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Abstract 

 

This thesis is concerned with the statistical adjustment of survey-based indicators to 

account for unobserved and observed sources of heterogeneity.  Recent years have seen a 

growth in the use of survey-based indicators to measure performance, but questions have 

been raised over their legitimacy due to high levels of nonresponse, particularly among 

certain groups, and the influence of factors unrelated to organisational performance, which 

complicate their interpretation.  In light of this, this thesis uses a range of methods that go 

beyond those ordinarily applied to performance assessment, to explore the role that 

nonresponse and factors unrelated to performance, i.e. case-mix, have on indicators.  The 

empirical analysis focuses on the Adult Social Care Outcomes Framework (ASCOF) 

indicators drawn from the English Adult Social Care Survey.  The core concerns of this 

thesis are whether (i) nonresponse and (ii) adjusting for factors beyond the control of 

organisations affects the interpretation of indicator scores.  Nonresponse has a limited 

effect on inferences about performance, but conclusions depend on the method used to 

explore the effects of nonresponse, the level of nonresponse, the importance of unobserved 

factors and the value placed on accuracy over intelligibility of indicators.  Adjustment for 

case-mix has an important effect on the interpretation of indicators, but the adjustment 

method used was less critical for inference, at least where the aim is to compare 

organisations.  This thesis suggests that the accuracy of some of the ASCOF indicators 

would be improved by adjusting for case-mix and, possibly, for nonresponse.  It is 

important for future studies to explore the effect of nonresponse on indicators.  

Policymakers may also wish to consider amending the survey design to improve its 

representativeness of the adult social care population.  Future studies of survey-based 

performance indicators would benefit from using a wider range of methods similar to those 

applied here.       
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Preface 

 

The idea for this thesis emerged from a stream of work that I was involved in within the 

Costs, Quality and Outcomes Policy Research Programme at PSSRU at the University of 

Kent.  As part of this research programme that was funded by the Department of Health, I 

led a series of studies under the guidance of Professor Ann Netten that looked broadly at 

the measurement of quality within user experience surveys.  This work culminated in the 

development of the Adult Social Care Survey (ASCS)1, which forms the main dataset for 

this thesis.  During this time I also worked on the development of the ASCOT measure2, an 

equivalent of the EQ-5D for social care, which features heavily in this thesis.  I have 

benefited enormously from Professor Ann Netten’s enthusiasm for this area of research 

and her support over the years, which have shaped my understanding of quality and 

outcomes in social care.   

I conceived the idea for the analyses in this thesis, but I am very grateful to 

Professor Ann Netten and Dr Jose-Luis Fernandez for helping me to secure the funding for 

this research as part of the Quality and Outcomes Research Unit (QORU) Policy Research 

Programme grant from the Department of Health.  A number of the chapters in this thesis 

are based on outputs from the QORU programme.  Chapters 4, 6, 7 and 8 are based on 

working papers jointly authored with Dr Jose-Luis Fernandez3, which were circulated to 

officials at the Department of Health.  Parts of Chapter 2 draw on a peer-reviewed journal 

                                                 
1 Malley, J. & Netten, A. (2008), Measuring User Experience of Social Care Services: A Discussion of Three 
Approaches. A Report to the Department of Health. Discusssion Paper 2529. Canterbury, Personal Social 
Services Research Unit; Malley, J. & Netten, A. (2009), Putting People First: Development of the Putting 
People First User Experience Survey.  Discussion Paper 2637. Canterbury, Personal Social Services 
Research Unit; Malley, J., Caiels, J., Fox, D., McCarthy, M., Smith, N., Beadle-Brown, J., Netten, A. & 
Towers, A.-M. (2010), A Report on the Development Studies for the National Adult Social Care User 
Experience Survey, PSSRU Discussion Paper 2721. Canterbury, Personal Social Services Research Unit, 
University of Kent; Malley, J. (2010), A Comparison of Options for Performance Indicators from the Adult 
Social Care Survey (ASCS), PSSRU Discussion Paper 2736. Canterbury, Personal Social Services Research 
Unit, University of Kent. 
2 Netten, A., P. Burge, J. Malley, D. Potoglou, A.-M. Towers, J. Brazier, T. Flynn and J. Forder (2012). 
"Outcomes of Social Care for Adults: Developing a preference-weighted measure." Health Technology 
Assessment 16(16).; Malley, J., A.-M. Towers, A. Netten, J. Brazier, J. Forder and T. Flynn (2012) "An 
assessment of the construct validity of the ASCOT measure of social care-related quality of life with older 
people." Health and Quality of Life Outcomes, 10. DOI: 10.1186/1477-7525-10-21. 
3 Malley, J. & Fernandez, J. (2012), Patterns and effects of nonresponse in the English Adult Social Care 
Survey. PSSRU Discussion Paper 2841, London, Personal Social Services Research Unit, London School of 
Economics and Political Sciences; Malley, J. & Fernandez, J. (2014), Generating adjusted indicators from 
social care survey data. PSSRU Discussion Paper 2873, London, Personal Social Services Research Unit, 
London School of Economics and Political Sciences. 
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article jointly authored with Dr Jose-Luis Fernandez4 .  In more recent years I have also 

benefited greatly from working alongside Professor Julien Forder on the Identifying the 

Impact of Adult Social Care (IIASC)5 study.  This study evolved from the early findings 

from this thesis and was designed to address some of the limitations in the ASCS data.  

The findings from the IIASC study will be used to case-mix adjust indicators within the 

Adult Social Care Outcomes Framework (ASCOF).  

I am extremely grateful to my supervisors Dr Jose-Luis Fernandez and Professor 

Martin Knapp for their guidance and helpful discussions on the content and shape of the 

thesis, and particularly to Dr Jose-Luis Fernandez for his guidance on the statistical 

aspects.  I am also indebted to them and to Professor Julien Forder for making it possible 

for me to focus on my thesis during the few months prior to submission.  I am extremely 

grateful to the social care user survey team at NHS Digital, and in particular Pete 

Broughton and Katherine Robbins, for their perseverance in helping me to renegotiate the 

data sharing agreement with NHS Digital for the ASCS data.  We got there in the end!  

Thanks are also due to my colleagues, particularly the residents of COW 4.06 past 

and present, who have patiently listened to my musings, provided insight and comments on 

earlier drafts of chapters, and kept me going even when it seemed the end would never 

come into sight!  There are too many people to list, but a special mention is due to Mike 

Clarke, Francesco D’Amico, Cate Henderson, Bo Hu, Derek King, Madeline Stevens, 

Ann-Marie Towers, Lisa Trigg and Valentina Zigante who have all in various ways gone 

beyond what is required of a room-mate and colleague.   

I could not have completed this thesis without the support of my family and friends.  

Although they are probably not aware of it, my children – Leila (aged five) and Frederick 

(aged two) – have provided a constant source of emotional support.  Coming home to their 

happy, care-free faces every evening always makes me smile however tired and grumpy I 

feel.  My deepest thanks go to my husband Paddy who, I think it is fair to say, has at times 

in this last year felt the noose of this thesis round his neck more keenly than have I.  He has 

provided emotional and practical support to me and has managed to keep on top of his own 

work, albeit that has probably meant more nights than usual spent burning the midnight oil.  

My heartfelt thanks also goes to Laura Pizarro Cochancela who in the last few months to 

                                                 
4 Malley, J. & Fernández, J.-L. (2010), Measuring quality in social care services: theory and practice. Annals 
of Public and Co-operative Economics, 81, 4: 559-582. 
5 Forder, J., J. Malley, S. Rand, F. Vadean, K. Jones and A. Netten,. (2016). IIASC report: Interpreting 
outcomes data for use in the Adult Social Care Outcomes Framework (ASCOF). Discussion Paper 2892. 
University of Kent, Canterbury, PSSRU. 
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submission entirely reorganised her schedule to provide care for my children.  Many other 

friends and family have stepped in over the years, often at the last minute, to help with 

childcare, and my thanks goes in particular to Carolina Guiloff, my mother Glenda Malley, 

and my Mother-in-Law, Anne Halliday.   

Lastly, to my parents – Glenda and Michael Malley – this thesis is dedicated to 

you.  For as long as I can remember you have always believed in me, encouraged and 

supported me with my studies.  Thank you. 
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Chapter 1 

Introduction 

 

Introduction 

The analysis and interpretation of performance indicators (PIs) often involves comparisons 

between organisations (Smith 1990).  Yet, such comparisons do not provide a 

straightforward basis for inferences about good and poor performance.  Two reasons lie 

behind this.  First, one must contend with sampling error.  Secondly, judging performance 

from observational data is complicated by the possibility that observed and unobserved 

factors beyond the direct control of the organisation may also influence performance.  

Since the value of PIs is premised on a correspondence between differences in scores and 

differences in organisational performance, the possibility that scores are confounded by 

other sources of variation raises serious questions about their validity.  This thesis is 

concerned with understanding the sources of observed and unobserved heterogeneity in 

survey-based PIs and finding strategies to address them in order to improve the validity of 

inferences about performance.    

 Validity (that indicators capture what they are intended to measure) is an important 

quality for any PI (Campbell et al. 2002, Streiner et al. 2014).  Where differences in scores 

do not reflect real differences in performance, end-users of the PIs may draw the wrong 

conclusions with potentially negative consequences for performance, or may disregard the 

PIs altogether.  Evidence is emerging that perceptions of the validity of indicators are also 

important.  If managers are to use performance information for performance improvement, 

they need to be convinced of the usefulness of the data (Kroll 2015).  Problems with the 

quality of the data and the possibility that differences in indicator scores are due to factors 

other than performance will militate against the use of data for performance improvement.   

The difficulty of drawing causal interpretations about the performance of 

organisations from observational data has long been recognised as a problem for 

performance assessment studies.  Over the years various statistical techniques have been 

proposed to analyse such data, such as risk-adjustment and standardisation (Bird et al. 

2005, Iezzoni 2013, Nicholl et al. 2013).  These techniques aim to account for observed 

differences in the population characteristics of each organisation (often referred as ‘case-

mix’), such that comparisons between organisations can be made on a fairer basis.  Risk-

adjustment is particularly important where outcomes data are used to measure performance 
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because of the need to account for the effect that pre-existing conditions have on 

‘outcomes’, i.e. on results from treatment (Shahian and Normand 2008).  Performance 

assessment using outcomes data is therefore more complicated, because it is frequently 

difficult to observe the baseline state (Black and Jenkinson 2009, Devlin and Appleby 

2010, Smith and Street 2013).  

Where survey data are used for performance assessment, the number of reasons to 

doubt the validity of the PIs grows.  High levels of nonresponse to surveys used for 

performance assessment purposes (referred to hereafter as ‘performance surveys’) have led 

many to voice concerns over the representativeness of the data and to question the validity 

of inferences regarding performance (Black and Jenkinson 2009, Hutchings et al. 2012, 

Kroll et al. 2014, Peters et al. 2014b).  Statistical techniques that make assumptions about 

how unobserved cases may have responded based on the observed data can be used to 

draw more robust conclusions in the presence of missing data (Little and Rubin 2002).  

However, only a couple of studies have looked at the value of such techniques in the 

context of performance assessment with survey-based PIs and they have reached opposing 

conclusions (Elliott et al. 2005, Gomes et al. 2016).  The potential for proxy respondents 

and assistance from others to complete the survey to affect the validity of responses is 

another source of concern (Black and Jenkinson 2009, Kroll et al. 2014).  As well as 

raising doubts about the validity of survey-based PIs, these additional sources of error also 

make survey data more difficult to analyse than other types of performance data. 

Despite these concerns and analytical challenges, nowadays survey-based 

indicators play an important role in performance measurement systems.  The initial growth 

of surveys within the public sector was connected to the consumer movement (Mold 2010, 

Mold 2011).  As consumerist ideas gained political traction over the latter part of the 20th 

century, it became accepted wisdom that public services needed to become more 

consumer-oriented (Mold 2011).  This perspective provided a strong critique of early sets 

of PIs, which were seen to focus too heavily on aspects that mattered to politicians, like 

economy and crude efficiency, and too little on aspects, like quality, that mattered to users 

of public services, presenting a disconnect between the rhetoric of quality improvement 

and the approach to performance measurement (National Consumer Council 1983, Pollitt 

1988, Pfeffer and Coote 1991, Boyne 2002).  Consumer surveys were seen as important 

tools for driving the system towards being more responsive to the needs and wishes of 

users (Griffiths 1988, Department of Health 1998) and were co-opted by managers as tools 

for performance management. 
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Particularly in the early days of survey-based indicators, many managers 

questioned the wisdom of using survey data at all to inform performance improvement, on 

the basis that measures from surveys of citizens and service users seem to contradict 

indicators from administrative sources (Stipak 1979, Brown and Coulter 1983, Parks 1984, 

Rao et al. 2006).  Questions were also raised over the suitability of the questions for 

assessing performance, which led to improvements in the methods used to gather users’ 

views  (Fitzpatrick 1991, Carr-Hill 1992, Sitzia and Wood 1997, Cleary 1998, Cleary 

1999, Coulter 2006).  Momentum gathered behind survey-based PIs as the UK government 

embraced first the ‘quality’6 movement (Pfeffer and Coote 1991, Kirkpatrick and Martinez 

Lucio 1995b, Bovaird and Löffler 2003, Talbot 2010) and then the ‘outcomes-based 

management’7 movement (Talbot 2010, Wimbush 2011), both of which highlighted the 

experiential nature of service provision and the value of users’ views for understanding 

these central, but intangible, benefits of services (Pollitt 1988, Chang et al. 2002, Coulter 

2006).  As a consequence, very few questions are raised today over the relevance of 

service users’ views and their importance for understanding organisational performance.  

Indeed, the sheer number of survey-based PIs and their centrality to the current 

performance measurement frameworks for health and social care are testament to how far 

attitudes regarding survey-based indicators have changed since their inception.   

As survey-based PIs have moved from the fringes of performance measurement 

systems to the centre-ground, the aforementioned questions about the validity of survey-

based PIs have gained greater prominence among policy-makers and in the literature.  The 

current focus of the performance frameworks on outcomes means that much of this 

discussion is centred on the type of survey-based indicators, known (in the health care 

context) as the patient-reported outcome measure (PROM).  PROMs present a particular 

challenge for performance assessment as they are subject to all the problems of survey-

based PIs and those of outcomes measures.  Since PROMs are a very recent introduction, 

there has been little research into how to address the effects of nonresponse and differences 

in case-mix between organisations, and this is particularly true for the social care sector.  

There have been numerous calls for more research to look carefully at how PROMs are 

collected, analysed and interpreted to maximise their value for performance assessment 

and improvement (Black and Jenkinson 2009, Dawson et al. 2010, Devlin and Appleby 

                                                 
6 This movement is sometimes referred to as ‘excellence in service delivery’ and ‘culture’ (Talbot 2010). 
7 This movement is sometimes referred to as ‘results-based management’ and ‘outcomes-based 
accountability’ (Heinrich 2003, Talbot 2010, Wimbush 2011). 
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2010, Parkin and Devlin 2012, Valderas et al. 2012, Black 2013, Smith and Street 2013, 

Coulter et al. 2014, Kroll et al. 2014). 

 In light of the importance of survey-based PIs to performance assessment in 

England and the questions surrounding their validity, this thesis addresses the following 

research question: if survey-based indicators are to provide valid evidence concerning 

performance for routine use, what strategies should be used to address the confounding 

influence of observed and unobserved heterogeneity?  Three hypotheses flow from the 

foregoing discussion with respect to this question.  First, differences in the characteristics 

of people served by organisations will explain variations in PIs.  Secondly, survey 

nonresponse will be influenced by the characteristics of people served by organisations and 

will therefore explain variations in PIs.  Thirdly, these two sources of variations in PIs – 

nonresponse and case-mix -- will have an effect on performance assessment.  I test these 

hypotheses empirically using data from the English performance measurement system for 

adult social care (ASC) and explore strategies to address these sources of heterogeneity.   

The aim of this thesis is to provide evidence to inform policy.  Specifically it is my 

intention that this analysis will allow policymakers to answer the question of whether it is 

necessary to address heterogeneity arising from nonresponse and case-mix in ASC.  Where 

it seems necessary to address these sources of heterogeneity, the analysis from this thesis 

should help policymakers to identify appropriate strategies to minimise the threats to the 

validity of performance assessment from nonresponse and differences in case-mix.  As the 

empirical analysis uses data from ASC, many of the policy recommendations will be 

specific to the ASC context.  Given, however, that the questions raised here about the 

validity of survey-based PIs are not specific to the ASC indicators, conclusions regarding 

the value of the methods used in this thesis should have relevance to the wider context, 

including the health care sector.  

In the rest of this chapter I provide a background to the concepts, methods and data 

that I use in this thesis.  I begin by considering the purpose of performance measurement, 

since this determines how PIs are to be used and forms the backdrop against which 

policymakers will assess the value of introducing strategies to improve the validity of PIs.  

I then provide a brief overview of how I approach the research question and highlight the 

methods that I apply in this thesis.  Since these ideas are developed more fully in the 

subsequent conceptual and methods chapters, I keep this discussion brief.  A key aim of 

this section, however, is to consider how I can assess whether alternative strategies 

improve the validity of survey-based PIs.  I also reflect on the other attributes of PIs, aside 
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from validity, that policymakers may need to consider when deciding whether to address 

the confounding influence of observed and unobserved heterogeneity.  Since I use data 

from ASC for the empirical analysis, in the third section I provide some background to the 

performance measurement system within ASC in England.  I discuss the way performance 

is conceptualised in the current performance measurement framework and the survey, 

known as the Adult Social Care Survey (ASCS), which is used to populate the survey-

based PIs.  Finally, I provide an outline of the thesis. 

 

The purpose of performance measurement in public services: theory, evidence and 

practice in England 

The primary objective of performance measurement is performance improvement.  This is 

a laudable and uncontroversial objective, but not a simple one to pursue in practice.  To 

improve performance, one needs first to define it and operationalise it for measurement; 

next data needs to be collected and analysed; and finally, if performance improvement is to 

follow, the results need to be interpreted and managers need to act on the information 

(Deming 1994).  At each stage of this process there are hurdles to overcome.  In this 

section I briefly review some of the debates around performance measurement, focusing on 

the themes of how to define performance and the use of PIs in theory and in practice.  

While I draw on the international literature in this discussion, I illustrate the debates with 

examples from UK practice and survey-based PIs, where possible.  My aim is to locate 

performance measurement in its wider policy context and to draw out the contingent 

relationship between the use of indicators and their technical attributes. 

Public sector performance is often referred to as “elusive” (Stewart and Walsh 

1994).  The point of such a comment is usually not to deny the ‘reality’ of performance8 

but to recognise that how we define performance is legitimately a matter for debate.  

Where organisations are within the public sector, politics and the public interest demand 

that organisations also have concern for public values, such as probity, social equity and 

transparency (Talbot 2010).  The existence of multiple goals, which may conflict with each 

other, and multiple stakeholders who may disagree over the objectives to pursue presents 

problems for performance assessment.  Which and whose objectives should be assessed?  

Performance assessment in the public sector raises questions about values and political 

                                                 
8 Social constructionists, however, would endorse this view (see e.g. Nutley et al. 2003). 
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choices, but as long as we are clear about the “variety of motives and interests” then this 

should not hinder an objectives-based approach (Knapp 1984, p. 16).   

 In the UK, the New Labour government (1997-2010) attempted to address the 

problem of competing objectives by designing performance measurement systems using a 

‘balanced scorecard’ approach (Kaplan and Norton 1992, Chang et al. 2002, McAdam and 

Walker 2003).  Thus in the performance measurement frameworks of that era (known as 

the performance assessment framework, PAF) different dimensions of performance were 

identified and a number of indicators were chosen for each dimension.  For example, in the 

social care PAF the dimensions were national priorities and strategic objectives, cost and 

efficiency, effectiveness of service delivery and outcomes, quality of services for users and 

carers, and fair access (Department of Health 1998).  (The current performance 

measurement framework has four dimensions, with slightly different definitions, as I 

discuss below.)  Since the dimensions of performance are defined in terms of objectives, 

they do not map neatly to the interests of different stakeholders, such as service managers, 

the public and central government.  Each objective is not necessarily relevant to each 

stakeholder; conversely some objectives may be relevant to multiple stakeholders.  

Nevertheless, the interests of all stakeholders are represented by the inclusion of multiple 

indicators within each dimension of performance (Chang et al. 2002, McAdam et al. 2005). 

Reflecting the variety of objectives and stakeholders, each PI can serve a number of 

different purposes.  Drawing on the concept of ‘administrative arguments’ developed by 

Hood and Jackson (1991), Talbot (2007) describes a number of arguments for performance 

measurement including, “accountability”, “user choice”, “customer service”, “efficiency”, 

“results, effectiveness and “what works””, “resource allocation” and “public value”.  The 

reason I raise the ‘administrative argument’ concept here is because it emphasises the 

doctrinal nature of performance measurement.  As Hood and Jackson (1991) explain, 

administrative arguments are doctrines of public administration, underpinned by 

justifications.  They set out the rationale for certain forms of activity and the mechanism by 

which that activity will achieve the desired goals.  Many of the arguments support 

performance improvement, albeit emphasising different aspects of performance, e.g. 

efficiency versus consumer-related aspects.  Others, however, are unconnected to it, e.g. 

accountability is argued to be necessary to support the efficient functioning of a democracy 

(Heckman and Smith 1995).  Where performance information is collected for reasons of 

accountability it serves a “political” rather than a “purposeful” use, where by purposeful I 

mean it is used for performance improvement (Moynihan 2009). 
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Most performance measurement systems are designed to support multiple goals, 

which can have consequences for the extent to which PIs are used purposefully.  For 

example, two studies (Clarkson 2010, Micheli and Neely 2010) that analyse the use of 

performance information collected under the New Labour government concluded that 

despite government rhetoric encouraging the use of PIs for improvements in service 

delivery, it was this use that was least enabled by the choice of measures and the 

performance regime.  Rather, the performance measurement system for health, social care 

and police services seemed designed to support accountability, and to help central 

government to control the behaviour of locally-run organisations.  This undermined the 

potential for local organisations to use the data for service improvement, in part because 

where performance measures are used to control behaviour a range of perverse and 

unintended consequences follow. 

Perverse uses are often a consequence of high-stakes systems, such as the one that 

operated under the New Labour government.  The New Labour regime combined high-

level scrutiny of key targets with a punitive inspection regime and rewards for success 

(James 2004, Hood 2006, Hood 2007).  Although the regime did produce improvements in 

key areas, gaming, ‘creative compliance’ and a variety of other perverse and unintended 

effects were widely documented (Bevan and Hood 2006b, Bevan and Hood 2006a, Hood 

2006, Hood 2007).  These perverse uses were a result of the way the high stakes associated 

with the achievement of key targets shaped incentives for certain behaviours.  The 

evidence suggests that if performance information is to be used for performance 

improvement, a supportive environment is necessary.  This should facilitate the use of 

information through leadership and stakeholder involvement in the definition of the 

measures, and provide the necessary resources to support the use of information (McAdam 

and Walker 2003, Moynihan and Pandey 2010, Kroll 2015). 

There is little research looking at the factors that drive the use of performance 

surveys for improvement, but the evidence from the few studies that have considered this 

question identifies similar factors to those already mentioned (Coulter et al. 2014).  As 

Coulter et al. (2014) lament, the most striking finding is how underexploited the datasets of 

users’ views are and how little evidence there is that performance surveys have led to 

improvements in care.  A recent study (Heath et al. 2015) that investigated the use of social 

care surveys for performance improvement found that managers experienced difficulties 

understanding how to appropriately analyse, interpret and use the data for performance 

improvement.  Participants cited concerns over the validity of survey-based indicators due 
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to nonresponse, and, particularly for the PROMs data, difficulties interpreting the meaning 

of scores and attributing differences in scores to differences in service effectiveness, as 

barriers to use of the survey data.  Managers felt they lacked support, leadership, statistical 

skills and the appropriate resources to address these problems with the data.   

This study by Heath et al. (2015) demonstrates the clear need for strategies to 

address the validity of the ASC survey-based PIs.  It also highlights the importance of 

considering the skills and resources of end-users when presenting solutions to the technical 

problems inherent in survey-based PIs: solutions need to be appropriate for end-users with 

little statistical expertise and few resources to undertake statistical analysis otherwise it is 

unlikely that they will be adopted.  These findings hint at the need to balance 

improvements in the validity of indicators against other considerations, such as the 

usability of the data.  

 

Improving the validity of survey-based PIs: key concepts and an overview of methods 

My intention here is to set out the broad approach I take to the empirical analysis and the 

questions that guide the separate analyses.  More detailed methods are given in Chapter 3.  

I also reflect on how the analysis informs the policy questions raised by this thesis.  The 

concept of validity – the extent to which it is affected by confounding factors and the 

extent to which it is improved by strategies to address nonresponse and case-mix – is 

critical to addressing these policy questions.  As the preceding discussion suggests, 

however, validity is not the only criterion that matters to policymakers when they make 

choices about PIs.  Therefore, I consider here what other attributes of PIs are important and 

how policymakers can use the evidence from this analysis to inform decisions about 

whether and how to address nonresponse and case-mix.   

 As I have previously stated, statistical analysis is an essential tool to address the 

effects of case-mix over performance (Bird et al. 2005).  In this thesis I use risk-adjustment 

(Shahian and Normand 2008, Iezzoni 2013), and an adaptation of this approach based on 

the theory of production relations, to address the potentially confounding effects of case-

mix on social care PROMs.  Risk-adjusted comparisons between organisations are 

generally considered to provide more valid inferences about performance than those 

obtained from comparisons of organisations based on the raw PIs (Iezzoni 2013).  

Nevertheless, risk-adjustment is not a panacea: the statistical models and the method itself 

are based on a number of assumptions, some of which are testable, but many of which are 
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not.  There is also disagreement among experts about the most appropriate statistical 

models to use to address features of the data that affect modelling assumptions.  In some 

instances, the choice of method can affect results (Goldstein and Spiegelhalter 1996, 

DeLong et al. 1997, Shahian et al. 2001, Hannan et al. 2005, Glance et al. 2006, Li et al. 

2009, Eijkenaar and van Vliet 2014), which can introduce further uncertainty to inferences 

about performance (Li et al. 2009).  It is therefore important to compare and contrast 

different approaches to risk-adjustment to provide greater certainty over the validity of the 

adjusted indicators (Li et al. 2009, Iezzoni 2013).   

The dependence of case-mix adjustment on statistical modelling and the potential 

sensitivity of case-mix adjustment to choices over methods lead to two sub-questions that 

guide the empirical analysis: 

i. What is the most appropriate method for modelling ASC outcomes?  

ii. What is the effect of adjusting for case-mix on inferences about performance 

and does the method for implementing case-mix adjustment matter? 

I address question (i) in Chapters 6 and 7 and question (ii) in Chapter 8. 

The nonresponse literature identifies two strategies to address nonresponse to 

surveys.  First, strategies can be implemented at the design stage to increase response rates 

(see e.g. Groves et al. 2000, Dillman et al. 2009).  Secondly, post-hoc statistical 

adjustments can be introduced at the analysis stage (see e.g. Rubin 1976, Rubin 1987, 

Little and Vartivarian 2003, Horton and Kleinman 2007).  The empirical analysis in this 

thesis should provide evidence to inform both of these strategies for addressing 

nonresponse, thus leading to two further empirical questions: 

iii. Who is missing from performance surveys and how can response rates be 

improved? 

iv. What is the effect of nonresponse on inferences about performance and does the 

method used to address differences in samples due to nonresponse matter? 

The empirical analysis for question (iii) is carried out in Chapter 4 and that for question 

(iv) in Chapter 5.   

The empirical analysis is framed with the aim of improving the validity of the 

survey-based PIs, but as I have already suggested this is not the only criterion that matters 

to policymakers.  Campbell et al. (2002) identify five attributes that are important for any 

PI, which are set out in Box 1.  Validity is critically important for the reasons I have 

already outlined, but it must be balanced against the other four attributes.  Where data are 

collected for performance assessment purposes feasibility is important.  Strategies that 
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increase the validity of the PIs, but have unreasonable consequences for the costs of data 

collection or the timeliness of the data, are likely to be considered unacceptable.  Equally, 

statistical analysis that is opaque and complicated may deter people from using the 

measures.  Policymakers need to carefully balance all of these attributes when deciding 

whether to introduce any strategies that are designed to improve the validity of PIs.  To 

provide policy recommendations, it is therefore important to have some sense of the extent 

to which the proposed strategies to address heterogeneity arising from nonresponse and 

case-mix will improve the validity of PIs. 

 

Box 1: Desirable attributes of indicators† 

 

Acceptability: whether the indicator is considered suitable, relevant and usable to the 

assessor and those being assessed. 

Feasibility: whether it is possible to collect valid, reliable and consistent data in a timely 

and cost-effective manner. 

Reliability: whether the indicator is accurate enough for its purpose. 

Sensitivity: whether the indicator has the capacity to detect changes or meaningful 

differences in performance. 

Validity: whether the indicator accurately measures what it purports to measure. 

† Adapted from Campbell et al. (2002) 

 

This raises the question of how to determine whether the strategies proposed to 

address nonresponse and case-mix provide more valid inferences about performance?  

Since there is no yardstick against which to judge ‘true’ performance I assess the validity 

of the adjusted indicators from a theoretical perspective.  The strength of the study’s 

conclusions therefore rests on the evidence concerning the appropriate specification of the 

statistical model, the plausibility of the modelling assumptions and the accurate 

implementation of the methods (Cartwright 2007, Li et al. 2009, Clarke et al. 2015).  Such 

an approach has been suggested and implemented by various authors, using the concepts of 

‘face validity’, ‘content validity’, ‘construct validity’, ‘convergent validity’ and ‘predictive 

validity’ from psychometric theory9 to assess the statistical models and the PIs (Li et al. 

2009, Iezzoni 2013).  Although assessments of this kind cannot provide a definitive answer 

                                                 
9 See, for example, the following texts on scale and measure development (Nunnally 1967, De Vellis 2003). 
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to the question of whether the adjusted PIs are more valid than the raw PIs, they do provide 

evidence regarding the extent to which the strategies improve the validity of inferences 

regarding performance. 

 

Performance measurement in adult social care: key concepts and practice 

The empirical analysis in this thesis uses data from the Adult Social Care Survey (ASCS), 

which is used to populate the PIs in the ASC outcomes framework (ASCOF), the 

performance measurement framework for ASC.  Since these data are used throughout this 

thesis, in this section I first describe how performance is conceptualised and measured in 

the ASCOF and then I describe the design of the ASCS.  I begin by providing a brief 

background to ASC provision in England and the characteristics of users of these services, 

as the nature of ASC services and the characteristics of its users has consequences for the 

objectives of social care and how performance is defined in the ASC context.  

 

A brief description of the adult social care system in England 

ASC in England is often characterised as a ‘safety-net’ system since it supports only those 

with very severe needs who are unable to meet the costs of their care (Fernandez et al. 

2009).  Access to publicly-funded ASC is through an assessment of care needs which is 

coordinated by the local authority (LA) adult social services department.  The philosophy 

underpinning the system is that the primary responsibility for social care rests with 

individuals and their families.  ASC services are strictly means-tested and, even where 

people pass the means-test for publicly-funded care, LAs direct services towards those who 

live alone and do not receive informal care (Pickard 2001) (Netten and Davies 1990, 

Department of Health 2010a, Pickard et al. 2012).  Due to continued pressures on local 

government finances, and therefore ASC budgets, between 2005/6 and 2012/13 the 

numbers receiving publicly-funded ASC declined by around 26 per cent (Fernandez et al. 

2013b) – a trend that is continuing (Humphries et al. 2016).  This has resulted in the 

increased concentration of care on those with very high levels of need with little means to 

pay privately for care (Fernandez et al. 2013b, Burchardt et al. 2015).   

Although ASC users are all relatively income-poor and have a high level of social 

care need, the nature of service provision means they have diverse social care needs.  ASC 

is usually provided to frail older people or people with long-term conditions, whose (often 

deteriorating) health or condition results in impairments in activities of daily living (ADL).  

Users of ASC services therefore include frail older people, people with dementia, 
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intellectual disabilities, mental health or substance misuse problems, as well as people with 

a range of physical or sensory impairments.  Reflecting this diversity in the health 

conditions and social care needs of people served, ASC includes a range of interventions 

that provide assistance with personal care tasks (such as dressing and bathing) and 

domestic tasks (such as shopping and preparing meals) (Comas-Herrara et al. 2010).  

Examples of ASC interventions include short-term services, such as ‘re-ablement’10 

services, equipment and adaptations, and long-term services, such as domiciliary care, 

meals services and community-based day centres.  Social care also includes placements in 

nursing homes and ‘personal’ care homes, where the latter do not provide round-the-clock 

nursing care.  

 

Understanding social care performance 

As I have previously described, the performance measurement frameworks in England take 

an objectives-based approach to defining performance.  Relevant objectives for ASC 

include those related to user and carer well-being, such as providing good quality care and 

improving quality of life (QoL); social goals, including social cohesion, community 

development and social inclusion; political goals, such as controlling public expenditure; 

and economic goals, such as improved efficiency, improved equity in the distribution of 

benefits and burdens and the smoother operation of markets (Knapp et al. 2001).  Even 

with a balanced scorecard approach it is not possible to measure all of these objectives, so 

performance measurement systems tend to emphasise some more than others.  Historically, 

attention has been given to political goals, such as reducing the cost of provision, and 

economic goals, such as efficiency (Challis et al. 2006, Clarkson 2010).  The current 

framework places an emphasis on user and carer well-being goals (Department of Health 

2014). 

Focusing on the user well-being objectives, social care services attempt to do three 

things: (i) maximise the QoL of individuals who are not fully capable of long-term self-

care, (ii) maximise the ability of individuals to live independently and (iii) prevent or slow 

the decline in health (Qureshi and Nicholas 2001, Netten 2011).  Importantly, although the 

second of these goals is rehabilitative, in general social care services do not seek to 

improve or remedy the underlying impairment; rather they seek to compensate the person 

for the impact of their impairments on their physical and mental functioning.  Services 

                                                 
10 This is a form of rehabilitation service. 
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provide continuous support, often on a daily basis, over a period of many years.  Most 

social care therefore does not produce “change” outcomes, such as those associated with 

lessening the person’s underlying level of impairment.  Instead social care outcomes are 

mostly “maintenance” outcomes, where the aim is to maintain the person’s QoL in the 

context of an unavoidable deterioration in the physical and mental functioning of the 

service user (Qureshi and Nicholas 2001).   

The ongoing nature of most social care provision combined with the often very 

personal nature of the care provided means that the way social care is delivered is usually 

considered to be important by users (Nocon and Qureshi 1996b, Raynes 1998, Bamford et 

al. 1999, Qureshi and Nicholas 2001, Raynes et al. 2001, Patmore 2004, Francis and 

Netten 2004 ).  Qureshi and Nicholas (2001) refer to these valued aspects as “process 

outcomes”, with analogy to the economist’s concept of “procedural utility” (Ryan 1999, 

Frey et al. 2004, Frey and Stutzer 2005).  Both terms capture the idea that people not only 

value the final outcome, but also the conditions and processes by which that outcome is 

achieved.  Evidence from studies of social care services suggest users value the experience 

of care delivery because of the intimate nature of the care provided and the way the care 

worker becomes involved in the person’s daily life (Nocon and Qureshi 1996b, Bamford et 

al. 1999, Qureshi and Henwood 2000, Qureshi and Nicholas 2001, Netten 2011, Netten et 

al. 2012a). 

 

The Adult Social Care Outcomes Framework: operationalising performance and the 

purpose of measurement 

The Department of Health (DH) describes the ASCOF as its “main tool for setting 

direction and strengthening transparency in adult social care” (Department of Health 2014, 

p. 8).  Despite it being a central government-led policy, the ASCOF was “co-produced” 

with the social care sector in a bid to create a sense of ownership of ASCOF by the sector 

(Department of Health 2014).  It has around 19 PIs11 organised around four domains: 

enhancing QoL for people with care needs, delaying and reducing the need for care and 

support, ensuring that people have a positive experience of care and support, and 

safeguarding adults whose circumstances make them vulnerable and protecting them from 

avoidable harm.  Of the 19 PIs in the 2015/16 Framework shown in Box 2, ten come from 

                                                 
11 New PIs are being developed so the number of PIs changes on an annual basis. 
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social care surveys and in two domains the survey indicators are the overarching measure 

(see asterisked items). 

In creating the ASCOF, the government of the day was keen to demarcate the ways 

in which this performance measurement framework was different from the one it replaced.  

As well as the outcomes focus and sense of sectoral ownership, the Coalition Government 

stressed the importance of developing a culture of “sector-led”12 improvement in place of 

top-down, target-based, performance management (Department of Health 2010b, 

Department of Health 2010d, Department of Health 2011a).  The ASCOF is therefore 

designed more as an “intelligence” system, where there is no fixed interpretation of the 

data (Hood 2007).   

 
Box 2: Survey-based indicators in the ASCOF, 2015/16 
 

Domain 1: enhancing QoL for people with care needs 
1A. Social care-related quality of life * 
1B. Proportion of people who use services who have control over their daily lives 
1D. Carer-reported quality of life 
1I. Proportion of people who use services and their carers, who reported that they had as 
much social contact as they would like.  
 

Domain 3: ensuring that people have a positive experience of care and support 
3A. Overall satisfaction of people who use services with their care and support * 
3B. Overall satisfaction with social services of carers * 
3C. The proportion of carers who report that they have been included or consulted in 
discussions about the person they care for 
3D. The proportion of people who use services and carers who find it easy to find 
information about support 
 

Domain 4: safeguarding adults whose circumstances make them vulnerable and protecting 
them from avoidable harm 
4A. The proportion of people who use services who feel safe   
4B. The proportion of people who use services who say that those services have made 
them feel safe and secure 
 

*overarching measure 
 

The ASCOF is largely justified in terms of the potential for the PIs to be used 

locally: as the DH states, the ASCOF should provide “robust, nationally comparable 

information on the outcomes and experiences of local people” that LAs can use in a range 

                                                 
12 The ‘Towards Excellence in Adult Social Care’ (TEASC) programme, which is a partnership between 
various organisations, including the Department of Health and the Association of Directors of Adult Social 
Services, led by the Local Government Association, provides oversight and supports improvement (Local 
Government Association 2013). 
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of ways to support performance (Department of Health 2012, p. 5).  The DH provides 

examples of the ways in which LAs can use ASCOF indicators locally.  These include 

monitoring the success of local interventions, informing strategic policy and leadership, 

identifying and sharing best practice through regional benchmarking efforts, and 

strengthening accountability to the local population.  These examples suggest that the DH 

sees ASCOF as a tool for performance improvement and accountability.  While there is 

fairly good evidence that LAs are using the ASCOF indicators for local accountability, by 

publishing ASCOF indicators in annual Local Accounts13, there is less evidence of 

purposeful uses, particularly of survey-based PIs as I have discussed (Heath et al. 2015).  

When considering how to address the effects of nonresponse and case-mix on the validity 

of survey-based PIs, it is important to attend to all potential uses for the measures. 

 

The Adult Social Care Survey 

Currently two surveys are used to populate the ASCOF: the Adult Social Care Survey 

(ASCS), which is a survey of all ASC service users, and the Survey of Adult Carers’ 

Experiences (SACE), which is a survey of adult carers who are in contact with ASC 

services.  In this thesis I look only at indicators from the ASCS and draw on the data from 

the first wave (2010-11) of this survey.  I describe the ASCS methods here; details of the 

sample, including distributional statistics are given in the relevant empirical chapters.   

The ASCS is an annual national survey of social care service users aged 18 years 

and over, which aims to capture information on the outcomes experienced by users from 

social care services.  The design of the survey drew heavily on the experience of 

conducting the user experience surveys, which were the direct predecessors to this survey 

(Malley and Netten 2008, Malley and Netten 2009, Malley et al. 2010).  The ASCS is 

primarily a postal survey and a separate sample is drawn each year, so there is no 

longitudinal component.  The survey uses what can be described as a form of cluster-

randomised sampling, whereby each LA with responsibility for social care (referred to 

hereafter as councils with adult social services responsibilities, CASSRs) in England 

selects a random sample of ASC users from their records.  The sample is therefore drawn 

from the population of ASC users who are in receipt of full or partially publicly-funded 

                                                 
13 Local accounts are accounts of the “quality and outcome priorities which the council has chosen, in 
consultation with its partners, and the progress it has made in achieving them during the past year” 
(Department of Health 2010b, para 4.5).  They are tools for improving the transparency of local government 
to local populations. 
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services.14  Having drawn the sample, each CASSR is charged with conducting the survey 

for its locality.   

Survey design decisions (i.e. to conduct a postal survey, to cover all ASC users, to 

not have a longitudinal component and to have CASSRs manage the survey) present a 

number of challenges for performance assessment.  Notably, these decisions have 

consequences for the consistency of data collection processes between CASSRs, the 

quality of the data, and the analysis of PIs for performance assessment.  Choices about the 

ASCS design were made for a mixture of reasons, including affordability, practicality and 

political reasons (Department of Health 2009).  Policymakers recognise that these design 

choices compromise the quality of the data and its suitability for performance assessment.  

For this reason, steps are taken within the design of the ASCS to limit inconsistencies in 

the management of the survey and improve data quality.  Interestingly, the types of design 

limitations found in the ASCS are fairly common across performance surveys.  For 

example, the NHS surveys are all postal surveys; the GP patient survey and the US 

Consumer Assessment of Health Patient Surveys (CAHPS) both cover diverse populations; 

and in the CAHPS provider organisations manage the survey process.   

As part of the steps taken to limit inconsistencies and improve data quality, NHS 

Digital15, which is charged with the overall management of the ASCS and the collation of 

results for publication16, provides a detailed guidance document and issues various tools 

along with the questionnaires (e.g. NHS Information Centre 2010).  The guidance covers 

all aspects of the survey process, i.e. ordering and formatting of the questionnaire, 

choosing the sample, when and how to administer the survey, including following up non-

respondents and setting up a system for booking in returned forms, maximising response 

rates, inputting and checking the data for accuracy.  It effectively sets rules around survey 

design and management that all CASSRs are supposed to follow.   

                                                 
14 Eligibility is defined as “a person receiving services on 30 September who had the capacity to consent to 
take part in the survey” (NHS Information Centre 2010, para 14.2).  Where service receipt is defined as a 
person who is receiving one or more services provided or commissioned by social services which are part of 
a care plan following a Community Care Assessment and the care being received is managed by the CASSR. 
Services provided or commissioned by an NHS health partner under section 75 arrangements are also 
included.  In fact the definition of eligibility has slightly changed following the recent developments to the 
data collections in social care.  Since the data I use all predates these changes, however, I describe the 
surveys as they relate to the data used in this thesis.  These changes anyway do not substantially alter the key 
features of the sample, so this discussion is correct. 
15 NHS Digital is a DH sponsored organisation that collects and reports statistics for the NHS and social care. 
16 Initially this was the responsibility of the DH, but following a reorganisation of the DH, this and many of 
the statistical and analytical functions were transferred to a new arms-length body the Health and Social Care 
Information Centre, now known as NHS Digital.   
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The guidance does, however, allow CASSRs some discretion over how to 

implement various aspects of the survey process.  The purpose of this is largely to enable 

them to tailor local surveys to the different needs of ASC users in their area in order to 

improve response rates.  To capture variation between CASSRs in data collection 

processes, CASSRs collect and report ‘paradata’17, i.e. data about implementation of the 

survey.  Therefore, along with the questionnaire data, CASSRs return information about, 

for example, the use of incentives, alternative modes of delivery for accessing hard-to-

reach people, how often and with what methods nonrespondents are chased, sampling 

frame exclusions, survey timing, and addition and modification of questions.  These 

paradata can be used to understand the extent of variations across CASSRs and, as I do in 

Chapter 4, explore the effects of variations in survey design and implementation on 

response rates.  

 Consistency between CASSRs is also achieved through the use of a standardised 

questionnaire18 with a set of 24 mandatory questions.  The mandatory questions include the 

eight-item ASCOT-SCT4 social care outcome measure (Netten et al. 2011, Netten et al. 

2012a), which is used to populate the social care-related quality of life (SCRQoL) PI19 and 

several other PIs in domains one and four (see Box 2).  There is also a global satisfaction 

with services question and a question about access to information about services, which are 

used to populate indicators in domain three of ASCOF (see Box 2).  Various other 

questions are included in the questionnaire to interpret the ASCOT items (Malley and 

Netten 2009, Malley et al. 2010), including measures of health outcomes (self-perceived 

health and a question on pain and anxiety/depression), functional disability (activities of 

daily living, ADL20, and an instrumental activity of daily living, IADL21) and other needs-

related characteristics of service users, such as self-perceived appropriateness of design of 

                                                 
17 Paradata is a term coined by Couper (1998). 
18 The standard version of the ASCS and all the variant versions can be downloaded from the NHS Digital 
website at this address: http://content.digital.nhs.uk/socialcare/usersurveyguide1011 [21/12/2016]. 
19 The eight SCRQoL items can be scored using a set of weights from a combined best worst scaling-time 
trade off approach to generate a social care equivalent to the QALY (Netten et al. 2011, Potoglou et al. 2011, 
Netten et al. 2012a).  Since these weights were not available when the ASCS and ASCOF were being 
developed, in the ASCOF the response options are scored from zero (the worst response) to three (the best 
response) with the final score being the sum of all items (Department of Health 2011a).   
20 The exact ADL questions include: ability to get around indoors, get in/out of a bed/chair, manage to feed 
self, deal with finances and paperwork, manage to wash all over using either a bath or shower, manage to get 
dressed / undressed, manage to use toilet / WC, and manage to wash face and hands.  These are the Katz 
(1963, 1970) ADLs with the omission of the continence ADL, which for ethical reasons cannot be asked in a 
self-completion format.   
21 The inclusion of the manage finances/paperwork IADL (Lawton and Brody 1969), is designed to capture 
cognitive and intellectual impairment. 
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the home, self-perceived ability to get around the local area and regular receipt of practical 

help.  In addition, questions are asked to capture differences in reporting, including 

questions asking about whether the questionnaire was completed by a proxy respondent, or 

with assistance and the source and type of assistance offered.  There is also a question 

asking whether the person purchased additional support using private funds.  I use these 

data to explore the effects of case-mix on performance assessment in Chapters 6, 7 and 8. 

The diversity of the ASC population means that if the aim is to be inclusive and to 

ensure that, as far as is possible, the service user responds to the questionnaire without any 

help, a single questionnaire is not appropriate (Qureshi and Rowlands 2004, Malley et al. 

2010, Malley and Fernández 2010).  While the focus of the questions on social care 

outcomes means that they are relevant to all ASC service users, the questionnaire requires 

some modification to make it accessible to people with learning disabilities and to 

accommodate a difference in the meaning of key terms like ‘home’ in alternative caring 

environments.  Consequently, there are four different versions of the questionnaire: a 

standard version, a care home version, an Easy Read version for people with learning 

disabilities and an Easy Read version for people with learning disabilities living in an 

institutional care setting (Malley et al. 2010, The NHS Information Centre 2010). 

While the care home version does not have any substantial differences from the 

standard version, the Easy Read version is quite different.  Although it covers the same 

content, the language is changed throughout to be simpler, in some places there are fewer 

response options and there are illustrations to aid understanding.  Despite the differences 

between the Easy Read and standard version official publications combine all responses 

(see e.g. Department of Health 2014).  It is clearly necessary to make some fairly strong 

assumptions about the correspondence of questions and response options to combine 

responses across versions.  It is beyond the scope of this thesis to critique this practice.  I 

do, however, reflect on the challenges the different versions (and sample diversity) pose 

for case-mix adjustment and how I overcome this in Chapters 6, 7 and 8.   

Along with responses to the questionnaire items (available only for respondents), 

CASSRs also provide ‘auxiliary data’ from their records for each sample member, 

irrespective of response status.  The variables available from CASSR records are limited, 

but include socio-demographic variables (such as sex, age group, ethnicity and so on), 

service receipt (e.g. residential care, home care, and so on), client group and the ‘personal 
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budget’ provided to the user which captures the total cost22 of the service package.  These 

data provide some basic information about nonrespondents and can be used to explore who 

is missing from the ASCS, as I do in Chapter 4, and the effects of adjusting for 

nonresponse on performance assessment as I do in Chapter 5.   

 

Outline of the thesis 

This thesis is organised as follows.  The two chapters subsequent to this one provide the 

theoretical framework for the thesis and set out the methods that I will use in the empirical 

chapters.  In Chapter 2, I develop a conceptual framework for analysing nonresponse and 

the effect of case-mix on performance that is tailored to the characteristics of ASC and to 

the particular features of performance surveys.  In Chapter 3, I describe the tools for the 

analysis, including the methods used for addressing case-mix, for addressing nonresponse 

and for examining the effects of adjustment for both case-mix and nonresponse on 

inferences about performance.   

Chapters 4 to 8 are empirical and map onto the sub-questions for the research set 

out above.  Thus, Chapter 4 addresses the question of who is missing from performance 

surveys and how response rates can be improved (sub-question iii).  In Chapter 5, I explore 

what analytical approaches can be used to address nonresponse to performance surveys and 

the effects of applying these analytical approaches on inferences about performance (sub-

question iv).  The three subsequent chapters look at the effects of case-mix.  Chapters 6 

and 7 explore the suitability of different methods for modelling social care outcomes (sub-

question i).  Chapter 6 looks at a variety of different specifications for models of social 

care outcomes within the familiar risk-adjustment framework; Chapter 7 compares the 

risk-adjustment models for social care outcomes to models based on productions relations 

theory.  In Chapter 8, I assess the effect of adjusting for case-mix on inferences about 

performance and consider whether the case-mix adjustment method makes a difference to 

conclusions about the relative performance of CASSRs (sub-question ii).  

Finally, in Chapter 9, I return to the core research question and policy questions 

raised by this thesis.  I summarise the main findings from Chapters 4 through 8 in light of 

the core research question and consider the limitations of the analyses for the conclusions 

                                                 
22 This is not meant to be an estimate of the economic cost of services, rather the price that is charged by the 
provider for the services provided.  It is intended that this would include both the amount paid by the user 
(where user charges are incurred on service provision) and that by the council.  In instances where the 
individual has a personal budget in place, this would be the total assessed, and agreed, budget for that person.  
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from this study.  In the final section of this chapter, I conclude by discussing the 

implications of this thesis for policy and for research, more generally.  I also offer some 

directions for future research. 

The appendices contain more detail concerning the methods and extended analyses.  

They are provided for completeness only.     
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Chapter 2 

A Conceptual Framework for Addressing Case-Mix and Nonresponse 

When Using Survey-Based Indicators to Assess Performance 

 

Introduction  

There are many sources of observed and unobserved heterogeneity in survey-based indicators 

that may confound inferences about the performance of organisations.  This thesis is 

concerned with understanding the consequences for performance assessment of two such 

sources of heterogeneity – nonresponse and differences in the case-mix of people served by 

organisations – and finding strategies to address them in order to improve the validity of the 

PIs.  Statistical analysis is the main tool used in this thesis to explore the effects of 

nonresponse and of case-mix on performance assessment.  The purpose of this chapter is to 

outline the conceptual framework I use for the empirical analysis.   

I draw on different disciplines to outline a conceptual framework for each of these 

two sources of heterogeneity in survey-based PIs.  To understand the importance of variations 

in the case-mix of the population served by CASSRs on PIs, I draw on the economic theory 

of production relations, as adapted for the social care context in the production of welfare 

framework (Davies and Knapp 1981).  This theory provides insight into how factors both 

within and beyond the control of CASSRs are likely to influence variations in social care 

outcomes.  To explore the role of nonresponse in performance assessment, I draw on theories 

of survey participation from the sociological and psychological literature.  These theories set 

out the factors that influence survey participation so providing a conceptual framework for 

exploring participation in surveys used for performance assessment.   

The chapter is organised in three sections.  In the first section, I review the three ways 

in which performance has been measured in surveys.  Although this topic deviates from the 

purpose of this chapter, it is important context for the conceptual framework that explores the 

role of variations in the case-mix of people served by CASSRs.  This is because the different 

types of indicators capture different aspects of well-being and, as I argue, have different 

consequences for the analysis of the effects of case-mix on PIs.  In the second section, I set 

out the conceptual framework for exploring variations in social care outcomes.  In the third 

section, I outline a conceptual framework for exploring participation in surveys used for 

performance assessment. 
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A note on the measurement of performance using survey-based indicators  

How performance is measured within survey measures has important consequences for the 

types of factors that need to be considered for case-mix adjustment.  Despite the ‘outcomes’ 

moniker, the ASCOF and its health and public health counterparts actually include a range of 

different types of indicators.  In the ASCOF, there are broadly three different types of survey-

based indicators – satisfaction measures, so-called patient-reported experience measures 

(PREMs), and so-called patient-reported outcomes measures (PROMs)23.  The measures have 

different conceptual roots.  Consequently, each measure provides an alternative perspective 

on user well-being and, by extension, focuses on a separate aspect of social care outcomes.  I 

therefore reflect briefly on what is being measured by each type of indicator and consider the 

consequences for performance assessment. 

 

Satisfaction measures 

The rationale for using customer satisfaction as a measure of performance has its roots in 

marketing theory (Neely et al. 1995, Sitzia and Wood 1997, Heinrich 2003, Kelly 2005).  For 

services sold in the private sector, it is argued that the concept of customer satisfaction 

replicates “the virtues of the marketplace” (Gormley and Weimer 1999, p. 198 quoted in 

Heinrich 2003).  Dissatisfaction leads to exit, a loss of custom, revenue and, therefore, profits 

among lower quality providers.  Consequently, customer satisfaction reflects performance, as 

better organisations will be better at satisfying their customers with greater efficiency and 

effectiveness than their competitors (Neely et al. 1995).24  It follows naturally from this that 

the ‘bottom line’ for managers should be to increase customer satisfaction since it is 

indicative of customer market behaviour (Kelly 2005). 

In the public sector, however, this logic is found wanting, because there is usually no 

single ‘customer’.  The customer is instead a hybrid of the service user/consumer and 

citizen/payer (Dixit 2002, Kelly 2005).  Market failure means that individuals who would be 

expected to use public services often lack the knowledge or economic means to access them.  

The government steps in in such circumstances to correct inefficiencies in the market, with 

the consequence that many public services are either entirely funded or subsidised through 

                                                 
23 The concept of ‘patient-reported’ is not that appropriate in the social care context given that users of services 
are not referred to as patients.  Given the familiarity of the term, and to save coining a new less familiar term to 
describe the same idea, I use this term for ASC. 
24 The terms effectiveness and efficiency are used precisely to refer, in the case of the former, “to the extent to 
which customer requirements are met”, and, in the latter, to “how economically the firm's resources are utilized 
when providing a given level of customer satisfaction” (Neely et al. 1995, p. 1228).   



 

 

46

taxation.  This means that most users of public services do not pay directly for the services 

they consume.  Depending on the nature of market failure and the nature of the service, 

public services are also often distributed on the basis of needs and/or means, so that at any 

one time many of the (tax-)payers are not consuming the services.  While consumers and 

citizens are both legitimate stakeholders, only consumers have direct experience of the 

service.  Questioning citizens about their satisfaction with services is likely to elicit “non-

attitudes”, where people express opinions about subjects they know little about (Converse 

1970, Stipak 1979).  Non-attitudes are of little use from a performance improvement 

perspective.  For performance management it is therefore more appropriate to focus on 

consumer satisfaction.  Indeed, in areas of the public sector where services are distributed 

according to need, such as the health, social care and education sectors, the focus of research 

has been consumer satisfaction (Griffiths 1988, Fitzpatrick 1991, Carr-Hill 1992, Williams 

1994, Sitzia and Wood 1997, Cleary 1998, Qureshi and Rowlands 2004, Clemes et al. 2008).   

The shift from customer to consumer, however, leads to the unravelling of the logic 

that equates satisfaction with overall performance.  Instead of measuring performance in 

public sector services, satisfaction measures now tend to be treated as measures of quality.  

Empirical research supports this interpretation, showing that satisfaction is influenced by a 

number of factors including expectations and perceptions of quality (Linder-Pelz 1982, 

Parasuraman et al. 1985, Erevelles and Leavitt 1992, Oliver 1997, Sitzia and Wood 1997).  

This makes it hard to propose that satisfaction should be singularly pursued, as what 

increases consumer satisfaction – namely improved service quality – is not always in the best 

interests of citizen-taxpayers (Kelly 2005).  Where managers use satisfaction to improve 

performance, they need to balance improvements against other factors, such as costs.  Due in 

part to the lack of conceptual clarity, satisfaction surveys have declined in use, particularly in 

the health and social care sector (Cleary 1999, Coulter 2006, Elwyn et al. 2007).  Many 

health and social care surveys, however, continue to include single items asking about global 

satisfaction with services.  As discussed in Chapter 1, the ASCS has such a question which is 

used to populate the user experience domain of ASCOF (see Box 2).   

 

Patient-reported experience measures (PREMs) 

PREMs are measures of the consumer’s experience of service quality and include measures 

such as users’ perceptions of promptness of the service and the behaviour of staff towards 

them.  They became popular in performance management circles as a consequence of the 

influence of management gurus like Deming (1986) who called upon managers to strive for 
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and to measure quality (Pfeffer and Coote 1991, Kirkpatrick and Martinez Lucio 1995a, 

Bovaird and Löffler 2003, Talbot 2010).  The nature of service goods means that the 

consumer experience is seen as critical to understanding quality.  The simultaneous 

consumption and production and the high labour content, mean they have few “search” 

properties, or tangible aspects of quality that can be easily observed, measured and therefore 

known ex ante.  Instead service goods are replete with “experience” properties, which can 

only be determined subsequent to purchasing the good or during consumption and require 

first-hand contact to establish the most valued characteristics (Nelson 1970, Parasuraman et 

al. 1985).  From a performance management perspective, it is argued that PREMS are 

superior to satisfaction measures because they capture the distinct aspects of the quality of 

service delivery and require little analysis to guide performance improvement (Cleary 1999, 

Coulter 2006, Elwyn et al. 2007). 

PREMs were popular in the UK during the early 2000s when the national 

performance surveys were first being developed.  They formed the basis for the content of the 

health and social care surveys (Jenkinson et al. 2002b, Qureshi and Rowlands 2004, Coulter 

2006).  Although various generic instruments are available for measuring service quality, 

such as the SERVQUAL25 and SERVPERF (Parasuraman et al. 1991, Cronin Jr and Taylor 

1992, Donnelly et al. 1995, Wisniewski 1996, Cleary 1999, Coulter 2006), these instruments 

have been criticised for failing to capture important aspects of the service, thus undermining 

their value (Buttle 1996, Shiu et al. 1997).  For this reason, in health and social care, service-

specific instruments have been developed with engagement from patients and service users to 

define the elements of the service that matter (Jenkinson et al. 2002a, Qureshi and Rowlands 

2004, Darby et al. 2005, Sangl et al. 2007, Mead et al. 2008, Triemstra et al. 2010).  

Consequently, there are many instruments that are tailored to the specific features of distinct 

service forms.  This is seen as a limitation of PREMs as it makes it virtually impossible to 

compare quality across different forms of service provision and therefore to survey diverse 

populations, who may receive many types of services.  The current ASCS and ASCOF 

include only one question on the experience of service delivery (see Box 2, Chapter 1), which 

was included only because it was of relevance to all ASC users (Malley and Netten 2008, 

Malley and Netten 2009). 

  

                                                 
25 Although this measure uses a satisfaction framework, it does claim to be a measure of service quality.  The 
service quality ‘gap’ is understood as the difference between expectations and satisfaction. 
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Patient-reported outcome measures (PROMs) 

PROMs are typically multi-attribute measures derived from responses to a battery of 

standardised questions about various aspects of QoL.  They first emerged in the context of 

health services research, where they are more commonly referred to as multi-attribute health 

status or health-related QoL measures (Black and Jenkinson 2009).  PROMs were developed 

for the purpose of evaluating health interventions, where what mattered was the effect the 

intervention had on health symptoms and QoL more broadly (Valderas et al. 2012, Black 

2013, Jenkinson and Fitzpatrick 2013).  As the UK government embraced outcomes-based 

management in the mid-2000s, it started to rethink performance measurement frameworks 

and consider how they could be more outcomes-focused.  PROMs were adopted by 

government to populate the emerging outcomes frameworks.  In social care, the ASCOT 

measure (Netten et al. 2011, Netten et al. 2012a) was chosen as the ASCOF PROM (Malley 

and Netten 2009).  It also feeds all the other domain one ASCOF QoL indicators (see Box 2, 

Chapter 1).  The majority of the ASCOF survey-based indicators are of the PROMs-type. 

A key problem with using PROMs for performance assessment is that they generally 

do not capture the outcome of treatment; rather they measure the QoL-outcome state of the 

person (Black and Jenkinson 2009, Black 2013).  Where such measures are used as part of a 

research study to evaluate an intervention, it is the experimental design and subsequent 

analysis that provides the basis for drawing inferences about outcomes.  The choice of 

measure is important insofar as it is sensitive to the anticipated effects of the service.  This is 

by no means a trivial matter; there are important debates to be had over the value of ‘generic’ 

measures like ASCOT, which have broad applicability as they are designed to capture the 

effect of a broad range of ASC services, over ‘specific’ measures such as the PDQ-39 

(Jenkinson et al. 1997), which is designed to be sensitive to the effect of treatments for 

Parkinson’s disease.  This question is, however, qualitatively different to the challenge of 

determining the effectiveness of services from observational survey data, particularly where 

only cross-sectional data is available as is the case for ASC.  The primary problem is to find 

an appropriate way to account for the effect of pre-existing conditions (or ‘needs-related 

characteristics’ using terminology that is more appropriate for the ASC context) and other 

characteristics that affect the service user’s capacity to benefit from services that does not 

introduce bias into the estimates of relative organisational performance.  This is critical since 

the benefit of PROMs over other measures is premised on the idea that they capture the 

effectiveness of services.   
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The need to estimate effectiveness in addition to addressing the challenge of drawing 

causal interpretations about the relative performance of organisations complicates the use of 

PROMs for performance assessment purposes (Black and Jenkinson 2009, Black 2013).  

Structural models, which set out the theoretical relationships between needs-related 

characteristics, social care inputs and social care outcomes a priori, provide a route to 

estimate effectiveness for PROMs.  From such structural models, it is possible to develop 

statistical models that can provide estimates the effectiveness of social care that are sufficient 

to draw “policy-relevant conclusions” regarding effectiveness provided the statistical models 

are internally valid (Cartwright 2007, Clarke et al. 2015).  In the next section, I describe how 

the Production of Welfare (POW) model (Davies and Knapp 1981, Knapp 1984) can be 

modified for this purpose. 

 

A theoretical model for exploring the effectiveness of social care and its application to 

the ASCS data 

My purpose here is (i) to set out the theoretical relationships between needs-related 

characteristics, social care inputs and social care outcomes to inform the statistical modelling 

of effectiveness and (ii) to identify the sets of factors that need to be considered to address 

variations in case-mix between organisations.  I draw on the POW framework for this 

purpose.  Although the POW framework is grounded in the economic theory of production 

relations, which seeks to understand the relationship between the factors of production (i.e. 

inputs such as labour and capital) and the product of the productive process, it can serve as a 

framework for understanding the broader set of relationships described above.  This is 

because the POW framework builds on theoretical insights and empirical evidence from 

many distinct fields of social science to provide a theory of production relations for adult 

social care (Davies and Knapp 1981, Knapp 1984).  In particular, Davies and Knapp (1981) 

draw on this literature to set out how factors exogenous to production, i.e. the needs-related 

characteristics that are relevant for addressing case-mix, influence the production of social 

care outcomes at a given point in time.  The key causal and non-causal relationships, as 

conceptualised within the POW framework, are illustrated in a simplified form in Figure 1.   
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Figure 1: The production of welfare framework 

Adapted from Knapp (1984) and Fernandez (2005) 

 

The main message of Davies and Knapp (1981) is that in the ASC context the 

relationship between the factors of production and outcomes is influenced to a large extent, 

and in several different ways, by a variety of relatively intangible factors over which the 

producer (administrator or policy-maker) has limited, and in some cases no, control.  To 

articulate this point, they distinguish three kinds of inputs, referred to as “resource inputs”, 

“non-resource inputs” and “quasi-inputs”.  Resource inputs correspond to the conventional 

inputs or factors of production, over which the producer has a high degree of control.  Non-

resource inputs are the intangible factors, such as staff attitudes and the caring milieu in a 

care home, over which the producer has less control than is the case for resource inputs.  

They determine the quality of the service, e.g. aspects like its institutional or homelike feel, 

but cannot be easily measured.  Quasi-inputs refer to other intangible factors such as the 

underlying health conditions of service users and their care preferences that are largely 

exogenously determined.  As illustrated in Figure 1, the role quasi-inputs have in moderating 

and determining the relationship between resource inputs and care outcomes is central to the 

POW framework.  Indeed, it is a basic premise of the approach that outcomes “are 
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determined by the levels and modes of combination of the resource and non-resource inputs 

(which are mainly under the control of the administrator or policy-maker, albeit sometimes 

only after the elapse of a considerable period of time), given the exogenously determined 

values of the quasi-inputs” (Davies and Knapp 1981, p. 8).   

We can draw several important observations from Figure 1 that are relevant to the 

task of estimating effectiveness from cross-sectional data on the observed outcome state and 

addressing variations in case-mix.  First, it suggests that we can think of the effectiveness of 

ASC services as having a quality (non-resource inputs) and a quantity (resource inputs) 

component for each ‘technology’, i.e. home care, day centres, etc.  We can therefore write the 

effectiveness of ASC interventions, ܧ, as given by the function,  

 

ܧ  ൌ ݂ሺ࢞௜, ;௜ࢗ ଵሻࢼ ൅  ௜, (1)ߝ

 

where ࢞௜, is a vector describing the quantity of each technology provided and, ࢗ௜, is a vector 

describing the various components of care quality.  This relationship is reflected in the arrows 

A and B in Figure 1, which capture the conventional production process, i.e. the relationship 

between the factors of production (including non-resource inputs) and outcomes.   

Second, quasi-inputs exert both a causal (arrow C) and moderating (arrow C’) effect 

over the relationship between social care inputs and social care outcomes, potentially 

confounding the relationship between inputs and outcomes and by extension inferences about 

the performance of organisations.  The role of quasi-inputs can by understood by considering 

how the level of functional ability of a person receiving care affects their likely outcomes.  

Arrow C represents the fact that a person with greater functional ability is likely to achieve 

better outcomes from care than someone with low levels of functional ability despite 

potentially less service input simply because they are starting from a better position.  This is 

illustrated in Figure 2 by the difference AB in the absence of any service input, which, were 

functional ability not to be accounted for, would be wrongly attributed to the effect of 

services.  Arrow C’ captures the fact that “exactly identical resources, service configurations 

and caring environments will affect different people in different ways” (Knapp 1984, p. 32).  

This has been demonstrated empirically, with studies showing that returns from increasing 

inputs start diminishing for more functionally able individuals at lower levels of input than 

for less functionally able people (Davies et al. 2000b, Fernández 2005).  This effect is 

illustrated in Figure 2 which shows a less steep gradient for the high functional ability group 
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compared to the low functional ability group at the same level of service input.  This 

represents differences in the marginal productivity of services for different user groups.   

 

 

Figure 2: Example showing the effect of functional ability on the relationship between 

resource inputs and outcomes 

 

Consequently, the QoL-outcome state that we observe for individuals in the cross-

sectional ASCS data using the ASCOT PROM can be thought of as a function of the 

effectiveness of social care, the impact of quasi-inputs and the relationship between quasi-

inputs and effectiveness.  Building on equation (11), a model for the observed outcome state 

(as gathered from the ASCS data) can be written as follows, 

 

௜ݕ  ൌ ߙ ൅ ݂ሺ࢞௜, ;௜ࢗ ଵሻࢼ ൅ ௜ࢠଶࢼ ൅ ݂൫ሺ࢞௜, .௜ሻࢗ ;௜ࢠ ଷ൯ࢼ ൅  ௜, (2)ߝ

 

where ݕ௜ is the observed QoL-outcome state, the term ݂ሺ࢞௜, ;௜ࢗ  ଵሻ represents theࢼ

effectiveness of care services, and expresses it as a function of a vector of care technologies 

with quantity, ࢞௜, and quality, ࢗ௜.  Quasi-inputs are represented in vector form by the term, 

 ଶ, representing the direct effect of these factors on theࢼ ,௜, with the vector of coefficientsࢠ

observed QoL-outcome state.  The term, ݂൫ሺ࢞௜, .௜ሻࢗ ;௜ࢠ  ଷ൯, is an interaction between theࢼ
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effectiveness of care services and quasi-inputs, reflecting the marginal productivity of 

services for different user groups.  The independently-distributed error term is given by ߝ௜.  

This equation in (2) suggests that if we want to avoid bias from case-mix in the estimation of 

performance using the observed QoL-outcome we need to control for quasi-inputs, ࢠ௜. 

 The third observation of importance is the effect that quasi-inputs have on the choice 

of resource inputs, as illustrated by arrow D.  In England the specifics of the care package are 

determined through a needs assessment, which is usually carried out by a social worker 

employed by the CASSR.  The aim of the assessment is to identify the social care needs of 

the individual and develop an agreed vision of the outcomes the individual would like to 

achieve in a care plan (Glendinning et al. 2008b).  In general more services are given to 

people with greater needs, but interventions are also “customised”, like other service 

products, to meet the consumer’s requirements and preferences for types of services, timing 

and so on (Lovelock and Gummesson 2004, Ferguson 2012).  Customisation is often referred 

to as ‘personalisation’ in the UK health and social care sector and the extent to which services 

are personalised to meet people’s individual preferences is considered to be a defining feature 

of the quality of the intervention, reflecting the skills of the social worker (Lymbery 2010, 

Netten et al. 2012b).  This therefore suggests that the adequacy and mix of technologies 

reflects a further aspect of the quality of provision, namely, to adapt a phrase from Davies 

and Challis (1986), the ability to match resources to needs and preferences.   

The role of quasi-inputs in determining the choice of resource inputs means that the very 

same factors that determine a person’s capacity to benefit from services also determine the 

care package they receive.  Consequently, resource inputs and quasi-inputs are likely to be 

highly correlated, i.e. ݎݎ݋ܥሺ࢞௜, ௜ሻࢠ ് 0.  This has two consequences for the estimation of 

effectiveness and adjustment for case-mix.  First, it means that a standard risk-adjustment 

model that estimated the QoL-outcome state simply as a function of quasi-inputs, would 

underestimate the effectiveness of social care and underestimate the negative effect of quasi-

inputs on QoL-outcomes.  Since CASSR policies regarding the allocation of services and 

market management also govern the way social workers match resources to the needs and 

preferences of people the degree to which the effectiveness of social care is underestimated 

may vary across CASSRs so biasing estimates of relative performance.  For this reason, in 

Chapter 3 I suggest that it may be preferable to include an indicator capturing the quantity of 

care package received in the risk-adjustment model changing it into a ‘production function’ 

model.  While this solves the underestimation of effectiveness, and adjusts for the 
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confounding effect of observable quasi-inputs on outcomes, it brings a new problem of 

endogeneity bias due to the confounding influence of unobservables.  The researcher cannot 

observe all the factors that social workers consider in their needs assessment, meaning that 

some unobserved needs-related factors, which are also correlated with quantity of the care 

package delivered, will be in the error term (Forder and Caiels 2011b, Forder et al. 2014).  

These omitted variables result in endogeneity bias in the estimate of the service effect 

because the unobserved needs-related characteristics of cases in the counterfactual groups 

(i.e. receiving a different quantity of service) may be different to those cases in the treatment 

group (i.e. receiving the quantity of service, ௜ܺ).  I discuss this issue further in Chapter 3, 

where I develop the empirical approach for the modelling of social care outcomes in Chapters 

6 and 7 using the ASCS data. 

Before moving on to consider the sets of variables that are exogenous to the 

production of social care outcomes and should therefore be considered as quasi-inputs in 

ASC, I reflect on the role of external conditions and why they are omitted from Figure 1.  By 

external conditions, I am referring to the wider social, political and economic environment 

that has a bearing on the behaviour of producers.  Often referred to as ‘external constraints’, 

these factors have been shown to exert an important influence over LA performance 

(Andrews 2004, Andrews et al. 2005, Haubrich and McLean 2006, McLean et al. 2007, 

Gutiérrez-Romero et al. 2008, Gutiérrez Romero et al. 2010).  In the ASC context, economic 

factors such as local market conditions, and competition from other sectors pushing up the 

price of social care labour, have been shown to affect the ability to recruit and retain suitable 

staff (Knapp and Smith 1985).  Environmental factors, including spillover effects from 

neighbouring organisations have also been shown to affect LA performance (Revelli 2006, 

Moscone et al. 2007, Fernandez and Forder 2015).  External conditions are excluded from 

Figure 1 partly for the sake of simplicity, but also because they enter into the production 

process as constraints on the choice and availability of resources.  Including these factors in 

an empirical model would complicate the estimation of the relationship between inputs and 

outcomes.  From a policy perspective it is more informative to assess the effect of these area-

level factors on individual outcomes in a second stage, having established the relationship 

between inputs and outcomes. 

 



 

 

55

The sets of exogenous factors influencing social care effectiveness as applied to the ASCS 

data 

As Davies and Knapp (1981) are careful to point out the critical question of which factors are 

endogenous or exogenous to the investigation depends on your point of view and the time 

scale of investigation.  In ASC, the long-term nature of most care complicates the decision 

over which factors are exogenous and which are endogenous.  Much research that seeks to 

model PROMs for the purpose of performance assessment uses the concept of ‘pre-existing 

conditions’ or ‘baseline circumstances’ to account for factors that put people ‘at risk’ of 

worse outcomes, but are outside the control of the service (Smith and Street 2013, Nuttall et 

al. 2015).  The concept is of limited use in ASC because people are likely to have ‘presented’ 

to the service many years ago and to have experienced numerous life events during that time 

that will have impacted on their QoL, but have nothing to do with the efficacy or otherwise of 

ASC, e.g. the death of a spouse.  Instead in ASC the concept of ‘social care need’ is often 

used to differentiate the QoL-outcome from antecedent factors (Davies and Knapp 1981, 

Netten et al. 2012a). 

Distinguishing social care needs from social care outcomes, is not straightforward, as 

many ‘needs-related characteristics’ can also be considered outcomes from care in certain 

circumstances.  I use the approach taken in the development of the ASCOT measure of social 

care outcomes.  ASCOT adopts a conceptualisation of QoL based on a large body of research 

into ‘lay theories’ of what outcomes matter to ASC users to propose a measure of social care-

related quality of life (SCRQoL) (Nocon and Qureshi 1996a, Nocon and Qureshi 1996b, 

Qureshi et al. 1998, Bamford et al. 1999, Qureshi and Nicholas 2001, Miller et al. 2008).  

Eight domains emerged from this work, which are: safety, personal cleanliness and comfort, 

food and nutrition, accommodation cleanliness and comfort, control over daily life, social 

participation and involvement, occupation and dignity.  Three groups of factors – the 

underlying health and disability of users, the physical environment and financial well-being – 

that were identified in the literature as important for good QoL were excluded from the 

SCRQoL concept.  Netten et al. (2012a) argued that these aspects are not core outcomes of 

social care but were more closely related to social care need, since they are taken into 

consideration by social workers in the needs assessment.  These three ‘needs-related’ factors, 

along with two other sets of factors, are considered here to be quasi-inputs to the production 

process.  I discuss each of these groups in turn and their relevance for case-mix adjustment.  

The first group of factors are the underlying health and disabling conditions of the person, 

which directly affect their QoL and constrain their capacity to benefit from services.  
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Functional disability, as measured by ADL scales, is considered to be the core indicator of 

social care need.  Research shows that ADLs are important predictors of QoL and they are 

regarded as critical to understanding variations in the QoL of ASC service users (Davies and 

Knapp 1981, Hellström and Hallberg 2001, Kane 2001, Kane et al. 2003, Hellström et al. 

2004, Degenholtz et al. 2006, Glendinning et al. 2008a, Vaarama 2009, van Leeuwen et al. 

2014, Shippee et al. 2015).  Health conditions and health status, including mental health 

problems such as depressed mood and symptoms such as pain, have also been shown to be 

important predictors of QoL in ASC populations (Hellström et al. 2004, van Leeuwen et al. 

2014) and in older populations more generally (Bowling et al. 2002, Bowling and Gabriel 

2007).  Factors with these effects are often referred to as ‘risk’ factors in the healthcare 

literature (see e.g. Iezzoni 2013) as they describe the pre-existing characteristics of 

individuals that affect the likelihood of a good outcome. 

 Where care is provided in private households, the internal (home) and external 

physical environment have important effects on social care need and are the second set of 

quasi-inputs.  Research has shown that homes with poor accessibility exacerbate the effects 

of health conditions and frailty on functional disability (Iwarsson et al. 2007), while more 

accessible homes can lessen functional dependence and in some instances reduce the quantity 

of ASC and informal care inputs (Connell et al. 1993, Trickey et al. 1994, Gitlin et al. 1999, 

Gitlin et al. 2001, Heywood and Turner 2007, Tanner et al. 2008, Hwang et al. 2011).  The 

suitability of housing and the external physical environment has also been shown to be 

related to QoL-outcomes (Gitlin et al. 1999, Heywood 2004, Heywood and Turner 2007, 

Nygren et al. 2007, Hutchings et al. 2008, Vaarama 2009, van Leeuwen et al. 2014), 

including the person’s sense of safety and control (Scheidt and Norris-Baker 2003) and 

ability to sustain social relationships (Sixsmith and Sixsmith 2008, Tanner et al. 2008).  

Decades of research have also shown the importance of the physical environment for social 

care outcomes in residential care (Davies and Knapp 1981, Lawton 1983).  In this setting, 

however, the physical environment is considered part of the fabric of the service – an aspect 

of quality and therefore not a quasi-input. 

 The personal characteristics and motivations of the service user form the third group 

of quasi-inputs.  In ASC, all services users will ‘co-produce’ to a lesser or greater extent their 

own outcomes (Baldock 1997, Byford and Sefton 2003).  The service user may sometimes be 

constructive and sometimes obstructive and such behaviours could be influenced by the skills 

and character of care staff.  The less recent literature tends to conceptualise this type of 

involvement from users in terms of personality types.  For example, research has identified 
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the importance of an optimistic and pessimistic attitude in determining care outcomes 

(Lawton 1983, Bowling et al. 2002, Kane et al. 2003).  But this theoretical approach 

downplays the potential for staff to engender more constructive involvement from service 

users.  More recent literature considers the involvement of users in terms of concepts like 

‘self-care ability’, which can be measured by ‘patient activation status’.  Patient activation 

status has been shown to be a strong predictor of patient experience in the USA (Heller et al. 

2009) and related to health-related outcomes (Greene and Hibbard 2012).  The more actively 

involved an individual is in their care the more likely it is that their behaviours, attitudes and 

values will affect the outcomes from a given intervention, confounding the relationship 

between inputs and outcomes (Byford and Sefton 2003, Trukeschitz 2011).  Where service 

users hold Direct Payments or Personal Budgets and there is so-called “deep” personalisation 

(Leadbeater 2004), the role of service users in co-designing the components and shape of the 

intervention is likely to further confound this relationship, as the form of inputs is no longer 

determined by social care staff. 

The fourth group of factors consist of resources arising from “social capital” and 

“economic capital” (Bourdieu 1986).  Social capital can be understood as the intra- and 

extra-familial social networks of ASC users and economic capital can be thought of as the 

financial resources available to the individual.  These sources of capital can be drawn upon 

when required, for example to ‘buy-in’ help or to provide additional sources of help, to 

improve the productivity of the household unit.  Importantly, my interest here is not in the 

relationship between social or economic capital and QoL, as has been the focus of much of 

the broader QoL literature (Bowling 1995, Bowling and Windsor 2001, Bowling et al. 2002, 

Smith et al. 2004).  It is not the availability of these sources of capital that confounds 

inferences regarding the effectiveness of services, but the additional resources derived from 

them.  These additional resources are drawn into the production process and substitute for or 

complement formal services. 

It is useful to consider the example of how persons from intra- and extra-familial 

networks may become involved in the production process in more detail to understand the 

issues in the ASC context.  While ASC is ostensibly provided to the disabled or frail 

individuals to address their needs, decisions about provision of ASC in fact take place at the 

household level.  As Netten and Davies explain:   

once an individual's ability to function and produce commodities is reduced, other 
people, both in and outside the household, may get drawn in to substitute or provide 
additional basic commodities for that individual and household.  The form that this 
extension of the productive unit takes will depend on the individual's role in the 
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production process previous to disability, and the relationship, proximity and 
knowledge of potential contributors or carers.  Once people contribute substantially, 
be it by direct production of commodities for the household or management of 
production, they become part of the extended productive unit or informal care 
network.  (Netten and Davies 1990, p. 338). 

Where formal care is provided alongside informal care, there is likely to be fluidity between 

the tasks completed by informal and formal carers26 as they respond to the fluctuating and 

competing needs of the individual and the wider household (Netten and Davies 1990).  An 

important consequence of this is that the informal care network acts as an additional input to 

care outcomes, confounding the relationship between inputs and outcomes.   

 A fifth set of factors applies where survey data are used to measure outcomes and I 

refer to them as reporting-related factors.  This group of factors reflects the fact that the 

responses people give to survey questions can be influenced by the way in which the survey 

is delivered.  Survey research has demonstrated clear effects from mode of administration 

(Dillman et al. 2009).  Research has also shown that proxy respondents evaluate QoL 

differently to how respondents evaluate their own QoL (Epstein et al. 1989, Pierre et al. 1998, 

Andresen et al. 2001, Perry and Felce 2002, Janssen et al. 2005, Schmidt et al. 2010) and 

where respondents are assisted to answer the questionnaire this can also affect responses 

(Elliott et al. 2008).  The nature of the ASC population means that a large proportion of the 

population receive help to answer the questionnaire (over 55 per cent in the 2010-11 ASCS) 

and there is a substantial proportion of people whose responses are given by a proxy 

respondent (over five per cent in the 2010-11 ASCS) (The Information Centre for Health and 

Social Care 2012b).  Although not quasi-inputs in a strict sense, such reporting-related factors 

form a further set of variables that can affect the interpretation of QoL-outcomes. 

In summary, the five types of factors that should be considered when adjusting QoL-

outcomes for case-mix are: personal characteristics and motivations, underlying health and 

disabling conditions, immediate physical environment, additional resources arising from 

social and economic capital and reporting-related factors.  I now move on to discuss the 

conceptual framework for survey participation. 

 

                                                 
26 There is a large body of evidence demonstrating that informal care substitutes for formal care (Lo Sasso and 
Johnson 2002, Van Houtven and Norton 2004, Van Houtven and Norton 2008, Bonsang 2009), although less 
evidence of formal care substituting for informal care (Hanley et al. 1991, Davies et al. 1998, Pickard 2012).   
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Theories of survey participation and their application to the Adult Social Care Survey  

Survey nonresponse is a special case of missing data, with a large theoretical and empirical 

literature dedicated to understanding the reasons why people choose to participate in surveys.  

This literature tends to treat nonresponse probabilistically, as a function of characteristics of 

the potential respondent, the various features of the survey and the relationship between these 

different aspects (Groves and Cialdini 1991, Groves et al. 1992).  A theoretical understanding 

of these relationships is necessary to guide the modelling of nonresponse to surveys.  Such 

models are valuable not only for adjusting survey estimates at the analysis stage (e.g. Rubin 

1976, Rubin 1987, Little and Vartivarian 2003, Horton and Kleinman 2007) but also for 

informing strategies to improve response rates (see e.g. Groves et al. 2000, Dillman et al. 

2009).  In the following discussion I review the main theories of nonresponse and explore the 

extent to which these can be used to explain participation in performance surveys.  My aim is 

to develop a model that can be used to explore nonresponse to the ASCS. 

 

Theories of survey participation 

A number of theories seek to explain survey participation.  Prominent examples are social 

exchange theory (Dillman et al. 2009), which proposes that a rational calculation of social 

costs and benefits occurs when people decide to participate in a survey; cognitive heuristics 

(Groves et al. 1992), which by contrast explains participation decisions in terms of short-cuts 

in thinking based on factors such as liking a field worker; and social disorganisation (House 

and Wolf 1978, Goyder et al. 1992, Couper and Groves 1996), which asserts that in areas 

characterised by social disorganisation (for example with high residential mobility, ethnic 

heterogeneity and low socioeconomic status) there are weakened social ties and a resulting 

weakening of cultural norms, such as being helpful and having trust in institutions, that leads 

to lower response rates.  All of these theories are supported by evidence from empirical 

research into the factors explaining nonresponse.   

As Goyder (2006) observes, the theoretical literature is not well integrated, so he 

proposes bringing the theories described above together within the framework of social 

exchange theory.  The overarching framework for the decision-making process is the 

calculation of the costs and benefits of participation.  The difference between the theory 

suggested by Goyder and the social exchange theory of Dillman is that Goyder allows for the 

decision-making process to vary in terms of the “amount of decision making” and to be 

influenced explicitly by “cultural factors”.  This adaptation of social exchange theory enables 

Goyder to integrate insights from theories of cognitive heuristics, which suggest that 
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sometimes the decision to participate is a fairly shallow decision, based on cues and other 

mental short-cuts.  It also allows Goyder to accommodate findings from social 

disorganisation theory, which emphasises the influence of cultural factors in the decision-

making process.  By bringing the theories together within the social exchange framework, 

Goyder retains the insights into survey design from social exchange theory, and at the same 

time increases the explanatory power of the model. 

It is useful to reflect on how social exchange theory can be used to improve survey 

design since it is largely for this reason that it has been so influential.  Social exchange theory 

posits that decisions to participate can be manipulated by “tailoring” the survey design to 

make it more attractive to potential respondents.  There is evidence that by implementing 

strategies to establish trust (e.g. through sponsorship, advance token of appreciation), 

increasing the benefits of participation (e.g. making the questionnaire interesting, giving 

tangible rewards), and decreasing the costs of participation (e.g. avoiding subordinating 

language, making it convenient to respond) response rates can be improved (Dillman et al. 

2009).  This evidence combined with insights from other theories, highlights the need to 

focus on the characteristics of both individuals and the survey to identify factors that are 

likely to influence participation decisions (Groves and Cialdini 1991, Groves et al. 2000, 

Groves and Peytcheva 2008, Dillman et al. 2009).  Based on the literature five sets of factors 

can be identified as influencing participation decisions (Y).  These are the characteristics of 

individuals (ࢄ), features of the survey design (ࡿ), household characteristics (ࡴ), interviewer 

attributes (ࢀ), and the social environment (ࡺ) (Groves et al. 1992, Groves and Heeringa 

2006).  Including a stochastic error component, ߝ, survey participation can be written as a 

function of these factors as follows:  

 

 Y ൌ ݂ሺࢄ, ,ࡴ,ࡿ ,ࡺ,ࢀ  ሻ (3)ߝ

 

A corollary of the concept of tailoring is that where surveys differ from one another in 

their target population and overall design, they will need a different mix of strategies to 

improve response rates.  For that reason there are likely to be important differences between 

surveys in exactly the types of variables that are relevant for investigating survey 

participation.  I, therefore, turn now to explore the types of factors that are likely to be 

important for explaining participation in the ASCS. 
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A framework for modelling missingness to the ASCS 

Performance surveys are national surveys, but they are quite different, in terms of both survey 

design and the population of interest, from most national surveys that are studied in the 

nonresponse literature.  Performance surveys are primarily postal surveys not face-to-face 

interviews, so factors such as interviewer attributes will not be relevant.  Additionally, the 

focus of sampling is on individuals rather than households and the sampling frame is usually 

not the general population but the records of service recipients.  This means that household 

characteristics, although not necessarily less relevant, will be unobserved in the sampling 

frame (except where they are captured in relation to the characteristics of the individual).  

Furthermore, as is the case in the ASCS, some performance surveys are conducted by the 

organisations in charge of the service being assessed.  Effectively, there is not one but many 

surveys, and where these surveys are run differently this is likely to have consequences for 

response propensity.  Consequently, a theory of nonresponse to the ASCS needs to take into 

account these features of the survey design and the special characteristics of the survey 

population, as well as the role of the social environment.   
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Figure 3: Illustration of the sets of factors influencing response propensity within the ASCS 

 

Survey attributes

e.g. incentives, alternative 
formats, alternative mode 
offered 

Individual characteristics

e.g. type and severity of 
disability, care package, live 
alone, live in communal 
establishment  

Respondent 

Nonrespondent 

Returned blank 
form 

CASSR characteristics 

e.g. data quality, attitude 
towards survey 

Social environment 

e.g. deprivation, 
urbanicity, density 
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The relationship between the three sets of factors – features of the survey design 

(survey attributes), individual characteristics and the social environment – and survey 

participation is illustrated in Figure 3.  I discuss the relevance of each of these three factors 

to participation in the ASCS in turn.  Importantly, I also discuss the role of CASSRs in 

shaping the relationships between the three characteristics and response propensity.  The 

aim of this discussion is to develop a rationale for inclusion of variables in the empirical 

modelling in Chapter 4.   

 

Features of the survey design 

Evidence suggests that nonresponse bias is less severe in postal compared to face-to-face 

interview surveys, which has led to speculation that different mechanisms may explain 

nonresponse for the two modes (Groves and Peytcheva 2008).  Postal surveys also differ 

from interviewer-led surveys in the types of nonresponse that can be observed.  In 

interviewer-led surveys it is usually possible to distinguish refusals from non-contact and 

from people who are unable to respond, for example, due to cognitive impairment.  For 

postal surveys, the different types of nonresponse usually cannot be distinguished from one 

another.   

The ASCS is slightly unusual in this respect as nonrespondents fall into one of two 

categories: returned blank questionnaire or failed to return the questionnaire.  The 

questionnaire instructions direct people to return a blank questionnaire if either of the 

following two conditions apply: they cannot complete this questionnaire either on their 

own, or by giving answers for someone else to record; or they do not want to participate 

and do not want a reminder questionnaire sent to them.  Consequently, people who return a 

blank questionnaire will be a mixture of those who refuse to participate and those who are 

unable to participate (but are able to, or have someone to help them to, return the blank 

questionnaire).  People who fail to return the questionnaire are likely to be a mixture of all 

types of nonrespondent, i.e. people who fail to receive the survey request (for example, 

because of non-delivery, or interception), refuse to participate, are unable to respond, as 

well as those who run out of time or forget to respond.  These two nonrespondent groups 

are likely to be different in their motivations and therefore their characteristics.  Thus, 

although there is a good deal of overlap between the groups in terms of the factors that are 

likely to explain the reasons for nonresponse, it seems important to explore whether there 

are differences in the factors explaining the two nonresponse outcomes.  
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Theories of nonresponse suggest that organisations charged with managing the 

survey have an important effect on response rates.  On the one hand this is because they 

can manipulate the survey attributes to increase response rates (tailor the survey); on the 

other it is because certain types of organisations engender greater trust and are therefore 

more likely to have better response rates (Dillman et al. 2009).  In the ASCS, where each 

CASSR in England manages the survey process for their locality, there is the possibility of 

divergence between CASSRs in survey attributes and therefore response rates.  Evidence 

from the ASCS and performance surveys that have a similar design to the ASCS show that 

there are fairly large differences in response rates between organisations (Zaslavsky et al. 

2002, Health and Social Care Information Centre 2013, Health and Social Care 

Information Centre 2014).  There is, however, little research that looks at the reasons for 

observed differences in response rates across organisations in the context of performance 

surveys.  Only one study by Zaslavsky et al. (2002) of the CAHPS survey of health plan 

reporting units has looked at this question, albeit not in a significant detail.  They found 

that differences in the quality of contact information were one important factor in 

determining differences in response rates between health plan reporting organisations.  

This study did not consider the possibility that differences may be explained by the way 

the organisations manage and run the survey and this possibility has not been examined in 

the ASCS.   

Although CASSRs follow national guidance there are two reasons to expect 

processes to vary between CASSRs.  First, CASSRs have a degree of discretion over how 

the survey is implemented.  For example, they can choose to add questions, change the 

appearance, include incentives and alter various other attributes that have been shown to 

have an effect on response rates to postal surveys (Edwards et al. 2002).  Second, CASSRs 

vary in their attitudes towards the survey, which is a mandatory requirement and is 

sometimes seen as an inconvenience (Heath et al. 2015).  CASSRs’ attitudes towards the 

survey may influence their choices over how to implement the survey; certainly there is 

anecdotal evidence that some choose (intentionally or unintentionally) to flout the rules, 

by, for example, not sending out reminders.  A focus of this research will therefore be on 

exploring whether differences in response rates between CASSRs can be explained by 

differences in the way CASSRs manage and run the survey. 
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The characteristics of the survey population 

The population studied in performance surveys is frequently dominated by disadvantaged 

groups whose characteristics may make it difficult for them to participate in surveys.  By 

definition, ASC users have a disproportionately high burden of illness and disability, 

compared to the general population (Qureshi and Rowlands 2004).  Furthermore, due to 

the extent of rationing of ASC, the majority of the population is likely to be severely 

disabled, have at least one (if not several) long-term health conditions with associated 

functional impairment, and there is also likely to be a high prevalence of cognitive 

impairment (Fernandez et al. 2013b).  Since both cognitive and functional impairments 

limit a person’s ability to undertake ADLs, it seems highly likely that these characteristics 

will also have an effect on response propensity.  However, due to the small numbers of 

people with serious cognitive and functional impairments in the general population, the 

role of health and mental ability or cognition in determining response propensity is 

understudied and under-theorised (Hendershot et al. 2003, Hauser 2005, Goyder et al. 

2006).   

There is evidence that poor health (Paganini-Hill et al. 1993, Strayer et al. 1993, 

Cohen and Duffy 2002, Perneger et al. 2005, Hutchings et al. 2012, Peters et al. 2014b), as 

well as visual impairments (Rahi et al. 2004) and proximity to death (Hébert et al. 1996, 

Kauppi et al. 2005) negatively affect response to postal surveys.  Yet, aside from a study 

by Hébert et al. (1996)   which found that nonrespondents to a postal survey were more 

cognitively impaired and more disabled than respondents, there is very little evidence 

about the impact of disabling conditions, such as cognitive impairment, physical 

impairment, sensory impairments, intellectual disability, mental health problems and 

substance misuse problems on survey participation. 

Like other surveys, the ASCS contains very few indicators that could be used to 

explore the effect of health and disability on response propensity.  The ASCS, however, 

does categorise service users according to broad categories of disability types, which can 

be used as indicators of the effects of different types of disabling conditions on response 

propensity.  It also has information about service use, which itself reflects the person’s 

underlying level of disability, as more severely disabled respondents will have more 

services and more intense forms of service provision, such as residential care.  I explore 

the effects of these factors on response propensity in this research.  Saliency of the survey 

to those sampled is recognised as an important factors affecting participation (Dillman et 

al. 2009).  Saliency is likely to vary according to the type of care package received, as 
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services vary in the amount of contact the person has, and the amount and type of care or 

help that is delivered.  Some services such as equipment involve a one-off contact and little 

or no caregiving, whereas others, such as home care, Direct Payments and care homes, are 

characterised by high levels of contact and in most cases significant amounts of highly 

personal care being delivered.  Those receiving the most intense services are more likely to 

see the survey as worthwhile.  In the case of Direct Payments, another factor may be at 

play.  Since Direct Payments are a cash payment given in lieu of services, such recipients 

may see the ASCS questionnaire as a way for the CASSR to check on their ability to 

manage their own care, and they may therefore be less likely to complete it.  This may be 

particularly the case if trust in the CASSR is low.  It therefore seems important to explore 

the effect of receipt of different types of services on response propensity to the ASCS. 

There may be some variation in the effects of health conditions and disability on 

response propensity across CASSRs, as they could influence response propensity by 

implementing strategies that reduce the costs of responding by making it more convenient 

or easier for them to respond.  For example, alternative modes of survey administration, 

such as face-to-face interviews, are more appropriate for visually impaired and physically 

disabled people, and alternative formats, such as Easy Read are more appropriate for 

people with intellectual disabilities (Sheldon et al. 2007, Beadle-Brown et al. 2012).  All 

CASSRs send an Easy Read version directly to people with intellectual disabilities, but 

responses to the ASCS suggest that some CASSRs use other strategies to improve response 

rates from hard-to-reach populations.  In this research I explore the extent to which 

CASSRs use different approaches and the effect of doing so on response propensity. 

Studies of the nonresponse to general population surveys have generally been more 

concerned with socio-demographic variables, like age, sex and ethnicity, as predictors of 

response propensity.  As Groves et al. (1992) argue, socio-demographic variables have 

their influence through intervening variables.  For example, it is argued that people from 

minorities and those who are foreign-born may feel more disconnected from the 

government than non-minorities or natives and therefore may be less likely to participate in 

a government-sponsored study (Axinn et al. 2011).  Much research has found that the 

young and the very old less likely to respond to surveys (Herzog and Rodgers 1988, 

Kaldenberg et al. 1994, Zaslavsky et al. 2002, Elliott et al. 2005).  It is argued that these 

effects are due to intervening variables, such disability for the very old, and for people of 

working age a lack of time due to the multiple demands of family and employment.  The 

demands of family and employment are likely to be less important for determining 
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response propensity to the ASCS as ASC clients are much less likely to be in employment 

and, in many cases, have dependent children (Berthoud 2006).  Equally in a population 

such as the ASCS, where all sample members have high levels of social care need any 

gradient in disability severity with age is likely to be less steep.  It is, nevertheless, of 

interest to explore the role of these factors in influencing response propensity to the ASCS 

given the role that surveys such as the ASCS have in demonstrating whether services are 

provided equally well to minority and vulnerable groups. 

 

The social environment 

A number of studies have investigated the role of the social environment, usually in the 

context of social disorganisation theory.  Across England there are wide variations in the 

social environment in terms of urbanicity, population density and social cohesion / 

disorganisation.  All of these factors have been found to be important in determining 

response rates, with more urban, dense, deprived and disorganised places having lower 

response rates (House and Wolf 1978, Goyder et al. 1992, Groves et al. 1992, Couper and 

Groves 1996, Johnson et al. 2006).  It is argued that these variables have their effects by 

reducing helping behaviour and trust in institutions and others (see e.g. Couper and Groves 

1996), and that strategies to increase trust, such as the use of incentives or efforts to 

increase social capital, will moderate the effects of the social environmental variables.  I 

therefore investigate the role of the social environment in influencing response to the 

ASCS. 

 

In summary, I propose that response to performance surveys will be a function of 

four factors: survey attributes (ࡿ), individual characteristics (ࢄ), the social environment 

 The role of the CASSR is important because of the  .(࡯) and CASSR characteristics (ࡺ)

possibility that CASSRs manage and implement the survey differently in their localities.  

The model for response propensity can be written as,  

 

 Y௜௝ ൌ ݂ሺࢄ௜௝, ,௝ࡿ ,௝࡯ ,௜௝ࡺ  ௜௝ሻ (4)ߝ

 

where ௜ܻ௝ denotes the response status, for person ݅ in CASSR ݆, and ߝ௜௝ is the random error.  

The set of variables included within each category of factors will vary according to 

the survey.  For the ASCS, I have argued that the relevant set of individual characteristics, 
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-௜௝, includes health conditions, disability severity, service receipt and other socioࢄ

demographic factors.  The relevant survey attributes are defined by the choices made by 

CASSRs and I examine how these attributes vary between CASSRs in Chapter 4, as part of 

the exploratory analysis associated with modelling response propensity.  The 

organisational characteristics, ࡯௝, discussed here as relevant for the ASCS, i.e. data quality 

and attitudes of the organisation, are likely to be important across all surveys that are run 

by multiple organisations.  The aspects of the social environment, ࡺ௜௝, as predicted by 

social disorganisation theory are also likely to be appropriate for most surveys. 

 

Concluding remarks 

The aim of this chapter was to set out conceptual frameworks for exploring, first, social 

care outcomes for the purpose of case-mix adjustment and, secondly, survey participation 

in the empirical chapters of this thesis.  I have argued that social care outcomes can be 

understood through the theory of production relations, as adapted to the social care context 

by Davies and Knapp (1981).  Using this framework, I identified five factors that are 

exogenous influences over QoL-outcomes and are therefore likely to confound the 

assessment of the impact of services on QoL-outcomes.  These are personal characteristics 

and motivations, underlying health and disabling conditions, immediate physical 

environment, additional resources arising from social and economic capital and reporting-

related factors.  In order not to confound the estimation of the performance of 

organisations, it is therefore necessary to control for the effects of these case-mix factors.  

However, this is not straightforward in the ASC context.  As I have shown, these factors 

also influence the quantity and type of care package given to an individual.  As such, 

statistical modelling to control for case-mix may underestimate the impact of services on 

QoL-outcomes and overestimate the impact of case-mix factors, potentially biasing 

comparisons of organisational performance.  I have suggested that a way of overcoming 

this problem is to introduce an indicator of the quantity and type of care package into the 

case-mix estimation.  This approach, may itself suffer from endogeneity bias due to the 

difficulty of observing all the needs-related characteristics that are important in 

determining the quantity and type of care package.  In the next chapter I will discuss how 

regression modelling techniques can be used to address these theoretical concerns and how 

I apply these techniques to the statistical modelling of social care outcomes in the ASCS 

datatset Chapters 6 and 7.   
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With respect to survey participation, the conceptual framework proposed here 

draws heavily on Dillman’s (2009) social exchange theory, particularly as it is elaborated 

by Goyder (2006).  I have, however, adapted this framework to fit the characteristics of the 

ASCS, since these theories, and the empirical evidence, demonstrate that the types of 

factors that predict participation will be specific to individual surveys.  On this basis I 

identified four sets of factors that are likely to predict participation in the ASCS: survey 

attributes, individual characteristics, the social environment and CASSR characteristics.  

The role of CASSR characteristics is particularly important for the ASCS because of the 

much greater role CASSRs have in the design and management of surveys in their locality 

than is ordinarily the case for national surveys.  I test the hypotheses developed from this 

conceptual framework empirically in Chapter 4.  In the next chapter, I describe how I use 

the conceptual model to inform the analysis around the effect of nonresponse on 

performance assessment.  Although the conceptual framework as it is discussed here is 

tailored to the features of the ASCS, the framework itself should be useful for exploring 

survey participation to performance surveys more generally, given how many of the 

features of the ASCS are shared across performance surveys.   
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Chapter 3 

Tools for the Empirical Analysis 

 

Introduction 

The activity of collecting performance information to understand and evaluate the 

performance of organisations is sometimes referred to as “organisational profiling” (Shahian 

and Normand 2008, Ash et al. 2013).  In earlier chapters, I described how the observational 

nature of data from profiling studies complicates the evaluation of organisational 

performance.  In particular, differences in case-mix between organisations and, where survey 

data is used, differences in nonresponse rates, may confound inferences about performance.  

In the absence of an experimental design, statistical analysis is a key tool for addressing the 

effects of confounding influences and providing a fairer basis for understanding and 

evaluating CASSR performance (Bird et al. 2005).  Statistical techniques therefore form the 

bedrock of the methods for this thesis. 

The aim of this chapter is to review the statistical techniques that have been used to 

address nonresponse and case-mix and consider how they can be applied in this thesis, given 

the limitations of the data.  My main concern in this review is therefore to consider how the 

methods can be adapted to analysing survey-based indicators in the ASC context.  The 

chapter is organised into three sections.  In the first section, I set out the methods for 

addressing differences in case-mix between CASSRs.  I focus on the case where the 

indicators are PROMs because the empirical analysis uses the SCRQoL PI.  In section two, I 

review the analytical approaches that can be used to adjust indicators for nonresponse and 

explore the characteristics that influence survey participation.  In the third section, I set out 

the methods I use to explore the impact of adjusting for case-mix and nonresponse on 

performance assessment and address the question of whether adjustment is necessary.   

 

Addressing differences in case-mix between CASSRs 

The most common method used for profiling organisations is risk-adjustment (Iezzoni 2013).  

Risk-adjustment is a fairly loose term that is used to describe a collection of methods for 

facilitating meaningful performance assessment from observational data.  It usually consists 

of two stages: first, a risk-adjustment model is developed, which statistically accounts for 

variations in case-mix characteristics on outcomes, so controlling for their confounding 

effects on outcomes; secondly, the results from the risk-adjustment model are used to 
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indirectly standardise the observed outcomes for each CASSR.  My aim here is to set out how 

risk-adjustment can be applied to analysing the performance of CASSRs using the ASCOF 

PROM, known as the SCRQoL indicator that is derived from the ASCS. 

Profiling studies raise a number of methodological challenges that make it difficult to 

determine performance, notably the observational nature of the data and lack of experimental 

design.  It is therefore useful to start by describing risk-adjustment in the context of the 

theory of causal inference (Shahian and Normand 2008).  Given the additional challenge in 

the ASC context of cross-sectional data, I then consider the types of adaptations to the risk-

adjustment model that are required to reduce potential bias in inferences about the relative 

performance of organisations, the potential to apply these approaches to the ASCS data, and 

how these solutions compare to alternative approaches found in the literature where 

longitudinal data are available.  Finally I discuss how the indirect standardisation method can 

be used to generate an adjusted SCRQoL indicator. 

 

Risk-adjustment and causal inference 

All studies of causality suffer from the “fundamental evaluation problem” (Holland 1986) 

that only one “potential outcome” can be experienced at any one time (Rubin 1974).  Yet to 

determine causality it is not enough to know how an intervention affects participants, i.e. the 

actual outcome, we also need to know what would have happened to them if they had not 

received the intervention, i.e. the counterfactual outcome.  In the performance assessment 

context, a method is needed to estimate what hypothetically would have happened to the 

participant had he/she experienced care from a different CASSR.  Estimation of this 

counterfactual outcome is the main motivation for risk-adjustment (Shahian and Normand 

2008).   

 Most profiling studies rely on regression modelling to estimate the counterfactual 

outcome.  The regression model, often referred to as the ‘risk-adjustment model’, provides an 

estimate of the relationship between individual characteristics of service users and observed 

outcomes.  It therefore accounts for observed differences in the populations of different 

CASSRs that may influence outcomes.  This method has less internal validity than 

randomised experimental designs, which balance populations on observed and unobserved 

characteristics.  However, as Shahian and Normand (2008) note, such randomisation would 

not be possible.  Other methods for estimating counterfactuals, such as matching and 

stratification are also impractical in the profiling scenario because of the number of 

organisations and the need to account for a large number of observed characteristics.  Risk-
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adjustment is the only practical method, but the validity of the estimated counterfactual 

outcomes from the statistical models is limited by the ability to control for all relevant factors 

that may affect outcomes (Deeks et al. 2003, Lilford et al. 2004, Nicholl 2007, Iezzoni 2013, 

Clarke et al. 2015).   

The aim of risk-adjustment is to understand how the performance of a CASSR 

compares to what would have been expected (i.e. the counterfactual) (Shahian and Normand 

2008, Nicholl et al. 2013).  To achieve this, the expected outcome is estimated as the outcome 

the CASSR would have achieved for its population, given its actual distribution of service 

users, but applying the effects of user characteristics on outcomes estimated from the 

reference population risk-adjustment model.  The observed outcome for a CASSR is then 

compared to the expected outcome for the CASSR.  It is assumed that differences in the 

relationship between expected and observed outcomes across CASSRs reflect differences in 

the performance of CASSRs.1   

  

Risk-adjustment models for outcomes   

For risk-adjustment models the general approach is to estimate a reduced form of the 

structural model for the production of social care outcomes (see Chapter 2, equation 2), 

where the term capturing service effectiveness, ݂ሺ࢞࢏, ;࢏ࢗ  ሻ, is omitted.  This can beࢼ

represented as follows: 

 

 

௜ݕ ൌ ߙ ൅෍ߚ௞ݖ௜,௞

௄

௞ୀଵ
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where ݕ௜ is the observed outcome for individual, ݅, ݖ௜,௞ are a set of ݇ risk factors for values of 

݇ ൌ ሺ1,… ,  ௜ is the independently distributed error term.  Risk factors vary accordingߝ ሻ, andܭ

to the outcome indicator, and are the set of factors that influence the likely success of the 

service in achieving the desired outcome but are outside its direct control.  In the context of 

the social care PROM, relevant risk factors are the five categories of quasi-inputs identified 

in Chapter 2, i.e. (i) underlying health and disabling conditions, (ii) personal characteristics 

and motivations, (iii) additional resources arising from social and economic capital, (iv) the 

immediate physical environment, and (v) reporting-related factors.  All of these groups of 

                                                 
1 Where the characteristics of service users are quite different across CASSRs, some caution is needed when 
interpreting the indirectly standardised outcomes in this way (Shahian and Normand 2008, Nicholl et al. 2013).  
I reflect on these concerns in Chapter 9. 
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variables are expected to directly affect outcomes for individuals, but are not, I argued in 

Chapter 2, significantly affected by ASC services.  Including these sets of factors in the 

model will adjust for their effect on outcomes, such that the predicted outcome for any 

individual from the model, ݕො௜, is conditional on their value.   

For multi-attribute PROMs like the ASCOF SCRQoL indicator, the model in equation 

(5) can be estimated by OLS regression.  Provided we can assume that the model coefficients 

are estimated without bias, then the predicted outcome, ݕො௜, should be an unbiased estimate of 

the counterfactual and the average error, ߝ௜̅,  should be an unbiased estimate of the 

effectiveness of ASC.  For performance comparisons, where the interest is in differences 

between CASSRs, a slightly lower bar is required.  As long as any bias in coefficients is 

constant across CASSRs then differences in the average error between CASSRs should be an 

unbiased estimate of relative differences in effectiveness.  This assumption may not hold for 

PIs in general due to lack of independence of the observations.  Specifically in the case of the 

SCRQoL PI it may not hold due to the complex relationships between the risk-adjustors and 

other variables that are unobserved in the risk-adjustment model (as described in Chapter 2) 

that confound the relationship between risk-adjustors and outcomes.  I discuss these in turn 

and consider how to modify the risk-adjustment model to improve the estimation. 

 

Observations are not independent 

A key assumption for unbiased estimation is that observations are independent.  This 

assumption is unlikely to be met in most instances where risk-adjustment is used for 

performance assessment, since it is premised on the idea that people residing within the same 

CASSR are affected by an unmeasured common factor, namely quality, and that this factor 

varies across CASSRs.  Indeed, as Li et al. (2009, p. 84) remark, the OLS model seems to 

contradict the very “spirit of outcomes comparisons”.  As well as being at odds with the 

intentions of performance assessment, ignoring the clustering of individuals has been shown, 

in certain circumstances, to lead to biased coefficients and consequently biased indicators 

(DeLong et al. 1997, Normand et al. 1997, Li et al. 2009).2   

There are two alternative approaches that can be used to appropriately reflect the 

clustering of observations within authorities – fixed-effects (FE) and random-effects (RE) 

models.  These models have been used fairly extensively across the health and education 

                                                 
2 It also will lead to incorrect standard errors (SEs) for model parameters, but the correct interpretation of SEs is 
less important here, except to the extent that it leads to the inclusion of variables that are not important 
predictors of outcomes. 
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sectors for performance comparison (Goldstein and Spiegelhalter 1996, Normand et al. 1997, 

Elliott et al. 2001, Austin et al. 2003, Huang et al. 2005, Arling et al. 2007, Mukamel et al. 

2008, Li et al. 2009, Clarke et al. 2015, Nuttall et al. 2015).  The models capture 

organisational-level clustering, through the inclusion of an additional parameter, ߦ௝, which 

captures the effect for organisation, ݆.  Using the same notation as above, the model is given 

by,    
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The exact specification of the organisational term, ߦ௝, depends on whether it is treated 

as a fixed or random effect.  The RE model assumes that organisational effectiveness, ߦ௝, 

arises from a normally-distributed population, i.e. ߦ௝~ܰሺ0,  ௨ଶሻ, while the FE model, makesߪ

no distributional assumptions for ߦ௝ – they can simply be specified as dummy variables for 

each organisation (Greene 2012, Clarke et al. 2015).  The organisational term can be 

interpreted as an estimate of organisational effectiveness and the estimates for individual 

organisations can be obtained directly from the model.  In this way, this approach deviates 

conceptually from risk-adjustment using OLS.  The ability to derive estimates of the 

organisational effect directly is a major attraction of these models (particularly the RE model) 

(Goldstein and Spiegelhalter 1996, Normand et al. 1997), although, as I will discuss below, 

there are difficulties with using these estimates directly as PIs.  Both the RE and FE models 

can, however, also be used within the classical risk-adjustment framework to obtain an 

estimate of the counterfactual outcome, ݕො௜, by setting the CASSR effectiveness term to zero, 

i.e. ߦ௝=0 (Li et al. 2009).   

Although the RE and FE models are more complex than OLS models, it is argued that 

explicitly modelling the clustering of observations within CASSRs means they have greater 

face validity for performance assessment (Li et al. 2009).  Whether decisions about models 

matter for inferences regarding the relative performance of organisations is a moot point.  

Researchers make strong theoretical arguments about the need for RE or FE models, but the 

effects of such choices on inferences about performance vary depending on the study and on 

whether the estimates of organisational effects are used directly as PIs (Greenfield et al. 2002, 

Huang et al. 2005, Glance et al. 2006, Arling et al. 2007, Mukamel et al. 2008, Li et al. 2009, 

Eijkenaar and van Vliet 2014).  In light of this, Li et al. (2009) argue that the importance of 
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modelling choices is an empirical question, which is likely to be affected by the particular 

characteristics of the data.  For this reason it seems important to explore these models as 

alternatives to OLS in this particular study.  

  

Important variables are unobserved 

As the discussion in Chapter 2 highlighted, a number of the variables that are considered here 

as risk-adjustors also determine the technologies and quantity of technologies received as part 

of an individual’s care package.  Indeed a correlation between various risk-adjustors, for 

example functional ability, and the quantity of care provided to service users has been 

illustrated in previous research in social care (Davies et al. 2000b, Fernández 2005, Forder 

and Caiels 2011b, Forder et al. 2014).  A consequence then of omitting a term capturing the 

quantity of service provided, i.e. ࢞௜ in equation 2 (see Chapter 2), is that the parameter 

estimates for the risk-adjustors, ݖ௜௝,௞, will be biased.  Specifically, the coefficients for the risk 

factors will be upwardly-biased, as they will capture some of the (positive) service effect 

(Davies et al. 2000b, Fernández 2005, Forder and Caiels 2011b, Forder et al. 2014).  This in 

turn will lead to bias in the calculation of the expected outcome on which the PIs are based. 

In the context of performance comparisons, this bias due to the confounding effect of 

service quantity is only problematic if the relationship between the risk-adjustors and service 

quantity varies across CASSRs.  Should this relationship be fairly constant across 

organisations, e.g. because social services departments use similar algorithms for determining 

the intensity and nature of the care package received, then the risk-adjustment model may 

still provide a reasonable estimate of differences in effectiveness between organisations, even 

if it does not provide a good estimate of the average effectiveness of social care services.  

Differences in eligibility policies between CASSRs and in what local markets can offer, 

however, raises doubts over the plausibility of this assumption.  It is therefore important to 

include an indicator of service quantity in the risk-adjustment model to control for its 

confounding effect on the relationship between the risk-adjustors and social care outcomes.  

Such a model would more closely resemble a production function (Fernandez et al. 2013a, 

Forder et al. 2016), so it is useful to look to this literature to explore how such a model could 

be specified in the context of ASC performance assessment. 

It is important to recognise that the use of a production function to improve the 

estimation of effectiveness, is necessary in this application because of the cross-sectional 

nature of the data and the fact that most sample members receive community- or home-based 
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services, such as home care where the intensity of the service varies according to the social 

care needs of the individual.  Regarding the latter point, the quantity of care provided should 

not exert a strong confounding effect for residents of nursing and care homes, as the service 

is more homogeneous.  For residents of nursing and care homes, therefore, the risk-

adjustment model should provide a relatively unbiased estimate of the expected outcome in 

the absence of services, assuming it has been possible to control for key risk factors.  

Regarding the former point, were longitudinal data available, in which data on outcomes and 

user characteristics were collected at regular intervals, an alternative approach would be 

feasible.  Notably, it would be possible to use the scheme outlined by Smith and Street (2013) 

for interventions that aim to arrest or slow the decline in health status or maintain as far as 

possible the person’s quality of life.   

The approach suggested by Smith and Street (2013) draws on the fact that the 

longitudinal data makes it possible to chart the health status (or more appropriately here QoL 

status) pathway of individuals receiving care.  An indicator can be constructed based on the 

change in QoL status between two adjacent data collection points.  The inclusion of prior 

QoL status in the indicator controls for differences in the population of users cared for by 

organisations, by removing the effect of variations in ‘baseline’ characteristics.  Since there is 

still the potential for user characteristics to confound differences in outcomes, a risk-

adjustment model is needed to address selection bias.  The risk-adjustment model estimates 

the expected change in QoL status, given service user characteristics at baseline (where 

baseline is understood as the previous time point) that would be considered to be risk factors 

for a change in QoL status.  Examples of such risk factors might be multiple co-morbidities, 

age, type of health condition and functional ability.  This approach has been applied to 

nursing homes quality indicators, such as the change in functional ability and change in 

mobility indicators, in the USA where data is collected on all residents on a quarterly basis 

(Arling et al. 2007, RTI International 2017).  The main problem with this approach is that it 

does not provide a good estimate of the effectiveness of care, since prior QoL status (and the 

risk-adjustors) is not likely to be a good indicator of the counterfactual pathway (Smith and 

Street 2013).  The counterfactual QoL status pathway is better estimated as a function of 

factors such as physical, cognitive and social impairment and environmental factors of the 

type identified as quasi-inputs in Chapter 2 (Forder et al. 2014).  This is the main benefit of 

the production function approach over an approach based on longitudinal panel data. 
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Applying production functions to performance comparisons 

A production function is used by economists to express the technical relationship between the 

factors of production (i.e. inputs such as labour and capital) and the product of the productive 

process.  Despite the difficulties involved in estimating production functions empirically even 

where there is a high degree of technological determinacy in the relationship between inputs 

and the products of production (Intriligator et al. 1996), researchers have successfully 

managed to estimate production functions for social care (Davies et al. 2000b, Fernández 

2005, Forder and Caiels 2011b, Forder et al. 2014, Forder et al. 2016).  This thesis builds on 

this empirical work to specify the functional form of the production function and applies it to 

organisational profiling. 

The main challenge for estimating production functions with the ASCS dataset are the 

data limitations.  The only measure of service quantity in the ASCS dataset is a single 

variable that captures the ‘personal budget’ allocated to the user.  The personal budget is 

designed to cover the costs of purchasing services to meet the service users’ assessed needs.  

It can be thought of as a cost-weighted utilisation measure where the quantity of each of the 

services received are summed together using pounds sterling as the common unit.  Although 

it should be possible to estimate a simplified production function with this variable, the 

personal budget is both inconsistently and very poorly recorded, with a large number of 

missing values.  As well as reflecting the quantity and mix of services received as part of the 

care package, the personal budget also reflects differences in the price paid for the services 

across different parts of the country.  These problems with the recording of the personal 

budget variable mean that I can only apply the production function method to a sub-

population of the ASCS dataset and am limited in the statistical methods that I can use.  The 

effect of the data limitations on the empirical modelling are discussed further in Chapter 7 

where I use a production function to model social care outcomes, but here I reflect on the 

constraints of the data for the statistical methods. 

To estimate a production function it is necessary to make some assumptions about the 

functional form of the production relationship.  I draw on the work of Forder et al. (2014) and 

Fernández (2005) and use a functional form based around an expanded generalised linear 

production function with similarity to the work of Lau (1974) and Diewert (1971).  This form 

allows for the existence of only one input (i.e. the cost-weighted utilisation indicator of 

service quantity), for diminishing returns to factor at higher levels of input (Knapp 1978b, 

Knapp 1979, Davies et al. 2000b, Fernández 2005), and can accommodate the presence of 

exogenous risk factors in the production relationship (Davies and Knapp 1981, Knapp 1984, 
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Davies 1985).  The generalised form of the model for the production of social care outcomes 

is therefore given as, 
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where ݕ௜ is the observed outcome and ݔ௜ is the personal budget capturing service quantity.  

The logarithmic term allows for variations in returns to factor3.  As in equation (5), quasi-

inputs are captured through the term, ݖ௜, with the direct effect on outcomes captured by ߚ௞.  

The interaction terms, ݔ௜. ௜ሻݔ௜,௞ and lnሺݖ .  ௜,௞, capture the mediating effect of quasi-inputs onݖ

outcomes and can be interpreted as differences in the marginal productivity of services for 

different groups of users (Knapp 1984, Fernández 2005).  The independently-distributed error 

is given by ߝ௜. 

From the perspective of face validity, the production function model is an 

improvement over the risk-adjustment model.  It attempts to disentangle the effect of services 

on outcomes from the effect of user characteristics on outcomes, so addressing the bias in the 

estimation of the coefficients for risk factors in equation (5).  The coefficient on the service 

quantity term, ݔ௜, provides an estimate of the effectiveness of care and the risk factors, ݖ௜,௞, 

control for the effect of observable factors on SCRQoL status.  These risk factors are for the 

most part needs-related characteristics of the user that we expect to be strongly related to both 

SCRQoL and to the care package provided (Forder et al. 2014).  The difficulty is that we 

cannot observe all the relevant needs-related characteristics that are available to the assessor 

when carrying out the needs assessment that determines the care package.  This leads to 

potential endogeneity bias in the estimation of the coefficient for the service quantity term, 

 ௜.  Put another way, the service quantity term depends on the outcome of the needsݔ

assessment, which depends on both observed and unobserved needs-related characteristics.  

As Forder et al. (2014)  show OLS estimation will lead to biased estimates of the service 

quantity effect because changes in service quantity are associated with changes in both 

SCRQoL status and the error.   

Instrumental variables (IV) estimation is the usual solution for endogeneity (Cameron 

and Trivedi 2005).  The idea of IV estimation is to find a variable (or variables) – the 

instrument(s) – that induces variation in service quantity but does not directly affect the 

                                                 
3 I in fact try a variety of alternative forms for this relationship as I describe in Chapter 7. 
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SCRQoL status of the person (except through its effect on service quantity).  As Forder et al. 

(2014) argue a potential instrument for service quantity in home-based social care services is 

the CASSR in which the individual resides.  CASSRs operate different eligibility policies, 

which are likely to induce variation in service quantity, but such policies should not have a 

direct effect on individuals’ SCRQoL except through their effect on service quantity.  Forder 

et al. (2014) successfully use this IV strategy to estimate the effectiveness of home care.  In a 

later study Forder et al. (2016) refine the instrumentation strategy and apply a spatially-

lagged service use variable as the instrument for service quantity.  This variable is calculated 

as the average service use of other people living in the same area as the case in question.  

These strategies cannot be applied to the ASCS data because the personal budget variable 

also captures variations in prices across CASSRs.  As instruments in the ASCS data these 

variables therefore induce variation in the personal budget variable due to both differences in 

eligibility policies (desirable) and differences in policies regarding price paid for a unit of 

service (undesirable).  Policies regarding price are also likely to have a direct effect on social 

care outcomes, meaning any variable defined at the CASSR level will fail to meet a key 

condition of being an instrument.  Without an appropriate instrument it is not possible to 

apply IV estimation to the ASCS dataset. 

Returning to the production function model, as a consequence of the inclusion of the 

service effect in the model specification, the error has a slightly different interpretation 

compared to the risk-adjustment model.  To the extent that quality is not a function of the mix 

of technologies and intensity of provision, as captured by the personal budget variable, its 

effect will be relegated to the error term.  Differences between CASSRs in their average error 

will therefore reflect differences in quality and not effectiveness, as is the case in the risk-

adjustment model.  It is possible to estimate a predicted outcome, ݕො௜, and therefore 

counterfactual outcome, that is more analogous to the predicted outcome from the risk-

adjustment model, by setting the care package effect to zero, i.e. ݔ௜ ൌ 0.  This approach has 

some analogy with the methods used to explore equity in the utilisation of health care, where 

there is a need to adjust for non-need factors that may confound the relationship between 

need and utilisation.  To generate an estimate of need-expected utilisation where models 

include non-need factors these factors are set to their mean or some other value to neutralise 

their effect (O’Donnell et al. 2008). 
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Indirect standardisation using expected outcomes from regression 

There are two main approaches to standardising outcomes: direct and indirect standardisation.  

The method of direct standardisation, in which the observed outcome is standardised to the 

case-mix of the reference population, is generally infeasible for performance assessment 

studies because the sample size of organisations is too small and the method cannot 

accommodate continuous variables.  Consequently for performance assessment studies, 

results from regressions are used to indirectly standardise PIs (Ash et al. 2013).  For this 

reason I apply this indirect standardisation to the SCRQoL, although I reflect on this decision 

in Chapter 9.    

Indirect standardisation involves comparing the outcomes for the specific group of 

users in a CASSR with their expected outcomes had they been treated by an average CASSR 

in the reference population.  There are two different ways of comparing the observed, ݕ௜௝, to 

the expected outcome, ݕො௜௝, estimated from the regression models specified above.  First, as a 

ratio of ݕ௜௝ ⁄ො௜௝ݕ , and secondly, as the difference ݕ௜௝ െ  ො௜௝.  Where the risk-adjustment modelݕ

is estimated by OLS, the difference is simply the average error term, ݁௜௝, from the model, 

hence hereafter I refer to the latter method as the ‘error method’.   

The relationship between the observed and expected outcome is sometimes referred to 

as the ‘adjustment factor’.  It conveys the extent to which performance is above or below 

what is expected.  For both methods the adjustment factor is usually calculated at the 

individual level and then averaged across all individuals in the CASSR to generate an average 

adjustment factor for each CASSR.  This average adjustment factor can be converted to the 

same scale as the original PI.  This is achieved by multiplying the adjustment factor by the 

national average indicator score for the ratio method as in equation (8), and for the error 

method by adding the national average indicator score to the adjustment factor, as in equation 

(9).   
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Neither method for estimating the adjustment factor is clearly superior (Ash et al. 

2013).  The ratio method has the benefit of giving more weight to deviations from expected 

outcomes for cases over the lowest part of the scale, but it has two drawbacks that favour the 

error method.  First, since all values must be strictly greater than zero, it is not appropriate for 

scales with zeros and negative values, which is commonly the case where PIs are based on 

PROMs.  To be used in this context a constant must be applied to scores, the size of which 

will affect the ratio.  Second, because it gives more weight to deviations from expected 

performance at the lower extreme of the scale it can produce extreme values that may distort 

PIs.  The error method is by contrast more conservative, since it gives equal weight to 

differences in observed and expected outcome scores over different parts of the distribution.  

This means that organisations do not receive greater recognition for ‘raising’ someone with a 

very low expected score up two points, than they do for ‘raising’ someone with an average 

expected score up two points.   

Evidence about the effect these methods have on inferences about performance is 

thin.  However, concerns have been raised about using the ratio method to risk-adjust the 

NHS surgical PROMs because of some extreme values (Ara et al. 2013, NHS England 

Analytical Team 2013).  Consequently, the error method is now the preferred approach for 

NHS surgical PROMs in England (NHS England Analytical Team 2013).  Ara et al. (2013) 

also suggest a method for calculating a more conservative ratio adjustment factor.  They 

suggest estimating the expected outcome for each CASSR (rather than each individual) on 

the basis of CASSR-average scores for each risk factor as follows, 
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A criticism of the indirect standardisation approach outlined above is that it assumes 

that the deviation from average is entirely due to differences in performance.  Since there is 

in fact a stochastic element to performance, this assumption is problematic.  The smaller the 

numbers of cases each organisational score is based on, the larger the random element of the 

error.  Not accounting for this uncertainty in PI scores when comparing organisations, can 

lead to incorrect identification of which organisations are outliers (both type I and II errors) 

and over time there is likely to be regression-to-the-mean.  This concern over appropriately 

reflecting the uncertainty in PIs drove much of the early research into the use of RE models 
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in this context (Aitkin and Longford 1986, Goldstein and Spiegelhalter 1996, Goldstein 1997, 

Normand et al. 1997).   

 The attraction of RE models is that it is possible to produce estimates of 

organisational effectiveness even if organisations have very small samples.  Where sample 

sizes are small, estimates obtained from FE models will have a large variance and, due to 

sampling variability, be unreliable (Li et al. 2009, Clark et al. 2010, Clarke et al. 2015).  

Since the RE model assumes that the organisational effects, ߦ௝, are drawn from a normal 

distribution, a shrinkage factor that is inversely proportional to the precision of the estimate 

can be applied to each organisational estimate, in such a way that organisations with fewer 

observations show more shrinkage towards the grand mean than those based on a large 

number of observations.  The shrunken residuals provide indicators for all organisations that 

appropriately address uncertainty and regression-to-the-mean bias is reduced (Aitkin and 

Longford 1986, Goldstein and Spiegelhalter 1996, Goldstein 1997, Normand et al. 1997, 

Austin et al. 2003).   

Shrunken residuals consistently produce different results compared to PIs generated 

using the indirect standardisation method (Li et al. 2009).  There is also evidence from 

simulation studies that the shrunken residual approach is a less sensitive approach producing 

more false positives, particularly where shrinkage to the mean is high (Austin et al. 2003, 

Clark et al. 2010, Ash et al. 2013).  Shrinkage is highest where the sample size is small or 

where the level one variance is large and the level two variance is small, both of which seem 

to be fairly common in performance assessment studies (Hannan et al. 2005, Glance et al. 

2006, Li et al. 2009).  Some researchers argue that by construction shrunken residuals 

produce biased PIs (Mukamel et al. 2008, Li et al. 2010).  From a practical perspective they 

are not very attractive either, since it is necessary to re-estimate the model for every new 

dataset (Nuttall et al. 2015).  Since it is highly unlikely they would be adopted, for this reason 

I do not consider using shrunken residuals for the ASCOF PIs.   

In the empirical analysis in chapter 8 I use only the indirect standardisation method 

for case-mix adjusting the ASCOF SCRQoL PI.  Because of questions about the 

appropriateness of the error and ratio methods for calculating the adjustment factor, I 

consider both of these methods.  I also consider the more conservative ratio method proposed 

by Ara et al. (2013).  I now turn to discuss the methods I will use for addressing nonresponse 

to the ASCS. 
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Addressing nonresponse to social care surveys 

Nonresponse leads to missing data, which presents two problems for interpreting PIs.  The 

loss of data affects the precision of survey estimates and, at least in some cases, it can affect 

the representativeness of the sample, resulting in biased estimates.  This will affect the 

validity of inferences about performance based on the PIs.  This thesis has two aims with 

respect to the analysis of nonresponse: first to assess who is missing from performance 

surveys and how response rates can be improved; secondly, to establish whether nonresponse 

has an effect on performance assessment and consider what analytical approaches can be 

used to address differences in samples due to nonresponse.  With respect to the second aim, 

various methods are available to address the effects of nonresponse on survey estimates, 

some of which can also be used to address the first aim.  I review these methods focusing on 

their suitability for addressing nonresponse to performance surveys, in general, and to the 

ASCS specifically.  I begin by setting out the different types of missingness and considering 

each approach for addressing nonresponse with respect to the assumptions it makes about the 

missingness mechanism.  I then critically review the studies that have assessed the effects of 

nonresponse in performance surveys and suggest an appropriate approach for addressing 

nonresponse to the ASCS. 

 

Types of missingness and approaches to addressing nonresponse 

Complete case analysis (CCA), in which all cases with missing values for the variable (and 

covariates) of interest are dropped, is the most common approach to dealing with missing 

data in applied research (Horton and Kleinman 2007).  The problem with CCA is that it 

makes the very strong assumption that the reasons for nonresponse are completely 

independent of both the observed and unobserved data, or, in the language of the nonresponse 

literature, the missingness mechanism is assumed to be missing completely at random 

(MCAR) (Rubin 1976, Little and Rubin 2002).  The MCAR assumption may be plausible 

where all missingness is a result of, for example, data input error.  Since nonresponse tends to 

be theorised as the result of particular behaviours, the MCAR assumption is untenable and 

requires testing for its plausibility.  More plausible assumptions for missingness are (i) that 

the probability of missingness depends only the values of the observed data, a pattern of 

missing data said to be missing at random (MAR), or that (ii) the probability of missingness 

additionally depends on the values of the unobserved data, a pattern of missingness known as 

not missing at random (NMAR) (Rubin 1976, Little and Rubin 2002).   
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Where data are in fact MAR or NMAR, CCA will theoretically produce biased 

estimates.  More principled techniques for handling missing data include multiple imputation 

(MI) and inverse probability weighting (IPW)4 (e.g. Rubin 1987, Little and Vartivarian 2003, 

Horton and Kleinman 2007, Seaman and White 2013).  In MI the observed data (from the 

survey, sampling frame or other sources) is used to model the values of the missing data.  The 

missing values are then replaced with values generated randomly from the imputation model 

to create a complete dataset, consisting of the observed and imputed values.  This procedure 

is repeated, to produce multiple ‘imputed’ datasets.  Analysis is conducted on each imputed 

dataset and estimates are combined using Rubin’s rules (1987).  The purpose of MI is not to 

re-create the individual missing values as close as possible to the true ones but to handle 

missing data in such a way that it results in valid statistical inference (Rubin 1987, Rubin 

1996).  Where IPW is used to correct for nonresponse, complete cases are weighted by the 

inverse of their probability of being a respondent.  A missingness model, often referred to as 

a ‘response propensity model’, is developed to predict the probability that a sample member 

is a respondent given observed characteristics (Little and Vartivarian 2003).  The aim of IPW 

is to rebalance the respondent sample to better reflect the characteristics of the whole 

(observed and unobserved) sample.  Using IPW researchers can then draw inferences from 

their analyses that are valid for the whole sample.   

Estimates derived from the use of techniques such as MI and IPW are often described 

as ‘adjusted’, since they assume that data are MAR and produce revised estimates under that 

assumption.  Should the missingness mechanism be in fact NMAR estimates may still be 

biased.  In spite of this, MAR-based methods have gained widespread support among 

statisticians due to the principled way in which they address missing data (Molenberghs 

2007).  As an editorial to the Journal of the Royal Statistical Society concludes, 

it is time to place CC [complete case] analysis and simple imputation methods… in 
the Museum of Statistical Science, and to consider instead ignorable likelihood 
analysis, ignorable Bayesian analysis, MI [multiple imputation] and weighted 
estimation equations as the standard.  In other words, one should enter the building at 
the MAR floor and not the MCAR level.  (Molenberghs 2007, p. 863).   

This strongly supports the application of MAR methods for addressing missingness to the 

analysis of survey-based PIs, where there is nonresponse. 

 

                                                 
4 IPW is one of many different methods for weighting data for nonresponse (for a review see Kalton and Flores-
Cervantes 2003).  I consider only IPW here as the other methods are less suitable for auxiliary information with 
continuous predictors and cannot be applied to analyse the factors influencing response propensity as IPW can. 
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Analysing performance surveys under conditions of nonresponse  

Performance surveys generally have high levels of nonresponse, particularly of unit 

nonresponse, which refers to those sample members who fail to respond to the survey 

request.  This is because most performance surveys are postal surveys, and such surveys have 

higher rates of unit nonresponse than face-to-face or telephone interviews (Dillman et al. 

2009).  Of those who do respond, a proportion will also have missing data to certain 

questions.  This type of nonresponse is often referred to as item nonresponse.  For most 

performance surveys item nonresponse is generally much lower than unit nonresponse 

(Elliott et al. 2005, Roland et al. 2009, Klein et al. 2011, Health and Social Care Information 

Centre 2013, Health and Social Care Information Centre 2014).  Nevertheless, even if there 

are low levels of item nonresponse for individual questions, where PIs are composed of 

multiple items or where PIs are risk-adjusted the fraction of cases missing from the PI could 

become quite substantial.  Given what is known about the effect of nonresponse on PI 

estimates it is important to understand whether nonresponse affects inferences about 

performance.   

Relatively few studies, however, have addressed this question directly in the context 

of performance surveys.  A number of studies have taken a first step, and looked at whether 

nonrespondents differ from respondents.  Much of this research has been conducted around 

the NHS PROMs and patient survey programme, as well as the US CAHPS patient survey 

programme.  In general these studies find that socio-demographic (age, sex, ethnicity, living 

arrangements) and socio-economic factors (deprivation) are associated with nonresponse, 

although patterns are not always consistent across different surveys (Elliott et al. 2005, 

Roland et al. 2009, Klein et al. 2011, Hutchings et al. 2012, Peters et al. 2014a).  Evidence 

from the PROMs programme suggests that nonrespondents and respondents to the post-

intervention PROMs questionnaires differ on their baseline PROMs score, with 

nonrespondents having on average worse baseline health status (Hutchings et al. 2012, Peters 

et al. 2014a).  This finding is consistent with other research that has found a relationship 

between nonresponse and poor health and quality of life (Paganini-Hill et al. 1993, Strayer et 

al. 1993, Cohen and Duffy 2002, Perneger et al. 2005).  Given these findings concerns have 

been raised about the potential for nonresponse to lead to bias in PIs.     

 A small number of studies have attempted to look at whether nonresponse affects 

inferences about performance, focusing specifically on the question of bias.  Various 

strategies are employed including following up nonrespondents with telephone interviews 

(Lasek et al. 1997), exploring (partial) correlations between response rates and PIs for 
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organisations (Roland et al. 2009), comparing raw PI scores to IPW-adjusted scores (Elliott et 

al. 2005) and correlating weights (derived from a response propensity model) with PI scores 

(Elliott et al. 2009).  While these studies find differences between nonrespondents and 

respondents, they do not find that nonresponse significantly biases the PIs.  For instance, 

Elliott et al. (2005) report that although IPW adjustment would reduce the bias, it would also 

reduce the precision of the estimates, particularly where estimates are risk-adjusted.  These 

studies have in general concluded that nonresponse adjustments are unnecessary as they 

would needlessly reduce the precision of PIs (Elliott et al. 2005, Elliott et al. 2009, Roland et 

al. 2009). 

A recent study by Gomes et al. (2016), which focuses on the effect of nonresponse on 

both precision and bias, however, reaches a different conclusion from the preceding studies.  

Gomes et al. (2016) use MI to explore the effects of missing data on inferences about 

performance from NHS PROMs data for hip replacements.  Similarly to Elliot et al. (2005) 

they compare risk-adjusted PROMs scores estimated under CCA to MI-adjusted, risk-

adjusted PROMs scores.  They find that the loss of data arising from nonresponse affects 

conclusions about performance; specifically they find that more outliers are identified after 

adjusting for nonresponse.  By decomposing the effect of MI-adjustment, they are able to 

show that the majority of the effect is due to the increased precision of MI-adjusted estimates 

not to bias reduction.  The choice of MI as the method for nonresponse adjustment is an 

important contributing factor to Gomes et al.’s conclusions: MI is a more efficient method 

than IPW in part because it replaces missing values with plausible values and restores the 

dataset to its original size (Seaman et al. 2012, Seaman and White 2013).  Gomes et al. argue 

that the PROMs PIs should be adjusted for nonresponse because of the positive effect it has 

on the precision of estimates with consequences for performance assessment.   

MI as a method for exploring the effects of missingness on PIs has usually been 

confined to administrative data (Kirkham 2008, Gale et al. 2011) and it is unlikely to be an 

appropriate method for most performance surveys.  The PROMs data are unusual in that they 

can be linked to extensive hospital records and the baseline questionnaire provides detailed 

information about those patients lost to follow-up.  Most performance surveys are cross-

sectional designs with no follow-up; the unit nonresponse rates are high and frequently over 

50 per cent; and there is usually very little data available about the characteristics of 

nonrespondents.  In such circumstances, it is likely to be difficult to specify an imputation 

model for MI.  Where the imputation model is poorly-specified and nonresponse rates are 
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high (above 50 per cent), the potential for bias is so great that MI is generally considered 

unusable (McKee et al. 1999, Seaman and White 2013).    

IPW is often preferred in circumstances where unit nonresponse is high precisely 

because of the difficulties inherent in using MI with such data (Seaman and White 2013).  

IPW methods are also likely to be more acceptable to a range of users since the missingness 

model is more transparent, its fit to the data can be tested, and it is easier to explain to non-

specialist end-users of PIs.  Yet IPW is less efficient than MI and where there are multiple 

PIs, multiple weights are required (assuming that rates of item missingness vary) which 

makes the method less practical.  Where item nonresponse is present with high rates of unit 

nonresponse, Seaman and White (2013, p. 285) suggest that “it may be worth combining IPW 

and MI, imputing missing values in individuals with almost complete data and using IPW to 

adjust for the exclusion of individuals with more missing data”.  As Seaman et al. (2012) 

show in a different article, this approach, which they call IPW/MI, provides less biased 

results than MI/MI (denoting the fact that MI is used to address both unit and item 

nonresponse) and more efficient results than IPW/IPW (similarly where IPW is used for both 

unit and item nonresponse).  Since the MI procedure results in a complete dataset for 

respondents, it makes IPW more practical as only one set of weights is required.  Despite its 

potential, the IPW/MI method has not been applied to the analysis of performance surveys. 

 In this thesis I explore IPW/MI as an approach for analysing the effects of 

nonresponse on inferences about performance using the ASCOF indicators.  This analysis is 

conducted in Chapter 5.  A benefit of the IPW/MI approach is that the missingness model 

used to generate the weights for IPW can also be used to explain who is missing from the 

ASCS and the role that CASSRs have to play in affecting response rates.  I explore this 

question in Chapter 4 and use the missingness or ‘response propensity’ model for this 

purpose.  The specification of the response propensity model is grounded in the theoretical 

model developed in Chapter 2.  The intention is that the results from the response propensity 

model should be useful for developing a more tailored survey design to increase response 

rates to the ASCS (Groves et al. 2000, Dillman et al. 2009).  The results from this model also 

feed into the analysis in Chapter 5, as discussed. 

 

Assessing the effects of adjusting for case-mix and nonresponse on performance 

assessment 

An aim of this thesis is to understand whether survey-based PIs should be adjusted for case-

mix and for nonresponse.  There are many factors that policymakers need to consider in this 
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decision, including the validity of PIs, their acceptability and the various other characteristics 

identified in Chapter 1.  Since this question cannot be answered directly through empirical 

analysis, the purpose of the analysis is to inform decisions about whether or not to adjust for 

nonresponse and for case-mix.  To do this I observe the effect of adjustment on performance 

assessment and compare the results from the adjusted PIs to those from the raw PIs.  Since 

adjustment methods generally introduce additional complexity into the calculation of PI 

scores for individual organisations, statistical adjustments are likely to be resisted unless they 

can be shown to substantially improve the validity of the results.  Where there are clear 

effects on performance assessment, then there is a case for adjustment.  In this section I 

outline the methods that I will use to inform judgements about the extent and importance of 

the effect of nonresponse and of case-mix adjustment on performance assessment. 

 

Performance assessment through tabular and graphical display and implications for studying 

the effects of adjustment 

There are many different ways to use PIs for performance assessment, which stems from the 

fact that PIs rarely have clear interpretations.  What is a good, or conversely a bad, score is 

difficult to assess without a meaningful benchmark or information about how other 

organisations measure up against the same indicators.  In this respect, “the success of 

performance indicator packages relies heavily on comparative data” (Smith 1990, p. 56).  

Performance assessment tends to be carried out by presenting PI scores, often graphically, for 

a collection of organisations to enable end-users to draw conclusions about the performance 

of their organisation relative to that of others.  There is a sizeable literature that focuses on 

the best method for presenting PI scores, where the best method is the one that enables end-

users with little statistical knowledge to easily and correctly interpret the data.  Here I review 

the graphical and tabular methods used by policymakers to assess performance and consider 

what the choice of method means for performance assessment.   

Over the years various methods have been used to present the results of organisational 

profiling studies.  In the UK, the earliest efforts simply ranked organisations in order of PI 

scores, in ‘league tables’.  This approach is still popular and is used by newspapers to this day 

to rank schools and universities, as well as by international organisations to rank countries on 

their health care systems and so on.  A variation on this theme, whereby the distribution of 

organisations is divided into (usually) quintiles and organisations are ranked according to the 

quintile (“banding”) within which they fall, was used by the Audit Commission and 

associated regulatory bodies during the early days of the New Labour performance regime 
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(see e.g. Department of Health 2003, Commission for Social Care Inspection 2004).  These 

approaches are widely seen as unfair, since they take no account of sampling error and 

random fluctuations in performance (Goldstein and Spiegelhalter 1996, Lilford et al. 2004, 

Spiegelhalter 2005a). 

 Methods that reflect the uncertainty in PIs are generally preferred and in this respect 

two methods have been regularly used.  The first is the ‘caterpillar plot’, where PIs are 

plotted for each organisation along with (usually 95 per cent) confidence intervals, based on 

the variation within the data for the organisation.  An example of a caterpillar plot based on 

the ASCS 2010/11 data is shown in Figure 4a.  Although this method provides a visual 

display of the uncertainty in estimates, it is open to misinterpretation on two fronts.  First, the 

ordering of organisations by their estimated scores implies a ranking of organisations that is 

spurious given the often wide confidence intervals (Spiegelhalter 2005a, Mohammed and 

Deeks 2008), and second, non-overlapping intervals are commonly and erroneously 

interpreted as evidence for a difference between organisations.  The confidence interval 

provides a measure of the reliability of the estimate; a statistical test for the difference 

between two means uses the pooled standard error, which would produce a narrower interval5 

(Goldstein and Healy 1995). 

As a result of these concerns around caterpillar plots, a second method, known as the 

‘funnel plot’, is nowadays generally preferred (Mohammed and Deeks 2008).  The funnel 

plot is inspired by Shewart’s work on the control of variation (Mohammed et al. 2001).  

Organisations’ scores on PIs are plotted against some measure of the precision of this 

estimate, usually the sample size (volume of cases) on which the estimate is based.  Limits 

are set to distinguish cases that are “in control” from those that are “out of control”.  In 

control units are assumed to be subject to “common-cause variation”, while out of control 

units are assumed to be subject to “special cause variability” (Spiegelhalter 2005a).  By 

convention, limits are set at two or three standard deviations (SDs) from some target value 

(often the population average).  An example of a funnel plot based on the ASCS 2010/11 data 

is shown in Figure 4b.  These charts are perceived as better than caterpillar plots because they 

avoid spurious rankings and they illustrate clearly the greater expected variability in small 

samples.  This method is currently used to identify outlying hospitals within the NHS 

PROMs programme and is also used by the regulator (Department of Health 2011b).  

                                                 
5 This would need further adjustment for multiple comparisons. 
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Hospitals lying outside the three SD control limit are given an “alarm” status and those lying 

between the two and three SD control limits are given an “alert” status. 

When discussing the effects of adjustment on performance assessment, a language is 

needed to describe the differences between the outlier status under the raw PI and the outlier 

status under the adjusted PI.  It is common to treat the adjusted PI as the true situation and to 

therefore speak of movements from an in control state to an out of control state as a false 

negative and movements from an out of control state to an in control state as a false positive.  

Although this is a corruption of the idea of false negatives and positives, since we cannot 

know whether the adjusted PI represents the true situation (or even takes us closer to the true 

situation), it is useful for assessing the importance of adjustment.  The concepts of false 

negatives and positives can be extended to calculate the type I and type II error rates, which 

provide a sense of the significance of the number of changes.  I use these concepts in this 

thesis for this purpose, but to acknowledge the corrupted usage, I enclose them in inverted 

commas.  

The form of presentation chosen – caterpillar or funnel plot – has consequences for 

performance assessment.  Where caterpillar plots are used, attention is focused on the ranking 

of organisations and on the variability of individual PI scores, as shown by the confidence 

intervals.  Where funnel plots are used, attention is instead focused on those organisations 

that are outliers because they are plotted outside of the funnelling control limits.  The effects 

of precision are also highlighted by the position of organisations on the x-axis.  In ASC, PIs 

still tend to be presented using caterpillar plots (Department of Health 2014), so it is 

important to understand the effects of adjustment on ranking in this context.  I also assess the 

impact of adjustment on the identification of outlying organisations.   
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Figure 4: Caterpillar and funnel plots showing distribution of ASCOF SCRQoL PI scores for CASSRs, ASCS 2010-11 
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Decomposing the effect of adjustment: mean outcome, volume and variability effects 

The methods proposed here aim to account for differences in the respondent samples 

between CASSRs arising from differences in the case-mix of the population served and 

differences due to nonresponse.  An implicit assumption in much of the organisational 

profiling literature is that any differences in inferences about performance between the 

adjusted and raw PIs is due to removal of bias.  This is, however, only part of the story.  

While adjustment can reduce bias, which I refer to following Gomes et al. (2016) as a 

“mean outcome effect”, it can also affect performance assessment through changes to the 

sample size (“volume effect”) or through changes to the variability of estimates 

(“variability effect”).  I adapt Gomes et al.’s discussion of the effects of nonresponse 

adjustment on performance assessment to discuss the effects of adjustment for both 

nonresponse and case-mix.  Like Gomes et al., I illustrate these ideas using funnel plots. 

Considering nonresponse first, suppose point A in Figure 5 represents a CASSR 

with a low response rate.  Its observed mean SCRQoL score (outcome) and respondent 

sample size (volume) are such that it is designated to be ‘in control’.  If all service users 

had responded to the survey, however, and the outcomes of the unobserved users were 

similar to the observed users, then the CASSR would be located at point B, which is no 

longer in control.  This is labelled as a ‘volume effect’ in Figure 5.  Under MI, where the 

sample size increases this will always have the effect of shifting the data points to the right.  

No volume effect will be observed using IPW methods, unless the effective sample size is 

used to plot the position on the x-axis.  Since the effective sample size is a fairer measure 

of the precision of the PI (Deeks et al. 2005), it is appropriate to use this instead of the 

achieved sample size for IPW.  Since weighting is usually less efficient, the effective 

sample size tends to be smaller than the achieved sample size.  In such cases the volume 

effect will therefore be in the opposing direction, i.e. a shift to the left. 

Since the MCAR assumption (that the outcomes of unobserved service users are 

similar to the outcomes of the observed service users) is unlikely to hold, the effect of 

nonresponse is also likely to be associated with a shift along the y-axis.  Assuming 

missingness is MAR, the direction of the shift will depend on the pattern of nonresponse 

for individual CASSRs.  In Figure 5, the CASSR would move from point B to C if the 

service users for whom data are missing have relatively better outcomes than those for 

whom data are observed.  This would move the CASSR back into control status.  

Conversely the CASSR would move from point B to D, even further out of control if the 

unobserved sample had relatively worse outcomes than the observed sample.  These effects 
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are identified as ‘mean outcome effects’ in Figure 5.  There is also potentially a variability 

effect from adjustment, whereby changes in the variance of total population affect the 

position of the control limits.  If the variability of the sample after adjustment is greater 

than in the unadjusted sample, then the control limits will be wider, so decreasing the 

likelihood of the CASSR being found to be out of control (and vice-versa). 

 

 

Figure 5: The implications of missing data for assessing performance using funnel 

plots 

Adapted from Gomes et al. (2016) 

 

Turning now to the effect of adjusting for case-mix on performance assessment, 

consider instead that point B in Figure 5 represents the raw PI score for a CASSR.  After 

risk-adjustment, the CASSR would move from point B to C if the CASSR has a relatively 

unfavourable profile and from point B to D if it had a relatively more favourable profile.  

However, it is important to recognise that there may also be a volume effect resulting from 

risk-adjustment.  The adjusted PIs are specified on the basis of calculating an adjustment 

factor for every sample member, defined in terms of the relationship between the observed 

outcome and the expected outcome, as discussed above.  The adjustment factor can 

therefore only be calculated for cases with observations for all the risk adjustors and the 

outcome indicator.  In most instances, under CCA, this will mean the adjusted PI is based 
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on fewer cases than the unadjusted PI.  In Figure 5, the CASSR would therefore shift 

leftwards to point A after adjustment.  Mean outcome effects resulting from adjustment are 

shown by the movements upwards from point A to E and downwards from A to F.   

Although I have illustrated these effects with funnel plots, similar mean outcome 

effects will be observed using caterpillar plots.  The volume effects, however, would not be 

as obvious since any changes in sample size would work through into changes in the 

confidence interval limits, which would also be affected by any changes in the variability 

of the sample post-adjustment.  In caterpillar plots, therefore, the variability and volume 

effects are conflated making them a less useful tool for understanding the effects of 

nonresponse and case-mix adjustment upon performance assessment.  Since the volume 

effect is likely to be significant where large amounts of data are missing, this is a limitation 

of using caterpillar plots to investigate the effects of adjustment on performance 

assessment.  For this reason I make use of funnel plots to analyse the effects of adjustment 

on inferences about performance throughout this thesis, despite the fact that this method is 

not currently used within ASC.   

 

Concluding remarks 

In this chapter I have set out in broad terms the methods that I will employ in this thesis to 

address the effects of nonresponse and the effects of variations in the case-mix of CASSRs 

on performance assessment.  For nonresponse, I have proposed using an IPW/MI method.  

For case-mix, I have proposed using risk-adjustment techniques, but have suggested a 

number of adaptations to the standard risk-adjustment model in order to address the 

clustering of observations within CASSRs and the dependency between resource inputs 

and need-related characteristics.  To address clustering I have proposed using random and 

fixed effects models to estimate SCRQoL outcomes.  I compare these estimation methods 

to OLS in Chapter 6.  To address the dependency between resource inputs and need-related 

characteristics, I have suggested using a production function model.  I will compare this 

model to a risk-adjustment model in Chapter 7. 

The purpose of carrying out adjustment for case-mix and for nonresponse is 

twofold.  First, one aim of the thesis is to determine which methods to use to adjust the PIs, 

should adjustment be necessary.  All of the methods proposed can be considered as 

alternatives for adjusting the PIs.  In the empirical chapters, I compare and contrast these 

methods to determine which is preferable.  Secondly, I have proposed comparing the 

adjusted and unadjusted PIs in order to determine whether nonresponse and case-mix 
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differences between CASSRs have an impact on performance assessment.  There is a 

degree of circularity in this strategy that deserves some reflection.   

This strategy effectively equates the adjusted PI with true performance, which 

lacking any objective measure of true performance, is unavoidable.  Nevertheless, it means 

careful attention should be paid to the validity of the adjusted PIs to assess whether there is 

good reason to believe that they are better estimates of true performance than the 

unadjusted PIs.  The concepts of validity outlined in the first chapter are critical in this 

regard.  I use them to structure my discussion of the empirical research in Chapters 5 and 

8, examining whether adjustments for nonresponse and case-mix, respectively, have an 

effect on performance assessment.  The lack of a measure of true performance also raises 

questions about how to assess the importance of differences between the unadjusted and 

adjusted PIs.  There is no straightforward solution to this question, and I have suggested 

using the language of false positives and negatives to inform policy in this regard.  I 

acknowledge, however, that stretches the concepts beyond their intended usage.    

So far, I have set out the rationale and context for this thesis, and the theoretical 

frameworks and methods that will guide the empirical analyses.  The empirical chapters 

form the core contribution of this thesis and it is to these I now turn.  I begin with an 

analysis that examines who is missing from performance surveys and seeks to understand 

how response rates can be improved.   
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Chapter 4 

Who is Missing from Survey-Based Performance Indicators and What 

Strategies Improve Response Rates? Analysis of the Factors Influencing 

Participation in the Adult Social Care Survey 

 

Abstract 

Objective: To determine the characteristics of service users that predict nonresponse to the 

ASCS and explore the factors related to survey delivery that may improve response rates. 

Design: Auxiliary data on all those sampled as part of the English 2010-11 ASCS and 

paradata from the same survey were analysed using a multilevel multinomial logistic (MNL) 

model to understand the effects of individual- and CASSR-level observed factors on response 

propensity to the ASCS.  Unobserved CASSR-level factors were controlled for through 

random-effects estimation. 

Participants: The full sample of 150,672 cases, of which 61,026 are respondents and the 

remainder are nonrespondents.  Nonrespondents comprise 16,294 cases who returned blank 

questionnaire and 73,352 cases who failed to return the questionnaire.   

Outcome measures: Survey response which has three outcomes: respondent (0), returned a 

blank form (1), no response (2). 

Results: Individual-level and CASSR-level factors were both important in determining 

response outcomes to the ASCS, but overall variation explained was low.  The variables with 

the largest effects were age, where increasing age was associated with a greater probability of 

responding although this trend reversed for the oldest old; client group, where mental health 

clients were less likely to respond compared to people with physical disabilities, who were 

less likely to respond than people with learning disabilities; and the CASSR not chasing 

nonrespondents.  The type of services received and social disorganisation variables, such as 

level of deprivation, had smaller effects.  Unobserved CASSR-level factors also explained 

variation in the blank form and no response outcomes. 

Conclusions: Younger age groups, mental health users and nursing home residents are 

underrepresented in the ASCS.  The pattern of results suggests that disability severity may be 

important in determining nonresponse and future work should directly explore this effect.  

Chasing nonrespondents is important to improve response rates and should be enforced. 
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Introduction 

Missing data is a problem for all research.  The loss of data affects the precision of estimates 

and, where data is missing systematically, estimates may also be biased.  In surveys missing 

data are primarily a result of nonresponse.  Because survey nonresponse is a behaviour it is 

generally assumed that those who do not respond are systematically different from those who 

do respond, i.e. data are not missing completely at random.  From a technical perspective 

precision and bias are the important issues affecting the validity of PIs in the context of 

nonresponse; for many users of the data it is low response rates and the suggestion that 

certain groups of people are missing from the sample that are a cause for concern since these 

indicate that the sample is unrepresentative of the population.  If we are to improve response 

rates to performance surveys and address concerns about the representativeness of survey-

based PIs, it is important to first understand who is missing from PIs and secondly how 

response rates can be improved.  These two questions are the focus of the present chapter. 

Public sector performance surveys differ in three principle ways from the types of 

general population surveys that are the staple of the nonresponse literature.  First, they tend to 

be postal surveys.  Secondly, since public services are often distributed on the basis of need, 

the populations surveyed are frequently dominated by marginalised and ‘hard-to-reach’ 

groups.  Thirdly, the organisations being assessed are frequently also in charge of running 

and managing the surveys.  While it is well-known that postal surveys have lower response 

rates than surveys conducted using other modes of administration (Dillman et al. 2009), there 

is little evidence about the importance of the other two aspects for nonresponse.  Since these 

two aspects of performance surveys – individual characteristics and differences in how 

surveys are managed – are theoretically important determinants of survey participation (see 

Chapter 2), it is important to understand how these factors influence a person’s likelihood of 

being a respondent to improve participation in performance surveys. 

For this analysis I use the 2010-11 ASCS data.  The analysis is novel in that exploits 

the natural variation across CASSRs to understand how individual characteristics and 

decisions regarding the management and design of the surveys by CASSRs affect response 

rates.  While many studies have looked at the role of individual and interviewer 

characteristics on response propensity using this method (for a review see e.g. Groves et al. 

1992), no studies have examined in any detail the effect of organisational factors on response 

propensity where the surveys are managed by multiple sites.  I use multilevel modelling to 

explore the influence of variables at both the individual level and the CASSR level on survey 

participation.  This method for modelling has not been applied widely in the literature and 
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where it has most studies have examined the role of interviewer characteristics alongside 

characteristics of the sample members (Johnson et al. 2006, Durrant and Steele 2009).  The 

selection of variables for the modelling is guided by the literature reviewed in Chapter 2 to 

develop a conceptual framework for the analysis (see Figure 3).  This framework is based on 

the modified version of social exchange theory proposed by Goyder (2006) that 

accommodates multiple theoretical influences over the participation decision.  Previous 

empirical research has rarely tested the role of multiple theories or multiple influences on 

survey participation (Goyder et al. 2006, Durrant and Steele 2009).  In addition to providing 

evidence regarding participation decisions in performance surveys, and specifically the 

ASCS, this study will also contribute to furthering our understanding of survey participation.   

With respect to this thesis, the aim of this analysis is twofold: to help those 

administering performance assessment surveys to develop principled strategies for 

minimising nonresponse, and to improve our understanding of who is missing from 

performance surveys.  The chapter is organised as follows.  First I discuss the dataset for 

analysis.  I then present the statistical model and describe the estimation approach used, the 

variables used to test the theoretical model in the ASC context, the modelling strategy and 

how I manage missingness within the auxiliary data.  This is followed by the results.  In the 

discussion I focus on the main findings and limitations.  The wider implications are discussed 

in Chapter 9.   

 

Data 

In this analysis, I use the auxiliary data and paradata from the English 2010-11 ASCS.  As 

explained in Chapter 1, the auxiliary data is captured from CASSR records and is available 

for both respondents and nonrespondents.  The ASCS paradata captures information about 

the process of delivering and managing the survey in each CASSR.  Although there is 

detailed guidance for the ASCS, CASSRs do have some discretion over how to implement 

various aspects of the survey process largely to allow them to improve response rates from 

hard-to-reach groups.  As a result, a number of survey design and management features are 

mandatory, while others can be optionally introduced by CASSRs, as set out in Table 1. 

In the 2010-11 wave of the ASCS, of the 150,672 questionnaires sent out32, 73,278 

were not returned (48.7 per cent), 16,294 were returned blank (10.8 per cent), and 61,100 

were returned completed or partially completed (40.5 per cent).  However, 74 questionnaires 

                                                 
32 This excludes the eight questionnaires sent to people who should not have been included in the survey. 
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could not be linked back to the CASSR client records as the questionnaire identification 

number was missing, either because it had been removed by the service user (five cases) or 

through administrative error (in total 69 cases across two councils).  These cases are treated 

as nonrespondents in this analysis (and subsequent analyses) as they lack any auxiliary data, 

leaving a total respondent population of 61,026 and a nonrespondent population of 73,352.  

Although this solution is not ideal, the number of affected cases is tiny in relation to the size 

of the sample (<0.1 per cent).33 

    

                                                 
33 I also re-estimated the models excluding the affected CASSRs, but this did not alter the results. 
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Table 1: Survey design and management features and their status in the guidance 

Survey design feature Status in guidance 
Incentives Allowed but not recommended 
  

Delivery mode (e.g. telephone, 
face-to-face, interpreter, supported 
completion) 

Main mode required to be postal to avoid response bias.  
Alternative modes allowed and encouraged for chasing 
nonrespondents and engaging hard-to-reach groups 

  

Different format or version of 
questionnaire (e.g. braille, 
audiotape, translated, large font) 

Allowed and encouraged to engage hard-to-reach 
groups 

  

Chasing nonrespondents Alternative modes and formats/versions of the 
questionnaire allowed.  Required to send at least one 
reminder and allowed to send a maximum of two 
reminders.  Required to send reminders to whole 
nonrespondent population 

  

Sampling frame Required to exclude clients who lacked capacity to 
consent in line with ethics committee requirements.  
Allowed to remove people who had recently taken part 
in surveys.  Allowed to remove people who had 
requested not to take part in future surveys.  Allowed to 
exclude people in active dispute with the CASSR.  No 
other exclusions allowed. 

  

Supplementary sample Not recommended in the guidance but allowed for 
CASSRs that failed to meet target for respondents34 

  

Date questionnaires were sent out Recommended mid to late January in order to complete 
fieldwork before the census date (end March), 
deviation discouraged but allowed 

  

Addition of questions Allowed, but neither encouraged nor discouraged 
  

Modification of questions Not allowed, standard questionnaire must be used 
Adapted from NHS Information Centre (2010) 

 

Statistical modelling 

I use a multilevel multinomial logistic (MNL) model to understand the effects of different 

factors on response propensity to the ASCS.  The multilevel model computes separate 

intercepts for each CASSR and estimates between-CASSR variance directly with the model 

parameter, ݑ௜௝
ሺ௦ሻ.  This allows me to test the hypothesis that CASSRs have an effect on 

response propensity.  It also appropriately accounts for the clustering of responses within 

CASSRs in the standard errors, which is important to ensure correct inferences (Rabe-

Hesketh and Skrondal 2008).  I use a MNL model, rather than separate binary logistic 

                                                 
34 Standard ASCS practice for determining sample size is that councils should aim to achieve a margin of error 
of no more than ± 5 per cent for each question (NHS Information Centre 2010). 
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models, to evaluate the effect of the various explanatory variables on each of the two 

nonresponse outcomes simultaneously.   This also allows me to include and test for 

correlation between the unobserved CASSR influences on the different types of nonresponse.   

The response variable for the ASCS data, which I denote ݕ௜௝ for individual ݅ in 

CASSR ݆, has three outcomes: respondent (0), returned a blank form (1), no response (2).  

The latter two outcomes (blank form and no response) are both nonrespondents.  Although 

not a neat fit, those returning a blank form can be considered to be a mixture of ‘refusals’ and 

people who are ‘unable to respond’, since, in line with ethics committee requirements, the 

questionnaire cover letter instructed survey recipients to return a blank form if they could not 

or did not wish to participate in the survey.  Those nonrespondents who do not return the 

form, are likely to be a mixture of non-contacts, refusals and people who are unable to 

respond, as well as people who run out of time or forgot to respond.  Although the 

overlapping mix of reasons for being in these two outcome groups may mean that the factors 

predicting membership are not very different, I retain this distinction because it seems likely 

that different conditions, characteristics and motivations lead people to choose to return a 

blank form rather than not return a form.  I test for the distinctiveness of the groups by testing 

for the equality of coefficients across the simultaneous equations, and find the MNL model to 

be appropriate.   

As Durrant and Steele (2009) set out, the probability of ݕ௜௝ having one of the three 

response outcomes is given by ߨ௜௝
ሺ௦ሻ ൌ Pr	ሺݕ௜௝ ൌ ݏ ሻ, forݏ ൌ0, 1, 2.  If I take respondent (0) as 

the base category, the multilevel MNL model can be written, 

 

 log ቆ
గ೔ೕ
ሺೞሻ

గ೔ೕ
ሺబሻቇ ൌ ଵࢼ

ሺ௦ሻܠ௜௝
ሺ௦ሻ ൅ ଶࢼ

ሺ௦ሻܛ௝
ሺ௦ሻ ൅ ଷࢼ

ሺ௦ሻ܋௝
ሺ௦ሻ ൅ ସࢼ

ሺ௦ሻܖ௝
ሺ௦ሻ ൅ ௜௝ݑ

ሺ௦ሻ, ݏ ൌ 1,2 (11) 

     

where ܠ௜௝
ሺ௦ሻ is a vector of individual characteristics, ܛ௝

ሺ௦ሻis a vector of survey attributes, ܋௝
ሺ௦ሻ is 

a vector of CASSR characteristics, ܖ௝
ሺ௦ሻis a vector of social environment variables, the ࢼሺ௦ሻs 

are vectors of coefficients and ݑ௜௝
ሺ௦ሻ is a random effect representing the unobserved CASSR-

level characteristics.  The statistical model in (11) is the counterpart to the theoretical model 

in equation (4) (see Chapter 2).  It is a random-intercept model, in which the effect of the 

CASSR, j, is to increase the log-odds of returning a blank form or being a nonrespondent 

versus being a respondent by the amount ݑ௝
ሺ௦ሻ. 
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Equation (11) above consists of two simultaneous equations.  The first (ݏ ൌ 1) models 

the logarithm of the ratio of the probability of returning a blank form to that of being a 

respondent as a function of covariate individual and CASSR effects; the second (ݏ ൌ 2) 

models the logarithm of the ratio of the probability of providing no response to that of being a 

respondent as a function of covariate individual and CASSR effects.  Although it is possible 

to include different covariates as predictors of the different outcomes, lacking a clear 

rationale for selecting different covariates I do not attempt this here; rather I include the same 

covariates in both models and compare the effects of covariates on both types of 

nonresponse.  

The CASSR random effects are assumed to follow a bivariate normal distribution, and 

are similarly specific to the outcome.  Thus, ݑ௝ ൌ ሺݑ௝
ሺଵሻ, ௝ݑ

ሺଶሻሻ~ܰሺ0, Ωሻ where, 

Ω ൌ ൬ߪ
ଶሺଵሻ

ሺଵଶሻߪ ଵሺଶሻߪ
൰. 

The two variance parameters ߪଶሺଵሻ and ߪଶሺଶሻ are the residual between-CASSR variances in 

the log-odds of returning a blank form versus being a respondent and the log-odds of 

providing no response versus being a respondent, respectively.  They can be interpreted as the 

effect of unobserved CASSR effects on the two nonresponse outcomes.  The parameter ߪሺଵଶሻ 

is the covariance between the unobserved CASSR influences on the probabilities of returning 

a blank form and providing no response.  A positive covariance indicates that CASSRs with 

high rates of blank form nonrespondents have high rates of no response nonrespondents. 

To help with interpreting the model (and assess the fit of the model), predicted 

probabilities for each outcome can be calculated.  As the log-odds of an outcome compared to 

itself is zero the effects of any independent variables are also zero for the base category.  The 

simultaneous equations can be solved, by rearranging model (11) such that the probability of 

observing outcome	ݏ given ܠ with the reference category given by ݎ, is:  

 
௜௝ߨ
ሺ௦ሻ ൌ

expሺߚሺ௦ሻܠ௜௝
ሺ௦ሻ ൅ ௜௝ݑ

ሺ௦ሻሻ

1 ൅	∑ expሺߚሺ௥ሻܠ௜௝
ሺ௥ሻ ൅ ௜௝ݑ

ሺ௥ሻሻଶ
௥ୀଵ

, ݏ ൌ 1,2, 

௜௝ߨ
ሺ଴ሻ ൌ 1 െ ௜௝ߨ

ሺଵሻ െ ௜௝ߨ
ሺଶሻ 

(12) 

 

In addition, marginal effects can be calculated by taking the derivative of the probability with 

respect to a given predictor x.  Predicted probabilities and marginal effects are all calculated 

in Stata 14 using the margins command. 
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The final models are estimated in Stata 14 using either of mean-and-variance or 

mode-and-curvature adaptive Gauss-Hermite quadrature, depending upon which method led 

to convergence.  Due to difficulties attaining convergence using Stata’s starting values, I first 

estimated the multilevel MNL models in the MLWIN software and passed these estimates to 

Stata as starting values35.  I performed sensitivity checks of the converged estimates to the 

quadrature approximation, by increasing the number of integration points and comparing the 

estimates obtained with different numbers of integration points.  The blank form random 

effect, the constants, some of the derived and CASSR-level variables were all sensitive to the 

quadrature approximation, but increasing the number of integration points to 20 provided 

estimates that had adequate stability. 

 

Explanatory variables 

The choice of explanatory variables to be tested is driven by the hypotheses developed from 

the conceptual model in Chapter 2, and by the availability of data in CASSR records.  I also 

supplement the ASCS data with area-level data drawn from a variety of freely-available 

sources to explore the effect of the social environment variables on response propensity.  The 

variables tested for inclusion in the model are set out in Table 2.  The distribution of the 

auxiliary data used in this analysis is shown in Table 3; the distribution of the area-level 

variables in Table 4 and the distribution of the paradata in Table 5.  For this analysis, only the 

individual characteristics are measured at the individual level; survey attributes, 

organisational characteristics and the characteristics of the social environment are all 

measured at the CASSR level.   

  

                                                 
35 The models were estimated in MLWIN using Markov chain Monte Carlo methods (Browne 2015).  Non-
informative priors were assumed for all parameters and estimates were captured after 150,000 chains with a 
burn-in of 1,500, using approximate quasi-likelihood estimates (Goldstein 2003, Durrant and Steele 2009) as 
starting values.  All MLWIN models were run using the runmlwin (Leckie and Charlton 2013) command from 
Stata 12.    
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Table 2: Variables tested in the response propensity models 

Variable Rationale 
Service receipt 
 Nursing home resident  
 ‘personal care’ home resident 
 Home care 
 Direct Payments 
 Low-level services 
 Equipment 

 Service receipt reflects the underlying disability of service 
users and may also be related to the saliency of the survey.  
People receiving high-contact, high-frequency and high-care 
services (e.g. Direct Payment, home care, nursing and care 
home residents), are likely to see the questionnaire as more 
salient than users of low-level services (defined as people 
receiving one of meals, day care or ‘other’, e.g. transport, 
services), and one-off services (e.g. equipment users). 

 Direct Payments users are differentiated from home care 
users as they may consider the survey as a way of 
monitoring their ability to manage their own care, and 
therefore be more reticent to respond.   

 Residents of care home (nursing or personal care) will be 
more severely disabled than other service users. 

  

Socio-demographic  
 Age group 
 Ethnicity 
 Gender 

 Effect is likely to be due to intervening variables, such as 
disability.   

 I expect young and very old to be less likely to respond, but 
these effects may be weak due to lower levels of 
employment and weak correlation between disability 
severity and age in this population.  

 People with white ethnic background are likely to have 
higher response rates. 

  

Client group 
 Physical and sensory 

disability (PSD)a 
 Learning disability (LD) 
 Mental health (MH) 
 Substance misuse (SM) 

 These are proxy indicators for health conditions and 
disability, which are likely to influence survey participation.  
 

  

Count of servicesb  This is a proxy for disability severity, as more disabled 
people are likely to receive more services. 

  

Number of auxiliary items fully 
observed for a given CASSRc 

 This is a proxy for the quality of the CASSR client records, 
which may affect whether people receive the survey. 

  

Social environment 
 Population density 

(people/hectare)d 
 Authority typed 
 Indices of multiple 

deprivation average score 
(IMD score)e  

 IMD score is a proxy for social cohesion 
 Authority type is a proxy for urbanicity 
 More urban, dense and less social cohesive places are likely 

to have lower response rates. 
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Variable Rationale 
  

Survey design variables 
 added questions  
 used incentives  
 did not chase nonrespondents  
 did not report using any 

strategies to engage hard-to-
reach groups  

 Proportion of people removed 
due to lacking capacity  

 Theory suggests that aspects that increase the benefits of 
participation, e.g. incentives, and reduce the costs, e.g. 
length of questionnaire, will increase response rates. 

 Chasing nonrespondents and removing people who lack the 
capacity to respond should increase response rates. 

 Strategies to engage hard-to-reach groups are likely to 
reduce the costs of participation for ill and disabled people, 
so will increase response rates. 

Legend: a This group also includes a small number of ‘vulnerable people’; b This indicator is derived from 

counting the number of services received (maximum 10, censored at 6); c This indicator is derived from 

counting the number of fully observed auxiliary items (across all requested variables not just those tested in the 

analysis models) for a given CASSR (maximum 24); d From ONS (Office for National Statistics 2001). 

Authority type is recorded as one of four categories: London, Metropolitan area (not London), Unitary Authority 

(urbanized area, but not large like the Metropolitan areas), County Council (largely rural authority with some 

smaller towns or cities); e Measures deprivation in seven areas (income, employment, health, education, housing 

and services, living environment and crime) and is suggested by the authors as a measure of community 

cohesion (McLennan et al. 2011).  

 

Modelling strategy 

The aim of the statistical analysis is to develop a statistical model to explore the factors 

influencing survey participation.  I use a hierarchical modelling approach to make it easier to 

understand the interactions between the different types of variables.  First, I estimate the null 

model (model 0), which contains no independent variables or random effects.  This model is 

extended to include the CASSR random effects (model 1).  I then introduce the variables in 

blocks.  Model 2 includes individual-level covariates, model 3 includes the CASSR-level 

variables covering CASSR characteristics, the social environment and survey design 

variables. 

The residual between-CASSR variances and covariances provide insight into the 

effect of unobserved CASSR effects on the probabilities of returning a blank form and 

providing no response.  The concept of the variance partition coefficient (VPC), in which the 

residual variation in response outcomes is apportioned between the different analytical levels, 

is useful in this context since it provides insight into “the level ‘at which the action lies’” 

(Browne et al. 2005, p. 600).  Here I use the ‘latent variable’ method36 to provide an 

                                                 
36 In this method, I assume that the propensity to respond is continuous but given the timeframes of the survey 
and for other reasons, what is observed is only the trichotomous outcome – respond, respond with blank form or 
did not respond.  Since I am using the MNL regression model, the underlying continuous variable comes from a 
logistic distribution, with a variance of ߨଶ 3⁄ , and this constant is substituted into the VPC formula for the level 
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approximation of the proportion of the total residual variation in response outcomes that is 

explained by between-CASSR differences (Goldstein et al. 2002).  The comparison between 

the null model and model 1 is a test of the significance of the random effect. The comparison 

between models 1 and 2, and 2 and 3 helps to understand the effect of the inclusion of 

covariates on between-CASSR variation in response propensity, albeit the order of 

introduction of covariates affects the interpretation of these results.  Since adjusting for 

individual-level factors may reduce between-CASSR variance if people with a low 

propensity to respond are clustered within certain CASSRs, and adjusting for area/CASSR-

level factors will reduce between-CASSR variance, such comparisons provide an indication 

of how much between-CASSR variation is unexplained variation.   

At all stages of the modelling, because of the complexity of the models, I only retain 

those variables that are significant at the five per cent level or interact with other variables.  

As there are potentially a large number of interactions I only test those that are substantively 

interesting.  No interaction effects and very few CASSR-level main effects were retained in 

the final models due to difficulties attaining convergence and a lack of stability in the 

estimates of these variables. 

 

Missing data 

The auxiliary data are subject to item nonresponse due largely to differences in procedures 

and systems for recording client data within CASSRs.  Out of the 150,672 cases, only 

123,805 (82 per cent) have full information for all the explanatory variables tested and only 

128 of the 149 authorities (86 per cent) are represented in complete case analysis.  While it is 

possible to recover the missing auxiliary data on the characteristics of the full sample, 

software limitations mean it is not possible to estimate the multilevel MNL models on 

imputed datasets37.  Therefore in similar style to Durrant and Steele (2009), I estimate the 

models on the complete cases.  

 

                                                                                                                                                        

one variance.  The Taylor series approximation and simulation methods are more accurate, but neither is 
straightforward to implement in standard software.  Since the latent variable method provides reasonable 
approximations where the underlying probabilities are not close to zero or one (Goldstein et al. 2002, Browne et 
al. 2005), it is probably accurate enough in determining the VPC for the nonresponse category but may be less 
accurate for the blank form category. 
37 The gsem procedure is not compatible with mi estimate, which is necessary to combine the output from each 
of m estimations using Rubin’s (1987) rules.    
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Results 

Descriptive analysis 

The individual-level explanatory variables tested in the models are shown in Table 3, by 

response status.  When crossed with response status several of the groups are quite small (e.g. 

non-white ethnic groups) and in such cases response levels were collapsed in the regression 

analysis as indicated in the table.  I ran chi-squared tests and analysis of variance, as 

appropriate.  All of the variables have a significant association (p<.001) with response rate.  It 

is clear from the row percentages, however, that response rates differ across the different 

variables.  For example, the very young, people with mental health problems, nursing home 

residents and people receiving low-level services have a low response rate, whereas people 

with learning disabilities have a high response rate.  There also seem to be differences across 

nonrespondent groups, with people receiving low-level services having a particularly high 

rate of return of blank forms, while the youngest age groups have much higher numbers of 

non-respondents.  Some groups, for example people with mental health problems and nursing 

home residents, have high rates of both returning blank forms and not returning a form.    

The CASSR-level variables capturing CASSR characteristics and the social 

environment that were tested for inclusion in the model are summarised in Table 4, along 

with their association with response, blank form and nonresponse rates.  For the continuous 

variables, the Pearson correlation coefficient is reported, which is significant at the five per 

cent level for both deprivation and population density.  Although the data quality indicator 

(count of auxiliary variables) is not significant at the five per cent level, the relationship with 

response rate and blank form rates borders on significance at the ten per cent level, with 

p=0.12 and p=0.13 respectively.  For authority type, the F-test is reported.  Below for each 

authority type there are the rates (with standard deviations) for each outcome.  There is very 

little difference in blank form rates between authority types, but there do appear to be some 

differences in response rates and to a lesser extent in nonresponse rates.  Differences in 

response rates are in fact significant at the ten per cent level, although nonresponse rates are 

not significant (p=0.16).    
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Table 3: Distribution of individual characteristics within the sample and across response outcomes  

Variable Category 

Respondent 
(n=61,026) 

Blank form 
(n=16,294) 

Form not returned 
(n=73,352) 

Total 
(n=150,672) 

N (row %) / Mean (SD) N (row %) / Mean (SD) N (row %) / Mean (SD) N (col. %) / Mean (SD) 
      

Gender Female 38,842 (41.0) 10,640 (11.2) 45,151 (47.7) 94,633 (62.8) 
 Missing 41 2 28 71 
      

Age group 

18-34 4,095 (31.3) 1,093 (8.4) 7,876 (60.3) 13,064 (8.7) 
35-44 3,892 (35.4) 963 (8.8) 6,128 (55.8) 10,983 (7.3) 
45-54 5,516 (39.2) 1,190 (8.5) 7,351 (52.3) 14,057 (9.3) 
55-64 6,390 (42.7) 1,330 (8.9) 7,261 (48.5) 14,981 (10.0) 
65-74 8,189 (43.0) 2,020 (10.6) 8,850 (46.4) 19,059 (12.7) 
75-84 14,923 (42.1) 4,189 (11.8) 16,361 (46.1) 35,473 (23.6) 
85 and over 17,948 (41.8) 5,488 (12.8) 19,462 (45.4) 42,898 (28.5) 
Missing 73 21 63 157 

      

Ethnicity  
White 55,002 (41.3) 14,391 (10.8) 63,842 (47.9) 133,235 (90.0) 
Missing 860 314 1,379 2,553 

      

Primary client 
group  

PSDa 44,957 (42.5) 11,922 (11.3) 48,806 (46.2) 105,685 (70.4) 
MHb 6,945 (28.6) 3,163 (13.0) 14,191 (58.4) 24,299 (16.2) 
LD 8,876 (44.3) 1,137 (5.7) 10,043 (50.1) 20,056 (13.4) 
Missing 248 72 312 632 

      

Personal care 
only home  

Resident 9,769 (42.2) 2,195 (9.5) 11,203 (48.4) 23,167 (15.4) 
Missing 26 2 36 64 

      

Nursing home  
Resident 2,619 (33.9) 1,038 (13.4) 4,075 (52.7) 7,732 (5.2) 
Missing 533 162 595 1,290 

      

Home care 
Recipient 21,848 (43.9) 4,467 (9.0) 23,504 (47.2) 49,819 (33.4) 
Missing 557 157 830 1,544 

      

Direct Payments 
Recipient 5,392 (43.8) 955 (7.8) 5,967 (48.5) 12,314 (8.4) 
Missing 1,345 411 1,732 3,488 

      

Low level 
servicesc 

Recipient 8,961 (34.6) 3,748 (14.5) 13,179 (50.9) 25,888 (17.9) 
Missing 1,921 539 3,196 5,656 
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Variable Category 

Respondent 
(n=61,026) 

Blank form 
(n=16,294) 

Form not returned 
(n=73,352) 

Total 
(n=150,672) 

N (row %) / Mean (SD) N (row %) / Mean (SD) N (row %) / Mean (SD) N (col. %) / Mean (SD) 
      

Equipment  
Recipient 13,412 (43.4) 3,665 (11.8) 13,859 (44.8) 30,936 (21.3) 
Missing 2,043 451 3,049 5,543 

      

Count of 
servicesd 

Mean (SD) 1.45 (0.77) 1.39 (0.75) 1.39 (0.76) 1.41 (0.77) 
Missing 8,867 2,118 11,631 22,616 

Legend: aalso includes vulnerable people client group, balso includes substance misuse users, c includes people in receipt of meals, day centres and other services; dcensored at 
6.                   
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Table 4: Distributional statistics for CASSR characteristics and social environment 

variables (n=149)†, and association with response outcome rates 

Variable Category 
Mean (SD) / 

N (%) 
 

Association with…  

R rate BF rate NR rate 
r / F 

R rate (SD) 
r / F 

BF rate (SD) 
r / F 

NR rate (SD) 
      

Count of fully observed 
auxiliary variables  

18.63 (2.94) 0.128 -0.126 0.010
      

Deprivation   23.23 (8.56) -0.205* -0.162* 0.251**
      

Population density  23.84 (26.52) -0.162* -0.200* 0.243**
      

Authority type 2.12 0.40 1.75

 

London 31 (20.8) 0.39 (0.05) 0.10 (0.04) 0.51 (0.07)
Metropolitan 36 (24.2) 0.43 (0.07) 0.10 (0.09) 0.47 (0.12)
Unitary 48 (32.2) 0.44 (0.11) 0.11 (0.10) 0.45 (0.16)
County  34 (22.8) 0.41 (0.08) 0.09 (0.11) 0.51 (0.13)

Legend: R rate, response rate; BF rate, blank form rate; NR rate, nonrespondent rate; †except for density where 
n=148; * p<.05; ** p<.01; *** p<.001; F-test reported for authority type; Pearson correlation coefficient 
reported for count of fully observed auxiliary variables, deprivation, and population density 
 

Table 5 summarises the degree of variation in the paradata that was collected by 

CASSRs about the management and conduct of the survey.  A number of CASSRs took 

advantage of opportunities to modify the survey and some deviated from the guidance, e,g. 

by not chasing nonrespondents (with any form of reminder).  In general, however, fairly 

small numbers of CASSRs reported using alternative methods to chase nonrespondents, 

engage with minority groups or add more questions to the survey.  Differences between 

CASSRs in the percentage of people removed due to a lack of capacity to respond, which 

takes a range of values from zero to 58 per cent, is likely explained by differences in the 

ability of CASSRs to execute this task with the same degree of thoroughness.  This was a 

requirement of the ethics committee, and CASSRs were in general unprepared to conduct this 

onerous task.  
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Table 5: Extent of variation in survey management and deviation from the guidance 

across CASSRs (n=149), and association with response outcome rates 

Type of variation 
Mean (SD) / 

N (%) 

Association with… 
R rate BF rate NR rate 
r / F 

R rate (SD) 
r / F 

BF rate (SD) 
r / F 

NR rate (SD) 
Used incentives 0.07 0.53 0.50
 Yes 12 (8%) 0.42 (0.06) 0.12 (0.18) 0.46 (0.16)
 No 137 (92%) 0.42 (0.08) 0.1 (0.08) 0.49 (0.12)
      

How nonrespondents were chased  

Post 7.48*** 5.45* 12.61***
 Yes 127 (85%) 0.42 (0.08) 0.11 (0.1) 0.47 (0.12)
 No 22 (15%) 0.38 (0.07) 0.06 (0.03) 0.57 (0.07)

Email 1.19 0.02 0.36
 Yes 5 (3%) 0.46 (0.21) 0.09 (0.05) 0.45 (0.25)
 No 144 (97%) 0.42 (0.07) 0.10 (0.09) 0.49 (0.12)

Phone 2.18 0.85 2.68
 Yes 17 (11%) 0.39 (0.07) 0.08 (0.05) 0.53 (0.10)
 No 132 (89%) 0.42 (0.08) 0.10 (0.09) 0.48 (0.13)

Interview 1.13 1.31 0.02
 Yes 5 (3%) 0.45 (0.05) 0.05 (0.02) 0.49 (0.05)
 No 144 (97%) 0.42 (0.08) 0.10 (0.09) 0.48 (0.13)

no chasing took place† 8.04** 2.74 9.51**
 Yes 16 (11%) 0.37 (0.07) 0.06 (0.03) 0.57 (0.07)
 No 133 (89%) 0.42 (0.08) 0.10 (0.09) 0.47 (0.12)
      

How engaged minority groups  

IC translations 0.02 1.48 0.63
 Yes 33 (22%) 0.42 (0.07) 0.08 (0.03) 0.50 (0.08)
 No 116 (78%) 0.42 (0.08) 0.10 (0.10) 0.48 (0.13)

local translations 0.03 5.34* 3.25
 Yes 8 (5%) 0.42 (0.04) 0.17 (0.20) 0.41 (0.17)
 No 141 (95%) 0.42 (0.08) 0.09 (0.08) 0.49 (0.12)

interpreter via phone  2.86 0.00 1.15
 Yes 21 (14%) 0.39 (0.06) 0.10 (0.14) 0.51 (0.14)
 No 128 (86%) 0.42 (0.08) 0.10 (0.08) 0.48 (0.12)
interpreter face-to-face 
interview 

0.20 0.99 0.20

 Yes 12 (8%) 0.43 (0.10) 0.07 (0.04) 0.5 (0.11)
 No 137 (92%) 0.42 (0.08) 0.10 (0.09) 0.48 (0.12)
friend/family provide 
interpretation 

2.12 0.40 1.75

 Yes 30 (20%) 0.42 (0.10) 0.09 (0.04) 0.49 (0.13)
 No 119 (80%) 0.42 (0.07) 0.1 (0.10) 0.48 (0.12)

no engagement† 0.35 1.10 0.15
 Yes 78 (52%) 0.41 (0.07) 0.11 (0.10) 0.48 (0.13)
 No 71 (48%) 0.42 (0.09) 0.09 (0.08) 0.49 (0.12)
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Type of variation 
Mean (SD) / 

N (%) 

Association with… 
R rate BF rate NR rate 
r / F 

R rate (SD) 
r / F 

BF rate (SD) 
r / F 

NR rate (SD) 
Per cent of sample removed 
due to lacking capacity‡ 

11.45 (13.4) 0.050 -0.126 -0.059
      

Added questions 0.45 0.14 0.03
 Yes 27 (18%) 0.43 (0.06) 0.09 (0.12) 0.48 (0.12)
 No 122 (82%) 0.42 (0.08) 0.1 (0.08) 0.49 (0.12)

Legend: †These categories were generated from responses to the questions and comments. The question was not 
directly asked of CASSRs; ‡Three CASSRs did not provide a response to this question; * p<.05; ** p<.01; *** 
p<.001; F-test reported for incentives, nonrespondent chasing methods, engagement of minority groups, and 
addition of questions; Pearson correlation coefficient reported for per cent of sample removed due to lacking 
capacity. 
 

Table 5 also shows the association between the indicators and response, blank form 

and nonresponse rates for CASSRs.  For the majority of the variables, the F-statistic from an 

analysis of variance test is reported, and appearing below for each of the binary variables, the 

rates (with standard deviations) for each outcome type.  Very few variables show significant 

differences in response outcome rates at the five per cent level.  It is likely that this is a 

consequence of small numbers of CASSRs reporting using the alternative survey attributes.  

For the percentage of the sample removed due to lacking capacity, the Pearson correlation 

coefficient with each type of response outcome rate is reported, but it is not significant for 

any of the response outcomes.  The negative relationship with blank form rates, however, is 

close to significance at the ten per cent level (p=0.13).   

In addition to these changes and deviations from the guidance, CASSRs differed from 

each other in the management of the survey in a number of other ways.  Some CASSRs also 

modified the formatting of questions38 (2, 1%), surveyed a second supplementary sample in 

order to meet the target sample (6, 4%), used telephone interviews as the preferred mode of 

delivery (1, 1%), sent out questionnaires in batches rather than on one day (1, 1%), and 

chased a sample of nonrespondents rather than all nonrespondents (2, 1%).  As well as 

excluding people who lacked the capacity to respond, some CASSRs reported that they had 

excluded mental health clients from the sample due to problems generating a sampling frame 

for this group (3, 2%), and excluded those people who had recently participated in a survey 

run by the council (13, 9%).   

                                                 
38 One authority modified the yellow highlighting to make it specific to its situation and the other authority 
modified the formatting of the numbers slightly for its form recognition software.  These are not major 
alterations. 
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Interestingly a number of CASSRs (10, 7%) reported that they had carried out their 

own surveys or consultations very close to or over the period of the ASCS, which suggests 

that survey fatigue may be a problem.  Partly to avoid clashes with other activities, CASSRs 

also differed in when they sent out their questionnaires.  While most started in late January 

(38, 26%), early February (73, 49%) and late February (39, 26%), some started in early 

January (4, 3%) and others went into early March (22, 15%) and late March (7, 5%).  

Although it would have been interesting to explore many of these variables in more detail, 

since this information was volunteered rather than requested, I could not be certain that other 

CASSRs had not implemented these or very similar features into their surveys.  This 

underlines the importance of including a CASSR indicator in the models to capture the effect 

of these unobserved variables.  

 

CASSR random effects 

Table 6 shows the results of the random effects covariance matrix for each of the model 

specifications, with associated correlations and VPC.  In addition the table shows the Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC), which balance model 

fit with model complexity.  A comparison of the AIC and BIC statistics between model 1 and 

the null model (AIC difference: 236,287-219,138=17,149; BIC difference: 236,307-219,187= 

17,119), and the likelihood ratio test (χ2(3)=17,154.6, p<0.001), suggests that there is 

between-CASSR variation in response propensity.  The highly significant (p<.001) negative 

random effect correlation means that CASSRs with high return of blank forms have low 

levels of nonrespondents and vice-versa, suggesting that there is to some extent a trade-off 

between the two nonresponse categories.  In model 1, the VPC is higher for the blank form 

than the nonrespondent outcome, at 17 and 15 per cent respectively, but both VPCs are 

relatively high, indicating that a substantial proportion of the variation in response outcomes 

is due to differences between CASSRs.  Importantly, the correlated random effects model is 

significantly better than a model with shared effects (likelihood ratio test: χ2(2)= 14,138.4, 

p<0.001; AIC difference: 233,273-219,138=14,134; BIC difference: 233,302-

219,187=14,115), with much larger estimates for between CASSR variation (shared random 

effect variance = 0.120, VPC=3.5%, not shown).  

The addition of individual-level variables to the model (model 2), leads to a large 

reduction in AIC and BIC statistics (AIC difference: 219,138-215,204=3,934; BIC 

difference: 219,187-215,584=3,603).  The likelihood ratio test is also highly significant 

(χ2(34)= 4,002.1, p<0.001) suggesting that the model with covariates is an improvement over 
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model 1 without covariates.  The inclusion of individual-level variables also reduces the 

variance of the blank form random effect, but not the nonrespondent random effect.  The 

conditional VPC for the blank form outcome is also reduced from 17 to 16 per cent.  This 

suggests that at least some of the differences between CASSRs in the blank form outcome are 

explained by differences in the characteristics of individuals within the sample.  The 

correlation between the two random effects slightly decreases after inclusion of individual-

level covariates, suggesting that some of the correlation is driven by similarities in the 

characteristics of the individuals. 

After inclusion of the CASSR-level covariates, the BIC (215,584-215,619=-36) and 

AIC (215,204-215,201=3) statistics suggest that the model with CASSR-level covariates is 

not an improvement over the model with only individual-level covariates.  However, a 

likelihood ratio test suggests that model 3 is an improvement over model 2, at least at the five 

per cent significance level (χ2(4)=11.44, p=0.022).  Addition of the CASSR-level variables 

also leads to a reduction in the random effects variances and the VPCs, suggesting that they 

may explain some of the differences between CASSRs beyond what is explained by 

individual characteristics.  The reduction in the covariance and correlation between the two 

random effects also suggests that the CASSR-level variables make a unique contribution to 

explaining the correlation between CASSRs in the rate of return of blank forms and non-

return of forms.  For these reasons and despite the contrary indications from the AIC and BIC 

statistics the final model is 3. 
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Table 6: Estimates† (with SEs) of the between-CASSR variance-covariance matrix, 
under alternative model specifications 

Parameter Model 1 
(n=123,805) 

Model 2 
(n=123,805) 

Model 3  
(n=123,805) 

Var ( u୨
ሺ୆୊ሻ) 0.677 (0.096) 0.633 (0.094) 0.61 (0.09)

Var (u୨
ሺ୒ୖሻ) 0.586 (0.086) 0.591 (0.086) 0.542 (0.08)

Covariance -0.201 (0.053) -0.178 (0.058) -0.143 (0.041)

Correlation -0.319 -0.291 -0.249

VPC (BF) 0.171 0.161 0.156

VPC (NR) 0.151 0.152 0.141

AIC           219,138          215,204       215,201 

BIC           219,187          215,584       215,619 

Log-Likelihood -109,564 -107,563 -107,558

Legend: BF blank form outcome, NR nonrespondent outcome, † using mode-curvature adaptive Gauss–Hermite 
quadrature for model 2 and 3 and mean-variance adaptive Gauss-Hermite quadrature for model 1.  Model 1 
contains only random effects for the CASSR.  Model 2 extends Model 1 and includes individual-level 
independent variables.  Model 3 extends Model 2 and also includes CASSR-level independent variables. 
 

Factors affecting response propensity 

The final model (model 3) from the hierarchical block procedure is shown in Table 7.  All 

individual-level variables except gender are significant in the model.  By contrast very few 

CASSR-level variables are found to be significant, probably due to small numbers.  Despite 

including a fairly large number of predictors, the percentage of predictions correctly 

classified is fairly low at 55 per cent.  The final column of Table 6 suggests that the MNL 

model is preferable to a binary logistic regression of response-non response.  The estimates 

for the effect of the covariates on returning a blank form or not returning a form (compared to 

being a respondent) vary significantly for the majority of the covariates.  Only the estimates 

for the MH client group (as opposed to PSD), being aged between 35 and 44 years (as 

opposed to between 18 and 34), and low-level services are not significantly different from 

each other.   
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Table 7: Multilevel MNL regression of response propensity (model 3, n=123,805) 

 Blank form†  Nonrespondent† BBF-BNR=0 
 RRR SE  RRR SE χ2 
Fixed part 
MHa 1.595*** 0.052 1.611*** 0.032 0.1
LDa 0.522*** 0.025 0.760*** 0.018 59.8***
Age: 35-44b 0.837** 0.053 0.761*** 0.025 2.3
Age: 45-54b 0.785*** 0.047 0.631*** 0.020 13.2***
Age: 55-64b 0.772*** 0.046 0.536*** 0.017 37.8***
Age: 65-74b 0.983 0.057 0.508*** 0.016 131.4***
Age: 75-84b 1.131* 0.063 0.507*** 0.015 212.7***
Age: 85 and overb 1.329*** 0.074 0.514*** 0.016 295.0***
White 1.122** 0.046 0.810*** 0.019 59.2***
Count of service types 0.790*** 0.041 0.897*** 0.027

6.9**
Count of service types – squared 1.047*** 0.012 1.027*** 0.007
Nursing Home 1.235*** 0.067 1.342*** 0.046 2.5***
Residential Home 0.786*** 0.034 0.928** 0.023 14.1***
Home Care 0.652*** 0.026 0.956* 0.022 92.0***
Low-level services 1.074 0.045 1.072** 0.027 0.0
Direct Payment 0.655*** 0.035 0.872*** 0.025 28.0***
Equipment 1.090* 0.041 0.950* 0.021 13.0***
IMD deprivation score 0.987 0.008 1.016* 0.008 5.3*
No chase 0.661 0.157 1.688* 0.366 6.9**
Constant 0.305*** 0.069 1.601* 0.324
Model fit statistics     
AIC       215,201 
BIC       215,619 
% correctly classified 55.1%

Legend: †Base category: Respondent; a Base category: Physically disabled; b Base category: 18-34 years; * p<.05; ** p<.01; *** p<.001 
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The relative risk ratios convey the effect of each of the variables on the odds of either 

returning a blank form compared to returning a completed form, or not returning a form 

compared to returning a completed form.  This can be useful for interpreting the model, but 

here I am more interested in understanding the effects of the variables on the probability of a 

sample member being a respondent, returning a blank form or not returning a form.  I have 

therefore estimated the average marginal effects for each of the model variables, as shown in 

Table 8.  The average marginal effects for the continuous variables, count of services and 

deprivation score, are more difficult to interpret since they capture the average instantaneous 

rate of change.  The effect of continuous variables is more easily understood when the 

predicted probabilities and the marginal effects are estimated at different values of the 

continuous variable, and the resultant graphs interpreted together, since the marginal effects 

point to the region over which the effect of the variable on the probability of the outcome 

changes both significantly and most rapidly.  Predicted probabilities and marginal effects at 

representative values are illustrated separately in Figure 6 and Figure 7, respectively, for the 

number of services received and similarly in Figure 8 and Figure 9 for the deprivation score.  

The average marginal effects of the variables are in general larger for the respondent 

and nonrespondent outcomes than the blank form outcome, although this difference in the 

size of the effects is likely to be due to the much lower observed (and predicted) probability 

of returning a blank form39.  For all outcomes, the variables with the largest effects are age 

group (particularly the comparison between those age groups over 55 and the age group 18 to 

34), client group (particularly between the MH and PSD groups) and not chasing 

nonrespondents.  For the last of these, the standard error is very wide because of the small 

number of CASSRs that did not chase respondents; consequently there is more uncertainty 

over the effect of this variable.  In general the different type of services received and being 

white do not have a large (and in some cases significant) effect on the probability of any of 

the response outcomes.  The effect of the number of services received and the deprivation 

score is more variable, but in some cases the predicted probability of the outcome can be 

different for people at different ends of these scales. 

Considering the respondent outcome first, the discrete variable with the largest effect 

is age.  Age has a positive effect on the probability of being a respondent, which increases 

until the very oldest age groups at which point the effect of age starts to decrease (although it 

                                                 
39 It is a property of the logistic function that it is easier to change probabilities for cases at the margin, where 
the probability is close to 0.5 than those with lower or higher probabilities. 
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is still positive).  Thus the greatest effect of age is seen for people aged 55 to 84, with people 

in these age groups having on average a 14 per cent increased probability of being a 

respondent, compared to someone in the 18 to 34 age group.  A strong effect is also observed 

for people living in a CASSR that did not chase nonrespondents, as these people are nearly 

ten per cent less likely to be a respondent.  Similarly, MH clients are ten per cent less likely 

to be a respondent than PSD clients.  LD clients are more likely to be a respondent than PSD 

clients, but the effect is smaller at around eight per cent. 

Smaller positive effects are observed for being white, and receiving one of the 

frequent, high contact and high care service forms, i.e. Direct Payments and home care, 

which increase the probability of being a respondent by between two and five per cent.  As 

expected receiving low-level services has a negative effect on the probability of being a 

respondent, but this is small at slightly under two per cent.  Interestingly, nursing home 

residents are more than five per cent less likely to be a respondent than other service users, 

but people in (personal care) residential homes are relatively more likely to be respondents.  

This suggests either differences in the characteristics of people living in these two types of 

institutional settings, differences in the success of removing people who lack capacity, or 

differences in the way that these two settings engage with the survey and encourage or 

support their residents to participate. 
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Table 8: Average marginal effects for multilevel MNL model covariates on each of the response outcomes 

 Respondent  Blank form   Nonrespondent
 AME SE  AME SE  AME SE 
MHa -0.111*** 0.005 0.016*** 0.003 0.095*** 0.005 
LDa 0.079*** 0.006 -0.031*** 0.003 -0.048*** 0.006 
Age: 35-44b 0.059*** 0.007 0.000 0.003 -0.059*** 0.007 
Age: 45-54b 0.101*** 0.007 0.002 0.003 -0.102*** 0.007 
Age: 55-64b 0.137*** 0.007 0.006 0.003 -0.142*** 0.007 
Age: 65-74b 0.140*** 0.007 0.022*** 0.003 -0.162*** 0.007 
Age: 75-84b 0.135*** 0.007 0.033*** 0.004 -0.168*** 0.007 
Age: 85 and overb 0.126*** 0.007 0.046*** 0.004 -0.171*** 0.007 
White 0.040*** 0.005 0.015*** 0.003 -0.055*** 0.006 
Count of service types 0.010** 0.003 -0.007*** 0.002 -0.004 0.003 
Nursing Home -0.066*** 0.007 0.004 0.004 0.063*** 0.008 
Residential Home 0.024*** 0.006 -0.014*** 0.003 -0.010 0.006 
Home Care 0.024*** 0.005 -0.027*** 0.003 0.004 0.005 
Low-level services -0.017** 0.006 0.003 0.003 0.014* 0.006 
Direct Payment 0.042*** 0.007 -0.022*** 0.003 -0.020** 0.007 
Equipment 0.007 0.005 0.008** 0.003 -0.016** 0.005 
IMD deprivation score -0.003 0.002 -0.002* 0.001 0.004* 0.002 
No chase -0.099* 0.044 -0.041** 0.014 0.139** 0.053 

Legend: AME average marginal effect; a Base category: PSD; b Base category: 18-34 years; * p<.05; ** p<.01; *** p<.001 



 

 

120

The average marginal effect of the number of services received on the probability of 

being a respondent is fairly small and people receiving zero services only have about a six per 

cent higher probability of responding than people receiving six services (see Figure 6a).  

Nevertheless, the relationship between the count of services and the probability of being a 

respondent is as expected if this variable is acting as an indicator of disability severity; as the 

number of services received increases beyond two, the probability of responding starts to 

decrease, at an increasingly rapid rate.  By contrast the marginal effect of deprivation is not 

significant, either on average or at any value of the deprivation score (see Figure 9a), 

indicating that deprivation does not have a significant effect on the probability of being a 

respondent. 

Many of the covariates have an effect on the probability of returning a blank form, but 

none have a strong effect – probably due to the shape of the logit function.  The variable 

capturing whether CASSRs chased nonrespondents, has one of the largest effects on the 

probability of returning a blank form, with sample members living in CASSRs that did not 

chase nonrespondents having on average a roughly five per cent lower probability of 

returning a blank form than those who live in another CASSR.  The large SE associated with 

this variable, however, means that the significance of this effect is lower than that of the 

effect of being an LD client (compared to being a PSD client), which only decreases the 

probability of returning a blank form by on average three per cent.  Being an MH client 

(compared to PSD) has a small positive effect of less than two per cent.   

Two other variables have comparatively large effects on the probability of returning a 

blank form.  Being in the 85 and over age group (compared to being in the 18 to 34 age 

group), increases an individual’s probability of returning a blank form by around 4.5 per cent.  

The two non-institutional, frequent, high-contact and high-care service forms, Direct 

Payments and home care, both have a negative effect on the probability of returning a blank 

form of slightly over two per cent.  The marginal effect of the count of the number of services 

received on the probability of returning a blank form is also fairly small and only significant 

where people are receiving between zero and two services (see Figure 7b).  Over this range 

the effect is negative, such that people receiving zero services have a slightly higher 

probability of returning a blank form than people who receive two services (see Figure 6b).  

All other effects are not significant or also very small at less than two per cent.  This includes 

the effect of living in a deprived area, where the marginal effect is just significant at high 

levels of deprivation (see Figure 8b) and indicates that those people living in higher 
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deprivation areas have a lower probability of returning a blank form than people living in 

lower deprivation areas (see Figure 9b). 

For the nonrespondent outcome age has an important effect.  Compared to people in 

the 18 to 34 age group, people in the age groups over 65 are more than 15 per cent less likely 

to be nonrespondents.  The magnitude of the effect decreases for younger age groups.  Not 

chasing nonrespondents also has a powerful effect on the probability of being a 

nonrespondent, with people living in CASSRs that did not chase nonrespondents being nearly 

15 per cent more likely not to respond to the survey request.  Deprivation has an effect on the 

probability of being a nonrespondent, with a significant marginal effect across the range of 

deprivation scores (see Figure 9c).  As the deprivation score increases, the probability of 

being a nonrespondent increases, such that people living in high deprivation areas are nearly 

20 per cent more likely to be nonrespondents than people living in low deprivation areas (see 

Figure 8c). 

Compared to PSD clients, MH clients are nearly ten per cent more likely to be a 

nonrespondent.  The effect of being an LD client compared to being a PSD client on the 

probability of being a nonrespondent is smaller and is negative.  A similar sized effect is 

observed for ethnicity, with white people being just over five per cent less likely to not 

respond to the survey request than people of non-white ethnic backgrounds. 

The types of services received have very small effects of less than two per cent, on the 

probability of being a nonrespondent.  People receiving low-level services are slightly more 

likely than those not receiving such services to be nonrespondents and people receiving either 

equipment or Direct Payments are slightly less likely to be nonrespondents than people not 

receiving such services.  Being a nursing home resident had a large effect on the probability 

of being a nonrespondent, being around six per cent more likely to be nonrespondents 

compared to non-residents.  The effects of other services, including receipt of residential care 

homes, home care and the count of services received, on being a nonrespondent are not 

significant.  For the number of services received, although the marginal effects appear to be 

significant over the range of receipt of three to six services (see Figure 7c), the margin of 

error around the predicted probabilities is so great that there is only a slight upward trend in 

the likelihood of being a nonrespondent as the number of services received increases from 

three to more services (see Figure 6c).    
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Figure 6: Predicted probabilities of response outcomes at representative values for the number of services received, with 95% 

confidence intervals 
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Figure 7: Marginal effects of number of services received at representative values, with 95% confidence intervals 
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Figure 8: Predicted probabilities of response outcomes at representative values for the average IMD score, with 95% confidence 

intervals 
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Figure 9: Marginal effects of the average IMD score at representative values, with 95% confidence intervals 
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Discussion 

The purpose of this analysis was to understand who is missing from performance surveys 

and to explore whether there are any strategies that could be used to improve response 

rates.  These questions are important since nonresponse is likely to affect the perceived 

representativeness of the survey and potentially the validity of inferences about 

performance.  I have used the ASCS to explore these questions, exploiting the variation in 

the way the survey is managed by different CASSRs to provide insight into the methods 

that might increase response rates.   

The modelling is set within the modified social exchange framework proposed by 

Goyder (2006).  This framework allowed me to explore the extent to which different 

theories and types of factors may explain nonresponse to the ASCS, such as individual 

characteristics, social disorganisation, survey attributes and CASSR characteristics.  I 

found that all of these types of factors were important in explaining participation to the 

ASCS.  I used a multilevel modelling approach to test the hypothesis that variations 

between CASSRs in response rates can be explained by both differences in individuals’ 

characteristics and CASSR-level factors, including those related to the organisation and the 

area.  This method has also allowed me to account for unobserved CASSR-level variation 

in participation rates, which was important as a significant amount of variation was 

explained by unobserved CASSR-level factors.   

I discuss these results in more detail below and outline some of the limitations of 

the analysis.  I argue that the combination of the modelling approach and the social 

exchange framework were important for understanding participation in the ASCS.  The 

implications of the findings for other studies and policy are discussed in Chapter 9.  

 

Differentiating response outcomes and the role of the CASSR in determining participation 

The analysis supported the proposition that different processes are involved in deciding 

whether to return a blank form or not return the questionnaire.  In general coefficients for 

the explanatory variables in the model differed across the simultaneous equations, and 

some of the variables that were associated with an increased likelihood of someone 

returning a blank form, were also associated with a decreased likelihood of not returning a 

questionnaire (e.g. white ethnic background, and chasing nonrespondents).  This study 

shows that nonrespondents to postal surveys can be differentiated and that where it is 

possible to differentiate nonrespondents this improves models of survey participation. 
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It also proved to be important to differentiate between the two nonresponse 

outcomes in modelling the CASSR random effects.  Since CASSRs run the survey within 

their area and have some discretion over its management, I expected them to have a 

significant impact on response propensity.  However, where the CASSR clustering variable 

was shared between the simultaneous equations – the shared random-effects model – a 

very small percentage of the variation in response rates was explained by between-CASSR 

differences.  Where a correlated random-effects model was used, in which separate random 

effects for each of the nonresponse outcomes are estimated, between CASSR differences 

accounted for a much larger percentage of the variation in the nonresponse outcomes.  The 

correlated random-effects model outperformed the shared random-effects model on model 

fit indices and produced results that were consistent with my expectations.  There are 

according to this analysis, important differences between CASSRs in rates of nonresponse 

and return of blank forms. 

 

Factors explaining survey participation 

I found that multiple theories explain response to the ASCS.  The most important factors 

with the greatest effects on participation were age, client group and chasing 

nonrespondents.  The strong effect of age on participation is consistent with previous 

research (Herzog and Rodgers 1988, Kaldenberg et al. 1994, Elliott et al. 2005, Peters et al. 

2014b).  I had not expected such a strong effect for the ASC population as factors such as 

employment and disability that are often posited as mediating variables for the observed 

age effects should be less important in this sample, due to low levels of employment and 

high levels of disability.  Since it was the youngest age groups (people between the ages of 

18 to 34) who were the least likely to respond and the older age groups that were most 

likely to respond (people between the ages of 55 to 84) an alternative explanation may be 

related to the lower rates of political participation found in younger age groups (Jowell and 

Park 1998, Henn et al. 2002). 

Although the type of services received had a less important effect on participation, 

the effect of nursing and care home residents is important to consider given these groups 

are excluded from the sample due to the instruction to remove people who lack capacity.  I 

found that patterns of participation for residents of nursing homes and personal care only 

homes were in opposing directions.  Thus residents of nursing homes were less likely to 

respond, and residents of personal-care only homes were more likely to respond.  Although 

the costs of participation are likely to be higher for care home residents than people in 
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private household because they are more disabled, other factors are likely to intervene in 

care homes.  One explanation for this finding is that the costs of participation are higher for 

nursing home residents as they are more severely disabled and have a higher prevalence of 

dementia than residents of other care homes (Darton et al. 2006, Matthews et al. 2016).  

Alternatively, it may be the case that staff in nursing homes are more aggressive 

gatekeepers, perhaps perceiving the survey of limited usefulness due to the disability level 

of residents.  If the attitude of staff is important this may also have affected the ability of 

CASSRs to successfully remove people who lacked the capacity to respond to the survey 

from the nursing home population.  This would inflate nonresponse rates from nursing 

homes compared to other groups.  Follow-up research with care homes would help to 

assess the plausibility of these explanations. 

There was some indication from the results that disability severity reduces response 

rates.  While people aged 85 and over were significantly more likely to respond than 

people aged between 18 and 34, the effect was not as large as that observed for the 55 to 84 

age groups.  This is consistent with a number of other studies which have found that the 

oldest old are less likely to respond to postal surveys (Sheldon et al. 2007).  The model 

indicates that the reason being aged 85 and over has a smaller effect on the probability of 

being a respondent was due to the increased likelihood that people in this age group will 

return a blank form.  A possible explanation for this finding is that these people are 

returning a blank form because they are unable to respond and want to indicate their poor 

health, so as to prevent further contacts.  This would fit with findings from other studies 

that have shown older nonrespondents to be less healthy than older respondents (Paganini-

Hill et al. 1993, Strayer et al. 1993).  I also found a fairly weak but negative association 

between the number of services received and the likelihood of being a respondent.  These 

findings, combined with the lower rates of participation among nursing home residents, 

suggest that disability severity may be important in determining survey participation and 

that the most severely disabled may be underrepresented in the current ASCS.  This 

finding deserves further exploration. 

The fairly small effects if deprivation are fairly consistent with social 

disorganisation theory and other literature, which have shown that after controlling for 

household variables area-level effects are less important (Couper and Groves 1996, Groves 

2006, Johnson et al. 2006).  In contrast to previous research, however, I did not find 

significant effects from urbanicity and population density (Couper and Groves 1996, 



 

 

129

Groves 2006).  It is argued that variables such as deprivation have their effects by reducing 

helping behaviour and trust in institutions and others (see e.g. Couper and Groves 1996).   

Turning to the factors that may increase response rates, not chasing nonrespondents 

had a relatively large positive effect on the probability of being a nonrespondent and a 

corresponding fairly large negative effect on the probability of being a respondent or 

returning a blank form.  This finding is consistent with findings from experimental studies 

(Edwards et al. 2002) and with research by Hébert et al. (1996), which found reminders to 

be highly effective among older people over 75.  This provides a clear direction for a 

strategy to increase response rates.  No other survey attributes were significant in the 

models; nor was the indicator of CASSR data quality. 

The strong effect of client group on participation, especially the finding that LD 

clients had the greatest likelihood of responding and MH clients the least likelihood of 

responding may point to another way to improve response rates.  There are two possible 

explanations for the high participation rates among LD clients.  First, all LD clients were 

sent an Easy Read version of the questionnaire, which would have substantially lowered 

the costs of responding for this group.  Second, LD clients report much higher rates of help 

to complete the questionnaire, which may mediate the observed relationship (The 

Information Centre for Health and Social Care 2012b).  For MH clients there are also two 

explanations for the low response rates.  MH clients tend to receive care through multi-

disciplinary teams based within the health services.  Consequently they may fail to see the 

relevance of a social services survey.  Alternatively, low response rates may be due to poor 

data quality for this client group.  Many CASSRs do not have direct access to case records, 

and rely on health services (who have no vested interest in the survey) to provide contact 

information and other details.  Indeed several CASSRs reported that they had excluded all 

MH clients as they could not get the required information from health colleagues.  These 

explanations deserve more detailed research, because of the implications for improving 

response rates. 

Another finding that may point to ways to increase response rates is the effect of 

ethnicity.  I found a small effect positive effect on the likelihood of participation of being 

white, however, other US and UK studies have found much larger differences in rates 

between ethnic groups (Elliott et al. 2005, Sheldon et al. 2007, Klein et al. 2011, Peters et 

al. 2014b).  It has been posited that disengagement with government and ‘official’ 

institutions is a reason for low response rates by black and minority ethics groups in 

surveys (Groves and Couper 1998), but in their review of the evidence, Sheldon et al. 
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(2007) find little evidence to support such a theory of disengagement.  They argue that, at 

least for the English national patient surveys, theories of acculturation, literacy and 

language – all of which raise the costs of participation – may be better explanations of low 

response rates.  Certainly there is ample evidence that language and literacy skills affect 

social care users ability to access services and achieve good care outcomes (Gill et al. 

2014, Willis et al. 2015, Blake et al. 2016, Yeung et al. 2016).  Since ethnicity is a fairly 

noisy measure of literacy skills, it seems plausible that poor literacy skills explain the fairly 

small effect of ethnicity observed here for both return of blank forms and completed forms, 

since both responses require understanding of the questionnaire and its instructions.  

Targeted use of translated versions may therefore help to improve response rates among 

the non-white population. 

 

Limitations of the analysis and directions for future research 

Overall the wealth of available auxiliary and paradata has meant that I have been able to 

conduct a much more detailed analysis of the factors influencing nonresponse than is 

frequently possible with surveys.  However, the predictive ability of the model was low. 

One possible reading of this finding is that nonresponse is largely a quasi-random process 

(Smith 2011).  Another would be that key variables are unobserved.  In this analysis I 

lacked measures for theoretically important variables such as availability of someone to 

help the person complete the survey (Renfroe et al. 2002), and had fairly noisy proxy 

indicators for proficiency in English (ethnicity), disability type (client group) and severity 

(count of services).  Since it is not possible to say whether, or to what extent, better (or 

any) measures of these variables would improve the models of response propensity, the 

question of whether nonresponse to the ASCS is largely a quasi-random process remains 

open.  

The modelling also provided little insight into the reason for differences between 

CASSRs in nonresponse outcomes.  Neither individual-level nor CASSR-level variables 

contributed greatly to explaining CASSR-level variations in response rates, although 

CASSR-level variables were slightly more important.  There is some suggestion from this 

modelling that it may be possible with more data points to decompose the CASSR-level 

variation between organisational and area characteristics, as the analysis has shown that 

both of these groups of factors contribute to between-CASSR variation.  Much between-

CASSR variation is unexplained by this study.  This is an important area for future 
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research given the possibility that much of the between-CASSR variation in response rates 

is explained by the behaviour of CASSRs. 

There is also a need to be cautious about treating the lack of significance of most of 

the social environment, data quality and survey attributes variables as evidence that they 

are not important in predicting response outcomes.  First, there are not many observations 

at the CASSR level and the binary variables that describe survey attributes have in most 

cases very skewed distributions.  This makes it difficult for effects to be significant.  

Second, the exploratory analysis found that the social environment variables and many of 

the survey attributes have significant relationships with response, blank form and 

nonresponse rates that are in the expected direction.  For example, the indicator of data 

quality is positively correlated with response rates; CASSRs that used incentives have 

lower nonresponse rates; and some of the alternative methods for chasing nonrespondents 

seemed to be associated with higher response rates.  A study with more data points would 

have had greater power for detecting differences.   This would be a useful direction for 

future research.  

A third reason for caution is that due to the variety of ways in which CASSRs 

implemented the various strategies to increase response rates, many of the survey attribute 

variables are not particularly sensitive measures, which will dampen any association 

observed.  For example, although all CASSRs that used incentives had a prize draw, the 

prize varied between CASSRs.  Research has shown that the amount of money and the 

type of incentive are instrumental in determining the effectiveness of the incentive 

(Zaslavsky et al. 2001, Edwards et al. 2002, Dillman et al. 2009) and that incentives are 

differentially effective for subgroups of the population (Lynn 2012).  Similarly, evidence 

around the effect of questionnaire length on response rates suggests a nonlinear 

relationship (Iglesias et al. 2001, Edwards et al. 2002), so the dummy variable capturing 

whether additional questions were added is probably not sensitive enough for assessing the 

effect of questionnaire length.  A similar argument could be made for the variables that 

capture engagement strategies for hard-to-reach groups.   

Following on from this point, the observational design limits the potential to draw 

conclusions about the factors that may improve response rates because the effects from the 

modelling can only be interpreted as associations.  Studies that explore the effect of 

altering survey attributes usually use experimental designs to manipulate conditions and 

ensure random selection into ‘control’ and ‘treatment’ groups (Edwards et al. 2002).  In 

observational studies selection into groups is not random and, as was the case here, often 
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the treatments vary in their application.  This makes it much more difficult to estimate an 

effect since treatments are confounded with other, often unobservable, factors.  In my 

view, the sample size was the more important limitation for this analysis.  Nevertheless, it 

is certainly the case that to fully understand the effect of survey attributes, such as 

incentives and strategies to engage hard-to-reach groups, experimental studies would yield 

much more conclusive results.  In the absence of resources and the political will to 

implement such a design, observational studies such as this can contribute to furthering our 

understanding of the factors that influence survey participation. 

 A further limitation of the modelling was that I was not able to appropriately 

address missingness in the auxiliary data.  Investigation suggested that it may have been 

possible to estimate multilevel MNL models on multiply-imputed datasets in different 

software, for example MLWIN, but this would have come at the expense of model 

interpretation as the Bayesian estimation methods used by the software make it much more 

complicated to estimate marginal effects and adjusted predicted probabilities.  It is of note 

that Durrant and Steele (2009) who apply the same model to their data in MLWIN report 

only the adjusted predictions at means and do not attempt to impute missing values.  

Interestingly they report using the Bayesian approach to overcome model convergence 

problems experienced by researchers in the past (Durrant and Steele 2009).  Given the 

problems I experienced with convergence of the models using frequentist methods, it may 

be that Bayesian methods are more appropriate for these types of models.     

A further aspect that requires some reflection is the recent changes to the survey 

methods and the impact this may have on the study conclusions.  Since 2014-15, there 

have been some changes to the eligible population of the ASCS and the survey auxiliary 

data that have been driven by changes in the way data is collected and reported about 

social care users by CASSRs.  The most significant change is that in the new data 

collection, the types of services people receive (i.e. home care, day care and so on) are no 

longer collected.  Instead, social care users are defined as either receiving short-term or 

long-term support services, with additional information captured about accommodation 

status, support setting and delivery mechanism.  Since 2014-15, only service users 

receiving ‘long-term support’ are eligible for the survey, which means people previously 

included because they received short-term residential care, home care re-ablement or other 

short-term support to maximise independence, equipment and adaptations are not included 

in the more recent ASCSs.   
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Since many of these groups of people had lower response rates, it is reasonable to 

expect response rates to the ASCS to increase as a result of these changes.  In fact response 

rates have continued to decline from 41 per cent in 2010-11 to just under 36 per cent in the 

most recent survey (NHS Digital 2016b).  There are many potential explanations for this 

decline in response rates that are consistent with the findings presented here and the 

interpretation that the survey was less salient to these groups, including the general 

phenomenon of declining participation in surveys (de Leeuw and de Heer 2002), survey 

fatigue, which may be more acute in authorities with smaller user populations, and the 

continued rationing of services due to financial pressure, which has led to increased 

targeting of services at the most severely disabled whom this analysis suggests are less 

likely to participate (Fernandez et al. 2013b, Burchardt et al. 2015).  It would be of interest 

to unpick these different explanations.  The more detailed information that is collected 

about primary support reason under the new data collection framework may be useful in 

this respect.  These data would also enable a more detailed exploration of the role of 

disability and health in determining nonresponse than has been possible here.  Such 

developments would support better targeting of alternative formats, and a more ‘tailored’ 

approach to the survey that would see improvements in response rates (Dillman et al. 

2009).  These are all possible avenues for future research. 

 

Conclusion 

This analysis has shown that survey participation is a complex process, with multiple 

factors intervening in different ways.  This lends support to Goyder’s (2006) proposal to 

integrate the theories of nonresponse into a single framework.  One purpose of this analysis 

was to identify who was missing from the ASCS.  In this analysis I have found low rates of 

response among MH clients, working age groups (particularly 18 to 34 year olds) and 

nursing home residents, which I suggest is due to the saliency of the survey, data quality 

problems for the MH group and higher barriers to participation for the other groups.  To a 

lesser extent, low-level service users, people in more deprived neighbourhoods and black 

and minority ethnic groups are also underrepresented at present, possibly as a consequence 

of the salience of the survey, higher barriers to participation and social disorganiastion.  

There is also an indication that people with more severe disabilities are underrepresented 

and there are questions over the representativeness of the survey for care home residents 

more generally due to exclusion criteria.  Should any (or all) of factors be associated with 

ASCOF indicator scores, there is the potential for the PIs to be biased.  This would be a 
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strong reason to find strategies to improve response rates and the survey’s 

representativeness.  I turn to these questions in the next chapter. 

Even if there is little evidence for bias, it may be considered politically important to 

address response rates among the groups with lower response rates for reasons of face 

validity and to ensure the precision of PIs.  A second aim of this study was to identify 

strategies that could be used to increase response rates.  In this respect the study was less 

successful.  There is fairly good evidence that chasing nonrespondents will help increase 

response rates, but this strategy is not selective.  It may increase response rates from all 

groups, which would not help to address the problems of underrepresentation.  Based on 

the finding of higher responses rates from LD clients, I have suggested that targeting 

groups with adapted versions of the questionnaire may be a good way of increasing 

response rates.  This strategy could be applied to various groups, such as people whose 

first language is not English and people with visual impairments.  However, to follow this 

through CASSRs would need to improve their data systems.  Other strategies for targeting 

specific groups should be investigated.  Importantly, much of the between-CASSR 

variation in nonresponse rates was unexplained in this analysis.  Further research to 

understand the causes of between-CASSR variations in response rates will be important for 

improving response rates to future surveys and for ensuring that differences in PI scores 

reflect real differences in performance rather than unobserved differences in respondent 

populations due to variations in survey design and implementation.  I reflect further on 

these implications for research and policy in Chapter 9. 
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Chapter 5 

What is the Effect of Nonresponse on Inferences about Performance and 

Does the Method Used to Address Differences in Samples Due to 

Nonresponse Matter?  An Analysis into the Extent and Effects of Unit and 

Item Nonresponse on the ASCOF Indicators 

 

Abstract 

Objective: To explore whether nonresponse to performance surveys affects the interpretation 

of indicator scores. 

Method: Data from the English 2010-11 ASCS are used to explore the effect of nonresponse 

on five performance indicators based on these data.  To assess the effect of nonresponse I 

compare indicator estimates generated under the missing completely at random (MCAR) and 

missing-at-random (MAR) assumptions.  I use inverse propensity weighting (IPW) and 

multiple imputation (MI) to correct for unit and item nonresponse, respectively, under MAR 

conditions.  Differences in the estimates obtained under the two missingness assumptions 

indicate that nonresponse has an effect on the interpretation of PI scores.  The impact of 

differences is assessed through examining changes in rank position and outlier status.   

Results: After adjusting for nonresponse indicator scores are on average more negative, 

suggesting that nonrespondents are more likely to be dissatisfied with their care or have 

poorer quality of life.  Absolute differences in adjusted and unadjusted indicator estimates for 

CASSRs are small, with the majority being less than one standard error.  In general the 

impact of nonresponse had little effect on the identification of outliers or rank position of 

CASSRs, with high correlations between adjusted and unadjusted indicators.  There are some 

exceptions, particularly for the quality of life (SCRQoL) indicator where the effect of 

IPW/MI adjustment was precision-enhancing.  This indicator had the highest rate of item 

nonresponse and after IPW/MI adjustment a small number of CASSRs experienced large 

changes in rank position and changed outlier status. 

Conclusions: There is little evidence to recommend adjustment for nonresponse for the 

majority of the indicators considered here, since it reduces precision and observed bias is 

small.  IPW/MI adjustment for nonresponse could be considered for the SCRQoL indicator, 

since adjustment is precision-enhancing and observed bias has more impact on inferences 

about the relative performance of CASSRs.  The effect of adjustment depends on the method 

used to generate estimates under the MAR assumption, with MI methods being more 
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important where item nonresponse is higher.  We cannot conclude that there is no appreciable 

nonresponse bias, since the methods used here only adjust for bias due to observed factors.  
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Introduction 

Missingness, due to nonresponse, in the data used to generate PIs raises questions about the 

validity of inferences regarding the performance of organisations drawn from the affected 

PIs.  The loss of data affects the precision of survey estimates, which will affect the certainty 

there is over the estimates and make it more difficult to identify differences in performance.  

Nonresponse also affects the representativeness of the sample, which can result in biased 

estimates.  Bias will only occur where missingness is systematic, or not missing completely at 

random (MCAR).  MCAR is a strong assumption and is unlikely to be realistic for most 

datasets.  Where the MCAR assumption is not plausible there will most likely be some degree 

of bias in PIs, which will increase the probability of falsely identifying poor or very good 

performance (false positive) and incorrectly identifying exceptional (poor or good) 

performance as ordinary (false negative).  There are, however, a number of strategies for 

addressing nonresponse which assume that the missingness mechanism depends on the values 

of the observed data, i.e. it is missing-at-random (MAR).  It is possible to use these strategies 

to generate ‘adjusted PIs’.  As a consequence of the statistical assumptions underlying the 

nonresponse adjustment, the PIs will be less transparent and more complicated to understand.  

This may mean people are less likely to use them despite their greater validity.  A key 

question then for policymakers is: does nonresponse to performance surveys affect the 

interpretation of PI scores? 

 In this chapter I assess the effect of nonresponse on inferences about performance 

drawn using the ASCOF survey-based PIs.  I use an approach that has been applied in 

previous studies, which involves comparing PI estimates generated under the MCAR and 

MAR assumptions (see e.g. Elliott et al. 2005, Höfler et al. 2005, Groves 2006).  If there are 

differences in the estimates obtained under the two missingness assumptions, this indicates 

that nonresponse has an effect on the interpretation of PI scores.  To generate estimates under 

MAR assumptions, I use a combined inverse propensity weighting (IPW)/multiple imputation 

(MI) approach, with analogy to the method proposed by Seaman et al. (2012).  As I explain in 

Chapter 3, this method has not been used to adjust performance survey data for nonresponse 

before, but given that such data usually have high levels of unit nonresponse and limited 

auxiliary information about nonrespondents, this method is likely to be more efficient than an 

IPW approach (IPW/IPW) that addresses both unit and item nonresponse.  It is also likely to 

produce less biased estimates than a MI approach (MI/MI) that addresses both unit and item 

nonresponse (Seaman et al. 2012).  The aim is that this analysis should contribute to the 
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debate in the wider literature around whether there is a need to adjust survey-based PIs for the 

precision-reducing and potentially biasing effects of nonresponse and how best to do so. 

The chapter is organised as follows.  I start by discussing the ASCS data, focusing on 

the types and extent of nonresponse in the sample.  Next, I discuss the empirical strategy, 

concentrating on how I implement the IPW/MI approach to adjust for item and unit 

nonresponse within the ASCS data.  I then present the results in two parts.  First, I assess the 

effect of nonresponse on the ASCOF indicators, by quantifying the loss of precision and the 

possible extent of bias.  Secondly, I look at the effect that adjusting for nonresponse has on 

performance assessment.  In the discussion I focus on the key findings and limitations of the 

study.  The implications for policy and research are discussed in Chapter 9.  

 

Data 

For this analysis I use the 2010-11 ASCS to explore the effect of nonresponse on the five 

ASCOF ‘outcome’ indicators that are drawn from the ASCS.  The distributional statistics for 

these indicators for the whole sample are shown in Table 9.   

 
 
 

Table 9: Distributional and missingness statistics for the ASCOF PIs, 2010-11 ASCS 

  SCRQoL Satisfaction Control Safety Information 

Obs. 54,350 57,929 59,478 59,499 42,884

Mean 18.62 0.62 0.75 0.93 0.74

SD 3.93 0.49 0.43 0.26 0.44

Max 24 1 1 1 1

Min 0 0 0 0 0

% Missing 10.9% 5.1% 2.5% 2.5% 5.6%

% N/A n/a n/a n/a n/a 24.1%

 

Nonresponse to the ASCS 

The ASCS has two types of nonresponse: item nonresponse to the individual questions or 

variables and unit nonresponse where the sample member has not responded to the survey 

request.  As discussed in Chapter 4, the unit nonresponse is high but fairly typical for a postal 

survey, with a response rate of 41 per cent.  Item nonresponse rates vary by question in the 

ASCS, and are generally fairly low at less than five per cent throughout the questionnaire (see 

Table 9 for the ASCOF indicators and Table 10 for the questionnaire items).  They are higher 

where respondents were allowed to select a ‘not applicable’ option, as is the case for the 
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information PI; or where there is dependency between responses to questions, as is the case 

for the questions about assistance to complete the questionnaire; or where indicators are 

composed of multiple items, as is the case for SCRQoL indicator and the ADL scales. 

 
 
 

Table 10: Extent of missingness to the questionnaire items, 2010-11 ASCS 

Variable Obs. 
Response 

options 

Percentage 

missing 

Self-perceived health 59,243 1 to 5 2.92

EQ-5D: Pain 58,509 1 to 3 4.12

EQ-5D: Anxiety/depression 57,843 1 to 3 5.22

ADL: get around indoors 58,480 1 to 3 4.17

ADL: get in/out bed/chair 58,645 1 to 3 3.90

ADL: feed self 58,707 1 to 3 3.80

ADL: wash all over in bath/shower 58,773 1 to 3 3.69

ADL: get dressed/undressed 58,679 1 to 3 3.85

ADL: use WC/toilet 58,710 1 to 3 3.80

ADL: wash face and hands 58,865 1 to 3 3.54

IADL: deal with finances/paperwork 58,344 1 to 3 4.39

Count of ADLs with difficulty 56,092 0 to 7  8.09

Count of ADLs can't manage without help  56,092 0 to 7 8.09

Self-perceived home design 58,481 1 to 4 4.17

Regular practical help 57,291 3 categories 6.12

Make additional payments 56,135 3 categories 8.01

Assistance to answer the questionnaire 57,004 3 categories 6.59

Type of assistance 57,004 4 categories 6.59

Source of assistance 56,690 3 categories 7.11

 

The auxiliary data is also subject to item nonresponse.  This is due largely to 

differences in procedures and systems for recording client data within CASSRs, which meant 

that some CASSRs were not able to provide all of the requested variables and the quality of 

some of the data is variable.  As Table 11 shows, for the ASCS 2010-11 dataset, the majority 

of the variables are at least 90 per cent observed.  Problems with recording are confined to a 

small number of variables, specifically the religion, sexual identity, secondary client group 

and budget data.  Variables with high proportions of missing data or that were missing for a 

large proportion of the CASSRs were not considered in this analysis. 
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Table 11: Extent of missingness to the auxiliary data across the CASSRs and within the 

overall sample, 2010-11 ASCS 

 Number of CASSRs Sample 

completion 

rate 

Variable Fully 

observed 

Partially 

observed 

Completely 

missing 

Sex 135 14 0 100.0%

Age group 127 22 0 99.9%

Ethnicity 17 132 0 98.3%

Sexual identity 0 21 128 1.1%

Religion 4 128 17 52.2%

Primary client group 118 31 0 99.6%

Secondary client group 49 44 56 42.8%

Residential care 144 5 0 100.0%

Nursing home 142 7 0 99.1%

Home care 140 9 0 99.0%

Day care 140 9 0 98.3%

Meals 137 6 6 94.6%

Short-term residential care 138 10 1 97.5%

Direct Payments 141 8 0 97.7%

Personal Budgets 133 9 7 92.2%

Professional support 135 7 7 93.8%

Equipment 139 7 3 96.3%

Other services 137 9 3 95.6%

Total budget 13 70 66 41.0%

Other funding streams in budget 48 12 89 39.4%

 

Empirical strategy 

I study the effect of nonresponse by comparing the distribution of scores on the ASCOF PIs 

under MCAR and MAR assumptions.  Indicator estimates under MCAR are produced using 

complete case analysis (CCA), the MAR approach is the IPW/MI method.  I also have two 

mixed MCAR-MAR methods, referred to as IPW/CCA and CCA/MI, of which the former 

assumes that item nonresponse is MCAR and unit nonresponse is MAR, and the latter 

assumes that item nonresponse is MAR and unit nonresponse is MCAR.  One difficulty with 

using IPW with the ASCS data is the extent of missingness in the auxiliary data, as outlined 

above.  Using CCA for the response propensity model would result in weights only for those 
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cases with full information, i.e. for 125,753 cases out of 150,672 (83 per cent).  Nineteen 

authorities (87 per cent)40 would also be excluded.  As well as being an impractical method 

for correcting for nonresponse due to the loss of CASSRs, this practice is inefficient and 

could itself introduce bias should the cases excluded from the propensity models (because 

they have partially observed data) be different from those with fully observed data.  If I am to 

use the IPW/MI method I also need to address missingness within the auxiliary data.   

I use MI to recover the missing auxiliary data, but I carry out imputation of the 

auxiliary data separately from imputation of the respondent sample, because it is undesirable 

to impute outcomes for the nonrespondent sample.  This is not ideal, as the variability in the 

weights from imputation cannot be reflected in the analysis.  Nevertheless, it is better than 

assuming unit nonresponse is MCAR and the result is a set of weights that can be applied to 

the whole sample.  I do, however, return to this limitation in the discussion.  I now describe 

the three procedures in more detail. 

 

Procedure for multiple imputation of the respondent sample 

Analysis suggested that the MCAR assumption for the respondent data was not plausible 

(Little’s (1988) MCAR test: χ2(102)=1262, p<.001)41.  I use a chained equations MI approach 

to impute the missing values for the respondent data (van Buuren 2007, White et al. 2011).  

This method (compared to the multivariate normal imputation model) allows greater 

flexibility in the specification of imputation equations for the missing variables – important 

for these data given the mix of nominal, ordinal and continuous variables.  Rather than 

impute the SCRQoL score, I impute the eight ordinal items in the SCRQoL measure 

individually.  This is partly because two of the SCRQoL items are themselves ASCOF 

indicators, but it is also easier to reproduce the distribution of the ordinal items than the 

skewed SCRQoL distribution.  A limitation of the chained equations method is that it cannot 

easily accommodate the clustered structure of the data.  To overcome this, I include a set of 

dummy variables for the CASSR in the imputation models (except those using mlogit due to 

difficulties with estimation) to capture CASSR effects.   

To ensure the imputation is valid, all variables in the analysis model are included in 

the imputation model.  Although the analysis model here is the mean PI score, as I use these 

                                                 
40 One CASSR has only three cases with full information and this CASSR is excluded in the complete case 
analysis are there are too few data points to estimate the performance indicator.  Excluding this CASSR brings 
the total number of cases with complete information to 125,750 cases, and the total number of CASSRs 
excluded to 20.  
41 Little’s MCAR test was estimated using the user-written mcartest routine in Stata (Li 2013). 
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data for subsequent chapters, the imputation model is designed to be congenial with the 

analysis models in Chapter 6.  To strengthen the plausibility of the MAR assumption, I also 

included all variables that were available in the dataset and could be shown empirically to be 

associated with both missingness and the outcomes of interest, e.g. ethnicity.  Due to the size 

of the dataset and number of variables with missing data, to make the imputation 

computationally feasible for some imputation models the variables were more limited (see 

Appendix 1 for more details). 

In total 20 imputations were carried out, after a burn-in period of 20 iterations.  I ran a 

series of tests to assess the necessary length of the burn-in period for the chain to converge to 

a stationary distribution and to explore the sufficiency of the number of imputations (White et 

al. 2011) – for details see Appendix 2.  After imputation, I combined the individual SCRQoL 

components into an overall SCRQoL score.  Estimates of means and variance for each of the 

ASCOF indicators were obtained for each imputed dataset, with and without weights (see 

below for description of how these are generated).  The estimates obtained from each analysis 

were combined using Rubin’s rules (1987), which take account of the variation within and 

between imputations. 

 

Procedure for generating weights to adjust for unit nonresponse 

Weights are applied such that missing or incomplete units in the sample are ignored and the 

complete data are inflated to reflect the probability of response for that unit.  I generate the 

weights in several steps.  First, I develop a statistical model to predict response propensity.  

This model is a simplified version of the model in Chapter 4.  I then use the predicted 

probabilities from this model to develop weights to rebalance the respondent sample for 

nonresponse.  Given the extent of missingness in the auxiliary data, these steps are carried out 

on an MI sample, to produce a weight for all cases in the dataset (i.e. 61,026 weights).  The 

steps are described below. 

    

Step 1: statistical model for predicting response propensity 

A correlation of CASSR-level response rates against CASSR-level PI means, suggested that 

cluster-specific nonignorable (CSNI) nonresponse may be a problem for some PIs (see Table 

59, Appendix 3).  CSNI refers to a situation where cluster-level nonresponse depends on the 

cluster means of the survey variables of interest.  Although cluster membership is fully 

observed for nonrespondents, missingness is not MAR because the cluster means are 

unobserved random effects (Yuan and Little 2007).  Therefore to ensure weights were not 



 

 

143

biased, I follow Skinner and D’Arrigo’s (2011) advice and use a MNL model to predict 

response propensity to the ASCS with CASSRs entered into the model as fixed effects42.   

The ASCS response variable, which I denote ݕ௜௝, for individual ݅ in CASSR j, has 

three outcomes: respondent (0), blank form (1), no response (2).  The probability of ݕ௜௝ 

having one of the three response outcomes is given by ߨ௜௝
ሺ௦ሻ ൌ Pr	ሺݕ௜௝ ൌ ݏ ሻ, forݏ ൌ0, 1, 2.  If I 

take respondent (0) as the base category, the MNL model can be written 

 

 log ቆ
గ೔ೕ
ሺೞሻ

గ೔ೕ
ሺబሻቇ ൌ ଵࢼ

ሺ௦ሻܠ௜௝
ሺ௦ሻ ൅ ൅ࢼସ

ሺ௦ሻ܌௝
ሺ௦ሻ, ݏ ൌ 1,2 (13) 

     

where ܠ௜௝
ሺ௦ሻ is a vector of individual characteristics, ܌௝

ሺ௦ሻis a set of dummy variables 

representing CASSRs, and the ࢼሺ௦ሻs are vectors of coefficients.  The choice of covariates is 

informed by the empirical model in Chapter 4.  Since CASSRs are included within the model 

as a set of dummy variables, I do not include any CASSR-level variables.  Further checks 

were carried out to see if any variables omitted from the final model in Chapter 3 (see Table 

3) were important in predicting any of the PIs, but no further variables were included in the 

model43.  The final model is shown in Appendix 4, estimated by CCA and MI.   

 

Step 2: generating inverse propensity weights 

The model in (13) above consists of two simultaneous equations.  The first (ݏ ൌ 1) models 

the logarithm of the ratio of the probability of returning a blank form to that of being a 

respondent as a function of covariate individual and CASSR effects; the second (ݏ ൌ 2) 

models the logarithm of the ratio of the probability of providing no response to that of being a 

                                                 
42 When constructing inverse probability weights, Skinner and D’Arrigo (2011), caution against using a random-
effects model to account for the clustering of cases, as it produces biased weighted estimates.  If the MAR 
assumption is plausible they suggest using the marginal model, as this does not produce biased estimates.  
Importantly they note that the MAR assumption may not hold where cases are clustered, as non-response may 
be CSNI.  In this situation they also find the marginal model to produce biased weighted estimates and instead 
propose a conditional logistic regression or fixed effects regression, which they demonstrate produces unbiased 
weighted estimates.  A disadvantage of the conditional logistic regression approach is that it is limited to binary 
outcome variables (the ASCS has two nonrespondent groups), so it is not useful for this analysis.  The fixed 
effects approach is more promising and as Skinner and D’Arrigo (2011, p. 26) note it “performed similarly to 
the conditional maximum likelihood estimator and it may be that in practice it will often provide a reasonable 
proxy to this estimator, while not requiring such strong model assumptions nor so much computation”. 
43 In selecting covariates there is a trade-off between bias reduction and increasing the variance of the weight 
(Höfler et al. 2005).  The best covariates are i) those with the highest predictive value, so predicted propensity 
scores have a low predictive standard deviation for each individual and the model fits the data (Höfler et al. 
2005), and ii) those that they are predictive of survey outcomes, in this case the PIs (Little and Vartivarian 
2003). 
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respondent as a function of covariate effects.  Predicted probabilities for computing response 

propensity weights, can be calculated for each outcome as follows.  As the log-odds of an 

outcome compared to itself is zero the effects of any independent variables are also zero for 

the base category.  The simultaneous equations can be solved, by rearranging equation (13) 

such that the probability of observing outcome	ݏ given ܠ with the reference category given by 

  is ,ݎ

 

 

௜ߨ
ሺ௦ሻ ൌ

expሺߚሺ௦ሻܠ௜
ሺ௦ሻሻ

1 ൅	∑ expሺߚሺ௥ሻܠ௜
ሺ௥ሻሻଶ

௥ୀଵ

,  

 

௜ߨ
ሺ଴ሻ ൌ 1 െ ௜ߨ

ሺଵሻ െ ௜ߨ
ሺଶሻ 

ݏ ൌ 1,2 (14) 

 

The predicted probabilities thus obtained are then used to compute the weights.  The 

coefficient of variation was very similar across the models and there were no large outlier 

values.  (See Appendix 5, Table 61 and Table 62 for the distribution of the probabilities and 

weight, respectively.)  For this reason I have simply used the inverse of the propensity score 

and not trimmed the weights or used adjustment cells (Little 1986, Kalton and Flores-

Cervantes 2003).  The inverse propensity weights are calibrated by multiplying by a post-

stratification adjustment to ensure the population totals for each CASSR remain the same 

after weighting.  

 

Step 3: treatment of missing auxiliary data 

The auxiliary data used to model response propensity is subject to missingness, so I use MI to 

impute the missing information.  To reflect the distributional characteristics of the variables, I 

use chained equations MI (van Buuren 2007, White et al. 2011).  A limitation of this method, 

already mentioned, is that it does not easily accommodate the clustered structure of the data.  

Problems arise where I am imputing a missing value within a CASSR-level variable.  In such 

cases, the imputation model treats the variable as if it were an individual-level variable.  

Consequently, imputed cases are likely to vary within the CASSR.  Since this then affects 

how these variables are treated within the analysis model, this implies that analysis and 

imputation models are not congenial.  I therefore take steps to limit excessive variability (see 

Appendix 6 for discussion), but after imputation there is a small amount of variability within 

CASSRs. 
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Due to the size of the dataset and number of variables with missing data a pragmatic 

approach had to be taken to the specification of the imputation equations to make the 

imputation computationally feasible.  In general, the imputation equations for each variable 

include all of the variables used in the analysis model.  Where necessary, however, variables 

were omitted where the predictive significance of the variable was found to be less than 0.15.  

Derived variables could not be included as their derivation could not be specified within the 

software, which may produce some bias in results for these variables.  To strengthen the 

plausibility of the MAR assumption, where possible any variables not included in the 

response propensity model that nevertheless were strongly correlated with the variables to be 

imputed were also included.  Since receipt of some services is entirely missing for some 

CASSRs, I also use additional CASSR-level data on service receipt and social care 

expenditure to allow for shifts in service receipt by CASSR (The Information Centre for 

Health and Social Care 2012a, The Information Centre for Health and Social Care 2012c).  

Variables with more than 50 per cent of the cases missing (i.e. secondary client group, 

religion and budget) were not considered for imputation (McKee et al. 1999, Rubin 2003).  

(See Appendix 6 for details regarding the imputation models.) 

In total 20 imputations were carried out, as 17 per cent of cases had incomplete data 

(White et al. 2011), after a burn-in period of 20 iterations.  Tests for the appropriateness of 

the burn-in period for achieving convergence of the chain to a stationary distribution and 

number of imputations are described in Appendix 7.  After imputation all derived variables 

were generated.  I then estimated the response propensity models and the predicted response 

probabilities.  I use Rubin’s rules to combine the predicted probabilities from each dataset 

and generate a weight (White et al. 2011) that can be applied to the PIs calculated on the 

multiply-imputed respondent dataset.  All imputations and analysis were carried out in Stata 

13. 

 

Method for comparing the effects of adjusting for nonresponse on performance assessment 

To assess the effect of adjusting PIs on inferences about the performance of organisations, I 

look at whether there are differences between the unadjusted PIs and adjusted PIs, in terms of 

(i) the ranking of CASSRs and (ii) the identification of outlying organisations.  I compare the 

ranking of CASSRs attained under the MAR assumption to the ranking of CASSRs under the 

MCAR assumption, using caterpillar plots and a variety of correlation statistics.  These 

include Pearson’s and Spearman’s rank correlation coefficients, as well as Kendall’s tau 

statistic.  The tau statistic is calculated based on the degree of concordance and discordance 
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in rankings between pairs of CASSRs.  A Kendall’s τ of one indicates that organisations are 

ranked in exactly the same order, both before and after adjustment.  The tau coefficient 

therefore makes it possible to quantify the proportion of CASSR pairs that change order after 

the adjustment, using the formula 100*ሺ1 െ ߬ሻ 2⁄  (Johnson et al. 2010). 

To examine the effect of nonresponse on the identification of outliers, I use a funnel 

plot, as described in Chapter 3 and decompose the effect of nonresponse on performance 

assessment into the mean outcome, volume and variability components.  I calculate the 

number of outliers under the different methods for addressing missingness in the data, 

specifying whether cases are ‘in control’, high or low ‘alerts’, or high or low ‘alarms’ 

depending on where they lie in relation to the funnel plot control limits (see Chapter 3 for 

discussion).  I also look at the number of ‘movements’ between the different outlier states.  

To assess the significance of the changes in the number of movements as a consequence of 

nonresponse adjustment, I draw on the concept of ‘false negatives’ and ‘false positives’, as 

discussed in Chapter 3.  The assumption of this analysis is that the data are truly MAR, the 

likelihood of which I reflect on in the discussion. 

 

Results 

Assessing the effect of nonresponse on PI scores 

In this section I provide estimates of the extent of bias due to item and unit nonresponse for 

each of the ASCOF indicators.  Several different estimates are presented in Table 12 and 

Table 13 to enable interpretation of both the significance and meaningfulness of the bias.  A 

point estimate for the amount of bias is presented which is calculated by subtracting the 

indicator estimated under the MAR assumption from the indicator estimated under the 

MCAR assumption.  To appreciate the magnitude of the bias I also present the absolute bias 

and the absolute bias as a percentage of the scale, since the latter provides a way of 

comparing the relative magnitude of the bias across the different indicators.  I also present the 

absolute bias as a percentage of the SE estimated under the MCAR assumption, to provide an 

indication of the statistical significance of the bias.  Changes in variability can be understood 

by examining the SE difference (MAR – MCAR) as a percentage of the SE estimated under 

the MCAR assumption.  Since bias and changes in variability may vary across CASSRs, it is 

important to consider their distribution among CASSRs.  Therefore, I report the number of 

CASSRs where the bias is greater than one percentage point of the given scale, the number of 

CASSRs where the bias is negative, and the number of CASSRs where the bias is greater 

than 196 per cent of the indicator’s SE (corresponding to the 95% confidence interval) 
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estimated under the MCAR assumption, and the number of CASSRs with increases in 

variability. 

In general, at both the overall population level and CASSR level the estimates for the 

ASCOF indicators derived under MAR assumptions are very similar to those derived under 

the MCAR assumption.  The mean difference observed at the population level, as well as for 

CASSRs is in all cases less than one percentage point of the scale, with slightly greater shifts 

being observed after IPW/CCA compared to CCA/MI.  The different levels of unit and item 

nonresponse means it is difficult to compare the IPW/CCA and CCA/MI results directly, but 

it seems likely that IPW/CCA has more effect than CCA/MI, potentially as a consequence of 

the higher rates of unit compared to item nonresponse.  This is illustrated in Figure 10 and 

Figure 11, which show how the magnitude of the estimated bias increases as nonresponse 

rates increase.  The fitted lines show that the gradient of the line is steeper for the relationship 

between item nonresponse rate and the MAR-MCAR difference, than for unit nonresponse 

rate.  This suggests that the effect of MI is minimised by the fairly low levels of item 

nonresponse observed in the dataset.  
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Table 12: Estimates of the extent of bias due to item and unit nonresponse for the SCRQoL and satisfaction indicators 

 SCRQoL indicatora  Satisfaction indicatora

Treatment of 
missingness  
(n for MAR) 

CCA/MI 
(n=61,026) 

IPW/CCA 
 (n=54,350) 

IPW/MI 
 (n=61,026) 

CCA/MI 
 (n=61,026) 

IPW/CCA 
 (n=57,929) 

IPW/MI 
 (n=61,026) 

Difference (adjusted – raw)      

Total sample -0.031 -0.060 -0.093 -0.002 -0.002 -0.004
Mean -0.035 -0.063 -0.102 -0.002 -0.002 -0.005
Maximum 0.137 0.111 0.153 0.005 0.017 0.012
Minimum -0.300 -0.340 -0.481 -0.016 -0.028 -0.032
Freq more +ve (% 
sample) 

45 (30%) 23 (15%) 25 (17%) 36 (24%) 51 (34%) 33 (22%)

Absolute Difference (|adjusted – raw|)      

Total sample 0.031 0.060 0.093 0.002 0.002 0.004
Mean 0.068 0.070 0.120 0.003 0.004 0.006
Maximum 0.300 0.340 0.481 0.016 0.028 0.032
Minimum 0.000 0.000 0.000 0.000 0.000 0.000

Absolute difference as a percentage of the scale   

Total sample 0.1% 0.2% 0.4% 0.2% 0.2% 0.4%
Mean 0.3% 0.3% 0.5% 0.3% 0.4% 0.6%
Maximum 1.2% 1.4% 2.0% 1.6% 2.8% 3.2%
Minimum 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Freq >1% pt  
(% sample) 

2 (1%) 4 (3%) 13 (9%) 3 (2%) 14 (9%) 35 (23%)

Absolute difference as a percentage of raw SE      

Total sample 194% 374% 583% 116% 113% 233%
Mean 34% 35% 60% 13% 18% 26%
Maximum 147% 169% 236% 65% 118% 136%
Minimum 0% 0% 0% 0% 0% 0%
Freq > 196%  
(% sample) 

0 (0%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 0 (0%)
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 SCRQoL indicatora  Satisfaction indicatora

Treatment of 
missingness  
(n for MAR) 

CCA/MI 
(n=61,026) 

IPW/CCA 
 (n=54,350) 

IPW/MI 
 (n=61,026) 

CCA/MI 
 (n=61,026) 

IPW/CCA 
 (n=57,929) 

IPW/MI 
 (n=61,026) 

Change in SE as a percentage of raw SE (adjusted-raw)     

Total sample -5.0% 5% -0.6% 0.1% 2.1% 2.0%
Mean -5% 5% 0% -0.3% 2.1% 2%
Maximum 1% 23% 20% 9.4% 8.6% 11%
Minimum -13% -1% -13% -2.8% -0.2% -2%
Freq SE incr.  
(% sample) 

5 (3%) 145 (97%) 62 (42%) 42 (28%) 148 (99%) 128 (86%)

Key: a number of cases under MCAR assumption: SCRQoL=54,350, Satisfaction=57,929 
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Table 13: Estimates of the extent of bias due to item and unit nonresponse for the control, safety and access to information indicators 

 Control indicatora Safety indicatora Information indicatora 

Treatment of 
missingness  
(n for MAR) 

CCA/MI 
 (n=61,026) 

IPW/CCA 
 (n=59,478)

IPW/MI 
 (n=61,026)

CCA/MI 
 (n=61,026)

IPW/CCA 
 (n=59,499)

IPW/MI 
 (n=61,026)

CCA/MIb 
(n=45,313) 

IPW/CCA 
 (n=42,884)

IPW/MIb 
(n=45,313) 

Difference (raw – adjusted) 
Total sample 0.000 -0.003 -0.003 0.000 -0.004 -0.004 0.001 -0.003 -0.003 
Mean 0.000 -0.003 -0.003 0.000 -0.004 -0.004 0.000 -0.004 -0.003 
Maximum 0.005 0.010 0.012 0.003 0.003 0.003 0.009 0.026 0.023 
Minimum -0.009 -0.020 -0.020 -0.005 -0.023 -0.022 -0.013 -0.019 -0.021 
Freq more +ve  
(% sample) 

83 (56%) 43 (29%) 45 (30%) 83 (56%) 23 (15%) 25 (17%) 84 (56%) 37 (25%) 40 (27%) 

Absolute Difference (|raw – adjusted|) 
Total sample 0.000 0.003 0.003 0.000 0.004 0.004 0.001 0.003 0.003 
Mean 0.002 0.005 0.005 0.001 0.004 0.005 0.003 0.005 0.005 
Maximum 0.009 0.020 0.020 0.005 0.023 0.022 0.013 0.026 0.023 
Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Absolute difference as a percentage of the scale 
Total sample 0.0% 0.3% 0.3% 0.0% 0.4% 0.4% 0.1% 0.3% 0.3% 
Mean 0.2% 0.5% 0.5% 0.1% 0.4% 0.5% 0.3% 0.5% 0.5% 
Maximum 0.9% 2.0% 2.0% 0.5% 2.3% 2.2% 1.3% 2.6% 2.3% 
Minimum 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Freq >1% pt  
(% sample) 

0 (0%) 15 (10%) 16 (11%) 0 (0%) 15 (10%) 14 (9%) 1 (1%) 16 (11%) 21 (14%) 

Absolute difference as a percentage of raw SE 
Total sample 11% 170% 161% 1% 376% 374% 35% 171% 138% 
Mean 8% 22% 24% 7% 34% 36% 11% 20% 21% 
Maximum 41% 104% 102% 55% 172% 161% 45% 91% 88% 
Minimum 0% 0% 0% 0% 0% 0% 0% 0% 0% 
Freq > 196%  
(% sample) 

0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
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 Control indicatora Safety indicatora Information indicatora 

Treatment of 
missingness  
(n for MAR) 

CCA/MI 
 (n=61,026) 

IPW/CCA 
 (n=59,478)

IPW/MI 
 (n=61,026)

CCA/MI 
 (n=61,026)

IPW/CCA 
 (n=59,499)

IPW/MI 
 (n=61,026)

CCA/MIb 
(n=45,313) 

IPW/CCA 
 (n=42,884)

IPW/MIb 
(n=45,313) 

Change in SE as a percentage of raw SE (adjusted-raw)
Total sample -0.1% 2.7% 2.5% 0.5% 7.5% 7.8% -0.5% 3.0% 2.4% 
Mean -0.4% 2.7% 2% 0.1% 7.2% 7% -0.3% 3.0% 3% 
Maximum 2.5% 12.1% 16% 19.5% 37.3% 37% 5.0% 10.4% 13% 
Minimum -3.5% -1.5% -2% -3.0% -3.8% -4% -2.4% -3.9% -4% 
Freq SE incr. (% 
sample) 

36 (24%) 137 (92%) 125 (84%) 61 (41%) 134 (90%) 129 (87%) 45 (30%) 140 (94%) 136 (91%) 

Key: a number of cases under MCAR assumption: Control=59,478, Safety=59,499, Information=42,884; b Sample varies between 45,313 and 45,396, as imputations differ in 
how many responses are imputed as ‘don’t know’ response options. 
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The effect of adjusting for item and unit nonresponse using the IPW/MI approach is in 

general to make the ASCOF estimates more negative, implying that it is on average people 

who have worse quality of life and are less satisfied with their care who do not respond or do 

not fully complete the questionnaires.  Notably, however, for the control, safety and 

information indicators, CCA/MI adjustment has on average no effect or, in the case of the 

information indicator, a slightly positive effect.  The effect of adjustment also varies across 

the CASSRs.  For all indicators there are some CASSRs that have more positive estimates 

after nonresponse adjustment.  This is illustrated more clearly in the graphs in Figure 12, 

which show the distribution of bias in CASSR indicator scores, or shifts in indicator 

estimates, following adjustment for unit and item nonresponse for each of the indicators, as a 

proportion of the standard error.   

The extent of bias estimated as a result of adjusting for both item and unit 

nonresponse differs by indicator as illustrated in Figure 12.  Where adjustment for item 

nonresponse has a perceptible effect on average scores (i.e. for the SCRQoL and satisfaction 

indicators), the effect of adjusting for both item and unit nonresponse is to shift the 

distribution of indicators scores further to the left. Interestingly this does not always result in 

more CASSRs with negative scores.  Examining movements for individual CASSRs, it seems 

that in some cases item and unit nonresponse have opposing biasing effects on scores.  This 

means that for some CASSRs the effects of adjusting for both item and unit nonresponse is to 

some extent to cancel each other out. 

Adjustments for nonresponse using IPW/CCA increase the variance of PIs.  Standard 

errors increase after weighting for at least 90 per cent of CASSRs for all indicators.  By 

comparison CCA/MI tends to have a negative effect on the standard errors for the majority of 

CASSRs and for the whole sample for most PIs.  Only for the safety indicator does CCA/MI 

appear to lead to larger standard errors for a substantial number of CASSRs, with some fairly 

large decreases in the precision of indicator estimates.  The combined IPW/MI effect for most 

PIs follows the IPW/CCA effect and is, on average and for the majority of CASSRs, 

precision-reducing.  The only indicator for which this is not the case is the SCRQoL 

indicator.  Although some CASSRs experience reductions in the precision of this PI, on 

average, and for the majority of CASSRs, the effect is precision-enhancing.  While the effects 

of MI and IPW on estimated bias are fairly similar and broadly all in the same direction, the 

procedures have very different effects on precision.    
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Figure 10: Relationship between bias (MAR-MCAR) and CASSR unit nonresponse rate for all indicators 
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Figure 11: Relationship between bias (MAR-MCAR) and CASSR item nonresponse rate for all indicators 
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Figure 12: Distribution of bias (MAR-MCAR) in PI scores as a proportion of SE 
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The magnitude of all shifts in the indicator scores as a result of nonresponse is small.  

However, at the overall population level the sample size is much larger and estimates more 

precise, meaning that for many indicators the estimated bias is greater than the width of the 

95 per cent confidence interval (shift >196% of the SE).  At the CASSR level the picture is 

very different, with only one CASSR moving more than 1.96 standard errors, and then only 

for the SCRQoL indicator following adjustment for both item and unit nonresponse.  As 

Figure 12 illustrates for each indicator and for the overwhelming majority of CASSRs 

movements are less than one standard error.   

 

Assessing the effect of nonresponse on performance assessment 

In this section I assess the effect of nonresponse to the ASCS on performance assessment.  I 

first look at the effect of nonresponse on the rankings of CASSRs within caterpillar plots, and 

consider the extent to which nonresponse may influencing rankings by looking at the number 

and magnitude of changes in rank ordering using a range of correlation statistics.  Following 

this, I present the indicators scores for CASSRs using funnel plots and examine how 

nonresponse may be affecting the identification of outliers. 

  

1. Caterpillar plots and rankings 

The graphs in Figure 13 to Figure 17 illustrate the effect of adjusting for item and unit 

nonresponse on the distribution of indicators scores for CASSRs using caterpillar plots, with 

approximate 95% confidence intervals.  From visual inspection of the plots, without labels 

for individual CASSRs it is difficult to see much difference in the plots after adjustment for 

nonresponse (plots b, c and d) compared to under CCA (plot a).  There is a perceptible 

increase in variability after weighting for unit nonresponse, as seen by wider-looking 

confidence intervals for some of the CASSRs, but the general distribution of the indicator 

scores looks fairly similar.  
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Figure 13: Caterpillar plots of the SCRQoL indicator, with approximate 95% 
confidence intervals, under different nonresponse adjustments 
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Figure 14: Caterpillar plots of the satisfaction indicator, with approximate 95% 
confidence intervals, under different nonresponse adjustments 
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Figure 15: Caterpillar plots of the control over daily life indicator, with approximate 
95% confidence intervals, under different nonresponse adjustments 
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Figure 16: Caterpillar plots of the safety indicator, with approximate 95% confidence 
intervals, under different nonresponse adjustments 
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Figure 17: Caterpillar plots of the information indicator, with approximate 95% 
confidence intervals, under different nonresponse adjustments 
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Since the caterpillar plots imply a ranking of CASSRs it is useful to see how similar 

the ordering of CASSRs is following adjustment for unit and item nonresponse.  Table 14 

summarises the similarity in ranking of CASSRs pre and post adjustment using a range of 

correlation statistics.  The Pearson and Spearman’s rank correlation coefficients are in all 

cases, for all indicators, always above 0.9, which indicates near perfect correlation.  Kendall’s 

tau statistic is always above 0.85 and indicates that fewer than ten per cent of the CASSR 

pairs change order.  In all cases the percentage changing order is highest for the combined 

IPW/MI adjustment, and in general it is following adjustment for unit nonresponse that the 

most pairs change order.  The exception is for the SCRQoL indicator where more pairs of 

CASSRs change order after CCA/MI adjustment compared to after IPW/CCA adjustment.  

This may reflect the higher rates of item nonresponse observed for this indicator. 

 
 
 

Table 14: Correlation statistics between indicators estimated under MCAR and MAR 

assumptions 

Indicator Missing data 
adjustments 

 

Pearson’s 
R2 

(p-value) 

Rho 
(p-value) 

Tau 
(p-value) 

 

% pairs 
change 
order 

SCRQoL PI 
IPW/CCA 0.991 0.991 0.928 3.6%
CCA/MI  0.988 0.983 0.897 5.1%
IPW/MI 0.976 0.971 0.860 7.0%

      

Satisfaction 
PI 

IPW/CCA 0.994 0.993 0.936 3.2%
CCA/MI  0.998 0.997 0.959 2.0%
IPW/MI 0.991 0.990 0.920 4.0%

      

Control PI 
IPW/CCA 0.993 0.992 0.927 3.6%
CCA/MI  0.999 0.998 0.970 1.5%
IPW/MI 0.992 0.991 0.924 3.8%

      

Safety PI 
IPW/CCA 0.987 0.982 0.899 5.1%
CCA/MI  0.999 0.998 0.971 1.5%
IPW/MI 0.986 0.981 0.892 5.4%

      

Information 
PI 

IPW/CCA 0.992 0.989 0.922 3.9%
CCA/MI  0.997 0.995 0.954 2.3%
IPW/MI 0.990 0.987 0.911 4.5%

 

Although Table 14 shows that correlations are very high between the PIs estimated 

under different assumptions about the missingness mechanism, for individual CASSRs some 

of the changes in rank can be quite large.  This is illustrated in the histograms (Figure 18 to 

Figure 22), which show the difference between the rank position of CASSRs relative to each 
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other before and after adjustment for nonresponse using the three different methods.  Positive 

changes in rank position indicate that after adjustment for nonresponse the rank position of 

the CASSR improves, and vice-versa for negative changes.  For the SCRQoL indicator, 

CCA/MI and IPW/CCA adjustment has a similar effect on the rank position of CASSRs.  

After adjustment a small number of CASSRs move over 20 positions, and a larger number 

move over 10 positions.  The graphs demonstrate how the combined effect of IPW/MI 

increases the number of changes in rank, and also leads to more and larger changes in the 

rank position of CASSRs, with one CASSR dropping 45 positions on the SCRQOL indicator.   

In contrast for the satisfaction, control over daily life, safety and access to information 

indicators, weighting for unit nonresponse has a larger effect than MI on rank positions, 

causing more and larger movements in rank.  Graphs showing the combined effect of 

adjustment for unit and item nonresponse for these indicators look very similar to those 

generated following IPW/CCA adjustment.  The movements after IPW/MI adjustment are in 

general smaller for these four indicators than those for the SCRQoL indicator, with the 

maximum movement being a drop of 24 positions for the satisfaction indicator, 22 positions 

for the control over daily life indicator, 42 positions for safety, and an increase of 34 

positions for the access to information indicator.   
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Figure 18: Distribution of CASSR changes in rank (MAR-MCAR) for the ASCOF SCRQoL indicator 
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Figure 19: Distribution of CASSR changes in rank (MAR-MCAR) for the satisfaction indicator 
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Figure 20: Distribution of CASSR changes in rank (MAR-MCAR) for the control over daily life indicator 

 

0
20

40
60

80
F

re
qu

en
cy

-20 -10 0 10 20
Difference between ranks

a. IPW/CCA

0
20

40
60

80
F

re
qu

en
cy

-20 -10 0 10 20
Difference between ranks

b. CCA/MI

0
20

40
60

80
F

re
qu

en
cy

-20 -10 0 10 20
Difference between ranks

c. IPW/MI

Key: width of interval=3

Control over daily life indicator



 

 

167 

 

Figure 21: Distribution of CASSR changes in rank (MAR-MCAR) for the safety indicator 
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Figure 22: Distribution of CASSR changes in rank (MAR-MCAR) for the access to information indicator 
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2. Funnel plots and the identification of outliers 

Figure 23 to Figure 27 illustrate the effect of adjusting for item and unit nonresponse on the 

distribution of CASSR scores using funnel plots.  The top and bottom ten CASSRs under 

CCA are marked in green and blue, respectively, so it is possible to follow the movements of 

these CASSRs after nonresponse adjustment.  Before considering the effects of nonresponse 

adjustment, it is worth noting two features of the charts.  First, the vast majority of 

organisations have similar (complete case and respondent) sample sizes, at around 350 to 400 

people, but a small number have much larger sample sizes.  This reflects decisions taken 

within the CASSRs about how to interpret the national guidance and differences in the 

assumptions they made about expected response rates.  While a few CASSRs seem to have 

potentially overestimated (or been overly cautious in estimating) the rate of nonresponse, the 

CASSR with the largest respondent sample did not sample from their population, but sent out 

questionnaires to the entire eligible adult social care population.  The funnel plots illustrate 

strikingly the greater accuracy attained with larger sample sizes – information which is lost in 

the caterpillar plots.   

Second, for the SCRQoL indicator and the satisfaction indicator a large proportion of 

CASSRs are ‘out of control’, meaning that they fall beyond the 95% and 99.8% control 

limits.  This can be seen more clearly by inspection of the results in Table 15, which shows 

the frequency and percentage of CASSRs identified as ‘in control’ and out of control, as 

represented by the alert or alarm status.  In the case of the SCRQoL indicator, nearly half the 

CASSRs fall into one of the positive or negative alert statuses and around 20 per cent into 

one of the negative or positive alarm statuses.  For satisfaction, fewer CASSRs are ‘out of 

control’; nevertheless, nearly 40 per cent fall into the (positive or negative) alert status and 15 

per cent fall into one of the negative or positive alarm status.  Checks for ‘overdispersion’ 

(see Table 69, Appendix 8), however, did not indicate that the process is ‘out of control’ so I 

have not made any adjustments to control limits (Spiegelhalter 2005b). 

Inspection of the plots shows that there is very little difference in the width of the 

control limits after nonresponse adjustment.  Although nonresponse adjustment does increase 

the variability of estimates, it is not a large enough effect to have a perceptible impact on the 

width of the control limits.  Equally, as might be expected given the results already presented, 

there is little difference to be seen between the distribution of points on the three funnel plots 

that include adjustment for item and unit nonresponse (‘b’, ‘c’ and ‘d’ in the charts) and the 

funnel plot (‘a’ in the charts) that makes no adjustment for nonresponse.  There are a few 

small movements in the top and bottom ten, sometimes driven by CCA/MI adjustment and 
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sometimes by IPW/CCA adjustment, depending on the indicator.  These seem to be most 

significant for the SCRQoL and satisfaction PIs.  

Table 15 shows that adjustment for either of, or both, item and unit nonresponse does 

not have a large effect on the number of outliers identified.  In most instances there are only a 

few changes in the number of outliers following adjustment for either or both of item and unit 

nonresponse.  There are also no clear patterns to the effects, with adjustment sometimes 

leading to the identification of more outliers (e.g. satisfaction PI) and sometimes fewer (e.g. 

control PI).   

Analysis at this aggregated level, however, masks the extent of movements into and 

out of control status.  These movements are summarised in Table 16 for all the indicators.  

Taking as an example the SCRQoL indicator, after IPW/MI adjustment, only one more 

CASSR is out of control but in fact three move to alarm from alert status, nine move to alert 

status from in control, and a further five move to alert from alarm status.  There are fewer 

movements for the other indicators and it is important to note that the overwhelming majority 

are between adjacent categories.  Nevertheless, without adjustment for nonresponse a 

proportion of CASSRs would be falsely identified as either out of control or in control for 

each indicator, with the SCRQoL indicator having the highest rates of false negatives and 

positives.  For the SCRQoL and control PIs the ‘type one error rate’ (assuming the adjusted 

PI is the ‘true’ score) is over five per cent after IPW/MI adjustment. 
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Figure 23: Funnel plots of CASSR scores on the SCRQoL indicator under different 
nonresponse adjustments 
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Figure 24: Funnel plots of CASSR scores on the satisfaction indicator under different 
nonresponse adjustments 
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Figure 25: Funnel plots of CASSR scores on the control over daily life indicator under 
different nonresponse adjustments 
 

 
 

.6

.65

.7

.75

.8

.85

In
di

ca
to

r 
sc

or
e

200 400 600 800 1000 1200 1400
Complete cases sample size

CASSR Bottom 10 Top 10

Sign. 5% Sign. .2%

a. CCA

.6

.65

.7

.75

.8

.85

In
di

ca
to

r 
sc

or
e

200 400 600 800 1000 1200 1400
Effective respondent sample size

CASSR Bottom 10 Top 10

Sign. 5% Sign. .2%

b. IPW/CCA

.6

.65

.7

.75

.8

.85

In
di

ca
to

r 
sc

or
e

200 400 600 800 1000 1200 1400
Respondent sample size

CASSR Bottom 10 Top 10

Sign. 5% Sign. .2%

c. CCA/MI

.6

.65

.7

.75

.8

.85

In
di

ca
to

r 
sc

or
e

200 400 600 800 1000 1200 1400
Effective respondent sample size

CASSR Bottom 10 Top 10

Sign. 5% Sign. .2%

d. IPW/MI

Control over daily life indicator



 

 

174

 

Figure 26: Funnel plots of CASSR scores on the safety indicator under different 

nonresponse adjustments 
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Figure 27: Funnel plots of CASSR scores on the access to information indicator under 
different nonresponse adjustments 
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Table 15: Number of CASSRs identified as outliers for each ASCOF indicator, using 

different adjustments for missingness (n=149) 

  Outlier status 
PI Missing data 

adjustment 
High 
alarm 

y>-3 SD 

High alert 
y>2 SD 

‘Normal’ 
range 

Low alert 
y>-2 SD 

Low 
alarm 

y>-3 SD 

S
C

R
Q

oL
 P

I CCA/CCA 15 (10%) 34 (23%) 52 (35%) 30 (20%) 18 (12%)

IPW/CCA 15 (10%) 35 (23%) 51 (34%) 32 (21%) 16 (11%)

CCA/MI 15 (10%) 36 (24%) 50 (34%) 29 (19%) 19 (13%)

IPW/MI 14 (9%) 34 (23%) 51 (34%) 33 (22%) 17 (11%)
       

S
at

is
fa

ct
io

n 
P

I 

CCA/CCA 6 (4%) 23 (15%) 86 (58%) 25 (17%) 9 (6%)

IPW/CCA 6 (4%) 22 (15%) 87 (58%) 26 (17%) 8 (5%)

CCA/MI 6 (4%) 25 (17%) 87 (58%) 23 (15%) 8 (5%)

IPW/MI 6 (4%) 23 (15%) 82 (55%) 30 (20%) 8 (5%)
       

C
on

tr
ol

 P
I CCA/CCA 8 (5%) 24 (16%) 84 (56%) 24 (16%) 9 (6%)

IPW/CCA 8 (5%) 24 (16%) 87 (58%) 23 (15%) 7 (5%)

CCA/MI 8 (5%) 23 (15%) 84 (56%) 24 (16%) 10 (7%)

IPW/MI 8 (5%) 20 (13%) 91 (61%) 23 (15%) 7 (5%)
       

S
af

et
y 

P
I CCA/CCA 2 (1%) 15 (10%) 101 (68%) 21 (14%) 10 (7%)

IPW/CCA 3 (2%) 19 (13%) 92 (62%) 25 (17%) 10 (7%)

CCA/MI 2 (1%) 15 (10%) 103 (69%) 19 (13%) 10 (7%)

IPW/MI 4 (3%) 17 (11%) 92 (62%) 25 (17%) 11 (7%)
       

In
fo

rm
at

io
n 

P
I 

CCA/CCA 4 (3%) 17 (11%) 105 (70%) 19 (13%) 4 (3%)

IPW/CCA 4 (3%) 14 (9%) 103 (69%) 22 (15%) 6 (4%)

CCA/MI 3 (2%) 17 (11%) 106 (71%) 19 (13%) 4 (3%)

IPW/MI 3 (2%) 13 (9%) 106 (71%) 22 (15%) 5 (3%)
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Table 16: Movements into and out of control status following adjustment for item and unit nonresponse 

Adjustment IPW/MI  CCA/MI  IPW/CCA 

Indicator

S
C

R
Q

oL
 

S
at

is
fa

ct
io

n 

C
on

tr
ol

 

S
af

et
y 

In
fo

rm
at

io
n

 

S
C

R
Q

oL
 

S
at

is
fa

ct
io

n 

C
on

tr
ol

 

S
af

et
y 

In
fo

rm
at

io
n

 

S
C

R
Q

oL
 

S
at

is
fa

ct
io

n 

C
on

tr
ol

 

S
af

et
y 

In
fo

rm
at

io
n

 

Movements into high 'alarm' status from 
high alert 1 0 0 2 0 1 0 0 0 0 1 0 0 1 0 
in control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  

Movements into low 'alarm' status from 
low alert 2 0 1 2 1 3 0 1 0 0 1 0 1 1 2 
in control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  

Movements into high 'alert' status from 
in control 5 1 0 3 0 5 2 0 1 1 3 0 2 5 0 
high alarm 2 0 0 0 1 1 0 0 0 1 1 0 0 0 0 

  

Movements into low 'alert' status from 
in control 4 5 1 4 3 1 0 0 0 1 2 3 0 4 3 
low alarm 3 1 3 1 0 2 1 0 0 0 3 1 3 1 0 

  

Movements into 'control' from 
low alert 1 0 2 0 0 2 2 0 2 1 0 2 1 0 0 
high alert 5 1 4 1 4 3 0 1 1 1 2 1 2 1 3 
 
      

 
     

 
     

‘False positives’ 6 1 6 1 4 5 2 1 3 2 2 3 3 1 3 
‘False negatives’ 9 6 1 7 3 6 2 0 1 2 5 3 2 9 3 
‘Type I error rate’ 7.3 1.0 5.7 0.9 3.5 6.0 2.0 1.0 2.6 1.8 2.4 3.0 2.9 1.0 2.7 
‘Type II error rate’ 15.3 11.5 2.6 18.9 9.1 10.3 4.3 0.0 2.9 5.7 8.2 6.4 4.7 22.0 8.8 

Note: only movements that are observed are listed above. 
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Since there is very little change in the width of the control limits, the status changes 

and shifts that do occur are due to either a volume or ‘mean’ outcome effect.  Table 17 shows 

the aggregate changes in the number of outliers after MI and Table 18 shows the number of 

individual moves into and out of control statuses due to the MI volume and mean outcome 

effect.  In general the effect of the increased number of cases is to increase the number of 

outliers, and in the case of SCRQoL indicator which has the lowest item response rate, there 

is a noticeable volume effect.  For the satisfaction, control over daily life and safety 

indicators which have very high item response rates there is very little volume effect.  Since 

the mean outcome effect is negative for the SCRQoL and satisfaction indicators the overall 

effect of imputation is a tendency to ‘pull’ high scorers closer to the average, so cancelling 

out some of the volume effect among those CASSRs in the upper part of the distribution.   

The opposite effect is observed for IPW.  This is illustrated in Table 19, which shows 

the aggregate changes in the number of outliers, and Table 20, which shows the number of 

individual moves into and out of control statuses due to the volume and mean outcome effect.  

There is a small volume effect for all indicators as a result of the decreased effective sample 

size.  In some cases the mean outcome effect enhances the volume effect (e.g. control PI); in 

other cases it works in opposition to the volume effect (e.g. safety PI).  Funnel plots for the 

decomposition of the mean outcome and volume effects are shown in Appendix 9. 
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Table 17: Decomposition of the effect of adjusting for item nonresponse between volume 

and mean outcomes effects on outlier status, for each ASCOF indicator (n=149) 

  Outlier status 
 Missing data 

adjustments 
High 
score 

y>3 SD 

High 
score 

y>2 SD 

‘Normal’ 
range 

Low 
score 

y>-2 SD 

Low 
score 

y>-3 SD 

S
C

R
Q

oL
 

P
I 

CCA 15 (10%) 34 (23%) 52 (35%) 30 (20%) 18 (12%)

Volume effect 18 (12%) 37 (25%) 45 (30%) 30 (20%) 19 (13%)

Mean and volume 15 (10%) 36 (24%) 50 (34%) 29 (19%) 19 (13%)

 

      

S
at

is
fa

ct
io

n 
P

I 

CCA 6 (4%) 23 (15%) 86 (58%) 25 (17%) 9 (6%)

Volume effect 6 (4%) 24 (16%) 85 (57%) 25 (17%) 9 (6%)

Mean and volume 6 (4%) 25 (17%) 87 (58%) 23 (15%) 8 (5%)
      

C
on

tr
ol

 P
I CCA 8 (5%) 24 (16%) 84 (56%) 24 (16%) 9 (6%)

Volume effect 8 (5%) 25 (17%) 83 (56%) 24 (16%) 9 (6%)

Mean and volume 8 (5%) 23 (15%) 84 (56%) 24 (16%) 10 (7%)
      

S
af

et
y 

P
I CCA 2 (1%) 15 (10%) 101 (68%) 21 (14%) 10 (7%)

Volume effect 3 (2%) 16 (11%) 99 (66%) 21 (14%) 10 (7%)

Mean and volume 2 (1%) 15 (10%) 103 (69%) 19 (13%) 10 (7%)

 

      

In
fo

rm
at

io
n 

P
I 

CCA 4 (3%) 17 (11%) 105 (70%) 19 (13%) 4 (3%)

Volume effect 6 (4%) 17 (11%) 100 (67%) 21 (14%) 5 (3%)

Mean and volume 3 (2%) 17 (11%) 106 (71%) 19 (13%) 4 (3%)
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Table 18: Summary of movements into and out of 'out of control' status following MI, showing volume and mean outcome effects 

Missing data 
adjustment 

MI, volume effect 
 

MI, mean outcome and volume effect  

Indicator 

S
C

R
Q

oL
 

S
at

is
fa

ct
io

n 

C
on

tr
ol

 

S
af

et
y 

In
fo

rm
at

io
n

 

 S
C

R
Q

oL
 

S
at

is
fa

ct
io

n 

C
on

tr
ol

 

S
af

et
y 

In
fo

rm
at

io
n

 

Movements into high 'alarm' status from 
high alert 3 0 0 1 2 1 0 0 0 0
in control 0 0 0 0 0 0 0 0 0 0

 

Movements into low 'alarm' status from 
low alert 1 0 0 0 1 3 0 1 0 0
in control 0 0 0 0 0 0 0 0 0 0

 

Movements into high 'alert' status from 
in control 3 1 1 1 0 5 2 0 1 1
high alarm 0 0 0 0 0 1 0 0 0 1

 

Movements into low 'alert' status from 
in control 0 0 0 0 2 1 0 0 0 1
low alarm 0 0 0 0 0 2 1 0 0 0

 

Movements into 'control' from 
low alert 0 0 0 0 0 2 2 0 2 1
high alert 0 0 0 0 0 3 0 1 1 1
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Table 19: Decomposition of the effect of adjusting for unit nonresponse between volume 

and mean outcomes effects on outlier status (n=149) 

  Outlier status 
 Missing data 

adjustments 
High 
score 

y>3 SD 

High 
score 

y>2 SD 

‘Normal’ 
range 

Low 
score 

y>-2 SD 

Low 
score 

y>-3 SD 

S
C

R
Q

oL
 

P
I 

CCA 15 (10%) 34 (23%) 52 (35%) 30 (20%) 18 (12%)

Volume effect 14 (9%) 34 (23%) 53 (36%) 30 (20%) 18 (12%)

Mean and volume 15 (10%) 35 (23%) 51 (34%) 32 (21%) 16 (11%)

 

      

S
at

is
fa

ct
io

n 
P

I 

CCA 6 (4%) 23 (15%) 86 (58%) 25 (17%) 9 (6%)

Volume effect 6 (4%) 21 (14%) 90 (60%) 24 (16%) 8 (5%)

Mean and volume 6 (4%) 22 (15%) 87 (58%) 26 (17%) 8 (5%)
      

C
on

tr
ol

 P
I CCA 8 (5%) 24 (16%) 84 (56%) 24 (16%) 9 (6%)

Volume effect 8 (5%) 23 (15%) 85 (57%) 24 (16%) 9 (6%)

Mean and volume 8 (5%) 24 (16%) 87 (58%) 23 (15%) 7 (5%)

 

      

S
af

et
y 

P
I CCA 2 (1%) 15 (10%) 101 (68%) 21 (14%) 10 (7%)

Volume effect 2 (1%) 14 (9%) 104 (70%) 20 (13%) 9 (6%)

Mean and volume 3 (2%) 19 (13%) 92 (62%) 25 (17%) 10 (7%)
      

In
fo

rm
at

io
n 

P
I 

CCA 4 (3%) 17 (11%) 105 (70%) 19 (13%) 4 (3%)

Volume effect 4 (3%) 16 (11%) 107 (72%) 18 (12%) 4 (3%)

Mean and volume 4 (3%) 14 (9%) 103 (69%) 22 (15%) 6 (4%)
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Table 20: Summary of movements into and out of 'out of control' status following IPW, showing volume and mean outcome effects 

Missing data 
adjustment 

IPW, volume effect IPW, mean outcome and volume effect  

Indicator 

S
C

R
Q

oL
 

S
at

is
fa

ct
io

n 

C
on

tr
ol

 

S
af

et
y 

In
fo

rm
at

io
n

 

S
C

R
Q

oL
 

S
at

is
fa

ct
io

n 

C
on

tr
ol

 

S
af

et
y 

In
fo

rm
at

io
n

 

Movements into high 'alarm' status from 
high alert 0 0 0 0 0 1 0 0 1 0
in control 0 0 0 0 0 0 0 0 0 0

 

Movements into low 'alarm' status from 
low alert 0 0 0 0 0 1 0 1 1 2
in control 0 0 0 0 0 0 0 0 0 0

 

Movements into high 'alert' status from 
in control 0 0 0 0 0 3 0 2 5 0
high alarm 1 0 0 0 0 1 0 0 0 0

 

Movements into low 'alert' status from 
in control 0 0 0 0 0 2 3 0 4 3
low alarm 0 1 0 1 0 3 1 3 1 0

 

Movements into 'control' from 
low alert 0 1 0 1 1 0 2 1 0 0
high alert 0 2 1 1 1 2 1 2 1 3
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Discussion 

The primary goal of this analysis was to assess whether nonresponse had an effect on 

inferences about performance.  I have argued that this question is important because the 

high levels of nonresponse to the survey lead to negative perceptions about the validity of 

the results.  In this analysis I used the ASCOF indicators derived from the ASCS, to 

explore the impact of nonresponse on inferences about performance.  The approach I used 

compared PI estimates obtained under the assumption that both item and unit nonresponse 

is MCAR (CCA/CCA), to those obtained under several more appropriate assumptions 

about the missingness mechanism for item and unit nonresponse, i.e. that 

 unit nonresponse is MAR and item nonresponse is MCAR (IPW/CCA), 

 unit nonresponse is MCAR and item nonresponse is MAR (CCA/MI), 

 unit and item nonresponse are both MAR (IPW/MI).   

I examined how adjusting for nonresponse using these three approaches influences 

performance assessment, through its effect on the ranking of CASSRs and the 

identification of outlying CASSRs.  One aim of comparing these methods was to allow me 

to assess whether the method used to address differences in samples due to nonresponse 

matters for performance assessment. 

This analysis has shown that there are small differences in the value and precision 

of ASCOF indicator scores after adjustment for nonresponse.  While adjustment has little 

impact on conclusions about the rank position of CASSRs and outlier status for most 

indicators, there are some exceptions.  Using the IPW/MI method, nonresponse adjustment 

has more impact for the SCRQoL indicator and is in general precision-enhancing.  In what 

follows I discuss the findings in more detail and consider how they might inform the 

decision about whether or not to adjust the ASCOF PIs for nonresponse.  I consider the 

implications for policy and research of this analysis in Chapter 9.    

 

The effect of nonresponse on ASCOF indicators 

In general I found that adjusting for nonresponse leads on average to decreases in indicator 

scores, implying that it is more often than not people with worse quality of life, and those 

who are less satisfied who choose not to respond to the survey and individual questions.  It 

is not straightforward, however, to judge whether the extent of bias due to nonresponse is 

large enough to warrant ASCOF indicators being adjusted for nonresponse.  I have 
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examined the absolute degree of nonresponse bias, effects on precision and the effect on 

the ranking and outlier status of CASSRs to inform decisions concerning this question. 

When examining the extent of nonresponse bias the main problem is determining 

what a meaningful difference in indicator scores is and considering that alongside 

assessments of statistical significance.  Here I have used two arbitrary criteria for both of 

these concepts: for the former, I equated a meaningful difference with a change exceeding 

one percentage point of a given indicator scale; and for the latter, I considered a significant 

change as one that means the new estimate falls outside of the 95 per cent confidence 

interval for the raw indicator.  The important point to note is that using these criteria, I 

reach different conclusions about the number of CASSRs affected by nonresponse, with 

the meaningful difference criterion producing more affected CASSRs than the statistical 

significance criterion.  Furthermore, when I consider the effect of adjustment on the 

national-level estimates, differences of less than half a percentage point of the given scale 

are found to be statistically significant due to the greater degrees of freedom and therefore 

precision of the estimates.   

On purely statistical grounds these results would imply that it would be important 

to adjust for nonresponse for producing national-level, but not local-level, statistics.  This 

interpretation, however, ignores the fact that there are fewer degrees of freedom at the local 

level, so the statistical criterion used may be considered too restrictive.  While I think it is 

sensible to use 95 per cent confidence intervals because of their use in national statistics, 

the charts in Figure 12 show how decisions about the number of statistically significant 

differences would change using different statistical cut-off points.  Decisions about when 

to apply adjustment for nonresponse could instead be guided by judgements about whether 

differences between adjusted and unadjusted PI scores exceed meaningful differences in 

ASCOF indicator scores.  The value of one per cent that I have used may be too permissive 

and larger differences may be more meaningful from a policy point of view.  Indeed the 

margin of error required for survey estimates is five per cent (NHS Information Centre 

2010).  There is, however, no evidence to guide decisions using this criterion of 

‘meaningful difference’ and without evidence it is difficult to judge what is meaningful.  

This is an issue that applies particularly to performance surveys where effects are averaged 

across very different user groups and service types – a point noted by other researchers 

(Valderas et al. 2012, Fernandez et al. 2013a).  From a policy perspective, it is perhaps 

more useful to look at whether adjustment for nonresponse changes inferences about 

performance. 
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One way in which adjustment for nonresponse would change inferences about 

performance is through its effect on the precision of estimates.  Indeed, nonresponse 

adjustment was rejected for PIs from the GP patient survey precisely on the basis that it 

would needlessly reduce precision (Roland et al. 2009).  It is therefore important that the 

IPW/MI approach adjusts for nonresponse bias without substantial loss of precision and in 

some cases is precision-enhancing.  As Seaman et al. (2012) found, the IPW/MI approach 

leads to gains in precision compared to the IPW/CCA approach through the introduction of 

MI to address item nonresponse.  The analysis presented here suggests that the gains from 

the IPW/MI approach in terms of precision are related to the extent of item nonresponse.  

More than half the CASSRs have more precise SCRQoL estimates after IPW/MI 

adjustment, but only 80 to 90 per cent have more precise estimates for the other ASCOF 

indicators.  The difference in item nonresponse between these indicators is appreciable, 

with overall item response rates of slightly under 90 per cent for the SCRQoL indicator 

and 95 per cent or over for the other indicators.  The gains in precision from adjustment for 

the SCRQoL indicator combined with the correction of bias provide an argument for 

considering IPW/MI adjustment. 

Another way to consider whether nonresponse adjustment changes inferences about 

performance is to consider whether it affects the ranking of CASSRs and which CASSRs 

are identified as outliers.  A small proportion of CASSRs – in general less than ten per cent 

– have changes to their rank position and outlier status post adjustment.  In the majority of 

cases, changes in rank involve moving only a few places up or down and changes in outlier 

status involve moving between adjacent categories.  There are, however, a handful of 

CASSRs that have large changes in rank.  The majority of movements are between in 

control and out of control status, meaning that not adjusting for nonresponse would lead to 

the wrong conclusion about outlier status for between five and ten per cent of CASSRs 

depending upon the indicator.  Most often the errors are ‘false negatives’, meaning that 

CASSRs are erroneously identified as ‘in control’ when in fact they are ‘out of control’.  

For most CASSRs, the ‘false negative’ and ‘false positive’ rates are probably within 

acceptable bounds, but the ‘false positive rate’ for the SCRQoL (and possibly control) 

indicator seems too high at over five per cent.  Altogether this creates an argument for 

adjusting the SCRQoL indicator for nonresponse. 
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Limitations of the analysis and directions for future research 

The validity of the conclusions depends on the extent to which the assumptions regarding 

the missingness mechanism are valid, the extent to which the imputation and response 

propensity models are correctly specified, and the extent to which the procedures are 

appropriately applied.  I address each of these considerations in turn.   

The MCAR assumption is not tenable given the evidence of a relationship between 

the observed characteristics of individuals and unit nonresponse (see Chapter 4), and the 

relationship between the characteristics of individuals and item nonresponse.  On the basis 

of these relationships, the MAR assumption seems more plausible.  For the MI process the 

plausibility of the MAR assumption is strengthened by the fact that I included a large 

number of covariates in the imputation model.  However, the true missing data mechanism 

is unknown, and it is possible that unobserved factors also influence item nonresponse.  An 

extension to the analysis presented here therefore would be to test whether the findings are 

robust to alternative assumptions about reasons for missingness, e.g. through sensitivity 

analysis or explicit modelling of the NMAR mechanism (Carpenter et al. 2007, Kirkham 

2008, Carpenter and Kenward 2013, Gomes et al. 2014).  Given the low levels of item 

nonresponse observed in this dataset, such detailed testing of assumptions seemed 

unnecessary in this instance.     

Concerning the specification of the models, assuming the data are MAR then the 

imputation model for the outcome variables seems fairly robust: I included a large number 

of covariates and, leaving aside the issue of the weights, it was straightforward to develop 

a congenial imputation and analysis model given the interest in only the PI estimate.  It 

seems less plausible that the response propensity model is correctly specified as there are 

several factors that seemed theoretically important to include, but for which I was unable 

to find good measures (see discussion in Chapter 4).  These include availability of informal 

care, disability type and severity, and proficiency in English.  Although I have some 

indicators of English proficiency, disability type and severity (ethnicity, client group and 

number of service and type of services received) the measures are not very sensitive and 

are certainly not optimal.  There is good evidence that these factors are important 

predictors of quality of life and satisfaction with care (see discussion in Chapter 2), 

implying that they are important omissions from the response propensity model (Little and 

Vartivarian 2003).  It may therefore be appropriate to stratify the weights by forming 

adjustment cells, since stratification places less emphasis on the correct specification of the 

regression model (Little 1986).  Seaman and White (2013) also suggest a number of 
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strategies for developing a response propensity model for IPW, which I did not follow in 

this application as it was not clear how they could be extended from the binomial to the 

MNL situation.  An area for future research would be to find ways of extending the checks 

suggestions by Seaman and White (2013) to the MNL situation. 

The most significant limitation of this analysis is the appropriateness of the strategy 

I used to address the problem of missingness in the auxiliary data.  I used MI to recover the 

missing auxiliary data.  Such an approach has been used in several studies where 

propensity models have been used to balance the characteristics of treatment and control 

groups (Song et al. 2001, Mattei 2009, Qu and Lipkovich 2009, Mitra and Reiter 2011), 

but not in the context of IPW for nonresponse except in a very recent paper by Seaman and 

White (2014).  The approach I took produced two overlapping imputed datasets that could 

not easily be combined.  One contained the imputed auxiliary data and was used to 

estimate the weights and the second contained the respondent dataset with the outcome 

indicators.  There are two consequences of this strategy.  First, it meant that the missing 

auxiliary covariates were imputed on the basis that they were not related to the outcome 

indicator, which could introduce a degree of bias into the PI estimates (Petticrew and 

Roberts 2003).  Secondly, it meant that the variability introduced into the weights from the 

MI procedure was not reflected in the analysis.   

On examining the question of how to address missingness in the auxiliary data in 

the context of IPW, Seaman and White (2014) suggest an approach that produces two non-

overlapping imputed datasets that can be combined.  Their method involves imputing the 

respondent sample separately from the nonrespondent sample, and then combining these 

two datasets.  With such data, it is possible to develop a different set of weights for each 

imputed dataset and therefore reflect the additional variability due to MI.  It is likely that 

the way I have implemented MI to recover the missing auxiliary data has introduced some 

bias into the results.  It is also clear that a consequence of my method is that I 

underestimate the uncertainty around results for CASSRs.  Both of these factors will affect 

the conclusions about the relative efficiency of the IPW/CCA and IPW/MI approach 

compared to CCA/MI, with both approaches likely to be more precision-reducing than I 

find here.  The effect on the estimation of bias due to nonresponse is unclear without re-

estimation of the PIs using the Seaman and White (2014) approach. 
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Concluding remarks 

This analysis finds some effect of nonresponse on ASCOF indicators.  The effects are in 

general fairly modest and for most indicators, there does not seem to be a strong case for 

making adjustments for nonresponse.  There is, however, a stronger case for adjusting the 

SCRQoL indicator for nonresponse.  Notably the case is only strong where the effects of 

nonresponse are examined through the lens of the IPW/MI approach and to a lesser extent 

the CCA/MI approach.  Where unit and item nonresponse are corrected for using IPW/MI, 

there appears to be more bias in the SCRQoL indicator from nonresponse, adjustment for 

nonresponse is on average precision-enhancing and the false negative rate is over five per 

cent.  The limitations of the modelling mean there is some doubt over the effect of IPW/MI 

and IPW/CCA on performance assessment.  Further research using the methods suggested 

by Seaman and White (2014) for implementing IPW in the context of missing auxiliary 

data is recommended. 

Importantly, and with implications for other studies as I discuss in Chapter 9, the 

findings from this analysis suggest that the method chosen to adjust for nonresponse is 

likely to influence conclusions about the extent to which nonresponse affects inferences 

about performance.  The higher level of item nonresponse to the SCRQoL indicator 

compared to the other ASCOF indicators also suggests adjustment may be more important 

where item nonresponse is higher.  This may have implications for case-mix adjusted PIs 

where rates of item nonresponse will be higher due to additional loss of data from the case-

mix variables.  At the time of conducting this analysis the ASCOF PIs were not adjusted 

for case-mix, so I could not examine this question.  In Chapters 6 and 7, however, I 

consider a range of methods for adjusting the ASCOF PIs for case-mix, focusing on the 

SCRQoL indicator.  In Chapter 8, I look at the effect of adjustment for case-mix on 

performance assessment and alongside this I consider the effect that item nonresponse has 

on performance assessment. 
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Chapter 6 

What is the Most Appropriate Method for Modelling Adult Social Care 

Outcomes?  Part One: An Investigation into the Effect of the Choice of 

Model on the Estimation of Outcomes Using Risk-Adjustment 

 

Abstract 

Objective:  To develop a risk-adjustment model for the self-reported social care outcome 

indicator and compare the effect on model fit of modelling decisions around the choice of 

regression model and risk adjustors.   

Design: Cross-sectional survey data that captured self-reported SCRQoL and a variety of 

risk-adjustors were analysed using (i) OLS regression, (ii) fractional response models, and 

(iii) random and fixed-effects regression.  Two different specifications were estimated: one 

with a set of theoretically-chosen but statistically significant risk-adjustors, and a second 

more parsimonious statistically-driven specification.  Separate models were estimated for 

different sub-groups of the population.  Model fit statistics were compared to assess the effect 

of modelling decisions. 

Participants: This analysis uses only respondents from the physically and sensorily disabled 

(PSD) client group.  This includes 29,786 people aged 65 and over living in private 

households, 7,447 people aged between 18 and 64 living in private households, and 7,580 

adults aged 18 and over resident in care homes.   

Outcome measures: The SCRQoL indicator, based on the ASCOT-SCT4 measure. 

Results: The amount of variation explained by the risk-adjustors varied across the sub-groups 

and by specification, with R2 ranging from 0.30 to 0.43 for the theoretically-driven 

specification and from 0.14 to 0.42 for the statistically driven specification.  For the two 

private household sub-groups the specification was less important than for the care home sub-

group where the statistically-driven method produced a poor model.  The choice of regression 

model made little difference to the model fit. 

Conclusions: Risk-adjustors explain a sizeable amount of the variation in the SCRQoL 

indicator.  The choice of regression model was not important but the choice of risk-adjustors 

did influence the model fit.   
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Introduction 

For survey-based PIs to be valid performance measures, differences in scores between 

organisations should reflect differences in performance.  The design of performance surveys, 

however, means that differences in performance are only one of many explanations for 

differences in PI scores.  One approach to improve the interpretability of PIs and account for 

the confounding influence of other factors is risk-adjustment (Iezzoni 2013).  In risk 

adjustment the aim is to estimate empirically the expected outcome for individuals, on the 

basis of a set of ‘risk factors’ that predict outcomes but are unrelated to performance (Ash et 

al. 2013).  The relationship between the expected and observed outcome for an individual can 

then be used as the basis for an adjusted PI.  This approach has been used extensively to 

adjust indicators in a number of performance datasets (Iezzoni 2013), and has been used to 

develop adjusted indicators for long-term care (Berlowitz and Intrator 2013).  Although, the 

technique does not adequately address the bias in estimates caused by the correlation between 

service intensity, outcomes and characteristics of users (see Chapter 3), it is straightforward 

to implement with the ASCS data. 

A concern when developing adjusted PIs is that the resultant indicators are intelligible 

and for this to be the case the methods used need to be transparent and ideally as simple as 

possible (Mukamel 1997, Iezzoni 2013).  There is, however, always a trade-off between 

simplicity and validity.  More simple models tend to make strong assumptions that may not 

be tenable; whereas models that relax these assumptions may be more valid but are generally 

more complex and harder to explain to non-specialists in statistical analysis.  The validity of 

risk-adjustment models is a key focus of the literature, where the concern has been to 

establish whether the choice of risk-adjustors and the assumptions inherent in the choice of 

statistical model are valid for the data.  The research base suggests that modelling decisions 

can have implications for the validity of adjusted indicators and inferences regarding the 

relative performance of organisations, but the importance of different choices seems to vary 

depending on the study (Greenfield et al. 2002, Huang et al. 2005, Glance et al. 2006, Arling 

et al. 2007, Mukamel et al. 2008, Li et al. 2009, Eijkenaar and van Vliet 2014).  In light of 

this, Li et al. (2009) argue that the importance of modelling choices is an empirical question, 

which is likely to be affected by the particular characteristics of the data.  Before settling on a 

more complicated model, there is therefore value in exploring whether the improvements in 

face validity translate to (i) improvements in the validity of the model understood in terms of 

model fit, and (ii) differences in PI scores and inferences about performance.  Where there is 
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no obvious gain from using a more complicated model and it cannot be shown to have an 

effect on inferences about performance, the simpler model may be preferable. 

 In this chapter, I am concerned with the first of these aspects, i.e. whether statistical 

models that have greater face validity substantially improve the fit of the model.  I explore 

the second of these questions in Chapter 8.  As my focus is the ASCOF SCRQoL indicator, 

which is a multi-item scale, the base model is estimated by OLS.  I compare the OLS to: 

 a quasi-likelihood estimator for a Beta distribution based mean-variance model that is 

similar to maximizing a Bernoulli likelihood function.  This model allows for 

negatively-skewed distributions and restricts predictions to the correct range (Basu 

and Manca 2012); and 

 a random-effects (RE) and fixed-effects (FE) regression model.  These both relax the 

assumption of the independence of observations, which is undermined by the 

hierarchical organisation of the data, with individuals clustered within CASSRs 

(Goldstein and Spiegelhalter 1996, Normand et al. 1997, Austin et al. 2003, Clarke et 

al. 2015).   

The choice of risk-adjustors for the modelling is guided by the modified POW framework 

(Davies and Knapp 1981, Knapp 1984) set out in Chapter 2, where the risk-adjustors are 

referred to as quasi-inputs.  I use two different approaches to retain theoretically-relevant 

variables in the models: one based on theoretical value and statistical significance, and a 

more parsimonious but statistically-driven approach based on the extent to which the 

variables explain variation in outcomes and vary across CASSRs (Zaslavsky et al. 2001).     

 In the rest of this chapter, I first describe the data and the statistical models used, 

focusing on the specification of the models and other aspects of the empirical approach, 

including the comparison of models and how I address missing data.  I then present the 

results, providing details of the sample and comparing the models results and predictions.  In 

the discussion I consider whether the modelling choices examined here are important for 

understanding heterogeneity in ASC outcomes.  The implications for policy and future 

research are discussed in Chapter 9.    

 

Data and statistical analysis 

The dataset for this analysis is the 2010-11 ASCS.  In this analysis I make use of the 

questionnaire data as well as the auxiliary data from the records systems of CASSRs.  The 

ASCS sample is highly diverse, comprising many sub-groups of ASC users.  The groups of 
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users vary in a number of important ways that means it is not possible in some circumstances, 

and not sensible in others, to analyse the dataset as a whole, due to differences in the 

relevance of variables as the risk adjustors for the various sub-groups.  For example, the 

suitability of the design of care home environment for caring can reasonably be considered an 

aspect of quality, but in private households these aspects are to a large extent beyond the 

immediate control of the service.  CASSRs may provide small adaptations, and over longer 

timescales they can provide Disabled Facilities Grants or alternative (perhaps supported) 

accommodation, but these options may not always be possible and some service users may 

consider them undesirable.  A consequence is that while it is important to control for design 

of housing for people in private households it is inappropriate to do so for the care home 

population.  Similar types of arguments can be made for other variables (see Appendix 10 for 

a discussion). 

The approach I take here is to split the dataset into subsets defined according to the 

categories of primary client group (physically and sensorily disabled/vulnerable person, 

mental health problem, substance misuse problem or learning disability), age (65 and over 

and under 65), and care setting (residential versus non-residential).  This provides groups in 

which the relationship between risk-adjustors and outcomes is similar.  Splitting the sample 

in this way, however, produces sixteen sub-groups many of which are very small (see Table 

21).  To make the number of comparisons manageable, I restrict this analysis to the 

physically and sensorily disabled (PSD) client group and combine the over and under 65s in 

the care home setting.  Since I look at three sub-groups it means I can assess whether 

different modelling assumptions are more or less appropriate for different segments of the 

ASC population.  Together these sub-groups cover over 70 per cent of the respondent sample. 
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Table 21: Numbers within each sub-group in ASCS 2010-11 respondent sample 

  Age group 
Total Setting Primary client group Over 65 18 to 64 

P
ri

va
te

 
ho

us
eh

ol
d Physical and sensory disability (PSD)† 29,786 7,447 37,233

Mental health (MH) 1,924 3,010 4,934
Learning disability (LD) 423 5,454 5,877
Substance misuse (SM) 18 82 100

     

C
ar

e 
ho

m
e Physical and sensory disability (PSD)† 6,843 657 7,500

Mental health (MH) 1,246 557 1,803
Learning disability (LD) 406 2,237 2,643
Substance misuse (SM) 15 21 36

Legend: † PSD group also include a small number of ‘vulnerable people’ 

 

Statistical modelling  

Risk-adjustment models are based on a reduced form of the conceptual model presented in 

equation (2) (see Chapter 2), which includes only the risk factors to predict outcomes, i.e.   

 

௜ݕ  ൌ ߙ ൅ ࢏ࢠ૚ࢼ
૙ ൅ ࢏ࢠ૛ࢼ

૚ ൅ ࢏ࢠ૜ࢼ
૛ ൅ ࢏ࢠ૝ࢼ

૜ ൅ ࢏ࢠ૞ࢼ
૝ ൅ ݁௜, (15) 

 

where ݕ௜ is the outcome measure for individual, ݅, ߙ is a constant term, ࢏ࢠ
૙ is a vector of 

variables capturing personal characteristics and motivations, ࢏ࢠ
૚ is a vector of variables 

representing underlying health and disabling conditions, ࢏ࢠ
૛ is a vector of variables 

representing the immediate physical environment, ࢏ࢠ
૜ is a vector of variables capturing 

additional resources arising from social and economic capital, ࢏ࢠ
૝ is a vector of variables 

capturing reporting-related factors related to the postal method of survey administration, the 

 s, represent the direct effect of these factors on the observed outcome, and ݁௜ is theࢼ

independently-distributed error term.  The assumption of risk-adjustment models is that by 

accounting of the confounding effects of the case-mix variables, ࢠ, the remaining residual 

outcome differences, ݁௜, are related to service effectiveness. 

I use a statistical analysis to estimate the reduced form equation (15).  The dependent 

variable in this analysis is the SCRQoL indicator and the base model is estimated by OLS 

regression.  The negatively-skewed and bounded nature of the SCRQoL indicator, however is 

potentially a problem for OLS estimation.  OLS can be sensitive to the extreme outliers in the 

tails of the distribution and can yield out of range predictions, both of which are problematic 

in the context of risk-adjustment as they could yield inconsistent estimates of covariate 



 

 

194

effects (Pullenayegum et al. 2010, Basu and Manca 2012).  For this reason I also estimate the 

equation (15), using a model based on the Beta distribution, which accommodates negatively 

skewed variables and restricts predictions to the correct range.44  As Basu and Manca (2012) 

explain, modelling the full distributional assumptions of the Beta distribution is restrictive as 

the likelihood function of Beta cannot support values of zero or one for the outcome variable 

– a problem for these data given the proportion of cases who have a maximum SCRQoL 

score.  The quasi-likelihood approach is able to overcome this limitation.  Since the quasi-

score equation generated using the mean-variance relationship of the Beta distribution is 

identical to maximizing a Bernoulli likelihood function with an additional overdispersion 

parameter.  Such models are often referred to as fractional response (FR) models in the 

literature (Papke and Wooldridge 1996).  I implement the FR models in Stata using the glm 

routine with a logit link function and a binomial distribution (Papke and Wooldridge 1996, 

Baum 2008, Basu and Manca 2012). 

For OLS estimates to be unbiased, observations are assumed to be independent, but 

this is unlikely to be the case where indicators are used for performance assessment for the 

reasons discussed in Chapter 3.  I consider two alternative approaches to appropriately reflect 

the clustering of observations within authorities, FE and RE models, which have been used 

extensively for risk-adjustment (Goldstein and Spiegelhalter 1996, Normand et al. 1997, 

Austin et al. 2003, Huang et al. 2005, Li et al. 2009, Clarke et al. 2015).  The statistical model 

for the RE and FE estimation is similar to that in (15), but with an additional parameter, ݑ௝, 

which captures the CASSR-level clustering, as follows,  

 

௜௝ݕ  ൌ ߙ ൅ ࢐࢏ࢠ૛ࢼ
૙ ൅ ࢐࢏ࢠ૜ࢼ

૚ ൅ ࢐࢏ࢠ૜ࢼ
૛ ൅ ࢐࢏ࢠ૝ࢼ

૜ ൅ ࢐࢏ࢠ૞ࢼ
૝ ൅ ݁௜௝ ൅  ௝, (16)ݑ

 

where the additional subscript ݆ denotes the CASSR.  In the RE regression, ݑ௝ are random 

effects that are assumed to follow a normal distribution, i.e. ݑ௝~ܰሺ0,  ௨ଶሻ.  Although thisߪ

makes the model more flexible it requires an additional assumption that the errors, ݑ௝, are 

also assumed to be uncorrelated with the risk factors ࢐࢏ࢠ
૙ , ࢐࢏ࢠ

૚ , ࢐࢏ࢠ
૛ , ࢐࢏ࢠ

૜ , ࢐࢏ࢠ
૝  (DeLong et al. 1997, 

Clarke et al. 2015).  By contrast the FE model makes no assumptions about the distribution of 
                                                 
44 There is a growing field of study exploring models based on alternative distributions and assumptions to 
better represent the bounded and skewed distribution of multi-attribute QoL measures.  Researchers have 
investigated Tobit models (Austin et al. 2000, Austin 2002b, Austin 2002a), censored least absolute deviations 
(CLAD) models (Austin 2002b, Huang et al. 2008), two-part models (TPMs) (Austin 2002b, Huang et al. 2008), 
latent class models (LCMs) (Huang et al. 2008), and models based on a beta distribution (Basu and Manca 
2012), including ‘FR models’ (Papke and Wooldridge 1996). 
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 ௝, correlatesݑ ,௝ and is able to deal with situations where the CASSR effectiveness estimateݑ

with the risk factors (Greene 2012).  All models are estimated in Stata 14. 

  

Selection of risk adjustors 

The models above specify five groups of quasi-inputs.  The ASCS dataset contains a number 

of variables that can be used as proxies for these factors, as follows: 

 for personal characteristics and motivations, the only available variables are sex 
(MALE) and age group (AGE_GP); 

 for underlying health and disabling conditions, available variables are self-perceived 
health (SPH), the EQ-5D anxiety/depression domain (ANXDEP), the EQ-5D pain 
domain (PAIN), activities of daily living (ADLs) and instrumental activities of daily 
living (IADLs), vulnerable person client group (VP); 

 for additional resources arising from social and economic capital, there is receipt of 
regular practical help (PH) and whether the respondent purchased additional private 
help (PRIVATE)45;  

 for environmental characteristics, variables include self-perceived design of home 
(SPHD); and 

 for reporting-related factors there are the following variables: source and type of help 
given to complete questionnaire (ASSIST and PROXY). 

These variables are described more fully in Table 22. 

  

                                                 
45 This variable can also be considered a reporting-related factor as it may affect the individual’s perceptions of 
the quality or value of formal provision. 
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Table 22: Description of all the theoretically-relevant risk adjustor variables 

Variable description (label) Response categories (label) Rationale 

Personal characteristics   

Age (AGE_GP) 18-24 (1), 25-34 (2), 35-44 (3), 45-54 (4), 55-64 (5), 65-
74 (6), 75-84 (7), 85 and over (8) 

Advanced age is associated with disability, but age is 
also included due to its descriptive importance and 
potential relationship with motivations. 

   

Sex (MALE) male (1), female (0) Sex is included due to its descriptive importance and 
potential relationship with motivations. 

   

Vulnerable person (VP) Physical disability (0), vulnerable person (1) This is included to test whether there are differences 
between the client groups in outcomes. 

   

Underlying health and disabling conditions  

Count of the ADLsa an individual 
has at least difficulty completing 
(ADLDIFF) or can’t complete 
(ADLCANT) 

Scale from 0 through 7, where, for ADLDIFF, 7 means 
the person has difficulties with (or can’t do) all the ADLs, 
and for ADLCANT, 7 means the person can’t do any of 
the ADLs without help 

This variable measures the functional ability of the 
individual.  The greater the number of ADLs the person 
fails or has difficulty completing the more severely the 
person is disabled. 

   

IADL Management of finances and 
paperwork (FINANCES) 

can do easily by myself (0), have difficulty doing this by 
myself (1), can’t do this by myself (2) 

This IADL is included separately in the model, as a 
predictor of early stages of dementia (Barberger-Gateau 
et al. 1993, De Lepeleire et al. 2004, Sikkes et al. 2011).   

   

EQ-5D anxiety/depression item 
(ANXDEP) 

None (0), moderate (1), extreme (2) This is included as an indicator of underlying mental 
health state. 

   

EQ-5D pain/discomfort item 
(PAIN) 

None (0), moderate (1), extreme (2) This is included as an indicator of the underlying health 
state of the person. 

   

Self-perceived health (SPH) Very good (0), good (1), fair (2), bad(3), very bad (4) This is included as an indicator of the underlying health 
state of the person. 

   

Resources   

Receipt of regular practical help 
(PH) 

From person… inside home (PH, in home), outside home 
(PH, out home), no help (PH, none) d 

This is included as an indicator of receipt of informal 
care. 

   

Buy additional care privately, or 
pay more to top-up care (PRIV) 

Yes, user’s own money (PRIV, own), yes, family member 
money (PRIV, fam), none (PRIV, none) d 

This captures whether there is an additional privately-
purchased care input. 
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Variable description (label) Response categories (label) Rationale 

Immediate environment   

Self-perceived design of home 
(SPHD) b 

Meets needs very well (0), meets most needs (1), meets 
some needs (2), totally inappropriate for need (3) 

This is an indicator of the extent to which the immediate 
home environment is more or less disabling, either 
compounding or ameliorating the person’s difficulties 
related to their functional disability. 

   

Reporting-related variables   

Whether help was given to 
complete the questionnaire  

Completed by self (SELFCOMP)d, proxy assistance 
(PROXYASSTD), proxy (PROXY) 

This captures potential response bias due to the person 
having help to complete the questionnaire or the 
questionnaire being completed by a proxy respondent 
(Elliott et al. 2008). 

   

Source of help to complete 
questionnaire c 

From… care worker (ASSIST, cw), someone inside the 
home (ASSIST, in home), someone outside the home 
(ASSIST, out home) 

This captures potentially different degrees and 
directions of response bias due to differences in who 
helps the person to complete the questionnaire (Elliott et 
al. 2008). 

   

Type of help given to complete the 
questionnaire d 

Help to… read (ASSIST, read), translate (ASSIST, 
translate), write (ASSIST, write), talked through answers 
(ASSIST, discuss) 

This captures potential differences in response bias due 
to the type of help given to the person to complete the 
questionnaire. 

Notes: a Composed of Katz (1963) ADLs (ability to get around indoors, get in/out of bed/chair, feed self, use WC/toilet, wash face and hands, wash all over using 
bath/shower, get dressed/undressed), except the continence ADL as it is not possible to ask about continence in the context of a self-completion questionnaire for ethical 
reasons.  Response scale for all: can do easily by myself, have difficulty doing this by myself, can’t do this by myself.  b Not included in care home models as too closely 
associated with structural quality.  c These variables cannot be included in the model if PROXYASSTD is included.  All options can be included, as base category is 
SELFCOMP.  d The base category for nominal variables.  For ordinal and binary variables the base category is indicated by a zero. 
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One approach to risk-adjustment would be to include all theoretically-relevant 

variables outlined in Table 22, regardless of their empirical relationship with outcomes 

(Murtaugh et al. 2007).  Although this approach would maximise the variation explained, it 

would also result in models with many covariates that are difficult to interpret and are 

therefore unappealing for policymakers.  Instead I use a theoretically-driven approach that I 

refer to as the ‘significant variables’ (SV) approach.  For this method, I select a set of 

variables (including theoretically-relevant interactions) for each outcome indicator based on 

the ability of each variable to predict the outcome and the interpretability of the relationship 

with the outcome indicator (Li et al. 2009).  I screen each variable for inclusion in the model 

and reject those with a p-value for the B-coefficient of <.1.  Although it is common to use 

stepwise regression methods for this stage (see e.g. O'Malley et al. 2005, Eselius et al. 2008), 

I test each variable manually, to ensure that the final model makes sense and does not suffer 

from problems of collinearity.  The aim is to maximise the variation explained, but have a 

model that is theoretically-plausible and provides a less complex explanation of the data, 

making it more intelligible to policymakers and other users of the adjusted PIs (Murtaugh et 

al. 2007, Iezzoni 2013). 

The second data-reducing method that I use draws on the argument that to be a 

relevant risk-adjustor a variable must have good predictive power and vary in distribution 

across CASSRs.  Zaslavsky et al. (2001) refer to this concept as ‘explanatory power’, hence I 

refer to this method as the ‘explanatory power’ (EP) approach.  Zaslavsky et al. develop an 

index of EP, by combining measures of predictive power and heterogeneity (the variability in 

distribution across CASSRs).  They quantify predictive power as the improvement in model 

fit (R2) attributable to the given variable and assess it by regressing each outcome indicator 

on the entire set of adjustor variables, excluding the adjustment variable of interest.  

Predictive power is the difference between the R2 for this model compared to the R2 for a 

model including the entire set of adjustor variables.  Dummy variables for CASSRs are also 

included in the regressions so the resulting coefficients are estimates of the within-CASSR 

effects.  The heterogeneity factor is a variance ratio of the adjustor’s between-CASSR 

variance divided by its within-CASSR variance.  The variance components for a given 

adjustment variable can be estimated from a regression of the adjustment variable on the rest 

of the adjustment variables, including random effects for CASSRs.  The EP of each variable 

is found by multiplying the heterogeneity factor by the predictive power and scaling by a 

factor of 1000.  Following previous studies (Zaslavsky et al. 2001, O'Malley et al. 2005, 

Eselius et al. 2008), I use a minimum EP of one for a variable to be included, although I relax 



 

 

199

this criterion slightly for the care home sub-group, as the sample size is not very large.  The 

results of this procedure are discussed in Appendix 11. 

For both approaches, I initially treat all ordinal variables as continuous.  This 

approach assumes interval scale properties and is taken for convenience.  I test this 

assumption by replacing each ordinal variable with a set of dummies and examining the 

improvement in model fit over the baseline model (where all ordinal variables are treated as 

continuous) using an F-test.  I retain the baseline specification, unless the dummy variable 

specification significantly improves the model R2 (p-value <.01).  Similarly I explore whether 

the assumption of linearity for the ADL measure is justified by examining partial residual 

plots and replacing the ADL measure with an appropriate transformation (e.g. square root, 

log and so on).  I also tested for theoretically-plausible interaction effects.  In all cases the 

baseline specification is retained unless the transformed variables or interaction terms 

improve model fit (p<.01), as determined through an F-test or likelihood ratio test. 

Because of indications that the OLS models are misspecified due to the failure of  

Ramsey’s (1969) Reset test, I tested a derived need variable in addition to the non-linear 

Beta-based fractional regression.  This variable is the sum of the items SPHD, ADLDIFF, 

PAIN and ANXDEP, standardised so their means were zero and standard deviations one.  

However, I did not retain this variable as it was not significant and did not improve the 

specification tests. 

 

Comparing statistical models 

I compare the models using the concepts of construct validity, convergent validity and 

predictive validity.  Construct validity is understood as finding that the “effects of risk factors 

on outcome are estimated in the expected direction”, convergent validity as finding that the 

“effects of risk factors on outcome show close agreement when estimated by alternative 

models”, and predictive validity as finding that the model predicts the actual outcome well 

(Li et al. 2009, p. 89).  To explore construct and convergent validity, I examine the estimated 

model coefficients to both check that the effects are in the expected direction and that the 

estimates are fairly similar across the models.  I also explore whether the coefficients for the 

adjustor variables change in the expected direction after the addition of the CASSR effect, i.e. 

that where higher values of the adjustor predict more services the coefficients becomes more 

negative and vice-versa.  To explore predictive validity, I am most interested in the amount of 

variation explained by the models, for which estimates of R2 and RMSE are the most 
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important measures46.  Given that the rationale for comparing multiple models is to explore 

whether the various models provide a better fit to the data than the OLS, I also look at a range 

of other goodness of fit statistics.   

Relevant goodness of fit statistics vary according to the models tested.  Basu and 

Manca (2012) and Manning et al. (2005), suggest the following tests to assess whether the 

distributional assumptions of FR improve the prediction: a modified Hosmer and Lemeshow 

(2000) test47, Pregibon’s (1980, 1981) link test for nonlinearity48, Ramsey’s (1969) Reset 

test49, and the Pearson product moment correlation coefficient of raw-scale residuals against 

the fitted values from the model50.  To assess whether the RE and FE models improve model 

fit over the OLS, I present the Akaike Information Criterion (AIC) (Akaike 1974) and 

Bayesian Information Criterion (BIC) (Schwarz 1978), which balance model fit with model 

complexity.  I take differences of greater than ten as strong evidence of the superiority of the 

model with the smaller BIC or AIC value over the one with the larger value (Raftery 1995, 

Burnham and Anderson 2004).  Additionally, for the RE model, I report the estimate of Rho 

(the intraclass correlation coefficient), which provides a measure of amount of variation 

explained by differences between CASSRs.  A likelihood ratio test of the null hypothesis that 

the between-cluster variance is equal to zero, provides evidence concerning the existence of 

the CASSR random effect (Rabe-Hesketh and Skrondal 2008).  Along with the Hausman test 

this provides useful information for evaluating the fit of the RE model (Greene 2012). 

I also compare predictions from the models across the range of observed values for 

the outcome indicator.  Predicted values are calculated as the expected value for each person 

within the sub-group, given the values of the covariates and including the CASSR effect, 

                                                 
46 For the FR regression R2 is estimated as the square of the correlation between the prediction and the observed 
value.  For the FE model I report the adjusted R2 from the version of the FE model that includes CASSRs as 
dummy variables.  The estimation of R2 in random-effects models is an area of active research, and there is no 
agreed upon method (Gelman and Pardoe 2006).  Kreft and de Leeuw (1998) advise against using R2 because it 
lacks a clear meaning.  In all the models RMSE is calculated from the square root of the mean difference 
between the predicted and observed values, with the predicted values calculated as described in the text.   
47 This uses an F-test that the means of the raw scale residuals across all 10 of the deciles of the linear predictor 
are not significantly different from zero. 
48 To calculate this, the linear predictor and the square of the linear predictor are included as covariates in a 
second version of the model.  If the coefficient on the square of the linear predictor is different from zero then 
this indicates that there is additional nonlinearity unaccounted for in the current specification.   
49 In a second model, containing all the covariates, higher-order powers (specifically the square, cube and fourth 
power) of the linear predictor are also included.  If the joint test of the higher-order powers is different to zero 
this implies that there is additional nonlinearity in the specification.  
50 If this statistic (rho) is significantly different from zero then the model is providing a biased prediction of 
E(y|x) (Manning et al. 2005). 
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where relevant, i.e. ݕൣܧ௜௝|ݖ௜௝,  ௝൧.  Error scores are calculated as the deviation of the predictedݑ

from the observed value, i.e. ݕ௜௝ െ ,௜௝ݖ|௜௝ݕൣܧ    .௝൧ݑ

 

Missing data  

The questionnaire and auxiliary data are both subject to item nonresponse.  To avoid 

problems of bias, I recover the missing data on the characteristics of the full sample using 

chained equations multiple imputation (van Buuren 2007, White et al. 2011).  I use the 

multiply-imputed dataset described in Chapter 5 for this analysis.  Appendices 1 and 2 

provides more details of the imputation models, procedure and sufficiency of the number of 

imputations.   

After imputation, I combine the individual SCRQoL components into an overall 

SCRQoL score and also generate all other multi-item variables required for the analysis, such 

as the ADL measure.  All models are re-estimated on each of the imputed datasets and the 

estimates are combined using Rubin’s rules (1987).  Missing cases for the dependent 

variables are excluded from the estimation of these models as they would increase the 

variance without adding any further information.  The results from these models estimated on 

the multiply-imputed dataset were not very different from those estimated using the complete 

cases.  For the sake of clarity and parsimony, I therefore only present the results from the 

complete cases analysis.  A comparison between the estimates from the complete case 

analysis and MI is given in Appendix 12. 

 

Results 

Sample descriptives 

The analysis subsample consists of 44,744 cases out of the total respondent sample of 61,026 

(around 73 per cent)51.  Two-thirds of the subsample (29,786 cases), are in the sub-group 

comprising people aged 65 and over, with PSD, in private households (referred to hereafter as 

‘65 and over sub-group’).  The rest of the subsample is split fairly evenly between the other 

two groups, with 7,447 people in the sub-group of people aged between 18 and 64, with PSD, 

living in private households (referred to hereafter as ‘18 to 64 sub-group’), and 7,510 cases, 

                                                 
51 A small fraction (1.5 per cent) of the sample was lost when stratifying into sub-groups for analysis, due to 
missingness of a key stratification variable (313 cases) and being sent a questionnaire inconsistent with the 
client group (585 cases).  For example, people living in a care home or with a learning disability have been sent 
the standard questionnaire, or people without learning disability as a primary client have been sent the learning 
disability questionnaire. 
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in the sub-group of people with PSD who are resident in a care home (referred to hereafter as 

‘care home sub-group’).   

Table 23 shows the distributional statistics for the outcome and risk-adjustor variables 

for all sub-groups.  All ordinal variables (including age group) are treated in these tables as 

continuous.  For most of the variables, the fraction of missing cases is fairly small.  

Nevertheless, were all of the variables in Table 23 to be included in the adjustment models 

7,330 cases from the 65 and over sub-group would be lost (25 per cent), 1,362 cases from the 

18 to 64 sub-group would be lost (18 per cent) and 1,579 cases from the care home sub-group 

would be lost (21 per cent).  Since the models use a selection of the variables and there is also 

missingness in the outcome variable, around 13 to 30 per cent of the data are missing from 

the analysis, depending on the model specification and the sub-group.  

The final column of Table 23 contains the test statistic for whether there are 

differences in the means (proportions for the binary variables) of the three sub-groups.  The 

F-statistic is reported for ordinal variables and the chi-squared statistic is reported for all 

binary variables.  No test statistic is reported for age group, since two sub-groups are defined 

with respect to this variable.  There are significant differences across the sub-groups for each 

one of the adjustor variables, except the proportion of vulnerable people which is constant 

across the groups.  This provides some support for the decision to split the analysis by sub-

group. 
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Table 23: Distributional statistics for the adjustor variables, all sub-groups 

 Care home 
(n=7,510) 

18 to 64 
(n=7,447) 

65 and over 
(n=29,786) 

Equality of 
means † 

Variable N (% missing) Mean (SE) N (% missing) Mean (SE) N (% missing) Mean (SE) 
MALE 7,505 (0.07) 0.29 (0.005) 7,445 (0.03) 0.4 (0.006) 29,778 (0.03) 0.3 (0.003) 344.22*** 
AGE_GP 7,500 (0.13) 7.21 (0.014) 7,447 (0) 4.08 (0.013) 29,786 (0) 7.22 (0.004) n/a 
VP 7510 (0) 0.03 (0.002) 7447 (0) 0.03 (0.002) 29786 (0) 0.03 (0.001) 1.58 
ADLDIFF 7,043 (6.22) 4.14 (0.029) 6,950 (6.67) 3.68 (0.030) 26,832 (9.92) 2.91 (0.015) 857.0*** 
ADLCANT 7,043 (6.22) 2.79 (0.030) 6,950 (6.67) 1.48 (0.026) 26,832 (9.92) 1.15 (0.011) 1,907.2*** 
SPH 7,318 (2.56) 1.61 (0.01) 7,288 (2.14) 2.16 (0.012) 28,744 (3.5) 1.98 (0.005) 744.3*** 
PAIN 7,234 (3.68) 0.67 (0.007) 7,220 (3.05) 1.15 (0.008) 28,478 (4.39) 1.03 (0.004) 1,252.5*** 
ANXDEP 7,136 (4.98) 0.46 (0.007) 7,190 (3.45) 0.79 (0.008) 27,963 (6.12) 0.55 (0.004) 638.5*** 
FINANCES 7,230 (3.73) 1.68 (0.008) 7,190 (3.45) 1.03 (0.01) 28,255 (5.14) 1.08 (0.005) 1,568.5*** 
SPHD 7,282 (3.04) 0.4 (0.007) 7,187 (3.49) 0.99 (0.011) 28,322 (4.92) 0.69 (0.005) 1,097.5*** 
PH, in home 6,999 (6.8) 0.32 (0.006) 7,169 (3.73) 0.52 (0.006) 27,813 (6.62) 0.35 (0.003) 795.3*** 
PH, out home 6,999 (6.8) 0.55 (0.006) 7,169 (3.73) 0.37 (0.006) 27,813 (6.62) 0.58 (0.003) 986.3*** 
PH, none 6,999 (6.8) 0.26 (0.005) 7,169 (3.73) 0.22 (0.005) 27,813 (6.62) 0.15 (0.002) 521.2*** 
SELFCOMP  7,163 (4.62) 0.1 (0.003) 6,956 (6.59) 0.46 (0.006) 27,464 (7.8) 0.4 (0.003) 2,700.0*** 
PROXY 7,163 (4.62) 0.15 (0.004) 6,956 (6.59) 0.03 (0.002) 27,464 (7.8) 0.06 (0.001) 973.4*** 
ASSIST, read 7,163 (4.62) 0.55 (0.006) 6,956 (6.59) 0.31 (0.006) 27,464 (7.8) 0.32 (0.003) 1,300.0*** 
ASSIST, translate 7,163 (4.62) 0.09 (0.003) 6,956 (6.59) 0.08 (0.003) 27,464 (7.8) 0.06 (0.001) 69.4*** 
ASSIST, write 7,163 (4.62) 0.48 (0.006) 6,956 (6.59) 0.29 (0.005) 27,464 (7.8) 0.32 (0.003) 764.0*** 
ASSIST, discuss 7,163 (4.62) 0.33 (0.006) 6,956 (6.59) 0.22 (0.005) 27,464 (7.8) 0.24 (0.003) 276.4*** 
ASSIST, in home 7,131 (5.05) 0.04 (0.002) 6,931 (6.93) 0.22 (0.005) 27,370 (8.11) 0.16 (0.002) 1,000.0*** 
ASSIST, out home 7,131 (5.05) 0.41 (0.006) 6,931 (6.93) 0.16 (0.004) 27,370 (8.11) 0.31 (0.003) 1,100.0*** 
ASSIST, cw 7,131 (5.05) 0.3 (0.005) 6,931 (6.93) 0.11 (0.004) 27,370 (8.11) 0.05 (0.001) 3,700.0*** 
PRIV, own 6,860 (8.66) 0.16 (0.004) 7,070 (5.06) 0.25 (0.005) 27,119 (8.95) 0.41 (0.003) 1,900.0*** 
PRIV, fam 6,860 (8.66) 0.13 (0.004) 7,070 (5.06) 0.05 (0.003) 27,119 (8.95) 0.06 (0.001) 420.8*** 
PRIV, none 6,860 (8.66) 0.73 (0.005) 7,070 (5.06) 0.71 (0.005) 27,119 (8.95) 0.54 (0.003) 1,200.0*** 
SCRQoL‡ 6,849 (8.80) 19.63 (0.043) 6,765 (9.16) 17.1 (0.054) 25,965 (12.83) 18.28 (0.023) 751.73*** 
Legend: * p<.1; ** p<.01; *** p<.001; † χ2 test for nominal variables and anova F-test for ordinal variables and multi-item scales; ‡ median for care home sub-group=20, 
median for 18 to 64 sub-group=17, median for 65 and over sub-group=19. 
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Estimates for the risk-adjustment models 

In this section I present the results for the risk-adjustment models, estimated using the four 

alternative regression procedures.  The data in this section are presented by population sub-

group and by model specification, i.e. the theoretically-driven, SV, or statistically-driven, EP, 

model.  All of the OLS models failed tests for normality of the error terms and 

homoscedasticity (confirmed on visual inspection of the data).  Likewise all of the FE models 

fail the modified Wald test for groupwise heteroscedasticity, as implemented via the xttest3 

routine (Baum 2000, Greene 2012).  All results for these models therefore use the Huber-

White sandwich estimator to correct standard errors (Huber 1967b, White 1980).   

Comparing the theoretically-driven, SV, models across the sub-groups, it is clear that 

a similar set of variables are relevant (Table 24, Table 26 and Table 28).  Notably, the 

variables capturing underlying conditions (SPH, ADLDIFF, ANXDEP, FINANCE) are 

strong predictors of SCRQoL, as is the immediate environment variable (SPHD), and the 

resources arising from social capital variables (PH).  Sociodemographic variables (MALE, 

AGE_GP), resources arising from economic capital (PRIV) and the reporting-related 

variables (ASSIST, PROXY) are less consistently included, save for the variable capturing 

assistance from a care worker (ASSIST, cw).  Despite these similarities across the models in 

the variables included, R2 is very different suggesting that these variables have different 

explanatory power within the models.  This is confirmed to some extent by a comparison of 

the statistically-driven, EP, models (Table 25, Table 27 and Table 29).  The variables retained 

are very similar for the two private household sub-groups (18 to 64 and 65 and over), 

differing only in the fact that ADL score is retained for the 65 and over sub-group.  None of 

the resources or reporting-related variables are retained.  By contrast for the care home sub-

group, only two variables are retained, one from the underlying conditions category and one 

from the resources category.  This suggests some differences across sub-groups in the ability 

of the variables to predict SCRQoL and in the extent to which the characteristics vary across 

CASSRs.   

In general, all the models show good construct validity, regardless of regression 

method, variable selection or sub-group (Table 24 to Table 29).  The effects are all in the 

expected direction, except in the FR regression for a few of the interaction terms which are 

mostly no longer significant.  The differences between the FR and OLS model probably 

reflect the non-linear transformation achieved through the logit link function.  The age group 

variable (AGE_GP) for the care home sub-group has a negative coefficient for all categories 

(although some are not significant) (see Table 28).  Since the base group is adults aged 85 
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and over, this indicates that people younger than 85 have worse SCRQoL than people aged 

over 85, which is contrary to what we would expect if this variable is acting as an indicator of 

need.  This relationship is present (and stronger) before adding in other covariates, suggesting 

it is not a consequence of collinearity.  It is likely that age is capturing some other, perhaps 

reporting-related phenomenon.  Indeed age is a likely to be a fairly poor indicator of need in a 

care home sample.  The finding is consistent with evidence of a negative u-shaped 

relationship between age and life satisfaction, which some have suggested is related to 

differences in the criteria people use for evaluating their QoL (Easterlin 2006, Blanchflower 

and Oswald 2008).  

It is not possible to compare coefficients from the FR regression with the OLS and 

other regressions directly, because (i) of the scaling applied to the outcome indicator in the 

FR regression, and (ii) the right-hand side variables in the FR regression are related to the 

outcome indicator by a non-linear ‘link’ function.  Nevertheless, I can explore convergent 

validity by looking at the significance of the coefficients.  In this respect the models have 

good convergent validity.  The significance of the estimated coefficients differs in only a 

small number of cases, and all of these instances bar one are related to the interaction terms.  

The only example of the significance of an estimated coefficient that is not an interaction 

term changing between the regression models, is found for gender (MALE), in the 

theoretically-driven SV model for the care home sub-group (see Table 28), but this is a 

consequence of the p-value being close to the significance boundary.   

For the OLS, RE and FE models, it is possible to directly compare the coefficients.  In 

general, there is also good agreement between the models, providing evidence for convergent 

validity.  The largest differences are found for the age group coefficients in the theoretically-

driven SV model estimated on the care home sub-group, where several coefficients have 

differences between 0.1 to 0.25 scale points (>1 percentage point) (Table 28).  The change in 

the coefficients for the risk-adjustors is mostly as would be expected if the (random or fixed) 

CASSR effects are capturing (a part of) the impact of services on SCRQoL.  There are 

several variables, however, where the coefficients change in the unexpected direction.  This is 

the case across the models for the anxiety/depression (ANXDEP), but is also a problem for 

some of the other variables (SPHD, SPH) for some of the models, where the coefficients are 

more positive (rather than negative) in the RE and FE models compared to the OLS model.  

This suggests that mean differences between CASSRs in anxiety/depression and other 

indicators are negatively related to SCRQoL. 
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Table 24: Estimates for OLS, FR, RE and FE regression of the SCRQoL indicator, SV models, 18 to 64 sub-group (n=5,856)  

Variable OLS FR RE FE 
 Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects     
SPH: good a -1.061*** (0.16) -0.419*** (0.06) -1.068*** (0.203) -1.118*** (0.162) 
SPH: fair a -2.170*** (0.157) -0.724*** (0.057) -2.172*** (0.194) -2.202*** (0.16) 
SPH: bad a -3.483*** (0.18) -0.970*** (0.059) -3.487*** (0.209) -3.521*** (0.181) 
SPH: very bad a -3.964*** (0.242) -1.033*** (0.066) -3.962*** (0.242) -3.974*** (0.256) 
SPHD -1.092*** (0.097) -0.260*** (0.021) -1.088*** (0.096) -1.062*** (0.101) 
ADLDIFF -0.069* (0.031) -0.021** (0.007) -0.069* (0.032) -0.072* (0.029) 
ADLDIFF*SPHD -0.091*** (0.021) -0.009* (0.004) -0.091*** (0.02) -0.090*** (0.021) 
FINANCE: diff b -0.715*** (0.115) -0.153*** (0.025) -0.717*** (0.116) -0.722*** (0.116) 
FINANCE: can’t b -0.575*** (0.119) -0.121*** (0.027) -0.579*** (0.12) -0.598*** (0.117) 
ANXDEP -1.665*** (0.077) -0.348*** (0.016) -1.663*** (0.073) -1.661*** (0.073) 
PH, in home 0.357* (0.151) 0.081* (0.037) 0.359* (0.163) 0.372* (0.155) 
PH, out home 0.288** (0.096) 0.058** (0.021) 0.284** (0.096) 0.275** (0.101) 
PH, in*ADLDIFF 0.093** (0.035) 0.016* (0.008) 0.091** (0.035) 0.082* (0.036) 
MALE -0.238** (0.089) -0.052** (0.019) -0.236** (0.089) -0.226* (0.095) 
ASSIST, cw 0.878*** (0.155) 0.204*** (0.037) 0.880*** (0.149) 0.878*** (0.171) 
ASSIST, translate 0.320* (0.179) 0.071* (0.04) 0.326* (0.169) 0.313* (0.183) 
ASSIST, write 0.221* (0.108) 0.043* (0.024) 0.216* (0.107) 0.191 (0.116) 
Constant 22.299*** (0.183) 2.318*** (0.062) 22.310*** (0.221) 22.347*** (0.18) 
Random effects  
௨ 0.210 (0.083)ߪ  
௘  3.289 (0.031)ߪ  
Model statistics  
F-stat 259.98*** 211.23*** 191.33*** 253.91*** 
R2 0.431 0.431 0.447 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good; b Base category: can do easily by myself.  
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Table 25: Estimates for OLS, FR, RE and FE regression of the SCRQoL indicator, EP models, 18 to 64 sub-group (n=6,513) 

Variable OLS FR RE FE 
 Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects  
SPH: good a -1.187*** (0.151) -0.451*** (0.058) -1.192*** (0.197) -1.244*** (0.146) 
SPH: fair a -2.425*** (0.148) -0.771*** (0.056) -2.429*** (0.188) -2.472*** (0.151) 
SPH: bad a -3.817*** (0.168) -1.038*** (0.057) -3.822*** (0.201) -3.872*** (0.173) 
SPH: very bad a -4.422*** (0.227) -1.139*** (0.063) -4.424*** (0.229) -4.465*** (0.254) 
SPHD -1.291*** (0.091) -0.339*** (0.022) -1.286*** (0.088) -1.248*** (0.087) 
ANXDEP: mod b -1.290*** (0.123) -0.397*** (0.033) -1.290*** (0.135) -1.288*** (0.121) 
ANXDEP: extreme b -2.985*** (0.251) -0.745*** (0.051) -2.978*** (0.218) -2.916*** (0.272) 
SPHD* ANXDEP: mod c -0.264* (0.114) 0.039 (0.026) -0.264* (0.11) -0.264* (0.11) 
SPHD* ANXDEP: ext c -0.573*** (0.168) 0.02 (0.034) -0.576*** (0.139) -0.618*** (0.17) 
Constant 22.314*** (0.13) 2.370*** (0.055) 22.316*** (0.179) 22.318*** (0.13) 
Random effects  
௨ 0.183 (0.089)ߪ  
௘  3.345 (0.03)ߪ  
Model statistics  
F-stat 517.20*** 415.93*** 384.50*** 475.57*** 
R2  0.417 0.416 0.432 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good; b Base category: not anxious or depressed; c Base category: SPHD*ANXDEP: not anxious or depressed.  
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Table 26: Estimates for OLS, FR, RE and FE regression of SCRQoL indicator, SV models, 65 and over sub-group (n=20,881) 

Variable OLS FR RE FE 
 Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects     
SPH: good a -0.632*** (0.097) -0.303*** (0.041) -0.635*** (0.118) -0.641*** (0.094) 
SPH: fair a -1.624*** (0.095) -0.603*** (0.04) -1.626*** (0.114) -1.631*** (0.089) 
SPH: bad a -2.676*** (0.109) -0.806*** (0.041) -2.681*** (0.124) -2.686*** (0.108) 
SPH: very bad a -3.165*** (0.15) -0.864*** (0.045) -3.161*** (0.147) -3.157*** (0.15) 
ANXDEP -1.350*** (0.04) -0.304*** (0.009) -1.345*** (0.037) -1.342*** (0.04) 
SPHD -1.397*** (0.031) -0.305*** (0.007) -1.391*** (0.028) -1.383*** (0.03) 
ADLDIFF -0.297*** (0.013) -0.068*** (0.003) -0.294*** (0.012) -0.293*** (0.013) 
FINANCES -0.188*** (0.029) -0.050*** (0.007) -0.182*** (0.029) -0.178*** (0.03) 
PH, in home 0.156* (0.075) 0.037* (0.02) 0.153* (0.08) 0.145* (0.087) 
PH, out home 0.276*** (0.052) 0.063*** (0.013) 0.266*** (0.051) 0.258*** (0.056) 
PH, in *ADLDIFF 0.154*** (0.018) 0.031*** (0.004) 0.153*** (0.018) 0.155*** (0.021) 
MALE -0.204*** (0.045) -0.047*** (0.011) -0.202*** (0.044) -0.200*** (0.047) 
PROXY -0.854*** (0.104) -0.178*** (0.022) -0.860*** (0.095) -0.863*** (0.113) 
ASSIST, cw 1.039*** (0.103) 0.272*** (0.028) 1.004*** (0.1) 0.974*** (0.139) 
ASSIST, out home -0.323*** (0.06) -0.073*** (0.014) -0.331*** (0.06) -0.336*** (0.064) 
ASSIST, read 0.159** (0.051) 0.033** (0.012) 0.153** (0.05) 0.150** (0.055) 
PRIV, own -0.159*** (0.042) -0.044*** (0.01) -0.156*** (0.042) -0.155*** (0.042) 
Constant 22.42*** (0.099) 2.377*** (0.041) 22.41*** (0.122) 22.41*** (0.094) 
Random effects  
௨ 0.271 (0.029)ߪ  
௘  2.878 (0.014)ߪ  
Model statistics  
F-stat 742.34*** 668.84*** 597.86*** 830.19*** 
R2  0.391 0.391 0.401 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good. 
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Table 27: Estimates for OLS, FR, RE and FE regression of SCRQoL indicator, EP models, 65 and over sub-group (n=23,110) 

Variable OLS FR RE FE 
 Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects  
SPH: good a -0.734*** (0.091) -0.321*** (0.039) -0.737*** (0.113) -0.743*** (0.089) 
SPH: fair a -1.730*** (0.089) -0.609*** (0.038) -1.733*** (0.11) -1.740*** (0.088) 
SPH: bad a -2.837*** (0.104) -0.828*** (0.039) -2.841*** (0.119) -2.847*** (0.106) 
SPH: very bad a -3.275*** (0.147) -0.894*** (0.044) -3.275*** (0.142) -3.276*** (0.151) 
SPHD: most b -1.425*** (0.063) -0.434*** (0.017) -1.432*** (0.068) -1.435*** (0.056) 
SPHD: some b -2.552*** (0.132) -0.687*** (0.028) -2.532*** (0.127) -2.512*** (0.145) 
SPHD: inappropriate b -3.278*** (0.417) -0.832*** (0.077) -3.214*** (0.36) -3.161*** (0.398) 
ANXDEP: moderate c -1.316*** (0.042) -0.318*** (0.01) -1.314*** (0.042) -1.313*** (0.052) 
ANXDEP: extreme c -2.887*** (0.119) -0.597*** (0.022) -2.866*** (0.096) -2.849*** (0.12) 
ADLDIFF -0.241*** (0.013) -0.074*** (0.003) -0.239*** (0.013) -0.237*** (0.013) 
ADLDIFF*SPHD: most d -0.024 (0.018) 0.020*** (0.004) -0.022 (0.018) -0.02 (0.019) 
ADLDIFF*SPHD: some d -0.057* (0.03) 0.023*** (0.006) -0.057* (0.028) -0.056 (0.035) 
ADLDIFF*SPHD: inappropriate d -0.137 (0.09) 0.012 (0.016) -0.144* (0.071) -0.148 (0.09) 
Constant 22.43*** (0.084) 2.430*** (0.038) 22.42*** (0.109) 22.42*** (0.084) 
Random effects   
௨  0.261 (0.028)ߪ  
௘   2.924 (0.014)ߪ  
Model statistics   
F-stat 1,032.44*** 899.523*** 1,024.36*** 1,034.73*** 
R2 0.370 0.371 0.379 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good; b Base category: meets needs very well; c Base category: not anxious or depressed; d Base category: 
ADLDIFF*SPHD: meets needs very well. 
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Table 28: Estimates for OLS, FR, RE and FE regression of SCRQoL indicator, SV models, care home sub-group (n=5,710) 

Variable OLS FR RE FE 
 Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects     
SPH -0.820*** (0.055) -0.230*** (0.016) -0.819*** (0.052) -0.821*** (0.054) 
ANXDEP: moderate a -1.289*** (0.09) -0.366*** (0.025) -1.286*** (0.088) -1.276*** (0.086) 
ANXDEP: extremely a -3.052*** (0.28) -0.680*** (0.057) -3.057*** (0.216) -3.076*** (0.29) 
ADLDIFF^3 -0.004*** (3.59E-04) -0.001*** (9.75E-05) -0.005*** (2.41E-04) -0.005*** (3.55E-04) 
PH, in home 0.686*** (0.082) 0.207*** (0.026) 0.686*** (0.087) 0.684*** (0.094) 
MALE -0.326*** (0.094) -0.086** (0.027) -0.325*** (0.094) -0.315** (0.107) 
AGE_GP: 18-34 b 0.057 (0.344) 0.066 (0.124) 0.069 (0.4) 0.043 (0.347) 
AGE_GP: 35-44 b -1.595*** (0.406) -0.445*** (0.102) -1.564*** (0.368) -1.374*** (0.401) 
AGE_GP: 45-54 b -0.103 (0.241) -0.026 (0.078) -0.086 (0.266) 0.001 (0.243) 
AGE_GP: 55-64 b -0.477* (0.217) -0.148* (0.063) -0.460* (0.218) -0.354 (0.226) 
AGE_GP: 65-74 b -0.455** (0.15) -0.134** (0.043) -0.448** (0.147) -0.405* (0.175) 
AGE_GP: 75-84 b -0.118 (0.097) -0.023 (0.028) -0.117 (0.097) -0.111 (0.101) 
PROXY -1.051*** (0.186) -0.235*** (0.05) -1.044*** (0.171) -1.006*** (0.194) 
ASSIST, cw 0.720*** (0.145) 0.264*** (0.047) 0.705*** (0.148) 0.656*** (0.158) 
ASSIST, out home -0.530*** (0.142) -0.153*** (0.042) -0.530*** (0.138) -0.527*** (0.154) 
ASSIST, read 0.313** (0.103) 0.090** (0.029) 0.310** (0.1) 0.283* (0.112) 
PRIV, own -0.492*** (0.129) -0.130*** (0.033) -0.484*** (0.114) -0.455** (0.138) 
Constant 22.13*** (0.149) 2.247*** (0.047) 22.13*** (0.152) 22.14*** (0.147) 
Random effects  
௨ 0.204 (0.081)ߪ  
௘  3.018 (0.029)ߪ  
Model statistics  
F-stat 122.98*** 127.64*** 116.13*** 110.65*** 
R2 0.296 0.301 0.318 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: not anxious or depressed; b Base category: 85 and over age group.  
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Table 29: Estimates for OLS, FR, RE and FE regression of SCRQoL indicator, EP models, care home sub-group (n=6,344) 

Variable OLS FR RE FE 
 Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects  
ANXDEP: moderate a -2.218*** (0.114) -0.588*** (0.029) -2.190*** (0.105) -2.157*** (0.107) 
ANXDEP: extremely a -5.027*** (0.346) -1.147*** (0.065) -4.988*** (0.257) -4.932*** (0.38) 
PH in home 0.741*** (0.097) 0.261*** (0.035) 0.752*** (0.113) 0.770*** (0.105) 
PH in* ANXDEP: moderate b 0.540** (0.184) 0.052 (0.053) 0.511** (0.189) 0.471** (0.175) 
PH in*ANXDEP: extremely b 1.784** (0.656) 0.234* (0.14) 1.758*** (0.495) 1.708* (0.668) 
Constant 20.33*** (0.063) 1.712*** (0.02) 20.30*** (0.078) 20.30*** (0.049) 
Random effects  
௨ 0.447 (0.062)ߪ  
௘  3.293 (0.030)ߪ  
Model statistics  
F-stat 172.23*** 187.632*** 188.15*** 195.50*** 
R2 0.140 0.140 0.174 

Legend: * p<.1; ** p<.01; *** p<.001; a Base category: not anxious or depressed; b Base category: PH in*ANXDEP: not anxious or depressed.
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Comparison of model fit and predictive validity 

In this section I compare the predictive validity of the models.  I first look at the comparison 

between the OLS and FR regressions for both outcome indicators, across all sub-groups.  

Then I compare the OLS, RE and FE regressions.  These comparisons are presented 

separately because I use different indices of model fit, as previously described.  After 

comparing model fit using standard indices, I examine the distribution of the predicted values 

over the range of the observed scale for each outcome indicator.  

Goodness of fit statistics for the OLS and FR regression models are set out in Table 

30.  The R2s are not very high but are fairly typical for models with these populations (Davies 

et al. 2000b, Glendinning et al. 2008a, Forder et al. 2016).  For the two non-care home sub-

groups, the OLS has a slightly higher R2 (and lower RMSE) and also marginally outperforms 

the FR regression on the other goodness of fit tests.  Neither model fits the data well; both 

have poor link and Ramsey reset tests.  In the care home sub-group SV model, in which the 

SCRQoL indicator has a slightly more skewed and peaked distribution, the FR model slightly 

outperforms the OLS.  It has a slightly higher R2 (and lower RMSE), and passes the tests that 

are concerned with the distribution of the errors.  There is, however, not much difference 

between the models; again both fail the link and Ramsey reset tests, suggesting some 

unaccounted for nonlinearity.  The tests for the statistically-driven, EP, models for the care 

home sub-group suggest a slight preference for the OLS model, but the R2 is very low for this 

specification compared to the other models 
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Table 30: Model fit statistics for OLS and FR regression 

 SV model  EP model 
Estimators OLS FR  OLS FR 
18 to 64 sub-group 
Hosmer-Lemeshow, F-stat (p-value) 0.961 (0.475) † 2.186 (0.016)  1.027 (0.417) † 2.331 (0.01)
Pearson correlation, Rho (p-value) 0.000 (1.000)† -0.005 (0.721)†  0.000 (1.000)† -0.004 (0.757)†
Link test, t stat (p-value) -0.017 (0.02) -0.031 (<.001)  -0.002 (0.606) † -0.032 (<.001)
Reset test, F-stat (p-value) 13.95 (<.001) 10.84 (<.001)  2.72 (0.043) 8.743 (<.001)
R2 0.431 0.431  0.417 0.416
RMSE 3.296 3.294  3.350 3.354
65 and over sub-group 
Hosmer-Lemeshow, F-stat (p-value) 2.088 (0.022) 8.004 (<.001)  3.13 (0.001) 4.591 (<.001)
Pearson correlation, Rho (p-value) 0.000 (1.000)† -0.009 (0.216)†  0.000 (1.000)† -0.003 (0.656)†
Link test, t stat (p-value) -0.016 (<.001) -0.025 (<.001)  -0.013 (<.001) -0.037 (<.001)
Reset test, F-stat (p-value) 19.00 (<.001) 42.80 (<.001)  23.55 (<.001) 24.64 (<.001)
R2 0.391 0.389  0.370 0.371
RMSE 2.891 2.895  2.936 2.935
Care home sub-group 
Hosmer-Lemeshow, F-stat (p-value) 5.888 (<.001) 1.03 (0.415)†  0.881 (0.551)† 1.800 (0.055)†
Pearson correlation, Rho (p-value) 0.000 (1.000)† -0.004 (0.753)†  0.000 (1.000)† 0.000 (1.000)†
Link test, t stat (p-value) -0.042 (<.001) -0.036 (<.001)  0.000 (1.000)† -0.046 (<.001)
Reset test, F-stat (p-value) 17.66 (<.001) 3.923 (0.008)  9.26 (<.001) ---
R2 0.296 0.301  0.140 0.140
RMSE 3.025 3.013  3.322 3.322

Legend: --- estimation not possible due to collinearity, † passes goodness of fit test at p<.05 level 
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A comparison between the OLS, RE and FE models reveals differences across the 

sub-groups in terms of the predictive validity of the different regression methods (Table 31).  

For the 18 to 64 sub-group the likelihood ratio test for rho is not significant (p>0.05)52, 

suggesting that predictive validity is not improved by modelling the organisational effect as a 

random variable.  The BIC and AIC statistics support this finding.  The F-test for the 

inclusion of fixed effects for CASSRs is more ambiguous (p>0.1 for both models)53, but the 

adjusted R2, RMSE, AIC and BIC statistics all clearly favour the FE model over the OLS.  

The FE model may have better predictive validity than the OLS for this sub-group. 

 For the 65 and over sub-group, the predictive validity of the RE and FE models are 

both better than the OLS.  The AIC and BIC statistics very strongly favour the RE and FE 

models.  While the differences in adjusted R2 and RMSE statistics are not large they are 

greater than those observed for the 18 to 64 age group.  Importantly, the likelihood ratio test 

for rho is highly significant (p<.001)54 and so is the F-test for the inclusion of fixed effects 

for CASSRs (p<.001)55.  Although results from the FE model show fairly low levels of 

correlation between estimates of the FE and the other model coefficients (ranging from .057 

to .064), a Hausman test indicates that the FE model is preferred (p<.001) for all the 

models56.  

The choice of covariates has the most notable effect on the results for the care home 

sub-group.  For the statistically-driven, EP, model the AIC, BIC, adjusted R2 and RMSE 

statistics very strongly favour the RE and FE models over the OLS; for the theoretically-

driven SV model only the AIC and BIC statistics strongly favour the FE regression over the 

OLS.  Supporting these findings, the likelihood ratio test for rho for the statistically-driven 

EP model is highly significant (p<.001) but not for the theoretically-driven SV model 

(p>0.1)57, while the F-test for the inclusion of fixed effects for CASSRs is also highly 

significant for the statistically-driven EP model (p<.001), but only significant at a higher 

threshold for the theoretically-driven SV model (p<.05)58.  A Hausman test indicates that for 

the care home statistically-driven EP model the RE model is preferred (p>.1)59.  Since this 

specification contains only two variables plus their interaction, it seems likely that the 

                                                 
52 SV model: χ2(2)=2.09, p=0.074; EP model: χ2(2)=1.31, p=0.126. 
53 SV model: F(148,5690)=1.14, p=0.116; EP model: F(148,6355)=1.15, p=0.103. 
54 SV model: χ2(2)=29.33, p=0.032; EP model: χ2(2)=19.53, p=0.021. 
55 SV model: F(148,20715)=2.25, p<.001; EP model: F(148,22948)=2.24, p<.001. 
56 SV model: χ2(17)=55.80, p<.001; model: χ2(13)=43.32, p<.001. 
57 SV model: χ2(2)=2.09, p=.352; EP model: χ2(2)=29.49, p<.001. 
58 SV model: F(147,5545)=1.20, p=.049; EP model: F(147,6191)=1.77, p<.001. 
59 EP model: χ2(5)=9.21, p=0.101. 
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statistically-driven approach to specification in the care home sub-group does not adjust for 

sufficient of the CASSR-level variation that is due to differences in the profile of service 

users. 

Three further points are worth noting here.  First, as would be expected, the 

theoretically-driven SV model which results in a specification with more risk-adjustors 

explains more of the variation in scores (R2 is greater and RMSE is lower) than the 

statistically-driven and more parsimonious EP model across all the population sub-groups.  

Additionally, despite the increased model complexity, AIC and BIC statistics very strongly 

favour the SV over the EP models.  Secondly, the predictive ability of the regressions differs 

across the sub-groups.  The models estimated on the 18 to 64 sub-group having the highest 

R2, followed by the models estimated on the 65 and over sub-group and finally followed by 

the models estimated on the care home sub-group, where the R2 is much lower, but where 

fewer variables were available for inclusion in the models.  This suggests that the indicators 

are better suited to capturing the social care needs of the 18 to 64 sub-group.  Thirdly, 

conditional rho, that is the between-CASSR variation after accounting for risk-adjustors, was 

in all cases less than one per cent of the overall variation.  Even prior to the inclusion of risk-

adjustors, rho was very low across the sub-groups, explaining around two per cent of the total 

variation.  This suggests that very little of the variation in SCRQoL can be directly attributed 

to CASSRs. 
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Table 31: Model fit statistics for OLS, RE and FE regressions 

 SV model  EP model 
OLS RE FE  OLS RE FE 

18 to 64 sub-group 
Log-likelihood -15,293 -15,292 -15,207  -17,115 -17,114 -17,029 
F-stat  259.98*** 191.33*** 253.91***  517.20*** 384.50*** 475.57*** 
AIC 30,622 30,624 30,450  34,250 34,252 34,077 
BIC 30,742 30,757 30,571  34,318 34,334 34,145 
Adjusted R2  0.429 0.431  0.416 0.418 
RMSE 3.296 3.248 3.248  3.350 3.306 3.306 
Conditional rho (SE) 0.004 (0.003)   0.003 (0.003)  
65 and over sub-group 
Log-likelihood -51,794 -51,762 -51,627  -57,681 -57,650 -57,515 
F-stat  742.34*** 597.86*** 830.19***  1,032.44*** 1,024.36*** 1,034.73*** 
AIC 103,624 103,564 103,291  115,389 115,331 115,058 
BIC 103,767 103,723 103,434  115,502 115,460 115,171 
Adjusted R2  0.391 0.396  0.370 0.375 
RMSE 2.891 2.868 2.868  2.936 2.915 2.915 
Conditional rho (SE) 0.009 (0.002)   0.008 (0.002)  
Care home sub-group 
Log-likelihood -14,422 -14,421 -14,332  -16,618 -16,603 -16,487 
F-stat  122.98*** 116.13*** 110.65***  172.23*** 188.15*** 195.50*** 
AIC 28,880 28,882 28,701  33,247 33,222 32,986 
BIC 29,000 29,015 28,821  33,288 33,276 33,026 
Adjusted R2  0.294 0.298  0.139 0.154 
RMSE 3.025 2.978 2.978  3.322 3.254 3.254 
Conditional rho (SE) 0.005 (0.004)   0.018 (0.005)  
Legend: *** p<.001 
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Figure 28 illustrates the distribution of the predictions from the regression models, 

over the range of values of the SCRQoL indicator.  The distribution of predictions from the 

OLS, RE and FE models are very similar, and seem to coincide for the two non-care home 

sub-groups.  Only in the case of the care home EP model, do the predicted values for the 

OLS have a slightly more peaked distribution than those from the RE and FE regressions.  

The FR regression, however, captures the skewed nature of the distribution slightly better 

than the OLS, particularly for the SV models.  It also does not predict values beyond the 

maximum score, as the OLS, RE and FE regressions do.  This comes at a cost of the 

predicted values having a more peaked distribution.  The relatively poor performance of all 

the models in predicting the extremes of the distribution is shown more clearly in Table 84 

to Table 86 in Appendix 13, which examine the mean error across five regions of the 

distribution.  The mean error and mean absolute error are both largest for the categories 

that are farthest away from the mean of the distribution and the errors from the 

statistically-driven EP model are in all cases larger than those from the theoretically-driven 

SV model.   
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Figure 28: Distribution of observed and predicted scores from OLS, FR, RE and FE 
regressions 
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Discussion 

This analysis sought to answer the question of whether modelling decisions matter for 

explaining non-performance-related heterogeneity in ASC outcomes.  I have used data 

from the ASCS to explore this question, and have focused the modelling on the SCRQoL 

indicator from the ASCOF.  I estimated the base model by OLS and used two different 

specifications for the risk-adjustors.  I also considered three alternative estimators: (i) FR 

regression, which has distributional assumptions that are a better fit for the SCRQoL 

indicator, and (ii) a RE and (iii) a FE regression, which both address the clustering of the 

data by CASSR.  Where models produce similar conclusions, I would expect model 

coefficients to be very similar (models will have high convergent validity) and for the 

predictive validity of models to be similar.  In this analysis I found high convergent 

validity between the four regression estimators and only very marginal gains in predictive 

validity from the alternatives to the OLS.  By contrast the specification of the risk-

adjustors had a more noticeable effect on R2, particularly for the care home sub-group 

where the statistically-driven approach seemed to provide a poor model.  There were also 

some differences across sub-groups in the fit of the different regressions and in the 

predictors retained in the models.  I discuss these findings in more detail below, and 

conclude by considering the implications for risk-adjusting the SCRQoL PI.  The policy 

and wider implications of this analysis are considered in Chapter 9.     

 

The effect of different modelling choices on the estimation of the SCRQoL outcome 

The regression method used did not have a very large effect on the model estimates.  There 

was very high convergent validity between the models, in terms of the significance, 

direction and value of the coefficients.  There were in some cases some very small gains in 

predictive validity from alternative regression methods, but the small differences imply 

that the OLS provides unbiased results for these data. 

 The similarity in the coefficients obtained from the OLS, FE and RE models is 

likely to be a consequence of the fairly small amount of variation in SCRQoL scores 

explained by differences between CASSRs.  Nevertheless, the small differences in 

coefficients between the RE, FE and OLS models were in general in the direction 

anticipated, assuming that the small CASSR effect is picking up systematic differences in 

the intensity of provision across areas.  Since the risk factors are included as predictors of 

social care need, I would expect them to be strongly correlated with the intensity of 

provision, such that greater need would result in more intense services.  Under such 
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circumstances inclusion of a CASSR effect will then lead to more negative coefficients.  

This is indeed the case for the ADL score variable, but is not the case for some of the 

variables capturing perceived health.  The anxiety and depression variable consistently 

defied expectations and had a more positive coefficient in the FE and RE models.  This 

finding suggests that within CASSRs worse average levels of anxiety and depression are 

associated with lower average SCRQoL scores.  The correlation between health and social 

care outcomes implies that the health variables are behaving as outcome variables rather 

than need variables.  I consider this relationship further in Chapter 7 and discuss the 

implications of this for case-mix adjustment of the PIs in Chapter 9, where I also discuss 

the implications of the small CASSR effect on SCRQoL for quality improvement policies. 

 I used the theoretical framework in Chapter 2 to select variables for inclusion in the 

models.  The variable specification seemed to be important for predictive validity and more 

important than the choice of regression model, which concurs with other studies (Hannan 

et al. 1997, Huang et al. 2005, Mukamel et al. 2008, Li et al. 2009, Iezzoni 2013).  For all 

sub-groups, the theoretically-driven (SV) methods which produced a specification with 

more risk adjustors was preferred to the statistically-driven and more parsimonious (EP) 

method, explaining more of the variation in SCRQoL and producing predictions with less 

error.  For the care home sub-group the statistically-driven method produced a poorly-

specified model with limited explanatory power.  This suggests that theoretically-driven 

methods may be more appropriate for developing risk-adjustment models. 

Although less useful for developing a final specification for risk adjustment, the 

statistically-driven EP models point to differences in the explanatory power of the risk-

adjustors for the different sub-groups.  This is because variables were selected based on 

their predictive power and the extent to which they varied between CASSRs across the 

sub-groups.  For the private household sub-groups, the variables capturing underlying 

conditions and the immediate environment have the greatest explanatory power; whereas 

for the care home sub-group it is the resources variable capturing receipt of practical help 

from someone else in the care home and the anxiety and depression variable from the 

underlying conditions category that are most important.  Differences in the importance of 

risk-adjustors for different sub-groups suggest that there is a benefit in analysing the data 

by sub-group. 
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Limitations of the modelling and directions for future research 

Although the models had high convergent validity, it is, nevertheless, important to 

acknowledge that none of the regression models provided a good fit to the data.  In all 

cases, goodness of fit statistics suggested problems with non-linearity and problems with 

predicting the extremes, particularly the tail of the distribution, even in the non-linear 

fractional response regression.  Using the available variables, I attempted to improve the fit 

by introducing polynomial terms and derived needs variables, but none of these attempts 

was successful.  Consequently there will be large errors for cases with poor SCRQoL.   

The extent to which this is a problem depends on whether one believes that the 

SCRQoL of these people in the tail of the distribution could be radically improved, such 

that the predicted outcome is realistic.  If the cases in the tail region are people who are 

receiving genuinely poor quality services then the predicted outcome may be fairly 

realistic.  If, however, the underlying distribution (assuming all people were receiving 

optimal care) is truly skewed, then the expected outcome for cases in the tail region is 

likely to be unrealistic.  It is possible to think of situations in which this latter scenario may 

be the case.  For example, social care services are likely to be unable to compensate people 

who are in very poor health, perhaps close to death, for loss of functional ability.  For this 

group of people the model will provide a poor and upwardly biased prediction of their 

SCRQoL (Ara et al. 2013).  This limitation of the models has implications for the methods 

used for adjustment, which I discuss in Chapter 8, and for policy as I discuss in Chapter 9.  

It is also an area that deserves further research. 

As with all modelling of this kind, I was limited by the available indicators in the 

dataset.  It is possible that the misspecification is due to omitted variable bias.  One 

possible source of this is the omitted indicator of service intensity.  I explore whether the 

inclusion of a term for this variable improves the models in Chapter 7.  Other unobserved 

variables that are potentially relevant are health conditions, which have been shown to be 

important for the estimation of SCRQoL in a recent study (Forder et al. 2016).  Personal 

characteristics and motivations identified in Chapter 2 as relevant, such as self-care 

abilities are also unobserved.  These have been shown to be related to health outcomes 

(Greene and Hibbard 2012) and theoretically should be important for social care outcomes 

given the high levels of co-production (Knapp 1984, Netten and Davies 1990).  To the 

extent that these unobserved variables are also correlated with the observed variables, the 

estimates will be biased, with the direction of the bias depending on the direction of the 

correlation.     
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 A further limitation was the fairly small numbers in two of the sub-groups.  It is 

generally considered good practice in risk-adjustment to develop models on a sub-sample 

of the data and then use another sample to validate the models (Ash et al. 2013).  This 

strategy guards against over-fitting of the model to the peculiarities of a particular dataset.  

It also means risk-adjustment models have more validity when applied to different 

samples, which is important given that generally the model will be applied to many future 

waves of the data to generate adjusted-PIs.  This strategy, however, requires large numbers 

to implement.  While it would have been possible for the 65 and over sub-group, the other 

sub-groups were too small to split the sample.  A dataset combining multiple waves of the 

ASCS would probably have sample sizes large enough to split the data into a development 

and validation sample for the PSD sub-groups (and possibly other sub-groups).  A 

combined dataset would also have the benefit of making models more robust to differences 

in the relationships between variables between survey waves.  Future studies could explore 

re-estimating the models developed here on multiple waves of the ASCS in order to 

validate the models. 

 

Concluding remarks 

This analysis has shown that the five sets of quasi-inputs predicted by the modified POW 

framework are important for explaining heterogeneity in SCRQoL outcomes.  Given the 

risk-adjustment models explain a sizeable amount of the variation in SCRQoL outcomes, 

risk-adjustment is likely to make a difference to PI scores and inferences about 

performance.  It is less clear how important the different modelling choices explored here 

will be for performance assessment.  The choice of regression model did not substantially 

alter predictions from the risk-adjustment models.  Depending on the sub-group, there were 

small gains from using either the FR, FE or RE model over an OLS.  The model 

specification made a more important difference to the predictive ability of the models, with 

models using the more statistically-driven specification that had fewer risk-adjustors 

having less predictive validity than models based on the more theoretically-driven 

specification that had more risk-adjustors.  In this chapter I have examined the effect of 

modelling choices on model parameters, case-level predictions and model fit statistics.  

The real test of whether modelling choices matter for risk-adjustment is in whether they 

affect inferences about performance.  I explore this question in Chapter 8. 

 I consider the policy and wider research implications of this analysis in Chapter 9, 

after I have explored the effect of modelling choices on performance assessment in 
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Chapter 8.  It is important for subsequent discussions to highlight a few of the points raised 

in this discussion.  First, for these data the analysis suggests that sub-group analysis was 

beneficial for developing risk-adjustment models, as there was some variation across the 

sub-groups in the distribution of the risk-adjustors and in their ability to predict SCRQoL.  

This has implications for the adjustment of PIs for non-performance-related sources of 

heterogeneity, which I pick up on in Chapter 8 and discuss in more detail in Chapter 9.  

Second, the specification problems identified for these models and the poor prediction of 

the extremes of the distribution are key areas for future research, because of the 

implications they have for risk-adjustment.  To some extent it may be possible to improve 

on some of the analyses conducted here with recent versions of the ASCS.  Changes to 

data collections in 2014-15 mean that the more recent surveys have more detailed 

information about health conditions that may help to address potential omitted variable 

bias.  In the next chapter, I explore the possibility that bias arising from the correlation 

between unobserved service intensity and the risk-adjustors is a cause of the 

misspecification.   

 

 



 

224 
 

224

Chapter 7 

What is the Most Appropriate Method for Modelling Adult Social Care 

Outcomes?  Part Two: A Comparison between Production Function 

Models and Risk-Adjustment Models for Explaining Heterogeneity in 

Outcomes 

 

Abstract 

Objective: To compare the validity and model fit of a risk-adjustment model and a 

production function model for the self-reported social care outcome indicator.   

Design: Cross-sectional survey data that captured self-reported SCRQoL, an indicator of the 

intensity of social care provision and a variety of risk-adjustors were analysed using a 

production function and a risk-adjustment modelling approach.  Both approaches were 

estimated via (i) OLS regression, and (ii) random and fixed-effects regression.  Two different 

specifications were estimated: one with a set of theoretically-chosen but statistically 

significant risk-adjustors, and a second more parsimonious statistically-driven specification.  

Model parameters and fit statistics were compared to assess the effect of modelling decisions. 

Participants: This analysis uses the 4,201 respondents to the ASCS from the physically and 

sensorily disabled (PSD) client group aged between 18 and 64 living in private households 

with an available indicator of the intensity of social care provision.   

Outcome measures: The SCRQoL indicator, based on the ASCOT-SCT4 measure. 

Results: The predictive ability and model fit of the risk-adjustment and production function 

models were very similar.  The theoretically-chosen specification produced a more valid 

production function model.  Including indicators of functional ability in the specification 

seemed important for validity of the model.  Including indicators of self-perceived health and 

self-perceived home design as covariates may underestimate the effect of social care services 

on SCRQoL.    

Conclusions: From a statistical perspective there is no clear reason to prefer the production 

function to the risk-adjustment model for explaining heterogeneity in SCRQoL outcomes.  

The production function model, however, does have greater face validity and it seems likely 

that these results are biased by the fact that the budget variable available from the ASCS is a 

very noisy indicator of service intensity.  The production function approach requires data that 

is difficult to collect, but it would seem unwise to abandon it on the basis of these findings. 
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Introduction 

A key assumption for unbiased estimation in risk-adjustment models is that the effect of risk 

factors on outcomes is not confounded by unobserved factors.  For certain complex 

interventions and populations, this assumption is unlikely to hold as the factors that are used 

to risk adjust outcomes are also likely to influence the type and quantity of the intervention 

received.  Where there is variation in the care package provided to the sample and an 

indicator of the quantity of care provision is omitted from the estimation, risk-adjustment 

models are likely to be biased.  The extent of the bias and its significance, in terms of its 

effect on inferences about the performance of organisations, is an empirical question.  It is 

likely to depend on the nature of the population and the intervention.  The extent to which the 

omission of the quantity of provision is a problem for risk-adjustment models can be explored 

by comparing the results from regression models estimated including and then excluding the 

effect of services.  In other words, it can be explored by comparing the results estimated 

using a production function model to those estimated using a risk-adjustment model.   

Social care interventions are exactly the type of interventions in which service 

quantity is likely to confound the relationship between risk factors and outcomes.  As I 

explained in Chapters 2 and 3, social workers assess a person’s social care need on the basis 

of factors such as their functional ability, availability of informal care and health conditions, 

which are independently related to their quality of life.  They then allocate a care package (or 

in modern parlance ‘personal budget’) to the individual on the basis of this assessment, with 

the aim of matching the person’s needs and preferences to the care package so as to maximise 

their outcomes.  Care packages will vary according to the types of interventions included 

(e.g. day centre sessions, home care, meals services) and according to the frequency and 

intensity of each of the interventions.  Those with the greatest assessed needs should receive 

the most frequent, most intense and therefore most expensive interventions.  Since the 

variables used to assess need are the same as those used to risk-adjust outcomes, parameter 

estimates for the risk-adjustors are likely to be biased – they will be correlated with the type 

and level of intervention received, with the direction of the bias depending on the relationship 

between the outcome, services and each risk adjustor.  Including the service effect in the 

model should help to reduce the bias due to confounding in the estimates for the risk 

adjustors (Knapp 1984, Davies et al. 2000b, Fernández and Knapp 2004, Fernández 2005, 

Forder and Caiels 2011b, Forder et al. 2014).  Any differences in the estimates between the 

risk-adjustment and the production function models can be interpreted as bias due to the 

confounding effect of service quantity. 
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In this chapter, I compare a risk-adjustment and production function approach to 

statistically modelling self-reported outcome measures to understand which model is better 

for explaining heterogeneity in survey-based indicators.  Motivating this analysis is the same 

trade-off that was behind the consideration of various alternative modelling choices for risk-

adjustment in Chapter 6; that is the production function models have greater face validity, but 

since they are more complicated to estimate than the risk-adjustment models and therefore 

understand they may be less acceptable to practitioners and other end-users of PIs.  They may 

also be less feasible as they have more data requirements than risk-adjustment models.  I 

reflect on this concern only briefly in the discussion to this chapter, but give it fuller 

consideration in Chapter 9.  

 This chapter proceeds first with a description of the statistical analysis used to 

estimate the production function models and some discussion of the choice of indicator for 

service type and intensity.  Since I use the same approach to estimating the risk-adjustment 

models as in Chapter 6, i.e. the same variable specification, regression methods, methods for 

model comparison and the treatment of missing data, these subjects are only mentioned 

briefly.  I then present the results of the modelling, but begin first with a description of the 

estimation sample.  As in Chapter 6, I compare the models in terms of their construct, 

convergent and predictive validity, following the work of Li et al. (2009).  I end with a 

discussion of the results, in which I focus on the key findings and limitations of the analysis.  

The policy and wider implications are discussed in Chapter 9. 

 

Data and statistical analysis 

As in the previous chapter, the data for this analysis comes from the 2010-11 ASCS.  I use 

the questionnaire as well as the auxiliary data from the records systems of CASSRs.  I use a 

more restricted sample in this analysis compared to the previous chapter due to the problems 

with the budget variable, which captures the recorded budget allocated to the person on the 

basis of an assessment of their needs60.  I use this variable as a proxy measure for resource 

inputs in the production function models, on the basis that the cost of the package is related to 

the type and intensity of provision.  In effect the budget variable is a cost-weighted utilisation 

measure, capturing the intensity of all the (recorded) service inputs to the care package.  It is 

                                                 
60 Importantly I have not included ‘and means’ in this definition, since the intention was for councils to provide 
the budget based on needs, i.e. the gross budget, not the contribution paid by the council (or indeed user) on the 
basis of a further means test. 
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critical to the production function analysis, since it provides an estimate for ݔ௜, the quantity of 

care provided.   

It is, however, extremely poorly reported, being missing for approximately half the 

sample and entirely missing for a large number of CASSRs.  It was also very inconsistently 

recorded across CASSRs, with the following problems: (i) omission of certain types of 

services from the overall budget (notably services for mental health clients), with variations 

in what is omitted across authorities; (ii) poor or inconsistent recording of budgets associated 

with certain types of services across authorities (especially equipment services); (iii) 

incomplete information about the budget, where the individual receives funding from other 

sources (e.g. the independent living fund or the NHS); and (iv) differences between 

authorities in whether both the user and authority contributions to the overall budget are 

included, combined with a lack of clarity over which portion of the budget (the user or 

authority paid portion) was recorded.  Since it was not clear what assumptions CASSRs had 

made in reporting these data, and it was not possible to make any adjustments for these 

assumptions, I limited this analysis to the a subgroup of users for whom I have more 

confidence in the data.  The subgroup is PSD users living in private households, from the 18 

to 64 age group.  User contributions are fairly low for adults under 65 and this client group is 

subject to fewer data problems (The Information Centre for Health and Social Care 2012c).   

Due to missingness of the budget data, the sample for the 18 to 64 sub-group is much 

smaller than in the previous analysis presented in Chapter 6.  For this reason I re-estimate all 

the models to ensure a consistent basis for comparison of the risk-adjustment and production 

function approaches.  I do not repeat the description of the methods used to estimate the risk-

adjustment models here and readers are referred to the ‘Statistical modelling’ section of 

Chapter 6 for a description of this analysis.  For simplicity of presentation I do not consider 

the fractional response regression for this stage of the work, as it did not seem to have 

obviously better predictive validity than the other models, and its adds a further level of 

complexity to the presentation and comparison of results due to differences in the types of fit 

indices that can be used.  All analysis is conducted in Stata 14. 

 

Statistical model for the production function approach 

The production function models are based on the conceptual model presented in Chapter 2, as 

specified in equation (7) in Chapter 3.  The production function model attempts to 

disentangle the effect of intensity from the effect of service user characteristics on SCRQoL, 

so addressing bias in the estimation of the coefficients for risk-adjustors due to the 
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confounding effect of service quantity.  The production function model also has the added 

benefit of providing a direct estimate of the effectiveness of services through the coefficient 

on the service quantity term (minus the quality effect which is relegated to the error term).   

I conduct a statistical analysis to estimate the relationship between service quantity 

and the SCRQoL indicator in the presence of risk factors.  The statistical model estimated by 

OLS is given by, 

 

௜ݕ  ൌ ߙ ൅ ଵߚ lnሺݔ௜ሻ ൅ ࢏ࢠ૛ࢼ
૙ ൅ ࢏ࢠ૜ࢼ

૚ ൅ ࢏ࢠ૜ࢼ
૛ ൅ ࢏ࢠ૝ࢼ

૜ ൅ ࢏ࢠ૞ࢼ
૝ ൅ ݁௜, (17) 

 

where, as in Chapter 6, ݕ௜ is the observed outcome SCRQoL, lnሺݔ௜ሻ captures the effect of 

service quantity on outcomes through a logarithmic relationship, ࢏ࢠ
૙ is a vector of variables 

capturing personal characteristics and motivations, ࢏ࢠ
૚ is a vector of variables representing 

underlying health and disabling conditions, ࢏ࢠ
૛ is a vector of variables representing the 

immediate physical environment, ࢏ࢠ
૜ is a vector of variables capturing additional resources 

arising from social and economic capital, ࢏ࢠ
૝ is a vector of variables capturing reporting-

related factors related to the postal method of survey administration, and the ࢼs, represent the 

direct effect of these risk factors on the observed outcome.  The error term is given by ߝ௜. 

Although I tested for the inclusion of user group marginal productivity terms, none of 

these interactions (between the risk factors and lnሺݔ௜ሻ), were significant.  For clarity, I 

therefore have not included them in equation (17).  I also tested for alternative relationships 

for the service quantity term, including quadratic, cubic and square root terms, but these were 

not significant or not more strongly estimated than the log term so I use the more familiar log 

relationship.  In addition, I tested for different methods for controlling for price differences 

between councils that may affect the relationship between the cost-weighted intensity 

variable and outcomes.  The best model included the Area Cost Adjustment index 

(Department for Communities and Local Government 2010) for adults aged 18 to 64 as a set 

of dummy variable, but I also tested mean and median wages for the sector and experimented 

with these variables as divisors for the budget variable.  It should be noted that while there is 

no direct measure of quality, as intensity is captured by the local cost of care package, to the 

extent that it is a factor of cost, it will be included in the effect of lnሺݔ௜ሻ. 

For OLS estimates to be unbiased, the assumption that observations are independent 

must hold.  Since individuals are clustered within CASSRs, and it is expected that there is 

correlation in outcomes between individuals within a given CASSR due to a common quality 
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experience, the independence assumption is unlikely to hold.  The CASSR-specific problems 

with the reporting of the budget variable may also contribute to a clustering in these 

relationships.  As in Chapter 6, to address this I therefore estimate a RE and FE regression.  

The statistical model for the RE and FE estimation is similar to that in (17), but with an 

additional parameter, ݑ௝, which captures the CASSR-level clustering, as follows,  

 

௜௝ݕ  ൌ ߙ ൅ ଵߚ lnሺݔ௜ሻ ൅ ௜௝ࢠ૛ࢼ
૙ ൅ ௜௝ࢠ૜ࢼ

૚ ൅ ௜௝ࢠ૜ࢼ
૛ ൅ ௜௝ࢠ૝ࢼ

૜ ൅ ௜௝ࢠ૞ࢼ
૝ ൅ ݁௜௝ ൅  ௝, (18)ݑ

 

where the additional subscript ݆ denotes the CASSR.  In the RE regression, ݑ௝ are random 

effects that are assumed to follow a normal distribution, i.e. ݑ௝~ܰሺ0,  ௨ଶሻ.  They are alsoߪ

assumed to be uncorrelated with the risk factors ࢠ௜௝
૙ , ௜௝ࢠ

૚ , ௜௝ࢠ
૛ , ௜௝ࢠ

૜ , ௜௝ࢠ
૝   and lnሺݔ௜ሻ (DeLong et al. 

1997, Clarke et al. 2015).  By contrast the FE model makes no assumptions about the 

distribution of ݑ௝ and is able to deal with situations where the organisational effect correlates 

with the risk factors and the service effect (Greene 2012), as is likely in the case of the 

production function model where council policies might be expected to explain variations in 

service intensity beyond that captured by differences in geographical economic conditions.  

The FE model excludes the area cost adjustment indicator since this is an LA-level variable. 

 I also explored the possibility of estimation by stochastic frontier analysis but tests 

showed that it was not appropriate for the SCRQoL indicator61.    

 

Selection of risk adjustors 

The models above specify five groups of risk factors derived from the literature reviewed in 

Chapter 2, in addition to the service intensity effect.  For consistency with the analysis in 

Chapter 6 I use the same two specifications for the risk adjustors (see Table 22).  The first 

specification includes the list of theoretically-relevant indicators in Chapter 6that were found 

to be significant predictors of SCRQoL for this sub-group (SV model).  Since the sample 

used here is smaller a number of these risk adjustors were no longer significant (p<.1), so I 

also include a simplified version of this specification (simplified SV model).  The second 

                                                 
61 Tests for negative skewness of the OLS residuals, as implemented with the Stata sktest routine (D'Agostino et 
al. 1990, Royston 1991), were not significant (skewness=-0.03, p=0.449); and plots show that the residuals 
appear normally distributed.  The null hypothesis for the likelihood-ratio test that the efficiency error 
component, ߪ௨ଶ=0, gives Χ2 values of 0.756 for the half-normal, 1.028 for the truncated normal, and 0.274 for 
the exponential model.  Since all of these values are <1.642, these are not significant at the p<.1 level (Kodde 
and Palm 1986). 
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specification is statisticall-driven, and includes only those risk adjustors with high 

explanatory power (EP model).   

 

Comparing statistical models 

I compare the models using the concepts of construct validity, convergent validity and 

predictive validity from Li et al. (2009).  To explore construct and convergent validity, I 

present the tables of estimated model coefficients to both check that the effects are in the 

expected direction and that the estimates are fairly similar across the models.  I also explore 

whether the coefficients for the adjustor variables change in the expected direction after the 

addition of the organisational effect or the cost-weighted utilisation measure, i.e. that where 

higher values of the variable are expected to predict the use of more intensive services the 

coefficient becomes more negative and vice-versa).  To explore predictive validity, I am most 

interested in the amount of variation explained by the models, for which estimates of R2 and 

RMSE are the most important measures62.  Given that the rationale for comparing multiple 

models is to explore whether the various models provide a better fit to the data than the OLS, 

I also look at a range of other goodness of fit statistics as per Chapter 6, i.e. the Akaike 

Information Criterion (AIC) (Akaike 1974) and Bayesian Information Criterion (BIC) 

(Schwarz 1978), which balance model fit with model complexity.  I take differences of 

greater than ten as strong evidence of the superiority of the model with the smaller BIC or 

AIC value over the one with the larger value (Raftery 1995, Burnham and Anderson 2004).  

For the RE model, I report the estimate of Rho (the intraclass correlation coefficient), which 

provides a measure of amount of variation explained by the CASSR clustering variable for 

the RE model.  Along with the Hausman test for fixed and random-effects this provides 

useful information for evaluating the fit of the RE model (Greene 2012). 

I also compare predictions from the models across the range of observed values for 

the outcome indicator.  Predicted values are calculated as the expected value for each person 

within the sub-group, given the values of the covariates and including the intensity and 

CASSR effect, where relevant, i.e. ݕൣܧ௜௝|ݔ௜௝, ,௜௝ݖ  ௝൧.  This differs from how the predictedݑ

                                                 
62 For the FE model I report the adjusted R2 from the version of the FE model that includes CASSRs as dummy 
variables.  The estimation of R2 in random-effects models is an area of active research, and there is no agreed 
upon method for estimating R2 (Gelman and Pardoe 2006).  Kreft and de Leeuw (1998) advise against using R2 
because it lacks a clear meaning.  In all the models RMSE is calculated from the square root of the mean 
difference between the predicted and observed values. Predicted values are given by the expected value for each 
person within the sub-group, given the values of the covariates and including the CASSR effect, i.e. 
,௜௝ݖ|௜௝ݕሺܧ ௜௝ݕ .௝).  Error scores are calculated as the deviation of the predicted from the observed value, i.eݑ െ
,௜௝ݖ|௜௝ݕሺܧ    .(௝ݑ
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values are estimated to generate the performance indicators, considered in Chapter 8 where 

the service and organisational effects are set to zero.  Error scores are calculated as the 

deviation of the predicted from the observed value, i.e. ݕ௜௝ െ ,௜௝ݔ|௜௝ݕൣܧ ,௜௝ݖ    .௝൧ݑ

 

Missing data  

The questionnaire and auxiliary data used as covariates in the adjustment models are both 

subject to item nonresponse.  To avoid problems of bias, I attempt to recover the missing data 

on the characteristics of the full sample using chained equations multiple imputation (van 

Buuren 2007, White et al. 2011).  I generate a separate multiply-imputed dataset for this 

analysis that excludes the 66 CASSRs where the budget data is completely missing, as in 

these cases there is no information on which to impute the budget data.  Appendix 14 

provides more details of the imputation models.  Following guidance by White et al. (2011) 

30 imputations were carried out, after a burn-in period of 30 iterations, which appeared 

sufficient for achieving convergence of the chain to a stationary distribution.  (See Appendix 

15 for details of the sufficiency of this number of imputations.)   

After imputation, I combined the individual SCRQoL components into an overall 

SCRQoL score and also generated all other multi-item variables required for the analysis, 

such as the indicator of difficulties with ADLs.  All models are re-estimated on each of the 

imputed datasets and the estimates obtained from each analysis are combined using Rubin’s 

rules (1987).  Missing cases for the dependent variables are excluded from the estimation of 

these models as they would increase the variance without adding any further information 

(McKee et al. 1999).  The results from these models estimated on the MI dataset were not 

very different from those estimated using the complete cases.  For the sake of clarity and 

parsimony, I therefore only present the results from the models estimated on the complete 

cases below.  A comparison between the models estimated on the complete cases and the 

multiply-imputed dataset is given in Appendix 16. 

 

Results 

Sample descriptives 

The subsample used in this analysis consists of data from only the 83 LAs (56 per cent of the 

total) that provided budget data.  In total there are 4,201 respondents within the 18 to 64 

subgroup from these CASSRs, but of these 4,201 respondents 24 per cent of cases are 

missing budget data (see Table 32), which is a fairly large loss of data.   
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Data is also missing for the risk adjustors as shown in Table 32.  For most of the risk 

adjustors, the fraction of missing cases is fairly small and in all instances it is less than ten per 

cent.  Combined with the loss of data for the budget variable, however, were all of the 

variables in Table 32 to be included in the adjustment models, a much larger fraction of the 

sample would be lost – a total of 1,604 cases (38 per cent).  Since the models use a selection 

of the variables shown in Table 32, and there is also missingness associated with the 

SCRQoL indicator as shown, the actual loss of respondent data is between 33 to 40 percent 

depending on the covariates selected. 
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Table 32: Distributional statistics for the budget and risk-adjustor variables for the 

subsample analysis (n=4,201) 

Variable N (% missing) Mean (SE) 
MALE 4,199 (0.05) 0.41 (0.008)
AGE_GP 4,201 (0) 4.08 (0.017)
VP 4,201 (0) 0.04 (0.003)
ADLDIFFa 3,913 (6.86) 3.7 (0.04)
ADLCANTb 3,913 (6.86) 1.48 (0.034)
SPH 4,114 (2.07) 2.17 (0.016)
PAIN 4,066 (3.21) 1.15 (0.011)
ANXDEP 4,050 (3.59) 0.81 (0.011)
FINANCE 4,060 (3.36) 1.05 (0.013)
SPHD 4,070 (3.12) 1.03 (0.014)
PH, in home 4,054 (3.5) 0.5 (0.008)
PH, out home 4,054 (3.5) 0.37 (0.008)
PH, none 4,054 (3.5) 0.23 (0.007)
SELFCOMP 3,926 (6.55) 0.45 (0.008)
PROXY 3,926 (6.55) 0.02 (0.002)
ASSIST, read 3,926 (6.55) 0.32 (0.007)
ASSIST, translate 3,926 (6.55) 0.09 (0.004)
ASSIST, write 3,926 (6.55) 0.29 (0.007)
ASSIST, discuss 3,926 (6.55) 0.23 (0.007)
ASSIST, in home 3,908 (6.97) 0.23 (0.007)
ASSIST, out home 3,908 (6.97) 0.17 (0.006)
ASSIST, care worker 3,908 (6.97) 0.11 (0.005)
PRIV, own 3,993 (4.95) 0.24 (0.007)
PRIV, fam 3,993 (4.95) 0.06 (0.004)
PRIV, none 3,993 (4.95) 0.71 (0.007)
BUDGET (£s logged)c 3,208 (23.6) 8.37 (0.030)
SCRQoL d 3,828 (8.88) 17.02 (0.072)
Legend: a median=4, minimum=0, maximum=7; b median=0, minimum=0, maximum=7; c log to base e of 
annual budget for which median= 8.71, minimum=0, maximum=12.37; d median=17, minimum=0, 
maximum=24. 
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Estimates for the risk-adjustment and production function models 

I now compare the coefficients from the models estimated by the risk-adjustment method 

against those estimated by the production function method, using OLS, RE and FE regression 

techniques.  The data are presented by specification, i.e. whether the set of risk adjustors are 

the theoretically-driven specification (SV model and simplified SV model), , or whether they 

are statistically-driven (EP model).  All of the OLS models failed the link test and Ramsey’s 

(1969) Reset as well as tests for normality of the error terms and homoscedasticity 

(confirmed on visual inspection of the data).  Likewise all of the FE models fail the modified 

Wald test for groupwise heteroscedasticity, as implemented via the Stata routine xttest3 

(Baum 2000, Greene 2012).  All results for these models therefore use the Huber-White 

sandwich estimator to correct standard errors (Huber 1967b, White 1980).        

The theoretically-driven production function models seem to have good construct 

validity (Table 33 and Table 34, respectively).  The logged budget variable has a positive 

sign and is significant, and all the risk adjustors have the expected signs and are consistent 

with the risk-adjustment model, suggesting good convergent validity.  By contrast, the 

statistically driven production function models (EP model) have poor construct validity (see 

Table 35).  The budget variable is not significant, although it has a positive sign.  The lack of 

significance of the budget variable, seems to be explained by the exclusion of the ADL score 

(ADLDIFF) and the IADL measure of ability to undertake finances and paperwork 

(FINANCES).  When these two variables are included in the models (as they are in 

theoretically-driven models) the budget variable becomes significant. 

The hypothesised correlation between service quantity and the various risk adjustors 

is illustrated by comparing the coefficients of the risk adjustors in the production function and 

risk-adjustment models.  As expected, the ADL score (ADLDIFF) and the IADL measure of 

ability to undertake finances and paperwork (FINANCES) have coefficients that are more 

negative in the production function models than in the risk-adjustment models, reflecting the 

positive relationship between need and service quantity.  Equally, as expected, the indicator 

of informal care (PH, in home) has a coefficient that is more positive in the production 

function models than the risk-adjustment models, reflecting the fact that receipt of practical 

help is generally negatively associated with service quantity – people with practical help 

receive less services all else being equal.  Unexpectedly, however, the health-related 

variables (ANXDEP and SPH) and self-perceived home design (SPHD) all have coefficients 

that are more positive in the production function models than in the risk-adjustment models.  
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Table 33: Estimates for SCRQoL indicator risk adjustment and production function models, SV model (n=2,516) 

 Risk-adjustment models Production function models 
Variable OLS RE FE OLS RE FE 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects     
Budget (ln) n/a n/a n/a 0.098* (0.042) 0.098* (0.042) 0.094* (0.046) 
Area cost adjustment n/a n/a n/a -2.853** (1.063) -2.887** (1.097) n/a 
SPH: good a -1.143*** (0.249) -1.160*** (0.318) -1.247*** (0.263) -1.097*** (0.249) -1.109*** (0.318) -1.217*** (0.261) 
SPH: fair a -2.215*** (0.243) -2.225*** (0.307) -2.268*** (0.271) -2.155*** (0.244) -2.163*** (0.307) -2.225*** (0.273) 
SPH: bad a -3.188*** (0.279) -3.197*** (0.332) -3.229*** (0.278) -3.103*** (0.28) -3.111*** (0.333) -3.159*** (0.278) 
SPH: very bad a -3.981*** (0.369) -3.989*** (0.377) -4.003*** (0.404) -3.860*** (0.372) -3.869*** (0.378) -3.923*** (0.415) 
SPHD -1.023*** (0.163) -1.035*** (0.157) -1.067*** (0.163) -1.002*** (0.162) -1.012*** (0.157) -1.066*** (0.163) 
ADLDIFF -0.018 (0.048) -0.02 (0.048) -0.028 (0.043) -0.038 (0.049) -0.039 (0.049) -0.047 (0.044) 
ADLDIFF*SPHD -0.102** (0.034) -0.099** (0.032) -0.089* (0.035) -0.100** (0.034) -0.098** (0.032) -0.088* (0.035) 
FINANCES: diff b -0.622*** (0.182) -0.625*** (0.184) -0.647*** (0.177) -0.631*** (0.181) -0.632*** (0.184) -0.651*** (0.178) 
FINANCES: can’t b -0.742*** (0.183) -0.751*** (0.186) -0.805*** (0.181) -0.794*** (0.184) -0.796*** (0.186) -0.835*** (0.181) 
ANXDEP -1.607*** (0.121) -1.613*** (0.113) -1.643*** (0.132) -1.586*** (0.121) -1.591*** (0.113) -1.630*** (0.131) 
PH in home 0.404* (0.241) 0.407 (0.263) 0.419 (0.26) 0.428* (0.241) 0.43 (0.263) 0.444* (0.261) 
PH out home 0.273* (0.148) 0.266* (0.147) 0.236 (0.16) 0.24 (0.148) 0.24 (0.147) 0.239 (0.161) 
PH in*ADLDIFF 0.07 (0.054) 0.065 (0.055) 0.05 (0.061) 0.068 (0.054) 0.066 (0.055) 0.054 (0.061) 
MALE -0.171 (0.138) -0.168 (0.137) -0.161 (0.163) -0.16 (0.137) -0.159 (0.137) -0.159 (0.162) 
ASSIST, care worker 0.689** (0.226) 0.680** (0.214) 0.646* (0.256) 0.639** (0.227) 0.634** (0.214) 0.605* (0.257) 
ASSIST, translate 0.291 (0.255) 0.285 (0.24) 0.26 (0.277) 0.32 (0.254) 0.313 (0.24) 0.267 (0.277) 
ASSIST, write down 0.105 (0.165) 0.11 (0.163) 0.129 (0.195) 0.076 (0.166) 0.08 (0.163) 0.101 (0.197) 
Constant 22.20*** (0.284) 22.24*** (0.346) 22.38*** (0.264) 24.38*** (1.193) 24.45*** (1.255) 21.61*** (0.481) 
Random effects   
௨ 0.283 (0.120)ߪ  0.214 (0.142)  
௘  3.325 (0.048)ߪ  3.321 (0.047)  
Model statistics   
F-stat 96.18*** 76.05*** 149.04*** 87.80*** 68.68*** 141.40*** 
R2 c 0.405 0.428 0.408 0.429 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good; b Base category: can do easily by myself; c R2 for FE calculated from dummy variable model. 
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Table 34: Estimates for SCRQoL indicator risk adjustment and production function models, Simplified SV model (n=2,517) 

 Risk-adjustment models Production function models 
Variable OLS RE FE OLS RE FE 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects       
Budget (ln) n/a n/a n/a 0.098* (0.042) 0.098* (0.042) 0.094* (0.046) 
Area cost adjustment n/a n/a n/a -3.044** (1.057) -3.087** (1.11) n/a 
ADLDIFF -0.070* (0.03) -0.071* (0.031) -0.077* (0.03) -0.090** (0.031) -0.090** (0.032) -0.093** (0.031) 
FINANCE: diff a -0.583** (0.179) -0.587** (0.183) -0.608*** (0.177) -0.597*** (0.178) -0.598** (0.183) -0.616*** (0.178) 
FINANCE: can’t a -0.592*** (0.166) -0.606*** (0.173) -0.672*** (0.164) -0.654*** (0.168) -0.659*** (0.174) -0.710*** (0.164) 
SPH -0.991*** (0.079) -0.990*** (0.077) -0.980*** (0.085) -0.963*** (0.08) -0.964*** (0.077) -0.960*** (0.088) 
SPHD: most b -1.646*** (0.154) -1.654*** (0.163) -1.670*** (0.151) -1.613*** (0.154) -1.623*** (0.163) -1.662*** (0.151) 
SPHD: some b -3.012*** (0.2) -3.012*** (0.195) -2.981*** (0.182) -2.932*** (0.201) -2.940*** (0.196) -2.963*** (0.18) 
SPHD: inappropriate b -4.316*** (0.373) -4.315*** (0.289) -4.297*** (0.426) -4.240*** (0.374) -4.248*** (0.289) -4.288*** (0.423) 
ANXDEP: moderate c -1.402*** (0.147) -1.412*** (0.155) -1.438*** (0.153) -1.396*** (0.147) -1.403*** (0.154) -1.431*** (0.153) 
ANXDEP: extreme c -3.306*** (0.273) -3.318*** (0.236) -3.371*** (0.294) -3.251*** (0.274) -3.263*** (0.237) -3.340*** (0.293) 
PH in home 0.613*** (0.143) 0.600*** (0.142) 0.557*** (0.15) 0.642*** (0.146) 0.635*** (0.144) 0.597*** (0.154) 
PROXY -1.002* (0.436) -0.953* (0.454) -0.742 (0.455) -1.022* (0.44) -0.988* (0.453) -0.744 (0.452) 
ASSIST, care worker 0.682** (0.218) 0.677** (0.208) 0.663** (0.246) 0.630** (0.219) 0.627** (0.209) 0.614* (0.248) 
Constant 22.29*** (0.185) 22.33*** (0.207) 22.39*** (0.184) 24.67*** (1.166) 24.75*** (1.235) 21.61*** (0.448) 
Random effects   
௨ 0.310 (0.114)ߪ  0.237 (0.132)  
௘  3.331 (0.048)ߪ  3.328 (0.048)  
Model statistics   
F-stat 133.46*** 106.86*** 168.58*** 116.66*** 93.23*** 156.33*** 
R2 d 0.402 0.427 0.405 0.428 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good; b Base category: meets needs very well; c Base category: not anxious or depressed; d R2 for FE calculated 
from dummy variable model. 
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Table 35: Estimates for SCRQoL indicator risk adjustment and production function models, EP model (n=2,819) 

 Risk-adjustment models Production function models 
Variable OLS RE FE OLS RE FE 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects       
Budget (ln) n/a n/a n/a 0.045 (0.037) 0.046 (0.038) 0.051 (0.042) 
Area cost adjustment  n/a n/a n/a -3.053** (1.001) -3.079** (1.011) n/a 
SPH: good a -1.258*** (0.228) -1.267*** (0.303) -1.348*** (0.225) -1.222*** (0.228) -1.228*** (0.303) -1.331*** (0.227) 
SPH: fair a -2.458*** (0.224) -2.463*** (0.293) -2.503*** (0.255) -2.414*** (0.225) -2.418*** (0.293) -2.480*** (0.258) 
SPH: bad a -3.550*** (0.256) -3.552*** (0.314) -3.581*** (0.269) -3.502*** (0.257) -3.505*** (0.314) -3.549*** (0.273) 
SPH: very bad a -4.411*** (0.343) -4.418*** (0.352) -4.462*** (0.384) -4.355*** (0.344) -4.361*** (0.353) -4.439*** (0.389) 
SPHD -1.286*** (0.141) -1.288*** (0.133) -1.291*** (0.125) -1.282*** (0.141) -1.284*** (0.133) -1.296*** (0.125) 
ANXDEP: mod b -1.173*** (0.189) -1.183*** (0.207) -1.232*** (0.191) -1.195*** (0.189) -1.199*** (0.206) -1.236*** (0.191) 
ANXDEP: extreme b -2.659*** (0.399) -2.673*** (0.336) -2.737*** (0.452) -2.665*** (0.401) -2.671*** (0.336) -2.728*** (0.453) 
SPHD* 
ANXDEP: mod c 

-0.203 (0.177) -0.199 (0.167) -0.166 (0.16) -0.181 (0.178) -0.179 (0.166) -0.159 (0.159) 

SPHD* 
ANXDEP: ext c 

-0.637* (0.26) -0.630** (0.21) -0.607* (0.275) -0.602* (0.26) -0.601** (0.21) -0.600* (0.275) 

Constant 22.21*** (0.196) 22.23*** (0.275) 22.28*** (0.189) 25.00*** (1.106) 25.03*** (1.139) 21.83*** (0.438) 
Random effects   
௨ 0.241 (0.124)ߪ  0.157 (0.168)  
௘  3.369 (0.045)ߪ  3.367 (0.045)  
Model statistics   
F-stat 198.6*** 155.45*** 237.48*** 165.84*** 128.13*** 213.77*** 
R2 d 0.395 0.416 0.398 0.416 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good; b Base category: not anxious or depressed; c Base category: SPHD*ANXDEP: not anxious or depressed; d 

R2 for FE calculated from dummy variable model. 
 

 



 

 

238

Comparison of model fit and predictive validity 

In this section I compare the predictive validity of the risk-adjustment and production 

function models estimated using different regression methods with different covariate 

selections.  After comparing model fit using standard indices, I then look at the distribution of 

the predicted values over the range of the observed scale for the SCRQoL indicator.  

Comparing goodness-of-fit statistics for the risk-adjustment and production function 

models provides some evidence that the production function models have slightly better 

predictive validity than the risk-adjustment models (see Table 36).  The adjusted R2, RMSE 

and AIC statistics are in most cases better for the production function method than the risk-

adjustment.  It should be noted though that while the AIC difference is usually greater than 

two (except for the statistically-driven EP models), it is never greater than ten, so there is still 

reason to continue considering the risk-adjustment models with higher AIC (Burnham and 

Anderson 2004).  Indeed in all cases, the BIC, which penalises more for model complexity, is 

lower in the risk-adjustment models, suggesting that on this statistic the risk-adjustment 

models are to be preferred.  Again, the BIC differences are small and no greater than 10, so 

there is no ‘very strong’ evidence for preferring the risk-adjustment models based on this 

criterion (Raftery 1995).  Interestingly, the differences in the information criteria statistics 

decrease from OLS to RE to FE, suggesting that modelling the organisational effect may 

partially account for some of the service intensity effect.  This is as would be expected, and is 

consistent with the smaller differences in adjusted R2 between the risk-adjusted and 

production function FE regressions compared to the risk-adjusted and production function 

OLS regressions.   

As I found in the analysis completed on the dataset that included all councils in 

Chapter 6, the likelihood ratio test for rho is not significant for the risk-adjustment models 

(p>0.1 for EP model and p>.05 for the other two models)63, nor for the production function 

models64.  This is consistent with the information criteria statistics, which are higher for the 

RE compared to the OLS regressions, suggesting that predictive validity is not improved by 

modelling the organisational effect as a random variable for this indicator.  The situation with 

respect to the FE regression compared to the OLS is more ambiguous.  While the F-test for 

the inclusion of CASSRs as fixed effects is not significant for the risk-adjustment (p>0.1 for 

                                                 
63 SV model: χ2(2)=1.920, p=0.080; Simplified SV model: χ2(2)=2.68, p=0.051; EP model: χ2(2)=1.230, 
p=0.134. 
64 SV model: χ2(2)=0.690, p=0.203; Simplified SV model: χ2(2)= 1.030, p=0.155; EP model: χ2(2)=0.250, 
p=0.310. 
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the EP model and p>0.05 for the other models)65 and production function (p>0.1 for the EP 

model and p>0.05 for the other models)66 models, the adjusted R2, RMSE, AIC and BIC 

statistics are all better for the FE model than the OLS.  This suggests that the FE model may 

have better predictive validity than the OLS for this sub-group. 

 The theoretically-driven models (SV and simplified SV models) explain more of the 

variation in scores (R2 is greater) than the statistically-driven model (EP model).  There is 

little difference between the two versions of the theoretically-driven midels, although BIC 

statistics, which penalise model complexity more, suggest a preference for the simplified 

version.   

Figure 29 illustrates the distribution of the predictions from the risk-adjustment and 

production function models, over the range of values of the SCRQoL indicator.  All of the 

predictions produce very similar shaped distributions, suggesting that the inclusion of the 

intensity effect does not improve the modelling from a distributional point of view.  This is 

perhaps not surprising given the distributional assumptions of all the models.  The relatively 

poor performance of all the models in predicting the extremes of the distribution is also 

shown in Table 98 in Appendix 17.  All predictions are also within range for this estimation 

sample, which was not the case for the larger sample used in Chapter 6. 

    

 

                                                 
65 SV model: F(82,2416)=1.23, p=0.082; Simplified SV model: F(82,2422)=1.27, p=0.053; EP model: 
F(82,2727)=1.23, p=0.110. 
66 SV model: F(82,2415)=1.24, p=0.095; Simplified SV model: F(82,2421)=1.26, p=0.063; EP model: 
F(82,2726)=1.20, p=0.109. 
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Table 36: Model fit statistics for SCRQoL indicator risk adjustment and production function models  

 Risk-adjustment models Production function models 
 OLS RE FE OLS RE FE 

Theoretically-driven SV models 
Log-likelihood -6,602 -6,601 -6,551 -6,595 -6,595 -6,548 
F-stat  96.18*** 76.05*** 149.04*** 87.80*** 68.68*** 141.40*** 
AIC 13,240 13,242 13,135 13,231 13,234 13,133 
BIC 13,345 13,359 13,234 13,347 13,362 13,238 
Adjusted R2  0.401  0.405 0.403 0.406 
RMSE 3.349 3.270 3.336 3.341 3.267 3.279 
Conditional rho (SE) 0.007 (0.006)  0.004 (0.005)  

Theoretically-driven simplified SV models 
Log-likelihood -6,611 -6,610 -6,558 -6,604 -6,603 -6,556 
F-stat  133.46*** 106.86*** 168.58*** 116.66*** 93.23*** 156.33*** 
AIC 13,248 13,249 13,140 13,238 13,241 13,138 
BIC 13,324 13,337 13,210 13,325 13,340 13,214 
Adjusted R2  0.399  0.404 0.402 0.405 
RMSE 3.346 3.276 3.276 3.336 3.274 3.273 
Conditional rho (SE) 0.009 (0.006)  0.005 (0.006)  

Statistically-driven EP models 
Log-likelihood -7,431 -7,431 -7,381 -7,426 -7,422 -7,381 
F-stat  198.6*** 155.45*** 237.48*** 165.84*** 128.13*** 213.77*** 
AIC 14,883 14,886 14,781 14,875 14,881 14,781 
BIC 14,942 14,957 14,834 14,947 14,988 14,841 
Adjusted R2  0.395 0.416 0.395  0.397 
RMSE 3.378 3.319 3.319 3.378 3.318 3.324 
Conditional rho (SE) 0.005 (0.005)  0.002 (0.005)  
Legend: *** p<.001 
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Figure 29: Distribution of predicted and actual scores, for the risk-adjustment and 

production function (PF) models, SCRQoL indicator 
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Discussion 

In this chapter I have considered how production function models compare to risk-

adjustment models for explaining heterogeneity in ASC outcomes.  I compared the results 

by examining the model coefficients, distribution of predictions, predictive ability and 

model fit.  I have used data from the 2010-11 ASCS to explore the question, but in 

comparison to Chapter 6, here I focused only on the 18 to 64 sub-group due to problems 

with the indicator of service intensity for the other client groups.  As in the previous 

analysis I estimated the base production function and risk-adjustment models by OLS and 

used two specifications for the risk adjustors.  To address potential bias in OLS estimates 

caused by clustering of the data by CASSR, I also considered RE and FE regression.   

In this analysis I found high convergent validity between all the regression models, 

including between the production function and risk-adjustment models.  There were only 

very marginal gains in predictive validity from the production function model over the 

risk-adjustment model and from the RE or FE models over the OLS.  The model 

specification had a similarly fairly small effect on predictive validity, although the 

theoretically-driven models were marginally preferable.  The specification, however, was 

important for the construct validity of the production function models, with only the 

theoretically-driven models providing valid models.  I discuss these findings in some more 

detail below, and conclude by considering the implications of these findings for adjusting 

the SCRQoL PI.  The policy and wider implications of this analysis are discussed in 

Chapter 9.     

 

The effect of using a production function model to estimate SCRQoL 

The production function model has marginally better predictive ability than the risk-

adjustment model, but there was in general very little difference between the models on the 

model fit statistics.  Although the coefficients for the risk adjustors did differ between the 

models, in most cases, the differences were small.  From a purely statistical perspective 

there is not much to gain from using a production function model compared to the risk 

adjustment model to model the SCRQoL outcome.   

 A benefit of the production function model, however, is that it provides a direct 

estimate of the effectiveness of social care through the coefficient on the service quantity 

term.  The analysis here showed that model specification was very important for generating 

a plausible estimate of the effect of social care on SCRQoL.  The statistically-driven 

specification of risk adjustors produced an estimate of the effect of service quantity (the 
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budget variable) that was not significant.  This should be compared to the significant 

positive estimate for the effect of service quantity on SCRQoL.  Comparison of the 

specification suggests that the indicators of functional ability (ADL and IADL indicators) 

are important, which would fit with findings from previous studies (Davies et al. 2000a, 

Fernández 2005, Forder et al. 2014).  The production function models require a more 

careful theoretical approach to selecting risk adjustors.  

 I expected that the service quantity indicator would be correlated with the risk 

adjustors that capture needs-related characteristics of service users and that this would be 

reflected by differences in the coefficients for the risk adjustors between the production 

function and risk-adjustment models.  This was indeed the case and the coefficients of 

most risk adjustors changed in the expected fashion.  Contrary to expectations, however, 

the variables concerning perceptions of health and home design all had more positive 

coefficients in the production function models than the risk adjustment models.  This 

suggests that the correlation between the service intensity indicator and these variables is 

negative, such that poorer health or worse home design predicts on average less intense 

services other things being equal.  Further investigation of this relationship in this dataset 

and other available datasets shows that for this sub-group the budget variable is negatively 

correlated with perceptions of health and home design, even after controlling for potential 

confounding factors.   

Although this finding is counterintuitive where these variables are understood to be 

measures of need, if these variables are instead interpreted as outcomes then the 

relationships are as expected, i.e. more intense services lead to better self-perceived home 

design, better self-perceived health, and less anxiety/depression.  While services can have 

clear health outcomes, the relationship with home design is less obvious.  Equipment and 

minor adaptations may provide some part of this explanation; another may be that as a 

result of services people perceive their home design as less problematic.  Services 

compensate for poor home design, which is as one would expect.  Despite the possibility 

that these variables capture outcomes, I have included them in the model because they 

have a strong negative relationship with SCRQoL.  Whether these variables should then be 

included as risk-adjustors is a matter for debate (Mukamel et al. 2008, Li et al. 2009, 

Iezzoni 2013), as I discuss in Chapter 9.     

Another possibility is that the relationships observed between these variables and 

service intensity are simply an artefact of the data – a consequence of the fact that service 



 

 

244

intensity is measured fairly inaccurately by the budget variable.  This may provide a partial 

explanation for the finding, as I discuss below. 

 

Limitations of the modelling and directions for future research 

The most significant limitation of the modelling is the use of the budget variable as an 

indicator of service intensity.  I described the budget variable as a cost-weighted utilisation 

measure, since it sums together all the components of the care package using the relative 

unit costs per component as weights.  While this is true, since the cost-weighting is 

calculated on the basis of local unit costs the budget variable will reflect a range of factors 

aside from the intensity of provision.  Notably, it will capture differences in the prices local 

areas choose to pay for social care services.   

The price paid by local areas will to some extent the price paid will be a response to 

local economic conditions, e.g. in terms of the availability of providers, the availability of 

labour, local land prices and so on, but it will also depend on local commissioning policies 

and practices.  I have included the Area Cost Adjustment, which is used in the resource 

allocation formulae that allocate central resources to local areas, as a mechanism for 

adjusting for price differences.  The Area Cost Adjustment, however, is an imperfect and 

fairly insensitive measure for capturing differences in economic conditions (Blanchflower 

and Oswald 2005) and anyway will not adjust for differences due to the policies of local 

areas.  The prices paid for social care services vary considerably across local areas and do 

not necessarily reflect local economic conditions.  This is illustrated well be a recent report 

from the UK Homecare Association (2015), which shows wide variations in the price paid 

per hour of homecare by adjacent London councils where the economic conditions would 

be expected to be fairly similar.  As well as introducing noise into the estimation of the 

relationship between service quantity and SCRQoL, this limitation of the budget variable is 

the reason why I have not been able to use any of the instrumental variables approach 

outlined by Forder et al. (2014, 2016) and discussed in Chapter 3.  Both the spatially-

lagged service use instrument and dummy variables for CASSRs will also capture pricing 

policies of the area that as well as being a reason why they will induce variation in the 

budget variable, may also have a direct effect on SCRQoL.  For example, because areas 

that pay less may have a less happy workforce and less functional organisations.  Not using 

an instrumental variables approach to estimate the production function is clearly a 

limitation of this analysis and would be expected to produce some bias in the model 

estimates, as I discussed in Chapter 3. 
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It is also the case that the budget variable will reflect differences in the allocation of 

components of care packages between authorities – cheaper packages all other things being 

equal may reflect substitution of more expensive components with cheaper components.  

This type of indicator therefore masks important substitution relationships between service 

forms, as the effect of inputs (service forms) on outcomes are not separately estimated.  

This may be one reason why I do not find evidence for user group marginal productivity 

effects as has been found in previous studies (Davies et al. 2000b, Fernández 2005).  

Another reason may be the inaccuracies in the reporting of the budget variable, which will 

make it harder to identify the signal from the noise.   

Although it is clear that the inaccuracy of the budget variable is an impediment to 

accurate estimation of the production function models, the extent to which the results 

obtained here are biased can be gauged by comparing them to those from a recent study 

related to this thesis.  The Identifying the Impact of Adult Social Care (IIASC) study 

(Forder et al. 2016), was designed to capture better information on service receipt and user 

characteristics to enable estimation of the production function using the instrumental 

variables technique discussed in Chapter 3.  As well as collecting data from social care 

records, the IIASC study interviewed service users to capture information on their service 

use alongside a range of other data on their characteristics and SCRQoL.  Since service use 

was collected directly from users, a cost-weighted utilisation measure1 could be generated 

using average national unit costs.  This is preferable to the budget variable from social care 

records that I used in this analysis, as average differences in the cost-weighted utilisation 

measure between areas are not influenced by area-level differences in the prices paid for 

social care.  The production function models estimated for the IIASC study use the 

spatially-lagged service use variable described in Chapter 3 as an instrument for service 

quantity.  The results from these instrumental variable models compare favourably to those 

presented here, with similar patterns to the relationships, and similar effects on 

performance assessment, as I discuss in Chapter 8.  The most important difference is that 

the effect of service quantity on SCRQoL is greatly underestimated here, with the IIASC 

study estimating an effect about six times larger (Forder et al. 2016).  

A further difference between the IIASC models and the models estimated here is 

that the difference between the coefficients for the self-perceived health variable from the 

production function and risk-adjustment models for the IIASC data are in the expected 

                                                 
1 Sample size did not permit separate investigation of different components of the care package 
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direction.  I examined the relationship between the self-perceived health, 

depression/anxiety, self-perceived home design variables and service intensity further 

using the IIASC dataset to see whether the relationships observed in the ASCS data were 

also present in the IIASC data.  In this dataset the same negative raw correlations are found 

for these risk-adjustors with service intensity, irrespective of whether service intensity is 

measured using the self-reported cost-weighted utilisation measure or the council-reported 

budget variable.  The raw correlations are, however, not quite as strong for the self-

reported utilisation measure compared to the council-reported budget variable.  When other 

user characteristics are taken into account the negative relationship with the self-perceived 

health and anxiety/depression variables disappears.  In other words, when service intensity 

is measured using the self-reported utilisation variable, all other things being equal self-

perceived health and anxiety/depression have no relationship with intensity.  When the 

council-reported variable is used as an indicator of service intensity and other user 

characteristics are taken into account, only the negative relationship with 

anxiety/depression disappears.  I interpret these findings as showing that the negative 

relationship between intensity and self-perceived health seems to be a consequence of 

using the council-reported budget variable; whereas the negative relationship with self-

perceived home design reflects a real relationship. 

  The correlation between these two – council and self-reported – indicators of 

service intensity is around 0.56, which is not particularly high.  This seems to be driven by 

a sub-group of users for whom this correlation is much lower.  Users who received a 

review in between the date that the auxiliary data (which includes the budget variable) was 

extracted by the council and the date the survey was conducted have a lower correlation 

(0.42 for the reviewed group compared to 0.62 for the non-reviewed group) as do those 

who received an assessment in between the same two dates (0.15 for assessed group and 

0.74 for unassessed group).  When those who had either an assessment or review between 

the date of extraction of the auxiliary data and the date of the survey are excluded, the 

correlation between the two indicators of service intensity increases to 0.87.  This provides 

a possible explanation for the positive relationship between self-perceived health and 

intensity found using the council-reported indicator and can help to explain the low 

estimate for the effect of service quantity on SCRQoL compared to the IIASC study.  It 

may be that self-perceived health is an indicator of people whose conditions have 

deteriorated substantially over the period between data extraction and survey fieldwork and 

whose services have changed as a consequence of this deterioration.  This would upwardly 
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bias the relationship between service intensity and self-perceived health in the manner 

observed in the ASCS analysis.  It would also introduce further noise into the estimation of 

the relationship between service intensity and SCRQoL, which is already complicated by 

the other inaccuracies in the reporting of the budget variable and the differences in policies 

around prices paid for provision.  Small numbers prevent me from examining this 

hypothesis any further.  Nevertheless, they do suggest that there is some bias in the 

estimates obtained from the production function models here. 

 

Concluding remarks 

The production function model provides a direct estimate of the effectiveness of social care 

and has greater face validity than the risk-adjustment model; however, this analysis did not 

find strong statistical evidence to prefer the production function model over the risk-

adjustment model.  Part of the explanation for these results seems likely to lie in the 

difficulties encountered finding a good indicator of the quantity of social care provided.  

The budget variable was a poor indicator of the intensity of provision and is likely to have 

produced a lot of noise in the data.  Despite the problems with the budget variable, I was 

able to estimate a production function model that largely had the expected relationships.  

The results from these models showed the importance of using a theoretically-driven 

approach to select risk-adjustors for a production function model to estimate a positive and 

significant effect of service intensity on SCRQoL.  Indicators of functional ability seem to 

be critical risk adjustors for production function models.  Indicators of self-perceived 

health and perceptions of home design seem in part to capture outcomes from care 

services.  I discuss whether they should be included as risk adjustors in Chapter 9. 

Although I have been able to estimate a production function model with the ASCS 

dataset, the model estimates do appear to be biased when compared to those obtained using 

a less noisy indicator of the intensity of service provision.  A major limitation of the 

production function method is that it requires detailed data that is difficult to collect.  

Recent studies (the IIASC study), however, show that it is possible to collect appropriate 

data and estimate robust production function models using an instrumental variables 

approach to address endogeneity issues due to the effect of unobservable confounders.  

Until the ASCS collects data that provides a good indicator of service intensity, this clearly 

limits the applicability of the production function method for adjusting ASCOF PIs to 

account for heterogeneity in non-performance-related factors and for exploring social care 

outcomes more generally.  Indeed, the greater simplicity and ease of estimation of the risk-
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adjustment model, along with the less demanding data requirements make it in many ways 

a more attractive option than the production function model.  The simplicity and 

transparency of the risk-adjustment model, however, needs to be balanced against the 

greater validity of the production function model.  If the choice between the risk-

adjustment and production function model does not have significant consequences for 

inferences about performance then the risk-adjustment model may be preferable.  I explore 

this question in Chapter 8, albeit with some caution given the effect of data limitations on 

the confidence I have in the results presented here. 
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Chapter 8 

What is the Effect of Adjusting for Case-Mix and Nonresponse on 

Inferences about Performance and Does the Method for Implementing 

Case-Mix Adjustment Matter?   

 

Abstract 

Objective: To explore the effect of adjusting for case-mix on performance assessment and 

consider whether the method for adjustment makes a difference.  Additionally to consider the 

impact of nonresponse where indicators are case-mix adjusted. 

Method: Data from the physically and sensorily disabled (PSD) subsample of the English 

2010-11 ASCS are used to explore the effect of adjusting for case-mix on the SCRQoL 

indicator.  Indirect standardisation is used to adjust the outcome indicator for case-mix.  

Various equations are used to estimate the expected outcome for each CASSR, using the risk-

adjustment and production function models estimated in previous chapters.  These models 

use different estimation methods and specifications for the set of risk adjustors included to 

enable investigation of the effect of method of adjustment on performance assessment.  The 

impact of differences between unadjusted and adjusted SCRQoL scores is assessed through 

examining changes in rank position and outlier status.  Analyses are repeated adjusting for 

nonresponse. 

Results: Case-mix adjustment greatly reduced the number of outliers identified and had an 

important impact on the rank position of CASSRs.  The effects were dependent on sub-group 

and covariate specification.  Statistical estimation methods, including the choice of 

production function or risk-adjustment model, had little impact on rank position and outliers.  

Adjusting case-mix adjusted indicators for nonresponse, had in general little effect on the 

number of outliers identified and the rank position.  The effect of adjusting for nonresponse 

on SCRQoL, however, was driven by bias correction due to patterns of missingness, and not 

increasing precision.  For one CASSR this produced more extreme changes. 

Conclusions: Without risk adjustment the SCRQoL indicator is likely to falsely identify a 

large number of CASSRs as outliers.  The set of risk-adjustors included in risk-adjustment 

models has an important impact on conclusions but other methodological choices were 

unimportant for these data.  The effect of nonresponse should be investigated to explore the 

effect of patterns of missingness on performance assessment.  
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Introduction 

In ASC, CASSRs may serve different populations as a consequence of social and economic 

factors that affect where people live or as a consequence of policies affecting eligibility for 

publicly-funded care.  This heterogeneity in the population organisations serve is often 

referred to as case-mix.  Where case-mix characteristics directly impact on outcomes, for 

example because they make it more likely that someone will have a worse outcome from 

care, they can confound inferences about performance.  It is possible to use statistical 

methods to adjust for these differences in case-mix.  In Chapters 6 and 7, I have explored 

different methods for modelling social care outcomes measured by the SCRQoL PI.  In this 

chapter I build upon those analyses and explore the effect of adjusting for case-mix on 

performance assessment.   

 To adjust for case-mix, I use indirect standardisation.  As described in Chapter 3, this 

method applies the average effects of risk factors on outcomes estimated from a reference 

population to each organisation.  In this thesis, the reference population is the PSD subsample 

from the 2010-11 ASCS.  I carried out the analysis of the average effects of risk factors on 

the SCRQoL outcome in Chapters 6 and 7.  I used a variety of different specifications and 

regression methods, to reflect as far as possible the important exogenous factors as predicted 

by my theoretical framework, the clustered structure of the data and the skewed distribution 

of the indicator.  Here I calculate the expected outcome for each CASSR given their case-mix 

using the results from these statistical models, and use this to standardise the observed 

outcome for each CASSR.  I refer to the ‘indirectly’ standardised outcome as the adjusted PI.  

The main aim of this analysis is to ascertain whether adjusting for differences in the case-mix 

of CASSRs affects performance assessment.  A secondary aim is to explore whether the 

different estimation methods and model specifications have important implications for 

performance assessment.  This analysis can be used to understand the analytical steps 

required to improve the validity of survey-based PIs. 

In this chapter I also explore the effect of nonresponse on performance assessment in 

the context of case-mix adjustment.  Adjusting for case-mix increases the percentage of data 

lost due to nonresponse, as cases missing data for risk-adjustors will also be excluded from 

the estimation of PIs.  For this reason it is possible that adjusting for nonresponse will have a 

different impact in the context of case-mix adjustment to its impact on the raw PI scores, as 

explored in Chapter 5.  To explore the effect of nonresponse on performance assessment, I 

assume that the missingness mechanism is missing-at-random (MAR).  This is the same 

assumption used in Chapter 5, but I have had to adapt the methods because the adjusted PIs 
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are only available for the sub-sample of respondents with PSD.  The aim of this aspect of the 

analysis is to understand whether adjusting for nonresponse in the context of case-mix 

adjustment affects performance assessment.  

 The chapter is organised as follows.  I start by discussing the methods I use to 

calculate the adjusted PIs.  I then present the results in two parts.  First, I focus on a 

comparison of the effects of adjustment on performance assessment across the three sub-

groups and the PSD sub-sample using the risk-adjustment models from Chapter 6.  In the 

second part, I compare the effects of adjustment using the risk-adjustment and production 

function models from Chapter 7 on performance assessment.  In each section I also look at 

the effect of case-mix adjustment in the context of adjustment for nonresponse.  In the 

discussion I focus on the key findings and limitations of the study.  The implications for 

policy are discussed in more detail in Chapter 9. 

 

Empirical strategy 

I use the 2010-11 ASCS data to explore the effect of adjusting for case-mix and nonresponse 

on inferences about performance and focus on the ASCOF SCRQoL indicator.  The analysis 

has three steps, of which the first is to generate adjusted PIs under the assumption that the 

missingness mechanism is missing completely at random (MCAR), i.e. by complete case 

analysis (CCA).  The adjusted PIs are generated from the risk adjustment and production 

function regression models developed in chapters 6 and 7, respectively.  Because of this, they 

are sub-group specific and limited to the PSD population.  They are not available for the full 

ASCS sample.  I therefore report four adjusted PIs for each CASSR: one for each sub-group 

and an indicator for the PSD subsample.   

The second step is to generate PIs that are adjusted for both case-mix and 

nonresponse.  Here, I draw on the analysis from Chapter 5, but because the adjusted PIs are 

only calculated for the PSD subsample, I adjust only for the effect of item nonresponse on 

inferences about performance.  It would not be appropriate to apply the weights to the sub-

groups or PSD subsample as the sum of the weights would depend on the ratio of the size of 

the sub-group or subsample to the total respondent sample for each CASSR.  This may distort 

the results.  I therefore use the CCA/MI method discussed in Chapter 5, which assumes that 

the missingness mechanism for item nonresponse is MAR and the missingness mechanism 

for unit nonresponse is MCAR.  The analysis for the effects of nonresponse is therefore more 

limited than that carried out in Chapter 5.  The third step is to compare the unadjusted and 

adjusted PIs.  In this step I explore whether performance assessment is affected by adjustment 
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for case-mix or for nonresponse, and whether the method and specification used has an effect 

on the results.   

Since the methods used for the risk-adjustment and production function models are 

described in detail in Chapters 6 and 7, respectively, and the method for MI is explained in 

Chapter 5, I do not repeat those discussions here.  In this chapter, I describe only the three 

steps set out above.  All analyses are conducted in Stata 14.   

 

Step 1: generating adjusted PIs under MCAR assumption 

To calculate an adjusted PI score, I use indirect standardisation.  Specifically I calculate 

adjustment factors using the ‘error’ approach and the two ‘ratio’ approaches, discussed in 

Chapter 3.  These adjustment factors are then scaled by the national average SCRQoL score 

to give an adjusted PI on the same scale as the unadjusted PI.  Since a detailed explanation of 

these methods is given in Chapter 3 I cover them here only briefly.  The ‘error’ adjustment 

factor is calculated as the difference between the observed and expected outcome averaged 

across individuals within a CASSR (see equation (9), Chapter 3).  The ‘individual ratio’ 

adjustment factor is calculated as the ratio of the observed to the expected outcome averaged 

across individuals within a CASSR (see equation (8), Chapter 3).  The ‘average ratio’ 

adjustment factor produces as PI that is more conservative than the individual ratio 

adjustment factor.  In this method, the adjustment factor is calculated as the ratio of the 

observed outcome averaged across individuals within a CASSR, to the expected outcome, 

calculated assuming CASSR average characteristics apply (see equation (10), Chapter 3).  An 

indicator for the PSD subsample can also be estimated simply by averaging across the sub-

group specific adjustment factors for each individual in the subsample.      

The expected outcome is obtained using the results from regression models specified 

in Chapters 6 and 7.  Where the risk-adjustment model is estimated by OLS or by fractional 

response (FR) regression, the expected outcome is simply the linear prediction1.  Where the 

risk-adjustment model is estimated by FE and RE regression methods, the predicted outcome 

can be calculated assuming a null organisational effect (i.e. that ݑ௝=0), so that differences in 

organisational effectiveness are not adjusted out of the PI (Li et al. 2009).  To the extent that 

there are differences between CASSRs in the relationship between user characteristics and 

SCRQoL, the RE- and FE-based PIs will differ from OLS-based PIs.   

                                                 
1 Converted back to the original scale in the case of FR regression. 
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Where the production function model is estimated, the intensity effect of services is 

included as a term in the regression, and therefore excluded from the error term.  The linear 

prediction from the OLS regression (or the linear prediction assuming a null organisational 

effect for the RE and FE versions), would adjust out the effect of differences in service 

quantity on QoL.  This would leave the adjusted PI reflecting only differences in quality (to 

the extent that quality is not a factor of quantity or, given the use of the budget variable in this 

analysis, cost).  To generate PIs that are more comparable with the risk-adjusted PIs I instead 

assume a null service intensity effect (i.e. that lnሺݔ௜ሻ ൌ 0).  This also means that the 

predicted outcome can be estimated for cases missing the budget variable, which makes it 

possible to apply the equation to the whole sample, even those CASSRs that have not 

provided any budget data.  Here, however, I restrict the analysis to the sub-sample of 83 

CASSRs with budget data, as it is not clear that the model estimates can be applied to the 

other CASSRs due to the data limitations discussed in Chapter 7.  The production function 

model will produce different inferences about performance to the extent that there are 

differences among CASSRs in how they allocate services on the basis of need, i.e. in the 

relationship between ࢐࢏ࢠ and lnሺݔ௜ሻ in equation (17) Chapter 7.   

Standard errors are produced for all PI estimates by bootstrapping the calculation of 

the average adjustment factor for each authority.  In this instance I use 1000 replications.  

 

Step 2: generating adjusted PIs under the MAR assumption  

All of the PIs in step one are estimated by CCA, i.e. assuming that the missingness 

mechanism is MCAR.  In this step I calculate the adjusted PIs assuming that the missingness 

mechanism for the respondent data is MAR.  I use the MI dataset as described in Chapters 6 

and 7 for estimation of the adjusted PIs.  After imputation, I estimate the analysis models and 

predictions, as specified in Chapters 6 and 7, on each imputed dataset as set out above.  The 

adjustment factors are calculated on each imputed dataset and combined using Rubin’s rules 

to generate an adjusted PI for each CASSR, for each sub-group level and for the PSD sub-

sample.  As for the CCA, the PI calculation is bootstrapped to generate standard errors for 

each authority.  Since coefficient estimates vary slightly between the adjustment models 

estimated by CCA and MI, I also generated predicted outcomes and PIs using the coefficients 

from the adjustment models estimated by CCA.  Since the results are not sensitive to 

differences in the coefficients between the models estimated by CCA and MI these results are 

not shown here.   
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Step 3: comparing performance indicators 

To assess the effect of adjusting PIs on inferences about the performance of organisations, I 

look at whether there are differences between the unadjusted PIs and adjusted PIs, in terms of 

(i) the ranking of CASSRs and (ii) the identification of outlying organisations.  I apply the 

methods described in Chapter 5 to this analysis.  I compare the ranking of CASSRs attained 

after adjustment to the ranking of CASSRs prior to adjustment, using caterpillar plots and 

correlation statistics.  Specifically I use Pearson’s correlation coefficient, Spearman’s rank 

correlation coefficient and Kendall’s tau statistic.  Using the last of these statistics I can 

quantify the proportion of CASSR pairs that change order after the adjustment with the 

formula 100*ሺ1 െ ߬ሻ 2⁄  (Johnson et al. 2010). 

To examine the effect of case-mix and nonresponse on the identification of outliers, I 

use a funnel plot, as described in Chapter 3.  As in Chapter 5, to understand what is driving 

changes in the outlier status under different missingness assumptions I decompose the effect 

of nonresponse on performance assessment into the mean outcome, volume and variability 

components.  I calculate the number of outliers under the different methods for case-mix 

adjustment and addressing missingness in the data, specifying whether cases are ‘in control’, 

high or low ‘alerts’, or high or low ‘alarms’ depending on where they lie in relation to the 

funnel plot control limits (see Chapter 3 for discussion).  I also look at the number of 

‘movements’ between the different outlier states.  To assess the importance of the changes in 

the number of movements as a consequence of case-mix and nonresponse adjustment, I use 

the concept of ‘false negatives’ and ‘false positives’, as discussed in Chapter 3.  The 

assumption of this analysis is that the adjusted data reflect ‘true’ effectiveness, the likelihood 

of which I reflect on in the discussion. 

 

Results 

In this section I present the results of the analysis to examine the effect of adjustment on 

performance assessment.  First I present the results from the risk-adjustment models 

developed in Chapter 6 on the three sub-groups of the full dataset covering all CASSRs.  I 

then compare the results from the risk-adjustment and production function-adjustment models 

developed in Chapter 7.  Within each sub-section, I begin by looking at the convergent 

validity of the PIs generated using the different statistical models.  I then examine the effect 

of adjustment on performance assessment. 
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It is first important to note that there are in fact substantial differences in the 

proportions of people across the CASSRs in each of the sub-groups explored in this analysis.  

As Table 37 shows, in one CASSR there are no cases in the care home sub-group.  This 

means that for the care home sub-group the PI is missing for one CASSR.  It also means that 

the adjusted PI for the PSD sub-sample has a different balance of sub-groups.  I consider the 

implications of this imbalance between the sub-groups in the discussion. 

 

Table 37: Proportion of CASSR sample in each population sub-group 

 National 

average 

Proportion per CASSR 

Sub-group Minimum Maximum Median 

18 to 64 0.12 0.05 0.22 0.12 

65 and over 0.49 0.24 0.69 0.49 

Care home 0.12 0.00 0.40 0.11 

Not PSD 0.27 0.08 0.47 0.26 

 

The effect of risk adjustment using different statistical models on performance assessment 

The average risk-adjusted SCRQoL PI scores for all variant regression models and 

specifications are shown in Table 38 for the 18 to 64 subgroup, Table 39 for the 65 and over 

sub-group and Table 40 for the care home sub-group.  Comparing PI scores across the tables 

shows differences in the average score across the sub-groups, both before and after risk-

adjustment.  The care home sub-group report better outcomes than the 65 and over sub-group, 

who in turn report better outcomes than the 18 to 64 sub-group.  Reflecting the dominance of 

the 65 and over sub-group in the PSD population, the average PI scores for the PSD sub-

sample are similar to the 65 and over sub-group (Table 41). 

There is high convergent validity between different regression methods at the 

population level.  Inspection of pairwise correlations confirms this for the CASSR level, with 

Pearson and Spearman rank correlation coefficients in excess of 0.99 for all sub-groups (see 

Appendix 18, Table 99 to Table 101).  There is also high convergent validity between PIs 

calculated using the error and two ratio methods, with Pearson and Spearman rank correlation 

coefficients all 0.98 or over (see Appendix 18, Table 102 to Table 104).  Since the regression 

method and method for calculating the adjustment factor make little difference to the PI 

scores and ranking of CASSRs, for simplicity’s sake, I show only the effect of risk-

adjustment on ranking using adjusted-PIs derived from the OLS regression and calculated 

using the error method.  Since the individual ratio method of PI calculation makes some 
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difference to the identification of outliers, however, I do present these results for comparison 

with the error method. 
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Table 38: Summary statistics for the SCRQoL indicator, estimated by different methods†, 18 to 64 sub-group 

 
Spec 

No. of 
CASSRs 

Complete case analysis Multiply-imputed sample 
Type of risk 
adjustment method 

Mean Median IQR Range 
(min–max) 

Mean Median IQR Range 
(min–max) 

0. HSCIC unadjusted --- 149 17.2 17.2 16.7-17.7 14.3, 19.5 17.2 17.2 16.8-17.4 14.3, 19.5 
1. OLS regression  SV 149 17.1 17.1 16.8-17.5 15.6, 18.7 17.1 17.1 16.8-17.4 15.4, 18.4 

EP 149 17.1 17.1 16.7-17.5 15.3, 18.6 17.0 17.0 16.7-17.4 15.2, 18.5 
2. FR regression  SV 149 17.1 17.1 16.7-17.5 15.7, 18.7 17.1 17.0 16.7-17.4 15.4, 18.4 

EP 149 17.1 17.1 16.7-17.5 15.3, 18.5 17.0 17.0 16.7-17.4 15.2, 18.4 
3. FE regression  SV 149 17.1 17.1 16.8-17.5 15.6, 18.7 17.1 17.1 16.8-17.4 15.4, 18.4 

EP 149 17.1 17.1 16.7-17.5 15.2, 18.6 17.0 17.0 16.7-17.4 15.1, 18.5 
4. RE regression  SV 149 17.1 17.1 16.7-17.5 15.6, 18.7 17.0 17.0 16.8-17.4 15.4, 18.4 

EP 149 17.1 17.1 16.7-17.5 15.2, 18.6 17.0 17.0 16.7-17.4 15.1, 18.5 
Legend: † Indicators estimated using OLS risk-adjustment model and the ‘error’ method i.e. observed – expected; SV, theoretically-driven; EP, statistically-driven; IQR, 
interquartile range; --- not applicable 
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Table 39: Summary statistics for the SCRQoL indicator, estimated by different methods†, 65 and over sub-group  

 
Spec 

No. of 
CASSRs 

Complete case analysis Multiply-imputed sample 
Regression method Mean Median IQR Range 

(min–max) 
Mean Median IQR Range 

(min–max) 
0. HSCIC unadjusted  149 18.3 18.4 17.8-18.7 16.8, 20.1 18.3 18.4 17.8-18.7 16.8, 20.1 

1. OLS regression 
SV 149 18.2 18.2 17.9-18.4 17, 19.7 18.3 18.3 18.1-18.5 17.3, 19.2 
EP 149 18.2 18.2 18-18.5 17.2, 19.3 18.3 18.3 18.1-18.5 17.3, 19.3 

2. FR regression 
SV 149 18.2 18.2 17.9-18.4 17, 19.6 18.3 18.3 18.1-18.5 17.3, 19.3 
EP 149 18.2 18.2 18-18.5 17.1, 19.3 18.3 18.3 18.1-18.5 17.3, 19.2 

3. FE regression 
SV 149 18.2 18.2 17.9-18.4 17, 19.7 18.3 18.3 18.1-18.5 17.3, 19.2 
EP 149 18.2 18.2 17.9-18.5 17.2, 19.3 18.3 18.3 18.1-18.5 17.3, 19.3 

4. RE regression 
SV 149 18.2 18.2 17.9-18.4 17, 19.7 18.3 18.3 18.1-18.5 17.3, 19.2 
EP 149 18.2 18.2 18-18.5 17.2, 19.3 18.3 18.3 18.1-18.5 17.3, 19.3 

Legend: † Indicators estimated using OLS risk-adjustment model and the ‘error’ method i.e. observed – expected; SV, theoretically-driven; EP, statistically-driven; IQR, 
interquartile range; --- not applicable 
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Table 40: Summary statistics for the SCRQoL indicator, estimated by different methods†, care home sub-group 

 
Spec 

No. of 
CASSRs 

Complete case analysis Multiply-imputed sample 
Regression method Mean Median IQR Range 

(min, max) 
Mean Median IQR Range 

(min, max) 
0. HSCIC unadjusted --- 148 19.6 19.6 19-20 17, 21.3 19.6 19.6 19-20 17, 21.3 
1. OLS regression  SV 148 19.6 19.6 19.2-20 18.2, 22 19.5 19.5 19.1-19.8 17.9, 21.2 

EP 148 19.6 19.7 19.1-20.1 17.6, 21.2 19.4 19.5 19-19.8 17.2, 21.1 
2. FR regression  SV 148 19.6 19.6 19.2-20 18.1, 21.9 19.5 19.4 19.1-19.8 18, 21.2 

EP 148 19.6 19.7 19.1-20.1 17.6, 21.2 19.4 19.5 19-19.8 17.2, 21.1 
3. FE regression  SV 148 19.6 19.6 19.2-20 18.2, 22 19.5 19.5 19.1-19.8 17.9, 21.2 

EP 148 19.6 19.7 19.1-20.1 17.6, 21.2 19.4 19.5 19-19.8 17.3, 21.1 
4. RE regression  SV 148 19.6 19.6 19.2-20 18.2, 22 19.5 19.5 19.1-19.8 17.9, 21.2 

EP 148 19.6 19.7 19.1-20.1 17.6, 21.2 19.4 19.5 19-19.8 17.3, 21.1 
Legend: † Indicators estimated using OLS risk-adjustment model and the ‘error’ method i.e. observed – expected; SV, theoretically-driven; EP, statistically-driven; IQR, 
interquartile range; --- not applicable 
 
 

 

Table 41: Summary statistics for the SCRQoL indicator, estimated by OLS regression†, all sub-groups 

 
Spec 

No. of 
CASSRs 

Complete case analysis Multiply-imputed sample 
Regression method Mean Median IQR Range 

(min, max) 
Mean Median IQR Range 

(min, max) 
0. HSCIC unadjusted --- 149 18.3 18.3 18-18.7 16.6, 19.6 18.3 18.3 18.1-18.6 16.6, 19.6 
1. OLS regression  SV 149 18.3 18.3 18.1-18.5 17.3, 19.5 18.3 18.4 18.1-18.6 17.4, 19.1 

EP 149 18.3 18.3 18.1-18.5 17.2, 19.2 18.3 18.3 18-18.5 17.2, 19.2 
Legend: † Indicators estimated using OLS risk-adjustment model and the ‘error’ method i.e. observed – expected; SV, theoretically-driven; EP, statistically-driven; IQR, 
interquartile range; --- not applicable 
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Risk-adjustment has an effect on PI scores, as is evidenced by the correlation statistics 

in Table 42 between the unadjusted and risk-adjusted PIs.  Its effect varies across the sub-

groups, with the greatest effect being for the 18 to 64 sub-group.  Taking for example, the 

results for the risk-adjustment models using the theoretically-driven (SV) specification and 

estimated on the complete cases, the correlation between the unadjusted and adjusted PIs for 

the 18 to 64 sub-group is less than 0.7 and close to 28 per cent of CASSR pairs change order.  

By comparison, both the 65 and over and care home sub-groups have correlations over 0.75 

with just over 20 per cent of CASSR pairs changing order.  The picture is slightly different 

when the statistically-driven (EP) specification is used.  Risk-adjustment has much less of an 

effect on PI scores for the care home sub-group compared to the other sub-groups.  The 

correlation between the two specifications is also much lower for the care home sub-group at 

around 0.85 compared to over 0.9 for the other sub-groups.  When the PI is calculated for the 

whole PSD sample, the results are fairly similar to the 65 and over sub-group. 

The effect that risk adjustment has on PI scores, is in general to draw them towards 

the overall sample mean.  This effect can clearly be seen for all the sub-groups in the 

caterpillar plots shown in Figure 30 (18 to 64 sub-group, SV specification), Figure 31 (65 and 

over, SV specification), Figure 32 and Figure 33 (care home sub-group, SV and EP 

specification respectively) and Figure 34 (all PSD sub-groups, SV specification) which 

appear more squashed after risk adjustment with more similar PI scores for CASSRs.  It is 

also illustrated well by the funnel plots shown in Figure 35 (18 to 64 sub-group, SV 

specification), Figure 36 (65 and over, SV specification), Figure 37 and Figure 38 (care home 

sub-group, SV and EP specification respectively) and Figure 39 (all PSD sub-groups, SV 

specification), where the PI scores are more closely bunched and there are fewer outliers.   

The colour coding of data points on the funnel plots shows the extent to which risk 

adjustment has an effect on ranking.  The top ten and bottom ten CASSRs (as ascertained by 

ranking CASSRs on their unadjusted PI scores), are shown in each funnel plot with green and 

blue dots, respectively.  It is clear that risk adjustment also has an effect on the ranking of 

CASSRs, with a number of CASSRs in each sub-group moving out of the top and bottom ten 

after risk-adjustment. 
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Table 42: Correlation statistics between unadjusted and adjusted indicators†  

Population 

sub-group 

Comparison Pearson’s R2

(p-value) 

Rho 

(p-value) 

Tau 

(p-value) 

% pairs 

change order 

Complete case analysis  

18 to 64 SV-Unadjusted 0.664 0.615 0.446 27.7%

18 to 64 EP-Unadjusted 0.707 0.687 0.503 24.8%

18 to 64 SV-EP 0.931 0.915 0.765 11.8%
      

65 and over SV-Unadjusted 0.771 0.777 0.584 20.8%

65 and over EP-Unadjusted 0.798 0.803 0.611 19.5%

65 and over SV-EP 0.951 0.943 0.814 9.3%
      

care home  SV-Unadjusted 0.762 0.702 0.529 23.6%

care home  EP-Unadjusted 0.929 0.907 0.756 12.2%

care home  SV-EP 0.854 0.814 0.636 18.2%
      

All  SV-Unadjusted 0.787 0.801 0.604 19.8%

All EP-Unadjusted 0.812 0.827 0.638 18.1%

All SV-EP 0.951 0.947 0.806 9.7%
      

Multiple imputation 

18 to 64 SV-Unadjusted 0.691 0.668 0.487 25.6%

18 to 64 EP-Unadjusted 0.692 0.678 0.490 25.5%

18 to 64 SV-EP 0.984 0.978 0.882 5.9%
      

65 and over SV-Unadjusted 0.773 0.774 0.586 20.7%

65 and over EP-Unadjusted 0.777 0.783 0.591 20.5%

65 and over SV-EP 0.983 0.976 0.880 6.0%
      

care home  SV-Unadjusted 0.808 0.764 0.584 20.8%

care home  EP-Unadjusted 0.917 0.904 0.742 12.9%

care home  SV-EP 0.902 0.870 0.699 15.0%
      

All ‡  SV-Unadjusted 0.794 0.804 0.617 19.1%

All ‡ EP-Unadjusted 0.810 0.829 0.645 17.7%

All ‡ SV-EP 0.967 0.965 0.843 7.8%

Legend: † Indicators estimated using the error approach i.e. observed – expected; ‡ PIs estimated from OLS by 
CCA; SV, theoretically-driven; EP, statistically-driven; n=148 for care home sub-group and 149 for 18 to 64 
and 65 and over sub-groups 
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Figure 30: Caterpillar plots of SCRQoL PI scores, before and after adjustment, for the 

18 to 64 sub-group, theoretically-driven specification 
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Figure 31: Caterpillar plots of SCRQoL PI scores, before and after adjustment, for the 

65 and over sub-group, theoretically-driven specification 
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Figure 32: Caterpillar plots of SCRQoL PI scores, before and after adjustment, for the 

care home sub-group, theoretically-driven specification 
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Figure 33: Caterpillar plots of SCRQoL PI scores, before and after adjustment, for the 

care home sub-group, statistically-driven specification 
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Figure 34: Caterpillar plots of SCRQoL PI scores, before and after adjustment, for all 

sub-groups, theoretically-driven specification 
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Figure 35: Funnel plots for SCRQoL PI scores, before and after adjustment, for the 18 to 64 sub-group, theoretically-driven 

specification 
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Figure 36: Funnel plots for SCRQoL PI scores, before and after adjustment, for the 65 and over sub-group, theoretically-driven 

specification 
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Figure 37: Funnel plots for SCRQoL PI scores, before and after adjustment, for the care home sub-group, theoretically-driven 

specification 
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Figure 38: Funnel plots for SCRQoL PI scores, before and after adjustment, for the care home sub-group, statistically-driven 

specification 
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Figure 39: Funnel plots for SCRQoL PI scores, before and after adjustment, for all sub-groups, theoretically-driven specification
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The effect of risk-adjustment on the identification of outliers is shown in more detail 

in Table 43 for the error method and Table 44 for the individual ratio method.  Concentrating 

first on Table 43 , there is some variation across the sub-groups in the percentage of CASSRs 

identified as outliers, both pre and post risk adjustment.  For the 18 to 64 sub-group only two 

per cent of CASSRs are identified as outliers following risk-adjustment, down from 17 per 

cent based on the unadjusted PI.  A similar picture is presented for the care home sub-group, 

where PIs use the theoretically-driven (SV) risk-adjustment model.  For this sub-group the 

percentage of CASSRs identified as outliers reduces from 22 to three.  Where PIs for this 

sub-group are based on the statistically-driven (EP) risk-adjustment model, as expected, the 

percentage of outliers after risk-adjustment is higher at 14 per cent.  For the 65 and over sub-

group many more CASSRs are identified as outliers using the unadjusted PIs, at around 52 

per cent.  This reduces to 11 per cent after risk-adjustment.  This suggests that both the 

specification of the model and the sub-group are important for determining which CASSRs 

are outliers.  In the latter case this is probably due mostly to differences in the sample size 

between the sub-groups. 

Comparing Table 43 and Table 44, it is clear that in general the number of outliers is 

not affected by the choice of method for standardising the observed outcome.  Only for the 

PSD subsample is there a difference.  Here slightly more CASSRs are identified as outliers 

after adjustment using the individual ratio method compared to the error method.  

Overwhelmingly the ‘additional’ outliers are in the lower end of the distribution.  

Table 45 (18 to 64 sub-group), Table 46 (65 and over sub-group), Table 47 (care 

home sub-group) and Table 48 (PSD subsample), provide a different perspective on the effect 

of risk-adjustment on inferences about performance.  These tables describe how CASSRs 

move between the various in control (normal) and out of control (alarm and alert) statuses.  

Across all sub-groups, following risk-adjustment the movements are overwhelmingly into an 

in control state from an out of control state rather than vice-versa.  Of the movements into an 

in control state, a number are from an alarm state.  These movements are particularly striking 

for the 65 and over sub-group, where many changes are from the low alarm state to the in 

control state.  Taking as an example the SV specification, 42 of the 77 LAs identified as 

outliers using the crude PI are found to be in control when using the risk-adjusted PI.  Of 

these 42 ‘false positives’, 16 are identified as alarm status using the crude PI.  By contrast 

only three of the 72 LAs identified as in control using the crude PI are identified as out of 

control using the risk-adjusted PI.  All of these move into an alert state.  For the PSD sub-

sample the number of ‘false positives’ observed is slightly lower than the 65 and over sub-
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group.  Nevertheless 36 out of the 85 LAs identified as outliers are found to be ‘false 

positives’ after risk-adjustment, with half of the ‘false positives’ being in the alarm status 

when using the unadjusted PI score.  The ‘false positive rate’ is also very high across all the 

sub-groups, being in all cases over ten per cent but reaching over 30 per cent for the 65 and 

over sub-group.  Assuming the risk-adjusted PI scores are a more valid indicator of 

performance, this suggests the unadjusted PIs are highly misleading. 

The effect of risk-adjustment on the ranking of CASSRs is illustrated to some extent 

in the funnel plots, which show the position of the top and bottom ten CASSRs.  It is shown 

more clearly in Figure 40 (18 to 64 sub-group), Figure 41 (65 and over sub-group), Figure 42 

(care home sub-group) and Figure 43 (PSD sub-sample).  These histograms present the 

change in rank position following risk-adjustment for each CASSR.  While it is possible to 

calculate from the tau-statistic in Table 42 that only 20 to 25 per cent of CASSR pairs change 

order for the individual sub-groups and slightly fewer than 20 per cent change order for the 

PSD sub-sample, it is clear that there are some quite large position changes of 50 or more 

places.  Risk-adjustment therefore has an important effect on the ranking of CASSRs. 

So far I have limited the discussion of results to a comparison between the unadjusted 

and risk-adjusted PIs calculated by CCA.  I now consider the effect of adjustment for 

nonresponse in the context of risk adjustment.  Taking nonresponse into account has a 

slightly moderating effect on risk adjustment.  It reduces to some extent the differences 

between the unadjusted and risk-adjusted PI scores.  This effect is shown in Table 42 where 

correlations are slightly higher between the unadjusted and risk-adjusted PIs estimated on the 

multiply-imputed dataset compared to those PIs estimated by CCA.  Additionally, a smaller 

percentage of CASSR pairs change order and there is also more consistency between PIs 

calculated using the statistically- and theoretically-driven specifications.   

There is only a small overall effect of adjusting for nonresponse on performance 

assessment.  The number of outliers is very similar for the theoretically-driven (SV) model, 

although less so for the statistically-driven (EP) model for the care home sub-group (Table 

43).  The number of ‘false positives’ and ‘false negatives’ is also very similar, again except 

for the statistically-driven (EP) model results in the care home sub-group (Table 45 to Table 

48).  The clearest difference is in the changes in the ranking of CASSRs after risk-adjustment 

which are slightly less extreme when estimated on the MI sample compared to by CCA 
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(Figure 40 to Figure 43)1.  From a national perspective taking nonresponse into account has a 

small effect on inferences regarding performance.  This is despite the fraction of missing 

information due to item nonresponse being greater than 20 per cent (30 per cent for 65 and 

over, 22 per cent for 18 to 64, and 24 per cent for the care home sub-group). 

For individual LAs, however, the effect of taking nonresponse into account can be 

quite significant.  An example is given by the CASSR marked with an ‘X’ in Figure 36.  This 

CASSR is remarkable in that it is also an exception to the general pattern found after risk-

adjustment, since it moves further away from the national average in Figure 36b.  This 

suggests that despite a good average SCRQoL score relative to other CASSRs it has an 

unfavourable population risk profile.  However, when the PIs are estimated on the MI 

sample, the effect of risk-adjustment for this CASSR is reversed.  When calculated on the MI 

sample, the PI score for this CASSR is slightly lower and it falls into the high alert rather 

than high alarm category (Figure 36d).  This implies that the missing cases are likely to be 

people with a more favourable risk profile and this is borne out by an examination of the data.     

Decomposition of the nonresponse effect into the mean outcome and volume effects 

suggests that the mean outcome effect is more important for this sample.  A clear volume 

effect is observed by comparing graphs ‘b’ (risk-adjusted PI under CCA) and ‘c’ (risk-

adjusted PI, MI volume effect) in Figure 35 to Figure 39.  This volume effect is also observed 

in Table 43, which shows that there are slightly more outliers when the missing outcomes and 

case-mix data are taken into account.  The volume effect is entirely cancelled out, however, 

by the mean outcome effect.  This is illustrated by graphs ‘c’ (risk-adjusted PI, MI volume 

effect) and ‘d’ (risk-adjusted PI, MI) in Figure 35 to Figure 39, which show differences in the 

position of CASSRs relative to one another.  This analysis suggests that some of the changes 

in PI scores following risk-adjustment and some of the effect of risk-adjustment on outliers 

and ranking is driven by a loss of data.  How important this effect is for individual CASSRs 

depends on the pattern of missingness in the data.  I reflect on the implications of this in the 

discussion.   

  

                                                 
1 The distributional statistics confirm this.  For the 18 to 64 sub-group, the standard deviation is 34 for the 
imputed dataset and 38 for CCA.  For the 65 and over sub-group the corresponding figures are 28 and 29; and 
for the care home sub-group the figures are 27 and 33. 
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Table 43: Number (percentage) of outliers using unadjusted and risk-adjusted PIs, using error method 

 Outlier status for SV specification  Outlier status for EP specification 
Missing data 
adjustment 

High 
alarm 

y>-3 SD 

High 
alert 

y>2 SD 

‘Normal’ 
range 

Low alert
y>-2 SD 

Low 
alarm 

y>-3 SD 

 High 
alarm 

y>-3 SD 

High 
alert 

y>2 SD 

‘Normal’ 
range 

Low 
alert 

y>-2 SD 

Low 
alarm 

y>-3 SD 

18 to 64 sub-group (n=149)   
Unadjusted 2 (1%) 8 (5%) 123 (83%) 11 (7%) 5 (3%)  2 (1%) 8 (5%) 123 (83%) 11 (7%) 5 (3%) 
            

OLS1, CCA 0 (0%) 0 (0%) 146 (98%) 3 (2%) 0 (0%)  0 (0%) 1 (1%) 148 (99%) 0 (0%) 0 (0%) 
OLS1, MI VOL  0 (0%) 1 (1%) 144 (97%) 4 (3%) 0 (0%)  0 (0%) 3 (2%) 146 (98%) 0 (0%) 0 (0%) 
OLS2, MI  0 (0%) 0 (0%) 147 (99%) 2 (1%) 0 (0%)  0 (0%) 1 (1%) 145 (97%) 3 (2%) 0 (0%) 

65 and over sub-group (n=149)   
Unadjusted 7 (5%) 24 (16%) 72 (48%) 29 (19%) 17 (11%)  7 (5%) 24 (16%) 72 (48%) 29 (19%) 17 (11%) 
            

OLS1, CCA 1 (1%) 3 (2%) 133 (89%) 11 (7%) 1 (1%)  2 (1%) 2 (1%) 135 (91%) 9 (6%) 1 (1%) 
OLS1, MI VOL  1 (1%) 5 (3%) 125 (84%) 16 (11%) 2 (1%)  2 (1%) 6 (4%) 123 (83%) 15 (10%) 3 (2%) 
OLS2, MI  1 (1%) 8 (5%) 132 (89%) 6 (4%) 2 (1%)  2 (1%) 7 (5%) 130 (87%) 9 (6%) 1 (1%) 

Care home sub-group (n=148)   
Unadjusted 2 (1%) 13 (9%) 116 (78%) 15 (10%) 2 (1%)  2 (1%) 13 (9%) 116 (78%) 15 (10%) 2 (1%) 
            

OLS1, CCA 0 (0%) 1 (1%) 144 (97%) 3 (2%) 0 (0%)  0 (0%) 8 (5%) 128 (86%) 10 (7%) 2 (1%) 
OLS1, MI VOL  0 (0%) 2 (1%) 140 (95%) 6 (4%) 0 (0%)  1 (1%) 10 (7%) 123 (83%) 11 (7%) 3 (2%) 
OLS2, MI  0 (0%) 2 (1%) 143 (97%) 3 (2%) 0 (0%)  0 (0%) 5 (3%) 121 (82%) 18 (12%) 4 (3%) 

All sub-groups (n=149)   
Unadjusted 14 (9%) 28 (19%) 64 (43%) 25 (17%) 18 (12%)  14 (9%) 28 (19%) 64 (43%) 25 (17%) 18 (12%) 
            

OLS1, CCA 2 (1%) 7 (5%) 127 (85%) 12 (8%) 1 (1%)  2 (1%) 8 (5%) 125 (84%) 12 (8%) 2 (1%) 
OLS1, MI VOL  2 (1%) 7 (5%) 126 (85%) 12 (8%) 2 (1%)  2 (1%) 8 (5%) 125 (84%) 12 (8%) 2 (1%) 
OLS1, MI 1 (1%) 11 (7%) 129 (87%) 6 (4%) 2 (1%)  2 (1%) 8 (5%) 123 (83%) 13 (9%) 3 (2%) 
Key: OLS1, indicators are based on OLS regression by CCA; OLS2, indicators are based on OLS regression by MI; MI, VOL volume effect from multiple imputation; SV, 
theoretically-driven; EP, statistically-driven.    
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Table 44: Number (percentage) of outliers using unadjusted and risk-adjusted PIs, using individual ratio method 

 Outlier status for SV specification  Outlier status for EP specification 
Missing data 
adjustment 

High 
alarm 

y>-3 SD 

High 
alert 

y>2 SD 

‘Normal’ 
range 

Low 
alert 

y>-2 SD 

Low 
alarm 

y>-3 SD 

 High 
alarm 

y>-3 SD 

High 
alert 

y>2 SD 

‘Normal’ 
range 

Low 
alert 

y>-2 SD 

Low 
alarm 

y>-3 SD 

18 to 64 sub-group (n=149)   
Unadjusted 2 (1%) 8 (5%) 123 (83%) 11 (7%) 5 (3%)  2 (1%) 8 (5%) 123 (83%) 11 (7%) 5 (3%) 
            

OLS1, CCA 0 (0%) 1 (1%) 142 (95%) 6 (4%) 0 (0%)  0 (0%) 2 (1%) 145 (97%) 2 (1%) 0 (0%) 
OLS2, MI  0 (0%) 0 (0%) 145 (97%) 4 (3%) 0 (0%)  0 (0%) 2 (1%) 142 (95%) 5 (3%) 0 (0%) 
65 and over sub-group (n=149)   
Unadjusted 7 (5%) 24 (16%) 72 (48%) 29 (19%) 17 (11%)  7 (5%) 24 (16%) 72 (48%) 29 (19%) 17 (11%) 
            

OLS1, CCA 1 (1%) 3 (2%) 130 (87%) 14 (9%) 1 (1%)  2 (1%) 3 (2%) 130 (87%) 13 (9%) 1 (1%) 
OLS2, MI  1 (1%) 8 (5%) 128 (86%) 10 (7%) 2 (1%)  2 (1%) 7 (5%) 127 (85%) 11 (7%) 2 (1%) 
Care home sub-group (n=148)   
Unadjusted 2 (1%) 13 (9%) 116 (78%) 15 (10%) 2 (1%)  2 (1%) 13 (9%) 116 (78%) 15 (10%) 2 (1%) 
            

OLS1, CCA 0 (0%) 1 (1%) 142 (96%) 5 (3%) 0 (0%)  0 (0%) 8 (5%) 127 (86%) 10 (7%) 3 (2%) 
OLS2, MI  0 (0%) 2 (1%) 140 (95%) 6 (4%) 0 (0%)  0 (0%) 6 (4%) 120 (81%) 17 (11%) 5 (3%) 
All sub-groups (n=149)   
Unadjusted 14 (9%) 28 (19%) 64 (43%) 25 (17%) 18 (12%)  14 (9%) 28 (19%) 64 (43%) 25 (17%) 18 (12%) 
            

OLS1, CCA 2 (1%) 8 (5%) 123 (83%) 12 (8%) 4 (3%)  2 (1%) 7 (5%) 123 (83%) 14 (9%) 3 (2%) 
OLS1, MI  1 (1%) 11 (7%) 126 (85%) 9 (6%) 2 (1%)  2 (1%) 8 (5%) 118 (79%) 16 (11%) 5 (3%) 
Key: OLS1, indicators are based on OLS regression by CCA; OLS2, indicators are based on OLS regression by MI; SV, theoretically-driven; EP, statistically-driven. 
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Table 45: Movements into and out of 'control' status following risk-adjustment†, 18 to 64 sub-group 

Missing data adjustment SV specification  EP specification 

Indicator CCA MI, VOL OLS2, MI  CCA MI, VOL OLS2, MI 

Movements into high 'alert' status from    

in control 0 1 0 0 1 0 
high alarm 0 0 0 0 0 1 

  
 

 

  
 

Movements into low 'alert' status from       

in control 1 1 0 0 0 1 
low alarm 1 2 2 0 0 2 

  
 

 

  
 

Movements into 'control' from       

low alert 5 5 6 6 6 6 
high alert 6 6 6 5 4 6 
low alarm 4 3 3 5 5 3 
high alarm 2 2 2 2 2 1 
 
 

   
 

   

‘False positives’ 17 16 17 18 17 16 
‘False negatives’ 1 2 0 0 1 1 
‘Type I error rate’ 11.6 11.1 11.6 12.2 11.6 11.0 
‘Type II error rate’ 50.0 66.7 -- 0.0 33.3 100.0 

Legend: † Indicators are error method indicators; MI, VOL volume effect from multiple imputation; OLS2, indicators are based on OLS regression by MI; SV, theoretically-
driven; EP, statistically-driven; zero movements into alarm status so these rows are not shown; -- not estimable because denominator is zero (no ‘true positives’ or ‘false 
negatives’) 
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Table 46: Movements into and out of 'control' status following risk adjustment†, 65 and over sub-group 

Missing data adjustment SV specification  EP specification 

Indicator CCA MI, VOL OLS2, MI  CCA MI, VOL OLS2, MI 

Movements into high 'alert' status from        

in control 1 1 1 0 1 1 
high alarm 1 2 3 0 2 2 

  
 

 

  
 

Movements into low 'alert' status from        

in control 2 4 1 3 5 3 
low alarm 5 5 2 4 4 3 

  
 

 

  
 

Movements into 'control' from       

low alert 9 7 11 11 9 10 
high alert 17 16 14 17 16 15 
low alarm 11 10 13 12 10 13 
high alarm 5 4 3 5 3 3 
 
  

  
 

   

‘False positives’ 42 37 41 45 38 41 
‘False negatives 3 5 2 3 6 4 
‘Type I error rate’ 31.1 28.9 30.4 32.6 29.7 30.8 
‘Type II error rate’ 37.5 35.7 22.2 42.9 40.0 36.4 

Legend: † Indicators are error method indicators; MI, VOL volume effect from multiple imputation; OLS2, indicators are based on OLS regression by MI; SV, theoretically-
driven; EP, statistically-driven; zero movements into alarm status so these rows are not shown. 
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Table 47: Movements into and out of 'control' status following risk adjustment†, care home sub-group 

Indicator SV specification  EP specification 

Missing data adjustment  CCA MI, VOL OLS2, MI  CCA MI, VOL OLS2, MI 

Movements into high 'alarm' status from       
high alert 0 0 0 0 1 0 
in control 0 0 0 0 0 0 

  
 

 

  
 

Movements into low 'alarm' status from       
low alert 0 0 0 0 0 1 
in control 0 0 0 1 1 1 

  
 

 

  
 

Movements into high 'alert' status from        

in control 0 0 0 0 0 0 
high alarm 0 0 0 2 2 0 

  
 

 

  
 

Movements into low 'alert' status from        

in control 1 2 1 1 1 9 
low alarm 1 1 1 1 0 0 

  
 

 

  
 

Movements into 'control' from        

low alert 12 10 12 7 6 7 
high alert 10 9 9 5 3 6 
low alarm 1 1 1 0 0 0 
high alarm 2 2 2 0 0 2 
 
 

       

‘False positives’ 25 22 24 12 9 15 
‘False negatives’ 1 2 1 2 2 10 
‘Type I error rate’ 17.4 15.7 16.8 9.2 7.1 12.0 
‘Type II error rate’ 33.3 28.6 25.0 13.3 11.1 45.5 

Key: † Indicators are error method indicators; MI, VOL volume effect from multiple imputation; OLS2, indicators are based on OLS regression by MI; SV, theoretically-
driven; EP, statistically-driven. 
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Table 48: Movements into and out of 'control' status following risk adjustment†, PSD sub-sample 

Indicator SV specification  EP specification 

Missing data adjustment  CCA MI, VOL OLS1, MI  CCA MI, VOL OLS1, MI 

Movements into high 'alert' status from        

in control 0 0 1 0 0 0 
high alarm 3 3 5 3 3 3 

  
 

 

  
 

Movements into low 'alert' status from        

in control 2 2 0 2 2 3 
low alarm 8 7 4 7 7 6 

  
 

 

  
 

Movements into 'control' from        

low alert 6 6 7 6 6 6 
high alert 12 12 10 11 11 11 
low alarm 9 9 12 9 9 9 
high alarm 9 9 8 9 9 9 
 
 

   
 

   

‘False positives’ 36 36 37 35 35 35 
‘False negatives’ 2 2 1 2 2 3 
Type I error rate’ 27.7 27.7 30.4 27.1 27.1 30.8 
‘Type II error rate’ 25.0 22.2 25.0 20.0 20.0 50.0 

Key: † Indicators are error method indicators; MI, VOL volume effect from multiple imputation; OLS1, indicators are based on OLS regression by CCA; SV, theoretically-
driven; EP, statistically-driven, zero movements into high alarm and low alarm status so these rows are not shown. 
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Figure 40: Distribution of CASSR changes in rank for the 18 to 64 sub-group 

Key: a to d, unadjusted - risk-adjusted; e and f, SV-EP adjusted; SV, theoretically-driven; EP, statistically-
driven 
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Figure 41: Distribution of CASSR changes in rank for the 65 and over sub-group 

Key: a to d, unadjusted - risk-adjusted; e and f, SV-EP adjusted; SV, theoretically-driven; EP, statistically-
driven 
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Figure 42: Distribution of CASSR changes in rank for the care home sub-group 

Key: a to d, unadjusted - risk-adjusted; e and f, SV-EP adjusted; SV, theoretically-driven; EP, statistically-
driven 
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Figure 43: Distribution of CASSR changes in rank for all sub-groups 

Key: a to d, unadjusted - risk-adjusted; e and f, SV-EP adjusted; SV, theoretically-driven; EP, statistically-
driven 
 
 

0
10

20
30

40
F

re
qu

en
cy

-100 -50 0 50 100
Difference between ranks

a. SV model, CCA

0
10

20
30

40
F

re
qu

en
cy

-100 -50 0 50 100
Difference between ranks

b. SV model, MI
0

10
20

30
40

F
re

qu
en

cy

-100 -50 0 50 100
Difference between ranks

c. EP model, CCA

0
10

20
30

40
F

re
qu

en
cy

-100 -50 0 50 100
Difference between ranks

b. EP model, MI

0
10

20
30

40
F

re
qu

en
cy

-100 -50 0 50 100
Difference between ranks

e. SV versus EP model, CCA

0
10

20
30

40
F

re
qu

en
cy

-100 -50 0 50 100
Difference between ranks

f. SV versus EP model, MI



 

 

285

The effect of risk-adjustment and adjustment using a production function approach on 

performance assessment 

The average adjusted SCRQoL PI score is shown in Table 49 for PIs estimated using the risk-

adjustment and production function adjustment models and calculated using the error method.  

Although not shown in these tables, there is little difference in PI scores generated using the 

ratio method as compared to the error method.  Pearson and Spearman rank correlation 

coefficients are all 0.96 or over (see Appendix 18, Table 105).  Hence, all results presented 

here are generated using the error method.   

Consistent with the results from the sample containing all CASSRs, there are few 

differences between the average risk-adjusted PI scores estimated by the different regression 

methods (Table 49).  Inspection of pairwise correlations of the PI scores estimated using 

OLS, FE and RE regression, shows perfect correlation for all variant risk-adjustment 

regression models (see Appendix 18, Table 107).  Pairwise correlations for the production 

function adjusted PIs calculated by different regression methods are similarly perfectly 

correlated for the OLS and RE models, but the pairwise comparisons with the FE regressions 

have lower correlations at around 0.94.  Interestingly, the FE-estimated production function 

adjusted PIs are near perfectly correlated (0.99 or over) with the risk-adjusted PIs.  Because 

of the pattern of correlations between the risk-adjusted and production function adjusted PIs 

estimated using the different regression methods, the remainder of the results are presented 

only for the PIs estimated by OLS. 

There are clear differences in the average PI scores between the risk-adjusted and 

production function adjusted PIs (Table 49).  This reflects the differences between the 

production function and risk-adjustment models in the coefficient estimates for the risk-

adjustors, which affects estimates of effectiveness.  The correlation between the two 

approaches, however, is high at over 0.9, with slightly under 10 per cent of CASSR pairs 

changing order (Table 50).  The high correlation suggests that the choice between the risk 

adjustment and production function approaches makes only a small difference to inferences 

about performance. 
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Table 49: Summary statistics for the SCRQoL indicator, estimated by different methods†, partial dataset for 18 to 64 sub-group 

 
Spec  

No. of 
CASSRs 

Complete case analysis  Multiply-imputed sample 
Type of risk 
adjustment method 

Mean Median IQR Range 
(min–max) 

 Mean Median IQR Range 
(min–max) 

0. HSCIC unadjusted --- 83 17.1 17.1 16.6-17.9 14.3, 19.4 17.1 17.1 16.6-17.3 14.3, 19.4 
            

1a. OLS regression SSV 83 17.0 17.0 16.6-17.5 15.5, 18.2 17.0 17.0 16.6-17.3 15.2, 18.2 
EP 83 17.0 17.0 16.6-17.4 15.1, 18.5 17.0 17.0 16.7-17.3 15, 18.3 

1b. FE regression SSV 83 17.0 17.1 16.6-17.5 15.5, 18.2 17.0 17.0 16.6-17.3 15.2, 18.3 
EP 83 17.0 17.0 16.6-17.4 15, 18.5 17.0 17.0 16.7-17.3 15, 18.3 

1c. RE regression SSV 83 17.0 17.0 16.6-17.4 15.5, 18.2 16.9 17.0 16.6-17.3 15.2, 18.2 
EP 83 17.0 17.0 16.6-17.4 15.1, 18.5 16.9 17.0 16.6-17.3 15, 18.3 

            

2a. OLS production 
function 

SSV 83 17.8 17.9 17.4-18.2 16.2, 18.9 18.1 18.1 17.7-18.3 16.7, 19.1 
EP 83 17.4 17.4 17-17.8 15.9, 18.7 17.2 17.1 16.9-17.6 15.8, 18.4 

2b. FE production 
function 

SSV 83 17.8 17.8 17.4-18.2 16.3, 19 18.1 18.1 17.7-18.5 16.3, 19.3 
EP 83 17.4 17.4 17-17.8 15.5, 18.9 17.2 17.3 16.9-17.6 15.4, 18.6 

2c. RE production 
function 

SSV 83 17.8 17.9 17.4-18.2 16.2, 18.9 18.1 18.1 17.7-18.3 16.7, 19.1 
EP 83 17.4 17.4 17-17.8 15.9, 18.7 17.2 17.1 16.9-17.6 15.8, 18.4 

Legend: † Indicators estimated using the ‘error’ method i.e. observed – expected; SV, significant variables; SSV, theoretically-driven; EP, statistically-driven; IQR, 
interquartile range; --- not applicable 
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Table 50: Correlation statistics between risk-adjusted and production function-adjusted 

indicators†, 18 to 64 sub-group (n=83) 

Specification Pearson’s R2

(p-value) 
Rho 

(p-value) 
Tau 

(p-value) 
% pairs change 

order 
Complete case analysis  
SSV 0.951 0.943 0.823 8.9%
EP 0.951 0.935 0.820 9.0%

     

Multiple imputation 
SSV 0.941 0.918 0.788 10.6%
EP 0.946 0.916 0.774 11.3%

Legend: † Indicators estimated using OLS regression and calculated using the error approach i.e. observed – 
expected; SSV, theoretically-driven; EP, statistically-driven 

 
 
   

Table 51: Correlation statistics between unadjusted indicators and adjusted indicators†, 

18 to 64 sub-group (n=83) 

Adjustment 
method  

Specification Pearson’s 
R2 

(p-value) 

Rho 
(p-value) 

Tau 
(p-value) 

 

% pairs 
change 
order 

Complete case analysis  
OLS, RA  SSV-Unadjusted 0.702 0.658 0.474 26.3%

EP-Unadjusted 0.722 0.688 0.505 24.8%
SSV-EP 0.940 0.933 0.785 10.8%

OLS, PF SSV-Unadjusted 0.610 0.599 0.427 28.6%
EP-Unadjusted 0.633 0.621 0.450 27.5%
SSV-EP 0.929 0.918 0.758 12.1%

      

Multiple imputation 
OLS, RA  SSV-Unadjusted 0.729 0.697 0.505 24.7%

EP-Unadjusted 0.712 0.675 0.490 25.5%
SSV-EP 0.982 0.975 0.868 6.6%

OLS, PF SSV-Unadjusted 0.637 0.617 0.441 27.9%
EP-Unadjusted 0.640 0.628 0.451 27.5%
SSV-EP 0.970 0.957 0.838 8.1%

Legend: † Indicators estimated using the error approach i.e. observed – expected; SSV, theoretically-driven; EP, 
statistically-driven; PF, production function. 
 

The correlation between the unadjusted PIs and adjusted PIs varies slightly according 

to whether a risk-adjustment or production function approach is used.  The correlation is 

slightly lower for the production function approach, and a slightly higher per cent of CASSRs 

change order (see Table 51).  Interestingly, despite the insignificant service effect in the 

statistically-driven (EP) production function models, these PIs still have a slightly lower 

correlation with the unadjusted indicator compared to the risk-adjustment model with the 
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same covariate specification.  It seems that despite the inadequate risk-adjustment in the 

statistically-driven models, the inclusion of the service effect still has a small effect on the 

results.  There is also a surprisingly high correlation, at over 0.9, between the PIs estimated 

from the production function models, under the two (EP and SSV) specifications.  The results 

obtained for the risk-adjusted PIs are very similar to those found for the full dataset (c.f. 

Table 51 and Table 42), suggesting that these results are not subject to bias arising from the 

reduced sample of CASSRs.   

The effect of production function-adjustment, as it was for risk-adjustment, is to draw 

PI scores towards the overall sample mean (Figure 46 and Figure 47).  The benchmark used 

in the funnel plots is different for the risk-adjusted and production function-adjusted PIs, as 

the distribution of PI scores is shifted quite significantly upwards for the production function 

models.  This means that it is less meaningful to compare the numbers of outliers between the 

two models.  What is clear, however, is that after adjustment by either approach there are 

many fewer outliers.  Looking at the theoretically-driven (SSV) specification the risk-

adjusted PIs have two outliers and there are no outliers for the production function adjusted 

PIs (Table 52).  Table 53 shows the same information, but this time illustrating how CASSRs 

move into and out of control status following adjustment.  Around a quarter of the 

movements are from low alarm status to in control, which demonstrates that some of the 

changes in PI score post-adjustment are fairly large.  This analysis suggests that the 

unadjusted PIs identify many ‘false positives’, with ‘false positive rates’ over ten per cent. 

The extent of the movements after adjustment can be seen more clearly in the funnel 

plots (Figure 46 and Figure 47).  As before, to trace the movements following adjustment, the 

top ten CASSRs, as identified using the unadjusted PI, are marked green and the bottom ten 

are marked in blue.  There is a lot of movement out of the bottom and top ten.  After 

production function adjustment only four of the bottom ten and five of the top ten remain the 

same and after risk adjustment only five of the bottom ten and seven of the top ten remain the 

same.  Most of the movements in placing are fairly small, but some are much greater with 

maximum movements of over 50 places (see Figure 50 and Figure 51).   Importantly, 

placings are very similar irrespective of whether PIs are production function adjusted or risk-

adjusted, with only a handful of CASSRs having movements greater than ten positions 

(Figure 52).  The top and bottom ten CASSRs are also fairly consistent, with eight of the ten 

CASSRs remaining the same for the different adjustment models.  This suggests that the 

production function adjustment and risk adjustment approaches in general identify the same 

CASSRs as outliers and produce the same ordering of CASSRs. 
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Considering now the effect of adjusting for nonresponse, this has a small effect on 

inferences about performance in the context of case-mix adjustment using the production 

function method.  The correlation between unadjusted and production function adjusted PIs is 

very similar, albeit marginally higher after adjustment with a slightly lower percentage of 

CASSR pairs changing order (Table 51).  The correlation between production function 

adjusted and risk-adjusted PIs is also very similar whether estimated by CCA or using MI 

(Table 50).  When the production function adjusted PIs are calculated on the multiply-

imputed dataset from the theoretically-driven (SSV) specification, the number of outliers is 

very similar (Table 52), as are the number of ‘false positives’ and ‘false negatives’ (Table 

53).  There are slightly less extreme changes in the ranking of CASSRs when adjusted PIs are 

estimated by MI, compared to by CCA (Figure 51)1.  There is very little effect for individual 

CASSRs for this particular sub-group.  This suggests that taking nonresponse into account 

has only a small effect on performance assessment, for this particular sub-group. 

 
 
 
 
 
 

                                                 
1 The distributional statistics confirm this: the standard deviation is 19.5 for the MI dataset and 21.5 for CCA. 
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Figure 44: Caterpillar plots showing SCRQoL scores for CASSRs, theoretically-driven specification, 18 to 64 sub-group 
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Figure 45: Caterpillar plots showing SCRQoL scores for CASSRs, statistically-driven specification, 18 to 64 sub-group 
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Figure 46: Funnel plots for SCRQoL PI, before and after risk-adjustment, theoretically-

driven specification, 18 to 64 sub-group 

 

 

12

14

16

18

20

22

In
di

ca
to

r 
sc

or
e

0 50 100 150 200
Sample size

CASSR Bottom 10 Top 10

Sign. 5% Sign. .2%

a. Unadjusted indicator, CCA

12

14

16

18

20

22

R
is

k-
ad

ju
st

ed
 in

di
ca

to
r 

sc
or

e

0 50 100 150 200
Sample size

CASSR Bottom 10 Top 10

Sign. 5% Sign. .2%

b. Adjusted indicator, CCA

12

14

16

18

20

22

R
is

k-
ad

ju
st

ed
 in

di
ca

to
r 

sc
or

e

0 50 100 150 200
Sample size

CASSR Bottom 10 Top 10

Sign. 5% Sign. .2%

c. Adjusted indicator, MI (volume effect)

12

14

16

18

20

22
R

is
k-

ad
ju

st
ed

 in
di

ca
to

r 
sc

or
e

0 50 100 150 200
Sample size

CASSR Bottom 10 Top 10

Sign. 5% Sign. .2%

d. Adjusted indicator, MI (outcome & volume effect)



 

 

293

 

Figure 47: Funnel plots for SCRQoL PI, before and after production function 

adjustment, theoretically-driven specification, 18 to 64 sub-group 
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Figure 48: Funnel plots for SCRQoL PI, before and after risk-adjustment, statistically-

driven specification, 18 to 64 sub-group 
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Figure 49: Funnel plots for SCRQoL PI, before and after production function 

adjustment, statistically-driven specification, 18 to 64 sub-group 
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Table 52: Number (percentage) of CASSRs identified as outliers for unadjusted and adjusted indicators (n=83) 

 Outlier status for Simplified, SV specification  Outlier status for EP specification 
Types of 
adjustments to 
indicators 

High 
alarm 

y>-3 SD 

High 
alert 

y>2 SD 

‘Normal’ 
range 

Low 
alert 

y>-2 SD 

Low 
alarm 

y>-3 SD 

 High 
alarm 

y>-3 SD 

High 
alert 

y>2 SD 

‘Normal’ 
range 

Low 
alert 

y>-2 SD 

Low 
alarm 

y>-3 SD 

Unadjusted 0 (0%) 6 (7%) 67 (81%) 6 (7%) 4 (5%)  0 (0%) 6 (7%) 67 (81%) 6 (7%) 4 (5%) 
            

Adjusted indicators     
OLS RA1, CCA  0 (0%) 0 (0%) 81 (98%) 2 (2%) 0 (0%)  0 (0%) 0 (0%) 83 (100%) 0 (0%) 0 (0%) 
OLS RA1, MI VOL 0 (0%) 0 (0%) 81 (98%) 2 (2%) 0 (0%)  0 (0%) 1 (1%) 81 (98%) 1 (1%) 0 (0%) 
OLS RA2, MI 0 (0%) 0 (0%) 82 (99%) 1 (1%) 0 (0%)  0 (0%) 0 (0%) 80 (96%) 3 (4%) 0 (0%) 
            

OLS PF1, CCA 0 (0%) 0 (0%) 83 (100%) 0 (0%) 0 (0%)  0 (0%) 0 (0%) 83 (100%) 0 (0%) 0 (0%) 
OLS PF1, MI VOL 0 (0%) 0 (0%) 82 (99%) 1 (1%) 0 (0%)  0 (0%) 0 (0%) 83 (100%) 0 (0%) 0 (0%) 
OLS PF2, MI 0 (0%) 0 (0%) 83 (100%) 0 (0%) 0 (0%)  0 (0%) 0 (0%) 82 (99%) 1 (1%) 0 (0%) 
Legend: OLS RA1, RA OLS model estimated on CCA dataset; OLS RA2, RA OLS estimated on MI dataset; MI, VOL volume effect from multiple imputation; OLS PF1, 
OLS production function estimated on CCA dataset; OLS PF2, OLS production function estimated on MI dataset; SSV, theoretically-driven; EP, statistically-driven.  
Average SCRQoL score used as target for risk-adjustment models, calculated on CCA or MI dataset as appropriate.  Average SCRQoL score plus difference between average 
SCRQoL and average production function-adjusted score used as target for production function models, calculated on CCA or MI dataset as appropriate. 
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Table 53: Movements into and out of 'control' status following risk adjustment and adjustment for nonresponse† 

Simplified SV specification  EP specification 

Indicator OLS, RA OLS, PF  OLS, RA OLS, PF 

Missing data 
adjustment 

CCA 
MI, 

VOL 
MI 2 CCA 

MI, 
VOL 

MI 2 
 

CCA 
MI, 

VOL 
MI 2 CCA 

MI, 
VOL 

MI 2 

Movements into low 'alert' status from           
in control 1 1 0 0 1 0  0 1 2 0 0 0 
low alarm 1 1 1 0 0 0  0 0 1 0 0 1 
              

Movements into 'control' from           
low alert 2 2 2 2 2 2  2 2 2 2 2 2 
high alert 6 6 6 6 6 6  6 5 6 6 6 6 
low alarm 3 3 3 4 4 4  4 4 3 4 4 3 
high alarm 0 0 0 0 0 0  0 0 0 0 0 0 
              

‘False positives’ 11 11 11 12 12 12  12 11 11 12 12 11 
‘False negatives’ 1 1 0 0 1 0  0 1 2 0 0 0 
‘Type I error rate’ 13.6 13.6 13.4 14.5 14.6 14.5  14.5 13.6 13.8 14.5 14.5 13.4 
‘Type II error rate’ 100.0 100.0 -- -- 100.0 --  -- 50.0 100.0 -- -- -- 

Legend: † Indicators are based on OLS regression; MI, VOL volume effect from multiple imputation; MI 2, MI using OLS estimates from MI models; RA, risk-adjustment; 
PF, production function; SSV, theoretically-driven; EP, statistically-driven; zero movements into alarm status and high alert status, so these rows are not shown; -- not 
estimable because denominator is zero (no ‘true positives’ or ‘false negatives’). 
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Figure 50: Distribution of CASSR changes in rank (Unadjusted – Risk-adjusted) for the 18 to 64 sub-group 

Legend: simplified SV, theoretically-driven; EP, statistically-driven 
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Figure 51: Distribution of CASSR changes in rank (Unadjusted – production function-adjusted) for the 18 to 64 sub-group 

Legend: simplified SV, theoretically-driven; EP, statistically-driven 
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Figure 52: Distribution of CASSR changes in rank (Risk-adjusted – production function-adjusted) for the 18 to 64 sub-group 

Legend: simplified SV, theoretically-driven; EP, statistically-driven 
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Discussion 

The primary goal of this analysis was to answer the question of whether case-mix 

adjustment affects the interpretation of PIs from performance surveys.  I have argued that 

this question is important because the differences in case-mix between CASSRs are 

alternative explanations for any observed differences in PIs scores.  In this analysis I 

focused on the SCRQoL indicator derived from the ASCS data.  Reflecting the decision I 

took to develop sub-group specific regression models for the PSD subsample of the ASCS, 

I examined whether adjustment has an effect on the performance of CASSRs for each of 

the PSD sub-groups and the overall PSD subsample.  To adjust the SCRQoL indicator, I 

standardised the observed outcome for each CASSR by its expected outcome, as calculated 

from the regression models in Chapter 6 and 7.  I used several different regression methods 

to estimate the expected outcome, to reflect as far as possible the clustered structure of the 

data and skewed distribution of the SCRQoL indicator.  I also explored models with 

different variable specifications, including a version of the model akin to a production 

function that included a term for the effect of services.  Additionally, the PIs were 

calculated under two different assumptions about the missingness mechanism – MCAR 

and MAR – to understand whether nonresponse has an impact on performance assessment 

where there is adjustment for case-mix.  The intention is that this analysis will inform 

decisions about the analytical steps that should be taken to improve the validity of survey-

based PIs.   

This analysis has shown that adjusting the SCRQoL indicator for differences in the 

case-mix of CASSRs has an important effect on performance assessment, resulting in 

many changes in the rank position of CASSRS and their outlier status.  The method used to 

adjust PIs has only a small effect on performance assessment.  Model specification is 

slightly more important than the choice of statistical method, which is consistent with 

much of the literature in this area (Hannan et al. 1997, Huang et al. 2005, Mukamel et al. 

2008, Li et al. 2009, Iezzoni 2013).  In what follows, I discuss these results in more detail 

and consider the main limitations of the analysis presented here.  I consider the 

implications of this analysis for policy and research in Chapter 9. 

 

The effect of adjustment for case-mix on performance assessment 

This analysis has shown that adjusting for differences in the case-mix of CASSRs has clear 

effects on performance assessment.  There were some variations in the effects of case-mix 

adjustment on performance assessment across sub-groups and according to the method 
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used for adjustment, but in general the effects were highly consistent.  Notably, case-mix 

adjustment results in changes to the ranking of CASSRs, with some CASSRs seeing quite 

large changes in rank position after adjustment.  There was also a lot of movement in the 

top and bottom ten positions.  Case-mix adjustment also substantially reduces the number 

of CASSRs that are outliers.  It seems likely that sample size makes a difference to the 

importance of the effect of case-mix on outlier analysis, as the ‘false positive rate’ for the 

larger 65 and over sub-group and the PSD subsample was much higher than the ‘false 

positive rate’ for the two smaller (18 to 64 and care home) sub-groups.  For all analyses, 

the ‘false positive rate’ was substantially over the five per cent level that is generally 

considered acceptable.  Assuming that the case-mix adjusted SCRQoL PIs are more valid 

indicators of performance than the unadjusted PIs, this analysis provides strong evidence 

for using case-mix adjusted PIs for performance assessment. 

 I reflect on the question of whether the case-mix adjusted PIs are more valid 

indicators of performance than the unadjusted PIs in Chapter 9.  For now, I focus on the 

implications of the analysis for the choice of adjustment method.  In general, the method 

used for standardising the observed outcome made only a marginal difference to 

performance assessment.  Some method choices, however, did matter more than others and 

I discuss each of these decisions, i.e. concerning the estimation method, the specification 

of the model, the choice between the production function or the risk-adjustment model, and 

the method for standardising the observed outcome, in turn.   

I take first the estimation method used for modelling the SCRQoL outcomes.  The 

choice between the OLS, RE, FE and FR regression had no consequences for performance 

assessment.  Although the RE, FE and FR models may have greater face validity than the 

OLS estimation method, at least for these data, this was not important for performance 

assessment.  For the SCRQoL PI, as far as I have been able to test here, the OLS provides a 

reasonable basis for adjustment. 

The model specification for these data, by contrast, did have some consequences 

for performance assessment.  I used two specifications for the statistical models: one based 

on a more theoretically-driven approach for retaining variables in the model (the SV 

model) and another based on a more statistically-driven approach for retaining variables in 

the model (the EP model).  There was, in general, a fairly high correlation between PIs 

based on the two model specifications and fairly good agreement between the two 

specifications over which CASSRs were identified as outliers, this is despite some 

differences in the list of risk-adjustors.  For the 18-64 age group the statistically-driven 
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model included self-perceived health, self-perceived home design and anxiety/depression, 

while the theoretically-driven model included these variables and ADLs, the help with 

finances/paperwork IADL, practical help, gender and the source and type of assistance the 

person had to complete the questionnaire.  For the over 65 sub-group, the statistically-

driven model included self-perceived health, self-perceived home design, 

anxiety/depression and ADLs.  In addition the theoretically-driven specification included: 

the help with finances/paperwork IADL, practical help, gender, whether the questionnaire 

was completed by a proxy respondent, the source and type of assistance the person had to 

complete the questionnaire, and whether the person made private contributions to their care 

needs.  It is notable that the two specifications had a similar R2 for both of these sub-

groups. 

There was less good agreement on the rank position and outlier status of CASSRs 

using the two specifications for the care home sub-group.  It is notable that for the care 

home sub-group, the statistically-driven specification included many fewer variables as 

risk-adjustors compared to the theoretically-driven specification and had a substantially 

lower R2.  The statistically-driven specification included only anxiety/depression and 

practical help, whereas the theoretically-driven specification also included self-perceived 

health, gender, age group, whether the questionnaire was answered by a proxy respondent, 

whether the person had help to complete the questionnaire and the source and type of help 

given, and whether the person made additional contributions to the cost of their care.  The 

degree of difference between PIs based on these two model specifications for the care 

home group, suggests that the statistically-driven method, may sub-optimally adjust for 

case-mix differences between CASSRs for this sub-group.   

The statistical method used to generate the statistically-driven specification, was 

based on the method proposed by Zaslavksy et al. (2001), in which variables are selected 

on the basis of their explanatory power.  Here explanatory power refers to the predictive 

power of the variable and the extent to which it varies across CASSRs.  The criterion used 

to select variables on the basis of explanatory power seems fairly arbitrary and it may be 

too stringent for the care home dataset.  Sensitivity analysis may help to understand the 

appropriate criterion to use for different datasets; however, the sub-optimal adjustment of 

the SCRQoL PI for the care home sub-group suggests that a more theoretically-driven 

approach to retaining variables in the model is preferable (Iezzoni 2013).  These findings 

also confirm the results of previous research that stresses the importance of the 
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specification of the case-mix adjustment models for performance assessments (Arling et al. 

2007, Mukamel et al. 2008). 

 A further choice with respect to the statistical modelling is between the risk-

adjustment and production function adjustment models.  Although there were quite large 

differences in the estimates of the absolute scores for the adjusted SCRQoL indicator with 

the production function and risk-adjustment methods the choice of model made little 

difference to the ranking of CASSRs or the identification of outliers.  This suggests that the 

relative values of PIs do not change substantially as a result of the choice of model.  One 

explanation for this is that there is little difference in the relationship between the intensity 

of services that people receive (as measured by the budget variable) and outcomes across 

CASSRs given the observed risk-adjustors; another is the data limitations discussed in 

Chapter 7.  The implication of this analysis is that the risk-adjusted PI provides a fairly 

good indicator of the relative performance of CASSRs.  Although, as I noted in Chapter 7, 

the production function model provides a better estimate of effectiveness, so the choice 

between the two approaches depends on how the data are to be used, as I discuss in 

Chapter 9.  

The choice between whether to standardise the observed outcome using the error 

method (observed – expected) or one of the two ratio methods (observed/expected) had 

little effect on performance assessment.  The ranking of CASSRs was almost identical and 

the CASSRs identified as outliers were also in most cases identical.  For the PSD 

subsample, however, the ratio method (where ratios were estimated for individuals and 

then averaged across cases within a CASSR) identified more CASSRs as low outliers than 

the error method (and the more conservative version of the ratio method where expected 

outcomes are estimated for CASSRs given their ‘average’ risk profile).  This reflects the 

weighting implicit in the construction of the indicator, which gives more weight to large 

differences between observed and expected outcomes where observed SCRQoL is low 

than it does to large differences between observed and expected outcomes where observed 

SCRQoL is high.  It is not clear why only the PSD subsample was affected, although the 

larger sample size used for estimating the CASSRs may be a factor.  The validity of the 

individual ratio approach depends on how certain we can be that individuals with poor 

SCRQoL could have better outcomes.  Given the difficulties capturing the tail of the 

distribution, discussed in Chapter 6, there is reason to doubt that this is the case.  

Consequently, as I discuss in Chapter 9, the ratio method may not be the fairest way of 

constructing PIs for these data.   
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The effect of adjusting for nonresponse, where PIs are adjusted for case-mix 

Taking nonresponse into account has a small effect on inferences about performance, with 

the effect depending to some extent on the specification of the adjustment model and on 

the sub-group.  In general, for these data, adjusting for nonresponse seems to moderate the 

effects of adjustment for case-mix.  Adjusted PIs estimated on the MI dataset tend to have 

higher correlations with the unadjusted PIs, identifying more CASSRs as outliers and 

having fewer changes in rank position compared to the unadjusted PIs.  It should be 

emphasised that the differences between the adjusted PIs estimated on the MI dataset and 

by CCA are in all cases fairly small.  Nevertheless, this analysis suggests that some of the 

differences between the unadjusted and case-mix adjusted PIs arise due to loss of data.   

Importantly decomposition of the effect of adjusting for nonresponse suggests that 

the main driver of the differences observed between the case-mix adjusted PIs estimated by 

CCA and on the MI dataset is a mean outcome effect and not a volume effect.  In other 

words the correction for bias has a more important effect on performance assessment than 

the increase in the precision of the estimated PIs.  The implication is that for the SCRQoL 

PI, for these sub-groups, the loss of data associated with adjusting PIs for case-mix has a 

biasing effect on the resultant PIs.  It was also notable that, in this dataset, one CASSR was 

significantly affected by bias arising from nonresponse.  The effect of nonresponse in the 

presence of case-mix adjustment seems to be highly dependent on the individual patterns 

of missingness within CASSRs.  I consider the implications of this for policy in Chapter 9. 

 

Limitations of the methods and data and some directions for future research 

This analysis exploring the effects of adjustment on performance assessment is dependent 

on the regression models developed in Chapters 6 and 7, since these form the basis for 

estimating the expected outcomes used to standardise the observed outcome.  The findings 

are therefore subject to the limitations associated with the models, which were discussed in 

some detail in Chapters 6 and 7.  Notably, the concerns I raised over the poor fit of the 

models to the data, the possibility of omitted variable bias in the estimates due to fact that 

some theoretically important variables are unobserved, the small numbers in some of the 

sub-groups which prevented a validation study and the accuracy of the budget variable. 

All of these problems with the statistical models mean there may be some bias in 

the case-mix adjusted PIs.  The strong correlation between the PIs adjusted using the 

various different methods, however, is a strength of the analysis and suggests that the 



 

 

306

results are fairly robust to violations of the model assumptions.  The results presented here 

also agree with those reported by Forder et al. (2016) for the IIASC study1 (discussed in 

Chapter 7).  Despite the very different results for the estimate of effectiveness found 

between the IIASC study and the production function models presented in Chapter 7, the 

IIASC study found a similar level of agreement between production function adjusted and 

risk-adjusted PIs and a similar correlation between the production function adjusted PI and 

the unadjusted PIs.  This suggests that despite the problems with the statistical models, the 

findings from this study provide a good indication of the relationship between PIs based on 

the production function and risk-adjustment models. 

The small sample size of the care home and 18 to 64 sub-groups needs further 

consideration since it has implications beyond the robustness of the models.  The 

identification of outliers depends on the precision of the estimates and it seems likely that 

the small sample size of most of the CASSRs in these sub-groups hindered the outlier 

analysis.  The funnel plots for the care home and 18 to 64 sub-groups still show a spread of 

points after adjustment, but very few (and usually zero) CASSRs are outliers after 

adjustment.  This is in contrast to the larger 65 and over sub-group where a number of 

CASSRs are still identified as outliers after adjustment.  The small numbers limited the 

power of the outlier analysis for these groups, and therefore my ability to understand the 

difference between the methods for adjustment on the identification of outliers within these 

sub-groups.  An important implication of this is that the sub-groups are too small to 

warrant separate reporting and analysis.  I reflect on the implications of this for case-mix 

adjustment of PIs in Chapter 9. 

The proportions of people within each of the PSD sub-groups varies quite 

substantially across CASSRs, which raises questions about how comparable the adjusted 

PIs are for the PSD subsample where the three sub-groups are combined into one PI2.  

                                                 
1 The IIASC study (Forder et al. 2016), was designed to capture better information on service receipt and user 
characteristics to enable a more thorough investigation of the relationship between service use, needs-related 
characteristics and outcomes in the context of outcomes adjustment.  As well as collecting data from social 
care records, the IIASC study interviewed service users to capture information on their service use alongside 
a range of other data on their characteristics and SCRQoL.  Since service use was collected directly from 
users, a cost-weighted utilisation measure1 could be generated using average national unit costs.  This is more 
accurate than the budget variable from social care records that I used in this analysis, as it is not (directly) 
influenced by regional price differences. 
2 The method for combining the sub-group results together is consistent with indirect standardisation.  It 
involved calculating adjustment factors for each individual using the sub-group specific regression equation 
and averaging across the adjustment factors to generate an expected outcome and hence adjusted-PI.  This 
method effectively adjusts for sub-group specific differences in outcomes, through the sub-group specific 
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Indirect standardisation provides fairly good adjustment for case-mix where the samples 

have similar case-mix profiles, but where there are large differences in the case-mix of 

organisations indirectly standardised PIs are not comparable (Glance et al. 2000, Julious et 

al. 2001, Rixom 2002, Julious and George 2007).  Indirect standardisation tends to be used 

for case-mix adjustment as the alternative more correct method, direct standardisation, is 

usually not feasible.  In direct standardisation, the effects of case-mix variables on 

observed outcomes within each CASSR would be applied to a reference population to 

estimate the expected outcome for the reference population had the effects observed for the 

CASSRs applied.  This method requires large sample sizes for each CASSR and cannot be 

used with large numbers of variables or with continuous variables (Nicholl et al. 2013).  In 

Chapter 9 I discuss directions for future research that could improve this facet of the 

analysis. 

 The adjustment for the effects of nonresponse on the indicators was restricted in 

this chapter to an analysis of the effects of item nonresponse on performance assessment 

using MI.  In Chapter 5, I explored the effect of adjusting for both item and unit 

nonresponse on PI scores, using the combined IPW/MI method, which also investigated 

the effects of accounting for unit nonresponse on performance assessment.  I did not apply 

the IPW/MI approach to these data because the strategy of conducting the analysis by sub-

group is not compatible with the sample-level IPW analysis.  Applying the weights to the 

sub-groups could distort adjusted-PIs as the total of the effective weights would depend on 

the ratio of the size of the sub-group to the total respondent sample, which would vary for 

each CASSR.  The lack of weighting for unit nonresponse means, however, that 

differences between CASSRs in PI scores may be a consequence of unobserved 

heterogeneity arising from differences in the characteristics of respondents and 

nonrespondents between CASSRs.  If IPW/MI adjustment has the same effects in this 

context as it did in Chapter 5, additional adjustment for unit nonresponse may have 

produced marginally greater differences in the results.   

 

Concluding remarks 

A clear implication of this analysis is that it is important to adjust the SCRQoL PI for case-

mix, to avoid spurious conclusions regarding the relative performance of CASSRs.  I make 

                                                                                                                                                    

regression equations.  It is equivalent to a regression for the entire sample including interaction terms 
between the sub-group and all covariates. 
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this assertion on the assumption that the adjusted-PI has greater validity as an indicator of 

performance than the unadjusted SCRQoL PI.  There is no benchmark against which to 

assess the validity of the unadjusted and adjusted indicators.  In Chapter 9, I discuss why 

the analyses from across Chapters 6, 7 and 8 suggest that the adjusted-PIs are more valid 

indicators of performance than the unadjusted PI. 

I have also discussed the implications of this analysis for the method that should be 

used to adjust the SCRQoL PI for case-mix.  While the estimation procedures appear to 

make little difference to performance assessment, the choice of risk adjustors is important.  

The specification that selected risk-adjustors on the basis of theoretical and empirical 

relationships appeared to optimally adjust for case-mix.  Although the others aspects of the 

method were not important for conclusions regarding performance assessment, they do 

have consequences for the face validity of the results.  I consider the trade-offs between the 

different choices and their implications for the ASCOF and other studies in Chapter 9.  

 The effect of adjusting for nonresponse on inferences about the performance of 

CASSRs warrants further investigation for the SCRQoL indicator.  The pattern of 

missingness drives the results reported here, which means for some CASSRs with 

particular patterns of missingness adjustment for nonresponse can have significant 

implications for performance assessment.  In adjusting for nonresponse I make an 

assumption about the missingness mechanism in order to ‘observe’ the effects of 

nonresponse on PIs.  In this analysis I made the assumption that the missingness 

mechanism is MAR for item missingness among the respondents, i.e. dependent on the 

value of the observed variables, and MCAR for unit missingness.  As I have suggested this 

assumption is a limitation of the methods used here and these assumptions may both be 

false: item missingness may in fact be NMAR and unit missingness may be either MAR or 

NMAR.  I consider the implications of this limitation for the study conclusions and future 

research in Chapter 9. 
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Chapter 9 

Discussion, Policy Implications and Conclusions 

 

Introduction 

In this thesis I set out to answer the following research question: if survey-based indicators 

are to provide valid evidence concerning performance for routine use, what strategies 

should be used to address the confounding influence of observed and unobserved 

heterogeneity?  The validity of survey-based indicators is drawn into question due to the 

possibility that variations in scores may be explained by factors unrelated to the 

performance of services.  I have used data from the Adult Social Care Survey (ASCS) to 

examine two possible sources of heterogeneity in indicators drawn from this survey for the 

Adult Social Care Outcomes Framework (ASCOF): nonresponse and the characteristics of 

service users, often referred to as the ‘case-mix’.  I found that both nonresponse and 

differences in the case-mix of CASSRs influenced absolute ASCOF PI scores, but case-

mix had a more important impact on performance assessment.  Although generally less 

important, the effect of adjusting for nonresponse varied depending on the PI, which I 

argue is a consequence of differences between PIs in the number of cases with missing 

information.  The method used to adjust for case-mix had very little effect on performance 

assessment, but the choice of risk-adjustors was important.  The choice of method to adjust 

for nonresponse also had some implications for conclusions.  In what follows, I argue that 

for valid inferences about performance it is necessary to (i) statistically adjust for 

differences in case-mix between CASSRs; (ii) to explore the effects of nonresponse on PIs 

and consider implementing post-hoc adjustment; and (iii) to consider implementing 

strategies to increase response rates from groups that are currently underrepresented in the 

ASCS. 

The rest of this chapter is organised as follows.  First, I discuss the main findings 

from the empirical analyses in this thesis from a policy perspective.  Secondly, I consider 

the strengths and limitations of the analyses and set out some directions for future research.  

Finally, I conclude by reflecting on the contribution of this thesis to ASC policy and 

performance assessment research more broadly.  I consider some of the questions raised by 

this thesis for these two fields of research and suggest an agenda for future studies in these 

two fields. 
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Key findings and their implications for policy 

The analysis in the empirical sections of this thesis addressed the core research question 

through four sub-questions: 

i. What is the most appropriate method for modelling ASC outcomes?  

ii. What is the effect of adjusting for case-mix on inferences about performance 

and does the method of implementing adjustment matter? 

iii. What is the effect of nonresponse on inferences about performance and does the 

method used to address differences in samples due to nonresponse matter? 

iv. Who is missing from performance surveys and how can response rates be 

improved? 

The first two questions relate to the problem of differences in the case-mix of CASSRs and 

the second two, to the problem of nonresponse.  In both the case-mix and nonresponse 

analyses, where the concern was to establish the effect of adjustment on inferences about 

performance, I examined the effect on the ranking of CASSRs and on which CASSRs were 

identified as outliers. 

The strategies explored in the empirical chapters were designed to improve the 

validity of the indicators.  Should policymakers be solely concerned with validity then, the 

answer to the research question would depend only on the question of whether the 

strategies were effective in this regard.  As I have discussed in the opening chapter, 

however, policymakers need to balance the validity of indicators against other qualities 

like feasibility and acceptability; they also need to consider the views of different 

stakeholders and the different uses for the data.  The methods proposed here, particularly 

those to address nonresponse, improve validity but sometimes at the cost of feasibility (e.g. 

affecting the cost of data collection or the timeliness of the analysed data) and acceptability 

(e.g. affecting usability or transparency).  When competing policy priorities are taken into 

account, a more nuanced answer to the research question is needed.  In this section I 

discuss the key findings from the study, organised around the sub-questions above.  I 

reflect on how the potential uses of the PIs affect whether, and how, policymakers may 

wish to address the effects of nonresponse and differences in the case-mix of CASSRs on 

survey-based PIs.   

 

The role of observed differences in user characteristics on performance assessment 

The case-mix analysis focused on the SCRQoL indicator, which measures the effect of 

ASC services on users’ QoL.  As is indicated by the research sub-questions, in the first 
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stage I explored different methods for modelling ASC outcomes.  Due to the complexity of 

estimating a single model on a sample as diverse as the ASCS, all analyses were conducted 

on a subsample of the ASCS (people with a physical and sensory disability, PSD) and 

separate models were estimated for three sub-groups (care home residents, adults aged 18 

to 64 in private households, and adults aged 65 and over in private households) within this 

subsample.   

The statistical modelling identified a number of factors beyond the direct control of 

CASSRs that were important predictors of variations in SCRQoL.  As suggested by the 

conceptual framework (Chapter 2) and consistent with previous research studies (Davies et 

al. 2000b, Fernández 2005, Glendinning et al. 2008a, Forder and Caiels 2011a, Forder et 

al. 2014, van Leeuwen et al. 2014), the factors that were found to be important included: 

underlying health and disabling conditions variables, such as ADLs and self-perceived 

health, perceptions of the accessibility of the home environment, variables capturing 

receipt of practical help and reporting-related factors, such as whether the person received 

assistance to complete the questionnaire.  These factors explained a sizeable proportion of 

variation in SCRQoL scores.  This underlines the importance of attending to variations in 

these characteristics for risk adjustment and when assessing the effectiveness of social care 

interventions more generally. 

The analysis in Chapter 8 found that statistically adjusting PIs for differences 

between CASSRs in the characteristics of users had a substantial impact on performance 

assessment.  There was a marked effect on PI scores for individual CASSRs, which had a 

substantial impact upon the ranking of CASSRs and meant that many fewer CASSRs were 

identified as outliers after adjustment.  The effect of user characteristics on the absolute 

and relative performance of CASSRs as measured by SCRQoL, suggests problems for all 

uses of the crude SCRQoL PI.  For example, if the unadjusted SCRQoL PI were to be used 

for benchmarking, investigation would frequently reveal that poor performance was 

explained by an unlucky case-mix and conversely that good performance was explained by 

a fortunate case-mix.  Likewise were the unadjusted SCRQoL PI to be used for 

accountability purposes it would present a false impression of the relative performance of a 

large proportion of CASSRs.  The dominance of SCRQoL outcomes by risk factors would 

also make it difficult for CASSRs to use the unadjusted PI for internal research and 

evaluation as inferences regarding effectiveness would be confounded by the 

characteristics of service users.  Without adjustment for case-mix, there is a fairly high 

probability that resources will be wasted, either because end-users will make sub-optimal 
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decisions or because, having collected the performance data, they may not use it due to 

questions over its validity (Moynihan and Pandey 2010, Kroll 2015).  There is therefore a 

strong argument for adjusting the SCRQoL PI to take account of the observed variations 

between CASSRs in case-mix. 

 

The importance of methods choices for case-mix adjustment 

I turn now to the question of how policymakers should adjust the SCRQoL PI for 

differences in the case-mix of CASSRs.  The adjusted PIs were all generated by indirectly 

standardising the observed outcome for each CASSR by the expected outcome for the 

CASSR.  In all cases the expected outcome was calculated using the results from a 

regression model estimated on a reference population.  I estimated a number of regression 

models to produce a range of alternative expected outcomes and therefore adjusted PIs.  I 

explored several different estimation methods, including OLS, fixed effects, random 

effects and fractional response regression, in order to address the negatively-skewed 

distribution of the SCRQoL indicator and the clustering of responses within CASSRs.  

Additionally I tested two specifications with slightly different selections of explanatory 

variables.  This produced a number of alternative adjusted PIs that were very strongly 

correlated.  Indeed, for all sub-groups, the differences between the crude and adjusted PIs 

were much greater than the differences between the alternative adjusted PIs.  The strong 

correlation is good from the perspective of validity since it strengthens conclusions 

regarding the effect of case-mix adjustment on performance assessment.  It also implies 

that the method used for indirect standardisation matters very little for the validity of 

performance assessment using the SCRQoL PI.   

In most situations, the best method for adjustment will therefore be the one that 

provides the simplest explanation of the data.  On this basis, OLS is the preferred 

estimation procedure for these data as it provides the simplest explanation of the data and 

produces results that are not significantly different to those from the more complex 

estimation procedures.  Faced with similar results, some researchers have argued for fixed 

or random-effects models on the basis that these models have greater face validity (Hannan 

et al. 2005, Glance et al. 2006, Li et al. 2009).  However, for ASC, simplicity of 

explanation is of paramount importance as social services departments have very few 

employees with research skills (Rainey et al. 2015).  I therefore favour the OLS estimation 

procedure. 
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In Chapter 8 I argued that a model specification with more extensive risk-

adjustment is desirable.  I used two different methods to specify which risk adjustors to 

retain in the models: a more statistically-driven approach (the ‘EP’ approach) and a more 

theoretically-driven approach (the ‘SV’ approach).1  The results discussed in Chapter 8 

showed that for the two private household sub-groups the two model specifications were 

very similar.  For the care home sub-group the specifications had different effects on 

performance assessment.  As the statistically-driven specification excluded many 

theoretically-important variables and had a much lower R2 it is my view that it under-

adjusts for the effects of case-mix and has poor validity.  Consistent with other studies 

(Arling et al. 2007, Mukamel et al. 2008, Iezzoni 2013), the analysis presented here 

supports a more extensive and theoretically-grounded approach to the retention of risk 

adjustors.  

I estimated the SCRQoL outcome using a production function model to address the 

possibility that the risk-adjustment model produces downwardly-biased estimates of 

effectiveness.  As discussed in Chapters 2 and 3, bias arises because the needs-related 

characteristics of service users (included in the model as risk factors for SCRQoL-

outcomes) strongly predict the care package provided.  A production function model is 

useful because it addresses confounding by directly including an indicator of service 

quantity in the model.  Despite it being important from a theoretical perspective to include 

services in the statistical model, I showed in Chapter 8 that it did not make a large 

difference to inferences about the relative performance of CASSRs.  The similarity in 

inferences regarding relative performance from these two models implies that there is little 

difference in the relationship between the care package that people receive and SCRQoL-

outcomes across CASSRs given the observed service user characteristics.  By corollary, 

the risk-adjustment model would appear to be adequate for assessing the relative 

performance of CASSRs using the SCRQoL PI.   

It is important to note that while relative performance was more or less unaffected, 

the indicator estimates did vary between the production function adjusted and risk-adjusted 

PIs.  This reflects the results from the production function models in Chapter 7, which 

showed that the indicator of service quantity was a significant predictor of SCRQoL.  

Theoretically, as outlined in Chapter 3, the production function model should provide a 

better estimate of effectiveness and for some uses of the SCRQoL PI the choice between 

                                                 
1 The methods used for data reduction are explained in detail in Chapter 6 and 7. 
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these two versions of the adjusted PI could produce different results.  This may occur 

where the interest is in exploring differences between groups of users within CASSRs, or 

across CASSRs, for internal research and evaluation.  Although there is little evidence that 

CASSRs use the ASCS data in this way at present (Heath et al. 2015), such uses have been 

documented for NHS PROMs (Devlin and Appleby 2010, Basser 2015) and are cited as 

one of the main benefits of PROMs over, for example, satisfaction and the more delivery-

oriented measures (PREMs) (Smith and Street 2013).  Given how important a supportive 

environment is for ensuring the use of measures (Moynihan 2009, Moynihan and Pandey 

2010, Kroll 2015), the production function adjusted PI, which gets closer to a value-added 

from social care indicator, may be a better PI for supporting local uses of the data. 

  To standardise the observed outcome, I argued in Chapter 8 that the difference 

between the observed and expected outcomes (referred to as the error method) should be 

used rather than the ratio of the observed outcome to the expected outcomes (referred to as 

the ratio method).  This is because in some circumstances the ratio method (where the 

ratios were estimated for individuals and averaged to generate a PI for the CASSR) 

identified more CASSRs as outliers, particularly as low outliers.  This reflects the 

weighting implicit in the ratio PI, which effectively punishes CASSRs more for poor 

performance serving people with low observed SCRQoL than for poor performance 

serving people with high observed SCRQoL.  This is only fair where the statistical model 

has good explanatory power over the full distribution.  Given the difficulties capturing the 

tail of the distribution, discussed in Chapter 6, the ratio method seemed likely to result in 

unfair treatment where CASSRs have a number of cases with extreme low values for 

SCRQoL.  Similar concerns have been raised about the NHS PROMs PIs where the 

statistical model likewise does not explain the low-scoring cases well (Ara et al. 2013, 

NHS England Analytical Team 2013). 

 

The role of adjustment for nonresponse on performance assessment 

There was clear evidence that the missing-at-random (MAR) assumption is more plausible 

than the missing completely at random (MCAR) assumption for the ASCS data.  I found 

that both unit nonresponse (i.e. participation in the survey) and item nonresponse (i.e. 

response to individual questions) were dependent on the observed characteristics of the 

sample members.  In theory, approaches that address nonresponse to the ASCS should 

enhance the validity of the ASCOF PIs. 
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 One strategy to address nonresponse is post-hoc adjustment.  In this study I used an 

adjustment method that combined inverse propensity weighting (IPW) for unit 

nonresponse with multiple imputation (MI) for item nonresponse (referred to as IPW/MI).  

To explore the effects of nonresponse on performance assessment, I compared the results 

obtained using the indicators adjusted for nonresponse to those obtained by complete case 

analysis (referred to as CCA/CCA).  I also compared the IPW/MI method, to two partial 

applications of the method that addressed only unit nonresponse (IPW/CCA) and only item 

nonresponse (CCA/MI).   

 The importance of nonresponse for performance assessment depended on the 

method used for post-hoc adjustment.  The largest estimated bias due to nonresponse was 

generally found where IPW/MI was used.  The greatest effects on performance assessment, 

i.e. on changes in the rank position of CASSRs and in outlier status, were also observed for 

this method compared to IPW/CCA and CCA/MI for most of the survey-based ASCOF 

PIs.  In terms of precision, the CCA/MI approach was generally precision-enhancing while 

the IPW/CCA approach was always precision-reducing.  For the SCRQoL PI, IPW/MI was 

on average precision-enhancing.  The precision-enhancing effects of CCA/MI and IPW/MI 

are important since loss of precision from nonresponse adjustment has been given as a 

reason for not adjusting indicators in other performance surveys (Roland et al. 2009).  It 

suggests that these two methods are more promising options for adjusting PIs than 

IPW/CCA. 

In general, IPW/CCA had a similar effect on performance assessment across the 

PIs.  By contrast, the effect of IPW/MI and CCA/MI varied across the ASCOF PIs.  For 

these two methods the effects were greatest for the SCRQoL indicator, which had the 

highest rate of item nonresponse.  For this indicator the IPW/MI method adjusted for bias 

from nonresponse without any loss of precision for the majority of CASSRs.  Indeed the 

effect of adjusting the SCRQoL PI for nonresponse using the IPW/MI method is on 

average precision-enhancing.  However, IPW/MI was not on average precision-enhancing 

for the other ASCOF PIs.  I argued in Chapter 5 that the precision-enhancing effects for the 

SCRQoL PI may be a consequence of higher rates of item nonresponse for this indicator.  

This would be consistent with simulation studies which have shown that MI tends to have 

more effect with increasing rates of missingness (McKee et al. 1999).  Interestingly White 

and Carlin (1999) suggest that MI starts to have an impact on results when the fraction of 

incomplete cases is around ten per cent, which is the level of item nonresponse for the 



 

 

316

SCRQoL PI.  The implication of this analysis is that it may be appropriate to adjust the 

SCRQoL PI for nonresponse using IPW/MI, but not the other ASCOF PIs. 

While nonresponse appeared to explain some of the heterogeneity in PIs, even for 

the SCRQoL indicator the number of changes in rank position of CASSRs and the outlier 

status of CASSRs makes it difficult to determine whether post-hoc adjustment is 

warranted.  This decision depends on whether the difference between the crude PIs and the 

nonresponse-adjusted PIs are meaningful and substantial.  I have discussed at some length 

in Chapter 5 both the difficulty of establishing what is a meaningful change for as diverse a 

population as the ASCS2, and the problem, due to sample size, with using statistical criteria 

to judge what is a substantial score change for CASSRs.  Neither of these avenues 

provided much insight into the question of whether to adjust the PIs for nonresponse, so I 

suggested that a more useful approach is to assume that the adjusted score is the ‘true’ 

score and consider the ‘false positive (and negative) rate’ that can be tolerated for the 

sample of CASSRs.   

The ‘false positive rate’ that can be tolerated will depend on how the PIs are used in 

the policy process.  Under New Labour (1997-2010), PIs were used to control the 

behaviours of LAs, with serious negative consequences for poor performance.  Such 

conditions put a large weight on the accuracy of scores over all other criteria and, 

therefore, on ensuring ‘false positives’ are minimised.  A ‘type one error’ rate of one per 

cent may be acceptable under such a system, which would suggest that all the PIs, except 

the safety indicator, should be adjusted for nonresponse.  In the current performance 

measurement system,  PIs are used more as ‘intelligence’3, and, although PIs are published 

in caterpillar plots, negative consequences do not follow directly from poor performance 

on the ASCOF PIs (Department of Health 2010c, Department of Health 2014).  Under such 

a system the acceptability of the PIs, as judged by transparency and simplicity, may have 

more weight than measurement accuracy.  Even for the SCRQoL PI, where the ‘type one 

error rate’ is seven per cent, and therefore over the standard acceptable five per cent limit, 

the loss of transparency may outweigh the benefits from improved accuracy.  For most 

uses of the nationally-reported PIs, i.e. benchmarking and accountability, the ‘false 

positive rate’ is probably within acceptable bounds for all PIs, except the SCRQoL 

                                                 
2 This point has been noted by other researchers for other performance surveys (Valderas et al. 2012, 
Fernandez et al. 2013a). 
3 This is a term used by Hood (2007) to describe different ways of using performance information to improve 
the delivery of public services. 
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indicator.  This suggests that policymakers may want to consider adjusting the SCRQoL 

indicator for nonresponse using the IPW/MI method. 

There are, however, various problems with using IPW/MI for performance 

assessment studies.  While IPW is fairly easy to use in analysis and has a straightforward 

logic, this is not the case for MI.  To analyse multiply-imputed datasets requires a fairly 

high level of statistical knowledge and specialist statistical software.  Most end-users of the 

data would not be able to analyse such data nor could they easily replicate the method.  

Consequently, it could not be incorporated by CASSRs into any local analysis, e.g. 

evaluating local programmes or other local research.  It would be possible to use the 

IPW/MI method to adjust nationally-reported figures, but given the increased resources 

required for analysis, the possible effect on the publication timetable, and difficulties 

explaining the method to most end-users, there is a need to consider whether the increase 

in validity outweighs these disadvantages.  Policymakers would need to consider what 

level of accuracy is appropriate for accountability and benchmarking.  

A remaining question is what steps, if any, should be taken to address nonresponse 

where there is adjustment for case-mix.  I used a CCA/MI procedure to account for the 

effects of nonresponse in the analysis of the case-mix adjusted PIs, as the IPW/MI method 

was not compatible with the sub-group analysis.  The analysis suggested there was some 

bias and some loss of precision in PI estimates due to loss of data.  Neither of the effects, 

however, had much of an impact on inferences about performance for the overwhelming 

majority of CASSRs.  This is despite a much higher fraction of incomplete data in the 

CASSR samples used to estimate the case-mix adjusted PIs than in the rest of the 

nonresponse analysis, due to missingness in the variables included as quasi-inputs in the 

models.  One CASSR in the 65 and over sub-group was an exception to this.  Its 

performance substantially worsened after accounting for nonresponse.  This finding 

suggests that nonresponse may be an important source of heterogeneity in survey-based 

indicators and that it is important to investigate the effects of nonresponse on performance 

assessment where PIs are adjusted for case-mix.  Prior to the publication of the adjusted 

PIs it would seem sensible to conduct detailed research to rule out the possibility that 

differences in performance are due to an unfortunate pattern of missingness in the data. 

 

The representativeness of the ASCS and implications for survey design 

The complexities of post-hoc adjustment mean that policymakers may prefer to explore 

whether it is possible to alter the design of the survey to increase response rates.  This is an 
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attractive option where only a fairly small fraction of the respondent data is incomplete, as 

is the case for many of the single item ASCOF PIs that are not adjusted for case-mix.  The 

analysis pointed to a number of groups of users that were under-represented in the current 

ASCS.  These included people with mental health problems, working age groups 

(particularly 18 to 34 year olds) and nursing home residents.  To a lesser extent people 

receiving low-level forms of service provision, people from black and minority ethnic 

groups and people from more deprived areas are also targets.  There was also the 

suggestion that people with severe disabilities were more likely to be missing.  All of these 

groups could be targeted with “tailored” strategies (Dillman et al. 2009) to improve their 

participation and therefore the representativeness of the ASCS data.   

Although I was able to identify a number of groups of users that were under-

represented in the ASCS, the analysis provided less evidence for strategies to increase 

response rates.  Only one strategy that varied between CASSRs – chasing nonrespondents 

– was found to be significantly positively associated with CASSR response rates.  The 

results of this study therefore suggest that the requirement to chase nonrespondents should 

be more stringently enforced.  All other strategies that varied between CASSRs were not 

significant in the regression analysis.  Interestingly, however, I found a fairly large CASSR 

effect on response propensity.  One interpretation of this effect is that CASSRs play an 

important role in determining response rates due to the control they have over the survey 

design and management.  Further studies are required to test this hypothesis, but if this is 

the case then it suggests that more could be done to improve response rates. 

 

Limitations of the analysis and directions for future research 

The arguments presented above around the requirements for valid inferences about 

performance all depend on the assumption that the adjusted PIs are more valid measures of 

performance than the crude PIs.  If the adjusted PIs are biased such that ‘true’ performance 

lies closer to the crude PI than the adjusted PI, then there is no benefit from post-hoc 

adjustment.  Since there is no benchmark against which to assess the validity of the 

unadjusted and adjusted indicators, arguments must appeal to theory to establish the 

validity of the statistical models that underpin the adjusted indicators and, where the 

research was designed to establish the effectiveness of interventions, the internal validity 

of the PIs (Mukamel 1997, Cartwright 2007, Li et al. 2009, Clarke et al. 2015).  I was 

constrained in the statistical analysis by features of the design of the ASCS and the quality 

of some of the variables.  Some of the decisions I took to address these limitations have 
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implications for the study conclusions and the generalisability of the findings, which I 

discuss here.  

 

Limitations of the statistical modelling of ASC outcomes  

The purpose of the risk-adjustment and production function modelling was to estimate the 

effectiveness of social care interventions provided by CASSRs in terms of service users’ 

SCRQoL.  As I discussed in Chapter 6, the internal validity of this aspect of the study was 

compromised to some extent by data limitations, which meant it was only possible to 

include four out of the five sets of risk factors for SCRQoL outcomes that were 

hypothesised as important.  Aside from basic socio-demographic characteristics, there were 

no variables available for the group of influences that I labelled as personal characteristics 

and motivations, which included factors such as self-care ability.  Data limitations also 

meant there were no indicators for factors such as health conditions, which have been 

shown to be important in previous studies (Glendinning et al. 2008a, Forder and Caiels 

2011b, Forder et al. 2014, Forder et al. 2016). 

These unobserved variables are likely to account for some of the unexplained 

variation in SCRQoL and therefore lead to under-adjustment for case-mix.  The extent of 

the problem depends on the degree of correlation between the unobserved and observed 

variables.  Where there is a high level of correlation between observed and unobserved 

variables, model estimates will be biased.  The implication of the bias in model coefficients 

depends on the type of model.  Where risk-adjustment models are used to estimate 

effectiveness, the interest is in the error term.  In such circumstances, a high correlation 

between the observed and unobserved variables would suggest that the estimates of 

effectiveness are less biased.  Where production function models are used, if the 

unobserved characteristics are correlated with the observed risk factors and the service 

quantity (as is likely to be the case where the observed characteristics imperfectly capture 

the selection mechanism through which users are allocated care packages) then estimates 

of effectiveness are likely to be biased.  Forder and Caiels (2011a) argue that such 

‘endogeneity bias’ is a problem for estimating effectiveness using production function 

models.  In a series of papers, Forder et al. (2014, 2016) use an instrumental variables 

approach to address this problem.  As discussed in Chapters 3 and 7 there were no suitable 

instruments in the ASCS dataset.  This would, however, be one area for further research if 

a suitable dataset could be identified. 
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There was some evidence that a number of the risk factors were also capturing 

outcomes from care.  I selected variables for inclusion in the model on the basis that they 

influenced social care outcomes, but were not directly (at least in the short-term) 

influenced by the CASSR.  While some variables are clearly exogenous, for example age, 

most of the variables could be considered both risk factors and social care outcomes.  For 

example, the person’s home design makes delivery of care more difficult but could be a 

target of intervention, as improvements through adaptations to the home will help the 

person to be more independent.  Similarly, functional disability affects QoL directly, but is 

the key outcome of rehabilitative programmes.  Health too, including mental health, affects 

QoL directly but can be considered as an outcome since one aim of care provision is to 

prevent the negative health consequences of functional decline, e.g. bed sores and social 

isolation.  There was some evidence that these variables, particularly home design and 

some of the health variables (anxiety/depression), were also capturing some of the impact 

of social care.  This raises questions about whether they should be included as risk-

adjustors, since to the extent that these variables are also targets of social care services, PIs 

based on these regression models will ‘over-adjust’ for the effect of these factors on 

performance (Berlowitz and Intrator 2013, Iezzoni 2013). 

The models of SCRQoL were also compromised by the poor fit of the models to 

the data.  Even the fractional response regression did not predict the negatively-skewed 

shape of the distribution well.  Despite various attempts to improve model fit (discussed in 

Chapter 6), predictions were particularly poor for cases in the tail of the SCRQoL 

distribution.  It is likely that the models provide an upwardly-biased prediction of expected 

SCRQoL for these cases.  This would downwardly bias PIs, with the extent of the problem 

depending on the number of extreme cases.  To guide policymakers, it is important to gain 

a better understanding of the impact of this modelling limitation on inferences regarding 

performance.  Activities that would support such a goal include sensitivity analysis and 

following up ‘high risk’ cases to establish more information about their characteristics.  

Since ‘high risk’ users are often most instructive for quality improvement purposes, such 

activities are likely to support the use of the PIs for performance improvement (Shahian et 

al. 2001). 

Additionally, it would be useful to explore whether alternative modelling 

approaches could provide a better fit to the data.  One option that could be tried is a 

censored regression model (e.g. the Tobit model).  I did not apply this model here as the 

censoring assumption of these models, means that the results are difficult to interpret for 
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multi-attribute utility measures where the maximum score is understood as perfect quality 

of life (Pullenayegum et al. 2010).  Since the ASCOF focuses currently on the SCRQoL 

measure rather than ASCOT, its utility-weighted counterpart, this problem around 

interpretation is likely to be less limiting.   

A second option that could be explored is to separately predict each of the attributes 

that comprise the SCRQoL measure and then combine the risk-adjusted predictions from 

each of these models to generate an expected outcome for each case.  Ara et al. (2013, 

2014) apply this method to the NHS GP patient survey data to predict each of the five 

questions that comprise the EQ-5D.  They find that this method provides a better fit to the 

bimodal EQ-5D GP patient survey data than an OLS regression.  A benefit of this approach 

is that it also makes it possible to explore variations in the attributes of SCRQoL.  Given 

many of the SCRQoL domains are also ASCOF PIs, this approach would also expand the 

number of ASCOF PIs that are case-mix adjusted.  A disadvantage of this approach is that 

the method is more complicated, which would affect the transparency of the adjusted PI.   

The additional data requirements of the production function model led to further 

limitations in the modelling of SCRQoL-outcomes.  The production function model 

requires a measure of service quantity, which was hard to find.  I used the budget variable 

in the auxiliary data provided by CASSRs from their records, which captures the amount 

of money allocated by the CASSR to each individual for their care package (often referred 

to as the ‘personal budget’).  It was not a very accurate measure of service quantity, for the 

reasons discussed in Chapter 7.  To minimise the effect of some of the problems of the 

budget variable on the results, I restricted the production function modelling to the 18 to 64 

PSD sub-group.  This limits the generalisability of the analysis to sub-groups other than the 

estimation sample.  Despite limitations with the budget variable as an indicator of service 

quantity, the conclusions from this analysis appear sound.  As I discussed in Chapters 7 

and 8, the results compare favourably with those from the Identifying the Impact of Adult 

Social Care (IIASC) study4 (Forder et al. 2016) that was closely related to the research in 

this thesis.  Although the IIASC study also had some limitations (e.g. its focus on people in 

private households and the fairly small sample size for estimation), the similarity between 

the results from the IIASC study and this thesis suggests that although the adjusted PIs 

                                                 
4 The IIASC study was designed to provide a PI for ASCOF that captured the effectiveness of social care.  
This study was designed in light of the preliminary modelling for this thesis (Malley and Fernandez 2014), to 
capture data that would make it possible to overcome some of the limitations of the analysis discussed here.  
Specifically, detailed data on resource inputs was collected and data was collected to allow for instrumental 
variables estimation within the production function models. 
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may be subject to some bias this is not significant enough to undermine the validity of the 

conclusions from this thesis. 

 

Limitations of the method for case-mix adjustment  

Indirect standardisation is a very flexible method that can be applied easily to adjust PIs for 

differences in the case-mix of CASSRs.  A notable benefit of this approach is that the 

model for generating expected outcomes is estimated on a reference population and then 

applied to others, so there is no need to rerun the statistical analysis for each new wave of 

the survey.  The applicability of the approach, however, depends on two factors.  First, the 

statistical model estimated on the reference population must be generalisable to other 

samples.  This was not something I explored in this analysis due to the small number of 

cases in two of the three sub-groups.  Generalisability of the models could therefore be 

improved by validating the models on a ‘holdout’ sample.  This strategy guards against 

over-fitting of the model (Ash et al. 2013), and would be important to carry out before 

using the models for adjustment of ASCOF PIs in practice.   

Secondly, if indirect standardisation is to provide a basis for making fairer 

comparisons between CASSRs, the CASSRs must have a fairly similar case-mix profile 

(Glance et al. 2000, Julious et al. 2001, Rixom 2002, Julious and George 2007).  As I 

discussed in Chapter 8, there are quite large differences between CASSRs in the 

proportions of the sample in the sub-groups used for estimating the models.  This raises 

questions about whether the indirectly-standardised PIs for the PSD subsample are 

comparable and whether the conclusions are more valid than those drawn from the 

unadjusted PIs (Glance et al. 2000, Nicholl et al. 2013).  This question is important 

because it is clear that the PIs cannot be reported at the sub-group level.  As I have argued 

in Chapter 8, the sample size was too small for many of the sub-groups to have adequate 

power for outlier analysis.  Indeed, this was a limitation of the outlier analysis for the care 

home and 18 to 64 sub-groups.  To have adequate power for benchmarking analysis, a 

single adjusted PI needs to be reported for each CASSR.   

An alternative to indirect standardisation is ‘direct standardisation’, in which the 

observed outcome is standardised to the case-mix of the reference population.  This 

method is more appropriate where the case-mix of CASSRs is very different, but it is 

generally infeasible for performance assessment studies because the sample size of 

organisations is too small and continuous variables cannot be used to standardise.  In 

recent years, alternative methods have been developed that combine direct and indirect 
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standardisation.  As in indirect standardisation, a regression is used to estimate the 

observed outcome.  Rather than being used to estimate the expected outcome, however, the 

predictions from this regression are used to estimate a risk profile for each organisation, 

which can be standardised to the reference population by using adjustment cells or risk 

categories (Canadian Institute for Health Information 2013, Nicholl et al. 2013).  This 

method enables users of the data to make fairer comparisons of the performance of 

organisations.  It should be possible to adapt this method so that it can be applied to the 

ASCOF PIs.  It would be useful to investigate whether this approach to standardisation has 

any effect on inferences concerning performance.   

 

Limitations of the nonresponse adjustment analysis  

Theory suggests that where data are missing and are not MCAR, estimates produced under 

the MAR assumption will lead to more valid inferences than estimates produced under the 

MCAR assumption (Rubin 1987).  The validity of the estimates, however, depends on the 

correct specification of the underlying response propensity and imputation models (McKee 

et al. 1999, Seaman and White 2013, Seaman and White 2014, Mukaka et al. 2016).  As I 

discussed in Chapter 5, the response propensity and imputation models were subject to 

some data limitations that are likely to affect the validity of the adjusted PIs.  I review 

these here and discuss how they may affect the conclusions from this thesis.   

For both the response propensity and imputation model, it is possible that estimates 

are biased because missingness is NMAR (i.e. dependent on the value of unobserved 

factors).  For the response propensity models, the lack of good indicators for key variables 

theorised to affect survey participation, such as the availability of informal care, health, 

disability type and severity, is an important limitation.  Viewed in the context of the poor 

predictive validity of the model, it seems fairly plausible that missingness is NMAR, 

unless survey participation is a quasi-random process.  From a theoretical perspective, the 

imputation model for the respondent population has good validity.  The imputation model 

was congenial with the analysis where the crude PIs were used.  There were some 

differences between the imputation and analysis models where there was adjustment for 

case-mix, which could have introduced some bias into the estimation.  The plausibility of 

the MAR assumption was strengthened, however, by the large number of covariates in the 

imputation model.  The robustness of the results to NMAR could be tested by conducting 

sensitivity analysis around the MI estimates (Carpenter et al. 2007, Kirkham 2008, 

Carpenter and Kenward 2013, Gomes et al. 2016).  Given the fairly low levels of item 



 

 

324

nonresponse for most of the analyses such efforts did not seem warranted in this case.  It 

may, however, be important for future applications of the methods and for the analysis of 

the effects of nonresponse in the presence of adjustment for case-mix.   

These limitations in the statistical modelling probably introduced a degree of bias 

into the adjusted PIs, but, as I argued in Chapter 5, a more important limitation was the 

method used to address missingness in the auxiliary data.  The auxiliary data is used to 

estimate the response propensity models that underpin IPW.  It is necessary for the 

auxiliary data to be fully observed for weights to be available for the whole dataset.  I used 

MI to recover the missing data, but the strategy I used had some weaknesses, which mean 

that the estimates may be subject to some bias and that the IPW/MI method was probably 

more precision-reducing than I found.  Given the small effects of IPW/MI for most of the 

ASCOF PIs, these problems raise questions about whether the adjusted PIs are more valid 

than the crude PIs, which it is not possible to address without further research.  In a recent 

paper, Seaman and White (2014) suggest a way of addressing missingness in the auxiliary 

data in the context of IPW/MI that is not subject to the problems identified with the method 

I used.  The method could be applied as an extension to this research to check the 

robustness of the results. 

A further limitation of the nonresponse analysis was the limited way in which I was 

able to address nonresponse in the context of the case-mix analysis.  I explored only the 

effect of adjusting for item nonresponse through MI, which implicitly assumes that unit 

nonresponse is MCAR.  I did not apply the IPW/MI approach to the case-mix adjusted PIs 

because the strategy of conducting the analysis by sub-group is not compatible with the 

sample-level IPW analysis.  Applying the weights to the sub-groups would distort adjusted 

PIs as the sum of the weights would depend on the ratio of the size of the sub-group to the 

total respondent sample, which would vary for each CASSR.  The lack of weighting for 

unit nonresponse means it is a source of unobserved heterogeneity in the case-mix adjusted 

PIs for the sub-groups and PSD subsample.  If IPW/MI adjustment has the same effects in 

this context as it does for the raw PIs, it is likely that nonresponse would have produced a 

greater degree of bias in the case-mix adjusted PIs although at the expense of less precise 

estimates. 

 

Limitations of the analysis into factors influencing survey participation 

As I have already mentioned, there were some limitations in the availability of variables to 

capture key characteristics of users theorised to affect survey participation.  In addition to 
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the lack of variables available to reflect receipt of practical help, the dataset had poor 

indictors for investigating the effect of disability and health conditions on response 

propensity.  The effect of proxy indicators for these variables, when examined alongside 

research from other studies (e.g. Kauppi et al. 2005, Hutchings et al. 2012, Peters et al. 

2014b), did suggest reasons to be concerned about the representativeness of the ASCS for 

more disabled groups.  However, further research is needed to fully understand the effect 

of health and disability on participation in the ASCS.  Since performance surveys seem to 

be most frequently carried out in health and allied sectors, in populations with high 

prevalence rates of long-term conditions and disability, many surveys would benefit from 

research that seeks to better understand how disability and health affect response 

propensity and performance assessment. 

A further weakness of this analysis was that very few of the survey attributes that 

varied between CASSRs had a significant relationship with response rates.  As I discussed 

in Chapter 4, there is, however, a need to be cautious about interpreting the lack of 

significance of the effect of the various CASSR-level variables tested as evidence that they 

are not important in predicting response propensity.  There were not many observations at 

the CASSR level and the binary variables that describe survey attributes have in most cases 

very skewed distributions, so the power to detect differences is limited.  Indeed, the 

exploratory analysis found that the social environment variables and many of the survey 

attributes did have relationships with response propensity.  Furthermore, many of the 

indicators of survey attributes were not particularly sensitive measures, as they did not 

distinguish the variety of ways in which each attribute could have been implemented.  This 

will dampen the association between these variables and response propensity.  It is possible 

that more detailed data and more CASSR data points would have improved the power of 

this analysis to detect effects where they are present.  There may be the potential to 

improve the analysis presented here by including more waves of the ASCS in future 

studies. 

The observational design of the study, however, is a factor that works against the 

potential for further analysis to identify effective strategies for increasing response rates.  

The internal validity of observational studies is weakened by the possibility that there are 

alternative explanations for the observed effect.  The strong CASSR effect found in this 

study may be evidence that CASSRs have an important role to play in determining 

response rates.  An alternative explanation is that response propensity is affected by 

unobserved area-level correlates.  Equally, there may be alternative explanations for the 
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finding that chasing nonrespondents affected CASSR response rates.  Considered 

alongside evidence from experimental research that has also found that chasing 

nonrespondents increases response rates (Edwards et al. 2002), the causal explanation for 

the relationship between chasing nonrespondents and response rates is strengthened.  It is 

notable, however, that this strategy is not targeted at groups with poor response rates.  It 

may therefore not do much to improve the representativeness of the respondent sample, as 

untargeted strategies may simply encourage participation from people ‘like’ those that are 

already participants (Groves and Cialdini 1991, Groves et al. 1992, Groves et al. 2000, 

Groves et al. 2004, Groves and Heeringa 2006, Dillman et al. 2009).  Some studies, 

however, have suggested that those who respond to later mail-outs have different 

characteristics to those who respond to earlier mail-outs (Strayer et al. 1993, Sheldon et al. 

2007).  This suggests that chasing nonrespondents may be important for ensuring 

representativeness, although further studies would be needed to confirm this. 

 

Conclusions and wider implications for adult social care policy and performance 

assessment research 

This thesis makes original contributions in three areas.  First, this is the first study to 

explore the need for case-mix adjustment of social care performance indicators and 

provides the only assessment of the value of case-mix adjustment for indicators of the care 

home population.  As well as being the first application of risk-adjustment methods to 

social care, this thesis has also pioneered the use of a production function method to 

generate case-mix adjusted indicators.  The methods developed here were extended by 

Forder et al. (2016) in a related study.  Secondly, this thesis provides the first and only 

exploration of the impact of nonresponse on performance assessment using social care 

performance indicators.  In this thesis I have pioneered the use of a combined inverse 

propensity weighting/multiple imputation method to explore the effect of nonresponse on 

indicators.  Thirdly, this thesis has provided the first detailed analysis of the characteristics 

that are associated with participation in the ASCS.  I have also explored the role CASSRs 

have in determining participation to the ASCS and have questioned whether such analysis 

has insights for improving response rates.  The main recommendations from this thesis are 

shown in Box 3. 

In this section, I conclude by revisiting the policy implications, and considering the 

contribution of this thesis to ASC policy and performance assessment research, more 

generally.  Because of the nature of the empirical analysis, the results have the most 
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implications for ASC policy.  As I noted in the introductory chapter, however, related areas 

of policy research, e.g. health care, face many of the problems for performance assessment 

that I have sought to overcome in this thesis.  This analysis therefore holds lessons for 

health policy research around performance assessment, which I draw out here.  I also 

discuss some of the questions that are raised by this research for ASC policy and practice 

around performance assessment and for future research around performance assessment 

more broadly.  This discussion is organised around the themes of case-mix and 

nonresponse. 

 

Conclusions concerning the importance of differences in case-mix between organisations 

for performance assessment and implications for policy and future research studies 

This thesis and the related IIASC study (Forder et al. 2016), together, provide the first 

evidence about the effect of adjusting the ASCOF survey-based PIs for differences 

between CASSRs in the characteristics of service users.  Even accounting for the 

limitations of the model, this thesis provides strong evidence for the need to adjust the 

SCRQoL PI for differences in the case-mix of CASSRs.   

Since many of the ASCOF survey-based PIs are drawn from the items that 

comprise the multi-item SCRQoL indicator, it seems likely that adjustment will also be 

necessary for the other survey-based ASCOF indicators.  Exactly how adjustment should 

be performed and its effect on inferences regarding the performance of CASSRs, however, 

is a question for future analysis.  Although studies suggest that the types of variables 

available in the ASCS dataset will be important predictors of these PIs (Bauld et al. 2000, 

Chesterman et al. 2001, Jones et al. 2007, Malley et al. 2012), it is not clear that the same 

covariates will be relevant.  Indeed where the PIs are the more delivery-oriented, PREMs, 

or satisfaction measures, the conceptual framework will need to be adapted to reflect the 

characteristics of these measures and their relationship to ASC outcomes. 

In this thesis, I explored various approaches to case-mix adjustment.  This analysis 

had an exploratory flavour and the limitations of the study are such that the methods 

require more investigation before they can be applied in practice.  A key reason for this is 

that the analysis was restricted to the PSD subpopulation of the ASCS.  Further research is 

therefore required to develop statistical models for the other sub-groups or to identify 

alternative methods for adjusting for differences between CASSRs in the case-mix of these 

sub-groups.  Although the IIASC study (Forder et al. 2016) provides some answers for 

several sub-groups, this study is also limited in its coverage of the ASCS population.  
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Additionally, this research raised a number of deeper questions about the purpose of the 

statistical modelling and the method used for case-mix adjustment that need consideration. 

In this respect an important finding was the suggestion that some of the variables 

included as risk-adjustors in the models also captured social care outcomes.  A negative 

consequence of adjusting the SCRQoL PI for factors that are also outcomes from social 

care is that over time the adjusted PI would discount the effect of these variables.  

Achievements in these areas would therefore be understated (Kane 2001) and there is the 

possibility that such a regime would, perversely, discourage investment in these areas 

(Mukamel et al. 2008).  In ASC, this could mean CASSRs avoiding investment in 

improvements to the housing stock, or in improvements to people’s underlying health and 

level of functional ability.  On the other hand, if policymakers exclude all factors that are 

affected by ASC, the list of risk-adjustors would probably be very short and explain very 

little of the variation in SCRQoL (Arling et al. 2005).  Most importantly a model that 

excluded all the factors affected by social care would fail to adjust for the effect of needs-

related characteristics on outcomes and would therefore have poor validity. 

Mukamel et al. (2008) suggest a solution to this problem that could be applied to 

ASCOF and indeed to other indicator sets that also suffer from this problem.  They suggest 

taking a liberal approach to the inclusion of variables as risk-adjustors in the model, but 

countering the negative consequences of over-adjustment, by stipulating that where risk-

adjustors are subject to these problems they should be included as additional PIs.  There 

are clear benefits to such an approach: accomplishments across multiple areas could be 

factored into performance assessment and it would improve the identification of poor care.  

It would also guard against perverse incentives and encourage investment in improving a 

broader set of outcomes.  A first step, however, would be to re-estimate the case-mix 

adjustment models excluding the problem variables to understand the effect this has on 

inferences about performance.  Should this significantly affect performance assessment, 

policymakers may wish to consider expanding the set of ASCOF PIs to ensure that the 

system incentivises the right practices.   

This thesis, with the IIASC study (Forder et al. 2016), have also provided the first 

evidence concerning the value of using production function models to adjust for 

differences in the case-mix of organisations.  Although the production function and risk-

adjustment models produce very similar conclusions regarding the relative performance of 

organisations, the production function model provides a better estimate of effectiveness.  

Such a value-added indicator is likely to be more appropriate for internal research and 
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evaluation studies by CASSRs, but its benefits are not clear for other uses of the measure.  

More research is, however, needed to overcome some of the limitations of both this thesis 

and the IIASC study and explore further the potential applications of this method in the 

context of performance assessment. 

The DH has suggested that the production function models estimated in the IIASC 

study will be used to form the basis of an adjusted SCRQoL indicator for future ASCOF 

publications (NHS Digital 2016a).  As I have already noted, some thought needs to be 

given to the question of how to incorporate into the adjusted PIs the observed outcomes of 

individuals within the sub-groups not investigated in this thesis or the IIASC study.  

Further analysis is required to develop statistical models to underpin any case-mix 

adjustment, but this will be difficult for the smaller client groups (e.g. substance misuse 

clients) due to the number of cases.  An alternative would be to exclude the smaller client 

groups from the adjusted PIs, but this option is unlikely to be viewed favourably given the 

original intention of the survey to capture all ASC users (Department of Health 2009).   

Consideration also needs to be given to the integration of the care home sub-group 

within the adjusted PI.  I did not estimate a production function model for this group, 

because the budget variable captures price paid by the CASSR for placements not 

intensity.  Indeed it is difficult to capture differences in the intensity of care provision for 

care home residents, and studies that have examined cost and production relations in care 

homes have all measured resource inputs at the facility level (Knapp 1978a, Knapp 1978b, 

Knapp 1979, Darton and Knapp 1984, Degenholtz et al. 2006, Shippee et al. 2015).  Such 

an approach is infeasible with the current design of the ASCS, since it is not possible to 

link the questionnaire data to data about the characteristics of care homes.  Arguably, a 

risk-adjustment model is more appropriate for care homes as the service is more 

homogeneous.   

In theory, it would be possible to extend the production function method of 

adjustment to the sub-groups of the ASCS that were not analysed in either this thesis or the 

IIASC study.  The lack of routinely collected data that is suitable for this purpose, 

however, means this is not feasible in the short-term.5  The lack of a suitable dataset also 

                                                 
5 Although there have been attempts to improve the quality of the budget variable in successive waves of the 
ASCS, it is an optional auxiliary data item and CASSRs tend not to record it.  Indeed the proportion of 
CASSRs opting to report it has declined each year (83 in 2010-11, compared to 51 in 2011-12, 47 in 2012-13 
and 37 in 2013-14).  In any case improving the reporting of the budget variable would not address the many 
others problems associated with using this variable as an indicator of resource inputs, such as the delay 
between the extraction of the auxiliary data and the survey and the effect of CASSR policies and local prices 
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means it will not be possible to replicate or improve upon the models, which hampers the 

progress that can be made understanding the effectiveness of ASC.  It seems important, 

therefore, to invest in ways of improving the collection of information about service 

utilisation in ASC.  Currently, data collections seem to be moving in reverse gear with 

respect to this goal, as traditional service packages are redefined as personal budgets and 

the data held by CASSRs becomes progressively less detailed.  A potential way forward 

would be for the data collection regime to draw upon information held by providers about 

the detail of individual care packages.  This would also support the estimation of 

production functions to compare care home facilities.  As authorities seek to develop plans 

to manage their local markets for quality, as part of the requirements of the Care Act 2014, 

a case can be made for capturing these data at a local level to support commissioning and 

broader ‘market-shaping’ activities.  Indeed it is hard to see how CASSRs could use the 

adjusted PIs to explore the effectiveness and cost-effectiveness of their services without 

more detailed information about individual care packages.  Such data would also have 

clear value for the Care Quality Commission and the Competition and Markets Authority. 

Production function models may be useful for case-mix adjustment in other 

settings.  Such models are likely to be useful where PIs assess the performance of 

‘complex’ interventions, are based on cross-sectional data and are drawn from surveys of 

diverse populations.  In all of these situations, the characteristics of the service users are 

likely to both determine features of the intervention received and directly affect the success 

of the intervention.  Examples from outside ASC are services for people with long-term 

conditions, which seem likely to be subject to this problem.  The NHS GP practice survey 

may also benefit from this technique as it has a diverse population, which complicates the 

estimation of service effectiveness using PROMs.  It is likely that the difficulties I faced 

here finding a good indicator of services for the production function models will limit the 

application of the method in other settings.  Nevertheless, smaller scale studies may be 

possible and desirable to understand whether estimates of effectiveness are biased by 

heterogeneity in the provision of care services.  This seems important given the interest the 

government has shown in using the GP practice survey as a source of data to demonstrate 

                                                                                                                                                    

on the measure.  The IIASC study included a phase of primary data collection to provide a suitable dataset 
for estimating the production functions (Forder et al. 2016).  The difficulties experienced by the researchers 
in obtaining the IIASC sample, however, suggest that large scale primary data collection is unlikely to be 
feasible for future studies unless significant resources are available to fund the fieldwork. 
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the effectiveness of health care services (Ara et al. 2013, Fernandez et al. 2013a) and in 

establishing a PROM for long-term conditions (Peters et al. 2014b, Hunter et al. 2015).    

 

Conclusions about the effects of nonresponse on performance assessment and implications 

for policy and future research studies 

This thesis is the first to examine whether nonresponse to the ASCS has an effect on 

performance assessment using the ASCOF PIs.  It is also the first to examine in any detail 

the factors influencing participation in the ASCS.  I found that nonresponse explains a 

small amount of heterogeneity in PIs.  The importance of nonresponse seems likely to be 

greater (i) the higher the level of item nonresponse for the PI, and (ii) where there is 

adjustment for case-mix and the organisation has an unfortunate  pattern of missingness 

within the set of variables used for adjustment.  While adjustments for nonresponse are not 

clearly indicated, this study does suggest the need to investigate the effects of nonresponse 

on PIs thoroughly before publication of datasets to rule out the possibility that nonresponse 

is a cause of differences between CASSRs on PIs. 

The findings from this study are somewhat different to the small number of studies 

that have looked at the effects of nonresponse on performance assessment (Elliott et al. 

2005, Roland et al. 2009, Gomes et al. 2016).  Elliott et al. (2005) employed IPW/IPW6 

and found that nonresponse is not important particularly where PIs are adjusted for case-

mix.  Gomes et al. (2016) used MI/MI7 and found conversely that nonresponse is important 

even where PIs are adjusted for case-mix.  I used an IPW/MI method and found that 

adjusting for nonresponse may be important for some indicators, but not all.  Although the 

conclusions from these studies seem contradictory, one interpretation is that the more 

important MI is to the method for addressing nonresponse, the more necessary post-hoc 

adjustment is found to be.  There could be other explanations for the different conclusions 

from these studies, but this interpretation is consistent with the comparison between 

CCA/MI, IPW/CCA and IPW/MI conducted in this study.  This interpretation is also 

consistent with theoretical expectations based on the greater efficiency of MI compared to 

IPW, and Seaman et al.’s (2012) simulation study into the relative effects of IPW/MI, 

MI/MI and IPW/IPW on survey estimates.  This implies that the method used to adjust for 

                                                 
6 This is where IPW is used to adjust for both unit and item nonresponse. 
7 This is where MI is used to adjust for both unit and item nonresponse. 
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nonresponse and explore its effects matters for conclusions regarding the influence of 

nonresponse over survey estimates.  

The effect that the choice of method for investigating nonresponse may have on 

conclusions about the effect of nonresponse on PIs and the need for post-hoc adjustment 

has important consequences for future studies.  An important lesson of this analysis is that 

researchers should explore the impact of both unit and item nonresponse on each PI using 

appropriate methods.  In the context of performance surveys, the IPW/MI approach is 

likely to have much broader applicability than the MI/MI approach used by Gomes et al. 

and it is also likely to be more efficient than an IPW/IPW approach (Seaman et al. 2012).  

MI has more modelling assumptions (Carpenter et al. 2006) and will be infeasible for most 

performance surveys due to high rates of unit nonresponse and limited auxiliary data.  

Indeed MI is generally not recommended for such patterns of missingness (McKee et al. 

1999).  The PROMs data analysed by Gomes et al. (2016) is highly unusual for 

performance surveys in that it contains a large amount of auxiliary data, and has 

measurements at two time points. 

I argued that the complexity of the IPW/MI method means that it will probably be 

used only in exceptional circumstances to adjust for nonresponse to performance surveys.  

It would be useful for future research to explore the conditions under which adjustment 

using IPW/MI might be necessary.  There are also situations in which IPW/MI, or IPW 

approaches more generally will not be appropriate.  For example, if a form of direct 

standardisation were to be used for case-mix adjustment, IPW would be redundant.  This is 

because the adjusted PIs would be standardised to a common average case-mix, so 

weighting would not adjust for nonresponse.  Strategies to address nonresponse therefore 

need to be considered alongside those to address case-mix to ensure the optimal mix of 

methods for performance assessment. 

I have argued that future research should explore strategies for increasing response 

rates to the ASCS.  Although there was little evidence from this study that unit 

nonresponse had a large effect on performance assessment, increasing survey participation 

rates is important for reasons of face validity, precision and cost.  I was able to offer very 

few recommendations for CASSRs about ways of increasing response rates from this 

analysis, aside from the suggestion to chase nonrespondents.  Further research in this area 

would benefit from a randomised controlled trial design rather than the observational 

approach used here, since the randomisation between control and trial groups minimises 

the potential for alternative explanations for effects.  This experimental design has been 
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used successfully to identify a number of strategies that are effective at increasing response 

rates (Edwards et al. 2002, Dillman et al. 2009).  Such methods could be implemented 

within the ASCS to identify methods for improving response rates 

Although very few of the survey attributes that varied between CASSRs were 

significant in the regression models, the exploratory analysis suggested some fruitful 

avenues for further research to explore strategies to improve responses rates.  These 

included (i) the potential for chasing nonrespondents by email or face-to-face interview to 

improve response rates, (ii) the role of incentives, and (iii) the potential for targeting 

specific groups (e.g. people with sensory impairments, cognitive impairments and low 

English literacy) with appropriately modified versions of the questionnaire.  Better data 

about client characteristics would be required to target accessible or translated versions of 

the surveys at the right people, but such an investment would have many other benefits for 

understanding nonresponse.  Given the persistent declines in response rates for the ASCS, 

such research and associated developments to data systems would be a worthwhile 

investment.    

It is important to recognise that for some sub-groups of the ASCS population, it 

may be difficult to increase response rates.  For example, high rates of dementia in care 

homes (Darton et al. 2006, Matthews et al. 2016) mean it is likely that residents do not 

respond because they lack the mental capacity to do so.  Indeed, in the ASCS, CASSRs 

were instructed to remove people from the sampling frame who are unable to respond due 

to a lack of mental capacity.  Since these people are far more likely to be in care homes, 

this means that the sample is unrepresentative of the care home population even before 

nonresponse is taken into account, as people with dementia are systematically excluded.  

Considered alongside the need for different case-mix adjustment methods and the very 

different characteristics of the care home population compared to the private household 

population, a fairly strong argument can be made for focusing the ASCS on the private 

household population.   

For the care home population alternative methods for monitoring quality in care 

homes are likely to provide a more representative picture (Qureshi and Rowlands 2004).  

One such technique is the ASCOT care homes instrument, which uses observational 

techniques alongside interviews to score resident outcomes (Netten et al. 2012c, Towers et 

al. 2015).  The cost of using observational methods for routine performance assessment is 

likely to be prohibitive, but such methods could be used as an adjunct to reviews and to 

inspections to gather data on the QoL and experiences of residents.  Indeed a number of 
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CASSRs are beginning to use ASCOT in this way and there is also interest from care home 

providers (Johnstone and Page 2014, Towers et al. 2015, Towers et al. 2016).   

Another alternative would be to take a more clinically- and facility-oriented 

approach to quality measurement, with similarity to the approaches used in the USA (Mor 

2005) and Germany (Schulz 2012, Garms-Homolova and Busse 2014).  In these countries 

the staff within the residential facilities collect data concerning clinical outcomes, such as 

pressure sores and weights loss, for each resident.  In the USA, quality indicators are 

collected on a quarterly basis, providing a longitudinal dataset with which to track the 

trajectory of a person’s health over the course of the intervention and beyond.  This can 

help to resolve some estimation problems for quality of life risk adjustment as discussed in 

Chapter 3, since data on needs-related characteristics from earlier time points can be used 

to adjust for the effect of these characteristics on change in quality of life outcomes (Black 

and Jenkinson 2009, Smith and Street 2013).  However, in practice stability in people’s 

conditions and therefore needs-related characteristics may mean that this design is not as 

successful for explaining change in quality of life outcomes.  Research would need to 

establish the appropriate time period between data collection points and develop an 

appropriate risk-adjustment model. 

The data used for measuring the quality and outcomes of nursing home residents in 

the USA suffer from other kinds of reporting problems with the data, and also require risk-

adjustment (Mor 2005, Stevenson and Bramson 2014).  Indeed there is a large literature 

around risk-adjustment of these indicators for the US government-sponsored consumer 

comparison website ‘Nursing Home Compare’ (Zimmerman et al. 1995, Mukamel 1997, 

Mor et al. 2003, Arling et al. 2007, Mukamel et al. 2008, Li et al. 2009, Li et al. 2010).  

The US quality indicators have also been criticised for a lack of focus on QoL outcomes 

and steps have been taken to address this imbalance (Kane et al. 2004, Arling et al. 2005).  

Given these criticisms of the US system, it would be of benefit to policymakers in many 

different countries for research to systematically explore the advantages and disadvantages 

of the various approaches through careful comparative analysis.   

This study has also raised important questions about the role of CASSRs in 

determining response rates.  Much of the between-CASSR variation in response rates was 

unexplained by the analysis, even after controlling for differences in individual 

characteristics.  It will be important for the ASCS to understand what is driving differences 

between CASSRs in response rates.  In particular, research should try to unpick whether 

differences are due to variations in the management of the survey or to area-level 
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correlates.  Area-level correlates have been identified as important in previous studies 

(Goyder et al. 1992, Johnson et al. 2006), and this study identified both types of factors as 

important.  The large CASSR effect suggests that, as a precautionary measure, it would be 

sensible to work harder to ensure consistency in processes for managing and running the 

ASCS across CASSRs.  These findings also have implications for other surveys with 

similar designs, such as the US CAHPS surveys and some of the NHS surveys.   This 

thesis suggests that more attention should be paid to the effect of organisations on response 

rates in performance surveys.  The role of the survey guidance is clearly important for 

maintaining consistency and research may have a role to play in determining the best 

design for such guidance and the best ways of ensuring organisations comply with it. 

 

Box 3: List of recommendations 

 

For analysis for policymakers 

 The SCRQoL PI should be adjusted for case-mix.  Research should also investigate 

whether other ASCOF indicators require case-mix adjustment. 

 Standard risk-adjustment approaches provide an adequate approach to case-mix adjust 

indicators where the aim is to compare the relative performance of CASSRs.  The 

production function approach, particularly where instrumental variables estimation is 

feasible, is a better method for case-mix adjustment where the aim is to generate a 

value-added indicator. 

 Where risk-adjustment is used OLS models provide appropriate inferences regarding 

performance and is easy to understand. 

 Risk adjustors should be selected for inclusion on the basis of theoretical plausibility 

and statistical significance.  The aim should be to maximise the amount of variation 

explained. 

 Indicators based on the differences between observed and expected outcomes are 

preferable to indicators based on the ratio of observed to expected outcomes. 

 The effect of nonresponse on the rank position and outlier status of CASSRs should be 

explored in detail for each survey using methods that adjust for both item and unit 

nonresponse (i.e. IPW/MI methods).  The importance or lack thereof of nonresponse 

for performance assessment cannot be assumed on the basis of the analysis of previous 

years’ data. 
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 NHS Digital should enforce CASSRs to chase nonrespondents and send out at least one 

reminder.  They may also want to consider randomised control trials to explore 

strategies to improve participation. 

 Alternative methods for gathering the quality of care for residents of care homes and, 

in particular, nursing homes should be considered given the exclusion of these groups 

from the sample, the poorer response rates for nursing home residents. 

 

For CASSRs to improve participation 

 CASSRs should tailor their strategies for improving response rates to improve 

participation among people with mental health problems, working age groups 

(particularly 18 to 34 year olds) and nursing home residents.  To a lesser extent 

CASSRs could also target improving participation from people from black and 

minority ethnic groups and people from more deprived areas.  Such approaches would 

improve the representativeness of the ASCS.
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Appendix 1: Specification of the Imputation Equations for Multiple 

Imputation of the ASCS Respondent Sample 

 

I imputed the missing data in the respondent sample, due to missingness in key variables, 

including the outcome indicators, covariates included in the adjustment analysis and the 

variables defining the sub-groups investigated in the adjustment models, i.e. age group, 

primary client group and location of care.  I imputed binary variables using logistic 

regression (logit); ordinal variables using proportional odds models (ologit); and imputed 

variables with more than two nominal categories using multinomial logit models (mlogit).   

The imputation models included all theoretically-relevant variables for the case-mix 

adjustment (CMA) models.  To ensure the plausibility of the MAR assumption, other 

variables that were not tested for inclusion in the adjustment model but were available in the 

dataset were also included in the imputation models.  (Variables with more than 50 per cent 

of the cases missing (i.e. secondary client group, religion and budget) were not considered for 

the imputation models (McKee et al. 1999, Rubin 2003).)  However, due to size of the dataset 

and number of variables with missing data (and therefore requiring imputation) a pragmatic 

approach had to be taken to the specification of the imputation equations to make the 

imputation computationally feasible.  Therefore, particularly in the case of the variables 

imputed using mlogits, covariates were omitted for the imputation equation where the 

predictive significance of the variable was found to be less than 0.1.  I also omitted variables 

that were highly collinear or perfectly predicted the outcome (e.g. in the case of helpstat).   

A set of dummy variables for the CASSR were included in the imputation models 

(except those using mlogit due to difficulties with estimation) to capture CASSR effects.  The 

derived variables (i.e. the ADL scales and the ASCOT measure) were not included in the 

imputation equations as their derivation could not be specified in the way required by the 

software.  However, imputation of each individual item within the scales should preserve the 

complexity of the relationships.  Additionally not all relevant interactions could be included 

in the imputation models where these were specified between multi-item measures.   

Due to missingness in many of the additional variables included in the imputation 

models to ensure the plausibility of the MAR assumption, imputation models had to be 

specified for these additional variables.  All covariates for the adjustment models and all 

additional variables were included in these models, although in the case of the mlogits a 
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reduced set of variables were used for computational feasibility.  Only variables with a p-

value of 0.1 or less were included in the models.   

To provide valid imputations of the service receipt variables, information on CASSR-

level service provision and gross ASC expenditure (The Information Centre for Health and 

Social Care 2012c, The Information Centre for Health and Social Care 2012a) were included 

in the imputation equations for these variables.  These authority-level data were introduced to 

allow for shifts in the relationship between service receipt and the other variables by CASSR, 

particularly important given some service receipt variables (meals, short-term residential 

care, personal budgets, professional support, equipment and other services) were completely 

missing within a number of CASSRs.  Of the 20 instances where service receipt data was 

completely missing for all cases within a CASSR, in ten service receipt and expenditure 

information was available; in a further seven the national data indicated that the service was 

not provided by that CASSR (i.e. recipients were zero), so all missing values for the relevant 

service for the respective CASSRs were replaced by a zero (not receiving the service); 

unfortunately in a further three cases no service receipt information was available at the 

national level for that service.  Although total gross expenditure was available for these 

CASSRs the imputed values may be more unreliable for the missing services for these 

CASSRs.   

Due to the missingness in the service receipt and gross ASC expenditure and 

deprivation variables, these variables also had to be imputed.  The continuous variables were 

imputed using predictive mean matching (pmm), due to the skewed nature of the distribution 

for these variables.  Given these additional variables are not being used in the adjustment 

models, the outcome variables were not included in the imputation equations and only 

CASSR-level variables were included to mitigate excessive CASSR-level variability.  All 

available (i.e. fully observed or in the imputation model) CASSR-level variables were used. 
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Appendix 2: Additional Information on the Multiple Imputation of the 

ASCS Respondent Sample  

 

Checking convergence of the multiple chains 

Prior to imputation proper, I checked for convergence of the multiple chains, by examining 

plots summarising the distribution (means and standard deviations) of imputed values against 

iteration numbers.  For this purpose I used the chainonly and savetrace options in Stata 

alongside the mi impute chained command.  The variables did not appear to show any trends, 

and convergence appears to be achieved around 20 to 40 iterations.   

In addition I examined the behaviour of three chains, each obtained using a different 

set of initial values, to check the convergence and stability of the algorithm, using the add(3) 

option instead of chainonly.   The variables did not appear to show any trends, and the three 

chains seem to oscillate around the same point, providing some evidence of convergence of 

the algorithm.  Convergence appears to be achieved after around 20 to 40 iterations. 

 

Checking the fit of the imputation models 

I compared the imputed values with the observed ones for each of the continuous variables 

using the user-written command midiagplot (Eddings and Marchenko 2006), to check the fit 

of the imputation model.  Inspection of these plots revealed that predictive mean matching 

does a relatively good job of imputing the skewed distribution of the CASSR-level aggregate 

service receipt and gross expenditure variables. 

For all other variables, to ensure the imputations produce sensible results I compared 

the distributional statistics calculated on the casewise-deleted sample to those calculated on 

the multiply-imputed sample for each variable.  Table 54 shows the distributional statistics 

for the outcome indicators.  The mean and standard errors are very similar regardless of the 

sample for all the outcome indicators, across all analysis subgroups (not shown).  Similarly 

for the variables considered in the CMA models, the distributional statistics calculated on the 

casewise-deleted sample are very similar to those calculated on the multiply-imputed sample, 

for all sample subgroups and variables (see Table 55).  The ADL score measures show the 

largest differences but in all cases the estimates for the mean are still identical to two 

significant figures.  Although less important as the variables are only used to improve the 

MAR assumption in the imputation procedure, the distributional statistics for all the other 

variables included in the imputation models are shown in Table 56. 
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Table 54: Comparison of distributional statistics for outcome indicators for the 

respondent sample on casewise-deleted and multiply-imputed samples 

Number 
of 

complete 
cases 

Casewise Imputed 

Freq  / 
Mean 

Percent / 
SE 

Freq  / 
Mean  

Percent / 
SE  

ASCOF SCRQoL 54,350 18.62 0.02 18.58 0.02
Satisfaction: Ex. Sat 57,929 18,489 31.9 19,321 31.7
Satisfaction: V. sat 57,929 19,139 33.0 20,163 33.0
Satisfaction: Q. sat 57,929 14,965 25.8 15,860 26.0
Satisfaction: Neither 57,929 3,410 5.9 3,629 5.9
Satisfaction: Q. dissat 57,929 1,046 1.8 1,115 1.8
Satisfaction: V. dissat 57,929 391 0.7 418 0.7
Satisfaction: Ex. dissat 57,929 489 0.8 520 0.9
Control: preferred 59,478 17,742 29.8 18,225 29.9
Control: needs met 59,478 26,738 45.0 27,424 44.9
Control: some needs 59,478 12,096 20.3 12,404 20.3
Control: high needs 59,478 2,902 4.9 2,973 4.9
Pers care: preferred 59,688 32,823 55.0 33,549 55.0
Pers care: needs met 59,688 23,707 39.7 24,237 39.7
Pers care: some needs 59,688 2,710 4.5 2,780 4.6
Pers care: high needs 59,688 448 0.8 460 0.8
Food: preferred 59,373 37,512 63.2 38,531 63.1
Food: needs met 59,373 18,650 31.4 19,178 31.4
Food: some needs 59,373 2,627 4.4 2,714 4.4
Food: high needs 59,373 584 1.0 603 1.0
Accom: preferred 59,355 37,842 63.8 38,844 63.7
Accom: needs met 59,355 18,638 31.4 19,207 31.5
Accom: some needs 59,355 2,503 4.2 2,590 4.2
Accom: high needs 59,355 372 0.6 386 0.6
Safety: preferred 59,499 36,811 61.9 37,752 61.9
Safety: needs met 59,499 18,234 30.6 18,705 30.7
Safety: some needs 59,499 3,157 5.3 3,236 5.3
Safety: high needs 59,499 1,297 2.2 1,333 2.2
Soc part: preferred 59,469 24,835 41.8 25,471 41.7
Soc part: needs met 59,469 21,043 35.4 21,593 35.4
Soc part: some needs 59,469 10,493 17.6 10,777 17.7
Soc part: high needs 59,469 3,098 5.2 3,186 5.2
Occ: preferred 58,949 17,359 29.4 17,872 29.3
Occ: needs met 58,949 19,679 33.4 20,380 33.4
Occ: some needs 58,949 17,520 29.7 18,209 29.8
Occ: high needs 58,949 4,391 7.4 4,565 7.5
Dignity: preferred 57,569 32,765 56.9 34,557 56.6
Dignity: needs met 57,569 18,681 32.4 19,842 32.5
Dignity: some needs 57,569 5,458 9.5 5,894 9.7
Dignity: high needs 57,569 665 1.2 733 1.2
Information: v. easy 42,884 11,174 26.1 11,860 26.2
Information: fairly easy 42,884 20,719 48.3 21,872 48.3
Information: fairly diff 42,884 7,478 17.4 7,879 17.4
Information: v. diff 42,884 3,513 8.2 3,702 8.2
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Table 55: Comparison of distributional statistics for adjustment model covariates for 

the respondent sample on casewise-deleted and multiply-imputed samples 

Number 
of 

complete 
cases 

Casewise Imputed 

Freq  / 
Mean 

Percent / 
SE 

Freq  / 
Mean  

Percent / 
SE  

Male 60,985 22,143 36.3 22,158 36.3
Age: 18-24 60,953 1,553 2.5 1,555 2.5
Age: 25-34 60,953 2,542 4.2 2,545 4.2
Age: 35-44 60,953 3,892 6.4 3,898 6.4
Age: 45-54 60,953 5,516 9.0 5,524 9.1
Age: 55-64 60,953 6,390 10.5 6,400 10.5
Age: 65-74 60,953 8,189 13.4 8,201 13.4
Age: 75-84 60,953 14,923 24.5 14,942 24.5
Age: 85 and over 60,953 17,948 29.4 17,962 29.4
Physical/sensory 60,778 43,501 71.6 43,685 71.6
Mental health problem 60,778 6,809 11.2 6,842 11.2
Learning disability 60,778 8,876 14.6 8,900 14.6
Substance misuse  60,778 136 0.2 137 0.2
Vulnerable person 60,778 1,456 2.4 1,462 2.4
ADLs diff score 56,092 2.84 0.01 2.82 0.01
ADLs can’t score 56,092 1.28 0.01 1.27 0.01
ADL, indoors: can  58,480 32,097 54.9 33,510 54.9
ADL, indoors: diff 58,480 17,413 29.8 18,138 29.7
ADL, indoors: can’t 58,480 8,970 15.3 9,377 15.4
ADL, bed/chair: can  58,645 33,117 56.5 34,527 56.6
ADL, bed/chair: diff 58,645 15,601 26.6 16,177 26.5
ADL, bed/chair: can’t 58,645 9,927 16.9 10,322 16.9
ADL, feed self: can 58,707 47,036 80.1 48,897 80.1
ADL, feed self: diff  58,707 8,118 13.8 8,415 13.8
ADL, feed self: can’t 58,707 3,553 6.1 3,715 6.1
ADL, wash: can 58,773 21,068 35.8 21,968 36.0
ADL, wash: diff 58,773 15,837 26.9 16,473 27.0
ADL, wash: can’t 58,773 21,868 37.2 22,585 37.0
ADL, un/dress: can 58,679 28,247 48.1 29,530 48.4
ADL, un/dress: diff 58,679 15,985 27.2 16,555 27.1
ADL, un/dress: can’t 58,679 14,447 24.6 14,941 24.5
ADL, WC/toilet: can 58,710 38,967 66.4 40,587 66.5
ADL, WC/toilet: diff 58,710 10,113 17.2 10,444 17.1
ADL, WC/toilet: can’t 58,710 9,630 16.4 9,995 16.4
ADL, face/hands: can 58,865 44,204 75.1 45,888 75.2
ADL, face/hands: diff 58,865 8,232 14.0 8,487 13.9
ADL, face/hands: can’t 58,865 6,429 10.9 6,651 10.9
IADL, finance: can  58,344 16,404 28.1 17,446 28.6
IADL, finance: diff 58,344 10,646 18.2 11,171 18.3
IADL, finance: can’t 58,344 31,294 53.6 32,410 53.1
SPH: very good 57,599 6,026 10.5 6,336 10.4
SPH: good 57,599 14,428 25.0 15,246 25.0
SPH: fair 57,599 25,697 44.6 27,297 44.7
SPH: bad 57,599 8,673 15.1 9,211 15.1
SPH: very bad 57,599 2,775 4.8 2,936 4.8
pain: none 58,509 17,182 29.4 17,901 29.3
pain: moderate 58,509 31,676 54.1 33,095 54.2
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Number 
of 

complete 
cases 

Casewise Imputed 

Freq  / 
Mean 

Percent / 
SE 

Freq  / 
Mean  

Percent / 
SE  

pain: extreme 58,509 9,651 16.5 10,030 16.4
anx/dep: none 57,843 27,325 47.2 28,925 47.4
anx/dep: moderate 57,843 26,240 45.4 27,624 45.3
anx/dep: extreme 57,843 4,278 7.4 4,477 7.3
SPHD: meets needs 58,481 30,572 52.3 31,883 52.2
SPHD: most needs 58,481 19,717 33.7 20,601 33.8
SPHD: some needs 58,481 6,699 11.5 6,985 11.4
SPHD: inappropriate 58,481 1,493 2.6 1,557 2.6
PH, in h’hold 57,291 23,051 40.2 24,527 40.2
PH, outside h’hold 57,291 27,872 48.6 29,836 48.9
PH, none 57,291 11,486 20.0 12,481 20.5
No assistance 57,004 18,229 32.0 20,036 32.8
Proxy 57,004 4,161 7.3 4,353 7.1
Assistance 57,004 34,614 60.7 36,637 60.0
Assist, in h’hold 56,690 8,801 15.5 9,374 15.4
Assist, out h’hold 56,690 15,545 27.4 16,581 27.2
Assist, care worker 56,690 8,780 15.5 9,361 15.3
Assist, read  57,004 22,515 39.5 23,761 38.9
Assist, translate 57,004 8,586 15.1 8,952 14.7
Assist, write 57,004 20,248 35.5 21,078 34.5
Assist, talk through 57,004 14,332 25.1 15,187 24.9
Add, own money 56,135 16,717 29.8 18,413 30.2
Add, family pays 56,135 4,052 7.2 4,427 7.3
Add, none 56,135 36,012 64.2 39,383 64.5
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Table 56: Comparison of distributional statistics for variables included to improve the 

MAR assumption, on casewise-deleted and multiply-imputed samples for the 

respondent sample  

Number 
of 

complete 
cases 

Casewise Imputed 

Freq  / 
Mean 

Percent / 
SE 

Freq  / 
Mean  

Percent / 
SE  

Nursing home 60,493 2,619 4.3 2,623 4.3
Residential care home 61,000 9,769 16.0 9,770 16.0
Home care 60,469 21,848 36.1 21,956 36.0
Day care 60,096 8,599 14.3 8,741 14.3
Meals 57,974 3,079 5.3 3,167 5.2
Direct Payment 59,681 5,392 9.0 5,474 9.0
Professional support 57,464 8,214 14.3 8,442 13.8
Short-term residential  59,543 805 1.4 825 1.4
Equipment 58,983 13,412 22.7 13,622 22.3
Other services 58,375 4,887 8.4 5,036 8.3
Ethnicity: white 60,166 55,002 91.4 55,776 91.4
Ethnicity: mixed 60,166 328 0.5 333 0.5
Ethnicity: black 60,166 2,319 3.9 2,356 3.9
Ethnicity: Asian 60,166 1,961 3.3 1,995 3.3
Ethnicity: other 60,166 556 0.9 565 0.9
QoL: so good 59,669 5,398 9.0 5,526 9.1
QoL: very good 59,669 13,954 23.4 14,278 23.4
QoL: good 59,669 16,264 27.3 16,623 27.2
QoL: alright 59,669 18,165 30.4 18,568 30.4
QoL: bad 59,669 3,997 6.7 4,097 6.7
QoL: very bad 59,669 1,228 2.1 1,257 2.1
QoL: so bad 59,669 663 1.1 678 1.1
SP help effect: better 57,723 32,585 56.5 34,299 56.2
SP help effect: none 57,723 17,430 30.2 18,449 30.2
SP help effect: sl worse 57,723 6,745 11.7 7,235 11.9
SP help effect: worse 57,723 963 1.7 1,043 1.7
Services help, control 55,500 30,522 55.0 32,947 54.0
Services help, pers. care 55,500 36,585 65.9 38,883 63.7
Services help, meals 55,500 27,745 50.0 29,434 48.2
Services help, social 55,500 25,175 45.4 26,845 44.0
Services help, do things 55,500 22,775 41.0 24,291 39.8
Services help, safe 55,500 31,630 57.0 33,728 55.3
Services help, home 55,500 29,602 53.3 31,757 52.0
Services help, other 55,500 8,949 16.1 10,034 16.4
Unsafe talk, family 58,179 43,264 74.4 45,331 74.3
Unsafe talk, friend 58,179 12,225 21.0 12,795 21.0
Unsafe talk, care worker 58,179 21,444 36.9 22,290 36.5
Unsafe talk, manager 58,179 12,434 21.4 12,920 21.2
Unsafe talk, soc. worker 58,179 9,997 17.2 10,401 17.0
Unsafe talk, other person 58,179 5,113 8.8 5,364 8.8
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Number 
of 

complete 
cases 

Casewise Imputed 

Freq  / 
Mean 

Percent / 
SE 

Freq  / 
Mean  

Percent / 
SE  

Unsafe talk, no-one 58,179 1,360 2.3 1,481 2.4
Unsafe talk, DK 58,179 1,914 3.3 2,084 3.4
Outdoor access: all places 57,859 17,669 30.5 18,540 30.4
Outdoor access: difficult 57,859 15,714 27.2 16,628 27.2
Outdoor access: unable 57,859 12,209 21.1 12,917 21.2
Outdoor access: not leave 57,859 12,267 21.2 12,941 21.2

 

Checking sufficiency of the number of imputations 

Following imputation, I carried out checks to ensure the number of imputations was sufficient 

for reporting the outcome indicators and key variables used in the adjustment models.  As 

well as examining the efficiency of the estimates, using the fraction of missing information 

(FMI), I also examined the reproducibility of the estimates, by looking at the Monte Carlo 

error of the estimates as proposed by White et al (2011).  I estimate the FMI as follows: 

ܫܯܨ ൌ ஻

஻ାௐ
 , 

where B and W, refer to between- and within-imputations variance respectively.  The Monte 

Carlo error for each estimate is defined as the standard deviation of the estimate across 

repeated runs of the same imputation.  For a 1-dimensional parameter estimate, the Monte 

Carlo error is calculated as √B/m, where m is the number of imputations.  Monte Carlo errors 

for other statistics may be computed using a jackknife procedure.  All of these statistics are 

automatically generated by using the mcerror, dftable and vartable options in Stata alongside 

the mi estimate command.  I calculated Monte Carlo errors and the FMI for the mean of each 

imputed variable and for the estimates from each specification of the adjustment models. 

 

Sufficiency of the number of imputations for reporting mean statistics 

Table 57 shows the estimates of the Monte Carlo error (MC error) for the mean for each of 

the outcome variables for the respondent sample.  Table 58 breaks down the variance into its 

between- and within-imputation components and provides estimates of the FMI and the 

relative efficiency of the estimates.  The statistics in both tables imply that 20 imputations are 

sufficient for reporting sample means for the outcome indicators.  Specifically, the MC error 

of the mean is less than ten per cent of the standard error of the mean, the relative efficiency 

of 20 imputations compared to an infinite number of imputations is over 99% and the FMI is 

<0.2.  The smallest degrees of freedom and largest increase in the SE are found for the 
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satisfaction and information indicators, but statistics for these suggest that 20 imputations is 

more than sufficient.  Results are similar for the three subsamples used for the analysis (i.e. 

older people receiving support in their own homes, younger people receiving support in their 

own homes, and care home residents), with statistics implying that 20 imputations are more 

than sufficient for reporting means associated with these variables (not shown).  

 
 

Table 57: Monte Carlo estimates of the mean for all outcome indicators and effect of 

imputation on the standard error of the mean 

 MC error 
of mean 

MC error of 
mean/SE 

*100 

Degrees of 
freedom 

% 
increase 

in SE 
Variable 

ASCOT score 0.000 2.299 43,267 0.56

ASCOF SCRQoL 0.000 2.180 45,887 0.50

Satisfaction indicator 0.000 4.863 6,792 2.58

Control indicator 0.000 3.340 21,873 1.19

Safety indicator 0.000 3.933 13,793 1.67

Information indicator 0.000 4.655 7,570 2.36
 
 

Table 58: Imputation variance and efficiency associated with the mean for each 

outcome indicator 

Imputation variance   Relative 
efficiency Variable Within Between Total RVI FMI 

ASCOT score 0.000 0.000 0.000 0.011 0.011 0.999

ASCOF SCRQoL 0.000 0.000 0.000 0.010 0.010 1.000

Satisfaction indicator 0.000 0.000 0.000 0.052 0.050 0.998

Control indicator 0.000 0.000 0.000 0.024 0.024 0.999

Safety indicator 0.000 0.000 0.000 0.034 0.033 0.998

Information indicator 0.000 0.000 0.000 0.048 0.046 0.998
 

Sufficiency of the number of imputations for reporting case-mix adjustment models 

I also explored the sufficiency of the imputations for all the case-mix adjustment models, by 

examining the MC error for the mean for each of the model estimates.  I also calculated 

estimates of the FMI and the relative efficiency of the estimates.  In all cases the statistics 

imply that 20 imputations are sufficient for reporting estimates for the model parameters.  

The MC error of the mean for each model parameter was less than ten per cent of the 

standard error of the mean, the relative efficiency of 20 imputations compared to an infinite 

number of imputations was over 99% and the FMI was <0.2.   
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Appendix 3: Cluster-Specific Nonignorable Nonresponse Checks 

 

Table 59 shows the correlation (r) between CASSR level response rates and PI scores for all 

the ASCOF survey-based PIs.  The starred correlation coefficients indicate that for some of 

the PI cluster-specific nonignorable nonresponse may be a problem. 

 

Table 59: Correlation between CASSR response rates and PI scores 

  SCRQoL Satisfaction Control Safety Information 

Obs. 149 149 149 149 149

r 0.0685 0.0685 0.1396* 0.1984** 0.2209***

p-value 0.4063 0.4063 0.0894 0.0153 0.0068

* p<.1; ** p<.05; *** p<.01 

 

 

 

 



 

 

378

Appendix 4: Output of the Fixed Effects Multinomial Logistic Models for 

Inverse Propensity Weighting 

 

The results from the model used for response propensity weighting are shown in Table 60 

and are very similar across the CCA and multiply-imputed samples.  The biggest difference is 

for the constant for the blank form equation, which is very much smaller and found to be not 

significant in the multiply-imputed sample.  Pseudo (McFadden’s) R-squared for the 

multiply-imputed sample is estimated following methods proposed by Canette and 

Marchenko (2013).  The proportion correctly classified is estimated following the methods 

proposed by White et al (2011) and implemented in Stata to generate predicted probabilities, 

which are then compared to observed classifications to generate the proportion correctly 

classified.  Fit statistics for models estimated on both CCA and multiply-imputed samples are 

very similar.   
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Table 60: Multinomial logistic regression models of response propensity, with fixed effects for CASSRs, under two assumptions 

regarding the missing data mechanism 

 Complete case analysis (n=125,753) Multiple imputation (n=150,672) 
 Blank form† Nonrespondent† Blank form† Nonrespondent† 
 Beta Robust SE Beta Robust SE Beta SE Beta SE 
Fixed part         
Mental health‡ 0.472*** 0.032 0.478*** 0.020 0.463*** 0.030 0.468*** 0.018
Learning disability‡ -0.616*** 0.046 -0.275*** 0.023 -0.659*** 0.043 -0.279*** 0.021
Age, 31-39§ -0.163** 0.061 -0.274*** 0.033 -0.224*** 0.056 -0.285*** 0.030
Age, 40-49§ -0.240*** 0.058 -0.460*** 0.031 -0.303*** 0.053 -0.458*** 0.028
Age, 50-64§ -0.267*** 0.058 -0.630*** 0.031 -0.320*** 0.053 -0.621*** 0.028
Age, 65-74§ -0.042 0.056 -0.685*** 0.031 -0.100 0.051 -0.684*** 0.028
Age, 75-84§ 0.110* 0.054 -0.683*** 0.030 0.057 0.049 -0.683*** 0.027
Age, 85 and over§ 0.261*** 0.054 -0.672*** 0.030 0.213*** 0.049 -0.673*** 0.027
White 0.121** 0.041 -0.209*** 0.023 0.128*** 0.040 -0.211*** 0.022
Count of service types -0.237*** 0.049 -0.100*** 0.029 -0.249*** 0.046 -0.100*** 0.027
Count of service types – sq 0.047*** 0.011 0.024*** 0.007 0.053*** 0.010 0.024*** 0.006
Nursing Home 0.226*** 0.053 0.297*** 0.034 0.180*** 0.049 0.265*** 0.031
Residential Home -0.239*** 0.043 -0.076** 0.025 -0.268*** 0.040 -0.059** 0.023
Home Care -0.407*** 0.039 -0.039 0.022 -0.428*** 0.036 -0.049** 0.021
Low-level services 0.078 0.041 0.073** 0.025 0.060 0.039 0.081*** 0.023
Direct Payment -0.399*** 0.052 -0.131*** 0.028 -0.418*** 0.048 -0.142*** 0.026
Equipment 0.087* 0.037 -0.050* 0.022 0.051 0.035 -0.057** 0.021
Constant -1.634*** 0.153 1.300*** 0.079 0.076 0.105 -2.094*** 0.228
CASSR dummy variables Not shown Not shown 
Model fit statistics  
Log likelihood -108,345 n/a
AIC 217,278 n/a
BIC 220,142 n/a
Wald test (χ2) / F-test 13,167 (d.f. 292)*** 46.08 (d.f. 330)***
McFadden’s R2 0.103 0.098
Proportion correctly classified 0.554 0.555

Legend: †Base category: Respondent; ‡ Base category: Physically disabled (or vulnerable person); § Base category: 18-30 years; * p<.05; ** p<.01; *** p<.001
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Appendix 5: Distribution of Predicted Response Propensity and the Inverse 

Propensity Weights 

 

The distribution of outcome probabilities from the response propensity models and the 

response propensity weights are shown in Table 61 and Table 62, respectively.  For the 

weights, the coefficient of variation is very small and there do not appear to be very large 

outlier values.  For this reason I have simply used the inverse of the propensity score and not 

trimmed the weights or used adjustment cells (Little 1986, Kalton and Flores-Cervantes 

2003).  The inverse response propensity score weights are calibrated by multiplying by a 

post-stratification adjustment to ensure the population totals for each CASSR remain the 

same after weighting and the average of the weights equals one.  

 

Table 61: Distribution of outcome probabilities from MNL response propensity models 

Sample Outcome Mean Std. Dev. Min Max 

CCA 
(n=125,753) 

P(respondent) 0.408 0.107 0.059 0.936 

P(blank form) 0.110 0.130 0.000 0.870 

P(nonrespondent) 0.481 0.158 0.000 0.869 

MI 
(n=150,672) 

P(respondent) 0.405 0.105 0.082 0.939 

P(blank form) 0.108 0.124 0.000 0.866 

P(nonrespondent) 0.487 0.155 0.000 0.877 

Key: MNL, multinomial logit; CCA, complete case analysis; MI, multiply-imputed sample 

 

Table 62: Distribution of the response propensity weights from MNL response 

propensity models 

Sample Mean Std. Dev. Min Max CV DEFF 

CCA (n=125,750)† 1 0.230 0.440 2.944 0.230 1.053

MI (n=150,672) 1 0.229 0.434 2.695 0.229 1.052

Key: MNL, multinomial logit; CCA, complete case analysis; MI, multiply-imputed sample; †3 further cases are 

excluded from the weighted sample since they are for an authority with only three cases with full information  
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Appendix 6: Specification of the Imputation Equations for Multiple 

Imputation of the Auxiliary Data for Estimation of the Response 

Propensity Models 

 

The response propensity models were first run on the CCA sample to identify likely variables 

for the final model and therefore the candidate variables for imputation.  Binary variables 

were imputed using logistic regression (logit); ordinal variables using proportional odds 

models (ologit); variables with more than two nominal categories were imputed using 

multinomial logit models (mlogit); and continuous variables were imputed using predictive 

mean matching (pmm) because of the skewed nature of the distribution of the CASSR-level 

variable capturing the percentage of the sample removed due to the individual lacking mental 

capacity.  Due to size of the dataset and number of variables with missing data, therefore 

requiring imputation, a pragmatic approach had to be taken to the specification of the 

imputation equations to make the imputation computationally feasible. 

In general, the imputation equations for each variable include all of the variables used 

in the response propensity models.  However, variables were omitted where the predictive 

significance of the variable was found to be less than 0.15.  In addition, the CASSR-level 

variables related to the removal of people lacking capacity and population density include 

only CASSR-level variables and respondent status.  This approach was taken to mitigate 

excessive variability in the imputed cases within CASSRs, which would occur if individual-

level variables were used.  Since we have to include respondent status, this solution is not 

ideal and some variability within CASSRs is observed in the imputed dataset.   

Ideally a multilevel model would have been used to impute these CASSR-level 

variables, and indeed all the variables, given random-effects models are applied to the 

multiply-imputed data.  However, the mi impute command in Stata 12 does not support 

imputation of multilevel models.  Alternative recommended approaches such as using 

dummy variables for CASSRs or imputing each CASSR separately were not practical 

solutions.  Neither option resolves the problem with imputing CASSR-level variables; the 

number of CASSRs makes the dummy variable solution computationally too slow and leads 

to collinearity problems where the equations contain other CASSR-level variables; separate 

imputation for each CASSR sample is infeasible, as some variables were missing for entire 

CASSRs we therefore needed to borrow information from the entire sample to impute 

sensible values for the missing variables for these CASSRs.  This means that the multiply-
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imputed dataset may slightly underestimate relationships between the CASSR-level covariate 

and the individual-level variables and may underestimate the degree of clustering within 

CASSRs.  However, given each variable is missing only a small fraction of cases the 

underestimation should not be serious. 

The derived variables (i.e. countservices, countservices2, and low-level services) were 

not included in the imputation equations as their derivation could not be specified 

straightforwardly in the way required by the software.  However, to ensure the plausibility of 

the MAR assumption, where possible any variables not included in the response propensity 

model that nevertheless were strongly correlated with the variables to be imputed were also 

included.  For example, sex was included in both the age group and primary client group 

equations; and additional CASSR-level variables including data on service receipt and gross 

adult social care expenditure (The Information Centre for Health and Social Care 2012c, The 

Information Centre for Health and Social Care 2012a), population density (Office for 

National Statistics 2001) and the size of the eligible population (provided by CASSRs in their 

data returns) were included in the equation for the percentage of people removed due to lack 

of capacity.   

The CASSR-level variables on service receipt and gross adult social care expenditure 

were also included in the imputation equations for the service receipt variables.  These 

authority-level data were introduced to allow for shifts in the relationship between service 

receipt and the other variables by CASSR, particularly important given some service receipt 

variables (meals, short-term residential care, personal budgets, professional support, 

equipment and other services) were completely missing within a number of CASSRs.  Of the 

20 instances where service receipt data was completely missing for all cases within a 

CASSR, in ten service receipt and expenditure information was available; in a further seven 

the national data indicated that the service was not provided by that CASSR (i.e. recipients 

were zero), so all missing values for the relevant service for the respective CASSRs were 

replaced by a zero (not receiving the service); unfortunately in three cases no service receipt 

information was available at the national level for that service.  Although total gross 

expenditure was available for these CASSRs the imputed values may be more unreliable for 

the missing services for these CASSRs.   

Due to the missingness in the service receipt and gross adult social care expenditure, 

these variables also had to be imputed.  The continuous variables were imputed using 

predictive mean matching (pmm), due to skewed nature of the distribution for these variables.  

Where the additional variables are not used in the response propensity models, the respondent 
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status was not included in the imputation equations and only CASSR-level variables were 

included to mitigate excessive CASSR-level variability.  All available CASSR-level variables 

were used. 
 

Appendix 7: Information on Convergence and the Sufficiency of the 

Multiple Imputation Procedure for the Auxiliary Data for Estimation of 

the Response Propensity Models  

 

Checking convergence of the multiple chains 

Prior to imputation proper, checks for convergence of the multiple chains were carried out, by 

examining plots summarising the distribution (means and standard deviations) of imputed 

values against iteration numbers.  This is achieved using the chainonly and savetrace options 

in Stata alongside the mi impute chained command.  In addition I examined the behaviour of 

three chains, each obtained using a different set of initial values, to check the convergence 

and stability of the algorithm, using the add(3) option instead of chainonly.   The variables 

did not appear to show any trends, and the three chains seem to oscillate around the same 

point, providing some evidence of convergence of the algorithm.  Convergence appears to be 

achieved after around 20 iterations.  

 

Checking the fit of the imputation models 

I compare the imputed values with the observed ones for each of the continuous variables 

using the user-written command midiagplot (Eddings and Marchenko 2006), to check the fit 

of the imputation model.  Inspection of the graphs produced for each imputed dataset 

revealed that the predictive mean matching performed well in imputing the skewed 

distribution of the CASSR-level service receipt variables. 

For all other variables, to ensure the imputations produce sensible results I compared 

the distributional statistics calculated on the CCA sample to those calculated on the multiply-

imputed sample for each variable.  Table 63 shows the distributional statistics for all the 

model covariates.  The percentages, mean and standard errors are very similar regardless of 

the sample for all the variables.  Although less important as the variables are only used to 

improve the MAR assumption in the imputation procedure, the distributional statistics for all 

the other variables included in the imputation models are shown in Table 64.  Again, the 

percentages, mean and standard errors are very similar regardless of the sample for all the 

variables.   
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Table 63: Comparison of distributional statistics for response propensity model 

covariates on casewise-deleted and multiply-imputed samples 

Number 
of 

complete 
cases 

Casewise Imputed 

Freq  / 
Mean 

Percent / 
SE 

Freq  / 
Mean 

Percent / 
SE 

Physical disability† 150,040 105,685 70.4 106,142 70.4
Mental health user‡ 150,040 24,299 16.2 24,428 16.2
Learning disability 150,040 20,056 13.4 20,102 13.3
18-34 years 150,515 13,064 8.7 13,078 8.7
35-44 years 150,515 10,983 7.3 10,996 7.3
45-54 years 150,515 14,057 9.3 14,076 9.3
55-64 years 150,515 14,981 10.0 15,002 10.0
65-74 years 150,515 19,059 12.7 19,080 12.7
75-84 years 150,515 35,473 23.6 35,509 23.6
85 years and over  150,515 42,898 28.5 42,933 28.5
White 148,119 133,235 90.0 135,521 89.9
Count of services 128,056 1.4 0.00 1.4 0.00
Nursing Care home 149,382 7,732 5.2 7,736 5.1
Residential Care home 150,608 23,167 15.4 23,167 15.4
Low level services 128,056 25,888 20.2 30,653 20.3
Direct Payment 147,184 12,314 8.4 12,485 8.3
Short-Term Res. care 146,944 2,205 1.5 2,299 1.5
Equipment 145,129 30,936 21.3 31,596 21.0
Home care 149,128 49,819 33.4 50,101 33.3
Day care 148,148 20,296 13.7 20,673 13.7
Meals 142,605 7,834 5.5 8,158 5.4
Personal budget 138,966 19,593 14.1 21,403 14.2
Professional support 141,272 23,822 16.9 25,215 16.7
Other services 144,037 11,621 8.1 12,182 8.1
% sample removed 150,601 10.9 0.03 10.8 0.06
Pop density 149,584 24.5 0.07 24.3 0.07

Legend: †Also includes ‘vulnerable people’ client group   ‡ Also include ‘substance misuse’ client group 

 
  



 

 

385

 

Table 64: Comparison of distributional statistics for covariates used to improve MAR 

assumption, on casewise-deleted and multiply-imputed samples 

Number 
of 

complete 
cases 

Imputed Casewise 

Freq  / 
Mean 

Percent / 
SE 

Freq  / 
Mean 

Percent / 
SE 

Male 148,217 55,993 37.2 55,082 37.2
CASSR home care 146,619 2,181 4.42 2,168 4.45
CASSR day care 146,619 919 1.85 909 1.82
CASSR meals 145,313 334 1.53 330 1.15
CASSR short-term res. 146,619 113 0.37 112 0.36
CASSR direct payments 144,617 639 1.39 639 1.28
CASSR prof. support 143,229 1,504 4.90 1,486 3.94
CASSR equipment 146,619 1,614 4.33 1,597 4.24
CASSR other 145,487 591 3.55 585 2.86
CASSR gross expend 149,725 134,964 239.94 134,798 237.40

 

Checking sufficiency of the number of imputations 

Following imputation, checks were also carried out to ensure the number of imputations was 

sufficient for reporting the mean of each outcome variable and for the estimates from each of 

the response propensity models, using the methods set out in Appendix 2.   

The Monte Carlo errors and the FMI statistics are reported for the MNL response 

propensity models, with CASSRS entered as fixed effects, in Table 65 to Table 68.  In 

contrast to the estimates for the mean of the imputed variables the error is very small for all 

variables and is in all cases less than ten per cent of the standard error of beta.  The Monte 

Carlo error for the test statistic, t, and the associated probability, p, (not shown here) are also 

within the required bounds to ensure reproducibility of the data.  The Monte Carlo errors for 

beta, t and p are proportionally largest for the effect of the count of services variable when the 

outcome is blank form, and the degrees of freedom are smallest for this estimate (see Table 

65).  The estimates of the FMI and relative efficiency are also all within acceptable levels, 

with the largest FMI being 0.079, again for the estimate of the effect of the count of services 

variable when the outcome is blank form. This suggests that the number of imputations is 

more than sufficient to ensure reproducibility of the MNL model estimates. 
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Table 65: Monte Carlo estimates for the beta coefficients for each variable in the MNL 

response propensity model and the effect of imputation on the standard error of beta 

(Outcome=Blank form) 

 MC 
error of 

Beta 

MC error of 
Beta/SE 

*100 

Degrees of 
freedom 

% 
increase 

in SE 
Variable 

Outcome=Blank form 
Physical disability† 0.001 2.231 1.74E+05 0.530
Mental health user‡ 0.000 0.917 6.08E+06 0.090
Learning disability 0.000 0.780 1.20E+07 0.060
18-34 years 0.000 0.911 6.25E+06 0.090
35-44 years 0.001 1.174 2.27E+06 0.150
45-54 years 0.001 1.088 3.07E+06 0.120
55-64 years 0.000 0.981 4.65E+06 0.100
65-74 years 0.001 1.086 3.10E+06 0.120
White 0.002 3.938 1.79E+04 1.670
Count of services 0.003 6.121 3.07E+03 4.180

Count of services - sq 0.001 5.264 5.61E+03 3.040
Nursing care home 0.001 3.017 5.20E+04 0.970
Residential care home 0.002 3.959 1.75E+04 1.690
Home care 0.002 4.860 7.72E+03 2.580
Low level services 0.002 5.436 4.93E+03 3.260
Direct Payment 0.002 3.970 1.73E+04 1.700
Equipment 0.002 5.422 4.98E+03 3.240

Northumberland 0.000 0.213 2.10E+09 0.000

Gateshead 0.000 0.149 8.70E+09 0.000

Newcastle upon Tyne 0.000 0.337 3.30E+08 0.010

North Tyneside 0.000 0.251 1.10E+09 0.010

South Tyneside 0.001 0.363 2.50E+08 0.010

Sunderland 0.001 0.371 2.30E+08 0.010

Hartlepool 0.001 0.361 2.50E+08 0.010

Middlesbrough 0.001 0.369 2.30E+08 0.010

Redcar and Cleveland 0.001 0.423 1.30E+08 0.020

Stockton on Tees 0.001 0.390 1.90E+08 0.020

Durham 0.000 0.305 5.00E+08 0.010

Darlington 0.001 0.328 3.70E+08 0.010

Barnsley 0.000 0.304 5.10E+08 0.010

Doncaster 0.001 0.326 3.80E+08 0.010

Rotherham 0.000 0.266 8.60E+08 0.010

Sheffield 0.001 0.620 2.90E+07 0.040

Bradford 0.000 0.296 5.60E+08 0.010

Calderdale 0.000 0.252 1.10E+09 0.010

Kirklees 0.001 0.373 2.20E+08 0.010
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 MC 
error of 

Beta 

MC error of 
Beta/SE 

*100 

Degrees of 
freedom 

% 
increase 

in SE 
Variable 

Leeds 0.000 0.293 5.80E+08 0.010

Wakefield 0.001 0.546 4.90E+07 0.030

East Riding 0.000 0.252 1.10E+09 0.010

Kingston-upon-Hull 0.001 0.096 5.20E+10 0.000

N E Lincolnshire 0.001 0.433 1.20E+08 0.020

North Lincolnshire 0.001 0.402 1.60E+08 0.020

North Yorkshire 0.000 0.291 6.00E+08 0.010

York 0.001 0.443 1.10E+08 0.020

Bolton 0.000 0.329 3.70E+08 0.010

Bury 0.001 0.000 2.50E+23 0.000

Manchester 0.000 0.176 4.50E+09 0.000

Oldham 0.001 0.773 1.20E+07 0.060

Rochdale 0.001 0.369 2.30E+08 0.010

Salford 0.000 0.461 9.50E+07 0.020

Stockport 0.000 0.276 7.40E+08 0.010

Tameside 0.001 0.474 8.50E+07 0.020

Trafford 0.001 0.432 1.20E+08 0.020

Wigan 0.000 0.244 1.20E+09 0.010

Knowsley 0.001 0.338 3.30E+08 0.010

Liverpool 0.001 0.539 5.10E+07 0.030

Sefton 0.001 0.395 1.80E+08 0.020

St Helens 0.000 0.416 1.40E+08 0.020

Wirral 0.001 0.835 8.86E+06 0.070

Halton 0.001 0.407 1.60E+08 0.020

Warrington 0.000 0.277 7.40E+08 0.010

Lancashire 0.000 0.249 1.10E+09 0.010

Blackburn with Darwen 0.000 0.160 6.60E+09 0.000

Blackpool 0.000 0.217 2.00E+09 0.000

Cheshire East 0.000 0.347 3.00E+08 0.010

Cheshire West and Chester 0.001 0.466 9.10E+07 0.020

Warwickshire 0.001 0.383 2.00E+08 0.020

Birmingham 0.000 0.263 9.00E+08 0.010

Coventry 0.000 0.344 3.10E+08 0.010

Dudley 0.000 0.394 1.80E+08 0.020

Sandwell 0.001 0.351 2.80E+08 0.010

Solihull 0.000 0.229 1.60E+09 0.010

Walsall 0.001 0.459 9.80E+07 0.020

Wolverhampton 0.001 0.461 9.50E+07 0.020

Staffordshire 0.001 0.423 1.30E+08 0.020

Stoke-on-Trent 0.001 0.688 1.90E+07 0.050

Herefordshire 0.002 1.201 2.07E+06 0.150
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 MC 
error of 

Beta 

MC error of 
Beta/SE 

*100 

Degrees of 
freedom 

% 
increase 

in SE 
Variable 

Worcestershire 0.000 0.281 6.90E+08 0.010

Shropshire 0.001 0.372 2.20E+08 0.010

The Wrekin 0.000 0.339 3.30E+08 0.010

Lincolnshire 0.001 0.375 2.20E+08 0.010

Northamptonshire 0.000 0.326 3.80E+08 0.010

Derbyshire 0.001 0.383 2.00E+08 0.020

Derby 0.001 0.366 2.40E+08 0.010

Leicestershire 0.001 0.283 6.70E+08 0.010

Leicester 0.001 0.604 3.20E+07 0.040

Rutland 0.001 0.338 3.30E+08 0.010

Nottinghamshire 0.001 0.492 7.30E+07 0.030

Nottingham 0.001 0.314 4.40E+08 0.010

Hertfordshire 0.000 0.316 4.30E+08 0.010

Norfolk 0.000 0.319 4.10E+08 0.010

Oxfordshire 0.001 0.513 6.20E+07 0.030

Suffolk 0.001 0.431 1.20E+08 0.020

Luton 0.000 0.288 6.30E+08 0.010

Buckinghamshire 0.001 0.859 7.93E+06 0.080

Milton Keynes 0.001 0.412 1.50E+08 0.020

Bracknell Forest 0.000 0.334 3.50E+08 0.010

West Berkshire 0.001 0.342 3.10E+08 0.010

Reading 0.001 0.395 1.80E+08 0.020

Slough 0.001 0.294 5.80E+08 0.010

Windsor & Maidenhead 0.001 0.405 1.60E+08 0.020

Wokingham 0.000 0.238 1.40E+09 0.010

Essex 0.001 0.715 1.70E+07 0.050

Southend 0.001 0.332 3.60E+08 0.010

Thurrock 0.001 0.390 1.90E+08 0.020

Cambridgeshire 0.000 0.299 5.40E+08 0.010

Peterborough 0.000 0.217 1.90E+09 0.000

Bedford 0.001 0.384 2.00E+08 0.020

Central Bedfordshire 0.000 0.156 7.20E+09 0.000

Camden 0.001 0.093 5.90E+10 0.000

Greenwich 0.001 0.389 1.90E+08 0.020

Hackney 0.001 0.382 2.00E+08 0.020

Hammersmith & Fulham 0.001 0.531 5.40E+07 0.030

Islington 0.001 0.471 8.80E+07 0.020

Kensington & Chelsea 0.001 0.430 1.30E+08 0.020

Lambeth 0.001 0.681 2.00E+07 0.050

Lewisham 0.001 0.331 3.60E+08 0.010

Southwark 0.001 0.668 2.20E+07 0.050
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 MC 
error of 

Beta 

MC error of 
Beta/SE 

*100 

Degrees of 
freedom 

% 
increase 

in SE 
Variable 

Tower Hamlets 0.001 0.611 3.10E+07 0.040

Wandsworth 0.001 0.551 4.70E+07 0.030

Westminster 0.001 0.446 1.10E+08 0.020

Barking & Dagenham 0.001 0.446 1.10E+08 0.020

Barnet 0.001 0.359 2.60E+08 0.010

Bexley 0.001 0.275 7.60E+08 0.010

Brent 0.002 1.060 3.42E+06 0.120

Bromley 0.000 0.169 5.30E+09 0.000

Croydon 0.001 0.595 3.40E+07 0.040

Ealing 0.001 0.634 2.70E+07 0.040

Enfield 0.000 0.242 1.30E+09 0.010

Haringey 0.001 0.402 1.60E+08 0.020

Harrow 0.001 0.321 4.10E+08 0.010

Havering 0.001 0.388 1.90E+08 0.020

Hillingdon 0.001 0.563 4.30E+07 0.030

Hounslow 0.001 0.931 5.73E+06 0.090

Kingston-upon-Thames 0.001 0.474 8.50E+07 0.020

Merton 0.001 0.293 5.90E+08 0.010

Newham 0.001 0.105 3.50E+10 0.000

Redbridge 0.001 0.419 1.40E+08 0.020

Sutton 0.000 0.193 3.10E+09 0.000

Waltham Forest 0.001 0.448 1.10E+08 0.020

Isle of Wight 0.000 0.194 3.00E+09 0.000

Surrey 0.001 0.459 9.70E+07 0.020

West Sussex 0.000 0.213 2.10E+09 0.000

Dorset 0.001 0.366 2.40E+08 0.010

Bournemouth 0.001 0.478 8.30E+07 0.020

Poole 0.001 0.465 9.20E+07 0.020

Hampshire 0.001 0.478 8.20E+07 0.020

Portsmouth 0.000 0.264 8.90E+08 0.010

Southampton 0.001 0.736 1.50E+07 0.060

East Sussex 0.000 0.232 1.50E+09 0.010

Brighton & Hove 0.000 0.218 1.90E+09 0.000

Wiltshire 0.001 0.441 1.10E+08 0.020

Swindon 0.001 0.289 6.20E+08 0.010

Kent 0.001 0.404 1.60E+08 0.020

Medway Towns 0.001 0.000 4.30E+23 0.000

Cornwall 0.001 0.508 6.50E+07 0.030

Gloucestershire 0.001 0.446 1.10E+08 0.020

Somerset 0.001 0.437 1.20E+08 0.020

Bath & N E Somerset 0.000 0.242 1.20E+09 0.010
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 MC 
error of 

Beta 

MC error of 
Beta/SE 

*100 

Degrees of 
freedom 

% 
increase 

in SE 
Variable 

Bristol 0.001 0.388 1.90E+08 0.020

North Somerset 0.000 0.210 2.20E+09 0.000

South Gloucestershire 0.001 0.453 1.00E+08 0.020

Devon 0.000 0.393 1.80E+08 0.020

Plymouth 0.000 0.206 2.40E+09 0.000

Torbay 0.001 0.529 5.50E+07 0.030

Constant 0.003 2.946 5.72E+04 0.920
†Also includes ‘vulnerable people’ client group   ‡ Also include ‘substance misuse’ client group 
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Table 66: Monte Carlo estimates for the beta coefficients for each variable in the MNL 

response propensity model and the effect of imputation on the standard error of beta 

(Outcome=Nonrespondent) 

MC 
error of 

Beta 

MC error of 
Beta/SE 

*100 

Degrees of 
freedom 

% 
increase 

in SE 
Variable 

Outcome=Nonrespondent 
Physical disability† 0.000 1.741 4.69E+05 0.320
Mental health user‡ 0.000 1.110 2.84E+06 0.130
Learning disability 0.000 1.242 1.81E+06 0.160
18-34 years 0.000 1.052 3.51E+06 0.120
35-44 years 0.000 1.086 3.10E+06 0.120
45-54 years 0.000 1.041 3.66E+06 0.110
55-64 years 0.000 1.121 2.73E+06 0.130
65-74 years 0.000 1.263 1.69E+06 0.170
White 0.001 3.428 3.12E+04 1.260
Count of services 0.001 4.770 8.32E+03 2.480

Count of services - sq 0.000 4.357 1.20E+04 2.060
Nursing care home 0.001 2.186 1.89E+05 0.510
Residential care home 0.001 3.147 4.39E+04 1.060
Home care 0.001 3.666 2.39E+04 1.440
Low level services 0.001 4.678 8.99E+03 2.380
Direct Payment 0.001 3.068 4.86E+04 1.000
Equipment 0.001 4.671 9.05E+03 2.370

Northumberland 0.000 0.122 1.90E+10 0.000

Gateshead 0.000 0.143 1.00E+10 0.000

Newcastle upon Tyne 0.000 0.150 8.40E+09 0.000

North Tyneside 0.000 0.143 1.00E+10 0.000

South Tyneside 0.000 0.167 5.60E+09 0.000

Sunderland 0.000 0.158 6.90E+09 0.000

Hartlepool 0.000 0.161 6.40E+09 0.000

Middlesbrough 0.000 0.189 3.40E+09 0.000

Redcar and Cleveland 0.000 0.170 5.10E+09 0.000

Stockton on Tees 0.000 0.193 3.10E+09 0.000

Durham 0.000 0.000 2.90E+26 0.000

Darlington 0.000 0.170 5.20E+09 0.000

Barnsley 0.000 0.126 1.70E+10 0.000

Doncaster 0.000 0.195 3.00E+09 0.000

Rotherham 0.000 0.104 3.70E+10 0.000

Sheffield 0.000 0.203 2.50E+09 0.000

Bradford 0.000 0.136 1.30E+10 0.000

Calderdale 0.000 0.116 2.40E+10 0.000

Kirklees 0.000 0.153 7.90E+09 0.000
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MC 
error of 

Beta 

MC error of 
Beta/SE 

*100 

Degrees of 
freedom 

% 
increase 

in SE 
Variable 

Leeds 0.000 0.131 1.50E+10 0.000

Wakefield 0.000 0.209 2.20E+09 0.000

East Riding 0.000 0.125 1.80E+10 0.000

Kingston-upon-Hull 0.000 0.192 3.20E+09 0.000

N E Lincolnshire 0.000 0.168 5.40E+09 0.000

North Lincolnshire 0.000 0.158 7.00E+09 0.000

North Yorkshire 0.000 0.104 3.70E+10 0.000

York 0.000 0.158 6.90E+09 0.000

Bolton 0.000 0.138 1.20E+10 0.000

Bury 0.000 0.179 4.20E+09 0.000

Manchester 0.000 0.131 1.50E+10 0.000

Oldham 0.001 0.220 1.80E+09 0.010

Rochdale 0.000 0.160 6.60E+09 0.000

Salford 0.000 0.150 8.60E+09 0.000

Stockport 0.000 0.118 2.20E+10 0.000

Tameside 0.000 0.175 4.60E+09 0.000

Trafford 0.000 0.185 3.70E+09 0.000

Wigan 0.000 0.135 1.30E+10 0.000

Knowsley 0.000 0.153 7.80E+09 0.000

Liverpool 0.000 0.204 2.50E+09 0.000

Sefton 0.000 0.171 5.10E+09 0.000

St Helens 0.000 0.170 5.20E+09 0.000

Wirral 0.001 0.251 1.10E+09 0.010

Halton 0.000 0.155 7.40E+09 0.000

Warrington 0.000 0.144 1.00E+10 0.000

Lancashire 0.000 0.127 1.70E+10 0.000

Blackburn with Darwen 0.000 0.124 1.80E+10 0.000

Blackpool 0.000 0.114 2.50E+10 0.000

Cheshire East 0.000 0.000 3.20E+26 0.000

Cheshire West and Chester 0.000 0.171 5.10E+09 0.000

Warwickshire 0.000 0.155 7.50E+09 0.000

Birmingham 0.000 0.154 7.70E+09 0.000

Coventry 0.000 0.148 8.90E+09 0.000

Dudley 0.000 0.167 5.50E+09 0.000

Sandwell 0.000 0.158 7.00E+09 0.000

Solihull 0.000 0.108 3.10E+10 0.000

Walsall 0.000 0.188 3.40E+09 0.000

Wolverhampton 0.000 0.194 3.00E+09 0.000

Staffordshire 0.000 0.168 5.40E+09 0.000

Stoke-on-Trent 0.001 0.239 1.30E+09 0.010

Herefordshire 0.001 0.268 8.30E+08 0.010
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MC 
error of 

Beta 

MC error of 
Beta/SE 

*100 

Degrees of 
freedom 

% 
increase 

in SE 
Variable 

Worcestershire 0.000 0.112 2.70E+10 0.000

Shropshire 0.000 0.164 5.90E+09 0.000

The Wrekin 0.000 0.151 8.40E+09 0.000

Lincolnshire 0.000 0.170 5.20E+09 0.000

Northamptonshire 0.000 0.142 1.00E+10 0.000

Derbyshire 0.000 0.172 5.00E+09 0.000

Derby 0.000 0.182 3.90E+09 0.000

Leicestershire 0.000 0.174 4.70E+09 0.000

Leicester 0.001 0.220 1.80E+09 0.010

Rutland 0.000 0.128 1.60E+10 0.000

Nottinghamshire 0.000 0.162 6.30E+09 0.000

Nottingham 0.000 0.170 5.20E+09 0.000

Hertfordshire 0.000 0.131 1.50E+10 0.000

Norfolk 0.000 0.134 1.30E+10 0.000

Oxfordshire 0.000 0.183 3.90E+09 0.000

Suffolk 0.000 0.148 8.90E+09 0.000

Luton 0.000 0.148 9.00E+09 0.000

Buckinghamshire 0.000 0.197 2.90E+09 0.000

Milton Keynes 0.000 0.148 8.90E+09 0.000

Bracknell Forest 0.000 0.145 9.80E+09 0.000

West Berkshire 0.000 0.153 7.80E+09 0.000

Reading 0.000 0.162 6.20E+09 0.000

Slough 0.000 0.204 2.50E+09 0.000

Windsor & Maidenhead 0.000 0.174 4.70E+09 0.000

Wokingham 0.000 0.113 2.70E+10 0.000

Essex 0.000 0.195 3.00E+09 0.000

Southend 0.000 0.163 6.20E+09 0.000

Thurrock 0.000 0.197 2.80E+09 0.000

Cambridgeshire 0.000 0.126 1.70E+10 0.000

Peterborough 0.000 0.094 5.60E+10 0.000

Bedford 0.000 0.176 4.50E+09 0.000

Central Bedfordshire 0.000 0.104 3.70E+10 0.000

Camden 0.001 0.263 9.10E+08 0.010

Greenwich 0.000 0.197 2.80E+09 0.000

Hackney 0.000 0.208 2.30E+09 0.000

Hammersmith & Fulham 0.001 0.217 2.00E+09 0.000

Islington 0.000 0.194 3.00E+09 0.000

Kensington & Chelsea 0.000 0.172 5.00E+09 0.000

Lambeth 0.001 0.251 1.10E+09 0.010

Lewisham 0.001 0.214 2.10E+09 0.000

Southwark 0.001 0.231 1.50E+09 0.010
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MC 
error of 

Beta 

MC error of 
Beta/SE 

*100 

Degrees of 
freedom 

% 
increase 

in SE 
Variable 

Tower Hamlets 0.001 0.274 7.60E+08 0.010

Wandsworth 0.001 0.225 1.70E+09 0.010

Westminster 0.000 0.180 4.10E+09 0.000

Barking & Dagenham 0.000 0.198 2.80E+09 0.000

Barnet 0.000 0.167 5.60E+09 0.000

Bexley 0.001 0.238 1.30E+09 0.010

Brent 0.001 0.351 2.80E+08 0.010

Bromley 0.000 0.068 2.00E+11 0.000

Croydon 0.001 0.225 1.70E+09 0.010

Ealing 0.001 0.236 1.40E+09 0.010

Enfield 0.000 0.156 7.20E+09 0.000

Haringey 0.001 0.220 1.80E+09 0.010

Harrow 0.000 0.171 5.00E+09 0.000

Havering 0.000 0.163 6.10E+09 0.000

Hillingdon 0.000 0.199 2.80E+09 0.000

Hounslow 0.001 0.000 1.50E+24 0.000

Kingston-upon-Thames 0.000 0.184 3.70E+09 0.000

Merton 0.001 0.237 1.40E+09 0.010

Newham 0.001 0.257 9.90E+08 0.010

Redbridge 0.001 0.215 2.00E+09 0.000

Sutton 0.000 0.126 1.70E+10 0.000

Waltham Forest 0.000 0.203 2.60E+09 0.000

Isle of Wight 0.000 0.096 5.10E+10 0.000

Surrey 0.000 0.199 2.80E+09 0.000

West Sussex 0.000 0.103 3.90E+10 0.000

Dorset 0.001 0.244 1.20E+09 0.010

Bournemouth 0.000 0.208 2.30E+09 0.000

Poole 0.000 0.135 1.30E+10 0.000

Hampshire 0.001 0.220 1.80E+09 0.010

Portsmouth 0.000 0.142 1.10E+10 0.000

Southampton 0.000 0.213 2.10E+09 0.000

East Sussex 0.000 0.115 2.50E+10 0.000

Brighton & Hove 0.000 0.198 2.80E+09 0.000

Wiltshire 0.000 0.184 3.80E+09 0.000

Swindon 0.000 0.157 7.20E+09 0.000

Kent 0.000 0.181 4.10E+09 0.000

Medway Towns 0.000 0.175 4.60E+09 0.000

Cornwall 0.000 0.127 1.60E+10 0.000

Gloucestershire 0.000 0.110 2.90E+10 0.000

Somerset 0.001 0.223 1.70E+09 0.010

Bath & N E Somerset 0.000 0.102 4.00E+10 0.000
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MC 
error of 

Beta 

MC error of 
Beta/SE 

*100 

Degrees of 
freedom 

% 
increase 

in SE 
Variable 

Bristol 0.000 0.201 2.60E+09 0.000

North Somerset 0.000 0.126 1.70E+10 0.000

South Gloucestershire 0.001 0.259 9.50E+08 0.010

Devon 0.000 0.187 3.50E+09 0.000

Plymouth 0.000 0.117 2.30E+10 0.000

Torbay 0.000 0.180 4.10E+09 0.000

Constant 0.002 0.665 2.20E+07 0.050
†Also includes ‘vulnerable people’ client group   ‡ Also include ‘substance misuse’ client group 
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Table 67: Imputation variance and efficiency associated with the estimate of beta for 

each variable in the MNL response propensity model (Outcome=Blank form) 

 Imputation variance   Relative 
efficiency Variable Within Between Total RVI FMI 

Outcome=Blank form 
Physical disability† 0.001 0.000 0.001 0.011 0.010 0.999
Mental health user‡ 0.002 0.000 0.002 0.002 0.002 1.000
Learning disability 0.003 0.000 0.003 0.001 0.001 1.000
18-34 years 0.003 0.000 0.003 0.002 0.002 1.000
35-44 years 0.003 0.000 0.003 0.003 0.003 1.000
45-54 years 0.003 0.000 0.003 0.002 0.002 1.000
55-64 years 0.002 0.000 0.002 0.002 0.002 1.000
65-74 years 0.002 0.000 0.002 0.002 0.002 1.000
White 0.002 0.000 0.002 0.034 0.033 0.998
Count of services 0.002 0.000 0.002 0.085 0.079 0.996

Count of services - sq 0.000 0.000 0.000 0.062 0.059 0.997
Nursing care home 0.002 0.000 0.002 0.019 0.019 0.999
Residential care home 0.002 0.000 0.002 0.034 0.033 0.998
Home care 0.001 0.000 0.001 0.052 0.050 0.998
Low level services 0.001 0.000 0.002 0.066 0.062 0.997
Direct Payment 0.002 0.000 0.002 0.034 0.033 0.998
Equipment 0.001 0.000 0.001 0.066 0.062 0.997

Northumberland 0.022 0.000 0.022 0.000 0.000 1.000

Gateshead 0.093 0.000 0.093 0.000 0.000 1.000

Newcastle upon Tyne 0.016 0.000 0.016 0.000 0.000 1.000

North Tyneside 0.021 0.000 0.021 0.000 0.000 1.000

South Tyneside 0.024 0.000 0.024 0.000 0.000 1.000

Sunderland 0.019 0.000 0.019 0.000 0.000 1.000

Hartlepool 0.021 0.000 0.021 0.000 0.000 1.000

Middlesbrough 0.039 0.000 0.039 0.000 0.000 1.000

Redcar and Cleveland 0.016 0.000 0.016 0.000 0.000 1.000

Stockton on Tees 0.026 0.000 0.026 0.000 0.000 1.000

Durham 0.011 0.000 0.011 0.000 0.000 1.000

Darlington 0.031 0.000 0.031 0.000 0.000 1.000

Barnsley 0.020 0.000 0.020 0.000 0.000 1.000

Doncaster 0.046 0.000 0.046 0.000 0.000 1.000

Rotherham 0.026 0.000 0.026 0.000 0.000 1.000

Sheffield 0.016 0.000 0.016 0.001 0.001 1.000

Bradford 0.018 0.000 0.018 0.000 0.000 1.000

Calderdale 0.020 0.000 0.020 0.000 0.000 1.000

Kirklees 0.018 0.000 0.018 0.000 0.000 1.000

Leeds 0.017 0.000 0.017 0.000 0.000 1.000

Wakefield 0.016 0.000 0.016 0.001 0.001 1.000



 

 

397

 Imputation variance   Relative 
efficiency Variable Within Between Total RVI FMI 

East Riding 0.021 0.000 0.021 0.000 0.000 1.000

Kingston-upon-Hull 0.508 0.000 0.508 0.000 0.000 1.000

N E Lincolnshire 0.021 0.000 0.021 0.000 0.000 1.000

North Lincolnshire 0.016 0.000 0.016 0.000 0.000 1.000

North Yorkshire 0.015 0.000 0.015 0.000 0.000 1.000

York 0.016 0.000 0.016 0.000 0.000 1.000

Bolton 0.017 0.000 0.017 0.000 0.000 1.000

Bury 1100000 0.000 1100000 0.000 0.000 1.000

Manchester 0.054 0.000 0.054 0.000 0.000 1.000

Oldham 0.017 0.000 0.017 0.001 0.001 1.000

Rochdale 0.019 0.000 0.019 0.000 0.000 1.000

Salford 0.011 0.000 0.011 0.000 0.000 1.000

Stockport 0.017 0.000 0.017 0.000 0.000 1.000

Tameside 0.016 0.000 0.016 0.000 0.000 1.000

Trafford 0.016 0.000 0.016 0.000 0.000 1.000

Wigan 0.016 0.000 0.016 0.000 0.000 1.000

Knowsley 0.025 0.000 0.025 0.000 0.000 1.000

Liverpool 0.017 0.000 0.017 0.001 0.001 1.000

Sefton 0.018 0.000 0.018 0.000 0.000 1.000

St Helens 0.014 0.000 0.014 0.000 0.000 1.000

Wirral 0.019 0.000 0.019 0.001 0.001 1.000

Halton 0.020 0.000 0.020 0.000 0.000 1.000

Warrington 0.018 0.000 0.018 0.000 0.000 1.000

Lancashire 0.022 0.000 0.023 0.000 0.000 1.000

Blackburn with Darwen 0.033 0.000 0.033 0.000 0.000 1.000

Blackpool 0.023 0.000 0.023 0.000 0.000 1.000

Cheshire East 0.010 0.000 0.010 0.000 0.000 1.000

Cheshire W. and Chester 0.012 0.000 0.012 0.000 0.000 1.000

Warwickshire 0.021 0.000 0.021 0.000 0.000 1.000

Birmingham 0.033 0.000 0.033 0.000 0.000 1.000

Coventry 0.019 0.000 0.019 0.000 0.000 1.000

Dudley 0.011 0.000 0.011 0.000 0.000 1.000

Sandwell 0.021 0.000 0.021 0.000 0.000 1.000

Solihull 0.018 0.000 0.018 0.000 0.000 1.000

Walsall 0.024 0.000 0.024 0.000 0.000 1.000

Wolverhampton 0.022 0.000 0.022 0.000 0.000 1.000

Staffordshire 0.017 0.000 0.017 0.000 0.000 1.000

Stoke-on-Trent 0.020 0.000 0.020 0.001 0.001 1.000

Herefordshire 0.018 0.000 0.018 0.003 0.003 1.000

Worcestershire 0.018 0.000 0.018 0.000 0.000 1.000

Shropshire 0.020 0.000 0.020 0.000 0.000 1.000

The Wrekin 0.019 0.000 0.019 0.000 0.000 1.000
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 Imputation variance   Relative 
efficiency Variable Within Between Total RVI FMI 

Lincolnshire 0.024 0.000 0.024 0.000 0.000 1.000

Northamptonshire 0.018 0.000 0.018 0.000 0.000 1.000

Derbyshire 0.050 0.000 0.050 0.000 0.000 1.000

Derby 0.034 0.000 0.034 0.000 0.000 1.000

Leicestershire 0.045 0.000 0.045 0.000 0.000 1.000

Leicester 0.020 0.000 0.020 0.001 0.001 1.000

Rutland 0.028 0.000 0.028 0.000 0.000 1.000

Nottinghamshire 0.017 0.000 0.017 0.001 0.001 1.000

Nottingham 0.038 0.000 0.038 0.000 0.000 1.000

Hertfordshire 0.020 0.000 0.020 0.000 0.000 1.000

Norfolk 0.022 0.000 0.022 0.000 0.000 1.000

Oxfordshire 0.013 0.000 0.013 0.001 0.001 1.000

Suffolk 0.014 0.000 0.014 0.000 0.000 1.000

Luton 0.019 0.000 0.019 0.000 0.000 1.000

Buckinghamshire 0.022 0.000 0.022 0.002 0.002 1.000

Milton Keynes 0.019 0.000 0.019 0.000 0.000 1.000

Bracknell Forest 0.020 0.000 0.020 0.000 0.000 1.000

West Berkshire 0.023 0.000 0.023 0.000 0.000 1.000

Reading 0.018 0.000 0.018 0.000 0.000 1.000

Slough 0.072 0.000 0.072 0.000 0.000 1.000

Windsor & Maidenhead 0.027 0.000 0.027 0.000 0.000 1.000

Wokingham 0.027 0.000 0.027 0.000 0.000 1.000

Essex 0.017 0.000 0.017 0.001 0.001 1.000

Southend 0.030 0.000 0.030 0.000 0.000 1.000

Thurrock 0.026 0.000 0.026 0.000 0.000 1.000

Cambridgeshire 0.015 0.000 0.015 0.000 0.000 1.000

Peterborough 0.019 0.000 0.019 0.000 0.000 1.000

Bedford 0.020 0.000 0.020 0.000 0.000 1.000

Central Bedfordshire 0.028 0.000 0.028 0.000 0.000 1.000

Camden 1.009 0.000 1.009 0.000 0.000 1.000

Greenwich 0.031 0.000 0.031 0.000 0.000 1.000

Hackney 0.040 0.000 0.040 0.000 0.000 1.000

Hammersmith & Fulham 0.024 0.000 0.024 0.001 0.001 1.000

Islington 0.022 0.000 0.022 0.000 0.000 1.000

Kensington & Chelsea 0.025 0.000 0.025 0.000 0.000 1.000

Lambeth 0.022 0.000 0.022 0.001 0.001 1.000

Lewisham 0.050 0.000 0.050 0.000 0.000 1.000

Southwark 0.025 0.000 0.025 0.001 0.001 1.000

Tower Hamlets 0.034 0.000 0.034 0.001 0.001 1.000

Wandsworth 0.032 0.000 0.032 0.001 0.001 1.000

Westminster 0.022 0.000 0.022 0.000 0.000 1.000

Barking & Dagenham 0.021 0.000 0.021 0.000 0.000 1.000
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 Imputation variance   Relative 
efficiency Variable Within Between Total RVI FMI 

Barnet 0.022 0.000 0.022 0.000 0.000 1.000

Bexley 0.061 0.000 0.061 0.000 0.000 1.000

Brent 0.023 0.000 0.023 0.002 0.002 1.000

Bromley 0.018 0.000 0.018 0.000 0.000 1.000

Croydon 0.014 0.000 0.014 0.001 0.001 1.000

Ealing 0.019 0.000 0.019 0.001 0.001 1.000

Enfield 0.027 0.000 0.027 0.000 0.000 1.000

Haringey 0.033 0.000 0.033 0.000 0.000 1.000

Harrow 0.031 0.000 0.031 0.000 0.000 1.000

Havering 0.020 0.000 0.020 0.000 0.000 1.000

Hillingdon 0.019 0.000 0.019 0.001 0.001 1.000

Hounslow 0.007 0.000 0.007 0.002 0.002 1.000

Kingston-upon-Thames 0.022 0.000 0.022 0.000 0.000 1.000

Merton 0.109 0.000 0.109 0.000 0.000 1.000

Newham 1.009 0.000 1.009 0.000 0.000 1.000

Redbridge 0.029 0.000 0.029 0.000 0.000 1.000

Sutton 0.022 0.000 0.022 0.000 0.000 1.000

Waltham Forest 0.021 0.000 0.021 0.000 0.000 1.000

Isle of Wight 0.032 0.000 0.032 0.000 0.000 1.000

Surrey 0.026 0.000 0.026 0.000 0.000 1.000

West Sussex 0.031 0.000 0.031 0.000 0.000 1.000

Dorset 0.038 0.000 0.038 0.000 0.000 1.000

Bournemouth 0.019 0.000 0.019 0.000 0.000 1.000

Poole 0.024 0.000 0.024 0.000 0.000 1.000

Hampshire 0.020 0.000 0.020 0.000 0.000 1.000

Portsmouth 0.035 0.000 0.035 0.000 0.000 1.000

Southampton 0.018 0.000 0.018 0.001 0.001 1.000

East Sussex 0.020 0.000 0.020 0.000 0.000 1.000

Brighton & Hove 0.042 0.000 0.042 0.000 0.000 1.000

Wiltshire 0.022 0.000 0.022 0.000 0.000 1.000

Swindon 0.037 0.000 0.037 0.000 0.000 1.000

Kent 0.032 0.000 0.032 0.000 0.000 1.000

Medway Towns 1400000 0.000 1400000 0.000 0.000 1.000

Cornwall 0.011 0.000 0.011 0.001 0.001 1.000

Gloucestershire 0.015 0.000 0.015 0.000 0.000 1.000

Somerset 0.030 0.000 0.030 0.000 0.000 1.000

Bath & N E Somerset 0.020 0.000 0.020 0.000 0.000 1.000

Bristol 0.034 0.000 0.034 0.000 0.000 1.000

North Somerset 0.038 0.000 0.038 0.000 0.000 1.000

South Gloucestershire 0.017 0.000 0.017 0.000 0.000 1.000

Devon 0.015 0.000 0.015 0.000 0.000 1.000

Plymouth 0.015 0.000 0.015 0.000 0.000 1.000
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 Imputation variance   Relative 
efficiency Variable Within Between Total RVI FMI 

Torbay 0.012 0.000 0.012 0.001 0.001 1.000

Constant 0.011 0.000 0.011 0.019 0.018 0.999
†Also includes ‘vulnerable people’ client group   ‡ Also include ‘substance misuse’ client group 
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Table 68: Imputation variance and efficiency associated with the estimate of beta for 

each variable in the MNL response propensity model (Outcome=Nonrespondent) 

 Imputation variance   Relative 
efficiency Variable Within Between Total RVI FMI 

Outcome=Nonrespondent 
Physical disability† 0.000 0.000 0.000 0.006 0.006 1.000
Mental health user‡ 0.000 0.000 0.000 0.003 0.003 1.000
Learning disability 0.001 0.000 0.001 0.003 0.003 1.000
18-34 years 0.001 0.000 0.001 0.002 0.002 1.000
35-44 years 0.001 0.000 0.001 0.002 0.002 1.000
45-54 years 0.001 0.000 0.001 0.002 0.002 1.000
55-64 years 0.001 0.000 0.001 0.003 0.003 1.000
65-74 years 0.001 0.000 0.001 0.003 0.003 1.000
White 0.000 0.000 0.000 0.025 0.025 0.999
Count of services 0.001 0.000 0.001 0.050 0.048 0.998

Count of services - sq 0.000 0.000 0.000 0.042 0.040 0.998
Nursing care home 0.001 0.000 0.001 0.010 0.010 0.999
Residential care home 0.001 0.000 0.001 0.021 0.021 0.999
Home care 0.000 0.000 0.000 0.029 0.028 0.999
Low level services 0.001 0.000 0.001 0.048 0.046 0.998
Direct Payment 0.001 0.000 0.001 0.020 0.020 0.999
Equipment 0.000 0.000 0.000 0.048 0.046 0.998

Northumberland 0.054 0.000 0.054 0.000 0.000 1.000

Gateshead 0.057 0.000 0.057 0.000 0.000 1.000

Newcastle upon Tyne 0.055 0.000 0.055 0.000 0.000 1.000

North Tyneside 0.055 0.000 0.055 0.000 0.000 1.000

South Tyneside 0.056 0.000 0.056 0.000 0.000 1.000

Sunderland 0.057 0.000 0.057 0.000 0.000 1.000

Hartlepool 0.055 0.000 0.055 0.000 0.000 1.000

Middlesbrough 0.057 0.000 0.057 0.000 0.000 1.000

Redcar and Cleveland 0.056 0.000 0.056 0.000 0.000 1.000

Stockton on Tees 0.056 0.000 0.056 0.000 0.000 1.000

Durham 2600000 0.000 2600000 0.000 0.000 1.000

Darlington 0.058 0.000 0.058 0.000 0.000 1.000

Barnsley 0.055 0.000 0.055 0.000 0.000 1.000

Doncaster 0.055 0.000 0.055 0.000 0.000 1.000

Rotherham 0.055 0.000 0.055 0.000 0.000 1.000

Sheffield 0.054 0.000 0.054 0.000 0.000 1.000

Bradford 0.054 0.000 0.054 0.000 0.000 1.000

Calderdale 0.055 0.000 0.055 0.000 0.000 1.000

Kirklees 0.057 0.000 0.057 0.000 0.000 1.000

Leeds 0.054 0.000 0.054 0.000 0.000 1.000

Wakefield 0.055 0.000 0.055 0.000 0.000 1.000
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 Imputation variance   Relative 
efficiency Variable Within Between Total RVI FMI 

East Riding 0.056 0.000 0.056 0.000 0.000 1.000

Kingston-upon-Hull 0.054 0.000 0.054 0.000 0.000 1.000

N E Lincolnshire 0.056 0.000 0.056 0.000 0.000 1.000

North Lincolnshire 0.058 0.000 0.058 0.000 0.000 1.000

North Yorkshire 0.056 0.000 0.056 0.000 0.000 1.000

York 0.055 0.000 0.055 0.000 0.000 1.000

Bolton 0.053 0.000 0.053 0.000 0.000 1.000

Bury 0.054 0.000 0.054 0.000 0.000 1.000

Manchester 0.054 0.000 0.054 0.000 0.000 1.000

Oldham 0.053 0.000 0.053 0.000 0.000 1.000

Rochdale 0.055 0.000 0.055 0.000 0.000 1.000

Salford 0.053 0.000 0.053 0.000 0.000 1.000

Stockport 0.054 0.000 0.054 0.000 0.000 1.000

Tameside 0.056 0.000 0.056 0.000 0.000 1.000

Trafford 0.055 0.000 0.055 0.000 0.000 1.000

Wigan 0.056 0.000 0.056 0.000 0.000 1.000

Knowsley 0.054 0.000 0.054 0.000 0.000 1.000

Liverpool 0.055 0.000 0.055 0.000 0.000 1.000

Sefton 0.055 0.000 0.055 0.000 0.000 1.000

St Helens 0.056 0.000 0.056 0.000 0.000 1.000

Wirral 0.056 0.000 0.056 0.000 0.000 1.000

Halton 0.057 0.000 0.057 0.000 0.000 1.000

Warrington 0.055 0.000 0.055 0.000 0.000 1.000

Lancashire 0.056 0.000 0.056 0.000 0.000 1.000

Blackburn with Darwen 0.054 0.000 0.054 0.000 0.000 1.000

Blackpool 0.055 0.000 0.055 0.000 0.000 1.000

Cheshire East 10000000 0.000 10000000 0.000 0.000 1.000

Cheshire W and Chester 0.053 0.000 0.053 0.000 0.000 1.000

Warwickshire 0.055 0.000 0.055 0.000 0.000 1.000

Birmingham 0.055 0.000 0.055 0.000 0.000 1.000

Coventry 0.055 0.000 0.055 0.000 0.000 1.000

Dudley 0.052 0.000 0.052 0.000 0.000 1.000

Sandwell 0.055 0.000 0.055 0.000 0.000 1.000

Solihull 0.055 0.000 0.055 0.000 0.000 1.000

Walsall 0.056 0.000 0.056 0.000 0.000 1.000

Wolverhampton 0.056 0.000 0.056 0.000 0.000 1.000

Staffordshire 0.055 0.000 0.055 0.000 0.000 1.000

Stoke-on-Trent 0.054 0.000 0.054 0.000 0.000 1.000

Herefordshire 0.057 0.000 0.057 0.000 0.000 1.000

Worcestershire 0.056 0.000 0.056 0.000 0.000 1.000

Shropshire 0.055 0.000 0.055 0.000 0.000 1.000

The Wrekin 0.054 0.000 0.054 0.000 0.000 1.000
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 Imputation variance   Relative 
efficiency Variable Within Between Total RVI FMI 

Lincolnshire 0.056 0.000 0.056 0.000 0.000 1.000

Northamptonshire 0.054 0.000 0.054 0.000 0.000 1.000

Derbyshire 0.057 0.000 0.057 0.000 0.000 1.000

Derby 0.055 0.000 0.055 0.000 0.000 1.000

Leicestershire 0.054 0.000 0.054 0.000 0.000 1.000

Leicester 0.055 0.000 0.055 0.000 0.000 1.000

Rutland 0.061 0.000 0.061 0.000 0.000 1.000

Nottinghamshire 0.055 0.000 0.055 0.000 0.000 1.000

Nottingham 0.055 0.000 0.055 0.000 0.000 1.000

Hertfordshire 0.055 0.000 0.055 0.000 0.000 1.000

Norfolk 0.056 0.000 0.056 0.000 0.000 1.000

Oxfordshire 0.053 0.000 0.053 0.000 0.000 1.000

Suffolk 0.053 0.000 0.053 0.000 0.000 1.000

Luton 0.057 0.000 0.057 0.000 0.000 1.000

Buckinghamshire 0.056 0.000 0.056 0.000 0.000 1.000

Milton Keynes 0.056 0.000 0.056 0.000 0.000 1.000

Bracknell Forest 0.057 0.000 0.057 0.000 0.000 1.000

West Berkshire 0.055 0.000 0.055 0.000 0.000 1.000

Reading 0.056 0.000 0.056 0.000 0.000 1.000

Slough 0.056 0.000 0.056 0.000 0.000 1.000

Windsor & Maidenhead 0.055 0.000 0.055 0.000 0.000 1.000

Wokingham 0.057 0.000 0.057 0.000 0.000 1.000

Essex 0.054 0.000 0.054 0.000 0.000 1.000

Southend 0.055 0.000 0.055 0.000 0.000 1.000

Thurrock 0.057 0.000 0.057 0.000 0.000 1.000

Cambridgeshire 0.054 0.000 0.054 0.000 0.000 1.000

Peterborough 0.056 0.000 0.056 0.000 0.000 1.000

Bedford 0.055 0.000 0.055 0.000 0.000 1.000

Central Bedfordshire 0.055 0.000 0.055 0.000 0.000 1.000

Camden 0.055 0.000 0.055 0.000 0.000 1.000

Greenwich 0.055 0.000 0.055 0.000 0.000 1.000

Hackney 0.056 0.000 0.056 0.000 0.000 1.000

Hammersmith & Fulham 0.055 0.000 0.055 0.000 0.000 1.000

Islington 0.054 0.000 0.054 0.000 0.000 1.000

Kensington & Chelsea 0.054 0.000 0.054 0.000 0.000 1.000

Lambeth 0.056 0.000 0.056 0.000 0.000 1.000

Lewisham 0.055 0.000 0.055 0.000 0.000 1.000

Southwark 0.055 0.000 0.055 0.000 0.000 1.000

Tower Hamlets 0.053 0.000 0.053 0.000 0.000 1.000

Wandsworth 0.055 0.000 0.055 0.000 0.000 1.000

Westminster 0.054 0.000 0.054 0.000 0.000 1.000

Barking & Dagenham 0.057 0.000 0.057 0.000 0.000 1.000
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 Imputation variance   Relative 
efficiency Variable Within Between Total RVI FMI 

Barnet 0.055 0.000 0.055 0.000 0.000 1.000

Bexley 0.055 0.000 0.055 0.000 0.000 1.000

Brent 0.056 0.000 0.056 0.000 0.000 1.000

Bromley 0.055 0.000 0.055 0.000 0.000 1.000

Croydon 0.054 0.000 0.054 0.000 0.000 1.000

Ealing 0.055 0.000 0.055 0.000 0.000 1.000

Enfield 0.055 0.000 0.055 0.000 0.000 1.000

Haringey 0.054 0.000 0.054 0.000 0.000 1.000

Harrow 0.057 0.000 0.057 0.000 0.000 1.000

Havering 0.056 0.000 0.056 0.000 0.000 1.000

Hillingdon 0.057 0.000 0.057 0.000 0.000 1.000

Hounslow 2100000 0.000 2100000 0.000 0.000 1.000

Kingston-upon-Thames 0.058 0.000 0.058 0.000 0.000 1.000

Merton 0.055 0.000 0.055 0.000 0.000 1.000

Newham 0.055 0.000 0.055 0.000 0.000 1.000

Redbridge 0.058 0.000 0.058 0.000 0.000 1.000

Sutton 0.055 0.000 0.055 0.000 0.000 1.000

Waltham Forest 0.055 0.000 0.055 0.000 0.000 1.000

Isle of Wight 0.056 0.000 0.056 0.000 0.000 1.000

Surrey 0.054 0.000 0.054 0.000 0.000 1.000

West Sussex 0.055 0.000 0.055 0.000 0.000 1.000

Dorset 0.056 0.000 0.056 0.000 0.000 1.000

Bournemouth 0.054 0.000 0.054 0.000 0.000 1.000

Poole 0.056 0.000 0.056 0.000 0.000 1.000

Hampshire 0.054 0.000 0.054 0.000 0.000 1.000

Portsmouth 0.055 0.000 0.055 0.000 0.000 1.000

Southampton 0.055 0.000 0.055 0.000 0.000 1.000

East Sussex 0.055 0.000 0.055 0.000 0.000 1.000

Brighton & Hove 0.056 0.000 0.056 0.000 0.000 1.000

Wiltshire 0.055 0.000 0.055 0.000 0.000 1.000

Swindon 0.057 0.000 0.057 0.000 0.000 1.000

Kent 0.056 0.000 0.056 0.000 0.000 1.000

Medway Towns 0.055 0.000 0.055 0.000 0.000 1.000

Cornwall 0.052 0.000 0.052 0.000 0.000 1.000

Gloucestershire 0.123 0.000 0.123 0.000 0.000 1.000

Somerset 0.054 0.000 0.054 0.000 0.000 1.000

Bath & N E Somerset 0.054 0.000 0.054 0.000 0.000 1.000

Bristol 0.057 0.000 0.057 0.000 0.000 1.000

North Somerset 0.057 0.000 0.057 0.000 0.000 1.000

South Gloucestershire 0.056 0.000 0.056 0.000 0.000 1.000

Devon 0.055 0.000 0.055 0.000 0.000 1.000

Plymouth 0.054 0.000 0.054 0.000 0.000 1.000
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 Imputation variance   Relative 
efficiency Variable Within Between Total RVI FMI 

Torbay 0.055 0.000 0.055 0.000 0.000 1.000

Constant 0.052 0.000 0.052 0.001 0.001 1.000
†Also includes ‘vulnerable people’ client group   ‡ Also include ‘substance misuse’ client group 

  



 

 

406

Appendix 8: Overdispersion Factors for the Overall Sample 

 

Following Spiegelhalter (2005b), the degree of overdispersion in the data can be estimated by 

calculating an overdispersion factor, denoted ߶, as follows, ߶ ൌ	 ଵ
ூ
∑ ௜ݖ

ଶ, where z is the 

standardised Pearson residual, and ܫ is the total number of units, in this case 149 CASSRs.  

Where ߶ is significantly greater than one, there is overdispersion.  Table 69 shows that the 

overdispersion factor for each indicator here is in all cases much less than one, implying that 

overdispersion is not present for these indicators.   

 

Table 69: Overdispersion factors for PIs 

Indicator CCA IPW/CCA CCA/MI IPW/MI 

SCRQoL PI 0.114 0.116 0.120 0.120 
Satisfaction PI 0.112 0.102 0.125 0.114 
Control PI 0.083 0.074 0.080 0.071 
Safety PI 0.048 0.056 0.049 0.057 
Information PI 0.052 0.058 0.047 0.054 
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Appendix 9: Additional Graphs and Tables Showing the Effect of 

Adjusting for Nonresponse on Performance Assessment 

 

I noted that there is very little change in the width of the control limits, so the status changes 

and shifts that occur as a result of adjusting for nonresponse are in all likelihood due to a 

volume or ‘mean’ outcome effect.  Following Gomes et al (2016) it is possible to decompose 

the observed changes in positions of CASSRs in the funnel plots into the volume and mean 

outcome effect and this is illustrated for all the indicators in Figure 53 to Figure 57, with 

graphs a to c showing the effects of MI and graphs d to f showing the effects of IPW.  The 

volume and mean outcome effects are not easily observable on the funnel plots for either MI 

or IPW. 
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Figure 53: Funnel plots of CASSR scores on the SCRQoL indicator, showing the mean outcome and volume effects from MI and IPW 
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Figure 54: Funnel plots of CASSR scores on the satisfaction indicator, showing the mean outcome and volume effects from MI and IPW 
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Figure 55: Funnel plots of CASSR scores on the control over daily life indicator, showing the mean outcome and volume effects from MI 

and IPW 
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Figure 56: Funnel plots of CASSR scores on the safety indicator, showing the mean outcome and volume effects from MI and IPW 
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Figure 57: Funnel plots of CASSR scores on the information indicator, showing the mean outcome and volume effects from MI and IPW 
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Appendix 10: The Diversity of the ASCS Sample 

 

Prior to developing the various case-mix adjustment models, I first needed to consider how to 

address this diversity of the ASCS sample.  Where social care researchers have included 

multiple client groups, age groups and service settings in studies, they commonly split the 

sample by these characteristics at the analysis stage (Glendinning et al. 2008a).  From a 

policy perspective, this strategy has the benefit of allowing researchers to draw conclusions 

that are specific to client groups, and service forms, which are often operationally separate 

within CASSRs.  From an estimation perspective, it is often a necessity due to differences in 

the way data are collected for different groups, and differences in the interpretation of 

adjustor variables and their relationship with outcomes.  Both of these problems affect the 

ASCS dataset. 

Given these difficulties and the fact that the ASCS sample is dominated by people 

over the age of 65, who have a physical and/or sensory impairment and are receiving home-

based or community-based services, in this analysis, I proceeded by developing separate 

adjustment models for the various combinations of client group, age group and care settings.  

Table 70 below shows the size of the sample for the sub-populations, as described by the 

primary client group, age and care setting.  It is clear that the sub-groups are highly 

unbalanced.  The PSD client is by far the largest, with over 70 per cent of the respondents 

falling into this group.  The care home group is about a quarter of the size of the community-

based group and older people (over 65) are about twice as numerous as adults under 65.  

When subdivided by these three variables, some of the sub-groups are too small for separate 

analysis.80   

  

  

                                                 
80 At least that is the case when using only this dataset.  It may be possible to conduct analysis on the smaller 
subgroups using a dataset composed of multiple years’ worth of data. 
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Table 70: Size of the sample for analysis by location of care, primary client group and 

age, shown for the respondent sample with and without budget data  

  Sample with budget data Sample 

  OP YA Total OP YA Total 

C
om

m
un

it
y 

PSD 12,140 3,112 15,252 28,815 7,224 36,039

MH 886 818 1,704 1,924 3,010 4,934

LD 215 2,479 2,694 423 5,454 5,878

SM 6 26 32 18 82 100

VP 511 96 607 971 223 1,195

Subtotal 13,758  6,531 20,289 32,151 15,993  48,146
        

C
ar

e 
ho

m
e 

PSD 

n/a 

6,618 634 7,261

MH 1,246 557 1,804

LD 406 2,237 2,647

SM 15 21 36

VP 225 23 249

Subtotal 8,510 3,472  11,997

Legend: PSD=physically or sensorily disabled, MH=mental health client, LD=learning disability, 

SM=substance misuse client, VP=vulnerable person 

 

It is also notable, although not shown in this table, that the PSD client group is the 

only group that has at least one respondent from each of the 149 CASSRs in at least one of 

the sub-group cells when further subdivided by age and care setting, or solely care setting.  

Even for this, the largest client group, there are a relatively small number of respondents who 

are aged between 18 to 64 and living in a care home.  In this cell, there is not a single 

respondent from six of the CASSRs, but when the age groups are combined all of the 

CASSRs have at least one respondent from the PSD group resident in a care home.  (For an 

unknown reason one CASSR, did not have a single sample member in the dataset identified 

as resident in a care home, so 148 CASSRs is the maximum possible total for the care home 

sample.)  In developing adjustment models, it is important that the sample is as diverse as 

possible, i.e. has representation from all CASSRs, and is large enough to determine the 

relevant adjustor variables.  There is a danger that models developed on the smaller sub-

groups and those missing some CASSRs will be too specific to the peculiarities of the 

sample.   
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One possibility to address the small numbers problem is to collapse some of the sub-

groups, for example by removing the age-group stratification and bringing some client groups 

together for analysis.  I therefore looked at whether the distribution of the adjustor variables 

varied across the client groups and age groups to see whether this would be a sensible way 

forward.  On the basis of this analysis, and some exploratory modelling, I decided to combine 

the vulnerable people (VP) client group with the PSD client group and remove the age group 

stratification from the care home sub-group. 

It is not possible to combine people living in an institutional environment with those 

receiving services in their own homes or in the community in adjustment models, because the 

difference in care setting affects the interpretation of adjustor variables.  While self-reported 

suitability of the design of home is arguably exogenous for people living in their own homes, 

it is clearly not so for care home residents.  The design of the home is dependent on the care 

home’s policies around the quality of the care environment.  By contrast services delivering 

care and support to people living in their own homes have very little control (at least in the 

short-term) over the care environment.  While social services departments (SSDs) do provide 

minor adaptations as part of social care packages, these will have a limited impact on the 

suitability of the home for the person, particularly for people with more severe disabilities.   

Over the longer-term social services departments (SSDs) may move people to more suitable 

housing (assuming they are willing) or provide Disabled Facilities Grants (DFGs) to pay for 

the renovation of their home for care-related needs (now as part of the Better Care Fund), but 

in the short-term the design of housing can clearly be seen as a factor that would affect the 

efficiency and effectiveness of care services and would be desirable to include in any 

adjustment model.  Additionally, there is no intensity measure for care homes, since the 

budget variable reflects the average fee paid by the authority per place for a given care home 

and is not related to the amount of care received, so a production function model cannot be 

estimated with the care home sub-group. 

Combining the learning disabled (LD) client group with the other groups (PSD, 

mental health problems, substance misuse problems and VP)81 is problematic due to 

differences in the questionnaires received by the two groups.  People with LD receive an 

                                                 
81 The client groups are defined as follows: physical disability includes physical disability, frailty and/or 
temporary illness, hearing impairment, visual impairment and dual sensory loss; learning disability is the term 
used for intellectual impairment; substance misuse includes those with drug and / or alcohol related problems; 
mental health problems includes people with dementia as well as other mental health problems such as 
schizophrenia or depression; and vulnerable people is a catch all group to include those whose situation cannot 
be appropriately fitted in any of the other groups and includes asylum seekers/refugees and welfare benefits 
clients. 
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Easy Read version of the questionnaire that differs in the wording and in some cases the 

number of response options to the standard questionnaire.  In developing the Easy Read 

version, the developers were guided by the principle to maintain consistency with the 

standard version (Malley et al. 2010).  There is, however, no evidence of linguistic 

equivalence between the questionnaires.  Any differences in the interpretation of the two 

alternative wordings for questions will translate into differences in the observed relationship 

between adjustor and outcome variables.     

There are also reasons to be sceptical about including people from the remaining 

client groups (PSD, mental health, substance misuse and VP) in the same adjustment model, 

as the relationship between adjustor variables and outcomes is likely to vary across client 

groups.  For example, measures of difficulty with ADLs are likely to be a better predictor of 

care needs (i.e. baseline ‘risk’ or outcome in the absence of services) among people with PSD 

than among people with mental health or substance misuse problems.  In the latter two groups 

mood is likely to be a more important predictor of baseline risk.  Age is another variable that 

has a heterogeneous relationship with outcome across subgroups of the sample.  Since the 

incidence of long-term conditions rises with age, age becomes a predictor of need for social 

care, particularly amongst the physically disabled group and only for older age groups.  The 

operational separation of older people’s services from services for working age adults also 

means that older people receive different types of services to people under the age of 65, 

given their needs profiles, which may mean that differences by age reflect differences in how 

people are treated by services rather than differences in their baseline outcome state.  In 

addition, older people are much more likely to contribute to the costs of their care (The 

Health and Social Care Information Centre 2012), which may affect the way they respond to 

the questions and therefore the relationship of other predictor variables with outcomes.   

It is central to the adjustment method that the adjustment models accurately reflect the 

relationship between adjustor variables and outcomes.  An assumption of the approach is that 

the coefficients from the adjustment model are equal across all population sub-groups (and 

performance units).  If sub-groups differ substantially from the average population the model 

will fail to adjust adequately for these groups (Julious et al. 2001, Nicholl 2007).  The greater 

the difference in size between sub-groups the more problematic as the average effect will 

reflect the effect observed for the dominant sub-group.  To address the problems of 

differential relationships between covariates and outcomes by population sub-group, it is 

possible to include interactions in the models between variables describing the sub-group and 

adjustor variables.  For example, interactions between client group and other variables, and 
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between age and other variables, will allow the model to reflect differences in the relationship 

between adjustor variables and outcomes by age and client sub-groups.  Yet such models 

would rapidly become very complicated, which would not be desirable, and it is likely that 

the models would still inadequately adjust for sub-group differences (Johnson et al. 2010). 

  



 

 

418

Appendix 11: Relationship Between Adjustor Variables and Performance 

 

The relationship between each of the adjustor variables and the indicators, as well as the 

explanatory power is set out for each of the population sub-groups in Table 71 for the 

ASCOF SCRQoL indicator.  There are a number of similarities across the sub-groups in 

terms of both the relationship adjustor variables have with the indicators and which adjustor 

variables make the greatest contribution to explaining differences in indicator scores.  The 

variable capturing feelings of anxiety and depression (ANXDEP) has a fairly strong 

correlation with the indicator score and has strong explanatory power across all sub-groups.  

The high explanatory power score is explained more by the large unique contribution it 

makes to explaining variation in indicator scores, than by heterogeneity across areas, which 

varies from around four to seven per cent depending on the sub-group.  By contrast, the 

indicators capturing reporting-related factors (i.e. how and who assisted the respondents to 

complete the questionnaire, and whether additional private payments were made), have in a 

many cases high heterogeneity (as high as 13 per cent for some), yet have low explanatory 

power, as they explain little variation in the outcome indicators.   

 The other adjustor variables, show some variation across sub-groups in their 

importance.   The care home sub-group is the most different to the other sub-groups.  With 

the exception of the anxiety and depression variable, none of the variables capturing 

underlying conditions (SPH, PAIN and ADLDIFF, FINANCES) have high explanatory 

power.  This is despite these variables all having fairly strong correlations with the outcome 

indicator, and arises because both the unique contribution they make to explaining variations 

in the outcome indicator is low and heterogeneity in these indicators for this sub-group across 

areas is fairly low (zero to seven per cent).  Additionally age (AGE_GP), vulnerable person 

(VP) and gender (MALE) have low explanatory power and make little contribution to 

explaining variations in the outcome indicator for this sub-group.  This is despite very high 

heterogeneity in the age-group and vulnerable person variables across areas (19 and 53 per 

cent).  Variations in practical help from someone living inside the care home (PH, in home), 

however, does have high explanatory power, due mostly to high heterogeneity across areas 

(around 13 per cent).   

 The two sub-groups of people receiving community- and home-based services are 

more similar to each other than the care home sub-group.  In addition to the anxiety and 

depression variable, self-perceived health (SPH) also has high explanatory power, due to both 
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fairly high heterogeneity (eight to nine per cent) and high unique contribution to the variation 

in the outcome indicator.  The other variables capturing underlying conditions (PAIN and 

ADLDIFF, FINANCES) all have strong correlations with the outcome indicator, but in most 

cases do not make a large unique contribution to explaining variation in the outcome 

indicator even though they show some heterogeneity across area (around seven per cent).  

The exception is the score of the number of ADLs completed with (at least) difficulty 

(ADLDIFF) which has a different pattern across the two sub-groups, making both a larger 

contribution to variations in the outcome indicator for the 65 and over subgroup, and having 

more heterogeneity for this sub-group (around seven per cent compared to zero per cent for 

the 18 to 65 sub-group).  In the case of the ASCOF SCRQoL indicator, the ADLDIFF score 

(rounded to 2 s.f.s) crosses the criterion of explanatory power greater than one and therefore 

is included in the explanatory power model for this indicator.  This is the only substantive 

difference in the effect of predictors between the two indicators.  This suggests that the 

method for aggregating the different quality of life questions into a single index makes very 

little difference to our understanding of what impacts on differences in social care outcomes.   

Another important variable in predicting variation in the outcome indicators for these 

two sub-groups is the self-perceived design of home question (SPHD), which has very high 

explanatory power.  This is driven both by the high unique contribution made by this variable 

to explaining variation in the outcome indicators and high levels of heterogeneity across areas 

on this indicator (from eight to 11 per cent).  As for the care home sub-group, gender 

(MALE) has little explanatory power and has little variation across areas, but the other three 

variables capturing resources and personal characteristics, i.e. practical help (PH), vulnerable 

person (VP) and age (AGE_GP), show very high heterogeneity across areas (from seven to 

45 per cent).  Despite this high heterogeneity all these variables have low explanatory power 

because they make little unique contribution to explaining variations in the outcome 

indicators for these sub-groups. 
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Table 71: Correlation and explanatory power of adjustor variables, with respect to ASCOF SCRQoL indicator 

 Care home 18 to 65 65 and over 
Variable Pearson’s R Explanatory 

power 
Pearson’s R Explanatory 

power 
Pearson’s R Explanatory 

power 
MALE 0.007 0.181 0.010 0.000 -0.023*** 0.018 
AGE_GP -0.014 0.196 -0.049** 0.022 0.051*** 0.001 
VP 0.005 0.012 0.010 0.093 0.007 0.026 
ADLDIFF -0.323*** 0.091 -0.257*** 0.000 -0.385*** 0.971 
ADLCANT -0.283*** 0.016 0.006 0.417 -0.190*** 0.070 
SPH -0.394*** 0.000 -0.494*** 2.842 -0.424*** 2.880 
PAIN -0.227*** -0.018 -0.343*** 0.141 -0.219*** 0.023 
ANXDEP -0.347*** 1.675 -0.475*** 3.365 -0.403*** 1.640 
FINANCES -0.132*** 0.079 -0.103*** 0.000 -0.222*** 0.104 
SPHD n/a 0.000 -0.477*** 7.724 -0.437*** 5.654 
PH, in home 0.147*** 0.979 0.051*** 0.420 -0.024*** 0.214 
PH, out home -0.146*** 0.001 0.019 0.082 0.009 0.081 
PROXY -0.241*** 0.147 -0.014 0.000 -0.120*** 0.199 
ASSIST, read 0.190*** 0.033 0.030* 0.000 -0.029*** 0.023 
ASSIST, translate 0.041*** 0.006 0.001 0.056 -0.050*** 0.002 
ASSIST, write 0.051*** 0.004 0.040** 0.001 -0.082*** 0.002 
ASSIST, discuss 0.001 0.000 -0.047*** 0.000 -0.078*** 0.000 
ASSIST, in home 0.013 0.053 -0.032** 0.000 -0.057*** 0.002 
ASSIST, out home -0.137*** 0.010 -0.058*** 0.000 -0.119*** 0.084 
ASSIST, cw 0.272*** 0.116 0.096*** 0.000 0.075*** 0.214 
PRIV, own -0.089*** 0.111 -0.036** 0.037 -0.035*** 0.049 
PRIV, fam -0.059*** 0.000 -0.026* 0.000 -0.046*** 0.000 
Legend: * p<.1; ** p<.01; *** p<.001; variables in bold have an explanatory power over 1, or very close to 1  
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Appendix 12: Results of the Risk-Adjustment Models Estimated on the 

Multiply-Imputed Dataset 

 

In this section I present the coefficient estimates for the adjustment models for the ASCOF 

SCRQoL indicators, estimated by CCA and on the MI dataset (see Appendix 1 and 2 for 

further details of the imputation method).  For the models estimated on the MI dataset, I 

exclude cases from the estimation for which the ASCOF SCRQoL indicator was missing in 

the original dataset.  The data in this section are presented by population subgroup and by 

whether the predictors included in the model are all the significant variables (SV model) or a 

subset of those with high explanatory power (EP model).  I also separately present the OLS 

against the FR regression and the OLS against the RE and FE models to simplify the 

comparisons.  All of the OLS models failed tests for normality of the error terms and 

homoscedasticity (confirmed on visual inspection of the data).  Likewise all of the FE models 

fail the modified Wald test for groupwise heteroscedasticity, as implemented via the stata 

routine xttest3 (Baum 2000, Greene 2012).  All results for these models therefore use the 

Huber-White sandwich estimator to correct standard errors (Huber 1967a, White 1980).   

The models estimated on the multiply-imputed dataset are very similar to those 

estimated on the complete cases dataset (see Table 72 to Table 77).  All of the coefficients 

have the same sign, and, although in general the coefficients are numerically different, in 

only a few instances is the change large enough to lead to different conclusions.  For 

example, in the SV model for the 18 to 64 sub-group the coefficient for help translating the 

questionnaire (ASSIST, translate) becomes insignificant (from p<.1) in both the OLS and FR 

regressions, while the coefficient on practical help from inside the household (PH, in home) 

becomes more significant (p<.1 to p<.01) for the same subgroup in both the OLS and FR 

regressions (see Table 72).  The practical help from inside the household coefficient also 

changes in the SV model for the 65 and over subgroup, but this time it becomes non-

significant (p<.1 to N.S.) and only for the FR regression (see Table 74).  In the care homes 

subgroup, the coefficients that change between the two estimation samples are those that 

were found to change between the regressions.  Thus in the SV more, both the male dummy 

variable (MALE) and the age group (AGE_GP) variables change significance for both the 

OLS and FR regressions, with MALE becoming less significant and 55 to 64 age group 

generally dummy variable more significant (see Table 76).  Similarly, it is the interaction 

term between practical help from inside the household (PH, in) and anxiety/depression 
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(ANXDEP) that changes in the EP model for the care home subgroup.  The coefficients 

estimated on the imputed sample are less significant for both the OLS and FR regressions.
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Table 72: Estimates for OLS and FR regression of the ASCOF SCRQoL indicator, SV model, 18 to 64 subgroup  

 Casewise-deleted sample (n=5,856) Multiply-imputed sample (m=20, n=6,793) 
Variable OLS FR OLS FR 
 Β (Robust SE) Β (Robust SE) Β (Robust SE) Β (Robust SE) 
Fixed effects     
SPH: good a -1.061*** (0.16) -0.419*** (0.06) -1.11*** (0.149) -0.448*** (0.057)
SPH: fair a -2.170*** (0.157) -0.724*** (0.057) -2.158*** (0.147) -0.739*** (0.054)
SPH: bad a -3.483*** (0.18) -0.970*** (0.059) -3.48*** (0.169) -0.987*** (0.056)
SPH: very bad a -3.964*** (0.242) -1.033*** (0.066) -4.049*** (0.229) -1.064*** (0.063)
SPHD -1.092*** (0.097) -0.260*** (0.021) -1.141*** (0.09) -0.271*** (0.02)
ADLDIFF -0.069* (0.031) -0.021** (0.007) -0.074* (0.03) -0.023** (0.007)
ADLDIFF*SPHD -0.091*** (0.021) -0.009* (0.004) -0.086*** (0.02) -0.008* (0.004)
FINANCE: diff b -0.715*** (0.115) -0.153*** (0.025) -0.75*** (0.108) -0.161*** (0.023)
FINANCE: can’t b -0.575*** (0.119) -0.121*** (0.027) -0.566*** (0.112) -0.12*** (0.025)
ANXDEP -1.665*** (0.077) -0.348*** (0.016) -1.682*** (0.074) -0.353*** (0.016)
PH, in home 0.357* (0.151) 0.081* (0.037) 0.463** (0.142) 0.107** (0.035)
PH, out home 0.288** (0.096) 0.058** (0.021) 0.314** (0.092) 0.064** (0.02)
PH, in*ADLDIFF 0.093** (0.035) 0.016* (0.008) 0.082* (0.033) 0.013* (0.008)
MALE -0.238** (0.089) -0.052** (0.019) -0.221** (0.083) -0.049** (0.018)
ASSIST, cw 0.878*** (0.155) 0.204*** (0.037) 0.872*** (0.149) 0.202*** (0.035)
ASSIST, translate 0.320* (0.179) 0.071* (0.04) 0.138 (0.173) 0.032 (0.038)
ASSIST, write 0.221* (0.108) 0.043* (0.024) 0.215* (0.105) 0.042* (0.023)
Constant 22.299*** (0.183) 2.318*** (0.062) 22.36*** (0.17) 2.35*** (0.059)
Model statistics 
F-stat 259.98*** 211.23*** 296.23*** 242.33***
R2 c 0.431 0.431 0.435
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good; b Base category: can do easily by myself; c R2 for FR regression calculated as the correlation of predicted 

SCRQoL with observed SCRQoL. 
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Table 73: Estimates for OLS and FR regression of the ASCOF SCRQoL indicator, EP model, 18 to 64 subgroup 

 Casewise-deleted sample (n=6,513) Multiply-imputed sample (m=20, n=6,793) 
Variable OLS FR OLS FR 
 Β (Robust SE) Β (Robust SE) Β (Robust SE) Β (Robust SE) 
Fixed effects  
SPH: good a -1.187*** (0.151) -0.451*** (0.058) -1.19*** (0.149) -0.453*** (0.057)
SPH: fair a -2.425*** (0.148) -0.771*** (0.056) -2.399*** (0.146) -0.766*** (0.055)
SPH: bad a -3.817*** (0.168) -1.038*** (0.057) -3.819*** (0.165) -1.039*** (0.056)
SPH: very bad a -4.422*** (0.227) -1.139*** (0.063) -4.472*** (0.226) -1.148*** (0.063)
SPHD -1.291*** (0.091) -0.339*** (0.022) -1.293*** (0.089) -0.34*** (0.022)
ANXDEP: mod b -1.290*** (0.123) -0.397*** (0.033) -1.277*** (0.121) -0.395*** (0.032)
ANXDEP: extreme b -2.985*** (0.251) -0.745*** (0.051) -3.002*** (0.252) -0.75*** (0.051)
SPHD* ANXDEP: mod c -0.264* (0.114) 0.039 (0.026) -0.275* (0.113) 0.038 (0.026)
SPHD* ANXDEP: ext c -0.573*** (0.168) 0.02 (0.034) -0.588*** (0.167) 0.019 (0.033)
Constant 22.314*** (0.13) 2.370*** (0.055) 22.32*** (0.129) 2.37*** (0.054)
Model statistics  
F-stat 517.20*** 415.93*** 536.59*** 427.5***
R2 d 0.417 0.416 0.421
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good; b Base category: not anxious or depressed; c Base category: SPHD*ANXDEP: not anxious or depressed; d 

R2 for FR regression calculated as the correlation of predicted SCRQoL with observed SCRQoL.  
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Table 74: Estimates for OLS and FR regression of ASCOF SCRQoL indicator, significant variables model, 65 and over subgroup 

 Casewise-deleted sample (n=20,881) Multiply-imputed sample (m=20, n=26,103) 
Variable OLS FR OLS FR 
 Β (Robust SE) Β (Robust SE) Β (Robust SE) Β (Robust SE) 
Fixed effects     
SPH: good a -0.632*** (0.097) -0.303*** (0.041) -0.735*** (0.086) -0.344*** (0.037)
SPH: fair a -1.624*** (0.095) -0.603*** (0.04) -1.673*** (0.084) -0.63*** (0.036)
SPH: bad a -2.676*** (0.109) -0.806*** (0.041) -2.749*** (0.097) -0.839*** (0.037)
SPH: very bad a -3.165*** (0.15) -0.864*** (0.045) -3.187*** (0.137) -0.886*** (0.041)
ANXDEP -1.350*** (0.04) -0.304*** (0.009) -1.344*** (0.037) -0.305*** (0.008)
SPHD -1.397*** (0.031) -0.305*** (0.007) -1.387*** (0.028) -0.305*** (0.006)
ADLDIFF -0.297*** (0.013) -0.068*** (0.003) -0.29*** (0.012) -0.066*** (0.003)
FINANCES -0.188*** (0.029) -0.050*** (0.007) -0.169*** (0.026) -0.045*** (0.006)
PH, in home 0.156* (0.075) 0.037* (0.02) 0.126* (0.067) 0.029 (0.018)
PH, out home 0.276*** (0.052) 0.063*** (0.013) 0.291*** (0.048) 0.069*** (0.012)
PH, in *ADLDIFF 0.154*** (0.018) 0.031*** (0.004) 0.146*** (0.017) 0.030*** (0.004)
MALE -0.204*** (0.045) -0.047*** (0.011) -0.25*** (0.04) -0.059*** (0.01)
PROXY -0.854*** (0.104) -0.178*** (0.022) -0.889*** (0.099) -0.187*** (0.021)
ASSIST, cw 1.039*** (0.103) 0.272*** (0.028) 0.875*** (0.094) 0.230*** (0.026)
ASSIST, out home -0.323*** (0.06) -0.073*** (0.014) -0.414*** (0.057) -0.096*** (0.013)
ASSIST, read 0.159** (0.051) 0.033** (0.012) 0.158** (0.048) 0.033** (0.011)
PRIV, own -0.159*** (0.042) -0.044*** (0.01) -0.176*** (0.038) -0.048*** (0.009)
Constant 22.42*** (0.099) 2.377*** (0.041) 22.52*** (0.089) 2.418*** (0.037)
Model statistics 
F-stat 742.34*** 668.84*** 851.96*** 771.31***
R2 b 0.391 0.391 0.385
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good; b R2 for FR regression calculated as the correlation of predicted SCRQoL with observed SCRQoL. 
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Table 75: Estimates for OLS and FR regression of ASCOF SCRQoL indicator, EP model, 65 and over subgroup 

 Casewise-deleted sample (n=23,110) Multiply-imputed sample (m=20, n=26,103) 
Variable OLS FR OLS FR 
 Β (Robust SE) Β (Robust SE) Β (Robust SE) Β (Robust SE) 
Fixed effects  
SPH: good a -0.734*** (0.091) -0.321*** (0.039) -0.764*** (0.086) -0.334*** (0.037)
SPH: fair a -1.730*** (0.089) -0.609*** (0.038) -1.745*** (0.085) -0.618*** (0.036)
SPH: bad a -2.837*** (0.104) -0.828*** (0.039) -2.847*** (0.098) -0.837*** (0.037)
SPH: very bad a -3.275*** (0.147) -0.894*** (0.044) -3.286*** (0.14) -0.904*** (0.042)
SPHD: most b -1.425*** (0.063) -0.434*** (0.017) -1.445*** (0.06) -0.440*** (0.016)
SPHD: some b -2.552*** (0.132) -0.687*** (0.028) -2.603*** (0.127) -0.699*** (0.027)
SPHD: inappropriate b -3.278*** (0.417) -0.832*** (0.077) -3.168*** (0.392) -0.818*** (0.074)
ANXDEP: moderate c -1.316*** (0.042) -0.318*** (0.01) -1.305*** (0.041) -0.317*** (0.01)
ANXDEP: extreme c -2.887*** (0.119) -0.597*** (0.022) -2.909*** (0.114) -0.603*** (0.021)
ADLDIFF -0.241*** (0.013) -0.074*** (0.003) -0.241*** (0.012) -0.075*** (0.003)
ADLDIFF*SPHD: most d -0.024 (0.018) 0.020*** (0.004) -0.022 (0.018) 0.020*** (0.004)
ADLDIFF*SPHD: some d -0.057* (0.03) 0.023*** (0.006) -0.048* (0.029) 0.025*** (0.006)
ADLDIFF*SPHD: inappropriate d -0.137 (0.09) 0.012 (0.016) -0.142* (0.086) 0.012 (0.016)
Constant 22.43*** (0.084) 2.430*** (0.038) 22.47*** (0.079) 2.446*** (0.036)
Model statistics   
F-stat 1,032.44*** 899.523*** 1,108.36*** 965.31***
R2 e 0.370 0.371 0.367
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good; b Base category: meets needs very well; c Base category: not anxious or depressed; d Base category: 

ADLDIFF*SPHD: meets needs very well; e R2 for FR regression calculated as the correlation of predicted SCRQoL with observed SCRQoL. 
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Table 76: Estimates for OLS and FR regression of ASCOF SCRQoL indicator, SV model, care home sub-group 

 Casewise-deleted sample (n=5,710) Multiply-imputed sample (m=20, n=6,863) 
Variable OLS FR OLS FR 
 Β (Robust SE) Β (Robust SE) Β (Robust SE) Β (Robust SE) 
Fixed effects     
SPH -0.820*** (0.055) -0.230*** (0.016) -0.841*** (0.051) -0.237*** (0.014)
ANXDEP: moderate a -1.289*** (0.09) -0.366*** (0.025) -1.246*** (0.084) -0.358*** (0.023)
ANXDEP: extremely a -3.052*** (0.28) -0.680*** (0.057) -2.984*** (0.267) -0.670*** (0.055)
ADLDIFF^3 -0.004*** (3.59E-04) -0.001*** (9.75E-05) -0.005*** (3.33E-04) -0.001*** (9.08E-05)
PH, in home 0.686*** (0.082) 0.207*** (0.026) 0.688*** (0.079) 0.210*** (0.025)
MALE -0.326*** (0.094) -0.086** (0.027) -0.242** (0.084) -0.064* (0.025)
AGE_GP: 18-34 b 0.057 (0.344) 0.066 (0.124) -0.309 (0.334) -0.066 (0.115)
AGE_GP: 35-44 b -1.595*** (0.406) -0.445*** (0.102) -1.373*** (0.361) -0.388*** (0.095)
AGE_GP: 45-54 b -0.103 (0.241) -0.026 (0.078) -0.218 (0.232) -0.066 (0.074)
AGE_GP: 55-64 b -0.477* (0.217) -0.148* (0.063) -0.564** (0.192) -0.173** (0.056)
AGE_GP: 65-74 b -0.455** (0.15) -0.134** (0.043) -0.409** (0.135) -0.120** (0.039)
AGE_GP: 75-84 b -0.118 (0.097) -0.023 (0.028) -0.115 (0.088) -0.022 (0.026)
PROXY -1.051*** (0.186) -0.235*** (0.05) -1.086*** (0.168) -0.244*** (0.045)
ASSIST, cw 0.720*** (0.145) 0.264*** (0.047) 0.652*** (0.126) 0.240*** (0.042)
ASSIST, out home -0.530*** (0.142) -0.153*** (0.042) -0.542*** (0.124) -0.158*** (0.038)
ASSIST, read 0.313** (0.103) 0.090** (0.029) 0.308** (0.094) 0.091** (0.027)
PRIV, own -0.492*** (0.129) -0.130*** (0.033) -0.471*** (0.116) -0.127*** (0.031)
Constant 22.13*** (0.149) 2.247*** (0.047) 22.2*** (0.13) 2.273*** (0.042)
Model statistics 
F-stat 122.98*** 127.64*** 143.04*** 149.38***
R2 c 0.296 0.301 0.295
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: not anxious or depressed; b Base category: 85 and over age group; c R2 for FR regression calculated as the correlation 

of predicted SCRQoL with observed SCRQoL.  
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Table 77: Estimates for OLS and FR regression of ASCOF SCRQoL indicator, EP model, care home sub-group 

 Casewise-deleted sample (n=6,344) Multiply-imputed sample (m=20, n=6,863) 
Variable OLS FR OLS FR 
 Β (Robust SE) Β (Robust SE) Β (Robust SE) Β (Robust SE) 
Fixed effects  
ANXDEP: moderate a -2.218*** (0.114) -0.588*** (0.029) -2.216*** (0.112) -0.590*** (0.029)
ANXDEP: extremely a -5.027*** (0.346) -1.147*** (0.065) -5.032*** (0.348) -1.151*** (0.065)
PH in home 0.741*** (0.097) 0.261*** (0.035) 0.695*** (0.098) 0.245*** (0.035)
PH in* ANXDEP: moderate b 0.540** (0.184) 0.052 (0.053) 0.436* (0.188) 0.030 (0.054)
PH in*ANXDEP: extremely b 1.784** (0.656) 0.234* (0.14) 1.613* (0.677) 0.205 (0.141)
Constant 20.33*** (0.063) 1.712*** (0.02) 20.35*** (0.061) 1.718*** (0.02)
Model statistics  
F-stat 172.23*** 187.632*** 169.92*** 184.82***
R2 c 0.140 0.140 0.137
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: not anxious or depressed; b Base category: PH in*ANXDEP: not anxious or depressed; c R2 for FR regression 

calculated as the correlation of predicted SCRQoL with observed SCRQoL. 
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The results for the risk adjustment models estimated by OLS, RE and FE regression for each 

subgroup and variable selection are shown in Table 78 through to Table 83.  The model 

coefficients estimated on the multiply-imputed dataset all have effects in the anticipated 

direction and the results are the same in that respect as the models estimated using the 

complete cases only.  Many of the coefficients estimated on the MI compared to the complete 

case sample are different, but in most cases the differences are small and the conclusions 

remain the same, showing evidence of convergent validity.   

Nevertheless, there are some differences that are larger and some coefficients change 

in their significance (although, as before, not always an indication of the size of the 

coefficient difference).  Often the coefficients that are most different between the imputed 

and complete case samples are those that differ most between the regression models.  For 

example, the coefficients for self-perceived health (SPH) for the SV model estimated on the 

18 to 65 subgroup show modest changes (>.05, but <.1) (see Table 78) and once again the 

greatest differences (in the range of 0.1 to 0.4 scale points), are found for the age group 

coefficients for the SV model estimated on the care home subgroup (see Table 82).  This is 

not always the case.  The coefficient are all very similar (all differences <.05) for the EP 

model estimated on the 18 to 65 sub-group show quite large changes despite there being quite 

a lot of modest changes of around 0.05 to 0.1 between the coefficients estimated by the 

different regression methods (see Table 79).  
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Table 78: Estimates for OLS, fixed and RE regression of ASCOF SCRQoL indicator, SV model, 18 to 64 sub-group 

 Casewise-deleted sample (n=5,856) Multiply-imputed sample (m=20, n=6,793) 
Variable OLS RE FE OLS RE FE 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects       
SPH: good a -1.061*** (0.16) -1.068*** (0.203) -1.118*** (0.162) -1.11*** (0.149) -1.117*** (0.191) -1.169*** (0.144) 
SPH: fair a -2.170*** (0.157) -2.172*** (0.194) -2.202*** (0.16) -2.158*** (0.147) -2.161*** (0.183) -2.194*** (0.149) 
SPH: bad a -3.483*** (0.18) -3.487*** (0.209) -3.521*** (0.181) -3.48*** (0.169) -3.485*** (0.197) -3.528*** (0.172) 
SPH: very bad a -3.964*** (0.242) -3.962*** (0.242) -3.974*** (0.256) -4.049*** (0.229) -4.048*** (0.228) -4.072*** (0.254) 
SPHD -1.092*** (0.097) -1.088*** (0.096) -1.062*** (0.101) -1.141*** (0.09) -1.137*** (0.089) -1.109*** (0.09) 
ADLDIFF -0.069* (0.031) -0.069* (0.032) -0.072* (0.029) -0.074* (0.03) -0.075* (0.03) -0.076** (0.029) 
ADLDIFF*SPHD -0.091*** (0.021) -0.091*** (0.02) -0.090*** (0.021) -0.086*** (0.02) -0.086*** (0.019) -0.086*** (0.02) 
FINANCE: diff c -0.715*** (0.115) -0.717*** (0.116) -0.722*** (0.116) -0.75*** (0.108) -0.753*** (0.109) -0.766*** (0.107) 
FINANCE: can’t  c -0.575*** (0.119) -0.579*** (0.12) -0.598*** (0.117) -0.566*** (0.112) -0.568*** (0.113) -0.584*** (0.113) 
ANXDEP -1.665*** (0.077) -1.663*** (0.073) -1.661*** (0.073) -1.682*** (0.074) -1.681*** (0.069) -1.677*** (0.073) 
PH in home 0.357* (0.151) 0.359* (0.163) 0.372* (0.155) 0.463** (0.142) 0.464** (0.152) 0.47** (0.146) 
PH out home 0.288** (0.096) 0.284** (0.096) 0.275** (0.101) 0.314** (0.092) 0.309** (0.091) 0.291** (0.098) 
PH in*ADLDIFF 0.093** (0.035) 0.091** (0.035) 0.082* (0.036) 0.082* (0.033) 0.081* (0.033) 0.072* (0.033) 
MALE -0.238** (0.089) -0.236** (0.089) -0.226* (0.095) -0.221** (0.083) -0.222** (0.083) -0.225** (0.085) 
ASSIST, care worker 0.878*** (0.155) 0.880*** (0.149) 0.878*** (0.171) 0.872*** (0.149) 0.872*** (0.144) 0.861*** (0.153) 
ASSIST, translate 0.320* (0.179) 0.326* (0.169) 0.313* (0.183) 0.138 (0.173) 0.142 (0.164) 0.136 (0.186) 
ASSIST, write down 0.221* (0.108) 0.216* (0.107) 0.191 (0.116) 0.215* (0.105) 0.21* (0.104) 0.189* (0.11) 
Constant 22.299*** (0.183) 22.310*** (0.221) 22.347*** (0.18) 22.36*** (0.17) 22.38*** (0.206) 22.42*** (0.169) 
Random effects   
௨ 0.210 (0.083)ߪ  0.195 (0.079)  
௘  3.289 (0.031)ߪ  3.304 (0.029)  
Model statistics   
F-stat 259.98*** 191.33*** 253.91*** 296.23*** 296.37*** 292.42*** 
R2 0.431 0.447 0.435 0.450 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good; b Base category: SPHD*SPH: very good; c Base category: can do easily by myself. 
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Table 79: Estimates for OLS, fixed and RE regression of the ASCOF SCRQoL indicator, EP model, 18 to 64 sub-group 

 Casewise-deleted sample (n=6,513) Multiply-imputed sample (m=20, n=6,793) 
Variable OLS RE FE OLS RE FE 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects   
SPH: good a -1.187*** (0.151) -1.192*** (0.197) -1.244*** (0.146) -1.19*** (0.149) -1.198*** (0.193) -1.255*** (0.143) 
SPH: fair a -2.425*** (0.148) -2.429*** (0.188) -2.472*** (0.151) -2.399*** (0.146) -2.404*** (0.185) -2.445*** (0.149) 
SPH: bad a -3.817*** (0.168) -3.822*** (0.201) -3.872*** (0.173) -3.819*** (0.165) -3.826*** (0.197) -3.881*** (0.17) 
SPH: very bad a -4.422*** (0.227) -4.424*** (0.229) -4.465*** (0.254) -4.472*** (0.226) -4.474*** (0.226) -4.519*** (0.251) 
SPHD -1.291*** (0.091) -1.286*** (0.088) -1.248*** (0.087) -1.293*** (0.089) -1.288*** (0.087) -1.258*** (0.086) 
ANXDEP: moderate c -1.290*** (0.123) -1.290*** (0.135) -1.288*** (0.121) -1.277*** (0.121) -1.277*** (0.134) -1.274*** (0.12) 
ANXDEP: extreme c -2.985*** (0.251) -2.978*** (0.218) -2.916*** (0.272) -3.002*** (0.252) -2.995*** (0.22) -2.944*** (0.271) 
SPHD*  
ANXDEP: moderate d 

-0.264* (0.114) -0.264* (0.11) -0.264* (0.11) -0.275* (0.113) -0.274* (0.109) -0.272* (0.109) 

SPHD*  
ANXDEP: extreme d 

-0.573*** (0.168) -0.576*** (0.139) -0.618*** (0.17) -0.588*** (0.167) -0.59*** (0.139) -0.623*** (0.169) 

Constant 22.314*** (0.13) 22.316*** (0.179) 22.318*** (0.13) 22.32*** (0.129) 22.32*** (0.175) 22.33*** (0.128) 
Random effects   
௨ 0.183 (0.089)ߪ  0.205 (0.08)  
௘  3.345 (0.03)ߪ  3.347 (0.029)  
Model statistics   
F-stat 517.20*** 384.50*** 475.57*** 536.59*** 526.43*** 482.48*** 
R2 0.417 0.432 0.421 0.436 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good; b Base category: SPHD*SPH: very good;  c Base category: not anxious or depressed; d Base category: 

SPHD*ANXDEP: not anxious or depressed 
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Table 80: Estimates for OLS, fixed and RE regression of the ASCOF SCRQoL indicator, SV model, 65 and over sub-group 

 Casewise-deleted sample (n=20,881) Multiply-imputed sample (m=20, n=26,103) 
Variable OLS RE FE OLS RE FE 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects       
SPH: good a -0.632*** (0.097) -0.635*** (0.118) -0.641*** (0.094) -0.735*** (0.086) -0.735*** (0.104) -0.738*** (0.085) 
SPH: fair a -1.624*** (0.095) -1.626*** (0.114) -1.631*** (0.089) -1.673*** (0.084) -1.678*** (0.1) -1.685*** (0.086) 
SPH: bad a -2.676*** (0.109) -2.681*** (0.124) -2.686*** (0.108) -2.749*** (0.097) -2.756*** (0.109) -2.763*** (0.102) 
SPH: very bad a -3.165*** (0.15) -3.161*** (0.147) -3.157*** (0.15) -3.187*** (0.137) -3.185*** (0.132) -3.185*** (0.136) 
ANXDEP -1.350*** (0.04) -1.345*** (0.037) -1.342*** (0.04) -1.344*** (0.037) -1.337*** (0.034) -1.333*** (0.038) 
SPHD -1.397*** (0.031) -1.391*** (0.028) -1.383*** (0.03) -1.387*** (0.028) -1.378*** (0.026) -1.369*** (0.027) 
ADLDIFF -0.297*** (0.013) -0.294*** (0.012) -0.293*** (0.013) -0.29*** (0.012) -0.288*** (0.011) -0.287*** (0.013) 
FINANCEs -0.188*** (0.029) -0.182*** (0.029) -0.178*** (0.03) -0.169*** (0.026) -0.168*** (0.027) -0.168*** (0.028) 
PH, in home 0.156* (0.075) 0.153* (0.08) 0.145* (0.087) 0.126* (0.067) 0.116 (0.072) 0.104 (0.083) 
PH, outside home 0.276*** (0.052) 0.266*** (0.051) 0.258*** (0.056) 0.291*** (0.048) 0.274*** (0.047) 0.261*** (0.053) 
PH, in *ADLDIFF  0.154*** (0.018) 0.153*** (0.018) 0.155*** (0.021) 0.146*** (0.017) 0.146*** (0.016) 0.146*** (0.019) 
MALE -0.204*** (0.045) -0.202*** (0.044) -0.200*** (0.047) -0.25*** (0.04) -0.249*** (0.04) -0.248*** (0.041) 
PROXY -0.854*** (0.104) -0.860*** (0.095) -0.863*** (0.113) -0.889*** (0.099) -0.895*** (0.091) -0.901*** (0.105) 
ASSIST, cw 1.039*** (0.103) 1.004*** (0.1) 0.974*** (0.139) 0.875*** (0.094) 0.848*** (0.091) 0.823*** (0.097) 
ASSIST, out home -0.323*** (0.06) -0.331*** (0.06) -0.336*** (0.064) -0.414*** (0.057) -0.422*** (0.056) -0.428*** (0.063) 
ASSIST, read 0.159** (0.051) 0.153** (0.05) 0.150** (0.055) 0.158** (0.048) 0.153** (0.047) 0.149** (0.051) 
PRIV, own -0.159*** (0.042) -0.156*** (0.042) -0.155*** (0.042) -0.176*** (0.038) -0.176*** (0.038) -0.174*** (0.038) 
Constant 22.42*** (0.099) 22.41*** (0.122) 22.41*** (0.094) 22.52*** (0.089) 22.52*** (0.108) 22.53*** (0.088) 
Random effects   
௨ 0.271 (0.029)ߪ  0.246 (0.027)  
௘  2.878 (0.014)ߪ  2.887 (0.013)  
Model statistics   
F-stat 742.34*** 597.86*** 830.19*** 851.96*** 899.03*** 932.72*** 
R2 0.391 0.401 0.385 0.393 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good.  
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Table 81: Estimates for OLS, fixed and RE regression of the ASCOF SCRQoL indicator, EP model, 65 and over sub-group 

 Casewise-deleted sample (n=23,110) Multiply-imputed sample (m=20, n=26,103) 
Variable OLS RE FE OLS RE FE 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects   
SPH: good a -0.734*** (0.091) -0.737*** (0.113) -0.743*** (0.089) -0.764*** (0.086) -0.767*** (0.105) -0.773*** (0.089) 
SPH: fair a -1.730*** (0.089) -1.733*** (0.11) -1.740*** (0.088) -1.745*** (0.085) -1.751*** (0.102) -1.76*** (0.09) 
SPH: bad a -2.837*** (0.104) -2.841*** (0.119) -2.847*** (0.106) -2.847*** (0.098) -2.856*** (0.111) -2.864*** (0.107) 
SPH: very bad a -3.275*** (0.147) -3.275*** (0.142) -3.276*** (0.151) -3.286*** (0.14) -3.289*** (0.134) -3.292*** (0.141) 
SPHD: most b -1.425*** (0.063) -1.432*** (0.068) -1.435*** (0.056) -1.445*** (0.06) -1.449*** (0.065) -1.45*** (0.055) 
SPHD: some b -2.552*** (0.132) -2.532*** (0.127) -2.512*** (0.145) -2.603*** (0.127) -2.581*** (0.121) -2.563*** (0.134) 
SPHD: inappropriate b -3.278*** (0.417) -3.214*** (0.36) -3.161*** (0.398) -3.168*** (0.392) -3.105*** (0.335) -3.058*** (0.381) 
ANXDEP: moderate c -1.316*** (0.042) -1.314*** (0.042) -1.313*** (0.052) -1.305*** (0.041) -1.303*** (0.041) -1.302*** (0.049) 
ANXDEP: extreme c -2.887*** (0.119) -2.866*** (0.096) -2.849*** (0.12) -2.909*** (0.114) -2.889*** (0.093) -2.876*** (0.11) 
ADLDIFF -0.241*** (0.013) -0.239*** (0.013) -0.237*** (0.013) -0.241*** (0.012) -0.24*** (0.012) -0.239*** (0.013) 
ADLDIFF* 
SPHD: most d 

-0.024 (0.018) -0.022 (0.018) -0.02 (0.019) -0.022 (0.018) -0.019 (0.018) -0.018 (0.019) 

ADLDIFF* 
SPHD: some d 

-0.057* (0.03) -0.057* (0.028) -0.056 (0.035) -0.048* (0.029) -0.047** (0.027) -0.047 (0.032) 

ADLDIFF* 
SPHD: inappropriate d 

-0.137 (0.09) -0.144* (0.071) -0.148 (0.09) -0.142* (0.086) -0.148** (0.067) -0.153** (0.088) 

Constant 22.43*** (0.084) 22.42*** (0.109) 22.42*** (0.084) 22.47*** (0.079) 22.46*** (0.101) 22.46*** (0.083) 
Random effects   
௨  0.261 (0.028)ߪ  0.259 (0.027)  
௘   2.924 (0.014)ߪ  2.926 (0.013)  
Model statistics    
F-stat 1,032.44*** 1,024.36*** 1,034.73*** 1,108.36*** 1,098.08*** 1,188.55*** 
R2 0.370 0.371 0.379 0.367  0.376 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: very good; b Base category: meets needs very well; c Base category: not anxious or depressed; d Base category: 

ADLDIFF*SPHD: meets needs very well. 
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Table 82: Estimates for OLS, fixed and RE regression of the ASCOF SCRQoL indicator, SV model, care home sub-group 

 Casewise-deleted sample (n=5,710) Multiply-imputed sample (m=20, n=6,863) 
Variable OLS RE FE OLS RE FE 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects       
SPH -0.820*** (0.055) -0.819*** (0.052) -0.821*** (0.054) -0.841*** (0.051) -0.84*** (0.048) -0.841*** (0.055) 
ANXDEP: moderate a -1.289*** (0.09) -1.286*** (0.088) -1.276*** (0.086) -1.246*** (0.084) -1.243*** (0.082) -1.24*** (0.08) 
ANXDEP: extreme a -3.052*** (0.28) -3.057*** (0.216) -3.076*** (0.29) -2.984*** (0.267) -2.987*** (0.204) -2.989*** (0.254) 

ADLDIFF^3 
-0.004*** (3.59E-

04)
-0.005*** (2.41E-

04)
-0.005***(3.55E-

04) 
-0.005*** (3.33E-

04)
-0.005*** (3.23E-

04)
-0.005*** (3.45E-

04) 
PH, in home 0.686*** (0.082) 0.686*** (0.087) 0.684*** (0.094) 0.688*** (0.079) 0.689*** (0.082) 0.694*** (0.087) 
MALE -0.326*** (0.094) -0.325*** (0.094) -0.315** (0.107) -0.242** (0.084) -0.241** (0.085) -0.231* (0.092) 
AGE_GP: 18-34 b 0.057 (0.344) 0.069 (0.4) 0.043 (0.347) -0.309 (0.334) -0.304 (0.368) -0.389 (0.307) 
AGE_GP: 35-44 b -1.595*** (0.406) -1.564*** (0.368) -1.374*** (0.401) -1.373*** (0.361) -1.309*** (0.332) -1.185** (0.35) 
AGE_GP: 45-54 b -0.103 (0.241) -0.086 (0.266) 0.001 (0.243) -0.218 (0.232) -0.183 (0.244) -0.113 (0.238) 
AGE_GP: 55-64 b -0.477* (0.217) -0.460* (0.218) -0.354 (0.226) -0.564** (0.192) -0.528** (0.193) -0.447* (0.202) 
AGE_GP: 65-74 b -0.455** (0.15) -0.448** (0.147) -0.405* (0.175) -0.409** (0.135) -0.399** (0.134) -0.367* (0.154) 
AGE_GP: 75-84 b -0.118 (0.097) -0.117 (0.097) -0.111 (0.101) -0.115 (0.088) -0.112 (0.088) -0.102 (0.09) 
PROXY -1.051*** (0.186) -1.044*** (0.171) -1.006*** (0.194) -1.086*** (0.168) -1.07*** (0.155) -1.03*** (0.172) 
ASSIST, cw 0.720*** (0.145) 0.705*** (0.148) 0.656*** (0.158) 0.652*** (0.126) 0.627*** (0.131) 0.602*** (0.139) 
ASSIST, out home -0.530*** (0.142) -0.530*** (0.138) -0.527*** (0.154) -0.542*** (0.124) -0.537*** (0.123) -0.517*** (0.136) 
ASSIST, read 0.313** (0.103) 0.310** (0.1) 0.283* (0.112) 0.308** (0.094) 0.302** (0.092) 0.285** (0.101) 
PRIV, own -0.492*** (0.129) -0.484*** (0.114) -0.455** (0.138) -0.471*** (0.116) -0.451*** (0.106) -0.43** (0.129) 
Constant 22.13*** (0.149) 22.13*** (0.152) 22.14*** (0.147) 22.2*** (0.13) 22.20*** (0.136) 22.18*** (0.133) 
Random effects   
௨ 0.204 (0.081)ߪ  0.313 (0.056)  
௘  3.018 (0.029)ߪ  3.003 (0.026)  
Model statistics   
F-stat 122.98*** 116.13*** 110.65*** 143.04*** 160.39*** 130.47*** 
R2 0.296 0.318 0.295 0.317 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: not anxious or depressed; b Base category: 85 and over age group. 
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Table 83: Estimates for OLS, fixed and RE regression of the ASCOF SCRQoL indicator, EP model, care home sub-group 

 Casewise-deleted sample (n=6,344) Multiply-imputed sample (m=20, n=6,863) 
Variable OLS RE FE OLS RE FE 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects   
ANXDEP: mod a -2.218*** (0.114) -2.190*** (0.105) -2.157*** (0.107) -2.216*** (0.112) -2.189*** (0.105) -2.167*** (0.104) 
ANXDEP: extreme a -5.027*** (0.346) -4.988*** (0.257) -4.932*** (0.38) -5.032*** (0.348) -4.99*** (0.264) -4.948*** (0.364) 
PH in home 0.741*** (0.097) 0.752*** (0.113) 0.770*** (0.105) 0.695*** (0.098) 0.704*** (0.113) 0.718*** (0.106) 
PH, in*ANXDEP: mod 0.540** (0.184) 0.511** (0.189) 0.471** (0.175) 0.436* (0.188) 0.418* (0.189) 0.401* (0.174) 
PH, in*ANXDEP: ext 1.784** (0.656) 1.758*** (0.495) 1.708* (0.668) 1.613* (0.677) 1.591** (0.526) 1.567* (0.692) 
Constant 20.33*** (0.063) 20.30*** (0.078) 20.30*** (0.049) 20.35*** (0.061) 20.32*** (0.079) 20.33*** (0.049) 
Random effects   
௨ 0.447 (0.062)ߪ  0.493 (0.06)  
௘  3.293 (0.030)ߪ  3.304 (0.029)  
Model statistics   
F-stat 172.23*** 188.15*** 195.50*** 169.92*** 195.89*** 172.98*** 
R2 0.140 0.174 0.137 0.174 
Legend: * p<.1; ** p<.01; *** p<.001; a Base category: not anxious or depressed; b Base category: PH in*ANXDEP: not anxious or depressed.  
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Appendix 13: Distribution of Predictions from the Risk Adjustment Models 

for All the PSD Sub-Groups 

 

The relatively poor performance of all the models in predicting the extremes of the 

distribution is shown more clearly in Table 84 to Table 86.  The mean error and mean 

absolute error are both largest for the categories that are farthest away from the mean of the 

distribution and the errors from the EP model are in all cases larger than those from the SV 

model.  The care home sub-group has highest mean and the most skewed distribution, 

followed by the 65 and over sub-group, and then the 18 to 64 sub-group.  It is probably for 

this reason that the errors are greatest for the care home sub-group at the low end of the 

distribution and smallest at the high end of the distribution, whereas they are greatest for the 

18 to 64 sub-group at the high end of the distribution and smallest at the low end of the 

distribution.  Across all of the models, both the RE and FE models perform better than the 

OLS model in predicting the extremes of the distribution, but this could be due at the upper 

end to predictions falling out of range more frequently for the RE and FE models.  The FR 

models perform better the other models generally over the lower end of the distribution, but 

only for the SV models. 
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Table 84: Predictions of the models over the range of ASCOF SCRQoL, 18 to 64 sub-

group 

 For regions where ASCOF SCRQoL is… 
 <11 ≥11, < 14 ≥14, < 17 ≥17, < 20 ≥20 
Full model n=442 n=741 n=1,259 n=1,538 n=1,876
Observed mean 7.889 12.143 15.075 17.974 21.804
Predicted mean  
OLS 13.025 14.964 16.318 17.375 19.137
FRM 12.830 14.948 16.390 17.439 19.088
RE 12.845 14.863 16.287 17.409 19.212
FE 12.873 14.874 16.287 17.406 19.203
Mean error (ME)  
OLS -5.136 -2.821 -1.243 0.599 2.668
FRM -4.940 -2.805 -1.315 0.535 2.716
RE -4.956 -2.720 -1.212 0.565 2.593
FE -4.984 -2.731 -1.213 0.568 2.601
Mean absolute error (MAE)  
OLS 5.145 3.019 2.050 1.875 2.866
FRM 4.968 3.102 2.166 1.830 2.836
RE 4.965 2.955 2.036 1.865 2.822
FE 4.992 2.957 2.027 1.857 2.826
 

     

Simple model n=501 n=806 n=1,402 n=1,696 n=2,108 
Observed mean 7.892 12.140 15.083 17.968 21.815
Predicted mean  
OLS 13.184 15.005 16.362 17.400 19.069
FRM 13.128 14.997 16.389 17.419 19.053
RE 13.021 14.902 16.330 17.435 19.140
FE 13.040 14.917 16.335 17.434 19.128
Mean error (ME)  
OLS -5.292 -2.865 -1.279 0.569 2.746
FRM -5.236 -2.857 -1.305 0.549 2.763
RE -5.129 -2.762 -1.247 0.533 2.675
FE -5.147 -2.777 -1.252 0.535 2.688
Mean absolute error (MAE)  
OLS 5.313 3.118 2.091 1.858 2.893
FRM 5.262 3.139 2.144 1.859 2.876
RE 5.157 3.058 2.071 1.860 2.851
FE 5.175 3.068 2.063 1.847 2.859
Legend: values in bold are the most accurate 
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Table 85: Predictions over the range of ASCOF SCRQoL, 65 and over sub-group 

 For regions where ASCOF SCRQoL is… 
 <11 ≥11, < 14 ≥14, < 17 ≥17, < 20 ≥20 
Full model n=616 n=1,709 n=4,152 n=6,013 n=8,391 
Observed mean 8.468 12.252 15.140 18.035 21.710
Predicted mean  
OLS 14.309 15.791 17.007 18.169 19.540
FRM 13.977 15.708 17.055 18.242 19.505
RE 14.197 15.735 16.973 18.172 19.574
FE 14.212 15.744 16.978 18.172 19.569
Mean error (ME)  
OLS -5.841 -3.540 -1.867 -0.135 2.170
FRM -5.510 -3.457 -1.915 -0.208 2.205
RE -5.730 -3.483 -1.833 -0.138 2.136
FE -5.745 -3.493 -1.838 -0.138 2.141
Mean absolute error (MAE)  
OLS 5.842 3.581 2.223 1.528 2.361
FRM 5.519 3.573 2.373 1.529 2.331
RE 5.730 3.529 2.210 1.532 2.335
FE 5.745 3.537 2.209 1.527 2.337
      

Simple model n=663 n=1,863 n=4,534 n=6,640 n=9,410 
Observed mean 8.439 12.250 15.145 18.041 21.716
Predicted mean  
OLS 14.526 15.965 17.079 18.207 19.503
FRM 14.412 15.916 17.089 18.237 19.495
RE 14.421 15.910 17.044 18.210 19.536
FE 14.441 15.921 17.048 18.209 19.531
Mean error (ME)  
OLS -6.087 -3.715 -1.934 -0.165 2.213
FRM -5.973 -3.666 -1.944 -0.196 2.222
RE -5.982 -3.660 -1.900 -0.169 2.180
FE -6.002 -3.671 -1.904 -0.168 2.185
Mean absolute error (MAE)  
OLS 6.087 3.746 2.252 1.526 2.392
FRM 5.973 3.714 2.307 1.553 2.368
RE 5.982 3.697 2.234 1.535 2.367
FE 6.002 3.705 2.232 1.529 2.370
Legend: values in bold are the most accurate 
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Table 86: Predictions over the range of ASCOF SCRQoL, care home sub-group 

 For regions where ASCOF SCRQoL is… 
 <11 ≥11, < 14 ≥14, < 17 ≥17, < 20 ≥20 
Full model n=119 n=293 n=653 n=1,279 n=3,366 
Observed mean 8.782 12.188 15.147 18.105 22.027
Predicted mean  
OLS 16.750 17.332 18.196 19.113 20.323
FRM 16.425 17.163 18.182 19.181 20.326
RE 16.471 17.185 18.091 19.064 20.385
FE 16.492 17.211 18.108 19.069 20.376
Mean error (ME)  
OLS -7.969 -5.144 -3.049 -1.008 1.704
FRM -7.643 -4.975 -3.035 -1.076 1.701
RE -7.689 -4.997 -2.944 -0.959 1.642
FE -7.711 -5.024 -2.961 -0.964 1.651
Mean absolute error (MAE)  
OLS 7.969 5.144 3.142 1.662 2.054
FRM 7.643 5.002 3.231 1.790 1.994
RE 7.689 5.003 3.065 1.647 2.030
FE 7.711 5.030 3.079 1.639 2.028
      

Simple model n=123 n=317 n=713 n=1,421 n=3,770 

Observed mean 8.715 12.189 15.144 18.110 22.042
Predicted mean      

OLS 17.976 18.488 19.005 19.492 19.959
FRM 17.976 18.488 19.005 19.492 19.959
RE 17.633 18.266 18.848 19.406 20.051
FE 17.647 18.277 18.853 19.406 20.049
Mean error (ME)  
OLS -9.261 -6.298 -3.861 -1.382 2.083
FRM -9.261 -6.298 -3.861 -1.382 2.083
RE -8.917 -6.077 -3.703 -1.296 1.991
FE -8.931 -6.087 -3.708 -1.296 1.993
Mean absolute error (MAE)  
OLS 9.261 6.298 3.884 1.737 2.232
FRM 9.261 6.298 3.884 1.737 2.232
RE 8.917 6.077 3.733 1.715 2.181
FE 8.931 6.087 3.736 1.709 2.182
Legend: values in bold are the most accurate 
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Appendix 14: Specification of the imputation equations for the respondents 

to the ASCS data, in the 18 to 64 sub-group with budget data 

 

To ensure appropriate imputation of the missing budget data I carried out multiple imputation 

on the subset of the data used in the production function analysis.  The multiple imputation 

was therefore restricted to the 18 to 64 sub-group and included only those CASSRs with 

budget data for some cases within this sub-group.  CASSRs with budget data missing for all 

cases were excluded from the imputation procedure.  I followed broadly the same methods 

set out in Appendix 1 using a chained equations approach.  I imputed binary variables using 

logistic regression (logit); ordinal variables using proportional odds models (ologit); and 

imputed variables with more than two nominal categories using multinomial logit models 

(mlogit). 

The imputation models included all theoretically-relevant variables for the production 

function adjustment models.  To ensure the plausibility of the MAR assumption, other 

variables that were not tested for inclusion in the adjustment model but were available in the 

dataset were also included in the imputation models.  (Variables with more than 50 per cent 

of the cases missing (i.e. secondary client group and religion) were not considered for the 

imputation models (McKee et al. 1999, Rubin 2003).)  However, due to size of the dataset 

and number of variables with missing data, therefore requiring imputation, a pragmatic 

approach had to be taken to the specification of the imputation equations to make the 

imputation computationally feasible.  Therefore, particularly in the case of the variables 

imputed using mlogits, covariates were omitted for the imputation equation where the 

predictive significance of the variable was found to be less than 0.1.  I also omitted variables 

that were highly collinear or perfectly predicted the outcome (e.g. in the case of helpstat).   

A set of dummy variables for the CASSR were included in the imputation models 

(except those using mlogit due to difficulties with estimation) to capture CASSR effects.  The 

derived variables (i.e. the ADL scales and the SCRQoL measure) were not included in the 

imputation equations as their derivation could not be specified in the way required by the 

software.  However, imputation of each individual item within the scales should preserve the 

complexity of the relationships.  Additionally not all relevant interactions could be included 

in the imputation models where these were specified between multi-item measures.   

Due to missingness in many of the additional variables included in the imputation 

models to ensure the plausibility of the MAR assumption, imputation models had to be 
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specified for these additional variables.  All covariates for the adjustment models and all 

additional variables were included in these models, although in the case of the mlogits a 

reduced set of variables were used for computational feasibility.  Only variables with a p-

value of 0.1 or less were included in the models.   

To provide valid imputations of the service receipt variables as well as the budget 

variable, information on CASSR-level service provision and gross adult social care 

expenditure (The Information Centre for Health and Social Care 2012c, The Information 

Centre for Health and Social Care 2012a) and population density (Office for National 

Statistics 2001) were included in the imputation equations for these variables.  These 

authority-level data were introduced to allow for shifts in the relationship between service 

receipt, budget and the other variables by CASSR, particularly important given some service 

receipt variables (meals, short-term residential care, personal budgets, professional support, 

equipment and other services) were completely missing within a number of CASSRs.  The 

area cost adjustment factor was also included to control for differences in prices between 

areas. 

Due to the missingness in the service receipt and gross adult social care expenditure 

and deprivation variables, these variables also had to be imputed.  The continuous variables, 

including budget, were imputed using predictive mean matching (pmm, with ten nearest 

neighbours), due to the skewed nature of the distribution for these variables.  Given these 

additional variables are not being used in the adjustment models, the outcome variables were 

not included in the imputation equations and only CASSR-level variables were included to 

mitigate excessive CASSR-level variability.  All available (i.e. fully observed or in the 

imputation model) CASSR-level variables were used. 
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Appendix 15: Additional Information on the Multiple Imputation of the 

Data on the ASCS Respondents, in the 18 to 64 Sub-Group with Budget 

Data 

 

Checking convergence of the multiple chains 

Prior to imputation proper, I checked for convergence of the multiple chains, by examining 

plots summarising the distribution (means and standard deviations) of imputed values against 

iteration numbers.  For this purpose I used the chainonly and savetrace options in Stata 

alongside the mi impute chained command.  In addition I examined the behaviour of three 

chains, each obtained using a different set of initial values, to check the convergence and 

stability of the algorithm, using the add(3) option instead of chainonly.   The variables did not 

appear to show any trends, and the three chains seem to oscillate around the same point, 

providing some evidence of convergence of the algorithm.  Convergence appeared to be 

achieved around 20 iterations.   

 

Checking the fit of the imputation models 

I compared the imputed values with the observed ones for each of the continuous variables 

using the user-written command midiagplot (Eddings and Marchenko 2006), to check the fit 

of the imputation model.  They demonstrate that the predictive mean matching does a 

relatively good job of imputing the skewed distribution of the CASSR-level aggregate service 

receipt, gross expenditure and budget variables. 

For all other variables, to ensure the imputations produce sensible results I compared 

the distributional statistics calculated on the casewise-deleted sample to those calculated on 

the multiply-imputed sample for each variable.  Table 87 shows the distributional statistics 

for the outcome indicators; Table 88 shows the same statistics for the risk adjustor and budget 

variables; and Table 89 shows the statistics for all other variables.  The statistics are fairly 

similar across the complete cases and multiply-imputed samples, suggesting that the 

imputation procedure is valid. 
 

Table 87: Comparison of distributional statistics for outcome indicators for the 18 to 

64 sub-group respondent sample on casewise-deleted and multiply-imputed samples 

Number 
of 

complete 
cases 

Casewise Imputed 

Freq  / 
Mean 

Percent / 
SE 

Freq  / 
Mean  

Percent / 
SE  
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ASCOF SCRQoL 3,828 17.0 0.072 17.0 0.069
Satisfaction: Ex. Sat 4,013 1,145 28.53 1,192 28.36
Satisfaction: V. sat 4,013 1,206 30.05 1,258 29.95
Satisfaction: Q. sat 4,013 1,053 26.24 1,106 26.33
Satisfaction: Neither 4,013 346 8.62 366 8.71
Satisfaction: Q. dissat 4,013 121 3.02 129 3.07
Satisfaction: V. dissat 4,013 61 1.52 65 1.55
Satisfaction: Ex. dissat 4,013 81 2.02 86 2.04
Control: preferred 4,139 984 23.77 1,002 23.85
Control: needs met 4,139 1,726 41.70 1,749 41.64
Control: some needs 4,139 1,237 29.89 1,255 29.88
Control: high needs 4,139 192 4.64 194 4.63
Pers care: preferred 4,133 1,989 48.12 2,021 48.10
Pers care: needs met 4,133 1,741 42.12 1,769 42.11
Pers care: some needs 4,133 337 8.15 344 8.18
Pers care: high needs 4,133 66 1.60 68 1.61
Food: preferred 4,095 2,424 59.19 2,487 59.20
Food: needs met 4,095 1,250 30.53 1,282 30.52
Food: some needs 4,095 338 8.25 347 8.27
Food: high needs 4,095 83 2.03 85 2.02
Accom: preferred 4,121 2,068 50.18 2,108 50.19
Accom: needs met 4,121 1,547 37.54 1,577 37.53
Accom: some needs 4,121 425 10.31 433 10.31
Accom: high needs 4,121 81 1.97 83 1.96
Safety: preferred 4,138 1,840 44.47 1,866 44.42
Safety: needs met 4,138 1,666 40.26 1,691 40.25
Safety: some needs 4,138 413 9.98 420 10.00
Safety: high needs 4,138 219 5.29 224 5.33
Soc part: preferred 4,131 1,209 29.27 1,230 29.28
Soc part: needs met 4,131 1,397 33.82 1,420 33.79
Soc part: some needs 4,131 1,107 26.80 1,125 26.78
Soc part: high needs 4,131 418 10.12 426 10.14
Occ: preferred 4,116 810 19.68 828 19.72
Occ: needs met 4,116 1,174 28.52 1,199 28.55
Occ: some needs 4,116 1,736 42.18 1,771 42.17
Occ: high needs 4,116 396 9.62 402 9.56
Dignity: preferred 4,005 1,969 49.16 2,054 48.89
Dignity: needs met 4,005 1,270 31.71 1,330 31.65
Dignity: some needs 4,005 681 17.00 724 17.22
Dignity: high needs 4,005 85 2.12 94 2.24
Information: v. easy 4,082 659 16.14 677 16.12
Information: fairly easy 4,082 1,570 38.46 1,613 38.39
Information: fairly diff 4,082 774 18.96 798 18.98
Information: v. diff 4,082 478 11.71 493 11.74
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Table 88: Comparison of distributional statistics for adjustment model covariates for 

the 18 to 64 sub-group respondent sample on casewise-deleted and multiply-imputed 

samples 

Number 
of 

complete 
cases 

Casewise Imputed 

Freq  / 
Mean 

Percent / 
SE 

Freq  / 
Mean  

Percent / 
SE  

Male 4,199 1,713 40.80 1,714 40.79
Age: 18-24 4,201 193 4.59 193 4.59
Age: 25-34 4,201 242 5.76 242 5.76
Age: 35-44 4,201 609 14.50 609 14.50
Age: 45-54 4,201 1,161 27.64 1,161 27.64
Age: 55-64 4,201 1,996 47.51 1,996 47.51
Vulnerable person 4,201 148 3.52 148 3.52
ADLs diff score 3,913 3.70 0.04 3.68 0.04
ADLs can’t score 3,913 1.48 0.03 1.46 0.03
ADL, indoors: can  4,065 1,736 42.71 1,797 42.77
ADL, indoors: diff 4,065 1,693 41.65 1,746 41.56
ADL, indoors: can’t 4,065 636 15.65 658 15.66
ADL, bed/chair: can  4,061 1,533 37.75 1,596 37.99
ADL, bed/chair: diff 4,061 1,598 39.35 1,648 39.22
ADL, bed/chair: can’t 4,061 930 22.90 957 22.79
ADL, feed self: can 4,073 2,801 68.77 2,894 68.88
ADL, feed self: diff  4,073 922 22.64 947 22.54
ADL, feed self: can’t 4,073 350 8.59 360 8.58
ADL, wash: can 4,078 1,136 27.86 1,176 27.98
ADL, wash: diff 4,078 1,436 35.21 1,477 35.17
ADL, wash: can’t 4,078 1,506 36.93 1,548 36.85
ADL, un/dress: can 4,062 1,365 33.60 1,422 33.84
ADL, un/dress: diff 4,062 1,485 36.56 1,532 36.46
ADL, un/dress: can’t 4,062 1,212 29.84 1,248 29.70
ADL, WC/toilet: can 4,058 2,172 53.52 2,252 53.61
ADL, WC/toilet: diff 4,058 1,095 26.98 1,132 26.95
ADL, WC/toilet: can’t 4,058 791 19.49 817 19.44
ADL, face/hands: can 4,081 2,732 66.94 2,814 66.98
ADL, face/hands: diff 4,081 822 20.14 846 20.14
ADL, face/hands: can’t 4,081 527 12.91 541 12.88
IADL, finance: can  4,060 1,380 33.99 1,438 34.22
IADL, finance: diff 4,060 1,102 27.14 1,141 27.15
IADL, finance: can’t 4,060 1,578 38.87 1,623 38.63
SPH: very good 4,114 234 5.69 238 5.66
SPH: good 4,114 754 18.33 770 18.33
SPH: fair 4,114 1,649 40.08 1,688 40.17
SPH: bad 4,114 1,036 25.18 1,057 25.16
SPH: very bad 4,114 441 10.72 449 10.68
pain: none 4,066 727 17.88 755 17.97
pain: moderate 4,066 1,998 49.14 2,068 49.23
pain: extreme 4,066 1,341 32.98 1,378 32.80
anx/dep: none 4,050 1,385 34.20 1,443 34.36
anx/dep: moderate 4,050 2,034 50.22 2,103 50.05
anx/dep: extreme 4,050 631 15.58 655 15.59
SPHD: meets needs 4,070 1,380 33.91 1,434 34.15
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Number 
of 

complete 
cases 

Casewise Imputed 

Freq  / 
Mean 

Percent / 
SE 

Freq  / 
Mean  

Percent / 
SE  

SPHD: most needs 4,070 1,496 36.76 1,541 36.67
SPHD: some needs 4,070 891 21.89 914 21.76
SPHD: inappropriate 4,070 303 7.44 312 7.42
PH, in h’hold 4,028 2,041 50.67 2,119 50.44
PH, outside h’hold 4,028 1,492 37.04 1,559 37.10
PH, none 4,028 929 23.06 974 23.19
No assistance 3,926 1,757 44.75 1,899 45.20
Proxy 3,926 92 2.34 99 2.36
Assistance 3,926 2,077 52.90 2,203 52.44
Assist, in h’hold 3,908 884 22.62 939 22.36
Assist, out h’hold 3,908 649 16.61 700 16.66
Assist, care worker 3,908 430 11.00 462 11.00
Assist, read  3,926 1,241 31.61 1,316 31.33
Assist, translate 3,926 340 8.66 363 8.64
Assist, write 3,926 1,122 28.58 1,172 27.90
Assist, talk through 3,926 911 23.20 967 23.01
Add, own money 3,968 966 24.34 1,023 24.35
Add, family pays 3,968 236 5.95 252 5.99
Add, none 3,968 2,832 71.37 2,997 71.34
Budget (logged, base e) 3,208 8.4 0.029 8.2 0.037
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Table 89: Comparison of distributional statistics for variables included to improve 

the MAR assumption, on casewise-deleted and multiply-imputed samples for the 18 to 

64 sub-group respondent sample  

Number 
of 

complete 
cases 

Casewise Imputed 

Freq  / 
Mean 

Percent / 
SE 

Freq  / 
Mean  

Percent / 
SE  

Home care 4,186 1,490 35.6 1,494 35.6
Day care 4,174 477 11.4 482 11.5
Meals 4,078 99 2.4 102 2.4
Direct Payment 4,135 26 0.6 28 0.7
Professional support 4,112 1,146 27.9 1,168 27.8
Short-term residential  3,888 658 16.9 697 16.6
Equipment 4,077 1,382 33.9 1,421 33.8
Other services 4,005 272 6.8 287 6.8
Ethnicity: white 4,140 3,429 82.8 3,480 82.8
Ethnicity: mixed 4,140 42 1.0 43 1.0
Ethnicity: black 4,140 319 7.7 322 7.7
Ethnicity: Asian 4,140 262 6.3 266 6.3
Ethnicity: other 4,140 88 2.1 89 2.1
QoL: so good 4,137 135 3.3 137 3.3
QoL: very good 4,137 674 16.3 685 16.3
QoL: good 4,137 1,015 24.5 1,030 24.5
QoL: alright 4,137 1,573 38.0 1,596 38.0
QoL: bad 4,137 469 11.3 477 11.4
QoL: very bad 4,137 172 4.2 175 4.2
QoL: so bad 4,137 99 2.4 101 2.4
SP help effect: better 4,033 2,031 50.4 2,106 50.1
SP help effect: none 4,033 1,100 27.3 1,146 27.3
SP help effect: sl worse 4,033 782 19.4 821 19.5
SP help effect: worse 4,033 120 3.0 128 3.0
Outdoor access: all places 4,038 968 24.0 1,008 24.0
Outdoor access: difficult 4,038 1,727 42.8 1,794 42.7
Outdoor access: unable 4,038 969 24.0 1,008 24.0
Outdoor access: not leave 4,038 374 9.3 391 9.3

 

Checking sufficiency of the number of imputations 

Following imputation, I carried out checks to ensure the number of imputations was 

sufficient for reporting the outcome indicators and key variables used in the adjustment 

models, using the methods set out in Appendix 2.   
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Sufficiency of the number of imputations for reporting mean statistics 

Table 90 shows the estimates of the Monte Carlo error (MC error) for the mean for each of 

the outcome variables for the respondent sample.  Table 91 breaks down the variance into 

its between- and within-imputation components and provides estimates of the FMI and the 

relative efficiency of the estimates.  The statistics in both tables imply that 30 imputations 

are sufficient for reporting sample means for the outcome indicators.  Specifically, the MC 

error of the mean is less than ten per cent of the standard error of the mean, the relative 

efficiency of 30 imputations compared to an infinite number of imputations is over 99% 

and the FMI is <0.3.  The smallest degrees of freedom and largest increase in the SE are 

found for the satisfaction and information indicators, but statistics for these suggest that 30 

imputations is more than sufficient.   
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Table 90: Monte Carlo estimates of the mean for all outcome indicators and effect of 

imputation on the standard error of the mean (18 to 64 sub-group with budget data) 

 MC error 
of mean 

MC error of 
mean/SE 

*100 

Degrees of 
freedom 

% 
increase 

in SE 
Variable 

ASCOF SCRQoL 0.001 1.468              4,143  0.34

Satisfaction indicator 0.001 4.219              2,801  2.88

Control indicator 0.000 1.859              4,086  0.54

Safety indicator 0.000 1.900              4,078  0.56

Information indicator 0.000 2.420              3,937  0.92
 
 

Table 91: Imputation variance and efficiency associated with the mean for each 

outcome indicator (18 to 64 sub-group with budget data) 

Imputation variance   Relative 
efficiency Variable Within Between Total RVI FMI 

ASCOF SCRQoL 0.005 0.000 0.005 0.007 0.007 1.000

Satisfaction indicator 0.000 0.000 0.000 0.058 0.055 0.998

Control indicator 0.000 0.000 0.000 0.011 0.011 1.000

Safety indicator 0.000 0.000 0.000 0.011 0.011 1.000

Information indicator 0.000 0.000 0.000 0.018 0.018 0.999
 

Sufficiency of the number of imputations for reporting case-mix adjustment models 

I estimated the MC error for the mean of each model parameter for each of the case-mix 

adjustment models estimated on the 18 to 64 sub-group with budget data.  I also calculated 

the FMI and the relative efficiency of the estimates, using the Stata routines as previously 

discussed.  This analysis suggested that 30 imputations were sufficient for reporting all the 

model coefficients.  Specifically, the MC error of the coefficient mean is less than ten per 

cent of the standard error of the mean, the relative efficiency of 30 imputations compared 

to an infinite number of imputations is over 99% and the FMI is <0.3 for all coefficients 

for the risk-adjustment models.  For the production function models the efficiency is 

similar very high for all coefficients and the FMI is <0.3 for all variables, except the 

budget variable for the FE estimator with the EP specification where the FMI is 0.31.  For 

all of the production function models the FMI is fairly high for the budget variable being 

around .26 to .28.  This suggests that 30 imputations are sufficient for using the estimates 

from these models.  
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Appendix 16: Results of the Risk-Adjustment and Production Function 

Models Estimated on the Multiply-Imputed Dataset 

 

In this section I present the coefficient estimates for the production function and risk-

adjustment models for the ASCOF SCRQoL indicators, estimated by CCA and on the MI 

dataset (see Appendix 14 and 15 for further details of the imputation method).  For the 

models estimated on the multiply-imputed dataset, I exclude cases from the estimation for 

which the ASCOF SCRQoL indicator was missing in the original dataset.  I show the 

estimates from the three different statistical estimators and the two different strategies for 

selection of covariates.  The data in this section are presented by model type (production 

function or risk-adjustment) and by whether the predictors included in the model are all the 

significant variables (SV model), the simplified set of significant variables (SSV model) or a 

subset of those with high explanatory power (EP model).   

  All of the OLS models failed tests for normality of the error terms and 

homoscedasticity (confirmed on visual inspection of the data).  Likewise all of the FE models 

fail the modified Wald test for groupwise heteroscedasticity, as implemented via the stata 

routine xttest3 (Baum 2000, Greene 2012).  All results for these models therefore use the 

Huber-White sandwich estimator to correct standard errors (Huber 1967a, White 1980).   

As Table 92 through Table 97 show, the models estimated on the multiply-imputed 

dataset are very similar to those estimated on the complete cases dataset.   
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Table 92: Estimates for ASCOF SCRQoL indicator risk adjustment models, SV model 

 Casewise-deleted sample (n=2,516) Multiply-imputed sample (m=30, n=3,828) 
Variable OLS RE FE OLS RE FE 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects     
SPH: good b -1.143*** (0.249) -1.160*** (0.318) -1.247*** (0.263) -1.146*** (0.203) -1.151*** (0.264) -1.179*** (0.2) 
SPH: fair b -2.215*** (0.243) -2.225*** (0.307) -2.268*** (0.271) -2.114*** (0.201) -2.117*** (0.256) -2.143*** (0.208) 
SPH: bad b -3.188*** (0.279) -3.197*** (0.332) -3.229*** (0.278) -3.315*** (0.232) -3.319*** (0.276) -3.343*** (0.237) 
SPH: very bad b -3.981*** (0.369) -3.989*** (0.377) -4.003*** (0.404) -4.031*** (0.311) -4.03*** (0.317) -4.059*** (0.334) 
SPHD -1.023*** (0.163) -1.035*** (0.157) -1.067*** (0.163) -1.116*** (0.125) -1.11*** (0.123) -1.084*** (0.117) 
ADLDIFF -0.018 (0.048) -0.02 (0.048) -0.028 (0.043) -0.045 (0.041) -0.045 (0.041) -0.047 (0.04) 
ADLDIFF*SPHD -0.102** (0.034) -0.099** (0.032) -0.089* (0.035) -0.09** (0.027) -0.089** (0.026) -0.087** (0.027) 
FINANCES: diff c -0.622*** (0.182) -0.625*** (0.184) -0.647*** (0.177) -0.683*** (0.148) -0.686*** (0.149) -0.692*** (0.136) 
FINANCES: can’t c -0.742*** (0.183) -0.751*** (0.186) -0.805*** (0.181) -0.641*** (0.151) -0.643*** (0.154) -0.66*** (0.149) 
ANXDEP -1.607*** (0.121) -1.613*** (0.113) -1.643*** (0.132) -1.668*** (0.101) -1.666*** (0.092) -1.664*** (0.104) 
PH in home 0.404* (0.241) 0.407 (0.263) 0.419 (0.26) 0.653** (0.192) 0.654** (0.208) 0.658** (0.202) 
PH out home 0.273* (0.148) 0.266* (0.147) 0.236 (0.16) 0.289* (0.124) 0.282* (0.123) 0.261* (0.139) 
PH in*ADLDIFF 0.07 (0.054) 0.065 (0.055) 0.05 (0.061) 0.045 (0.045) 0.043 (0.046) 0.03 (0.048) 
MALE -0.171 (0.138) -0.168 (0.137) -0.161 (0.163) -0.203* (0.113) -0.2* (0.112) -0.19 (0.115) 
ASSIST, care worker 0.689** (0.226) 0.680** (0.214) 0.646* (0.256) 0.698*** (0.2) 0.692*** (0.192) 0.668** (0.198) 
ASSIST, translate 0.291 (0.255) 0.285 (0.24) 0.26 (0.277) 0.083 (0.218) 0.092 (0.207) 0.107 (0.217) 
ASSIST, write down 0.105 (0.165) 0.11 (0.163) 0.129 (0.195) 0.039 (0.142) 0.039 (0.141) 0.046 (0.15) 
Constant 22.20*** (0.284) 22.24*** (0.346) 22.38*** (0.264) 22.27*** (0.228) 22.29*** (0.283) 22.308*** (0.212) 
Random effects   
௨ 0.283 (0.120)ߪ  0.235 (0.095)  
௘  3.325 (0.048)ߪ  3.352 (0.039)  
Model statistics   
F-stat 96.18*** 76.05*** 149.04*** 160.47*** 159.87*** 196.9*** 
R2 0.405 0.428 0.426 0.441 
Legend: * p<.1; ** p<.01; *** p<.001 
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Table 93: Estimates for ASCOF SCRQoL indicator production function models, SV model 

 Casewise-deleted sample (n=2,516) Multiply-imputed sample (m=30, n=3,828) 
Variable OLS, PF RE, PF FE, PF OLS, PF RE, PF FE, PF 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects     
Budget (ln) 0.098* (0.042) 0.098* (0.042) 0.094* (0.046) 0.126** (0.039) 0.126** (0.04) 0.135** (0.045) 
Area cost adjustment a -2.853** (1.063) -2.887** (1.097) n/a -2.85** (0.894) -2.84** (0.904) n/a 
SPH: good b -1.097*** (0.249) -1.109*** (0.318) -1.217*** (0.261) -1.103*** (0.204) -1.106*** (0.264) -1.147*** (0.2) 
SPH: fair b -2.155*** (0.244) -2.163*** (0.307) -2.225*** (0.273) -2.046*** (0.201) -2.049*** (0.256) -2.088*** (0.212) 
SPH: bad b -3.103*** (0.28) -3.111*** (0.333) -3.159*** (0.278) -3.216*** (0.234) -3.218*** (0.277) -3.241*** (0.241) 
SPH: very bad b -3.860*** (0.372) -3.869*** (0.378) -3.923*** (0.415) -3.9*** (0.313) -3.903*** (0.318) -3.957*** (0.345) 
SPHD -1.002*** (0.162) -1.012*** (0.157) -1.066*** (0.163) -1.09*** (0.125) -1.089*** (0.123) -1.078*** (0.117) 
ADLDIFF -0.038 (0.049) -0.039 (0.049) -0.047 (0.044) -0.068 (0.042) -0.068* (0.041) -0.072* (0.04) 
ADLDIFF*SPHD -0.100** (0.034) -0.098** (0.032) -0.088* (0.035) -0.088** (0.027) -0.088** (0.026) -0.086** (0.028) 
FINANCES: diff c -0.631*** (0.181) -0.632*** (0.184) -0.651*** (0.178) -0.697*** (0.147) -0.698*** (0.148) -0.703*** (0.137) 
FINANCES: can’t c -0.794*** (0.184) -0.796*** (0.186) -0.835*** (0.181) -0.694*** (0.152) -0.694*** (0.154) -0.703*** (0.15) 
ANXDEP -1.586*** (0.121) -1.591*** (0.113) -1.630*** (0.131) -1.649*** (0.101) -1.649*** (0.092) -1.653*** (0.104) 
PH in home 0.428* (0.241) 0.43 (0.263) 0.444* (0.261) 0.677*** (0.193) 0.68** (0.208) 0.706** (0.205) 
PH out home 0.24 (0.148) 0.24 (0.147) 0.239 (0.161) 0.254* (0.125) 0.255* (0.123) 0.269* (0.14) 
PH in*ADLDIFF 0.068 (0.054) 0.066 (0.055) 0.054 (0.061) 0.045 (0.045) 0.045 (0.045) 0.034 (0.048) 
MALE -0.16 (0.137) -0.159 (0.137) -0.159 (0.162) -0.184 (0.113) -0.183 (0.113) -0.175 (0.114) 
ASSIST, care worker 0.639** (0.227) 0.634** (0.214) 0.605* (0.257) 0.636** (0.201) 0.633** (0.193) 0.598** (0.201) 
ASSIST, translate 0.32 (0.254) 0.313 (0.24) 0.267 (0.277) 0.122 (0.219) 0.125 (0.207) 0.124 (0.219) 
ASSIST, write down 0.076 (0.166) 0.08 (0.163) 0.101 (0.197) 0.007 (0.143) 0.007 (0.141) 0.014 (0.15) 
Constant 24.38*** (1.193) 24.45*** (1.255) 21.61*** (0.481) 24.24*** (1.021) 24.23*** (1.049) 21.20*** (0.466) 
Random effects   
௨ 0.214 (0.142)ߪ  0.149 (0.136)  
௘  3.321 (0.047)ߪ  3.346 (0.039)  
Model statistics   
F-stat 87.80*** 68.68*** 141.40*** 144.21*** 144.01*** 184.90*** 
R2 0.408 0.429 0.430 0.444 
Legend: * p<.1; ** p<.01; *** p<.001 
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Table 94: Estimates for ASCOF SCRQoL indicator risk adjustment models, Simplified SV model  

 Casewise-deleted sample (n=2,517) Multiply-imputed sample (m=30, n=3,828) 
Variable OLS RE FE OLS RE FE 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects     
ADLDIFF -0.070* (0.03) -0.071* (0.031) -0.077* (0.03) -0.100*** (0.025) -0.101*** (0.026) -0.108*** (0.029) 
FINANCE: diff b -0.583** (0.179) -0.587** (0.183) -0.608*** (0.177) -0.646*** (0.144) -0.65*** (0.147) -0.658*** (0.133) 
FINANCE: can’t b -0.592*** (0.166) -0.606*** (0.173) -0.672*** (0.164) -0.569*** (0.138) -0.572*** (0.143) -0.59*** (0.141) 
SPH -0.991*** (0.079) -0.990*** (0.077) -0.980*** (0.085) -1.024*** (0.067) -1.024*** (0.065) -1.027*** (0.073) 
SPHD: most c -1.646*** (0.154) -1.654*** (0.163) -1.670*** (0.151) -1.691*** (0.129) -1.686*** (0.135) -1.644*** (0.132) 
SPHD: some c -3.012*** (0.2) -3.012*** (0.195) -2.981*** (0.182) -3.089*** (0.165) -3.072*** (0.161) -3.011*** (0.167) 
SPHD: inappropriate c -4.316*** (0.373) -4.315*** (0.289) -4.297*** (0.426) -4.341*** (0.295) -4.308*** (0.238) -4.188*** (0.329) 
ANXDEP: moderate d -1.402*** (0.147) -1.412*** (0.155) -1.438*** (0.153) -1.336*** (0.122) -1.334*** (0.129) -1.327*** (0.125) 
ANXDEP: extreme d -3.306*** (0.273) -3.318*** (0.236) -3.371*** (0.294) -3.509*** (0.223) -3.503*** (0.192) -3.496*** (0.222) 
PH in home 0.613*** (0.143) 0.600*** (0.142) 0.557*** (0.15) 0.72*** (0.118) 0.713*** (0.117) 0.676*** (0.128) 
PROXY -1.002* (0.436) -0.953* (0.454) -0.742 (0.455) -0.584 (0.381) -0.566 (0.389) -0.467 (0.398) 
ASSIST, care worker 0.682** (0.218) 0.677** (0.208) 0.663** (0.246) 0.667** (0.193) 0.664*** (0.187) 0.654** (0.197) 
Constant 22.29*** (0.185) 22.33*** (0.207) 22.39*** (0.184) 22.39*** (0.149) 22.41*** (0.168) 22.41*** (0.158) 
Random effects   
௨ 0.310 (0.114)ߪ  0.247 (0.093)  
௘  3.331 (0.048)ߪ  3.355 (0.039)  
Model statistics   
F-stat 133.46*** 106.86*** 168.58*** 221.35*** 225.60*** 226.16*** 
R2 0.402 0.427 0.425 0.440 
Legend: * p<.1; ** p<.01; *** p<.001 
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Table 95: Estimates for ASCOF SCRQoL indicator production function models, Simplified SV model  

 Casewise-deleted sample (n=2,517) Multiply-imputed sample (m=30, n=3,828) 
Variable OLS, PF RE, PF FE, PF OLS, PF RE, PF FE, PF 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects       
Budget (ln) 0.098* (0.042) 0.098* (0.042) 0.094* (0.046) 0.126** (0.039) 0.127** (0.039) 0.133** (0.045) 
Area cost adjustment a -3.044** (1.057) -3.087** (1.11) n/a -2.986** (0.886) -2.975** (0.9) #N/A 
ADLDIFF -0.090** (0.031) -0.090** (0.032) -0.093** (0.031) -0.123*** (0.026) -0.123*** (0.027) -0.13*** (0.031) 
FINANCE: diff b -0.597*** (0.178) -0.598** (0.183) -0.616*** (0.178) -0.664*** (0.144) -0.665*** (0.146) -0.672*** (0.134) 
FINANCE: can’t b -0.654*** (0.168) -0.659*** (0.174) -0.710*** (0.164) -0.63*** (0.139) -0.63*** (0.143) -0.64*** (0.141) 
SPH -0.963*** (0.08) -0.964*** (0.077) -0.960*** (0.088) -0.992*** (0.068) -0.993*** (0.065) -0.998*** (0.076) 
SPHD: most c -1.613*** (0.154) -1.623*** (0.163) -1.662*** (0.151) -1.661*** (0.129) -1.661*** (0.134) -1.627*** (0.132) 
SPHD: some c -2.932*** (0.201) -2.940*** (0.196) -2.963*** (0.18) -3.01*** (0.166) -3.008*** (0.161) -2.976*** (0.166) 
SPHD: inappropriate c -4.240*** (0.374) -4.248*** (0.289) -4.288*** (0.423) -4.247*** (0.296) -4.241*** (0.238) -4.168*** (0.328) 
ANXDEP: moderate d -1.396*** (0.147) -1.403*** (0.154) -1.431*** (0.153) -1.335*** (0.121) -1.334*** (0.128) -1.328*** (0.126) 
ANXDEP: extreme d -3.251*** (0.274) -3.263*** (0.237) -3.340*** (0.293) -3.46*** (0.223) -3.459*** (0.191) -3.463*** (0.221) 
PH in home 0.642*** (0.146) 0.635*** (0.144) 0.597*** (0.154) 0.755*** (0.121) 0.755*** (0.119) 0.734*** (0.132) 
PROXY -1.022* (0.44) -0.988* (0.453) -0.744 (0.452) -0.608 (0.383) -0.6 (0.388) -0.485 (0.398) 
ASSIST, care worker 0.630** (0.219) 0.627** (0.209) 0.614* (0.248) 0.605** (0.195) 0.602** (0.188) 0.576** (0.2) 
Constant 24.67*** (1.166) 24.75*** (1.235) 21.61*** (0.448) 24.49*** (0.992) 24.48*** (1.017) 21.31*** (0.412) 
Random effects   
௨ 0.237 (0.132)ߪ  0.152 (0.134)  
௘  3.328 (0.048)ߪ  3.349 (0.039)  
Model statistics   
F-stat 116.66*** 93.23*** 156.33*** 189.78*** 193.76*** 203.25*** 
R2 0.405 0.428 0.429 0.443 
Legend: * p<.1; ** p<.01; *** p<.001 
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Table 96: Estimates for ASCOF SCRQoL indicator risk adjustment models, EP model 

 Casewise-deleted sample (n=2,819) Multiply-imputed sample (m=30, n=3,828) 
Variable OLS RE FE OLS RE FE 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects       
SPH: good a -1.258*** (0.228) -1.267*** (0.303) -1.348*** (0.225) -1.233*** (0.2) -1.241*** (0.266) -1.277*** (0.191) 
SPH: fair a -2.458*** (0.224) -2.463*** (0.293) -2.503*** (0.255) -2.375*** (0.195) -2.381*** (0.256) -2.417*** (0.202) 
SPH: bad a -3.550*** (0.256) -3.552*** (0.314) -3.581*** (0.269) -3.686*** (0.223) -3.694*** (0.274) -3.732*** (0.234) 
SPH: very bad a -4.411*** (0.343) -4.418*** (0.352) -4.462*** (0.384) -4.482*** (0.301) -4.487*** (0.31) -4.54*** (0.317) 
SPHD -1.286*** (0.141) -1.288*** (0.133) -1.291*** (0.125) -1.338*** (0.122) -1.335*** (0.117) -1.316*** (0.104) 
ANXDEP: mod b -1.173*** (0.189) -1.183*** (0.207) -1.232*** (0.191) -1.272*** (0.164) -1.281*** (0.182) -1.304*** (0.162) 
ANXDEP: extreme b -2.659*** (0.399) -2.673*** (0.336) -2.737*** (0.452) -2.781*** (0.351) -2.778*** (0.295) -2.752*** (0.394) 
SPHD* 
ANXDEP: mod c 

-0.203 (0.177) -0.199 (0.167) -0.166 (0.16) -0.122 (0.153) -0.113 (0.146) -0.089 (0.136) 

SPHD* 
ANXDEP: ext c 

-0.637* (0.26) -0.630** (0.21) -0.607* (0.275) -0.672** (0.223) -0.669*** (0.183) -0.681** (0.232) 

Constant 22.21*** (0.196) 22.23*** (0.275) 22.28*** (0.189) 22.25*** (0.172) 22.27*** (0.242) 22.27*** (0.17) 
Random effects   
௨ 0.241 (0.124)ߪ  0.258 (0.094)  
௘  3.369 (0.045)ߪ  3.384 (0.039)  
Model statistics   
F-stat 198.6*** 155.45*** 237.48*** 290.44*** 289.66*** 296.18*** 
R2 d 0.395 0.416 0.415 0.431 
Legend: * p<.1; ** p<.01; *** p<.001 
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Table 97: Estimates for ASCOF SCRQoL indicator production function models, EP model 

 Casewise-deleted sample (n=2,819) Multiply-imputed sample (m=30, n=3,828) 
Variable OLS, PF RE, PF FE, PF OLS, PF RE, PF FE, PF 
 Β (Robust SE) Β (SE) Β (Robust SE) Β (Robust SE) Β (SE) Β (Robust SE) 
Fixed effects       
Budget (ln) 0.045 (0.037) 0.046 (0.038) 0.051 (0.042) 0.052 (0.036) 0.052 (0.037) 0.056 (0.041) 
Area cost adjustment a -3.053** (1.001) -3.079** (1.011) n/a -3.101*** (0.889) -3.093** (0.911) n/a 
SPH: good b -1.222*** (0.228) -1.228*** (0.303) -1.331*** (0.227) -1.205*** (0.2) -1.21*** (0.266) -1.262*** (0.193) 
SPH: fair b -2.414*** (0.225) -2.418*** (0.293) -2.480*** (0.258) -2.339*** (0.196) -2.344*** (0.257) -2.394*** (0.206) 
SPH: bad b -3.502*** (0.257) -3.505*** (0.314) -3.549*** (0.273) -3.65*** (0.224) -3.655*** (0.274) -3.696*** (0.238) 
SPH: very bad b -4.355*** (0.344) -4.361*** (0.353) -4.439*** (0.389) -4.432*** (0.302) -4.439*** (0.31) -4.518*** (0.321) 
SPHD -1.282*** (0.141) -1.284*** (0.133) -1.296*** (0.125) -1.329*** (0.122) -1.33*** (0.117) -1.321*** (0.104) 
ANXDEP: mod d -1.195*** (0.189) -1.199*** (0.206) -1.236*** (0.191) -1.288*** (0.165) -1.291*** (0.182) -1.312*** (0.163) 
ANXDEP: extreme d -2.665*** (0.401) -2.671*** (0.336) -2.728*** (0.453) -2.781*** (0.352) -2.779*** (0.294) -2.748*** (0.395) 
SPHD* 
ANXDEP: mod e 

-0.181 (0.178) -0.179 (0.166) -0.159 (0.159) -0.104 (0.152) -0.101 (0.146) -0.082 (0.137) 

SPHD* 
ANXDEP: ext e 

-0.602* (0.26) -0.601** (0.21) -0.600* (0.275) -0.647** (0.223) -0.648*** (0.183) -0.675** (0.233) 

Constant 25.00*** (1.106) 25.03*** (1.139) 21.83*** (0.438) 25.04*** (0.992) 25.04*** (1.034) 21.78*** (0.41) 
Random effects   
௨ 0.157 (0.168)ߪ  0.165 (0.131)  
௘  3.367 (0.045)ߪ  3.383 (0.039)  
Model statistics   
F-stat 165.84*** 128.13*** 213.77*** 234.20*** 234.60*** 254.82*** 
R2 0.398 0.416 0.415 0.431 
Legend: * p<.1; ** p<.01; *** p<.001 
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Appendix 17: Distribution of Predictions from Risk-Adjustment and 

Production Function Models 

 

The relatively poor performance of all the models in predicting the extremes of the 

distribution is shown more clearly in Table 98.  The mean error and mean absolute error are 

both largest for the categories that are farthest away from the mean of the distribution.  There 

is no clear ‘best’ regression approach for the EP models, but for the SV and Simplified SV 

models, the production function model estimated by FE regression appears to be the best by a 

small margin.  All predictions are also within range for this estimation sample, which was not 

the case for the larger sample used in Chapter 6. 
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Table 98: Predictions over the range of ASCOF SCRQoL for risk adjustment and 

production function models 

 For regions where ASCOF SCRQoL is… 
 <11 ≥11, < 14 ≥14, < 17 ≥17, < 20 ≥20 

SV model n=189 n=308 n=521 n=702 n=796 
Observed mean 7.974 12.172 15.106 18.010 21.824
Predicted mean     
OLS 13.127 15.202 16.544 17.401 19.024
RE 12.912 15.050 16.509 17.458 19.106
FE 12.921 15.044 16.499 17.458 19.113
OLS, PF 13.102 15.186 16.530 17.413 19.035
RE, PF 12.930 15.060 16.501 17.462 19.100
FE, PF 12.908 15.042 16.491 17.463 19.118
Mean error (ME)  
OLS -5.153 -3.030 -1.438 0.609 2.800
RE -4.939 -2.878 -1.403 0.552 2.718
FE -4.948 -2.871 -1.394 0.552 2.711
OLS, PF -5.129 -3.014 -1.424 0.597 2.790
RE, PF -4.957 -2.888 -1.395 0.548 2.724
FE, PF -4.935 -2.870 -1.385 0.547 2.706
Mean absolute error (MAE)  
OLS 5.165 3.189 2.081 1.879 2.970
RE 4.954 3.095 2.070 1.867 2.900
FE 4.962 3.084 2.064 1.868 2.898
OLS, PF 5.143 3.191 2.074 1.884 2.958
RE, PF 4.973 3.103 2.063 1.856 2.901
FE, PF 4.952 3.089 2.066 1.865 2.893
      

Simplified SV model n=189 n=308 n=521 n=702 n=797 
Observed mean 7.974 12.172 15.106 18.010 21.827
Predicted mean     
OLS 13.205 15.212 16.524 17.387 19.033
RE 12.984 15.057 16.489 17.444 19.117
FE 12.978 15.052 16.485 17.447 19.122
OLS, PF 13.174 15.196 16.511 17.399 19.044
RE, PF 13.001 15.068 16.482 17.448 19.111
FE, PF 12.966 15.049 16.477 17.452 19.127
Mean error (ME)  
OLS -5.231 -3.040 -1.418 0.623 2.793
RE -5.011 -2.885 -1.384 0.566 2.709
FE -5.005 -2.880 -1.379 0.563 2.705
OLS, PF -5.201 -3.024 -1.405 0.611 2.782
RE, PF -5.027 -2.896 -1.377 0.562 2.716
FE, PF -4.993 -2.877 -1.371 0.558 2.700
Mean absolute error (MAE)  
OLS 5.244 3.153 2.073 1.893 2.980
RE 5.029 3.052 2.060 1.884 2.909
FE 5.020 3.048 2.057 1.885 2.908
OLS, PF 5.216 3.159 2.066 1.897 2.961
RE, PF 5.047 3.060 2.053 1.871 2.909
FE, PF 5.011 3.050 2.058 1.882 2.901
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 For regions where ASCOF SCRQoL is… 
 <11 ≥11, < 14 ≥14, < 17 ≥17, < 20 ≥20 

EP model n=216 n=332 n=586 n=776 n=909 
Observed mean 7.963 12.154 15.121 17.994 21.814
Predicted mean     
OLS 13.224 15.232 16.591 17.434 18.969
RE 13.033 15.089 16.555 17.476 19.055
FE 13.040 15.098 16.556 17.473 19.052
OLS, PF 13.202 15.223 16.590 17.435 18.978
RE, PF 13.067 15.101 16.553 17.472 19.047
FE, PF 13.040 15.097 16.552 17.471 19.056
Mean error (ME)  
OLS -5.261 -3.078 -1.470 0.559 2.845
RE -5.070 -2.935 -1.434 0.518 2.759
FE -5.077 -2.944 -1.434 0.521 2.762
OLS, PF -5.239 -3.069 -1.468 0.558 2.836
RE, PF -5.104 -2.947 -1.432 0.522 2.767
FE, PF -5.077 -2.944 -1.431 0.522 2.758
Mean absolute error (MAE)  
OLS 5.285 3.276 2.104 1.848 2.976
RE 5.117 3.185 2.107 1.849 2.910
FE 5.123 3.189 2.102 1.843 2.914
OLS, PF 5.270 3.277 2.102 1.855 2.968
RE, PF 5.149 3.187 2.099 1.843 2.915
FE, PF 5.126 3.192 2.103 1.845 2.910
Legend: values in bold are the most accurate 
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Appendix 18: Effect of Adjustment on Performance Assessment Using 

ASCOF SCRQoL Indicators 

 

The correlation statistics for the ASCOF SCRQoL PI for CASSRs estimated using different 

regression methods are shown for the three sub-groups in Table 99 to Table 101 for the 

complete case analysis.  The correlation statistics for the ASCOF SCRQoL PI for CASSRs 

estimated using different methods for indirect standardisation are shown for the three sub-

groups in Table 102 to Table 104 for the complete case analysis.  Correlations are very high, 

being above 0.99 in all cases.  Kendall’s tau is also very high, with values >.90. 
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Table 99: Correlation statistics between adjusted indicators†, estimated using different regression methods, care home sub-group 

(n=148) 

Complete case analysis 1a. OLS regression 1b. FR regression 2a. FE regression 2b. RE regression 
Pearson’s R2 (p-value) 
1a. OLS regression  1.000 1.000 1.000
1b. FR regression  0.993  1.000 1.000
2a. FE regression  1.000 0.993  1.000
2b. RE regression  1.000 0.993 1.000  

     

Rho (p-value) 
1a. OLS regression  1.000 1.000 1.000
1b. FR regression 0.991  1.000 1.000
2a. FE regression 0.999 0.991  1.000
2b. RE regression  1.000 0.991 1.000  

     

Tau (p-value) 
1a. OLS regression  1.000 0.996 0.997
1b. FR regression  0.923  0.996 0.997
2a. FE regression  0.985 0.925  0.998
2b. RE regression 0.997 0.922 0.988  

Legend: † Indicators 1a, 1b, 2a and 2b estimated using the error approach i.e. observed – expected; lower quadrant SV models, upper quadrant EP models  
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Table 100: Correlation statistics between adjusted indicators† for SV and EP covariate sets, estimated using different models, 65 and 

over sub-group (n=149) 

Complete case analysis 1a. OLS regression 1b. FR regression 2a. FE regression 2b. RE regression 
Pearson’s R2 (p-value) 
1a. OLS regression   0.999 1.000 1.000
1b. FR regression 0.997  0.999 0.999
2a. FE regression  1.000 0.997  1.000
2b. RE regression 1.000 0.997 1.000  

     

Rho (p-value) 
1a. OLS regression  0.998 1.000 1.000
1b. FR regression 0.997  0.998 0.998
2a. FE regression  1.000 0.997  1.000
2b. RE regression 1.000 0.997 1.000  

     

Tau (p-value) 
1a. OLS regression   0.970 0.994 0.997
1b. FR regression 0.955  0.969 0.969
2a. FE regression 0.991 0.954  0.997
2b. RE regression 0.995 0.956 0.996  

Legend: † Indicators 1a, 1b, 2a and 2b estimated using the error approach i.e. observed – expected; lower quadrant SV models, upper quadrant EP models  
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Table 101: Correlation statistics between adjusted indicators† generated using different regression methods, 18 to 64 sub-group (n=149) 

Complete case analysis 1a. OLS regression 1b. FR regression 2a. FE regression 2b. RE regression  
Pearson’s R2 (p-value) 
1a. OLS regression   0.998 1.000 1.000
1b. FR regression  0.995  0.998 0.998
2a. FE regression  1.000 0.995  1.000
2b. RE regression  1.000 0.995 1.000  

     

Rho (p-value) 
1a. OLS regression   0.998 1.000 1.000
1b. FR regression  0.995  0.998 0.998
2a. FE regression  1.000 0.995  1.000
2b. RE regression  1.000 0.995 1.000  

     

Tau (p-value) 
1a. OLS regression   0.966 0.994 1.000
1b. FR regression  0.941  0.965 0.965
2a. FE regression  0.989 0.944  0.994
2b. RE regression  0.999 0.942 0.990  

Legend: † Indicators 1a, 1b, 2a and 2b estimated using the error approach i.e. observed – expected; lower quadrant SV models, upper quadrant EP models  
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Table 102: Correlation statistics between adjusted indicators†, estimated using different methods for generating the indicator, care 

home sub-group (n=148) 

Complete case analysis Average ratio Individual ratio Error 
Pearson’s R2 (p-value)  
Average ratio  0.998 1.000
Individual ratio 0.994   0.997
Error 1.000 0.994  

    

Rho (p-value)  
Average ratio  0.997 1.000
Individual ratio 0.991   0.997
Error 1.000 0.991  

    

Tau (p-value)  
Average ratio  0.958 0.996
Individual ratio 0.930   0.958
Error 0.991 0.930  

Legend: † Indicators based on OLS only; lower quadrant SV models, upper quadrant EP models 
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Table 103: Correlation statistics between adjusted indicators†, estimated using different methods for generating the indicator, 65 and 

over sub-group (n=149) 

Complete case analysis Average ratio Individual ratio Error 
Pearson’s R2 (p-value)  
Average ratio  0.995 1.000
Individual ratio 0.995   0.995
Error 1.000 0.995  

    

Rho (p-value)  
Average ratio  0.993 1.000
Individual ratio 0.995   0.994
Error 1.000 0.995  

    

Tau (p-value)  
Average ratio  0.937 0.992
Individual ratio 0.944   0.937
Error 0.992 0.945  

Legend: † Indicators based on OLS only, except EB error; lower quadrant SV models, upper quadrant EP models 
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Table 104: Correlation statistics between adjusted indicators†, estimated using different methods for generating the indicator, 18 to 64 

sub-group (n=149) 

Complete case analysis Average ratio Individual ratio Error 
Pearson’s R2 (p-value)  
Average ratio  0.983 0.999
Individual ratio 0.986   0.982
Error 0.999 0.984  

    

Rho (p-value)  
Average ratio  0.979 1.000
Individual ratio 0.981   0.978
Error 1.000 0.981  

    

Tau (p-value)  
Average ratio  0.886 0.987
Individual ratio 0.892   0.882
Error 0.987 0.888  

Legend: † Indicators based on OLS, except for Eb error; lower quadrant SV models, upper quadrant EP models 
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The correlation statistics for the ASCOF SCRQoL PI for CASSRs estimated using different 

methods for indirect standardisation are shown in Table 105 for the complete case analysis.  

Correlation statistics for the ASCOF SCRQoL PI for CASSRs estimated using different 

model specificatons are shown in Table 106.  The correlation statistics for the ASCOF 

SCRQoL PI for CASSRs estimated using different regression methods are shown in Table 

107 for the complete case analysis.   
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Table 105: Correlation statistics between adjusted indicators†, with indicators generated using different methods, partial 18 to 64 sub-

group with budget data (n=83) 

Complete case analysis Average ratio Individual ratio Error 
Pearson’s R2 (p-value)  
Average ratio  0.982 0.999
Individual ratio 0.987   0.982
Error 0.997 0.985  

    

Rho (p-value)  
Average ratio  0.974 0.999
Individual ratio 0.983   0.975
Error 0.996 0.980  

    

Tau (p-value)  
Average ratio  0.885 0.979
Individual ratio 0.907   0.885
Error 0.961 0.889  

Legend: † Indicators based on OLS, PF; lower quadrant Simplified SV models, upper quadrant EP models 
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Table 106: Correlation statistics between adjusted indicators† from SV, SSV and EP 

models, partial 18 to 64 sub-group with budget data (n=83) 

Indicator Covariate 
comp 

Pearson’s 
R2 

(p-value) 

Rho 
(p-value) 

Tau 
(p-value) 

% pairs 
change 
order 

Complete case analysis  
1a. OLS 
regression  

SV v SSV 0.994 0.993 0.936 3.2%
SV v EP 0.939 0.935 0.790 10.5%
SSV v EP 0.940 0.933 0.785 10.8%

1b. FE regression  SV v SSV 0.995 0.994 0.942 2.9%
SV v EP 0.939 0.937 0.800 10.0%
SSV v EP 0.939 0.934 0.789 10.6%

1c. RE regression  SV v SSV 0.995 0.993 0.938 3.1%
SV v EP 0.939 0.936 0.791 10.5%
SSV v EP 0.940 0.934 0.787 10.6%

2a. OLS 
production 
function 

SV v SSV 0.994 0.992 0.935 3.3%
SV v EP 0.929 0.924 0.772 11.4%
SSV v EP 0.929 0.918 0.758 12.1%

2b. FE production 
function  

SV v SSV 0.995 0.994 0.944 2.8%
SV v EP 0.936 0.931 0.789 10.6%
SSV v EP 0.936 0.930 0.784 10.8%

2c. RE production 
function 

SV v SSV 0.994 0.993 0.935 3.3%
SV v EP 0.929 0.925 0.773 11.4%
SSV v EP 0.929 0.918 0.757 12.2%

      

Multiply-imputed sample  
1a. OLS 
regression  

SV v SSV 0.995 0.992 0.936 3.2%
SV v EP 0.982 0.974 0.869 6.6%
SSV v EP 0.982 0.975 0.868 6.6%

1b. FE regression  SV v SSV 0.996 0.992 0.934 3.3%
SV v EP 0.982 0.975 0.868 6.6%
SSV v EP 0.982 0.973 0.864 6.8%

1c. RE regression  SV v SSV 0.995 0.992 0.936 3.2%
SV v EP 0.982 0.975 0.868 6.6%
SSV v EP 0.982 0.974 0.867 6.7%

2a. OLS 
production 
function 

SV v SSV 0.995 0.993 0.937 3.2%
SV v EP 0.972 0.958 0.848 7.6%
SSV v EP 0.970 0.957 0.838 8.1%

2b. FE production 
function  

SV v SSV 0.996 0.992 0.936 3.2%
SV v EP 0.975 0.961 0.846 7.7%
SSV v EP 0.974 0.962 0.840 8.0%

2c. RE production 
function 

SV v SSV 0.995 0.993 0.935 3.2%
SV v EP 0.972 0.957 0.847 7.7%
SSV v EP 0.970 0.957 0.838 8.1%

Legend: † Indicators 1, 2a and 2b estimated using the error approach i.e. observed – expected. 
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Table 107: Correlation statistics between adjusted indicators† generated using different regression methods, CCA sample, partial 18 to 

64 sub-group with budget data (n=83) 

Complete case 
analysis 

1a. OLS  1b. FE 1c. RE 2a. OLS, PF 2b. FE, PF 2c. RE, PF 

Pearson’s R2 (p-value)   
1a. OLS   1.000 1.000 0.951 1.000 0.950 
1b. FE  1.000  1.000 0.951 1.000 0.950 
1c. RE  1.000 1.000   0.951 1.000 0.950 
2a. OLS, PF 0.951 0.951 0.951  0.950 1.000 
2b. FE, PF  1.000 1.000 1.000 0.951  0.949 
2c. RE, PF 0.950 0.949 0.949 1.000 0.950   

       

Rho (p-value)   
1a. OLS   1.000 1.000 0.935 1.000 0.933 
1b. FE  0.999  1.000 0.935 1.000 0.933 
1c. RE  1.000 1.000   0.935 1.000 0.933 
2a. OLS, PF 0.943 0.941 0.943  0.934 1.000 
2b. FE, PF  0.998 0.999 0.999 0.943  0.932 
2c. RE, PF 0.940 0.939 0.940 1.000 0.941   

       

Tau (p-value)   
1a. OLS   0.993 0.998 0.820 0.992 0.816 
1b. FE  0.987  0.994 0.817 0.999 0.814 
1c. RE  0.995 0.990   0.820 0.993 0.816 
2a. OLS, PF 0.823 0.820 0.825  0.817 0.997 
2b. FE, PF  0.977 0.987 0.979 0.825  0.814 
2c. RE, PF 0.820 0.817 0.822 0.997 0.822   

Legend: † Indicators 1a, 1b, 2a and 2b estimated using the error approach i.e. observed – expected; lower quadrant Simplified SV models, upper quadrant EP models 


