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Abstract

In this thesis I consider the problem of clearing models used for systemic risk assessment in interbank

networks. I investigate two extensions of the classical [Eisenberg & Noe| (2001)) model.

The first extension permits the analysis of networks with interbank liabilities of several maturities. I
describe a clearing mechanism that relies on a fixed-point formulation of the vector of each bank’s
liquid assets at each maturity date for a given set of defaulted banks. This formulation is consistent with
the main stylised principles of insolvency law, permits the construction of simple dynamic models and

furthermore demonstrates that systemic risk can be underestimated by single maturity models.

In the context of multiple maturities, specifying a set of defaulted banks is challenging. Two approaches
to overcome this challenge are proposed. The algorithmic approach leads to a well-defined liquid asset
vector for all financial networks with multiple maturities. The simpler functional approach leads to the
definition of the liquid asset vector that need not exist but under a regularity condition does exist and

coincides with the algorithmic approach.

The second extension concerns the non-uniqueness of clearing solutions. When more than one solution
exists, the standard approach is to select the greatest solution. I argue that there are circumstances when
finding the least solution is desirable. An algorithm for constructing the least solution is proposed.

Moreover, the solution is obtainable under an arbitrary lower bound constraint.

In models incorporating default costs, clearing functions can be discontinuous, which renders the prob-
lem of constructing the least clearing solution non-trivial. I describe the properties of the construction
algorithm by means of transfinite sequences and show that it always terminates. Unlike the construction
of the greatest solution, the number of steps taken by the algorithm need not be bounded by the size of

the network.



Impact Statement

Since the financial crisis of 2007-8, the central banks and financial regulators in major financial centres
throughout the world have been attempting to understand the failure of financial institutions in inter-
connected systems. It is now well-established that stability of financial systems is a complex dynamic
phenomenon that is susceptible to disruption through multiple channels of systemic risk contagion. The
precise nature of these sources of systemic risk, their transmission and interactions remain a live area
of research. The overarching impact of any significant contribution in this domain is the enabling of

regulators to make informed policy decisions to increase financial stability.

One of the principal tools currently used by the central banks in monitoring systemic risk are the periodic
stress tests. However, their existing models for system-wide dynamics, including feedback, amplifica-
tion and spillover mechanisms remain, in some respects, rudimentary. The current models do not use
the full wealth of data available to the regulators such as the full maturity breakdown of financial instru-
ments in the system. A key impact stemming from this thesis is the ability to stress test financial systems
taking account of the maturity profile of the banks’ portfolios. One of the findings in this thesis is that

ignoring this information can lead a regulator to underestimate the extent of the systemic risk.

Another weakness of the current stress testing regime is that the exercise is fundamentally static in
nature. It does not account for the financial system’s ability to respond to the spread of instability. This
ignores the impact of the participants’ actions that can mitigate or exacerbate the risk. Tackling this
weakness requires the development of dynamic models of systemic risk. The ability to account for

multiple maturities, introduced in this thesis, provides a basis for such a model.

A recent development in the area has put more focus on the notion of distress, as distinct from default,
of financial institutions. The ability to respond to a developing financial crisis when institutions become
distressed but before they fail is of clear practical impact on the real economy. Distress models naturally
lead themselves to multiple equilibrium states, reflecting the subjective perceptions of the market par-
ticipants. This differentiates these models from the classical models of default that focus on obtaining
unique solutions. The findings in this thesis on least clearing solutions are therefore of benefit to this

developing strand of research and thus can have practical impact.

Impact of this thesis has already been obtained by disseminating significant parts of the research con-
tained therein. In particular, some material has been submitted for publication to a major peer-reviewed
journal, presented at major international conferences as well as presented at an internal seminar at the

Bank of England.
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Thesis Overview

1.1 Motivation

Since the financial crisis of 2007-8 there has been a rapid expansion of literature which aims to ex-
plain bank failure in interconnected financial systems (see e.g.|Glasserman & Young| (2016)) for a recent
overview). One main modelling goal is to find a suitable contagion mechanism that describes how losses
can spread through a financial network. The ultimate objective of such an analysis is to assess the de-
gree of systemic risk in a financial network and use this to make informed policy decisions to increase

financial stability.

One approach to assess systemic risk in financial networks is to derive clearing cash flows between
financial institutions and to study which market participants default during the clearing process. Such
clearing payments represent the actual payments made by the market participants and are constructed

such that they obey certain stylised principles of contract and insolvency law.

A major line of literature adopting this approach follows from and extends the seminal model of |[Eisen-
berg & Noef (2001). In Section we will provide a brief overview of the major milestones but it is
worth emphasising at this stage Rogers & Veraart (2013)). This thesis is firmly positioned in this fam-
ily of models and, in particular, focuses on two extensions of |[Eisenberg & Noe| (2001) and |[Rogers &
Veraart| (2013). The next section discusses these extensions in general terms and summarises the key
contributions. Section [I.4]then provides an overview of both explicit and implicit assumptions made in
Eisenberg & Noe (2001) and Rogers & Veraart (2013) which are relaxed in this thesis.

1.2 Contributions

In Chapter 2] we propose an extension of the [Eisenberg & Noe| (2001) model of financial networks with
only one maturity date to networks with multiple maturity dates. In practice, financial networks do
consist of liabilities with different maturity dates. When the clearing process is triggered at the first

maturity date long-term debt must not be ignored. We develop clearing mechanisms that account for



Chapter 1. Thesis Overview

long-term debt in a way that is consistent with the main principles of insolvency law. This approach is
also extended to a multi-period model that can be used as a basis for a full dynamic model of systemic

risk. The clearing problem in Chapter [2]is formulated in terms of liquid assets.

In Chapter 3| we propose an extension of the[Rogers & Veraart| (2013) model, itself a generalisation of the
Eisenberg & Noe|(2001) model. In contrast to Chapter[2] the clearing problem in Chapter 3]is formulated
in terms of payments for ease of comparison with these models. In|Rogers & Veraart|(2013) it was shown
that, in the presence of default costs, clearing payments are not necessarily unique. Similar observations
have been made in other related extensions and in such cases it has been conventional to select the
greatest clearing payment vector as the preferred solution of the clearing problem. The existence of the
least clearing vector is well known in these models but constructing it has been generally assumed to be
essentially similar to the greatest clearing vector. In Chapter |3| we show that the problem is not trivial
and provide a solution. Moreover, the model that we consider is a generalisation of the [Rogers & Veraart
(2013)) model as we allow for a lower bound constraint which is not in general equal to zero as has been

the case in the literature to date.

These two extensions contain seven main contributions to the research into interbank clearing models.
Chapter [2] pertains to the first four and Chapter [3] pertains to the remaining three. Chapter f] concludes

by discussing the outlook for further research.

First, in Section we introduce the notion of an equilibrium, in terms of liquid assets, achieved by
clearing the financial markets at the first maturity date and accounting for long-term liabilities which
are due beyond the first maturity date. We also show that that in contrast to the single maturity setting,
developing a notion of default in a multiple maturity setting is challenging. A key insight that emerges
out of this observation is that characterising the set of banks in default is an integral part of the solution
to the clearing problem. This is in contrast to much of the literature where default sets are treated as
secondary quantities derived from the clearing cash flows. In particular, we show in Lemma [26| and
Remark [30] that under a mild assumption financial systems have at most a finite number of clearing

solutions each uniquely determined by a corresponding default set.

Second, in Section we introduce two possible approaches to clearing at the first maturity date. We
show that these two approaches — algorithmic (Definition[9) and functional (Definition[IT)) — solve the
general equilibrium problem for liquid assets in Propositions [I0] and [I3] In Section [2.3.3] we describe
how the algorithmic approach extends the functional approach, which in turn extends the [Eisenberg &
Noe| (2001) model. Construction of clearing solutions under both approaches is addressed in Section

Third, we show that the functional approach, used in much of the literature in a single maturity setting,
is problematic in a multiple maturity setting. In particular, we elucidate the importance of monotonicity
in clearing problems. In general, under the functional approach, the clearing function is not monotonic
and may not have a fixed point solution. Nevertheless, we show in Section[2.3.2]that a simple condition,

the Monotonicity Condition [I4] is sufficient to ensure the existence of a solution.

The fourth contribution is to highlight some applications of the algorithmic approach. In Section [2.3.3]

10
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we apply the algorithmic approach to demonstrate how single maturity models can underestimate sys-
temic risk. In Section [2}2.4] we discuss the evolution of the financial system after clearing at the first
maturity. In particular, in Section 2]2.4.3] we describe a simple multi-period extensions of our model.
Such an extension then captures both the multi-maturity and multi-period aspects and therefore is a basis

for a full dynamic model of financial systems.

The fifth contribution is to demonstrate in Section that obtaining the least clearing vector of pay-
ments in a finite number of steps is not a simple converse of obtaining the greatest clearing vector. In
the presence of default costs, as in |Rogers & Veraart| (2013)), the clearing function is not continuous
from below. Construction of the least clearing vector of payments then involves the use of transfinite
sequences. This is an obstacle that needs to be overcome if we are to achieve this construction in a finite
number of steps. We also investigate the effect of imposing an arbitrary lower bound on the clearing

vectors, which imposes further complexity when constructing the least clearing vector of payments.

The sixth contribution is to address these difficulties by providing Algorithm [3]in Section [3.4] for com-
puting the least clearing vector in an extension of the |Rogers & Veraart| (2013) model with arbitrary

lower bounds on the clearing vectors.

Finally, we highlight the interpretation-neutral formulation of this extension of the Rogers & Veraart
(2013)) model. This paves the way to applying interbank clearing models to networks of funding supply
as proposed in[Hurd| (2016). A simple case study using this approach is considered in Section[3.5.2]

1.3 Literature review

The role of complexity and contagion in financial networks has been studied by numerous authors, e.g.
Allen & Gale|(2000), Gai et al.|(2011)), Battiston et al.|(2012) and David & Lehar{(2017)). There has been
an increasing recognition that there are in fact multiple channels through which network complexity can

give rise to systemic risk. [Bisias et al.| (2012), for example, provide a wide-ranging overview.

In most studies it is assumed that the financial network itself is observable. We will also make this
assumption here. Under incomplete information network reconstruction methods could be applied first,

see e.g. the Bayesian approach proposed by Gandy & Veraart| (2018}, 2017) and the references therein.

We focus on one specific channel of contagion, namely the domino effect which arises when complex
networks of debt obligations are cleared. This places our work at the intersection of two strands of
literature. The first focuses on contagion and domino effects, e.g. |[Eisenberg & Noe| (2001), Cifuentes
et al.[(2005), Upper| (2011), Liu et al.|(2012), Elsinger et al.| (2013)),|Cont et al.| (2013), |Georg (2013) and
Elliott et al.| (2014). The second investigates clearing, typically in the context of central counterparty
clearing in OTC markets. Some contributions from this latter strand include |[Cont & Kokholm) (2014),
Duffie et al.| (2015])), (Capponi et al.| (2015) and |/Amini et al.| (2015)).

This thesis described several extensions of the model proposed by [Eisenberg & Noe| (2001). While the

model in [Eisenberg & Noe (2001) was concerned primarily with payment systems, the key ideas have

11
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been adapted by numerous authors to model systemic risk in a financial system. The key findings include
the existence and construction of clearing solutions and the conditions for their uniqueness. These results
rely on a number of simplifying assumptions on clearing, which subsequent authors have attempted to
relax. Thus Hurd (2016)) clarifies the effect that the external liabilities play, [Rogers & Veraart (2013)
investigate the effect of liquidation costs, while Elsinger|(201 1) incorporates cross-holdings and different
seniorities of debt. The combined effect of cross-holdings and bankruptcy costs is investigated in Weber:
& Weske| (2017). All these extensions are single period models and hence assume a single maturity for

the liabilities.

Recent papers (e.g. Capponi & Chen|(2015), Ferrara et al.|(2016), Banerjee et al.[(2018)) have developed
multi-period models. The model in |Capponi & Chen|(2015) has a “central bank” node and random in-
terbank liabilities. In particular, it highlights the distinction between illiquid and insolvent banks which
arises whenever liabilities can become due at different times. This model focuses on the role of liquid-
ity injection policies by the central bank and only tangentially analyses the differences in the default
behaviour that arises from this generalisation. Meanwhile, [Ferrara et al.| (2016)) describe how a multi-
period system can be cleared simultaneously for every period. Similarly, Banerjee et al.| (2018)) consider
both a discrete and a continuous-time dynamic extension of the Eisenberg & Noe|(2001) model. While
these models generalise the single period aspect of [Eisenberg & Noe|(2001)), they remain fundamentally
single maturity models. Future liabilities are only revealed one period at a time and are not considered
as long-term debt at the short-term maturity date, but are rather considered as new short-term debt that
started at a later point in time. The clearing mechanism they consider therefore corresponds effectively

to a repeated application of a single maturity clearing algorithm.

Another recent direction emphasises the multiple equilibria found in clearing problems. This contrasts
the earlier focus on uniqueness results, as surveyed in [El Bitar et al.| (2017), for example. This focus
has been shifting since Rogers & Veraart (2013)) which provided an explicit example of a financial sys-
tem with multiple clearing solutions. |[Roukny et al.| (2018)) is a recent attempt to tackle this question
systematically. The problem of multiple equilibria is interesting in the context of an alternative inter-
pretation of clearing provided in |Glasserman & Young| (2014), which views it as dynamic re-valuation
of bank assets by the market. This interpretation is particularly interesting in the systemic risk context
as different equilibria can be given meaningful interpretation in terms of alternative valuations. |Veraart
(2017) follows this approach and investigates the effect of pre-default contagion, i.e. contagion that can
be triggered prior to the actual default event due to distress and mark-to-market losses. The notions of

distress and time-dependent valuation are also developed in Barucca et al.| (2016)).

1.4 General features of clearing models

1.4.1 Overview of clearing models

There is as yet no unified framework for different extensions of the original Eisenberg & Noe| (2001)

model. However, heuristically we can talk of interbank clearing models as consisting of five core ele-

12
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ments.

First, we need a description of the financial system (or, more generally, a clearing system) as a weighted
directed graph of nodes that represent banks or other financial institutions. The interpretation of the
weighted directed edges can vary but most commonly they refer to nominal interbank exposures. This
graph is often augmented by other parameters that encode various features of the financial system,
such as the seniority structure, default costs etc. For example, the simplest clearing system is given in
Eisenberg & Noe (2001) as the pair (a, L) where a is a vector of weights for each node in the graph and
L is a weighted adjacency matrix describing the edges and their weights. Note that the same clearing
system can have multiple representations. For instance, in |Eisenberg & Noe, (2001) the clearing system
(a, L) can also be given by the triplet (a, I, L) where II is a row-substochastic matrix and L is a vector
of row-sums of the matrix L. An example of additional parameters augmenting the weighted directed
graph is given by the default cost constants «v, 5 € (0,1] as in|Rogers & Veraart (2013) so that the full
clearing system in that model is given by (a,II, L, o, 3).

The second element is the set of modelling assumptions, typically reflecting stylised principles of con-
tract and insolvency law, and the identification of the clearing vector (or, more generally, a clearing
solution) - the principal financial quantities that the clearing problem is designed to compute. Most
clearing models use the stylised assumptions, introduced in|Eisenberg & Noe|(2001), of limited liability,
absolute priority and proportionality. The choice of clearing vector is less standard and, indeed, often
clearing problems using different choices of clearing vectors can be shown to be equivalent. For ex-
ample, Eisenberg & Noe, (2001) and Rogers & Veraart (2013) focus on clearing vectors of payments,
whereas [Elsinger et al.| (2006) works with the clearing vectors of equities. The modelling assumptions
and the identification of clearing solutions are used to formulate a clearing function ® for the given
financial system such that a clearing solution solves some equilibrium problem of the clearing function.
Thus [Eisenberg & Noe|(2001) uses the clearing function ® : [0, L] - [0, L] : 2 = L A (a+1"z). In

Rogers & Veraart| (2013)) default costs are a further element which results in a different clearing function.

The third element is the application of the Tarski-Knaster Theorem to demonstrate the existence and
structure of the fixed points of ®. If there are multiple such fixed points then a particular fixed point
is identified as the clearing solution of interest. This clearing solution is often chosen on the basis of a
financial interpretation. For example, if the edges of a directed graph represent nominal exposures and
the solution of interest represents the most conservatives payments made by banks consistently with the
insolvency rule (as in e.g. Rogers & Veraart (2013)) then the clearing solution is the greatest fixed point

of a suitable clearing function.

Fourth, a fictitious default algorithm (or, more generally, a clearing algorithm) is given to compute the
clearing solution in a finite number of steps. For example, both in [Eisenberg & Noe|(2001) and Rogers
& Veraart| (2013)) it can be shown that the clearing solution for a financial system of N banks can be

obtained in at most /V steps of the relevant algorithm.

Lastly, the notion of default is defined by characterising a special set of banks. Such a default set is often

(but, as we show in this thesis, not always) determined completely by the clearing solution. Furthermore,

13
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the clearing algorithm can equip this set with more structure by characterising a contagious cascade of
bank defaults in a financial system. Both the clearing solution and the cascade of defaults can then be

used to assess the extent and the impact of instability in the given financial system.

1.4.2 Common assumptions on clearing functions

The mathematical properties of the clearing function & are crucial and dictate much of the behaviour of
a given interbank clearing model. In |Eisenberg & Noe| (2001) ¢ is monotonic, continuous and, under
the technical condition of regularity, contracting. Furthermore, its domain and co-domain [0, L] is a
complete lattice. These properties together with the Tarski-Knaster Theorem allow us to obtain several
results. Namely, Eisenberg & Noe (2001) show that ® has the unique fixed point p* which can be
obtained as a monotonically decreasing limit of the sequence ((I)”(E))mo where L is easily seen as an
upper bound for the clearing solution. The fact that this sequence is non-increasing also permits us to

characterise the set of banks in default precisely as those banks i for which p} < L.

The existence of the fixed point relies on the Tarski-Knaster Theorem which requires the clearing func-
tion to be monotonic from a complete lattice to itself. Meanwhile, continuity of ® is important for
ensuring the uniqueness of the fixed point. For example, the model in |Rogers & Veraart| (2013)) main-
tains all of the properties of clearing functions mentioned above with the exception that in general the
clearing function is not continuous. Hence we are able to obtain examples of clearing systems with
multiple fixed points. The Tarski-Knaster Theorem also implies that the set of its fixed points contains
the unique greatest element. As mentioned above, it is then conventional in such cases to select this
greatest fixed point as the clearing solution. The sequence ((I)n(f’))nzo then converges precisely to the
clearing solution. The key feature that allows this to happen is that, although & is not continuous, the

sequence (é[)”(l_}))n>0 converges to a fixed point monotonically from above.

The above summary allows us to highlight a number of assumptions in the classical interbank clearing

models that this thesis seeks to relax.

Thus in Chapter [2| the introduction of multiple maturities means that the clearing function will not in
general be monotonic. This has two far-reaching consequences. Firstly, we are not able to apply the
Tarski-Knaster Theorem directly and thus, in general, the classical formulation of the clearing prob-
lem may not even have a solution. We provide an alternative formulation of the clearing problem to
side-step this issue and obtain an algorithmic definition of a clearing solution. Secondly, the sequence
(@”(i))wo is also not monotonic, in general. This means that even though we are able to obtain a
generalised clearing vector we cannot use it to fully characterise the default set. Instead, the default set

is then obtained as part of the clearing solution.

In Chapter [3] we consider how to obtain the least fixed point in an extension of the [Rogers & Veraart
(2013) model where the clearing function is monotonic from [B, L] to itself with B being the lower
bound on the clearing solution. It has been observed in the literature that in the classical case where
B = 0 the least fixed point can be constructed as a limit of the non-decreasing sequence (@”(B ))nBO'

So far this problem has gotten only marginal attention and we show that it is not trivial for two reasons.

14
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Firstly, if ® is not continuous then the sequence ((I)H(B))n;o does not, in general, converge to a fixed
point from below. In order to construct the least fixed point it becomes necessary to shift to transfinite
sequences. This in turn imposes obstacles to obtaining the clearing solution in a finite number of steps.
We are, in fact, able to do so but at a cost. Although the construction in Chapter [3|takes a finite number
of steps, this finite number is unbounded and so we cannot, in general, anticipate how many steps would
be required. The second problem arises when we consider an extension where the lower bound B
is no longer assumed to be zero. Although the sequence of vectors (@”(B ))n>0 remains monotonic,
the individual sequences of vector components are not, in general, all non-decreasing. A monotonic
sequence of vectors may have some components which are monotonically increasing while other are

monotonically decreasing. We explain how to overcome this difficulty.

1.5 Notation, terminology and standard results

In this thesis we adopt the following notational conventions. For n € N we denote by Z and I the n x n
zero and identity matrices, respectively, while O and 1 denote the n-dimensional vectors of zeros and

ones, respectively.

The partial order on vectors is assumed to be component-wise. In other words, for x,y € R", x < y if
and only z; < y; for all 1 < ¢ < n. Similarly, < y if and only x; < y; for all 1 < ¢ < n. The minimum and
the maximum of z; and x; are denoted by x; A x; and x; v x;, respectively, for some 1 <i,7 <n. x Ay
and x vy denote the component-wise minimum and maximum of x,y € R™. Vectors and matrices will be
said to be positive or non-negative if all of their components are positive or non-negative, respectively. In
particular, the phrase “positive matrix” will not, in general, be used to refer to positive definite matrices
in this thesis.

We use the following notation to define sub-vectors and sub-matrices. For a vector v € R'iv and some

non-empty index set A € N, vy € ]R';4 | denotes the vector given component-wise by (v4); = v; for all
1 € A. Similarly, for another non-empty index set B ¢ N and a matrix M ¢ RL{WXW‘, Myp € R‘f‘xwl
denotes the matrix given component-wise by (M 45), ;= M;; forallie Aand j € B. As usual, M pvg

is a vector in RLA | provided B # @. If B = @, we extend this by convention that M 4pgvg := 0 € RHI.

Since Chapters 2] and [3|use different formulations of the clearing problem, we will use both ¥ and ® to
denote clearing functions. Broadly, ® (or a variation) is used to denote clearing functions of the form
found in Eisenberg & Noe|(2001) and|Rogers & Veraart (2013) and, typically, corresponding to functions
of payments. Meanwhile U (or a variation) is used to denote functions of liguid assets (principally, in
Chapter [2).

Let (A, <) be a partially ordered set. A function f : A - A is monotonically increasing (respectively,
decreasing) if f(x) > f(y) (respectively, f(z) < f(y)) whenever = > y. A sequence (z"),s0 € A
is monotonically increasing (respectively, decreasing) if " > x™ (respectively, ™ < x™) whenever
n > m. A function or a sequence is monotonic if it is either monotonically increasing or monotonically

decreasing.
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Several results that are used in this thesis are taken to be established and are cited without proof. Further
details can be found in the core texts. In particular, Horn & Johnson|(1991) and Horn & Johnson|(2012)
are referred to on results in spectral theory, Karlin & Taylor| (1981) for recurrence classes in Markov
chains, Newman| (2010) on networks and adjacency matrices and Jech|(2013) on the theory of ordinals
and transfinite induction. The following theorem due to [Tarski et al.|(1955) is a foundational result that

is used throughout the thesis.

Theorem 1 (Tarski-Knaster Theorem). Let (A, <) be a complete lattice, f : A - A a monotonically
increasing function and Fix ( f') the set of fixed points of f. Then Fix( f) is not empty and (Fix(f);<) is

a complete lattice. In particular the lattice (Fix(f);<) contains the unique least and greatest elements.

A complete lattice (A, <) is a partially ordered set such that for any subset of A both the infimum and

the supremum of the subset are in A.

Remark 2. In particular the closed interval [a,b] € R is a complete lattice for any a,b € R under the
usual ordering of the reals. Similarly, the closed interval [A, B] ¢ RY is a complete lattice for any

A, B € R" under the component-wise ordering on R".
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Interbank Clearing in Financial Networks
with Multiple Maturities

2.1 Introduction

In this chapter we tackle the question of interbank clearing in financial systems with interbank exposures

of more than one maturity.

Typically bank default models assume, as e.g. proposed by |[Eisenberg & Noe| (2001), three stylised
principles of insolvency law which are common to many jurisdictions. These are the principles of
limited liability, which says that a financial institution never pays more than it has, absolute priority of
debt claims, implying that all outstanding debt has to be completely paid off first before shareholders can
be considered, and proportionality. The principle of proportionality states that the total value of assets
paid out in this case is distributed between all the creditors in proportion to the size of their nominal

claims.

A crucial nuance of the principle of proportionality is that all liabilities, including future liabilities, are
required to be treated equally for the purposes of proportional distribution to creditors. For example,
the UK Insolvency Service Technical Manual stipulates that: “A creditor may prove for a debt where
payment would have become due at a date later than the insolvency proceedings [...] and it is only
because the company [...] has entered into insolvency proceedings that the debt is claimed by the
creditor in advance of its due payment date. Where this occurs, the creditor is entitled to the dividend

equally with others [...],” The Insolvency Service| (2010, Chapter 36A, Section 48).

Our model explicitly incorporates this important feature. This contrasts with single maturity models
where it is assumed that assets of defaulting banks are distributed to creditors proportionally to the
short-term liabilities only. The failure to account for future liabilities in calculating the proportional
distributions, leads to an incomplete view of systemic risk in financial systems. We show that two
financial systems with the same overall interbank liabilities but different maturity profiles can lead to

different clearing outcomes. In particular, it follows that uncertainty about maturity profiles of banks’
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portfolios is a distinct source of systemic risk that is unaccounted for in single maturity models. Our

approach can be used in an analysis of systemic risk to evaluate the effect of such maturity profile

uncertainty.

2.2 Clearing in financial systems with multiple maturities

22.1 Th

e financial market

We consider a financial market consisting of N banks with indices in N' = {1,..., N}. Banks have

liabilities to each other and to external entities which are due at two different maturity dates 0 < T < T5.

We will later show that we can easily generalise our model to more than two maturities. Hence, time

t = 0 repres

ents the starting point of the analysis and we model what happens at the two maturity dates

t € {T1,T>}. We assume that all liabilities of the same maturity have the same seniority.

Each bank’s liabilities for some maturity can be represented by a liability matrix. Together with vectors

representing bank’s cash assets these are sufficient to describe the financial system at ¢ = T7. These and

other related concepts are summarised in Definition

Definition 3 (Financial system).

1. A matrix M € RiVXN is called a liability matrix if, for all i e N/, M;; = 0.

2. A financial system is given by the tuple (a, JAQNAOR ), where L) L1 are liability matrices

with maturity dates T} and T} respectively, and a € RY, v € (0, 1].

We will refer to the following quantities:

the cash assets a;

the short-term, long-term and overall liability matrices L&), LW and L := L) + LO,

respectively;

the short-term, long-term and overall total nominal liability vectors L) := L)1, L®) =
LO1and L:=L®) + LW, respectively;

the short-term, long-term and overall interbank asset vectors A®) := (L)1, AW .=
(L)1, A:= A®) + AW respectively;

the short-term and overall relative liability matrices 1) and II, respectively, which are
L g - _
given by ng) = {(_JS y and 1I;; = % for all i,7 € N if Lgs) > 0 (respectively, L; > 0) and

ng) = 0 (respectively, II;; = 0) otherwise;

the bankruptcy cost parameter .

Thus, given a matrix M of liabilities of some maturity, a bank 7 has an outstanding liability of that

maturity to

bank j if M;; > 0 and the nominal value of this liability is given by M;;. If M;; = 0 then

1 does not owe anything to j and in particular M has a zero diagonal since we assume banks do not
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Assets Liabilities

e Cash assets: a;

e Short-term interbank liabilities: EZ(S) = Zj]\il LZ(;)

e Short-term interbank loans: AES) = Zﬁv:l L;f)

e Long-term interbank liabilities: I:gl) = ij\il LEJZ.)

e Long-term interbank loans: flgl) = ij\il L;?
e Equity: E;

Table 2.1: Initial stylised balance sheet at ¢ = 0 of bank 7 € NV.

owe anything to themselves. The i*" row sum of M then gives the total nominal value of liabilities of
each bank of the relevant maturity and the " column sum gives the total nominal value of assets of that

maturity.

Table [2.1] shows the stylised balance sheet at time ¢ = 0 of bank i € A/ where the equity is defined as
Bi=a;+ A% + AD L) 1O,

Remark 4. The set of banks N is assumed to contain a ‘sink node’, e.g. in this chapter N € A/. This
node has no cash assets or liabilities. However other banks may well have liabilities to the sink node.
These represent banks’ liabilities external to the interbank market but for ease of reference we refer to
all entries of the liability matrices as ‘interbank’ liabilities. In Elsinger| (2011) it is pointed out that in
order to use a sink node in this manner external liabilities need to be treated as having the same seniority

as interbank liabilities; this is indeed our assumption in this thesis.

2.2.2 General equilibrium

In this chapter we formulate a characterisation of an equilibrium achieved by clearing the market at
the first maturity date that is based on the requirements of the UK insolvency rules as outlined in |[The

Insolvency Service| (2010), which can be heuristically summarised as follows:

* Banks are not required to make any payments either in excess of the total value of their liquidated

assets nor the total amount they owe across all maturities.

* Conversely, shareholders are not permitted to retain any value of the defaulting banks as long as

any part of any creditor’s outstanding claims remains.

* Such claims include both short-term and long-term liabilities, which are treated with the same

priority within the same seniority class.

A bank that is liquidated under the insolvency rules ceases to exist and cannot recover even if

liquidators recover sufficient assets to fully compensate all creditors.
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Suppose we are at the first maturity date ¢ = T} and suppose some banks with indices in D € A are in
default at ¢ = T7. We postpone the discussion on the cause of these defaults to Section We will

now determine a clearing equilibrium at ¢ = 7. To do so we make two assumptions.

First, we consider the case where a bank j does not default, i.e., 7 € N'\ D. Then it pays its short-term
nominal obligations Z;S) in full; in particular, it pays L§f) to every bank .

Second, we consider a bank j that defaults, i.e., 7 € D. Bank j is liable to pay its creditors all of
its available liquid asset resources, denoted by v;, subject to two constraints. Since default is costly
and lawyers and other service providers need to be paid, only a fraction v € (0, 1] of its liquid asset
resources reaches its creditors. Furthermore, we now need to consider both its short-term and its long-
term liabilities. In general, Ej > E;S) and if j has any long-term liabilities then Ej > E;S). We assume
that the creditors are not entitled to more than the overall total liabilities L;.

We therefore need to determine the liquid asset resources v that each bank has at time ¢ = 77. We

characterise v in terms of a fixed point problem for a given financial system (a, AN AOR v)-

Definition 5. Let (a, L(*), L(: +) be a financial system and D ¢ N. Define ¥(+;D) : [0,a + A] -
[0,a + A] where [0,a + A] c RY and, for each i € NV,

\I/i(’U; D) =a; + Z L;f) + Z HJZ(E] A ’y’Uj).
jeN\D jeD

We refer to any vector v € [0, a + A] satisfying v = U (v; D) as a general liquid asset vector with respect
to D.

Remark 6. Note that, indeed, 0 < ¥(v; D); < a; + A; for all v and 4. This follows directly from the fact
that for each 7,7 € N and v ¢ Riv, Hji(I:j A vvj) < HﬁI:j = Lj;. Therefore, since Léf) < Ly; for all
i,j € N, we have that U (v; D); < a; + X jen Lji = a; + As.

Recall that, by Remark in Chapter the set [0, a + A] forms a complete lattice under the component-

wise ordering of RY.

Definition [5] defines the liquid asset vector with respect to a default set D. In the following we discuss

properties of the default set D before we propose two approaches to define it in Subsection [2.3.1]

2.2.3 Identification of default

Most models based on the [Eisenberg & Noe (2001) framework define default by checking whether
some value is less than the total nominal short-term liabilities L(*). This leads to the following general

definition.

Definition 7. Let (a, L(®), L);~) be a financial system of bank A with the total nominal short-term

liabilities vector L(*). We define the function D by setting, for each vector x € ]Rfrv ,

D(z) = {ie N |z < L} @2.1)
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This allows us to define fundamental defaults, i.e., defaults that occur even if everyone is assumed to

satisfy their payment obligations. The fundamental default set is given by

7

F = D(a+A(s)) ={ieN|a;+ Zj\:/Lg‘?) < f/l(s)},
je

Fundamental defaults can be read off directly from the stylised balance sheet. It is reasonable to assume

that any default set D satisfies F € D. Furthermore it is reasonable to assume that F = @ implies D = &.

Nevertheless, F is too small to be a suitable choice for the default set D. Not all defaults are funda-
mental defaults. A bank may have interbank assets whose book value is sufficient but contingent on
its counterparties avoiding default. If some of the counterparties default this would cause the market
value of assets to be adjusted down, making the bank illiquid and thus triggering its default. This type
of default is known as a contagious default and is well-established as one of the key drivers of systemic

risk. These contagious defaults cannot be directly determined from the stylised balance sheet.

To capture some of these contagious defaults, we can ask whether some bank ¢ is illiquid in the sense
that its liquid assets v; are insufficient for it to meet its own short-term liabilities in full. The set of
such illiquid banks is then given by D(v). We would expect that for any default set D one should have
D(v) € D. As with the fundamental defaults, the converse is not necessarily true. Since default changes
the rules of distribution between counterparties, it may be the case that after a bank defaults its liquid
assets exceed its short-term liabilities. However, default is an absorbing state and, once defaulted, a bank

cannot recover. Thus D(v) may also be too small to be a suitable choice for the default set D.

Combining these considerations leads to the necessary condition on the default set D:
1)D2FuD(v), 2.)(F=2=7D=2). (2.2)

Remark 8. Another simple notion, which can be read directly off a stylised balance sheet and is im-
portant from the accounting point of view is one of insolvency. A bank 1 is insolvent if its total nominal
liabilities L; exceed its total nominal assets a; + A;. Since A = A + AW and L = L + LO | this is
equivalent to saying that a; + flgs) + (AEZ) - Egl)) < EZ(S) and so we can write the set of insolvent banks
as D(a+A®) + (A0 — L1)Y),

At the time an insolvent bank’s short-term liabilities are due it need not be in default provided it can pay
its short-term liabilities. Moreover, a solvent bank may default if it does not have sufficient liquidity to
meet its short-term liabilities. Thus D (a + A®) + (A® — L)) is not a good candidate for the default
set D.

2.3 Clearing at the first maturity

2.3.1 Algorithmic and functional approaches to defining default

In the following we introduce two particular approaches to formalise the notion of default and hence to

define the default set D, which we refer to as the algorithmic approach and the functional approach. In
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Section [2.3.2) we will discuss the conditions under which these approaches are well-defined and ensure
existence of liquid asset vectors. Alternative definitions of a default set are also possible but we will not

investigate them further here.

Algorithmic approach

In the algorithmic approach we will start by providing an algorithm which outputs a vector and a set,

which we define as a liquid asset vector and a default set.

It is similar in spirit to the Fictitious Default Algorithm (FDA) developed by [Eisenberg & Noe| (2001)),
but in contrast to the FDA we use it to define default and the liquid asset vector and do not just use it as

a convenient computational tool to calculate a predefined quantity of interest.

We consider a fixed financial system (a, AN AOR ~) and make the crucial modelling assumption that
default is an absorbing state. In particular, we assume that once a bank enters the default set it will stay
there. Furthermore, a bank enters the default set if and only if it has less liquid assets than total short-

term liabilities. Algorithm |1| formalises this idea. Thus, for a given financial system (a, L(S),L(l);’y)

Algorithm 1: Algorithmic definition of the default set
1 Set DO =g, v =g+ A n=1.
2 Set

D™ = p= y D).

3 If D = D=1 gt0p and return D* = D™D and v* = v 1.

4 Else determine the greatest fixed point o™ satisfying
o™ = g (p(™; D), (2.3)

where U is defined in Definition [3

5 Set n=n+1 and go to 2.

Algorithm [1| computes a vector v* and a set D* which will correspond to a liquid asset vector with

respect to the default set D*.

Definition 9. Let D* and v* be the outputs of Algorithm[I] We refer to

» D* as the algorithmic default set; and
» v* as the algorithmic liquid asset vector with respect to D*.

Proposition 10. Ler (a, L(S),L(l);’y) be a financial system and let D* and v* be the outputs of Algo-

rithm|l| Then, the algorithmic liquid asset vector v* is a general liquid asset vector with respect to D*.

Moreover, D* satisfies the criteria specified in (2.2).
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Proof. By construction, v* = v(™ and D* = D" for some n and hence v* = U(v*;D*). Hence, by

Definition[5} v* is a general liquid asset vector with respect to D*.

To see that the algorithmic default set D* satisfies the criteria in (2.2)), note that the set of fundamental
defaults is given by F = D(a + A®)) = D(v(®)) = D) ¢ D*. Furthermore, if F = @ = D then
Algorithmterminates with D* = g and v* = a + A®) = U(v*; @). O

Functional approach

We will argue in the following sections that the algorithmic approach is a more general approach that
works for any financial system with multiple maturities. However, it is instructive to consider why
the more conventional route along the lines of [Eisenberg & Noe| (2001)) is problematic in the multiple
maturity setting. To this end we consider an alternative approach where the default set is characterised

as a closed-form function D(v) of the liquid asset vector.

Definition 11. Let (a, L(®), L(); ) be a financial system. Define ¥ : [0,a + A] — [0,a + A] where

{IV’I(U) =a; + Z L;f) + Z Hjivj. 2.4)
JN D (v) jeD(v)

We refer to any vector v € [0, a + A] satisfying v = U(v) as a functional liquid asset vector and the set

D(v) as a functional default set.
Proposition 12. Let (a, L), L") ~) be a financial system. Then U(v) = W(v; D(v)) for all v €
[0,a + A].

Proof. Letv e RY, then forall j € D(v) = {i e N' | v; < I:ES)} it holds that yv; < E§.5) < L; and hence
Ej A~yv; = ~yv;. Hence for all i € N/

\I’(U, D(U))Z =a; + Z Lgf) + Z Hji(l_;j A "}/’Uj)

JeN~D(v) jeD(v)

=a; + Z Lgf) + Z Hji')’vj
JND(v) jeD(v)

= T;(v).

The following proposition provides the link between functional and general liquid asset vectors.

Proposition 13. Let (a, JAQNAOR ) be a financial system and let v be a functional liquid asset vector.

Then v is a general liquid asset vector with respect to D(v).

Proof. Suppose v be a functional liquid asset vector. Then by Proposition v = ¥U(v;D(v)) and
hence the result follows by Definition 5] 0

We will show that in contrast to the algorithmic liquid asset vector, which exists for all financial systems,

a functional liquid asset vector need not exist in a multiple maturity setting.
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2.3.2 Existence of liquid asset vectors

Monotonicity of clearing functions is crucial to establishing the existence of clearing solutions. In the
single maturity setting monotonicity of clearing functions arises naturally. However, that is no longer
the case once the financial system has more than one maturity. Indeed, the functional liquid asset vector
does not exist for all financial systems and in those cases the clearing function is not monotonic. Never-
theless, there is a sufficient (but not necessary) monotonicity condition that guarantees the existence of

a functional liquid asset vector:

Definition 14 (Monotonicity Condition). Let (a, L(*), L();~) be a financial system, with short term
and overall relative liability matrix I1¢*) and 11, respectively. We refer to a financial system as satisfying
the Monotonicity Condition[I4]if and only if

1) > A1 Vi, j e V.

From a financial point of view Monotonicity Condition [I4]just asserts that for any bank 7 in the system it
is guaranteed that if it defaults it does not pay a larger proportion of its liquid assets to any bank j in the
system than its original proportion of short-term liabilities to this particular bank j. From a mathematical
point of view, Monotonicity Condition [14{ensures the monotonicity of the function 0. Furthermore, it
highlights the fact that the distinction between I1¢) and II in our model is a crucial element that is

missing in single maturity models.

Remark 15. Note, that networks in which LEJ‘?) =0 and Lg) > 0 for some %, j will never satisfy Mono-
tonicity Condition Furthermore, if v = 1, Monotonicity Condition |14|implies ) = 11

Remark 16. Suppose LY = Z where Z is a zero matrix. Then the short-term and overall nominal
liabilities vectors L(*) and L are equal and hence so are the short-term and overall relative liability
matrices I1(®) and II. Thus Monotonicity Conditionis always satisfied if LW =17,

The following lemma provides the link between the clearing functions under the two approaches intro-

duced above as well as sufficient conditions for their monotonicity.

Lemma 17. Let S = (a, L), LY ~) be a financial system and d : RY — P(N') some function, where
P denotes the power set. Let ¥¢: [0,a + A] - [0,a + A] be the function given by x — U (x;d(z)) for
all z € [0,a + A].

1. Suppose d = D, i.e. d(z) = D for all z € [0,a + A] and some fixed D € N. Then ¥¢ = U(-;D)
and U is monotonically increasing.

2. Suppose d = D, i.e. d(x) = D(x) ={ie N | z; < Egs)}for all x € [0,a + A] and suppose that S
satisfies Monotonicity Condition Then U = U and U is monotonically increasing.

Proof. 1. Suppose d = D for some fixed D ¢ N. Then, for each z ¢ [0,a + A], U(z) =
U (z;d(x)) = U(x; D) and hence U = U(-; D).
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Let 2/, € R, with 2’ < z. Define E(z') = {i € D | vz} < L;} and, similarly, E(x). Since
vy < ya; forall i € N, we see that E(z) ¢ E(x") € N. Then, for each i € N/, we have

Vi) = Ui D) = o+ Y L)+ 3 WL Ay
jeN\D jeD

=a; + Z Lgf) + Z Hjiij + Z H]Z.%';
JeND jeDNE(z') jeE(x")

DI D SN MRSV S 1 P
JeN\D jeDNE(z') jeE(x")

=a; + Z L§f) + Z le' + 7y Z H]Zx; + Z (HJZ’)/Z‘; - L]z)
JEN\D jeDNE(z) jeE(z) jeE(z")NE(z)

<a; + Z Lgf) + Z Lji +y Z HJZSC;
JjeN\D jeDNE(x) jeE(x)

<ai+ Y L4 S Livy Y I,
JENND jeDNE(x) jeB(z)

- Uy(2;D) = W(x).
The first inequality (on the fifth line) follows since vz, < L; for j € E(z") and hence Iy’ -

Lj; < HjiI:j — Lj; = 0. The second inequality (on the sixth line) follows since x' < x by assump-

tion. Therefore U¥ is monotonic.

2. Suppose d = D. Then, for each z € [0,a + A], ¥¢(z) = U(x;d(x)) = ¥(z; D(x)) and hence, by
Proposition g = .

Again, let ', x € R, with 2’ < z. Note that D(x) € D(z") ¢ N. Then, for each i € N/, we have

d T s
Ui(a') =Wi(a") =a;+ ). L§‘i) +y Y, Iy}

JeN D) jeD(w")
=a; + Z L;f) + 7y Z Hﬂl‘z + 7y Z Hﬂl‘g
jeN~D(z") jeD(z")ND(x) jeD(x)

LR ID S U S | A S | P

jeN~D(z") jeD(z")\D(z) jeD(x)
SEED SUD AN S | 520 A S 1P
jeN~D(z") jeD(z")\D(z) jeD(z)
DY) LD S AT S |
JeN D () jeD(@)D() jeD(x)
=a; + Z Lﬁf) + 7y Z Hjia;j
JENND(x) jeD ()

- Ti(2) = W(2).

The first inequality (on the third line) follows due to the Monotonicity Condition [I4]and the fact
that v < 1. The second inequality (on the fourth line) follows because x’ < = by assumption and

) < f/f) for all j € D(z"). Therefore ¥¢ is monotonic.

g

We use Lemma [I7]to establish the criteria for existence of algorithmic clearing solutions in Theorem I§]
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and of functional clearing solutions in Theorem [I9] We will discuss the construction of the liquid asset

vectors under both approaches in Section [2.3.4

Theorem 18. Ler (a, L), L(l);’y) be a financial system. Then, the greatest solution to the fixed-point
problem exists and lies in [0, a + A). Furthermore, Algorithm|l|terminates after a finite number of

steps.

Proof. For each n, D) depends on v but not on v("). Therefore by Lemma , U( D(”)) is
monotonic and by Remark [6]is a mapping from a complete lattice to itself. Hence, by the Tarski-Knaster
Theorem (Theorem |1} chapter , U (s D(”)) has the greatest fixed point, which lies within the image of
U(;DM), ie. in [0,a+ A]. In Algorithm this fixed point is denoted v("™). Hence whenever D™ is
well-defined, D("*1) is also well-defined until the algorithm terminates.

In particular, (D(”))n>0 is a well-defined and, by construction, non-decreasing sequence of subsets of

the finite set A". Hence there exists the least n such that D) = D=1 and so Algorithm terminates

after n iterations. OJ

Theorem 19 (Sufficient condition for the existence of a functional liquid asset vector). Let (a, LG ), L® )
be a financial system and assume that the Monotonicity Condition|l4|is satisfied. Then there exist func-
tional liquid asset vectors v~ (the least functional liquid asset vector) and v* (the greatest functional

liquid asset vector) such that for any functional liquid asset vector v we have that v~ < v < v™.

Proof. The result follows directly by the application of the Tarski-Knaster Theorem (Theorem|I] chapter
D since U is monotonic by Lemma [17| and is a mapping from a complete lattice to itself by Remark
6l O

The following proposition demonstrates that the Monotonicity Condition [I4]is not a necessary condition

but nor is it a redundant condition.

Proposition 20.

1. There exists a financial system that does not satisfy the Monotonicity Condition (14| for which a

functional liquid asset vector exists.

2. There also exists a financial system that does not satisfy the Monotonicity Condition|I4|for which

no functional liquid asset vector exists.

Proof. 1. We first provide one example of a financial system in which the functional liquid asset

vector exists even though the Monotonicity Condition |14|is not satisfied.

Let (a, L(*), L(); 1) be a financial system of three banks where

1 0 2 2 000 02 2
a=98|, L& =12 0 98|, LO=]1 0 1|, L=|3 0 99
10 00 0 000 00 0
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Then,
11 1 1
7.(s) = ro_ (s) _ |1 49 _|1 33
LY =1100|, L=]102| II'** = = 0 = IT= 51 0 5
0 0 0O 0 O 0 0 O

In particular, we see that Monotonicity Condition |14]is not satisfied because Hg‘;) = 5—10 < 13—2 =

I151. Nevertheless, it can be verified that (vy,v2,v3)" = (332,99139 1091)™ ~ (3.94,99.97,109.5)"

is a functional liquid asset vector.

. Next, we provide an example of a financial system in which the Monotonicity Condition[I4]is not

satisfied and a functional liquid asset vector does not exist.

We construct an example with three banks in which only bank 1 is in fundamental default. We

set up the network such that this leads to a contagious default of bank 2 which is asset rich. We

introduce long-term liabilities in such a way that once bank 2 defaults it repays a much larger

proportion of its debt to bank 1 than if it were not in default. This leads to bank 1 being able to
7 (s)

pay more than L.

Let (a, L), L®; 1) be a financial system of three banks where

1 02 2 0 2 2 0 4 4
a=|98], L®W=12 0 98|, LO =100 0 o L=|102 0 98]
10 00 0 0 0 0 0 0 0
Then,
i 5 R R
L&) =1100], L=|200], n® =L o Bf =] ¢ A
0 0 0 0 0 0 0 0

Note that Monotonicity Condition |14|is not satisfied, since for example Hgsl) = % < % = Ilo;.

Hence, if bank 2 defaults it repays a larger proportion to bank 1 than if it survives. We show in the

following that no functional liquid asset vector exists.

According to Definition bank 3 can never default since it does not have any short-term (or
indeed any) liabilities. In particular, since ¥ is non-negative, we have that {i e N | ¥(v); <0} = &

for any v. Hence we need to consider four cases:

All banks survive. Suppose there exists a functional liquid asset vector v, such that D(v) = @.
Hence, v; > Egs) for all 4. Then, for all i € AV,

Vi =a; + Z L;f)
jeN

Consider i = 1. Thenv; = 1+2=3<4 = Egs), implying that 1 € D(v) and therefore
contradicting the assumption that D(v) = @.

Only bank 1 defaults. Suppose there exists a functional liquid asset vector v, such that D(v) =
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{i:v; < L} = {1}. Then,
vy = S L -142+0=-3<4=L
1 al + i + 2+ < 1
je(23}

1 1 -
vy = ag + L) + g0, = 98 + 0 + 53=995 <100 = 8.

Hence 2 € D(v) contradicting the assumption that D(v) = {i e N : v; < Egs)} ={1}.

Only bank 2 defaults. Suppose there exists a functional liquid asset vector v, such that D(v) =
{ieN:v< EZ(.S)} = {2}. Then,
v=ax+ Y LY =98+42+0=100= L.
je{1,3}
Hence 2 ¢ D(v), contradicting our assumption.

Both bank 1 and bank 2 default. Suppose there exists a functional liquid asset vector v, such
that D(v) = {i e N : v; < L} = {1,2}. Then,
_ (s) _ 51
V1 = a1 +L3i +H21’l)2 = 1+0+m-7)2,

1
(%) :a2+L§§)+H12v1 =98+§'1)1.

We then obtain that (1 - ;i—f&))vl =1+ 9815—01O and hence v; ~ 68.43 > 4 = EES). Therefore

1 ¢ D(v), contradicting our assumption.

Hence, in all cases we get a contradiction and therefore no functional liquid asset vector exists.

O

2.3.3 Relationship between clearing models

In this section we look at the relationship between several clearing models. In particular, we show that
the algorithmic approach is indeed a proper generalisation of the functional approach, which in turn
generalises the models of [Eisenberg & Noe (2001)) and |Rogers & Veraart (2013)).

We introduce a new Algorithm [2] which can be used to construct a functional liquid asset vector under
the Monotonicity Condition We then show that under the Monotonicity Condition [14] Algorithm
is reduced to Algorithm 2] Therefore the algorithmic liquid asset vector and the algorithmic default set
coincide with the functional liquid asset vector and the functional default set under the Monotonicity
Condition

The only difference between Algorithm (1| and Algorithm [2] is in step 2 when the new default set is
defined. Algorithm[2]only considers banks in default which in the current round have fewer liquid assets
than nominal short term liabilities. Algorithm [1|makes the absorbing property of default explicit in the
definition, by additionally always keeping those banks in the default set that have defaulted in one of the

previous rounds of the algorithm.

The following proposition confirms that Algorithm [2)indeed produces the claimed outputs.
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Proposition 21. Let D* and ©* be the output of Algorithm |2 Then, D* = D(%*) and hence D* is a

functional default set and U* is a functional liquid asset vector.

Proof. By construction in Algorithm [2, o* = »(™) and D* = D™ for some n. Moreover, D) =
D(v(™) = D(4*). Hence v* = ¥ (v*; D*) and so the result follows by Proposition O

Algorithm 2: Functional approach algorithm under Monotonicity Condition
1 Set DO = a, v =g+ ]1(8)7 n=1.
2 Set

DM = D) = {i e N | UZ.(nfl) < I_/Es)}.

3 If D™ = D=1 stop and return D* = DD and 7* = vV,

4 Else determine the greatest fixed point o™ satisfying
o™ = \I,(v(n); D(”)), (2.5)

where W is defined in Definition Bl

5 Set n=n+1 and go to 2.

By inspection, Algorithm |1| and [2| look similar. Theorem [22] establishes that under the Monotonicity
Condition [[4]they are in fact the same algorithm.

Theorem 22. Let (a, LG ), L(l); ) be a financial system satisfying Monotonicity Condition Then

1. Algorithm @ produces a monotonically decreasing sequence of vectors (v(") )ns0 such that o™ <
v <a+ A V> 1anda monotonically increasing sequence of sets (D("))n>g such that

DD ¢ DM v > 1. In particular D = D(v™ D) vn > 1.

2. Algorithms[I)\and 2| coincide.
Proof. The proof uses similar arguments as in|Rogers & Veraart (2013 Proof of Theorem 3.7).

1. We prove that v(™ < v("1) <+ A®) vn > 1 and D™ = D(v(® D) ¥n > 1 by induction.
Note that for all n and j € N we have I_Lj A fyvj(.n) < "yvj(»n) < vj(n). Furthermore, for all n and
Je D(v(")) we also have v](n) < E;S) . Therefore, by the Monotonicity Condition for all n,

i e N and j € D(v("™) we have that

Iji(L aqo™); <P LE = L) (2.6)

Now let 7 = 1. Then by the definition of the algorithm D) = D) u D(v(?) = gu D(v(D) =
D(v(®). Next we show that v < (0 = ¢ + A(),
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By (2:6), for all i € \V, we have

‘I’Z(’U(O)’ D(l)) =a; + Z L;ZS) + Z H]@([_/] A ’)/’UJ(O))
JeEN~DM jeD)

() (s)
<ai+ ) L+ Y Ly
jeN~DD) jeDM)

=a;+ Y, Lj(.f) =a; + AES) = ’Ui(o).
jeN

By Lemma|1701] W(; D™) is monotonic and so
0< gﬂﬁl(v(ﬂ); D(l)) < \Ilk(v(o); D) < 0O — g+ AG)

for all & where W* is a k-fold composition of W. Since this sequence is bounded from below by
zero, the limit v := limy_, oo VIGIOR D(l)) exists and solves v(1) = ¥ (v(); D(l)).

Induction hypothesis: Suppose for an n € N it holds that
D) _ D(v(”_l)),
o™ <D <O = g4 4G,
We show that
p(n+l) _ D(U(")),
(1) < (™ < 0O — g+ AG)
We start with the default sets:
D(n+1) _ ,D(n) U D(U(n)) ind. hyg. part 1 D(U(n_l)) U D(U(n)) ind. hyg. part 2 D(U(n))
Next we consider the vector
,U(n+1) _ \I/(U(n+1);D(n+1)) _ \I/(’l)(n+1); D(,U(n)))

Then by (2.6), for all i € N, we have
W, (o5 D)) -
—ai+ Y L4 Y (L aqei™)

jGN\'D("Hl) jeD(n+1>
———
D(v(n)
=a; + E L;f) + Z Hﬂ([:] A ’}/’U](-n)) + Z Hﬂ(I:J N ’)/’U](-n))
JNSD(v(M) jeD(un-1)) JeD(M)ND(p()
<a; + Z L;f) + Z HJZ(EJ A vvj(n)) + 2 Lgf)
jeN~D(v(™) jeD(v(n=1)) jeD(vM)ND(v(n-1))
=a; + Z L;f) + Z Hﬂ(.i] A ’}/U](n))
JEN~D(v(" 1) jeD(v("1)
N—— o ——
p(n) p(n)

= \Ifi(v("); D(")) = UZ-(n) <a;+ flgs).
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Again, as before one can show by Lemma T7][T] that

0< \I/k+l(v(n);D(n+l)) < \I/k(v(n),D(n+l)) < U(n) ind. hyg part 2 - A(s)

for all & and hence the limit v(™*1) := limy,_, o, ¥*(v(™; D) exists, solves v(*+1) = ¥ (p(*+1), D))

and in particular satisfies v("*1) < v(") < (0.

2. Since the only difference between the two algorithms is the definition of the default sets in Step 2
and we have just proved in (i) that the default sets coincide, both algorithms are indeed identical

under the Monotonicity Condition [14]
O

The assumption of Monotonicity Condition[I4]is crucial. Without it Algorithm [2]can fail to terminate.

Proposition 23. There exists a financial system not satisfying the Monotonicity Condition [I4| such that
the sequence of vectors (U(”) )n>0 constructed in Algorithm @ is not monotonic and Algorithm 2| does

not terminate.

Proof. Let (a, JAQNACK 1) be as in the proof of Proposition 2012 where, as mentioned above, Mono-
tonicity Condition (14| fails. Algorithm [2| would fail to terminate since the sequences v(") and D(v("))

would evolve as follows

v = (3,100,110) D) = {1}
o = (3,99.5,109.5) D) ={1,2}
v ~ (68.43,132.21,93.43) Dw?P)=g
03 = (3,100, 110) D™y = {1}
and it is clear that this sequence would not terminate. O

By Remark a functional liquid asset vector exists for any financial system (a, L) Z; ~) where Z is
a zero matrix. In fact, the system then reduces to a special case of the model by Rogers & Veraart|(2013))
where the parameters modelling the default costs inRogers & Veraart (2013)) denoted by «, 3 are all the
same and equal to v, i.e v = o = 3. Proposition [24] formalises this relationship.

Proposition 24. Let (a, L) 7z ) be a financial system where Z is a zero matrix.

1. Let v be a functional liquid asset vector. Let q be a vector defined by,

LY ifie N\ D(v),
q; =
i, ifie D(v),
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for each i € N'. Then q is a clearing vector in the sense of [Rogers & Veraart (2013)), i.e., q solves

the fixed-point problem:

0= L;, l:fai + Xjen 1jig 2 I_-/ja 27
yai +v Xjen Whiqs, i ai+ ¥jen Iig; < L.

2. Let q be a clearing vector in the sense of Rogers & Veraart (2013)), i.e., a solution of (2.7). Then

v = a + 11" q is a functional liquid asset vector.
Proof. Since L) = Z, we have that L = L(®) and IT = II(®).
1. Forie N we have

V; = a; + Z L§f) + Z H]’i YU

jEN\D(U) —— jeD(v) '
=I1; E(s) =q;
Jr g
—
=q;
=a;+ ) Ijig;.
jex

Hence, D(v) = {i € N | a; + ¥ jenr ILjiqj < Ly} Hence, for all i € D(v)

i =i =vai+ Y gy,
jeN

and for all i € N/ \ D(v) we have that ¢; = Egs) = L;. Hence, ¢ satisfies the fixed point equation
(2.7).

2. Let ¢ be a solution to (2.7). We show that v = a + II"q is a functional liquid asset vector, i.e.,
¥ (v) = v. Note that D(v) = {i € N | a; + ¥jenr ILjiqj < L;}. Therefore, for all i € N

CI'/Z(’U) =a; + Z L;f) + Z Hji YY;
jeN~D(v) ~——  jeD(v) —
11, L =0
gt M4
——
95
=a; + Z HjiCIj = ;.
jeN

d

If v = 1, then (a, L) Z; 1) is effectively a (single maturity) financial system as defined in Eisenberg &

Noe| (2001)) as the following proposition demonstrates.

Proposition 25. Let (a, L) Z: 1) be a financial system where Z is a zero matrix.

1. Let v a functional liquid asset vector. Let p := L) av. Thenpisa clearing vector in the sense of

Eisenberg & Noe|(2001)), i.e., p solves the fixed-point problem

p=L®) A(a+II"p). (2.8)
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2. Let p be a clearing vector in the sense of Eisenberg & Noe|(2001), i.e., a solution of (2.8). Then

v = a + II"p is a functional liquid asset vector.

Proof. Since L) = Z, we have that L = L), L = L(9) and II = TI(*) The result follows directly from
Proposition [24] with y = 1.

1. Let v be a functional liquid asset vector and D(v) = {i € N | v; < I_/Es)}. Hence, with v = 1
in Proposition g = L A v. Furthermore, the fixed point equation lb simplifies to g =
L) A a+ 7 g which is exactly 1) and hence the result follows.

2. Similarly, since the fixed point equations (2.7) and (2.8) coincide for v = 1 the result follows
directly from Proposition

2.3.4 Construction of liquid asset vectors

One of the questions we postponed answering was how to construct the liquid asset vectors (and hence

default sets) using Algorithms |1| and [2| given that it requires us to compute a solution to the fixed-point
problems (2.3) and (2.5)), respectively.

In both fixed-point problems, for each n, the relevant set D) is fixed. This leads to the following

general lemma, which we will use to construct the solutions to these fixed-point problems.
Lemma 26. Let (a, L), L") ~) be a financial system, D ¢ N some fixed set of m := |D| banks and
b € R some vector. Suppose that

1. v<1;o0r

2. b;>0forallieD.

Then the system of m linear equations x; = b; + v ¥ jeplljix; Vi € D has a unique non-negative

solution.

Proof. The system of m linear equations has a unique solution, z € R7", if it can be expressed as
-1
T = (I - (HDD)T) b,
where (I-~ (IIpp)") is invertible.

We note that IIpp is a row-substochastic matrix. By Lemma below, we only need to consider the
case where y = 1 and the spectral radius of IIpp is exactly 1. In this case, by Lemma[27]2] below, there
is a set C € D such that ¥ ¢ IT;; = 1 for each i € C. By assumption, if v = 1 then b; > 0 and so

T; = bl + Z Hjia:j

jeD
2 bl + Z Hjiwj > Z Hjiﬂj‘j.
jeC jeC
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By summing x; for all ¢ € C, we arrive at the contradiction

DT> Z%‘(Zﬂjz‘) = aj.

ieC jeC jeC jeC

Thus v < 1 and so (I =5 (ILp(nyp(ny )T) is invertible and z is the well-defined and unique solution to the

system of linear equations.

Non-negativity of z also follows by Lemma [27][T| below. O

The technical Lemma[27] used in the proof of Lemma[26] is as follows.

Lemma 27. Suppose 11 ¢ RY*N is a row-substochastic matrix, 0 < o < 1 its spectral radius and

0 <~ <1 aconstant.

1. If v < 1 or o < 1 then the matrix (1 —~II") is invertible and (1 — YII") ! is non-negative.

2. If v =1 and o = 1 then there exists a set C € N such that for all i € C we have that 2jec 1Lij = 1.

Proof. 1. If v = 0 then (I - ~II") = I, which is clearly invertible with a non-negative inverse. So we

assume that 0 < .

Since p is the spectral radius of II, it is also the spectral radius of II". Since II is a row sub-
stochastic matrix, we have that o < 1. As II" is non-negative, standard results for M-matrices (see,
for example, Theorem 2.5.3.2 and 2.5.3.17 in |Horn & Johnson| (1991)) imply that (ol — II7) is
invertible with a non-negative inverse if and only if & > . Seta =1 >0. If y<1thena>13> o
andif v = 1 but o < 1 then a = 1 > o. Hence (I-~II") = o' (oI —II7) is invertible with a

non-negative inverse.

2. As a standard result in the theory of finite-state Markov chains (see, for example, Theorem 2.1
in [Karlin & Taylor] (1981)), the number of sets C ¢ N satisfying the property that for all 7 € C
> jec ILij = 1 is equal to the multiplicity of the eigenvalue 1 of II. Since ¢ = 1 by assumption, the

multiplicity must be at least 1 and hence at least one such set C must exist.

O

Equipped with Lemma [26] we now consider the construction of the clearing solution under functional

approach.

Proposition 28. Ler (a, AN AOR v) be a financial system satisfying the Monotonicity Condition
such that a; > 0 for all i € N. Then, for each n, the fixed-point problem ([2.3) in Algorithm 2] has a

unique non-negative solution given by

ifie D),

L,
o

3
ai + Tjenapr L +9 Siepey Wiy, ifi e NN DO,
_ T\~ 1 (s) T (n) ._ (n)
where x = (I -7 (Ipmypm)) ) ap(n) + (Lﬁ(n)p(n)) 1, | and L' = N N\ D™
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Proof. By Theorem D) ¢ p(+1) = D(v(™) and, under the Monotonicity Condition o™ is
a fixed point of W(-; D(™). Then for all j € D™ we have that Lin 'yv](n) = 'yv](n). Therefore the
fixed-point problem (2.5 in Algorithm[2]is in a fact a system of linear equations:

o™ = 00Dy =g+ Y LD wy Y M, 2.9)
jgN\'D(”) jED(n)

for i € N. Moreover, it is sufficient to consider only for i € D™ Indeed, if = ¢ R, where
m := ]D(")L is some such solution then we can simply set vi(") i= a; for i € D™ and vi(n) = a; +
S jenrpe L+ Tjepew Wi for i € N~ D,
Setting b; := a; + Zje./\/'\’D(") Lg.f) for each i € D), we note that b; >a; >0forallie D) Therefore,
by Lemma x is a unique solution to the system of linear equations fori e D™ . In particular,
letting £(™) := N\ D we can write

-1

z=(I-v(Ipwmpm)') b,

]
where (I -7 (TLp(yp) ") is invertible and b = ap ) + (L(;'()m D(n)) 10

Non-negativity of v("™) then follows by Lemma and monotonicity of ¥ (Lemma . ]

Proposition allows us to explicitly construct functional liquid asset vectors for financial systems
satisfying the Monotonicity Condition[T4] This in turn lets us construct algorithmic liquid asset vectors
for arbitrary financial systems, as shown in the next proposition. The key observation is that for each n

in Algorithm the banks in the set D(") can be treated as a financial system in its own right.

Proposition 29. Ler (a, AN AOR ) be a financial system such that a; > 0 for all i € N'. For each n
in Algorithm|I|with D™ # & we can construct a financial system Sy, of |D(")| + 1 banks such that S,
satisfies the Monotonicity Condition 14| and v, the solution to the fixed-point problem , is given
by

S _ | ifie D),

3 —
@i+ X jer D) L§-§) + ¥ jepon Wji( Ly Ayay), ifi e N\ DM,

where x is the greatest functional liquid asset vector of Sy,
The precise form of the system .S, is given in the proof below.

Proof. To simplify the notation we set m := |D(")| and in this proof assume that whenever, for some %,
we let 1 < i < m that means that i € D), In this context, if 7 = m + 1 then ¢ ¢ . Moreover, we set
L) = NN D™ andlet b e R A e Rﬁmﬂ)x(mﬂ) be given by

a1+ Yjepm Lﬁ) Liy - Lip % = Yhe1 Lk
b= e | A= [ :
am + Zje,c(") ij Lml me Tm - Zk:l Lmk
0 0 0 0
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It is clear that Z, the (m + 1) x (m + 1) zero matrix, is a liability matrices. To see that A is a liability
matrix, we need to check that the last column is nonnegative and all other properties follow immediately
from the definition. For all i € {1,...,m} we have v Y./ Lix < Y5ty Li < Z]kvzl L, = L;. Since

Li>~ Yreq Lik < % - Yt Lk > 0 the last column is indeed nonnegative.
So we define a financial system S, := (b, A, Z; 1) on the set of m + 1 banks containing D).

Since 5, has no long-term liabilities, we denote both the short-term and overall total nominal liabilities
vector of .S, by A and we immediately see that A; = }YI_/Z- for 1 < i < mand A,,.1 = 0. Moreover, the
short-term and overall relative liability matrices of S,, are also the same. Denoting them by ©(*) and ©,
respectively, we have that O¢) =© > 1-0O and so the Monotonicity Conditionis satisfied. Note that

for 1 <7,7 < m we have

Aij Ly

Suppose that 2 € R7*! is some functional liquid asset vector of .S,, with respect to
D(@)={ie{l,....mm+1} |z <A;} = {i e D™ | ya; < L;},

where we used the convention that the m elements of D) are labelled by 1,...,m, and the last equality

holds because A,,,+1 = 0 and hence the index m + 1 will never be in the default set.

Since z is a functional liquid asset vector and since Afilli = 0 for all i € D("™), we have for each i € D(™)

zi=Wi(x)=bi+ Y Au+l- Y O

jep(”)\D(x) ]GD(JZ‘)

=a; + Z L;f) + Z sz' + Z 'YHjixj
jeN\D(n) je'D(”)\D(x) jeD(z)

caiv Y LY+ Y HuLj+y Y My (2.10)
jEN\'D(”) je'D(”)\D(x) jGD(.’E)

sai+ Y LY+ Y (L Ava)
JEND() jeD(™)

= U, (z; D).

Then, we set
; for i e D),
o™ = “ i ) o o @2.11)
a; + ZjeN\D(”) Lji + Zje’D(") HJZ(L] N ’)/JE]') fori e N \ D,

Note that \I!(v(”); D(")) does not depend on vi(n) for i € A"~ D). Hence, from we immediately
see that vi(n) = ;(v™; D) forall i e D™,

Furthermore, for all i e A~ D(™) we have by that vi(n) =0, (v(™; D),

Hence we have shown that ¥ ((v(™); D)) = ("), O

Remark 30. We showed in Proposition 24 that clearing in the |Rogers & Veraart| (2013) model can be

formulated in terms of the functional liquid asset vector. In that paper it was observed that, unlike in
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Eisenberg & Noe|(2001), even when a > 0 the clearing vectors are not necessarily unique and therefore

the same observation must hold of functional liquid asset vectors.

One interesting consequence of Lemma [26is that it implies that there are at most a finite number of
functional liquid asset vectors for any given financial system with a > 0. This follows from the fact that
there are only a finite number of possible default sets and for each such possible default set there is at

most one v satisfying Definition

2.3.5 Uncertainty of the maturity profile

The ability to construct algorithmic liquid asset vectors and default sets for any financial system allows
us to demonstrate that the maturity profile of a financial system has a substantial impact on which banks

can default.

Proposition 31. There exists a financial system Si = (a,L(S),L(l);’y) with the algorithmic default
set DY such that the financial system Sy := (a, L) + LY Z:~), where Z is a zero matrix, has the
algorithmic default set D5 that satisfies D5 ¢ D7

Proof. Let S = (a, JAQN AR 1) denote the financial system introduced in the proof of Proposition|20}2
and also used in the proof of Proposition 23]above. In Algorithm[I] using the construction in Proposition
the sequences v(™ and D(v(”) ) would evolve as follows

v = (3,100, 110) D) = {1}
11

o = (3,995,109;) D(vW) ={1,2}
1 1

) = (53—,102,65— D(v?) = {2

vt = (53,102,65) (v*7) = {2}

Thus we conclude that v* = v(?) and D} = {1,2}.

Now let S5 = (a, LG + 1O 7: 1). Then we can verify that the vector v*, obtained above, is also the
unique functional liquid asset vector of Sy with the functional default set D(v*) = {2}. By Remark
Sy satisfies the Monotonicity Condition [14] and hence by Theorem 22| D; := {2} is the algorithmic
default set of S5. ]

In Proposition [31] the system Sy has the same overall interbank liabilities as S; but all the interbank
liabilities are now short-term liabilities. The proposition shows that if we treat all maturities to be the
same then we could end up with the financial system S5 in which fewer banks default than if we account
for the different maturity dates as in .S;. Therefore, this shows that approximating multiple maturity
systems by single maturity systems can underestimate the severity of the risk of default. More generally,
any uncertainty about the maturity profile in a financial system is itself a potential source of systemic

risk.

This observation is particularly pertinent because in practice regulators do not have precise information

about the banks’ maturity profiles. Typically regulatory reports group liabilities into broad categories
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without recording the exact maturity dates. According to [Langfield et al.| (2014), in the UK, “banks
report exposures with breakdown by the maturity of the instrument” and “Categories of maturities are:
open; less than 3 months; between 3 months and 1 year; between 1 year and 5 years; and more than 5
years. Derivatives are not reported with a maturity breakdown.” It is therefore an open question whether
these five categories are a sufficient representation of the maturity profile in the UK financial system for

the purposes of assessing systemic risk.

2.4 Financial system after the first clearing

2.4.1 Stylised balance sheet after clearing at the first maturity date

Let us denote the financial system (a, L(*), L(): ) that we have been considering so far by S(0) to
indicate that it represents the system at time ¢ = 0, prior to clearing at ¢ = T7. Following clearing at
t = T using the algorithmic approach described above, we obtain the algorithmic liquid asset vector and
the algorithmic default set, which we now denote by v*(77) and D*(T}). This allows us to formulate
a new financial system S(7}) := (a(Ty), L) (T1), LW (T1);7) of banks in some set N'(T7) € A after
clearing at t = T7. The banks that defaulted as part of the clearing at ¢ = T} are no longer a part of the

financial system and so
N(Th) = N \D*(T1). (2.12)

Note that the sink node N € A does not default as it has no liabilities and hence N € N (77). We assume
that the only changes between ¢ = 0 and ¢ = T are attributable exclusively to the clearing process itself.
Thus the new cash assets a(77) are just the liquid assets of banks in N'(77) less their payments at 7}.
Since the banks that do not make their full payments at 73 default and are not in AV'(77) it follows that
for all i e N (Ty),

a(Ty); = v* (T1); - L. (2.13)

The new short-term liabilities at 77 are just the remaining liabilities of the banks in A/(7}) that were not
due at 7. Thus for all 4, j € N'(T}) such that 7,7 #+ N

2

S l
L& (Ty)y = LY. (2.14)

With the sink node N the situation is somewhat different. The banks in A/(7}) that had outstanding
long-term liabilities to the banks in D* (T}) that defaulted at 77 do not escape those liabilities by virtue
of the latter defaults. In reality, those liabilities comprise assets of the banks in D* (77 ) and these assets
typically would be re-distributed at an auction. However, modelling such auctions is outside the scope
of this thesis and in order to keep the model clear we simply assume that they are ‘acquired’ by the sink

node N. Moreover, as before, we continue with the assumption that the sink node has no liabilities.
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Hence for all 7,5 € N'(T})

LOM)v=1D+ Y 1O 2.15)
keD*(T1)
LTy i = LO(Ty) = 0. (2.16)

In particular, it follows that L) (T1); = ¥ jenryyup-(ry) Ly = L{ for all i e N'(T3).
Furthermore, since these are the only liabilities of banks N (7}) at t = T3, we also have that for all
i,7 € N'(T) there are no new long-term liabilities:

LY(Ty); =0. (2.17)
The following proposition confirms that we have indeed constructed a new financial system.

Proposition 32. Let N (T1) be a set given in m The tuple S(T) := (a(Ty), L) (1), LD (T}); )
satisfying (2.13) — ([2.17) is a financial system.

Proof. We need to show that a(7T7) is non-negative and L(*)(T}) and L) (T) are liability matrices.
By construction of Algorithm [1|v*(7}) = U (v*(T1); D*(T1)) such that D(v*(T1)) € D*(T1). Sup-
pose there is some i € A/(T7) such that v*(7}); < Egs). Then i € D(v*(T1)) and so i ¢ N'(T}). Hence,
for all i € N'(T1), a(T); = v*(T1)i = L) > 0.

The fact that L) (T1) and L® (Ty) are liability matrices follows from the definitions since it is imme-

diately clear they are non-negative matrices with zero diagonals. O

The stylised balance sheet of each bank except the sink node in this new financial system is given
by Table 2.2] The sink node in the new financial system has no cash assets or short-term interbank

liabilities and hence E(T})n = A®)(T})x. Its short-term interbank loans are given by A®)(T})y =

1 l
Y encry) LSn + Ljenrcry) ke iy LY,

Assets Liabilities

e Cash assets: a(77); =v*(11); - f/gs) e Short-term interbank liabilities:

LE(T)i = Tjen LY

v

e Short-term interbank loans: A®)(T7); = ¥ JeN(T1) L;? e Equity:

E(Tl)z = CL(Tl)Z + A(s) (Tl)z - E(S) (Tl)z

Table 2.2: Stylised balance sheet at ¢ = T3 of bank i e N'(T1) ~ { N'} after clearing.

2.4.2 Clearing at the second maturity date

The financial system S(77), described in Section [2.4.1} can be cleared again by the application of
Algorithm In fact, by Remark S(T) satisfies the Monotonicity Condition and so can be
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cleared by the application of the simpler Algorithm [2] Moreover, by Propositions [25] and [24] we can
see that at the last maturity the financial system is reducible to the familiar models of Eisenberg & Noe
(2001) or|Rogers & Veraart| (2013)).

Let 7*(T3) and D*(T5) be the output of Algorithm applied to the financial system S(77). Then, after
clearing at ¢ = T5, we obtain a new financial system S(7%) consisting of banks in the set N (75) :=
N(Ty) ~ D*(T3). Since the banks in N (T%) have only cash assets and no liabilities, this system is
given by S(T%) := (a(T3),Z,Z;~). Thus S is characterised by the cash assets given by

a(Th); =0 (o) - LO(TY)  Vie N(Tb).

We also have that AC)(Ty) = L) (T3) = 0 and hence a(T5); = E(T5); for all i e N'(T). Moreover no

further clearing of S(7%) is necessary.

2.4.3 Extension to more than two maturity dates

So far we have focused on financial systems with at most two maturities. However, provided we track
the precise maturity profile of all the liabilities amalgamated in the long-term liability matrix LD, we

can readily extend our modelling framework to n > 2 maturity dates 0 < 17 < T < ... <T),.

We write L(7:) ¢ RN*N for the matrix containing all interbank liabilities maturing at T}, i € {1,...,n}.
We then consider an n-maturity financial system as a tuple S = (a, L(T) L(T2)  L(Tn). ) At
t = 0 we can define a 2-maturity financial system S(0) := (a, L(*), L(): 4) given by L) := L(T) and
Lg) =", LZ(]TT) for all 4,5 € N. Then clearing the n-maturity financial system S at time ¢ = T}
reduces to clearing the 2-maturity financial system S(0) at time ¢ = 7} using Algorithmand, using the
methodology similar to the one described in Section [2.4.1] produces a new 2-maturity financial system
S(T1) = (a(Ty), LN (T), LY (T1); 7).

The new liquid assets vector a(7}) is as in (2.13) and only the definition of the new short-term and
new long-term interbank liability matrices change so that the liabilities maturing at ¢ = T become the
new short-term liabilities and all liabilities maturing at ¢ > 73 are aggregated into the new long-term

liabilities. Thus we obtain, for all 4, j € N'(T7) with 4, j # N, that

s T:
L )(Tl)ij _ L’L(j2)’

LTy = Lgf) + ) Lz('kTZ)v
keD*(T1)

L) =3 L7,
=3

LOM)v =2 L3+ Y YLy,
T=3 keD*(T1) 7=3

LY (Ty) ;= LY(Ty) ;=0

Similarly, we can clear S(7%) using our methodology for two maturities and then repeat this approach
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until we reach the point ¢ = T},_1 where, for all 4, j € N'(Ty) withi,5 # N,

(S) . _ (Tn)
L (Tn—l)zN = Lij )
L(S)(Tn—l)Nj =0,
L) (Tq)in = L’E"an) . 3 LZ(an)’
keD* (Ty-1)
and LW(T,_1) = Z.

This system can now be cleared using Algorithm [2| analogously to what we did in Section In
the end we obtain the last financial system S(7},) := (a(71,), Z, Z;~) such that a(T,,) = E(T,,) and no

further clearing is necessary.

2.5 Conclusion

This chapter has developed a rigorous clearing framework for interbank networks with multiple matu-
rities. We have shown that a vector of clearing cash flows (a vector of liquid assets, in our case) on its
own is not sufficient to fully describe the clearing framework. A suitable definition of the set of banks
in default is needed. This does not arise naturally from the description of the stylised balance sheets
and must be specified as part of the model. We discussed the necessary conditions on such a default
set. These conditions are not sufficient and we considered the algorithmic approach and the functional

approach as two possible approaches to specifying default.

The functional default set corresponds to the definitions that have been used in prior literature and has a
simple functional representation. It does not have an absorbing property and, as a consequence, a liquid
asset vector using the functional default set may not exist for every financial system. On the other hand,
the algorithmic default set has a more complex algorithmic definition that guarantees that default is an
absorbing state. Therefore the algorithmic liquid asset vector can be found for any financial system. We
proposed Algorithm |1, which produces a sequence of vectors that converges to the algorithmic liquid
asset vector. This sequence of vectors is not in general monotonic but the absorption property of the

default sets ensures the algorithm converges in a finite number of steps.

The functional approach has a number of uses despite restrictions on the existence of functional liquid
asset vectors. We have shown that for certain types of financial systems the algorithmic approach reduces
to the functional approach. Furthermore, we have shown that the functional approach reduces to the
models by [Eisenberg & Noe, (2001) and [Rogers & Veraart (2013) if only one maturity is considered. In
addition, we have shown that functional liquid asset vectors can be used in the construction of clearing
solutions under the algorithmic approach. For these reasons the properties of functional liquid asset
vectors are important. We have shown that under a regularity condition functional liquid asset vectors
can be characterised as fixed points and a greatest and a least functional liquid asset vectors exist. We
have also shown that functional liquid asset vectors are in general not unique but under a mild condition

we could show that there can be at most one such vector corresponding to any given default set.
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We have illustrated two key applications of Algorithm [I We demonstrated that the default risk of a
bank depends in a non-trivial manner on the precise maturity profile of its liabilities. Relying on the
assumption that all interbank liabilities have the same maturity can lead to an inaccurate assessment of
risks. Our clearing approach provides a rigorous tool to incorporate different maturities in the clearing
process. We also showed how to extend the model to a multi-period one by describing a settlement

mechanism, which characterises the stylised balance sheets of the surviving banks after clearing.
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Least Fixed Point in Clearing Problems

3.1 Introduction

This chapter steps back from the multiple maturity setting of Chapter 2] and focuses on the extension of
the Rogers & Veraart (2013) model. In Eisenberg & Noe|(2001)) it was shown that for regular financial
systems the vector of clearing payments obtained by means of the Fictitious Default Algorithm is in fact
the unique fixed point of the clearing function. In many extensions the uniqueness of the fixed points is
lost. In such cases it is conventional to formulate the clearing problem as a search for the greatest fixed
point of a suitable clearing function. However, as shown in |Rogers & Veraart| (2013), this may not be
the only fixed point. In this chapter we therefore look at the converse problem of finding the least fixed

point.

While we focus on the theoretical side of the problem, there is scope for applying the model presented
in this chapter. In the classical setting, such as described in [Eisenberg & Noe (2001)), [Rogers & Veraart
(2013) and Chapter[2] the interbank network represents nominal exposures. The greatest fixed point of a
suitable clearing function gives us the most conservative solution to the clearing problem of finding the
vector of effective payments. The conventional rationale is that the market participants will value their
counterparties’ exposures at the maximal nominal value and then re-value downwards until the clearing
values are obtained. However, for the purposes of stress testing carried out by a regulator it may be
valuable to compute the worst case solution to the problem. This can be accomplished by finding the

least solution to a clearing problem.

An alternative application stems from insights in|Hurd|(2016) that interbank networks can be interpreted
not as networks of exposures but as networks of funding supply. To this end we also consider a simplified
model of roll-over credit. We emphasise that this is intended to be a stylised case study of applications
of the least fixed point and no claims are made about the suitability of such a model as a model of any
specific financial instrument. Nevertheless, a number of financial instruments used in practice, including
repurchase agreements and lines of credit, have features that we model. This suggests that there is scope

and merit in investigating applications of the least fixed point of clearing models.
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3.2 General setting and the least fixed point

We study a class of clearing functions ® described in Definition [36] below and, in particular, we are

interested in the existence and construction of the least fixed point of ®.

Recall that for a matrix M, ||M||; is the norm given by greatest column sum of the absolute values of

the entries of M. For a non-negative M, ||M]||; is just the greatest column sum of M.

Definition 33 (Clearing system). Let N = {1,...,N} forsome N ¢ N, a, B ¢ RY, L > 0 ¢ RY with
B<Landa,B¢€(0,1].

Furthermore, let € RY*Y be a matrix with a zero diagonal such that ||Q||; < 1 and for all j € A there

exists i € N with ©;; > 0. We refer to the tuple (a, £, B, L,a, B) as a clearing system on N

Definition [33]extends the definition of a financial system in[Rogers & Veraart (2013) (and consequently
the classical definition in [Eisenberg & Noe| (2001)). The main difference is the inclusion of the lower
bound B. InRogers & Veraart (2013)) the clearing process is carried out on [0, L], i.e. the components
of clearing vectors are permitted to take any non-negative values as long as they do not exceed the
corresponding components of L. We consider a more general setting where we look for clearing vectors
on [B, L]. The second difference is that we do not assume that the matrix €2 is necessarily a relative

liability matrix. This allows us to apply our theory in a wider range of scenarios.

Remark 34. Suppose that (a, (2, B, L, «, 3) is a clearing system with B = 0 and Q such that ||Q2]; = 1.
Let L be a matrix given by L;; = Q;; L; for all i and j. Then the triplet (L, a, a, 3) is a “financial system”
within the meaning of Rogers & Veraart (2013). Conversely, if (L, a, «, ) is such a financial system
and Q is given by Q;; = Lj;/L; for L; > 0 and €2;; = 0 otherwise then (a,$,0, L, v, 3) is a clearing
system and ||Q||; = 1.

As stated in Chapter [2| Proposition if = (3 then the financial system (L,a,a,3) in the sense
of Rogers & Veraart| (2013)) is a single maturity financial system in the sense of Chapter 2| Hence a

clearing system (a, 2,0, L, o, 3) for a = 3 likewise can be seen as a single maturity financial system.

Definition 35. A clearing system is said to be regular if, whenever ||Q||; = 1, (Q7, L,a) is a regular

financial system within the meaning of Definition 5 in|Eisenberg & Noe| (2001)).

Note that, in particular, a financial system is regular if ||2||; < 1 or a > 0.

Definition 36. Let V' = {1,..., N} for some N € N and (a,2, B, L, o, 3) a clearing system on /. We

then define functions V,, 5,V : RY — RY as follows:

Vap(2) = aa + Qx
V(z):=Vii(z) =a+Qx.
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The clearing function ® : RY — RY is given by

pl

Bi \ Va’g(x)i if VV(IL’)Z < I_/z

®();

E« I

B;v (aa+BQx); if(a+Qx);<L;

for each i e .

3.2.1 Basic properties

The following propositions give some basic properties of V;, 5, V' and ® which are used throughout this

chapter, often without explicit reference.

Proposition 37. Let ¢ > 0 be some constant and ® and ®. be the clearing functions of the clearing
systems (a,Q, B, L, o, ) and (ca,Q, cB, cL,a, B), respectively. If x is a fixed point of ® then cx is a
fixed point of ®.. Furthermore, if x is a least (respectively, greatest) fixed point of ® then cx is a least
(respectively, greatest) fixed point of ..

Proof. Leti € N and suppose x is a fixed point of ®. In particular, ®(x); = x;. Then

cL; if (ca + Qcx); > cL;
Po(cx)i=1 -
cB; v (aca+ Qcx); if (ca+ Qex); < cL;

=c

Bl‘ \Y (OLCL + BQI‘),L if (a + Q%)Z < El

= c®(x); = cx;.

Hence cz is a fixed point of ®..

Furthermore, since scaling by a positive constant is a strictly monotonic transformation, the ordering of

fixed points is preserved. O

Proposition 38.

1. For any o, € (0,1], Vy g is continuous and monotonically increasing; i.e. Vo g(x) > Vo g(y)

whenever x > .
2. Forany a,3€(0,1] andz e RN, V, 5(x) < V().
3. V(x); < L; if and only if ®(z); < L;.
4. ® takes values in [B, L].

5. ® is monotonically increasing.
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Proof. 1. Continuity of V,, g follows by composition of continuous functions. For monotonicity,
suppose z > 3 for some x,y € RY. Then Va,8(x) = Vo 3(y) = BQ(x —y) > 0 since 2 and 3 are
both non-negative and z—y > 0 by assumption. Therefore V,, g(x) > V, g(y) forany a, 3 € (0, 1].

2. Since o, f € (0,1], itis clear that V(x) = V1 ,1(z) = a + Qz > aa + Qz = V,, g(z).

3. Leti e N. If V(z); < L; then ®(); = B; vV, 5(2); < B; vV (x);. Since B < L by assumption,
it follows that ®(z); < L;. Conversely, if ®(x); < L; then V(z); < L; as otherwise we would
have that ®(x); = L;, by definition.

4. Letie N.If V(x); > L; then B; < ®(x); = L;. If V(x); < L; then
Bi < Bi v Vyp(x)i = ®(x);
< Bz vV V(a?)l < Bz \Y E,L = El
Therefore ®(z); € [B;, L;] foralli e N.

5. Suppose x > y. Letting o = 8 = 1 in Proposition above, we have that V(z) > V(y). Let
i € N and suppose V (y); > L;. Then V(z); > V(y); > L;. Therefore ®(z) = L; = ®(y).

Suppose instead that V' (x); < L;. Then V (y); < L; and so

(I)(ib)l = Bl \ Vawg(‘r)i
> Bi v Vas(y)i = ®(y)i-
Finally, suppose that V (z); > L; > V (y);. Note that L > B by assumption. Then
®(x)i=Li>B; vV(y)i
> Bi v Va,5(y)i = 2()i.
This covers all cases and hence ®(z) > ®(y) whenever z > y.

O]

Proposition [38] tells us that L is an upper bound for the values both of ® and V. However, since ®
is expressed in terms of V,, 3 and V,, g(x) < V(z) for all z, it should be possible to obtain a tighter
upper bound for ® and V,, g than L. The following Lemmacharacterises such an upper bound, which
we denote by 7. T is an important vector that we use extensively and, in particular, Lemma [39] also

establishes the link between V and V, s through T

Lemma 39. Let T := 3L + (a - f3)a.

1. Ifthere exists some x € RY such that V (x); < L; for some i € N then T; < L;.
2. Forallz eRY andie N, V(z); < L; ifand only if V,, s(x); < T

3. Forallz e RY andie N, B; < ®(z); < L; if and only if B; < ®(z); = Vag(x)i < T,
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Proof. LetieN.

1. If V(z); < L; for some i € N then a; < V(z); < L;. Therefore if 3 < a then T; = BL;+(a—B)a; <
51_—11 + (a—ﬁ)f)z = CVI_/Z' < Ez If B > « then Tz = ﬁl_/z + (a —,B)Cbi < ,Bl_zz < I_/z

2. We observe that, since 3 is positive, V(z); < L; if and only if BV (x); < SL;. Furthermore,
BV (z) = Vag(x) + (B - a)a. So, for all i € N, V(x); < L; if and only if Vy, g(x); < BL; — (8 -
a)a; = T;.

3. Leti e N. By Lemma we can now see that B; < V,, g(x); < T; if and only if V(z); < L;
and B; < B; v Va,3(2)i.
Suppose that V' (z); < L; and B; < B; v V,, g(x);. This implies that V, s(z); = B; v V, g(x); =
®(x);. Therefore B; < ®(z); and ®(z); = Vi 5(2); < V(2); < L;. Conversely, if we suppose that
B; < ®(x); < L; then by definition we must have that V (z); < L; and B; < ®(z); = B;vV, s(z);.

O]

Remark 40. Since ® takes values in [ B, L], we will slightly abuse the notation and use ® to refer to

the function z ~ ®(z) with [ B, L] as both domain and co-domain.

3.2.2 Transfinite sequences

Note that, by Remarkin Chapter the interval [ B, L] ¢ ]Riv is a complete lattice under the component-
wise ordering. This allows us to apply the same approach as [Eisenberg & Noe| (2001) and |[Rogers &
Veraart|(2013)) to finding the least fixed point of ®. Namely, we will define a recursive sequence (<I>k) k30
of iterates of ® and apply the Tarski-Knaster Theorem (Theorem|[I] Chapter|I) to show that that the limit
of this sequence is the fixed point that we seek. In Rogers & Veraart (2013) the sequence starts at
@0 := L, the upper bound of ®, and monotonically converges downwards to the greatest fixed point of
®. Since ® is continuous from above, it is shown that an ordinary sequence of iterates is sufficient to

obtain the required fixed point in the limit.

Rogers & Veraart|(2013) observe that in order to obtain the least fixed point of ® we would need to start
the recursive sequence at the lower bound, 0 in their special case. However, considering the lower bound
B more generally, the usual limit limy,_, ., ®*(B) may fail to be a fixed point of ® since ® is not in gen-
eral continuous from below. [Rogers & Veraart| (2013)) provide an explicit example of this phenomenon
and describe how this difficulty can be avoided by ‘restarting’ the sequence from the limit value until
a fixed point is obtained. However, since finding the least fixed point is not an objective in [Rogers &
Veraart| (2013)), full technical details were not provided. This chapter provides a rigorous description of
this approach for the general case of the lower bound B. It turns out that convenient mathematical tools
for treating this problem are transfinite sequences and transfinite induction, i.e. sequences and induction

along ordinal numbers.

By way of brief summaryﬂ ordinal numbers are an extension of natural numbers. Ordinals are well-

"Further details can be found in most core texts on set theory such as|Jech|(2013)
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ordered, which means that any set of ordinals is totally ordered and contains the least element. Finite
ordinals correspond exactly to the natural numbers and the set N of natural numbers corresponds to
w, the smallest infinite ordinal. In particular, we will often write n < w for some n to mean that n is
finite. Infinite ordinals greater than w exist. Addition and multiplication involving infinite ordinals are
not commutative. Ordinals of the form p + 1 where p is some ordinal are called successor ordinals
and include all finite ordinals. Ordinals that are not successor ordinals are called limit ordinals. A
mapping of ordinals is called a transfinite sequence, just as a mapping of natural numbers is an ordinary
sequence. Monotonicity of transfinite sequences is defined analogously to that of ordinary sequences
(see Section [I.5)). In the same way that induction can be used to prove statements about sequences,
transfinite induction can be used to prove statements about transfinite sequences. To establish that some

proposition P holds for a transfinite sequence (qﬁ(“) )20, we would need to show that

1. P holds for ¢(0;
2. if P holds for ¢(*) then it holds for ¢(#*1); and

3. if P holds for d)(“) for all 4 < v and some ordinal v then it holds for qﬁ(”).

Definition 41. Let ® be a clearing function for some clearing system (a,2, B, L, a, 3) and ®™ the
m-fold composition of . We define a transfinite sequence (gb(”) )V>0 by recursion as follows. ¢ =B
and, for p an ordinal and m an integer, p(#+™) := & (4(#)). Finally, for any limit ordinal i, ¢(#) :=
Sup,.,, #»). In particular, for any ordinal y for which ¢(#) is well-defined, () := lim,,_, 0o @™ (™).

The following proposition gives the basic properties of the transfinite sequence (qﬁ(“) )0 that we use in

later results.

Proposition 42.

1. The transfinite sequence (¢(M))u>0 is non-decreasing in p such that B < ") < L for all p. In

particular, the limit limy,_, o0 "% = ¢(49) s always well-defined for any L.

2. Suppose M) is a fixed point of ® for some ordinal . Then o) = k) = o) for any

integer k.

3. Suppose gb(“) = L for some ordinal 1. Then gb(“) is a fixed point of P.

Proof. 1. We show by transfinite induction that for any ordinal v the sequence (qb(“)) is non-
usv
decreasing. The statement is trivial for v = 0 as the sequence then contains only a single term. So

suppose that (QS(“) )u<v is non-decreasing for some ordinal v.

Let v be a successor ordinal so that v = i + 2 for some ordinal fi. Then by the inductive hypothesis
(1) > () Monotonicity of ® then implies that () = ®(¢A*1D)) > & (M) = p(A+1) Hence

(gb(“))u@ is non-decreasing.

48



Chapter 3. Least Fixed Point in Clearing Problems

Let v be a successor ordinal so that v = ji + 1 for some limit ordinal zi. Then qﬁ(f‘) =Sup,.; (1)

and, in particular, ) > ¢ for any u < fi. Then by monotonicity of ¢ we ge that
¢M) = (M) > (o)) = ¢+,

Since 11 + 1 < [ is a successor ordinal and /i is not a successor ordinal, we obtain that 1 + 1 < fi.
Therefore by the inductive hypothesis ¢***1) > ¢(#) In particular, we get that ¢*) > ¢ ie.
») is an upper bounfi for ((;S(“) )y<p' But since, by definition, (™) is the supremum of (d)(”) )u<ﬁ
we get that ») > ¢(M) Hence (gb(“))uw is non-decreasing.

Now, let v be a limit ordinal. Then by definition o) = SUP ey & and so ¢®) > ¢ for any
ordinal p such that i < v. Therefore we have shown that for all ordinals v the sequence (gb(“) )u <
is non-decreasing.

Finally, the fact that the image of ® is in [ B, L] implies, for any successor ordinal x + 1, that
B < ¢+ < L. Therefore this is also true for suprema of sets of successor ordinals. Hence

B < ¢ < L for any ordinal .

In particular for any p, (gb(’“k) ) 150 18 @ non-decreasing bounded sequence over integers k. Hence

its limit exists and, by definition, equals to ¢(#+).

2. For any integer k, we have that ¢(“*%) = ¥ (1)) = () Therefore ¢(**+) = limy,_, o, ¢H+F) =
limy,, o0 004 = (1),

3. By Proposition o™ < ¢ Since D) = @(¢(M) and P takes values in [B, L],
1) < L. This implies that ) = L = (1) = o).

O]

Remark 43. The completeness of reals implies that the suprema of subsets of [ B, L] can be approxi-
mated by increasing sequences. Crucially, sequences are maps of countable sets. Therefore in consider-
ing the transfinite sequence (gb(“) )0 up to the the least fixed point, we only need to consider countable
ordinals. In particular, when applying transfinite induction we will only need to consider the case of

ordinals of the form p + 1 and p + w.

The following theorem is the main result of this section. We show the existence and structure of the least

fixed point of ®.

Theorem 44. There exists the least fixed point ¢. of ® and it is given by ¢, = ) for some countable

ordinal v,.

Proof. 1. Existence of the least fixed point: Recall that, by Proposition ® is monotonic and by
Remark [2|in Chapter [I| [B, L] is a complete lattice. The Knaster-Tarski Theorem (Theorem
Chapter implies that the set Fix(®) of fixed points of ® is a complete lattice and, in particular,
contains the unique least element ¢, = inf{¢ € [B, L] | ¢ > ®(s)}.
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[u—y

2. Structure of the least fixed point: By Proposition |42,

(qb(“))lpo is non-decreasing and bounded

above by L. Thus there is some countable ordinal v, such that »"*) is a fixed point of ®. Since
ordinals are well-ordered, we can assume without loss of generality, that v, is the least such
ordinal.

In particular, ¢(*) > @((;5(”*)) and so by the property of the infima ¢(®) = B < ¢, < ¢(*).
Furthermore, by the well-ordering of ordinals, there is an ordinal 7 such that n = sup{u | o) <

¢+ }. Then by Definition 41{and Proposition »D = sup{p™ | () < ¢} so that ¢ <
b+ < o). By monotonicity of ® we then obtain that ¢"*1) = &(¢(M) < ®(¢,) = ¢.. By
definition of ¢(" as a supremum, we have that #M > ¢+ and it then follows that ¢ =
D) = (M), ie. ¢ is a fixed point of ®. But, since we assume that ¢(**) is the least such
element of the transfinite sequence and »M < ™) it follows that ¢ = (). Moreover .

is the least fixed point of . Since qﬁ(”) < ¢+, it follows that ¢, = qﬁ(”). Hence we conclude that
¢* = Qs(y*)-
O

Theorem #4]is a non-constructive result. In the remainder of this chapter we will show how to obtain an

algorithm for explicitly computing the least fixed point of ® in a finite number of steps.

3.3 Transfinite sequence decomposition

In this section we describe how to partition the components of the vectors qb(“) in a way that allows us to
traverse the sequence (gzb(“))u <, in a finite number of steps without skipping the least fixed point. We

also introduce the index x () which allows us to control these jumps along the sequence (qﬁ(“))u <

These techniques are used in Section to define a constructive algorithm for finding the least fixed
point of ®.

Definition 45. Let (gf)(“) )u> , be the transfinite sequence given in Definition 41| We define the following

terms of transfinite sequences of sets
LW = (ieN ¢ > Li},
DW= (i e N | 6" < L),
AW = {i e DW |6 5 By,
B® = {ie DWW | o) < By},

Corollary 46. Let (¢(M> )u> o be the transfinite sequence given in Definition Then

1. (15(“))“20 and (B(“))WO are non-increasing transfinite sequences of sets and (ﬁ(“))u>0 is a

non-decreasing sequence of sets; and
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2. For any two ordinals v and p with v < u,

DO~ (i e AV [V < L} u{ie B | < L},
BW = (i e DWW A B | ¢ < By},

—_—

Proof. 1. By Proposition |42
lows that (D(”)) -0

zZ

(é(“))/po is non-decreasing transfinite sequence. It immediately fol-

is a non-increasing sequence of sets and (ﬁ(”)) 5o 18 a non-decreasing se-

Z

quence of sets. But since (@(H))#W is non-increasing and (qﬁ(“)) is non-decreasing, it also

©=0
follows that (B (“)) .o 18 a non-increasing sequence of sets.

z

2. By above we have that D) ¢ D) and B*) ¢ B(*). Furthermore, by definition of B4, we have
that B ¢ D) and hence B ¢ D) A BW). Finally by Definition , we can see that D*) is
a disjoint union of A®) and B®).

O]

Remark 47. In contrast to Corollary IAEI, (A(M))uzo is not necessarily a monotonic sequence of sets.
For example, if N' = {1,2,3} it is possible to construct a clearing system such that DO =DM = N,
D) = a, BO) = A and BD) = B3 = . However, since AW = ) ( BW for all 1, we obtain that
A® =g, A = N and A? = g

The next proposition is fundamental. It establishes bounds on cb(“).

Proposition 48. For a clearing system (a,Q, B, L, o, ) and each ordinal p, let o), A, B and
L") be as in Definition and T = BL + (a — B)a. Then for each p the set N can be partitioned into
the sets /1(“), BW and LM so that

) _p
¢B(u) By
¢g<u> =Lz

BA(M) < d)jl(u) < LA(H))
690, < T

Proof. By Definition , it is clear that A" = D®) u £ and DWW = A 4 B with both unions
disjoint. Moreover, qb(fé)) < B,y and d)(fz)) > Lpg-

Suppose B*) # &. Since (¢™)),50 is a non-decreasing transfinite sequence d) < BB(N) for any

B( )
ordinal v with v < p. By transfinite induction we can show that ¢B( y = Bé(u) Indeed, for v = 0,

(bB(u) B(u) If v is a successor ordinal then v = it + 1 for some ordinal z and qS(V) = @((b(“)) Since

® takes its values in [ B, L], it follows that W) = Bzg(u) If v is a limit ordinal and ¢ = = By, for

B( ) B( )
all ordinals fi satisfying [i < v then (bB(#) = supy ¢B(#) = supy BB(M = Bé(m- By transfinite induction,

it follows that qb(A = BB( .y for each ordinal .
Slmllarly for £(") + &, we show by transfinite induction that qb PGy S L fu forv < p. Forv =0,
¢(L"(2A) = Bj < L. If vis asuccessor ordinal then v = fi+ 1 for some ordinal /i and p) = (o).
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Since ® takes its values in [ B, L], it follows that qbga) L ;- If v is a limit ordinal and o\
(1)

L)
transfinite induction it follows that ¢ ()) =L; E(H) for each ordinal .

£ < Lﬁ(u)

< Lj,. Hence, qb( mog L s,y and so by

for all ordinals f satisfying fi < v then ¢£( ) = Supo A

Suppose A = . The fact that B Ao < d) A< ) < L i for each p follows directly from Deﬁnition
It remains to show that we also obtain gzﬁle&) <T; Liow for each ordinal p. We again proceed by transfinite
induction. However, since A = &, we start the induction from the least ordinal 7 such that AP 3+ &

Such an ordinal exists by well-ordering.

Let 1 be a successor ordinal so that there is some ordinal j; satisfying 7 < & and p = i + 1. Then
qb(“) = @((b(ﬁ)) and so BA(IA) < @((/ﬁ(‘]))A(M) < I_/A(M) Therefore qﬁ(“) = ,g(qﬁ([‘))A(M) and by

A
Lemma 39”3 we get that Va,g(qﬁ(ﬂ) ) i < T; Liw - Hence if /1 be a successor ordinal then gb <T; A -

()
AW
satisfying 7 < v < u. Then qbifl‘()) T; Jiw - This completes the induction. O

,4()

Now let 1 be a limit ordinal. Then ¢ =sup,., gb A< ) Suppose that qS A( ) S <T Jiw for all ordinals v

Suppose the partition described in Propositionis constant for the sequence (¢(“+k) ) k0° ie. gﬁgz:f ) -

Bg» gb(ﬁ’t:) = Ly and B4, < ¢i/:(+)) < L for every k > 0. This would allow us to treat

(qﬁ(“*k)) 40 as constant for all components i in either B 3(1) or £(W) . Similarly, for components i € A®*)

(;5(# k) _

we would be able to assume that =V, (gf)(’“k 1)) allowing us to use the basic properties of

linear maps and the results in Proposition [3;8][] and Lemma [39] Overall, Definition 45| could allow us to
decompose the sequence (¢(“+k)) 450 10to parts with simple and useful properties. Of course in general
the partition will not hold for the whole sequence (gb(’”k ) ) >0+ e introduce the following definition in

order to allow us to control the spans of the sequence where it does hold.

Definition 49. For a clearing system (a, €2, B, L, o, 8) and each ordinal s, let ¢, A B and
L) be as in Deﬁnitionand T=pBL+(a-p)a.

For each ordinal p, let

Vr(u) = {k e NU{0} |3 € DU,V 5 (60"D) < T3)

Va(p) = {keNU{0}|3ieBM V,4 (qﬁ(’“k))' < By).

Thus for each label [ € {T', B} we have a set V;(1) and then let

0 if V(1) = @
ki(p) = {maxVy(p) + 1 if maxV;(p) is finite

w otherwise.

Finally, let

k(p) = kB(p) AT (p).

Corollary 50. Let (a,Q, B, L,«, 3) be a clearing system, ji an ordinal and k > 0 an integer.
Vo, (¢(“+k))i > T for all i e DU if and only if kp(p) = 0.
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2. Vap (qﬁ(‘”k))i > Bj for all i e D™ if and only if k() = 0.

3. Suppose D™ % @. Then there is some i € D™ such that Va3 (qﬁ(’”k))i < T; if and only if
k< rr(p).

4. Suppose BW & @. Then there is some i € B such that Va,p (gb(‘”k))i < B if and only if
k< kp(p).

Proof. 1. By definition r7(pt) = 0 if and only if V(1) = @, ie. if and only if V, 5 (¢***)) > T;

i
for all i ¢ DU and k > 0. By Proposition , the latter condition need only hold for k£ = 0.

2. Similarly, (1) = 0 if and only if V, g (¢(***)). > B; for all i € B4 and k > 0. Again, by
Proposition [38|[1] the latter condition need only hold for & = 0.

3. Let k < p(p) < w. Then rp(p) > 0 and k() — 1 > k. Suppose that V, 5 (gb(‘”k))i > T,
for all i € D). We can write this alternatively as Va’g(d)(“%))ﬁ(“) > Tﬁ(u)- By Propo-
sition ok < plrrr(W)=1) and so by Proposition Thqy < Vaﬁ(gb(“*k))ﬁ(u) <
Vo g(prrr =1y < . Therefore for all i € D*) we have that that V,, (qﬁ(‘““T(“)’l))i > T;
and therefore k7 () — 1 ¢ Vr(u), contradicting the definition of £7(p). Since D) # g, it
follows that there is some i € D(*) such that V, g (gb(’“k))i <T;.

Now, let k& < k() = w. Then k € Vr(u) since otherwise k > max Vr(u) by Proposition
381} implying that x7 (1) < w. So Vp(u) # @ and there must be some i € DU such that
Va,g(¢0M); < T,

The converse statement follows directly by the definition of x7 (). Suppose there is some i €

D such that V,, g(¢#**)); < T;. Then k € Vp(p) # @. If kp() = w then k < rp (1), trivially.
So suppose that k7 (1) < w. Then k < max Vr(u) = k() — 1 and hence k < k().

4. Let k < kp(p) < w. Then kp(p) > 0 and kp(p) — 1 > k. Suppose that V,, 3 (¢(“+k))i > By
for all 7 € B, We can write this alternatively as Vaﬁ(gb(’”k))g(”) > Byp,y. By Propo-
sition ok < e ()=1) and so by Proposition Bpy < Vaﬁ((ﬁ(“*k))g(u) <
Va75(¢(“+’63(“)_1))3(“). Therefore for all 7 € B%) we have that that V, 4 (qﬁ(’“”B(“)_l))i < B;
and therefore xp(u) — 1 ¢ Vp(u), contradicting the definition of x5 (). Since B! + g, it
follows that there is some i € B(*) such that Va,p (ng(‘“k))i < B;.

Now, let k£ < kp(p) = w. Then k € Vp(u) since otherwise k£ > max Vp(u) by Proposition
, implying that xp(p) < w. So Vp(u) # @ and there must be some i € B*) such that
Va,3(0*R)); < B,

The converse statement follows directly by the definition of k(). Suppose there is some i €
B such that V, g(¢0+%)); < B;. Then k € Vp(u) # @. If kp(p) = w then k < wp(p), trivially.
So suppose that k(1) <w. Then k < maxVp(u) = kp(p) — 1 and hence k < k().
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In particular, if 0 < k() < w then k() identifies the last & > 1 in the sequence (qﬁ(“*k)) 40 Where the
partition described above holds; in particular, P(r+e(+1) s then the first term of the sequence where the
partition no longer applies. If x(u) is not finite then in fact the partition applies for the whole sequence
(qﬁ(‘“k)) 40+ Note however, that for #(p) = 0 the partition may or may not hold for ¢(*) since () is

not expressed in terms of V, g if  is a limit ordinal.

Remark 51. Note that if $(*) is a fixed point of ® then ¢(*) = $(#+F) for all finite k and so () cannot
be finite.

Propositions andbelow formalise several key properties of « (). We first introduce the following

definition which will be used in the proofs of these propositions.

Definition 52. Let (a,Q, B, L, a, 3) be a clearing system, u some ordinal, N4 := |fl(“)| and Np :=
1B,

Define b(*) ¢ RN:
b = qa + B0 Baaoy + B s Lo

using the convention that €, ;) By = 0 and Q.5 L = 0 if B or LW, respectively, are
empty.

If A% £ & then define M (#) ¢ RNA*Na,

MW = 59/\(“);1(#)-
If AW + @ and (1- M) e RYAN4 jg invertible then define X ) ¢ RY4:
X0 = (1- M(u))—lg%)@.
If AW = @, (1- M) is invertible and moreover B*) + g then also define Y () ¢ RYE:

(1) . 7.(k) ’ —17(m)
Yy .- béﬁu) + BQB(LL)A(#)(I - M(u)) b_AfL(u)'

Corollary [53|and Lemma give some properties of b(") which we use later.
Corollary 53. Let i1 and b be as in Deﬁnitionand suppose that DW) + & Then
Vs (890 = 600 + 5O 400050

In particular, if A = & then Va’@((b(“)) = b,

Proof. By Proposition gbg& = Eﬁ(u) and ¢§§lé,)t) = Bé(m- Therefore

Va,s(61)) = aa + ")
= aa + BQNg(qufi) + B p) ¢2‘§Z> + 59/\/,4(“)&5%()#)
= aa+ B0 Bao + B ¢z00 Law + B oo ¢Ef<)u)

=0 + 59/\//\(“)(25%)“)-
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Furthermore, if A" = & then by convention the term € N A(u>¢ Aw is taken to be zero. Therefore

Vaﬂ(qg(u)) = ). 0

Lemma 54. Let (a,9), B, L,«, 3) be a regular clearing system such that ||Q||y = 1. Then, for every
ordinal p, 3. i) 135“) > 0.

Proof. Let S := %, i 35“ ), By definition of regularity in Eisenberg & Noe (2001), for every i ¢ A
either a; > 0 or there is some j € /\/ such that a; > 0 and there is a sequence (i )o<k<n S N for some
< N with iy = 4, 7,, = j and §;

inins Lip,, > 0 forevery 0 < k < n. In particular, setting k = 0, if a; = 0

for some i € A then there is some i1 € A such that Q;,;, L;, > 0.

Leti e A®. If a; > 0 then aa; > 0 and so S > bg“) > aa; > 0. So suppose that a; = 0. Then let

(ix)o<k<n S N be a sequence as described above with i,, = j. If j € A then S > b(“)

> aa; > 0. If
j € £ then there is some i1 € A such that €;,;, L;, >0 and S > 131(”) > Qi Liy > 0. Finally, suppose
that 5 € B, Again there is some i; € N such that Qioi1ii1 > 0 and hence ;,;, > 0. Therefore if
Bil > 0 then S > I;E") > Qim'le'l > 0. If Bil = 0 then we show that in fact 7 ¢ B and therefore
without loss of generality we can assume that j € AW or JE€ L) which we have shown above implies

that S' > 0.

So suppose that a; = 0 for every ¢ € A®) and in addition for every j € N such that Qijf/j > 0 we
also have that j € B with B; = 0. By Proposition j € B with B; = 0 implies that qb;“) = 0.
Since qﬁj(.“ ) < l_}j for all j € NV, it follows that for every j € N such that ©;; > 0 we have that gb;.“ ) -
But then V (¢("); = a; + N Qijqﬁgu) = 0 for each i € AU, Moreover, for i ¢ AW, &(p(); =
B;i vV, 5(¢); and so, since L; > 0, V (¢()); < 0 and therefore

oD = (M) = By v Vap(0M);
<B;vV(e"M),<B;v0=DB;.

But by Proposition , B; < <Z>§“ ) ¢ <Z>§“ “1) < B; and so gbz(“ ) — B;. This however contradicts Proposi-
tion 48| and the fact that i € A and therefore concludes the proof that S > 0. O

Proposition [55(formalises which properties remain constant in the sequence (d)(’“k)) for k > 0 “up
t0” r(p). If k() = w then the properties in Proposition [55|hold for all integers & and Proposmon

then describes what happens in the limit.
Proposition 55. Assume the notation of Definitions 3] and
1. For any integer k with 0 < k < k(p), Lrk) = ) Blurk) = B gpg A+k) = A1),

2. For any integer k with 0 < k < k(p), if A" + & then ¢>(”+k+1) Vaﬂ(qﬁ(“k))A(u)

IFBW 2 & then ¢ = Bggy > Vg (60 .
If L 2 @ then ¢(‘f:)k =Ly
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Proof. 1. The statement is trivial for £ = 0. Suppose then that ¢ € D) and there is some integer k
with 0 < k-1 < x(p). Since k(u) < kr(w), by Corollary we have that Vaﬁ(gb(“k_l))i <T;
and Lemma implies that V (¢(**%~1)); < L. Therefore i ¢ DW+5)

Suppose further that i € A ¢ D) then, since ((b(“))/po is non-decreasing, ¢§”+k) > gbg“) > B;.
Since i € D) it follows that i € A“+%) . Hence AW c A(#+F),

If instead we allow that i € B4 ¢ D(#) then, by Corollary , we have that V,, (o5, <
B;. Since i € DR it follows that i € B+%) Hence B c BH+k),

Overall, we obtain that D) = AW y B ¢ AW+k) y Bletk) = Dl+k) - Since DM is a
non-increasing sequence of sets by Corollary , D) = D+k) and therefore L) = L£+h),

Finally, B4 ¢ B(#**%) then also implies that A®+%) ¢ A" Hence AW = AW+F) and so
B = Blu+k)

2. By Propositions and [55)1f we see that QS(‘HIHI) = qS(A’“kH) = Bé(u)' By Corollary H

B(r) B(putk+1)

Vo g (opt* ))B(w < By, and hence thatqﬁ(’”kH) Va’5(¢(“+k))é(u). Similarly, by Propositions

(p+k+1) (u+k+1)
andwe see that QSL(M ¢£(u+k+1) =Lz

We show that gbff(”;ﬂ) (éf)(’“k))A(u) for 0 < k < k(). Suppose i € AW ¢ D) we

already saw in the proof of Proposmonthat this implies that ¢ € D+h+1) and ¢(“ thel)
Therefore for i € A®) we find that ¢£,u+k+1) = o(pR)), = Byv V, g(pHR), = aﬁ(gzﬁ(’“k))i.

O]

Proposition 56. Suppose that k(i) = w.

1. The limit limy,_, oo Vaﬁ(gb(“k))ﬁ(u) exists and is equal to Vaﬁ(qﬁ(“w))ﬁ(#).

2. Whenever the corresponding sets AW B or £ gre non-empty

(bfﬁ:?) Vas (84)) s < T g
o DU = By > Vs (07) iy and Ty > Vg (80) g,
(ptw) _
* %’ﬁu) L(W

Proof. 1. Let & > 0 be an integer and, in particular, k¥ < w = (). By Proposition and non-
negativity of V, g, qZS(DM(:/’)HI) Vaﬁ(qb(/“'k))b(#) > 0. Since ¢(****1) increases up to the limit
o) by Propos1t10n 1} (Va, s(p(rk) ) B )k>0 is a bounded monotonic sequence and hence
the limit limy_, o Vaﬁ(qﬁ(wk))ﬁ(m exists. Moreover, for k < w = (), we have by Proposition

55]1| that Ak = AW Blutk) = B) and £(#+K) = £(#) | Therefore b(#+*) = h(#) and then by
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continuity of matrices as linear bounded operators we have the following:

Va,5(¢(“+w))b(u> = bD(u) + BQD(M)A(“)Q%:(:‘)U)

, k
= b(D“()) + B0 4o im ¢§;;>)

) k
= lim (b(Du()) + ﬁQD(u)A(H)d)D(;)))

k— o0
_ 1 (pu+k) ptk)
= A}l}; (b o) '+ BQD<u>A(wk>¢D<u>

. k
= lim (Va,ﬁ(cﬁ(‘“ ))fm))«

2. The result follows by the definition of ¢(#*). Since k < w = (1), the sequence (¢§#+k))k>0

is constant for i € B" or i e £, by Proposition Hence the terms of the sequence
for i € B4 ori e £ are equal to the limit. Furthermore for i ¢ B, by Corollary
Va75(¢(“+k))i < B; and Va’g(qﬁ(’“k)),- < T; for all k > 0. Therefore Va,g(qb(““"))i <B;= gi)g’”w)
and V,, (o)), < T

For i € A®") we have by Proposition that

(ptw) _ (p+k+1)
¢A(u) - kl% ¢A(M)

= lim Vo 5(6%) 40 = Vs (697)) 4.

Corollary [50| then implies that gbff( :”) <T -

O]

From Proposition it is clear that on B4 and £(#) the sequence (gb(“*k))(yk%(“) is constant. On

AW however, it is not constant as the terms are equal to Vo g (p(th=1) it~ The difficulty here
is that (#+*%=1) is a vector with components that are not in A so we are effectively dealing with

some mapping RY — R4 where Ny = |fl(“)|. This can cause some inconvenience since we cannot
(p+k=1)
Aw)

(X (k) (k)) that can support such recursive relationships. In fact, it will prove useful to also introduce

a sequence (Y(“) (k)) with terms in RYZ where N = |B")].

easily express (;5%:];) in terms of ¢ . We avoid this problem by introducing a related sequence

Lemma 57. Suppose b, X (0) € RY and A € RN*N for some N. Let ¢ := b+ (A -1)X(0) and let
X :Nu{0} - RY be given by

k-1

> A

J=0

X (k)= b+ ARX(0).

Then for all k > 0,

1. X(k)=X(k-1)+ A1

2. X(k)=b+AX(k-1); and
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Proof. 1. We proceed by (ordinary) induction. For k = 1 we have

X(1) =A%+ A'X(0) =b+ AX(0)
=X(0)+b+(A-T)X(0) = X(0) + A%.

Now suppose the claim holds for some k£ > 0. Then

E k-1

X(k+1)=|> AT |b+ A X(0) = [ Y A7 [b+ AFb+ AF 1 X(0)
=0 | 4=0
(k-1

=| S A7 b+ AFX(0) + A¥b+ AF (A1) X (0) = X (k) + AFc.

This completes the induction.

2. We again proceed by induction. For k = 1, we have already shown above that X (1) = b+ AX(0).

Now suppose the claim holds for some &k > 2. Then the induction is complete by observing that

k-1 k-2
X(k)=[> A7 |b+A*X(0)=b+ A > AT |b+ AA*IX(0) =b+ AX (k- 1).
j=0 =0

O

Definition 58. Assume that A and B are disjoint subsets of N with |A| = N4 and |B| = Np so that
Nao+Np<N.Let Ae RYA N4 b e RN and 2 e RY4.

The sequence (X (k)) ;50 = (X (k;b, A, 2, A) )50 € R34 is defined so that

X(0):=x

X (k) =

k-1
D AJ]bA+Akg; forall k> 1.
j=0

The sequence (Y (k));5; = (Y (b, A,2,A,B));; € RY' is defined so that
Y(k):=bp+AX(k-1)forall k> 1.

Let (a,Q, B, L, «, 3) be a regular clearing system and y an ordinal with b M ag in Deﬁnition

Define (X0 (k)), ., = (X(k:; b () gb%),fi(u) ))m

If A + g and B® # & then define (Y ¥ (k)), = (Y(k; b N, ¢%) : A(“>,B<#>))k>1.

If A = g and B4 # & then define (Y(“)(k))k>1 = (I;gﬁz))kﬂ.

The following lemmas (as well as Lemma above) establish the key properties of (X () (k)) k0 and
(y(u)(@)mr

Lemma 59. Let (a,Q, B, L,«, 3) be a regular clearing system, u an ordinal and X vy g in
Definition

The limit limy,_, o (X(“)(k))kw exists if and only if (I - M) is invertible. Furthermore, whenever

the limit exists limy,_,0o X" (k) = X and if B # & the limit limy,_, o, Y ) (k) = Y1) also exists.
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Proof.

Suppose the limit limy,_,o (X () (k) ) 150 €Xists and denote it by X. Then

>
X = lim X® (k)

= lim (6% 4 N1®) X (k- 1))

k;—>oo

_ i) T (1 W) () —
_bA(H)JrM“(th“(k‘ 1))

k—oo
=30, + 2199 (i X0 1))
_ 72(w) () x
= b_,[\(u) +M\WX.

The second line follows by Lemma and the third line follows since M (*) is a bounded linear

operator.

Let o be the spectral radius of M (*). Note that the matrix norm of M () satisfies o < ||M ™|y < 5|91
Since ||©2|1 < 1 we see that o < 1 too. If ¢ = 1 then ||AZ()||; = 1 and, in addition, there is a non-empty
set C < A™) such that YieC Mi(j“ ) = 1 for all j € C (e.g. see Karlin & Taylor (1981) Hence for all
ie MW C and j € C we have that Mi(j“) = 0. Therefore

Y K= Y [0 Y MUK,
ie Alr) ie Aw) jeAw)
5 (1. gaes)
am \ g
DR
ieA(w) jeAw) i€
SN SE S ¢
iEA(:“) jeA(N)

Therefore 3. i 35“ ) = 0. Since |M ]|y = 1 this contradicts Lemma Hence ¢ < 1. Standard
- k

results in spectral theory (e.g. see|Horn & Johnson| (2012))) imply that limy_, o (M (“))) = 7, a zero

matrix, and hence that || M ||, <1 and (I1- M) is invertible.

1)

f4(u> and since (I - M(#)) is invertible we

By a simple rearrangement we then get that (I - M) X = b
obtain that X = (I - M(“))‘IB%% = X,

Conversely, if (I - M () is invertible then ¢ < 1. Therefore both the series .52 (M ))* converges to
(I- M)~ and the limit limy_, o (]\Z(“))]c vanishes. Hence

e 2 S (oY L (N W ey = (1 -1 ()
AL%XW)—[,;)(M“)]%m,}zg(M“) XU9(0) = (L= M) TEG, = X,

Finally, by definition Y(*) (k + 1) = 131(3‘3) + ﬂQ[;’(u)A(u)X(#)(k)- By continuity of Q. 4(u) as a linear

%A similar argument was used in the proof of Lemma in Chapter
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operator,

lim Y (k) = Bl(;,lfi) + B0 oo im X (k)

k—o0

-

o + B g (- M ))_138{?@ =y,

Lemma 60. Let (a,, B, L, 3) be a regular clearing system and i an ordinal.

IF XM (1) » X (0) then the sequences (X(“)(k))k>0 and (Y(“)(k:))lp1 are non-decreasing.

Proof. By Lemmal|5701| X (k+1) - X (k) = (M(“))k ¢ where ¢ = 3%&) +(M®W 1) X (0). In
particular, ¢ = (M(“))O c= X(“)(l) - X(“)(O) > 0. Since (M(”))k is also non-negative, this implies
that X ") (k+1) - X(®) (k) > 0 for all k. Hence (X(“) (k‘))k>0 is non-decreasing. We then note that for
k>0

Y (k+1)-yW (k) =
= (32;% + BQB<M>A<M>X(M)(1€)) - (E(szzt) + B0 40 X ) (k - 1))
=B 4w (X(“)(k) - X0 (k- 1)) :

Since 8 > 0, Qg 4w 18 NON-negative and (X(“)(k) - X (K - 1)) > 0 for all k, it follows that
YW (k+1)-Y® (k) >0forall k, ie. (Y(“)(k:))]~C>1 is also non-decreasing. O

Lemma 61. Suppose the sequences (X(“) (k))k>0 and (Y(“) (/f))k>1 are non-decreasing. Then

1. if (I- M) is invertible then, for all k, X (k) < X and Y ) (k) < Y (1)

2. if there is some i € A" such that X (k+1); - X (k); > 0 for some integer k with k > N4
then X (1+1); - X (1); > 0 for arbitrarily many integers | with | > k; and

3. if there is some i € BY) such that Y W (k +1); = Y (k); > 0 for some integer k with k > N4
then YW (1 +1); - Y (1); > 0 for arbitrarily many integers | with | > .

Proof. 1. Lemma|59|implies that the limits limy_,o, X ) (k) = X and limy_., Y (k) = Y(#)
exist. Since (X (“)(k))k>0 and (Y(“)(k))k;1 are non-decreasing, it follows that every term
X (k) of the sequence must be bounded above by the limit X(*) and every term Y (") (k)

of the sequence must be bounded above by the limit y (1),
2. Since (M) is non-negative, X ") (k+1); - X " (k); = X e Aw ((M(“))k)ij ¢; > 0 whenever
there is some j € A" such that ((M (“))k )ij > 0 and ¢; > 0. Therefore, it is sufficient to show

that (( M(u))k)ij > 0 for arbitrarily many k satisfying k& > N 4.

Consider the adjacency matrix A € {0,1}¥4*V4 such that A;; = 1 if and only if MZ.(JH )> 0and

Ajj = 0if and only if N{/" = 0. Note that (4*), > 0 if and only if ((MW)’“ ) > 0. A standard
ij

observation about adjacency matrices in R™V4*V4 (e.g. see 6.2 of Newman|(2010)) is that they are
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in one-to-one correspondence with directed graphs of N4 nodes. Let G(A) be the directed graph

corresponding to A.

Another standard observation about powers of adjacency matrices (e.g. see 6.10 of Newman
(2010)) is that (A* )ij > 0 if and only if there is a pat in G(A) consisting of exactly k + 1
(possibly repeating) nodes from node 7 to node j. Since there are at most IV 4 distinct nodes in any
path in G(A), it follows that for k > N4 any path of £ + 1 nodes from 7 to j must contain at least
one repeating node. Suppose the length of the path from this node to itself is /. So by repeatedly
extending the path from ¢ to j by the [ nodes of such a cycle, we can make this path arbitrarily

long.

So suppose that ((M(”))k) > ( for some k satisfying k > N4. Then (Ak)ij > () and there is a
ij
path in G(A) of k + 1 nodes from i to j. Therefore there is a path of nl + k + 1 nodes from i to

- I+k
j for any integer n. Hence (A”“k )Z.j > 0 and so ((M (“))n " ) > 0. Without loss of generality,
ij

- k
we can then say that ((M (“)) ) > 0 for arbitrarily many k satistying k& > N4. Therefore we
ij

have shown that for such arbitrary &, X ") (k +1); - X (k); = ((M(“))k) c; > 0.
ij

. As in the proof of Lemma [60}
YOO (k+1) =Y (k) = 80 400 (X ¢ (K) - X P (k- 1))

If there is some k satisfying k > N4 and some i € B¢ with Y ) (k +1); - Y (k); > 0 then
BE jepun S (X(“)(k)j - XW (k- 1);) > 0. Since 3 > 0, €2 is non-negative and (X(’“‘)(k))]@o
is non-decreasing, we must have that there is some j € A% such that Q2;; >0and X ) (k) =
XW(k-1);>0.

Note that if k > N4 then k—1 > N4 and so by the previous result, X ) (k),; - X 9 (k—1); > 0 for
arbitrarily many k satisfying k& > N 4. This implies that Y () (k+1); - Y () (k); > 0 for arbitrarily

many such k.

O]

The remaining results in this section comprise the main tools that will allow us to construct an algorithm

for computing the least fixed point of ®. They characterise the terms of the sequence (d)(“) )u>0 in terms

of X and Y| which can be computed easily. Furthermore, they allow us to identify the spans of

the sequence (gf)(“))po where an infinite number of terms might otherwise have caused us difficulties.

However, we can show that precisely on those spans we can compute the terms of our sequence simply

by solving systems of linear equations.

Proposition establishes the basic relationship between X () and Y (" on the one hand and qb(“) and
Vo5(0U) on the other. Lemma |64|looks more closely at the term X (*)(0), from which many other

3The definition of the term “path” varies with literature. In[Newman|(2010) and here it refers to an alternating sequence of

nodes and edges. A path may visit the same node or edge multiple times. Here we deal with directed paths and thus the same

node can only be visited by following the direction of the edges.
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properties of the sequences (X (“)(k)) Lo and (Y(“)(k)) 45, are inherited. Theorem (65| distinguishes
the behaviour of the various sequences based on whether (1) is finite or not. Finally, Theorem

provides two sufficiency conditions for x () to be infinite.

Remark 62. Note that X (*)(k) is only defined if A®) # @ and Y (") (k) is only defined if B4 # .
To lighten the notation we will adopt the convention that X () (k), Y () (k) and other vectors restricted
to an empty set of components are well-defined and that equalities and inequalities between such zero-

dimensional vectors always hold vacuously.

Proposition 63. Let (a,Q, B, L, «, ) be a regular clearing system and i an ordinal.

1. Let k be an integer with 0 < k < k(p). Then X ") (k) = d)%;?).

2. Let k be an integer with 0 < k < r(p) + 1. Then X" (k) = Vaﬁ(gb(“k_l))fi(u) and YW (k) =
Vo g (¢HHE 1) o

Proof. 1. We assume that A®) % & as otherwise the claim is vaccuous. Since, by definition,
X®(0) = (ﬁf}:()u) the result follows by induction for all integers k& with 0 < k& < x(u). Suppose
that 0 < & < k(4). We show that if X (k) = qﬁff(:];) then

X (k+1) = Vo g (69 100

_ o (urk+1)
‘¢A(u> :

So assume that X ") (k) = <Z>if((:’f). By Proposition [55[1, A®+F) = AW Bl+k) = BK) and

LB+R) = £(n) - Applying Deﬁnition we obtain that b(#*%) = p() By Corollary

Vasg (90°9) = 6070 1 B g0,y 64

7 k
=50+ B iy

=00 + BQ, - oy X W (k).
Since AW B ¢ N, it follows by Lemma that

X (ke +1) = 5%) |+ B9 g i XU (k) = Vi s (690) s, 3.1)

YOO (o 1) = Y0+ B 40 X U9 (k) = Vs (@00) .

By Proposition , it then follows that if k& < s(u) then X (k + 1) = Va,g(qﬁ(“*k))A(u) =
(bff(:')fﬂ). Thus, for 0 < k < £(p), we have shown that X ) (k) = (bif:(:];). This completes the
induction.

2. Note that in the proof of Proposition [63][T] above we do not use Proposition [55]2] until after we
introduced equations (3.1I). Until that point we only used Proposition which applies for k
satisfying 0 < k < x(p) unlike Proposition [63[1] which only applied for & satisfying 0 < k < £ ().
Moreover we only applied Proposition to the first of the two equations (3.1I). Therefore,
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provided A + &, the claim then follows directly from both equations (3.1) for 0 < k < # () by
the induction in the proof of Proposition

Finally, if A = & then by Corollaer(“)(k: +1) = IA)I(;:})L) = Vaﬁ(gb(“%))g(m for all k£ > 1.
Meanwhile, X (*) (k) = Va,g(qﬁ(“*k‘l))A(u) is vacuous.

O]

Lemma 64. Let (a,Q, B, L, o, 8) be a regular clearing system and ji an ordinal. X" (1) > X (0)

and, in particular, the sequences (X(“) (k))k>0 and (Y(“) (lf))k>1 are non-decreasing.

Proof. By definition we have X (") (0) = d)ff()#). Suppose first that () > 1. By Proposition ,

X (1) = gbff(:i). Monotonicity of (¢(M+k))k>0 implies that X (*)(0) = (JS%)H) < QS%(:}) =X (1).

Now let x(p) = 0. By Proposition , X)) = Vaﬁ(gb(“))/\w. In addition, by Proposition we
also have that B 4., < X ") (0) < L 4, and X ") (0) < T 4.,

Leti e A®) and suppose V (¢(")); > L;. By Lemma[39|2|this implies that X (") (1); = V,, 5(¢™")); > T;.
Hence X (") (0); = ¢§u) <T < XW (1),

Let i € A% and suppose V(¢("); < L; and Vaﬁ((j)(”))i > B;. By Lemma this implies ¢§”+1) =
Vo 5(¢1); and therefore (JSEW—I) = X" (1);. Hence by Proposition , XW(0); = gbl(.“) < ¢§u+1) =
X (1),

Finally, suppose there is some 7 € A with V (¢")); < L; and V,, 5(6(")); < B;. Then by Proposition
, ®(¢M); = B; and hence qbg“ ) - B; < (;SZ(“ ). This contradicts Proposition

Therefore we have shown that for all i ¢ AW, X9 (0); < X#)(1);. The rest of the result follows by
Lemma 60l O]

Theorem 65. Let (a,2, B, L, a, B) be a regular clearing system and i an ordinal.

1. Suppose k(u) <w and let k = k() + 1. Then
(a) DW= {ie AW | XW(k); < T}y u{ie BW | YW (k); <T;} and
BW+k) = L e DWk) o B0 | Y (1) (k) < By}, and
k
(b) X(u)(k")fl(u)mfl(”*k) = ¢(H(:k))r)1,i(ﬂ+k> and
+
Y(M)(k)é(u)nj\(wk) = qufz#)m[l(wk)‘
2. Suppose k() = w. Then
(a) X1 = (;5%2‘;]) and
Y =V, 5(¢4+)) .
(b) (I - M(“)) is invertible.
(C) X(N) < TA(#), Y/(“) < TB(“) and Y/(H) < BB(H)‘

(d) D) = {ie AW | X < L3 0 BW and
Blre) — B,
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Proof. 1. LetO0<k:=r(u)+1forx(p) <w.
(a) By Corollary 6|2 we have that
DUHk) = fie AW | qﬁz(’”k) <Li}u{ie BM | ¢§“+k) <L;}
and
B+ = (e D) o Bl | ¢Z(u+k) <Bi).

Since k > 0, p(#+F) = @((b(“*k’l)). By Lemma , we have that, for any i € N\, qﬁg’”k) <
L; is equivalent to V, g (gb(’“k_l))i < T;. By Proposition , Va8 ((ﬁ(’“k_l))A(M) =
XW (k) and V, g(¢#*1) oy = VW (k) and it follows that

Dutk) _ {ie A | X(“)(k:)i <Tyu{ic B | Y(“)(k:)l- <T;}.

In particular, since we showed above that, for every i € D(#+F)| qﬁg’”k) = d(ph-DYy < Ly,

we also have that qSE“Jrk) =B;v Va75(¢(“+k_1))i. Therefore, it follows that

BUHE) = { e DR 4 Bk | ¢(u+k) < B}
={i e DM A BW | By vV, 5(¢W ) < By}
={ie Dwrk) A ) | Va,5(¢(“+k_1))i < By}
={ie Dwrk) ~ Bk | Y(“)(k)i < B;).

(b) Since k >0, B; < (j)z(.’“k) < L, fori e AW*k) and so by Lemmaqﬁg‘”k) = Vaﬁ(qﬁ(wk‘l))i.
By Propositionthen (bg’“k) = X (k); forall i e A9 A A1) and gbglﬁk) =YW (k);
for all i e A+F) o B,

2. Suppose k() = w.

(a) By Proposition [63]/1 qb(fl(;];) =X (“)(k) for all integers k. By Proposition [42[|1| the limit

gbfﬁ:‘;) = limg_ 00 ¢Ef(:]; exists and hence so must the limit X ") = limy,_, o, X ") (k) with
gzﬁff(:‘;) = X, By Lemma [59| the limit Y ") = limy,_, ., Y ") (k) then also exists and, by

Propositionsand y () = Va,5(¢(“+w))g(u)-

(b) We have just shown that qbff(;u) = limy 00 X W (k) and the left-hand side exists by Propo-
sition Hence by Lemma we have that (I — M) is invertible.

(c) The result follows directly by Proposition [56|2] and Theorem [65]2a]
(d) Forie A, (;Sgl“w) = Xi(“) by Theorem [65]2al For i € BM), QSE“W) = B; by Proposition
[56]2] Therefore by Corollary f6]2] we have that
D) = fie AW | ) < Ly u{i e BW | ) < L)
= {ic AW | Xi(“) <L}u{ieBW|B;<L;}
—{ic AW | XMW <L} uBW
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and

BW+) = (5 e D) q Bu) | (1) ¢ By
={ie B | B; < Bi} =B

O]

Theorem 66. Let (a,9, B, L, o, B) be a regular clearing system and p an ordinal. Suppose that AW 4
2, (I - M(“)) is invertible, X ") < TA(H)’ Y g TB(u) and YW < Bé(u)-

1 IF X < T s and Yy < T then k(1) = w.

2. Ifk(p) > |AW)| then k(1) = w.

Proof. 1. By Deﬁnitionand Lemma the sequences (X () (k:)) 4so and (Y(”‘) (k) ) 151 CONVErge
to the limits X(#) < T i and Y < Ty4(,y» respectively. By Lemma (64 these sequences are
non-decreasing and therefore, by Lemma X0 (k) < T 3, Y (k) < T,y and Y0 (k) <

By forall k > 0.

Suppose to the contrary that x(p) < w and let k := k(u) + 1 > 0. Then by Proposition (63|12}
Va,g (04D) g = X (k) and Vo g (60571 5,y = Y19 (k). Therefore Va5 (0470) 5, <
Th.y With D) + . By Corollary 50| this must mean that #(u) = k — 1 < kp(p) and hence
k—1=r(u) = k(). This implies that there is some i € B*) such that V,, 5 (qﬁ(’”“B(”)))i > B;.
However, we also have that V, 3 (qb(“““B(“)))é(H) = Vo g(¢W D) o = YW (k) < By, and

therefore such an i does not exist. Hence we conclude that < () = w.

2. By Theorem we only need to consider the case where there is some i € A®) such that
f(i(“) = T; or there is some i € B guch that }71»(“) =T,.

By Lemma [64] the sequences (X *) (k))zso and (Y (k))ys; are non-decreasing. Therefore,
by Lemma [59| and Lemma they increase up to their respective limits X W <7 i and
Y < Ty

Suppose to the contrary that x(p) < w and let i € A®. Since A" # &, k(p) > 0. Then
by Proposition and Corollary [S0, we have that X (x(u)); = a”g(qﬁ(“m(“)_l))i < T;. By
assumption that X (1 (p)+1); = T}, there is some i € A such that X (k(p)+1);—=X (k()); > 0.
Therefore by Lemma there is some integer k with & > x () > | A®)| such that X ) (k () +
1); - X (k(p)); > 0. But since (X ) (k))xso is non-decreasing it must follow that X (") (k +
1); > X (1(u) +1); > T;. However this is a contradiction since, by Lemma XW(k+1) <
X0 < T

Similarly, if i € B*) then, by Proposition and Corollary |50, we must have that Y (x(u)); =
Va5 (p U0=1)), < T;. Therefore by assumption that Y (# () +1); = T} and Lemma there
is some integer k with k > # () > |A® | such that Y ) (k+1); - Y (k); > 0. This implies that
VW (k+1); > Y (k(p) +1); > T;, contradicting the fact that Y ) (k + 1) < Y < B, by
Lemmal6l1]
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Figure 3.1: Flow of Algorithm [3]

Since the assumption that x(x) < w leads to a contradiction in both cases, we conclude that

r(p) = w.

3.4 Construction of the least fixed point

As in the previous section, let (a,$2, B, L,a,3) be a regular clearing system, ® the corresponding
clearing function and T' = SL + (o~ 3)a. The results established above allow us to formulate Algorithm
for computing the least fixed point of ®. In fact, we will show in Theorem [67| that this algorithm

returns the least fixed point in a finite number of steps.

Figure[3.1|depicts the high-level flow of Algorithm 3]for ease of reference. Note that Algorithm [3]adopts
a similar convention to Remark That is, we assume that zero-dimensional vectors and matrices are
well-defined, the terms containing them are zero and comparisons of such zero-dimensional objects are

vacuously true.
Our main claim is that p* obtained in Algorithm |3|is in fact the least fixed point of ® and that it can be

obtained in a finite number of iterations of the algorithm.

Theorem 67. Let (a,$), B, L, o, B) be a regular clearing system. Then

1. Algorithm|3|terminates in a finite number of steps; and

2. the vector p*, obtained as the output of the algorithm, is the least fixed point of ®.

We spend the rest of this section proving this theorem. In particular, we will need to understand what
happens in the algorithm for different values of n. It should be clear by inspection of Algorithm 3] (and
Figure[3.1)) that n is initialised to zero and then it is only ever changed at Step[TI4] where it is incremented
by 1 and the algorithm is restarted from Step [2l This process can only be terminated if the algorithm
reaches Step [I5] Therefore, assuming the algorithm does terminate, while it is running n will satisfy

0 <n <n*. We call such n an iteration of Algorithm 3]
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Algorithm 3: Least fixed point clearing algorithm

[

10.

11.

12.

13.

14.

15.

16.

Set AV = 4O = £ = £0) = 5 BED = BO) = pO) = A7 7D = (- =0, n =0

Set b(n) =oa+ BQNL(”)I_’E(”) + 59./\/'6(”)38(") and M(n) = BQA(")A(")

(0,n) (0,n) _ ~(n-1) (0,m) _ ~(n=1)
Setx such that T (min A1) = T A(m)mA(n-1) A AB-1) = Y 4(n)aBn-1)1

set (™) = bfﬁ) + (MO =) 20 and O = 5D

and x

For k = 0 to | A™)|

(a) Set z(k+1n) = p(kn) 4 (M(”))k ¢ and y(k+1m) = bgzi) + ﬁng(n)A(n)x(k’")

(b) If 2*+Lm) < Ty, y*+ 1) < Ty, yB*11) < B,y then increment k and continue to
Step
(c) Else increment k£ and go to Step

If A = & then set g(”) = bgz)) and go to Step

If det (T- M™) £ 0

(@) Set @™ = (1- M™M)™ b% and set §(™) = bg}i) + BQp 4 ™
(b) If 2" < TA(n), g™ < TB(n> and (") < BBW then go to Step

. While I(k’n) < TA(")’ y(k’") < TB(n) and y(k’n) < BB(n)

(a) Set z(h+1n) = g(km) 4 (M(”))k ¢ and y(k+1m) = b(ézi) + ﬂQB(n>A(n)x(k’")

(b) Increment k

. Set j(n) = .'L'(k’n) and ﬂ(n) = y(kzn)

Set DD = {ie AM | ™ < Ty} u{ie BM | ™ < T},
B+ = (i e DD A B | gji(n) < B;} and go to Step

Set D+ = (¢ B(M) | gjl.(n) <T;}, B = (G e D+ A (7)) | gji(") < B;} and go to Step
Set DO — (i ¢ A | 5 < L,y u B, B _ gl

Set £+ = A\ D) and A+ = p(n+1) ( p(n+1)

If A1) = A(0) = g(n+1) p(n=1) = g(n) = p(n+l) " p(n-1) = £(n) = £(0+1) then go to Step
Else increment n and go to Step 2]

1)

* _ * * D * _ T * _ ~(n*
Setn* =n+ 1 and p* such that Ppnt) = Bgnty, Ppnry = L+ and Py =T

Output p* and D)
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By inspection, it should be clear that, for each iteration n satisfying n < n* the sets A™, B and £,
the matrix M (™ and the vector (") are all defined. In addition the vectors Z("1) and gj(”_l) are defined

if A™ « g or B % g, respectively.

Remark 68. As mentioned, we can see by inspection of Algorithm [3| that it can only terminate, i.e.
reach Step [16] precisely if and only if the algorithm reaches Step [13] and is then pointed to Step [T5]

Therefore we can use the following statements interchangeably:

Algorithm [3 terminates;
* n* is defined in Algorithm [3]at Step

e for the iteration n = n* — 1, A1 = (") = g(n+1) gn-1) = gn) = g+l) pn-l) - pln) o
£+ and

e for some iteration n, A1) = A(W) = g(n+1) pn-1) = gn) = gn+l) pln-1) = p(n) 2 p0d),

Lemma states some basic properties of the sets .A(”), B("), £™) and D(”), which we will use

extensively.

Lemma 69. Let n be an iteration of Algorithm|3| Then

1. N =DMy £ and D™ = A 4 BM) where the unions are disjoint; and

2. DM c p=H) £ 5 £(=1) gpg B ¢ 1),

Proof. 1. The claim is true for n = 0 (and hence also for n = —1) since by definition

D) = BO) _ & BO) = 40) , BO)
£0) - A7 DO

For n > 0, at StepA(”) is defined precisely so that A = D™ < B and £ = &/~ D),

2. The sets D™ and B are defined in Steps@ or depending on the progression of Algorithm
(see Figure . Note that Step|10|is reached from Step |5} i.e. only if A1) = & Therefore in
all three steps D™ ¢ A1) yB(*~1) By Lemma D) ¢ p(*=1) By taking complements,

we then obtain £(™) 2 £(=1) Furthermore, in all steps B(™) is defined as a subset of B,

O]

The dimensionality of the vectors (™ and gj(”) can change as the iterations increment. The following
definition introduces the vector p(™) e RY that can be constructed implicitly in each iteration n of
Algorithm [3| but has the same dimensionality as p* and the terms of the sequence (¢(V))u>0' This will
allow us to establish a relationship between the iterations of Algorithm [3| and the sequence ( ¢(V))u>0‘

Furthermore, we will be able to characterise p* as a term of the sequence (p(") )n>0.
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Definition 70. Let (a,Q, B, L, «, 3) be a regular clearing system and let n be an iteration of Algorithm
Let vector p(™ ¢ RY be given by:

piﬁi) = B,

(n) _7
pﬁ(n) T LL(”)’
(n) _ a(n-1)
P pmyqan-1) = T g qAn-1)

n) _ ~(n-1)
P Ay ngn-1) = Y qm)agn-1)°

Remark 71. Note that p(") in Deﬁnitionis indeed a vector in Riv in the sense that pl(n) is well-defined
for all 7 € V. To see this, observe that, by Lemma|[69]
(A(n) A A(nfl)) U (A(n) n B(nfl)) =AM A (A(nfl) U B(nfl))
= A A pln-1) c pln),

Therefore, for each i € A/, exactly one of the equalities in Definition [70]applies.

Also note that if A = & then Z("1) is not defined in Algorithm |3| but in that case we also do not
need to define pff()n)mA(n_l).

The following theorem establishes the link between Definition [70]and the output of Algorithm 3]

Theorem 72. Suppose Algorithmterminates so that n* and p* are defined. Then p* = p™").

Proof. By Definition[70|and construction in Step

(n*) _ j =
pB’ngn*) = BB(n*) _pB(n*)
(") _7 .
pﬁn(ln*) - Lc(n*) - pﬁ(n*) .
By Remark we have that A™) = A= and B™) = B~ Then by Lemma A A
B = A A B(") = &, Hence by Deﬁnitionand construction in Stepwe have that

(n*) _ _(n%)
P gn*) TP gn)opn*-1)

_a(n*-1) _
=T —pA(n*).

Therefore we can conclude that p* = p(""). O

The following definition will allow us to formalise the relationship between the terms of the ordinary (in

fact, finite) sequence (p(”) )n>0 and the transfinite sequence (gb(”) )y>0'

Definition 73. Let (a,Q, B, L, o, 3) be a regular clearing system and let n be an iteration of Algorithm
For some ordinal i, we will say that iteration n tracks qﬁ(“) if

1. A = AW g = gl pn) = £,
2. p(™ = ) and
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3. if there is some i € B(™) such that ?ji("_l) >T;>0or gji(”_l) > B; then k() = 0.

Remark 74. The essence of Definition |73|is to highlight the fact that Algorithm [3| allows us to track
certain terms of the sequence (gb(“)) with the components of the terms constructed separately for

the sets A™), B(™ and £(™),

v20’

The following lemma gives several useful sufficiency conditions that can be applied to Definition 73]

Lemma 75. Let n be an iteration of Algorithm[3|and p some ordinal.

1. Suppose D) = DWW and B = B, Then the condition in Definition is satisfied.

2. Suppose the condition in Definition is satisfied and p(n) = qﬁ(” ) Then the condition in

An) An)
Definition is satisfied. In particular, if A" = & then the condition in Definition is
satisfied.
3. Suppose the condition in Definition [73|1|is satisfied and BT = BV Then gbff()n) = ~E:<"§) if
and only if the condition in Definition[73|2]is satisfied.
4. Suppose gg(l;)l) < TB(n) and ggf;}) < Bg(n). Then the condition in Definition|73|3|is satisfied.

Proof. 1. From Definition 43|it follows that A(*) = D) B, Similarly, by Lemma A =
D™ \ B Therefore if B = B4 and £ = £ then it follows that A(™) = A,

2. By Proposition 48| and the condition in Definition we have

¢fg’fl> ‘755;3) = _B(w = Bpn

‘;5(5/:31) ‘ﬁ%b) = Lpw = Lo
Hence by Deﬁnitionﬁ gf)( By = PI(;(LBL) and qﬁ( rny = p(LTEZL) If pfﬁl) qb( "ty then p(m) = (),
satisfying Definition [73|2| Note that pfA()n) = .A()") is vacuously true if A =

3. If B = gn-1) then, since D) ¢ pn-1) Lemma implies that A ¢ A1) Hence
A A A=D = A() and .A(") n BN = AM A B = & Therefore p( m = 3D Hence

A T F )
(ﬁ%)’l) = A(n)) if and only if p A<n> qﬁi’&)n) and whenever the latter condition holds we can apply
Lemmal73]2]

4. The condition in Definition is satisfied vacuously since by assumption there is no i € B(")
such that gji("_l) >T; or gji("_l) > B;.

O]

The notion of tracking allows us to deploy the full strength of the results in Section [3.3] by equating
various quantities introduced in that section with the quantities defined in Algorithm 3| The folowing
lemmas are two tools for establishing this correspondence. Lemma|[76] gives the properties of the vector
b(™ and matrix M) which allows us to treat them as a proxies for the vector () and matrix M (¥,
respectively. Lemma [77| gives the properties of z(F1) and k) allowing us to use results in Section
about X (k) and Y ) ().
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Lemma 76. Let n be an iteration ofAlgorithmand p an ordinal. Suppose AT = AW B = BK),
£ = £ Then we obtain the following:

160 = 0 and M) = N0,

2. Suppose A" = @. If there is some i € B such that bgn) >T; or bgn) > B then k(p) = 0.

Proof. 1. Applying the definitions of b and M (™) in Algorithm and of b(*) and M) in Defini-
tion[52] we obtain

(™ = qq + BQng(n)BB(n) + ﬁQNU”)EU")
=oa+ BQNBw)Bé(u) + 5QN£<H>Eﬁ<“> = b1 and
M = B 40 4
= B g g = MW,

2. By assumption we have AW = A = & and by Lemma above we have that (") = p(),
Corollary [53| then implies that V, 5(¢(")) = b("). Hence if there is some i € B(™ such that
bgn) > T; or bg") > B, then there is some i € B such that Va,g(qﬁ(“))i > T; or Vaﬁ(qﬁ(“))i > B;.
In the first case we have that k7 (1) = 0 and in the last case we have that k(1) = 0, by Corollary

5001] and [50[2} Hence we obtain that x(p) = kp(p) A kp(p) =0 <w.
O

Lemma 77. Assume that n* is well-defined. Let iteration n < n” track (;5(”“) for some ordinal u. Then

12O T gy, 4O < Tgeny and y O™ < By

2. z(0m) = X(“)(O). Furthermore, if:z(K’”) and y(K’”) are defined in Algorithm f0r some K >1
then zF™) = X (k) and y*™) = Y (k) for all k such that 1 < k < K.

Proof. 1. The sets D™ and B(™ are defined in one of the Steps|9}[10/or|11l By construction in Ste
p y p

EL :Egb(j) < Ty ﬂg&}) < Tp(ny and ;zj(Drz;)l) < Bpny. By construction in Step gjgz;}) < T
and g”(;)l) < BD(H) and moreover we can observe that Stepis only ever reached if A1) = o
Step|11{can only be reached from Step @ where again it is clear that ifﬂii) <T g, ng;_ll)) <

Ti(n-1) and ?Jg(t,ll)) < Bp(n-1y by construction.

Let i € A, By construction in Step if i ¢ A A A1) then ZL‘EO’n) = ~§n_1) < Ty and if

i e A™ A B1) then w@(o,n) = gjz-(n_l) <T; and a:go’n) = ﬂi(n_l) < B;. On the other hand if we let
i € BM™ then y(o’n) = gji(n_l) < T; and y(o’n) = gji(n_l) < B;.

i i
2. By our convention, if A = AW = g then z(") = X (0) vacuously. So suppose that
A + & By construction in Stepand Deﬁnition

(O,n)  _ ~(n) _.(n)
T An-1) =T gy aan-1) = P g qa(n-1)
(0,n) ~(n)

; _ _(n)
Lpm-1) = Y g nBn-1) = P gm)npn-1)
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Hence, by Definition [73| (%) = pff()n) = ¢(“) But then by the definition of X (*)(0) we have
m

A
that 2 = U0 = QSA&) = X1(0).

Note that X ") (k) and Y ") (k) are defined for all k > 1 and (1™ and 3™ are defined for all
iterations n. Therefore, since 2(*™) and y*™) are defined recursively, they are well-defined for
1 < k < K whenever 25 and y (™) are defined. Since A = A(*) B(") = BW, £ = £
we can observe by comparing Definition |58 and Algorithm that, for 1 < k < K, (8 is just a
relabelling of X *)(k) and 3™ is a relabelling of Y (") (k).

d

Lemmas[76|and[77]do not tell us much about the interaction of Algorithm [3|with the other key quanitites
introduced in Section — k1), X and Y. The following definition provides us with an analogue of
#(1). We can use it to control for the properties of the terms of the sequence (p("™),,50 without running

into problems caused by the fact that x(x) can take the non-finite value w.

Definition 78. Let (a,, B, L, o, 3) be a regular clearing system and n an iteration of Algorithm
Assume that Step [14] is reached. Denote by K (n) the value of k£ — 1 at the beginning of Step [14]in

iteration n.

Note that K (n) is finite whenever it is defined but at the cost of not being a well-defined object in all
cases. In particular, K (n) will not be well-defined if Step|14|is not reached. The main point of concern
where this might happen is the loop in Step[7] If the condition of the loop is always true then Step [I4]is

not reached. We will later show that, in fact, we can circumvent this difficulty.
The next, and final, definition provides some terminology for talking about the different states of Algo-

rithm [3] This will allows us to formulate the proof of Theorem[67 concisely.

Definition 79. Let (a,Q, B, L, a, 3) be a regular clearing system. Assume that n* is defined in Al-
gorithm (3| and let n be an iteration with n < n*. We say that iteration n satisfies the bound condition
if

1. A™ + & and (I— M(”)) is invertible so that #(™) := (I— M(”))71 bfﬁ)n) and §(™ = bgéi) +

BQB(n)A(n)i‘(n)’ and

2. 7 < TA(”)’ g(n) < TB(”) and gj(”) < BB(”)'
We then say that iteration 7 is in

* the degenerate termination state if A™ = & and either B(") = & or both bgﬁi) < TB(n) and
n .5 .
by < By

* the simple transition state if it is not in the degenerate termination state and K (n) is well-defined
with K (n) <A™

* the unbounded transition state if it does not satisfy the bound condition and K (n) is well-defined
with K (n) > |A™)];
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« the limit state if it satisfies the bound condition and K (n) is well-defined with K (n) > |A(™).

For brevity we will refer to either the simple transition state or the unbounded transition state as a

transition state.

We can see by inspection of Figure [3.1] that Algorithm [3| can complete each iteration in four different
ways that correspond to the four states in Definition The degenerate termination state corresponds
to the case where the algorithm reaches Step [5] and is then redirected to Step [I0] We will see that this
state can only occur within the last two iterations of the algorithm, which motivates the name. The limit
state corresponds to the case where the algorithm reaches Step [6| where it is redirected to Step We
will see that the quantities constructed in this state will be the limit vectors X and Y. Finally, the two
transition states correspond to the case where the algorithm is ultimately pointed to Step[] In the simple
transition state the algorithm is redirected from Step 4] to Step [§] bypassing the loop in Step[7} Since
the loop in Step (4| can only run at most \A(”)] times, the number of steps between Step @ and Step EI is
bounded. In the unbounded transition state the loop in Step[/|is not bypassed and the algorithm can run

an unbounded (but still finite) number of steps.

The following proposition demonstrates that these four states are indeed an appropriate way of charac-

terising the state of Algorithm 3]

Proposition 80. Suppose n* is defined and let n < n* be such that iteration n of Algorithm 3| tracks
qb(ﬁ) for some ordinal . Then the four states in Deﬁnitionare pairwise mutually exclusive and jointly

exhaustive.

Proof. By definition, the degenerate termination state and the simple transition state are mutually ex-
clusive. The simple transition state is mutually exclusive with either the unbounded transition state or
the limit state due to the constraints on K (n). The unbounded transition state and the limit state are
mutually exclusive due to the mutually exclusive requirements for the bound condition. The degener-
ate termination state and the limit state are mutually exclusive since the bound condition requires that
AM 2 g,

It remains to show that the degenerate termination state and the unbounded transition state are mutually
exclusive. Suppose that iteration n is in the unbounded transition state with A = & as otherwise the
contradiction is trivial by definition. In particular, Algorithm [3] must reach the loop in Step[7} By our
convention y(k”’”) = y(k’”) = bgzzl) for all k. By Remark n <n* implies that Algorithmterminates
and, in particular, so must the loop in Step [7| Hence there must be some % such that yi(k’n) = bgn) >T;
or yz.(k’n) = bgn)

all four states are pairwise mutually exclusive.

> B;. But that implies that iteration 7 is not in the degenerate termination state. Hence

To see that the four states are jointly exhaustive, first note that if A = g then we showed that y(*") =

(n)
bB(n

that yi(o’n) > T, ory

, for all k. If iteration n is not in the degenerate termination state then there is some ¢ € B such
Z(O’") > B;. Then k is incremented so that k& = 1 and Algorithm [3| proceeds to

terminate. Hence K(n) =k-1=0< |A(")| and hence iteration n is in the simple transition state. Thus
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the degenerate termination state and the simple transition state exhaust all cases if A =z So suppose
A % & and assume that iteration n is not in the limit state. If /' (n) is well-defined then, by definition,
it follows that iteration n must be in the simple transition state if K (n) < |.A"| or in the unbounded
transition state if K (n) > |A™)],

It therefore remains to consider what happens if |A(™)| # @ and K (n) is not well-defined. This can
happen either if Step [/|is not reached at all or it is reached but the loop in Step [/| does not terminate.

Step [7] can fail to be reached only in Steps c|or[6b} The former would imply that K (n) is well-defined
and the latter would imply that iteration n is in the limit state, which we have assumed is not the case.

Therefore we suppose that iteration n is in the unbounded transition state and the loop in Step[/|does not
terminate. In particular, for all k£ > |A(")| we have that z(F™) < TA(n), y*Fn) < TB("> and y(F") < TB(n)’
yF") < Ty, Then Lemmaimplies that (™) = X () (k) and y*™) = Y () (k) for all & > |LA™).
In particular, the sequences (X (“)(k:)) s and (Y(”)(k)) 41 are bounded and, by Lemma non-
decreasing. Hence their limits exist. Lemma |59| then implies that (I - M (“)) is invertible and the
limits are X and Y, respectively. By Lemma [76| it then follows that iteration n satisfies the bound
condition, contradicting the assumption that it is in the unbounded transition state. Therefore if n is
in the unbounded transition state then the loop in Step [7| must terminate. Hence K (n) is well-defined,

showing that the four states in Definition [/9|exhaust all possibilities. 0

Lemmas [81] and [82] use the terminology of Definition [79]to characterise the properties of Algorithm 3|

and relate it to the notions introduced in the previous section.

Lemma 81. Assume that n* is well-defined. Let iteration n < n* track ¢ for some ordinal p.

1. If iteration n is in the limit state then &™) = X () and §(") = Y (1),

2. If iteration n is in a transition state then K(n) > 0 and 5 and y*™) are defined for all
integers k satisfying 0 < k < K(n) + 1.
If K(n) > 0 then for all integers k satisfying 0 < k < K(n), z(kn) < T g(m), ykn) < Tyny and

= . . . K(n)+1 — .
y(k’”) < Bgy. Moreover, either there is some i € A such that ZL‘l( (n)+1n) > T; or there is

some i € BT such that yz.(K(")H’n) >T; or yz.(K(n)H’n) > B;.

3. Ifiteration n is in a transition state then K (n) < k(p). If moreover k(1) < w then K(n) = k().

Proof. 1. By assumption of Deﬁnition A = A B = g) () = £() 1f iteration n is
in the limit state then
~(n) _ n)\-17(n)
# = (1- M)

G = b5 + B g (1= M) 1600
Lemma [76]T| then implies that
() — (1 A1) ()
3 = (1= N )T - x

5" = o) (-1 _ v
y( ) = b[;fzu) +BQB(“)A(“) (I_ M('u‘)) b}:(u) - Y(ﬂ)
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2. If iteration n is in the a transition state then the loop in Step ] must be completed at least once and
so at the beginning of Step[14] £ > 1 and hence K (n) =k -1 > 0.

For k = 0 z(®™ and y(o’”) are defined in Step 2. Now suppose that K(n) > 0 and k is some
integer satisfying 0 < k& < K(n) + 1. By Definition (78| this implies that *) and y*) are
defined.

Let 0 < k < K(n). If iteration n is in the simple transition state then the loop at Step |4 terminates
precisely when k£ + 1 = K (n) + 1 and the algorithm then proceeds to the next iteration. If iteration
n is in the unbounded transition state then the loop at Step {] does not terminate the iteration but
rather proceeds on to the loop in Stepwhich terminates precisely when k+ 1 = K(n) + 1. It then
follows by the conditions in those loops that (¥ < Ty, y®™ < Ty and y*™ < B ).
Moreover, by the same conditions we also have that either there is some i ¢ A such that

(K(n)+1n) 5 T; or there is some i € B such that ny(n)“’n) > T, or y(K(n)+1’n) > B;.

xl K3

3. First we show that K(n) < x(u). For K(n) = 0, K(n) < x(u) trivially and so we can let
K(n) > 0. Suppose then that K(n) > x(u) + 1 with x(p) finite. Therefore, for any & such that
0<k<r(p)+1, 25 and y*™) are defined and moreover by LemmaX(“)(k) = g(km) <
T jw)» Y (k) =y < T 4 and Y (k) =y < By, By Propositionthis means,
in particular, that Vaﬁ(gb(“*"(“)))ﬁ(w < Tx,.y and Va75(¢(“+“(“)))3(u) < Bg- Corollary
and [50|2) then imply that £7(u) > £(u) and kp(p) > k(). Hence we get the contradiction that
k(p) = kr(p) Akp(p) > k(). This shows that K(n) < k(p) + 1,1.e. K(n) < k(u).

Suppose k(1) < w. To show that K'(n) = x(u), we obtain a contradiction by allowing K (n) <
#(p1). Then 2K (M+11) and o (K()+1.n) are defined and (K (M+1m) = X () (K (n)+1), K )+1n) -
Y (K (n) +1) by Lemma Corollary [50and Proposition give us that z(K()+1n) —
Vs (@450 4y < T gy g = V(@0 KDY gy < Tigiy and yFEI TR <
B 5(n)- Butif so then the loop at Step must complete fully and Algorithmmust then proceed to
the loop at Step [7, which does not terminate. Hence (K (M)+21) 5 defined, contradicting Defini-
tion 78] that requires the loop to terminate. Therefore () < K (n) and hence K (n) = x(p) < w.

O]

Lemma 82. Let (a,, B, L,«, ) be a regular clearing system. Let iteration n track qb(“) for some

n <n* and some ordinal p.

1. If iteration n is in a transition state then k(u) < w. In particular, if iteration n is in the simple

transition state with A"™) = & then r(p1) = 0.

2. Ifiteration n is in either the degenerate termination state or the limit state then k(1) = w.

Proof. 1. Suppose iteration n is in a transition state state. Then K (n) is well-defined and by Lemma
7712 X (K (n) +1) = 2E+L0) and Y (K (n) + 1) = K@+ 1f K (n) <A™ then
iteration n is in the simple transition state and the loop at Step [d must terminate before completing.

If K(n) > |A(”)| then iteration 7 is in the unbounded transition state and the loop at Step @ must
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complete fully with Algorithm [3|then proceeding to the loop at Step 7} which must terminate. In
either case, there is some i € A such that X" (K (n) +1); > T; or some i € B such that
YW (K (n)+1); > Ty or YW (K (n)+1); > B;.

Suppose to the contrary that x(u) = w. Then K(n) + 1 < k(/mu) and by Lemma and
Propositionx(K(")+1’”) = Vo g(¢W+Km)) 20 and yE ) =y, g (gt K@)y o0
Then by Lemma there is some i € A = AW such that V,, 5(¢**K (™)), > T; or some
i € B = BU such that Vi, (WK, > T, or Vi, (oK), > B;. By Corollary [50]1]
and in the first two cases we have that k7 () < K(n) and in the last case we have that
k() < K(n). Hence we obtain the contradiction that k(p) = k() A kp(p) < K(n) < w.
Therefore, if iteration n is in a transition state then () < w.

In particular, if A = A = & then there is some i € B such that bgn) = yi(o’n) > T, or
bg”) = yfo ) > B; as, otherwise, iteration n would be in the degenerate termination state. Lemma
[76]2] then implies that £ (p) = 0 < w.

2. Suppose iteration n is in the limit state. Then the bound condition is satisfied and by Lemma
we get that X = (") and Y () = (™) To establish a contradiction, suppose further
that k() < w. Hence by Lemma above k() = K(n). By definition of the limit state
K(n) > |cA(")| = |A®] and so /<a(,u) > |A®W)|. By the bound condition we then obtain that
X =z ¢ A( ), Y = () ¢ T,y and Yy = 5 < B Theoremthen implies
that k() = w.

Finally, suppose that iteration n is in the degenerate termination state. Then A(™) = & and we
have that <Z>(A“) = By, and gﬁg& L s,y We then compute (). Since (¢(”)) is non-

B(w)
decreasing and bounded above by L, we get that @(gb(”))ﬁ(#) = (E(:)l) L. If B(“) # @ then

by Corollary [53[and Lemma Lemma 76“1 w5 (M) B = b;‘é)) = b;(i) and so by the definition
of the degenerate termination state, bB(n> < Tgmy = Ty and bé()) = bé(i) Bgn = Bg.

Hence by Lemman V(qb(“))lgw) < LB(H) and so @(gb(“))@(ﬂ) = BB(H) A Vawg(qb(“))é(w =
Bp, = gbgzi). Therefore ®(p() = ¢ and ¢ is a fixed point of ®. Hence by Remark

A1) = .
UJ

Lemma 83. Let n < n* and suppose that iteration n of Algorithm tracks ¢>(’1) for some ordinal [i.

1. If k(fi) < w then iteration n + 1 tracks ¢{F+<(A+1),

2. If k(1) = w then iteration n + 1 tracks PlHw),

Proof. 1. Let k(1) < w. By Lemma iteration m is in a transition state. By inspection of
Algorithm 3| the sets D1 and B"*1) are defined at Step @ K (n) is well-defined and, by
Lemma[R1|3] k(i) = K(n). Let K := k(ji)+1and pu:= i+ k(1) +1 = i+ K. Then K = K(n)+1
and z(F5n) = z(n) o (Kon) = g(n),
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By Lemma it follows that X (") (K) = (™ and Y™ (K) = §(™. We then compare the sets
DWW and BM with Step |§| and observe by Theorem that

DK — PAatK)
={ie A® | XB(K); < T} u{ie B™ |y B (K); < T}
= {ie A 3™ < T} u{ie B | g™ < T}
=D D and
AW = B+K)
= {ie DWn BB | Y B (K); < B}
={ie D™ A BM | gjgn) < B}
— B(n+1).

Since DWW = D+ and B = B("*D) | Lemma implies that the condition in Definition
73011is satisfied and, in particular, £(#) = £(?+1) and A(W) = A(n+1),

By Lemma [75[2} it is sufficient to show that pf:(i)l) = qﬁiﬁlﬂ) to establish that Definition [73[2

is satisfied. Note that we must have that at least one of A and B is non-empty. Otherwise,
") = L which must be a fixed point of ® by Proposition and hence k(1) = w by Remark

Suppose that A = A" « & Then by Theorem

(n+1) _ ~(n) _ v (@)
D pn+yaqm) = T gt aqn) = X (K)A(n+1>nA(n)
_ L (p+K) _ ()
- ¢A(n+1)nA(n) - qb,4(n+1)m,4(n)‘

Suppose instead that B™ = B(") + &. Then Theorem implies that

(n+1) _ ~(n) _ v (i)
pA(n+1)nB(n) - yA(”+1)ﬂB(") =Y (K)A("Hl)ﬁ[ﬂ(")
_ 4 (A+K) (D)
- ¢A("+1)OB(") - ¢A(n+1)mlg(n)'

This confirms that Definition [/3l2lis satisfied.
By construction above we have that, for all ¢ € B+ gjz.(n) < T; and g]i(n) < B;. Lemma

states that the condition in Definition [73|3]is satisfied. Hence we have confirmed all elements of
Definition [73|and have shown that iteration n + 1 tracks ¢(A*+(A)+1),

. Let k(f1) = w and 1 := ji + w. By Proposition [80]and Lemma [82]2} iteration n is in the limit state
or the degenerate termination state.

Suppose iteration 7 is in the limit state. By Theorem and Lemma we get that () =
X () We can observe by inspection of Algorithrn that the sets D1 and B"*1) are defined

at Step[T1] Theorem and [2d| then gives us that
P Plie)
={ic AW | Xi(ﬁ) <Lj}uB®
= {ie A | :EE”) <Lj}uB™
- D("Jrl)7
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and B = g(n+1) — g(n)

By Lemma , the condition in Definition is satisfied and, in particular, £(*) = £("*1) and

AW) = A+ Theorem |65]2a] gives us that quf(l) = qbif:()m = X(® = () By Lemma [75|3| this

is sufficient to establish that Definition [/3l2lis satisfied.

It remains to establish that the condition in Definition holds. By Theorem Y <
Bg(#) = Bg(n+1) S0 suppose there is some i € B(*1) such that gji(n) > T;. Note that by Theorem
we have V%B(gb(“))é(m = Y (®) = (") Therefore, since B4) 2 B4, there is some i € B
such that V,, 5(¢(")); > T;. Then, by Corollary kp(p) = 0 and hence x(u) = 0. Therefore

we have confirmed all elements of Deﬁnition if AP £ .

Now suppose instead that iteration n is in the degenerate termination state. Then A = o
g™ = bgi) and D™ = B By definition, either B(™ = & or (™) < Tygny and §(™) < By If
B™ = & then D™ = & and so by LemmaB(”+1) = B™ and DD = DM If B + o
then the sets D("*1) and B"*1) are defined at Step|10{and we can see that, again, B("*1) = B(")
and D1 = D) In either case, AT = A and £*1) = £ Theorem|65]2d|implies that
D) = gl = pn) = gn+1) = pn+l) gpg ) = A = gn) = gn+l) By Lemma the
condition in Deﬁnitionis satisfied and, in particular, £ = £(*1) and AW = A(+1) = g,
By Lemma [75|2] this is sufficient to establish that Definition is satisfied.

Since g](") < TB(n> = TB(n+1) and j&(”) < BB(n) = BB<n+1), Lemma implies that the condition
in Definition [73|3] is also satisfied. Hence we have confirmed all elements of Definition [73] if

A = & In particular, we have shown that if # (i) = w then iteration n + 1 tracks ¢(#+).

O]

Corollary 84. Iteration O tracks ) and therefore, for every n < n*, iteration n of Algorithm @ tracks

(l)(”) for some ordinal .

Proof. Let n = 0. Then by definition A = gand y~ = 0. By Lemma and E! all conditions
of Definition [73| are satisfied and so iteration 0 tracks ¢(°). The result then follows by induction and
Lemma (83 O

We are now in a position to prove the first part of Theorem [67]

Proof of Theorem|[67][1} By Corollary |84} every iteration tracks qﬁ(“) for some ordinal x. By Proposition
we know that each iteration is in one of four states. In all states apart from the unbounded transition
state, simple observation of Algorithm [3] (or Figure [3.1)) shows that it proceeds sequentially in a finite
number of steps until the end of the iteration. If iteration n is in the unbounded transition state then
K (n) is well-defined and so the loop in Step (7| will not run more than K (n) — |.A(™)| times. Hence in

all states each iteration is completed in a finite number of steps.

By Lemma (D(™),,50 and (B(),,50 are non-decreasing sequences of sets. If for any iteration n,
D=1 = D) = p#l) = D) and B = B+1) = B then we will also have A1) = A1) =
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A and £ = £+ = £ Then by RemarkAlgorithmwill terminate. The only alternative
to this is that DD ¢ D) p+l) ¢ pn) p=1) ¢ () or B7+1) ¢ B(") However, since these
are subsets of the finite set A/ and the sequences of these sets are monotonic, this case can only occur a

finite number of times before the sequences become constant.

Hence Algorithm 3| proceeds in a finite number of iterations, each of which completes in a finite number

of steps. U

Now that we have shown that Algorithm [3]always terminates, we can characterise the final iterations of
the algorithm using the following lemmas. This will then let us conclude that the algorithm outputs a

fixed point of .

Lemma 85. Suppose iteration n is in a transition state. Then n <n* — 2.

Proof. Note that according to Remark [68| n* is well-defined precisely whenever at Step [13]it is estab-
lished that A" =2) = A("=1) = A() B("=2) = B0"=1) = ") apg £(=2) = £ = £(07),

Suppose iteration n is in a transition state so that Lemma implies that either there is some i € .A(™)

with xZ(K(n)H’") > T; or there is some i € B™) with yi(K(n)H’n) >T; or x(K(n)+1’n)

i

for a transition state we have z(™) = z(K(m)+1:n) gpq () = ¢ (K()+1n) gpq Algorithmreaches Step

> B;. Furthermore,

[ In particular,

DU = i e AN |5V < Ty ufi e B [ 5V < T}
Bn+1) _ {ie pn+1) - gn) | gz(”) < B;}.

Therefore A+ = {i ¢ A | @(n) <Tyu{ieB™|B;< gz.(”) < T;}. If there is some i € A with
:Egn) > T, then AV = A(M)_If there is some i € B with g]i(n) > T; or gi(”) > B, then B(™+1) + B(n),

In either event we have thatn +1 #n* —1landn+1 +n”. O

Lemma 86. Suppose iteration n is in the degenerate termination state and tracks gb(“) for some ordinal
. Then ¢(“) is a fixed point of ® and if n < n* then iteration n+ 1 is also in the degenerate termination
state.

(n)
B(n) <

TB(n) and bgz,)l) < BB(n). Theref?re by Deﬁnition ngz’)‘),: Bg(u) and gbgzz) = Eﬁ(#>' ProposiAtion
implies that <I>(¢(“))B(u) > By, and @(qb(“))ﬁ(#) = Lpy- Suppose that, for some i € B,
®(¢M); > B;. Then V,, 3(¢"); > B;. By Corollary V(o) = b = p(™) and so bgn) > B;,
contradicting the definition of the degenerate termination state. Therefore @(qﬁ(“)) B = BB(#) and

hence () = ¢ ie. ¢ is a fixed point of P.

Proof. By definition of the degenerate termination state we have AW = A = g and g™ =

Since A™ = g, DM = B(™) The sets DY) and BM*Y are defined in Step [10{ and we have that
DO = i e BM | yji(") < T} = BM™ = DM and BO*D = B Hence A1) = A = & and
£+ = £ which also implies that b("*1) = (") Hence iteration n + 1 is again in the degenerate

termination state. O

79



Chapter 3. Least Fixed Point in Clearing Problems

Lemma 87. Suppose iterations n* — 2 and n* — 1 are both in the limit state and iteration n* — 1 tracks
qb(”) for some ordinal pi. Then qb(”) is a fixed point of ®.

Proof. By Remark [68|and Definition[73] we have that

B - gn=1) _ B(n*—Q);
A = g(n*-1) _ A(”*_Q);

L) = p(7=1) 2 p(n7=2). ang
D) — pn*-1) _ pn*-2)

In particular, it follows that b =1 = p("=2) and M-V = M(""-2) - Also note that since iteration

n* - 11is in the limit state, AT~V # gand so K (n* - 1) > |A® D] > 1,

Since A "2 1 B("'=2) = g, Definition implies that qﬁfﬁl y = pf;(j;})l) = #("=2)_ Since iteration

n* — 2 is in the limit state we have that

(I _ M(n*fl))i_(n*f2) _ (I _ M(n*f2))j(n"72)

_p(n*=2) _ 4 (n*-1)
- b_A(n*72) - bA(n*fl)

and so
s(n*-2) _ g (n"-1) (n*-1) z(n*-2).
\" _bA(n*-1)+Mn A
(n*— *_9 ~(n*-
52 bgzn*_g) + 593(n*—2>A<n*_z)x(" 2).
Therefore
-1 *_1) ~(n*-2 -1 *_q
I e N A Iy LS N Ve P
g = bz(;(bnif) + By g 8",

[y

By Corollary|53|and Lemma(76

In particular,

Vag(01)) = 50 4 B 10y 00 = 60D 4 B yr 0l

n”—l n*—
Va,ﬂ(‘b(u))A(n*fl) = bi‘(n*-z) + M ¢ 1)¢E:()n*-1) = (bf‘/:()n*—l);

*_1 - *_ - *_
V(%) gus oy = bgén*_i + B0t 1y gy @D = (),
By Proposition , BA(I—L)_< ¢ff()m_1) = ¢Ef()#) < E_A(m and 50 ®(¢") 10y = Va,s(6%)) 4y = <75%8)-
Furthermore, §(" =) < Tg(n*-1) and g2 ¢ Bpyn+-1y since otherwise x(u) = 0 by the condition
in Definition But if x(u) = 0 then by Lemma we get the contradiction 1 < K(n* - 1) <
k(p) = 0. Hence Va,g(qﬁ(“))é(u) < T, and Vaﬁ((ﬁ(“))é(m < By, and so by Lemmawe get

that @(gb(“))ém = By = qbgéi). Finally, by Propositionsand @(gb(“))é(u) =Ly = ¢E§I3)‘
Therefore (I)((ﬁ(”)) = ¢ and so ¢ is a fixed point of ®. O

We are now in a position to prove that Algorithm [3]outputs a fixed point of ®.
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Proposition 88. The output of Algorithm |3} p*, is a fixed point of ®.

Proof. By Theorem Algorithm |3| terminates and so by Theorem [72|p* = p(). By Corollary
let 1 be an ordinal such that iteration n* — 1 tracks gb(“). Then p* = qf)(“).

Note that by Lemma 83]iteration n* — 2 is not in a transition state. If iteration n* — 2 is in the degnerate
termination state then by Lemma [86|iteration n* — 1 is also in the degenerate termination state and p*
is a fixed point of ®. If iteration n* — 2 is in the simple transition state and iteration n* — 1 is in the
degenerate termination state then again Lemma (86| tells us that p* is a fixed point of ®. Finally, if both
iterations n* — 2 and n* — 1 are in the limit state then Lemma [87|implies that p* is a fixed point of .

Hence, in all cases, p* is a fixed point of ®. OJ

To conclude the proof of Theorem 672, we need to show that the fixed point p* is in fact the least fixed

point of ®, whose existence is ensured by Theorem 44] We first need the following lemma.

Lemma 89. Suppose iteration n tracks qﬁ(ﬂ) and iteration n + 1 tracks qﬁ(“) for some ordinals [ and p.
If v is an ordinal such that i < v < p with ») a fixed point of ® then ¢) = p(1).

Proof. Suppose iteration n is in a transition state. We can assume that v < u as otherwise o) = ¢
trivially. Then by Lemma k(1) < w. Furthermore, by Lemma we can assume that y =
i+ k(1) + 1. Then, since ji < v < p, there is some integer k satisfying 0 < k < x(fz) such that v = i + k.
Hence V,, 5(¢™)) = V4, 5(¢#**)) and so, by Corollary k(v) = k(1) - k < k(ft) < w. Therefore
#) is not a fixed point of ® as per Remark

So if gb(”) a fixed point of ® then iteration n is either in the degenerate transition state or in the limit
state. By Lemma[82J2] x(4) = w and by Lemma [83]2] we can assume that p = i + w. Clearly, if v = p
then ¢*) = $(#) so suppose v satisfies fi < v < p = ji + w. Then there is some integer k with v = i + k.
Therefore v + w = i + k + w = fi + w. Then by Propositiongb(“) = plirw) = prw) = () O

We can now conclude the proof of Theorem [67]

Proof of Theorem[67)2} By Proposition[88] p* is a fixed point of ®. Theorem[44] guarantees the existence
of the least fixed point of ® and confirms that such least fixed point is of the form ") for some

countable ordinal v.

By Corollary let 41, be an ordinal such that iteration n* — 1 tracks ¢(**). Then by Theorem
Dx = d>(“*). Note that by Propositiony,, < U+, Since QS(“*) = p* is a fixed point of ® and cZJ("*) is the
least fixed point of ®. If n* — 1 = 0 then by Corollary Vi = f1x = 0 and so ) = () Tfp*-1>0
then by Corollary n* — 2 tracks qﬁ([‘) for some ordinal ji. By Lemma ¢(“*) =) In particular,
it follows that p* = () = (). O
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3.5 Examples of least fixed points

3.5.1 Least fixed points in Rogers & Veraart (2013)

In this section we apply Algorithmto a clearing system (a,Q, B, L, «, ) on N = {1,2}. In particular,
Q) is fully characterised by 215 and 291.

Remark 90. Leta=1,B=0,Q9=0 =1, L1 = K1, Ly = K, for some K1, Ko and o = 3 = % Then
the clearing system corresponds to the financial system described in Example 3.3 in [Rogers & Veraart

(2013) and the function @ in that paper coincides with the function @ in this chapter.

Example 91. Let the clearing system be as in Remarkwith Ki=Ky=22 Then L =2.2-1 and
T=11-1.

In iteration O, p(o) = B = 0. Furthermore, gj(o) =50 = %1. Also, y(o’l) = %1 > B. Hence iteration 0 is
in the simple transition state.

In iteration 1, p(1) = %1. Furthermore, D) = AW = A7, B = £ = £0) — g (1) = %1,
MO = %(? (1)) and M) = }11_ Then (O = %1, (LD = %1, @D = %1 and (31 = %l. Therefore
K(1)>2=|M®|and 2 = (I - MD)p(1) = 1. In particular, iteration 1 is in the limit state.

In iteration 2, p(® = 1. Furthermore, D) = A®?) = D) = AW = N7 B2 = (1) = £2) = £(1) = g,
b2 = pM M@ = M) and ¢ = 0. Therefore 2(*2) = 1 for all k and so K (2) > 2 = |M®| and
#?=1.In particular, iteration 2 is again in the limit state.

In iteration 3, p(g) = 1. Furthermore, DG) = D@ = A and B®) = B? = . Hence by the same

argument as in iteration 2, iteration 3 is in the limit state. In particular, it follows that n* = 4 and p* = 1.

Thus 1 is the least fixed point, agreeing with the finding in|Rogers & Veraart (2013) where it was shown
that 1 and 2.2 - 1 are the two fixed points of ®.

The next example demonstrates that while Algorithm [3]terminates in a finite number of steps, this finite

number can be arbitrarily large.

Example 92. Let the clearing system be as in Example [91| with the exception that 3 = 1 (while « = %

as before) and K1 = Ky = K + 1 for some K > 2. Then L = (K + 1)1 and T = (K + %)1 As in
Example iteration 0 is in the simple transition state, p(O) =0 and p(l) = %1. However, since 8 = 1,
I-M®M = (1 7') and so det(I- M) = 0. It can then be shown that A = A" and 2(*1) < T for all
k< 2K + 1. Hence K (1) » 2K > 2| A and therefore iteration 1 is in the unbounded transition state.

3.5.2 Roll-over cascades

In this section, we consider an example where the lower bound of the clearing function is strictly greater

than zero. To this end we will briefly introduce a simplified model of roll-over credit.

We consider a set of banks N with starting cash assets given by a vector a. We assume that in normal

times, at maturity of the loan L;;, the creditor j will roll over its loan to ¢ provided ¢ can make a partial
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repayment at some rate hj. The rate h;, set by the creditor j, is the same for all of its counterparties.
We assume that 0 < Bj < h; < 1 where ﬁj is some minimal repayment rate. The upper bound of
1 corresponds to the notion of h being a rate. A bank may require a higher repayment rate than the
minimal rate Ej in times of stress but it will not require a lower repayment as h is set by the interbank
market risk tolerance and this threshold is in place to ensure that j remains profitable and does not
perpetually extend loans to potentially insolvent banks. In particular, the repayment rate h; may differ
from Ej if any counterparty 7 cannot make their minimal repayment or if j itself suffers a liquidity

shortage.

The roll-over mechanism ensures that the banking system maintains a sufficient level of overall fund-
ing liquidity. The rate h; is a proxy measure for how confident j is that its counterparties are liquid
and can continue meeting their obligations. If j is not confident then it can increase h; potentially ne-
cessitating its counterparties to raise their funding elsewhere, for example by withdrawing their own
lending. Provided h; < 1, j retains some confidence in its counterparties and this confidence allows the
debtor counterparties to raise further funding by leveraging their liquid assets. However if h; = 1 then it
requires immediate repayment of its loans. In such cases the counterparties are assumed to be undergo-
ing a liquidity shock and will not be able to raise further funding by leveraging their assets sufficiently

quickly.

Given the roll-over repayment rates h, the position of each bank ¢ is described as follows:

e Cash assets: a;

* Roll-over repayment from each debtor j: Lj;h;
* Rolled over loan to j: L;;(1 - h;)

* Roll-over repayment to each creditor k: L;hy

* Rolled over loan from k: L;; (1 - hy)

The rolled over loans are transacted “on paper”. Only the minimal payments are made out of the actual
liquid asset reserves. Thus ¢ has to be able to make total repayments of > ;. L;ixhi. The total liquid
assets that it has available to meet these repayments are given by a; + 3 ; L;;h;. However, as mentioned
above we assume that this amount can be leveraged by 7. In a reduced form we assume that, provided
it is not undergoing a liquidity shock, ¢ can make its repayments from a total supply of value equal to
A (di +hi ¥, Lji) where A > 1 is a leverage multiplier. On the other hand if ¢ is undergoing a liquidity

shock then it needs to make its repayments from a total supply of value equal to a; + h; 3 ; Lj;.

Provided ¢ is not undergoing a liquidity shock, the net value of liquid assets retained in the bank is given
by

J k
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We assume that 7 seeks to ensure that w; > w; for some minimal value w; > 0 chosen by 4. If w; > Aa;
then ¢ seeks to maintain a buffer in excess of its leveraged cash assets in order to absorb possible loss of

value. Thus we obtain the following expression

A (di +h; ZLﬁ) - ZLikhk z Wy,
5 %

which we rewrite as

>1w A; lz
AXiLi AFE

The right-hand side of the inequality is a lower bound on h;. We then assume that this lower bound

jji

is attained since h should only exceed h in times of stress and hence we would like to find the lowest

possible consistent value of h.

-Aad;
We set a; := ZZ i andQ”

onlyifh<1 whenever A=1,we obtaln the fixed point problem h = ®(h) where

for each 7, j. Recalling that h < hj < 1and leveraging is permitted

if (a+Qh),>1

®(h)i=1_
hiv(sa+3Qn), if (a+Qh), <1

for each i. Note that if w > Aa then a > 0. What we have is a cleating system (a,, 1,1, % 1 /\

Example 93. Let S1 = (a,Q, B, L, a, 3) be the clearing system given in Example|91|and consider the
clearing system S2 = (ca, Q, c¢B, cL, , ,8 ) where ¢ = L Then by Propositionthe least fixed point of
the clearing function of S2 is given by = 551. Now let S 3=(ca,Q,3 51, cL,a, B). S3 is the same clearing
system as S2 but, instead of the the lower bound of 0, the clearing function of 53 has the lower bound
L 51> 1 551, i.e. alower bound which is greater than the least fixed point of S2. Applying Algorithm '

we ﬁnd that the least fixed point of the clearing function of S3 is 5 1.

Now consider the roll-over credit model where the reserve of liquid value that the banks wish to maintain
is given by w := 2a + %1 for some vector of cash assets a and the minimal roll-over rate is given by
h = 2—12 1. Then we can readily see that the effective roll-over rate & is in fact given by the fixed point of

the clearing function associated with S3. Namely, h = %1.

3.6 Conclusion

In this chapter we developed Algorithm [3] for constructing the least fixed point of a class of clearing
functions in a finite number of steps. The class of clearing functions considered is larger that the class
described in |Rogers & Veraart| (2013)). In particular, we extended the clearing problem in that paper by
allowing for an arbitrary lower bound on the values taken by the clearing function. As in Rogers & Ve-
raart| (2013)), the clearing problem considered allows for default costs, which renders the corresponding

clearing function discontinuous from below.
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The discontinuity from below and the choice of the lower bound do not play a role in the more common
problem of constructing the greatest fixed point of the clearing function. For this reason these features
have not been previously analysed in detail in the literature. We show that they introduce a number
of obstacles and the problems of construction of the greatest and the least fixed points are not simple
converses of each other. Nevertheless, we are able to describe the structure of the least fixed points by
means of transfinite sequences. However, there is a cost to constructing the least fixed points in a finite
number of steps. Algorithm [3]is more complicated than corresponding algorithms for the greatest fixed
points. Moreover, we are not able to obtain a bound on the number of steps it takes the algorithm to

terminate.

The problem discussed in this chapter is primarily of theoretical interest. Nevertheless there is scope for
applications in the context of systemic risk assessment. In particular, we described a simple model of

roll-over credit where the least fixed point corresponds to the natural clearing solution of interest.
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In this thesis we considered several extensions of the Eisenberg & Noe| (2001) model of interbank net-
work clearing. These problems, both as mathematical problems and models for systemic risk assess-
ment, are interesting in their own right but moreover, in answering the questions posed, we have also

opened up further avenues of research.

4.1 Dynamic models

As discussed in Section |1.3] recent literature has made advances in developing multi-period models of
systemic risk. In part, these advances have been driven by the desire to develop a full controlled dynamic
model of systemic risk. Financial regulators, in particular, are very interested in dynamic models because
such models would allow them to evaluate the effects of various policy proposals and the market’s
responses to them. The multiple maturity model described in Chapter [2]is another significant milestone

towards that objective. We briefly described a simple uncontrolled system in Section|2.4.3

The next steps would involve developing a control theory by deciding on a set of actions that financial
institutions can choose from as they move forward in time. Examples of such actions could be new bor-
rowing or lending activities. For such dynamic models one could then also include stochastic dynamics

for some of the quantities of interest.

One of the conceptual difficulties that has reoccurred in systemic risk literature is the precise timing of
different events and the conflict this can cause with the static nature of stylised balance sheets that are
typically used to formulate the models. This difficulty would only be exacerbated once control actions

are introduced.

Figure .1]is a simple tool that can be used to alleviate this issue in the development of a full dynamic
model. It is a snapshot of a timeline, describing times ¢ € {¢; | 0 < ¢ < 6} with the focus on the two
maturities 77 and 3. The timeline in Figure 4. T]is an extension of the much simpler timeline considered

in Chapterwhere we assumed that tg = 0, t1 = to = t3 and t4 = t5 = tg so that ¢t € {0,77,T5}.

Attime ¢ = {g each bank’s stylised balance sheet is ‘unconstrained’ in the sense that the nearest maturity
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Short Settlement Long Settlement
Unconstrained ~ Pre-clearing maturity Unconstrained ~ Pre-clearing maturity Unconstrained
} } } } } } }
to t1 to =T i3 4 ts =Ts tg

Figure 4.1: Sample timeline

T is sufficiently far in the future that banks are free to carry out day-to-day trading and to respond to
the anticipated maturity of short-term liabilities. Between ¢ = tg and ¢ = ; the stylised balance sheet of
each bank can change due to various factors such as the effect of interest rates, fluctuations in asset value
and active adjustments of the balance sheet through changes in the bank’s portfolio. The graph topology
of the network can change substantially during this period. Asset liquidation can be introduced into
the model with the accompanying risk of firesales. Repurchase agreements and other asset purchases
can create new links in the networks or introduce cross-holding effects as described in [Elsinger| (2011)),
for example. Thus the interval between ¢ = £y and ¢ = ¢; is the principal period that would need to be

accounted for in detail in a full dynamic model.

The cumulative effect of actions taken by the banks as well as any changes due to other effects is
summarised in their stylised balance sheets as they stand at ¢ = ¢;. In particular, if no actions take place
between t = tg and t = ¢;, then such a timeline describes the perspective in Chapter [2] Short-term
liabilities mature at ¢ = to = 77 and we assume that no market activity takes place between ¢ = t; and
t = to. This assumption stems from the fact that, should a bank fail to honour some of its obligations
at t = t9, the insolvency proceedings will wind back in time to establish the balance sheet immediately

prior to such a default. We take this point to be at ¢ = £;.

At t = to = T banks reconcile their mutual nominal obligations by making payments in satisfaction of
their short-term liabilities by clearing them as described in detail in Chapter 2] No market activity is
assumed to take place between ¢ = t5 and ¢ = t3. This time period represents technical adjustments to
the financial system where the banks that had defaulted at ¢ = ¢t = 17 leave the financial system and
the surviving banks reclassify their remaining liabilities as the new short-term and long-term liabilities.
We refer to this transition as settlement and it was described in detail in Section 2.4l In Section 2.4]
we adopted a reduced approach of reassigning the assets of the defaulted banks to the sink node. As
discussed there, in reality some sort of auction process would be involved and the assets are likely to
be reassigned to some of the surviving banks. Any model seeking to simmulate this process would be

situated in the period between ¢t = ¢ and t = 3.

At t = t3 the financial system returns to an ‘unconstrained’ state (as at ¢ = ¢g) and the banks can resume
their market activity between ¢ = t3 and ¢ = t4. Similarly, ¢ = ¢4 represents the last opportunity for the
financial system to respond prior to the remaining liabilities maturing at ¢t = t5 = 75 and settlement at
t = tg. This approach is clearly periodic and thus can be extended to an arbitrarily long timeline with

any number of maturities.
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4.2 Notions of default and distress

Another ‘holy grail’ of systemic risk research is the development of a unified theory that can account
for several major channels of contagion and financial instability. Currently the models used to describe
default contagion and contagion due to fire sales, for example, use very different frameworks which
prevents us from understanding the combined effect of multiple channels of contagion. Such an ideal
unified framework is currently some way from being achieved. Indeed, even within the domain of a
single channel, such as the default contagion discussed in this thesis, there is often no single coherent

framework.

Different strands of research within the interbank clearing literature use similar, but nonetheless dif-
ferent, definitions of clearing functions and the nature of the clearing solutions themselves varies. In
Chapter [2] for instance, the clearing solution focused on the vector of liquid assets whereas in Chapter
it was more convenient to work with the vector of payments. Often these choices are a matter of con-
venience and by means of a simple transformation we can obtain an equivalent clearing problem using
a different quantity of interest. But again, to our best knowledge, no theory has been put forward which
would answer upfront which quantities lend themselves to such equivalent formulations and which do

not.

The view that has been developed in this thesis (and in Chapter 2] in particular) is that we should seek to
formalise the theory of clearing not around the notion of clearing vectors but rather around the notion of
default sets. As soon as a clearing problem uses a non-monotonic clearing function we lose the ability
to represent the default set as a function of the clearing solution. Thus already we need to include the
default set as part of the clearing solution. Moreover, as shown in Lemma[26]in Chapter 2} under some
mild conditions a default set can be shown to determine the clearing solution. Indeed, this approach has
also been adopted in some of the most recent literature such as Roukny et al.| (2018)). Once we shift the

focus from clearing vectors to default sets as a fundamental notion, promising avenues open up.

As was discussed in Chapter |1} one of the core properties of the Eisenberg & Noe (2001) model and its
various successors is the uniqueness of clearing solutions. This property is often lost once some of the
strong assumptions of the original model are relaxed. It is not even clear that the uniqueness of clearing
solutions, in the context of systemic risk assessment, is necessarily a desirable property to have since
it suppresses the subjective nature of valuations. A key insights stemming from this thesis is that the
idea of non-unique clearing solutions ought to be embraced and new theory developed to understand the
structure of such solutions. Chapter [3] was one step in that direction. Now that we have methodologies
for constructing both the greatest and least clearing solutions, a natural question arises about how to treat
the fixed points that lie between these extrema. Adopting default sets as a fundamental notions offers
one possible approach. Unlike clearing vectors, there is only a finite number of possible default sets
for a given financial system. Following the analogy of Lemma [26]in Chapter [2] intermediate clearing

solutions can be identified with default sets that lie between the least and greatest possible default sets.

Centring the analysis on the notion of the default set also allows us to re-examine the suitability of

various assumptions. For example, as discussed in this thesis, an implicit assumption made in many
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interbank clearing models is that default is an absorbing state. In the context of solvency contagion, this
is a reasonable assumption and in Chapter 2] we made it explicit. It is the absorbing nature of default that
allowed us to circumvent the difficulties posed by non-monotonicity of the clearing function and obtain
Algorithm [T, However, the absorption assumption should not be made in the related field of distress
contagion as discussed in |Barucca et al.| (2016)) and |Veraart (2017), for example. Unlike a bank in
default, a distressed bank may well recover. This does not present difficulties as long as the assumptions
of monotonicity is maintained. However, analysing models of distress contagion without assuming either
the monotonicity of clearing functions or the absorption property is a challenging problem. The Tarski-

Knaster Theorem would not apply and the solutions would not necessarily form a complete lattice.

4.3 Policy implications

In addition to opening up further theoretical research, Chapter[2]also has interesting policy implications.

In Section[2.3.5|we demonstrated that maturity profile uncertainly can, in principle, act as a novel source
of systemic risk. This observation can be tested, given access to regulatory data. In particular, the
question of whether the five maturity categories described in|Langfield et al.[(2014) are sufficient can be

answered.

One of the implications of the non-monotonicity of the clearing function described in Chapter |2|is that
it is possible to construct a financial system where a smaller default set is obtained by, initially, reducing
the liquid assets vector. In effect, this describes a sacrificial effect where a solvent asset-rich bank
is sacrificed freeing up liquid assets to rescue multiple weaker banks. While this, of course, is not a
desirable phenomenon, it provides a novel tool for testing the effects of policy proposals that seek to

distribute liquidity more evenly through a financial system.

As shown in this thesis, significant advances and promising directions of further inquiry maintain sys-

temic risk as a vibrant area of research.
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