorithm indeed produces a sequence o !, but only if we add a set of tails, T, to the input set S. Even
though this addition of T preserves the first order type of the input sequences (observe, that for every
a € A, the input sequence a“ G ¢* has - by construction - first order type p“), we have to extend the length
of the input sequences from nP(a) to (n+ m)P(a), for every a € A. Therefore, the first amendment we

have to make to our general approach applies to step 1:

Step 1: - First Amendment: Let n,m € N, then at the beginning of each block k > 1, we need to induce

a set of sequences of the form
SeT = {Otnp(a) @) ¢ T rm)P(a) (p%):ac€ A}

where S is an input set w.r.t. n and P> and T is a set of tails w.r.t. m and P.

So far, we have not yet analyzed the second order type of an output sequence of the Splicing Algorithm
applied to an extended input set S@ 7. We will see that, unfortunately, we cannot ensure that such an

output sequence has a second order type equal or close to P».

Definition 8 (n-stage Output Sequence). Let ¢ be the output sequence of the Splicing Algorithm applied
to S@ T and an initial value 0. Let o' denote the first 7+ 1 elements of o (which is the sequence
produced after the nth stage in the algorithm). We call o"*! the n-stage output sequence of the algorithm.
Furthermore, the conditional subsequences of a*! (see Definition |1)) are denoted by o*!, for every

a€ceA. o

Observation 2. The reader should observe, that the n-stage output sequence may have subsequences
with first order types that differ widely from the desired conditional distributions {p“ : @ € A}. This can
happen, since it is not guaranteed that all elements of the sequences in S @ T are added to the output
sequence, o" !, In particular, it may be the case that some input sequences a &% in S® T are skewed

in such a way, that the subsequence of o“ @ ¢ that is eventually added to a*!, is not typical w.r.t.
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pe. o

The above Observation shows, that we need to impose more assumptions on the input sequences in S& T
in order to produce an n-stage output sequence & ! with second order type P>. In particular, we would
like our input sequences in S & T to have a certain “locally typical” structure, s.t. for every a € A, the
conditional subsequence o' of ! - no matter its length - has a first order type close to p. The
property we are looking for in the input sequences is called Local Typicality which will be the topic of

the next section.

3.3.2 Local Typicality

Notation 8. As before, we set A = I x J x K and denote by P, a distribution on A% with full support and
with (identical) marginal distribution P € A(A). Furthermore, for all a € A, let {p*: a € A} denote the
conditional distributions of P,. Note, that we don’t require P to have a non-empty second order type set

anymaore. <

Given a distribution P over a finite set A, locally typical sequences w.r.t. P not only have a first order
type close to P, but also possess contiguous subsequences with first order type close to P. Locally typ-
ical sequences hence have the structure our input sequences in the previous section lacked so far. We
will introduce a new input set of sequences that are locally typical w.r.t. the conditional distributions
{p®:a € A}. We will then show that the Splicing Algorithm applied to this new input set produces an

n+1

n-stage output sequence """ that has a second order type close to P».

Recall that sequences with first order type close to a distribution P are called e-typical sequences. Let

us now properly define locally typical sequences:

Definition 9 (Local Typicality). Let P be a distribution over a finite set A and let N,/ € N. Given a
sequence x" € AV, denote by x)'; a subsequence of / successive elements of x" starting at index 7. For
every € > 0 we call x¥ [-locally typical w.r.t. P, if for every t € {1,2,...,N—1}, xﬁ\fl € T (P), where
TF(P) denotes the e-typical set of length / w.r.t. P. We denote the set of all /-locally typical sequences

by T, (P). o

The following useful result states that if N is large enough, then the empirical distribution of an /-locally

typical sequence x" w.r.t. P is also close to P:
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Lemmad4. IfN > %, then every l-locally typical sequence x" € T]f,’l(P) is 2e-typical w.r.t P, i.e.,
|%N(a|xN) —P(a)| <2e VacA.

Proof. See Appendix O

Another important concept we will need in later sections is the concept of locally conditional typical

sequences, defined below.

Definition 10 (Local Conditional Typicality). Let A = I x K be a finite set and let P € A(A) be a distri-
bution with full support and with marginals P; on I and Px on K. Furthermore, for every i € I, denote by
p’ a conditional distribution on K derived from P, i.e., for every k € K, p'(k) = P(k|i). Let n € N and
fix a locally typical sequence, x" € Y;f ;(Pr). A sequence y" € K" is called locally conditional typical, if
forevery t € {1,2,...,n—1}: y}; € T7(P|x"), where again y], is a subsequence of )" of / consecutive
elements starting at index ¢ and 7,°(P|x") is the conditional e-typical set w.r.t. P and x". The set of all

locally conditional typical sequences is denoted by T, (P|x"). o

We now define a (new) set of input sequences for the Splicing Algorithm. The reader may observe that

the idea of adding tail sequences, as in the previous paragraphs, is incorporated into this new input set.

Definition 11 (Locally Typical Input Set .#). Fix € > 0 and let P, € A(A?) be a distribution as in

Notation|8| Let n,m,[ be integers that satisfy the following properties:

nP(a),mP(a) € N,Va € A (3.1)
i 2l
IglelllgnP(a) > % (3.2)
i 2l
I;lelilmp(a) > % (3.3)

Setting n, = nP(A), my = mP(a) and r, = n, +m,, we call every set of /-locally typical sequences of
the form
S ={xX"eT (p"):acA}

a locally typical input set w.r.t. n,m,[ and P>. o

Remark 9. Note, that the properties imposed on the parameters n,m and [ in the above definition ensure

that the input sequences in . are 2€-typical as stated in Lemmaf] o
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Similar to the previous section, we now want to show that the Splicing Algorithm applied to locally

typical sequences produces a sequences of length at least n+ 1:

Lemma 5 (The Splicing Algorithm applied to Locally Typical Sequences). Let . be a locally typical
input set w.rt. n,m,l and P, and let oy € A. Fix € > 0 and let py = min, p)cp2 Py(a,b). Then, if
o< % — 2, then Splicing Algorithm applied to ay and .7 yields an output sequence of length at least

n+1.
The proof of this Lemma makes use of the following notation:

Notation 9. In order to ease readability, we call for every a € A an input sequence x™ € . the row w.r.t
a, or simply row(a). Every row in S can be written as row(a) = x"« @ x™. We call x"« the body and x™
the tail of row(a) . We summarise the bodies and the tails of the rows of .7 in two different sets:
the set of bodies is denoted by

B={x"eT: (p*):acA},

and the set of tails by

T={x"eT, (p):acA},

so that

" =BaT.

Note, that by assumption, each body in B and each tail in T is also 2&-typical.
Furthermore, for every pair (a,b) € A%, we say that an element a in row(b) is a reference to row(a) from
row(b). If oy = a, then oy is also called a reference to row(a). Note that the total number of references

to row(a) from row(b) is given by N(a|x'*), and since x* is 2¢e-typical, we have
N(a|x") < ry(p”(a) +2¢). (3.4)
Similarly, an upper bound of the number of references to row(a) from the tail of row(b) is given by
N(alx") < my(p®(a)+2¢). (3.5)

o
Proof of Lemmal[5] Let o denote the output sequence of the algorithm. Towards a contradiction, assume
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that the algorithm stops before it has reached n stages, i.e., before it has added at least n elements to «.
This means that for some a € A, the algorithm has exhausted all elements of row(a) (i.e., it has added the
last element of row(a) to the output sequence) at some stage k, and at a later stage k' > k the algorithm
terminated by adding element a to o and k' < n (since row(a) is exhausted, the algorithm cannot add

anymore elements from row(a) to ).

Now, let us count the maximal number of references to row(a) in o. First, note that by assumption it
is not possible that the Algorithm exhausted all elements of the bodies from each row of .7’; since for
every a € A, the body of row(a) has n, elements, the algorithm would have otherwise added Y ,c4 n, =n
elements to the output sequence.

Therefore, we assume that there is at least one element ¢* € A, such that the body of the correspond-
ing row has not been completely exhausted by the algorithm. This means that from row(a*) we can
maximally count N(a|x"«*) references to row(a). From every other row(b), b # a*, there are maximally
N(a|x™) references to row(a) present in the output sequence Q.

Finally, recall that possibly oy is also a reference to row(a). Therefore, the maximal number of refer-

ences to row(a) that can be counted in o (denoted by maxref(a)), is given by

maxref(a) <1+ Z N(a|x"®) + N(a|x")
a*#beA

=1+ Y N(alx)—N(alx"=)

beA
<14 X o (a) +26) ~m (57 (@) - 2)
€A
=1 +bZA(n+m)P(b)(Pb(a) +2€) —mP(a")(p (a) - 2e)
=1+ (n+m) (Z Py(a,b)+ Y, P(b)28> —m(Py(a,a”) — P(a*)2e)
beA beA

= 1+ (n+m)(P(a) +2€) — m(Py(a,a”) — P(a*)2¢),

where the second inequality is due to the inequalities in (3.4) and (3.5). By assumption, the maximal

number of references to row(a) must be larger than the number of elements of row(a) (otherwise, the
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Algorithm would not terminate as assumed). L.e., it must hold that

(n+m)P(a) < maxref(a)

< 1+ (n+m)(P(a) +2€) — m(P>(a,a*) — P(a*)2€),

which is equivalent to

mPy(a,a*) —1 < ((n+m)+mP(a*))2¢e

or
mP,(a,a*) — 1

2t m) tmPa@)) & (36)

However, inequality (3.6) cannot be verified if 2 < £ —2 holds, which we assume in the Lemma. We
can therefore conclude, that the Splicing Algorithm applied to o and .¥ produces a sequence of length

atleastn+1. O

In the following section we can finally show that the Splicing Algorithm applied to locally typical se-

quences produces an output sequences (of length n 4 1) with a second order type close to P;.

3.3.3 The Second Order Type of a Typical Output Sequence

Notation 10 (n-stage Typical Output Sequence). Let .” be a locally typical input set w.r.t. the integers
n,m,l and P», that satisfy the conditions in Lemma 5| Let o denote the output sequence of the Splicing
Algorithm applied to .# and an initial value ¢t and denote by a"*! the first n 4 1 elements of o. We
call ! the n-stage typical output sequence and for every a € A we denote by a"*! the conditional

subsequences of o 1. o

Remark 10. [The Difference of Rows and Conditional Subsequences] Given an n-stage typical output
sequences, !, a conditional subsequence o"*! of o"*! is a prefix of row(a) (an input sequence of
the locally typical input set .%”). More precisely, if the algorithm added all elements from row(a) to
a1, then row(a) = a**!. Otherwise, o*! is equal to the first elements in row(a) that were added to

anJrl . <

The last Remark raises the question of how many elements from each row of a locally typical input set

.7 are at least added to an n-stage typical output sequences o', which we discuss in the following.
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Lemma 6. Let .¥ be a locally typical input set w.r.t. n,m,l and P,. For every a € A, the length of a
conditional subsequence ag+1 of an n-stage typical output sequence a"*' is given by N(alo""). If
%> min, P(a), then

N(ala™™) > (n+m)P(a) —m.

Proof. Given an element a* € A, let’s assume that all but one row(a*) are exhausted in the n-stage

n+1 n+1
b

typical output sequence a""', i.e., for every a # a*, row(a) is the conditional subsequence of a
row(a) = o' 1. Note that this situation describes the most extreme case in which the number of elements
from row(a*) that are added to the output sequence is minimal. In any other situation, we would have at
least two rows (row(a*) inclusive) that are not entirely exhausted in the output sequence. In these cases
the number of elements added from row(a*) to the output sequence would only but increase, compared
to the situation first described. Hence, assuming that all but one row(a*) are exhausted in the output

sequence is sufficient for our analysis. Every row(a) has length (n+ m)P(a), therefore, the following

must hold for the length of o**!

n+tl= Y (n+m)P(a)+N(a"|o"")+1,

acA,a#a*
equivalently,
N(a*|a™™) = (n+m)P(a) — m.
Since ” > min, P(a), we have N(a*|o" ™) > 0. O

Observation 3. [Conditional Subsequences are Typical] Observe, that for an n-stage typical output se-
quence o**! that corresponds to a locally typical input set . w.r.t. n,m,[ and Ps, if %> min, P(a), then
it holds that for every a € A, (n+m)P(a) —m > mP(a). Furthermore, since mP(a) > % by Definition
it follows from Lemma |§I and Lemma 4| that every conditional subsequence a"*! of o"*! has a
first order type close to p“, Va € A. This is an important property of the conditional subsequences of
an n-stage typical output sequence. Recall, that this property was not inherent in the conditional sub-
sequences of an n-stage output sequence in the previous section, which is why we introduced locally

typical sequences. o

With the above observation, we can now finally conclude this section and show that n-stage typical

output sequences have a second order type that is close to P».
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Theorem 3. Let o' be an n-stage typical output sequence of the Splicing Algorithm applied to a

locally typical input set . w.r.t. n,m,l and P>. Then, for all € > 0, it holds that
lempa(e )~ By, < 8(e),

where ||-|| 7y, denotes the total variation distanc{] and 6(¢€) is a function with §(¢) — 0 as € — 0.

In order to prove the above Theorem, we first use the fact that the function that maps a strictly positive
stochastic matrix to its (unique) stationary distribution is continuous (see Lemma below). This function
helps bounding the distance of the the stationary distribution of P> and emp,(a™*!). Furthermore, as

n+1 are 2¢- close

noted in Observation the empirical distributions of the conditional subsequences of
to the conditional probabilities of P,. These two relations will then be used to show that the distance of

emp(a”) and P, is close.

Lemma 7. Let A be a finite set and denote by . the set of all strictly positive stochastic matrices over
A. The mapping [ : # — A(A), with f(P) = w, where P € .4 with (unique) stationary distribution T,

s continuous.

Remark 11. Note that the function f is well-defined since f maps every strictly positive stochastic

matrix to its unique stationary distribution. o

The proof of the above Lemma is added in the Appendix.

Proof of Theorem (3). Let IP be the stochastic matrix derived from P, where the rows display the condi-
tional distributions {p® : a € A}. We denote the entries of P by p(a,b) = p®(b), for every a,b € A%.
Furthermore, denote by P another stochastic matrix that we derive from the n-stage typical output

"+1: the rows of P represent the empirical distributions of the conditional subsequences

sequence O
{o ! : a € A}, hence the entries of P are denoted by j(a,b) = emp(oi™")[b] for every pair (a,b) € A
As seen in Observation the conditional subsequences of o" ! are 2¢ close to the conditional distribu-
tions of P, i.e.,

lemp(afi ) - p?| < 2e,

a

or, in matrix notation:

|p(a,b) — p(a,b)| < 2e.

!Given two probability distributions p,q € A(A), the total variation distance between p and g, denoted ||p — ¢| 7y, is
given by maxaeq |p(a) —g(a)
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Let us now derive the stationary distributions of P and PP:

First, the probability vector & with w(a) = P(a) = Y ,c4 P>(a,b), Va € A is obviously the unique station-
ary distribution of PP.

Denote by 7 the stationary distribution of P. Let Oca) denote the sequence of o" ! reduced by the last
element, a,, and let OC("Z) be the sequence of o’ ! reduced by the first element of. Assuming n large, we
set N(a\aa)) = N(a]a(”z)) for every a € A. Setting 7(b) = %N(b’a&)) for every b € A, yields # = 7P as

shown below:

7P(5) = ¥ - Nialaly)pla,b)

acA

- % Y N(alay))emp(og ™) [b]

acA
N(blog™")

— ¥ Nalagy) o
" T N (alar)

acA

1
=-Y N(ba)!
~ Y Nl

acA

] n
= N(lagy)

= 7(b).
Therefore, for all (a,b) € A%, we have

Py(a,b) = nt(a)p(a,b), and

emps (") [a,b] = 7t(a)p(a,b).
Now, by Lemma with sufficiently small €, we have for all 6 > 0 and for all (a,b) € A2,
\p(a,b) —p(a,b)| < 2¢ = [n(a) —7(a)| <6,

and thus

empy ("™ [a,b] — Ps(a,b) = #(a)p(a,b) — n(a)p(a,b) (3.7)
< (m(a)+98)(p(a,b)+2¢)—rm(a)p(a,b) (3.8)
<2e+6+28¢ (3.9)
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similarly,

Py(a,b) —emps (a1 [a,b] < 2e + & +28¢.

Letting 6 = € completes the proof. O

Second Amendment to General Approach

With the application of the Splicing Algorithm on locally typical sequences we are able to achieve an
output sequence of length at least n+ 1 that also has a second order type close to P, as desired. Step
2 in the general approach can therefore be achieved, if we make the necessary changes in Step 1 of the

general approach:

Step 1 - Second Amendment Fix € > 0 and let n,m,/ be integers with % << ff—f? — 2, where p =
min, P(a) and py = min, ,P>(a,b). At the beginning of each block k > 1 we need to induce a locally

typical input set . w.r.t. n,m,[ and P».

In the following sections, we will therefore focus on this amended Step 1.

3.4 Sequence Induction

In the previous sections, we developed which sequences need to be induced, so that they can be spliced
to produce a sequence with a second order type that is close to P. In these upcoming sections, we show
how these sequences can be induced, i.e., how the strategies of the players need to be constructed to

induce these sequences.

In the following, we will refer to a distribution P> with properties stated below. Even though this notation
has been used in the previous sections, we only add additional properties to (the former) P;, and hence

the results in the previous sections also hold for this distribution.

Notation 11. Let € > 0. Denote by P, a distribution over A%, A = I x J x K, with full support that

satisfies the properties stated in Theorem 2] That is,

e The marginal of P, on the first and the second coordinates is identical and given by P € A(A).
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e For every a € A, the marginal of the conditional distribution P>(-|a) on I is u.

e P, fulfills the following information constraint: Hp, (i,j|k,i’,j’,k’) — Hp, (i) > €,

where (i)jukai/ni/?k/) ~ P2'

Furthermore, we denote by {p“ : a € A} the conditional distributions of P, i.e., for all a € A, P(-|a) =

p“. The marginal distribution of p® on I, K, I x K, etc., are denoted by pf, pg, P x» respectively. o
The strategies we are going to construct will implement a distribution P, as denoted above.

Remark 12. Recall, that by Lemma [16|in the Appendix, for a given distribution P} € A((I x J x K)?)
which satisfies the properties stated in Theorem for every € > 0 there exists a distribution P, € A((I x
J x K)?) with full support and equal properties as Pj, such that |y — P || < 2. If we can show that
such a distribution P, is implementable, then P} is also implementable, since the set of implementable

distributions is closed by Remark 23] o

3.4.1 Strategy Outline

In the following paragraphs we only provide an outline of the strategies that will implement P,. The

details of the strategy construction will be discussed in the subsequent section.

First of all, we divide the game that is induced by the strategies of the players and by the actions of
nature, into blocks of a given length n. We associate to every such block k an input set, denoted by .7 [k].

Such an input set consists of an input set for nature, .#7[k|, forecaster, .#;[k] and agent, .#7[k], such that

y[k] :%[k] X yj[k] ka[k].

Denote by a"[k] = (x[k],y[k],z[k]) € (I x J x K)" the actual elements played by the players in block .
We want this sequence of action triples to have a second order type close to P». We can accomplish this

with the following approach:
We construct strategies, such that for given integers n,m,[ € N and € > 0, in asymptotically almost every

block k > 1, an input set .7 [k] is induced that is locally typical w.r.t. n,m, [ and P» according to Definition

Once this is accomplished, we run the Splicing Algorithm on .'[k]. By Lemma this produces a
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typical n-stage output sequence for block k of length n 4 1, which we denote by
o k] = (ao[k], o [K], .. ., ot [K]).

We set oplk] = o[k — 1], i.e., oplk] is the last element of the sequence in block k — 1. For every
Jj€10,...n], we write ajk] = (xj[k],y;[k],zj[k]) € I x J x K to denote the actions of the individual
players in stage j in block k.

Recall, that by Theorem the second order type of &' [k] gets arbitrarily close to P; in the total vari-

ation norm as n — oo.

For the above approach to work, the sequences in .7 [k] need to satisfy certain requirements. First of all,
the parameters n,m,l € N and € need to be chosen such that they satisfy the properties in Definition [I]]
and in Lemma [5} Moreover, the sequences in the input set .#’[k] must be e-typical w.r.t. the conditional
distributions of P, {p“:a € A}. In order to achieve this, we impose the following conditions on the

input sets of nature, forecaster and agent:

Conditions on the Input Sets

Let € > 0. For every a € A, setting r, = (n+m)P(a), the following conditions must hold on the input

set of nature, of the forecaster and of the agent:

Sk > x € T (pf) (3.10)
Sl > 7 € TE (pf x [¥*) for x'* € .7 [K] @.11)
k] 2y € T ) (p*)x", ) for X'« € A[k], 2" € Fk[k]. (3.12)

Note that the input sequences of the forecaster are assumed to be locally conditional typical sequences
according to Definition (10), and so it must hold that for every sequence (x"«,y"s,z'«) € (.77[k] x .7 [k] x
Zklk]),

(xra)yravzra) € Tri,l (pa)

The reader should observe that the concept of local conditional typicality keeps € fix, i.e., there is no

need for any change on €. Therefore, the input set .7 [k] = (S1[k] x .7;[k] x Sk [k]) that satisfies the
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conditions in (3.10), (3.11) and in (3.12) indeed satisfies all properties of a locally typical input set ac-
cording to Definition Moreover, by Lemma |5, there is an n-stage output sequence a*![k] of the

Splicing Algorithm applied to .7 [k], that has a second order type close to P, according to Theorem

The strategies we will construct are designed such that the input set of the agent and of the forecaster,
x|k and .Z[k], have the properties stated in (3.11)) and (3.12). Note, that the input set of nature may

not always have the desired property in (3.10).

Remark 13. [Nature’s Input Set] The sequences in .#7[k| are segments from nature’s conditional se-
quences which are fixed from the beginning of the play. Obviously, we cannot guarantee that nature
will play x« € T? (pf') for every a € A, as in (3.10). However, we know that this happens with high
frequency throughout the game by Lemma|[I8]in the Appendix. We will later discuss what we do in case

nature does not play as in (3.10). o

So far, we have outlined what the strategies of the players need to achieve, namely the induction of
an input set . [k] w.r.t. n,m,l and P>. As announced, we will provide the detailed construction of the
strategies in the upcoming section. In the remaining part of this section, we take a step ahead and present
a simplified overview of how the players act under the strategies we are about to construct. The purpose
of this proceeding is to introduce the key features of the strategies in an informal way. Thereby, the

reader is given an idea of the strategies, before we immerse into the details of their construction.

How the Players Act

In the following, let us assume that a play is initiated by the strategies of the players, that can induce a
locally typical input set .’ [k] with properties stated in (3.10)),(3.11)) and (3.12)) in every block (note, that

this is an idealised assumption, since by Remark [I3] property (3.10) may not always be satisfied).

First, recall that at the beginning of the play, the agent has no knowledge about future states of nature,
nor of the future play of the forecaster, whereas the forecaster has complete knowledge about all future
states of nature’s conditional sequences. Note, however, that the agent (as well as the forecaster) can

observe the complete history of the play at any stage in the game.
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In order to know her input set .7k [k] at the beginning of a block k > 1, the agent has to rely on her obser-
vation of the past play. Since we want .k [k] to be chosen in dependence of .77[k] as in (3.11)), it is the
task of the forecaster to send the necessary information in block k — 1 to the agent. More precisely, the
forecaster conditions her actions in block k — 1 on nature’s actions in block & in such a way, that it will
transmit sufficient information to the agent to know .#x[k| at the beginning of the block. At the same
time, the forecaster also conditions her actions in .%;[k — 1] on .%j[k — 1] and on .k [k — 1] as indicated

in (3.12), such that the input set .’[k — 1] is locally typical as desired.

We refer to information transmission as the process of sending and receiving information about future
states of nature. More precisely, we say that information transmission from block k — 1 to block k from
the forecaster to the agent is possible, if the forecaster is able to send enough information to the agent
in block k — 1, so that the agent knows .k [k] at the beginning of block k, while at the same time the
forecaster can match nature’s and agent’s actions in block k — 1, so that the input set .’ [k — 1] is induced.
Hence, information transmission is the key feature of the strategies of the players. Let us now shortly
demonstrate that in order for the information transmission to work, the information constraint plays a
vital role.

First, we will see that the information transmission process is formalised with the introduction of a Mes-
sage Set of the forecaster and a Set of Action Plans of the agent, which we will properly define in the
upcoming sections. Next, we show that the information transmission process can only work, if the mes-
sage set is larger in size than the set of action plans. Only then it is possible for the forecaster to send
enough information about future states of nature to the agent, so that the agent can deduce the desired
actions. Finally, we will see that the information constraint can guarantee that the relative sizes of the
message set and the set of action plans are as required.

In the next paragraphs, we intend to provide a first idea of the functioning of a message and of an action

plan.

A message of the forecaster in block k — 1 is a subset of the input set of the forecaster, .7 [k — 1]. It has
the property that every element in the message appears in the output sequence, a*![k — 1], so that at the
beginning of the next block, k, the agent is able to observe the message. In every block k — 1, k > 1, the

forecaster sends a message to the agent, that entails information about a so-called Hypothetical Input Set
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of Nature of block k, which we denote by .#[k|. This set consists of those segments of the conditional
sequences of nature, that contain the sequences of the actual input set of nature, .#7[k]. More precisely,
every sequence in .#7[k| is a middle segment of a sequence in .# [k]. Hence, the forecaster sends more
information in her message to the agent, than what will actually be needed. Let us illustrate this idea

with the two figures below:

row(a) -

row(b) -
row(c) -

row(d) -

row(e) -

Figure 3.1: Input Sequences

Every row in Figure [3.1|represents an input sequence of the locally typical input set .’[k — 1]. In every
such row we add an orange suffix and a green pointer. To understand these additions, recall that when
applying the Splicing Algorithm to a locally typical input set, not necessarily every element of an input
sequence is eventually added to the output sequence. However, Lemma [6] informs us of the minimal
number of elements from an input sequence that are added to the output sequence ((n+ m)P(a) — m).
Now, the orange suffix marks those elements that are potentially not added to the output sequence, i.e.,
there are exactly (n+m)P(a) — m elements to the left of the orange suffix. Now, the the green pointer
can only move in the orange suffix and indicates exactly the number of elements that are added to the
output sequence, i.e., all elements to the left of the green pointer. The elements to the right of the pointer
do not appear in the output sequence of block k — 1. The green pointers also marks the beginning of the
next block, k. Le., it marks the starting points for the input sequences of .7 [k].

Figure [3.2] focuses on one single row from Figure 3.1] (with two additional dashed boxes added) and
demonstrates the procedure of the Information Transmission. As before, the row represents an input
sequence from the input set .’ [k — 1], this time it is divided into the three sequences of nature, forecaster
and agent (in that order). Here, we can see, that the message (i.e., an element of the message) of the
forecaster is placed before the orange suffix. It includes information about the hypothetical input set of
nature (a sequence of the same), which begins right after the minimal length of the sequence of the input

set of nature in . [k — 1] (marked as a blue dashed box). Then, at the beginning of block k (indicated
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Input Set of Nature

A

i Elenjent of Hypothetical Input Set

Element of Message

Figure 3.2: Information Transmission

by the green pointers), the agent observes the message of the forecaster in block £ — 1, as well as the
complete history of the play (not included in the figures above). From that, she deduces a so-called
action plan, which is a set of sequences that contains her input set . [k] for block k. In Figure (3.2
we marked one sequence of the action plan (the red dashed box). The action plan has the property that
it matches the hypothetical input set of nature in the same way as the agent’s input set .k [k| matches
nature’s set .7[k] as stated in (3.11). With the help of her observation of the past play, the agent is then

able to extract her input set from her action plan.

This outline of how the players act is certainly not exhaustive, as indicated before. The following section

will now add the details to this mechanism.

3.4.2 Information Transmission

In this section we look at the features of the strategies introduced in the previous passages in more
depths. In particular, we define the hypothetical input set of nature, as well as the the message set of the
forecaster and the set of action plans of the agent. We begin with the definition of a set of parameters

that we are going to employ.
Definition 12. [Fit Parameters] Let A = x J x K and let € > 0. Let P, be a distribution over A2 as given
in Notation We call the set {P,,€,n,m,l} a set of fit parameters, if the following holds:

e mingcqnP(a) > %

e mingeamP(a) > 2
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o [ > )

1 _n_p__
op<m<4‘,3 2

where p = min,ea P(a) and py = ming pcq2 Po(a,b).

Definition 13. We say that a set of fit parameters {P,, €,n,m,[} behaves asymptotically appropriately,

if there exists a function v(g) with v(¢) — 0 as € — 0 and

m<y(e).

Remark 14. Note, that a set of fit parameters as given in Definition [[2] obviously exists whenever n,m
are assumed to be sufficiently large. Furthermore, one can find a set of fit parameters, { P>, €,n,m, [}, that

behaves asymptotically appropriately with v(€) = ye, where y € R is sufficiently large (y > pziS z). ©

Next, we need to introduce some notation regarding the structure of a play:

Notation 12. We say that a game induced by the strategies of the players and nature is an induced play.
In an induced play, denote by o*~! the entire past sequence of actions played up until the beginning
of (and not including) block k. Furthermore, denote by N(a|o*~!) the number of occurrences of a in

k—1

o <

In the following sections, we will often refer to an induced play, without having specified the strategies
of the players yet. The reader should observe, however, that in doing so, we do not presuppose cer-
tain features of the strategies and only need to describe the correct setting, that is independent of the

strategies.

The Hypothetical Input Set of Nature

Nature’s Conditional Sequences: First, recall that at the beginning of a game, nature draws for every
a € A and according to u, an infinite conditional sequence (x{,x3,...) of states, which the forecaster
observes. Remember, that if at stage ¢ in the course of a game, element a is played, i.e., (x;,yr,2) = a,

then nature plays x;1 = x{, if a has occurred i times in the history of the game up until stage .
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Remark 15. At the beginning of each block k > 1 in an induced play, the forecaster can observe the
entire past sequence of actions played by nature, forecaster and agent, a*~!. For every a € A, she can
also work out N(a|ak~!). Therefore, the forecaster knows nature’s input set in block k, .#;[k], since she
can observe all the elements nature will play after the upcoming occurrences of elements a € A, i.e.,

forecaster observes

(k] > X k] = (x1[k],...,x., [k]) = (xzav(a|ock-‘)7xil(a\ak—1)+1""’x;(amk-])ﬂa—l)'

<

To be precise, the forecaster not only knows .#7[k], but the entire future conditional sequences of nature.
However, this is not what she will transmit to the agent (this is obviously too much information). The

forecaster restricts her knowledge that she transmits to the so-called hypothetical input set of nature:

Definition 14 (The Hypothetical Input Set of Nature). Let {P,,€,n,m,l} be a set of fit parameters. Let
k be a block in an induced play, such that .7’[k] is a locally typical input set w.r.t. n,m,l and P,. The
hypothetical input set of nature of block k + 1, denoted by .# [k + 1], is a set of |A| segments of nature’s
conditional sequences {x“ : a € A}, with the property that for every a € A, a segment has length r, +m

and is locally typical w.r.t. u:
SLk+1]= {l’“*m[k—k 1] e Trj+m7,(u) la eA},

where for every a € A, the segment 1"« [k + 1] € .# [k + 1] has the following start and end points:

ra+ _
Ve k+1] = (x?ninN(a\ak)’""xamaxN(a\ak)+ra)’

where min N (a|af) = N(a|a*~1) +r, — m and maxN(a|a*) = N(a|o*~1) +r,. o

It should be observed that the hypothetical input set of nature contains locally typical sequences w.r.t.
L. Again, it is not guaranteed that nature’s conditional sequences are of these types, but if they are,
it will be this set which the forecaster informs the agent about. The following remark provides some

motivation and further explanation for the introduction of a hypothetical input set.

Remark 16. Let o"+![k] be the n-stage output sequence of the Splicing Algorithm applied to a locally

typical input set .’ [k]. For every a € A, the length of a subsequence o’ "![k] of a"*![k], denoted by
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L(o"1[k]), is given by
ra—m < L(o" T [k]) < ry, with r, = (n+m)P(a), (3.13)

by Lemma [6] (recall, that L(a! "' [k]) = N(a|a" "' [k]) for all a € A). As noted in Remark [I0} we can
see here again that a conditional subsequence o "![k] of a"*! is not necessarily equal to the respec-
tive input sequence a’e[k] € .#[k]. a"![k] is only a prefix of a’«[k]. Hence, since the lengths of the
subsequences {ag’“ k] :a € A} can vary in between the interval (3.13)), and since these lengths (equiva-
lently, the numbers N (a|a™"![k]), for a € A) determine nature’s actions in block k+ 1, we introduced the
hypothetical input set of nature, that takes into account the shortest possible lengths of the conditional
subsequences of the output sequence in block k. Finally, note, that obviously the input set of nature is a

subset of the hypothetical input set of nature in block k + 1, i.e., [k + 1] C L[k +1]. o

Observation 4 (Elements Added and Elements Discarded). Since not all elements from each sequence
in .7’[k] are added to the output sequence o1 [k], the question arises of what to do with unused elements,
i.e., elements of sequences in .#[k] that are not added to o"*![k]. Given the bounds of a conditional
subsequence (3.13)), there may be up to m unused, or unadded elements of every locally typical input
sequence o’ [k] € .7’[k]. While we can simply discard the unused elements of forecaster and agent, and
then start anew in a locally typical input set in the next block, we cannot simply discard the unused
elements of nature. In other words, unused elements of nature in the input sequences in .#[k] have to
reappear in the input set in the next block, [k + 1], while unused elements of forecaster and agent can

be discarded. o

The Set of Action Plans of the Agent

Let us now look at the concept of an action plan of the agent in more detail. As indicated in the outline
of the strategies, the action plan is a set of |A| sequences of length r, + m for every a € A, that matches
a given hypothetical input set of nature, .# k] in block k (that is only observed by the forecaster in the
previous block) in the following sense. If k"« denotes a sequence in the action plan, then for every
a € A, it holds that

(UK ) € TE ) (Pfk), for every a € A,
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where 1"« [k] € Z[k|. The action plan can hence be regarded as an extension of the input set of the
agent for block k. In fact, an important feature of the action plan is that upon observing the past play
until block k, the agent is able to extract her input set .# k] from the action plan. Let us now properly
define the set of action plans for the agent. The reader may observe the similarity to the Definition of

the set of action plans in [6].

Definition 15 (The Set of Action Plans of the Agent). Let {n,m, [, &, P, } be a set of fit parameters. Given

a € A, we say that the set of action plans w.r.t. a, denoted by AP“, is a subset of T¢

“ -
¢ vmi(Pg) of minimal

size, s.t. forallx € 7, (pf), there exists an element z € AP, with (x,z) € T,¥ ,(pf k). The (total) set

of action plans is given by AP, with

AP = x AP°.

acA

Elements of AP will be denoted by 2. o

The size of the set of action plans for the agent plays an important role in the construction of the strate-

gies, which is stated below.

Lemma 8. [The Size of the Set of Action Plans] Let {n,m,l,€,P,} be a set of asymptotically fit param-
eters. Let a denote a random triple in A =1 xJ x K, and let (i,j,k,a) denote two random triples in A

with (i,j,k,a) ~ P. Further, let 1(€) be a function of € with A(€) — 0 as € — 0. Then,

|AP| < (142 ())n(H (kla)—H (kli,a)+& (€))

)

for E(g) = 3¢€, with & = — Yk log Px (k).

Proof. Let (i, k%) denote a pair of random variables distributed according to pf .. By Theorem [7|in
the Appendix, for every a € A and for every £ > 2¢¢, there exists a set of action plans w.r.t element a of
size

(AP| — 1A HOC) - H ) 6).

with 4, = 2(1 + ﬁ) Since 7 < v(€), we have A, < v(g)(1+ %), with p = mingeq P(a). Setting

n

§ =¢(e) =3ce,

|AP) = Qa1+ A (H ) ~H ) £ )

< pra(1+A(8))(H (k) —H (K[i) +5(€))
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Since AP = X,c4 AP?, we have |AP| = [1,eca |AP?| and

H IAPY| < H2na(1+l(8))(H(k")—H(k"lia)+f5(8)) (3.14)
acA acA

— pn(1+A(e))(H (k|a)—H (k[i,a)+E(€)) (3.15)

O

We now show that at the beginning of every block k > 1, the agent is able to deduce an input set .k [k]

from her observation of the past play, and, in particular, from her observation of an action plan.

Remark 17. In the later construction of the strategies we will see that if the agent is able to deduce
an action plan JZ° € AP from her observation of the past play at the beginning of some block &, then
this must have been possible due to the forecaster’s ability to observe a hypothetical input set in block
k, Z k] (and her transmission of information of the same to the agent). This remark is vital for the

following lemma. o

Lemma 9. Assume, that in block k — 1, k > 1, the forecaster and the agent are able to induce a locally
typical input set ./ [k — 1]. Moreover, assume that the agent can deduce an action plan % € AP from

her observation of the past play. Then, the agent is able to construct an input set . [k] from & for block

k, that satisfies property (3.11).

Proof. Recall, that given the assumptions stated in the current lemma, the action plan .2, received by
the agent at the beginning of block k, corresponds to a hypothetical input set of nature, that was observed
by the forecaster in block k — 1. Observe, that since every k"« € ¢ is locally conditional typical, i.e.,

Yq+m €
LS € Tr{,er,l

(ps k|1« [k]) for every a € A, then by Definition every subsequence of r* con-
secutive elements of k@™ is also locally conditional typical. Hence, the only thing the agent needs
to do, is to determine the correct segment in k’«™™ of length r, for every a € A, which will constitute
the set .7k [k]. For this, the agent needs to observe the ending points of each conditional subsequence
o[k — 1] of the output sequence a"*![k — 1]. These ending points determine the starting points for

the sequences in the input set .% [k] of block k (these ending points are equivalent to the green pointers

in Figures[3.1]and[3.2).

In order to compute the exact ending points of each conditional subsequence, she needs to observe, for
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every a € A, the number of occurrences of a in the past play up to block k — 1, N(a|a*2), as well as
the number of occurrences of element a in block k — 1, given by L(a/**![k — 1]). Inequality (3.13) in
Remark [T6] tells us that

rg—m< L(Océ’“[k— 1)) <r,.

The sequence in the action plan and in the hypothetical input set start right after the minimal length of
L(o"*1[k — 1]), as was demonstrated in Figures and Therefore, if L(o [k —1]) > r, —m,
the agent needs to cut the first L(o” [k — 1]) — (r, — m) elements of the prefix of k’«*™, for ev-
ery a € A. Since for every a € A a sequence in .#x[k| has r, elements, we need to make sure that
redundant elements at the end of k"™ are also cut off. This means that the agent needs to cut

ra+m— (L(o "' [k —1]) — (r, — m)) elements in the suffix of "+,

Note, that nature proceeds in exactly the same way. The resulting sequences, denoted by (1"«[k], k"),
have the desired length r,. Hence, {1"¢[k] :a € A} are the sequences of nature’s input set, .#7[k], and

{K’*:a € A}, are the desired sequences of agent’s input set, .-k [k]. Ul

The Message Set of the Forecaster

Before we define the message set of the forecaster, let us give an overview of the main properties of a

message:

A message of the forecaster in block k consists of a set of sequences, one for every a € A. Every such
sequence is of length r, —m, and is therefore shorter than a sequence in the forecaster’s input set, .7;[k].
However, one important feature of a message is its extendability, i.e., a message can be extended into
an input set .#[k|, that satisfies the property stated in (3.12)). Another important feature of a message is
its ability to transmit the forecaster’s knowledge of the hypothetical input set . [k + 1] to the agent. The

following paragraphs will look at these properties now in more detail.

Let us first introduce the concept of extendability:

Definition 16 (Extendable Locally Conditional Typical Sequence). Let P € A(I x J) be a distribution
with marginal distribution P; € A(I). Furthermore, let n,m,l € N be integers with n,m > [ and let

anrm c T8

o +m,l(P[) be a locally typical sequence. Note, that the sequences of the first n and of the last
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m elements of X", denoted by x" and x™, respectively, are also locally typical w.r.t. P;. We say

that a locally conditional typical sequence y" € T¢

=/ (P|x") is m-extendable, if there exists a sequence

y" € T (P[x™), s.t. the concatenation of y" and y™, y" & ™, is an element of 7} (P|x"*™). We denote

n+m,l

the set of m-extendable locally conditional typical sequences by T¢,(P|x",ext(m)). o
The message set of the forecaster is an extendable locally conditional typical set in the following sense:

Definition 17 (The Message Set of the Forecaster). Let {P,,&,n,m,l} be a set of fit parameters that
behaves asymptotically appropriately. Furthermore, let .#7[k] and .7k [k] denote the input sets of nature
and of the agent in block k, that satisfy the properties stated in (3.10) and in (3.11), respectively. For
every a € A, set r, = (n+m)P(a) and denote by (x"*~", z"«~™) the prefix of the first r, —m elements of
(xa,7"0) € S7[k] x Sk |k]. The message set of the forecaster w.r.t. an element a € A, denoted by M¢, is

then given by the m-extendable locally conditional typical set

Mg =TE (P (e ) ext (m)).

The (total) message set, My, is given by

Mk = X M]?
acA

Remark 18 (Length of a Message). Note, that for every a € A, a sequence in a message is of length
ro —m. This is no coincidence. Recall, the minimal length of a conditional subsequence ! of the
output sequence a"*! has the same length, as stated in (3.13). A message of length r, —m hence ensures
that it will appear in the output sequence (any message of a longer length might not fully appear in the

output sequence). o

Remark 19. [Extending a Message to a Locally Typical Input Set] By Definition for every a € A
and for every pair (x"*,z"*) € /7[k] x Zk[k], a sequence y"*~" € M} can be m-extended to a sequence
yeeTE (p?(x™,z)). The set of these m-extended sequences is exactly the conditional locally typical

input set .7 [k] stated in (3.12). o
With the help of Corollary [I0]in the Appendix, we can now derive the size of the message set.

Lemma 10 (The Size of the Message Set). Let € > 0 and let §(€) be a function of € such that §(€) — 0 as

€ — 0. Furthermore, with a = (i’ ,j k'), denote by (a,i.j,k) two triples of random variables distributed
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according to P, Then, for every 8 > 0 and for n sufficiently large,

M| > 2(1-8(@)n(H{lik.a)-2ed-5)

withd =Y ,co H(jli,k,a = a)

Proof. By Corollary [10| (in the Appendix), with d =Y ,c4 H(j|i,k,a = a), we can bound the message

set of the forecaster with respect to an element a € A as follows:

‘M]‘(l‘ > 2('}47’”) (H(j\i,k,a)72£d75) .

Now, since we assumed that the set of fit parameters { P,, €,n,m, [} behaves asymptotically appropriately,

there exists a function v(€) with v(€) — 0 for € — 0. Setting d(¢) = ﬁj)l’(a) and n, = nP(a), note

that we can deduce the following bound for r, —m for every a € A:

nP(a)
> n“(l - min(‘:g(j}’(a))
=na(1—6(g))
Therefore,
M| = T T 1045
acA
> H2(Va—m)(H(jli,k7a)—2£d—3)
acA

> DXacana(1-8(e))(H(jlik.a)-2ed—-5)

— 9n(1-8(€)) Laea Pla) (H (jlik,a)—2ed—3)

on(1-8(e))(H jlik.a)—2ed—3)
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The Role of the Information Constraint

The information constraint is a vital element in the construction of the strategies of the players. Only
with the help of the information constraint we can show that information transmission from the fore-

caster to the agent is possible. We elaborate on this in the following paragraphs.

In the following Corollary we introduce the so-called transmission function:

Corollary 1. Let {P,,e,n,m,l} be a set of fit parameters that behaves asymptotically appropriately.
Given a message set for block k, My, and given the set of action plans, AP, there exists a surjective

mapping fi.: My — AP, as € — 0. We call f; the transmission function w.r.t. block k.

Proof. We show that |My| > |AP| as € — 0.
Leta= (i',j, k') and let (i,j,k,a) ~ P>.. As stated in Notation P, satisfies the following information
constraint:

H(i,jlk,a) > H(i) + €. (3.16)

Now, by Lemma 8 we have

|AP| < 2 (14 (€))n(H (k|a)—H (kfi,a)+& (€))

)

with A(¢) > 0and (e) - 0as e — 0.

Further, setting § = € in Lemmal[10} we get

|Mk| > 2(1—5(8))n(H(j\i,k,a)—28d—£).

We now show that

H(jli.k,a) — & > H(k|a) — H(k|i,a). (3.17)

First, applying the chain rule, we get

H(j|i,k,a)—82H(i,j|k,a)—H(i|k,a)—8 (318)
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Next, since by assumption, H (ija) = H(u) = H(i), we have

H(k|a) —H(kli,a) = H (k[a) — (H (ki) — H(i|a))
= —(H(k|a) + H(i]k,a) — H (k|a)) + H (i)

= H(i) — H(ilk,a). (3.19)

Therefore, by equations (3.18)) and (3.19), the inequality in (3.17) is equivalent to

H(i,j|k,a) — H(i|k,a) — & > H(i) — H(i|k,a),

which is equivalent to the information constraint stated in (3.16).

The result follows by setting € — 0. U

Our aim is to describe the process of the the information transmission in detail. In order to do so, we

need the transmission function and the action plan function, which we denote in the following:

Notation 13. By the construction of the set of action plans, AP, we can define the following surjective
function,

prZHI—>AP,

where HI = X 4c5 TE

v, ,(1), i.e., HI includes all possible hypothetical input sets of nature. o

Definition 18 (Information Transmission-Process). Let {P,€,n,m,l} denote a set of parameters that
behaves asymptotically appropriately. Let us assume that there exist strategies, that together with na-
ture’s actions, induce a play. Denote by k and k+ 1 two consecutive blocks in the play, s.t. in block k
the players are able to induce a locally typical input set .’[k] w.r.t. n,m,l and P,. We call the sending

and the receiving of information, as outlined below, the information transmission-process:

Sending Information:

1. At the beginning of block k, the forecaster observes the hypothetical input set of nature of block

k+1, Z[k+1).
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2. The forecaster then computes the corresponding action plan for the agent using the action plan

function, i.e., fap(F[k+1]) = Kk € AP.

3. This information is sent to the agent in block k via the transmission function, i.e., the forecaster

chooses a message ./#; € f; ' (k) C M.

Receiving Information:

1. At the beginning of block k + 1, the agent observes the past play up to and including block k, o*.

In particular, she observes the message .#; in the output sequence o**![k].

2. The agent receives her action plan by applying the transmission function to the message, i.e.,

fe( ) = X

Corollary 2 (Inducing P»). Given the assumptions in Definition the information transmission pro-
cess over two consecutive blocks k and k+ 1 defines strategies for the players such that in block k+ 1

distribution P, is induced via a locally typical input set . [k + 1].

Proof. First of all, the hypothetical input set of nature in block k+ 1, .# [k + 1], satisfies property (3.10),
since the sequences in .# [k + 1] are locally typical w.r.t. . Moreover, as described in Definition
at the beginning of block k + 1, the agent receives an action plan fi(.#}) = 2 that was sent to her
by a message from the forecaster, .#, in block k. By Lemma [9] the agent can extract an input set
Sk |k+ 1] from her action plan %" that satisfies property (3.11). The actions of the forecaster depend on
her observation of nature’s actions: If the forecaster observes a hypothetical input set for the upcoming
block, .7 [k + 2], she first computes the corresponding action plan for the agent, fap(Z [k +2]) = #~
and then chooses a message .#;,| € f,;ll (A") C Myy. By Remark , the forecaster then extends
41 Into an input set .7 [k + 1], that satisfies property (3.12)). Otherwise, if the the forecaster does not
observe a hypothetical input set for the upcoming block, she can directly choose an input set .7 [k + 1]
as in (3.12) (which does not contain a message).

Hence, by construction, the set
Fk+1]x Fk+1] x Fxlk+1] = Lk +1]

constitutes a locally typical input set w.r.t. n,m,[ and P». O
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Observation 5. The reader should observe that for the information transmission process to work, it is
necessary that the forecaster indeed observes a hypothetical input set of nature. In particular, this means
that the sequences in .# [k + 1] are locally typical w.r.t. p. Otherwise, the forecaster is unable to find
an action plan for the agent and the players cannot induce a locally typical input set . [k + 1] in block

k+1. o

Notation 14. If, as described in the above observation, the forecaster cannot observe a hypothetical
input set of nature in block k+ 1, then we say that the information transmission failed and block £+ 1 is

then called a lost block. <o

Restarting after a Lost Block

If the players have encountered a lost block, it is not the end of the world. First, we know that by Lemma
in the Appendix, this does not happen frequently, and second, it is possible to resume the information
transmission process. Obviously, this only depends on nature’s conditional sequences. Once they are
locally typical again, the players can restart. However, since the information transmission has failed
before, the players cannot immediately induce the desired distribution P (since the agent does not have
the necessary information). More precisely, we need a recovery process of at least two blocks: if a
block £ is lost, then the earliest block in which the players can induce a distribution P, again is block
k42 (assuming nature plays typical). To see that, it is important to note that in a lost block we don’t
have a mechanism (such as the Splicing Algorithm) that helps us to control the length of the conditional
subsequences in that block. Therefore, it is impossible for the forecaster with the tools at hand to send
any information of future states of nature in the lost block to the agent (so that they are able to induce
a distribution P, in the block following a lost block). Instead, if nature plays locally typical again after
a lost block, we show that a different distribution, 95, can be induced in the block after a lost block
(for which no previous information transmission is needed) which enables the information transmission

process to work again (to induce P») thereafter.

The following Lemma focuses on the first block after a lost block in which the players can induce such

a distribution Q5.

Lemma 11. Let Q = u X Uj, where Uy denotes the uniform distribution over J. Fix z € K, set A =1x

J x z and denote by Q> = Q x Q a distribution over A>. Furthermore, let {Py,€,n,m,l} be a set of fit pa-
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rameters, such that nQ(a),mQ(a) €N, for all @ € A. Set rz = (n+m)Q(a). Finally, let k* denote the first
block after a lost block in which .7[k*| satisfies property (3.10), i.e., S[k*] = {x"’ € Tr‘jl(/,t) rae A}.

Then, the players are able to induce Q, in block k*.

Proof. We show that the players can induce a locally typical input set .’ [k*] w.r.t. n,m,l and Q,, such
that the corresponding output sequence of the Splicing Algorithm applied to .#’[k*] has a second order
type close to Q,. To this end, we need {Q»,€,n,m,l} to be a set of fit parameters (note, that we only

replaced P, by Q» in the above set of fit parameters), which we demonstrate below:

Denote by {)L‘Z 1a EA} the conditional distributions of Q,. Note, that by assumption, O, has full
support and for every d € A, it holds that the marginal of A% on I, A%, is equal to p. Furthermore, if
min,c; Q(d) > mingea P(a) and min, 5z Q(a,b) > min, yc42 P(a,b), then {Q2,€,n,m,1} is a set of fit
parameters.
Indeed, for all a =i, j,k € A, we have

(min PG, j.k) = min P(jlkDPKIDK()

L . o
< pyminp (i)

=minQ(a).

acA

In the same way, one can show min; ;3> Q(d,b) > min, ,c42 P(a,b), hence {Q>, €,n,m, [} satisfies the

properties of a set of fit parameters.

It remains to specify the actions the players need to play in order to induce a locally typical input set

Z[k*]: The input set of nature is assumed to be
Sk ={x"eT (u):acA}. (3.20)
If the agent plays a sequence of the fixed element z, i.e.,

Tk ={Z"=(z,2,...,z) EK":a €A}, (3.21)
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and the agent matches nature and agent, i.e.,
k)= {yT e TS (A%, 27) :ae A}, (3.22)
then for every (x'7,y'7,7'4) € ./7[k*] x L) [k*] x L x [k*] = 7 [k*] it holds that
(7, y",2") € TE (A7),

which completes the proof. O

Now, if the players are able to induce a distribution Q; in a block £*, then the information transmission
process can be resumed if the forecaster observes a hypothetical input set of nature in the following
block, k* 4+ 1. However, we need to be precise here. We have to adapt the hypothetical input set of
nature to the fact that the players induced a distribution Q» in block k* instead of the distribution P,
(compare with Definition[T4). The sequences in the adapted hypothetical input set need to have slightly
different start and end indices, but the length of each sequence remains r, + m, for all a € A. This stems
from the fact that A, the set on which 0> is defined, is only a subset of A. Hence, for some elements
a € A, the conditional subsequences &' "! of the output sequence in block k* are empty. The following

Definition clarifies these statements.

Definition 19 (Q-adapted Hypothetical Input Set of Nature). Let k* denote a block in the play in which
the distribution Q, as introduced in Lemma is induced. Furthermore, denote by {P,,€,n,m,l} a set
of fit parameters. The Q-adapted hypothetical input set of nature, denoted by .Fp[k* + 1] is a set of A
segments of nature’s conditional sequences {x“ : a € A}, with the property that a segment 1"« [k* + 1]

has length r, 4+ m and is locally typical w.r.t. u:
Folk +1] = {1k +1] e T, (1) :a €A},

and for every a € A,

VR 1) = (x x

a a )

minN(a|a*™)? " max N(a| ok )41,/

where minN(a|a!") = N(a|a* ~') +r; —mand N(a|a*") = N(a|aX ~1) +ra.

Note, that for a given element a = (i, j,k) € A in the above equations for the indices, a is only defined if

k = z. If k # z, then we set r; = 0. o
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Note, that since the length of the sequences in the Q-adapted hypothetical input sets of nature hasn’t
changed, the set of action plans for the agent does also not change. However, we need to adapt the

message set of the forecaster to a block £* in which distribution Q is induced:

Definition 20 (The Q-adapted Message Set of the Forecaster). Let Q be a distribution as introduced in
Lemma [l 1| and let {Q,,€,n,m,l} be a set of fit parameters that behaves asymptotically appropriately.
As before, denote by {A%:€ A(A):a €A} the set of conditional distributions of Q». Furthermore,
let .77[k*] and .#k[k*] denote the input sets of nature and of the agent in block k*, that satisfy the
properties stated in (3.20) and in (3.21)), respectively. For every @ € A, set r; = (n+4m)Q(&) and denote
by (x"a~™[k*],z"a~™[k*]) the prefix of the first r; — m elements of (x"a[k*],7"4[k*]) € ./ [k*] x Sk [k*]. The
message set of the forecaster w.r.t. an element @ € A, denoted by MZ., is then given by the m-extendable

locally conditional typical set
M =Ty (AT (" k], 2" k], ext (m) ).
The (total) message set, My-, is given by

a
Mk* — XNMk* .
acA

The size of the Q-adapted message set of the forecaster can now be directly deduced from Lemma

Corollary 3 (The Size of the Q-adapted Message Set). Let 0(€) be a function of € such that 6(€) — 0

as € — 0. Then, for n sufficiently large,

M| > 2(1-8(e)n(log, i-2ed—e)

with d = |A|log, |J|.
Proof. The proof follows directly from Lemma[I0} O

Observation 6. Observe, that log, |J| > H(jli,k,a), and hence |M-

> |My| > |AP|. Therefore, Corol-
lary [T|can be applied to a Q-adapted message set of the forecaster, i.e., there exists a surjective mapping

fer : M= — AP, which we also refer to as the transmission function w.r.t. block k£*. Moreover, there still
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exists the action plan function f4p : HI — AP, so that the information transmission process as outlined in
Definition 18| can be directly adapted to blocks £* and k* + 1, where distribution Q is induced in block

k*. o

3.5 Proof of Theorem

We now have all the tools at hand to finally proof Theorem [2;

Proof of Theorem[Z] Let A = (I x J x K) and let Py € A(A?) be a distribution that satisfies the assump-
tions in Theorem For all € > 0, we know by Lemmathat there exists a distribution P, € A(A?) with

properties stated in Notation In particular, it holds that
|P—Ps|, < 2e. (3.23)

Furthermore, let Q> € A(A?), with A =1 x J x z and z € K, denote the distribution introduced in Lemma

M1

Fix € > 0 and let /,n,m € N be integers where n,m are chosen sufficiently large, so that the following
holds:
e nQ(d),mQa € Nforallac A

e {P,e,n,m,l} is a set of fit parameters that behaves asymptotically appropriately.

We show that there exist strategies (o, 7) that together with nature induce a sequence of random vari-
ables, (x;,y,,2),t > 1, s.t. the expected empirical distribution over two action triples after t = nw stages

(for w € N sufficiently large), denoted by P, is close to P, i.e.,
[P — P <2e+6(¢), (3.24)

where 6(¢€) is a function of € with 6(¢) — 0 as € — 0.

Note, that P"" is an nw-implementable distribution, and by Remark [25] P"" is also implementable. By
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equations (3.23) and (3.24) one can then conclude that
[P —Py|| < 4e+8(e),

and since the set of implementable distributions is closed (also by Remark [25]), Theorem 2] follows. We

will henceforth focus on the proof of inequality (3.24).

A pair of strategies and nature’s actions induce a play, i.e., a sequence of action triples, which we divide
into blocks of length n. We first show that there exist strategies, (0, T), such that in asymptotically almost
every block k > 1, distribution P, is induced via a locally typical input set .’[k]. To be precise, P, is not
directly induced by the strategies, but a distribution close to P». l.e., in every block, the strategies induce
a sequence of action triples, denoted by o"*![k] (we apply the same notation as introduced in section

(Strategy Outline)), with the property that
emps (k) — By < ().

In the following, when stating that P, is induced, we think of the induction in the sense of the above

inequality.

Recall that in Corollary [2] and in Lemma [T 1] we have already developed strategies for singled-out sce-
narios in an induced play. Observe that the above assumptions on the parameters €,n,m,! and on the
distributions P» and O are the same as in those scenarios. Therefore, we can now assemble these strate-

gies for an entire play.

In block £k = 1 we have n+ 1 stages. We assume that in the first stage of block 1, the players play
arbitrarily. Now, if nature’s input set, .#;[1], is typical, i.e., satisfies property (3.10), the players can
induce the distribution Q, as outlined in Lemma|[T1] If, in addition, the forecaster observes a Q-adapted
hypothetical input set of nature, .#p 2] for block 2, then the players can induce P, in block 2 (this follows

directly from Observation [6|and from Corollary [2).

Whenever the players are able to induce a distribution P in a block k > 2 and if the forecaster observes
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a hypothetical input set .# [k + 1] at the beginning of block k, they are able to induce P, in block k + 1.
Again, this is outlined in Corollary

If, in block k = 1, nature’s input set, .#;[1], is not typical, i.e., does not satisfy property (3.10), then we
consider the first block as a lost block and the forecaster cannot transmit any information about future
states of nature. If this happens, the agent still plays a fixed element z and the forecaster plays a random
sequence. In this case, the strategies of the players for block 2 are the same as in block 1: if nature’s

input set, .#7[2], satisfies property (3.10)), the players can induce @, in block 2, etc.

Finally, if in a block k > 1 the players have either induced O, or P> and the forecaster is not able to
observe a (Q-adapted) hypothetical input set of nature for the upcoming block £+ 1, then P, cannot be
induced in block £+ 1 and no information can be transmitted from the forecaster to the agent. Hence,
block k+1 is a lost block. Also, observe that in this case no information is sent to the agent in block £,
i.e., the forecaster does not send a message to the agent (nevertheless, the forecaster’s input set .%; k] still
has property (3.12)). In the lost block k + 1, the agent again plays a fixed sequence z and the forecaster
plays a random sequence. In block k + 2 after the lost block k+ 1, the strategies of the players are the

same as in block 1, i.e., they start anew.

Denote by (x;,y,,2:), | <t <n-w,w €N, a sequence of random triples induced by the strategies (o, 7)
and by nature’s actions. Furthermore, denote by (x[k],y[k],z[k]) = @[k] the kth block of n random triples,
with 1 < k < w. Now, recall, that we call a block k£ > 1 a lost block, if the players cannot induce Ps.
In particular, in a lost block it holds that ||emp,(e[k]) — P»|| > 6(¢€), where d(¢) is a function of € with
0(€) — 0 as € — 0. Denote by LB the event of such a lost block. In a lost block, at least one of nature’s
conditional sequences is not locally typical w.r.t. u. Now, recall, that it depends on the observation of
the (possibly Q-adapted) hypothetical input set of nature in block &, whether that block is lost or not.
More precisely, if, for every a € A, the sequences in the hypothetical input set are locally typical w.r.t.
M, block k is not lost. Now, by Lemma[I8] it holds that for every a € A, and for every segment of r, +m
elements in nature’s (random) conditional sequence (note, that r, +m is the length of a sequence in the
hypothetical input set),

Pr(x“™eTE, (1)) = lasn — co.

Ta
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It directly follows that for the complement of LB, which we call a good block, or GB,

PR(GB) = PR(|lemp>(at[k]) — P>|| < 8(€)) — 1 as n — .

Therefore, it is indeed the case that in asymptotically almost every block k > 1 the strategies induce a

good block.

We conclude the proof by showing that the expected empirical distribution over pairs of the random

sequence (X;,y;,2), denoted by P}, is close to Ps, i.e., we prove

[P — P < 8(€) +2¢. (3.25)

First, by the law of total expectation, and for every k > 1, we have

Elempy(a[k])] = E[emps(a[k])|GBIPR(GB) + E[emp,([k])|LB|PR(LB),

therefore, for n sufficiently large,

[E[emp2(@[k])] — Pa|| < [[E[emp2(a[k])|GB] - Py + &

<o(e)+e.

It follows, that if w is sufficiently large,

15" = Pof| = [[Elempa(x:,y,,2)] — Po|

E [ZW: empz(a[k])] —whP,
k=1

1
Cw

1
Cw

;E [empa(0t[k])] —wPs

< S IElempa@li)] -2 + Y [Blemps(ali)] -

< () +2e,

which completes the proof. O
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Part 11

Model 2
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Chapter 1

The Properties of Model 2

We now introduce a second model that is more closely related to the model in [6]. The reader will
notice that other than in the first model, the forecaster’s actions do not influence the players’ payoff. The
forecaster’s only task is to submit her knowledge about future states of nature. The structure of the payoff
function hence reduces the complexity of the proofs of the main theorems to an extent. Nevertheless, we
cannot adapt the methods from [6] to this model one to one. The key idea here is to introduce another
concept, called block distributions, that prove to be useful in applying the results from [6]], especially in

the proof of the second main theorem.

1.1 The Description of the Model

Let us first present the features of the new model. As before, we denote the action sets of nature, fore-
caster and agent by /, J and K respectively. We will consider a repeated game, and in each stage r > 1,

the actions played by nature, forecaster and agent are denoted by x; € I, y; € J and z; € K, respectively.

Just like in Model 2, the team, that again consists of the forecaster and the agent, is assigned a payoff
per stage. This time, it does not depend on the forecaster’s actions, but only on agent’s and on nature’s
actions in the current stage, as well as on the agent’s actions in the previous stage. Hence, the stage-
payoff function is given as follows:

g KxIxK—>R.

The assumptions on the knowledge of the players are similar to the model in [6]. At the beginning of
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a repeated game, the forecaster can observe all future states of nature. She can also observe the past
play during the game. The agent, on the other hand, does not have any knowledge at the beginning of
the game and in every stage ¢ > 1, she can only observe the past play. More precisely, the forecaster’s
strategy, denoted by 6 = (0;);, is expressed in dependence of her observation of nature’s sequence of

actions, and of her observation of the past play. That is, in every stage t > 1,
o N xJ I x K

describes the action of the forecaster, y;, in stage . The agent’s strategy, given by T = (1;);, is expressed

in dependence of the past play, i.e., for every stage r > 1,
o I ' xJ I x KT 5K

describes the action of the agent, z; in stage ¢.

The assumptions on nature are also identical to the model in [6]: at the beginning of the play, nature

draws a realisation x = x1,x2,...,€ I" of an i.i.d. sequence i =iy, i, ... with law .

A pair of strategies (o, 7) together with u induce a sequence of random action triples aj,ap, ... with

a, = (i;,j,, k), fort > 1. The corresponding induced probability distribution over (I x J x K)N is denoted

by Q/,t,cr,r-

1.2 Implementable Distributions

In this section, we introduce 2 types of implementable distributions that will be of interest in the up-
coming sections. We will first denote two important distribution that can be deduced from an induced

probability distribution Qy s 7.

t—1,t)

Notation 15. Denote by sz(lx K)

the marginal distribution of Oy, 5.z on K x (I x K) in stages ((t —1),1).

The average distribution up to stage 7 > 1 of these distributions is written as
T v (=1,
QK><(1><K) =T ZEQKX(}XK)’
t=
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and we refer to this distribution as the expected empirical 2-stage distribution. Let us now divide the
stages into consecutive blocks / = 1,2, ..., each of size T (i.e., we have T stages in each block). Denote

by Qﬁpc the marginal of Q,; 5 on block / and denote by
("T) _ 1y o(1T)
A7 ;
Qﬂﬁﬂ' = % Z Q,U'7G7T
the average of these marginal distributions up to block r. We call this distribution the expected empirical
T-block distribution. o

Given the above notation, we can now introduce two types of implementable distributions:

Definition 21. A distribution P € A(K x (I x K)) is implementable, if there exists a pair of strategies

(0,1), s.t. Q};X(MK) — P, for T — oo. P is called T- implementable, if QIT(X( = P. The set of

IxK)

this type of implementable (respectively, T-implementable) distributions is denoted by & (respectively,

P (T)). o

Definition 22. A distribution Q € A(IT x JT x KT) is implementable, if there exists a pair of strategies
(0,7), s.t. QE[;QT — Q as r — . We call Q r- implementable if QE{jZ?T = Q. The set of this type of

implementable (respectively, r-implementable) distributions is denoted by 2 (respectively, 2(r)). ¢

Below, we state properties of the sets & and Z(t) which directly follow from Remark 1 and Remark 2

in [6]:
Remark 20. [Properties of Sets of Implemebtable Distributions]
e The set of implementable distribution & as denoted in Definition [21]is closed.

e The set of T-implementable distributions, & (T), is contained in Z.

1.3 The Information Constraint

Let P be a distribution over K x (I x K), and denote by (k’,i,k) a triple of random variables distributed

according to P. We say that P fulfills the information constraint, if

log|J| > H(KIK) — H(K[K'i).
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Equivalently, one can write

log|J| > H(i|K) — H(i)k,K').

We can interpret the left-hand side as the information sent from the forecaster to the agent and the right-
hand side as the information used by the agent. The latter is the reduction of uncertainty that k gives
on the conditional random variables i|k’. Note, that the right-hand side is also known as the conditional

mutual information of the random variabes (k,i,k’).
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Chapter 2

Results

We will prove two major results. In the first one, the information constraint defines the set of imple-

mentable distributions:
Theorem 4. Let P € A(K x (I x K)) be an implementable distribution with (k',i,k) ~ P and i ~ p.
Then, P fulfills the information constraint

log|J| > H(ilk') — H(ilk,K').

In the second result, we characterise distributions P € A(K x (I x K)) that are implementable:

Theorem 5. Let P € A(K x (I x K)) be a distribution with full support and with marginal distribution
P; = u on I and with unique marginal distribution Px on K. Denote by (k',i,k) a random triple with

(K',i,k) ~ P and let i be independent of k'. If P fulfills the the information constraint, P is implementable.
Remark 21. The assumption in|5|that i is independent of K’ is a necessary technical assumption as we
will see later on in the proof of the Theorem. It reduces the information constraint to

log|J| > H(i) — H(ilk).

Note, that assuming J to be larger in size than I would directly imply this information constraint (since
then log|J| > log|I| > H(i)). The independence assumption, however, does not immediately lead to
the information constraint to be fulfilled (at least not without further assumptions). Hence, however

restrictive this independence assumption may appear regarding the set of distributions we want to de-
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scribe as implementable, it does not restrict the sizes of the action sets and hence does not imply a trivial

(immediate) fulfilment of the information constraint. o

2.1 Proof of Theorem 4|

Proof. First, we prove the Theorem for every T-implementable distribution P € A(K x (I x K)):

By Lemma 1 in [6] the function f : A(K x (I x K)) = R, f(Q) = Hy(i|k,K’) is concave. Recall, that

every T-implementable distribution P € A(K x (I x K)) can be expressed as the expected empirical

distribution of 2-step triples (k;_1,i;,k;) in an induced game up to stage T > 1, P = % Zt 1 Qi(xl lI>< K"

Therefore, we get

|k/ ZH r—1.t |k/ )

QK x(IxK)
Furthermore,

ZH 1 (iK', k)

QK><(1><K)

H (i [k, k1)

I
™=

[
X

I
™~

H(il‘akl‘|ktakt71)

-
Il
—

v
1=

H(itvkt’ilv"'7it—17j17‘"jT7k17"'7kt—1)kt) (21)

N
Il
—_

Il
1=

H(ilakl"i17'"7il—17j]7"'7jT7k17"'7kt—1) (22)

N
Il
_

H(l],...,iT,k],...,kT‘jl,...,jT)

H(llajlvkla"'aiTajTJ(T)_H(j17"'7jT)

V

_H(ll7"-aiT)_T10g|‘]|

T(H(i) —log|J]),

where inequality (2.1)) follows from the monotonicity property of the entropy (conditioning reduces en-
tropy) and equality (2.2)) is due to the fact that k; is a deterministic function of the past. In the remaining
rearrangements the chain rule is applied, as well as the property of maximum entropy. Finally, note that

the last equality results from the assumption that nature’s sequence iy, ...,ir is i.i.d.
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Hence, we have

THp(ilk'.k) > T (H(i) —log|J|) (2.3)

> T (Hp(i[k') —log|J|). (2.4)

We have thus shown that every T-implementable distribution fulfills the information constraint.

Now, recall that every implementable distribution P’ € &7 is the limiting distribution of a T-implementable
distribution. Since the mappings P — Hp(ilk,k’), and P — Hp(i|k’) are uniformly continuous, we can

conclude that the Information Constraint must also hold for all implementable distributions. O

2.2 Proof of Theorem 3

The proof consists of several steps. The rough outline is as follows. We first define a so-called block
distribution O of a sequence of random variables with transition probabilities derived from P. We can
then use the results in [6] to show that 0 is implementable if P (as given in Theorem |5) satisfies the
information constraint. In a final step we will then show that the strategies that implement Q also

implement P.

Notation 16. Let P denote a distribution over K x (I x K) with identical properties as in Theorem

Furthermore, for every (Z',x,z) € K x (I X K), we write

P(k/viak = ZI,X,Z) = P(Z/,X,Z),
P(i,k = x,z) = Pk (x,2),
P(k = z) = Px(z),

P(i=x) = u(x), and

P(Z,x,2)
Px ()

P(i,k = x,z|k' =7') = P(x,z|7) =
We will now define a markov chain with a transition matrix derived from P:

Definition 23. Denote by ((i;,k;); € N) a time-homogeneous markov chain with state space I X K,
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initial distribution P;«x and with the following property: for every n > 1 and for every sequence

((x1,21),-- -5 (Xn—2,20-2), (¥, 7), (x,2)) € (I x K)", let

I[D(inykn :.X7Z‘(i17kl :thl)?' ) (infzakan :xn7272n72), (i”l*hk”*l :xl’zl>)
= P(ln,kn :X,Z|in—17knfl :x,azl)
=P(i,, k, = x,2|k,_1 = 7)

— P(x,2l7)

The transition matrix of this markov chain is given by

P, :(IxK)x(IxK)—[0,1],

with P, (X, 7;x,z) = P(x,z|), WX, el

Properties of the Markov Chain

Proposition 1. The markov chain ((i;,k;);t € N) with transition matrix P; is stationary with stationary

distribution Py« k.

Proof. First, since P has full support, the transition matrix P, has full support and thus the markov chain
has a unique stationary distribution. Further, consider Pk as a stochastic row vector of length |I x K]|.
We show

PryxkP: = Prxk.
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For every (x,z) € I x K, we have

Y, Puk(ilP (i kx,z)= Y Puk(i,k)P(x,zlk)

(i,k)eIxK (i,k)elxK
- Z P(va’k) ZPIXK(l7k)
kek icl
=) P(x,zk)Px (k)
keK
= Z P(k,x,z)
kek
= Prxk(x,2)
O
Proposition 2. Forn € N leti" =iy,...,i, be a sequence of random variables drawn from the markov
chain ((ir,k;);t € N) with transition matrix P;. Then, i" is an i.i.d. sequence withi; ~ i, t € (1,...,n).

Proof. Let (x1,...,x,) € I". To simplify the notation, we replace P(i; = x1,...,i, = x,) by P(x1,...,x,).

We will show P(xy,...,x,) =TT u(x).

Fort € (1,...,n) and for any integer j, 1 < j <1, we have

]P)(Xt’xz—la--th—j) = Z P(-xl|xt—17~"7-xl—j7kt—l :Z/)]P)(kt—l :Zl|-xt—17”-7xt—j)
ek
= Z P(xt|zl>]P)(kt71 :Z/|x171,...,xt7j)
7ekK
= Z P(XZ)P(ktfl :Z/|xt717"'7xt7j)
7€k

=P(x) = u(x),

where the third equality is due to the fact that i is independent of k’. Hence,

n
P(x1,...,x,) = P(x1) HIP’(xt\x,,l, )
=2

n

= HP(x,)
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Information Constraint of a block distribution O

We now define a block distribution Q € A(I” x JT x KT) that is derived from the above markov chain:

Definition 24. Let T be a fixed integer and let (i’ ,k”) = (i;,ki,...,ir,kr) be a sequence of random
variables drawn from the markov chain ((i;,k;);# € N) with transition matrix P;. Set (i’ k) ~ P ¢
A(I" x KT). Furthermore, let j* = (j;,...,j) be an i.i.d. sequence with j, ~ Uy, where U, denotes the
uniform distribution over J. We write j7 ~ U}X’T and we let j7 to be independent of i’ and k”. The block
distribution O € A(I” x JT x KT derived from the markov chain ((i;,k;);# € N) is then defined as the
product distribution of P and U}gT, ie.

- or
0=PxU;T.
<o

Remark 22. As an immediate consequence from Proposition |2, the block distribution Q defined above

has the marginal distribution O; = u®7 on I7. o

The following result introduces the information constraint on block distributions and can be directly

inferred from [6].
Lemma 12. For every T € N, let Q denote a distribution over I" x JT x KT, with marginal Q; = u®7
on IT. If Q satisfies the following inequality

Ho(i" j k") > Ho(i"), (2.5)
then Q is implementable. We will refer to inequality 2.5|as the GHN- information constraint, or simply
the GHN IC.

The next Lemma establishes the link between the information constraint defined in this paper and the

GHN IC:

Lemma 13. Let Q € A(IT x JT x KT) be defined as in Definition If P satisfies the information
constraint

log /| > H(k|K') — H(KIK,i),
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then Q satisfies the GHN IC
Hy(i" jT k") > Hy(i").

Proof. Since j! is assumed to be independent of i’ and k”, we have

H-

o5 k") = Hp (7157, K) + Hy (5 (k")

= Hy(i" ")+ TH(U)).
Now,

Hg(i" k") = Hp(i" [k") = Hp(i" k") — Hp(k")

~

Hﬁ(itakt“l‘flaktfla'"7i17kl) - Z f)(kt|kz lv"'vkl)

=1

Hﬁ(it7k1|it717k1 1 Z kt‘kt 1

Il
It $
ﬂ

I
™=~

-
Il
—

T

HP<it7kl"kI—l) - ZHP(kt|kt—l)

t=1

T(Hp(ik|k') — Hp(K[K'))

Il
1=

N
Il
—_

= T (Hp(i|k,K') + Hp(k[K') — Hp(k|K'))

= THp(ik).

Furthermore, note, that since we assumed i to be independent of k', the information constraint of P

reduces to

log|J| > Hp(i) — Hp(ilk).

Also, note that H(U;) =

H(U;) > T(Hp(i) — Hp(i[K)).
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Therefore, it follows that

Hy(iT k") + TH(U,) > THpK') + T (Hp(i) — Hp(i[K))
> THp(i)

= Hy(i"),

where the last equality follows due to Proposition 2] 0
Lemma[I2]and Lemma [13]can be combined into the following Corollary:

Corollary 4. Let Q be the distribution as constructed in Definition . If P satisfies the information
constraint

log|J| > H(KIK') — H(k|K',i),
then Q is implementable.

Even though the Corollary follows immediately from Lemma[I2]and from Lemma[I3] we nevertheless
sketch the proof of this Corollary (which is not intended to be exhaustive). The approach is exactly the
same as in [6]], but since Q is a block distribution, we first have to adjust some of the applied notation
and concepts. We then provide an outline of the construction of the strategies (o, 7) that implement 0.
Since we will (later) deduce that the strategies that implement Q also implement P, many of the concepts

and notations that we establish in the following will be applied in the proof of the implementation of P.

Let us first introduce empirical 7-block distributions:

Definition 25 (Empirical T-Block Distribution). Let A be a finite set and let n,7 € N, such that n is a
multiple of T, i.e., we write n = pT, for p > 0. Let a" = ay,a»,...,a, denote a sequence in A", which

can also be written as blocks of length 7':

12 ]
a'=a,a,...,a" witha' = ag_yr41,...,ar,L €(1,...,p).

Given a (block-) element o’ € AT, we define the block-wise relative frequency of & in a sequence a”
as follows:

emp” (a")[a”] = % ‘{l >1:d = OtTH.
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We call emp” (a") the empirical T-block distribution of a”. o

Remark 23. Note, that by block-wise relative frequency of a block-element o7 € A in ¢ we mean the
relative number of times the block-element a” appears in the fixed blocks a',a?,...,aP. This definition
needs to be distinguished from the relative frequency of a block-element in a”, which accounts for
the relative number of appearances of a block-element throughout the whole sequence a”, irrespective
of fixed blocks. The block-wise empirical frequency can hence be treated as the block-version of the

relative frequency of a single element o € A in a given sequence a”. o

Notation 17. [Actions played in Long Blocks] For given integers r,m,T € N with m = rT, we call a
block of length m that consists of 7 blocks of 7" stages a long block. The sequences played by nature,
forecaster and agent in a long block [ are denoted by x[/], y[/] and z[I] respectively. For every long block

[, the sequence in [ can either be given as a sequence of (stage) action triples, denoted by

(X[ZL)’[ZLZU]) = (xl [l]ayl[l]vzl[l]v . 'axm[lLym[lLZm[l])a

with (x[],y:[l],z[l]) € I xJ x K, Vt € (1,...,m), or as a sequence of r (small) blocks of action triples

of length T, denoted by

SIS TURUN R CAU R USRS A R AURA )

with (T [7],97 (0,27 [1]) e XT x YT x 2T, Vb € (1,...,r). o

Definition (Stage-and Block-Hamming Distance with Empirical 7-Block Distributions). Let m denote
the length of a long block as in Notation ie., set m=rT. Let O; € A(I") and let x" € I" and
#" € TT(Q;) # 0. Recall that both sequences can be written as sequences of blocks of length T as in
Deﬁnition We define the block hamming distance of (x,%") as the number of blocks 1 < b < r with
xl # I, where x! (x]') denotes block b in x™ (#"). The block hamming distance of (x™,%") needs to

be distinguished from the usual (stage-) hamming distance of (x,¥"), which is given by the number of

stages 1 <t <rT with x}" # X" o

We are now able to provide an outline of the construction of strategies (o, ) that implement a distribu-

tion Q as stated in Corollary @
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Implementing O

We divide the stages of the game into long blocks of length m with m = rT as in Notation|17] s.t. every

long block consists of r blocks of T stages. W.l.o.g., we assume that 7,7 (Q) # 0.

The Strategies: The strategies (0, 7) are based on the following mechanism. Before the start of each
long block [/ > 0, the forecaster observes the sequence played by nature in the next long block [+ 1,

x[I+1]. She then chooses a sequence %[/ + 1] € T (Q;) (note that since 7,1 (Q) # 0, we have T.! (Q;) # 0)
in such a way, so that it minimises the block- hamming distance to x[/ + 1], as well as the (stage-) ham-
ming distance to x[/ + 1] (the minimization of the (stage-) hamming distance is not a requirement for the
implementation of 0, however, this additional assumption simplifies the proof of the implementation of
P). Since Q satisfies the GHN IC, in each block / > 1, the forecaster is able to play a sequence y[l], that
entails a message to the agent about what to play in the subsequent long block [/ 4 1]. In block [ + 1 the
forecaster and agent are then able to play sequences that together with the slightly changed sequence of

nature, X[/ + 1], induce Q, i.e., (¥[1],y[l],z[l]) € TL(Q), VI > 1.

The Expected Empirical Distribution: Let us now consider a long game with n long blocks, i.e., let
N = nrT denote the length of the long game. Following the proof of Theorem 2 in [6], the strategies
(o, 7) implement a sequence of random variables (x;,y,,Z);, where (X;); is the i.i.d. sequence of nature
with x; ~ u, as well as the sequence (X;,y,,%);, for | <t < N (note, that a realization of (X;), in a long
block is an element in 7.1 (u®7). We can also denote these sequences as sequences of block sequences,
ie.,

(XI7YI7ZI)I - (X1{7YszZ)b7 (26)

and

(itayt’ Zl‘)t - (igaygazg)ba (27)

for 1 <b < n. Observe, that by construction, every realization of (iz,yz,zg) » has the property that in
every long block after the first, it is T-block typical w.r.t. Q. Hence, the expected empirical distribution

of a long block in (iz,yg,z,{)b is O:

Elemp (%[1],y[1],21])] = 0 VI > 1.
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It will be useful to observe the following (equivalent) notation. If (ig, yg,zlf) ~ QZ, we have
1Y 0, =0 (2.8)
b=1
To finalise the sketch of the proof of Corollary 4] one can follow the exact same steps as in the proof of

Theorem 2 in [6]], to come to the conclusion that the strategies (o, 7) implement Q.

Observe, that we assumed that 7,1 (Q) # 0. In the following remark, one can see that this assumptions is

not restrictive, since even if 7. (Q) = 0, we can approximate Q by a distribution Q, such that T (Q) # 0.

Remark 24. If 77 (Q) = 0, then by Lemma 4 in [6]], it holds that for all € > O there exists a distribution

Qc A(I" xJT xKT), s.t. TI(Q) # 0 with the following properties:

. 0-0] <7
o [0 ueT] <7
o ||P—P|| <7¢

|P=1 —P|| <7e, Ve e(1,...,T—1)
and

o Hy(i",j"[k") —Hp(i") > e,
where P denotes the marginal of Q on I7 x KT and P'~1* denotes the marginal of P on (K x (I x K)) at
stages (t — 1;1). o
Implementation of P

Let us quickly recap our approach so far. We started off with a distribution P € A(K x (I x K)) that
satisfies the properties in Theorem 5] In the previous paragraphs we constructed a (block-) distribution
Q € A" x JT x KT) which we derived from P in Definition [24] and we were able to show that Q is
implementable if P satisfies the information constraint. In the following, we will show that the strategies

that implement Q in Corollary @ also implement P. An important step in this proof is the next Theorem.

Theorem 6. Fix € > 0. Let P € A(K x (I X K)) be a distribution that satisfies the properties in Theorem

E} Let (0,7) be the strategies that implement Q from Definition 24| and set n,r,t € N with N = nrT.
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Furthermore, let (x;:,y,,2:);, 1 <t < N denote the sequence of random actions induced by (0,7) and
by nature’s i.i.d. sequence (x;);. If P[X 0.1 denotes the expected empirical 2-stage distribution over

(Kx (I xK)) of (xt,9,2t )1, then Pﬁ{ar is close to P in the Li-norm i.e.,
|PY 6.c—P|| < 19.

We will split the proof of Theorem [ into several Lemmas. First, consider the following.

Lemma 14. Let P} ; . denote the expected empirical 2-stage distribution over (K x (I x K)) in a long
block 1 > 1 of length m = rT of the sequence (%,,y,,2;);, which is induced by the strategies (G, T) of the
players that implement Q. Then,

pin
Pz PasT — oo

Proof. Fix along block [ > 1, and for 1 <t <m = rT denote by P'~ 1 € A(K x (I x K)) the distribution
of the random triple (z,_1,%,,%,). Furthermore, for a (small) block b in [ with 1 < b < r denote by Péil;t
the distribution of the random 2-stage triple (z} ',%.,z}), where 1 <t < T. (the reader should observe
that these distributions are not different from each other, they just differ w.r.t. the notation of a random
triple in a (small) block, b, or in a long block. Furthermore, recall that the marginal of O on I7 x KT
is given by P, and by Definition [24} the marginal of P on K x (I x K) at stages (t — 1,¢) is P for every
t €(2,...,T). Let P~1 denote the marginal of P on (K x (I x K)) at stages (t — 1;¢).
Now, if T.T'(Q) # 0, then by equation (2.8)), it holds that

r
Y =P =P (2.9)
b=1

1
-

and

T—1 2T—1 rT—1 r
Zpt—l;t+ Z Pt_l;t-i-.---i— Z Pt—l;t+ZPle;T>

=2 =T+1 t=(r—1)T+1 b=1
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Therefore, by substituting equation (2.9)) into the last equation above, we can conclude that

Pﬁrt,Tc,r =7 <(T2)TP+ ZP;,TI;T> — Pfor T — oo.
b=1

The computation of f’ﬁ’TG’T changes slightly if 7T (Q) = 0, but the result is not affected. By Remark
we know that for all € > 0 there exists a distribution Q € A(IT x JT x KT) with T (Q) # 0 that is close

to O and has marginal P on I7 x K”. Hence, the result in (2.8) changes to

~ =

.
Y 0, =0
b=1
and we have to replace equation (2.9) by
1 - =Ly _ pr—1y
G };Zl P =P,

where P'~ ! denotes the marginal of P on stages (t—1,1). Then, since ||P'~! — P|| <7¢, vt € (2,...,T),
we can deduce that

-1

1 pt—1;t

& Y P 5 PasT — o,
=2

O

So far, we have shown that the expected empirical distribution over triples (z_1,%;,2,) in (X,y,,2); in
every long block [ after the first is arbitrarily close to P. One can summarise the result in the following

Corollary:

Corollary 5. For N =nrT, if ISZX o.1 denotes the expected empirical 2-stage distribution over (K x (I x

K)) of the sequence (%:,y,,2;); for 1 <t <N, then, assuming T large enough,
1Plos—P| <.

In the final Lemma, we connect the expected empirical 2-stage distribution over (K x (I x K)) of the

sequence (X;,y,,z ), with the expected empirical 2-stage distribution over (K x (I x K)) of the sequence

(XhYIazt)t:

mz. Let PY

= 1w,0,c be given as in Theorem El and let PZXGJ

Lemma 15. Fix € > 0. Let N = rnT and let r >
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be given as in Lemmal(I4] Then,

HPIIXG,T PIS{G,TH < 18¢.

Proof. The proof of this Lemma can be deduced from the proof of Theorem 2 and from Corollary 2,
both in [6]. The ideas from [6] only need to be adapted to 2— stage empirical distributions. In particular,
we make use of the following notation.

For (x",y™) € (I x K)™, we write empgx(IXK)(

.y") to denote the following 2- stage empirical distri-
bution:

empa(xX", YK i, k] = L N(K i k|x",y"), V(K ,ik) € K x (I xK).

Now, in a first step, we show that for every large block [ > 0:

rT
|emps ™0 1) 201)) — emp™ 0 @) 200 || < F Y Lo
t

—

To simplify the notation, we write (%,z) and (x,z) instead of (X[/],z[!]) and (x[1],z[l]), with (%,z), (x,z) €
(I x K)'T. Furthermore, let B* C K x (I x K), s.t. empy(%,2)[K,i,k] > empa(x,2)[K,i,k], V(K',i,k) € B,

and let B} denote the respective subset on /. Then,

Hempfwﬂ( l],Z[l])—empfx(”K)(X[lLZ[lDH: Y |empa(%2)[K, K] — empa(x,2)[K',i,K] |
K ik
€I<(><(I><)K)

<2 Z }empg(i,z) [K,i k] — emps(x,z) [k’,i,k”
(K ,i,k)eB*

<ZY ({t>1:5=i}|—|{r>1:x =i}

i€B]

rT

_ 2

— T Z ]lfﬁéxt
=1

Now, applying Corollary 2 from [6], we have

rT ‘1’2
P E 1. > 8r1 <
(t:1 G l#x[l) = OF 8) =T’

and hence, due to the choice of r, ]P’(Z,’l 1 L) 2 8rTe) < . With this, we can then conclude that
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for1 <t <N,

(L

un,o.7 fPZX(mH = HE[eml’fx(IXK) (Xi,2):] *E[é’ml’é{xuxm (X¢,2 )]

2 rT
< —E Z ]]-f(,;éx,
t=1

rT

2 rT rT

=— ) P} lgx, > )
rTj:l ; X7

2
< - (8erT +erT)

= 18¢,

where we use the fact that the sum ¥/Z, 1 %4 18 minimised.

O]

One can now immediately observe that Theorem|[6]follows from the results in Corollary [S|and in Lemma

[I5] by applying the triangle inequality.

Proof of Theorem 3

Let us now conclude this section with the proof of Theorem [5] which is a Corollary of Theorem [6]

Proof of Theorem[5] Let P € (K x (I x K)) denote a distribution that satisfies the properties in Theorem
By Theorem |§|, we know that there exist strategies (o, 7) that N-implement a distribution P‘]X 6,7
(the expected empirical 2-stage distribution over (K x (I x K))), where Pﬁ” o.c is close to P in the L;-
norm. The result now follows, since by Remark [20] the set of implementable distributions is closed and

contains the set of N-implementable distributions. O
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Appendix A

Complementary Results for Chapter [1/in

Part 1

Remark 25. Every distribution Q € 2(¢) is implementable, i.e., 2() is contained in 2. o

Proof. Let Q be a t-implementable distribution, i.e., following Notation {4] there exist strategies (o, T),

s.t.
t—1 I
_ 1 T
Q= —1 ZPU,5,1~
t'=1

We will show that there are strategies (¢”,7'), s.t.
=1
ﬁ ZP&;%;/.T/—)QaSI%OO.
t'=1

Consider the following game. Assume that the first 7 stages are induced by the strategy pair (o, 7), so
that in those first ¢ stages Q is implemented. After the first # stages we repeat the same strategy, i.e., we
induce the stages 7 + 1, +2,...,2¢ with the same strategy pair, (o, 7). We repeat this process n times,
i.e., we construct blocks of ¢ stages, such that in each block the random sequences of action triples are
induced by the strategy pair (o, 7). Hence, if we consider each block seperately, we z-implement distri-

bution Q in each such block.

Now, denote by (o’, ) the strategy pair that implements the first tn stages of the game we just described.
We can think of (¢’ 7’) as the n-times repeated strategy pair (0, 7). The average distribution, Q', which

is implemented after the first /n stages of the game and which is induced by (6’,7") can be written as
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follows:
= m ni—1 Z U, 6’ T

The sum in the above equation can be rewritten as follows:

nt nt—1

=1 t'=1 t'=1

n—1)t:2
+UG’T'+ Lzltc%’r'_i_ +l(/6’3."

-0+ E

Pbt 2

n—1
Note that every term in Y~ P75 -

sition point from one block of ¢ stages to the next.

t—1
ZPZ/%’T’:Z UG’C+Z Uor+ +Z Ucrr

(A1)

(A2)

(A.3)

(A4)

, denotes the distribution of two consecutive action triples at a tran-

We can now show for every n € N that the distance between Q and Q' in the L{-norm converges to zero

ast — oo:
Since
(1-1) N pir2
r_ n(t— t:
Q_ nt—1 Q+nt ZPUO"T’
b=1
we have
/ n—+< bz2
HQ_QHS l_nil | oo

t

Hence, since both terms on the right-hand side in the expression above converge to 0 as ¢ — oo, the result

follows.
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Appendix B

Complementary Results for Chapter 2] in

Part 1

Proposition 3. Ler u € A(I) be a convex combinations of two distributions Uy, € A(I), ie, g =
Botto + Bty and let X ~ p. Furthermore, denote by Y a binary indicator variable with the following

property: let X ~ Lo, if Y =0 and let X ~ uy, if Y = 1. Then,

BoD(kol|1) + BiD(||pn) < H(Y)

with D(-||-) denoting the Kullback-Leibler distance.
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Proof.

BoD(po||pt) + BiD(pur || 1)

= Po Y Ho(x) (log(Ho(x)) — log(1(x)))

xel

+B1 Y i (x) (log (i (x)) —log (1 (x)))

x€el

==Y (Botto+ Bit1)(x) log(u(x))

xel

+Bo ) to(x)log(ko(x)) + Br Yt (x) log (i (x))

=~ et
- —);H x) log(p(x)) — BoH (ko) — Bi1H (1)
= H(X)—H(X|Y)

—H(Y)-H(Y|X)

<H(Y)
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Appendix C

Complementary Results for Chapter 3| in
Part 1

C.1 Approximation of Probabilities

Lemma 16. Let u € A(I) be a distribution with full support. For all € > 0 and for all P} € A(A?)
(A =1xJxK) with Py(ila) = u(i), for all i € I and a € A, identical marginals P' on A, and with

Hp, (ijlk,ij k") > Hp (1), 3P € 8 (A?) with full support, s.t.
Hp, (i.jlk,i'.j' k') —H(p) > € (C.1)

and

|P— Py, <2e (C2)

Proof. Fix € > 0. Denote by P; the marginal of P on I. Observe, that since P;(ila) = (i), it also holds
that the marginal of P’ on I, P, is equal to u.

Let R = (P} x Uy x Ug) and R, = R x R, where U; and Uk denote the uniform distribution on J and K
respectively, define P, = €R, + (1 — €)Pj}. Observe, that P, has full support (since R, has full support)

and it holds that P»(i|a) = u(i), foralli € I and a € A.
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Now, by the concavity of the entropy function P, — Hp, (i, j|k,’,j’,K), it holds that

HPz (i’j’kailvjlvk/) > 8HR2 (i’j’kailvj/vk/) + (1 - E)HPZ’ (i7j|k7i/7jlvk/)
> €Hg, (i) + €log, |J|+ (1 —€)H(u)

=e+H(u).

Hence, it follows that

HPz (i>j’kai/7j/>k/) —H(‘LL) 2 €.

Furthermore,

P2 = o], = [[eRe+ (1 — )P = Pa|
=¢||R: =By

< 2e.

C.2 Locally Typical Sequences

Lemma 17. IfN > %l, then every I-locally typical sequence x" € Tﬁ’l (P) is 2e-typical, ie.,
|+N(alx")—P(a)| <2¢ Va€A.

Proof. Letx"N € T% ,(P). First, let N = gl, 1 < g € N. Then, for every a € A:

q—1
IN(alx™) — NP(a)| = ;)(N(alehu) —1P(a))

g—1
<Y [N(alx},, ;) —LP(a)|
t=0

< qle,

where the last inequality follows directly from the definition of /-locally typical sequences.
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Now, let N = gl + 14, with 0 < I; < I. Denote by x?" the first ¢l coordinates and by x4 the last I,

coordinates of xV. Then,

IN(alx") —nP(a)| = [N(alx®) — gIP(a) + N(alx"") — 4P(a)|

< IN(alx") — glP(a)| + N (alx'") — I4P(a).
From above, we know that |[N(a|x?') — glP(a)| < gle. Furthermore, we have
IN(a|x') —1,P(a)| < 1(1+ Dye,
since forevery r € (1,...,N—1),

N(a|xl‘f) —14P(a) < N(a|xivl)

<I(P(a)+e¢)
<Il(l1+¢)

=1(1+ e,

and

Returning to inequality (C.6)), we conclude
IN(alx") —NP(a)| < qle +1(1+ L)e,
and for N large enough, i.e., N > [(1+ é), or, more generously, for N > %l, we have

IN(a|lx") —NP(a)| < 2NEe.
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The following Corollary follows directly from the above Lemma[C.2]and from the property of e-typical

sequences (stated in the Preliminaries):

Corollary 6. Let X" = (X1,X>,...,X,) be an i.i.d. sequence with X; ~ P. Denote by x" a realization of
X" Ifx" € T;(P), andlfn> , then

27n(H(X)+208) < Pn(xn) < 27n(H(X)7208)

)

where P" denotes the product distribution derived from P and ¢ = —Y ,c410g P(a).

Lemma 18. Let X1,X,,... be drawn i.i.d according to P € A(A) and let X" = (X,...,X,). Then, for
In(2n/A))
2¢?

every | > , we have

lim Pr(X" € T,;,(P)) = 1.

n—soo

Proof. First, note that

Pr(X" €T, /(P)=Pr(Vte(1,....,n—=1): X, € T (P))

—1—Pr(3te(l,...,n—1): X} ¢ TE(P))
n—I

=1-pPr({ X7, ¢ T (P))

t=1

> 1= ZPV & T5(P))
Furthermore, for every ¢t € (1,...,n—1),

Pr(X!) ¢ T (P)) = Pr(3a € A |;N(alx)) — P(a)| > €)

=pr(|J |%N(a\x2,) —P(a)| > ¢)

acA

< Y. Pr(liN(alxf;) = P(a)| > €)

acA

< |A2exp(~21¢?),

where the last inequality is a direct application of Hoeffding’s inequality.
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Therefore,

n—I n—I
Y Pr(X/ ¢ T, (P)) < ) |Al2exp(—21€?)
t=1

=1

= (n—1)|A]2exp(—21€?)

—0asn— oo,

. . In(2n]A])
and the last expression goes to 0 as n — oo for every [ > \/n, or, in dependence of &, for every [ > ST
This completes the proof. O
Corollary 7. Let X ~ P and set c = —Y ,cqlog P(a). Let n,l be integers with n > % and 1 > %. If

n is sufficiently large, then

)

(1 _ 5)2n(H(X)7208) < ’Tnel(P)| < 2n(H(X)+208)

for every 6 > 0.
Proof. Since

PrXTETE(P) = Y P,
x"€TE (P)

with

27n(H(X)+2c£) < Pn(xn) < 27n(H(X)7208)

(by Corollary [6)), we get

Z 2—n(H(X)+2CS) S Pr(xl’l c T;lg[(P)) S Z 2—n(H(X)—2€8)’
() ’ )

xte Tngl Xt 6Tngl

equivalently,

2_n(H(X)+ZCS)‘Tng,l(P)| < Pr(X" e Tné:l(P)) < Z_H(H(X)_2C8)|T81(P)|.

n,

By Lemma|[18] we know that for n sufficiently large the following relation holds for every & > 0:
1-6 <Pr(X"e Tnf,(P)) <l,
and so the result follows. O
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C.3 Results on Locally Conditional Typical Sequences

We derive a couple of very helpful properties of locally conditional typical sequences.

Lemma 19. Let x" € T (P). Then, ifn> % every locally conditional typical sequence y" € T.%/(P|x")

is conditionally 2¢&-typical, i.e., for every (i,k) € I x K the following holds:
NGy — (RNl < 2ne.

Remark 26. Observe that in Definition [10| we assumed P to have full support. This assumptions sim-
plifies the Definition of conditional e-typical sequences slightly, since for all (i,k) € I x K, it holds that

pi(k) > 0. o

Proof of Lemma([I9 The proof of Lemma[I9]is very similar in structure to the proof of Lemma] There-
fore, we only provide a sketch of the proof and highlight the parts that slightly differ.
Let X" € Tﬁ. Recall, that this means that for every ¢ € (1,...,(n—1)) and for every i € I the following
inequality holds:

N(ib) < I(e+ Bi(7)). (k)

Similar to the proof of Lemma[d] we first assume n = gl, with ¢ € N and ¢ > 1. It then trivially holds,
that for all (i,k) € I x K,

IN (i, k|x",y") = p' (k)N (ilx")| < ne. (C.8)

We now set n = gl + 1, with 0 < I; < [ and denote by (x7',y4') the first g/ coordinates and by (x¢,y)

the last /; coordinates of (x",y"). By the triangle inequality, we have for all (i,k) € I x K

NGkl y") = p ()N (ilx")| < N (i, k|, y™) — p' ()N (ifx)|

+ N (i, k|x",y') — p* (k)N (i]x')).

Since by inequality [C.§| we have
NG y) — pl (IN)] < gle,

it remains to bound |N (i, k|x!e, ') — pi (k)N (i|x4)|.
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In the same manner as in the proof of Lemma ] and taking into account inequality we can show
ING k', y14) = p' (kN (il')| < 1(2+ ).

From here, we can directly deduce the desired lower bound for |N(i,k|x",y") — p'(k)N(i|x")| for n >

2 O

€

Similar to Corollary [6] the following corollary can now be directly deduced from Lemma [I9) and from

the remark about conditional e-typical sequences occurring, stated in the Preliminaries:
Corollary 8. Let x" € T¢,(P;) and let Y1,Y»,... be random variables in K" distributed according to
{pi:iel} and x", i, Pr(Y; = k) = p*i(k), for every j > 1. Denote by y" a realization of Y" =

(Y1, o). I Y € TE(PY") and ! = Y yerxk (log pi (k) — pi(k) log p'(k)), and if n > %, then

27n(H(k|i)+2c’£) < Pn(yn|xn) < 27n(H(k\i)72c/8)

)

where P"(y"|x") = [Tj-, p/ (;)-
Again, similar to Lemma [I8] we can make the following statement about a random sequence Y” that is

distributed according to {pi ciel } and x":

Lemma 20. Let x" € T, (F;) and let Y1,Y,,... be independent random variables distributed according

to {pi :iel} and x". LetY" = (Y1,...,Y,), then, for every | > M,

2¢2

lim Pr(Y" € TS, (P]")) = 1.

n—sco

Proof. The proof of this lemma is similar in structure to the proof of Lemma([I8] It remains to show the

following: let Y/ = Y},....Y; denote a subsequence of Y" of length [, and let x' € TE(P;). Then,

Pr(Y' ¢ TF(P|x)) < |I]|7]2exp(—21¢?). (C.9)

/

To prove the above inequality, we first order the sequence x' according to the set /, i.e., we write

!

X :xl,...,xl,xz,...,xz,...xm,...,xm,.
—_— ~—
N(xlat)  N(xla!) N(xy )
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Now, according to the order of x/, we group together those random variables in Y/, that have the same

conditioning event, i.e.,

Yl — YN(XI‘XI)7YN(XZ‘XI)7 ey YN()C\I\ ‘xl),

where for every x € I, YNO) = Y Yy 18 mow an iid. sequence with Yt ~ P(-|x), for all
k€ (1,...,N(x|x)). Now, the event Y' € T#(P|x) is equivalent to the event that for all x € 1, yNG) ¢
Tg( ¥ )( (+|x)). Therefore, the following holds:

NG e)
A >
Vo Pk e

)

where the last inequality is again a direct application of the Hoeffding inequality. This can be easily seen

Pr(Y' ¢ TF(P|x")) = Pr (El(x,y) elxJ:

N (x[x!)
< Y Pr(%—P(ylx) >

x,yelxJ

< l1|lJ[2exp(~21¢?),

as follows. Since

N(y|YN(x\x’)) 1 N(x|x')
IR
N (x|xh) N (x]x!) {ri=v}
and since Y7, . .. ’Ylf/(x|x]) is an i.i.d. sequence with law P(-|x),

P(ylx),

1 Nl
[ N(x|x') Z‘ H{Y?ZY}

the result follows from the Hoeffding inequality. O

Finally, we can deduce the following result w.r.t. a conditional e-typical set:

Corollary 9. Let x" € Tg ,(Pr) and let n > . For n sufficiently large,
(1 B 5/)2n(H(k\i)720/8) < \Tfn(P|x")\ < 2n(H(k\i)+20/8)7

for every 8' > 0 and with ¢’ =¥ ; ey« x (logp' (k) — p' (k) log p' (k).

Proof. The proof follows the exact same structure as the proof of Corollary 0
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C.4 Mapping a Strictly Positive Stochastic Matrix to its unique Station-

ary Distribution

In this section we add the proof of Lemma [21] which is stated below for completeness.

Lemma 21. Let A be a finite set and denote by M the set of all strictly positive stochastic matrices over
A. The mapping [ : # — A(A), with f(P) = &, where P € .4 with (unique) stationary distribution T,

s continuous.

Proof. Let P denote a strictly positive stochastic matrix and let {X; } = Xp, Xz, ... be a markov chain with
transitions according to IP and with initial distribution v € A(A) (given as a column probability vector),
ie., Xo ~ v. For every k > 0, let g} be a function from ./, the set of all strictly positive stochastic
matrices, to A(A), with g} (P) = v P* (where v’ denotes the transpose of v). Note, that g} (P) describes
the distribution of the kth coordinate of the markov chain {X;}, since X; ~ v IP¥. Furthermore, it is well
known that for every distribution v € A(A) and for every P € . it holds that

lim ¢;'(P) = f(IP)

k—yo0

(see, for instance, Chapter 1.8 in [11]). With f being the limit of the functions { g,‘(’} o it is sufficient to
show that the functions {g,‘(’ } , converge uniformly to f in a neighborhood of IP. Since each function g;
is continuous, it then follows from the uniform limit theorem that f is continuous. Hence, it is sufficient

to show the following claim:

Claim 3. For every distribution v € A(A) and for every P € .# with stationary distribution T, we have

for every k > 0,

g (B) = fF(P) Iy < (1= p),

where p = min; jea p(i, ).

We prove the claim via a coupling argument (coupling methods are introduced e.g., in Chapter 4 in [8])):
in addition to {X;}, let {¥;} denote another markov chains with transition matrix P. We have X, ~ v and
we set ¥y ~ 7, where 7 is the stationary distribution of P. Define a coupling {X, ¥, }, of these chains as
follows. Let r > 0 denote the first time the two markov chains meet. Then, for all k > ¢, let X;, = Y}, and

for all k <, assume X; and ¥ to be independent. Obviously, the bivariate chain {Xy,Y;}, is a Markov
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Chain over state space A X A that has a transition matrix Q with entries g((a’,b’), (a,b)) that satisfy

;

pld,a)p(t/,b) ifd #b

q((d.b),(a,b)) = { p(d',a) ifd =b anda=0»

0 if @ = b' and a # b.

Recall, that X; ~ vI'P* and we write VI P*(a) = Pr(X; = a), for all a € A. Furthermore, since 7 is the

stationary distribution of P, Y; ~ 7 for every k > 0. Therefore, for all a € A,

vIPX(a) — (a) = Pr(Xy = a) — Pr(Y, = a)
=Pr(Xy = a,t <k)+Pr(Xy =a,t > k)
—(Pr(Yy=a,t <k)+Pr(Yy =a,t >k))
=Pr(Xy =a,t >k)—Pr(Yy =a,t > k)
< Pr(t > k)

= Pr(X; # %),

where the third equality follows since Xy = Y, for all r < k.

Since VI P* = g!(IP), our results so far summarize to

gt (P) — ||z, < Pr(Xe # Y). (C.10)

Now, by construction of the coupling, Pr(Xy # Yi|Xx—1 = Yx—1) = 0, hence,

P}"(Xk 7& Yk) == Pr(Xk_l 75 Yk_l)Pl"(Xk 75 Yk|Xk_1 7& Yk—l)-
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Furthermore, for every (b,c) € A% b #c,

Pr(Xy =Y | X1 =b,Y—1=c) = Z q((b,c),(a,a))

and thus Pr(Xk = Yk|Xk_1 =+ Yk—l) > p.

The claim now follows from

Pl’(Xk 75 Yk) < Pl"(Xk_l 7& Yk_l)(l —p)

<(1-p)

and from inequality (C.10). O

C.5 The Existence and the Size of the Set of Action Plans - with Locally

Typical Sequences

The next Theorem provides the key to prove the size of the set of action plans of the agent in Lemma 8}

Theorem 7. Let P € A(I x K) be a distribution with marginals P; on I and Px on K. Let (i,k) denote
a pair of random variables distributed according to P. For any fixed & > 0, let M = 2N (H (k) —H (k|i)+¢)
and let S = {s1,s2,...5m} be a set of i.i.d. random variables uniformly distributed in T.% (Pk ). Now, the
probability that for every locally typical sequence x" € T,\i ((Pr), there is at least one element s € S, s.t.
(x,5) € Ty (P) goesto 1 asn — oo, ie.,

lim Pr(vx" € T,/ (P)3s € S : (x,5) € TS, (P)) = 1

n—oo ’
Proof. We show

lim Pr(3x" € T,7,(Pr) : Vs €S : (x,5) ¢ T, (P)) = 0.

n—yoo
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First, applying the union bound, we have

Pr(" € T (P) : Vs € S: (x",5) € T, (P)) = Pr( U VseS:(x",s) ¢ T,,,(P))

X" €T (P)

< ), Pr(vseS:(¥"s) ¢ T (P))

METE (P)
= Y Pr ﬂs,g_f (P]x™))
VETE(P) =l
= Z HPrs,gé lP|x )
)C"GTE (P[)
M

= Z H 1 —Pr(s; € TSI(P\x")))

xeTE (Pr)i=1

< T3 (P)] (1= Pr(s1 € T, (P7")))Y

where the last inequality holds since Pr(s; € T,7,(P|x")) is identical for all i € (1,...,M) and ¥" =

argmaxxneTs](PI)H?il (1 —Pr(s; € Tf,(P\x"))). Now, observe that for any 0 < o < 1, we have (1 —
1 ‘ .

a)a < e~ !. Furthermore, recall that from Corollary ITE,(Pr)| < 2"HD+2¢8) with ¢ = — Y, log (i)

hence with & = Pr(sy € T} (P|x")) we have

ITE, (B (1 Pr(s: € TE,(PLE))M = [T5(P)|(1— )
1 oaM
75,7 ((1 - a)a)

<|T;,(Pr)|exp(—aM)

< 2n(H(i)+2L‘E) exp(—aM).

Since
T (Plx")]

I()I’

we can apply Corollaries and@with ¢ =Y, rerxxlogp’(k)(1—p'(k)) and &€ = — Y ;g log Pg (k) to get

a = Pr(si € TS, (P|2") =

_ T (P!x )| _a _ &) H () 2e)
’ E(P)| — on(H (k)+2¢¢)

= (1 — &")2"(H k) —H(D)—2e(c'+0))

> (1= §')2(H K ~H()~2e0

111



(note that ¢/ < 0).Hence, with M = 2"(HK-HK)+E) for & > D¢z,

oM > (1 — &) H k) —H (i) ~2e(c'+2) pn(H(k)~H (ki) +£)

_ (1 o 5/)2}1(57285)7

therefore
2nHWDF2¢€) exp(— M) — 0 as n — oo,
and hence
JiilgoPr(Hx €T (P):VseS:(x,5) ¢ T, (P)) =0.
This completes the proof. O

C.6 m-Extendable Locally Conditional Typical Sequences

In the following, we prove important properties of m-extendable locally typical conditional sequences
which play an important role for the size of the message set of the forecaster.
First, consider the following observation that applies Lemma [20] to m-extendable locally typical condi-

tional sequences:

Observation 7. Let n,m,l € N be integers with n,m > [ and let x"*" € T¢_(P;). Assume Y™ =

n+m,l
(Y1,...,Y, ) is a sequence of independent random variables with Y; ~ P(-|x;) for every i € (1,...,n+
m). We refer to Y" = (Y1,...,Y,) as the prefix of Y"™. Then, for every [ € N with [ > % and [ >

In(2m|A|)

-g2» the probability that the prefix of ¥ m+m s an m-extendable locally conditional typical sequence

converges to 1, i.e., it holds that
lim Pr(Y" € T, (P|x", ext(m))) = 1.
n—soo ’

<

The following Theorem applies Lemma [20| and Observation [/|and provides a vital result to deduce the

size of an m-extendable locally typical set.

Theorem 8. Let (X,Y) ~ P, fix € > 0 and x" € T? (P;). Let the integers n,m,l and the random sequence

Y™™ have the same properties as in Observation E] Denote by EXT the event that the prefix of Y" " is
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extendable, i.e., EXT =Y" € T, (P|x",ext(m)). Then,
LH(Y"|EXT) — H(Y|X)—2ed, asn— oo,

withd =Y ,c;H(Y|X = a).

Proof. First, we show

H(Y") > n(H(Y|X) - 2€d).

Since Y" is a sequence of independent random variables, it holds that

(™) = Y H(Y)

I
D=

(=Y POy]xi) log P(y]xi))

i=1 yeJ

— Y H(YX = x), (C.11)

where x; € I is the i-th element in the locally typical sequence x" € TF,(F;). Since P has full support, it
also holds that for every element a € I, we have N(a|x") > n(P(a) —2¢). Now, we group the last sum

(C.11) into sums of entropies with the same conditioning event:

n

YHY X=x)=) Y HY|X=x)

i=1 acli:xij=a

=Y N(alx")H(Y|X =a)

acl
> Z}n(P(a) —2e)H(Y|X = a)
=n (Z}P(a)H(Y|X =a)—2¢ Z}H(Y|X = a))

=n(H(Y|X)—2¢ Y H(Y|X = a)),

ael

which completes the first part of the proof.

Next, let 1¢zx7) denote a random indicator function with Pr(1 gxry = 1) = Pr(EXT) and Pr(1gx7y =
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0) = Pr(EXT¢), where EXT® denotes the complement of EXT,i.e.,Y" ¢ Tt (P|x",ext(m)). Then,

=Pr(EXT)H(Y"|EXT)+Pr(EXT)H(Y"|EXT").
Furthermore, by the chain rule of conditional entropy, we have
H(Yn|]1{EXT}) =H(Y", ]l{EXT}) _H(]l{EXT})7
therefore,
Pr(EXT)H(Y"|EXT) = H(Y", 1gxr)) — H(Lygxry) — Pr(EXT)H(Y"|EXT®).

Now, since H(1(gxry) <logy2 =1, H(Y"|EXT¢) < nlog|J| and

H(Y", 1igxry) > H(Y"), we get

H(Y" 14+ Pr(EXTC)nlog|J

= nPr(EXT) nPr(EXT)
(H(Y|X)—2¢ed) (1+Pr(EXT)nlog|J|)
Pr(EXT) nPr(EXT)

By Observation Pr(EXT) — 1 as n — oo, hence we can conclude that
LH(Y"|EXT) — H(Y|X)—2ed asn— oo

O]

Corollary 10 (The Size of Tng’l (P|x",ext(m))). Let € > 0. Then, for every § > 0 and n sufficiently large,

we have

|75, (Pl ext (m))| > 2" (H(V1X)-2ed=0)

Proof. The statement follows immediately from Theorem [§and from the fact that

H(Y"|EXT) < log, TS (Pl¥", ext(m))|.
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