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Abstract

In this thesis we explore instances in which tools from continuous optimi-
sation can be used to solve problems in extremal graph and hypergraph

theory.

We begin by introducing a generalised notion of hypergraph Lagrangian and
use tools from the theory of nonlinear optimisation to explore some of its
properties. As an application we find the Turdn density of a small family of

hypergraphs.

We determine the exact k-colour Ramsey number of an odd cycle on n
vertices when n is large. This resolves a conjecture of Bondy and Erdds
for large n. The first step of our proof is to use the regularity method to
relate this problem in Ramsey theory to one in nonlinear optimisation. We
establish a correspondence between extremal constructions in the Ramsey
setting and optimal points in the continuous setting. We thereby uncover
a correspondence between extremal constructions and perfect matchings in
the k-dimensional hypercube. This allows us to prove a stability type result

around these extremal constructions.

We consider two models from statistical physics, the hard-core model and
the monomer-dimer model. Using tools from linear programming we give
tight upper bounds on the logarithmic derivative of the independence and
matching polynomials of a d-regular graph. For independent sets, this is
a strengthening of a sequence of results of Kahn, Galvin and Tetali, and
Zhao that a disjoint union of Ky 4’s maximises the independence polynomial
and total number of independent sets among all d-regular graphs on the
same number of vertices. For matchings, the result implies that disjoint
unions of Ky 4’s also maximise the matching polynomial and total number of
matchings. Moreover we prove the Asymptotic Upper Matching Conjecture

of Friedland, Krop, Lundow, and Markstrom.

Through our study of the hard-core model, we also prove lower bounds on
the average size and the number of independent sets in a triangle-free graph
of maximum degree d. As a consequence we obtain a new proof of Shearer’s

celebrated upper bound on the Ramsey number R(3, k).
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Chapter 1. Introduction

Extremal graph theory concerns itself with problems of the following type:

Question A: Given a real-valued graph parameter P and a class

of graphs C, how large (or small) can P be for an element of C?

One of the earliest results in extremal graph theory is Mantel’s theorem [67]
from 1907, which considers the case where C is the class of all triangle-free
graphs on n vertices and P is the number of edges of a graph. Indeed, Man-
tel’s theorem asserts that any triangle-free graph on n vertices must have at
most |n?/4] edges. If we can answer Question A, we may want to go fur-
ther and determine precisely which elements of C optimise P. In the example
of Mantel’s theorem, one can show that the complete, balanced, bipartite
graph on n vertices, is the unique triangle-free graph on n vertices with
|n?/4] edges. We call the graphs in C which optimise P extremal graphs.
Once we have determined these extremal graphs, a curious phenomenon of-
ten occurs. Often one can show that elements of C which almost optimise P,
must be close (in some combinatorial sense) to one of our extremal elements

of C. We call this phenomenon combinatorial stability.

Extremal graph theory can be viewed as ‘discrete optimisation’ where a

natural continuous analogue might be a question of the following form:

Question B: Given a function f : R® — R and a subset S C R",

how large (or small) can f(z) be for an element = € S?

We will call a question of this type a question in continuous optimisation.
If we can answer Question B, again we may want to know precisely which
elements of S optimise f. We call elements of S which optimise f optimal
points. Similarly to the discrete case, one can often show that elements of .S
that almost optimise f must be close (in Euclidean distance say) to a genuine

optimal point of S. We refer to this phenomenon as analytic stability.

Questions of the form of Question B date back at least as far as 300 BC
when Euclid considered the minimal distance between a point and a line,
and proved that a square has the greatest area among all rectangles with a

given total length of edges. With the invention of the Calculus in the 17"
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century by Newton and Leibniz, many powerful new techniques to attack
problems in continuous optimisation emerged. Euler and Lagrange were
early pioneers in the general theory of continuous optimisation and by now

there are many sophisticated tools to deal with questions of type B.

In this thesis, we explore instances in which problems in extremal graph (and
hypergraph) theory can be related to problems in continuous optimisation.
We investigate a range of questions of type A along with its extensions and
take advantage of the parallels that we saw with questions of type B. The
aim is to attack problems in graph theory by importing powerful analytic

tools which are not usually at one’s disposal in a discrete setting.

We outline how the rest of this chapter is arranged. In Section 1.1 we collect
some common notation and terminology that we make use of throughout this

thesis.

In Section 1.2 we introduce the notion of a hypergraph (a generalisation
of graphs) and discuss the extremal theory of hypergraphs. In particular
we will discuss a relatively recent and powerful tool known as hypergraph
Lagrangians. This will give the relevant background and preparation for

Chapter 2.

In Section 1.3 we discuss graph Ramsey theory in order to provide the

relevant background and preparation for Chapter 3.

In Section 1.4 we introduce notions from the intersection of graph theory

and statistical physics in preparation for Chapters 4 and 5.

Finally, in Section 1.5 we introduce the tools that we will need to borrow

from the theory of continuous optimisation.

1.1 Notation and Terminology

Most of the notation introduced here is standard but we include it for com-

pleteness.

For a natural number k, we let [k] denote the set {1,...,k}. For a set S, we

let (‘2) denote the set of all unordered k-tuples of distinct elements of S.
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A graph is a pair G = (V, E) where V = V(G) is some fixed set and F =
E(G) C (‘2/) We call V(G) the set of vertices of G and we refer to E(G)
as the set of edges. All graphs in this thesis can be assumed to be finite
meaning that V(G) is a finite set. For a finite graph G we let v(G) = |V (G)]
and e(G) = |E(G)|. If there is no ambiguity, we may slightly abuse notation
by writing v € G and {z,y} € G in lieu of v € V(G) and {z,y} € E(G)
respectively. For u,v € V(G) we may write u ~ v to indicate that {u,v} €
E(G). We may also denote an edge {u,v} simply by uwv and refer to u and
v as the endpoints of the edge uv. For two edges e, f € F(G) we may write

e ~ f to indicate that e and f are incident i.e. they share an endpoint.

For disjoint subsets A, B C V(G), we denote by G[A, B] the graph with
vertex set A U B and edge set {{a,b} € E : a € A,b € B}, and we let
ec(A, B) denote the size of this set. In the case where A = {v} a singleton,
we write G[v, B] instead of G[{v}, B].

For v € V(G), we let Ng(v) = {u € V(G) : u ~ v} denote the neighbourhood

of v in G and let dg(v) = |Ng(v)|, the degree of v. We let §(G) = Hélél da(v)

and A(G) = maé(dg(v), the minimum and mazimum degree of G respec-
vE

tively.

Subscripts in the above notation may be suppressed if they are clear from

the context.

For two graphs F,G, we say that F' is a subgraph of G if there exists an
injective function f : V(F) — V(G) such that f(e) € E(G) for all e € E(F)
(for a set S C V(F'), f(S) denotes the set {f(v) : v € S}). For a subset
U C V(G), we let G[U] denote the graph with vertex set U and edge set
E(G)nN ((2]) and call G[U] the subgraph of G induced by U.

Throughout this thesis we omit the use of floor and ceiling symbols where
they are not crucial. We will use standard asymptotic notation with a
subscript indicating that the implied constant may depend on that subscript.

All other notation will be explained in the relevant sections.
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1.2 Extremal Hypergraph Theory

A hypergraph is a generalisation of the notion of a graph. An r-uniform
hypergraph (or r-graph for short) is a pair H = (V, E) where V = V(H)
is some fixed set and £ = E(H) C (‘7{) We call V(H) the set of vertices
of H and we refer to E(H) as the set of (hyper)edges. All hypergraphs
we consider will be finite, meaning that they have finite vertex set. Note
that a graph is simply a 2-uniform hypergraph. Many extremal problems in
graph theory can be generalised to the setting of hypergraphs and often the
problems become significantly more difficult. This is certainly the case for
the extremal problem that we focus on in this section, the study of Turan
numbers of hypergraphs (to be defined shortly). For two hypergraphs F
and H, we say that F'is a subgraph of H if there exists an injective function
f:V(F) — V(H) such that f(e) € E(H) for all e € E(F). If F is not a
subgraph of H we say that H is F'-free.

A natural question asked by Turan, first for graphs and then for hypergraphs,
is the following: given a fixed r-graph F', what is maximum number of edges
attained by an F-free r-graph on n vertices? We denote this number by
ex(n, F') and call it the Turdn number of F. We refer to F-free r-graphs
on n vertices with ex(n, F) edges as extremal. Turdn famously determined
the extremal graphs (and hence also the Turdn number) in the case where
F = K, the complete graph on t vertices, that is the graph on ¢ vertices with
all edges present. The result is known as Turan’s Theorem and it extends
Mantel’s Theorem which we introduced at the start of this chapter. Before
stating Turdn’s Theorem we introduce some notation and definitions. We
make these definitions in the more general context of hypergraphs. We say
an r-graph H is (-partite if there exists a partition V(H) = V4 U ... UV}
such that

E(H)g{ee (V(f[)> :\emwguom:L...,e}.

We call H complete f-partite if we have equality in the above inclusion and

we call H balanced (-partite if ||V;| — |V;]| < 1 for all 4,5 € [¢].

Let Tr(n,f) denote the complete, balanced (-partite graph on n vertices.

10
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These graphs are called Turdn graphs, and we write tr(n, ¢) for the number

of edges in T'r(n,f).
Theorem 1.1 (Turén [84]). Let £ > 1. Then forn > {(+1,
ex(n, Koi1) = tr(n,?).

Moreover Tr(n,l) is the unique extremal Kgi1-free graph on n vertices.

For most graphs and hypergraphs H, the exact determination of ex(n, H)
is extremely difficult. Instead we might ask for the asymptotic behaviour
of ex(n, H). By using a simple averaging argument Katona, Nemetz, and
Simonovits [57] showed that for any fixed r-graph H the following limit
always exists I
ex(n,

) =, (())
We call w(H) the Turdn density of H and determining these densities is one
of the central problems in extremal hypergraph theory. Rather remarkably
the Turan density is known for any graph G and it depends only on its
chromatic number. The chromatic number x(G) of G is the least k such
that there exists a function f : V(G) — [k] with f(u) # f(v) for all edges
wv € G (we call such a function a proper vertexr colouring of G with k

colours). Erdds and Simonovits [29] discovered the following corollary of a

theorem of Erdés and Stone [30].

Theorem 1.2 (Erdds-Stone-Simonovits). If G is a graph with at least one

edge, then
1

x(G) -1

Given this result, it may seem surprising that as soon as r > 3, the Turan

m(G)=1-

density is unknown for most r-graphs. Let Kr(f) denote the complete r-graph
on n vertices (that is the r-graph on n vertices with all possible hyperedges
present). A natural first question would be to ask for the Turdn density
of K f’), however this remains a major open problem. Turdn showed that
(K f’)) > 5/9 and conjectured that this is the right value. Erdés famously
offered $500 for a verification of this conjecture. Currently the best known

upper bound is due to Razborov [73] who applied the recently developed

11
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method of flag algebras to show that W(Kf’)) < 0.561666. For an excellent
survey on progress on hypergraph Turdan problems up until 2011 see Keevash
[58].

A huge variety of tools and techniques have now been developed for the
purpose of determining the Turdan densities of graphs. We will focus on just

one of them, known as the method of hypergraph Lagrangians.

1.2.1 Hypergraph Lagrangians

First let us introduce the notion of homomorphism between hypergraphs.
Given two r-graphs F, H we say that f : V(F) — V(H) is a homomorphism
if f(e) € E(H) for all e € E(F). We say that H contains a homomorphic
copy of F' in this case. Note that f is not necessarily injective and so F
may or may not be a subgraph of H. We will say that H is F'-hom-free if H
contains no homomorphic copy of F. In analogy to ex(n, F') we may define
€Xnhom (7, F') to be the maximum number of edges attained by an F-hom-free
r-graph on n vertices. Although ex(n, F'), expom(n, F') can be different, it
will be useful to recall (see e.g. [58]) that they are asymptotically equal i.e.
for any r-graph F

H H
li Shom(L ) ex(n, H) (1.1)
n—o0 @) n—oo (™)
Let H be an r-graph on vertex set [n] and let ¢t = (¢1,...,t,) be a vector of

positive integers. The t-blowup of H, denoted by H(t), is the r-graph with

vertex set Vi U...UV,, where each V; is a set of size t;, and edge set
{{v1,..., 0} 1v; € Vy, for i =1,2,...,r where {a1,...,2,} € E(H)}.

In other words, we replace each vertex ¢ with a set of size t; and replace
each edge with the corresponding complete r-partite r-graph. A useful ob-
servation is that for r-graphs F' and H, H is F-hom-free if and only if H (t)
is F-free for all .

Note that for an r-graph H on n vertices and a vector ¢t = (t1,...,t,) of

positive integers we have

ecHB)= > ][]t

c€E(H) ice

12
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The right hand side is a homogeneous polynomial of degree 7 in the variables

t1,...,t, and we denote this polynomial by pg ().

Suppose now that H is an n-vertex F-hom-free r-graph so that H(t) is F-free
on [t| := > | t; vertices for any vector of positive integers t = (t1,...,ty).

It follows that

t
m(F) > limsup pu(t) = limsuprlpg (t/|t]), (1.2)

oo (1) It =00

where for the last equality we used that pyr is homogeneous of degree r. In

view of (1.2) it is natural to ask for the maximum of py over the set

n

S:{xER":inzlandxiZOforalli} .
i=1

Note that since py is continuous and S is compact, the maximum is indeed

attained. S is often referred to as the standard simplex in R™. Since py is

continuous and any point in S can be arbitrarily approximated by vectors

of the form ¢/|t| where t € N", it follows from (1.2) that

w(F) > r!sgng(x). (1.3)

We call sup,cgpm(x) the Lagrangian of H and denote it by A(H). The

following simple lower bound on A(H) is often handy.

PAH) > rlp (2, 2y =D D) 0y gy

e ()
Note that by (1.1), w(F) is the limit supremum of (’;‘)_le(H) over all F-
hom-free H and so by (1.3) and (1.4), w(F’) is the limit supremum of r!\(H)

over all F-hom-free H as well. We can in fact say a bit more, but first we

require one more observation regarding the Lagrangian.

We say that an r-graph H covers pairs if every pair of vertices in H is
contained in some edge of H. Suppose that H is an r-graph on vertex set
[n] that doesn’t cover pairs i.e. there exists i,j € [n] such that no edge of
H contains both 4 and j. It follows that py(x) = Axz; + Bxj + C where
A,B and C do not depend on x; and x;. Suppose now that x € S and
suppose without loss of generality that A > B. Let 2’ € R™ be the vector

13
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/.:
J

' € S and py(2') > pu(x). Tt follows that there is a subgraph H' of H
such that H' covers pairs and A\(H') = A(H). For an r-graph F, let C(F)
be the set of all F-hom-free r-graphs that cover pairs. It follows that

with coordinates =, = x; + xj, © 0 and zj, = zy, for k # 4, j, then clearly

m(F) = sup rI\(H). (1.5)
HeC(F)

To illustrate the use of this formalism let us show how it can be used to
prove some of the classical results we have already seen in this chapter. First
note that the only graphs that cover pairs are complete graphs and so the
Lagrangian of any graph is equal to the Lagrangian of the largest complete
graph it contains. It is not difficult to show (see e.g. Chapter 2) that the
symmetry of the complete graph K; means that pg,(z) is maximised over
S when all coordinates are equal and so A(K;) = 2(1 — 1). Suppose now
that G is a Ki-free graph so that A(G) = A(K) for some s < t. If G has n

vertices it follows that

%e(a)zng(%,...,%) < 2A(G) = 1—%§ 1-%.

This is Turan’s Theorem in the case where ¢ — 1 divides n. This argument
is due to Motzkin and Straus [68] and it is one of the earliest appearances
of the method of Lagrangians. Note also that the Erdés-Stone-Simonovits
Theorem is an immediate corollary of (1.5) since a complete graph K; is

F-hom-free if and only if ¢t < x(F).

The development of the theory of Lagrangians for hypergraphs is attributed
to Sidorenko [78] and Frankl and Fiiredi [41]. In Chapter 2 we present a
generalised notion of hypergraph Lagrangian and use tools from continuous
optimisation to exploit some of its properties. As an application we calculate

the Turan densities of a new small class of hypergraphs.

1.3 Ramsey Theory

Ramsey theory is a central area of research in combinatorics whose phi-
losophy can be summarised by the following epithet: ‘large structures, no

matter how disordered, must contain ordered substructures.” In order to

14



Chapter 1. Introduction

make this more formal, let us introduce some common language in terms
of which almost all results in Ramsey theory are phrased. Given a set X
and positive integer k, a k-colouring of X is any map x : X — [k] where
[k] = {1,...,k} is the set of colours. Given such a colouring x, we call a
subset Y C X monochromatic, if it is contained in the set x~*({i}) for some

i € [k] (i.e. all elements of Y are given the same colour).

Although Ramsey theory owes its name to the seminal paper of Frank Ram-
sey [72] from 1930, arguably the first result in Ramsey theory was proved
by Hilbert in 1892. Given natural numbers a,dy, ..., d,,, define

H(a;dy,...,dpy) = {a+2di IC [m]} .
el

We call such a set a Hilbert cube of dimension m. Hilbert [53] proved that,

given positive integers k, m, there exists a number H = H(k,m) such that
any k-colouring of [H] contains a monochromatic Hilbert cube of dimension
m. Another early and seminal result in Ramsey theory is due to van der
Waerden [85], who showed in 1927 that any colouring of the natural num-
bers with a finite number of colours, contains monochromatic arithmetic

progressions of arbitrary length.

In this thesis we will be concerned with graph Ramsey theory which con-
cerns itself with studying the Ramsey numbers of graphs, defined as follows.
Given graphs G1, Gy, . . ., Gy, the Ramsey number R(G1,...,Gy) is the least
integer N such that any k-colouring of the edges of the complete graph Ky
on N vertices contains a monochromatic copy of G; in the i-th colour for
some i, 1 < i < k. In the case where GG1,...,G} are all isomorphic to the
graph G, we call R(Gq,...,Gy) the k-colour Ramsey number of G and de-
note it by Ri(G). In the case of two colours we write R(G) in place of Ry (G).
We call R;(G) a diagonal Ramsey number and we refer to R(Gy,...,Gy)
as off-diagonal if G; is not isomorphic to G; for some pair ¢, j. In Ramsey’s
celebrated paper [72], he showed that Ramsey numbers always exist i.e. for

any collection of finite graphs Gy, ...,Gg, R(G1,...,Gy) is finite.

The oldest and most famous examples of Ramsey numbers are those involv-
ing complete graphs. For positive integers t1,...,t;, we write R(t1,...,t)

as a shorthand for the Ramsey number R(K:,, ..., Ky, ), we use Ri(t) as a

15
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shorthand for the case where all the ¢; are equal to ¢ and we let R(t) denote
Ry(t). The systematic study of such Ramsey numbers began with a paper
of Erd6s and Szekeres [31] (1935) who established the bound
s+t—1

R(s,t) < ( s 1 > ) (1.6)
for all s, > 2. The exact value of R(s,t) is only known in a small handful
of cases (see Radziszowski [58] for an excellent survey of such exact results)
and the problem of improving the known bounds on these quantities is no-
toriously difficult. Particular notoriety has been attached to the case where
s = t, where not even the value of R(5) is known. The bound (1.6) shows
that R(t) = O(4'/+/t) and despite considerable effort over the past 80 years
no improvement has been made to the base of the exponent in this bound.
The current best upper bound is due to Conlon [19] who gave the first su-
perpolynomial improvement showing that there exists a positive constant c
such that

R(t) < —clogt/loglogt st

It wasn’t until a decade after the discovery of the bound (1.6), that a signif-
icant lower bound on the quantity R(t) was established. In 1947 Erdds [27]
pioneered the use of the probabilistic method, producing one of the most

well-known proofs in all of combinatorics, in order to establish the bound

R(t) > (1—o(1))— V2 . (1.7)

t
\/ie
In a similar manner to (1.6), this bound has stubbornly resisted improve-

ment. In fact, since 1947 the only significant improvement is due to Spencer

[82] who improved (1.7) by a factor of 2 using the Lovész local lemma.

Extensive research has also been dedicated to the study of the Ramsey
numbers R(s,t) in the case where s is fixed and ¢ is growing. In this case
(1.6) shows that R(s,t) < t*~1. In 1980, Ajtai, Komlés and Szemerédi [1]
improved this by a polylogarithmic factor showing that for s fixed

tsfl
log®™“ ¢
The proof is an induction on s and the main effort is in establishing the base

case where s = 3. The authors in fact show that a triangle-free graph G

16
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(i.e. a graph which does not have the complete graph K3 as a subgraph) on
n vertices with average degree d has an independent set (that is a collection
of vertices with no edges between them) of size 0.0llogdn. This implies the
bound R(3,t) < 100@. In 1983 Shearer [77] gave an elegant and short

proof of the improved bound

log?t
-

R(3,t) < (1+0(1)) (1.8)
Perhaps surprisingly, in 1995 Kim [60] showed that this is the correct order
of magnitude for R(3,t) i.e. he showed that R(3,t) = Q (@) Kim’s
proof was a pioneering use of what has become known as the semi-random
method. Recently Bohman [6] gave an alternative proof of Kim’s result by
analysing a stochastic graph process called the triangle-free process. The
process starts with a graph with no edges and step by step adds edges
uniformly at random from the collection of edges whose addition would not
create a triangle. The process stops when the addition of any new edge
would create a triangle. More recently still, Bohman and Keevash [7] and
independently Fiz Pontiveros, Griffiths and Morris [40] analysed the running

time of the triangle-free process more carefully to show that

log? t

R(S,t)2<i+o(1)> = (1.9)

It is already rather remarkable that we know R(3,t) to such accuracy, how-
ever it is a major open problem to reduce the gap between (1.8) and (1.9)
further still. In Chapter 4 we give a new proof of Shearer’s bound (1.8) and

suggest new strategies for improving this bound.

Returning to the diagonal case, the difficulty in improving the bounds for
R(t) motivated the study of Ramsey numbers of graphs with a ‘simpler’
structure, where the problem may be more tractable. In stark contrast to
the exponential behaviour of R(t), Chvatal, Rodl, Szemerédi and Trotter [16]
showed that bounded degree graphs have linear Ramsey number. Formally
they showed that for all d there exists a constant cg such that if G is a graph

on n vertices with maximum degree d then
R(G) <c¢yn.
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The authors remark that their argument extends easily to the k-colour case
i.e. for all k,d there exists a constant cj, 4 such that Ry(G) < ciqn for any
graph G on n vertices with maximum degree d. Recently Lee [63] greatly
generalised this result showing that the same conclusion holds if ‘bounded
degree’ is replaced by ‘bounded degeneracy’ (again the result is stated for
two colours, but extends to k-colours). Lee’s result settled the famous Burr-

Erdés conjecture from 1973 [14].

In Chapter 3 we will discuss the Ramsey theory of ‘sparse’ graphs in more
detail and see examples where the Ramsey numbers of graphs can even be
determined exactly. In particular we will focus on a conjecture of Bondy
and Erdds from 1973 which asserts that for all £ and odd n > 3

Ri(Cp) =2F"1(n—-1)+1.

Here C), denotes the cycle on n vertices (see Chapter 3 for a formal defini-
tion). In particular we prove that the conjecture holds for any fixed k£ and
n sufficiently large. The first step of the proof is to relate the problem in
Ramsey theory to the problem of maximising a linear function over a region

in 3¥-dimensional Euclidean space bounded by quadratic constraints.

1.4 Statistical Physics Models on Graphs

Many important graph polynomials, such as the independence polynomial,
matching polynomial and chromatic polynomial, can be viewed in terms of

partition functions of statistical physics models on graphs.

In this section we introduce some examples of these models and present
a general approach for bounding their partition functions. This will help
prepare us for Chapters 4 and 5. To begin with we introduce the hard-core
model from statistical physics. Recall that an independent set in a graph
is simply a collection of vertices with no edges between them. For a graph
G, we let Z(G) denote the set of all independent sets in G. The hard-core

model on a graph G at fugacity X is a random independent set I drawn
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according to the distribution

A
Pa(N)

Poall] = , where Pg(\) = Z A

I€Z(G)

Here |I| denotes the number of vertices in I. Note that we indicate the graph
and value of the fugacity in the subscript of probabilities and expectations
but drop it from the notation when they are clear from the context. The
function Pg(\) is the partition function of the hard-core model, or in the
language of graph theory, the independence polynomial. Note that evaluat-
ing P;(1) counts the total number of independent sets of G which we will
denote by i(G).

The hard-core model is relevant in statistical physics as a simple model of
a gas consisting of particles of non-negligible size. In this context the host
graph is usually a lattice, the vertices of which may or may not be occupied
by a gas particle. The constraint that the gas particles form an independent
set in the lattice can be interpreted as the condition that these particles are

non-overlapping.

For a positive integer d, we say that a graph G is d-regular if every vertex
in G has degree d. Let Kg4 denote the complete bipartite graph with d
vertices in each part. A classical result of Kahn [55] states that if G is a

d-regular bipartite graph then
i(G) < i(Kgq) @2

In particular, if 2d divides n then the bipartite d-regular graph on n vertices
with the most independent sets is a disjoint union of Ky 4’s on n vertices.
Kahn’s argument makes elegant use of the information theoretic notion of
entropy to study the hard-core model. Galvin and Tetali [46] gave a broad
generalisation of Kahn’s result to counting homomorphisms from a d-regular,
bipartite G to any graph H. The case where H is formed of two connected
vertices, one with a self-loop, is that of counting independent sets. Via
a modification of H and a limiting argument, they proved that if G is a

d-regular bipartite graph and A > 0 then we in fact have
Pg(\) < P, (NP2 (1.10)
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Zhao [86] then discovered a way to remove the bipartite restriction showing
that (1.10) in fact holds for any d-regular graph G. This resolved a conjec-
ture of Alon [3] whose original motivation was a problem in combinatorial

group theory.

In Chapter 4 we will present a new approach to bounding Pg(\) for regular
graphs. Instead of dealing with the partition function directly we study a
related parameter known as the occupancy fraction. The occupancy fraction
of the hard-core model on a graph G is simply the expected fraction of

vertices of GG in a random independent set drawn according to the model i.e.

ac(\) = U(la) S i)l
I€Z(G)
In Chapter 4, we study the occupancy fraction from the perspective of an
extremal combinatorialist, asking which graphs maximise or minimise the
occupancy fraction under certain constraints on the graph class. We then
deduce extremal information on the partition function of a graph via the
interpretation of the occupancy fraction as the scaled logarithmic derivative
of the partition function:
1 Zreze N1 apLy) A

V=T By w@) By (@) lesTEN)

In Chapter 4 we will prove that for any A > 0, the d-regular graph which
maximises the occupancy fraction is Ky 4. This strengthens the results of
Kahn, Galvin-Tetali and Zhao mentioned above. Via the same method,
we provide a lower bound for the occupancy fraction of a bounded degree
graph with no triangles. As a result we obtain new lower bounds for the
average size and the number of independent sets in triangle-free graphs. As
a further corollary we obtain a new proof of (1.8), Shearer’s upper bound

on the Ramsey number R(3,1).

Unlike the partition function, the occupancy fraction is the expected value
of a physical observable of our model. This probabilistic interpretation is
crucial for our proof method. Our proof method has proven sufficiently
general that it can be used to analyse a variety of statistical physics models.

In Chapter 5 we study the monomer-dimer model. A matching in a graph
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G is simply a collection of vertex disjoint edges and we let M(G) denote the
set of all matchings in GG. In the language of statistical physics, the edges
of a matching in G are referred to as ‘dimers’ and the unmatched vertices
are the ‘monomers’. The monomer-dimer model is a probability distribution
over matchings M in a graph G, where

P

Paa[M] = M)

and Mac(\) = Y AM.

MeM(G)
Here | M| denotes the number of edges in the matching M. In graph theory
Mg is known as the matching polynomial of G. The monomer-dimer model
dates back to 1935 when Roberts [74] considered the problem of adsorption

of oxygen and hydrogen on a tungsten surface.

We remark that the monomer-dimer model is simply the hard-core model
run on the line graph of G (the line graph of G is the graph on vertex set
E(G) where two vertices e, f are adjacent if and only if they are incident as

edges in G).

As in the hard-core model, we can define the edge occupancy fraction, the
expected fraction of edges occupied by a random matching:
1 A
af (N = == D M| -P[M] = = (log Ma(X))' -
e(G) e(G)
MeM(G)
In analogy to our result on the hard-core model we prove that for any A > 0,
the d-regular graph which maximises the edge occupancy fraction is K 4.

We get as a corollary that for any d-regular graph G we have
Ma(\) < My, ,(A)(/2 (1.11)

This resolves a conjecture of Galvin (Conjecture 7.1 in [45]). In the case
where 2d divides v(G) it is natural to conjecture that (1.11) holds coefficient
by coefficient, that is, over all d-regular graphs on n vertices, a disjoint union
of K4 4’s maximises the number of matchings of any given size. This is known
as the Upper Matching Conjecture of Friedland, Krop and Markstrom [44].
In Chapter 5 we prove new upper bounds on the number of matchings of a
given size in regular graphs. Although we do not resolve the Upper Matching
Conjecture, our bounds are sufficient to prove a weakened version known as

the Asymptotic Upper Matching Conjecture [43].
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The proof method that unifies Chapters 4 and 5 can be summarised as fol-
lows. We choose a random vertex or edge from our graph and a random
sample from our model (i.e. an independent set or a matching). We then
look at the way in which our random sample intersects the neighbourhood
of our vertex or edge (we call this a local view). Each local view occurs with
some probability and we can place consistency constraints on these proba-
bilities that must hold for all regular graphs. We then relax the extremal
problem on graphs to an optimisation problem on probability distributions
on local views and pose the relaxation as a linear program (see the next
section). We then use techniques from linear programming to solve this
optimisation problem and show that the optimal distribution matches the

distribution obtained from our conjectured extremal graph.

To end this section we mention a couple of further applications of this
method that do not appear in this thesis. By applying this method to the
Potts model (a generalisation of the famous Ising model), Davies, Perkins,
Roberts and the current author [23] showed that over all 3-regular graphs
on n vertices, a disjoint union of K33’s maximises the number of proper

g-colourings.

So far all of the extremal graphs have been complete bipartite. Perkins and
Perarnau [70] showed that by forbidding certain local structures one can
obtain a richer class of extremal graphs. In particular they show that for
A > 0, over all cubic graphs G of girth at least 5, the occupancy fraction
ag () is maximised by the Heawood graph (see below). They also show that
for 0 < A <1, over all triangle-free cubic graphs, the occupancy fraction is

minimised by the Peterson graph.

Peterson graph Heawood graph
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1.5 Tools from Continuous Optimisation

In this section we collect some standard tools and results from the theory
of continuous optimisation that we use throughout this thesis. For us, a

continuous optimisation problem will be a problem of the form

maximise f(x)

subject to gi(z) <0, i=1,...,m. (1.12)

Here z = (x1,...,2,) € R" is a vector, and we refer to the coordinates
x; as the decision variables. The function f : R™ — R is the objective
function and the functions g; : R — R for ¢ = 1,...,m are called the
constraint functions. A vector x is called feasible if it satisfies each of the
constraints g;(x) < 0,7 =1,...,m. A vector x* is called optimal if it has
the largest objective value among all feasible vectors i.e. for any z with
91(2) £0,...,9m(2) <0, we have f(z) < f(z").

In the special case where the objective function and the constraint functions
are all linear, we call a problem of the form (1.12) a linear program (or
LP for short), otherwise we call the problem nonlinear. In the case where
the objective function and the constraint functions are all convex we call
a problem of the form (1.12) a convex optimisation problem. There is an
enormous amount of literature and deep theory in the study of continuous
optimisation and much of this is dedicated to the special case of linear or

convex problems. Here we only borrow some standard tools from this theory.

1.5.1 Linear Programming

Let us introduce some standard vector notation that we use throughout this
thesis. Let R™*™ denote the space of all m xn matrices with real entries. For
A € R™" we let AT denote the transpose of A. For two vectors z,w € R”
we write z < w if the inequality holds componentwise. If f(z) is a scalar
function of x = (z1,...,2,) € R”, then we let Vf(z) be the gradient of f

at  i.e. the vector in R™ whose ith coordinate is %f(az).
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Now, let b,c € R™ and A € R™*™ and consider the linear program

maximise ¢!z

subject to Az <b, z > 0. (1.13)
The dual linear program to (1.13) is

minimise by

subject to ATy >¢, y>0. (1.14)

We refer to (1.13) as the primal linear program.

We will make use of the following two standard tools from the theory of
linear programming in Chapters 4 and 5 (see [12, p. 244] for a detailed

account).

Theorem 1.3 (Weak LP Duality). Suppose x and y are feasible for the
primal and dual linear programs (1.13) and (1.14), then 'z < bly. In

particular, if L'z = by, then x and y must be optimal for the primal and
the dual.

Theorem 1.3 is simply the observation that if you multiply the inequality
Az < b on the left by 47 and you multiply the inequality A”y > ¢ on the

Tr < yTAz < bTy. Despite its simplicity,

left by 2T, then you obtain ¢
Theorem 1.3 is extremely useful. In particular it shows that if you manage
to find feasible solutions for a linear program and its dual whose objective

values match, then they must both be optimal solutions.

Theorem 1.4 (Complementary Slackness). Suppose x and y are feasible
for the primal and dual linear programs (1.13) and (1.14). Then x and y
are optimal if and only if (b — Ax)Ty =0 and (ATy — )Tz = 0.

The proof of Theorem 1.4 is not complicated although we omit it here. In
conjunction, Theorems 1.3 and 1.4 furnish us with the following strategy for
solving linear programs: suppose that we believe x* is an optimal solution
to the linear program (1.13). The support of z* (i.e. the coordinates i for

which 2z} # 0) then tells us, by Theorem 1.4, which of the dual constraints
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ATy > ¢ should hold with equality. The hope is that by solving these equal-
ity constraints, one finds a dual feasible solution y* whose objective value
matches that of the original guess «*. If this is the case, then Theorem 1.3

tells us that x* and y* are both indeed optimal.

We remark that the linear programs we will come across in this thesis have

the following form:

maximise ¢l x

subject to Az =b, x> 0.

Note that we have equality constraints here rather than inequality con-
straints. Of course this can be manipulated into the same form as (1.13)
(sometimes referred to as symmetric form) by replacing the equality con-
straint Az = b with the pair of inequality constraints Ax < band —Ax < —b.

The dual linear program can then be written as
minimise b’y
subject to ATy > c.

Note that y is no longer constrained to be non-negative.

1.5.2 Karush-Kuhn-Tucker Conditions

In this section we introduce a very general tool from the theory of continuous
optimisation known as the Karush-Kuhn-Tucker (KKT) optimality condi-
tions. We only discuss a version of this theory that is sufficiently general to
suit our needs. As before, suppose we have an optimisation problem of the

form of

maximise f(x)

subject to gi(z) <0, i=1,...,m, (1.15)

where x € R™ and f and g; are differentiable functions R” — R for all i.
For z* € R™ we will say that the KKT conditions hold at x* if there exist
AL, .-+, Am € R such that

(1) VF(@") =225 AiVai(a),

25



Chapter 1. Introduction

(i) A >0, i=1,...,m,
(iii) Nigi(z*) =0, i=1,...,m.

The KKT conditions are of particular interest since under certain ‘regularity
conditions’, an optimal point of (1.15) must satisfy the KKT conditions (see
Theorem 1.5 below). These regularity conditions are often quite general
and only ask for the constraint functions to satisfy certain mild properties.
These are often referred to as constraint qualifications. Many different types
of constraint qualification appear in the literature. Here we will make use
of the following two well-known constraint qualifications (see [12, p.146] for

a detailed account).

e Slater’s Condition: f,g1,...,gn are all convex and there exists z €

R™ such that g;(2) <0 fori=1,...,m.

e Linearity Constraint Qualification (LCQ): g1, ..., gn, are all affine

functions.

Theorem 1.5. If Slater’s condition or LCQ holds, then any optimal point
of (1.15) must satisfy the KKT conditions.

We remark that when applied to the linear program (1.13), the KKT con-
ditions are precisely the assertion that there exists a feasible solution to
the dual program which satisfies the complimentary slackness conditions of

Theorem 1.4.
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Chapter 2. A Generalised Notion of Hypergraph Lagrangian

2.1 Introduction

Recall that for an r-graph H, the Turdn number ex(n, H) is the maximum
number of edges attained by an r-graph on n vertices containing no copy of

H as a subgraph and the Turdn density of H is the limit

A valuable tool in the arsenal of methods that has been developed over the
years to attack hypergraph Turdn problems is the hypergraph Lagrangian
which we introduced in Section 1.2.1. To describe one of the early successes
of the method of Lagrangians we begin with a question of Katona. In an
attempt to generalise Mantel’s Theorem [67], Katona [56] asked for the
largest number of edges an n-vertex 3-graph can have under the constraint
that there is no edge that contains the symmetric difference of two other
edges. Bollobés [8] settled this question by showing that the maximum
is achieved uniquely by the complete balanced 3-graph on n vertices and
went on to conjecture that the same should hold for arbitrary r, not just
r = 2,3. With an early use of the method of Lagrangians, Sidorenko [79]
settled the r = 4 case of this conjecture. In fact he showed that the extremal
construction is the same under the weaker constraint that there are no three
edges e, f, g such that |fNg| = 3and fAg C e (here A denotes the symmetric

difference operator).

Let us define a k-avoiding r-graph to be an r-graph H with the property that
for all edges e, f € E(H) we have |eN f| # k. As a key lemma in Sidorenko’s
proof in [79], he shows that the maximum Lagrangian over all 3-avoiding
4-graphs is attained by the hypergraph formed by a single edge (the method
shows that the same is true for (r — 1)-avoiding r-graphs where r» = 2, 3). In
[42], Frankl and Fiiredi extend Sidorenko’s method to show that for r = 5,6
the maximum Lagrangian over all (r — 1)-avoiding r-graphs is attained by
the Steiner systems S(11,5,4) and S(12, 6, 5) respectively (a Steiner system,
S(n,r,q), is an r-graph H on n vertices in which every element of (V(qH ))
is contained in exactly one hyperedge). As a result one can determine the

Turdn density of the generalised triangle, the graph on vertex set [2r — 1]
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and edges
{,2...,r},{1,2,....r = L,r+ 1}, {r,r+1,...,2r — 1}

for r = 2,3,4,5 and 6. In a similar spirit, Hefetz and Keevash [51] asked
for the maximum Lagrangian attained by an intersecting r-graph (an r-
graph whose edges have pairwise non-empty intersection). They proved
that for r = 3 the maximum is attained by K 5()3) and as a consequence they
obtain the Turdn density of a related 3-graph. The authors then go on to
propose a more general direction of investigation in extremal combinatorics,
namely to determine the maximum Lagrangian of a hypergraph satisfying a
given property. Natural properties to consider are those which restrict edge

intersection sizes as in the results mentioned above.

In this chapter we prove

Theorem 2.1. Let H be an (r — 2)-avoiding r-graph. Then

(r) \ _ 1
ANH) < MK, = E 10D

forr=3,4,5,6 and 7.

As a result we determine the Turdn density of what we shall call the ‘r-
uniform generalised K’ for these values of 7. More precisely the generalised

K4, denoted by ICY), is the r-graph on 5r — 6 vertices with the 6 edges

{xla vy 51:7"}7 {yl: Y2,3,... 7567“} and {xiu Yjy Zijly - - 7Zij(7"—2)} for 7’3.] € {1) 2}

(In words, ICELT) is the graph obtained by taking two edges with intersection
size r — 2 and for each pair of vertices not in an edge, adding (r — 2) new
vertices to form an edge with that pair).

Theorem 2.2.
r!

(r)y _
7T(IC4 )_ (T+1)<T—1)

forr=3,4,5,6 and 7.

We note that Kf) = Ky, the complete graph on 4 vertices. We believe

that the method of proof of the above theorems is of independent interest.
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We introduce a generalised notion of hypergraph Lagrangian and use the
Karush-Kuhn-Tucker conditions introduced in Section 1.5.2 to derive some

of its properties.

It is tempting to conjecture that Theorem 2.1 (and therefore Theorem 2.2)
holds for all . However, the following theorem, which determines the order
of the maximum Lagrangian attained by an (r — 2)-avoiding r-graph (as a

function of 7), shows that this is not the case.

Theorem 2.3. Let A, denote the set of all (r — 2)-avoiding r-graphs. Then

200 =0 (527
The layout of this chapter is as follows: in Section 2.2 we introduce the gen-
eralised hypergraph Lagrangian. In Section 2.3 we introduce some standard
techniques for explicitly calculating the Lagrangian of an r-graph and use
the results of Section 2.2 to prove Theorem 2.1. We do this by first bound-
ing the generalised Lagrangian over the much simpler class of 1-avoiding
3-graphs. In Section 2.4, we show how Theorem 2.1 can be used to prove
Theorem 2.2. Finally in Section 2.5 we prove Theorem 2.3 and suggest

avenues of future research.

We note that after completing this chapter, the author discovered that the
some of its contents (in particular the cases r = 3,4 in Theorem 2.1) are

implicit in a previous paper of Sidorenko [80].

2.2 The Generalised Lagrangian

In this section we introduce a generalised notion of hypergraph Lagrangian
and explore some of its properties. Let H be an r-graph on [n] and let w,t

be positive reals. We define

n
Swyt:{xGR”:OSxigtforlgignand ingw}
i=1
and

Awi(H) = sup pu(z).
2E€Sw,t
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Note that this supremum is attained as py is continuous and S, ; is compact.
This should be compared to the Lagrangian defined in Section 1.2.1 where
the only difference is in the modification to the standard simplex. Note
that A\ 1(H) = A(H) for all r-graphs H and so we use the term generalised

Lagrangian to refer to quantities of the form A, +(H).

For an r-graph H = (V, E) and subset X C V, we let H(X) denote the
(r — | X|)-graph with vertex set V' — X and edge set {e — X :e€ E, X C e}
(for z € V we write H(x) in place of H({z})). Using the Karush-Kuhn-
Tucker conditions (Theorem 1.5) we prove the following result which allows
us to bound the generalised Lagrangian of an r-graph H in terms of a related
generalised Lagrangian of the hypergraph H(z) for some = € V(H). The
advantage of this approach is that H(x) may have a simpler structure and

so its generalised Lagrangian may be more amenable to analysis.

Theorem 2.4. Let H be an r-graph and let w,t > 0. Then there exists an
x € V(H) and s < t,w such that

TAwt(H) < why—s s(H(z)).

Proof. Let V(H) = [n] and choose a € Sy, + such that pg(a) = Ay +(H). Note
that we are maximising py over S, ; which is defined by affine constraints.
We may therefore apply Theorem 1.5 (with the LCQ condition) to find
constants A, u;,6; > 0 such that for all i € [n]

Opn
=A—p; +06; 2.1
P (4) = A~ + (2.)
and
a;i; =0, a;0; =th;, and AZai = Aw. (2.2)

i

Note that since py is a homogeneous polynomial of degree r we have that

n

3PH
Zl axl

By (2.1) and (2.2) we then have
H)y=> ai(A—pi+0;) =wA+t) 6. (2.3)
i=1 i=1
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Noting that 6; > 0 only if a; = t and that ), a; < w we see that 6; > 0
for at most |w/t| values of i € [n]. It follows by averaging that we can find

Jj € [n] such that
t
0; > — Z 0;. (2.4)
We consider two cases:

Case 1: 0; > 0. Without loss of generality, let j = n. Since 6, > 0 we have
an =t >0 and so p, = 0. Thus, by (2.1), (2.3) and (2.4) we have

OpH
O0zy,

t — T
(a) =A+0, > A+w;9i = —du(H).

Case 2: 6; = 0. In this case, noting that 6; > 0 for all i € [n], (2.4) shows
that in fact §; = 0 for all i € [n]. Without loss of generality let a, =

max{ai,...,an}. Clearly we must have that a,, > 0 and so u, = 0. Thus,

as in Case 1 we have

Opy r
=A=—),:(H).
@) = A= L)
Finally note that in both cases ngZ(a) = pum)(a’) where a’ = (ay,...,a,1)
and a, = max{ai,...,a,} so that a’ € Sy_s5 C R™ ! for some s < t,w.
The result follows. O

Note that successive applications of Theorem 2.4 allows one to repeatedly
simplify the hypergraph whose Lagrangian we are trying to bound. Starting
with the Lagrangian A(H) = A1 1(H) of a hypergraph H and repeatedly
applying Theorem 2.4 leads to the following.

Theorem 2.5. Let H be an r-graph, then for 1 < m < r there exists
X e (ng)) and s < 1/m such that

m—1

AH) < Ao s(H(X)) T (1= i)

(r —m)! paley

7!

Proof. We proceed by induction on m. Noting that A\(H) = A,1(H ), Theo-
rem 2.4 gives an z € V(H) and an s < 1 such that rA\(H) < A\j_, (H(x)).
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This gives the base case m = 1. For fixed 2 < m < r, suppose that there
exists X € (ng)) and t < 1/m such that

m—1

m)‘(H) < Amtg (H(X)) H (1 —7dt). (2.5)
1=0

By Theorem 2.4 applied to H(X) there exists an = € V(H(X)) and s <
t,1 —mt (and so s < 1/(m + 1)) such that

r!

(r —m)M—mee (H(X)) < (1 — mt)\—pmi—s,s (H(X U{z})). (2.6)

Since s < ¢ and since Ay s(H (X U {z})) is an increasing function of w, the
right hand side of (2.6) is at most (1 — ms)Ai_(mi1)s,s(H(X U {2})). In

view of (2.5) this completes the induction.

O]

In many cases we expect equality in the statement of Theorem 2.5, an ex-

ample of which we see in the next section.

2.3 1-avoiding 3-graphs and a proof of Theorem 2.1.

In this section we consider the class of 1-avoiding 3-graphs and bound the
generalised Lagrangian of such a hypergraph. We will then use Theorem 2.5
to bound the Lagrangian of an (r — 2)-avoiding r-graph. We first need to
introduce some tools that are useful for explicitly calculating the generalised
Lagrangian of a given hypergraph. Recall that for r-graphs F' and H, a
homomorphism from F to H is a map f : V(F) — V(H) such that f(e) €
E(H) foralle € E(F). We call a bijective homomorphism from H to itself an
automorphism of H and let Aut(H) denote the group of all automorphisms

of H under composition.

Definition 2.6. Given an r-graph H on vertex set [n|, let ~g denote the
equivalence relation on [n] given by i ~g j if and only if Aut(H) contains

the transposition (ij).

The following lemma can be found as Lemma 2.8 in [51]. It will be useful
to replicate the proof here and to mimic a corollary (Corollary 2.9 of [51])

of that lemma in our modified setting.
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Lemma 2.7. Let H = ([n], E) be a hypergraph and let i,j € [n] be such
that i ~p j. Suppose a = (ai,...,a,) € R™ with a > 0 and let ' € R™ have
coordinates aj = ay, for k # i,j and a; = a; = (a; + a;)/2. Then we have
pu(a’) > pu(a).

Proof. Since (ij) is an automorphism of H it is easy to see that

pr(d) —pu(a) = Z ((ai + a;)?/4 — aa;) H ap >0
(e hee\lig)

O

Corollary 2.8. If H is an r-graph and w,t > 0 then there exists a € Sy

such that pr(a) = At (H) and a; = a; whenever i ~g j.

Proof. Suppose V(H) = [n]. Let {P; : i € I} be the set of equivalence
classes of ~p on [n]. For z € R™ and P C [n], let zp := ﬁzjeP%"
Choose an a € R :={z € Sy : pu(x) = Ay (H)} which minimises the sum
T(a) = er >oeep,lae—ap,| (note that T is continuous and R is compact
and so we may choose such an a € R). We wish to show that T'(a) = 0.
Suppose not, then we can find m € I and 7, j € P, such that a; < ap,, < a;.
Let o' have coordinates aj, = aj, for k # i,j and a} = a; = (a; + a;)/2 and
note that a’ € Sy, ;. Since i ~p j we have that py(a’) = Ay, +(H) by Lemma

)

2.7. This contradicts the choice of a since T'(a') < T'(a) . O

Recall that we say a hypergraph H is k-avoiding if |e N f| # k for all e, f €
E(H). The following basic lemma gives a full characterisation of 1-avoiding
3 graphs. We go on to use this characterisation to bound the generalised
Lagrangian of such a hypergraph. We let K 53)7 denote the unique 3-graph
on 4 vertices with 3 edges. For k > 3, we let Si be the 3-graph with vertex
set [k] and with edge set {{12j} : 3 < j < k}. Sk is sometimes called
a sunflower with & — 2 petals and kernel of size 2. For k = 1,2 we let
Sk = ([k],0). For a hypergraph H and subset X C V(H), we let d(X)
denote the number of edges of H that contain X.

Lemma 2.9. Let H be a 1-avoiding 3-graph. Then H is a verter disjoint
union of copies of Kf), Kf)_ and Sy where k > 1.
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Proof. We proceed by induction on N, the number of pairs {u,v} € H with
d({u,v}) > 2. If N = 0 then H is a matching (i.e. a disjoint union of
copies of S3’s) so we're done. If N > 0, then select {u,v} C V(H) with
d({u,v}) = k > 2. Let {x1,..., 21} be the set of vertices of H such that
{u,v,z;} in an edge of H. If k > 3, the vertices {u,v,x1,..., 2z} induce
an isolated copy of Sy in H since H is l-avoiding. Similarly, if & = 2,
the vertices {u,v,z1,x2} induce an isolated copy of 5’4,Ki3)_ or Kf’). In
each case, removing this isolated subgraph of H and applying the induction

hypothesis completes the proof. ]

We now calculate the generalised Lagrangian of some specific 1-avoiding
3-graphs and show that given w, ¢ > 0, the 1-avoiding 3-graph H that max-
imises the quantity A, +(H) is a vertex disjoint union of many copies of K. ig).

In the following we let mK ig) denote the disjoint union of m copies of K f).

Lemma 2.10. Let w,t > 0, then

rtmie s 40 (] (5 - 1))

with equality if m > w/4t.

Proof. Let H = mKiS). If m < w/4t then A\, (H) = 4mt> as we may assign
the maximum value of ¢ to each variable in the polynomial pg(x). Since m
is an integer we in fact have that m < |w/4t] and so the inequality in the
statement of the lemma is clearly satisfied.

Suppose then that m > w/4t. By considering each copy of K f) in mK f’)

separately, we may write
Mot (MEP) = Ny o (K 4 N 1 (KS)

for some w; satisfying >, w; < w and 0 < w; < 4t (the total weight on
each copy of K 23) is at most 4t). By Corollary 2.8 we have Ay, +(K f’)) =
4(w;/4)? = w}/16 and so

Aot (mEDY = (wd +wd + ..+ w?)/16.
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Pick i # j and let v = w; + w;. Maximising the function f(z,y) = a3+ 3
subject to the constraints x +y = u and 0 < z,y < 4t we find that one of z
and y is equal to 0 or 4¢. It follows that wy = 0 or 4t for all but at most one
value of k € [m]. Letting | = |w/4t] we may assume wlog that wj, = 4t for
k=1,2,...01, w1 =w—4tl and wy, =0 for k =1+ 2,...,m. The result

follows.

Lemma 2.11. Suppose k > 3 and w,t > 0 then

w3 /27 if w < 3t
Aw,t(Sk) S
t2(w—2t) if w>3t.

Proof. By Corollary 2.8 we have that A\, ¢(Sk) = (k — 2)2%y for some 0 <
z,y < t such that 2z + (k — 2)y < w. It follows that A, .(Sk) < 22(w —
2x) which, subject to the constraints 0 < x < ¢, is maximised when x =
min{t, w/3}. The result follows. O

Lemma 2.12. Let w,t >0, m > w/4t and k > 3. Then
Aot (Sk) < Awe(mK
wt(Sk) < Aw(mKy™).

Proof. By Lemmas 2.10 and 2.11 we have the following: If w < 3t then
Awt(Sk) < w3/27, )\w7t(mKi3)) = w3/16 and so we're done. Suppose then
that w > 3t and let p = w/4t. We then have

Mt (Sk) < 4t° (u — ;) <4B(|p) + (1 — [1])?) = Aug(mEY).

The second inequality can be seen by letting x = u — |u] and noting that
:17—1/2§x3forx20. O

Lemma 2.13. Let w,t > 0 and let H be a 1-avoiding 3-graph. Then
3
m<a([g)+ (G- 15) )
Aug(H) < 4t ( w) T\ T lw

Proof. By Lemma 2.9 we may write H = H; U ... U Hg a disjoint union

where each H; is isomorphic to K f’), f’)* or Sy for some k > 1. It follows
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that
Awt(H) < Ay #(H1) + oo 4 A, t(Hs) (2.7)

for some w; > 0 satisfying ZZ w; < w. Note that Kf)f - Kf) and so

)\w,t(Kf)_) < )\mt(Kf)) for all w,t > 0. Applying this observation and
Lemma 2.12 to (2.7) gives, for m; suitably large,

Mot (H) < Ay e (mi KDY + o4 Mt (ms K5Y) < Ay (mE )
where m = . m;. The result now follows from Lemma 2.10. O

We are now in a position to address one of the main results of this chapter.

Proof of Theorem 2.1. If r = 3, setting w = t = 1 in Lemma 2.13 tells us
that A\(H) = A1(H) < 1/16 which is the desired bound. Assume therefore
that r > 4. By Theorem 2.5 there exists X € (‘i(g)) and s < 1/(r — 3) such

that
r—4

T'A(H) < 6)\1—(7‘—3)8,5(H(X)) H(l - 28) :

i=1

As H is an (r — 2)-avoiding r graph, H(X) is a l-avoiding 3-graph. By
Lemma 2.13

M- (r3)s,s(H(X)) < 48°([p) + (1 = |1])?)

where = (1 — (r — 3)s)/4s. Combining the above two inequalities yields

r—4

FINCH) < 245% (] + (u — a))®) [T = is) = £:(s).

i=1

To complete the proof it suffices to show that f,.(s) attains its maximum
value over the interval (0,1] at s =1/(r+1) for r = 4,5,6 and 7. The proof
of this is left to the Appendix (Claim A in Section A). O

2.4 The Generalised K,

In this section we prove Theorem 2.2 showing how the above results can be

used to compute the Turan density of ICY) forr = 3,4,5,6 and 7. First let us
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recall a result from our introductory discussion of hypergraph Lagrangians
in Chapter 1 (Section 1.2.1). Recall that we say that an r-graph H covers
pairs if every pair of vertices in H is contained in some edge of H. For an
r-graph F', letting C(F') be the set of all F-hom-free r-graphs that cover
pairs, recall that

m(F) = sup rI\(H). (2.8)
HeC(F)

Proof of Theorem 2.2. The lower bound W(ICY)) > 7!/(r + 1)~ can be

established by observing that blowups 7E?l(m) of the complete r-graph on

(r + 1) vertices are ICY)—free. Indeed consider a pair of edges in Kﬁ?l (m)

intersecting in exactly r — 2 vertices. This pair of edges spans r + 2 vertices

and so two of those vertices must lie in the same vertex class of Kﬁ)l(m)

But then this pair of vertices cannot be contained in an edge K£T+)1 (m)
(r) :

whereas K’ covers pairs.

Suppose now that H is a Kflr)-free r-graph that covers pairs. By (2.8) it

suffices to prove that A(H) < 1/(r + 1)"=1. Suppose for contradiction
that A(H) > 1/(r + 1)1 then by Theorem 2.1 we can find e, f € E(H)
such that [eN f| =r —2. Let e = {z1,...,2,} and f = {y1,y2,23,...,2,}
where z; # y; for i,j € {1,2}. H covers pairs so for 4,5 € {1,2} we may
find zjj1,...,2ij(r—2) € V(H) such that {z;,y;, zij1, - - -, Zijr—2)} € E(H). It

(r)
4

follows that H contains a homomorphic copy of ; ’, a contradiction. [

2.5 (r —2)-avoiding r-graphs for large r.

In this section we prove Theorem 2.3 determining the order of the maximum
Lagrangian attained by an (r — 2)-avoiding r-graph (as a function of r).
Theorem 2.3 shows that for large r, the complete graph K 79_21 is exponentially

far from being optimal.

First we need to define the notion of a Sidon set.

Definition 2.14. Let n be a positive integer. We say that A C Z, is a

Sidon set if all the ordered sums x + vy, where x,y € A are distinct.
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A simple counting argument shows that a Sidon subset A C Z, can have
cardinality at most v/2n (indeed we have (‘é') + | A| ordered sums and they
must all be distinct so that ("g') + |A] < n). A construction of Singer [81]
shows that there exist Sidon subsets of Z,, with the same order of magnitude

as this upper bound:

Proposition 2.15. There exist Sidon subsets of Z,, of cardinality
(1 —o(1))vn.

Proof of Theorem 2.3. First we show that the Lagrangian of any (r — 2)-
avoiding r-graph must be O(ﬁ). This follows easily from the proof of
Theorem 2.1: As in that proof, if H is an (r — 2)-avoiding r-graph (r > 4)
then there exists a 0 < s < 1/(r — 3) such that

r—4
rIN(H) < 248 ([p) + (= 1)) [T (1 —is) (2.9)
i=1
where p = (1 — (r — 3)s)/4s. Using the inequality |[p] + (u — [p])® < p in
(2.9) yields

r—3

-2

rINH) < 652H(1 —is) < 6s° exp{—s<r 5 >} (2.10)
i=1

where for the last inequality we use that 1 —x < e™ for x € R. Considering

the right hand side of (2.10) as a function of s > 0 we see that it is maximised

when s = 2/ (’;2) and so

24
ANH) < —— .
e2rl("52)

For the lower bound we construct an (r — 2)-avoiding r-graph whose La-
grangian matches the upper bound up to a constant factor. Fix a positive
integer n to be determined later. Let A C Z, be a Sidon set and for each
k € [n] define the hypergraph Hy = (A, E}) where

Ek:{ee<f>:zvzk (modn)}.

vee
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Note that since A is a Sidon set Hy is (r — 2)-avoiding for each k. More-
over the sets Eq,..., FE, form a partition of (f) and thus by the pigeonhole

= (1)

for some j € [n]. Let m := |A| and let H := H;. Recalling the definition of

principle we must have

the Lagrangian we have

iz () (M) ETT(-E) e

By Proposition 2.15 we may choose m = (1 + o(1))y/n. Since we have not

yet specified n we may now do so implicitly by setting m = (r —1)2. Making
these substitutions into (2.11) yields

r—1 ;
ANH) > (1+ 0(1))% 11 <1 - (r—zl)?>
i=1

(=)
(1 +0(1)) (1 - (r_11>>

>
= (1+o0(1)——
(14 of ))67"4?”!
where we have used the fact that (1 —1/r)" — e~! as r — oo. O

We end this chapter with some suggestions of possible avenues for further

research.

It would be interesting to investigate at which point the complete graph
K£Q1 ceases to maximise the Lagrangian over (r — 2)-avoiding r-graphs.
As mentioned in Section 2.1, Kﬁr) (i.e. a single hyperedge) maximises the
Lagrangian over all (r — 1)-avoiding r-graphs for r = 2, 3, 4 after which more
interesting extremal structures begin to appear. Frankl and Fiiredi [42] show
that for r = 5,6 the maximum Lagrangian over all (r — 1)-avoiding r-graphs

is attained by the Steiner systems S(11,5,4) and S(12,6,5) respectively.

The construction based on Sidon sets in the proof of Theorem 2.3 is an

example of a partial Steiner (n,r,r — 2) system (i.e. an r-graph H on
V(H)
2

o ) is contained in at most one

n vertices in which every element of (

hyperedge). Note that being a partial Steiner (n, r, r—2) system is a stronger
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condition than being (r — 2)-avoiding. Theorem 2.3 suggests that for r > 7,
a Steiner system S(n,r,r —2) would be a good candidate for maximising the
Lagrangian over (r—2)-avoiding r-graphs if n is relatively small compared to
r. However, to the author’s knowledge no such Steiner systems are known
to exist. Of course for r fixed and n large, Steiner (n,r,r — 2) systems
are known to exist due to the breakthrough work of Keevash [59] on the

existence of designs.

A natural generalisation of a Sidon set is the notion of a Bp-set. For an
integer h > 2, a subset A of an abelian group is called a Bp-set if all
unordered sums aj + ...+ ap, where a; € A are distinct. It is known [11]
that for fixed h, there exist Bj-sets in Z, with size at least (1 + o(1))n!/".
Mimicking the construction in the proof of Theorem 2.3, but with the Sidon
set replaced with such a By,-set (for some h < r), yields a a partial Steiner
(n,r,r — h) system whose Lagrangian is Q(%) It would be interesting to
investigate whether this is within a constant of the maximum Lagrangian
attained by an (r — h)-avoiding r graph for fixed h and large r. In [42] it
is shown that this is the case for h = 1 and Theorem 2.3 shows that it also
holds for h = 2.
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This chapter is based on joint work with my supervisor Jozef Skokan.

3.1 Introduction

Recall that for graphs G1,Ga, ..., Gk, the Ramsey number R(Gy,...,Gy)
is the least integer N such that any colouring of the edges of the complete
graph K on N vertices with k colours contains a monochromatic copy of
G; in the i-th colour for some 7, 1 < i < k. In the case where G1, ..., G} are
all isomorphic to the graph G, we call R(G1,...,Gy) the k-colour Ramsey
number of G and denote it by Ri(G).

In Section 1.3, we surveyed some classical results in Ramsey theory focusing
on the Ramsey numbers of complete graphs. Recall that R(¢) denotes the
Ramsey number R(Ky, K;) and recall the bounds 2¢/2 < R(t) < 4'. Despite
considerable effort over the past 80 years, the bases in the exponent in both

of these bounds has not been improved.

This inertia has motivated the study of Ramsey numbers of graphs with a
‘simpler’ structure, where the problem may be more tractable. In this spirit,
there has been a large body of research dedicated to the study of Ramsey
numbers of graphs that are sparse in some sense (e.g. they have bounded
maximum degree). The path on n vertices P, and the cycle on n vertices
C,, are particularly simple examples and were some of the earliest subjects
in the study of Ramsey numbers of sparse graphs. Formally, P, is the graph
on vertex set [n] and edge set {{i,j} :j—i = 1} and C), is the graph on
vertex set [n] and edge set {{i,j}:j—i=1 (mod n)}.

An early success in the Ramsey theory of sparse graphs was a result of
Gerencsér and Gyérfas [47] from 1967 who showed that for all n > m > 2

R(Py, P) = n+ {%J .

We highlight the fact that here the Ramsey number is determined exactly
in stark contrast to the results of Section 1.3. The behaviour of the Ramsey
number R(C,,,C,,) has been studied by several authors, including Bondy
and Erdés [10], Faudree and Schelp [34], and Rosta [75], and is now fully
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determined. For example it is known that

2n —1, ifn >5is odd,
R(C,,Cy) = (3.1)
3n

5 —1, ifn>61is even.

Results such as these that exactly determine R(G1,G2) for a pair of graphs
G1, Gy are by now fairly plentiful. See Radziszowski [58] for an excellent
survey of such results. However, in the case where more than two colours
are involved such results are still rather rare. Again, cycles and paths serve
as natural starting points. Gyérfas, Ruszinkd, Sarkézy and Szemerédi [50]
showed that for n sufficiently large

2n — 1, if n is odd,
R(P,,P,, P,) = (3.2)

2n — 2, if n is even.
Benevides and Skokan [5] and Kohayakawa, Simonovits and Skokan [61]
showed that for n sufficiently large

4n — 3, if n is odd,
R(C,,Cy, Cy) = (3.3)

2n, if n is even.

Both (3.2) and (3.3) were established by the regularity method pioneered by
Luczak which we will return to shortly. The only non-trivial class of graphs
for which the k-colour Ramsey number is exactly determined for arbitrary k
is that of matchings. Letting m P, denote a matching of m edges, Cockayne

and Lorimer [18] showed that for m; > ... > my we have

¢
R(mlpg, N 7mgP2) =mq + 1+ Zml
=1

In this chapter we address the following conjecture attributed to Bondy and
Erdés [10].

Conjecture 3.1. If k> 2 and n > 3 is odd then

Ri(Cp) =281 (n — 1) + 1.
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Note that the conjecture deals specifically with the case where n is odd. Odd
and even cycles behave rather differently in this context due to the fact that
an even cycle is bipartite whereas an odd cycle is not (note the dichotomy
in (3.1) and (3.3)). Erdés and Graham [33] proved the bounds

2F"1(n — 1) +1 < Ri(Cy) < (k4 2)!n, (3.4)

for all £k > 2 and all odd n > 3. In this chapter we show that for fixed k and

n large, the lower bound is correct.

Theorem 3.2. For any fized k > 2 and odd n sufficiently large,

Ri(Cp) =28"1(n — 1) + 1.

We therefore resolve Conjecture 3.1 for large n. We will in fact prove a
stability-type strengthening of this result (see Theorem 3.4 below). Recently
Day and Johnson [26] showed that in the opposite regime, where we fix an
odd n and let k be sufficiently large, one in fact has Rx(Cy) > (n —1)(2 +
)*=1 for some £ = £(n) > 0, and so Conjecture 3.1 is false when n is small
with respect to k. The qualification that n is sufficiently large in Theorem 3.2
is therefore necessary, however due to the use of compactness arguments in
the proof, we obtain no effective bound on how large n must be with respect

to k.

In view of Theorem 3.2, let us call a k-colouring of the complete graph on
2k=1(n — 1) vertices which does not contain a monochromatic copy of Cy, an
extremal k-colouring. The lower bound in (3.4) was established by observing
that one can naturally construct extremal k-colourings by induction. Indeed
if there exists a k-colouring of the edges of the complete graph K, with no
monochromatic Cp,, then by joining two such copies of K, by edges of colour
k 4+ 1, one obtains a (k + 1)-colouring of Ky, with no monochromatic C,,
(here we use that C), is non-bipartite). The base construction, for k =
1, is simply a monochromatic clique of size n — 1. It was believed that
all extremal k-colourings come from such a doubling argument. We show
that this is not the case, providing a classification of extremal k-colourings
which exposes a surprising correspondence between extremal k-colourings

and perfect matchings in the k-dimensional hypercube Q.
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The first breakthrough towards Conjecture 3.4 was made by Luczak [65] who
used the regularity method to show that the k£ = 3 case holds asymptotically
i.e. that for n odd,

R(Cy,Cp,Cp) = 4n+ o(n) as n — oc.

Luczak’s method of applying regularity in this setting has proven extremely
fruitful (see e.g. [38, 50, 61, 65, 66]) and has since become a standard tool.
We will come to describe the method in more detail as we make crucial use

of it in this chapter.

Building on Luczak’s ideas, Kohayakawa, Simonovits and Skokan [61] paired
the regularity method with stability arguments to resolve Conjecture 3.1 for
k = 3 and n large. The case where k£ > 4 remained open. Progress was
made by Luczak, Simonovits and Skokan [66] who showed that for & > 4
and odd n,

Ri(Cy) < k2Fn 4 o(n) as n — oco.

To conclude this section we give a broad overview of the proof method of
Theorem 3.2. Let G,, denote the (finite) set of all k-coloured cliques with
no monochromatic copy of C,. Determining Ry(C),) is then equivalent to
determining the maximum number of vertices an element of G, can have.
Using the regularity method, we relate this problem to finding the maximum
£1-norm of an element in a certain compact subset S of R3". This allows us
to import analytic tools in support of our proof. The relation is such that
maximal elements of S correspond to maximal elements of G, i.e. extremal
k-colourings for Theorem 3.2. Moreover by classifying the extremal points
of § we can classify the extremal k-colourings and prove a stability type
strengthening of Theorem 3.2, generalising the main result from [61]. We
show that each perfect matching of the hypercube @y gives rise to a class of
extremal k-colourings. On the other hand, any extremal k-colouring must
be ‘close’ to one such construction. We defer precise statements to Section
3.2. The number of essentially different classes of extremal k-colourings is
equal to the number of equivalence classes of perfect matchings in ) with
respect to its automorphism group and this number is doubly exponential

in k. Such a plethora of extremal constructions is usually forbidding when
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trying to establish stability type results, we believe that the fact we can

overcome this obstacle is largely down to our analytic perspective.

Before continuing, let us collect some notation and terminology that we use

throughout this chapter.

Let W = wowy ... wyp be awalk in G (that is a sequence of vertices wo, . .., wy
such that w;w; 1 is an edge of G for all i < ¢). If all of the w; are distinct
then we call W a path of length ¢ (so that P, is a path of length n —1). We
may also refer to W as a wowg-path to distinguish its endpoints. If all the
w; are distinct except wy = wy then we call W a cycle of length £. We will
also concatenate walks in the natural way. For example if U = ug ... uy, is a
walk in G such that u,, = wg, we let UW denote the walk ug ... u,wi ... wy.
If z is a vertex such that wyx is an edge of G then we let Wz denote the

walk wq ... wyz.

A k-coloured graph is a graph G = (V, E) equipped with some function
¢ : E — [k]. Furthermore, for i € [k], we let G; denote the subgraph
(V, o~ Hi}) of G. We call G; the ith colour class of G.

A digraph D = (V, A) consists of a set of vertices V and aset A C V2 i.e. a
set of ordered pairs from V which we call directed edges. For v € V' we let
d " (v) denote the size of the set {u : (v,u) € A} and call d*(v) the outdegree
of v. Similarly we define the indegree of v as d~(v) = [{u : (u,v) € A}|.

For z € R? we let ||z denote the £1-norm of z i.e. |z| = Z?:l‘xi|‘ Fur-
thermore, given € > 0, we let B.(z) := {z € R?: ||z — z| < ¢}, the open ball
of radius ¢ centred at z. We let supp(z) denote the support of z i.e. the set
{i € [d] : z; # 0}.

In the statements of theorems and lemmas it will be useful to use the no-
tation @ < [ to mean that there is an increasing function «(z) so that
the statement is valid for 0 < a < a(f). When we need to refer to this
function at a later stage, we include the number of the lemma (or theorem)
the function appears in as a subscript. For example, 03.4¢(x) denotes the

implied function é(x) from Lemma 3.46.
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3.2 A Graph Decomposition, Extremal Colourings
and Stability

In this section we describe the extremal colourings and give precise state-
ments of the stability results discussed in Section 3.1. We also introduce
some key concepts and results that will be used throughout the chapter and
give a more detailed overview of our proof methods. We begin by introducing
a way of decomposing an arbitrary k-coloured graph. This decomposition
will play a central role for us and is similar to a decomposition introduced
in [66].

3.2.1 A Graph Decomposition

Let G be a k-coloured graph. For each i € [k], we write G; = G,UG, where
G, is the union of the bipartite components of G; and G is the union of the
non-bipartite components of G;. For each i € [k], write V(G}) = V§ U V¢
where V§ and V}' are the vertex classes of a bipartition of G} and set V! =
V(GY). For 7 € {0,1, %}, let V, = ﬂle V%. and note that

V(G) = U V;, a disjoint union.
7€{0,1,%}*
We call (V; : 7 € {0,1,%}*) a profile partition of G and we call the corre-
sponding vector (|V;|: 7 € {0,1,*}*¥) a profile of G. We will often denote a
profile of G by z(G). Note that G may admit multiple profile partitions since
we made an arbitrary choice in choosing the bipartition V(G}) = V§ U V¢
for each i € [k].

3.2.2 Extremal Colourings and the Hypercube

For k € N, we let Q3 denote the k-dimensional hypercube i.e. the graph
on vertex set {0,1}* and edge set consisting of pairs differing in exactly
one coordinate. It will be useful to think of an element 7 € {0,1,*}* as a

subcube of the k-dimensional hypercube Qi via the correspondence
74 Q1) = {ce{0,1}:¢; =15 if 1; € {0,1}}.
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In other words we think of a coordinate j where 7; = * as a ‘missing bit’ and
let Q(7) be the set of all possible ways of filling in these bits. For example,
if k =3 and 7 = (0, , *) then

Q(r) ={(0,0,0),(0,0,1),(0,1,0),(0,1,1)}.

We define the weight of 7 to be the size of the set {i € [k] : 7, = %} (i.e. the
number of missing bits) and denote it by w(7). Note that |Q(7)| = 2*(). In
the language of the hypercube, w(7) is the dimension of the subcube Q(7).
In particular if w(7) = 1, then we think of Q(7) as an edge of Q.

We can now describe a class of extremal k-colourings in terms of perfect
matchings in Q. Let M be a perfect matching of QQr. We express each
edge of M as an element (of weight 1) of {0,1,*}*. Let G = Ky where
N = 281(n — 1) and let V(G) = U, V- be a partition of V(G) where
Vx| = n—1for all 7 € M. For each 7 € M, colour all edges in G[V;]
with the colour ¢, where ¢ is the coordinate for which 7; = %. For 7,0 €
M, arbitrarily colour the edges between V. and V, with any colour j for
which {o;,7;} = {0,1} (i.e. edges 7,0 lie in opposite subcubes of Q) of
codimension 1 separated by the jth coordinate). It follows that each colour
class of such a colouring is the disjoint union of cliques of size n — 1 and a
bipartite graph and therefore contains no monochromatic copy of C,. We
call such a colouring a hypercube colouring with clique size n— 1. See Figure

3.1 for an illustrated example.

If we inductively construct a perfect matching on @Q; by taking two perfect
matchings on a disjoint pair of subcubes of codimension 1 and consider
the associated hypercube colouring, we recover the inductive colourings of
Erdds and Graham [33] described in Section 3.1. However, for & > 4, not
all perfect matchings of Q)i decompose as the union of two matchings on
a pair of codimension 1 subcubes, and so we obtain some genuinely new
colourings (an example of which is depicted in Figure 3.1). In particular, a
novel feature that appears for k > 4 colours is that there exist extremal k-
colourings that contain monochromatic cliques of size n — 1 in all k£ possible

colours.
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(%,0,0,0) (,1,1,1)

/IR
VK \/ X
KR
N7

!

(1,1,0,%) (0,1,0,%)

(1,0,,1)

(1,%,1,0) (0,0,%,1)

Figure 3.1 An extremal colouring for Theorem 3.2 in the case k = 4. Each
node represents a clique of size n — 1 and is labelled by an edge of Q4 where a ‘*’
corresponds to the coordinate which changes across the edge. Each coordinate is
associated with a colour and the position of the ‘x’ determines the colour of each
clique. Edges between cliques labelled 7,0 are coloured arbitrarily with colours j
for which {r;,0;} = {0,1}.

3.2.3 Stability

In this subsection we state a theorem to the effect that the hypercube colour-
ings considered in the previous subsection are the only extremal k-colourings
for our problem. Moreover we assert that almost extremal colourings are in

some sense ‘close’ to a hypercube colouring. Let us make this more precise.

Definition 3.3. Let G and H be k-coloured graphs with V(H) C V(G).
Let € > 0, then we say that G is e-close to H if |G;AH;| < ev(G)? for all
i€ k]

Informally we may say that G and H as above are close in edit distance. We

may now state the main result of this chapter.

Theorem 3.4. Let k > 2, let % L n<Ke<Kl1, where n is odd, and let
N > (281 —n)n. Then if G = Ky is k-coloured with no monochromatic
copy of Cy, then N < 28=1(n — 1) and there exists a hypercube colouring H
such that G is e-close to H.

Note that Theorem 3.2 follows as an immediate corollary. The k = 3

case of Theorem 3.4 was proved in [61] where the two classes of colour-
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ings the authors consider can be viewed as the colourings that arise from
the two isomorphism classes of perfect matchings in (J3. An interesting
feature of Theorem 3.4 is that it deals with a wide variety of extremal
colourings. Indeed if M7 and My are perfect matchings of @ that lie in
distinct equivalence classes under the action of the automorphism group
of @i, then there are hypercube colourings associated to M;j that are
not isomorphic to any hypercube colouring associated to My. It is also
interesting to note that even though we can prove a stability statement
around hypercube colourings, the structure of these colourings is not well
understood. This is simply due to the fact that the structure of perfect
matchings in the hypercube is not well understood. Indeed, even enumer-
ating the perfect matchings (or their equivalence classes) in Q is a well-
studied and difficult problem. Let f(k) be the number of equivalence classes
of perfect matchings in Q. It is clear that f(3) = 2 and so we ob-
tain two essentially different extremal 3-colourings as in [61]. Graham and
Harary [48] showed that f(4) = 8 and recently Ostergard and Pettersson [69]
determined (with a large amount of computer time) f(5), f(6) and f(7).
The function f(k) grows rather rapidly; it is amusing to note that already
f(7) = 607158046495120886820621 and so we have this many essentially dif-
ferent classes of extremal 7-colourings. It was shown in [17] that the number
of perfect matchings in Qy is [(1+0(1))k/e]2""" (although this result in fact
follows from a theorem in [64, p.312]). Since the automorphism group of Qy
has size k12 it follows that f(k) = [(1 + o(1))k/e]** " also.

3.2.4 Proof of Theorem 3.4: An Overview

Luczak’s application of the regularity method, discussed briefly in the intro-
duction of this chapter, plays a central role in our proof. We include an in-
formal discussion of the method here, deferring details until later. Those
unfamiliar with the regularity method may skip this subsection and wait for

the formal discussion in Section 3.7. We start with a definition.

Definition 3.5. Let F' be a connected graph whose largest matching sat-
urates m vertices, then we call F' a connected matching of order m. We

distinguish a particular matching of largest size Mg in F and refer to an
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edge of M as a matching edge of F'. If in addition F is non-bipartite, we

call F' an odd connected matching of order m.

The idea behind Luczak’s application of the regularity method is as fol-
lows. Suppose that G is a k-coloured complete graph on N vertices. Let
G1,...,GE be its colour classes. We apply the multicolour version of the
Regularity Lemma [83] and obtain a regular partition of the vertex set V (G)
into t + 1 classes V(G) = Vhp U ... UV;. We construct an auxiliary graph
R with vertex set 1,...,t and the edge set formed by pairs {i, 7} for which
(V4,V;) is regular with respect to G1,...,Gy. We colour each edge {i,;j} in
R by the majority colour in the pair (V;,V}). The crucial point is that if R
contains a monochromatic odd connected matching of order greater than m,
then G contains a monochromatic cycle Cy where ¢ can take essentially any
odd value smaller than mN/t. It follows that if G contains no monochro-
matic copy of C),, then R cannot contain a monochromatic odd connected
matching of order larger than nt/N. The advantage of this perspective is
that forbidding a large connected matching is far more restrictive than for-
bidding a cycle of a given length. Indeed a cycle is itself an example of
a connected matching, and so if a graph contains no connected matching
of order greater than m then it contains no cycle of length greater than m.
The following theorem of Erdds and Gallai [32] shows that this is a very

strict condition.

Theorem 3.6. Let m > 3. If G is a graph which contains no cycle of length
greater than m, then e(G) < m(v(G) —1)/2.

The price one pays is that R is not a complete graph, however it can be
chosen to be as dense as one likes. We are now able to state a theorem that
is a major stepping stone toward the proof of Theorem 3.4. (Recall that || - ||

denotes the ¢1-norm).

Theorem 3.7. Let k > 2 and let % K IdKekl, wheren is odd. If G is a
k-coloured graph with v(G) = 2¥~1n and e(G) > (1—6) (”(QG)) containing no
monochromatic odd connected matching of order > (1 + §)n, then for any

choice of profile x(G) of G, there exists a hypercube colouring H with profile
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x(H) satisfying
[2(G) — z(H)| < en.

The proof of Theorem 3.7 occupies the majority of this chapter. In the
final section we show how Theorem 3.4 follows from Theorem 3.7 via com-
binatorial stability arguments and the regularity method. The outline of
the proof of Theorem 3.7 is as follows. Let G be as in the statement of
Theorem 3.7 and let z(G) denote a profile of G. Our starting point is to
translate the combinatorial constraint of containing no large monochromatic

odd connected matching into an analytic constraint on x(G) of the form
F(a(G)) <0, (3.5)

where F' is a quadratic form which we derive in the next section. We then
view (3.5) as a constraint in an optimisation problem where we wish to
maximise the objective function ||z(G)||. Recalling that ||z(G)| = v(G),
we get a corresponding upper bound on the order of G. It turns out that
optimal solutions to this optimisation problem correspond to the profiles
of hypercube colourings. Solving the optimisation problem is the subject of
Sections 3.4 and 3.5. In Section 3.6 we use compactness arguments to show
that almost optimal solutions must be close in ¢1-norm to the profile of a
hypercube colouring. We then translate this analytic stability into the more
combinatorial stability statement of Theorem 3.7. Note that Theorem 3.7
will be applied to a reduced graph like the one described above. The focus
of the final section is to show that if the profile of this reduced graph is close
in £1-norm to the profile of a hypercube colouring, then the original graph

is close in edit distance to a hypercube colouring.

3.3 Deriving the Analytic Constraints

Given a k-coloured graph G, we will show how to translate the combinatorial
constraint of containing no large monochromatic odd connected matching

into an analytic constraint on the profile of G.

From here on, throughout the chapter, we let £ > 2 be a fixed integer. Let G
be a k-coloured graph. First we distinguish between two types of edges of G.
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If e € E(G) is coloured with the colour j and lies in a bipartite component
of Gj then we call e a bipartite edge. We call e non-bipartite otherwise.
Let (V; : 7 € {0,1,%}F) be a profile partition of G. We make two simple

observations regarding the profile partition of a k-coloured graph.

Observation 3.8. If e € E(G) is a bipartite edge of colour j then it must
have endpoints in parts Vi,V for some 7,0 € {0,1,*}* such that 75 =0

and o; = 1.

Observation 3.9. If e € E(G) is a non-bipartite edge of colour j then
it must have endpoints in parts V;,V, for some (not necessarily distinct)

7,0 € {0,1,*}* such that T = 0j = *.

This motivates the following definitions.

Definition 3.10. We say that o, 7 € {0,1,*}* are distinguishable if {o}, 7;} =
{0,1} for some j € [k]. We say that o and T are indistinguishable otherwise.

Definition 3.11. If 0,7 € {0,1,*}* are such that either (i) o, are distin-
guishable or (ii) o; = 1; = * for some j € [k|, then we say that o and T are

compatible. We say that o, 7 are incompatible otherwise.

Viewing elements of {0,1,*}* as subcubes of Qj, we may reinterpret these

definitions as follows.

Lemma 3.12. Let o,7 € {0,1,%}¢. Then o,7 are distinguishable if and
only if Q(7) N Q(c) = 0. Furthermore, o, are incompatible if and only if

Q) NQ(o) = 1.
Proof. By the definition of the sets Q(7),Q(c) we have
Q(T)NQ(0) = {c € {0,1}F : ¢; = 7 if 7; € {0,1} and ¢; = 0 if 0 € {0,1}}.

This is empty if and only if there exists a j € [k] such that o, 7; € {0,1} and
o; # 7j i.e. if and only if o, 7 are distinguishable. Let T' = {i € [k] : 0; =
7 = *}. If 0,7 are indistinguishable then we see that |Q(7) N Q(c)| = 2/71.
Therefore, |Q(7) N Q(o)| = 1 if and only if 0,7 are indistinguishable and

T = i.e. 0,7 are incompatible. O
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From now on, we let

1 k
A= {{0, T} E <{O’ 2’*} ) : 0,T are distinguishable} .

It will also be convenient to make the following definition.

Definition 3.13. Let o > 0 and let G be a graph such that e(G) > 04(”(20)).

Then we say that G is a-dense.

This next proposition provides the link between our combinatorial prob-
lem and a problem in nonlinear optimisation. (Recall the definition of a

connected matching, Definition 3.5).

Proposition 3.14. Let C > 1, 0 < § < 1 and let n > 1/6. Suppose
that G is a (1 — §)-dense, k-coloured graph with v(G) = Cn, containing no
monochromatic odd connected matching of order > (1 4+ 0)n. Let x be a
profile of G and let v = x/n. Then the following hold:

2

Z vy | —2 Z VgUr — Z w(r)ngékCQ.

7€{0,1,x}Fk {o,7}EA 7€{0,1,%}F
2. v, < 1+ 2V6C whenever w(t) = 1.

3. vrvs < 20C? whenever o and T are incompatible.

Proof. Let us first remind ourselves of the graph decomposition discussed
in Subsection 3.2.1. For each i € [k], we write G; = G; U GY, where G/ is
the union of the bipartite components of G; and G is the union of the non-
bipartite components of G;. For each i € [k], write V(G%) = V§ UV} where
Vi and Vi are the vertex classes of a bipartition of G and set V! = V(GY).
For 7 € {0,1,%}*, set V, = ﬂlevﬂj Let 2 = (|V;| : 7 € {0, 1, %}¥) be the
profile corresponding to this partition. Let N = v(G) and note that

N= > . (3.6)

7€{0,1,%}k
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It follows from Observation 3.8 that the number of bipartite edges in G is at
most y {(o;7}eA ToTr. Letting ey denote the number of non-bipartite edges

in G we therefore have that

ep > e(G) — Z ToTor- (3.7)

{o,7}EA
Since N > 1/4, we have
N N?
e(G) > (15)(2) > (1—25)7. (3.8)
Combining (3.6), (3.7) and (3.8) gives
2
1 2
ep > 3 Z zr | — Z Tolr — ONZ. (3.9)
7€{0,1,%}k {o,7}EA

We now find a corresponding upper bound for ey. Recall that for 7 €
{0,1,*}*, the weight w(r) of 7 is defined to be the size of the set {i € [k] :

Ti = *}.

By assumption, for each i € [k], every connected component of G7 has no
matching on (1 + d)n vertices and so in particular G/ has no cycle of length
greater than (1 4 d)n. The Erdés-Gallai Theorem, Theorem 3.6, therefore
implies that

o(G) < (1+0)5|Vi] (3.10)

Observe that
vi= Y e (3.11)
{re{0,1,5} k7 =x}
Since each non-bipartite edge of G belongs to E(GY) for some ¢, (3.10) and
(3.11) provide the upper bound

k k
" n i n
eo < ZB(G” < (L+4)3 Z\v*y =(1+05 Y we.  (312)
i=1 =1 T€{0,1,x}*
Since w(7) < k for all 7 € {0, 1, *}* by definition, (3.6) and (3.12) imply the
bound

1 n
e < iénkzN—{— 3 Z w(T)z,. (3.13)
7€{0,1,%}k
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Recall that v = z/n. Comparing the bounds (3.9) and (3.13) and scaling
the resulting inequality by 2/n? yields

2

Z v | —2 Z VeUr — 20C% < Z w(T)vr + 0kC.

7€{0,1,%} {o,7}EA 7€{0,1,%}*

This establishes (1). Notice that if 7 € {0,1,*}* is such that w(r) = 1,
then G[V;] is monochromatic with all edges non-bipartite by Observations
3.8 and 3.9. G[V;] therefore contains no cycle of length greater than (1+9)n
and so by Theorem 3.6 and the fact that G has at most ¢ (g ) edges missing

(5)-9(3) =elemd < a+ o3,

It follows that
v2 < (1+26)v, + 602,

from which (2) follows. Finally, let us note that by Observations 3.8 and
3.9, if 0,7 are incompatible, then there can be no edges lying between V,

and V. Since G has at most 5(1;7 ) edges missing we must then have
Tl < 20N 2

(note that this inequality also accounts for the case where o = 7) and so (3)

follows.

O]

Given a graph G its profile lies in the space R{014}* which we will denote
by R*. In view of Proposition 3.14 we define the function F': R* — R by

2

F(x) = Z x| —2 Z Tolr — Z w(T)zs.

7€{0,1,x}* {o,7}eA 7€{0,1,%}k
Let us also define the following subsets of R*.
X (5): For v > 0, let X(v) denote the set of elements z € R* satisfying;:
(X1) F(z) <«
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(X2) z; <14~ whenever w(r) = 1.
(X3) z;z, < whenever o and 7 are incompatible.

(X4) zr >0 for all 7.

Now let G be as in the statement of Theorem 3.7 and let x be a profile of
G. By the above proposition we have z/n € X (v/0k2%) whereas we also
have ||z|| = 2¥~'n. We will show that for ¢ small, this means that z/n is
an element of almost maximal norm in X (v/6k22%). We will also show that
elements of large norm in X (v/0k22%) have a very specific structure (in fact
they resemble the profile of a hypercube colouring) and so this imposes a
lot of structure on z. For now we focus our attention on the set X (0) which
we denote simply by X. Later on, we use compactness arguments to relate

properties of X and X () for v small.

Our next goal is to classify elements of maximal ¢;-norm in X. To describe

these elements we need a definition.

Definition 3.15. Call a set A C {0,1,x}* distinguishable if every pair of
distinct elements of A are distinguishable and also w(r) > 1 for all T € A.

The requirement that elements have weight at least 1 is for notational con-
venience later in the chapter. Viewing elements of {0, 1,*}* as subcubes of
Qpr, a distinguishable set is simply a collection of disjoint subcubes of @
(of dimension at least 1). If this collection covers the whole cube we give it

a special name.
Definition 3.16. Call a distinguishable set A C {0,1,*}* a decomposition
if Urea@Q(7) ={0,1}%.

Let us quickly record a simple result concerning distinguishable sets which

will become useful later.

Lemma 3.17. Let D C {0,1,+}* be a distinguishable set. Then

Z 2w(7’) < 2k’

T€D

with equality if and only if D is a decomposition.
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Proof. This is simply the observation that a distinguishable set D is a col-
lection of disjoint subcubes of @) and so the sum of their sizes ) _p 2¢(7)
is bounded by the size of Q). Moreover we have equality if and only if these

subcubes cover all of @y i.e. D is a decomposition. O

We define the following subset of R*.

O: Let O denote the set of elements © € R* satisfying:

(O1) supp(zx) is a decomposition where w(7) =1 or 2 for all 7 € supp(x).

(02) For all 7 € supp(x), if w(r) = 1 then x; = 1 and if w(7) = 2 then

T, = 2.

It is easy to check that O C X. The next proposition asserts that O is the

set of elements of maximal ¢;-norm in X.

Proposition 3.18. If z € X, then ||z|| < 28! with equality if and only if
xz € 0.

We note that the ‘if’ statement in the above proposition is immediate. In-

deed if 2 € O then supp(z) is a decomposition so that }- .., ow(T) = ok

by Lemma 3.17. Moreover 2¥(7) = 2z for all 7 € supp(x) by (02).

Definition 3.19. If z € X is such that ||z| = sup,cx/||z|| then we say that

x is an optimal point of X.

We note that since X is compact, optimal points of X exist. The proof of

Proposition 3.18 is split over the next two sections.

3.4 Compressions and a Spherical Constraint

In this section we make the first steps towards a proof of Proposition 3.18.
Broadly speaking we apply the combinatorial technique of ‘shifting’ or ‘com-
pression’ to transform the complicated nonlinear constraint in the definition
of X = X(0) into a spherical constraint which is much more amenable to
analysis. In Section 3.5 we apply optimisation tools to this transformed

problem. We begin with a simple lemma concerning elements of {0, 1, *}k .
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Lemma 3.20. If 0,7 C {0,1,*}* are indistinguishable and compatible and
w(T) =1, then Q(7) C Q(o). In particular if w(o) =1 also, then o = T.

Proof. Since o,7 are indistinguishable and compatible we have |Q(7) N
Q(o)] > 2 by Lemma 3.12. However, |Q(7)| = 2 and so it follows that
Q(1) CQ(o). If w(o) =1 also, then clearly Q(o) = Q(7) i.e. 0 =T7. O

Definition 3.21. Let © € R*. If all pairs of (not necessarily distinct) ele-

ments of supp(x) are compatible, then we say that x has compatible support.

Let us note that condition (X3) (with v = 0) in the definition of the set
X is simply the condition that elements of X have compatible support. In
particular, if z € X and 7 € {0, 1, *}k has weight 0, then z, = 0 since 7 is

not compatible with itself.

The following lemma establishes an important property of optimal points.
For 7 € {0,1,%}* we let e, € R* denote the standard unit vector whose

entries are all 0 except the entry labelled 7 which is 1.

Lemma 3.22. Let x € X be an optimal point then F(x) = 0.

Proof. Suppose for contradiction that F'(z) < 0. Assume first that there
exists 7 € supp(z) with w(r) > 2. By the continuity of F' we may choose
a > 0 small enough so that F(x + ae;) < 0. Let 2/ = z + ae,. Since
supp(z’) = supp(x) it is clear that 2’ € X. However, ||2/| = ||z| + a > ||z||

contradicting the fact that x is optimal.

We may assume then that supp(z) consists only of elements of weight 1 and
therefore is a distinguishable set by Lemma 3.20 and the fact that = has
compatible support. It follows from the definition of F' that

Fl@)= Y (a2 -2)<0,
TEsupp(x)
and so zr < 1 for some 7 € supp(z). As before there exists some o > 0
sufficiently small so that F'(z + ae;) < 0. Let 2/ = 2 + ae,. If we pick a
small enough so that . = 2, + «a < 1 also, then again we have 2/ € X with

|z'|| > ||z|| contradicting the optimality of x. O
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We now describe the transformations alluded to at the beginning of this
section. They will be of great use in simplifying our analysis of optimal

points of X.

Definition 3.23. Let x € R* and let m, p € {0, 1, *}k be distinct. We define

the (m, p)-compression of x, denoted z(w, p), as follows:

o Ifw(p) > 2, orifw(p) <1 and xr + xz, < 1, then let z(m, p) be the
vector x' with coordinates: x;. =0, z), = 2 + x, and . = v, for all

7€ {0,1,*}"\{x, p}.

o Ifw(p) <1 and zr +x, > 1 then let x(m,p) be the vector &’ with

; Col =
coordinates: T, = xx +x, — 1, x

{0,1, *}k\{ﬂv p}-

/

b = 1 and 2 = x; for all T €

If x(m, p) = x then we say that x is (m, p)-compressed.

Let x € X be an optimal point, we will be interested in instances where
x(m, p) is also an optimal point of X. We observe that if x € R* and
7, p € {0,1,%}* are distinct then ||z(7, p)|| = ||z||. However, if z € X then
it does not follow in general that z(m, p) € X.

For reasons that will become clear, we only consider (7, p)-compressions in
the case where m and p are indistinguishable. It will therefore be useful
to associate to each point z € X, the digraph D(x) = (V(z), E(x)) where
V(z) = supp(z) and

E(z) = {(m,p) : m, p are distinct, indistinguishable and z(m, p) € X }.

In particular if x € X is (7, p)-compressed, where 7 and p are distinct and
indistinguishable, then (m,p) € E(x). We draw attention to the fact that
edges of D(x) only occur between indistinguishable pairs. Conversely, the
following lemma shows that, when x € X is optimal, at least one edge occurs

between any indistinguishable pair in D(x).

Lemma 3.24. Let = € X be optimal and suppose that w,p € V(z), are
indistinguishable and distinct. Then one of the following holds:

(i) x is (m, p)-compressed, x, =1, w(p) =1, w(m) > 2 and (p,7) ¢ E(x),
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(ii) x is (p,m)-compressed, xr =1, w(mw) =1, w(p) > 2 and (7, p) ¢ E(zx),

(iii) (p,m) and (7, p) both lie in E(x).

Proof. Recall that

2

F(x) = Z zr | —2 Z Tolr — Z w(T)z s,

7€{0,1,%}* {o,7}EA 7€{0,1,%}k

where A is the set of unordered distinguishable pairs from {0, 1, *}*. Since
m, p are indistinguishable, the sum » {o,7}eA ToTr does not contain the term

z,xr. We may therefore express F'(z) in the form

2
F(z) = Z z, | — Az, — Bz, —C, (3.14)
7€{0,1,%}F

where A, B and C do not depend on z, or r and A, B > 0. Suppose that
A > B and let ' = z(m, p). Let us show that (7, p) € E(x) ie. 2’ € X.
By (3.14) we have F(z') < F(x) and so 2’ satisfies (X1) in the definition
of X. By the definition of (7, p)-compression it is clear that z’ also satisfies
(X2) and (X4). Since p € supp(x), we also have supp(z’) C supp(z). Since
x has compatible support the same is true for 2/ i.e. 2’ satisfies (X3) and
so ' € X. Note that since compressions preserve the /1-norm, z’ is also an

optimal point of X.

In the case A = B, an identical argument shows that (p,7) € E(z) also,
and so (iii) holds.

Suppose then that A > B. In this case, looking again at (3.14), we see
that if x is not (7, p)-compressed then we in fact have F(z') < F(z) =
0, contradicting Lemma 3.22. We conclude that z is (7, p)-compressed.
Suppose w(p) > 2, then by the definition of (m, p)-compression we have
xx = x,. = 0 contradicting the fact that 7 € supp(z) and so w(p) = 1.
Since m and p are compatible, indistinguishable and distinct, it follows from
Lemma 3.20 that w(m) > 2. Let 2" = z(p, 7). It follows that =] = 0 and
zll = x,+x, and so by (3.14), F(z") > F(x) = 0. We conclude that 2" ¢ X
ie. (p,m) ¢ E(x). The fact that x, = 1 follows from the fact that w(p) =1
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and x is (m, p)-compressed. Thus, (i) holds, and similarly if A < B then (ii)
holds. O

We obtain the following immediate corollary.

Corollary 3.25. Let x € X be an optimal point and suppose that I is an
independent set in D(x). Then I is a distinguishable set.

Definition 3.26. We call an optimal point x € X compressed if it is (m, p)-
compressed for all (m, p) € E(z).

We now show that compressed optimal points of X exist. In fact we show
that given any optimal point of z € X we may obtain a compressed opti-
mal point by applying a finite number of compressions to x. The simpler
structure of compressed optimal points will make it easier to bound their

£1-norm which is the goal of Proposition 3.18.

Lemma 3.27. Compressed optimal points of X exist.

Proof. Let x be an arbitrary optimal point of X and define a sequence
g, T1,T3,... of elements of X recursively as follows: Set zog = x. Hav-
ing chosen xq,...,xs, if x; is compressed then stop the sequence at x;. If
not, then there exists (w, p) € E(x:) such that z; is not (m, p)-compressed.
By Lemma 3.24, we must therefore have that z(m, p) and z(p, ) are both
optimal points of X. Note that by the definition of D(x;), p and 7 are in-
distinguishable and {m, p} C supp(z;). Since z, has compatible support, it
follows from Lemma 3.20 that either w(m) > 2 or w(p) > 2. If w(p) > 2 then
set x441 = x(m, p), if not (so that w(w) > 2) set x441 = x(m, p). In either
case ¢4 is an optimal point of X satisfying |V (z441)| = |V (2¢)] — 1. Since
0 < |V(z)| < 3F for all 2 € X it follows that the sequence must terminate

in at most 3% steps. O

Having discovered compressed optimal points, we now explore some of their

properties. First we need a definition.

Definition 3.28. A star is a digraph with vertex set {p,m1,...,mm} (for
some m > 0) and edge set {(p,m1),...,(p,mm)}. We refer to p as the root
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of the star and we call w,..., T, leaves. Note that we have included the

possibility of a star with no leaves.

Lemma 3.29. Let x € X be a compressed optimal point, then D(x) is a
disjoint union of stars. Moreover if p is a root of positive outdegree then

w(p) > 2 and if © is a leaf then w(w) =1 and x, = 1.

Proof. Tt suffices to prove the following:
1. If (p,7) € E(x) then w(p) > 2, w(n) =1, xr =1 and (7, p) ¢ E(x).
2. If (p1,7), (p2, ™) € E(zx) then p; = ps.

Suppose that (p,7) € E(z), in particular p and 7 are indistinguishable. If
(m,p) € E(x) also, then since z is compressed we have by definition that
xz(p,m) = x = z(m, p). However, from the definition of compression we see
that the only way we can have z(p, 7) = z(m, p) is if w(7) = w(p) = 1. But
then by Lemma 3.20, m = p, a contradiction. We conclude that (7, p) ¢ E(x)

and so (1) follows from Lemma 3.24.

Suppose now that (p1,m), (p2,7) € E(x). By (1) we know that w(m) = 1 and
w(pi) > 2 for i =1,2. By Lemma 3.20 it follows that Q(7) C Q(p1) N Q(p2)
and so p1, p2 are indistinguishable by Lemma 3.12. If p; # p2 then by
Lemma 3.24 we have that either (p1,p2) € E(x) or (pe, p1) € E(x), but this
contradicts (1). O

Given a compressed optimal point z € X let
Lz)={reV(z):d (1) >0}

and

R(z) = V(z)\L(z).

By Lemma 3.29, L(x) and R(z) are the set of leaves and the set of roots of
D(z) respectively.

Lemma 3.30. Let x € X be a compressed optimal point. Then

F(z)= Y (224 2d" () - w(r))z-).

TER(x)
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Proof. Lemma 3.29 shows that for any indistinguishable pair m, p € V(x),
where m # p, exactly one of (7, p) and (p,n) is in E(z) and so

F(z) = Z z2 42 Z ToXr — Z w(T)x,.

TeV(z) (0,7)€E(x) TeV(z)

By Lemma 3.29 we may write

Z Tolr = Z z, Z zr | = Z d+(p)a:p.
(o,7)EE(2) pER(x) m:(p,m)EE(x) pER(x)

Moreover by Lemma 3.29 we have > ./ . (22 — w(7)w;) = 0. The result
follows. O

The key feature here is that for a compressed optimal point x, the constraint
equation F'(z) = 0 is spherical. This allows us to more easily apply standard
optimisation techniques and this will be the concern of the next section. For
now it will be useful for us to establish some degree conditions on the vertices

of D(x) for a compressed optimal point = € X.

Lemma 3.31. Let x € X be a compressed optimal point, then d*(o) <
2¢)=1 for all o € V(x).

Proof. Suppose that p € V() is such that d*(p) > 0. By Lemma 3.29,
p is the root of a star in D(x). Let L be the set of leaves of this star (so
in particular |L| = d*(p) and w(w) = 1 for all 7 € L). Note that L is an
independent set in D(x) and therefore it is a distinguishable set by Corol-
lary 3.25. Note further that for each m € L, p and 7 are indistinguishable
and compatible and hence Q(7) C Q(p) by Lemma 3.20. It follows that

2% (p) = Y_|Q(m)] < 1Q(p)| = 2417,

el

O]

We can now bootstrap, using the previous two lemmas to establish a much
stronger degree condition. The idea behind the proof of the following lemma
is readily explained however it is notationally laborious. The idea is that if

x € X is a compressed optimal point and a star in D(x) with root p has
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> w(p) leaves, then one can contradict the optimality of x by replacing this
star with a collection of stars whose roots have less weight. First let us

generalise an earlier notation.

Definition 3.32. Let o € {0,1,*}* and let W = {i € [k] : 0; = *}. Then
for S CW define

Q(0:8) = {r €{0,1,%}* : 7, € {0,1} for i € W\S and 7; = 0; otherwise}.

Note that elements of Q(c;.S) are pairwise distinguishable and that Q(o; ()
is simply the set Q(o). We may think of Q(o; S) as a decomposition of Q(o)

into ‘parallel’ subcubes of dimension |S|.

Lemma 3.33. Let x € X be a compressed optimal point, then d* (o) < w(o)
for allo € V(z).

Proof. By Lemma 3.29 we may write V(z) = S1U...U S, a disjoint union
where each S; is the vertex set of a star in D(x). Suppose that there exists
o € V(z) such that d* (o) > w(c). Without loss of generality assume o is
the root of S;. By Lemma 3.30 we then have that w(o) < dt (o) < 2¢(0)~1
and so w(o) > 3. Without loss of generality assume that o1 = g9 = x. By

Lemma 3.29 we have z, = 1 for all 7 € L(x) and so

Iz = [L(2)| + Y @ (3.15)
reR(x)

We proceed by modifying z, being careful to stay within the set X. Take
7 € Q(o;{1,2}) and note that w(m) = 2. Consider now the element 2’ € R*
defined as follows. Let 2/ = z,, 2. = 1 for all 7 € Q(o;{1}), 2, = x, for
all 7 € SoU...US,; and 2/ = 0 otherwise. We now check that 2’ € X.
Clearly 2/ <1 whenever w(7) = 1. Note that supp(z’) = {7} UQ(c;{1}) U
SpU...US,. Now, if 7 € {7} UQ(o;{1}) we have Q(7) C Q(o) and since
o € 51, we know that o, and hence also 7, is distinguishable from each
element of So U...U Sk. Since 11 = * for each 7 € {7} U Q(o;{1}) we see
that {7} UQ(o;{1}) contains no incompatible pairs. It follows that 2’ has

compatible support. Finally, note that by a calculation similar to that in
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the proof of Lemma 3.30 we have

F(x') = 22 4 2z, + Z (3:3 + (2d (1) —w(r)) zr)  (3.16)
TER(z)\{o}

= F(z) — (2d" (o) —w(o) — 2)2,

Recalling that d* (o) > w(o) we have 2d* (o) —w(o) > w(o) > 3. Since o €
supp(x), we also have z, > 0 and so (3.16) implies that F'(z') < F(x) = 0.
Thus, we do indeed have 2’ € X. Note that

2| = |L(z)| = d*(0) +1Q(o; {1+ > ar, (3.17)

TER(x)
and observe that d* (o) < 2¢(9~1 = |Q(s;{1})| by Lemma 3.30. It now
follows from (3.15) and (3.17) that ||2’|| > ||z||, and so 2’ is an optimal point
of X. However, we have shown that F(z’) < 0 contradicting Lemma 3.22.
0

Gathering all the information we have obtained on compressed optimal
points, we show that a proof of the following proposition is almost enough
to deduce Proposition 3.18. Let us remind ourselves that in the definition
of a distinguishable set (Definition 3.15), we require all elements of the set

to have weight at least 1.

Proposition 3.34. Let D C {0, 1, *}* be a distinguishable set and let ) =
{d; : 7 € D} be a set of integers satisfying 0 < d, < w(r) for all T € D,
and d; = 0 whenever w(t) = 1. Suppose that x € R* is a vector with

supp(x) = D satisfying

Z (azz + (2d; — w(7))z,) =0,

T€ED

2. x; <1 whenever w(t) = 1.

Then

a2 oY,

T€D T€ED

Furthermore we have equality only if x € O and Q = {0}.
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A proof of Proposition 3.34 will be the focus of the next section, for now we

note that it has the following corollary

Corollary 3.35. O is the set of compressed optimal points of X. In partic-
ular, if v € X then ||z| < 21

Proof. Let © € X be a compressed optimal point. Note that R(z) is an
independent set in the digraph D(x) and hence by Corollary 3.25, R(z) is
a distinguishable set. Set Q = {d*(7) : 7 € R(z)} and let 2’ be the element
of R* supported on R(z) such that z/. = x, for all 7 € R(z). Note that by
Lemmas 3.22, 3.30, 3.33 and by the definition of the set X, we have that Q
and 7’ satisfy the conditions in the statement of Proposition 3.34. Assuming

Proposition 3.34, it therefore follows that

a2 Y dt(), (3.18)

TER(x) TER(x)

with equality only if ' € O and d*(7) = 0 for all 7 € R(z). The latter

condition implies that 2/ = x and so we have equality in (3.18) only if z € O.

By Lemma 3.29,
lzll = > =+ Y d¥(r)
TER(x) TER(x)

and so it follows that ||z|| < 2¥~! with equality only if z € O. The result

follows by noting that for all z € O, ||z|| = 2¥~! and z is compressed.

O]

It is now clear that Proposition 3.18 would follow if we could also prove the

following.

Proposition 3.36. If x € X is an optimal point, then x is compressed.

We prove Proposition 3.36 in Section 3.6.
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3.5 Constrained Optimisation and a Proof of Propo-

sition 3.34

In this section we prove Proposition 3.34 thus finalising the main stepping
stone toward a proof of Proposition 3.18. We exploit the convexity of the
spherical constraint found in the previous section by using the Karush-Kuhn-
Tucker framework with Slater’s condition (Theorem 1.5). This will lead us
to consider the possible distributions of weights in distinguishable sets which

we optimise over in a separate argument.

In view of the statement of Proposition 3.34 it is natural to apply Theo-

rem 1.5 to establish the following.

Lemma 3.37. Let aq,...,q, be integers where o; = 1 for i = 1,...,¢,

(0 < ¢ <m) and consider the following optimisation problem for x € R™.

m
marimise g x;
i=1
m

subject to 2(5%2 —a;x;) <0, (3.19)
=1

.CUZSL 221,,6

If S a2 > m, then we have the unique optimal point z* = (z1,...,Tm,)
where x; =1 fori < { and x; = % (ozi—i- \/(Tl_g)zg'i“_la%) fori>{.

If instead Y ;" 04? < m, then we have the unique optimal point x* where
T =1 <ai + \/%2211 a?) for all i.

Proof. Note first that if a; = 0 for all ¢ (so in particular ¢ = 0) then
constraint (3.19) implies that x; = 0 for all ¢ in which case there’s noth-
ing to prove. Suppose then that this is not the case and define functions
91,9041 : R™ — R as follows. Let f(z) = > 1", @, gi(x) = 2; — 1 for
i=1,...,0and gpy1(z) = Y, (27 — aix;). Note that the functions just de-
fined are all convex and differentiable. Let zg = (a1/2, ..., an/2), the centre
of the spherical region described by (3.19) and observe that g;(x¢) < 0 for
i=1,...,0+1. Let S={x e R™:gi(z) <O0fori=1,...,£+1}. Since S
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is compact and f is continuous there exists an optimal point z* of our op-
timisation problem. Let z* = (x1,...,2p). By Theorem 1.5 (with Slater’s
condition), there exist real numbers Ay, ..., Ay and A such that the following

hold (for notational convenience we define \; = 0 for j > ¢):

(1) A(2z; — a;) + N\ =1 for all 4,
(2) A>0and A; >0 for all ¢,

(3) A (27 — i) = 0 and Aj(z; — 1) = 0 for all 4.

We consider three cases depending on the value of A. First let us suppose
that A = 0. In this case, by (1) we must have \; = 1 for all i. Recalling that
Aj = 0 for j > £ by definition, we must also have £ = m and so a; = 1 for

all 7. Moreover, it follows from (3) that z; = 1 for all ¢ and so we’re done.

By (2), we may now assume that A > 0 and so we may rewrite (1) as

1/1-X\ .
i =5 < A + az> for all 7. (3.20)

Moreover, > 1" (2? — a;x;) = 0 by (3) which by (3.20) gives

m

D D{EPULE (3.21)
=1

i=1
Now, note that for i < ¢ we have a; = 1 and z; < 1 and so by (3.20) we

have
1—-A< )\ fori </ (3.22)

If A < 1 then by (3.22) we have A\; > 0 for ¢ < ¢ and so by (3), z; = 1 for
i < ¢ and so in fact by (3.20)

1—-—A= )\ fori <V

Recalling that o; = 1 for i« < ¢ and \; = 0 for ¢ > ¢ by definition, (3.21)

then gives

1 1
== 3 a2 (3.23)
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From (3.20) it now follows that

1 1 .
.Ti:§ a; + [Za? for i >/,

Recalling that A < 1, it follows from (3.23) that > 1%, a? > m.

It remains to consider the case where A > 1. Recall that if A\; > 0 for some
i then z; =1 by (3) and so A =1 — \; by (3.20). However, this contradicts
the assumption that A > 1 and so we conclude that A\; = 0 for all 7. It
follows from (3.21) that

(3.24)

so that by (3.20),

The result follows, noting that by (3.24) we have > /", a? < m in this

. =

case. O]

We are almost ready to prove Proposition 3.34, but first we need the follow-

ing inequality.

Lemma 3.38. Let a,...,q, be integers > 2 then

1=

and equality holds if only if a; = 2 for all i.

Proof. Let a = (..., y,). We induct on the value of S, := Y"1 (2072~
1). If Sq =0, then o; = 2 for all 4, so that

m m m
g a; + mg a?:4m:§ 204,
i=1 i=1 i=1

Suppose then that S, > 0 so that a; > 3 for some j € [m]. Without

loss of generality assume that j = 1. Define a new sequence of integers

71



Chapter 3. Ramsey Numbers Via Nonlinear Optimisation

o = (af,...,0a;,,1), as follows: Let o) = oy = a1 — 1 and o = a;_1 for

i =3,4,...,m+ 1. Note that o/ > 2 for all ¢ and S,y = S, — 1 and so by
the inductive hypothesis

m+1 m+1 m+1

dalt | m+1) D a2 <y 2%, (3.25)
=1 =1 =1

Note that

m+1 m m+1 m

ZQO‘;:ZQC” and Zaé—Zai:a1—2>0, (3.26)
=1 =1 =1 =1

and also

m+1 m m

(m+1) Za?fmZa? :Za?+(m+1)(a%f4a1+2)
i=1 =1

=1

> ia? —(m+1), (3.27)
i=1

where in the last inequality we used the fact that a?—4a+2 > —1 for a > 3.
Note that since a; > 2 for all 4, we certainly have that >." a2 > m+ 1. It
follows then from (3.27) that

m+1 m

(m+1) Z o? > mz o, (3.28)
i=1 i=1

Combining (3.25), (3.26), and (3.28) we have

m+1 m+1 m+1 m

iai—i- mia? <Y a4 [m+D)> a2 <D 2m=d 0w
=1 =1 =1 =1 =1 i=1

as required. Note the strict inequality, and so we only have equality in the

case where a; = 2 for all 3. ]

Proof of Proposition 3.34. Consider first the case where > p(w(7)—2d,)? >
|D|. Suppose that ¢ elements of D have weight 1 and let D' = {7 € D :
w(r) > 2}. Note that by Lemma 3.17 we have ) 2¢(7) < 2% and hence

> 2w <ok gy, (3.29)
T€D’
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Applying Lemma 3.37, recalling that 0 < d, < w(7) for all 7 € D, that

dr = 0 whenever w(7) = 1 and using (3.29) and Lemma 3.38 we have

> <t +é > (wir) —2d;) + [P Y (w(r) — 2d,)% | (3.30)

T€D TED! TED!

</l+ % Z w(t)+ |7 Z w(r)? | — Z dr (3.31)
TED! TED! 7€D

<04 ) 22Tt N 4, (3.32)

TeD! T€D

<21 -3 "d. (3.33)

T€D

We analyse the conditions for equality to hold. For equality to hold in
(3.31) it must be the case that for all 7 € D, either d; = 0 or d; = w(7). By
Lemma 3.38, for equality to hold in (3.32) it must be the case that w(7) = 2
for all 7 € D’. It now follows from Lemma 3.37 that for equality to also hold
in (3.30), we must have z, = 1 whenever w(7) = 1, z; = 2 for all 7 € D’
such that d; = 0 and x; = 0 for all 7 € D’ such that d; = w(r). However,
since each z, is non-zero by assumption we conclude that d, = 0 for all
7 € Die. Q= {0}. Finally, for equality to hold in (3.33) we must have
equality in (3.29) and so D is a decomposition by Lemma 3.17. It follows
that z € O.

It remains to consider the case where Y _p(w(7) — 2d.)* < |D|. By

Lemma 3.37 and Lemma 3.17 we then have

<y (\D\ + Zw(7)> -S4,
T7€D T7ED T7€D
<1 (\D| +> 2‘”<T>1> -> d,
2 T7€D T7€D
<21-3%"d,. (3.34)
T7€D

For equality to hold in (3.34), we must have that |D| = 2~! and so D is a
decomposition consisting only of elements of weight 1. It follows that d, = 0
and z, < 1 for all 7 € D. If equality holds throughout the above, we then
have that x, = 1 for all 7 € D and so z € O. O
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3.6 Towards an Exact Result: Analytic and Com-
binatorial Stability

In this section we prove Proposition 3.36 thus concluding our proof of Propo-
sition 3.18. Note that Proposition 3.18 classifies the optimal points of X.
We use compactness arguments to prove a result to the effect that ‘almost
optimal’ points of X must be close (in ¢; norm) to a genuine optimal point
of X. Furthermore, compactness allows us to derive similar properties for
X (v) when ~ is small. We then investigate what implications this has in

our original combinatorial setting and complete the proof of Theorem 3.7.

Proof of Proposition 3.36. Let H be the matrix with rows and columns in-
dexed by {0, 1, *}* where

1 if g, 7 are indistinguishable,
oT —
0 if o, 7 are distinguishable.
Note that in particular, all diagonal entries of H are equal to 1. Let w =

(—w(7) : 7 € {0,1,%}¥) € R*, then for x € R* we may write

F(z)=w'z +2"Hz.

Suppose now that x € X is an optimal point. By the proof of Lemma 3.27,
there is a finite sequence = = g, x1, ..., T, of distinct optimal points of X
where z,, is compressed, and for i = 0,...,m—1, x;41 = x;(m;, p;) for some
indistinguishable pair m;, p; € supp(x;). Moreover we know that w(p;) > 2
and that m; ¢ supp(x;y1) for all i.

Suppose that z is not compressed so that m > 1. Let y = x,—1, 2 = =,,, and
let m = mp—1, p = pm—1. Since z = y(m, p), it follows from the definition of
compression that z = y + a(e, — e,) for some o > 0. Let p = ex —e,. It

follows, by the Taylor expansion of F', that
F(y) = F(z+ ap) = F(2) + ap’ VF(2) + o*p" Hp. (3.35)

Recall that F(y) = F(z) = 0 by Lemma 3.22. Furthermore by direct cal-
culation we also have p? Hp = 0. It follows from (3.35) that p? VF(z) = 0
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ie.

or _oF
axwz - Ox

Let I, be the set of elements of {0, 1, x}* that are indistinguishable from p

(2). (3.36)

excluding p itself. Define I similarly. From the definition of F' we have

gf@ —25, 123 2 - w(p). (3.37)

p rel,
Since z is a compressed optimal point we have z € O by Corollary 3.35.
Since w(p) > 2 and p € supp(z) we conclude that in fact w(p) = 2 and so
2, = 2. Moreover since supp(z) is a distinguishable set we conclude that
zr =0 for all 7 € I,. It follows from (3.37) that g—ip(z) = 2 and hence from

(3.36) that
OF

a—%(z) =22 +2 ) 2 —w(m) =2 (3.38)
S

Since z € O we know that for all 7 € supp(z), w(7) =1 or 2 and z; = w(7).

Let wi,we be the number of elements of I N supp(z) with weights 1, 2

respectively. Since 7 ¢ supp(z), we can then infer from (3.38) that
2wy + 4wy —w(m) = 2. (3.39)
We also know that supp(z) is a decomposition and so

om= U @nnem)

TESsupp(z)

= U @nnem)

relxNsupp(z)
c U em. (3.40)
TElrNsupp(z)
The second equality comes from the fact that Q(7) N Q(w) = 0 whenever T
and 7 are distinguishable. Comparing the cardinality of the sets in (3.40)
yields
2¢(m) < > 240 = 2w + dws. (3.41)

TE€lNsupp(z)
Note also that p € I N supp(z) and w(p) = 2 so that wy > 1. Using (3.39),
this last observation implies that w(m) > 2 whereas combining (3.39) and

(3.41) we have

2(M) _ () < 2wy + 4wy — w(mw) = 2 (3.42)
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We deduce that w(m) = 2 and so we have equality throughout (3.42), in
particular we have equality in (3.41) and so also in (3.40). Note that |Q(7)| =
|Q(p)| since w(m) = w(p) = 2. Recalling that p € I N supp(z) equality in
(3.40) would therefore imply that Q(w) = Q(p) i.e. ® = p. This is a

contradiction and so x must be compressed. ]

Proposition 3.18 has the following corollary that says an almost optimal

point of X must be close in norm to an actual optimal point of X.

Proposition 3.39. Let n < . If v € X satisfies ||z|| > 2~ —n, then

there exists an x* € O such that ||z — z*|| < e.

Proof. Consider the set
X =X\ U B.(z").
z*€0
X is compact and so sup, ¢ ||z|| = [|Z]| for some 7 € X. By the definition
of X, & ¢ O and so by Proposition 3.18, ||Z|| = 2¥~! — 5 for some n > 0. It
follows that if z € X satisfies ||z| > 2¥~1 — 5 then 2 ¢ X and so = € B.(z*)

for some z* € O. O

The following lemma allows us to relate properties of X and X(v) for ~

small.

Lemma 3.40. Let v < n. If x € X(v), then there exists xo € X for which
[l = ol < 7.

Proof. Let (7;)ien be a strictly decreasing sequence tending to 0, and let
X; = X(v;) for i € N. Then X7, X, ... is a decreasing sequence of compact
sets i.e. X;411 C X; for ¢ € N. Consider the set

U= U Bn(z),
zeX

an open set containing X. Note that (X;\U);en is also a decreasing sequence

of compact sets and that

ﬁ(Xi\U) = (ﬁ Xi) \U:X\U:(Z).
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By Cantor’s Intersection Theorem (see [76, Theorem 2.36, p.38]) it follows
that X,,,\U = 0 for some m € N. In other words, if x € X (7;,) then z € U so
that x € B, (xo) for some xg € X. The result follows by taking v < v,,. O

Corollary 3.41. Let v < e. If x € X(v) satisfies ||z| = 2871, then there

exists an x* € O such that ||z — x*|| < €.

Proof. Given € > 0, let n = min{n339(¢/2),e/2} and suppose that v <
Y3.40(1). Suppose that = € X () satisfies ||z|| = 2¥~!. By Lemma 3.40 there
exists an zg € X such that ||xg — z|| < n and so ||xo| > ||z| —n =281 —n.
It follows from Proposition 3.39 that there exists an x* € O such that

|lxo — z*|| < €/2 and so

[ — 2™} < [l = woll + llzo —2*[| <m+e/2 <e.

Let
O*={z€0:w(r)=1forall T € supp(x)}.

In words, O* is the set of all elements x € R* such that x is supported on
a perfect matching of Qi and all non-zero entries of x are equal to 1. We
can also view O* as the set of profiles of hypercube colourings normalised by
clique size. Our aim is to use the stability-type statement of Corollary 3.41

to prove Theorem 3.7 in the following form.

Theorem 3.42. Let 1 < § < e < 1. If G is a (1 — §)-dense, k-coloured
graph with v(G) = 2¥"n, containing no monochromatic odd connected
matching of order > (1 + d)n, then for any choice of profile x(G) of G,

there exists some x* € O* such that

2(G)/n — ™| <e.
First we need the following two colour Ramsey type result which is a direct
consequence of the more general Theorem 1.8 in [4].

Lemma 3.43. Let % < d<Ke. IfH is a (1 —9)-dense, 2-coloured graph

withv(H) > (3+¢e)n, then H contains a monochromatic connected matching
of order > (14 d)n. O
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Proof of Theorem 3.42. Given ¢ > 0, let v = 7341(¢) and &' = d3.43(e).
Suppose that § < min{y2k~227% §’272k} and that n > max{ns343(8'),6'}.
Let G be a k-coloured graph as in the statement of Theorem 3.42. Let z(G)
be any choice of profile for G and let the corresponding profile partition be
(Vy : 7 € {0,1,%}*). Note that ||#(G)/n| = 2¥~1 and by Proposition 3.14,
we have that z(G)/n € X (V/0k2?%) C X(v). By Corollary 3.41 there exists

an element x* € O such that
|lz(G)/n —x*|| <e. (3.43)

Suppose that z* € O\O*, then 2, = 2 for some 7 € {0,1,*}* such that
w(1) = 2. It follows from (3.43) that z(G), = |V;| > (2—¢)n > (3/2 +¢)n.
Let H = G[V;]. By the definition of V;, H is a 2-coloured graph. Moreover
since G has at most ¢ (U(QG )) < (”(f )) edges missing, the same is true for
H. It follows by Lemma 3.43 that H contains a monochromatic connected
matching of order > (146")n > (1+6)n. However, by the definition of V; =
V(H), any monochromatic component of H is contained in a non-bipartite
monochromatic component of G. Thus, G contains a monochromatic odd
connected matching of order > (1+4J)n contrary to assumption. We conclude
that «* € O*. O

3.7 The Regularity Method

In this section we discuss the tools and results we need from the regularity
method. Our starting point is Szemerédi’s Regularity Lemma [83] which we

discuss briefly now.

Let G be a graph and let A, B be disjoint subsets of V(G). We call

eqa(A, B

the density of the pair (A, B). For 6 > 0, we say that the pair (A, B) is
d-regular with respect to G if, for every A C A and B’ C B satisfying
|A’| > 6|A| and |B’| > §|B|, we have

‘dG(A/7B/) - dG(AvB)| < 4.
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If, for d > 0, we also have that |Ng(a) N B| > d|B]| for all a € A and
|INg(b) N A| > d|A| for all b € B, then we say that (A4, B) is (, d)-super-
regular with respect to G. We may omit the subscripts from the above
notation if the graph G is clear from the context. The following is a version

of Szemerédi’s Regularity Lemma that appears as Theorem 1.18 in [62].

Theorem 3.44 (Multicolour Regularity Lemma). For all§ > 0 and k,¢ € N
there exists L = L(9,k,¢) and M = M (9, k,?) such that the following holds.
For all k-coloured graphs G on at least M vertices, V(G) may be partitioned
into sets Vo, Vi ..., Vi such that

e (<t<L;
o |Vo| < 0v(G) and |Vi| = |Va| = ... = |V4|;

e apart from at most 5(;) exceptional pairs, the pairs (Vi, Vj), 1 <1 <
j <t, are 0-reqular with respect to G5 for s =1,... k.

We now state some technical lemmas related to Luczak’s method of con-
nected matchings. First we need a definition. (It might be useful at this

point to recall Definition 3.5.)

Definition 3.45. Let 0,d € [0,1] and g,m > 1 be integers.

o Let F be a graph on vertex set [q) and let Uy, ..., Uy be disjoint sets
of size m. We call a graph H on vertex set Uie[q} U; a (8, m)-regular
blow-up of F if whenever {i,j} € E(F), we have that (U;,Uj) is a

d-reqular pair.

e Ifin addition to the above, d(U;,U;) > d for each edge {i,j} of F' then

we say that H has minimum density d.

e Suppose that F is a connected matching and H is a (5, m)-regular blow-
up of F with minimum density d. If for each matching edge {i,j} of
F, the pair (U;,U;) is in fact (0,d)-super-reqular in H, then we say
that H is a (0,d, m)-super-regular blow-up of F'.

Versions of the following two lemmas abound in the literature (e.g. [61],
[65]), but here we give statements tailored to our needs. However, since

they are not new, we defer their proofs to the Appendix (Section B).
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Lemma 3.46. Let q > 4 and suppose that % K ) K d. Let F be a connected
matching of order q such that every vertex of F is incident to a matching
edge and let H be a (9, d, m)-super-reqular blow-up of F'. Then the following
holds:

Ifi,j € V(F) and there is an ij-path of length r in F, then for every pair
of vertices u € U;, w € Uj, there exists a uw-path of length € in H for each
3¢ <l < (1—-6d)gm such that £ =r (mod 2).

Lemma 3.47. Let ¢ > 4 and let % K 0 < d. Let F be an odd connected
matching of order q and suppose that H is a (6, m)-regular blow-up of F
with minimum density d. Then H contains a cycle of length £ for each odd

3¢ <L <(1—-66)gm.

We borrow the following fact.

Fact 3.48. ([50, Lemma 9]). Let H be a (1 — §)-dense graph on t vertices.
Then H has a subgraph H' such that v(H') > (1 — /)t and §(H') > (1 —
2V0)t.

We will also need the following two standard facts whose proofs we omit it

here.

Fact 3.49. Let 0 < 6 < 1/2 and let (A, B) be a d-regular pair with density d.
Suppose that A’ C A, B' C B such that |A'| > (1 —9)|A|, |B'| > (1 —9)|B|.
Then (A, B') is 20-regular with density d’ > d— 0. Moreover, if (A, B) is in
fact (8, B)-super-regular for some B > 0, then (A’, B") is (20,8 — §)-super-

reqular. O]

Fact 3.50. Let 0 < § < 1/2 and let (A, B) be a d-reqular pair with density d.
Then there exist A C A, B’ C B such that |A’] = (1-9)|A|, |B’| = (1-0)|B]
and (A’, B') is (20,d — 20)-super-reqular. O

3.8 Proof of Main Theorem

In this final section we prove our main result Theorem 3.4, and therefore

also Theorem 3.2. The idea is to invoke Theorem 3.42 to show that the
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profile of a certain reduced graph is close in ¢1-norm to the profile of a
hypercube colouring. We then translate this information to show that the

original graph is close in edit distance to a hypercube colouring.

The stability-type methods of this section require some care due to the
plethora of extremal constructions. Luckily hypercube colourings share
enough common features for these methods to be viable and surprisingly

we require no case analysis.

First let us state a result which is a corollary of a classical theorem of
Bondy [9].

Theorem 3.51. Let G be a graph on at least 3 vertices with minimum
degree > v(G)/2, then G is pancyclic i.e. G contains cycles of all lengths
3 <1l <v(Q). O

Proof of Theorem 3.4. Let 0 < & < 274 let

1 1 1
n < 1) < min {955.42(6), 53.46 (k‘) ,53,47 <kj> } R (3.44)

let ng > max{n342(8),0 Y2} and let L = L3 44(6,k,2¥ng). Let n be odd
with
n > max{Lms46(0), Lms.47(0), M3 44(6, k, ano)}. (3.45)

Finally let G be a k-coloured copy of Ky where N > (28~ —5)n and assume
that

G contains no monochromatic copy of C,,. (t)

Applying Theorem 3.44 to G we obtain a partition of V(G) into sets Vj, ..., Vi,
such that

(i) 2Fng <ty < L;
(i) [Vol <6N and [Vi| = [Vo| = ... = [V,l;

(iii) apart from at most § (tQO) exceptional pairs, the pairs (V;,V}), 1 <i <
j < to, are d-regular with respect to G5 for s=1,..., k.

It follows that for i € [to],

(3.46)
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We construct a reduced graph Ry with vertex set {1,...,tp} and edge set
formed by pairs {u,w} for which (V,,V,,) is d-regular with respect to G;
fori=1,...,k. It follows from (iii) of the above that Ry is (1 — d)-dense.
Fact 3.48 allows us to find a subgraph R C Ry satisfying v(R) > (1 — v/d)tg
and §(R) > (1—2V6)ty. Let t = v(R) and assume without loss of generality
that V(R) = {1,...,t}. We k-colour R by colouring an edge {u,w} with

the least colour ¢ for which

da;(Vu, Vi) > % (3.47)
Let ¢ = t/2%~! and note that by (3.46) and the definition of ¢,

mt’ > (1 —2Vé)n. (3.48)

Suppose that R contains a monochromatic odd connected matching F of
order ¢ > (1 4+ 3v/0)t'. Then G contains a monochromatic (8, m)-regular
blow-up of F' with minimum density d for some d > 1/k by (3.47). Note
that since tg < L we have m > m3.47(6) by (3.46) and (3.45). It follows
from Lemma 3.47 that G contains a monochromatic copy of C,, since n is
odd and

3¢ < 3L <n<(1-68)(1+3Ve)mt' < (1—608)gm,

contradicting (). We conclude that R contains no such odd connected
matching. Let (W, : 7 € {0,1,%}*) be a profile partition of R and let
z(R) = ([W;| : 7 € {0,1,%}) be the corresponding profile. It follows by
Theorem 3.42 that there exists * € O* such that

|z(R)/t —x*| < e. (3.49)
This tells us a lot about the structure of R, indeed it is ‘close to’ a hypercube

colouring. The aim is to use this fact to eventually say the same for G. By

the definition of O* we have that
supp(z*) = M C {0,1,%}%,

for some perfect matching M of the hypercube Qi and 2> = 1 for all 7 € M.
Let

W =R\ (] W-.
TEM
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We will treat W as a ‘leftover set’ of vertices of R and study only the
structure of R\W. Note that by (3.49) we have

(1—e)t' <|W;| < (1+e)t forall T € M, (3.50)

and so by removing at most 2et’ vertices from each part W, where 7 € M,
and absorbing these removed vertices into W, we may assume that these
parts W, all have the same size > (1 — &)t’. Note that even after this

absorption we have

Wl=t— > W <t—2"T1-e) =et.
TEM

We make a couple of observations regarding the colouring of R with respect

to these vertex classes. For j € [k] we let
I ={r e M:1; =x}.

Lemma 3.52. Let 7 € I;. Then R[W;] is monochromatic in the colour j
and has minimum degree at least (1 — 28+1/8)|W,|.

Proof. By the definition of the profile partition, for each colour i # j, each
pair v,w € W, must lie in the same vertex class in an induced bipartite
subgraph of R;. It follows that if {v,w} € E(R) then it cannot receive the

colour 4 and hence must receive colour j. Since 6(R) > (1 — 2v/5)t we have
S(RIW,]) > [Wy| — 1 — 2Vt > (1 — 28+41V/6) W, |
where for the last inequality we used (3.50). O

Definition 3.53. Let 0,7 € {0,1,%}*. We denote the set {i € [k] :
{oi,7i} ={0,1}} by A(o, 7). We call |A(o,T)| the distance between o and
T and denote it by d(o,T).

Lemma 3.54. Let 0,7 € M be distinct, then
(i) Each edge of RIW,, W;] receives a colour from the set A(o,T);

(ii) R[W,, W,] has minimum degree > (1 — 2FI\/8)|[W,|, in particular

R[W,, W] is connected and contains a perfect matching.
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Proof. Let o € I, 7 € I;. Suppose that j # {. By the definition of the
profile partition, for each colour ¢ ¢ A(o, ), each pair v € W,, w € W,
must lie in either the same vertex class in an induced bipartite subgraph
of R; or they lie in different connected components of R;. It follows that
if {v,w} € E(R) then it must receive a colour from A(c, 7). Similarly, if
j = [ then each edge of R[W,, W] must receive a colour from A(o, 7)U{j}.
However, by Lemma 3.52, R[W;] and R[W,] are both monochromatic in the
colour j and both have minimum degree at least (1—21/3)|W,| > |W,|/2
(recall that |W,| = |W;|). It follows, by Theorem 3.51 for example, that
R[W;] and R[W,] are both Hamiltonian and non-bipartite. Using (3.50), we
deduce that if an edge of R[W,, W;] receives the colour j, then R contains

a monochromatic odd connected matching in the colour j of order at least
(Wo| + Wy —2>2(1 —e)t —2> (1+3Vo),

which we showed previously was not the case. Part (i) of the lemma follows.
If v € W, then, since §(R) > (1 — 2V/4)t, we have

IN () N W, | > |[W,| —2V6t > (1 — 28T1V5) W, |.

Similarly if w € Wy, then |N(w) N W,| > (1 — 2¥1/5)|W,|. Since 1 —
2k+1/5 > 1/2, it follows that R[W,,W,] is connected and (e.g. by Hall’s

theorem) contains a perfect matching.

O]

Let I' denote the k-coloured multigraph on vertex set M where we have
an edge between o and 7 in each colour j for which R[W,, W;| contains an
edge of colour j. Note that since §(R) > (1 — 2V6)t and |W,| = |[W,| >
(1 —e)t' > 2/6t, RIW,,W,] always contains an edge. Let I'* denote the
subgraph of I' where we keep only those edges that occur as the unique edge
between a given pair of vertices in I'. Recall that for j € [k], T';, I'; denote

the jth colour class of I, I'* respectively.

Lemma 3.55. For each j € [k], the vertices of I'; can be covered by a

matching Tj C F;‘- and the set I;. Moreover I is a set of isolated vertices in

r;.
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Proof. Fix j € [k]. If 0 € I; then o is an isolated vertex in I'; by Lemma 3.54(i).
If o ¢ I; then we may assume without loss of generality that o; = 0. Let
o' be the element of {0, 1,*}* such that 0; =1 and o] = o; for all i # j.
Let H be the graph on M with edge set {{p,7} : A(p,7) = {j}}. By
Lemma 3.54(i) we have H C I';. The neighbours of o in H are precisely
those elements of M that are indistinguishable from ¢’ i.e. those elements
of M (viewed as edges of Q) that intersect Q(c’). Since M is a perfect
matching of Q, and |Q(0”)| = 2, there are either 1 or 2 such elements of M.
It follows that H is the disjoint union of cycles (where we consider an edge
a cycle) and the independent set I;. Since H is bipartite with bipartition
{reM:75=00r*x}U{r € M:7; =1}, the cycles in H are all even. The

result follows. O

Let j € [k], then for each {0, 7} € T} (Tj as in the statement of Lemma 3.55),
we may fix a monochromatic perfect matching M. in the colour J in
R[W,, W] by Lemmas 3.54(ii) and 3.55. Let

T= U M.

{o,7}€T}
and note that 7; is a matching in R, monochromatic in the colour j, which
covers the vertex set UTg I W.. The following corollary hints at an important

common feature of all hypercube colourings.

Corollary 3.56. Given j € [k] and p € M\I;, there exists 1 € M such
that R[W,, W] contains a monochromatic connected perfect matching in the

colour j whose matching edges are edges of T;.

Proof. Since p ¢ I;, by Lemma 3.55 there must exist 7 € M such that {p, 7}
is an edge of T; C I';. By the definition of I'*, we have that R[W, Wx] is
monochromatic in the colour j. The result follows from the definition of 7;
and Lemma 3.54(ii). O

It will be useful to prune the sets V; for i € R in such a way that if {z,y} is
an edge of the matching 7; then G;[V;,V,] is super-regular.

Lemma 3.57. For each i € R there exists V; C V; such that
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(i) |V/| = (1 —2%6)m for alli € R,

(ii) G;[Vy,V,] is 2k+15 reqular with density > k%rl for all j € [k],{z,y} €

R;

(iii) G;[V},V,] is (2F116, k%‘_l)—supeT—regular for all j € [k],{z,y} € Tj.

Proof. For i € R we define a sequence of subsets Vio, ey Vi’C of V; recursively.
Let Vio :=V; for all ¢ € R. Suppose that for all i € R we have found Vf cV;
with the following properties.

(a) [V > (1—2)m for all i € R,

(b) G4V, V,f] is 26-regular with density > 1/k— 2% for all j € [k], {z,y} €

R;

(c) G4[VE,VE is (2°5,1/k — 2¢715)-super-regular for all j € [¢], {z,y} € T;.

)y

By Fact 3.50, for each edge {u,w} in the matching 7,41 (so in particular
{u,w} € Ryy1) there exists VA1 C V£ and V! C VY such that [V =
(1 —288)|VE, [VEH = (1 — 289)|ViE| and Gopq [VEFE, VEF] is (26416, 1/k —
20+2§)-super-regular. If i is not incident to any edge of Ty, then simply set
VA = V! Note that by (a), for all i € R,

VI > (1= 2%) |V > (1 - 2%6)*m > (1 - 27 '6)m.

For j € [k] and {z,y} € Rj, by (b) and Fact 3.49 we have that G;[V,/*1, Vy“'l]
is 2¢t14-regular with density > 1/k — 271§, Using (c) and Fact 3.49, it
also follows that G;[VH, V,/T] is (2416, 1/k — 2°726)-super-regular for all
j € [,{x,y} € T;. We have shown that the sets Vf“,i € R, satisfy (a)-(c)
(with ¢ replaced by ¢+ 1). The result follows by letting V/ be any subset of
VF of size (1 — 2¥§)m for all i € R and appealing to Fact 3.49, noting that
1/(k+1) < 1/k — 2k+25.

Given o € M, let

W, = |J W cV(o),
€W,
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and let

W=Vv(G)\ J W
TEM

As with W, we think of W as a small leftover set of vertices. Let m/ =
(1 — 2%6)m and note that by (3.48), m’t’ > (1 — 3v/8)n and so by (3.50)

(W, > (1—e)m/t > (1—2¢)n for all 7 € M. (3.51)
We also have
W< N-2M11—a)m't' =N —(1—¢)(1—2"6)mt <2eN.  (3.52)

Where for the last inequality we recalled (3.46).

We can now establish our first piece of structure on the graph G. We show
that almost all of V(G) can be covered by 2¥~! monochromatic cliques of

equal size. First we make a quick definition.

Definition 3.58. If 7 € {0,1,*}* has weight 1, we let c(7) denote the

unique element of i € [k] for which T; = *.

Lemma 3.59. For all 0 € M, G[W,] is monochromatic in the colour ().

Proof. Suppose that G[W,] contains an edge {x,y} of colour j # c(o) (so
that o ¢ I;). By Corollary 3.56 there exists 7 € M such that R;[W,, W]
contains a connected perfect matching, F', whose matching edges are edges
of T;. Let g := v(F), then by (3.50) we have 2(1 —e)t’ < ¢ < 2(1 +¢)t'.
By Lemma 3.57 we see that G; [We, W, contains a spanning (28716, 1/(k +
1), m’)-super-regular blow-up of F' (with the V; playing the role of the Uj;
in Definition 3.45). Suppose that x € V; and y € V}/, then a and b lie on
the same side of the bipartition of the connected graph F' and so F' contains
an ab-path of even length. Note that m' > n346(d), by (3.46) and (3.45).
We may therefore apply Lemma 3.46 to deduce that G [WJ, WT] contains a
path of length n — 1 joining = and y since n — 1 =0 (mod 2) and

(1—6-258)gm’ >2(1—6-258)(1 —e)m't' >n—1>3L>3q, (3.53)

where we used (3.44), (3.45) and (3.51). Together with the edge {z,y} this

creates a monochromatic copy of C,, in G, contrary to assumption (). O
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Our aim now is to say something about the edges of G lying between W
and the rest of the graph (see Lemma 3.62 below). With the multigraph T’

in mind, we make the following definition.

Definition 3.60. Let M’ be a perfect matching of Qi and let ¢ : M — M’
be a bijection such that c(o(T)) = c(7) for all T € M. Suppose that ¥ is a
k-coloured multigraph on vertex set M. We call ¢ an admissible labelling

of W if for all o,7 € M, the edges between o, 7 in ¥ only take colours from
the set A(p(o),o(T)).

Note that by Lemma 3.54(i) the identity map ¢ : M — M is an admissible
labelling of I'. The following Lemma gives a useful way of generating new
admissible labellings of I'. For 7 € {0,1,+}*, such that 7; € {0,1}, we
let 77 := (r1,...,7j—1,1 — Tj, Tj+1,.--,Tk) i.e. 77 denotes T with the jth

coordinate flipped.

Lemma 3.61. Let ¢ be an admissible labelling of T'. Let j € [k] and let C
be the vertex set of a component of I'; such that 7; # * for all T € C. Let
¢’ be the function on M given by ' (1) = o(7)7 for all T € C, ¢'(1) = ¢(7)

otherwise. Then ¢’ is an admissible labelling of T.

Proof. First note that by the definition of ¢’ and the fact that ¢ is admissi-
ble, each element of ¢'(M) has weight 1 and ¢(¢'(7)) = ¢(¢(7)) = ¢(7) for
all 7 € M. Let us check that the image of ¢’ is a perfect matching of Qy
(i.e. a distinguishable set of size 2871). Tt suffices to show that if o, 7 € M
are distinct, then (o), ¢'(7) are distinguishable (i.e. A(¢'(a), ¢ (1)) # 0).
We do this by considering an edge between ¢ and 7 in I' and showing that
if it has the colour 4 then i € A(¢'(0), ¢'(7)). Note that this in fact suffices

to show that ¢’ is admissible.

Suppose then that there is an edge between o, 7 in I' in the colour 4. Since
¢ is admissible we have i € A(p(0), ¢(7)). Suppose that i # j then by the
definition of ¢', ¢'(7); = ¢(7); and ¢/(0); = ¢(0); and so i € A(¢'(0), ¢ (7))
also. Suppose then that i = j, so that either o,7 € C or 0,7 € M\C. If
o,7 € C, then ¢'(17); =1 — (1), ¢'(0)i =1 —¢(c); and if 0,7 € M\C,
then ¢'(7); = p(7)i, ¢'(0)i = p(0);. In either case i € A(¢'(0),¢'(7)). O

88



Chapter 3. Ramsey Numbers Via Nonlinear Optimisation

The following lemma allows us to associate each vertex in W to some class

W, in G.

Lemma 3.62. Let v € W. Then there exists o € M such that Glv, WJ] is

monochromatic in the colour ¢(o).

Proof. Suppose otherwise, then for each ¢ € M there exists a u € W, such
that the edge {v, u} receives a colour j, # ¢(o). We augment the multigraph
I" in the following way. We add the vertex v to I' and for each 0 € M we
add an edge between v and ¢ in the colour j,. Let us call this augmented

multigraph I't.

Claim 3.63. I'" contains a monochromatic odd cycle.

Proof of Claim. Suppose otherwise and choose an admissible labelling ¢ of
I" that minimises the function
S() = S Hre Mo s =i and o(r); = 1}].
i€[k]

Suppose that S(¢) > 0, then there exists a colour j € [k] and an element
o € M for which j, = j and ¢(0); = 1. Let C denote the component of
I'; containing the vertex o and note that by the definition of admissibility
C' is bipartite with parts {r € C' : ¢(7); = 0} and {7 € C : p(1); = 1}.
Note that since C' is connected in I'; this is the unique bipartition of C.
Since Fj is bipartite by assumption we must therefore have that o(7); =1
for all 7 € C such that j, = j. Let ¢’ denote the function on M given
by /(1) = (1) for all T € C, ¢/(1) = (1) otherwise. By Lemma 3.61,
¢ is an admissible labelling of T', however S(¢’) < S(p) contradicting the
minimality of ¢. We conclude that S(¢) =0 i.e.

For all i € [k], 7 € M, if j; =i then ¢(7); = 0. (3.54)

Since ¢(M) is a perfect matching of Q, there must exist p € M such that
the edge ¢(p) is incident to the vertex (1,1,...,1) (formally Q(y(p)) con-
tains (1,1,...,1)). Without loss of generality suppose ¢(p) = (*,1,...,1).
However, whatever value j, takes, we contradict (3.54). This concludes the

proof of the claim. O
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Suppose that I't contains a monochromatic odd cycle in the colour j. Since
I'; is bipartite and F;’ is not, there must exist o,7 € M such that o, 7 lie
in opposite parts of the bipartition of a connected component in I'; and
the edges {v, o}, {v, 7} both have colour j in I'*. By the definition of I'",
there exist vertices u € Wy, w € W, such that {v,u} and {v,w} both have
colour j in G and j # c(o) or ¢(7) i.e. 0,7 ¢ I;. Suppose that u € V] and
w € Vy then by Lemmas 3.54(ii) and 3.55 and the definition of 7;, a and
b lie in opposite parts of a bipartite connected matching, F', in R; whose
matching edges span F' and are edges of 7; (in particular there is an ab-path
of odd length in F'). Moreover we may assume that F’ spans the vertex sets
Wy, W, in R; and so by (3.50), 2(1 — )t/ < v(F') < v(R) < L. By Lemma
3.57, we have a (2¥*1§,1/(k + 1), m/)-super-regular blow-up of F' in G;. By
Lemma 3.46 (using inequalities as in (3.53) and noting that n — 2 is odd)
there exists a path of length n —2 joining v and w in Gj. This together with
the edges {v,u}, {v,w} forms a monochromatic copy of C,, in G contrary

to assumption (f). This concludes the proof of Lemma 3.62. O

Using Lemma 3.62 we may define a function f : W — M where f(v) is an
element of M such that G[v, Wf(v)] is monochromatic in the colour ¢(f(v)).
For each 7 € M, let U, = W, U f~1({r}). By (3.51), (3.52), (3.46) and

Lemma 3.59 we have that
5(Gon[Us]) = (1 = 2" 1e)|U,| for all 7 € M. (3.55)

Note that the sets U,, 7 € M, partition the vertex set of G and so if
N > 2k’1(n — 1) 4+ 1 then by the pigeonhole principle there exists o € M
such that |U,| > n. However, by (3.55) and Theorem 3.51, it follows that
U, contains a monochromatic copy of C,, in the colour ¢(o), contrary to
assumption (1). We therefore have that N < 28=1(n — 1). Note that at this

point we have done enough to prove Theorem 3.2.

It remains to show that G is close in edit distance to a hypercube colouring.
Recall that \W\ < 2eN and so there are at most 2e N2 edges of G incident to
W. We now aim to show that G\W is close to a hypercube colouring. Recall
that we have partitioned the vertex set of G\W into the monochromatic,

equally sized cliques {WT : 7 € M}. For 0 € M, we showed that |Wa| >
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(1 — 2¢)n and W, is monochromatic in the colour ¢(c). First note that at
most 2en vertices of G\Wg have more than 2en neighbours in W, in the
colour ¢(o) else we immediately find a monochromatic C), in the colour ¢(o)
in G. It follows that there are at most 2en/N edges leaving the clique Wg in
the colour ¢(a). Over all 7 € M, there are therefore at most 2*enN < 3e N2

edges in total leaving a clique W, in the colour (7).

Let ® now be the multigraph on vertex set M where we have an edge between
o and 7 in the colour j for each j ¢ {c(o),c(r)} for which G[W,, W]
contains a matching of two edges in the colour j. First we observe that
to complete the proof it suffices to show that there exists an admissible
labelling ¢ of ® (recall Definition 3.60). Indeed suppose that this is the
case, then since ¢ is admissible, for each pair of distinct o,7 € M and
each j ¢ A(p(0), (1)) U{c(0),c(r)}, we have that G [W,, W] contains no
matching of two edges and hence contains at most ]WO—] < n edges in total.
It follows that there is a hypercube colouring H associated to the perfect
matching ¢(M) of Q, where H has vertex set V(G)\W, such that for each
i e k]

— 2k—1
|GiAH;| < 2eN? 4 |(G\W);AH;| < 2eN? + 3eN? + n< ) ) < 6eN”.

The 2eN? term accounts for edges of G; incident to /V[v/, the 3eN? term

k—1
")

term accounts for edges of GG; lying between pairs WT, WJ for which i ¢
A(p(o),p(1)) U{c(o),c(r)}. We have thus shown that G is 6e-close to H.

It remains to show that we have the desired labelling of ®.

accounts for edges of G; leaving a clique W, where ¢(t) =i, and the n(

Claim 3.64. ® contains no monochromatic odd cycle.

Proof of Claim. Suppose otherwise and let o7 ...0, be an odd cycle in &
in the colour j. This allows us to fix a matching of size two in graphs
Gj[Wai,Ww] fori=1,...,¢ (where o411 := 01). Let S be the subset of
vertices of G saturated by these matchings and note that |S| < 281, We
first aim to build a short even path in G; with endpoints in ng and /WV/UZ.

Let x € SN ng and suppose that for some 2 < r < £ there exists y € Wgr
such that G, contains an xy-path P, of length » — 1 4+ 2L(r — 2) where
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IP.NSNW,,|=1and P,NSNW,, =0 for r < s < ¢ (note that this does
indeed hold for r = 2). We may then pick w € fWVUTﬁS and z € Wa NS such
that {w, z} is an edge of G, [WUT, /WUT+1] and w # y (here we are using that

r+1

we have a matching of size two available to us by the definition of ®). By the
definition of ®, o, is not in I; and so by Corollary 3.56 there exists ™ € M
such that R;[W,,,Wy] contains a connected perfect matching, F', whose
matching edges are edges of 7;. By Lemma 3.57 we see that G; [WUT, WW]
contains a spanning (2¥%15,1/(k + 1), m’)-super-regular blow-up of F where
21 —e)t! < wu(F) < 2(1+ &)t by (3.50). Moreover w and y lie in the same
part in the bipartition of this blow-up. By calculations similar to those made
previously, we may apply Lemma 3.46 to deduce that G; [Wgr, /V[\ZT] contains
an yw-path @ of length 2L. Moreover, since |P, U S| < 2¥L and using
Fact 3.49 it is easy to ensure that @) only intersects P. U .S at its endpoints.
It follows that P,y; := P.Qz is an xz-path of length r + 2L(r — 1) where
P NSN W, | =1and Py NSNAW,, =0 forr+1<s<£ Tt
follows by recursion that there exists u € Ww and an zu-path Py of length
p:={0—1+4+2L{—2)and |P,NSN V[N/W] = 1. Note that the length of Py is

even.

Finally, let {v,t} C S be an edge in G, [Ww, W,,] where v € WO—Z and v # u.
If x = t then applying Lemma 3.46 as above we find a uv-path Qg in the
colour j of length n—p—1 intersecting P,U.S only at its endpoints. It follows
that P;Qox is a monochromatic copy of C), contradicting ({). Similarly, if
x # t, we find a uv-path @1 of length 2L and a tzx-path Qs of length
n —p—2L — 1 both in the colour j so that P;Q1tQ2 is a monochromatic
copy of C), contradicting (7). O

We now construct an admissible labelling of ® recursively. Suppose that M’
is a perfect matching of Q; and that ) : M — M’ is some bijection. Let
0,7 € M and suppose there is an edge f in ® between o and 7 with colour
j not in A(¢(0),1(7)). We will call such an edge ‘bad’ (with respect to ).

Let {f1,..., ft} be the set of edges of ® that are bad with respect to the
identity map ¢ : M — M and note that ¢ is an admissible labelling of
®\{f1,...,f:}. Suppose now that ¢; is an admissible labelling of ®' :=
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O\{f1,..., fi} for some 1 < i < t. Suppose that f; is bad with respect
to ¢; and that f; has colour j and lies between o,7 € M. Note that
j & {c(o),c(r)} by the definition of ®. Moreover by the admissibility of ¢;
we have ¢(0) = c(pi(0)) and ¢(7) = ¢(¢i(7)). Since f; is bad it follows that
we must have p;(0); = ¢;(7); € {0,1}. Let us show that o, 7 lie in separate
components of <I>§ (the jth colour class of ®%). Suppose otherwise and take a
path in <I>§- joining o and 7. Since ¢; is admissible for ®° and ¢;(0); = ¢i(7);
this path must have even length. It follows that f; completes this path to a
monochromatic odd cycle in ® contradicting Claim 3.64. Let C' then denote
the component of <I>§» containing 7 (so that o ¢ C). Let ¢;_; be the function
on M given by ¢;_1(7) = ¢i(7)? for all 7 € C, p;_1(7) = ¢i(7T) otherwise.
By Lemma 3.61, ¢;_1 is an admissible labelling of ®!. Since

j € Api(0), pi(1)’) = Api-1(0), pi-1(7)),

we also have that ;_; is an admissible labelling of ®~1. If f; is not bad
with respect to ¢; we simply let ;1 = ;. Running this recursion to the

end we obtain an admissible labelling g of ¢ as required.

O]

This completes the proof of Theorem 3.4. We end this chapter with a few
remarks about the off-diagonal case and a related problem. A simple adap-
tation of the proof method in this chapter proves the following generalisation

of Theorem 3.2.

Theorem 3.65. For all k > 3 there exists Ny, such that the following holds.
If N <njp <no...<ng are all odd then

R(Chyyeo o, Cr) = 287 (g — 1) + 1.

The off-diagonal case has been well-studied. Erdés et al. [28] determined the
value of R(Cy,, Cy,, Cy,) and R(Cy,, Cy,, Cy,, Cy,) for ¢; fixed and n sufficiently
large. In a similar vein, as a corollary to a more general result in the study
of Ramsey goodness, Allen, Brightwell and Skokan [2] determined the value
of R(Cy,Cy,,...,Cy,) for ¢; fixed and odd satisfying ¢; > 2" for 1 < i < k
and n sufficiently large. In [39], Figaj and Luczak asymptotically determine
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the Ramsey number of a triple of large cycles with any fixed combination
of parities for the cycle lengths. In the case where not all of the cycles have
the same parity, Ferguson [35, 36, 37| strengthened the asymptotic results
of [39] to exact results. It would be interesting to extend the methods of
the present chapter to such a mixed parity setting. More generally, we
would like to investigate whether the analytic approach presented here has
wider applications in Ramsey theory. As a starting point, we believe that
the methods presented in this chapter would be useful for approaching the
following conjecture of Benevides, Luczak, Scott, Skokan and White [4] (at

least for large n).

Conjecture 3.66 ([4], Conjecture 8.1). Let n > 3 and let k be an integer.
Let G be a k-coloured graph on n wvertices with 6(G) > (1 — 27*)n, then

either:

e For all ¢ € [min{2*,3}, [n/28"11], G contains a monochromatic copy
of Cy, or;

e G is a complete 28 -partite graph with vertex classes of equal size where

each colour class is bipartite.
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Chapter 4. Independent Sets and the Hard-Core Model

This chapter is based on joint work with Ewan Davies, Will Perkins and
Barnaby Roberts published in [24] and [25].

4.1 Introduction

4.1.1 Independent Sets in Regular Graphs

In this chapter we explore extremal problems related to independent sets in
regular graphs and triangle-free graphs of bounded degree. For a graph G
let Z(G) be the set of independent sets in G. Recall from Section 1.4 that
the hard-core model with fugacity A on G is a random independent set [

drawn according to the distribution

A
Pa(N)’

Poa[l] = where Pg(A) = Y Al

I€Z(G)
The occupancy fraction ag(A) of G is both the expected fraction of vertices
of GG belonging to a random independent set I and the scaled logarithmic

derivative of the partition function Pg:

_ T T aps) A

oGP0 W@ Pey)  w(g teFe) ()

ag(A)

In this chapter we will prove:

Theorem 4.1. For all d-reqular graphs G and all A > 0, we have

A1+ N4t

ag(A) < ak, () = WL N1

Moreover, the mazimum is achieved only by disjoint unions of Kqq’s.

If 2d divides n, let Hy, denote a disjoint union of Ky 4's on n vertices. Note

that by linearity of expectation, we have ar, ,(A) = an, , (A).

From (4.1), it follows that

1 A
) log Pg(\) = /0 ; dt. (4.2)
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Thus, an immediate corollary of Theorem 4.1 is the result of Zhao [86]
stating that for A > 0, Pg(/\)l/ v(G) is maximised over d-regular graphs by
K g 4. Even more, it says that the ratio PKd,d(A)l/(Qd)/Pg()\)l/”(G) is strictly
increasing in A for any d-regular graph G that is not a disjoint union of
Kqq's.

Broadly speaking, the proof of Theorem 4.1 proceeds by writing the oc-
cupancy fraction in terms of local probabilities related to our model and
then adding consistency constraints on these probabilities that must hold
for all regular graphs. We then view the occupancy fraction as an objec-
tive function and maximise under these constraints via linear programming.
If we restrict our attention to triangle-free graphs, and minimise at this
point, rather than maximise, we obtain a general lower bound on ag(A) for

triangle-free graphs.

4.1.2 Independent Sets in Triangle-Free Graphs

The following theorem is written naturally in terms of the Lambert W func-
tion W(z): for z > 0, W(z) denotes the unique positive real satisfying the
relation W (z)e"(?) = 2. Tt will be useful to note that for z > e we have

W(z) > logz — loglog z.

Theorem 4.2. Let G be a triangle-free graph with mazimum degree d. Then

for any A >0,
A Wi(dlog(1l+ A

4.3
“ 14+ X dlog(l1+)) (43)

Note that we only require our graphs to be of maximum degree d, rather

than d-regular here. Theorem 4.2 yields the following corollary.

Corollary 4.3. Let G be a triangle-free graph on n vertices with mazimum

degree d. Then

logd
Il >(1 1 .
I€L(G)
In other words, the average size of the independent sets in any n-vertex,

triangle-free graph of maximum degree d is at least (1 + od(l))logdn. This
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should be compared to Shearer’s celebrated result [77] that in any n-vertex,
triangle-free graph of average degree d, the maximum size of its independent
sets is at least (14+04(1)) bgdn. Both Theorem 4.3 and Shearer’s result imply
the best known upper bound on the Ramsey number R(3, k). We give the

short argument here.

Corollary 4.4 (Shearer [77]).

2

R(B,8) < (1L o(1) .

Proof. Let G be a triangle-free graph with no independent set of size k.
Since G is triangle-free, all vertex neighbourhoods are independent sets and

so G must have maximum degree less than k. Applying Corollary 4.3 we

see that G contains an independent set of size at least (1 + ok(l))b,%kv(G)
but less than k, and so v(G) < (1 + ok(l))% as required. O

Independent work of Bohman and Keevash [7] and Fiz Pontiveros, Griffiths,
and Morris [40] shows that R(3,k) > (1/4 + o(1))k?/logk. Reducing the
factor 4 gap between these bounds is a major open problem in Ramsey
theory. The above proof of Corollary 4.4 simply uses the average size of an
independent set as a lower bound for the maximum size. In Section 4.5 we
consider whether the discrepancy between the maximum and average size

can be exploited to improve the upper bound on R(3, k).

It is interesting to note that the lower bound in Theorem 4.2 is not monotone
in A\ whereas for any graph G, ag()\) is monotone increasing (see Proposi-
tion 4.11). Simply substituting A\ = 1 into Theorem 4.2, does not quite
suffice to prove Corollary 4.3. Surprisingly it turns out to be better to use
a smaller A and then appeal to the monotonicity of ag(\). As an example,
using A = 1/logd in Theorem 4.2 is enough to prove Corollary 4.3. This
shows that Theorem 4.3 holds even when we replace the average size of an
independent set with a weighted average biased toward small sets. In fact

we can afford to bias using any X of the form d—°().

We can use equation (4.2) to turn our lower bound on occupancy fraction

(Theorem 4.2) into a lower bound on partition function.
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Theorem 4.5. Let G be a triangle-free graph on n vertices with maximum
degree d. Then for all A > 0,

Pg(N\) > exp ([W(dlog(l +A))? +2W (dlog(1 + A))] %) .

Taking A = 1 in this Theorem yields the following immediate corollary.

Corollary 4.6. Let G be a triangle-free graph on n vertices with mazimum

degree d. Then
log;2 d
4 n

Z(@)] = o teoe)

In comparison, Cooper, Dutta, and Mubayi [20] (improving on previous
results of Cooper and Mubayi [21]) proved that any triangle-free graph of

log? d
i—f—od(l))%n

average degree d has at least el independent sets.

As a further corollary we get the following lower bound without degree

restrictions.

Corollary 4.7. Let G be a triangle-free graph on n vertices. Then

Z(G)| > €<72110g2+0(1))\/ﬁlogn‘

This improves on a result of Cooper, Dutta, and Mubayi [20] by a factor
of /2 in the exponent. The authors of [20] also provide a construction
based on the analysis of the triangle-free process in [7, 40] showing that the
optimal constant is at most 1 + log2 ~ 1.693 (compared to the constant

7%%2 ~ .294 in Corollary 4.7).

The layout of this chapter is as follows. In the next section we introduce
our method in the simpler context of triangle-free graphs. We give a proof
of Theorem 4.2 and show how the proof can be easily adapted to prove The-
orem 4.1 in the case where we restrict ourselves to triangle-free graphs. In
Section 4.3 we deduce Theorem 4.5. In Section 4.4 we prove Theorem 4.1 in
full generality. Finally in Section 4.5 we end with some conjectures and sug-
gest new strategies for improving the upper bound on the Ramsey number
R(3,k).
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4.2 Occupancy Fraction in Triangle-Free Graphs

In this section we restrict our attention to triangle-free graphs and introduce
the occupancy method. We will prove Theorem 4.2 and show how the proof
can be easily adapted to prove the triangle-free case of Theorem 4.1. We

also derive the various corollaries of Theorem 4.2.

There are two key steps to our proof of Theorem 4.2. First, we define a
random variable that depends on two sources of randomness: the random
independent set drawn from the hard-core model on G and a uniformly
chosen random vertex v € V(G). We then express the occupancy fraction
in terms of two different expectations involving this random variable. This
gives a constraint on the distribution of the random variable. We then
optimise over all random variables that satisfy the constraint, and deduce a

bound on the occupancy fraction.

First let us introduce some useful terminology. Let I be an independent
set of G. We say a vertex v is occupied by I if v € I and unoccupied by
I otherwise. Furthermore we say v is covered by I if N(v) NI # () and
uncovered by I otherwise. If there is no ambiguity we will simply say that v
is covered etc. without referring to the independent set I. Note that if v is
covered, it must be unoccupied. Finally, for a subset S C V(G), we define

the free vertices of S to be the set
ST :={v e S: v uncovered by I\ S}.

In other words, if we reveal I only on the vertices outside of S, the free

vertices of S are those that could potentially be in I.

Before moving on to the proof of Theorem 4.2 let us establish a lemma
that we will make repeated use of throughout the rest of this chapter. We
establish what we will refer to as the ‘Gibbs property’ of the hard-core
distribution. The following lemma is simply a consequence of the well-
known fact that the hard-core distribution is a Gibbs distribution, however

we include a proof for completeness.

Lemma 4.8 (Gibbs Property). Let G be a graph and let U C S C V(G).
Let I be an independent set of G drawn from the hard-core model at fugacity
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A. Then for T € I(G[U]) we have (provided that P(ST = U) > 0)

AT
PINU=T|S'=U]= —"~—
| | ] Pan(A)

i.e. conditioned on the event that ST = U, INU is distributed according to
the hard-core model on G[U]| at fugacity X.

Proof. For any J € Z(G[U]) let
T;={I€Z(G):S'=Uand INU = J}.
Note that for J € Z(G[U]) the function

f:I@ —)IJ
I — TU{J}

is a bijection. It follows that > ;7 ML= A1 > oLeT, M and so

ZLEIT )\|L| )‘lT‘

PINU =T|ST =U] = =
Y sezew) orer, M X ez A

as required.

O]

Proof of Theorem 4.2. Let G be a triangle-free graph on n vertices and let
I be a random independent set drawn from G according to the hard-core
model at fugacity A. We begin by recording two simple consequences of

Lemma 4.8.

Claim 4.9. Pv € I] = H%P[v uncovered]

Proof. Note that if P[v uncovered] > 0 then P[v € I|v uncovered] = A/(1 +
A) by Lemma 4.8 with S = U =T = {v}. The result follows by noting that

if v is occupied then v is also uncovered. o
Claim 4.10. IfP[|[N(v)!| = j] > 0, then

P[v uncovered||N (v)!| = j] = (1 + \) 7.
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Proof. First note that the event that v is uncovered is the same as the event
that the free vertices in N(v) are all unoccupied. Let W be any subset of
N (v) of size j for which P[N(v)! = W] > 0. Note that since G is triangle
free, N(v) is an independent set and so Pgpy(A) = (1 4+ A). The result
follows by taking S = N(v), U =W and T = () in Lemma 4.8. o

We now write the occupancy fraction as:

aguy:%Ejpweﬂ

veG
TS Z P[v uncovered] (4.4)
S 1+A Y v ’
veG
A

d
= 2 S SEINGY = (N7 (4)

veG j=0
where (4.4) follows from Claim 4.9 and (4.5) from Claim 4.10. We define
the random variable Z = |N(v)| for a uniformly chosen vertex v. Z has
two layers of randomness, that of I drawn from the hard-core measure, and
that of selecting v at random. Interpreting the RHS of (4.5) in terms of Z,

we obtain

A
o) =133

Note also that since G is triangle-free, Z is simply the number of uncovered

E[(1+\)~7]. (4.6)

neighbours of v (since N(v) is an independent set, elements of N(v) can

only be covered by vertices outside of N(v)). It follows that

EZ = % Z Z]P’[u uncovered| = ? . % Z ZP[U eI,

vEG u~v vEG u~v
where for the last equality we used Claim 4.9. Observe that in the sum
Y e 2wy Plu € 1] each vertex w appears deg(u) times. Since G has

maximum degree d we can relate Z and ag(\) in a second way as follows:

1 1 A EZ
velG veG u~v

We aim to minimise the occupancy fraction subject to the constraints on the
distribution of Z given by (4.6) and (4.7). In fact we relax the optimisation

problem to optimise over all distributions of random variables Z that satisfy
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these constraints, not only those that arise from the hard-core model on a

graph.

N

By Jensen’s inequality applied to (4.6) we have
ag(\) > —— - (1+ )52
)

EZ
cag(\) > max{d, (14 )\)_EZ} > min max{g,(l —I—)\)_x}.

zERT

o+
>

=

1
Recalling also the lower bound (4. e have

14 A
A

To compute the minimum observe that z/d is increasing in z, whereas (1 +
A)~7 is decreasing. Then the minimum occurs at the value of x which makes

these quantities equal i.e. the x that satisfies
melog(l—&-)\)x —d

and hence

log(1+ A)ax = W(dlog(1+ \)).

The result follows. O

Before we explore the consequences of Theorem 4.2, we show how essentially
the same proof can be used to establish Theorem 4.1 in the case where G
is triangle free. The following proof is not needed for the general proof of
Theorem 4.1, however we believe it is worth giving a unified argument for
two results which have classical results of Kahn [55] and Shearer [77] as

corollaries.

Proof of Theorem /4.1 for triangle-free graphs. Note that since G is triangle

free, equation (4.6) holds for G and since G is d-regular, (4.7) holds with

equality throughout. That is we have

A EZ A
1+A d 14+ A

where we recall that Z is a random variable bounded between 0 and d. Now

ag(N) E[(1+ )7, (4.8)

instead of asking for the minimum value of ag(A) over all distributions of Z
as we did in the proof of Theorem 4.2, we ask for the maximum. Note that

since 0 < Z/d < 1, convexity of the function z — (1 4+ \)~* implies that

. Z _ Z
(1+)\)Z§E(1+)\)d+1—g. (4.9)
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Substituting this into (4.8) and using linearity of expectation yields

A EZ A1+ )\
ac(\) = < ( )

= T < - L 4.10
1+Xd ~2(14+N)%-1 (4.10)

where the right hand side is the occupancy fraction of K 4. For uniqueness,
note that to have equality in (4.10) we must have had equality in (4.9) which
is only possible if Z takes only the values 0 and d. This distribution of Z
can only occur in a disjoint union of copies of Ky 4. To see this recall that Z
is the number of uncovered neighbours of a randomly selected vertex v. The
only way every vertex v can always have either 0 or d uncovered neighbours
is for all the neighbours of v to have the same neighbourhood. For d-regular

graphs this property holds only for disjoint unions of Ky 4. O

In Section 4.4 we establish Theorem 4.1 in full generality. For now let us

return to Theorem 4.2. A curious feature of this result is that the lower

A W(dlog(1+)))
bound mm

graph G, the occupancy fraction ag(A) is monotone increasing.

is not monotone increasing with A, whereas for any

Proposition 4.11. For any graph G, ag(\) is monotone increasing in .

Proof. We will show that the derivative of ag(A) with respect to A is positive.
By (4.1) (using P for Pg(A)), we have

s (AP P APP" - X\(P')?
0@ o = () =5+

P 1 [ a2p” AP\ 2
- P A( P ( P > )
_ E(1I) + E(P) — E(]) — (E(1]))?
h

var(|1))
A

0

v

where [ is a random independent set drawn from the hard-core model at

fugactiy A. O

We now prove Corollary 4.3. Rather than substituting A = 1 in Theorem 4.2,

it turns out to be better to use a smaller A and then appeal to monotonicity.
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Proof of Corollary 4.3. Substituting A = 1/logd in (4.3) and recalling the
bound W(z) > log z — loglog z for z > e we obtain

logd
d

ag(A) = (1+0o(1))

By monotonicity (Proposition 4.11), we have ag(1) > ag(\) and the result
follows. u

4.3 Counting Independent Sets in Triangle-Free
Graphs

In this section we prove Theorem 4.5 (and hence Corollary 4.6) by integrat-
ing the lower bound on the occupancy fraction of a triangle-free graph given

in Theorem 4.2. We also prove Corollary 4.7.

Proof of Theorem 4.5. By (4.2) and Theorem 4.2 we have

n (A W(dlog(1l+1t))

>
log Pe(4) 2 d/o (1+t)log(1 + t)
n /W(dlog(1+A))

dt

d Jo

= oo [W(dlog(1 + X)) + 2W (dlog(1 + A)],  (4.11)

(1+u) du

where for the first equality we used the substitution u = W(dlog(1 + t)).
In particular when A\ = 1, using the inequality W(z) > log z — loglog z for
z > e, we have

1 log?
log Pg(\) > <2 +0d(1)> ogd dn. O

Proof of Corollary 4.7. In a triangle-free graph the neighbourhood of any
vertex forms an independent set. Let d be the largest degree of a vertex in

G, then we have the bound

Po(3) > max { (1+ \)?, exp 5o W (dlog(1 + N2},

by considering the neighbourhood of a vertex of maximum degree and by

inequality (4.11). The first expression is increasing in d while the second is
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decreasing, and at

1 n nlog(l+ \)
d= =/ 1
2\ 2log(1+A) ° ( 2 >

they are equal. It follows that for A > 0,

1 log(1 log(1
Pg(X) > exp [\/ nlog(l+2) log (n og(l + )\>> (4.12)
2 2 2
Take A = 1 to complete the proof. ]

Inequality (4.12) may be of independent interest, giving a general lower

bound for the independence polynomial of a triangle-free graph on n vertices.

4.4 Proof of Theorem 4.1

In this section, we prove Theorem 4.1 in full generality. Let G be a d-regular
graph on n vertices. For a vertex v € G and an independent set I, we define
the free neighbourhood F(v) of v to be the subgraph of G induced by the
neighbours of v which are not adjacent to any vertex in I \ N(v) (i.e. the
graph induced by N(v)!). Recall that in the triangle-free case, the free
neighbourhood of a vertex v was simply an independent set of size j for
some 0 < 5 < d. Here, the free neighbourhood could be any graph on at
most d vertices. The vertices in the free neighbourhood may be uncovered
or covered by I, but if they are covered it must be from another vertex in
the free neighbourhood. Note that if v € I, then the free neighbourhood of

v is necessarily empty.

Let C be the random free neighbourhood of v when we draw [ according to
the hard-core model and choose vertex v uniformly at random from G. For

any graph F', let pr be the probability that C' is isomorphic to F'. Note that
1
pr = > PIF(v) = F). (4.13)
veG

Note that we write F'(v) = F' to mean that F'(v) is isomorphic to F. Let Cy4
be the set of all graphs on at most d vertices, including the empty graph.

A key observation is that the occupancy fraction ag(A) can be expressed
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in two distinct ways in terms of the random free neighbourhood C'. Recall

that Po(A) denotes the independence polynomial of C' at fugacity .

Claim 4.12.

A 1 A [PL(N)
) =—=F =_E |£
o) = 358 [ | = 22 R
where the expectations are over the random free neighbourhood C'.

Proof. We proceed in a similar way to the proof of Theorem 4.2. First note
that for v € G, v is uncovered if and only if all the vertices in the free
neighbourhood of v are unoccupied and so for F' € Cy4

_ 1
~ Pr(N)

P[v uncovered|F'(v) = F] (4.14)

by Lemma 4.8, taking S = N(v), T = () and letting U be any subset of
N (v) for which G[U] is isomorphic to F'. Equation (4.14) is the analogue of

Claim 4.10 in this more general setting. Now we may write

ag(A) = %ZP[U € I]

veG
= 1_1):)\ . % Z P[v uncovered| (4.15)
veG
_ A1 ! ppw) = F 4.16)
ST a2 Foy =] "
A 1 1
T 1A P;d Pr(\) (n ;P[F(”) - F]>
A 1
- 1+A§d PP (4.17)

For (4.15) we used Claim 4.9, for (4.16) we used (4.14) and for (4.17) we
used (4.13). This establishes the first equality .
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Alternatively we may write

ac()) = % S Plue ] (4.18)

sec
_ % ;FEZQ (7; Plu € I|F(v) = F]> P[F(v) = F] (4.19)
- % ;%ﬂl )\é;}(/\/\))P[F(U) = F] (4.20)
_ ;P;d Ajijf((;)) (ivépmv) - F])

ST

For (4.18), we used that G is d-regular. For (4.20) note that the inner

bracket of (4.19) is the expected number of occupied neighbours of v, given

that F'(v) = F which by Lemma 4.8 is )‘Iff((/\)i) i.e. the expected size of an

independent set drawn from the hard-core model on F. o

Now let

=i ] 2] - R R e

where the supremum is over all distributions of random free neighbourhoods

C supported on graphs of at most d vertices. From Claim 4.12, the distri-

bution obtained from G satisfies the constraint above and so ag(\) < a*.

To complete the proof of Theorem 4.1 we will show that o* = ag, ,(}).
Moreover we will show that any distribution attaining the supremum in
(4.21) must be supported only on the empty graph and the graph consisting
of d isolated vertices, K4. The theorem follows since a disjoint union of K dd’s

is the only graph which gives rise to a distribution with such a support:
Claim 4.13. Suppose that G is a d-reqular graph and prp = 0 for all F €
Ca\{0,K4}. Then G is a disjoint union of Kq4’s.

Proof. First note that if F' = G[N(v)] for some v € G, then pr > 0 since
we could pick v and the empty independent set. It follows that all vertex

neighbourhoods must induce a copy of K, in G i.e. G is triangle-free.
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Suppose that G' has a component H not isomorphic to K4 and pick v €
H. Since H is not isomorphic to Kg4 we can pick u,w € N(v) such that
N(u) # N(w) i.e. we can choose z such that z is adjacent to u but not w.
If we choose the independent set consisting only of the vertex z then w is in
the free neighbourhood of v, but w is not. Thus, the free neighbourhood of

v is neither () not K. o

To prove our claim regarding the distributions that achieve a*, we use the

language of linear programming introduced in Chapter 1.

4.4.1 The Linear Program

Recall that pr is the probability of a given free neighbourhood F'. Equation

(4.21) leads us to consider the following linear program with the decision

variables {pr}cec,-

. A
maximise ) Z PE QR
FeCy

subject to Z pr =1
FelCy

> prlap —bp) =0

FeCy

pr >0 VF €y
where ap = #()\) and bp = %. Note that an optimal solution of
this linear program will have objective value a*.

The dual linear program is
minimise Aj

subject to Ay + Ag(ap — bp) >

1+)\ap VF € Cy

where Ay, Ay are the decision variables.

We will show that Ay = ag, ,(\) = ;‘((11:7;\\));: and Ay = HAA — A1 is a feasible

solution to the dual program i.e. we will show that

A
— > . .
A+ AQ(CLF bF) Z1x )\CLF VF € Cy (4 22)
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We can calculate ay = 1, by = 0, ag, = (1 + A~ b, = 1 and so (4.22)

holds with equality for F = (), K4. We will in fact show that (4.22) holds

with strict inequality for all F' € Cq\ {0, K4}. Substituting our values of
A1, As, this inequality reduces to showing that

APL(A)  Ad(1+ )4t

Pr(N)—1 = (14+X)4-1

The LHS of (4.23) is the expected size of the random independent set from

VE € Cy\ {0, K4} (4.23)

the hard-core model on F' conditioned on it being non-empty. The RHS is

the same quantity for K.

Inequality (4.23) follows directly from the observation that, over all F' € Cy4,
the graph K, maximises the ratio of subsequent terms in the polynomial
Pr. Let t; = (Cil), the coefficient of A\’ in Pg , and write Pp =1+ Z?:l TN
We have (i + 1)tiy1 = (d —i)t; and (¢ + 1)rip1 < (d — i)r; by counting

independent sets of size i + 1 (recall that F' has at most d vertices).

To verify (4.23) we show that for each 1 < k < d the coefficient s3, of A¥ in
the polynomial O‘Plfd)(PF —1) = (APp)(Pg, — 1) is non-negative. We have

k-1 k—1
S = Z it — Z i1
i—1 i—1

[k/2]
= Z (k — 2i)(tk,i'f‘i — tﬂ“k,i) .

i=1
Observe that each term in the above sum is non-negative by comparing the
ratio of successive coefficients in P?d and Pr. Furthermore, if Pr # P?d
then at least one s, must be positive and (4.23) follows. It follows by weak

duality (Theorem 1.3) that
o <Ay = ag, (A (4.24)

Of course we in fact have equality in (4.24) as witnessed by the distribution
associated to Kg4: pp = %, P, = W, pr =0forall FF € Cy\
{0, K4}. The strict inequality in (4.23) shows, by complementary slackness
(Theorem 1.4), that any optimal solution must be supported only on the
configurations () and K 4. Recall that by Claim 4.13, disjoint unions of Kaq
are the only graphs which induce a distribution with this support. The

result follows.
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4.5 On the Ratio of the Maximum and Average
Independent Set Size

In light of Corollary 4.3, showing that the average size of an independent set

in a triangle-free graph with maximum degree d is at least (1+ 04(1)) logdn,

we now raise the question of whether the largest independent set should
be significantly larger. This gives a new way to pursue an upper bound
on R(3,k). There is always a gap between the maximum and average size
of an independent set (since the empty set is an independent set), but in
general the ratio of maximum to average size can be arbitrarily close to 1.
For example, the complete graph K, has maximum independent set size 1

with average size n/(n + 1).

We conjecture that such a narrow gap cannot occur in triangle-free graphs.
The following two conjectures make this claim precise in different ways. We
let @(G) denote the average size of the independent sets in G and let a(G)

denote the largest size of an independent set in G.

Conjecture 4.14. For every triangle-free graph G,
a(G)

0 2 4/3.

Replacing 4/3 with any number strictly greater than 1 would give an im-
provement to the R(3,k) bound. The graph with the smallest ratio a/a@
we have found is the triangle-free cyclic graph that exhibits the bound
R(3,9) > 36 [49]. For this graph o/a = 150138 = 1.43283.... We choose

4/3 since it is a nice fraction less than 1.43 and since it is the ratio of maxi-

mum to average size in a triangle. One might wonder if the extremal R(3, k)
graphs are good candidates for pushing the ratio a/& down to 1. However,
for large k it may be the case that graphs arising from the triangle-free pro-
cess are asymptotically extremal, as is conjectured in [40]. We believe that
for such graphs the ratio a/@ in fact converges to 2. This motivates the

following conjecture.

Conjecture 4.15. For every triangle-free graph G of minimum degree d,

a(G)
% > 2 —o0q4(1).
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Lemma 4.16. The following improvements to Shearer’s upper bound on

R(3, k) would follow from the above conjectures and Corollary 4.3.

1. Conjecture 4.14 implies R(3,k) < (3/4 4 o(1))k?/logk.

2. Congjecture 4.15 implies R(3,k) < (1/2+ o(1))k?/logk.

Proof. Let G be a triangle-free graph on n vertices with no independent set
of size k. Since vertex neighbourhoods in GG are independent sets we see that
G must have maximum degree less than k. Corollary 4.3 and Conjecture 4.14
would then imply that o(G) > (4/3 + ok(l))b%kn. However, we also have
that a(G) < k and so n < (3/4 + o(1))k?/ log k.

To show (2), we select a vertex in G with degree less than k/log? k and
remove it along with all its neighbours. We then repeat this process until
it is no longer possible and call the remaining graph G’. Since the selected
vertices form an independent set in GG, we can repeat the process at most
k times and so v(G') > n — k?/log? k. If G’ is empty then n < k?/log?k,
otherwise G’ is a graph of minimum degree at least k/log? k. Since G’ also
has maximum degree k it follows from Corollary 4.3 and Conjecture 4.14 that
a(G) > 2+ ok(l))b,%k(n k). However, we also have that a(G') <

o log? k
a(G) < k and so n < (1/2 + o(1))k?/ log k. O

One possible approach to the above conjectures is via the following simple

consequence of the proof of Proposition 4.11. For any graph G on n vertices

o0

I

(@) = v(G) lim ac(\) = a(G) +/ vanu(l2) g
A—00 1 )\

In this chapter we gave a lower bound for @(G), the expected size of an

independent set drawn from a triangle-free graph according to the hard-

core model. The above equation shows that one approach to the above

conjectures would be to do the same for the variance.
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Chapter 5. Matchings and the Monomer-Dimer Model

This chapter is based on joint work with Ewan Davies, Will Perkins and
Barnaby Roberts published in [24].

5.1 Introduction

Recall from Section 1.4 that the matching polynomial of a graph G is

Mg(x) = > A
HeM(G)
where M(G) is the set of all matchings of G (including the empty matching)
and |H| is the number of edges in the matching H. Just as in the hard-core
model we can define a probability distribution over matchings:
AH|
© MM

PaA[H]

For a d-regular graph G, the edge occupancy fraction, or the dimer density,

is the expected fraction of the edges of GG in such a random matching;:

1 A /
W)= Gy B 1P = g Qom MGO

Our next result is an upper bound on the edge occupancy fraction of any

d-regular graph:
Theorem 5.1. For all d-reqular graphs G and all A > 0, we have
ag (V) < i, , (V).
Moreover, the mazimum is achieved only by disjoint unions of Kqq4’s.

It follows by (5.1) that Kg4 (and thus also Hg,) maximises Mg(\)Y/¢(@)
over all d-regular graphs for any A > 0. This resolves Conjecture 7.1 in [45].
A corollary of Bregman’s theorem [13] on the permanents of 0/1 matrices

with given row sums is that the number of perfect matchings of a d-regular,
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n-vertex bipartite graph is maximised by Hg,, and this was extended by
Kahn and Lovész to all d-regular graphs (see [45] for a full discussion). Our
result on Mg(\) extends this: letting A — oo recovers the result for perfect
matchings, while setting A = 1 shows that Hy, maximises the total number

of matchings of any d-regular graph on n vertices.

For a graph G, let my(G) denote the number of matchings with & edges in
G. The Upper Matching Conjecture of Friedland, Krop, and Markstrom [44]
asserts that over all n-vertex d-regular graphs, Hgy,, should in fact maximise
my(G) for all k& (when 2d divides n). Previous bounds towards this conjec-
ture were given in [15, 54]; for d fixed and k linear in n, all previous bounds
were off the conjectured values by a multiplicative factor exponential in n.
In Section 5.3 we use Theorem 5.1 along with a theorem of Heilman and

Lieb [52] to give a bound that is tight up to a factor of 7v/k (which is at
worst 74/n/2), for all d.

Theorem 5.2. For all d-regular graphs G on n vertices where 2d|n,

mk(G) S 7\/% . mk(den) .

Although the Upper Matching Conjecture remains open, Theorem 5.2 is
strong enough to imply the Asymptotic Upper Matching Conjecture of Fried-
land, Krop, Lundow, and Markstrom [43]. We defer the precise statement

of this conjecture to Section 5.3.

5.2 Proof of Theorem 5.1

The proof of Theorem 5.1 follows the same general approach as the proof
of Theorem 4.1 from the previous chapter. Given a graph G, we express its
edge occupancy fraction as a linear function of certain ‘local probabilities’
related to the monomer-dimer model on G. We then optimise the occupancy
fraction subject to linear consistency constraints on these probabilities that

must hold for all regular graphs.

First let us introduce some useful notation and terminology similar to that

used in the previous chapter. Let G be a graph and let H be a matching in
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G. We refer to an edge e of G as covered by H if an edge incident to e is in
H. We say that e is uncovered by H otherwise. We may simply say that e

is covered /uncovered if the matching H is clear from the context.

For a subset S C E(G), we define the set
SH .= {ec S :euncovered by H\ S}.

In other words, if we reveal H only on the edges outside of S, the edges of

SH are those that could potentially be in H.

By applying Lemma 4.8 from the previous chapter to the line graph of a
graph G we recover the Gibbs property for the monomer-dimer model. In

the following statement we identify a graph with its edge set.

Lemma 5.3. Let G be a graph and let U C S C E(G). Let H be a matching
in G drawn from the monomer-dimer model at fugacity \. Then for T €
M(U) we have (provided that P(S? =U) > 0)

AT
PIHNU =T|S" =U] = .
| =0 M)

Le. conditioned on the event that SH = U, HNU is distributed according

to the monomer-dimer model on U at fugacity .

Now, let G be a d-regular graph on n vertices and let H be a random

matching drawn from the monomer-dimer model on G at fugacity A.

For an edge e, we define the free neighbourhood F(e) of e to be the subgraph
of G containing all of the edges incident to e that are uncovered by edges
outside of both e and its incident edges. Note that when considering in-
dependent sets in the previous chapter, the free neighbourhood was empty
if the random vertex v was in the independent set. Here the presence or

absence in the matching of e or an edge adjacent to e does not affect F'(e).

Let us give each edge of G an arbitrary orientation that we fix throughout the
proof i.e. for each edge e € GG, one endpoint of e is chosen to be the ‘left side’
and the other endpoint the ‘right side’. The possible free neighbourhoods of
an edge e are then completely defined by three parameters: £(e),r(e),t(e) €
{0,1,...,d — 1}, counting the number of edges incident to the left side of e
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in F(e) with an endpoint of degree 1, the same for the right side, and the
number of triangles formed by e and F(e). We write F'(e) = (i,7,k) as a
shorthand to denote the event that (¢(e),r(e),t(e)) = (4,7, k). An example

is pictured below.

We denote the matching polynomial for such a free neighbourhood by M; ; 1,

where we can compute
MijeN) =1+ (i+j+2k)A+ [K* + k(i 45— 1) +ij] A2,
Let e be an edge of G chosen uniformly at random and let ¢(i, j, k) denote

the probability that F'(e) = (i,j, k) i.e.

q(i, g,k ZP (4,7, k)]

eeG

We can write ag as the expected fraction of edges incident to e that are in

the random matching H:

ag (V) = - Z Z P(f € H] (5.2)

= ZZ | 2Pl € 1) = (i BT PIF() = ., 0)
7.]7 f~e
" dn ZZ A+ M” k()\))P[F(e) = (4,5, k)] (5.3)
AM{ k(A) -
_Z _1 /\j_]\41]7 (A))Q(Za]ak)
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For (5.2) we used that G is d-regular and for (5.3) we used Lemma 5.3: con-
ditioned on the event F'(e) = (i, j, k), HN(F(e)Ue) is distributed according

to the monomer-dimer model on F'(e)Ue at fugacity A\. Note that the match-
1 )‘Mil,j,k
2(d—1) MM, 1

is the expected fraction of neighbours of e that are in H conditioned on

ing polynomial of F(e) Ue is A + M, and so a(i,j, k) =

the event F'(e) = (i,J, k). With this notation the above expression can be
written o = >k 0,4, k)a(i, g, k).

5.2.1 The Linear Program for Matchings

Our goal is to introduce linear consistency constraints on the ¢(i, j, k) and
then optimise o = >k (i, J,k)q(i, j, k) subject to these constraints. We
could write multiple expressions for a% , equate them, and solve the max-
imisation problem as we did for independent sets in Chapter 4. Using three
expressions for O/\G/[ we were able to prove Theorem 5.1 for the case d = 3, in
which the optimal distribution is supported on only three values: ¢(0,0,0),
q(1,1,0), ¢(2,2,0). But in general we need at least d — 1 constraints (in ad-
dition to the constraint that the ¢(i, 7, k)’s sum to one) as the distribution

induced by K4 is supported on d values.

Instead we write, for all ¢, two expressions for the probability that the num-
ber of uncovered neighbours on a randomly chosen side of a random edge is
equal to t. We find the two expressions by choosing uniformly: a random
edge e, a random side of e left or right, and f, a random neighbouring edge of
e from the given side. We first calculate the probability that e has ¢t uncov-
ered neighbours on the side incident to f, then we calculate the probability

that f has ¢ uncovered neighbours on the side incident to e.

Given an edge e of G with free neighbourhood F(e) = (i, j, k), e can have
0,1,i+k—1, or i+ k uncovered left neighbours; an edge f to the left of e can
have 0,1,7+k —2,i4+k—1,i+ k, or i + k + 1 uncovered neighbours on the
side containing e (depending on whether f itself is in F'(e)). To save space
we use ‘nbrs’ as an abbreviation for ‘neighbours’ in some of the following

displayed equations.
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Let
i jk(t) := Ple has t uncovered left nbrs |F(e) = (i, j, k)]

and
7ifj () := P[f has ¢ uncovered nbrs on the side containing e|F(e) = (i, j, k)]
where f is a uniformly chosen left neighbour of e.

Claim 5.4. Let B; = 1+ tA. Then we have

e 1 :
Vigr(t) = Nt Mo (1t:0 A+ L=t - [IABjk + EABj k1] (5.4)
+ Li—igk - B+ Lyt - 747)\>
f 1 ,
Jo(t) = 1i—0 - [IAB; kXBjyk— .
’Ym,k( ) d—D0\+ M”k)< t=0 " [IABjrk + EABj k1] (5.5)

+ L=t - [(d = DA+ (d = 2)(iABj 4k + kABjk-1)]
FLymipho - (G4 k= RN + Limipt - [(d— i — k)X + (i + k)jA]
F Limip - [(d =1 =i = K)A+ (4 B)] + Lijpn - [d— 1= i = K]).

Proof. We refer to edges of F(e) that are incident to the left endpoint of e
as left edges, we define right edges similarly, and we refer to edges of F(e)

that are in a triangle of F'(e) U e as triangle edges.

To compute the 7 j s we consider the following disjoint events: 1) a left
edge is in the matching 2) e is in the matching 3) no left edge or triangle
edge is in the matching 4) no left edge is in the matching, but a right
triangle edge is in the matching. These events happen with probability
0Bk A KAS k1 A 5 and 5 respectively (by Lemma 5.3)

A+M; 5k PAM; ok A+ M, A+M; ;i p y by e

Under these events the number of uncovered neighbours of e is 1,0,¢ + k,

and 7 + k — 1 respectively. This gives (5.4).

To compute the %{ j’k’s we refine the above events to include the possible
choices of f: f can be an edge outside F'(e) with probability (d —1 — ¢ —
k)/(d—1); a non-triangle edge in F'(e) with probability i/(d —1); a triangle
edge in F'(e) with probability k/(d —1). If a left edge is in the matching we
choose it as f with probability 1/(d—1), and if a right triangle edge is in the
matching we choose f adjacent to it with probability 1/(d — 1). Computing

the number of uncovered neighbours of f in each case gives (5.5). O

119



Chapter 5. Matchings and the Monomer-Dimer Model

We are now in a position to build our extra constraints on the ¢(i, j, k)’s.
Let e be an edge of G chosen uniformly at random and let s be a uniformly
chosen side left /right of e. Then, by conditioning on the free neighbourhood
of e and the value of s, for each ¢ € {0,...,d — 1} we have,

Pe has t uncovered nbrs on side s] = Z q(i, 7, /<;)1 [7§j7k(t) +75i k()] -

- 2
1,5,k

Let f be a neighbouring edge of e from the side s chosen uniformly at random
and let h be the side of f which contains e. Note that since G is d-regular,
(f,h) is also an edge chosen uniformly at random from G with a uniformly

chosen side. It follows that

Ple has t uncovered nbrs on side s| = P[f has ¢ uncovered nbrs on side h].

Again by conditioning on the free neighbourhood of e and the value of s we

have,

. o1
P[f has ¢ uncovered nbrs on side h] = Z q(2, , k)§ [’yif,j,k(t) + ’yjflk(t)] :
i7j7k

It follows that for each ¢t € {0,...,d — 1} we have the constraint

|
> aling k)5 [’Y{:M(t) + L () = A8 k() — 'Y;,i,k(t)} = 0.
i7j7k

This leads us to consider the following linear program.

max Y q(i, 4, k)a(i, j, k)
4,5,k
st. > qi,j.k)=1
N
| e e
ZQ(%% k)= [’Y{M(t) + 'ijzk(t) — %kt =ik =0Vt=0,...,d -2

— 2
1,3,k

q(i,j,k) 2 0V 0,5, k.

Note that we omit the ¢ = d — 1 constraint since it is redundant. Let us
denote the optimal solution to this linear program by a* and note that

ag(A) < o for all d-regular graphs G. We expect the (i, j, k) distribution
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arising from Ky 4 (or a disjoint union of Ky 4’s) to be optimal. The follow-
ing observation will be useful in guiding us toward a solution of our linear

program.

Claim 5.5. Suppose that the distribution q(i,j,k) is supported only on
triples with © = j and k = 0. Then G must be a disjoint union of Kqg4’s.

Proof. First note that G must be triangle free, else we could pick an edge in
k > 0 triangles and the empty matching so that ¢(d—1—k,d—1—k, k) > 0.
Let C be a connected component of G and let e = {u,v} be an edge of
C' (where we suppose u is the ‘left’ vertex of e). Suppose that there exists
an edge f in G that is incident to a vertex in N(u) and not incident to
any vertex in N(v) (note that since C' is triangle free, N(u) and N(v) are
disjoint). Picking the edge e and the matching consisting only of the edge
f would then show that ¢(i,d —1,0) > 0 where i = d —2 or d — 3. It follows
that all edges that are incident to a vertex in N(u) must also be incident
to a vertex in N(v). Since C' is d-regular it must be the case that all edges
between N(u) \ {v} and N(v) \ {u} are present and so C is isomorphic to
K. o

)

The dual linear program is

min A
d—2 1

st A= a5 k) + 3 Mg [0+ 7o (0) = 650 (0) ~ Vo] 2 0 gk
t=0

where A, Ag, ..., Aq_2 are the dual variables. To show that K 4 is optimal,
we find values for the dual variables so that the dual constraints hold with
A= aJ\K/[d ,- To find such A;’s, we solve the system of equations generated by

setting equality in the constraints corresponding to ¢ = j and k£ = 0.

With this choice of A;’s, we start by simplifying the form of the dual con-
straints with a substitution coming from equality in the (4,7, k) = (0,0,0)

constraint. The (0,0,0) dual constraint has the simple form
AQ—A1 :a%d,d‘
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Moreover, observe that from the 1,9 and 1;=; terms in 7}, , (¢) and 'yifj (1),

every dual constraint contains the term

A

. . A
a(i, j, k) — WW] (Ao —Ay) = [a(ld,k) -

« .
()\ + Mi,j,k) Ka.a

With this simplification, we multiply through by 2(d — 1)(X + M; ;) and
expand @(i, j, k) terms to obtain the following form of the dual constraints

(recall that we use f3; to denote 1 + tA).

g, AM g+ 2(d = 1) M ji] — AM 5, (5.6)
+ Aipp—2 - (i +k—1)kA
+ Nyt - [(d =i — KRN+ (i + )i\ — (d — 1)kA]
Ak [(d=1—i—k)jA+i+k—(d—1)p]
+ ANigpyr - (d—1—i—k)
+ Ajpr—2 (J+k—1)kA
+ Ajpo1 - [(d— G — E)EN+ (§ + K)iX — (d — 1)k
+ Ay [(d=1—j—k)ix+j+k—(d—1)5]
+Ajpyr-(d—1—j—k)>0.

The (i,4,0) equality constraints now read

a%d,d’@i(ﬁi + dZ—Al) - fi—ﬂf + Ai—lfl—/\1 - Aid 1d—l;rl A+ Az‘rldd—11Z =0.(5.7)

With this we can write A;x41 in terms of Ay and A;4x—1, and similarly
for Ajig41. Substituting this into (5.6) and dividing by A we derive the

simplified form of the dual constraints:
A(i = 5)° +2k) (1 — dail, ) (5.8)
+ Airk—2(i+k— Dk + Aippa [k + (0 + k) — i — 2K)]
+ Aiyk (i + k)i + & — j)
+ A2+ k—Dk+ANypalk+ G+ k)i —j—2k)]

+Ajk(G+E)G+k—i)>0.

Write L(i, j, k) for the LHS of this inequality.
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The constraint for ¢t = d — 1 was omitted, but we nonetheless introduce
Ag—1 := 0 in order to simplify the presentation of the argument. The (d —
1,d —1,0) equality constraint gives Ay_o directly:

(d—ll))\ |:)\ + (d — 1))\2 — a%d,d/@dflﬂd

With Ag_1, Ag—2, and the recurrence relation (5.7) the dual variables are

Ag_o =

fully determined.

We now reduce the problem of showing that the dual constraints (5.8) cor-
responding to triples (4, j, k) with & > 0 or ¢ # j hold with strict inequality
to showing that a particular function is increasing. We go on to prove this
fact in Claims 5.6 and 5.7.

Putting k£ = 0 into (5.8) gives:

L(i, §,0 o . o .
((jz—ji)) =AJj—1)(1 - da%dyd) +iNi—1 — 1Ny — JAj_1 + A,
= Fy(j) — Fu(i)
where
Fy(t) ==t | A1 —dagl, )+ Ar— Ara| (5.9)

From (5.8) we obtain
Lii—1,5—1,k+1)—L(i,j, k) =F4(i + k) — Fa(i + k — 1)
+ Fa(j + k) — Fa(j +k —1).
Therefore, if Fy(t) is strictly increasing, we have L(,j,0) > 0 for i # j, and
LGi—1,j—1,k+1)>L(i,j,k) > >L(i+k,j+Fk0) > 0.
We first find an explicit expression for Fy(t). Recall that we write M, , for
the matching polynomial of the graph K ¢, that is Mk, ,(\) = S o (§)2i!)\t.

Claim 5.6. Foralld>2and1 <t<d-1,

d—2
t(d—1) (d—=1—-t) 4
Fy(t) = — N\ Mkg,, . 5.10
d( ) MKde Pt (f _|_ 1 _ t)‘ KZ,Z ( )
Proof. We will use the following two facts:
‘ZMKd,d - B2d_1luKd71,d—1 + (d - 1)2)\2‘“4Kd72,d72 =0 (5-11)
AMg

M d—1,d—1
« =" 5.12
M= (512)
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The first is a Laguerre polynomial identity, verifiable by hand; the second is

also a short calculation. The equality dual constraint (5.7) implies:
(d—=1—=t)Fa(t+1) = (t+ V)[tAFa(t) + (d = DA = (d = Vag, ,Bari] .

We first show that the right hand side of (5.10) satisfies the above recurrence
relation. Using (5.12) this amounts to showing that the following expression

is equal to zero for alld >2and 1 <t <d-—1:

d—2 \d—¢ d—2 yd+1—¢
N, 2 A
By(t) i=(d—1— 1)1 ST A_Kee 2 MK
a(t) :=(d ”(Z o L2 o

/=t l=t—1
- )\(MKd,d - ﬂd‘f‘tMKd—l,d—l) .

We proceed by induction on d. Note that when d = 2, ®5(1) is easily verified
to be zero. Note that

(I)d—i-l(t) = )‘(<d - t)q)d(t) - MKd+1,d+1 + B2d+1MKd,d - d2A2MKd71,d—l> :

By the induction hypothesis and (5.11) the result follows. To complete the
proof of the claim it suffices to show that (5.10) holds for ¢ = d—1. Recalling
that

Ag—1 =0

A 1 A a%dd
d-2 = o7 + A - mﬁdﬂdfly

substituting into (5.9), and using (5.11) and (5.12) we have

M
1 K,
Fa(d=1) = (d=1) [ M1 —doi, ) = o= — A+ ﬁﬁdﬁdq

M
aKd,d
= Bog—1 —1
1
= M [ﬁQd_lMdel,dfl - MKd,d]
d,d
(d - 1)2>\2MKd—2,d—2

)
Mk, ,

verifying (5.10) for t = d — 1. O
Using Claim 5.6 we prove the following.
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Claim 5.7. Fy(t) is strictly increasing as a function of t.

Proof. To prove that Fy(t) is increasing, we show that

MKdd Fd(t+ 1) — Fy(?)

d-1)  (d=2-1)
d—

2 )\d —
MKM_ (d_l_t Z mMKZZ
é:t l=t—1

Ry(t) :=

=(t+1)

is positive for each ¢ with 1 <t < d—2. We do this by fixing ¢t and inducting
on d from t + 2 upwards. A useful inequality will be Mg, , > tAMg, ,,_,
which comes from only counting matchings of K;; that use a specific vertex.
Iterating this inequality we obtain

t!
SN My, for0< €<t —1. (5.13)

Mg > 4

For the base case of our induction, d = t + 2, we have Ry(d — 2) =
N [Mp, 5, — (d—2)AMg,_,,_,] which by (5.13) is positive.
For the inductive step we have

d—2

Rust(t) = | Ra(t) + ———M - T
A+t = d (d—1-1t) Ka-1,a-1 Pt (L—t+1) Kee
and so it is sufficient to show
d—2
t)\d—ﬂ
(5.14)

7]\4‘ 71\4‘ '
(=t—1 (£+1-1)! Kae < (d—1-1)! Ka-1,4-1

We use the inequality (5.13) in each term of the sum to see that the LHS of
(5.14) is less than

d—2

tON
M
;1 (+1—t)l(d—1) Ha-a

(=
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and so
d—2 d—2
At tOIN
M M
Z(£+1—t) K“<Z (C+1—t)(d— Ka-1,a-1
{=t— {=t—1
AMcy 1 44 i tel(d—1-1)!
(d—1-—1)! é:t_l (+1—-t)(d—-1)
)\MKd 1,d—1 d—1 ! dzf 14
d—1-1) t t—1
=t—1
_ )\MKd—l,d—l
(d—1—-1t)"’
therefore (5.14) holds as required. O

This completes the proof of dual feasibility and hence
o <ayl, ,(N)

by weak duality (Theorem 1.3). Strict inequality in the dual constraints
outside of the (7,4,0) constraints implies, by complementary slackness (The-
orem 1.4), that the support of any optimal solution in the primal is con-
tained in the set of (i,7,0) configurations. Theorem 5.1 follows since the
distribution arising from K4 is optimal and disjoint unions of Kgy4's are
the only graphs which induce a distribution supported on the set of (i,1,0)

configurations (Claim 5.5).

5.3 Matchings of a Given Size

In this section we prove Theorem 5.2 and show how the Asymptotic Up-
per Matching Conjecture of Friedland, Krop, Lundow, and Markstrom [43]

follows as a corollary.

Recall that if H is a random matching drawn from the monomer-dimer
model on G at fugacity A then we have

AMg(A)

EH| = Ma(X)

(5.15)
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By a calculation identical to the one given in the proof of Theorem 4.11 from

the previous chapter we also have the following expression for the variance:

d
var|H| = \- JE’H’ . (5.16)

We will make use of the celebrated Heilman-Lieb Theorem [52] which asserts
that for any graph G, the roots of the matching polynomial Mg are all real.
In particular, if v = v(G) is the maximum number of edges in a matching

in G, then we can write
Ma(\) =@+ i), (5.17)

where all the r;’s are real.

Moreover, if a probability distribution has a generating function with the

form (5.17) (properly normalised), then it must be the distribution of v in-

Ar;
1+Ar;0

This gives a tremendous amount of structure to the distribution of |H|, the

dependent Bernoulli random variables with parameters i=1,...v.
size of a random matching drawn from the monomer-dimer model on G: it
has the distribution of the sum of independent Bernoulli random variables
(or in other words, the sequence mo(G),...m,(G) is a Polya frequency se-
quence [71]). In particular we have that the sequence my(G),...,m,(G) is

log-concave, that is

mk(G)Q > my_1(G)mps1(G) for k=1,...,v—1.

This structure will allow us to make use of the following probabilistic result

of Darroch.

Lemma 5.8 ([22] Theorem 4). Let Z be the sum of n independent (but not
necessarily identically distributed) Bernoulli random variables with EZ = p.
Let m be the mode of Z, then

| —m| < 1.

We start with a bound on the variance of the size of a random matching in

a graph G.
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Lemma 5.9. Let G be a graph and let H be a random matching drawn from

the monomer-dimer model on G at fugacity A > 0, then

var|H| < E|H]|.

Proof. Let v := v(G). Recall that by the Heilman-Lieb Theorem we may

write
14

Ma(\) =]+ ),
i=1
where the r; are real. Moreover since the coefficients of Mg are positive,

all roots of Mg must be negative and so the r; are positive. By (5.15) and
(5.16) we then have

v v

)\7‘2‘ )\T’Z‘
E’H’221+Ar1 and Var|H|:Zm.

i=1 =1

Since each of the denominators is greater than 1 the result is clear. O

Lemma 5.10. Let G be a graph. Then for all 1 < k < v(G), there exists a
A so that

my(G)NF 1

Moy Poa[[H| = k] > v

Proof. Let v = v(G). Choose A so that P[|H| = k — 1] = P[|H| = k]. Since
the probability distribution of |H| is log-concave, it follows that P[|H| = k|
is maximal (i.e. both £ — 1 and k are modal values of |H|). Darroch’s rule
(Lemma 5.8) then implies that £ — 1 < E|H| < k. It then follows from
Lemma 5.9 that var|H| < k. By Chebyshev’s inequality, with probability at
least 2/3 the size of H is one of at most {2\/5 \/\m—‘ < [2\/@—‘ values.
It follows that

2 1
Pl|H| = k] > > .
3|2vak| — VR
O
Proof of Theorem 5.2. Choosing A according to Lemma 5.10 we have:
mr(G)N¥ < Ma(\) < My, (\) < ™k - my(Hgn) A,
where for the second inequality we used Theorem 5.1. O
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As a consequence, we prove the Asymptotic Upper Matching Conjecture [43].

To state the conjecture precisely we must first introduce some notation.

Fix d and consider an infinite sequence of d-regular graphs G; = G1, Go, ...

where v(G),) — oo. For any p € [0, 1], the p-monomer entropy is

1 G
hg,(p) = sup limsup log mi,, (Gn) ,
{kn} n—o0 U((;n)
where the supremum is taken over all integer sequences {k, } with % — p.
Let Hq denote the sequence Hg 24, Hg a4, Hagd, - - .- The following theorem is
conjectured in [43] (Conjecture 7.2) where it is referred to as the Asymptotic

Upper Matching Conjecture.

Theorem 5.11. G; = G1,Ga,... be a sequence of d-reqular graphs where
v(Gy) — 00. Then for any p € [0, 1] we have

h’gd (p) < th (IO)

In fact the conjecture is made for sequences of bipartite regular graphs
and the authors remark that it is plausible the bipartite restriction is not

necessary. We show that this is indeed the case.

Proof. Assume p > 0 since for p = 0 the result is trivially true. Let {k,}

be a sequence of integers with U%g”) — p. Assume for the sake of con-

tradiction that limsup% > hy,(p) + € for some ¢ > 0. Take

lOgmLpnl/QJ (Hd,nl)
ni

N large enough that for all ny > N, divisible by 2d,

ha,(p)+e€/2. Now take some n with v(G,) > N and % > hyy,(p)+e,

and let ny = 2d - [v(G,)/(2d)]. By Lemma 5.10, we choose A so that
M| oy /2] (Hgp ) Nem /2l > 1 Mp,,, (A). Note that since p > 0, such A

7/ pn1/2
is bounded away from 0 as n; — co. Then we have

<

log Mg, (A) _ log(my (Gn))\kn) ky,
oG S Gy oGy 18N P ale) Fe

:glogA+th(p)+e+o(1) as n — 0o,
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and
log My, ,(A)  log Mg, (A)
2d N n1
log (7 V ,O’I’L1/2 "M pny /2] (Hd,nl)ALpnl/Qj)
< "
log(7+/pn1/2 2
< g( p 1/ )+Lpn1/J10g)\+h’}-{d(p)+€/2
niy ni
- glog A+ hag,(p) +€/2 + o(1).
However, this contradicts Theorem 5.1. ]

Although the Upper Matching Conjecture remains open, we venture to make

the following even stronger conjecture.

Conjecture 5.12. Let G be a d-reqular, n-vertex graph where 2d divides n.

Then for all k, the ratio m”;ﬁ(fc);) is mazimised by Hgp,.

This conjecture is in fact strong enough to imply Theorem 5.1. The re-
lation to the work here is that Conjecture 5.12 can be stated as follows:
the expected number of edges incident to a uniformly random matching of
size k is minimised by Hg,. Theorem 5.1 shows that such a statement is
true when the random matching is chosen according to the monomer-dimer

model instead of uniformly over those of a given size.
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Appendices

A Completing the Proof of Theorem 2.1

Here we verify the assertion made at the end of the proof of Theorem 2.1
from Chapter 2 which amounts to a simple yet tedious calculation. Recall
that for fixed integer r > 4 we defined the following function on the interval

(0,1]:
r—4

Fr(t) = 248 (|p) + (o = e])*) [T (@ = i),

=1

where p = (1 — (r — 3)t)/4t.

Lemma A. The function f.(t) is mazimised on the interval (0,1] at t =
1/(r+1) forr=4,5,6 and 7.

Proof. Let
r—4 r—3
gr(t) =24 [ —it) =62 [T (1 —it).
=1 =1

Since |u] 4+ (u — [p])? < p we have that f.(t) < g.(t) for t € (0,1]. For
r = 4,5 and 6 we show that g,(¢) is increasing on the interval (0,1/(r + 1)],
that ¢,(1/(r+1)) = f-(1/(r+1)) and that f,(¢) is decreasing on the interval
[1/(r 4 1),1]. This proves the proposition in the cases » = 4,5 and 6. The
case r = 7 is slightly more delicate and we leave this case until last.

Let us show that the derivative of g,(t) is positive on (0,1/(r 4+ 1)]:

r—3
d 1 2 r—3
Zg(t) = 2t-—t2 N _ e T . oNs || 1 —it
79r(0) 6[ <1t+12t+ +1(T3)f>L1( g
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which is positive if and only if

ho(t) ::2—t<1it+1_22t—|— . +1_T(T_33)t> >0
since 6t H;:f(l —4t) > 0 on (0,1/(r + 1)]. Clearly h,(t) is decreasing on
(0,1/(r + 1)] and so it suffices to show that h,(1/(r + 1)) > 0. A simple
calculation reveals that this is indeed the case for r = 4,5 and 6. Showing
that ¢.(1/(r +1)) = fr(1/(r + 1)) is simply the observation that 4 =1, an
integer, when t = 1/(r +1). Finally, if ¢ > 1/(r + 1) then |u| = 0 and so
fr(t) =31 —(r—3))3 H::_f(l —it), a decreasing function of ¢. This deals
with the cases r = 4,5 and 6.
For the case r = 7 we follow a similar procedure however it is not the case
that g7(t) is increasing on (0,1/8). Instead we show that g7(t) is increasing
on (0,1/12], that g7(1/12) = f7(1/12), that f7(¢) is convex on (1/12,1/8)
with f7(1/8) > f7(1/12) and finally that f7(¢) is decreasing on (1/8,1].
These observations are enough to deal with the case r = 7.
To show that g7(t) is increasing on (0,1/12] it suffices to observe, by the
above, that h7(1/12) > 0. Showing that g7(1/12) = f7(1/12) is simply the
observation that p = 2, an integer, when r = 7,¢ = 1/12. To show that
f7(t) is convex on (1/12,1/8) we show that f(¢) > 0 on this interval. Note
that for r = 7,¢t € (1/12,1/8) we have that |u] = 1 so that f7(t) is a degree

six polynomial so that by Taylor’s theorem:
Z mic FER(1/8)(t — 1/8)F.

Elementary, yet tedious, calculation shows that (—1)* f7(k+2)(1 /8) > 0 for
k=0,1,2,3 and 4. It follows therefore that f7(¢t) > 0 for t € (1/12,1/8). A
final calculation shows that f7(1/8) > f7(1/12) and above we showed that
fr(t) is decreasing on (1/(r + 1), 1] for r > 4. O

B Proof of Lemmas 3.46 and 3.47

In this section we present the proofs of Lemmas 3.46 and 3.47 from Chap-
ter 3. We use the following simple property of regular pairs which appears

as Lemma 5 in [39].
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Lemma B. Let 1/m < § < d and let G = (V1, V) be a (6, d)-super-reqular
pair with |V1| = |Va| = m. Then for each pair uw € Vi, w € Vo, G contains a
uw-path of length ¢ for each odd 3 < ¢ < 2(1 —56)m.

Lemma 3.46. Let g > 4 and suppose that % K d K d. Let F be a connected
matching of order q such that every vertex of F' is incident to a matching
edge and let H be a (0,d, m)-super-reqular blow-up of F'. Then the following
holds:

Ifi,j € V(F) and there is an ij-path of length r in F', then for every pair
of vertices u € U;, w € Uj, there exists a uw-path of length £ in H for each
3¢ < €< (1—-60)gm such that ¢ =r (mod 2).

Proof. Take i,j € V(F) and let u € U;, w € U;j. Let T be a spanning
tree of F' which includes every matching edge of F'. Note that T' contains a
closed walk W = yq...yp, where y; = y, = ¢ and W covers each edge of T’
exactly twice, in particular p = 2(¢ — 1) (note that ¢ = v(F')). Using basic
properties of regular pairs we can find a path W = wo ... wp in H where
u = wo and w; € Uy, for all t. Let P = zo...x, be a path of length r in
F where x¢g = i,x, = j. Again, using basic properties of regular pairs we
can find a path P = vo ... v in H where v = wp, v, = w, vy € Uy, for all ¢
and P intersects W only in the vertex w,. Letting Q) = /V[v/ﬁ, it follows that
@ is a uw-path in H of length r +p =r +2(¢ — 1) = r (mod 2). Suppose
that {a, b} is a matching edge of F' so that (U,, Us) is (0, d)-super-regular in
H. Note that @ visits each set U; in H at most 3 times and so there exist
U, CU\Q, U] C Up\Q such that |U;| = |U}| = m—3. Note that (U,,U}) is
certainly (26, d/2)-super-regular by Fact 3.49. By construction, we may pick
consecutive vertices wy, w11 of W (and hence @) such that w; € Uy, w1 €
Upy. By super-regularity we may then pick vertices u, € N(wey1) N UL,
up € N(wy) NUy such that {u,,up} is an edge of H. Applying Lemma B to
(U, Uy) and vertices uq, up, it follows that we can find a g;qi41-path in H
which intersects () only at its endpoints and we can choose this path to have
any odd length 1 < /¢ < 2(1 —50)(m — 3) 4+ 2. Note that letting such a path
replace the edge {q:, ¢+1} in @ does not change the parity of the length of
Q. Applying the same argument to each matching edge of F' we see that H
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contains uw-paths of each length r+2(¢g—1) < ¢ <r+42(¢—1)+%-2(1-66)m
for which ¢ = r (mod 2). The result follows. O

Lemma 3.47. Let ¢ > 4 and let % K §d < d. Let F be an odd connected
matching of order q and suppose that H is a (0, m)-reqular blow-up of F

with minimum density d. Then H contains a cycle of length £ for each odd
3¢ <L<(1-60)gm

Proof. Since F' is non-bipartite it contains an odd cycle C'. Since the largest
matching in F" has ¢/2 edges it follows that |C| < g+ 1. Let T C F be a
minimal tree that contains every matching edge of F'. It is easy to show that
T must have < 2q vertices. Let W be a closed walk in 7" which traverses
each edge of T precisely twice (so in particular W has even length). Since
W and C must intersect, we can augment the walk W by C to obtain a
closed walk W’ = 21 ... 2,z in F where p is odd and p < 3¢ by the above.
Note that by Facts 3.49 and 3.50, we can find H C H such that H' is a
(20,d/2, (1—6)m)-super-regular blowup of . Let U; denote the vertex class
of H' corresponding to the vertex j in F for each j € V(F). Using basic
properties of regular pairs, we can find an odd cycle D = vy ...vpv1 in H’

where v; € Uy, for all j.

Suppose that {a,b} is a matching edge of F' so that (U, Up) is (26,d/2)-
super-regular. By construction, we may pick consecutive vertices v, v;41 of
D such that v; € Uy,ve41 € Up. Note that D visits each set U; in H at
most 3 times. We may therefore apply Lemma B as we did in the proof
of Lemma 3.46 to find a vivyri-path @ in H’ such that @ intersects D
only at its endpoints and we can choose ) to have any odd length 1 <
¢ < 2(1 —5)[(1 —0)m — 3] + 2. Applying the same argument to each
matching edge of F' we see that H contains an odd cycle of each odd length
p<L<p+4-2(1—-66)m. The result follows.
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