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Abstract

In this thesis we prove several results in extremal combinatorics from areas including
Ramsey theory, random graphs and graph saturation. We give a random graph analogue
of the classical Andréasfai, Erdés and Sés theorem showing that in some ways subgraphs
of sparse random graphs typically behave in a somewhat similar way to dense graphs. In
graph saturation we explore a ‘partite’ version of the standard graph saturation question,
determining the minimum number of edges in H-saturated graphs that in some way
resemble H themselves. We determine these values for K4, paths, and stars and determine
the order of magnitude for all graphs. In Ramsey theory we give a construction from a
modified random graph to solve a question of Conlon, determining the order of magnitude
of the size-Ramsey numbers of powers of paths. We show that these numbers are linear.
Using models from statistical physics we study the expected size of random matchings
and independent sets in d-regular graphs. From this we give a new proof of a result of
Kahn determining which d-regular graphs have the most independent sets. We also give
the equivalent result for matchings which was previously unknown and use this to prove
the Asymptotic Upper Matching Conjecture of Friedland, Krop, Lundow and Markstrom.
Using these methods we give an alternative proof of Shearer’s upper bound on off-diagonal

Ramsey numbers.
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Introduction

Since Erdés’ [32] introduction of the probabilistic method in the late 1940’s, using ideas
from probability has become widespread and fruitful in combinatorics. Whilst it may
at first seem counter-intuitive that a randomised method could prove a deterministic
result, it turns out that often a randomly generated graph will have properties that it is
very hard to explicitly construct a graph with. For example, in 1959 Erdés [33] showed
there there are graphs with both arbitrarily high girth and chromatic number. Whilst
there are now non-random proofs of this statement, Erd6s’ proof is arguably still the
simplest and most elegant. For this example it is not simply enough to take a randomly
generated graph. Although randomly generated graphs with enough edges tend to have
high chromatic number they also typically have low girth. However they tend to only
have a small number short cycles and so, after removing vertices from these short cycles,

the graph that remains has both high chromatic number and high girth.

This concept has similarities to ideas in other fields. For example it is more difficult to
demonstrate a transcendental number than it is to prove that such numbers exist. The

first number to be proved to be transcendental was

o0
—nl
S,
n=1
by Liouville [67]. However it is easy to see that there are just countably many algebraic

numbers, and so uncountably many transcendental numbers. In this way, ‘almost all

numbers’ are transcendental, even though it can be difficult to find them.

One could attribute this to the idea that if we construct a graph, or define a number,
ourselves, then since we will likely define it in a relatively simple and finite way, such a
graph or number will be in some sense simple and structured. If the graph property we

desire requires the graph to be in some sense complex or unstructured then displaying
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it explicitly may prove substantially harder than arguing non-constructively that such a

graph (or number) exists.

Of course we have not yet defined what we mean by a graph being structured, and in
fact we will avoid doing so for the reason that there will be two competing notions of
structure. Under several natural (informal) definitions of structure for graphs, randomly
generated graphs are with high probability very unstructured. And yet, there is a sense,
that we will look at shortly, in which randomly generated graphs typically exhibit a lot

of structure.

At first we would like to think of a graph as being structured if the vertex set can be
partitioned into a small number of parts so that for any given pair of vertices we can
determine whether they define an edge simply by knowing which parts the two vertices
are in. A very simple example is that of complete bipartite graphs which consist of vertices
in two parts with edges just between vertices from distinct parts. This definition seems
particularly suited to problems involving counting particular subgraphs. For example
it is easy to count the number of copies of C4, the cycle on four vertices, in a graph
defined by a small number of parts as above. One downside of this definition is that other
simple graphs that we might consider structured do not fit into this category. Cycles
Ch, grid graphs P, x P, and hypercubes Hya are examples of such graphs. We could
instead consider a graph to be structured if it can be described easily or in few words.
By both definitions it is straightforward to show that randomly generating a graph will
almost certainly generate an unstructured graph. In particular if we generate a graph
on n vertices by flipping unbiased coins independently for each pair of vertices to choose
which pairs have an edge then it requires an average of (g) bits of information to describe

the graph.

This model of generating a random graph is called G(n,p). In general for a positive
integer n and a real number p € [0, 1] we let G(n,p) denote the random graph model on
n vertices where each pair of vertices contains an edge independently with probability p.
Of course if p = 0 or 1, this gives the empty graph or complete graph respectively, but
if p is not near either 0 or 1, the result is random and unpredictable. Yet, whilst the
exact graph outputted by this model may be unpredictable, it turns out there are many
properties of the random graph that we can be highly confident of, even before seeing the
output. For example, if n > 20 and p = 1/2 then we can be more than 99% sure that
the graph generated will be connected, in the sense that we can walk from any vertex to
any other along edges. We can also accurately estimate many parameters of the random

graph with a high degree of confidence. For large values of n, with probability very near
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to 1, G(n,1/2) has roughly %(g) edges. We will make this more precise later in the thesis.

Erdos’ idea of using random graphs, or modifications of random graphs, to display prop-
erties that it is hard to exhibit constructively, has been used many times since 1959. The
results presented in Chapter 4 are of this flavour. We use modified random graphs to

prove the existence of graphs without too many edges that satisfy a certain property.

Over the last few decades, the random graph model G(n, p) itself has become an important
object of study, rather than merely a useful tool. Questions about G(n, p) typically choose
a graph property P(n) and ask for the asymptotic behaviour of the probability that G(n, p)
satisfies P(n) as n tends to infinity. We say that G(n,p) has P(n) with high probability if
the probability that G(n, p) satisfies P(n) tends to 1 as n tends to infinity.

One particular theme is taking properties that hold deterministically for the complete
graph K,,, and studying related problems for the random graph G(n,p). For example,
a well known result due to Mantel [70] is that, for any n, the graph on n vertices with
the most edges whilst not containing a triangle, is also the largest bipartite subgraph
of Ky. That is to say, the complete bipartite graph K|, 2] 5/2) has the most edges of
any triangle-free graph on n vertices. We can ask whether the same phenomena happens
for other graphs. Given a graph G, we can ask if the largest bipartite subgraph is the
largest triangle-free subgraph, where by largest we mean the subgraph with the most
edges. Babai, Simonovits and Spencer [9] showed that in G(n,1/2) the probability that
the largest bipartite subgraph is also the largest triangle-free subgraph tends to 1 as n
tends to infinity. In Chapter 2 we prove a result of this type giving a random graph
analogue of a theorem of Andrasfai, Erd6s and Sés [8]. This theorem states that triangle-
free graphs on n vertices with minimum degree greater than 2n/5 are bipartite. We show
that it is almost always the case that triangle-free subgraphs of random graphs with a
corresponding minimum degree condition are nearly bipartite. The particular emphasis
of our result is determining sharp bounds for how near to bipartite such subgraphs must

be.

Curiously, results of this type can be seen as saying that some structural properties of
K,, are typically shared by random graphs. In particular, it is in general, the fact that
random graphs are highly connected with edges distributed all across the graph, that tends
to result in such properties holding. This is the reason we avoided defining ‘structure’ in

some way that would exclude random graphs.

For some problems random constructions are far from best and deterministic techniques

are needed. We study one such set of problems in Chapter 3 when we study graph
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saturation. One property of random graphs is that typically different parts of a random
graph all look quite similar. One could say that in a randomly generated graph “no vertex
is special”. For example, usually all vertices of the random graph have a very similar
number of neighbours. In the extremal graphs that arise in the saturation problems of
Chapter 3 there tend to be a small number of ‘special’ vertices with very high degree

whilst all other vertices have very few neighbours.

Chapter 5 contains results that are both deterministic and probabilistic. The probabilistic
results of this chapter however, do not concern creating a graph randomly, but choosing
a random independent set or matching from a fixed graph. We look at the expected
size of a random independent set or matching drawn from a d-regular graph. We show
that the d-regular graph that maximises the expected fraction of vertices in a random
independent set, is the complete bipartite graph Ky 4. We show that K4 also maximise
the expected fraction of vertices in a random matching. We prove both these results using
very little probability theory, instead primarily relying on linear programming. We prove
these results when the random independent set or matching is drawn uniformly and also
when it is drawn from a more general distribution. We then show how these results about
random independent sets and matchings imply the deterministic results that the graph
consisting of multiple copies of K4, has the most independent sets and matchings of
any d-regular graph on a fixed number of vertices. In Chapter 5 we also show that, with
the right probability distribution, a random independent set drawn from a triangle-free

graph on n vertices with maximum degree d, contains on average at least lofldn vertices.

This gives a new proof of Shearer’s upper bound [81] on the off-diagonal Ramsey numbers
R(3, k). Intriguingly, and counter-intuitively, our method works best when we randomly
choose the independent set in a way that is biased towards selecting smaller independent

sets.

1.1 Thesis overview

1.1.1 Chapter 2

This chapter is based on the paper ‘Triangle-free subgraphs of random graphs’ [5] and
looks at taking extremal graph theory problems and asking to what extent analogues of
these hold for random graphs. For example; a theorem of Andrésfai, Erdés and Sés [8]
states that triangle-free graphs on n vertices with minimum degree greater than 2n/5 are

bipartite. We show that for any € > 0, with high probability, all triangle-free subgraphs
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of G(n,p) with minimum degree at least (% + ¢)pn are ‘close’ to bipartite. By close to
bipartite we mean that such triangle-free subgraph can be made bipartite by removing

just O(n/p) edges.

We use our methods to give the same treatment to a theorem of Thomassen [83]. This
theorem states that triangle-free graphs on n vertices with minimum degree at least
(% +¢e)n for any € have bounded chromatic number. The bound on the chromatic number
is a function of € that does not depend on n. We show that for all ¢ > 0 there exists r. so
that, with high probability, all triangle-free subgraphs of G(n,p) with minimum degree
at least (% + &)pn are ‘close’ to r.-partite. Again this means that such subgraphs can be

made r.-partite by removing at most O(n/p) edges.

It turns out that this caveat that we have to remove O(n/p) edges is necessary. For some
values of p there exist triangle-free subgraphs of G(n,p) with minimum degree very close
to %pn which even after removing 2(n/p) edges have arbitrarily high chromatic number.

We construct such graphs to show that our main results are sharp.

1.1.2 Chapter 3

This chapter is based on the paper ‘Partite saturation problems’ [77]. Saturation problems
look at graphs that avoid a certain substructure but in some sense nearly contain that
structure. For example we say a graph is triangle-saturated if it has no triangles but
adding any edge would create a triangle. In this chapter we look at a set of problems
in what we call partite saturation in which the saturated graphs must bear some specific
resemblance to the structure they avoid. For a graph H we let H[n] denote the blow-up
of H where each vertex of H is replaced by an independent set of size n and each edge is
replaced by a complete bipartite graph between the corresponding independent sets. For
example K,[n] is the complete balanced r-partite graph on rn vertices. If G is a subgraph
of H[n| we refer to a copy of H in G as partite if it has one vertex in each of the parts of
Hn]. We say G C H|n] is (H, H[n])-partite-saturated if G contains no partite copy of H
but the addition of any extra edge from H[n| would create one. We study the minimum
number of edges in such graphs which we call the partite saturation number. This type
of question was first approached by Ferrara, Jacobson, Pfender, and Wenger [41] who
showed (among other things) that all (K3, K3[n])-partite saturated contain at least 6n—6
edges. We show that for large enough n it is the case that (K4, K4[n|)-partite-saturated
graphs always have at least 18n — 21 edges. We determine the unique graph that attains

this bound. We also determine the partite saturation numbers of paths and stars. Finally,

10
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we discover an interesting connection between the 2-connectivity of a graph H, and its
partite saturation number. A graph is 2-connected if it requires at least two vertices to
be removed, in order to break it into multiple components. Equivalently, it has no cut
vertex, the removal of which separates the graph. If H is not 2-connected all (H, H[n])-
partite-saturated graphs have quadratically many edges whilst if H is 2-connected there

exist (H, H[n|)-partite-saturated graphs with linearly many edges.

1.1.3 Chapter 4

This chapter is based on the paper ‘The size-Ramsey number of powers of paths’ [21].
This is a type of problem in Ramsey theory which concerns partitioning the edge set of
graphs in such a way that each part avoids some particular structure. Conversely it also
asks for graphs which cannot be partitioned in such a way. We use colours to refer to
the parts, and so by a g-colouring of a graph G, we simply mean a partition of the edge
set of G into ¢ parts. Given graphs G and H and a positive integer ¢ we say that G is
q-Ramsey for H, denoted G — (H)g, if every g-colouring of the edges of G contains a
monochromatic copy of H. If ¢ = 2 then we will just say G is Ramsey for H.

The classic Ramsey theory question asks for the smallest number of vertices of a graph
which is Ramsey for H. In this case we need only consider G which are complete graphs
as extra edges can only help. Size Ramsey theory instead asks for the smallest number
of edges in a graph G which is Ramsey for H. Here it is not enough to only consider
complete graphs. In fact it is the range of possible graphs that require consideration, that
makes these questions so interesting. Determining the size-Ramsey numbers of paths
was a problem asked by Erdés [34]. Beck [11] showed that these numbers are linear as
exhibited by a random graph. Conlon [22] asked whether the same is true for powers
of paths. Here random graphs are not sufficient, however by using a modification of a
random graph, we showed that the size-Ramsey numbers of powers of paths are indeed
linear. Using a random graph here is something of a choice in that it is really just the
property that edges are distributed somewhat evenly across the graph that we require.
Graphs with this property can be constructed explicitly, but their existence is easier to

prove probabilistically.

1.1.4 Chapter 5

This chapter is an amalgamation of the papers ‘Independent sets, matchings and oc-

cupancy fractions’ [26] and ‘On the average size of independent sets in triangle-free

11
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graphs’ [27]. In this chapter we look primarily at counting independent sets and match-
ings in d-regular graphs, determining which such graphs have the most independent sets
and matchings. For independent sets this was already known due to work by Kahn [56]
for bipartite graphs via the entropy method, and by Zhao [87] using the bipartite swap-
ping trick for all d-regular graphs. The answer to both these questions is that so long
as the number of vertices of the graph, n, is a multiple of 2d the optimal graph is the
disjoint union on n/2d copies of the complete bipartite graph K, 4. We use probabilistic
models from statistical physics to turn these problems into linear optimisation problems.
Perhaps the most striking element of our method is that we exploit a connection between
the average size of independent sets (and respectively matchings) when drawn according
to a particular family of probability distributions, and the total number of independent
sets (or matchings) in the graph. This family of distributions includes the uniform dis-
tribution and so our results also show that on a fixed number of vertices n, so long as
2d|n the graph on n vertices with the largest average independent set size is n/2d copies
of K44. The same holds for matchings. We then use our results to solve the asymp-
totic upper matching conjecture of Friedland, Krop, Lundow and Markstrom [43] and
the equivalent result for independent sets. This conjecture, roughly speaking, required
estimating the upper bound on the number of independent sets, of fixed size, in d-regular
graphs to within a multiplicative factor that is sub-exponential. We give a bound that is
off by a factor of \/n. We use the same techniques to give an alternative proof of a result
of Shearer on the upper bound for off-diagonal Ramsey numbers R(3, k). This problem
asks how large an independent set there must be in triangle-free graphs. Curiously our
method approaches these very different sounding problems in a remarkably similar way.
We are again looking at the average size of an independent set in a graph; this time
specifically triangle-free graphs. We show that the average size of an independent set in

a triangle-free graph on n vertices with maximum degree d is at least (1 + 0(1))1°§dn.

Shearer’s result was the same except with the words average and maximum switched. He

showed that the largest independent sets in triangle-free graphs with average degree d

contain at least (1 + 0(1))1°§dn vertices.

1.2 Notation

We write [n] for the set {1,...,n}, and the notation x = (1 & ¢) is used to mean x €
[1—e,1+¢]

For disjoint sets of vertices X and Y in G we will use Eg(X,Y’) to denote the set of edges

12
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between X and Y in G and Eg(X) to denote the set of edges of G with both ends in
X. We denote the sizes of these sets by eq(X,Y) and eq(X) respectively. We will use
N¢g(v, X) to denote the set of vertices in X which are adjacent to a vertex v of G and
degq (v, X) for the number of vertices in Ng(v, X). In a graph G we say a vertex is a
common neighbour of a pair of vertices if it is adjacent to both of them. For two vertices
u,v we will write Ng(u,v, X) for the common neighbourhood Ng(u, X) N Ng(v, X) of u
and v in X, and degg(u,v,X) for its size. For X = V(G) we will simply use Ng(v),
degq(v) and Ng(u,v). When it is clear which graph is being referred to, we omit the
subscripts. For a graph G and a vertex set S we will use G[S] to denote the induced
subgraph of G on the set S. We let V(G) denote the vertex set of a graph G and let
v(G) = |V(G)| be the number of vertices in G. We use §(G) to denote the minimum

degree of G and A(G) the maximum degree.

We use o(.), w(.), O(.), 2(.) notation in the standard way, where f(n) = o(g(n)) if
limy, 00 f(n)/g(n) =0 and f(n) = w(g(n)) if the same limit tends to co. We say f(n) =
O(g(n)) if there is a constant C' such that, for all n, f(n) < g(n) and say that f(n) =
Q(g(n)) if there is a constant ¢ > 0 such that for all n we have f(n) > c-g(n). We use <
only in informal discussions where a < b will mean that our argument holds so long as
a is small enough compared to b (depending just on b). Throughout this thesis we shall

omit floor and ceiling symbols when they do not affect our argument.

The next few sections will give an overview of some of the themes of this thesis including

some history, related work as well as some methods we will make direct use of.

1.3 Chromatic threshold and minimum degree conditions

in triangle-free graphs

One of the earliest results in extremal graph theory is Mantel’s Theorem [70] which states
that any graph on n vertices with more than [n/2] - [n/2] edges contains a triangle. An
even simpler (and weaker) statement says that if a graph on n vertices has minimum
degree greater than n/2 it must contain a triangle. This can be seen by noting that for
any edge, by the pigeon-hole principle, the neighbourhoods of the endpoints must overlap,
giving a triangle. In fact this shows further that in a graph with minimum degree greater
than n/2 every edge is in a triangle. The minimum degree condition here is tight as shown

by a complete balanced bipartite graph.

But what if we did reduce the minimum degree condition? What would we be able to

13



Chapter 1. Introduction

say about graphs that satisfy some smaller minimum degree condition but still happen to
be triangle free? Andrésfai, Erd6s and Sés [8] approached this question, proving that so
long as the minimum degree of an n-vertex, triangle-free graph is greater than 2n/5, the

graph is bipartite. We will give a short proof of this result here.

Theorem 1.1 (Andrasfai, Erd6s and Sés ). If G is a triangle-free graph on n vertices
with 6(G) > 2n/5 then G is bipartite.

Proof. Suppose for contradiction that GG is a counter-example on n vertices and further-
more assume G has the most edges of any counter-example on n vertices. As G is not
bipartite there must be an odd cycle. Choose a shortest odd cycle with vertices vy, ..., vg.
We claim that the shortest cycle is a C5. If not we could add the edge vivs and the
graph would still be triangle free, as if there was a triangle vivyx then we would have
had a C5 in G on the vertices vqvovsvgx. This is a contradiction to the choice of G as
the counter-example with the most edges. So now the vertices v, ...,v5 form a C5 and
we know that each of these five vertices has more than 2n/5 neighbours. From this we

can see that there are at least 2n — 4 edges leaving this (5. By the pigeon-hole principle

one of the n — 5 vertices not in the Cjs is adjacent to at least 2:_54 > 2 vertices of the Cs.

As this vertex is adjacent to an integer number of vertices of the C5 it is adjacent to at
least three such vertices, two of these must be adjacent and this gives a triangle. This

contradiction completes the proof. O

It is easy to extend the proof above to see that the only non bipartite triangle-free graphs
with minimum degree at least 2n/5 (rather than strictly greater than 2n/5) are complete
balanced blow-ups of C5. That is, graphs which can be partitioned into 5 equal sizes

vertex sets Vi, ..., Vs with edges just between V; and V11 modulo 5.

There followed a series of results showing that triangle-free graphs satisfying lower min-

imum degree conditions still have small chromatic number. Haggkvist [48] showed that

triangle-free graphs with minimum degree greater than %” are 3-colourable. Jin [54] re-

10n
29

of Héaggkvist [48]. Thomassen [83] showed that for any £ > 0 there exists r. such that if

duced the minimum degree condition of Haggkvist’s result to matching a construction

H is triangle-free and §(H) > (4 +¢)n then H is r.-partite. Finally, in 2006, Brandt and

Thomassé [18] proved that all triangle-free graphs with minimum degree strictly greater

than 7 are 4-partite. No similar result with a minimum degree condition lower than %

holds as shown by Hajnal (see [38]) who exhibited triangle-free graphs with minimum

degree (% — ¢)n and arbitrarily high chromatic number.

14
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The fact that minimum degree conditions above %n lead to triangle-free graphs having
small chromatic number whilst triangle-free graphs with smaller minimum degree can have
arbitrarily large chromatic number leads to % being known as the Chromatic Threshold

of the triangle.

For a graph H, the Chromatic Threshold of H, 6,(H), is defined as the infimum over

all d > 0 such that there exists a constant C' = C'(H,d) such that every H-free graph G

with minimum degree at least d|G| satisfies x(G) < C. Thus for the triangle K3 we have

Oy (K3) = é In [3] the chromatic threshold for all non-bipartite graphs was determined.

For r > 3 it was shown that every graph with chromatic number r has chromatic threshold
r—3 2r—5 r—2

either —2 or 33> or 1

1.4 The random graph model G(n,p)

The random graph model G(n,p) where n is a natural number and p € [0, 1] is a way of
randomly generating a graph on n vertices. For each pair of vertices x,y a biased coin is
flipped. If the coin lands on heads (which happens with probability p) the edge zy is put
in the graph. Otherwise it is not. All coin flips are independent of each other.

Of course as the output of this procedure is random we cannot guarantee for sure that
the graph created satisfies any interesting properties but we will be able to say that some

properties ‘almost always hold’.

For a property P we say that P holds asymptotically almost surely (a.a.s) or with high
probability (w.h.p) if
lim P(G(n,p) satisfies P) = 1.

n—oo

As an example we will prove that for any € > 0 with p = w(n~2) the random graph G(n, p)
a.a.s has (1£¢e)p(}) edges and if p = w(n=2/?) then a.a.s every vertex is in (1 £ ¢&)p°n?/2
triangles. To do so we first introduce the Chernoff bound, see for example [53]. We use
Bin(n,p) to denote the binomial distribution with n trials and success probability p for

each trial.

Theorem 1.2. Let X be a random variable with distribution Bin(n,p) and 0 < § < %
Then

P(X < (1 -8)EX) <exp (ZLEX)  and P(X > (14 0)EX) < exp (Z2EX) .

Since the number of edges in G(n,p) has distribution Bin((g), p) we see that with prob-
ability at least 1 — 2exp(‘T‘€2p(g)) the number of edges in G(n, p) is between (1 — €)p(4)
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and (14 ¢)p(5). This probability tends to one for p = w(n™?).

Counting triangles is slightly harder as the number of triangles is not binomially dis-
tributed. We proceed by first showing that all vertices have roughly pn neighbours and
then that within each neighbourhood there are roughly p(%') edges.

First note that for each the vertex the number of neighbours has distribution Bin(n—1, p)

and hence each vertex has (1 — §)p(n — 1) neighbours with probability at least

2
1—2exp <—27p(n - 1)> ,

and so the probability that all vertices have this many neighbours is at least

2
1 —2nexp (—27])(71 - 1)) :

For the rest of the argument we assume that all vertices have neighbourhoods in this
range. We can now use the Chernoff bound again to say that with high probability the

number of edges in each vertex neighbourhood is

eepmp( LI,

which lies within (1 4 €)p®n?/2. For a vertex v let X denote the number of edges in
the neighbourhood of v; equivalently the number of triangles v is in. Conditioned on the
value of deg(v) the distribution of X is Bin(deg(v), p) and so with probability at least

2

2
1—2exp (—;E[X]) >1—2exp (—;7(1 - 5)p3n2/2> ,

the vertex v is in (14¢)p®n?/2 triangles. Hence, conditioned on all vertices having degrees

in (1+¢/3)p(n — 1), with probability at least

2
1 —2nexp (—;7(1 - 5)p3n2/2) ,

all vertices are in that many triangles. Putting all this together we see that with proba-

bility at least
2

2
1—2exp <—;7(1 - 5)p3n2/2> — 2nexp (—;p(n - 1)> ,

each vertex is in (1 + £)p®n?/2 triangles. This probability tends to one for p = w(n=2/3).

1.5 Sparse analogues of extremal graph theory results

Looking at versions of classical extremal graph theory problems in the setting of random

graphs has proved to be an interesting, fruitful and popular area of study.
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Recall that Mantel’s theorem [70] states that all triangle-free graphs on n vertices have
at most [5|[ 5] edges, achieving equality if and only if the graph is a complete bipartite
graph which is as balanced as possible. If one rephrases ‘triangle-free graphs on n vertices’
as ‘triangle-free spanning subgraphs of K, then it seems natural to replace K, with other
graphs and ask similar questions. If we replace K,, with the random graph G(n,p) we can
ask how many edges the largest triangle-free spanning subgraph of G(n, p) typically has.
We could also ask whether the largest triangle-free subgraphs of G(n, p) are bipartite as is
the case for K,,. Babai, Simonovits and Spencer [9] showed that this is indeed true with
high probability as n tends to infinity so long as p > % This was improved by Brightwell,
Panagiotou and Steger [19] who proved the same conclusion holds for p > n~¢ for some

positive number ¢. DeMarco and Kahn [29] showed that there exists a constant C' such

that this is still the case for any p > C(log n/n)%

With the aim of giving a systematic method to approach these kind of problems, Ko-
hayakawa [63] and R6dl (unpublished) developed a sparse analogue of Szemerédi’s Regu-
larity Lemma and together with Luczak [60] formulated the KLR conjecture which asserts
the existence of a corresponding ‘counting lemma’. The definitions and statements relat-
ing to the original Szemerédi’s Regularity Lemma [82] can be obtained from the discussion

below by taking p = 1. We postpone discussion of the KLR conjecture to Chapter 2.

We use the following definitions of regularity. We define the density d(U, V) of a pair of
disjoint vertex sets (U, V') to be the value e(U,V)/|U||V|. A pair (U,V) is called (e, d, p)-
lower-regular if for any sets U’ C U, V' C V satisfying |U’| > e|U|, |[V'| = ¢|V| we have
d(U', V') > (d — €)p. We say a pair (U, V) is (g,d, p)-reqular if d(U,V) > dp and for any
sets U/ C U, V' C V satistying |U’'| > ¢|U]|, |V'| = ¢|V| we have d(U’", V') = (d(U, V) +ep).
We say (U,V) is (g, p)-regular if it is (e, d, p)-regular for some d.

An (e, p)-regular-partition of a graph H is a vertex partition Vo U V3 U--- UV, of V(G)
with |Vp| < ¢|V| and |V;| = |V2| = - -+ = |V4] such that all but at most e(é) pairs (V;, Vj)
with 4,7 > 1 are (g, p)-regular. The corresponding (e, d, p)-reduced graph R is the graph
with vertex set [t] where ij is an edge precisely if (V;,V}) is an (e, d, p)-lower-regular pair
in H. The following version of the Sparse Regularity Lemma can be deduced from [2,

Lemma 12]. We show how in Chapter 2.

Lemma 1.3 (Sparse regularity lemma, minimum degree version). For all § € [0,1], >0
and every integer to there exists t; > 1 such that for all d € [0,1] the following holds for
any p > 0. For any graph G on n vertices with minimum degree Bpn, such that for any

X, Y CV(G) with |X[,|Y] > T} we have e(X,Y) < (14 t55562)p| X |||, there is an (e, p)-
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reqular-partition of V(G) with (g, d, p)-reduced graph R satisfying §(R) > (—d—¢)|V(R)|
and to < |[V(R)| < t1. Furthermore, for each i € V(R) the number of j € V(R) such that
(Vi,V;) is not (e, p)-regular is at most ev(R), and for each i € V(R) and v € V;, at most
(d + €)pn neighbours of v lie in ;.. ;ar Vi-

Note that the regularity lemma above is not specifically for G(n,p) but for graphs in
which the density of edges between pairs of large sets is never much greater than p. For

p = w(n~1) the random graph G(n, p) a.a.s. satisfies this.

The primary reason for the power of the Szemerédi regularity lemma is that it comes
with a counting lemma. The counting lemma ensures that once a regular partition is
given the number of copies of a small fixed graph H can be estimated accurately. For the
sparse regularity lemma such a counting result is not true. In particular there are triples
(Vi, Va, V3) (with |V;| = n for each i) such that each (V;,V;) is (e, d, p)-regular but with no
triangles rather than approximately (dpn)? as one might expect. Such examples however
were shown by Kohayakawa, Luczak and Ro6dl [60] to be in some sense ‘rare’ for triples.

We discuss this in Chapter 2.

1.6 Graph saturation

For a graph H we say another graph G is H-saturated if it contains no copy of H, yet
adding any new edge would result in a copy of H. For example a complete bipartite
graph is K3-saturated, as it is triangle free but every pair of non-adjacent vertices has a
common neighbour and so adding an edge between any non-adjacent pair would result
in a triangle. It is then natural to ask what are the greatest and least number of edges
an H-saturated graph can have. Asking for the most edges in an H-saturated graph
on a fixed number of vertices is identical to the Turdn problem asking for the most
edges in an H-free graph; if an H-free graph is not saturated there is an edge that can
be added to give an H-free graph with more edges. Looking for the minimum number
of edges in an H-saturated graph is a problem with a very different feel. We define
sat(H,n) to be the minimum number of edges over all H-saturated graphs on n vertices
and call this the saturation number of H. Returning to triangles we can easily show that
sat(K3,n) = n—1. Firstly note that if G is K3-saturated, it must be connected, as adding
an edge between distinct connected components cannot create a triangle. Therefore all
K3s-saturated graphs contain a spanning tree, and hence at least n — 1 edges. The star

K1 -1 on n vertices has exactly n — 1 edges and is K3-saturated, giving an extremal
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construction. The study of these saturation numbers was initiated by Erdés, Hajnal and
Moon [36] who proved that sat(K,,n) = (r — 2)(n — 3(r — 1)). Készonyi and Tuza [57]
later showed that cliques have the largest saturation number of any graph on r vertices
which in particular implies that for any H the saturation number sat(H, n) grows linearly
in n. This is in stark contrast to the Turdn numbers which are quadratic in n for any

graph H which is non-bipartite.

1.7 Ramsey theory

Ramsey theory deals with results on partitioned structures, claiming that in any partition
of some sufficiently large structure one of the parts will have some nice property. It is
often convenient to use colours to label the different parts of the partition. We begin by

stating Ramsey’s theorem.

Theorem 1.4. For every natural number k there exists N € N such that in any colouring

of the edges of Ky with red and blue there exists a monochromatic copy of K.

The Ramsey number R(k) is defined to be the least N for which the above conclusion
holds. Thus there must be a way to colour the edges of Kg)—; with red and blue to

avoid a monochromatic Ky but no such way to colour Kp).

A result of Erdds and Szekeres [40] states that R(k) < (2,5:12) < 4F. We will give a short
proof of the upper bound 4.

Proof. We do so by proving the stronger statement that the size of the largest red and
largest blue cliques add up to at least 2k. We use induction on k noting that for k£ =1
the result is clear. Now suppose k > 2 and let G be a complete graph on 4* vertices in
which the edges have each been coloured either red or blue. Choose an arbitrary vertex
z. Either x has at least %4’“ neighbours in blue or in red. Without loss of generality
assume x has at least this many neighbours in blue and let A denote the set of vertices
adjacent to x in blue. Now choose an arbitrary vertex y in A. The vertex y either has at
least 4! blue neighbours in A or that many red neighbours in A. Let B be the set of at
least 4*~1 vertices that are adjacent to y in the most common colour. By the induction
hypothesis there is a red clique and a blue clique in B such that their combined size is at
least 2(k — 1). We can add the vertex x to the blue clique and the vertex y to the clique
of the same colour that y is adjacent to B in. This gives a red clique and a blue clique

covering at least 2k vertices in total. O
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Erdés [32] also gave a lower bound on the Ramsey number R(k) using the probabilistic

method to show that R(k) > 2(*~1/2, We give the proof here.

Proof. Letting N = [2#=1/2] we need to show the existence of a colouring of the edges
of Kx with two colours such that there is no monochromatic copy of Kj. Rather than
constructing such a colouring explicitly, we will colour K randomly and show that there
is a positive probability that the colouring avoids containing a monochromatic Ky. If we
colour each edge red or blue independently with 50% probability of each colour, then the

expected number of monochromatic copies of K, is

(fkv )21@ .

If we can show this is less than one then there must have been a colouring with no

monochromatic copies of K. Recalling that N = (2(1‘3_1)/21 we see that

N\ Nk 20)
< — < )
k S Tk

and so the expected number of monochromatic copies of K}, is less than 2/k! < 1. O

We can generalise these ideas in a number of ways. We could ask to find monochromatic
copies of graphs other than cliques and this has been a large area of research over many
years with Ramsey numbers of paths, cycles, trees and bounded degree graphs in partic-
ular receiving a lot of attention. We could also change the graph that is being coloured.
We say that a graph G is Ramsey for H if any 2-colouring of the edges of G contains a
monochromatic copy of H. We denote this by G — H. In particular Kp;) — Kj. This
sets us up to introduce the concept of size-Ramsey numbers. Rather than looking for how
small a complete graph can be such that however it is coloured it contains a particular
monochromatic subgraph, the study of size-Ramsey asks for how few edges a graph can
have whilst being Ramsey for H. We define the size-Ramsey number 7(H) to be this
minimum.

7(H) := min{e(G) : G — H},

where the minimum is taken over all graphs. It is clear that for any H we have 7#(H) <
(R(QH )) as the clique on R(H) vertices is Ramsey for H by definition and has this many
edges. The study of these numbers was introduced by Erdoés, Faudree, Rousseau and
Schelp [35] who in particular were interested in graphs where the trivial bound could be

substantially improved.
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Erdés [34] posed the problem of determining the order of magnitude of #(F,). This was
resolved by Beck [11], who showed that the size-Ramsey numbers of paths are linear in

the length of the path.

1.8 Partition functions

In Chapter 5 we use the monomer-dimer and hard-core models of statistical physics to
study problems in d-regular graphs. These models give a probability distribution for

selecting a random matching and independent set respectively from a graph.

1.8.1 The monomer-dimer model

The matching polynomial (or matching partition function) of a graph G is defined to be
Ma(\) = > A,
MeMm
where M is the set of all matchings in G, including the empty matching. For a matching
M the size of M, denoted by |M|, is the number of edges in M. In particular we see that
Mg (1) is the total number of matchings in G. Letting A tend to infinity we see that

- Ma(X)
(@) = [0 e

where pm(G) denotes the number of perfect matchings of G. For each A > 0 we can
define a probability distribution on M by choosing each matching M with probability
proportional to NMI. Thus, a particular matching M is chosen with probability
AMI
Ma(A)

This distribution is known as the monomer-dimer model. Setting A = 1 gives the uniform
distribution on the set of matchings. The edges of the matching are the ‘dimers’ whilst the
vertices that are not incident to any dimers are referred to as ‘monomers’. This notion
comes from chemistry, originating with the study of Roberts [78] on the adsorption of
oxygen and hydrogen on a flat tungsten surface. The A parameter is known as the
fugacity.

For more on the monomer-dimer model we recommend reading [51] which in particular

shows there is never a phase transition in the monomer-dimer model.
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1.8.2 The hard-core model

The independence polynomial (or independent set partition function) of a graph G is

Pa(A) = A,

IeT
where Z denotes the set of independent sets in G including the empty set. For A = 1 this
gives the total number of independent sets in . Similarly to matchings, we can use this
to define a probability distribution on the set of independent sets of a graph. This will
be called the hard-core model. Each independent set I will be chosen with probability

A

Pe(A)’
and so again setting A = 1 gives the uniform distribution.

The origin of the hard-core model lies with the hard-sphere model. The hard-sphere model
is a probability distribution of unit radius spheres placed randomly in a large volume such
that no two overlap. This gives a way of modelling the distribution of gases. The hard-
core model is a discretisation of the hard-sphere model. The vertices of the independent
set can be thought of as the centres, or cores, of the spheres whilst requiring the random

set be independent ensures the centres are not too close.

1.8.3 Spatial Markov property

An important feature of the two models above, which we use heavily in Chapter 5, is that
they have what is known as the spatial Markov property. Specifically, with the hard-core
model, if we choose a set A of vertices that separates the graph G into multiple connected
components GG1, Go, ... then conditioned on which vertices of A are in the independent set
I the intersection of I with each G; is independent. In particular, if we choose a vertex
v and a natural number r we can look at the set of vertices at distance exactly r from wv.
Call this set N"(v). Let B"(v) denote the set of all vertices at distance at most r from
v. If we condition on I N N7 (v) then we can determine the distribution of I N B"~1(v)
without knowing anything about the graph outside N"(v). In particular, conditioned on
INN"(v) the sets INB"~! and I'\ B"(v) are independent. Furthermore, if we let B"~*(v)
denote the vertices in B"~!(v) that are not adjacent to a vertex of I N N"(v) then the
distribution of I N B"~(v) is precisely the hard-core model run on G[B"~'(v)] with the

same value of \.
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1.9 Linear programming and duality

Linear programming deals with optimising the value of a linear expression under linear

inequality constraints. For example we may wish to maximise the expression
2z +y
under the constraints

z20, y=20, z+y<l, 4dz+4+y<2.

It is helpful to write a linear program in its canonical form, that is:

maximise cI'x
subject to Ax <b
and x>=0.

In the example above we have

2 x 11 1
C = y X = : A = y b =
1 Y 4 1 2
Such a problem as above is referred to as the primal problem. We can convert the primal

into a dual problem. The dual gives an upper bound on the solution to the primal. For

a primal in the canonical form above the dual program is:

minimise bly
subject to ATy > ¢
and y =>0.

It is possible for the primal to be unbounded (with ¢’x able to be arbitrarily large) or
infeasible (meaning no value of x satisfies all constraints). Similarly the dual may also be

unbounded or infeasible.

The ‘weak duality theorem’ tells us that for any x that satisfies the primal constraints
and any y that satisfies the dual constraints the value of ¢!x is always at most that of
b”y. The ‘strong duality theorem’ states that if the primal has an optimal solution x*
then the dual also has an optimal y* and furthermore ¢’x* = b”y*. That is to say that
when an optimum value exists for the primal, the dual also has the same optimal value.

By the weak duality theorem if we have a value that we believe is optimal for the primal
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it is enough to find some y satisfying the dual constraints such that b”y* attains this

value.

After a little thought we may suspect that the optimal value of the example primal above
is % attained at (%, %) With y = (%, %) we see that b”y also attains the value %. This
confirms that % is indeed the optimal value of the primal.

In our applications of linear programming we will in fact use equality constraints rather
than inequality constraints. Equality constraints can be created by using two inequality

constraints. The main change is that the extra constraints in the primal give extra freedom

in the dual which means we do not have to require the dual variables to be positive.
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Triangle-free subgraphs of random

graphs

2.1 Introduction

In a 1948 edition of the recreational maths journal Eureka, Blanche Descartes [30] proved
that triangle-free graphs can have arbitrarily large chromatic number, and thus be complex
in structure. This motivates the question of which additional restrictions on the class of
triangle-free graphs allow for a bound on the chromatic number. By Mantel’s theorem [70],
the densest triangle-free graphs are balanced complete bipartite graphs. So we may first
ask whether triangle-free graphs H with minimum degree somewhat below %’U(H ) are still
necessarily bipartite. This is true, as Andrasfai, Erdés and Sés showed in 1974.

Theorem 2.1 (Andrésfai, Erdés, S6s [8]). All triangle-free graphs H with §(H) > 2v(H)

are bipartite.

Triangle-free graphs of smaller minimum degree do not need to be bipartite, as blow-ups
of a 5-cycle illustrate. But one may still ask whether their chromatic number is bounded
(questions of this type were first addressed by Erdés and Simonovits in [38]). In 2002
Thomassen [83] proved that this is the case for triangle-free graphs of minimum degree

at least (3 + &)n.

Theorem 2.2 (Thomassen [83]). For any & > 0 there exists r. such that if H is triangle-
free and 6(H) > (% +e)v(H) then H is r--colourable.

A construction of Hajnal (see [38]) shows that the minimum degree bound in this theorem

cannot be replaced by (% — &)n. A much stronger result was established by Brandt and
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Thomassé [18], who showed that triangle-free graphs H with §(H) > %n are 4-colourable.

In this chapter we are interested in random graph analogues of Theorem 2.1 and Theo-
rem 2.2. Establishing such analogues for prominent results in extremal graph theory has
been a particularly fruitful area of study in the last few years. A good overview can be

found in Conlon’s survey paper [23].

In order to study these kinds of questions systematically, Kohayakawa [63] and R6dl (un-
published) developed a sparse analogue of Szemerédi’s Regularity Lemma, and, together
with Luczak [60] formulated the KLR conjecture which asserts the existence of a corre-
sponding ‘counting lemma’. Recently Conlon, Samotij, Schacht and Gowers [25] proved
this conjecture (see also [10, 79]). It is easy (as observed in [25]) to use these results to
prove ‘approximate’ random versions of Theorems 2.1 and 2.2, as well as to re-prove Man-
tel’s theorem for random graphs. Thus if p > n~/2 then asymptotically almost surely
(a.a.s.) the random graph G(n,p) has the property that all subgraphs with minimum
degree a little larger than %pn can be made bipartite by deleting o(pn?) edges. Similarly,
the sparse random version of Mantel’s theorem obtained states that any subgraph with a

little more than half the edges of G(n,p) contains a triangle.

One might expect that all subgraphs of G(n,p) with minimum degree a little larger than
%pn are bipartite. Indeed, an alternative sparse random version of Mantel’s theorem,
proved by DeMarco and Kahn [29], states that a largest triangle-free subgraph of G(n, p)
coincides exactly with a largest bipartite subgraph for p > (logn/n)'/2. However, sub-
graphs of G(n,p) with minimum degree larger than %pn which are not bipartite do exist
(see Theorem 2.5 below). We determine for all p how far from bipartite such graphs can

be.

Theorem 2.3. For any v > 0, there exists C such that for any p(n) the random graph
I' = G(n,p) a.a.s. has the property that all triangle-free spanning subgraphs H C T' with
0(H) > (% + y)pn can be made bipartite by removing at most min (Cp~'n, (3 + v)pn?)
edges.

In addition we derive an analogous random graph version of Theorem 2.2.

Theorem 2.4. For any v > 0, there exist C and r such that for any p(n) the random
graph I' = G(n,p) a.a.s. has the property that all triangle-free spanning subgraphs H C T’
with §(H) > (3-+7)pn can be made r-partite by removing at most min (Cp~'n, (5-+7)pn?)
edges.

Up to the values of C, these theorems are best possible as shown by the theorem below.
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Theorem 2.5. For any v > 0 and r € N, there exist constants ¢,d > 0 such that if
n~12/¢ < p(n) < then T = G(n,p) a.a.s has a triangle-free spanning subgraph H with

1

S(H) > (% — y)pn which cannot be made r-partite by removing fewer than cp™'n edges.

Note that for p < n~/2 the minimum in each of Theorems 2.3 and 2.4 is achieved by the
second term and that these statements are easy: For such values of p only a tiny fraction
of the edges of G(n,p) are in triangles and the question reduces to asking for the largest
bipartite (respectively, r-partite) subgraph of G(n,p). For p close to 1, by the original
Theorems 2.1 and 2.2, the conclusion of Theorem 2.5 becomes false. For this reason we

need a condition of the form p < ¢'.

It would be interesting to obtain analogous results for K,-free subgraphs of G(n,p) for
r > 3. It would also be interesting to know whether Theorem 2.4 could be improved to

generalise the result of Brandt and Thomassé. We conjecture that this is the case.

Organisation In Section 2 we will introduce some of the main tools that will be used
throughout the chapter. Section 3 of this chapter will give a method of constructing a
triangle-free subgraph from a given, randomly generated graph. We will then prove a
series of results about this construction which will result in proving Theorem 2.5. In
Section 4 we will state and prove some properties that a.a.s. I' = G(n,p) possesses. We
will then use these properties in Section 5 to prove Theorem 2.3, and in Section 6 to prove

Theorem 2.4.

2.2 Tools

Probability We write Bin(n, p) for the binomial distribution with n trials and success
probability p. Our proofs we will make frequent use of the following Chernoff bound,

which is an immediate corollary of [53, Theorem 2.1].

Lemma 2.6 (Chernoff bound). Let X be a random variable with distribution Bin(n, p)
and 0 < 0 < % Then

P(X < (1-0)EX) <exp(LEX) and P(X > (1+0)EX) < exp (-CEX).

Sparse regularity We define the density d(U, V') of a pair of disjoint vertex sets (U, V)
to be the value e(U,V)/|U||V|. A pair (U,V) is called (e,d,p)-lower-regular if for any
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sets U' C U, V' C V satistying |U’| > e|U|, |V'| = ¢|V| we have d(U', V') > (d — ¢)p.
We say a pair (U, V) is (e,d, p)-regular if d(U, V') > dp and for any sets U' C U, V' CV
satisfying |U’| = e|U|, |[V'| = €|V| we have d(U', V') = (d(U,V) £ ¢). We say (U,V) is

>
=

(e,p)-regular if it is (g, d, p)-regular for some d.

An (e, p)-regular-partition of a graph H is a vertex partition Vo U V3 U--- UV, of V(G)
with |Vp| < ¢|V| and |Vi| = |V2| = - -+ = |V4] such that all but at most E(é) pairs (V;, Vj)
with 4,7 > 1 are (g, p)-regular. The corresponding (e, d, p)-reduced graph R is the graph
with vertex set [t] where ij is an edge precisely if (V;,V}) is an (e, d, p)-lower-regular pair
in H. The following version of the Sparse Regularity Lemma can be deduced from [2,

Lemma 12]

Lemma 2.7 (Sparse Regularity Lemma, Minimum Degree Form Version). For all § €
[0,1], € > 0 and every integer ty there exists t1 = 1 such that for all d € [0, 1] the following
holds for any p > 0. For any graph G on n vertices with minimum degree Spn, such that
for any X, Y C V(G) with [ X|, [Y] > T} we have e(X,Y) < (1+T1[)()52)p\X||Y|, there is a
reqular-partition of V(G) with (g, d, p)-reduced graph R satisfying §(R) > (B—d—¢)|V (R)|
and to < |[V(R)| < t1. Furthermore, for each i € V(R) the number of j € V(R) such that
(Vi,V;) is not (e, p)-regular is at most ev(R), and for each i € V(R) and v € V;, at most

(d + )pn neighbours of v lie in ;.. ;q0r Vi-

The statement above is identical to that in [2] except for the final ‘Furthermore’ conclu-
sion. That we can assume no part is in many irregular pairs follows from the proof there.
The final condition can be obtained by applying the statement in [2] with £/100 replacing
¢ and removing vertices from V1,...,V,g) to Vo, keeping the sizes of the V; equal, until
no vertices failing the condition remain. Initially, by regularity and by the upper bound
on densities in G, we remove at most 55n vertices. Thereafter, we remove vertices only
because they have at least epn/2 neighbours in the current set Vj. If at some point in the
process Vp has en/10 vertices, then it contains at least e2pn?/40 edges, so contains a bi-
partite subgraph with at least £2pn?/80 edges, in contradiction to the density assumption

on (G. We conclude the process stops before this point, as desired.

Note that the regularity lemma above is not specifically for G(n,p) but for graphs in
which the density edges between pairs of large sets is never much greater than p. For

p= w(l"%) the random graph G(n,p) a.a.s. satisfies this, see for example Lemma 2.14

part (c).
When applying the Sparse Regularity Lemma we will wish to say that if H is triangle-free

then the reduced graph is also triangle-free. In order to do this we use the following regu-
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larity inheritance lemma, which is [4, Lemma 1.27] and is based on techniques from [62].

Lemma 2.8 (Regularity Inheritance). For any 0 < &, d there exist 9 and C" such that
for any 0 < e < egp and any 0 < p = p(n) < 1 the random graph I' = G(n,p) a.a.s. has
the following property. For any X,Y C V(') with |X|,|Y] > C'max{p=2,p ‘logn}
and any subgraph H of T[X,Y] which is (e,d,p)-lower-regular, there are at most
C'max{p~2,p~tlogn} vertices v of V(T) such that (XNNr(v), YN Nr(v)) is not (¢',d, p)-

lower-reqular in H.

We shall also want the following consequence of this lemma, stating that for every regular
partition of every H C G(n, p) the neighbourhoods of most vertices induce lower-regular

subgraphs on the regular pairs of the partition.

Lemma 2.9. For any 0 < &’,d < 1 there exist &g and C' such that for any t, € N and

—1/2 the random graph T = G(n,p) a.a.s. satisfies the following. For any

any p > 2C"tin
0 < e < e, any spanning subgraph H of T' and any (e, d, p)-regular-partition VoUViU- - UV,
of H with t < t1 and reduced graph R, all but at most (t21)C/ max{p~2,p 1logn} vertices
v of H have the property that for each ij € E(R) the pair (Np(v) N Vi, Nr(v) N'Vj) is

(¢’,d, p)-lower-reqular in H.

Proof. By applying Lemma 2.8 with ¢’ and d we are given g9 and C’. Suppose p >
2C"tn~1/2 and that T satisfies the probable event of Lemma 2.8. Now let H C T' and a
partition VoU Vi U---UV; of H with reduced graph R be given. Let ij € F(R). For large

enough n we have C'max{p=2,p~llogn} < C”max{ﬁ, ‘/Q@',Jﬁn} < 9 < VLIVl
So we conclude from Lemma 2.8 that for all but at most C' max{p~2,p ! logn} vertices
v € V(H) the pair (Np(v) NV;, Np(v) NV;) is (¢/,d, p)-lower-regular in H. The lemma
follows by summing over all ij € F(R). O

The following lemma combines Lemma 2.7 with Lemma 2.8 to give a regular partition of

a triangle-free subgraph H for which the reduced graph is triangle-free.

Lemma 2.10. For any 0 < €,d,8 < 1 and any ty there exist ¢ and t1 such that for
p>=cen Y2 in T = G(n,p) a.a.s. any triangle-free subgraph H with 6(H) > Bpn has an
(e,d, p)-reqular-partition Vo U Vi U --- UV, with to < t < t1 such that the corresponding

reduced graph R is triangle-free and has minimum degree at least (8 — d — €)v(R).

Proof. Suppose we are given ¢,d, 3,tp as in the lemma statement. Set &’ = % and apply

Lemma 2.8 (Regularity Inheritance) to & and d to obtain £g and C’. Now apply Lemma 2.7

29



Chapter 2. Triangle-free subgraphs of random graphs

(Sparse Regularity, Minimum Degree Form) with d, 3, ¢y as given and with ¢ also required

to be smaller than £y. This gives t;. Take ¢ = 6t1C".

Lemma 2.7 has given us an (g,d, p)-regular-partition of H with reduced graph R that
satisfies all the conditions we require except that of R being triangle free. Suppose for
a contradiction there is a triangle in R. This corresponds to an (g, d, p)-lower-regular
triple (X,Y,Z). First observe that |[X| = [Y[ > 5 and for p(n) > en~ 12 we have
i > C'max{p~2,p~llogn}. By lower-regularity of (X,Z) and (Y, Z), at least %|Z|
vertices z of Z have degy(z, X) > %p|X| and also degy(z,Y) > %p|Y|. Furthermore, for
all but at most C' max{p~2,p~!logn} < @ vertices z of Z, the pair (Np(z, X), Np(z, Y))
is (¢/,d, p)-lower-regular. Choosing a vertex z € Z which satisfies both conditions, by
regularity of (Np(z,X),Nr(z,Y)) the edge density of (Ny(z, X),Ng(z,Y)) is at least

(d —e)p > 0. This gives a triangle, the desired contradiction. O

Finally, we need the following special case of the Slicing Lemma.

Lemma 2.11 (Slicing Lemma). Let (V;,V;) be (e,d, p)-lower-reqular. For any X C V;,
Y CVj such that |X| = d|V;|, |Y| = d|V}| the pair (X,Y) is (5, d, p)-lower-regular.

Proof. Let X' C X, Y’ C Y satisfy |X'| > §|X| > ¢[Vi| and [Y'| > §|Y| = ¢[Vj]. So
d(X"Y') = (d—¢e)p> (d— 3)p. O

2.3 Proof of Theorem 2.5

Recall that Theorem 2.5 asserts that for any v > 0 and r € N, there are ¢, > 0 such
that for any nfl/z/c’ < p < ¢ the random graph G(n,p) a.a.s. contains a subgraph which
is triangle-free, whose minimum degree is at least (% — 'y) pn, and which cannot be made

1

r-partite by removing any cp~n edges.

The idea of the proof of this theorem is as follows. Let I' = G(n,p) and partition [n]
into sets B = [n/2] and A = [n] \ B. We remove all edges in A. We further ‘sparsify’
I'[B], keeping edges with a suitable probability p’. The goal of this ‘sparsification’ is to
obtain a subgraph of I'[ B] which is still complex enough for the rest of the argument, but
is such that for each vertex a in A the number of edges in N (a, B) is negligible compared
to the degree of a (see Lemma 2.12(b)). Observe that this subgraph is distributed as the
following inhomogeneous random graph model. We define G(n,p,p’) to be the random

graph on [n] obtained by letting pairs of vertices within [n/2] be edges independently with
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probability pp/, letting pairs in [n] \ [n/2] all be non-edges, and letting all other pairs be
edges independently with probability p.

We next use the fact, first proved in [30], that there exists a triangle-free graph F' which
is not r-partite. Let [/] be the vertex set of F. We place a ‘random blow-up’ of F'
into B as follows: We partition B into £ equal sets B, ..., By and keep only those edges
in B running between B; and Bj; with ij € F. Finally, we remove in B all edges with
an endpoint whose degree in B deviates too much from expectation, and then all edges
between A and B which are in a triangle with a vertex from B. This last step is the only

step in which we delete edges between A and B.

It is easy to check that the resulting graph is triangle-free by construction. Using some
properties of G(n,p,p’) and the blow-up of F' we can also show that it cannot be made

1

r-partite by deleting ¢p~'n edges. Moreover, using the fact that for each vertex a in A

the number of edges in N (a, B) is small and hence in the last step not many edges were
deleted at any vertex, we can also conclude that the minimum degree of the resulting

graph is at least (% — 7) pn.
The typical properties of G(n,p,p’) we need are the following.

Lemma 2.12. For any € > 0 and K > 10, there exists 0 < ¢ < € such that the following
holds. If Kn=Y? < p(n) < €2¢/(10°K?) and p' = cK?p~2n~", then a.a.s. the random
graph G(n,p,p’) has the following properties. Let B = [n/2] and A = [n] \ B.

deg(b, A),deg(a, B) = (% + e)pn for everya € A and b € B.

For each a € A, at most p'p>n? edges have both ends in N(a,B).

For each b € B with deg(b, B) > %p’pn, the number of vertices a € A such that there
exists b € B with abb’ a triangle is at most pn(1 — (1 — p)dee®:B)).

1

At most cp~*n edges in B are incident to some b € B with deg(b, B) > pp'n or deg(b, B) <

00/
e(U, V) > 2cp~'n for every pair of disjoint sets U,V C B with |U|,|V| > 2n/K.

We delay the proof of this lemma to after the proof of Theorem 2.5.

Proof of Theorem 2.5. Given v > 0 and r € N, let F' be a triangle-free graph which is not
r-partite. Let £ = v(F'). We set K = 8r¢ and

€= 4—(1)077725*2. (2.1)
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Now we let ¢ > 0 with ¢ < € be returned by Lemma 2.12 for input ¢ and K. We choose
¢ = min (4, ﬁ)

Given n= Y2/ < p(n) < ¢, let p' = cK?p~2n~1. Observe that p’ < 1 by choice of p. Let
B =[n/2], and A = [n]\ B. We generate I' = G(n, p), and let G; be the subgraph of T’
obtained by sparsifying B, keeping edges independently with probability p’ and removing
all edges of A. Since G is distributed as G(n, p,p’), by Lemma 2.12 it a.a.s. satisfies the

properties (a)—(e). We now condition on G satisfying these properties.

Partition B into ¢ equal sets Bi,...,By. Let G2 be the subgraph of G; obtained by
keeping only edges of the form ab with a € A and b € B, or of the form bl with b € B;
and b’ € B; for some ij € F. We claim that G3[B] is far from r-partite.

1

Claim 2.13. G3[B] cannot be made r-partite by deleting any 2cp™'n edges.

Proof. Given a (not necessarily proper) r-colouring x : B — [r], we define a majority
r-colouring x’ : [¢] — [r] by setting x’() equal to the smallest j such that ‘X_l(j) ﬂBi’ >
|B;|/r. Since F is not r-partite, the colouring x’ is not proper, and hence there exists
ij € I such that x'(i) = x'(j). The subsets B} and B} of B; and B; respectively
which are given colour /(i) by x are by construction disjoint and each of size at least
n/(4rf) = 2n/K. Thus by Lemma 2.12(e) we have e(Bj, B}) > 2cp~!n, and the claim

follows. o

Now we let G3 be obtained from Gy by deleting all edges of G3[B] which use a vertex
b € B with deg(b, B) > pp'n or deg(b, B) < pp'n/10. By Lemma 2.12(d) the number of

edges deleted is at most cp~'n.

Finally, we let H be obtained from Gj3 by deleting all edges ab of G3 with a € A and
b € B such that there exists b’ € B with abb’ a triangle of G3. Observe that since A is
independent in H, any triangle of H has at most one vertex in A. By construction of
H, there are no triangles with exactly one vertex in A, so any triangle of H has all three
vertices in B. But then the three vertices of a triangle in A would lie in sets B;, Bj and
By with ijk a triangle in F', and we chose F' to be a triangle-free graph. We conclude

that H is triangle-free. Furthermore, if H can be made r-partite by deleting cp~*

1

n edges,

then certainly H[B] can be made r-partite by deleting ¢p™'n edges. But since we deleted

1

at most ¢p~n edges from G[B] in order to obtain G3[B], and no further edges to obtain

1

H|[B], this implies G2[B] can be made r-partite by deleting at most 2cp~n edges, in

contradiction to Claim 2.13.

It remains only to show that §(H) > (% — 'y) pn. First consider any vertex b € B. By
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Lemma 2.12(a) we have degg, (b, A) > (3 — €)pn. By construction, no edge from b to
A was deleted in creating Go from G, or G3 from Gs. By construction of Gg, either
degg, (b, B) = 0, in which case no edge from b to A was deleted in creating H, or we have
Lpp'n < degg, (b, B) < pp'n. By Lemma 2.12(c) we conclude that the total number of
edges deleted from b to A in forming H from G35 is at most

pn(l —(1- p)pp/”) < pp'n? < 64r20epn (2) %*ypn,

because ¢ < €. Thus we have

as desired.

Now consider any a € A. Again by Lemma 2.12(a) we have degg, (a, B) > (1 — ¢)pn.

Again no edges from a to B are deleted in forming G2 or G3. In forming H from Gj3, we
delete edges from a to each of b and b’ in B whenever abb’ forms a triangle in G3. Since
Gs[B] is a subgraph of G1[B], this means that we delete at most 2 - e(Ng, (a; B)) edges
from a to B, which by Lemma 2.12(b) is at most 2p'p>n?. Thus we have

@.1)

dr(a) > (3 —e)pn —20'p*n® > (3 — 39)pn — Lypn = (3 —y)pn,

which completes the proof. O
We now give the proof of Lemma 2.12.

Proof of Lemma 2.12. Choose ¢ = min{%a, K~2}. These properties follow from easy

applications of the Chernoff bound, Lemma 2.6. We omit the proof of (a) as it is standard.

(b): By property (a) we may assume that there are at most (3 +¢)pn vertices in N(a, B)
for each a € A. Now consider an arbitrary set S of (3 + €)pn vertices in B. The
expected number of edges in S is (lgl)p’p < %]S\Qp’p. By Lemma 2.6 the probability that

S has more than |S|?p'p < p'pn? edges is less than exp(%l\S\Qp’p) < exp(—l—(l)op’p?’

n°) =
exp(—ﬁ[( 2¢pn). Hence the claimed property follows by taking a union bound over all

a€ A.

(¢): Assume that we first only reveal the edges of G(n,p,p’) in B and consider a vertex
b € B for which deg(b, B) > %p' pn. Now reveal also the edges between A and B. Then a
fixed a € A forms a triangle with b in which the third vertex is also in B with probability
p-(1—(1—p)des®B)) Therefore the expected number of such a € A is

1 1 , 1
51— (1 - p)ies®-B)y > g (1= (1=p) /10y > Ep’p?’nz,
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where the inequality follows from 1 — (1 — p)?'P/10 > %Op’an - 1(1)—0p’2p4n2 > %p'an,

which uses p' = K2cp~2n~1.

than pn(1—(1—p)3e®:B)) such a € A is less than exp(—103p'p?n?) = exp(—1073K2cpn).

Hence by Lemma 2.6 the probability that there are more

Taking a union bound over vertices in B the claimed property follows.

(d): Two applications of Lemma 2.6 and simple union bounds show that a.a.s. for any

S C B with |S| = n/(2K?) we have

e(S) < (1 +5)p’p<|§‘> and (2.2)

e(S,B\S) = (1+e)p'p|S||B\ S, (2.3)

since p < e2¢/(10*K?). This implies that for any S C B with |S| < n/(2K?) the number

of edges in B adjacent to S is at most

n_n
2 2K?

1
) <+ )PP = < =ep'n.

n 2 n
o (M) + s g K73 S

Hence, with C = {b € B: deg(b, B) < %p/pn} and D = {b € B: deg(b, B) > p'pn}, the
claimed property follows if |C| < n/(2K?) and |D| < n/(2K?).

So assume that there is ¢/ C C with |C'| = n/(2K?). But then ¢(C’,B \ C') <
|C’ |1—10p’ pn < ﬁp’ pn?, contradicting (2.3). Similarly, assuming there is D’ C D with
|D'| =n/(2K?) and using (2.2) we get

2./

npp

e(D', B\ D) > |D'|p'pn — 2¢(D’) > Voo

n \2 1
-+ (gzm) > gon’.
contradicting (2.3).

(e): For any disjoint U,V C B each with at least 27" vertices the expected number of

1

edges between U and V' is |U||V|p'p > A}(Ljp’ p = 4cp~m, so the result follows from another

application of Lemma 2.6 and a union bound (using p < e2¢/(10*K?)). O

2.4 Auxiliary properties of G(n,p)

In this section we list some typical properties of G(n,p), which we shall use in the proofs

of Theorems 2.3 and 2.4.

Lemma 2.14. Forany 0 < e < % and M € N and any p = w(lnT"), the graph T' = G(n,p)

a.a.s. satisfies the following.

(a) degr(v) = (1 £e)pn for every v € V(T).
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er(A4) < max{|A|?>p,In} for every A C V(T).

er(A, B) = (1 £ ¢)p|A||B| for every disjoint A, B C V(') with |A|,|B| > 7. If on the
other hand |A| < M~'n, then er(A, B) < (1+ &)pM~1n?,

For any A C V(T') with |A| > % all but at most 10Me=?p~! vertices in V(I') have
(1 £ e)p|A| neighbours in A.

Proof. These properties follow from standard applications of the Chernoff bound,

Lemma 2.6. Here we only show (b); the other properties follow similarly.

Suppose that A is an arbitrarily chosen vertex subset. The expected number of edges in
Ais (“3')1) < |A|?p. By Lemma 2.6 the probability that there are more than |A[?p edges
in A is less than exp(%('é')p) < exp(=L|Al?p). For [A| > 3p~Y/2n1/? this probability
is less than exp(%gn) and so taking a union bound over all subsets the probability that
Property (b) fails for a set of size at least 3p~1/?n1/2 is less than 2" exp(=2n), which tends
to zero. A set A with |A] < 3p~1/2n/2 is less likely to have more than 9n edges than a set
B with |B| = 3p~1/2n1/2 < . Therefore, since |B|?p = 9n and by the previous argument,
the probability that a set A of size less than 3p~/2n'/2 has more than 9n edges tends to

Zero. O

The next lemma shows that for any partition V(G(n,p)) = AU B with neither A nor B

very small, most edges of G(n,p) have ‘typical’ neighbourhoods in each set.

Lemma 2.15. For any 0 < e < %, M eN andp= w(h‘Tn) in ' = G(n,p) a.a.s. for any
two subsets A, B of V(T') with ¥+ < |A|,|B| all but at most 103Me~?p~'n edges uv in T
satisfy all of the following:

dEgF(Ua A)7degf‘(vu A) = (1 + E)p’A‘
degl—‘(ua B)vdegr‘(vv B) = (1 + €)p|B|
degp(u,v, B) > (1 —¢)p? B|.

Proof. By Lemma 2.14(d) we may assume that all but a set S of at most 20Me~2p~2
vertices in I' have (1 &+ ¢)p|B| neighbours in B and (1 + €)p|A| neighbours in A. By

Lemma 2.14(c¢) we further may assume that we have

e(S,A) < (1+e)p-20Me2p~2n =20(1 4+ e)Me?p~1n. (2.4)
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We now consider an arbitrary vertex v in V' \ S and two arbitrary sets P,Q C N(v)
satisfying |P| > (1 — 4¢)p|B| and |Q| > 100Me~2p~!. The probability that all vertices in
@ have fewer than (1 — £)p?|B| < (1 — 3¢)p| P| neighbours in P is less than

g2 1 n

——p-p— —2p1) < — .
exp< p\PHQD\eXp( 12p 2pM 100Me™*p )\exp( 3pn)

Since P,@ C N(v) we have |P|,|Q| < (1+¢)pn. So, taking a union bound, the probability
that there exist v, P,Q as above is less than n2(i+epno+e)pn exp(—3pn) which tends to
zero as n tends to infinity for p = w(logn/n). Hence a.a.s. each vertex v in V' \ S has at
most 100Me~2p~! neighbours u such that deg(u,v, B) < (1 — &)p?|B|. Summing over v

1

we obtain at most 100Me~2?p~'n such edges, which along with the edges incident to S

by (2.4) gives at most 103 Me~2p~1n edges. O

The following lemma is crucial in the proofs of Theorems 2.3 and 2.4. Before stating
it we need some definitions. For any s € N, the s-star is the star K; . The vertex of
degree s in the s-star is called its centre, all other vertices are its leaves. For A C V(I') and
0 < ¢,e <1 we say that an s-star with centre x is (¢, €)-bad for A if there is S C Nr(z, A)
with | S| < gp|A| such that each leaf y of the s-star satisfies degp(y, S) > (1+¢)gp?|A[; in
other words y has substantially more neighbours in S than expected. We also say that S

witnesses this badness.

When we use this definition, we will choose a star with centre z and set S = Np(z, A) \
Ny (z, A), where H is a triangle-free subgraph of I" with large minimum degree, and we
will choose our star such that that Np(y,.S) is quite large for each leaf y. Now if the star
is good it follows that S itself must be quite large, so that the degree of x in H cannot be
too large, leading to a contradiction to the minimum degree of H. The following lemma

-1

however implies that bad stars cover only O(p~'n) edges, which is where the sharp bounds

in Theorems 2.3 and 2.4 come from.

Lemma 2.16. For every 0 < € < 1 and every p the random graph G(n,p) a.a.s. satisfies
the following. For every A C V(I') with § < |A|, every q with ¢ < q < 1, and every
s > 100¢~'e=2p~! there are fewer than %p‘l vertez disjoint s-stars in V(I')\ A which are
(g,€)-bad for A.

Proof. First let A be fixed. Consider an s-star with centre x and a set S C Np(z, A) with
|S| < gp|A|. By the Chernoff bound, Lemma 2.6, the probability that S witnesses that
this star is (g, )-bad for A is less than exp ( -qp?|A|s). Observe that |S| < gp|A| <

and that we may assume s < degp(z) < 2pn by Lemma 2.14(a). So by taking a union
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1 vertex

bound over choices of S for a single s-star, and then considering collections of %p*
disjoint s-stars, and taking another union bound over all such collections, we obtain that
the probability that there are at least %pil disjoint (g,¢)-bad stars for A in V(T') \ A is
less than

. 92pn %p_l_ pn —e2 2 %p_l 4dpn —e? 2 %Ifl
n-2 2P exp (=-qp°|Als) < (2" exp (Z5-qp°ns))

By taking a union bound over choices of A we find that the probability that there is A

-1

such that p~! stars K7, outside A are (q,¢)-bad for A is less than

2" (24p” exp (_TequQns)) 2P Lexp (n + 2n — %qpns) ,

which tends to zero for s > 10062 !p~!. (Observe that we do not have to take a union

bound over s, because for s’ > s any s-star which is a subgraph of a (q,¢)-bad s'-star is

also (q,¢)-bad.) O

2.5 Proof of Theorem 2.3

Recall that Theorem 2.3 states the following.

Theorem 2.3. For any v > 0, there exists C such that for any p(n) the random graph
I' = G(n,p) a.a.s. has the property that all triangle-free spanning subgraphs H C T with
0(H) > (% + v)pn can be made bipartite by removing at most min (C’p_ln, (i + 'y)an)
edges.

The main strategy of the proof is as follows. We first apply Lemma 2.10 (which is a con-
sequence of the Sparse Regularity Lemma) to H to obtain a dense triangle-free reduced
graph R of H with minimum degree above %U(R), which by the Andréasfai—-Erd6s—S6s The-
orem, Theorem 2.1, is bipartite. We conclude that H can be made bipartite by removing
o(pn?) edges. Hence in a maximum cut X UY of H we have ey(X),ey(Y) = o(pn?).
Our goal will then be to improve this bound on ey (X) and ey (Y') by distinguishing be-
tween ‘typical’ and ‘atypical’ edges in these sets and applying the results established in

the previous section to count these, using that X UY is a maximum cut and that H is

triangle-free.

Proof of Theorem 2.3. Let
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Chapter 2. Triangle-free subgraphs of random graphs

and let ¢ and t; be the values attained by applying Lemma 2.10 with inputs €, d, 5 and
to. Let M = t%, and let
C = max (10'%72,¢?). (2.6)

—7/4 then the expected number

We first consider the easy case that p is small. If p < n
of paths with two edges in G(n,p) is at most p?n? < n~1/2. In particular a.a.s there
are no such paths, so a.a.s. G(n,p) is bipartite and the statement of Theorem 2.3 holds
trivially. We may therefore assume p > n~"/4, so by Lemma 2.6 a.a.s. G(n,p) has at most
(% + '7)pn2 edges. Now if G is any graph with at most (% + 27)pn2 edges, then we can
make G bipartite by removing all the edges of G not in a maximum cut. Since a maximum
cut of G contains at least half its edges, we remove at most (% + 'y) pn? edges. Again, if
min (Cp~'n, (% +y)pn?) = (i + ~)pn?, which occurs when p < en~/2, the statement of

Theorem 2.3 follows.

It remains to consider the hard case that p > en~1/2. We now assume I' = G/(n, p) satisfies
the properties stated in Lemma 2.14 with input € and M, Lemma 2.15 with input € and M,

Lemma 2.16 with input € and Lemma 2.10 for the parameters given above.

Consider any triangle-free H C I' with §(H) > (2 4 v)pn and let X UY be a maximum
cut of the vertex set of H. Assume without loss of generality that ey (X) > ey (Y). Our

goal is to show ep(X) < %Cp_ln. We start with the following observation.

Claim 2.17. ey (X) < npn?.

Proof of Claim 2.17. By the property asserted by Lemma 2.10 we obtain an (5,d,p)—
regular partition V(I') = VU Vi U--- UV, of H with ¢y < t < ¢; whose corresponding
reduced graph R is triangle-free and has minimum degree at least (% +v—d—¢)v(R) >
%U(R). Therefore, by the Andrasfai-Erdés—Sés Theorem, Theorem 2.1, R is bipartite.

By Lemma 2.14(a ) at most en(1+¢)pn edges have at least one end in V). Moreover, since
at most an e-fraction of all pairs are irregular, by Lemma 2.14(c¢) at most £(14¢)pn? edges
are contained in irregular pairs. Finally, at most dpn? edges are in pairs with density less
than d. We conclude that at most (d + 2(1 + €)e)pn? < npn? edges of H do not lie in

pairs corresponding to edges of R, which proves the claim. o

We next bound the sizes of X and Y.
Claim 2.18. (2 + 1v)n < |X|,[Y[ < (2 - i)n.

Proof of Claim 2.18. Suppose for a contradiction that X satisfies |X| > (g — 37)n and
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hence |Y| < (

(1423 — 3 ?

+ 14). Then by Lemma 2.14(c) we see that eg(X,Y) < ep(X,Y) <
3+ v,

On the other hand, by our minimum degree condition 2e(X)+en (X,Y) > (247)pn|X]|,
and similarly 2e;(Y) 4+ e (X,Y) = (2 +7)pn|Y]. Since ey (X),en(Y) < npn? this gives
eg(X,Y) > (% + ¥)pn - max{|X|, [Y|} — 2npn?. Since max{|X|,|Y|} > (% — 19)n we
obtain ey (X,Y) > ((2 — %7)(% +7) — 2n)pn?, a contradiction.

So |X| < (2 — $v)n, and analogously |Y| < (2 — 1v)n, proving the claim. o

We next define
X = {z € X :degy(z, X) > ~-degy(x)},
a set of vertices with high degree in X, which require special treatment later on. The

next claim shows that X is small and contains at most half of the edges in X.

Claim 2.19. |X| < ﬁvn, and if ey (X) > $Cp~1n then er(X) < ten(X).

Proof of Claim 2.19. By Claim 2.17 and the definition of X we have

1 ~
npn? > en(X) > S| X7o(H) > %(

. ) B
hence | X| < % < 5y gn < yn/100 by (2.5).

2) -
5 +v)pn\X!7 (2.7)

For the second part of the claim assume that ey (X) > $Cp~'n. By Lemma 2.14(b)
we have ey(X) < er(X) < max{|X|?p,9n}. If this maximum is attained by 9n, then
we are done because In < 1Cp~'n < Lfey(X). Otherwise er(X) < |X|?p, and since
1X| < T557n, we have

)

eH(X)a

~ 1 ~ v /2 ~ 271
| X|*p < ——=vpn|X| < Z(E +v)pn|X| <3

~ 100

and we are also done. o

We continue by removing ‘atypical’ edges from H. Let H' be the graph obtained from H
by removing edges from Ep(X) which do not satisfy the conditions of Lemma 2.15 with

respect to the partition X UY. We also remove the edges in Ey(X). By Lemma 2.15
and Claim 2.19 we have ey (X) < 2Cp~'n or
3 -2 1 1 @0 1 . 1
erg(X) —ey(X) <10 “p 'n+ ieH(X) < 1—on n+ §€H(X)' (2.8)

Our goal in the remainder is to bound the number of H'-edges in X.

Let zz be any H'-edge in X. We have
degr(z,2,Y) > (1 — e)p?Y| (2.9
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by construction of H’, so this common neighbourhood constitutes many I'-triangles zzy,
for each of which either xy or zy is not present in H. We now would like to direct the
edges in X according which of these two cases is more common — however, it turns out

that we need to favour vertices not in X in this process; so we direct with a bias.

More precisely, for any H'-edge in X, if one of its vertices is in X call it z, otherwise let z
be any vertex of the edge. Let ' be the other vertex of the edge. We direct xx’ towards
x if
2
’NF(.%', xlv Y) \ NH/(l', Y)| = g degl—‘('ra .ZU/, Y) )
that is if many edges from z to Np(z,2',Y) were deleted. We direct xa’ towards

otherwise, in which case we have
1
|Np(z,2',Y)\ Ny (2',Y)| > 3 degp(z,2',Y),

An s-in-star in this directed graph is an s-star such that all edges are directed towards
the centre. Recall that an s-star with centre x is (¢,e)-bad for Y if there is a witness
S C Nr(z,Y) with |S| < ¢gp|Y'| such that each leaf z of the s-star satisfies degp(z,S) >
(14 €)gp®|Y]. The next claim shows that in-stars in H'[X] are bad. We define
s=10%"%p ', G=(1- 25)2, q=(1- 25)1.
3 3

Claim 2.20. Each s-in-star in H'[X] with centre x € X is (§,¢)-bad for Y, and each
s-in-star in H'[X] with centre z & X is (q,€)-bad for Y.

Proof of Claim 2.20. First assume F is an s-in-star with centre 2 € X which is not (q,¢)-

bad. We first show that this implies
[Ne(z,Y)\ N (2, Y)] > gp|Y]. (2.10)

Indeed, assume otherwise. Then, since F'is not (¢, €)-bad for Y we have for S = Nr(z,Y)\
Ny (z,Y) that there is a leaf z of F' such that

. 2
INp(z,2,Y) \ Ny (2,Y)| = degrp(z, 5) < (1+¢)gp°|Y] < §(1 —e)p’lY].
This however contradicts the fact that F' is an in-star and thus
2 (2.9) 2 9
|NF(:1:727Y> \ NH/(:E,Y)’ 2 gdegp(m’,z,Y) 2 g(l - E)p |Y‘ .

Accordingly (2.10) holds.

Since degy(z,Y) = degy/(z,Y) we conclude that

~ 2 1
degyr(z,Y) < degr(z,Y) = dplY| < (1 +)p|Y| = (1= 20)3plY| < (5 +3¢)plY ]
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Because X UY is a maximum cut this implies by Claim 2.18 that

d ()<2(1+3) (§ 1) <(2+)
egyr) & 3 5]95 27” 5 y)pn,

contradicting the minimum degree of H.

For the second part of the claim assume that F is an s-in-star with centre 2 ¢ X which

is not (g, )-bad. By similar logic to the proof of (2.10), this implies that
[Ne(2,Y)\ Nar(z,Y)| > qplY]

by using that for any leaf z of F' we have |[Np(z, 2, Y)\ Ng/(z,Y)| > 3 degr(z, 2,Y). Also
analogously, this implies that degy (z,Y) < (2 + 3¢)p|Y|. Recall that = ¢ X means that
degy(z,X) < ydegy(zr) and hence degy(z) < ﬁdegH(:c,Y) < (1 + 2y)degy(z,Y).
Thus, by Claim 2.18,

degy(z) < (1+ 27)(% +35)p(§ — %’y)n < (2 + §’y)p(§ — %’y)n < (% +'y)pn,

again contradicting the minimum degree of H. o

By Lemma 2.16, however, the number of s-stars in I" which are either (g, e)-bad or (g, ¢)-
bad is less than p~!. So Claim 2.20 implies that the number of vertex disjoint s-in-stars
in H'[X] is less than p~!. The following claim shows that this implies that ey (X) is

small.

Claim 2.21. ey/(X) < -Cp~'n.

Proof of Claim 2.21. Assume for a contradiction that ey (X) > %OC’pfln > 10%e2p~!n.

1

Using a greedy argument, we will show that we then can find more than p~" stars in

H'[X] which are s-in-stars (with s = 103¢2p~!). Indeed, the average in-degree is at least
10%e72p~!, so we can find at least one (103¢~2p~!)-in-star. If we remove from H'[X] this

star and all edges adjacent to it this accounts for at most (1 + s)(1 4 &)pn < 2spn edges.

1

So we can repeat this process p~! times, after which at most 2sn = 2103~ 2p~'n edges

have been deleted from H'[X], hence H[X] still contains more than 103 =2p~1n edges in

1

X, still giving an average in-degree of at least 103¢2p~!, and hence we can find another

(103¢~2p~1)-in-star, which is the desired contradiction. o

Now (2.8) and Claim 2.21 imply ep(Y) < eg(X) < 3Cp'n, hence H can be made

1

bipartite by removing at most Cp~ n edges as claimed. O
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2.6 Proof of Theorem 2.4

The proof of Theorem 2.4 adds the techniques developed for the proof of Theorem 2.3
to ideas used in [3, 69]. Our strategy is as follows. Given a subgraph H of I' = G(n,p)
with 0(H) > (% + v)pn, we will apply the sparse regularity lemma to obtain a regular
partition V(H) = Vo U--- UV, with (g, d, p)-reduced graph R. We let W be the set of all
vertices whose degree, in T', to some set V; is far from the expected p|V;|, and then for
each I C [t] we let Ny be the subset of vertices in V(H )\ W with many H-neighbours in
exactly the clusters {V; : i € I'}, which gives a partition of V (H) into 2¢ + 1 sets. We will
show that there are O(p~'n) edges in W and in each N, hence we can remove all such
edges to obtain a graph with bounded chromatic number. We do this by showing that W
is too small to contain many edges, and that the same is true for any Ny such that R[I]
contains an edge. If on the other hand R[I] is independent, we use an argument similar

to that in the proof of Theorem 2.3.

Proof of Theorem 2.4. Given v > 0, let
v , A3 1 1

20 ’ € 30 ’ /B 3 + v 0 ! ( )
Let €9, Crs be the outputs if Lemma 2.9 is applied with ¢’ and d. We take ¢ = min{eg, &’}
and let t; be the output if Lemma 2.7 is applied with 3, € and t3. We require as well
that ¢; > 10. We choose ¢ = 2C},4t1 (which is needed for the application of Lemma 2.9).

Finally we choose
M=2t, r=2"+1, C'=10"2"%:3 € =max(rC? c?). (2.12)

7/4

As in the proof of Theorem 2.3, if p < n~"/* a.a.s. G(n, p) is bipartite and the statement is

trivially true, while for any graph G a maximum r-partition of G contains at least “Le(G)

/4 g.a.s. we can make any subgraph of G(n,p) r-partite by

1/2

edges, so that when p > n~
deleting at most (% + 'y) pn? edges. Again, this leaves the hard case when p > cn™

Inn
n

1/2

Now sample I' = G(n,p). Since p > cn™ /% = w(®22) we can assume that I" satisfies the

properties of Lemmas 2.7, 2.14, 2.15, and 2.16 with the parameters chosen above.

Let H be a triangle-free spanning subgraph of I' with 6(H) > (% + v)n. By Lemma 2.7
there is an (e,d, p)-regular partition Vo U Vi3 U--- UV, of H with ¢t < ¢; such that the
reduced graph R has 6(R) > (3 +v—d—3e)v(R) > (3 + 3)v(R), and such that for each
i and each v € V;, the vertex v has at most (d + €)pn neighbours in U, ;25 V;-

Let W consist of all vertices which either have more than (1 + ¢)p|V;|, T-neighbours

in V; for some 4, or more than 2epn, I'-neighbours in V. By Lemma 2.14(d) we have
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W] < 10M(t +1)e~2p~!, and by Lemma 2.14(b) the number of edges in W is therefore
at most max (100M2(t + 1)28*41)*1,971) < 10p~'n, where the inequality holds for all
sufficiently large n. Now for each I C [t], let Ny be the set of vertices of H with many
H-neighbours exactly in the clusters V; with ¢ € I, that is,

Nr={veV(H): |Ng(v)NV;| > 10dp|V;| if and only if i € I'}.

Claim 2.22. {N;: |I| > L} partitions V(H) \ W.

Proof. The sets {N; : I C [t]} are disjoint and partition V (H)\W by definition. If [I] < &
then any vertex v € Ny has at most >, /(1 +¢)p|Vi[ + >,z 10dp|Vi| + 2epn < (3 +7)pn
neighbours since v € W and by definition of Ny, which is a contradiction, so N; = ) if

lES? o

Our goal is thus to show that e (N;) < C”?p~'n for any I with |I| > £, since this implies
that H can be made r-partite with r = 2* 4+ 1 by removing at most rC"?p~'n < Cp~'n

edges. This is established by the following two claims.

Claim 2.23. If R[I] contains an edge, then ey (N7) < C™?p~'n.

Proof of Claim 2.23. Suppose that ij € R[I]. If v € Ny is such that (Np(v, Vi), Np(v, VJ))

is (¢/,d, p)-lower-regular in H, since v & W, the pair (NH(U, Vi), Ng (v, VJ)) is (5’11%5, d,p)—

/14€

104 there is an edge of H in this latter pair and hence

lower-regular in H. Since d > ¢

H contains a triangle, a contradiction.

We conclude that there are no such vertices in Ny, so by Lemma 2.9 we have |N7| <
C’ max (;10_2,]9_1 log n) By Lemma 2.14(b) the number of edges in Ny is therefore at
most max (C"?p~3,C"?p~! log? n, 9In) < C"p~'n by choice of p and C'. o

Claim 2.24. If R[I] is independent, then ey (Ny) < C'p~'n.

Proof of Claim 2.24. Since §(R) > (3 + )¢, if R[] is independent then |I| < Z'. Let
Sr = Uz’e[ Vi. We first show that S; and Nj are disjoint. Indeed, if v € N; were in some
Vi with i € I, then by definition of N; the vertex v has at least »_ ., 10dp|V;| > 5dpn/3
neighbours in | J 1 Vj, where the inequality follows since |I| > t/3. Since ij is not an edge
of R for any j € I, this is in contradiction to the guarantee that v has at most (d + €)pn
neighbours in {J;.;;zp V;-

We now delete some ‘atypical’ edges from H[N;]. Remove from H[N;] each edge uv with
degp(u, v, S;) < (1 —¢)|St|p?. to obtain the graph H’. By Lemma 2.15 this accounts for

at most 103 - 4e2p~In < 1%C”p‘ln edges.
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Let Z be the set of vertices v € Ny such that degy(v) — degy/(v) = epn. By double

In—1
counting we have |Z| < €421 — tCp2.

Sepn

We now proceed similarly as in the proof of Theorem 2.3. We orient the edges uv in
H'[Ny] towards w if [N (u, v, S1)\ N (u, Sr)| > 5 degp(u, v, S7) and towards v otherwise.
Again, for s = 103¢7 e 2p~! and ¢ = (1 — 25)% any s-in-star with centre x not in Z is
(g,¢)-bad with respect to S;. Indeed, otherwise, analogously to the proof of (2.10), we
have |Np(z, S7) \ Ny (x,Sr)| > qp|Sr|, which implies

1 1 2 1
degy(x,Sr) < (1 +¢€)p|St| — qp|S1| = §p|5ﬂ < 5P3" = gpn

Since z € Z, we have degy(z) < degp () + epn < (3 + 7)pn, a contradiction.

We now pick greedily vertex disjoint s-in-stars whose centres are not in Z until no more
remain. By Lemma 2.16, since S; and Nj are disjoint, this process terminates having

1 such stars. Let Y be the set of vertices contained in all these stars;

found less than %p*
then |Y| < 2p~ts < 10%¢71e™2p~2. Now ey (N \ (Y U Z)) < s|Ng| since Ny \ (Y U Z)

contains no s-in-star, so we conclude
eqg(N7) < (14¢e)pn|Y U Z| + s|Ny| + I—IOC"p_ln < C'pin,
as desired. o

Finally, these claims show that deleting all edges internal to any of the sets W and Ny

for I C [t] yields a 2' + 1 = r-partite graph, and that the number of edges deleted is at

1

most Cp~'n, as desired. O
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Partite saturation problems

3.1 Introduction

The Turan problem of asking for the maximum number of edges a graph on a fixed number
of vertices can have without containing some fixed subgraph H is one of the oldest and

most famous questions in extremal graph theory, see [70],[84],[39].

Since the corresponding minimisation problem - asking how few edges an H-free graph can
have - trivially gives the answer zero, if we want an interesting complementary question
to the Turdn problem we can require that our H-free graph G also has the property that
it nearly contains a copy of H. By this we mean that the addition of any new edge to
G creates an copy of H as a subgraph. Such a graph G is called H-saturated and over
H-saturated graphs on n vertices the minimum number of edges is called the saturation
number, sat(H,n). The study of saturation numbers was initiated by Erdés, Hajnal and
Moon [36] when they proved that sat(K,,n) = (r—2)(n—3(r—1)). It was later shown by
Készonyi and Tuza in [57] that cliques have the largest saturation number of any graph
on r vertices which in particular implies that for any H the saturation number sat(H,n)

grows linearly in n.

These saturation questions can be generalised to require our H-free graph G to be a
subgraph of another fixed graph F. Here we insist that adding any new edge of F' to G
would create a copy of H in G. The minimum number of edges in such a G we denote by
sat(H, F'). One natural class of host graphs are complete r-partite graphs. In the bipartite
case Bollobds [15, 16] and Wessel [85, 86] independently determined the saturation number
sat(Kqp, K¢ q). Working in the r-partite setting with ~ > 3, Ferrara, Jacobson, Pfender,
and Wenger determined in [41] the value of sat(K3, K, [n]) for sufficiently large n and
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showed that sat(K3, K3[n]) = 6n—6 for all n, where K, [n] denotes the complete balanced

r-partite graph on parts of size n.

In this chapter we consider the saturation problem when the host graph is a blow-up of
the forbidden subgraph H. For any graph H and any n € N let H[n] denote the graph
obtained from H by replacing each vertex with an independent set of size n and each edge
with a complete bipartite graph between the corresponding independent sets. A copy of
H in H{n] is called partite if it has exactly one vertex in each part of H[n]. For a subgraph
G of H|n| we say G is H-partite-free if there is no partite copy of H in G. We say G is
(H, H[n])-partite-saturated if G is H-partite-free but for any uwv € E(H[n]\ G) the graph

G Uwuw is not H-partite-free. We consider the problem of determining the value
satp(H, H[n]) := min {e(G) : G C H[n] is (H, H[n])-partite-saturated }

for graphs H.

Note that for a graph H with no homomorphism onto any proper subgraph of itself we have
by definition sat,(H, H[n]) = sat(H, H[n]). In this way we know that sat, (K3, K3[n]) =

6n — 6 from [41] and can drop the partite requirement when considering cliques.

Our main result is the following looking at (K4, K4[n])-saturation.

Theorem 3.1. For all large enough n € N we have
sat(Ky, K4[n]) = 18n — 21.
Furthermore we determine the unique graph achieving equality.

In addition we calculate the partite-saturation numbers of stars and paths proving the

following two results.

Theorem 3.2. For any r > 2 and n € N all (K ,, K; ,[n])-partite-saturated graphs have
ezactly (r — 1)n? edges.

Theorem 3.3. For any r > 4 and n > 2r we have the following.

(L —1)n2+(r—2)n+3—r, forr even

N

satp (P, Prn]) =
(5—3m*+(r—4)n+5—r, forr odd

In the original paper by Erdés, Hajnal and Moon they did not in fact require the graph G
to be H-free but only required that the addition of any edge would create an extra copy of
H. Interestingly for the problem they studied this did not have an effect as the extremal
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graphs were K,-free even without requiring this restriction. We consider a similar notion
in the partite setting. For G C H[n] and n € N we say G is (H, H|[n|)-partite-over-
saturated if for any uwv € E(H|[n]\ G) the graph G Uuv has more partite copies of H than
G. We also ask, given a graph H and n € N, the value of

exsat,(H, H[n]) := min {e(G) : G C H[n] is (H, H|[n])-partite-over-saturated } .

We observe some interesting differences in behaviour between these partite-saturation
numbers and the saturation numbers studied by Erdds, Hajnal and Moon. Whilst for
graphs on r vertices cliques gave the largest values of sat(H,n) we find that cliques are not
the graphs which maximise sat,(H, H[n]). In fact we prove the following theorem which
shows that sat,(H, H[n]) grows quadratically for graphs H which are not 2-connected

whilst it grows linearly for those which are.

Theorem 3.4. For any graph H with e(H) > 2 and no isolated vertices, if H is 2-
connected then sat,(H, H[n]) = ©(n) and if H is not 2-connected then sat,(H, H[n]) =
O(n?).

On the other-hand we show in Theorem 3.5 that cliques do maximise the partite-over-
saturation numbers and that all partite-over-saturation numbers are linear.

Theorem 3.5. For any integer r > 4 and all large enough n € N we have
exsaty (K, Kp[n]) = (2n — 1) (;) .
Finally we determine the partite-over-saturation numbers of trees.

Theorem 3.6. For any tree T' on at least 3 vertices and any natural number n = 4 we

have exsat, (T, T'[n]) = (|T] — 1)n.

Organisation Section 3.2 is dedicated to determining the partite-saturation number
of K4. In Section 3.3 we then determine the partite-saturation numbers of paths and
stars. We look at the link between 2-connectivity and the order of magnitude of partite-
saturation numbers in Section 3.4 before focusing on partite-over-saturation numbers in

Section 3.5. Finally in Section 3.6 we give some further remarks and open problems.

3.2 The partite-saturation number of K,

Theorem 3.1 For all large enough n € N we have

sat(Ky, K4[n]) = 18n — 21.
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Furthermore we determine the unique graph for which equality holds.

We first give a construction of a graph G C Ky[n| that is (K4, K4[n])-saturated and has
18n — 21 edges.

Let X7, X2, X3, X4 be the parts of K4[n]. Choose vertices x; and z} in each X;. Let Z
denote the set of these 8 vertices. Include in G the following 15 edges x1z2, 125, z125,
iz, xhah, T3, Tz, xoxsy, Toka, ToTly, THTY, THT4, x3T)y, Thry, xha). These are the
edges drawn in the figure below. We now only add edges between Z and V(G)\ Z. Include
all edges between X \ Z and each of xg, x3, % and x4. Attach all vertices in X \ Z to
x}, x3, x4, r4 and x). Join all of X3\ Z to each of =1, !, z2 and z4 and finally add all

edges from X4\ Z to x1, #, z2, 4, and xs.

Ly T4

X1\ Z X4\ Z
all vertices adjacent all vertices adjacent
. / . / /
to: xo, x3, T3, T4 to: x1, 27, T2, Ty, T3
1 x)
T2 xs3
Xo\ Z X3\ Z
all vertices adjacent all vertices adjacent
/ / / /
to: a7, r3, T3, T4, Ty ; o to: x1, T3, T2, T4
2 3

Figure 3.1: K4-Partite-Saturation Construction

Proposition 3.7. G is a (K4, K4[n])-saturated graph with 18n — 21 edges.

Proof. To see that this graph is K4-free note that the graph induced on V(G) \ Z has no
edges so any K4 would have to come from a triangle in Z extended to a vertex outside of

Z. There are just six triangles induced on Z and none of them extend to a Kj.

To see that G is (K4, K4[n])-saturated we first observe that for any pair ¢,j there is an

48



Chapter 3. Partite saturation problems

edge in Z such that (X;UXj)\ Z is contained in the common neighbourhood of the ends

of that edge. Therefore we could only add an edge with at least one end in Z.

For a vertex v € X1 \ Z the only incident edges we could add are vzf or vz). These
additional edges would create a K4 on vrhrhrs or vraxsr respectively. For a vertex
v € Xy \ Z the only incident edge we could add is va; but this would create a K4 on
xivrhe). Similar arguments show we cannot add edges incident to X3\ Z and Xy \ Z.
Adding any edge to Z that has either z; or z% as an endpoint will create a K4 in Z.
Adding any other edge of Z will create a triangle on Z that extends to a Ky with a vertex
outside of Z. That G has 18n — 21 edges is easy to check. O

Before proving a matching lower bound we need the following lemmas.

Lemma 3.8. Any (K4, K4[n])-saturated graph G with n > 2 has minimum degree at least
4.

Proof. Let G be a (K4, K4[n])-saturated graph on X;U---UXy. Suppose for contradiction
that there exists a; € X7 with at most 3 neighbours. If a; has no neighbours in one part,
say X9, then by saturation it must be adjacent to all vertices in the other parts, which for
n > 2 contradicts the fact that deg(a;) < 3. So a; must have exactly three neighbours
with one in each of the parts. Call these x; € X; for ¢ = 2,3,4. Then for any ¢ = 2, 3,4
adding the edge a1y; for some y; € X; \ x; must create a K4. This implies that xoxs, xoxy

and z3x4 are all edges of G but along with a; this gives a Kj. L]

We can also say more about the neighbourhoods of vertices with degree exactly 4.

Lemma 3.9. Let G be a (K4, K4[n])-saturated graph on X1 U---U Xy withn > 3 and let
v be a vertex of degree exactly 4. Then v has one neighbour in each of two parts and two
neighbours in one part. The neighbourhood of v induces a path beginning and ending with

the vertices in the same part. All neighbours of v have degree at least n — 2.

Proof. Suppose v € X;. If v had no neighbour in some X; (i # 1) it would be adjacent to
all vertices in other parts meaning it would have degree greater than 4. Suppose without
loss of generality that the neighbours of v are x9, x3, a4 and x4 with the subscripts
denoting the parts containing each vertex. By considering the effect of adding the edge
vys for some y3 € X3\ {z3, x4} we see that the edge xox4 is present. We also see that all
vertices in X3 \ {z3, x4} are adjacent to xo and z4. Similarly by considering a vertex in

X\ {z2} we see that there must be an edge between x4 and one of z3 or 5. Without
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loss of generality assume z42% is present. Finally by considering a vertex in Xy \ {z4} we
see that o is adjacent to either z3 or xg In order not to create a K, it must be that zox3
is present. We now cannot have the edges x4x3 or xgxg. We then see that all vertices in
X4\ {4} are adjacent to x3 and all vertices in Xy \ {z2} are adjacent to x%. Hence the

neighbours of v all have degree at least n — 2. O

It follows that when n > 6 vertices of degree exactly 4 cannot be adjacent.

The following lemma gives us minimum degree conditions that more reflect those of the

upper bound construction.

Lemma 3.10. Let G be a (K4, K4[n])-saturated graph with n > 22 on X3 U --- U Xjy.
There cannot be two degree 4 vertices, a; € X; and a; € X; with i # j such that a; has

Just one neighbour in X;. Furthermore there are at most two parts with minimum degree

4.

Proof. Suppose for contradiction that a; € X; and as € X, are degree 4 vertices such
that a; has just one neighbour in Xy and let 9, 23, 2%, x4 denote the neighbours of aj.
Then by Lemma 3.9 (up to switching between z% and x3) the edges xox3, xox4, x4y are
all present. We also know that x5 is adjacent to all of (X3UX}y)\ 24, that z3 is adjacent to
all of X4\ z4, that 2% is adjacent to all of X\ x2, and 4 is adjacent to all of (XoUX3)\ z3.
In particular this implies we have the edges asz and agzy. The vertex ap also has some
neighbour z7 € X; \ a;. As ag has degree 4 it must have one more neighbour. We split
into cases depending on where this final neighbour is and show that each case leads to a

contradiction. The possible cases are:

az has another neighbour v € (X; U X3) \ {a1,z1, z3, 24}
as is adjacent to x3.

az has another neighbour 2y € Xy \ z4.

Case i) Since x3 is not adjacent to ag it must be adjacent to x4 as X4 N N(y2) = {z4}

and hence x1xox324 forms a Kjy.

Case ii) By considering vertices in X3 \ N(a2) we must have the edge x4 and we see
that x; is adjacent to all of X3\ {x3,2%5}. We also see that all vertices in X; \ N(az) are
adjacent to z% and x4. This means that in fact all vertices in (X1 U X3) \ {z1,z2} are

adjacent to % and x4 and hence all edges in X; U X3 have one end in {z,z2}. In fact all

50



Chapter 3. Partite saturation problems

edges in X; U Xy have exactly one end in {z1,z2} as if the edge z1z2 were present this

would create a K, with x4 and any vertex in X3\ {z3, 2%}

If all vertices in X3 \ {3,245} were adjacent to all of X, \ z4 this would give at least
(n—2)(n—1) edges which is greater than 18n for n > 22. Therefore consider some vertex
v € X3\ {x3, 24} which is non-adjacent to some vy € X4 \ x4. As vy is non-adjacent to
v3 it must be adjacent to both ends of an edge in N(v3) N (X1 U X2). We know that this

edge has exactly one end in {x1,z2} but this creates a K4 with v3 and z4.

Case iii) As /; is not adjacent to a; it is adjacent to xzo and x3. By considering vertices
in X4\ N(az) we see that z12% is an edge of G and all vertices in X, \ N(ag) are adjacent
to x1 and x%. By considering vertices in X3 \ N(az) we see that 12 is an edge of G
(as z1z4 would create a Ky4) and all vertices in X3 \ N(az) are adjacent to z; and z.
Finally by considering vertices in X1 \ N(az) we observe that all vertices in X \ z; are
adjacent to zf and x4 (as z/; cannot be adjacent to z). Now we know that all vertices
in (X1 U Xa) \ {z1,22} are adjacent to both ends of the edge 2524 and so there are no
edges in (X7 U X9) \ {z1,x2}. Furthermore x129 ¢ E(G) as this would create a K4 with
o)y and any vertex in X3\ {z3, x4}. If all vertices in X3 \ {x3, 25} were adjacent to all of
X4\ {x4, 2]} there would be at least (n — 2)? edges in G which is more than 18n edges
for n > 22. Therefore we can assume there is a vertex vs € X3\ {z3,25} and a vertex
vg € X4\ {24, )} which is not adjacent to v3. Then vy must be adjacent to both ends of
an edge e in N(v3) N (X7 U X3). This edge has exactly one end in {z1,z2}. If the edge e
is incident to x2 but not x; then it forms a K4 with v3 and x4. If instead e is incident to

x1 but not x9 it forms a K4 with 2§ and vy.

It follows from Lemma 3.9 and the above that there can be at most two parts with
minimum degree exactly 4 otherwise we would have a degree 4 vertex with just one

neighbour in the part containing another degree 4 vertex. O

Another distinctive feature of the upper bound construction is that low degree vertices
are not adjacent to other low degree vertices. In proving the lower bound it is helpful to
prove that at most a constant number of low degree vertices are adjacent to other low

degree vertices. We do that in the following lemma.

Lemma 3.11. For any k > 5 suppose G is a (K4, K4[n])-saturated graph on X1U---UXy.
Then there are at most 24k2(2k2)2%* vertices v such that 5 < deg(v) < k and v is adjacent

to another vertex of degree between 5 and k.

Proof. Call a vertex bad if it satisfies 5 < deg(v) < k and is adjacent to another vertex
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with degree between 5 and k. Let K = 24k2(2k2)2k2 and suppose for contradiction that
there are more than K bad vertices in G. Without loss of generality assume there are at
least % such vertices in X7. Call the set of these vertices Ag and let By denote the set
of bad vertices in X9 U X3 U X4 which are adjacent to a bad vertex in Ag. By counting
e(Ap, By) from each side we see that |Ag| < e(Ag, Bo) < k|Bo| and hence |By| > &. By
averaging we may assume without loss of generality that there are at least % bad vertices
in X9 adjacent to vertices in Ag. Let B; denote By N X5 and let A; be the vertices of
Ap which have a neighbour in By. Then every vertex in A; and B; has a neighbour in
the other. By double counting we see that |Bi| < e(A1, B1) < k|A;| and so we know that

both A; and Bj contain at least % vertices.

For i =0, ..., k*>+1 we construct a collection of sets U; C X1, V; C X5 such that Uiv1 CU;
and Vi;1 C V;. We also select vertices u; € U; and edges e; € E(X3,X4) such that the

following properties are satisfied for all i = 0, ..., k? + 1.

All vertices in V11 are adjacent to both endpoints of e;41.
The vertex u; is adjacent to both endpoints of e;41.

Vil > & (2k%) 7% = 2k(2k2)%F .

Each vertex in U; has a neighbour in V;.

Each vertex in V; has a neighbour in Uj;.

Uil > 155 (262) 77 = 2(2k%) 2" 1,

Each vertex in U; U V; has degree at most k.

Before constructing these objects we show how they prove the lemma. Since |V;| >
2k(2k2)2k2_i we see that the set Vj2,; is non-empty. Any vertex in Vj2,, is adjacent to
both ends of all the edges ey, ...,ex2. As vertices in Vj2,, have at most £ neighbours it
must be that two of these edges are the same. If e, = e; for some s < t < k? then we
have that u; is adjacent to some vertex v in Vi. As v is in Vj it is adjacent to both ends

of es; and so forms a K4 along with u;. This gives our contradiction.

We begin constructing these objects by letting Uy = A; and Vy = By. This ensures that
property (vii) always holds. Given U; and V; satisfying the above properties we choose
any u; € U; and will find U; 41, Vi1, and e; satisfying the properties above. By saturation
for any vertex v in V; \ N(u;) there exists an edge e € F(X3, X4) such that both v and u;

are adjacent to both of the endpoints of e. Since u; has at most k neighbours there are
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fewer than k? such candidates for e and hence at least 75|V; \ N (u;)| vertices of Vi \ N (u;)
are adjacent to the endpoints of the same edge e € F (X3, X4). Let e;11 be this edge and
let Vi11 be the vertices of V; \ N(u;) that are adjacent to both ends of ;1. From this we
see that properties (i) and (ii) hold.

Using |V;| > %(Zk‘z)_i > 2k we then have

1 1
Vi1l 2@|W\N(Uz)| > E(WA — k)
1 K

/2/#“/1' ~ 12k( k)

This gives property (iii). We let U;+1 = U;NN(Vj4+1) which ensures (iv) and (v). Therefore
by double counting |Vit1| < e(Uit1, Vit1) < k|Uit1| and we see that |U;y1| > %"/:H_l‘ >

s (2k2)~ (41D giving (vi). O

With these lemmas we are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let G be a (K4, K4[n])-saturated graph.

We first make the following claim, the proof of which we postpone, about the minimum

degree conditions of the parts of G.

Claim 3.12. If G has at most 18n — 21 edges then G has precisely two parts of minimum

degree exactly 4 and two parts of minimum degree exactly 5.

From Lemma 3.10 we know that all degree 4 vertices in the two minimum degree 4 parts
have two neighbours in the other minimum degree 4 part. We can now assume we have
degree 4 vertices a; € X7 and a3 € X3. Let the neighbours of a; be x2, x3, mg and z4. We
see that all vertices in X3\ {z3, 24} (including a3) are adjacent to 2 and =4 and that xo
and x4 are adjacent. Let the other two neighbours of ag be x; and 2. Since any vertex
v in Xy \ z2 is not adjacent to aj, adding the edge ajv must create a Ky using v and a;.
Similarly, since any vertex v in Xo \ x3 is not adjacent to as, adding the edge azv must
create a K4 using v and ag. This implies that v is adjacent to x4 and that = is adjacent
to one of z1 or z} and also one of x3 or z§. Without loss of generality assume we have the
edges z}x4 and z4z4. Similar arguments with a vertex in X4 \ x4 show that all vertices

in X4 are adjacent to xo and also that we have the edges z1x2 and zox3.

We further see that by saturation every vertex of (X; U X3) \ {z1, 2}, z3, 24} is adjacent
to x2 and z4. This means there are no edges with both ends lying in (X; U X3) \
{z1,2), 23,25} All vertices in Xy \ 2 are adjacent to 2/, 2% and z4. All vertices of

X4 \ x4 are adjacent to z1, x3 and xa.
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We now have that all vertices in (XU X3)\ {x1, 2], x3, 25} are adjacent to x5 and z4. All
vertices in X3 \ o are adjacent to x’l, a:g and x4 whilst all vertices in X4 \ x4 are adjacent

to all of 1, 22 and x3.

The following claim, for which we again postpone the proof, gives us more conditions on

the neighbourhoods of various vertices.

Claim 3.13. All vertices in X1 \ {z1,2}} are adjacent to x3 and x%. All vertices in
X3\ {x3, 24} are adjacent to 1 and xy. All vertices in (Xo U Xy) \ {z2, 24} are adjacent

to at least 8 of {x1, ], x3,24}. Both 125 and xix3 are edges of G.

Under the assumption of Claim 3.13 we now see that all vertices in Xo \ x2 are adjacent
to ), x4, x4 and one of 1 or x3. Let A' denote the set of vertices in Xs \ x2 which
are adjacent to z; but not z3 and let A% denote the set of vertices in X5 \ z2 which are

adjacent to x3 but not x.

Similarly all vertices in X4 \ 4 are adjacent to x1, 3, x2 and one of x’l or a:g Let B!
denote the set of vertices in X4 \ x4 which are adjacent to a:'l but not mg and let B3 denote

the set of vertices in X4 \ x4 which are adjacent to a:g but not w&

Adding any edge between A' and B! (likewise between A3 and B?) cannot create a Ky
so by saturation the induced graphs on (A', B') and (A3, B3) are complete. Any edge
between Al and B3 would create a K, with zj2% whilst any edge between A3 and B!
would give a K, using x}x3 therefore the bipartite graphs on (A, B3) and (A3, B!) are
empty.

Hence we see that there are at least
5(2n —2— |AY| — |A3| - |BY - |B3|)
+A(|AY + 4% + [B'| + [ B%))
+|AY|BY + |A3||B3 |+ 4n — 4+ 1
edges with at least one end in Xo U X4. The +1 term comes from the edge xox4 and

the +4n — 4 term comes from the edges with one end in {x2,24} and the other end in

X1 U X3. Along with the 4n — 6 edges between X; and X3 this gives a total of at least
18n —21+ (|AY —1)(|B'| — 1) + (|4% — 1) (|1B*| - 1) (3.1)

edges. We argue that either A' or B! being non-empty implies the other is non-empty.

Suppose there were a vertex in A'. Then because it has degree at least 5 but is not

adjacent to x3 it has a neighbour v in Xy \ z4. This neighbour v cannot be adjacent to x%
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or we would have a K;. Therefore v € B'. Similarly for a vertex in B'. Likewise either

of A3 or B? being non-empty implies the other is also non-empty.

This now means we have at least 18n — 21 edges. Furthermore, since A U A3 = X5 \ z9
and B' U B® = X4 \ 24, equality in (3.1) is attained only if either |A'| = |[B3| = 1 or
|A3| = |B'| = 1. Letting 25 and z/, be the vertices in the sets of size 1 we have our

extremal construction.

It remains to prove Claims 3.12 and 3.13.

Proof of Claim 3.12. We use Lemma 3.11 applied with £ = 180. As in Lemma 3.11 we
refer to vertices of degree between 5 and k which are adjacent to another such vertex as

bad.

We now split our vertices into groups by their degrees and whether or not they are bad,

and then count edges of G by counting edges between these groups.

We label our groups as follows

Viad is the set of bad vertices.
A= {v:deg(v) > k+ 1}.
B :={v:5 < deg(v) <k} \ Vpaa.

C :={v: deg(v) = 4}.

We note that vertices in B U C' only have neighbours in A.
Now e(G) >e(B,A)+e(C,A) > 5|B|+4|C|. We also have e(G) > e(A,V(G)) > %|A|

If |A| > k +1 this gives at least 18n edges so we may assume |A| < ,‘:’%
Along with the fact that |Vpaa| < K = 24k%(2k2)) we see that | B| > 4n—|C|— gfﬁ
Since e(G) > 5|B| 4 4|C| we have at least 20n — |C| — 5K — %ﬁ?’f edges.

If we have at most one X; with minimum degree 4 we know |C| < n. This implies that G

has at least 19n — 5K — ﬁ?? edges. For k = 180 and large enough n this is at least 18n.

We can also rule out the possibility of there being a part with minimum degree greater
than 5. With Vp.q, A, and C defined as above let B®) := {v € B : deg(v) = 5}
and let BOH) := {y € B : deg(v) > 6}. We still have that |B| = |B®)| 4 |B6+)] >

dn —|C| — ,i’iq and |C| < 2n. If one part had minimum degree at least 6 that would
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imply that |[B®)| < n and so we would have

e(G) =6|B)| 45/ BO)| +4|C]
=6|B| — [B®)| +4|C|
>6(4n — |C] - K — %) — |B®)| + 4|C|
=24n — 2|C| — |B®)| — 6K — 2L6n

k1
216
>19n — 6K — 777
For k = 216 and n large enough this is more than 18n. o

Proof of Claim 3.13. We first consider a degree 5 vertex, ag, in X5 \ zo. We consider

separately the cases of whether as is adjacent to neither, one, or both of z; and x3.

Firstly we suppose the vertex as is not adjacent to either of 1 or 3. Adding the edge
asr1 must create a K4 using as, x1 and a vertex in Xy. Since x4 is not adjacent to x;
it must be the case that as has a neighbour mﬁl € X4 \ z4. If ay had no neighbours in
(X1 U X3) \ {2}, 25} there would have to be an edge from | to z§ but this would create
a K4. Assume, without loss of generality, that ag has a neighbour 2 € X \ {x1,2]}. By
considering vertices in X4 \ N(ag) we see that zf is adjacent to z7. This means we now

have a K4 on the vertices zf, ag, x4, 4.

If instead ag had exactly one neighbour from {x,z3} then by symmetry we may assume
it is adjacent to x1 but not x3. By saturation the addition of the edge asxs must create
a K4. Since z3 is not adjacent to x4 the vertex as must have a neighbour zy in Xy \ 4.
Now ag is adjacent to x1, ), 24, x4 and zj and because ag has degree 5 these are all of its
neighbours. As the only neighbour of as in X3 is 2% it must be the case that all vertices
in (X7 UXy)\ N(az) are adjacent to z5. We also see that if any vertex v in X3\ {z3, 23}
were not adjacent to 2 then, since adding the edge asv must create a K4, we must have
that v is adjacent to x; and xﬁl which would create a K4 on {xl,xg,v,xﬁl}. Therefore
every vertex in X3 \ {3, 24} is adjacent to z}. By considering vertices on X4\ N(ag) it
must also be the case that 2% is adjacent to z1. From the fact that x3 is not adjacent to
az we can see that z3 must be adjacent to f and that 2 is also adjacent to 2. Now
consider a degree 5 vertex, a4 in Xy \ {z4,2)}. We know that a4 is adjacent to =5 and we

split into the case of when a4 is adjacent to z) or not.

If a4 is not adjacent to x) then a4 has a neighbour x}, € Xo \ x2. We know that 2, is
adjacent to 2. In order to create a Ky if asz] were added it must be the case that ),

is adjacent to x3. As x1 is the only neighbour of a4 in X; is must be the case that all
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vertices in (XoUX3)\ N(aq) are adjacent to x1. Now all vertices in (X3UXy)\{xs, 25, 24}
are adjacent to both x; and zo which are themselves adjacent to each other. Therefore
there are no edges between X3 \ {z3, x4} and X4 \ z4. We also know that all vertices in
(X2UXy) \{z2, 2, x4, )} are adjacent to both ends of the edge x1z5. Hence there are no
edges between Xo \ {x2, 25} and X4\ {z4, 2} }. Since all vertices in (X7 UX2)\ {z1, 2,22}
are adjacent to x5 and x4 there are no edges between X; \ {z1,2}} and X5 \ z3. In
particular any vertex v in X \ {z1, ]} is not adjacent to z/, and by considering the Ky
created if a4v were added we see that v is adjacent to x3. Since v was arbitrary all vertices

in X; \ {z1,2]} are adjacent to x3. This proves the lemma for this case.

If instead a4 is adjacent to x) then as a4 is of degree 5 and is adjacent to x1, ], x2, z3,
and x4 these are all of its neighbours. Any vertex in X \ {x1,2}} is non-adjacent to a4
and so must be adjacent to both ends of some edge in N(a4). This edge must be zox3 and
so all vertices in X \ {z1,2]} are adjacent to x3. Similarly vertices in X3 \ {z3, x4} are
non-adjacent to as and so must be adjacent to z1. All vertices in X \ z2 are non-adjacent
to a4 and hence must be adjacent to an edge in N (a4) implying each vertex in X \ xo is

adjacent to at least one of x1 or xs.

Finally we consider the case where as is adjacent to both x7 and z3. We can assume
all degree 5 vertices in X4 are adjacent to both z} and x% or we would be in a situation
symmetric to the last case we considered. Let a4 be such a degree 5 vertex in X4. Since
all vertices in X \ {z1,2]} and X3\ {z3, 2%} are not adjacent to either as or a4 they
must be adjacent to both ends of an edge in N(a2) and both ends of an edge in N(a4).
This implies that vertices in X; \ {x1,2]} are adjacent to x3 and z and that vertices
in X3\ {x3,25} are adjacent to z; and . Similarly we see that vertices in Xy \ z4 are
non-adjacent to as and hence must be adjacent to an edge in N(az). Therefore all vertices
in Xy \ 24 are adjacent to one of 2 or 4. Similarly all vertices in Xy \ z2 are adjacent
to one of x1 or x3. This also shows that at least one of the edges xlwg or zjx3 exists. If
one of them is not present, say z125 ¢ E(G) then by saturation there is some adjacent
pair by € Xo \ x2, by € X4\ x4 which are both adjacent to z; and z§. We also know,
however, that by and by are both adjacent to z} and x3 but this gives a K4 on &, ba, x3, by.

Therefore both x4 and 2} z3 exist. o

This completes the proof. O
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3.3 Saturation numbers of paths and stars

We begin this section by determining the partite-saturation numbers of stars on at least

three vertices.

Lemma 3.14. For anyr > 2, n € N and any connected graph H which contains a vertex

v such that H \ v has r components we have sat,(H, H[n]) > (r — 1)n?.

Theorem 3.2 For any r > 2 and n € N all (K ,, K1 »[n])-partite-saturated graphs have
exactly (r — 1)n? edges.

We show how Theorem 3.2 follows from Lemma 3.14 before proving Lemma 3.14 itself.

Proof of Theorem 3.2. The star K;, has a vertex v such that K, \ v has r connected
components and hence sat, (K1 ., K1.[n]) > (r — 1)n?. For any (Ki,, K1 ,[n])-partite-
saturated graph G any vertex in the part corresponding to the centre of the star must
have degree at most (r — 1)n or by the pigeonhole principle it would have a neighbour
in each remaining part giving a partite copy of Kj,. This maximum degree condition

implies at most (r — 1)n? edges. O

Proof of Lemma 3.14. Let v; be the cut-vertex of H and let v, ...,v,41 be neighbours
of v; which are in distinct components of H \ {v;}. Let X; denote the part of H|[n]
corresponding to v; and let H; denote the component of v; in H \ {v1}. Consider an
(H, H[n])-partite-saturated graph G and an arbitrary vertex z; € X;. If z; has fewer
than (r — 1)n neighbours then there are two parts, say Xs and X3, such that each has a
vertex non-adjacent to xj. Call these vertices x2 and z3. Since G is saturated adding the
edge x1x9 must create a copy of H using 1 and hence there must be a copy of H\ Hy in G
using x1. Similarly adding the edge z1z3 must create a copy of H implying the existence
of a copy of H \ Hs at ;. The union of these two subgraphs contains a partite copy
of H which contradicts G being H-free. Hence each vertex in X; has at least (r — 1)n
neighbours and so G has at least (r — 1)n? edges. O

We now determine the partite-saturation numbers of paths on at least 4 vertices.

Theorem 3.3 For any r > 4 and n > 2r we have the following.

(5 —1)n*+ (r —2)n+3 —r, for r even
satp (P, Pr[n]) = (3.2)

(%_%)n2+(r—4)n+5—r, for r odd
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Proof. Let X1,..., X, be the parts of P.[n] with X; adjacent to X;;; for each i.

We first give an upper bound construction. Given subsets A; C X; define the graph G
on |J; X; to be the graph with precisely the edges that lie in (A;, Aj11) or (X;\ A, Xit1)
for some ¢ < r — 1. For the upper bound if r is even consider the graph G created as

above with Ay := Xy, A, := 0, |A;] = 1 for all even i < r — 2 and |4;| = n — 1 for all

odd 3 < i < r—1. If r is odd consider the construction G given as above but with the
A; satisfying Ay = X1, A, =0, |[A,—1] =n—1, |[A;] =1 for all even i < r — 3 and
|Ail =n—1forallodd 3<i<r—2.

Figure 3.2: Ps-Partite-Saturation Construction

For the lower bound we assume that for some r > 4 and some n > 2r equation (3.2)
does not hold. Then consider the least such r and some n > 2r for which (3.2) fails.
In particular by this minimality and Theorem 3.2 (which gives the partite-saturation of

K2 = P3) we see that
satp(Pr—1, Pr—1[n]) > (% - l)n2 ) (3.3)

Now consider a (P, P,[n])-partite-saturated graph G on X;U---UX,. Let N2 denote the
set of vertices in X9 which are adjacent to at least one vertex of X;. For each i > 3 let N;
denote the set of vertices of X; which are adjacent to at least one vertex of V;_1. Since
there can be no partite path on r vertices it must be the case that N, = 0. If N,_1 =0
then (X,_1,X,) must be complete in G as adding an edge to this pair cannot create a
partite copy of P,.. If (X,_1,X,) is complete then X; U--- U X,_1 is (Pr—1, Pr—1[n])-
partite-saturated so by (3.3) there are at least T;21n2 edges in GG. This is at least as many
as required. Therefore we may assume N; # () for all 2 < ¢ < r — 1. If N; = X; for some
i > 2 then the pairs (X, X;11) are complete for all 1 < j <i—1. Then X; U---UX,
is (Pr—it1, Pr—it1[n])-partite-saturated so by (3.3) there are at least (“5*)n? edges in G.
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This is at least as many as required. We now assume N; # X; for all 2 < i < r so for
alli =2,...,7 —1 we have 1 < |N;| < n — 1. For each i > 2 let N; denote X; \ N;. We
observe that (X1, N1) and (N,_1, X,-) must be complete. As are (N;, N;y1) and (N, X;41)
for 2 < i < r — 2 because adding edges to either of these pairs cannot create a partite
copy of P.. Therefore we find that G has all possible edges except those in pairs (X7, No)
or (N;, Ni41) for 2<i <r—1and so e(G) is at least

r—1 r—1 r—2
(r=1)n* =n[No| = > INi|[Ni1| = (r =2)n® +n[No| =1 Y [Ni| + Y [Ni[| Niga|. (3.4)
=2 =2 =2

Suppose Na, ..., N._1 have been chosen to minimise the above expression under the as-
sumption that each |V;| is between 1 and n — 1. The contribution to (3.4) from terms
that include Ny is exactly |Na||N3| which (regardless of the value of |N3|) is minimised
by taking |No| = 1. For 3 < i < r — 2 the contribution to (3.4) from terms that include
N; is

INil(INi—1] + [Nis1| = n) .

When |N;_1| = 1 the above expression is at most zero and so minimised by taking
|N;| =n—1. If |N;_1| = n — 1 it is at least zero and so minimised by taking |N;| = 1. In

this way using |Na| = 1 we can see that for 2 < ¢ < r — 2 we have the following.

1, for i even
| Ni| =
n — 1, for i odd
The contribution to (3.4) from the N,_; terms is |N,_1|(|Ny—2| — n) which is always
negative and so the expression is minimised when |N,_;| = n — 1. The graph given with
the N; taking these sizes is the same as our upper bound construction completing the

proof. O

3.4 2-connectivity and the growth of saturation numbers

Recall that a graph is 2-connected if after the removal of any single vertex it is still
connected. Observe that if H' can be obtained from H by adding or removing isolated

vertices then sat,(H, H[n]) = sat,(H', H'[n]). It is also clear that sat, (K2, Ka[n]) = 0.

Theorem 3.4 For any graph H with e(H) > 2 and no isolated vertices, if H is 2-
connected then sat,(H, H[n|) = ©(n) and if H is not 2-connected then sat,(H, H[n]) =
O(n?).
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Proof. If H is connected but not 2-connected then there must be a cut vertex, v, of H such

that H \v has at least two components. Then by Lemma 3.14 we have sat,(H, H[n]) > n?.

We now consider the case when H is disconnected but has no isolated vertices. Let H;
and Hy be two connected components of H. If G C H|[n| is (H, H[n|)-partite-saturated
then by saturation the induced graph of G onto at least one of Hj[n| or Ha[n] must be

complete. Since each H; contains an edge this means G has at least n? edges.

Finally we consider the case when H is 2-connected. The fact that sat,(H, H[n]) = Q(n)
comes from the fact that in an (H, H[n])-saturated graph G every vertex, x, has degree
at least one. If not adding an edge incident to z would not create a copy of H since H

has minimum degree at least two by 2-connectivity.

We now give an upper bound construction. For each edge ij of H we define H;; to be the
graph obtained from H be removing all edges incident to ¢ or j including the edge ij. We
define V;(H;j) to be the vertices of H;; \ {4, j} which were incident to ¢ in H. Similarly
V;i(H;j). For n > e(H) we let G; C H[n] be the disjoint union of a copy of H;; for each
edge ij of H. Create G from G by adjoining each vertex of V;(H;;) (in the copy of H;;
in G1) to every vertex in X; \ V(G1), and by adjoining each vertex of V;(H;;) to every
vertex in X; \ V(G1) for each edge ij of H. We then create G5 from G by arbitrarily
adding edges until the graph is (H, H[n])-partite-saturated.

We claim that G is (H, H[n])-partite-saturated and has at most 2e(H)?n — e(H)? edges.
To prove this it is sufficient to show that G2 has no partite copy of H and that G3 has
at most 2e(H)?n — e(H)3 edges. We first note that there are no edges of Gy or G3 with
both end points in V(G3) \ V(G1) since any such edge z;z; would form a copy of H with
the H;;. We can then bound the number of edges of G3 by E(H[n]) — E(H[n—e(H)]) =
n2e(H) — (n —e(H))?e(H) = 2¢(H)*n — e(H)3.

Suppose now for contradiction that GGo has a partite copy of H. Denote the vertices of
this copy of H by x; for i = 1,...,|H|. Since Gy is H-free at least one of the z;’s lies
in V(G2) \ V(G1). Suppose without loss of generality that 1 ¢ V(G1). Let xzo be a
neighbour of x1 in the partite copy of H. Since there are no edges with both end points
in V(G2) \ V(G1) it must be the case that o € V(G1). Since z1z2 is an edge of Gy it
must be the case that xo € V1 (H1;) for some i adjacent to 1 in H. Suppose x2 € V1 (Hi3).
Then similarly x5 € Vi(Hyy) for some k # 3. Therefore o and z3 are in different H;;’s

and hence different connected components of G;. Our copy of H is separated by following
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the set

{z; : z; ¢ V(G1) and z; is adjacent to a vertex in Hjs}.

Since H is 2-connected this set must contain at least two vertices, one of which is x7.
The only z;’s that vertices in Hi3 can be adjacent to outside of Hys are x1 and x3 but

x3 € V(G1) which gives a contradiction. O

3.5 Over-saturation numbers

In this section we determine the partite-over-saturation numbers of cliques and trees,
and show that of graphs on r vertices the cliques have the largest partite-over-saturation

numbers.

Since it follows from the proof of sat(K3, K3[n]) = 6n —6 in [41] that exsat, (K3, K3[n]) =
6n — 6 we look only at cliques on at least 4 vertices. The proof of the following Theorem

uses ideas from [41].

Theorem 3.5 For any integer r > 4 and all large enough n € N we have
exsat, (K, Ky [n]) = (2n — 1) <;> .

Proof. For the upper bound consider the graph G consisting of a copy of K, with each
vertex of this clique adjacent to all vertices in adjacent parts of K,[n]. For the lower

bound consider a (K, K,[n])-partite-over-saturated graph G on X; U---U X,.

Foralli=1,...,r let §; := min{deg(z) : x € X;}. Since for any ¢ we have e(G) > J;n we
must have §; < 72 or G would have more than (2n — 1)(9 edges. By the fact that any
vertex which is not adjacent to some part must be incident to all vertices in the other

parts we see that §; > r — 1 for all 4.

Claim 3.15. All vertices of degree r — 1 are in a K.

Proof. If v € X7 is a vertex of degree r — 1 it must have a neighbour in each adjacent
part. Denote these by z; € X; for i = 2,...,7. For any ys € Xo \ z2 adding the edge vyo
must create a new K. This new clique must be on {v, y2, z3, x4, ...,  } SO X3, ..., T, mMust
all be pairwise adjacent. Similarly for any y3 € X3\ z3 adding the edge vys must create a
new K, (which must be {v,x9,ys, x4, x5,...,2,}) SO T2, T4, X5, ..., T, must all be pairwise

adjacent. This gives a K, on v, 22,23, ..., Tp. o
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Let x; be a vertex of degree d; for each i. For each i let Y :=J; (N(z;) N X;) and let
Y :=U,Y: =, N(x;). Observe that Y| < r3.

Claim 3.16. For all i # j, each vertex in X; \'Y; has a neighbour in Y.
Proof. Given some i # j and a vertex v € X; \ ' Y; consider any k € {1,...,7}\ {4,j}. Aswv
is not in Y; it must be that v is not adjacent to x;. Therefore, by saturation, adding vy

creates a new K. This K, must use a neighbour of x;, in X; and hence this neighbour is

both in Y and also adjacent to v. o

We can now lower bound the edges of G by
e(G)ze(Y, X\Y)+e(X\Y)

> % ((aento 1) + 3(aee. X\ )

veX\Y

> D IXAY|(r =14 (6~ (r = 1))

= 30— DX\ Y[+ YK\ Vs

n<r<r_1>+;5ij_;TS(T_H;@)
n<r(r—1)+;5¢> — 0
(2n—1)<;> +§nzi:((5i—(r—1)) + (g) —5.

The third inequality comes from the minimum degree condition. The first equality uses

IX\Y|=7Y,|X;\ Y| The fourth inequality uses |Y'| < r3 whilst the fifth uses &; < r2.

(3.5)

WV
N —

WV

DO

By equation (3.5) for n > 2r% we have §; = r — 1 for all i. Each of the x;’s has one
neighbour in each adjacent part and is in a copy of K,. We see that by saturation for a
vertex v of degree r — 1 every vertex w in a different part from v which is not adjacent to
v is incident to all neighbours of v outside of the part of w. Therefore vertices of degree
r — 1 are not adjacent. We also see that for any i # j the vertices x; and x; have r — 2
common neighbours and so with the sets Y; and Y as before we find that |Y;| = 1 for all

i,s0 |Y|=r.
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Using (3.5) we get

e(G) =e(Y, X \Y) +e(X\Y)+e(Y)
>l -nx\v|+3 Z X\ Y6 + e(Y)

2

>2(n—1) (;) +e(Y).
Since there is a K, on Y we have e(Y) = (5) and the result follows. O

The upper bound construction can be generalised to any H by letting G consist of a copy
of H with each vertex of this H adjacent to all vertices in adjacent parts of H[n|. This

gives an upper bound of
exsat,(H, H[n]) < (2n —1)e(H).

In particular this shows that over graphs H on r vertices the cliques give rise to the largest
value of exsat,(H, H|[n|) and also that all partite-over-saturation numbers of graphs with

at least two edges are linear.

Next we determine the partite-over-saturation number of trees.

Theorem 3.6 For any tree T on at least 3 vertices and any natural number n > 4 we

have exsat, (T, T[n]) = (|T'| — 1)n.

Proof. For an upper bound construction let G be the union of n disjoint partite copies of

T.

Turning our attention to the lower bound we let L denote the set of leaves of T and call

the vertices in C' = V(T') \ L core vertices.

Now suppose G is a (T, T[n])-partite-over-saturated graph with n > 4. Let x be a vertex
of G lying in a part associated to a core vertex v € C'. In G the vertex x must either have
a neighbour in each adjacent part of T'[n] or it must be that degq(x) > n(degy(v) — 1) >
2 degy(v). This is because if = had no neighbour in some adjacent part it must be adjacent
to all vertices in the other adjacent parts. Since degp(v) > 2 and n > 4 this means x
has at least 2degs(v) neighbours. We let L[n| and C|[n| denote the set of vertices in T'[n]

that lie in parts corresponding to L and C respectively.
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We have

e(G) = Y (3dega(z,Cln]) + degg(x, L[n)))
zeCln]

:% Z (degg(x) + degg(x, Lln))) .
z€Cln]

(3.6)

Let z € C[n] be a vertex associated in the part associated to a vertex v € C. If = is

adjacent to a vertex in each adjacent part then
degg(z) + degg(x, L[n]) > degr(v) 4 degr(v, L)
otherwise we also obtain
degg(z) + degg(x, Ln]) > degg(x) > 2degy(v) > degr(v) 4 degp(v, L) .

Using these and (3.6), we see that

n

e(G) 2 5 Z (degy(v) + degy(v, L))
vel

=n-e(T)=n(|T|-1)

completing the proof. O

3.6 Concluding remarks

It would be very nice to be able to determine the value of sat(K,., K,[n]) for r > 5. Exact
answers here would probably be very difficult though it may be possible to determine up
to an error term of o(n) or even O(1). It would be helpful to be able to determine the

following value in order to make progress on this problem.

For integers r > s > 3 let m(r,s) denote the fewest vertices an r-partite graph G can

have such that G is K-free but every set of s — 1 parts contains a K,_1.

We can use m(r,r — 1) and m(r — 1,7 — 1) to get upper and lower bounds respectively on

sat(K,, K.[n]).

For the upper bound let F' C K,[n| be a K,_1-free graph on m(r,r — 1) vertices such
that any r — 2 parts contain a K,_s. Create a (K, K;[n])-saturated graph G C K,[n] by
attaching all vertices of F' to all vertices outside of F' which lie in a different part. Then
if necessary add edges between vertices of F' until the graph is (K, K,[n])-saturated.
This implies that sat(K,, K.[n]) is less than m(r,r — 1) - (r — 1)n. Using the fact that

65



Chapter 3. Partite saturation problems

m(4,3) = 6 this shows that sat(Ky, K4[n]) < 18n which we know from Theorem 3.1 to be

close to the correct answer.

For the lower bound we prove a minimum degree condition in all (K, K,[n])-saturated
graphs. If G is a (K,, K,[n])-saturated graph note that any vertex in G is either adja-
cent to all vertices in one part of K, [n] or its neighbourhood induces an (r — 1)-partite
graph which is K,_i-free but where there is a K, o on any r — 2 parts. Therefore,
for n > m(r — 1,7 — 1) we have 6(G) > m(r — 1,r — 1) and hence sat(K,, K,[n]) >
m(r — 1,7 — 1) - rn/2. When r = 4 this gives the minimum degree condition of

5(G) = m(3,3) = 4.
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Size-Ramsey numbers of powers of

paths

4.1 Introduction

Given graphs G and H and a positive integer ¢ we say that G is g-Ramsey for H, denoted
G — (H)q, if every g-colouring of the edges of G contains a monochromatic copy of H.
When ¢ = 2, we simply write G — H. In its simplest form, the classical theorem of
Ramsey [75] states that for any H there exists an integer N such that Ky — H. The
Ramsey number R(H) of a graph H is defined to be the smallest such N. Ramsey
problems have been well studied and many beautiful techniques have been developed
to estimate Ramsey numbers. The survey by Conlon, Fox and Sudakov [24] provides a

detailed summary of developments in the area.

A number of variants of the classical Ramsey problem have also been introduced and are
under active study (the survey [24] also provides a good introduction to these related prob-
lems). In particular, Erdds, Faudree, Rousseau and Schelp [35] proposed the problem of
determining the smallest number of edges in a graph G such that G — H. More precisely,
we define the size-Ramsey number 7(H) of a graph H as #(H) = min{|E(G)|: G — H}.
Here, we are interested in problems involving estimating 7(H ).

For any graph H we have the obvious bound 7(H) < (R(zH )). A result due to Chvatal

(see, e.g., [35]) implies that this is the right value for the size-Ramsey number of complete
c A R(Kn

graphs, i.e., 7(K,) = ( (2 )).

Considering the path P, on n vertices, Erdds [34] asked the following question.
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Question 4.1. Is it true that

r(P, r(P,
lim P(Pn) =00 and lim P(Pn)
n—oo N n—oo N

=07

Using a probabilistic construction, Beck [11] proved that the size-Ramsey number of paths
is linear, i.e., 7#(P,) = O(n). Alon and Chung [7] provided an explicit construction of a
graph G with O(n) edges such that G — P,. Recently, Dudek and Pralat [31] gave
a simple alternative proof for this result (see also [66]). More generally, Friedman and
Pippenger [45] proved that the size-Ramsey number of bounded degree trees is linear (see

also [28, 49, 58]) and it is shown in [50] that cycles also have linear size-Ramsey numbers.

Answering a question posed by Beck [12] (negatively), who asked whether #(G) is linear
for all graphs G with bounded maximum degree, R6dl and Szemerédi showed that there
exists a graph H with n vertices and maximum degree 3 such that #(H) = Q(nlog!/%" n).
The current best upper bound for bounded degree graphs is proved in [63], where it is
shown that, for every A, there is a constant ¢ such that for any graph H with n vertices

and maximum degree A we have
FH) < en® Y2 10g /A n,

For further results on size-Ramsey numbers the reader is referred to [13, 61, 76].

Given a graph H on n vertices and an integer k > 2, the kth power H* of H is the graph
with vertex set V(H) and all edges {u,v} such that the distance between u and v in H
is at most k. Answering a question of Conlon [22] we prove that all powers of paths have

linear size-Ramsey numbers. The following theorem is our main result.
Theorem 4.1. For any integer k > 2,
#(PF) = O(n). (4.2)
Since C*¥ C P?* the following corollary follows directly from Theorem 4.1.
Corollary 1. For any integer k > 2,

#(CF) = O(n). (4.3)

4.2 Proof of Theorem 4.1

To prove Theorem 4.1, we have to show that there is a graph G with O(n) edges such
that G — P*. The first result we need guarantees the existence of a bounded degree

graph with two useful properties.
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Lemma 4.2. For every integer k = 1 and every € > 0 there exists ag such that the
following holds. For any a > ag there is a constant b such that, for any large enough n,

there is a graph H with v(H) = an and A(H) < b with the following two properties.

. For every pair of disjoint sets S, T C V(H) with |S|,|T| = en, we have |Eg(S,T)| > 1.

. For any family of pairwise disjoint sets Ay, ..., Axr1 C V(H) of size at least can each,
there is a path P, = (z1,...,2y) in H with x; € A; for all i, where j =i (mod k+ 1).

Proof. Fix k> 1 and € > 0. Let

4

=2 4.4
WEET ) 44)

and suppose a = ag is given. Let

4a
= — 4-5
= (45)
and

b = 4dac. (4.6)

Let n be sufficiently large and G = G(2an, p) be the binomial random graph with p = ¢/n.
By Chernoff’s inequality, with high probability we have |E(G)| < (4a%c)n. Moreover, with
high probability G satisfies Property 1 (with H = G) by the following reason: Let X be
the number of pairs of disjoint subsets of V(G) of size en with no edges between them.
Then, recalling (4.5), we have
2an\ 2 c (en)? 2
E[X] < < ) (1 - E) < glan  g=esn _ (1),

En

By Markov’s inequality the probability that there exists such a pair of sets with no edges

between also tends to zero. Thus, we can fix a graph G satisfying these properties.

Now let H be a subgraph of G obtained by iteratively removing a vertex of maximum
degree until exactly an vertices remain. Then A(H) < b, as otherwise we would have
deleted more than b-an > |E(G)| edges from G during the iteration, which, in view
of (4.6), is a contradiction. Moreover, as H is an induced subgraph of G, Property 1 is

maintained.

It remains to prove that H also satisfies Property 2. To do so, we analyse a depth first
search algorithm, adapting a proof idea in [13, Lemma 4.4]. The algorithm receives as
input a graph H with v(H) = an satisfying Property 1 and a family of pairwise disjoint
sets Ai,..., Agr1 C V(H) with |A;| > ean for all i. The output is a path P, = (z1,...,zy)
in H with z; € A; for all ¢, where j =i (mod k + 1).

69



Chapter 4. Size-Ramsey numbers of powers of paths

As it runs, the algorithm builds a path P = (z1,...,,) with 2; € A; for all ¢ and j with
j =i (mod k + 1). Furthermore, it maintains sets U; and D; C A; for all j, with the
property that U;, D;, and V(P) N A; form a partition of A; for every j. The sets U;
decrease as the algorithm runs, while the D; increase. At each step if the path is currently
P = (x1,...,z,) we look to see if the path can be extended by adding a vertex u € U, 41
that is adjacent to x,. If such a u exists we call it z,+1 extending the path. We also remove
u (now called z,41) from U,41. We then repeat the procedure with P = (z1,...,Zr41).
If, on the other hand, no such u € U, is adjacent to x, we consider x, to be a dead end
and remove it from the path adding it to D,. We then repeat the procedure for the path
P = (z1,...,x,_1). If at any stage the path is empty we simply choose a vertex from U;

to be the new start of the path.

If at any point the path consists of n vertices, we stop having achieved our aim. We also
artificially stop the algorithm if at any time there is an i such that |D;| > en. We will
show that in a graph with Property 1 this does not happen without the path having first
had at least n vertices. Of course the algorithm will also stop if both the path and U;
are empty. This however would have meant |D;| = |A1| = en and so the algorithm would

have already been stopped.

A useful observation is that there can never be any edges between D; and U;,1 for any ¢
otherwise the path would have been extended along such an edge and the endpoint in A;

would not have been added to D;.

Now suppose that (for the first time in the process) there is some i such that |D;| > en.
Note that since there are no edges between D; and U;y; we must have |U;11| < en by
Property 1. We also know that D;11 < en as D; was the first ‘dead end set’ to reach en
vertices. Therefore we see that

4

|[V(P) N Ajy1| > |Aig1 — 2en| > (a — 2)en > mn

Since the path wraps around the sets Aj, ..., Ax41 it intersects each set almost as often.
In particular we see that |V(P)| > (k + 1)(%+1n — 1) which is greater than n when n is

large compared to k. O

Remark 4.7. We remark that, in the proof above, we in fact proved that graphs that
satisfy 1 also satisfy 2.

The following definition plays an important role in our proof.

Definition 4.3 (Complete blow-up of H*). Given a graph H and positive integers ¢ and
k, we denote by HF the graph obtained by replacing each vertex v of the kth power H*
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of H by a complete graph with R(K}) vertices, the cluster C(v), and by adding, for every
{u,v} € E(H%), all the edges between C(u) and C(v).

The simple fact stated below says that complete blow-ups of powers of bounded degree

graphs have a linear number of edges.

Fact 4.4. Let k, t, a and b be positive constants. If H is a graph with |V (H)| = an and
A(H) < b, then |E(HF)| = O(n).

Proof. Since A(H) < b, we have |[E(H¥)| = O(n). Therefore, |[E(HF)| < R(K;)? -
|E(H")| + R(K;)?*an = O(n). O

We shall also make use of the following result in our proof.

Theorem 4.5 (Pokrovskiy [73, Theorem 1.7]). Let k > 1. Suppose that the edges of K,
are coloured with red and blue. Then K, can be covered by k vertex-disjoint blue paths

and a vertez-disjoint red balanced complete (k + 1)-partite graph.

The proof of Theorem 4.5 is rather complex. We remark that we do not need the full
strength of that result, in the sense that we do not need the complete (k 4 1)-partite
graph to be balanced; it suffices for us to know that the vertex classes are of comparable
cardinality. Such a result can be derived easily by iterating Lemma 1.5 in [73], for which

Pokrovskiy gives a short and elegant proof (see also [72, Lemma 1.10]).

We shall also use the classical K6évari-Sés-Turan theorem [65], in the following simple

form.

Theorem 4.6. Let G be a balanced bipartite graph with t vertices in each vertex class.

If G contains no K s, then G has at most 41215 edges.

To prove Theorem 4.1, we fix a graph H as in Lemma 4.2 and consider its kth power H¥,
We then consider, for a suitably large integer ¢, the complete blow-up Hf (see Defini-
tion 4.3). We then show that

HF — P, (4.8)

Let us give a brief outline of the proof of (4.8). Suppose the edges of H} have been
coloured red and blue by a colouring x. Recall that H} is obtained by blowing up H*;
in particular, the vertices v of H* become large complete graphs C(v). By the choice of
parameters, Ramsey’s theorem tells us that each such C(v) contains a monochromatic K.

We suppose, without loss of generality, that at least half of the C'(v) contain a blue K
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and let F' be the subgraph of H induced by the corresponding vertices v. So, in particular,
|[F| > 5|H|.

We shall define an auxiliary edge-colouring x’ of F* and then we shall show that F¥ — P,.
If we find a blue P, in F* with the colouring y/, then we shall be able to find a blue P,’f
in Hf . On the other hand, if no such blue path P, exists in F*, then we shall be able to
find a red P, in F C H (not in F*), with certain additional properties. More precisely,
such a red P, C F' C H will be found as in 2 in Lemma 4.2, with the sets A; being the
vertex classes of a red (k+1)-partite subgraph of F* as given by Theorem 4.5, applied to a
suitable red/blue coloured complete graph (we complete F* with its auxiliary colouring x’
to a red/blue coloured complete graph by considering non-edges of F* red). It will then
be easy to find a red P¥ in Hf.

Proof of Theorem 4.1. Fix k > 1 and let ¢ = 1/3(k + 1). Let ag be the constant given by
an application of Lemma 4.2 with parameters k and €. Set a = max{6k,ap} and let b be
given by Lemma 4.2 for this choice of a. Moreover, let H be a graph with |V (H)| = an
and A(H) < b be as in Lemma 4.2. Finally, put t = (64k)? and s = 2k.

Let HF be a complete blow-up of H¥, as in Definition 4.3, and let x : E(H}) — {red, blue}
be an edge-colouring of HF. We shall show that H} contains a monochromatic copy of P*
under x. By the definition of HF, any cluster C'(v) contains a monochromatic copy B(v)
of K;. Without loss of generality, the set W := {v € V(H) : B(v) is blue} has cardinality
at least v(H)/2. Let F := H[W] be the subgraph of H induced by W, and let F’ be the
subgraph of FF C Hf induced by U, e V(B(w)).

Given the above colouring , we define a colouring x’ of F* as follows. An edge {u,v} €
E(F%) is coloured blue if the bipartite subgraph F'[V(B(u)),V(B(v))] of F’ naturally
induced by the sets V(B(u)) and V(B(v)) contains a blue Ky, Otherwise {u,v} is

coloured red.

Claim 4.7. Any 2-colouring of E(F*) has either a blue P, or a red PF.

Proof. We apply Theorem 4.5 to F*, where if an edge is not present in F¥. then we
consider it to be in the red colour class. If F¥ contains a blue copy of P,, then we are
done. Hence we may assume F* contains a balanced, complete (k 4 1)-partite graph K
with parts Ay, ..., Agyq on at least v(F*) — kn > an/2 — kn vertices, with no blue edges

between any two parts. As a > 6k, each one of these parts has size at least

—k)n > ean. (4.9)
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By Property 2 of Lemma 4.2 applied to the collection of sets of vertices Aj,..., Axrq of
F C H (specifically F and not F*), we see that F[V(K)] contains a path with n vertices
such that any consecutive k + 1 vertices are in distinct parts of K. Therefore F¥[V (K)]
contains a copy of P¥ in which every pair of adjacent vertices are in distinct parts of K.

By definition of K, such a copy is red. O

By Claim 4.7, F* contains a blue copy of P, or a red copy of P* under the edge-colouring

X'. Thus, we can split our proof into these two cases.

(Case 1) First suppose F* contains a blue copy (x1,...,2,) of P,. Then, for every
1 < i < n—1, the bipartite graph F'[V(B(z;)), V(B(z+1))] contains a blue copy of K s,
with, say, vertex classes X; C V(B(z;)) and Y11 C V(B(xi41)). As | Xi| = |Yi| = s =2k
for all 2 <7 < n—1, we can find sets X/ C X; and Y/ C Y] such that | X]| = |Y/| = k and
XInY/=0forall2<j<n—1 Let X] =X; and Y, =Y.

We now show that the set U := U?;ll X! UL, Y/ provides us with a blue copy of Pfkn
in F/ C HF. Note first that |U| = 2k + 2k(n — 2) + 2k = 2kn. Let uy, ..., us, be an
ordering of U such that, for each i, every vertex in X; comes before any vertex in Y},
and after every vertex in Y/. By the definition of the sets X/ and Y/ and the construction
of F' C FF C Hf, each vertex u; is adjacent in blue to {uy € U : 1 < |j —j'| < k}. Thus,

U contains a blue copy of ank, as claimed.

(Case 2) Now suppose F* contains a red copy P of P¥. That is, F* contains a set of
vertices {z1,...,2,} such that x; is adjacent in red to all z; with 1 < [j —i| < k. We
shall show that, for each 1 < i < n, we can pick a vertex y; € V(B(z;)) so that y1,...,yn
define a red copy of P¥ in F' C FF C HF. This can be done greedily, by picking the y;
one by one in order. We can also do this by applying the local lemma [37, p. 616]. We

show the latter argument.

We have to show that it is possible to pick the y; (1 <@ < n) in such a way that {y;,y;}
is a red edge in F” for every ¢ and j with 1 < |i — j| < k. Let us choose y; € V(B(x;))
(I € i < n) uniformly and independently at random. Let e = {z;,z;} be an edge
in P C F*¥. We know that e is red. Let A, be the event that {y;,y;} is a blue edge in F’.
Since the edge e is red, we know that the bipartite graph F'[V (B(z;)), V(B(z;))] contains
no blue K. Theorem 4.6 then tells us that P[A.] < 4t=1/s,

The events A, are not independent, but we can define a dependency graph D for the

collection of events A, (e € E(P)) by adding an edge between A, and Ay if and only
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if en f # (. Then A(D) < 4k. Given that
AAP[A,) < 64kt~ =1 (4.10)

for all e, the local lemma tells us that ]P[ Nec E(P) /_1@] > (0, and hence a simultaneous choice

of the y; (1 < i < n) as required is possible. This completes the proof of Theorem 4.1. [
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Independent sets, matchings and

occupancy fractions

5.1 Independent sets

Let G be a d-regular graph on n vertices. The independence polynomial of G is
NEDIPU
IeT
where 7 is the set of all independent sets of G. Note that by convention we consider the
empty independent set to be a member of Z. The hard-core model with fugacity A on G
is a random independent set I drawn according to the distribution
A

Pa(N)

P[] =

Pg(A) is also called the partition function of the hard-core model on G.

In the hard-core model, the quantity a(G) = %%8; is the occupancy fraction: the ex-

pected fraction of vertices of G belonging to the random independent set I. In particular,

| /
a(G) = ~E[|1]] = ;P izf;ég'; _ jﬁ;;c*—(%) | (5.1)

Note that «(G) does not denote the independence number of G.

We write K4 for the complete bipartite graph with d vertices in each part. If 2d divides
n, let Hq, denote the d-regular, n-vertex graph that is the disjoint union of n/(2d) copies
of K44. Kahn [56] showed that H,, maximises the total number of independent sets over
all d-regular, n-vertex bipartite graphs. Galvin and Tetali [47] gave a broad generalisation

of Kahn’s result to counting homomorphisms from a d-regular, bipartite G to any graph
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H. The case of H formed of two connected vertices, one with a self-loop, is that of
counting independent sets. Via a modification of H and a limiting argument, they proved
that in fact Pg(A\)'/" is maximised for any A over d-regular bipartite G' by Kg4. Zhao
[87] then removed the bipartite restriction in Galvin and Tetali’s result for independent
sets by reducing the general case to the bipartite case, in particular proving that Hy, has

the largest number of independent sets of any d-regular graph on n vertices.

Here we prove a strengthening of the above results for independent sets.

Theorem 5.1. For all d-reqular graphs G and all A > 0, we have

A1+ )4t

a(G) < a(Kgq) = 20+ N7—1°

The mazimum is achieved only by disjoint unions of K4q4’s. That is, the quantity %11328)

Ny

is uniquely maximised by Hg .
Corollary 2. For any d-regular graph G and any A > 0

Pa(W)Y(@) pKM()\)l/v(Kd,d)_

In particular Theorem 5.1 states that the derivative of log Pg(A)/n is maximised over

d-regular graphs for all A by Ky 4. We next show how integrating this proves Corollary 2.

Proof of Corollary 2. Suppose G is a d-regular graph and A > 0. Noting that «(G) =

APL (A
v(lG) PGG(()\)) = U(AG)% log(Pg(X)) we see that

The inequality comes from Theorem 5.1 and Corollary 2 then follows by exponentiating

both sides. n

In particular by choosing A = 1 this shows that when 2d divides into n the n vertex
d-regular graph with the most independent sets is Hg,. (Note that PKd’d()\)l/”(Kdﬁd) =
Py, (,\)1/v(Hd,n)_)

In Section 5.8 we use Theorem 5.1 to give new upper bounds on the number of independent

sets of a given size in d-regular graphs.
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5.2 Matchings

The matching polynomial of a graph G is

Ma(\) = Y AlH

HeM

where M is the set of all matchings of G (including the empty matching) and |H| is the
number of edges in the matching H. Just as in the hard-core model above we can define
a probability distribution over matchings:
A
Py\[H] =
AH] Moy

This defines the monomer-dimer model from statistical physics [51]: dimers are edges of

the random matching H, and monomers are the unmatched vertices.

For a d-regular graph G, the edge occupancy fraction, or the dimer density, is the expected

fraction of the edges of GG in such a random matching:

o(G) = gElIMI) = - Y Plee 1]
ecG

_ 22Mg(\)
~ dnMa(\)

Our next result is an upper bound on the edge occupancy fraction of any d-regular graph:
Theorem 5.2. For all d-regular graphs G and all X > 0, we have

am(G) < an(Kaa) -

That is, the quantity %A]\jggg is mazimised by Hgp, .

Corollary 3. For any d-regular graph G and any A > 0

Mg(\)Ve&) < MKd’d()\)l/e(Kd,d)'

The proof of Corollary 3 follows from Theorem 5.2 via integration in exactly the same
way that Corollary 2 follows from Theorem 5.1. Similarly with A = 1, this shows that

Hg ,, has the greatest total number of matchings of any d-regular graph on n vertices.

In Section 5.8 we use Theorem 5.2 to give new upper bounds on the number of matchings
of a given size in d-regular graphs. Using this we prove the asymptotic upper matching

conjecture of Friedland, Krop, Lundow, and Markstrom [43].

77



Chapter 5. Independent sets, matchings and occupancy fractions

5.3 Off-diagonal Ramsey numbers

Ajtai, Komlds, and Szemerédi [1] proved that any triangle-free graph G' on n vertices with

average degree d has an independent set of size at least clog 4y for a small constant c.

Shearer [81] later improved the constant to 1, asymptotically as d — oo, showing that
such a graph has an independent set of size at least f(d) - n where f(d) = % =

(1+ od(l))%. Here, and in what follows, logarithms will always be to base e.

The off-diagonal Ramsey number R(3,k) is the least integer n such that any graph on
n vertices contains either a triangle or an independent set of size k. The above re-

sult of Ajtai, Komlds, and Szemerédi and a result of Kim [59] show that R(3,k)

O(k?/log k). Shearer’s result gives the current best upper bound, showing that R(3, k) <
(1 + 0(1))k?/log k. Independent work of Bohman and Keevash [14] and Fiz Pontiveros,
Griffiths, and Morris [42] shows that R(3,k) > (1/4+ o(1))k?/log k. Reducing the factor

4 gap between these bounds is a major open problem in Ramsey theory.

We prove a lower bound on the average size of an independent set in a triangle-free graph
of maximum degree d, matching the asymptotic form of Shearer’s result, and in turn

giving an alternative proof of the above upper bound on R(3, k).

Theorem 5.3. Let G be a triangle-free graph on n vertices with maximum degree d. Let

Z(G) be the set of all independent sets of G. Then

e o M=+ od(1))1°§dn.

1€Z(G)

Moreover, the constant ‘1’ is best possible.

This result is weaker than Shearer’s [81] in that instead of average degree d we require

maximum degree d. Our result is stronger in that we show that the average size of an

independent set from such a graph is of size at least (14 04(1)) loidn, while Shearer shows

the largest independent set is of at least this size (by analysing a randomised greedy
algorithm).

The proof of Theorem 5.3 is almost identical to the proof of Theorem 5.1 restricted to
triangle-free graphs. In particular both methods reduce the problem to the same optimi-
sation problem over a family of random variables. For triangle-free graphs Theorem 5.3
follows from maximising this optimisation problem whilst Theorem 5.1 comes minimising.
After sharing a draft of [27] with colleagues, we discovered that James Shearer also knew
the proof of the lower bound in Theorem 5.3 and presented a sketch of it at the STAM
Conference on Discrete Mathematics in 1998, but never published it [80].
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To see that Theorem 5.3 directly implies the upper bound (1 + o(1))k?/logk on R(3,k),
suppose that G is triangle free with no independent set of size k. Then G must have

maximum degree less than k. Applying Theorem 5.3 we see the independence number

]"ik as required. Of

is at least (1 + ox(1))'%%n but less than k, and so n < (1 + k(1) g

course this reasoning simply uses the average size of an independent set as a lower bound

for the maximum size.

5.4 Related work

The results of Kahn [56], Galvin and Tetali [47], and Zhao [87] culminating in the fact
that Pg(\)'/" is maximised over d-regular graphs by K4 are based on the entropy
method, a powerful tool for the type of problems we address here. Apart from the results
mentioned above, see [74] and [46] for surveys of the method. A direct application of
the method requires the graph G to be bipartite. Zhao [88] showed that in some, but
not all applications of the method, this restriction can be avoided by using a ‘bipartite
swapping trick’. An entropy-free proof of Galvin and Tetali’s general theorem on counting
homomorphisms was recently given by Lubetzky and Zhao [68]. Our method also does not
use entropy, but in contrast to the other proofs it works directly for all d-regular graphs,
without a reduction to the bipartite case. The method deals directly with the hard-core
model instead of counting homomorphisms and seems to require more problem-specific
information than the entropy method; a question for future work is to extend the method

to more general homomorphisms.

The technique of writing the expected size of an independent set in two ways (as we do
here) was used by Alon [6] in proving lower bounds on the size of an independent set
in a graph in which all vertex neighbourhoods are r-colourable. The idea of bounding
the occupancy fraction instead of the partition function comes in part from work of Will
Perkins [71] in improving, at low densities, the bounds on matchings of a given size in
Ilinca and Kahn [52] and independent sets of a given size in Carroll, Galvin, and Tetali [20].
The use of linear programming for counting graph homomorphisms appears in Kopparty
and Rossman [64], where they use a combination of entropy and linear programming to
compute a related quantity, the homomorphism domination exponent, in chordal and

series-parallel graphs.

For matchings, Carroll, Galvin, and Tetali [20] used the entropy method to give an upper

bound of (1 + d\)'/? on Mg(A\)'/™. Tt was previously conjectured (eg. [44, 46]) that

1/n

Kqq maximises Mg (\) over all d-regular graphs (. This is an implication of our
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Theorem 5.2.

5.5 Independent sets in triangle-free graphs

In this section we introduce our method by giving a unified proof of the Theorems of
Kahn and Shearer. Specifically we shall prove Theorem 5.1 under the assumption that G

is triangle-free as well as Theorem 5.3.

In what follows I will denote the random independent set drawn according to the hard-core
model with fugacity A on an n-vertex graph G with maximum degree d. For Theorem 5.1
we require that G in fact be d-regular however most of the argument is the same and we

will just note the distinction in the one step where it appears.

We say a vertex v is occupied if v € I and uncovered if none of its neighbours are in I:
N(v) NI = (. In particular any vertex that is occupied is necessarily uncovered. Let p,
be the probability v is occupied and ¢, be the probability v is uncovered. The idea of

considering the ¢,’s appears in Kahn’s paper [56].

We will show that for every A > 0, over the set of triangle-free d-regular graphs G, a(G)
is maximised by K4 4. For any graph H the occupancy of H is the same as the occupancy
fraction of multiple disjoint copies of H. In this way the occupancy fraction a(G) is
maximised not just by K;4 but also by any number of copies of Ky 4. We will also show
that for graphs with maximum degree d and suitable choice of A the value «(G) is at least

(1+ 0a(1)) 840,

Letting a = a(G), we write

a:%zpv

veG
1 A
_ly A (5.2)
n veEG 1+ A
Al ‘
=Tix'n 1;]20 P[j neighbours of v are uncovered] - (1 + X)™/ (5.3)
A
=~ E[1+)N7Y
B )]

where Y is the random variable that counts the number of uncovered neighbours of a
uniformly chosen vertex from G, with respect to the random independent set I. Y is an
integer valued random variable bounded between 0 and d. Equation (5.2) follows since v
must be uncovered if it is to be occupied; conditioning on being uncovered, v is occupied

with probability 1%\ Equation (5.3) is similar: conditioned on wy, ..., u; all uncovered,
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where the u;’s are neighbours of v, the probability that none are occupied is (1 + \)~7.
This is where we use triangle-freeness: we know there are no edges between the u;’s. So
we are asking how likely a vertex v is to be in the independent set conditioning on the

number of uncovered neighbours of v and averaging over all vertices in the graph.

The next step is to come up with another expression relating Y and a(G). This second
way asks how many neighbours of v we expect to be in the independent set conditioned

on the number of uncovered neighbours of v.

EY:%Zungd-#a

VEG U~
since each u appears in the double sum at most d times as G has maximum degree d.
This gives the inequality
EY <d-E[(14+\)7Y]. (5.4)

If G is d-regular then the two inequalities above hold with equality. From here we no longer
consider the problem to be one of optimising over graphs but instead we are optimising
over distributions Y that take values in [0, d]. For any such distribution ¥ we can now
calculate a. Of course « has only been defined for graphs however we extend the definition
to distributions Y by setting o = HLA -E[(14 X)7Y]. We additionally have the constraint
that we only consider distributions Y that satisfy equation (5.4).

We now let

A
Ctmax =——. sup {E[(l -+ A)_Y} : E[(l + )\)_Y] = %EY}
1+ X o<y<d
and
min A ] -y -y .
= — : > d
N 5ot (B + )B4+ 2) 7] > JEY )

where in both cases the sup is over all distributions of integer-valued random variables Y

bounded between 0 and d.

For any A and d there is a unique distribution Y supported only on 0 and d that satisfies
the constraint EY = d - E[(1 4+ A)~Y]. We claim that the supremum is achieved by this
distribution. The claim follows from convexity, but we defer details to the proof of a more
general statement in Section 5.6. Since the distribution Y associated to Hy,, satisfies the
constraint and is supported on 0 and d, it must maximise a. Since disjoint unions of
K4q's are the only graphs whose associated distribution is supported on 0 and d, they

uniquely achieve the maximum.
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Turning to the lower bound we use Jensen’s inequality to see that

a(G) > o inf max {E[(1+ )], jEY }
A . -EY 1
S A 1
~ 1+>\0<H§}f<dmax{(1+)\) ’dEY}
A

> 1 min max {(14) 75

xT

Since z/d is increasing in = whilst (1 + A\)™ is decreasing in x the min-max is attained

when 7 = (1+ X)™®. We can rearrange this to
z-log(1+ A) - e”1080+0) — . log(1 + \),

from which we can see that
W(d -log(1+ X))

log(1+A)

where W is the Lambert-W function; the inverse function of ze?*. We choose A tending to

zero with d such that d - log(1 + \) tends to infinity (eg A = 1/log(d)) and use that fact
that for y > e, W(y) > log(y) — log(log(y)) which is equal to (1 + o(1))log(y) if y tends
to infinity. For A tending to zero we also have 1/log(1 + A) = (1 + o(1))/\. We then see
that

x> (1+o0(1))log(d-log(1+ N))/A = (1+o0(1))log(d)/\.

Therefore

A logd
>———2>(1 1 :
alG) > 755 > (1+0(1)

Since the occupancy fraction at this A is at least (1 + o(1))logd/d there must be an

independent set of G of size at least

(1 +o(1))1°§dn

If G is a triangle-free graph with no independent set of size k it must have maximum

degree less than k. Therefore it has an independent set of size (1 + 0(1))102 *|G| and so

this must also be less than k. Therefore |G| < (1 +o0(1)); fgzk matching the asymptotic of

Shearer’s bound on off-diagonal Ramsey numbers.

In Section 5.6 we give the full proof of Theorem 5.1. We turn to matchings and Theo-
rem 5.2 in Section 5.7 before giving new bounds on the number of independent sets and

matchings of a given size in Section 5.8.

82



Chapter 5. Independent sets, matchings and occupancy fractions

5.6 Independent sets in d-regular graphs

Here we show that Theorem 5.1 holds for all d-regular graphs. For a vertex v € G and
an independent set I, we define the free neighbourhood of v to be the subgraph of G
induced by the neighbours of v which are not adjacent to any vertex in I\ N(v). We use
the convention v ¢ N(v). The vertices in the free neighbourhood may be uncovered or
covered, but if they are covered it must be from another vertex in the free neighbourhood.
In a triangle-free graph the free neighbourhood is always a set (possibly empty) of isolated

vertices. Note that if v € I, then the free neighbourhood of v is necessarily empty.

Let C be the random free neighbourhood of v when we draw I according to the hard-core
model and choose vertex v uniformly at random from G. For any graph F', let pr be
the probability that C' is isomorphic to F. Also let Po = Pgo(\) be the independence

polynomial of C' at fugacity A\. Then we can write « in two ways:

‘T HAAE [P;(A)} (55)
and
T

where in both equations the expectations are over the random free neighbourhood C.
Equation (5.5) follows since v itself is uncovered if and only if all vertices in its free
neighbourhood are unoccupied. Given that the free neighbourhood is isomorphic to C,
all vertices in the free neighbourhood are unoccupied with probability #(A)' Equation

(5.6) follows by counting the expected number of occupied neighbours of v and dividing

by d: only vertices in the free neighbourhood can be occupied, and, given C, the expected

number of occupied vertices in the free neighbourhood is %&).
Now let
A 1 d 1 PL(N)
e E : ‘E =E |- :
R Ll eyl e it el el

where the sup is over all distributions of random free neighbourhoods C' supported on
graphs of at most d vertices. From (5.5) and (5.6), the distribution obtained from G

satisfies the constraint above.

We claim that for any A > 0, o is achieved uniquely by a distribution supported only on
the empty graph and the graph consisting of d isolated vertices, K. The theorem follows
since a disjoint union of K 4’s is the only graph for which the free neighbourhood can only
be the empty set or K;. To prove this claim we use the language of linear programming,

see e.g. [17].
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5.6.1 The linear program

Let po be the probability of a given free neighbourhood C, and let Cg be the set of all
graphs on at most d vertices. Equation (5.7) defines a linear program with the decision

variables {pc}cec,. We write the linear program in standard form as

A
o =max ———— Z pclac + be) s.t.

2(1+ M) e
> po=1
CelCy
> pelac —be) =0
CeCy

pc =0 VC ey
where ac = #(/\) and bc = %. We can calculate ag = 1, by = 0, a, = (1+X1)79,

1—(140) ¢
2—(1+X)— ¢

supported only on () and K4, and gives the objective value

de = 1. The solution py = and PR, = W is the unique feasible solution

A(14N)4-1

2001 Our claim is that

this is the unique maximum.

The dual linear program is

A
o =min —— A7 s.t.

2(14+ )
A1+ Ay(ac — be) = ac +be VC € Cy

where A1, Ag are the decision variables.

Guided by the candidate solution above we set A1 = ﬁ, and A =1 — Ay. With
these values, the dual constraints corresponding to C' = ), K4 hold with equality, and

_ A(14a)d-t
A = 2(1+ 041"

feasible for the dual program, which means showing that

the objective value is To finish the proof we claim that Ay, As are

A
2014\

A + Ao(ac — be) > ac + be

for all C € Cy\ {0, K4}. Substituting our values of A1, Ag, this inequality reduces to

APL(N) (1 + A)d-1
Po) -1 - 0 ni—1°

(5.8)

The LHS of (5.8) is the expected size of the random independent set from the hard-core
model on C conditioned on it being non-empty. The RHS is the same quantity for K 4.

Inequality (5.8) follows directly from the observation that, over all C' € C4, the graph

K4 maximises the ratio of subsequent terms in the polynomial Po. Let a; = (‘f) be the
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coefficient of A\ in Pfd and write Po = 1 + Zle biAe. We have (i + 1)a;1 = (d —i)a;
and (i + 1)bj+1 < (d — 9)b; by counting independent sets of size i + 1.

To verify (5.8) we show that for each 1 < k < d the coefficient ¢j of M\* in the polynomial
()\P’Fd)(PC —1) = (AP;)(Pg, — 1) is non-negative. We have

k-1 k—1
Cl — E iaibk_,- + g iak_ibi
=1 i=1

Lk/2]
= Z (k) — Qi)(ak,ibi — aibk,i) .

i=1
Observe that term-by-term the above sum giving ¢ is non-negative by comparing the
ratio of successive coefficients in Pr and Po. Furthermore, if Po # Pg then at least

one ¢, must be positive, which completes the claim.

To see the optimiser is unique note that there is a unique distribution supported on ()
and K4 satisfying the primal constraints, and fixing A1 = a(Kz4) in the dual gives a
unique feasible value for As, since its coefficient ac — bo takes different signs on C =
(), K4. Therefore this is the unique optimal solution in the dual, and since all other dual
constraints hold with strict inequality, any primal optimal solution must be supported
on () and K 4. Disjoint unions of K4 4’s are the only graphs whose distributions have this

support.

5.7 Matchings in d-regular graphs

Recall that we use the notation Mg (A) for the matching polynomial of a graph G, and

let H be a matching drawn from the monomer-dimer model at fugacity A.

We refer to an edge as covered if an incident edge is in the random matching H. Let
e be an edge of G chosen uniformly at random, with an arbitrary left/right orientation
also chosen at random. In applying the method to matchings we introduce a subtle
change of presentation. We now define the free neighbourhood C to be the subgraph of
G containing all the incident edges to e that are not covered by edges outside of both e
and its incident edges. When considering independent sets, the free neighbourhood was
empty if the random vertex v was in the independent set. Here the presence or absence
in the matching of e or an edge adjacent to e does not affect C. Given e and C', we use

the term externally uncovered neighbour to refer to an edge of C' incident to e.

The possible free neighbourhoods C are completely defined by three parameters:
L,R,K € {0,1,...,d — 1}, counting the number of left and right neighbouring edges
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in C' with an endpoint of degree 1, and the number of triangles formed by e and C'. An

example is pictured below.

Let q(i,j,k) = P[L = i,R = j, K = k|, and denote the matching polynomial for such a

free neighbourhood by M, ; i, where we can compute
M;jeN) =14 (i+j+2k)A+ [K* + k(i 4+ — 1) + 5] \2.

Conditioned on the event that the free neighbourhood of e is C, the random matching
H restricted to e and its incident edges is distributed according to the monomer-dimer
model on the graph C' with the edge e added; the partition function of this model is
A+ Mg ()N), with the term A corresponding to the event that e € H.

We write aps as the expected fraction of edges incident to e that are in the matching.
In order for there to be any such edges e must be unoccupied. Conditioned on the free
neighbourhood of e being C, the probability that e is unoccupied is

Mc(N)

A+ Mc(N)’

and conditioned on C' and on e being unoccupied the expected number of occupied neigh-
bours of e is

AML()

Mc(N)

As each edge in a d-regular graph is incident to exactly 2(d — 1) other edges:

2 1
aM:anfZQ(d—l)P[fEH]

B AML(N)
=E [Q(d — 1)()\C+ Mc(/\))]
N AM (N
= ;CQ(’MJ’ k) 2(d — 1)(\ fl— Mi,j,k(/\)) ’

where the expectation in the second line is over the random free neighbourhood C resulting

from the two-part experiment described above. If we write the expected fraction of
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1 AM{,]‘,k

2(d—1) MM, ;5 the above

occupied neighbours of e in a configuration as a(i,7,k) =

expression can be written an =3, ;1 q(4, j, k)an (i, j, k).

5.7.1 The linear program for matchings

We now introduce additional constraints before optimising ;s over distributions of free
neighbourhoods. We could write multiple expressions for ays, equate them, and solve the
maximization problem as we did for independent sets. Using three expressions for a,s we
were able to prove Theorem 5.2 for the case d = 3, in which the optimal distribution is
supported on only three values: ¢(0,0,0), ¢(1,1,0), ¢(2,2,0). But in general we need at
least d — 1 constraints (in addition to the constraint that the ¢(i, 7, k)'s sum to one) as

the distribution induced by K 4 is supported on d values.

Instead, we write, for all ¢, two expressions for the marginal probability that the number
of uncovered neighbours on a randomly chosen side of a random edge is equal to t. We
find the two expressions by choosing uniformly: a random edge e, a random side left or
right, and f, a random neighbouring edge of e from the given side. We first calculate the
probability that e has ¢ uncovered neighbours on the side containing f, then we calculate

the probability that f has t uncovered neighbours on the side containing e.

Given a free neighbourhood C' with L =i, R = j, and K = k, e can have 0,1,7+k—1, or
i+k uncovered left neighbours; an edge f to the left of e can have 0,1,i+k—2,i+k—1,i+k,
or i + k + 1 uncovered right neighbours (depending on whether f itself is in the free
neighbourhood C).

Let 7§j7k(t) = P[e has t uncovered left neighbours |L = i, R = j, K = k] and ’yi]jm(t) =
P[f has t uncovered right neighbours |L = i, R = j, K = k], where f is a uniformly chosen
left neighbour of e.

Claim 5.4. Let By = 14+ tA. Then we have

1

Viik(t) = N+ Mogp (1t=0 At L=t - [iABjpk + kABj k1] (5.9)

+ Li—ipk - B+ Limigp—1 - k)\>

1 .
WQk@)::@i—le—%ALJk)<L:0‘hN%+k+kAﬁﬂ%_ﬂ (5.10)

+ Li=1 - [(d = DA+ (d = 2)(iABjxk + kABj1k-1)]
- Liiips - (4 k= DEN + Lemspt - [(d— i — k)R + (i + K)jA]

+1ﬁﬁkwu—1—i—kyA+u+kn+1ﬁﬁm4wd—1—i—m).
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Proof. To compute the functions ~; j’k(t) we consider the following disjoint events: 1) no
left edge and no right edge from a triangle is in the matching 2) e is in the matching 3) a left

edge is in the matching 4) no left edge is in the matching, but a right edge from a triangle is

Bj A iIABj kTR k-1
Mi g’ A+Mg 2 A+M; ik ’

in the matching. These events happen with probability 5
and % respectively. Under these events the number of uncovered neighbours of e is
7,

i+k,0,1, and i + k — 1 respectively. This gives (5.9).

To compute the functions 'yif ik

of f: f can be an edge outside the free neighbourhood with probability (d—1—i—k)/(d—1);

(t) we refine the above events to include the possible choices

an edge in the free neighbourhood but not in a triangle with probability i/(d — 1); in the
free neighbourhood and in a triangle with probability k/(d — 1). If a left edge is in the
matching we choose it as f with probability 1/(d — 1), and if a right edge in a triangle
is in the matching we choose f adjacent to it with probability 1/(d — 1). Computing the

number of uncovered neighbours of f in each case gives (5.10). O

We now define a linear program with constraints imposing that the two different ways
of writing the marginal probabilities are equal. The marginal probability constraint for
t = d — 1 is redundant and we omit it. To account for the equal chance that f is chosen
from the left side of e and the right side of e, we average 7£j7k(t) and 'yjf’i’k(t), and ¢, . (t)
and 75, 1 ().
ayy = maxz q(i, 7, k)an (i, 7,k) subject to

i,k

q(i,j, k) 20V 4,5,k

> qlig k) =1

Z'7‘j7’€

|
Zq(l’% k)§ [%Jjj,k(t) + ’Y]]‘ii,k(t) =Ykl =75k =0 Vt=0,...,d—2.
2'7j7k

Disjoint unions of copies of K4 are the only graphs that induce a distribution q(4, j, k)
supported on triples with ¢ = 5 and k£ = 0. This gives us a candidate solution to the linear

program.

The dual program is
ajyy = min A, subject to
d—2 1
Ay = el k) + 3 Mg [ 10 + L 0) = 9650(0) — 25a0)] >0V ik
t=0

To show that K4 is optimal, we find values for the dual variables Ag, ..., Ag_2 so that

the dual constraints hold with A, = a%d d()\). To find such values, we solve the system
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of equations generated by setting equality in the constraints corresponding to ¢ = j and

k = 0 and solve for the variables A¢, t =0,...,d — 2.

With this choice of values for the dual variables, we start by simplifying the form of
the dual constraints with a substitution coming from equality in the (7, j,k) = (0,0,0)
constraint. The (0,0,0) dual constraint has the simple form

A(] *Al ZOZJ\K/[d’d.
Moreover, observe that from the 1;—9 and 1;=; terms in 7{, ;(¢) and vif ;1 (t), every dual

constraint contains the term

aM(iJjak)_ ( A

R A o
A"']Wz,],k)] (AO - Al) - [aM(zajvk) N AL\

O+ M) | “Kaa”
With this simplification, we multiply through by 2(d—1)(A+M; ; ;) and expand @y (4, j, k)
terms to obtain the following form of the dual constraints:
g, AM 5+ 2(d = )M ji] — AM 5 (5.11)
+ Aijp—2- (i +k—1)kAX
+Nipp—1 - [(d—i = k)EXN+ (i + k)jA — (d — 1)kA]
+ A [(d=1—i—k)jA+i+k—(d—1)5]
+Aijpr1-(d—1—i—k)
FAjeka (+k— 1A
+Ajpp—1-[(d=J—k)EXN+ (§+ k)iX — (d — 1)kA]
+ A [(d=1—j—R)iA+j+k—(d—1)8]
+Ajiptr-(d=1—-j—k)>0.

Recalling that we use f; to denote 1 + t the (4,4,0) equality constraints now read

. . -2 15142 —1—1
O‘AK/[d,dBi (Bi + dzi\1) - ilff + Aiflallf)i - Aid ldfiﬂ A+ Ai+1ddi1Z =0. (5.12)

With this we can write A;j;41 in terms of A and Aj4p—1, and similarly for Aj ;1.
Substituting this into (5.11) and dividing by A we derive the simplified form of the dual
constraints:
A= 4)* +2k) (1 — dal, ) (5.13)
+ Aipp—2(i+ k= Dk + Aippa [k + (0 + k) — i — 2K)]
F Apan(i R+ k= )
+ Njik—2(f+k =Dk + Ajypalk+ (G + k)@ —j — 2k)]

+Ajk(G+HE)G+k—i)>0.
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Write L(i, j, k) for the LHS of this inequality.

The marginal constraint for t = d—1 was omitted, but we nonetheless introduce Ag_; := 0
in order to simplify the presentation of the argument. The (d — 1,d — 1,0) equality

constraint gives Ay_o directly:

1

Ngog = ————
2T A= 1)A

[)\ +(d—1)N - OCAK/[dyd/Bdfl/Bd

With Ag_1, Ag—2, and the recurrence relation (5.12) the dual variables are fully deter-
mined. We do not give a closed-form expression for A; as the values are used in an

induction below. Using Ag_1, Ag_o, and (5.12) suffices for the proof.

We now reduce the problem of showing that the dual constraints (5.13) corresponding to
triples (7, j, k) with & > 0 or ¢ # j hold with strict inequality to showing that a particular

function is increasing. We go on to prove this fact in Claims 5.5 and 5.6.

Putting k£ = 0 into (5.13) gives:

L(i, 5,0 .
<(jZ’—j7Z')) = )\(] - Z)(l - dOé]\K{l,d) +iN; 1 — A — jA];l +]A]’
= Fa(j) — Fa(i)
where
Fy(t) ==t | A1 —dagl, )+ Ay — Apa| (5.14)

From (5.13) we obtain
L(i—1,j—1,k+1)—L(i,j, k) = Fa(i + k) — Fy(i + k= 1)+ F4(j + k) — Fy(j + k —1).

Therefore if Fy(t) is strictly increasing, we have L(i,j,0) > 0 for i # j, and L(i — 1,75 —
1,k+1)> L(i,j,k) >--->L(i+k,j+k,0) > 0.

We first find an explicit expression for Fy(t). Recall that we write M, , for the matching
polynomial of the graph K.

Claim 5.5. Foralld>2 and 1 <t <d—1,

d—2
t(d—1) (d=1-=t) 4

Fy(t) = -— N\ M . 5.15
alf) Mr,, = ((+1-1) Kee (5.15)

Proof. We will use the following two facts:
MKd,d B B2d*1MKd—1,d—1 + (d - 1)2)‘2MKd_2,d_2 =0 (5.16)

AM i
M d—1,d—1

o S — 5.17
Ka,a M, , (5.17)
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The first is a Laguerre polynomial identity, verifiable by hand; the second is a short

calculation. The equality dual constraint (5.12) implies:
(d—1—t)Fa(t+1) = (t+ V)[IAFa(t) + (d = DA = (d = Dag, ,Bay] - (5.18)

We first show that the right hand side of (5.15) satisfies the above recurrence relation.
Using (5.17) this amounts to showing that the following expression is equal to zero for all
d>2and1<t<d-1:
d—2 yd—¢ d—2 yd+1-¢
Dy(t) = (d—1—1t)! (Z W_ﬁ M) MMy, BariMi, 1, ).
=t {=t—1
We proceed by induction on d. Note that when d = 2, ®5(1) is easily verified to be zero.
Note that

(bd—l—l(t) = )‘((d - t)q)d(t) - MKd+1,d+1 + ﬂ2d+1MKd,d - d2)\2MKd71,d—1) :

By the induction hypothesis and (5.16) the result follows. To complete the proof of the
claim it suffices to show that (5.15) holds for t = d — 1. Recalling that

Ag1=0
M
1 YK
Ajoo = —— + X — —— _
-2 =-—7+ (d_l))\ﬁdﬂd 1,
substituting into (5.14), and using (5.16) and (5.17) we have
1 o,
Fy(d—1)=(d—1) (A1 —doj, ) — —— = A+ ——2Bfa-
Hd=1) = (@ =1) (1 —do, ) = 2 = A B
aM
= -1
3 - Bod—1
1
= M [fB?d—lMdequ - MKd,d]
d,d
. (d— 1)2)\2MKd—2,d—2
MKd,d ’
verifying (5.15) for t = d — 1. O

Using Claim 5.5 we prove the following.
Claim 5.6. Fy(t) is strictly increasing as a function of t.
Proof. To prove that Fy(t) is increasing, we show that

MKdd Fd(t+1)_Fd()
(d—1)  (d—2-1)
d—

e >
M = = 1=1) 30 M,
e:t Pt (L+1—1)!

Ry(t) :=

=(t+1)
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is positive for each t with 1 <t < d—2. We do this by fixing ¢ and performing induction
on d from t + 2 upwards. A useful inequality will be Mg,, > tAMk, ,, , which comes
from only counting matchings of K;; that use a specific vertex. Iterating this inequality

we obtain

!
“ANMg,, foro<e<t—1. (5.19)

M=

For the base case of our induction, d =t + 2, we have
Rd(d - 2) =\ [MKd—Q,d—Q - (d - 2))\MKd—3,d—3] ’

which by (5.19) is positive.
For the inductive step we have

d—2

R = M Rat) + e, - Y P
d+1 - d (d o 1 o t)' Kd—l,dfl Pt (E _ t + 1)' KZ,Z 9
and so it is sufficient to show
=2 yd—t
, mMKM < mMKd_l,d_l : (5.20)
=t—1

We use the inequality (5.19) in each term of the sum to see that the LHS of (5.20) is less
than

dZ% Lo I
— — Mt Ka-1,d-10
s 1 (+1—-t)(d—1)!
and so
d—2
tAd oA
Z KM < Z MKd—l,d—l
Z:tl(ﬁ-i-l—t Ztl (+1—-t)(d—1)!
_ MMEy i tel(d —1—t)!
(d—1-1)! (+1—t)(d—1)
Z:t—l
Mg, (=17 di ¢
o (d—1-1t)! t t—1
{=t—1
_ )\MKd—l,d—l
(d—1-t)"
Therefore (5.20) holds as required. O

This completes the proof of dual feasibility and shows our candidate solution to the primal

program is optimal. The uniqueness of the solution follows from two facts. First, strict
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inequality in the dual constraints outside of the (i,7,0) constraints implies, by comple-
mentary slackness, that the support of any optimal solution in the primal is contained in
the set of (4,7,0) configurations. Second, the distribution induced by K4 is the unique
distribution satisfying the constraints with such a support. This follows from the fact
that A; is uniquely determined by (5.12) where we have set the (7,7,0) dual constraints to
hold with equality, which in turn shows that the relevant d x d submatrix of the constraint

matrix is full rank. This proves Theorem 5.2.

5.8 Independent sets and matchings of a given size

Let i(G) be the number of independent sets of size k in a graph G, and my(G) the
number of matchings of size k. Kahn [56] conjectured that ix(G) is maximised over d-
regular, n-vertex graphs by Hg, for all k (when 2d divides n), and Friedland, Krop,
and Markstrom [44] conjectured the same for my(G). Previous bounds towards these
conjectures were given in [20, 52, 71]. Here we adapt the method of Carroll, Galvin, and
Tetali (and use the above result on the matching polynomial) to give bounds for both
problems that are tight up to a multiplicative factor of 2/n, for all d and all k. Previous

bounds had been off by an exponential factor in n.

Theorem 5.7. For all d-reqular graphs G on n vertices (where 2d divides n),
ik(G) < 2vn-ig(Hyp)

and
mi(G) < 29/ - mi(Hap)

The general idea to get from the result that Hg, maximises Pg()\) and Mg(\) among
d-regular graphs on n vertices is to use the fact that for any k£ € {0,...,n/2} there
is a value of A such that independent sets of size k are the most common size when
running the hard-core model on Hg,. There is also a (potentially different) value of X
such that the most common size of matching in the monomer-dimer model on Hyg,, is k.
By comparing the partition functions of an arbitrary graph G with Hy, we see that the
number of independent sets of size k in G' is at most 5 + 1 times that of Hgy,. Similarly
for matchings. The 5 +1 factor comes from the fact that the partition functions have this
many non-zero coefficients, as there are this many possible sizes or independent set or

matching. For Theorem 5.7 we prove something slightly stronger; that for every k there
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is a A such that in the hard-core model on Hg,, independent sets of size k are selected at

least a -1~ fraction of the time. The same holds for matchings.

2v/n

Lemma 5.8. For all 1 < k < n/2, there exists a \ so that

ik(Hdn))\k 1
A p Il =k -
Pu,,,(A) Han I = H > 2y/n
and a X\ so that i
my(Hgn)A 1
A e LA ) H| =k —
Mg, (V) Han[lH] = > 2v/n

Proof. The distribution of the size of a random independent set I drawn from the hard-

core model on Hy,, is log-concave; that is,
Py, 1| =41 > Pp,, (1| =+ 1] - Pg, (| = j - 1]

for all 1 < j < n/2. This follows from two facts: the size distribution of the hard-core
model on Ky 4 is log-concave, and the convolution of two log-concave distributions is again

log-concave. The first fact is simply the calculation

(- (1)GL):

Now choose A so that Py, [|I| = k] = Pu,,[|I| = k + 1]. Log-concavity then implies

that Py, [|I| = k] is maximal. Some explicit computations for the variance for a single

Kqq give that the variance of |I] is at most n/8; then via Chebyshev’s inequality, with

probability at least 2/3 the size of I is one of at most % n values, and thus the largest
1

probability of a single size is greater than ENGE

The proof for my(Hygy,) is the same: the variance of the size of a random matching is also

at most n/8 (see, e.g. [55]), and log-concavity of the size distribution on Ky 4 is verified

<j>4j!2 > <]. f 1)2(3' - 1)!<j i 1>2(j +1)!

Proof of Theorem 5.7. Assume for sake of contradiction that my(G) > 2v/n - my(Hg,p).

via the inequality

O]

Choose A according to Lemma 5.8. We have:
Ma(N) = me(G)N > 2v/n - myp(Hyn) A" > My, (N)

but this contradicts Theorem 5.2. The case of independent sets is identical. 0
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The above proof is essentially the same as the proofs in Carroll, Galvin, and Tetali [20]
with the small observation that A can be chosen so that k is the most likely size of a
matching (or independent set) drawn from Hy ,,. The factor 2y/n in both cases can surely
be improved by using some regularity of the independent set and matchings sequence of

a general d-regular graph.

As a consequence, we prove the asymptotic upper matching conjecture of Friedland, Krop,
Lundow, and Markstrém [43]. Fix d and consider an infinite sequence of d-regular graphs
Ga = G1,Ga, ... where each G,, has n vertices if such a graph exists. For any ¢ € [0,1/2],

the p-monomer entropy is

1 n
hg,(e) = sup limsup %"(G) ’
{kn} n—00 n

where the supremum is taken over all integer sequences {k,} with k,/n — o. Let hq(0) =
limy, 00 Ogm“’+ﬂd’), where the limit is take over the sequences of integers divisible by

2d. Then the conjecture states that for all G; and all ¢ € [0,1/2], hg,(0) < ha(o).

To prove this, first assume g > 0 since for p = 0 the result is trivially true. Assume for

log mg,, (Gn)
n

the sake of contradiction that lim sup > hg(o) + € for some € > 0. Take Ny

large enough that for all ny > Ny, divisible by 2d, w < hgq(0) + €/2. Now
take some n > Ny with % > hg(e) + ¢, and let ny = 2d - [n/(2d)]. Choose A
so that m |, | (Hapn,) > ﬁMHdm (M\). Note that since p > 0, such A is bounded away

from 0 as ny — oo. Then we have

log M, (A) _ 1 WAk
og Mg, ( )> og My, (Gn) >Zlog)\—i-haz(@)"‘6

=
n n

= plog A+ hq(o) + e+ 0o(1) as n — oo

and

log Mk, ,(A)  log My, (A) _ log (2v/m1 - m g, | (Han, )ALE™)

2d ny ni
log(2,/
< Og(n ™) + LQ:” log A\ + hg(o) +¢/2
1 1

= plog A+ hq(o) +€/2+ o(1),

but this contradicts Theorem 5.2. With the same proof, the analogous statement for

independent set entropy holds.
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