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Abstract

This thesis comprises of four essays that seek to advance understanding of the role that
climatic constraints have on agricultural productivity in India and Pakistan. This work em-
phasises that the constraints posed to agricultural production must be understood within
the context of an evolving set of environmental and technological conditions. The thesis
employs empirical methods to understand these relationships, where particular emphasis
is placed on methods suitable for learning about the challenges agriculture will face in
the future. The first chapter studies the impact of climate change on rice yields in India
by modelling the inter-annual distribution of yield conditional on projected temperature
increases. The results suggest a decrease in average yield and a substantial increase in the
probability of low yields. It is also shown that yields have become increasingly resilient
to heat over time. The second chapter studies the effect of drought on cereal production
in India by estimating thresholds of drought impact. By examining thresholds over time,
evidence is found of decreasing average impacts, but with evidence of an abrupt increase
in average drought impacts in more recent years. Thresholds of precipitation are also
estimated, indicating substantial heterogeneity in resilience to drought across crop types
and regions of India. The third chapter examines how changes in agricultural technology
brought about by the Green Revolution affected the relative importance of agro-climatic
factors in determining crop yields. Using a detailed measure of crop suitability it is found
that yields increased relatively more in areas of higher suitability, indicating complemen-
tarity between agricultural technologies and favourable agro-climatic characteristics. The
final chapter uses farm-level data from a specifically-designed survey to assess the impact
and determinants of climate change adaptation strategies on crop productivity in Pakistan.
Adaptation has a beneficial effect on rice yields, but not on wheat yields. This chapter also
finds that a number of household and institutional factors are strongly related to whether

households have adapted to climate change.
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Chapter 1

Introduction

HIS introductory chapter aims to motivate the importance of understanding the
evolving constraints to agricultural productivity to assess the challenges facing
agriculture in the twenty-first century. Firstly, I outline the importance of un-

derstanding these constraints due to the need to meet a growing demand for food in the
future. Secondly, I discuss a number of the evolving constraints to increasing production.
In particular, I highlight the significance of understanding constraints related to agricul-
tural productivity and the climate. After this, I provide an overview of these issues in
the context of my study area, South Asia. Finally, I outline each of the thesis chapters
by providing brief summaries of the aim, contribution, methodology and results of these

chapters.

1.1 The growing demand for food

In the coming decades, the agricultural sector must produce enough food to meet the
demands of an increasingly affluent and growing population. By the middle of the century,
global population is expected to reach 9.7 billion, adding a further 2.4 billion people
compared to the present day (UN, 2015). Economic growth, especially in developing
economies, is also projected to continue to increase in the coming decades, boosting the

incomes of many (Rodrik, 2014). Put together, these trends will have major implications



for the global demand for food. The demand for staple cereal crops, such as rice, wheat,
maize, and soybeans is likely to be of particular importance given the vital role that these
crops play in the diets and expenditure of a large part of the global population. For
example, these four crops made up 46 percent of all calories globally consumed in 2010,
with this percentage significantly larger in many low income countries (Pingali, 2015).
Although the contribution of these crops to total calories consumed tends to decline as
income levels increase (Deaton and Dreze, 2009), the demand for staple cereal crops is still
projected to increase by around 60 to 100 percent by 2050 compared with 2010 (Tilman
et al., 2011; Fischer et al., 2014).

Failure to increase the supply of these crops is likely to result in higher prices for these
agricultural goods, putting the food security of many consumers at risk. The vulnerability
of the global food system was highlighted between the years 2007 and 2008, in which
prices for agricultural commodities elevated rapidly. During this period, average prices of
food commodities increased by over 50% (Tadesse et al., 2014). These price increases were
particularly steep for a number of the aforementioned staple cereals, however. Rice, wheat,
and maize saw respective prices increases of 225%, 81% and 87% during this period (Headey
and Fan, 2008). It has become clear following this period that there may be winners and
losers from price increases such as these. On the one hand, price increases could actually
increase the incomes of many producers if higher consumer prices translate into higher
farm gate prices. On the other hand, the distributional effect of price increases would
likely disproportionately fall on many of the world’s poor, particularly urban consumers
and rural net buyers of food, who spend larger portions of their income on food (Dorward,
2012). For instance, in the majority of developing countries, the poorest 20 percent tend to
be net buyers of food (FAO, 2011). The knock-on effects of rising food prices have also been
linked to wider social impacts, such as the increased incidence of social unrest(Bellemare,

2015).



1.2 Assessing the constraints to agriculture

1.2.1 The role of productivity in the twenty-first century

Increasing amounts of scholarly attention has already been devoted to bringing attention
to the evolving constraints that will be important for determining the production of food
in the future (Naylor, 1996; Tilman et al., 2002). Although the exact nature of these
constraints depends on the context in question and will later be explored in the main
body of the thesis, a number of these constraints are common across much of the world’s
agricultural sector. For instance, one way to increase production in future will be to
increase the amount of land that is cultivated. Historically, increases in area cultivated
have been important for increasing the supply of agricultural goods. For example, between
1970 and 2005, cultivated area for the ten major global crops, which make up nearly 60%
of cultivated area, increased by 26% (Rudel et al., 2009). The prospects for continuing to
increase cultivated area appear to be very limited, however. A primary issue is that there
is increasing international recognition of the threat posed by agricultural land expansion
to biodiversity, such as the encroachment of agriculture into fragile ecosystems, including
forests (Bulte and Engel, 2006). Similarly, increased land use competition from biofuels and
other non-food crops is also predicted to restrict the amount of land that can be devoted
to food crops (Lobell et al., 2014; Rueda and Lambin, 2014). Expanding cultivatable area
is therefore unlikely to be the solution to increasing the supply of agricultural production
in the future. This means that increases in yield will form the basis for increasing the

supply of crops (Barbier, 2011).

Past experience has highlighted agriculture’s ability to substantially increase the produc-
tivity of land. For instance, sustained rates of yield growth for a number of staple crops
were characteristic of the sector in many parts of the world during the twentieth century
(Ruttan, 2002; Federico, 2005). Key to this was the increased use of a range of modern
agricultural technologies. These technologies transformed land previously farmed using
more traditional methods, into land that delivered much greater output per acre in many

areas of the world. The utilisation of improved crop varieties and the use of modern farm



inputs, such as fertiliser and irrigation, were integral to increasing the productivity of land
in most areas of the world. For example, across developing countries yields for wheat
increased by over 200% and yields for rice increased by over 100% (Pingali, 2012). The
increased supply of staple crops has had very substantial effects on the real price of food,
which showed trend rates of decline in the latter part of the twentieth century (Rudel
et al., 2009). Evenson and Rosegrant (2003) estimate that rice prices would have been 80-
124% higher and wheat prices 29-61% higher without the productive gains spurred by crop
genetic improvement programmes that occurred as part of the Green Revolution. Global
food challenges in the present day are in many ways comparable to those fifty years ago.
For example, between 1970 and 2005, total production of staple crops increased by 123%.
Concerns about an impending Malthusian crisis due to rapid and concentrated population

growth were thus successfully averted.

Despite previous success in increasing the productivity of agriculture, a crucial issue per-
tains to whether rates of productivity growth in agriculture will be sustained in the future.
There is increasing evidence that the productivity gains made from switching to modern
farming techniques are slowing. A number of studies have noted a slowdown and a even
stagnation in the rate of yield growth for key staple crops in recent decades. Ray et al.
(2012) estimate that globally, 24-39% of areas growing cereals such as rice, wheat, maize
and soybeans display non-increasing trends in yield growth. In addition, Lin and Huybers
(2012) show that 50% of major wheat growing areas show stagnant growth rates. Levels
of public R&D in agriculture have also fallen over time, meaning that research into main-
taining and improving the yield potential of cultivars has decreased (Piesse and Thirtle,
2010). In light of this, the primary challenge facing agriculture in the coming decades will
be to maintain the productive success of the past and continue to increase the supply of
these crops to meet future demand. In order to do this, agriculture will have to increas-
ingly confront constraints to productivity on existing cultivated land (Tilman et al., 2002;
Hertel, 2011). How significant these constraints are for current productivity and whether
these constraints are likely to evolve in future is thus a first order concern for research on

food security in the twenty-first century.



1.2.2 The changing role of the climate in agriculture

Given the importance of continuing to increase the productivity of agriculture in the com-
ing years, it is crucial to understand the evolving constraints the sector could be exposed
to. In recent years, increasing amounts of research effort has been devoted to understand-
ing the interaction between environmental features and economic production systems in
general. Much of this research has been motivated by overwhelming evidence that human-
induced emissions of greenhouse gases, such as carbon dioxide, are contributing to rising
global temperatures. According to the IPCC (2014), average surface temperatures around
the world have increased by 0.85°C between 1880-2012. For example, previous work has
shown that since 1980 yields of major cereals across the world have already reduced due to
temperature increases, offsetting some of the gains made by technological improvements
over this period (Lobell et al., 2011). Projections of future warming, although suffering
from significant uncertainties about the sensitivity of the climate system to changes in
greenhouse gas emissions and the uncertain nature of future emissions trajectories, indi-
cate substantial increases in global temperatures. Warming by the end of the century is
likely to exceed 2°C and in extreme cases could amount to 5°C. These projected increases
in temperature have been predicted to substantially lower the productivity of agriculture
in the future owing to the harmful effect of heat on crop growth (Schlenker and Roberts,

2009; Challinor et al., 2014; Deryng et al., 2014).

Moreover, climate change is also likely to affect other climatic inputs integral to agricul-
ture, such as rainfall patterns and extreme heat, which could influence the probability of
events generally considered harmful for agriculture, like drought and floods (IPCC, 2012).
How resilient the agricultural sector is to these shocks will be crucial to avoiding the ad-
verse effect shocks to productivity for global markets and for producers and consumers
more locally. The share of food traded internationally has risen steadily over time, and a
range of government support schemes have been introduced aiming to stabilise the price
of agricultural commodities so that local productivity shocks in agriculture tend to have
less effect on local food prices (Anderson, 2010). However, the productivity of agriculture

still remains crucial as a source of income for farmers and labourers.



Although these changes in climate present a challenge from a global food security perspec-
tive, a crucial point pertains to the expected geographical distribution of climate change
impacts. For instance, growing areas in lower latitude regions (those nearer to the equa-
tor) have been identified as areas most vulnerable to the adverse effects of climate change
(Mendelsohn et al., 2006; Auffhammer and Schlenker, 2014). This stems from the fact
that already these areas tend to be hotter and thus prone to extreme weather (Nordhas,
2006). Output from climate models predicts that by the end of the this century, growing
season temperatures in the majority of tropical and sub-tropical areas will exceed those
historically recorded as hottest more often than not (Battisti and Naylor, 2009). Despite
this, research examining the potential economic impacts of climate change on agriculture
has largely taken place in the United States and other developed countries (Burke et al.,
2015). Increased amounts of research are thus needed to assess exactly how agricultural
production could be affected in areas of the world that may be particularly vulnerable to
these changes and to understand the opportunities for reducing the adverse impacts of

future changes borne by climate change.

1.3 Research location: South Asia

To contribute to understanding the evolving constraints to agriculture, the work contained
in this thesis examines these issues in the context of two countries in South Asia: India

and Pakistan.

The challenges to agriculture at the global level are readily reflected in South Asia. Grow-
ing domestic demand for staple crops like wheat and rice will to continue to grow. The
current population of India numbers 1.25 billion and 182 million in Pakistan. In India,
the population is expected to reach 1.66 billion by 2050 and in Pakistan will likely reach
300 million by 2050 (UN, 2015). To meet the demands of these increasing populations,
the role of domestic agricultural production will remain integral for the food security of

these countries.

To further reflect trends at the global level, constraints to future production growth in



South Asia are pressing. The inability of agriculture to expand onto more land is a critical
constraint in most agricultural areas of India and Pakistan. While rates of urbanisation
will continue to increase, and burgeoning modern sectors of the economy will continue
to reduce the relative share of agriculture in national income, these changes are likely to
place additional competition on land currently used for agriculture, placing the onus on

agricultural productivity growth to meet future demand.

Previously, India and Pakistan were able to benefit immensely from technological inno-
vation during the Green Revolution, which began in the mid-1960s. Following colonial
independence in 1947, agriculture in both countries was in a state of low productivity
with stagnant growth rates (Chaudhry and Chaudhry, 1997; Roy, 2007). In a relatively
short amount of time however, the increased production of key staple crops, especially rice
and wheat, meant that agricultural sectors of these economies produced enough food to
consistently cater to the increasing internal demand from rapidly growing populations. In
both countries, average wheat yields at the end of twentieth century were roughly three

times those in 1960, and had increased by more than double for rice (Evenson, 2005).

The initial gains in productivity from the Green Revolution and the subsequent diffusion
of these technologies to wider areas delivered sustained productivity growth for a number
of decades. However, more recent analyses have highlighted that the rate of increase in
yields is not increasing and even declining in many areas. This is particularly notable
in India, where wheat yields have stagnated or actually declined in 70% of areas in the
previous decade. For rice, trends suggest that yields are not increasing in 35% of rice areas

(Ray et al., 2012).

Importantly, the sustainability of the Green Revolution model of development which forms
the basis for the agricultural production systems of both countries is being called into
question. Overexploitation of groundwater and land degradation are particular concerns
in high productivity areas of both India and Pakistan (Murgai, 2001). Indeed, recent
satellite estimates show that groundwater depletion is particularly acute in many areas
(Rodell et al., 2012). Additionally, claims that increases in average productivity masked

regional inequalities in agricultural development by consolidating the productivity of the



most favourable growing areas casts further doubt on the suitability of this model in the

coming years (Pingali, 2012).

The constraints to agricultural production are also compounded by projections of future
climate change. Models suggest that average temperature increases across the region are
likely to amount to increases in average surface temperature of between 1 and 2°C by
2050, and between 3-4.5°C by the end of century relative to observed temperatures in the
middle of the twentieth century (Ahmed and Suphachalasai, 2014). Moreover, changes in
the climate may also manifest themselves by affecting a particularly salient feature of the
South Asian agricultural sector, the monsoon. The probability of extreme rainfall events,
which can lead to drought and floods, has significantly increased over the last fifty years
(Singh et al., 2014). Although there is no scientific consensus about whether levels of
rainfall will change in the future, there is more agreement that climate change is likely to
increase the variability of monsoon patterns, leading to more extreme precipitation events

(Turner and Annamalai, 2012).

Finally, assessing the performance of agriculture in these two countries is motivated by the
crucial role agriculture continues to play in the economic lives of millions in the region.
The proportion of people living below the internationally-determined extreme poverty line
of $1.90 a day amounts to 21.3% of the population in India and 8.3% in Pakistan (World
Bank, 2016). These numbers are more startling given the absolute number of people that
these statistics refer to. In India, this represents one-quarter of a billion falling below this
line. Symptomatic of these poverty rates is that agriculture remains the dominant form of
employment throughout the region. According to the International Labour Organisation,
50% of those employed work in agriculture in India, with this figure at 45% in Pakistan in
2010. Although absolute levels of urbanisation will continue to increase, rural populations
who primarily rely on income from agriculture will remain very large and roughly constant
in absolute terms by the middle of this century in both countries (United Nations, 2014).
As such, the role of agriculture as a source of income and employment will remain an
important factor for the living standards of many in these areas (Datt and Ravallion,
1998; de Janvry and Sadoulet, 2010). Higher levels of productivity have increased the

incomes of rural farmers and agricultural labourers. Similarly, greater food availability



can also reduce the price of food for rural and urban consumers alike, with some estimates
suggesting that rates of growth in the agricultural sector can reduce poverty by three times

more than growth in other sectors of the economy (Christiaensen et al., 2011).

In assessing the future of food security in these areas, it is crucial to consider the evolv-
ing nature of the constraints to agriculture and how these could affect prospects for the
future. Research assessing the constraints borne by climate change is crucial for assessing
implications for productivity of the sector. On top of this, understanding possibilities to
adapt and cope quickly enough so as not to compromise the livelihoods of the millions
dependent the sector is of foremost importance. These themes are pursued in the rest of

the thesis.

1.4 Data and methodological approach

The chapters that follow employ a number of different empirical methods in order to assess
a number of constraints to agricultural productivity. The data used and the empirical
methodology are described in detail in each chapter. Before describing each separate
paper that makes up the thesis, however, it is important to note the different types of data

used throughout this thesis.

The first three chapters exploit a lengthy set of panel data pertaining to district-level
agricultural outcomes in India. The use of panel data in this context is advantageous since
it allows for the application of a number of empirical approaches to isolate the effect of
various climatic constraints to agriculture. Over recent years, a burgeoning literature has
sought to apply empirical methods to assess the role that various climatic variables play in
affecting agricultural production (Auffhammer and Schlenker, 2014). A key development
is the substantial increase in the availability of historical data relating to both physical
variables, such as temperature and rainfall, and corresponding data on various economic
outcomes that could be affected by variation in these physical variables (Auffhammer et al.,
2013). The panel data on agricultural outcomes is also matched with a set of state-of-the-

art weather data and agro-climatic suitability indices. Detailed descriptions of this data



and construction of the variables used to undertake the analysis are discussed in depth in

each paper.

The fourth chapter takes a slightly different approach by utilising a set of data from
Pakistan. This data differs from data used in the previous chapters in two ways. Firstly,
the data is measured at the household level as opposed to the district-level. Second, the
data is cross-sectional since it resulted from an agricultural survey undertaken in 2013.

The relative benefits and costs of examining data at this level are discussed in the chapter.

1.5 Thesis outline

Given the issues previously outlined, the aim of this thesis is to assess the role that a
number of different climatic constraints have on agricultural production in South Asia.
In doing so, empirical methods will be used to understand these relationships in order to
learn about the challenges South Asian agriculture will face in the future. A key point
made throughout this thesis is that the role of climatic constraints should be understood
within the context of a changing agricultural sector. As such, a particular emphasis is
placed on understanding how the effect of relevant climate variables may have changed
over time and whether we can use knowledge of the past to more accurately provide policy
makers with information about how to better plan for the future. The individual chapters

of this thesis proceed as follows.

In Chapter 2, I assess the effect of climate change on rice yields in India. An important
contribution of this paper is the assessment of the impact that temperature increases
have on the year-to-year distribution of rice yields as well on average productivity. Given
that low productivity outcomes can lead to significant welfare costs to producers and
consumers, an assessment of whether climate change has the potential to significantly alter
the likelihood of these occurrences is of high importance. This is achieved by applying the
moment-based maximum entropy technique, which is used to construct distributions of rice
yield conditional on future temperature scenarios. A district-level database of rice yields

in India is combined with records of daily weather data to empirically model the historic
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response that temperature has had on crop productivity. I first estimate that based on the
relationship between temperature and rice productivity between 1970 and 2009, average
yields decline by 4.4% for the period 2011-2040 and 9.9% by 2041-2070. Importantly, the
effect of warming also leads to a large increase in the probability of particularly low yields.
By the middle of the century, I predict that low yields that historically occurred with
25 percent probability increase to 38 percent. One important finding from this study is
that rice yields have become more resilient to heat over time. Although absolute yield
losses from heat have remained constant over time, there has been a significant reduction
in the relative effect of heat on yields over time. These findings suggest that researchers
should examine changes in heat tolerance of agriculture in order to provide more accurate
predictions about future impacts and investigate the possible mechanisms behind these

changes.

To further examine the vulnerability of the agricultural sector in India to climatic threats,
in Chapter 3 I conduct an assessment of an enduring obstacle for agriculture: drought.
This is conducted with co-authors Francisco Fontes and Charles Palmer. The consequences
of drought continue to pose a substantial challenge for farmers and policy makers alike
given the adverse effect drought tends to have on agricultural production. In order to
assess the vulnerability of cereal production in India to drought, we adopt a threshold
regression approach in order to identify data-driven ranges for which the magnitude of
drought impacts on cereal production differs. This is first applied to understand whether
the effect of cereal production has changed over time and to identify whether there are
distinct periods of time between which average drought impacts vary. We find evidence
of a non-linear pattern in average district cereal yields over time. While drought impacts
have reduced over time, we find evidence of a sharp break in this trend towards the end
of the sample period. A number of evolving issues are discussed to explain this pattern of
impacts. In addition, we estimate precipitation thresholds for drought impacts. This allows
us to determine levels of rainfall at which drought becomes particularly harmful for crop
yields. An advantage of this approach is that we are able to compare estimated thresholds
with official classifications of drought based on precipitation deficiency. Overall, we find

significant and negative marginal impacts of drought for levels of rainfall below 70 to 80
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percent of long-term rainfall, which corresponds with official drought definitions. These
results suggest, however, that drought definitions that do not account for local differences
in average climate and crop choice are likely to provide misleading policy guidance about

the effects of drought on crop productivity.

Agricultural technologies are crucial for allowing farmers to grow crops effectively across
a range of environments. The ability of agricultural technologies to grow effectively under
harsher environments will be important for whether technologies will be effective in areas
exposed to environmental changes, such as climate change, in the future. In Chapter 4,
I examine whether technological change in agriculture changes the relative importance of
environmental characteristics that determine crop productivity. To do this I study the
changes in agricultural technology brought about by the Green Revolution. A common
claim is that high yielding variety seeds, which facilitated yield increases over time, were
complementary in the production process to areas better endowed with more favourable
climates and fertile soil. Consequently, this complementarity could have led to yield growth
that was land quality biased, increasing yields relatively more on better quality land fol-
lowing the Green Revolution. I test the validity of this hypothesis by examining whether
yields for rice and wheat increased relatively more in areas most suited to crop growth
after the Green Revolution in India. Particularly important for this chapter is the accurate
measurement of agro-climatic conditions. Accordingly, I adopt a crop-specific measure of
land quality from the FAO Global Agro-Ecological Zones project. The results of this anal-
ysis show that for both rice and wheat, yield gains after the Green Revolution significantly
increased the productive advantages of districts with higher agro-climatic suitability for
crop growth. This result is consistent across a number of subsets of geographical regions,
over time, and does not seem to be driven by differences in the diffusion of technology
across districts. This work highlights that developing agricultural technologies that work
effectively under increasing environmental strain is important for maintaining agricultural

productivity in the future.

Chapter 5 differs from the previous chapters in two ways. First, I turn my attention
to Pakistan. Second, I use farm-level data taken from a specifically-designed agricultural

household survey that collected data on farmers’ observed adaptation strategies, farm pro-
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duction and household characteristics. While several studies have estimated that average
crop yields may decline with climate change, no prior work has empirically examined the
role that adaptation to climate change might play. A detailed understanding of the range
of strategies available to farmers and the productive benefits of these strategies is there-
fore needed. The data from this study is employed to assess whether the use of climate
change adaptation strategies has a positive effect on farm productivity. The empirical
approach used in the paper addresses the issue of farmer self-selection into adaptation
by utilising an endogenous switching regression framework. It is found that the impact
of employing adaptation measures differs according to crop. We predict that the use of
adaptation strategies for rice farmers has, on average, increased yields by 9%. In contrast,
for wheat farmers, we predict positive but statistically insignificant productive gains from
adaptation. We also estimate the counterfactual gains for non-adapting farmers had they
adapted to climate change. We find these effects to be much larger, suggesting that policies
aimed at relaxing the constraints to undertaking adaptation could have significant effects
on food security. This chapter also finds that a number of household and institutional fac-
tors are strongly related with whether households have adapted to climate change. This
indicates that in order to allow farmers to efficiently adapt to climate change in the future,
policies are required to relax some of the persistent constraints that hamper agricultural

development.
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Chapter 2

Worse than average? Assessing
the impact of higher temperatures

on the distribution of rice yields in

India
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Abstract

Empirical studies examining the impact of climate change in agriculture typically evaluate impacts
using measures of average productivity. Assessing the effect that climate change could have on
other economically relevant measures of productivity is important for a fuller assessment of any
potential costs. In this paper, I examine the effect that increased exposure to higher temperatures
has on the rice yields in India, predicting the effect on average yields and the probability of low
productivity events, or downside risk. District-level data between 1970 and 2009 is used along with
daily weather data to estimate the historical relationship between rice yield and temperature in
India. The moment-based maximum entropy approach is then employed to estimate the effect of
temperature on the higher order moments of yield and to construct probability distributions of
yield conditional on future temperature scenarios. While I predict that average yields will decline
by 4.4% for the period 2011-2040 and 9.9% by 2041-2070, T also predict that climate change leads to
substantial increases in the probability of low yield events. Projected warming by the middle of the
century implies that the likelihood of yields below those that occurred with a 5 percent probability
under baseline temperatures increases to 15 percent. The likelihood of yields falling below the
lowest 25th percentile of historic yield distribution increases to 38 percent by the middle of the
century. There is substantial regional heterogeneity in estimated impacts, with districts in northern
states likely to be most affected by increased heat exposure both in terms of reduced average yield
and substantial increases in the probability of low yield events. This study also finds that rice
yields have become more resilient to heat over time. These findings suggest that researchers should
examine changes in heat tolerance of agriculture in order to provide more accurate predictions

about future impacts and investigate the possible mechanisms behind these changes.
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2.1 Introduction

EMPERATURES are projected to continue to rise around the globe due to increases
in greenhouse gas emissions. Economic production in a number of sectors is
expected to be negatively affected by higher temperatures, which have histori-

cally been shown to lead to reductions in economic activity (Dell et al., 2012; Burke et al.,
2015b). The effects of temperature increases could be particularly significant in the agri-
cultural sector, where average crop yields have been predicted to significantly decrease in
many parts of the world owing to the harmful effect of heat on crop growth (Challinor

et al., 2014; Deryng et al., 2014).

To evaluate the effect of climate change in the agricultural sector, the vast majority of
previous studies have examined effects on average agricultural outcomes (Deschenes and
Greenstone, 2007; Schlenker and Roberts, 2009; Auffhammer and Schlenker, 2014). The
economic effects of climate change, however, may not be well-summarised by restricting
analysis to measures of average productivity. One possibility is that more exposure to
hotter weather leads to the increased likelihood of extreme productivity outcomes (IPCC,
2012). These changes could be a concern if climate change substantially affects the proba-
bility of unfavourable outcomes, such as when crop yields fall to particularly low levels. As
such, if modest changes in average productivity are accompanied by a significant change
in the likelihood of particularly bad events, then previous studies may be underestimating
the effects of increased temperature in the agricultural sector by not considering changes

in tails of the distribution of crop yields.

Researchers and policymakers have generally been concerned about evaluating outcomes
beyond averages in agriculture (Hardaker et al., 1997). While a number of studies have
shown that farmers tend to be averse to the increased probability of unexpected outcomes
(Binswanger, 1981; Chavas and Holt, 1996), an associated issue is the likelihood of un-
favourable events, which refer to downside risk. Typically producers show preferences
that imply a particular aversion to downside risk (Menezes et al., 1980; Hanemann et al.,
2016). Exposure to downside risk is particularly relevant in many developing countries,

where a large proportion of the population is dependent on income derived from agricul-
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tural production. A large literature has found a causal link between productivity shocks
in agriculture and a range of factors relevant to welfare, such as declines in rural wage
rates (Jayachandran, 2006), increases in morbidity and mortality (Burgess et al., 2014),
and higher probability of conflict (Hsiang et al., 2013). The consequences of productivity
shocks in agriculture are usually much larger in areas of the world where a significant
fraction of the population is poor and not able to access income-smoothing mechanisms
like credit markets (Jayachandran, 2006; Burgess et al., 2014), which owing to problems of
enforcement, moral hazard, and adverse selection tend to be underprovided in many rural
areas (Besley, 1994). Thus, understanding whether climate change could increase the oc-
currence of these productivity shocks is a crucial for further understanding the implications

of higher temperatures in agriculture.

Given the importance of considering measures of agricultural productivity beyond the
mean, only a small number of studies have examined the relationship between climate
change and higher order moments of crop yield. These studies have primarily focused on
estimating the effect that certain climatic variables have on measures of the variability
of crop yields. Chen et al. (2004) and Isik and Devadoss (2006) study the effect that
increases in average temperature and changes in precipitation could have on inter-annual
crop yield variability using panels of county and state-level. Both papers use stochastic
production function methods (Just and Pope, 1978, 1979), enabling them to estimate the
variance of inter-annual yields conditional on changes in exogenous climate variables. Chen
et al. (2004) find that higher temperatures reduce average corn yields and increase their
variance. On the other hand, Isik and Devadoss (2006) predict that climate change will
not have large effects on average yields and will reduce the variance of yields. More recent
work by Urban et al. (2012) further explores the effect that temperature increases could
have on the inter-annual variability of county maize yields in the U.S. They argue that an
increase in the variability of yield can occur if climate change increases the probability of

temperatures that are damaging for yields.! They confirm this by estimating the effect

!This pertains to the findings of numerous empirical studies that show that yield is a concave function
of temperature, such that higher temperatures first increase yields until the optimum point is reached,
after which yields then begin to decline (Schlenker and Roberts, 2009; Burke et al., 2015b). While average
yields would fall owing to more exposure to hotter temperatures, the additional effect of greater exposure to
harmful temperatures substantially increases the set of low yields that occur since the new climate implies
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that higher temperatures have on coefficient of variation of maize yield, predicting this will
increase by 47 percent nationally by 2030-2050. A key implication from these results is
that the distribution of crop yields is unlikely to be stationary in the future, which means
risk managers should be aware of factoring in extra risk to crop yields posed by climate

change in the future (McCarl et al., 1998).

These works, however, only permit a limited understanding of the consequences of climate
change on downside risk for a number of reasons. First, restricting interest to general mea-
sures of variability, such as the variance and coeflicient of variation, does not allow for the
possibility that changes in the yield distribution may be asymmetric. Incorporating the
possibility that temperature increases affect the skewness of yields over time may be im-
portant, since increasing negative skewness leads to an increase in downside risk (Menezes
et al., 1980). Second, although it is possible to extend previous work to study effects on
higher moments of yield (Antle, 1983), these studies do not allow for the estimation of the
probability distribution of yields, which is useful for quantifying the likelihood of yields in
the lower tail of the crop yield distribution, which in turn are important for quantifying
changes in downside risk due to climate change (Hanemann et al., 2016). Third, as with
the vast majority of research on climate change impacts in agriculture, these studies have
been undertaken in the U.S. (Burke et al., 2015a), which creates a need for a better un-
derstanding of impacts in developing country contexts, which may differ both in exposure
to climate change and the technological capacity to deal with these changes (Mendelsohn

et al., 2006).

In this paper, I predict the effect that changes in temperature will have on district-level rice
yields in India by assessing the effect on average yields and on exposure to downside risks.
Rice is the dominant crop grown across Asia and plays an integral role in the food security
of the region. For India specifically, rice is grown in most parts of the country and makes
up around one-third of cropped area. Its successful growth is thus integral to the welfare
of millions of farmers and consumers.? To do this, I construct conditional probability

distributions of inter-annual rice yields using data covering the period 1970-2009. Yield

that temperatures are on an increasingly downward sloping part of the yield-temperature curve.
2This is particularly true for the poorest households in India who spend around 20% of income on rice
(Groom and Tak, 2015).
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distributions are constructed using the moment-based maximum entropy approach (Wu,
2003; Tack et al., 2012).3 The method is a two-step procedure that initially estimates the
effect that temperature has on different raw moments of yield. Information from these
estimations is then used to map moments of yield into a distribution of yields. This allows
me to predict how changes in temperature for the periods 2011-2040 and 2041-2070 will
affect the probability of low yields.* This is done by using a measure of downside risk that

assesses the probability of yields falling below certain levels of interest.

The yield data is combined with gridded daily data on temperatures and rainfall over
the entire period. Many earlier studies examining the effects of climate on crop yields
have relied on simplistic measures of average temperatures over long periods, such as a
growing season (Auffhammer et al., 2012). These studies have been criticised for poorly
representing the agronomic impact that temperature has on crop yields. More recent work
has emphasised the non-linear relationship between crop yields and daily temperature,
where exposure to abnormally hot days significantly harms crop growth (Schlenker and
Roberts, 2009; Lobell et al., 2012). To account for this, I specify each moment of yield as a

semi-parametric function of daily temperature, which allows for potential non-linearities.

Previous studies that have examined the effect of climate change on average agricultural
yields in India have found mixed results on the direction of impacts depending on method-
ological approach and modelling assumptions (Mall et al., 2006). Only a handful of papers
have applied empirical methods to estimate the effect of temperature on observed yields
(Guiteras, 2009; Burgess et al., 2014), although these studies focus on aggregate measures
of agricultural productivity which are problematic for deciphering crop-specific relation-
ships between temperature and yield which may differ significantly.® Statistical approaches
have a key advantage over crop model simulation approaches since they allow for the es-

timation of yield-temperature relationships under actual conditions. As such, this paper

3This approach has also been applied by Tack and Ubilava (2013, 2015) to study the effect of the El
Nino Southern Oscillation and its implications for the distribution of crop yields in the U.S.

4Future changes in precipitation are not considered since projections vary widely depending on climate
model used. A better understanding of the physical processes governing monsoon patterns across India is
still an ongoing area of research (Turner and Annamalai, 2012).

® Auffhammer et al. (2012) is a notable study on the impact of climate change on rice yields in relation
to climate change. These authors focus on the implications of changing rainfall patterns. Additionally,
Fishman (2012) considers the impact of the inter-annual distribution of rainfall and the role of irrigation.
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builds on these existing approaches using detailed weather data to specifically study the
implications of climate change for rice yields, examining both impacts on average yields

and the likelihood of low yields.

The estimated historical relationship between temperature and yield suggests that heat
has a highly significant effect on rice yields. For India as a whole, average yields are
projected to decline by 4.4% for the period 2011-2040 and 9.9% by 2041-2070 relative to
the baseline historic temperature scenario. Given the variety of conditions under which
rice is grown in India, there is substantial heterogeneity in mean impacts at the regional
level, with northern and central areas of the country expected to be most affected by
increases in temperature. In contrast, districts in the south are shown to be less affected
by increases in temperature, although these impacts are still projected to be negative. Rice
yields in these areas show a weaker response to temperature fluctuations compared with
other areas. This may be driven by lower average baseline temperatures in these areas or

due to rice being grown over a number of different seasons.’

The rise in projected temperatures implies significant changes to the likelihood of very
low yields. This is done by comparing the conditional yield distributions under historic
temperatures with the distribution under projected future temperatures. I then compare
likelihood of rice yields falling below the level of yield that was historically in the lowest
25th and 5th percentile. The results show that the projected temperature increase by 2050
increases the probability of achieving yields in the lowest 5th percentile to 15 percent. The
likelihood of yields falling below the level that defined the 25th percentile in the baseline
scenario increases to 38 percent by the middle of the century. The change in exposure to
low levels of yield due to higher temperatures is driven by two factors. First, a decline in
average yield shifts the yield distribution. Second, there is a significant fattening of the
tails of the distribution due to an increase in the probability of extreme outcomes. The
increase in variability is particularly pronounced in northern areas, which may reflect that
exposure to downside risk will be highest to those areas already locating in the hottest

areas of the country.

SPrevious studies using a variety of methods have predicted that rice yields in the south may be less
affected and even benefit from small temperature increases (Soora et al., 2013; Barnwal and Kotani, 2013).
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One potential issue in using the historical response of heat on crop productivity to learn
about future impacts is the degree to which this relationship has remained stable over time.
If there has been a significant change in the response of yields to heat over time, the use
of data over long time scales could lead to erroneous assessments of the impact of future
warming. Thus, I compare the response of rice yields to temperature for data in early time
periods (1970-1989) relative to later time periods (1990-2009). My findings indicate that
heat exposure had roughly the same effect on absolute yields in both periods. However,
since average yields have increased over time, the effect of heat exposure on relative yields
has decreased substantially. By re-calculating distributions for future temperature scenar-
ios by each period sub-sample, it is shown that future impacts are substantially lower using
the later period as the baseline period. These results may be due to a number of possible
factors, such as improvements in agricultural technology over time or policies have enabled
farmers to react better to higher temperatures. There is also some evidence to suggest
that irrigation is not driving the results. I estimate that results are broadly comparable for
irrigated versus non-irrigated areas suggesting that these areas have similar reactions to
fluctuations in heat. These findings suggest that researchers should examine the stability

of effects over time in order to provide more accurate predictions about future impacts.

The rest of the paper is structured as follows. Section 2.2 reviews issues surrounding the
impacts of climate change on the agricultural sector in India and details the importance
of rice. The agricultural and climate data used in this study are then detailed in Section
2.3. In Section 2.4 the empirical methodology is described and results are presented in
Section 2.5. The implications of these results are discussed in Section 2.6 and Section 2.7

concludes.

2.2 Climate change and rice in India

Temperature is likely to play an increasingly important role in Indian agriculture in the
coming decades. Climate models predict that average temperatures will rise markedly by
the middle of this century. Figure 2.1 shows predicted changes in annual mean temper-

ature (relative to the 1961-90 average) across the country for the periods of 2011-2040
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and 2041-2070 using an ensemble average across a range of climate models and emissions
scenarios. The baseline average temperature over the 1961-1990 period is also shown for
the months of June-October, the main growing season. For baseline temperatures, a clear
spatial pattern can be seen, with northern areas, such as Punjab and Haryana, on average
hotter, with daily temperatures averaging close to 30°C. In a number of southern areas,
particularly those on the west coast, temperatures are much lower. The average of the
model projections for future temperatures are shown in panels (b) and (c). These pro-
jections suggest that there will be significant increases in temperature across the country,
with northern areas expected to experience absolute gains in temperature of over 2°C in
the middle of the century. For the country as a whole, average temperature is expected to

increase by 1.02°C in the years 2011-2040 and by 1.87°C in 2041-2070.

Research into the consequences of temperature increases on economic production has
drawn particular attention to its effect on the agricultural sector owing to weather as
a natural but uncontrollable input into the production process. In general, vulnerability
to future warming is expected to be greater in regions or areas of the world, such as India,
that are already prone to hot temperatures since crops in these areas are already nearer

to the biological limits for plant growth (Auffhammer and Schlenker, 2014).

Future climate change is likely to be disruptive for many rice growing areas, which are
mainly located in Asia, where the vast majority of the crop is both grown and consumed
domestically. The success of rice production is highly significant in India where it is grown
in almost all states of the country and is the largest single crop planted, with 36 percent
of planted area devoted to its cultivation (Shreedhar et al., 2012). Future temperature
increases are hypothesised as unlikely to benefit rice growth given that the majority of
the crop is cultivated in areas where temperatures frequently exceed those shown to be
optimal, with agronomic studies suggesting that temperatures in the range of 20-30°C
are most conducive to rice growth (Krishnan et al., 2009). The increased likelihood of
high temperatures due to climate change may have substantial impacts on heat stress-
induced damage to rice growth during the growing season, since high temperatures disrupt
a number of biological mechanisms that govern rice growth, such as grain filling and spikelet

formation (Wassman et al., 2009).
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Although high temperatures are generally known to be harmful for rice growth, determin-
ing the degree to which rice yields in India will be affected by future climate change is a
pressing area of research. Modelling approaches used to quantify the impact of climate
change on rice production in India can generally be divided into two. The first, crop model
simulation studies, use more detailed scientific models to estimate temperature’s effect on
plant growth to estimate rice yields under different climatic conditions. Mall et al. (2006)
review earlier studies using simulation models in India. They conclude that these models
do not generally agree on the direction of yield changes due to climate change. For in-
stance, an earlier result by Aggarwal and Mall (2002) found that future climate change
would benefit yields in all areas of the country. However, more recent work by Soora et al.
(2013), incorporating more detailed information such as temperature thresholds effects on
growth, estimate that irrigated yields are projected to decline by 7% by 2050, and by 2.5%

in rain-fed areas.

A criticism of simulation studies is that they do not reflect actual growing conditions in the
field. To address this issue the ‘statistical’ approach is often applied using observational
data on crop yields to understand the effect that weather variables, such as precipitation
and temperature, have on crop yields in a number of parts of the world (Auffhammer and
Schlenker, 2014). For instance, in India, Auffhammer et al. (2012) study the relationship
between state-level rice yields and monsoon rainfall patterns under climate change. This
work, however, does not study the contribution that future temperature rises could have

on rice production.

Recently, the increased availability of high resolution weather data has allowed for the
improved measurement of the historical relationship between crop output and temperature.
A primary finding from this work, as noted by Auffhammer and Schlenker (2014), is that
the relationship between yield and temperature is non-linear and that seasonal exposure
to extreme heat is a good predictor of yields for many crops. Since average temperatures
over a long period, such as a growing season, may poorly categorise the range of harmful
temperatures, the effects of future increases in temperature on agricultural yields may be
poorly estimated by earlier studies. A prominent study by Schlenker and Roberts (2009)

uses yearly, county-level data on a range of crops including corn, soybeans and cotton in
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the U.S to show that exposure to daily temperatures beyond 29-32°C significantly harm

yields.

Similar methods have been applied to understand the effects of climate change on agri-
culture in India, although these studies focus on the effect of temperature on aggregated
measures of agricultural output rather than crop-specific relationships. Burgess et al.
(2014) argue that rural areas are most vulnerable to the effects of heat since agricultural
productivity, the primary means of rural employment, falls significantly with more expo-
sure to heat. They specify a model of aggregate district agricultural productivity against
daily temperatures. Their findings indicate that daily temperatures above 80°F (27°C)
negatively affect district agricultural yields, and that an additional day above 85°F (29°C)
reduces annual yield by 0.5%. Guiteras (2009) uses a similar model to study the effect of
climate change on average district agricultural productivity. He estimates that increased
warming could reduce average yields by 4.5-9 percent by 2010-2039 and by 25 percent
by 2070-2099. These studies, however, are likely to be less informative for studying the
impacts of climate change since, as shown by Schlenker and Roberts (2009), the yield
response to temperature is likely to be crop-specific. Additionally, since crops such as rice
are traditionally grown in the summer as opposed to wheat which is primarily grown in
the winter, growing seasons should be defined separately for these crops. The only paper
to apply detailed weather data to rice yields in India is Fishman (2012), who studies the
effect that the distribution of rainfall has on rice and wheat yields at the district level. He
uses numerous measures of weather, such as annual rainfall, the distribution of rainfall,
and accumulated temperature over the growing season to study their relative influence in
driving climate change impacts in 2080-2100. A key finding from this study is that climate
change-induced temperature increases dominate any potential changes in rainfall in the
future. This is for two reasons. First, a number of climate models predict increases in an-
nual precipitation across India, which tend to increase average rice yields. Second, while it
is estimated that the expansion of irrigation can reduce the impact of precipitation shocks,

irrigation does not seem to be related to reducing the impact of temperature fluctuations.

One crucial aspect of quantifying the effect of climate change on rice yields in India is ac-

counting for the regional heterogeneity in growing environments. As was shown in Figure
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2.1, parts of the country differ substantially in their exposure to high average temperatures.
Given the range of temperatures considered optimal for rice growth, which generally occur
in the range of 20-30°C, warming will increase exposure to harmful temperatures most in
areas already close to the top of this range. On the other hand, different rice varieties have
been successfully grown in most agro-ecological regions of India suggesting that areas of
the country may differ in their sensitivity to especially hot temperatures due to varieties
being chosen to suit particular local growing conditions (Gollin et al., 2005). Investigat-
ing differences in spatial patterns of vulnerability is an important part of understanding

whether there are likely to be distributional consequences of climate change across India.

Previous studies using simulation models have made an important contribution in high-
lighting that climate change impacts on rice production are likely to vary substantially
across the country. For instance, Soora et al. (2013) use a model of rice growth to show
that although average yields in India are predicted to be 4% lower between 2010-2039
due to climate change. States such as Punjab, Haryana, and Rajasthan will experience
significantly larger impacts owing to their exposure to already hot temperatures. In com-
parison, some southern areas like the large rice-producing state of Andhra Pradesh, are
predicted to benefit from increased warming. In order to investigate this question from an
empirical perspective later in the paper, India is divided into four areas that have broadly
similar growing conditions. These contain districts located in Northern, Western, Eastern,
and Southern areas. Northern districts are all districts within the states of Punjab and
Haryana. These states have historically been highly important in the food security of the
country given the high levels of productivity of farms across these states. Rice production is
also undertaken under fully irrigated conditions owing to the generally hot, semi-arid con-
ditions that require supplemental water. Central districts are Gujarat, Madhya Pradesh
and Maharashtra. Although not large producers of rice compared to other states, rice is
grown in these districts under a variety of conditions including rain-fed lowland, rain-fed
upland and irrigated conditions. The states of Bihar, Uttar Pradesh, Orissa and West
Bengal make up the eastern region. Given the high levels of annual rainfall normally
experienced in these areas, rice is often grown under rain-fed conditions, sometimes in

flooded conditions. The southern rice areas are defined as Andhra Pradesh, Tamil Nadu,
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Karnataka and Kerala. These states are generally more temperate than others states with

ample rainfall.

2.3 Data

Agricultural data used in this study are taken from an annual district-level dataset com-
piled by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT,
2012). T use data on annual rice production and area cropped to construct yield data
for rice between 1970 and 2009. Only districts that contain non-missing data over this
period are used in the study. Additionally, the states of Himachal Pradesh and Assam are

excluded from the analysis. This leaves a total of 155 districts.”

Daily temperature and precipitation data are taken from two gridded databases collected
by the Indian Meteorological Department. Data on daily average temperature are available
at a 1°x1° resolution (Srivastava et al., 2009). Daily temperature is measured as the
average of minimum and maximum temperature over a 24 hour period. Precipitation data
at 0.25°x0.25° resolution are also used (Pai et al., 2014). The gridded weather data is
mapped to districts by using a weighted average of the proportion of each grid cell falling

within a district boundary. District boundaries correspond to those drawn in 1966.

To simulate the effect of climate change, I use projections of future temperatures contained
in the Global Agro-ecological Zones (GAEZ) v3.0 database (IIASA/FAO, 2012). The
database contains projected increases in annual mean temperatures. Data is available
globally in gridded format and is mapped to district boundaries to calculate projected

future temperature for each district.

Temperature projections are related to two future time periods which are used to reflect
short and medium term changes in the temperatures over the periods 2011-2040 and 2041-
2070 respectively. To deal with the inherent uncertainty of future climate projections I use
two strategies. Firstly, annual temperature projections are taken from four general circula-

tion models. The four climate models used are: HadCM3 (Hadley Centre, UK Meteorolog-

"Unfortunately, during the 2000s there is substantial missing data on rice production in Central and
Eastern regions.
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ical Office); ECHAM4 (Max Planck Institute for Meteorology, Germany); CSIRO (Com-
monwealth Scientific and Industrial Research Organisation, Australia); CGCM2 (Canadian
General Circulation Model). These models differ both in magnitudes of average temper-
ature increases across India and also in their projections about regional warming within
India. Second, given uncertainties surrounding the trajectory of future greenhouse gas
emissions, | use projections from these models under different emissions scenarios. These
vary depending on assumed rates of demographic change, economic development, and

technological advancement (IPCC, 2000). Four scenarios, A1, A2, B1 and B2 are used.

2.4 Methodology

The approach used to model the effect of climate change on the crop yield distribution
is that of moment-based maximum entropy introduced by Wu (2003) to model income
distributions and by Tack et al. (2012) who applied this to the study of crop yield distri-
butions. This method allows for the calculation of yield probability distribution functions
conditional on changes in relevant independent variables. The estimation proceeds in two
parts. The first step is to model the effect that temperature has on each separate yield mo-
ment so that crop yield moments can be estimated conditional on changes in the relevant
climate variables. The second step uses the information provided by the yield moments to

construct yield distributions using maximum entropy techniques.

2.4.1 Modelling the effect of temperature on rice yield

This modelling approach is similar to that of Antle (1983, 2010) who specifies a flexible
moment based approach in order to study the effect that explanatory variables have on
higher order moments, which characterise the shape of the probability density function of

output 8

A key distinction between these approaches relates to the dependent variable used in the

8This approach has been applied to a number of settings relevant to agriculture including the effect of
crop diversity on farm productivity (Di Falco and Chavas, 2009), technological change on production risk
(Wu and Wang, 2003), and drought management practices on farm profits (Groom et al., 2008).
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higher order moment equations. The Antle approach uses centred moments, where the
second and third order moment equations are specified as powers of the residuals from the
mean (first moment) equation. The approach used in this paper is to specify the higher
order moment equations using the uncentred or raw moments of yield, which are used to
estimate conditional probability distributions of yield. This approach has previously been
demonstrated by Tack et al. (2012) as a way to construct crop yield distributions condi-
tional on a set of weather variables. The Antle approach uses centred moments, where
the second and third order moment equations are specified as powers of the residuals from
the mean (first moment) equation. As is noted by Zhang and Antle (2016), the uncen-
tered and centered approaches are theoretically equivalent ways of modelling the mean and
higher order effects of the independent variables on crop yield. One disadvantage of the
uncentered approach relative to the centered approach is the assessment the behavioural
effect that certain explanatory variables have on the higher moments of yield. The cen-
tered approach, for instance, would allow one to assess how marginal changes in weather
variables affect the variance or skewness of crop yields. While this provides one way of
assessing possible impacts of climate change on crop yields, this paper assesses climate
change impacts by evaluating changes in the overall crop yield distribution by estimating
uncentered moments of crop yield and using maximum entropy techniques to approximate

conditional crop yield distributions.

To model the impact of temperature on the distribution of crop yields, it is necessary to
consider how temperature affects moments of yield above and including the first moment.
Crop yield in district ¢ at time ¢ is denoted as y;, so that the jth raw moment of yield,
y{t, is specified as yield to the power of j = 1,2,3. These three moments are sufficient to
allow for yield distributions to vary in terms of the mean, spread around the mean and

asymmetry about the mean.”

The vector of explanatory variables z;; can then be related to each crop yield moment by

the following j regressions:

9More than the three moments could plausibly be estimated, although the economic relevance of these
measures is not explored in this paper.
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Yi, = TiuBj + it (2.1)

where the coefficient vector (; estimates the effect that independent variables z}, have on

the jth raw moment. The error term for each equation is denoted as €;;;.

The population mean for each moment j = 1,2,3 can be represented by u; = E [Yli],
which is the expected value of the random variable denoting yield in area i at time ¢
Yl{, calculated over a specified collection of individuals and/or time periods. Since we are
interested in calculating each moment conditional on the state of a set of climate variables,
conditional moments can be expressed as p; = E [YlﬂX = z]. The sample counterpart for
each moment is computed by taking a linear prediction of the estimated model, which is
an estimate of the population mean given the law of large numbers. This makes it possible
to compare the value of each moment under the observed set of covariates with moments

estimated using predicted values of covariates under different climate change scenarios.

2.4.2 Empirical specification

To empirically model the effect of weather variables on yield moments, I specify the fol-

lowing reduced form equation for each moment:

k
yft = oy + Z BixTempDays; + 01;Raing + 52jRainZ2t + dyit + doit? + €jit (2.2)

1
where moments of crop yield, measured in tonnes per hectare, are represented by Yzi
for district 7 at time ¢. The key variables of interest are those representing the effect of
temperature. The semi-parametric temperature ‘bins’ approach is chosen to model the
effect of daily temperatures on raw moments of the yield. By specifying k& temperature
bins, each of which contains the number of days spent within each temperature interval
during a growing season, a separate coefficient is estimated for the effect of temperature
within each interval. This allows for the measurement of the effect that one additional

day spent in each bin has on rice yield. The width of each interval is 2°C, although for
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temperatures greater than 34°C, a single bin is specified owing to a lack of observations
beyond this range. The strength of this specification is that it allows for temperature to
affect yield moments in a non-linear fashion. This is consistent with findings of Schlenker
and Roberts (2009), who identify the strongly negative impact of extreme temperatures

on crop yields in a more flexible way than other agronomic temperature measures.'”

The parameters that capture the effect of the daily temperature bins on yield, 3;i, are
identified based on the assumption that temperature realisations in each year represent
random deviations from average district-level conditions which are captured in the district
fixed effect term, «;. This controls any unobserved district-level characteristics that are
constant over time. For instance, differences in soil quality or altitude across districts may

affect the impact that weather variables have on crop yields.

Similarly, given that Indian agriculture has gone through a rapid process of modernisation
since the 1960s, it is necessary to control for the effect of technology on yields. I include
deterministic district-specific quadratic time trends, ¢ and t? to account for the upward
trend in yields that are likely to be due to technological innovations, such as new seed
varieties. The inclusion of quadratic time trends is likely to be particularly important
given that steady rates of yield increase since the 1960s have tended to slowdown in recent

years (Pingali, 2012).1!

The key identifying assumption of the coefficients (3 is that variability in temperature in
each bin over a growing season is orthogonal to omitted variables that determine crop yields
(Deschenes and Greenstone, 2007; Schlenker et al., 2006), such that short-run temperature
deviations are not correlated with unobserved decisions, such as inputs choices, that could
condition the impact of temperature on crop yields. Inclusion of the district fixed effect
term «y; means the coefficients are estimated by exploiting random year-to-year variation
in number of days in each bin relative to the average number of days spent within each

bin in a district.12

10Closely related to the temperature bins approach is the growing degree days approach. This is similar in
that it measures the effect of accumulated heat over the growing season. However, as is noted by Schlenker
et al. (2006) it relies on assumptions about the temperature ranges that are beneficial or harmful for crop
growth. The bins approach is thus more flexible since it does not depend on defining these bounds.

1A cubic time trend was added but this did not improve the overall fit of the model.

121 addition to district fixed effects, another plausible strategy to deal with other potential confounding
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Accurately defining crop growing seasons is an important aspect of deciphering the re-
sponse of crop yield to temperature. The timing of sowing and harvesting of rice varies
significantly across India owing to differences in climate. It is thus necessary to allow
growing seasons to vary by location. To do this I utilise monthly data on crop calendars
which are available at the Indian state level (Portmann et al., 2010). Only days falling
within the main rice growing season in a state, usually between June and November, are

used to construct the temperature variables.

I control for the effect of rainfall on crop yield by including a regressor Rain;; to measure
the level of rainfall that fell over the monsoon period. Rainfall has a strong impact on rice
yields owing to the rain-fed conditions under which much of the country grows rice. Also
included is a squared regressor Rain?t to capture the strong possibility that the relationship
between rainfall and yield is non-linear. For instance, Auffhammer et al. (2012) find that
both extremely high or low rainfall years have serious impacts on yield. In this paper I
do not consider the impact that climate-induced changes in rainfall could have on crop
yields. Regional climate models predict wide variations in the magnitude and spatial
extent of changes in future rainfall due to an inadequate understanding of the physical
forces driving the summer monsoon (Turner and Annamalai, 2012). As such, all estimates

should be interpreted as holding levels of rainfall constant.

The error term €;; contains unobserved determinants of district yield. As is noted by
Burgess et al. (2014), it is plausible that the error terms for each district are correlated

over time. To account for potential autocorrelation, error terms are clustered by district.

factors would be to include an additional set of fixed effects that vary over time. For instance, in India,
state-by-year fixed effects are likely to account for a number of factors that commonly vary within a state in
a year, such as prices or agricultural subsidies. However, a number of authors caution against the inclusion
of too many fixed effect terms in estimating relationships between agricultural yields and short-run weather
fluctuations (Fisher et al., 2012; Auffhammer and Schlenker, 2014). This is because using time-varying fixed
effects clustered by geographically contiguous units, such as states, are likely to account for a substantial
part of the variation in the weather variables. The likelihood of measurement error in the weather variables,
owing to the need to interpolate observations from different weather stations to match grids or political
boundaries, means that the resulting coefficient estimate of the effect of the weather variables is likely to
be close to zero, since the much of the real variation in weather has been absorbed by the time-varying
fixed effects and measurement error still remains.

13An empirical issue is that rice is sometimes grown over multiple seasons during the year. In this
analysis I focus only on areas that that primarily crop rice during the wet Kharif season, which broadly
takes place during the months of June to November. For India as a whole, 85 percent of annual rice is
cropped during this season (Burney and Ramanathan, 2014).
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Additionally, there exists substantial differences in rice area cropped between districts. For
instance, some districts contain large urban areas or plant crops other than rice. I weight
regressions by the square root of the proportion of area cropped within a district to give
greater weight to districts that plant more of the crop. The same procedure is applied by

(Deschenes and Greenstone, 2007).14

2.4.3 Deriving distributions

Using the estimated relationship between yield and temperature for each moment as spec-
ified in equation 2.2, I predict the value of each moment conditional on various climate
change scenarios. For each scenario, a set of three moments is calculated. The esti-
mated moments do not directly allow for the effect of climate change to be summarised
in a useful way. The moments can, however, be used as information to construct the a
yield distribution which can then be applied to characterise the probability density func-
tion of yield conditional on climate. Nonetheless, a problem remains that even with a
well-estimated set of yield moments, p;, the overall density function of yield cannot be
analytically determined since there are an infinite number of potential densities that could
fit these conditions (Golan et al., 1996). A solution to this is to ascertain the shape of the
distribution based on the information provided in the moment conditions. This can be
achieved by employing maximum entropy techniques.!> These methods have been applied
in a number of settings where limited information is available, such as physics (Jaynes,

1982), linguistics (Berger et al., 1996), and finance (Zhou et al., 2013).

Formally, the method works by picking the yield distribution f(y) that maximises the

function

4 This would likely lead to more precise estimates for two reasons. First, since annual weather is averaged
over the whole district area, districts with larger proportionally cropped areas would more accurately reflect
the effect of weather on district crop yields. Second, areas that only plant a small amount may be prone
to fluctuations in area cropped and production which may lead to noisier district yield measures.

'5This approach is succinctly stated by Jaynes (1982, p.940) as: “The MAXENT [maximum entropy]
principle, stated most briefly, is: when we make inferences based on incomplete information, we should
draw them from that probability distribution that has the maximum entropy permitted by the information
that we have”
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H(f) = - / F(w)n £ (y)dy (2.3)

where H(.) is the entropy function.!®

The shape of the density function can be derived by maximising the entropy function
subject to the information provided by the estimated moment conditions. This amounts
to choosing the set of densities that are most consistent subject to known information
(Golan et al., 1996). The moment conditions, ;, thus, act as constraints in a maximisation

problem and are expressed as

/yjf(y)dy = p; and /f(y)dy =1,7=12,3 (2.4)

where the former expression denotes the moment-consistency constraints and the latter
expression denotes the standard normalisation condition that the densities must sum to

unity.

The problem is solved by constrained optimisation by forming the Lagrangian function

L= [ sy~ o [ ray-1] - jz:;w [vra-w| e

in which the Lagrange multipliers are represented as 7o, ...,7; for the constraints shown in
equation (2.4). Following Wu and Wang (2011), the necessary conditions for the solution

to the constrained optimisation problem are given by:

J
Infy)+1—75-Y vy =0 (2.6)
j=1

in addition to the constraints from equation (2.4). The maximum entropy density function

f*(y) can be written as

'6The entropy function was derived by Shannon (1947) to describe the uncertainty of a set of values ¥.

40



fﬂw:=wp[§57%j—l+vﬂ:=wp{§5ﬁy“—WWﬂ] (2.7)

j=1 j=1

such that U(y*) = In [ i exp(Z;»]:1 W;yj)dy] is a normalisation factor so that the integral
of the density function is equal to one. The optimal values of the Lagrange multipliers

found from the solutions to equation (2.5) are then used to characterise the function f*(y).

To practically estimate the maximum entropy technique, I use the sequential updating
method described by Wu (2003). This method offers the most tractable way to solve the
optimisation problem given that higher order moments are generally not independent of
their lower order counterparts. Higher order moments can be more easily estimated with
information provided by lower order moments.!” An advantage of the maximum entropy
approach is that it allows for a range of possible distributions in the generalised exponen-
tial family, which include exponential, normal, lognormal, and gamma distributions (Wu,

2003).

2.5 Results

2.5.1 Moment regressions

This section begins by discussing the regression results used to estimate the effect of climate
change on rice yields. Table 2.1 displays the estimated coefficients for each of the three raw
moments of rice yield for all districts. The main variables of interest are the temperature
variables, where each coeflicient is interpreted as the effect of one additional day spent in
each temperature interval on rice yield relative to a day spent in the temperature range 24-
26°C which is used as the reference category. The 24-26°C temperature bin thus takes the
value of zero. To easily visualise the effect that daily temperature has on the first moment

of yield, Figure 2.2 plots these estimated coefficients along with their 95% confidence

"The superiority of the sequential updating approach was found during the empirical estimation. In a
number of cases, an algorithm that was used to estimate maximum entropy densities that introduced the
moment conditions simultaneously failed to achieve convergence. I am grateful to Jesse Tack for suggesting
the use of the sequential algorithm and sharing Matlab code with which to apply the method.
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interval. The effect of temperature on the first moment of yield, Y, can clearly be seen.
Low temperatures are clearly beneficial for rice yields, as seen by the positive coefficient
for days spent in average daily temperatures between 16-24°C. In contrast, the harmful
effect of temperatures beyond 28-30°C is clear, consistent with previous statistical studies
on the effect of daily temperatures on crop yields in countries such as the U.S (Schlenker
and Roberts, 2009). At temperatures above 34°C these findings suggest that, on average,
one additional day spent above this threshold reduces rice yield by 0.006 tonnes (6 kg) per
hectare.

Figure 2.2: Marginal effect of daily temperature on yield in India 1970-2009

— Coefficient estimate -- Lower 95% CI
- - Upper 95% CI
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Note: The plot shows coefficient estimates for the effect of one day extra spent within each 2°C temperature
bin on rice yield. Estimated coefficients are relative to that of a day in the 24-26°C interval. The solid line
shows the estimated value of each coefficient at in each interval. The 95% confidence interval is indicated
by dotted line either side of the solid line. Standard errors are clustered at the district level.

Reverting back to Table 2.1, temperature extremes are also particularly significant for the

higher order moments of yield Y2 and Y3, indicating that exposure to temperature in these
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Table 2.1: Regression results of temperature’s impact on raw yield moments for the whole
sample of Indian districts

Dependent variable: Y Y2 Y3

Temperature bins (°C)

16-18 0.008*** 0.026*** 0.061
(0.002) (0.009) (0.050)
18-20 0.008*** 0.028%** 0.085%*
(0.001) (0.007) (0.033)
20-22 0.006*** 0.030*** 0.124%**
(0.001) (0.006) (0.032)
22-24 0.004*** 0.019%*** 0.071+**
(0.001) (0.004) (0.018)
26-28 -0.001 0.003 0.025*
(0.001) (0.004) (0.015)
28-30 -0.001%* -0.001 0.013
(0.001) (0.004) (0.019)
30-32 -0.003** -0.004 0.012
(0.001) (0.005) (0.028)
32-34 -0.004** -0.010 -0.013
(0.002) (0.008) (0.037)
>34 -0.006%** -0.032%** -0.135%**
(0.001) (0.006) (0.034)
Controls
Time trend/1000 57.326*** 168.645%*F*  322.669***
(4.200) (21.201)  (106.706)
Time trend squared -431.979%** -39.059 6475.648%*
(94.360)  (536.026)  (2912.904)
Monsoon rainfall (m) 0.128* 0.262 0.385
(0.069) (0.330) (1.431)
Monsoon squared -0.037%* -0.106 -0.289
(0.017) (0.076) (0.318)
Constant 0.623*** -1.268%* -9.101%**
(0.100) (0.500) (2.330)
District fixed effect Y Y Y
N 6,045 6,045 6,045
R? 0.850 0.834 0.790

* p<0.10 ** p<0.05 *** p<0.01. Standard errors clustered by district.
Estimated temperature coefficients are relative to the effect of an extra
day in the 24-26°C temperature interval which is the omitted category.
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ranges is key for driving the distribution of crop yields. This is consistent with the intuition
that high temperatures are particularly damaging for yields, impacting the possible range
of low outcomes that could occur. Low temperatures are also highly significant for higher
moments, suggesting that these temperatures, since they are associated with better plant

growth, increase the range of good yield outcomes that can occur.

The control variables also have the expected signs. The upward trend in district-specific
yields over time is clear given that the coefficient on the time trend variable is positive
and significant, with evidence of a slowdown in the average rate of yield growth over time
as seen by the negative and significant squared time trend. Rainfall also shows a clear and
expected effect, with higher levels of rainfall associated with higher yields, although this

relationship is concave given the negative squared rainfall coefficient.

To examine the heterogeneity of temperature impacts across India, each set of moment
equations is estimated separately for groupings of districts in certain geographical areas.
Four separate regions are examined: North, Central, East, and South. Table 2.2 displays
the coefficient estimates for each region. As before, the coefficients on the temperature
variables for the first moment are plotted graphically to ease interpretability of the results.
These are shown in Figure 2.3. The harmful effect of additional daily temperatures above
34°C on average yields can clearly be seen for Northern, Central and Southern areas, with
all coefficients negative and statistically significant at least at the 10% level. Owing to non-
exposure to temperatures greater than 34°C, this coefficient is not estimated for Southern
districts. In these districts, additional days above 26°C have negative but statistically
insignificant impacts on mean rice yields. The effect of extremely high temperatures on
higher moments is also apparent in all regions except for the South, although in all regions

exposure to relatively low temperatures has a clearly significant positive effect in all areas.

Interestingly, there is also significant heterogeneity in the effect of the control variables on
yields. For instance, the beneficial effect of rainfall on average yields can be seen in all
states apart from the two Northern states of Punjab and Haryana which likely explained

by the fact that districts in these states were almost fully irrigated throughout the sample
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period.!®

2.5.2 Baseline distributions

Using the maximum entropy approach described in the previous section, these moments
can be used to estimate the baseline distribution of rice yields conditional on observed
temperature over the sample period. To do this, the estimated coefficients from Tables 2.1
and 2.2 are used to calculate the value of each of the three moments of rice yield conditional
on the baseline climate. These are predicted by using the values of each coefficient along

with the corresponding sample average of each of the variables over the sample period.

The estimated moments are shown in Table 2.3. It is clear from the first moment, mj,
that average rice yields vary substantially across the country. The early Green Revolution
states in the North are most productive, whereas districts in eastern states have on average
the lowest productivity. Using the maximum entropy approach described in the previous
section, these moments can be used to estimate the distribution of rice yields over the
sample period. In Figure 2.4 these distributions are plotted. Panel (a) shows the distri-
bution of rice yields in India. This distribution should be seen as one that characterises
the average Indian district since it is derived from the estimated behaviour of all districts
in the sample. The distribution is roughly symmetric with the mass of the distribution
centred around yields of two tonnes per hectare. As seen from the estimated moments in
Table 2.3, there is substantial regional heterogeneity in rice yields. This is reflected in the
estimated distributions for the four regions in Figure 2.4. It can be seen that the distri-
bution for Northern states is much further towards higher yields relative to other districts
reflecting higher productivity in these areas, compared particularly with states in the East
which have much lower productivity. The importance of considering the whole distribution
of yields can also be seen from the varying shapes of the regional distributions, which may
have a substantial bearing on the regional variation in the impact of temperature increases

described in the following section.

18For instance, in 1970 around 85% of rice cultivated in these states was grown under irrigated conditions.
By 1985, effectively all rice grown in these areas was done so using irrigation.
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Figure 2.4: Baseline estimated rice yield distribution in India 1970-2009
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Table 2.3: Estimated moments of Indian rice yields 1970-2009

Region
Moment All North  Central FEast  South

mi 2191  3.199 1.975 1.848 2.344
ma 0.458 10.676  4.044 3.819 5.997
m3 15.098 36.945 8586  8.563 16.587

2.5.3 Climate change scenarios

To simulate the effect of climate change on the distribution of yields, I use temperature
projections for the periods 2011-2040 and 2041-2070. In order to estimate this using
the temperature bins approach, the number of days spent in each bin under each new
temperature scenario is calculated. This is done by assuming that daily temperatures
in each district uniformly increase by the amount projected in each model. The average
number of days spent in each temperature bin is then re-calculated under each model

scenario.?

To get a sense of the magnitude of the effect that increased temperatures are projected
to have on the number of days spent in each temperature interval, Figure 2.7 shows the
distribution of the change in the number of days spent in at each 1°C interval. On the top
row is the historical frequency distribution of the number of days spent in each temperature
bin per growing season across districts. The grey shaded boxes show the interquartile range
of each scenario with the median number of days displayed by the horizontal line inside.
Minimum and maximum adjacent values are also indicated by the black vertical lines.
Between 1970 and 2009, the majority of days fall in the range of 24-30°C with days where
average daily temperature exceeds 30°C a rare occurrence. The lower two graphs in Figure
2.7 show the change in the number of days spent in each temperature interval based on

projected temperature increases for the periods 2011-2040 and 2041-2070. For both future

19 Although climate here is not represented strictly as a distribution, it is assumed that the variability of
climatic outcomes is the same, so that climate change represents a location shift in the distribution. Em-
pirical support for this assumption comes from Donat and Alexander (2012) who find that a comparison of
observed global temperatures between 1951-1980 and 1981-2010 shows a significant shift in the distribution
but not an increase in the variance.
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scenarios, the number of days above 28°C increases substantially, with the majority of this
increase occurring in the 28-32°C range. There is also a substantial increase in the number
of days above 34°C, which is likely to be significant for climate change impacts given that
estimated exposure to these temperatures is associated with particularly harmful effects

in yields.

2.5.4 Effect on average yields

Before reporting the effect of climate change on the full distribution of rice yields, it is
useful to quantify the effect on average yields by examining changes in the first moment
only. This is done by comparing mean rice yields under future temperature scenarios with
those estimated over the historic sample period. The estimated coefficients for the period
of 1970-2009 are used to characterise the relationship between yield and temperature.
Then, the number of days projected to be spent in each temperature interval under future
temperature scenarios are used to predict the moment estimates. All other variables are
held constant at their observed sample mean. It should be noted here that the relationship
between historical yield and temperature is used to make these predictions. As such,
assumptions about future adaptation options to climate change are not made. I discuss

the implications of this later in the paper.

Table 2.4 shows the predicted change in mean yield. For an Indian district on average, rice
yields are projected to decline by 4 percent between 2011 and 2040 and by 10 percent in the
later period of 2041-2070. There is substantial regional variation in these estimates. The
most heavily affected districts are those in the central states of Maharashtra and Madhya
Pradesh where productivity is predicted to decline by over 11% by the 2050s. These
results are highly consistent with the results of Soora et al. (2013) who use a regional crop
simulation model to project that average yields will decline by 4-6% in the period 2010-
2039 and by around 7% in 2040-2069. Similarly, districts in southern areas are projected
to be the least affected by projected climate change, which reflects the weaker relationship

between temperature fluctuations and yields in these districts.?°

20A crucial difference between the results in this paper and those of Soora et al. (2013) is the latter’s
inclusion of projected changes in rainfall. For instance, Soora et al. (2013) project that rain-fed yields in
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Table 2.4: Predicted climate change impact on mean rice yields

Yield (tonnes/hectare) Observed Estimated average yield
% change from baseline

1970-2009 2011-2040  2041-2070

All 2.191 2.094 1.973
-4.4% -9.9%
North 3.200 3.091 2.976
-3.4% -7.0%
Central 1.976 1.861 1.765
-5.8% -10.7%
East 1.849 1.791 1.705
-3.1% -7.8%
South 2.345 2.305 2.186
-1.7% -6.8%

Average yield for future scenarios 2011-2040 and 2041-2070 are calculated by taking the average
of estimated yields under climate change for the nine different temperature scenarios.

2.5.5 Changes in distribution

To investigate the effect that projected temperature increases have on the distribution of
rice yields, I re-estimate each yield moment under the set of new temperature scenarios.
The distribution for each scenario is then calculated using the moment-based maximum
entropy approach. The historical baseline distribution is shown as a solid line and projected

distributions shown as dotted lines.

The results using the sample of all districts are shown in Figure 2.6. Qualitatively, the
results for the period 2011-2040 suggest a modest leftward shift in the probability distribu-
tion of yields at the all-India level. There is, however, a clear flattening of the distribution
that increases the weight of the lower tail, implying the possibility of low yields increases
despite a relatively small effect on average yields. This pattern is compounded in the later
2041-2070 period. Interestingly, there does not appear to be a decrease in the probability
of achieving yields in the upper tail of the distribution. This implies that climate change
does not act as a limiting factor in achieving very good yields but does have a substantial

impact on the likelihood of low yield outcomes. It is important to note that the increase

Tamil Nadu and Andhra Pradesh will benefit due to increased levels of rainfall.

52



in the probability of very low yields is driven by the combination of both a shift in the
distribution towards lower average yields and an increase in the spread of yields, similar

to the effect predicted by Urban et al. (2012).

Figure 2.7 shows the distributions for each region. In the top row, the distributions for
2011-2040 are shown and the estimates for 2041-2070 on the bottom. There is a substantial
change in the distribution for the Northern states of Punjab and Haryana. Although mean
yield declines by around 4%, there is a large increase in mass around the tails of the
distribution, implying a substantial increase in the variability of average yields around the
mean. The probability of low yields increases along with the probability of higher than
average yields, suggesting the increased variability of yields occurs. The effect of additional
warming in the 2050s is to further shift the distribution towards lower yields. Despite these
areas being highly irrigated, this finding suggests that higher temperatures substantially
affect the yields in these states. This is again similar to the findings of Urban et al. (2012)
who find that increases in variability under climate change are positively correlated with
higher baseline temperatures for maize yields in the U.S. Since Northern states tend to have
higher average growing season temperatures than many other rice growing areas in India,
greater exposure to harmful temperature seems to substantially increase the likelihood of

extremely low yields.

The distribution in Central areas, predicted to be the area with highest impacts on mean
yields suggests both a substantial shift of this distribution towards lower yields and a
flattening of the distribution. Temperature increases in the 2050s are in particular likely
to increase exposure to very low yields. Interestingly, although there is a downward shift
in average yield in Eastern districts, there seems to be no corresponding increase in the
probability of low yield tail events even in the 2050 warming scenario. This implies that
higher temperatures have the potential to decrease the variability of yields in eastern
areas, which is in stark contrast to its effect in Northern and Central areas. In line with
results from the mean productivity effect in the previous section, the yield distribution for
Southern districts is only marginally affected, with little change in the distribution in the
2020s, although increased exposure to downside risk appears to be more substantial in the

2050s with both a shift and flattening of the distribution.
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Figure 2.6: Impact of climate change on Indian crop yield distribution
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2.5.6 Change in downside risk

The previous interpretation of the estimated change in rice yield distributions is highly
qualitative. In order to quantify the estimated effect of climate change on the crop yield
distribution, I calculate the change in probability of achieving yields in the lower tails of
the distribution. This is a simple measure of downside risk that assesses the probability of
achieving yields within a given yield percentile. This is done by first using the historical
baseline distribution of crop yield to estimate the level of yield Y associated with the
lowest 5th and 25th percentile of yield. If b* is used to express the level of yield associated
with the lowest zth percentile, then b* is estimated by calculating the area under the yield

probability density function fy (y):

.
PlY <= ; fr(y)dy = = (2.8)

where z = {0.05,0.25}. Once the value of b* is estimated from the historical distribution,
then the yield density functions under future climate change scenarios are used to estimate

the probability of yields below b*.

The results of this exercise are shown in Table 2.5. For India as a whole, the consequences
of climate change are to substantially increase the risk of previously rare tail events. Yields
that were historically associated with the 5th percentile of yields are projected to increase
to around 10 and 15 percent for the 2020s and 2050s respectively. Yields that historically
occurred one-quarter of the time are projected to happen around one-third of the time

with future climate change.

As seen by qualitatively examining changes in distributions in Figures 2.6 and 2.7, changes
in exposure to yields in different areas of the yield distribution vary regionally. For in-
stance, the substantial ‘fattening’ of the distribution in northern states implies much more
exposure to downside risks, increasing the probability of 5% events to over 20% by the
middle of the century, and 25% yields to over 40%. What is stark from these results is
the large change in the distribution even under fairly modest amounts of warming, as

temperatures increasingly occur in ranges that are hotter than is optimal for rice growth.
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Table 2.5: Predicted changes in exposure to downside risk under climate change scenarios

Yield Pr(Yield < b*)

b* 1970-2009 2011-2040 2041-2070
All

1.0 5 10.9 15.0

1.7 25 31.9 38.1
Northern

2.1 5 19.3 23.4

2.8 25 40.6 45.1
Central

14 5 19.2 25.6

1.7 25 30.4 38.1
FEastern

0.9 5 5.4 1.3

14 25 24.2 12.7
Southern

1.3 5 10.2 13.7

1.9 25 30.9 36.8

The consequences for downside risk are also very similar in magnitude for central states.

Southern regions which were estimated to be least affected in terms of mean yields do,
however, show increased exposure to low yields, where yields in the historical 5th and 25th
percentile to increase in probability to 14 and 37 percent respectively. In contrast to the
rest of India, there actually seems to be a decrease in exposure to low yields in eastern

states even though mean yields are projected to decline.

2.5.7 Comparing early and late sample periods

The previous results show the average relationship between temperature and yield mo-
ments over the entire sample period. It is, however, plausible that the effect of temperature
on rice yields has not remained constant over time. For instance, agricultural technology,
such as higher yielding seed varieties, fertilisers and pesticides, has diffused across the
country since the Green Revolution beginning in the 1960s. As is argued by Mendelsohn
et al. (2006), it is possible that as farmers increase levels of technology, the climate sen-

sitivity of agriculture decreases. Although it is difficult to isolate the effect that such
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practices have on the heat tolerance of crops, it is possible to look for indirect evidence of
improved heat tolerance over time that might indicate such changes. To examine whether
this is the case, I split the sample period in two. The early period corresponds to the years

1970-1989 and the later period covers the more recent years 1990-2009.

The effect of temperature on the first moment of rice yields for each sample period is
shown in Figure 2.8. Two different model specifications are included to study both the
absolute and relative effects. The absolute impact on rice yields for the two time periods
is shown in the top row. The curves are broadly similar in terms of the predicted effects of
temperature on levels of yield. One additional day above 34 degrees significantly reduces
rice yield by around the same amount in both periods, suggesting that extreme heat has
roughly the same absolute impact on yields over time. There is also evidence of a smaller
effect of moderately high temperatures in the latter period. Temperatures in the range
28-32°C only have a statistically significant negative impact on rice yields in the earlier

sample period.

Given that yields have increased over time due to technological progress, measuring the
effect that temperature has on the absolute level of rice yield may understate the degree
to which the historical temperature relationship has changed over time. Accordingly, 1
specify a model with the logarithm of yield as the dependent variable for the first moment
of rice yields. These estimates are shown in the bottom row of Figure 2.8. Here it can
clearly be seen that the effect of temperature on relative yield has decreased substantially
over time. For the period 1970-1989, an additional day at temperatures above 32°C was
associated with a 0.5% decline in annual yield. In contrast, in the later sample period,
the marginal effect of daily temperature on yield is largely statistically indistinguishable
from zero. Temperatures above 30°C are estimated to adversely affect yield but this effect
is small. For temperatures above 34 degrees, the point estimate is -0.002 (which implies
that an additional day spent above 34°C decreases average yield by 0.2%) and significant
at the 10% level, implying that very high temperatures continue to damage crop yields

although this effect is roughly half the effect compared with the earlier period.

These results contrast with results from studies in other contexts. For instance, Schlenker
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Table 2.7: Probability of yields falling below historic thresholds under climate change by
different time periods

Yield (tonnes/hectare) Observed Estimated average yield
% change from baseline

Early period 1970-1989  2011-2040 2041-2070
1.719 1.579 1.458
-8.13% -15.7%
Late period 1990-2009  2011-2040 2041-2070
2.584 2.532 2.470
-1.9% -4.2%
Yield Pr(Yield < b%)
FEarly period
b* 1970-1989 2011-2040 2041-2070
0.8 5 15.1 15.0
1.3 25 21.3 48.6
Late period
b* 1990-2009 2011-2040 2041-2070
14 5 6.2 7.0
2.1 25 28.0 30.0

and Roberts (2009) estimate the extent of adaptation by considering the difference in the
yield-temperature relationship at different time periods. They find that the relative heat
tolerance of corn, soybean and cotton in 1950-1977 has remained very similar to that

estimated between 1978 and 2005.2!

In light of these findings, I re-estimate projections of future yield distribution for each
sample period separately. These results are shown in Table 2.7. It can easily be seen that
by using the estimated yield-temperature relationship over the period 1990-2009 dramat-
ically reduces the projected impacts of future temperature increases. For instance, while
average yield would be reduced by around 16% in the 2050s using the early sample period
as representative, estimated average yield decline could be as small as 4% given the rela-
tionship between yield and temperature since 1990. Exposure to low yields also declines
substantially. Whereas temperature rises were predicted to increase the risk of historically
occurring 25th percentile events to roughly fifty percent by 2050 using the early sample

period, the increased risk of these events only increases to 30% when the later period

21 A related study by Burke and Emerick (2016) compares the difference in yield response between short
run temperature fluctuations and long run changes (where adaptation is assumed to be possible) and find
little difference between these estimates.
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is used. Overall, these results imply that significant progress has been made over time
in making Indian agriculture more resilient to heat stress which affects the arithmetic of

projecting future climate change impacts.

2.5.8 Comparing irrigated areas with rain-fed areas

Identifying pathways through which the adverse impacts of temperature increases can be
avoided is a crucial empirical question (Hertel and Lobell, 2014). In the previous section,
it was shown that the relative effect of temperature on rice yields has reduced over time.
One plausible pathway for mitigating the effect of heat on crop yields is through irrigation.
This has previously been estimated by Birthal et al. (2015) to be the driving force behind
the reduction in drought impacts on rice in India. To investigate whether temperature
affects the behaviour of irrigated yields to rain-fed areas differently, the sample is split

depending on the proportion of district area under irrigation.??

A district is defined as irrigated if more than 50 percent of rice area is irrigated over the
sample period (Fan et al., 2000). The resulting relationship between yield and temperature
for these sub-samples are shown in Figure 2.9 with the full set of estimated coefficients
shown in Table 2.8. For both rain-fed and irrigated areas, daily temperatures above
34°C have clear negative effect on yields, which is statistically significant at the 1% level.
Other coefficients in the table confirm the differences between irrigated and rain-fed areas.
For instance, the coefficient estimating the effect of rainfall on yields is only significant
for rain-fed districts, which highlights how successful many irrigated areas have been at
utilising water from irrigation to substitute for rainfall. The effect of temperature on rice
yields are similar for each sub-sample, with daily temperatures above 30 degrees associated
negatively with yield. Interestingly, temperature has a more adverse impact on rice yields
in irrigated areas than non-irrigated areas in terms of the absolute level of yields. This is
perhaps expected however, since yields in irrigated areas tend to be higher than those in

predominantly rain-fed areas. The relative effect of temperature on yields is shown in the

228plitting the sample between irrigated versus rain-fed areas is analogous to the approach of Schlenker
et al. (2005) who study the effect that irrigation has on hedonic estimates of climate change impacts in
U.S. agriculture. They argue that omission of irrigation from the regression means that the estimated
parameters on temperature are likely to reflect the impact of irrigation.
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bottom row of Figure 2.9. In this case, we see that the effects are roughly comparable,
although the estimation for high temperature days above 34 degrees Celsius is noisier for
the non-irrigated sub-sample. In sum, it appears that although irrigation is an effective
means of increasing average yields, it is not associated with a reduction in sensitivity
to heat. For both rain-fed and irrigated areas, temperatures above 34°C have a clearly

negative effect on yields which is statistically significant at the 1% level.

To see whether higher temperatures have heterogeneous effects on average yields and
downside risk exposure between irrigated and rain-fed areas, I calculate the effects of
climate change for these two groups. These results are shown in Table 2.9. Average
yields are projected to decline most in areas without irrigation with losses of 7.4% by
2050. This compares with declines of 4.6% in irrigated areas. However, it should be noted
that although average yields do not decline as substantially in irrigated areas, exposure to
downside risk increases in a similar manner for both groups highlighting the importance

of considering the effects of temperature on the wider distribution.

Table 2.9: Probability of yields falling below historic thresholds under climate change by
irrigation group

Yield (tonnes/hectare) Observed Estimated average yield
% change from baseline

Rain-fed 1970-2009  2011-2040 2041-2070
1.873 1.827 1.734
-2.5% -14%
Irrigated 1970-2009  2011-2040 2041-2070
2.449 2.437 2.334
-0.4% -4.6%
Yield Pr(Yield < b%)
Rain-fed
b* 1970-2009 2011-2040 2041-2070
0.9 5 10.7 17.0
1.5 25 29.1 36.9
Irrigated
b* 1970-2009 2011-2040 2041-2070
1.1 5 8.2 11.9
1.8 25 27.8 33.5

The finding that irrigation is an ineffective means of coping with increased heat exposure

accords with that of a related study by Fishman (2012) who studies the relative impor-
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tance of irrigation in mitigating the effects of precipitation and temperature. He uses an
interaction term between proportion of district area irrigated and accumulated growing
season temperature to show irrigation has an insignificant effect on reducing the effects of
heat exposure on rice yields. This is attributed to the idea that increased water use does
not substitute for the physical damage that heat does to plants. In addition, rice is grown
under irrigated conditions in hotter northern areas such as in Punjab. Regional results
shown earlier in the paper confirm that these areas are likely to be those afHlicted most
by future increases in temperature. In these areas, since temperatures are already further
away from optimal rice growing temperatures, it is plausible to expect that additional heat

exposure will be harmful for rice growth even under highly irrigated conditions.

2.6 Discussion

In assessing the future effects of climate change on agricultural yields it is important
to discuss the limitations of the statistical modelling approach used to generate these
predictions and weigh up how important these limitations are likely to be for the validity

of any research findings.

One issue is that using historical relationships between weather variables and measures of
productivity to infer future relationships may not yield accurate predictions if substantial
adaptation occurs (Auffhammer and Schlenker, 2014). Indeed, studies based on crop
models have predicted significant opportunities for adaptation to offset some of these
projected impacts (Soora et al., 2013; Challinor et al., 2014). Although it is impossible
to predict the range of options that will be available to farmers in the future, there are a
number of factors over the observed sample period that may inform us about the likelihood
of this happening. On the one hand, the ability of farmers to mitigate crop yield losses
due to short-run fluctuations in heat seems to have increased over time. The exact reason
for this is unclear and is a downside of using the reduced-form estimation employed in this
paper. Interestingly, a possible pathway for this, irrigation, does not seem to explain this
relationship, since irrigated areas show similar relative response to short-term temperature

fluctuations. Although it is often purported that rain-fed regions are likely to be most
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affected by climate change (Wassmann and Dobermann, 2007), these results imply that
areas where rice is grown under irrigated conditions are likely to be affected as much,
if not more, than rain-fed areas. Whereas previous studies have identified irrigation as
a key factor in reducing the sensitivity of Indian agriculture to precipitation deficiencies
(Fishman, 2012; Birthal et al., 2015), irrigation seems to be less effective at coping with

heat stress.

Other explanations for a reduction in the relative importance of temperature fluctuations
are less straightforward to quantify using the available data. The use of varieties better
suited to growing under local temperatures could be a significant factor. The first adoption
of Green Revolution technologies coincided with the period 1970-1989 when yields were
shown to be more sensitive to temperatures. Understanding of how best to cultivate these
new Green Revolution seed technologies could have improved over time. Similarly, given
that earlier varieties have continued to be replaced by newer varieties, it is plausible to
expect that this has led to local adaptation and less volatile production (Gollin et al.,
2005). Understanding which mechanisms are responsible for driving reduced sensitivity of
rice to temperature is an integral area of future research for reducing the effects of future
warming in the agricultural sector. Although a number of studies have used crop yield
data at aggregated levels such as district and state levels, the use of data at lower spatial
scales such as the farm-level will be crucial to identifying the mechanisms behind these

aggregate relationships.

An aspect previously mentioned as important for the distribution of crop yields is the
preferences of farmers themselves regarding risk. This study finds that over time farmers
have become increasingly resilient to fluctuations in temperature. One possible explanation
for this is that farmers have become increasingly risk averse over time, deploying methods
to reduce exposure to certain types of risk, in this case temperature, and settling for lower
average yields. This hypothesis is not possible to verify in the current analysis for a number
of reasons: First, the aggregate nature of the district level data used in this study makes it
more difficult to model farm decisions. Second, the reduced form regression methods used
in this study focus primarily on the role of weather variation on output. The inclusion of

other input variables, which have previously been used in farm-level studies to study risk
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behaviour, is not possible in the current study.

Despite substantial yield gains over time and the estimated increase in heat tolerance found
in this study, the ability to deal with the effect of future climate change may be more
limited. Numerous studies have highlighted the unsustainable use of water in many key
rice growing areas (Rodell et al., 2012; Panda and Wahr, 2016). This is especially apparent
in areas that this study predicts to be most affected by future temperature increases, such
as the northern states of Punjab and Haryana. Since water has been successfully used to
construct growing environments more suited for rice production, the combination of even
higher temperatures in these relatively arid areas and growing pressure on water resources

highlights the challenges for agriculture in India.

As with all empirical studies of climate impacts, the possible beneficial effect of increased
levels of COy due to the carbon dioxide fertilisation effect are also not studied in this
paper. For plants that grow using Cs photosynthesis, such as rice and wheat, these effects
could be significantly positive, with around a 5% increase relative to historical production
for a 100 parts per million elevation in COs for rice in South Asia (McGrath and Lobell,
2012).

In lieu of factors that reduce the impact of temperature on crop yield, institutions to help
farmers deal with the consequences of low yields on welfare is a clear way to address these
issues. Ome potential solution is crop insurance. For instance, the absolute number of
farm households under some form of crop insurance scheme in India is already larger than
anywhere else in the world, with 22 million households enrolled (Swain, 2014). Insured
farmers remain a large minority, however, so that the continued development of schemes
such as the National Agricultural Insurance Scheme will be vital to the future welfare
of farmers. As well as the need to expand insurance services to cover a broader set of
farmers due to more exposure to risk, this paper also highlights the increase in risk to
insurers through climate change. Well-functioning markets for insurance depend on the
correct valuation of risk that farmers are exposed to. Understanding the increased risk that
climate change poses to agriculture by examining the effect of climate on the distribution of

yields is important to understand the changes in future exposure to historically rare events.
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While many studies have focused on estimating the correct shape of yield distributions
to accurately assess the probability of low crop yields that are covered by crop insurance
programs (Just and Weninger, 1999; Sherrick et al., 2004),?3 those involved in managing
these risks, such as governments and private insurers, should work to design schemes that
account for the potential increase in risk over time. For instance, as is noted by McCarl
et al. (1998), the assumption of stationarity of the yield distribution may be a poor one

as the climate changes.

Finally, future climate change-related losses in the agricultural sector may also increase
due to a higher occurrence of extreme weather events. The modelling approach used in
this paper to quantify future temperature increases assumes a shift in the distribution of
mean temperature. This modelling approach does not allow me to model the effect that
extreme events, such as the possibility of more droughts and floods, and the effect these
may have on crop yields. Similarly, since I assume that the distribution of temperature
within a year does not matter for annual crop yields, I cannot account for recent observed
changes in the intra-seasonal distribution of heat. For instance, increasing trends in the
number of heatwaves have been found across parts of India (Rohini et al., 2016). The effect

that these patterns could have on crop yields is an important area of future research.

2.7 Conclusion

This paper examines the effect that temperature has on district-level rice yields in India.
Detailed records of daily temperature are used to quantify the relationship between tem-
perature and different moments of yield. The moment-based maximum entropy approach
is then used to construct yield distributions. A key point from this study is that increases
in average temperature have the potential to significantly damage crop yields and increase
the probability of low rice yields that were historically rare. Based on projections of fu-
ture temperature, I estimate that average district yield will decline by 4.4% in the period

2011-2040 and by 9.9% in 2041-2070. Temperature is shown to have a significant effect

230ther prominent studies include Goodwin and Ker (1998) Ramirez et al. (2003), and Harri et al. (2009)
and Koundouri and Kourogenis (2011).
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on higher moments of yield. Using predicted changes in the distribution of crop yields
under climate change, I estimate that based on the historical relationship between yield
and temperature between 1970 and 2009, exposure to yields that previously had a 25%
likelihood of occurring increases to 38% while yields in the lowest 5th percentile increase
to 15% by the middle of the century. A salient issue in estimating the impact of future
climate change is the extent to which farmers may be able to cope with greater exposure to
heat. To examine this issue, I examine the sensitivity of rice yields to heat for two distinct
sample periods. These findings suggest that in more recent years, the relative effect of
temperature on yield has reduced. Using more recent periods to predict the impact of
future temperature increases suggests that average yields only decline by 4% and exposure
to 25th percentile events increases to 30 percent. This has a number of implications for
future research. Firstly, researchers who use historical data to predict future outcomes
should be aware of changes over time that may affect the sensitivity of economic variables
to environmental variables, such as weather. Secondly, this creates a need for researchers
to understand potential mechanisms of increased resilience of the sector to heat to inform

future adaptation choices.
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Abstract

Understanding the impacts of drought on agricultural production is crucial for meeting food se-
curity needs during the twenty-first century. This is particularly the case in India, where the
looming prospect of increased intensity and frequency of drought due to climate change threatens
the wellbeing of hundreds of millions dependent on income from the sector. Using district-level
agricultural data for six major cereals grown in India between 1966 and 2003, we adopt a threshold
regression approach along with a flexible definition of drought in order to measure the full range
of potential drought events. This approach enables us to identify data-driven ranges for which the
magnitude of drought impacts on cereal production differs. First, we apply this model to identify
whether there are distinct periods of time between which average drought impacts vary. We find
evidence of a non-linear pattern in average district cereal yields over time. Although yields became
more resilient to drought impacts in the middle of our sample period, average impacts increased
markedly for droughts since 1998. This highlights the mounting challenges that farmers face in
effectively mitigating drought impacts in the future. Second, we estimate precipitation thresholds
for drought impacts. This allows us to determine levels of rainfall at which drought becomes par-
ticularly harmful for crop yields. An advantage of this approach is that we are able to compare
estimated thresholds with official classifications of drought based on precipitation deficiency. Over-
all, we find significant and negative marginal impacts of drought for levels of rainfall below 70 to
80 percent of long-term rainfall, which corresponds with official drought definitions. Arid areas are
resilient to small deviations of rainfall, but, due to low levels of absolute rainfall, are badly affected
by severe droughts. Crop-level results suggest very different impacts by cereal, with rice being
the worst affected cereal. These results suggest that drought definitions that do not account for
local differences in average climate and crop choice are likely to provide misleading policy guidance

about the effects of drought on crop productivity.
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3.1 Introduction

ROUGHT has widespread and recurrent impacts on economic activity in many
parts of the world. Periods of low rainfall and high temperature reduce the
availability of moisture relative to normal conditions leading to the occurrence

of drought. The resilience of the agricultural sector to drought is a pressing concern given
that these conditions tend to adversely affect crop production, leading to significant welfare
costs to producers through lost income and to consumers through higher food prices. In
parts of the world where the reliance on agricultural income is high, drought can have
particularly devastating effects on human welfare and pose a challenge to policymakers who
manage the response to these events. Accurately assessing the vulnerability of agriculture
to drought is also paramount given the growing threat from climate change. Although
drought occurs as a natural part of climate variability, the combined effects of increasingly
erratic precipitation and higher average temperatures mean that the likelihood of dry

conditions conducive with drought will increase in many areas (IPCC, 2012).

A key challenge for researchers seeking to inform policymakers about future vulnerability to
drought is how to use past climatic variation to learn about the resilience of the agricultural
sector (Auffhammer and Schlenker, 2014). One approach to this is the use of past variation
to understand the conditions under which drought has particularly negative effects on the
productivity of agriculture. This may be particularly important if there are critical points
that indicate conditions under which drought impacts are prone to increase. In general, this
could refer to thresholds “beyond which the biophysical, socioeconomic, or institutional
system in question is significantly affected by, or fundamentally changes (Naylor et al.,
2007, p.7752).” If agricultural production systems are prone to threshold behaviour in
drought impacts, then identifying where particular thresholds occur is an important way

of assessing the vulnerability of the sector to drought.

In this paper we assess drought impacts on cereal productivity by adopting a threshold
regression approach (Hansen, 1999, 2000). We apply this to a panel of district-level agri-
cultural data from India spanning the years 1966-2003. This estimation approach allows

us to identify data-driven ranges between which average impacts of drought significantly
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change for a variable of interest. The advantage of this empirical approach amounts to
being able to estimate the location of thresholds of drought impact that can be used to

determine cut-off points associated with increased vulnerability to drought.

We first evaluate drought impacts over time by using the threshold model to identify
whether average impacts can be divided into specific periods. Previous research has indi-
cated trends of reduced impact on crop yields in recent decades. Yu and Babcock (2010)
use county-level data on corn and soybean yields in the U.S. between 1980 and 2008 and
find that yields of these crops have become more tolerant to drought over time. Addition-
ally, Birthal et al. (2015) study the drought tolerance of rice yields in India between 1970
and 2005 and find the same pattern. These studies, however, may provide a misleading
reflection of the resilience of the agricultural sector over time if impacts are prone to abrupt
changes that may be caused by periods of increased drought intensity or changes in the
availability of resources to mitigate drought impacts. For instance, a number of studies
have linked recent improvements in yield-improving technology with lower tolerance to
drought (Lobell et al., 2014; Hornbeck and Keskin, 2014).! In recent years, studies have
also indicated that the depletion of water resources is increasingly likely to act as a limit-
ing factor on farmers’ ability to respond to drought (Rodell et al., 2012; Panda and Wahr,
2016). The strength of the threshold approach in this context is that it can be used to
identify sudden shifts in drought impacts that may signal periods of increased vulnerability

to drought that cannot easily be determined by looking at slow-moving trends over time.

Second, assessing the effect that climatic variables have on production losses during
drought is also crucial for furthering our understanding of the resilience of agriculture.
Of particular interest is identifying critical levels of precipitation deficiency that are harm-
ful to agricultural production. The threshold regression approach allows us to measure
impacts of drought non-linearly by analysing critical levels of precipitation after which
impacts of drought significantly change. While other studies have used methods to iden-
tify temperature thresholds that tend to be harmful for crop growth (e.g. Schlenker and

Roberts (2009)), to our knowledge no studies have identified thresholds for precipitation.

! Another recent study by Lesk et al. (2016) finds that globally droughts between 1985 and 2007 had
more severe impacts on production compared with droughts over the period 1964-1984.
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The assessment of precipitation thresholds is of high policy relevance. Droughts are often
declared by governments using simple measures of precipitation deficiency. In India, these
indices are used to declare drought if precipitation falls below a given threshold (Ministry
of Agriculture, 2009). Comparison of officially determined thresholds with those deter-
mined according to agricultural impacts is important for effective response to these events
in the future. Often the management of drought events is dictated according to arbitrar-
ily defined precipitation thresholds, which may have little relevance to the actual impact

drought has on production (Wilhite and Glantz, 1985).

An important challenge in evaluating drought impacts is consideration of which climatic
variables shape the severity of drought impacts. Researchers interested in evaluating
drought impacts in agriculture tend to define drought differently to policymakers tasked
with managing impacts. On the one hand, policymakers frequently base their evalua-
tion of drought on simple indices of precipitation deficiency. A fundamental criticism of
this approach is that important interactions between precipitation and temperature are
omitted. Exposure to high temperatures has been shown to reduce the yield of major
crops worldwide (Schlenker and Roberts, 2009; Lobell et al., 2012; Deryng et al., 2014).
These effects are likely to exacerbate the effects of low rainfall, increasing the severity
of a drought event and its impact on agricultural production. On the other hand, re-
searchers estimating drought impacts on agriculture have developed indices to incorporate
both precipitation and temperature (Yu and Babcock, 2010). However, these approaches
often restrict the definition of drought to exclude events that are considered droughts by
policymakers, sometimes omitting instances of serious drought leading to significant bias
in the assessment of drought impacts in agriculture. As such, both of these approaches
fail to account for drought events that have potentially disastrous impacts for farmers,
thereby limiting the relevance of these research findings for policymakers. We address this
shortcoming by utilising a drought index that includes both temperature and precipitation
in a more flexible way than previous research has done, thus incorporating all potential

droughts considered by policymakers and researchers alike.

We apply these techniques to study drought impacts in India, which remains one of the

most drought-prone countries in the world (Mishra and Singh, 2010). Exposure to the wel-
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fare effects of drought are especially high in this context, since the agricultural sector still
represents about 20% of gross domestic product (GDP), and employs half of the working
population. Between 1951 and 2003, severe droughts were estimated to have lowered the
country’s annual GDP by 2 to 5 percent (Gadgil and Gadgil, 2006). More specifically, low
rainfall events have also been linked to measures of welfare that are affected by shocks to
crop productivity such as rural wages, poverty, conflict, and human capital accumulation
(Jayachandran, 2006; Sarson, 2015; Shah and Steinberg, forthcoming). Identifying how
vulnerable the agricultural sector is to drought is crucial for prioritising policies that re-
duce the impact of these events on crop production and provide effective relief in response
to these events in the future. Climate models predict greater inter-annual variability of
rainfall (Turner and Annamalai, 2012), suggesting that the need to understand climate ex-
tremes and their impact is of growing importance for the future of agriculture in a country
that is widely expected to become the most populous in the world before the middle of the
century (UN, 2015). Only a small number of studies have undertaken detailed analyses
of drought on agriculture in the country, however. Birthal et al. (2015) and Auffhammer
et al. (2012) examine its impact on rice yields at the district and state level respectively.
Pandey et al. (2007b) similarly look at the impacts on rice production in eastern India. As
well as limiting analysis to a single crop, these studies all suffer from restrictive definitions
of drought which may reduce the validity of these findings leading to potential biased

assessments of the effects of drought in India.

Previous studies have failed to consider heterogeneity across India in agro-climatic factors
that may substantially affect crop losses from drought. For instance, arid areas of the
country experience low average levels of rainfall and may respond differently to drought
than humid areas that are characterised by high average rainfall. These differences may
mean that precipitation thresholds differ substantially across regions, which would inval-
idate approaches that assume thresholds to be the same across the country. Accordingly,
we separately estimate drought impacts by agro-climatic region to test for differences
across these regions. Partly due to these agro-climatic differences, crop choices also dif-
fer markedly across districts. Since different crops have different sensitivity to heat and

water stress, drought impacts are likely to vary across crops. Since previous research has
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highlighted that different crops have benefited unevenly in improving drought resistance
over time in other contexts (Yu and Babcock, 2010), we estimate drought effects on the

six main cereal crops in India: rice, wheat, maize, barley, millet, and sorghum.

Of considerable interest is how an area’s resilience to drought is influenced by the avail-
ability of alternative water sources in the form of irrigation. In the case of India, area
under irrigation varies substantially across the country. Previous studies on crop exposure
to a range of weather events have highlighted the importance of irrigation in conditioning
the impacts of adverse weather events (Schlenker et al., 2005; Duflo and Pande, 2007;
Fishman, 2012; Birthal et al., 2015). We consider the differences in drought impacts for
high irrigation areas versus low irrigation areas by separately estimating regressions across

these two sub-samples.

The results of this study show that impacts of drought on cereal productivity have generally
decreased over time since the 1960s, with particularly low impacts in the 1990s. However,
contrary to previous literature, we identify significant thresholds of increased drought
impact in the late 1990s and early 2000s. These impacts were comparable in terms of
production losses with drought in the 1960s, suggesting that despite a period of relative
stability in average impacts, the agricultural sector remains acutely vulnerable to drought
in recent years. This pattern occurs for aggregate district cereal productivity but also
for rice, the most water-intensive crop we study. Whereas the pattern of reduced impacts
seems to align with previous studies that have found increased levels of irrigation important
in mitigating drought (Birthal et al., 2015), increased vulnerability to drought in the late-
1990s may correspond with the observed depletion of groundwater resources that constrain
the ability of farmers to substitute rainfall with water from irrigated sources (Shah et al.,
2009). This highlights the evolving challenges of achieving food security under drought in

areas that have previously relied on abundant supplies of water from irrigation.

We also determine thresholds of precipitation. We find that for India as a whole, the
marginal impacts of drought become negative and significant for levels of rainfall below
70%-80% of long-term rainfall. Impacts are more severe in areas with low irrigation. We

also find that arid areas, probably as a result of long-run adaptation, tend to be more
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resilient to small deviations of rainfall. These areas are, however, acutely affected by
severe droughts as a result of low levels of absolute rainfall. In addition to this, our results
suggest that the impacts differ widely by cereal, with rice clearly being the most adversely
affected cereal. These findings are of relevance to policymakers and researchers alike since
they highlight that the sensitivity of production to deviations from average rainfall varies
substantially according to the agro-climatic setting. This is crucial in order to understand
the potential distributional impacts of climate change as well as challenging the idea of

studying a large country like India as a single, homogeneous unit.

The rest of the paper proceeds as follows. Section 3.2 provides the background to drought
in India and reviews related literature from other contexts. Section 3.3 outlines issues in
measuring drought on agricultural production. Section 3.4 discusses the construction of
the drought index used in this paper. The data used in the study is introduced in Section
3.5. In Section 3.6 we discuss the threshold regression technique. Section 3.7 presents the

results and Sections 3.8 and 3.9 discuss and conclude to the paper.

3.2 Drought in India

India is particularly exposed to the consequences of drought since over two-thirds of the
country is classed as vulnerable to drought (Ministry of Agriculture, 2009). This is com-
pounded by the dependence of the majority of agricultural production on annual rainfall,
given that 57% of cropped area is farmed under rain-fed conditions (Sharma, 2011). The
production of crops in many areas during the wetter summer (Kharif) season relies di-
rectly on rainfall as their main source of water. Crops grown in the subsequent drier (Rabi)
season also rely on rainfall from the previous season for soil moisture and water stored in

sources such as tanks and canals.

Drought years in India generally occur because of deficient monsoon rainfall. For the coun-
try on average, 80% of rainfall falls between the monsoon months of June to September.
Although the monsoon occurs annually, its intensity varies substantially from year-to-

year. Studies have identified a decrease in average levels of annual rainfall over the past
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half century, while the probability of extreme rainfall events, which can lead to drought
and floods, has significantly increased (Singh et al., 2014; Turner and Annamalai, 2012).
For drought in particular, Pai et al. (2011) found that changes in exposure to precipita-
tion drought significantly increased for approximately 10 percent of Indian districts over
the last century. Kumar et al. (2013) additionally argue that the conditions for drought
have been exacerbated by rising temperatures over time. They find evidence of increas-
ing average drought intensity across the country, which they attribute to the increased
air temperatures. Future projections of climate change-induced changes in rainfall pat-
terns across India will result in increasingly erratic rainfall, although uncertainty over the
physical mechanisms underpinning future monsoon dynamics are not yet understood well
enough to yield discernible spatial patterns of future rainfall (Ghosh et al., 2012; Turner
and Annamalai, 2012).

Of high policy relevance are the factors that affect how severely crop productivity is im-
pacted in a given drought year. Identifying these features is crucial for evaluating how
drought impacts vary across time and across space, which may indicate periods of time
or regions that are particularly vulnerable to drought. The impacts of drought in India
are likely to be conditioned by a number of factors that vary across the country. Given
that India is a large country, it is debatable whether we are able to properly characterise
drought impacts based on a country-wide average. As such, the rest of this section reviews

sources of heterogeneity that may affect drought impacts.

3.2.1 Agro-climatic differences

One important aspect is that average climatic conditions vary substantially across growing
regions. This is illustrated in Figure 3.1. Panel (a) shows average levels of annual rainfall
in each district across the country. Areas in the north-west of the country are characterised
by extremely low average rainfall, in contrast with areas in the east and coastal-west that
have much higher levels of average rainfall. These differences in mean rainfall are primary

determinants of a permanent feature of regions: aridity.

Estimating drought impacts separately for these different zones is important for a number
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of reasons. Firstly, identifying areas of drought vulnerability based on climatic differ-
ences is important for informing policy about future vulnerability. For instance, if regions
that are on average drier and hotter are most affected by drought, it is likely that future
warming could exacerbate these already challenging growing conditions. Secondly, un-
derstanding the difference in sensitivity to rainfall deviations can help policymakers more
accurately ascertain when a drought is likely to start harming agricultural productivity.
Given that, for instance, arid areas experience generally low levels of absolute rainfall, it
may be simplistic to assume that a given proportional deviation below average would have
comparable effects on agricultural productivity than an area with very high absolute levels
of rainfall. While a 20% deviation in rainfall from the long term average would amount to
30mm in arid areas, the same proportional deviation would be around 200mm in humid

areas. This may have substantially different effects on crop growth between these areas.

Given that physical exposure to drought may vary substantially across the country, we
divide India into distinct regions based on their average agro-climatic characteristics. Panel
(b) in Figure 3.1 displays a characterisation of Indian districts based on similar agro-
climatic factors. Prior research has suggested that India can be split into twenty agro-
climatic regions based on a number of climatic variables, such as rainfall, temperature,
and soil characteristics (Gajbhiye and Mandal, 2010). We simplify this agro-climatic
zones classification to group districts depending on whether they fall into arid, semi-
arid, sub-humid, or humid zones. This allows us to maintain a relatively large number of
districts in each zone to aid the empirical analysis. It can be seen by comparing panels (a)
and (b) that this classification of zones corresponds very clearly with patterns of average
rainfall, indicating that average rainfall is a key driving factor behind the variation in
agro-climatic conditions across the country. The arid areas of the country are mainly
located in the states of Gujarat and Rajasthan. Semi-arid districts span the majority
of the Maharashtra, Madhya Pradesh, Karnataka, and Andhra Pradesh. Eastern states
such as Bihar, Orissa, and West Bengal make up the wetter sub-humid states. Finally,
western coastal districts in Kerala, Karnataka and Maharashtra fall into the humid district

classification.
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3.2.2 Crop type

Another crucial aspect that may be important in determining drought impacts is crop
type. Consideration of the impacts of drought at the crop level may be important for two
reasons. First, given the variation in average climatic conditions shown in Figure 3.1, crop
choice in a district is likely to reflect these conditions. For instance, water-intensive crops,
such as rice, are more likely to be grown in less arid areas. Figure 3.2 shows the spatial
distribution of the proportion of area planted to the six crops examined in this study. Rice
is planted most intensively in areas with high rainfall in the south and east of the country,
under semi-humid and humid regions. In contrast, wheat is grown mainly in the more arid
northern part of the country reflecting a lower dependence on rainfall. The crops most
suited to growth in dry environments, sorghum and millet are both sown across arid and
semi-arid regions in the north-west. These patterns place additional emphasis on possible
variations in drought impacts within India if crops vary substantially in their resilience
to water stress (FAO, 2012). Whether crops grown in areas used to lower absolute levels
of rainfall, such as sorghum and millet, are better at coping with drought conditions is a

question considered in the empirical analysis.

Examining drought impacts at the crop-level is also important since changes in the drought
tolerance of crops over time may also be crop specific. One reason for this is that genetic
advancement in some crops may have been more successful at improving drought resistance
of certain crops. For instance, Yu and Babcock (2010) argue that past efforts to reduce
pest damage to crops thus enabling them to survive better in drought conditions, has
increased the drought tolerance of county-level corn and soybean yields in the U.S. Other
authors have argued that increased drought resistance is not an inevitable outcome of
agricultural modernisation, however. Lobell et al. (2014) use data at the field-level and
find that soybean and corn yields in the U.S. between 1995-2012 have recently become
more sensitive to drought due to cultivar improvements focused on maximising yields under
optimal weather conditions. To add to this, other studies have argued that agricultural
modernisation has not led to a decline in drought’s impact on Indian agriculture. Since the

adoption of new seed varieties has been very successful at increasing average yields across
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the country, a measure of the success of the country’s Green Revolution depends on how
resilient the agricultural sector remains to drought. A number of studies have argued that
the adoption of higher yielding seeds by farmers has increased the year-to-year variability
of production since these varieties do not cope well when conditions deviate from those

considered optimal for growth (Hazell, 1984; Larson et al., 2004).2

3.2.3 Irrigation

Irrigation is likely to be a highly significant factor that affects production losses during
a drought. Since both a decrease in rainfall and an increase in temperature effectively
imply lower moisture availability, irrigation often appears to be a panacea to drought.
The rationale behind irrigation is simple in that moisture deficiencies can be replaced by
water from irrigation. On the one hand, a number of studies have shown that irrigation
is strongly associated with mitigating the impact of low rainfall. Duflo and Pande (2007)
show that the construction of dams across India reduces the sensitivity of district crop
yields to extreme rainfall in India. In a study on the resilience of district rice yields in
India to drought over time, Birthal et al. (2015) argue that irrigation was the main driver
in mitigating drought impacts on rice productivity at the district level given that irrigated
area increased dramatically since the 1960s. Irrigation’s impact is, however, limited to the

availability of a water source, and half of total cropped area remains rain-fed.

Although it seems intuitive to link the expansion of irrigation to lower drought impacts, a
number of recent studies have questioned the long-run effect of increasingly water-intensive
farming practices on the drought sensitivity of production. Hornbeck and Keskin (2014)
consider the dynamic impact of irrigation on the drought sensitivity of agriculture in the
U.S., noting that although the utilisation of water from aquifers initially lowers drought
sensitivity of production, sensitivity subsequently increases due to the adoption of more
profitable, water-intensive crops over time. Another study by Fishman (2012) emphasises

that although the effectiveness of irrigation in mitigating low seasonal rainfall in India is

2In related agronomic work by Prashant et al. (2015), the authors study the genetic traits of ‘modern
varieties’ and argue the introduction of these varieties has increased the susceptibility of key Green Revo-
lution crops, such as rice and wheat, to drought since genes associated with drought tolerance were lost in
favour of higher yielding characteristics, such as semi-dwarf properties.
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high, this has little impact in reducing the effect that high temperatures have on rice yields
in India, which may limit the extent to which irrigation remains an effective strategy in

the face of hotter droughts driven by increases in average temperatures.

Increasingly, the sustainability of the Green Revolution model of agricultural development,
based on the use of irrigation often from groundwater sources, to large drought shocks has
been called into question by a number of recent studies. Work by Rodell et al. (2012)
and Panda and Wahr (2016) uses satellite-based methods to assess changes in stocks
of groundwater over time in India. These studies conclude that sustained depletion of
aquifers has occurred particularly in the Ganges Basin region, where groundwater is vital
for sustaining the rice-wheat production systems in what is a primarily semi-arid climate.
The slow recharge rate of aquifers in this region means that the consequences of previous
levels of groundwater extraction are likely to be a pressing concern for farmers in the
future, and of particular importance for farmers during drought years. Firstly, aquifer
depletion over time lowers water tables, so that water becomes more costly and difficult
to access since farmers must dig deeper wells and use more energy to pump water from
the ground. This limits the ability of farmers to mitigate the adverse impacts of drought
on crop growth. Secondly, as is shown by Chen et al. (2014) and Panda and Wahr (2016),
rates of groundwater extraction increase substantially during drought years. This works
to reduce groundwater stocks in the years following a drought which in turn limits the
potential for farmers to use irrigation to mitigate the effects of droughts in future years.
As such, it is plausible that although the increased use of irrigation is a useful strategy
in mitigating drought when water is abundant, its diminishing availability may act as a

source of increased vulnerability of Indian agriculture over time.

3.3 Maeasuring the physical severity of drought

In order to assess the impacts of drought, it is important to define the climatic conditions
that cause drought. While there is no universal definition of the conditions that constitute
a drought (Wilhite, 2000), drought is generally referred to as an extreme natural event

associated with water deficiency over an extended period of time (Mishra and Singh,
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2010). The severity of a drought and its impacts are however, determined by a number
of other aspects, both physical and human, which may differ substantially across space
and time. As such, given that drought is such a complex phenomenon and its impacts
are highly dependent on a number of aspects, natural and man-made, it is unsurprising
that a wide range of indices have been used in research and policy. These range from
simple precipitation indices, which are highly favoured among policymakers, to very data-

intensive multidimensional measures.

A number of studies have estimated impacts of drought on agricultural production using
simple metrics of precipitation deficiency in India. These measures of drought have the
advantage of being easily interpretable and capture the most obvious characteristic of
drought, rainfall deficiency. For instance, a commonly used method to define drought is
used by Pandey et al. (2007b) who define drought as annual rainfall 80 percent below
normal levels. Moderate drought is defined if rainfall is 80-70 percent of normal, with
severe drought 70 percent below normal. They use this definition to estimate drought
impact in areas that grow rice in Asia at the aggregate and household level. They find
that drought impacts vary markedly across countries. While drought is associated with
a 36% loss in production value in rain-fed areas in Eastern India, production losses in
Thailand and China are much lower at 10% and 3% loss of output respectively. A similar
definition is also used by Auffhammer et al. (2012) to study the effect of monsoon rainfall
on rice yields for states in India. They define drought if monsoon rainfall is 15% below

normal and find that drought was associated with a 12 percent fall in state rice yield.

Studies such as those above that use simple definitions of drought are problematic for our
understanding of the impacts for two reasons. Firstly, they impose arbitrary thresholds to
define drought, evaluating drought impacts only after a given level of precipitation. It is
not clear, however, whether such thresholds have any agronomic or empirical basis (Wilhite
and Glantz, 1985). Secondly, variables in addition to precipitation may have important
effects when determining the physical severity of a drought. Overall, the misspecification
of the variables that cause drought could lead to substantial bias in the estimation of

impacts since potentially destructive drought events may be overlooked.
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One factor that undeniably affects the severity of a drought is temperature. A number of
recent studies emphasise the detrimental effect that high temperatures have on crop yields.
Schlenker and Roberts (2009) find that high temperatures reduce county-level yields for
corn, soybeans, and cotton in the United States. In India, Guiteras (2009) and Burgess
et al. (2014) both show that, on average, daily temperatures above 34°C tend to reduce
agricultural productivity of a district. Lobell et al. (2012) identify the same threshold as

harmful for wheat yields in the country.

High temperatures have particularly acute effects on crop growth during periods of low
precipitation since the rate of evapotranspiration, the combined process of water evapo-
rated from land surfaces and plants, increases as temperatures rise (Prasad et al., 2008;
Lobell and Gourdji, 2012). In general, this increases a plant’s demand for water at a time
when water availability is already lowered due to deficient precipitation. The importance
of temperature in determining the physical severity of drought is also of high importance
given temperature increases driven by climate change (Hatfield et al., 2011). Recent re-
search has documented that droughts over a range of settings have increased in severity as
mean temperatures have increased. These studies have shown that higher temperatures,
rather than the increased intensity of low rainfall events, have been responsible for these
drying trends (Vicente-Serrano et al., 2014; Diffenbaugh et al., 2015). As such, not consid-
ering the effect that temperature could have on the severity of a drought event could lead
to a serious underestimation of the severity of a drought and give misleading information

about the likelihood of future production losses driven by climate change.

In order to improve the understanding of the impacts of drought in agriculture, recent
literature has worked on the incorporation of both precipitation and temperature into
the measurement of drought. Yu and Babcock (2010) study drought as a period over
the growing season when precipitation is below its average level as well as temperature
being higher than average. The findings of this study suggest that soybeans and corn have
become increasingly drought-tolerant over time. Birthal et al. (2015) use the same index
to study the resilience of rice yields to drought in India. Their results indicate that rice
yields have become more resilient to drought over time. A key weakness of these studies

however, is that the index used in these approaches restricts drought to be an event that
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only occurs if a period of low rainfall is accompanied by higher than average temperatures.
For instance, a year when rainfall is very low but temperature was not above average would
not be considered as a drought. Omission of potentially destructive droughts could lead
to significant bias in estimates of drought impact. Since events that could be considered
drought are included in the control group, the index suggested by Yu and Babcock (2010)
is likely to underestimate the total impact of drought. In the following section, we detail
a drought index that builds on this previous work that allows us to consider the whole

range of potential drought events.

3.4 Drought index

In this section, we build on the approach taken by Yu and Babcock (2010) to construct
an index of drought incorporating both rainfall and temperature. According to their
classification, a drought occurs in a year when both temperature is uncommonly high
and precipitation low, relative to the long term average of these variables.® As such, the
intensity of a drought increases with lower levels of precipitation and hotter temperatures.
The strength of this index lies in its ability to capture the potential that high temperatures

exacerbate the effects of low rainfall on crop production.

A crucial weakness of this index, however, is that drought is defined only in years when
an area suffers both low rainfall and high temperatures. An important omission is that
years when rainfall is low but temperature is not uncommonly high are not considered as
potential droughts. This can be illustrated by considering Figure 3.3. Defining drought
events according to both low rainfall and high temperature restricts the measure of drought
to the lower right quadrant of events (I). However, events in the lower left quadrant (II),
where area rainfall is low but temperatures are not unusually hot, are not considered

droughts. It can be clearly seen that a large number of low precipitation events occur

3We limit our analysis to considering drought as a prolonged absence of rainfall over a year. As such, we
do not analyse shorter or longer periods of drought. For instance, Fishman (2016) studies the intra-annual
distribution of rainfall in India and concludes that this has important effects on productivity. To analyse
the impacts of rare, multi-year droughts we would require a drought measure with ‘memory’ that takes
into account soil moisture conditions. Since drought in India is mainly driven by variation in the annual
monsoon, we argue that this annual measure is most relevant in this context.
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in this quadrant which is likely to have serious implications for assessing the impact of

drought.

Figure 3.3: Potential droughts events and their categorisation in the drought index

I m

Standard Deviations rain

-4 -2 . n 2 4
Standard Deviations temperature

To address this, we use the logic of the Yu and Babcock (2010) index to consider a wider
set of drought events. First, we calculate district-specific cumulative rainfall over the
growing season, R;;, and then calculate its long term average LT AR;; for the growing
season (June-September) over the period 1956-2009. A standardised measure of rainfall is
then estimated as ZRy = (R — LTAR;)/sdR; , where sdR; is the standard deviation of
Ry

Analogously, we calculate the district-specific cumulative growing season temperature,
HDDy, for the growing season (June-September) as the cumulative number of daily
degree days above the mean daily growing season temperature over the period 1956-
2009.* Similar to rainfall, this variable is standardised by estimating ZHDD;; =
(HDD;, — LTAHDD;)/sdHDD;, where LTAHDD;, is average cumulative daily degree

4The growing season daily degree days are calculated as follows. First, we obtain the average growing
season temperature for each district. Second, for each day we subtract the average temperature from
the observed temperature and obtain the number of degrees above the average temperature for each day.
Finally, we sum all the positive temperature deviations for each day of the growing season and obtain the
cumulative daily-degree days
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days over the growing season and sdH DD; is the standard deviation of HDD,;.

We differ from Yu and Babcock (2010) in creating a normalised version of the rain and
temperature variables such that they vary strictly between 0 and 1. Normalising the
negative of rainfall, rather than rainfall directly, allows us to generate a variable bounded
between 0 and 1, with higher values signalling a more severe precipitation deficiency. We
construct a variable, R;, which is simply the negative of R; (i.e. Ry = —Rj). The

following is estimated to obtain N R;; and NH D D;y:

NRit = (Ry — R"™)/(R]"** — R["™) (3.1)

where R™™ denotes the minimum observed value for district i (i.e. the maximum rainfall
observed), and R["** denotes its maximum observed value (i.e. lowest rainfall). The same

normalisation procedure is then applied to the temperature variables:

NHDDy = (HDD;y; — HDD™")/(HDD{™** — HDD!"™) (3.2)

where HDD!™™ denotes the minimum observed value for district i (i.e. the maximum
number of degree days observed), and HDD]"** denotes its maximum observed value (i.e.

lowest number of degree days observed).

From these two variables, we then create a normalised rainfall-temperature index N RT I;;,

which is simply a product of these variables:

NRTIy; = NRy « NHDDy, (3.3)

We illustrate these events in equation (3.4). Potential droughts can be classified as D1
which corresponds with that of Yu and Babcock (2010) where rainfall is below normal
and temperature above normal. D2 then corresponds with low rainfall in the absence
of abnormally high temperatures. The value of both of these indexes is increasing in

temperature but decreasing in precipitation. The multiplicative relationship generated
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between the two normalised variables, is used to illustrate the comparison between different

types of drought event. Formally, we have:

Dly=NRyx NHDD; if ZR; <0& ZHDD; > 0,0 otherwise
Drought = D2y =NRy« NHDD;; if ZR; <0& ZHDD;; < 0,0 otherwise

D12; = NRy« NHDD;; if ZR; <0,0 otherwise
(3.4)

As such, D1; can be interpreted as a normalised version of Yu and Babcock’s (2010)
index. It captures all events in the lower right quadrant (quadrant 1) of Figure 3.3,
taking a strictly positive value for all events characterised by below-average precipitation
and above-average temperatures. The second index, D2;, only takes non-zero values for
events with below-average rainfall and below-average temperature, the category Yu and
Babcock omit. Finally, a third index, D12;, simply combines D1;; and D2;; and hence,

captures all the events in the lower half of Figure 3.3.

To illustrate the efficacy of the drought index, Figure 3.4 plots the average value of the
index over time for all districts included in our sample. The particular sample period that
we examine (explained in the next section) is shown between the red vertical lines. There
is substantial variation in the average severity of drought over time. In particular, we
note that the index takes particularly high values in years historically identified as serious
droughts across wide areas of the country. For instance, the years 1972, 1979, 1987, and
2002 were particularly serious droughts across the country (Wang, 2006) and subsequently

are the years when our drought index takes the highest values.

In order to study precipitation thresholds it is necessary to make a small innovation to
this index. In particular, we need a precipitation index that is continuous in proportion of
rain. As such, for the case of the precipitation index, we give a non-zero value to the cases
where rain is above average but temperatures are also high. In terms of the events shown
in Figure 3.3, this refers to quadrant III. Although these events should not be considered

as potential droughts, their inclusion is necessary in the index so that rainfall can be
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Figure 3.4: Average severity of drought in India 1956-2010
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treated as a fully continuous variable so that we can test for where structural breaks for

precipitation deficiency are located.’

This approach has the advantage of allowing us to remain agnostic in terms of the re-
lationship between precipitation and the drought impacts. However, it also has a slight
disadvantage, in that our index is not easily interpretable at regions of precipitation above
1 since a higher value of the index could both mean a value of rain closer to normal rain (in
which case we would expect a positive relationship) or a very high temperature irrespective
of the precipitation level (in which case we may expect a negative relationship). But since
our goal is to focus on the analysis of drought, we are more concerned about the parts of
the index for proportions of rain below one and, as such, we believe that the flexibility

that the index confers outweighs the difficulty of interpretability for regions above normal

It is unnecessary to include events in quadrant IV since by any definition these do not constitute
drought.
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rainfall.

The rationale for utilising this index relates to practical issues concerning data ideally
needed to measure variables that affect crop growth. An ideal measure of drought would
measure soil moisture in a particular area at a given time. Comprehensive measurements
of observed soil moisture do not, however, exist over the time period studied in this paper
or for the spatial extent needed to study drought across India. The unavailability of this
type of data has led researchers to construct indices that proxy for variables affecting soil
moisture. The specific index chosen in this paper has been chosen over other indices due to
the nature of the data available. Although drought indices have been constructed to try to
attempt to accurately model soil moisture conditions, variables needed to construct these
are unavailable in the context of this study. For instance, the Palmer Drought Severity
Index (PDSI) is frequently used to monitor drought in the U.S. Its applicability elsewhere
is more limited, however, due to its computational intensity and data needs, which include
evaporation measurements and water runoff. Additionally, it has been criticised for the
arbitrariness of some of its modelling assumptions. See Alley (1984) for an overview of
issues surrounding the use of the PDSI. Thus, in order to construct an index over the whole
sample period, the drought index used throughout the rest of this paper is constrained by

the availability of data over this period.

3.5 Data

The agricultural data is taken from the ICRISAT Meso-level Database, which contains
information on a range of agricultural and socioeconomic variables at the district-level
(ICRISAT, 2012).5 We use data for the years 1966-2003 to conduct the analysis. Although
the panel extends to 2009 for most districts, a number of missing observations occur in the
2000s. Given that the empirical analysis requires a balanced panel data set, districts with
missing observations are dropped from the analysis. Since it is impractical to exclude all

of these districts from the analysis, we choose to compromise by only using years up until

5Since 1966 a number of districts have split into smaller districts. To maintain spatial consistency over
time, district splits are dealt with by returning split districts to their parent districts in 1966.
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2003 which allows us to keep the largest number of districts. Consequently, out of the 311
available in the database, 240 districts that have non-missing data for all years are used

in the main analysis.

Data are available on annual crop production and area, which are used to construct crop
yield variables. Rice, wheat, maize, barley, sorghum, and millet production statistics are
used.” We investigate drought impacts on an aggregate cereal productivity index and
separately for each crop. The aggregate cereal index is constructed by taking a weighted
average of district cereal yield for each of these six cereals weighted by the proportion of
each crop’s area planted in a district. Data on the area irrigated and fertiliser use in a
district are also used. These variables are available as district-level aggregates and are not

crop-specific. In addition, socioeconomic census data is available on district population.

To construct the drought index, we use weather data on daily rainfall and daily average
temperatures from the Indian Meteorological Department. The rainfall data is available
in gridded format at a resolution of 0.25°x 0.25°(Pai et al., 2014). Gridded temperature
data is at a resolution of 1°x1°(Srivastava et al., 2009). District-wise weather data is then
obtained by taking a weighted average of gridded weather observations from grid cells that
fall within a district’s boundary based on the proportion of the grid cell that falls in each
district.

3.6 Empirical methodology: Threshold regression

To estimate the impact of drought on Indian agriculture, we employ a threshold regression
estimation strategy with fixed effects (Hansen, 1999).8 This model augments the standard
linear fixed effects model by estimating how the effect of the drought variable on crop yield

differs between thresholds of a variable of interest.

The equation below illustrates the model in the case of a single threshold, ~. Dy is

the drought index variable and Iny; is the natural logarithm of crop yield.? Since the

"For millet we add data on quantities of pearl millet and finger millet to create an aggregate quantity
of millet.

8To estimate the fixed effects threshold model we utilise Stata code which is described in Wang (2015).

9We use the log transformation of yield because we are interested in the relative impact of drought. This

102



threshold regression approach precludes the use of trended data and integrated processes,
prior to running the regression we detrend crop yield, Y, by fitting a district-specific
quadratic time trend which gives us a detrended logarithm of yields, which we denote by
y;¢. Detrending in this way removes trends in yields that are associated with technological
progress over time. To check if the yield variable is stationary in all model specifications
after the detrending procedure, we apply a number of panel unit root tests.!® For all
specifications we reject the null hypothesis of the dependent variable having a unit root
at a 1% significance level. A set of control variables are also included in X;; and the error
term, which is clustered at the district level to account for potential autocorrelation in the

error term, is represented by e;;.

Iny; = o; + Dzjt(Qit <v)B1 + Dgt(Qit > )Pz + Xitd + et (3.5)

which can be written more compactly as

Inyir = o; + DY,(qi, 7)) + Xitd + ex (3.6)

where

o; + Dgtﬂl + Xd +ei if g <y
Iny; = .
i + D}Bo+ X + e if gir >

Rather than the effect of drought being identical across all values of the threshold variable
¢it, the threshold model estimates the value ¢;; = v, at which the effect of drought on
cereal productivity changes in a statistically significant way. This means that the average
effect of drought before ¢;; = ~ is different from the effect after ¢;; = . In this case,
B1 and (9 represent the impacts of drought for members of the sample either side of the

threshold, . This method allows us to test, firstly, whether such a threshold exists and,

specification also allows for better comparison of drought impacts across areas where absolute differences
in productivity may be large.
10The Levin-Lin-Chu, Harris-Tzavalis, Breitung, and Im-Pesaran-Shin unit roots tests are deployed.
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secondly, how the effects of drought vary across values of a specified variable of interest
dit-

The threshold value is estimated by least squares and involves picking the value of v that
minimises the residual sum of squares of the model (Hansen, 2000). Even if a threshold
is estimated, it may not be statistically significant. Accordingly, a likelihood ratio test of
whether Hy : 81 = (2 is implemented. However, as is noted by Hansen (2000), asymp-
totic sampling distributions of Wald statistics are known to behave poorly when these
distributions depend on unknown parameters, as is the case for threshold regressions. Ac-
cordingly, inference in the model relies on a bootstrap procedure where individual sample
observations are drawn with replacement, holding the values of regressors and the thresh-
old variable fixed. For each bootstrap sample, the model is then estimated to calculate
the likelihood ratio. This procedure is repeated 300 times to calculate the proportion
of simulated sample draws that yield likelihood ratio statistics greater than the observed
sample. This gives the asymptotic p-value at which the null hypothesis of no threshold can
be rejected. If we fail to reject Hy, the model is equivalent to the linear model where the
effect of the regressors included in the model are not significantly different across values

of the proposed threshold variable.

It may be possible that more than one threshold of drought impact exists. We thus test
for the existence of multiple thresholds. The number of thresholds tested for is sequential
in the sense that if we first predict a model with a significant single threshold, we then
test for the existence of a second threshold. This procedure is continued by allowing for a

maximum of three threshold values.!!

We estimate separate models for two threshold variables, namely for time and the pro-
portion of rainfall below normal (from long-term district average rainfall). For the set of
regressions using time as a threshold variable, the model works by testing whether there
are years that demarcate periods when drought has distinctly different impacts on cereal

yields. This is analogous to a multiple-point Chow test for structural instability in drought

"'We are constrained in estimating a maximum of three thresholds by the code described in Wang (2015).
However, we posit that this does not pose a problem for the analysis since, as will be seen in the following
section, the number of times that we fail to reject a three threshold model is very rare. This implies that
the likelihood of the number of thresholds beyond three is very low.
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impacts where the break points are a priori unknown.'? The second threshold variable we
use is rainfall. This is to test for the values of proportion of rainfall below average between

which drought impacts are different.

A benefit of using panel data to measure drought impacts is that it allows us to credibly
identify the effect of drought on agricultural productivity. This comes from a number of
characteristics of the statistical model. Inclusion of district fixed effects terms control for
the influence of time-invariant district factors, such as soil types or institutional differences,
that may affect the impact of drought. Inclusion of the district fixed effect also means that
identification of the impact of drought relies on plausibly random variability in the severity

of drought within-districts over time.

We also estimate our results with and without a set of time-varying control variables X;;.
These control variables are detrended at the district-level using the same procedure as
for crop yields. This is to account for the likelihood that the level of these variables may
be trending over time. Although identification using the reduced form approach assumes
that drought is a random, exogenous shock to agricultural productivity, it is plausible
that drought may be correlated with a number of time-varying district factors that may
condition drought’s impact. A key factor could be that input decisions change as drought
unfolds over time, which would mean that our estimate of drought impact on productivity
is picking up the influence of various factors that condition drought impact. In order to
test whether this affects our estimates of the impact of drought, we control for a number of
factors that drought may be correlated with, which may provide a more precise estimate

of the drought impacts.

We include census data on rural population density to try to control for the effect that
labour availability could have on productivity during drought years. A period of drought
could induce temporary or permanent migration away from a rural area, reducing the

availability of labour.

12A number of papers have used similar techniques to identify points of structural change using time
series data. A prominent example of this approach is Bai and Perron (1998) who suggest a method for
identifying multiple potential breakpoints in a data series over time. Interestingly, this method has been
applied by Chand and Parappurathu (2012) to understand distinct periods of productivity growth in Indian
agriculture.
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Annual cereal area cultivated is also included as a control. This is motivated by the
finding of Siderius et al. (2016) who find that farmers in the Ganges Basin make dynamic
adjustments to land use in response to rainfall variability. For instance, farmers tend to
decrease cropped area of rice and wheat in rain-fed areas in response to water stress. These
adjustments could lead to an underestimate of the impact of drought on productivity if,
for instance, lower productivity land is taken out of production during a drought year in

order to conserve water resources for higher productivity land.

It is also plausible that farmers’ input decisions vary in response to a drought. One
possibility is that farmers respond to drought by increasing the area under irrigation.
This could lead us to underestimate the impact of drought on productivity. Use of other
inputs may also be affected. Another possibility is that fertiliser use may decline during a
drought year. For instance, Pandey et al. (2007a) find that fertiliser use decreases during
drought years, although they observe that most input decisions do not change substantially
during drought years since many input decisions are made before the extent of drought is
known. In the following results section, we test whether these control variables affect the

drought impact estimates by reporting results with and without the set of controls.

3.7 Results

In this section we present the results from the threshold regressions of drought impact.
Each table is split into three parts and should be read as follows. The top section of
each table displays the p-values from the likelihood ratio test for the existence of the
number of thresholds of drought impact. The selection rule used is to select the highest
number of thresholds that are accepted at a p-value of less than 0.1 (10% significance
level). The section below displays the location of the estimated thresholds (71,72, 7v3) and
their associated confidence intervals in square brackets. The thresholds are listed from
smallest to largest. The third section shows the estimated coefficients. The first coefficient
in the variable list shows the coefficient on a dummy variable included to measure the
average effect of drought over the sample period. This captures the intercept change

(in terms of yield) of having less than normal rainfall. This variable takes the value of
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one if precipitation is below normal and zero otherwise.!> Omitting this variable would
mean that the estimated coefficients of marginal drought impact would capture both the
intercept change and the marginal effect of the drought index on yield. The next set of
coefficients display the marginal effects of the drought index each side of the estimated

threshold value along with coefficients of the included control variables.

3.7.1 Time thresholds of drought impact

Table 3.1 displays the threshold regression results using time as a threshold variable. The
dependent variable is the natural logarithm of district cereal yield. The first two columns
show results for the whole sample, while the following four columns display results for non-
irrigated and irrigated districts respectively. For India as a whole, the model estimates
that average drought impacts can be divided into three distinct periods given that two
thresholds have been estimated. The first threshold occurs in 1987. Here, the marginal
effect of drought on cereal yield is statistically significant at -0.271. Recall that the drought
index takes values from one to zero, with the worst drought in a district over the sample
period taking the value of one. As such, for a drought which takes the value 0.5, this is
estimated to lead to a negative deviation in yields from trend of 13.5%. Consistent with
findings in Birthal et al. (2015), we also see that average impacts decreased substantially
for the 1987-1998 period, as opposed to the pre-1987 period. This could potentially be
explained by the increased use of irrigation technologies which spread across the country
following the Green Revolution. While initially confined to a small number of areas such
as the northern ‘grain belt’ states such as Punjab and Haryana, technologies became more
readily available to farmers across the country. Chand and Parappurathu (2012) argue
that beginning in the late 1970s, a period of ‘wider technology dissemination’ saw the
increased adoption of new seed varieties and complementary inputs, such as groundwater
irrigation, across the country. One advantage of our approach is that it does not impose
linearity to the evolution of the impacts over time and allows us to identify sharp breaks in

average drought impact. As a result, we also find that in the later periods of the sample,

1311 terms of the the distribution of potential drought events shown in Figure 3.3, this corresponds to
all events in quadrants I and II.
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more specifically after 1999, we find very large coefficients for average drought impact,
with these magnitudes broadly comparable to those of the pre-1987 period. This suggests
that, despite extensive technological progress, the Indian agricultural sector is not immune
to large shocks, such as the droughts that characterised the early 2000s. The severity of
drought in this period can clearly be seen in Figure 3.4, which previously displayed average
drought severity over time. The value of the drought index over the sample period is, on
average, highest for the years 2001/02. Additionally, other authors have argued that high
impacts in these later years may also reflect water scarcity over the medium term. As
is argued by Shah et al. (2009), while 1998 was a moderate drought for much of India,
this was followed by subdued rainfall in the 1999-2001 time period, which aggravated the
impacts of the drought in 2002, when the negative rainfall deviations were very high.
The inclusion of control variables does not substantially change the results. For the full
sample we do see a change in one of the estimated threshold locations from 1987 to 1992,
although the new threshold estimated includes the old threshold in the confidence interval.
The included control variables also take the expected signs, although the likelihood that
these variables are endogenous means that no causal interpretation is attached to these
estimated coefficients. The marginal effect of cereal area on yield is negative, implying
possible diminishing returns to yield from increasing cereal area. The marginal effect of
fertiliser and irrigation is positive during the sample. The effect that rural population

density has on yield is not clear.

The results by irrigation category suggest drought impacts over time have differed substan-
tially between the two groups. The third column, which looks at low irrigation districts
highlights that, with the exception of the period between 1985 and 1987 (when many areas
of the country were hit by particularly severe droughts), there has been a general trend of
decreasing impacts. Conversely, for high irrigation districts, we reject the threshold model
against the conventional fixed effects model which implies that we could not reject the

hypothesis that impacts were not significantly different over two sub-periods.

Table 3.2 shows the results for whether there have been significant thresholds of drought
impact over time when the sample is split into four agro-ecological zones (AEZ). The

existence of significant thresholds only occurs in one AEZ, where the years 1984-1987 were
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Table 3.1: Time threshold regressions of drought in India

Existence of thresholds Full sample Low irrigation High irrigation
P-value

Single 0.027 0.010 0.017 0.027 0.840 0.723
Double 0.000 0.010 0.000 0.000 0.147 0.320
Triple 0.210 0.810 0.260 0.327 0.810 0.590

Threshold location

ol 1987 1992 1984 1984
CI [1986,1988] [1987,1093] [1983,1985] [1983,1985]
Y2 1998 1998 1987 1987
CI [1997,1999] [1997,1999] [1986,1988] [1986,1988]
73
CI
Variables
Drought dummy -0.046%** -0.025%* -0.025 -0.026 -0.016 -0.010
(0.015) (0.013) (0.025) (0.023)  (0.011)  (0.011)
Period< 11 -0.271%** -0.278%** -0.380%** -0.3517%F%  _0.149%**F  _0.135***
(0.044) (0.042) (0.060) (0.060)  (0.028)  (0.027)
v1 < Period < 7o 0.013 -0.005 -0.791%** -0.824%%*
(0.039) (0.030) (0.133) (0.135)
Period> v, -0.278%** -0.300%** -0.235%%* -0.254%%%*
(0.039) (0.035) (0.058) (0.047)
Controls
Cereal area (log) -0.099*** -0.167*** -0.003
(0.036) (0.047) (0.055)
Fertiliser (log) 0.082%*** 0.051%** 0.126%**
(0.016) (0.022) (0.015)
Irrigation (log) 0.13 74 0.074%* 0.180%**
(0.025) (0.032) (0.037)
Rural population (log) 0.040 0.119*** -0.120%*
(0.032) (0.042) (0.053)
Constant 0.064*** 0.061*** 0.089*** 0.091*** 0.038***  (0.,032%**
(0.006) (0.006) (0.010) (0.010)  (0.005)  (0.005)
N 8,917 8,436 4,477 4,218 4,440 4,218
No. of districts 241 228 121 114 120 114
R-squared 0.073 0.209 0.105 0.168 0.047 0.21

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The top part
of the table shows the results for the testing procedure for the number of thresholds estimated. Below this the threshold locations
are shown corresponding with the number of thresholds estimated. The final part of the table shows the regression estimates for
the impact of drought between each of the thresholds and also the a set of control variables included in the regression.
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Table 3.2: Time threshold regressions of drought in India across agro-ecological zones

Existence of thresholds Arid Semi-arid Sub-humid Humid
P-value
Single 0.053 0.000 0.270 0.240 0.293 0.560 0.343 0.330
Double 0.070 0.030 0.040 0.010 0.467 0.000 0.027 0.073
Triple 0.223 0.190 0.787 0.673 0.567 0.813 0.480 0.670
Threshold location
" 1984 1984
CI [1982,1990] [1982,1989)
Y2 1987 1987
CI [1986,1989] [1981,1989]
V3
CI
Variables
Drought dummy -0.188** -0.127* -0.027* -0.004 -0.029* -0.018 0.017 -0.006
(0.072) (0.063) (0.014) (0.013) (0.016) (0.017) (0.014) (0.026)
Period< v -0.476* -0.565%%  -0.206%F*F  -0.212%**  _0.161FFF -0.158%**  -0.234*%FF  _0.280*
(0.242) (0.233) (0.043) (0.039) (0.038) (0.038) (0.054) (0.115)
71 < Period < 75 -1.142%* -1.188***
(0.438) (0.378)
Period > 72 -0.184 -0.267**
(0.163) (0.113)
Controls
Cereal area (log) 0.022 -0.070 0.105* -0.276**
(0.114) (0.046) (0.057) (0.087)
Fertiliser (log) 0.138%** 0.044%** 0.081%** 0.035
(0.059) (0.016) (0.026) (0.026)
Irrigation (log) 0.273%* 0.256%** 0.098*** 0.003
(0.126) (0.026) (0.024) (0.024)
Rural population (log) -0.002 -0.020 -0.204%** 0.074
(0.116) (0.039) (0.073) (0.08)
Constant 0.184%%* 0.164*** 0.058%**  0.047***  0.047F%F  0.041%*¥*  0.025%**  0.052%**
(0.033) (0.034) (0.006) (0.006) (0.006) (0.006) (0.008) (0.009)
N 851 e 4,551 4,551 2,886 2,849 629 259
No. of districts 23 21 123 123 78 7 17 7
R-squared 0.166 0.361 0.055 0.24 0.054 0.185 0.067 0.196

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The top part of the table shows the
results for the testing procedure for the number of thresholds estimated. Below this the threshold locations are shown corresponding with the number
of thresholds estimated. The final part of the table shows the regression estimates for the impact of drought between each of the thresholds and also
the a set of control variables included in the regression.
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Table 3.3: Time threshold regressions by crop (I)

Existence of thresholds Rice Wheat Maize
P-value

Single 0.010 0.013 0.030 0.010 0.607 0.063
Double 0.060 0.820 1.000 1.000 0.460 0.960
Triple 0.750 0.637 0.540 0.900 0.163 0.803

Threshold location

ol 1987 1986 1967 1967 1967
Cl [1986,1988] [1979,1987]
o 1999
CI
73
CI
Variables
Drought dummy -0.050%** -0.031** -0.036***  -0.018* 0.146***  0.147%**
(0.016) (0.015)  (0.011)  (0.010)  (0.019)  (0.019)
Period< v; -0.355%* -0.372%FF  _O.517FFF _0.484%FF  -0.336%** -0.046
(0.037) (0.041)  (0.086)  (0.083)  (0.041)  (0.085)
~v1 < Period < s -0.015 -0.168%%F  _0.079*%*¥*  -0.100%** -0.335%**
(0.044) (0.033)  (0.023)  (0.023) (0.040)
Period > -0.3017%%*
(0.044)
Controls
Cereal area (log) 0.026 -0.023 0.138%**
(0.060) (0.047) (0.051)
Fertiliser (log) 0.120%** -0.025 0.026
(0.022) (0.021) (0.022)
Irrigation (log) 0.117%%* 0.254 %% 0.026
(0.031) (0.025) (0.027)
Rural population (log) -0.161%%* -0.078** -0.090**
(0.055) (0.039) (0.044)
Constant 0.076%** 0.073%** 0.042%¥**  0.036*** -0.009 -0.014%*
(0.006) (0.006) (0.004)  (0.004)  (0.007)  (0.007)
N 6,382 6,475 6,536 6,549 5,402 5,365
No. of districts 186 175 178 177 146 145
R-squared 0.093 0.159 0.04 0.18 0.015 0.027

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The
top part of the table shows the results for the testing procedure for the number of thresholds estimated. Below this the
threshold locations are shown corresponding with the number of thresholds estimated. Confidence intervals are not given
if the interval overlaps with the first or last year of the sample period. The final part of the table shows the regression
estimates for the impact of drought between each of the thresholds and also the a set of control variables included in the
regression.
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Table 3.4: Time threshold regressions by crop (II)

Existence of thresholds Barley Sorghum Millet
P-value

Single 0.037 0.023 0.577 0.593 0.363 0.270
Double 0.577 0.557 0.107 0.090 0.780 0.470
Triple 0.797 0.687 0.740 0.767 0.277 0.360

Threshold location

" 1984 1984
CI [1983,1985] [1982,1985]
V2
CI
V3
CI
Variables
Drought dummy -0.019 -0.024%%* 0.021 0.02 0.008 0.02
(0.012) (0.012) (0.018)  (0.019)  (0.018)  (0.017)
Period< v -0.197#%* -0.199%FF 0. 131FFF  _0.137***  _0.211%FF  _0.241%**
(0.040) (0.041) (0.043) (0.043) (0.041) (0.041)
Period > 7, -0.017 -0.014
(0.024) (0.022)
Controls
Cereal area (log) -0.022 -0.067 -0.033
(0.051) (0.051) (0.047)
Fertiliser (log) -0.058%** -0.018 0.019
(0.018) (0.018) (0.022)
Irrigation (log) 0.045 0.037 0.114%**
(0.032) (0.023) (0.043)
Rural population (log) 0.014 0.004 0.102%**
(0.043) (0.041) (0.051)
Constant 0.030%** 0.033%*** 0.016%*  0.017*%*  0.037%%*  0.037F**
(0.005) (0.005) (0.006) (0.006) (0.006) (0.006)
N 2,997 2,997 5,069 5,069 4,699 4,662
No. of districts 81 81 137 137 127 126
R-squared 0.034 0.044 0.05 0.045 0.017 0.049

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The
top part of the table shows the results for the testing procedure for the number of thresholds estimated. Below this the
threshold locations are shown corresponding with the number of thresholds estimated. The final part of the table shows the
regression estimates for the impact of drought between each of the thresholds and also the a set of control variables included
in the regression.
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associated with very large impacts. It should be noted that the confidence intervals of
these threshold locations are fairly large, so much so that these two thresholds cannot
be statistically distinguished from one another. Despite this, we estimate that drought
impacts have substantially reduced over time where drought impacts in the most recent

period were around half those in the earliest period.

Tables 3.3 and 3.4 look at the crop-specific impacts of drought on yields over time. For rice,
we notice the same pattern as for district cereal yields as a whole. Drought impacts were
significantly negative for the years before 1987, but were insignificant in the years following
until 1999. After this period, however, drought impacts were large and comparable to those
before 1987. For wheat and maize, the threshold model picks the first year as a threshold
value which reflects the fact that a very large drought occurred at this time. After this,
however, average drought impacts are estimated to have remained constant. Evidence of
increased drought tolerance over time is clearly visible for barley where the mid-1980s are
estimated as the threshold. For the two most drought tolerant crops, sorghum and millet,
the existence of significant thresholds are rejected. It is important to note at this point that
the rejection of significant thresholds over time does not necessarily imply that average
impacts have not changed over time. While the threshold model is useful for picking up
sharp changes in average impacts, it is less useful for assessing slow moving trends over
time. Thus, we are cautious about stating that impacts have not changed over time in the

case where a threshold is not estimated.

3.7.2 Precipitation thresholds of drought impact

Table 3.5 shows estimates of precipitation thresholds for district cereal yields. Units of
precipitation of the threshold variable relate to the proportion of annual rainfall relative
to a district’s long term average. To begin with, we separately estimate regressions using
two different drought indices to investigate the importance of considering the full range
of drought events. For instance, earlier in the paper we discussed that previous studies
had neglected to consider a wide set of drought events that are potentially harmful for

agriculture (Yu and Babcock, 2010; Birthal et al., 2015). The first relevant factor is that
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the two drought dummy variables are large, negative and significant, indicating that on
average low rainfall is bad for crop growth. For both indices, two thresholds are estimated.
In terms of the marginal effect, we observe the same pattern across all specifications with
very large, significant and negative impacts for very large (first threshold) and large (second

threshold) negative deviations from long-term rainfall.

We see that the marginal effect of an increase in the drought index for precipitation levels
below 0.597 of normal rain is strongly negative, suggesting that this threshold is associated
with particularly severe droughts. Drought impacts are considerably lower (about half)
between the two thresholds. Above the second threshold, which ranges from 0.738 to
0.808 across model specifications, the drought index is not significant. However, this does
not mean that there are no impacts of drought at this level of rainfall, since the large
coefficients on the dummy variables suggests that even at low deviations of rainfall, the
average impacts are negative. These results indicate that marginal impacts of drought start
to turn negative, on average, when rainfall falls below 0.738-0.808 of normal rainfall. The
inclusion of a set of control variables does not change the results considerably. Interestingly,
we also note that, for the whole of India, the estimated thresholds are not very different
from the drought thresholds used by the Indian government to denote droughts (0.75 and
0.5).

Given that previous approaches to measuring drought impact have confined interest to
what we denote as Type 1 droughts (Yu and Babcock, 2010; Birthal et al., 2015), it can
clearly be seen that this leads to the omission of a whole set of events that have highly
significant negative effects on crop yields. The first two columns of Table 3.5 clearly show
that both Type 1 and Type 2 droughts seriously harm crop yields. The results for the
drought index used in this paper, which considers the whole range of potential drought
events, shown in the next two columns illustrate that this index captures the effect of both

these types of drought in a single index.

Results for low and high irrigation districts are shown in Table 3.6.14 The first threshold is

close to 0.6 for both groups and below this value of rainfall the coefficient on the impacts

141 this paper we define high- and low-irrigation as districts with average levels of irrigation over the
sample period above and below the median, respectively.
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of drought for the low irrigated districts is over three times larger than for irrigated areas
below this threshold. This indicates that severe droughts have very serious impacts in
low irrigated areas. This is also suggestive of the role that irrigation has in substantially
mitigating severe droughts. Between the two thresholds, as we would expect, we find lower
impacts for highly irrigated areas but the differences between drought impacts between

the two groups are less stark.

Estimates of drought threshold effects for districts within different AEZs are shown in
Table 3.7. A clear pattern is present for the location of the thresholds for each of the
AEZs. The more arid the climate, the lower the threshold for precipitation. Compared
with the marginal impacts estimated for other AEZs, we find that arid areas are more
resilient to smaller negative deviations in rainfall. However, at larger deviations from the
average levels of rainfall (more specifically below 0.64) the impacts are extremely severe.
This is most likely explained by the fact that crops require a minimum amount of water
with which to grow. Although areas with low rainfall are better at coping with smaller
precipitation deviations away from the average, beyond a certain threshold of rainfall
deficiency achieving crop growth is very difficult. In semi-arid areas, we notice the same
pattern, even if it is less pronounced. We find very large impacts below 0.59 and large
impacts between 0.59 and 0.79, but no significant negative marginal impacts for rainfall
levels above 0.79. In semi-humid areas, the impacts are, on average lower but, in the case
of semi-humid areas, the thresholds occur much earlier. In AEZ5, which represents humid
regions, we see significant drought effects below the estimated threshold, although the
magnitudes are fairly similar to those in sub-humid areas for similar rainfall deficiencies.
In the specification where control variables are included, a second threshold is estimated
at 0.72. Here the marginal effect of drought on district cereal yield is comparable to
very severe droughts in semi-arid areas, where the threshold is estimated at 0.59. This is
probably indicative of the fact that humid areas are used to very high absolute levels of
rainfall, and a relatively small proportional deviation away from normal rainfall reduces

water availability substantially.

Precipitation thresholds estimated separately by crop are shown in Tables 3.8 and 3.9. It

is interesting that for the two main crops grown in India, rice and wheat, the location of
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precipitation thresholds are similar. There is a negative and significant marginal effect
of the drought index on yields at proportions of rainfall of 0.85 for rice and 0.86-0.93 for
wheat. The second threshold is located between 0.68-0.75 for both crops. However, we note
that marginal impacts of the drought index on rice yields are much higher for comparable
levels of rainfall. Since rice is more water-intensive than wheat, water deficiency has more
serious implications for rice yields. Similarly, since rice is mainly grown during the main
monsoon period, rainfall deficiency plausibly has a larger direct effect on crop yield. For
maize, three thresholds are identified, although only the lowest two thresholds are relevant
for drought. Compared with rice and wheat, these thresholds are lower and, interestingly,
the coefficients for the marginal effects of maize for rainfall deviations between 0.61 and
0.75 are similar to those of wheat for rainfall deviations below 0.75. A clear pattern of
threshold impacts is also present for barley, sorghum and millet. The first threshold is
estimated at between 0.81 and 0.86 for all of these crops, suggesting the rainfall deficiency
first becomes problematic for crop yields below this level. Additional thresholds at 0.62
are also estimated for sorghum and millet, indicating severe damage to yields below this
proportion of normal rainfall. It is interesting to note that for millet, known as one of
the most drought-tolerant cereals, drought impacts do not become significantly negative
until a precipitation threshold of 0.73 is passed, confirming its ability to grow under even

moderate drought conditions.
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Table 3.5: Precipitation threshold regressions and comparision of drought indices

Existence of thresholds Two indices Single index
P-value
Single 0.000 0.000 0.000 0.000
Double 0.000 0.000 0.000 0.000
Triple 0.163 0.157 0.790 0.740
Threshold location
o1 0.587 0.586 0.587 0.586
CI .
Yo 0.738 0.745 0.791 0.808
CI 0.731,0.747]  [0.732,0.751] 0.785,0.798]  [0.788,0.815)]
3
CI
Variables
Drought dummy (type 1) -0.067*** -0.067***  Drought dummy (two types)  -0.073*** -0.064%**
(0.010) (0.010) (0.008) (0.008)
Drought index (type 1) Drought index (two types)
Rain< vy, -0.496*** -0.500%**  Rain< 71 -0.560%** -0.585%**
(0.073) (0.074) (0.068) (0.070)
71 < Rain < e -0.140%** -0.131%%* 4 < Rain < 7o -0.164%+* -0.176%**
(0.035) (0.029) (0.025) (0.020)
Rain > o 0.065%* 0.075%** Rain> o 0.092%** 0.070%**
(0.029) (0.023) (0.022) (0.017)
Drought dummy (type 2) -0.072%** -0.071%%*
(0.010) (0.009)
Drought index (type 2)
Rain< vy -0.943%** -0.862%**
(0.123) (0.115)
71 < Rain < -0.424*** -0.345%**
(0.064) (0.060)
Rain > o 0.169*** 0.240%**
(0.058) (0.046)
Controls
Cereal area (log) -0.132%** -0.134%%*
(0.035) (0.035)
Fertiliser (log) 0.076%** 0.074%**
(0.015) (0.015)
Irrigation (log) 0.133%** 0.133%**
(0.023) (0.023)
Rural population (log) 0.063** 0.064**
(0.030) (0.031)
Constant 0.0417%%* 0.033%** 0.049%** 0.0527%%%*
(0.010) (0.008) (0.006) (0.005)
N 8,917 8,436 8,917 8,436
No. of districts 241 228 241 228
R-squared 0.127 0.272 0.116 0.260

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The top part of the table
shows the results for the testing procedure for the number of thresholds estimated. Below this the threshold locations are shown corresponding
with the number of thresholds estimated. Confidence intervals are not given if the interval overlaps with the first or last year of the sample
period. The final part of the table shows the regression estimates for the impact of drought between each of the thresholds and also the a set

of control variables included in the regression.
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Table 3.6: Precipitation threshold regressions by irrigated area

Existence of thresholds

Low irrigation

High irrigation

P-value
Single 0.000 0.000 0.000 0.000
Double 1.000 1.000 0.003 0.007
Triple 0.877 0.917 0.237 0.307
Threshold location
T 0.601 0.602 0.793 0.791
CI [0.784,0.798]  [0.781,0.797]
v 0.998 1.004
CI 0.989,1.004]  [0.990,1.010]
73
CI
Variables
Drought dummy -0.105%** 0. 117%%* -0.079%** -0.066%**
(0.013)  (0.013) (0.013) (0.012)
Rain< v -1.001%%*  _1.068*** -0.155%** -0.143%**
(0.123)  (0.124) (0.028) (0.026)
71 < Rain < o -0.022 -0.004 0.087*** 0.086***
(0.033)  (0.023) (0.032) (0.029)
Rain> 7 -0.090*** -0.062**
(0.027) (0.024)
Controls
Cereal area (log) -0.218%** -0.008
(0.044) (0.052)
Fertiliser (log) 0.049** 0.125%#%
(0.019) (0.014)
Irrigation (log) 0.065** 0.176%**
(0.029) (0.036)
Rural population (log) 0.166%** -0.107**
(0.040) (0.051)
Constant 0.083***  (.089*** 0.059%** 0.049%**
(0.009)  (0.007) (0.007) (0.007)
N 4,477 4,218 4,440 4,218
No. of districts 121 114 120 114
R-squared 0.174 0.262 0.081 0.24

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the
district level. The top part of the table shows the results for the testing procedure for the number of
thresholds estimated. Below this the threshold locations are shown corresponding with the number
of thresholds estimated. Confidence intervals are not given if the interval overlaps with the first or
last year of the sample period. The final part of the table shows the regression estimates for the
impact of drought between each of the thresholds and also the a set of control variables included in
the regression.
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Table 3.7: Precipitation threshold regressions across agro-ecological zones

Existence of thresholds Arid Semi-arid Sub-humid Humid
P-value
Single 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010
Double 0.103 0.410 0.000 0.000 0.043 0.013 0.933 0.030
Triple 0.487 0.413 0.733 0.050 0.807 0.780 0.910 0.580
Threshold location
o1 0.638 0.669 0.585 0.585 0.793 0.744 0.882 0.718
CI [0.610,0.672] [0.619,0.707] [0.785,0.807] [0.728,0.751] [0.842,0.895]
Y2 0.792 0.786 1.026 0.874 0.884
CI [0.783,0.799]  [0.777,0.792] [1.005,1.030] [0.796,0.880] [0.832,0.894]
73
CI
Variables
Drought dummy -0.146%** -0.121%F* -0.072%** -0.055%F* -0.098*** -0.047FF* -0.014 -0.044%**
(0.034) (0.034) (0.010) (0.009) (0.016) (0.011) (0.013) (0.009)
Rain< v -0.690%** -0.725%** -0.552%%* -0.530%** -0.183%** -0.015 -0.218*** -0.555%**
(0.232) (0.193) (0.076) (0.076) (0.038) (0.010) (0.045) (0.125)
y1 < Rain < 7y 0.116 0.014 -0.140%** -0.173%%* 0.104*** -0.232%%* -0.031 -0.254**
(0.117) (0.077) (0.029) (0.025) (0.034) (0.038) (0.060) (0.070)
v2 < Rain < 73 0.103*** 0.080*** -0.073* -0.09717%%* -0.024
(0.023) (0.019) (0.038) (0.032) (0.083)
Rain> v3 0.031
(0.025)
Controls
Cereal area (log) 0.022 -0.110%* 0.088 -0.278%**
(0.103) (0.045) (0.054) (0.092)
Fertiliser (log) 0.129** 0.045%** 0.073%%* 0.033
(0.059) (0.015) (0.026) (0.025)
Irrigation (log) 0.271%* 0.238%** 0.097%%* 0.001
(0.128) (0.025) (0.024) (0.024)
Rural population (log) 0.002 0.015 -0.181%* 0.074
(0.090) (0.039) (0.072) (0.094)
Constant 0.079%* 0.105%** 0.050%** 0.047%%* 0.063%** 0.045%** 0.032%** 0.061%**
(0.037) (0.026) (0.008) (0.007) (0.007) (0.006) (0.010) (0.014)
N 851 e 4,551 4,551 2,886 2,849 629 259
No. of districts 23 21 123 123 78 7 17 7
R-squared 0.193 0.376 0.138 0.312 0.094 0.211 0.082 0.273

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The top part of the table shows the results for the testing
procedure for the number of thresholds estimated. Below this the threshold locations are shown corresponding with the number of thresholds estimated. Confidence intervals
are not given if the interval overlaps with the first or last year of the sample period. The final part of the table shows the regression estimates for the impact of drought between

each of the thresholds and also the a set of control variables included in the regression.
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Table 3.8: Precipitation threshold regressions by crop (I)

Existence of thresholds Rice Wheat Maize
P-value
Single 0.000 0.000 0.000 0.000 0.000 0.000
Double 0.000 0.000 0.027 0.080 0.000 0.000
Triple 0.677 0.663 0.810 0.927 0.100 0.030
Threshold location
ol 0.731 0.745 0.678 0.715 0.608 0.607
CI [0.713,0.815] [0.718,0.824] [0.631,0.698] [0.677,0.731]
Yo 0.841 0.850 0.859 0.926 0.756 0.755
CI [0.821,0.853] [0.819,0.861] [0.846,0.871] [0.860,0.936] [0.732,0.772] [0.723,0.772]
3 1.089
CI [1.057,1.104]
Variables
Drought dummy -0.082%** -0.079*** -0.049*** -0.027*** 0.006 0.046***
(0.012) (0.011) (0.009) (0.009) (0.013) (0.016)
Rain< 7 -0.411%** -0.366*** -0.158*** -0.157*** -0.482%** -0.494***
(0.036) (0.036) (0.024) (0.023) (0.063) (0.066)
71 < Rain < 7o -0.184*** -0.137%%* -0.030 -0.056** -0.203*** -0.241%**
(0.037) (0.034) (0.024) (0.022) (0.032) (0.036)
v < Rain < 73 0.028 0.048* 0.058%** 0.025 0.012 -0.075%*
(0.027) (0.026) (0.020) (0.022) (0.032) (0.035)
Rain > v3 0.214%**
(0.053)
Controls
Cereal area (log) -0.001 -0.033 0.112%**
(0.058) (0.049) (0.050)
Fertiliser (log) 0.122%** -0.02 0.022
(0.021) (0.021) (0.021)
Prop irrigated (log) 0.111%** 0.251%** 0.015
(0.030) (0.025) (0.027)
Rural population (log) -0.146%%* -0.080** -0.063
(0.054) (0.038) (0.044)
Constant 0.078%** 0.071%%* 0.028*** 0.027*** 0.041*** 0.029***
(0.007) (0.007) (0.007) (0.007) (0.010) (0.010)
N 6,882 6,475 6,586 6,549 5,402 5,365
No. of districts 186 175 178 177 146 145
R-squared 0.108 0.182 0.035 0.175 0.043 0.052

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The top part of the
table shows the results for the testing procedure for the number of thresholds estimated. Below this the threshold locations are shown
corresponding with the number of thresholds estimated. Confidence intervals are not given if the interval overlaps with the first or last year
of the sample period. The final part of the table shows the regression estimates for the impact of drought between each of the thresholds
and also the a set of control variables included in the regression.

120



Table 3.9: Precipitation threshold regressions by crop (II)

Existence of thresholds Barley Sorghum Millet
P-value

Single 0.080 0.037 0.000 0.000 0.000 0.000
Double 0.223 0.340 0.000 0.000 0.013 0.023
Triple 0.593 0.697 0.667 0.670 0.053 0.083

Threshold location

Y 0.831 0.831 0.623 0.623 0.616 0.615
CI [0.793,0.848]  [0.793,0.848] [0.585,0.646] [0.585,0.645]
Y2 0.812 0.812 0.728 0.727
CI 0.787,0.824] [0.787,0.824] [0.709,0.745] [0.689,0.745]
Y3 0.855 0.856
CI 0.810,0.868]  [0.809,0.868]
Variables
Drought dummy -0.016 -0.021%* -0.023** -0.027%* -0.057H** -0.053%**
(0.011) (0.011) (0.012) (0.012) (0.013) (0.012)
Rain< -0.094%%* -0.096%** -0.548%** -0.572%** -0.393%** -0.439%**
(0.021) (0.022) (0.065) (0.067) (0.058) (0.060)
71 < Rain < s 0.001 0.002 ~0.091%* S010FFE L0217 0. 255%F
(0.026) (0.024) (0.039) (0.038) (0.045) (0.046)
72 < Rain < 3 0.139%%* 0.136%** 0.028 0.001
(0.029) (0.027) (0.042) (0.041)
v3 < Rain 0.175%** 0.158%**
(0.031) (0.029)
Controls
Cereal area (log) -0.036 -0.115%* -0.064
(0.049) (0.050) (0.050)
Fertiliser (log) -0.055%** -0.013 0.02
(0.019) (0.017) (0.022)
Irrigation (log) 0.043 0.012 0.106**
(0.034) (0.022) (0.041)
Rural population (log) 0.005 0.052 0.128**
(0.044) (0.039) (0.050)
Constant 0.013 0.015%* 0.021** 0.026%** 0.039%** 0.044%**
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
N 2,997 2,997 5,069 5,069 4,699 4,662
No. of districts 81 81 137 137 127 126
R-squared 0.026 0.036 0.059 0.064 0.059 0.095

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The top part of the
table shows the results for the testing procedure for the number of thresholds estimated. Below this the threshold locations are shown
corresponding with the number of thresholds estimated. Confidence intervals are not given if the interval overlaps with the first or last year
of the sample period. The final part of the table shows the regression estimates for the impact of drought between each of the thresholds
and also the a set of control variables included in the regression.
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3.8 Discussion

The fact that agricultural production in India as a whole became more resilient to drought
after the mid-1980s highlights the role that intensive production techniques can have in
allowing a large number of farmers to avoid crop losses due to drought. Indeed, the
substantial reduction in drought impact on cereal productivity after this time coincides
with the wider diffusion of Green Revolution technologies across growing region beyond the
first adopters of these technologies. Perhaps the most significant move was the increased
use of irrigation from groundwater sources, which became increasingly available due to
improvements in low-cost pumping technology (Sekhri, 2014). Groundwater irrigation is
particularly effective at mitigating drought since its application can be timed to match
periods of rainfall deficiency. However, the pattern of drought impacts that we observe
in this paper highlights potential challenges that India faces in mitigating drought in
the future. Given that we identify drought years in the early 2000s as having the same
relative impact on production losses as drought thirty years earlier, we show that large
drought events continue to pose a considerable problem for Indian agriculture. Tellingly,
although we find this pattern holds for our measure of district cereal yield, the pattern
is also identified for rice, the most commercially important cereal. This has two main
implications. Firstly, it challenges the finding of Birthal et al. (2015) which posits that rice
yields have become more drought tolerant over time. Second, it also highlights possible
vulnerability of rice production systems to drought in India in the future. Given that
many high productivity rice areas, such as in Punjab, have historically benefitted from
abundant irrigation primarily from groundwater, the ability of these areas to deal with
drought in the future is increasingly being called into question. Indeed, one of the leading
explanations for this upswing in drought impacts in recent years is the increasing pressure
on water resources, especially those from groundwater sources. For instance, as is noted
by Shah et al. (2009, p.12), a heavy reliance of groundwater can be problematic since,
“During a drought, groundwater aquifers are doubly hit: there is less rainfall and little
recharge to aquifers but there is also additional demand pressure on the resource as farmers

struggle to save their crops and livelihoods.” Since unchecked exploitation has led to
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depletion of key aquifers over time, farmers have in recent years, lacked the ability to
mitigate drought losses effectively by exploiting water that previously allowed them to
deal with periods of deficient rainfall. This was particularly the case for drought years
in the early-2000s when a series of consecutive droughts in many areas led to high levels
of groundwater use which lowered water tables, making it more difficult to extract water
from these sources in successive drought years.!> While it would be premature to conclude
that the severity of impacts in the latter part of our sample constitutes a new trend of
increasing impacts of drought on agriculture in India, these findings suggest that there
is no room for policymakers to be complacent about resilience to drought in the future.
Further work into investigating drought impacts up until the present day are vital for

understanding the evolving vulnerability to drought.®

A key advantage of the method we use to evaluate drought impacts is that it allows us
to evaluate the suitability of definitions used by policymakers to define droughts. The
definition used to declare drought in India is whether rainfall falls below 75% of long-
run average seasonal rainfall. Additionally, a drought is classified as severe if rainfall
falls below 50% of the average. The definition of drought is crucial for the declaration
of drought in an area and thus how quickly resources can be diverted into managing the
consequences of this event. The declaration is decided at state-level generally by the end of
the monsoon rains in October. Funds can then be requested from the central government
to provide relief (Ministry of Agriculture, 2009). While our results find empirical support
for these thresholds for the country on average, we also find substantial heterogeneity
in terms of agro-climatic characteristics and crop choice. For instance, in arid areas,
probably as a result of the need to grow relatively drought tolerant crops to cope with
persistently low levels of rainfall, we find that officially imposed thresholds misspecify the
conditions necessary for a drought to significantly harm agricultural productivity. This

may lead to the inefficient allocation of resources. The findings from this work suggest that

5Hornbeck and Keskin (2014) also find that in the context of U.S agriculture, increasing exploitation of
groundwater irrigation does not necessarily lead to the reduced sensitivity of crop productivity to drought
in the long term. However, in contrast to explanations offered in India which emphasise growing depletion
of these resources as the primary limiting factor in mitigating drought, they suggest that the adoption of
more profitable but more water-intensive crops increases the sensitivity of production to drought.

16 At the time of writing in 2016, India was undergoing one of its most severe droughts in decades.
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policymakers should account for such heterogeneity when designing policies for effective

drought declaration and response to these events in the future.

3.9 Conclusion

This paper has studied the impacts of drought on cereal production in India. To address
some of the shortcomings of previous studies, we assess these impacts using an index of
drought intensity that does not omit drought events that are commonly overlooked by
alternative definitions. This allows us to provide a full assessment of drought impact re-
gardless of how drought is defined. When combined with the threshold regression model
we are able to estimate ranges of a given threshold variable for which drought impacts dif-
fer significantly from each other. A crucial strength of the empirical modelling approach
used in this paper is that we are able estimate the locations of thresholds of drought im-
pact. The advantage of this can clearly be seen when applied to drought impacts over
time. Rather than assuming that trends in drought impact are smooth over time, we
have been able to identify a period of abrupt increase in average drought impacts in recent
years. This contrasts with previous research that has suggested that drought impacts have
steadily decreased over time. The recent period of increased drought impact corresponds
with a series of particularly severe droughts. However, evidence from work done elsewhere
highlights the increasing scarcity of water resources that may have led to a reduced abil-
ity on behalf of farmers to access sufficient water during drought. This underscores the
potential vulnerability of water-intensive production systems that have previously been
able to effectively cope during periods of drought. Future work is needed to ascertain the
interaction between water availability and drought years in order to understand whether
the agricultural sector in India will be able to cope with the threat of more frequent and

intense droughts due to climate change.

This paper also investigates the ranges of proportion of rainfall for which the impacts are
negative. The estimation approach we use enables us to examine the validity of drought
definitions frequently used to declare drought by the Indian government by identifying
thresholds of precipitation that indicate increased drought impact. We find that the rain-

124



fall thresholds previously used by policymakers to measure drought severity by the In-
dian government are not very far from the thresholds beyond which we estimate negative
marginal effects for drought for the whole of India. However, it is important to notice
that our estimated thresholds differ substantially according to agro-ecological zones and
the particular cereal under consideration. This suggests that a criteria that takes into
account the agro-ecological heterogeneity of a large country like India would provide more
effective indicators of drought. The fact that we perform the analysis for the six major
cereals in India highlights that impacts differ substantially and that rice seems to be the
least drought tolerant of the crops in our sample. Similarly, the fact that the crop-specific
impacts are so heterogeneous seems to highlight that crop choice may be an important

aspect of coping with droughts in the future.

125



References

W. Alley. The Palmer Drought Severity Index: Limitations and Assumptions. Journal of
Climate and Applied Meteorology, 23:1100-1109, 1984.

M. Aufthammer and W. Schlenker. Empirical Studies on Agricultural Impacts and Adap-
tation. Energy Economics, 46:555-561, 2014.

M. Auffhammer, V. Ramanathan, and J. Vincent. Climate Change, the Monsoon, and
Rice Yield in India. Climatic Change, 111:411-424, 2012.

J. Bai and P. Perron. Estimating and Testing Linear Models with Multiple Structural
Changes. Econometrica, 66(1):47-78, 1998.

P. Birthal, D. Negi, M. Khan, and S. Agarwal. Is Indian Agriculture Becoming Resilient
to Droughts? Evidence from Rice Production Systems. Food Policy, 56:1-12, 2015.

R. Burgess, O. Deschenes, D. Donaldson, and M. Greenstone. The Unequal Effects of
Weather and Climate Change: Evidence from Mortality in India. Working Paper, 2014.

R. Chand and S. Parappurathu. Temporal and Spatial Variations in Agricultural Growth
and Its Determinants. Fconomic and Political Weekly, 47(26 & 27):55-67, 2012.

J. Chen, J. Li, Z. Zhang, and S. Ni. Long-term Groundwater Variations in Northwest
India from Satellite Gravity Measurements. Global and Planetary Change, 116:130-138,
2014.

D. Deryng, D. Conway, N. Ramankutty, J. Price, and R. Warren. Global Crop Yield Re-
sponse to Extreme Heat Stress Under Multiple Climate Change Futures. Environmental

Research Letters, 9:034011, 2014.

126



N. Diffenbaugh, D. Swain, and D. Touma. Anthropogenic Warming Has Increased Drought
Risk in California. Proceedings of the National Academy of Sciences of the United States
of America, 112(13):3931-3936, 2015.

E. Duflo and R. Pande. Dams. Quarterly Journal of Economics, 122:601-646, 2007.

FAO. Crop Yield Response to Water. Technical report, Food and Agriculture Organization
of the United Nations, 2012.

R. Fishman. Climate Change, Rainfall Variability, and Adaptation through Irrigation.
Working Paper, 2012.

R. Fishman. More Uneven Distributions Overturn Benefits of Higher Precipitation for

Crop Yields. Environmental Research Letters, 11:024004, 2016.

S. Gadgil and S. Gadgil. The Indian Monsoon, GDP and Agriculture. Fconomic and
Political Weekly, 41(47):86-91, 2006.

K.S. Gajbhiye and C. Mandal. Agro-Ecological Zones, Their Soil Resources and Cropping
Systems. Technical report, National Bureau of Soil Survey and Land Use Planning,

Nagpur, India, 2010.

S. Ghosh, D. Das, S-C. Kao, and A. Ganguly. Lack of Uniform Trends but Increasing
Spatial Variability in Observed India Rainfall Extremes. Nature Climate Change, 2:
86-91, 2012.

R. Guiteras. The Impact of Climate Change on Indian Agriculture. Mimeo, 2009.

B. Hansen. Threshold Effects in Non-Dynamic Panels: Estimation, Testing, and Inference.

Journal of Econometrics, 93(2):345-368, 1999.

B. Hansen. Sample Splitting and Threshold Estimation. FEconometrica, 68(3):575-603,
2000.

J.L. Hatfield, K.J. Boote, B.A. Kimball, L.H. Ziska, and R.C. Izaurralde. Climate Impacts
on Agriculture: Implications for Crop Production. Agronomy Journal, 103:351-370,
2011.

127



P. Hazell. Sources of Increased Instability in Indian and U.S. Cereal Production. American

Journal of Agricultural Economics, 66(3):302-311, 1984.

R. Hornbeck and P. Keskin. The Historically Evolving Impact of the Ogallala Aquifer:
Agricultural Adaptation to Groundwater and Drought. American Economic Journal:

Applied Economics, 6(1):190-219, 2014.

ICRISAT. District Level Database Documentation. Technical report, ICRISAT-ICAR-
IRRI Collaborative Research Project, 2012.

IPCC. Managing the Risks of Extreme FEvents and Disasters to Advance Climate Change
Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel
on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 2012.

S. Jayachandran. Selling Labor Low: Wage Responses to Productivity Shocks in Devel-
oping Countries. Journal of Political Economy, 114(3):538-575, 2006.

K.N. Kumar, M. Rajeevan, D.S. Pai, A.K. Srivastava, and B. Preethi. On the Observed

Variability of Monsoon Droughts over India. Weather and Climate Extremes, 1:42-50,
2013.

D. Larson, E. Jones, R. Pannu, and R. Sheokand. Instability in Indian Agriculture - A
Challenge to the Green Revolution Technology. Food Policy, 29:257-273, 2004.

C. Lesk, P. Rowhani, and N. Ramankutty. Influence of Extreme Weather Disasters on
Global Crop Production. Nature, 529:84-87, 2016.

D. Lobell and S. Gourdji. The Influence of Climate Change on Global Crop Production.
Plant Physiology, 160(4):1686-1697, 2012.

D. Lobell, A. Sibley, and J.I. Ortiz-Monasterio. Extreme Heat Effects on Wheat Senescence
in India. Nature Climate Change, 2:186-189, 2012.

D. Lobell, M. Roberts, W. Schlenker, N. Braun, B. Little, R. Rejesus, and G. Hammer.
Greater Sensitivity to Drought Accompanies Maize Yield Increase in the U.S. Midwest.
Science, 344:516-519, 2014.

128



Ministry of Agriculture. Manual for Drought Management . Technical report, Department
of Agriculture and Cooperation, Ministry of Agriculture, Government of India, New

Delhi, 2009.

A. Mishra and V. Singh. A Review of Drought Concepts. Journal of Hydrology, 391(1-2):
202-216, 2010.

R. Naylor, D. Bassisti, D. Vimont, W. Falcon, and M. Burke. Assessing Risks of Climate
Variability and Climate Change for Indonesian Rice Agriculture. Proceedings of the
National Academy of Sciences, 104(19):7752-7757, 2007.

D.S. Pai, L. Sridhar, P. Guhathakurta, and H.R. Hatwar. District-Wide Drought Climatol-
ogy of the Southwest Monsoon Season over India Based on Standardized Precipitation

Index (SPI). Natural Hazards, 53:1797-1813, 2011.

D.S Pai, L. Sridhar, M. Rajeevan, O.P. Sreejith, N.S. Satbhai, and B Mukhopadyay.
Development of a New High Spatial Resolution (0.25°x 0.25°) Long Period(1901-2010)
Daily Gridded Rainfall Data Set over India and its Comparison with Existing Data Sets
over the Region. Quarterly Journal of Meteorology, Hydrology and Geophysics, 65(1):
433-436, 2014.

D. Panda and J. Wahr. Spatiotemporal Evolution of Water Storage Changes in India from
the Updated GRACE-derived Gravity Records. Water Resources Research, 52:135-149,
2016.

S. Pandey, H. Bhandari, S. Ding, P. Prapertchob, R. Sharan, D. Naik, S. Taunk, and
A. Sastri. Coping with Drought in Rice Farming in Asia: Insights from a Cross-Country

Comparative Study. International Rice Research Institute, Los Banos (Philippines),

2007a.

S. Pandey, H. Bhandari, and B. Hardy. Economic Costs of Drought and Rice Farmers’
Coping Mechanisms: A Cross-Country Comparative Analysis. International Rice Re-

search Institute, Los Banos (Philippines), 2007b.

P.V.V. Prasad, S.A. Staggenborg, and Z. Ristic. Impacts of drought and/or heat stress on
physiological, developmental, growth, and yield processes of crop plants. In L.H. Ahuja

129



and S.A. Saseendran, editors, Response of Crops to Limited Water: Understanding and
Modeling Water Stress Effects on Plant Growth Processes, pages 301-355. ASA-CSSA,
Madison, WI, USA, 2008.

V. Prashant, B.P. Mallikarjuna Swamy, S. Dixit, R. Singh, B. Miro, A. Kohl, A. Henry,
and A. Kumar. Drought Susceptibility of Modern Rice Varieties: An Effect of Linkage of
Drought Tolerance with Undesirable Traits. Nature Scientific Reports, 5(14799), 2015.

M. Rodell, I. Velicogna, and J. Famiglietti. Satellite-based Estimates of Groundwater
Depletion in India. Nature, 460:999-1002, 2012.

H. Sarson. Rainfall and Conflict: A Cautionary Tale. Journal of Development Economics,

115:62-72, 2015.

W. Schlenker and M. Roberts. Nonlinear Temperature Effects Indicate Severe Damages
to U.S. Crop Yields under Climate Change. Proceedings of the National Academy of
Sciences of the United States of America, 106(37):15594-15598, 2009.

W. Schlenker, M. Hanemann, and A. Fisher. Will U.S. Agriculture Really Benefit from
Global Warming? Accounting for Irrigation in the Hedonic Approach. American Eco-

nomic Review, 95:395-406, 2005.

S. Sekhri. Wells, Water, and Welfare: The Impact of Access to Groundwater on Rural
Poverty and Conflict. American Economic Journal: Applied Economics, 6(3):76-102,
2014.

M. Shah and B. Steinberg. Drought of Opportunities: Contemporaneous and Long Term
Impacts of Rainfall Shocks on Human Capital. Journal of Political Economy, forthcom-

ing.

T. Shah, K. Kisore, and P. Hemant. Will the Impact of the 2009 Drought Be Different
from 20027 FEconomic and Political Weekly, 44(37):11-14, 20009.

K.D. Sharma. Rain-fed Agriculture Could Meet the Challenges of Food Security in India.
Current Science, 100(11):1615-1616, 2011.

C. Siderius, H. Biemans, P. van Walsum, E. van lerland, P. Kabat, and P. Hellegers. Assess-

130



ing Risks of Climate Variability and Climate Change for Indonesian Rice Agriculture.
PLOS One, 11(3), 2016.

D. Singh, M. Tsiang, B. Rajaratnam, and N. Diffenbaugh. Observed Changes in Extreme
Wet and Dry Spells During the South Asian Summer Monsoon Season. Nature Climate
Change, 4:456-461, 2014.

A K. Srivastava, M. Rajeevan, and S.R. Kshirsagar. Development of a High Spatial Reso-
lution Daily Gridded Temperature Data Set (1969-2005) for the Indian Region. Atmo-

spheric Science Letters, 2009.

A. Turner and H. Annamalai. Climate Change and the South Asian Summer Monsoon.

Nature Climate Change, 2:587-595, 2012.

UN. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables.
Working paper no. esa/p/wp.241, United Nations, Department of Economic and Social
Affairs, Population Division, 2015.

S. Vicente-Serrano, J. Lopez-Moreno, S. Begueria, J. Lorenzo-Lacruz, A. Sanchez-Lorenzo,
J. Garcia-Ruiz, C. Azorin-Molina, E. Moran-Tejeda, J. Revuelto, R. Trigo, F. Coelho,
and F. Espejo. Evidence of Increasing Drought Severity Caused by Temperature Rise
in Southern Europe. Environmental Research Letters, 9:044001, 2014.

B. Wang. The Asian Monsoon. Springer, Chichester, U.K., 2006.

Q. Wang. Fixed-Effect Panel Threshold Model Using Stata. The Stata Journal, 15(1):
121-134, 2015.

D. Wilhite. Drought: A Global Assessment. Routledge, London, 2000.

D. Wilhite and M. Glantz. Understanding the Drought Phenomenon: The Role of Defini-
tions. Water International, 10(3):111-120, 1985.

T. Yu and B. Babcock. Are U.S. Corn and Soybeans Becoming More Drought Tolerant?
American Journal of Agricultural Economics, 92(5):1310-1323, 2010.

131



Chapter 4

The growing importance of nature:
Did the Green Revolution
consolidate agro-climatic

productive advantages in India?
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Abstract

This paper examines the extent to which modernisation in agriculture consolidates productivity
gains in the most naturally suited areas. A common contention is that characteristics of higher-
yielding variety (HYV) seeds developed during the Green Revolution made them complementary
to higher quality land attributes such as soil quality, climate, and terrain. As such, yield increases
achieved since the Green Revolution may have been biased towards areas of higher land quality.
I investigate this claim by empirically estimating whether yields for rice and wheat increased
relatively more in relatively favourable environments following the onset of the Green Revolution
in India. To do this I use half a century of district-level data combined with continuous and crop-
specific measures of land suitability from the FAO Global Agro-Ecological Zones project. I attempt
to identify the bias of Green Revolution technologies by exploiting the differential timing of district-
level adoption of new seed varieties, comparing variation in yields and agro-climatic suitability for
districts within the same state. I find evidence that for both rice and wheat, yield gains after
the Green Revolution significantly increased the productive advantages of districts with higher
agro-climatic suitability for crop growth. This result is consistent across subsets of geographical
regions, over time, and does not seem to be driven by differences in the diffusion of HY Vs across
districts. I also estimate that gains to land quality were highest in irrigated areas, suggesting that
the availability of controllable water was key for determining whether more suitable area could
take advantage of favourable land characteristics. Overall, this work suggests that increased effort
should be put into designing agricultural technologies that grow more effectively in less favourable

areas in order to maintain agricultural productivity under increased environmental stress.
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4.1 Introduction

GRO-ECOLOGICAL characteristics, such as climate and soil quality, are amongst
the most fundamental factors determining the production possibilities of agri-
culture. Understanding the role that these factors play in the production pro-

cess is now a burgeoning area of research owing to concerns that future environmental
problems, such as climate change and land degradation, may make growing conditions
more challenging in coming years (Naylor, 1996). A crucial consideration is the role that
certain types of technology play in potentially relaxing these environmental constraints.
The ability of agricultural technologies to effectively increase crop yields under a wide
range of agro-ecological conditions will be of high importance in continuing to increase the

productivity of the sector (Hornbeck, 2012).

The extent to which agricultural technologies allow farmers to achieve higher crop yields
across different agro-ecological environments depends on the interaction of technology and
environmental features in the production process (Mendelsohn et al., 2006). On the one
hand, a new technology could act as a substitute for certain agro-ecological factors. For
instance, fertiliser could substitute for soil nutrients, allowing farmers to achieve high yields
in areas of low soil quality. On the other hand, technology may require a set of suitable
conditions in which to be effective, such as a stable and temperate climate. In this case,
technology is complementary to agriculturally favourable aspects of land. The extent to
which either of these interactions is true will determine how reliant production systems

are on underlying environmental quality as technology becomes more advanced.

Previous evidence shows that agricultural technologies have helped to markedly increase
the average productivity of land in many areas of the world (Ruttan, 2002; Federico, 2005).
These production practices, broadly characterised as intensification, typically involve the
replacement of traditional seed varieties with improved varieties that are more responsive
to the application of inputs, such as inorganic fertilisers, pesticides, and irrigation. These
intensive practices now form the dominant model for crop production across the world
(Tilman et al., 2002). A leading example of this was the Green Revolution. With this

came the adaptation of improved varieties of widely grown staple crops, such as rice and
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wheat, to new growing conditions which enabled farmers to achieve higher yields in many
parts of Asia in the latter half of the twentieth century (Evenson and Gollin, 2003; Hazell,
2009). For India in particular, the aggregate increase in productivity allowed the country
to become self-sufficient in major food grains a decade or so following the introduction of

new technology in the mid-1960s (Shreedhar et al., 2012).

Despite impressive increases in average yields, however, the Green Revolution model of
agricultural development continues to attract a number of critics. A common contention
is that Green Revolution technologies failed to evenly spread yield benefits across growing
areas (Pingali, 2012). Specifically, areas where soil was of high quality, had good supplies
of water, and flat terrain are perceived to have experienced yield gains that were greater
compared with areas less well endowed with these features. The basis for these claims rests
on the idea that technological change during the Green Revolution led to the development
of technologies that were complementary in the production process to better quality land
(Evenson and Gollin, 2003; Barbier, 2010). A centralised agricultural innovation process
during this period focused on developing a small number of varieties that would deliver
yields gains under ‘optimal’ growing conditions (Anderson et al., 1982; Baranski, 2015).
The consequence of this environment-technology complementarity would plausibly mean
that yield growth was biased towards land of higher quality, increasing the productive

advantage of areas that were already most naturally favourable for agricultural production.

The aim of this paper is to empirically test the validity of this hypothesis. Two previous
studies have examined this question by studying differences in regional agricultural pro-
ductivity growth in India following the Green Revolution (Fan et al., 2000a; Palmer-Jones
and Sen, 2003). These papers find that regions defined as ‘more favourable’ for agriculture
saw yields increase by more than in ‘less favourable’ areas. These studies, however, suffer
from a number of shortcomings that could lead to a misunderstanding of the role Green
Revolution technology played in increasing the returns to land quality. First, favourability
for agriculture is arbitrarily defined according to groupings of areas sharing similar agro-
ecological characteristics. This leads to potential problems in isolating the effect of natu-
ral suitability on productivity due to confounding factors that also influence agricultural

productivity, such as political institutions, that may be common across agro-ecological re-
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gions. The discrete classification of regions also precludes estimating the magnitude of any
possible land quality bias, since agro-ecological conditions between regions are not quan-
titatively comparable. Second, the agronomic conditions required to grow specific crop
types, such as rice and wheat, vary substantially. Thus, a measure of aggregate favoura-
bility for agriculture is likely to lead to a misleading measure of the conditions that make
an area suitable for growing specific crops. Therefore, measures of crop-specific suitability

should ideally be used to study this question.

To address the shortcomings of previous studies, I use district-level agricultural data be-
tween 1957 and 2009, covering years before, during, and after the Green Revolution in
India. This allows me to study whether the arrival of new technology increased produc-
tive gains in more naturally suited areas relative to less suitable areas. I study rice and
wheat, which were both the focus of international and national research efforts to increase
yields of crops crucial to Indian food security. While both crops are cultivated across a
range of different growing conditions, individual crop needs in terms of climate, soil, and
terrain differ. Accordingly, I separately test whether productivity growth for each crop
was highest in districts most naturally suited for growing that crop. To do this, I exploit
a crop-specific measure of agricultural suitability, which integrates natural characteristics
such as climate, soil quality, and terrain to assess the potential suitability for growing each

crop.

I model the onset of the Green Revolution as a productivity shock to agriculture within
a differences-in-differences framework. To implement this strategy, I exploit the staggered
timing in the diffusion of technology across districts, indicated by high yielding seed va-
rieties (HYVs). This allows me to examine whether the arrival of new technology led to
higher yield growth in more suitable districts relative to less suitable districts. This strat-
egy rests on the assumption that technological innovation embodied in seed varieties was
largely a result of external, international research efforts that led to the development of
HYVs (Foster and Rosenzweig, 1996). One issue with implementing this strategy is that
a range of institutional factors may have affected a district’s exposure to this productivity
shock. To account for this, I exploit within-state variation by accounting for a set of state-

by-year fixed effects. Since expenditure on rural education, infrastructure, and agricultural
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support policies, such as public research and extension services, are largely budgeted at the
state-level (Fan et al., 2000b; McKinsey and Evenson, 2003), this minimises concerns that
regional institutions drove differences in productivity over time. This empirical strategy
thus enables me to model differences in yield gains across areas of varying agro-ecological
suitability within areas that share similar institutional characteristics and exposure to new

technologies.

The results of this study show that the arrival of Green Revolution technology, on aver-
age, increased the relative productive advantage of areas more naturally suited to crop
growth. This is common for both rice and wheat. I estimate that a one-standard devia-
tion increase in district land quality led to a 4% increase in the relative yield advantage to
more suitable areas for rice growing districts. For wheat, this effect is larger. A standard
deviation increase in land quality increased relative yield advantage by 8%. These results
remain robust to the inclusion of a set of time-varying controls, such as rural population
density, farm size and literacy, which could explain variation in agricultural productivity
between districts. These results are also apparent for different sub-sets of geographical
regions, suggesting that technology had similar effects across different types of land and
institutional settings. The results also show that these effects have remained similar in
magnitude over time. One possibility is that these results reflect the uneven diffusion of
Green Revolution technology over time. To investigate this, I test whether HYV seeds
were more intensely adopted in more suitable areas. I find that there is no significant cor-
relation between proportion of cropped area devoted to HY Vs and the higher district land
suitability, which provides some evidence that differences in yield gains were not driven

by unequal diffusion of HY Vs across districts.

In addition to agro-climatic suitability, irrigation has been posited as important in de-
termining how favourable an area is for the use of modern seed varieties (Hazell, 2009).
Previous studies have shown that the availability of supplementary water from sources such
as dams and groundwater, markedly improved agricultural productivity (Duflo and Pande,
2007; Sekhri, 2014). Accordingly, I estimate separate regressions for high and low irrigation
areas. The results suggest that for both crops, irrigated areas saw increased yield gains to

land quality. This effect was not significant for low irrigation areas. These results support
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the view that irrigation was a key facilitating factor in allowing farmers to achieve higher
yields during the Green Revolution, although its availability was particularly important

for allowing farmers to consolidate advantageous environmental characteristics.

Overall, these findings support the hypothesis that, although achieving impressive increases
in aggregate production, the type of agricultural modernisation seen during the Green
Revolution in India increased the relative importance of favourable agro-ecological factors
in achieving higher yields. These findings have a number of implications. First, given that
the marginal productivity of technology increases with land quality, deterioration in factors
that determine land quality, such as climate and soil quality, means that these technologies
become less effective as the resource base declines. This suggests that the adaptation
challenge to declining environmental quality with current technology is likely to be greater
compared with a counterfactual scenario where technology effectively substitutes for high
quality environmental characteristics and reduces agriculture’s relative dependence in these
factors. Indeed, a growing research area uses historical data to assess whether agricultural
technology has substantially changed the relative importance of natural factors, such as
climate and soil, in determining agricultural outcomes. Whether land as a resource has
declined in its importance for agriculture has been debated by Schultz (1951) and Johnson
(2002). Both authors argue that the relative importance of land has reduced due to
modernisation. Empirical support for this is, however, not found by Hornbeck (2012)
who shows that land characteristics have maintained their dominance in terms of land
values on farms in the United States. He groups farm land in the U.S. into discrete
categories based on average temperature, precipitation, and soil group to examine whether
agricultural modernisation has changed the relative influence of these characteristics on
farm values over time. He finds that there is no evidence of a change in the influence of
these characteristics on farm values between 1920 and 2002. This suggests that, on average,
improvements in agricultural technology preserve relative environmental advantages.! My

findings suggest a stronger result than this: the relative importance of agro-ecological

!The degree to which improvements in agricultural technology have enabled farmers to adjust to new
environments is also studied by Olmstead and Rhode (2010) who examine the spatial distribution of wheat
growing areas between 1939-2009. They find evidence of very substantial adaptation of wheat to harsher
growing environments over time and attribute this to biological innovation, which led to improvements in
wheat cultivars that could be grown in previously unsuitable growing areas.
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characteristics can increase with higher levels of technology.

Second, these findings also relate to works that examine reasons for variation in regional
agricultural growth in India. Previous work has highlighted that higher agricultural pro-
ductivity is associated with substantial reductions in rural poverty, since farm incomes and
wages increase as a result (Datt and Ravallion, 1998). Determining whether one of the
explanations for differences in regional productivity is due to the inadequacy of technol-
ogy to work effectively across agro-climatic regions is important for prioritising resources
that address these inequalities. For instance, a failure of technology to work effectively
across growing areas places precedence on diverting resources into improvements to make
technologies more applicable to work under diverse agro-ecological contexts rather than
on policies that support technology uptake. One lesson that can be learned from this is
that while centralised research into agricultural technologies may be an effective strategy
for delivering productivity increases on average, more emphasis on tailoring technology to

suit local conditions is needed to address crop growing constraints to lower quality land.

The rest of this paper is structured as follows. Section 4.2 provides background on the
Indian Green Revolution and describes the basis for the claim that areas already most
suitable for production benefitted the most from the introduction of new technology. The
empirical approach is outlined in Section 4.3. The data used in the study are described in
Section 4.4 with particular attention paid to the construction of the land suitability index.

Results and discussion follow in Sections 4.5 and 4.6, with Section 4.7 concluding.

4.2 Green Revolution in India

4.2.1 Background

The rapid intensification of the agricultural sector in India, known as the Green Revolution,
began in the mid-1960s after a period of relative stagnation in the productivity of staple
crops following colonial independence in 1947. The productive gains brought about by
the Green Revolution are credited with allowing India, and a number of other countries

across Asia, to become self-sufficient in the production of key foodgrains, such as rice
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Figure 4.1: Average rice and wheat yields in India (1957-2009)
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and wheat, for domestic consumption in the decades following its onset (Shreedhar et al.,
2012). These two crops were the principal beneficiaries of productivity gains over this
period. This is illustrated in Figure 4.1, which shows the increase in average yields for
rice and wheat for this period. A steady upward trend can be seen for both crops in the
late 1960s, with average productivity increasing by 212% and 290% for rice and wheat
respectively between 1957-1966 and 2000-2009. These two crops continue to make up
a highly significant proportion of India’s agricultural sector, with 36 percent of current

cropped area planted to rice and 22 percent devoted to wheat (Shreedhar et al., 2012).

This growth in land productivity over time was primarily facilitated by the development
and use of new varieties of seeds that embodied characteristics that allowed for higher
yields. These improved crop varieties, known as ‘High Yielding Varieties’, were first re-

leased to Indian farmers in 1966 as the result of international collaboration to develop
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new varieties better suited to growth in many Asian countries.? These seed varieties were
integral to the success of the Green Revolution since, when combined with other modern
inputs, like fertiliser and pesticide, much higher yields could theoretically be achieved.
The most significant development common to these new varieties was the incorporation
of ‘semi-dwarf’ characteristics which had previously been used successfully in a number
of countries, such as Mexico. The significance of dwarf features was that they allowed
for substantial increases in the amount of fertiliser that could be applied to these new
varieties, in contrast to traditional varieties which, due to their long stems, were prone to

falling over when heavily fertilised (Dalrymple, 1979).3

4.2.2 The importance of irrigation

Even in areas where climate and soil are deemed amenable for crop production, HY Vs
generally required the steady supply of water to realise their yield potential. As is argued
by (Hazell, 2009), the Green Revolution involved a package of inputs. Although HYV seeds
allowed for higher yield growth, this occured when combined primarily with fertiliser and
irrigation. This meant a premium was placed on abundant and stable supplies of water,
since HY'V seeds were more responsive to higher water application. Indeed, previous work
by Fan et al. (2000a) has shown that rates of productivity growth following the Green
Revolution were highest in irrigated areas of India. Additionally, Sekhri (2014) shows that
the availability of more abundant groundwater irrigation was associated with higher levels
of fertiliser use. Furthermore, Duflo and Pande (2007) find that districts benefitting from
irrigation as a result of large dams planted more HY Vs. Given that irrigation was a crucial
part of the Green Revolution package, evaluating how the availability or non-availability
of irrigation affected the ability of farmers to grow crops under varying agro-ecological

conditions is of high importance.

*Institutions such as the Consultative Group on International Agricultural Research (CGIAR), the
International Maize and Wheat Improvement Centre (CIMMYT) and the International Rice Research
Institute (IRRI) were amongst the most important of a number of institutions that played a role in the
development of new technologies (Pingali, 2012).

3This point was succinctly summarised by Norman Borlaug in his Nobel Peace Prize acceptance speech:
“If the high-yielding dwarf wheat and rice varieties are the catalysts that have ignited the Green Revolution,
then chemical fertilizer is the fuel that has powered its forward thrust (Borlaug, 1970).”
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4.2.3 Land and technology complementarity

Despite impressive yield increases on average, a common criticism of agricultural produc-
tivity growth since the Green Revolution has been its inequality in achieving growth across
the country (Evenson and Gollin, 2003).* One explanation for this inequality is related to
the contention that the characteristics of newly developed seed varieties made them most
effective on land closest to optimal conditions. Although agricultural technologies can
act as substitutes for various features of the environment (Sunding and Zilberman, 2001;
Hornbeck, 2012), a number of authors have emphasised that the nature of technological
change during the Green Revolution was to develop technologies that were complemen-
tary to higher quality land attributes (Evenson and Gollin, 2003; Barbier, 2010). As is
written by Barbier (2010, p.569), “the application of the Green Revolution agronomic
technologies, such as fertilizers, pesticides, irrigation and mechanization, mainly boosted
the productivity of arable lands suitable to agricultural intensification and located in fa-
vorable environments with good quality soils, plentiful rainfall and freshwater supplies,

and low or moderate slopes.””

A key reason for these claims stems from the nature of technological innovation during the
Green Revolution. Particularly important is the reliance on externally-driven biological
innovation to improve crop yields (Anderson et al., 1982). For instance, as is argued in
recent work by Baranski (2015) on the history of Green Revolution breeding programmes,
the focus of plant breeding programmes by international organisations and later by Indian
scientists underwent a structural change in the years leading up to the Green Revolution.
This influenced the degree to which new biological innovations were successful at spread-
ing productivity gains across different growing environments. The reasons for this were
twofold. First, in order to avert future crises in food availability, breeding efforts were fo-
cused on areas of existing high productivity that could be counted on to yield substantial
increases in aggregate domestic supply. Hence, breeding efforts were focused on areas of

high productivity, such as Punjab, owing to the impact that increasing productivity in

“See Pingali (2012) for a discussion of some of the other potential limitations of the Green Revolution,
including soil and water degradation, reduced dietary diversity, and gender inequality.

®For instance, Pingali (1989) argues that soil that can hold a greater amount of water and nutrients can
yield higher gains from intensification.
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these areas would have on aggregate production. Second, it was assumed by agricultural
scientists at the time that it was possible to breed a small set of crop varieties that had
wide application by assuring these varieties worked best on high quality land.® These
varieties would then be assumed to work under more marginal conditions. Thus, breed-
ing efforts focused on this idea of ‘wide adaptation’ meant that research efforts went into
development of varieties under optimal conditions, which lead to a “systemic bias against

marginal agriculture” (Baranski, 2015).7

4.2.4 Crop-specific differences

It is also of policy relevance to determine whether the pattern of productivity gains with
respect to land quality has been homogenous across crop types since the Green Revolution.
Information about the relative success or failure to transform crop breeding improvements
into yield gains across environments is crucial to prioritising future investments with re-
spect to particular crop types. Rice and wheat, the two crops studied in this paper, were

the prime beneficiaries of these improvements.

Rice is largely grown under flooded conditions during the warm summer season in India.
These growing conditions mean that water is a key determinant of how successfully rice can
be grown. Water requirements for rice are substantially higher when compared with many

other crops, including wheat (Dalrymple, 1979).%8

The highest yields are, thus, achieved
where average rainfall is high and predictable, or where irrigation facilities are available
(FAO, 2012). For early HYV varieties in India, water was indeed a crucial requirement.
This meant that productivity gains were largely confined to fertile land with very good
supplies of water (Estudillo and Otsuka, 2013). Wheat is grown globally across of range of

agro-climatic regimes, including extreme conditions in arctic, humid, and highland areas.

In India, wheat is generally grown in drier parts of the country and over winter or spring

SFor instance, as is noted by Anderson et al. (1982, p.7) “The conception of scientific research as
embodied in IRRI was exogenous, simple, and centralist.”

"Baranski (2015) additionally goes on to argue that a biased focus on producing varieties suited to the
best environments was due to a combination of the research goals of international organisations and the
centralised power of scientists based primarily in north-western states which led to biased focus on fertile
areas as opposed to more marginal growing areas.

8For instance, globally, rice is estimated to receive 24-30 percent of available freshwater supplies
(Bouman et al., 2006).
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seasons. The amount of irrigation needed depends on exposure to high temperature,
variety type and soil (FAO, 2012), although the amount of water needed is significantly
less than the amount needed to grow rice. Thus, access to irrigation is less important for

wheat compared to rice.

On top of the general adaptability of these crop types across agro-ecological conditions,
progress in developing new varieties to grow under a range of conditions may also be crop-
specific. For instance, rice growing areas in India tend to be more heterogeneous in growing
conditions which may have made it more difficult to develop rice varieties suited specially
to each area (Evenson and Gollin, 2003; Estudillo and Otsuka, 2013). In contrast, wheat
varieties released at the onset of the Green Revolution were better suited to cope with
application across wider growing areas. This has led to a small number of 'multi-zonal’
varieties maintaining their dominance as primary cultivars since early on in the Green
Revolution (Munshi, 2004). In addition, Lantican et al. (2003) provide evidence using
yield trial data that, globally, the Green Revolution has been successful in pushing forward
the production possibility frontier of marginal wheat environments. Similarly, Olmstead
and Rhode (2008, 2010) chronicle the impact of cultivar improvements in allowing wheat
production in North America to spread to areas that were previously thought unsuitable

for cultivation.?

4.2.5 Biased technological change

The focus of this paper is to investigate how the arrival of new agricultural technology
affects the relative importance of land quality characteristics such as soil and climate in
determining agricultural productivity. In particular, I am interested in whether techno-
logical progress increases the returns to higher quality land. Conceptually this refers to

the potential complementarity between technology and the land quality in the agricul-

9This view of agricultural development places emphasis on the role of technological innovation in
spurring agricultural productivity growth over time. This accords with the view of Olmstead and Rhode
(1993) who argue that the success of public research efforts in developing improved crop varieties suited to
different growing environments were the primary ingredient affecting regional success in U.S. agriculture.
This contrasts with other prominent theories used to explain development, such as the induced innovation
hypothesis, which posits that technological change takes place due to changes in factor prices, so that
technologies will be developed that are factor-saving in the most scarce factor (Hayami and Ruttan, 1971).
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tural production function. Two inputs will be complementary in the production process
if an increase in the level of one input increases the marginal product of the other in-
put. In the case of the Green Revolution, the hypothesis that new technology that was
geared towards achieving high yields under optimal growing conditions would mean that

the marginal product of land quality increases with technology.

In order to illustrate this relationship, I outline a simple agricultural production function
that maps inputs used in the production process to output. This particular specification
makes explicit the role that new technology has on certain inputs and borrows from work
by Ackerman et al. (2015) and Berman (2000) who study the role technological change
has on the productivity of workers of varying skill levels. This can be illustrated using a

Cobb-Douglas production function, which takes the form:

Yy = ot Diren K£k0+Ditﬁk1 L§10+Ditﬁlleez’t (4'1)

Yi: is the yield of a particular crop (production per unit land) in a district ¢ and at time
t. Output is produced using a combination of district-level inputs which are given by
per unit of land. K could embody various inputs, such as the stock labour or capital,
that are available in a district. The term L;; refers to land quality. I model land quality
as an input into the production process, which is a composite measure of the relative
suitability of factors such as climate, soil and terrain. For each district this is represented
as a scalar for which higher values indicate more favourable conditions for crop growth.
The term e captures average total factor productivity (TFP), which refers to how much
output can be explained by factors not due to the inputs used in the production process.
For example, this could relate to the efficiency with which inputs are combined to produce
output (Comin, 2008). The error term will capture the district-specific variations from

average TFP over time.

An important innovation of this model is the incorporation of technological change in the
exponent terms, which describes the effect that technology has on the output elasticity
of each factor of production. New technology is modelled by the dummy variable D,

which reflects a shift in technology used in production. This takes the value of one in
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the period that new technology is utilised (and thereafter) and zero in the period before.
An advantage of this specification is that it allows for various possibilities concerning the
nature of technological change. For instance, if technological change leads to an increase
in the marginal product of a particular input, then the coefficients £i1 and ;1 would
take positive values. The focus of this paper is to test the hypothesis that returns to land
quality increased following the introduction of Green Revolution technology. This amounts

to testing whether 8;; > 0. 19

A convenient feature of the Cobb-Douglas formulation is that it can easily be transformed
into an empirically tractable equation. By taking the natural logarithm of equation 4.1,

we get:

Vit = oo + Doy + Brokic + DitBrikic + Biolie + DicBinlic + €t (4.2)

As such, a change in the returns to land quality will be seen by sign and significance of the

coefficient f;;. In the next section I describe how I empirically estimate this parameter.

4.3 Empirical strategy

4.3.1 Baseline specification

As a baseline estimation strategy, I choose a generalised differences-in-differences approach.
This allows me to test whether district crop yield following the introduction of HY'V seeds
increased by more on higher quality land. The benefits of this approach are that I am able
to implement a number of strategies in order to reduce the influence of possible confounding

factors that could explain differences in productivity across districts.

The strategy rests on the assumption that the Green Revolution was a ‘shock’ to agricul-

tural productivity. A key identifying assumption is that this shock was common across

107f in contrast, the shift in technology is not biased towards any of these factors, then it is the case
that a; is non-zero, so that technology works primarily through increasing total factor productivity and
not through its effect of increasing the returns to particular inputs.
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districts with differing land quality. In one regard, this is likely to be the case since early
research into HYVs was primarily as a result of external, international research that led
to the development of new seed varieties (Foster and Rosenzweig, 1996). On the other
hand, however, it is possible that exposure to this shock was conditioned by a set of other
factors that led to heterogeneity in how exposed certain areas were to this shock. If areas
of higher land quality were more exposed to Green Revolution technology, this would likely
overestimate land quality bias caused by the complementarity of new technology and land

quality. In this section I outline my strategy to account for potential heterogeneity.

To do this I estimate the following baseline equation:

Yijt = BoG Ryt + 1SUIT; + B2SUIT; x GRip + 0 X4 + o + vje + €ijt (4.3)

The dependent variable y;;; measures the natural logarithm of crop yield for district 7 in

state j at time ¢.1!

The crop-specific measure of district land suitability, SUIT;, enters the model as an ex-
ogenous, time invariant variable. The construction of this variable is described in the next
section. This variable is continuously ordered so that areas most naturally suited to crop
growth take a higher value in the index. Since the constituent components of suitability

are average climate, soil and terrain characteristics, these are set as fixed over time.!?

Technology is included in the model by the inclusion of the variable G R, a dummy variable
indicating the beginning of the Green Revolution, and zero in years before. Importantly, I
allow the onset of the Green Revolution to vary across districts, since some districts began

the process of technology adoption earlier than others. This allows for a more accurate

1The log transformation is preferred for two reasons. First, it generally makes strictly positive variables
like yield behave more in accordance with the normal distribution (Wooldridge, 2015). Secondly, since
district productivity may differ substantially between regions, it is more informative to investigate the
relationship between differences in land quality and relative changes in yield rather than absolute changes
in yield.

12Two arguments could potentially be made about land quality not being fixed over time. Firstly,
climate change may have altered the suitability over the sample period. However, since average climate
is calculated between 1961-90, this matches most of this period of study. Secondly, it could be argued
that land degradation is a relevant factor since intensive methods have reduced the natural fertility of soil
over time. Quality data on land degradation is not available to evaluate the possible effect of this claim,
however. The implications of this for agricultural productivity in India are left to future work.

147



measurement of the effect of technological change on yields, since it allows me to capture
upward trends in yields associated with Green Revolution technology. I proxy the use of
Green Revolution technology with the adoption of high yielding variety seeds in a district.
These new seeds represent a good indicator of Green Revolution technology since these
allowed for yield increases when combined with other modern, complementary inputs, such
as fertiliser. Thus, the adoption of seeds represents a suite of farming practices adopted

under the Green Revolution umbrella.

Figure 4.2 illustrates the varying times of adoption across the country. The threshold of ten
percent of crop area planted to HY Vs is chosen to indicate the onset of the Green Revolu-
tion in each district. This threshold is found by Griliches (1957) to represent “acceptance”
of a technology (in his case hybrid corn) and is motivated by the common assumption
in the technology diffusion literature that cumulative adoption of a technology tends to
conform to a logistic relationship. For rice, the earliest adopters in the late-1960s were
mainly in the northern states of Punjab and Haryana, as well as in the southern states of
Andhra Pradesh and Tamil Nadu. For wheat, early adoption is also seen for the northern
states and western areas like Gujarat. Areas in the east also adopted early, although these
areas only plant small amounts of wheat. For both crops, most districts in Uttar Pradesh
and Madhya Pradesh adopted later. Interestingly, adoption dates for non-typical wheat
growing areas such as West Bengal are early, although these areas only produce a small

amount of wheat.

The main variable of interest in the model is represented by the interaction term SUIT; x
GR;;. The coeflicient of this variable, 82, shows the effect of land suitability has on yields in
the post-GR period relative to earlier periods. A positive estimate of this coefficient would
indicate that districts with land more suitable for crop production grew faster relative to

less suitable districts after the introduction of modern agricultural technology.

The central empirical aim is to identify whether the application of modern technologies
are biased towards land of higher quality. A key empirical concern is that productivity of
agriculture is likely to be affected by a range of other factors not due to natural constraints

imposed on production, but due to other factors that are omitted from the regression. For
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instance, Fan et al. (2000a) and Binswanger et al. (1993) argue that more ‘favourable’ areas
i.e. those with better land quality, received higher levels of investment in productivity-
enhancing factors. As such, higher productivity growth in more suitable areas may be
due to factors that relate to the political economy of agricultural development rather than
due to technology-land quality complementarity. This may lead to an overestimate of the
effect of technological bias. To deal with these concerns, I pursue a number of empirical

strategies.

Omitted time-invariant factors at the district-level could explain differences in productiv-
ity. For instance, locational factors like the distance to coastal areas, altitude, and major
cities could be systematically related to crop yield in the post-Green Revolution period.
The district fixed effects could also capture variables like culture or the persistence of
institutions, which themselves might have important influences on productivity. The dis-
trict fixed effect would also wipe out any unmeasured aspects of land quality that are not
included in the GAEZ measure. To address this, I include the district fixed effect term, a;,
which absorbs the influence of such variables. The inclusion of district fixed effects means
that I am exploiting within-district variation in returns to land quality. As such, I am
comparing returns to land quality following the Green Revolution relative to the returns

to land quality prior to its onset.

Additionally, I include a set of state-by-year fixed effects, indicated by ~;;. The inclusion
of these variables is used to account for omitted variables that vary annually in each state.
Accounting for these factors are very important for the empirical strategy for a number of
reasons. Firstly, state policies were a crucial factor in enabling farmers to take advantage of
Green Revolution technologies. Owing to India’s federal structure, a large amount of public
investment happens at the state level. For instance, expenditure on rural education and
agricultural policies, such as public research and extension services, are largely budgeted
at the state level (McKinsey and Evenson, 2003). Importantly, state seed corporations
were a primary means of distributing new varieties of seeds (Singh et al., 2008). Other
important productive factors such as electricity provision are also determined at the state
level (Gulati and Narayanan, 2003). Indeed, substantial inequalities in levels of state

investment have been shown by Fan et al. (2000b), who find that state level spending on
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agricultural research and building roads has had important effects in explaining variations
in productivity growth. If state investments over time were significantly higher in areas
of better land quality, this would create a bias in the estimate of the technological effect
on land quality upwards. Controlling for state-by-year effects enables me to wipe out the
influence that differences in annual state policies have on yields. Secondly, the inclusion
of state-by-year fixed effects influences the type of variation in land quality and yields
that I am exploiting, since state-by-year fixed effects means that I am comparing within-
state differences in land quality and yields. As such, I am not comparing the effect of
technology between districts in humid areas with districts in arid areas, which are likely
to differ significantly in terms of institutions, technology, and land quality. By confining
interest to areas that are similar both institutionally and geographically, it is likely that I
am capturing the areas exposed to a similar technological shock. For instance, I am not

comparing tropical wet areas, such as Kerala, with arid areas like Rajasthan.

Despite addressing a range of omitted variable concerns that can be addressed by the inclu-
sion of district and state-by-year fixed effects, it is still possible that inter-district variation
within states could explain the relationship between yield and land quality after the Green
Revolution. To explore this, I control for a set of covariates that vary over time at the
district-level. Rural population density is included to proxy for the availability of labour.
Since Green Revolution technologies were typically more labour-intensive than traditional
varieties (Headey et al., 2010), areas with higher population densities may have been bet-
ter able to supply labour to make effective use of these varieties. Investments in public
infrastructure projects, such as roads, could lower the costs of marketing agricultural com-
modities and buying key inputs. This would allow farmers better access to yield improving
technologies available since the Green Revolution (Antle, 1984; Binswanger et al., 1993).
Controls for road length are thus included. Related to this, average farm size may be re-
lated to crop yields (Chand et al., 2011). Farm size is also a factor that could explain the
productive returns to technology. Although Green Revolution technology was in theory
scale-neutral, a number of authors have shown that smaller farmers may have been less

able to take advantage of these technologies (Feder and O’Mara, 1981).'3 Accordingly, I

13 A good review of these issues in India is provided by Verma and Bromley (1987) who conclude, however,
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control for the proportion of large (>10 hectares) and medium (4-10 hectares) sized farms

in a district.

Regressions are also weighted to account for the differential size of rice and wheat areas in
each district. This is important since the variable SUIT; measures average land suitability
in a district. It could be the case that a district that has, on average, low suitability may
have small pockets particularly suitable for growing rice or wheat. This may lead us to
wrongly conclude that for this district, high yield growth occurred on less suitable land.
To minimise this possibility, each regression is weighted according to the proportion of
area devoted to rice or wheat relative to the total area of a district. Areas that only grow

a small proportion of that crop will receive less weight in the estimation.!*

4.3.2 Extension: Technology time trend

The specification shown in equation 4.3 does not allow me to investigate whether the value
of B is equal over time. To examine this I interact the suitability measure with dummy

variables indicating each year:

q
Yijt = Mt + B1SUIT; + By, Z SUIT; x Nit + 6 Xt + o + vt + €t (4.4)

k=—m

where m is the number of time periods after Green Revolution technology was released and
q the years before. This approach has two advantages. First, it is possible that returns to
land quality were not constant over time. Gains could have been higher at earlier stages
of technology than later. This specification, thus, lets the effect of land quality vary over
time. This approach is similar to that of Baltagi and Griffin (1988) who show that this
variable represents a general technology index that can be interacted with input variables
in the production function to identify factor bias in technology. Second, it allows me to

assess the validity of the parallel trends assumption. This assumption would be violated

that the relationship is not conceptually clear.
MUnweighted regressions were also run to check consistency. These results were similar to the weighted
regression.
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if B, was significant for m years before the Green Revolution. Since I am interested in
measuring the effect that Green Revolution technologies have on changing the relationship
with land quality, a significant relationship between land quality and changes in yield
before the Green Revolution would suggest other factors not related to the introduction
of new technology were responsible for driving changes in the importance of land quality

over time.

4.3.3 Extension: Unequal diffusion

A weakness of the above strategy is that it imposes certain restrictions on the nature of
technological change during the Green Revolution. Specifically, it assumes that the Green
Revolution is a common shock to agricultural productivity across districts, conditional on
a set of fixed effects and controls. One criticism of this strategy is that the diffusion of
technology is not accounted for. A number of studies have pointed to the complex patterns
with which the Green Revolution spread over space and time, that led to differential rates
in the diffusion of technology. Explanations for heterogeneous diffusion in India includes
social learning (Munshi, 2004), farm size (Feder and O’Mara, 1981), and irrigation (Sekhri,
2014).

Another explanation may be that the diffusion of HYV technology was unequal across
districts with varying land quality. For instance, areas with higher than average land
quality adopted technologies with more intensity than areas of lower land quality. These
differences could be driving any possible positive relationship yield gains following the
Green Revolution. In order to test this competing hypothesis, I regress a measure of
diffusion on a time trend interacted with the district land suitability measure for rice and

wheat:

q
HY Vigi = M+ 85 Y SUIT, x A+ Xt + 0 + vt + €t (4.5)
k

The measure of diffusion is the proportion of area planted to HY Vs in a district relative

to the total area planted to that crop. The term )\; is specified as a dummy variable equal
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to one for each year after the diffusion of HYVs. This measures the average intensity of
diffusion across the country. The additional term SUIT; x A\ measures whether there was
an additional effect of land quality on diffusion. A positive estimate of this coefficient
would imply that HYVs were, on average, more prevalent in districts with higher land
quality. The regression is estimated by also including the full set of district and state-year

fixed effects as well as control variables.

4.4 Data

4.4.1 Land suitability data

To measure the natural suitability of districts for agricultural production, this paper ex-
ploits a land suitability index from the FAO’s Global Agro-Ecological Zones (GAEZ)
database (ITASA/FAO, 2012). The GAEZ database has recently been used to study a
number of aspects of agriculture, including climate change (Costinot et al., 2015) and the
link between agricultural productivity and structural transformation (Bustos et al., 2016).
The database contains detailed maps of agricultural suitability for 19 major crops grown
across the globe, which are ranked from most suitable to least suitable for crop growth.
The data are available at a very fine resolution enabling measures of agricultural suitability

to be calculated at the district-level.1®

The GAEZ methodology aggregates a rich set of data on climate!®, soil, and terrain to
create a composite measure of suitability based on agronomic models of crop growth.
Since this measure is calculated using models of agronomic growth according to a range
of natural characteristics, and not based on observations of past yields, it can be classified
as exogenous. A key advantage of the methodological approach used to construct the
GAEZ suitability indices is that it allows for crop-specific measures of suitability that

improve on basic classifications of agricultural suitability according to broadly defined

5The GAEZ estimates of agricultural suitability are available as gridded data at the scale of 5 arc
minutes. At the equator, 5 arc minutes are roughly equal to 10 kilometres.

16Climate data pertains to rainfall, temperature, wind, sunshine and relative humidity. A detailed
explanation of the modelling methodology can be found in IIASA /FAO (2012).
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agro-ecological zones. For instance, Palmer-Jones and Sen (2003) divides India into 19
areas of similar agro-ecological characteristics. A key advantage of using the GAEZ index
is that it is a continuous measure of suitability, where each grid cell is rated according
to a scale from ‘most suitable’ to ‘unsuitable’. This allows me to estimate the extent
to which suitability matters rather than comparing areas in one distinct agro-ecological
category with another. This also improves on papers that use an ‘aggregate suitability
index’ that orders land based on various natural endowments. This would be problematic
since different land characteristics can make an area suitable for varied types of crop.
Even within a class of crops like cereals, different agro-climatic conditions would create
conditions differentially suited for growing different crops. For example, drier areas would
be more suitable for growing wheat, and wetter areas more naturally suited to rice. Thus,
an aggregate suitability index of cereal production would mean that most areas would
be classed as ‘suitable’ for a given crop. This would make it hard to derive an ordering

comparing more and less suitable areas.

The GAEZ data are available in raster form and grid cells are matched to district bound-
aries using GIS technology.!” Where grid cells overlap district boundaries, a grid cell is
given to a district if more than half of the cell falls in that district. The GAEZ database
contains data on crop-specific suitability at varying levels of inputs. Low, medium, and
high input scenarios are available. In this study, the medium intensity input scenario is
chosen.'® The construction of a suitability measure for rice is, however, complicated by
the disaggregation of GAEZ data. The database contains separate measures for rain-fed
and wetland rice. Since the production data available does not report separate data for
these two types of rice, I follow Costinot et al. (2015) in allowing the type of rice with the
highest level of suitability. In each grid cell k£ within a district ¢, rice suitability is chosen

such that:

SUITHCF = max { SUITEF, SUTT)V ")

17A shapefile of district boundaries for the census year 1961 was obtained from ML Infomap:
https://www.mlinfomap.com/.

8There is, however, little variation in district suitability at different crop-specific GAEZ input intensity
levels.
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The values of the index of agricultural suitability are then summed across the districts in
order to gain a district-specific measure of suitability. The aggregate sum of suitability
is then divided by the total area of the district. Agricultural suitability for each district
across India is then standardised to yield a variable with a mean of zero and standard

deviation of one.

The suitability indices for rice and wheat mapped to district boundaries are shown in
Figure 4.3. Panel (a) shows the geographical distribution for rice. Districts in the east
and south of the country are clearly most suitable for rice production owing to their wetter,
more temperate climates. In Panel (b), it can be seen that areas most suitable for wheat
production are located on the stretch of land running from the state of Punjab along to
West Bengal which forms much of the Ganges basin. In contrast to rice, which has a
fairly wide geographical spread of particularly suitable growing areas, districts amenable
for wheat production are mainly located in the north and east. most areas in the southern

part of the country are very unsuitable for wheat growth.

4.4.2 Agricultural data

The agricultural data used in this study are primarily taken from a district-level
database complied by the International Crops Research Institute for the Semi-Arid Tropics
(ICRISAT). The dataset includes a range of key variables relating to agricultural outputs
and inputs, infrastructure, and demographics, with data available on an annual basis for
the years 1966-2009. Data on rice and wheat production and area are used, as well as data

on the area of HY Vs planted and area irrigated.

A total of 305 districts are available over time.!” One criticism of the ICRISAT data,
however, is that its starting year of 1966 roughly coincides with the beginning of Green

Revolution policies in India and does not allow for a sufficient ‘before and after’ study. To

address this, I add production data for the years 1957-1965 to the ICRISAT panel. The

19The analysis at district-level presents a potential empirical challenge in India due to the division of
districts over the period of study. For instance, the number of districts rose by 67% between 1971-2001,
from 356 to 593 (Kumar and Somanathan, 2009). In the ICRISAT data, boundary splits are dealt with by
returning separated districts to their parent districts according to boundaries in 1966 (ICRISAT, 2012).
All analysis is thus carried out according to these historically-defined boundaries.
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pre-Green Revolution data are taken from the Indian Agriculture and Climate (IAC) Data
Set (Sanghi et al., 1998), a precursor data set to the more recent ICRISAT data. Both
data sets use the same district boundaries so that merging the data is straightforward. The
result of merging agricultural outcomes from these two data sets is a panel of agricultural
outcomes for the years 1957-2009. It is improtant to note, however, that the number
of available districts is less in the IAC data, since districts in the states of Assam and
Kerala, and also less agriculturally important states of Himachal Pradesh and Jammu and
Kashmir are not included. Assam, Kerala, and Himachal Pradesh are thus only included

for years succeeding 1966. In total, 297 districts are used for rice and 277 for wheat.

4.5 Results

4.5.1 Crop yields and land quality pre-Green Revolution

To begin studying the role that land quality plays in Indian agriculture, I examine the
association between crop productivity and the land quality index described in the previous
section. Specifically, I examine the correlation between crop productivity and crop-specific
suitability in the period before the onset of the Green Revolution. Figure 4.4 graphs the
linear correlation between the logarithm of average crop yield in a district before the
onset of Green Revolution technology and the value of suitability index. As is the case
throughout the paper, the suitability measure is standardised so that the district with
mean suitability takes the index value zero. This relationship is plotted separately for rice

and wheat.

A positive linear relationship between crop yield and suitability can clearly be seen for
both crops, such that areas where agro-climatic features make land more amenable for
crop growth seem to have an important bearing on variation in crop yields. To get a
better sense of the magnitude and statistical significance of this relationship, I run a pooled
ordinary least squares regression of yield on agro-climatic suitability using each district-
year observation before the Green Revolution. I also include a set of control variables to

account for potential factors that could explain differences in crop yields between districts
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that could also be correlated with land quality. Table 4.1 displays these results. The clear
positive relationship between land quality and crop yield can be seen across each of these
specifications. For rice, it is estimated that a one standard deviation increase in land
quality increases yields by around 7.5 percent on average. For wheat, the magnitude of
the association between land quality and yield is larger, with estimates suggesting that
a one standard deviation in land quality increases yield by around 12 percent. Inclusion
of control variables in columns (2) and (4) does not substantially alter the size of the
effect in both cases, suggesting that these factors were not systematically correlated with
crop-specific suitability over this period. Overall, these results give an indication of the
important role that underlying agro-climatic factors play during a period of relatively low
agricultural development. In the next section, I study how the relative dependence on

these underlying characteristics changes as increased levels of technology are deployed.

4.5.2 Crop yield, land suitability, and the Green Revolution

The effect that the onset of the Green Revolution had on the returns to land quality is
estimated in Table 4.2. The first two columns display coefficient estimates for districts
that grow rice. The latter two columns are for those that grow wheat. The coefficient of
interest is for the interaction term Swuitability x G R. This coeflicient shows, on average, how
much yields increased on more suitable land following the onset of the Green Revolution
relative to before the Green Revolution. Since the suitability measure is standardised with
mean zero and standard deviation of one, the estimated coefficient Suitability x GR is
interpreted as the change in the logarithm of yield given a one standard deviation increase
in land suitability. All regressions are run by including fixed effects at the district level.
Additionally, state-by-year fixed effects are included to control for the effect of omitted

variables that vary annually at the state-level.

In columns (1) and (2) the estimates for rice are shown. The results show that an increase in
land quality was associated with higher yields following the onset of the Green Revolution.
Specifically, a one deviation increase in suitability for rice was, on average, associated with

yields that were 3.7% following the uptake of HYV seeds in a district. This estimate
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Table 4.1: District crop yield and suitability pre-Green Revolution

Dependent variable: In(Yield) Rice Wheat

(1) (2) (3) (4)

Suitability 0.074%%%  0.085%FF  (.127%%%  (.114%%*
(0.008)  (0.009)  (0.009)  (0.012)

Controls
Population /km? 0.026%** 0.035%%*
(0.006) (0.009)
Percentage urban 0.250%** -0.041
(0.059) (0.069)
Literate percentage rural 0.665*** 0.867***
(0.057) (0.075)
Proportion of large farms 0.000 -0.000
(0.002) (0.002)
Road length/km? 0.044%** 0.005
(0.005) (0.007)
Cropped area 0.000** 0.0027%**
(0.000) (0.000)
Constant -0.217FF%  _0.517HFFF  .(0.324%*F  _(.522%**
(0.007) (0.017) (0.009) (0.020)
N 5,409 5,338 3,780 3,750
R? 0.016 0.098 0.054 0.110

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level.
All regressions are weighted by the proportion of district area devoted to rice or wheat.
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is statistically significant at the 5% level. The inclusion of control variables increases
this estimate slightly. A similar result is seen in columns (3) and (4), which shows the
change in returns to land suitability in wheat growing areas. Here we can see that a one
standard deviation increase in land suitability for wheat is associated with yields that were
8% higher, which is significant at the 1% level. Including a set of time varying control
variables in this regression increases the magnitude of the coefficient Suitability x GR
slightly, suggesting there may be some correlation between the control variables and land

suitability.

Although this estimation exploits within-state variation, it is plausible that the estimated
coefficients at the national level may be hiding considerable differences in the effects of
Green Revolution technology across different regions. To investigate whether the relation-
ship averaged over districts at the national level holds for subsets of regions, Tables 4.3 and
4.4 show these split into four different regions, Northern, Western, Eastern, and South-
ern areas. Northern districts are all districts within the states of Punjab and Haryana.
These states have historically been highly important in the food security of the country
given the high levels of productivity of farms across these states. Central districts are Gu-
jarat, Madhya Pradesh and Maharashtra. The states of Bihar, Uttar Pradesh, Orissa and
West Bengal make up the eastern region. The southern rice areas are defined as Andhra

Pradesh, Tamil Nadu, Karnataka and Kerala.

At this level, the relationship between within-state differences in land quality and yields
after the Green Revolution shows some heterogeneity. For rice, the Green Revolution
is estimated to only have had a statistically significant effect on the relative importance
of land quality in southern districts, where this coefficient implies a standard deviation
increase in suitability led to a 8% relative increase. This may reflect the transformation
that areas such as Tamil Nadu underwent during the Green Revolution, since these areas
are often considered as ‘model” Green Revolution states. For the rest of the regions, this
effect is not statistically significant, although it is positive for all areas apart from central
districts (although this effect is very close to zero). There is a large estimated point
estimate for the northern states of Punjab and Haryana, although this is not significant not

significant. This presents some evidence that in states that were considered as fundamental
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Table 4.2: Yield and land suitability post-Green Revolution

Dependent variable: In(Yield) Rice Wheat
n @ 6 (4)
Suitability x GR 0.037*%%  0.039** 0.081*** (0.091***
(0.018)  (0.020)  (0.020) (0.020)
GR 0.023 0.017 -0.045 -0.046
(0.029)  (0.027)  (0.032) (0.032)
Controls
Population /km? 0.041** -0.010
(0.020) (0.012)
Percentage urban 0.162 -0.370
(0.148) (0.235)
Literate percentage rural 0.148 -0.448**
(0.146) (0.210)
Proportion of large farms 0.000 -0.001
(0.001) (0.002)
Road length/km? 0.002 -0.004
(0.003) (0.005)
Cropped area 0.000 0.000
(0.000) (0.000)
Constant 0.556***  0.190  0.878*** 1.241***
(0.033)  (0.133)  (0.038) (0.154)
District FE Y Y Y Y
State-year FE Y Y Y Y
N 12,063 11,987 11,065 10,975
R? 0.887 0.888 0.939 0.940

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level.

All regressions are weighted by the proportion of district area devoted to rice or wheat.
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Table 4.3: Yield and land suitability post-Green Revolution by region: Rice

Dependent variable: In(Yield) Rice
North  Central  East South

(1) (2) 3) (4)

Suitability x GR 0.081  -0.005  0.022  0.082%**
(0.064)  (0.141)  (0.026)  (0.025)

GR 0.151%*  0.023  0.019  -0.053
(0.064)  (0.071) (0.031)  (0.043)

Controls
Population /km? -0.021  -0.009  0.051%*  0.021
(0.051)  (0.064) (0.025)  (0.028)
Percentage urban -1.400%* 0.253 -0.140  1.2171%**
(0.688)  (0.537) (0.157)  (0.273)
Literate percentage rural -1.668**  0.720 -0.196  1.124%%**
(0.690)  (0.902) (0.129)  (0.420)
Proportion of large farms -0.224 0.264 0.000 -0.073
(0.250)  (0.228)  (0.001)  (0.073)
Road length/km2 0.007 0.004 0.002 -0.004
(0.007)  (0.020) (0.004)  (0.005)
Cropped area -0.000 0.001 0.000 0.001°%*
(0.000)  (0.001) (0.000)  (0.000)
Constant 2.804***  -0.490 0.239 -0.300

(0.655)  (0.612) (0.175)  (0.266)

District FE Y Y Y Y
State-year FE Y Y Y Y
N 706 2,402 5,961 2,647
R? 0.932 0.797 0.829 0.823

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district
level.
All regressions are weighted by the proportion of district area devoted to rice or wheat.
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Table 4.4: Yield and land suitability post-Green Revolution by region: Wheat

Dependent variable: In(Yield) Wheat
North  Central East

(1) (2) 3)

Suitability x GR 0.069***  0.024  0.118%**
(0.023)  (0.061)  (0.041)

GR -0.038  -0.015  -0.082%
(0.054)  (0.065)  (0.042)

Controls
Population /km? 0.042 0.070 -0.017
(0.034)  (0.045)  (0.013)
Percentage urban -0.852**  1.436**  -0.306
(0.295)  (0.688)  (0.312)
Literate percentage rural -0.386 0.503  -0.750**
(0.397)  (0.360)  (0.305)
Proportion of large farms 0.029 -0.050 -0.001
(0.176)  (0.101)  (0.002)
Road length/km? -0.005  -0.032* 0.000
(0.005)  (0.018)  (0.006)
Cropped area 0.000 -0.000 0.000
(0.000)  (0.000)  (0.000)
Constant 1.756%F*  0.198  1.334%**
(0.390)  (0.304)  (0.191)
District FE Y Y Y
State-year FE Y Y Y
N 749 2,974 5,978
R? 0.969 0.903 0.914

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at
the district level.

All regressions are weighted by the proportion of district area devoted to rice or wheat.
Districts in Southern region are excluded due to unsuitable wheat growing conditions
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to driving production increases for the country as a whole, the consolidation of favourable

land quality was highest.

For wheat, a stronger regional pattern emerges. Both for northern and eastern states, there
was on average a consolidation of productive advantages, implying gains to a standard
deviation increase in land quality of around 6-10%. For both of these areas, estimates
are significant below the 1%. In central areas, this coefficient is still estimated to be
positive but is not statistically significant. It should be noted that the effect of wheat is
not estimated for southern districts owing to the fact that there is little variation in land
suitability, owing to the general unsuitability for wheat growth in these areas. Overall,
these regional regressions indicate that the consolidation of favourable land following the

onset of the Green Revolution followed a fairly widespread regional pattern.

4.5.3 Dependence on land suitability over time

In the previous results, the effect of Green Revolution technology is modelled using a single
dummy variable to indicate years after onset of the Green Revolution in a district. This
captures the average gains to land quality for all periods following the Green Revolution’s
onset. To investigate the extent to which this effect may have varied over time, Figure 4.5
displays the coefficient estimates when district land suitability is interacted with a dummy
variable for each year. The magnitude of each coefficient is reported relative to the year

of adoption of HY'V seeds.

In panel (a) the coefficient estimates for rice are shown. There is a clear, steady upward
trend seen over time, suggesting that the returns to land quality become more important
as technology matured. Encouragingly, for the years before the onset of the Green Rev-
olution, it can clearly be seen that there is a generally very noisy relationship between
land suitability and yield. This adds support to the theory that the introduction of Green
Revolution technology was the driving force behind the consolidation of yield gains on

more naturally suited land.

For wheat, in panel (b), a similar pattern emerges. It does, however, seem that gains to

land quality were particularly large for a short period after the adoption of technology.
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This effect was tempered somewhat in the years after, although the value of this coefficient

is consistently positive following the onset of the Green Revolution.

4.5.4 Heterogenous adoption of HY Vs

Evidence presented in the previous sections shows that there is a clear positive relationship
between increases in yield and higher quality land following the Green Revolution. To get
a better understanding of why this might be, I investigate whether higher yield gains
due to land quality were driven by heterogeneous adoption of seeds succeeding the Green
Revolution. If higher levels of adoption were seen on better quality land, then this would
provide some evidence to suggest that gains in yield were not realised due to lower adoption
on different types of land. To investigate this, I estimate equation 4.5. The only difference
between this equation and my main estimating equations is the dependent variable used.
In this case, I specify proportion of crop area devoted to HY Vs. This is specified separately
for rice and wheat. One shortcoming of the ICRISAT data used in this study is that the
data covering the use of HY'V seeds becomes very patchy in the 1990s, with around half of
all districts showing missing data for area under HYVs after 1994.2° Accordingly, I only
study the relationship between HY Vs and land suitability up until this year, in order to

maintain the vast majority of districts in my sample.

These estimates are shown in Figure 4.6. In both cases, there does not appear to be a
clearly discernible pattern in differences in the proportion of crop area planted to HY Vs
on varying land suitability over time. For rice, there is a small amount of evidence sug-
gesting that proportion of cropped area was higher on better land, although the confidence
intervals for this estimate are very wide. For wheat, the estimation is statistically more
significant although the coefficients are estimated very close to zero for the vast majority

of the sample.

29This may reflect that by 1994, 67% of rice area was cropped using HYVs and 80% of wheat area was
planted with HY Vs. As such, interest in collected data on HY Vs may have waned because their use became
so widespread.

168



*SO[(RLIRA [OIUOD PUR SULID) $)09]J9 PIXY IeaA-AQ-99R)S PUR JOLISIP )0 SOPN[OUI UOISSAISAI 9Y ], 'SA AH Iopun rare doo jo uoryrodoad st spqerrea juepusdsp
oY, ‘7 poued oW} DR I0J oInseawr A[IGRIMNS JOLIISIP 9} ST YOIYM #Y X L[] /)S U9} UOIIORIDIUL 91} UO JUSIOIJO0D 9} JO anfea oY1 Moys sydeir) :9j0N

10 %56 Bddn - -o- - -
JELWISS JUSDIYSTD

1D %56 FEmaT -

12> %g6 =ddn - - - - -
1D %56 SMaT - - - - - SIEWNASS USRIRS0D
B3 1B
000g 0BEL 0861 0461 0961 000g 0BEL 086 0Z6L 086L
- r —-.I ... "
\ . ,.,_ ¥ .__ : -
\..,_,.,_,F\u\ >>§ 0 '
o Lo
v Ly
! |m—| n i

reoyM (q)

oory (®)

owir) I9A0 AJ[Iqeims pue] pue pajue[d vare A X[ usemiaq diysuorie(oy 9y 2Insig

169



4.5.5 Access to irrigation

To test whether the relative gains to land quality were consistent across irrigated and
rain-fed areas, I divide the sample according to the amount of irrigated area in a district.
I follow Fan et al. (2000a) in classifying a district as irrigated if more than 50 percent of
crop-specific area is irrigated. The results show a clear pattern. The relative importance of
land suitability following the Green Revolution increases significantly in irrigated districts.
For rice, a standard deviation increase in the index of land suitability increases yields by
4% (significant at the 5% level) following the Green Revolution. For wheat, this effect
amounts to gains of 9 percent and is highly significant at the 1% level. In contrast to rain-
fed areas, the relative gains to land suitability are not statistically significant from zero.
These results suggest that irrigation played an important role in facilitating the growth
of HY'Vs on higher quality land. Indeed, the availability of water may itself have been a
key factor in enabling farmers in more productive areas to exploit the complementarity
between HYVs and higher quality land. This supports the view that although aspects
of natural suitability such as climate and soil quality were important determinants of the
suitability of an area for successful growth of HY Vs, the availability of irrigation was crucial

to whether these areas could take advantage of these beneficial natural characteristics.
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Table 4.5: Yield and land suitability post-Green Revolution: Irrigation

Dependent variable: In(Yield) Rice Wheat
Rainfed Irrigated Rainfed Irrigated
n @ (3) (4)
Suitability x GR 0.026 0.043%* -0.009  0.091°%**
(0.027)  (0.024) (0.091) (0.020)
GR 0.021 0.049 -0.047 -0.039
(0.031)  (0.043) (0.041) (0.040)
Controls
Population /km? 0.033 0.049 0.113**  -0.010
(0.025)  (0.041) (0.056) (0.014)
Percentage urban 0.055 0.660 -0.896 -0.324
(0.140)  (0.413) (0.816) (0.242)
Literate percentage rural 0.126 0.013 -0.527  -0.485**
(0.184)  (0.281) (0.523) (0.237)
Proportion of large farms -0.000 0.001 -0.002**  0.002***
(0.001)  (0.002) (0.001) (0.000)
Road length/km? 0.002 0.001 -0.019 -0.005
(0.005)  (0.006) (0.020) (0.005)
Cropped Area 0.000 0.000 0.001 0.000
(0.000)  (0.000) (0.001) (0.000)
Constant -0.120 0.451 0.479 1.487#%*
(0.160)  (0.325) (0.441) (0.160)
District FE Y Y Y Y
State-year FE Y Y Y Y
N 7,224 4,763 4,185 6,790
R? 0.820 0.912 0.858 0.942

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level.

All regressions are weighted by the proportion of district area devoted to rice or wheat.
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4.6 Discussion

Innovations in agricultural technology during the Green Revolution allowed farmers across
India to achieve higher crop yields and increase the supply of food. Whilst this was highly
successful from an aggregate production perspective, evaluating the shortcomings of the
Green Revolution is an important part of a balanced assessment. In particular, if these
shortcomings are relevant for understanding the future of agriculture in the country, as-
sessing their importance is integral to learning about the vulnerability of the agricultural
sector in the future. Over recent years, a growing number of studies have focused on
estimating the role that environmental factors, such as climate, have on agricultural out-
comes (see Mendelsohn et al. (1994)and Deschenes and Greenstone (2007) for examples
of prominent approaches used). However, a smaller amount of evidence exists about how
changes in production techniques over the long-run have changed the importance of nat-
ural constraints. Recent work by Hornbeck (2012) and Olmstead and Rhode (2008, 2010)
has argued that historical evidence of the relationship between agricultural outcomes and
environmental quality is important for learning about the extent to which technological
innovation has altered agriculture’s dependence on the environment. Such evidence is im-
portant for evaluating the long-run persistence of environmental features that are integral
for agriculture. For instance, the costs of climate change, which could make many areas
hotter and rainfall more erratic, will be larger if technologies have primarily exploited
more beneficial environments, such as those with moderate temperatures. This is because
a farmers’ ability to utilise technologies under harsher conditions will be more limited if
technologies require a set of increasingly favourable agro-climatic conditions with which to
grow. The results of this paper indicate that this was the case for the Green Revolution in
India. This paper does, however, only provide a partial understanding of how agriculture
becomes relatively more dependent on agro-climatic factors over time. One limitation of
the way in which agro-climatic conditions are assessed in this study is that it is not possible
to disentangle the relative contribution of the various factors that determine the index of
suitability. This lays out the possibility for future work to help further our understanding

of specific agro-climatic characteristics have been most important for the complementary
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relationship between technology and agro-climatic factors over time.

Furthermore, broader criticisms of the Green Revolution also point to its reliance on other
types of resources that may be subject to degradation in future. For instance, the role
of water was integral to successful growth in many areas (Fan et al., 2000a). Increasing
scarcity of water, especially from groundwater sources, may make growing conditions even
more challenging in the future. This presents an additional challenge for policymakers,
since the set of ‘optimal’ conditions under which the Green Revolution thrived may be sub-
ject to substantial stress in the near future. This suggests that policy should shift focus to
future agricultural development that puts these constraints at the forefront of developing
new technologies to help continue and bolster the productivity of Indian agriculture. The
arguments put forth in this paper maintain that the reason for the patterns of productivity
growth since the Green Revolution were likely to have been driven by biological innova-
tions in seed technology. It is perhaps not a surprise therefore, that technologies tended to
favour areas that would deliver the highest yield increases, since a primary policy objective
of researchers and policymakers before the onset of the Green Revolution was to increase
aggregate food production (Baranski, 2015). In this objective they were undeniably suc-
cessful. However, in order to continue to increase productivity in the future, this model of
development is likely to be less suitable and not sustainable. Given that climate change is
projected to increase the challenges to crop growth differently in many areas of India, the
model of centralised research based on developing a small set of technologies that grow
successfully under a wide range of conditions will be of less use. Localised, targeted ap-
proaches to technological development may be of more use for generating new technologies
that can be tailored to specific growing areas or certain environmental stresses, such as

drought tolerance.

4.7 Conclusion

This paper studies how technological change in agriculture affects the relative importance
of environmental characteristics, such as climate and soil quality, in determining agricul-

tural productivity. The use of high resolution land suitability data is a key part of this

173



paper, since it allows for an accurate measurement of agro-climatic factors important for
crop growth. In addition to this, variation in crop suitability within areas that share similar
institutional characteristics allows for the comparison of crop yield growth between dis-
tricts exposed to a similar set of policies over the period studied. The findings of this study
suggest that the gains in yield witnessed since the Green Revolution have placed a greater
emphasis on exploiting characteristics of the environment that make an area more natu-
rally advantageous for agriculture. Specifically, relative yield differences due to variation
in these characteristics have increased in magnitude as agriculture moves from a state of
low technology into an increasingly productive state. Overall, these results reinforce claims
that the Green Revolution model of development, which relied on centralised technological
innovation processes to increase aggregate production, increased inequalities with regards
to differences in land quality. The consequence of the increased exploitation of favourable
land characteristics to generate productivity gains signals a challenge for future of Indian
agriculture. Whereas these efforts to increase the production of agricultural goods in the
twentieth century relied on the complementarity between technology and environmental
characteristics to meet food security needs, the onus will increasingly fall on technologies
that can successfully substitute for less favourable characteristics. These technologies will
be important both for increasing the productivity of less favourable areas and for ensuring
technologies maintain their effectiveness under future environmental stress due to climate

change.
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Abstract

The effectiveness of adaptation strategies is crucial for reducing the costs of climate change in
agriculture. Using plot-level data from a specifically designed survey conducted in Pakistan, we
investigate the productive benefits for farmers who adapt to climate change. The impact of imple-
menting on-farm adaptation strategies is estimated separately for two staple crops grown across
Sindh and Punjab provinces: wheat and rice. We employ an endogenous switching regression model
to account for the possibility that farmers self-select into adapting to climate change. Estimated
productivity gains are 9 percent for rice farmers who adapted but negligible for wheat. Counter-
factual gains for non-adapters were significantly larger. We found evidence of unobserved selection
into adaptation, with more productive farmers more likely to adapt. Other factors associated with
adaptation were formal credit mechanisms and extension services, underscoring the importance of
addressing institutional and informational constraints that inhibit farmers from improving their

farming practices.
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5.1 Introduction

LIMATE change is likely to be problematic for the food security of farmers in
Pakistan. Annual average mean temperatures in the country have increased
by 0.47°C since 1960, with current projections from regional climate models

predicting that temperatures in the last quarter of this century will increase by around 3°C
relative to 1961-90 (Chaudhry et al., 2009; Islam et al., 2009). Observed rainfall has also
become more erratic with extreme precipitation events now increasingly common (Hijioka
et al., 2014; Turner and Annamalai, 2012). As a largely arid country, future climate change
is likely to exacerbate already challenging growing conditions. With 45% of the labour
force employed in agriculture and 24% of gross domestic product derived from the sector
(Government of Pakistan, 2010), the resilience of agricultural production to climate change

is of high importance to the continued development of Pakistan’s economy.

Many studies predict that climate change will have a negative effect on average crop yields
(Auffhammer and Schlenker, 2014). Economic studies typically estimate the cost of cli-
mate change using cross-sectional (Mendelsohn et al., 1994) or panel estimation techniques
(Deschenes and Greenstone, 2007). Similar methods applied in Pakistan have estimated
significant negative effects due to climate change for widely grown staple crops like rice
and wheat (Siddiqui et al., 2012). What is less clear from these approaches, however, is
the impact that adaptation might have in offsetting the effects of climate change. Whether
effective means of adaptation can be identified is a key part of reducing the uncertainty of
climate impacts and informing policy about how best to reduce these costs in the future

(Fankhauser et al., 1999; Auffhammer and Schlenker, 2014).

To estimate the impact of adaptation, we study its role in explaining the crop productivity
of farmers who have already altered their agricultural activities in response to perceived
changes in climate. We focus our interest on autonomous adaptations, which are those

1

undertaken by individual farmers.” These adaptations are key to altering agricultural

systems in the future given that they are likely to be implemented most efficiently based

"While planned adaptations carried out by governments or other institutions may also be important at
ameliorating the costs of climate change (Lobell and Burke, 2010), we constrain our interest to autonomous
adaptation.
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on farmers’ private interests (Mendelsohn, 2000). Identifying the impact that adaptation
measures have on current yields is important to understanding whether already available
technologies or practices could ameliorate projected adverse impacts of climate change.
In addition, by measuring the impact of adaptation on current farm yields, we consider
whether there are gains to food security in the short-term. If such gains exist, identi-
fying barriers to adaptation and encouraging use of these practices should be a primary

consideration for policymakers interested in immediate economic development goals.

This paper is the first to study the impact of climate change adaptation strategies in
Pakistan.? We use a new cross-sectional data set collected in 2013 from a specifically
designed survey of 1,422 farm households of Sindh and Punjab provinces. The study
was conducted to understand how agricultural households in the major agricultural areas
of the country produce and how a range of household and institutional features affect
production. The survey also collected detailed information on the range of adaptation
strategies that farmers use to adapt to climate change. The various strategies employed
include switching crop types or varieties, changing farm inputs, as well as soil and water

conservation practices.

We apply an endogenous switching regression first used by Di Falco et al. (2011) to es-
timate the productive effect of adaptation in agriculture. Since the decision to employ
adaptation practices may be the result of unobservable differences between farmers, stan-
dard regression techniques such as ordinary least squares may result in biased impact
estimates. The endogenous switching framework allows us the estimate the impact of
adaptation by comparing observed productivity with counterfactual productivity. Thus,
it is possible to estimate the gains from adaptation for groups of farmers who actually

adapted and for farmers that did not adapt.

To build on earlier studies, we estimate the impact that adaptation has on the produc-
tivity of two of the most widely grown crops in Pakistan: wheat and rice. Since climate
change may affect the productivity of these crops unevenly (Siddiqui et al., 2012) and

that agronomic constraints and farm management options differ across these crops, it is

2Most of the literature on the microdeterminants and impact of adaptation strategies has been conducted
in the context of African agriculture. A useful review of these studies can be found in Di Falco (2014).
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important to understand whether adaptation has heterogeneous effects for different crops.
Additionally, consideration of the institutional determinants and constraints to adaptation
is of high interest in a country with a complex mix of formal and informal institutions.
Identifying relevant characteristics that determine whether or not farmers adapt to cli-
mate change is crucial to providing policymakers with information about what constrains

farmers from undertaking adaptation.

The results of this study show that the productive benefits of adaptation are heterogeneous
across crops in the sample. For wheat, we estimate a positive but not statistically signif-
icant impact of adaptation. For rice, however, the estimated impact implies productive
gains of 9 percent. Estimated potential gains from adaptation for non-adapting farmers
are significantly larger, indicating barriers to employing measures to adapt to changes
in climate. For both crops there is evidence of selection into adaptation suggesting that
farmers who have adapted to climate change in Pakistan are more productive than the
average farmer. There is also suggestive evidence about characteristics that drive the de-
cision to adapt. Credit seems to be important for adaptation. However, households that
received credit from informal sources such as middlemen, were significantly less likely to
adapt. This underscores the importance of a well-functioning credit market for funding
changes in farm practices. There also seems to be significant scope to expand the reach
of extension services to encourage adaptations since these services are only utilised by a

small proportion of the sample.

The remainder of the paper is structured as follows. Section 5.2 reviews issues the sur-
rounding climate change impact and agriculture. Section 5.3 describes the survey and the
variables used in the paper. Section 5.4 outlines the empirical specification of the study
with Section 5.5 presenting the results. Finally, Section 5.6 discusses implications of the

results and concludes.
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5.2 Adapting agriculture to climate change

While the literature investigating impacts of climate change in agriculture has grown sub-
stantially, work on possible adaptative responses is smaller in comparison (Auffhammer
and Schlenker, 2014). Modelling approaches have focused more on identifying the effects of
weather and climate variables on agricultural production. For instance, Mendelsohn et al.
(1994) use a hedonic approach where cross-sectional variation in climate conditions and
land use enables them to estimate the costs of climate change on farm values. The strength
of this approach is its ability to implicitly model the range of adaptation available to farm-
ers (Schlenker et al., 2006). With ample data, panel approaches to measuring economic
impacts concentrate on estimating the reduced form relationship between weather vari-
ables and economic activity while accounting for potential bias induced by locational time
invariant factors (see (Deschenes and Greenstone, 2007; Schlenker and Roberts, 2009)).
An extension of this approach by Burke and Emerick (2016) uses long term climate trends
to identify the degree to which adaptation has occurred. A key limitation of these ap-
proaches is that they do not provide policymakers and researchers with an idea of specific
strategies available to farmers to adapt to climate change and the efficacy of these mea-
sures. While extensions of the Ricardian approach have worked on incorporating explicit
types of adaptation strategies, such as irrigation and crop switching (Kurukulasuriya and
Mendelsohn, 2007, 2008), detailed information on the range of strategies available and

their direct impact is lacking.

Additionally, many studies do not consider the factors that drive the decision to adapt to
climate change. As is argued by Hertel and Lobell (2014), many technologies currently
available to farmers could have significant positive benefits. These could embody a range
of agronomic strategies or investments that could enhance productivity in the face of
environmental change. The role of autonomous adaptation, where farmers decide on their
own course of action, is of high importance in agriculture given the atomistic nature of
production which is often undertaken by a large number farmers operating on small plots
of land (Mendelsohn, 2000). Di Falco (2014) argues that it is crucial to account for a range

of ecological, social, and institutional characteristics that affect the farm-level adaptation
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decision. Studies by Maddison (2007) and Deressa et al. (2009) estimate these factors in the
context of African agriculture. Maddison (2007) finds that the majority of farmers in Africa
perceive temperatures to have increased and precipitation to have decreased. Farmers,
however, cite poor access to credit and poverty as barriers to adaptation. Similarly, Deressa
et al. (2009) find that over 50 percent of farmers in Ethiopia think that temperatures have
increased or rainfall has decreased in the last 20 years. Barriers to adaptation are found to
be access to information related to climate change as well as a lack of financial resources.
Many of the identified factors that influence the probability of adaptation taking place
are similar to those identified in the more general literature on technology adoption in
agriculture (Foster and Rosenzweig, 2010). Often, switching farming practices or adopting
new technology involves significant upfront costs which are hard to bear for resource-
constrained farmers. Additionally, adoption may be affected by risk or uncertainty in
relation to returns from adopting. As such, the ability of farmers to adapt may be affected
by inefficiencies in a number of markets (Jack, 2011). For instance, poor access to credit
would hinder many farmers from undertaking practices that bear a significant up-front
cost. As such, this literature highlights the importance of studying the determinants
of adaptation both in terms of farmer characteristics and also the broader institutional

environment in which farmers operate.

A method of both estimating the impact of adaptation and investigating its various de-
terminants has been applied by Di Falco et al. (2011) and Di Falco and Veronesi (2013).
This method rests on the idea that farmers have already used measures to adapt to cli-
mate change. Modelling the effect these adaptive measures have on farm productivity is
an important way of identifying how effective adaptation might be. Findings from this
approach indicate that households that adapted to climate change saw productivity ben-
efits of around 20% in terms of yield gains. Access to credit and extension services were
shown to be important determinants of adaptation among Ethiopian farmers. Whether
these results can be extrapolated outside of this context and expanded to other parts of

the world is an open question.

In the next section we detail the context of our study and discuss the variables we use to

assess the determinants and impact of adaptation. We also discuss the set of adaptations
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that we observed farmers using to adapt to climate change in Pakistan.

5.3 Data

We use data collected during April-June 2013 from a detailed household survey designed to
specifically address the determinants and impact of climate change adaptation for agricul-
tural households in Pakistan. The survey collected data on agricultural practices, house-
holds characteristics, as well as a range of institutional characteristics. In total, 1,422
households were surveyed in the provinces of Sindh and Punjab, the two most commer-
cially important agricultural areas. Within these provinces, survey sites were then chosen
to reflect a range of different agro-climatic conditions and cropping patterns. Figure 5.1
plots the location in which each survey site falls and the agro-climatic zone each falls into.
The sampling of our survey covers four areas: Barani (rainfed) agriculture in Punjab;
cotton and wheat in Punjab; cotton and wheat in Sindh; and rice growing in Sindh. In
Punjab, the survey sites were located in the districts of Chakwal, Rawalpindi, Rahim Yar
Khan, and Jhang. In Sindh, responses to the survey were gathered across the districts of

Sangar, Sukkur, and Larkana.

Figure 5.1: Map of Survey Sites and Agro-climatic Zones in Sindh and Punjab

1 Rice/Wheat Punjab Agroclimatic Zones
2 Mixed Punjab
3 Cotton/Wheat Punjab Map reference Numbers of
B | ow-intensity Punjab no (see left household
i b panel) Name of zone Sites Sampled sampled District population
5 Barani Punjab ) -
5 Barani Punjab Chakwal 219 1,951728
6 Cotton/Wheat Sind o
71 Rice/Other Sind Rawalpindi 209 6,058,214
81 Other NWEP 3 Cotton/wheat Rahim Yar Khan 194 5,656,859
Punjab
9 Other Baluchistaj
6 Cotton/wheat Sindh Sanghar 181 2,616,821
Sukkur 219 1,635,928
7 Rice/other Sindh Larkana 200 3,470,537

Map source: adapted from International Food Policy Research Institute’s Research Report No. 77
(IFPRI, 1989) based on an agro-climatic zone division proposed originally in Pakistan Agricultural
Research Council’s Collaborative Project Paper 86/7 (PARC/CIMMYT, 1986).
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As a preliminary to the survey, a reconnaissance study was carried out in December 2012.
18 focus group meetings were held in 3 different villages to identify key areas of interest.
Using information obtained from these meetings, a detailed household survey was designed.
The total sample of farmers were then surveyed by a team of trained enumerators. Survey
modules on household characteristics, farm production and inputs, institutional features,

and adaptation practices were collected as part of the survey.

Table 5.2 summarises variables used in the present study and their sample mean for sample

households.

5.3.1 Definition of adaptation

In this paper, we are careful to focus only on actions taken by farmers in response or
anticipation of factors attributed to climate change. Since farmers may undertake some of
these strategies as part of more general processes of agricultural technology adoption, we
require that these strategies are undertaken because of climate change for it to constitute
adaptation. Accordingly, in one section of the survey, farmers were asked: “How has your
household adapted to cope with climatic changes?” For the present study, our interest is on
the impact of autonomous, on-farm adaptation measures on productivity. In the survey,
some farmers identified off-farm work as their adaptation strategy. We do not include this
strategy in our definition of adaptation since its impact on farm productivity is ambiguous,
although we include this variable in the set of controls to study.? Similarly, we further
exclude public infrastructure investments, such as large irrigation schemes, since these are

not part of the farmers adaptation choice set.

The adaptation variable was then constructed as a binary variable equal to one if farmers
were classed as adapters and zero otherwise. To define adapters, we used a simple rule
that identified adapting farmers as those that had responded that they had used at least

one of the on-farm adaptations listed. Non-adapters were then defined as those that that

30n the one hand, income earned off-farm could alleviate household liquidity constraints allowing in-
vestment into productivity improving agricultural technologies. For example, Kousar and Abdulai (2016)
find that households that had a member working off-farm were more likely to invest in soil conservation
methods in Punjab. On the other, lost household labour could plausibly reduce productivity by reducing
the amount of household labour input available.
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had either responded that they had not adapted or did not carry out any of the on-farm
adaptations listed. To ensure that these made up mutually exclusive categories, a check
was done to test for discrepancies in these definitions. This was done by identifying whether
there were any farmers who had been classed as adapters but had also answered that they
had not adapted. This check revealed that a total nine farmers had erroneously been
categorised as adapters but had responded negatively to the adaptation question. Since
it was not possible to tell whether the farmers or enumerators had incorrectly responded
with a false positive or false negative to the adaptation question, a decision was made to

exclude these farmers from the sample.

On-farm adaptation strategies can be grouped into the following categories. These were
alterations in crop timing, crop switching, agricultural inputs, or the adoption of soil or
water conservation technologies. These are listed and described in detail in Table 5.1. The
survey revealed that the majority of farmers use a combination of these strategies. The

average number of strategies undertaken by farmers was 2.14.4

Changing crop timing is a strategy to avoid planting or harvesting during adverse seasonal
climatic conditions. For instance, higher average temperatures may mean that the planting
of summer crops needs to be brought forward to reduce exposure to high temperatures in
early growing stages. Survey responses showed that 25% of farmers who adapted used this
strategy. Of those who changed crop timings, the majority had reverted to later sowing
or earlier harvesting of crops. For wheat, farmers have switched to planting in November
rather than October. Harvesting has also taken place earlier in April or in late-May. For

rice, some farmers have switched to planting in April to May.

Changing variety or type of crop could be beneficial if certain crops grow better in more
adverse conditions. For instance, a farmer facing an increased likelihood of drought may
switch to faster maturing varieties of the same crop or switch into a different crop that is

more tolerant to lower water availability (Lobell and Burke, 2010). A study by Kuruku-

“Here we acknowledge the alternative approach taken by Di Falco and Veronesi (2013) who use a multi-
nomial endogenous switching regression model to study the importance of separate adaptation strategies.
They find that a combination of strategies is superior to strategies used in isolation in terms of their impact
on farm revenue. Strategies used in isolation do not have a statistically significant impact on household
revenue. We do not employ this method due to the problem of estimating a relevant baseline for impact
since the number of potential combinations of adaptation strategies is large.
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lasuriya and Mendelsohn (2008) found that incorporating crop switching into calculations
using the Ricardian framework significantly lowers the cost of climate change across African
farms. One-third of adapting farmers had done so by switching crops. One concern is that
by including crop switching (which includes both switching types and/or varieties) in the
definition of adaptation at the household level, we may not pick up the productivity ef-
fects since farmers may be switching out of the measured crop type. However, the survey
revealed that of households that only adapted by using crop switching, only 9 households
switched crop variety into something other than rice or wheat. The vast majority of these
households (45) switched into new varieties of wheat or rice, which in over two-thirds of
these cases meant the adoption of two recently released wheat varieties, Sehar-2006 and

Shafaq-2006.

Farmers may also change the input mix they apply to crops in response to past or expected
climate change. Perhaps the most obvious strategy is increasing the amount of water
applied to crops to counter extreme heat and/or low precipitation. Along with this, the
survey also showed that a substantial number of farmers increased the amount of fertiliser
used. This is the dominant adaptation type with over half of adapters changing inputs in

some way.

Increased temperatures and more erratic rainfall may have significant impacts on the state
of both soil and water resources, meaning that investments to conserve these resources help
farmers adapt to climate change. Higher temperatures are likely to increase the rate at
which water is lost from the soil, meaning that they will have to exert more effort into
maintaining soil moisture. In addition, heavy rainfall would increase the amount of soil
erosion, placing greater emphasis on the need to invest in techniques to reduce these
impacts. Investments to counter these effects in Pakistan include contour planting, use of

shelterbelts, or manure application. Overall, soil conservation was used by half of adapters.

Given the aridity of the climate, more efficient use of water is paramount to adaptation
strategies in Pakistan (Baig et al., 2013). These strategies are clearly important since 47
percent of adapters use them. Farmers could utilise rainwater harvesting methods or the

construction of bunds around fields to reduce run-off. Water conservation used by farmers
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Table 5.1: Types of on-farm adaptation

Category \ Description \ Used by x% of adapters
Crop timing Changed the timing of crop- 25
ping activities e.g. sowing

and/or harvesting dates have
been changed

Crop type/variety Household has either changed 34
the crop variety (e.g. switched
to a different type of wheat) or
changed the crop grown
Input alteration Change in the amount of a vari- 55
able input used. This could
relate to increased water use
on irrigated farms, higher rate
of seed, fertiliser, and/or pesti-
cide use

Soil conservation Adoption of measures to main- 52
tain the fertility of soil or re-
duce erosion. Includes the
application of organic matter
(manure, crop residue), zero
tillage methods, shelterbelts,
or contour farming

Water conservation Adoption of measures to use 47
water more efficiently on-
farm. Rainwater harvesting,
construction of bunds, land
levelling, furrow irrigation
techniques

in our sample show a distinct pattern. In areas where irrigation is scarce, bunding is the
primary strategy used. In areas where irrigation is available, more emphasis is put on

more water-efficient methods such as furrow irrigation.

5.3.2 Crop types

In this analysis we study farmers who grow either wheat or rice. The average productivity
of farmers for each crop is shown in Table 5.2. In contrast to Di Falco et al. (2011),
who estimate a model using an aggregation of five major crop types, we study each crop

separately. Aggregation of different crops into a single production function, however, may
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have significant disadvantages for studying adaptation’s effect on productivity.® Primarily,
aggregation may confuse analysis when growing conditions differ significantly or inputs
are used differently. Similarly, the seasonal nature of production in Pakistan over the
Rabi (harvested in spring) and Kharif (harvested in autumn) seasons may also complicate
the interpretation of an aggregated production function. To account for this, we estimate
separate regressions for each crop and test whether the impacts of adaptation differ between

CTOpS.

The primary crop grown in our sample is wheat. According to FAO (2013), 80% of
farmers in Pakistan grow wheat and the crop makes up around 37% of energy intake of
the population. Wheat production takes place over the Rabi season when temperatures
and rainfall are lower than the summer. Yields of wheat, however, are low based on
the agro-ecological potential of the growing environment.® A lack of suitable irrigation
infrastructure and access to productive inputs are argued to be behind persistent low
yields (FAO, 2013). The implications for wheat yields in the face of climate change are
important to whether farmers adapt. Sultana et al. (2009) use agronomic crop models to
predict the impacts of climate change on wheat yields across different climatic zones in
Pakistan. They conclude that increases in temperature will decrease wheat yields in arid,
semi-arid and sub-humid zones, although increases in temperature could increase yields in
humid areas. The authors also explore the possibility of adaptation by shifting growing
to cooler months and conclude that this might be an effective adaptation to mitigate the
effects of increases in temperature. Siddiqui et al. (2012) estimate the yield response of
district-level wheat to temperature and precipitation changes in Punjab. They conclude
that projected climate change would have a non-negative impact on the production of

wheat.

Rice is one of the most important Kharif (summer) crops grown in Sindh and Punjab. It

is important as both a food crop and cash crop. Its growth requires access to a good water

5To a certain degree, aggregation across different types of crop is hard to avoid. For instance, aggregation
is done even within the same crop type. In our sample, 19 different wheat varieties are grown. It is plausible
that factors such as input requirements may substantially differ even within crop types.

5There is a significant amount of variation in the varieties of wheat grown across Sindh and Punjab.
Different varieties may be more suited to location-specific agronomic factors. Smale et al. (1998) use district-
level data from Pakistan’s Punjab to show that the diversity of wheat varieties grown is synonymous with
higher yields and lower variance of yields in rainfed areas.
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Table 5.2: Variable summary

Variable name Description Mean SD
Adaptation

Adapt 1 if adapted to climate change, 0 otherwise 0.47 0.49
Productivity

Yield (Wheat) Wheat output (maunds/acre) 18.22  10.38
Yield (Rice) Rice output (maunds/acre) 31.39 18.10
Explanatory variables

Plot size (acres) Crop area (acres) 4.07 4.39
Total land (acres) Household land (acres) 8.49  11.03
Seed (kg/acre) Seed used (kg/acre) 36.33  46.13
Fertiliser (kg/acre) Fertiliser used (kg/acre) 2.84 2.38
Labour Adult labourers (number) 4.12 4.19
Irrigated 1 if plot is irrigation, 0 otherwise 0.76 0.42
Maximum education Maximum household education (1-7) 1.12 2.03
Females in household Percentage of females in household 0.45 0.14
Work off-farm 1 if household member has off-farm job, 0 otherwise 0.59 0.49
Owns livestock 1 if owns cattle or buffalo 0.73 0.44
Bank credit 1 if credit from formal finance institution, 0 otherwise  0.08 0.27
Informal credit 1 if credit from informal lender, 0 otherwise 0.19 0.40
Owns land 1 if land is owned, 0 otherwise 0.74 0.43
Formal extension 1 if receives formal extension services, 0 otherwise 0.07 0.24
Affected by flooding 1 if affected by flooding (2010-2012), 0 otherwise 0.62 0.48
Village school 1 if village has a school, 0 otherwise 0.87 0.33
Ave. temp increase Perceives average temperature increased 0.79 0.40
Change in rain amount Perceives amount of rain changed 0.88 0.31
Change in rain timing Perceives timing of rainy season changed 0.08 0.27
Extreme events inc e Perceives extreme events (drought, flood) increased 0.55 0.49

supply mostly supplied by irrigating the crop during the hot summer months, although it
is sometimes grown under rainfed conditions. Given that high summer temperatures are
already present across rice growing areas in Pakistan, increased temperatures driven by
climate change have been projected to negatively affect rice productivity (Siddiqui et al.,

2012).
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Table 5.3: Characteristics of adapters and nonadapters: Differences

Adapters Non-adapters Difference

Productivity
Yield (Wheat) 19.58 17.20 2.38%**
Yield (Rice) 33.94 28.37 5.56%***

Explanatory variables

Plot Size 4.60 4.24 0.36
Total land (acres) 9.82 7.68 2.13%%x*
Seed 56.97 44.33 12.64***
Fertiliser 3.00 2.51 0.48***
Labour 4.05 4.32 -0.26
Trrigated 0.82 0.62 0.19%**
Maximum education 0.78 1.17 -0.39%%*
Females in household 0.46 0.43 0.03%**
Work off-farm 0.54 0.68 -0.13***
Owns livestock 0.78 0.69 0.09%**
Bank credit 0.10 0.04 0.06%**
Informal credit 0.16 0.22 -0.05%*
Owns land 0.72 0.77 -0.05%*
Formal extension 0.08 0.04 0.047%**
Affected by flooding 0.69 0.52 0.17%**
Village school 0.88 0.86 0.02
Ave. temp increase 0.82 0.76 0.06%**
Change in amount of rain 0.89 0.88 0.01
Change in timing of rainy season 0.09 0.06 0.03
Extreme events increase 0.56 0.51 0.04
Chakwal 0.07 0.19 -0, 11K
Jhang 0.13 0.12 0.01
Rahim Yar Khan 0.13 0.06 0.07%**
Rawalpindi 0.01 0.10 -0.09%**
Sanghar 0.17 0.14 0.03
Sukkur 0.24 0.17 0.07***
Observations 746 916 1662

*p<0.1, **p<0.05, ***p<0.01
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5.3.3 Variables

The variables shown in Table 5.2 are used to conduct the empirical analysis described in
the next section. Table 5.3 additionally displays the difference in the sample mean of these
characteristics between adapters and non-adapters. As defined previously, adaptation is a
dummy variable indicating whether or not the household has adapted to climate change.
In our sample, just under half the households have undertaken on-farm measures to adapt

to climate change.

Agricultural input data was collected at the plot level to account for the fact that house-
holds often grow more than a single crop.” We also include the total landholdings of a
household to examine the relationship between farm size and adaptation. On average,
households in our sample are two acres larger than the national average which stands at
6.4 acres (Government of Pakistan, 2010). Adapters tend to be households that farm more
land. Plot-level inputs include seed, fertiliser, and labour. The labour input was computed
as the number of adult labourers working each plot of land. Differences between adapters

and non-adapters suggest that adapters are more input intensive.

We include a dummy variable indicating whether a plot is irrigated to account for the
likelihood that irrigated yields are higher than rainfed yields. It can be seen that a high
proportion of farms (76%) are irrigated, underscoring the importance of irrigation for farms

across Punjab and Sindh.

As well as production input variables, we also include a set of variables to control for
observable differences between households that could influence their productivity and like-
lihood of adapting. To control for the education status of households, we include a variable
indicating the maximum education of a household member. This variable takes values from
one if the highest level of education is that someone in the household can read and write
and seven if somebody has an advanced degree. On average, levels of education are low

although most households are equipped with basic reading and writing skills.

We include a variable to measure the gender composition of the household. Women play

"On average, households crop three different crops.
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an important part in farming activities, supplying a large amount of labour. Their role in
farming activities is often constrained, however, since they are excluded from many of the

most productive activities such as operating machinery (Samee et al., 2015).8

A crucial aspect in the decision to conduct on-farm adaptation may be the existence of
off-farm employment. To study this, we include a dummy variable indicating whether a
household member is engaged in off-farm labour. Nearly sixty percent of households have
at least one member off-farm. Interestingly, non-adapters are significantly more likely to

have at least one member that works off-farm.

As well as the decision to supplement income off-farm, the ability to generate other forms
of agricultural income may affect whether farmers engage in adaptation involving their
cropping activities. The variable Livestock was included to indicate whether the household
owned cattle or buffalo which can be used for dairy farming. The majority of households

in our sample own livestock, although adapters are more likely to do so.

Numerous studies have cited the difficulty of obtaining credit as a crucial factor in deter-
mining the ability of farmers to adapt to climate change in other settings (Deressa et al.,
2009; Maddison, 2007). Credit markets are an important feature of Pakistan’s rural agri-
cultural economy owing to the range of different types of lenders that offer credit (Aleem,
1990). They may be an important part of the adaptation decision because some adapta-
tions require significant up-front investment that may have to be leveraged with credit.
We distinguish between two types of credit. Formal credit is provided by established insti-
tutions like banks and microfinance organisations. Chandler and Farugee (2003) find that
formal credit only accounts for 7% of households who are in receipt of credit, but makes
up 22% of the volume of loans since formal loans are larger than informal loans. Informal
credit is provided by a range of actors, such as family members or landlords. Most salient
in Pakistan is the role of the middleman who often supplies credit in exchange for pro-
viding farmers with marketing services. There is a common perception that middlemen
charge high rates of interest on loans (Haq et al., 2013), although it is argued by Aleem
(1990) that higher rates of interest reflect high screening costs and the riskiness of lending

8A related paper by Udry (1996) documents that plots farmed by women in Burkino Faso have yields
30% lower than those controlled by men due to unequal access to farm inputs.
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to farmers. We test for the role that different types of credit play by including dummy
variables for farmers in receipt of both formal and informal lines of credit. Only a small
proportion of households in our sample have access to formal credit, while a fifth of house-
holds are reliant on informal credit. More adapters use formal credit whereas non-adapters

use more informal credit.

A variable to indicate whether the household owns their land is included to test whether
property rights are an important institutional determinant of adaptation. Different land
rights may affect the decision to adapt. For instance, Jacoby and Mansuri (2008) link
higher investments in land-improving practices with the security of tenure in Pakistan.
Similarly, Ali et al. (2012) show that investments in land and farm productivity are lower
for leased relative to owned land in Punjab. Of the farmers sampled here, three quarters

own their land.

Formal extension services, those provided by government and NGOs, may be one way in
which farmers learn about new farming information. Those that are best informed about
suitable adaptation practices may be more likely to adopt these practices. For instance,
work by Hussain et al. (1994) concludes that the Training and Visit extension programme
in Punjab in the late 1980’s was successful at encouraging the adoption of new agricultural
technologies. A surprisingly low proportion (7%) of farmers are in receipt of these services

in our sample, although adapters are more likely to be in receipt.

Given the heavy losses endured due to flooding between 2010-2012 in areas of Sindh and
Punjab, the experience of extreme events may condition whether farmers adapt to climate
change. On the one hand, experience of extreme events may prime the farmer to the
possibility of such events in future. On the other, extreme events may have prolonged
effects that constrain a farmer’s ability to invest in costly adaptive measures. We thus
include a dummy variable to indicate whether households have experienced income losses
due to flooding in the last three years. Over sixty percent of farmers experienced losses
due to flooding in the years prior to the survey, with more adapters experiencing flooding

than non-adapters.

Factors at the village-level could reflect the relative development of some areas over others.
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To proxy for these factors we indicate whether a school is present in the village. Schools

are present in the vast majority of villages sampled.

The final four variables in the table relate to farmers’ subjective opinions about whether
the climate is changing. Since a necessary condition for adapting is the perception that
the climate is changing, we investigate which aspects of the climate farmers think are
changing. The first variable in this set shows that the majority of farmers, 79 percent,
perceive average temperatures to have increased, although this proportion is greater for
adapters. An even larger proportion felt that the amount of rain was changing, reflecting
the observation that the South Asian summer monsoon has become more erratic (Singh
et al., 2014). Only a low proportion of farmers perceive the timing of this phenomenon
to have changed, however. Given the experience of extreme events previously mentioned,
we also include a variable that relates to whether extreme events, defined as droughts and

floods, have increased in frequency. Over half the sample perceives this to be the case.

5.4 Empirical framework

5.4.1 Theoretical model

To model the impact of adaptation on farmer productivity an endogenous switching frame-
work is employed. This has previously been applied to the study of climate adaptation

and crop productivity by Di Falco et al. (2011).

We begin by assuming that farmers are risk neutral and therefore evaluate the benefits of
adaptation based on their productive benefits.? Farmers will choose to adapt to climate
change if the expected benefit is greater than not adapting. We assume that the necessary
condition for adaptation is that productivity under adaptation is higher than under no
adaptation. This can be represented by an unobserved variable A which represents a
farmer’s productive benefits from adaptation. We can express the decision to adapt based

on a set of observed Z; and unobserved w; factors. The observed factors could include

9In assuming risk neutrality, we do not consider the role risk aversion may play in the adaptation
decision.
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household characteristics and other variables that affect the benefits from adapting to

climate change. This decision can be expressed as:

A = Zm + w; (5.1)

where

Az:1lfA:<:ZZ7T+wZ>O
or

AiZOifA;k:Ziﬂ'—l—wiSO

where the variable A; represents the observed decision to adapt or not.

An important empirical concern in impact evaluation is the possibility that unobservable
farmer characteristics affect both the decision to undertake adaptation and the productiv-
ity of farmers. As such, farmers self-select into adaptation in ways that do not mimic an
idealised experiment where adaptation is the result of a random allocation process. Simple
approaches to estimating the impact of adaptation by including a dummy variable in single
production function, such as by ordinary least squares, could result in inconsistent esti-
mates of the impact of adaptation on productivity. An example could be that households
that have better farm management skills are likely to be more productive and also have
a higher propensity to adapt their farming activity to climate change. In this case, the
influence of such an unmeasured characteristic could lead us to over-estimate adaptation’s

impact on crop productivity.

To address concerns about selection bias in estimating the impact of adaptation, we use an
endogenous switching regression model. This method is based on that of Heckman (1979)

who treats selection bias as an omitted variable that can be estimated.

To empirically estimate this relationship, the sample is split in two based on whether the

household has adapted or not:
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y1i = X1iB1 e if A =1 (5.2)

Y2i = XoiBy + €2, if A; =0 (5.3)

The variables y1; and y9; represent crop yields for adapters and non-adapters respectively.
The vectors X1; and Xo; contain explanatory variables and 3; and B3, are vectors of

estimated coefficients. The errors for each equation are contained in €1; and eg;.

As mentioned previously, the possibility that farmers self-select into adaptation may lead
to correlation between the error terms in the production equations and the error in the
selection into adaptation equation. The correlation between these terms represented in the
covariance matrix 3 containing the three error terms €1;, €9; and w;. These are assumed

to be distributed with trivariate zero mean and take the form:

2
O’w le O’UJQ
3= Owl O]
2
0,2 . o5

where o2 represents the variance of the error term in the selection equation. Similarly,
the variances of the production equations are represented by o} and o2. o1, and o,
are the covariances between the errors in the selection and production regimes 1 and 2
respectively. Since the outcomes of regimes 1 and 2 are not simultaneously observed for
each household, the covariance between the two production equations are not specified

and are represented simply with a dot (.).

In the presence of selection bias, the expectations of the error terms for the two produc-
tion regimes will be non-zero depending on whether farmers have adapted or not. Thus,

conditional on sample selection, the expected error terms can be expressed as follows:
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E[€1i|Ai = 1] = O'wld)(L

®(Zm) (5.4)
= 0w1A1
and
¢(Z;m)
Elegi|A; = 0] = —opo—7—
[€2i] 0] = —owoy— B(Z7) 55
= 0,22

where ¢ and ® are standard normal probability distributions and standard normal cumu-
lative distributions respectively. The terms Aj; and Ao; are interpreted as inverse Mills
ratios (Heckman, 1979) which are included in the productivity equations as explanatory

variables to account for any selection bias.

Of empirical interest is the direction of correlation between the decision to adapt and

productivity. This relationship can be written as:

pL=001/0,01 (5.6)

and

p2 = 02/002 (5.7)

were the terms p; and ps are correlation coefficients between the error term in the selection
equation w; and the errors from the productivity equations €1; and es; respectively. The
sign and significance of the estimated correlation coefficients p; or ps indicate the presence
of selection bias since unobservable factors associated with productivity are correlated
with unobserved characteristics that determine whether farmers adapt to climate change.
If either of these coefficients is significantly different from zero, it can be concluded that
there is evidence of unobserved selection into adaptation which would likely bias estimates

of the impact of adaptation on crop productivity using straightforward techniques such as
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OLS.

The estimation of the parameters of the model are estimated using the full information
maximum likelihood procedure. This involves the simultaneous estimation of both the
selection and production equations and is superior to two-step estimators which are inef-

ficient in deriving standard errors of the parameters (Lokshin and Sajaia, 2004).

5.4.2 Treatment effects

The aim of this study is to identify whether the use climate change adaptation strate-
gies have increased the productivity of farmers measured in terms of yields, expressed in
maunds per acre. To estimate this impact, we use the standard treatment effects frame-
work to estimate yields of farmers in a counterfactual adaptation scenario. Adaptation is
defined as the treatment variable which can take discrete values 0 or 1, where D = {0, 1}.
Following Heckman et al. (2003), the expected value of the crop productivity Y;; for farmers

that adapted can be written as:

E(Yi1|D =1) = X181 + 0w A (5.8)

where the last term adjusts for unmeasured characteristics of the adapters in the sample.

In the same way, the outcome Y;s for non-adapters is expressed as:

E(Yi2|D = 0) = X 2By + 0w2A2i (5.9)

These equations represent the observed outcomes for the adapters and non-adapters. The
switching regression framework can also be used to estimate counterfactual outcomes for
adapters and non-adapters. For the adapters, the counterfactual is the scenario where

they do not adapt, represented by:

E(Yi2|D =1) = X 1,89 + 0w2A1i (5.10)
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The case where non-adapters do adapt can be represented similarly as:

E(Yi1|D =0) = X2i8; + 0w A2 (5.11)

Using a generalised treatment effects framework, the impact of adaptation can be estimated
for adapters and non-adapters. The average predicted effect of adaptation on those that

adapted is calculated as the average treatment effect on the treated (ATT),

ATT = B(Ya|D = 1) = B(Ya|D = 1)

= X1i(B1 — Bo) + (01w — 020) M1

(5.12)

The predicted impact of adaptation on those that did not adapt can be calculated as the

average treatment effect on the untreated (ATU), defined as

ATU = E(Ya|D = 0) — E(Yi2|D = 0)

= X2i(81 — Ba) + (010 — 020) Az

(5.13)

Estimating the ATU is useful for assessing whether any potential productive gains from
adaptation could be extended to those who have not yet adapted. If this effect is posi-
tive, this could provide motivation for policies to further the reach of existing adaptation

practices.

5.4.3 Selection instrument

Estimation and identification using the endogenous switching approach requires the in-
clusion in the selection equation of at least one variable that affects the probability of
adapting but not the productivity of farmers.!® Di Falco et al. (2011) use climate infor-
mation sources as selection instruments. We argue against the use of these instruments

in the context of this study given that our survey identified that farmers gathered advice

1074 is theoretically possible to identify this model without the inclusion of additional instruments since
A1; and Ag; are non-linear functions of the included variables in the selection equation. However, problems
of multicollinearity can make this type of identification weak in practice (Huber and Mellance, 2014).
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on farming practices and associated climate information from a range of sources including
landlords and middlemen. Since these agents may have important implications for farmers’
productivity, other than through adaptation, we choose not to follow in the use of these

instruments.

The variables we include relate to farmer perceptions about climate change. We argue that
farmers who perceive certain changes in the climate are more likely to adapt. Although we
would expect that the perception of climate change in general is a prerequisite for farmers
adapting, perceiving different types of change may be important predictors of adaptation.
For instance, farmers perceiving increases in average temperatures may be more likely to

adapt than farmers who perceive other types of climate change.

In order for these selection instruments to appropriately identify the impact of adaptation
on farmer productivity, two conditions are required. First, the instruments should not be
correlated with any unobserved determinants on the productivity of farmers (instrument
validity). Second, in order for the instruments have sufficient predictive power in explain-
ing adaptation, they must significantly correlate with the observed adaptation decision

(instrument relevance).

Although instrument validity cannot be directly tested, a way of providing support for this
assumption is to test whether the included selection instruments drive the productivity of
farmers who do not adapt. If perceptions are both informative and valid as instruments,
they should impact productivity only indirectly through the adaptation variable. Hence,
these instruments should not correlate with the productivity of farmers who have not
adapted. A test for this is carried out by Di Falco et al. (2011). They conduct an auxil-
iary regression of selection instruments on productivity using the subset of non-adapting
farmers. Only non-adapting farmers are included in this regression since if these instru-
ments were valid predictors of adaptation, they would likely be significant determinants of
productivity for farmers that had adapted.'’ Thus, non-significance of the perception vari-

ables in the productivity equation would signal that these variables were not significantly

"Since adaptation would be included in the residual of the productivity equation for farmers that
adapted, if adaptation had a significant impact on productivity, the perceptions selection instruments
would likely be significant for the adapters.
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correlated with unobserved determinants of productivity.

To test the second condition, referred to as instrument relevance, it is possible to add
empirical justification to this assumption by testing the correlation between the decision
to adapt and the selection instruments. Evidence that these instruments did not correlate
with the adaptation decision would signal the presence of weak instruments. To test this
assumption, the joint significance of the perception variables is tested. Evidence that the
instruments have sufficient explanatory power is done through a Wald test. A rejection of
then null hypothesis that these variables are jointly insignificant when included in a probit
regression modelling the decision to adapt would signal that these instruments were not

weak predictors of adaptation.

Table 5.4 shows how strongly the selection instruments perform in a) predicting the prob-
ability of adaptation and b) predicting productivity of non-adapters. The inclusion of four
climate perception variables in probit regressions predicting the probability of adaptation
are both jointly significant at the 5% level for wheat and at the 10% level for rice. This
provides evidence that the included instruments do not fail at providing sufficient pre-
dictive power and are not classed as weak instruments. It is the case, however, that the
strength of the instruments appears to be stronger for rice than wheat. An F-test of joint
linear significance of these variables in the productivity for non-adapters finds no evidence
of a statistically significant linear association for both wheat and rice, providing evidence
that these variables are not correlated with the productivity of farmers. While this test
does not mean that the selection are valid (since this assumption is untestable), but it
does add credence to the validity of the instruments since if these variables were not valid
and correlated with unobserved determinants of productivity, it is likely that the selection

variables would fail this test.
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Table 5.4: Test of the validity of selection instruments

Wheat Rice
Probit OLS Probit OLS
Adaptation 1/0  Yield (nonadapters) Adaptation 1/0  Yield (nonadapters)

Perceptions

Ave. temp increase 0.239%* -2.047 0.404* 2.395
(0.095) (1.274) (0.215) (3.944)

Change in amount of rain 0.054 0.304 -0.276 1.831
(0.125) (2.483) (0.253) (5.600)

Change in timing of rainy season 0.262* -0.666 -0.323 4.292
(0.144) (2.005) (0.284) (5.239)

Extreme events increase -0.107 -1.979 -0.398 -3.358
(0.090) (1.571) (0.237) (5.972)

Wald Statistic x?(4) 12.41%* 8.57*

F test F4,751) = 0.88 F(4,100) = 0.33

R? 0.138 0.330 0.176 0.352

Standard errors are heteroskedasticity robust
*p<0.1, ¥*p<0.05, ***p<0.01
In this table we omit the other covariates used in the regressions and only report the perception variables

5.5 Results

5.5.1 Household determinants of adaptation

We start by looking at the determinants of adaptation for each household with simple
logit regression in Table 5.5. Only households that crop either wheat or rice are included.
A binary variable indicating whether a household has adapted or not is the dependent
variable. Each explanatory variable is measured at the household level. We do not in-
clude variables measured at the plot level, such as production inputs, in this regression.
A set of district fixed effect terms are included in the regression to control for average
regional characteristics such as climate and farming practices which vary across the coun-
try.'2 Although the estimated coefficients cannot be interpreted causally, we investigate
the correlation between adaptation and these variables to see if they have the expected

relationship on the probability of adaptation.

The results show some support for the role that gender could play in the adaptation de-
cision since households with a higher proportion of women are more likely to undertake

adaptation. There is also some support for the hypothesis that adaptation on-farm is

12We initially experimented with the inclusion of weather and climate variables but found these to be
highly collinear with the regional dummy variables.
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Table 5.5: Household determinants of adaptation: logit regression

Logit regression

Dependent variable: Adapt (0/1) Coef. /se

Irrigated 0.001
(0.258)
Max educ. -0.001
(.038)
Females in household 1.092**
(0.449)
Work off-farm -0.347%*
(0.146)
Bank credit 0.586**
(0.266)
Informal credit -0.460**
(0.182)
Owns land 0.076
(0.175)
Formal extension 0.590**
(0.277)
Affected by flooding 0.906%**
(0.281)
Village school 0.586%**
(0.215)
Owns livestock 0.320%*
(0.159)
Total land (acres) 0.007
(0.006)
Ave. temp increase 0.368**
(0.179)
Change in amount of rain 0.195
(0.234)
Change in timing of rainy season 0.360
(0.257)
Extreme event increase -0.448%**
(0.171)
Constant -1.8317%**
(0.549)
Pseudo-R? 0.129
N 1065

Regression includes regional dummy variables
Standard errors are heteroskedasticity robust
*p<0.1, **p<0.05, ***p<0.01
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substitutable for working off-farm, as those households with a member off-farm are signifi-
cantly less likely to adapt. Interestingly, formal credit is positively related to the propensity
to adapt, whereas informal credit is negatively related, providing suggestive evidence that

credit channels affect the costs and benefits of investing in new technologies.

As expected, households who receive extension from the government or NGOs are more
likely to adapt. Surprisingly, previous exposure to floods is positively related to adaptation,
perhaps supporting the view that experience of extreme events primes households to adapt.
Perhaps counterintuitively, households who also own livestock are positively associated
with adaptation, not supporting the hypothesis that livestock rearing is a substitute for

adaptation.

Subjective opinions of climate change are also interestingly related to whether households
have adapted. It seems that those who adapted are more likely to perceive that average
temperatures are increasing. However, adapters are significantly less likely to perceive

extreme events, such as droughts or floods to have increased.

5.5.2 Endogenous switching regressions

In Tables 5.6 - 5.7 we present results for the crop-specific yield and determinants of adap-
tation. In column (1) of each table, coefficients are estimated by OLS where production
functions are pooled across adapters and non-adapters. Columns (2) and (3) then present
separate production functions for non-adapters and adapters. Column (4) shows the esti-

mated determinants of adaptation which are read as probit estimates.

Wheat

Table 5.6 displays the coefficient estimates for farmers who crop wheat. Column (1) first
displays coefficient estimates using OLS estimation, when adapting and non-adapters are
pooled together in the same production function. The preliminary estimate of the impact
of adaptation is shown by the the variable Adapt, a dummy equal to one if farmers have

adapted and zero if not. This coefficient is significantly positive at the 10% level providing
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preliminary evidence that adaptation is associated with higher wheat yields. Given average

wheat yields of 18.39 maunds/acre, this suggests a gain in productivity of approximately

8%.

The productive effect of plot-level inputs on productivity can also be seen for the pooled
sample and in separate productivity equations for non-adapters and adapters in columns
(2) and (3). Fertiliser and labour intensity both show expected positive coefficients, while
there is evidence of diminishing returns to scale in plot size due to the negative sign
of this coefficient. There is also some evidence to indicate the importance of household
characteristics on farm production. Households who earn income off-farm seem to be less
productive. Interestingly, households who use credit from formal sources are also less

productive.!?

The determinants of adaptation for wheat producers are shown in column (4). Here we see
that households with a higher proportion of females are more likely to adapt, whereas those
with a member working off-farm are less likely to adapt. This suggests that adaptation
on-farm may be substitutable to earning income off-farm. Similarly, there is a lower
probability of adapting for households that use informal credit. As is noted by Chandler
and Farugee (2003), this may be because informal loans are typically granted to fund
consumption over short durations and are not sufficient to fund productive investments

on-farm.

The significance of the extension service variable highlights the important role extension
services play in facilitating farm adaptation. This accords with previous evidence that
generally finds that extension services have positive effects on the adoption of productivity-
enhancing technologies (Birkhauser et al., 1991; Hussain et al., 1994). Previous experience
of flooding and ownership of livestock are also shown to be positively related to adaptation.
The significance of the selection instruments can also be seen from coefficients on the

climate change perception variables. These variables are included on the assumption that

130ne explanation may be the finding of Chandler and Faruqee (2003) who document that households
with very large landholding (>25 acres) account for 41.6% the receipt of formal credit. They argue that
larger households are less productive than smaller households. This is the case for wheat farmers in the
sample. Total land area was 14.7 acres for farmers using formal credit, compared with 8.5 acres for those
without. Similarly, wheat plot size was on average 2 acres larger for formal credit farmers. As such,
diminishing marginal returns to land may be driving this result.
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Table 5.6: OLS and endogenous switching regressions: Wheat

(1) @) ) (4)
OLS Yield Non-Adapters  Yield Adapters  Adapt(0/1)
Coef. /se Coef./se Coef./se Coef. /se
Adapt 1.473*
(0.857)
Plot size (acres) -0.530%** -0.858%** -0.250 -0.011
(0.137) (0.175) (0.155) (0.009)
Fertiliser (kg/acre) 0.316%* 0.236%* 0.279 -0.006
(0.125) (0.106) (0.258) (0.009)
Pesticide (kg/acre) 0.668 -0.090 1.915%** 0.045*
(0.712) (0.509) (0.412) (0.026)
Labour intensity (no. of adults/acre) — 1.219%** 1.345%** 1.037%** -0.020*
(0.227) (0.312) (0.264) (0.011)
Seed (kg/acre) 0.010 0.060*** -0.011%* 0.002%**
(0.007) (0.020) (0.005) (0.001)
Irrigated 0.696 2.903* -1.705 0.081
(1.210) (1.568) (1.787) (0.135)
Max educuation 0.072 -0.022 0.225 0.001
(0.210) (0.273) (0.307) (0.022)
Females in household -1.459 -0.622 -6.443* 0.594**
(3.017) (4.520) (3.556) (0.243)
Work off-farm -1.858%* -1.137 -1.719 -0.174%*
(0.880) (1.184) (1.245) (0.080)
Bank credit -5.616%** -6.963%** -4.424%%* 0.216
(1.282) (2.362) (1.431) (0.150)
Informal credit -0.328 -1.503 0.928 -0.306%**
(1.109) (1.461) (1.513) (0.099)
Owns land 1.311 2.444 0.578 -0.033
(1.168) (1.837) (1.461) (0.095)
Formal extension -0.435 -0.480 -0.116 0.524***
(1.709) (2.385) (2.147) (0.155)
Affected by flooding 0.871 2.348 -2.126 0.518%**
(1.580) (2.295) (2.180) (0.157)
Village school 0.987 1.782 -1.208 0.291%*
(1.531) (2.163) (1.856) (0.118)
Owns livestock -0.314 -1.223 -0.087 0.192%*
(0.942) (1.188) (1.374) (0.086)
Total land (acres) 0.031 0.175%* -0.090** 0.005
(0.043) (0.082) (0.043) (0.004)
Ave. temp increase 0.224**
(0.102)
Change in amount of rain 0.100
(0.134)
Change in timing of rainy season 0.322%*
(0.161)
Extreme event increase -0.114
(0.097)
Constant 16.049%** 9.299** 30.015%** -1.504%**
(3.327) (4.645) (4.939) (0.309)
Region dummies Yes Yes Yes Yes
Ino 2.673%** 2.527**
(0.110) (0.061)
p 0.033 -0.243 %%
(0.109) (0.123)
Log psuedolikelihood -6288.513
Wald test of indep. eq. (x2(2)) 0.128
N 1364 779 585

Regression includes regional dummy variables
Standard errors are heteroskedasticity robust
*p<0.1, **p<0.05, ***p<0.01
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they influence the probability of adaptation but do not affect realised productivity. It
can be seen that farmers who perceived temperatures to be increasing and also those who

thought that the timing of the rainy season had changed were more likely to have adapted.

To validate the importance of accounting for selection bias using endogenous switching
regression approach, the results also show that the term p is negative and statistically
significant for the adapters in the sample, indicating the presence of positive selection
bias in the adaptation decision (Lokshin and Sajaia, 2004). Intuitively, this implies that
those households with higher than average productivity are more likely to have adapted
to climate change. This finding is similar to that of Abdulai and Huffman (2014) in the

case of adoption of soil and water conservation technologies in Ghana.

Rice

The results for rice farmers are shown in Table 5.7. Immediately it can be seen from
column (1) that the OLS estimate for adaptation’s impact is positive and significant at
the 5% level. The magnitude of this coefficient implies that gains from adaptation could

be as high as 21% given average rice yield of 22.67 maunds per acre.

As expected, fertiliser intensity and farm labour has a positive effect on yields given their
positive coefficients. Irrigation is also associated with strong productive benefits high-
lighting the importance of water use for a water-intensive crop like rice. Interestingly,
household characteristics that are associated with labour availability have a negative ef-
fect on productivity. In particular, a higher proportion of females and off-farm work is
associated with lower productivity. Reasons for the lower productivity of households with
a high number of females may relate to the fact that in some cases, despite the availability
of farm equipment, women’s access to this is undermined, thus reducing the productivity
of their labour supplied (Samee et al., 2015).14 The lower productivity of households who
engage in off-farm labour likely reflects the opportunity cost of using labour to produce

income on-farm versus off-farm. This finding is in line with Fafchamps and Quisumbing

14 Although women contribute heavily to crop production, they play an integral role in non-crop agricul-
ture such as livestock rearing and in household chores such as food preparation, water collection, and care
of children and the elderly (Samee et al., 2015).
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Table 5.7: OLS and endogenous switching regressions: Rice

(1) @) 3) (4)
OLS Yield Non-Adapters  Yield Adapters  Adapt(0/1)
Coef. /se Coef./se Coef./se Coef. /se
Adapt 4.744%*
(2.085)
Plot size (acres) 0.029 0.550* -1.547* -0.037
(0.476) (0.294) (0.835) (0.033)
Fertiliser (kg/acre) 1.388%* 1.963* 0.326 0.093*
(0.603) (1.036) (0.754) (0.053)
Pesticide (kg/acre) 0.857 -0.470 0.792 0.111%**
(0.530) (0.577) (0.740) (0.053)
Labour intensity (no. of adults/acre) 0.507** 0.357 0.895%* -0.024
(0.233) (0.247) (0.361) (0.019)
Seed (kg/acre) -0.026 -0.085 -0.062 0.009
(0.061) (0.086) (0.084) (0.006)
Irrigated 5.924%* 4.173 2.863 0.454*
(2.578) (2.733) (5.014) (0.252)
Max educ -0.397 -0.519 -0.693 0.025
(0.578) (0.811) (1.010) (0.064)
Females in household -14.285** -16.302* -14.939 1.171%*
(7.061) (8.736) (9.928) (0.555)
Work off-farm -4.192%* -3.451 -6.954%* -0.132
(2.319) (2.989) (3.446) (0.188)
Bank credit 0.756 1.330 -1.779 0.458
(3.394) (4.272) (4.506) (0.337)
Informal credit 0.757 1.654 0.133 -0.321
(2.574) (3.523) (3.663) (0.220)
Owns land 2.518 6.000* 1.860 -0.530%**
(2.401) (3.221) (3.493) (0.192)
Formal extension 0.204 -1.435 1.647 -0.631
(3.001) (2.788) (5.834) (0.454)
Affected by flooding 7.720%* 13.332%%* 4.146 1.305%**
(3.570) (3.983) (4.810) (0.338)
Village school -4.308 -3.003 -11.718%* 0.346
(2.999) (3.073) (5.149) (0.263)
Owns livestock -0.007 -2.723 4.228 0.597***
(2.940) (3.345) (4.130) (0.215)
Total land (acres) 0.097 0.155 0.006 0.018
(0.147) (0.203) (0.217) (0.012)
Ave. temp increase 0.508**
(0.203)
Change in amount of rain -0.263
(0.234)
Change in timing of rainy season -0.333
(0.263)
Extreme events increase -0.525%
(0.272)
Constant 7.653 9.617 40.858*** -2.099%**
(6.260) (7.084) (14.536) (0.603)
Region dummies Yes Yes Yes Yes
Ino 2.619 2.832
(0.070) (0.101)
P 0.153 -0.651%*
(0.226) (0.357)
Log psuedolikelihood -1384.125
Wald test of indep. eq. (x2(2)) 0.128
N 297 161 136

Regression includes regional dummy variables
Standard errors are heteroskedasticity robust
*p<0.1, **p<0.05, ***p<0.01
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(1999) who find that male household members earn higher incomes off-farm, thus diverting

their labour allocation away from farming.

Interestingly, households with experience of flooding are shown to be more productive.
The magnitude of this effect is large for both groups, although only significant for the
non-adapters. Although we must be cautious in interpreting this effect causally, there are
two plausible reasons for this. Firstly, flooding can lead to the transportation and deposit
of organic matter that increases soil fertility. Secondly, flooding could increase the amount

of irrigation available, most likely from canal irrigation.!?

The selection equation in column (4) shows that households that have access to modern
inputs such as fertiliser and pesticide, as well as irrigation are more likely to adapt. This
may be indicative of adaptation as a decision that, in line with many studies of technology
adoption, is more likely to be undertaken by households that engage in more advanced
cropping activities. As with wheat, households with more women are more likely to adapt.
Contrary to studies that predict that land ownership increases incentives to invest in
productivity-improving measures on-farm, ownership of land is negatively associated with
adaptation (Jacoby and Mansuri, 2008; Ali et al., 2012). Similarly, exposure to past
natural hazards as evidenced by previous flooding has a positive effect on adaptation as
with wheat farmers. The need to address unobserved selection into adaptation can be
seen by the significance the parameter, p, for the adapters in the sample. As with wheat,

farmers with higher unobserved productivity are more likely to undertake adaptation.

5.5.3 Impact of adaptation
Adapters

A simple estimation of the impact of adaptation using a dummy variable to indicate
adaptation in the crop productivity equations estimated by OLS showed that this variable

was positive and significant for both wheat and rice. However, the above regressions

15Since rice is a water intensive crop, increased availability of water from irrigation could increase pro-
ductivity. The most recent floods in 2011 and 2012 occurred in Sindh province. In our survey, a large
proportion of households in Sangar and Sukkur districts were affected in both floods. Households from
these districts form nearly half of rice producers in the sample.
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Table 5.8: Impact of adaptation on yields of adapters

Mean Outcome (units: maunds/acre)

Adapt Not Adapt Difference (ATT) % Change
Wheat 19.573 19.274 0.299 1.6
(0.345) (0.460) (0.367)
Rice 33.926 31.175 2.751%** 8.8
(0.844) (0.636) (0.742)

Table 5.9: Impact of adaptation on yields of non-adapters

Mean Outcome (units: maunds/acre)

Adapt Not Adapt Difference (ATU) % Change
Wheat 23.398 17.193 6.204%** 36.1
(0.351) (0.361) (0.231)
Rice 47.245 28.376 18.869*** 66.4
(1.186) (0.836) (1.020)

indicated the presence of positive selection bias for farmers that adapted to climate change.
As such, more productive households were those that were more likely to have adapted. To
estimate the impact of adaptation to account for this, we estimate the average treatment

effect on the treated (ATT) derived in equation (5.12).

Table 5.9 shows the estimated change in crop productivity for those that actually adapted.
For rice, compared to the OLS estimate of 1.473 maunds per acre increase in yield for
adapters, the selection bias corrected estimate of adaptation is estimated at 0.299 maunds
per acre and not statistically significant from zero. For rice, the treatment effect estimated
by the endogenous switching approach is also less than that when estimated by OLS, falling
from 4.744 to 2.751 maunds per acre. In contrast to the impact estimate for wheat, this is
significantly positive, indicating productivity benefits of around 9 percent for farmers that
adapted. The results for rice compare in magnitude to those in a recent meta-analysis of
the effect of temperature and adaptation on crop yields at the regional-scale using crop

simulation models. For instance, Challinor et al. (2014) find that adaptations at crop-level
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for both rice and wheat increase yields by 7-15% on average.'6 The benefits of adaptation
are also studied by Soora et al. (2013) for rice yields in India using a simulation model.
They find that in irrigated rice areas, agronomic improvements, such as shifting cropping
dates and switching rice varieties, offset expected climate change damages of around 5%

up until 2040.

Non-Adapters

Using the treatment effects framework we are also able to estimate the change in produc-
tivity for non-adapters had they adapted. The average treatment effect on the untreated
(ATU) for these farmers is shown in Table 5.9. It is noticable that the estimated gains from
adapting for this group of farmers are much larger than for adapters. For wheat farmers,
we estimate that the adoption of adaptation strategies could lead to yield gains of around
36%. The gains for rice are even larger at over 60%.'7 These results are large, and indeed,
suprising given the relatively smaller gains estimated for adapters. The explanation may
lie in the counterfactual that is being estimated. As is noted by Shiferaw et al. (2014),
the ATU reflects the difference in outcomes if non-adapters had similar characteristics to
adapters. As such, these differences could reflect the effect of relaxing the constraints on

non-adapters and the associated benefits that this would have on productivity.

5.6 Discussion and Conclusion

This study investigates whether strategies used by farmers to adapt to climate change lead
to higher crop productivity for farmers in Punjab and Sindh provinces of Pakistan. We

also study factors that affect whether farmers have adapted to climate change or not.

We estimate that farmers who have previously adapted to climate change have benefited

in terms of productivity improvements for rice. The results for wheat farmers suggest that

161n accord with our study, Challinor et al. (2014) consider only ‘incremental’ changes to current crop
production practices such as changes in cropping dates or switching varieties.

'7A similar result was found by Di Falco et al. (2011) in Ethiopia who estimate much larger gains for
non-adapting farmers.
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there are positive gains to adaptation but these are not statistically different from zero.
This highlights the importance of considering differences in crop responses to adaptation.
While gains from adaptation for rice estimated here at the farm-level in Pakistan add
credence to results at more aggregated scales from crop simulation models, it is interesting
that we do not see very significant gains for wheat. One possible explanation could be that
adaptations are not effective at increasing average yields. As is noted by Sultana et al.
(2009), shifting planting dates of wheat to later in the year is a key adaptation strategy.
Indeed, one-quarter of farmers in our sample use this strategy. Since this effectively reduces
the length of the growing season, it is possible that farmers are trading-off the potential
benefits of a longer growing season for the security of growing wheat during more temperate
months. For instance, Semenov et al. (2014) study adaptation of wheat to climate change in
Furope and find that although the use of quicker maturing varieties are a useful adaptation
for avoiding months where temperatures are hottest, use of these varieties is associated
with lower yields due to the shorter growing durations. As such, avoiding yield losses due
to risk averse preferences may be a primary factor in farmers’ adaptation decision. This
highlights an interesting area for future work that examines whether risk preferences of
farmers are significant in explaining their adaptation and the benefits of these decisions in

terms of productivity.

The regression results showed the importance of accounting for unobservable differences
between adapting farmers and non-adapters. Specifically, it was shown that unobserv-
able factors associated with higher crop productivity were present among adapters in our
sample. This appears to explain why estimates obtained by OLS were larger than those
when accounting for selection bias. Positive selection was present for both wheat and rice.
These findings suggest that it is important to account for factors that drive the decision

for farmers to adaptation.

Estimated productivity gains for non-adapters are found to be large. Given that adaptation
is practiced by more productive farmers on average, we interpret this finding to indicate
that there are significant opportunities to increase the food security of farmers. Unobserved
differences between farmers may indicate the existence of high transaction costs that inhibit

current non-adapters from adapting. Given that many farmers perceive the climate to have
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changed to some degree, the reason for not adapting could reflect differences in the cost
of adapting or other constraints that hinder non-adapting farmers from make potentially

yield improving adaptations.

Observable determinants of adaptation also provide evidence that institutional factors
play an important part in allowing farmers to adapt. We find that access to credit is
important. However, it appears that the type of credit crucially affects the propensity to
adapt. Whereas informal credit reduces the probability of adapting, formal credit increases
the probability of adaptation. This underlines the need for a greater expansion of the reach
of formal credit, which is currently used by only a minority of farmers. The heterogeneity
of institutions providing credit to farmers in rural Pakistan is large. This study underlines
that variation in the specific form of these institutions has important effects on agricultural
development. Similarly, it is also the case that access to extension services provided by
governmental and non-governmental organisations is associated with a higher probability
of adaptation. An obvious policy response to this would be to increase access to these

services.

Growth in the wider economy may provide opportunities and incentives for household
members to earn income off-farm. We find evidence that households engaging in these
alternative income generating activities are less likely to engage in on-farm adaptation.
Given that the off-farm labour variable is associated with lower productivity also, it ap-
pears that there is some substitutability between investing in productivity-enhancing mea-
sures on-farm versus allocating time and effort off-farm. What this pattern implies for the
incentives to conduct adaptation on-farm over a longer time horizon is a very relevant
question that also warrants further examination. Overall, these results imply that farmers
can potentially increase crop productivity in the short term whilst also undertaking mea-
sures that could prepare themselves for climate change. Policymakers thus should focus
on encouraging the adoption of these practices as a strategy for addressing future food

security in Pakistan.
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Chapter 6

Conclusion

This thesis comprised four essays that sought to assess the role that environmental con-
straints to production, in particular those related to the climate, have on agricultural
productivity in India and Pakistan. In employing empirical methods to understand these
relationships, special emphasis was placed on how these methods can be used to learn more
about the challenges that agriculture will face in the future. In addition, understanding
how farmers have previously reacted to these constraints is also vital for discerning whether
or not attempts to alleviate these constraints have been successful at reducing the future
costs of climate change. What is identified in this thesis is that the constraints posed
to agricultural production must be understood within the context of an evolving set of
environmental and technological conditions. If both of these factors are not considered,
it is likely that future assessments of food security in South Asia will provide a mislead-
ing account regarding the future of the region’s agricultural production. This concluding
chapter summarises the results of each of the preceding chapters as well as discussing the

implications of the findings of this research for policy and directions for future research.

The degree to which climate change could affect agricultural productivity is examined in
Chapter 2 by assessing how projected temperature increases could affect rice production
in India. The findings of this paper predict that, in addition to a decline in average yields,
higher temperatures also have important effects on the overall probability distribution of

rice yields. Rather than an increase in temperature entailing a simple shift in average
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yields, greater exposure to heat was shown to increase the likelihood of yields at the
extreme ends of the distribution. This effect increases the exposure to downside risk.
These findings have implications for both researchers and policy makers. Firstly, future
climate change impact studies would benefit from considering changes in the shape of the
crop yield distribution, which may be substantial. Although this chapter highlights this
empirically, there is room for future work to theoretically understand these mechanisms.
Mapping how changes in temperatures could theoretically alter the shape of crop yield
distributions would be an important step to a more detailed understanding of the effects
of climate change in agriculture. Secondly, policy makers should also be aware of the extra
risk that may be posed to agriculture by increases in temperature. This may entail greater

emphasis put on dealing with ex post risk, such as crop insurance.

A key finding from this study is the relative decline in the effect that short-run temperature
deviations have on agricultural productivity over time. This underscores the importance of
considering climate change within the context of a changing agricultural sector. There are
two main implications that stem from this. Firstly, it emphasises the need for future work
to understand the drivers behind increased resilience of crop yields to heat. Given that
higher temperatures are predicted to adversely affect rice production in India both in terms
of affected average yields and downside risk, understanding exactly how these negative
impacts can be avoided is a first order concern for policy makers in India. Secondly, in
predicting the impacts of future climate change on agriculture, this work highlights that
researchers should pay attention to how the resilience of the sector has changed over time
in order to accurately assess these impacts. Since many empirical studies rely on variation
between weather outcomes and measures of productivity over time, it should not simply

be assumed that conditions in the past necessarily reflect those of the present.

In line with the findings of the previous chapter, Chapter 3 also presents evidence that
crop production in India has become more resilient to drought. By examining drought
impacts over time, this chapter was able to identify a reduction in average yield losses
owing to drought conditions. As with the previous study, the reasons for these trends are
not studied in this chapter. The decline in drought impacts does, however, accord with

the wider diffusion and maturing of a suite of yield-increasing technologies by farmers in
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India that began during the Green Revolution. Judging by this evidence alone, it might
be tempting to conclude that the threat to agricultural productivity from drought in the

future is not a pressing concern.

What is made clear in this study, however, is that there is evidence that these trends may
be prone to significant changes in the future. By employing an empirical approach able to
identify critical points between which drought impacts have significantly changed, we no-
tice a substantial increase in average impacts towards the end of our sample period. While
this period corresponded with the significant period of increased drought intensity, this
result highlighted that policy makers should certainly not be complacent about previous
trends in increased resilience of the sector. Indeed, this result may bring some credence
to concerns about the unsustainability of a number of aspects of India’s agricultural sec-
tor. One aspect of this is likely to be the availability of water. Previous studies have
highlighted the key role this resource has played in constructing production environments
suitable for modern agriculture and to increase resilience of crop yields during drought
(Duflo and Pande, 2007; Birthal et al., 2015). The unchecked exploitation of the resource,
however, has led to observations of severe depletion of water sources (Rodell et al., 2012).
This is unlikely to be helpful for farmers during periods of drought and casts a shadow
over the findings of increased resilience of the India agricultural sector to climatic stress
over time. This highlights the need for future work that integrates information on the
resources available to farmers and how changes in the availability of these resources may

constrain future adaptation strategies to cope with climatic stresses.

The results in Chapters 2 and 3 also place emphasis on understanding the regional distri-
bution of food security challenges. The policy relevance of considering regional exposure
to drought impacts is underlined in Chapter 3. Given the variety of growing environments
in which agriculture takes place in India, it is hardly surprising that these areas differ
in vulnerability to drought. However, what is clear from this analysis is that failing to
account for the regional heterogeneity in exposure to drought impacts would lead to an in-
efficient way for policy makers to prioritise resources to deal with the adverse consequences

of drought for agricultural production.
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The importance of considering regional heterogeneity is also explored in Chapter 2. Here it
was shown that the impacts of future temperature increases are likely to be larger in areas
already more exposed to higher baseline temperatures. In addition to this, these areas
could see significant changes in the likelihood of yields that were historically relatively
rare events. In particular, the vulnerability of India’s most productive regions in the
north of the country may increase relative to other areas, such as areas in the south,
which will likely be subject to smaller increases in absolute temperature. The regional
heterogeneity of impacts presents some interesting challenges to policy makers. Given
that higher temperatures will make hotter areas in India increasingly less suitable for rice
production, it will fall on policy makers to decide whether resources would be better aimed
at areas projected to be less affected by climate change. Given that the sustainability of
Green Revolution production systems are also facing constraints due to water scarcity,
the added effect of rising temperatures could add to the unsustainability of the rice-wheat
production systems in areas such as Punjab, which have historically been important for the
food security of India. The political feasibility in reality may, however, be more limited.
Given the political clout of some of the most productive areas in India that benefitted
substantially from the Green Revolution, a significant diversion of resources away from

these areas may be hard to achieve.

The long-term consequences of India’s Green Revolution and its relationship with the en-
vironment are further investigated in Chapter 4. While the productive success of these
technologies over the past fifty years is well documented, evaluating potential weaknesses
of this model is important for understanding the long-term consequences of these tech-
nologies. This paper studies whether agricultural technologies employed during this pe-
riod were more effective at increasing yields on land more agro-climatically suitable for
crop growth. This has historically been a criticism of the Green Revolution owing to the
contention that Green Revolution technologies had an uneven effect across regions and
subsequently led to divergent productivity growth in agriculture across India. What is
emphasised in Chapter 4, however, is the importance of understanding this question in
the context of developing technologies that work effectively across different environments.

This study finds that yield growth was highest in areas that were agro-climatically most
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suitable. In one respect, these findings point to a weakness in the Green Revolution model
of centralised technological innovation and infrastructure development. On the other hand,
the productive success of this model should not be wholly overlooked for addressing the
challenges of the future. A hard-headed approach by policy makers may be needed in the
coming years to ensure these productive gains continue. One strategy may be to target
resources into developing technologies at growing areas that may be less affected by future

climate change to maintain levels of total production.

Assessing the cost of the future impacts of climate change is limited by the inherent
uncertainty about the range of options that will be available to farmers in the future.
Although this uncertainty is ever present, learning about the range of options available
to farmers to mitigate potential climate change in the future is important. Chapter 5
sought to provide a greater understanding of the impact that climate change adaptation
strategies could have on productivity. This is undertaken within the context of two major
agricultural areas in Pakistan. Crucial to this study was the use of farm-level data from
a specifically designed survey on farmers’ climate change adaptation strategies. While
previous studies have examined the impact of climate change adaptation strategies in
other parts of the world, providing information to policy makers in other contexts about
the nature of these strategies and their productive impact is needed. This study found some
evidence that adapting to climate change can have short-term productive benefits. This
provides evidence that by using technologies and practices that are currently available,
farmers can productively benefit. While we should be cautious not to necessarily attribute
these findings to how successful these techniques will be at dealing with future climate
change, it does provide some evidence that these technologies work better under current

climatic conditions.

A particularly relevant finding for policy from this study pertains to the importance of the
set of constraints that farmers face in effectively adapting to climate change. Indeed, a
counterfactual analysis undertaken in this paper found that gains from adapting to climate
change could be very substantial. This highlights a crucial lesson to policy makers for
enabling farmers to autonomously react to changes in the climate. If farmers will be able

to act to undertake suitable adaptations in the future, it is necessary for policy makers to

229



make it easier for them to do so. What is apparent from this study is that a number of the
determinants concerning whether or not farmers have adapted correspond to constraints
to technology adoption identified in many other developing country contexts (Sunding and
Zilberman, 2001; Foster and Rosenzweig, 2010). While relaxing these adoption constraints
is likely to increase the welfare of individual farmers, policy makers should also be aware of
the importance of allowing farmers to efficiently undertake adaptation in order to maintain
aggregate food security under the stress of climate change. In short, it is important not
just to consider the constraints of that are posed by climate change. It is also vital to
consider the opportunities that exist to increase agricultural productivity in the future

and make sure that these are utilised.
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Appendix A

Survey Evaluation: The
Determinants, Impact and Cost
Effectiveness of Climate Change
Adaptation in the Indus
Ecoregion: A Micro Econometric

Study

A.1 Survey context

The survey was conducted with the aim of increasing understanding of the resilience of
Pakistan’s agricultural sector to climate change and was supported by the International
Development Research Centre (IDRC Project Number 106857-001). The survey was jointly
undertaken by partners from the WWF-Pakistan, Lahore University of Management Sci-

ences, and the London School of Economics and Political Science.
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The main data collection part of the survey took place between the 20th April 2013 and
the 29 June 2013. In total, 1,422 households were surveyed.

The final survey comprised of six separate sections that gathered information on household
characteristics; agricultural outputs and inputs; labour use; institutional arrangements;
climate change adaptation measures; and household income. The detailed nature of the
survey was intended to understand a range of characteristics that may affect agriculture
and resilience to climate change in Pakistan. A copy of the survey is included at the end

of this thesis.

A.2 Sampling frame

The survey took place in the two provinces of Punjab and Sindh, and was sampled in four of
the nine key agro-climatic zones in Pakistan. Barani (rainfed) agriculture in Punjab; cotton
and wheat in Punjab; cotton and wheat in Sindh; and rice growing in Sindh. Although it
was initially considered to survey households in Baluchistan, security concerns at the time

of scoping the survey meant it was not possible to study this area.

To further narrow down the sampling frame in these two provinces, seven different districts
were chosen across the chosen agro-ecological zones. These districts were thus selected non-
randomly based on whether they fell in the chosen growing areas. In Punjab, the survey
sites were located in the districts of Chakwal, Rawalpindi, Rahim Yar Khan, and Jhang.
In Sindh, responses to the survey were gathered across the districts of Sangar, Sukkur,

and Larkana.

A.3 Sample selection

To select sample sites within agro-climatic zones a two-stage cluster sampling strategy was
applied to the seven districts. This meant that a set of random villages or ’clusters’ were
selected in each district. Within the selected clusters, a set of randomly chosen households

were then surveyed.This approach allowed us to offset the prohibitive financial, time, and
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informational constraints required to elicit a simple random sample.

A.4 Design and pre-testing

Prior to the design of the full survey, a reconnaissance survey was conducted during 15-18th
December 2012. This survey had a number of objectives. First, it was essential to establish
relationships and gain trust of key village informants who would provide local knowledge
and ensure that survey teams could freely travel around survey sites. Second, focus group
sessions were held with local farmers in order to gain a preliminary understanding of local

agricultural issues. A copy of this survey is also included at the end of the thesis.

Focus groups comprised groups of roughly eight to ten farmers, who were interviewed by
enumerators from WWF-Pakistan. The focus groups were asked a total of 84 questions
on their farming activities (types of inputs and outputs used; prices; water use; cropping
dates; harvesting methods), institutional arrangements (types of credit, subsidies), and
farmers’ perceptions and reactions to climate change. The focus groups questions on cli-
mate change were integral for designing an effective set of questions concerning farmers
climate change adaptation strategies. Accordingly, the focus group asked farmers whether
their farming practices had changed in the past five years and their motivations for this
change. Responses ranged from changing practices due to the availability of new tech-
nologies to utilising a series of strategies to cope with changes in climate patterns, such as
increased heat earlier in the growing season and unseasonal rains. What was clear from the
survey was that farmers were concerned about a range of climatic phenomena that they
felt had changed over time, more specifically in the last 5 to 10 years. Audio recordings

of the focus groups were also made for use in designing the main survey.

A key finding from the focus group concerned the complexity of institutional arrangements
governing farm production in Punjab and Sindh. This identified two key aspects that had
previously not been given due consideration. The first concerned the role of that credit
played in allowing farmers to buy inputs and generally smooth consumption. The most

important aspect of this related to the providers of credit. In particular, the role of informal
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moneylenders or ‘middlemen’ was identified as a crucial. This enabled for a more thorough
set of questions on sources of credit and the role of middlemen to be incorporating into
the survey. Second, the role of tenure arrangements was specified by farmers as having
a bearing on their ability to conduct on-farm decisions. This often related to farmers
often receiving instructions from landowners about farming decisions, which could act as
a constraint to changing farming practices. These findings were used to inform a set of

questions on institutional arrangements in the main survey.

In addition, the focus groups allowed for a greater understanding of the various strategies
used by farmers in response to climate change and their perceptions about how the climate
was changing. Accordingly, farmers were asked about whether they had used any strategies
in response to climate change, and to explain what these strategies were. These responses
were then used to group adaptation strategies by type for the main survey. It was also
made clear from the focus groups that farmers perceived that various aspects of the climate
had changed over time, including higher average temperatures and changing patterns of
rainfall. The responses from the focus group were used to design survey questions that
allowed farmers to pick from a number of possible types of adaptation measures and aspects

of the climate that they perceived to have changed.

Using the results of from the focus groups, a survey was then drafted to collect data on
the areas of interest for research. A first draft of this survey was then sent to experts
specialising in agronomy and rural economics in Pakistan for feedback. Comments from

these experts were then incorporated into the final draft of the survey.

A.5 Training of enumerators and field conduct

In order to train enumerators in how to conduct the survey in the field, a one-day workshop
was held in Karachi to ensure that enumerators followed the same collection procedures
across survey sites. Senior members of the team who had played a part in the survey
design took enumerators through the survey. This included explaining the purpose of each

of the questions and specifying the way that each question should be asked and how each
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response should be filled in on the questionnaire. After this, the enumerators were then

split into pairs to mimic asking and responding to questions in the field.

The survey was designed and recorded in English. The decision was taken for enumerators
to translate the questions in the field. During the training session, senior members of the
survey team discussed and trained the enumerators in how to translate each question and
what would be possible terminology used by the local people/farmers. The decision to
administer the survey through enumerator translation was taken for two reasons. First,
the primary languages spoken across Punjab and Sindh differed, so that translating the
surveys into different languages would lead to additional costs and time. Second, since
it was expected that a number of surveyed farmers would not be literate, enumerators
skilled in the local language would have to ask these questions nonetheless. Therefore,
this method of translating the survey was chosen as the most practical means of eliciting

survey respounses.

Senior enumerators undertook pre-testing of the survey in order to test the length of time
needed for each survey to be undertaken. This allowed for the identification of possible
translation issues. Senior enumerators then accompanied hired enumerators into the field
to ensure that issues identified in pre-testing were corrected during the main survey. Senior
enumerators accompanied the hired enumerators to at least three surveys before these
enumerators were left to survey in their specified teams, although senior members of staff
were available by phone to answer queries brought up in the field. On average, the survey
took 30 to 40 minutes to complete and were completed on paper. In the main, surveys
took place on respondents’ farms or in their houses. The household head responsible
for farming activities was asked for their responses to the survey. In a number of cases,
household heads were not found on farm but in local communal areas, such as teahouses.

Surveys were then conducted in these areas if the respondent agreed to be surveyed.

Once all of the surveys were completed, the responses were entered into a single Excel table

by WWEF-Pakistan staff in Karachi. This raw data was then sent to London for analysis.
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A.6 Possible sources of bias

A.6.1 Length, complexity, and inaccuracy of survey responses

The survey aimed to gather a comprehensive set of data on farm household behaviour
and characteristics in Pakistan. One downside of this approach was that the survey was
lengthy and required considerable concentration from the enumerators and survey partic-
ipants. Although it is not clear whether the length of the survey led to biased responses
from participants, some evidence of errors in the reporting of responses was clear. This
manifested itself in some repeated responses to questions (e.g. the amount of fertiliser
used on separate plots of land). Without follow up questions to assess the suitability and
length of the survey, it is not possible to understand whether this was a significant factor

in the survey.

Two strategies were undertaken at the data cleaning stage to improve the accuracy of
survey responses that may have been prone to error in recording. First, the data was
viewed by eye in Excel tables to check for inconsistencies. Obvious data entry errors, such
as data clearly being entered in the wrong columns, was corrected. Second, incoherent
responses were dropped from the analysis if these occurred in data that was used to

construct variables used in the analysis.

Since farmers were asked a variety of complex questions related to quantities and timings,
it is perhaps understandable that some error would have occurred in the collection of
survey responses. In particular, inaccurate assessments of land holdings would clearly lead
to error in the recording of acreage and, hence, farm yield estimates. It was discussed
prior to the data collection phase whether it would be possible to accurately collect data
on plot sizes through independent verification by enumerators during the survey. This
method, however, was deemed not suitable since it placed additional costs and need for
expertise from the enumerators. It would also have meant additional intrusion on farm
households. Thus, future surveys could build extra resources and technology into more
accurately recording these variables and taking some of the onus off farmers. Despite this,

it is the case that most of the responses in the survey require accurate recollection from the
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farmers. Eliminating any recall bias that could have occurred in the survey would require
a more thorough, timely, and resource-intensive data collection procedure. Future surveys
would benefit from explicitly assessing the time and resource trade-offs that exist between
the number of households surveyed and the amount of time ensuring data is collected to

the highest possible accuracy.

A.6.2 Measuring farm input and output prices

It was the aim of the survey to gather detailed data on the price of farm outputs sold
and inputs bought so that it would be possible to construct net revenue functions. It was,
however, apparent during the data cleaning stage that significant problems had occur-
ring in correctly ascertaining farm prices. There was significant variation in prices across
farmers for the prices that were paid for farm outputs. Enumerators questioned about
this following the data collection responded that many farmers had problems identifying
the prices certain crops were sold for since often these were sold as part of interlinked
transaction with moneylenders or landlords. This made it difficult to accurately assess
output prices and it was decided that the primary variable of interest would be crop yield
(amount produced divided by area). Another problem encountered was for input price
data. Prices were missing for many inputs used. There are two main reasons this may
have happened. Firstly, as with farm outputs, many farmers used inputs in tandem with
complex interlinked arrangements, meaning that they were not fully aware of prices paid.
Second, a number of inputs, such as water, did not have a clear price since institutional
arrangements covering water usage and pricing are complicated. These variables showed
significant amounts of missing data and it was not clear whether this was due to prices

being zero or whether farmers were unable to answer this question.

A.6.3 Measuring adaptation practices

An important and novel aspect of the survey pertained to the collection of data concerning
whether or not farmers had adapted to climate change. Significant effort was put into

ensuring that information on adaptation was as accurate as possible.
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A key concern during the survey design stage was that farmers would attribute general
changes in farming methods, such as the adoption of higher yielding seeds, to adaptation
even if these were not adopted to cope with changes in climate. To minimise this possibility,
enumerators were instructed to directly ask farmers, ‘How has your household adapted
to cope with climatic changes?’. A concern was that farmers might be prompted by
enumerators to answer that they had adapted when they had not. To minimise this risk,
the farmers response to the question was recorded rather than a series of options being
read out to the farmer. Farmer responses were then grouped according to the type of

adaptation by the enumerator. This was recorded in question E6 in the survey.

In addition, to minimise the possibility that farmers were giving vague answers to adap-
tation survey questions, a series of follow up questions specifically related to adaptation
strategies were asked. These are shown in sections E8 to E12 in the survey. For instance,
farmers who answered that they had changed their planting or harvesting dates were asked

for new planting dates and previous planting dates.

Given the large amount of information collected on adaptation practices, the analysis
reported in Chapter 5 of this thesis serves to answer only a direct question about the
nature of climate change adaptation in Pakistan. Further analyses using this data could

interrogate particular types of adaptation, their determinants and impact.

239



Reconnaissance Survey - Schedule (15 - 18 Dec 2012)

15 Dec 2012 - Day 1

Meeting with WWF- P staff
and key informants

Arrival in Sanghar by 12 pm

Meetings with key informants to:

To finalise itinerary for the field visit, and decide meeting point and date/ time
for focus group meeting at all clusters.

To establish 3 groups of enumerators (3-4 each) and assign deliverables for
next days’ focus group meeting respectively.

Collate data from WWF- P staff and key informants for sampling excel sheet
containing villages’ names, number of households, average household size, etc
for output 4.

Collect information to complete output 1, 2, and 3.

Input on logistical concerns, e.g. CBO Rep or guide availability for the main
survey.

16 Dec 2012 - Day 2

Focus Group Meeting in
Cluster 1 (Union Council:
Mian)

Villages include

Reach the village at 10 am.

Conduct meeting with 3 focus groups (of preferably of 8-10 wheat growers)
which are to be interviewed by 3 groups of enumerators respectively.
Enumerators to administer the given questionnaire with each group.

Further, each enumerator group to assign a specific output based on the above
mentioned deliverables.

Record the complete interview and take notes.

Finish the meetings by 5 pm.

Compile and streamline collected data in the required format.

17 Dec 2012 - Day 3

Focus Group Meeting in As above
Cluster 2
(UC: Shah Sikandarabad)
Villages include
18 Dec 2012 - Day 4
Focus Group Meeting in As above.

Cluster 3
(UC: Mian)

Villages include




Survey Output:

Task Description Output Responsibility
1 Homogenous * Establish homogeneity of farmers based on Work Sheet IA and AS
Sample types of crops grown, Land size holding, rain
fed vs. irrigation, fixed capital.
2 | Stratificationand | * Deliberate sampling of certain characteristics | Listed by total IA and AS
Sub-groups for treated, untreated and control group: numbers on work
a) Treatment type 1: Farmer field school sheet
participants (WWF or others) for adapter vs.
non adapters grouping.
b) Treatment type 2: Flood affectees with in last
3 years and within last 10 years.
* Evaluate feasibility of sampling such as
possibility through CBO Rep, cost of the
sample, etc.
3 Target No of * |dentification of zones at each site, and sub- Representation of IA and AS
Questionnaire division of zone into clusters to achieve a zones with villages
sample size of 250 at each site. marked on a Map
* |dentification of villages within each cluster
respectively.
* Setting target number of respondents per
zone, by cluster, by hour of the day, etc.
4 Excel sheet for e  Work sheet with column on Excel Sheet, AS
random a) Village name, b) average household (format attached).
sampling family size, c) number of households in
procedure each village, d) village population.
* Work sheet for treated groups type 1 and 2
5 | Questionnaire * Details on farming activities, processes and Audio recording of | Enumerators
Design naturally occurring payment vehicle. focus group
* Phrasing of the questions meetings, and
* Termsin the local language detailed notes
* Input on unit of measurement (acre, maund)
* Information on Adaptation practices
6 Logistic e Distance between clusters, and other Excel Sheet. AS
arrangement logistical aspects that would finalise the total

number of enumerators and vehicles
needed.

Identify/ meet 1-2 CBO representatives for
each zone who could assist in gathering
respondents for the survey. Set meeting
point and date/ time for each settlement, or
possible zone.




Questions for Focus Group meeting:

Details on farming activities, Input, Output

ONOUEWNPRE

9.

10.
11.
12.

What crops are grown in past 12 months? Name and duration in months?

Date of sowing and harvesting for all crop grown in a year.

Are these typical for the past 10 years? What other crops do you grow?

What is the yield of each crop this year (in maund)? What was it last year?

What is the selling price of each crop this year? (in maund) What was it last year?
What is the area of your farm? (In acres)

Are you the owner or is it on lease? What are the terms of lease?

Are terms affecting by owner offloading cost of crop loss onto you? Is this because of climate change or other
reasons?

Have you cultivated wheat as yet? Date of sowing?

What was the crop immediately before, and immediately after wheat?

Is this cropping order strictly observed each year?

What is the support price of wheat in 2011 and 20127

Water Source:

13.
14.
15.

16.

17.
18.

19.
20.
21.

22.
23.
24,
25.
26.

Is this a Barani area or Katcha?

Do you receive water through Canal system?

Does it lower cost of your irrigation? First, second or which one? By how much does it reduce unit cost of the
concerned irrigation?

Is the canal water available throughout the season? If not, which month is it available and for how long?
Reasons?

What are its charges per season in PKR?

Who collects the money for canal system? Extension officer or do you deposit yourself in Bank? What month
of the season?

Do you also use tubewell for water? For which crop?

Is it owned or rented?

Where do you rent from? What is this year rent (in PKR)? Are the terms of rent in days or for No of hours
used?

Do you rent the tubewell for the complete season or for each application?

What is the method of irrigation? e.g. flood, drip, furrow etc.

How many hours in a day do you receive electricity for tubewell?

If not, electricity, how do you power your tubewell?

How many times do you normally irrigate for a wheat crop? And for other crops grown in a year? How many
hours each time?

Land Preparation:

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

How many days are needed for land preparation for wheat and the other crops grown? Explain the steps?
What equipment are needed for land preparation? Names in Sindhi, Urdu and English as well.

Are the equipment rented or owned?

Cost of equipment and rent in PKR? Is the rent inclusive of fuel charges?

How many household people are involved in land preparation activity?

How many days by each household member? How many hours do they work in a day?

Do you involve household female and children in this activity? How many hours in a day?

Do you hire labor for this particular activity? Is the hiring by number of days, or for the complete season?
Do you pay wages daily, monthly or for season? Do you also pay in kind or money?

What is the wage rate/day?

How much water is required for this activity? (In hours)

Do you apply pesticides, weedicides, UREA or DAP as this stage?

How many Kgs of each item for 1 acre land?

What is the cost of one bag of each item?

Do you receive information from any source on when to cultivate? Name the source?

Do you pay for this service? And Is it reliable?



Planting Activity

43. How many Kg of seed is required for one acre of land?

44. Where do you buy the seed from? Is it your own?

45. Do you receive advice from any source on which variety of seed to use? Name the source?

46. How do you sow seed? Method?

47. Do you broadcast the seed yourself, household member or hire labour?

48. How many people do you hire for one acre of land? For how many days?

49. What do you do for planking? Name the equipment and its rent?

50. Do you water the field as well? Name the source used?

51. How many hours do you water at this stage?

52. Do you also use fertilizers and Weedicides at this stage? How many kgs?

53. Which input among all your input is the most critical for the success of wheat crop? Cotton? And any other
grown crop?

54. Does wind lower wheat or other crops’ yield (via dust gathering on leaves)? Do you ever do an additional
irrigation or use labor to wipe leaves?

55. Have higher night time temperature caused a decline in yield?

56. Has the yield been affected by extreme heat stress? How much does it affect irrigation cost? Give example.

Harvesting:
57. Which equipment do you use at this stage? Name the equipment and its rent?

58. What is the fuel cost of this machinery for one acre of land?
59. Do you hire labor for threshing? Or is it done by household members?
60. How many people are required for one acre of land? And for how many days?

Post-Harvest Activity:

61. Where do you sell your produce? Local market or middle men?

62. Is this a government middleman?

63. What is the commission of the middleman? (% per mound)

64. Do you store your produce or sell immediately? Where? (Underground or Silo)

65. What is the cost of storage per year?

66. How do you transport your produce to the market?

67. Is it a rented vehicle? What is the rent in PKR?

68. Typically what is the share of home consumption of wheat or rice? Is it used for feeding cattle or given to any
other relative or neighbor? Free or charged?

Institutional Arrangements:

69. Have you asked for a loan in the last five year? Source?

70. What are the terms of the loan? Interest? Duration?

71. Do you receive any government subsidy? On seed, fertilizers, etc.?
72. Is it provided annually or for each season?

73. Any other subsidy from other sources like NGO etc?

Adaptation Practices and other information:

74. Were you affected by flood in 2010 or flash rains in 2011 and 12?

75. Did you suffer any loss in these events?

76. Were you affected in floods in the past 10 years?

77. Have you changed your agricultural practices or cropping pattern in the past 5 years?
78. What was the motivation for this change? Provide an example.

79. Have you brought any changes in your agricultural practices due to delay in rain?

80. What cost did you incur? Give concrete example.

81. Have you done any measures to cope with unseasonal rain?

82. What are typical economically motivated adjustments in farming activities? Provide example
83. Have you participated in any farmer field school programme by WWF?

84. Or any other Farmer field school participation (Govt or other NGO)?




Questionnaire No. | __|__|__|

WWF for a living planet® ‘ LUMS

“The Determinants, Impact and Cost Effectiveness of Climate Change Adaptation in the Indus Ecoregion”
Micro Econometric Study

HOUSEHOLD SURVEY (1,600 households)
(Household is defined as group of people living under the same roof and sharing a budget for food)

IDRC 3§ CRDI

International Development Centre de recherches pour le
Research Centre développement international



Complete address: village name: Union Council:
Village GPS Code: HH GPS code

Name of Respondent with Father's/Husband's Name:

Age of the respondent:

National Identification Number (NIC) of the respondent

Cell Number of the respondent (optional)

Relationship of the Respondent with the Head of Household:

Relation with head of the household:

1. Self; 6. Mother/Father;

2. Wife/husband; 7. Brother/sister;

3. Son/daughter; 8. Other relatives;

4. Son-in-law/daughter-in-law; 9. Other non-relatives

5. Grand son/grand daughter;
Date of interview:
Istvisit / /

Interviewer's name :

Relevant Codes:

NA: Not Applicable
DK: Don’t Know
Zero: O

P: Protest

Supervisor's name

Checked by :
(Checker's Name & Signature)

Edited by

(Editor's Name & Signature)




SECTION A: HOUSEHOLD CHARACTERISTICS

Al. Basic structure and livelihood source

Al1l. How many persons usually live in this household? (Exclude guests and those currently residing elsewhere even for 2-3 months of the year)

Table A12: Family structure, and livelihood source

Person Code Relation with head Gender Age Education status Principal Means of Secondary means of State if primary Marital Status
of family 1.Male (years) *2 livelihood *3 livelihood *3 occupation is: *4
*1 2.Female 1. Outside village
2.Inurban area
A121 Al21a A121b Al21c A121d Al2le A121f Al21g Al121h
A122 Al122a A122b A122c A122d Al122e A122f Al122g A122h
A123 Al123a A123b A123c A123d Al123e A123f A123g A123h
Al124 Al24a A124b Al124c A124d Al24e A124f Al24g A124h
A125 A125a A125b A125c A125d A125e A125f Al125g A125h
A126 Al126a A126b A126¢ A126d Al26e A126f Al26g A126h
A127 Al127a A127b A127c A127d Al27e A127f A127g A127h
A128 A128a A128b A128c A128d A128e A128f A128g A128h
A129 A129a A129b A129c A129d A129e A129f A129g A129h
A1210 A1210a A1210b A1210c A1210d A1210e A1210f A1210g A1210h
A1211 Al211a A1211b Al1211c A1211d Al211le A1211f Al1211g A1211h

*1 Self [1]; Wife/husband [2]; son/daughter [3]; son/daughter in law [4]; Grandson/daughter [5]; Mother/father [6]; Brother/sister [7]; other relatives [8]; other non-relatives [9]
*2 Read & write [1]; primary [2]; middle [3]; Matriculation [4]; intermediate [5]; graduate [6]; masters [7]; illiterate [8]

*3 Farming [1]; private employee (e.g. small business/ shop) [2]; Government employee (e.g. teacher, peon) [3]; (daily) wage earner [4]; Fishing [5]; Other

*4 Married [1]; Single [2]; Divorced [3]; Widow/er [4]

-]




Table A13: Tenure Arrangements: [seasons:

Kharif (May - September); Rabi (Oct - April)]

Size of Distance Rate Cultivated Total areas | Tenure How many Shared cropping Rent Duration | Tenancy | Distance Frequency
-] . . . .
£ | thetotal | fromfield | quality crop (incl. under Arrangement | years have What isthe | Other paid/ of changed | ofplotto | of
c
] . A * . . . > ,
o parcel to home of soil of g fallow cultivation 3 you sharing payment received | tenancy inpast5 | landlord? landlord’s
i} . . 5 . . . . 5 S
g (acres) (1-way this 3 land) in ? continuousl arrangeme e.g. inputs if plot is contract | years? (tenants visit?
?* ?* i ? ? *
e km) parcel? 2012? *2 (acres) y used this nt? (In %) (PKR/ yr) leased? (years)? 4 only) (tenant/
n 1 plot? (PKR/yr) (Km) landlord)
A1311b A1311d A1311f A1311h A1311j A1311l Al1311n Al1311p A1311r A1311t Al1311v
‘5 A1312b A1312d A1312f A1312h A1312j A1312] A1312n A1312p A1312r A1312t A1312v
[v]
-3
A1313b A1313d A1313f A1313h A1313j A1313I A1313n A1313p A1313r A1313t A1313v
-
-— ]
&l < <
Al31i1c Al3lle Al311g A1311i A1311k Al1311m Al31llo Al31lq Al1311s Al1311u Al311w
b A1312c Al1312e A1312g A1312i A1312k A1312m A13120 A1312q A1312s Al1312u Al312w
]
x
A1313c A1313e A1313g A1313i A1313k A1313m A13130 A1313q A1313s A1313u Al1313w
A1321b A1321d A1321f A1321h A1321j A13211 A1321n A1321p A1321r A1321t A1321v
% A1322b A1322d A1322f A1322h A1322j A13221 A1322n A1322p A1322r A1322t A1322v
-4
A1323b A1323d A1323f A1323h A1323j A1323I A1323n A1323p A1323r A1323t A1323v
: ©
&l < 2
A1321c Al321e A1321g A1321i A1321k A1321m A13210 A1321q A1321s A1321u A1321w
b A1322c A1322e A1322g A1322i A1322k A1322m A13220 A1322q A1322s A1322u A1322w
]
x
A1323c A1323e A1323g A1323i A1323k A1323m A13230 A1323q A1323s A1323u A1323w
A1331b A1331d A1331f A1331h A1331j A1331l A1331n A1331p A1331r A1331t A1331v
5 A1332b A1332d A1332f A1332h A1332j A13321 A1332n A1332p A1332r A1332t A1332v
&
% [ o A1333b A1333d A1333f A1333h A1333j A1333I A1333n A1333p A1333r A1333t A1333v
(2]
§l 2 2
A1331c Al331e A1331g A1331i A1331k A1331m A13310 A1331q A1331s A1331u A1331w
- A1332c A1332e A1332g A1332i A1332k A1332m A13320 A1332q A1332s A1332u A1332w
]
x
A1333c A1333e A1333g A1333i A1333k A1333m A13330 A1333q A1333s A1333u A1333w




*1. (1) Low; (2) Medium; (3) High

*2: (1) Fallow; (2) Fodder; Wheat - Sahar (1); wheat - Shafaq (2); wheat - Faisalabad 10 (3); wheat - Punjab 90 (4); wheat — Lasani (5); wheat — Bhakkar (6); Kapas(cotton) - Neelum 121 (7); Kapas(cotton) -
Neelum 3700 (8); Kapas(cotton) - CIM-142 (9); Kapas(cotton) - CIM-886 (10); Kapas(cotton) - AA-703 (11); Kapas(cotton) - AA-802; Chawal (Paddy Rice) - IRRI-6; Chawal (Paddy Rice)- Basmati 382, Chawal
(Paddy Rice) - Bastmati 386; Chawal (Paddy Rice) —Kernal (3)Kado Loki (Bottle Gourd);(4)Tuori (Ribbed Guord);(5)Bengan (Egg plant);(6)Bhendi (Lady Finger);(7) Hari Mirch (Green Chilies);(8) Tematar
(Tomatoes);(9)Khira (Cucumber);(10)Kerela (Bitter Guord);(11)Gidra (Musk Melon);(12)Pan (Piper Bettle);(13)Kela (Pan);(14); Narial (Coconut);(15)Cheekoo (Mud Apple);(17)Ganna (Sugar Cane);(18)Aam
(Mango);(20)Aloo (Potato);(21)Other (Specify here )

*3: Own land and cultivated (1); own land and rent to others (2); share cropped land (3); Land rented in (pay fixed rate to landlord) (4); Use of fructuary right (5); Other (specify) (6)

*4: Rented extra land out (1); rented extra land in (2); Gone from sharecrop to fixed rent (3); Fixed rent to share crop (4) purchase land.

A14: If you were able to buy all of your owned/ cultivated land today (2012), what is the maximum you would pay for it? Specify total acres and A14 a: Specify PKR per acre

A15: How often are the terms of tenancy reviewed?
Every year (1); every 2 years (2); every 4 years (3); at discretion of the landlord (4)

A16: Are rights to farm the land you're using?
Inherited (1); Purchased (2); Designated by national government; (3) Designated by local government (4)

A17: Since you have been a farmer, have you been evicted from any previous land? Yes/No

A18: Have you experienced other farmers in your village being evicted from their land? Often/Occasionally/Never

A19: Crop Choice

Who decides crop choice? Circle as appropriate If selected FARMER in the previous question, what are the primary reasons Rate 3 options

for the crop choices you make?
Al191 Farmer 1 Highest profit, high risk 1 1-Most Important Al191a
A192 Landlord 2 Lower profit, lower risk 2 2-Most Important A192a
A193 Middleman 3 Past experience with these crops 3 3-Most Important A193a
Al194 Credit supplier 4 Recommended by the landlord 4
A195 Other (specify) 5 Recommended by the middleman 5

Preferred for home consumption 6

Low water use 7

Other (specify ) 8




Section B. Agricultural products: Inputs, outputs, and prices

B1. Agricultural products: outputs, and prices
o c Crop code Planting Harvesting Production in Average Home Quantity Quantity Post - Harvest Quantity Farmer Market Govt.
E o % as above Date date 2012 Production in Consumption consumed by stored losses Sold Price Price price
§ ._'T', A (Maunds) 2011 (Maunds) (Maund) Livestock (Maund) (Maund) (Maund) (PKR/ (PKR/ (PKR/
D2 (Maund) Maund) Maund) Maund)
B111b B111d B111f B111lh B111j B111l B1lln B11lp B111lr B111t B11llv B111x B111z
3 B112b B112d B112f B112h B112j B112| B112n B112p B112r B112t B112v B112x B112z
& B113b B113d B113f B113h B113j B113l B113n B113p B113r B113t B113v B113x B113z
i
g
& Blllc Bllle Blllg B111i B111k B11lm Blllo Blllq B111s B11lu B1llw B1lly Bllla
5‘(;; Bl12c Bll2e Bll2g B112i B112k B112m B112o0 B112q B112s B112u Bllw B112y B112a
> B113c B113e B113g B113i B113k B113m B1130 B113q B113s B113u B113w B113y B113a
B121b B121d B121f B121h B121j B121| B121n B121p B121r B121t B121v B121x B121z
;(EU B122b B122d B122f B122h B122j B122| B122n B122p B122r B122t B122v B122x B122z
~ o B123b B123d B123f B123h B123j B123| B123n B123p B123r B123t B123v B123x B123z
S
& B121c Bl2le B121g B121i B121k B121m B121lo B121q B121s B121u B121w B121y B121a
E B122c B122e B122g B122i B122k B122m B1220 B122q B122s B122u B122w B122y B122a
~ B123c B123e B123g B123i B123k B123m B1230 B123q B123s B123u B123w B123y B123a
B131b B131d B131f B131h B131j B131 B131n B131p B131r B131t B131v B131x B131z
;(EU B132b B132d B132f B132h B132j B132I| B132n B132p B132r B132t B132v B132x B132z
P e B133b B133d B133f B133h B133j B133I B133n B133p B133r B133t B133v B133x B133z
S
L B131c B131le B131g B131i B131k B131m B131lo B131q B131s B131u B131w B131y B131a
E B132c B132e B132g B132i B132k B132m B1320 B132q B132s B132u B132w B132y B132a
~ B133c B133e B133g B133i B133k B133m B1330 B133q B133s B133u B133w B133y B133a

B12. For total production (column d), what is the % upward or downward revision?

B13. For farmer price (column j), what is the % upward or downward revision?

B14. For market price (column k), what is the % upward or downward revision?

(%) (Consider average of past 5 years (2007-2011))

(%) (Consider average past 5 years (2007-2011))

(%) (Consider average past 5 years (2007-2011))




B2: Agricultural Inputs

B21. How far is it to the market where you purchase your inputs? One way distance

B22. What kind of transport do you mostly use to bring input from the market?

B22a. One way cost for a visit

B23: Fertilizers and Weedicides/ Pesticides

(km)

(walk, local bus, personal vehicle, rented vehicle, donkey/ camel cart);

(PKR) (Not to be filled if farmer receives delivery of inputs by a middleman etc. Only relevant if farmer actually goes to the market to pick up goods)

. v Weedicides/ Pesticides UREA D.A.P/S.0.P Manure
c_% c S @ Quantit | Total Source* | % of cost | Quantit | Total Source* | % of Quantit | Total Source* | % of Quantity | Total Source* % of
g8l 831 38 y Cost paid by y Cost cost y Cost cost (Kgs) Cost cost
§ 3 ° 2 (Kgs) (PKR) the (Kgs) (PKR) paidby | (Kgs) (PKR) paid by (PKR) paid b
g = farmer? the the the
- farmer? farmer? farmer
B231 B231 B231 B231 B231 B23 B231 B231 B231 B231 B2311 B231 B231 B2311 B2311 B2311
1b 1d 1f 1h 1j 111 1n 1p 1r 1t v 1x 1z bb dd ff
_ B231 B231 B231 B231 B231 B23 B231 B231 B231 B231 B2312 B231 B231 B2311 B2312 B2312
E 2b 2d 2f 2h 2j 121 2n 2p 2r 2t v 2x 2z bb dd ff
B231 B231 B231 B231 B231 B23 B231 B231 B231 B231 B2313 B231 B231 B2313 B2313 B2313
3b 3d 3f 3h 3j 13l 3n 3p 3r 3t v 3x 3z bb dd ff
—
E
& B231 B231 B231 B231 B231 B23 B231 B231 B231 B231 B2311 B231 B231 B2311 B2311 B2311
1c le 1g 1i 1k 11m lo 1q 1s 1u w ly la cc ee gg
e B231 B231 B231 B231 B231 B23 B231 B231 B231 B231 B2312 B231 B231 B2312 B2312 B2312
_fzﬂ 2c 2e 2g 2i 2k 12m 20 2q 2s 2u w 2y 2a cc ee gg
> B231 B231 B231 B231 B231 B23 B231 B231 B231 B231 B2313 B231 B231 B2313 B2313 B2313
3c 3e 3g 3i 3k 13m 30 3q 3s 3u w 3y 3a cc ee gg
B232 B232 B232 B232 B232 B23 B232 B232 B232 B232 B2321 B232 B232 B2321 B2321 B2321
1b 1d 1f 1h 1j 211 1n 1p 1r 1t v 1x 1z bb dd ff
_ B232 B232 B232 B232 B232 B23 B232 B232 B232 B232 B2322 B232 B232 B2322 B2322 B2322
E 2b 2d 2f 2h 2j 221 2n 2p 2r 2t v 2x 2z bb dd ff
B232 B232 B232 B232 B232 B23 B232 B232 B232 B232 B2323 B232 B232 B2323 B2323 B2323
~ 3b 3d 3f 3h 3j 23l 3n 3p 3r 3t v 3x 3z bb dd ff
g
&
B232 B232 B232 B232 B232 B23 B232 B232 B232 B232 B2321 B232 B232 B2321 B2321 B2321
o 1c le 1g 1i 1k 21m lo 1q 1s 1u w ly la cc ee gg
© B232 B232 B232 B232 B232 B23 B232 B232 B232 B232 B2322 B232 B232 B2322 B2322 B2322
< 2c 2e 2g 2i 2k 22m 20 2q 2s 2u w 2y 2a cc ee gg
B232 B232 B232 B232 B232 B23 B232 B232 B232 B232 B2323 B232 B232 B2323 B2323 B2323
3c 3e 3g 3i 3k 23m 30 3q 3s 3u w 3y 3a cc ee gg




B233 B233 B233 B233 B233 B23 B233 B233 B233 B233 B2331 B233 B233 B2331 B2331 B2331
1b 1d 1f 1h 1j 31l 1n 1p 1r 1t v 1x 1z bb dd ff
— B233 B233 B233 B233 B233 B23 B233 B233 B233 B233 B2332 B233 B233 B2332 B2332 B2332
E 2b 2d 2f 2h 2j 321 2n 2p 2r 2t v 2X 2z bb dd ff
B233 B233 B233 B233 B233 B23 B233 B233 B233 B233 B2333 B233 B233 B2333 B2333 B2333
3b 3d 3f 3h 3j 33l 3n 3p 3r 3t v 3x 3z bb dd ff
o
& B233 B233 B233 B233 B233 B23 B233 B233 B233 B233 B2331 B233 B233 B2331 B2331 B2331
1c le 1g 1i 1k 31m lo 1q 1s 1u w ly la cc ee gg
[ B233 B233 B233 B233 B233 B23 B233 B233 B233 B233 B2332 B233 B233 B2332 B2332 B2332
_;:ﬂ 2c 2e 2g 2i 2k 32m 20 2q 2s 2u w 2y 2a cc ee gg
> B233 B233 B233 B233 B233 B23 B233 B233 B233 B233 B2333 B233 B233 B2333 B2333 B2333
3c 3e 3g 3i 3k 33m 30 3q 3s 3u w 3y 3a cc ee gg

*1: On cash payment from market/ local dealer (1); on credit from market/ local dealer (2); on cash from Middleman (3); On credit from Middleman (4); free from middleman (5); free from Landlord (6);

on credit from land owner (7); Government (8); NGO/agricultural extension (9); other, pls. specify (10)
B24: Seed
Farm Seed
Season | Enter Plot code as above
land Quantity (Kg) Total Cost (PKR) Source* % of cost paid by the farmer?
B2311b B2311bb B2311dd B2311ff
) B2312b B2311bb B2312dd B2312ff
(T
o B2313b B2313bb B2313dd B2313ff
i
@
=4
& B2311c B2311cc B2311lee B2311gg
’; B2312c B2312cc B2312ee B2312gg
< B2313c B2313cc B2313ee B2313gg
B2321b B2321bb B2321dd B2321ff
) B2322b B2322bb B2322dd B2322ff
(T
o B2323b B2323bb B2323dd B2323ff
o
@
=
& B2321c B2321cc B2321ee B2321gg
’; B2322c B2322cc B2322ee B2322gg
< B2323c B2323cc B2323ee B2323gg
s e : V£ 1 B2331bb B2331dd B2331ff




B2332b B2332bb B2332dd B2332ff
B2333b B2333bb B2333dd B2333ff
B2331c B2331cc B2331ee B2331gg
% B2332c B2332cc B2332ee B2332gg
< B2333c B2333cc B2333ee B2333gg

*1: On cash payment from market/ local dealer (1); on credit from market/ local dealer (2); on cash from Middleman (3); On credit from Middleman (4); free from middleman (5); free from Landlord (6);

on credit from land owner (7); Government (8); NGO/agricultural extension (9); other, pls. specify (10)
25: Usage of Water
° What is your | Total No of How many canal water How many tubewell If you use If selected 2, 3 or 4, What is fuel Which
-r% < 3 % source of water applications? applications? tubewell, what was the rent of expense for the method do
g ﬁ o 2 water?*1 application per No of Hours per No of Hours per who owns it? | the tubewell per tubewell per you use to
ks n 8 @ cropping cycle? applications | application applications | application *1 application? (PKR) application for this water your
crop? (PKR) farm?
B2611b B2611d B2611f B2611h B2611j B2611l B2611n B2611p
'-(EU B2612b B2612d B2612f B2612h B2612j B2612I B2612n B2612p
- e B2613b B2613d B2613f B2613h B2613j B2613I B2613n B2613p
3
L - B2611c B2611e B2611g B2611i B2611k B2611m B2611o B2611q
';:u B2612c B2612e B2612g B2612i B2612k B2612m B26120 B2612q
< B2613c B2613e B2613g B2613i B2613k B2613m B26130 B2613q
B2621b B2621d B2621f B2621h B2621j B2621l B2621n B2621p
'-(EU B2622b B2622d B2622f B2622h B2622j B2622I B2622n B2622p
~ e B2623b B2623d B2623f B2623h B2623j B2623I B2623n B2623p
S
L — B2621c B2621e B2621g B2621i B2621k B2621m B2621o B2621q
';:u B2622c B2622e B2622g B2622i B2622k B2622m B26220 B2622q
< B2623c B2623e B2623g B2623i B2623k B2623m B26230 B2623q
B2631b B2631d B2631f B2631h B2631j B2631l B2631n B2631p
'-(EU B2632b B2632d B2632f B2632h B2632j B2632I B2632n B2632p
- o B2633b B2633d B2633f B2633h B2633j B2633lI B2633n B2633p
E
&E - B2631c B2631e B2631g B2631i B2631k B2631m B26310 B2631q
'(:‘J B2632c B2632e B2632g B2632i B2632k B2632m B26320 B2632q
< B2633c B2633e B2633g B2633i B2633k B2633m B26330 B2633q




*1. Canal Irrigation (1); Rain fed (2); Tubewell (3); Other (specify

) (6)

*2. Personal (1); rented from neighbor (2); rented commercially (3); free/ subsidized rate from landlord (4)

*3. Drip Irrigation (1); Flood irrigation (2); Sprinkler irrigation (3); Furrow irrigation (4); other (specify

B28: During which month (s) did you face water scarcity in the past 12 months?

B7: Machinery Expense — Parcel 1

Light Equipment Use of equipment/machinery (Enter crop code as above) Who owns the If equipment is Who are Year of Value at
(Tick equipment/ shared, what % of these costs Purchase year of
appropriate Parcel 1 animal? *1 costs does farmer shared Purchase
one) Rabi Kharif pay? with*2? (PKR)
Crop 1 Crop 2 Crop 3 Crop 4 Crop 1 Crop 2 Crop 3 Crop 4
Hand Hoe B71a B71b B71c B71d B71e B71f B71g B71h B71i B71j B71k
Axe B72a B72b B72c B72d B72e B72f B72g B72h B72i B72j B72k
Scythe (Drati) B73a B73b B73c B73d B73e B73f B73g B73h B73i B73j B73k
Rake (kilna) B74a B74b B74c B74d B74e B74f B74g B74h B74i B74j B74k
Other B75 B75b B75c B75d B75e B75f B75g B75h B75i B75j B75k
Heavy Machinery (Enter rental cost in PKR)
Draft animal
power
Rotor weigh B76a B76b B76¢ B76d B76e B76f B76g B76h B76i B76j B76k
Plough (Gobal) B77a B77b B77c B77d B77e B77f B77g B77h B77i B77j B77k
Leveler (Dhallai) | B78a B78b B78c B78d B78e B78f B78g B78h B78i B78j B78k
Khiria B79a B79b B79c B79d B79e B79f B79g B79h B79i B79j B79k
Loader B710a B710b B710c B710d B710e B710f B710g B710h B710i B710j B710k
Cultivator B711a B711b B711c B711d B711e B711f B711g B711h B711i B711j B711k
Reaper B712a B712b B712c B712d B712e B712f B712g B712h B712i B712j B712k
Thresher B713a B713b B713c B713d B713e B713f B713g B713h B713i B713j B713k
Tractor B714a B714b B714c B714d B714e B714f B714g B714h B714i B714j B714k
Generator B715a B715b B715c B715d B715e B715f B715g B715h B715i B715j B715k
Tubewell B716a B716b B716¢ B716d B716e B716f B716g B716h B716i B716j B716k

*1 & 2: Personal (1); landlord (free) (2), land lord rented (3), middleman/trader free (4), middleman rented (5) Rented from market (6)

10




B7: Machinery Expense — Parcel 2

Light Equipment Use of equipment/machinery (Enter crop code as above) Who owns the If equipment is Who are Year of Value at
(Tick equipment/ shared, what % of these costs Purchase year of
appropriate Parcel 2 animal? *1 costs does farmer shared Purchase
one) Rabi Kharif pay? with*2? (PKR)
Crop 1 Crop 2 Crop 3 Crop 4 Crop 1 Crop 2 Crop 3 Crop 4
Hand Hoe B71a B71b B71c B71d B71e B71f B71g B71h B71i B71j B71k
Axe B72a B72b B72c B72d B72e B72f B72g B72h B72i B72j B72k
Scythe (Drati) B73a B73b B73c B73d B73e B73f B73g B73h B73i B73j B73k
Rake (kilna) B74a B74b B74c B74d B74e B74f B74g B74h B74i B74j B74k
Other B75 B75b B75c B75d B75e B75f B75g B75h B75i B75j B75k
Heavy Machinery (Enter rental cost in PKR)
Draft animal
power
Rotor weigh B76a B76b B76¢ B76d B76e B76f B76g B76h B76i B76j B76k
Plough (Gobal) B77a B77b B77c B77d B77e B77f B77g B77h B77i B77j B77k
Leveler (Dhallai) | B78a B78b B78c B78d B78e B78f B78g B78h B78i B78j B78k
Khiria B79a B79b B79c B79d B79e B79f B79g B79h B79i B79j B79k
Loader B710a B710b B710c B710d B710e B710f B710g B710h B710i B710j B710k
Cultivator B711a B711b B711c B711d B711e B711f B711g B711h B711i B711j B711k
Reaper B712a B712b B712c B712d B712e B712f B712g B712h B712i B712j B712k
Thresher B713a B713b B713c B713d B713e B713f B713g B713h B713i B713j B713k
Tractor B714a B714b B714c B714d B714e B714f B714g B714h B714i B714j B714k
Generator B715a B715b B715c B715d B715e B715f B715g B715h B715i B715j B715k
Tubewell B716a B716b B716¢ B716d B716e B716f B716g B716h B716i B716j B716k

*1 & 2: Personal (1); landlord (free) (2), land lord rented (3), middleman/trader free (4), middleman rented (5) Rented from market (6)
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B7: Machinery Expense — Parcel 3

Light Equipment Use of equipment/machinery (Enter crop code as above) Who owns the If equipment is Who are Year of Value at
(Tick equipment/ shared, what % of these costs Purchase year of
appropriate Parcel 3 animal? *1 costs does farmer shared Purchase
one) Rabi Kharif pay? with*2? (PKR)
Crop 1 Crop 2 Crop 3 Crop 4 Crop 1 Crop 2 Crop 3 Crop 4
Hand Hoe B71a B71b B71c B71d B71e B71f B71g B71h B71i B71j B71k
Axe B72a B72b B72c B72d B72e B72f B72g B72h B72i B72j B72k
Scythe (Drati) B73a B73b B73c B73d B73e B73f B73g B73h B73i B73j B73k
Rake (kilna) B74a B74b B74c B74d B74e B74f B74g B74h B74i B74j B74k
Other B75 B75b B75c B75d B75e B75f B75g B75h B75i B75j B75k
Heavy Machinery (Enter rental cost in PKR)
Draft animal
power
Rotor weigh B76a B76b B76¢ B76d B76e B76f B76g B76h B76i B76j B76k
Plough (Gobal) B77a B77b B77c B77d B77e B77f B77g B77h B77i B77j B77k
Leveler (Dhallai) | B78a B78b B78c B78d B78e B78f B78g B78h B78i B78j B78k
Khiria B79a B79b B79c B79d B79e B79f B79g B79h B79i B79j B79k
Loader B710a B710b B710c B710d B710e B710f B710g B710h B710i B710j B710k
Cultivator B711a B711b B711c B711d B711e B711f B711g B711h B711i B711j B711k
Reaper B712a B712b B712c B712d B712e B712f B712g B712h B712i B712j B712k
Thresher B713a B713b B713c B713d B713e B713f B713g B713h B713i B713j B713k
Tractor B714a B714b B714c B714d B714e B714f B714g B714h B714i B714j B714k
Generator B715a B715b B715c B715d B715e B715f B715g B715h B715i B715j B715k
Tubewell B716a B716b B716¢ B716d B716e B716f B716g B716h B716i B716j B716k

*1 & 2: Personal (1); landlord (free) (2), land lord rented (3), middleman/trader free (4), middleman rented (5) Rented from market (6)

12




C1: Labor Composition — Parcel 1

Enter Household labor (please enter person code in no column) Hired Labor
< Crop 1 day= 6-8 hours of work completed by 1 individual 1 day= 6-8 hours of work completed by 1 individual.
@ | Code Activities Male Female Child (<16) Male Female Child (<16)
A No days No Days No Days Days Days Daily wage No Days Daily wage No Days
rate rate
Land Preparation | clla cllb cllc clid clle clif cllg clih clii clij clik cl1l
Planting cl2a cl2b cl2c clad cl2e claf cl2g cl2h cl2i cl2j c12k cl12l
Watering cl3a c13b cl3c c13d cl3e cl13f cl3g c13h c13i c13j c13k c13l
Weeding/ clda cl4b clac clad clde claf clag clah cl4i cl4j cl4k cl4l
— pesticides
? Harvesting c15a c15b c15c c15d cl5e c15f cl5g c15h c15i c15j c15k c15l
© Post harvesting cléa cléb cléc cled clee clef cleg cléh cl6i cl6j clek clel
Land Preparation | c17a cl7b cl7c cl7d cl7e cl7f cl7g cl7h cl7i c17j cl7k c171
Planting c18a c18b c18c cl8d cl8e c18f cl8g c18h c18i c18j c18k clsl
Watering c19a c19b c19c clad cl9%e clof cl9g c19h c19i c19j c19k cl9l
Weeding/ cl10a c110b cl10c cliod c110e cliof cllog c110h cl110i c110j c110k cliol
~ pesticides
s Harvesting cllia cl1ib cllic cliid cllle cliaf cllig cllih cl11i c111j cl11k cl11l
'-,5“ S Post harvesting cl12a cl12b cll2c cliad cll2e cliaf cllag cl12h c112i c112j c112k cl12]
= Land Preparation | c113a c113b cl13c c113d cl13e c113f cl13g c113h cl113i c113j c113k c113l
Planting cll4a cl14b cll4c cliad cllde cli4f cll4g cl14h cl14i cl14j c114k cl14l
Watering cl15a c115b c115c cl15d cll5e cl115f cl15g c115h c115i c115j c115k c115I
Weeding/ cll6a clileb cll6e clied cllee clief clleg cl16h cli6i cl16j cliek cliel
™ pesticides
g‘ Harvesting cl17a cl17b cl17c cl17d cll7e cl17f cll7g cl17h cl117i c117j c117k cl1171
© Post harvesting cl18a c118b c118c cligd cl18e cl18f cl18g c118h cl118i c118;j c118k clisl
Land Preparation | c119a c119b c119c cliod cl19e cl19of cl19g c119h cl19i c119j c119k cl19l
Planting c120a c120b c120c cl20d c120e cl20f c120g c120h c120i c120j c120k cl2o0l
watering cl21a c121b cl21c cl21d cl21e cl21f cl21g cl21h c121i c121j c121k cl21l
Weeding/ cl22a c122b c122c cl22d cl22e cl22f cl22g c122h c122i c122j c122k c122]
< pesticides
g‘ Harvesting c123a c123b c123c c123d cl23e c123f c123g c123h c123i c123;j c123k c123l
© Post harvesting cl24a cl24b c124c cl24d cl24e cl24f cl24g c124h cl24i c124j c124k cl24l
Land Preparation | c125a c125b c125c¢ cl25d cl25e c125f cl25g c125h c125i c125j c125k c125]
Planting cl26a cl26b cl26¢ cl26d cl26e cl26f cl26g c126h c126i c126j c126k cl2e6l
o« — Watering cl27a C127b cl27c cl27d cl27e cl27f cl27g c127h c127i c127j c127k c127I
E §' Weeding/ c128a c128b c128c cl28d c128e cl28f c128g c128h c128i c128;j c128k cl2sl
| © pesticides
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Harvesting c129a c129b c129c c129d c129e cl129f c129g c129h c129i c129j c129k cl129l
Post harvesting c130a c130b c130c cl30d c130e cl30f c130g c130h c130i c130j c130k c13o0l
Land Preparation | c125a c125b c125¢ cl25d cl25e c125f cl25g c125h c125i c125j c125k c125]
Planting cl26a cl26b cl26¢ cl26d cl26e cl26f cl26g c126h c126i c126j c126k cl2e6l
Watering cl27a C127b cl27c cl27d cl27e cl27f cl27g cl27h c127i c127j c127k c1271
Weeding/ c128a c128b c128c cl28d c128e cl28f c128g c128h c128i c128;j c128k cl2sl

~ pesticides

2 Harvesting c129a c129b c129c cl29d c129e cl29f c129g c129h c129i c129j c129k c129l

S Post harvesting c130a c130b c130c cl30d c130e cl30f c130g c130h c130i c130j c130k cl13o0l
Land Preparation | c125a c125b c125¢ cl25d cl25e c125f cl25g c125h c125i c125j c125k c125]
Planting cl26a cl26b cl26¢ cl26d cl26e cl26f cl26g c126h c126i c126j c126k cl2e6l
Watering cl27a C127b cl27c cl27d cl27e cl27f cl27g cl27h c127i c127j c127k c1271
Weeding/ c128a c128b c128c cl28d cl28e cl28f c128g c128h c128i c128;j c128k cl2sl

™ pesticides

s Harvesting c129a c129b c129c cl29d c129e cl129f c129g c129h c129i c129j c129k c129l

S Post harvesting c130a c130b c130c cl30d c130e cl30f c130g c130h c130i c130j c130k c13o0l
Land Preparation | c125a c125b c125¢ cl25d cl25e c125f cl25g c125h c125i c125j c125k c125]
Planting cl26a cl26b cl26¢ cl26d cl26e cl26f cl26g c126h c126i c126j c126k cl2e6l
Watering cl27a C127b cl27c cl27d cl27e cl27f cl27g cl27h c127i c127j c127k c1271
Weeding/ c128a c128b c128c cl28d c128e cl28f c128g c128h c128i c128;j c128k cl2sl

< pesticides

s Harvesting c129a c129b c129c c129d c129e cl129f c129g c129h c129i c129j c129k cl129l

S Post harvesting c130a c130b c130c cl30d c130e cl30f c130g c130h c130i c130j c130k c13o0l

14




C1: Labor Composition — Parcel 2

Enter Household labor (please enter person code in no column) Hired Labor
< Crop 1 day= 6-8 hours of work completed by 1 individual 1 day= 6-8 hours of work completed by 1 individual.
@ | Code Activities Male Female Child (<16) Male Female Child (<16)
A No days No Days No Days Days Days Daily wage No Days Daily wage No Days
rate rate
Land Preparation | clla cllb cllc clid clle clif cllg clih clii clij clik cl1l
Planting cl2a cl2b cl2c clad cl2e claf cl2g cl2h cl2i cl2j c12k cl12l
Watering cl3a c13b cl3c c13d cl3e cl13f cl3g c13h c13i c13j c13k c13l
Weeding/ clda cl4b clac clad clde claf clag clah cl4i cl4j cl4k cl4l
— pesticides
? Harvesting c15a c15b c15c c15d cl5e c15f cl5g c15h c15i c15j c15k c15l
© Post harvesting cléa cléb cléc cled clee clef cleg cléh cl6i cl6j clek clel
Land Preparation | c17a cl7b cl7c cl7d cl7e cl7f cl7g cl7h cl7i c17j cl7k c171
Planting c18a c18b c18c cl8d cl8e c18f cl8g c18h c18i c18j c18k clsl
Watering c19a c19b c19c clad cl9%e clof cl9g c19h c19i c19j c19k cl9l
Weeding/ cl10a c110b cl10c cliod c110e cliof cllog c110h cl110i c110j c110k cliol
~ pesticides
s Harvesting cllia cl1ib cllic cliid cllle cliaf cllig cllih cl11i c111j cl11k cl11l
'-,5“ S Post harvesting cl12a cl12b cll2c cliad cll2e cliaf cllag cl12h c112i c112j c112k cl12]
= Land Preparation | c113a c113b cl13c c113d cl13e c113f cl13g c113h cl113i c113j c113k c113l
Planting cll4a cl14b cll4c cliad cllde cli4f cll4g cl14h cl14i cl14j c114k cl14l
Watering cl15a c115b c115c cl15d cll5e cl115f cl15g c115h c115i c115j c115k c115I
Weeding/ cll6a clileb cll6e clied cllee clief clleg cl16h cli6i cl16j cliek cliel
™ pesticides
g‘ Harvesting cl17a cl17b cl17c cl17d cll7e cl17f cll7g cl17h cl117i c117j c117k cl1171
© Post harvesting cl18a c118b c118c cligd cl18e cl18f cl18g c118h cl118i c118;j c118k clisl
Land Preparation | c119a c119b c119c cliod cl19e cl19of cl19g c119h cl19i c119j c119k cl19l
Planting c120a c120b c120c cl20d c120e cl20f c120g c120h c120i c120j c120k cl2o0l
watering cl21a c121b cl21c cl21d cl21e cl21f cl21g cl21h c121i c121j c121k cl21l
Weeding/ cl22a c122b c122c cl22d cl22e cl22f cl22g c122h c122i c122j c122k c122]
< pesticides
g‘ Harvesting c123a c123b c123c c123d cl23e c123f c123g c123h c123i c123;j c123k c123l
© Post harvesting cl24a cl24b c124c cl24d cl24e cl24f cl24g c124h cl24i c124j c124k cl24l
Land Preparation | c125a c125b c125c¢ cl25d cl25e c125f cl25g c125h c125i c125j c125k c125]
Planting cl26a cl26b cl26¢ cl26d cl26e cl26f cl26g c126h c126i c126j c126k cl2e6l
o« — Watering cl27a C127b cl27c cl27d cl27e cl27f cl27g c127h c127i c127j c127k c127I
E §' Weeding/ c128a c128b c128c cl28d c128e cl28f c128g c128h c128i c128;j c128k cl2sl
| © pesticides
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Harvesting c129a c129b c129c c129d c129e cl129f c129g c129h c129i c129j c129k cl129l
Post harvesting c130a c130b c130c cl30d c130e cl30f c130g c130h c130i c130j c130k c13o0l
Land Preparation | c125a c125b c125¢ cl25d cl25e c125f cl25g c125h c125i c125j c125k c125]
Planting cl26a cl26b cl26¢ cl26d cl26e cl26f cl26g c126h c126i c126j c126k cl2e6l
Watering cl27a C127b cl27c cl27d cl27e cl27f cl27g cl27h c127i c127j c127k c1271
Weeding/ c128a c128b c128c cl28d c128e cl28f c128g c128h c128i c128;j c128k cl2sl
~ pesticides
2 Harvesting c129a c129b c129c cl29d c129e cl29f c129g c129h c129i c129j c129k c129l
S Post harvesting c130a c130b c130c cl30d c130e cl30f c130g c130h c130i c130j c130k cl13o0l
Land Preparation | c125a c125b c125¢ cl25d cl25e c125f cl25g c125h c125i c125j c125k c125]
Planting cl26a cl26b cl26¢ cl26d cl26e cl26f cl26g c126h c126i c126j c126k cl2e6l
Watering cl27a C127b cl27c cl27d cl27e cl27f cl27g cl27h c127i c127j c127k c1271
Weeding/ c128a c128b c128c cl28d cl28e cl28f c128g c128h c128i c128;j c128k cl2sl
™ pesticides
s Harvesting c129a c129b c129c cl29d c129e cl129f c129g c129h c129i c129j c129k c129l
S Post harvesting c130a c130b c130c cl30d c130e cl30f c130g c130h c130i c130j c130k c13o0l
Land Preparation | c125a c125b c125¢ cl25d cl25e c125f cl25g c125h c125i c125j c125k c125]
Planting cl26a cl26b cl26¢ cl26d cl26e cl26f cl26g c126h c126i c126j c126k cl2e6l
Watering cl27a C127b cl27c cl27d cl27e cl27f cl27g cl27h c127i c127j c127k c1271
Weeding/ c128a c128b c128c cl28d c128e cl28f c128g c128h c128i c128;j c128k cl2sl
< pesticides
s Harvesting c129a c129b c129c c129d c129e cl129f c129g c129h c129i c129j c129k cl129l
S Post harvesting c130a c130b c130c cl30d c130e cl30f c130g c130h c130i c130j c130k c13o0l
C1: Labor Composition — Parcel 3
Enter Household labor (please enter person code in no column) Hired Labor
5 Crop 1 day= 6-8 hours of work completed by 1 individual 1 day= 6-8 hours of work completed by 1 individual.
2 | Code Activities Male Female Child (<16) Male Female Child (<16)
A No days No Days No Days Days Days Daily wage No Days Daily wage No Days
rate rate
Land Preparation | clla cllb cllc clid clle clif clilg clih clii clij clik cl1l
Planting cl2a c12b cl2c clad cl2e cl2f cl2g cl2h c12i c12j cl2k c12|
_ Watering cl3a c13b cl3c cl13d cl3e c13f cl3g c13h c13i c13j c13k c13l
E Weeding/ clda cl4b clac clad clde claf clag clah cl4i cl4j cl4k cl4l
— pesticides
? Harvesting c15a c15b c15c c15d cl5e c15f cl5g c15h c15i c15j c15k c15l
© Post harvesting cléa cléb cléc cled clée clef cleg cléh cl6i cl6j clek clel
© | Land Preparation | cl17a cl7b cl7c cl7d cl7e cl7f cl7g cl7h cl7i c17j cl7k c171
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Planting c18a c18b c18c cl8d cl8e c18f cl8g c18h c18i c18j c18k clsl
Watering c19a c19b c19c clad cl9%e clof cl9g c19h c19i c19j c19k cl9l
Weeding/ cl10a c110b c110c cliod c110e cliof cllog c110h cl10i c110j c110k cliol
pesticides
Harvesting cllia cl1ib cllic cliid cllle cliaf cllig cllih cl11i c111j cl11k cl11l
Post harvesting cl12a cl12b cll2c cliad cll2e clia2f cllag cl12h c112i c112j c112k cl12]
Land Preparation | c113a c113b c113c c113d cl13e c113f cl13g c113h c113i c113j c113k c113l
Planting cll4a cl14b cll4c cliad cllde cli4f cll4g cl14h cl14i cl14j c114k cl14l
Watering cl15a c115b c115c cl15d cll5e cl15f cll5g c115h c115i c115j c115k c115I
Weeding/ cll6a clileb cll6e clied cllee clief clleg cl16h cli6i cl116j cliek cliel
™ pesticides
s Harvesting cl17a cl17b cl17c cl17d cll7e cl17f cll7g cl17h cl117i c117j c117k cl1171
S Post harvesting cl18a c118b c118c cligd cl18e cl18f cl18g c118h cl118i c118;j c118k clisl
Land Preparation | c119a c119b c119c cliod cl19e cl19of cl19g c119h cl119i c119j c119k cl19l
Planting c120a c120b c120c cl20d c120e cl20f c120g c120h c120i c120j c120k cl2o0l
watering cl21a c121b cl21c cl21d cl21e cl21f cl21g cl21h c121i c121j c121k cl21l
Weeding/ cl22a c122b c122c cl22d cl22e cl22f cl22g c122h c122i c122j c122k c122]
< pesticides
2 Harvesting c123a c123b c123c c123d cl23e c123f cl23g c123h c123i c123;j c123k c123l
S Post harvesting cl24a cl24b c124c cl24d cl24e cl24f cl24g c124h cl24i c124j c124k cl24l
Land Preparation | c125a c125b c125¢ cl25d cl25e c125f cl25g c125h c125i c125j c125k c125]
Planting cl26a cl26b cl26¢ cl26d cl26e cl26f cl26g c126h c126i c126j c126k cl2e6l
Watering cl27a C127b cl27c cl27d cl27e cl27f cl27g cl27h c127i c127j c127k c1271
Weeding/ c128a c128b c128c cl28d c128e cl28f c128g c128h c128i c128;j c128k cl2sl
— pesticides
2 Harvesting c129a c129b c129c cl29d c129e cl129f c129g c129h c129i c129j c129k cl129l
S Post harvesting c130a c130b c130c cl30d c130e cl30f c130g c130h c130i c130j c130k c13o0l
Land Preparation | c125a c125b c125¢ cl25d cl25e c125f cl25g c125h c125i c125j c125k c125]
Planting cl26a cl26b cl26¢ cl26d cl26e cl26f cl26g c126h c126i c126j c126k cl2e6l
Watering cl27a C127b cl27c cl27d cl27e cl27f cl27g cl27h c127i c127j c127k c1271
Weeding/ c128a c128b c128c cl28d c128e cl28f c128g c128h c128i c128;j c128k cl2sl
~ pesticides
2 Harvesting c129a c129b c129c c129d c129e c129f c129g c129h c129i c129j c129k cl129l
S Post harvesting c130a c130b c130c c130d c130e c130f c130g c130h c130i c130j c130k c13o0l
Land Preparation | c125a c125b c125c c125d cl125e c125f cl25g c125h c125i c125j c125k c1251
Planting cl126a cl126b cl26¢ cl126d cl26e c126f cl26g cl126h c126i c126j c126k cl26l
. ™ Watering cl27a C127b cl27c c127d cl27e cl127f cl27g c127h c127i c127j c127k c1271
E §' Weeding/ c128a c128b c128c cl28d c128e cl28f c128g c128h c128i c128;j c128k cl2sl
| © pesticides
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Harvesting c129a c129b c129c c129d c129e cl129f c129g c129h c129i c129j c129k cl129l
Post harvesting c130a c130b c130c cl30d c130e cl30f c130g c130h c130i c130j c130k c13o0l
Land Preparation | c125a c125b c125¢ cl25d cl25e c125f cl25g c125h c125i c125j c125k c125]
Planting cl26a cl26b cl26¢ cl26d cl26e cl26f cl26g c126h c126i c126j c126k cl2e6l
Watering cl27a C127b cl27c cl27d cl27e cl27f cl27g cl27h c127i c127j c127k c1271
Weeding/ c128a c128b c128c cl28d c128e cl28f c128g c128h c128i c128;j c128k cl2sl

< pesticides

2 Harvesting c129a c129b c129c cl29d c129e cl29f c129g c129h c129i c129j c129k c129l

S Post harvesting c130a c130b c130c cl30d c130e cl30f c130g c130h c130i c130j c130k cl13o0l

C3: Off-farm employment for members of household

Person Code No. of days (6-8 hours) worked off-farm Daily wage paid (in PKR)
C31a C31b C31c
C32a C32b C32c
C33a C33b C33c
C34a C34b C34c
C35a C35b C35c¢
C36a C36b C36¢
C37a C37b C37c
C38a C38b C38c

C4: Marketing and Transport Channel:

Where do What is Is there a metaled Cost for transport (In PKR) (Rent + Cost of packaging (PKR) How long have you sold How far is it to the market
you sell middleman’s road to the market | fuel) (Conditional on farmer marketing | (Conditional on farmer produce through this marketing | where you sell your

your commission? In % | (Yes/No) own produce) marketing own produce) channel (years)? harvest? (km)

produce *

C4la | C41b | C4lc | c41d | Cale | ca1f | Calg |

*Local Market (1); Urban Market (2); Middle man (3); Govt. Agents (4); Landlord (5)
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Table B15. Livestock

production, consumption, prices etc. (2012)

Type of | No. of No of Ownership Home No. of animal sold [2012] Who did | Monthly | Total Grazing Own Labour No of
Animal Animals animals consumption | Nos. Farmer's | Market you sell | earning feeding cost (Hours/ yr) cultivable
*1 born or own Shared [Nos./Yr] *2 | Sold Price Price itto? *3 | from and (PKR/ yr) Hired land from
bought in (PKR) (PKR) animal veterinary Labour parcels tha
2012 produce | cost (PKR/ (PKR/ yr) is instead
(PKR) *4 | yr) used as
enclosure
for animals
B151 B151a B151b B151c B151d B151e B151f B151g B151h B151i
B152 B152a B152b B152c B152d B152e B152f B152g B152h B152i
B153 B153a B153b B153c B153d B153e B153f B153g B153h B153i
B154 B154a B154b B154c B154d B154e B154f B154g B154h B154i
B155 B155a B155b B155c B155d B155e B155f B155g B155h B155i
B156 B156a B156b B156¢ B156d B156e B156f B156g B156h B156i
B157 B157a B157b B157c B157d B157e B157f B157g B157h B157i

*1 (1) Cows (2) Buffalo (3) Goats (4) Sheep (5) Camels (6) Horses (7) Asses (8) Mules (9) Others
*2 including for sacrifice, gifting, marriages, religious and other festivals

*3 neighbor, local market, urban market, middleman, other
*4 Includes milk, butter, and leftovers sold for preparation
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Section D: Institutional Arrangements

D1: Type and source of household credit

Credit Source Loan in past year Interest What is the Any collateral Where did you How long have you If applied but not received the

(In PKR) rate/ year | repaymenttime? (In | for the loan? *1 | primarily spend this | dealt with this loan loan, what are the reasons for
months) loan?*2 provider (in years) your ineligibility? *3

D11 | Bank D11la D11b D1lc D11d Dlle D11f Dillg

D12 | Micro finance institutes D12a D12b D12c D12d D12e D12f D12g

D13 | Farmer associations D13a D13b D13c D13d D13e D13f D13g

D14 | Land lord D14a D14b D14c D14d D14e D14f D1l4g

D15 | Relative or Friend D15a D15b D15c D15d D15e D15f D15g

D16 | Local Lender D16a D16b D16c Di6d Dl6e D16f Dlé6g

D17 | Middleman D17a D17b D17c D17d D17e D17f D17g

*1 Land (1); share of output (2); use of farmers labour (3); other (specify) (4)
*2 Buy inputs (seeds, fertilizer, machinery) (1); invest in irrigation (2); buy food/clothing/medical care (3); education/training (4)
*3 incomplete identification documents (1), lack of collateral (2), insufficient income/ employment for repayment (3), default on previous loans (4).

D2: Have you received any other loans in the past 5 years?

D3: Village characteristics

in PKR

How any people live in your village?

How far are you from the centre of the village?

No. of relatives in village

D3a

D3b

D3c

DA4: Village Profile

Facilities Tick as appropriate
D41 School

D42 Dispensary/ hospital

D43 Shop/market

D44 Public Transport

D45 Telephone network

D46 Internet access

D47 Electricity supply

D49 Farmer association

D410 Agricultural extension office
D411 Agricultural NGO/ CBO
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Next 3 questions only to be answered by those farmers who trade through a middleman

D5: When did you agree to trade through a Tick as : Would it be a problem for you to switch to a different middleman if you felt Have you switched middleman before?
middleman? appropriate the terms of your contract were not satisfactory? (Yes/No) (Yes/no)
D51 | Just before harvest D6 D7
D52 | Just after harvest
D53 | During crop preparation
D8: Have you received any of the following types of subsidies during last 12 months (give amount (PKR) per year)
Source Seed Subsidy Fertilizer Subsidy Other
D81 Government D81a D81b D81c
D82 NGO D82a D82b D82c
D84 Private sector sources D84a D84b D84c
D85 Other (Pls. specify) D85a D85b D85c
D9: Do you get information or advice from agricultural extension workers or other sources on crop production technology?
Source How many visit How much do you pay Did you implement any of the advice If yes, was If not, what was the reason for not
each season annually for this service? received on production techniques/ it useful? implementing their advice*
equipment? (Yes/ No) (Yes/ No)
D51 Govt. agricultural extension services D51a D51b D51c D51d D51e
D52 Local farmer associations D52a D52b D52c D52d D52e
D53 NGOs/ CBOs D53a D53b D53c D53d D53e
D54 Research institute D54a D54b D54c D54d D54e
D55 Neighbor or Relative D55a D55b D55c¢ D55d D55e
D56 print Media D56a D56b D56¢ D56d D56e
Radio/ TV
D57 Landlord D57a D57b D57c D57d D57e
D58 Middleman D58a D58b D58c D58d D58e

*Too expensive (1); want to stick with known methods (2); unsure about how to use new technologies (3); Unable to use new technologies without landlords permission (4); lack of infrastructure to
support new technologies (e.g. inadequate irrigation) (5); Other (6)
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Section E: ADAPTATION

E1: How long have you been a farmer? (in number of years)

E2: Changes in Rainfall and Temperature:

Change in Rainfall Have you noticed any change over the last 15 | Change in Temperature Have you noticed any change over the
years? Tick as appropriate last 15 years? Tick as appropriate

E21 | No change in the rain E21a E21b No change in temperature E21c
E22 | Less rain E22a E22b More Hot days E22c
E23 | More rain E23a E23b less Hot days E23c
E24 | Change in the onset rainy seasons E24a E24b Change in night time temperature E24c

E25b Increase in cold spells E25c

Change in onset of hot season

E4 Extreme Events

Have you experienced any of the following

i ?
Events events in the past 15 years? Yes/ No

How would you rate the frequency of this
event over the last 15 years?*1

How would you rate the severity
of the of this event over the past
20 years?*1

Loss of asset, property, income,
food shortage, decline in
consumption? (Y/N)

E41 Floods/ flash floods E41a E41b E41c E41d

E42 Wind/ Dust storm E42a E42b E42c E42d

E43 Drought E43a E43b E43c E43d

E45 Hail storm E45a E45b E45c E45d

* 1: Increasing (1); Same (2); Decreasing (3)

E3: Rainfall

Which month did the rainy season | In which month did the rainy How would you characterize the amount of rain relative to past | In which month in this year’s rainy season did you get
begin in the past 15 years? season begin this year? 15 years? *1 the most rain?

E31 | E31a E31b E31c

*1 more (1); same (2); less(3)

E5: Past Flood Experience

Were you affected by flooding in any of the following years? Did this affect your harvest? What % of harvest across all Any other loss? *1 How did you cope with losses?*2
Yes=1, No=2 Yes=1, No=2 crops was lost?

E51 2012 E51a E51b E51c E51d

E52 2011 E52a E52b E52c E52d

E53 2010 E53a E53b E53c E53d

*1 Loss of livestock (1), loss of housing/ storage/ animal shed (2), loss of family member (3), loss of any other asset (machinery, vehicle, etc) (4)
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*2 Took out a loan to cover expenses (1); Sold off farm assets (machinery, livestock) (2); Relied on savings (3); Worked as a labourer/other work away own farm (4); Financial support from relatives/local
villagers (5); Government/NGO assistance (6); Other (specify) (7)

E6: Adaptation actually undertaken

Adaptation Measures How has your household adapted to cope with climatic changes? Go to Question:
E61 | Altering the timing of “cropping activity” (e.g. harvest date) E6la E7
E62 | Shiftin cropping pattern (e.g. crop portfolio) E62a E8
E63 | Altering agricultural input E63a E9
E64 Investment in soil conservation E64a E10
E65 Investment in water conservation E65a E11
E66 Diversification of Income E66a E12
E67 Public/ Household infrastructure incl. water defenses E13
E68 | No Adaptation E67a -
Other, specify E68a -

E7: Altering the timing of cropping activity:

Which activities have you Which Previous time of the activity Current time of the activity If you do not plan to continues this? Please explain your reason for
shifted plot/crop? (month) (Month) discontinuation? *1

E71 Delayed Sowing E71a E71b E71c E71d

E72 Early Harvesting E72a E72b E72c E72d

E73 Late Harvesting E73a E73b E73c E73d

* 1 lack of money (1), lack of information (2); shortage of labor (3); Has little/no effect on crop outputs (4) Lower returns (5) Other (specify) (6) ...

E8: Shift in cropping patterns

What crop did you swap? When did you What is the change Did you incur any If you do not plan to continues this?
start to change in the income? additional cost of Please explain your reason for
Previous New (Year) change? In PKR discontinuation *1
E81 E81a E81b E81c E81d

* 1 lack of money (1), lack of information (2); shortage of labor (3); Has little/no effect on crop outputs (4) Lower returns (5) Other (specify) (6) ...
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E9: Change in Agricultural Input due to climate change:

Which agricultural input did you When did you start to change How did you Did you incur cost of change? If you do not plan to continues this? Please explain your reason for
change? (Year)? change?*1 (InRs.) discontinuation *1

E91 Fertilizers E91a E91b E91c E91d

E92 Seed E92a E92b E92c E92d

E93 Pesticides E93a E93b E93c E93d

E94 Labor E94a E94b E94c E94d

E95 Water E95a E95b E95c E95d

*1. Increase (1); Reduce (3); Different variety of input (seed, fertilizer etc.)
2. lack of money (1), lack of information (2); shortage of labor (3); Has little/no effect on crop outputs (4) Lower returns (5) Other (specify) (6)

E10 Soil Conservation Management

Have you used crop residue (Mulching), green manure, or cover
crop before this season to provide organic matter to the soil? Y/ N

Did you use zero tillage, and direct
sowing for soil preparation? Y/ N

Have you implemented contour
planting to reduce soil erosion? Y/ N

Have you used shelter belts for improved soil—-
water retention and to reduce erosion? Y/ N

E101 |

El01a

E101b

E101c

E11: Water Management/ conservation:

Alteration of irrigation use,
including amount, timing to
conserve water? Y/ N

Adoption of supplementary water
sources such as rainwater harvesting?
Y/N

Construction of flood
defense infrastructure?

Y/N

Construction of bunds around fields, or land
leveling to preserve water and maximize water
uptake of the crops? Y/ N

Adoption of water-efficient methods to
conserve soil moisture (e.g. Furrow
irrigation)? Y/ N

E111

Ellla

E111lb

Elllc

E12: Diversification of Income of household members:

Shift source of Income Change in Income How many household members shifted
to this livelihood

E121 | Livestock, fishing, etc E121a E121b E121c
E122 | Off farm job E122a E122b E122c
E123 | Private business (store) E123a E123b E123c
E124 | Share Crop/ Lease your land E124a E124b E124c
E125 | Move to urban area E125a E125b E125c
E126 | Other (specify) E126a E126b E126¢
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E30: Recent infrastructure developments in past 15 years

Has your village witnessed public infrastructure construction with bearing to agriculture? (Y/N) | What infrastructure was built? *1

E281 | E281a

*1: Dam/ Canal (1); Electricity lines (3); Roads (4); Tubewell (5); Rain water harvest tanks/ ponds (6); Flood defense infrastructure (7); other, specify

E6: Adaptation actually undertaken

Adaptation Measures Kindly list 3 most important reasons other than climate change for applying these measures
E61 Altering the timing of “cropping activity” (e.g. harvest date) E6la
E62 Shift in cropping pattern (e.g. crop portfolio) E62a
E63 Altering agricultural input E63a
E64 Investment in soil conservation E64a
E65 Investment in water conservation E65a
E66 Diversification of Income E66a
E67 Public/ Household infrastructure incl. water defenses
E68 No Adaptation E67a
Other, specify E68a

*1. Change in price or availability of input such as seed, fertilizer, water (1); Household factors: food and fodder self-sufficiency (2); Market Price of output/ higher expected return (3); Change in
agricultural contract/ terms (4); Other (5)

F3: Household assets owned: quantity and value (2012)

Type of assets Quantity | Approx. Value (Rs.)
Electronic Appliance TV F31la F31b
Radio F32a F32b
Other: F33a F33b
Communication Telephone F34a F34b
Internet F35a F35b
Mobile Phone F36a F36b
Motorized Transportation: (Truck, car, etc.) F37a F37b
Generator F38a E38b




Section F.

F1  Kindly provide information on all kinds of income to this households during the last one year (in Rs.)

Fla.
Flb.
Flc.
Fid.
Fle.

F1f.

Flg.
F1lh.

F1i.

HOUSEHOLD INCOME:

Wages (kind, yearly) approximate value in Rs.

Farm income

From business (shops, factory etc.)

From handicrafts

Remittances from other household members & relatives
Sale of property/ other asset

Land rental

Livestock

Other sources (gift, zakat, charity etc.)

F1j TOTAL YEARLY INCOME: (in Rs.)

F2.  Kindly provide information on monthly expenditure (in Rs.) of this household

F2a.

F2b.

F2c.

F2d.

on food items bought / consumed
Wheat
Fodder
Vegetable
Rice
Pulses
Meat
Other nutritional items

on purchase of clothing and other items
on health care (doctors/provider's fees and purchase of medicines)
Miscellaneous

F2e TOTAL MONTHLY EXPENDITURE: (in Rs.)

Annual Income
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