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Abstract

We re-visit three classical models in information economics.

The first chapter studies the screening problem for a seller who owns a single good,
and a buyer whose valuation for the good is their private information. We allow for
the seller to acquire information at some cost about the buyer’s value, in addition
to her choice over the probability of trade and the transfer. The seller thus chooses a
Blackwell experiment for each announcement that the buyer makes in a direct revelation
mechanism. More informative experiments are more costly. Under mild conditions,
there are always optimal mechanisms where the seller acquires coarse information about
the buyer. In particular, it is always optimal for the seller to choose an experiment that
consists of no more than four signals. When the buyer has only two possible values, the
same holds for experiments that consist of at most three signals.

The second chapter examines information disclosure in a setting of strategic experi-
mentation. A group of agents continuously and independently choose between a safe
arm and risky arms of the same type. When the arms reveal good news, we are able
to achieve efficiency in a class of simple information disclosure mechanisms when the
agents are initially optimistic enough about their risky arms, but only when there are
not too many agents. When the reverse is true, the mechanism must be transparent.
Thus, there is a tradeoff between transparency and efficiency. This tradeoff does not
exist in the case of bad news.

In the final chapter, we borrow insights from social learning theory to understand why
institutions have persistent effects. We adapt the classical model in a minimal fashion
to accommodate a role for institutions, and demonstrate that social learning is one
plausible mechanism of persistence.
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1 Screening with Information
Acquisition

1.1 Introduction

Modern technology has brought unprecedented ease to the access of information. This
is as true for firms as it is for consumers. Firms can use cookies to track the Internet
activity of current and potential customers. They can access GPS data in smartphones
to track consumer movement.1 They can purchase information from data brokers, who
collect data about consumers from a wide variety of sources.2 The ability of firms to
gather information about consumers has grown to such an alarming extent as to incite
aggressive regulatory response. For example, in early 2018, the European Union enacted
the General Data Protection Regulation (GDPR), which places significant restrictions
on the acquisition, use, and handling of information on consumers in Europe by firms.

Acquiring information is costly. Firms must first gather data, whether on their own
or through a data broker, and invest resources into transforming this data into useful
information. Firms also need to do this in a manner that respects regulation like the
GDPR. On the other hand, useful information is incredibly valuable. Otherwise, we
would not have observed such explosive growth in the data brokerage industry.3 This is
also why some of the largest corporations in the world, such as Google and Facebook,
are in the business of information. One is then led to ask: how much information is
optimal for firms to acquire? This question is of natural economic interest. Moreover,
our understanding of this question can inform how we regulate information acquisition
activity. We aim to address this question here.

Consider the classic model of screening with a seller who possesses a single indivisible
good and a buyer whose value is their private information.4 Suppose that, aside from
being able to design the selling mechanism, our seller could also acquire information
about the buyer at some cost. More precisely, in a direct revelation mechanism, the seller

1For example, Google Maps Timeline keeps detailed records of a smartphone’s location history.
2A summary of the activities of data brokers can be found in Bergemann and Bonatti (2015). Accord-
ing to US Senator John D. Rockefeller, in 2012, the data brokerage industry generated revenue of
$156 billion, ‘a sum more than twice the size of the entire intelligence budget of the United States
Government’. See Rieke et al. (2016).

3See footnote 2.
4We assume that the buyer maximises quasilinear expected utility, and that the buyer’s value lies in
some finite subset of R+.
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1 Screening with Information Acquisition

chooses a (finite) Blackwell experiment (1951) as well as the probability of trade and
transfer for each type announcement of the buyer. The probability of trade and transfer
is thus not only a function of the buyer’s type announcement, but it now depends on
the signal generated by the seller’s chosen experiment as well. The seller’s payoff is
her revenue less the cost of acquiring information. We assume that the seller’s cost
is non-decreasing in the Blackwell-dominance order. Additionally, to rule out the full
extraction of surplus at arbitrarily small costs, we assume that both the buyer and the
seller face limited liability constraints: the buyer cannot pay arbitrarily large amounts,
nor the seller pay arbitrarily large transfers to the buyer. We also impose incentive and
participation constraints. What are the properties of the optimal mechanism?

Our first main result states that there always exists5 an optimal mechanism with a
simple structure. More specifically, there is always an optimal mechanism where the
seller never acquires more than four signals. Furthermore, in this simple mechanism,
the seller never chooses an interior probability of trade or an interior transfer after
each signal. Hence, there always exists an optimal mechanism where the seller acquires
coarse information about the buyer. This result follows from two simple observations.
Take any optimal mechanism, and notice that one can always transform this into a
mechanism where the probabilities of trade and transfers are extremal, as described
above, by modifying the signal probabilities in a way that achieves the same revenue, and
respects the incentive and participation constraints. This transformation is a garbling
of the seller’s original information structure, and therefore cannot increase the seller’s
cost. Thus, for each experiment, there are only four relevant outcomes. The seller can
then garble each experiment further to reduce the number of signals to four.

Our second main result is specialised to the case where the buyer has only two possible
types. In this setting, it is always optimal for the seller to never acquire information
when the buyer declares that they are the high type. When the buyer declares that
they are the low type, then it is optimal for the seller to acquire no more than three
signals, and choose extremal probabilities of trade and transfers. That seller acquires
no information about the high type follows from the fact that the low type never mim-
ics the high type, and that acquiring information is useful only for relaxing incentive
constraints. On the other hand, when designing the mechanism for the low type, all
the seller cares about is the likelihood ratio of each signal. In particular, the solution to
her revenue maximisation problem for a fixed signal structure can be characterised by a
pair of cutoffs on the likelihood ratios. One cutoff determines whether the seller should
allocate the good, while the other determines whether to charge the largest transfer or
the smallest.6 Therefore, the two cutoffs partition the space of likelihood ratios into
at most three regions, which guarantees that we can always garble the information
structure into one where the seller acquires no more than three signals.

5We have to impose further mild conditions to guarantee the existence of an optimum. See proposition
1.1.

6There is a minor complication in this argument, because it leaves unspecified what the seller should
do if the likelihood ratio is exactly at a cutoff. This case can be dealt with in exactly the same way
as in the argument given for the first main result.
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1 Screening with Information Acquisition

These two results are appealing, because they reveal that the problem has an astonish-
ingly simple structure, despite the generality of the assumed cost function. Moreover,
these results suggest that the regulations that limit information acquisition need not
entail any efficiency losses beyond the cost of implementation, contrary to classical pre-
dictions of economic theory. In particular, it is not necessarily the case that there is a
tradeoff between (neoclassical) efficiency and privacy.

Our third result explores the relaxation of the limited liability constraint. Under mild
assumptions on the cost function, without limited liability, the seller can always extract
full surplus at vanishingly small cost. Hence, any optimal mechanism, if one exists,
must extract surplus fully at no cost to the seller. This result continues to hold even if
only the buyer faces limited liability, but the seller is allowed to make arbitrarily large
payments to the buyer. This result underscores the need for limitations on the seller if
one is concerned about issues regarding the distribution of surplus between consumers
and firms: the ability to acquire information can strongly skew this distribution in the
seller’s favour.

Finally, we address the tightness of the bounds on the number of signals stated above.
Is it possible that there is always an optimal mechanism simpler than the ones described
above? In general, the answer is no, at least in the binary-type case. This is established
by constructing an example where the seller cannot do better by acquiring less than
three signals.

The rest of the paper proceeds as follows. Section 1.2 discusses the related literature,
and section 1.3 defines the model. 1.4 covers the main results, while section 1.5 is
a discussion of the limited-liability assumption and the tightness of the main results.
Section 1.6 concludes.

1.2 Related Literature

This paper extends the classic screening model, which has become a workhorse in eco-
nomics, used to analyse price discrimination, credit rationing, optimal income taxation,
labour contracts, and optimal regulation. An overview of the model and its applications
can be found in Bolton and Dewatripont (2005). In the literature on price discrimin-
ation, Bergemann et al. (2015) is especially closely related to what we study here. In
particular, their analysis characterises the welfare implications as one varies the mech-
anism in our setting. One crucial difference is that they treat the information structure
as exogenous, whereas we treat it as an object of choice.

There is also a large literature on information in mechanism design, as surveyed in
Bergemann and Välimäki (2006). However, the bulk of the literature on adverse selec-
tion focuses on information acquisition acquisition by agents, as in, for instance, Berge-
mann and Välimäki (2002); Gershkov and Szentes (2009); Milgrom (1981); Roesler and
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1 Screening with Information Acquisition

Szentes (2017), or information disclosure by the principal, cf. Bergemann and Pesen-
dorfer (2007); Eső and Szentes (2007); Dworczak (2017). On the other hand, there is
a relatively large literature on information acquisition by the principal in settings with
moral hazard, where the principal designs a monitoring structure for the agent. See, for
example, Georgiadis and Szentes (2018) and the references therein. Our setting is one
of adverse selection where the principal optimally acquires information.

There is an older literature that studies settings of adverse selection where the principal
acquires information that originates in Townsend (1979), who studies a model of costly
state verification. A common assumption in this literature is that the principal has a
binary choice of whether to pay some fixed cost in order to verify the state, and the
principal learns the state perfectly whenever she decides to pay this cost. We differ from
this literature by allowing our principal design a flexible information structure where
she can choose to learn partial information about the state. There is also a more recent
paper by Strulovici and Siegel (2018), who study the design of judicial mechanisms, and
part of that design involves acquiring information about whether a defendant is guilty
of a crime. Their design of judicial mechanisms share some of the features we find here.
In particular, their state is binary (i.e. a defendant is either guilty or innocent), and
they find that it is optimal not to acquire information whenever a defendant pleads
guilty. In a similar vein, with two types, we find that it is optimal not to acquire
information about the high type. However, they make no assumptions about the cost of
acquiring information, and thus have little to say about optimal information structure.
They focus instead on characterising the features of the optimal judicial mechanism for
a fixed information structure.

Finally, this paper is related to a disparate literature on costly information acquisition
studied in variety of different settings. The study of rational inattention is particularly
emblematic of this area. See, for instance, Matějka and McKay (2015), who study a
discrete choice decision problem where the decision maker can acquire information at a
cost proportional to the entropy of the information that she acquires. Other examples
include Argenziano et al. (2016), who study a Crawford-Sobel (1982) type cheap talk
setting where the receiver can acquire information about the state. Matysková (2018)
does a similar exercise when the sender has commitment power, extending the model
of Bayesian persuasion in Kamenica and Gentzkow (2011).

1.3 Model

1.3.1 Environment

There is a single buyer (they) with unit demand, and a single seller (she) with one
indivisible good. The seller has full commitment. The buyer’s value for the good is

11



1 Screening with Information Acquisition

their private information and takes values in a finite set V ⊂ (0, 1).7 The buyer’s value
is thus their (Harsanyi) type. The buyer maximises expected utility that is quasi-linear
in transfers. That is, a buyer with value v who pays a transfer t has utility v − t when
they receives the good, and has −t otherwise. The seller’s beliefs over the buyer’s value
is given by p ∈ ∆ (V ). Assume that the seller places strictly positive probability on
each element of V . Her payoffs will be described below.

1.3.2 Mechanisms

A mechanism (M,S) is a pair consisting of a trading strategy

M =

{(
xi, ti

)}
i∈V

and an information structure S =
{
Si
}
i∈V , where

Si =

(
Si,
{
σij

}
j∈V

)
.

An information structure S is a collection
{
Si
}
i∈V of (Blackwell) experiments. An

experiment Si consists of a finite set of signals Si, and a collection
{
σij

}
j∈V
⊂ ∆

(
Si
)

of probability distributions over signals in Si. That is, σij is a probability distribution
on Si for each i and j in V . We will denote the probability of the signal s ∈ Si under the
distribution σij by σ

i
j (s). We interpret σij (s) as the probability that signal s is realised

when the buyer with true value j announces that their value is i.8

A trading strategyM is a collection of pairs of functions
(
xi, ti

)
on Si with xi : Si →

[0, 1] and ti : Si → [0, 1] for each i in V .9 As will be made clearer below, for each signal
realisation in Si, xi determines the probability that the good is sold to the buyer, and
ti determines the transfer the buyer must pay to the seller, independently of whether
the object is traded.

1.3.3 Timing and Payoffs

The seller commits to a mechanism (M,S), which the buyer observes. The seller’s
choice of mechanism induces a decision problem for the buyer, where the buyer chooses

7We will occasionally abuse notation by also referring to V as a set that indexes the set of possible
values of the buyer. In particular, we will treat i and j as members of V and, respectively, synonyms
of vi and vj .

8Our definition of a Blackwell experiment differs slightly from the classical definition, which takes
the joint distribution between signals and values as primitive. In our formulation, σji (s) is the
probability of the signal s conditional on value i. This equivalent definition will be easier to work
with in our setup.

9The fact that ti ∈ [0, 1] is a substantive restriction. This is equivalent to both the seller and buyer
facing limited liability. The seller cannot make transfers to the buyer, and the buyer cannot pay
transfer greater than 1. A restriction of this type is necessary for our maximisation problem to be
well-defined.
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1 Screening with Information Acquisition

to opt in or out of the mechanism. If the buyer opts out, both players receive a payoff
of zero. If the buyer opts in, they must announce a value to the seller.10 A signal s ∈ Si

is then realised according to the distribution σij , where i is the buyer’s announced value
and j is their true value. The good is subsequently traded with probability xi (s), and
the buyer pays the seller a transfer ti (s).

Hence, a buyer with value vj who opts in to the mechanism and announces vi enjoys a
payoff of11

U ij (M,S) =
∑
s∈Si

σij (s)
[
vjx

i (s)− ti (s)
]
.

Whenever the buyer opts in and announces their type truthfully, the seller’s revenue is
given by

R (M,S) =
∑
i∈V

pi ∑
s∈Si

σii (s) ti (s)

 .
If the seller sought only to maximise revenue, then the problem is trivial. Hence, the
seller must pay a cost for her choice of information structure S. We describe this cost
in the next section.

1.3.4 The Cost of Information

An information structure S is a collection of Blackwell experiments. Let Si =

(
Si,
{
σij

}
j∈V

)
be the ith (Blackwell) experiment in S, and denote the Blackwell-dominance order by �.
Say that S (point-wise) Blackwell-dominates Ŝ if Si � Ŝi for each i in V . In words, S
dominates Ŝ whenever each experiment in S is more informative than the corresponding
experiment in Ŝ.

Let c (S) be the cost associated with any information structure S. The main assumption
we make is that the cost c respects the Blackwell order, in the sense we will now make
precise.

Assumption 1.1. If S (point-wise) Blackwell-dominates S ′, then c (S) ≥ c
(
S ′
)
.

Say that an information structure S is completely uninformative if S is (point-wise)
Blackwell-dominated by any Ŝ. We make the following normalisation.

Assumption 1.2. If S is completely uninformative, then c (S) = 0.

Assumption 1.2 states that acquiring no information entails no costs to the seller.
10In principle, the buyer is able to communicate arbitrary messages to the seller. However, the reduction

of these messages to type announcements is possible via the revelation principle because the seller
has full commitment.

11As alluded to in footnote 7, the payoff as written above does not adhere strictly to established
notation. However, the meaning should be clear.
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1 Screening with Information Acquisition

1.3.5 The Seller’s Problem

Say that the mechanism (M,S) is incentive-compatible (IC) whenever

U ii (M,S) ≥ U ji (M,S) (ICji )

for all i and j in V . Whenever
U ii (M,S) ≥ 0 (IRi)

for all i in V , then the mechanism is individually-rational (IR). We say that the mech-
anism satisfies limited-liability (LL) whenever ti (s) ∈ [0, 1] for all i and s. Call any
mechanism that is incentive-compatible and individually-rational feasible.12

Let X be the space of feasible mechanisms. The seller’s problem is given by

sup
(M,S)∈X

R (M,S)− c (S) . (OBJ)

We will assume that the seller’s problem has a solution.

Assumption 1.3. There exists (M,S) ∈ X that solves (OBJ).

Our first proposition states sufficient conditions that guarantee the existence of a solu-
tion to the seller’s problem.

Proposition 1.1. Suppose that
∣∣Si∣∣ ≤ N for all i for some N ∈ N and that c (S) is

continuous in S.13 Then, a solution to (OBJ) exists.

Proof. Assume the stated conditions. The conclusion follows from the fact that the
objective is continuous, and the space of feasible mechanisms is compact.

Note that our main results do not rely on the antecedents of proposition 1.1. However,
proposition 1.1 assures us that our results are not vacuous.

1.4 Main Results

To simplify the later analysis, we first identify a simple class of trading strategies that
always contain a solution to (OBJ). We call these trading strategies extremal. This
enables us to give a characterisation result for the set of optimal mechanisms. In
particular, there is always an optimal mechanism that has a simple structure. With an
12Recall that a mechanism, by definition, must satisfy limited-liability.
13One might be concerned about the need to explicitly specify the topology on the space of information

structures. However, the set of information structures is finite-dimensional, and thus has only one
natural topology.
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1 Screening with Information Acquisition

arbitrary number of types this simple mechanism employs an extremal trading strategy
and an information structure where each experiment is defined on a common signal
space containing at most four signals. With two types, there is always an optimal
mechanism where the experiment for the high type is degenerate; the trading strategy
for the low type is extremal; and, the experiment for the low type consists of at most
three signals.

1.4.1 Optimal Trading Strategies

Fix S, and letM (S) =
{
M : (M,S) ∈ X

}
be the set of trading strategies that, when

paired with S, result in a feasible mechanism. Consider the seller’s problem of choosing
an optimal trading strategy for a fixed information structure:

max
M∈M(S)

R (M,S) . (REV)

This is a standard linear program, whose solution has a standard characterisation.

Proposition 1.2. Suppose thatM∗ =
{(
xi∗, ti∗

)}
i∈V

solves (REV). Then, for each i,

there exist non-negative constants ξ̄i and τ̄ i, along with a collection of weights
{
λij

}
j∈V
⊂

R+ such that

ti∗ (s)


= 1, if

∑
j 6=i λ

i
jσ
i
j (s) > τ̄ iσii (s)

∈ [0, 1] , if
∑

j 6=i λ
i
jσ
i
j (s) = τ̄ iσii (s)

= 0, if
∑

j 6=i λ
i
jσ
i
j (s) < τ̄ iσii (s)

and

xi∗ (s)


= 1, if ξ̄iviσii (s) >

∑
j 6=i λ

i
jvjσ

i
j (s)

∈ [0, 1] , if ξ̄iviσii (s) =
∑

j 6=i λ
i
jvjσ

i
j (s)

= 0, if ξ̄iviσii (s) <
∑

j 6=i λ
i
jvjσ

i
j (s)

.

Moreover, ξ̄i = τ̄ i + pi = µi +
∑

j 6=i λ
j
i , and λ

j
i is a Lagrange multiplier for (ICji ) while

µi is a Lagrange multiplier for (IRi).

Lemma 1.1 below guarantees that it is without loss to assume that the seller always
chooses a trading strategy such that ti (s) ∈ {0, 1} and xi (s) ∈ {0, 1} for all s ∈ S and
all i ∈ V . Assuming that the seller choosing a mechanism in this class will be useful
when |V | > 2.

If, for some i,
(
xi, ti

)
satisfies xi (s) ∈ {0, 1} and ti (s) ∈ {0, 1} for all s ∈ Si, we say that

the seller’s trading strategy is extremal for i. If the seller’s trading strategy is extremal
for i for all i ∈ V , then we say that the trading strategy is extremal. The next result
states that any feasible mechanism can always be transformed into another feasible
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1 Screening with Information Acquisition

mechanism whose trading strategy is extremal for i. Moreover, this transformation
imposes no additional cost to the seller.

Lemma 1.1. For any feasible mechanism (M,S) where ti (s) ∈ (0, 1) or xi (s) ∈ (0, 1)

for some s ∈ Si and some i ∈ V , there exists another feasible mechanism
(
M̂, Ŝ

)
such

that

1. R (M,S) = R
(
M̂, Ŝ

)
;

2. t̂i (s) ∈ {0, 1} and x̂i (s) ∈ {0, 1} for all s ∈ Ŝi; and,

3. c (S) ≥ c
(
Ŝ
)
.

Proof. Fix a feasible mechanism (M,S) such that ti
(
s′
)
∈ (0, 1) for some i and s′ ∈ Si.

We will now construct a new feasible mechanism
(
M̂, Ŝ

)
that satisfies our requirements.

First, let ti
(
s′
)

= α ∈ (0, 1) and choose Ŝi = Si∪{s0, s1}\
{
s′
}
such that Si∩{s0, s1} =

∅. For each j ∈ V , let

σ̂ij (s) =


σij (s) , if s ∈ Si \

{
s′
}

ασij
(
s′
)
, if s = s1

(1− α)σij
(
s′
)
, if s = s0

.

This completes our specification of Ŝi. Since Ŝi is a garbling of Si, we must have that
Si � Ŝi. Let Ŝ =

{
Sj
}
j 6=i ∪

{
Ŝi
}
. That is, Ŝ is the information structure where Si is

replaced with Ŝi, but is otherwise the same. Notice that c (S) ≥ c
(
Ŝ
)
.

We now turn to our construction of the trading strategy M̂. Let

t̂i (s) =


ti (s) , if s ∈ Si \

{
s′
}

1, if s = s1

0, if s = s0

and

x̂i (s) =

x
i (s) , if s ∈ Si \

{
s′
}

xi
(
s′
)

if s ∈ {s0, s1}
.

Otherwise, for j 6= i, choose
(
x̂j , t̂j

)
=
(
xj , tj

)
.

We thus have that, for each j ∈ V ,∑
s∈Ŝi

σ̂ij (s) t̂i (s) =
∑

s∈Si\{s′}

σij (s) ti (s) + ασij
(
s′
)

=
∑
s∈Si

σij (s) ti (s) . (1.4.1)
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1 Screening with Information Acquisition

Similarly, ∑
s∈Ŝi

σ̂ij x̂
i (s) =

∑
s∈SI

σij (s)xi (s) (1.4.2)

for each j ∈ V . (1.4.1) and (1.4.2), and the fact that
(
x̂j , t̂j

)
=
(
xj , tj

)
and Ŝj = Sj

for j 6= i guarantees that
(
M̂, Ŝ

)
is feasible and R (M,S) = R

(
M̂, Ŝ

)
.

We can repeat the exercise above until we have that t̂i (s) ∈ {0, 1} for all s ∈ Ŝi. If
we also have that x̂i (s) ∈ {0, 1} for all s ∈ Ŝi, then we are done. If not, then a nearly
identical procedure as that conducted above will produce a mechanism that satisfies
our requirements.14

These two results will be useful will be useful when we characterise the optimal in-
formation structure below. Note, however, that while lemma 1.1 gives us a convenient
characterisation of the optimal mechanism, we will not always invoke it for all i ∈ V .
In particular, when |V | = 2, it will be convenient to choose tH ∈ (0, 1), where H is the
high-value buyer.

1.4.2 Optimal Information Structures

We now characterise the optimal information structures in this model. We first tackle
the general case, and then consider a setting with two types.

1.4.2.1 General Case

Our first main result is a straightforward consequence of lemma 1.1. The proof is
essentially identical to that of the revelation principle.

Theorem 1.1. There exists an optimal mechanism (M∗,S∗) satisfying

1. x∗i (s) ∈ {0, 1} and t∗i (s) ∈ {0, 1} for all s ∈ S∗i and i ∈ V ;

2.
∣∣S∗i∣∣ ≤ 4 for all i ∈ V ; and,

3. S∗i = S∗j for all i, j ∈ V .

Proof. Take an optimal mechanism (M,S). Lemma 1.1 guarantees that we can trans-
form this mechanism into one where xi (s) ∈ {0, 1} and ti (s) ∈ {0, 1} for all s ∈ Si and
i ∈ V . Suppose that

∣∣Si∣∣ > 4 for some i ∈ V . The previous transformation guarantees
that there must exist a pair s, s′ ∈ Si such that xi (s) = xi

(
s′
)
and ti (s) = ti

(
s′
)
.

The signals s and s′ can be merged into a single signal s′′ without affecting the seller’s

14To see this, simply exchange the roles of x̂i and t̂i in the proof.
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1 Screening with Information Acquisition

revenue or any of the incentive or participation constraints. Moreover, the merging of
signals is a garbling of the original information structure, and thus cannot increase the
seller’s cost. We can repeat this procedure until we have that

∣∣Si∣∣ ≤ 4 for all i ∈ V .
Finally, we can relabel each of the signals so that Si = Sj for all i and j in V . These
transformations give us a mechanism that satisfies our requirements.

Theorem 1.1 states that it is sufficient for the seller to acquire four signals in any optimal
mechanism, regardless of the size of the type space.

1.4.2.2 Two Types

Suppose now that V = {vH , vL}, with vH > vL. This assumption holds throughout this
section. We first state a lemma, whose proof is standard.

Lemma 1.2. Any optimal mechanism must have that xH (s) = 1 for all s ∈ SH .

We now state a proposition asserting that not acquiring information when the buyer
announces that their value is vH is optimal for the seller.

Proposition 1.3. There exists
(
M̂, Ŝ

)
such that

1.
(
M̂, Ŝ

)
solves (OBJ); and,

2. ŜH is minimal in �.

Proof. Consider a relaxation of (OBJ), where we ignore (ICHL ). Let
(
M̃, S̃

)
be a

solution to this relaxed problem. Define a new mechanism
(
M̂, Ŝ

)
as follows. Choose

ŜH to be minimal in �, and let

t̂H (s) =
∑
s′∈SH

σ̃HH
(
s′
)
t̃H
(
s′
)
,

for all s ∈ ŜH . Set
(
M̂, Ŝ

)
be equal to

(
M̃, S̃

)
otherwise. It is easy to verify that the

seller’s revenue under
(
M̂, Ŝ

)
is the same as that under

(
M̃, S̃

)
. Moreover, since S̃

Blackwell-dominates Ŝ by construction, c
(
S̃
)
≥ c

(
Ŝ
)
. Finally, since H pays the same

transfers in expectation, and we are ignoring (ICHL ),
(
M̂, Ŝ

)
is feasible in our relaxed

problem.15 Hence,
(
M̂, Ŝ

)
must also solve this relaxed version of (OBJ).

15By lemma 1.2, the probability that H is allocated the object is the same across the two mechanisms.
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We must now show that
(
M̂, Ŝ

)
solves (OBJ). The minimality of ŜH guarantees that16

σ̂HL = σ̂HH which then implies that∑
s∈SH

σ̂HL (s) t̂H (s) =
∑
s∈SH

σ̂HH (s) t̂H (s) .

Suppose that
(
M̂, Ŝ

)
violates

(
ICHL

)
. We then have that

UHL

(
M̂, Ŝ

)
=
∑
s∈SH

σ̂HL (s)
[
vLx̂

H (s)− t̂H (s)
]
> ULL

(
M̂, Ŝ

)
≥ 0,

so that
∑

s∈SH σ̂
H
L (s) t̂H (s) =

∑
s∈SH σ̂

H
H (s) t̂H (s) < vL. Thus, the seller achieves a

payoff strictly less than what she would achieve had she chosen a completely uninformat-
ive information structure, and posted a price equal to vL. This posted price mechanism
is feasible in (OBJ), violating optimality.

Proposition 1.3 allows us to assume without loss that SH = ∅.17 We assume this in the
succeeding discussion. It then follows that the optimal tH is the largest transfer that is
consistent with (ICLH) and (IRH). The argument in the proof above also shows that it
is without loss to ignore (ICHL ), which delivers the following corollary.

Corollary 1.1. Suppose that (M,S) solves (OBJ). Then, (IRL) binds under (M,S).

We now turn to a characterisation of the optimal
(
xL, tL

)
and SL. Suppose (M,S)

solves (OBJ) where S is such that
∣∣∣SH ∣∣∣ = 1. Assume also that λLH > 0, so that (ICLH)

binds.18 Define19

ρ̄t =
τ̄L

λLH
and ρ̄x =

ξ̄LvL

λLHvH
.

We must have, by proposition 1.2 and lemma 1.1, that, for any s ∈ SL such that
σLL (s) > 0,

tL (s)



= 1, if
σLH (s)

σLL (s)
> ρ̄t

∈ {0, 1} , if
σLH (s)

σLL (s)
= ρ̄t

= 0, if
σLH (s)

σLL (s)
< ρ̄t

(1.4.3)

16Suppose that σ̂HL 6= σ̂HH and let SH be the uniform distribution on S. We would then have that
ŜH � SH , violating the minimality of ŜH .

17This is why it is inconvenient to use lemma 1.1 for H. We can insist that tH ∈ {0, 1}, but then we
must have that

∣∣∣SH ∣∣∣ > 1 in order to satisfy feasibility and optimality. However, it is simpler to fix

SH = ∅, so we forego lemma 1.1 here.
18Recall that λLH is a Lagrange multiplier for (ICLH).
19τ̄L and ξ̄L are defined in proposition 1.2.
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1 Screening with Information Acquisition

and

xL (s)



= 1, if ρ̄x >
σLH (s)

σLL (s)

∈ {0, 1} , if ρ̄x =
σLH (s)

σLL (s)

= 0, if ρ̄x <
σLH (s)

σLL (s)

. (1.4.4)

Moreover, it is easy to see that for any s ∈ Si such that σLL (s) = 0, it is optimal to set
tL (s) = 1 and xL (s) = 0. Hence, we can take σLH (s) /σLL (s) to be ∞ when σLL (s) = 0.
We now have the following result.

Proposition 1.4. For any optimal mechanism such that (ICLH) binds, there exists an-
other optimal mechanism where either(

xL, tL
)
∈
{

(1, 0) , (0, 0) , (0, 1)
}
,

or (
xL, tL

)
∈
{

(1, 0) , (1, 1) , (0, 1)
}
.

Proof. First suppose that λLH > 0. The result then follows from (1.4.3) and (1.4.4).

Suppose instead that λLH = 0. Using notation from proposition 1.2, and the fact that
we can ignore (ICHL ), we have that τ̄L = µL − pL. If τ̄L < 0, we would have that
tL (s) = 1 for all SL, which violates (IRL). Thus, τ̄L ≥ 0, so that ξ̄L = µL ≥ pL > 0.
Proposition 1.2 then implies that xL (s) = 0 for all s ∈ SL such that σLL (s) > 0. (IRL)
then enforces that tL (s) = 0 for all s ∈ SL such that σLL (s) > 0. It is clearly optimal
to set xL (s) = 0 and tL (s) = 1 for any s ∈ SL such that σLL (s) = 0.20 This completes
the proof.

We can also state a corresponding result for the case where (ICLH) does not bind.

Proposition 1.5. For any optimal mechanism where (ICLH) does not bind, there exists
another optimal mechanism where we have that xH = xL = 1, tH = vH , and tL ∈ {0, 1}.

Proof. Consider an optimal mechanism, and suppose that (ICLH) does not bind. Lemma
1.2 implies that xH = 1. Optimality then requires that tH = vH .21 Suppose that
xL (s) < 1 for some s ∈ SL. We can then increase xL (s) by ε and increase tL (s) by
vLε, which keeps L indifferent but increases revenue. We can also choose ε small enough
to respect (ICLH). This is a violation of our assumption of optimality.

20Note that if the
(
xL, tL

)
that we constructed results in (ICLH) to be slack, then the mechanism

cannot be optimal.
21Recall that we assume that SH = ∅. Hence, if tH 6= vH , then either (IRH) is violated, or we can

increase tH without violating any constraints. Both these cases are impossible.

20



1 Screening with Information Acquisition

We are now ready to state our second main result, which specialises theorem 1.1 to the
binary-type case.

Theorem 1.2. There exists an optimal mechanism (M∗,S∗) satisfying

1.
∣∣∣SH ∣∣∣ = 1 and

∣∣∣SL∣∣∣ ≤ 3; and,

2. xH = 1, xL (s) ∈ {0, 1}, and tL (s) ∈ {0, 1} for all s ∈ SL.

Proof. The fact that
∣∣∣SH ∣∣∣ = 1 and xH = 1 follows from 1.3 and 1.2. The rest of the

result is deduced from propositions 1.4 and 1.5, along with the merging argument in
the proof of theorem 1.1.

1.5 Discussion

1.5.1 Limited Liability

Throughout our analysis, we assumed that ti (s) ∈ [0, 1] for all s ∈ Si and i ∈ V .
This is equivalent to assuming a strong form of limited liability, since both the buyer
and the seller face a limited-liability constraint. It turns out that if we do not assume
limited liability, under mild assumptions on the cost function c, we cannot guarantee
the existence of a solution to the seller’s problem. This is because of a discontinuity
in the seller’s objective when we weaken our limited-liability assumption. Furthermore,
whenever a solution to the seller’s problem exists under no limited liability, this solution
must involve the full extraction of surplus at zero cost.

Assumption 1.4. Let S0 be a completely uninformative information structure. Then,
c (S)→ c (S0) = 0 as S → S0.

We say that the cost function c is continuous at zero whenever c satisfies assumption
1.4. Moreover, say that c is strictly increasing at zero if c (S) > 0 whenever S � S0,
where S0 is completely uninformative.

Theorem 1.3. Suppose that c is continuous at zero, and that there is no limited liability,
so that ti (s) ∈ R for all s ∈ Si and all i ∈ V . Then, for every ε > 0, there exists a
mechanism (M,S) such that∣∣∣∣∣∣R (M,S)− c (S)−

∑
i∈V

pivi

∣∣∣∣∣∣ < ε.

Thus, when c is strictly increasing at zero, the seller’s objective (OBJ) is discontinuous
at any completely uninformative information structure. The same conclusion holds if
instead we assumed that ti (s) ≤ 1 for all s ∈ Si and all i ∈ V .
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The statement of proposition 1.3 for the case with no limited liability is actually a
special case of the result of Cremer and McLean (1985; 1988).22

Proof. We will prove the proposition for the case where |V | = 2. The general case can
be handled similarly; the only additional difficult is added notation.

It is enough to prove the result for the case where ti (s) ≤ 1 for all s ∈ Si and i ∈ V .
Consider a mechanism where SH = ∅, SL = {sH , sL}, xH = xL (s) = 1 for s ∈ SL,
tH = vH , and tL (sH) = 1. We will suppress the superscript in σLi (s), because it is clear
that this probability must refer to the experiment for the low type. We will construct
a mechanism that extracts full surplus. This mechanism must satisfy

σH (sH) + σH (sL) tL (sL) ≥ vH
σL (sH) + σL (sL) tL (sL) = vL.

The inequality corresponds to (ICLH) while the equality corresponds to (IRL). Notice
that (IRH) and (ICHL ) are satisfied by construction. Define23, for each x > 0,

σH (sL) =
1

x

σL (sL) =
1

log x

tL (sL) = (vL − 1) log x+ 1.

By construction, (IRL) is satisfied. We claim that for large enough x, (ICLH) is also
satisfied. Moreover, c (S) can be made arbitrarily close to zero by choosing x large
enough. First, observe that

σH (sH) + σH (sL) tL (sL) = 1 + (vL − 1)
log x

x
.

Since
lim
x→∞

log x

x
= 0,

our first assertion about (ICLH) follows. Moreover, since σH (sH)→ 1 and σL (sH)→ 1

as x→∞, the information structure we constructed is completely uninformative in the
limit. This completes the proof.

22See also McAfee and Reny (1992).
23The functions x−1 and (log x)−1 are not unique. Any pair of functions f and g that converge to zero

and satisfy

lim
x→∞

f (x)

g (x)
= 0

will do.
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1.5.2 Tightness of Bounds on
∣∣Si∣∣

Theorems 1.1 and 1.2 construct an upper bound on the complexity of a simple optimal
mechanism. It is natural to ask whether this bound is tight. Could it be optimal for
the seller to choose an even simpler mechanism? In general, the answer is no, at least
in the binary-type case. This is a consequence of the next result.

Theorem 1.4. Suppose that |V | = 2. There exists a cost function c and primitives p,
vL, and vH such that any mechanism with

∣∣∣SL∣∣∣ < 3 is not optimal.

Proof. Choose p, vL, and vH along with an information structure S such that the unique
solution to (REV) given S is of the form given in 1.4.24 Let c be given by

c
(
S ′
)

=

1, if S � S ′

0, if S � S ′
.

It is easy to see that for such a cost function, there does not exist an optimal mechanism
with

∣∣∣SL∣∣∣ < 3.

To complete the proof of the previous result, we give the following example.

Example 1.1. Let pL = pH = 1/2, with vL = 1/3 and vH = 2/3. Suppose that
SH = ∅, and that SL = {s1, s2, s3}, with σH (s1) σH (s2) σH (s3)

σL (s1) σL (s2) σL (s3)

 =

 0.57 0.24 0.19

0.56 0.24 0.2

 .

The optimal trading strategy is given by xH = 1, tH = 37/75, and

xL (s) =

1, if s = s1

0, if s 6= s1

tL (s) =

1, if s = s3

0, if s 6= s3

.

1.6 Conclusion

In this paper, we studied a model of screening with information acquisition. We found
that there always exist simple optimal mechanisms. Without limited liability on both

24The example given below demonstrates this is possible.
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the buyer and the seller, the seller can always extract full surplus at vanishingly small
cost.

Our results heavily exploit the linear structure of the screening problem. It would be
useful to know whether there is a similar characterisation of the optimal information
structure in a version of this model where buyers have concave utility. Moreover, it
would also be worthwhile to explore more specific information acquisition cost functions
within the class that respects the Blackwell order.25 We leave this to future work.

25One example is the entropy cost function used in the rational inattention literature. Numerical
computations suggest that for this cost function, the seller cannot do better than the optimal
two-signal information structure.
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2 Markovian Information Design in
Games of Strategic Experimentation

2.1 Introduction

Internet platforms such as Google, Yelp, TripAdvisor, and even Facebook, are some
of our most ubiquitous sources of information. However, much of the information
they provide is generated by their users, and not something they produce themselves.
Moreover, any information these Internet platforms reveal affects their users’ subsequent
choices which, in turn, changes the information that is fed back to the platform. In
other words, these Internet platforms face an information disclosure problem where
their choices impact the production of information. The information they reveal today
affects the information they can reveal tomorrow.

Consider the example of TripAdvisor. If TripAdvisor posted a large number of positive
reviews of a hotel in a short period of time, then its users have little incentive to
experiment with other hotels that have few or no reviews. This is inefficient because it
may well be the case that one of the latter hotels is much better than the former, but we
are never able to discover this fact due to inefficient underexperimentation. Trivially,
it would also be inefficient for TripAdvisor to never post reviews, because this leads to
the underutilisation of information that they have. Hence, the timing of information
revelation is of natural interest in this setting. If Internet platforms cared only about
efficiency1, when should they disclose information?

Suppose instead that an Internet platform has some objective other than efficiency, and
we are concerned that it is distorting information to achieve its own, potentially socially
undesirable, ends. For example, people have expressed the criticism, made particularly
alarming by their monopoly, that Google opaquely manipulates the information they
provide their users.2 This complaint has also been levelled against other platforms such
as Yelp and Facebook.3 This leads us to consider the content of information disclosure.
Under what conditions must an Internet platform reveal information transparently?

1More precisely, suppose that they wish to maximise the sum of their users’ payoffs.
2On 27 June 2017, the European Commission fined Google e2.42 billion for breaching antitrust rules
by manipulating search results. (http://bit.ly/EUGoogFine)

3A petition on change.org to stop Yelp from censoring reviews can be found at http://bit.ly/
ChangeYelp. Former Facebook workers have admitted to suppressing conservative news on its
‘trending’ news section. (http://bit.ly/FacebookSuppress)
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2 Markovian Information Design in Games of Strategic Experimentation

To address the questions posited above, we embed the canonical model of strategic
experimentation with exponential bandits (Keller et al., 2005) into an information design
setting. The Internet platform is the designer, and their users are agents who have a
risky arm and a safe arm. At each instant of time, agents allocate shares of a perfectly
divisible unit resource to each arm to maximise their expected discounted payoffs. The
safe arm gives known flow payoffs while the risky arm produces (known, lump-sum)
payoffs (called successes) at some unknown rate. Use of the risky arm when it is not
known to be better than the safe arm is experimentation. A good risky arm yields
payoffs at a rate more profitable than the safe arm; a bad risky arm never generates any
payoffs. All agents have risky arms of the same type, and externalities are informational
only. The classic setting that Keller, Rady, and Cripps study is a game of perfect
monitoring: agents always observe each others’ actions and payoffs. Here, the only
information that agents obtain about other agents comes exclusively from what the
designer discloses to them. More specifically, at the start of the game, the designer
commits to an information structure—sometimes also called a mechanism4—that maps
histories (of actions and payoffs) into (for now, private) signals sent to each agent. Thus,
our designer observes all agents’ histories, but she is equally unaware about the common
type of the risky arms.5,6

We shall restrict attention to a tractable class of information structures that possess
the property that any signal they transmit must depend only on a simple summary
statistic of the history of the game: the designer’s posterior over the type of the risky
arm. These shall be called Markovian information structures, or Markov mechanisms
for short. We study the equilibria7 these information structures induce. We show, in
the benchmark setting with deterministic mechanisms8, that all such equilibria possess
the common feature that the designer discloses no information, or all (payoff-relevant)
information, individually to each agent. Partial information disclosure is impossible.
Differential information disclosure across different agents, however, is available to the
designer. Naturally, partial information disclosure is possible with, and only with,
stochastic mechanisms.

We then obtain a starker characterisation of equilibria by focusing on those that can be
implemented with symmetric monotone recommendation mechanisms. These mechan-
isms provide a simple generalisation of symmetric Markovian perfect-monitoring equi-
libria. A recommendation mechanism is symmetric when the designer, for any given

4This terminology is appropriate because information design is in some sense dual to mechanism
design. See Bergemann and Morris (2016b, 2017).

5In light of the motivation above, we will not explicitly specify the designer’s preferences. Note that
the information structure is common knowledge, and so, once one has been fixed, the designer’s
objective plays no further role. Our focus will therefore be on implementation.

6We abstract from the problem of eliciting truthful reports from agents about their experience. This
is without loss for any equilibrium we construct.

7We look for weak perfect Bayesian equilibria in Markov strategies.
8The real-world analogue of a mechanism is an Internet platform’s algorithm, which is deterministic.
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history9, sends the same recommendation to all agents.10,11 Monotonicity means that
recommendations must be monotonic in the designer’s posterior. In any equilibrium
where agents obey the designer, each symmetric monotone (recommendation) mechan-
ism can be identified with a cut-off on the designer’s posterior. Above this cut-off, all
agents use the risky arm exclusively, and the designer discloses no information. Be-
low it, the designer reveals all information and the agents play the unique symmetric
Markov-perfect equilibrium (MPE) of the perfect monitoring game. Thus, symmetric
monotone recommendation mechanisms correspond to information structures that com-
pletely withhold information until aggregate experimentation reaches some threshhold,
at which point all information is then released.12

A symmetric monotone mechanism can be identified with a cut-off. However, not all
cut-offs induce equilibria where agents obey the designer’s recommendations. Hence,
we characterise the cut-offs—called implementable—that do, and give necessary and
sufficient conditions for a cut-off to belong in the implementable set. When agents are
patient enough, the implementable set forms a closed (but possibly degenerate) inter-
val.13 Furthermore, we can use the aforementioned necessary and sufficient conditions
to study the efficiency and transparency properties of these mechanisms. We find that
for each pessimistic enough prior14, there is a large enough number of agents such that
the set is a singleton corresponding to the perfect monitoring outcome.15 That is, sym-
metric monotone mechanisms are maximally transparent under these conditions. This is
because the Markov property of the mechanism limits the designer’s ability to selectively
reveal information in a way that prevents free-riding, and the temptation to free-ride
on others’ experimentation is greatest when there are a large number of agents. More
explicitly, under these conditions, an agent’s contribution to speeding up the disclosure
of information via inducing decay in the designer’s posterior (conditional on the absence
of success) is small, and therefore cannot outweigh the (net) expected marginal cost of
experimentation. Consequently, the designer cannot induce full experimentation. On
the other hand, when agents begin the game with a prior optimistic enough about the
risky arm, then the implementable set is large enough to contain cut-offs inducing out-

9Note that these histories need not be on the equilibrium path.
10An obedient equilibrium strategy induced by a symmetric recommendation mechanism satisfies a

property called strong symmetry. (A strategy is obedient whenever the actions it specifies al-
ways coincide with the recommendations.) Abreu (1986) and Abreu et al. (1986) study strongly
symmetric equilibria (SSE) in repeated Cournot games. Cronshaw and Luenberger (1994) give a
characterisation of these equilibria in general repeated games with perfect monitoring. Hörner et al.
(2015) also use strong symmetry to generalise symmetric Markovian perfect-monitoring equilibria.
However, their work uses SSE to generalise the Markov property of (perfect monitoring) equilibria,
whereas we maintain the Markov property and instead use the implied strong symmetry to obtain
a simple generalisation to perfect monitoring.

11Symmetric recommendation mechanisms correspond to public information structures, where the same
signal is always sent to all agents.

12This is reminiscent of the publication of reviews on the Apple App Store, where app reviews are
hidden until an app has some required number of reviews.

13This is not a limit result. We only require that the discount rate be close enough to zero.
14Any prior for which a myopic agent would be unwilling to use the risky arm will do. This condition

can be interpreted as experimentation being ‘costly’.
15The implementable set shrinks to a singleton for a finite but large number of agents.
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comes that are always more efficient than any outcome under perfect monitoring. The
reason for this is, when agents are already optimistic, it becomes easy for the designer
to convince agents to experiment without having to reveal to them any information.
The designer thus delays the disclosure of information for as long as possible, at least
until the time when it might be efficient for all agents to switch to the safe arm.16 This
means that there is often a direct trade-off between transparency and efficiency. An
efficient mechanism must, to some extent, be opaque.

The benchmark setting described above considers the case with conclusive good news.
The arrival of payoffs from the risky arm immediately reveals, at least to the designer
and the agent who enjoys the payoff, that the risky arm is good. We can instead
consider a variation of the model with conclusive bad news (Keller and Rady, 2015). In
this setting, both arms incur costs.17 A good risky arm never generates any costs, while
a bad risky arm generates (lump-sum) costs (failures) at a rate higher than the flow cost
of using the safe arm. With conclusive bad news, barring trivial cases, the equilibrium
induced by the class of symmetric monotone mechanisms is unique and coincides with
the unique symmetric MPE under perfect monitoring. Moreover, within this class of
mechanisms, there is no trade-off between transparency and efficiency. This is because,
under some conditions on the prior, the only other equilibria the designer can induce in
this class entail no experimentation, even when some would be efficient.

These results are relevant to the regulation of Internet platforms, where society may
wish to maximise both transparency and efficiency. Our model suggests that one needs
to think about the kind of information these platforms provide. If this information
corresponds to that generated by a bad news bandit, then these platforms may have
no choice but to be transparent, at least to the extent that their algorithms resemble
our symmetric monotone mechanisms. If not, then perhaps their algorithms ought
be regulated so that they are symmetric and monotone. Further, if their information
corresponds to a good news bandit, then these results suggest that having a large user
base is exactly what enforces transparency. This means that if one values transparency,
Internet platform monopolies may not be undesirable. More generally, transparency
is best served when the designer is limited to mechanisms that inhibit her ability to
prevent free-riding. However, if what one really cares about is efficiency, then criticisms
over lack of transparency in this case, unlike that of bad news, may be misguided.

In the course of our analysis of symmetric monotone mechanisms under good news, we
also uncover a novel kind of encouragement effect, as initially identified in the literat-
ure on strategic experimentation (Bolton and Harris, 1999; Keller et al., 2005; Keller
and Rady, 2010, 2015). In the perfect monitoring case, the encouragement effect cap-
tures the motive of agents to experiment more than they would individually because
16Note, however, that implementing this mechanism involves more than just delaying information

disclosure until some fixed time. Information is revealed when the designer’s posterior crosses
a certain threshold, but the time that this occurs is a function of the (equilibrium) amount of
experimentation. Treating the time of disclosure as fixed will not be enough to belay free-riding.

17See Keller and Rady (2015) for examples of situations this version of the model can be applied to.
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experimentation subsequently causes other agents to do the same, generating useful
information. Our encouragement effect is different. First, we find it in a setting with
conclusive good news, under which there is no encouragement effect with perfect mon-
itoring. Second, the encouragement effect in the perfect monitoring case hinges on
the incentives presented by information generated in the future. The encouragement
effect here is about accelerating the disclosure of information generated in the past.
Finally, in the perfect monitoring case, larger numbers of agents typically strengthen
the encouragement effect. We find the opposite here.

The Markov assumption is clearly with loss of generality. For instance, it rules out the
use of punishments via the denial of information, which can be used to support a wider
range of equilibrium outcomes.18 However, this assumption is not just for the sake of
tractability; it has economic content as well. The Internet platforms that we model as
information designers probably do not have the ability to deny their users information
in order to bring about outcomes they desire. Even if they did have this ability, there
are perhaps market-related reasons that prevent them from doing so, and we can view
our assumption as a reduced-form way of capturing this limitation. Moreover, given the
vast quantities of data that these platforms manage, it seems likely that the information
they provide their users does in fact depend only on simple summary statistics like our
designer’s posterior.19

While not immediately apparent, the restriction to recommendation mechanisms, when
coupled with the Markov requirement, is also with loss. In particular, there exist public
Markovian information structures yielding symmetric equilibria that cannot always be
replicated using symmetric Markov recommendation mechanisms. One example is the
information structure in Bonatti and Hörner (2011), where actions are private and
successes are public.20 In this case, there is a unique symmetric equilibrium where agents
use the risky arm exclusively until the common (equilibrium) posterior belief reaches
the level where an agent experimenting in complete isolation would have stopped, at
which point they all switch to the safe arm.21 Our results detailed above show that
for pessimistic enough priors and a large enough number of agents, the equilibrium
in this setting is not implementable with symmetric Markov recommendations. The
difference is driven by out-of-equilibrium behaviour. With private actions and public
successes, deviations from the risky arm are not particularly attractive because other
agents never observe these deviations, and hence never respond to them. With Markov
recommendations, the same deviations slow the decay in the designer’s posterior, which
leads to all other agents experimenting for longer than they would have otherwise. This
makes these deviations attractive.

Other applications of our model include information sharing in organisations. For ex-
18In particular, the first-best is always attainable when the designer uses grim-trigger type punishment

strategies. See section 2.6.1.
19Consider, for example, user review scores, or Google’s PageRank algorithm.
20Bonatti and Hörner (2011) also have payoff externalities, which we do not.
21See Bonatti and Hörner (2017b), footnote 28.
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ample, managers of separate R&D teams may face the problem of information disclosure
across teams that work on similar projects with uncertain prospects of success. How-
ever, applications aside, this model is arguably of significant theoretical interest as well.
In the same way that zero-sum games form a useful benchmark for more general games
by highlighting their adversarial aspects, this model, as it abstracts away from payoff
externalities, brings to the fore pure informational issues in dynamic information design.
In particular, our results exhibit a class of repeated games with learning and imperfect
public monitoring where efficiency can be attained with limited resort to rewards and
punishments.22 It would be useful to know whether this is an artefact of the assump-
tions we have made, or if this result emerges in more general games. We leave this
question to future research.

2.2 Literature Review

This chapter is most closely related to two major strands of literature: experimentation
with bandits, and information design.

There is an expansive literature on bandit problems.23 Rothschild (1974) is commonly
credited for introducing them to economics. The two-armed Poisson bandit24 we use
here is due to Presman (1991), and their application to strategic settings of perfect
monitoring was studied in Keller et al. (2005), who consider a setting with conclusive
good news; Keller and Rady (2010), inconclusive good news; and Keller and Rady
(2015), both conclusive and inconclusive bad news. However, the first use of bandits
in a game of strategic experimentation was by Bolton and Harris (1999), who endowed
players with Brownian bandits. Technical differences notwithstanding, the equilibria
in these games all exhibit inefficient under-experimentation, and, with the exception of
Keller et al. (2005), an encouragement effect.

Poisson bandits, and their discrete-time analogues, have also been applied to a rich
set of strategic environments different from, but related to, those already mentioned.25

Two closely related papers are by Bonatti and Hörner (2011, 2017b). Bonatti and
Hörner (2011) study a setting with public conclusive good news but private actions.
They find that there is still inefficient under-experimentation, but less so than under
perfect monitoring. In Bonatti and Hörner (2017b), also with private actions but public
conclusive bad news, experimentation is inefficient, and even more so than under perfect
monitoring. These results are similar to some of our results on efficiency, but their

22See Sugaya and Yamamoto (2015) for a relevant folk theorem.
23For comprehensive introductions, see Berry and Fristedt (1985) or Gittins et al. (2011). Bergemann

and Välimäki (2008) give a short overview with a brief survey of economic applications.
24Exponential bandits are a special case of Poisson bandits.
25See, for instance, Bergemann and Hege (2005); Strulovici (2010); Klein and Rady (2011); Hörner and

Samuelson (2013); Cripps and Thomas (2016); Di Pei (2016); Guo (2016); Guo and Roesler (2016);
Halac et al. (2016b); Bonatti and Hörner (2017a). Hörner and Skrzypacz (2016) give an excellent
survey of this literature.
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focus on design issues is different from ours. In particular, they treat the information
structure as fixed whereas we focus on treating it as a design variable.26 Another pair of
closely related papers are Hörner et al. (2015) and Heidhues et al. (2015), who study the
construction of efficient equilibria. Hörner et al. (2015) show that efficient payoffs are
achievable in strongly symmetric equilibria under perfect monitoring with inconclusive
good news, but are not attainable in such equilibria when news is conclusive. Heidhues
et al. (2015) show that efficiency can be attained in the conclusive case in sequential
equilibria with communication and private payoffs. The equilibria these two papers
construct rely on the use of punishments to deter deviations; we do not have access to
these here. Dong (2016) studies a setting with perfect monitoring and conclusive good
news, as in Keller et al. (2005), but one of the players has private information about
the distribution of payoffs from the risky arm. If our designer could reveal information
about the state instead of choosing the monitoring structure, then the outcomes she
could induce would resemble the equilibria constructed by Dong.

In information design27, the seminal paper is Kamenica and Gentzkow (2011), who
consider a general static problem with a single agent. Taneva (2016) and Mathevet
et al. (2017) extend the analysis to static games while Ely (2017) and Ball (2017)
extend the single agent problem to a dynamic setting.28 More substantively, Ely’s and
Ball’s analyses focus on the case where the underlying information process is exogenous
whereas we study the problem of revealing information that is endogenously generated.
Kremer et al. (2014) and Che and Hörner (2017) are motivated by many of the same
issues we are, and consider a design problem reminiscent of the one we have here except
that agents are myopic and arrive sequentially.29 A setting with information disclosure
to non-myopic agents is of natural theoretical interest, but is of interest for the purposes
of applications as well: Google’s users, for example, typically use Google’s services
repeatedly, so it is worth considering a model where the designer and agents interact
dynamically, as they do here. In particular, with myopic agents, the designer is not
constrained by an agent’s desire to free-ride. One noteworthy resulting difference is
that Kremer, et al. find that a benevolent designer can achieve the first-best when the
number of agents is large whereas we have the exact opposite result, at least within the
class of information structures we consider. Smolin (2015) studies a setting similar to
ours with a single agent who does not observe their own payoffs, and is thus motivated
instead by issues of information disclosure in the presence of disagreement between the
26A collection of other papers (Rosenberg et al., 2007, 2013; Murto and Välimäki, 2011, 2013) also

consider a variety of information structures for games of strategic experimentation (typically with
irreversibility of switching between arms), but none of them directly allow the information structure
to be a subject of design. Halac et al. (2016a) consider the disclosure problem in a similar setting
to ours, but they wish to characterise optimal contests for a single success among agents who do
not intrinsically care about the outcomes of the risky arm.

27See Bergemann and Morris (2016b, 2017) for surveys.
28Ely (2017) also considers a stylised two-player coordination game commonly used to model bank

runs.
29To the best of my knowledge, this is the first paper that explicitly considers the information design

problem in a setting of strategic experimentation with long-lived agents. Aside from the pair named
above, there are a number of other papers examining the problem with short-lived agents such as
Mansour et al. (2015) and Papanastasiou et al. (2017).
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designer and the agent over optimal allocation between the risky and safe arms.

This chapter is also related to the literature on repeated games. As mentioned, our
model formally corresponds to to a repeated game with learning and imperfect monitor-
ing. Sugaya and Yamamoto (2015) prove a folk theorem in this class of environments.30

As is typical in this literature, their folk theorem relies on constructing complicated
strategies to achieve efficiency. The information structure and strategies we construct
are comparatively simple. Our results contrasting the good news and bad news envir-
onments are reminiscent of the results in Abreu et al. (1991), who find that efficiency
is achievable with bad news but not with good news. However, their model is entirely
different. News in their model is about deviations from equilibria; ours is about the
type of the risky arms. Sugaya and Wolitzky (2017) call our information structure
the universal monitoring structure, which they use to derive bounds on the sequential
equilibrium payoff set in repeated games with imperfect private monitoring. Finally,
the equilibria we construct can be viewed as a type of mediated equilibrium. Rahman
(2014) uses mediated equilibria to construct collusive outcomes in a repeated Cournot
game.

Our information designer is also very similar to the mediator in Myerson (1986). One
important difference is that Myerson’s mediator does not observe her agents’ informa-
tion, but must ask them to report this truthfully. The requirement that agents report
their information typically constraints the mediator in a way our designer seemingly
is not. However, with conclusive news, the outcome of any implementable symmet-
ric monotone recommendation mechanism is also an equilibrium in the game with the
mediator who does not directly observe agents’ information. This is because the de-
signer can always ask agents to report that they have observed a success. When news
is conclusive, agents do not have the incentive to withhold this information.

2.3 Model

This section lays out the setup of the model. We first describe the basic game and
give the definition of an information structure.31 We then move on to describe the
designer’s belief dynamics, followed by a discussion of strategies and equilibrium. We
use the following convention for indices: i and j refer to agents; D refers to the designer;
and, t and τ refer to time. Subscripts will be dropped when the interpretation is clear
from the context. The partial derivative of a function f with respect to x is denoted
by ∂xf . All spaces and functions are taken to be measurable. A discussion of many of
the assumptions made below can be found in section 2.6 while omitted derivations and
proofs are in appendix 2.9.

30See also Wiseman (2005, 2012); Fudenberg and Yamamoto (2010, 2011); Yamamoto (2014).
31Decomposing a game into a basic game and an information structure is standard. See Bergemann

and Morris (2016a).
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2.3.1 Basic Game: Players, Actions, and Payoffs

There are N > 1 agents (they32) and a designer (she). We will commit the usual
notional abuse of using N to refer to both the set of agents and the number of agents.
Time t ∈ [0,∞) is continuous and the horizon is infinite. All agents have a common
discount rate of r > 0. There is a state of the world θ ∈ Θ = {0, 1} that is is unknown to
both the designer and all agents. p0 = Pr (θ = 1) ∈ (0, 1) is the common prior over the
state of the world. Agent i’s posterior belief33 at the start of time t is pit; the designer’s
is pDt.

Agents each face a two-armed Poisson bandit consisting of a risky arm R and a safe
arm S. At time t, each agent i ∈ N chooses a fraction kit ∈ [0, 1] of a perfectly divisible
resource to allocate to R. The remainder of the resource is allocated to S. Each risky
arm generates lump-sum payoffs h at a Poisson rate λθkit that depends on the state.
Consequently, agents’ actions control the rates of conditionally independent Poisson
processes

{
νθ,kit : t ≥ 0, i ∈ N

}
where νθ,kit is the number of lump-sum payoffs observed

by agent i up to (the end of) time t. We assume that λ1 > λ0 = 0. Each safe arm
generates a known flow payoff s for each unit of the resource allocated to it. That
is, when agent i allocates kit to R at time t, they receive a flow payoff of (1− kit) s.
We say that agent i experiments at time t when kit > 0. Hence, given an (integrable)
experimentation path {kit : t ≥ 0}, and a realisation of the process

{
νθ,kit : t ≥ 0

}
, agent

i’s realised payoff is ∫ ∞
0

re−rt
(
hdνθ,kit + (1− kit) sdt

)
.

Agent j’s actions do not enter directly into i’s payoff when i 6= j, so this is a game of
informational externalities only. Call the arrival of a lump-sum payoff, if observed, the
arrival of news.34

We initially assume that λ1h > s > λ0h = 0. This means that agents strictly prefer
R when they know that θ = 1, and they strictly prefer S when θ = 0. Under this
assumption, we call the risky arm good when θ = 1 and bad when θ = 0. We shall refer
to this assumption as the good news case. Naturally, observing the arrival of the lump
sum h is good news: agents enjoy their highest feasible payoff, and they revise upward
their belief that the risky arm is good. Later, we shall assume that λ1h < s < λ0h = 0.
This is the bad news case.35 Agents strictly prefer R when they know that θ = 0; they
strictly prefer S when they know that θ = 1. With bad news, we call the risky arm
32We will sometimes abuse our linguistic convention by also referring to a single agent as ‘they’. No

confusion should result.
33Throughout the chapter, we model beliefs as left continuous processes, so that they describe beliefs

at the start of time t before any further information is revealed. This allows us to use beliefs as
state variables directly instead of working with their left-continuous versions.

34This terminology, while convenient, is somewhat misleading. The absence of any lump sum payoff
arrivals can also be thought of as news since agents will update their posterior if they knew this.
However, we this caveat in mind, we shall continue to use the term news to refer to the arrival of
lump-sum payoffs.

35All other cases are trivial. To see this, suppose that s ≥ λ1h > λ0h. It is then never optimal to use
the risky arm. Other cases are handled similarly.
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bad when θ = 1 and good when θ = 0. Under both assumptions, since λ0 = 0, news is
conclusive. This means that agents infer with certainty that θ = 1 upon observing the
arrival of a lump-sum payoff. In the good news case, the arrival of news will also be
called a success, whereas in the bad news case, the arrival of news is a failure.

The designer chooses the information structure of this game under perfect commitment.
We will be more precise about what this means in the next subsection. We wish to
remain agnostic about the designer’s preferences, so, for most of our analysis, these
preferences shall remain unspecified. This means that the focus of this model will be
on implementation. In particular, we are interested in the outcomes that the designer
can implement given her choice of information structure for this game. However, in a
later section, we shall also briefly examine some natural specifications for the designer’s
preferences.

2.3.2 Information Structures

ĥti is agent i’s private history before t. This consists of an experimentation path
{kiτ : τ < t} and news arrival times

{
T θ,kin : T θ,kin < t, n ∈ N

}
where T θ,kin is the arrival

time36 of agent i’s nth lump sum. ĥ0
i is a singleton. Agent i always knows their own

private history.37 Denote the profile of private histories by ht =
(
ĥt1, . . . , ĥ

t
N

)
. Let Ĥt

i

be the set of all private histories before t for agent i, and Ht = Ĥt
1 × · · · × Ĥt

N . The
collection of all private histories for agent i is Ĥi = ∪t≥0Ĥ

t
i , and the set of all profiles

of private histories is H = ∪t≥0H
t.

A (pure) information structure is a space of signals M and a profile of functions ρ =

(ρi)i∈N where
ρi : H →M.

The designer chooses this information structure before time 0 and commits to it through-
out the course of the game.38 This choice is common knowledge among the agents. The
interpretation of the information structure is that, for each possible history of the game,
the designer sends agent i a signal from the set M according to ρi. For now, inform-
ation structures are deterministic; each history maps uniquely into a profile of signals.
While this is with loss of generality, this assumption will be relaxed in section 2.6.2.39

Occasionally we shall, for linguistic and analogical convenience, call an information

36Formally, T θ,kin = inf
{
t : νθ,kit ≥ n

}
.

37Let
{
F̂it : t ≥ 0

}
be the filtration generated by

{(
kit, ν

θ,k
it

)
: t ≥ 0

}
. Agent i knowing their own

history formally means that their information at time t always contains F̂it−.
38One can therefore think of the designer as observing all available information except for the state θ.

However, commitment means that, for most of the game, she is non-strategic.
39Let Ψ be the space of all functions from H into M . A (mixed) information structure, or stochastic

mechanism, is the space M along with a map φ : [0, 1] → ΨN . The designer chooses (M,φ) and
draws a uniformly distributed random variable whose realisation determines a (deterministic) profile
ρ. φ is therefore a ΨN -valued random variable. When we make use of stochastic mechanisms, we
shall identify the mechanism with φ, and call profiles of functions ρ, which are realisations of the
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structure a mechanism. An information structure is symmetric when ρi = ρj for all
i, j ∈ N . Otherwise, the information structure is private.

Consider, for the sake of clarity, a pair of simple information structures. First, the
designer could choose, if she wished, to reveal to agent i all information about the
history of the game by choosing M = H, and letting ρi be the identity function.40

Similarly, she could choose to reveal to agent i no information at all, other than i’s own,
by choosingM to be a singleton. Each choice of information structure induces a game of
strategic experimentation among the agents. For example, if the information structure
always revealed all information to all agents, the induced game—which shall be called
the perfect monitoring game—is the classic setting of strategic experimentation analysed
in Keller et al. (2005) and Keller and Rady (2010, 2015). An information structure that
reveals no information at all induces a degenerate game where agents experiment in
isolation as studied in Presman (1991).

Let mit ∈ M be the signal that i receives at time t. Agent i’s augmented history hti
is a pair

(
ĥti,m

t
i

)
where mt

i = {miτ : τ < t}. Ht
i and Hi are defined as before. For

simplicity, we will subsequently refer to an augmented history as just a history.

The space of mechanisms is vast, and the optimisation problems they induce for the
agents are, in general, quite complicated. We thus restrict attention to a tractable class
of mechanisms that includes many cases of interest41 but also rules out many cases that
are not42. In particular, we focus on Markov information structures in straightforward
signals. We define these two terms presently.

Take an arbitrary history h ∈ H. The history h induces the designer’s posterior belief
pD, which we identify with the probability that θ = 1 conditional on h. We then say
that an information structure is Markov43 if it is a function of the designer’s belief,
and only the designer’s belief. That is, for any pair of histories h, h′ ∈ H such that
pD (h) = pD

(
h′
)
, it must be the case that ρi (h) = ρi

(
h′
)
for all i ∈ N . In the sequel,

we shall write ρi as a function of pD alone.44

An information structure in straightforward signals is one where M = [0, 1]. A signal
ρi(h) is then taken to be an action recommendation for agent i after history h. The

random variable φ, disclosure rules. This definition is adopted from Aumann (1964). See Guo
(2016) for the use of this definition in a mechanism design setting with Poisson bandits. Bonatti
and Hörner (2017b) also make use of mixed policies in a model of strategic experimentation with
public conclusive bad news but unobservable actions.

40The designer’s signal to agent i under this information structure formally does not include the past
signals sent to agents other than i. However, i can always compute what those signals were because
they know the (deterministic) information structure.

41For example, any equilibrium constructed in Keller et al. (2005) and Keller and Rady (2010, 2015)
can be induced in this class.

42As mentioned in the introduction, we wish to rule out the use of punishments. There does not appear
to be a weaker assumption that suffices.

43Stationarity is implicit in this definition, as is common.
44We impose the technical restriction that each ρi is left- and piece-wise Lipschitz-continuous as func-

tions of pD. See Keller and Rady (2010) for details.
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restriction to straightforward signals is standard from the literature on information
design.45 An information structure in straightforward signals shall be called a direct
mechanism when convenient. We shall refer to any equilibrium (of the game induced
by a direct mechanism) where kit = mit for all t ∈ [0,∞) and i ∈ N as obedient. If
a mechanism in straightforward signals induces an obedient equilibrium, say that the
mechanism is implementable.

2.3.3 Belief Dynamics: Designer

We first describe the dynamics of of the designer’s belief. The results here are standard
since the designer always observes all agents’ histories. Agent belief dynamics depend
on details of the information structure and the structure of news so their discussion is
deferred to later sections.

Fix a profile of experimentation paths {kit : t ≥ 0, i ∈ N}. As long as no news has
arrived, the designer’s belief evolves deterministically according to

ṗD = − (λ1 − λ0) pD (1− pD)
∑
i∈N

ki. (2.3.1)

If news arrives at time t then beliefs jump46 according to

pDt+ =
λ1pDt
λ (pDt)

where λ (p) = pλ1 + (1− p)λ0, and xt+ = limt↓0 xt. Define

J (p) =
λ1p

λ (p)

so that J (pDt) describes the jump in the designer’s belief upon observing news at time
t. In the conclusive case (λ0 = 0), J (p) = 1 for any p ∈ (0, 1).

2.3.4 Strategies and Equilibrium

Before describing the agents’ strategies, let us first be explicit about the timeline of the
game. Before the start of the basic game, nature chooses the state θ, and the designer

45However, as noted earlier, assuming this restriction here is stronger than is typical in the literature
where it is often without loss as long as the designer can send random signals conditional on her
information. As discussed in the introduction, the combination of this and the Markov assumption
makes it difficult for the designer to discipline outcomes off the equilibrium path. As a consequence,
there is still loss of generality even if the designer could send random signals. Unfortunately,
it is undesirable to dispense with the Markov assumption, but the problem becomes intractable
without restricting attention to straightforward signals. A general characterisation of implementable
Markovian information structures would make an interesting future line of research.

46pDt is the belief before news arrives since we model beliefs to be left-continuous. pDt+ is therefore
the belief immediately after a jump.
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chooses an information structure.47 Then, at time t, each agent i receives a potentially
private signal mit, and then chooses an action kit which determines the arrival rate of
payoffs from the risky arm that they privately observe. Any information about other
agents’ actions and payoffs arrives only through the signal mit.

A (pure) strategy ki : Hi → [0, 1] for agent i is a map from histories into actions.48

Let {kit : t ≥ 0} be the experimentation path induced by this strategy. Their expected
continuation value at time t is given by

E
[∫ ∞

t
re−r(τ−t)

(
hdνθ,kiτ + (1− kiτ ) s dτ

)]
.

A standard transformation, using the fact that compensated Poisson processes are mar-
tingales, and the Law of Iterated Expectations, allows us to write the above expression
as

E
[∫ ∞

t
re−r(τ−t)((1− kiτ )s+ kiτλ (pDτ )h) dτ

]
.

This expression is familiar from Keller and Rady (2010). The difference is that agent i
does not directly observe pDt but only receives signals about it via mit. However, the
process {mit : t ≥ 0}, along with a conjecture about the other agents’ strategies, induces
beliefs about {pDt : t ≥ 0}. Hence, a natural state variable for an agent’s strategy is
their beliefs over the designer’s posterior. As a consequence, a strategy is now a map

ki : ∆
(
[0, 1]

)
→ [0, 1]

from beliefs over the designer’s posterior into actions. Such strategies shall be called
(stationary) Markov strategies.

We thus aim to characterise obedient (weak perfect Bayesian) equilibria in Markov
strategies induced by direct Markov mechanisms.49 These will be referred to as simply
equilibria. Note, in particular, that when we speak of equilibria, they are obedient,
unless specified otherwise.

2.4 Conclusive Good News

We first consider an environment where news is good and conclusive so λ1h > s >

λ0h = 0. The mechanism that reveals all information in this setting is studied in
Keller et al. (2005) whose results we make use of below. In particular, they derive
belief cut-offs p∗N ; p

†
N ; p

∗
1; pm; and, the value function W † (p). p∗N is the solution to

the N -agent cooperative problem that maximises all players’ average utility. All agents
47The order of these choices does not matter, since nature is non-strategic, and the designer does not

observe θ.
48To save on notation, we use ki to refer to both i’s strategy, and their action at some given time.
49The restriction to obedient equilibria is without loss, by exactly the argument in Forges (1986),

proposition 1.
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choose k = 1 above this cut-off and k = 0 below it. p∗1 is therefore the solution to
the single-agent problem while p†N is the cut-off characterising the symmetric Markov-
perfect equilibrium50 (MPE) under perfect monitoring whose value function is given
by W † (p). In this MPE, all agents choose k = 1 above p†N , and choose some interior
k ∈ (0, 1) below it until they reach the belief p∗1 at which point all experimentation
stops. pm is the myopic cut-off belief, below which a myopic agent never experiments
since it entails negative flow payoffs. We have that p∗N < p∗1 < p†N < pm. The details of
these results are summarised in appendix 2.8.

2.4.1 Belief Dynamics: Agent

We wish to simplify an agent’s problem in order to apply standard dynamic program-
ming techniques. To this end, we state a sequence of lemmas that characterise agents’
equilibrium belief dynamics. Recall that p∗1 is the belief cut-off that an agent uses
in autarky, so that if the designer gives agent i no information, their unique optimal
strategy is to choose ki = 1 at all beliefs above p∗1 and ki = 0 at all beliefs below p∗1.

Lemma 2.1. A direct Markov mechanism induces an obedient equilibrium only if exactly
one of the following two conditions hold for each i ∈ N :

1. ρi (1) = 1; or,

2. ρi is identically zero and p0 ≤ p∗1.

Proof. Consider a private history for agent i where they observe a success. Conditional
on this history, pD = pi = 1. The uniquely optimal action for i is ki = 1. Thus,
if ρi (1) < 1, there exists some history where ρi 6= ki. This history must occur with
positive probability, or else the designer never tells agent i to experiment. In the former,
choosing ρi (1) < 1 contradicts obedience. In the latter, when the designer never tells
agent i to experiment, so it is without loss to assume that ρi = 0, the agent is obedient
if and only if p0 ≤ p∗1.

This result is a consequence of the Markovian structure of the designer’s signals, which
limits the ways she can communicate the history of the basic game to each agent.
In particular, guaranteeing obedience from agents who have observed successes forces
her to recommend experimentation with full intensity to all agents. This does not,
however, enforce symmetry of signals at all beliefs. In general, the designer is still free
to recommend different intensities of experimentation, or, indeed, no experimentation
at all, to different agents for interior beliefs.51

50With perfect monitoring, a Markov-perfect equilibrium is a subgame-perfect equilibrium in Markov
strategies that use the common posterior as the state variable.

51Note that lemma 2.1 does not make use of the fact that we have assumed that mechanisms are
deterministic. The reasoning of the proof applies to every disclosure rule that the designer employs
with positive probability under a stochastic mechanism. We shall make use of this observation in
section 2.6.2.
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The next lemma gives a partial characterisation of an agent’s belief over the designer’s
posterior.

Lemma 2.2. In any equilibrium, an agent’s belief over the designer’s posterior has at
most two points in its support: 1, and some qt ∈ (0, p0) which evolves according to

q̇ = −λ1q(1− q)

ki +
∑
j 6=i

ρj (q)

 . (2.4.1)

Proof. If any agent has observed a success, then pD = 1. However, if no agent has
succeeded, then the designer’s beliefs evolve deterministically, and also determine de-
terministic paths {kit : t ≥ 0, i ∈ N} that, by obedience, induce the dynamics given
above. These two events are mutually exclusive and exhaustive so must therefore fully
specify the designer’s possible beliefs.

The designer’s posterior always drifts downward in a deterministic fashion in the absence
of a success. This allows agents, who are not certain about the state, to compute,
as shown in the lemma, this posterior in the event that none of agents has enjoyed
success.52 We shall call this object the designer’s worst-case belief, and continue to
denote it by q. Note that q represents what the agents believe the designer’s posterior
is conditional on her not having observed a success; it is not the designer’s actual
posterior. Nevertheless, conditional on the absence of news, the designer’s posterior
will indeed be q in equilibrium.

A version of lemma 2.2 is also true even when the equilibrium is not obedient. We only
need to replace

∑
j 6=i ρj (q) with the agent’s (equilibrium) conjecture

∑
j 6=i ki when

pD = q. The proof of this result is similar.

Corollary 2.1. In equilibrium, ρi ∈ [0, 1) implies that pi = pD, unless ρi is identically
zero.

Proof. Lemma 2.1 establishes that when ρi 6= 1 and is not identically zero, pD < 1.
Lemma 2.2 then shows that agent i’s belief (over the designer’s posterior) is degenerate.
Equilibrium guarantees that this belief is correct.

This corollary says that any recommendation other than full experimentation perfectly
reveals the designer’s beliefs, and so any agent who receives such recommendations
must have a posterior that coincides with the designer’s. That is, recommending partial

52This argument clearly makes strong use of our assumption that the designer and the agents all use
pure strategies, which obviates strategic uncertainty. While unsatisfactory, allowing for general
mixed strategies introduces significant difficulty in the analysis, as demonstrated by Bonatti and
Hörner (2017b). See, however, 2.6.2.
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(or no) experimentation discloses the designer’s (payoff-relevant) information. This is
because any recommendation other than full experimentation can only be consistent
with the absence of news. However, since the agents know what the designer’s belief is
conditional on that event, they must therefore know this belief once the said event has
been revealed to be the case.

One might be tempted to think that an agent can always just invert their ρi in order to
discover the designer’s belief, therefore delivering a stronger version of the above result.
However, we have not assumed enough structure on the ρi’s to guarantee that these
inverses are well-defined, which means that this method is not guaranteed to uniquely
pin down the designer’s belief.53 Nevertheless, the results above guarantee, as we shall
see, that the designer can only exploit the non-invertibility of the ρi’s, if at all, in a
limited way.

The next result derives the dynamics of an agent’s belief whenever their posterior does
not coincide with the designer’s.

Lemma 2.3. On any interval of time [t, t+ dt) on which ρi = 1, i’s belief pi, conditional
on not observing a success, evolves according to

ṗi = −λ1pi (1− pi) ki. (2.4.2)

Proof. This comes from an application of Bayes’ rule. Note that on any interval
[t, t+ dt) with ρi = 1, the designer’s signal provides no information about θ. Hence, i’s
posterior depends only on their own experimentation. More explicitly:

pi,t+dt =
[
pite

−λ1
∑
j 6=i kjtdt + 1− pit

] pite
−λ1

∑
j∈N kjtdt

pite
−λ1

∑
j∈N kjtdt + (1− pit)

+pit

(
1− e−λ1

∑
j 6=i kjtdt

)
.

Subtracting pit from both sides, dividing by dt, and taking dt→ 0 gives the result.

To understand the equation in the proof above, notice that the right hand side gives the
i’s expected posterior at the end of the interval [t, t+ dt). The expression in brackets
in the first term is the probability that no other agent observes a success, which is
multiplied by the agent’s posterior conditional on this event. The second term is just
the probability that some other agent does observe a success, in which case i’s posterior
jumps up to 1. Consequently, whenever the designer tells i to experiment fully, their
only source of information about θ is their own experimentation.

2.4.2 Equilibrium Characterisation

The previous results and the associated discussion give us the following theorem.
53However, piece-wise Lipschitz-continuity means that, by the implicit function theorem, each ρi is

locally invertible almost everywhere, which gives us another way of viewing the above results.
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Theorem 2.1. With conclusive good news, any obedient equilibrium where all agents
experiment with positive probability is characterised by at most 2N phases. Each agent
must be in one of two mutually exclusive phases: one where the designer discloses no in-
formation and recommends full experimentation, and another where the designer reveals
all (payoff-relevant) information and recommends less than full experimentation.

The above result does not require all phase transitions to be permanent. The designer
can, in principle, after a period of recommending less than full experimentation, switch
to recommending full experimentation and vice-versa. However, once the designer in-
structs all agents to stop using the risky arm, all experimentation ceases, and the game
(effectively) ends. This is because the designer’s belief becomes frozen54 at any point
where she only recommends the safe arm. Notice that this instance is just a special
case of the phase where the designer completely discloses all information, and is thus
implicit in the above characterisation.55

Whenever the agents are told to experiment fully, then their beliefs decay more slowly
than the designer’s worst-case belief.56 This enables the designer to induce the agents
to experiment more than she would have in the perfect monitoring case.57 Nevertheless,
there is an additional force at work: agents wish to continue experimenting fully because
it speeds up the arrival of information. Disobeying the designer simply slows down
the rate at which her worst-case belief decays, which delays the transition into the
alternative phase of full information revelation.

Given the agents’ belief dynamics, we can now write the Hamilton-Jacobi-Bellman equa-
tions of the agents’ maximisation problems.

2.4.3 Optimality Equations

From theorem 2.1 we know that, in an obedient equilibrium, agent i either knows
exactly the designer’s belief, or is uncertain about whether the designer has observed a
success.58 It follows then that agent i’s value function must be characterised by a pair
of Hamilton-Jacobi-Bellman equations depending on which regime they are in.

54See (2.3.1).
55Another boundary case worth mentioning is when there is only a single agent experimenting fully

for an open interval of time. In this case, while the agent knows that their posterior decays at the
same rate as the designer’s (if hers does at all), these posteriors may not coincide. Moreover, the
designer reveals no information because there is no information being generated to reveal.

56Compare (2.4.1) and (2.4.2).
57Heidhues et al. (2015) exploit a similar observation in a discrete-time version of this game, where they

make payoffs private, but allow for communication. They show that socially efficient experimenta-
tion can be achieved as a sequential equilibrium for some parameterisations of the aforementioned
game. However, the equilibria they construct rely on punishments to deter deviations, which we
have ruled out.

58We ignore the trivial case where the designer recommends no experimentation at all.
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When agent i’s belief coincides with the designer’s, we have the familiar optimality
equation59

rVi = rs+ max
k∈[0,1]

k

{
r [pλ1h− s] + λ1p

[
λ1h− Vi − (1− p)∂pVi

]}
(2.4.3)

+ λ1p
[
λ1h− Vi − (1− p)∂pVi

]∑
j 6=i

ρj (p) .

This is exactly the HJB equation that appears in Keller et al. (2005). As they de-
scribe, experimentation gives a flow payoff, captured by r

[
(1− k) s+ kpλ1h

]
. The

term kλ1p
[
λ1h− Vi − (1− p)∂pVi

]
captures i’s expected information gain from their

own experimentation, which consists of two parts. First, at rate kλ1p, a success arrives,
which yields a gain of λ1h−Vi. Otherwise, i’s value decays according to−kλ1p(1−p)∂pVi
due to a decline in their belief. The remaining term describes i’s benefit from other
agents’ experimentation.

When agent i’s beliefs do not coincide with the designer’s, their value is a function
of their beliefs over the designer’s posterior. By the law of iterated expectations, pi =

E [pD]. Thus, what agent i thinks about the designer’s belief can be characterised by two
parameters, pi, their own posterior about the state of the world, and q, the designer’s
worst-case belief. To see this, suppose that i has not observed a success by time t, and
let Et denote the event that no one else has observed a success either. Conditional on
Et, the designer’s posterior must be given by qt. Since the agent’s information is always
subsumed in the designer’s, we must have that

pit = Pr (Et) qt +
[
1− Pr (Et)

]
. (2.4.4)

Thus, the agent’s beliefs over the designer’s posterior is uniquely determined by pit and
qt. We use these as our state variables.

We therefore obtain a similar but slightly less familiar equation

rVi = rs+ max
k∈[0,1]

k

{
r [pλ1h− s] + λ1p

[
λ1h− Vi − (1− p)∂pVi

]
(2.4.5)

− λ1q (1− q) ∂qVi
}
− λ1q (1− q) ∂qVi

∑
j 6=i

ρj (q) .

This equation features the additional terms−kλ1q (1− q) ∂qVi and−λ1q (1− q) ∂qVi
∑

j 6=i ρj (q),
which now capture the benefit of bringing forward the information disclosure phase in-
duced by the decay of the designer’s worst-case belief. As before, the former expression
captures the benefit from i’s own experimentation, while the latter captures the benefit

59If the derivatives shown above are interpreted in a generalised sense (Clarke, 1990), then the
Hamilton-Jacobi-Bellman equations are both necessary and sufficient. However, it turns out that
these equations have solutions even when the derivatives are given their classical definitions, so
considering generalised derivatives is not necessary. See Davis (1993) for details.
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from other agents’ experimentation. However, i’s payoff from other agents’ actions does
not include a jump term proportional to λ1h−Vi, as it did in the (2.4.3), where i knew
the designer’s posterior, since i does not observe other agents’ successes.

2.4.4 Symmetric Monotone Mechanisms

In order to get a sharper characterisation of equilibria, we assume that the mechanism
is symmetric, so that ρi = ρj = ρ for all i, j ∈ N , and monotone. Monotonicity means
that ρ is non-decreasing in the designer’s belief.60 The following result is immediate
from theorem 2.1.61

Corollary 2.2. When news is good and conclusive, any equilibrium induced by a sym-
metric monotone mechanism is characterised by a cut-off belief q̃. Above this cut-off, the
designer discloses no information and recommends full experimentation. At and below
the cut-off, the designer reveals all information and recommends the unique symmetric
(Markov-perfect) equilibrium action of the perfect monitoring game.

Thus, in the symmetric monotone case, mechanisms that induce obedient equilibria ad-
mit a simple characterisation. First, the designer recommends full experimentation to
all agents. Once the designer’s posterior has reached the cut-off identifying the mech-
anism, she must reveal her information. To be specific, at the time agents expect the
designer’s posterior to cross q̃, the designer’s next recommendation reveals whether a
success has arrived in the past or not. If she continues to recommend full experimenta-
tion, agents conclude that a success must have arrived. Otherwise, they conclude that
her true posterior must be given by q̃. Keller et al. (2005) then establish that there is a
unique symmetric MPE in this setting, so that MPE determines the designer’s action
recommendation.

We now proceed to a characterisation of the cut-off q̃ that implements the equilibria
described above. We begin with an easy observation.62

Corollary 2.3. A cut-off q̃ induces an obedient equilibrium only if q̃ ≤ p†N .

Proof. Suppose that q̃ > p†N , so that the designer stops recommending complete experi-
mentation at a belief strictly above p†N . At these beliefs, the designer’s posterior is now
common knowledge. However, by proposition 2.3, k = 1 is the unique best response at
these beliefs. This contradicts obedience.

60If ρ were non-increasing, then lemma 2.1 implies that ρ must be identically 1 or identically 0. The
former cannot induce an obedient equilibrium, while the latter induces only trivial equilibria with
p0 ≤ p∗1.

61See the beginning of this section for a brief summary of the perfect-monitoring MPE. Relevant details
are in appendix 2.8.

62In what follows, we assume that q̃ ≤ p0. This is clearly without loss, since choosing q̃ > p0 is the
same as choosing q̃ = p0.
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2.4.4.1 Solution to HJB (2.4.9)

Consider the phase where the designer reveals no information and recommends the
action k = 1, and suppose all agents other than i obey this recommendation. When
agent i follows this recommendation as well, their value function satisfies

rVi = pλ1

[
rh+ λ1h− Vi − (1− p) ∂pVi

]
−Nλ1q (1− q) ∂qVi.

This is a first-order linear partial differential equation, which can be solved using the
method of characteristics.63 The solution is given by

Vi (p, q) = pλ1h+ (1− p) Ω (p)
r
λ1 F

(
Ω (p)N

Ω (q)

)
, (2.4.6)

where Ω (p) = 1−p
p and F is a C1 function. In order to determine F , we need an

appropriate boundary condition, as given by

Vi (p, q̃) =
1− p
1− q̃

W † (q̃) +
p− q̃
1− q̃

λ1h.

To see this, observe that, from (2.4.4), we have64

Pr (Et) =
1− pt
1− qt

. (2.4.7)

Suppose qt = q̃. With the probability Pr (Et), no success has arrived, so the designer
stops recommending full experimentation, and instructs the agents to play the sym-
metric perfect-monitoring MPE instead. The agents’ continuation value then must be
W † (q̃), the common value function in the said MPE. With complementary probability,
the designer must have observed a success. The agents are able to infer this from the
fact that the designer continues to recommend k = 1, instead of the MPE action. Thus
their continuation value must be λ1h.

Using this boundary condition we find that

F (x) =

[
W † (q̃)− q̃λ1h

(1− q̃) Ω (q̃)
r

Nλ1

]
x
− r
Nλ1 .

Hence, i’s value function from obeying the designer’s recommendations is

Vi (p, q) = pλ1h+ (1− p) W
† (q̃)− q̃λ1h

1− q̃

[
Ω (q)

Ω (q̃)

] r
Nλ1

. (2.4.8)

This value function is the sum of payoffs from the risky arm, plus the benefit of inform-
63See Evans (2010).
64See section 2.9.2 for a method of deriving the expression below without appealing to the law of

iterated expectations.
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ation from experimentation. Notice that when p = q = p0, and q̃ = p†N < p0, the value
function above is exactly equal to an agent’s ex-ante payoff in the perfect monitoring
MPE, as given in proposition 2.3. On the other hand, when q̃ = p∗N , the above value
is almost identical to the value of the N -agent cooperative problem. Indeed, when
p = q = p0, this gives the agents’ ex-ante payoff under the efficient solution. Moreover,
we have that

−Nλ1q (1− q) ∂qVi = r (1− p) W
† (q̃)− q̃λ1h

1− q̃

[
Ω (q)

Ω (q̃)

] r
Nλ1

,

which we shall discover is positive65, confirming the benefit of inducing decreases in the
worst-case belief.

2.4.4.2 Verifying Obedience

Agent i has no incentive to deviate if and only if, for each pair (p, q) along the equilibrium
path, ki = 1 solves the maximisation problem in (2.4.5), where Vi is given in (2.4.8),
and ρj = 1 for j 6= i. In other words, the expression in braces in (2.4.5) must be greater
than or equal to zero. A straightforward calculation shows that this is equivalent to

pλ1h+
1− p
N

W † (q̃)− q̃λ1h

1− q̃

[
Ω (q)

Ω (q̃)

] r
Nλ1

≥ s. (2.4.9)

The interpretation of the condition above is standard. The left-hand side is the marginal
benefit to experimentation, which consists of the flow payoff pλ1h and the benefit from
a decline of the worst-case belief, as given in the second term. The latter forms 1

N of
the total value of information found in the second term of (2.4.8), which is exactly i’s
contribution to this benefit. This can be thought of as a kind of encouragement effect, as
mentioned in the introduction.66 Agents are encouraged to experiment because it brings
forward the date of information disclosure from the designer. It is exactly this effect that
enables the designer to induce experimentation for longer than agents would have in the
perfect monitoring case. The right hand side is the marginal cost of experimentation,
which is just the opportunity cost of not using the safe arm.

The inequality (2.4.9) must hold for each p and q along the equilibrium path, and
therefore determines a continuum of constraints to check. This exercise is simplified by
the fact that, along this path, p and q are related by the equality67

Ω (q)

Ω (p0)
=

[
Ω (p)

Ω (p0)

]N
, (2.4.10)

along with the observation below, which is straightforward to verify.
65This is shown in the proof of proposition 2.1 in appendix 2.9.3.
66The properties asserted there are now easy to verify.
67See appendix 2.9.2 for a derivation.
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Proposition 2.1.

MB(p; q̃) = pλ1h+
1− p
N

W † (q̃)− q̃λ1h

1− q̃

[
Ω (p0)

Ω (q̃)

] r
Nλ1

[
Ω (p)

Ω (p0)

] r
λ1

(2.4.11)

is strictly convex in p. Moreover, it is strictly decreasing in p within a neighbourhood of
0, and strictly increasing in p within a neighbourhood of 1. Finally, as a function of q̃,
MB (p; q̃) is strictly increasing on

(
0, p∗N

)
and strictly decreasing on

(
p∗N , p

†
N

)
.

The convexity ofMB (p; q̃) is inherited from the convexity of the value function Vi upon
substituting for Ω (q) as in (2.4.10). This convexity reflects the value of information:
agents benefit from mean-preserving gambles over their posterior. On the other hand,
that MB (p; q̃) is increasing in q̃ in the direction of p∗N comes reflects the fact that
experimentation has the greater value the closer the cut-off is to the socially efficient
one. In other words, the encouragement effect is largest at efficiency.

Proposition 2.1 is useful because it reduces the problem of checking a continuum of
constraints into verifying pairs of (in)equalities which constitute necessary and sufficient
conditions for the implementability of q̃. These conditions are stated in appendix 2.9.4.
We use one of these sufficient conditions to derive the next result.

Theorem 2.2. The cut-off q̃ = p†N is implementable. When p0 > p†N , the set of
implementable cut-offs contains an interval

[
p̂, p†N

]
, where p̂ < p†N .

Of course, we already knew from the revelation principle that the cut-off p†N must be
implementable, since the designer’s recommendations when q̃ = p†N are exactly what
the agents would have done in the symmetric MPE of the perfect monitoring game.
However, it is reassuring that this fact can be proven directly. Moreover, the direct
proof gives us the second part of the theorem, which cannot be deduced from the
revelation principle alone.

Proposition 2.1 also delivers the next corollary. MB (p; q̃) is increasing in q̃ on
(
0, p∗N

)
, so

implementing a higher cut-off in this range assuming a lower cut-off were implementable
poses no problem for satisfying (2.4.9).

Corollary 2.4. If q̃ < p∗N is implementable, so is every q′ ∈
[
q̃, p∗N

]
.

The corollary can also be strengthened in the following way.

Theorem 2.3. Suppose q̃ < p†N is implementable. There exists an r0 > 0 such that for
all r ∈ (0, r0), every q′ ∈

[
q̃, p†N

]
is also implementable. Hence, for all r small enough,

the set of implementable cut-offs forms an interval contained in
[
0, p†N

]
.

The condition on r is used to guarantee that MB is ‘monotonic enough’ as cut-off q̃

increases. Without it, increasing q̃ on
(
p∗N , p

†
N

)
could lead to a violation of (2.4.9),

since MB is strictly decreasing on that interval. Numerical calculations suggests that
r need not be too small for the above result to be true.
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2.4.4.3 Transparency and Efficiency

The above discussion identifies a partial trade-off between transparency and efficiency.
Observe that, by proposition 2.1, Vi is strictly decreasing in q̃ on

(
p∗N , p

†
N

)
, and strictly

increasing on
(
0, p∗N

)
.68 Since the designer reveals all information below q̃, and conceals

information above, one can view the choice of a higher q̃ as choosing a more transparent
mechanism, and the choice of a lower q̃ as, naturally, choosing a less transparent one.
As a consequence, on

(
p∗N , p

†
N

)
, the choice between transparency and efficiency is zero-

sum; choosing to increase one must, by necessity, decrease the other. On the other
hand, on

(
0, p∗N

)
, there is no trade-off. Transparency and efficiency go hand-in-hand.

It is natural to ask, then: when can the designer achieve efficiency? When is she
restricted to complete transparency, as represented by q̃ = p†N? We turn to these
questions next. We begin with a simple answer to the latter.

Theorem 2.4. For every p0 ∈ (0, pm), where pm = s
λ1h

, there exists an N0 > 1 such
that for all N ≥ N0, the uniquely implementable cut-off is p†N .

69

Proof. This result is obtained by inspecting (2.4.9). When p0 < pm, we must have
s−pλ1h > 0 for any possible on-path belief. However, the second term on the left-hand
side of (2.4.9) can be made as small as possible by choosing N to be large enough, from
which we obtain a violation of the inequality (2.4.9).

This means that when experimentation is costly, in the sense that it entails negative flow
costs70, and there are a large enough number of agents, then the only implementable
symmetric mechanism is one that reveals all information. The economics behind this
result becomes transparent from examiningMB (p; q̃). WhenN is large, i’s contribution
to the decay of the worst-case belief q, which drives our encouragement effect, is small,
and therefore cannot outweigh the cost of experimentation s−pλ1h. Hence, i is tempted
to free-ride on other agents’ experimentation, and the designer cannot induce them to
use the risky arm.

Next we state a sufficient condition for implementing any cut-off that lies in
[
p∗N , p

∗
1

]
.

This condition is just an application of proposition 2.5 in appendix 2.9.4. Recall that
in the symmetric perfect-monitoring MPE, all experimentation stops once the common
public belief reaches p∗1. Hence, cut-offs in this region always induce more efficient

68The derivatives of MB (p; q̃) and Vi with respect to q̃ are constant multiples of each other, so the
same comparative static results apply.

69This does not contradict theorem 2.2, since p†N → pm as N → ∞. To see this, observe that p†N is
strictly increasing in N but must be bounded above by pm.

70To understand why the assumption above about the prior belief means experimentation is costly,
notice that the expected flow payoff from choosing k > 0 is (1− k) s+ kpλ1h, which is negative for
p < pm. Thus, for these beliefs, the only reason to experiment would be the information value it
provides, which is small for large enough N .
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levels71 of experimentation, in both amount and intensity.72 We denote by p̂ (q) the
agents’ equilibrium belief about the state when the designer’s worst-case belief is at q.
That is, for any q, p = p̂ (q) satisfies (2.4.10).

Theorem 2.5. The cut-off q̃ ∈
[
p∗N , p

∗
1

]
is implementable if the following chain of

inequalities hold:

λ1h

[
λ1p̂ (q̃)

λ1p̂ (q̃) + r

]
≥ 1

N

(
s− q̃λ1h

1− q̃

)
≥ s− p̂ (q̃)λ1h

1− p̂ (q̃)
.

The last inequality is necessary.

A simple way to guarantee all three inequalities is for the prior belief p0 to be large
enough. This is because p̂ is increasing in p0, and so increases the leftmost expression
but decreases the rightmost expression.73

2.4.5 Relaxing Symmetry and Monotonicity

We end this section with a brief note on relaxing symmetry and monotonicity. One
simple way to relax both assumptions simultaneously is in the choice of continuation
equilibrium after the designer’s belief has reached the threshold q̃. Below this threshold,
let the designer recommend an asymmetric MPE, such as those constructed in Keller
et al. (2005). One can also straightforwardly construct asymmetric but monotone mech-
anisms of the type where the designer’s recommendations are extremal: ρi ∈ {0, 1} for
all i ∈ N . This class of mechanisms is now characterised by a collection {q̃i : i ∈ N}
of cut-offs, one for each agent. q̃i is then the belief at which the designer tells agent i
to switch to the safe arm, at least until news arrives. This construction amplifies the
encouragement effect for agents who continue experimenting later than others, since
the effect will now only be divided by the number of agents still experimenting at the
worst-case belief.

Consider instead non-monotone, but symmetric, mechanisms. Given theorem 2.1, ac-
cording to the same reasoning as in corollary 2.2, this class of mechanisms is character-
ised by a finite74 collection of cut-offs {q̃`}, where each cut-off determines a transition
from full disclosure to full concealment and vice-versa. Our results above in the mono-
tone case then characterise the lowest of these cut-offs. The strategies immediately to

71Keller et al. (2005) show that the amount of experimentation can be identified with the posterior at
which experimentation stops. Intensity is a measure of how long it took to reach that posterior.

72In fact, Heidhues et al. (2015) show that, in a discrete-time version of the perfect monitoring game,
every sequential equilibrium features no experimentation below p∗1, so these cut-offs induce outcomes
that are more efficient than any outcome under perfect monitoring that can be approximated by
equilibria of the discretised game.

73This is similar to the result by Heidhues et al. (2015), but, as mentioned previously, they use pun-
ishments to support these outcomes.

74This is from our restriction that ρ must be piecewise Lipschitz-continuous.
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the right of the lowest cut-off can then be determined in a manner similar to the con-
struction of Keller et al. (2005).75 One can then proceed as above to study the second
lowest cut-off, and so on.

2.5 Conclusive Bad News

We consider now a model where news is bad and conclusive: 0 = λ0h > s > λ1h. One
might reasonably expect that the results in this case are just the mirror image of the
results derived above. This is, to some extent, true, but not in all respects, as Keller
and Rady (2015) show in the perfect monitoring case. We will find something similar
here.

First we recall some results from the perfect information setting. As in the conclus-
ive good news case, p∗1 and p∗N characterise the single-agent and cooperative solution
respectively. Now, however, the risky arm is used exclusively at all beliefs below the
relevant cut-offs, and the safe arm is used above them. Of course, we must have that
p∗1 < p∗N . The conclusive bad news case also has a unique symmetric MPE, character-
ised by two cutoffs, p†N and p̄N , with p

†
N < p∗1 < p̄N < p∗N . Below p†N , the risky arm is

used exclusively. Between p†N and p̄N , agents allocate resources to both arms. Finally,
above p̄N , only the safe arm is used.

2.5.1 Belief Dynamics: Agent

Now we state analogues of the results of from the previous section.

Lemma 2.4. A direct Markov mechanism induces an obedient equilibrium only if exactly
one of the following two conditions hold for each i ∈ N :

1. ρi (1) = 0; or,

2. ρi is identically zero and p0 > p∗1.

When news is bad, the designer recommends that agents stop experimenting when she
is sure that the risky arm is bad. The reason for this is the same as with good news.
In order to satisfy obedience for agents who are certain of the state of the world, the
designer must recommend the safe arm to agents who are also still uncertain. However,
this means that the only agents the designer can conceal the arrival of news from are
those agents who are not experimenting at all at the time of arrival of news. All other
agents are immediately able to infer the arrival of bad news when the designer instructs
them to switch to the safe arm. Of course, the agents who remain uninformed because
75Of course, the boundary conditions must be determined appropriately, as we did in the monotone

case.
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they were using the safe arm only at the arrival time of news eventually learn the state as
well, as long as the designer instructs them to experiment at some (optimistic enough)
beliefs.

Lemma 2.5. In any equilibrium of the game with conclusive bad news, ρi ∈ (0, 1]

implies that pi = pD, unless ρi is identically zero. When ρi = 0, pi remains stationary,
and agents’ beliefs over the designer’s posterior is supported on 1 and q, where q evolves
according to

q̇ = −λ1q(1− q)
∑
j 6=i

ρj (q) .

As in the case with conclusive good news, there is a full disclosure phase, and a phase
where the designer reveals no information. The difference is that with conclusive bad
news, the disclosure phase occurs any time the designer recommends any amount of
experimentation. Agents learn nothing about the state otherwise, because they are
instructed to use the safe arm.

2.5.2 Equilibrium Characterisation

We can use similar arguments to those from section 2.4 to obtain the following result.

Theorem 2.6. With conclusive bad news, any obedient equilibrium is characterised by
at most 2N + 1 phases. Except for the final phase, each agent must be in one of two
mutually exclusive phases: one involving no information disclosure along with no ex-
perimentation; and, another where the designer reveals all (payoff-relevant) information
while simultaneously recommending a strictly positive amount of experimentation. The
final phase is when all experimentation stops.

Let us now focus on symmetric monotone mechanisms. However, with bad news, a
monotone mechanism is non-increasing in the designer’s posterior. This gives us a
result which starkly distinguishes the good news setting from that with bad news.

Theorem 2.7. When p0 ≤ p∗1, or p0 ≥ p̄N , there is a unique implementable symmetric
monotone mechanism, identified by the unique symmetric MPE of the perfect monit-
oring game. When p0 ∈

(
p∗1, p̄N

)
, there are two implementable symmetric monotone

mechanisms, one that implements the symmetric MPE, and another that recommends
no experimentation at all.

Proof. Fix any p0 ∈ (0, 1), and suppose that ρ (p0) > 0. Monotonicity then requires
that ρ (pD) > 0 for any pD ∈ [0, p0]. The designer’s belief dynamics (2.3.1) and theorem
2.6 then guarantees that the agents must be playing a game of perfect monitoring.
Symmetry and obedience implies that they must be playing the symmetric MPE, which
pins down the function ρ, as long as p0 < p̄N . When p0 ≥ p̄N , the assumption ρ (p0) > 0
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contradicts obedience, since the unique best response in the perfect monitoring game
at the belief p0 is to choose k = 0. Hence, ρ (p0) = 0, as in the symmetric perfect
monitoring MPE.

Suppose p0 ≤ p∗1, and that ρ (p0) = 0. Every agent has a profitable deviation, since it
is individually optimal to use the risky arm at p0. When p0 ∈

(
p∗1, p̄N

)
, recommending

no experimentation at all is also implementable, since it is individually optimal and the
designer never reveals any information in this equilibrium.

Unlike in the case of good news, the set of implementable symmetric monotone mech-
anisms, when identified with the equilibria they induce, is not much larger then the set
of symmetric perfect monitoring MPE. Furthermore, in the good news case, this set of
mechanisms grows larger as the agents’ (common) prior becomes more optimistic about
the risky arm. We have the opposite result here. The set of implementable mechanisms
is largest, albeit in a trivial fashion, for intermediate priors. For more extreme priors,
this set is a singleton. This means that, but for intermediate priors, symmetric mono-
tone mechanisms are always maximally transparent. These mechanisms are also always
(weakly) less efficient than the perfect monitoring case, because they can never induce
more experimentation, and sometimes strictly less.

Would private mechanisms help achieve outcomes that are more efficient than perfect
monitoring equilibria?76 We do not develop a formal proof, but it appears unlikely. The
class of Markovian mechanisms allow the designer to conceal information from agents
only when they are using the safe arm exclusively. Not disclosing information then
means that these agents, conditional on no failure arriving, are more pessimistic about
the risky arm than the designer is. Consequently, she is able to induce agents into
using the safe arm for longer than they would have under perfect monitoring. Since the
inefficiency in this model comes from under-experimentation relative to the cooperative
benchmark, this suggests that private mechanisms would simply enable the designer to
engineer even less efficient outcomes, not more.77

2.6 Discussion and Extensions

2.6.1 Non-Markovian Information Structures

Here we give a heuristic development of the claim in the introduction that allowing
for punishments enables the designer to support a large set of equilibrium outcomes.
Consider a discretisation of the basic game, as in Hörner et al. (2015), with news that
76Keller and Rady (2015) also consider asymmetric MPE, but they lead to ambiguous welfare compar-

isons with the symmetric MPE.
77This discussion assumes, as we have so far, that mechanisms are deterministic. Stochastic mechanisms

in private signals (by theorem 2.7) may possess better efficiency properties. However, this introduces
significant difficulty in the analysis, as outlined in Bonatti and Hörner (2017b).
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is good but inconclusive. Let ∆ > 0 be the period length. Agents can adjust their
actions, now restricted to ki ∈ {0, 1}, only at times t = 0,∆, 2∆, . . .. Define δ = e−r∆.

Suppose one agent, whom we shall think of as a social planner, controlled all N bandits
(along with observing their outcomes), but was constrained to choose the same action
across all the arms.78 Their Bellman equation, for the maximised discounted average
payoff across all N arms, given a belief p, is

W (p) = max

{
s, (1− δ)λ (p)h+ δE

[
W
(
p′
)]}

,

where p′ is their posterior upon observing the outcome of N experiments. Let p̂ be
the cut-off belief that characterises the the optimal policy in the above optimisation
problem, where the planner experiments at all beliefs above p̂ and stops experimenting
at any belief below p̂.

Consider now the following mechanism. In each period, the designer first announces her
belief p, and then recommends an action to each agent. If the designer’s belief is above
p̂, then she recommends that all agents choose k = 1. Otherwise, she recommends
k = 0. Deviators are punished with no information for the rest of the game.

It is clear that if all agents employ strategies that obey the designer’s recommendations,
their common value function is given by W (p). Let us examine the decision problem
of an agent, supposing that all other agents obey the designer’s recommendations. If
the agent solved the problem in autarky, then their optimal policy is characterised by
a cut-off belief p̄ > p̂, where they pull the risky arm whenever their belief is above p̄
and pull the safe arm below p̄. If the (public) belief p were greater than p̄, it is easy
to see that they will obey the designer’s recommendation. However, if p is such that
they would not be willing to experiment in autarky, then they follow the designer’s
recommendation if and only if

(1− δ)λ (p)h+ δE
[
W
(
p′
)]
≥ s.

In particular, the agent’s tradeoff is exactly the same as the tradeoff facing the designer:
the designer recommends experimentation for those beliefs where the above inequality
holds, and recommends the safe arm whenever it does not. Hence, the agent will obey
the designer’s recommendation. Moreover, the above argument easily extends to cut-
offs that lie in [p̂, p̄], by applying the above argument to the value function induced
by the alternative choice of cut-off and making the observation that the induced value
function is decreasing in the choice of cut-off on [p̂, p̄].

78This constraint will bind, since the unconstrained optimal policy may involve (for some beliefs) using
both risky and safe arms simultaneously across different bandits. However, the welfare loss due
to the constraint disappears as ∆ → 0. This is because Bellman equation for the unconstrained
problem converges to the HJB equation in Keller and Rady (2010), where the optimal policy is
extremal. See Hörner et al. (2015) for details.
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2.6.2 Mixed Information Structures

We now allow the designer to use stochastic mechanisms.79 We construct a simple
stochastic mechanism where the designer randomises over a pair of symmetric monotone
mechanisms. We consider only a setting with conclusive good news.

2.6.2.1 Random Cut-offs

Suppose that the designer randomises over a pair of symmetric monotone mechanisms.
That is, at the start of the game, the designer randomly chooses between one of two
cut-offs, q̃1 and q̃2 such that p∗N ≤ q̃1 < q̃2 ≤ p∗1. In particular, she chooses the cut-off
q̃1 with probability α, and the cut-off q̃2 with probability 1− α.80

The HJB equation is the same as before, which means it has the solution (2.4.6). How-
ever, the mechanism above induces different boundary conditions. In particular, at
q = q̃2, we must have that

V̄i (p, q̃2) =

[
α+ (1− α)

p− q̃2

1− q̃2

]
Vi
(
π (p) , q̃2

)
+ (1− α)

(
1− p
1− q̃2

)
s, (2.6.1)

with

π (p) =
αp+ (1− α) p−q̃21−q̃2

α+ (1− α) p−q̃21−q̃2

.

To understand the expressions above, first notice that the denominator of π (p) is the
unconditional probability of the designer continuing to recommend experimentation at
q = q̃2, while the numerator is the joint probability that θ = 1, and the designer
continues to recommend experimentation. On the other hand, the right-hand side of
(2.6.1) is just the expected continuation value of i in state (p, q̃2). With probability

α+ (1− α)
p− q̃2

1− q̃2
,

the designer continues to recommend experimentation, and i’s continuation value is
Vi
(
π (p) , q̃2

)
, which is characterised below. With complementary probability, the de-

signer recommends the safe arm, which gives a continuation value of s. At q = q̃1,

Vi (p, q̃1) =
1− p
1− q̃1

s+
p− q̃1

1− q̃1
λ1h.

This is exactly condition (2.4.6). Hence, for q ∈ (q̃1, q̃2), i’s value satisfies

Vi (p, q) = pλ1h+ (1− p) s− q̃1λ1h

1− q̃1

[
Ω (q)

Ω (q̃1)

] r
Nλ1

,

79See footnote 39 on page 35 for the definition.
80We assume that p0 is close enough to 1 so that the cut-off q̃2 is implementable when α = 0.
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and the obedience constraint is the same as that shown in (2.4.9), mutatis mutandis.
Note, however, that proposition 2.4.11 does not apply since the equality (2.4.10) no
longer holds in this range.

These equations allow us to solve for the unknown function F̄ that determines V̄i. In
particular, we must have that

F̄ (x) =

[
α

(
s− q̃1λ1h

1− q̃1

)[
Ω (q̃2)

Ω (q̃1)

] r
Nλ1

+ (1− α)

(
s− q̃2λ1h

1− q̃2

)] [
xΩ (q̃2)

]− r
Nλ1 ,

so that

V̄i (p, q) = pλ1h+ (1− p) C̄
[

Ω (q)

Ω (q̃2)

] r
Nλ1

.

Here,

C̄ = α

(
s− q̃1λ1h

1− q̃1

)[
Ω (q̃2)

Ω (q̃1)

] r
Nλ1

+ (1− α)

(
s− q̃2λ1h

1− q̃2

)
.

Notice that when α = 0, V̄i simplifies to the value when there is a single cut-off given by
q̃2. It is straightforward to extend the arguments in section 2.4.4 to show that for fixed
q̃1, the pair of cut-offs (q̃1, q̃2) is implementable for α close enough to 0. Conversely, for
fixed α, the pair of cut-offs is implementable for q̃1 close enough to q̃2.

This extension demonstrates two points. First, the use of stochastic mechanisms allows
the designer to partially reveal information to agents. To see this, notice that when
q = q̃2, and the designer continues to recommend experimentation, the agents infer that
there is some probability that another agent has observed a success. This causes them
to update their beliefs upward. However, because they know that with probability
α, the designer would have continued to recommend experimentation in any history
of the game, they are not certain that a success has arrived. Hence, the stochastic
mechanism constructed above exhibits partial information disclosure. Second, stochastic
mechanisms allow the designer to implement lower cut-offs than she otherwise would
have been able to, albeit only probabilistically. In particular, note that even if the lowest
implementable deterministic cut-off q̃ is greater than p∗N , the designer can implement a
more efficient outcome by randomising between q̃ and some other cut-off lower than q̃
in the fashion described above.

2.7 Conclusion

In this chapter, we analysed the problem of information disclosure in a setting of stra-
tegic experimentation. We focused on a particularly tractable class of mechanisms and
studied their efficiency and transparency properties. It turned out that these properties
depend heavily on the structure of the news arrival process.

This chapter still leaves many open questions. Are there appropriate restrictions on the
class of information structures available to the designer that keep the problem tractable
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but non-trivial? What is the optimal information structure for the case when news is
inconclusive, or when the state of the world changes over time? We hope to address
these questions in future work.

2.8 Appendix A: Summary of Results from Keller et al.
(2005); Keller and Rady (2010, 2015)

We summarise some useful results from the classic strategic experimentation game.
pm = s

λ1h
is the myopic cut-off belief, below which a myopic agent exclusively uses the

safe arm, and above which exclusively uses the risky arm. Recall that Ω (p) = 1−p
p . The

following is proposition 3.1 in Keller et al. (2005).

Proposition 2.2. In the N -agent cooperative problem, there is a cut-off belief p∗N given
by

p∗N =
rs

(r +Nλ1) (λ1h− s) + rs

such that below the cut-off it is optimal for all to play S exclusively and above it is
optimal for all to play R exclusively. The value function V ∗N for the N -agent cooperative
is given by

V ∗N (p) = pλ1h+ (1− p)
s− λ1p

∗
Nh

1− p∗N

[
Ω (p)

Ω
(
p∗N
)] r

Nλ1

when p > p∗N , and V
∗
N (p) = s otherwise.

Above the cut-off p∗N , V
∗
N satisfies the ordinary differential equation

Nλ1p (1− p)u′ (p) + (r +Nλ1p)u (p) = (r +Nλ1) pλ1h,

which has the general solution

VN (p) = pλ1h+ C (1− p)
[
Ω (p)

] r
Nλ1 . (2.8.1)

We also state their proposition 5.1.

Proposition 2.3. The N -player experimentation game has a unique symmetric equilib-
rium in Markovian strategies with the common posterior belief as the state variable. In
this equilibrium, the safe arm is used exclusively at beliefs below the single-player cut-off
p∗1; the risky arm is used exclusively at all beliefs above a cut-off p†N > p∗1 solving

(N − 1)

 1

Ω (pm)
− 1

Ω
(
p†N

)
 =

(
1 +

r

λ1

) 1

1− p†N
− 1

1− p∗1
− 1

Ω
(
p∗1
) ln

 Ω
(
p∗1
)

Ω
(
p†N

)

 ;
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and a positive fraction of the resource is allocated to each arm at beliefs strictly between
p∗1 and p†N . The fraction of the resource that each player allocates to the risky arm at
such a belief is

k†N (p) =
1

N − 1

W † (p)− s
s− pλ1h

with

W † (p) = s+
rs

λ1

Ω
(
p∗1
)(

1− 1− p
1− p∗1

)
− (1− p) ln

(
Ω
(
p∗1
)

Ω (p)

) ,
which is each player’s value function on

[
p∗1, p

†
N

]
and satisfiesW †

(
p∗1
)

= s,
(
W †
)′ (

p∗1
)

=

0. Below p∗1 the value function equals s, and above p†N it is given by VN (p) from equation
(2.8.1) with VN

(
p†N

)
= W †

(
p†N

)
.

On the interval
[
p∗1, p

†
N

]
, W † (p) solves the ODE

λ1p (1− p)u′ (p) + λ1pu (p) = (r + λ1) pλ1h− rs. (2.8.2)

2.9 Appendix B: Omitted Proofs and Results

2.9.1 Derivation of Hamilton-Jacobi-Bellman Equations

We derive the HJB equation (2.4.5) for agent i when their belief does not coincide with
the designer’s. By the dynamic programming principle, agent i’s value function satisfies

u (p, q) = max
k∈[0,1]

{
r
[
(1− k) s+ kpλ1h

]
+ e−rdtE

[
u (p+ dp, q + dq) |p, q, k

]}
.

With probability kpλ1dt, a success arrives and the value jumps to u (1, 1) = λ1h. With
probability 1− kpλ1dt, no success arrives, and the value function changes to u (p, q) +

∂pu (p, q) dp+ ∂qu (p, q) dq. The latter can, using (2.4.1) and (2.4.2), be written as

u (p, q)− kλ1p (1− p) ∂pu (p, q) dt− λ1q(1− q)

k +
∑
j 6=i

ρj (q)

 ∂qu (p, q) dt.

Replacing e−rdt with 1 − rdt and plugging in the above expectation (ignore terms of
O
(
dt2
)
) gives equation (2.4.5).

2.9.2 Deriving Equation (2.4.10)

Integrating (2.4.1) along the conjectured equilibrium, and using the initial condition
q0 = p0, yields

qt =
p0e
−Nλ1t

p0e−Nλ1t + 1− p0
.
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Notice now that
Ω (qt)

Ω (p0)
= eNλ1t =

[
Ω (pt)

Ω (p0)

]N
,

where the last equality can be found by integrating (2.4.2) in the same way. Note
that the chain of equalities above can also be used to derive (2.4.7) directly from first
principles.

2.9.3 Proof of Proposition 2.1

We first establish the comparative statics on p. MB (p; q̃), given in (2.4.11), can be
written as

pλ1h+ C (1− p) Ω (p)
r
λ1 , (2.9.1)

where C is a positive constant. Differentiating (2.9.1), we have

λ1h− C
[
1 +

r

λ1p

]
Ω (p)

r
λ1 .

This expression goes to −∞ as p ↓ 0, and is positive when p = 1. The second derivative
of (2.9.1) is

C

[
r

λ1p (1− p)

] [
λ1 + r

λ1p

] [
Ω (p)

] r
λ1 > 0,

establishing the strict convexity of MB (p; q̃) in p.

To see that C is positive, notice that the sign of C depends on W † (q̃)− q̃λ1h. If q̃ < p∗1,
then, from proposition 2.3, W † (q̃) = s. Proposition 2.2 then guarantees that W † (q̃)−
q̃λ1h = s − q̃λ1h > 0. If q̃ ∈

[
p∗1, p

†
N

]
, then proposition 2.3 gives us that W † (q̃) =

s + (N − 1) (s− q̃λ1h) k† (q̃), so that W † (q̃) − q̃λ1h =
[
(N − 1) k† (q̃) + 1

]
(s− q̃λ1h).

k† is bounded below by 0, and s− q̃λ1h > 0 also by proposition 2.3. Finally, if q̃ > p†N ,
then

W † (q̃)− q̃λ1h = (1− q̃)
W †

(
p†N

)
− p†Nλ1h

1− p†N

 Ω (q̃)

Ω
(
p†N

)


r
Nλ1

> 0,

where the inequality follows in a similar fashion.

We now establish the second part of the proposition. First note that MB (p; q̃) can,
ignoring terms that do not depend on q̃, be written as

Ĉ
W † (q̃)− q̃λ1h

1− q̃
[
Ω (q̃)

]− r
Nλ1 ,

where again Ĉ is a positive constant. The derivative of the above expression with respect
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to q̃ thus has the same sign as

1

Nλ1q̃ (1− q̃)2 [Ω (q̃)
] r
Nλ1

[
Nλ1q̃ (1− q̃)

((
W †
)′

(q̃)− λ1h

)
+ (r +Nλ1q̃)

(
W † (q̃)− q̃λ1h

)]
,

(2.9.2)
whose sign clearly depends only on the expression in brackets. Suppose q̃ ∈

[
p∗1, p

†
N

)
.

From (2.8.2) and proposition 2.3, we can write the expression in brackets as

r (N − 1) (s− q̃λ1h)
(
k† (q̃)− 1

)
< 0,

where the inequality is deduced from the fact that, on
[
p∗1, p

†
N

)
, k† (p) < 1. Suppose

instead that q̃ < p∗1. Proposition 2.3 allows us to write the expression in brackets in
(2.9.2) as

rs− q̃
[
Nλ1 (λ1h− s) + rλ1h

]
R 0 ⇐⇒ q̃ Q p∗N .

The equivalence displayed above comes from proposition 2.2. This establishes the result.

2.9.4 Symmetric Monotone Mechanisms: Necessary and Sufficient
Conditions

In this section we give an implicit but complete characterisation of the set of implement-
able cut-offs q̃. We first state an obvious sufficient condition for the implementability
of q̃. It follows immediately from proposition 2.1, the envelope theorem and continuity.

Proposition 2.4. Let p (q̃) attain the minimum (over p) of MB (p; q̃). This minimum
must be in the interior of the unit interval. If MB

(
p (q̃) ; q̃

)
≥ s, then q̃ is implement-

able. Suppose MB
(
p (q̃) ; q̃

)
≥ s. If p < p∗N , then every q′ ∈

[
q̃, p∗N + ε

)
, for some

ε > 0, is implementable as well. If p > p∗N , then the same holds for q′ ∈
(
p∗N − ε, q̃

]
.

Unfortunately, there is no simple way to guarantee thatMB (p; q̃) ≥ s. We thus state an
alternative sufficient condition, which follows from the strict convexity and continuous
differentiability of MB (p; q̃). First, define the function p̂ (q) by[

Ω
(
p̂ (q)

)
Ω (p0)

]N
=

Ω (q)

Ω (p0)
. (2.9.3)

Proposition 2.5. Let p̃ be the agents’ common private belief under obedience, before
the designer’s true belief is revealed, when q = q̃. That is, p̃ = p̂ (q̃). If MB (p̃; q̃) ≥ s,
and

∂MB

∂p
(p̃; q̃) ≥ 0,

then q̃ is implementable. Moreover, if both of the above inequalities are strict, then there
exists an ε > 0 such that if q′ ∈ (q̃ − ε, q̃ + ε) ∩

[
0, p†N

]
, then q′ is implementable as

well.
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This proposition is useful because factors involving exponents disappear when q = q̃,
which makes the conditions easier to verify. The next result is easy to see from the two
propositions, and the strict convexity of MB (p; q̃) in p.

Theorem 2.8. If q̃ is implementable, then it must satisfy at least one of the sufficient
conditions stated in propositions 2.4 and 2.5. In other words, propositions 2.4 and
2.5 collectively give necessary and sufficient conditions for the implementability of any
cut-off q̃.

We state a limited monotonicity result.

Proposition 2.6. If q̃ satisfies the sufficient conditions in proposition 2.5, then every
q′ ∈

[
q̃, p†N

]
that satisfies MB

(
p̂
(
q′
)

; q′
)
≥ s is implementable.

MB
(
p̂ (q) ; q

)
is in general, as one would expect given proposition 2.1, not monotonic,

which explains the final condition above.81 To prove the result, we use a lemma, from
which, when combined with proposition 2.5, the rest is immediate. Remember that p̃
is defined implicitly in terms of q̃.

Lemma 2.6.
∂MB

∂p

(
p̂ (q̃) ; q̃

)
(2.9.4)

is increasing in q̃.

Proof. The derivative of (2.9.4) with respect to q̃ is

− 1

N

[
1 +

r

λ1p̂

]
(1− q̃)

[(
W †
)′

(q̃)− λ1h

]
+W † (q̃)− q̃λ1h

(1− q̃)2


︸ ︷︷ ︸

(−)

+
1

N

[
W † (q̃)− q̃λ1h

1− q̃

]
r

λ1p̂2

dp̂

dq̃︸ ︷︷ ︸
(+)

.

The fact that the second term is positive follows from the proof of proposition 2.1,
which guarantees that the factor in brackets is positive, and from the implicit function
theorem:

dp̂

dq̃
=

p̂ (1− p̂)
Nq̃ (1− q̃)

> 0.

As a consequence, it suffices to sign the first term, which we will show is also positive.
This is an immediate consequence of the benefit to experimentation always being non-
negative, as established in Keller et al. (2005). A direct proof, which we sketch, uses
the same arguments as in the proof of proposition 2.1.

Suppose q̃ ≤ p∗1. Then (1− q̃)
[(
W †
)′

(q̃)− λ1h

]
+ W † (q̃) − q̃λ1h = s − λ1h < 0.

Suppose instead that q̃ > p∗1.82 Then, by (2.8.2), (1− q̃)
[(
W †
)′

(q̃)− λ1h

]
+W † (q̃)−

81See, however, the result after the lemma.
82Recall that corollary 2.3 requires that q̃ ≤ p†N .
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q̃λ1h becomes
(r + λ1) q̃λ1h− rs

λ1q̃
− λ1h = r

(
h− s

q̃λ1

)
< 0.

We now state a simple sufficient condition that guarantees that MB
(
p̂ (q) ; q

)
≥ s,

given that q̃ ≤ q satisfies MB
(
p̂ (q̃) ; q̃

)
≥ s.

Proposition 2.7. Suppose MB
(
p̂ (q̃) ; q̃

)
≥ s. If q̃ < p∗1, then MB

(
p̂ (q) ; q

)
≥ s for all

q ∈
[
q̃, p∗1

]
. If q̃ ≥ p∗1, then there exists r0 such that for all r ∈ (0, r0), MB

(
p̂ (q) ; q

)
≥ s

for all q ∈
[
q̃, p†N

]
.

Proof. Suppose MB
(
p̂ (q̃) ; q̃

)
≥ s. Then, we must have

1

N

(
W † (q̃)− q̃λ1h

1− q̃

)
≥ s− p̂ (q̃)λ1h

1− p̂ (q̃)
.

The derivative of the left-hand expression with respect to q̃ is

1

N


(1− q̃)

[(
W †
)′

(q̃)− λ1h

]
+W † (q̃)− q̃λ1h

(1− q̃)2

 ,
while the derivative of the right-hand expression is

p̂ (q̃) (s− λ1h)

Nq̃ (1− q̃)
[
1− p̂ (q̃)

] .
Thus, our inequality remains to be true after an increase in q̃ if and only if

(1− q̃)
[(
W †
)′

(q̃)− λ1h

]
+W † (q̃)− q̃λ1h

1− q̃

 ≥ p̂ (q̃) (s− λ1h)

q̃
[
1− p̂ (q̃)

] .

For q̃ ≤ p∗1, this inequality becomes

s− λ1h

1− q̃
≥ p̂ (q̃) (s− λ1h)

q̃
[
1− p̂ (q̃)

] ,

which is equivalent to
Ω
(
p̂ (q̃)

)
≤ Ω (q̃) .

This is readily verified to be true. If q̃ > p∗1, then we have

r

[
q̃λ1h− s
λ1q̃ (1− q̃)

]
≥ p̂ (q̃) (s− λ1h)

q̃
[
1− p̂ (q̃)

] ,
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which can be written as

r

λ1
(q̃λ1h− s) Ω

(
p̂ (q̃)

)
≥ (1− q̃) (s− λ1h) .

We wish for this inequality to be true for all small enough r uniformly over q̃ ∈
(
p∗1, p

†
N

)
.

In view of the fact that the left-hand side is decreasing while the right-hand side is
increasing, we must establish that

r

λ1

(
p∗1λ1h− s

)
Ω
(
p̂
(
p∗1
))
≥
(

1− p†N
)

(s− λ1h) ,

so that our choice of q̃ is irrelevant. As r ↓ 0, the right-hand side converges to a finite
negative number.83 However, the left-hand side, after an application of L’Hôpital’s rule,
converges to 0.84

The above proposition does not yet allow us to conclude that the set of implementable
cut-offs has an interval structure, since proposition 2.6 only applies when the conditions
given in proposition 2.5 hold. We therefore need to establish when this is the case,
which is done below.

Proposition 2.8. If q̃ ∈
[
p∗N , p

†
N

]
is implementable, then, for all r close enough to

zero,
∂MB

∂p

(
p̂ (q̃) ; q̃

)
≥ 0.

This condition is equivalent to p (q̃) ≤ p̂ (q̃).

Proof. We will prove the latter statement, whose equivalence is due to the strict con-
vexity of MB (p; q̃). That is, we wish to prove that for q̃ ∈

[
p∗N , p

†
N

]
and r close enough

to zero, p (q̃) ≤ p̂ (q̃). Since q̃ ≤ p̂ (q̃), it will be sufficient to show that p (q̃) ≤ q̃. Note
that p (q̃) solves the first order condition

λ1h =
1

N

[
1 +

r

λ1p

] [
Ω (p)

Ω (p0)

] r
λ1

[
W † (q̃)− q̃λ1h

1− q̃

] [
Ω (p0)

Ω (q̃)

] r
Nλ1

.

This solution must be unique by strict convexity of MB (p; q̃). First observe that the
right-hand side above is decreasing in p. As a consequence, we will demonstrate that

λ1h ≥
1

N

[
1 +

r

λ1p

] [
Ω (p)

Ω (p0)

] r
λ1

[
W † (q̃)− q̃λ1h

1− q̃

] [
Ω (p0)

Ω (q̃)

] r
Nλ1

when p is evaluated at q̃. Recall that[
W † (q̃)− q̃λ1h

1− q̃

][
Ω (p0)

Ω (q̃)

] r
Nλ1

83In particular, p†N → Ω−1
(

N
N−1

Ω (pm)
)
.

84Recall that p∗1 → 0 as r → 0. We then deduce that r

p̂(p∗1)
→ 0.
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is decreasing in q̃ on
(
p∗N , p

†
N

)
. Hence, it will be enough to prove that

λ1h ≥
1

N

[
1 +

r

λ1p

] [
Ω (p)

Ω (p0)

] r
λ1

[
W †

(
p∗N
)
− p∗Nλ1h

1− p∗N

][
Ω (p0)

Ω
(
p∗N
)] r

Nλ1

=
1

N

[
1 +

r

λ1p

] [
Ω (p)

Ω (p0)

] r
λ1

[
s− p∗Nλ1h

1− p∗N

][
Ω (p0)

Ω
(
p∗N
)] r

Nλ1

.

Letting r ↓ 0, so that p∗N → 0, and applying L’Hôpital’s rule, recovers the strict in-
equality λ1h > 0, proving the result.

We thus have enough to prove theorem 2.3. This is done in appendix 2.9.6.

2.9.5 Proof of Theorem 2.2

We first prove that the cut-off q̃ = p†N is implementable. If p0 < p†N , then the designer re-
veals all information immediately and recommends equilibrium actions by construction.
Suppose instead that p0 ≥ p†N . We shall make use of proposition 2.5. A rearrangement
of the inequality MB (p; q̃) ≥ s yields

1

N

W † (q̃)− q̃λ1h

1− q̃
≥ s− pλ1h

1− p
.

Let q̃ = p†N and p = p̂
(
p†N

)
.85 We know from proposition 2.3 thatW †

(
p†N

)
−p†Nλ1h =

N
(
s− p†Nλ1h

)
. It is also easy to see that p̂ (q) ≥ q, with strict inequality when q < p0.

As a consequence, it suffices to show that

s− pλ1h

1− p

is strictly decreasing. Inspecting the derivative of the above expression shows this to

be the case. We now have that MB

(
p̂
(
p†N

)
; p†N

)
≥ s, with strict inequality when

p†N < p0. It therefore remains to be established that

λ1h−
1

N

[
1 +

r

p̂λ1

]W †
(
p†N

)
− p†Nλ1h

1− p†N

 ≥ 0.

Using the same arguments as above, the inequality can be written as

λ1h

[
p̂λ1

p̂λ1 + r

]
≥
s− p†Nλ1h

1− p†N
.

85See (2.9.3) for the definition of p̂.
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Notice that the left hand side can be bounded below as shown:

λ1h

[
p̂λ1

p̂λ1 + r

]
≥ λ1h

[
p†Nλ1

p†Nλ1 + r

]
,

where the inequality is strict whenever p†N < p0. Hence, it is enough to prove that

λ1h

[
p†Nλ1

p†Nλ1 + r

]
≥
s− p†Nλ1h

1− p†N
.

Simplifying the above expression, and replacing p†N with p, we have

p ≥ rs

λ1 (λ1h− s) + rλ1h
,

which is strictly true for p = p†N via propositions 2.2 and 2.3.

2.9.6 Proof of Theorem 2.3

Suppose that q̃ ≥ p∗N , and fix some q′ > q̃. Since q̃ is implementable, we must have that
MB

(
p̂ (q̃) ; q̃

)
≥ s. We therefore have, from proposition 2.7, that, for an appropriate

choice of r, MB
(
p̂
(
q′
)

; q′
)
≥ s. Proposition 2.8 also guarantees that

∂MB

∂p

(
p̂ (q̃) ; q̃

)
≥ 0,

which is increasing in q̃, by 2.6. The cut-off q′ therefore satisfies the sufficient conditions
in proposition 2.5, which guarantees implementability.

Suppose instead that q̃ < p∗N . By corollary 2.4, every q′ ∈
[
q̃, p∗N

]
is also implementable.

Applying the previous argument for q′ = p∗N gives the result.
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3 Social Learning and the Persistent
Effects of Institutions

3.1 Introduction

There is a large and growing literature demonstrating that historical institutions have
had significant impacts on contemporary economic outcomes.1 Banerjee and Iyer (2005)
showed that differences in historical property rights institutions in India lead to sus-
tained differences in levels of agricultural investment and productivity, and investment
in health and education. Nunn (2008) found a robust negative relationship between the
number of slaves exported from African countries and the current economic performance
of the countries they were exported from. The poorest countries in Africa today are
those from which the largest numbers of slaves were exported. Dell (2010) examined
the long-run impacts of the mita, an extensive forced mining labour system imposed in
Peru and Bolivia between 1573 and 1812. She found that previous exposure to the mita
lowered present household consumption by 25% and increased the current prevalence
of stunted growth in children by about 6%. The mita also lowered education and agri-
cultural market participation. The common thread throughout this body of research is
that bad, extractive institutions lead to persistently adverse economic outcomes.

These results highlight just how important these historical institutions are, and the
importance of institutions drives research in this area. However, the growth of empirical
work has far outpaced the growth of theoretical work. This paper seeks to fill that gap.

We do not have any well-known formal theories to explain why institutions in general
might have persistent effects.2 One reason why this is the case might be that there just
is no broad theory to explain this phenomenon; there are only explanations that are
specific to each instance and vary across different kinds of institutions. Another reason
is that institutions are difficult to define3, which makes it challenging to formalise any

1See, for example, Acemoglu et al. (2001, 2002); Glaeser and Shleifer (2002); Acemoglu and John-
son (2005); Banerjee and Iyer (2005); Field (2007); Nunn (2008); Galor et al. (2009); Nunn and
Wantchekon (2011); Dell (2010); Greif and Tabellini (2010); Voigtländer and Voth (2012); Jha
(2013); Michalopoulos and Papaioannou (2013); Acemoglu and Robinson (2012). Nunn (2009) has
a good survey of the literature.

2North’s framework (2006) of economic agents with ‘mental models’ is probably closest to the model
we develop. However, he does not formalise this idea.

3Greif and Kingston (2011) consider various conceptions of institutions and their theoretical implic-
ations. Greif and Laitin (2004); Roland (2004); Kingston and Caballero (2009) each cover various
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general theories about their effects. We hope to overcome these issues by borrowing
insights from social learning theory.4 Roughly speaking, we posit that institutions in-
fluence behaviour in a way that makes that behaviour persistent. Hence, even when
institutions are reformed, the effects associated with those institutions persist, because
the behaviour associated with the institutions still persists. The linchpin of this argu-
ment is then the mechanism that makes behaviour persistent. Social learning provides
this mechanism.

We adapt the canonical social learning model by Bikhchandani et al. (1992), hereafter
referred to as BHW.5The key insight in BHW is that when you observe a long enough
history of actions that precede you, at a certain point, it becomes optimal to ignore
any private information you have and instead rely solely on the information contained
in that history. This phenomenon is called an informational cascade. In a sense, a long
enough history outweighs the information any one individual might have. When this
happens, individuals start to herd on the action that history suggests to be optimal.
Moreover, since each individual is ignoring their own private information and simply
following the herd, there is no new private information that is being made publicly
available. This is because actions in a herd have no informational content. Hence the
publicly known information never changes, so the action it prescribes does not change
as well. As a consequence, once herds start, they never end. What makes the BHW
result truly remarkable, though, is that there is a positive probability of herding on a
wrong outcome.

In BHW, payoffs are determined by some unknown and unchanging state of the world,
and the optimal action depends on which state one is in. Here, as we develop later,
payoffs are determined by the interaction of an unknown state of the world and the
observable quality of institutions that one is exposed to. By abstracting from different
kinds of institutions and instead focusing on whether their effects are (relatively) good or
(relatively) bad, we sidestep the difficulty in defining institutions. Hence, when we say
“institutions”, we actually mean “effects of institutions” or “quality of institutions”, but
simply use the former to avoid being overly wordy. It is this interaction that creates
herd behaviour in our setup. Certain actions can be explained by either extractive
institutions, negative information about the state of the world, or both. When extractive
institutions persist for a long enough time, they eventually induce pessimistic beliefs
about the state of the world, and this creates herding on low-payoff outcomes.

We propose that the contemporary underdevelopment causally linked with extractive

theories of how institutions, broadly conceived, change. The conceptual issues they face in doing
so appear to stem from difficulties in pinning down exactly what institutions are. Acemoglu and
Robinson (2012) also invoke the idea of institutions in a very informal sense.

4Social learning has been used to explain a wide variety of phenomena such as technology adoption.
See, for instance, Bandiera and Rasul (2006); Conley and Udry (2010). For a survey of theoretical
results in this field, see Smith and Sørensen (2011); Moscarini and Smith (1997). For a textbook-
length treatment, see Chamley (2004).

5Banerjee (1992) develops a similar theory of herd behaviour. The approach in BHW better suits our
purposes.
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institutions in the literature can be thought of as individuals herding on actions that
lead to poor outcomes. Herding on a poor outcome may have been optimal under
extractive institutions, but is no longer the correct course of action after institutions
have been reformed. For example, it is probably optimal for someone to exert low effort
when the state extracts most, if not all, of the fruits of that person’s labour. Under some
conditions, these herds will continue to persist despite reforms that make institutions
less extractive. As a consequence, to continue the previous example, individuals will
continue to exert low effort even if it is now more rewarding to exert high effort instead,
and it is the continued herding on the low-effort action that drives underdevelopment.

In the model developed later, persistent herding on bad outcomes is possible only under
two conditions. One is when institutions are degenerate, which obtains when institutions
do not affect individual choices whenever there is no uncertainty about the state of the
world. Hence, when institutions are degenerate, they only have impacts on decisions
in so far as one is uncertain about the state of the world. The other condition is when
institutions and states of the world are complements: one needs both institutions and
states to be favourable for high effort to pay off. In both cases, the prior belief on the
state of the world must not be too optimistic, although less so under complementarity
than degeneracy. On the other hand, when good institutions are substitutes for a
favourable state of the world, herding on bad outcomes is impossible. To be sure, there
is a large class of models that can form the basis of a theory of short-lived institutions
with long-lived effects. Contained in this class are models exhibiting path-dependence,
such as those in Fernandez and Rodrik (1991); Krusell and Rios-Rull (1996); Coate
and Morris (1999); Acemoglu and Jackson (2015), whose ideas can be used to develop
competing theories of persistence. There are a few reasons why we focus on the subclass
of models that involve social learning.

First, social learning presents a persuasive account of how people actually behave. The
literature in psychology documents a phenomenon called informational social influence
(Cialdini and Goldstein, 2004; Deutsch and Gerard, 1955), wherein people tend to look
to others for information on how to act in situations of uncertainty. Economic social
learning is just the formal counterpart of this and thusly is, at least partly, supported
by the relevant literature in psychology in a way that competing theories will not be.

Second, as we will see later, social learning provides us with a general theory that is
applicable to a wide array of institutions, because it allows us to abstract from the
specific forms that institutions take and forces us to focus on their effects instead.
Other models about the persistence of institutions, such as in Piketty (1995); Acemoglu
and Robinson (2001); Benabou and Ok (2001); Acemoglu (2003); Bénabou and Tirole
(2006); Padró i Miquel (2007); Nunn (2007); Acemoglu and Robinson (2008), tend to
be only about specific institutions and hence have explanatory power limited only to
the specific types of institutions they consider. For instance, Piketty (1995) examines
redistributive institutions and shows that persistent differences in redistribution regimes
can be traced to individual mobility experience, which is itself affected by beliefs about
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processes of mobility in a self-fulfilling way. Nunn (2007) builds a model with production
externalities, which results in an economy trapped in a low-production equilibrium when
exposed to extractive colonisers. Acemoglu and Robinson (2008) considers how elites
trade off between formal political and informal economic power when they influence
transitions between democracy and non-democracy. These models are only readily
applicable to the institutions that they specify.

Third, generality notwithstanding, social learning gives us a model that is both con-
sistent with the empirical findings about institutions, but also yields some theoretical
predictions, as described above, that make this theory, or, at least, a richer version of
it, testable.6

Finally, it also gives us a model that is simple and tractable, as evidenced by the relative
ease with which many of the early results are obtained. The model by BHW has many
advantages, at least some of which have just been outlined. Predictably, it is not without
its weaknesses. In particular, the herding-on-a-wrong-outcome result is not robust to
changes in its assumptions about the discreteness of the action space and signal space
(Lee, 1993; Smith and Sørensen, 2000, 2011; Smith et al., 2017). We attempt to address
this criticism in section 3.3.

This chapter proceeds as follows. In the next section, we present the basic model and
some results. In section 3.3, we develop two extensions of the basic model. Section 3.4
addresses the criticism on the robustness of wrong herds and considers the applicability
of the theory to empirical findings. Section 3.5 concludes.

3.2 Basic Model

3.2.1 Assumptions

Suppose there is an infinite sequence of agents ordered exogenously and indexed by
t ∈ N. t is also the time period that each agent acts. Each agent acts only once.7

Preferences are defined over a random outcome and a discrete choice set. Here, the
choice xt ∈ {0, 1} is binary. Choosing xt = 1 results in a gross random payoff θt and

6For example, endowing this model with a network structure, as in Gale and Kariv (2003), might
allow for parameters that more readily map into observable data.

7It is worth mentioning that this guarantees that agents will not experiment. Experimentation will not
yield any benefits, because an agent has no future period of action in which to use the information
collected from experimenting. This particular result, and others, is explored the literature on
optimal experimentation. See for instance, Aghion et al. (1991), or the material and references in
the previous chapter. It may be interesting to study the effects of giving agents the incentive to
experiment in this model. We leave that for future research.
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cost c. Choosing xt = 0 yields a payoff of 0. In other words,

u (xt; θt) =

θt − c, if xt = 1

0, if xt = 0
.

Let θt = γtφ so that the gross payoff is a composite of some time-varying object γt ∈{
γH , γL

}
, which we identify with institutions, and some underlying state of the world

φ ∈
{
φH , φL

}
. We assume it is common knowledge that the γt’s are independent and

identically distributed8 with Pr
(
γt = γH

)
= 1− ε.

We make the natural assumptions that φH > φL and γH > γL, and that γLφL < c <

γHφH , so that preferences are non-degenerate.

One might be inclined to think that institutions should be endogenous. There are a few
reasons to abstract from that. First, even if institutions are endogenous, their impacts
on specific individuals are still, in some sense, random, so it seems reasonable to model
it as we do here. For example, even within the mita catchment, only one-seventh of
the adult male population was forced to work in the Potosi and Huancavelica mines.
Moreover, many of the institutions considered in the literature are colonial in origin.
This means that to many of the people they affected, these institutions were genuinely
exogenous. In section 3.3.2, we consider one method of endogenising γt.

If γLφH < c and γHφL < c, then states of the world and institutions are complements.
One needs both institutions and the state of the world to be favourable to achieve
positive payoffs. On the other hand, setting γLφH > c and γHφL > c means that
institutions and states of the world are substitutes. In this case, an individual needs
only one of institutions or the state of the world to be favourable for xt = 1 to have
a higher payoff. If γLφH > c > γHφL, then we say that institutions are degenerate:
they would have no impact on choices if there were no uncertainty. We remain agnostic
about these assumptions regarding the interaction between states and institutions for
the moment, but examine the impact of these different conditions later.

Intuitively, one might think of choosing xt = 1 as the choice to exert high effort over
one’s lifetime, and the payoffs to exerting that effort depend on how one is affected by
institutions (which change over time) and the (static) state of the world. We associate
γt = γL with being exposed to extractive institutions, and ε with the persistence of
extractive institutions. Moreover, one decides based on information about the world
derived from the observable institutions and an unobservable state of the world. One’s
information about the state of the world then comes from a noisy signal of the state, and

8It might be more natural to model γt as a Markov process with Pr
(
γt+1 = γt|γt

)
= 1 − ε, which

better captures the notion that institutions are persistent. However, this assumption very quickly
makes the model intractable. We consider this possibility with additional tractability assumptions
in an extension in section 3.3.1.
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the actions of one’s predecessors (which we could think of as the individual’s parents,
grandparents, and so on).

At time t, individual t chooses xt after observing a private signal st ∈
{
sL, sH

}
; ht =

{x1, . . . , xt−1}, the history of all preceding actions; and γt. Individual t does not observe
γt′ or st′ for t′ 6= t.9

Conditional on the state, all signals are iid:

Pr
(
st = si|φ = φi

)
= α >

1

2

for i ∈ {H,L}. Define pt = Pr
(
φ = φH |ht

)
, the public belief on the state in period t.

Suppose as well that there is a common prior belief p1 = Pr
(
φ = φH

)
.

3.2.2 Individual Behaviour

Consider now the belief of individual t. Their belief on the state, upon receiving signal
st = si, is

qit = Pr
(
φ = φH |ht, st = si

)
=

Pr
(
φ = φH , st = si|ht

)
Pr
(
st = si|ht

)
=

Pr
(
st = si|φ = φH , ht

)
Pr
(
φ = φH |ht

)
Pr
(
st = si|ht

)
where the second and third equalities follow from repeated application of Bayes’ rule.
Using the definitions given above, and the fact that signals are independent conditional
on the state, we have that10

qHt =
αpt

αpt + (1− α) (1− pt)

qLt =
(1− α) pt

(1− α) pt + α (1− pt)
.

Each agent maximises

E
[
u (xt; θt) |st = si, γt = γj , ht

]
=

γ
j
[
qitφ

h +
(
1− qit

)
φL
]
, if xt = 1

0, if xt = 0
.

9While overall historical institutions are typically close to perfectly observable, there tends to be
more uncertainty over their impact on specific individuals. As such, the assumption of the non-
observability of historical γt does not, as a first approximation, seem unreasonable.

10The history depends on the state only through the past signals. Hence, conditional on the state, the
current signal is independent of history as well.
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This yields a simple decision rule: given γt = γj , xt = 1 only if qit > Θj , where11

Θj =

c
γj
− φL

φH − φL
.

The previous inequality is a necessary condition on the private belief qit for individual
t to choose xt = 1. The sufficient conditions for when she does choose xt = 1 depend
on assumptions about her actions when she is indifferent, which we now specify, along
with her complete decision rule.

Suppose that the agent observes γt = γj and receives signal st = sL. This agent chooses
xt = 1 if and only if

qLt > Θj ⇐⇒ pt >
αΘj

αΘj + (1− α)
(
1−Θj

) = p̄j .

Suppose instead that the signal received was st = sH . The agent chooses xt = 1 if and
only if

qHt ≥ Θj ⇐⇒ pt ≥
(1− α) Θj

α
(
1−Θj

)
+ (1− α) Θj

= pj .

We are assuming, without loss12, that the action choice when indifferent minimises the
possibility of herding. It is easy to see, given the assumptions α > 1/2 and γH > γL

that p̄j > pj , p̄L > p̄H , and pL > pH . Moreover, as long as αis not too large, we would
have that pL > p̄H .13 This means that the action in period t is partially informative of

st for at least some pt ∈
[
pH , p̄L

]
. However, outside this region, actions are completely

uninformative about signals. To see this, note that for pt < p̄H , individual t will choose
xt = 0 regardless of her signal or observed institutions. Similarly, for pt > p̄L, any agent
will choose xt = 1.

When institutions are degenerate, 0 < pH < p̄H < pL < p̄L < 1. If institutions and the
state of the world are complements, then 0 < pH < p̄H < 1 < pL < p̄L. If institutions
and states of the world are substitutes, pH < p̄H < 0 < pL < p̄L < 1. The succeeding
discussion allows fro any of these three cases.

11This is similar to the analysis in Moscarini et al. (1998), except that Θj = 1/2.
12See Moscarini et al. (1998).
13The exact condition is that

α <
1

1 +
√
Z
,

where

Z =
ΘH

ΘL

1−ΘL

1−ΘH
< 1.

We assume that this holds throughout.
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3.2.3 Belief Dynamics

We adapt the definition of informational cascades in BHW to a form appropriate to our
setting. Intuitively, an informational cascade occurs in some period when the action in
that period cannot provide additional information about the state φ.

Definition 3.1. There is an informational cascade (or cascade) on action x at time t
whenever, conditional on γt, action x is taken independently of individual t’s private
signal st.

A cascade on x = 1 occurs as soon as pt > p̄L, whereas a cascade on x = 0 occurs as
soon as pt < pH . Moreover, careful consideration of the decision rule given above shows

that, for pt ∈
(
p̄H , pL

)
, actions are dependent solely on γt in that xt = 1 if and only if

γt = γH . Hence, it makes sense to define the cascade set X = X̂ ∩ [0, 1], where

X̂ =
(
−∞, pH

)
∪
(
p̄H , pL

)
∪
(
p̄L,∞

)
.

On X, actions are uninformative about signals, so the public belief must be stationary:
pt+1 = pt. Outside the cascade set X, actions are partially informative about signals.
Whenever pt /∈ X, observing xt = 1 can reveal information about γt and st, depending
on the value of pt. For instance, if pt ∈

[
pH , p̄H

]
, an individual chooses xt = 1 if and

only if γt = γH and st = sH . One can reason similarly about
[
pL, p̄L

]
. The public

belief is therefore updated according to the following formula:

If xt = 1,

pt+1 =


qHt , if pt ∈

[
pH , p̄H

]
[(1−ε)+αε]pt

(1−ε)+ε[αpt+(1−α)(1−pt)]
, if pt ∈

[
pL, p̄L

] .

If xt = 0,

pt+1 =


[ε+(1−ε)(1−α)]pt

ε+(1−ε)[α(1−pt)+(1−α)pt]
, if pt ∈

[
pH , p̄H

]
qLt if pt ∈

[
pL, p̄L

] .

This is easily derived using Bayes’ rule. We summarise this result below.

Proposition 3.1. The public belief pt is updated in every period according to

pt+1 =



qHt , if xt = 1 and pt ∈
[
pH , p̄H

]
[ε+(1−ε)(1−α)]pt

ε+(1−ε)[α(1−pt)+(1−α)pt]
if xt = 0 and pt ∈

[
pH , p̄H

]
[(1−ε)+αε]pt

(1−ε)+ε[αpt+(1−α)(1−pt)]
if xt = 1 and pt ∈

[
pL, p̄L

]
qLt if xt = 0 and pt ∈

[
pL, p̄L

]
pt if pt ∈ X

,

where X is the cascade set defined earlier.
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We are now ready to state our main result, which is similar to that found in the literature
on social learning.

Proposition 3.2. pt converges almost-surely to some limiting random variable p∞ that
lies (almost-surely) in the cascade set X. Thus, cascades occur with probability one.

Proof. pt is bounded by definition, and a martingale by construction. The convergence
result then follows from the martingale convergence theorem. The second part of the
proposition follows from the fact that outside X, |pt+1 − pt| is bounded below by some
positive constant. Convergence therefore is possible only if the public belief enters the
cascade set X.

There are alternative proofs of belief convergence implying action convergence in Bikhchandani
et al. (1992); Smith et al. (2017); Smith and Sørensen (2000).

The previous discussion makes it immediately apparent why we are only interested in the
cases of complementarity, substitutability, and degeneracy. Suppose, on the contrary,
that γLφH < c < γHφL. One should expect this specification means that the state of
the world doesn’t matter. Indeed, under this assumption, we would have that ΘL > 1

and ΘH < 0, which then means that p̄H < 0 and pL > 1. The unit interval is therefore
a strict subset of the cascade set, and we would have immediate belief convergence to
the prior p1. This case is clearly uninteresting, so we focus on other cases from now.

3.2.4 Pessimistic Herds and Luck

We now state a result on what types of informational cascades are possible given beliefs
pt. Recall that pH < p̄H < pL < p̄L.

Proposition 3.3. Suppose that α < 1/
(

1 + 3
√
Z
)
, where Z = ΘH

ΘL
1−ΘL

1−ΘH
. For pt ∈[

0, pL
)
, we have that p∞ /∈

(
p̄L, 1

]
. Similarly, for pt ∈

(
p̄H , 1

]
, p∞ /∈

[
0, pH

)
.

Proof. If pt ∈ X, then p∞ = pt. Suppose pt /∈ X. We consider the case when pt ∈[
pL, p̄L

]
. The reasoning for when pt ∈

[
pH , p̄H

]
is similar.

The result follows from the fact that no public belief pt ∈
[
pL, p̄L

]
can jump over

the interval
(
p̄H , pL

)
after observing xt = 0. To see why, notice that, even pt = pL,

pt+1 > p̄H . This completes the proof.

Definition 3.2. A herd takes place at time T if all actions after time T are identical:
for t > T , xt = xT . A herd on x = 0 is a pessimistic herd, and a herd on x = 1 is an
optimistic herd.
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A pessimistic herd occurs as soon as pt ∈
[
0, pH

)
. Given proposition 3.3, it is easy to

see that, for a low enough prior14, and when institutions and states are not substitutes,
pessimistic herds happen with strictly positive probability, even if the state is φH . In
particular, a long enough sequence of bad draws of γt will lead to a pessimistic herd.
Crucially, this holds regardless of the actual draws of signals st. To see this, recognise
that given the decision rule derived above, whenever γt = γL, xt = 0, as long as
p1 ∈

[
pH , p̄H

]
(i.e the prior was in the region that admits a pessimistic herd). Hence,

any period where γt = γL will lead to downward adjustment of beliefs.

This plausibly sheds light on a mechanism that would explain why institutions often
have effects that persist long after the institutions associated with those effects have
been changed or reformed. Even if institutions are reformed so that ε = 0, there will be
no effect on a pessimistic herd. This is because the cascade set is unaffected by changes
in ε.

Given this result, we can now interpret the patterns in the data as resembling a pessim-
istic herd. One can think of the exposure to extractive institutions such as the mita or
the slave trade s a long sequence of bad draws of γt which then leads to a cascade that
entails herding on xt = 0. The herding on low effort is then what causes bad outcomes
for the victims of extractive institutions.

This model also suggests that luck is also an important factor in determining the long-
term impact of institutions. To be specific, there has to be an element of bad luck
involved in creating a pessimistic herd, since there needs to be a sequence of bad draws
of signals or institutions. This is contrary to the argument in Acemoglu and Robin-
son (2012), where they claim that institutions are much more important than luck in
determining long-term economic outcomes.15

3.2.5 Complementarity and Substitutability

Pessimistic herds can only happen under a low initial prior p1. In particular, we must
have that p1 ∈

[
0, p̄H

]
in order for a pessimistic herd to occur. However, we can also

derive parameter restrictions for which the set of priors that make a pessimistic herd
possible is comparatively large, and hence, in some sense, more likely. In particular, if
we assume that good institutions and favourable states of the world are complements,
so that γLφH < c and γHφL < c, then pL > 1 and p̄H is close to 1. Moreover,
under this complementarity assumption, then optimistic herds are impossible, as given

14We must have that p1 ∈
[
0, p̄H

]
. Otherwise there will never be a pessimistic herd.

15Even if one is not persuaded by the mechanism here, luck is almost certainly important in the
selection of institutions. Hence, luck may still be much more important than institutions. However,
given that institutions themselves are often thought of as equilibrium outcomes (Greif and Kingston,
2011), and luck can be thought of in terms of selection of equilibria, it was never clear what it meant
for institutions to be more important than luck.
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by proposition 3.3. One can also see this by considering belief dynamics in this case,
with16 XC =

[
0, pH

)
∪
(
p̄H , 1

]
:

pt+1 =


qHt if xt = 1 and p /∈ XC

[ε+(1−ε)(1−α)]pt
ε+(1−ε)[α(1−pt)+(1−α)pt]

if xt = 0 and pt /∈ XC

pt, if pt ∈ XC

.

Here, when beliefs enter pt ∈
(
p̄H , 1

]
there is an informational cascade, but agents do

not herd on any specific action. Individuals choose the action based solely on their
observed realisation of γt.

Hence, when institutions and states are complements, pessimistic herds are more likely
to occur.

Suppose instead that γLφH > c and γHφL > c, so that institutions and states of the
world are substitutes. Public beliefs now evolve according to

pt+1 =


[(1−ε)+αε]pt

(1−ε)+ε[αpt+(1−α)(1−pt)]
if xt = 1 and pt /∈ XS

qLt if xt = 0 and pt /∈ XS

pt if pt ∈ XS

,

where17 XS =
[
0, pL

)
∪
(
p̄L, 1

]
.

In this environment, pessimistic herds are now impossible. However, there are some
interesting results in this set up that we now describe. Instead of considering pessimistic
herds, which do not occur, we focus on pessimistic belief cascades, which can still occur.
This happens when beliefs enter

[
0, p̄L

)
.

Notice that we can recover the canonical social learning model by setting ε = 1.This
observation highlights the impact of the way we incorporate institutions here to the basic
model. Suppose pt /∈ XS so that learning still occurs. If ε < 1, with positive probability,
one does not become victim to extractive institutions. Relative to the case when ε = 1,
the increase in pt after observing xt = 1 is slowed. The decrease in pt after observing
xt = 0, however, remains the same. Formally, treating the public belief as a function of
ε, pt (ε) ≤ pt (1) for any fixed history ht. This means, somewhat counterintuitively, that
pessimistic cascades are more likely when there is some possibility that one is exposed
to non-extractive institutions rather than when institutions are always extractive.

16Recall that, under complementarity, 0 < pH < p̄H < 1 < pL.
17Recall that when institutions and states are substitutes, p̄H < 0 < pL < p̄L < 1.
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Moreover, in any time period t, we can define the speed of learning on φH as

vH =
1

t+

t∑
k=1

max {pk+1 − pk, 0}

where t+ = # {k ≤ t : pk+1 > pk}.18

vH is smallest when ε is very close to 0. This means that pessimistic beliefs are most
likely when the probability of being exposed to extractive institutions is very small, or
when extractive institutions are not very persistent. In light of the data, one might
view this as suggestive of good institutions not being substitutes for a favourable state
of the world. Another way of thinking about this result is that it is an explanation
of why certain types of institutional reform improve economic outcomes while others
don’t. The reforms that fail represent institutional reforms that are complementary to
a good state of the world, when the reform that is needed is the creation of institutions
that are substitutes for a favourable state.

Notice, however, that actions in this model are driven purely by beliefs and not out-
comes. Therefore, if people systematically underestimate ε, and there is empirical evid-
ence that they might, then given this model, people possessing mistakenly pessimistic
beliefs about the world does not seem unlikely.19 This result can then be incorporated
into a richer model that can produce a pessimistic cascade on actions, instead of just
beliefs. We leave that idea for future research.

3.3 Extensions

3.3.1 Institutions as a Markov Process

Suppose that, instead of being iid, institutions followed a Markov process, so that
Pr
(
γt+1 = γt|γt

)
= 1−ε. One might view this as more natural than our initial assump-

tion because it better captures the notion that institutions are persistent. However, this
assumption creates significant difficulty in characterising public belief dynamics, which
will now no longer follow a Markov process, and instead are fully dependent on complete
histories. However, making additional assumptions recovers tractability. Instead of con-
ditioning the public belief solely on the history, define it to be pt = Pr

(
φ = φH |ht, γt

)
.

It is reasonably easy to see that public beliefs are once again Markov, and hence can
be characterised in a fashion that is qualitatively similar to the analysis in the previous
section

It is worth pointing out that this is akin to a bounded rationality assumption: this
assumption entails that the public is forgetful. In particular, it means that the public
18Think of this as the average increment in pt every time beliefs increase.
19The psychology literature documents this as the just-world fallacy (Montada and Lerner, 1998).

Bénabou and Tirole (2006) apply this finding to an economic model.
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observes the effect of institutions in a period t, and uses that information to update
their beliefs on the state of the world. However, in period t + 1, the public no longer
has the information about institutions in period t to update their beliefs with.

The forgetfulness assumption is important. If the public did not forget the values of
γt′ for t′ < t, then the signal-jamming effect of institutions disappears, and the results
derived in the previous section that depart from the standard social learning model
disappear.

3.3.2 Investment in Institutions

n this section, we sketch a variant of the model where γt is endogenous. Suppose now
that the effect of institutions γt is now a deterministic function of investment it ∈ 0, 1.
In particular, we have that

γt =

γ
H , if it = 1

γL, if it = 0
.

However, agents also face an unknown cost of investment, ĉ ∈
{
ĉ0, ĉ1

}
, with γLϕL <

ĉ0 < ĉ1 and ĉ0 < γHφH . Let there be a common prior on ĉ given by r1 = Pr
(
ĉ = ĉ0

)
,

and assume for simplicity that costs are independent of φ. Preferences are now given
by

u (xi, it) =


[(
γH − γL

)
φ− ĉ

]
it + γLφ− c, if xt = 1

−ĉit, if xt = 0

.

Each agent receives two signals, sφt and sct . s
φ
t is the same as st in previous sections, and

sct ∈
{
s0, s1

}
is now a signal about ĉ. In particular, we assume that Pr

(
sct = sj |ĉ = ĉj

)
=

β > 1
2 . Individual t observes ht = {i1, x1, . . . , it−1, xt−1}. This gives the public beliefs

pt = Pr
(
φ = φH |ht

)
and rt = Pr

(
ĉ = ĉ0|ht

)
.

The timing of the model in period t is as follows. Individual t first receives the signal sct ,
which she uses to update ujt = Pr

(
ĉ = ĉ0|ht, sct = sj

)
, her private belief about ĉ. Then,

after choosing it, she receives the signal sφt , which is used to update her private belief
qjt = Pr

(
φ = φH |ht, sφt = sj

)
, and chooses xt.

As before, we have that

u0
t =

βrt
βrt + (1− β) (1− rt)

u1
t =

(1− β) rt
β (1− rt) + (1− β) rt

qHt =
αpt

αpt + (1− α) (1− pt)

qLt =
(1− α) pt

α (1− pt) + (1− α) pt
.
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The decision rule for xt is very similar to what we had earlier. Suppose first that it = 1.
Given sφt = sH , individual t chooses xt = 1 if and only if qHt ≥ ΘH . Given sLt , individual
t chooses xt = 0 if and only if qLt > ΘH . Suppose instead that it = 0. Given sφt = sH ,
xt = 1 is chosen if and only if qHt ≥ ΘL. When sφt = sL, xt = 1 if and only if qLt > ΘL.

The decision rule for it is less obvious. Consider first the expected payoff from choosing
it = 1:

max
{
γHE

[
φ|ht

]
− c, 0

}
− E

[
ĉ|ht, sct

]
.

Contrast this with the expected payoff from it = 0:

max
{
γLE

[
φ|ht

]
− c, 0

}
.

Thus, it = 1 only if

γHE
[
φ|ht

]
− E

[
ĉ|ht, sct

]
> max

{
γLE

[
φ|ht

]
, c
}
.

Otherwise, the agent will at most be indifferent between investing and not investing.
We can proceed in the same way as earlier to describe t’s decision rule for it. Define

Ĉ (ht) =

ĉ1 −
[
γHE

[
φ|ht

]
−max

{
γLE

[
φ|ht

]
, c
}]

ĉ1 − ĉ0
.

Suppose sct = s0. Then, she invests if and only if

u0
t ≥ Ĉ (ht) ⇐⇒ rt ≥

(1− β) Ĉ (ht)

β
[
1− Ĉ (ht)

]
+ (1− β) Ĉ (ht)

= r (ht) .

If instead sct = s1, she invests if and only if

u1
t > Ĉ (ht) ⇐⇒ rt >

βĈ (ht)

βĈ (ht) + (1− β)
[
1− Ĉ (ht)

] = r̄ (ht) .

The dependence of the belief thresholds r̄ and r on ht make fully characterising belief
dynamics and the cascade set quite difficult. However, we can show that, under certain
conditions, the cascade set is non-empty, which means that we can still have (non-trivial)
information cascades in this environment.

Assume that
ĉ1 > γHφH −max

{
γLφH , c

}
and that

γHφL − c > ĉ0.

This guarantees that for any fixed sequence of actions ht, 1 − δ > r̄ (ht) > r (ht) > δ
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for some δ > 0. This means that

R̄ = lim sup
t→∞

r̄ (ht) < 1

R = lim inf
t→∞

r (ht) > 0.

Thus, [0,R) ∪
(
R̄, 1

]
is a subset of the cascade set. A long enough sequence of bad

signals sφt and sct clearly leads to an informational cascade with herding on xt = 0 and
it = 0. In other words, if an early sequence of agents is sufficiently pessimistic, there
will be a herd of no investment and low effort.

3.4 Discussion

3.4.1 Robustness of Wrong Cascades

The results we derive are clearly heavily reliant on BHW’s result of the possibility of
incorrect cascades. However, this result is heavily reliant on the coarseness of both
the action space (Lee, 1993) and signal space (Smith and Sørensen, 2000). In particu-
lar, when there is a continuous action space or unbounded signals, beliefs will always
converge to the truth. Hence, the assumptions made earlier are crucial to the results
derived. This is certainly inconvenient, but not damning of the plausibility of social
learning as a mechanism that drives the persistent effects of institutions.

First, it is not at all clear that the world and, particularly, individual perceptions of it
are substantially richer than the discrete action-signal structure that we assume here.
The fact that everyday language tends to be imprecise, for example, suggests that people
are not accustomed to thinking and communicating with the precision that a continuous
space requires. Indeed, it seems more likely that people think in terms of discrete objects
and quantities rather than continuous ones. As such, modelling assumptions involving
discrete objects are probably more accurate representations of reality than those that
involve continuous ones, which are only typically assumed for tractability. As such, the
canonical social learning model’s lack of robustness to assumptions of discreteness is in
no way an indictment of the model, or of results based on it that we derive.

Second, even in a model with a continuous action space and unbounded signals, learning
about the true state of the world can be very slow when there is noise in the observation
of other agents’ signals. As such, from the point of view of welfare, even slow convergence
to the truth is equivalent to convergence to a mistake. Moreover, slow learning about
unknown parameters would be useless if those parameters change often enough, as they
might in a richer model.20 Vives (1993) demonstrates this in an economy with many
competitive firms learning about some unknown parameter of the aggregate demand
function through repeated market interaction.
20See, for example, Moscarini et al. (1998).
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We now sketch how one might adapt the basic environment we have to accommodate
a continuous action space with unbounded signals. Suppose that agents choose their
effort level xt ∈ R+, where their preferences are given by

u (xt; θt) = θtxt − c (xt) .

c (xt) is the (differentiable and strictly convex) cost of exerting effort xt. Assume that
θt = γt +φ, and that γt and φ are independent and normally distributed. Suppose that
signals are given by st = φ+ ηt, where η ∼ N

(
0, σ2

η

)
, so that, conditional on φ, signals

are normally distributed and independent across time. All other aspects of the basic
model remain the same. The agent in every period then sets

x∗t =
(
c′
)−1

(
γt + E

[
φ|ht, st

])
.

Standard results give us that

E
[
φ|htst

]
= αtst + (1− αt)E

[
φ|ht

]
where

αt =
σ2
t

σ2
t + σ2

η

,

and σ2
t is the variance of the public belief. The derivative of the cost function is uniquely

invertible, so observing x∗t is equivalent to observing γt+αtst+(1− αt)E
[
φ|ht

]
, which

is a noisy signal of st. Vives’ results about slow convergence then apply.

3.4.2 Empirical Evidence

We now examine the literature more closely and consider the plausibility of the theory
given the specific empirical findings in Nunn (2008); Nunn and Wantchekon (2011); Dell
(2010). Nunn (2008); Nunn and Wantchekon (2011) typify the research that presents a
mechanism that is reminiscent of the theory we develop, whereas Dell (2010) gives an
example of a mechanism that is not.

The mechanism proposed here is closest to that suggested by Nunn and Wantchekon
(2011). They argue that one channel by which the slave trade caused depressed economic
outcomes in Africa today is mistrust. They find that current differences in trust levels
within Africa can be traced back to the transatlantic and Indian Ocean slave trades.
Today, members of ethnic groups that were most exposed to the slave trade are also
the least trusting of their relatives, neighbours, co-ethnics and local governments. This
complements Nunn (2008), where he shows that the slave trade appears to have had a
causal impact on African economic development.

One can therefore think of the state of the world φ as the inherent level of trustworthiness
of other people, and γt as the level of one’s exposure to the slave trade. Hence, a long
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enough sequence of heavy exposure to the slave trade, as shown earlier, will lead to
pessimistic beliefs about how trustworthy other people are. As these beliefs grow ever
more pessimistic, they eventually enter the cascade set where beliefs become invariant to
institutional reform. We would then have herding on the low-payoff outcome, regardless
of how inherently trustworthy other people actually are. One can thus think of choosing
xt = 1 as the choice to cooperate in some stage cooperation game. We do not model
this cooperation game, but it is easy to see how our framework can be extended to this
environment. In fact, if we assume that individuals only observe the actions of one’s
predecessors, and not their predecessors’ opponents in each stage game, this extension
is trivial.

Moreover, the mechanism Nunn andWantchekon suggest involves a hallmark of boundedly
rational agents, heuristic “rules-of-thumb” of what turns out to be social learning. The
analysis in the previous sections shows, however, that bounded rationality is not neces-
sary for behavioural persistence.21

On the other hand, Dell’s findings about channels of persistence of the mita appear
to not be in line with the theory proposed here. Dell claims that the mita preven-
ted the emergence of large landowners within the mita catchment. The absence of
large landowners meant that there was no one who could lobby for or provide public
goods, such as roads. The lack of these public goods today prevents participation in
agricultural markets. Households outside the mita catchment, on the other hand, are
able to participate in said agricultural markets, and hence enjoy much better economic
outcomes.

Even though this mechanism does not line up cleanly with the mechanism presented in
the model, it does not quite rule out social learning as an explanation of persistence. In
particular, it is possible that social learning effects only play a second-order role in the
case of the mita. It is also possible that a social learning effect is lurking in the back-
ground: Dell does not provide an explanation as to what the channels through which
under-provision of public goods persists. In particular, social learning might explain
why there is persistent under-provision of public goods within the mita catchment area,
as in the model in section3.3.2. In particular, one can think of xt as the decision to
participate in agricultural markets, whereas it represents investment in public goods
provision.

3.5 Conclusion

This paper proposes a theory of the persistent effects of institutions via social learning.
To do this, we adapted the model by BHW to a setting where institutions affect both
21Strictly speaking, the model Nunn and Wantchekon suggest as an underlying mechanism (Boyd and

Richerson, 1995) does not make bounded rationality assumptions, but rather uses methods from
evolutionary game theory. The analysis we conducted earlier shows that the mechanism can also
be driven by standard methods of modelling individual behaviour.
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individual decisions and outcomes. We showed that the persistent underdevelopment
that traces back to extractive historical institutions can be thought of as herding on a
bad outcome. This herding is driven by an informational cascade of pessimistic beliefs
about the state of the world. A long enough sequence of agents exposed to extractive
institutions will create a pessimistic informational cascade. Moreover, once agents start
herding, reforms of institutions will not have any impact on the herd.

A cascade of pessimistic beliefs is possible only if institutions are degenerate, or when
institutions are only complementary to a favourable state of the world. Institutions are
degenerate when they would have no impact on individual behaviour if not for uncer-
tainty about the state of the world. In both cases, the prior on the state of the world
must be sufficiently low, but less so under complementarity than under degeneracy. In
this sense, pessimistic herding is most likely when institutions are complementary to
the state of the world.

The model appears to be consistent with the empirical evidence on the effects of his-
torical institutions. A more systematic analysis of how the model fares with respect to
the data would be interesting, but this is left for future research.

81



Bibliography

Abreu, D. (1986). Extremal equilibria of oligopolistic supergames. Journal of Economic
Theory, 39(1):191 – 225.

Abreu, D., Milgrom, P., and Pearce, D. (1991). Information and timing in repeated
partnerships. Econometrica, 59(6):1713–1733.

Abreu, D., Pearce, D., and Stacchetti, E. (1986). Optimal cartel equilibria with imper-
fect monitoring. Journal of Economic Theory, 39(1):251 – 269.

Acemoglu, D. (2003). Why not a political Coase theorem? social conflict, commitment,
and politics. Journal of Comparative Economics, 31(4):620–652.

Acemoglu, D. and Jackson, M. (2015). History, expectations, and leadership in the
evolution of social norms. The Review of Economic Studies, 82(2).

Acemoglu, D. and Johnson, S. (2005). Unbundling institutions. Journal of Political
Economy, 113(5):949–995.

Acemoglu, D., Johnson, S., and Robinson, J. A. (2001). The colonial origins of com-
parative development: An empirical investigation. American Economic Review,
91(5):1369–1401.

Acemoglu, D., Johnson, S., and Robinson, J. A. (2002). Reversal of fortune: Geo-
graphy and institutions in the making of the modern world income distribution. The
Quarterly Journal of Economics, 117(4):1231–1294.

Acemoglu, D. and Robinson, J. A. (2001). A theory of political transitions. American
Economic Review, 91(4):938–963.

Acemoglu, D. and Robinson, J. A. (2008). Persistence of power, elites, and institutions.
American Economic Review, 98(1):267–293.

Acemoglu, D. and Robinson, J. A. (2012). Why nations fail : the origins of power,
prosperity, and poverty. Profile, London.

Aghion, P., Bolton, P., Harris, C., and Jullien, B. (1991). Optimal learning by experi-
mentation. The Review of Economic Studies, 58(4):621–654.

82



Bibliography

Argenziano, R., Severinov, S., and Squintani, F. (2016). Strategic information acquisi-
tion and transmission. American Economic Journal: Microeconomics, 8(3):119–55.

Aumann, R. J. (1964). Mixed and behavior strategies in infinite extensive games. In
Dresher, M. and Shapley, L. S., editors, Advances in game theory, pages 443–476.
Princeton University Press.

Ball, I. (2017). Dynamic influence: persuasion and incentives. Working Paper.

Bandiera, O. and Rasul, I. (2006). Social networks and technology adoption in Northern
Mozambique. Economic Journal, 116(514):869–902.

Banerjee, A. (1992). A simple model of herd behavior. The Quarterly Journal of
Economics, 108(3).

Banerjee, A. and Iyer, L. (2005). History, institutions, and economic performance:
The legacy of colonial land tenure systems in India. American Economic Review,
95(4):1190–1213.

Benabou, R. and Ok, E. A. (2001). Social mobility and the demand for redistribution:
The Poum hypothesis. The Quarterly Journal of Economics, 116(2):447–487.

Bénabou, R. and Tirole, J. (2006). Belief in a just world and redistributive politics.
The Quarterly Journal of Economics, 121(2):699–746.

Bergemann, D. and Bonatti, A. (2015). Selling cookies. American Economic Journal:
Microeconomics, 7(3):259–94.

Bergemann, D., Brooks, B., and Morris, S. (2015). The limits of price discrimination.
American Economic Review, 105(3):921–57.

Bergemann, D. and Hege, U. (2005). The financing of innovation: learning and stopping.
The RAND Journal of Economics, 36(4):719–752.

Bergemann, D. and Morris, S. (2016a). Bayes correlated equilibrium and the comparison
of information structures in games. Theoretical Economics, 11(2):487–522.

Bergemann, D. and Morris, S. (2016b). Information design, Bayesian persuasion, and
Bayes correlated equilibrium. American Economic Review, 106(5):586–91.

Bergemann, D. and Morris, S. (2017). Information design: a unifed perspective. Cowles
Foundation Discussion Paper No. 2075R.

Bergemann, D. and Pesendorfer, M. (2007). Information structures in optimal auctions.
Journal of Economic Theory, 137(1):580 – 609.

Bergemann, D. and Välimäki, J. (2002). Information acquisition and efficient mechanism
design. Econometrica, 70(3):1007–1033.

83



Bibliography

Bergemann, D. and Välimäki, J. (2006). Information in mechanism design. In Blundell,
R., Newey, W. K., and Persson, T., editors, Advances in Economics and Economet-
rics: Theory and Applications, Ninth World Congress, volume II, chapter 5, pages
186–221. Cambridge University Press.

Bergemann, D. and Välimäki, J. (2008). bandit problems. In Durlauf, S. N. and
Blume, L. E., editors, The New Palgrave Dictionary of Economics. Palgrave Macmil-
lan, Basingstoke.

Berry, D. A. and Fristedt, B. (1985). Bandit problems: sequential allocation of experi-
ments. Monographs on statistics and applied probability. Springer.

Bikhchandani, S., Hirshleifer, D., and Welch, I. (1992). A theory of fads, fashion,
custom, and cultural change as informational cascades. Journal of Political Economy,
100(5):992–1026.

Blackwell, D. (1951). Comparison of experiments. In Proceedings of the Second Berkeley
Symposium on Mathematical Statistics and Probability, pages 93–102, Berkeley, Calif.
University of California Press.

Bolton, P. and Dewatripont, M. (2005). Contract Theory. MIT Press.

Bolton, P. and Harris, C. (1999). Strategic experimentation. Econometrica, 67(2):349–
374.

Bonatti, A. and Hörner, J. (2011). Collaborating. The American Economic Review,
101(2):632–663.

Bonatti, A. and Hörner, J. (2017a). Career concerns with exponential learning. Theor-
etical Economics, 12(1):425–475.

Bonatti, A. and Hörner, J. (2017b). Learning to disagree in a game of experimentation.
Journal of Economic Theory, 169:234 – 269.

Boyd, R. and Richerson, P. J. (1995). Why does culture increase human adaptability?
Ethology and Sociobiology, 16(2):125–143.

Chamley, C. (2004). Rational Herds: Economic Models of Social Learning. Cambridge
University Press, Cambridge.

Che, Y.-K. and Hörner, J. (2017). Recommender systems as incentives for social learn-
ing. Yale University Working Paper.

Cialdini, R. B. and Goldstein, N. J. (2004). Social influence: Compliance and conform-
ity. 55(1):591–621.

Clarke, F. H. (1990). Optimization and nonsmooth analysis, volume 5 of Classics in
applied mathematics. Wiley, New York.

84



Bibliography

Coate, S. and Morris, S. (1999). Policy persistence. American Economic Review,
89(5):1327–1336.

Conley, T. G. and Udry, C. R. (2010). Learning about a new technology: Pineapple in
Ghana. American Economic Review, 100(1):35–69.

Crawford, V. P. and Sobel, J. (1982). Strategic information transmission. Econometrica,
50(6):1431–1451.

Crémer, J. and McLean, R. P. (1985). Optimal selling strategies under uncertainty
for a discriminating monopolist when demands are interdependent. Econometrica,
53(2):345–361.

Crémer, J. and McLean, R. P. (1988). Full extraction of the surplus in Bayesian and
dominant strategy auctions. Econometrica, 56(6):1247–1257.

Cripps, M. and Thomas, C. (2016). Strategic experimentation in queues. Working
Paper.

Cronshaw, M. B. and Luenberger, D. G. (1994). Strongly symmetric subgame per-
fect equilibria in infinitely repeated games with perfect monitoring and discounting.
Games and Economic Behavior, 6(2):220 – 237.

Davis, M. (1993). Markov models and optimization. Monographs on statistics and
applied probability. Springer-Science+Business Media.

Dell, M. (2010). The persistent effects of Peru’s mining mita. Econometrica, 78(6):1863–
1903.

Deutsch, M. and Gerard, H. B. (1955). A study of normative and informational social
influences upon individual judgment. The Journal of Abnormal and Social Psychology,
51(3):629–636.

Di Pei, H. (2016). Reputation with strategic information disclosure. Available at SSRN.

Dong, M. (2016). Strategic experimentation with asymmetric information. Working
Paper.

Dworczak, P. (2017). Mechanism design with aftermarkets: Cutoff mechanisms. Work-
ing paper, Northwestern University.

Ely, J. C. (2017). Beeps. American Economic Review, 107(1):31–53.

Eső, P. and Szentes, B. (2007). Optimal information disclosure in auctions and the
handicap auction. The Review of Economic Studies, 74(3):705–731.

Evans, L. C. (2010). Partial differential equations, volume 19 of Graduate studies in
mathematics. American Mathematical Society, 2nd edition.

85



Bibliography

Fernandez, R. and Rodrik, D. (1991). Resistance to reform: Status quo bias in the pres-
ence of individual-specific uncertainty. The American Economic Review, 81(5):1146–
1155.

Field, E. (2007). Entitled to work: Urban property rights and labor supply in peru.
The Quarterly Journal of Economics, 122(4):1561–1602.

Forges, F. (1986). An approach to communication equilibria. Econometrica, 54(6):1375–
1385.

Fudenberg, D. and Yamamoto, Y. (2010). Repeated games where the payoffs and
monitoring structure are unknown. Econometrica, 78(5):1673–1710.

Fudenberg, D. and Yamamoto, Y. (2011). Learning from private information in noisy
repeated games. Journal of Economic Theory, 146(5):1733 – 1769.

Gale, D. and Kariv, S. (2003). Bayesian learning in social networks. Games and Eco-
nomic Behavior, 45(2):329–346.

Galor, O., Moav, O., and Vollrath, D. (2009). Inequality in landownership, the emer-
gence of human-capital promoting institutions, and the great divergence. Review of
Economic Studies, 76(1):143–179.

Georgiadis, G. and Szentes, B. (2018). Optimal monitoring design. Working paper.

Gershkov, A. and Szentes, B. (2009). Optimal voting schemes with costly information
acquisition. Journal of Economic Theory, 144(1):36 – 68.

Gittins, J., Glazebrook, K., andWeber, R. (2011). Multi-armed bandit allocation indices.
Wiley-Blackwell, 2nd edition.

Glaeser, E. L. and Shleifer, A. (2002). Legal origins. The Quarterly Journal of Eco-
nomics, 117(4):1193–1229.

Greif, A. and Kingston, C. (2011). Institutions: Rules or equilibria? In Political
economy of institutions, democracy and voting, pages 13–43. Springer.

Greif, A. and Laitin, D. D. (2004). A theory of endogenous institutional change. Amer-
ican Political Science Review, 98(4):633–652.

Greif, A. and Tabellini, G. (2010). Cultural and institutional bifurcation: China and
Europe compared. American Economic Review, 100(2):135–140.

Guo, Y. (2016). Dynamic delegation of experimentation. American Economic Review,
106(8):1969–2008.

Guo, Y. and Roesler, A.-K. (2016). Private learning and exit decisions in collaboration.
Northwestern University Working Paper.

86



Bibliography

Halac, M., Kartik, N., and Liu, Q. (2016a). Contests for experimentation. Journal of
Political Economy.

Halac, M., Kartik, N., and Liu, Q. (2016b). Optimal contracts for experimentation.
The Review of Economic Studies, 83(3):1040–1091.

Heidhues, P., Rady, S., and Strack, P. (2015). Strategic experimentation with private
payoffs. Journal of Economic Theory, 159:531 – 551.

Hörner, J., Klein, N. A., and Rady, S. (2015). Strongly symmetric equilibria in bandit
games.

Hörner, J. and Samuelson, L. (2013). Incentives for experimenting agents. The RAND
Journal of Economics, 44(4):632–663.

Hörner, J. and Skrzypacz, A. (2016). Learning, experimentation and information design.

Jha, S. (2013). Trade, institutions, and ethnic tolerance: Evidence from South Asia.
The American Political Science Review, 107(4):806–832.

Kamenica, E. and Gentzkow, M. (2011). Bayesian persuasion. The American Economic
Review, 101(6):2590–2615.

Keller, G. and Rady, S. (2010). Strategic experimentation with Poisson bandits. The-
oretical Economics, 5(2):275–311.

Keller, G. and Rady, S. (2015). Breakdowns. Theoretical Economics, 10(1):175–202.

Keller, G., Rady, S., and Cripps, M. (2005). Strategic experimentation with exponential
bandits. Econometrica, 73(1):39–68.

Kingston, C. and Caballero, G. (2009). Comparing theories of institutional change.
Journal of Institutional Economics, 5(2):151–180.

Klein, N. and Rady, S. (2011). Negatively correlated bandits. The Review of Economic
Studies, 78(2):693–732.

Kremer, I., Mansour, Y., and Perry, M. (2014). Implementing the “wisdom of the
crowd”. Journal of Political Economy, 122(5):988–1012.

Krusell, P. and Rios-Rull, J.-V. (1996). Vested interests in a positive theory of stagnation
and growth. The Review of Economic Studies, 63(215).

Lee, I. H. (1993). On the convergence of informational cascades. Journal of Economic
Theory, 61(2):395–411.

Mansour, Y., Slivkins, A., and Syrgkanis, V. (2015). Bayesian incentive-compatible
bandit exploration. In Proceedings of the Sixteenth ACM Conference on Economics
and Computation, EC ’15, pages 565–582, New York, NY, USA. ACM.

87



Bibliography

Matějka, F. and McKay, A. (2015). Rational inattention to discrete choices: A new
foundation for the multinomial logit model. American Economic Review, 105(1):272–
98.

Mathevet, L., Perego, J., and Taneva, I. (2017). On information design in games.
Working Paper.

Matysková, L. (2018). Bayesian persuasion with costly information acquisition. Working
paper, CERGE-EI.

McAfee, R. P. and Reny, P. J. (1992). Correlated information and mechanism design.
Econometrica, 60(2):395–421.

Michalopoulos, S. and Papaioannou, E. (2013). Pre-colonial ethnic institutions and
contemporary African development. Econometrica, 81(1):113–152.

Milgrom, P. R. (1981). Rational expectations, information acquisition, and competitive
bidding. Econometrica, 49(4):921–943.

Montada, L. and Lerner, M. J. (1998). Responses to victimizations and belief in a just
world. Critical issues in social justice. Plenum Press, New York.

Moscarini, G., Ottaviani, M., and Smith, L. (1998). Social learning in a changing world.
Economic Theory, 11(3):657–665.

Moscarini, G. and Smith, L. (1997). Economic models of social learning. In Decisions,
Games and Markets, pages 265–298. Springer.

Murto, P. and Välimäki, J. (2011). Learning and information aggregation in an exit
game. The Review of Economic Studies, 78(4):1426–1461.

Murto, P. and Välimäki, J. (2013). Delay and information aggregation in stopping
games with private information. Journal of Economic Theory, 148(6):2404 – 2435.

Myerson, R. B. (1986). Multistage games with communication. Econometrica,
54(2):323–358.

North, D. C. (2006). Understanding the process of economic change. Academic Found-
ation.

Nunn, N. (2007). Historical legacies: A model linking Africa’s past to its current
underdevelopment. Journal of Development Economics, 83(1):157–175.

Nunn, N. (2008). The long-term effects of Africa’s slave trades. The Quarterly Journal
of Economics, 123(1):139–176.

Nunn, N. (2009). The importance of history for economic development.

88



Bibliography

Nunn, N. and Wantchekon, L. (2011). The slave trade and the origins of mistrust in
Africa. American Economic Review, 101(7):3221–3252.

Padró i Miquel, G. (2007). The control of politicians in divided societies: The politics
of fear. The Review of Economic Studies, 74(4):1259–1274.

Papanastasiou, Y., Bimpikis, K., and Savva, N. (2017). Crowdsourcing exploration.
Management Science.

Piketty, T. (1995). Social mobility and redistributive politics. The Quarterly Journal
of Economics, 110(3).

Presman, E. L. (1991). Poisson version of the two-armed bandit problem with discount-
ing. Theory of Probability and its Applications, 35(2):307–11.

Rahman, D. (2014). The power of communication. The American Economic Review,
104(11):3737–3751.

Rieke, A., Yu, H., Robinson, D., and von Hoboken, J. (2016). Data brokers in an open
society. Technical report, Open Society Foundations.

Roesler, A.-K. and Szentes, B. (2017). Buyer-optimal learning and monopoly pricing.
American Economic Review, 107(7):2072–80.

Roland, G. (2004). Understanding institutional change: Fast-moving and slow-moving
institutions. Studies in Comparative International Development, 38(4):109–131.

Rosenberg, D., Salomon, A., and Vieille, N. (2013). On games of strategic experiment-
ation. Games and Economic Behavior, 82:31 – 51.

Rosenberg, D., Solan, E., and Vieille, N. (2007). Social learning in one-arm bandit
problems. Econometrica, 75(6):1591–1611.

Rothschild, M. (1974). A two-armed bandit theory of market pricing. Journal of
Economic Theory, 9(2):185 – 202.

Smith, L. and Sørensen, P. (2000). Pathological outcomes of observational learning.
Econometrica, 68(2):371–398.

Smith, L., Sørensen, P., and Tian, J. (2017). Informational herding, optimal experi-
mentation, and contrarianism. Technical report.

Smith, L. and Sørensen, P. N. (2011). Observational learning. In Durlauf, S. N. and
Blume, L. E., editors, The New Palgrave Dictionary of Economics. Palgrave Macmil-
lan, Basingstoke.

Smolin, A. (2015). Optimal feedback design. Working Paper.

89



Bibliography

Strulovici, B. (2010). Learning while voting: determinants of collective experimentation.
Econometrica, 78(3):933–971.

Strulovici, B. and Siegel, R. (2018). Judicial mechanism design. Working paper.

Sugaya, T. and Wolitzky, A. (2017). Bounding equilibrium payoffs in repeated games
with private monitoring. Theoretical Economics, 12(2):691–729.

Sugaya, T. and Yamamoto, Y. (2015). The folk theorem in repeated games with indi-
vidual learning. Working Paper.

Taneva, I. A. (2016). Information design. Working Paper.

Townsend, R. M. (1979). Optimal contracts and competitive markets with costly state
verification. Journal of Economic Theory, 21(2):265 – 293.

Vives, X. (1993). How fast do rational agents learn? The Review of Economic Studies,
60(203).

Voigtländer, N. and Voth, H.-J. (2012). Persecution perpetuated: The medieval origins
of anti-Semitic violence in Nazi Germany. The Quarterly Journal of Economics,
127(3):1339–1392.

Wiseman, T. (2005). A partial folk theorem for games with unknown payoff distribu-
tions. Econometrica, 73(2):629–645.

Wiseman, T. (2012). A partial folk theorem for games with private learning. Theoretical
Economics, 7(2):217–239.

Yamamoto, Y. (2014). Individual learning and cooperation in noisy repeated games.
Review of Economic Studies, 81(1):473 – 500.

90


